USERS HANDBOOK

PRICE \$7.50

USERS HANDBOOK

P arrays, inc.

X

USERS HANDBOOK EA 9002 MICROPROCESSOR

Material Contributed By

Kern Moulton Adam Osborne Gary Prosenko Richard Umstattd W.E. Wickes

Copyright © 1976 by Electronic Arrays Inc.

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publishers.

Published by

550 East Middlefield Road Mountain View, California, 94043

ü

TABLE OF CONTENTS

PAGE

INTRODUCTION	1-1
WHAT THIS BOOK CONTAINS HOW THIS BOOK HAS BEEN PRINTED	1-2 1-3
AN EA9002 MICROPROCESSOR OVERVIEW	2-1
MICROPROCESSOR ARCHITECTURE THE ACCUMULATOR SCRATCH MEMORY GENERAL PURPOSE REGISTERS AND DATA MEMORY	2-1 2-1 2-1
ADDRESSING THE PROGRAM COUNTER AND PROGRAM MEMORY	2-4
THE SUBROUTINE STACK	2-0
STATUS FLAGS STATUS FLAG SUMMARY PINS AND SIGNALS	2-10 2-11 2-12
EA9002 MICROPROCESSOR CHARACTERISTICS	3-1
INSTRUCTION TIMING INSTRUCTION FETCH AND EXECUTION SINGLE BYTE INSTRUCTIONS TWO BYTE INSTRUCTIONS INTERMEDIATE STATE TIME BUS UTILIZATION THE WAIT STATE INTERRUPT SEQUENCE RESET DETAILED SIGNAL TIMING	3-1 3-3 3-4 3-8 3-8 3-15 3-16 3-17 3-18
SYSTEMS CONFIGURATION	4-1
EXTERNAL MEMORY INTERFACING ROM INTERFACING RAM SYSTEM CONFIGURATIONS WITH I/O MEMORY BANK SWITCHING SEPARATING PROGRAM AND DATA MEMORY INTERRUPT PROCESSING	4-2 4-2 4-4 4-6 4-11 4-13 4-15
THE INSTRUCTION SET	5-1
ABBREVIATIONS	5-1

5

4

CHAPTER

1

2

3

TABLE OF CONTENTS (Continued)

CHAPTER

PAGE

ADD — ADD REGISTER TO ACCUMULATOR WITH	
CARRY	5-4
ADS - ADD SCRATCH MEMORY TO ACCUMULA	ror and
WITH CARRY	5-5
AND — AND REGISTER WITH ACCUMULATOR	5-6
CAP — COPY ACCUMULATOR TO PAGE	5-7
CAR - COPY ACCUMULATOR TO REGISTER	5-8
CLA — CLEAR THE ACCUMULATOR	5-9
CLB — CLEAR THE ACCUMULATOR AND	
CARRY STATUS	5-10
CLC — RESET THE CARRY STATUS TO 0	5-10
	5-11
CMC — COMPLEMENT THE CARRY STATUS	5-12
CMP COMPARE REGISTER WITH ACCUMULATC)R 5-12
CPA - COPY PAGE TO ACCUMULATOR	5-13
	5-14
CSA - COPY STATUS TO ACCUMULATOR	5-15
DAC - DECREMENT THE ACCUMULATOR	5-16
DCB DECREMENT REGISTER	5-17
	5-18
	5-10
	5 20
	5-20
	5-27
	5.23
INF INCREMENT REGISTER	5-20
	0-24
	5 25
	5-2J
	5.28
	0-20
ARE FOLIAL	5 20
	5-25
THAN OF EQUAL TO RECISTED	5 20
	0-50
	5 20
	5-30
	0-3U
	5-30
JLL - JUIVIF IF ACCUIVIULATUR IS LESS THAN	F 21
UN EQUAL IU REGISTER	0-31

TABLE OF CONTENTS (Continued)

CHAPTER

6

PAGE

JLT — JUMP IF ACCUMULATOR IS LESS THAN	
REGISTER	5-32
JNC — JUMP IF NO CARRY	5-32
JNE - JUMP IF ACCUMULATOR IS NOT	
EQUAL TO REGISTER	5-32
JNZ — JUMP IF ACCUMULATOR IS NOT ZERO	5-32
JSR — JUMP TO SUBROUTINE	5-32
JUN JUMP UNCONDITIONAL	5-33
JZE JUMP IF ACCUMULATOR IS ZERO	5-34
LAI LOAD ACCUMULATOR IMMEDIATE	5-34
LRI — LOAD REGISTER IMMEDIATE	5-35
LRN — LOAD REGISTER INDIRECT (IMPLIED)	5-36
NOP NO OPERATION	5-37
OUT OUTPUT FROM ACCUMULATOR	5-38
RAL — ROTATE ACCUMULATOR LEFT	5-39
RAR — ROTATE ACCUMULATOR RIGHT	5-40
RDS — READ SCRATCH MEMORY TO	
ACCUMULATOR	5-42
RET RETURN FROM SUBROUTINE	5-43
RLC — ROTATE ACCUMULATOR LEFT	
THROUGH CARRY	5-44
RRC — ROTATE ACCUMULATOR RIGHT	
THROUGH CARRY	5-45
SEB — SET BINARY MODE	5-46
SEC — SET THE CARRY STATUS TO 1	5-46
SED — SET DECIMAL MODE	5-47
SRN — STORE REGISTER INDIRECT (IMPLIED)	5-47
SUB — SUBTRACT REGISTER FROM	
ACCUMULATOR WITH BORROW	5-49
SUS - SUBTRACT SCRATCH MEMORY FROM	
ACCUMULATOR WITH BORROW	5-50
WRS — WRITE ACCUMULATOR TO SCRATCH MEMO	RY 5-51
XCH — EXCHANGE REGISTER AND ACCUMULATOR	
CONTENTS	5-52
XOR — EXCLUSIVE OR REGISTER WITH	
ACCUMULATOR	5-53
ELEMENTARY PROGRAMMING TECHNIQUE	6-1
	0-1

TABLE OF CONTENTS (Continued)

CHAPTER

PAGE

	MICROCOMPUTER PROGRAMMING CONCEPTS MICROCOMPUTER PROGRAM IMPLEMENTATION SEQUENCE	6-1 6-2
	DATA MOVEMENT SUBROUTINES SELF DEFINING DATA TABLES TABLE LOOKUPS DELAYS AND ONE-SHOTS	6-6 6-7 6-8 6-10
•	BCD DATA MANIPULATION BCD SHIFTS BACKING A BCD DATA STREAM	6-11 6-11
	CONDITION TESTING BIT ISOLATION BIT TESTING RESETTING A BIT SETTING A BIT BIT CONDITION CHANGE TEST	6-15 6-15 6-15 6-16 6-16 6-16 6-16
7	INPUT/OUTPUT PROGRAMMING	7-1
	PROGRAMMED I/O INTERRUPT I/O A SINGLE INTERRUPT CONFIGURATION DELAY LOOPS I/O POLLING AS A SUBSTITUTE FOR INTERRUPTS	7-1 7-1 7-2 7-5 7-6
8	SOME USEFUL SUBROUTINES	8-1
	MATHEMATICAL SUBROUTINES ADDITION AND SUBTRACTION BINARY MULTIPLICATION BINARY DIVISION	8-1 8-1 8-2 8-5
	DATA HANDLING PROGRAMS HEXADECIMAL — ASCII CONVERSION BINARY — BCD CONVERSION	8-5 8-5 8-6
APPENDIX		
A	AN INSTRUCTION SET SUMMARY	A-1
B	HEXADECIMAL-DECIMAL INTEGER CONVERSION	B-1
С	STANDARD CHARACTER CODES	C-1

LIST OF FIGURES

PAGE FIGURE 2-1 EA9002 Logic Functions 2-2 2-3 2-2 **INTEL 8080 Logic Functions** 2 - 3EA9002 Device Logic 2-5 2-12 2-4 EA9002 Pins 3-1 Machine Cycle, State Time And Clock Timing 3-1 3-2A 3-2 Sync Timing For Single Byte Instructions 3-2B Sync Timing For Two Byte, Decimal Mode, LRN, And SRN Instructions 3-3 3-3 Instruction Fetch Timing 3-3 3-4 3-4 Single Byte Instruction Cycle 3-5 3-5 Input (INP) Instruction Cycle 3-5 3-6 Output (OUT) Instruction Cycle 3-7 Load Register Indirect (LRN) Instruction Cycle 3-6 3-8 Store Register Indirect (SRN) Instruction Cycle 3-7 3-7 3-9 **Decimal Mode Instruction Cycle** 3-10 Two Byte Instruction Cycle 3-8 3-11 Wait Timing 3-15 3-12A INT Sample Time 3-16 3-12B Interrupt Cvcle 3-16 3-13 Interrupt Hold Time 3-17 3-14A 3-18 **Reset Sample Time** 3-14B Reset Cvcle 3-18 3-15 General Timing Diagram 3-20 4-1 A Simple, Two Device, CPU-ROM System 4-3 4-4 4-2 4096 Bytes Of ROM Connected To An EA9002 4-3 2048 Bytes Of ROM And 256 Bytes Of RAM Connected To An EA9002 CPU 4-5 4-4 Minimum 9002 System 4-7 4-7 4-5 Minimum System With TTL 4-6 Minimum System Using TTL 4-8 4-7 Minimum System With Intel 8212 I/O 4-9 4-8 System With ROM/RAM And Programmable I/O 4-9 4-9 Details Of Peripheral Control With 3 TTL Package 4-10 4-10 4-11 Minimum System With Motorola MC6820 PIA 4-11 Using the EA9250 Keyboard Controller 4-11 4-12 Using An 8212 I/O Port To Select Memory Banks 4-13 4-13 8K Memory System 4-13 4-14

4-14 Control Generation

LIST OF FIGURES (Continued)

FIGURE

TABLE

PAGE

4-15	One Cycle And Two Cycle Timing	4-16
4-16	An Interrupt Request Daisy Chain	4-17
4-17	Logic To Transmit IACK Low If A11-A0	
	Is FF0 And D0 Is 1	4-18
6-1	A Sample Program Flow Chart	6-3
6-2	System Configuration For Sample Program	6-4

LIST OF TABLES

3-1	Intermediate Data And Address Bus Utilization	3-10
3-2	Wait States	3-15
3-3	Timing Characteristics	3-19
A-1	An Instruction Set Summary	A-4
A-2	Instructions Affecting Status Flags	A-9
A-3	An Object Code Map	A-11

QUICK INDEX

INDEX		PAGE
A	ACCUMULATOR ACCUMULATOR STATUS ADDRESS BUS	2-1 2-11 2-12
В	BRANCH TABLE	7-8
С	CARRY STATUS CARRY STATUS AND SUBTRACT LOGIC CLOCK CONDITIONAL JUMP INSTRUCTIONS CONTROL BUS	2-10 2-10 2-13 2-7 2-12
D	DATA BUS DATA IN STROBE DATA OUT STROBE DECIMAL STATUS DIRECT ADDRESSING	2-12 2-13 2-13 2-11 2-6
E	EIGHT-BIT DATA REGISTERS END TEST CONDITIONS EXTERNAL MEMORY ADDRESSING	2-4 6-13 2-4
F	FETCH FLOW CHART	3-3 6-2
G	GENERAL PURPOSE REGISTERS GENERAL PURPOSE REGISTERS ALLOCATION	2-4 6-4
н	HALF CARRY	2-10
	IMPLIED ADDRESSING INPUT/OUTPUT INTERRUPT INTERRUPT ACKNOWLEDGE INSTRUCTION CYCLE INTERRUPT STATUS INTERRUPT WINDOWS INTERRUPTING OUT OF DELAY LOOPS	2-5 2-5 2-13,3-16 4-17 3-1 2-10 7-4 7-5
J	JUMP INSTRUCTIONS	2-6
L	LOGIC DISTRIBUTION	2-1
Μ	MACHINE CYCLE	3-1
Р	PAGING OF PROGRAM MEMORY POLLING FOR DATA INPUT	2-7 6-13

QUICK INDEX (Continued)

INDEX		PAGE
	POWER PROM	2-13 4-2
* R	REGISTER INDIRECT ADDRESSING RESET ROM	2-7,2-5 2-12 4-2
S	SCRATCH MEMORY ACCESS SCRATCH MEMORY ADDRESSING SCRATCH MEMORY OPERATIONS STACK OVERFLOW STACK POINTER STATE TIME SUBROUTINE CREATION SYNC	2-1 2-4 2-4 2-10 2-8 3-1 6-5 3-2
Т	TABLE INDEX TWELVE-BIT DATA REGISTERS	6-9 2-6
W	WAIT WAIT/SYNC	3-15 2-13

х

Chapter 1 INTRODUCTION

The EA9002 is a single chip microprocessor designed with the user in mind. That is, it is a fast 8-bit parallel microprocessor unit containing a powerful but easy to understand instruction set; its architecture is well suited to logic replacement applications.

The EA9002 is a data processor — all digital logic circuits can be defined as data processors — but it is not specifically designed for large computer-type memory dominant applications. The term "large" is used in the sense of large mainframe memory systems. Rather, it has been designed to service the newly emerging market of "smart" instruments, data terminals, process controllers, real time instrumentation, credit verification terminals, electronic scales, electronic games; i.e., those products requiring real time solutions to real time problems.

The EA9002 is implemented with NMOS silicon gate depletion mode technology. This is the most advanced semiconductor processing technology available. This MOS process technology has been tested and proven reliable, as demonstrated by the millions of dynamic and static memory components, delivered by numerous semiconductor manufacturers. Utilization of this technology in the design and development of the EA9002 has resulted in one of the highest speed MPU's available — containing more circuitry and data processing capability than was considered possible even a few years ago.

Most microprocessor design and development emphasis in the past has been to emulate "computer architects" — to provide complex addressing modes, confusing architecture and sophisticated control signals. This is not to say that addressing, architecture and control are not significant, rather, it is to point out that computer designs have not had any category of applications in mind; the designs attempted to be all things to all applications, incorporating features required by the many complex disciplines without finite applications objectives. The result has been a rash of microprocessor type circuits which are in reality a montage of all prior CPU theory, rather than coordinated efforts striving toward any identifiable objective.

EA recognized a problem: the lack of microprocessor products designed specifically with the digital logic controller user in mind; products which incorporate the power of parallel microprocessing architecture, fixed instruction set and advanced semiconductor processing technologies in such a way that they could be easily understood and readily applied. It is toward this objective that the EA9002 was directed.

WHAT THIS BOOK CONTAINS

The results of EA9002 development are embodied in this handbook. The handbook is organized much like the circuit itself; i.e., it is written for the engineers — allowing you to quickly understand the product and start writing code for your unique application.

Chapter 2 deals with overall features, internal structure and control signals. It highlights the register oriented architecture, internal bus, status controls and significant CPU features such as the internal push-pop stack and internal 64 byte RAM.

Chapter 3 describes instruction cycle timing and information that appears on the address, data and control bus.

Chapter 4 covers systems level configurations; i.e., how to connect with various types of RAM, ROM and I/O devices. This chapter also discusses memory bank select techniques.

Chapter 5 describes each instruction in the EA9002. The utility of the powerful instruction set is clearly explained, with examples. EA9002 instructions have been carefully chosen to provide complete data manipulation capability along with unambiguous problem definition. Note the simplicity of program development offered by packed BCD add and subtract.

Chapter 6 describes program development techniques, and instruction sequences for common problems. The user unfamiliar with microprocessors and programming skills will find this chapter particularly useful.

Chapter 7 specifically deals with input and output programming. The EA9002 has a uniquely fast I/O capability; it can readily interface with many programmable devices available from other semiconductor manufacturers. This generalized approach to I/O control and data transfer is an important feature of the EA9002.

Chapter 8 presents examples of many common subroutines required in simple types of control and instrumentation systems.

The Appendix summarizes the instruction set and provides useful conversion tables.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type. This has been done to help you skip those parts of the book that cover subject matter with which you are familiar. You can be sure that lightface type only expands on information presented in the previous boldface type. Therefore, only read boldface type until you reach a subject about which you want to know more, at which point start reading the lightface type.

Chapter 2 AN EA9002 MICROPROCESSOR OVERVIEW

The distribution of logic among various chips within a microcomputer system is not at all well defined. Early microprocessor designers simply assumed that

traditional minicomputer logic distributions would also serve microcomputers. This viewpoint has been rapidly eroded by the realities of the emerging microcomputer industry. Therefore, when looking at a new microprocessor, your first step must be to determine the logic which is included within the microprocessor chip itself — as against the logic which must be provided externally.

Figure 2-1 illustrates the logic blocks that typically make up an entire microcomputer system. Logic that is implemented on the EA9002 CPU chip is shaded. In order to provide an immediate contrast, Figure 2-2 illustrates the logic which is implemented on the 8080 CPU — a widely used product manufactured by a number of semiconductor companies.

MICROPROCESSOR ARCHITECTURE

Figure 2-3 is a schematic representation of the logic which is actually implemented on the EA9002 microprocessor chip.

THE ACCUMULATOR

As in most microcomputers, the center of all data operations is the accumulator. Within the

EA9002, this is an 8-bit general purpose register which is the primary source and destination for most CPU operations.

SCRATCH MEMORY

There is also a 64-byte read/write memory implemented within the 9002 CPU chip; in many applications this is all the read/write memory that will be needed.

The 9002 microprocessor can also access external read/write memory and read only memory.

The scratch memory and external memory occupy separate and distinct address spaces, and are accessed by different instructions.

Scratch memory can only be accessed as data memory; programs cannot be executed out of scratch memory. Data may be loaded into the Accumulator from a scratch memory byte, or the SCRATCH MEMORY ACCESS

ACCUMULATOR

Clock Logic Arithmetic and Logic Unit Accumulator Register(s) Data Counter(s) Logic to Handle Interrupt Requests From External Devices Instruction Register Direct Memory Access Control Control Unit Logic Stack Pointer Interrupt Priority Bus Interface Logic Program Counter Arbitration SYSTEM BUS I/O Communication I/O Ports RAM Addressing and ROM Addressing Serial to Parallel Interface Logic and Interface Logic Interface Logic Interface Logic Read/Write Programmable I/O Ports Read Only Memory Timers Memory

Figure 2-1 EA9002 Logic Functions

2-2

Figure 2-2 INTEL 8080 Logic Functions

2-3

Accumulator contents may be written into a scratch memory byte. The contents of a scratch memory byte may also be added to, or subtracted from the Accumulator contents.

GENERAL PURPOSE REGISTERS AND DATA MEMORY ADDRESSING

The eight general purpose registers, identified in Figure 2-3 as R0 through R7, have no direct equivalent in any other microprocessor.

Selected 9002 instructions access the eight low order bits of any general purpose register to perform a variety of data transfer or data manipulation operations:

Instructions that access the scratch memory specify the low-order six bits of one general purpose register as providing the required scratch memory byte address:

External memory may be accessed indiscriminately as program memory, data memory or external logic (I/O devices).

EXTERNAL MEMORY ADDRESSING

PURPOSE REGISTERS 8 - BIT DATA REGISTERS

Bit No.

SCRATCH

MEMORY **OPERATIONS**

GENERAL

Figure 2-3 EA9002 Device Logic

INPUT/OUTPUT

Instructions make no distinction between data memory and I/O devices; that is to say there are no separate I/O instructions.

The 9002 microprocessor can read a data byte from external memory (or I/O), or can write a data byte to external memory (or I/O). In either case **external memory or the selected I/O device is identified using register indirect, also called**

implied memory addressing — with any one of the eight general purpose registers providing the 12-bit memory address:

REGISTER INDIRECT ADDRESSING

Address to external memory

When the contents of a general purpose register is incremented or decremented, the register is treated as a 12-bit unit; this means that an entire memory address is either incremented or decremented.

12-BIT DATA REGISTERS

THE PROGRAM COUNTER AND PROGRAM MEMORY ADDRESSING

The Program Counter is a 12-bit register. At all times the Program Counter addresses the memory location out of which the next instruction code will be fetched. This must be a byte of external memory; instruction codes cannot be stored in the scratchpad memory:

Whenever an instruction is executed, the Program Counter content is incremented to address the next sequential program memory location. This sequential access of program memory may be altered using Jump instructions.

The 9002 has unconditional and conditional Jump instructions, as well as a Jump-to-subroutine instruction. JUMP INSTRUCTIONS

Unconditional Jump instructions use direct addressing or register indirect (imp) addressing.

DIRECT ADDRESSING

Direct addressing means that the Jump instruction object code includes a 12-bit memory address:

Register indirect (implied) addressing means that the Jump instruction specifies one of the general purpose registers as the source of the 12-bit memory address:

REGISTER INDIRECT ADDRESSING

Conditional Jump instructions modify the low order eight bits of the Program Counter only; this gives rise to a limited degree of paged program memory addressing. Visualize external program memory as divided into 256 byte pages; a conditional Jump instruction can only jump to an address within the current program memory page, as identified by the high order four Program Counter bits:

CONDITIONAL JUMP INSTRUCTIONS

PAGING OF P R O G R A M MEMORY

The concept of paged external memory is reinforced by the fact that the general purpose registers, which provide implied data memory addresses, are accessed as separate 4-bit and 8-bit units for data manipulation operations:

THE SUBROUTINE STACK

The EA9002 subroutine stack is a typical cascade stack implemented within the CPU. The stack consists of seven 12-bit registers. There are no special stack instructions in the EA9002 instruction set. Rather, whenever a jump to subroutine instruction is executed, the Program Counter contents are pushed onto the stack before the subroutine execution address gets loaded into the program counter.

There is also a 3-bit Stack Pointer which at all times records the current level of stack access. The 3-bit Stack Pointer is treated by EA9002 instructions as part of an

8-bit Status Register. You can examine the current level of stack access by reading status register contents into the Accumulator.

The 3-bit Stack Pointer should be interpreted as follows:

The stack is illustrated in Figure 2-3 as a simple concatenation of 12-bit registers:

Assuming the stack is initially empty, let us examine how a Jump-tosubroutine instruction pushes the Program Counter contents onto the stack.

The Jump-to-subroutine object code consists of these four hexadecimal digits occupying two program memory bytes:

PQQ represent any three-hexadecimal-digit address. Assume

the two Jump-to-subroutine object program bytes reside in some memory locations MNN and MNN + 1. Before the instruction is executed, this is the situation:

Program Memory	
	MNN-1
XP	MNN
QQ	MNN + 1
	MNN + 2
	MNN + 3
	MNN + 4

After the instruction is executed, this is the result:

When an interrupt is acknowledged, a Jump-to-subroutine instruction is

forced with a subroutine execution address of 002_{16} is assumed. An interrupt acknowledge therefore automatically causes prior Program Counter contents to be pushed onto the stack.

When a return instruction is executed the top stack address is popped into the Program Counter:

Since there are seven registers in the subroutine stack, the EA9002 allows subroutines and interrupts to be nested to a depth of 7. If more than 7 interrupts and/or

subroutine calls are executed in sequence, then the subroutine stack will overflow.

STATUS FLAGS

The EA9002 status flags deserve special mention since they contribute significantly to the power of this microprocessor.

First we will discuss the interrupt, carry and half-carry statuses which are traditional.

The Carry status (C) identifies carries out of the highorder Accumulator bit; it is affected by arithmetic, compare and logical operations.

The EA9002 carry status is unusual in subtract operations, when compared to common microcomputer practice. The EA9002 has direct subtract logic, it does not use twos complement addition. This means that a

negative result following a subtract will set the Carry to 1; a positive result resets the Carry to 0.

The Half-carry status (H) identifies carries out of Accumulator bit 3; it is used for binary-coded decimal arithmetic and logical operations.

The Interrupt status (I), when 1, indicates that external interrupts have been enabled. When this status contains 4, all interrupts are disabled.

The Accumulator and Decimal mode status are unusual.

CARRY	
STATUS	

The Accumulator status identifies the current Accumulator contents as being 0 (A = 0) or non-zero (A = 1). Following Compare instructions however, the Ac-

cumulator status identifies the result of the Compare operation, but only during execution of the single, next sequential instruction.

The Accumulator status differs from the traditional Zero status in these two respects:

1) The Accumulator status has opposite interpretation; traditionally, a "1" Zero status indicates a zero value, while a "0" Zero status indicates a non-zero value; this is the exact opposite of the Accumulator status's interpretation.

2) The Accumulator status represents current Accumulator contents, whereas a Zero status is set or reset by selected instructions, not necessarily reflecting Accumulator contents at all times.

The Decimal status (D) allows arithmetic operations to occur in decimal mode or in binary mode. When set to one, this status causes data to be interpreted as packed binary

09 · 01 = 10

C2 · D5 = 57

1

0A · 00 · 10 C = 0

C2 · 00 · 22 C 1

C2 · 20 42 C · 1

0A · C2 32 C · 1

coded decimal for all arithmetic operations. This status eliminates the need for separate decimal adjust or decimal arithmetic instructions.

Decimal mode operations in the EA9002 are very complete; for example, binary values in excess of 9 are adjusted. Here are some examples of addition in decimal mode:

C ~ 0

C - 1

14 1

H 1

н 0

H 5.1

H 1 1 $H \le 1$

So long as the result of an addition is 199 or less, an accurate decimal result will be generated — whatever the condition of addition inputs.

STATUS FLAG SUMMARY

5

6

The EA9002 status register is, in reality, an 8-bit register, whose contents can be transferred to the Accumulator; Accumulator contents are then interpreted as follows:

> 4 0 Bit No C DI АН Stack Pointer Bit set, for the following statuses means: Half Carry Accumulator not zero Interrupts Enabled Decimal Mode specified Carry

ACCUMULATOR STATUS

Figure 2-4 EA9002 Pins

PINS AND SIGNALS

EA9002 pins are identified in Figure 2-4.

The twelve address pins provide a 12-bit extended memory address. These pins are connected to the microcomputer system address bus.

The eight data pins drive the bidirectional microcomputer system data bus.

The control bus has five simple signals which make it very easy to interface external logic asynchronously to the EA9002. All control bus signals are active-low.

Reset (RES) is a typical asynchronous Reset input sig-

nal. When this signal is input low (for a minimum of 3 external

clock periods) the Program Counter is set to 0, and the stack is emptied. Program execution will now branch to memory location 000. The D and I status flags are set to 0, which means that interrupts are inhibited and arithmetic operations are set to binary mode.

2 - 13

When interrupt (INT) is input low, external logic is requesting an interrupt. Providing the Interrupt status is set to 1,

at the conclusion of the current instruction's execution (with some exceptions), the interrupt will be acknowledged. When an interrupt is acknowledged, a Jump-to-Subroutine instruction is executed, with the subroutine start address identified as memory location 002. The interrupt status is reset to 0, inhibiting further interrupts.

In order to handle reset and interrupt logic, the first bytes of memory are usually used as follows:

WAIT/SYNC (WAS) is a bidirectional control line; it provides the logic necessary for the EA 9002 to communicate asynchronously with external logic. This signal

is output low during the last clock period of an instruction cycle, indicating to external logic that an instruction fetch is to initiate a new instruction cycle during the next clock. period.

External logic may at any time hold WAS low. So long as WAS is held low, the 9002 enters a Wait state during which pending operations internal to the CPU are completed, then no further operations occur.

Use of the WAS signal is described in Chapter 3.

When the EA9002 is outputting data, DATA OUT STROBE (DOS) is output low while data and memory addresses are stable on their respective busses. This

signal may be used as a write (R/W) input strobe to external read/write memory or peripheral devices.

When the EA 9002 requires data input, it outputs DATA **IN STROBE (DIS) low** in order to indicate that the appropriate memory address is on the address bus and external logic is to

place data on the data bus. This signal may be used as an enable strobe for any external logic that has to transmit data to the EA9002.

CLK is the Clock signal input pin. A single phase clock with a cycle time of 250 nanoseconds or longer is required. See Chapter 3 for signal characteristics.

 V_{SS} and V_{CC} provide power and ground connections. A single + 5V power supply is all that is required.

INTERRUPT

POWER

WAIT

/SYNC

Chapter 3 EA9002 MICROPROCESSOR CHARACTERISTICS

EA9002 characteristics are identified in terms of signals and timing, since these parameters may be used to explain instruction execution sequences.

Instructions' timing given in Figures 3-1 through 3-9 separately illustrate signal interactions and wave form timing.

INSTRUCTION TIMING

All EA 9002 instructions are executed synchronously, via instruction cycles that are timed by clock signal CLK.

An instruction cycle defines the time required to fetch and execute an instruction. Every instruction cycle consists of one or two machine cycles, referred to as M1 or M2. Each machine cycle consists of four state times; each state time is referred to as T1, T2, T3, or T4 and is defined as the time interval between the positive transitions of alternate input clock pulses (CLK). See Figure 3-1. The first clock input to occur during

each state time is defined as Φ 1 and the second clock input as Φ 2.

Figure 3-1. Machine Cycle, State Time And Clock Timing

If you need to initially synchronize CLK, include logic that suppresses clock inputs to the EA9002 during power up. Once power has been applied, initiate clock frequency inputs, and the first CLK output will be a Φ 1 pulse.

In general, single byte instructions require one machine cycle to execute, whereas two byte instructions require two machine cycles to execute. Exceptions do exist. Those single byte instructions using decimal mode require two machine cycles, as do the single byte LRN and SRN instructions.

WAIT (\overline{WAS}) and RESET (\overline{RES}) operations are externally controlled, therefore, the duration of certain state times becomes indeterminate, although internal logic keeps these states synchronized with the clock input. The operations of \overline{WAS} and \overline{RES} are described later in this chapter.

For external logic synchronization, the EA9002 provides a SYNC pulse, via the WAIT AND SYNC pin SYNC (WAS). SYNC identifies the beginning of a new instruction cycle.

The SYNC pulse is an active low output which occurs during the last T4 state time of an instruction cycle as shown in Figure 3-2A and 3-2B.

WAS is forced low by the positive transition of Φ 1 and is held low during the Φ 1 pulse input:

The positive transition of $\Phi 2$ forces \overline{WAS} high; \overline{WAS} is held high during the $\Phi 2$ pulse input. \overline{WAS} is in a high impedence state after the negative transition of $\Phi 1$ and remains there until the positive transition of $\Phi 2$:

An internal pullup resistor on the WAS pin will cause the SYNC to return to a high level during the high impedence state, if for any reason the time interval between clocks is sufficiently long.

Figure 3-2A. Sync Timing For Single Byte Instructions

Figure 3-2B. Sync Timing For Two Byte, Decimal Mode, LRN, And SRN Instructions

INSTRUCTION FETCH AND EXECUTION

Every instruction cycle refers to memory at least once, during which an instruction is fetched. An instruction cycle must always have a FETCH and the fetch occurs during T1 and T2 of the first machine cycle M1.

Externally, the instruction fetch is a simple "read memory" opera-

tion. The EA9002 places the contents of the Program Counter onto the Address Bus and forces the Data In Strobe (DIS) low. The addressed memory byte must return on the Data Bus while DIS is low, and is sampled during Φ 1, T2 as shown in Figure 3-3.

Figure 3-3. Instruction Fetch Timing

Following the instruction fetch, one of seven different instruction sequences may occur. These are best understood by examining the various instruction cycles.

SINGLE BYTE INSTRUCTIONS

Single byte instructions require only one machine cycle, MI, to perform the fetch and execution. The state times T1, T2 are used to fetch the instruction, and T3, T4 are used to perform the required internal operations. As shown in Figure 3-4, only one memory reference is generated.

Figure 3-4. Single Byte Instruction Cycle

Exceptions to the timing shown in Fig. 3-4 exist for the single byte instructions INP, OUT, LRN, and SRN, as well as for those single byte instructions used in decimal mode.

Figure 3-5 illustrates the timing required for the Input instruction (INP). Only one machine cycle M1 is required to fetch and execute INP. The contents of the selected Page and General Register are placed on the Address Bus during T3, T4, which is used to select the external device from which data is to be read. The Data In Strobe (DIS) is also forced low allowing the data on the Data Bus to be stored in the Accumulator during Φ 1,T4.

Shown in Figure 3-6 is the cycle timing for the output (OUT) instruction. Again, only one machine cycle M1 is required. During T3, T4 the content of the Accumulator is placed onto the Data Bus; the selected Page and General Register contents are placed onto the Address Bus and are used to define the external device into which data is to be transferred. The Data Out Strobe (DOS) is forced low after the Data Bus is stable.

Figure 3-5. Input (INP) Instruction Cycle

Figure 3-6. Output (OUT) Instruction Cycle

DIS low defines the time interval when the Address Bus is valid and must be decoded to enable an external device, such as a memory, to transfer data to the Accumulator.

DOS low defines the time interval when the value of the Accumulator is stable on the Data Bus and can be transferred to the external device identified by the Address Bus.

Hence, DIS and DOS control Read and Write operations performed by external devices, since DIS can be used as a Chip Select for Read operations and DOS can be used as a Chip Select and a Write pulse during Write operations.

Load Register Indirect (LRN), is a single byte instruction, but it requires two machine cycles, M1 and M2. Figure 3-7 shows the LRN instruction cycle. LRN may be thought of as an implied address instruction, since a General Purpose Register is implied as the source of the indirect address.

The content of the General Purpose Register is placed on the Address Bus during T2, T3, T4, of M2 and is used to select the external device from which data is to be read. The Data In Strobe $\overline{(DIS)}$ is forced low, allowing the data to be stored in the selected General Register during Φ 1, T3 as shown in Figure 3-7.

Figure 3-7. Load Register Indirect (LRN) Instruction Cycle

Store Register Indirect (SRN), shown in Figure 3-8, is also a single byte instruction which requires two machine cycles, M1 and M2. A General Purpose Register is implied as the source of the indirect address which is placed on the Address Bus during T2, T3, T4 of M2. This address is used to select the external device into which data is to be transferred. The content of the selected General Purpose Register is placed onto the Data Bus during T2, T3 of M2, and the Data Out Strobe (DOS) is forced low after the Data Bus is stable.

Figure 3-8. Store Register Indirect (SRN) Instruction Cycle

Figure 3-9 illustrates the instruction cycle timing of single byte instrutions used in decimal mode. Decimal Mode instructions require two machine cycles, M1 and M2, for internal logic to have time needed to perform necessary BCD operations. With this exception, the instruction cycle is the same as the single byte instruction cycle illustrated in Figure 3-4.

TWO BYTE INSTRUCTIONS

Immediate and Jump instructions (except JIN) require two bytes of object code, and hence, two machine cycles, M1 and M2, to fetch and execute the instruction. Figure 3-10 shows the instruction cycle for two byte instructions. During the second machine cycle (M2), the content of the Program Counter is placed on the Address Bus to FETCH the second byte of the instruction. The Data In Strobe (DIS) is forced low during T1, T2 of M2 and allows the data fetched to be loaded into the EA9002 during Φ 1, T2.

Figure 3-10. Two Byte Instruction Cycle

INTERMEDIATE STATE TIME BUS UTILIZATION

The Address Bus and the Data Bus, when not transferring data required by an instruction, output intermediate data. This data can be useful during functional testing of the microprocessor, and in program de-bugging. Referring to Figures 3-4 through 3-10, the intermediate data appear as shaded areas on the Address Bus and Data Bus.

Intermediate data timing should be computed by adding the propagation delays defined in Figure 3-I5 to the active CLK signal edge. On the data bus, this is the result:

When CLK has maximum frequency, t_{CH} may cause intermediate data to appear during the next time period, that is, during the next Φ 2. If the clock frequency slows down, intermediate data will appear during the current Φ 1:

Intermediate address bus outputs will appear similarly, originating in the next $\Phi 2$ clock pulse for maximum frequency operations, or in the current $\Phi 1$ clock pulse for slow clocks.

Timing of intermediate data will generally be the same as timing for corresponding data as required by an instruction cycle; but intermediate data timing is not guaranteed.

Table 3-1 summarizes the intermediate Address Bus and Data Bus information during each state time of all instructions.

Table 3-1 assumes that you understand the EA9002 instruction set—which will not be done until you have read Chapter 5. Therefore, bypass Table 3-1 when reading this book to gain a general understanding of the EA9002.

Improvements embodied in future EA9002 type products may occur from time to time which will eliminate some of the intermediate data and address bus utilization which appear in this version of the EA9002 microprocessor. You are cautioned to refer to the detail specifications for the particular version being employed. Any product improvements, referred to above, are intended to maintain complete electrical, software and hardware compatibility.

The following abbreviations are used in Table 3-1:

- AC Accumulator contents just before being modified by the instruction.
- AD Accumulator contents just before decimal correction for decimal mode instruction.
- GDX Low order eight bits of selected general purpose register.
- GPX High order four bits of selected general purpose register, output on low order four data bus lines.
- GRX All twelve bits of selected general purpose register in GPX, GDX, or GRX, if x is a digit between 0 and 7, it specifies one general purpose register. Thus GR4 specifies the 12-bit contents of general purpose register 4.
- 11 Low order four bits of the first byte in a two byte instruction.
- I2 Second byte of a two byte instruction.
- KK Correction constant used in decimal arithmetic.
- PC Program counter contents.
- SM Selected scratchpad memory byte content.
- SW Status word.

Instruction		Γ	٩	M1	·		M2			
Mnemonic	Bus	T1	T2	T3	T4	T1	T2	Т3	T4	
ADD (Binary) Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX AC					
ADD (Decimal) Figure 3-9	Addr Data	PC	PC	GRX GDX	GRX AC	PC	PC	PC KK	PC AD	
ADS (Binary) Figure 3-4	Addr Data	PC	PC	GRX SM	GRX AC					
ADS (Decimal) Figure 3-9	Addr Data	PC	PC	GRX SM	GRX AC	PC	PC	PC KK	PC AD	
AND Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX AC	5. 				
CAP Figure 3-4	Addr Data	PC	PC	GRX AC	GRX AC				· . · . ·	
CAR Figure 3-4	Addr Data	PC	PC	GRX AC	GRX. AC					
CLA Figure 3-4	Addr Data	PC	PC	GR6 SW	GR6 AC					
CLB Figure 3-4	Addr Data	PC	PC	GR2 SW	GR2 AC					
CLC Figure 3-4	Addr Data	PC	PC	GR0 SW	GR0 AC					
CMA Figure 3-4	Addr Data	PC	PC	GR7 SW	GR7 AC			•		
CMC Figure 3-4	Addr Data	PC	PC	GR3 SW	GR3 AC					
CMP Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX AC					

Table 3-1 Intermediate Data and Address Bus Utilization

Instruction	Ruc			M1			M2			
Mnemonic	Bus	T1	T2	т3	T4	T1	T2	.Т3	T4	
CPA Figure 3-4	Addr Data	PC	PC	GRX GPX	GRX 0					
CRA Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX 0					
CSA Figure 3-4	Addr Data	PC	PC	GR4 SW	GR4 0					
DAC (Binary) Figure 3-4	Addr Data	PC	PC	GR4 SW	GR4 AC					
DAC (Decimal) Figure 3-4	Addr Data	PC	PC	GR4 SW	GR4 AC	PC	PC	PC SW	PC AD	
DCR Figure 3-4	Addr Data	PC	PC	GRX GDX-1	GRX AC					
DLY Figure 3-4	Addr Data	PC	PC	GR0 SW	GR0 AC	PC	PC	PC SW	PC AC	
DRJ Figure 3-10	Addr Data	PC	PC	GR0 SW	GRO AC	PC	PC	PC SW	PC AC	
DSI Figure 3-4	Addr Data	PC	PC .	GR2 SW	GR2 AC					
ENI Figure 3-4	Addr Data	PC	PC	GR3 SW	GR3 AC					
IAC (Binary) Figure 3-4	Addr Data	PC	PC	GR4 SW	GR4 AC					
IAC (Decimal) Figure 3-9	Addr Data	PC	PC	GR4 SW	GR4 AC	PC	PC	PC SW	PC . AD	
INP Figure 3-5	Addr Data	PC	PC	GRX	GRX					

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)

Instruction	Bue		N	И1		Γ	M2			
Mnemonic .	Dua	T1	T2	T3	T4	T1	T2	Т3	T4	
INR Figure 3-4	Addr Data	PC	PC	GRX GDX-1	GRX 0					
IOR Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX AC					
IRJ Figure 3-10	Addr Data	PC	PC	GRX GDX + 1	GRX AC	PC	PC	PC SW	PC AC	
JIN Figure 3-4	Addr Data	PC	PC	GRX SW	GRX GDX			-		
JSR, JUN Figure 3-10	. Addr Data	PC	PC	GRX SW	GRX AC	PC	PC	PC SW	PC 11	
All Jump Cord. Engine 3:10	Addr Data	PC	PC	GRX SW	GRX AC	PC	PC	PC SW	PC AC	
LAL Eiguny 3, 10	Addr Data	P,C	PC	GR1 SW	GR1 AC	PC	PC	PC SW	PC 12	
LRI Figure 3-10	Addr	PC	PC	GRX SW	GRX AC	PC	PC	PC SW	PC AC	
LRN Figure 3-7	Addr Data	PC	PC	GRX SW	GRX AC	PC	GRO	GRO	GR0 AC	
NOP Figure 3-4	Addr Data	PC	PC	GR7 SW	GR7 AC					
OUT Figure 3-6	Addr Data	PC	PC	GRX AC	GRX AC					
RAL Figure 3-4	Addr Data	PC	PC	GR0 , AC	GR0 AC					
RAR Figure 3-4	# Addr Data	PC	PC	GR1 AC	GR1 AC					

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)

l	Instruction	2		Ň	11		M2			
	Mnemonic	Bus	Τ1	T2	Ţ3	T4	T1	T2	Т3	Τ4
	RDS Figure 3-4	Addr Data	PC	PC	GRX SM	GRX . 0				
	RET Figure 3-4	Addr Data	PC	PC	GR6 SW	GR6 AC				
	RLC Figure 3-4	. Addr Data	PC	PC	GR2 AC	GR2 AC				
	RRC Figure 3-4	Addr Data	PC	PC	GR3 AC	GR3 AC				
	SEB Figure 3-4	Addr Data	PC	PC	GR5 SW	GR5 AC				
	SEC Figure 3-4	Addr Data	PC	PC	GR1 SW	GR1 AC				
	SED Figure 3-4	Addr Data	PC	PC	GR4 SW	GR4 AC				
	SRN Figure 3-8	Addr Data	PC	PC	GRX GDX	GRX AC	PC	GR0	GRO	GR0 [.] AC
	SUB (binary) Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX • AC				
	SUB (decimal) Figure 3-9	Addr Data	PC	PC	GRX GDX	GRX AC	PC	PC	РС КК	PC AD
	SUS (binary) Figure 3-4	Addr Data	pr	PC.	GRX SM	GRX AC				
	SUS (decimal) Figure 3-9	Addr Data	PC	PC	GRX SM	GRX AC	PC	PC	РС КК	PC AD
	WRS Figure 3-4	Addr Data	PC	PL	GRX AC	GRX AC				

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)	

Instruction	Rus		N N	И1	M2				
Mnemonic	505	T1	T2	T3	T4	T1	T2	Т3	Т4
XCH Figure 3-4	Addr Data	PC	PC	GRX AC	AC GDX				
XOR Figure 3-4	Addr Data	PC	PC	GRX GDX	GRX AC				
			· · ·						
	· · · ·						a to a co		
				1					
						- - -			

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)

The status word is output as follows:

THE WAIT STATE

The EA9002 will suspend any instruction cycle when the WAIT input is

externally forced low. Functionally, the WAIT input is internally sampled every $\Phi 1$ clock time during the state times indicated in Table 3-2. If WAS is low and meets the timing shown in

Figure 3-11, the instruction cycle is suspended for the duration of the WAIT signal in the state time during which WAS was sampled. The machine cycle cannot advance to the next state time until the Φ 1 clock following the return of WAS to a high level. Data within the EA9002 is unaffected by WAIT. The Address Bus, Data Bus (for Data out only), DIS, and DOS will remain stable.

TABLE 3-2. WAIT STATES

INSTRUCTION	WAIT OCCURS				
TYPES	M1	M2			
SINGLE BYTE	T1				
INPUT	T1,T3				
OUTPUT	T1,T3				
LRN	T1	T2			
SRN	T1	Т2			
DECIMAL	T1				
TWO BYTE	T1	T1			

WAIT can be used to force a temporary CPU halt such as required by single step operations, or to extend the response time of the EA 9002 during data read and write operations with slower peripheral devices.

Figure 3-11. Wait Timing

A conflict can exist between SYNC generated by the EA 9002 and external logic attempting to control WAIT. If the external logic attempts to force WAS to a high level while SYNC is driving low (Φ 1, T4 of the last state time of an instruction cycle), an indeterminate logic level may exist during Φ 1. Likewise if external logic attempts to force \overline{WAS} low while SYNC is driving high ($\Phi 2$, T4 of the last state time of an instruction cycle), an indeterminate level may exist during $\Phi 2$. No damage should occur to either the 9002 or external logic under these conditions, provided rated currents are not exceeded. Care should be taken in normal implementation such that this conflict does not occur.

Ways of implementing a WAIT sequence are discussed in Chapter 4.

INTERRUPT SEQUENCE

INTERRUPT

The Interrupt sequence starts with the EA9002 sampling \overline{INT} during $\Phi 2$, T3 of the machine cycle during which a SYNC will be generated. Timing is illustrated in Figure 3-12. If

INT was low during the sample, the EA9002 acknowledges the interrupt at the beginning of the next M1 machine cycle, providing two prior conditions exist:

1) The interrupt enable status flag must be set to "enable interrupt"

2) the compare instruction (CMP) is not being executed.

If neither of these two conditions exists, or if one, but not both of these conditions exist, the Interrupt is ignored.

When the EA9002 acknowledges an interrupt, a Jump-to-Subroutine instruction (JSR) is executed, forcing the subroutines starting address to location 002. The interrupt enable status flag is set to "disable interrupt". No other status or register contents are modified in any way.

Figure 3-12B. Interrupt Cycle

Since INT is an asynchronous input it must be held low sufficiently long to guarantee that INT has a valid sample. For example, consider the instruction sequence INP, CMP, JCN. The INT input must be held low for slightly longer than twelve state times to guarantee an interrupt acknowledge by the EA9002. This time interval will be extended if a WAIT sequence is initiated prior to the INT sample.

Note that INT is not sampled during CMP.

Figure 3-13. Interrupt Hold Time

It is good design practice to hold INT low until this interrupt request has been acknowleged, by whatever interrupt acknowlege logic is in effect. Some possiblities are described in Chapter 4.

RESET

When power is applied to the EA9002, all logic in the processor begins operating. The contents of its registers, program counter, etc. start at a random state; therefore, a RESET (RES) is provided to force the processor to a known starting condition. RES is sampled during every $\Phi 2$ clock input. When this signal is low, the EA9002 responds by setting the program counter and the stack pointer to 000; the interrupt enable and decimal mode flags are reset to 0. The machine cycle reverts to T1, M1 until RES is returned high.

The EA9002 will begin program execution starting at memory location 000. Binary mode is set and Interrupts are disabled.

The RES input must be held low for four clock periods in order to complete the Reset. Figure 3-14 shows the Reset timing.

The control output signals are held at a high level while Reset is active.

As illustrated in Figure 3-14B, a new machine cycle will begin on the fourth CLK pulse following RES high:

DETAILED SIGNAL TIMING

An overall system timing diagram is presented in Figure 3-15 using symbols and data from Table 3-3. Table 3-3 is subject to change as improvements in operational characteristics are implemented in the EA9002, therefore, the reader is cautioned to refer to the latest detailed specification sheet for most current information.

SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITION
t _{CY}	CLOCK PERIOD	250	2500	ns	
t ₇	CLOCK TRANSITION TIME	5	25	ns	
t _{øw}	CLOCK PULSE WIDTH	140		ns	
$t_{\Phi S}$	CLOCK PULSE SPACE	60		ns	
t _{DA}	ADDRESS OUTPUT DELAY TIME		195	ns	F.O. = TEST LOAD
t _{AH}	ADDRESS HOLD TIME	40		ns	F.O. = TEST LOAD
t _{CD}	DIS DELAY TIME		195	ns	F.O. = TEST LOAD
t _{CH}	DIS HOLD TIME		165	ns	F.O. = TEST LOAD
t _{DD}	DIS TO DATA IN DELAY TIME	0		ns	F.O. ON DIS = TEST LOAD
t _{ACC}	ACCESS TIME FROM ADDRESS STABLE		475[1]	ns	F.O. ON A0-A11=TEST LOAD $T_{ACC} = {}^{3T}CY + T_{\Phi}W - T_{DA} - $
t _{DS}	DATA IN SETUP TIME	220		ns	TDS
t _{DH}	DATA IN HOLD TIME	0		ns	
t _{DO}	DATA OUT DELAY TIME		315	ns	F.O.=TEST LOAD
t _{p1}	DOS DELAY TIME		165	ns	F.O. = TEST LOAD
t _{D2}	DOS HOLD TIME		125	ns	F.O. = TEST LOAD
t _{S1}	SYNC (WAS) DELAY TIME		165	ns	F.O.=TEST LOAD
t _{s2}	SYNC (WAS) HOLD TIME		125	ns	F.O. = TEST LOAD
t _{ws}	WAIT (WAS) SETUP TIME	20		ns	
t _{RVV}	RES PULSE WIDTH	1		μS	t _{RW} =4t _{CY}
t _{RS}	RES SETUP TIME	40		ns	
t _{IS}	INT SETUP TIME	40		ns	

Table 3-3. Timing Characteristics (Vcc= $5.0v \pm 5\%$, Vss=0v, Ta= 0° C to 70°C Unless Otherwise Noted.)

1 t_{ACC} =475nsec for t_{CY} =250nsec

Chapter 4 SYSTEMS CONFIGURATIONS

This chapter explains how to configure total microprocessor systems around the EA9002, we illustrate various means of interfacing the EA9002 to ROM, RAM and I/O.

Any microcomputer system must be able to input data or control signals, execute a predetermined sequence of program instructions (usually in ROM), temporarily storing the data (usually in RAM), then output data or control signals. Thus, the elements referred to as CPU (Central Process Unit), ROM (Read Only Memory), RAM (Random Access Memory), and I/O (input/output) must exist in one form or another within a total microprocessor system.

The EA9002 CPU chip contains a 64 x 8-bit RAM. Many real time data controllers will not need additional external RAM devices. External ROM devices, however, are always part of an EA9002 system, since there are no provisions for storing programs within EA9002 CPU. This allows you the freedom to select ROM devices which exactly fit your application. You may choose a few hundred bytes of ROM, or many thousand bytes of ROM. **EA**, a major supplier of **ROM devices**, offers many varieties of **ROM for every type of application and will be happy to help** you select that device most suited to your needs. This section describes some of the available EA ROM's and how they are controlled by the EA9002.

EA is also a major supplier of static and dynamic RAM devices of various sizes and speeds. Static RAM's like the EA2111 (256x4) are most often used in an EA9002 system. Therefore interface logic for this device is shown in this chapter.

New ROM's and RAM's of larger size and faster speed are a continuous development activity with EA, so it is advisable to stay in touch with EA sales for information and availability of new memory products.

I/O flexibility for microcomputer systems is another area where a great deal of effort is being applied by EA and other semiconductor manufacturers. **The EA9002, with its TTL bus structure and versatile control signals can interface with standard TTL devices, as well as speciality programmable I/O controllers.**

When implementing a microprocessor system with the EA9002, you may use industry standard devices such as A/D and D/A converters, UARTS, SDLC and other specialty communication controllers.

EA is developing programmable I/O devices specially for the EA9002 systems. Included are the EA9255 GP I/O and the EA9250 Keyboard/Display Controller.

The EA9255 GP I/O is a replacement part for the popular 8255 and provides up to 24 input/output pins definable under program control. See the product specifications on the EA9255 for complete details.

The EA9250 Keyboard/Display Programmable Controller is a new part which interfaces both keyboards (static and momentary) and displays. This device contains four basic modes of operation, which under program control interface with a broad variety of switches, as well as numeric and alpha-numeric displays. The device performs the functions of automatic keyboard scanning and display refresh, allowing the CPU to perform calculations and other tasks at real time speeds. See the 9250 product specifications and application notes for complete datails. Figure 4-11 shows how the EA9250 is interconnected to the 9002 system bus.

EXTERNAL MEMORY

INTERFACING ROM

The most elementary EA9002 system consists of just two devices: the CPU and external program storage memory. Program storage memory usually consists of a PROM or ROM device.

Figure 4-1 illustrates a very simple, two device configuration.The EA4600 is a 2048 x 8-bit ROM. Being the only memory device present, its eleven address lines are connected directly to the A0 through A10 outputs of the EA9002; the remaining EA9002 address line is ignored. Also, in an elementary, two device configuration, we can simply tie the output lines of the EA4600 directly to the data pins of the EA9002.

The EA4600 ROM requires two output enables: OE1 and OE2. Each signal enables four of the eight data output lines. Since this device is being treated as an 8-bit memory, both enables are tied directly to the inverse of DIS, DOS and WAS outputs of the EA9002 may be ignored, since this simple configuration makes no allowance for data output and the EA4600 ROM is fast enough that it does not need to input WAS low.

The EA4600 has an additional address enable input AR. This signal can be permanently enabled by tying to power, since all address outputs from the EA9002 that occur when DIS is low will be true.

Since interrupt logic is not being used, the INT input is permanently disabled by tying to power. However, even in such a simple configuration as illustrated in Figure 4-1, reset logic is enabled. In this case, it is shown with a switch to ground. Closing the switch will automatically reset the system.

Staying within the normal address space of the EA9002, that is 4096bits of external memory, very little additional logic is needed upon increasing the size of external memory. Figure 4-2 illustrates two EA4600 ROM devices connected to an EA9002 CPU. As compared to Figure 4-1, the only innovation is the need for chip-select logic based on the condition of address line A11.

Figure 4-1 A Simple, Two Device, CPU - ROM System

Since each EA4600 ROM provides 2048-bits of memory, they cover the EA9002 address space as follows:

Thus, address line A11 may be used as a chip-select. The NOR of A11 and DIS will generate OE1 and OE2 true for the EA4600 ROM to the right of CPU if A11 is 0. If A11 is 1, A11 NOR DIS will generate OE1 and OE2 true for the EA4600 ROM to the left of the CPU.

Note the simplicity of chip-select logic.

Figure 4-2 4096 Bytes Of ROM Connected To An EA9002

INTERFACING RAM

Suppose the 64 bytes of RAM provided within the EA9002 CPU is insufficient. External RAM may be added to the system. Figure 4-3 shows how one of the EA4600 ROM devices may be removed from the Figure 4-2 configuration, and two EA2111 RAM devices may be added, to provide 256 bytes of external RAM.

Select logic in Figure 4-3, defines address spaces as follows:

Figure 4-3 2048 Bytes Of ROM And 256 Bytes Of RAM Connected To A EA9002 CPU

The EA2111 RAM devices each provide 4 bits of 256 bytes. Each device is therefore connected to the low order or high order four bits of the data bus. Providing the two devices receive the same read, write and select logic, they will communicate 8-bit parallel data.

Each EA2111 device has two chip enable signals $\overline{CE1}$ and $\overline{CE2}$. These signals have been enabled as illustrated above.

Additional control signals required by the EA2111 are R/\overline{W} and OD. R/\overline{W} is a write enable; therefore it is connected to \overline{DOS} . OD is a read enable, therefore it is connected to \overline{DIS} .

Adding more read-write memory to the configuration illustrated in Figure 4-3 is very straightforward. Within the configuration illustrated in this figure, 16 EA2111 RAM devices may be included, providing 2048 bytes of external RAM. In order to support this number of RAM devices, two steps will be required:

1) the address, data and control lines will have to be buffered in order to support the current load.

 Chip-select logic must decode the complete address space in order to select appropriate RAM devices. Here is one simple possibility:

SYSTEM CONFIGURATIONS WITH I/O

A minimum system will include the EA9002 CPU, a single ROM device and I/0.

I/O is very application oriented; it can be as simple as 1 to 8 flip-flop outputs, as illustrated in Figure 4-4.

The system in Figure 4-4 uses four 7474 dual D-type flip flops as output latches and one EA4700 1K x 8 ROM for program storage. The internal RAM within the 9002 is assumed sufficient for this simplified controller. This minumum system can be very useful for alarm or signalling systems which simply respond to an interrupt input by providing an output signal. Each interrupt response may terminate with a reset, to initialize the controller for the next occurance of an interrupt.

Another minimum system utilizing TTL components for I/O is shown in Figure 4-5 which uses two 74125 tri-state buffers to create a single 8-bit parallel input port, plus two 74175 quad D latches for a single 8-bit parallel output port. Assuming the internal RAM of the 9002 and a single 1K x 8 ROM (EA8308/2708 type) for program storage, the total system requires only 7 ¹/₄ TTL packages. All required controls and strobes are obtained by gating DIS and DOS from the EA9002.

A more versatile system with TTL circuits is shown in Figure 4-6. Two 74175 flip-flops provide 8 latched outputs, while two 8233's are used to buffer two 8-bit parallel input ports. A single EA8308 PROM or EA2308 ROM is shown for program storage along with a single 74155 dual 2 of 4 decoder circuit for address decoding and chip-select function. Two 8 T 28's provide splitting and buffering of the data bus to interface with the ROM and I/O devices. Total TTL package count is seven. Additional 8233's and 74175's can be added to expand inputs and outputs. Also, there is another ROM chip select available to expand program memory to 2048 bytes (two 8308/2708). The separate DIS and DOS strobes as illustrated in this example show how four output ports can be configured with the 74155 device. Output ports C and

D, enabled by $\overline{\text{DOS}}$, occupy the same address space as do the ROM's; but the ROM only inputs information to the CPU. Thus, it only needs to be enabled by the $\overline{\text{DIS}}$ strobe.

Figure 4-5 Minimum System With TTL

Figure 4-7 Minimum System With Intel 8212 I/O

It would be difficult to beat the minimum component parts count of the system shown in Figure 4-7. The 8212 is an 8-bit parallel buffered and latched Schottky TTL device. Again the versatility of the EA9002's DIS and DOS strobes are illustrated in that they allow both 8212's to occupy the same address space (A11 true). The EA4700 ROM, in this application, occupies memory space 000 to 300 (Hex) or the first 1 K of directly addressable memory.

Figure 4-8 System With ROM/RAM And Programmable I/O

The system shown in Figure 4-8 makes use of the EA9255 GP I/O along with the EA8308/2708 PROM/ROM and EA2111 type 256 \times 4 RAM.

RAM, in addition to that provided within the 9002 along with flexibility in I/O definition is featured in this example. Component count is certainly not excessive as illustrated in Figure 4-9 which details required logic and address decoding. As is shown, only one 7406 hex inverter and one 7403 quad 2-input NAND gate is required.

Figure 4-9 Details Of Peripheral Control With 3 TTL Package

Ability to use other manufacturers microprocessor I/O devices is shown in Figure 4-10. Here, the Motorola MC 6820 PIA device is interconnected into an EA9002 system, along with the EA4600 2K x 8 ROM. Minimum parts counts is again achieved due to the flexibility of the 9002 control signals.

A system making use of the EA9250 Keyboard/Display Controller and the EA9255 GP I/O controller is shown in Figure 4-11. The 9250 automatically scans, encodes and debounces a keyboard of up to 128 key or switch positions while, at the same time, helps a dynamic LED or gas-discharge display refreshed. This relieves the software programmer from the neccesity of writing keyboard scanning and encoding programs as well as having to periodically refresh multiplexed displays.

Figure 4-11 Using The EA9250 Keyboard Controller

MEMORY BANK SWITCHING

In the event that more than 4096 bytes of external memory are required, adding memory is quite straight-forward.

Now address space must be shared by memory banks and bank switching will be needed to insure that just one memory bank within any address space is selected at any time. The simplest technique for bank switching is to use an I/O port (such as the 8212) to generate select lines which are ANDed with memory select logic. Figure 4-12 shows how an 8212 I/O port assigned addresse FFF_{16} is used to create eight select lines.

Assuming that each ouput line of the 8212 I/O port is an individual memory bank select line, eight memory banks may be present.

By combining the outputs of the 8212 I/O port, 256 memory banks sharing the address space may be implemented.

The following instruction sequence will select the appropriate memory bank:

LAI	FF	SET PAGE F IN R7
CAP	7	
CAR	. 7	SET ADDRESS TO FF IN R7
LAI	SEL	LOAD MEMORY BANK SELECT INDICATOR
OUT	7	OUTPUT MEMORY BANK SELECT

Observe that the select lines illustrated in Figure 4-12, do not have to be used to select 4096 byte memory banks. If they are used in this fashion, then the memory bank select instructions illustrated above, when executed, will branch program logic out of one memory bank and into another memory bank at the next sequential memory location:

LAI FF

CAP 7

CAR 7

LAL SEL

OUT 7

If considerable external data memory is needed, then the select lines illustrated in Figure 4-12, could be used to select banks of data memory only. For example, memory locations 00016 through 7FF16 could be reserved for program memory, while eight separate implementations of memory locations 800 through BFF16 could provide 8 K bytes of external data memory. Address space C0016 through FFF16 remains unassigned.

Figure 4-12 Using An 8212 I/O Port To Select Memory Banks

SEPARATING PROGRAM AND DATA MEMORY

A technique for expanding directly addressable memory of the EA9002 from 4K to 8K, with the simple addition of a few TTL components uses a 13th address line (A12) generated by control logic. This scheme is illustrated in Figure 4-13. When A12 output is false, the normal 12 address outputs are used to select an instruction related word from ROM. When A12 output is true, the 12 address outputs are used to select a data location in RAM or I/O. This allows the implementation of a system containing up to 4096 instruction codes and 4096 data RAM and I/O locations.

This technique takes advantage of the fact that the EA9002 CPU always addresses and fetches an instruction immediately following a sync output pulse from the \overline{WAS} output pin. If the instruction fetched is one of the four data transfer instructions (INP, OUT, LRN, SRN) then and only then is a data transfer to memory or I/O to take place. Otherwise, the instruction performs operations internal to the CPU only — in which case there is no communication with data memory or I/O devices.

*A12 FALSE - SELECT ROM A12TRUE SELECT RAM & I/O

Figure 4-13 8K Memory System

The four I/O instructions binary op codes, as they appear on the data bus, are as follows:

Instruction		Op Code							
1.		MSB						:	LSB
		<u>D7</u>	<u>D6</u>	D5	<u>D4</u>	D3	<u>D2</u>	<u>D1</u>	D0
INP		0	1	0	. 1	0	x	X	X
OUT		0	1	0	1	1	x	x	×
LRN		1	1	1	0	0	X	x	X
SRN		1	1	1	0	1	x	X X	X

Op codes are described in Chapter 5.

Figure 4-14 Control Generation

The three least significant bits (D2, D1, & D0) are used to designate one of the 8 GP registers. Bit D3 is also a "don't care" condition for decoding purposes since it selects between INP and OUT or LRN and SRN. Therefore, it is only necessary to decode the four most significant bits to ascertain that the instruction is one of the four possible data transfer codes. An implementation of the logic equation

$$D7 \cdot D6 \cdot D5 \cdot D4 + D7 \cdot D6 \cdot D5 \cdot D4$$

will select the unique I/O instruction op codes from the total op code field. We must test for this condition immediately following a sync output pulse. Thus, the WAS sync pulse will initialize a flip-flop to the 0 (false) state, while the DIS (Data In) strobe will clock the flip-flop into the 1 (true) state, providing the test condition is true.

Figure 4-14 illustrates an implementation of logic to create address bit A12.

Figure 4-15 illustrates the timing associated with Figures 4-13 and 4-14. During T1 and T2 of an instruction cycle, an instruction is addressed via the address bus; the op code is transferred to the CPU via the data bus. If this instruction is not one of the four data transfer instructions, then no output occurs from the instruction decoder of Figure 4-13; the control flip-flop is not set, A12 remains low and all addresses remain directed to the program field of memory.

If the instruction is an INP, OUT, LRN or SRN, the DIS strobe sets the control flip-flop, and thus A12, to the 1 state. The control flip-flop will remain in the 1 state until reset by the output of the reset flip-flop shown in Figure 4-14. The reset flip-flop acts as a one-shot; it provides a delay beyond the end of the WAS sync pulse to ensure that the control flip-flop remains reset until the beginning of the next T1 period.

Implementation of the logic shown in Figure 4-14 is not necessarily the lowest cost approach. It is shown as a technique which has been tested and will work. The significant events to consider when implementing this scheme are that A12 should always be low at the beginning of a CPU cycle which is signaled by the WAS sync strobe. After T2 time, if A12 has been set, it must remain set until the required data transfer has taken place. WAS sync occurs before the ending of a DIS or DOS strobe, therefore, it is necessary to delay the resetting of A12 to avoid shortening the DIS or DOS cycle.

If data on the data bus coincides with an I/O instruction code and this occurs after A12 has been set, the most that can happen is that A12 toggles to the zero state — but it is supposed to go to the zero state at this time anyway. If A12 is in the zero state and gets toggled to the one state by spurious data, it will be immediately reset as a result of the sync pulse.

Additional considerations may be required in the use of this memory bank select technique if the $\overline{\text{WAS}}$ pin is to be pulled down by external networks to initiate a WAIT period. It may be necessary to isolate the clocking of the reset flip-flop from this condition.

INTERRUPT PROCESSING

Most microcomputer applications have their needs met by a single interrupt request line. Only in special circumstances will multiple interrupt, single CPU logic configurations be justifiable.

Within the minicomputer industry, interrupts are frequently used to share the expensive and underused capabilities of a Central Processing Unit for a variety of operations. Microcomputer Central Processing Units are so inexpensive that any attempt to share them, simply as a means of reducing the number of CPU's within a system, is almost certain to be economically unsound.

Figure 4-15 One Cycle And Two Cycle Timing

Nevertheless, there will be circumstances in which multiple interrupt configurations are both economical and viable, since to a microcomputer, interrupts signal asychronous events. A multiple interrupt, single CPU microcomputer configuration would economically support slow asychronous event sequences.

A multiple interrupt microcomputer system should handle interrupts serially; once one interrupt has been acknowledged, all other interrupts should wait until the acknowledged interrupt is serviced. In other words, interrupt priorities should only be arbitrated if the actual interrupt requests occur simultaneously from two or more external sources.

When an EA9002 configuration includes a single external interrupt (in addition to the Reset), then implementing interrupt logic becomes trivially simple. Providing external logic creates interrupts or reset request signals with the appropriate timing, as described in Chapter 3, no other external logic is required specifically to support the interrupt. Of course, subsequent I/O operations may be necessary following the interrupt acknowledge, but these are normal I/O operations.

In a microcomputer configuration where multiple interrupts are justified, an effective way of handling multiple interrupts is using a daisy chain, as illustrated in Figure 4-16. Every external logic source capable of requesting an interrupt has its own interrupt request line, illustrated in Figure 4-16 by INTO, INT1, INT2, etc.. These interrupt requests are active low. By ANDing all interrupt requests together, a master interrupt request INT, is created for transmittal to the CPU. When acknowledging the interrupt, in order to support the logic illustrated in Figure 4-16, the CPU must output a master acknowledge, shown as IACK. IACK is negative true. If IACK arrives at the first NAND gate and is matched by INTO low, then the first NAND gate will generate a high output, which will cause all subsequent NAND gates to generate low outputs. Thus, IACKO will become a high true interrupt acknowledge to the first device in the daisy chain.

If INTO is high, then the first NAND gate will propagate a low output to the second NAND gate. This propagation will continue down the daisy chain until the first low output from one NAND gate is matched by a low interrupt request INTX. That NAND gate-will generate a high output, which becomes a high interrupt acknowledge IACKX — and simultaneously forces all subsequent NAND gates to output low.

In summary, therefore, IACKX will be output high by the NAND gate which receives INTN low when the master interrupt acknowledge IACK is output low by the CPU.

Figure 4-16 An Interrupt Request Daisy Chain

There are numerous ways in which the CPU can output IACK low. Figure 4-17 illustrates how data bus line D0, in conjunction with memory address INTERRUPT ACKNOWLEDGE

FFO, can create IACK. The logic in Figure 4-17 requires the EA9002 CPU to respond to an interrupt by executing the following instruction sequence:

*INTERRUPT RESPONSE MUST BE ORIGINED AT MEMORY LOCATION 2

ORG 2	
LAI OF	
CAP 7	
LRI 7,FO	ESTABLISH ADDRESS FFO IN R7
CLA	OUTPUT 0 ON DO LINE OF DATA BUSS AS
OUT 7	INTERRUPT ACKNOWLEDGE

Observe that so long as the low order accumulator bit is 0 when data is output to memory location FF0, it does not matter what values the other Accumulator bits have.

An alternate method of generating an interrupt acknowledge is by decoding the Address bus. Recall that when an interrupt is acknowledged, pro-

gram execution branches to memory location 002₁₆. You may therfore decode this single value off the address bus to generate an interrupt acknowledge signal. This scheme relies entirely on external logic to generate IACK. No instructions are executed for this purpose.

Figure 4-17 Logic To Transmit IACK Low If A11-A0 Is FF0 And D0 Is 1

The external device whose interrupt has been acknowledged is informed of this circumstance by its interrupt acknowledge signal IACKX being high. There are many ways in which this high signal can be used by the CPU to determine which interrupting external logic must be serviced. Here are two possibilities:

- The individual IACKX signals can be input to an 8212 I/O port, or to an I/O port of an 8255 type parallel interface device. By inputing the contents of this I/O port, the interrupt service program can determine which device is requesting an interrupt.
- The interrupt service program associated with each external logic source can be implemented on a separate ROM device sharing the same memory space.

Suppose each external source has a IK byte ROM in which its interrupt service program has been implemented. Let us suppose all of these IK byte ROMs share the address space 800₁₆ through BFF₁₆. If there are eight external logic sources which can request interrupt service, there will be eight ROM devices, all of which are selected by the address range 800₁₆ through BFF₁₆. However, all of the ROM selects will be tied to the interrupt acknowledge signals, thus only the ROM for acknowledged logic will indeed be selected. Of course, the last instruction executed within the interrupt service program, must be a jump back to some instruction implemented in the memory range 000₁₆ through 7FF₁₆, since this address range is not duplicated.

The logic needed to select alternate ROMs has been described earlier in this Chapter in conjunction with memory bank switching.

Chapter 5 THE INSTRUCTION SET

In this chapter we are going to identify the operations performed by individual instructions of the EA9002 instruction set. This is an instruction look-up chapter, which means that operations performed by instructions are described individually, isolated from program flow considerations. Programming techniques and efficient use of the 9002 instruction set are treated separately in Chapters 6, 7 and 8.

Because this is an instruction look-up chapter, instructions are listed in alphabetic order of instruction mnemonic.

Once you are familiar with the EA9002 instruction set, use the instruction set summaries provided in Appendix A.

A generalized format has been adopted in this chapter to describe all instructions.

Each instruction begins with a graphic representation of active accumulators, registers, memory locations and statuses.

ABBREVIATIONS

A number of abbreviations have been adopted in this chapter, and they are summarized next.

Lower case 'm' is used to represent hexadecimal digits of program memory addresses:

Upper case 'P' and 'Q' are used to represent hexadecimal digits of immediate data:

Upper case 'J' and 'K' are used to represent hexadecimal digits stored in the accumulator, or the low-order eight bits of general purpose registers:

If a status flag may either be set or reset by an instruction, an X is placed in the appropriate status box. A D is placed in a status box if the status is modified in decimal mode only. An 0 is placed in the status box if the status flag is unconditionally reset. A blank means that the status is in no way modified by execution of the instruction:

Will be set or reset in decimal mode only Unconditionally reset to 0. Unaffected Will be set or reset to reflect results of instruction execution

Instruction object codes are represented by two hexadecimal digits wherever an instruction has only one version:

Many 9002 instructions are register-dependent; the low-order three object code bits specify one of eight registers. Object codes for these instructions are shown in binary format. Here is a general example:

Recall that general-purpose registers are sometimes treated as single 12-bit units. A 12-bit unit being selected by an instruction object code is illustrated as follows:

At other times general-purpose registers are treated as separate 4-bit \rightarrow and 8-bit units.

Selection of a register's 8 low order bits is identified as follows:

Selection of a register's high-order 4 bits is represented as follows:

ADD— ADD REGISTER TO ACCUMULATOR WITH CARRY

To the Accumulator add the Carry status and the low order eight bits of register N. If the D status is 0, the Accumulator and Register contents are treated as 8-bit binary data. If the D status is 1, the Accumulator and Register contents are each treated as a pair of BCD digits.

Suppose the Accumulator contains 7316, Register R5 contains 34716 and the Carry status is 1; after execution of the instruction sequence:

SEB Set binary mode

ADD.

5 The Accumulator will contain BB16:

Now look at decimal addition:

Decimal addition will result from execution of the sequence:

SED Set decimal mode ADD 5

This is what happens when the ADD 5 instruction is executed:

To the Accumulator add the Carry status and contents of the scratch memory byte addressed by the low order six bits of Register N.

The ADS instruction is identical to the ADD instruction except for the source of the addend byte.

For a discussion of scratch memory addressing see the RDS instruction.

AND — AND REGISTER WITH ACCUMULATOR

Logically AND the Accumulator with the low order eight bits of Register N.

Suppose the Accumulator contains 3E16 and Register 3 contains 2F316; after execution of the instruction

AND 3

the Accumulator will contain 3216:

3E = 00111110F3 = -<u>11110011</u> AND = 00110010

The C and H statuses are unconditionally reset to 0. The A status is set to 1 since the result in the Accumulator is not zero.

This is what happens:

Copy the low order four Accumulator bits into the high order four (Page) bits of Register N.

Suppose the Accumulator contains 3E16 and Register R2 contains 4FA16; after the instruction:

CAP 2

is executed, the Accumulator will contain 3E16, while Register R2 contains EFA16:

Store Accumulator contents in the low order eight bits of Register N.

Suppose the Accumulator contains 3E16 and Register R2 contains 4FA16; after the instruction:

CAR 2

Unconditionally reset the Accumulator contents to 0.

CLB — CLEAR THE ACCUMULATOR AND CARRY STATUS

Unconditionally reset the Accumulator contents and the Carry status to 0.

CLC - RESET THE CARRY STATUS TO 0

Unconditionally clear the Carry status.

CMA — COMPLEMENT ACCUMULATOR

Ones complement the Accumulator contents.

Suppose the Accumulator contains 3E16. After execution of the instruction:

CMA

the Accumulator will contain C116:

3E = 00111110ones complement = 11000001

The A status will be set to 1 since the result is not zero.

Unconditionally complement the Carry status.

Compare the Accumulator contents with the contents of Register N's low order eight bits. Neither the Accumulator nor Register N contents are modified, but the C and A statuses reflect the result of the compare as follows:

	С	А	Test Condition
A=R	0	0	· A =0
A <r< td=""><td>1</td><td>1</td><td>C = 1</td></r<>	1	1	C = 1
A >R	0	1	C =0 and A =1
A≥R	- O	0 or 1	C =0
A≤R	0 or 1	0 or 1	C =1 or A =0
A ≢R	0 or 1	1	A =1

Interrupts are disabled during execution of the CMP instruction and the next sequential instruction. However the interrupt status flag itself is not changed. This prevents an interrupt from dividing a CMP instruction's execution from execution of the Jump on condition instruction which usually follows directly.

Copy the high order four (page) bits of Register R0, R1, R2 or R3 to low order four Accumulator bits. Clear four high order Accumulator bits.

Suppose the Accumulator contains 3E₁₆ and Register R2 contains 4FA₁₆; after the instruction:

CPA 2

Store contents of low order eight bits of Register N in Accumulator

Suppose the Accumulator contains $3E_{16}$ and Register R2 contains $4FA_{16}$; after the instruction:

CRA 2

is executed, the Accumulator will contain FA16:

Copy status flags and Stack Pointer to the Accumulator.

5-15

This is how Accumulator bits are interpreted following execution of the CSA instruction:

The statuses are straightforward and easy to understand.

The Stack Pointer identifies the level to which the stack has been pushed. For example, a value of 101 in the Stack Pointer stipulates that five more subroutine calls than returns have been executed; that means subroutines are currently nested to a level of 5.

DAC — DECREMENT THE ACCUMULATOR

Decrement the Accumulator contents. If the D status is 0, the Accumulator contents are treated as an 8-bit binary number. If the D status is 1, the Accumulator contents are treated as two BCD digits.

Suppose the Accumulator contains 7316. Execution of the instruction:

DAC

will decrement the Accumulator to 7216 in either binary or decimal mode.

Now suppose the Accumulator contains 8016. The instruction sequence:

SEB	Set binary mode
DAC	Decrement Accumulator

leaves 7F16 in the Accumulator; the C status is 0. However, the instruction sequence:

SED	Set decimal mode
DAC	Decrement Accumulato

leaves 7916 in the Accumulator, 1 in the H status and 0 in the C status.

Now suppose the Accumulator initially contains 0016. The instruction sequence:

SEB	Set binary mode
DAC	Decrement Accumulator

leaves FF16 in the Accumulator and 1 in the C status. The instruction sequence:

SED	Set	decimal	mode		
	-				

DAC Decrement Accumulator

leaves 9916 in the Accumulator and 1 in both C and H statuses.

DCR — DECREMENT REGISTER

Decrement the twelve bit contents of Register N.

Suppose Register R3 contains 23A16; after execution of the instruction:

DCR 3

Register 3 will contain 23916. Had Register R3 contained 30016, it would now contain 2FF16; had the register contained 00016, it would now contain FFF16.

DLY — DELAY TWO CYCLES Scratch Data Stack Memory Memory 00 01 nn nn + 1 3E 3F PC mmm mmm + 2 Program Memory RO R1 R2 R3 00 R4 QQ R5 R6 Status R7 D с Α н

Nothing happens when this instruction is executed, but the Program Counter is incremented by 2, skipping the byte that follows the DLY object code.

DATA

The DLY instruction may be used to implement skip logic. For example, all addition and subtraction instructions include the Carry status. You can clear the Carry status optionally as follows:

F0 is the CLC instruction object code; normally this object code will be skipped by the DLY instruction. By jumping to LABEL + 1; you can clear the Carry status before executing the ADD instruction.

DRJ — DECREMENT REGISTER AND JUMP

 Decrement the 12 bit contents of Register N. After decrementing, test the low order eight bits; if they are all zero, program execution continues with the next sequential instruction; if they are not all zero, program execution branches to the instruction on the same page identified by the label LABEL.

For a discussion of how the label LABEL is handled when the DRJ instruction object code resides at, or across a page boundary, see the JCY instruction.

Consider the instruction sequence:

The DRJ instruction specifies Register 3 as the register to be decremented. After decrementing, if the low order eight bits of Register 3 are all 0, then the INR instruction will be executed; otherwise the ADD instruction will be executed.

With reference to case B in the instruction illustration, note that if the DRJ instruction's object code ends at, or lies across a page boundary, then the branch will occur into the next page. For example, suppose object code resides in these program memory bytes:

Register 3 is to be decremented; if it decrements to P00, then a branch to memory location $54A_{16}$ will occur.

DSI — DISABLE INTERRUPTS

Reset the Interrupt status to 0; this disables all interrupts. Interrupts remain disabled until an ENI instruction is executed.

ENI — ENABLE INTERRUPTS

Set the Interrupt status to 0; this enables interrupts after execution of the next sequential instruction.

This is how an interrupt service subroutine frequently ends:

Interrupts remain disabled until the RET instruction has completed execution; thus a new interrupt cannot be acknowledged until program execution has returned to the calling program.

Once enabled, interrupts remain enabled until a DSI instruction is executed, the system is reset, or an interrupt occurs.

IAC — INCREMENT THE ACCUMULATOR

Increment the Accumulator contents. If the D status is 0, the Accumulator contents are treated as an 8-bit binary number. If the D status is 1, the Accumulator contents are treated as two BCD digits.

Suppose the Accumulator contains 7316. Execution of the instruction:

IAC

will increment the Accumulator to 7416 in either binary or decimal mode.

Now suppose the Accumulator contains 7916. The instruction sequence:

SEB Set binary mode IAC Increment Accumulator

leaves 7A16 in the Accumulator; the C status is 0. However, the instruction sequence:

SED Set decimal mode IAC Increment Accumulator

leaves 8016 in the Accumulator, 1 in the H status and 0 in the C status.

Now suppose the Accumulator initially contains 9916. The instruction sequence:

SEB Set binary mode

IAC Increment Accumulator

leaves 9A16 in the Accumulator and 0 in the C status. The instruction sequence:

- SED Set decimal mode
- IAC Increment Accumulator

leaves 0016 in the Accumulator and 1 in both C and H statuses.

INP — INPUT TO ACCUMULATOR

Load into the Accumulator the contents of the memory byte addressed by Register N.

Register N may also address an external device; in other words, the contents of Register N are output on the Address bus. Any logic external to the 9002 may decode the Address bus, select itself and return data on the data bus.

Suppose the data memory byte with address 34F16 contains the value 3E16; when the instruction:

is executed, assuming the Register R6 contains 34F16, this is what happens:

INP 6

Increment the twelve bit contents of Register N.

Suppose Register R3 contains 23A16; after execution of the instruction:

INR 3

Register 3 will contain 23B16. Had Register R3 contained 2FF16, it would now contain 30016; had the register contained FFF16, it would now contain 00016.

IOR — INCLUSIVE OR REGISTER WITH ACCUMULATOR

Logically OR the Accumulator with the low order eight bits of Register N.

Suppose the Accumulator contains 3E16 and Register 3 contains 2F316; after execution of the instruction

```
IOR 3
```

the Accumulator will contain FF16:

3E =	00111110
F3=	11110011
OR=	11111111

The C and H statuses are unconditionally reset to 0. The A status is set to 1 since the result in the Accumulator is not zero.

This is what happens:

IRJ — **INCREMENT REGISTER AND JUMP**

Increment the 12 bit contents of Register N. After incrementing, test the low order eight bits; if they are all zero, program execution continues with the next sequential instruction; if they are not all zero, program execution branches to the instruction on the same page identified by the label LABEL.

For a discussion of how the label LABEL is handled when the IRJ instruction object code resides at, or across a page boundary, see the JCY instruction.

Consider the instruction sequence:

The IRJ instruction specifies Register 3 as the register to be incremented. After incrementing, if the low order eight bits of Register 3 are all 0, then the INR instruction will be executed; otherwise the ADD instruction will be executed.

As described for the DRJ instruction, note that a jump into the next page will occur if the IRJ instruction object code terminates at, or lies across a page boundary. JCY — JUMP IF CARRY EQUALS 1

If Carry status equals 1, jump to instruction with label LABEL in current page; otherwise execute the next sequential instruction.

Consider the instruction sequence:

If the Carry status equals 1, then the INR 4 instruction will be executed following the JCY instruction, providing the INR 4 instruction is on the same program memory page as the JCY instruction.

If the Carry status equals 0, then the ADD 2 instruction will be executed following the JCY instruction.

Suppose the JCY instruction object code is stored in program memory bytes $3CA_{16}$ and $3CB_{16}$; that is to say nmm = $3CA_{16}$. Suppose also that the INR 4 instruction object code is stored in program memory byte 321_{16} . If the Carry status equals 1, this is how the JCY instruction will be executed:

Now consider what happens when the JCY instruction object code is located on, or across a page boundary:

As illustrated above, the branch occurs into the page occupied by the instruction following the JCY instructions.

JEQ — JUMP IF ACCUMULATOR AND REGISTER ARE EQUAL

This instruction is identical to the JZE instruction, but it is phrased to represent conditions after execution of a CMP, SUB or SUS instruction.

JGE — JUMP IF ACCUMULATOR IS GREATER THAN, OR EQUAL TO REGISTER

This instruction is identical to the JNC instruction, but it is phrased to represent conditions after execution of a CMP, SUB or SUS instruction.

JGT — JUMP IF ACCUMULATOR IS GREATER THAN REGISTER

LABEL

JGT

03 00

This instruction is similar to the JCY instruction, except that the jump only occurs if the Carry status equals 0 and the Accumulator status equals 1.

This instruction can be executed at any time, but it is phrased to represent conditions after execution of a CMP, SUB or SUS instruction.

JHC — JUMP IF HALF CARRY

This instruction is similar to the JCY instruction, except that the jump only occurs if the Half Carry status equals 1.

JIN — JUMP INDIRECT (IMPLIED)

Jump to the memory location specified by the identified general purpose register.

Suppose register R3 contains 3CA16; the instruction:

JIN 3

will cause program execution to continue with the instruction whose object code is stored in program memory byte 3CA16.

Now suppose the label LABEL is equivalent to the value 3CA₁₆ in the following instruction sequence:

> JIN 3 ADD 2

LABEL INR 4

This means the INR 4 instruction code is stored in program memory byte 3CA₁₆. Again assuming that Register R3 contains 3CA₁₆, the instruction sequence above becomes identical to the instruction sequence illustrated for the JUN instruction.

The JIN 3 instruction specifically may be illustrated as follows:

JLE — JUMP IF ACCUMULATOR IS LESS THAN OR EQUAL TO REGISTER

This instruction is similar to the JCY instruction, except that the jump only occurs if the Carry status equals 1 or the Accumulator status equals 0.

This instruction can be executed at any time, but it is phrased to represent conditions after execution of a CMP, SUB or SUS instruction.

JLT — JUMP IF ACCUMULATOR IS LESS THAN REGISTER

This instruction is identical to the JCY instruction, but it is phrased to represent conditions after execution of a CMP, SUB or SUS instruction.

JNC — JUMP IF NO CARRY

This instruction is similar to the JCY instruction, except that the jump only occurs if the Carry status equals 0.

JNE — JUMP IF ACCUMULATOR IS NOT EQUAL TO REGISTER

This instruction is identical to the JNZ instruction, but it is phrased to represent conditions after execution of a CMP, SUB or SUS instruction.

JNZ — JUMP IF ACCUMULATOR IS NOT ZERO

This instruction is similar to the JCY instruction, except that the jump only occurs if the Accumulator status equals 1.

JSR — JUMP TO SUBROUTINE

Save the program memory address of the next instruction on the stack; then load the twelve bit address provided by the JSR instruction into the Program Counter.

Consider the following instruction sequence:

The JSR instruction causes program execution to branch unconditionally to the instruction labeled SUB; the JSR instruction also saves the address of the ADD instruction on the stack.

The first RET instruction executed following the INR instruction will branch program execution back to the ADD instruction.

JUN — JUMP UNCONDITIONAL

Jump to the instruction identified by the label, LABEL.

Consider this instruction sequence:

After JUN LABEL, the INR 4 instruction will be executed. Unless some other instruction jumps to ADD 2, this instruction will never be executed.

Suppose the object code for the INR 4 instruction happens to be stored in memory location $3FA_{16}$; the JUN LABEL instruction's object code will be:

13 FA

JZE — JUMP IF ACCUMULATOR IS ZERO

This instruction is similar to the JCY instruction, except that the jump only occurs if the Accumulator status equals 0.

Load the contents of the second instruction object code byte into the Accumulator. Set the A status to 1 if the Accumulator now contains a non zero value; reset the A status to 0 if the Accumulator now contains a zero value.

5-34

LRI — LOAD REGISTER IMMEDIATE

Load the contents of the second instruction object code byte into the low order eight bits of Register N.

Consider the instruction:

LRI 3,4C

When executed, this is what happens:

Now Register R3 will contain A4C16.

Load into the low order eight bits of Register N the contents of the memory byte or external device addressed by register R0.

The contents of Register R0 are output on the Address bus. Either external memory or any external logic may decode the Address bus, select itself and place data on the data bus. Suppose R0 contains 2FA16 and memory byte 2FA16 contains 3E16. After the instruction:

is executed, if Register 3 originally contained A2016, it will now contain A3E16:

The instruction:

LRN 0

is allowed; in the above illustration it would leave 23E16 in Register 0.

NOP — NO OPERATION

Nothing happens when this instruction is executed, but the Program Counter is incremented to address the next sequential instruction code.

The NOP instruction is frequently used to create time delays for signal synchronization. There are also circumstances in which it is used to create an address to which jumps can be specified.

OUT — OUTPUT FROM ACCUMULATOR

Store the Accumulator contents in the memory byte addressed by Register N.

Register N may also address an external device; in other words, the contents of Register N are output on the Address bus. Any logic external to the 9002 may decode the Address bus, select itself and accept the data on the data bus.

Suppose the Accumulator contains 3E16 and Register R6 contains 34E16; after the instruction:

OUT 6

is executed, the memory byte (or external logic device) with address $34F_{16}$ will contain $3E_{16}$:

Rotate the Accumulator left one bit position.

Suppose the Accumulator initially contains 3E16. After execution of the

RAL

instruction, the Accumulator will contain 7C16:

0 0 11111

RAR — ROTATE ACCUMULATOR RIGHT

Rotate the Accumulator right one bit position.

Suppose the Accumulator initially contains 3E16. After execution of the

SEB RAR

instruction, the Accumulator will contain 1F16:

C=0 Ĥ

In decimal mode, the right rotate is executed as follows:

Suppose the Accumulator contains 9416; after execution of the instruction sequence:

SED

Set decimal mode

the Accumulator will contain 4916:

You can use decimal mode right rotate even if the Accumulator contains non BCD data (e.g. FA₁₆).

Input to the Accumulator the contents of the scratch memory byte addressed by the low order six bits of Register N.

Suppose Register 4 contains 02F16 and scratch memory byte 02F16 contains 3E16. After the instruction:

RDS 4

has executed, the Accumulator will contain 3E16 and the A status will be set to 1.

Note that only the low order six bits of the Register are significant; a scratch memory address of 02F16 would be derived from any of these register contents:

5-42

RET — RETURN FROM SUBROUTINE

The address at the top of the stack is popped into the Program Counter, thus effecting a return from subroutine.

Consider the following instruction sequence:

When the JSR instruction is executed, the address of the ADD instruction is pushed onto the stack. This is the address popped off the stack and into the Program Counter by the RET instruction, thus causing program execution to continue with the ADD instruction.

RLC — ROTATE ACCUMULATOR LEFT THROUGH CARRY

Rotate the Accumulator left one bit position, through carry.

Suppose the Accumulator initially contains 3E₁₆ and the Carry status is 1. After execution of the instruction:

RLC

the Accumulator will contain 7B16:

0 0 1 0 *,* , , , Previous C H = 1New C

RRC — ROTATE ACCUMULATOR RIGHT THROUGH CARRY

Rotate the Accumulator right one bit position, through carry.

Suppose the Accumulator initially contains 3E₁₆ and the Carry status is 1. After execution of the instruction:

RRC

the Accumulator will contain 9F16:

SEB — SET BINARY MODE

Unconditionally reset the Decimal status to 0. This selects binary mode when any of the following instructions are executed: ADD, ADS, DAC, IAC, RAR, SUB, SUS.

Binary mode remains in effect until an SED instruction is executed to set Decimal mode.

SEC — SET THE CARRY STATUS TO 1

Unconditionally set the Carry status to 1.

SED — SET DECIMAL MODE

Unconditionally set the Decimal status to 1. This selects decimal mode when any of the following instructions are executed: ADD, ADS, DAC, IAC, RAR, SUB, SUS.

Decimal mode remains in effect until an SEB instruction is executed to set binary mode, or until the system is reset.

Store the low order eight bits of Register N into the memory byte or external device addressed by register R0.

The contents of Register R0 are output on the Address bus. Either external memory or any external logic may decode the Address bus, select itself and accept the data on the data bus.

Suppose R0 contains 2FA16 and Register R3 contains A2016. After the instruction:

SRN 3

is executed, the data memory byte (or external logic) selected by address 2FA16 will contain 2016:

The instruction:

SRN 0

is allowed; in the above illustration it would leave FA16 in memory byte 2FA16.

SUB — SUBTRACT REGISTER FROM ACCUMULATOR WITH BORROW

From the Accumulator subtract the Carry status and the low order eight bits of register N. If the D status is 0, the Accumulator and Register contents are treated as 8-bit binary data. If the D status is 1, the Accumulator and Register contents are each treated as a pair of BCD digits.

Suppose the Accumulator contains 7316, Register R5 contains 34716 and the Carry status is 1; after execution of the instruction sequence:

the Accumulator will contain 2B16:

$$73 = 01110011$$

$$(47 + C) = (-48) = 01001000$$

$$00101011$$

C=0

Now look at decimal subtraction:

5-49

Note that as illustrated above, the EA9002 has subtract logic; it does not use twos complement addition. The principal effect this has is on the Carry status, which is set for a negative result, and is reset for a positive result. This is opposite from Carry status interpretation when using twos complement subtract logic.

SUS — SUBTRACT SCRATCH MEMORY FROM ACCUMULATOR WITH BORROW

From the Accumulator subtract the Carry status and the contents of the scratch memory byte addressed by the low order six bits of Register N.

The SUS instruction is identical to the SUB instruction except that the subtrahend byte is fetched from scratch memory.

For a discussion of scratch memory addressing see the RDS instruction.

Output the Accumulator contents to the scratch memory byte addressed by the low order six bits of Register N.

Suppose Register 4 contains 02F₁₆ and the Accumulator contains 3E₁₆. After the instruction:

WRS 4

has executed scratch memory byte 02F16 will contain 3E16.

Note that only the low order six bits of the Register are significant; a scratch memory address of 02F16 would be derived from any of these other register contents:

5-51

XCH — EXCHANGE REGISTER AND ACCUMULATOR CONTNETS

Exchange the contents of low order eight bits of Register N with the Accumulator.

Suppose the Accumulator contains 3E₁₆ and Register R2 contains 4FA₁₆; after the instruction:

XCH 2

is executed, the Accumulator will contain FA16, while Register R2 contains 43E16.

5-52

XOR — EXCLUSIVE OR REGISTER WITH ACCUMULATOR

Exclusive OR the Accumulator with the low order eight bits of Register N.

Suppose the Accumulator contains 3E16 and Register 3 contains 2F16; after execution of the instruction:

XOR 3

the Accumulator will contain CD₁₆:

3E ==	00111110
F3	11110011
XOR	11001101

The C and H statuses are unconditionally reset to 0. The A status is set to 1 since the result in the Accumulator is not zero.

This is what happens:

Chapter 6 ELEMENTARY PROGRAMMING TECHNIQUE

A logic designer with no prior programming background may well have less trouble than a programmer, understanding the basic concepts of efficient microcomputer programming. When compared to many minicomputers, the average microcomputer may indeed appear to have both a primitive instruction set and limited processing capabilities; however, many microcomputer features which look like handicaps to the traditional programmer, are in fact advantages in typical microcomputer applications.

The key to understanding efficient microcomputer programming is to bear in mind that the typical microcomputer program is going to become a PROM or ROM chip.

The microcomputer is not a vehicle for the execution of an indeterminate sequence of undefined programs.

MICROCOMPUTER PROGRAMMING CONCEPTS

If we are to define "microcomputer programming" as a technique for the creation of ROM or PROM chips, then programming economy becomes very important. "Programming economy" means that you should attempt to create object programs that are as short as possible — without resorting to expensive or strange gimmicks.

The cost of program memory is not in itself the overwhelming reason for keeping programs short; but there is a snowball cost effect.

First consider read/write memory. If you can confine your data to using 64 bytes of read/write memory, then your 9002 microcomputer system will require no external RAM. This eliminates the cost of the external RAM, it's select and interface logic, plus design and fabrication expenses.

Similar reasoning applies to the number of PROM or ROM chips needed to implement your program. It is not just the cost of the extra chips that are important; there is also cost of support and interface logic — plus design and implementation costs associated with the extra real estate on PC cards, which additional chips will require. Also, remember that each additional ROM chip requires the additional expense of defining and creating a ROM mask.

The problem with allowing your chip count to proliferate is that what used to fit on one PC card may soon require two; that means additional edge connectors, perhaps a more costly back plane, or even a larger power supply. Chip counts and system configurations can vary significantly when different logic designers implement the same system; this will come as no surprise to an experienced logic designer, but it has some important, non obvious ramifications: microcomputer programs have to consider every hardware configuration as possibly unique. Thus definition of memory and I/O becomes an integral part of the system creation process; writing the microcomputer program is merely another step of the same process. This being the case, you must use general purpose subroutines with extreme caution. The minicomputer programmer takes general purpose subroutines for granted — to the point where many such subroutines are packaged into standard program modules, referred to as "systems software", and included in every program, whether they will be needed or not. To the microcomputer programmer, using system software will probably make no sense. Saving a little programming cost cannot be justified if the price paid is more memory and a significantly more complex eventual microcomputer systems.

MICROCOMPUTER PROGRAM INPLEMENTATION SEQUENCE

In order to program a microcomputer efficiently, you must start by defining the hardware that your system is going to require. Some hardware definition is a necessary beginning, but this definition is likely to change frequently in the course of system implementation and debugging.

Beyond the microcomputer CPU itself, you must define the address spaces that have been allocated to program memory, to data memory and to external devices. You must also define the address spaces that are to be implemented in ROM or RAM. Program memory will invariably be implemented in ROM; data memory is frequently RAM, it can be ROM when used to store tables or other nonvarying data.

The next step is to flow chart functions which the microcomputer program must perform. Figure 6-1, illustrates a simple program flow chart. The flow chart illustrates a simple program which receives digital input signal in the range 0

through 255 from an instrument — then uses this input signal to access a table out of which a 5 decimal digit number will be read for display. This program could be used by any instrument whose sensor outputs a millivoltage which must be converted, using a nonlinear transfer function, into a panel digital display. Figure 6-2 illustrates the hardware configuration and address spaces assumed.

Having drawn your program flow chart, the next step is to break this flow chart into program modules. The extent of a single program module is not easily defined in advance; however, once you have written a few programs for any microcomputer, you will find it quite easy to estimate the extent of an individual program module. A program module begins with instruction sequences that load data or parameters into general purpose registers and/or scratchpad memory; the program module operates on this data, then outputs results at the end of the module. You should not have to reuse general purpose registers or scratchpad memory in unrelated ways for the duration of any single program module. Program modules may also pass data, one to the next, by leaving the data in preassigned registers or scratchpad memory.

Figure 6-2 System Configuration For Sample Problem

As the above definition of a program module would imply, you should begin by defining the use to which every single general purpose register will be put for the duration of the program module. You should also define scratchpad memory utilization.

First consider general purpose registers. You have eight such registers, which will support a program module of significant size. Recall that there are four ways in which a general purpose register may be used: GENERAL PURPOSE REGISTERS ALLOCATION

 The register may identify a 12-bit external data or program memory address:

General purpose register R0 always holds the 12-bit external memory address for register indirect load and store instructions; therefore R0 will commonly be used as an external memory addressing register.

Also, the page bits of registers R0, R1, R2 and R3, only, can be copied to the Accumulator; therefore make these four registers your first choices for external memory addressing.

You may also use a general purpose register to store a program memory address. This is useful if your program has one or more instructions to which you will frequently want to jump from various other points in the program. Remember that the EA9002 provides register direct addressing jump instruction; this is a single byte instruction that jumps to any memory location addressed by one of the eight general purpose registers.

 General purpose registers may be used to address scratchpad memory; the low order six bits of any general purpose register provide a scratchpad memory address.

- 3) Any general purpose register may be used as an 8-bit or a 12-bit counter. Remember that when the contents of a general purpose register are either incremented or decremented, the entire 12-bit value of the register is affected.
- 4) General purpose registers may also be used for data storage and manipulation. Remember, only the low order eight bits of the general purpose register can be used for data access. In fact, there is no way of reading the high order four bits of registers R4, R5, R6, or R7; therefore do not attempt to store data for subsequent retrieval.

Consider the application illustrated in Figures 6-1 and 6-7.

This is how we might allocate registers:

Our sample program is so small that it does not use scratchpad memory. General purpose registers provide sufficient read/write memory space. What is interesting about this observation is the fact that a carefully organized program of considerable size can get by with the read/write memory provided by the scratchpad. If your program makes extensive use of scratchpad, you should map out the way in which different areas of scratchpad will be allocated, just as we have done above for the general registers.

Let us now examine some frequently used instruction sequences. Examples will be presented in this chapter as subroutines, since frequently used pro-

SUBROUTINE CREATION

gram sequences are most effectively implemented as subroutines. Note, however, that in order to convert an instruction sequence to a subroutine, you must provide a label for the entry point instruction and to add a return instruction at the point of exit — that is all.

DATA MOVEMENT SUBROUTINES

Moving blocks of data from one memory location to another is a frequently needed operation.

For example, frequently one memory buffer may be set aside for entry of data from all external sources. Depending on the external data source, the data may subsequently have to be moved to one of many permanent buffers.

Below are three subroutines that load a block of data from external memory into the scratchpad, from scratchpad into external memory, and from one external memory buffer to another. Registers have been arbitrarily assigned in these three subroutines; if you change register assignments, associated program changes are self-evident.

- * SUBROUTINE TO LOAD A BLOCK OF DATA INTO SCRATCHPAD,
- * FROM EXTERNAL MEMORY

FMTS

FSTM

- * R1 ADDRESSES START OF EXTERNAL MEMORY BUFFER
- * R2 ADDRESSES START OF SCRATCHPAD BUFFER.
- * R3 HOLDS BUFFER LENGTH

INP	. 1	INPUT NEXT EXTERNAL MEMORY BYTE
WRS	2	WRITE TO SCRATCHPAD
INR	1	INCREMENT SOURCE ADDRESS
INR	2	INCREMENT DESTINATION ADDRESS
DRJ	3, FMTS	DECREMENT BYTE COUNT, RETURN FOR MORE
RET		AT END, RETURN FROM SUBROUTINE

Before calling subroutine FMTS, registers R1, R2 and R3 must hold appropriate data. Observe that providing registers are used on a modular basis, as suggested earlier in this chapter, you will find that every subroutine does not have to be preceded with register loading instruction — registers will normally be correctly loaded.

- * SUBROUTINE TO STORE A BLOCK OF DATA FROM SCRATCHPAD,
- * INTO EXTERNAL MEMORY
- * R1 ADDRESSES START OF EXTERNAL MEMORY BUFFER

* R2 ADDRESSES START OF SCRATCHPAD BUFFER

R3 HOLDS BUFFER LENGTH

RDS	2	INPUT NEXT BYTE FROM SCRATCHPAD
OUT	1	WRITE TO EXTERNAL MEMORY
INR	1	INCREMENT SOURCE ADDRESS
INR	2	INCREMENT DESTINATION ADDRESS
DRJ	3, FSTM	DECREMENT BYTE COUNT, RETURN FOR MORE
RET		AT END, RETURN FROM SUBROUTINE

Subroutine FSTM simply moves data in the opposite direction to subroutine FMTS.

Subroutines FMTM and FMTL move data between two external memory data buffers. External memory data buffers can be more than 256 bytes long, in which case a slightly different end of buffer testing technique must be employed, as illustrated by subroutine FMTL.

- * SUBROUTINE TO MOVE DATA BETWEEN EXTERNAL MEMORY
- * BUFFERS THAT ARE 256 BYTES IN LENGTH, OR LESS
- * R3 HOLDS BUFFER LENGTH

FMTM

- * R4 HOLDS STARTING ADDRESS FOR SOURCE BUFFER
- * R5 HOLDS STARTING ADDRESS FOR DESTINATION BUFFER

IORE

- * SUBROUTINE TO MOVE DATA BETWEEN EXTERNAL MEMORY
- * BUFFERS THAT ARE MORE THAN 256 BYTES IN LENGTH
- * R3 HOLDS BUFFER LENGTH
- * R4 HOLDS STARTING ADDRESS FOR SOURCE BUFFER
- * R5 HOLDS STARTING ADDRESS FOR DESTINATION BUFFER

FMTL	INP	4	INPUT NEXT SOURCE BYTE
	OUT	5	OUTPUT TO DESTINATION
	INR	4 ·	INCREMENT BUFFER ADDRESS
		5 3, FMTL	DECREMENT COUNTER, RETURN FOR MORE
	JNZ	3	TEST PAGE. IF NOT ZERO CONTINUE
	RET	FMTL	RETURN AT END

SELF DEFINING DATA TABLES

There are message switching applications that must handle many tables of various sizes. A common technique assigns scratchpad memory locations to tables by table type. For example, an application may process raw ASCII text strings, ASCII digit strings, packed BCD data and pure binary data; each table type may have its own, reserved area of scratchpad memory.

Consider reserving the first two bytes of every table in external memory to define the table as follows:

First byte: Starting address in scratchpad for this table type. Second byte: Table length.

Subroutines DMTS and DSTM move self defining data from memory to scratchpad, and from scratchpad to memory.

- * SUBROUTINE TO LOAD A BLOCK OF SELF DEFINING DATA INTO
- * SCRATCHPAD, FROM EXTERNAL MEMORY
- * R0 ADDRESSES THE FIRST PARAMETER BYTE IN EXTERNAL MEMORY
- * RI IS TO HOLD THE SCRATCHPAD STARTING ADDRESS
- * R2 IS TO HOLD THE BYTE COUNT

DMTS LRN 1 INR 0	LOAD SCRATCHPAD STARTING ADDRESS INCREMENT EXTERNAL MEMORY ADDRESS
LOOP INB 0	INCREMENT EXTERNAL MEMORY ADDRESS
INP 0	INPUT NEXT EXTERNAL MEMORY BYTE
WRS 1	WRITE TO SCRATCHPAD
INR 1	INCREMENT SCRATCHPAD ADDRESS
DRJ 2, LOOP	DECREMENT BYTE COUNT, RETURN FOR MORE
RET	AT END, RETURN FROM SUBROUTINE
* SUBROUTINE TO STORE A	BLOCK OF SELF DEFINING DATA
* FRUIVI SCRATCHPAD, INTO	EXTERNAL MEMORY
* R0 ADDRESSES THE FIRS	ST PARAMETER BYTE IN EXTERNAL MEMORY
* R1 IS TO HOLD THE SCP	ATCHPAD STARTING ADDRESS
* R2 IS TO HOLD THE BY	LE COUNT
DSTM LRN 1	LOAD SCRATCHPAD STARTING ADDRESS
INR 0	INCREMENT EXTERNAL MEMORY ADDRESS
LRN 2	LOAD BYTE COUNT
LOOP INR 0	INCREMENT EXTERNAL MEMORY ADDRESS
RDS 1	READ NEXT SCRATCHPAD MEMORY BYTE
OUT 0	OUTPUT TO EXTERNAL MEMORY
INR 1	INCREMENT SCRATCHPAD ADDRESS
DRJ 2, LOOP	DECREMENT BYTE COUNT, RETURN FOR MORE
RET	AT END RETURN FROM SUBBOUTINE

TABLE LOOKUPS

A data buffer may in reality be a data table. A data table may consist of a sequence of single byte data items:

Or individual units of a data table may be two or more bytes long:

6-8

Table lookups are very easy to perform given the EA9002 instruction set.

At the most general level, begin by loading the table base address into one general

purpose register. Create the required table address by adding an index to the base address. In the following instruction sequence, the index is in the Accumulator, and the table consists of one byte data units:

*LOAD TABLE BASE ADDRESS INTO R1

LAI TPAG 'TPAG IS A SYMBOL REPRESENTING BASE ADDRESS PAGE

TABLE

INDEX

- CAP 1
- LRI 1, TADR TADR IS A SYMBOL REPRESENTING BASE ADDRESS WITHIN THE PAGE

(other instructions can follow here)

*ASSUMING TABLE INDEX IS IN THE ACCUMULATOR,

*CREATE TABLE ADDRESS IN RO

ADD 1 ADD INDEX TO BASE ADDRESS CAR 0 CPA 1 IF THERE IS A CARRY, INCREMENT JNC NOCAR THE PAGE IAC NOCAR CAP 0

*THE TABLE ADDRESS IS IN RO

Now suppose there are four bytes per data unit in the table. The index in the Accumulator must be multiplied by four before being added to the base address.

To multiply Accumulator contents by four, shift the Accumulator contents left two bit positions; however, that may lose the two high order bits. Therefore, save the two high order bits of the Accumulator for subsequent addition to the Page bits:

R1 contents:	Ρ	Ρ	Ρ	Ρ	Α	А	А	А	А	А	А	А	
Accumulator:	0	0	х	х	İx	x	х	x	х	х	0	0	
Table address:						S	um					_	

P, A and X represent any binary digits.

Here is the appropriate instruction sequence, assuming the table base address is already in R1:

- * ASSUMING TABLE INDEX IS IN THE ACCUMULATOR,
- * CREATE TABLE ADDRESS IN RO

RAL		ROTATE ACCUMULATOR CONTENTS LEFT
RAL		TWO BIT POSITIONS
CAR	0	SAVE IN BO

- * PAGE BITS OF INDEX ARE NOW IN BIT POSITIONS
- * 0 AND 1 OF R0, FOLLOWING THE TWO ROTATES
- * ISOLATE THESE TWO BITS IN THE ACCUMULATOR
- * BY ANDING WITH THE APPROPRIATE MASK

LAI	3	LOAD MASK INTO ACCUMULATOR
AND	0	ISOLATE PAGE BITS
CAP	0	SAVE IN PAGE BITS OF RO

- * ACCUMULATOR NOW CONTAINS THE SAME BITS 0 AND 1
- * AS RO. ACCUMULATOR CONTAINS 0 IN ALL OTHER
- * BITS. XOR ACCUMULATOR WITH RO. THIS
- * WILL CLEAR BITS 0 AND 1, WHILE COPYING
- * BITS 2 THROUGH 7, ISOLATING THE SHIFTED
- * ADDRESS BITS

XOR	0	
ADD	1	ADD TABLE BASE ADDRESS
CAR	0	SAVE IN RO
СРА	1	LOAD TABLE BASE PAGE TO ACCUMULATOR
CAR	2	SAVE IN R2
CPA	0	ADD SAVED HIGH ORDER ACCUMULATOR
ADD	2	INDEX BITS
CAP	0	TABLE ADDRESS IS IN RO

While the illustrated table lookups are general purpose, they are frequently more complex than they need be. **Providing you can keep table length below 256 bytes, origin tables at page boundaries.** Now the data bits of a general purpose register directly become the table index:

> General Purpose register: P P P P 0 0 0 0 0 0 0 0 0 Table base address Table lookup address: P P P P x x x x x x x x

P and X represent any binary digits.

Initializing a table base address now simply involves correctly setting the page bits:

LAI	TPAG	TPAG IS A SYMBOL REPRESENTING BASE
	•	ADDRESS PAGE
САР	1	R1 WILL BE USED TO ADDRESS THE TABLE

Assuming the index is in the Accumulator, one instruction creates the required table address:

CAR 1

Since the low order eight bits of the table base address are all 0, they do not need to be saved; thus R1 serves double duty as the register which holds the table base address and the required address.

DELAYS AND ONE-SHOTS

You can compute a time delay by executing instructions within a loop some fixed number of times. Consider this instruction sequence:

Cycles

1		LRI 0,TIME	LOAD TIME CONSTANT
1	LOOP	NOP	NO OPERATION
2		DRJ 0,LOOP	DECREMENT TIME CONSTANT, RETURN
			IF NOT END OF TIME LOOP

The length of the delay equals 3 * TIME + 2 cycles. Assuming a 2μ sec cycle time, the above program computes delays of 10 through 1540 μ sec, in 6 μ sec increments. Remember, TIME is an 8 bit value, with a maximum of 256_{10} ; the maximum value is achieved by loading 0 initially, since on first decrement it will go to FF. For longer delays you can include additional NOP instructions within the loop:

LRI 0,TIME LOAD TIME CONSTANT LOOP NOP NOP DRJ 0,LOOP DECREMENT TIME CONSTANT

For very long time constants you can loop within a loop:

	LRI	0,0	CLEAR RO
	LRI	1,TIME	SET TIME CONSTANT IN R1
LOOP	DRJ	0,LOOP	CREATE 1024 μ SEC DELAY BY DECREMENTING RO
	DRJ	1,LOOP	CREATE TIME 1024 μ SEC DELAYS

BCD DATA MANIPULATION

BCD data can be processed in four bit units by treating the low and high order four bits of every data byte as discrete data units:

7	6	5	4	3	2	1	0
-	Hie	ab	-	J		- W	_
	orc	ler		order			
	diç	git		digit			

BCD SHIFTS

Use of the RAR instruction in decimal mode allows multibyte BCD data to be shifted left or right in single digit increments.

A left shift may be illustrated as follows:

Assuming that R1 addresses the start of the BCD buffer and R2 holds the buffer byte count, here is the instruction sequence which performs the left shift:

	SED			SET DECIMAL MODE
	LRI	3	X 'F0'	LOAD HIGH ORDER DIGIT MASK
	LRI	4	Y '0F'	LOAD LOW ORDER DIGIT MASK
LOOP	INP		1 .	INPUT NEXT BYTE

AND	4	SAVE LOW ORDER DIGIT IN R5
CAR	5	
INR	1	INPUT NEXT BYTE
INP	1	
AND	3	ISOLATE HIGH ORDER DIGIT
IOR	5	ADD LOW ORDER DIGIT
RAR		SWITCH DIGITS
DCR	. 1	OUTPUT TO OVERSTORE PREVIOUS BYTE
OUT	1	
INR	1	
DRJ	2,LOOP	RETURN FOR MORE BYTES
SEB		SET BINARY MODE

A right shift may be illustrated as follows:

Assuming that R1 addresses the end of the BCD buffer and R2 holds the buffer byte count, here is the instruction sequence which performs the right shift:

	SED		SET DECIMAL MODE
	LRI	3 X 'F0'	Load high order digit mask
1.1	LRI	4 Y '0F'	LOAD LOW ORDER DIGIT MASK
LOOP	INP	1	INPUT NEXT BYTE
	AND	3	SAVE HIGH ORDER DIGIT IN R5
	CAR	5	
	DCR	1	INPUT NEXT BYTE
	INP	1	
	AND	4	ISOLATE LOW ORDER DIGIT
	IOR	5	ADD HIGH ORDER DIGIT
	RAR		SWITCH DIGITS
	INR	1	OUTPUT TO OVERSTORE PREVIOUS BYTE
	OUT	1	
	DCR	1	
	DRJ	2,LOOP	RETURN FOR MORE BYTES
	SEB		SET BINARY MODE

PACKING A BCD DATA STREAM

BCD digits, input as discrete 4-bit units, may be packed into bytes. This is what has to be done:

Assume that the four bit data is being input by an external device, via a 5-bit I/O port, as follows:

-Set to 1 to signify new data. Reset to 0 by CPU after reading data

This I/O port is addressed by R1. R0 addresses the beginning of the packed BCD buffer. Here is the appropriate instruction sequence:

	SED		SET DECIMAL MODE	
	LRI	2,X 10′	LOAD I/O CONTROL BIT MASK	
BACK	JSR	IN	LOAD FIRST BCD DIGIT	
	CAR	3	SAVE IN R3	
	JSR	IN	LOAD SECOND BCD DIGIT	
	RAR		MOVE TO HIGH ORDER FOUR BITS	
	IOR	3	ADD LOW ORDER FOUR BITS	
	OUT	0	OUTPUT PACKED BYTE	
	INR	0	INCREMENT PACKED DATA BUFFER ADDRESS	
	JUN	BACK		

*SUBROUTINE TO INPUT A BCD DIGIT FROM I/O PORT

* ADDRESSED BY R1

IN

INP	1	INPUT PORT CONTENTS
AND	2	ISOLATE CONTROL BIT
JZE	IN	IF 0, RETURN AND TEST AGAIN
INP	1	IF 1, LOAD DATA
CAP	2	CLEAR CONTROL BIT BY MOVING
CPA	2	LOW ORDER FOUR BITS TO AND FROM R2 PAGE
OUT	1	OUTPUT TO I/O PORT TO CLEAR CONTROL
RET		RETURN

The program illustrated has a flow — it forms an endless loop with no logic to exit. Let us look at some ways in which we could test for the end of data transmission. We could terminate the packed BCD data buffer on a page boundary. When the INR 0 instruction leaves zero in the data bits of R0, the end of transmission could be assumed. This is how our program changes:

IRJ 0, BACK INCREMENT PACKED DATA BUFFER ADDRESS

*Continue here if page boundary has been reached.

*This is the program exit.

The exit sequence illustrated above requires the program to call the end of data transmission. That is not always feasible. We can allow the external transmitting logic to identify the end of transmission by adding an extra control bit to the I/O port for this purpose:

Subroutine IN must be modified so that it tests for end of transmission. **The end of transmission bit will be returned in the carry status,** allowing the calling program to know whether or not transmission has ended. This is how subroutine IN must be modified:

IN	INP	1	INPUT PORT CONTENTS
	RAL		MOVE END OF TRANSMISSION BIT TO CARRY
	JCY	OUT	IF CARRY IS 1, TERMINATE
	RAL		MOVE NEW DATA BIT TO CARRY
	JNC	IN	IF 0, RETURN AND TEST AGAIN
	INP	1	IF 1, LOAD DATA
	CAP	2	CLEAR CONTROL BITS BY MOVING LOW
	CPA	2	ORDER FOUR BITS TO AND FROM R2 PAGE
	OUT	1	OUTPUT TO I/O PORT TO CLEAR CONTROL
	CLC		CLEAR CARRY FOR DATA RETURNED
OUT	RET		

The calling program now tests for end of transmission via the carry status:

BITS

CONDITION TESTING

We have already tested a condition bit in the previous example, when determining if an I/O port has new data, or transmission has ended.

Being able to test conditions and status is a very important aspect of many microcomputer applications. These are the conditions that you may wish to test:

- 1. A signal or status going from zero to one.
- 2. A signal or status going from one to zero.
- 3. A signal or status changing state.

An effective way of handling signals and status is to assign dedicated scratchpad memory locations as status storage buffers. You can store the status of eight signals or condition indicators per byte.

BIT ISOLATION

To isolate a single bit out of any status buffer, AND the buffer contents with a mask that contains 1 bit in the bit location or locations that must be saved and 0 bits elsewhere. Assuming that scratchpad byte 5 holds status information, the following instruction sequence isolates within the Accumulator bit 3 of scratchpad byte 5:

LRI	1, 5	ADDRESS SCRATCHPAD VIA R1
LRI	2, 8	LOAD MASK INTO R2
RDS	1	MOVE FLAGS TO ACCUMULATOR
AND	2	MASK OUT ALL BAR BIT 3

This is the mask in R2:

$$\underbrace{0000}_{0} \qquad \underbrace{1000}_{8}$$

This is the result of the AND:

x x x x y x x x in Accumulator 0 0 0 0 1 0 0 0 in R2 0 0 0 0 y 0 0 0 in Accumulator

BIT TESTING

Having isolated a single bit, you can use the JZE and JNZ instructions to determine subsequent program execution paths as a function of the isolated bit level.

RESETTING A BIT

In order to reset to 0 a single bit of any scratchpad byte, AND with a mask that contains 0 in all bit positions that must be reset and 1 elsewhere. For example, bit 2 of scratchpad byte 5 may be reset to 0 as follows:

LRI	1, 5	ADDRESS SCRATCHPAD VIA R1
LRI	2, X 'FB'	LOAD MASK INTO R2
RDS	1.	MOVE FLAGS TO ACCUMULATOR
AND	2	CLEAR BIT 2
WRS	1	RETURN RESULT

This is the mask in R2:

<u>1111</u>	1011
F	В.

This is the result of the AND

x x x x x x x x in Accumulator 1 1 1 1 1 0 1 1 in R2 x x x x x 0 x x in Accumulator

SETTING A BIT

In order to set to 1 a bit of any scratchpad byte, OR with a mask that contains 1 in all bit positions that must be unconditionally set to 1. The following instruction sequence unconditionally sets to 1 bits 5 and 1 of scratchpad byte 5:

LRI		1, 5	ADDRESS SCRATCHPAD VIA R1
LRI	2,	X '22'	LOAD MASK INTO R2
RDS		1	MOVE FLAGE INTO ACCUMULATOR
IOR		2	SET BITS 5 AND 1
WRS		1	RETURN RESULT

This is the mask in B2⁻

$$\frac{0010}{2}$$
 $\frac{0010}{2}$

This is the result of the OR:

BIT CONDITION CHANGE TEST

If you want to test flags for change of state, then you must reserve two scratchpad bytes for each set of eight flags; one byte holds the old values while the other byte holds the new values. Exclusive OR the old and new flag values in order to determine flags which may have changed.

Suppose scratchpad bytes 5 and 6 contain the old and new flags values, respectively; the following instruction sequence leaves 1 in Accumulator bits for flags that have changed state:

LRI	1, 5	ADDRESS SCRATCHPAD VIA R1
RDS	1	LOAD OLD FLAGS INTO ACCUMULATOR
CAR	2	SAVE IN R2
INR	1	INCREMENT SCRATCHPAD ADDRESS
RDS	1	LOAD NEW FLAGS INTO ACCUMULATOR
XOR	2	EXCLUSIVE OR WITH OLD FLAGS

Suppose "new flags" are 0100101 and "old flags" are 11100001. At the conclusion of the instruction sequence illustrated above, R2 contains 11100001; the Accumulator contains 10000100:

 new flags
 0
 1
 1
 0
 1
 0
 1
 in
 Accumulator

 old flags
 1
 1
 0
 0
 0
 1
 in
 R2

 XOR
 1
 0
 0
 0
 1
 on
 Accumulator

To determine whether changed statuses went from 0 to 1 or from 1 to 0, AND the change indicator with the old status values:

All boolean instructions "clear" the CPU "C and H" status flags. This makes it very easy for instruction sequences that modify flags to be followed by jump on condition instructions.

Thus program logic can be controlled by signal or condition bit level changes.

Chapter 7 INPUT/OUTPUT PROGRAMMING

EA9002 Input/Output Programming is very straightforward; it is described in this chapter as Programmed I/O or Interrupt I/O.

PROGRAMMED I/O

The EA9002 Microcomputer has no special I/O instructions. As illustrated in Figure 6-2, external logic which communicates with the CPU must decode the address lines and respond to the general input and output instructions. The Input, Output, Load Register Indirect and Store Register Indirect instructions all serve double purpose as input/output instructions—providing the specified external addresses are decoded to select external logic.

To illustrate programmed I/O, refer to Figures 6-1 and 6-2. The following instruction sequence will input an 8-bit value from the ADC:

LAI	X'FF'	SET I/O PAGE IN RO
САР	0	
CAR	0	SET ADC ADDRESS IN RO
LRN	1	INPUT ADC VALUE TO R

The following instruction sequence will output a series of five digits, assumed to reside in scratchpad bytes 20₁₆ through 24₁₆, to the display panel:

	LAI	X'FF'	SET I/O PAGE IN RO
	CAP	0	
	CAR	0	SET LOW PANEL ADDRESS IN RO
	LRI	I,X'20'	SET SCRATCHPAD ADDRESS IN R1
	LRI	2,5	SET COUNTER IN R2
LOOP	RDS	1	INPUT NEXT DISPLAY DIGIT FROM SCRATCHPAD
	OUT	0	OUTPUT TO DISPLAY PANEL
	INR	0	INCREMENT ADDRESSES
	INR	1	
	DRJ	2,LOOP	DECREMENT COUNTER, RETURN FOR MORE DIGITS

INTERRUPT I/O

As we stated at the beginning of Chapter 6, interrupts are used in microcomputer systems as a means of clocking slow, asynchronous events. In minicomputer and large computer applications, interrupts are also used as a means of sharing a central processing unit between a number of diverse applications with differing priorities. This use of interrupts within a microcomputer system

may be counterproductive; the overhead associated with such interrupt processing might cost more than implementing a multiple CPU system in which each potentially interrupting external source is assigned its own CPU.

A SINGLE INTERRUPT CONFIGURATION

Consider first a simple, one interrupt configuration. When this interrupt is acknowledged, current Program Counter contents are pushed onto the Stack and program execution branches to memory location 002.

If we are to assume that interrupts are constantly enabled, then we must also assume that the interrupt may occur at any time, with any register or status flag holding information which must be preserved. This being the case, **an instruction sequence beginning at memory location 002 must save the contents of all registers whose contents may be altered by the interrupt service routine; this will include Accumulator contents, status conditions and some, or all general purpose register contents.** This information may be saved in scratchpad memory, or in external RAM. In the program below, selected scratchpad memory bytes are reserved for this function; the first scratchpad byte is addressed by general purpose register R7. Here is the appropriate instruction sequence:

- * INTERRUPT SERVICE ROUTINE
- * INTERRUPT SERVICE PROGRAM INITIATION
- * SAVE STATUS AND ALL REGISTERS IN SCRATCHPAD
- * BYTES, BEGINNING WITH BYTE ADDRESSED BY R7
- * R7 IS RESERVED FOR INTERRUPT PROCESSING
- * IF R7 IS USED IN ANY OTHER WAY, INTERRUPTS MUST BE
- * INHIBITED, AND R7 CONTENTS MUST BE SAVED, THEN RESTORED

ORG	2	
WRS	7	SAVE ACCUMULATOR CONTENTS
INR	7	
CSA		MOVE STATUS FLAGS TO ACCUMULATOR
WRS	7	THEN SAVE IN SCRATCHPAD
INR	7	
CRA	6	SAVE R6
WRS	7.	
INR	7	
CRA	5	SAVE R5
WRS	7	
INR	7	
CRA	4	SAVE R4
WRS	7	
INR	7	
CRA	3	SAVE R3, PAGE AND DATA
WRS	7	BITS
INR	7	
CPA	3	
WRS	7	
INR	7	
CRA	2	REPEAT FOR R2
WRS	7	

INR	7	
CPA	2	
WRS	7	
INR	7	
CRA	1	REPEAT FOR R1
WRS	7	
INR	7	
CPA	1	
WRS	7	
INR	7	
CRA	0	REPEAT FOR RO
WRS	7	
INR	7	
CPA	0	
WRS	7	

* INTERRUPT SERVICE PROGRAM FOLLOWS

Observe that since the page bits of registers R4, R5, R6 and R7 cannot be read into the Accumulator, they cannot be saved across an interrupt. Therefore, if the page bits of registers R4, R5, R6 or R7 contain meaningful data, do not increment or decrement these registers' contents following an interrupt; if you do, you may alter the page bits' contents.

Once the interrupt service program has completed execution, registers, status and Accumulator contents must be restored in the reverse order from which they were saved. Here is the completely general restoration instruction sequence:

* POST INTERRUPT REGISTERS AND STATUS RESTORATION

RDS	7	RESTORE RO, PAGE AND DATA BITS
DCR	7	
CAP	0	
RDS	7	
DCR	7	
CAR	0	
RDS	7	REPEAT FOR R1
DCR	7	
CAP	1	
RDS	7	
DCR	7	
CAR	1	
RDS	- 7	REPEAT FOR R2
DCR	7	
CAP	2	
RDS	7	
DCR	7	
CAR	2	
RDS	· 7	REPEAT FOR R3
DCR	7	
CAP	3	
RDS	7	

DCR	. 7	
CAR	3	
RDS	7	RESTORE R4 DATA BITS
DCR	7	
CAR	. 4	
RDS	7	REPEAT FOR R5
DCR	7	
CAR	5	
RDS	7	REPEAT FOR R6
DCR	7	
CAR	6	

* READ STATUS. ASSUME CARRY AND DECIMAL

* MODES HAVE BEEN MODIFIED, THEREFORE MUST

* BE RESTORED.

ENI

NOP

NOP

DSI

	RDS	. 7	LOAD STATUSES
	DCR	7	
	SED		SET DECIMAL MODE
	RLC		GET PREVIOUS DECIMAL MODE FLAG
	RLC		
	JCY	DEC	
	SEB		IF NOT SET, SET BINARY MODE
DEC	RRC		SHIFT PREVIOUS CARRY INTO CARRY
	RDS	7	RESTORE ACCUMULATOR
	ENI		ENABLE INTERRUPTS
	RET		RETURN

Another approach to interrupt handling is to keep interrupts disabled during the execution of program modules that use general purpose registers, status

and the Accumulator. At the conclusion of every such module, and before executing the next module, interrupts are enabled for a short window which may consist of nothing more than two no operation instructions:

> ENABLE INTERRUPTS INTERRUPT ACKNOWLEDGE WINDOW DISABLE INTERRUPTS

With just a little caution you can insure that interrupt enable windows are spaced not more than a few milliseconds apart — which identifies the maximum period for which an interrupt request could be denied and external logic could be kept waiting.

If the use of interrupt windows is acceptable, then the interrupt service and restoration routines disappear. Since there is nothing to save, there is no initial housekeeping instruction sequence; the actual interrupt service routine can begin at memory location

002. Since nothing has to be restored, the interrupt service routine can terminate with a simple RET instruction. The interrupt service routine now looks like this:

ORG 002

* START INTERRUPT SERVICE PROGRAM

* END INTERRUPT SERVICE PROGRAM ENI ENABLE INTERRUPTS RET RETURN FROM INTERRUPT

DELAY LOOPS

Frequently in microcomputer applications, real time events occur too slowly to keep the microcomputer completely busy. When idle, such applications usually will execute a simple delay loop as follows: INTERRUPTING OUT OF DELAY LOOPS

* DELAY LOOP EXECUTED WHILE MICROCOMPUTER IS IDLE

DELAY JUN DELAY

The period during which the delay loop is being executed is an ideal time for interrupts to be enabled; in fact, acknowledgment of an interrupt is the only way in which program execution can leave the delay loop.

A microcomputer application that uses the delay loop may be illustrated by an enhancement of the configuration illustrated in Figure 6-2.

Consider a dozen or more ADC's being monitored by a single EA9002 CPU.

It is conceivable that a number of seconds may elapse between any ADC receiving data to transmit to the CPU. Thus the CPU spends the bulk of its time executing the delay loop illustrated above.

When an ADC does have a new reading to transmit to the CPU, it will request an interrupt. The NAND gate daisy chain described in Chapter 4 can be used to interface a number of interrupt requesting ADC's to the CPU. Now all programs executing outside the delay loop are interrupt service routines. In other words, all non-trivial program execution is confined to interrupt service routines; and at the conclusion of every interrupt service routine, program execution will return to the delay loop. The program execution sequence which results may be illustrated as follows:

The actual program which services each interrupt will be structured as follows:

ORG

2

*ALL INTERRUPT SERVICE ROUTINES START HERE *LOCATE SOURCE OF INTERRUPT

*BRANCH TO PROGRAM THAT SERVICES IDENTIFIED *INTERRUPTING SOURCE

***EXECUTE INTERRUPT SERVICE PROGRAM**

*ALL INTERRUPT SERVICE PROGRAMS END WITH *THE FOLLOWING TWO INSTRUCTIONS

ENI	ENABLE INTERRUPTS
RET	RETURN FROM INTERRUPT

I/O POLLING AS A SUBSTITUTE FOR INTERRUPTS

When a microcomputer program consists of a no operation loop with interrupt exits, as we have just described, an alternative is to execute a polling program instead of the no operation loop. Interrupts are eliminated.

Consider again numerous ADC's and panel displays being serviced by a single EA9002 CPU. Now the microprocessor will spend the bulk of its time executing a program which tests each ADC in turn, until it locates one that is ready to transmit data. At that time a branch will occur to the instruction sequence supporting the particular ADC requesting service. Once this ADC has been serviced, program execution returns to the polling routine. This sequence may be illustrated as follows:

Let us assume that there are 16 ADC's, with addresses FEO₁₆ through FEF₁₆. Each ADC specifies that it has data to send by storing a nonzero value in its addressed buffer. The CPU clears this buffer after reading its contents.

Here is the necessary polling program which substitutes for a no operation sequence followed by an interrupt exit. Real memory addresses have been arbitrarily selected since they make the sample program easier to follow.

- * PROGRAM INITIALIZATION
- * R1 WILL ADDRESS ADC's
- * R2 WILL ADDRESS BRANCH TABLE

* SET UP PAGE PORTION OF EACH ADDRESS

	I AGE I C		EXEL XEBRESS
START	LAI	X'0F'	POLL PAGE IS F
	CAP	1	
	LAI	04	BRANCH TABLE PAGE IS 4
	CAP	2	
POLL	LRI	1,X'E0'	INITIALIZE POLL ADDRESS
	LRI	2,X'80'	INITIALIZE BRANCH TABLE BASE ADDRESS
LOOP	INP	1	INPUT CONTENTS OF NEXT ADC BUFFER
	JNZ	BRANCH	IF A NON ZERO VALUE IS INPUT, BRANCH OUT
	INR	1	INCREMENT POLL ADDRESS
	INR	2	DOUBLE INCREMENT BRANCH TABLE ADDRESS
	INR	2	
	LAI	X'F0'	COMPARE POLL ADDRESS FOR END OF LOOP
	CMP	1	
	JNE	LOOP	NOT END OF 16 DEVICES LOOP
	JUN	POLL	END OF 16 DEVICES LOOP
* A NON	ZERO VA	LUE HAS	BEEN INPUT. THE DEVICE
* CAN BE	E IDENTIFI	ED BY TH	E CURRENT BRANCH
* TABLE	ADDRESS	POINTER	LOAD THE
* APPRO	PRIATE BF	RANCH TA	BLE ADDRESS, PAGE AND
* ADDRE	SS WITHIN	N PAGE, II	NTO RO
RRANCH	IIN	2	ILIMP INTO BRANCH TABLE

ORG X'480'

* BRANCH TABLE IS ORIGINED AT 48016.

JUN	ADDR1	16 UNCONDITIONAL JUMPS
JUN	ADDR2	TO 16 SERVICE ROUTINES
JUN	ADDR3	THESE JUMP INSTRUCTIONS
JUN	ADDR4	CONSTITUTE A BRANCH TABLE
JUN	ADDR5	
etc		

ORG ADDR1

* FIRST SERVICE PROGRAM

JUN START END OF FIRST SERVICE PROGRAM ORG ADDR2

* SECOND SERVICE PROGRAM

UN START END OF SECOND SERVICE PROGRAM

There are two parts to the polling program illustrated above; there is the detection of an external device requesting service and there is the branch table which follows.

The branch table requires special mention since it is a very common microcomputer feature, with universal application. The purpose of a branch table is to

allow logic to select one of many execution paths based on a sensed status, which in this case happens to be an ADC device number. The logic of a branch table may be illustrated by the following completely general instruction sequence:

ORG BTBL

- * THIS BRANCH TABLE CONSISTS OF A NUMBER OF
- * ADDRESSES. THE SYMBOL BTBL REPRESENTS
- * THE MEMORY ADDRESS OF THE FIRST BRANCH TABLE BYTE
- * EACH ADDRESS OCCUPIES TWO BYTES. THE
- * FIRST BYTE SPECIFIES A PAGE. THE SECOND
- * BYTE SPECIFIES AN ADDRESS WITHIN THE PAGE.

DC	ADDR1
DC	ADDR2

DC ADDR3

ETC

ORG PROG

- * THE BRANCH TABLE PROGRAM ITSELF FOLLOWS.
- * ASSUME THAT THE BRANCH TABLE PROGRAM IS ENTERED
- * WITH A NUMBER IN THE ACCUMULATOR. THIS
- * NUMBER SPECIFIES THE ADDRESS WITHIN THE
- * BRANCH TABLE TO WHICH A JUMP MUST
- * OCCUR. FOR EXAMPLE, 3 MEANS THAT
- * A JUMP TO ADDR3 MUST OCCUR.
- * SINCE EACH BRANCH TABLE ADDRESS OCCUPIES
- * TWO BYTES, MULTIPLY THE ACCUMULATOR CONTENTS
- * BY 2. ASSUME THAT THE ACCUMULATOR
- * CONTAINS 7F OR LESS.

RAL

* CREATE THE BRANCH TABLE ADDRESS IN R1.

	CAR	R1	MOVE ADDRESS INDEX TO R1
	LAI	BTAD	LOAD ADDRESS PORTION OF BTBL
	ADD	1	ADD INDEX, CURRENTLY IN R1
	CAR	1	RETURN SUM TO R1
	LAI	BTPG	LOAD PAGE PORTION OF BTBL
	JNC	NEXT.	INCREMENT IF CARRY IS SET
	IAC		
NEXT	CAP	1	MOVE TO PAGE BITS OF R1
	INP	1	LOAD ADDRESS INTO RO
	CAP	0	
	INR	1	
	INP	1	
	CAR	0	·
	JIN	0	JUMP TO SELECTED ADDRESS

Chapter 8 SOME USEFUL SUBROUTINES

This chapter provides a number of frequently used subroutines and instruction sequences.

MATHEMATICAL SUBROUTINES

ADDITION AND SUBTRACTION

Binary or decimal addition and subtraction can use the same subroutines, providing initial conditions are met.

For binary addition or subtraction, the input data must be in pure binary form, signed or unsigned. The binary/decimal flag must be set to binary mode.

For decimal addition or subtraction, the input data must be in BCD form. The binary/decimal flag must be set to decimal mode.

Below are multibyte addition and subtraction subroutines.

- * BINARY OR DECIMAL MULTIBYTE SCRATCHPAD ADDITION.
- * R1 ADDRESSES LOW AUGEND BYTE
- * R2 ADDRESSES LOW ADDEND BYTE
- * R3 ADDRESSES LOW ANSWER BYTE
- * R4 HOLDS BYTE COUNT

CLC

RET

add Loop CLEAR CARRY

- RDS 1 LOAD NEXT AUGEND BYTE ADS 2 ADD NEXT ADDEND BYTE
- WRS 3 STORE ANSWER

 - INR 1 INCREMENT ADDRESSES
 - INR 2
 - INR 3 DRJ 4.LOC
 - 4,LOOP DECREMENT BYTE COUNT, RETURN FOR MORE AT END. RETURN FROM SUBROUTINE
- * BINARY OR DECIMAL MULTIBYTE SCRATCHPAD SUBTRACTION
- * R1 ADDRESSES LOW SUBTRAHEND BYTE
- * R2 ADDRESSES LOW MINUEND BYTE
- * R3 ADDRESSES LOW ANSWER BYTE
- * R4 HOLDS BYTE COUNT

SUB	CLC		CLEAR CARRY
LOOP	RDS	1	LOAD NEXT SUBTRAHEND BYTE
	SUS	2	SUBTRACT NEXT MINUEND BYTE
	WRS	3	STORE ANSWER
	INR	1	INCREMENT ADDRESSES

INR	2				1.		
INR	3						
DRJ	4,LOOP	DECREM	ENT BY	TE COUN	T, RETUR	IN FOR I	MORE
RET		AT END,	RETUR	N FROM S	SUBROUT	INE	

Note that subroutines ADD and SUB can return the answer to either of the source buffers. Simply eliminate R3, and modify the "WRS 3" instruction appropriately to "WRS 2" or "WRS 1" Of course, the "INR 3" instruction is also eliminated.

BINARY MULTIPLICATION

Any multiplication can be implemented by repeated addition; for example, $25 \times 31 = 775$ can be created by adding 25 thirty-one times to a buffer which initially holds zero. But you would never use this simple scheme to perform binary multiplication, it takes too long to execute.

Remember, binary digits can have a value of 0 or 1. At the digit level, therefore, multiplication degenerates to addition, since "multiply by 1" is the same as "add". This makes a "shift-and-add" algorithm work for binary multiplication.

Consider B5 * 6D, the binary representation may be illustrated thus:

Multip	olier	=	0	1	1	0	1	1	0	1								
Multip	olicand	=	1	0	1	1	0	1	0	1								
										R	ESU	ιт						
						н	сн	OBI			200		L	ΩV	N I) BL	NE R	
							R\	TE							BV	TE		
	Start				0	0 0	0	0	ი ი	0		Ο		0	0	0.0	0	0
01101101	Sten 1 (a)				1	0 1	1	0	1 0	1		0	0	ñ	0	00) 0	n n
00	1 (b)				0	1 0	1	11	n ĭ	0		1	Ň	Ň	ñ.	00	0	Ň
01101101	Sten 2 (a h)				õ	0 1	0	1	10	1		ó	1	õ	ñ	00	0	0
01101101	Step 3 (a)				1	0 1	1	0	1 0	1		č		Č	Ŭ			Ŭ
	otop o tai				1	1 1	0	0	$\frac{1}{2}$	0		0	4	0	0	0 0	0	0
	3 (b)				ò	1 1	1	0	ົ່ດ	1		0	'n	1	0	00	0	0
01101101	Step 4 (a)				1	0 1	1	0	10	1			Ŭ	,	Č		, ,	0
			c→1		0	0 1	0	0	1 1	0		0	0	1	0	0 0	0	0
	4 (b)				1	o c) 1	ŏ	0 1	1		0	0	0.	1	n n	0	0
01101101	Step 5 (a b)				ó	1 0	0	.1 (0.0	1.		-1	õ	õ	ò	1 (0	0
01101101	Step 6 (a)				1	0 1	1	0	10	1			Č	Č	Č	•.		Ö
	0100 0 107				1	1 1	1	1	1 1	Ö		1	0	0	٥	1.0	0	0
	6 (b)				0	1 1	1	1	1 1	1		0	1	õ	õ	0	0	i ñ
01101101	Step 7 (a)				1	0 1	1	0	10	1		0	4	č	Ŭ,	0	, v	0
	0100		c→1		ō	0 1	1	0	1 0	0		0	1	0	0	0	0	0
	7 (b)				1	0 0) 1	1	 	0		0	0	1	0	00) 1	Ő
01101101	Step 8 (a b)				0	1 (0	1	1 0	1		0	0	0	1	00	0	1
	0.00 0 10.07				~	~	~	-	~	~		Ľ	Ň	~	-	-	~	-

This algorithm has eight steps, one for each bit of the multiplier and multiplicand.

Each step has two parts. Part (a) tests the status of the next multiplier bit; part (b) adds the multiplicand to the result if part (a) locates a 1 bit.

If part (b) is needed, the multiplicand must be added to the correct eight bits of the 16 bit result. The high order eight bits of the result space is always assumed to constitute a "window" on the required eight bits; for this to be the case, the high order eight bits must initially contain the low order eight answer bits:

	H.O. Byte			L	0,	Βy	te		
	76543210	7	6	5	4	3	2	1	0
Answer bits:	76543210	15	14	13	12	11	10	9 (8

After each step, Part (a), the answer 16 bits must be rotated right one bit.

For example, we enter Step 2 as follows:

	H.O. Byte	L.O. Byte
	76543210	76543210
Answer bits:	87654321	0 15 14 13 12 11 10 9

After eight shifts, we will have the correct final bit configuration for the answer:

	H.O. Byte							L.O. Byte		
	76443		3	2	1	0	76543210			
Answer bits:		15	14	13	11	2 1	1 10	9	8	76543210

Now consider a program to implement this 8-bit multiplication algorithm.

Assume that Registers R4 and R5 hold the 8-bit multiplier and multiplicand, respectively. The 16-bit result will be stored in the data bits of registers R7 (high order) and R6 (low order).

The algorithm clears R7 and R6, and assumes that the 8 data bits of R7 act as the "window" on the 16-bit answer. Initially, therefore, R7 holds the low order 8 bits.

With each step of the multiplication, the next low order multiplier bit is tested, these are the shaded bits in the leftmost column of numbers illustrated above. If the tested bit is 1, then the multiplicand is added to R7.

Whether or not the multiplicand is added to R7, the contents of R7 and R6 data bits are rotated right one bit, as a 16 bit unit. Thus after 8 shifts for the eight binary digits of the source numbers, R7 becomes the high order 8 bits and R6 holds the low order 8 bits.

* 8 BIT MULTIPLICATION PROGRAM USING FIVE REGISTERS

MUL 4	LRI	7,0	CLEAR GENERAL PURPOSE REGISTERS.
	LRI	6,0	R7 AND R6 TO HOLD THE ANSWER.
	LAI	7	LOAD BIT COUNT INTO ACCUMULATOR.
LOOP	ХСН	4	SHIFT LOW ORDER BIT OF R4 INTO CARRY
	RRC		TO TEST ITS STATUS.
	XCH	4	
	XCH	7	IF BIT IS 1, ADD R5 TO R7
	JNC	NOAD	IF BIT IS 0, BYPASS ADDITION
	CLC		
	ADD	5	· · ·
	JNC	NOAD	IF THERE IS A CARRY, INCREMENT R6
	INR	6	
NOAD	CLC		ROTATE ACCUMULATOR - R6 16-BIT UNIT

	RI XI XI RI	RC CH CH RC	7 6	RIGHT ONE BIT. FIRST CLEAR CARRY THEN ROTATE ACCUMULATOR RIGHT ONE BIT NOW MOVE R6 TO ACCUMULATOR AND ROTATE RIGHT WITH CARRY.
	IX IL IX		6 NOST 7	IF CARRY IS NOT SET, THIS STEP IS FINISHED IF CARRY IS SET, SET BIT 7 OF R7 TO 1
	RI XI	LC EC RC CH	7	
NOST	D, JN RI	AC NZ ET	LOOP	DECREMENT BIT COUNTER IN ACCUMULATOR CONTINUE IF NOT END RETURN AT END.
* 8 BIT MUL 5	MULT LRI LRI	TPLICA 7, 0 6, 0	TION F CLE R7 A	PROGRAM USING FIVE REGISTERS AR GENERAL PURPOSE REGISTERS AND R6 TO HOLD THE ANSWER
LOOP	LAI CAR AND JZE CRA	1 3 4 NOAE 5	LOA SAV TES DIF BI BIT	ID BIT MASK INTO ACCUMULATOR 'E IN R3 T NEXT R4 BIT IT IS 0, BYPASS ADDITION IS 1, SO ADD R5 TO R7
	ADD CAR JNC	7 7 NOAE) IF TI	HERE IS A CARRY, INCREMENT R6
NOAD	RRC CRA RRC CAR CRA RRC CAR	6 6 7 7	MOY ROT A 10	VE THE LOW ORDER ACCUMULATOR BIT INTO CARRY ATE R7-R6 RIGHT ONE BIT AS 8 BIT UNIT
	CRA RAL	3	SHIF	T BIT MASK LEFT ONE BIT
	JINC RET	LUUP	IF C.	ARRY IS NOT SET, CONTINUE TO NEXT BIT ARRY IS SET, END.

Two multiplication subroutines are illustrated.

The first multiplication subroutine is longer, but it uses only four **registers.** To do this, the bit counter is held in the Accumulator; XCH instructions save the counter whenever the Accumulator must operate on data.

The second multiplication subroutine uses R3 to hold a bit mask, in lieu of a bit counter. The mask initially identifies the low order bit:

0000001

on the eighth rotate right, the 1 will shift into the carry, triggering an exit from the subroutine. This second subroutine is five instructions shorter, but it uses an additional general purpose register.

BINARY DIVISION

When dealing with small numbers, simple binary division is most effectively implemented using multiple subtractions. Continuously subtract the divisor from the dividend until a negative answer is detected.

Add the divisor to the negative answer in order to determine the remainder.

The answer is equal to the number of subtractions performed, less one, before a negative result was generated.

DATA HANDLING PROGRAMS

Programs in this category convert data from one coded form to another. Recall that data may be interpreted as binary, BCD, or ASCII.

Binary and BCD data represent numeric information; therefore, only the numeric subset of ASCII characters is relevant when making binary-ASCII or BCD-ASCII conversions.

HEXADECIMAL — ASCII CONVERSION

The following subroutine converts a hexadecimal digit into its ASCII equivalent, using a table lookup.

JIINE	10 00	NVERT HEXADECIMAL TO ASCII
ENTEF	r with	HEXADECIMAL VALUE IN REGISTER 5
EXIT \	NITH A	SCII CHARACTER IN ACCUMULATOR
LAI	TBPG	GET PAGE VALUE OF CONVERSION TABLE
CAP	5	SET PAGE
LAI	TBAD	GET WORD ADDRESS OF TABLE START
ADD	5	ADD CHARACTER VALUE (TABLE DOES NOT OVERLAP PAGE
		BOUNDARY)
CAR	5	SET ADDRESS
INP	5	GET ASCII CHARACTER
RET		RETURN FROM SUBROUTINE
DC	·0·	
DC	<u>'1'</u>	
DC	ʻ2'	
DC	'3'	
DC	'4'	
DC	'5 <i>'</i>	
DC	'6'	
DC	'7'	
DC	'8'	
DC	<i>'</i> 9′	
DC	Ά'	
DC	'B'	
DC	'C'	
DC	Ό	
DC	Έ'	
DC	'F'	
END		
	INNE ENTEF EXIT LAI CAP LAI ADD CAR INP RET DC DC DC DC DC DC DC DC DC DC DC DC DC	INNE FO CON ENTER WITH EXIT WITH A LAI TBPG CAP 5 LAI TBAD ADD 5 CAR 5 INP 5 RET DC '0' DC '1' DC '2' DC '3' DC '4' DC '5' DC '6' DC '7' DC '8' DC '7' DC '8' DC '7' DC '7' DC '8' DC '7' DC '7' DC '8' DC '7' DC '7' DC '7' DC '8' DC '7' DC '7'

Next, a subroutine is given to convert ASCII digits 0-9 and A-F to hexadecimal equivalents.

- * ROUTINE TO CONVERT ASCII 0-9 AND A-F TO HEXADECIMAL EQUIVALENT
- * ENTER WITH CHARACTER IN ACCUMULATOR
- * EXIT WITH VALUE IN ACCUMULATOR
- * NON-HEXADECIMAL CHARACTER CAUSE JUMP TO ERR

AHEX	LRI	6,X′7F′	LOAD MASK FOR PARITY BIT
	AND	6	MASK OFF PARITY AND CLEAR CARRY
	LRI	6,X'30'	LOAD ASCII ZERO IN R6
	SUB	6	IS CHARACTER < 0
	JLT	ERR	YES, ERROR
	LRI	6,9	TEST FOR 9
	CMP	6	IS IT 0-9?
	JLE	GOOD	YES, GOOD NUMBER
	LRI	6,X'11'	NO, LOAD DIFFERENCE BETWEEN
	SUB	6	ASCILA AND 0 AND SUBTRACT
	JLT	ERR	ERROR IF BETWEEN 9 AND A
	LRI	6,5	TEST FOR A-F
	CMP	6	IS IT > F
	JGT	ERR	YES, ERROR
	CLC		CLEAR CARRY
•	ADD	6	
	ADD	6	NO, ADD 10
GOOD	RET		RETURN FROM SUBROUTINE
ERR	EQU	*	

BINARY — BCD CONVERSIONS

Two programs are described for converting binary data to its BCD equivalent.

The first program takes eight data bits of a general purpose register, illustrated in the first program as R4 and creates three decimal digits in two general purpose registers, illustrated as R4 and R5. The conversion technique is based on the fact that each binary digit within an 8 bit unit has a decimal representation, as follows:

The first program tests each individual binary digit position of the initial binary value. Upon detecting a 1 in any binary bit position, the decimal equivalent is added to R4, the BCD low order decimal digits space — which must initially be cleared. Recall that BCD addition is easy to do, since the EA9002 has decimal addition logic. The most significant decimal digit is created by incrementing R5 whenever decimal addition to R4 creates a carry.

The eight decimal equivalents for each binary digit position are stored in eight contiguous scratch-pad bytes. Because the high order binary digit is equivalent to 128 decimal, C8₁₆ is stored. When this value is added to zero, the EA9002 automatically corrects the "C" to a "2" and generates a Carry. The result is 28 in the low order register, and a carry. The carry is detected and causes the high order register to be incremented by 1.

Here are two examples of how the first program's logic works:

Here is the program:

- * CONVERT THE BINARY CONTENTS OF REGISTER 4 TO THREE BCD DIGITS.
- * STORE THE LEAST SIGNIFICANT TWO DIGITS IN REGISTER 4 AND THE MOST
- * SIGNIFICANT DIGIT IN BITS 0-3 OF REGISTER 5. SCRATCH MEMORY
- * LOCATIONS 1-8 CONTAIN THE FOLLOWING HEX VALUES, RESPECTIVELY:

* 01, 0	2, 04, 08,	16, 32, 64,	C8
BBCD	LRI	7,8	SET BIT COUNTER AND CONSTANT TABLE POINTER
	CLA		ZERO ACCUMULATOR
	CAR	5	ZERO REGISTER 5
	XCH	4	ZERO REGISTER 4, LOAD BINARY VALUE
	SED		SET DECIMAL MODE
CON1	RAL		TEST NEXT BIT
	JNC	CONB	NOT SET, GO DECREMENT BIT COUNTER
	XCH	4	SET, EXCHANGE FOR RUNNING BCD VALUE
	ADS	7	ADD CONSTANT CORRESPONDING TO THIS BIT

JNC	CON2	IF NO CARRY, GO ON
INR	5	CARRY, INCREMENT MOST SIGNIFICANT DIGIT
XCH	4	EXCHANGE BCD VALUE FOR SHIFTED BINARY
DRJ	7,CON1	DECREMENT BIT COUNTER, NOT DONE GO DO NEXT
		BIT
SEB		RESTORE BINARY MODE
RET		RETURN FROM SUBROUTINE
	JNC INR XCH DRJ SEB RET	JNC CON2 INR 5 XCH 4 DRJ 7,CON1 SEB RET

The next program converts sixteen binary digits into five BCD digits.

 \ast CONVERT THE BINARY CONTENTS OF TWO CONSECUTIVE MEMORY LOCATIONS TO

- * FIVE BCD DIGITS AND STORE IN THREE CONSECUTIVE MEMORY LOCATIONS.
- * THE BINARY DATA IS STORED WITH THE LEAST SIGNIFICANT HALF AT THE
- * LOWER ADDRESS. THE BCD DATA IS STORED WITH THE LEAST SIGNIFICANT
- * DIGIT IN THE LOWER HALF OF THE BYTE AT THE LOWEST ADDRESS, AND
- * THE MOST SIGNIFICANT DIGIT IN THE LOWER HALF OF THE BYTE AT THE
- * HIGHEST ADDRESS. THE BCD RESULT MAY OVERLAP THE ORIGINAL BINARY
- * DATA.

	LADR	7,BNRY	LOAD ADDRESS OF BINARY L.S. BYTE
	INP	7	READ IT
	CAR	2	SAVE IN R2
	INR	7	INCREMENT ADDRESS
	INP	7	READ M.S. BYTE
	CAR	7 .	SAVE IN R7
	CLA		ZERO ACCUMULATOR
	CAR	4	ZERO
	CAR	5	INITIAL
	CAR	6	BCD DIGITS
	LADR	3,CNVTB	LOAD ADDRESS OF CONVERSION TABLE
	CRA	2	GET L.S. BYTE
	SED		SET DECIMAL MODE
CNVT4	LRI	1,8,	SET BIT COUNTER
CNVT5	RRC		GET NEXT BIT
	JNC	CNVT7	IF NOT SET, GO ON
*			SET, GET CORRESPONDING POWER OF 2 AND ADD
*			TO RUNNING BCD VALUE
	CAR	2	SAVE BINARY
	INP	3	GET DIGITS 1 AND 2
	ADD	4	ADD RUNNING DIGITS 1 AND 2
	CAR	4	SAVE
	INR	3	NEXT BYTE
	INP	3	GET DIGITS 3 AND 4
	ADD .	5	ADD RUNNING DIGITS AND 4
	CAR	5	SAVE
	INR	3 .	NEXT BYTE
	INP	3	GET DIGIT 5
	ADD	6	ADD RUNNING DIGIT 5
	CAR	6	SAVE

	CRA	2	RESTORE BINARY
CNVT6	INR	3	NEXT BYTE
	DRJ	1,CNVT5	DECREMENT BIT COUNTER, NOT DONE GO DO NEXT BIT
	CLA		DONE, TEST FOR COMPLETION OF BOTH HALVES
	ХСН	7	ZERO R7 AND GET PREVIOUS VALUE
	JNZ	CNVT4	NOT DONE. DO SECOND HALF
	LADR	0,BCDVA	L
			LOAD ADDRESS WHERE RESULT IS TO BE STORED
	SRN	4	STORE DIGITS 1 AND 2
	INR	0	NEXT BYTE
	SRN	5	STORE DIGITS 3 AND 4
	INR	0	NEXT BYTE
	SRN	6	STORE DIGIT 6
*	(FALL T	(HROUGH)	
CNVT7	INR	3	SKIP 2 CONVERSION TABLE BYTES
	INR	3	
	JUN	CNVT6	RE-ENTER MAIN LINE
BNRY	EQU	450	
BCDVAL	EQU	460	
CNVTB *	EQU	470	
*			

Appendix A

AN INSTRUCTION SET SUMMARY

Appendix A

AN INSTRUCTION SET SUMMARY

EA9002 instructions are summarized by instruction type, for quick reference once you are familiar with the EA9002 instruction set.

Within this appendix, symbols and abbreviations are used as follows:

A	- Accumulator stated
AC	- Accumulator
ACL	- Low order four Accumulator bits
С	- Carry status
D	- Decimal status
GDN	- Data bits of general purpose register N
GPN	- Page bits of general purpose register N
GRN	- All twelve bits of general purpose register N
Н	- Half carry status
11	- First, or only byte of instruction object code
12	- Second byte of instruction object code
IL .	- Low order four bits of first, or only object code byte
MGRN	- External memory byte addressed by all twelve bits of GRN
PC	- Program counter
SW	- Status word
SGDN	- Scratchpad byte addressed by low order six bits of GDN
[]	- Contents location enclosed by brackets
	- Move data in indicated direction
+	- Exchange data
+	Add
-	Subtract
$\mathbf{A}^{\mathbf{a}}$	AND
	OR
\mathbf{A}	XDR
Under s	tatus flag columns only:
Х	- specifies the status is set or reset to reflect the results of instruction exec- tion
1	- the flag is unconditionally set to 1

- 0 the flag is unconditionally set to 0
- A blank space implies that the flag is not modified in any way.
- For the operand field, these abbreviations are used:
- DATA An 8-bit, binary data value
- LABEL A 17-bit address

N - A digit in the range 0 through 7, specifying a register number

Object code is normally identified in hexadecimal digits; if binary digit options need to be defined at the binary digit level, then object code is identified using binary digits. These special symbols are used:

- P Variable hexadecimal digit representing the page of an address
- QQ Two variable hexadecimal digits representing the low order eight bits of as memory address
- X Variable binary digit
- ZZ Two variable hexadecimal data digits

			OBJECT	MPU CYCLE	6	STAT	USE	s	
	MNEMONIC	OPERAND(S)	CODE	(NOTE 1)	с	D	Ą	н	OPERATIONS PERFORMED
RY	INP	N	01010XXX				X		[AC]←[MGRN]
E MO	LRN	N	11100XXX						[GDN]—[MGRO]
I/O OI ARY M EFEREI	OUT	N	01011XXX						Load Register, Register O indirect [MGRN]—[AC]
PRIM. R	SRN	N .	11101XXX						[MGR0]—[GDN] Store Register, Register O indirect
RY HPAD NCE	RDS	N	11010XXX				х		[AC][SGDN]
ATCI ATCI FERE	WRS	N	11011XXX		-				[SGDN][AC]
SCR SCR RE									Write scratch memory to Accumulator
IDARY CHPAD ENCE	ADS	N	1 1000XXX		X		х	х	[AC][AC] · [SGDN] · [C] Decimal or binary addition specified by D
SECON SCRAT	SUS	N	11001XXX	1(2)	X		X	x	[AC][AC]-[SGDN]-[C] Subtract scratchpad from Accumulator
DIATE	LAI	DATA	OD ZZ	2			x		[AC]ZZ Load Accumulator immediate
IMME	LRI	N.DATA	01100XXX ZZ	2					[GDN]-→ZZ Load Register immediate
	JIN	N	01101XXX 00	1	1.14				[PC][GRN]
MP	JUN	LABEL	1P	2					[PC]-PQQ
Ť.	JSR	LABEL	2P QQ	2					Jump unconditional [STACK][PC]. [PC]PQQ Jump to subroutine

Table A-1. An Instruction Set Summary

A-4

			OBJECT	MPU CYCLE		STA	TU	SES	
TYPE	MNEMONIC	OPERAND(S)	CODE	(NOTE 1)	с	D	Þ	а н	OPERATIONS PERFORMED
	DRJ	N.LABEL	00111XXX + QQ'	2					[GRN][GRN] · FFF If [GDN]=0, [PC]QQ else [PC][PC · 2]
	IRJ	N.LABEL	00110XXX QQ	2					Decrement register and jump [GRN]→-[GRN] - 1 If [GDN]=0, [PC]→-QQ else [PC]→-[PC - 2] Increment register and jump
NO	JCY or JLT	LABEL	05 QQ	2					If [C] =1, [PC]—OO else [PC]→[PC - 2] Jump if Carry
CONDIT	JEQ or JZE	LABEL	06 · · QQ	2					If [A]=0, [PC]-OO else [PC][PC + 2] Jump if equal
NO AW	JGE or JNC	LABEL	01 QQ	2	-				If [C]=0, [PC]-OQ else [PC]-[PC + 2] Jump if greater or equal
1	JGT	LABEL	03 QQ	2					If [C]=0 and [A]=1, [PC]-O0 else [PC]-[PC+2] Jump if Accumulator is greater than Reister
	JHC	LABEL	04 QQ	2					If [H]=1, [PC]OQ else [PC][PC + 2] Jump if balf carry
	JLE	LABEL	07 QQ	2					If [C]=1 and [A]=0, [PC]—QQ else [PC]—[PC + 2] Jump if less than or equal
	JNE or JNZ	LABEL	02 QQ	2					If LAJ=1, LPCJ—OQ else LPCJ—LPC - 21 Jump if eot equal

Table A-1. An Instruction Set Summary (Continued)

A-5

			OBJECT	MPU CYCLE	1	STAT	USE	s	
TYPE	MNEMONIC	OPERAND(S)	CODE	(NOTE 1)	с	D	A	н	
æ	CAP	, N	01001XXX	. 1					[GPN][ACL]
BISTE	CAR	N	10110XXX	1					[GDN]-[AC]
ER-REG MOVE	CPA.	Ν	010010XX	1			х		Copy Accumulator to Register [ACL]—[GPN] Conv Page to Accumulator (N=0, 1, 2, or 3 only)
GISTI	CRA	Ν	10111XXX	. 1.			х		[AC]-[GDN]
Ë	ХСН	N	01000XXX	î ¹			X		[AC] — [GDN] Exchange Register with Accumulator
	ADD .	N	10000XXX	1(2)	x		x	х.	[AC][AC] · [GDN] · [C]
STER	AND	N	10010XXX	1	0		х	Ö	Decimal or binary addition specified by D [AC]—[AC] \[GDN] AND Register with Accumulator
ATE	CMP	N	10101XXX	2. 1	X		х		Compare Accumulator with register
TER-I	IOR	N	10011XXX	1	· 0		Х	0	
EGIS	SUB	N	10001XXX	.1	×		х	х	[AC] - [AC]- [GD]- [C] Subtract Benister from Accumulator
ш.	XOR	N	10100XXX	1(2)	0	• .	х	0	[AC]—[AC]V[GDN] XOR Register with Accumulator
μ	CLA		F6 .	1.	-		0		[AC]00
ERAT	CLB		F2		0		0		[AC]-00 Char Accumulator and Carp
I OPI	СМА		F.7	1			Χ,		
ISTE	DAC		F5	1	×		X	х	
REG	DCR	Ν	01111XXX	1 1.				*	Lecrement the Accumulator [GRN] — [GRN] - FFF Decrement Register

Table A-1. An Instruction Set Summary (Continued)

A-6

			OBJECT	MPU CYCLE	5	STAT	USE	s	
TYPE	MNEMONIC	OPERAND(S)	CODE	(NOTE 1)	с	D	A	н	OPERATIONS PERFORMED
	IAC		F4	1(2)	×		х	х	[AC][AC] 1
	INR ,	N	01110XXX	1(2)					Increment Accumulator [GRN] [GRN] 1 Increment Register
	RÁL		F8	1	X			x	C H Rotate Accumulator left
PERATE	RAR		F9	1(2)	×			x	Rotate Accumulator right binary RAR decimal swaps HO and LO 4 bits
REGISTER C									C C C C C C C C C C C C C C C C C C C
	RLC		FA	1	х		х	×	Rotate Accumulator left through Carry
	RRC		FB	1	×		×	×	Rotate Accumulator right (broug) Carry
rack	JSR	LABEL	2P QQ	2 1					[STACK][PC] [PC]POQ Jump to subroute e
s.	RET		FE	1					[PC][STACK]

Table A-1. An Instruction Set Summary (Continued)

ТҮРЕ	MNEMONIC	OPERAND(S)	OBJECT CODE	MPU CYCLE (NOTE 1)	STATUSES	OPERATIONS PERFORMED
INTERRUPT	DSI ENI RET		OE OF FE	1		[I]—0 Disable interrupts [I]—1 Enable interrupts [PC]—Stack up
STATUS	CLB CLC CMC CSA SEB SEC SED		F2 F0 F3 0C FD F1 FC	1 1 1 1 1 1	0 0 0 X X X 0 1 1	$ \begin{array}{l} [AC] -0 \\ Clear Accumulator and Carry \\ [C] -0 \\ Clear Carry \\ [C][C] \\ Complement Carry \\ [AC][SW] \\ Copy status to Accumulator \\ [D] -0 \\ Set binary mode \\ [C] -1 \\ Set Carry status to 1 \\ [D] -1 \\ Set Garry status to 1 \\ [D] -1 \\ Sof docimal mode \end{array} $
	DLY NOP	DATA	00 ZZ FF	2		Delay and skip 12 No operation

Table A-1. An Instruction Set Summary (Continued)

		. A F	lag	CF	lag	H FI	ag
Instr	Mode	Arithmetic = 0	Arithmetic = 1	Carry = 0	Carry = 1	H. Carry = 0	H. Carry = 1
ADD	В	$Accum_r = 0$	Accum, ≠ 0	Sum < FF	Sum > FF		
	D	Accum _r = 0	Accum _r # 0	Sum < 99	Sum > 99	Sum of lower digits \leq 9	Sum of lower digits > 9
ADS	В	$Accum_r = 0$	Accum _r ≠ 0	Sum < FF	Sum > FF		
	D	$Accum_{r} = 0$	Accum _r # 0	Sum < 99	Sum > 99	Sum of lower digits \leq 9	Sum of lower digits > 9
AND		$Accum_{r} = 0$	Accum _r ≠ 0	Always	Never	Always	Never
CLA		Always	Never				
CLB		Always	Never	Always	Never		
CLC				Always	Never		
CMA		Accum _r =- 0	Accum _r ≠ 0				
CMC				Carry ₁ = 1	$Carry_i = 0$		
CMP		Accum = Reg	Accum # Reg	Accum >	Accum <	Always	Never
CRA		Accum = 0	A	Reg	Reg		
CPA		Accum _r = 0	Accum _r 7				
CRA		$Accum_r = 0$	Accum _r # 0				
CSA		$Accum_r = 0$	Accum _r ≢ 0				
DAC	В	Accum = 1	Accum 🔰 1	Accum, 🔰 0	Accum = 0		
	D	Accum = 1	Accum ≠ 1	Accum ≠ 0	Accum = 0	Accum ₁ ≠ NO	Accum ₁ = NO
IAC	В	Accum; = FF	Accum _i # FF	Accum, # FF	Accum = FF		
	D	Accum ₁ = 99	Accum ≇ 99	Accum ≠ 99	Accum = 99	Accum _i ≢ N9	Accum ₁ = N9
INP		$Accum_r = 0$	Accum _r ≠ 0				
IOR		$Accum_r = 0$	Accum _r ≇ 0	Always	Never	Always	Never
LAI		$Accum_r = 0$	Accum _r ≠ 0				
RAL				Bit $7_i = 0$	Bit $7_1 = 1$	Bit $3_{i} = 0$	Bit 3 = 1

Table A-2 Instructions Affecting Status Flags

Table A-2 Instructions Affecting Status Flags (Continued)

		A F	lag	С	Flag	нг	lag
Instr	Mode	Arithmetic = 0	Arithmetic = 1	Carry = 0	Carry = 1	H. Carry = 0	H. Carry = 1
RAR	B D			Bit $O_i = 0$ Bit $3_i = 0$	Bit $O_i = 1$ Bit $3_i = 1$	Bit $4_i = 0$ Bit $7_i = 0$	Bit $4_i = 1$ Bit $7_i = 1$
RDS		Accum _r = 0	Accum _r ≠ 0				
RLC		Accum _r = 0	Accum _r ≠ 0	Bit $7_i = 0$	Bit $7_i = 1$	Bit $3_i = 0$	Bit 3 = 1
RRC		$Accum_{r} = 0$	Accum _r ≠ 0	Bit $0_i = 0$	Bit $0 = 1$	Bit $4_i = 0$	Bit $4_i = 1$
SEC				Never	Always		
SUB	B D	$Accum_{r} = 0$ $Accum_{r} = 0$	Accum _r ≠ 0 Accum _r ≠ 0	Differnece ≥ 0 Difference > 0	Difference < 0 Difference < 0	Difference of lower digits > 0	Difference of lower digits < 0
SUS	В	Accum _r = 0	Accum _r ≠ 0	Difference ≥ 0	Difference < 0	Difference of	Difference of
	, D	$Accum_{r} = 0$	Accum _r ≠ 0	≥ 0	< 0	lower digits ≥ 0	lower digits < 0
XOR		$Accum_r = 0$ $Accum_r = 0$	Accum _r $\neq 0$	Always	Never .	Always	Never

The following instructions do not affect status flags: SED, SEB, RET, NOP, JIN, LRN, ADR, CAR, OUT, WRS, LRI, JUN, JSR, JCN, INR, IRJ, DCR, DRJ, SRN, CAP, ENI, DSI.

Notes:

All digits shown are hexadecimal.

B = Binary D = Decimal

Half carry is set to zero at the beginning of any instruction which affects it.

N = Any Digit

i = Initial Value r = Resulting Value

Bit references are to the accumulator.

Table A-3 An Object Code Map

4 LSB	
-------	--

	0	1	2	3	4	5	6	7	8	9	А	B	C	D	f	F
0	DLY*		J	CONDITI	ONAL JI	JMPS*				C	PA		CSA	LAI*	DSI	ENI
1									JUN*	UNCON	DITIONA	LLY				
2									JSR*	TO SUB	ROUTINE					
3			IRJ*	INCRE	MENT						0	DRJ* (DECREM	ENT		
4			ХСН	EXCHA	NGE						Ċ	CAP A	CC TO F	AGE		
5			INP	INPUT							(DUT C	UT			
6			LRI*	LOAD	IMMEDI	ATE					J	IN IN	DIRECT			
7			INR	INCREM	ENT						C	DCR D	ECREME	NT		
8			ADD	ADD							·	SUB S	UBTRAC	T		
9			AND	AND							1	OR IN	IC. OR			
А			XOR	EX. OR							(CMP C	OMPAR	E		
В			CAR	ACC -	• REG.						(RA R	EG →	ACC		
С			ADS	ADD S	CRATCH	ł					S	SUS SI	UB SCRA	TCH		
D			RDS	READ S	SCRATC	н					V	WRS V	WRITE SO	CRATCH		
Е			LRN	LOAD	REG.						Ş	SRN S	TORE RE	G.		
F	CLC	SEC	CLB	CMC	IAC	DAC	CLA	СМА	RAL	RAR	RLC	RRC	SED	SEB	RET	NOP

*Two Byte lestructions

A-11

4 MSB

Appendix B

HEXADECIMAL-DECIMAL INTEGER CONVERSION

Appendix B

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexade	cimal	Dec	imal	Hexad	decimal	Dec	imal	
01-000		4	096	20	000		131 072	2
02 000	I I	8	192	30	000		196 608	3
03 000		12	288	40	000	·	262 144	Ļ,
04 000	(16	384	50	000		327 680) [*]
05 000		20	480	60	000	:	393 216	,
06 000		24	576	. 70	000		458 752	2
07 000		28	672	80	000	3	524 288	;
08 000		32	768	90	000		589 824	Ļ
09 000		36	864	A0	000	. i i	655 360)
0A 000		40	960	BO	000	;	720 896	,
OB 000		45	056	C0	000		786 432	2
OC 000		49	152	DO	000	1	851 968	1
0D 000		53	248	EO	000		917 504	
0E 000		57	344	FO	000	•	983 040)
0F 000		61	440	100	000	1.0	048 576	,
10 000		65	536	200	000	2 (097 152	
11 000		69	632	300	000	3	145 728	1
12 000		73	728	400	000	4	194 304	
13 000		77.	824	500	000	5	242 880)
14 000		81	920	600	000	6 :	291 456	
15 000		86	016	700	000	7 :	340 032	
16 000		90	112	800	000	8 :	388 608	
17 000		94	208	900	000	94	437 184	
18 000		98	304	A00	000	10 4	\$85 760	· · ·
19 000		102	400	B00	000	- 11 5	534 336	
1A 000		106	496	C00	000	12 :	582 912	
1B 000		110	592	D00	000	13 6	531 488	
1C 000		114	688	E00	000	14 6	580 064	
1D 000		118	784	F00	000	15 2	728 640) <u> </u>
1E 000		122	880	1 000	000	16 2	777 216	
1F 000		126	976	2 000	000	33 5	554 432	
	0	1	2	3	4	5	6	7
00	0000	0001	0002	0003	0004	0005	0006	0007
01	0016	0017	0018	0019	0020	0021	0022	0023
02	0032	0033	0034	0035	0036	0037	0038	0039
	0040	0040	0050	0051	0050	0050	0054	005

Hexadecimal fractions may be converted to decimal fractions as follows:

 Express the hexadecimal fraction as an integer times 16⁻ⁿ, where n is the number of significant hexadecimal places to the right of the hexadecimal point.

0. CA9BF316 = CA9 BF316 × 16-6

2. Find the decimal equivalent of the hexadecimal integer

3. Multiply the decimal equivalent by 16⁻ⁿ

 $\begin{array}{r} 13\ 278\ 195\\ \underline{\times\ 596\ 046\ 448\ \times\ 10^{-16}}\\ 0.791\ 442\ 096\\ 10\end{array}$

Decimal fractions may be converted to hexadecimal fractions by successively multiplying the decimal fraction by 10_{10}^{-1} . After each multiplication, the integer portion is removed to form a hexadecimal fraction by building to the right of the hexadecimal point. However, since decimal arithmetic is used in this conversion, the integer portion of each product must be converted to hexadecimal numbers.

Example: Convert 0.89510 to its hexadecimal equivalent

11 000		126	9/6	2 000	000	- 33 :	54 432			-16						
	0	1	2	3	4	5	6	7	8	9	A	В	с	D.	E	F
00	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011	0012	0013	0014	0015
01	0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	0030	0031
02	0032	0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	0043	0044	0045	0046	0047
03	0048	0049	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	0060	0061	0062	0063
04	0064	0065	0066	0067	0068	0069	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079
05	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	0090	0091	0092	0093	0094	0095
06	0096	0097	0098	0099	0100	0101	0102	0103	0104	0105	0106	0107	0108	0109	0110	0111
07	0112	0113	0114	0115	0116	0117	0118	0119	0120	0121	0122	0123	0124	0125	0126	0127
08	0128	0129	0130	0131	0132	0133	0134	0135	0136	0137	0138	0139	0140	0141	0142	0143
09	0144	0145	0146	0147	0148	0149	0150	0151	0152	0153	0154	0155	0156	0157	0158	0159
0A	0160	0161	0162	0163	0164	0165	0166	0167	0168	0169	0170	0171	0172	0173	0174	0175
OB	0176	0177	0178	0179	0180	0181	0182	0183	0184	0185	0186	0187	0188	0189	0190	0191
																1
0C	0192	0193	0194	0195	0196	0197	0198	0199	0200	0201	0202	0203	0204	0205	0206	0207
0D	0208	0209	0210	0211	0212	0213	0214	0215	0216	0217	0218	0219	0220	0221	0222	0223
OE	0224	0225	0226	0227	0228	0229	0230	0231	0232	0233	0234	0235	0236	0237	0238	0239
OF	0240	0241	0242	0243	0244	0245	0246	0247	0248	0249	0250	0251	0252	0253	0254	0255
1.1																

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

	0	1	2	3	4	5	6	7	8	9	A	B	с	D	E	F
100	0256	0257	0258	0259	0260	0261	0262	0263	0264	0265	0266	0267	0268	0269	0270	0271
110	0272	0273	0274	0275	0276	0277	0278	0279	0280	0281	0282	0283	0284	0285	0286	0287
120	0288	0289	0290	0291	0292	0293	0294	0295	0296	0297	0298	0299	0300	0301	0302	0303
130	0304	0305	0306	0307	0308	0309	0310	0311	0312	0313	0314	0315	0316	0317,	0318	0319
140	0320	0321	0322	0323	0324	0325	0326	0327	0328	0329	0330	0331	0332	0333	0334	0335
150	0336	033/	0338	0339	0340	0341	0342	0343	0344	0345	0340	034/	0348	0349	0350	0351
170	0352	0333	0334	0355	0330	0337	0336	0375	0376	0377	0378	0303	0380	0381	0382	0387
	0.00	0007	03/0	0071	00/1	00/0	00/4	00/ 5	00/0	00//	00/0	00/ /	0000		0001	0000
180	0384	0385	0386	0387	0388	0389	0390	0391	0392	0393	0394	0395	0396	0397	0398	0399
190	0400	0401	0402	0403	0404	0405	0406	0407	0408	0409	0410	0411	0412	0413	0414	0415
1A0	0416	0417	0418	0419	0420	0421	0422	0423	0424	0425	0426	0427	0428	0429	0430	0431
180	0432	0433	0434	0435	0436	043/	0438	0439	0440	0441	0442	0443	0444	0445	0446	044/
100	0448	0449	0450	0451	0452	0453	0454	0455	0456	0457	0458	0459	0460	0461	0462	0463
1D0	0464	0465	0466	0467	0468	0469	0470	0471	0472	0473	0474	0475	0476	0477	0478	0479
1E0	0480	0481	0482	0483	0484	0485	0486	0487	0488	0489	0490	0491	0492	0493	0494	0495
1F0	0496	0497	0498	0499	0500	0501	0502	0503	0504	0505	0506	0507	0508	0509	0510	0511
				0515	0614	0517		0510						0505		0507
200	0512	0513	0514	0515	0516	0517	0518	0519	0520	0521	0522	0523	0540	0525	0542	0542
220	0544	0545	0546	0547	0548	0549	0550	0551	0552	0553	0554	0555	0556	0557	0558	0559
230	0560	0561	0562	0563	0564	0565	0566	0567	0568	0569	0570	0571	0572	0573	0574	0575
240	0576	0577	0578	0579	0580	0581	0582	0583	0584	0585	0586	0587	0588	0589	0590	0591
250	0592	0593	0594	0595	0596	0597	0598	0599	0600	0601	0602	0603	0604	0605	0606	0607
260	0608	0609	0610	0611	0612	0613	0614	0615	0616	0617	0618	0619	0620	0621	0622	0623
270	0624	0625	0626	0627	0628	0629	0630	0631	0632	0633	0634	0635	Q636	0637	0638	0639
280	0640	0641	0642	0643	0644	0645	0646	0647	0648	0649	0650	0651	0652	0653	0654	0455
290	0656	0657	0658	0659	0660	0661	0662	0663	0664	0665	0666	0667	0668	0669	0670	0671
2A0	0672	0673	0674	0675	0676	0677	0678	0679	0680	0681	0682	0683	0684	0685	0686	0687
280	0688	0689	0690	0691	0692	0693	0694	0695	0696	0697	0698	0699	0700	0701	0702	0703
2C0	0704	0705	0706	0707	0708	0709	0710	0711	0712	0713	0714	0715	0716	0717	0718	0719
200	0720	0721	0722	0723	07.40	0725	0720	0727	0728	0729	0730	0747	07 32	0733	0750	0/35
260	0752	0753	0754	0755	0740	0741	0742	0743	0744	0743	0740	0763	0746	0745	0750	0751
			0/34	0, 35			0/ 30		0,00				0,04			
300	0768	0769	0770	0771	0772	0773	0774	0775	0776	0777	0778	0779	0780	0781	0782	0783
310	0784	0785	0786	0787	0788	0789	0790	0791	0792	0793	0794	0795	0796	0797	0798	0799
320	0800	0801	0802	0803	0804	0805	0806	0807	0808	0809	0810	0811	0812	0813	0814	0815
330	0816	0817	0818	0815	0820	0821	0822	0823	0824	0825	0826	082/	0828	0829	0830	0831
340	0832	0833	0834	0835	0836	0837	0838	0839	0840	0841	0842	0843	0844	0845	0846	0847
350	0848	0849	0850	0851	0852	0853	0854	0855	0856	0857	0858	0859	0860	0861	0862	0863
360	0864	0865	0866	0867	0868	0869	0870	0871	0872	0873	0874	0875	0876	0877	0878	0879
370	0880	0881	0882	0883	0884	0885	0886	0887	0888	0889	0890	0891	0892	0893	0894	0895
200	0007	0007	0000	0000	0000	000·	0000	0000	000 1	0005	000 <i>/</i>	0007	0000	0000	0010	0017
390	0876	089/	0838	0899	0900	0901	0902	0903	0904	0905	0906	090/	0908	0909	0910	0911
340	0928	0929	0930	0931	0932	0933	0934	0935	0934	0937	0938	0723	0940	0941	0720	0943
380	0944	0945	0946	0947	0948	0949	0950	0951	0952	0953	0954	0955	0956	0957	0958	0959
3C0	0%0	0%1	0962	0963	0964	0965	0966	0967	0968	0969	0970	0971	0972	0973	0974	0975
3D0	0976	0977	0978	0979	0980	0981	0982	0983	0984	0985	0986	0987	0988	0989	0990	0991
3E0	0992	0993	0994	0995	09%	0997	0998	0999	1000	1001	1002	1003	1004	1005	1006	1007
310	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

	0	ı	2	3	4	5	6	7	8	9	A	B	с		D	E	F
400	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	103	36	1037	1038	1039
410	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	105	52	1053	1054	1055
420	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	106	8	1069	1070	1071
430	10/2	10/3	10/4	10/5	10/6	10//	10/8	10/9	1080	1081	1082	1083	108	54	1085	1086	1087
440	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	110	00	1101	1102	1103
450	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	111	6	1117	1118	1119
460	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	113	32	1133	1134	1135
4/0	1130	113/	1130	1137	1140	1141	1142	1145	1144	1145	1140	114/	114	+0	1147	1150	1151
480	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	116	54	1165	1166	1167
490	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	118	30	1181	1182	1183
480	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	12	12	1213	1214	1215
	,																1210
4C0	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	122	28	1229	1230	1231
400	1232	1233	1234	1235	1236	123/	1238	1239	1240	1241	1242	1243	124	14 10	1245	1246	124/
4F0	1240	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	127	76	1277	1278	1279
500	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	129	72	1293	1294	1295
520	1270	1313	1314	1315	1316	1317	1318	1303	1304	1305	1322	1323	130	24	1309	1326	1327
530	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	134	10	1341	1342	1343
5.10		1046	10.44	1047	1040	1040	1000		1000	1000		1055	10	.,	1067	1000	1050
550	1344	1345	1340	134/	1348	1349	1350	1351	1352	1353	1354	1335	133	72	135/	1358	1359
560	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	13	88	1389	1390	1391
570	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	140)4	1405	1406	1407
500	1400	1400	1410		1410				1414	1417		1410		~	1 4 9 1	1.000	1400
580	1408	1409	1410	1411	1412	1413	1414	1415	1410	1417	1418	1419	14.	20	1421	1422	1423
5A0	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	14	52	1453	1454	1455
5B0	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	140	58	1469	1470	1471
500	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	141	RA	1485	1486	1487
5D0	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	150	00	1501	1502	1503
5E0	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	15	16	1517	1518	1519
5F0	1520	1521	1522	1523	1524	1525	1526	1527	 1528	1529	1530	1531	15:	32	1533	1534	1535
600	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	154	48	1549	1550	1551
610	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	150	54	1565	1566	1567
620	1584	1509	15/0	15/1	15/2	15/3	15/4	15/5	15/6	15//	15/8	15/9	15	50	1581	1582	1583
0.50	1304	1365	1300	136/	1500	1307	1370	1371	1372	1373	/ /	1375		70	1377	1370	1377
640	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	18	12	1613	1614	1615
650	1616	1617	16.18	1619	1620	1621	1622	1623	1624	1625	1626	1627	16:	28	1629	1630	1631
670	1648	1649	1650	1635	1630	1653	1654	1639	1640	1657	1642	1643	16	44 60	1645	1640	1663
					.002			.055		.037	1000	1057					
680	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	16	76	1677	1678	1679
640	1680	1681	1682	1683	1700	1685	1686	1687	1688	1689	1690	1691	16	92 08	1693	1694	1695
6B0	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	17	24	1725	1726	1727
1.00	1.705	1700	1705			1705											
600	1728	1/29	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	17	40	1741	1742	1743
6E0	1760	1761	1762	1763	1748	1765	1766	1/01	1768	1753	1/54	1755	17		1/5/	1774	1775
6F0	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	17	88	1789	1790	1791
L					-			. •									

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

TOD 192 173 174 176 179 179 180 180 1805 <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>Α</th> <th>В</th> <th>С</th> <th>D</th> <th>E</th> <th>F</th>		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
100 1000 1000 1111 111 111 1111	700	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807
720 1822 1826 1827 1828 1829 1820 1831 1832 1833 1834 1835 1836 1835	710	1908	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823
730 1940 1941 1942 1943 1944 1945 1946 1847 1848 1849 1850 1851 1852 1853 1854 1855 740 1856 1857 1858 1857 1875 1876 1868 1867 1868 1867 1868 1867 1868 1867 1868 1868 1867 1868 1867 1868 1867 1868 1867 1868 1869 1901	720	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839
1.2.6 1.2.6 1.2.7 <th< th=""><th>730</th><th>1940</th><th>1941</th><th>1842</th><th>1843</th><th>1844</th><th>1845</th><th>1846</th><th>1847</th><th>1848</th><th>1849</th><th>1850</th><th>1851</th><th>1852</th><th>1853</th><th>1854</th><th>1855</th></th<>	730	1940	1941	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855
140 1856 1857 1861 1862 1867 1864 1866 1867 1878 1889 1991 1911 1912 1913 1914 1915 1916 1917 1918 1918 1932 1933 1934 1935 1966 1967 1968 1969 1967 1968 1969 1967 1968 1969 1967 1968 1969 1967 1968 1969 1967 1968 1969 1967 1968 1969 1967 1968 1967 <th1< th=""><th>/30</th><th>1040</th><th>1041</th><th>1042</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th1<>	/30	1040	1041	1042													
150 1872 1873 1874 1876 1876 1876 1880 1980 1931 1911 1912 1913 1914 1941 1942 1933 1941 1945 1986 1986 1986 1986 1986 1986 1986 1986 1986 1980 1981 1991 1972 1971 1971 1972 1973 1974 1975 1976 1971 1978 1979 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 <	740	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871
660 1888 1895 1890 1891 1894 1895 1896 1897 1900 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 700 1904 1905 1906 1907 1908 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 700 1952 1953 1954 1955 1966 1967 1958 1969 1967 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1966 1967 1986 1969 1997 1978 1979 1980 1981 1982 1983 1984 1985 1986 1980 1981 1982 1983 1984 1985 1986 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1989 1983 <th>750</th> <th>1872</th> <th>1873</th> <th>1874</th> <th>1875</th> <th>1876</th> <th>1877</th> <th>1878</th> <th>1879</th> <th>1880</th> <th>1881</th> <th>1882</th> <th>1883</th> <th>1884</th> <th>1885</th> <th>1886</th> <th>1887</th>	750	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887
1700 1904 1905 1907 1908 1919 1911 1912 1913 1914 1915 1916 1917 1918 1919 780 1936 1937 1938 1939 1940 1950 1931 1934 1935 780 1953 1954 1955 1956 1957 1971 1972 1973 1974 1952 1931 1944 1945 1964 <th>760</th> <th>1888</th> <th>1889</th> <th>1890</th> <th>1891</th> <th>1892</th> <th>1893</th> <th>1894</th> <th>1895</th> <th>1896</th> <th>1897</th> <th>1898</th> <th>1899</th> <th>1900</th> <th>1901</th> <th>1902</th> <th>1903</th>	760	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903
780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1920 1931 1932 1933 1931 1932 1933 1931 1932 1933 1931 1932 1933 1934 1935 700 1958 1954 1955 1565 1565 1561	770	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
780 1920 1921 1922 1923 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1924 1925 1955 1956 1957 1958 1956 1957 1971 1971 1972 1973 1974 1925 1973 1974 1975 1976 1974 1984 1985 1986 1987 1988 1988 1986 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1911 1972 1973 1974 1985 1986 1981 1982 1983 1984 1985 1986 1981 1982 1983 1984 1985 1986 1987 1988 1980 1981 1982 1983 1981 1982 1983 1981 1982 1983 1980 1981 1982 1983							1005	1026	1007	1000	1000						
1906 1936 1938 1938 1939 1940 1941 1942 1943 1940 1941 1940 1941 1940 1941 1940 1941 1940 1941 1940 1941 1945 1946 1947 1971 1972 1971 1972 1971 1971 1972 1971 1972 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1972 1973 1971 1976 1977 1978 1979 1980 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 <th< th=""><th>780</th><th>1920</th><th>1921</th><th>1922</th><th>1923</th><th>1924</th><th>1925</th><th>1920</th><th>192/</th><th>1928</th><th>1929</th><th>1930</th><th>1931</th><th>1932</th><th>1933</th><th>1934</th><th>1935</th></th<>	780	1920	1921	1922	1923	1924	1925	1920	192/	1928	1929	1930	1931	1932	1933	1934	1935
7A0 1982 1984 1985 1995 1990 1991 1992 1993 1994 1995 1996 1997 1998 1998 1998 1998 1991 1995 1996 1997 1998 1991 1995 1996 1997 1996 1997 1998 1997 1998 1991 1992 1993 1994 1995 1996 1997 1998 1992 1991 1995 1996 1997 1998 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 1992 1993 1994 1995 1996 1997 1998 1995 1996 1992 <	790	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951
Bit 1968 1969 1970 1976 1977 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1977 1978 1978 1978 1978 1977 1978 1978 1977 1978 1978 1978 1978 1977 1978 1977 1978 1978 1978 1978 1978 1978 1977 1978	7A0	1952	1953	1954	1955	1956	195/	1956	1959	1900	1077	1962	1903	1964	1965	1966	1967
7C0 1984 1985 1987 1988 1980 1991 1992 1993 1994 1995 1996 1997 1998 1999 7D0 2000 2011 2012 2003 2004 2005 2006 2007 2008 2009 2010 2011 2014 2015 2008 2009 2011 2014 2015 2008 2009 2010 2011 2014 2015 2006 2027 2003 2004 2044 2044 2045 2064 2065 2067 2067 2076 2077 2078 2079 2077 2078 2079 2091 2010 2110 2110 2110 2110 2110 2110 2110 2110 2110 2110 2110 2110 2110 2120 2121 2122 2121 2122 2121 2121 2121 2121 2121 2121 2121 2121 2121 2121 2121 2121 2121	780	1968	1969	1970	19/1	19/2	19/3	19/4	19/5	1970	19//	19/8	19/9	1980	1981	1982	1983
TD0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2011 2011 2012 2013 2014 2015 7E0 2032 2033 2033 2033 2034 2035 2034 2035 2034 2035 2034 2035 2034 2034 2044 2045 2044 2045 2044 2045 2044 2045 2046 2047 800 2064 2065 2066 2067 2068 2069 2071 2072 2073 2074 2075 2076 2077 208 2093 2094 2085 2086 2087 2086 2097 2082 2093 2094 2091 2091 2092 2093 2094 2095 2091 2092 2093 2094 2095 2091 2092 2093 2094 2095 2091 2092 2093 2094 2095 2091 2010 2110	700	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Disol Disol <th< th=""><th>700</th><th>2000</th><th>2001</th><th>2002</th><th>2003</th><th>2004</th><th>2005</th><th>2006</th><th>2007</th><th>2008</th><th>2009</th><th>2010</th><th>2011</th><th>2012</th><th>2013</th><th>2014</th><th>2015</th></th<>	700	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
7F0 2032 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2070 2073 2074 2075 2076 2077 2078 2079 2092 2092 2093 2094 2095 820 2096 2097 2098 2098 2099 2091 2102 2110 2110 2110 2110 2110 2110 2111 2142 2142 2142 2142 2142 2142 2142 2142 2142 2142 2143 2144 2145 2146 2144 2145 2146 2147 2148 2149 2150 2151 2152 2152 2152 2152 2152 2152 2152 2152 2152 2152 2152 2152 <th>750</th> <th>2016</th> <th>2001</th> <th>2018</th> <th>2019</th> <th>2020</th> <th>2021</th> <th>2022</th> <th>2023</th> <th>2024</th> <th>2025</th> <th>2026</th> <th>2027</th> <th>2028</th> <th>2029</th> <th>2030</th> <th>2031</th>	750	2016	2001	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Rio Loi Loi <thli< th=""> <thloi< th=""> <thloi< th=""></thloi<></thloi<></thli<>	760	2032	2017	2010	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047
800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2077 2073 2074 2075 2076 2077 2078 2079 2079 2079 2079 2079 2079 2079 2079 2099 2006 2082 2089 2089 2089 2089 2089 2089 2089 2090 2091 2022 2093 2094 2095 2010 2110 2111 2112 2113 2114 2115 2118 2119 2120 2121 2122 2123 2144 2145 2146 2147 2148 2149 2150 2151 2154 2155 2156 2156 2156 2156 2156 2156 2156 2157 2158 2158 2159 2100 2101 2102 2102 2101 2102 2102 2102 2102 2102	<u> </u>	1002	2000	1004													
B10 2064 2065 2066 2067 2067 2078 2078 2079 2077 2078 2079 2079 2077 2078 2079 2093 2094 2095 2096 2086 2086 2086 2089 2090 2010 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2111 2111 2111 2111 2111 2111 2111 2111 2111 2111 2111 2112 2122 2123 2124 2125 2126 2125 2156 2157 2158 2158 2150 2151 2152 2153 2154 2156 2157 2158 2159 2106 2107 2117	800	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063
B20 2080 2081 2082 2083 2084 2085 2086 2087 2088 2090 2091 2092 2093 2094 2095 B40 2112 2113 2114 2115 2116 2101 2102 2103 2104 2117 2118 2121 2122 2123 2124 2125 2126 2127 2124 2125 2126 2127 2124 2125 2126 2127 2128 2139 2140 2141 2142 2142 2142 2142 2142 2142 2142 2142 2141 2142 2141 2142 2141 2142 2141 2142 2143 2146 2147 2148 2149 2150 2151 2152 2153 2146 2147 2148 2149 2200 2201 2202 2203 2201 2202 2203 2201 2202 2203 2201 2202 2203 2211 2212 2212	810	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079
B30 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 B40 2112 2113 2114 2115 2116 2117 2138 2134 2135 2136 2137 2138 2139 2142 2152 2153 2154 2155 2156 2156 2156 2156 2156 2156 2156 2156 2156 2156 2156 2156 2156 2156 2167 2178 2179 2173 2174 2175 2158 2168 2169 2107 2171 2172 2173 2174 2175 B80 2176 2177 2178 2179 2180 2181 2182 2182 2182 2182 2121 2212 2212 2212 2212 2223 2204 2205 2216 2226 2261 2262 2263 2264 2265 <th>820</th> <th>2080</th> <th>2081</th> <th>2082</th> <th>2083</th> <th>2084</th> <th>2085</th> <th>2086</th> <th>2087</th> <th>2088</th> <th>2089</th> <th>2090</th> <th>2091</th> <th>2092</th> <th>2093</th> <th>2094</th> <th>2095</th>	820	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095
840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2141 2142 2143 860 2160 2161 2162 2163 2166 2167 2168 2169 2177 2171 2172 2173 2174 2175 2169 2167 2188 2189 2100 2201	830	2096	2097-	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111
B40 2112 2113 2116 2117 2118 2119 2120 2121 2122 2124 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2142 2141 2172 2173 2273 2273											~~~						
B50 2128 2129 2130 2131 2132 2133 2134 2135 2135 2136 2137 2138 2139 2138 2139 2136 2137 2138 2139 2140 2141 2142 2143 2145 2150 2151	840	2112	2113	2114	2115	2110	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127
BB0 2144 2145 2145 2153 2153 2154 2155 2154 2155 2154 2155 2157 2156 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2158 2157 2257 2207 2208 2217 2217 2217 2217 2217 2217	850	2128	2129	2130	2131	2132	2133	2134	2135	2130	213/	2138	2139	2140	2141	2142	2143
BY0 2160 2161 2162 2163 2163 2165 2162 2171 2172 2173 2174 2175 2173 2174 2175 2173 2174 2173 2174 2173 2174 2173 2174 2173 2174 2173 2174 2173 2174 2175 2165 2165 2165 2160 2171 2172 2173 2174 2173 2174 2173 2174 2175 2165 2165 2165 2160 2201 2202 2201 2202 2211 2222 2223 2233	860	2144	2145	2146	2147	2140	2149	2150	2151	2152	2153	2154	2155	2156	215/	2158	2159
B80 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 B90 2192 2193 2144 2195 2196 2197 2188 2192 2200 2201 2202 2204 2205 2206 2207 2218 2212 2230 2231 2232 2233 2242 2255 2256 2257 2258 2259 2260 2261 2262 2262 2263 2264 2265 2266 2266 2267 2288 2289 2300 2301 2301 2301 2301 2301 2301 2301 2301	870	2160	2161	2162	2163	2104	2105	2100	2107	2108	2109	2170	21/1	21/2	21/3	21/4	2175
B90 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 BA0 2204 2205 2207 2211 2212 2213 2214 2215 2216 2217 2218 2219 2221 2221 2221 2221 2221 2221 2221 2221 2231 2250 2251 2252 2253 2264 2265 2260 2261 2262 2261 2262 2261 2261 2262 2261 2261 2261 2261 2261 2261 2261 2261 2261 2261 2261 2261 2261	880	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191
BA0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2233 2233 2234 2235 2236 2237 2238 2239 2233 2233 2234 2235 2236 2237 2238 2239 2233 2234 2235 2236 2237 2238 2239 2233 2233 2234 2235 2236 2237 2238 2239 2236 2237 2238 2239 2266 2266 2266 2266 2266 2266 2266 2266 2267 2268 2269 2270 2271 2271 2271 2271 2271 2272 2280 2281 2282 2283 2284 2285 2280 2281 2282 2283 2281 2300 2301 2301 2301 2301 2301 2301 2301 2301 2301 2301	890	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207
BB0 222 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2231 2232 2233 2234 2235 2236 2237 2238 2239 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2230 2231 2232 2231 2232 2235 2256 2256 2256 2256 2256 2256 2256 2256 2256 2256 2268 2280 2290 2290 2291 2292 2293 2294 2295 2296 2297 2298 2298 2298 2290 2301 2	8A0	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223
BC0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 BC0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2266 2266 2266 2267 2288 2289 2290 2291 2292 2293 2293 2294 2295 2296 2297 2282 2281 2282 2283 2284 2285 2286 2287 900 2304 2305 2306 2307 2308 2309 2311 2311 2311 2311 2311 2313 2314 2324 2325 2326 2327 2382 2330 2331 2332 2334 2335 2351 2332 2334 2335 2351 2335 2361 2365 2366 2367 920 2330 2331 2331	880	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239
8C0 2240 2241 2243 2244 2245 2246 2249 2240 2251 2252 2253 2254 2254 8D0 2256 2256 2255 2258 2259 2250 2251 2252 2253 2254 2256 2261 2262 2263 2264 2265 2266 2266 2266 2266 2266 2267 2282 2283 2284 2285 2280 2281 2282 2283 2284 2285 2280 2281 2282 2283 2284 2285 2280 2281 2302 2301 2302 2301 2302 2303 2302 2303 2302 2303 2302 2303 2302 2303 2302 2303 2302 2303 2302 2303 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																	
BOD 2256 2257 2258 2259 2260 2261 2262 2262 2262 2262 2262 2262 2262 2262 2262 2262 2262 2263 2264 2265 2266 2268 2269 2270 2271 2277 2277 2277 2277 2277 2277 2277 2277 2277 2277 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2268 2268 2268 2268 2268 2268 2281 2282 2281 2282 2281 2282 2281 2282 2281 2282 2281 2282 2281 2282 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2281 2381 2311 2312 2313 2311 2312 2303 2301 2301	8C0	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255
BEO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2282 2282 2282 2282 2283 2284 2285 2286 2287 2382 2331 2331 2331 2331 2331 2332 2333 2333 2332 2333 2334 2335 2335 2351 2335 2351 2335 2362 2361 2362 2361 2362 2361 2362 2361 2365 2366	8D0	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271
BF0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2298 2290 2300 2301 2302 2303 900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 900 2302 2312 2322 2323 2324 2325 2326 2327 2328 239 2330 2331 2332 2333 2334 2335 2338 2339 2330 2334 2345 2346 2347 2348 2349 2360 2361 2362 2363 2364 2365 2366 2367 2388 2389 2300 2301 2392 2393 2394 2395 2386 2381 2382 2383 950 2364 2405 2406 2407 2402 2402 2402 2402	8E0	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287
900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2355 920 2336 2337 2384 2345 2346 2347 2348 2345 2346 2344 2345 2346 2346 2349 2350 2356 2356 2357 2358 2359 2361 2362 2363 2364 2365 2366 2366 2366 2366 2366 2366 2366 2366 2366 2367 2388 2399 2301 2312 2313 2314 2415 2482 2486 2496 2401 2411 2412 2413 2414 2415 2416 2411 2412 2413 2414 <th>8F0</th> <th>2288</th> <th>2289</th> <th>2290</th> <th>2291</th> <th>2292</th> <th>2293</th> <th>2294</th> <th>2295</th> <th>2296</th> <th>2297</th> <th>2298</th> <th>2299</th> <th>2300</th> <th>2301</th> <th>2302</th> <th>2303</th>	8F0	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303
910 2302 2312 2312 2312 2312 2312 2313	000	2204	120F	2206	2207	2308	2309	2310	2311	2312	2212	2214	2216	2216	2217	2210	2210
910 232 232 233 234 236 236 236 236 236 236 236 237 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 2	010	2304	2305	2300	2307	2324	2325	2326	2327	2372	2313	2314	2315	2310	2317	2310	2319
220 233 <th>000</th> <th>2320</th> <th>2321</th> <th>2322</th> <th>2020</th> <th>2340</th> <th>2341</th> <th>2342</th> <th>2242</th> <th>2244</th> <th>2323</th> <th>2330</th> <th>2001</th> <th>2332</th> <th>2333</th> <th>2004</th> <th>2335</th>	000	2320	2321	2322	2020	2340	2341	2342	2242	2244	2323	2330	2001	2332	2333	2004	2335
940 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2414 2413 2413 2413 2413 2413 2413 2413 2413 2413 2413 2413 2413	920	2330	2337	2354	2355	2356	2357	2358	2359	2360	2361	2340	2347	2340	2349	2300	2301
940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2396 2397 2386 2397 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2388 2398 2399 2391 2392 2393 2394 2395 2396 2397 2386 2397 2388 2409 2410 2412 2412 2412 2425 2426 2409 2411 2412 2412 2412 2425 2426 2427 2428 2429 2430 2431 2414 2415 2446 2447 900 2448 2445 2445 2457 2458 2459 2460 2461 2462 2463	930	2352	2353	2334	2300	2000	2007	2000	2000	2300	2301	2302	2303	2304	2305	2300	2307
950 2384 2385 2386 2387 2388 2389 2391 2392 2393 2394 2395 2396 2397 2398 2399 2399 2394 2395 2394 2395 2394 2397 2398 2399 2396 2397 2398 2399 2399 2400 2400 2405 2406 2407 2408 2409 2410 2411 2411 2411 2411 2411 2411 2411 2411 2412 2432 2432 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2423 2444 2441 2442 2442 2442 2442 2442 2442 2442 2443 2444 2445 2446 2446 2446 2445 2446 2447 2442 2443 2444 2445 2446 2443 2444 2445 2446 2447 2443	940	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2414 2415 2430 2431 2431 2414 2412 2428 2426 2427 2428 2429 2430 2431 2414 2415 2430 2431 2414 2412 2413 2414 2415 2430 2431 2414 2412 2413 2414 2415 2430 2431 990 2448 2449 2450 2451 2452 2453 2455 2456 2457 2458 2459 2406 2411 2412 2413 2414 2415 2416 2417 2418 2419 2411 2412 2413 <th>950</th> <th>2384</th> <th>2385</th> <th>2386</th> <th>2387</th> <th>2388</th> <th>2389</th> <th>2390</th> <th>2391</th> <th>2392</th> <th>2393</th> <th>2394</th> <th>2395</th> <th>2396</th> <th>2397</th> <th>2398</th> <th>2399</th>	950	2384	2385	2386	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2429 2430 2431 980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 990 2448 2449 2450 2451 2452 2453 2444 2452 2468 2465 2467 2468 2469 2461 2462 2463 2447 2471 2471 2471 2471 2474 2475 2476 2478 2479 2479 2473 2474 2475 2476 2478 2479 2491 2492 2492 2492 2492 2492 2492 2492 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 <th>960</th> <th>2400</th> <th>2401</th> <th>2402</th> <th>2403</th> <th>2404</th> <th>2405</th> <th>2406</th> <th>2407</th> <th>2408</th> <th>2409</th> <th>2410</th> <th>2411</th> <th>2412</th> <th>2413</th> <th>2414</th> <th>2415</th>	960	2400	2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415
980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 990 2448 2449 2450 2451 2452 2453 2454 2455 2466 2457 2458 2459 2460 2461 2462 2463 9A0 2448 2445 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 9B0 2480 2481 2482 2482 2486 2487 2488 2489 2490 2491 2492 2493 2492 2493 2492 2493 2492 2493 2492 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2492 2493 2493	970	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431
980 2432 2433 2435 2435 2436 2437 2436 2440 2441 2442 2443 2444 2444 2444 2444 2445 2446 2446 2447 2448 2443 2444 2444 2445 2446 2446 2447 2448 2448 2446 2446 2467 2458 2456 2457 2458 2456 2457 2458 2457 2458 2467 2458 2469 2467 2458 2467 2458 2467 2475 2476 2477 2478 2476 2477 2478 2476 2477 2478 2473 2476 2478 2473 2476 2477 2478 2473 2476 2477 2478 2473 2473 2474 2473 2476 2473 2473 2476 2473 2478 2473 2473 2476 2473 2473 2473 2473 2473 2473 2473 2473						0400	0407	2420									
990 2448 2449 2491 2492 2493 2495	980	2432	2433	2434	2435	2430	2437	2438	2439	2440	2441	2442	2443	2444	2445	2446	2447
940 2464 2465 2460 2461 2462 2471 2473 2474 2475 2477 2478 2478 980 2480 2481 2482 2482 2486 2487 2488 2489 2490 2491 2491 2491 2492 2493 2494 2492 2493 980 2480 2482 2482 2486 2487 2488 2488 2489 2490 2491 2492 2493 2494 2495 900 2502 2496 2487 2502 2503 2504 2502 2507 2508 2509 2500 2501	990	2448	2449	2450	2451	2402	2453	2404	2455	2450	245/	2458	2459	2460	2461	2462	2463
900 2480 2481 2483 2485 2485 2485 2485 2485 2481 2492 2493 2491 2492 2491 2492 2491 2492 2493 2491 2492 2491 2492 2491 2492 2491 2492 2491 2492 2491 2492 2491 2492 2491 2492 2491	9A0	2464	2465	2406	240/	2408	2409	24/0	24/1	24/2	24/3	24/4	24/5	24/6	2477	2478	2479
9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9E0 2528 2529 2530 2531 2532 2532 2532 2532 2532 2532 2532 2532 2532 2532 2532 2533 2534 2535 2536 2537 2538 2539 2541 2542 2543 2544 2543 2554 2556 2556 2556 2556 2556 2556 <th>980</th> <th>2480</th> <th>2481</th> <th>2482</th> <th>2483</th> <th>2484</th> <th>2480</th> <th>2480</th> <th>248/</th> <th>2488</th> <th>2489</th> <th>2490</th> <th>2491</th> <th>2492</th> <th>2493</th> <th>2494</th> <th>2495</th>	980	2480	2481	2482	2483	2484	2480	2480	248/	2488	2489	2490	2491	2492	2493	2494	2495
9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2524 2525 2526 2527 9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2549 2540 2541 2542 2543 2544 2545 2548 2549 2550 2551 2552 2554 2556	900	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511
9E0 2528 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2541 2541 2542 2543 9F0 2544 2545 2546 2547 2548 2550 2551 2552 2553 2554 2555 2556 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2557 2558 2558	900	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527
9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559	9E0	2528	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543
	9F0	2544	2545	2546	2547	2548	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
A00	2560	2561	2562	2563	2564	2565	2566	2567	2568	2569	2570	2571	2572	2573	2574	2575
A10	2576	2577	2578	2579	2580	2581	2582	2583	2584	2585	2586	2587	2588	2589	2590	2591
A20	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603	2604	2605	2606	2607
A30	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622	2623
										1.1		•				
A40	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639
A50	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655
A60	2656	2657	2658	2659	2660	2661	2002	2663	2664	2665	2666	2667	2668	2669	2670	2671
A/0	2672	26/3	26/4	2675	26/6	2677	2678	2679	2680	2681	2682	2683	2684	2685	2686	2687
A80	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697	2698	2699	2700	2701	2702	2703
A90	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715	2716	2717	2718	2719
A-A0	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734	2735
AB0	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751
AC0	2752	2753	2754	2755	2756	2757	2758	2759	2760	4761	2762	2763	2764	2765	2766	2767
ADU	2/68	2/69	2770	2//1	2//2	2773	2774	2775	2776	2//7	27/8	2//9	2780	2781	2782	2783
AEU	2/84	2/85	2/86	2/8/	2/88	2/89	2/90	2/91	2/92	2/93	2/94	2/95	2796	2797	2798	2799
AFO	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
800	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827	2020	2820	2020	2021
B10	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842	2843	2020	2025	2030	2031
820	2848	2849	2850	3851	2852	2853	2854	2855	2856	2857	2858	2859	2044	2045	2040	2047
830	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	2875	2876	2877	2002	2003
500		2000	2000	2001	2000	2000		2071	2072	20/0	207 1	2070	20/0	2077	20/0	20/5
B40	2880	2881	2882	2883	2884	2885	2866	2887	2888	2889	2890	2891	2892	2893	2894	2895
B50	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907	2908	2909	2910	2911
B60	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923	2924	2925	2926	2927
B70	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942	2943
B80	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959
B90	2960	2961	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975
BA0	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991
BB0	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007
																1.1
BCO	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	3023
BDO	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	3038	3039
BEO	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	3054	3055
BFO	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067	3068	3069	3070	3071
C00	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087
C10	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103
C20	3104	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119
C30	3120	3121	3122	3123	3124	3125	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135
C40	3136	3137	3138	3139	3140	3141	3142	3143	3144	3145	3146	3147	3149	2140	2160	2161
C50	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162	3163	3164	3145	3166	2167
C60	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179	3180	3181	3192	2102
C70	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197	3198	3199
													0.00	5.07	5.00	3.33
C80	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215
C90	3216	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228	3229	3230	3231
CA0	3232	3233	3234	3235	3236	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247
CBO	3248	3249	3250	3251	3252	3253	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263
CCO	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3270
CDO	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291	3292	3293	3294	3295
CEO	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3300	3310	3211
CFO	3312	3313	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327
	1												3324	0020	3320	3321

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Continued)

D00 332e 332a 333a 33aa		0	1	2	3	4	5	6	7	8	9	А	в	с	D	E	F
101 3344 3345 3346 3348 3346 3346 3346 3346 3347 3348 3348 3348 3348 3348 3348 3348 3348 3348 3348 3348 3348 3344 3345 3344 3345 3344 3345 3344 3345 3344 3345 3344 3345 3344 3345 3348 3349 3344 3345 3346 3347 3378 3379 3371 3372 3371 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3474 3474 3447 3448 3446 3451 3516	D00	3328	3329	3330	3331	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343
120 3360 3361 3362 3363 3364 3366 3367 3378 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3374 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3378 3388 3386 3386 3386 3386 3386 3386 3386 3387 3340 3435 3435 3435 3435 3435 3435 3435 3435 3436 3451 3452 3451 3452 3451 3451 3451 3451 3451 3451 3514	D10	3344	3345	3346	3347	3348	3349	3350	3351	3352	3353	3354	3355	3356	3357	3358	3359
D30 3376 3377 3378 3379 3380 3381 3382 3384 3384 3384 3384 3384 3389 3389 3389 3389 3389 3381 3384 3484 3445 3454 3451 3518 3518 3519 3510 3511 3512 3513	D20	3360	3361	3362	3363	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375
Ded 3392 3394 3395 3396 3399 3400 3401 3402 3404 3405 3406 3401 3412 3412 3413 3413 3412 3413	D30	3376	3377	3378	3379	3380	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391
141 3992 3994 3994 3996 3399 3398 3399 4000 4010 34112 34112 34113 3414 3410 34113 3414 3415 3413 3414 3415 3413 3414 3415 3413 3414 3412 3413 3414 3423 3433 3433 3433 3433 3434 3451 3435 3433 3433 3433 3433 3434 3451 3422 3423 3433 3433 3444 3445 3446 3445 3446 3445 3446 3445 3446 3446 3444 3445 3443 3443 3443 3443 3443 3444 3445 3443																	
D60 3408 3409 3410 3411 3414 3415 3416 3417 3418 3419 3425 3423 3434 3435 3433 3434 3455 3436 3437 3438 3439 3435 3436 3455 3455 3455 3455 3455 3456 3457 3478 3438 3443 3442 3443 3442 3446 3446 3446 3466 3467 3468 3469 3470 3471 3478 3449 3495 3493 3443 3482 3483 3484 3468 3469 3470 3488 3489 3493 3491 3492 3493 3491 3493	D40	3392	3393	3394	3395	3396	3397	3398	3399	3400	3401	3402	3403	3404	3405	3406	3407
Dec 3424 3425 3428 3424 3443 3443 3443 3443 3443 3443 3443 3443 3443 3443 3443 3443 3445 3443 3445 3443 3445 3446 3445 3446 3445 3446 3445 3446 3445 3446 3449 3403 3443 3445 3446 3449 3500 3501	D50	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417	3418	3419	3420	3421	3422	3423
D70 3440 3441 3441 3441 3445 3446 3445 3446 3445 3446 3451 3511 3511 3511 3511 3511 3511 3513 3550 3551 3556 3550 3551 3555 3556 3557 3576 3577 3578 3579 3580 3581 3580 3581 3580 3581 3580 3581 3580 3581 3580 3581 3580 3581 3580 3581 3580	D60	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436	3437	3438	3439
Deb 3456 3457 3458 3456 3461 3462 3463 3463 3468 3469 3470 3471 De0 3472 3473 3474 3475 3473 3474 3475 3476 3489 3490 3491 3422 3483 3484 3485 3486 3481 3481 3481 3481 3481 3481 3481 3515 3511 3511 3511 3515 3513 3531 5333	D70	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	3451	3452	3453	3454	3455
Dec 3472 3473 3474 3475 3476 3472 3473 3474 3475 3476 3486 3487 3486 3487 3486 3487 3486 3487 3486 3487 3486 3487 3486 3487 3488 3489 3490 3491 3492 3493 3503 3513 3513 3513 3513 3513 3513 3513 3513 3513 3513 3513	D80	3456	3457	3458	3459	3460	3461	3462	3463	3464	3465	3466	3467	3468	3469	3470	3471
DA0 3488 3490 3490 3491 3493 3494 3495 3497 3498 3497 3501 3501 3501 3501 3501 3501 3511	D90	3472	3473	3474	3475	3476	3477	3478	3479	3480	3481	3482	3483	3484	3485	3486	3487
DB0 3504 3505 3506 3500 3500 3511 3512 3513 3514 3515 3516 3517 3518 3519 DC0 3520 3521 3522 3523 3524 3526 3527 3528 3520 3531 3532 3533 3534 3536 3536 3536 3533 3534 3544 3544 3445 3446 3547 3584 3564 3562 3563 3564 3566 3567 3584 3564 3564 3566 3567 3588 3580 3581	DAO	3488	3489	3490	3491	3492	3493	3494	3495	3496	3497	3498	3499	3500	3501	3502	3503
COI 3520 3521 3522 3523 3524 3526 3527 3528 3531 3531 3532 3533 3534 3535 DD0 3536 3537 3538 3539 3540 3541 3542 3544 3545 3546 3541 3542 3543 3546 3561 3562 3563 3564 3561 3562 3563 3564 3564 3561 3562 3563 3564 3564 3564 3564 3564 3564 3564 3564 3564 3564 3564 3564 3564 3569 3569 3569 3569 3561 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3613 3614 3641 3641 3641 3644 3646 3646 3667 3668 3669 3661 3662 3663 3667 3668 3660	DBO	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519
DC0 3520 3527 3528 3529 3530 3531 3532 3533 3534 3535 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3556 3557 3576 3577 3578 3579 3560 3561 3562 3563 3581 3582 3583 3584 3580 3581 3583 3584 3581 3586 3587 3588 3589 3590 3591 3593 3594 3595 3586 3587 3586 3587 3588 3589 3590 3591 3593 3593 3593 3594 3593 3593 3594 3593 3593 3594 3593 3594 3596 3591 3596 3597 3586 3589 3593 3544 3645 3666 3667 3686 3684 3642 3643 3644 3645											-						
DD0 3556 3537 3538 3540 3541 3542 3543 3544 3546 3547 3548 3549 3551 DF0 3568 3569 3571 3572 3573 3574 3575 3560 3561 3562 3563 3569 3661 3661 3661 3662 3663 3661 3662 3663 3667 3671 3672 3673 3674 3676 3677 3678 3669 3660 3661 3662 3663 3664 3665 3667 3668 3669 3669 3667 3671 3672 3673 3767 3676 3677 3678 369	DC0	3520	3521	3522	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535
DEC 3552 3554 3557 3573 3574 3576 3576 3576 3576 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3578 3583 3583 3583 3583 3583 3583 3583 3583 3583 3583 3583 3584 3583 3583 3584 3584 3583 3583 3584 3583 3583 3584 3584 3583 3583 3584 3584 3583 3583 3564 3656 3664 3664 3664 3664 3664 3664 3667 3667 3677 3678 3679 3680 3681 3683	DD0	3536	3537	3538	3539	3540	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551
DFO 3568 5567 3571 3573 3573 3575 3576 3577 3578 3579 3580 3581 3582 3583 3593 3594 3593 3594 3595 3596 3596 3595 3596 3597 3588 3590 3591 3592 3593 3594 3595 3596 3597 3588 3590 3591 3592 3593 3594 3596 3591 3512 3613 3612 3613 3614 3615 E20 3643 3643 3635 3636 3653 3654 3655 3656 3667 3661 3662 3663 3663 3667 3673 3743 3704 3614 3615 3666 3667 3673 3674 3624 3625 3664 3664 3664 3667 3673 3674 3643 3664 3667 3667 3676 3777 378 3793 3703 3703 3723 3723<	DEO	3552	3553	3554	3555	3556	3557	3558	3559	3560	3561	3562	3563	3564	3565	3566	3567
E00 3584 3586 3586 3587 3588 3589 3591 3592 3593 3594 3595 3596 3597 3598 3598 3593 3594 3595 3596 3597 3598 3593 3694 3695 3606 3607 3608 3609 3610 3611 3613 3614 3615 3623 3624 3624 3625 3626 3627 3628 3629 3640 3641 3642 3644 3644 5646 3664 3667 3668 3667 3658 3659 3660 3661 3662 3663 3670 3704 3704 3704 3705 3706 3707 3708 3799 3700 3701 3711 3718 3719 3720 3721 3722 3723 3724 3723 3724 3723 3740 3740 3741 3742 3743 E00 3760 3761 3764 3766 3767 3756	DFO	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580	3581	3582	3583
Ein 3600 3602 3602 3604 3605 3607 3608 3609 3610 3611 3613 3613 3614 3615 3603 3633 3634 3635 3633 3634 3615 3613 3614 3615 3614 3614 3645 3668 3669 3607 3671 3722 3733 3673 3673 3674 3675 3676 3676 3676 3768 3704 374 374 3737 3738 3739 3740 374 3755 3756 3757 3758 3759 3759 3759 375	E00	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
E20 3616 3817 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3638 3631 3641 3642 3643 3644 3645 3644 3645 3644 3645 3644 3645 3646 3647 3648 3643 3644 3645 3646 3647 3643 3644 3645 3646 3647 3648 3646 3665 3667 3668 3667 3668 3667 3676 3677 3678 3676 3677 3678 3679 3693	F10	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	.3614	3615
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3443 3644 3645 3664 3665 3664 3665 3666 3667 3668 3667 3658 3656 3657 3674 3674 3675 3676 3677 3678 3679 E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3691 3709 3701 3701 3701 3701 3701 3701 3701 3701 3701 3701 3701 3703 3733 3743 3753 3754 3756 3757 3758 3756 3757 3758 3756 3757 3758 3756 3757 3758 3756 3757 3758 3756 3757 3758 3756 3757 3758 3756 3757 3758 3758	F20	3616	3617	3618	3619	3620	3621	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631
E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3673 3673 3674 3675 3676 3677 3678 3679 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3670 3701 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3711 3713 3734 3735 3736 3737 3738 3739 3744 3742 3724 3725 3756 3757 3758 3759 3758 3759 3764	E30	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643	3644	3645	3646	3647
E40 3646 3665 3667 3668 3665 3667 3668 3667 3668 3667 3668 3667 3668 3667 3668 3667 3678 3677 3678 3676 3677 3678 3676 3677 3678 3676 3677 3678 3679 3679 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3705 3711 3703 3701 3703 3703 3733 3733 3733 3733 3734 3735 3750 3751 3752 3754 3755 3756 3757 3758 379 3793 3794 3793 3793 3793 3793 3793 3793															00.0		
EE0 3664 3665 3666 3667 3668 3669 3671 3672 3673 3674 3675 3676 3677 3678 3679 3679 3679 3679 3679 3679 3679 3679 3679 3679 3691 3692 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3693 3694 3704 3714 3714 3714 3714 3714 3714 3723 3733 3734 3753 3754 3755 3756 3756 3757 3758 3756 3757 3758 3756 3757 3773 3733 3734 3743 3743 3743 3743 3743 3743 3753 3754	E40	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663
E60 3680 3681 3682 3683 3684 3685 3686 3686 3686 3686 3686 3686 3689 3690 3691 3692 3693 3694 3695 E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3711 3711 3711 3711 3711 3712 3723 3733 3733 3733 3733 3735 3753 3754 3755 3756 3757 3758 3759 3740 3741 3742 3743 375 3764 3765 3766 3767 3758 3759 3750 3771 3773 3773 3773 3773 3773 3784 3785 3768 3769 3700 3711 3772 3773 3773 3773 3773 3773 3773 3773 3773 3784 3803 3803 3803 3803<	E50	3664	3665	3666	3667	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679
E70 3696 3697 3698 3699 3700 3701 3701 3702 3703 3704 3705 3706 3707 3708 3709 3711 3711 E80 3712 3713 3714 3715 3716 3717 3718 3729 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3724 3725 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3771 3772 3773 3774 3773	E60	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	3690	3691	3692	3693	3694	3695
E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3726 3727 3723 3734 3733 3733 3733 3733 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3734 3735 3736 3737 3738 3790 3761 3750 3751 3756 3756 3756 3756 3756 3756 3756 3756 3756 3761 3772 3773	E70	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 EA0 3744 3745 3746 3744 3745 3760 3751 3752 3753 3754 3755 3756 3756 3757 3758 3759 3750 3771 3771 3772 3773 3774 3774 3774 3774 3774 3774 3775 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3764 3765 3766 3777 3773 3774 3773 3774 3775 3769 3791 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3781 3801 3801 3801 3801 3801	E80	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3750 3751 3752 3753 3754 3755 3756 3757 3758 3757 3758 3757 3773 3774 3773 3774 3775 ED0 3761 3761 3761 3767 3781 3782 3783 3784 3785 3766 3777 3773 3774 3774 3775 ED0 3792 3793 3796 3797 3798 3799 3800 3801 3802 3803 3801 3812 3813 3814 3815 3816 3811 3813 3813 3813 3813 3813 3813 3813 3813 3813 3813 3813 3823 3833 3836 3837 3838 3836 3837 3838 3836 3837 3838 3836 <td>E90</td> <td>3728</td> <td>3729</td> <td>3730</td> <td>3731</td> <td>3732</td> <td>3733</td> <td>3734</td> <td>3735</td> <td>3736</td> <td>3737</td> <td>3738</td> <td>3739</td> <td>3740</td> <td>3741</td> <td>3742</td> <td>3743</td>	E90	3728	3729	3730	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743
EB0 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 EC0 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 ED0 3002 3803 3811 3812 3813 3814 3815 3816 3817 3812 3823 3831 3832 3833 3834 3835 3836 3837 3836 3837 3836 3837 3836 3837 3836 3837 3836 3837 3836 3837 3836 3837 3836 3837 3864 3861 3862 3867 3866 3867 3866 3867 3866 3867 3866 3867 3868 3881 3882 3883 3884 3885 3886 3887 3887 3880 <td>EAO</td> <td>3744</td> <td>3745</td> <td>3746</td> <td>3747</td> <td>3748</td> <td>3749</td> <td>3750</td> <td>3751</td> <td>3752</td> <td>3753</td> <td>3754</td> <td>3755</td> <td>3756</td> <td>3757</td> <td>3758</td> <td>3759</td>	EAO	3744	3745	3746	3747	3748	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759
ECO 3776 3777 3778 3781 3801 3801 3801 3804 3805 3804 3805 3804 3805 3804 3805 3804 3805 3803 3831 3832 3833 3834 3835 3836 3837 3837 3838 3835 3836 3837 3837 3836 3831 3822 3823 3844 3845 3846 3847 3848 3848 3845 3886 3867 3868 3867 3868 3867 3868 3867 3868 3867	EBO	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770	3771	3772	3773	3774	3775
ECO 3776 3778 3781 3781 3782 3783 3784 3785 3786 3787 3780 3791 3781 3817 3810 3810 3810 3810 3810 3810 3820 3821 3822 3833																	
ED0 3792 3794 3796 3797 3798 3799 3000 3801 3802 3804 3805 3806 3807 3808 3808 3805 3806 3807 3803 3814 3815 3816 3815 3815 3816 3815 3816 3815 3816 3815 3816 3817 3818 3815 3816 3817 3818 3815 3816 3817 3818 3815 3816 3817 3818 3815 3817 3818 3815 3817 3818 3815 3817 3818 3816 3817 3818 3816 3817 3818 3815 3817 3818 3815 3817	EC0	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789	3790	3791
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3816 3817 3816 3817 3816 3817 3816 3817 3816 3817 3816 3817 3812 3822 3823 3833 3834 3835 3836 3837 3838 3833 3834 3835 3836 3837 3838 3833 3834 3835 3836 3837 3838 3837 3836 3835 3836 3837 3838 3837 3837 3838 3835 3864 3845 3864 3845 3867 3877 3878 3879 3880 3881 3882 3881 3882 3884 3885 3886 3887 3888 3881 3882 3883 3884 3859 3890 3900 3900 3900 3900 3900 3900 3900 3900 3900 3900 3901 3911 3912 3913	ED0	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807
EF0 3824 3825 3826 3827 3828 3829 3831 3832 3833 3834 3835 3836 3837 3838 3839 F00 3840 3841 3842 3843 3844 3844 3844 3846 3847 3848 3846 3847 3848 3845 3856 3851 3852 3853 3854 3857 3858 3854 3855 3856 3857 3858 3854 3856 3857 3858 3854 3856 3857 3858 3858 3868 3867 3858 3858 3889 3890 3801 3802 3893 3894 3895 3886 3887 3888 3889 3890 3901 3902 3903 3903 3933	EE0	3808	3809	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823
F00 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3858 3859 3857 3878 3879 3879 3879 3879 3879 3881 3882 3889 3890 3901 3902 3901 3902 3903 3903 3901 3901 3902 3901	EF0	3824	3825	3826	3827	3828	3829	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839
F10 3866 3857 3868 3869 3861 3862 3863 3864 3865 3866 3867 3871 F20 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3870 3871 F20 3883 3880 3891 3892 3893 3894 3895 3893 3891 3893 3891 3891 3891 3891 3891 3891 3891 3891 3891 3991 3901 3901 3901 3901 3901 3901 3901 3901 3911 3912 3913 3914 <td>F00</td> <td>3840</td> <td>3841</td> <td>3842</td> <td>3843</td> <td>3844</td> <td>3845</td> <td>3846</td> <td>3847</td> <td>3848</td> <td>3849</td> <td>3850</td> <td>3851</td> <td>3852</td> <td>3853</td> <td>3854</td> <td>3855</td>	F00	3840	3841	3842	3843	3844	3845	3846	3847	3848	3849	3850	3851	3852	3853	3854	3855
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3886 3881 3884 3885 3886 3887 3893 3891 3892 3893 3893 3891 3892 3893 3891 3891 3993 3903 3911 3912 3913 3914 3912 3913 3914 3912 3933 3931 3932 3924 3925 3926 3927 3928 3929 3930 3931 3932 3934 3935 3941 3942 3943 3944 3945 3946 3947 3948 3949 3930 3931 3932 3933 3934 3935 3946 3947 3948 3949 3930 3931 3932 3933 3934 3945	F10	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868	3869	3870	3871
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3902 3903 F40 3904 3905 3905 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3911 3912 3913 3914 3915 3916 3917 3918 3919 F60 3936 3937 3924 3942 3943 3944 3945 3944 3944 3944 3944 3944 3945 3944 3945 3944 3945 3944 3945 3944 3945 3946 3947 3948 3989 3996 3967 3988 3989 3990 3991 3992 3933	F20	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887
F40 3904 3905 3906 3907 3908 3909 3911 3912 3913 3914 3915 3916 3917 3918 3919 F50 3920 3921 3923 3924 3925 3926 3927 3928 3929 3930 3931 3914 3915 3916 3917 3918 3919 F60 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3947 3948 3949 3950 3951 3946 3946 3946 3946 3946 3946 3946 3946 3946 3946 3946 3946 3947 3948 3949 3950 3941 3947 3973 3974 3977 3978 3979 3980 3981 3982 3983 3989 3990 3991 3992 3993 3994 3995 3996 3997 <td>F30</td> <td>3888</td> <td>3889</td> <td>3890</td> <td>3891</td> <td>3892</td> <td>3893</td> <td>3894</td> <td>3895</td> <td>3896</td> <td>3897</td> <td>3898</td> <td>3899</td> <td>3900</td> <td>3901</td> <td>3902</td> <td>3903</td>	F30	3888	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903
F60 3920 3921 3922 3923 3924 3925 3926 3927 3928 3933 3934 3935 3934 3935 3941 3942 3926 3927 3928 3933 3934 3934 3943 3944 3945 3946 3947 3948 3943 3944 3945 3946 3947 3948 3949 3950 3951 3951 3951 3953 3934 3935 3941 3942 3942 3942 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3981 3982 3983 3991 3971 3971 3971 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3990 3991 3992 3993 3993 3993 3993 3994 3995 3996 3991 3996 3991	F40	3004	3005	3006	3907	3008	3000	2010	2011	3012	3013	3014	2015	2016	2017	2019	2010
F60 3936 3937 3938 3939 3940 3944 3945 3944 3945 3944 3945 3946 3947 3948 3949 3950 3951 3953 3951 3953 3951	E50	3920	3921	3922	3923	3924	3925	3976	3927	3972	3979	3930	3031	3910	3033	3934	3035
F70 3952 3954 3954 3955 3956 3956 3951 3961 3962 3963 3964 3965 3966 3967 3953 3961 3961 3962 3963 3964 3965 3966 3967 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3994 3995 3960 3961 3962 3963 3964 3965 3966 3967 3977 3978 3979 3980 3981 3982 3983 3990 3991 3992 3933 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3991 3922 3933 3944 3957 3976 3977 3978 3979 3980 3991 3993 3991 4021 4011 4012	F60	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945	3946	3047	394.9	3040	3950	3951
F80 3968 3969 3970 3971 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3982 3982 3981 3982 3982 3983 3999 3991 3973 3974 3975 3976 3977 3978 3979 3984 3982 3982 3983 3989 3990 3991 3992 3983 3989 3990 3991 3992 3993 3994 3995 3996 3991 3993 3993 3991 3992 3983 3989 3993 3991 3992 3993 3991 3992 3993 3991 3992 3993 3993 3994 3995 3996 3991 3992 3993 3993 3991 3992 3993 3991 3992 3993 3991 3992 3993 3991 3992 3993 3991 3993 3993 3991 3992 3993 3991 3992	F70	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
F80 3968 3969 3970 3971 3972 3973 3975 3976 3977 3978 3998 3980 3981 3982 3983 3984 3984 3984 3984 3984 3995 3994 3995 3996 3991 3984 3995 3996 3991 3992 3993 3994 3995 3996 3993 3994 3995 3996 3993 3998 3995 3998 3999 3991 3992 3993 3994 3995 3996 3993 3994 3995 3996 3993 3994 3995 3996 3993 3994 3995 3996 3993 3994 3995 3996 3993 3994 3995 3996 3991 3995 3996 3991 3995 3996 3991 3995 3996 3991 3995 3996 3991 3995 3996 3991 3995 3996 3991 3992 3991 3995								2000			2001	5002	3000	0004	3000		3007
F90 3984 3987 3988 3989 3999 3991 3992 3933 3994 3995 3998 3998 3998 3998 3998 3998 3998 3998 3998 3998 3991 3992 3933 3943 3995 3996 3991 3991 3992 3933 3944 3995 3996 3991	F80	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983
FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4011 4011 4012 4013 4014 4015 FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FD0 4048 4049 4050 4051 4055 4056 4057 4058 4056 4057 4044 4045 4046 4047 FE0 4064 4065 4066 4067 4053 4056 4057 4058 4056 4057 4076 4076 4078 4078 4075 4076 4078 4078 4075 4076 4076 4078	F90	3984	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999
FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4031 FC0 4032 4033 4034 4035 4036 4037 4038 4039 4041 4042 4043 4044 4045 4046 4047 FD0 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4056 4067 4064 4045 4046 4047 FD0 4064 4065 4067 4068 4067 4070 4071 4072 4073 4074 4075 4076 4077 4078 4078 4074 4075 4076 4077 4078 4074 4075 4076 4077 4078 4074 4075 4076 4078 4078 4074 4075 4076 4078 4078 4078 4078 4084 4086	FA0	4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015
FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 FD0 4048 4049 4050 4051 4052 4053 4056 4057 4058 4056 4057 4058 4056 4057 4078 4076 4074 4074 4074 4074 4074 4074 4041 4042 4043 4045 4046 4047 FD0 4048 4065 4067 4058 4056 4057 4074 4074 4074 4074 4075 4076 4077 4078 4076 4077 4078 4074 4075 4078 4078 4074 4075 4076 4077 4078 4076 4076 4076 4077 4078 4076 4078 4084 4085 4086 4086 4086 4086 4086 4086 4086 4086 4086 <td>FBO</td> <td>4016</td> <td>4017</td> <td>4018</td> <td>4019</td> <td>4020</td> <td>4021</td> <td>4022</td> <td>4023</td> <td>4024</td> <td>4025</td> <td>4026</td> <td>4027</td> <td>4028</td> <td>4029</td> <td>4030</td> <td>4031</td>	FBO	4016	4017	4018	4019	4020	4021	4022	4023	4024	4025	4026	4027	4028	4029	4030	4031
FD0 4048 4049 4050 4051 4052 4053 4054 4057 4058 4059 4060 4061 4062 4063 FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4075 4076 4061 4062 4063 FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4075 4076 4077 4078 4093 4094 4095 4093 4094 4095 4088 4089 4089 4089 4091 4092 4093 4094 4095	FC0	4032	4033	4034	4035	4036	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047
FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 FF0 4080 4081 4082 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095	FDO	4048	4049	4050	4051	4052	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063
FF0 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095	FEO	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073	4074	4075	4076	4077	4078	4079
	FFO	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095

POWERS OF TWO

TABLE OF POWERS OF SIXTEEN10

						16 ⁿ	n	16 ⁻ⁿ					
						1	0	0.10000	00000	00000	00000	×	10
						16	1	0.62500	00000	00000	00000	×	10 ⁻¹
						256	2	0.39062	50000	00000	00000	×	10 ⁻²
					4	096	3	0.24414	06250	00000	00000	х	10 ⁻³
					65	536	4	0.15258	78906	25000	00000	x	10 ⁻⁴
				1	048	576	5	0.95367	43164	06250	00000	×	10 ⁻⁶
				16	777	216	6	0.59604	64477	53906	25000	x	10 ⁻⁷
				268	435	456	7	0.37252	90298	46191	40625	x	10 ⁻⁸
			4	294	967	296	8	0.23283	06436	53869	62891	×	10 ⁻⁹
			68	719	476	736	9	0.14551	91522	83668	51807	х	10 ⁻¹⁰
		1	099	511	627	776	10	0.90949	47017	72928	237 92	x	10 ⁻¹²
		17	592	186	044	416	11	0.56843	41886	08080	14870	x	10 ⁻¹³
		281	474	976	710	656	12	0.35527	13678	80050	09294	x	10 ⁻¹⁴
	4	503	599	627	370	496	13	0.22204	46049	25031	30808	×	10 ⁻¹⁵
	72	057	594	037	927	936	14	0.13877	78780	78144	56755	x	10 ⁻¹⁶
1	152	921	504	606	846	976	15	0.86736	17379	88403	54721	x	10 ⁻¹⁸

			10 ⁿ	n						
			1	0	1.0000	0000	0000	0000		
			Α	1	0.1999	9999	9999	999A		
			64	2	0.28F5	C28F	5C28	F5C3	×	16 ^{.1}
			3E8	3	0.4189	374B	C6A7	EF9E	x	16 ⁻²
			2710	4	0.68DB	8BAC	710C	B296	x	16 ⁻³
		1	86A0	5	0.A7C5	AC47	1B47	8423	×	16 ⁻⁴
		F	4240	6	0.10C6	F7A0	B5ED	8D37	×	16 ⁴
		98	9680	7	0.1AD7	F29A	BCAF	4858	x	16 ⁻⁵
		5F5	E100	8	0.2AF3	1DC4	6118	73BF	×	16 ⁻⁶
		3B9A	CA00	9	0.44B8	2FA0	9B5A	52CC	×	16 ⁻⁷
	2	540B	E400	10	0.6DF3	7F67	SEF6	EADF	x	16 ⁻⁸
	17	4876	E800	11	0.AFEB	FF0B	CB24	AAFF	×	16 ⁻⁹
	E8	D4A5	1000	12	0.1197	9981	2DEA	1119	×	16 ⁻⁹
	918	4E72	A000	13	0.1C25	C268	4976	81C2	×	16-10
	5AF3	107A	4000	14	0.2D09	370D	4257	3604	×	16-11
3	8D7E	A4C6	8000	15	0.480E	BE7B	9D58	566D	×	16 ⁻¹²
23	8652	6FC1	0000	16	0.734A	CA5F	6226	FOAE	×	16 ⁻¹³
163	4578	5D8A	0000	17	0.B877	AA32	36A4	B449	×	16-14
DE0	B6B3	A764	0000	18	0.1272	5DD1	D243	ABA1	×	16-14
8AC7	2304	89E8	0000	19	0.1D83	C94 F	B6D2	AC35	×	16 ⁻¹⁵

Appendix C

STANDARD CHARACTER CODES

Appendix C

STANDARD CHARACTER CODES

Hexadecimal Representation	ASCII (7 bit)	EBCDIC (8 bit)]	Hexadecimal Representation	ASCII (7bit)	EBCDIC (8 bit)
0			1	31	1	
2				32	2	
3				33	. 3	
4		-		35	5	
5				36	6	
6				37	7	
7				38	- 8	
. 8				39	9	
9				3A		
B A		14 C 14 L		3B 2C		
Č		1. A.	1 - E	30	<u>_</u>	
D D				3E	>	
E			ľ	3F	?	
F		1. A.	.	40	@	blank
10				41	Α	
11				42	В	
12				43	С	s
13				44	D	
14				45	E	
16				40	G	1. A.
17				48	н	
18				49	1	
19				4A	J] -
1A				4B	К	
1B				4C	L	(
10		× .		4D	M	(
10				4E	N	+
1F	2			4F 50	D D	
20	blank	1		51	0	1 U 18
21	.1			52	R	
22	"	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		53	S	5
23	#			54	Т	
24	\$			55	U,	
25	% c			56	V	
20	8 ,			57	W	
27	1			58	X .	
29	ì			59	7	ŕ
2A	i			5B	Ĩ	\$
2B	+			5C	Ň	
2C	· · ·		·	5D	1	· · · ·)
2D	-			5E		; .
2E			1 ·	5F		Λ.
21-				60	1	
	0	1	1	61	l a	1

C-2

Hexadecimal Representation	ASCII (7 bit)	EBCDIC (8 bit)		Hexadecimal Representation	ASCII (7bit)	EBCDIC (8 bit)
62	b			97		p
63	с			98		q
64	d			99		r
65	е			9A		
66	f			9B		
67	g			9C		
68	h			9D		
69	i i			9E		
6A	1 I			9F		
6B	k			A0		
6C		%		A1		
6D	m	-		A2		s
6E	n)		A3		t
6F	0	?		A4		u
70	p.			A5		v
/1	q			A6		w
72	r			A/		×
/3	S			A8		Ŷ
74	t			A9 A A		z
/5 76	u u					
70	v					
78	v					
70	Ŷ					
70 74	7			ΔF		
7B		#		BO		
7C		(i)		B1		
7D				B2		
7E				B3		1. A.
7F				B4		
80				B5		
81		а		B6		
82		b		B7		
83		с		B8		
84		d		B9		
85		е		BA		
86		f		BB		
87		g		BC		
88		h		BD		
89				BE		
8A 8D				BF		· ·
8B						
80		:				A
8D 9E				C2		В
8E				C4		
90				C5		F
91				C6		F
92		k ·		C7		Ġ
93		1		C8		н
94		m		C9		
95		n		CA		
96		o ;	l I	CB		

Appendix C (Continued)

C-3

Hexadecimal Representation	ASCII (7 bit)	EBCDIC (8 bit)		Hexadecimal Representation	ASCII (7bit)	EBCDIC (8 bit)
CC				E6		W
CD				E7 -	1.1	х
CE				E8		Y 2 1
CF				E9		Ξ Z ·
D0				EA		1. A.
D1		J.		EB		
D2		. K .,		EC		
D3		L.		ED		-
D4		м		EE		
D5		N .		EF		
D6		0		FO		0
D7	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Р		- F1	· · · ·	1
D8		Q		F2		2
D9		R		F3		3
DA	1. Sec. 1. Sec. 1.			F4		4
DB			1. 	F5	1.5	5
DC				- F6		6
DD				F7		7
DE				F8		8 .
DF				F9		. 9
EO				FA		
E1				FB		
E2		S		FC		
E3		Т	ŀ	FD		
E4	8 - C	U		FE		
E5		V		FF		

Appendix C (Continued)

No attempt has been made in this handbook to teach basic boolean algebra, binary arithmetic, logic design or software programming. Rather, the objective is to present the unique features of Electronic Array's EA9002 MPU and how it may be applied. For basic understanding of digital logic implemented with TTL the reader is directed to "Logic Design With Integrated Circuits" by W.E. Wickes published by Wiley & Sons, N.Y., N.Y. For better understanding of logic techniques and microprocessor architecture the reader is directed to "An Introduction to Microcomputers" written and published by Adam Osborne and Assoc. Inc., 2950 Seventh Street, Berkeley, CA. 94710.

Electronic Arrays Sales Offices

EA SALES OFFICES

U.S. SALES REPRESENTATIVES

INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS

Electronic Arrays Sales Offices

EA SALES OFFICES

Vice President of Marketing

Ed Turney Tel: (415) 964-4321

Headquarters Sales Manager .

Ed Meagher Tel: (415) 964-4321

Headquarters

550 E. Middlefield Road Mountain View, CA 94043 Tel: (415) 964-4321 TWX: 910-379-6985 Toll Free WATS: (800) 277-9962

Eastern Area

Jim Carr Regional Sales Manager 2 Coleman Avenue Cherry Hill, NJ 08034 Tel: (609) 795-5066 TWX: 710-896-1488

Mid-America Area

Shel Schumaker Regional Sales Manager 11960 Westline Industrial Drive Suite 322 St. Louis, MO 63141 Tel: (314) 878-6446 TWX: 910-764-0872

Western Area

Dick Goodman Regional Sales Manager 9932 Voyager Circle Huntington Beach, CA 92646 Tel: (714) 968-3775

Ed Meagher Regional Sales Manager San Francisco Bay Area 550 E. Middlefield Road Mountain View, CA 94043 Tel: (415) 964-4321 TWX: 910-379-6985

Europe

Chris P. Carli Sales Manager - Europe Hobbema, Str. 26 Amsterdam/Zuid, Netherlands Tel: (020)712560 TLX: 12674

Far East

Jim Shales Sales Manager - Far East 550 E. Middlefield Road Mountain View, CA 94043 Tel: (415) 964-4321 TWX: 910-379-6885

U.S. SALES REPRESENTATIVES

Arizona

Chaparral-Dorton P.O. Box 16127 364 E. Virginia Avenue Phoenix, AZ 850II Tel: (602) 263-0414 TWX: 910-951-4225

Southern California

Bestronics 1728 S. La Cienega Boulevard

Los Angeles, CA 90035 Tel: (213) 870-9191 TWX: 910-340-6369

Bestronics 8369 Vickers Street San Diego, CA 92111 Tel: (714) 278-2150 TWX: 910-335-1267

Northern California

Caltron/Pyle,Inc. 415 Clyde Avenue, Suite D Mountain View, CA 94043 Tel: (415) 964-3244

Colorado

The Thorson Company 5290 Yale Circle Denver, CO 80222 Tel: (303) 759-0809 TWX: 910-931-0429

Connecticut

Com-Sale, Inc. 633 Williams Road Wallingford, CT 06492 Tel: (203) 269-7964

Crane & Egert Corp. Greenwich, CT 06830 Tel: (203) 622-9191

Florida

Electrocomp Associates, Inc. 4101 N. Andrews Ave., Suite 101 Ft. Lauderdale, FL 33309 Tel: (305) 564-8571 TWX: 510-955-9735

Illinois

Gassner & Clark Company 1127 S. Mannheim Road Westchester, IL 60153 Tel: (312) 345-4245 TWX: 910-234-2082

Indiana

Ihrig Associates, Inc. 6410 Woodwind Drive Indianapolis, IN 46217 Tel: (317) 783-7630

lowa

Engineering Services Co. P.O. Box 2145 Cedar Rapids, IA 52406 Tel: (319) 362-0503

Kansas

Engineering Services Co. 7830 State Line Road Prairie Village, KS 66208 Tel: (913) 649-4000

Massachusetts

Com-Sale, Inc. 235 Bear Hill Road Waltham, MA 02154 Tel: (617) 890-0011

Michigan

A.P. Associates 39950 Grand River Novi, MI 48050 Tel: (313) 476-2300 TWX: 810-223-6031

Missouri

Engineering Services Co. 8420 Delmar Boulevard St. Louis, MO 63124 Tel: (314) 997-1515

New Hampshire

Com-Sale, Inc. c/o Yankee Electronics Grenier Industrial Village Manchester, NH 03053 Tel: (603) 668-8500

New Mexico

The Thorson Company 2201 San Pedro Drive, NE Building 2, Suite 107 Albuquerque, NM 87110 Tel: (505) 265-5655 TWX: 910-989-1174

New York

Crane & Egert Corp. 146 Meacham Avenue Elmont, NY 11003 Tel: (516) 488-2100 TWX: 510-223-0417

Ohio

K.W. Electronic Sales, Inc. 8312 North Main Street Dayton, OH 45415 Tel: (513) 890-2150 TWX: 810-450-2521

K.W. Electronic Sales, Inc. 3439 West Brainard Road Cleveland, OH 44122 Tel: (216) 831-8292 TWX: 810-427-2902

Oregon

N.R. Schultz Company P.O. Box 156 4195 S.W. Cedar Hills Boulevard Beaverton, OR 97005 Tel: (503) 643-1644 TWX: 910-467-8707

Pennsylvania

K.W. Electronic Sales, Inc. 4024 William Flynn Highway Route 8 Allison Park, PA 15101 Tel: (412) 487-4300 TWX: 710-795-3636 Harry Nash Associates P.O. Box 188 1009 York Road Willow Grove, PA 19090 Tel: (215) 657-2213 TWX: 510-665-6273

Texas

J. Clay Co. 2619 Electronic Lane, Suite 302 Dallas, TX 75220 Tel: (214) 350-1281 TWX: 910-861-9160

Virginia

Boyle Associates 12001 Whip Road Reston, VA 22091 Tel: (703) 620-9558

Washington

N.R. Schultz Co. P.O. Box 159 855-106th NE Bellevue, WA 98009 Tel: (206) 454-0300 TWX: 910-443-2329

INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS

Australia

A.J. Ferguson 44 Prospect Road Prospect 5082, S. Australia Tel: 269-1244 TLX: 82635

Belgium

Betea Sprl. 15 Av. Geo Bernier Brussels 5, Belgium Tel: 02-649-99-00 TLX: 23188

Electronic Arrays Hobbema, Str.26 Amsterdam/Zuid, Netherlands Tel: (020) 712560 TLX: 12674

Finland

S.W. Instruments Karstulantie 4B Helsinki 55, Finland 00550 Tel: 738265/713575 TLX: 122411

France

Technology Resources S.A. 27-29 Rue des Poissonniers 92200 Neuilly-Sur-Seine Paris, France Tel: 01 747 4717 TLX: 610657

Germany

Electronic Arrays, GmbH 8000 Munchen 70 Hofmannstrasse 20 West Germany Tel: (089) 7853168 TLX: 5213066

Holland

Famatra Benelux Ginnenkenweg 128 Breda, Holland Tel: 01600-33457 TLX: 54521

Electronic Arrays Hobbema, Str. 26 Amsterdam/Zuid, Netherlands Tel: (020) 712560 TLX: 12674

Hong Kong*

Caduceus Ltd. Rm. 1204 Hang Lung Center Patterson Street Causeway Bay, Hong Kong Tel: 5-770504,505 TLX: 83640

India

Hinditron Services Pvt. Ltd. 69/A.L. Jagmohandas Marg Bombay, 400 006, India Tel: 36-5-3-44 TLX: 0112594 or 0112326 Cable: TEKHIND

Israel

Telsys Ltd. 54, Jabotinsky Road Ramat-Gan 52-462, Israel Tel: 739865, 722362 TLX: 032392

Italy

Memos Italiana S.R.L. Via Boccaccio 2 20123 Milano, Italy Tel: 02-871353 or 867589 TLX: 34343

Japan

Rikei Corporation 1-18-14 Nishi-Shimbashi Minato-ku Tokyo 105, Japan Tel: 03-591-5241 TLX: 24208

Korea

Caduceus Ltd. Rm. 301 Sung Won Bidg. 15, 2-GA Hyehyun-Dong Chung-ku, Seoul, Korea Tel: 28-6108

Norway

Kjell Bakke NYGT 48 P.O. Box 143 Strommen 2011 Norway Tel: 02-711872 TLX: 19407

South and Central America

Intectra 1950 Colony Street Mountain View, CA 94043 Tel: (415) 967-8818 Cable: INTECTRA

Spain

Belport Electronica Canillas 22 Madrid 2, Spain Tel: 01 262 88 37/8 TLX: 22048

Sweden

Svensk Tele Industri Box 502 162 05 Vallingby, Sweden Tel: 08/89 04 35 TLX: 13033

Switzerland

Dimos AG Badenerstrasse 701 8048 Zurich, Switzerland Tel: 01-626-140 TLX: 52028

Taiwan*

Caduceus Ltd. Lincoln Center Flat "N" 7th Floor 121 Szu-Wei Road Taipei, Taiwan Tel: 721-0431,0483 TLX: 21071

United Kingdom

Analog Devices, Ltd. Central Ave. Trading Estate W. Molesey Surrey, England Tel: 01-941-0466 TLX: 929962

Yugoslavia

Ellyptic AG Ptujska 14 62000 Maribor, Yugoslavia Tel: 062 31041

*U.S. Contact: Centauri Trading Co., 1245 S. Winchester, Suite 101, San Jose, CA 95128, Tel: (408) 246-4071, TLX: 352020

Electronic Arrays, Inc., 550 east middlefield road, mountain view, california 94043 telephone (415) 964-4321 • TWX 910-379-6985