| A O 0
t US005706478A

.
United States Patent [111 Patent Number: 5,706,478
Dye 451 Date of Patent: Jan. 6, 1998
[54] DISPLAY LIST PROCESSOR FOR [57} ABSTRACT
OPERATING IN PROCESSOR AND
COPROCESSOR MODES A processor for executing display list command packets in
processor or coprocessor mode of execution. The processor
[75] Inventor: Thomas Anthony Dye, Austin, Tex. dynamically switches between the two modes based on the
. . R . commands or interrupts received. Each display list packet
(73] Assignee: Cirrus Logic, Inc.. Fremont, Calif. includes a plurality of commands associated with a particu-
lar function, where each command includes a field for
(211 Appl. No.: 338,341 identifying the number of parameters associated with the
[22] Filed: Nov. 14, 1994 command, if any. The parameters immediately follow the
instruction in the instruction stream in a sequential format,
Related U.S. Application Data eliminating address dependency. Each command preferably
L conforms to the same format regardless of location and
[63] ~ Continuation-in-part of Ser. No. 247,657, May 23, 1994. mode of execution, so that the software and driver is
(511 Int. C1L° GO9G 500 simplified by not having to generate different code for
[52] U.S.CL 395/503 gifferent locations and modes. Thus, a host CPU executing
[58] Field of Search ... 364/DIG. 1 MS File, an application program decides whether certain commands
364/DIG. 2 MS File; 395/375, 800, 821. 454 command packets reside in system memory or within a
882454.,852(’)7 1 15132”1565’8’.853(%’854&;824725 /ggg’ }04:111 memory associated with the processor. The host CPU
437 3457112, 122; 463/44 eeds cor{lmands.to the proces.sor in a coprocessor m?de or
sends an instruction commanding the processor to switch to
[56] References Cited processor mode and begin locating and executing com-
mands. An idle instruction within the instruction stream
U.S. PATENT DOCUMENTS places the processor back into coprocessor mode. In a
5,388,841 2/1995 Sametal ..verrinneecrninnnen 273/435 graphics subsystem implemented according to the present
OTHER PUBLICATIONS invention. for example, a graphics processor executes dis-

Texas Instruments TMS34010 User’s Guide, 1988, pp.
1-1-4-17.

Primary Examiner—Robert B. Harrell
Antorney, Agent, or Firm—Gary R. Stanford; Steven A.
Shaw

/116

play list packets associated with real-time graphics functions
loaded into a private memory. Other. less time dependent
commands may be fed by the host CPU or a DMA device to
the graphics processor operating in coprocessor mode.

24 Claims, 10 Drawing Sheets

122
PRIVATE
Z-BUFFER 128
R
> 42 118 - HOST
7S 100 ~ 4
J GRAPHIC %—’ ' :; BUFFER 1%
ADDRESS/ PROCESSOR DATA VRAM VAN
CONTROL DATA | [icey
-
1147 P 104~ 108~ VIDEO
106 BUS INTERFACE out
. AND SCREEN TIMING RAMDAG
(FPGA)
102~
< SYSTEM BUS (e.q. EISA, PCT VL-BUS) >
139 138 134 136
INTERRUPT DISK
CONTROLLER DMA HOD DRIVES

5,706,478

Sheet 1 of 10

Jan. 6, 1998

U.S. Patent

ANEE
S3AlEd HITIOHLNOD
ASId aaH via LdNGH3LINI
9g1-’ peL—’ ggL 61—
[SAE-IA T0d 'VSI3 8] SN WALSAS v
T
{(vodd)
IVaNvY ONIWIL NIFHOS any| |SHIAIFOSNYHL i~
1Nno 30V4H3LINISNg oIV ANER:L
2l o3am -0l 0L ~— il
N e vivd JOHINOD
LI VIV Hoss300ud K—— /883H0QY
ozl H344ng OHAVHO
e N ¢
N
Ndo o_._.\ ol .. 001} N N/
1SOH VAV
WYHa
WYHa
_ . AHOWIW
821 H344N8-Z | RHO
J
el %

5,706,478

Sheet 2 of 10

Jan. 6, 1998

U.S. Patent

AN

wm\ ; 1S
L L
\ e
“lo'e] HOavOHT z 9k :)
52 HITIOHLNOD 2 {1 4ITIOHLNOD o |loHEaavouH
612 AHONAW | pem| AHOWIW L~ e
812 A‘_
ol 002
SSaaaY OIDOTHSIHA | 6]
WvHa - . ¢
+0 sHaLsoOM [
- aNV 21901
NOILYIOdHIINI|
el 0= - 5 INIDNIATOd
™ ~usoz z0z
aslz || S 21z | S| |[peoz
0 aNIENT |/ m - _Iv_o
1] NOILYHIdO [~ I
esle (1" = 3 2901 14
I 1 2| B e O LETCIRE
oiz " | /1 2902 - NOILONHLSNI
sz’ e 2807 T
) 902~ 80z ~e80 “t0e \-602
VLVa 1901 HOLYHVAINOD H344NgG Z |«
A WO0T O == Y 4/
{£0:1€} vival 00}

5,706,478

Sheet 3 of 10

Jan. 6, 1998

U.S. Patent

G B

(WYHQ) AHOWIW J1VAIHd

A [} W A

/ 148

[0:1€] VLVAH

3

Y

(071 1] HAQYOHH [

J[0:4]30H [~

Jd0:€] AIMH

Y

A

[0:1] SYOH

Y

«SYHH |

Y

ASNg

AQddH

HIOVATH -

O3HaH

A

Y

334H

oot —

t

NILNIH
. INOINIH

Y

(V9d4) H3T10HLNOD
3DV44ILNI L1SOH

SHIAIZOSNYHL

! K 901

v01

U.S. Patent ~ Jan. 6, 1998 Sheet 4 of 10 5,706,478

0 P N z M A
31 23 21 15 13 7
Flg. 4
g
00| DRAW CONTROL SIGNALS n
P1 ~
Y MAIN
P2 —
< A Y (SLOPE)
P3 ~
X MAIN
|]
PN ~ .
- -
Flg). 9
" [CALL - 42n 24 - BIT ADDRESS OF TARGET INSTRUCTION
31 23
RTN - 40h O's
31 23
BRANCH - 41h| 24 - BIT ADDRESS OF TARGET INSTRUCTION
_< 31 23
START - 43h 0's
31 23
IDLE - 44h 0's
31
— STORE 7
011|REG. ADDR. 24 - BIT ADDRESS
.31 28 23 =
Flg. ®
10 |REG. ADDR. 24 - BIT DATA VALUE
31 29 23 =4 =
Flg. 7
11 |REG. ADDR, O's n
31 29 23

U.S. Patent

128 ™

Jan. 6, 1998

!

Sheet 5 of 10

S

INST #1

| 4

P11

P12

P13

P14

INST #2

P21

P22

INST #3

INST #4

P41

P41

P43

P44

P45

CPU

138 ~

DMA

126 ~

[114

5,706,478

U.S. Patent

Jan. 6, 1998

Sheet 6 of 10

5,706,478

~A
126 ~ / \ /116
/’F—_\
/ d 106 ~
LR P =
1) I 1
| | |]
| | |]
DL1| |DL2: |DL3| |DL4: | ||oL2 DL4
L L ™ 114
- N 102
\ \
138
- T~ | ~ 100
128\
CPU
r
Fle. 1
116 ~
126 ~ A~
128 102
A _ DL2
CPU = DL3 e
/
138 1
________ /V DLO
DMA [—= D2 |
100 ~,

5,706,478

Sheet 7 of 10

Jan. 6, 1998

U.S. Patent

£1a 970 $1a
-
ool pii /
-/ N
L//I.\/ NS I NS
na
9~ ool 0} Youesg 4 \ gzl
Ndo
N Ne—— e Ne—
1ai N
\ £1ad 1V
=+ ™
\\\% 210 11V col
] <EER
o8+ \\ /
ud \ T#ISNI
al €1d Al Wa\/ IN%

5,706,478

Sheet 8 of 10

Jan. 6, 1998

U.S. Patent

AN EIE

~——] 3UIL

+LNOLNIH

ovi

1241
chl

HOVATH

8€1/9¢L” vELTELOEL 8CL

0cL 811 911

viL 2HL

0L 8L

9l i

Sy

X «Qg.ﬁ%sQ.%.%’Q

¢l Ol

O3HAH

AQHdH

[o:1elvLvaH

))

5,706,478

Sheet 9 of 10

Jan. 6, 1998

U.S. Patent

- ~
” 911 oa%>ﬁm_<,~_mwﬁ>_hn_ 011G e 911 Alowaly ajeAld 89meq d9 —
MIVAH
2 00LL
{
\ ® v DIHATH
\\ /
““““ . Asng
, ¢ t AquaH
I 5 \ JOHN
/XPrEAX\\KPHEA £ { erang) X erea wa Xeea aug [0:1ElvLvaH
X wi Yuwbew) 49) £ (a5 10 Y domow XXXNKX(do 100 Xdo_ 10 [0:11]4aavOUH
[d
A \@/ / ’ (D [\ goioamen
4
Y W / | \ \/\/méxz
SYHHN
J - F J \ /

RYRVARV ARV VR A aiaTainiavainiari.

5,706,478

Sheet 10 of 10

Jan. 6, 1998

U.S. Patent

QL "Bps

/ Asng
.............. A\ [\ AQHdH
HVA L ¥ Jajalieled Xm:oa :o_sa_mc_x Z4 J9joueley x;_mﬁssmm X vN v@o\s co:o::m:x [o:1elvivaH

gex 0 Basjsuig iog X [0:9laavoyH

[\ [\ [\ [\ [\ (1SOH) [01ZMHN

AW ARV B BT WIAY TRV Gsow svomn

WU W W0 TITY TUIITTY VUTTTITY o svum
T\

5,706,478

1

DISPLAY LIST PROCESSOR FOR
OPERATING IN PROCESSOR AND
COPROCESSOR MODES

CROSS-REFERENCES TO RELATED
APPLICATION

This is a continuation-in-part of co-pending application
Ser. No. 08/247,657 filed on May 23, 1994 entitled
“Dynamic Pipeline for a Processor.”

FIELD OF THE INVENTION

The present invention relates to methods of processing,
and more particularly to a processor for executing display
list packets in both processor and coprocessor modes.

DESCRIPTION OF THE RELATED ART

The advent of substantial hardware improvements com-
bined with standardized graphics languages has allowed the
use of complex graphics functions in even the most common
applications. For example, word processors, spread sheets
and desktop publishing packages are now beginning to take
full advantage of the improvements in graphics capabilities
to improve the user interface. Although sophisticated graph-
ics packages have been available for computer aided
drafting, design and simulation for some time, three-
dimensional (3D) displays are now common in games,
animation, muitimedia communication and drawing pack-
ages designed for personal computers.

It is evident that the demand for greater graphic capabili-
ties has increased dramatically. Thus, graphic system must
be capable of performing more sophisticated functions in
less amount of time in order to process greater amounts of
graphical data required by modem software applications.
There is a continuing need for improvements in software
algorithms and hardware implementations to draw three-
dimensional objects using full color, shading, texture
mapping, and transparency blending.

The development of raster display systems dramatically
reduced the overall cost and increased the capabilities of
graphic systems. In a raster display system, a set of hori-
zontal or orthogonal scan lines, each comprising a row of
pixels, forms an array or grid of pixels to represent the entire
screen area. The screen is preferably a cathode ray tube or
LCD display or the like capable of scanning the entire pixel
grid at a relatively high rate to reduce flicker as much as
possible. The pixel data is preferably stored in a frame buffer
comprising dynamic random access memories (DRAMS), or
more preferably video RAMs (VRAMs), where each pixel is
represented by one or more bits depending upon the desired
resolution. Typical display systems can draw screens with
multiple colors at a variety of screen resolutions, such as
640x480, 800x600, 1024x768, 1280x1024 or more pixels
depending upon the software drivers and the hardware used.

A video controller scans and converts the pixel data in the
frame buffer to the control signals required by the screen
system to display the information on the screen. In
particular, the video controller scans each of the pixels
sequentially, preferably from top to bottom and from left to
right, and converts pixel data into intensity values for
corresponding pixels on the screen. In a color graphics
system using a CRT, three separate beams are controlled for
each of the primary colors, where the intensity of each of the
beams is determined by the pixel value corresponding to the
respective colors. A similar system is used for LCD displays.
In the preferred embodiment, each pixel value comprises 24

10

15

25

30

35

45

55

65

2

bits, one byte for each of the primary colors red. green, and
blue, where the byte number determines the intensity of the
respective color.

Improvements have been made in the hardware realm.
including graphics processors and accelerators with corre-
sponding software drivers where the drivers provide an
interface between the host central processing unit (CPU) and
the graphics processor. There has also been an advance in
graphics software such as the development of graphics
standards. In particular, 3D core graphics system (CORE)
was produced by ACM SIGGraph Committee in 1977.
Subsequently, the graphics kernel system (GKS), similar to
CORE, became the first standardized graphics specification.
Other more sophisticated standards developed, such as pro-
grammer’s hierarchical interactive graphics systems
(PHIGS). PHIGS has been extended with a set of features
for pseudo-realistic rendering of objects on raster displays.
called PHIGS-plus. Another graphics package developed
called SPHIGS (simple PHIGS), which is a subset of PHIGS
that supports some of the simpler PHIGS-plus features.

The predominant video standards include the video graph-
ics array (VGA) and the super VGA (SVGA) which was
primarily achieved using graphics accelerators. An accel-
erator was initially little more than a timing generator for the
display where the host central processing unit (CPU) per-
formed the primary graphics functions. The accelerator
included x,y registers and a data port so that the CPU had to
provide all the addresses and data for the display. Eventually,
accelerators included simple functions such as bit block
transfers or “bit blits” and even line draw commands for
manipulating data within the frame buffer. Nonetheless. such
accelerators required a significant level of bandwidth across
the bus to transfer data and commands. The data included
either pixel data or relatively low level commands so that the
ratio between the resulting pixel data to the frame buffer and
the data across the bus was relatively low, tending to slow
down data transfers to the graphics interface.

One technique for improving the graphics interface was to
use a small first-ip, first-out buffer (FIFO) which typically
included up to 32 bytes of data. The FIFO allowed some
level of concurrency, but once the FIFO was full, the CPU
was once again forced into wait states. Even if the graphics
accelerator were capable of operating at high speeds
required for 3D animation, the integrated system architec-
ture (ISA) bus typically found on most personal computer
systems was too slow to allow sufficient data transfer. The
ISA bus operates at a maximum of about 8§ MHz and can
only transfer data at a rate of about 2 Megabytes (MB) per
second.

Graphics coprocessors have also been used which operate
under the principle of command level interface, where the
host CPU or other bus master feeds individual graphics
commands directly into the registers of the coprocessor.
Such coprocessors still operate with a relatively low level of
concurrency with respect to the CPU, so that the host CPU
experiences a significant number of wait states waiting for
the graphics coprocessor to complete its present operation.
In particular, the host CPU loads one command and attempts
to load additional commands and parameters into the graph-
ics coprocessor, but since the graphics coprocessor is busy,
it asserts a signal forcing the CPU into wait states. Thus, the
CPU experiences a significant number of wait states and can
only load the next command and parameters when the
graphics coprocessor has completed the present command.

Graphics coprocessors are typically address dependent,
where an address always had to be provided along with the

5,706,478

3

data to indicate which register of the coprocessor was to
receive the data. Such address dependency significantly
increased the amount of data associated with graphics com-
mands thereby slowing the system bus and graphics inter-
face.

Graphics processors are also available, such as the
TMS34010 and TMS34020 processors by Texas Instru-
ments. Such processors operate exclusively as processors
and thus require a separate dedicated memory for storing
instructions and data. The host CPU could not feed com-
mands and data directly to the graphic subsystem, but
instead had to execute special software function calls. In
particular, a special set of software development tools were
required for the particular processor resulting in substantial
development cycle times and costs. Sophisticated graphic
functions and operations, such as polygon drawing and
filling and texture mapping, required separate software sub-
routines to be written for execution by the subsystem
processor. Thus, application programs had to include
embedded code for providing commands to the subsystem
Processor.

It is therefore desirable to provide improved graphics
interface and capabilities for computer systems, particularly
personal computer systems. It is desired to substantially
increase the speed of the graphics without requiring separate
development for the graphics interface.

SUMMARY OF THE INVENTION

A processor according to the present invention executes
display list commands in processor or coprocessor mode and
dynamically switches between these two modes. Each dis-
play list command conformms to a single format regardless of
whether the processor is operating in the processor mode or
coprocessor mode. This uniform format significantly sim-
plifies the command protocol, thereby eliminating the need
for multiple types of commands. A display list command
packet generally comprises multiple commands or
instructions, where each instruction may include one or
more command parameters. The number of parameters
following a particular command is provided within the
command itself. The list of sequential commands forming a
display list packet is typically associated with a particular
graphics function or operation.

The display list packet format allows dynamic allocation
to switch between processor and coprocessor modes through
a handshaking protocol between the processor and the host
CPU, thereby facilitating concurrent execution. Such
dynamic switching occurs automatically based on the
instruction stream formed by the display list protocol. For
example. the host CPU can feed the processor a branch
instruction while in coprocessor mode, which causes the
processor to automatically switch to processor mode and
begin executing instructions at a new display list packet
indicated by the branch instruction. An idle instruction
encountered in the instruction stream forces the processor
back into coprocessor mode. Effectively, a processor imple-
mented according to the present invention operates like an
embedded processor to the host CPU, so that software need
only be developed for the host CPU, which can determine
the level of control of the “embedded” processor.

In the preferred embodiment, the host CPU executes an
application program which further calls a software driver
associated with a graphics processor implemented according
to the present invention. The application program and soft-
ware driver build the display list packets and either the CPU
or a direct memory access (DMA) device typically provided

10

15

20

25

30

35

45

55

65

4

in a computer system transfers selected ones of the display
list packets to the graphics subsystem. The graphics sub-
system preferably includes a local or private memory
attached to a host interface bus further coupled to the
graphics processor. In this manner, parallel or concurrent
execution is facilitated since the host CPU builds new
display list packets while the DMA device transfers com-
pleted commands to the graphics subsystem and while the
graphics processor executes commands from the private
memory.

The application software and/or the driver code has
complete control and places each display list packet at any
convenient location depending upon the level of access and
speed required. Multiple display list packets are formed
where each packet is associated with a particular function,
and where the packets are linked together depending upon
operation desired. In this manner, those command packets
requiring real time or relatively fast execution and access,
such as draw routines, save context lists, pop-down menus
or cursor control are transferred to the private memory and
executed by the graphics processor directly while in pro-
cessor mode. The processor mode is advantageous for high
speed execution required for 3D animation. Other command
packets, such as associated with fonts or image rotation
operations, etc., which are not operated in real time or which
are not time-critical commands remain in system memory
and are fed to the graphics processor while operating in
coprocessor mode. The use of uniform, location-
independent display list commands eliminate the need to
construct different types of commands based on execution
mode or location.

The use of display list command packets provide three-
dimensional (3D) animation capabilities even for ISA bus
systems with low bandwidth capability. Each display list
command is implemented using a mathematical protocol
where a relatively small number of parameters or data is
transferred across the bus and stored in private memory or
otherwise loaded into the graphics processor. The display list
commands include a set of drawing instructions for lines,
triangles, polygons, etc. and include a set of initial and slope
parameters for drawing the particular graphics element. The
graphics processor executes drawing commands by interpo-
lating the initial and incremental or slope values, thereby
generating a significant amount of pixel data as compared to
the number of bytes comprising the draw command itself.
Thus, there is a high ratio of the number of pixels generated
relative to the number of bytes in the corresponding com-
mand.

The structure of each display list packet allows address
independence. A list of commands is provided sequentially,
where each command generally includes a parameter field
identifying the number of parameters associated with and
immediately following the command in the instruction
stream. The graphics processor can easily determine the
location or position of the next command in the instruction
stream, thereby eliminating the need for providing separate
addresses per command.

A graphics processor according to the present invention
thereby provides high level graphic capabilities including
3D animation even on relatively simple computers, such as
low end personal computer systems. In a graphics system
according to the present invention, application software or a
graphics driver builds display list packets for providing
complete control over graphics functions. Each display list
command or entire command packet can be executed by the
graphics processor in processor or coprocessor mode,
depending upon the needs of the application software.

5,706,478

5
BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 is a simplified block diagram of a graphics system
coupled to a system bus of a host computer system, where
the graphics system includes a graphics processor imple-
mented according to the present invention;

FIG. 2 is a simplified block diagram of the graphics
processor of FIG. 1;

FIG. 3 is a more detailed block diagram illustrating the
signal connections of the local bus associated with the
graphics processor of FIG. 1;

FIG. 4 is a diagram illustrating the general format of
instructions for graphics processor of FIG. 1;

FIGS. §, 6, 7, and 8 illustrate particular instruction
formats for the graphics processor of FIG. 1;

FIG. 9 illustrates the format of display list packets accord-
ing to the present invention;

FIG. 10 is a figurative diagram illustrating general opera-
tion for transferring display list packets;

FIG. 11 is a figurative diagram illustrating execution of
multiple display list packets in either processor or copro-
cessor mode as controlled by the host CPU of FIG. 1;

FIG. 12 is a figurative diagram illustrating concurrent
execution of a system according to the present invention;

FIG. 13 is a figurative diagram illustrating the operation
and efficiency of a system according to the present inven-
tion;

FIG. 14 is a timing diagram illustrating the handshaking
between the host CPU and the graphics processor of FIG. 1;
and

FIGS. 15 and 16 are more accurate timing diagrams
provided for purposes of illustration.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Refemring now to FIG. 1, a simplified block diagram is
shown of a graphics system coupled to a system bus 102 of
a host computer system, where the graphics system includes
a graphics processor 100 implemented according to the
present invention. The system bus 102 is any one of a
plurality of different types of host or input/output (I/0)
buses, including the industry standard architecture (ISA), the
extended ISA (EISA), the peripheral component intercon-
nect (PCI), the video electronic standard association
(VESA) local bus or the VL-bus, or any other standardized
system bus of a computer system. The system bus 102 could
comprise a separate local processor or system bus coupled to
an expansion bus through a bus controller as known to those
having skill in the art, although particular configurations are
not shown for purposes of simplification. If the expansion
bus is an ISA or EISA bus, it operates at a maximum of about
8 megahertz (MHz). The graphics processor 100 is prefer-
ably a 32-bit graphics processor operating at a frequency of
33 MHz and is coupled to the system bus 102 through bus
interface and screen timing logic (FPGA) 104. Of course,
lower or higher operation frequencies are achievable and
contemplated. The FPGA 104 is used to control a set of
transceivers 106 and a random-access memory digital-to-
analog converter (RAMDAC) 108, where it interfaces to the
system bus 102, controls the decoding of cycles to the
RAMDAC 108 and determines video timing.

10

15

20

25

30

35

45

50

55

60

65

6

The RAMDAC 108 receives digital data stored in a frame
buffer 110 and converts the digital data to the appropriate
analog outputs required by a display unit 112. In the pre-
ferred embodiment, the frame buifer 110 is part of a raster
display implemented in a video RAM (VRAM), where the
digital data comprises a rectangular array of picture ele-
ments referred to as pixels or pixel values. Each pixel value
is preferably 8 bits for defining the intensity of a single color
of a comresponding pixel on a screen of the display unit 112.
However, either three passes are made or three parallel logic
slices are implemented for the three primary colors to
achieve 24-bit pixel values for full color display. The frame
buffer 1190 stores pixel values for a 4096x4096 screen size or
16 Megabytes (MB) of memory. The display unit 112 may
be any type, such as a cathode ray tube (CRT) for desktop,
workstation or server applications, or a liquid crystal display
(LCD) or the like commonly used for portable computers.

The transceivers 106 are used to interface the graphics
processor 100 with the system bus 102 through address, data
and control signals, collectively referred to as the HBUS
114, which is further connected to an optional private
memory 116. Although referred to as the “host” bus, the
HBUS 114 is local to the graphics processor 100 and can
operate independently of the system bus 102 due to the
isolation provided by the transceivers 106. The address
portion or host address bus is preferably 12 bits, although
these signals are asserted as row and column signals for
addressing 8 MB worth of memory. The host data bus is 32
bits in length for transferring 4 bytes at a time, equivalent to
one 32-bit instruction or 4 pixels. In the preferred
embodiment, the private memory 116 acts as a virtual frame
buffer, display list storage, texture map, and bit mapped font
storage memory to improve performance and functionality
of the graphics system. The private memory 116 is prefer-
ably added as a separate bank of external dynamic RAMs
(DRAMs) for providing a performance improvement by
permitting faster access to display list instructions and pixel
data compared to data stored in a main memory 126. A
memory system 127 preferably comprises a memory con-
troller 125 coupled to the system bus 102 and also coupled
to the main memory 126, which comprises at least 4 MB, but
preferably comprises 16 or 32 MB or more worth of data.
The private memory 116 is preferably up to § MB for
achieving a 2048x2048 byte pseudo-display, or for storing
up to 8 MB worth of instructions and data.

The graphics processor 100 communicates to the frame
buffer 110 through address, data and control lines, collec-
tively referred to as the LBUS 118, which is further con-
nected to a Z-buffer 122, also preferably implemented using
DRAMs. The local address bus is preferably 14 bits for
addressing the pixels of the frame buffer 110. The local data
bus is preferably 32 bits in length for transferring one word
or 4 pixels at a time. Throughout this disclosure, a word is
equal to 4 bytes or 32 bits. The Z-buffer 122 is preferably
used to implement a depth buffer for three-dimensional (3D)
graphic displays, where each depth value is preferably 16
bits. Separate control signals of the LBUS 118 are also
connected between the graphics processor 100 and the
Z-buffer 122, as will be described more fully below. The
host computer system preferably includes a central process-
ing unit (CPU) 128 for executing various software
programs, which are loaded into the main memory 126 from
a permanent magnetic storage device, such as hard disk
drives 136 or floppy disk drives (not shown), and executed
by the CPU 128, although other similar configurations are
possible. Also shown is a hard disk drive controller (HDD)
134 connected to the system bus 102 for connecting to the

5,706,478

7

hard disk drives 136, and a direct memory access device
(DMA) 138 coupled to the system bus 102 for controlling
DMA data transfers between the hard disk drive 136, the
main memory 126 and the private memory 116. An interrupt
controller 139 is provided and coupled to the system bus 102
for allowing the host CPU 128 and the graphics processor
100 to interrupt each other.

It is understood that the particular embodiment shown in
FIG. 1 is only one of many possible implementations of a
graphics system for use in a personal computer system. FIG.
1 is simplified for purposes of clarity, and many control
signals are not shown. In the preferred embodiment, the
graphics processor 100 provides hardware support for 2D
and 3D graphics, text and windowing operations of a com-
puter system. The graphics processor 100 transfers digital
data between the main memory 126, the private memory
116, the frame buffer 110 and the Z-buffer 122, and pro-
cesses the data for storage in the frame buffer 110 for
ultimate display on the display device 112.

Referring now to FIG. 2, a simplified block diagram of the
graphics processor 100 is shown. The host data bus of the
HBUS 114, comprising the signals HDATA[31:0}, is con-
nected to screen and refresh logic 200, an interpolation
engine and associated registers (polyengine) 202, instruction
decode and control logic 204, a register file 205 and pixel
alignment logic 208. The HBUS 114 also preferably
includes a 33 MHz clock signal CK, which synchronizes
data flow and logic within the graphics processor 100. The
clock signal CK is preferably the same or based on the clock
signal of the host CPU 128 and associated with the system
bus 102. Of course, if an ISA or EISA expansion bus would
operate at slower speeds and would be separated from the
system bus 102 by a bus controller as known to those skilled
in the art. The screen and refresh logic 200 provides row and
column address signals to the frame buffer 110 and to the
Z-buffer 122 during refresh cycles. The polyengine 202
preferably receives and stores vector data of parameters
from the register file 205 for points, lines, polylines,
polygons, and other geometric quantities, and then calcu-
lates or otherwise interpolates pixel position, color intensity,
depth and transparency or alpha-blending for the various
geometric quantities and characteristics. The polyengine 202
also determines address values for bit-block data transfer
operations and provides color intensity values and depth
values to an operation engine 212.

The register file 205 is preferably a set of 64 to 128
registers forming a read/write pre-storage and instruction
queuing buffer for storing data and commands. A portion of
the register file 205 is shown below in Table 1 for purposes
of full disclosure:

TABLE 1

Register Set for the Graphics Processor 100

Register Name Port Address
Pattern RAM 00-07h
Color & Alpha 08h
Offsets 0O%h
Color Bound High 0Ah
Color Bound Low 0Bh
Pmask 0Ch
Dash 0Dh
Disable OEh
Reserved

Refresh register O 10h

Refresh register 1 11k

10

15

20

25

30

35

45

50

55

65

8

TABLE 1-continued

Register Set for the Graphics Processor 100

Register Name Port Address
Refresh register 2 12h
Refresh register 3 13h
Refresh register 4 14h
Refresh register 5 15h
Refresh register 6 16h
Refresh register 7 17h
Refresh register 8 18h
Refresh register @ 15h
Refresh register A 1Ah
Refresh register B 1Bh
Refresh register C ICh
Refresh register D 1Dh
Refresh register E 1Eh
Refresh register F 1Fh
Control 20h
Mask 22h
Status 24h
Register File: Y Main 28h
Register File: Y Slope 25h
Register File: X Main 2Ah
Register File: X Slope 2Bh
Register File: Z Main 2Ch
Register File: Z Slope 2Dh
Register File: I Main 2Eh
Register File: I Slope register 2Fh
Register File: Main Width 30h
Register File: Delta Main Width 31h
Register File: Opposite Width 3%h
Register File: Delta Opposite Width 33h
Register File: Z Error 34h
Register File: Z Ortho 35h
Register File: I Error 36h
Register File: I Ortho 37h
Register File: A Ortho 38h
Register File: A Main Slope 3%h
Host Pitch 3Ah
Host Instruction 3Bh
Host Base 3Ch
Host Offset 3Dh

where a lowercase “h” following the port address denotes
hexadecimal notation. The registers of the register file 205
are connected and accessible to the control logic 264 and the
polyengine 202. Instructions are loaded into the instruction
register at address 3Bh and associated parameters are loaded
into associated ones of the remaining registers depending
upon the indicated instruction.

The operation engine 212 generally performs alpha blend-
ing functions, color logic operations as well as compare and
masking functions. The instruction decode and control logic,
or simply the control logic 204, provides control signals,
generally referred to by the letter C, to all of the functional
blocks described herein of the graphics processor 100.
Graphics instructions are either read by the graphics pro-
cessor 100 from the private memory 116 or main memory
126 and loaded into an instruction queue (not shown) and
then into an instruction register within the register file 205
in a processor mode of operation, or are directly loaded by
an external device such as the CPU 128 or the DMA 138.
The control logic 204 then executes the instruction by
asserting the necessary control signals C for determining
synchronization and data flow according to the particular
instruction.

The pixel alignment logic 208 includes two three-input
multiplexors 208a, 2085 each having two inputs coupled to
the host data bus and local data bus, and outputs coupled to
the inputs of two registers 208c, 208d, respectively. The
output of the register 208¢ is provided to the third input of
mux 2085 and to one input of a two-input barrel shifter 208e.

5,706,478

9

The output of the register 2084 is provided to the third input
of the mux 208a and to the other input of the barrel shifter
208e, having its output providing output pixel values to a set
of input first-in, first-out latches (IFIFOs) 210 and also
directly to the operation engine 212. The muxes 2084, 2085
allow the graphics processor 100 to receive data from either
the host or local data buses, or a combination thereof. The
barrel shifter 208¢ allows alignment of pixel data as desired.

The local data bus of the LBUS 118 is provided to
Z-buffer comparator logic 206 and also to the pixel align-
ment logic 208. The Z-buffer comparator logic 206 is
generally used for 3D operations for controlling the data to
be displayed in overlap or transparency situations. Depth
data values stored in the Z-buffer 122 are compared with
depth values interpolated by the polyengine 202. The out-
puts of the Z-buffer comparator logic 206 and the operation
engine 212 are provided to output FIFOs (OFIFOs) 214. The
outputs of the OFIFQs 214 are provided to the inputs of set
of buffers 215, comprising a first set of tri-stateable buffers
215a for providing outputs to the local data bus, and a
second set of tri-stateable buffers for providing outputs to the
host data bus. The IFIFOs 210 and the OFIFOs 214 decouple
the dynamic interface of the memories 110, 116 and 122, and
the IFIFOs 210 synchronize source data for the operation
engine 212 for read-modify-write (RMW) operations. The
buffers 215q, 215b allow data from the OFIFOs 214 to be
provided to the local data bus, the host data bus, or both. The
muxes 208a, 2085 and the tri-stateable buffers 2154, 2156
allow complete flexibility of data flow between the LBUS
118 and HBUS 114, so that data can be transferred from the
private memory 116 to the frame buffer 110 or the Z-buffer
122, and vice versa.

A first memory controller (MC1) 216 provides address
signals to one input of a two input bus multiplexor (mux)
217 and to one input of another two-input bus mux 219. The
output of the mux 217 is connected to the host address bus
of the HBUS 114 for asserting address signals to the private
memory 116 and the transceivers 106. A second memory
controller (MC2) 218 provides address signals to the second
inputs of the muxes 217, 219. The output of the mux 219 is
connected to the local address bus of the LBUS 118 and
provides address signals to the Z-buffer 122, the FPGA 104
and the frame buffer 110. The select inputs of the muxes 217,
219 receive signals S1, S2, respectively, provided from the
control logic 204. In general, the graphics processor 100
operates in either a coprocessor or processor mode where the
CPU 128 or the graphics processor 100, respectively, con-
trols the HBUS 114 for providing data and instructions to the
graphics processor 100 for execution. A coprocessor mode is
thus implemented where an external device such as the host
CPU 128 asserts address signals to the graphics processor
100 for accessing and loading instructions and parameters
into the register file 205. The registers of the register file 205
are preferably connected and accessible to the memory
controllers MC1 216, MC2 218. Although not explicitly
shown, the control logic 204 asserts the C control signals to
cause the mux 217 to tristate its outputs in coprocessor mode
to allow an external device, such as the host CPU 128 or the
DMA device 138 to control the HBUS 114. In processor
mode, the mux 217 of the graphics processor 100 asserts
addresses to obtain data or instructions and parameters from
the private memory 116 or the main memory 126, depending
upon system configurations.

Referring now to FIG. 3, a more detailed block diagram
is shown illustrating the signal connections between the
graphics processor 100, the transceivers 106, the FPGA 104
and the private memory 116. Although the host address bus

10

15

20

25

30

35

45

50

55

65

10

signals are asserted directly by the mux 217, it is understood
that these signals are indirectly asserted by the MC 1216 or
the MC2 218 depending upon the S1 or S2 signals. In the
preferred embodiment, the memory controllers MC 1216
and MC2 218 are impiemented as state machines within the
control logic 204, although they are shown separated for
purposes of illustration. The various control signals
described herein related 19 the address signals are generally
asserted by the control logic 204, although they will be
referred to as being asserted generally by the graphics
processor 100.

A host DRAM refresh signal, referred to as HREF, is
asserted by the graphics processor 100 to the FPGA 104
indicating that the graphics processor 100 requires access to
the HBUS 114 to either perform DRAM refresh cycles of the
private memory 116, or otherwise to indicate that such
cycles are already in progress. A host interface hold request
signal, referred to as HLDREQ, is asserted by the graphics
processor 100 to the FPGA 104 to indicate that the graphics
processor 100 desires control of the HBUS 114.
Correspondingly, the FPGA 104 asserts a host interface hold
acknowledge signal, referred to as HLDACK*, which indi-
cates that the host computer system has granted control of
the HBUS 114 to the graphics processor 100. An asterisk (*)
at the end era signal name denotes *negative logic where the
signal is normally considered asserted when low or at logical
zero and negated when high or at logical one. Otherwise,
signal names generally conform to positive logic where the
signal is asserted when high and negated when low. The
HLDREQ and HLDACK* signals are used by the graphics
processor 100 to arbitrate for control of the HBUS 114,
where the graphics processor 180 drives the HBUS 114
when both the HLDREQ and HLDACK* signals are
asserted.

Ahost port ready signal, referred to as HPRDY, is asserted
by the graphics processor 100 to the FPGA 104 to indicate
to the host computer system that the graphics processor 100
is ready to accept another instruction. The HPRDY signal is
primarily used for a coprocessor mode, since otherwise the
graphics processor 100 fetches the next instruction from
either the main memory 126 or from the private memory
116. A BUSY signal is asserted by the graphics processor
100 to the FPGA 104 to indicate that the graphics processor
100 is busy executing an instruction. The BUSY signal in
combination with the HPRDY signal indicates the state of
the instruction prefetch queue within the instruction decode
and control logic 204. A signal HINTIN* is asserted by an
external device, such as the CPU 128 or the interrupt
controller 139 to indicate that the host system or CPU 128
wants to interrupt the graphics processor 100 to stop pro-
cessor mode instruction flow and gain access to the HBUS
114. A signal HINTOUT* is asserted by the graphics pro-
cessor 100 to indicate that an enabled internal interrupt event
has occurred, such as when an interrupt instruction is
encountered or that the HINTIN* signal has been asserted.

A host row address strobe signal, referred to as HRAS*,
is connected between the graphics processor 100, the FPGA
104 and the private memory 116, and is asserted when a
valid row address has been driven onto the HBUS 114. The
HRAS* signal is input to the graphics processor 100 when
the HLDREQ signal is negated and is provided by the
graphics processor 100 when both the HLDREQ and
HLDACK?* signals are asserted. Two host column address
strobe signals referred to as HCAS[1:0]* are connected
between the graphics processor 100, the FPGA 104 and the
private memory 116, which are asserted to indicate that a
valid column address has been driven onto the host address

5,706,478

11

bus, comprising individual bus signals HRCADDR[11:0].
Preferably, two signals are provided for increased output
drive capability, atthough they will collectively be referred
to as the HCAS* signal. The HCAS* signal is provided to
the graphics processor 100 from an external device when the
HLDREQ signal is negated and are asserted by the graphics
processor 100 when both the HLDREQ and HLDACK*
signals are asserted. The HRAS* and HCAS* signals are
bi-directional signals driven by an external controller to
address the graphics processor 100 for reads and write
cycles or for instruction loading when the HLDREQ signal
is negated. These signals are driven by the graphics proces-
sor 100 to access instructions or data from the main memory
126 or from the private memory 116.

Four host write enable signals, referred to as HWE[3:0]*,
are individual write enables for each byte of the host data
bus of the HBUS 114, comprising individual bus signals
HDATA[31:0]. The HWE[3]*, HWE[2]*, HWE[1]*, HWE
[0]* signals correspond to the HDATA[31:24], HDATA[23:1
7]. HDATA[16: 8] and HDATA[7:0] signals, respectively.
Two host output enable signals, referred to as HOE[1:0]*,
are provided to the graphics processor 100 by an external
device when the HLDREQ signal is negated, which causes
the graphics processor 100 to provide data on the HDATA
[31:0] signals. Again, two identical signals are preferably
provided for increased drive capability. although they will be
collectively referred to as the HOE* signal. The HOE*
signal is asserted by the graphics processor 100 when both
the HLDREQ and HLDACK?* signals are asserted to access
instructions or data from an external memory, such as the
main memory 126 or the private memory 116. The HWE
{3:0]* and the HOE* signals are bi-directional host write
and output cnable signals to allow an external controller of
the HBUS 114 to access the registers of the graphics
processor 100 or for loading instructions and parameters into
the graphics processor 100. These signals also allow the
graphics processor 100 to access instructions or data from
the main memory 126 or from the private memory 116.

The host address bus of the HBUS 114 comprising signals
HRCADDR][11:0] are bi-directional host row and column
address signals driven by an external controller, such as the
host CPU 128, to address the registers of the graphics
processor 100 for reads and writes or for instruction and
parameter loading when the HLDREQ signal is negated.
When both the HLDREQ and HLDACK* signals are
asserted, the HRCADDR[11:0] signals are driven by the
mux 217 of the graphics processor 100 to access instructions
or data from the main memory 126 or from the private
memory 116. To achieve a full address, a row address is
asserted on the HRCADDR[11:0] signals and the HRAS*
signal is asserted to precharge the DRAMs, and then a series
of column addresses are asserted on the HRCADDR[11:0]
signals and the HCAS* signal is strobed accordingly. In the
preferred embodiment, the graphics processor 100 is con-
nected to the host computer system through the transceivers
106 and is directly connected to the DRAM:s of the private
memory 116. The host data bus transfers data and instruc-
tions to and from the host computer system, which includes
the host CPU 128 and the main memory 126. The controller
of the host data bus changes on a cycle to cycle basis
depending upon the mode of the graphics processor 100, and
whether data is being read or written.

Referring now to FIG. 4. a diagram is shown illustrating
the general format of instructions for the graphics processor
100, which are sequentially loaded into the register file 205
and then executed. All instructions are preferably 32 bits in
length, having a least significant bit 0 and a most significant

10

15

20

25

30

35

45

55

65

12

bit 31, and the instruction bits will be referred to as 1[31:0].
Each instruction is separated into a plurality of fields to
identify the particular operation to be performed. Six sepa-
rate fields are defined, including fields O, P, N, Z, M and A,
where a number below the lower left-hand corner of the
respective fields indicates the most significant bit of each
field. Not all fields are used for each instruction, where the
field definitions may change depending upon the particular
instruction. The O field is referred to as the opcode field
comprising8 bits 1|31:24] for identifying the particular type
of command within one of four separate groups of
commands, as shown in Table 2 below. The P field com-
prises 2 bits 1{23:22] for identifying the number of pipeline
stages within the operation engine 212 for carrying out a
particular function within the operation engine 212. The
operation engine 212 includes a dynamic pipeline preferably
including 1, 2 or up to 3 separate stages depending upon the
bits in the P field. The N field is a 6-bit field comprising bits
1[21:16] for specifying the source of color and alpha value
operands for an arithmetic logic unit (ALU) located within
the operation engine 212. The Z field comprising 2 bits I[15:
14] identifies whether the Z-buffer 122 is used or updated.
The M field comprises 5 bits I[13:8] for identifying the
particular operation performed by the ALU, which includes
several logic operations, such as XOR, AND, NAND, etc. or
arithmetic operations such as addition, subtraction, etc.
Finally, the A field comprises the least significant8 bits 1[7:0]
for specifying the number of immediate 32-bit operands or
parameters immediately following the instruction in the
instruction stream, which should be loaded into appropriate
registers of the register file 205 before executing the instruc-
tion.

The following Table 2 illustrates the four primary instruc-
tion groups identified by the two most significant bits
1[31:30] of the instruction register within the O field:

TABLE 2

Instruction Groups

I[31] 1[30] Group Instructions
] 0 0 Lines, Polylines, BitBLTs, Text
¢} 1 1 Instruction Flow, Store
1 0 2 Load Short
1 1 3 Load Long

Each of these groups will now be further defined. In general,
the group 0 instructions are drawing commands for drawing
lines, polylines, polygons, performing bit block transfers
(BitBLTs) and transferring text or other data groups. The
group 0 instructions are further classified according to the
next two most significant bits of the O field or the 1[29:28]
bits according to the following Table 3:

TABLE 3

Instruction Group 0 Sub;

1]29] 128] Subgroup Instructions
0 0 0 Lines and Polylines
0 1 1 Polygon
1 0 2 BitBLT
1 1 3 String Text

In this manner, if the I[31:28] bits of the 0 ficld of the
instruction register are all @’s, then the instruction is for
drawing lines or polylines, where more particular details are
defined by the remaining bits and fields. Subgroups 1, 2 and

