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Introduction

ANALOG DEVICES

Analog Devices is the industry’s leading supplier of high-
performance signal processing integrated circuits. Since 1965,
when we introduced innovative modular op amps, we have
consistently advanced the state of the art in components tech-
nology. Today, with 80% of our sales generated by integrated
circuits, we have the industry’s most widely recognized line of
advanced signal processing chips. Our strengths include prop-
rietary wafer fabrication processing technologies, outstanding
product quality, strong internal manufacturing, and innovative,
high-performance product architectures.

THE GROWING IMPORTANCE OF DSP

While signal processing was an exclusively analog phenomenon
in the early 1970s, it is increasingly performed in the digital
domain. Signals from the real world are digitized and fed to a
digital signal processing (DSP) subsystem where fast arithmetic
processors allow operations such as filtering and spectral analysis
to be performed at real-time rates.

THE ROLE OF DSP AT ANALOG DEVICES

As the leader in signal processing circuit technology, Analog
Devices was quick to recognize the important opportunities
made possible by DSP. Our customer base spans a wide area,
including instrumentation, defense/avionics, scientific computing,
industrial, medical, and telecommunications. These areas have
in common the need to continually advance the performance of
their systems. Increasingly they have turned to fast number-
crunching digital hardware to complement their analog processing.
A key strategy of Analog Devices is to offer customers the industry’s
best family of high-performance signal processing devices —
ranging from those strictly in the analog domain, to converters,
to high-speed digital processors.

THE DSP DIVISION

Analog Devices was first in the industry to bring CMOS
semiconductor technology to the area of fast arithmetic processors.
In 1983, our DSP Division introduced a set of seven CMOS
fixed-point multipliers that matched the speed of bipolar alter-
natives, while cutting power requirements by a factor of twenty.
This breakthrough redirected the focus of the industry from
bipolar to CMOS for high-speed VLSI circuits.

Our innovations in CMOS wafer fabrication technology continued
as we pushed processing geometries from the Sum level down to
1.5pum. In parallel, we brought out a complete building block
family of VLSI processors for high-end DSP and numeric proc-
essing systems including a 64-bit IEEE floating-point chipset,
the ADSP-3210 and ADSP-3220. We again advanced the state
of the art in DSP with the introduction of the industry’s first
microprocessor optimized for DSP, the ADSP-2100.

ANALOG DEVICES’ DSP CAPABILITIES
Currently the DSP Division is in production with a 1.5wm
double-layer metal CMOS process. We are now moving to a

1.0npm CMOS process, continuing our innovation in process
technology. Analog Devices continues to develop advanced
processes (such as a specialized bipolar process and gallium
arsenide) both internally and through strategic investments. For
example, we recently introduced our first bipolar DSP product,
a 16 X 16 multiplier that operates at cycle times in excess of
50MHz.

During 1986 we brought on-line a new VLSI wafer fabrication
module to handle the volumes and advanced geometries of our
DSP product line. Our assembly facilities include factories in
Wilmington, Massachusetts and the Philippines. Our VLSI test
capability is located in Norwood, Massachusetts, the Division’s
headquarters.

Analog Devices supports its DSP products with a technically
strong direct salesforce and readily available applications assist-
ance. Included in our applications support is a quarterly newsletter
— DSPatch - that brings you up-to-date applications information
on our products and on the general field of DSP. If you’re not
already receiving DSPaich, call or write us.

DSP PRODUCTS DATABOOK
This book provides complete technical data on DSP products
from Analog Devices. Included are:

® Comprehensive Data Sheets on some 20 significant product
families

® Selection Guides for rapid product finding

o DSP Application Notes

@ List of available Technical Publications on real-world analog
and digital signal processing

® Worldwide Service Directory

® Index.

Besides this Databook, the present series includes a Linear
Products Databook and a Data Conversion Products Databook;
like this book, both are available free upon request.

TECHNICAL SUPPORT

Our extensive technical literature discusses the technology and
applications of products for precision measurement and control.
Besides tutorial material and comprehensive data sheets, including
a large amount in our Databooks, we offer Application Notes,
Application Guides, Technical Handbooks (at reasonable prices),
and several serial publications; for example, Analog Productlog
provides brief information on new products being introduced,
and Analog Dialogue, our technical magazine, provides in-depth
discussions of new developments in analog and digital circuit
technology as applied to data acquisition, signal processing,
control, and test. We maintain a mailing list of engineers, scientists,
and technicians with a serious interest in our products. In addition
to Databook catalogs, we also publish several short-form catalogs
on specific product families. You will find typical publications
described on pages 8-2 and 8-3 at the back of the book.
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SALES OFFICES

Backing up our design and manufacturing capabilities and our
extensive array of publications is a network of sales offices and
representatives throughout the United States and most of the
world. They are staffed by experienced sales and applications
engineers, and many of them maintain a local stock of Analog
Devices products. Our Worldwide Service Directory, as of the
publication date, appears on pages 8-6 and 8-7 at the back of
the book.

RELIABILITY

The manufacture of reliable products is a key objective at Analog
Devices. We maintain facilities that have been qualified under
such standards as MIL-M-38510 for ICs in the U.S. and Ireland
and MIL-STD-1772 for hybrids. More than 20 of our products—
both proprietary and second-source—have qualified for JAN
part numbers; others are in the process. Most of our ICs are
available in versions that comply with MIL-STD-883C Class B.

1-4 GENERAL INFORMATION

We publish a Military Products Databook for designers who
specify ICs and hybrids for military contracts (the 1987 issue
contains data on nearly 150 available product families). A news-
letter, Analog Briefings, provides current information about the
status of reliability at ADI.

Our PLUS program makes available standard devices (commercial
and industrial grades, plastic or ceramic packaging) for any user
with demanding application environments, at a small premium.
Subjected to stringent screening, similar to MIL-STD-883 test
methods, they are often suffixed “/+” and are available from
stock.

PRICES

Accurate, up-to-date prices are an important consideration in
making a choice among the many available product families.
Since prices are subject to change, current price lists and/or
quotations are available upon request from our sales offices.
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Introduction

The ADSP-2100 is a single-chip processor optimized for digital
signal processing (DSP) and other high-speed numeric processing
applications. The chip has many special features which facilitate
a fast design cycle. The ADSP-2100 offers:

1.

Easy-to-Attain High Performance

The ADSP-2100 integrates arithmetic/logic unit(ALU), mul-
tiplier/accumulator(MAC), barrel shifter, data address
generators, and a program sequencer in a single device. Its
architecture offers single-cycle access to both the external
program and data memories. The resulting architecture com-
bines the functions and performance of a bit-slice/building
block system with the ease-of-design and development of a
general-purpose microprocessor.

. Easy-to-Understand Instruction Set

The ADSP-2100 instruction set uses an algebraic syntax,
similar to high-level languages, making it easy to write and
understand code for the processor. This results in easier and
faster code development and maintenance.

. Easy-to-Use Development Tools

The complete set of development tools available for the
ADSP-2100 (Cross-Software, Simulator, In-Circuit Emulator,
and Evaluation Board) minimizes both design time and effort.
Your application is up and running faster with this powerful
development system.

. Easy-to-Design System Interface

The advanced design of the ADSP-2100 allows simple
interconnection of memories and I/O devices, minimizes the
external logic required to handle interrupts, and supports
straightforward host interface and multiprocessing of multiple
ADSP-2100s.

The ADSP-2100 is available in 6 or 8MHz versions and is fabricated

in a high-speed 1.5 micron double-layer metal CMOS process.
It dissipates less than 600mW. The part is available in both
commercial and military versions.

Faster versions of the ADSP-2100 are planned. Check with your
local sales office for current information.

Some of the applications for which the ADSP-2100 has been
designed-in are image processing, speech processing, high-speed
modems, telecommunications, radar, sonar, graphics, and num-
erical processing.

ADSP-2100 Benchmarks

Algorithm Performance @ SMHz

FIR Filter 125ns per Tap (1 Cycle per Tap)
Complex FIR Filter 500ns per Tap (4 Cycles per Tap)

Biquad Filter Section 875ns per Section (71 Cycles per Section)
Lattice Filter Section 625ns per Section (5 Cycles per Section)
1024-Point Complex 6.61ms

FFT (Radix-2)

4096-Point Complex 33.3ms

FFT (Radix-2)
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ADSP-2100 Features and Benefits

Feature

Benefit

Separate Program and Data Buses

Efficient Data Transfer, in Parallel with Computations

Dual Purpose Program Memory for Both Instruction
and Data Storage

Dual Operand Fetch in One Cycle

Single-Cycle Direct Access to Both Program and Data Memory

No Time Penalty for Off-Chip Memory Access

Single Cycle Instruction Execution with 125ns Cycle Time

High Throughput

Multifunction Instructions

High Degree of Parallelism

Addresses 16K x 16 of Data Memory and 16K X 24 of Program
Memory (a 16K x 24 Expansion Available for Data)

Room for Complex Programs and Up to 32K of Data

Three Independent Computational Units (ALU, MAC,
Barrel Shifter)

Programming Flexibility; Output of Any Computational Unit
Can Be Input to Any Computational Unit

Two Independent Data Address Generators

Dual Operand Fetch in One Cycle; No Overhead Modulo
Addressing; Bit-Reversing

Powerful Program Sequencer

Zero-Overhead Looping and Single-Cycle Conditional Branches

Internal Instruction Cache

Three Bus Performance During Program Loops

Provisions for Multiprecision Computation and Saturation Logic

Processing Flexibility

Four External Interrupts

Easy System Design; Minimizes External Logic

Complete Development System

Ease of Program Development

1.5,m CMOS

High-Speed and Low-Power Dissipation

Simple Bus Interface

Simplifies Interconnections of Memories and I/O Devices

Bus Request and Bus Grant Signals

Supports Multiprocessing of Several ADSP-2100s and Easy
Host Interface

Background Registers on All Computational Units

Fast Context Switching for Ease of Interrupt Handling
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ADSP-2100 Development System

FEATURES

Cross-Software Modules:
System Builder
Assembler
Linker
PROM Splitter
Simulator
Stand-Alone In-Circuit Emulator

Cross-Software Available for Use on
IBM PC' Under PC-DOS"*
DEC VAX* Under VMS*

Macros for Modular Code Development

Interactive and Symbolic User-Friendly
Interface

Stand-Alone Evaluation Board

GENERAL DESCRIPTION

The ADSP-2100 Development System is a complete set of
development tools for systems using the ADSP-2100 DSP
microprocessor. This powerful and easy-to-use set of tools is
extremely valuable in implementing an ADSP-2100 system
design: the software tools shorten the software design cycle
and the Emulator and Evaluation Board facilitate the debug

cycle.

The ADSP-2100 Development System includes:

® A complete Cross-Software System consisting of five
modules:

System Builder - to define the target hardware

environment

Assembler — to assemble code/data modules

Linker - to link separately assembled
modules

PROM Splitter - to generate PROM burner
compatible files

Simulator - to perform an instruction-level

software simulation
® A stand-alone in-circuit hardware Emulator

® A stand-alone Evaluation Board

With the Cross-Software System, the user defines the target
system, writes a program using the ADSP-2100 Assembly
Language, assembles each program module; links all modules
to form a running system, simulates execution of the code,
and downloads the program into PROMs for hardware im-
plementation. VAX VMS and IBM PC versions of the Cross-
Software are available. The System Builder, Assembler,
Linker, and PROM Splitter for the IBM PC are sold together
in a single package, with the Simulator available separately.
The VAX VMS version of the Cross-Software System is sold
in a single package.

The In-Circuit Emulator provides the user with complete
monitoring and control capabilities for debugging code in
the actual target system. With its pod connected to the target
system’s ADSP-2100 socket, the Emulator operates at the
processor’s full cycle rate. Through the Emulator’s RS-232
connections, the user can also download program files created
with the Cross-Software Tools from the host computer
system.

The ADSP-2100 Evaluation Board is an additional tool for
evaluating the processor in real time and an aid to the de-
velopment process. This board also provides analog I/O and
an expansion port for user prototyping.

ORDERING INFORMATION

Refer to Development System Selection Guide on page 2-13.

+IBM PC and PC-DOS are registered trademarks of International
Business Machines Corp.
$DEC VAX and VMS are trademarks of Digital Equipment Corp.
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ADSP-2100 Cross-Software Modules

FEATURES

System Builder

Allows the User to Specify Target Hardware
Assembler

Supports High-Level Constructs

Supports Flexible Macro Processing

Encourages Modular Code Develop t
Provides a Full Range of Diagnostics
Linker

Supports Multi-Module Linking.
Maps Assembler Output to Target Hardware

PROM Splitter
Formats the ROM Memory Image for
Uploading to PROM Burners
Simulator
Interactive User-Friendly Interface
Full Symbolic Disassembly
Simulates Hardware Configuration
Simulates Port I/0 Handling
Flags Illegal Operations

GENERAL DESCRIPTION

The ADSP-2100 Cross-Software Modules allow the user to
easily develop applications software for implementation on
an ADSP-2100 system. The Cross-Software Modules include
the following:

System Builder

The System Builder translates a user-defined description of
the target hardware system into a form which can be utilized
by other Cross-Software Modules. The ADSP-2100 Cross-Soft-
ware Modules require knowledge of the target hardware
system for the Linker to place relocatable segments, the
Simulator to simulate external memory configurations, and
for the PROM Splitter to generate separate program and
data files. The user specifies the target program memory,
data memory, and I/O port configurations by writing a System
Specification Source File. The ADSP-2100 System Builder
then translates this into an Architecture Description File
which is read by the other ADSP-2100 Cross-Software
Modules.

Assembler

The ADSP-2100 Assembler translates user-written source
code modules into relocatable object-code modules. The
user creates an assembler source code module by writing a
program using the ADSP-2100 Assembly Language and
defining variable data buffers and symbolic constants using
the Assembler Directives. An assembly module becomes a
“unit” of the complete system source code. Separately as-
sembled object-code modules are linked together to form

the final running system using the ADSP-2100 Linker.
Linker

The ADSP-2100 Linker generates a complete executable
program, the Program Memory/Data Memory Image File, by
linking together object-code modules which were assembled
separately. This output file is used by the Simulator, the
PROM Splitter, and the Emulator. Another Linker output,
the Debug Symbol Table File, contains a list of all symbols
encountered by the Linker and enables the Simulator to
utilize user-defined source code level symbols in its interface
with the user.

PROM Splitter

The ADSP-2100 PROM Splitter extracts the address informa-
tion and the contents of the ROM portion of the PM/DM
Image File and formats the extracted images for uploading
to PROM burners. The PROM image file is generated in
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either Motorola S Record, Intel Hex Record, or Daisy VLA

format.

Simulator

The ADSP-2100 Simulator simulates the operation of the

ADSP-2100 and allows the user to observe the contents of

the 2100’s registers, buses, stacks and program and data

memories as a program is being executed. The Simulator is

user-friendly, interactive, and screen-oriented. By utilizing

the Architecture Description File output of the System Builder,

the Simulator configures itself to match the target system

hardware. The Simulator supports full symbolic disassembly

via the Debug Symbol Table File output of the Linker.

The Simulator supports three execution modes:

® Emulator Mode, which runs at the fastest simulation speed
and updates the screen every 256 cycles.

® Extend Mode, which updates the screen every cycle during
program execution.

® Single Step Mode, which executes a single instruction per
run command.

The Simulator has six major display modes:

® Register Display, which displays the contents of the ADSP-
2100 primary and alternate registers.

® Program Memory Display

® Data Memory Display

® Stack Display, which displays the contents of the ADSP-
2100’s program sequencer stacks.

® Trace Buffer Display, which displays the past external bus
states of the ADSP-2100.

® Cache Memory Display

In addition, the Simulator allows you to:
¢ Modify the contents of Registers, Program or Data Memory,
or the Program Counter

® Set break points in program memory

® Set watch points in data memory

® Utilize command files

® Display user-defined addresses or values symbolically
Save and restore the state of the Simulator

Dump program and data memory contents to files
Patch, delete and execute code

Utilize decimal or hexidecimal numeric format

Plot the contents of data memory on the terminal screen



ADSP-2100 Emulator

FEATURES

Performs In-Circuit Emulation

Operates at the Full Clock Rate of the
ADSP-2100 (8MHz)

Self-Emulation of Processor

Same Interactive, Symbolic User Interface as
the ADSP-2100 Simulator

Multiple-Run Modes — Full Speed, Extend Mode
or Single-Step

Supports Breakpoints

User Selectable Program Memory Source —
Emulator or Target System

User Selectable System Clock Source —
Emulator, Target System, or External

Two RS-232-C Connectors for Interfacing to a
Host System and Terminal

Optional Trace Board

GENERAL DESCRIPTION

The ADSP-2100 Hardware Emulator is an In-Circuit Emulator

which allows the user to debug code developed with the

ADSP-2100 Cross-Software Modules in the actual target

system. The Emulator, which utilizes an ADSP-2100 to self-

emulate the processor, plugs into the target system’s ADSP-

2100 socket and operates at the ADSP-2100s cycle time.

The Emulator supports three execution modes:

® Emulator Mode, which runs at full processor speed.

® Extend Mode, which updates the screen every cycle during
program execution.

® Single-Step Mode, which executes a single instruction per
carriage return.

The Emulator has five major display modes:

® Register Display, which displays the contents of the ADSP-
2100 primary and alternate registers.

® Program Memory Disl:')lay

® Data Memory Display

® Stack Display, which displays the contents of the ADSP-
2100’s program counter stack.

® Trace Buffer Display (for optional Trace Board), which
displays the past external bus states of the
ADSP-2100.

With the same interactive, symbolic user interface as the

ADSP-2100 Simulator, the Emulator allows the user to:

® Modify the contents of Registers, Program or Data Memory,
or the Program Counter

® Set breakpoints in Emulator-based program memory

® Display user-defined addresses or values symbolically

® Patch, delete and execute code

o Utilize decimal or hexidecimal numeric format

In addition, the Emulator allows you to:

® Specify the baud rate and parity settings required by the
user’s terminal

® Activate or deactivate the Emulator Pod through software
control

® Select the program memory source from either the
Emulator’s internally available Program Memory RAM or
the target system’s Program' Memory

® Download files from a host system

® Select the system clock source from either the Emulator’s
internal clock, the target system’s clock or an external
clock
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ADSP-2100 Evaluation Board

FEATURES

Stand-Alone ADSP-2100 System

125ns Cycle Time Operation

4K x 24 of Program Memory (with
Sockets for Expansion to 32K)

2K x 16 of Data Memory (with
Sockets for Expansion to 16K)

Analog Interface via A Bidirectional
Codec Channel

Undedicated 12-Bit D/A Converter

Microphone and Speaker Connections
for Audio Applications

Four BNC Connectors Interfacing to
External Instrumentation
Expansion Port for Customization by User
Same Interactive, Symbolic User Interface
as the ADSP-2100 Emulator and Simulator
Multiple Run Modes — Full Speed, Extend Mode
or Single-Step
Supports Breakpoints
Two RS-232C Connectors for Interfacing
to a Host System and Terminal

GENERAL DESCRIPTION

The ADSP-2100 Evaluation Board is an easy-to-use, low-cost
way for evaluating the ADSP-2100 DSP Microprocessor in
real-time applications. The ADSP-2100 Evaluation Board can
play several different roles over the course of an ADSP-2100
design cycle:
® As a Real-time Demonstration System
The Evaluation Board allows the user to observe the ADSP-
2100’s real-time performance in executing standard DSP
benchmarks.

® As a Real-time Evaluation System
The Evaluation Board can be utilized prior to design of
proprietary hardware for the real-time execution of user-
developed application routines.

® As a Simulation Accelerator
ADSP-2100 application code can be executed in real time
for increased productivity of software developers.

The ADSP-2100 Evaluation Board is a stand-alone system
and consists of an ADSP-2100 Digital Signal Microprocessor,
4K x 24 of Program Memory, and 2K x 16 of Data Memory.
Additional program and data memory can be added as desired
up to the full 32K program and 16K data memory address
space via factory installed sockets.

A bidirectional codec channel and an undedicated 12-bit
linear D/A converter allow for processing of real-world signals,
and a prototyping expansion bus allows for customization to
reflect the eventual hardware environment. In addition, four
BNC Connectors are available for interfacing to external
instrumentation. An integral microphone jack and input
pre-amplifier, along with a speaker jack and output amplifier,
allow for easy implementation of speech and telecommuni-
cation applications.

The Evaluation Board’s ADSP-2100 runs under the control
of an onboard host processor enabling the user to access a
variety of powerful debugging tools. Interfacing to an external
host computer system running the ADSP-2100 Cross Software
(available in VAX/VMS and PC-DOS versions), the Evaluation
Board serves as a valuable real-time development tool. The
Evaluation Board connects to a terminal and host computer
via two RS-232C serial connectors.
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Utilizing the same user interface as the ADSP-2100 Emulator
and Simulator, the Evaluation Board supports three execution
modes:

® Emulator Mode, which runs at full processor speed.

® Extend Mode, which updates the screen every cycle during
program execution.

® Single-Step Mode, which executes a single instruction per
carriage return.

The Evaluation board has four major display modes:

® Register Display, which displays the contents of the
ADSP-2100’s primary and alternate registers.

® Program Memory Display.

@ Data Memory Display.

® Stack Display, which displays the contents of the
ADSP-2100’s program counter stack.

The Evaluation Board allows the user to:

® Download ADSP-2100 Cross-Software generated executable
code from a host computer.

® Modify the contents of Registers, Program or Data Memory,
or the Program Counter.

® Set breakpoints in Program Memory.

® Display user-defined addresses or values symbolically.

® Patch, delete, and execute code.

The Evaluation Board requires an external +12 and +5 volt
power supply (not included).



ADSP-2100 User’s Manual

This manual provides the information necessary for an engineer
to understand the operation of the ADSP-2100 and to write
programs for the ADSP-2100. Together with the ADSP-2100
data sheet, the manual provides all the information required to
design a hardware system with the ADSP-2100.

ADSP-2100 Cross-Software Manual

This manual guides the engineer in the use of the ADSP-2100
Cross-Software on either the VAX/VMS, or the IBM PC or PC

compatible.

Chapter Topic

Summary

Chapter Topic

Summary

1 Overview

2 Internal
Architecture

3 System
Interface

4 Instruction
Set

A Instruction
Codes

Overview of the ADSP-2100 and its
development system.

Describes the overall architecture and
functional relationships of the major
units. The internal operation of each
functional unit is described in detail:
the arithmetic/logic unit (ALU), the
multiplier/accuamulator (MAC), the
barrel shifter, the data address
generator, the program sequencer, the
instruction cache and the program-data
(PMD-DMD) bus exchange.

Discusses all major interfaces to the
ADSP-2100: the program memory
(PM) interface, the data memory
(DM) interface, the control interface
and the interrupt lines. This chapter
gives a functional description of the
interfaces and their sequences of oper-
ation. For actual timing parameters,
refer to the ADSP-2100 data sheet.
The pin descriptions are given in this
chapter.

Organized as a reference section. All
instructions are grouped by major
type. These major groups (for example,
ALU, MAC, or MULTIFUNCTION)
are used as thumb heads in this chapter.
The operation and assembly syntax of
each instruction is fully described.

Shows the actual 24-bit instruction
coding of each instruction.

1 Overview
2 System
Builder

3 Assembler

4 Linker

5 Simulator

A File Format

B System
Requirements

Overview of the ADSP-2100 Cross-
Software System.

Describes the System Builder, showing
its input and output files and describing
its syntax, operation, and error
messages.

Describes the Assembler, showing its
input and output files and describing
the Assembler directives, operation
and error messages.

Describes the Linker, showing its
input and output files and describing
its operation and error messages.

Describes the Simulator. The complete
set of interactive commands and typical
displays is shown. The Simulator
provides on-line help for additional
help.

Contains the file format for all input
and output files used by the Cross-
Software System.

List the hardware and software re-
quirements for the computer systems
that can host the Cross-Software
System.
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ADSP-2100 Emulator Manual

This manual guides the engineer in the use of the ADSP-2100
Emulator with the target hardware designed for the specific

application.
Chapter Topic Summary
1 Overview Overview of the ADSP-2100
Emulator.
2 Installation Describes the installation procedure

3 Configuration

4 Operation

5 Development
Examples

A Specifications

B Timing
Comparison

C Accessing more
than 16K of
Target-Based
Program Memory

D Pin Diagrams

E Replace Emulator
Hardware

F Terminal
Emulation
Software

and I/O connections (RS-232 and
BNC).

Describes the initial configuration
of the Emulator such as setting the
baud rates for communications
and activating the ADSP-2100
processor.

Describes the Emulator’s basic
operation and error messages,
highlighting the differences between
the Emulator and Simulator.

Contains step-by-step examples of
Emulator sessions.

Contains the specifications of the
Emulator.

Compares the timing of the
ADSP-2100 in the Emulator with
that of an ADSP-2100 running in a
non-Emulator system.

Tells how to use the Emulator
with more than 16K of
program memory in your
target system.

Shows the pin arrangement of the
ADSP-2100.

Describes how to replace Emulator
PROMS, pod board
and ADSP-2100 chip.

Provides information about
specific terminal emulation
software that can be used
with the emulator

ADSP-2100 Applications Handbook

Volume 1

The ADSP-2100 Applications Handbook covers a wide variety
of examples of numerical and digital signal-processing algorithms.
Each Chapter contains an overview of the chapter topic and
then follows with specific examples, including complete ADSP-
2100 programs.

Chapter Topic

Summary
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Introduction
Fixed Point
Arithmetic
Floating Point
Arithmetic

Function Ap-
proximation

Digital Filters

FFTs

Adaptive
Filters

Image
Processing

Speech
Algorithms

Modems

Introduction to the Handbook.

Describes using the ADSP-2100 for
fixed-point single and multiprecision
arithmetic.

Covers block floating point and full
floating point arthitmetic, and fixed-to-
floating and floating-to-fixed
conversions.

Covers function approximation, in-
cluding sine, arctangent, square root,
and logarithm. Uniform random
number generation is also described.

Describes fixed coefficient digital
filters including single and double
precision FIR filters, two-dimensional
FIR filters, and complex FIR filters.
Also covered are direct form and
cascaded biquad IIR filters and lattice
filters.

Covers Fast Fourier Transforms, both
radix-2 and radix-4. There are also
examples of both decimation-in-time
and decimation-in-frequency
algorithms. Windowing, bit reversal
and magnitude and phase are also
described.

Describes adaptive filtering using a
single- or double-precision stochastic
gradient algorithm.

Describes several image processing
algorithms including two-dimensional
convolutions, matrix multiplications
and histograms.

Describes a number of linear predictive
speech coding algorithms including
linear predictive coding, auto and
cross correlation, Levinson recursion,
and pitch detection. A linear predictive
coding synthesizer is also described.

Describes several algorithms used with
high-speed modems including the
complex-valued gradient and the
weighted Euclidean Distance.




ADSP-2100 Training Course

This intensive three day workshop familiarizes participants with
the features and capabilities of the ADSP-2100 digital signal
microprocessor and its associated development tools. Each topic
is discussed thoroughly and illustrated with practical examples.
Hands-on laboratory exercises with individualized instruction
are an integral part of the workshop. Because of the intensive
nature of the workshop, participants will gain the most from it
if they are already familiar with the general concepts of pro-
gramming in any high level or assembly language.

The workshop begins with an introduction to the system ar-
chitecture and terminology, followed by an in-depth discussion
of the major functional units of the processor. Next, interfacing
the ADSP-2100 to other circuits is considered. The instruction
set is described in detail, with an opportunity to use the Simulator
to observe the data flow and operating units. Several examples
of arithmetic using different data formats help illustrate simple
ADSP-2100 programs.

A large portion of the Workshop is devoted to seeing how the
ADSP-2100 can be used in actual applications. Examples used
include several types of filters, Fast Fourier Transforms and
matrix operations. Although the course does not teach digital
signal processing theory, each example is presented by first
reviewing the general features of the algorithm, discussing its
programming requirements, and finally tracing the operation of
a sample program using the Simulator. After examining the
available development tools, participants will have an opportunity
to experiment with the programming of the ADSP-2100 either
with predefined exercises or with problems they have brought to
class.

This workshop will be a detailed and practical experience for
anyone who will use the ADSP-2100. The price includes tuition,
workshop materials, and the use of the development stations for
laboratory exercises. Class size is limited to a maximum of fifteen
to facilitate individual instruction and a practical hands-on
experience.

Please call the Analog Devices Training Coordinator at

(617) 461-3622 for an current schedule of workshops, a complete
workshop brochure, and pricing.

ADSP-2100 Software Model for Board-Level Simulation

A behavioral model of the ADSP-2100 for use in software simu-
lations of board or system-level products is available from Logic
Automation of Beaverton, Oregon. The behavioral model, called
a SmartModel*, permits engineers to analyze their designs at a
system level with a workstation and a logic simulator. The ability
to proceed directly from the simulated design to the final product
eliminates costly and time-consuming prototypes and multiple
design revisions. Every SmartModel has extensive error checking
capabilities. When it detects an error during a simulation, the
model describes the type of error and when it occurred. Analog
Devices has provided technical data on the ADSP-2100 to Logic
Automation. The model has been validated with Analog Devices’
production test vectors, insuring its correctness. SmartModels
work on a variety of simulators, including Mentor Graphics.

For more information, contact Logic Automation, Inc., Sales
Engineering, P.O. Box 310, 19545 N.W. Von Neuman Dr.,
Beaverton, Oregon 97075, (503) 690-6900.

Board Level ADSP-2100 Products

The Industrial Automation Division of Analog Devices offers
two board level products which incorporate the ADSP-2100.
The RTI-680 is a VME board and the RTI-980 is a Multibus II
board. Both boards are programmable array processors and are
designed to facilitate the implementation of signal processing
algorithms. Development tools are available for each board. For
more information, contact Industrial Automation Division
Marketing, (617) 329-4700.

*SmartModel is a trademark of Logic Automation.
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Selection Guide

ADSP-2100
Use the following guide to select the version of the ADSP-2100
which is right for your application.

ADSP-2100

Speed and Temperature
J -6MHz, 0 to +70°C
K - 8MHz, 0 to +70°C
S —6MHz, —55°C to +125°C

L]

/+ - High Reliability “Plus” Processing
/883B — Processing to MIL

Blank — Standard/Commercial

Processing

Standard 883B

Processing

Package
G - 100-Lead Pin Grid Array
P - 100-Lead Plastic
Leaded Chip Carrier

Note: Extended temperature range parts (S grade, —55°C o
+125°C) and MIL Standard 883B parts are available only in pin
grid array packages (G packages).

Examples:
ADSP-2100KG
An 8MHz part, specified for performance at 0 to +70°C,
packaged in a 100-lead pin grid array, with standard commercial
processing.

ADSP-2100SG/883B

An 6MHz part, specified for performance at —55°C to + 125°C,
packaged in a 100-lead pin grid array, and subject to MIL
Standard 883B processing.

Ordering Cross-Software:
For a VAX - order ADDS-2110.

For a PC or compatible — order both ADDS-2121 and
ADDS-2122.

For information on Cross-Software for other Operating Systems,
please contact the factory.

Ordering an Emulator or Evaluation Board:

You will need either the ADDS-2100 or ADDS-2121 Cross-Soft-
ware with your Emulator or Evaluation Board. If you have
already purchased one of these packages, you need not order
another.

ADSP-2100 Development System

Model No.

Description

Price

ADDS-2110

ADDS-2121

ADDS-2122

ADDS-2150

ADDS-2150E

ADDS-2151

ADDS-2151E

ADDS-2160

ADDS-2161

ADDS-2190

Cross-Software for DEC VAX/VMS
Computers (System Builder, Assem-
bler, Linker, PROM Splitter and
Simulator Modules)

Cross-Software (System Builder,
Assembler, Linker, PROM Splitter
Modules) for IBM PC and Compati-
bles under PC-DOS

Cross-Software Simulator Module
ONLY for IBM PC and
Compatibles

Emulator-110V ac (Requires ADDS-
2110 or ADDS-2121)

Emulator-220V ac (Requires ADDS-
2110 or ADDS-2121)

Emulator-110V ac with Optional
Trace Board (Requires ADDS-2110
or ADDS-2121)

Emulator-220V ac with Optional
Trace Board (Requires ADDS-2110
or ADDS-2121)

Emulator Board (Requires ADDS-
2110 or ADDS-2121)

Emulator Trace Board (Option for
ADDS-2150 or ADDS-2150E)

Three Day Training Course

$2,850

$ 450

$ 975

$8,450

$8,450

$ 900

*Available late 1987.
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| ANALOG
DEVICES

DSP Microprocessor

ADSP-2100

FEATURES

Separate Program and Data Buses, Extended Off-Chip

Single-Cycle Direct Access to 16K x 16 of Data Memory

Single-Cycle Direct Access to 16K x 24 (Expandable
to 32K x 24) of Program Memory

Dual Purpose Program Memory for Both Instruction
and Data Storage

Three Independent Computational Units: ALU,
Multiplier/Accumulator and Barrel Shifter

Two Independent Data Address Generators

Powerful Program Sequencer

Internal Instruction Cache

Provisions for Multiprecision Computation and
Saturation Logic

Single-Cycle Instruction Execution

Multifunction Instructions

Four External Interrupts

125ns Cycle Time

600mW Maximum Power Dissipation with CMOS
Technology

100-Pin Grid Array

APPLICATIONS

Digital Filtering

The ADSP-2100’s flexible architecture and comprehensive in-
struction set support a high degree of operational parallelism. In
one cycle the ADSP-2100 can:

generate the next program address
fetch the next instruction

update one or two data address pointers

°
Optimized for DSP Algorithms Including ® perform one or two data moves
.
.

Fast Fourier Transforms
Applications Include

Image Processing

Radar, Sonar

Speech Processing

Telecommunications

perform a computational operation.

DEVELOPMENT SYSTEM

The ADSP-2100 is supported by a complete set of tools for
software and hardware system development. The Cross-Software
System provides a System Builder for defining the architecture
of systems under development, an Assembler, a Linker and a
Simulator. The Simulator provides an interactive instruction-level
simulation. A PROM Splitter generates PROM burner compatible
files. An Emulator is available for hardware debugging of
ADSP-2100 systems.

GENERAL DESCRIPTION

The ADSP-2100 is a single-chip microprocessor optimized for
digital signal processing (DSP) and other high-speed numeric
processing applications. It integrates computational units, data

address generators and a program sequencer in a single device. ADDITIONAL INFORMATION

For additional information on the architecture and instruction
set of the processor, refer to the ADSP-2100 User’s Manual.

For more information about the Development System, refer to
the ADSP-2100 Cross-Software Manual and the ADSP-2100
Emulator Manual. For examples of a variety of ADSP-2100
applications routines, refer to the ADSP-2100 Applications Hand-
book, Volume 1. Manuals are available from your local Analog
Devices sales office. See ordering information.

The ADSP-2100 makes efficient use of external memories for
program and data storage, freeing silicon area for increased
processor performance. The resulting architecture combines the
functions and performance of a bit-slice/building block system
with the ease of design and development of a general-purpose
microprocessor. The ADSP-2100 (K Grade) operates at
8.192MHz. Every instruction executes in a single 125ns cycle.
Fabricated in a high-speed 1.5 micron double-layer metal CMOS
process, the ADSP-2100 dissipates less than 600mW.
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ARCHITECTURE OVERVIEW

Figure 1 is an overall block diagram of the ADSP-2100. The
processor contains three independent computational units: the
ALU, the multiplier/accumulator (MAC) and the Shifter. The
computational units process 16-bit data directly and have provi-
sions to support multiprecision computations. The ALU performs
a standard set of arithmetic and logic operations; division primitives
are also supported. The MAC performs single-cycle multiply,
multiply/add and multiply/subtract operations. The Shifter
performs logical and arithmetic shifts, normalization, denormali-
zation and derive exponent operations. The Shifter can be used
to efficiently implement any degree of numeric format control,
up to and including full floating point representations. The
computational units are arranged side-by-side instead of serially
for flexible operation sequencing. The internal result (R) bus
directly connects the computational units so that the output of
any unit may be the input of any unit on the next cycle.

A powerful program sequencer and two dedicated data address
generators ensure efficient use of these computational units. The
program sequencer generates the next instruction address. To
minimize overhead cycles, the sequencer supports conditional
jumps, subroutine calls and returns in a single cycle. With
internal loop counters and loop stacks, the ADSP-2100 executes
looped code with zero overhead; no explicit jump instructions
are required to maintain the loop.

The data address generators (DAGs) handle address pointer
updates. Each DAG keeps track of up to four address pointers.

Whenever the pointer is used to access external data (indirect
addressing), it is modified by a prespecified value. A length
value may be associated with each pointer to implement automatic
modulo addressing for circular buffers. With two independent
DAGs, the processor can generate two addresses simultaneously
for dual operand fetches.

Efficient data transfer is achieved with the use of five internal
buses.

® Program Memory Address (PMA) bus
® Program Memory Data (PMD) bus

® Data Memory Address (DMA) bus

® Data Memory Data (DMD) bus

® Result (R) bus )

The program memory (PMD, PMA) buses and data memory
(DMA, DMD) buses extend off-chip to provide direct connections
to external memories. The DMD bus is the primary bus for
routing data internally and to/from external data memory. The
14-bit DMA bus provides direct addressing of 16K x 16 of external
memory. Although the primary function of the program memory
is for storing instructions, it can also store data. In this case, the
PMD bus provides a path for routing data to/from program
memory, permitting dual operand fetches. The 14-bit PMA bus
provides direct addressing to 16K x 24 of external memory,
expandable to 32K x 24 by using the program memory data
access (PMDA) signal as the 15th address line.

CACHE
MEMORY
INSTRUCTION
@ QE REGISTER
DATA DATA l\’l
ADDRESS ADDRESS
PROGRAM
GENERATOR GENERATOR
i P SEQUENCER
VAN —> o
PMA BUS 14, [
[ V4 1
7
— DMA
DMA BUS 14, N2
[ y 4 1
7
PMD BUS 24,
[ y A 1]
7
PMD
BUS
EXCHANGE
DMD

LT L7 &

16, N __ DMD BuUS
,I

INPUT REGS INPUT REGS INPUT REGS
ALU MAC SHIFTER
OUTPUT REGS OUTPUT REGS OUTPUT REGS
%& R BUS 4& 16,
[ 4 ]

Figure 1. ADSP-2100 Block Diagram
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When a data fetch from program memory is required, an extra
memory cycle is automatically appended to enable the next
instruction fetch. To avoid this extra cycle, the ADSP-2100 has
an internal instruction cache (16 instructions deep) which serves
as an alternate source for the next instruction. The cache monitor
circuit transparently determines when the cache contents are
valid. When the next instruction is in the cache, no extra cycle
is necessary.

The data memory interface supports slower memories and memory-
mapped peripherals with wait states. The data memory ac-
knowledge (DMACK) signal provides the necessary handshake.
External devices can gain control of program or data buses
independently with bus request/ grant signals (BR, and BG).

Pin Description

The ADSP-2100 can respond to four external interrupts, which
are internally prioritized, maskable and independently pro-
grammable as either edge- or level-sensitive. Additional external
controls are provided by the RESET, HALT, and TRAP signals.
With both BR and RESET recognized, the ADSP-2100 idles,
consuming the least possible current.

The ADSP-2100 instruction set provides flexible data moves
and multifunction (data moves with a computation) instructions.
Every instruction can be executed in a single processor cycle.
The ADSP-2100 assembly language uses an algebraic syntax for
ease of coding and readability. A comprehensive set of development
tools supports program development.

A pin description and detailed discussion of each section of the
ADSP-2100 follows.

This section summarizes the pin description of the processor by interface. In this data sheet, when groups of pins are identified
with subscripts, as in PMD,3 g, the highest numbered pin (PMD,3) is the MSB.

Master input clock operating at four times the processor instruction rate. Nominally 50% duty

cycle. The phases of CLKIN define the eight internal processor states making up one instruction
cycle. ] and S grades operate at 6.144MHz and K grade operates at 8.192MHz. CLKIN must be

Pin Name Type Function
Clocks:
CLKIN Input
four times these frequencies.
CLKOUT Output

the internal processor states.

Interrupt Request Lines:

IRQ3_o Input

and individually maskable.

Control Interface:

Output clock operating at the processor instruction rate with a 50% duty cycle. Synchronized to

Interrupt Request lines that may be either edge triggered or level sensitive. Interrupts are prioritized

Master Reset must be asserted long enough to assure proper reset. When RESET is released,
Used to halt the processor. All control signals become inactive and the address and data buses are
Used to indicate the execution of a TRAP instruction. Remains asserted until HALT is asserted

Bus Request used by an external device to request control of the program and data memory interface.

Upon receiving BR the processor halts execution at the completion of the current cycle and relinquishes
the program and data memory interface by tristating PMA, PMD, PMS, PMWR, PMRD, PMDA,
DMA, DMD, DMS, DMRD and DMWR. The processor regains control when BR is released.

RESET Input
execution begins at program memory location 0004.
HALT Input
driven for observation.
TRAP Output
by an external device.
BR Input
BG Output

Bus Grant. Acknowledges a bus request (BR), indicating that the external device may take control.

BG is held asserted until BR is released.

Program Memory Interface:

Program Memory Address Bus; tristated when BG is asserted.
Program Memory Data Bus; tristated when BG is asserted.

Program Memory Select signals a program memory access on the PM interface. Also usable as a

chip select signal for external memories. Tristated when BG is asserted.

Program Memory Read indicates a read operation on the PM interface. Also usable as a read

strobe or output enable signal. Tristated when BG is asserted.

PMA 13-0 Output
PMD,3 Bidirectional
PMS Output
PMRD Output
PMWR Output

Program Memory Write establishes the direction of data transfer on the PM interface. Also usable

as a write strobe. Tristated when BG is asserted.
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PMDA Output

Data Memory Interface:
DMA,3_g Output
DMDjs_g Bidirectional

DMS Output
DMRD Output
DMWR Output

DMACK Input

Supply Rails:
Vop Supply
GND Ground

Arithmetic/Logic Unit

Program Memory Data Access used to distinguish instruction and data fetches from PM. Asserted
high when data, as opposed to instruction, is accessed. Also usable as a fifteenth PM address bit.
Tristated when BG is asserted.

Data Memory Address Bus; tristated when BG is asserted.
Data Memory Data Bus; tristated when BG is asserted.

Data Memory Select signals the a Data Memory Access on the Data Memory interface. Also usable
as a chip select signal for external memories. Tristated when BG is asserted.

Data Memory Read indicates a read operation on the Data Memory interface. Also usable as a
read strobe or output enable signal. Tristated when BG is asserted.

Data Memory Write indicates a write operation on the Data Memory interface. Also usable as a
write strobe. Tristated when BG is asserted.

Data Memory Acknowledge signal used for asynchronous transfers across the DM interface. Indicates
that data memory or memory-mapped peripherals are ready for data transfer. If DMACK is not
asserted when checked by the processor, wait states are automatically generated until DMACK is
asserted.

Power supply rail nominally +5VDC. There are four Vpp pins.

Power supply return. There are nine GND pins.

The ALU provides a standard set of general purpose arithmetic

Figure 2 shows a block diagram of the Arithmetic/Logic Unit and logic functions: add, subtract, negate, increment, decrement,

(ALU).

PMD BUS 24,
7

absolute value, AND, OR, Exclusive OR and NOT. Two divide
primitives are also provided to facilitate division. The ALU
takes two 16-bit inputs, X and Y, and generates one 16-bit

DMD BUS 16,

output, R. It accepts the carry (AC) bit in the arithmetic status

Ao weeem register (ASTAT) as the carry-in (CI) bit. The carry-in feature

A

[ enables multiprecision computations. Six arithmetic status bits
A are generated: AZ (zero), AN (negative), AV (overflow), AC
(carry), AS (sign) and AQ (quotient). These status bits are
latched in ASTAT.

Mux

AX
REGISTERS
2x 16

AY
e The X input port can be fed by either the AX register file or
any result registers on the R-bus (AR, MR0, MR1, MR2, SRO,

or SR1). The AX register file contains two registers, AX0 and

AX1. The AX registers can be loaded from the DMD bus. The

Y input port can be fed by either the AY register file or the
ALU feedback (AF) register. The AY register file contains two

registers, AYO and AY1. The AY registers can be loaded from
either the DMD bus or the PMD bus.

The register file outputs are dual ported so that one register can
drive the ALU input while either one simultaneously drives the

DMD bus. The ALU output can be latched in either the AR

register or the AF register.

The AR register has a saturation capability; it can automatically
output plus or minus the maximum value if an overflow or
underflow occurs. The saturation mode is enabled by a bit in
the mode status register (MSTAT). The AR register can drive
both the R-bus and the DMD bus and can be loaded from the
DMD bus.

2 as a “shadow” behind the primary registers. The secondary

% The ALU contains a duplicate bank of registers shown in Figure
R - BUS

set contains all the registers described above (AX0, AX1, AYO,
AY1, AF, AR). Only one set is accessible at a time. The two
sets of registers allow fast context switching for interrupt servicing.

Figure 2. ALU Block Diagram The active set is determined by a bit in MSTAT.
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Multiplier/Accumulator

The multiplier/accumulator (MAC) implements high-speed
multiply, multiply/add and multiply/subtract operations.
Figure 3 shows a block diagram of the MAC section.

PMD BUS 24,
4 L
16 (UPPER
DMD BUS 16 A )
vd
7

X

MF
MULTIPLIER REGISTER
P
._..&gj__* 32/ 150

ADD / SUBTRACT

R2 R1

I Mux || Mux || Mux I
VA

MR2 MR1 MRO
REGISTER REGISTER REGISTER
16, _;_ R - BUS 3
7

Figure 3. MAC Block Diagram
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The multiplier takes two 16-bit inputs, X and Y, and generates
one 32-bit output, P. The 32-bit output is routed to a 40-bit
accumulator which can add or subtract the P output from the
value in MR. MR is a 40-bit register which is divided into three
sections: MRO (bits 0-15), MR1 (bits 16-31), and MR2 (bits
32-39). The result of the accumulator is either loaded into the
MR register or into the 16-bit MAC feedback (MF) register.
The multiplier accepts the X and Y inputs in either signed or
unsigned formats. The result is shifted one bit to the left auto-
matically to remove the redundant sign bit for fractional justifi-
cation. The accumulator generates one status bit, MV, which is
set when the accumulator result overflows the 32-bit boundary.
A saturate command is available to change the content of the
MR register to the maximum or minimum 32-bit value when
MV is set. The accumulator also has the capability for rounding
the 40-bit result at the boundary between bit 15 and bit 16.

The MAC and ALU registers are similar. The X input port can
be fed by either the MX register file (MX0, MX1) or any result
registers on the R-bus (AR, MR0, MR1, MR2, SRO or SR1).

The MX register file is readable and loadable from the DMD
bus and has dual-ported outputs.

The Y input port can be fed by either the MY register file
(MYO0, MY1) or the MF register. The MY register file is readable
from the DMD bus and readable and loadable from both the
DMD and the PMD bus. Its outputs are dual ported.

The accumulator output can be latched in either the MR register
or the MF register. The MR register is connected to both the
R-bus and the DMD-bus. Like the ALU section, the MAC
section contains two complete banks of registers (MX0, MX1,
MYO0, MY1, MF, MR0O, MR1, MR2) to allow fast context
switching.

Shifter

The Shifter gives the ADSP-2100 its unique capability to handle
data formatting and numeric scaling. Figure 4 shows a block
diagram of the Shifter.

The Shifter can be divided into the following components: the
shifter array, the OR/PASS logic, the exponent detector and the
exponent compare logic. These components give the Shifter its
six basic functions: arithmetic shift, logical shift, normalization,
denormalization, derive exponent and derive block exponent.

The shifter array is a 16 x 32-barrel shifter. It accepts a 16-bit
input and can place it anywhere in the 32-bit output field, from
off-scale right to off-scale left. The Shifter can perform arithmetic
shifts (shifter output is sign-extended to the left) or logical shifts
(shifter output is zero-filled to the left). The placement of the
16-bit input is determined by the control code (C) and the HI/LO
reference signal. The control code can come from one of three
sources: directly from the instruction (immediate arithmetic or
logical shift), from the SE register (denormalization) or the
negated value of the SE register (normalization). The shifter
input can come from either the 16-bit SI register or any result
register on the R-bus. The 32-bit output of the shifter array is
fed to the OR/PASS circuit. The result can be either logically
OR-ed with the current contents of the SR register or passed
directly to the SR register. The SR register is divided into two
16-bit sections: SRO (bits 0-15) and SR1 (bits 16-31).

The shifter input is also routed to the exponent detector circuitry.
The exponent detector generates a value to indicate how many
places the input must be up-shifted to eliminate all but one of
the sign bits. This value is effectively the base 2 exponent of the
number. The result of the exponent detector can be latched into
the SE register (for a normalize operation) or can be sent to the
exponent compare logic. The exponent compare logic compares
the derived exponent with the value in the SB register and
updates the SB register only when the derived exponent value is
larger than the current value in the SB register. Therefore, the
exponent compare logic can be used to find the largest exponent
value in an array of shifter inputs.

The Shifter includes the following registers: the SI register, the
SE register, the SB register and the SR register. All these registers
are readable and loadable from the DMD-bus. The SR register
can also drive the R-bus. Like the ALU and MAC, the Shifter
contains two complete banks of registers for context switching.
Each set contains all the registers described above, but only one
set is accessible at a time. The active set is determined by a bit
in MSTAT.
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Figure 4. Shifter Block Diagram

Data Address Generators .
Figure 5 shows a block diagram of a data address generator.

The data address generators (DAGs) provide indirect addressing
for data stored in external memories. The processor contains
two independent DAGs so that two data operands (one in program
memory and one in data memory) can be addressed simultaneously.
The two data address generators are identical except that DAG1
has a bit reversal option on the output and can only generate

16 DMD-BUS
14 1 MUX
2
—_—re
crom” 14 s
INSTR.
L MODULUS ! M 2
REGISTERS LOGIC REGISTERS REGISTERS +—
4x14 ax14 4x14 FROM
INSTR
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ADDRESS

Figure 5. Data Address Generator
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data memory addresses, while DAG2 can generate both program
and data memory addresses but has no bit reversal capability.

There are three register files in each DAG: the modify (M)
register file, the indirect (I) register file, and the length (L)
register file. Each of these register files contain four 14-bit registers
which are readable and loadable from the DMD-bus. The I
registers hold the actual addresses used to access external memory.
When using the indirect addressing mode, the selected I register
content is driven onto either the PMA or DMA bus. This value
is post-modified by adding the content of the selected M register.
The modified address is passed through the modulus logic.
Associated with each I register is an L register which may contain
the length of the buffer addressed by the I register. The L
register and the modulus logic together enable circular buffer
addressing with automatic wrap around at the buffer boundary.
The modulus logic is disabled by setting the length of the associated
buffer to zero.

Program Sequencer

The program sequencer incorporates powerful and flexible
mechanisms for program flow control such as zero-overhead
looping, single-cycle branching (both conditional and uncondi-
tional), and automatic interrupt processing. Figure 6 shows a
block diagram of the program sequencer.

The sequencing logic controls the flow of the program execution.
It outputs a program memory address onto the PMA bus from



one of four sources: the PC incrementer, PC stack, instruction
register or interrupt controller. The next address source selector
controls which of these four sources are selected based on the
current instruction word and the processor status. A fifth possible

source for the next program memory address is provided by
DAG?2 when a register indirect jump is executed.

The program counter (PC) is a 14-bit register which contains
the address of the currently executing instruction. The PC output
goes to the incrementer. The incremented output is selected as
the next program memory address if program flow is sequential.
The PC value is pushed onto the 16 x 14 PC stack when a CALL
instruction is executed or when an interrupt is processed. The
PC stack is popped when a return from subroutine or interrupt
is executed. The PC stack is also used in zero-overhead looping.

The program sequencer section contains five status registers.

These are the Arithmetic Status register (ASTAT), the Stack
Status register (SSTAT), the Mode Status register (MSTAT),
the Interrupt Control register (ICNTL) and the Interrupt Mask
register (IMASK). These registers are described in detail in the

next section.

The interrupt controller allows the processor to respond to one
of four external interrupts with a minimum of overhead. The
interrupts are internally prioritized and are individually maskable.
Each interrupt can be set to be either edge- or level-sensitive.

Depending on a bit in the interrupt control register ICNTL),
interrupt routines can either be nested, with higher priority
interrupts taking precedence, or processed sequentially, with

only one interrupt service active at a time. When responding to
an interrupt, the status registers ASTAT, MSTAT, IMASK are
pushed onto the status stack and the PC counter is loaded with
the appropriate vectored address. The status stack is four levels
deep to allow four levels of interrupt nesting. The stack is auto-
matically popped when return from interrupt is executed.

The vector addresses for each interrupt are fixed at the lowest
four addresses in the program memory space. Single-word,

single-cycle branch instructions may be placed at these locations
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Figure 6. Program Sequencer
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to transfer control to the appropriate interrupt service routine.

The down counter and the count stack implement a powerful
looping mechanism. The down counter is a 14-bit register with
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auto-decrement capability. It is loaded from the DMD bus with
the loop count. The count is decremented every time the counter
value is checked; when the count expires, the counter expired
(CE) flag is set. The count stack allows the nesting of loops by
storing temporarily dormant loop counts. When a new value is
loaded into the counter from the DMD bus, the current counter
value is automatically pushed onto the count stack as program
flow enters a loop. The count stack is automatically popped
whenever the CE flag is tested and is true, thereby resuming
execution of the code outside the loop.

The DO UNTIL instruction executes a zero-overhead loop
using the loop stack and the loop comparator. For a DO UNTIL
instruction, a 14-bit termination address and a 4-bit termination
condition are pushed onto the 18-bit loop stack. The address of
the next instruction (which identifies the top of the loop) is
pushed onto the PC stack. The loop comparator continuously
compares the current PC value against the termination address
on the top of the loop stack. When the termination address is
detected, the processor checks if the termination condition is
met. If the termination condition is not met, then the top of the
PC stack is used as the next PC address, returning program
flow to the beginning of the loop. If the termination condition is
met, then the PC stack is popped, the current PC is incremented
by one, and program flow falls out of the loop. The loop stack
is four levels deep, permitting four levels of zero-overhead loop
nesting.

Instruction Cache Memory

The instruction cache memory is 16 levels deep and one instruction
(24 bits) wide. The cache memory maintains a short history of
previously executed instructions so they can be fetched internally
if they are needed again.

Every time an instruction is fetched from external memory, it is
also written into the cache memory. When the program enters a
loop which fits within the cache, all the instructions in the loop
are stored in cache during the first pass. On subsequent passes,
the instructions can be fetched from the instruction cache when
a program memory data access is required. This allows the
program memory to be used for data access without penalty.
The ADSP-2100 then becomes, in effect, a three-bus system
with two data buses and one program bus. For the multiply/ac-
cumulate operations typical of digital signal processing algorithms,
this gives significant speed advantages.

Instructions are fetched from cache memory only when a program
memory data fetch is required. The cache monitor circuit auto-
matically keeps track of when the next instruction is contained
in the cache. No maintenance or overhead is needed to store
externally fetched instructions in the cache or to read previously
fetched instructions from cache.

PMD-DMD Bus Exchange )

The PMD-DMD bus exchange circuit couples the PMD and
DMD buses. The PMD bus is 24 bits wide and the DMD bus
is 16 bits wide. The upper 16 bits of PMD are connected to the
DMD bus. An 8-bit register (PX) allows transfer of the full
width of the PMD bus. When data is read from the PMD bus,
the lower 8 bits of the PMD bus are loaded into PX. When
writing to the PMD bus, the contents of PX are appended to
the upper 16 bits, forming a 24-bit value. The PX register is
readable and loadable from the DMD bus.
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STATUS REGISTERS

The ADSP-2100 maintains five status registers, each of which
can be read over the DMD bus and four of which can be written.
These registers are:

ASTAT Arithmetic Status register
SSTAT Stack Status register (read-only)
MSTAT Mode Status register

ICNTL Interrupt Control register
IMASK Interrupt Mask register
ASTAT

ASTAT is 8 bits wide and holds the status information generated
by the computational sections of the processor. The bits in
ASTAT are defined as follows:

AZ (ALUresult zero)
AN (ALU result negative)
AV (ALU overflow)

AC (ALU carry)

(ALU X input sign)
AQ (ALU quotient flag)
MV  (MACoverflow)

SS  (Shifter input sign)

NAWVM AR WN—-O
>
(7]

The bits which express a particular condition (AZ, AN, AV,
AC, MV) are all positive sense (1 =true, 0=false). Each of the
bits are automatically updated whenever a new status is generated
by an arithmetic operation. As such, each bit is affected only by
a certain subset of arithmetic operations, as defined by the
following table:

Status Bit Updated on:

AZ,AN,AV,AC Any ALU operation except division

AS ALU absolute value operation

AQ ALU divide operations

MV Any MAC operation except saturate MR
SS Shifter exponent detect operation
SSTAT

SSTAT is 8 bits wide and holds the status of the four internal
stacks. The bits in SSTAT are:

PC Stack Empty

PC Stack Overflow
Count Stack Empty
Count Stack Overflow
Status Stack Empty
Status Stack Overflow
Loop Stack Empty
Loop Stack Overflow

NV A WN=O

All of the bits are positive sense (1 =true, 0= false). The empty
status bits indicate that the number of pop operations for the
stack is greater than or equal to the number of push operations
(if no stack overflow has occurred) since the last reset. The
overflow status bits indicate that the number of push operations
for the stack has exceeded the number of pop operations by an
amount that is greater than the depth of the stack. When this
occurs, the item(s) most recently pushed will be missing from
the stack (old data is considered more important than new). The
stack overflow status bits “stick” once they are set, so that
subsequent pop operations have no effect on them. A processor
reset must be executed to clear the stack overflow status.



MSTAT

MSTAT is a 4-bit register that defines various operating modes
of the processor. The Mode Control instruction enables or disables
the four operating modes. The bits in MSTAT are:

0 Data Register Bank Select

1 BitReverse Mode (DAG1 only)
2 ALU Overflow Latch Mode

3 AR Saturation Mode

The data register bank select bit determines which set of data
registers is currently active (0 = primary, 1=secondary). The
data registers include all of the result and input registers to the
ALU, MAC, and Shifter (AX0, AX1, AY0, AY1, AF, AR,
MX0, MX1, MY0, MY1, MF, MRO, MR1, MR2, SB, SE, SI,
SRO and SR1). At initialization, the data register bank select bit
is cleared.

The bit reverse mode, when enabled, bit-wise reverses all addresses
generated by DAG1. This is most useful for reordering the
input or output data in a radix-2 FFT algorithm.

The ALU overflow latch mode causes the AV (ALU overflow)
status bit to “stick” once it is set. In this mode, when an-ALU
overflow occurs, AV will be set and remain set, even if subsequent
ALU operations do not generate overflows. AV can then only
be cleared by writing a zero into it from the DMD bus.

The AR saturation mode, when set, causes ALU results to be
saturated to the maximum positive (H#7FFF) or negative
(H#8000) values when an ALU overflow occurs.

IMASK
IMASK is four bits wide and allows the four interrupt inputs to
be individually enabled or disabled. The bits in IMASK are:

0 IRQO Enable

The bits are all positive sense (0 =disabled, 1 =enabled). IMASK
is set to zero upon a processor reset so that all interrupts are
disabled initially.

ICNTL
ICNTL is a 5-bit register configuring the interrupt modes of the
processor. The bits in ICNTL are:

0 IRQO Sensitivity
1 IRQI Sensitivity
2 IRQ2 Sensitivity
3 IRQ3 Sensitivity
4 Interrupt Nesting Mode

The IRQ sensitivity bits determine whether a given interrupt
input is edge- or level-sensitive (0= level-sensitive, 1= edge-
sensitive). These bits are all undefined after a processor reset.

The interrupt nesting mode determines whether nesting of in-
terrupt service routines is allowed. When set to zero, all interrupt
levels will be masked automatically when an interrupt service
routine is entered. When set to one, IMASK will be set so that
only equal and lower priority interrupts will be masked, permitting
higher priority interrupts to interrupt the current interrupt
service routine. This bit is undefined after a processor reset.

CONDITION CODES

The condition codes are used to determine whether a conditional
instruction, such as a jump, trap, call, return, MAC saturation
or arithmetic operation, is performed. The sixteen composite
status conditions and their derivations are given in Table I.
Since arithmetic status is latched into ASTAT at the end of a
processor cycle, the condition logic outputs represent conditions
generated on a previous cycle.

1 IRQ1 Enable
2 IRQ2 Enable
3 IRQ3 Enable
Code Status Condition TrueIf:
EQ ALU Equal Zero AZ=1
NE ALU Not Equal Zero AZ=0
LT ALU Less Than Zero AN .XOR.AV=1
GE ALU Greater Than or Equal Zero | AN.XOR.AV=0
LE ALU Less Than or Equal Zero (AN .XOR.AV).OR.AZ=1

GT ALU Greater Than Zero (AN .XOR.AV).OR.AZ=0
AC ALU Carry AC=1

NOT AC | NotALU Carry AC=0

AV ALU Overflow AV=1

NOT AV | Not ALU Overflow AV=0

MV MAC Overflow MV=1
NOT MV | Not MAC Overflow MV=0
NEG ALU X Input Sign Negative AS=1

POS ALU X Input Sign Positive AS=0

NOT CE | Not Counter Expired CE+0
TRUE True Always True

Table I. Condition Codes

DSP Microprocessors 2-23



SYSTEM INTERFACE
Figure 7 shows a basic system configuration with the
ADSP-2100.

Clock Signals

The ADSP-2100 takes a TTL-compatible clock signal, CLKIN,
running at four times the basic processor cycle time as an input.
Using this clock input, the processor divides the internal processor
cycle into eight states, defined by the edges of the input clock.
The active processor cycle consists of states 1 through 7. State 8
is a dead zone to provide a neutral stopping point for halting

the processor. The CLKIN signal must have a duty cycle of
50% to insure that all eight states are equal in duration.

A clock output (CLKOUT) signal is generated by the processor
to synchronize external devices to the processor’s internal cycles.
CLKOUT is high during states 8, 1, 2 and 3, and low during

states 4, 5, 6 and 7. Its frequency is one-fourth of that of CLKIN.
Except during RESET, the CLKOUT signal runs continuously.

Bus Interface

The ADSP-2100 can relinquish control of the memory buses to
an external device. When the external device requires access to
memory, it asserts the Bus Request (BR) signal. After completing
the current instruction, the processor halts program execution,
tristates the PMA, PMD, PMS, PMRD, PMWR and PMDA
output drivers and the DMA, DMD, DMS, DMRD and DMWR
output drivers, and asserts the Bus Grant (BG) signal. When the
BR signal is released, the processor re-enables the outpur drivers,
releases the BG signal, and continues program execution from
the point where it stopped.

Program Memory Interface

The Program Memory Interface supports two buses: the program
memory address bus (PMA) and the program memory data bus
(PMD). The 14-bit PMA bus directly addresses up to 16K
words. The PMD bus is bidirectional and 24 bits wide.

Since program memory can be used for both instruction code
and data storage, the Program Memory Data Access (PMDA)
signal is asserted whenever data, as opposed to an insiruction
code, is fetched. There is no placement restriction for instruction
code and data in program memory area if less than 16K words
are used. Since the timing of PMDA is compatible with that of
the PMA lines, it may be used as a 15th address line if desired.
This effectively doubles the program memory area to 32K,
which must be split into 16K dedicated to instruction codes and
16K to data.

The program memory data lines are bidirectional. The Program
Memory Select (PMS) signal indicates access to the Program
Memory and can be used as a chip select signal. The Program
Memory Write (PMWR) signal indicates a write operation and
can be used as a write strobe. The Program Memory Read
(PMRD) signal indicates a read operation and can be used as a
read strobe or output enable signal.

Although the processor internal data bus is only 16 bits, the
ADSP-2100 can write to the full 24-bit program memory using
the PX register.

Data Memory Interface

The Data Memory Interface supports two buses: the Data Memory
Address bus (DMA) and the Data Memory Data bus (DMD).
The 14-bit DMA bus directly addresses up to 16K words of
data. The DMD bus is bidirectional and 16 bits wide. The Data
Memory Select (DMS) signal indicates access to the Data Memory
and can be used as a chip select signal. The Data Memory Write
(DMWR) signal indicates a write operation and can be used as a
write strobe. The Data Memory Read (DMRD) signal indicates
a read operation and can be used as a read strobe or output
enable signal.

The ADSP-2100 supports memory-mapped I/O, with the peripher-
als memory mapped into the data memory address space and
accessed by the processor in the same manner as data memory.

CLOCK
CLKIN CLKOUT B C_E
CEl@—]Fms DMS |——®» || OE DATA
OE BMRD DMRD " WE MEMORY
PROGRAM WE l@——| Fwr BWWR ~aoon 16k X 16
RY
MEMO ADSP-2100 -
16/32k x 24 l@——— | PvDA DMACK (> DATA
14 14
ADDR K —Z——] pmaA DMA /
24 16
DATA k™ pyp omp [ > —
CE
. . = OE
RESET HALT TRAP IRQ B BG .
WE  pERIPHERALS
ACK
4 i —{ap0R
) <:> DATA

Figure 7. Basic System Configuration
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To allow interfacing to slower peripherals, the data memory
acknowledge (DMACK) signal is provided. The ADSP-2100
checks the status ot the DMACK signal at the end of each
processor cycle. If the DMACK signal is not asserted, the processor
extends the current cycle by another full cycle. This extension
occurs as many times as necessary until the DMACK signal is
asserted and the access is completed.

Interrupt Handling

The ADSP-2100 provides four direct interrupt input pins, IRQ,
to IRQ;. Each interrupt pin corresponds to a particular interrupt
priority level from 3 (highest) to 0 (lowest). The four interrupt
levels are internally prioritized and individually maskable.

These input pins can be programmed to be either level- or edge-
sensitive.

The ADSP-2100 supports a vectored interrupt scheme: when an
external interrupt is acknowledged, the processor switches program
control to the interrupt vector address corresponding to the
interrupt level (program memory locations 0000 to 0003). Inter-
rupts can optionally be nested so that a higher priority interrupt
can preempt the currently executing interrupt service routine.

Processor Control Interface

The processor control interface provides external control over
the activity of the processor. The control signals are RESET,
HALT and TRAP.

The RESET signal initiates a master reset of the ADSP-2100.
The RESET signal must be asserted after the chip is powered
up to assure proper initialization. The master reset performs the
following:

Initialize internal clock circuitry

Reset all internal stack pointers

Clear the cache memory monitor

If there is no pending bus request, PMA is driven with 0004
Mask all interrupts

Clear MSTAT register.

The HALT signal is used to suspend program execution tem-
porarily. When HALT is asserted, the processor stops at the
end of the current instruction. To ensure that the processor
always halts after completion of an instruction fetch, an external
fetch of the next instruction is forced even if the instruction is
available from internal cache memory. Since the processor always
stops after an external instruction fetch cycle, the controlling
device is able to observe the instruction address where the program
was stopped. The halt condition can be sustained for any length
of time, during which all signals generated by the processor will
remain static (maintaining the output at state 8). The processor
will continue normal execution when the HALT line is

released.

AN B W N

The TRAP signal is generated by the processor whenever a
TRAP instruction is executed. Assertion of the TRAP signal
indicates that the processor has stopped instruction execution
just after the end of the cycle which executed the TRAP instruction.
The TRAP state is identical to the HALT state, with the processor
output frozen in state 8. In this case, the processor PMA bus
contains the address of the instruction following the TRAP
instruction. The TRAP signal remains asserted until the HALT
signal is asserted externally. When the HALT signal assertion is
sensed, the processor releases the TRAP signal. However, the
processor remains in the halt condition until the HALT line is
released.

Multiprocessor Synchronization

Even when multiple ADSP-2100s are driven from the same
CLKIN signal, there is a phase ambiguity between the various
processors. This ambiguity can be prevented by using a single
master RESET signal synchronized to CLKIN. When the master
RESET is released, all the processors begin state S on the same
edge of CLKIN. Once initialized in this manner, the cycle
states of the processors remain synchronized with each other.

INSTRUCTION SET DESCRIPTION

The ADSP-2100 assembly language uses an algebraic syntax for
ease of coding and readability. The sources and destinations of
computations and data movements are written explicitly in each
assembly statement, eliminating cryptic assembler mnemonics.
Nevertheless, every instruction assembles into a single 24-bit
word and executes in a single cycle. The instructions encompass
a wide variety of instruction types along with a high degree of
operational parallelism. There are five basic categories of in-
structions: data move instructions, computational instructions,
multifunction instructions, program flow control instructions
and miscellaneous instructions. Each of these instruction types
is described briefly. The complete instruction set is summarized
in Table IV at the end of this section.

Data Move Instructions

Table II gives a list of all registers that are accessible using the
data move instructions. (Only the program counter (PC), the
instruction register, the arithmetic feedback register (AF) and
the multiplier feedback register (MF) are not on this list.) This
set of registers is denoted as reg in the instruction set summary
given in Table IV. A subset of the reg group associated with the
computational units, which generally hold data as opposed to
address or status information, is denoted as dreg.

The data move instructions include transfers between internal
registers, between data memories and internal registers, between
program memories and internal registers, and immediate value
loading of registers and data memories. The content of every reg

AX0,AX1

AYO0,AY1 \
AR

MX0, MX1
MYO0,MY1

MRO, MR1, MR2
SI

SE

SRO, SR1

Data
Registers
(dreg)

SB
PX

10,11,12,13,14,15,16,17

Mo, M1, M2, M3, M4, M5, M6, M7
L0,L1,1.2,1.3,1.4,L5,L6,L7
CNTR

ASTAT

MSTAT

SSTAT

IMASK

ICNTL J

Accessible
Registers
(reg)

Table Il. Register Classification

DSP Microprocessors 2-25



can also be loaded to ahy other reg. Every reg can be loaded
with an immediate value which is the full width of the particular
register being loaded.

Two addressing modes are supported for data memory transfers:
direct addressing and indirect addressing. In direct addressing,
the memory address is supplied from the instruction word. In
indirect addressing, one of the data address generators provides
the address. Using direct addressing, the content of a data memory
location can be written and read by any reg. Using indirect
addressing, the content of a data memory location can only be
written and read by a dreg. Immediate data load to data memory
is permitted with indirect addressing. Only the indirect addressing
mode is supported for program memory data transfers, and
contents of a program memory location can be read and written
to any dreg.

Computational Instructions

There are three types of operations associated with the computa-
tional units: ALU operations, MAC operations and shifter oper-
ations. With few exceptions, all these computational instructions
can be made conditional. (The permissible conditions are specified
in Table 1.) Each computational unit has a set of input registers
and output registers. A list of permissible input operands and
result registers for each of the units is given in Table III.

Multifunction Instructions

Multifunction instructions execute one computational operation
with one or two data moves. All of the multifunction instructions
utilize various combinations of the computational and data move
operations described above. Since the instruction word is only
24 bits wide, only certain combinations are valid. In general,

the following rules are followed.

3 Data move operations can only involve data registers
(dregs)

4 Only an ALU or a MAC operation can be specified with
two operand fetches, one from program memory and one
from data memory.

Program Flow Control Instructions

Program flow control instructions include JUMP, CALL, return
from subroutine, return from interrupt, DO UNTIL and TRAP.
All of these instructions can be made conditional. The JUMP
and CALL instructions support both direct addressing, with the
destination address specified by the instruction word, and indirect
addressing, with the destination address specified by one of the
I registers in DAG2.

Miscellaneous Instructions
Miscellaneous instructions include indirect register modify,
stack control, mode control and NOP operations.

These conventions are used in Table IV on the following pages:

1. All keywords are shown in capital letters.

2. Brackets enclose optional parts of the syntax.

3. Vertical lines indicate that one parameter must be chosen
from those enclosed.

. Table I defines the conditions for condition.

. Table II defines the set of registers for dreg and reg.

. Table III defines the set of registers for xop and yop.

. <data> represents an immediate value.

. <address> may be an immediate value or label.

. <comp>, in a multifunction instruction, represents all legal
ALU, MAC or Shifter operations with these restrictions:
— All operations are performed unconditionally

— Shift Immediate operations are not allowed

O 00NN

1 g’r;lc);f?er:f unconditional computational operation can be — ALU division (DIVS, DIVQ) is not allowed
2 Any memory transfer must use the indirect addressing
mode
ALU
Source for Source for Destination for
X input port (xop) |Y input port (yop) | output portR
AX0,AX1 AY0,AY1 AR
AR AF AF
MRO, MR1, MR2
SRO, SR1
MAC
Source for Source for Destination for
X input port (xop) |Y input port(yop) | output port R
MX0, MX1 MY0,MY1 MR (MR2, MR1, MRO)
AR MF MF
MRO, MR1, MR2
SRO, SR1
Shifter
Source for Destination for
Shifter input (xop) | Shifter output
SI SR (SR1, SR0)
AR
MRO, MR1, MR2
SRO, SR1

Table lll. Computational Input/Output Registers
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DATA MOVE INSTRUCTIONS

Register Move
reg = reg;

Load Register Immediate
reg = ~<data~;

Data Memory Read (direct address)
reg = DM (<address>);

Data Memory Read (indirect address)
dreg = DM([I0]|,|MO|);

I1 Ml
12 M2
I3 M3
14 M4
IS M5
I6 M6
17 M7

Program Memory Read (indirect address)

dreg = PM(|14]|,|M4]|);
15 M5
16 M6
17 M7

Data Memory Write (direct address)
DM (<address>) = reg;

Data Memory Write (indirect address)

DM(|I0O|, |MO|) = dreg;
11 Ml <data>
12 M2
13 M3
14 M4
IS M35
16 Mé
17 M7
Program Memory Write (indirect address)
PM (| 14| ,| M4| ) = dreg;
IS M5
16 Mé
17 M7

COMPUTATIONAL INSTRUCTIONS: ALU

Add/Add with Carry
[IF condition] | AR l = Xop
AF

+C

Subtract X-Y/Subtract X-Y with Borrow

[ IF condition ] AR = Xop —yop
AF

Subtract Y-X/Subtract Y-X with Borrow

[ IF condition ] AR = yop — Xop
AF

+yop

+yop+C

—yop+C—1

—-xop+C—1

I;
|

AND, OR, Exclusive OR

il

Xop AND

XOR

= PASS | xop | ;
yop

= - xop | 3
yop

= NOT | xop | ;
yop

= ABS xop |
yop

= yop +1

= yop -1 3

DIVS yop, xop ;

[ IF condition ] AR
AF

Pass/Clear

[ IF condition ] AR

) AF

Negate

[ IF condition ] AR
AF

NOT

[IF condition] | AR
AF

Absolute Value

[IF condition] | AR
AF

Increment

[IF condition ] 1 AR I
AF

Decrement

[IF condition] | AR
AF

Divide
DIVQ

Xop ;

yop

COMPUTATIONAL INSTRUCTIONS: SHIFTER

Arithmetic Shift

[ IF condition ] SR =
Logical Shift

[IF condition ] SR =
Normalize

[ IF condition ] SR =
Derive Exponent

[IF condition] SE =

Block Exponent Adjust
[ IF condition ] SB =

Arithmetic Shift Inmediat

SR = [SROR]

Logical Shift Immediate
SR =[SROR]

[SR OR] ASHIFT xop

[SROR] LSHIFT xop

[SR OR] NORM xop

EXPxop | (HI) [;
(LO)
(HIX)

EXPAD] xop ;

€

ASHIFT xopBY <data>

LSHIFT xopBY <data>
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COMPUTATIONAL INSTRUCTIONS: MAC

MULTIFUNCTION INSTRUCTIONS

Multiply Computation with Memory Read
[IFcondition] | MR | = xop*yop (1SS s <comp> , dreg = DM(|I0]|,|Mo0]|);
MF SU n| [mi
Us 2| | M2
uu B3| [M3
RND
4| | M4
Multiply Accumulate 15 MS
[IFcondition] | MR | = MR+xop*yop (| SS ) s 16 M6
MF SU 17| |M7
us
UuU PM |14 |, |M4|);
RND I5 | |Ms
16 Mé6
Multiply Subtract 17 M7
[IF condition] | MR I = MR-xop*yop (| SS )3
MF %l; Computation with Data Register Move
<comp> , dreg = dreg ;
Uuu
RND Computation with Memory Write
DM(|Io],| MO]) = dreg, <comp> ;
Clear 11 Ml
[IF condition ] ‘ MR I = 0; 2 M2
MF 3 M3
Transfer MR 14 M4
[IF condition] | MR I = MR [(RND)] ; 15 M5
MF 16| |Ms6
17 M7
Conditional MR Saturation
IFMVSATMR ; PM ([14],|M4]);
IS MS
16 Mé
17 M7
Data & Program Memory Read
AXO|=DM(|I0|,|MO|),|AYO | =PM (|14],|M4]|);
AX1 I M1 AY1 IS M5
MXO0 12 M2 MYO 16 M6
MX1 I3 M3 MY1 17 M7
ALU/MAC Operation with Data & Program Memory Read
I<ALU> ,JAXO | =DM (|I0|,|MO|),|AYO | =PM ( [14]|,| M4|);
<MAC>| |AXI 11 M1 AY1 IS M5
MX0 12 M2 MYO0 16 Mé
MX1 13 M3 MY1 17 M7

PROGRAM FLOW CONTROL INSTRUCTIONS

Jump

[IF condition] JUMP (| 14 ) s

<address>

Call
[IF condition] CALL (| I4
15
16
17
<address>
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Return from Subroutine
[IF condition] RTS ;

Return from Interrupt
[IF condition] RTI ;

Do Until
DO <address> [ UNTIL condition] ;

Trap
[ IF condition ] TRAP ;



MISCELLANEOUS INSTRUCTIONS

Stack Control
[|[PUSH| STS] [,POPCNTR] [,POPPC] [,POPLOOP] ;
[|POP
Mode Control
ENA | BIT_REV , | ENA| AV_LATCH , |ENA| AR_SAT , ENA | SEC_REG ;
DIS DIS DIS DIS
Modify Address Register
MODIFY (|10}, MO]) s
11 M1
12 M2
13 M3
14 M4
IS M5
16 M6
17 M7
No Operation
NOP ;

TablelV. Instruction Set Summary
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SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS

ADSP-2100

J & K Grades S Grade
Parameter Min Max Min Max Unit
Vpp  Supply Voltage 4.75 5.25 4.50 5.50 \%
Tams Ambient Operating Temperature 0 +70 -55 +125 °C
ELECTRICAL CHARACTERISTICS

J & K Grades S Grade
Parameter Test Conditions Min Max Min Max Unit
Viz  Hi-Level Input Voltage! @Vpp = max 2.0 2.0 \'
Vi  Lo-Level Input Voltage! @Vpp =min 0.8 0.8 \'%
Vou Hi-Level Output Voltage? @Vpp=min, Iog= — 1mA 2.4 2.4 v
VoL  Lo-Level Output Voltage? @Vpp =min, Io; =4mA 0.4 0.6 \%
Iiy  Hi-Level Input Current? @Vpp=max, Viy=5V 10 10 A
I Lo-Level Input Current? @Vpp =max, Vin=0V 10 10 nA
Iozu Tristate Leakage Current* @Vpp = max, Vi =max’ 50 50 pA
Iozi Tristate Leakage Current’ @Vpp=max, V=0V’ 50 50 RA
Iozi. Tristate Leakage Current® @Vpp=max, Viy=0V’ | 150 150 pA
Ipp  Supply Current (Power-Down)©®& @Vpp=max, V=0V’ 10 10 mA
Ipp  Supply Current (Dynamic) @Vpp = max, max clock rate® 90 100 mA

NOTES

!Applies to pins: PMD,_,,, DMD,_,,, BR, IRQ,_,, DMACK, RESET, HALT, CLKIN (39 input pins)

2Applies to pins: BR, IRQ,_;, DMACK, RESET, HALT, CLKIN (9input only pins)

3Applies to pins: PMA,_,;, PMS, PMD,_,;, PMRD, PMWR, PMDA, BG, DMA,_,;, DMS, DMD,_,;, DMRD, DMWR, TRAP, CLKOUT (78 output pins)
“Applies to pins: PMA,_,;, PMS, PMD, _,; PMRD, PMWR, PMDA, DMA,_,;, DMS, DMD,_,;, DMRD, DMWR(7S tristateable pins)

*Applies to pins: PMA,_,;, PMDA, DMA,_,; (29 tristateable pins w/o pullup)

SApplies to pins: PMD,_,;, PMS, PMRD, PMWR, DMD,_,;, DMS, DMRD, DMWR(46 tristateable pins w/pullup)

7Additional Test Conditions: Vi =0V on BR and RESET, CLKIN active, forces tristate condition

8Additional Test Conditions: Outputs loaded TTL loads w/100pF capacitance, Vi = 2.4V, Vi = 0.4V, clock rate = 6. 144mHz for ] and S grade, 8.192mHz for K grade.

%“Power-down” refers to an idle state. While the ADSP-2100 does not have any special standby or low-power mode, these conditions represent the lowest power
consumption state.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage . . .. ... ......... -0.3Viwo +7V
Input Voltage . . . ... ........... -0.3Vto Vpp
Output Voltage Swing . . . . .. ... .... -0.3Vto Vpp
Load Capacitance . . . . ... ... .......... 200pF
Operating Temperature Range (Ambient) . . —55°C to +125°C
Storage Temperature Range . . . . ... .. -65°C to +150°C
Lead Temperature (10 Seconds) . . ... ... ... +300°C
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ORDERING INFORMATION

Package
Part Numb Temp eRange Package Outline
ADSP-2100JG 0to +70°C 100-Pin Grid Array G-100A
ADSP-2100KG 0to +70°C 100-Pin Grid Array G-100A
ADSP-2100SG —55°Cto +125°C 100-Pin Grid Array ~ G-100A
ADSP-2100JG/+  0to +70°C 100-Pin Grid Array ~ G-100A
ADSP-2100KG/+  0to +70°C 100-Pin Grid Array ~ G-100A
ADSP-2100SG/ + —55°Cro +125°C 100-Pin Grid Array ~ G-100A
ADSP-2100SG/883B —55°Cto +125°C 100-Pin Grid Array ~ G-100A
ADSP-2100JP 0to +70°C 100-Lead PLCC P-100
ADSP-2100KP 0to +70°C 100-Lead PLCC P-100
ADSP-2100JP/ + 0to +70°C 100-Lead PLCC P-100
ADSP-2100KP/+  0to +70°C 100-Lead PLCC P-100

ADSP-2100 Development Tools

INTERNAL VISUAL INSPECTION
COMMERCIAL

4

Part Number Description

ADDS-2110 ADSP-2100 Cross-Software (VAX/VMS)

ADDS-2121 ADSP-2100 Assembler, Linker, Utilities
(IBM-PC)

ADDS-2122 ADSP-2100 Simulator (IBM-PC)

ADDS-2150 ADSP-2100 In-Circuit Emulator (North
American version)

ADDS-2150E ADSP-2100 In-Circuit Emulator (European
version)

ADDS-2151 ADSP-2100 In-Circuit Emulator with Trace
Board (North American version)

ADDS-2151E ADSP-2100 In-Circuit Emulator with Trace
Board (European version)

ADDS-2161 Trace Board Option for ADSP-2100
In-Circuit Emulator

HERMETICITY

METHOD 1014

FINE LEAK CONDITION A OR B
GROSS LEAK CONDITION C

STABILIZATION BAKE
METHOD 1008
CONDITION C - 24 HRS, 150°C

|

TEMPERATURE CYCLE

'

INTERIM ELECTRICAL TESTING

METHOD 1010
CONDITIONC- 10CYCLES

}

CENTRIFUGE
METHOD 2001
CONDITION D - 20,000G, Y1 PLANE

|

BURN-IN
METHOD 1015
160 HRS - 125°C

!

100% FINAL ELECTRICAL TESTING

ESD SENSITIVITY

Plus Processing

The ADSP-2100 features input protection circuitry consisting of large ‘‘distributed” diodes and
polysilicon series resistors to dissipate both high-energy discharges (Human Body Model) and fast,
low-energy pulses (Charged Device Model). Per Method 3015.2 of MIL-STD-883C, the ADSP-2100

has been classified as a Category A device.

Proper ESD precautions are strongly recommended to avoid functional damage or performance
degradation. Charges as high as 4000 volts readily accumulate on the human body and test equipment
and discharge without detection. Unused devices must be stored in conductive foam or shunts,
and the foam should be discharged to the destination socket before devices are removed. For
further information on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.

WARNING!
vé

ESD SENSITIVE DEVICE
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SWITCHING CHARACTERISTICS

GENERAL NOTES

Use the exact timing information given and do not attempt to-
derive parameters from the addition or subtraction of others.
While this addition or subtraction would yield meaningful results
for an individual part, the values given in this data sheet reflect
statistical variations and worst cases. Consequently, you cannot
meaningfully add up parameters to derive or “verify” longer
times.

Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade

Clock Signals Code | Min Max Min Max Min Max Units
Timing Requirements
1 CLKIN Period! A 40.5 30.5 40.5 ns
2 CLKIN Width Low A 11 8 11 ns
3 CLKIN Width High A 18 12 18 ns
Switching Characteristics
4 CLKIN Low (3-4) to CLKOUT Low B 13 34 13 29 13 34 ns
5 CLKIN Low (7-8) to CLKOUT High B 6 24 6 20 6 24 ns
6 CLKOUT Width Low? A 60 45 60 ns

CLKIN

CLKOUT

NOTE

The Processor Cycle is Divided into 8 Internal States Determined by the Rising and Falling Edges

of CLKIN. CLKOUT is Synchronized to the Processor States as Shown Above.
Figure 8. Clock Signals
Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade
Control Signals Code | Min Max Min Max Min Max Units
Timing Requirements
7____RESET Low to CLKIN High B 2 2 2 ns
8 CLKIN High to RESET High B 6 36 4 26 6 36 ns
9  RESET Width Low? A 162 122 162 ns

RESET SIGNAL

—

'

4

RESET 5‘ j
NOTE

The Reset signal determines the phase of the processor cycle.
The processor starts from state 4 after the release of the Reset signal.

Figure 9. RESET Signal

/.
7

2-32 DSP Microprocessors



Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade
Control Signals Code | Min Max Min Max Min Max Units
Timing Requirements
10 HALT Valid to CLKIN Low (3-4) B (1] 0 0
11  CLKIN Low (3-4)to HALT Invalid B 12 10 12
Switching Characteristics
12 CLKIN Low (7-8)to TRAP Valid B 6 25 6 20 6 25
Interrupts
Timing Requirements
13 CLKIN Low (7-8)to IRQ Valid B 2 2 2
14 CLKIN Low (7-8) to IRQ Invalid B 21 17 21

CONTROL SIGNALS

CLKIN

——» <—@

- I"MWMC'OMOE1010101010101010310MOI‘I‘W

\ L

\ \W
TRAP § X( x

—

e IOI010IOM%IO'OMOXOIOIOIOIOIOIOIOIOIOIOIOI

NOTE

The Control Signals are Shown in Relationship to the Processor States in Which They are
Recognized or Asserted as Defined by CLKIN. There is No Implied Relationship between
HALT, TRAP, and IRQ,_;.

Figure 10. Control Signals
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Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade
Bus Request Asserted Code | Min Max Min Max Min Max Units
Timing Requirements
15  BRValid to CLKIN Low (3-4) B 1 : 1 1 ns
16  CLKIN Low (3-4) to BR Invalid B 10 7 10 ns
Switchng Characteristics
17 CLKIN Low (3-4)to BG Low B 13 38 13 30 13 38 ns
19  BG LowtoxMxx Disable? D 22 17 22 ns

BUS REQUEST ASSERTED

YRR WA WAWAWRWAN
- T z//////////////// ;

-0
G &

—*

xMxx }‘

Figure 11. Bus Request Asserted
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Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade

Bus Request Negated Code | Min Max Min Max Min Max Units
Timing Requirements
15 BRValid to CLKIN Low (3-4) B 1 1 1 ns
16  CLKIN Low (3-4)to BR Invalid B 10 7 10 ns
Switching Characteristics
18 CLKIN Low (7-8)to BG High B 10 31 10 25 10 31 ns
20  xMxx Enable to BG High® F 12 10 12 ns

CLKIN

——»4—’

. ////////f \\\\\\\\\\\\\\\\\\\\\\\

(3

o

il
{

Figure 12. Bus Request Negated

xMxx

Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade

Bus Request/Grant with RESET Low Code | Min Max Min Max Min Max Units
Switching Characteristics
21 BR LowtoBG Low during reset A 10 28 10 23 10 28 ns
22 BRHighto BG High during reset A 6 21 6 18 6 21 ns

BR

BG

NOTE

During Reset, the Processor Bus Ignores the CLKIN Signal and Therefore the Bus Request/Grant
Signals Operate Asynchronously.

Figure 13. Bus Request/Grant with RESET Low

DSP Microprocessors 2-35



Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade
Program Memory Read Code | Min Max Min Max Min Max Units
Switching Characteristics
23 CLKIN High (8-1) to PMA Valid B 18 72 18 58 18 72 ns
24  CLKIN High (8-1) to PMA Invalid B 10 10 10 ns
25 CLKINHigh (8-1)to PMDA Valid B 18 56 18 44 18 56 ns
26 CLKIN High (8-1) to PMDA Invalid B 12 12 12 ns
27  CLKIN High (8-1) to PMS Valid B 12 32 12 25 12 32 ns
28  CLKIN High (8-1) to PMS Invalid B 8 8 8 ns
29  CLKIN Low (3-4) to PMRD Low B 11 36 11 29 11 36 ns
30 CLKIN Low (7-8)to PMRD High B 6 25 6 20 6 25 ns
31 PMRD Width Low? A 60 45 60 ns
32 PMA Valid to PMRD Low? A 18 11 18 ns
33  PMRD High to PMA Invalid? A 20 16 20 ns
34 PMDA Valid to PMRD Low? A 41 31 41 ns
35 PMRD High to PMDA Invalid? A 23 18 23 ns
36 PMS Valid to PMRD Low? A 57 40 57 ns
37 PMRD High to PMS Invalid? A 16 12 16 ns
Timing Requirements
56 PMDIn Valid to CLKIN Low (7-8) B 4 4 4 ns
57  CLKIN Low (7-8) to PMD In Invalid B 12 11 12 ns
58  PMRD Low to PMD In Valid® A 45 37 45 ns
59  PMA Valid to PMD In Valid® A 57 50 57 ns
60  PMS Valid to PMD In Valid? A 90 65 90 ns
97 PMRD Highto PMD In Invalid A 0 0 0 ns
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PROGRAM MEMORY READ
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Figure 14. Program Memory Read
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Notes 1, 2 and 3 and a table explaining the Test Codes éppear further on in this data sheet.

Test J Grade K Grade S Grade

Program Memory Write Code| Min Max Min Max |  Min Max Units
Switching Characteristics

23 CLKIN High (8-1) to PMA Valid B 18 72 18 58 18 72 ns
24  CLKIN High (8-1) to PMA Invalid B 10 10 10 ns
25  CLKIN High (8-1) to PMDA Valid B 18 56 18 44 18 56 ns
26 CLKIN High (8-1) to PMDA Invalid B 12 12 12 ns
27  CLKIN High (8-1) to PMS Valid B 12 32 12 25 12 32 ns
28  CLKIN High (8-1) to PMS Invalid . B 8 8 8 ns
38 CLKIN Low (3-4) to PMWR Low B 8 34 8 25 8 34 ns
39  CLKIN Low (7-8) to PMWR High B 8 27 8 22 8 27 ns
40 PMWR Width Low? A 60 45 60 ns
41  PMA Valid to PMWR Low? A 16 10 16 ns
42 PMWR High to PMA Invalid? A 19 15 19 ns
43  PMDA Valid to PMWR Low? A 39 29 39 ns
44 PMWR High to PMDA Invalid? A 22 16 22 ns
45  PMS Valid to PMWR Low? A 54 40 54 ns
46 PMWR High to PMS Invalid? A 15 11 15 ns
47 CLKIN High (4-5) to PMD Out Enable E 18 15 18 ns
48  CLKIN High (8-1) to PMD Out Disable C 40 35 40 ns
49  CLKIN High (4-5) to PMD Out Valid B 49 39 49 ns
50 CLKIN High (8-1) to PMD Out Invalid B 16 16 16 ns
51 PMWR Low to PMD Out Enable? F 19 15 19 ns
52 PMWR High to PMD Out Disable? D 43 37 43 ns
53  PMWR Low to PMD Out Valid? A 40 32 40 ns
54  PMWR High to PMD Out Invalid? A 23 18 23 ns
55 PMDOut Valid to PMWR High? A 33 25 33 ns
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PROGRAM MEMORY WRITE

CLKIN

PMA

PMDA

PMD

Figure 15. Program Memory Write
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Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade
Data Memory Read Code | Min Max Min Max Min Max Units
Switching Characteristics
61 CLKIN High (8-1) to DMA Valid B 16 65 16 52 16 65 ns
62  CLKIN High (8-1) to DMA Invalid B 10 10 10 ns
63  CLKIN High (8-1) to DMS Valid B 19 53 19 40 19 53 ns
64  CLKIN High (8-1) to DMS Invalid B 12 12 12 ns
65 CLKIN Low (3-4) to DMRD Low B 11 33 11 28 11 33 ns
66  CLKIN Low (7-8) to DMRD High B 6 25 6 21 6 25 ns
67 DMRD Width Low? A 60 45 60 ns
68  DMA Valid to DMRD Low? A 21 16 21 ns
69  DMRD High to DMA Invalid? A 19 15 19 ns
70  DMS Valid to DMRD Low A 35 27 35 ns
71  DMRD High to DMS Invalid A 22 18 22 ns
Timing Requirements
72 DMACK Valid to CLKIN High (6-7) B 1 1 1 ns
73 CLKIN High (6-7) to DMACK Invalid B 9 8 9 ns
74  DMRD Low to DMACK Valid? A 31 21 31 ns
75  DMA Valid to DMACK Valid? A 57 42 57 ns
92  DMD In Valid to CLKIN Low (7-8) B 0 0 0 ns
93  CLKIN Low (7-8) to DMD In Invalid B 17 14 17 ns
94  DMRD Low to DMD In Valid? A 57 41 57 ns
95  DMA Valid to DMD In Valid? A 82 61 82 ns
96  DMS Valid to DMD In Valid A 96 70 96 ns
98  DMRD High to DMD In Invalid A 0 0 0 ns
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DATA MEMORY READ
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Figure 16. Data Memory Read

DSP Microprocessors 2-41



Notes 1, 2 and 3 and a table explaining the Test Codes appear further on in this data sheet.

Test J Grade K Grade S Grade
Data Memory Write Code | Min Max Min Max Min Max Units
Switching Characteristics
61  CLKIN High (8-1) to DMA Valid B 16 65 16 52 16 65 ns
62  CLKIN High (8-1) to DMA Invalid B 10 10 10 ns
63 CLKIN High (8-1) to DMS Valid B 19 53 19 40 19 53 ns
64  CLKIN High (8-1) to DMS Invalid B 12 12 12 ns
76  CLKIN Low (3-4)to DMWR Low B 11 35 11 28 11 35 ns
77  CLKIN Low (7-8) to DMWR High B 6 26 6 21 6 26 ns
78 DMWR Width Low? A 60 45 60 ns
79  DMA Valid to DMWR Low? A 24 17 24 ns
80 DMWR High to DMA Invalid? A 20 15 20 ns
81 DMS Valid to DMWR Low A 37 28 37 ns
82 DMWR High to DMS Invalid A 22 19 2 ns
83 CLKIN High (4-5) to DMD Out Enable E 18 15 18 ns
84 CLKIN High(8-1) to DMD Qut Disable C 38 32 38 ns
85  CLKIN High (4-5) to DMD Out Valid B 49 40 49 ns
86 CLKIN High (8-1) to DMD Out Invalid B 11 11 11 ns
87 DMWR Low to DMD Out Enable F 18 14 18 ns.
88 DMWR High to DMD Out Disable? D 40 35 40 ns
89 DMWR Low to DMD Out Valid A 38 32 38 ns
90 DMWR High to DMD Out Invalid? A 21 16 21 ns
91  DMD Out Valid to DMWR High? A 33 21 33 ns
Timing Requirements
72  DMACK Valid to CLKIN High (6-7) B 1 1 1 ns
73 CLKIN High (6-7) to DMACK Invalid B 9 [] 9 ns
74  DMRD Low to DMACK Valid? A 31 21 31 ns
75  DMA Valid to DMACK Valid? A 57 42 57 ns
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DATA MEMORY WRITE
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Figure 17. Data Memory Write
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NOTES
'Rise and fall times <5ns.
?These items are cycle time dependent.

3¢Mxx” refers to PMA,_,3, PMS, PMRD, PMWR, PMDA, DMA,_,3, DMS, DMRD and DMWR

TEST CODES
Code | Test Type Level Reference
A Inputs, Outputs | Low=0.8V, High=2.0V
B CLKIN 1.5V

tolfrom

Inputs, Outputs | Low = 0.8V, High=2.0V
C CLKIN 1.5V

to
Output Disable | Low= Vg +0.5V,High=Vog—0.5V

D Output Low=0.8V,High=2.0V

o
Output Disable | Low=Vgp +0.5V,High=Voy—0.5V

E CLKIN 1.5V

0
OutputEnable | Low=VT-0.1V,High=VT+0.1V

F Output Low=0.8V,High=2.0V

to/from
Output Enable Low=VT-0.1V,High=VT+0.1V

VT = 1.5V, the voltage to which tristated outputs are forced.

Vop

2pF

Input only pads:
CLKIN. BR. DMACK.
IRQ. RESET. HALT -

Figure 18. Equivalent Input Circuit

Voo
L
*

] 50KQ

>

L O
. 1

< 2pF

q}_—‘_l'

Output only pads: CLKOUT. PMA. PMDA, BG. DMA TRAP.

“Only presemwhen output is OFF on: PMS. DMS, PMWR. DMWR.
PMRD. DMRD.

Figure 19. Equivalent Output Circuit
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3pF —— l_‘

Bidirectional pads: PMD, DMD

* Only present when output driver is OFF.

Figure 20. Equivalent Bidirectional Circuit

oL
TO
OUTPUT +1.5V
PIN
100pF
lon

Figure 21. Normal Load for AC Measurements



N [ PMD18 | PMD20 | PMD21 | PMD23 { BG VDD | GND | GND | PMS | TRAP | HALT | RESET | DMAO
M| PMD16 | PMD17 | PMD19 | PMD22 | PMRD | BR | DMRD | DMWR | DMS | PMDA [DMACK| GND | DMA2
L | PMD14 | PMD15 CLKOUT| CLKIN | PMWR DMA1 | DMA3
K | PMD12 [ PMD13 DMA4 | DMA5
J | PMD10 | PMD11 DMA6 | GND
H| GND | PMD8 | PMD9 DMA7 | DMA8 | VDD
G| vbD | PMD7 | PMD6 DMA10 | DMA11 | DMA9Q
F | PMD5 | PMD4 | PMD3 DMD15 | DMA13 | DMA12
E| oND | PMD2 DMD13 | DMD14
D | PMD1 | PMDO DMD11 [ DMD12
C | PMAO | PMA2 PMA11 | iRQ2 | iRQO ":,?NEX DMD9 | DMD10
B| PMA1 | PMA4 | PMA6 | PMA7 | PMA9 | PMA12 | iRQ3 | iRQ1 | DMD1 | DMD3 | DMD6 | DMD7 | DMD8
A| PMA3 | PMA5 | GND | PMA8 | PMA10 | PMA13 | VDD | GND | DMDO | DMD2 | DMD4 | DMD5 | GND

Figure 22. ADSP-2100 Pins, Top View, Pins Down

Function Location | Function Location | Function Location | Function Location
Voo A7 PMA1 B13 PMD12 K13 DMA9 G1
Voo G13 PMA2 c12 PMD13 K12 DMA10 G3
Voo H1 PMA3 A13 PMD14 L13 DMA11 G2
Voo N8 PMA4 B12 PMD15 L12 DMA12 F1
GND A1 PMAS A12 PMD16 M13 DMA13 F2
GND A6 PMA6 B11 PMD17 M12 DMDO A5
GND A1 PMA7 B10 PMD18 N13 DMD1 B5
GND E13 PMAS A10 PMD19 M11 DMD2 A4
GND H13 PMAS B9 PMD20 N12 DMD3 B4
GND a1 PMA10 A9 PMD21 N11 DMD4 A3
GND M2 PMA11 cs PMD22 M10 DMD5 A2
GND N6 PMA12 B8 PMD23 N10 DMD6 B3
GND N7 PMA13 A8 PMS N5 DMD7 B2
CLKIN L7 PMDO D12 PMWR L6 DMD8 B1
CLKOUT L8 PMD1 D13 PMRD M9 DMD9 c2
BR M8 PMD2 E12 PMDA M4 DMD16 C1
BG N9 PMD3 F11 DMAO N1 DMD11 D2
IRQ0 cé PMD4 F12 DMA1 L2 DMD12 D1
iRQ1 B6 PMD5 F13 DMA2 M1 DMD13  E2
iRQ2 c7 PMD6 G11 DMA3 L1 DMD14  E1
iRQ3 B7 PMD7 G12 DMA4 K2 DMD15 F3
RESET N2 PMD8 H12 DMAS K1 DMS M5
TRAP N4 PMD9 H11 DMAG6 J2 DMWR M6
HALT N3 PMD10  J13 DMA7 H3 DMRD M7
INDEXPIN NC PMD11 J12 DMAS H2 DMACK M3
PMAO c13

Table V. ADSP 2100 Pins by Function — G-100A
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ADSP-2100 PIN CONFIGURATION

P-100

PIN FUNCTION | PIN FUNCTION | PIN FUNCTION | PIN FUNCTION | PIN FUNCTION
1 PMD6 21 PMAIO 41 DMD9 61 DMA2 81 BG

2 Voo 22 PMAIlL 42 DMDI0 62 DMAI 82 PMRD
3 PMD5 23 PMAI2 43  DMDII 63 DMAO 83 PMD23
4 PMD4 24 PMAI3 44 DMDI2 64 GND 84 PMD22
5 PMD3 25 IRQ3 45 DMDI3 65 RESET 85 PMD21
6 GND 26 IRQ2 46 DMDI4 66 DMACK 86 PMD20
7 PMD2 27 Vpp 47 DMDIS 67 HALT 87 PMDI9
8 PMDI 28 GND 48  DMAI3 68 PMDA 88 PMDIS
9  PMDO 29 1RQL 49 DMAI2 69 TRAP 89 PMDI7
10 PMAO 30 IRQO 50 DMAII 70 DMS 90 PMDI6
11 PMAl 31 DMDO 51 DMAIO 71 PMS 91 PMDIS
12 PMA2 32 DMDI 52  DMA9 72 PMWR 92 PMDI4
13 PMA3 33 DMD2 53 Vpp 73  DMWR 93 PMDI3
14 PMA4 34 DMD3 s4 DMAS 74 GND 94 PMDI2
15 PMAS 35 DMD4 55 DMA7 75 DMRD 95 PMDI1
16 PMA6 36 DMD5 56 GND 76  CLKIN 9% PMDIO
17 GND 37 DMDS6 57 DMA6 77 GND 97 PMD9
18 PMA7 38  GND 58  DMAS 78 Vob 98 PMDS
19 PMAS 39  DMD7 59  DMA4 79 BR 99 GND
20 PMA9 40 DMDS 60 DMA3 80 CLKOUT 100 PMD7
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Introduction

The current members of the Word-Slice™ family of microcode
components include the ADSP-1401 Sequencer and the ADSP-
1410 Address Generator. (You will also want to look at the
ADSP-3128 Register File in the Floating-Point Chapter.) Both
feature the Look-Ahead™ pipeline which eliminates the need
for an external microcode pipeline register by internally latching
instructions and addresses. Both are fabricated in a fast 1.5um
CMOS process and are available in 48-pin DIPs and 52-lead
PLCCs. Together they improve performance and reduce board
space substantially relative to bit-slice solutions. A 225-page
Word-Slice User’s Manual covers all aspects of programming
with these parts.

The ADSP-1401 is a high-speed, 16-bit microprogram controller
optimized for the demanding sequencing tasks found in digital
signal processors and general-purpose computers. In addition to
high speed, this sequencer features on-chip storage and control
of ten prioritized and maskable interrupts; four decrementing

event counters; absolute, relative, and indirect addressing capa-
bility and a dynamically configurable 64-word RAM.

The ADSP-1410 is a fast, flexible address generator that rapidly
generates the data memory addresses required by routines such
as digital filters, FFTs, matrix operations and DMAs. The
ADSP-1410 features a 16-bit ALU, a comparator and thirty 16-
bit registers organized into four files: sixteen address registers,
six offset registers, four compare registers and four initialization
registers. In a single cycle the ADSP-1410 can output a 16-bit
memory address, modify this address and detect when the value
has crossed a preset boundary and conditionally loop back to
the top of a circular buffer.

Third-party support is available in the form of meta-assemblers,
development systems and behavioral models. Contact the Analog
Devices for further information on development tools.

Look-Ahead and Word Slice are trademarks of Analog Devices, Inc.
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Selection Guide

ADSP-1410 ADDRESS GENERATOR

Clock-to-
Data Memory Address Size Address Minimum | #of Address | Total # of Package Logic
Single-Pry Double-Pr Valid Delay’ | Cycle Time | Registers | Registers | Ipp? |Options® |Process | Type
Commerical ] |16Bits / 64K Words |30 Bits / 1Gigaword 35ns 100ns 16 30 75mA| D,N,P| CMOS | TTL
K| 16Bits / 64K Words |30Bits / 1Gigaword 30ns 90ns 16 30 75mA| D,N,P| CMOS | TTL
Military S | 16 Bits / 64K Words | 30 Bits / 1 Gigaword 45ns 125ns 16 30 100mA| D CMOS | TTL
T |16 Bits / 64K Words |30 Bits / 1Gigaword 35ns 100ns 16 30 100mA| D CMOS | TTL
ADSP-1401 PROGRAM SEQUENCER
Clock-to-
Program Add Add Mini Stack Number of Package Logic
Size Valid Delay’| Cycle Time | Depth | Interrupts | Ipp? | Options® |Process| Type
Commerical J |16 Bits / 64K Words 35ns 90ns 64 Words 10 75mA D,N,P| CMOS| TTL
K| 16 Bits / 64K Words 25ns 70ns 64 Words 10 75mA D,N,P| CMOS| TTL
Military S [ 16 Bits / 64K Words 45ns 110ns 64 Words 10 100mA D CMOS| TTL
T |16 Bits / 64K Words 35ns 90ns 64 Words 10 100mA D CMOS | TTL
NOTES
M at +70°C for ial, + 125°C for military.

?mA maximum, fc; x = max, over full Vpp range, at + 70°C for commercial, + 125°C for military.
3Packages are identified as follows: D = ceramic 48-pin DIP; N = Plastic 48-pin DIP; P= 52-contact PLCC.
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ANALOG
DEVICES

Word-Slice
Program Sequencer

ADSP-1401

FEATURES
16-Bit Microcode Addressing Capability
Look-Ahead™ Pipeline
Extensive Interrupt Processing, With Ten On-Chip
Interrupt Vectors
70ns Cycle Time; 25ns Clock-to-Address Delay
64-Word RAM for Storing:
Subroutine Linkage
Jump Addresses
Counters
Status Register
375mW Maximum Power Dissipation with
CMOS Technology
48-Pin Ceramic or Plastic DIP and
52-Lead Plastic Leaded Chip Carrier

GENERAL DESCRIPTION

The ADSP-1401 is a high-speed microprogram controller op-
timized for the demanding sequencing tasks found in digital
signal processors and general purpose computers. In addition to
high speed (25ns clock-to-address delay) and large addressing
range (64K of program memory), this Word-Slice™ component
has unique features that make it highly versatile:

® on-chip storage and control of ten prioritized and
maskable interrupts

® four decrementing event counters

® absolute, relative and indirect addressing capability

® download capability (writeable control store) and

@ a dynamically configurable 64-word RAM.

The ADSP-1401 microprogram sequencer’s main task is to
provide the appropriate microprogram addressing to support
programming requirements (e.g., looping, jumping, branching,
subroutines, condition testing and interrupts). An internal Look-
Ahead pipeline, controlled by both phases of the clock, allows
the ADSP-1401 to satisfy these requirements at very high speed.

During each micro-instruction, the ADSP-1401 monitors the
conditions and instructions to determine the next microprogram
address. This address can come from one of several sources: the
stack, the jump address space in the RAM, the data port, the
interrupt vectors, or the microprogram counter. An extensive
set of conditional instructions are also available, including jumps,
branches, subroutines, interrupts, and writeable control store.

Word-Slice is a trademark of Analog Devices, Inc.

ADSP-1410
ADDRESS GENERATOR

DATA
MEMORY

DATA BUS F
-~

WORD-SLICE™ MICROCODED SYSTEM WITH ADSP-1401

The ADSP-1401’s internal 64-word RAM is user-configurable
into three regions; subroutine stack, register stack and indirect
jump address space. The subroutine stack is used for linking
interrupts and subroutines and, during their execution, allow
storage of system states. The register stack allows association of
unique jump addresses with various levels of interrupts and
subroutines (both local and global stacks are provided). Indirect
jump capability is also supported, addressing for which is provided
at the data port.

Interrupts are handled entirely on chip. The ADSP-1401’s internal
interrupt control logic includes registers for eight external (user)
interrupt vectors, a mask register, and a priority decoder. Two
additional vectors are reserved for internally-generated interrupts
resulting from counter underflow and stack limit violation. A
stack limit violation is caused by stack overflow, underflow or
collision. A mechanism is provided for recovering from stack viola-
tions.

The ADSP-1401’s four decrementing 16-bit counters are used to
track loops and events. These counters generate a signal when
negative. This negative condition is used by several conditional
instructions and can also trigger an internal interrupt.
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/

[ 7
V4
4
STATUS
REGISTER
WIDTH
STACK A CONTROL COUNTERS
LIt SIGN -
L4 N
INTERRUPT
] [asr] [e7]

{ ramapprEssvemux | J b

64x16
RAM J—-——
COMPARE J l7 Ji d | I
OVREL I MICROPROGRAM ADDRESS MULTIPLEXER ] %‘B%‘f\"‘r‘é":'
INTERRUPTS sl INTERRUPT | __ INTERRUPT = r
(EXIR,+) LOGIC ELECT ,;
] 3
INSTRUCTIOND.Z,L, z SIGN W T
(lg.0) > m
a INSTR. 2
z DECODE T
FLAG| =11 ;H( "
* INTERNAL
T CONTROLS
CLK TTR CLK Yiso
Figure 1. ADSP-1401 Block Diagram
ADDRESSING MODES ADSP-1401 PIN ASSIGNMENTS
Dir?ct: both ab.solute and relative Pin Name Description
Indirect: from internal RAM . .
) P PN The 7-bit microinstruction controlling the
HARDWARE FEATURES ADSP-1401.
Instruction Port Yis-Yo Output bus which provides addresses to the micro-
Bidirectional Data Port program memory.
gfl)lur Ix;putkAI:i Qress Multiplexer Dys—Dy Bidirectional Data bus for transferring data to or
ree Stack Tomnters from the ADSP-1401.
Four Event Counters
Condition Flag EXIR,_, Four external interrupt request lines. Note that in-
Eight Prioritized and Maskable User Interrupts ternal circuitry supports 8 interrupts with the aid of
TTR Pin: an external 2 to 1 multiplexer.
Trap CLK External clock input
;];;:::-State FLAG An input used for conditional instructions. Its
source is usually a condition multiplexer.
INSTRUCTION TYPES TTR A multi-purpose pin accommodating traps, output
Jumps and Branches disable and reset.
Stack Operations
. A% +5 Vol ly.
Status Register Operations bb oltsupply
Counter Operations GND Ground.
Interrupt Control
Relative Address Width Controls
Instruction Hold Control
Writeable Control Store
Dedicated Counter Underflow Interrupt
Dedicated Stack Overflow Interrupt
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1.0 ARCHITECTURE

1.1 Look-Ahead Pipeline

Logically, the Look-Ahead pipeline is split into two halves: the
first, located at the instruction and data ports; and the second,
located at the address port. Each half of the pipeline (input vs.
output) has a transparent latch which operates out of phase with
the other; the address latch is transparent during the first half
of the cycle (clock HI), while the input latches (instruction and
data) are transparent during the second half of the cycle (clock
LO). This complementary arrangement allows new instructions
to be decoded (in preparation for the following cycle) while the
program address for the current cycle is held steady.

1.2 Instruction Port

The instruction port receives 7-bit instructions defining the next
operation to perform from microcode. The ADSP-1401 has a
built-in Look-Ahead pipeline latch, eliminating the need for an
external microcode latch to hold instructions. This implementation
has the further benefit of allowing instruction “look-ahead”; the
sequencer is able to decode the next instruction during execution
of the current cycle. During the “look-ahead” period, the sequencer
precalculates the next address, allowing its output as early as
possible in the next cycle.

External instructions are internally latched during clock HI, and
passed directly to the instruction decoder during clock LO
(transparent phase); thus, implementing the first half of the
Look-Ahead pipeline latch.

The use of the instruction hold mode (see: Instruction Set De-
scription, 2.7; and Instruction Hold Control, appendix 4.1)
allows an instruction to be held in the instruction latch for
execution over several cycles (freeing microcode for use by other
devices).

1.3 Address Port and Multiplexer Sources

The address port provides 16-bit program addresses with three-
state drivers designed for driving large microcode memories.
Addresses come from a four-to-one microprogram address mul-
tiplexer. Between the multiplexer and output port is a transparent
latch which is transparent during clock HI and latched during
clock LO, permitting addresses to be output as early as possible
during phase one (clock HI) while holding the address constant
during phase two (clock LO) — implementing the second half of
the Look-Ahead pipeline latch.

Inputs to the microprogram address multiplexer are the:

® 16-Bit Program Counter
® 16-Bit Adder

® Interrupt Vector File and
® Internal 64-Word RAM.

Addressing Modes

The ADSP-1401 supports two addressing modes: direct and
indirect. The direct addressing mode uses the internal adder to
generate either absolute addresses from the data port (without
modification) or relative addresses from the program counter
(with or without extension: see Status Register, 1.4.4). The
indirect addressing mode uses the lower order bits at the data
port to access the contents of internal RAM for output.

Output Drivers

The address port output drivers are always active unless placed
in the high-impedance state by the IDLE instruction or appro-
priately asserting the TTR pin (see TTR Pin, 1.7). This allows
other devices to supply microcode addresses, which is particularly
useful in multi-tasking or context switching applications where
several ADSP-1401s may be sharing common microcode
memory.

1.3.1 Program Counter

The program counter (PC) consists of a 16-bit incrementing
counter. For most instructions, the PC is incremented by the
end of the cycle (post-increment) as follows:

PC < =output address + 1.

1.3.2 Adder and Width Control

For absolute jumps, data from the data port is passed unchanged
through the adder directly to the microprogram address port.
For relative jumps, a twos complement offset is supplied from
the data port and added with the 16-bit PC. Since the PC normally
points to the next instruction, the jump distance is (offset + 1)
from the jump instruction. See Status Register (1.4.4) for more
details.

The width control block permits microcode width to be reduced
in systems not requiring full, 16-bit jump distances. Internal
width control logic sign-extends reduced offsets of 8- and 12-bits
to full 16-bit precision, accommodating jumps in either direction
(positive or negative displacement).

1.3.3 Interrupt Vector File

Ten prioritized interrupt vectors may be stored in the interrupt
vector file. The associated interrupts are internally latched and
may be individually masked or entirely disabled by the “Disable
Interrupts” (DISIR) instruction. The highest priority interrupt
vector displaces the usual address on the next cycle following its
detection. See Interrupts (1.4.3) for more details.

1.3.4 Internal RAM
Any of the 64 words of RAM may be output on the address
port. Four distinct address sources may access the RAM:

® Local Stack Pointer
® Global Stack Pointer
® Subroutine Stack Pointer and
® Lower Order Data Port Bits.

The use of internal RAM and its various address sources are
described in section 1.4.2.

1.4 Bidirectional Data Port

The 16-bit bidirectional data port (D;s_o) supplies direct or
indirect jump addresses and permits loading or dumping of all
internal registers. The input data latch freezes incoming data
(for counter or register writes executed during that cycle) during
the first half-cycle (clock HI) and is transparent for the remainder
of the cycle. The output data driver asserts output data only
during the first half-cycle of a data output instruction and is
independent of the address port drivers. This complementary
I/O arrangement permits data to be output from the sequencer
(as in a read register instruction) during the first half-cycle
while accommodating external data setups (for the next cycle)
during the second half-cycle.
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Direct addressing via the data port may be either relative or
absolute. For indirect addressing, the six LS data bits (Ds_g)
are used to address internal RAM, containing the desired jump
address (see Internal RAM, 1.4.2). ‘

1.4.1 Counters

Four independent 16-bit counters are provided for maintaining
loops and event tracking. These counters hold twos complement
values that may be decremented or preloaded through dedicated
instructions. The sign bit associated with the most recently used
counter, prior to its decrement, is always saved in the status
register (SR;). Simultaneously, the sign bit is also made available
to control various conditional instructions or for asserting the
lowest priority interrupt, IR, reserved for counter underflow
(see: Instruction Set Description, 2.0; and Interrupts, 1.4.3).

Note that interrupt IRy is primarily used for ending writeable
control store downloads (see Instruction Set Description — WCS,
2.7). Use of IRy in the context of a “Decrement Counter and
Interrupt on Underflow” operation represents the worst case
instruction and flag setup times because of the additional overhead
in processing the interrupt after determining whether the counter
was underflowed. These setup times are specified two ways:

1. all conditions and
2. IR masked.

The source of SIGN (applied to the condition test) depends
upon the type of instruction used (see Instruction Set Description,
2.1). Two possibilities exist:

1. If an explicit counter is selected, then the sign applied is that
of the counter, prior to the decrement.

2. If no counter is selected, then the sign applied is implicitly
that of the status register, SR,.

1.4.2 Internal RAM

The ADSP-1401’s internal 64-word RAM implements two distinct
stacks: a Subroutine Stack (SS) and a Register Stack (RS). The
subroutine stack has a dedicated, Subroutine Stack Pointer
(SSP), while the register stack shares two pointers: the Local
Stack Pointer (LSP) and the Global Stack Pointer (GSP). The
three stack pointers are each held in 6-bit, preloadable, up/down
counters.

Upon reset, (TTR pin held HI for three cycles, see TTR Pin,
1.7) the SSP is initialized to 0 (to of RAM). The RS pointers
(LSP and GSP) are typically configured as shown in Figure 2
using the “Write RSP” instruction (WRRSP). The SSP pushes
down while the RS pointers push up. Selection of the active RS
pointer (LSP or GSP) is made in the status register.

Stack overflow detection is provided via a stack limit register to
protect software integrity and allow stack expansion (see In-
struction Set Description — SLRIVP, 2.5).

Each RS pointer may be explicitly initialized by performing the
“Write RS Pointer” (WRRSP) instruction. The LSP should be
located above the GSP, allowing the local stack to grow upwards
as the level of nested subroutines increases. Finally, indirect
jump address space (as needed) should be reserved below the
global stack.

The sequencer will generate a stack underflow interrupt whenever
RAM location zero is popped. This facility may be used in
support of stack paging. IV should be masked if not using
stack paging, allowing location zero to be used as the first stack
location without interrupting. When using paged stacking, location
zero must be reserved as an underflow buffer to avoid a subsequent
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stack POP (which may otherwise occur, depending upon the
next instruction) prior to the interrupt routine saving the stack.

TOP OFRAM
00 UNDERFLOW BUFFER - ssP
o (PUSH)
02

L]

[ ]

°
XX —— SIR

L]

(]

L]
33
34 | (PUSH)
35
36 - LsP
37
8 t (PUSH)
39
3A ~-— GSP
3B INITIALIZED
3c FOR
3D INDIRECT
3€ ADDRESSING
3F (AS NEEDED)

BOTTOM OF RAM

Figure 2. Typical RAM Initialization

Register Stack Pointers (LSP and GSP)

Upon entering a routine, up to four jump addresses may be
pushed onto the register stack. A Push onto the register stack
first decrements the RS pointer (either LSP or GSP, depending
upon the status register) and then writes the appropriate data to
RAM. A Pop from the register stack first reads the RAM location
and then increments the RS pointer (LSP or GSP).

Four registers are available within context of any routine which
are addressed relative to the stack pointer (LSP or GSP) by

the two LSBs of the relevant instruction. For example, the
instruction:

IF CONDITION, JMP R,

accesses the location (LSP+2 or GSP+2) in RAM as the condi-
tional address source. Prior to exiting a routine, local or global
registers can be effectively removed from the RS by the “ADD i
TO RSP” (AIRSP) instruction (see Instruction Set Description,
2.2).

Often, the same set of jump addresses are used by several different
routines. The GSP is available for addressing these common
registers — conserving RAM space and eliminating repeated
stack pushes and pops. Global registers can be pushed, popped,
and used by conditional instructions in the same way that local
registers are handled. In addition, the GSP can itself be pushed
and popped to/from the subroutine stack, allowing different
routines to access different subsets of the global stack area.

Subroutine Stack Pointer (SSP)

A Push onto the SS (jump subroutine or interrupt) first increments
the SSP and then writes the return address to RAM. A pop
from the SS first reads the return location and then decrements
the SSP, effectively removing the data from the stack (although
the data remains in RAM). For interrupts, the return address is
the one that would have been output in the cycle when the



interrupt vector was output. For subroutine jumps, the return
address is the instruction immediately following the subroutine
call. For further information, see: Return from Interrupt with
Pending Interrupt, appendix 4.2; and the Instruction Set De-
scription, 2.0.

The subroutine stack can also be used to save key program
parameters such as the status register, GSP, or counter values.
After entering a new routine, critical parameters from the calling
routine are pushed onto the stack, thus freeing the associated
hardware for use by the new routine. Prior to the end of the
routine, the original parameters are restored with their former
values for continued use by the calling routine.

The Stack Usage Example (appendix 4.3) illustrates the state of
RAM after three subroutine calls.

Stack Limit Register and Stack Overflow

The preloadable Stack Limit Register (SLR) and associated
circuitry warns the user of impending stack overflows, permitting
stack overflow recovery. The highest priority interrupt, IR, is
assigned to stack overflow, although it may be masked. A stack
overflow interrupt will occur under any of the following three cir-
cumstances:

® a push causing the SSP to increment to the value in the
stack limit register

® a pop from SS location 00 (underflow)

® a push causing the RS pointer (LSP or GSP) to decre-
ment to the value in the stack limit register + 3.

The three location buffer between the SLR and the RS pointer
allows for three extra pushes that may occur (in a worst case)
prior to entering the stack overflow service routine. These pushes
would be:

1. the push causing the initial overflow
2. a possible push operation while IVy is output and
3. the IRy return address push.

See: Interrupts, 1.4.3; and Three Stack Pushes on Stack Overflow
(appendix 4.2.5) for more details.

The SLR is only 4-bits wide and is compared to the 4 MS bits
of the 6-bit RAM address. Therefore, stack limits may only be
set at integer multiples of 22, i.e., RAM locations 0, 4, 8, 12,
..., 60. The SLR is right-filled the additional two bits with
zeros or ones, depending upon the direction of the push being
performed (‘00’ for SS pushes and ‘11’ for RS pushes, see In-
struction Set Description — SLRIVP, 2.5). In the cycle following
a stack overflow, the highest priority interrupt vector IRV (also
used for trapping; see TTR Pin, 1.7) is output. To determine
the cause of this interrupt, both SS and RS pointers must be
tested in the first several cycles of the service routine. Prior to
returning from the overflow interrupt routine, the SLRIVP
instruction must be executed, to clear the calling IRy from the
interrupt latch.

1.4.3 Interrupts

The ADSP-1401 processes eight external and two internal inter-
rupts. All external interrupts are level sensitive (positive logic:
see IR Latch, this section) and are processed by the interrupt
logic block. The block elements (see Figure 4) are comprised of
an interrupt de-multiplexer followed by an interrupt latch, masking
logic and priority decoder for selecting the most urgent interrupt
(IRy having the highest priority, and IR, the lowest), and special
one-shot to override the address multiplexer with the interrupt

vector (IVy_o) on the cycle following the interrupt request.

The external interrupts (IRg_;) may be used for any purpose,
however, unused inputs must not be left floating (i.e., tie them
to logic LO so as to preclude the associated interrupt). Two
additional interrupts which are internal are reserved for stack
overflow — IRg (see Stack Limit Register and Stack Overflow,
1.4.2) and counter underflow —- IR, (see Counters, 1.4.1). See
Counters (1.4.1) for implications of using IR, for other than
writable control store downloading.

Interrupt vectors are always output (assuming interrupts are
enabled and the associated interrupt is not masked) on the cycle
immediately following the acceptance of the interrupt request.
Contextual saves (stacking and storing) should be made im-
mediately upon entering the interrupt service routine and restored
immediately prior to its exit.

Up to four external interrupts may be connected directly to the
external interrupt pins, EXIR,_,, and are treated as interrupts
IRg_s, respectively. Lower priority interrupts, IR4_;, must be

masked out in this case.

Up to eight external interrupts may be accommodated using
time-division multiplexing. An external 2:1 multiplexer reduces
the eight external interrupts to two groups of four (see Figure
3). An internal de-multiplexer automatically restores the external
interrupts back to eight.

The interrupt vector file may be directly read and written via
the data bus with the aid of the Interrupt Vector Pointer (see
Instruction Set Description, Interrupts, 2.5).

1RQ8 —={ 1A
RQ7 —=] 24
IRQ6 —==] 3A v EXIR4
747257
1RQ5 —==] 2A i 2v EXIR3  ADSP-1401
Ras —=g 18 YAOZT 3y ExiRz  SEQUENCER
IRQ3 —=| 28 ay EXIR1
1RQ2 —=] 38 CLK
IRQ1 —==1 4B SELB
cLock :

Figure 3. Expanding External Interrupts

IR Latch

Interrupt requests IRg_s are latched during the first half-cycle
(clock HI), while IR4_, are latched during the second half-cycle
(clock LO). Once latched, external interrupt requests are held
until processed, even if the external request signal goes away.
This latching technique allows removal of external interrupt
sources after they have been recognized by the sequencer.

Latched user interrupt requests (IRg_,) are held until: i) the
interrupt is processed and a “Return from Interrupt” (RTNIR)
instruction is executed; ii) the interrupt service routine executes
a “Clear Current Interrupt” instruction (allowing nested inter-
rupts); or, iii) a “Clear All Interrupts” instruction is executed.
Reserved interrupts (IRg and IRy) are cleared from the interrupt
latch by utilizing the SLRIVP and CLRS instructions, respectively.
See Internal IR Control Logic (1.4.3) for details.

The user may bypass the interrupt latch with the “Select Trans-
parent Interrupts” (STIR) instruction (setting status register bit
SRy). In the transparent mode, the interrupting device must
assert the interrupt request until the interrupt service routine
resets the request source.

MICROCODED SUPPORT COMPONENTS 3-9
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Figured. Internal Interrupt Control Logic

IR Mask

All ten interrupts may be independently masked using status
register bits SR5_¢ (corresponding to interrupts IRg_g). Setting
a particular mask bit prevents the interrupt from being executed.
Note that the status register may be read or written via the Data
port, and also pushed and popped to/from the subroutine stack,
allowing nesting and servicing of interrupts in any desired order
(see: Internal IR Control Logic, 1.4.3; and Status Register,
1.4.4).

Two instructions allow bitwise clearing or setting of the interrupt
mask. “IR Mask Bit Clear” (IRMBC) will clear those mask bits
for which the corresponding dara bits (D;s_g, as applied to
IRy_o) are set, while “IR Mask Bit Set” (IRMBS) will set those
mask bits for which the corresponding data bits are set. In both
cases, zeros in the data field will preserve the corresponding
mask bit. See Instruction Set Description — Status Register, 2.3.

IR Priority Decoder

Unmasked interrupts are passed to the priority decoder which
determines the most urgent, valid interrupt and generates an
internal Interrupt Request Signal (IRS). The corresponding
vector is then fetched from the interrupt vector file and passed
to the address port.

Minimum IR Servicing Requirements

Interrupt vectors are output on the cycle following the acceptance
of an interrupt request. Interrupt jumps differ from subroutine
jumps in that subroutine jumps push the return address in the
same cycle as the jump address is output, whereas interrupt
return addresses are not pushed until the following cycle. This is
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because the instruction executing while the interrupt vector is
output may be utilizing RAM and must complete its execution
prior to pushing the interrupt return address. Thus, the PC
(interrupt return address) is pushed automatically in the first
cycle of the interrupt service routine, i.e., the cycle following the
interrupt request acceptance.

For this reason, the first instruction of any interrupt service
routine is always ignored; it must be a no-op (CONT). Note that
a minimum interrupt service routine would be a CONT followed
by a RTNIR.

Internal IR Control Logic

The interrupt enable bit of the status register, SR;, must be set
for interrupt servicing to occur. Interrupt servicing may be
inhibited by clearing this bit, although external interrupt requests
will continue to be latched.

Only one interrupt is ever active at a time. Additional interrupts
are “locked out” by an internal “Interrupt In Progress” signal
(IRIP) during interrupt servicing (except for TRAP), although
they continue to be latched. The IRIP signal is automatically
reset upon the “Return from Interrupt” (RTNIR) instruction

which pops the return address from the subroutine stack to the
PC.

Normally, multiple interrupts are accumulated in the interrupt

latch. Whenever a valid interrupt is pending, the internal signal
“Interrupt Request” (IRQ) is asserted. Upon each RTNIR, the
highest priority, unmasked, pending interrupt is serviced.



Nested interrupts are supported with two instructions: “Clear
Current Interrupt” (CCIR) or “Clear All Interrupts” (CAIR).
The CCIR instruction clears the IRIP signal and interrupt latch
bit for the interrupt in progress. This action re-enables inter-
rupting, relegating the interrupt in progress to a subroutine
status. If an external interrupt is pending, the associated IR
vector will be output on the cycle following CCIR. To cancel all
pending interrupt requests, the CAIR instruction clears the
IRIP signal and the entire interrupt latch.

Normally, it is good practice to convert interrupts to subroutines.
This can be done by executing the “Clear Current Interrupt”
(CCIR) instruction (resetting IRIP) and should be done as early
as possible in the interrupt service routine. There are two reasons
for changing the status of an interrupt to that of a subroutine.
Firstly, if IRIP is allowed to remain active threughout the interrupt
service routine, then the occurrence of either internal interrupt
(stack overflow or counter underflow, IRy or IR, respectively)
will remain undetected until the current interrupt concludes;

the user will be unaware of these interrupt requests.

When using the TRAP capability (see TTR Pin, 1.7), there is a
second reason to clear IRIP. Because TRAP must have the
highest priority, interrupt IRg (when invoked by a TRAP request)
is not locked out by IRIP. This allows TRAP to displace an
interrupt in progress, but also means that upon completion of
the trap service routine, IRIP will be cleared by the RTNIR
instruction; re-enabling interrupting in spite of the incomplete
interrupt which TRAP displaced.

Either of these instructions (CCIR or CAIR) require an “extra”
cycle before a pending interrupt vector may be output. A typical
scenario being an interrupt in progress, IR,, (containing a CCIR
instruction), with a interrupt pending, IR:

CCIR Example

pCode Iustruction Output

M N E . Add C

n IR, Routine n+1 IR, Pending
n+1 CCIR n+2 Clear IRIP

n+2 IR, Routine IV IR, Recognized
IV, IR, Routine IV, +1 L.

1.4.4 Status Register

The ADSP-1401 has a 16-bit status register for storing various
operational modes. The ten MS bits of this register (SRys_g)
comprise the interrupt mask for interrupts IRg_g, respectively.
The remaining six LS bits (SRs_q) control the operational modes
as shown below.

Status Register Bit Assignments

Bit# F (HI/LO)
SRys IRy Mask Bit
SR¢ IRy Mask Bit
SRs_4 Relative Jump Width Selection:
‘00’ = 16-bit relative address width
‘01’ = 8-bit width
‘10’ = THC Mode (8-bit width)
‘11’ = 12-bit width
SR; Select GSP/LSP
SR, Enable/Disable Interrupts
SR, Set/Clear Sign Bit
SR, Select Transparent/Latched Interrupts

The status register can be directly read and written via the data
port and also pushed and popped to/from the subroutine stack.
In addition, status register bits SR;s_¢ (the interrupt mask) may
be bitwise cleared or set with dedicated instructions. See: In-
struction Set Description — Status Register, 2.3; and Interrupts
— IR Mask, 1.4.3.

1.5 Clock

The input clock employs both HI and LO levels to control the
various transparent latches throughout the device. Generally,
the clock should be symmetric; however, in some instances the
clock may be stretched during the second half-cycle (LO) to
accommodate unusual circumstances such as a cache memory
miss (see: TTR Pin — Trap, 1.7).

1.6 External Flag

The external flag input may be used to control conditional in-
structions. FLAG is latched similarly to instructions (latched
during clock HI and transparent during clock L.O), but requires
less setup time. Two instructions make explicit use of FLAG as
their condition (JPCOF and JPCNF), while others employ a
condition mode selection (UNCONDITIONAL, NOT FLAG,
FLAG, or SIGN; see Instruction Set Description, 2.0) to be
specified as part of their opcode.

1.7 TTR Pin (Trap, Three-State and Reset)
The Trap, Three-State and Reset pin (TTR) is a time-multiplexed,
three-purpose pin used to

® provide program trap capability
® control the address port output drivers and
® reset the ADSP-1401.

If the TTR pin is held HI for an entire cycle, the RESET sequence
begins and TTR must be held HI for at least two more complete
cycles (RESET requires three cycles to complete). If trap and
three-state control capabilities are also needed, the combination
of the 1401’s internal circuits and the external circuitry shown
in Figure 5 can be used to effectively time-multiplex the TTR
pin.

TRAP
74F257
- ADSP-1401
RESET 2:1 YH—=1TTR  SEQUENCER
MUX
THREE- B8
STATE SELB CLK

CLOCK l }

Figure 5. External Logic for TTR Pin

Trap

For a trap to occur, the TTR pin must be asserted during clock
LO only. The primary reason to invoke a trap is in support of
cache memory systems, or in case of system emergencies. Cache
memory systems generally utilize a large microcode memory
space, of which only a small area (that currently under execution)
is comprised of high-speed RAM (the balance consisting of
slower, less costly memory). The high-speed RAM is directly
accessible by the sequencer, whereas the bulk of (slow) memory
is usually accessible indirectly (via a cache memory controller
which controls downloads of code to the cache memory area).
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In a cache-based system, microcode is generally executed from
the high-speed cache. If an access is attempted to code not
resident in the cache area, the cache memory controller must
detect the discrepancy and generate an exception to the access (a
“cache miss”). Then, the missing code segment must be down-
loaded to the cache memory area (see: Instruction Set Description
— Writeable Control Store, 2.7). :

When a cache miss occurs, the cache memory control logic
asserts the TTR pin while stretching the system clock LO.
Upon detecting the trap request, the sequencer immediately
generates the highest priority interrupt, IRy, replacing the current
address (that causing the cache miss). The cache miss address is
pushed on the subroutine stack and popped after the interrupt
service routine has reloaded the cache area with the missing
code segment.

The trap interrupt differs from the standard interrupt protocol
in three ways:

1. The interrupt vector, IV, is output asynchronously, i.e., it
occurs trpap after asserting the Trap signal and must occur
before the next cycle! To accomplish this, a clock stretch
cycle may be needed to allow enough time to fetch the new
instruction.

2. The current address is pushed onto the SS for later restoration
(after the cache miss is resolved), whereas standard interrupts
push the current address+ 1.

3. Trap interrupts cannot be masked or disabled. Note that if
IR, is also used for stack overflow and underflow, the service
routine must discriminate which actually occurred.

Caution: because trapping is asynchronous, spikes on the TTR
pin wider than 3ns during clock LO may initiate inadvertent
trapping.

Three-State
The address port is placed in a high-impedance state when the

TTR pin is HI during clock HI and LO during clock LO. The
TTR signal is latched during clock LO and transparent during
clock HI. This facilitates full cycle, three-state control. (Note
that the IDLE instruction can also place the address port in a

high-impedance state.)

Reset

The TTR pin may be used to initialize the ADSP-1401 by asserting
it (HI for both clock phases) for at least three full cycles. Use of
the reset operation alone does not require the multiplexing
described above. However, if the trap and/or three-state controls
are also needed, they must not occur in the same cycle (this
would be an abnormal situation), as this constitutes a reset. The
RESET signal forces a zero output address, places the data port
in the high-impedance state, and resets internal registers as
follows:

Sequencer Status after RESET Operation

Parameter Reset Condition

Program Counter wnCode Location 0000,¢
Subroutine Stack Pointer (SSP)| RAM Location 00,4

Local Stack Pointer (LSP) Undefined

Global Stack Pointer (GSP) Undefined

Stack Limit Register (SLR) RAM Location 324

RAM Data No Change

Counters No Change

Interrupt Mask (SR;s5_¢) All Bits to ‘0’ (Unmasked)
Interrupt Vector File No Change

Interrupt Vector Pointer (IVP) | Undefined

SRs_4 ‘00’ (16-Bit Relative Offsets)
SR; ‘0’ (LSP Selected)

SR, ‘0’ (Interrupts Disabled)
SR, ‘0’ (Sign Bit Cleared)

SR, ‘0’ (Latched Interrupt Mode)
‘Writeable Control Store Mode Cleared

NOTE:

The first instruction (microcode location 0000,¢) must be a “CONT”.

2.0 INSTRUCTION SET DESCRIPTION

The instruction set is divided into seven categories pertaining to
generic operation (see data sheet outline or Mnemonics and
Opcodes, 4.5).

Several instructions employ two instruction bits (I, and Iy) to
specify a counter (C3_o) and/or a local register (R3_g, relative to
the RSP) as arguments. Nine of the conditional instructions use
another two instruction bits (I3 and I,) to select one of the four
condition modes:

‘00 UNCONDITIONAL
‘or NOT FLAG

‘10° FLAG

ar SIGN

The sign bit of the status register, SR,, may also be used to
(implicitly or explicitly) store an external condition. This is
useful if the condition results from an operation performed in
the middle of a loop, but is not tested until the end; the loop is
exited with an “If Sign: Jump” instruction. Recall that any
subsequent counter operations will overwrite SR;.

2.1 Jump and Branch Instructions

Jump and branch instructions provide flow control of microcode
execution, offering three-way branches, jumps, subroutine calls,
returns, and addressing mode selection (see Figure 6). These
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instructions support conditional control, allowing addressing
from the register stack, the data port, or the indirect jump
address space in the RAM. Generally, they are of the form:

If Condition: Do Operation; Else, Continue.

JPCOF IFFLAG: JUMPPC

The address is not incremented while the flag is at a logic HI,
i.e., PC<=PC. If the flag is LO, the next address is (PC+ 1).

JPCNF IFNOTFLAG: JUMPPC

The address is not incremented while the flag is at a logic LO,
i.e., PC<=PC. If the flag is HI, the next address is (PC+ 1).

JTWO IF CONDITION: JUMP PC +2

If the condition specified is met, this instruction causes the next
sequential microprogram address to be skipped. This instruction
allows single instruction bypassing or interleaving without need
to provide explicit addressing.

JDA IF CONDITION: JUMP DATA, ABSOLUTE

If the specified condition is met, this instruction causes a jump
to the absolute address at the data port. If the condition is not
met, the next sequential instruction will be executed.



16
16 16 17
17 17
TRUE FALSE
18
FALSE TRUE 3
18 18 9
20
JPCOF JPCNF JTWO
DATA=40 FOR ABS., 22 FORREL.| DATA=13  RAM (13)=40 DATA =10
16 16 16 10
17 17 17
TRUE TRUE TRUE | Ci- =Ri
FALSE FALSE FALSE
18 40 18 a0 18
Ci- =Ci-1
JDA, JDR Joi JDRST
RSP =26, i=2, RAM (28)=R2=40 | RSP=26, i=3, RAM (29) =R3=12, | DATA =40 FOR ABS., 22 FOR REL.
g G352 15+N-1 6 .
16 12 17
17
16 €3 =C3-1
17
TRUE 8
18 a0
FALSE
18 C3<=C3-1
JRC JRS JSA, JSR
SSP =37, RAM (37) =40 RSP =26, i=2, RAM (28) =R2=40, DATA=83
16 DATA=75
16 wcs
17 83
€O =C0-1
WAIT PC- =PC+1
FOR -
FLAG TRUE
18 a0 FALSE
Cc2 =C2-1
RTN BRANCH wcs

Figure 6. Instruction Flow Charts

JDR IF CONDITION: JUMP DATA, RELATIVE

If the condition specified is met, the address at the data port
will be added to the PC and output (jump distance is offset plus
one). The offset width is determined by the address width selection
(8, 12, or 16-bits). If the condition is not met, the next sequential
instruction will be executed.

JDI IF CONDITION: JUMP DATA, INDIRECT

If the condition specified is met, this instruction will output the
address stored in the RAM address given by bits Ds_g of the
data port. If the condition is not met, the next sequential instruction
will be executed.

JDRST IF SIGN OF C;: JUMP DATA,Ci< =R;;
ELSE,C;i<=C;—1

This instruction first tests the sign of the counter, C;. If negative,
the address at the data port is output and the counter is re-initialized
(reset) with the data in the register pointed to by (RSP +1). If
the sign is positive, the counter is decremented and the next
sequential address is output. The register and counter use the
same subscript, i.

JRC IF CONDITION: JUMPR;. (COND # SIGN)

If the condition specified is met, output the address in RAM at
the location (RSP +1), where i is given by I, _g of the instruction.
The selected condition may not be SIGN, as this is the JRS
instruction. The PC may be pushed on the register stack and
referenced as a register thus allowing a “jump to stack” instruction
which is useful for looping.

JRS IFSIGNOFC;: JUMPR;,Ci<=C;—1;
ELSE,Ci<=C;-1

This instruction first tests the sign of counter, C;. If negative,
output the address in RAM at location (RSP +1). If the sign is
positive, the next sequential microprogram address is output.
The counter is always decremented after the test.

JSA IF CONDITION: JUMP SUBROUTINE,
ABSOLUTE

If the condition specified is met, the 16-bit absolute address at
the data port is output and the PC will be pushed onto the
subroutine stack. If the condition is not met, the next sequential
instruction will be executed.
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JSR IF CONDITION: JUMP SUBROUTINE,
RELATIVE

If the condition specified is met, the address at the data port is
added to the PC and output (jump distance is offset plus one)
and the PC is pushed onto the subroutine stack. The offset
width is determined by the address width selection (8, 12, or
16-bits). If the condition is not met, the next sequential instruction
will be executed.

RTN IF CONDITION: RETURN FROM
SUBROUTINE

This instruction is used to return from subroutines. If the condition
specified is met, the subroutine stack is POPped, which outputs
the return address and decrements the SSP. If the condition is
not met, the next sequential instruction will be executed.
BRANCH IFSIGN OFC;: JUMPR,;,Ci<=C;-1;
ELSE, IF CONDITION:
JUMPDATA,Ci<=C;—1;
ELSE, C;<=C;—1(COND #SIGN)
This instruction implements a three-way branch with the address
source from the data port, register R;, or the PC. The instruction
first tests the sign bit of the counter C;; if negative, the output
address is given by R;, i.e., RSP +1i. If the sign was not true,
but the specified condition is true, the address source is the data
port. If the sign was not true and the condition is not met, the
next sequential instruction is executed.

The counter and the register use the same subscript value i.
The counter is always decremented. Note that this instruction
uses only absolute data addresses; relative addressing is not
available with the three-way branch instruction.

2.2 Stack Operations

Subroutine Stack

Subroutine Stack Pointer (SSP) instructions are used for main-
taining the subroutine stack. These instructions may also be
used to upload or download the entire RAM for examination,
stack expansion or context switches.

PSDSS PUSHDATAONTOSS

Increments the stack pointer and then loads the RAM location
specified by the SSP with the data at the data port.

PPSSD POP SSTO DATAPORT

Transfers the contents of the stack location given by the stack
pointer to the data port and decrements the stack pointer.

WRSSP WRITE SSP
Loads the SSP with bits Ds_ of the data port.

RDSSP READ SSP

Read the 6-bit subroutine stack pointer. This allows the value of
the stack pointer to be saved or examined. Bits Ds_g of the data
port correspond to bits 5-0 of the SSP. The 10 MSB’s of the
data port (D;s_e) are undefined.

DSSP DECREMENT SSP
Decrements the stack pointer without reading.
Register Stack

Register Stack Pointer (RSP) instructions are used to upload
and download the entire RAM for initialization, examination, or
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context switching and to maintain the RAM space allocated to
local and global jump registers. As previously discussed, register
stack instructions refer to either the Local Stack Pointer (LSP)
or the Global Stack Pointer (GSP), depending upon the status
register (SR3). If SR3 is LO, register stack instructions pertain
to the LSP. If SR; is HI, register stack instructions pertain to
the GSP.

SGSP SELECT GSP

Select the Global Register Stack Pointer. Set Status bit SR;
(HI).

SLSP SELECT LSP

Select the Local Register Stack Pointer. Clear Status bit SR;
(LO).

RDRSP READRSP

Transfers the RSP to the data port bits Ds_q for examination o1
storage. The 10 MSBs (Djs_¢) of the D port are undefined.

WRRSP WRITE RSP

Preload the selected RSP (LSP or GSP) with bits Ds_g of the
data port.

PSPC PUSHPCONTORS

Decrements the RSP and writes the PC to the register stack.
This instruction may be used to set up a JRC loop (IF
CONDITION: JUMP R;=PC).

PSGSP PUSHGSPONTO SS
Increment the SSP and write the GSP onto the subroutine
stack.

PPGSP POP GSPFROM SS
Write the subroutine stack to the GSP and decrement the SSP.

PSDRS PUSHDATAONTORS

Decrement the RSP and then write the data at the data port
into the location specified by the updated RSP.

PPRSD POPRS TO DATA PORT

Transfers RAM data pointed to by the RSP to the data port and
then increments the RSP.

AIRSP ADDiTORSP

Add i to the register stack pointer. Note that i=0, 1, 2, or 3 in
this instruction corresponds to 4, 1, 2, or 3, respectively. This
instruction effectively removes up to four registers from the
stack.

SIRSP SUBTRACT ONE FROM RSP
Subtract 1 from the RSP without a write. This instruction is
used to modify the RSP without explicitly reloading it.

S4RSP SUBTRACT FOUR FROM RSP

Subtract four from the RSP without a write. This instruction
may be used to modify the RSP without explicitly reloading it.

2.3 Status Register Operations
The status register bits, SR;s_g, contain ten mask bits, SR;s_g,
for masking interrupts IRy_o, and six control bits, SRs_g (see



Bidirectional Data Port, 1.4). The entire status register can be
read or written via the data port, or pushed or popped to/from
the subroutine stack. Upon RESET, the entire status register is
initialized to zero.

RDSR READ SR

The entire status register (SR;s_o) is output over the data port
(D1s-0)-

WRSR WRITE SR
Write the data port (D;s_o) to the status register (SR;s_o).

PSSR PUSHSRONTOSS

Increment the SSP and then write the status register to the
subroutine stack.

PPSR POP SR FROM SS

The top of the subroutine stack is written into the status register,
and then the SSP is decremented.

2.4 Counter Operations

Counters may be pushed and popped to/from the subroutine
stack or loaded directly from the data port. The counters may
be read externally by pushing the counters onto the subroutine
stack then popping the subroutine stack to the data port. The
device has four counters, denoted C;, which are indexed by the
two LSBs of the instruction.

If a jump is required after N events (until sign), the counter
should be loaded with two less than the number of events desired
(N —2). If a jump is required for N events (while sign), the
counter is loaded with 2° + N— 2= 8000,4+ N— 2.

Care must be taken when using the counter underflow interrupt
(IRy, see 1.4.3) to clear the sign bit before the IR, mask bit is
cleared.

WRCNTR  WRITEC;
Werite to the selected counter, C;, from the data port.

CLRS CLEAR SIGN BIT
Clear status register bit SR;.
SETS SET SIGN BIT

Set status register bit SR;.

PSCNTR PUSHC;ONTOSS

Increment the SSP and write the specified counter onto the
subroutine stack.

PPCNTR POP C; FROM SS

Transfer the data from the subroutine stack to the counter
specified by the instruction, then decrement the SSP.

DCCNTR DECREMENTG;

Unconditionally decrement counter C;.

IFCDEC IF CONDITION: DECREMENT C,

Decrement counter Cy on condition. If the sign condition is
selected, the sign is taken from the status register bit SR, rather

than from the counter sign (which normally provides the sign
condition).

Normally, if the counter underflow interrupt (IRo) is enabled, it
is activated by the counter sign bit going HI. However, if IFCDEC
is used to decrement Co, the IR, interrupt is activated by the
SR, bit, rather than the sign bit of C,. Since the SR, bit goes
HI only after Co has underflowed, IFCDEC must be executed
once more after the Cy underflow to generate the IRy interrupt.
Alternatively, the preloaded value of Cy may be reduced by one.

2.5 Interrupt Control

Detailed interrupt operation is described in the Interrupts section
(1.4.3). Here, specific interrupt operations such as interrupt
clearing, IRV read/write, interrupt mask manipulation, etc., are
described.

CCIR CLEAR CURRENT INTERRUPT

Allows nesting of user interrupts IRg_; on subsequent instructions
by clearing both the interrupt latch bit currently being serviced
and the interrupt in progress signal (IRIP), re-enabling interrupts.
If an external interrupt is pending, the associated IR vector

will not be output until the cycle following CCIR. Internal
interrupts (IRy and IRy) are not cleared by CCIR and must be
explicitly cleared through the SLRIVP and CLRS instructions,
respectively.

CAIR CLEAR ALL INTERRUPTS

Clears external interrupt latches IRg_, and re-enables the interrupt
interface (IRIP cleared LO). The next sequential instruction
will be executed prior to the jump to a pending interrupt. Internal
interrupts (IRo and IRy) are not cleared by CAIR and must be
explicitly cleared through the SLRIVP and CLRS instructions,
respectively.

RTNIR RETURN FROM INTERRUPT

Clears the current interrupt latch for IRg_;, re-enables interrupts
(IRIP cleared LO), and pops the return address from the sub-
routine stack. The next sequential instruction will be executed
prior to the jump to a pending interrupt routine. Internal interrupts
are not cleared and the IRy and IR, interrupt latches must be
cleared explicitly through the SLRIVP and CLRS instructions,
respectively.

RDIV READ IRV AND INCREMENT IVP

Outputs the interrupt vector currently pointed to by IVP to the
data port and then increments the IVP. Interrupts should be
disabled when writing or reading interrupt vectors.

WRIV WRITEIRV AND INCREMENT IVP

Writes the interrupt vector currently pointed to by the IVP
from the data port and then increments the IVP. Interrupts
should be disabled when writing or reading interrupt vectors.

IRMBC IR MASK BITWISE CLEAR

Allows selected IR mask bits to be cleared. Data port bits D;s_g
are applied to status register bits SR15-6 (corresponding to
mask bits for IRg_g). Those data bits which are HI will clear
the mask bit, while those data bits which are LO will leave the
mask bit intact. Data port bits Ds_g are ignored.
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IRMBS IR MASK BITWISE SET

Allows selected IR mask bits to be set. Data port bits D;s_g are
applied to status register bits SR;s_g (corresponding to mask
bits for IRy_¢). Those data bits which are HI will set the mask
bit, while those data bits which are LO will leave the mask bit
intact. Data port bits Ds_g are ignored.

DISIR DISABLEINTERRUPTS

Disables the execution of all further interrupts by clearing the
enable interrupt flag (SR;). External interrupts continue to be
latched.

ENAIR ENABLE INTERRUPTS

Enables execution of interrupts by setting the enable interrupt
flag (SRy).

SLIR SELECT LATCHED INTERRUPTS

Places the interrupt request latches in the latched mode for
interrupts IRg_; (SRy LO). Interrupts are latched if they are
valid at the appropriate clock edge. Interrupts IRg_s are latched
at the positive going clock edge while IR,_; are latched at the
negative going clock edge.

STIR SELECT TRANSPARENT INTERRUPTS

Places the interrupt request latches in the transparent mode
(SR HI) for interrupts IRg_;. The interrupt request is only
valid while the external interrupt inputs are high. Interrupts are
still processed on the next cycle, so long as they meet the minimum
interrupt setup specification. Note that selecting transparent
interrupting will clear any pending interrupts stored in the
interrupt latch.
SLRIVP WRITESLRWITHDs_,,
ANDIVPWITHD;s_;,

Loads the 4-bit stack limit register (SLR) and the 4-bit interrupt
vector pointer (IVP) from the data port. This instruction also
clears the stack overflow interrupt request IRo.

For stack overflow detection, the active 6-bit stack pointer
(SSP, LSP or GSP) is compared to a 6-bit word comprised of
the 4-bit SLR (MSBs) and the two LSBs determined by the
instruction type, as follows:

‘00’ for subroutine stack push (PSDSS); or, -
‘11’ for register stack push (PSDRS).

For example, if a stack limit of 36,¢ and positioning of the IVP
at IRV is desired, the value ‘011 1xxxxxx1001xx’ is provided at
the data port. Note that the SLR and IVP cannot be read.

The interrupt vector pointer (IVP) addresses the vector file for
reading or writing interrupt vectors. To write interrupt vectors
IRVy_o, the IVP must first be initialized by SLRIVP. The
WRIV instruction (see above) is then used to write the interrupt
vector pointed to by the IVP, which is then incremented
automatically.

2.6 Relative Address Width Controls

The width control instructions allow reduction of microcode
when Jump Data Relative and Jump Subroutine Relative in-
structions need less than the full, 16-bit range. Use these in-
structions to sign extend the 8, 12 or 16-bit wide jump data
presented at the data port. The jump width may be selected by
the explicit instructions or by directly setting the status register
bits SRs_4 as described below. Any of these three instructions
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will reset the Instruction Hold Control mode (see Misc. Instruc-
tions — IHC, 2.7).

Note that selection of 8-bit width can be made with or without
IHC. For all relative jumps, the jump distance is the offset +1.

REL16 SELECT 16-BIT RELATIVE JUMPS

Select the 16-bit relative jump. This adds D;s_o at the data port
to the PC to obtain the jump address. The status bits SRs_4 are
set to ‘00,

REL12 SELECT 12-BIT RELATIVE JUMPS

Selects the jump data from D;;_o. The offset is sign-extended
allowing relative jumps in the range +2047 to —2048. The
status bits SRs_4 are set to ‘11°.

RELS SELECT 8-BIT RELATIVE JUMPS

Selects the jump data from D;_o. The offset is sign-extended
allowing relative jumps in the range + 127 to —128. The status
bits SRs_4 are set to ‘01°.

2.7 Miscellaneous Instructions

CONT CONTINUE

Increment and output the next location in microcode memory
without any other changes. Allows straight line microcode
execution.

IDLE DISABLEOUTPUTS AND JUMPPC

Places the address port into the high-impedance state, inhibiting
program counter (PC) increments. Useful in applications where
multiple sequencers share a common microcode address bus.

This instruction causes the ADSP-1401 to behave as if the clock
had stopped. The IDLE instruction may be latched internally
by using IHC, freeing microcode for use by another device.

External interrupt requests must be inhibited during IDLE. If
interrupts are not inhibited, the ADSP-1401 will attempt to
process an interrupt that goes active. However, it will be unable
to output an interrupt vector because the IDLE instruction
places the address port in the high-impedance state; more im-
portantly, it will set its IRIP flag, which will inhibit further
interrupt processing even after the IDLE state is exited.

Interrupts can be inhibited using the interrupt mask or the
DISIR instruction. While inhibited, interrupt requests will still
be latched in the interrupt latch.

IHC ENABLE INSTRUCTION HOLD CONTROL

Sets SRs_4 to ‘10’ and redefines the function of IR, to allow a
subsequent instruction to be held for repeated execution, regardless
of the instruction port. Use of the IHC mode requires that the
mask bit for IR, be set. See Instruction Hold Control, appendix
4.1 for more details.

While in the IHC mode, asserting IR; HI (prior to the second
half-cycle of any instruction) will hold that instruction and
disable all interrupts (although they continue to be latched)
until IR, is brought LO again (again, prior to the second half-cycle
of any instruction).

It is recommended that IR, be dedicated to control of the IHC
mode (if needed). However, if it must also be used for subsequent
interrupting, then the CAIR instruction should be executed
before unmasking IR, (to clear the interrupt request resulting
from use of IR, as the IHC control).



Use of IHC is constrained to 8-bit relative addressing (see Relative
Address Width Controls, 2.6) and clearing IHC is accomplished
by executing any of the relative address width control instructions
(changing status register bits SRs_,).

WwCs WRITE CONTROL STORE

Provides sequential addressing during microcode downloads to a
RAM based microcode store. The instruction may be interpreted
as:

JUMP DATA;
IF FLAG: DECREMENT C, AND CONTINUE UNTIL
INTERRUPTED.

Upon initiation of the WCS instruction, the sequencer outputs
the address found at the data port (that of the first instruction
to be downloaded). The external flag is then used to gate sub-
sequent sequential addressing for the download and decrementing
of counter Cy. This action continues until an interrupt is detected
(from either a Cy underflow, externally or the chip is RESET).
Instructions at the instruction port are ignored during WCS,
until the interrupt or reset occurs.

The external flag allows synchronization of an external memory
with the sequencer. FLAG should be asserted HI as each new
prcode word is made available for writing to pcode memory.

Notes on Using a Writeable Control Store:

® If a counter interrupt is desired, counter Cy must be in-
itialized with rwo less than the length of microcode seg-
ment to be downloaded.

o If counter interrupting is to be used to exit the WCS
mode, IRV, should be unmasked and initialized with the
address of the instruction to be executed upon WCS com-
pletion (see Interrupts, 1.4.3 for timing).

@ Since interrupting is used to exit the WCS mode, the last
address downloaded is pushed onto the SS stack as an in-
terrupt return address. However, because it is not actually
a return address, the SS should be popped immediately
by decrementing the SSP (DSSP) to clear it of this last
address.

® Since FLAG is used to gate the download, it should not
become active until after the WCS instruction is executed.

See application note “Writeable Control Store using the
ADSP-1401".

3.0 SPECIFICATIONS

This section describes the ADSP-1401’s performance parameters.
The Specifications Table lists the device’s relevant electrical and
switching characteristics, while Figure 7 presents the corres-
ponding timing diagram.
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Figure 7. ADSP-1401Timing Diagram
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Figure 8. Three-State Reference Levels

ORDERING INFORMATION
Package

Part Number Temperature Range  Package Outline
ADSP-1401JN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1401KN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1401JP 0to +70°C 52-Lead PLCC P-52
ADSP-1401KP 0to +70°C 52-Lead PLCC P-52
ADSP-1401JD 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1401KD 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1401SD —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401SD/ + —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD/ + —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401SD/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1401TD/883B —55°Cto +125°C 48-Pin Ceramic DIP D-48A
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SPECIFICATIONS'

RECOMMENDED OPERATING CONDITIONS

J & KGrades S & T Grades®
Parameter Min Max Min Max Unit
Vpp Supply Voltage 4.75 5.25 4.5 5.5 \%
Tamg Ambient Operating Temp. 0 70 -55 125 °C

Test J & K Grades S & T Grades®
Parameter Conditions ‘ Min Max Min Max Unit
Viz  Hi-Level Input Voltage Vpp =max 2.0 2.0 A%
Ve Clock Input Hi-Level Input Voltage Vpp =max 3.0 3.0 \%
Vi Lo-LevelInput Voltage Vpp =min 0.8 0.8 \%
Vou Hi-Level Output Voltage Vpp=min, Ipy= —-1mA 2.4 2.4 \"
VoL Lo-Level Output Voltage Vpp =min, Io; =3mA 0.6 0.6 v
Iy Hi-Level Input Current, All Inputs Vpp=max, Viy=5V 10 10 nA
In Lo-Level Input Current, All Inputs Vpp =max, Vi =0V 10 10 RA
Iozy Three-State Leakage Current Vpp =max, Vjy =max 50 50 pA
Iozi  Three-State Leakage Current Vpp=max, Viy=0 50 50 RA
Ipp Supply Current max clock rate, TTL inputs 75 100 mA
Ipp  Quiescent Supply Current ViN=2.4V . 35 50 mA
ABSOLUTE MAXIMUM RATINGS L"\]TERNAIE: VISUAL INSPECTION 1 1
Supply Voltage . .. .............. -03V1wo7V T FINE LEAK CONDITION A OR B
Input Voltage . . . . ............. —~0.3V to Vpp GROSE LA CONDITION C
Output Voltage Swing . . . . . ... ..... —0.3V to Vpp ST T CAKE T
Load Capacitance . . . . . . . . . v v v v v v i 200pF CONDITION C - 24 HRS, 150°C
Operating Temperature Range (Ambient) . . —55°C to +125°C 1 L {NTERIM ELECTRICAL TESTING
Storage Temperature Range . . . . . . ... —-65°C to +150°C TEMPERATURE CYCLE [
Lead Temperature (10 Seconds) . . . . . .....-. . 300°C CONDMION o> 10 vetes BN
I 160 HRS - 125°C
CENTRIFUGE t
CDND.1.0,\'Y'§1"2,?O§8‘51 Y1 PLANE [me% FINAL ELECTRICAL TESTING ]
Figure 9.
CAUTION:
1. ESD sensitive device. The digital control inputs are zener protected; however, permanent WA R N I N G '
damage may occur on unconnected devices subjected to high energy electrostatic fields. -

Unused devices must be stored in conductive foam or shunts.

2. Do not insert this device into powered sockets. Remove power before insertion or removal. ESD SENSITIVE DEVICE
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SWITCHING CHARACTERISTICS®

J Grade K Grade S Grade? T Grade?
Parameter Min Max Min Max Min Max | Min Max Unit
tur Clock HI 50 40 60 50 ns
tio ClockLO 40 30 50 40 ns
s Instruction Setup Time 36 30 45 40 ns
tps  DataSetup Time 10 * 15 15 ns
iy Input Signal Hold Time 3 * * * ns
tap  Address Delay* (C=50pF) 35 25 45 35 ns
tay  Address Hold Time 3 * 1 1 ns
topp Output Data Delay (C = 30pF) 50 35 60 45 ns
toprs Output Data Disable Time 20 15 25 20 ns
tirsy  Input Flag Setup Time (IR0 masked) 15 10 20 15 ns
tirsy  Input Flag Setup Time
(no constraints) 30 26 35 30 ns
tyrs  Upper Interrupts (IRg_s) Setup Time | 30 25 35 30 ns
tyrs  Lower Interrupts (IR4_;) Setup Time | 20 15 25 20 ns
trss  Three-State (TTR) Setup Time 10 * 15 15 ns
trsov  Three-State (TTR) Overlap Time
(With Trap) 15 * 5 5 ns
trsg  Three-State (TTR) Disable Delay 20 15 25 20 ns
tiprs IDLE-to-Three-State Disable Delay 20 15 25 20 ns
trrov  Trap (TTR)Overlap Time
(With Three-State) 10 8 10 10 ns
trrap  Trap (TTR)to Address Delay 60 45 70 55 ns
NOTES
*Specifications same as ] grade.
'All specifications are over the recommended operating conditions.
28 and T grade parts are available processed and tested in accordance with MIL-STD-883B. The processing and test methods used
for S/883B and T/883B versions of the ADSP-1401 can be found in Analog Devices’ Military Databook.
Alternatively, S and T grade parts are available with high-reliability “PLUS” processing as shown in Figure 9.
*Input levels are GND and 3.0V. Rise times are Sns. Input timing reference levels and output reference levels are 1.5V
except for three-state reference levels, which are shown in Figure 8. For capacitive loads greater than 100pF,
we recommend the use of external buffers.
*Address delays may be derated from the specified SOpF test loading shown in Figure 12 by adding 7ns/50pF for
increased capacitive loading.
Specifications subject to change without notice.
VDD
VDD
x +15V
INPUT O—¢-
-[ OUTPUT
3pF _[: x
Figure 10. Equivalent Input Figure 11. Normal Load for Figure 12. Equivalent Output
Circuit ac Measurements Circuit
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4.0 APPENDICES

4.1 Instruction Hold Control (IHC)

The ITHC function allows external microcode width to be reduced
by allowing the 1401’s microcode field to be shared with another
device. This sharing is accomplished by temporarily latching an
instruction that is used repetitively within the ADSP-1401 and
re-directing its microcode to a different device. Control of the
latching is accomplished by the IHC instruction, which re-assigns
the function of interrupt signal IR;, becoming the latch/unlatch
control line.

To use this mode, execute the IHC instruction, which sets
status register bits SRs_4 to ‘10°. Interrupt line IR, now controls
the instruction hold mode (not interrupt), so IR; must be masked.
The shared signal, IRs (recall, IRg_s and IR,_; share the same
pins), is still used normally, since it is active during clock low.

To initiate an instruction hold, execute the instruction to be
repeated, while asserting IR; (HI) prior to the clock falling edge
of the same cycle. For so long as IR, is kept high (on the falling
edge of the clock), the instruction will repeat. All interrupts are
automatically disabled while the instruction is held.

When IR, is needed for interrupts (instead of controlling the
instruction hold mode) the IHC mode may be disabled by:
executing one of the relative jump width control instructions;
or, by changing status register bits SRs_4 directly. Prior to
unmasking IR,, execute the CAIR (clear all interrupts) instruction
to clear the interrupt latch. .

4.2 Programming Examples
The following examples are given to illustrate some fine points
of programming the ADSP-1401.

4.2.1 Jump Register (See Figure 13a)

In this example, three jump registers (R3_;) are loaded with
external data and one (R) is loaded with the program counter,
enabling a jump to the top-of-stack.

Current ~Instruction Output
Address Executed Address Comments RSP
20 PSDRS 21 PushR; 57
21 PSDRS 22 PushR, 56
22 PSDRS 23 PushR; 55
23 PSPC 24 PushPC(Ro=24) 54
24 Startof Loop . . . 25
30 . e
31 JRC(Ry) 3224 Cond. Jump to

[Ro] =24
32/24

4.2.2 Return from Interrupt with Pending Interrupt (See Figure
13b)

This example shows the program flow when two interrupts
occur in the same cycle or an interrupt is latched while another
interrupt is being executed. The “Return from Interrupt” in-
struction (RTNIR) will execute one instruction of the mainline
routine before servicing a pending interrupt since interrupts are
not re-enabled until the end of the cycle. Here, IV,=60 and
IV;=21.
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C0=2"*15+5 0
2 PUSHPC %0 l/’! o o
2 ‘ 91 :

. 81

: Loop 92
3 TRUE | 6TIMES o 21

g » 1”3
FALSE 9 ! ROUTINE

32 ;28

A. JUMPREGISTER B. PENDING INTERRUPT ON RTNIR

65 SUBRTN 13 93

m 66 RTN&IRS 18
92
20 s SAVE
¢ ' IR7ROUTINE

93 -

.

H

.

S TRESTORE
94 ’\ 16 N 128
29

D. INTERRUPT USING GLOBAL REGS

\

IRS
ROUTINE

C. INTERRUPTONRTN

150 IRROUTINE
CONT
H
PUSHCO 150 (PUSH89)

86
1 SUBROUTINE
(OVRFL) g7 151 H

87
IR9
88 88 160 M
RTNIR H
89

40
a4
PUSHC1 .
.
50 RTN

E. THREE PUSHES ON OVRFL F. INTERRUPT ON JUMP SUBROUTINE

Figure 13. Programming Examples

Current Instruction
Address Executed

Output
Address Comments

89 e .90 R

90 Ce 91 InterruptsI; & I3 valid.

91 . 60 IV; output. Instruction 91
still executed.

60 CONT 61 92 is pushed on stack.

61 RN 62 ce

81 RTNIR 92 92 popped and interrupts
re-enabled.

92 N 21 IV3output. Instruction 92
still executed.

21 CONT 22 93 pushed on stack.

22 Ce 23 ...

28 RTNIR 93 93 is popped from stack.

93 R

4.2.3 Interrupt on a Return from Subroutine (See Figure 13c)
If an interrupt occurs on a subroutine return, no instructions in
the main program are executed prior to servicing the interrupt
routine. Here, IV5=20.

Current Instruction
Address Executed

Output
Address Comments

91 . 92 R

92 JSR 65 Jump t0 65. 93 pushed.

65 RN 66 IR becomes valid.

66 RTN 20 IVsaddress output. 93
popped.

20 CONT 21 93 pushed.

29 RTNIR 93 93 popped.

93



4.2.4 Interrupt Routine using Global Registers (See Figure
13d)

Current Instruction Output

Address Executed Address Comments

12 cen 13 Mainline . . .

13 Ce 14 IR; occurs here.

14 CONT 93 Output IV;.

93 PSSR 94 Push status register.

94 PSCNTR (C3) 95 Save previous values . . .

95 PSCNTR(C)) 96

96 PSGSP 97 e

97 WRSR 98 Write new values . . .

98 WRCNTR(C3) 99

99 WRCNTR(C,) 100

100 WRRSP 101 R

101 102 Begin interruptservicing . .

123 e 124 End of interrupt service
routine.

124 PPGSP 125 Pop in reverse order of
pushes . . .

125 PPCNTR(C,) 126

126 PPCNTR (C3) 127

127 PPSR 128 -

128 RTNIR 15 Jump back to mainline.

15 R 16

4.2.5 Three Stack Pushes on Stack Overflow (See Figure 13¢)
The four register buffer between the subroutine stack and the
register stack will be filled with three values whenever the stack
push that caused the overflow is followed by another instruction
that causes a stack push. The second stack push occurs since
the instruction that is interrupted (the second stack push) must
complete internally to preserve the correct state of the ADSP-1401
after the interrupt. The third push occurs to provide the return
address to the main program. The sequence is illustrated below.
Assume that the address of the stack overflow service routine
(IVy) is at 150.

Current Instruction Output

Address Executed Address Comments

86 C. 87

87 PSCNTR (Cy) 88 The push causes a stack
overflow.

88 PSCNTR (C,;) 150 The interrupted instruc-
tion executes.

150 CONT 151 89 is pushed onto the stack.

151

4.2.6 Interrupt on Jump Subroutine Instruction (See Figure
13f)

Current Instruction
Address Executed

Output
Address Comments

86 e 87 Interrupt occurs to loca-
tion 150

87 JSA (40) 150

150 CONT 151 40 Pushed on stack

. RN 160 ..

161 RTNIR 40 Return from interrupt

40 R 41

4.3 Use of RAM by Multiple Subroutines
This diagram (Figure 14) shows the state of RAM after three
nested subroutine calls.

Prior to the first subroutine call, the RSP was used to preload
the bottom portion of the RAM with indirect jump addresses.
Next, global jump registers were preloaded. In the mainline
program, only global jump registers are used.
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STATUS REGISTER
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R
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H SUBROUTINE # 1
N MAINLINE
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TNOIREGT JUMP
ADORESSES

_{AS NEEDED)

Figure 14. RAM Status after Subroutine Calls

The instruction calling the first subroutine pushes the return
address of the main program onto the subroutine stack. The
values of counters 1 and 3 are also pushed onto the stack to free
counters 1 and 3 for use in subroutine #1. The GSP is saved
since different routines will require different GSPs. Similarly,
the status register of the main program is saved. As shown,
routine #1 uses both global and local jump registers. It selects
the GSP or LSP at the appropriate times in the routine by executing
SGSP or SLSP instructions.

Routine #2 saves the return address, some counters, and the
GSP for routine #1. Since no local registers are used in routine
#2, none are loaded.

Routine #3 saves the return address and the status register.
Since the GSP and counters are not used in this routine, they
are not saved. After the new status register is loaded (selecting
the LSP), local registers are pushed onto the stack.

4.4 Bus Drive Considerations with the Word-Slice Family
The various members of Analog Devices’ Word-Slice family are
designed with high-speed drivers on all output pins. This capability
means that large peak currents may pass through the ground
and Vpp pins when all the bus lines are simultaneously charging
their load capacitance from LO to HI, or vice versa.

To calculate the peak current for a typical family member (such
as the ADSP-1401 Program Sequencer), we assume that all
output drivers are switching from a HI to a LO state. From a
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fall time and capacitance measurement, we can determine that The internal ground and supply lines may undergo a large dis-

the peak current in each driver is: turbance during this transition unless the ADSP-1401 is tied to
L., =Cp. s AV/AL a solid ground plane and good high frequency decoupling is
peak k,)ad - ’ used (0.1uF ceramic between GND and Vpp, as close as possible
where AV/At is the initial slew rate. to the device). Otherwise, is it possible that internal data in the
In the case of the program sequencer, for an external load capaci- ADSP-1401 may be lost.

tance of S0pF and a measured slew rate of 0.6V/ns, the peak
current will be about 30mA. Since there are 16 such drivers, the
total peak current may approach 480mA!

4.5 Mnemonics and Opcodes Status Register Bit A
Opcode bits “ii” select the relevant register (R3_o) and/or counter gl‘{# g{“‘:‘“: g:ll/LO)
(Cs_o). Opcode bits “cc” select the condition to be applied: b o Mask Bit
‘000 UNCONDITIONAL : .
€ 3 M .
0 NOTFLAG SR, 1R Mask Bt
100 FLAG SRs_4 Relative Jump Width Selection:
‘11’ SIGN ‘00’ = 16-bit relative address width
- . . ‘1’ =8-bit width
The SIGN condition is precluded from instructions prefixed €10’ = IHC Mode (8-bit width)
with “*”, i 11 = 12-bit width
SRy Select GSP/LSP
SR, Enable/Disable Interrupts
SR, Set/Clear Sign Bit
SR, Select Transparent/Latched Interrupts
Munemonic  Opcode (I_q) Description Status Register Operations:
Jump and Branch Instructions: RDSR 010 1110 READ SR
JPCOF 0010101  IF FLAG: JUMP PC (self) WRSR 0011100 WRITE SR
JPCNF 0110101 IF NOT FLAG: JUMP PC PSSR 0100001 PUSH SR ONTO S§
(self) PPSR 0100010  POP SR FROM SS
JTWO  101cc0l  IF COND: JUMP PC+2 (skip) )
DA lccll - IF COND: JUMP DATA, Counter Operations:
ABSOLUTE WRCNTR 011 10ii  WRITEC,
IDR 111cc0l  IF COND: JUMP DATA, CLRS 0010100 CLEAR SIGN BIT
RELATIVE SETS 0110100 SET SIGN BIT
JDI 101 ccl0  IF COND: JUMP DATA, PSCNTR 000 10ii  PUSH C; ONTO S§
INDIRECT PPCNTR 001 10ii  POP C; FROM S§
JDRST 100 11ii IF SIGN OF C: JUMP DATA, DCCNTR 011 00ii ~ DECREMENT C;
Ci<=Rj; ELSE, G<=C -1 IFCDEC  101cc00  IF COND: DECREMENT Co
*JRC 110ccii  IF COND: JUMP R
JRS 110 1lii IF SIGN OF C;: JUMP R;, Interrupt Control:
Ce=C1 CCIR 0010001  CLEAR CURRENT
IsA 111cc00  IF COND: JUMP SUB, INTERRUPT
ABSOLUTE CAIR 0000001  CLEAR ALL INTERRUPTS
ISR 111ccl0  IF COND: JUMP SUB, RTNIR 0000011 RETURN FROM
RELATIVE INTERRUPT
RTN 101 cell  IF COND: REFURN FROM RDIV 0101101 READ INTERRUPT VECTOR
SUB AND INCREMENT IVP
*BRANCH 100 ccii  IF SIGN OF C;: JUMP R;; WRIV. 0001101 WRITE INTERRUPT
ELSE, G,<=C. 1, IF COND: VECTOR AND INCREMENT
JUMP DATA Ive
IRMBC 0010011 IR MASK BITWISE CLEAR
Stack Operations: IRMBS 0010010 IR MASK BITWISE SET
Subroutine Stack DISIR 0010110  DISABLE INTERRUPTS
PSDSS 0011110 PUSH DATA ONTO SS ENAIR 0110110  ENABLE INTERRUPTS
PPSSD 0111110  POP SS TO DATA PORT , SLIR ooroirr  SELECT LATCHED
WRSSP 000 1110 WRITE SSP INTERRUPTS
RDSSP 0101100  READ SSP STIR 0110111 SELECT TRANSPARENT
DSSP 0000010  DECREMENT SSP INTERRUPTS
Regier Stack SLRIVP 001 1101  WRITE SLR<=Ds_, AND
IVP<=Ds_
SGSP 0000111  SELECT GSP b
SLSP 0000110 SELECT LSP Relative Address Width Controls:
*;V’;‘;SS*; g(l)g ::(‘)(‘) ]v(vli(}}'?Enggp RELI6 0100100  SELECT 16-BIT RELATIVE
ADDRESSING
ggggp gég g‘l’(l): l‘;ggg gg lpgt::r?oRsss RELI2 0100111  SELECT 12-BIT RELATIVE
ADDRESSING
PPGSP 0000100 POP GSP FROM $S RELS 0100110  SELECT 8-BIT RELATIVE

PSDRS 001 1111 PUSH DATA ONTO RS

DRESSIN
PPRSD 011 1111 POP RS TO DATA PORT AD SSING

AIRSP 010 10i i ADD i TO RSP Miscell Instr
SIRSP 000 1111 SUBTRACT 1 FROM RSP CONT 000 0000 CONTINUE
S4RSP 011 1100 SUBTRACT 4 FROM RSP IDLE 001 0000 IDLE
THC 010 0101 ENABLE INSTRUCTION
HOLD CONTROL
WwCS 010 0000 WRITE CONTROL STORE
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ADSP-1401 PIN CONFIGURATIONS

DIP
D-48A
N-48A
PIN FUNCTION | PIN FUNCTION
1 D7 48 D6
2 D8 a7 D5
3 D9 46 D4
4 D10 45 D3
5 DM a4 D2
6 D12 43 D1
7 D13 42 Do
8 D14 41 CLK
9 D15 40 FLAG
10 EXIR1 39 16
1 EXIR2 38 15
12 GND 37 Voo
13 EXIR3 36 14
14 EXIR4 35 13
15 TTR 34 12
16 Y15 33 "
17 Y14 32 10
18 v13 31 Yo
19 Y12 30 Y1
20 Y1 29 v2
21 Y10 28 v3
22 Y9 27 Y4
23 v8 26 ]
24 v7 25 ]
PLCC
P-52
PIN FUNCTION | PIN FUNCTION
1 D7 52 D6
2 D8 51 D6
3 D9 50 D4
4 D10 49 D3
5 D11 48 D2
6 D12 47 D1
7 GND 46 GND
8 D13 45 DO
9 D14 44 CLK
10 D15 43 FLAG
1 EXIR1 42 16
12 EXIR2 41 15
13 GND 40 Voo
14 EXIR3 39 14
15 EXIR4 38 13
16 TTR 37 12
17 Y15 36 n
18 Y14 35 10
19 Y13 34 YO
20 GND 33 GND
21 Y12 32 Y1
22 Y11 31 Y2
23 Y10 30 Y3
24 Y9 29 Y4
25 Y8 28 Y5
26 Y7 27 Y6
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ANALOG
DEVICES

Word-Slice
Address Generator

ADSP-1410

FEATURES
16-Bit Addresses with Higher Precision Options
30ns Address Output Delay @ 11.1MHz Operation
Look-Ahead™ Pipeline
Versatile Addressing Hardware:
30 16-Bit Registers
16-Bit ALU with Left/Right Shift & Carry /O
Comparator
Bit Reverser
Dual Ports
Powerful Single-Cycle Looping Instructions
375mW Maximum Power Dissipation with
CMOS Technology
48-Pin DIP, 52-Lead PLCC

GENERAL INFORMATION

The ADSP-1410 is a fast, flexible address generator optimized
for digital signal/array processors and other high-performance
computers. This low-power CMOS device rapidly generates the
data memory addresses required by routines such as digital
filters, FFTs, matrix operations, and DMAs. With its 16-bit
architecture, registers, dual ports, and speed, this Word-Slice™
component improves performance and reduces board space
substantially relative to bit-slice solutions.

The ADSP-1410’s architecture features a 16-bit ALU, a com-
parator, and 30 16-bit registers. The registers are organized into
four files: sixteen address (R) registers, six offset (B) registers,
four compare (C) registers, and four initialization (I) registers.

The ADSP-1410 rapidly executes key address generating opera-
tions. In a single instruction cycle, the device can:
® output a 16-bit memory address;
® modify this memory address; and,
® detect when the address value has moved to or beyond a
pre-set boundary and conditionally loop back to the
top of a circular buffer.
Consequently, circular buffers and modulo addressing for data
memories can be implemented without overhead.

The ADSP-1410’s 10-bit microcode instructions include com-
mands for looping, register read/writes, internal data transfers,
and logical/shift operations. Instructions are normally supplied
from an external source. However, an internal Alternate In-

struction Register (AIR) can provide the instruction under external

control, allowing microcode to be conserved in many
applications.

Look-Ahead and Word-Slice are trademarks of Analog Devices, Inc.

The ADSP-1410 has a 16-bit address (Y) port for outputting
addresses and a 16-bit data (D) port for I/O between internal
and external registers. Also, an internal path allows external
data, provided via the D port, to serve as an ALU source and/or
to be directly output over the Y port for a DMA capability.

Double-precision (30-bit), single-cycle addressing can be per-
formed by cascading two ADSP-1410’s, with the MSB of each
chip’s D and Y port dedicated to interchip communication.
Alternatively, a single AG can provide double-precision addresses
at a rate of one per two clock cycles.

The Look-Ahead pipeline eliminates the need for an external
microcode pipeline register by internally latching instructions
and addresses; microcode bits may be directly routed to the
ADSP-1410 from microcode memory. Logically, the Look-Ahead
pipeline is split into two halves: the first, located at the instruction
(and data) port; and the second, located at the address port.
Each half of the pipeline (input vs. output) has a transparent
latch which operates out of phase with the other: the address
latch is transparent during the first half of the cycle (clock HI),
while the input latches (instruction and data) are transparent
during the second half of the cycle (clock LO). This complementary
arrangement allows new instructions to be decoded (in preparation
for the following cycle) while the program address for the current
cycle is held steady.
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ADSP-1410 OVERVIEW

Digital Signal Processing (DSP) and array processing systems
require fast, flexible address generation circuitry. An Address
Generator (AG) supplies the address of a location in data or
coefficient memory. The value residing at the specified address
is fetched and fed to an arithmetic unit for processing. The AG
must then modify the address pointer in anticipation of the next
data fetch. For algorithms that repetitively loop through data
buffers, the AG may need to compare the address to a buffer
end and conditionally loop back-to the top of the buffer. Finally,
to maximize throughput, an AG must perform its addressing
tasks rapidly and without overhead.

With the ADSP-1410, 16-bit pointers to memory are stored in
-an address (R) register file. Since an AG must track several
pointers concurrently, sixteen R registers, denoted R,, are pro-
vided. If we denote Y as the address port, the operation “Y <— R,”
corresponds to the AG supplying an address from register R,,.

After supplying an address, the AG must update the pointer for
the next memory fetch. The updating may be as simple as an
increment but, more generally, involves adding or subtracting
an arbitrary offset value. Also, algorithms generally access several
different offset values. To this end, the AG provides six offset

registers, denoted B,,,, and can execute in a single-cycle the core
operation:

Y<—R,; R,«—R,+B,,.

In DSP applications, data arrays are often addressed as circular
buffers. That is, when addressing reaches the buffer end, it
wraps back to the beginning of the buffer. To implement this
looping, the AG compares the supplied address to one of four
compare registers, denoted C;. If the address has moved to or
beyond the end of the boundary (R,=C;), the device can
transfer an initialization register value, denoted Ij, to the register
(R,<— I)); otherwise, it is updated in normal fashion

(R, R, +B,,)). To minimize overhead, the AG can execute
normal updates while also performing conditional re-initializations;
again, in one core operation:

Y-<—R,; IF R,=Cj): R,<—[;; ELSE R,«— R, +By,.

Since the above instruction handles the looping required of
circular buffer addressing, it is termed a looping instruction. To
a large extent, the ADSP-1410’s architecture and instruction set
revolve around efficient implementation of this instruction.
However, many variations of this instruction are supported on
the device and spelled out in the following sections.

ADDRESS SOURCES
— Sixteen internal R registers
- External data provided over the D port

OFFSET SOURCES
— Six internal B registers

— Data Port
OFFSET OPERATIONS
— Increment (Rp<— R, +1)
— Decrement (Rp<— R,—1)
— Add Offset (R,<— R,+B,)
— Subtract Offset (R,~—R,—B,)
— Single-Bit Left/Right
Shifts
— Logical Operations (AND, OR, XOR)

CONDITIONAL RE-INITIALIZATION
— Independent Inhibit/Enable for each of four
initialization registers
— Conditional AIR execution (used for true
modulo addressing)

OUTPUT/UPDATE SEQUENCE
— Normal (Pre-Update) Mode (output the address
before update)
— Post-Update Mode (output the address after
update)

PRECISION
— Single chip supplies 16-bit addresses
— Two chips cascaded provide 30-bit addresses
— One chip provides 30-bit addresses in two
cycles
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ADSP-1410 PIN ASSIGNMENTS
PIN NAME DESCRIPTION

Yis-Yy The address (Y) output port. In single-chip/double-
precision mode, the MSB (Ys) indicates whether
the supplied address is the MSW or LSW (see
Precision Modes). In two-chip/double-precision
mode, the MSB conveys the carry/shift bit from
the Least Significant (I.S) to the Most Significant
(MS) chip.

The bi-directional data (D) port. In two-chip/dou-
ble-precision addressing mode, the MSB (D,s) of
this port conveys CMP status from the partner
chip.

Dis - Do

I-Ip
CMP/Z

The instruction port.

A dual function pin. Looping instructions, which
compare address register values to compare
register values, assert this pin HI to convey
CMP status if i) R=C for positive offsets, or

ii) R=C for negative offsets. Logical/Shift in-
structions assert this pin HI to convey the ZERO
status of the resuit.

DSEL Data Select control. Asserting this control HI
causes data set up on the data port to substitute

for the R value specified in the instruction.
AIR Enable  Alternate Instruction Register control. Asserting
this control HI causes the device to execute an
instruction stored in the internal AIR, rather
than the instruction set up on the instruction
port.

Clock
Vaa +5 Volt Power Supply
GND Ground

CLK
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Figure 1. ADSP-1410 Functional Block Diagram
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ARCHITECTURE

After discussing the architecture of the ADSP-1410, different
operating modes of the ADSP-1410 are detailed, followed by a
description of the ADSP-1410’s method of operation: including
timing concerns and instructions. Brief applications information
is then presented, and the data sheet concludes with a section
on MNEMONICS AND OPCODES.

The ADSP-1410’s architecture (Figure 1) features four register
files, an ALU, a Comparator, an Alternate Instruction Register
(AIR), and a Control register. External interfaces include a 10-
bit instruction port, a 16-bit data (D) and address (Y) ports, a
DSEL (Data Select) control pin, an AIR Enable control pin,
and a status flag.

Instruction Port

The microcode controlling the ADSP-1410 is supplied over the
10-bit wide INSTRUCTION PORT. The instruction word,
Is_o, is latched prior to the instruction decoder during phase one
(clock HI) and is passed during phase two (clock LO). In addition
to the microcode, two dedicated control pins affect the device’s
operaﬁon: the DSEL pin (see Y Port, D Port, and DSEL Control
Pin); and the AIR Enable pin (see Alternate Instruction Register
and AIR Enable). These pins are considered instruction bits,
and latched as described above.

Y Port, D Port, and DSEL Control Pin

The ADSP-1410 has two 16-bit ports: a DATA (D) PORT and
an ADDRESS (Y) PORT. The output drivers of both ports are
three-state disabled unless an instruction specifies an output.

Addresses supplied to external data memory are output over the
unidirectional Y port. The address supplied may come from one
of three sources: an internal address (R) register, the data (D)
port, or the ALU. The DSEL (Data Select) pin controls whether
an R register (DSEL LO) or external data (DSEL HI) is the
address source. The address source can either be directly output
over the Y port, or passed through the ALU for modification
prior to output (see Pre-Update Mode versus Post-Update Mode).
Hardware three-state output control of the Y port is possible
(see note in “Alternate Instruction Register and AIR Enable”
section). Finally, the address being output (direct or modified
source) may be bit-reversed (see Bit Reverser).

The Y port has two modes of operation (see Transparent Mode
versus Latched Mode). In the more commonly used latched
mode, addresses are latched during phase two (clock LO). The
transparent mode disables the output latch and may be used in
conjunction with stopping the clock LO, allowing data to be
passed through (directly, or modified by the ALU) the AG
without performing updates.

Any internal register may be read or written via the ADSP-1410’s
D port. Also, external data can be supplied to the chip over this
port for immediate addressing purposes.

Note:

The ADSP-1410 may power-up driving the data bus. Caution
should be used to avoid creating a bus contention with other
devices which may be sharing this bus. To prevent bus contention,
the CLK input may be forced LO during power-up (disabling
the output data drivers). During this time, a RESET instruction
should be setup at the instruction port to be executed as the
first operation when the clock starts up.
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Registers

The ADSP-1410 has 30 16-bit registers, organized into four
banks. Single-cycle transfers between certain register banks are
supported.

Sixteen ADDRESS (R) REGISTERS hold memory address
pointers. In the same cycle that a 16-bit R value is output over
the address (Y) port, it may be incremented, decremented,
offset, modified by a logical operation, or left/right shifted by
one bit. The updated value is then written back into the original
R location (pre-update mode). In post-update mode, the address
is output after being modified. Any R value {or data, using
DSEL) may be bit-reversed on output.

Six OFFSET (B) REGISTERS furnish a second operand to the
ALU (the other, provided by an R register or the data bus) for
modifying the address to be output. The B registers are partitioned
into two, user-selectable (see Control Register: B Bank Select)
banks and external data can substitute as an offset value whenever
B3 (bank one) or B; (bank two) is used (see Table IV).

Four COMPARE (C) REGISTERS supply one source to the on-
chip comparator, whose other source is the address being output.
When an address moves to or beyond a boundary set by the C
value, the CMP flag goes active (HI).

Four INITIALIZATION (I) REGISTERS can—conditional on
the CMP flag going active—overwrite any R value, allowing
overhead-free branches to the top of an addressing loop. Note
that I and C registers are always paired. Conditional re-initializing
of R registers may be independently inhibited for individual I
registers (see Control Register CR3 ).

ALU and Shifter

The ADSP-1410’s 16-BIT ALU performs adds, subtracts, and
logical operations. Usually, one source is an offset (B) register,
while the other is an address (R) register. However, external
data provided via the D port may substitute either for an R
register (under the control of the DSEL pin), or a B register
(using B3 or B7).

For two-chip/double-precision ALU operations, CARRIES into
the MS chip and out of the LS chip (CS;, and CS,,,) are conveyed
via the Y5 pin (see Precision Modes).

The ALU also contains the logic required for single-bit SHIFTS
of a supplied R register. Left shifts are logical, while right shifts
are arithmetic. In two-chip/double-precision shift operations, the
Y5 pin conveys the shifted bit. In single-precision operation,
the carry/shift status of the device cannot be monitored.

The destination of an ALU or shift result is always the source R
register location specified in the instruction—even if external
data is the source. If the post-update mode is used, the ALU/shift
result is sent directly over the address (Y) port on the current
cycle (in addition to being returned to the source R location).

Alternate Instruction Register and AIR Enable

The ALTERNATE INSTRUCTION REGISTER (AIR) is a
10-bit register which may be loaded with any instruction. On
any cycle that the AIR Enable pin is asserted, the device will
execute the instruction held in the AIR, rather than the instruction
set up on the instruction pins (except for the RST instruction).

The AIR’s principal purpose is to conserve microcode. One way
to conserve microcode is to load a frequently-used instruction
(e.g., a looping instruction) into the AIR. Then, this instruction
is executed simply by asserting the device’s AIR Enable pin—
temporarily suspending the need for external microcode.



The AIR can also conserve microcode in applications using
multiple AGs (e.g., double-precision or high-throughput systems).
If the AGs generally execute identical instructions, external
microcode may be significantly reduced if they share a common
microcode instruction field. During some cycles, however, it
may be crucial for an AG to execute an instruction different
from the common instruction—something which the AIR and
its enable pin allow. For example, a NOP instruction can be
loaded into an AG’s AIR; anytime the AIR Enable pin is asserted,
the AG will be selectively “put to sleep” (I/O pins three-state
disabled; no change in internal state).

The AIR register may be read over the data port (Dg) in a
single cycle. As Table I shows, the AIR may be written via the
data port (Dg_g) or the instruction port. If the instruction written
into the AIR is provided via the instruction port, two cycles are
required. This method allows the AIRs of two or more AGs
sharing microcode to be selectively loaded by differentially as-
serting their DSEL pins. Note that if the DSEL pin is LO
during the entire second phase (clock LO) of the LDA instruction,
no AIR loading occurs. This implicitly requires that DSEL be
setup accordingly prior to the start of the LDA instruction, as it
is latched during phase one (clock HI).

INSTRUCTION LOADED INTO THE AIR VIA THE:
DATA PORT INSTRUCTION PORT

1. Execute “Load AIR” instr.
2. Provide instr. on instr. port
and assert DSEL pin.

1. Execute “Write AIR” instr.

Tablel. Optionsfor Reading and Writing the AIR

A second method exists for executing the instruction in the
AIR. Looping instructions compare an address (R) value to a
compare (C) value and, if the address has moved to or beyond a
pre-set boundary, the CMP flag goes HI. If CR,, (see Control
Register and Conditional AIR Execute Mode) is set, a true
comparison causes the device to execute its next instruction
from the AIR (see Table III.) This capability facilitates no-overhead
modulo addressing (see application note: Modulo Addressing).

Note:

The AIRE pin may be used to control the Y port output drivers
by loading a NOP into the AIR register; the AIRE pin becomes
dedicated to three-state control of the Y port. This technique
supports connection of multiple address sources to the same
bus.

Flags and Comparator

The ADSP-1410 has two internal flags—CMP and ZERO—that
share the external CMP/Z pin. The CMP flag, set by the com-
parator, is affected by looping instructions. The ZERO flag is
set whenever a Logical/Shift instruction has a zero result. In
cycles that do not affect the CMP or ZERO flag, the CMP/Z
flag pin defaults LO.

As Table II shows, the CMP flag goes HI whenever the supplied
address moves to or beyond a boundary set by the specified C
register. The address that is compared to the C value is always
the address that is output—even in post-update mode. R, C,
and B values are treated as unsigned integers by the
Comparator.

Twos-Complement Offsets

Negative offsets are generally handled by the R<—R - B in-
struction. However, if for some reason the user is interpreting
offset values as negative twos complement numbers, the instruction
R<—R + B will cause the comparator to sense whether R=C
(when the condition R=C is of interest). The user may account
for this reversal (e.g., by monitoring for the CMP flag going
LO, rather than HI), but looping instructions cannot be fully uti-
lized.

ARITHMETIC OPERATION CMP FLAG HIGHIF:
R, <R+ 1 (YINCinstruction) R,=C;
R, <R, - 1(YDECinstruction) R,=C;
R, <—R_+B_ (YADD instruction) R, =C;
R, <—R, - B (YSUB instruction) R,=C

Tablell. CMP Flag Truth Table

Alternating Offsets

If the microprogram switches between different offsets and the
AG is in the normal, pre-update mode, the comparator logic
may produce seemingly erroneous results because comparisons
are not made until the cycle following the update. In pre-update
mode, when a routine switches between positive and negative
offsets, the comparator will check for wrong condition because
the comparison is not made until the following cycle. The value
in the compare register must anticipate the comparator sense
reversal by one cycle.

Bit Reverser

Addresses can be bit-reversed as they are output, which is useful
in algorithms such as the Fast Fourier Transform. The bit-reverse
mapping is as follows, where K; and Y; denote the i™ bit of K
(either an address register or the data bus) and Y (the address
port), respectively.

Ko —Ys5
K| =Y,

.

Kis—Yo

Bit reversal only affects the value that appears on the address
port; it does not affect the value returned to the R register
location. The hardware bit reverser operates only on single-pre-
cision, 16-bit addresses. For details on software reversal of N-
bit (N<16) fields, see the application note: Variable-Width Bit
Reversing.

Control Register

The ADSP-1410’s 11-bit CONTROL REGISTER (CR,4o) may
be read or written via the device’s data port, Djgo. Dedicated
instructions are used to read or write the entire control register,
or to set and clear individual bits (see Instruction Group 4). On
power-up, the RST instruction clears the control register to all
zeros automatically.
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The following list shows the control register organization. If the
bit(s) is set (HI), the specified mode is operative.

CR | Bit Assignment
3-0

Re-Initialization Mask: For looping instructions, enables
conditional re-initialization of R registers with I registers.
For example, setting bit 2 of the CR allows I, to re-in-
itialize the selected R register if the address has moved
to or beyond the boundary set by C,.

Precision Select:
00 = single-precision mode;
01 = double-precision mode, LS chip;
10 = double-precision mode, MS chip;
11 = double-precision mode, single-chip.

6 Transparent Mode: Sets the address (Y) port to the
transparent mode: otherwise, the Y port is latched
during phase two.

7 R Bank Select: Selects the upper eight R registers as
address sources for the YADD and YSUB instructions.

8 B Bank Select: Selects the upper four B registers as
offset sources for all instructions.

9 Post-Update Mode: Sets the post-update mode (addresses
supplied after updating).

10 | Conditional AIR Execute: Sets the conditional AIR
mode: allowing looping instructions to (conditional
upon the CMP status going true) be fetched from the
AIR on the next instruction, rather than the instruction
port. Using this mode disables conditional re-initializa-
tion (of R by I on CMP) and forces the default update
of R.

ADSP-1410 OPERATING MODES

The flexibility of the ADSP-1410 is enhanced by several optional
modes of operation. These modes, governed by the control
register, are discussed in detail in this section.

Precision Modes

Typically, the ADSP-1410 provides single-precision (16-bit)
addresses. If greater addressing range is needed, double-precision
(30-bit) addresses can be supplied. Two double-precision modes
are supported—one with two chips cascaded and the other with
a single chip. Specific instructions set these modes. Double-pre-
cision (single- or two-chip) bit-reversing and is not supported.

Two-Chip/Double-Precision

(CRs_4=01” for LS chip; “10” for MS chip). In this mode,
two ADSP-1410’s are cascaded to generate double-precision
addresses at a rate of one per cycle. Each address may be output,
incremented, decremented or modified by an offset value, com-
pared to a double-precision value, and conditionally re-initialized
by a double-precision word. Alternately, double-precision logical/
shift operations may be performed.

The Y and D ports of each chip are restricted to the lower 15
bits, freeing the MSBs of both devices to convey carry/shift and
CMP status, respectively (see Figure 2). For double-precision
adds/subtracts, the LS chip sends carry/borrow status over the
Y5 pin; the MS chip uses Y5 to accept carry/borrow status
from the LS. For left (right) shifts, the LS (MS) conveys the
shifted bit over the Y5 pin.

Double-precision, conditional re-initializations are implemented
by dedicating the D)5 pin on each device’s data port to receive
the CMP status from the other. When performing a looping
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instruction, the MS chip generates a valid CMP flag on its CMP/
Z output. For a logical or shift instruction, the CMP/Z outputs
from both the LS and MS chips must be ANDed to produce a
single valid ZERO flag. To ensure that this flag is valid on the
next low-to-high transition of the clock, the output of the AND
gate should be latched as shown in Figure 2. The ZERO flag is
latched on the falling edge of the clock and held by the latch
until the next falling edge.

CMP/Z (MS)
CMPIZ (LS) D Q |—ZERO FLAG
CLOCK —Do—>

RESET

Figure 2. Valid Two-Chip Double-Precision ZERO
(Logical Instructions)

In this mode, all values are 15-bit words. The 30-bit address is
supplied in two 15-bit words over the Yy4_ pins of the two
devices. Internally, the MS bit of each operand is zeroed prior
to ALU operations, the MSB of the result then becoming the
carry/shift bit. External data provided over the D port must be
segmented with the 15 LSBs going to the LS chip and the 15
MSBs to the MS chip.

In two-chip/double-precision mode, both chips may share the
same microcode instruction. The only complication to this sharing
is in differentially initializing the MS and LS chips. Internal
logic allows this initialization to be accomplished. Both chips are
fed the instruction designating it as the LS chip. The assertion
of DSEL on the intended MS chip during the SETP instruction
reverses the two LS instruction bits (those defining the chip
configuration to the control register), allowing both MS and LS
designations to be performed simultaneously.

Single-Chip/Double-Precision

(CRs_4="%“11"). In this mode, double-precision (30-bit) addresses
are generated at a rate of one every two cycles. Each address
may be output, incremented or decremented, and compared to a
double-precision compare (C) value. Logical/shift operations are
also supported. Conditional re-initialization with I registers and
the conditional AIR mode are not supported.

LSW operations are executed first, followed by MSW operations
(with the exception of right shifts). Even-numbered R registers
are reserved for LSWs, while odd registers are assumed to be
MSWs. No such restrictions apply to B or C registers; MS or
LS words may be held in any B or C register, but such allocation
must be tracked by the user. After an operation involving LSW
registers, the device stores the carry/shift bit (as appropriate)
needed to complete the double-precision operation. On the next
operation involving MSW registers, this intermediate value is
utilized. Storage of the carry/shift bit occurs only on LSW oper-
ations, except for double-precision right shifting, which starts
with the MSW. If non-addressing operations intervene, the
intermediate value is not disturbed. The comparator will generate
a meaningful CMP signal after each MSW operation.

In this mode, only the 15 LSBs of any register are used. The
LSW and MSW addresses that are supplied are both 15-bit
words. The Y;s (MSB) pin of the 16-bit address port designates



whether the address is the LSW (=0) or MSW (=1), and may
be used to control an external mux. Note that the MSB of values
provided via the data (D) port is not meaningful in this mode.

Transparent Mode

(CRg HI). In this mode, the address port is made transparent
during the entire cycle, rather than only phase one. The transparent
mode may also be used in conjunction with stopping the clock
(LO), in which case the entire device behaves asynchronously
and no updates are written internally.

Latched Mode
(CRg LO). In latched mode, output values are enabled during
phase one and latched at the address (Y) port during phase two.

Use of the latched mode guarantees that outputs remain stable
throughout the current cycle regardless of changes at the in-
struction port. This, in contrast to the transparent mode, in
which such changes may occur quickly enough to alter the
output before cycle end.

Post-Update Mode

(CRo HI). Addresses are output after the update operation. The
delay between the start of phase one and output of a valid address
is extended in this mode to allow for updating. The addresses
output are equivalent to the values written back into the specified
address (R) register. In this mode, external data may be brought
on chip, modified and output—in a single clock cycle.

Pre-Update Mode

(CRo LLO). This is the normal update mode in which addresses
are output over the address (Y) port prior to update operations
(increment, decrement, offset, shift, and logical)—allowing
addresses to be generated at maximal speed. Note however, that
this mode requires two cycles to bring external data on chip,
modify it, and supply it as an address.

Conditional AIR Execute Mode

(CRyo HI). In this mode, a valid CMP flag on looping instructions
causes the next instruction to be executed from the AIR. The
MODULO ADDRESSING section highlights a particularly
valuable use of this mode.

Note that conditional re-initialization of address registers is
disabled when using the conditional AIR execute mode. The
default (ELSE clause) is performed unconditionally whether or
not the instruction is from the instruction port or the AIR).

(CR} LO). Conditional AIR execution is disabled. Conditional
re-initialization is fully operational, contingent upon the re-in-
itialization mask (CR3_o).

Table IIT summarizes the different ways the CMP status affects

operation of the AG as a function of the conditional AIR execute
mode control bit, CR}g, and the re-initialization mask, CR3_.

1 1

D15 D15
MS 1410 LS 1410
Y15 CMP/Z CMP/Z Y15

L - -]

Figure 3. Two-Chip/Double Precision Handshaking

CR, LO
CMP
STATUS CR,LO CR;HI CR,oHI
LO No Effect No Effect No Effect
HI ICMP/Z goes | CMP/Z goes CMP/Z goes
HI HI; HI;
R, <« Nextinstr.
executed from
AIR

Table lll. Effect of Compare (CMFP) Status for Looping
Instructions; Note: j=3-0, the Re-Initialization Mask.

INSTRUCTION SET DESCRIPTION

The ADSP-1410’s instruction set is partitioned into six groups,
which are discussed below. First, however, issues spanning
several instruction groups are discussed.

Most of the instruction groups contain instructions using one of
the chip’s six offset (B) registers. Without exception, these
instructions have just two bits available for selecting the B register.
Consequently, offset registers are partitioned into two banks.
The upper/lower bank selection is maintained in the control
register (CRg) and is set or cleared by dedicated instructions.
Whenever the “fourth” B register of either bank is specified

(B3 or By), the ALU’s offset source becomes external data (see
Table IV).

CRg & TWO-BIT | OFFSET
OFFSET (B) SOURCE
REGISTER

FIELD
000 BO
001 Bl
010 B2
x 11 Data Port*
100 B4
101 BS
110 B6
x 11 Data Port*

Table IV. Offset Value Structure

*Explicit use of DSEL is unnecessary when using B; or B; offsets; the offset
data is sourced from the data bus by default.

In several instruction groups (see mnemonics and opcodes for
details), address (R) registers are used. In all cases, asserting the
DSEL pin allows external data to be substituted for an R value
as both output and update data.
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Two instruction groups (looping and logical/shift) both supply
and update the address. Normally, addresses are supplied prior
to updating (pre-update). In post-update mode however, the
addresses are output after the update operation is performed.
CRy controls this mode of operation.

For all instructions accessing an offset register, the MS bit of
the three-bit offset register address (B, of Bbb) is fetched from
the control register and is programmed by the SELB instruction.
This is also the case for the YADD and YSUB instructions
(group 1) as pertains the MS bit.of the four-bit address register
address (R, of Rrrr), programmed by the SELR instruction. In
both cases, it is incumbent upon the programmer to ensure the
appropriate register bank is selected.

The Y port is only driven on output instructions (mnemonic
form Yxxx, sse MNEMONICS AND OPCODES). Otherwise,
the Y port defaults to a high-impedance state.

Instruction Group 1: Looping

Instructions in the looping group supply the contents of a selected
address (R) register to the address (Y) port and then overwrite
the R location with an updated value.

All instructions in this group generate an internal CMP status
indicating whether the supplied address has moved to or beyond
the boundary specified by the compare register. This status may
be monitored externally via the CMP/Z pin. Internal to the
chip, the CMP status can i) be ignored, ii) be used to control
re-initialization of the R register value with a selected I register
value (e.g., to restart an addressing loop), or iii) control execution
of an instruction located in the AIR on the next cycle. Individual
control register bits determine which option is enforced (see
Control Register).

YINC Output & Increment/Init.
Pre-Update Mode: Y<—R;
IF (R,=C)):
THEN Rye—1;,
ELSE R,<—R, +1.
Post-Update Mode: Y <R, +1;
IF(Y=C)):
THEN R,~1I,
ELSE R,<—R,+1.

OQutput an address (R) register on the address (Y) port and
compare it to one of the compare (C) registers. If the address is
less than C;, the R location is simply updated with an incremented
value. However, if R,=C; , CMP status goes HI and the R
register is re-initialized with the I; value, provided the initialization
mask (CR3_o) is enabled for ;. Note that other modes of operation
allow CMP status to be ignored (e.g., the instruction executed is
simply “Y <= R,;; R,<— R, +1”) or to cause the AIR instruction
to execute on the next cycle.

YDEC Output & Decrement/Init.
Pre-Update Mode: Y <R,
IF(R,=C):
THEN Ry<—1I,
ELSE R,<—R,-1.
Post-Update Mode: Y «<—R,-1;
IF(Y=C):
THEN R,<—1I;,
ELSE R,<—R,-1.

Same as above except the R value is decremented instead of
incremented; CMP is valid if the R value is less than or equal to
the C value.
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YADD Output & Add Offset/Init.
Pre-Update Mode: Y «<—R;
IF(R,=C)):
THEN R, <1,
ELSE R,<—R, +B,.
Post-Update Mode: Y <R,+B_;
IF(Y=C)):
THEN R, <[,
ELSE R,<—R, +B,_.

Same as YINC except the R value is summed with the contents
of a selected offset (B) register.

The R register bank select bit (CR;) is used in both the YADD
and YSUB (offset) instructions.

YSUB Output & Subtract Offset/Init.
Pre-Update Mode: Y «<—R;;
IF(R,=C):
THEN R, <,
ELSE R,<—R,-B,.
Post-Update Mode: Y <—R,-B_;
IF (Y=C)):
THEN R, <,
ELSE R,<R,-B,_.

Same as YADD except the selected offset (B) register is subtracted
from the R value.

Instruction Group 2: Register Transfers

Instructions in the register transfer group support internal register
transfers, as well as transfers between internal and external
registers. Internally, any I or B register may be written directly
to any R register. Also, any R register may simultaneously be
output and written directly to a B or C register. For an R-to-R
transfer, the source R register can first be written to a B register,
followed by a write of the B register to an R register on the next
cycle.

Internal registers are read or written externally via the bi-directional
data port. There are explicit instructions to read any of these
registers; however, only the I registers have an explicit Write
instruction. The R, B, and C registers may be written with
external data by executing a transfer instruction (YRTR, YRTB,
and YRTC) and asserting the DSEL pin, substituting the external
data for the designated R value.
YRTR Output & Transfer Addr. Reg. to Self
Y <R,

Outputs selected address (R) register over the address (Y) port.

When DSEL is asserted, data port values are output and, in the

same cycle, written into the selected R register.

YRTB Output & Transfer Addr. Reg. to Base Reg.
Y<R;;B, <R,

Outputs selected R register-over the Y port and copies it into a

selected B register. When DSEL is asserted, data port values

are output and, in the same cycle, written into the selected B

register.

YRTC Output & Transfer Addr. Reg. to Comp. Reg.
Y <R;;C; <R,

Same as above, except that values are written to a C register.



DTI Transfer Data Bus to Init. Reg.

I, «D
Loads selected I register from data (D) port.

ITR Transfer Init. Reg. to Addr. Reg.

R, < Ii

Selected R register is loaded from an I register, allowing a
microprogram to restart a loop at any time.
BTR Transfer Base Reg. to Addr. Reg.

R,< B,
Loads an R register from a B register. Once in the R register,
the B value may be modified and then returned to the B file
(using a YRTB instruction). Recall, use of B3 or B; will access
the data port as the offset source, allowing R registers to be
initialized directly from the data port.
RTD Transfer Addr. Reg. to Data Bus

D <« R,

Supplies selected R register to data (D) port.
CTD Transfer Comp. Reg. to Data Bus
D - Ci

Supplies selected C register to data (D) port.
BTD Transfer Base Reg. to Data Bus
D «B,

Supplies selected B register to data (D) port.
-ITD Transfer Init. Reg. to Data Bus
D=

Supplies selected I register to data (D) port.

Instruction Group 3: Logical & Shift
Instructions in the logical/shift group supply a value from a
selected address (R) register to the address (Y) port and then
unconditionally overwrite the selected R location with a modified
version of the output. Modify operations include logical (AND,
OR, and XOR) and shift (one-bit left/right) operations. All
instructions in this group affect the ZERO flag, which goes HI
if the result of the modification is zero. The ZERO flag status is
available externally over the CMP/Z pin.
YOR Output & Logical OR to Addr. Reg.
Y-« R;R, <« (R,ORB,)

Selected R register is supplied to the address (Y) port; the specified

R location is then overwritten with the logical OR of the B

register and original R value.

YAND Output & Logical AND to Addr. Reg.
Y<—R,;R,< (R,ANDB,)

Same as above, except that a logical AND is performed.

YXOR Output & Logical XOR to Addr. Reg.

Y< R,;;R, < (R,XORB,)
Same as above, except that a logical XOR is performed.

YASR Output & Arithmetic Right Shift to Addr. Reg.

Y < R,;R, < ASR(R,)

Selected R register is supplied to the address (Y) port; the specified

R location is then overwritten with the original R value arithmeti-

cally shifted right (ASR) by one bit (the MSB is repeated).

YLSL Output & Logical Left Shift to Addr. Reg.
Y <« R;R,<«LSL(R)

Selected R register is supplied to the address (Y) port; the specified
R location is then overwritten with the original R value logically
shifted left (LSL) by one bit (the LSB is zero-filled).

Instruction Group 4: Control Register

Instructions in the control register group reset, read, and write
the entire control register or individual control register bits (see
Control Register).

Note the use of “x” and “pp” to denote values supplied within
the opcode field (see MNEMONICS AND OPCODES). A
positive logic convention is used throughout.

RST Reset Control Reg.

CR<—0

Clears the entire control register (CR;o_¢). The RST instruction

has dedicated decoding logic so that it takes precedence even

over the second instruction of a conditional AIR sequence.

DTCR Transfer Data Bus to Control Reg.
CR<«D

Werites the entire control register (CR¢_¢) from the data port,

Dio-o-

CRTD Transfer Control Reg. to Data Bus
D<=« CR

Outputs the entire control register (CR;¢_¢) over the data port,
Dio_o-
SETI Set/Clear Conditional Init. on CMP Flag
CR; < x
Enables conditional re-initialization of an R location, subject to
CMP status (see Control Register). This instruction loads the x
value into the control register bit specified by jj. Conditional re-
initialization of address registers by the Cj/I;; pair is inhibited if
the corresponding CR;; is cleared.
SETP Set Chip precision
CR;_, < pp

Loads a 2-bit code (pp) into control register bits 5 and 4, specifying
the addressing mode of the device:

00 =single-precision mode;

01 =double-precision mode, LS chip (10 if DSEL);

10 = double-precision mode, MS chip;

11 = double-precision mode, single-chip.
If the instruction “SETP, 01 is supplied and the MS chip’s
DSEL pin is asserted, the CR;_, bits are reversed, i.e., the MS
chip is loaded with “10”, not “01” (see Precision Modes). This
is useful if the MS and LS chips share a common instruction
bus.

MICROCODED SUPPORT COMPONENTS 3-33



Set Y Port to Transparent/Latched Mode
CR; <-x
Uses the LS instruction bit to set the address (Y) port to the

transparent (HI) or latched (LO) mode. This status is maintained
in control register bit 6.

SETY

SELR Select Upper/Lower Addr. Reg. Bank

CR; <€x

The LS bit of this instruction provides the missing Address (R)

register select bit required by the YADD and YSUB instructions.

This selection is maintained in control register bit 7.

SELB Select Upper/Lower Base Reg. Bank
CRg < x

The LS bit of this instruction provides the missing B register

select bit required by all instructions utilizing offset (B) registers.

This selection is maintained in control register bit 8.

SETU Set Update Mode (Post/Pre)
CRy =< x

Setting this bit causes the chip to output address values after

updating them (post-update mode). The LS bit of this instruction

determines the value of control register bit 9.

SETA Set/Clear Conditional AIR Execute Mode
CRjg<«— x

Setting this bit causes Looping instructions—conditional on
CMP status being HI—to execute the following instruction from
the AIR on the next cycle. In this mode, conditional re-initialization
of R by I on CMP is inhibited. The LS bit of this instruction
determines the value of control register bit 10.

Instruction Group 5: AIR Control

Instructions in the AIR group write and read the Alternate

Instruction Register (AIR). The AIR may be written or read

over the data bus in one cycle or written via the instruction port

in two cycles (see Table I). The instruction contained in the

AIR is executed whenever the AIR Enable pin is asserted or on

the next cycle in the conditional AIR execute mode.

WRA Write AIR with Data Bus
AIR< D

Write the AIR from the data (D) bus (Dg_j).
RDA Read AIR at Data Bus
D- AIR

Read the AIR over the data (D) bus (Dg_j).
LDA Load AIR from Instruction Port on Next Cycle
(Requires DSEL HI)

AIR <«—Instruction Port

This instruction is the first of a two-cycle sequence that loads
the AIR via the instruction port. On the cycle following the
execution of LDA, the instruction at the instruction port is
loaded into the AIR (and not executed). DSEL must be asserted
with the LDA instruction (meeting the same setup and hold
time requirements); otherwise, the AIR is not loaded. In systems
with multiple ADSP-1410s sharing microcode instructions, this
feature allows you to select particular devices for AIR loading.
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Instruction Group 6: Miscellaneous

YDTY Pass Data Bus to Y Port

Y<«—D

Data (D) port values are supplied directly to the address (Y)

port. Note that internal address (R) registers are not affected by

this instruction.

YREV Output Addr. Reg. in Bit-Reversed Format
Y<—YREV(RR,); R,<—R_ +B_,

The selected address (R) register is bit reversed at the output
port. The original (unreversed) R value is added to the selected
offset (B) register, and written back into the specified R location.
Condition testing is not performed. Bit reversing affects only
output data, not register contents.

NoprP

Prevents any changes to the internal conditions of the AG. All
1/O pins go to the three-state disable mode.

No Operation

ADDRESS GENERATOR APPLICATIONS

The ADSP-1410 has a wide range of uses in high-speed digital
signal processing and general purpose computer applications. In
particular, this AG can be used in implementing the following:

Circular Data Buffers

— FIR filter tapped delay lines

— Correlator delay lines

— Image processing delay lines

— Recirculated data I/O for transient data capture or stimulus
source

Memory Management
— Fast Fourier Transform data and twiddle factors
— Matrix computations

Table Look-Ups
Masking and table address mapping with AND/OR and bit
reverse capabilities.

Variable-Width Bit Reversing

The internal bit-reversing multiplexer of the AG accommodates
only full, 16-bit addresses (64K FFTs). For smaller FFTs,
(utilizing a right-justified subset of the 16-bit address field), a
zero-overhead software approach may be employed. The details
of this approach may be found in the application note: ‘“Variable-
Width Bit Reversing with the ADSP-1410 Address Generator”.
Essentially, the technique is this: an R register is intialized with
the bit-reversed value of the 16-bit starting address (a “pre-re-
versed” version of the first data point location) and a B register
with the value K+2'6~N, where K is the step size between samples
and N is the order of the FFT. Now, repeated execution of the
YREYV instruction will output the appropriate bit-reversed ad-
dresses; updating the R register each time.

Multi-Tasking Operations
Context switching allowed by large number of on-chip registers
or by instructions allowing all registers to be saved and restored.

16-Bit ALU/Accumulator

By substituting external data for a B register and operating in
post-update mode, ALU operations can be performed at high
speed. ALU sources are the external data and any one of sixteen
internal R registers. Results are stored on-chip in these R registers.
Two chips may be cascaded for double-precision operations.



Unclocked (Flow-Through) Applications
When operating in transparent and post-update modes with the
DSEL line asserted, the device serves as an unclocked ALU.

Digital Differential Analyzer
— Sine and cosine generation
— Graphics/Line drawing

— Control and guidance

Modulo Addressing

Hardware on the ADSP-1410 allows the addressing of circular
buffers to be implemented without overhead. The Conditional
re-initialization structure handles the simple case of returning to
the top of a loop.

Some applications require robust modulo addressing of a circular
buffer with an arbitrary starting point, ending point, and increment
between addresses. To implement true modulo addressing with
the ADSP-1410, consider a buffer of length L. First, R, is
initialized with the start address n, B, is initialized with m, a
constant increment or step between addresses, and B, is initialized
with (L —m), to implement a modulo jump to the beginning of
the buffer. Then a compare register C; is loaded with the value
(n+ L —2m) for pre-update mode, or the value (n+ L —m) for
post-update mode. Bit CR;, of the Control Register is set to
enable conditional AIR execution. The instruction “YADD R,
C; B,,” is then executed repeatedly, from the instruction port.
This outputs R,, and updates it (for pre-update mode — or updates
R, and then outputs it for post-update mode) by summing it
with the offset B,,,. The comparator monitors whether
R,=(n+L-2m), for pre-update mode, or R,=(n+ L —m), for
post-update mode. When such an event occurs, the instruction
in the AIR is executed in the next cycle. This should be the
negative offset instruction “YSUB R,, C; B,” which updates R,
with a negative offset of (L —m), causing a modulo L jump
back to the beginning of the buffer. In this fashion, true modulo
addressing can be implemented for arbitrary buffer boundaries
and offsets.

SPECIFICATIONS

The specification tables contain the electrical and switching
characteristics of the ADSP-1410. Figure 7 is the accompanying
timing diagram for the device.

The clock input to the ADSP-1410 is a single, two-phase clock
with cycle time: tcy.

The setup and hold times for the instruction inputs are tyg and
iy, respectively. Input instructions consist of the 10-bit microcode
instruction, the DSEL control, and the AIRE control: all of
which are latched during phase one (clock HI).

The timing of internal register reads from the data port is specified
by topp and tppys. Assuming a data output instruction is executing,
the data drivers are activated only during phase one (clock HI).
Therefore, output data becomes valid topp into phase one (clock
HI) and remains valid for a portion of phase two (clock LO).
tppis specifies how long into phase two the data drivers take to
disable. If data outputs are followed by data inputs, tppys estab-
lishes the timing required to avoid bus contention.

If the device is in the transparent mode, the DSEL pin may be
asserted to open the path between the data port and the address
port. Assuming data is properly setup on the D port, tra, or
trap (for pre- or post-update modes, respectively) specifies the
interval from DSEL assertion to a valid address appearing at the
Y port. Note that changes on the DSEL pin (or any instruction
pin) are not recognized during phase one (clock HI).

Latched Mode Parameters have a Sliding Window

Output delays for addresses and the CMP/Z flag depend upon
whether the device is in the pre-update (normal) mode or post-up-
date mode and upon the use of a latches vs. transparent mode
of operation. In the latched mode, a “sliding window” effect is
apparent, resulting from the internal Look-Ahead pipeline (see
Figure 3). The sliding window effect is described to facilitate

tis DELAY tis DELAY

/ \

a. Minimum Output Delay b. Minimum Setup Time

Figure 4. Boundary Cases of “Sliding Window" Effect:
Minimum Output vs. Minimum Setup

exact calculation of guaranteed Clock-to-Output delays as a
function of faster or slower instruction setup times. Latched
mode guaranteed Clock-to-Output delays are given as a min/max
pair. The user may vary the output delays within these limits by
adjusting the instruction setup time.

As the instruction setup time is increased beyond the minimum
(t;s=min[ts]), the corresponding guaranteed Clock-to-Output
delay will be reduced (see Figure 3a) toward its minimum value.
Conversely, as the instruction setup time is reduced toward its
minimum (t;s —» min[t;s]), the corresponding Clock-to-Output
delay will increase (see Figure 3b) toward its maximum value.

The required instruction setup time for the fastest latched output
delay is simply the difference between the minimum and maximum
guaranteed Clock-to-Output specifications plus the minimum
instruction setup time, e.g., an instruction setup time of {max[ty an]
—min(ty o,] +min[tys]} is required to realize min[ty ap].

For intermediate cases (in which neither min/max limits apply),
output delays may be calculated by subtracting the actual in-
struction setup time from the sum of the minimum instruction
setup time and the maximum guaranteed Clock-to-Output
specifications, as the following example shows (in which
tismin = 150s and 30ns=<ty 5, =35ns):

Actual  Guaranteed Clock-to-Output Delay
ts (max[tLan] +min[tis] —ts)

5 n/a Invalid (minimum t;g violated)

10 n/a Invalid (minimum t;g violated)

15 35 Minimum Setup, Maximum Delay
16 34 Sliding Window Dominant

17 33 Sliding Window Dominant

18 32 Sliding Window Dominant

19 31 Sliding Window Dominant

20 30 Maximum Usable Setup, Minimum Delay
25 30 Minimum ty o, Dominant

30 30 Minimum ty 4, Dominant

etc. etc. etc.

Transparent Mode Parameters
The transparent mode of operation is entirely dissociated from
clock edges. Hence, the relevant parameters are referenced to
the instruction becoming valid rather than the clock edge; only
maximum Valid-instruction-to-Output Delay specifications
pertain.

(continued on page 3-38)
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SPECIFICATIONS'
RECOMMENDED OPERATING CONDITIONS

J &K Grades S & T Grades?®
Parameter ) Min Max Min Max Unit
Vpp Supply Voltage . : . 4.75 5.25 4.5 5.5 \%
Tamp Ambient Operating Temp. 0 70 -55 125 °C
Test J & K Grades S & T Grades?
Parameter Conditions Min Max Min Max Unit
Vi Hi-Level Input Voltage Vpp =max 2.0 2.0 A%
Vige Clock Input Hi-Level Input Voltage Vpp =max 3.0 3.0 \%
V. Lo-Level Input Voltage Vpp=min 0.8 0.8 A%
Vou Hi-Level Output Voltage Vpp=min, Ioy=—1mA 2.4 24 \Y%
VoL  Lo-Level Output Voltage Vpp =min, I5; =3mA 0.6 0.6 \%
Iy Hi-Level Input Current Vpp =max, Viy=5V 10 10 rA
In Lo-Level Input Current Vpp =max, Viy=0V 10 10 pA
Iy Clocks & Control Inputs Vpp =max, Vi =5V 10 10 pA
Hi-Level Input Current
Iy, Clocks & Control Inputs Vpp=max, ViN=0V 10 10 pA
Lo-Level Input Current
Iozy  Three-State Leakage Current Vpp = max, Vi = max 50 50 pA
Ioz1  Three-State Leakage Current Vpp =max, Viy=0 50 50 rA
Ipp  Supply Current max clock rate, TTL inputs 75 100 mA
Ipp  Quiescent Supply Current ViN=2.4V 35 50 mA
ABSOLUTE MAXIMUM RATINGS Load Capacitance . . . . ... ... ... ....... 200pF
Supply Voltage . . ... ............ —-0.3Vito 7V Operating Temperature Range (Ambient) . . —55°C to +125°C
Input Voltage ... .. ... ... ....... —0.3V.to Vpp Storage Temperature Range . . . . ... .. —65°C to +150°C
Output Voltage Swing . . . . . ... ... .. —0.3V to Vpp Lead Temperature (10 Seconds) . . . . ... ... .. 300°C

ORDERING INFORMATION

Temperature Package
Part Number Range Package Outline
ADSP-1410]N 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1410KN 0to +70°C 48-Pin Plastic DIP N-48A
ADSP-1410JP Oto +70°C 52-Lead PLCC - P-52
ADSP-1410KP 0to +70°C 52-Lead PLCC P-52
ADSP-1410]D 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1410KD 0to +70°C 48-Pin Ceramic DIP D-48A
ADSP-1410SD —55°Cto +125°C 48-Pin Ceramic DIP D-43A
ADSP-1410TD —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1410SD/ + —55°Cto +125°C 48-Pin Ceramic DIP D-48A
ADSP-1410TD/ + —55°Cto +125°C  48-Pin Ceramic DIP D-48A

ADSP-1410SD/883B  —55°Cto +125°C  48-Pin Ceramic DIP D-48A
ADSP-1410TD/883B —55°Cto +125°C  48-Pin Ceramic DIP D-48A

CAUTION:

1. ESD sensitive device. The digital control inputs are zener protected; however, permanent WARN | NG ! /\
damage may occur on unconnected devices subjected to high energy electrostatic fields.
Unused devices must be stored in conductive foam or shunts.

2. Do not insert this device into powered sockets. Remove power before insertion or removal. ESD SENSITIVE DEVICE
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SWITCHING CHARACTERISTICS?

J Grade K Grade S Grade? T Grade?
Parameter Min Max Min Max Min Max Min Max Unit
ts Instruction Setup Time* 20 15 30 20 ns
ty Instruction Hold Time 3 3 3 3 ns
tey Instruction Cycle Time 100 90 125 100 ns
tps  Input Data Setup Time 10 10 10 10 ns
tipy  Input Data Hold Time S S S S ns
topp Guaranteed Clock-to-Data Delay® 35 55 30 50 45 70 40 60 ns
tpena  Output Data Enable Times® 30 50 25 45 40 65 35 S5 ns
tppis  Output Data Disable Time 20 20 25 20 ns
tapis Output Address Disable Time 30 25 45 40 ns
Latched Mode,
Guaranteed Clock-to-Output Delays:
tuan  Pre-Update Address Delay® 35 45 30 35 40 55 35 45 ns
tura  Pre-Update CMP/Z Flag Delay®
(C=25pF) 45 55 35 45 60 75 45 60 ns
tap  Post-Update Address Delay® 35 60 30 50 40 75 35 55 ns
tyr,  Post-Update CMP/Z Flag Delay®
(C=25pF) 45 70 35 55 60 95 45 75 ns
Transparent Mode,
Valid-Instruction-to-Output Delays:
tran  Pre-Update Address Delay 50 45 65 55 ns
trg,  Pre-Update CMP/Z Flag Delay
(C=25pF) 65 55 90 70 ns
trap  Post-Update Address Delay 75 65 95 80 ns
trg,  Post-Update CMP/Z Flag Delay
(C=25pF) 90 75 115 95 ns
Supplemental Parameters for
Double-Chip/Double-Precision Operation®:
tesp  Valid Instruction-to-Carry/Shift
Output Delay 55 57 70 55 ns
tcss  Carry/Shift Input Setup Time 45 40 50 45 ns
tysp  Carry/Shift Input to Valid MS S5 40 65 55 ns
Address (Post-Update Only)
teape  Valid Instruction to MS CMP/Z ns
(Compare) Flag Delay
tczi Clock High to CMP/Z (Compare) ns
Invalid Delay
tezp,  Valid Instruction to CMP/Z (Zero) ns
Flag Delay
tup Instruction Invalid to CMP/Z (Zero) ns
Invalid Delay
NOTES
*Specification same as ] Grade.
! All specifications are over the ded i diti
28 and T grade parts are availabl und rested in d with MIL-STD-883B. The processing and test methods used for $/8383B and T/883B

versions of the ADSP-1410 can be found in Analog Devices’ Military Databook. Alternatively, S and T grade parts are available with high-reliability
“PLUS” processing as shown in Figure 10.

3Input levels are GND and 3V. Rise times are Sns. Input timing reference levels and output timing reference levels are 1.5V. For capacitive
loads greater than 100pF, we recommend the use of external buffers.

"Instrucuon setups beyond the clock LO period (into the previous cycle) will not be ized dless of latched or p mode, as the
ion latch is always f during clock HI. Also, the clock HI period must always exceed the guaranteed Clock-to-Ou{pul/Data delay.
SMinimum specifications pertain to maximum usable instruction setups, while maximum specifications pertain to absol instructi tup
See discussion of ““sliding window” under Specifications.
SThe Instruction Cycle Time, tcy, does not apply to DCDP operation. Clock HI and LO relationships for DCDP operation are described in the
Specifications text under DCDP Parameters: tyy; is derived from the tcsp, tess, tusps and ts parameters, and the inequality, t o=1;, mustalsohold. lov
Specifications subject to change without notice.
\Y
oo VDD
T0
x OUTPUT +15V
PIN
O
INPUT _I_ OuTPUT I 50pF
= = lon
Figure 5. Equivalent Figure 6. Equivalent Figure 7. Normal Load
Input Circuits Output Circuits for AC Measurement
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(continued from page 3-35)

Data Output Parameters

Data output parameters are independent of operating modes.
Data drivers are asserted only during phase one (clock HI). The
guaranteed Clock-to-Data Delay is, again, subject to the sliding
window phenomenon; the min/max specifications pertain to
maximum usable and absolute minimum instruction setup times,
respectively.

Double-Chip/Double-Precision Parameters

The double-chip/double-precision (DCDP) mode of operation
utilizes the Y;s pin to commute the interchip carry/borrow/shift
information, and D;s, the CMP/Z status (see Figure 2).

Pre-Update DCDP
Normally, (as is the case with any pre-update operation) pre-update
DCDP operations have only to output the previously calculated
result. However, because the carry/shift output delay is asyn-
chronous, the clock cycle time becomes a function of how soon
the instruction is valid; increasing DCDP instruction setups
decreases the required clock cycle time.

The carry/shift output delay, tcsp, is referenced to the valid
instruction, while the carry/shift setup time, tcss, is referenced
to the clock falling edge. Together, they comprise the minimum
time required from the valid instruction to the falling edge of
the clock. Therefore, the sum of the carry/shift I/O operations
(tcsp + tcss) less the instruction setup time, tys, defines the
minimum clock HI period; tyr=(tcsp + tcss) — ts, as referenced
in footnote 6 of the switching characteristics table. The clock
LO duration must accommodate the instruction setup time;
tLo=ts.

Post-Update DCDP

Because post-update DCDP operation of the ADSP-1410 requires
calculation of the address prior to its output, the additional
parameter for the MS word output delay, tysp, is necessary in
specifying this mode. In post-update DCDP mode, tmsp supplants
tcss for Clock HI determination; tyr=(tcsp + tmsp) — tis-

SINGLE-CHIP TIMING PARAMETERS:
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MNEMONICS AND OPCODES

The following list gives the instruction mnemonics and opcodes.
Various parameters are substituted by the user, defining register
numbers or control bits. The notation convention is this:

R = Addressregister

B = Base (offset) register

C = Compare register

I = Initialization register

D = Databus

CR = Control register

rrrr = Four-bitaddress register number

rrr = Three-bitaddress register number
bb = Two-bit base (offset) register number
cc = Two-bit comparison register number
il = Two-bitinitialization register number
pp = Two-bitprecision code

X = One-bit control bit

*External data may substitute for R using DSEL.
1Operable in either pre- or post-update mode.
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Figure 11. Typical Ipp vs. Frequency of Operation

Instr.

Opcode (Io_o)

Looping Instructions

YINC*t:
YDEC*t:
YADD*4:
YSUB*+:

10llcerrrr
1010ccrrrr
llccbblrrr
1lccbbOrrr

Register Transfer Instructions

YRTR*:
YRTB*:
YRTC*:
DTI:
ITR:
BTR:
RTD:
CTD:
BTD:
ITD:

000101rrrr
0011bbrrrr
0010ccrrrr
0000111111

1000iirrrr
0100bbrrrr
000100rrrr
00001100cc
00001101bb
00001110i1

Logical and Shift Instructions

YORX*{:

0lllbbrrrr

YAND*t: 0110bbrrrr
YXOR*t: 0101bbrrrr

YASR*t: 00011lrrrr
YLSL*t: 000110rrrr
Control Register Instructions
RST: 0000000001
DTCR: 0000101110
CRTD: 0000101111
SETI: 0000100iix
SETP: 00001010pp
SETY: 000001001x
SELR: 000001101x
SELB: 000001100x
SETU: 000001011x
SETA: 000001010x
AIR Instructions
WRA: 0000101100
RDA: 0000101101
LDA: 0000011110
Misc. Instructions
YDTY: 0000011111
YREV*t: 1001bbrrrr
NOP: 0000000000

Description

output & increment/init
output & decrement/init
output & add offset/init
output & subtract offset/init

output & xfrRtoR
output & xfrRto B
output & xfrRto C
xfrDtol

xfrItoR

xfrBtoR
xfrRtoD
xfrCtoD
xfrBtoD
xfrItoD

output & OR B with/toR
output & AND B with/toR
output & XOR B with/toR
output & arith SRRtoR
output & logical SLR toR

reset CR

xfrDtoCR

xfrCRtoD

set cond re-init on CMP mode
set chip precision

set Y port to trans/latched mode
select upper/lower R bank
select upper/lower B bank

set post/pre update mode

set cond AIR mode

write AIR with D
read AIRatD
load AIR on next cycle

pass DtoY port
output R in bit-reverse format
no operation
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ADSP-1410 PIN CONFIGURATIONS

DIP
D-48A
N-48A

PIN FUNCTION | PIN FUNCTION

1 14 48 15

2 13 a7 16

3 12 a6 17

a " a5 18

5 10 a4 19

6 CLK 43 DSEL

7 CMP/Z 42 AIRE

8 Y15 M D15

9 Y14 40 D14
10 Y13 39 D13
1 Y12 38 D12
12 GND 37 Voo
13 YN 36 D11
14 Y10 35 D10
15 Y9 34 D9
16 Y8 33 D8
17 Y7 32 D7
18 Y6 31 D6
19 Y5 30 D5
20 Ya 29 D4
21 Y3 28 D3
22 Y2 27 D2
23 Y1 26 D1
24 Yo 25 )
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PLCC
P-52

PIN FUNCTION | PIN FUNCTION

1 GND 52 15

2 14 51 16

3 13 50 17

4 12 49 I8

5 " 48 19

6 10 47 DSEL

7 CLK 46 AIRE

8 CcMP/Z 45 D15

9 Y15 4 D14
10 Y14 43 D13
1 Y13 42 D12
12 Y12 Y Voo
13 GND 40 Voo
14 GND 39 D11
15 Y11 38 D10
16 Y10 37 D9
17 Y9 36 D8
18 Y8 35 D7
19 Y7 34 D6
20 Y6 33 D5
21 Y5 32 D4
22 Y4 31 D3
23 v3 30 D2
24 ¥2 29 D1
25 Y1 28 DO
26 Yo 27 GND
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Introduction

Since the introduction of our first floating-point chips in 1984,
Analog Devices has been an innovative leader in supplying fast,
finating-point processors. We now produce three floating-point
chipsets (each consisting of a multiplier and an ALU), with a
fourth chipset (the ADSP-3212 & ADSP-3222) being introduced
as this catalog appears. All parts implement the IEEE Standard
754 for Binary Floating-Point Arithmetic; the next generation
also supports DEC formats F and G. All deliver the highest
performance in throughput and latency with the advantages of
CMOS processing. Our introduction of a fast multiported register
file (the ADSP-3128) provides local high-speed memory to enable
the system to maximize computational throughput and provide
operand transfer flexibility. The register file and floating-point
chips are supported by our Word-Slice family for microcode
processors; see Chapter 3.

The floating-point processors provide tradeoffs in performance,
price and precision. All attain high pipelined throughput while

minimizing latency with only one internal pipeline register. The
key advantages of each particular chipset are summarized below
and in the Selection Guide on the following page.

ADSP-3210 & ADSP-3211 DOUBLE-PRECISION
MULTIPLIERS

ADSP-3220 & ADSP-3221 DOUBLE-PRECISION ALUSs
These chips process operations on three data formats: 32-bit
IEEE single-precision, 32-bit fixed-point and 64-bit IEEE double-
precision. There are two multipliers and two ALUs in this
group; either ALU can be used with either multiplier.

ADSP-3210/ADSP-3211 Floating-Point Multipliers

The ADSP-3211 is a three-port multiplier with an I/O structure
identical to the ADSP-3220/ADSP-3221. Throughput for the
ADSP-3211LG is 20 MFLOPS single-precision, S MFLLOPS
double-precision and 20 MIPS fixed-point. The ADSP-3211
operates directly on both twos-complement, unsigned-magnitude
and mixed-mode fixed-point numbers. The ADSP-3210 offers
the capability to conserve on-board space and cost with a two-port
structure while still maintaining full pipelined throughput.
Throughput with the ADSP-3210 reaches 16.6 MFLOPS single-
precision, 4 MFLOPS double-precision and 16.6 MIPS fixed-
point. The ADSP-3210’s fixed-point computations are twos-
complement only.

ADSP-3220/ADSP-3221 Floating-Point ALUs

The ADSP-3221 is a three-port ALU attaining throughput of 10
MFLOPS single-precision, 10 MFLOPS double-precision and
10 MIPS fixed-point. The ADSP-3221, pin-compatible with the
ADSP-3220, also has the capability to compute (completely on-
chip) the IEEE exact division and square root functions. The
ADSP-3220 ALU, also with a three-port structure, attains 10
MFLOPS/MIPS throughput for all three data formats but does
not provide division and square root functions.

ADSP-3201/ADSP-3202 SINGLE-PRECISION FLOATING-
POINT PRODUCTS

The ADSP-3201 Floating-Point Multiplier and the ADSP-3202
Floating-Point ALU offer the capability to build a high-
performance, single-precision only system at minimum cost.
Both chips offer the same three-port structure as the ADSP-3211/
ADSP-3221 and both process 32-bit floating-point and 32-bit
fixed-point numbers. The chips reach 10MHz throughput for
single and fixed-point operations. The compatibility of the single-
precision parts with the ADSP-3211 and ADSP-3221 provides
an upgrade path to double-precision.

ADSP-3128 MULTIPORT REGISTER FILE

This 128 x 16 or 64 X 32 register file provides high-speed local
storage for the floating-point components, while also providing
flexibility in operand data transfers with its five-port structure.
The register file is fast enough to provide full computational
throughput rates for all our 1.5um floating-point parts. One
bidirectional port provides an interface with another processor
or external system. The ADSP-3128 contains on-chip the latches
for a multitude of system interfacing requirements without
external glue logic. On-chip multiplexers automatically sequence
double-precision data transfers.

ADSP-3212 MULTIPLIER & ADSP-3222 ALU
FLOATING-POINT CHIPSET

These next generation, 1.0pm CMOS upgrades to the ADSP-3211
and ADSP-3221 build on their key features: full IEEE 754
Arithmetic, only one internal pipeline register, low power CMOS
technology and MIL-STD-883B processing. The advanced CMOS
processing used yields a throughput of 40 MFLOPS. Because of
minimal pipelining, latency is about 150ns. Exact division is
computed at a 300ns (single-precision) or 600ns (double-precision)
rate. Exact square root is also supported. At press time, these
products had just been introduced; consult your Sales Office for
the current data sheet and specifications.
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Selection Guide

FLOATING POINT COMPONENTS

IEEE Exact IEEE Exact
Pipelined Throughput (ns) Latency (ns) Divide (pus) Square Root (ps)
Number Single Double 32-Bit | Single Double 32Bit Single  Double Single  Double
Part Grade| ofPorts | Precisi Precisi Fixed | Precisi Pr Fixed | Precision Precision | Precision Precision
L 3 50 200 50 140 315 140
ADSP-3211 K 3 100 400 100 240 590 240
Multiplier J 3 125 500 125 300 738 300
U 3 70 280 70 190 400 190
T 3 125 500 125 300 738 300
S 3 150 600 150 360 885 360
L 2 60 240 60 190 370 190
ADSP-3210 K 2 100 400 100 290 590 290
Multiplier J 2 125 500 125 363 738 363
U 2 75 300 75 238 463 238
T 2 125 500 125 363 738 363
S 2 150 600 150 435 885 435
K 3 100 400 100 240 290 240 1.6 3 2.9 5.8
ADSP-3221 J 3 125 500 125 300 363 300 3.75 3.63 7.25
ALU T 3 125 500 125 300 363 300 2 3.75 3.63 7.25
S 3 150 600 150 360 435 360 2.4 4.5 4.35 8.7
K 3 100 400 100 240 290 240
ADSP-3220 ] 3 125 500 125 300 363 300
ALU T 3 125 500 125 300 363 300
S 3 150 600 150 360 435 360
ADSP-3201 K 3 100 100 240 240
Single- ] 3 125 125 300 300
Precision T 3 125 125 300 300
Multiplier N 3 150 150 360 360
ADSP-3202 K 3 100 100 240 240 1.6 29
Single- | J 3 125 125 300 300 2 3.63
Precision ' T 3 125 125 300 300 2 3.63
ALU S 3 150 150 360 360 2.4 4.35
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ANALOG
DEVICES

64-Bit IEEE Floating-Point Chipsets

ADSP-3210/3211/3220/3221

FEATURES
Complete Chipsets Implementing Floating-Point
Arithmetic: Two Multiplier Options and
Two ALU Options
Fully Compatible with IEEE Standard 754
Arithmetic Operations on Four Data Formats:
32-Bit Single-Precision Floating-Point
64-Bit Double-Precision Floating-Point
32-Bit Twos-Complement Fixed-Point
32-Bit Unsigned Fixed-Point
Only One Internal Pipeline Stage
High-Speed Pipelined Throughput
Single-Precision and Fixed-Point Multiplication
Rates to 20 MFLOPS
Double-Precision Multiplication Rates to
5 MFLOPS
Single-, Double-, and Fixed-Point
ALU Rates to 10 MFLOPS
Low Latency for Scalar Operations
140ns for 32-Bit Multiplier Operations
315ns for 64-Bit Multiplier Operations
240ns for 32-Bit ALU Operations
290ns for 64-Bit ALU Operations
IEEE Divide and Square Root (ADSP-3221 ALU)
Flexible I/O Structures:
ADSP-3211/3220/3221: Either One or Two
Input-Port Configuration Modes
ADSP-3210: One Input Port
750mW Max Power Dissipation per Chip with
1.5pm CMOS Technology
100-Lead Pin Grid Array (ADSP-3210 Multiplier)
144-Lead Pin Grid Array (ADSP-3211/3220/3221)
Available Specified to MIL-STD-883, Class B

APPLICATIONS

High-Performance Digital Signal Processing
Engineering Workstations

Floating-Point Accelerators

Array Processors

Mini-supercomputers

RISC Processors

GENERAL DESCRIPTION

The ADSP-3210/3211 Floating-Point Multipliers and the
ADSP-3220/3221 Floating-Point ALUs are high-speed, low-power
arithmetic processors conforming to IEEE Standard 754. A
chipset consisting of either Multiplier used with either ALU
contains the basic computational elements for implementing a
high-speed numeric processor. Operations are supported on four
data formats: 32-bit IEEE single-precision floating-point, 64-bit
IEEE double-precision floating-point, 32-bit twos-complement
fixed-point, and 32-bit unsigned-magnitude fixed-point.

Word-Slice is a trad

k of Analog Devices, Inc.

Microcode Memory —|
‘ ‘microcode mstruction ‘

=

AI;SP-IM)I ADSP-1410
s rogram ADSP-3128 Address Generator
equencer Five-Port

Register Files data
ADSP-3220/3221 jooess

Floating-Point
LUs 1d Data
ADSP-3210/3211 Memory
Floating-Point
Muttipliers
4 Data Bus v

Word-Slice™ Microcoded System
with ADSP-3210/3211/3220/3221

The high throughput of these CMOS chips is achieved with
only a single level of internal pipelining, greatly simplifying
program development. Theoretical MFLOPS rates are much
easier to approach in actual systems with this chip architecture
than with alternative, more heavily pipclined chipsets. Also, the
minimal internal pipelining in the ADSP-3210:3211/322(0/3221
results in very low latency, important in scalir processing and in
algorithms with data dependencies. To further reduce Luteney,
input registers can be read into the chips internal computational
circuits at the rising edge that loads them from the mput port
(formerly called direct operand feed).

In conforming to IEEE Standard 754, these chips assure complete
software portability for computational algorithms adhering to
the Standard. All four rounding modes are supported for all
floating-point data formats and conversions. Five IEEE exception
conditions — overflow, underflow, invalid operation, inexact
result, and division by zero — are available externally on status
pins. The IEEE gradual underflow provisions are also supported,
with special instructions for handling denormals. Alternatively,
each chip offers a FAST mode which sets results less than the
smallest IEEE normalized values to zero, thereby eliminating
underflow exception handling when full conformance to the
Standard is not essential.

The instruction sets of the ADSP-3210/3211/3220/3221 are oriented
to system-level implementations of function calculations. Specific
instructions are included to facilitate such operations as floating-
point division and square root, table lookup, quadrant normali-
zation for trig functions, extended-precision integer operations,
logical operations, and conversions between all data formats.

The ADSP-3210 Floating-Point Multiplier is a one input- and
one output-port device with four input registers. The ADSP-3211
Floating-Point Multiplier adds a second input port and doubles
the number of input registers to eight. It executes all ADSP-3210
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operations. The ADSP-3210 supports 32-bit twos-complement
fixed-point multiplications. The ADSP-3211 adds support for
unsigned-magnitude and mixed-mode integer multiplications.
Finally, the ADSP-3211 adds a HOLD control that prevents the
updating of the output data and status registers.

The ADSP-3220 and ADSP-3221 Floating-Point ALUs differ
only in that the ADSP-3221’s instruction set is extended to
include exact IEEE floating-point division and square root oper-
ations. The ADSP-3221 is pin-compatible with the ADSP-3220.
Both ALUs are three-port, 144-lead devices with eight input
registers.

The ADSP-3210/3211/3220/3221 chipset is fabricated in double-
metal 1.5um CMOS. Each chip consumes 750mW maximum,

significantly less than comparable bipolar solutions. The differ-
ential between the chipset’s junction temperature and the ambient
temperature stays small because of this low power dissipation.
Thus, the ADSP-3210/3211/3220/3221 can be safely specified for ,
operation at environmental temperatures over its extended tem-
perature range (—55°C to +125°C ambient).

The ADSP-3210/3211/3220/3221 are available for both commercial
and extended temperature ranges. Extended temperature range
parts are available with optional high-reliability processing
(“PLUS?” parts, see Figure 37) or processed fully to MIL-STD-
883, Class B. The ADSP-3210 Multiplier is packaged in a ceramic
100-lead pin grid array. The ADSP-3211, -3220, and -3221 are
packaged in a ceramic 144-lead pin grid array.
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FUNCTIONAL DESCRIPTION OVERVIEW

The ADSP-3210/3211/3220/3221 share a common architecture
(Figure 1) in which all input data is loaded to a set of input
registers with both rising and falling clock edges. (Note that the
ADSP 3210, however, has a single input port.) These registers
can be read to the chip’s computational circuitry as they are
loaded on a rising edge. At the end of first processing clock
cycle, partial results and most controls are clocked into a set of
internal pipeline registers. In most cases, only a second clock
cycle is required to conclude processing. (The exceptions are
division, square root, and double-precision multiplication.) At
the end of this second processing cycle, results are clocked into
an output register. The contents of the output register can then
be driven off chip. An output multiplexer allows driving both
halves of a 64-bit double-precision result off chip through the
32-bit output port in one output cycle.

v 7

D iNneuT REGISTERS |

| READ sELECTION muxEs |

___[___

I FIRST-STAGE PROCESSING _

]

> PIPELINE REGISTER |

| i — . — A
L _SECOND'STAGE PROCESSING ]

Figure 1. ADSP-3210/3211/3220/3221 Generic Architecture



Because all input and output data is internally registered and
because of the single level of internal pipeline registers, operations
can be overlapped for high levels of pipelined throughput.
Figure 2 illustrates a typical sequence of pipelined operations.
Note cycle #4 of Figure 2 after the data transfer and internal
pipelines are full. While the final A results of the first operation
are being driven off chip, B processing can be concluding at the
second stage, C processing beginning at the first stage, and D
data loading to the input registers.

All three-port members of this chipset can be configured for
two-port operations, thereby reducing system busing require-
ments. However configured, the ADSP-3210/3211/3220/3221
can load data on rising edges of the clock and on falling edges
of the clock, subject to constraints described in ‘“Method of
Operation.” The port configuration chosen determines which
registers load data on which edges. All input registers have their
own independent load selection controls, allowing the same data
to be loaded to multiple registers simultaneously.

A sct of read selection multiplexers feeds input data from the
input registers to the computational circuitry. These muxes can
select data that was just loaded at the clocks rising edge (“direct
operand feed”), if desired, with no throughput or cycle-time
penalty.

All control signals need only be supplied to the chips at their

cycle rate. This approach avoids requiring thar the sequencing
control cycle time be faster than the chipset’s major processing

cycle rate. Less expensive microcode memory can therefore be
used. For this reason, load selection controls for registers to be
loaded on the clocks falling edge need only be valid at the previous
rising edge. (The designer may choose to supply the asynchronous
output multiplexer and tristate controls at a higher rate,
however.)

The ADSP-3210/3211/3220/3221 fully supports the gradual
underflow provisions of IEEE Standard 754 for floating-point
arithmetic. The Floating-Point ALUs can operate directly on
both normals and denormals, except in division and square root.
The Floating-Point Multipliers operate on normals but cannot
operate on denormals directly. Denormals must first be “wrapped”
by an ALU to a format readable by a Multiplier. Several flags
are available for detecting and handling exceptions caused by
loading a denormal to Floating-Point Multiplier. Information
about rounding and inexact results generated by the Multipliers
is needed by the ALUs to produce results in conformance to
Standard 754. All ADSP-3210/3211/3220/3221 chips include a
“FAST” control that flushes all denormalized results to zero,
avoiding the system delays of IEEE exception processing for
gradual underflow.

All status output flags except denormal detection are registered
at the output in parallel with their associated results. The asyn-
chronous denormal flag allows an early detection of a denormalized
number loaded to Floating-Point Multiplicr, speeding exception
processing.

time Load First-Stage | Second-Stage Output
(cycles) { Input Data ; Processing Processing Result
1 Data Set A
2 Data Set B Data Set A
3 Data Set C Data Set B Data Set A
4 Data Set D Data Set C Data Set B Data Set A
5 Data Set E Data Set D Data Set C Data Set B
v

Figure 2. Typical Pipelining with the ADSP-3210/3211/3220/

3221
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PIN DEFINITIONS AND FUNCTIONAL BLOCK

DIAGRAMS

All control pins are active HI (positive true logic naming con-
vention), except RESET and HOLD. Some controls are registered
at the clocks rising edge (REG), other controls are latched in
clock HI and transparent in clock LO (LAT), and others are
asynchronous (ASYN).

ADSP-3210 Floating-Point Multiplier Pin List

PIN NAME

DataPins
DIN3,
DOUT3; 9

Control Pins
RESET
SELAO
SELA1
SELBO
SELBI
RDAO
RDBO
WRAPA
WRAPB
ABSA
ABSB
SP

DP
RNDO

DESCRIPTION TYPE PINNAME DESCRIPTION
32-Bit Data Input RND1 Rounding Mode Control 1
32-Bit Data Output FAST Fast Mode
SHLP Shift Left Fixed-Point Product
Reset ASYN MSWSEL Select MSW of Output Register
Load Selection for AO LAT OEN Output Data Enable
Load Selection for Al LAT Status Out
Load Selection for BO LAT INEXO Inexact Result
Load Selection for B1 LAT OVRFLO Overflowed Result
Register Ax Read Selection Control 0 REG UNDFLO Underflowed Result
Register Bx Read Selection Control 0 REG INVALOP Invalid Operation
Wrapped Contents in Register Ax REG DENORM Denormal Output
Wrapped Contents in Register Bx REG RNDCARO  Round Carry Propagation Out
Read Absolute Value of Ax REG Miscellaneous
Rcad Absol‘tvx.t'e Value of Bx REG CLK Clock Input
Single-P ;’ccls}qn Mode REG Vpb + 5V Power Supply (Three Lines)
Doubl§~ recision Mode REG GND Ground Supply (Three Lines)
Rounding Mode Control 0 REG
CLK Vp, GND DN, o Controls
? g g /"9
32 RESET—
ANV (PR A
32 32 —
v v oLk
SELAO SELA1 SELBO SELB1 SELAO:1
1 L
A0 At B0 bPe ] Bcontrots
32 32 32 /32
REGISTER Ax READ SELECTION MUX RDAO I REGISTER Bx READ SFLECTION MUX l—RDED
A A Exponent B Mantissa B ]
A Aea i Aea SELBO:1
RDA BO
sp
oP
ABSA B
32 x 32 PARALLEL MULTIPLIER ARRAY WRAPA B
FAST
RNDO:1
o4 SHLP
D piPELINE REGISTER | D PiPELINE REGISTER | [[CONTROL PIPELINE REGISTER |
L w
EXPONENT ROUNDING & FAST. RNDO:1
CIRCUITRY EXCEPTION PROCESSING
SHLP
7
Pstatus]| B __outeur recisTer |
)'5 MSWSEL
OVRFLO
UNDFLO
INEXO OEN
INVALOP
RNDCARO
Status DENORM

DOUT
31-0

Figure 3. ADSP-3210 Functional Block Diagram

4-8 FLOATING-POINT COMPONENTS

TYPE

REG
REG
REG
ASYN
ASYN



ADSP-3211 Floating-Point Multiplier Pin List

PINNAME DESCRIPTION TYPE PINNAME DESCRIPTION TYPE
Data Pins
AIN3,_, 32-Bit Data Input TCB Twos-Complement Integer in REG
BIN;, o 32-Bit Data Input Register Bx
DOUT;;,¢ 32-Bit Data Output ABSA Read Absolute Value of Ax REG
Control Pins ABSB Read Absolgt'e Value of Bx REG
RESET Reset ASYN SP Slngle-PreClS}qn Mode REG
HOLD Hold Control ASYN Dr Double.-Premsxon Mode REG
IPORTO Input Port Configuration Control 0 ASYN RNDO Round{ng Mode Control 0 REG
IPORT1 Input Port Configuration Control 1 ASYN RND! Rounding Mode Control 1 REG
SELAO Load Selection for AQ LAT FAST F a.st Mode R . REG
SELA1 Load Selection for Al LAT SHLP Shift Left Fixed-Point Prod‘uct REG
SELA2 Load Selection for A2 LAT MSWSEL Select MSW of Output Register ASYN
SELA3 Load Selection for A3 LAT OEN Output Data Enable ASYN
SELBO Load Selection for BO LAT Status Out
SELB1 Load Selection for B1 LAT INEXO Inexact Result
SELB2 Load Selection for B2 LAT OVRFLO Overflowed Result
SELB3 Load Selection for B3 LAT UNDFLO Underflowed Result
RDAO Register Ax Read Selection Control 0 REG INVALOP Invalid Operation
RDALl Register Ax Read Selection Control 1 REG DENORM Denormal Output
RDBO Register Bx Read Selection Control 0 REG RNDCARO  Round Carry Propagation Out
RDBI1 Register Bx Read Selection Control 1 REG .
WRAPA Wrapped Contents in Register Ax REG (I;&Iislzellaneous Clock Input
WRAPB Wrapped Contents in Registﬁ:r Bx REG Vb +5V Power Supply (Four Lines)’
TCA qus-Complement Integer in REG GND Ground Supply (Seven Lines)
Register Ax
cLk AN o Vpp GND Contrals
¢ ¥ ¥ 77 3
[PorT conriguration |—{rorT co Tion | R
/ 32 /. 32
B /'24 A3
CLK T-Latch
SELB3 ‘mj‘” 3
CONTROLS |
REGISTER Ax READ SELECTIO! RDBO:1
‘Elpnnsm A Mantissa A Exponent B Mantissa B -
@ Ao ’~' L “RoA 801

sp
DP
TCA B
32 x 32 PARALLEL MULTIPLIER ARRAY ABSA B
WRAPA B
FAST
RNDO:1
o4 SHLP
;PIPELINE REGISTER PIPELINE REGISTER ECO:NYROL FIPELINE RE :ISTER

64
EXPONENT ROUNDING & FAST. RNDO:1
CIRCUITRY [EXCEPTION PROCESSING
S

OVRFLO
UNDFLO

INEXO
INVALOP
RNDCARO

Status DENORM DOUTy, ¢
Figure 4. ADSP-3211 Functional Block Diagram
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ADSP-3220 and -3221 Floating-Point ALUs Pin List

PIN NAME

Data Pins
AIN3; o
BIN3, o
DOUT;3, 0

Control Pins
RESET
IPORTO
IPORT1
SELAO
SELA1
SELA2
SELA3
SELBO
SELBI1
SELB2
SELB3
RDAO
RDA1
RDBO
RDB1
ABSA

DESCRIPTION TYPE PINNAME DESCRIPTION TYPE
32-Bit Data Input ABSB Read Absolute Value of Bx REG
32-Bit Data Input Is o ALU Instruction REG
32-Bit Data Output RNDO Rounding Mode Control 0 REG
RND1 Rounding Mode Control 1 REG
Reset ASYN FAST Fast Mode REG
Input Port Configuration Control 0 ASYN MSWSEL Select MSW of Output Register ASYN
Input Port Configuration Control 1 ASYN OEN Output Data Enable ASYN
Load Selection for AQ LAT Status In
Load Selection for Al LAT INEXIN Inexact Dataln REG
Load Selection for A2 LAT RNDCARI  Round Carry Propagation In REG
Load Selection for A3 LAT Status Out
Load Selection for BO LAT INEXO Inexact Result
Load Selection for Bl LAT OVRFLO Overflowed Result
Load Selection for B2 LAT UNDFLO Underflowed Result
Load Selection for B3 LAT INVALOP Invalid Operation
Register AxRead Selection Control 0 REG Miscellaneous
Register Ax Read Selection Control 1 REG CLK Clock Input
Reg¥ster Bx Read Selectfon Control 0 REG Vob +5V Power Supply (Four Lines)
Register Bx Read Selection Control 1 REG GND Ground Supply (Four Lines)
Read Absolute Valye of Ax REG
CLK Vo GND BIN ;. o Controls
? ? ? 9 ?2 "33
| PORT CONFIGURATION] [PORT CONFIGURATION] !PORTO:!
pé RESET—|
A3z
'132 '132 K
SIELAO SE]LA1 SELA2 SELA3 SELBO | SELB1 SEILB2 SEILBS SELA/BO:3
AQ Al A2 A3 BO B1 B2 B3 P conTroLs
32 32 32 32 32 32 32 32
[ RecISTER Ax READ SELECTION MUX |- RDA0:1 [ REGISTER Bx READ SELECTION MUX |- RDB0:1
A issa A P B B -—
A Aa Ao Aoa SELA/BO:3
| 10:8
\ "o
54-BIT ARITHMETIC & LOGIC UNIT FAST
RNDO:1
2 e
9
D PIPELINE REGISTER | P PiPELINE REGISTER | D CONTROL PIPELINE REGISTER |
54
EXPONENT ROUNDING & FAST, RNDO:1,RNDCARIINEXIN
CIRCUITRY EXCEPTION PROCESSING

y
Asa

i
4T}

status | h output RecisTER |

32 {32
ya {

I OUTPUT MUX ] MSWSEL
OVRFLO s
UNDFLO
INEXO OEN
INVALOP
32
Status DOUTS‘_O

Figure 5. ADSP-3220/3221 Functional Block Diagram
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METHOD OF OPERATION

DATA FORMATS

The ADSP-3210/3211/3220/3221 chipset supports both single-
and double-precision floating-point data formats and operations
as defined in IEEE Standard 754-1985. 32-bit twos-complement
fixed-point data formats and operations are also supported by all
four chips. 32-bit unsigned-magnitude data formats and operations
are supported by the ADSP-3211 Multiplier and both ALUs.
The ADSP-3210 Multipliers can perform fixed-point multiplica-
tion only on twos-complement numbers. All four chips operate
directly on 32-bit fixed-point data. (No time-consuming conver-
sions to and from floating-point formats are required.)

Single-Precision Floating-Point Data Format
IEEE Standard 754 specifies a 32-bit single-precision floating-point

Sign | Exponent (e) Fraction (f)
s e, e . f22 fo
bit 31 30 23

K22 0
Binary Point

Figure 6. Single-Precision Floating-Point Format

format, which consists of a sign bit s, a 24-bit significand, and
an 8-bit unsigned-magnitude exponent e. For normalized numbers,
this significand consists of a 23-bit fraction f and a “hidden” bit
of 1 that is implicitly presumed to precede f,; in the significand.
The binary point is presumed to lie between this hidden bit and
f,> . The least significant bit of the fraction is fo; the LSB of the
exponent is . The hidden bit effectively increases the precision
of the floating-point significand to 24 bits from the 23 bits actually
stored in the data format. It also insures that the significand of
any number in the IEEE normalized-number format is always
greater than or equal to 1 and less than 2.

The unsigned exponent e for normals can range between 1<e=<254
in the single-precision format. This exponent is biased by + 127
in the single-precision format. This means that to calculate the
“true” unbiased exponent, 127 must be subtracted from e.

The IEEE Standard also provides for several special data types.
In the single-precision floating-point format, an exponent value
of 255 (all ones) with a non-zero fraction is a not-a-number
(NAN). NANSs are usually used as flags for data flow control,
for the values of uninitialized variables, and for the results of
invalid operations such as 0 ¢ o. Infinity is represented as an
exponent of 255 and a zero fraction. Note that because the
fraction js signed, both positive and negative INF can be
represented.

The IEEE Standard requires the support of denormalized data
formats and operations. A denormalized number, or ‘“denormal,”
is a number with a magnitude less than the minimum normalized
(“normal””) number in the IEEE format. Denormals have a zero
exponent and a non-zero fraction. Denormals have no hidden
“one” bit. (Equivalently, the hidden bit of a denormal is zero.)
The unbiased (true) value of a denormal’s exponent is — 126 in
the single-precision format, i.e., one minus the exponent bias.
Note that because denormals are not required to have a significant
leading one bit, the precision of a denormals significand can be
as little as one bit for the minimum representable denormal.

ZERO is represented by a zero exponent and a zero fraction. As
with INF, both positive ZERO and negative ZERO can be
represented.

The IEEE single-precision floating-point data types and their
interpretations are summarized in Table I.

The ADSP-3210/3211/3220/3221 chipset also supports two data
types not included in the IEEE Standard, “wrapped’ and *“‘un-
normal.” These data types are necessitated by the fact that the
ADSP-3210/3211 Multipliers and the ADSP-3221 ALU (during
division and square root) do not operate directly on denormals.
(To do so, they would need shifting hardware that would slow
them significantly.) Denormal operands must first be translated
by an ADSP-3220/3221 ALU to wrapped numbers to be readable
by a Multiplier. Wrapped and unnormal Multiplier products
must also be unwrapped by an ALU before an ALU can operate
on these results in general. (See “Gradual Underflow and IEEE
Exceptions.”)

Mnemonic{ Exponent | Fraction Value Name IEEE Format?
_NAN 255 non-zero | undefined not-a-number yes
INF 255 zero (—1)8(infinity) infinity yes
NORM | tthrusa | any | (1)1 f>2e 7| normal yes
DNRM 0 non-zero i (- 1)5( 126 denormal yes
ZERO 0 zero (- 1) 0.0 zero o _yes
WRAP —22 thru 0 any (~ 1) (1. ) 2127 wrapped no
UNRM 1171 thru 23 any (1.2 287127 1 Unnormal no

Interpretations

Table |. Single-Precision Floating-Point Data Types and
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Data name|gExponent Exp. dataExponentiHidden; Fraction Unbiased
(positive) type bias bit (binary) | absolute value
NORMMAX |~ 254 | unsigned | +127 L LA I Y
NORM.MIN 1 unsigned |  +127 1 }000......00} 7126
DNRM.MAX 0 unsigned | +126 0 1141 718,
DNRM.MIN 0  }unsigned | +126 0 }000...01] ,71%6 , 28
WRAP.MAX 0 2scmpimt | +127 Ty T, B
WRAPMIN | —22 | 2scmpimt | +127 1 1000......00] ,7'4°
UNRMMAX | -23 | 2scmpimt | +127 L R L B
UNRMMIN | 171 | 2scmplmt | 4127 1 1000.....00{ ,72%8

Table ll. Single-Precision Floating-Point Range Limits

The interpretation of wrapped numbers differs from normals
only in that the exponent is treated as a twos-complement number.
Single-precision wrapped numbers have a hidden bit of one and
an exponent bias of +127. All single-precision denormals can
be mapped onto wrapped numbers where the exponent e ranges
between —22=e=0. WRAPA and WRAPB controls on the
ADSP-3210/3211 tell the Multiplier to interpret a data value as
a wrapped number.

The ranges of the various single-precision floating-point data
formats supported by the ADSP-3210/3211/3220/3221 are sum-
marized in Table II.

The multiplication of two wrapped numbers can produce a
number smaller than can be represented as a wrapped number.
Such numbers are called “unnormals”. Unnormals are interpreted
exactly as are wrapped numbers. They differ only in the range
of their exponents, which fall between —171<e=< — 23 for single-
precision unnormals. The smallest unnormal is the result of
multiplying WRAP.MIN by itself. Unnormals, because they

are smaller than DRNM.MIN; generally unwrap to ZERO.
(UNRM.MAX can unwrap to DRNM.MIN, depending on
rounding mode.)

Double-Precision Floating-Point Data Format
IEEE Standard 754 specifies a 64-bit double-precision floating

point format:

Sign | Exponent (e) Fraction (f)
S 10 RS fo
bit 63 62 52

%1 0
Binary Point

Figure 7. Double-Precision Floating-Point Format

The key differences with the single-precision format are that the
exponent ¢ is now 11 bits in length and the fraction fis now 52
bits in length, yielding a 53-bit significand for double-precision
normals. Double-precision, like single-precision, has an implicit
hidden bit, in this case the hidden bit precedes fs,. The binary
point comes between the hidden bit and fs,. The exponent bias
for double-precision floating-point normals is + 1023 (2046+2).

In other respects, IEEE double-precision floating-point is exactly
analogous to single-precision, with the same data types whose
values can be summarized in Table III.

iMnemonic Exponent : Fraction Value Name IEEE Format?
NAN 2047 non-zero {undefined not-a-number yes
INF 2047 zero (—1)S(infinity) infinity yes
NORM 1 thru 2046 | any (_1>S(1.f)29_1023 normal yes
& DNRM o 40 non-zero (_1)5(01)2;1022 dAe’hormal {/és
ZERO 0 zero (_1)50‘0 zero yes
WRAP 51 tHru‘0 any (_1)5(1})29‘1023 wrapped no
UNRM 1125 thru -52 any (-1 )5(1‘f)2e_1023 unnormal no

Table Ill. Double-Precision Floating-Point Data Types and

Interpretations
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The unbiased value of a denormal’s exponent is — 1022 for
double-precision denormals, i.e. one minus the bias. Because of
the extended width of the double-precision fraction, the exponent
of double-precision wrapped numbers can range from —S51=<e=<0.
The exponent of unnormals can range from —1125=e=—52.
Again, the smallest unnormal is the result of multiplying the
smallest wrapped number by itself.

The ranges for the various double-precision data types are sum-
marized in Table IV.



Data name gyponent Exp. dataExponentiHidden; Fraction Unbiased
(positive) type bias bit (binary) | absolute value
NORMMAX | 2046 | unsigned | +1023 I R I e
NORM.MIN 1 | unsigned | +1023 1 lo00.....00] 7'0%
DNRM.MAX 0 | unsigned | +1022 0 H1.11] g9, 4%
DNRM.MIN 0 | unsigned | +1022 0 Jooo...o1] g% .72
WRAP.MAX 0 | 2scmpimt | +1023 1 111 71980 %)
WRAPMIN | -51 | oscmpimt | +1023 | 1 fo00.....00| 377
UNRMMAX | —52 | 2scmpimt | +1023 1 a1 2 e
UNRMMIN | =125 | 2scmpimt | +1023 1 looo......00] 7214

Table IV. Double-Precision Floating-Point Range Limits

Supported Floating-Point Data Types
The direct floating-point data types support provided by the
members of this chipset can be summarized:

Normals

Denormals
Normals Wrappeds1
Wrappeds Unnormals

d 4

ADSP-3210/3211 ADSP-3220/3221
Floating-Point Floating-Point

Multipliers ALUs
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3

Unnormals®
1. for unwrapping, division, and square root
2. for unwrapping only
3. from wrapping and division
4. from division

Figure 8. Data Types Directly Supported by the ADSP-3210/
3211/3220/3221

Not every member of the ADSP-3210/3211/3220/3221 chipset
supports all the data types described above directly. See the
section below, “Gradual Underflow and IEEE Exceptions” for a
full description of how the chips work together to implement
the IEEE Standard. For systems not requiring full conformance
to Standard 754, the section below, “FAST/IEEE Control,” -
describes a simplified operation for this chipset that avoids
denormals, wrappeds, and unnormals altogether.

32-Bit Fixed-Point Data Formats

The ADSP-3211/3220/3221 chipset supports two 32-bit fixed-point
formats: twos-complement and unsigned-magnitude. The ADSP-
3210 Multiplier supports twos-complement only. With the ALUs,
the output data format is identical with the input data format,
i.e., 32-bits wide. In contrast, the Multipliers produce a 64-bit
product from two 32-bit inputs.

The 32-bit twos-complement data format for Multiplier inputs
and ALU inputs and outputs is:

Sign
WEIGHT _2k+3| 2k+30 2k4.29 . 2‘(
VALUE | i, 50 e iy
POSITION | 31 30 29 o

Figure 9. 32-Bit Twos-Complement Fixed-Point Data
Format

The MSB is i3,, which is also the sign bit; the LSB is i, Note
that the sign bit is negatively weighted in twos-complement
format. The position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
signed fractional numbers (binary point between bit positions 31
and 30) are represented when k= —31. The value of k is for
user interpretation only and in general does not affect the operation
of the chips. The only exceptions are the ALU conversion oper-
ations from floating-point to fixed-point. For these operations,
the destination format is presumed to be twos-complement
integers, i.e., k=0.

The ADSP-3210/3211 Multipliers produce a 64-bit product at
their Output Registers. The ADSP-3210/3211 will produce
results in the format of Figure 10 at the DOUT port if the Shift
Left Fixed-Point Product (SHLP) control (described below in
“Output Control”) is LO:

-2

‘ngﬁﬁ‘ - ‘
I _r+63 7 re62 !
| 0310
!

Most Significant Product Least Significant Product

Figure 10. 64-Bit Twos-Complement Fixed-Point Data
Format at Multiplier Output Register with SHLP LO
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The weighting of the product bits is given by the integer r.
When ka represents the weighting of operand A and kg the
weighting of operand B, then r=ka +kg.

When HI, the SHLP control shifts all bits left one position as
they are loaded to the Output Register. The results will then be
in the format:

Sign
WEIGHT 2 r+62 2r+61 . 2r+:!1 21430 . 2r 2r-1
VALUE |
ls2 ' 134 I30 IO S 0
POSITION | 63 62 32 31 1 0

N I~

Most Significant Product Least Significant Product

Figure 11. 64-Bit Twos-Complement Fixed-Point Data
Format at Multiplier Output Register with SHLP HI

The LSB becomes zero and ig; moves into the sign bit position.
Normally ig3 and i, will be identical in twos-complement products.
(The only exception is full-scale negative multiplied by itself.)
Hence, a one-bit left-shift normally removes a redundant sign
bit, thereby increasing the precision of the Most Significant
Product. Also, if the fixed-point data format is fractional (k= — 31
in Figure 9), then a single-bit left-shift will renormalize the
MSP to a fractional format (because r =2k =2¢(—31)= —62).

For unsigned-magnitude data formats, inputs to the ADSP-3211
Multiplicr and inputs and outputs for both ALUs will be 32-bits
wide. The 32-bit unsigned-magnitude data format is:

WEIGHT | 2 k+31 2k030 2k4-29 . zk
VALUE | i, 50 e i
POSITION | 31 30 29 0

Figure 12. 32-Bit Unsigned-Magnitude Fixed-Point Data
Format

Again, the position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
unsigned fractional numbers (binary point left of bit position
31) are represented when k=32. The value of k is for user
interpretation only and, except for conversions to fixed-point,
does not affect the operation of the chips.

The ADSP-3211 Multiplier discriminates twos-complement
from unsigned-magnitude inputs with TCA and TCB controls
(see “Controls””). When TCA and TCB are both LO, the ADSP-
3211 produces a 64-bit unsigned-magnitude product at its Qutput
Register. The ADSP-3211 will produce results in this format if
SHLP is LO:

WEIGHT 2r»63 2r¢62 2r->32 2r¢31 2“1 2r
VALUE | i i i i i i

‘63 ‘62 e 132 ‘31 ey ‘o

POSITION | 63 62 e 32 31 e 1 0

v\__/

Most Significant Product Least Significant Product

Figure 13. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP LO

4-14 FLOATING-POINT COMPONENTS

- Again, the weighting of the product bits is given by the integer

r. When kj represents the weighting of operand A and kg the
weighting of operand B, then r=ka +Kkg.

If SHLP is HI, the data at the Output Register will have been
shifted left one position and zero-filled in the format:

WEIGHT | +62 27051 . 2r¢31 zroao T L 2r~1
VALUE i i
VBT i, 61 R X ig0 |- 1o 0
POSITION | 63 62 o 32 31 e 1 0

N I~

Most Significant Product Least Significant Product

Figure 14. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP HI

The ADSP-3211 also supports mixed-mode multiplications, i.e.,
twos-complement by unsigned-magnitude. These are valuable in
extended-precision fixed-point multiplications, e.g. 64 X 64 and
128 x 128. The result of a mixed-mode multiplication will be in
a twos-complement format. Unlike twos-complement multiplica-
tions, however, mixed-mode results do not in general have a
redundant sign bit in is;. Hence, mixed-mode results should be
read out with SHLP LO as in Figure 10.

CONTROLS

The controls for the ADSP-3210/3211/3220/3221 (see Pin Lists
above) are all active HI, with the exceptions of RESET and
HOLD. The controls are either registered into the Input Control
Register at the clocks rising edge, latched into the Input Control
Register with clock HI and transparent in clock LO, or asyn-
chronous. The controls are discussed below in the order in
which they affect data flowing through the chipset.

Registered controls, in general, are pipelined to match the flow
of data. All data and control pipelines advance with the rising
edge of each clock cycle. For example, to perform an optional
fixed-point one-bit left-shift on output with the product of X
and Y, you would assert the registered, pipelined control SHLP
on the rising edge that causes X and Y inputs to be read into
the multiplier array. Just before the result was ready to be loaded
to the Output Register, the pipelined SHLP control would
perform the proper shift. After the initiation of a multicycle
operation, registered control inputs are ignored until the end of
the operation time. (See “Timing” below for a precise definition
of “operation time.””)

Because this chipset uses CMOS static logic throughout and
controls are pipelined, the clock can be stopped as long as desired
for generating wait-states, diagnostic analysis, or whatever.
These chips can also be easily adapted to “state-push” im-
plementations. The machine’s state can be pushed forward one
stage by simply providing a rising edge to the clock input when
desired.

The only controls that are latched (as opposed to registered) are
the Load Selection Controls. They are transparent in clock LO
and latched with clock HI. Load Selection Controls are setup to
the chips exactly as if they were registered, with the same setup
time. The fact that they are transparent in clock LO allows
them to select input registers in parallel with the setup of data
to be loaded on the rising edge. Because they are latched with
clock HI, microcode need only be presented at the clock rate,
though data is loaded on both clock rising and falling edges.

A few controls are asynchronous. These controls take effect
immediately and are thus neither registered nor pipelined. Each
has an independently specified setup time.



FAST/IEEE CONTROL (REG)

FAST is a pipelined, registered control. It affects the interpretation
of data read into processing circuitry immediately after having
been loaded to the input control register. FAST affects the
format of results in the rounding & exception processing pipeline
stage. FAST also affects the definition of some exception flags.
(See “Exception Flags.”)

IEEE Standard 754 requires a system to perform operations on
denormal operands (which are smaller in magnitude than the
minimum representable normalized number). This capability to
accommodate these numbers is known as “‘gradual underflow.”
For floating-point systems not requiring strict adherence to the
IEEE Standard, the ADSP-3210/3211/3220/3221 provides a
FAST mode (FAST control pin HI) which consistently flushes
post-rounded results less than NORM.MIN to ZERO. This
approach greatly simplifies exception processing and avoids
generating the denormal, wrapped, and unnormal data types
described above. When in FAST mode, the Multipliers will
treat denormal inputs as ZERO and produce a ZERO result.
The ALUs will treat denormal inputs exactly as they do in
IEEE mode but still flush post-rounded results less than
NORM.MIN to ZERO.

Systems implementing gradual underflow with the ADSP-3210/
3211/3220/3221 must treat the multiplication of operands that
include a denormal as an exception to normal process flow.
FAST should be LO on all chips. See the section below, “Gradual
Underflow and IEEE Exceptions”, for a fuller discussion of the
details of implementing an IEEE system with this chipset.

RESET CONTROL (ASYN)

The asynchronous, active LO RESET control clears all control
functions in the ADSP-3210/3211/3220/3221. RESET should be
asserted on power up to insure proper initialization.RESET will
abort any multicycle operation in progress.) No register contents
or status flags are affected by RESET.

PORT CONFIGURATION - IPORT CONTROLS (ASYN)
The three-port members of this chipset (ADSP-3211/3220/3221)
offer several options on their input port configuration. The
options are controlled by the two asynchronous lines, IPORTO:1.
They are intended to be hardwired to the desired port config-
uration. If the user wants to change the port configuration under
microcode control, the timing requirements of Figure 16 below
must be met.

The first and last configurations in Figure 15 are called “two-port”
configurations; the middle pair, “one-port” configurations.
Whether an input register loads its data on a rising or falling
clock edge will depend in general on whether the chip is wired
in a one-port or two-port configuration.

In one-port configurations, the unused port effectively becomes
a no-connect, reducing the number of external buses required to
operate these chips. The full pipelined throughput can be main-
tained for the Multipliers in the one-port configuration for all
operations. The ADSP-3210 Multiplier has only one physical
input port, so is always in a “one-port’”’ configuration. The
ALUs will, in contrast, become input-bandwidth-constrained at
the input ports for double-precision operations in a one-port
configuration. They are capable of operating on a pair of 64-bit
operands at the clock rate, but a single input port could not
accept operands at that rate.

IPORT1 | IPORTO ;| PORT CONFIGURATION :
-
AIN BIN |
two
0 0 port
[A registers| [B registers] .
AIN BIN 3
one |
0 1 port |
[A registers| [B registers] :
AIN BIN ;

one

1 0 port
[A registers] B registers]

AIN BIN

two

1 1 por
[A registers| [B registers|

Figure 15. ADSP-3211/3220/3221 Input Port
Configurations

The port configuration of the ADSP-3211/3220/3221 can be
changed under microcode control. However, as described in the
section below, “Input Register Loading,” the selected port
configuration affects whether a given register loads on rising or
falling clock edges. The transition between port configurations
can cause inadvertent data loads, destroying data held in input
registers. Therefore, all input registers must be deselected for
data loading (all SELA/B controls must be held LO while [IPORT
bits change; see “Input Register Loading”) during both the
cycle in which IPORT bits are changed and the cycle following:

Change
IPORT bits
old port here new port

configuration /_/\ configuration

CLK |

roor

L

All All Resume
SEL SEL normal
Lo Lo data loading

Figure 16. Timing Requirements for Changing the
ADSP-3211/3220/3221 Input Port Configurations

Thus, data loading will be interrupted for two cycles whenever
changing the ADSP-3211/3220/3221’s port configuration. All
other processing is unaffected.

INPUT REGISTER LOADING AND OPERAND STORAGE
- SELA/B CONTROLS (LAT)

The chipsets’ 32-bit input registers are selected for data loading
with the latched Load Selection Controls, SELA/B0:3 (on the
ADSP-3210, SELLA/BO:1). Since each input register has its own
control, the Load Selection Controls are independent of one
another. Multiple registers can be selected for parallel loads of

FLOATING-POINT COMPONENTS 4-15



the same input data, if desired. The Load Selection Controls
effects on data loading are summarized:

register

SEL control | loaded
SELAO A0
SELA1 Al
SELA2 A2
SELA3 A3
SELBO BO
SELB1 B1
SELB2 B2
SELB3 B3

Figure 17. ADSP 3210/3211/3220/3221 Load Selection
Controls

Restrictions on Register Loading

Input port configuration affects whether input registers load
data on rising or falling edges. Devices in one-port configurations
load A registers on rising edges and B registers on falling edges
(which minimizes double-precision latency). Devices in two-port
configurations load even-numbered registers on rising edges and
odd-numbered registers on falling edges (which is typically
simpler to implement). Devices in the two-port configuration
load data:

AO A1 i BO B1
[(F 1 v] [ &£ +v]

B2 B3

[ v

A2 A3
(] v]

Figure 18. ADSP-3211/3220/3221 Clock Edge for Data
Loading — Two-Port Configuration

Eight-register devices (ADSP-3211/3220/3221) in the one-port
configuration load data to A registers on the rising edge and B
registers on the falling edge:

BO B1

v ["v

B2 B3

v 7%

A0 A1
[ 8] &

A2 A3
L4 [ ]

Figure 19. ADSP-3211/3220/3221 Clock Edge for Data
Loading - One-Port Configuration

The ADSP-3210 Multiplier loads data like the two-input-port
devices in a one-input port configuration. That is, the ADSP-3210
loads data to A registers on the rising edge and B registers on
the falling edge:

A0 B1 BO

A1
[ ] [ [v |

Figure 20. ADSP-3210 Clock Edge for Data Loading
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Restrictions on Register Storage

For single-precision and fixed-point data, any convenient register
can be used. The only restriction is that the register being loaded
is not currently in use by the chip’s processing elements. For all
single-precision Multiplier and most ALU operations, input
registers are only read into the computational circuits for one
cycle. Do not load a register for 32-bit operations on the clock’s
falling edge when that register has been selected to feed the
chip’s processing circuits in that same cycle (with the RDA/B
controls described in “Input Data Read Selection”). Pick a
register not in use.

The ADSP-3221 ALU is capable of two multicycle operations:
1EEE floating-point division and square root. For single-precision
floating-point division, the dividend can be stored in any A
register and the divisor can be stored in any B register. Single-
precision operands for IEEE square root can be stored in any B
register. The registers selected to the computational circuits for
these operations must be stable until the end of the operation
time, whether single-precision or double-precision. (See “Timing”
and the timing diagrams below for a precision definition of
“operation time”.)

With 64-bit double-precision data, there are constraints on which
registers hold which 32-bit halves of operands. 64-bit data must
be loaded in adjacent pairs of 32-bit registers as shown in Figures
21 and 22. The 32-bit Most Significant Word (MSW) will be in
one register and the 32-bit Least Significant Word (LSW) in its
neighbor. The four-register ADSP-3210 has different double-
precision operand storage requirements from the other mem-
bers of this chipset. Double-precision operand storage for the
ADSP-3211/3220/3221 is:

A0 A1 BO B1
[MSW, TLsW, | [MSW; | LSW, |
A2 A3 B2 B3
[MSW, [ LW, | [Msw, [ Lsw, |

Figure 21. ADSP-3211/3220/3221 Operand Storage for
Double-Precision Operations

For the four-register ADSP-3210, operands for double-precision
operations should be stored as shown in Figure 22. Note that
the MSWs are in Al and B1, in contrast with 64-bit data storage
with the other members of this chipset.

A1l A0 B1 BO
IM‘SWA | LSW, | IMSWB | LSW, |

Figure 22. ADSP-3210 Operand Storage for Double-
Precision Operations

Restrictions on Register Stability

With 64-bit data — as with 32-bit data — registers should not be
loaded that are currently in use by the processing elements (i.e.,
selected by the RDA/B controls). Half the 32-bit registers in
any pair of 64-bit operands will loaded on the falling edge (re-
gardless of port configuration) with all members of this chipset.

To operate the ALUs at full throughput in single-cycle double-
precision operations, 64-bit register sets should be alternated
every cycle. For example, A0 & Al and B2 & B3 could be
loaded with new operands while A2 & A3 and B0 & B1 were
feeding the computational circuits (and were not changing). In



this way, data loading will not disturb the contents of registers
in use.

The ADSP-3221 ALU includes two double-precision multicycle
operations in its instruction set: IEEE division and square root.
For double-precision floating-point division, the 64-bit dividend
can be stored in either pair of A registers consistent with

Figure 21. The divisor can be stored in either pair of B registers,
also consistent with Figure 21. Double-precision operands for
IEEE square root can be stored in either pair of B registers
consistent with Figure 21. Registers containing operands in use
must remain unchanged until the end of the operation time.

The ADSP-3210/3211 Multipliers perform double-precision
multiplications at a four-cycle throughput rate. This process
requires computing four cross-products, and the only requirement
on operand registers is that they remain stable, i.e., unchanged,
for the cycles in which they are used. For this reason, the ADSP-
3210 can maintain full four-cycle double-precision multiplication
throughput even though it has only two pairs of 32-bit registers.
The sequence of operations for double-precision multiplications
and the requirements on register stability are as follows:

ADSP-3210 | A1 A0 B1 BO
ADSP-3211 | A0,A2 A1,A3 {B0,B2 B1,B3
Cycle Operation MSW LSW MSW . LSW
1 Asw * Blsw stable stable
2 Ausw ® Blsw | stable | stable stable
3 Asw ® Busw | stable | stable | stable
4 AMSW . BMSW stable stable

Figure 23. ADSP-3210/3211 Double-Precision Multiplication
Input Register Requirements

To achieve maximum throughput with the ADSP-3210 Multiplier,
the two LSWs from the operands to multiplied should be loaded
first (to BO followed by A0). The actual double-precision multi-
plication can begin as soon as both are loaded to A0 and B0
(beginning of cycle 1 in Figure 23). At the midpoint and end of
cycle 1, the MSW's can be loaded (though only the MSW in Al
is actually needed in cycle 2). At the end of cycle 2, the LSW

in BO can be overwritten with an LSW needed in the next
multiplication. At the end of cycle 3, the LSW in A0 can be
overwritten.

The ADSP-3211 Multiplier has additional registers and therefore
fewer constraints on data loading and storage than the ADSP-3210

Multiplier. The only requirements that must be observed are
those indicated in Figures 21 and 23.

DATA FORMAT SELECTION - SP & DP CONTROLS
(REG)

The three data formats processed by the ADSP-3210/3211/3220/
3221 chipset are single-precision floating-point, double-precision
floating-point, and fixed. With the ADSP-3210/3211 Multipliers,
the data format is indicated explicitly by the states of the DP
and the SP registered controls:

SP. DP. Data Format Selection
0:0 fixed

01 double-precision

1.0 single-precision

11 illegal mode

Figure 24. ADSP-3210/3211 Multipliers Data Format
Selection

The state of the SP and DP controls at the rising edge when
data is read into the Multiplier Array determines whether the
data is interpreted as single-precision floating-point, double-
precision floating-point, or fixed-point. Double-precision multi-
plication is a multicycle operation; once initiated, the states of
SP and DP don’t matter until the next data is read to the processing
circuitry.

For the ADSP-3220/3221 ALUs, data format selection is implicit
in the ALU instruction, I 4. (See “ALU Operation” scction
below.)

INPUT DATA REGISTER READ SELECTION - RDA/B
CONTROLS (REG)

The Register Read Selection Controls, RDA/B0:1 (on the ADSP-
3210, RDA/BO, are registered controls and select the input
registers that are read into the chipset’s processing circuitry.
Any pair of input registers can be read into the processing circuitry.
(For single-operand operations, the state of the Selection controls
for the unused register bank doesn’t matter.) Data loaded to an
input register on a rising edge can be read into the processing
circuitry on that same edge (“direct operand feed”).

The data format selected affects the interpretation of the RDA/B
controls. The four-register ADSP-3210 Multiplier needs only
two Register Read Selection Controls, which are defined below
separately.

For the ADSP-3211/3220/3221, register read selection is defined:

] SP & Fixed:! DP: SP & Fixed::  DP:

‘ A register A registers B register B registers
'RDA1 RDAO: selected @ selected RDB1 RDBO . selected selected
.0 0 . A2 illegal state 0 0 B2 illegal state
0 j A3 A2, A3 0 1 B3 B2, B3
P o A0 illegal state 1 0 BO illegal state
LA 1 A1 A0, A1 1 1 B1 BO,B1 ¢

Figure 25. ADSP-3211/3220/3221 Input Register Read

Selection
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For the ADSP-3210, register read selection is defined:

SP & Fixed:,  DP:
A register A registers

RDAO ele }
0 illegal state |
AL A0

AR

'SP & Fixed:  DP:
: B register B registers |
selected = selected
[ ;

B1 illegal state |
BO_ . BLBO

Figure 26. ADSP-3210 Input Register Read Selection

After the initiation of multicycle operations, the RDA/B controls
are ignored. The chips themselves take over the sequencing of
register read selection until the multicycle operation is
completed.

ABSOLUTE VALUE CONTROLS - ABSA/B (REG)

The registered Absolute Value Controls convert an operand
selected by the Read Selection Controls to its absolute value
before processing. Asserting ABSA (HI) causes the A operand
to be converted to its absolute value; asserting ABSB (HI) causes
the B operand to be converted to its absolute value. The contents
of the input registers remain unaffected.

With the ADSP-3220/3221 ALUs, the ABSA/B controls are
effective with most fixed-point and all single-precision and double-
precision operations. If the ABSA/B controls are asserted in
logical operations, the results will be undefined.

For the ADSP-3210/3211 Multipliers, the absolute value operation
is available on single-precision and double-precision floating
point operands only. If the ABSA/B controls are asserted with a
Multiplier for a fixed-point operation, the results will be
undefined.

WRAPPED INPUT CONTROLS - WRAPA/B (REG) (AND
INEXIN AND RNDCARI ON THE ADSP-3221)

The ADSP-3210/3211 cannot operate directly on denormals;
denormals to be multiplied must first be converted by an ALU
to the “wrapped” format. (See “Gradual Underflow and IEEE
Exceptions” below.) The Multipliers must be told that an input
is in the wrapped format so that its exponent can be interpreted
properly as a twos-complement number.

The registered WRAPA/B controls inform a Multiplier that a
wrapped number has been selected as an operand (RDA/B controls)
to the multiplier array. WRAPA indicates (HI) that the selected
A register contains a wrapped number; WRAPB, that the selected
B register contains a wrapped number.

The ALUs in general operate directly on denormals and hence
don’t need a similar set of controls. However, for ADSP-3221
IEEE division and square root operations, the ALU cannot
operate directly on denormals. Like the Multipliers, it needs
denormals to be converted to wraps before processing. To indicate
that the dividend in the A register is a wrapped, INEXIN should
be asserted (HI) exactly as WRAPA would be asserted on a
Multiplier. To indicated that either the divisor in a B register or
a square root operand in a B register is a wrapped, RNDCARI

[P —

should be asserted (HI). Except for unwrap, division, and square
root operations, both INEXIN and RNDCARI should be held
LO.

TWOS-COMPLEMENT INPUT CONTROL - TCA/B
(REG)

The registered ADSP-3211’s Twos-Complement Input Controls
inform the Multiplier to interpret the selected fixed-point inputs
in the twos-complement data format. (See “32-Bit Fixed-Point
Data Formats” above.) TCA HI indicates that the selected A
register is twos-complement; TCB HI indicates a twos-complement
B register. A LO value on either control for fixed-point multi-
plication indicates that the selected input is in unsigned-magnitude
format. Mixed-mode (twos-complement times unsigned-
magnitude) multiplications are permitted. The TCA/B controls
are operative in fixed-point mode only; in floating-point mode,
they are ignored.

ROUNDING - RND CONTROLS (REG)

For floating-point cperations, the ADSP-3210/3211/3220/3221
chipset supports all four rounding modes of IEEE Standard

754. These are: Round-to-Nearest, Round-toward-Zero, Round-
toward-Plus-Infinity, and Round-toward-Minus-Infinity. For
fixed-point operations, two rounding modes are available: Round-
to-Nearest, and Unrounded.

Rounding is involved in all operations in which the precision of
the destination format is less than the precision of the intermediate
results from the operation. Multiplications internally generate
twice as many bits in the intermediate result significand as can
be stored in the destination format. Data conversions to a desti-
nation format of lesser precision than the source also always
force rounding unless the source value fits exactly.

Rounding with the ADSP-3210/3211/3220/3221 chipset is con-
trolled by a pair of pipelined, registered round controls, RNDO:1.
They should be setup with the input data whose result is to be
rounded. Rounding is performed in the last stage of processing;
the Output Register always contains rounded results. The effects
of the Round Controls are defined as shown in Figure 27.

The four floating-point modes of the IEEE Standard can be
summarized as follows. In all cases, if the result before rounding
can be expressed exactly in the destination format without loss
of accuracy, then that will be the destination format result,
regardless of specified rounding mode.

Mnemonic | RND1 RNDO.  Floating-Point Fixed-Point
RN o O Round-to-Nearest Round-to-Nearest |
Rz o 1 Round-toward-Zero : Unrounded
i RP .1 . 0 . Round-toward-Plus-Infinity * illegal state

RM 11 Round-toward-Minus-Infinity . illegal state

Figure 27. Round Controls
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Round-toward-Plus-Infinity (RP): ‘“When rounding toward

+ 2, the result shall be the format’s value (possibly + =) ciosest
to and no less than the infinitely precise result” (Std 754-1985,
Sec. 4.2). If the result before rounding (the “infinitely precise
result’’) is not exactly representable in the destination format,
then the result will be that number which is nearer to positive
infinity. Round-toward-Plus-Infinity is available in floating-point
operations only. If the result before rounding is greater than
NORM.MAX but not equal to Plus Infinity, the result will be
Plus Infinity. If the result before rounding is less than
—NORM.MAX but not equal to Minus Infinity, the result will
be —NORM.MAX. For fixed-point destination formats, the
results of RP are undefined.

Round-toward-Minus-Infinity (RM): “When rounding toward
—oc, the result shall be the format’s value (possibly — ) closest
to and no greater than the infinitely precise result” (Std 754-1985,
Sec. 4.2). If the result before rounding is not exactly representable
in the destination format, the result will be that number which
is nearer to Minus Infinity. Round-toward-Minus-Infinity is
available in floating-point operations only. If the result before
rounding is greater than NORM.MAX but not equal tc Plus
Infinity, the result will be NORM.MAX. If the result before
rounding is less than — NORM.MAX but not equal to Minus
Infinity, the result will be Minus Infinity. For fixed-point desti-
nation formats, the results of RM are undefined.

Round-toward-Zero and Unrounded (RZ): “When rounding
toward 0, the result shall be the format’s value closest to and no
greater in magnitude than the infinitely precise result” (Std 754-
1985, Sec. 4.2). If the result before rounding is not exactly
representable in the destination format, the result will be that
number which is nearer to zero. The Round-toward-Zero operation
is available in floating-peint operations only. It is equivalent to
truncation of the (unsigned-magnitude) significand. If the result
before rounding has a magnitude greater than NORM.MAX but
not equal to Infinity, the result will be NORM.MAX of the
same sign.

For fixed-point destination formats, the RZ mode is “Unrounded.”
For fixed-point operations, RZ has no effect on the result at the
Output Register and should be specified whenever unmodified

- NORM.MAX

fixed-point results are desired. (Treating the unrounded Most
Significant Product as the final result and throwing away the
LSP is logically equivalent to Round-toward-Minus-Infinity for
twos-complement numbers and equivalent to Round-toward-Zero
[truncation] for unsigned-magnitude numbers.)

Round-to-Nearest (RN): When rounding to nearest, < . . . the
representable value nearest to the infinitely precise result shall
be delivered; if the two nearest representable values are equally
near, the one with its least significant bit zero shall be delivered”
(Std 754-1985, Sec. 4.1). If the result before rounding is not
exactly representable in the destination format, the result will be
that number which is nearer to the result before rounding. In
the case that the result before rounding is exactly half way between
two numbers in the destination format differing by an LSB, the
result will be that number which has an LSB equal to zero. If
the result before rounding overflows, i.e,. has a magnitude
greater than or equal to NORM.MAX + 1/2LSB in the destination
format, the result will be the Infinity of the same sign.

Round-to-Nearest is available in both floating-point and fixed-
point operations. In fixed-point, Round-to-Nearest treats the
Most Significant Product after having been shifted in accordance
with SHLP (see Figures 10, 11, 13, and 14) as the destination
format.

The four rounding modes are illustrated by number lines in
Figure 28. The direction of rounding is indicated by an arrow.
Numbers exactly representable in the destination format are
indicated by “*”’s. In subdividing the number lincs, square
brackets are inclusive of the points on the line they intersect.
Note that brackets intersect points representable in the destination
format except for Round-to-Nearest, where they intersect the
line midway between representable points. Slashes are used to
indicate a break in the number line of arbitrary size.

Note that Round-to-Nearest is unique among the rounding
modes in that it is unbiased. The large-sample statistical mean
from a set of numbers rounded in the other modes will be displaced
from the true mean. The other three modes will exhibit a large-
sample statistical bias in the direction of the rounding

operation performed.

NORM.MAX

—oo 4—3—/@—»34/—3—%%/—}%/—}—» +oo

Round to Plus Infinity (RP)

- NORM.MAX

NORM.MAX

/—E*%/MFE*—{—%H

Round to Minus Infinity (RM)

- NORM.MAX

NORM.MAX

B R DETS SE e S o

Round to Zero (RZ)
~ NORM MAX NORM.MAX
—00 /%_._E._—L//_._E..-q-oo
LSB=0 LSB=1 LSB=1 LSB=0 LSB=1 158-1 1580

Round to Nearest (RN)

(for RN. brackets intersect at mid-points between [ SBs)

Figure 28. IEEE Rounding Modes
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STATUS FLAGS

The ADSP-3210/3211/3220/3221 chipset generates on dedicated
pins the following exception flags specified in the IEEE Standard:
Overflow (OVRFLO), Underflow (UNDFLO), Inexact Result
(INEXO), and Invalid Operation (INVALOP). The IEEE ex-
ception condition Division-by-Zero is flagged by the simultaneous
assertion of both OVRFLO and INVALOP pins. The five
IEEE exceptions are defined in accordance to the default as-
sumption of Std 754 of nontrapping exceptions.

These four flag results are registered in the Status Output Register
when the results they reflect are clocked to the Output Register.
They are held valid until the next rising clock edge. The IEEE
Standard specifies that exception flags when set remain set until
reset by the user. For full conformance to the standard, the
status outputs from this chipset should be individually latched
externally.

Denormal Input

In addition to the IEEE status flags, the ADSP-3210/3211 Mul-
tipliers have a DENORM output flag that signals the presence
of a denormalized number at one of the input registers being
read into the multiplier array. This denormal must be wrapped
by the ALU before the Multiplier can read it. To minimize the
system response time to a denormal input exception, the DE-
NORM flag comes out earlier than the associated IEEE status
flags. DENORM is normally in an indeterminate state. For
single-precision multiplications, DENORM goes HI during the
cycle after a denormal was read into the array (with the RDA/B
controls). See Figure T4. For double-precision multiplications,
DENORM goes HI during the third cycle after a denormal was
rcad into the multiplier array. See Figure TS. Both Multipliers
produce ZERO results under these conditions. The DENORM
flag is asserted in both IEEE and FAST modes.

Some multiplications with denormal operands do not require
wrapping and therefore do not cause the assertion of the DENORM
flag. These are DNRM*ZERO, DNRM¢INF, and DNRM*NAN.
Multiplication of a finite number by zero always yields zero -
the result the Multiplier will produce anyway — so there is no
need to signal an exception. Any finite number multiplied by
INF should yield INF, and the ADSP-3210/3211 Multipliers
will produce this result with a DNRM operand, hence no wrapping
is required. And multiplication of any number by a NAN produces
a NAN (and the INVALOP flag); no wrapping is necessary for
the Multipliers to produce this correct IEEE result.

Note that the ALUs in general operate directly on denormals
and therefore do not flag any exception. The ADSP-3221 ALU,
however, cannot operate directly on denormals in its division
and square root operations. For these operations, denormal
inputs will cause the simultaneous assertion of UNDFLO and
INVALOP in IEEE mode. For divisions, INEXO HI indicates
that the dividend is a DNRM; INEXO LO indicates that the
divisor or both operands are DNRMs. In FAST mode, only
INVALOP will be asserted. This denormal exception information
becomes available with the status outputs, i.e., at the end of an
attempted multicycle division or square root. In both modes for
both division and square root, a properly signed all-ones NAN
will be produced.

Invalid Operation and NAN results

INVALOP is generated whenever attempting to execute an
invalid operation, as defined in Std 754 Section 7.1. The
INVALOP output is also used in conjunction with other pins to
indicate the Division-by-Zero exception and denormal divisor or
dividend. The default nontrapping result is required to be a
quiet NAN. Except when passing a NAN with PASS or copying
a sign bit to a NAN, the ADSP-3210/3211/3220/3221 chipset
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will always produce a NAN with an exponent and fraction of all
ones as a result of an invalid operation.

Conditions that cause the assertion of INVALOP are:

® NAN input read to computational circuitry (except for logical
PASS)

® Multiplication of either +INF by either + ZERO

® In FAST mode, multiplication of either +INF by either
+ DNRM

® Subtraction of liked-signed INFs or addition of opposite-signed
INFs

® Conversion of a NAN or INF to fixed-point

® Wrapping an operand that is neither a denormal nor ZERO

Division of either +ZERO by either = ZERO or of either

+INF by either + INF

® Attempting the square root of a negative number

® In conjunction with OVRFLO, the Division-by-Zero
exception

® In FAST mode, a denormal divisor or dividend. In IEEE
mode, in conjunction with UNDFLO, a denormal divisor or
dividend

® In conjunction with UNDFLO, a denormal input operand to
square root

Division-by-Zero

The Division-by-Zero exception is generated whenever attempting
to divide a finite non-zero dividend by a divisor of zero (Std 754
Section 7.2). The Division-by-Zero exception is indicated on the
ADSP-3221 ALU by the simultaneous assertion of both OVRFLO
and INVALOP. The ALU result is always a correctly signed
INF.

Overflow

OVRFLO is generated whenever the unbounded (i.e., supposing
hypothetically no bounds on the exponent range of the result),
post-rounded result exceeds in magnitude NORM.MAX in the
destination format, as defined in Std 754 Section 7.3. Note that
the overflow condition can occur both during computations and
during data format conversions. The result will be either + INF
or = NORM.MAX, depending on the sign of the result and the
operative rounding mode. (See “Rounding - RND Controls”
above.) The OVRFLO pin is also used to signal additional
exception conditions.

Conditions that cause the assertion of OVRFLO are:

® Unbounded, post-rounded result exceeds destination format
in computation or conversion

® In conjunction with INVALOP, the Division-by-Zero exception
on the ADSP-3221 ALU

® Comparison when operand A is greater than operand B

® Exponent subtraction when the resultant exponent is more
positive than can be represented in the destination format

® Twos-complement fixed-point additions and subtractions that
overflow

Note that OVRFLO is always LO when the ADSP-3210/3211
Multipliers are in fixed-point mode.

Underflow

Underflow is defined in four ways in Std 754 Section 7.4. The
IEEE Standard allows the implementer to chose which definition
of underflow to use and provides no guidance. The first option
is whether to flag underflow based on results before or after
rounding. Consistent with the definition of overflow, underflow
is always flagged with this chipset based on results after rounding
(except for the operations of conversion from floating-point to
fixed-point and logical downshifts). Thus, a result whose infinitely
precise value is less than NORM.MIN yet which rounds to
NORM.MIN will not be considered to have underflowed.



The second option is how to interpret what the Standard calls

n “extraordinary loss of accuracy.” The first way is in terms of
the creation of non-zero, post-rounded numbers smaller in mag-
nitude than NORM.MIN. The second way is in terms of loss of
accuracy when representing numbers as denormals. With the
ADSP-3210/3211/3220/3221 chipset, the conditions under which
UNDFLO is asserted depend on whether the chip in question
can generate denormals in its current operating mode. If the
chip cannot generate denormals, the definition in terms of numbers
smaller in magnitude than NORM.MIN will apply; if it can
generate denormals, the definition in terms of inexact denormals
will apply. Thus, which definition applies will depend on whether
the chipset is operating in IEEE or FAST mode, whether its
result is generated by a Multiplier or an ALU, and whether the
operation is division.

With the ADSP-32]0/32l,i"Multiplicrs, UNDFLO is generated
whenever the unbounded, post-rounded, non-zero result is of
lesser magnitude than NORM.MIN in the destination format,
both in FAST and IEEE modes. In FAST mode, the data result
will be ZERO; in IEEE mode the data result will be in the
wrapped format. An exact ZERO result will never cause the
assertion of UNDFLO.

With the ADSP-3220/3221 ALUs in the FAST mode, UNDFLO
is also generated whenever the unbounded, post-rounded, non-zero
result is of lesser magnitude than NORM.MIN in the destination
format for standard ALU operations as well as for division and
square root. For FAST mode underflows, the ALU result will
always be ZERO.

With the ADSP-3220/3221 ALUs in IEEE mode, UNDFLO is
generated (except for divisions) whenever the unbounded, infi-
nitely precise (i.e., suppositighypothetically no bounds on the
precision of the result), post-rounded result is a denormal and
does not fit into the denormal destination format without a loss
of accuracy. In other words, UNDFLO will be generated whenever
an inexact denormal result is produced. (See “Inexact” below.)
If the result is a denormal and does fit exactly, neither UNDFLO
nor INEXO will be asserted. Note that additions, subtractions,
and comparisons cannot generate this underflow condition (since
no operand contains significant bits of lesser magnitude than
DNRM .MIN). IEEE-mode ALU underflow exceptions occur
only during conversions and divisions.

The division operation is treated like a multiplication operation
in IEEE mode rather than an ALU operation in the definition
of underflow. A quotient from division smaller in magnitude
than NORM.MIN will always be flagged as underflowed with
the ADSP-3221 ALU. The data result will be in the wrapped
format. Note that V(DNRM.MIN)=NORM .MIN. Therefore,
square root will never underflow with operands greater than or
equal to DNRM.MIN.

Conditions that cause the assertion of UNDFLO are:

® With the ADSP-3210/3211 Multipliers, whenever the un-
bounded, post-rounded, non-zero result is of lesser magnitude
than NORM.MIN in the destination format

® With the ADSP-3220/3221 ALUs in the FAST mode, whenever
the unbounded, post-rounded, non-zero result is of lesser
magnitude than NORM.MIN in the destination format

® With the ADSP-3220/3221 ALUs in IEEE mode, whenever
an inexact denormal is produced or whenever the unbounded,
post-rounded, non-zero quotient from division is of lesser

magnitude than NORM.MIN in the destination format

® Conversions to integer if the magnitude of the floating-point
source before rounding is less than one

® Conversions from DP floating-point to SP floating-point

whenever the unbounded, post-rounded, non-zero result is

less than SP DNRM.MIN or whenever an inexact denormal

is produced.

Comparison when operand A is less than operand B

Attempting to wrap a ZERO

Unwrapping if there is a loss of accuracy

Exponent subtraction when the resultant exponent is more

negative than can be represented in the destination format

® Logical downshift that before rounding would have shifted all
bits out of the destination format

® In conjunction with INVALOP, a denormal divisor or
dividend

® A quotient from division less than NORM.MIN

® In IEEE mode, in conjunction with INVALOP, a denormal
input operand for square root

Inexact

The inexact exception is defined in Std 754 Section 7.5 as the
loss of accuracy of the unbounded, infinitely precise result when
fitted to the destination format. It is signalled on the ADSP-3210/
3211/3220/3221 chipset by INEXO.

For fixed-point operations, the ADSP-3210/3211 Multipliers will
assert INEXO HI if and only if any of the least-significant 32
bits of prerounded 64-bit products arc oncs. They never assert
INEXO for logical operations. The ADSP-3220/3221 ALUs
never assert INEXO for fixed-point or logical opcerations.

In an ADSP-3221 division operation, cither a denormal divisor
or a denormal dividend will cause the simultancous assertion of
UNDFLO and INVALOP. INEXO will, in that context, signal
which of the two was the denormal: INEXO LO indicates that
the divisor is a denormal; INEXO HI indicates that the dividend
is a denormal.

Conditions that cause the assertion of INEXO are:

® Loss of accuracy when fitting result to destination format

® For fixed-point operations, the prerounded multiplier 64-bit
product contains ones in the least-significant 32 bits

e In IEEE mode, in conjunction with both UNDFLO and
INVALOP, dividend is a denormal (HI) or divisor is a denormal
or both are denormals (LO)

Less Than, Equal, Greater Than, and Unordered

For comparison operations in the ALUs, the OVRFLO,
UNDFLO, and INVALOP status outputs are used to indicate
the four comparison conditions of IEEE Std 754, Section 5.7.
They are defined as follows:

® “Less than” is signalled by the assertion of UNDFLO (while
OVRFLO is LO)

® “Equal” is signalled by nor asserting either OVRFLO or
UNDFLO (i.e., both LO)

® “Greater than” is signalled by the assertion of OVRFLO
(while UNDFLO is LO)

® “Unordered” is signalled by the assertion of INVALOP,
caused by attempting a comparison with at least one NAN
operand

The data result from a comparison operation is identical to

subtracting operand B from operand A. See Tables X1 and
X11.
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In IEEE comparisons, the data types are always ordered in
ascending sequence: —INF, —NORM, - DRNM, ZERO,
DNRM, NORM, and INF. Comparisons between like signed
INFs will generate the “Equal’ status condition.. Comparisons
between signed ZEROs will also generate the “Equal” status.
Any comparison to a NAN will also cause INVALOP and produce
an all-ones NAN. Even in FAST mode, DNRM:s will be compared
based on their true value (rather than all being treated as
ZEROs).

Special Flags for Unwrapping

The ADSP-3210/3211 generates a Round Carry Propagation Out
flag, RNDCARO, that indicates whether or not a carry bit
propagated into the destination format’s fraction during the
Multiplier’s floating-point rounding operation. The rounding
that the Multiplier does in creating the wrapped or unnormal
result may cause a carry bit into the LSB in the destinations
format’s fraction. This rounding position will not in general be
correct for a properly rounded denormal. Thus, when the un-
derflowed Multiplier result is unwrapped to a denormal, the
ALU has to undo the Multiplier’s rounding and re-round to
achieve the properly rounded denormal.

To do this, the ALU has to know if any carry bits in the Multipliers
rounding operation propagated into the fraction of the result.
This information is provided in the Multiplier’s RNDCARO
flag. The ALU also needs to know if the Multiplier’s rounded
result caused a loss of accuracy when expressed in its destination
wrapped format, indicated by the Multipliers Inexact Result
(INEXO) flag.

The ADSP-3220/3221 ALUs have a corresponding pair of flag
status input pins: Round Carry Propagation In (RNDCARI)
and Inexact Data In (INEXIN). In an unwrap operation, these
flags arce used by the ALU when converting from a WNRM to a
IDNRM to obtain the properly rounded result. RNDCARI and
INEXIN should be setup to the ALU with the instruction for
the unwrap operation. Both Multiplier and ALU must be using
the same rounding mode.

The ADSP-3221 ALU itself generates WNRMs in underflowed
division operations. These WNRMs must be fed back to the
ALU to be unwrapped to DNRMs. The ADSP-3221, unlike the
Multipliers, does not have a RNDCARO pin to signal whether
or not a carry bit propagated into the destination format on
rounding. For this reason, WNRMs produced by the ADSP-3221
ALU in division are rounded differently than they are on the
Multipliers; underflowed (only) quotients are always truncated
(Round-toward-Zero) to the destination wrapped format. Hence

Mnemonic Instruction (I o)
Is 6 Is 5 Lo
IADD 001 000 011
ISUBB 001 001 011
ISUBA 001 000 111
IADDWC 001 010 011
ISUBWBB 001 011 011
ISUBWBA 001 010 111
INEGA 001 000 101
INEGB 001 001 010
IADDAS 001 100 011
ISUBBAS 001 101 011
ISUBAAS 001 100 111

there is no carry bit propagation. When unwrapping a WNRM
produced in division, RNDCARI should always be held LO.
INEXIN should reflect the status of INEXO when the ALU
produced the underflowed wrapped quotient.

The ADSP-3221 ALU also uses the RNDCARI and INEXIN
pins to indicated wrapped A and B operands, respectively, to
division and square root operations. Both RNDCARI and INEXIN
should be held LO except for unwrap, division, and square root
operations.

INSTRUCTIONS AND OPERATIONS

The ADSP-3210/3211 Multipliers execute the same instruction
every cycle: multiply. It need not be specified explicitly in micro-
code. The data format of results and status flags from multiplication
are shown in Tables IX and X. Note that double-precision
floating-point multiplications are multicycle operations. Data
must be available in the input registers as shown above in
Figure 23.

Denormal input operands will generally cause the DENORM
exception (see “Status Flags” above) and correctly signed ZERO
results. FAST mode suppresses the DENORM exception. In
either FAST or IEEE, DNRM+ZERO will be ZERO without
exception. DNRM-INF will be a correctly signed INF without
exception in IEEE mode and a NAN and INVALOP in FAST
mode. DNRM*NAN will be a correctly signed NAN with IN-
VALOP asserted. The sign bit of the NAN generated from any
invalid operation will depend on the operands. (The IEEE Standard
does not specify conditions for the sign bit of a NAN.) On the
ADSP-3210/3211 Multipliers, the sign of a NAN result will be
the exclusive OR of the signs of the input operands.

The product of INF with anything except ZERO or NAN is a
correctly signed INF. INF<ZERO will cause INVALOP and
yield a NAN. NAN times anything will also cause INVALOP
and yield a NAN.

The ADSP-3220/3221 ALUs, in contrast to the Multipliers, are
instruction driven with the operation specified by I 4. The
ALU instructions fall into four categories: Fixed-Point, Logical,
Single-Precision Floating-Point, and Double-Precision Floating-
Point. Instructions are summarized in Tables V through VIII
and described in this section below. The data format of results
and status flags from the various ALU operations are shown in
Tables XI and XII. Division is shown in Tables XIII and XIV;
square root in Table XV. Conversions are illustrated in Tables
XVI, XVII, and XVIII.

The ADSP-3220/3221 Fixed-Point Arithmetic Operations are:

Description

Fixed-pointA+B

Fixed-point A —B

Fixed-pointB— A

Fixed-point A + B with carry

Fixed-point A — B with borrow
Fixed-point B — A with borrow
Fixed-point — A. ABSA/Bmustbe LO.
Fixed-point —B. ABSA/Bmust be LO.
Fixed-point |A + B|

Fixed-point |A — B| ABSA/B must be LO.
Fixed-point |B — A| ABSA/B must be LO.

Table V. ADSP-3220/3221 Fixed-Point ALU Operations
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The ADSP-3220/3221 Logical Operations are:

Mnemonic Instruction (Ig o) Description
Ig 6 Is3 Lo

COMPLA 000 000 101 Ones-complement A

COMPLB 000 001 010 Ones-complement B

PASSA 000 000 001 Pass A unmodified. Set no flags.

PASSB 000 000 010 Pass B unmodified. Set no flags.

AANDB 000 010 010 Bitwise logical AND

AORB 000 100 010 Bitwise logical OR

AXORB 000 110 010 Bitwise logical XOR

NOP 000 000 000 No operation. Preserve status flags. Preserve Output Register
contents with ADSP-3221 only.

CLR 100 000 000 Clear all status flags. Data register contents are unaffected.

Table VI. ADSP-3220/3221ALU Logical Operations

The ADSP-3220/3221 Single-Precision Floating-Point Operations are:

Mnemonic Instruction (Ig o) Description n
Ise Iss Lo

SADD 111 000 011 SP FligPt (A +B)

SSUBB 111 000 111 SP FligPt(A—-B)

SSUBA 111 001 011 SP FltgPt (B—A)

SCOMP 111 001 111 SP FltgPt comparison of A to B. Resultis (A —B)

Greater Than=(OVRFLO HI)
Equal=(OVRFLO LO & UNDFLO LO)
Less Than=(UNDFLO HI)
Unordered=INVALOP HI

SADDAS 011 000 011 SP FltgPt |A + B|

SSUBBAS 011 000 111 SP FligPt|A - B|

SSUBAAS 011 001 011 SP FltgPt B — A|

SFIXA 011 001 101 Convert SP FltgPt A to twos-complement Integer

SFIXB 011 001 110 Convert SP FltgPt B to twos-complement Integer

SFLOATA, 011 100 101 Convert twos-complement integer A to SP FltgPt

SFLOATB 011 100 110 Convert twos-complement integer B to SP FligPt

DOUBLEA 011 101 101 Convert SP FltgPt A to DP FligPt

DOUBLEB 011 101 110 Convert SP FltgPt B to DP FltgPt

SPASSA 011 110 001 Pass SP FltgPt A. NAN’s cause INVALOP.

SPASSB 011 110 010 Pass SP FltgPt B. NANs cause INVALOP.

SWRAPA 011 100 001 Wrap SP DNRM A to SP WNRM

SWRAPB 011 100 010 Wrap SP DNRM B to SP WNRM

SUNWRAPA 011 010 001 Unwrap SP WNRM A to SPDNRM

SUNWRAPB 011 010 010 Unwrap SP WNRM B to SP DNRM

SSIGN 011 111 101 Copy sign from SP FltgPt B to SP FltgPt A. Resultis
[sign B, exponent A, fraction A].

SXSUB 011 111 001 Subtract B exponent from A exponent. Result is

[sign A, (expt A — expt B), fraction A] for all data types.

If the unbiased exponent = + 128, INF results.

If the unbiased exponent is < — 127, ZERO results.
SITRN 011 010 101 Downshift SP FltgPt A mantissa (with hidden bit) logically by the

unbiased SP FltgPt B exponent to a 32-bit |

unsigned-magnitude integer. Use RZ only. }
ADSP-3221 ALU only: |
\
!

SDIV <01 110 111 SP FligPt(A + B)
SSQR 111 110 110 SP FligPt VB

Table VIl. ADSP-3220/3221ALU Single-Precision Floating-Point Operations |
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The ADSP-3220/3221 Double-Precision Floating-Point Operations are:

Mnemonic Instruction (Ig o) Description
Is s Is_s Lo
DADD 110 000 011 DP FligPt(A+B)
DSUBB 110 000 111 DP FligPt (A -B)
DSUBA 110 001 011 DPFligPt(B—A)
DCOMP 110 001 111 DP FligPt comparison of A to B. Resultis (A —B).
Greater Than=(OVRFLO HI & UNDFLO LO)
Equal=(OVRFLO LO & UNDFLO LO)
Less Than=(OVRFLO LO & UNDFLO HI)
Unordered=INVALOP HI
DADDAS 010 000 011 DP FligPt| A +B|
DSUBBAS 010 000 111 DP FltgPt |A - B|
DSUBAAS 010 001 011 DP FligPt|B—A|
DFIXA 010 011 101 Convert DP FltgPt A to twos-complement integer
DFIXB: 010 011 110 Convert DP FltgPt B to twos-complement integer
DFLOATA 010 100 101 Convert twos-complement integer A (even A register sources
only) to DP FligPt
DFLOATB 010 100 110 Convert twos-complement integer B (even B register sources
only) to DP FltgPt
SINGLEA 110 011 101 Convert DP FltgPt A to SP FltgPt
SINGLEB 110 011 110 Convert DP FltgPt B to SP FltgPt
DPASSA 010 110 001 Pass DP FligPt A. NANs cause INVALOP.
DPASSB 010 110 010 Pass DP FltgPt B. NANs cause INVALOP.
DWRAPA 010 100 001 Wrap DP DNRM A to DP WNRM
DWRAPB 010 100 010 Wrap DP DNRM B to DP WNRM
DUNWRAPA 010 010 001 Unwrap DP WNRM A to DP DNRM
DUNWRAPB 010 010 010 Unwrap DP WNRM B to DP DNRM
DSIGN 010 111 101 Copy sign from DP FltgPt B to DP FltgPt A. Resultis
[sign B, exponent A, fraction A].
DXSUB 010 111 001 Subtract B exponent from A exponent. Result is
[sign A, (expt A — expt B), fraction A] for all data types.
If the unbiased exponent = + 1024, INF results.
If the unbiased exponentis = — 1023, ZERO results.
DITRNEA 010 010 101 Downshift DP FligPt A mantissa (with hidden bit) logically by the
unbiased DP FltgPt B exponent to a 32-bit
unsigned-magnitude integer. Use RZ only.
ADSP-3221 ALU only:
DDIV 010 110 111 DP FligPt (A + B)
DSQR 110 110 110 DP FligPt VB

Table VIIl. ADSP-3220/3221ALU Double-Precision Floating-Point Operations

Fixed-Point Arithmetic ALU Operations
The negation operation is a twos-complementing of the input
operand.

The OVRFLO flags can be set by fixed-point ALU operations.
The twos-complement data format is presumed in the definition
of fixed-point overflow.

Absolute Value Controls

Absolute value controls (ABSA/B) cannot be used with all operands
input to all fixed-point ALU operations. ABSA/B must be LO
for negation (INEGA/B) and absolute difference (ISUBBAS/
ISUBAAS) operations, or results will be undefined. Absolute
value controls can be used with all other fixed-point operations.

Extended-Precision Fixed-Point Arithmetic

The ADSP-3220/3221s integer ALU operations include three
operations for extended fixed-point precision: addition with
carry and two subtractions with borrow. The carry bit generated
by an addition or subtraction is latched internally for one cycle
only. .
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To illustrate, these instructions can be used to add two 64-bit
fixed-point numbers. The two least-significant 32-bit halves can
be added with IADD. Any carry bit generated would be latched
internally in the ADSP-3220/3221. On the next cycle, the most-
significant 32-bit halves can be added with IADDWC, which
would also add in the carry bit from the previous operation if
any. The two fixed-point results will be latched in the Output
Register in consecutive cycles. As with all fixed-point results,
they will appear in consecutive cycles in the most-significant 32-
bits of the Output Register (bit positions 63 through 32).

Extended-precision fixed-point subtraction is exactly analogous.
The least-significant 32-bit halves can be subtracted with either
ISUBA or ISUBB. On the next cycle, the most-significant 32-bit
halves can be subtracted with either ISUBWBA or ISUBWBB.

Fixed-Point Zero and Equality Tests

The ADSP-3220/3221 do not directly support fixed-point zero-test
or comparison operations. However, both can be accomplished
using other ALU operations. A zero-test will result from executing
a single-precision floating-point wrap instruction (SWRAPA/B)



on the fixed-point data in question. UNDFLO will be asserted
if and only if the operand is ZERO, which is bitwise equivalent
to an operand of all zero bits.

A fixed-point test for equality will result from a bitwise XOR of
A and B operands (AXORB) followed by the zero-test using
SWRAPA/B described in the previous paragraph. In this context,
UNDFLO will flag fixed-point equality.

Logical ALU Operations

The ones-complement instructions (COMPLA/B) change every
one bit in the operand to a zero bit and every zero bit in the
operand to a one bit. Ones-complementing is equivalent to a
bitwise logical NOT operation on the 32-bit operand. The pass
instructions (PASSA/B) pass all operands unmodified, including
NANSs, without signaling an INVALOP exception. PASSA/B
set no flags.

The logical AND, OR, and XOR (AANDB, AORB, AXORB)
operate bitwise on all 32-bits in their pair of operand fields to
produce a 32-bit result.

NOP will advance the ALU pipeline one cycle. Status flags will
be preserved, but Output Register contents will not with the
ADSP-3220. The ADSP-3221 preserves both flags and output
register contents during NOP. CLR simply resets all status
flags. Note that CLR is pipelined and takes effect one cycle -
after it is presented. All data register contents, including the
Output Register, remain unaffected.

Do not assert the absolute value controls (ABSA/B) with logical
operations. The results will be undefined.

Floating-Point ALU Operations

The single-precision and double-precision floating-point opera-
tions are exactly analogous and both will be discussed here. The
data types and flags resulting from additions, subtractions,
comparisons, absolute sums, and absolute differences are shown
in Tables XI and XII. The INEXO flag is not shown explicitly
in these tables (or any other) since it may or may not be set,
depending on whether the result is inexact.

Absolute Value Controls
Absolute value controls (ABSA/B) can be used with all operands
input to all floating-point ALU operations.

Sign of NAN Results

On the ADSP-3220/3221 ALUs, the sign of a NAN result when
one input is a NAN will be the sign of the NAN operand. The
sign of the NAN result for two NAN inputs (except division)
will be the sign of the NAN with the larger magnitude fraction.
If the fractions are equal, then the sign will be computed in the
same way as for additions on signed zeros:

(+ZERO)+(*+ZERO)= (= ZERO) - (¥ZERO)-» + ZERO
(= ZERO)+(¥ZERO) = (*ZERO) — (+ ZERO)- + ZERO
(RN, RZ, RP rounding modes)
(= ZERO+ (¥ZERO)=(*ZERO) - (*+ZERO)
——ZERO (RM rounding mode)
In this notation, the first line refers to either + ZERO + ZERO
or —ZERO —ZERO. The second and third lines refer to
+ZERO—-ZERO or —ZERO + ZERO. Some ALU operations
with two INF inputs can cause INVALOP and generate NANs.

The assignment of sign to the NAN is also analogous to additions
with signed zeros:

(£ INF)+ (£ INF)=(*INF)- (¥INF)— + INF

(x=INF)+(FINF)=(=INF) - (+ INF)—» + NAN
(RN, RZ, RP rounding modes)

(xINF)+(*¥INF) =(xINF)—-(+INF)-»—-NAN
(RM rounding mode)

Comparisons

Comparison generates the data result (operand A minus operand
B). The flags, however, are defined to indicate the comparison
conditions rather than the flag conditions for subtraction. Signed
INFs will be compared as expected. A NAN input to the com-
parison operation will cause the unordered flag result INVALOP)
and the production of an all-ones NAN. Even in FAST mode,
the ALUs will accept denormals as inputs to the comparison
operation. See “Less Than, Equal, Greater Than, and Unordered”
in the “Status Flag” section above for a complete discussion of
these flags in comparison operations.

Conversions: Floating to Fixed

Conversions from floating-point to twos-complement integer
(SFIXA/B and DFIXA/B) are considered “floating-point” oper-
ations, and all four rounding modes are available. If the operand
after rounding overflows the destination format, OVRFLO will
be set, and the results will be undefined. Thus, OVRFLO for
fixed-point operations is treated exactly as it is for floating-point
operations.

If the non-zero operand before rounding is of magnitude less than
one, UNDFLO will be set in a conversion to integer. The mag-
nitude of the result may be either one or zero, depending on the
rounding mode. Conversion to integer is the only operation
where UNDFLO depends on the pre-rounded result. The reason
for this is that the infinitely precise result could be almost one
integer unit away from the post-rounded result, potentially a
large difference. We have chosen to flag underflow whenever
the magnitude of the source operand is less than one, thereby
alerting the user to a potentially significant loss of accuracy.

INEXO will be asserted if the conversion is inexact. NANs and
INFs will convert to a same-signed single-precision floating-point
all-ones NAN. INVALOP will be asserted. The twos-complement
integer interpretation of + NAN is full-scale positive and of
—NAN, minus one. See Tables XVI and XVII for illustrations
of fixing single- and double-precision floating-point numbers.

Conversions: Fixed to Floating

All four rounding modes are also available for conversions from
twos-complement integer to floating-point. For conversion to
single-precision floating-point (SFLOATA/B), the numerical
result will always be IEEE normals. The only flag ever set is
INEXO. INEXO will be set if and only if the source integer
contains more than 24 bits of significance. “Significance” is
defined as follows: For positive twos-complement integers, the
number of significant bits is [(32 minus the number of leading
zeros) minus the number of trailing zeros]. “Leading zeros” are
the contiguous string of zeros starting from the most significant
bit. “Trailing zeros” are the contiguous string of zeros starting
from the least significant bit. For negative twos-complement
integers, the number of significant bits is [(33 minus the number
of leading ones) minus the number of trailing zeros].
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For conversion from twos-complement integer to double-precision
floating-point (DFLOATA/B), the numerical result will always
be an IEEE normal. No flags will be set. Only even-numbered
registers (A0, A2, BO, or B2) can be sources for the DFLOAT
operation.

Conversions: Floating to Floating

For conversion from single-precision to double-precision
(DOUBLEA/B), all single-precision normals and denormals will
convert without exceptions. A single-precision NAN will convert
to a double-precision all-ones NAN; the INVALOP flag will be
set. Single-precision INF converts to double-precision INF; no
flags are set. Single-precision ZERO converts to double-precision
ZERO; no flags are set.

Conversions from double-precision to single-precision floating-
point (SINGLEA/B) can cause exceptions because overflow,
underflow, and inexact status can result in mapping to the smaller
destination format. See Table XVIII for illustrations. A double-
precision NAN will convert to a single-precision all-ones NAN;
the INVALOP flag will be set. DP INFs convert to SP INFs;
no flags are set. Finite numbers greater in magnitude than single-
precision NORM.MAX will result in SP INF or SP NORM.MAX,
depending on the rounding mode. (See “Round Controls” above.)
Non-zero, post-rounded operands whose magnitudes are between
SP NORM.MAX and SP NORM.MIN inclusive will be SP
NORMs. In IEEE mode, operands between SP DNRM.MAX
and SP DNRM.MIN inclusive will be SP DNRMs; in FAST
mode, ZERO will result with UNDFLO and INEXO set.

For both normals and denormals, INEXO will be asserted if the
conversion from double-precision to single-precision floating-point
1s incexact. If the conversion to denormals is inexact, both INEXO
and UNDFLO will be set, in accordance with the IEEE definition
in terms of loss of accuracy when representing a denormal. (See
“Underflow” in “Status Flags” above.) Post-rounded, non-zero
numbers less than SP DNRM.MIN will convert to ZERO;
UNDFLO and INEXO will be set. DP ZERO converts to SP
ZERO without exception.

Pass

Pass instructions (SPASSA/B and DPASSA/B) pass all operands
unmodified. Unlike the PASSA/B instructions, the floating-point
pass instructions will cause INVALOP if a NAN is passed. The
NAN will pass unmodified. INFs are passed without setting any
flags. The absolute value controls can be used with the floating-
point pass instructions to reset the unmodified NAN’s sign bit
1o zero.

Wrap

Wrap instructions (SWRAPA/B and DWRAPA/B) convert a
denormal to a wrapped number readable by a Multiplier or the
ADSP-3221 ALU in division and square root operations. Since
the wrapped format has an additional bit of precision (the hidden
bit), all wrapping is exact. If the operand is ZERO, then UNDFLO
will be set. If the operand is neither a DNRM nor ZERO,
INVALOP will be set.

Unwrap

Unwrapping instructions (SUNWRAPA/B and DUNWRAPA/B)
convert a wrapped number to the IEEE denormal format. After
rounding, the result may turn out to be NORM.MIN or ZERO.
WRAP.MAX, whose infinitely precise value is between
NORM.MIN and DNRM.MAX, will round to NORM.MIN or
DNRM.MAX , depending on rounding mode:

+ WRAP.MAX-NORM.MIN (RN, RP modes)

+WRAP.MAX-+DNRM.MAX (RZ, RM modes)
~ WRAP.MAX—-NORM.MIN (RN, RM modes)
- WRAP.MAX-DNRM.MAX (RZ, RP modes).
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INEXO will always be set when unwrapping WRAP.MAX. If
the unwrapping operation, after rounding, shifts all ones out of
the DNRM destination format, ZERO will result. Whenever
this happens, UNDFLO and INEXO will always both be set.

The UNDFLO condition for unwrapping is based on the IEEE
definition in terms of loss of accuracy when representing a de-
normal. (See “Underflow” in “Status Flags” above.) That is,
UNDFLO will only be set when the unbounded, post-rounded
result cannot be expressed exactly in the destination denormal
format. UNDFLO will always be set in conjunction with INEXO
when unwrapping.

The ADSP-3220 and ADSP-3221 differ slightly in how inexactness
is defined for unwrapping. With the ADSP-3220, inexactness is
determined solely by whether or not there was a loss of accuracy
when unwrapping the operand supplied to the ALU. The ADSP-
3221 goes beyond the ADSP-3220 in also considering whether
the multiplication, division, or square root that generated the
wrapped number caused a loss of accuracy. It determines this
information by reading the INEXIN flag input to the ALU.

The INEXIN is essential to the unwrapping operation in both
ALUs. The state of INEXIN input when wrapping should
reflect the state of INEXO when the wrapped number was
generated during multiplication, division, or square root. The
ADSP-3220 uses INEXIN only for this purpose. The ADSP-3221
also uses this information to determine if the operation creating
the wrapped number was inexact. When the ADSP-3221 unwraps
a wrapped number, its INEXO will be asserted if either the
originating operation or the unwrapping operation caused a loss
of accuracy.

Copy Sign

The SSIGN and DSIGN operations copy the sign of the B
operand to the A operand. The result is (sign B, exponent A,
fraction A). Rounding modes have no effect on this operation
since the precision of the result is exactly that of the source,
i.e., all “roundings” are exact. The only condition that generates
a flag is a NAN as the A operand; INVALOP will be set. This
instruction is useful for quadrant norralization of trigonometric
functions. Trigonometric identities allow mapping an angle of
interest to a quadrant for which lookup tables exist. SSIGN and
DSIGN simplify this mapping. For example, sin (—37°) =
—sin (37°). By looking up sin (37°) and transferring the sign of
the angle (—37°, the B operand) to the value from the lookup
table (0.60182, the A operand), the correct result is obtained
(—0.60182).

Exponent Substraction

Exponent subtraction (SXSUB and DXSUB) subtracts the expo-
nent of the B operand from the A operand. The A operand is
the destination format: [sign A, (expt A —expt B), fraction A].
INFs and NANS are valid inputs to the SXSUB/DXSUR opera-
tions; INVALOP is never asserted. If the unbounded result is
greater than that of NORM.MAX, INF will be produced and
OVRFLO will be set. If the unbounded result is less than that
of NORM.MIN, ZERO will be produced and UNDFLO will
be set.

Exponent subtraction is useful as the first step in the Newton-
Raphson division by recursion algorithm. This operation allows
an improved implementation of this algorithm. For the details,
see the Application Note, “Floating-Point Division using Analog
Devices’ ADSP-3210 and ADSP-3220,” available from Analog
Devices’ DSP Applications Engineering.

Logical Downshift
The mantissa of a floating-point A operand (with hidden bit
restored) can be downshifted logically to an unsigned-magnitude



integer destination format using the SITRN and DITRN opera-
tions. (See Figures 29 and 30.) The source mantissa is treated as
a right-justified unsigned integer. The unbiased (i.e., the “true”
exponent after the bias has been subtracted) exponent of the B
operand determines the amount of the downshift. The unbiased
B exponent is interpreted as an unsigned number which indicates
how many bit positions the mantissa should be downshifted. (A
negative unbiased exponent will cause a very large downshift.
The mantissa will be completely shifted out of range, and the
result will be zero.) The result will a be left-zero-filled unsigned-
magnitude integer. Like all fixed-point results, it will appear in
the most significant bit positions of the OQutput Register.

32-Bit A Register 32-Bit B Register

[s[ e | f ] [s[ e | f ]
[ S —— [ —
HB 23-Bit Fraction 8-Bit Biased Exponent

-+
24-Bit Source

S~
Zero-Filled

- >e >

\3-% to 32-Bit Logical Downshift Shift Amount
(unsigned)

T

MSW in

laz-Bit Unsigned-Magnitude Integerl Output Register

Figure 29. ADSP-3220/3221 SITRN instruction

32-Bit MS A Register 32-Bit LS A Register

e f 1 t ]

1.
HB 52-Bit Fraction

53-Bit Source
32-Bit MS B Register
I T [ ]

! 11-Bit Biased Exponent

I

53-Bit to 32-Bit Logical Downshift J<J3nm Amount
(unsignad)

MSW in
Output Register

['32-Bit_unsigned-Magnitude Integer |

Figure 30. ADSP-3220/3221 DITRN Instruction

Logical downshift is only defined for NORMs. Results from
operands than are not normals are undefined. A NAN A-operand
input to SITRN/DITRN will cause INVALOP and produce all-
ones NANSs of the same sign. Round-toward-Zero (RZ) must be
specified for SITRN and DITRN. Otherwise, the result is
undefined. If the shifted result before rounding is all zeros,
UNDFLO will be set. (Actually, with RZ, the shifted result
before rounding is the same as the shifted result after rounding.)
If any bits are shifted out of the range of the destination format,
INEXO will be set.

The logical downshift operations can be useful to generate table
lookup addresses. In this application, the most-significant mantissa
bits would be used as table addresses. Because different B expo-
nents can be applied to the same A mantissa, the same datum
can be used to address multiple tables with differently sized
address fields.

Division and Square Root

The ADSP-3221 ALU supports multicycle division (SDIV and
DDIV) and square root (SSQR and DSQR) operations. Tables
XIII and XIV illustrate the resultant data types and status con-
ditions for division. Table XV serves a similar role for square
root. Neither operation can accept denormal inputs directly;
they must be wrapped to the wrapped data format first. Denormal
inputs to division and square root operations will cause the
simultaneous assertion of UNDFLO and INVALOP in IEEE
mode. For divisions, INEXO HI indicates that the dividend is a
DNRM; INEXO LO indicates that the divisor or both operands
are DNRMs. In FAST mode, only INVALOP will be asserted.

‘The square root of any non-negative normal or wrapped number
will be an IEEE normal number. The square root of a negative
number is an all-ones — NAN. The square root of +INF is

+ INF without exception. The square root of a NAN is a same-
signed all-ones NAN.

Division can produce wrappeds and unnormals; these must be
passed back to the ALU for unwrapping. INF dividends cause
correctly signed INFs without flags except when the divisor is
also an INF. Either = INF divided by either +INF or any
NAN input will generate INVALOP and an all-ones NAN. For
ADSP-3221 division operations, the sign of the NAN will be
the exclusive OR of the signs of the dividend and the divisor.

OUTPUT CONTROL-SHLP (REG), OEN (ASYN),
MSWSEL (ASYN), AND HOLD (ASYN)

All members of the ADSP-3210/3211/3220/3221 chipset have a
64-bit Output Register. The Output Registers are clocked every
cycle, except for multicycle operations (double-precision multi-
plication, division, and square root) when HOLD is L.O on the
ADSP-3211 and when the ADSP-3221 is executing NOP. Output
Registers are clocked at the conclusion of multicycle operations
and not before.

Results appear in the Multipliers Output Registers as follows:

Bit 63 32 31

SP FitgPt Product not mi ful

DP FligPt Most Significant Product | DP FltgPt Least Significant Product :

FxdPt Most Significant Product

quPt_ Least Slgnrflcgqt‘lirpquct

Figure 31. ADSP-3210/3211 Multiplier Output Registers

When the destination format from multiplication is single-precision
floating-point, the fraction bits that are less than the least significant
bit in the destination format are stored in the least significant
half of the Output Register.

The Multipliers have a pipelined, registered fixed-point shift-left
control, SHLP. When HI, SHLP will cause a one-bit left shift
in the 64-bit product that appears in the Multiplier’s Output
Register. The least significant bit in the Output Register will be
zero. See “32-Bit Fixed-Point Data Formats” above for more
details of the effects of SHLP. SHLP has no effect on floating-point
multiplications. Note that SHLP should be setup at the clock
edge when the multiplication operands are read into the multiplier
array.
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Results appear in the ALUs Output Registers as follows:

Bit 63 32 ' 31 0
SP FitgPt Product

not meaningful

DP FltgPt Most S<gmiicant Product
FxdPt Result

DP FitgPt Least Significant Product

not meaningful

Figure 32. ADSP-3220/3221 ALU Output Registers

All members of this chipset have an asynchronous output enable
control, OEN. When HI, outputs are enabled; when LO, output
drivers at DOUTS3;_ are put into a high-impedance state. Note
that status flags are always driven off-chip, regardless of the
state of OEN. See Figure T1 for the timing of OEN.

All members of this chipset also have an asynchronous MSW
select control, MSWSEL. When outputs are enabled and
MSWSEL is HI, the most significant half (bits 63 through 32)
of the Output Register will be driven to the output port,
DOUT3,_g. When outputs are enabled and MSWSEL is LO,
the least significant half (bits 31 through 0) of the Output Register
will be driven to the output port, DOUT3,_y. The operation of
MSWSEL is illustrated in all timing diagrams where 64-bit
outputs are produced.

The ADSP-3211 Multiplier has an asynchronous, active LO
control, HOLD, that prevents the Output Register from being
updated. HOLD must be setup prior to the clock edge when
the Output Register would have otherwise been updated. See
Figure T3. For normal operations where the Output Register is
updated, HOLD must be held HI.

TIMING
Timing diagrams are numbered Figures T1 through T12. Three-
state timing for DOUT is shown in Figure T1. Output disable
time, tpys, is measured from the time OEN reaches 1.5V to the
time when all outputs have ceased driving. This is calculated by
measuring the time, tpeasured> from the same starting point to
when the output voltages have changed by 0.5V toward +1.5V.
From the tester capacitive loading, C; , and the measured current,
iL, the decay time, tpgcay, can be approximated to first order
by:
CL 0.5V

IpECAY = i
from which

IDIS = Umeasured — IDECAY

is calculated. Disable times are longest at the highest specified
temperature.

The minimum output enable time, minimum tgna, is the earliest
that outputs begin to drive. It is measured from the control
signal OEN reaching 1.5V to the point at which the fastest
outputs have changed by 0.1V from V sae toward their final
output voltages. Minimum enable times are shortest at the lowest
specified temperature.

The maximum output enable time, maximum tgna, is also meas-
ured from OEN at 1.5V to the time when all outputs have
reached TTL input levels (Voy or Vor). This could also be
considered as ‘“‘data valid.” Maximum enable times are longest
at the highest specified temperature.

Reset timing is shown in Figure T2. RESET must be LO for at
least tgs. In addition, RESET must return HI at least tgy before
the first rising clock edge of operation. Hold timing is shown in
Figure T3. HOLD must go LO tyg before the rising edge at
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which the Output Register is not updated. HOLD must also be
held tyy after the clock edge.

All data, registered and latched controls, and instructions shown
in Figures T4 through T12 must be setup tps before the rising
edge and held tpy. Both input-port configurations are shown in
most these diagrams. Data is shown loaded for minimum latency.
Other sequencing options are possible and may be more conven-
ient, depending on the system. These other options, however,
require that data be loaded to the input registers earlier than as
shown in these diagrams and not overwritten. See “Input Register
Loading and Operand Storage” above for constraints on register
loading and operand storage that must be observed.

The operation time, topp, is the time required to advance the
internal pipelines one stage. It reflects the pipelined throughput
of the device for that operation. The latency, t; ap, is the time it
takes for the chip to produce a valid result at DOUT from valid
data at its input ports. (Latency is the true measure of the internal
speed of the chip.) Latency is referenced from data valid of the
earliest required input to data valid of the first 32-bit output.

The asynchronous MSWSEL control’s delay is tgno. The
maximum specification for tgno is the delay which guarantees
valid data. The minimum specification for tgno is the earliest
time after the MSWSEL control is changed that data can
change.

Status flags have a maximum output delay of tso referenced
from the clock rising edge. All status flags except the Multipliers
DENORM are available in parallel with their associated output
results. DENORM is available earlier to speed up recovery from
a denormal input exception. Note that DENORM is indeterminate
(not necessarily LO) except in the cycles indicated in Figures
T4 and TS. DENORM should therefore not be used by itself to
externally trigger a denormal input exception processing

routine.

Note that for all operations (Figures TS5 through T12) a new
operation can begin the cycle before output results and status
flags (other than DENORM) results from the previous operation
are driven off chip. This feature leads to improved pipeline
throughput.

GRADUAL UNDERFLOW AND IEEE EXCEPTIONS
The data types that each chip operates on directly is shown in
Figure 33.

Normals

Denormals
Normals Wrappeds'
Wrappeds Unnormals

4 4

ADSP-3210/3211 ADSP-3220/3221
Floating-Point Floating-Point

Multipliers ALUs
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3

Unnormals®
1. for unwrapplng‘, division, and square root
2. for unwrapping only
3. from wrapping and division
4. from division

Figure 33. Data Types Directly Supported by the
ADSP-3210/3220/3221



Denormals are detected by the Multipliers when read into their
processing circuitry. The ADSP-3210/3211 will produce a flag
output, DENORM, when one or both of the operands read into
the array are denormals. The occurrence of DENORM should
trigger exception processing. (See “Status Flags” above for a
discussion of DENORM and its timing.) Controlling hardware
must recover the denormal(s) that was input to a Multiplier and
present it to an ALU for wrapping.

The ADSP-3221 ALU will also detect denormals when read into
internal circuitry for division or square root operations. The
UNDFLO and INVALOP flags will both be asserted on the
ADSP-3221 to signal the presence of a denormal input to these
operations. INEXO will indicate whether the denormal input is
the A operand or B operand. (See “Status Flags” above for a
fuller discussion of denormal detection in the ADSP-3221.)

The ALU wraps denormals with its SWRAP or DWRAP in-
structions. Note from Tables II and IV that any denormal can
be represented as a wrapped without loss of precision (hence
triggers no exception flags in the ALU).

The wrapped equivalent from the ALU must now be passed to
the Multiplier for multiplication or the ADSP-3221 ALU for
division or square root. The controlling system must tell the
Multiplier to interpret the wrapped input as wrapped by asserting
WRAPA/B when it is read into the Multiplier’s processing cir-
cuitry. For division and square root, the controlling system
must tell the ALU to interpret the wrapped operand A as wrapped
by asserting INEXIN when it is read into the ALU’s processing
circuitry and to interpret the wrapped operand B as wrapped by
asserting RNDCARI. The result of the multiplication or division
can be a normal, a wrapped, or an unnormal. (See Tables IX,
X, XIII and IV.) Square root on IEEE numbers only produces
normals. (See Tables XI and XII.) An underflowed result (wrapped
or unnormal) from either Multiplier or ALU will be indicated
by the UNDFLO flag and must be passed to the ALU for
unwrapping.

For full conformance to the IEEE Standard, all wrapped and
unnormal results must be unwrapped in an ALU (with the
SUNWRAP and DUNWRAP instructions) to an IEEE sanctioned
destination format before any further operations on the data. If
the result from unwrapping is a DNRM, then that data will
have to be wrapped before it can be used in multiplication,
division, or square root operations.

The reason why WNRMs and UNRMs should always be un-
wrapped upon their production is that the wrapped and unnormal
data formats often contain “‘spurious” accuracy, i.e., more pre-
cision than can be represented in the normal and denormal data
formats. If WNRMs or UNRMs produced by the system were
used directly as inputs to multiplication, division, or square root
operations, the results could be more accurate than, and hence
incompatible with, the IEEE Standard.

When unwrapping, additional information about underflowed
results must accompany their input to the ALU. See “Special
Flags for Unwrapping” in “Status Flags” above for details. of
how INEXO and RNDCARO status flag outputs must be used
with INEXIN and RNDCARI inputs.

A final point about conformance with IEEE Std 754 pertains to
NANSs. The Standard distinguishes between signalling NANs
and quiet NANSs, based on differing values of the fraction field.
Signalling NANS can represent uninitialized variables or special-
ized data values particular to an implementation. Quiet NANs
provide diagnostic information resulting from invalid data or
results. The ADSP-3210/3211/3220/3221 genecrally produce all-
ones outputs from invalid operations resulting from NAN inputs.
So a system that implements operations on quiet and signalling
NANs will have to modify the NAN output from these chips
externally. See Section 6.2 of Std 754-1985 for the details of
these operations.

B operand
ZERO DNRM WRAP NORM INF NAN
Aoperand ocut  status | oresult  status | result  status | result status result  status : result  status
ZERO | ZERO ZERO ZERO ZERO NAN  |INVALOP | NAN |INVALOP
DNRM | ZERO ZERO |DENORM ; ZERO |DENORM : ZERO DENORM | INF NAN | INVALOP
WRAP : zERO ZERO |DENORM : UNRM |UNDFLO i NORM INF NAN  [INVALOP
WRAP UNDFLO
UNRM UNDFLO
NORM : zerO ZERO | DENORM i NORM INFNORMMAX " |OVRFLO INF NAN | INVALOP
WRAP [UNDFLO | NORM
UNRM |UNDFLO | WRAP UNDFLO
INF NAN | INVALOP ! INF INF INF INF NAN  [INVALOP
NAN NAN | INVALOP: NAN  [INVALOP { NAN  [INVALOP i NAN INVALOP | NAN  |INVALOP : NAN [INVALOP

1. Either INF or NORM.MAX. depending on rounding mode. See "Round Controls.”

Table IX. ADSP-3210/3211 Floating-Point Multiplication

(IEEE Mode)
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B operand

ZERO DNRM NORM INF NAN
Aoperand | oot status | result  status | result status result  status | result  status
ZERO | zepo ZERO ZERO NAN - | INVALOP! NAN  |INVALOP
DNRM ' zero ZERO |DENORM ; ZERO DENORM | NAN INVALOP: NAN | INVALOP
! 1
NORM  zepo ZERO |DENORM ; INFNORM.MAX | OVRFLO | INF NAN | INVALOP
NORM
ZERO UNDFLO
INF NAN  |[INVALOP | INF INVALOP | INF INF NAN [ INVALOP
NAN NAN  [INVALOP i NAN  [INVALOP: NAN INVALOP ;| NAN INVALOP: NAN | INVALOP
1. Either INF or NORM.MAX, depending on rounding mode. See "Round Controls.”
In FAST mode, WRAP inputs are illegal.
Table X. ADSP-3210/3211 Floating-Point Multiplication
(FAST Mode)
B operand
ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status
ZERO | zepe? DNRM NORM INF NAN | INVALOP
DNRM | pNRM NORM INFNORMMAX' | OVRFLO | INF NAN | INVALOP
DNRM NORM
ZERO DNRM
NORM | NORM INF.NORM.MAX' | OVRFLO INFNORMMAX | OVRFLO | INF NAN INVALOP
NORM NORM
DNRM DNRM
ZERO
INF INF INF INF INF3 NAN | INVALOP
NAN INVALOP
NAN NAN INVALOP | NAN INVALOP | NAN INVALOP ;| NAN INVALOP : NAN INVALOP

2. (+ ZERO)+ (+ ZERO) = (+ZERO)—~(7ZERO) = + ZERO
(£ ZERO)+(F ZERO) = (+ZERO)-(+ZERO)=> + ZERO (RN. RZ. RP rounding modes)
(+ ZERO)+( = ZERO) = (+ZERO)-(+ZERO)= — ZERO (RM rounding mode)

3. (£ INF)+(= INF) = (+INF)—( TINF) = + INF
(+ INF)+(F INF) = (£INF)—(zINF) = +NAN (RN. RZ. RP rounding modes)
(= INF)+(% INF) = (xINF)—(xINF) = —NAN (RM rounding-mode)

4. If DNRM result is inexact. UNDFLO will be set.

Either INF or NORM.MAX. depending on rounding mode. See “Round Controls.”

Table XI. ADSP-3220/3221 Floating-Point Addition/
Subtraction (IEEE Mode)
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B operand

ZERO DNRM NORM INF NAN
A operand
result status result status result status result status result status
ZERO ZEFiO2 ZERO UNDFLO NORM INF NAN INVALOP
DNRM ZERO | UNDFLO NORM INF.NORM.MA)(1 OVRFLO INF NAN INVALOP
ZERO NORM
ZERO UNDFLO
1 1
NORM NORM INF.NORM.MAX | OVRFLO INF.NORM.MAX OVRFLO INF NAN INVALOP
NORM NORM
ZERO UNDFLO ZERO UNDFLO
ZERO
INF INF INF INF INFaa NAN INVALOP
NAN INVALOP
NAN NAN INVALOP § NAN INVALOP NAN INVALOP §{ NAN INVALOP NAN INVALOP
1. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”
2. (+ ZERO)+ (+ ZERO) = (+ZERO)—(7ZERO) = + ZERO
(+ ZERO)+(+ ZERO) = (+ZERO)-(+ZERO)= + ZERO (RN, RZ, RP rounding modes)
(+ ZERO)+( ¥ ZERO) = (+ZERO)~(xZERO)= - ZERO (RM rounding mode)
3. (£ INF)+(x INF) = (£INF)~( 3INF) =+ INF
(£ INF)+(% INF) = (£INF)—(£INF) = +NAN (RN, RZ, RP rounding modes)
(£ INF)+( INF) = (£INF)—(£INF) = —NAN (RM rounding mode)
4 Exact result.
5. In FAST mode, WRAP inputs are illegal.
Table XIl. ADSP-3220/3221 Floating-Point Addition/
Subtraction (FAST Mode)
B operand
ZERO DNRM WRAP NORM INF NAN
A operand :
result  status result  status result status result status result  status result status
ZERO NAN INVALOP ZERO ZERO ZERO ZERO ¢ NAN [ INVALOP
DNRM INF1 OVRFLO& : NAN UNDFLO& : NAN UNDFLO : NAN UNDFLO ZERO : NAN | INVALOP
INVALOP INVALOP INVALOP INVALOP o
WRAP INF1 OVRFLO& @ NAN UNDFLO& : NORM NORM ZERO NAN [ INVALOP
INVALOP INVALOP WRAP UNDFLO
UNRM UNDFLC e
1
NORM JNF1 OVRFLO& i NAN UNDFLO& : INF.NORM MA)(1 OVRFLO { INF.NORM.MAX | OVRFLO ZERO NAN | INVALOP
INVALOP INVALOP i NORM NORM
WRAP UNDFLO
UNRM UNDFLO
INF INF INF INF INF NAN | INVALOP © NAN | INVALOP
NAN NAN | INVALOP - NAN | INVALOP : NAN INVALOP : NAN INVALOP © NAN | INVALOP : NAN | INVALOP

1. Eitrer INF or NORM.MAX. depending on rounding mode. See “Round Controls.”

Table Xlll. ADSP-3221 Floating-Point Division (A+B) (IEEE Mode)
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B operand

ZERO DNRM NORM INF NAN
A operand -
result  status result  status result status result  status result  status

ZERO NAN | INVALOP NAN INVALOP { ZERO ZERO NAN INVALOP

DNRM NAN | INVALOP NAN INVALOP § ZERO ZERO NAN INVALOP

NORM INF1 OVRFLO& INF1 OVRFLO& INF,NOF{M.MA)(1 OVRFLO ZERO NAN INVALOP

INVALOP INVALOP { NORM
ZERO UNDFLO
INF INF INF INF NAN  {INVALOP} NAN [ INVALOP
NAN NAN | INVALOP NAN INVALOP | NAN INVALOP NAN INVALOP NAN INVALOP
1. Either INF or NORM.MAX, depending on rounding mode. See “Round Controls.”
2. In FAST mode, WRAP inputs are illegal.
Table XIV. ADSP-3221 Floating-Point Division (A+B) (FAST Mode)
B operand
B<ZERO +ZERO +DNRM +WRAP +NORM +INF *NAN
Mode
result  status result  status { result status result  status i result status : result status i result status
IEEE 7 -NAN | INVALOP; +ZERO +NAN UNDFLO& i NORM NORM +INF HNAN INVALOP
INVALOP
FAST | -NAN | INVALOP; +ZERO +ZERO NORM NORM +INF +NAN INVALOP
Table XV. ADSP-3221 Fioating-Point Division Square Root (V/B)
Sign| HB | £22... .11 fo Unbiased Source Name sign | i30] i29] i28] i27) i26 izs] i24) i23)i22 . . . 7] i6) is] ia| i3] i2] i1 ] io| Rounding Status Flags
3 ) Expnt v oL Modes

o [1 [xU.Oxx]z s +NAN o [ i i T T T T INVALOP
0 {1 Jo... 002|128 +INF o fru g fr. vl ]efrfrfrfan INVALOP
o 1 Jo... 0o 2|3 vt |[ulu|ulu|ujujulu|u.. vlulujujulufufufan OVRFLO
0 1 1.3 o frfr iy fr.. 1fofojofofo]ofo]an
[ R IR I R A X ] o |ofoofo]ofofo]r|r.. tfrfr]rfrfrfrfrfan
o |1 Jo... 0o |22 o fojojoJo|o]o]o]1 fo.. ojojojolo]o]o]ofan
[ R O B B P2 ) o fojo]o]o]ofo]o]|1 |o.. ofojojo|o]o]o]o|RNRP INEXO
[ U I D B N P20 ) o fofojo]o|ofol]olfo[1.. pfrfr]rfrfr]r|1]rzRM INEXO
o |1 Jo...0fof2=]o one o JofoJofo]ojo]o]o]o.. ofofjoJojojo]ojf1]an
[ RO PR I I I one — 1LSB o Jofo]ojfo]ofojfoljofo.. olojojoJo]Jofo|1|RNRP UNDFLO,INEXO
o [t fro e one - ILSB 0o o fofo|o]o]ojofo]o.. oloJojolojofojo|RZRM UNDFLO,INEXO
o [t Jo.. o]t 12 +1LSB o oo fofo]o oo fo]o.. ojojolo|o]o|o]|1]RNRP UNDFLO,INEXO
o 1 Jo..o o fr ] 12 +1LSB o o fo]ofo]ofo]o]o]o.. ofofo|ofojo]o[o]|RzZRM UNDFLO,INEXO
0 f1 Jo... 0o 2|1 12 0o Jojfo oo ]ofo]o o o.. ofofo|ojojo]of1|RP UNDFLO,INEXO
o [t Jo...0f0of2+]-1 12 o oo [o]ofofo]o[o]o.. ofoJofofof[o]o0[0]|RMRNRZ | UNDFLO,INEXO
o [t Jo... 0o [2+]-12 +NORM.MIN 0 fo]o oo [ofo]o o fo.. ofofo|ofjofo]o|1|RP UNDFLO,INEXO
0 |1 Jo... 0o |2+]-126 +NORM.MIN o oo fo o [o]o oo }o.. ofofjojo|o}jo]o|o|RMRNRZ | UNDFLO,INEXO
0 o Jo... 01 ]|2]-126 +DENORMMIN [ fo [0 |o o Jo o Jo [o |o |o.. ofofofofo]jo]o|1|RP UNDFLO,INEXO
0 o Jo... 01 ]2]=-126 +DENORMMIN [ fo {0 |o |o Jo fo |o fo |o [o.. ofofojofojo]o|o|RMRNRZ [ UNDFLO,INEXO
0 o |o...0 o0 0 +ZERO o oo (oo fo]o oo [o.. ofojofojojofofo]an
1o Jo... ot fa]-126 ~DENORMMIN | [1 |t v |1 [t |1 |1 1 |1 oo, tfrfrfr)a]r |1 rM UNDFLO,INEXO
1 o Jo... ot ]2 ]-126 ~DENORM.MIN | fo |0 [0 fo [o o Jo o |o Jo.. ofofoJofojo]o]|o|RPRNRZ | UNDFLO,INEXO
1ofr Jo... 0o f2]-12 -~ NORM.MIN A D U A S R U RO B g1 |rRM UNDFLO,INEXO
1ofr Jo... 0o f2x]-12 ~NORM.MIN o [o]o fo}o fofofo]oo.. ofofoJofojo]o|o|RPRNRZ | UNDFLO,INEXO
1o foo 0 fo 2t -12 [ O S D SO U ST U SO PO tfrjrfrfrlr}rf1{RrM UNDFLO,INEXO
o oo fofa ] -12 o o ]o fo]ofojo oo ]o.. ofojolofo]o]o|o|RPRNRZ | UNDFLO,INEXO
I R I B AL B -12-1LSB A DU DU ST SU AU RO U U U tpr|rfrf1]r}1]|1|RMRN UNDFLO,INEXO
| B U VI N L I -12-1LSB o fo o fofofofofo]o]o.. ofjojo|ojojoo|o]|RPRZ ~ UNDFLO,INEXO
[ B R B B I -one + 1LSB A D U S DU R U U N tfrfrfafr]r]r|1|RMRN UNDFLO,INEXO
| N U IS PP U O S0 —one + 1LSB o oo fofo fo fo fo]o fo.. ofoJojofoJo]o]o]RPRZ UNDFLO,INEXO
1|1t fo... 0o |2 o ~one A DU DU DT DU DU BTN DTN PO PO tlojo]ofr]efrfrfan
ofr o frooo [ o q22 O U B T ST SO ST O PO [ ofoJojolo]o]o]|o|RMRN INEXO
o oo [ fae |22 O O S D T D T B PO (VA ofofoJofojo]o]1|RPRZ INEXO
1|1 fo... 0o [ |23 A DU DU DU DU U DU A O (VO ojojojofo]o]o]ofan
N B I S O B IF LU BT o fr ey 1 jo jo.. ojojJoJojoJo]o]1]an
o e | [ f30 1 {0 fo o o o fo]o fo fo.. ofofojofofo]of1]an
o]t fo... 0o ]2 |3 1 o fo o fo]o]o o o Jo.. ojojojojojojofo]an
Lot foo o1 [ |3 u |ufufufufulufululu.. vlufufujujufulu]an
Lot fo... 0o |2« [128 -INF O O DU O U D SO O SN PO tfrfrfafafrjrfrfan INVALOP
U X XX e s - NAN e o v rfrfan INVALOP

T (

+*U"" denotes an undefined result,

5
T 0

Table XVI. Conversion of 32-Bit Single-Precision Floating-Point to 32-Bit Twos-Complement Integer
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Sign | HB|f51 . . .f22]f21| f20|f19 . . .f1 | fO Unbiased | Source Name Sign |i30 . . .il |i0 Rounding Status Flags

31 V) Expnt 4 Modes
0 1 xox X Ix (xS x [ x [ ] 1024 +NAN o [t Ja INVALOP
0 1 ]0. 0 o Jo jo. 0|0 |2** | 1024 +INF 0 1...1]1 all INVALOP
0 1 10... 0 oo JOo... 00 |2*]|31 U* |[U...U|U all OVRFLO
0 Tt 1 Ju f1 fr... 1|1 {2** |30 U |[U...U|U RP,RN OVRFLO,INEXO
0 1 f1.. 191 {1 J1.. 1|1 |2** )30 0 1...1]1 RZ,RM INEXO
0 1 (1.. 1 J1 |0 [0... O[O |2* |30 U vu...U|U RP,RN OVRFLO,INEXO
0 1 1.. 1 J1 ]0 J0... 0|0 J2**| 30 0 1... 11 RZ,RM INEXO
0 1 §1.. 1 |0 |1 |1.. 111 |2**]30 U U...U|U RP OVRFLO,INEXO
0 1 |1.. 1 J0 {1 |1.. 111 |2*]30 0 1... 111 RM,RN,RZ INEXO
0 1 1., 1 10 (0 [0... O |1 [2**|30 U U...U|U RP OVRFLO,INEXO
0 1 |1.. 1 o Jo (O... O |1 [2*~]30 0 1... 111 RM,RN,RZ INEXO
0 1 11, 1 Jo [0 |JO... 0|0 J2**]30 0 1... 1|1 all
0 1 Jo... 0 |0 [0 [0o... 0]O [2**]0O one 0 0... 0|1 all
0 1. 1 |1 [ fr.o.. 1| j2*x| -1 one — 1ILSB 0 0...0 (! RN,RP UNDFLO,INEXO
0 Ll 1 0 |1 1. 1|1 [2xx] -1 one — ILSB 0 0...01{0 RZ,RM UNDFLO,INEXO
0 1 10... 0 [0 |0 (O... O ]1 |2**| -1 1/2 +1LSB 0 0... 0|1 RN,RP UNDFLO,INEXO
0 1 ]10... 0 |0 JO [O... O |1 [2**| -1 1/2 +1LSB 0 0... 010 RZ,RM UNDFLO,INEXO
0 1 ]0... 0 |0 |O [0O... OO [2**]| -1 172 0 0... 0|1 RP UNDFLO,INEXO
0 1 10... 0 |0 |Oo |0... 0O |[2*| -1 12 0 0... 010 RM,RN,RZ | UNDFLO,INEXO
0 1 10... 0 |0 |O [0... O[O |2**| —1022 +NORM.MIN 0 0... 0|1 RP UNDFLO,INEXO
0 1 ]0... 0 {0 |0 JO... O |0 [2**| —1022 +NORM.MIN 0 0... 010 RM,RN,RZ UNDFLO,INEXO
0 0 J0... 0 |0 |0 |O... O |1 [2** [ —1022 + DENORM.MIN 0 0... 0|1 RP UNDFLO,INEXO
0 0 |0... 0 |0 [0 |]O... O])1 j2**| —1022 +DENORM.MIN 0 0... 010 RM,RN,RZ UNDFLO,INEXO
0 0 0... 0 J]0o (0 ]O... O]O 0 +ZERO 0 0... 010 all
1 0 |0... 0 |0 |O |O... O]1 [2**| ~1022 — DENORM .MIN 1 1...1 |1 RM UNDFLO,INEXO
1 0 f0... G |JO |O {O... O]1 |2*| —1022 — DENORM.MIN 0 0... 010 RP,RN,RZ UNDFLO,INEXO
1 1 ]10... 0 JO |0 |O... O ]O |2*| —1022 —NORM.MIN 1 1... 1|1 RM UNDFLO,INEXO
1 1 j0... 0 |0 O jO... O |O |2** | —1022 —NORM.MIN 0 0... 010 RP,RN,RZ UNDFLO,INEXO
1 1 10... 0 J0 |0 |0... O[O [2**| -1 -12 1 1...1]1 RM UNDFLO,INEXO
1 1 j0... 0 [0 |]O [O... OO |2*| -1 -12 0 0... 010 RP,RN,RZ UNDFLO,INEXO
1 1 ]0... 0 |0 JO JO... O |1 |2**[ -1 —1/2 —1LSB 1 1... 111 RM,RN UNDFLO,INEXO
1 1 J]0... 0 [0 JO [0... O 1 |2**} -1 —1/2 -1LSB 0 0... 010 RP,RZ UNDFLO,INEXO
1 1 |1.. 1 {1 |1 J1.. 1|1 | 2% ] -1 —one + 1LSB 1 1... 111 RM,RN UNDFLO,INEXO
1 _l_‘ 1.. 1 q1 |1 J1.. 111 2% -1 —one + 1LSB 0 0... 010 RP,RZ UNDFLO,INEXO
1 1 J0... 0 JO0 |0 |O... OO |2**|O —one 1 1... 1|1 all
1 1 J1... 1 10 [0 fOo... O[O [2** |30 1 0... 0|1 all
1 1 |1.. 1 10 J0 |O... O 1 [2* |30 1 0... 010 RM INEXO
1 i1, 1 /10 J0 JO... O 1 [2**]30 1 0... 0 (1 RP,RN,RZ INEXO
1 1 ]1.. 1 {0 |1 |1.. 1|1 |2* |30 1 0... 010 RM INEXO
1 1 11.. 1 |0 (1 (1.. 11 |2** |30 1 0... 01 RP,RN,RZ INEXO
1 1 ]1.. 1 |1 (0 |0... 0[O0 [2**]|30 1 0... 010 RM,RN INEXO
1 1 11.. 1 1 0 |0... 0[O0 |2** |30 1 0... 0|1 RP,RZ INEXO
1 1 ]1.. I J1 J1 1., 1|1 [2** |30 1 0... 010 RM,RN INEXO
1 1 |1.. 1 .l_ 1 ]1.. 1|1 |2* |30 1 0... 0|1 RP,RZ INEXO
1 1 j0... 0 0 JOo [0... O[O [2* {31 1 0... 010 all
1 1 |[0... 0 JOo 0 [0... O |1 [2** |31 1 0... 010 RP,RN,RZ INEXO
1 1 10... 0 J0O 0 JO... O |1 |2** |3l 19) Uu...u|U RM OVRFLO,INEXO
1 1 (0... 0 |0 |1 [0... 0|0 [2** |31 1 0... 010 RP,RZ INEXO
1 1 j0... 0 0 |1 |Oo... 00 [2* (31 U Uu...U0|U RM,RN OVRFLO,INEXO
1 1 10... 0 JO |1 |1.. 1|1 2% |31 1 0... 010 RP,RZ INEXO
1 1 ]0... 0 JO |1 Jt... 1 |1 |2** ]3I U U...U0|U RM,RN OVRFLO,INEXO
1 1 10... 0 1 |0 JO... OO |2** |31 U Uu...U|U all OVRFLO
1 1 10... 0 1 o Jo... 0|1 |2* |31 U Uu...U0|U all OVRFLO,INEXO
1 1 j0... 0 0 [0 JO... OO [2** |32 U U...U|U all OVRFLO
1 1 0. 0 |0 |0 |O. 0|0 |2* | 1024 —INF 1 1... 1|1 all INVALOP
1 11X X X |X |X. X | X |2** [ 1024 - NAN 1 1 111 all INVALOP

~L
e

i

*“U" denotes an undefined result.

NOTE: Heavy line indicates rounding boundary in source.

~

Table XVII. Conversion of 64-Bit Double-Precision Floating-Point to 32-Bit Twos-Complement Integer
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Sign HBF 51 .. .f30) £29| f28| 27 . . .f1| f0 Unbiased | Source Name Sign| HB|f22 fl|fo Unbiased | Result Name Rounding Status Flags

) ) 3 ) Expnt ) Expnt Modes
o [1 x5 x[x[x[xt.Ux]x[2] 1024 +NAN o [t [10.0 112 ]2s +NAN all INVALOP
o f1]o... 0o fofo... 002|104 +INF o |1 fo... 0 o0]2~]128 +INF all
o |1 fr.o.oon | fr.o. n ] f2eef 1023 +NORM.MAX| o |1 fo... 0 {0 |2+ |128 +INF RP,RN OVRFLO,INEXO
o f1 il froos ] 2o 1023 +NORM.MAX| o |1 [1... 1)1 2] 127 +NORM.MAX |RZ,RM OVRFLO,INEXO
o [t oo T lo... oo |2e] 127 0 |1 fr... 11|27 +INF RP,RN OVRFLO,INEXO
o (1 h.o.oadi o oo 2|27 0 |1 f1... 1|2 ]27 +NORM.MAX |RZ,RM INEXO
o {1 |i... 1o fo... o1 2|27 0 1 {1 2w +INF RP OVRFLO,INEXO
o 1 fi...n o fo. o] 27 0 1 f1... 1|12 +NORM.MAX |RM,RN,RZ | INEXO
o 1 ..o fofo... 0o |2 127 0o [1 f1... 1| ]| +NORM.MAX |all
o {1 fi... 1 oo fo... 01 ]2erfn27 o [1 f1... 1|27 +NORM.MAX |RP INEXO
o f1 ... oo fo... 01227 0o [1 f1... 1]o |22z RM,RN,RZ | INEXO
o fiJo...0fofofo... 0]0|2*| -126 0 [1fo... 0]0]2]-126 +NORM.MIN |all
[N PO PO U PO PR N P IS V) 0 [0 f1... 1|1 ]2]-126 +NORM.MIN |RP,RN INEXO
o {1 oo Ty fr ||| —a27 0 [0 f1... 1 f1 2] 126 +DNRM.MAX |RZ,RM UNDFLO,INEXO
o [t ... ajfofofo... 0f0]2]| -127 0o fo f1... 1)1 ]2=]-126 +DNRM.MAX |all
0 | Jo 0 qo fo]o... 0fo |2 149 0 fo fo... 0f1]2#]-126 +DNRM.MIN |all
o [Tp0-..0ofofo... 0fo|2=*| -1022 |+NOoRMMIN| |0 [0 fo... o [1|2**]|-126 +DNRM.MIN |RP UNDFLO, INEXO
o [1]o...0ofofo... 0|02+ -1022 |+NoRM.MIN| |o [0 fo... 0|0 |2%]|-126 +ZERO RM,RN,RZ | UNDFLO,INEXO
o fo Jr... v frfrfi... 1|1 ]2| -1022 |+DNRM.MAX| [0 [0 fo... 0|1 ]2*]| -126 +DNRM.MIN | RP UNDFLO, INEXO
o fofi... 1 {1 |t fr... 1|1 |2*+] -1022 |+DNRM.MAX| [0 |0 fo... 0|0 |2]|-126 +ZERO RM,RN,RZ | UNDFLO,INEXO
o fofo...0lofofo... 0|1 ]2+ -1022 |+DNRM.MIN| fo [0 [0... 0|1 ]2**]| -126 +DNRM.MIN |RP UNDFLO, INEXO
o fofo... 0o fofo... 0of1 |2« -1022 |+DNRM.MIN| [0 [0 fo... 0|0 |2**| -126 +ZERO RM,RN,RZ | UNDFLO, INEXO
o fofo...0ofofo... 00 0 +ZERO o [ofo...0]0 0 +ZERO all
1 {ofo...0]ofofo...0f0 0 - ZERO 1 fofo... 010 0 -ZERO all
1 o fo...0Jofofo... 01 ]2} —1022 |-DNRMMIN| {1 {0 fo... 0|1 [2*| -126 -~DNRM.MIN | RM UNDFLO, INEXO
1 fofo... 0o fo]o... of1[2x] 1022 |-DNRMMIN| |1 {0 o... oo |2 -126 ~ZERO RP,RN,RZ UNDFLO, INEXO
1ofo oo b fros 1| 2*| 1022 | -DNRM.MAX| [t [0 fo... o1 ]2¢| -126 —~DNRM.MIN |RM UNDFLO, INEXO
1ofo oo fuooo 1|2 1022 | -DNRM.MAX| [1 [0 fo... o]0 |2 ] -126 ~ZERO RP,RN,RZ UNDFLO, INEXO
1 [t Jo... 0o fofo... 0fo]2**| -1022 |-NORMMIN| [1 [0 fo... o1 2| -126 -DNRM.MIN |RM UNDFLO, INEXO
1 {1 do... 0o fofo... 0f0]2*r{ —1022 |-NORMMIN| [1 [0 [o... o]0 |2|-126 ~ZERO RP,RN,RZ UNDFLO, INEXO
1 ~.. 0o Jofo... 0fo [2**]| -149 1 fofo... 012|126 ~DNRM.MIN | ali
1ot elo o 0o 2| —127 1o Ji... 12| -126 — DNRM.MAX |all
TR O TR Ry u EON EOUURE S T I VY4 1o i) -126 —~NORM.MIN |RM,RN INEXO
[ R PR O O PP N I PSS R VY 1o i ]2 126 - DNRM.MAX | RP,RZ UNDFLO,INEXO
1 1 ]o... 0 0o fo... 0|0 ]|2| —126 11 fo... 0]0]2]| -126 ~NORM.MIN | all
T FU TR I ' P N R PR b I RO [ B P BT —NORM.MAX |RM INEXO
[ R PRI 'Y P PR S Y PSS IR PY T RO (R N K P B RP,RN,RZ INEXO
1o oo o fo... oo 227 [ DU 'O N N P B ~ NORM.MAX |ail
N DU P O DU [V C OO B L B P IO BN (PO N B P2 BV ~INF RM OVRFLO,INEXO
N DU PO DU (U PO B P B VY IR R (PR N R P2 B - NORM.MAX | RP,RN,RZ INEXO
TN DU P O DU T D O K A VY [ R [P N B P Y ~INF RM,RN OVRFLO,INEXO
pofrfreoonfidifo oo |2 127 [ U O N B PR ) - NORM.MAX | RP,RZ INEXO
Vo T ] 2] 1023 ~NORM.MAX| |1 |1 Jo... o]0 |2+ 128, ~INF RM,RN OVRFLO,INEXO
v oo s a | 2ex] 1023 ~NORM.MAX| [1 .1 |1... 1)1 f2# 127 - NORM.MAX | RP,RZ OVRFLO,INEXO
1 {1 ]o... 0o o fo... 002 1024 ~INF 1ol o ofo |2z ~INF }
U fxox XX [xC L x| x [ 2o ] 1024 ~NAN N IR R R Rt ~NAN all INVALOP

( 7 C
NOTE: Heavy line indicates rounding boundary in source.

AL

Table XVIIl. Conversion of 64-Bit Double-Precision Floating-Point to 32-Bit Single-Precision Floating-Point (IEEE Mode)

CH,

CL

OEN —\

OH

oL

OEN

Output Disable Time Measurement

Refer to the discussion in the sestion “Timing" in the text of the data sheet
for a description of this figure.

— 1.5V 2 1.5V
v 5V You
- o.
OH v
Viiistate
Vo + 08V >
oL
] Minimom ¢
DIs
N Maximum t
Y casured ENA

Output Enable Time Measurement

Tristate’
Tristate”

e

+ 0.4V
0.1V

N~

Figure T1. ADSP-3210/3211/3220/3221 Three-State Disable
and Enable Timing

CH

CL

Clock

RESET Control

Figure T2. ADSP-3210/3211/3220/3221 Reset Timing

Clock

HOLD Control

Timing
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Figure T3. ADSP-3211 Muiltiplier Output Register Hold



Clock

SP (for SP FitgPt) <,
SP (for FxdPt)
oP

SELB]
SELA| : :

One Input-Port
Configuration

(ADSP-3210 always;
ADSP-3211 option)

= \ " Two /npui-Port.

SELBkK
SELAK
Data Input® -
SELBj
SELAj

SELBk

Configuration
(ADSP-3211 option)

SELAK

AIN31_0'

BN, o

ABSA/B. WRAPA/B,
RNDO:1. and

SHLP Controls
RDAO:1 Read h:
Selection Controls =

RDBO:1 Read '
Selection Controls -

MSWSEL Control :

DOUT
31-0

‘. ADSPi3211 liap

i .ADSP-3210 'Lap
[ X 1

® e

DENORM Status
Output

Status Outputs
(except DENORM)

* See "Timing" section for additional sequencing options.

Figure T4. ADSP-3210/3211 32-Bit Single-Precision
Floating-Point and Fixed-Point Multiplications
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Clock 0 ! 2 3 4 5 6 7 8

SELA : : :
Lo One Input-Port

SELB Configuration
vew (ADSP-3210 always;

SELAow ~ ADSP-3211 option)

Data Input” < = =
SELBLSW,}'{ Y j'
SELAst =Y J:

SE‘LBMSW

Two Input-Port
Configuration
. (ADSP-3211 option)

SELA g

ABSA/B. WRAPA/B. =
RNDO:1 Controls =

RDAO & RDBO Read
Selection Controls

RDA1 Read
Selection Control

RDB1 Read
Selection Control

MSWSEL Control *

DOUT31 o

DENORM Status . indeterminate =

" indeterminate
Output T T

X, DNRI\§/1 uD(

Status Outputs
(except DENORM)

: : : : : : : : : previous status <.

X statas
* See "Timing" section for additional sequencing options.

Figure T5. ADSP-3210/3211 64-Bit Double-Precision
Floating-Point Multiplications
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Clock

IB-O

SELB]

SELAj

One /nbut-Pbrt
Configuration

SELBkK

SELAK

Data Input® -
SELB;j
SELA|

SELBk

Two Input-Port
SELAK Configuration

ANy 0"

BIN31 o
ABSA/B. RNDO:1.

INEXIN, and
RNDCARIt
RDAO:1 Read :
Selection Controls =

RDBO:1 Read T
Selection Controls ==

MSWSEL Control

DouT, )X

: :

- j status < kstatusx

Status Outputs

" See "Timing" section for additional sequencing options. _
t RNDCARI and INEXIN should be LO except for unwrap. division. and square root operations.

Figure T6. ADSP-3220/3221 32-Bit Single-Precision
Floating-Point Logical, and Fixed-Point ALU Operations
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Clock

8-0

SELB ,,

SELA o

One /npdt—Porf
Configuration

SELB, g

SELA, ow

Data Input* <.

ABSA/B. RNDO:1.
INEXIN. and
RNDCARIY _
RDAO & RDBO Read
Selection Controls | #=

RDA1 Read
Selection Control

RDB1 Read
Selection Control

MSWSEL Control -

DOUT31_O

Status Outputs

* See "Timing" section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap. division. and square root operations.

Figure T7. ADSP-3220/3221 64-Bit Double-Precision
Floating-Point ALU Operations — One-Port Configuration

4-38 FLOATING-POINT COMPONENTS



¢ p-eCly
0 1 2 3 4 5 6

Clock

Two Input-Port
Configuration

BiN3;

ABSA/B, RNDO:1, __
INEXIN.and
RNDCARIt .

RDAO & RDBO Read
Selection Controls

RDA1 Read
Selection Control ===

RDB1 Read
Selection Control ==

MSWSEL Control :

pouT,,

it

iy

L <—> : : :
X jstatus X kstatus X
* See "Timing" section for additional sequencing options.

1T RNDCARI and INEXIN should be LO except for unwrap, division, and square root operations.

Status Outputs

Figure T8. ADSP-3220/3221 64-Bit Double-Precision
Floating-Point ALU Operations — Two-Port Configuration
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Clock

Two /npui—Port :
Configuration

BIN,, o
ABSA/B. RNDO:1.
INEXIN.and
RNDCARI

RDAO:1 Read
Selection Controls :

RDBO:1 Read
Selection Controls :

MSWSEL Control

DOUT31_0

t

&

X J SlaIL‘JS

Status Outputs  ©  : . . . . . i . previousstalus .

* See "Timing" section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap. division. and square root operations.

Figure T9. ADSP-3221 32-Bit Single-Precision Floating-
Point Division — Two Input Port Configuration
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Clock

wa /npuf-Port
Configuration

B'N31—0‘

ABSA/B. RNDO:1,
INEXIN.and
RNDCARIt -
RDAO & RDBO Read
Selection Controls :

RDA1 Read -
Selection Control =

RDB1 Read
Selection Control =

“topp:

MSWSEL Control :
DOUT”0
- tap
Status Outputs ' » : : : previous status

* See "Timing" section for additional sequencing options.
1t RNDCARI and INEXIN should be LO except for unwrap. division, and square root operations.

Figure T10. ADSP-3221 64-Bit Double-Precision Floating-
Point Division — Two Input-Port Configuration
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Clock 32 33

8-0

SELBj

\ Two /nput Porz‘
j onf/gurailon :

BIN,, o

ABSB. RNDO:1.
INEXIN.and
RNDCARIt

RDBO:1 Read
Selection Controls

MSWSEL Control :

DOUT31V0

Lap

4

Status Outputs previous status

* See "Timing" section for additional sequencing options.
1 RNDCARI and INEXIN should be LO except for unwrap. division. and square root operations.

Figure T11. ADSP-3221 32 Bit Single-Precision Floating-
Point Square Root — Two Input-Port Configuration
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Clock 61 62

8-0

SELBLSW}—-:fy J: N

SELB

Two /npuf—Port

MSW b d K
Configuration

BIN31_0

ABSB. RNDO:1.
INEXIN.and
RNDCARIt

RDBO Read
Selection Controls :© :

RDB1 Read
Selection Control

MSWSEL Control :

pout,

Status Outputs : : : : : : : : : previous status = = = : j status

* See "Timing" section for additional sequencing options.
1t RNDCARI and INEXIN should be LO except for unwrap. division. and square root operations.

Figure T12. ADSP-3221 64-Bit Double-Precision Floating-
Point Square Root — Two Input-Port Configuration
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SPECIFICATIONS'

RECOMMENDED OPERATING CONDITIONS

ADSP-3210/3211/3220/3221

JK,andL Grades | S, T,and U Grades®
Parameter Min Max Min Max Unit
Vpp  Supply Voltage 475 525 | 45 5.5 v
Tame Operating Temperature (Ambient) 0 +70 -55 +125 °C

ELECTRICAL CHARACTERISTICS

ADSP-3210/3211/3220/3221

J,K,and L Grades | S, T, and U Grades?

Parameter Test Conditions Min Max Min Max Unit
Via  High-Level Input Voltage @ Vpp = max 2.0 2.0 A%
Viua High-Level Input Voltage, @ Vpp = max 2.6 3.0 \Y

CLK and Asynchronous Controls
Vi  Low-Level Input Voltage @ Vpp=min 0.8 0.8 A%
Vo High-Level Output Voltage @Vpp=min& Iogy=—1.0mA | 2.4 2.4 \%
Vor Low-Level Output Voltage @ Vpp=min & Io; =4.0mA 0.5 0.6 A%
Iiy  High-Level Input Current, @ Vpp=max & Vin=5.0V 10 10 pA

AllInputs
I Low-Level Input Current, @ Vpp=max & Vin=0V 10 10 pA

AllInputs
Ioz  Three-State Leakage Current @ Vpp =max; HighZ; 50 50 pA

Vin =0V or max
Ipp  Supply Current @ max clock rate; TTL inputs 150 200 mA
Ipp  Supply Current-Quiescent AllVin=2.4V 50 60 mA
SWITCHING CHARACTERISTICS’
ADSP-3210/3211/3220/3221
J Grades K Grades S Grades? T Grades?
0to 70°C 0to70°C —55°Cto +125°C | —55°Cto +125°C

Parameter Min Max Min Max Min Max Min Max Unit
tey Clock Cycle 125 100 150 125 ns
tcL Clock LO 20 20 30 30 ns
tcu  Clock HI 20 20 30 30 ns
tps Data & Control Setup 20 15 25 20 ns
tpy  Data & Control Hold 3 3 3 3 ns
tpo  DataOutput Delay 30 25 35 30 ns
tso  Status Output Delay 30 25 35 30 ns
teno  MSWSEL-to-Data Delay 25 20 30 25 ns
tpis  Three-State Disable Delay 18 15 25 20 ns
tgena  Three-State Enable Delay 3 25 3 20 3 30 3 25 ns
tsu  RESET Setup 20 15 25 20 ns
RS RESET Pulse Duration 50 50 50 50 ns
tus HOLD Setup 20 15 22 18 ns
tyy  HOLD Hold 3 3 3 3 ns

4-44 FLOATING-POINT COMPONENTS



ADSP-3210/3211/3220/3221

J Grades K Grades S Grades? T Grades®
0to70°C 0to 70°C —55°Cto +125°C | —55°Cto +125°C
Parameter Min Max Min Max Min Max Min Max Unit
topp Operation Time
32-Bit Multiplication 125 100 150 125 ns
64-Bit Multiplication 500 400 600 500 ns
32-Bit ALU Operations 125 100 150 125 ns
64-Bit ALU Operations 125 100 150 125 ns
32-Bit Division (3221) 2.0 1.6 2.4 2.0 us
64-bit Division (3221) 3.75 3.0 4.5 3.75 ™
32-Bit Square Root (3221) 3.625 2.9 4.35 3.625 | ps
64-Bit Square Root (3221) 7.25 5.8 8.7 7.25 s
trap Total Latency
32-Bit Multiplication (3210) 363 290 435 363 ns
32-Bit Multiplication (3211) 300 240 360 300 ns
64-Bit Multiplication 738 590 885 738 ns
32-Bit ALU Operation 300 240 360 300 ns
64-Bit ALU Operation 363 290 435 363 ns
32-Bit Division (3221) 2.175 1.74 2.61 2175 | ps
64-Bit Division (3221) 3.925 3.14 4.71 3.925 | ps
32-Bit Square Root (3221) 3.8 3.04 4.56 3.8 s
64-Bit Square Root (3221) 7.425 5.94 8.91 7.425 us
ADSP-3210 ADSP-3211 ADSP-3210 ADSP-3211
L Grade L Grade U Grade U Grade
0to70°C 0to 70°C —55°Cto +125°C | —55°Cto +125°C
Parameter Min Max Min Max Min Max Min Max Unit
tcy Clock Cycle 60 50 75 70 ns
tcL Clock LO 20 20 30 30 ns
tcy  Clock HI 20 20 30 30 ns
tps Data & Control Setup 15 15 20 20 ns
tpg  Data & Control Hold 3 3 3 3 ns
tpo  Data Output Delay 25 25 30 30 ns
tso Status Output Delay 25 25 30 30 ns
teno MSWSEL-to-Data Delay 20 20 25 25 ns
tois  Three-State Disable Delay 15 15 20 20 ns
texa Three-State Enable Delay 3 20 3 20 3 25 3 25 ns
tsu RESET Setup 15 15 20 20 ns
trs RESET Pulse Duration 50 50 50 50 ns
tus HOLD Setup 15 15 18 20 ns
tygy HOLD Hold 3 3 3 3 ns
topp Operation Time
32-Bit Multiplication 60 50 75 70 ns
64-Bit Multiplication 240 200 300 280 ns
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ADSP-3210 ADSP-3211 ADSP-3210 ADSP-3211
L Grade L Grade U Grade U Grade
0to 70°C 0to 70°C —55°Cto +125°C | ~55°Cto +125°C

Parameter Min Max Min Max Min Max Min Max Unit
tyap Total Latency

32-Bit Multiplication 190 140 238 190 ns

64-Bit Multiplication 370 315 463 400 ns
NOTES
'All min and max specifications are over power-supply and temperature range indicated.
%S and T grade parts are available processed and tested in accordance with MIL-STD-883B. The processing and test methods used
for S/883B and T/883B versions of the ADSP-3210/3211/3220/3221 can be found in Analog Devices’ Military Data Book.
Alternatively, S and T grade parts are available with high-reliability “PLUS” processing as shown in Figure 37.
3Input levels.are GND and +3.0V. Rise times are Sns max. Input timing reference levels and output reference levels
are 1.5V, except for 1) tyna and prs which are as indicated in Figure T1 and 2) tpg and tpy which are measured
from clock V4 to data input Vyy; or Vi, crossing points.
Specifications subject to change without notice.

Voo lou
VDD
INPUT O-@ OUTPUT +1.5V
_I_ }—o ouTPUT PIN
3pF x 40pF
1] —= I
'OH

Figure 34. Equivalent Input Circuits

INTERNAL VISUAL INSPECTION

COMMERCIAL

]

CONDITION C - 10 CYCLES

STABLIZATION BAKE
METHOD 1008

]

TEMPERATURE CYCLE
METHOD 1010
CONDITION C - 10 CYCLES

!

CONDITION D - 20,000G, Y1 PLANE

CENTRIFUGE
METHOD 2001

Figure 35. Equivalent Output Circuits

Figure 36. Normal Load for ac

Measurements

)

HERMETICITY
FINE LEAK CONDITION A OR B
METHOD
GROSS LEAK CONDITION C

1014

]

INTERIM ELECTRICAL TESTING

i

!

BURN-IN
METHOD 1015
160 HRS - 125°C

!

r100°o FINAL ELECTRICAL TESTING

Figure 37. PLUS Processing Flow
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ORDERING INFORMATION

Package
Part Number Temperature Range Package Outline
ADSP-3210]G 0to+70°C 100-Pin Grid Array ~ G-100A
ADSP-3210KG 0to +70°C 100-Pin Grid Array  G-100A
ADSP-3210LG 0to +70°C 100-Pin Grid Array ~ G-100A
ADSP-3210SG —55°Cto +125°C  100-Pin Grid Array  G-100A
ADSP-3210TG —55°Cto +125°C  100-Pin Grid Array ~ G-100A
ADSP-3210UG —55°Cto +125°C ~ 100-Pin Grid Array  G-100A
ADSP-32108G/ + —55°Cto +125°C  100-Pin Grid Array  G-100A
ADSP-3210TG/ + —55°Cto +125°C ~ 100-Pin Grid Array ~ G-100A
ADSP-3210UG/ + —55°Cto +125°C ~ 100-Pin Grid Array  G-100A
ADSP-3210SG/883B —55°Cto +125°C  100-Pin Grid Array  G-100A
ADSP-3210TG/883B  —55°Cto +125°C  100-Pin Grid Array  G-100A
ADSP-3210UG/883B  —55°Cto +125°C  100-Pin Grid Array  G-100A
ADSP-3211]JG 0to +70°C 144-Pin Grid Array  G-144A
ADSP-3211KG Oto +70°C 144-Pin Grid Array ~ G-144A
ADSP-3211LG 0to +70°C 144-Pin Grid Array  G-144A
ADSP-3211SG =55°Cto +125°C ~ 144-PinGrid Array  G-144A
ADSP-3211TG —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3211UG —55°Cto +125°C ~ 144-Pin Grid Array  G-144A
ADSP-3211SG/ + —55°Cto +125°C  144-Pin Grid Array  G-144A
ADSP-3211TG/ + —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3211UG/ + —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3211SG/883B —55°Cto +125°C  144-Pin Grid Array  G-144A
ADSP-3211TG/883B  —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3211UG/883B —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3220JG 0to +70°C 144-Pin Grid Array G-144A
ADSP-3220KG 0to +70°C 144-Pin Grid Array ~ G-144A
ADSP-3220SG —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3220TG —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-32208G/ + —55°Cto +125°C ~ 144-PinGrid Array  G-144A
ADSP-3220TG/+ —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3220SG/883B —55°Cto +125°C  144-PinGrid Array G-144A
ADSP-3220TG/883B  —55°Cto +125°C  144-PinGrid Array = G-144A
ADSP-3221]JG 0to +70°C 144-Pin Grid Array  G-144A
ADSP-3221KG Oto +70°C 144-Pin Grid Array  G-144A
ADSP-3221SG —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3221TG —55°Cto +125°C ~ 144-PinGrid Array  G-144A
ADSP-3221SG/ + —55°Cto +125°C  144-Pin Grid Array = G-144A
ADSP-3221TG/ + —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3221SG/883B —55°Cto +125°C  144-PinGrid Array  G-144A
ADSP-3221TG/883B  —55°Cto +125°C  144-Pin Grid Array  G-144A

Contact DSP Marketing in Norwood concerning the availability of other package types.

ESD SENSITIVITY
Each chip in the ADSP-3210/3211/3220/3221 chipset features input protection circuitry consisting
of large “‘distributed” diodes and polysilicon series resistors to dissipate both high-energy discharges
(Human Body Model) and fast, low-energy pulses (Charged Device Model). Per Method 3015.2 of
MIL-STD-883C these chips have been classified as Category A devices.

WARNING!
4,@

ESD SENSITIVE DEVICE

Proper ESD precautions are strongly recommended to avoid functional damage or performance
degradation. Charges as high as 4000 volts readily accumulate on the human body and test equipment
and discharge without detection. Unused devices must be stored in conductive foam or shunts,
and the foam should be discharged to the destination socket before devices are removed. For
further information on ESD precautions, refer to Analog Devices’ ESD Prevention Manual.
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1 2 3 4 5 6 7 8 9 ‘10 1 12 13
N NC | DOUTs | DOUT? | DOUTS |DOUT11[DOUT14|DOUTI7|DOUT18|DOUT21|DOUT23|DOUT25 [DOUT28| NiC
m | pourz| pouta | pouts | pouts [pouT10|DOUTI3|DOUTIS [DOUTIS| DOUT22 |DOUT24|DOUT27 |DOUT28 | DOUT2e
L | oouri | pouts DOUT12|DOUT16|DOUT20 DOUT30 [ DOUT31
K | mexo | poute GND | GND
g | vae | vae GND | DENORM
H | =noo [mvocaro | vae wasop | ovarto | unorto
G | RrND1 | cLk | RESET BOTTOM VIEW MSWSEL | OEN | SHLP
F sp op | aBss SELA1 | ABSA | FAST
E | setet | seLso RDAO | SELAOD
D | roso | wrars DIN31 | WRAPA
c oo | ot | "NOEX DIN11 | DIN15 | DIN19 DIN28 | DIN30
B | omz | oms | oma | oinz | ome | oiniz2 | Dinte | Dints | DNzt | DiN23 | Dinzs | DinN27 | Dinze
A NC DINS DING DIN8 DIN10 DIN13 DIN14 DIN17 DIN20 DIN22 DIN24 DIN26 N/C

1 2 3 4 5 6 7 8 9 10 11 12 13
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AIN18 AIN1S AIN12 AIN10 AIN7 AIN4 AIN3 AIN1 BIN30 BIN29 BIN25 BIN23 BIN22 | BIN18 BIN14 Q

AIN22 AIN19 AIN16 AIN14 AINT1 AINS AING AIN2 BIN28 BiN27 BIN24 BIN21 BIN19 BIN1S BIN11 P

AIN26 AIN23 AIN20 AIN17 AINT3 AINS AINS AIND BIN31 BIN26 BIN20 BIN17 BIN16 BiN12 BINS N

AIN27 AIN25 AIN21 BIN13 BIN10 BING M
AIN29 AIN28 AIN24 BIN9 BIN7 BIN3 L
IPORTO | AIN31 AIN3O BINS BIN4 BINO K
SELA3 [ IPORT1 | SELA1 BIN1 BIN2 SELB3 J
SELAO RDA1 SELA2 SELBO | SELB1 | SELB2 H

RDAO | FAST | WRAPA BOTTOM V|EW RDB1 | ABsB | RDBO | G

ABSA MSWSEL OEN GND CLK WRAPB F
SHLP |UNDFLO| INVALOP GND bpP SP E
Tca | ono | vaa | 'NDEX vdd | REsev| mnpr | D
OVRFLO DENORM [DOUT29 |DOUT28|DOUT25(DOUT1S GND GND DOUT10 | DOUTE | DOUT2 vdd vdd GND RNDO [of
GND DOUT30|DOUT26 |DOUT24|DOUT21|DOUT18|DOUT17|DOUT13| DOUTY [ DOUT7 | DOUT4 | DOUTY INEXO FTLD TCB B
DOUT31{DOUT27 {DOUT23 [DOUT22|DOUT20(|DOUT16 (DOUT15|DOUT14(DOUT12|(DOUTT1| DOUTS | DOUTS | DOUT3 | DOUTO | RNDCARO A

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

ADSP-3211 Pinouts
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1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Q AIN18 AIN15 AIN12 AIN10 AIN7 AIN4 AIN3 AIN1 BIN30 BIN29 BIN25 BIN23 BIN22 BIN18 BIN14
P AlNz? AIN19 AIN16 AIN14 AINT1 AINB AING AIN2 BIN28 BIN27 BIN24 BIN21 BIN19 BIN15 BIN11
N | amze | amza | amao | ami7 | amis | ame | ains | amo | einai | sinze | Binzo | Bini7 | einte | BNtz | BiNg
Y] AIN27 AIN25 AIN21 BIN13 BIN10 BING
L ' AIN29 AIN28 AIN24 . BIN9 BIN7 BIN3
K RND1 AIN31 AIN30 BINS BIN4 BINO
g | mvocam | mNpo | cLk BINT | BIN2 |IPORT1
H | aess | aBsa | RESET RDAO | IPORTO| RDA1

BOTTOM VIEW

G 10 13 12 SELAO | SELA3 | SELA1
F " 15 16 RDBO | RDB1 | SELA2
E 14 18 FAST N/C SELB1 | SELBO
D It GND vdd '”:fl’sx vdd NIC | SELB2
C | mExIN [OVRFLO| INEXO |DOUT31|DOUT28|DOUT22( GND | GND [DOUT13| DOUTS | DOUTS | Vdd vad | MswsEL | sELB3
B | ono |unpFLO|DOUT29|DOUT27 |DOUT24|DOUT21 |DOUT20|DOUT16 |DOUT12|DOUTI0| DOUT? | DOUT4 | DOUT2 | DOUTO | OEN
A INVALOP |DOUT30{DOUT26 |[DOUT25|DOUT23|DOUT19 |DOUT18|DOUT17|DOUT15|DOUT14|DOUT11| DOUTE DOUT6 | DOUT3 | DOUTY

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
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ANALOG
DEVICES

32-Bit IEEE Floating-Point Chipset

ADSP-3201/ADSP-3202

FEATURES

Complete Chipset Implementing Floating-Point
Arithmetic

Fully Compatible with IEEE Standard 754

Arithmetic Operations on Three Data Formats:
32-Bit Single-Precision Floating Point
32-Bit Twos-Complement Fixed-Point
32-Bit Unsigned-Magnitude Fixed-Point

Pin-Compatible Single-Precision Versions of the
ADSP-3211 Multiplier and ADSP-3221 ALU

Only One Internal Pipeline Stage

Single-Precision and Fixed-Point Multiplier and ALU
Pipelined Throughput Rates to 10 MFLOPS

Low Latency for Scalar Operations
240ns for 32-Bit Multiplier and ALU Operations

IEEE Divide and Square Root

Either One or Two Input-Port Configuration Modes

750mW Max Power Dissipation per Chip with 1.5pm
CMOS Technology

144-Lead Pin Grid Array

Available Specified to MIL-STD-883, Class B

APPLICATIONS

High-Performance Digital Signal Processing
Floating-Point Accelerators

Array Processors

Graphics Numerics Processors

GENERAL DESCRIPTION

The ADSP-3201 Floating-Point Multiplier and the ADSP-3202
Floating-Point ALU are high-speed, low-power, 32-bit arithmetic
processors conforming to IEEE Standard 754. This low-cost
chipset comprises the basic computational elements for imple-
menting a high-speed, single-precision numeric processor. Oper-
ations are supported on three data formats: 32-bit IEEE single-
precision floating-point, 32-bit twos-complement fixed-point,
and 32-bit unsigned-magnitude fixed-point.

The high throughput of these CMOS chips is achieved with
only a single level of internal pipelining, greatly simplifying
program development. Theoretical MFLOPS rates are much
easier to approach in actual systems with this chip architecture
than with alternative, more heavily pipelined chipsets. Also, the
minimal internal pipelining in the ADSP-3201/3202 results in
very low latency, important in scalar processing and in algorithms
with data dependencies. To further reduce latency, input registers
can be read into the chips’ internal computational circuits at the
rising edge that loads them from the input port (formerly called
“direct operand feed”).

Microcode Memory
T
microcode rmicrocode nstruction ‘

memory
ADSP-1410
Address Generator
Register Files

address ADSP-1401
Program
Sequencer
f data
ADSP-3201 address

Floating-Point
Data

ALU
Memory

—

“apsp-3i128
Five-Port

ADSP-3202

Floating-Point
Multiplier

v Data Bus v

Word-Slice™ Microcoded System with ADSP-3201/3202

In conforming to IEEE Standard 754, these chips assure complete
software portability for computational algorithms adhering to
the Standard. All four rounding modes are supported for all
floating-point data formats and conversions. Five IEEE exception
conditions — overflow, underflow, invalid operation, inexact
result, and division by zero — are available externally on status
pins. The IEEE gradual underflow provisions are also supported,
with special instructions for handling denormals. Alternatively,
each chip offers a FAST mode which sets results less than the
smiallest IEEE normalized values to zero, thereby eliminating
underflow exception handling when full conformance to the
Standard is not essential.

The instruction sets of the ADSP-3201/3202 are oriented to
system-level implementations of function calculations. Specific
instructions are included to facilitate such operations as floating-
point divide and square root, table lookup, quadrant normalization
for trig functions, extended-precision integer operations, logical
operations, and conversions between all data formats. ’

The ADSP-3201 Floating-Point Multiplier is a pin-compatible,
32-bit version of the 144-lead ADSP-3211 Floating-Point Multi-
plier. Like the ADSP-3211, it has two input ports and eight
input registers. It executes all ADSP-3210 and ADSP-3211 32-
bit operations. The ADSP-3201 supports twos-complement,
unsigned-magnitude, and mixed-mode 32-bit fixed-point
multiplications.
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The ADSP-3202 Floating-Point ALU is a pin-compatible, 32-bit
version of the 144-lead ADSP-3221 Floating-Point ALU. Like
the ADSP-3211, it has two input ports and eight input registers.
It executes all ADSP-3220 and ADSP-3221 32-bit operations,
including IEEE division and square ‘root.

The ADSP-3201/3202 chipset is fabricated in double-metal
1.5um CMOS. Each chip consumes 750mW maximum, signifi-
cantly less than comparable bipolar solutions. The differential
between the chipset’s junction temperature and the ambient
temperature stays small because of this low-power dissipation.

Thus the ADSP-3201/3202 can be safely specified for operation
at environmental temperatures over its extended temperature
range (—55°C to + 125°C ambient).

The ADSP-3201/3202 are available for both commercial and
extended temperature ranges. Extended temperature range parts
are available with optional high-reliability processing (“PLUS”
parts, see Figure 29) or processed fully to MIL-STD-883, Class
B. The ADSP-3201 and ADSP-3202 are packaged in ceramic
144-lead pin grid arrays.
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FUNCTIONAL DESCRIPTION OVERVIEW

The ADSP-3201/3202 share a common architecture (Figure 1)
in which all input data is loaded to a set of input registers with
both rising and falling clock edges. These registers can be read
to the chip’s computational circuitry as they are loaded on a
rising edge. At the end of first processing clock cycle, partial
results and most controls are clocked into a set of internal pipeline
registers. In most cases, only a second clock cycle is required to
conclude processing. (The exceptions are division and square
root.) At the end of this second processing cycle, results are
clocked into an output register. The contents of the output
register can then be driven off-chip. An output multiplexer
allows driving both halves of a 64-bit fixed-point multiplication
result off-chip through the 32-bit output port in one output

T

INPUT REGISTERS I

| READ sELECTION muxes |

F  SECOND-STAGE PROCESSING

r
I
|
I
|
|
|
I
I
I
I
I
L

_Figure 1. ADSP-3201/3202 Generic Architecture

Because all input and output data is internally registered and
because of the single level of internal pipeline registers, operations
can be overlapped for high levels of pipelined throughput. Figure
2 illustrates a typical sequence of pipelined operations. Note
cycle #4 of Figure 2 after the data transfer and internal pipelines
are full. While the final A results of the first operation are being
driven off-chip, B processing can be concluding at the second



stage, C processing beginning at the first stage, and D data
loading to the input registers.

All three-port members of this chipset can be configured for
two-port operations, thereby reducing system busing require-
ments. However configured, the ADSP-3201/3202 can load data
on rising edges of the clock and on falling edges of the clock,
subject to constraints described in “Method of Operation.” The
port configuration chosen determines which registers load data
on which edges. All input registers have their own independent
load selection controls, allowing the same data to be loaded to
multiple registers simultaneously.

A set of read selection multiplexers feeds input data from the
input registers to the computational circuitry. These muxes can
select data that was just loaded at the clock’s rising edge (“direct
operand feed”), if desired, with no throughput or cycle-time
penalty.

All control signals need only be supplied to the chips at their
cycle rate. This approach avoids requiring that the sequencing
control cycle time be faster than the chipset’s major processing
cycle rate. Less expensive microcode memory can therefore be
used. For this reason, load selection controls for registers to be
loaded on the clock’s falling edge need only be valid at the

time Load First-Stage | Second-Stage Output
(cycles) i Input Data i Processing Processing Result
1 Data Set A
2 Data Set B Data Set A
3 Data Set C Data Set B Data Set A
4 Data Set D Data Set C Data Set B Data Set A
5 Data Set E Data Set D Data Set C Data Set B
v

previous rising edge. (The designer may choose to supply the
asynchronous output multiplexer and tristate controls at a higher
rate, however.)

The ADSP-3201/3202 fully supports the gradual underflow
provisions of IEEE Standard 754 for floating-point arithmetic.
The Floating-Point ALU can operate directly on both normals
and denormals, except in division and square root. The Floating-
Point Multiplier operates on normals but cannot operate on
denormals directly. Denormals must first be “wrapped” by an
ALU to a format readable by a Multiplier. Several flags are
available for detecting and handling exceptions caused by loading
a denormal to a Floating-Point Multiplier. Information about
rounding and inexact results generated by the Multiplier is
needed by the ALU to produce results in conformance to Standard
754. All ADSP-3201/3202 chips include a “FAST” control that
flushes all denormalized results to zero, avoiding the system
delays of IEEE exception processing for gradual underflow.

All status output flags except denormal detection are registered
at the output in parallel with their associated results. The asyn-
chronous denormal flag allows an early detection of a denormalized
number loaded to a Floating-Point Multiplier, speeding exception
processing.

Figure 2. Typical Pipelining with the ADSP-3201/3202
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PIN DEFINITIONS AND FUNCTIONAL BLOCK

DIAGRAMS

All control pins are active HI (positive true logic naming con-
vention), except RESET and HOLD. Some controls are registered
at the clock’s rising edge (REG); other controls are latched in
clock HI and transparent in clock LO (LAT); and others are

asynchronous (ASYN).
ADSP-3201 Floating-Point Multiplier Pin List

PIN NAME DESCRIPTION

Data Pins

AIN; 1-0 32-Bit Data Input

BIN3;, o 32-Bit Data Input

DOUT3;,.0 32-Bit Data Output

Control Pins

RESET Reset

HOLD Hold Control

IPORTO Input Port Configuration Control 0
IPORT1 Input Port Configuration Control 1
SELAO Load Selection for AQ

SELA1 Load Selection for A1

SELA2 Load Selection for A2

SELA3 Load Selection for A3

SELBO0 Load Selection for BO

SELB1 Load Selection for Bl

SELB2 Load Selection for B2

SELB3 Load Selection for B3

RDAO Register Ax Read Selection Control 0
RDAl Register Ax Read Selection Control 1

CLK

0§

TYPE

ASYN
ASYN
ASYN
ASYN
LAT
LAT
LAT
LAT
LAT
LAT
LAT
LAT
REG
REG

v

PINNAME DESCRIPTION

RDBO0 Register Bx Read Selection Control 0

RDBI Register Bx Read Selection Control 1

WRAPA Wrapped Contents in Register Ax

WRAPB Wrapped Contents in Register Bx

TCA Twos-Complement Integer in
Register Ax

TCB Twos-Complement Integer in
Register Bx

ABSA Read Absolute Value of Ax

ABSB Read Absolute Value of Bx

SP Single-Precision Floating-Point Mode

DP Double-Precision Mode

RNDO Rounding Mode Control 0

RND1 Rounding Mode Control 1

FAST Fast Mode

SHLP Shift Left Fixed-Point Product

MSWSEL Select MSW of Output Register

OEN Output Data Enable

Status Out

INEXO Inexact Result

OVRFLO Overflowed Result

UNDFLO Underflowed Result

INVALOP  Invalid Operation

DENORM Denormal Output

RNDCARO  Round Carry Propagation Out

Miscellaneous

CLK Clock Input

Vob + 5V Power Supply (Four Lines)

GND Ground Supply (Eight Lines)

Vpp GND

Rl

Controls

29

IPORT CONFIGURATION I_.IPORT CONF!GURATION

/32

REGISTER Ax READ SELECTIOI

IPORTO:1

Y

" -
32 32 432
Y
8 /23

SELA3 SEL

SELA/B0:3

B0 [SELB1 SELB3

A A B issa B @
y y y SELA/BO:3
/s A2 /s e RDA/BO:1

SP

32 x 32 PARALLEL MULTIPLIER ARRAY

TCA/B
ABSA/B

4
FPIPEL INE REGISTER I

64
P PIPELINE REGISTER

FCONTROL PIPELINE RE! ISTERI

:

64

ROUNDING &

EXPONENT
CIRCUITRY

1 FAST, RNDO:1

EXCEPTION PI

Vi
78

SHLP

OVRFLO
UNDFLO
INEXO
INVALOP
RNDCARO

Status DENORM

1__HoLb

MSWSEL

DOUT,, 4

Figure 3. ADSP-3201 Functional Block Diagram
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REG
REG
REG
REG
REG

REG

REG
REG
REG
REG
REG
REG
REG
REG
ASYN
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ADSP-3202 Floating-Point Multiplier Pin List

PINNAME DESCRIPTION

DataPins
AIN3;
BIN3; 0
DOUT3,

Control Pins
RESET
IPORTO
IPORT1
SELAO
SELA1
SELA2
SELA3
SELBO
SELBI1
SELB2
SELB3
RDAO
RDAI
RDB0
RDBI1

32-Bit Data Input
32-Bit Data Input
32-Bit Data Output

Reset

Input Port Configuration Control 0

Input Port Configuration Control
Load Selection for AQ
Load Selection for Al
Load Selection for A2
Load Selection for A3
Load Selection for BO
Load Selection for B1
Load Selection for B2
Load Selection for B3

1

Register Ax Read Selection Control 0
Register Ax Read Selection Control 1
Register Bx Read Selection Control 0
Register Bx Read Selection Control 1

CLK VDD GND

177

AIN:‘
isz

TYPE

ASYN
ASYN
ASYN
LAT
LAT
LAT
LAT
LAT
LAT
LAT
LAT
REG
REG
REG
REG

1-0

PIN NAME

Is o
RNDO
RNDI1
FAST
MSWSEL
OEN

Status In
INEXIN
RNDCARI

Status Out
INEXO
OVRFLO
UNDFLO
INVALOP

Miscellaneous
CLK

Vbp
GND

[PoRT conFiGuRATION]_[PORT CONFIGURATION| 1PORTO:

v
i *32>-<32 T
[

v
732

SELA1

SELA2

SELA3

y2
732

SELBO

A0 A1l

32 32

A2

32

A3

32

[recisteR axREAD SELeCTION Mux_ |- RoA0:1 |

SELB3

EGISTER Bx READ SELECTION MUX

|Exponent 4
Y

/o

IMani

y
24

tissa A

B

DESCRIPTION TYPE
ALU Instruction REG
Rounding Mode Control 0 REG
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METHOD OF OPERATION

DATA FORMATS

The ADSP-3201/3202 chipset supports single-precision floating-
point data formats and operations as defined in IEEE Standard
754-1985. 32-bit twos-complement fixed-point data formats and
operations are also supported by all four chips. 32-bit unsigned-
magnitude data formats and operations are supported by the
ADSP-3201 Multiplier and ADSP-3202 ALU. This chipset
operates directly on 32-bit fixed-point data. (No time-consuming
conversions to and from floating-point formats are required.)

Single-Precision Floating-Point Data Format
IEEE Standard 754 specifies a 32-bit single-precision floating-point
format,

Sign | Exponent (e) Fraction (f)
S 1% € 1.2 fo
bit 31 30 23 22 0
Binary Point

Figure 5. Single-Precision Floating-Point Format

which consists of a sign bit s, a 24-bit significand, and an 8-bit
unsigned-magnitude exponent e. For normalized numbers, this
significand consists of a 23-bit fraction f and a “hidden” bit of 1
that is implicitly presumed to precede f, in the significand. The
binary point is presumed to lie between this hidden bit and f,.
The least significant bit of the fraction is fy; the LSB of the
exponent is ¢p. The hidden bit effectively increases the precision
of the floating-point significand to 24 bits from the 23 bits actually
stored in the data format. It also insures that the significand of
any number in the IEEE normalized-number format is always
greater than or equal to 1 and less than 2.

The unsigned exponent e for normals can range between 1=e<254
in the single-precision format. This exponent is biased by + 127
in the single-precision format. This means that to calculate the
“true” unbiased exponent, 127 must be subtracted from e.

The IEEE Standard also provides for several special data types.
In the single-precision floating-point format, an exponent value
of 255 (all ones) with a nonzero fraction is a not-a-number (NAN).
NAN:Ss are usually used as flags for data flow control, for the
values of uninitialized variables, and for the results of invalid
operations such as 0-. Infinity is represented as an exponent of
255 and a zero fraction. Note that because the fraction is signed,
both positive and negative INF can be represented.

The IEEE Standard requires the support of denormaliied data
formats and operations. A denormalized number, or “denormal,”

is a number with a magnitude less than the minimum normalized
(“normal”) number in the IEEE format. Denormals have a zero
exponent and a nonzero fraction. Denormals have no hidden
“one” bit. (Equivalently, the hidden bit of a denormal is zero.)
The unbiased (true) value of a‘denormal’s exponent is — 126 in
the single-precision format, i.e., one minus the exponent bias.
Note that because denormals are not required to have a significant
leading one bit, the precision of a denormal’s significand can be
as little as one bit for the minimum representable denormal.

ZERO is represented by a zero exponent and a zero fraction. As
with INF, both positive ZERO and negative ZERO can be
represented.

The IEEE single-precision floating-point data types and their
interpretations are summarized in Table I.

The ADSP-3201/3202 chipset also supports two data types not
included in the IEEE Standard, “wrapped” and “unnormal.”
These data types are necessitated by the fact that the ADSP-3201
Multiplier and the ADSP-3202 ALU during division and square
root do not operate directly on denormals. (To do so, they
would need shifting hardware that would slow them significantly.)
Denormal operands must first be translated by the ADSP-3202
ALU to wrapped numbers to be readable by the Multiplier.
Wrapped and unnormal Multiplier products must also be un-
wrapped by an ALU before an ALU can operate on these results
in general. (See “Gradual Underflow and IEEE Exceptions.”)

The interpretation of wrapped numbers differs from normals
only in that the exponent is treated as a twos-complement number.
Single-precision wrapped numbers have a hidden bit of one and
an exponent bias of + 127. All single-precision denormals can
be mapped onto wrapped numbers where the exponent e ranges
between —22=e=<0. WRAPA and WRAPB controls on the
ADSP-3201 tell the Multiplier to interpret a data value as a
wrapped number.

The ranges of the various single-precision floating-point data
formats supported by the ADSP-3201/3202 are summarized in
Table II.

The multiplication of two wrapped numbers can produce a
number smaller than can be represented as a wrapped number.
Such numbers are called “unnormals.” Unnormals are interpreted
exactly as are wrapped numbers. They differ only in the range
of their exponents, which fall between — 171=e=< — 23 for single-
precision unnormals. The smallest unnormal is the result of
multiplying WRAP.MIN by itself. Unnormals, because they are
smaller than DRNM.MIN, generally unwrap to ZERO.
(UNRM.MAX can unwrap to DRNM.MIN, depending on
rounding mode.)

Mnemonic | Exponent Fraction Value Name IEEE Format?
NAN 255 non-zero | undefined not-a-number yes
INF 255 zero (—1)S(infinity) infinity yes
NORM | 1thru2sa | any “1)3(1.H2°"?7 | normal yes
DNRM 0 non-zero | (-1)° (0.f)2_1 26 denormal yes
ZERO 0 zero 1)°0.0 zero ves
WRAP | -22thruo | any 1)’ (1.62°"%" | wrapped no
UNARM  |-171 thru —23] any 1% (1.52°7'%7 | unnormal no

Table I. Single-Precision Floating-Point Data Types and
Interpretations
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Data name|gyponent| Exp. datajExponentiHidden| Fraction Unbiased
(positive) type bias bit (binary) { absolute value
NORMMAX | 254 | unsigned | +127 I S A
NORM.MIN 1 unsigned |  +127 1 |ooo......00f ,7'26
DNRM.MAX 0 unsigned | +126 0 ] 1% 5]
DNRM.MIN 0 unsigned |  +126 0 Jooo....0o1} ,71% , 8
WRAP.MAX 0 2scmplmt | +127 U AL P T
WRAPMIN | —22 | 2scmpimt | +127 1 Jo0o.....00f ,74°
UNRMMAX | -23 | 2scmpimt | +127 L AL P Y
UNRMMIN | -171 | 2scmpimt | +127 1 ]o0o.....00| ,72%

Table Il. Single-Precision Floating-Point Range Limits

Supported Floating-Point Data Types
The direct floating-point data types support provided by the
members of this chipset can be summarized:

Normals
Denormals
Normals Wrappeds'
Wrappeds Unnormals?
ADSP-3201 ADSP-3202
Floating-Point Floating-Point
Multiplier ALU
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3
Unnormals?
1. for unwrapping, division, and square root
2. for unwrapping only ’
3. from wrapping and division
4. from division

Figure 6. Data Types Directly Supported by the ADSP-3201/
3202

Not every member of the ADSP-3201/3202 chipset supports all
the data types described above directly. See the section below,
“Gradual Underflow and IEEE Exceptions,” for a full description
of how the chips work together to implement the IEEE Standard.
For systems not requiring full conformance to Standard 754, the
section below, “FAST/IEEE Control,” describes a simplified
operation for this chipset that avoids denormals, wrappeds, and
unnormals altogether.

32-Bit Fixed-Point Data Formats

The ADSP-3201/3202 chipset supports two 32-bit fixed-point
formats: twos-complement and unsigned-magnitude. With the
ALU, the output data format is identical with the input data
format, i.e., 32 bits wide. In contrast, the Multiplier produces a
64-bit product from two 32-bit inputs.

The 32-bit twos-complement data format for Multiplier inputs
and ALU inputs and outputs is:

Sign
WEIGHT _2k031 2k930 2ko29 zk
VALUE | i, [ ihe i
POSITION | 31 30 29 o

Figure 7. 32-Bit Twos-Complement Fixed-Point Data
Format

The MSB is i3, which is also the sign bit; the LSB is ip. Note
that the sign bit is negatively weighted in twos-complement
format. The position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
signed fractional numbers (binary point between bit positions 31
and 30) are represented when k= 31. The value of k is for user
interpretation only and in general does not affect the operation
of the chips. The only exceptions are the ALU conversion oper-
ations from floating-point to fixed-point. For these operations,
the destination format is presumed to be twos-complement
integers, i.e., k=0.

The ADSP-3201 Multiplier produces a 64-bit product at its
Output Register. The ADSP-3201 will produce results in the
format of Figure 8 at the DOUT port if the Shift Left Fixed-Point
Product (SHLP) control (described below in “Output Control”)
is LO:

Sign
WEIGHT _2r¢63 21462 anZ 2r¢31 e 2u1 21
VALUE | i i i i
VE | s l62 i3 iay e |y i
POSITION | 63 62 32 31 1 0

N~ I~

Most Significant Product

Least Significant Product

Figure 8. 64-Bit Twos-Complement Fixed-Point Data Format
at Multiplier Output Register with SHLP LO

The weighting of the product bits is given by the integer r.
When kj represents the weighting of operand A and kg the
weighting of operand B, then r=kj +kg.
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When HI, the SHLP control shifts all bits left one position as
they are loaded to the Output Register. The results will then be
in the format:

Sign
WEIGHT |_5 r+62 2"6‘ 2ro:i1 2r+.’!0 .. 2r 2r—1
VALUE
62 g1 i34 130 ) 0
POSITION | 63 62 32 31 1 0

N I~

Most Significant Product Least Significant Product

Figure 9. 64-Bit Twos-Complement Fixed-Point Data Format
at Multiplier Output Register with SHLP HI

The LSB becomes zero and ig; moves into the sign bit position.
Normally ig3 and is, will be identical in twos-complement products.
(The only exception is full-scale negative multiplied by itself.)
Hence, a one-bit left-shift normally removes a redundant sign
bit, thereby increasing the precision of the Most Significant
Product. Also, if the fixed-point data format is fractional (k= — 31
in Figure 7), then a single-bit left-shift will renormalize the
MSP to a fractional format (because r=2-k = 2:(31)= —62).

For unsigned-magnitude data formats, inputs to the ADSP-3201
Multiplier and inputs and outputs from the ADSP-3202 ALU
will be 32 bits wide. The 32-bit unsigned-magnitude data
format is:

WEIGHT zkoih 2k030 2k¢29 . 2k
VALUE| iy [ ihe iy
POSITION | 31 30 29 0

Figure 10. 32-Bit Unsigned-Magnitude Fixed-Point Data
Format

Again, the position of the binary point for fixed-point data is
represented here in full generality by the integer k. Integers
(binary point right of bit position 0) are represented when k=0;
unsigned fractional numbers (binary point left of bit position
31) are represented when k= —32. The value of k is for user
interpretation only and, except for conversions to fixed-point,
does not affect the operation of the chips.

The ADSP-3201 Multiplier discriminates twos-complement
from unsigned-magnitude inputs with TCA and TCB controls.
(See “Controls.”) When TCA and TCB are both LO, the ADSP-
3201 produces a 64-bit unsigned-magnitude product at its Output
Register. The ADSP-3201 will produce results in this format if
SHLP is LO:

WEIGHT | 5 r+63 2”62 2r»:!z 2r431 2 r+1 21
VALUE | i i i i .

'63 ‘2 e | a2 '31 ey o

POSITION | 63 62 ans 32 31 o 1 L]

N I~

Most Significant Product Least Significant Product

Figure 11. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP LO

Again, the weighting of the product bits is given by the integer
r. When kj represents the weighting of operand A, and kg the
weighting of operand B, then r=kj +Kkg.
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If SHLP is HI, the data at the Output Register will have been
shifted left one position and zero-filled in the format:

WEIGHT | 27+62 2“51 . 21031 znso . 21—1
VALUE | ig, 51 e L g fgg Jee e 10
POSITION | 63 62 aee 32 31 e 1 0

N I~

Most Significant Product Least Significant Product

Figure 12. 64-Bit Unsigned-Magnitude Fixed-Point Data
Format at Multiplier Output Register with SHLP HI

The ADSP-3201 also supports mixed-mode multiplications, i.e.,
twos-complement by unsigned-magnitude. These are valuable in
extended-precision fixed-point multiplications, e.g., 64 X 64 and
128 x 128. The result of a mixed-mode multiplication will be in
a twos-complement format. Unlike twos-complement multiplica-
tions, however, mixed-mode results do not in general have a
redundant sign bit in is;. Hence, mixed-mode results should be
read out with SHLP LO as in Figure 8.

CONTROLS

The controls for the ADSP-3201/3202 (see Pin Lists above) are
all active HI, with the exceptions of RESET and HOLD. The
controls are either registered into the Input Control Register at
the clock’s rising edge, latched into the Input Control Register
with clock HI and transparent in clock LO, or asynchronous.
The controls are discussed below in the order in which they
affect data flowing through the chipset.

Registered controls, in general, are pipelined to match the flow
of data. All data and control pipelines advance with the rising
edge of each clock cycle. For example, to perform n optional
fixed-point one-bit left-shift on output with the product of X
and Y, you would assert the registered, pipelined control SHLP
on the rising edge that causes X and Y inputs to be read into
the multiplier array. Just before the result was ready to be loaded
to the Output Register, the pipelined SHLP control would
perform the proper shift. After the initiation of a multicycle
operation, registered control inputs are ignored until the end of
the operation time. (See “Timing” below for a precise definition
of “operation time.”)

Because this chipset uses CMOS static logic throughout and
controls are pipelined, the clock can be stopped as long as desired
for generating wait-states, diagnostic analysis, or whatever.
These chips can also be easily adapted to “state-push” im-
plementations. The machine’s state can be pushed forward one
stage by simply providing a rising edge to the clock input when
desired.

The only controls that are latched (as opposed to registered) are
the Load Selection Controls. They are transparent in clock LO
and latched with clock HI. Load Selection Controls are setup to
the chips exactly as if they were registered, with the same setup
time. The fact that they are transparent in clock LO allows
them to select input registers in parallel with the setup of data
to be loaded on the rising edge. Because they are latched with
clock HI, microcode need only be presented at the clock rate,
though data is loaded on both clock rising and falling edges.

A few controls are asynchronous. These controls take effect
immediately and are thus neither registered nor plpelmed Each
has an independently specified setup time.



FAST/IEEE CONTROL (REG)

FAST is a pipelined, registered control. It affects the interpretation
of data read into processing circuitry immediately after having
been loaded to the input control register. FAST affects the
format of results in the rounding & exception processing pipeline
stage. FAST also affects the definition of some exception flags.
(See “Exception Flags.”)

IEEE Standard 754 requires a system to perform operations on
denormal operands (which are smaller in magnitude than the
minimum representable normalized number). This capability to
accommodate these numbers is known as “gradual underflow”.
For floating-point systems not requiring strict adherence to the
IEEE Standard, the ADSP-3201/3202 provides a FAST mode
(FAST control pin HI) which consistently flushes post-rounded
results less than NORM.MIN to ZERO. This approach greatly
simplifies exception processing and avoids generating the denor-
mal, wrapped, and unnormal data types described above. When
in FAST mode, the Multiplier will treat denormal inputs as
ZERO and produces a ZERO result. The ALU will treat denormal
inputs exactly as it does in IEEE mode but still flush post-rounded
results less than NORM.MIN to ZERO.

Systems implementing gradual underflow with the ADSP-3201/
3202 must treat the multiplication of operands that include a
denormal as an exception to normal process flow. FAST should
be LO on all chips. See the section below, “Gradual Underflow
and IEEE Exceptions,” for a fuller discussion of the details of
implementing an IEEE system with this chipset.

RESET CONTROL (ASYN)

The asynchronous, active LO RESET control clears all control
functions in the ADSP-3201/3202. RESET should be asserted
on power up to insure proper initialization. (RESET will abort
any multicycle operation in progress.) No register contents or
status flags are affected by RESET.

PORT CONFIGURATION - IPORT CONTROLS (ASYN)
This chipset offers several options on its input port configuration.
The options are controlled by the two asynchronous lines,
IPORTO:1. They are intended to be hardwired to the desired
port configuration. If the user wants to change the port config-
uration under microcode control, the timing requirements of
Figure 14 must be met.

The first and last configurations in Figure 13 are called “two-port”
configurations; the middle pair, “one-port” configurations.
Whether an input register loads its data on a rising or falling
clock edge will depend in general on whether the chip is wired
in a one-port or two-port configuration.

In one-port configurations, the unused port effectively becomes
a no-connect, reducing the number of external buses required to
operate these chips. The full pipelined throughput can be main-
tained for the Multiplier and the ALU in the one-port configuration
for all 32-bit operations.

IPORT1 | IPORT0 | PORT CONFIGURATION
AIN BIN

two
0 0 port

[A registers]| [B registers]

AIN BIN
one

] 1 port

[A registers| [B registers]

AIN BIN
one

1 0 port

[A registers] [ B registers]

AIN BIN
two
port

[A registers] [B registers|

Figure 13. ADSP-3201/3202 Input Port
Configurations

The port configuration of the ADSP-3201/3202 can be changed
under microcode control. However, as described in the section
below, “Input Register Loading”, the selected port configuration
affects whether a given register loads on rising or falling clock
edges. The transition between port configurations can cause
inadvertent data loads, destroying data held in input registers.
Therefore, all input registers must be deselected for data loading
(all SELA/B controls must be keld LO throughout the period
when IPORTO:1 are changing; see “Input Register Loading”)
during both the cycle in which IPORT bits are changed and the
cycle following:

Change
IPORT bits
old port here new port

configuration /_/\ configuration

o | L

toot

All All Resume
SEL SEL normal
Lo Lo

data loading

Figure 14. Timing Requirements for Changing the
ADSP-3201/3202 Input Port Configurations

Thus, data loading will be interrupted for two cycles whenever
changing the ADSP-3201/3202’s port configuration. All other
processing is unaffected.
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INPUT REGISTER LOADING AND OPERAND
STORAGE - SELA/B CONTROLS (LAT)

The chipset’s 32-bit input registers are selected for data loading
with the latched Load Selection Controls, SELA/B0:3. Since
each input register has its own control, the Load Selection Controls
are independent of one another. Multiple registers can be selected
for parallel loads of the same input data, if desired. The Load
Selection Controls’ effects on data loading are summarized:

register

SEL control | loaded
SELAO A0
SELA1 A1l
SELA2 A2
SELA3 A3
SELBO BO
SELB1 B1
SELB2 B2
SELB3 B3

Figure 15. ADSP 3201/3202 Load Selection Controls

Restrictions on Register Loading

Input port configuration affects whether input registers load
data on rising or falling edges. Devices in one-port configurations
load A registers on rising edges and B registers on falling edges.
Devices in two-port configurations load even-numbered registers
on rising edges and odd-numbered registers on falling edges
(which is typically simpler to implement). Devices in the two-port
configuration load data:

A0 A1 BO  B1
L4 [% | [F]v ]
A2 A3 B2 B3

L4 v | [ #4177 |

Figure 16. ADSP-3201/3202 Clock Edge for Data Loading —
Two Port Configuration

Eight-register devices (ADSP-3201/3202) in the one-port config-
uration load data to A registers on the rising edge and B registers
on the falling edge:

A0 A1 BO

L4 [ ¢ | |—L|_L|

A3

A2
IR

B2 B3
e[+ ]

Figure 17. ADSP-3201/3202 Clock Edge for Data Loading -
One Port Configuration

Restrictions on Register Storage

For single-precision and fixed-point data, any convenient register
can be used. The only restriction is that the register being loaded
is not currently in use by the chip’s processing elements. For all
single-precision Multiplier and most ALU operations, input
registers are only read into the computational circuits for one
cycle. Do not load a register for 32-bit operations on the clock’s
falling edge when that register has been selected to feed the
chips processing circuits in that same cycle (with the RDA/B
controls described in “Input Data Read Selecuon”) Picka
register not in use.

The ADSP-3202 ALU is capable of two multicycle operations:
IEEE floating-point division and square root. For single-precision
floating-point division, the dividend can be stored in any A
register and the divisor can be stored in any B register. Single-
precision operands for IEEE square root can be stored in any B
register. The registers selected to the computational circuits for
these operations must be stable until the end of the operation
time. (See “Timing” and the timing diagrams below for a precision
definition of “‘operation time.”)

DATA FORMAT SELECTION - SP CONTROL (REG)
The two data formats processed by the ADSP-3201/3202 chipset
are single-precision floating-point and fixed. With the ADSP-3201
Multiplier, the data format is indicated explicitly by the states
of the SP registered control:

SP|Data Format Selection
.0 fixed
1 single-precision

Figure 18. ADSP-3201 Multiplier Data Format Selection

The state of the SP control at the rising edge when data is read
into the Multiplier Array determines whether the data is interpreted
as single-precision floating-point or fixed-point. Once initiated,
the state of SP doesn’t matter until the next data is read to the
processing circuitry.

For the ADSP-3202 ALU, data format selection is implicit in
the ALU instruction, Ig 4. (See “ALU Operation” section
below.)

INPUT DATA REGISTER READ SELECTION -

RDA/B CONTROLS (REG)

The Register Read Selection Controls, RDA/BO:I, are registered
controls and select the input registers that are read into the
chipset’s processing circuitry. Any pair of input registers can be
read into the processing circuitry. (For single-operand operations,
the state of the Selection controls for the unused register bank
doesn’t matter.) Data loaded to an input register on a rising
edge can be read into the processing circuitry on that same edge
(“direct operand feed”).

For the ADSP-3201/3202, register read selection is defined:

SP & Fixed: SP & Fixed:

A register B register

RDA1 RDAO  selected RDB1 RDBO selected
0 0 A2 0 0 B2
0 1 A3 0 1 B3
1 0 A0 1 0 BO
1 1 A1 1 1 B1

Figure 19. ADSP-3201/3202 Input Register Read

Selection
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After the initiation of multicycle operations, the RDA/B controls
are ignored. The chips themselves take over the sequencing of
register read selection until the multicycle operation is
completed.

ABSOLUTE VALUE CONTROLS - ABSA/B (REG)

The registered Absolute Value Controls convert an operand
selected by the Read Selection Controls to its absolute value
before processing. Asserting ABSA (HI) causes the A operand
to be converted to its absolute value; asserting ABSB (HI) causes
the B operand to be converted to its absolute value. The contents
of the input registers remain unaffected.

With the ADSP-3202 ALU, the ABSA/B controls are effective
with most fixed-point and all single-precision operations. If the
ABSA/B controls are asserted in logical operations, the results

will be undefined.

For the ADSP-3201 Multiplier, the absolute value operation is
available on single-precision floating point operands only. If the
ABSA/B controls are asserted with a Multiplier for a fixed-point
operation, the results will be undefined.

WRAPPED INPUT CONTROLS - WRAPA/B (REG)

(and INEXIN and RNDCARI on the ADSP-3202)

The ADSP-3201 cannot operate directly on denormals; denormals
to be multiplied must first be converted by an ALU to the
“wrapped” format. (See “Gradual Underflow and IEEE Excep-
tions” below). The Multiplier must be told that an input is in
the wrapped format so that its exponent can be interpreted
properly as a twos-complement number.

The registered WRAPA/B controls inform a Multiplier that a
wrapped number has been selected as an operand (RDA/B controls)
to the multiplier array. WRAPA indicates (HI) that the selected
A register contains a wrapped number; WRAP B, that the selected
B register contains a wrapped number.

The ALU in general operates directly on denormals and hence
don’t need a similar set of controls. However, for ADSP-3202
IEEE division and square root operations, the ALU cannot
operate directly on denormals. Like the Multiplier, it needs
denormals to be converted to wraps before processing. To indicate
that the dividend in the A register is a wrapped, INEXIN should
be asserted (HI) exactly as WRAPA would be asserted on the
Multiplier. To indicate that either the divisor in a B register or
a square root operand in a B register is a wrapped, RNDCARI
should be asserted (HI). Except for unwrap, division, and square
root operations, both INEXIN and RNDCARI should be held
LO.

TWOS-COMPLEMENT INPUT CONTROLS —

TCA/B (REG)

The registered ADSP-3201’s Twos-Complement Input Controls
inform the Multiplier to interpret the selected fixed-point inputs

in the twos-complement data format. (See “32-Bit Fixed-Point
Data Formats” above.) TCA HI indicates that the selected A
register is twos-complement; TCB HI indicates a twos-complement
B register. A LO value on either control for fixed-point multi-
plication indicates that the selected input is in unsigned-magnitude
format. Mixed-mode (twos-complement times unsigned-mag-
nitude) multiplications are permitted. The TCA/B controls are
operative in fixed-point mode only; in floating-point mode, they
are ignored.

ROUNDING - RND CONTROLS (REG)

For floating-point operations, the ADSP-3201/3202 chipset
supports all four rounding modes of IEEE Standard 754. These
are: Round-to-Nearest, Round-toward-Zero, Round-toward-Plus-
Infinity, and Round-toward-Minus-Infinity. For fixed-point
operations, two rounding modes are available: Round-to-Nearest,
and Unrounded.

Rounding is involved in all operations in which the precision of
the destination format is less than the precision of the intermediate
results from the operation. Multiplications internally generate
twice as many bits in the intermediate result significand as can
be stored in the destination format. Data conversions to a desti-
nation format of lesser precision than the source also always
force rounding unless the source value fits exactly.

Rounding with the ADSP-3201/3202 chipset is controlled by a
pair of pipelined, registered round controls, RNDO:1. They
should be setup with the input data whose result is to be rounded.
Rounding is performed in the last stage of processing; the Output
Register always contains rounded results. The effects of the
Round Controls are defined in Figure 20.

The four floating-point modes of the IEEE Standard can be
summarized as follows. In all cases, if the result before rounding
can be expressed exactly in the destination format without loss
of accuracy, then that will be the destination format result,
regardless of specified rounding mode.

Round-toward-Plus-Infinity (RP): “When rounding toward

+ oo, the result shall be the format’s value (possibly + ©) closest
to and no less than the infinitely precise result.” (Std 754-1985,
Sec. 4.2) If the result before rounding (the “infinitely precise
result”) is not exactly representable in the destination format,
then the result will be that number which is nearer to positive
infinity. Round-toward-Plus-Infinity is available in floating-point
operations only. If the result before rounding is greater than
NORM.MAX but not equal to Plus Infinity, the result will be
Plus Infinity. If the result before rounding is less than
—NORM.MAX but not equal to Minus Infinity, the result will
be — NORM.MAX. For fixed-point destination formats, the
results of RP are undefined.

Mnemonic | RND1,RNDO Floating-Point Fixed-Point
RN 0 0 Round-to-Nearest Round-to-Nearest
RZ 0 1 Round-toward-Zero Unrounded
RP 1 0 Round-toward-Plus-Infinity illegal state
RM 1 1 Round-toward-Minus-Infinity illegal state

Figure 20. Round Controls
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Round-toward-Minus-Infinity (RM): When rounding toward

— oo, the result shall be the format’s value (possibly — ) closest
to and no greater than the infinitely precise result.” (Std 754-1985,
Sec. 4.2) If the result before rounding is not exactly representable
in the destination format, the result will be that number which
is nearer to Minus Infinity. Round-toward-Minus-Infinity is
available in floating-point operations only. If the result before
rounding is greater than NORM.MAX but not equal to Plus
Infinity, the result will be NORM.MAX. If the result before
rounding is less than —NORM.MAX but not equal to Minus
Infinity, the result will be Minus Infinity. For fixed-point desti-
nation formats, the results of RM are undefined.

Round-toward-Zero and Unrounded (RZ): “When rounding
toward 0, the result shall be the format’s value closest to and no
greater in magnitude than the infinitely precise result.” (Std
754-1985, Sec. 4.2) If the result before rounding is not exactly
representable in the destination format, the result will be that
number which is nearer to zero. The Round-toward-Zero operation
is available in floating-point operations only. It is equivalent to
truncation of the (unsigned-magnitude) significand. If the result
before rounding has a magnitude greater than NORM.MAX but
not equal to Infinity, the result will be NORM.MAX of the
same sign.

For fixed-point destination formats, the RZ mode is Unrounded.
For fixed-point operations, RZ has no effect on the result at the
Output Register and should be specified whenever unmodified
fixed-point results are desired. (Treating the unrounded Most
Significant Product as the final result and throwing away the
LSP is logically equivalent to Round-toward-Minus-Infinity for
twos-complement numbers and equivalent to Round-toward-Zero
[truncation] for unsigned-magnitude numbers.)

Round-to-Nearest (RN): When rounding to nearest, “the repre-
sentable value nearest to the infinitely precise result shall be
delivered; if the two nearest representable values are equally
near, the one with its least significant bit zero shall be delivered.”
(Std 754-1985, Sec. 4.1) If the result before rounding is not

— NORM.MAX

exactly representable in the destination format, the result will be
that number which is nearer to the result before rounding. In
the case that the result before rounding is exactly half way between
two numbers in the destination format differing by an LSB, the
result will be that number which has an LSB equal to zero.If
the result before rounding overflows, i.e., has a magnitude
greater than or equal to NORM.MAX + 1/2LSB in the destination
format, the result will be the Infinity of the same sign.

Round-to-Nearest is available in both floating-point and fixed-
point operations. In fixed-point, Round-to-Nearest treats the
Most Significant Product after having been shifted in accordance
with SHLP (see Figures 8, 9, 11, and 12) as the destination
format.

The four rounding modes are illustrated by number lines in
Figure 21. The direction of rounding is indicated by an arrow.
Numbers exactly representable in the destination format are
indicated by “<”s. In subdividing the number lines, square
brackets are inclusive of the points on the line they intersect.
Note that brackets intersect points representable in the destination
format except for Round-to-Nearest, where they intersect the
line midway between representable points. Slashes are used to
indicate a break in the number line of arbitrary size.

Note that Round-to-Nearest is unique among the rounding
modes in that it is unbiased. The large-sample statistical mean
from a set of numbers rounded in the other modes will be displaced
from the true mean. The other three modes will exhibit a large-
sample statistical bias in the direction of the rounding operation
performed.

STATUS FLAGS

The ADSP-3201/3202 chipset generates on dedicated pins the
following exception flags specified in the IEEE Standard: Overflow
(OVRFLO), Underflow (UNDFLO), Inexact Result (INEXO),
and Invalid Operation (INVALOP). The IEEE exception condi-
tion Division-by-Zero is flagged by the simultaneous assertion of
both OVRFLO and INVALOP pins. The five IEEE exceptions
are defined in accordance to the default assumption of Std 754
of nontrapping exceptions.

NORM.MAX

Round to Plus Infinity (RP)

- NORM.MAX

NORM.MAX

RN RSSO I IEDE s SR

Round to Minus Infinity (RM)

— NORM.MAX

NORM.MAX

Round to Zero (R2)

— NORM.MAX
—0Q
LSB=0 LSB=1

LSB=1 LSB=0 LSB=1

NORM.MAX

t-ofotoo

LSB=1 LSB=0

Round to Nearest (RN)
(for RN, brackets intersect at mid-points between LSBs)

Figure 21. IEEE Rounding Modes
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These four flag results are registered in the Status Output Register
when the results they reflect are clocked to the OQutput Register.
They are held valid until the next rising clock edge. The IEEE
Standard specifies that exception flags when set remain set until
reset by the user. For full conformance to the standard, the
status outputs from this chipset should be individually latched
externally.

Denormal Input

In addition to the IEEE status flags, the ADSP-3201 Multiplier
has a DENORM output flag that signals the presence of a de-
normalized number at one of the input registers being read into
the multiplier array. This denormal must be wrapped by the
ALU before the Multiplier can read it. To minimize the system
response time to a denormal input exception, the DENORM
flag comes out earlier than the associated IEEE status flags.
DENORM is normally in an indeterminate state. For single-
precision multiplications, DENORM goes HI during the cycle
after a denormal was read into the array (with the RDA/B controls).
(See Figure T4.) The Multiplier produces ZERO results under
these conditions. The DENORM flag is asserted in both IEEE
and FAST modes.

Some multiplications with denormal operands do not require
wrapping and therefore do not cause the assertion of the DENORM
flag. These are DNRM*ZERO, DNRM:INF, and DNRM+NAN.
Multiplication of a finite number by zero always yields zero —
the result the Multiplier will produce anyway — so there is no
need to signal an exception. Any finite number multiplied by
INF should yield INF, and the ADSP-3201 Multiplier will
produce this result with a DNRM operand, hence no wrapping
is required. And multiplication of any number by a NAN produces
a NAN (and the INVALOP flag); no wrapping is necessary for
the Multiplier to produce this correct IEEE result.

Note that the ALU in general operate directly on denormals and
therefore do not flag any exception. The ADSP-3202 ALU,
however, cannot operate directly on denormals in its division
and square root operations. For these operations, denormal
inputs will cause the simultaneous assertion of UNDFLO and
INVALOP in IEEE mode. For divisions, INEXO HI indicates
that the dividend is a DNRM; INEXO LO indicates that the
divisor or both operands are DNRMs. In FAST mode, only
INVALOP will be asserted. This denormal exception information
becomes available with the status outputs, i.e., at the end of an
attempted multicycle division or square root. In both modes for
both division and square root, a properly signed all-ones NAN
will be produced.

Invalid Operation and NAN Results

INVALOP is generated whenever attempting to execute an
invalid operation, as defined in Std 754 Section 7.1. The IN-
VALOP output is also used in conjunction with other pins to
indicate the Division-by-Zero exception and denormal divisor or
dividend. The default nontrapping result is required to be a
quiet NAN. Except when passing a NAN with PASS or copying
a sign bit to a NAN, the ADSP-3201/3202 chipset will always
produce a NAN with an exponent and fraction of all ones as a
result of an invalid operation.

Conditions that cause the assertion of INVALOP are:

® NAN input read to computational circuitry (except for logical
PASS)

® Multiplication of either = INF by either + ZERO

® In FAST mode, multiplication of either +INF by either
+DNRM

@ Subtraction of liked-signed INFs or addition of opposite-signed
INFs

® Conversion of a NAN or INF to fixed-point

® Wrapping an operand that is neither a denormal nor ZERO

® Division of either =ZERO by either = ZERO or of either
+INF by either +INF

® Attempting the square root of a negative number

® In conjunction with OVRFLO, the Division-by-Zero
exception

® In FAST mode, a denormal divisor or dividend. In IEEE
mode, in conjunction with UNDFLO, a denormal divisor or
dividend

® In conjunction with UNDFLO, a denormal input operand to
square root.

Division-by-Zero

The Division-by-Zero exception is generated whenever attempting
to divide a finite nonzero dividend by a divisor of zero (Std 754
Section 7.2). The Division-by-Zero exception is indicated on the
ADSP-3202 ALU by the simultaneous assertion of both OVRFLO
and INVALOP. The ALU result is always a correctly signed
INF.

Overflow

OVRFLO is generated whenever the unbounded (i.e., supposing
hypothetically no bounds on the exponent range of the result),
post-rounded result exceeds in magnitude NORM.MAX in the
destination format, as defined in Std 754 Section 7.3. Note that
the overflow condition can occur both during computations and
during data format conversions. The result will be either +INF
or + NORM.MAX, depending on the sign of the result and the
operative rounding mode. (See “Rounding — RND Controls”
above.) The OVRFLO pin is also used to signal additional
exception conditions.

Conditions that cause the assertion of OVRFLO are:

® Unbounded, post-rounded result exceeds destination format
in computation or conversion

® In conjunction with INVALOP, the Division-by-Zero exception
on the ADSP-3202 ALU

® Comparison when operand A is greater than operand B

o Exponent subtraction when the resultant exponent is more
positive than can be represented in the destination format

® Twos-complement fixed-point additions and subtractions that
overflow.

Note that OVRFLO is always LO when the ADSP-3201 Multiplier
is in fixed-point mode.

Underflow

Underflow is defined in four ways in Std 754 Section 7.4. The
IEEE Standard allows the implementer to choose which definition
of underflow to use and provides no guidance. The first option
is whether to flag underflow based on results before or after
rounding. Consistent with the definition of overflow, underflow
is always flagged with this chipset based on results after rounding
(except for the operations of conversion from floating-point to
fixed-point and logical downshifts). Thus, a result whose infinitely
precise value is less than NORM.MIN yet which rounds to
NORM.MIN will not be considered to have underflowed.

The second option is how to interpret what the Standard calls
an “extraordinary loss of accuracy.” The first way is in terms of
the creation of nonzero, post-rounded numbers smaller in mag-
nitude than NORM.MIN. The second way is in terms of loss of
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accuracy when representing numbers as denormals. With the
ADSP-3201/3202 chipset, the conditions under which UNDFLO
is asserted depend on whether the chip in question can generate
denormals in its current operating mode. If the chip cannot
generate denormals, the definition in terms of numbers smaller
in magnitude than NORM.MIN will apply; if it can generate
denormals, the definition in terms of inexact denormals will
apply. Thus, which definition applies will depend on whether
chipset is operating in IEEE or FAST mode, whether the result
is generated by a Multiplier or an ALU, and whether the operation
is division or not.

With the ADSP-3201 Multiplier, UNDFLO is generated whenever
the unbounded, post-rounded, nonzero result is of lesser mag-
nitude than NORM.MIN in the destination format, both in
FAST and IEEE modes. In FAST mode, the data result will be
ZERO; in IEEE mode, the data result will be in the wrapped
format. An exact ZERO result will never cause the assertion of
UNDFLO.

With the ADSP-3202 ALU in the FAST mode, UNDFLO is
also generated whenever the unbounded, post-rounded, nonzero
result is of lesser magnitude than NORM.MIN in the destination
format for standard ALU operations as well as for division and
square root. For FAST mode underflows, the ALU result will
always be ZERO.

With the ADSP-3202 ALU in IEEE mode, UNDFLO is generated
(except for divisions) whenever the unbounded, infinitely precise
(i.e., supposing hypothetically no bounds on the precision of the
result), post-rounded result is a denormal and does not fit into
the denormal destination format without a loss of accuracy. In
other words, UNDFLO will be generated whenever an inexact
denormal result is produced. (See “Inexact” below.) If the result
is a denormal and does fit exactly, neither UNDFLO nor INEXO
will be asserted. Note that additions, subtractions, and compari-
sons cannot generate this underflow condition (since no operand
contains significant bits of lesser magnitude than DNRM.MIN).
IEEE-mode ALU underflow exceptions occur only during con-
versions and divisions.

The division operation is treated like a multiplication operation

in IEEE mode rather than an ALU operation in the definition

of underflow. A quotient from division smaller in magnitude

than NORM.MIN will always be flagged as underflowed with

the ADSP-3202 ALU. The data result will be in the wrapped

format. Note that (DNRM.MIN)=NORM.MIN. Therefore,

square root will never underflow with operands greater than or

equal to DNRM.MIN.

Conditions that cause the assertion of UNDFLO are:

® With the ADSP-3201 Multiplier, whenever the unbounded,
post-rounded, nonzero result is of lesser magnitude than
NORM.MIN in the destination format

® With the ADSP-3202 ALU in the FAST mode, whenever the
unbounded, post-rounded, nonzero result is of lesser magnitude
than NORM.MIN in the destination format

® With the ADSP-3202 ALU in IEEE mode, whenever an
inexact denormal is produced or whenever the unbounded,
post-rounded, nonzero quotient from division is of lesser
magnitude than NORM.MIN in the destination format

® Conversions to integer if the magnitude of the floating-point
source before rounding is less than one

® Comparison when operand A is less than operand B

® Attempting to wrap a ZERO

® Unwrapping if there is a loss of accuracy

® Exponent subtraction when the resultant exponent is more
negative than can be represented in the destination format

® Logical downshift that before rounding would have shifted all
bits out of the destination format
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® In conjunction with INVALOP, a denormal divisor or
dividend

® A quotient from division less than NORM.MIN

® In IEEE mode, in conjunction with INVALOP, a denormal
input operand for square root.

Inexact

The inexact exception is defined in Std 754 Section 7.5 as the
loss of accuracy of the unbounded, infinitely precise result when
fitted to the destination format. It is signalled on the ADSP-3201/
3202 chipset by INEXO.

For fixed-point operations, the ADSP-3201 Multiplier will assert
INEXO HI if and only if any of the least-significant 32-bits of
the pre-rounded 64-bit product are ones. It never asserts INEXO
for logical operations. The ADSP-3202 ALU never asserts INEXO
for fixed-point or logical operations.

In an ADSP-3202 division operation, either a denormal divisor
or a denormal dividend will cause the simultaneous assertion of
UNDFLO and INVALOP. INEXO will, in that context, signal
which of the two was the denormal: INEXO LO indicates that
the divisor is a denormal; INEXO HI indicates that the dividend
is a denormal.

Conditions that cause the assertion of INEXO are:

® Loss of accuracy when fitting result to destination format

® For fixed-point operations, the prerounded multiplier 64-bit
product contains ones in the least-significant 32-bits

o In IEEE mode, in conjunction with both UNDFLO and
INVALOP, dividend is a denormal (HI) or divisor is a denormal
or both are denormals (LO).

Less Than, Equal, Greater Than, and Unordered

For comparison operations in the ALU, the OVRFLO, UNDFLO,

and INVALOP status outputs are used to indicate the four

comparison conditions of IEEE Std 754, Section 5.7. They are

defined as follows:

® “Less than” is signalled by the assertion of UNDFLO (while
OVRFLO is LO)

® “Equal” is signalled by nor asserting either OVRFLO or
UNDFLO (i.e., both LO)

® “Greater than” is signalled by the assertion of OVRFLO
(while UNDFLO is LO)

® “Unordered” is signalled by the assertion of INVALOP,
caused by attempting a comparison with at least one NAN
operand.

The data result from a comparison operation is identical to
subtracting operand B from operand A. See Tables VIII
and IX.

In IEEE comparisons, the data types are always ordered in
ascending sequence: —INF, —NORM, —DRNM, ZERO,
DNRM, NORM and INF. Comparisons between like signed
INFs will generate the “Equal” status condition. Comparisons
between signed ZEROs will also generate the “Equal” status,
Any comparison to a NAN will also cause INVALOP and produce
an all-ones NAN. Even in FAST mode, DNRM:s will be compared
based on their true value (rather than all being treated as
ZERO:s).

Special Flags for Unwrapping

The ADSP-3201 generates a Round Carry Propagation Out flag,
RNDCARO, that indicates whether or not a carry bit propagated
into the destination formats fraction during the Multipliers
floating-point rounding operation. The rounding that the Multi-
plier does in creating the wrapped or unnormal result may cause
a carry bit into the LSB in the destinations formats fraction.



This rounding position will not in general be correct for a properly
rounded denormal. Thus, when the underflowed Multiplier
result is unwrapped to a denormal, the ALU has to undo the
Multipliers rounding and re-round to achieve the properly rounded
denormal.

To do this, the ALU has to know if any carry bits in the Multiplier’s
rounding operation propagated into the fraction of the result.
This information is provided in the Multiplier’s RNDCARO
flag. The ALU also needs to know if the Multiplier’s rounded
result caused a loss of accuracy when expressed in its destination
wrapped format, indicated by the Multiplier’s Inexact Result
(INEXO) flag.

The ADSP-3202 ALU has a corresponding pair of flag status
input pins: Round Carry Propagation In (RNDCARI) and Inexact
Data In (INEXIN). In an unwrap operation, these flags are
used by the ALU when converting from a WNRM to a DNRM
to obtain the properly rounded result. RNDCARI and INEXIN
should be setup to the ALU with the instruction for the unwrap
operation. Both Multiplier and ALU must be using the same
rounding mode.

The ADSP-3202 ALU itself generates WNRMs in underflowed
division operations. These WNRMs must be fed back to the
ALU to be unwrapped to DNRMs. The ADSP-3202, unlike the
Multiplier, does not have a RNDCARO pin to signal whether
or not a carry bit propagated into the destination format on
rounding. For this reason, WNRMs produced by the ADSP-3202
ALU in division are rounded differently than they are on the
Multiplier; underflowed (only) quotients are always truncated
(Round-toward-Zero) to the destination wrapped format. Hence
there is no carry bit propagation. When unwrapping a WNRM
produced in division, RNDCARI should always be held LO.
INEXIN should reflect the status of INEXO when the ALU
produced the underflowed wrapped quotient.

The ADSP-3202 ALU also uses the RNDCARI and INEXIN
pins to indicated wrapped A and B operands, respectively, to
division and square root operations. Both RNDCARI and INEXIN
should be held LO except for unwrap, division, and square root
operations.

Mnemonic Instruction (Ig o)
Is s Is 3 Lo
IADD 001 000 011
ISUBB 001 001 011
ISUBA 001 000 111
IADDWC 001 010 011
ISUBWBB 001 011 011
ISUBWBA 001 010 111
INEGA 001 000 101
INEGB 001 001 010
IADDAS 001 100 011
ISUBBAS 001 101 011
ISUBAAS 001 100 111

INSTRUCTIONS AND OPERATIONS

The ADSP-3201 Multiplier executes the same instruction every
cycle: multiply. It need not be specified explicitly in microcode.
The data format of results and status flags from multiplication
are shown in Tables VI and VII.

Denormal input operands will generally cause the DENORM
exception (see “Status Flags” above) and correctly signed ZERO
results. FAST mode suppresses the DENORM exception. In
either FAST or IEEE, DNRM+ZERO will be ZERO without
exception. DNRM-INF will be a correctly signed INF without
exception in IEEE mode and a NAN and INVALOP in FAST
mode. DNRM:NAN will be a correctly signed NAN with IN-
VALOP asserted. The sign bit of the NAN generated from any
invalid operation will depend on the operands. (The IEEE Standard
does not specify conditions for the sign bit of a NAN.) On the
ADSP-3201 Multiplier, the sign of a NAN result will be the
exclusive OR of the signs of the input operands.

The product of INF with anything except ZERO or NAN is a
correctly signed INF. INF*ZERO will cause INVALOP and
yield a NAN. NAN times anything will also cause INVALOP
and yield a NAN.

The ADSP-3202 ALU, in contrast to the Multiplier, is instruction-
driven with the operation specified by Ig o. The ALU instructions
fall into three categories: Fixed-Point, Logical, and Single-
Precision Floating-Point. Instructions are summarized in

Tables III through V and described below. The data format of
results and status flags from the various ALU operations are
shown in Tables VIII and IX. Division is shown in Tables X
and XI; square root in Table XII. Conversions from single-
precision floating-point to two-complement integer are illustrated
in Table XIII.

The ADSP-3202 Fixed-Point Arithmetic Operations are:

Description

Fixed-point A+B

Fixed-point A —B

Fixed-pointB — A

Fixed-point A — B with carry

Fixed-point A — B with borrow
Fixed-point B — A with borrow
Fixed-point —A. ABSA/B must be LO.
Fixed-point — B. ABSA/B must be LO.
Fixed-point |A + B|

Fixed-point |A — B| ABSA/B must be LO.
Fixed-point |B — A| ABSA/B mustbe LO.

Table lll. ADSP-3202 Fixed-Point ALU Operations
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The ADSP-3202 Logical Operations are:

Mnemonic Instruction (I o) Description
Iss I3 Lo
COMPLA 000 000 101 Ones-complement A
COMPLB 000 001 010 Ones-complement B
PASSA 000 000 001 Pass A unmodified. Set no flags.
PASSB 000 000 010 Pass B unmodified. Set no flags.
AANDB 000 010 010 Bitwise logical AND
AORB 000 100 010 Bitwise logical OR
AXORB 000 110 010 Bitwise logical XOR
NOP 000 000 000 No operation. Preserve status flags and Output contents.
CLR 100 000 000 Clear all status flags. Data register contents are unaffected.

Table IV. ADSP-3202ALU Logical Operations

The ADSP-3202 Single-Precision Floating-Point Operations are:

Mnemonic Instruction (Ig_ o) Description
Is s Is 3 Lo
SADD 111 000 011 SP FligPt (A +B)
SSUBB 111 000 111 SP FligPt(A—B)
SSUBA 111 001 011 SP FltgPt(B—A)
SCOMP 111 001 111 SP FltgPt comparison of A to B. Resultis (A —B)

Greater Than=0OVRFLO HI
Equal=(OVRFLO LO & UNDFLO LO)
Less Than=UNDFLO HI
Unordered=INVALOP HI

SADDAS 011 000 011 SPFlgPt|A +B|

SSUBBAS 011 .000 111 SPFltgPt|A —B|

SSUBAAS 011 001 011 SPFligPt|B—A|

SFIXA 011 001 101 Convert SP FltgPt A to twos-complement Integer

SFIXB 011 001 110 Convert SP FligPt B to twos-complement Integer

SFLOATA, 011 100 101 Convert twos-complement integer A to SP FltgPt

SFLOATB 011 100 110 Convert twos-complement integer B to SP FltgPt

SPASSA 011 110 001 Pass SP FligPt A. NANs cause INVALOP.

SPASSB 011 110 010 Pass SP FligPt B. NANs cause INVALOP.

SWRAPA 011 100 001 Wrap SP DNRM A to SP WNRM

SWRAPB 011 100 010 Wrap SP DNRM B to SP WNRM

SUNWRAPA 011 010 001 Unwrap SP WNRM A to SPDNRM

SUNWRAPB 011 010 010 Unwrap SP WNRM B to SP DNRM

SSIGN 011 111 101 Copy sign from SP FligPt B to SP FltgPt A. Resultis
[sign B, exponent A, fraction A].

SXSUB 011 111 001 Subtract B exponent from A exponent. Result is

[sign A, (expt A —expt B), fraction A] for all data types.
If the unbiased exponent = + 128, INF results.
If the unbiased exponent is < — 127, ZERO results.

SITRN 011 010 101 Downshift SP FltgPt A mantissa (with hidden bit) logically by the
unbiased SP FligPt B exponent to a 32-bit
unsigned-magnitude integer. Use RZ only.

SDIV 011 110 111 SP FligPt (A + B)

SSQR 111 110 110 SP FligPt VB

Table V. ADSP-3202 ALU Single-Precision Floating-Point Operations

Fixed-Point Arithmetic ALU Operations Absolute Value Controls

The negation operation is a twos-complementing of the input Absolute value controls (ABSA/B) cannot be used with all operands
operand. input to all fixed-point ALU operations. ABSA/B must be LO
The OVRFLO flags can be set by fixed-point ALU operations. for negation (INEGA/B) and absolute difference (ISUBBAS/
The twos-complement data format is presumed in the definition ISUBAAS) operations, or results will be undefined. Absolute

of fixed-point overflow. value controls can be used with all other fixed-point operations.

4-66 FLOATING-POINT COMPONENTS



Extended-Precision Fixed-Point Arithmetic

The ADSP-3202’s integer ALU operations include three operations
for extended fixed-point precision: addition with carry and two
subtractions with borrow. The carry bit generated by an addition
or subtraction is latched internally for one cycle only.

To illustrate, these instructions can be used to add two 64-bit
fixed-point numbers. The two least-significant 32-bit halves can
be added with IADD. Any carry bit generated would be latched
internally in the ADSP-3202. On the next cycle, the most-
significant 32-bit halves can be added with IADDWC, which
would also add in the carry bit from the previous operation, if
any. The two fixed-point results will be latched in the Output
Register in consecutive cycles. As with all fixed-point results,
they will appear in consecutive cycles in the most-significant
32-bits of the Output Register (bit positions 63 through 32).

Extended-precision fixed-point subtraction is exactly analogous.
The least-significant 32-bit halves can be subtracted with either
ISUBA or ISUBB. On the next cycle, the most-significant 32-bit
halves can be subtracted with either ISUBWBA or ISUBWBB.

Fixed-Point Zero and Equality Tests

The ADSP-3202 do not directly support fixed-point zero-test or
comparison operations. However, both can be accomplished
using other ALU operations. A zero-test will result from executing
a single-precision floating-point wrap instruction (SWRAPA/B)
on the fixed-point data in question. UNDFLO will be asserted
if and only if the operand is ZERO, which is bitwise equivalent
to an operand of all zero bits.

A fixed-point test for equality will result from a bitwise XOR of
A and B operands (AXORB) followed by the zero-test using
SWRAPA/B described in the previous paragraph. In this context,
UNDFLO will flag fixed-point equality.

Logical ALU Operations

The ones-complement instructions (COMPLA/B) change every
one bit in the operand to a zero bit and every zero bit in the
operand to a one bit. Ones-complementing is equivalent to a
bitwise logical NOT operation on the 32-bit operand. The pass
instructions (PASSA/B) pass all operands unmodified, including
NANSs, without signaling an INVALOP exception. PASSA/B
set no flags.

The logical AND, OR, and XOR (AANDB, AORB, AXORB)
operate bitwise on all 32-bits in their pair of operand fields to
produce a 32-bit result.

NOP will advance the ALU pipeline one cycle. Status flags and
Output Register contents will be preserved. CLR simply resets
all status flags. Note that CLR is pipelined and takes effect one
cycle after it is presented. All data register contents, including
the Output Register, remain unaffected.

Do not assert the absolute value controls (ABSA/B) with logical
operations. The results will be undefined.

Floating-Point ALU Operations

The data types and flags resulting from single-precision floating-
point additions, subtractions, comparisons, absolute sums, and
absolute differences are shown in Tables VIII and IX. The
INEXO flag is not shown explicitly in these tables (or any other)
since it may or may not be set, depending on whether the result
is inexact.

Absolute Value Controls
Absolure value controls (ABSA/B) can be used with all operands
input to all floating-point ALU operations.

Sign of NAN Results
Op the ADSP-3202 ALU, the sign of a NAN result when one
input is a NAN will be the sign of the NAN operand. The sign
of the NAN result for two NAN inputs (except division) will be
the sign of the NAN with the larger magnitude fraction. If the
fractions are equal, then the sign will be computed in the same
way as for additions on signed zeros:
(+=ZERO)+ (= ZERO) = (= ZERO) - (¥*ZERO)— + ZERO
(£ ZERO)+ (*¥ZERO)=(+ZERO) - (+ZERO)-+ ZERO
(RN, RZ, RP rounding modes)
(= ZERO)+(F¥ZERO)=(+ZERO) - (= ZERO) -+ -ZERO
(RM rounding mode)
In this notation, the first line refers to either + ZERO + ZERO
or —ZERO—ZERO. The second and third lines refer to
+ZERO — ZERO or —ZERO + ZERO. Some ALU operations
with two INF inputs can cause INVALOP and generate NANs.
The assignment of sign to the NAN is also analogous to additions
with signed zeros:

(£ INF)+ (= INF)=(+INF) - (¥INF)—» + INF

(£INF)+ (¥INF)=(x INF) - (+INF)—» + NAN
(RN, RZ, RP rounding modes)

(£INF)+ (¥INF)=(+ INF)-(+INF)—»—-NAN
(RM rounding mode)

Comparisons

Comparison generates the data result, (operand A minus operand
B). The flags, however, are defined to indicate the comparison
conditions rather than the flag conditions for subtraction. Signed
INFs will be compared as expected. A NAN input to the com-
parison operation will cause the unordered flag result INVALOP)
and the production of an all-ones NAN. Even in FAST mode,
the ALU will accept denormals as inputs to the comparison
operation. See “Less Than, Equal, Greater Than, and Unordered”
in the “Status Flag” section abovc for a complete discussion of
these flags in comparison operations.

Conversions: Floating to Fixed

Conversions from floating-point to twos-complement integer
(SFIXA/B) are considered “floating-point” operations, and all
four rounding modes are available. If the operand after rounding
overflows the destination format, OVRFLO will be set, and the
results will be undefined. Thus, OVRFLO for fixed-point oper-
ations is treated exactly as it is for floating-point operations.

If the nonzerc operand bejore rounding is of magnitude less than
one, UNDFLO will be set in a conversion to integer. The mag-
nitude of the result may be either one or zero, depending on the
rounding mode. Conversion to integer is the only operation
where UNDFLO depends on the pre-rounded result. The reason
for this is that the infinitely precise result could be almost one
integer unit away from the post-rounded result, potentially a
large difference. We have chosen to flag underflow whenever
the magnitude of the source operand is less than one, thereby
alerting the user to a potentially significant loss of accuracy.
INEXO will be asserted if the conversion is inexact. NANs and
INFs will convert to a same-signed single-precision floating-point
all-ones NAN. INVALOP will be asserted. The twos-complement
integer interpretation of +NAN is full-scale positive and of
—NAN, minus one. See Table XIII for illustrations of fixing
single-precision floating-point numbers.
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Conversions: Fixed to Floating

All four rounding modes are also available for conversions from
twos-complement integer to floating-point. For conversion to
single-precision floating-point (SFLOATA/B), the numerical
result will always be IEEE normals. The only flag ever set is
INEXO. INEXO will be set if and only if the source integer
contains more than 24 bits of significance. “Significance” is
defined as follows: For positive twos-complement integers, the
number of significant bits is ([32 minus the number of leading
zeros] minus the number of trailing zeros). “Leading zeros” are
the contiguous string of zeros starting from the most significant
bit. “Trailing zeros” are the contiguous string of zeros starting
from the least significant bit. For negative twos-complement
integers, the number of significant bits is ([33 minus the number
of leading ones] minus the number of trailing zeros).

Pass

Pass instructions (SPASSA/B) pass all operands unmodified.
Unlike the PASSA/B instructions, the floating-point pass in-
structions will cause INVALOP if a NAN is passed. The NAN
will pass unmodified. INFs are passed without setting any flags.
The absolute value controls can be used with the floating-point
pass instructions to reset the unmodified NAN’s sign bit to
zero.

Wrap

Wrap instructions (SWRAPA/B) convert a denormal to a wrapped
number readable by a Multiplier or the ADSP-3202 ALU in
division and square root operations. Since the wrapped format
has an additional bit of precision (the hidden bit), all wrapping
is exact. If the operand is ZERO, then UNDFLO will be set. If
the operand is neither a DNRM nor ZERO, INVALOP will be
set.

Unwrap

Unwrapping instructions (SUNWRAP/B) convert a wrapped
number to the IEEE denormal format. After rounding, the
result may turn out to be NORM.MIN or ZERO. WRAP.MAX,
whose infinitely precise value is between NORM.MIN and
DNRM.MAX, will round to NORM.MIN or DNRM.MAX,
depending on rounding mode:

+ WRAP.MAX—+NORM.MIN (RN, RP modes)

+ WRAP.MAX-+DNRM.MAX (RZ, RM modes)
—WRAP.MAX-+NORM.MIN (RN, RM modes)
—WRAP.MAX—+DNRM.MAX (RZ, RP modes).

INEXO will always be set when unwrapping WRAP.MAX. If
the unwrapping operation, after rounding, shifts all ones out of
the DNRM destination format, ZERO will result. Whenever
this happens, UNDFLO and INEXO will always both be set.

The UNDFLO condition for unwrapping is based on the IEEE
definition in terms of loss of accuracy when representing a denormal
(see “Underflow” in “Status Flags” above.) That is, UNDFLO
will only be set when the unbounded, post-rounded result cannot
be expressed exactly in the destination denormal format. UN-
DFLO will always be set in conjunction with INEXO when
unwrapping.

Inexactness can be caused by a loss of accuracy when unwrapping
the operand supplied to the ALU. The ADSP-3202 also considers
whether the multiplication, division, or square root that generated

the wrapped number caused a loss of accuracy. It determines
this information by reading the INEXIN flag input to the ALU.

The INEXIN is essential to the unwrapping operation in the
ALU. The state of INEXIN input when wrapping should reflect
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the state of INEXO when the wrapped number was generated
during multiplication, division, or square root. The ADSP-3202
uses this information to determine if the operation creating the
wrapped number was inexact. When the ADSP-3202 unwraps a
wrapped number, its INEXO will be asserted if either the originat-
ing operation or the unwrapping operation caused a loss of
accuracy.

Copy Sign

The SSIGN operation copies the sign of the B operand to the A
operand. The result is (sign B, exponent A, fraction A). Rounding
modes have no effect on this operation since the precision of the
result is exactly that of the source, i.e., all “roundings” are
exact. The only condition that generates a flag is a NAN as the
A operand; INVALOP will be set. This instruction is useful for
quadrant normalization of trigonometric functions. Trigonometric
identities allow mapping an angle of interest to a quadrant for
which lookup tables exist. SSIGN simplifies this mapping. For
example, sin (—37°) = —sin (37°). By looking up sin (37°) and
transferring the sign of the angle (—37°, the B operand) to the
value from the lookup table (0.60182, the A operand), the correct
result is obtained (—0.60182).

Exponent Subtraction

Exponent subtraction (SXSUB) subtracts the exponent of the B
operand from the A operand. The A operand is the destination
format: (sign A, [expt A — expt B], fraction A). INFs and
NANS are valid inputs to the SXSUB operation; INVALOP is
never asserted. If the unbounded result is greater than that of
NORM.MAX, INF will be produced and OVRFLO will be set.
If the unbounded result is less than that of NORM.MIN, ZERO
will be produced and UNDFLO will be set.

Exponent subtraction is useful as the first step in the Newton-
Raphson division by recursion algorithm. This operation allows
an improved implementation of this algorithm. For the details,
see the Application Note, “Floating-Point Division using Analog
Devices ADSP-3210 and ADSP-3220”, available from Analog
Devices’ DSP Applications Engineering.

Logical Downshift

The mantissa of a floating-point A operand (with hidden bit
restored) can be downshifted logically to an unsigned-magnitude
integer destination format using the SITRN operation (see Figure
22). The source mantissa is treated as a right-justified unsigned
integer. The unbiased (i.e., the “true” exponent after the bias
has been subtracted) exponent of the B operand determines the
amount of the downshift. The unbiased B exponent is interpreted
as an unsigned number which indicates how many bit positions
the mantissa should be downshifted. (A negative unbiased expo-
nent will cause a very large downshift. The mantissa will be
completely shifted out of range, and the result will be zero.)
The result will a be left-zero-filled unsigned-magnitude integer.
Like all fixed-point results, it will appear in the most significant
bit positions of the Output Register.

Logical downshift is only defined for NORMs. Results from
operands that are not normals are undefined. A NAN A-operand
input to SITRN will cause INVALOP and produce all-ones
NANS of the same sign. Round-toward-Zero (RZ) must be
specified for SITRN. Otherwise, the result is undefined. If the
shifted result before rounding is all zeros, UNDFLO will be set.
(Actually, with RZ, the shifted result before rounding is the
same as the shifted result after rounding.) If any bits are shifted
out of the range of the destination format, INEXO will be set.
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Figure 22. ADSP-3202 SITRN Instruction

The logical downshift operations can be useful to generate table
lookup addresses. In this application, the most-significant mantissa
bits would be used as table addresses. Because different B expo-
nents can be applied to the same A mantissa, the same datum
can be used to address multiple tables with differently sized
address fields.

Duvision and Square Root

The ADSP-3202 ALU support multicycle division (SDIV) and
square root (SSQR) operations. Tables X and XI illustrate the
resultant data types and status conditions for division. Table
XII serves a similar role for square root. Neither operation can
accept denormal inputs directly; they must be wrapped to the
wrapped data format first. Denormal inputs to division and
square root operations will cause the simultaneous assertion of
UNDFLO and INVALOP in IEEE mode. For divisions, INEXO
HI indicates that the dividend is a DNRM; INEXO LO indicates
that the divisor or both operands are DNRMs. In FAST mode,
only INVALOP will be asserted. In both modes for both division
and square root, a properly signed all-ones NAN will be
produced.

The square root of any non-negative normal or wrapped number
will be an IEEE normal number. The square root of a negative
number is an all-ones —NAN. The square root of +INF is
+INF without exception. The square root of a NAN is a same-
signed all-ones NAN.

Division can produce wrappeds and unnormals; these must be
passed back to the ALU for unwrapping. INF dividends cause
correctly signed INFs without flags except when the divisor is
also an INF. Either +INF divided by either +INF or any
NAN input will generate INVALOP and an all-ones NAN. For
ADSP-3202 division operations, the sign of the NAN will be
the exclusive OR of the signs of the dividend and the divisor.

OUTPUT CONTROL - SHLP (REG), OEN (ASYN),
MSWSEL (ASYN), and HOLD (ASYN)

Both members of the ADSP-3201/3202 chipset have a 64-bit
Output Register. The Output Registers are clocked every cycle,
except for multi-cycle operations (division and square root),
when HOLD is LO on the ADSP-3201, and when the ADSP-3202
is executing NOP. Output Registers are clocked at the conclusion
of multicycle operations and not before.

Results appear in the Multiplier’s Output Register as follows:

Bit 63 32 | 31 0
SP FitgPt Product

not meaningful

FxdPt Most Significant Product
Figure 23. ADSP-3201 Multiplier Output Register

FxdPt Least Significant Product

When the destination format from multiplication is single-precision
floating-point, the fraction bits that are less than the least-
significant bit in the destination format are stored in the least-
significant half of the Output Register.

The Multiplier has a pipelined, registered fixed-point shift-left
control, SHLP. When HI, SHLP will cause a one-bit left shift
in the 64-bit product that appears in the Multiplier’s Output
Register. The least-significant bit in the Output Register will be
zero. See “32-Bit Fixed-Point Data Formats™ above for more
details of the effects of SHLP. SHLP has no effect on floating-point
multiplications. Note that SHLP should be setup at the clock
edge when the multiplication operands are read into the multiplier
array.

Results appear in the ALU’s Output Registers as follows:

Bit 63 32 |31 0
SP FltgPt Product

not meaningful

FxdPt Result
Figure 24. ADSP-3202 ALU Output Register

not meaningful

All members of this chipset have an asynchronous output enable
control, OEN. When HI, outputs are enabled; when LO, output
drivers at DOUT3,_g are put into a high-impedance state. Note
that status flags are always driven off-chip, regardless of the
state of OEN. See Figure T1 for the timing of OEN.

All members of this chipset also have an asynchronous MSW
select control, MSWSEL. When outputs are enabled and
MSWSEL is HI, the most-significant half (bits 63 through 32)
of the Output Register will be driven to the output port,
DOUT3,9. When outputs are enabled and MSWSEL is LO,
the least-significant half (bits 31 through 0) of the Output Register
will be driven to the output port, DOUTS3;_o. The operation of
MSWSEL is illustrated in all timing diagrams where 64-bit
outputs are produced.

The ADSP-3201 Multiplier has an asynchronous, active LO
control, HOLD, that prevents the Output Register from being
updated. HOLD must be set up prior to the clock edge when
the Output Register would have otherwise been updated. See
Figure T3. For normal operations where the Output Register is
updated, HOLD must be held HI.

TIMING

Timing diagrams are numbered Figures T1 through T7. Three-
state timing for DOUT is shown in Figure T1. Output disable
time, tpys, is measured from the time OEN reaches 1.5V to the
time when all outputs have ceased driving. This is calculated by
measuring the time, tmpeasured> from the same starting point to
when the output voltages have changed by 0.5V toward +1.5V.
From the tester capacitive loading, Cy , and the measured current,
i, the decay time, tpgcay, can be approximated to first order
by:

Cp 0.5V
Ipecay = H
L
from which

IDIS = Umeasured = IDECAY

is calculated. Disable times are longest at the highest specified
temperature.

The minimum output enable time, minimum tgna, is the earliest
that outputs begin to drive. It is measured from the control
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signal OEN reaching 1.5V to the point at which the fastest
outputs have changed by 0.1V from Vs toward their final
output voltages. Minimum enable times are shortest at the lowest
specified temperature.

The maximum output enable time, maximum tgyna, is also meas-
ured from OEN at 1.5V to the time when all outputs have
reached TTL input levels (Voy or Vor). This could also be
considered as “data valid.” Maximum enable times are longest
at the highest specified temperature.

Reset timing is shown in T2. RESET must be LO for at least
trs. In addition, RESET must return HI at least tsy before the
first rising clock edge of operation. Hold timing is shown in T3.
HOLD must go LO tyg before the rising edge at which the
Output Register is not updated. HOLD must also be held tyy
after the clock edge.

All data, registered and latched controls, and instructions shown
in T4 through T7 must be set up tpg before the rising edge and
held tpy. Both input-port configurations are shown in most of
these diagrams. Data is shown loaded for minimum latency.
Other sequencing options are possible and may be more conven-
ient, depending on the system. These other options, however,
require that data be loaded to the input registers earlier than as
shown in these diagrams and not overwritten. See “Input Register
Loading and Operand Storage” above for constraints on register
loading and operand storage that must be observed.

The operation time, topp, is the time required to advance the
internal pipelines one stage. It reflects the pipelined throughput
of the device for that operation. The latency, t; ap, is the time it
takes for the chip to produce a valid result at DOUT from valid
data at its input ports. (Latency is the true measure of the internal
speed of the chip.) Latency is referenced from data valid of the
earliest required input to data valid of the first 32-bit output.

The asynchronous MSWSEL control’s delay is tgno. The
maximum specification for tgno is the delay which guarantees
valid data. The minimum specification for tgno is the earliest
time after the MSWSEL control is changed that data can
change.

Status flags have a maximum output delay of tso referenced
from the clock rising edge. All status flags except the Multiplier’s
DENORM are available in parallel with their associated output
results. DENORM is available earlier to speed up recovery from
a denormal input exception. Note that DENORM is indeterminate
(not necessarily LO) except in the cycles indicated in T4. DE-
NORM should therefore not be used by itself to externally
trigger a denormal input exception processing routine.

Note that for all operations (Figures T4 through T7) a new
operation can begin the cycle before output results and status
flags (other than DENORM) results from the previous operation
are driven off chip. This feature leads to improved pipeline
throughput.

GRADUAL UNDERFLOW AND IEEE EXCEPTIONS

The data types that each chip operates on directly is shown in
Figure 25.

Denormals are detected by the Multiplier when read into their
processing circuitry. The ADSP-3201 will produce a flag output,
DENORM, when one or both of the operands read into the
array are denormals. The occurrence of DENORM should trigger
exception processing. (See Status Flags above for a discussion of
DENORM and its timing.) Controlling hardware must recover
the denormal(s) that was input to a Multiplier and present it to
an ALU for wrapping.

The ADSP-3202 ALU will also detect denormals when read into
internal circuitry for division or square root operations. The
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Normals

Denormals
Normals Wrappeds
Wrappeds Unnormals?
ADSP-3201 ADSP-3202
Floating-Point Floating-Point
Multiplier ALU
Normals Normals
Wrappeds Denormals
Unnormals Wrappeds 3
Unnormals*

. for unwrapping, division, and square root
. for unwrapping only

. from wrapping and division

4. from division

w N

Figure 25. Data Types Directly Supported by the
ADSP-3201/3202

UNDFLO and INVALOP flags will both be asserted on the
ADSP-3202 to signal the presence of a denormal input to these
operations. INEXO will indicate whether the denormal input is
the A operand or B operand. (See “Status Flags” above for a
fuller discussion of denormal detection in the ADSP-3202.)

The ALU wraps denormals with its SWRAP instruction. Note
from Table II that any denormal can be represented as a wrapped
without loss of precision (hence triggers no exception flags in
the ALU).

The wrapped equivalent from the ALU must now be passed to
the Multiplier for multiplication or the ADSP-3202ALU for
division or square root. The controlling system must tell the
Multiplier to interpret the wrapped input as wrapped by asserting
WRAPA/B when it is read into the Multiplier’s processing cir-
cuitry. For division and square root, the controlling system
must tell the ALU to interpret the wrapped operand A as wrapped
by asserting INEXIN when it is read into the ALUs processing
circuitry and to interpret the wrapped operand B as wrapped by
asserting RNDCARI. The result of the multiplication or division
can be a normal, a wrapped, or an unnormal (see Tables VI,
VII, X, and XI). Square root on IEEE numbers only produces
normals (see Tables VIII and IX). An underflowed result (wrapped
or unnormal) from either Multiplier or ALU will be indicated
by the UNDFLO flag and must be passed to the ALU for
unwrapping.

For full conformance to the IEEE Standard, all wrapped and
unnormal results must be unwrapped in an ALU (with the
SUNWRATP instruction) to an IEEE sanctioned destination
format before any further operations on the data. If the result
from unwrapping is a DNRM, then that data will have to be
wrapped before it can be used in multiplication, division, or
square root operations.

The reason why WNRMs and UNRMs should always be un-
wrapped upon their production is that the wrapped and unnormal
data formats often contain “spurious” accuracy, i.e., more preci-
sion than can be represented in the normal and denormal data
formats. If WNRMs or UNRMs produced by the system were
used directly as inputs to multiplication, division, or square root
operations, the results could be more accurate than, and hence
incompatible with, the IEEE Standard.

When unwrapping, additional information about underflowed
results must accompany their input to the ALU. See “Special
Flags for Unwrapping” in “Status Flags” above for details of
how INEXO and RNDCARO status flag outputs must be used
with INEXIN and RNDCARI inputs.



A final point about conformance with IEEE Std 754 pertains to results. The ADSP-3201/3202 generally produce all-ones outputs

NANs. The Standard distinguishes between signalling NANs from invalid operations resulting from NAN inputs. So a system
and quiet NANSs, based on differing values of the fraction field. that implements operations on quiet and signalling NANs will
Signalling NANSs can represent uninitialized variables or special- have to modify the NAN output from these chips externally