

USERS HANDBOOK
EA 9002 MICROPROCESSOR

Material Contributed By

Kern Moulton
Adam Osborne
Gary Prosenko
Richard Umstattd
W.E. Wickes

Copyright © 1976 by Electronic Arrays Inc.

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system. or transmitted in any form or by any
means. electronic, mechanical, photocopying, recording, or otherwise. without the
prior written permission of the publishers. ·

Published by

electronic
arravs. inc.

550 East Middlefield Road
Mountain View. Cal~fornia. 94043

TABLE OF CONTENTS

CHAPTER PAGE

INTRODUCTION 1- 1

WHAT THIS BOOK CONTAINS 1-2
HOW THIS BOOK HAS BEEN PRINTED 1-3

2 AN EA9002 MICROPROCESSOR OVERVIEW 2-1

MICROPROCESSOR ARCHITECTURE 2-1
THE ACCUMULATOR 2-1
SCRATCH MEMORY 2-1
GENERAL PURPOSE REGISTERS AND DAT A MEMORY
ADDRESSING 2-4
THE PROGRAM COUNTER AND PROGRAM MEMORY
ADDRESSING 2-6
THE SUBROUTINE ST ACK 2-8
ST A TUS FLAGS 2-10
STATUS FLAG SUMMARY 2-11

PINS AND SIGNALS 2-12

3 EA9002 MICROPROCESSOR CHARACTERISTICS 3-1

INSTRUCTION TIMING 3-1
INSTRUCTION FETCH AND EXECUTION 3-3

SINGLE BYTE INSTRUCTIONS 3-4
TWO BYTE INSTRUCTIONS 3-8

INTERMEDIATE STATE TIME BUS UTILIZATION 3-8
THE WAIT STATE 3-15
INTERRUPT SEQUENCE 3-16
RESET 3-17
DETAILED SIGNAL TIMING 3-18

4 SYSTEMS CONFIGURATION 4-1

EXTERNAL MEMORY 4-2
INTERFACING ROM 4 2
INTERFACING RAM 4-4

SYSTEM CONFIGURATIONS WITH 1/0 4-6
MEMORY BANK SWITCHING 4-11
SEPARATING PROGRAM AND DATA MEMORY 4-13

INTERRUPT PROCESSING 4-15

5 THE INSTRUCTION SET 5-1

ABBREVIATIONS 5-1

Ill

TABLE OF CONTENTS (Continued)

CHAPTER . PAGE

ADD-ADD REGISTER TO ACCUMULATOR WITH
CARRY 5-4
ADS - ADD SCRATCH MEMORY TO ACCUMULATOR
WITH CARRY 5-5
AND - AND REGISTER WITH ACCUMULATOR 5-6
CAP-COPY ACCUMULATOR TO PAGE 5-7
CAR - COPY ACCUMULATOR TO REGISTER 5-8
CLA- CLEAR THE ACCUMULATOR 5-9
CLB - CLEAR THE ACCUMULATOR AND
CARRY STATUS 5-10
CLC - RESET THE CARRY STATUS TO 0 5- 10
CMA- COMPLEMENT ACCUMULATOR 5-11
CMC-COMPLEMENT THE CARRY STATUS 5-12
CMP-COMPARE REGISTER WITH ACCUMULATOR 5-12
CPA-COPY PAGE TO ACCUMULATOR 5-13
CAA - COPY REGISTER TO ACCUMULATOR 5-14
CSA - COPY STATUS TO ACCUMULATOR 5-15
DAC ~DECREMENT THE ACCUMULATOR 5-16
DCR - DECREMENT REGISTER 5-17
DL Y - DELAY TWO CYCLES 5-18
DRJ- DECREMENT REGISTER AND JUMP 5-19
DSI - DISABLE INTERRUPT 5-20
ENI - ENABLE INTERRUPT 5-21
!AC- INCREMENT THE ACCUMULATOR 5-~
INP - INPUT TO ACCUMULATOR 5-23
INR - INCREMENT REGISTER 5-24
IOR - INCLUSIVE OR REGISTER WITH
ACCUMULATOR 5-25
IRJ - INCREMENT REGISTER AND JUMP 5-27
JCY - JUMP IF CARRY EQUALS 1 5-28
JEQ - JUMP IF ACCUMULATOR AND REGISTER
ARE EQUAL 5-29
JGE·-JUMP IF ACCUMULATOR IS GREATER
THAN, OR EQUAL TO REGISTER 5-30
JGT - JUMP IF ACCUMULATOR IS GREATER
THAN REGISTER 5-30
JHC - JUMP IF HALF CARRY . 5-30
JIN - JUMP INDIRECT (IMPLIED) 5-30
JLE - JUMP IF ACCUMULATOR IS LESS THAN
OR EQUAL TO REGISTER 5-31

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

JL T - JUMP IF ACCUMULATOR IS LESS THAN
REGISTER 5-32
JNC - JUMP IF NO CARRY 5-32
JNE-JUMP IF ACCUMULATOR IS NOT
EQUAL TO REGISTER 5-32
JNZ - JUMP IF ACCUMULATOR IS NOT ZERO 5-32
JSR - JUMP TO SUBROUTINE 5-32
JUN - JUMP UNCONDITIONAL 5-33
JZE - JUMP IF ACCUMULATOR IS ZERO 5-34
LAI-LOAD ACCUMULATOR IMMEDIATE 5-34
LAI- LOAD REGISTER IMMEDIATE 5-35
LAN - LOAD REGISTER INDIRECT (IMPLIED) 5-36
NOP - NO OPERATION 5-37
OUT - OUTPUT FROM ACCUMULATOR 5-38
RAL - ROT ATE ACCUMULATOR LEFT 5-39
RAR- ROTATE ACCUMULATOR RIGHT 5-40
RDS - READ SCRATCH MEMORY TO
ACCUMULATOR 5-42
RET - RETURN FROM SUBROUTINE 5-43
RLC- ROTATE ACCUMULATOR LEFT
THROUGH CARRY 5-44
ARC- ROTATE ACCUMULATOR RIGHT
THROUGH CARRY 5-45
SEB - SET BINARY MODE 5-46
SEC - SET THE CARRY STATUS TO 1 5-46
SEO - SET DECIMAL MODE 5-47
SAN - STORE REGISTER INDIRECT (IMPLIED) 5-47
SUB - SUBTRACT REGISTER FROM
ACCUMULATOR WITH BORROW 5-49
SUS- SUBTRACT SCRATCH MEMORY FROM
ACCUMULATOR WITH BORROW 5-50
WAS - WRITE ACCUMULATOR TO SCRATCH MEMORY 5-51
XCH - EXCHANGE REGISTER AND ACCUMULATOR
CONTENTS 5-52
XOR - EXCLUSIVE OR REGISTER WITH
ACCUMULATOR 5-53

6 ELEMENT ARY PROGRAMMING TECHNIQUE 6-1

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

MICROCOMPUTER PROGRAMMING CONCEPTS 6-1
MICROCOMPUTER PROGRAM IMPLEMENTATION
SEQUENCE 6-2
DAT A MOVEMENT SUBROUTINES 6-6

SELF DEFINING DAT A TABLES 6-7
TABLE LOOKUPS 6-8
DELAYS AND ONE-SHOTS 6-10
BCD DAT A MANIPULATION 6-11.

BCD SHIFTS 6-11
PACKING A BCD DATA STREAM 6-13

CONDITION TESTING 6-15
BIT !SOLA TION 6-15
BIT TESTING 6-15
RESETTING A BIT 6-16
SETTING A BIT 6-16
BIT CONDITION CHANGE TEST 6-16

7 INPUT /OUTPUT PROGRAMMING 7-1

PROGRAMMED 1/0 7-1
INTERRUPT 1/0 7-1

A SINGLE INTERRUPT CONFIGURATION 7-2
DELAY LOOPS 7-5
1/0 POLLING AS A SUBSTITUTE
FOR INTERRUPTS 7-6

8 SOME USEFUL SUBROUTINES 8-1

MATHEMATICAL SUBROUTINES 8-1
ADDITION AND SUBTRACTION 8-1
BINARY MULTIPLICATION 8-2
BINARY DIVISION 8-5

DAT A HANDLING. PROGRAMS 8-5
HEXADECIMAL - ASCII CONVERSION 8-5
BINARY - BCD CONVERSION 8-6

APPENDIX

A AN INSTRUCTION SET SUMMARY A-1

B HEXADECIMAL-DECIMAL INTEGER CONVERSION B-1

c STANDARD CHARACTER CODES C-1

vi

LIST OF FIGURES

FIGURE PAGE

2-1 EA9002 Logic Functions 2-2
2-2 INTEL 8080 Logic Functions 2-3
2-3 EA9002 Device Logic 2 5
2-4 EA9002 Pins 2-12

3-1 Machine Cycle, State Time And Clock Timing 3-1
3-2A Sync Timing For Single Byte Instructions 3 2
3-2B Sync Timing For Two Byte. Decimal Mode, LRN. And

SRN Instructions 3-3
33 Instruction Fetch T1m1ng 3 3
3-4 Single Byte Instruction Cycle 3-4
3-5 Input (INP) Instruction Cycle 3-5
3-6 Output (OUT) Instruction Cycle 3-5
3-7 Load Register Indirect (LRN) Instruction Cycle 3-6
3-8 Store Register Indirect (SRN) Instruction Cycle 3 7
3-9 Decimal Mode Instruction Cycle 3 7
3-10 Two Byte Instruction Cycle 3-8
3-11 Wait Timing 3-15
3-12A INT Sample Time 3 16
3-12B Interrupt Cycle 3-16
3-13 Interrupt Hold Time 3-17
3-14A Reset Sample Time 3-18
3-14B Reset Cycle 3-18
3-15 General Timing Diagram 3 20

4-1 A Simple, Two Device, CPU-ROM System 4-3
4-2 4096 Bytes Of ROM Connected To An EA9002 4-4
4-3 2048 Bytes Of ROM And 256 Bytes Of RAM

Connected To An EA9002 CPU 4-5
4-4 Minimum 9002 System 4-7
4-5 Minimum System With TTL 4-7
4-6 Minimum System Using TTL 4-8
4-7 Minimum System With Intel 8212 1/0 4-9
4-8 System With ROM/RAM And Programmable 1/0 4-9
4-9 Details Of Peripheral Control With 3 TTL Package 4-10
4-10 Minimum System With Motorola MC6820 PIA 4-11
4-11 Using the EA9250 Keyboard Controller 4-11
4-12 Using An 8212 1/0 Port To Select Memory Banks 4-13
4-13 BK Memory System 4-13
4-14 Control Generation 4 14

vii

LIST OF FIGURES (Continued)

FIGURE PAGE

4-15 One Cycle And Two Cycle Timing 4-16
4-16 An Interrupt Request Daisy Chain 4-17
4-17 Logic To Transmit IACK Low If A 11-AO

Is FFO And DO Is 1 4-18

6-1 A Sample Program Flow Chart 6-3
6-2 System Configuration For Sample Program 6-4

LIST OF TABLES

TABLE PAGE

3-1 Intermediate Data And Address Bus Utilization 3-10
3-2 Wait States 3-15
3-3 Timing Characteristics 3-19

A-1 An Instruction Set Summary A-4
A-2 Instructions Affecting Status Flags A-9
A-3 An Object Code Map A-11

viii

QUICK INDEX

INDEX PAGE

A ACCUMULATOR 2-1
ACCUMULATOR STATUS 2-11
ADDRESS BUS 2-12

B BRANCH TABLE 7-8

c CARRY ST A TUS 2-10
CARRY STATUS AND SUBTRACT LOGIC 2-10
CLOCK 2-13
CONDITIONAL JUMP INSTRUCTIONS 2-7
CONTROL BUS 2-12

D DATA BUS 2-12
DAT A IN STROBE 2-13
DAT A OUT STROBE 2-13
DECIMAL ST A TUS 2-11
DIRECT ADDRESSING 2-6

E EIGHT-BIT DATA REGISTERS 2-4
END TEST CONDITIONS 6-13
EXTERNAL MEMORY ADDRESSING 2-4

F FETCH 3-3
FLOW CHART 6-2

G GENERAL PURPOSE REGISTERS 2-4
GENERAL PURPOSE REGISTERS ALLOCATION 6-4

H HALF CARRY 2.-10

IMPLIED ADDRESSING 2-5
INPUT /OUTPUT 2-5
INTERRUPT 2-13.3-16
INTERRUPT ACKNOWLEDGE 4-17
INSTRUCTION CYCLE 3-1
INTERRUPT STATUS 2-10
INTERRUPT WINDOWS 7-4
INTERRUPTING OUT OF DELAY LOOPS 7-5

J JUMP INSTRUCTIONS 2-6

L LOGIC DISTRIBUTION 2-1

M MACHINE CYCLE 3-1

p PAGING OF PROGRAM MEMORY 2-7
POLLING FOR DAT A INPUT 6-13

ix

QUICK INDEX (Continued)

INDEX PAGE

POWER 2-13
PROM 4-2

R REGISTER INDIRECT ADDRESSING 2-7.2-5
RESET 2-12
ROM 4-2

s SCRATCH MEMORY ACCESS 2-1
SCRATCH MEMORY ADDRESSING 2-4
SCRATCH MEMORY OPERATIONS 2-4
ST ACK OVERFLOW 2-10
ST ACK POINTER 2-8
STATE TIME 3-1
SUBROUTINE CREATION 6-5
SYNC 3-2

T TABLE INDEX 6-9
TWELVE-BIT DATA REGISTERS 2-6

w WAIT 3-15
WAIT/SYNC 2-13

x

Chapter 1
INTRODUCTION

The EA9002 is a single chip microprocessor designed with the user in
mind. That is, it is a fast 8-bit parallel microprocessor unit containing a
powerful but easy to understand instruction set; its architecture is well
suited to logic replacement applications.

The EA9002 is a data processor - all digital logic circuits can be defined
as data processors - but it is not specifically designed for large com
puter-type memory dominant applications. The term "large" is used in
the sense of large mainframe memory systems. Rather, it has been
designed to service the newly emerging market of "smart" instruments,
data terminals, process controllers. real time instrumentation, credit
verification terminals, electronic scales. electronic games; i.e., those
products requiring real time solutions to real time problems.

The EA9002 is implemented with NMOS silicon gate depletion mode
technology. This is the most advanced semiconductor processing tech
nology available. This MOS process technology has been tested and
proven reliable, as demonstrated by the millions of dynamic and static
memory components, delivered by numerous semiconductor manufac
turers. Utilization of this technology in the design and development of
the EA9002 has resulted in one of the highest speed MPU's available -
containing more circuitry and data processing capability than was con
sidered possible even a few years ago.

Most microprocessor design and development emphasis in the past has
been to emulate "computer architects" - to provide complex address
ing modes, confusing architecture and sophisticated control signals. This
is not to say that addressing, architecture and control are not significant,
rather. it is to point out that computer designs have not had any category
of applications in mind; the designs attempted to be all things to all ap
plications, incorporating features required by the many complex dis
ciplines without finite applications objectives. The result has been a rash
of microprocessor type circuits which are in reality a· montage of all prior
CPU theory. rather than coordinated efforts striving toward any identifia
ble objective.

EA recognized a problem: the lack of microprocessor products designed
specifically with the digital logic controller user in mind; products which
incorporate the power of parallel microprocessing architecture, fixed in
struction set and advanced semiconductor processing technologies in
such a way that they could be easily understood and readily applied. It is
toward this objective that the EA9002 was directed.

1-1

WHAT THIS BOOK CONTAINS

The results of EA9002 development are embodied in this handbook. The
handbook is organized much like the circuit itself; i.e., it is written for the
engineers - allowing you to quickly understand the product and start
writing code for your unique application.

Chapter 2 deals with overall features, internal structure and control sig
nals. It highlights the register oriented architecture, internal bus, status
controls and significant CPU features such as the internal push-pop stack
and internal 64 byte RAM.

Chapter 3 describes instruction cycle timing and information that ap
pears on the address, data and control bus.

Chapter 4 covers systems level configurations; i.e., how to connect with
various types of RAM, ROM and 1/0 devices. This chapter also discusses
memory bank select techniques.

Chapter 5 describes each instruction in the EA9002. The utility of the
powerful instruction set is clearly explained, with examples. EA9002 in
structions have been carefully chosen to provide complete data
manipulation capability along with unambiguous problem definition.
Note the simplicity of program development offered by packed BCD add
and subtract.

Chapter 6 describes program development techniques, and instruction
sequences for common problems. The user unfamiliar with
microprocessors and programming skills will find this chapter particu
larly useful.

Chapter 7 specifically deals with input and output programming. The
EA9002 has a uniquely fast 1/0 capability; it can readily interface with
many programmable devices available from other semiconductor
manufacturers. This generalized approach to 1/0 control and data transfer
is an important feature of the EA9002.

Chapter 8 presents examples of many common subroutines required in
simple types of control and instrumentation systems.

The Appendix summarizes the instruction set and provides useful -con
version tables.

1-2

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and
lightface type. This has been done to help you skip those parts of the book
that cover subject matter with which you are familiar. You can be sure
that lightface type only expands on information presented in the previous
boldface type. Therefore. only read boldface type until you reach a subject about
which you want to know more. at which point start reading the lightface type.

1-3

Chapter 2
AN EA9002 MICROPROCESSOR

OVERVIEW
The distribution of logic among various chips within LOGIC
a microcomputer system is not at all well defined. DISTRIBUTION
Early microprocessor designers simply assumed that
traditional minicomputer logic distributions would also serve microcom
puters. This viewpoint has been rapidly eroded by the realities of the
emerging microcomputer industry. Therefore, when looking at a new
microprocessor, your first step must be to determine the logic which is
included within the microprocessor chip itself - as against the logic
which must be provided externally.

Figure 2-1 illustrates the logic blocks that typically make up an entire
microcomputer system. Logic that is implemented on the EA9002 CPU
chip is shaded. In order to provide an immediate contrast, Figure 2-2 il
lustrates the logic which is implemented on the 8080 CPU - a widely
used product manufactured by a number of semiconductor companies.

MICROPROCESSOR ARCHITECTURE

Figure 2-3 is a schematic representation of the logic which is actually im
plemented on the EA9002 microprocessor chip.

THE ACCUMULATOR

As in most microcomputers. the center of all l ACCUMULATOR I
data operations is the accumulator. Within the
EA9002, this is an 8-bit general purpose register which is the primary source
and destination for most CPU operations.

SCRATCH MEMORY

There is also a 64-byte read/write memory implemented within the 9002
CPU chip; in many applications this is all the read/write memory that will be
needed.

The 9002 microprocessor can also access external read/write memory
and read only memory.

The scratch memory and external memory occupy separate and distinct
address spaces, and are accessed by different instructions.

Scratch memory can only be accessed as data memory; pro
grams cannot be executed out of scratch memory. Data may be
loaded into the Accumulator from a scratch memory byte, or the

2-1

SCRATCH
MEMORY
ACCESS

N

N

Programmable
Timers

Read Only Memory

Figure 2-1 EA9002 Logic Functions

Direct Memory
Access Control

Logic

N

w

Logic to Handle
Interrupt Requests

From External Devices,

1/0 Communication
Serial to Parallel
Interface Logic

Programmable
Timers

I Clock Logic J

Read Only Memory

Accumulator
Registerts)

Stack Pointer

Figure 2-2 INTEL 8080 Logic Functions

Direct Memory
Access Control

Logic

RAM Addressing and
!riterface Logic

Read/Write
Memory

Accumulator contents may be written into a scratch memory
byte. The contents of a scratch memory byte may also be added
to. or subtracted from the Accumulator contents.

GENERAL PURPOSE REGISTERS AND
DATA MEMORY ADDRESSING

The eight general purpose registers. identified in Figure 2-3 as RO
through R7. have no direct equivalent in any other
microprocessor.

Selected 9002 instructions access the eight low order bits of any
general purpose register to perform a variety of data transfer or
data manipulation operations:

RO
R1

R2

R3

R4

R5

R6

R7

8 8 7

These bits

ignored

during

data accesses

Bit No

Instructions that access the scratch memory specify
the low-order six bits of one general purpose register
as providing the required scratch memory byte ad
dress:

8 7 6 5
RO __ _.._....,

R1
R2

R3

R4

R5

R6

R7

Bit No

These bits ignored Scratch memory address

when addressing

scratch memory

SCRATCH
MEMORY
OPERATIONS

GENERAL
PURPOSE
REGISTERS

8-BIT
DATA
REGISTERS

SCRATCH
MEMORY
ADDRESSING

External memory may be accessed indiscriminately
as program memory, data memory or external logic
(l/O devices).

EXTERNAL
MEMORY
ADDRESSING

2-4

Subroutine

Stack

(7 x 12 bits)

GcrH~r;il Purp()Sf'

Ruq1str:rs

(8 x 4 page bits) (8 x 8 Gf;m:ral purpose bits)

Scratch

Memory

(64 bytes)

RO

R1

R2

R3

R4

R5
R6

R7

n
Program Counter

AOO --A11
~

Address Bus

Anthmet1c

and logic

U!lll

Control

unit

1' ~ ~

' ~·
Control Bus

Status Flags

Instruction

Register

Figure 2-3 EA9002 Device Logic

Accumulator

DO Dy ___.,,
Data Bus

Instructions make no distinction between data I INPUT /OUTPUT I
memory and 1/0 devices; that is to say there are no
separate 1/0 instructions_

The 9002 microprocessor can read a data byte from external memory (or 1/0), or can
write a data byte to external memory (or 1/0)_ In either case external memory or
the selected 1/0 device is identified using register indirect, also called

implied memory addressing~- with any one of the eight general
purpose registers providing the 12-bit memory address:

8 7

Ro .,,,,,,,,,,,lt!%Sl:J,:::::t::t:::=:=t=::t;::;;:mwn
R1 @';:::;:;:;:;:;;:;:;;m;;:>;:;:;::;:;:;;:;;;:;:;;;:;:;;:;;:;:;:;:;:;:;:;:;:;:;;;:;:;:;:;:;;

R2 =::::::=m:::::tw·;;M;:t;:w;::m::::::::::i::w:::::::=::::iJ
R3 ' .,,,,,,::::::rn::::::t :::::::::¥:::::::::::::::t:::t:::::m::::,,:::tw
R4 , ~::::=:::1::::::;:;'.;:::::~. ::::::;:::::r:::~:::::j:::~j:::l::::~:l:l:~l?:::!::;!;j;::;!:;;:~

Address to external memory

2-5

Bit No

REGISTER
INDIRECT
ADDRESSING

When the contents of a general purpose register is in
cremented or decremented, the register is treated as a
12-bit unit; this means that an entire memory address
is either incremented or decremented.

THE PROGRAM COUNTER AND
PROGRAM MEMORY ADDRESSING

12-BIT DATA
REGISTERS

The Program Counter is a 12-bit register. At all times the Program Counter ad
dresses the memory location out of which the next instruction code will be fetched.
This must be a byte of external memory; instruction codes cannot be stored in the
scratchpad memory:

External
Arbitrary

Hexadecimal
Program

Memory
Ml~mory

Addresses

2FA

2FB

2FC

2FD

2FE

2FF

300

301

302

303

Whenever an instruction is executed, the Program Counter content is incremented to
address the next sequential program memory location. This sequential access of pro
gram memory may be altered using Jump instructions.

The 9002 has unconditional and conditional Jump in
structions, as well as a Jump-to-subroutine instruc
tion.

JUMP
INSTRUCTIONS

Unconditional Jump instructions use direct address
ing or register indirect (imp) addressing.

Direct addressing means that the Jump instruction object code
includes a 12-bit memory address:

Next object

code will be

Pi(•qr;1111 fetched from

External

Program
Memory

Bit No. 7 4 3 0

Arbitrary

Hexadec1111al

Me111cfry

AdrlH)SSl!S

2FA

2FB

2FC

2FD

DIRECT
ADDRESSING

C""' ""' byte 2FD { X

~--·:_;;>-_ .
2FE X represents an

The memory address

mprnsunted by PQQ

is loaded into the

Program Counter.

mas1ng previous

co11te11ts.

2-6

2FF uncondlt1onal

300 jump instructmri

301 - object code.

301

302

303

Register iridrrect (rmplied) addressing means that the Jump rn
struction specifres one of the general purpose registers as the
source of the 12-bit memory address:

12 bits of

register can

address dny

rnernory

locatir111

12-bit

Gc11eral

Purpose

Registers

Allowed

range of

external

memory

addresses

000
I
I
I

I
I
I
I
I

!
:
I

FFF

Conditional Jump instructions modify the low order
eight bits of the Program Counter only; this grves rise
to a lrmrted degree of paged program memory addressing.
Vrsualizc external program memory as divrded rnto 256 byte
pages; a conditronal Jump ir1structror1 can only jump to an ad
dress wrthin the current program memory page. as rdentified
by the high order four Program Counter bits:

BA9876543210

REGISTER
INDIRECT
ADDRESSING

CONDITIONAL
JUMP
INSTRUCTIONS

PAGING OF
PROGRAM
MEMORY

Program Counter ~.._ l_,_l _,_I _,_I _,_I _,_I _,_I _._I _,_I _._I _,I Prn9ram Counter

"----- Address w1th1n page. m<ty be" l +
1nod1!1ed hy 1urnp-(J11·C(111d1t1011 1n

struct1on.

'------------ Page bits. 11ot rrn1dif1ccl by 1urnp

on cor1d1t1on 111structions

The concept of paged external memory is reinforced by the fact that the general pur
pose registers. which provide implied data memory addresses. are.accessed as sepa
rate 4-bit and 8-bit ~mits for data manipulation operatrons:

2 7

B 8 7 0

J_
J_
I
_i

I
T
I

l. _,.._..
4-bit data unit 8-bit data unit

THE SUBROUTINE STACK
The EA9002 subroutine stack is a typical cascade stack implemented
within the CPU. The stack consists of seven 12-bit registers. There are no
special stack instructions in the EA9002 instructior:i set. Rather. whenever a
jump to subroutine instruction is executed. the Program Counter contents are pushed ·
onto the stack before the subroutine execution address gets loaded into the program
counter.

There is also a 3-bit Stack Pointer which at all times
records the current level of stack access. The 3,bit
Stack Pointer is treated by EA9002 instructions as part of an

STACK
POINTER

8-bit Status Register. You can examine the current level of stack access by reading
status register contents into the Accumulator.

The 3-bit Stack Pointer should be interpreted as follows:

ITD -.--
L_·ooo Stack empty

~1
} Levels 1 through 6 of stack filled

110

111 Stack full

The stack is illustrated in Figure 2-3 as a simple concatenation of 12-bit registers:
Subroutine

Stack

17 x 12 bits)

l
.A conceptually more accurate representation would be as an "endless loop":

2~8

Assuming the stack is initially empty, let us examine how a Jump-to
subroutine instruction pushes the Program Counter contents onto the
stack.

The Jump-to-subroutine object code consists of these four hexadecimal digits oc
cupying two program memory bytes:

.~Bytr)l
_l..~Bytc~2
2 p 0 0

~~Address cli subr(l.Llllrl(:'s 11.rs.·t

'------cxncutnhlc Htstruct1rn1

Jump \(1 · suhrcJut11w spnc1t1mi

PQQ represent any three-hexadecimal-digit address. Assume
the two Jump-to-subroutine object program bytes reside in some memory locations
MNN and MNN + 1. Before the instruction is executed. this is the situation:

~(§
PC~

After the instruction is executed. this is the result:

Program

Memory

0 ~
Prugrmn

Memory

MNNl

MNN

MNN • 1

MNN • 2

MNN • 3

MNN l 4

MNNl

MNN

MNN · 1

MNN • 2

MNN r 3

MNN · 4

When an interrupt is acknowledged, a Jump-to-subroutine instruction is
forced with a subroutine execution address of 002 16 is assumed. An interrupt
acknowledge therefore automatically causes prior Program Counter contents to be
pushed onto the stack.

2-9

When a return instruction is executed the top stack address is popped
into the Program Counter:

1--~~~----~:~

RSS lost

111struct1or1

Program

~
~

MNN-1

MNN

MNN I 1

MNN +2

MNN + 3

MNN f 4

RSS-1

ASS

ASS f 1

RSS + 2

Since there are seven registers in the subroutine stack. STACK
the EA9002 allows subroutines and interrupts to be OVERFLOW
nested to a depth of 7. If more than 7 interrupts and/or
subroutine calls are executed in sequence. then the subroutine stack will
overflow.

STATUS FLAGS
The EA9002 status flags deserve special mention since they contribute significantly to
the power of this microprocessor.

First we will discuss the interrupt. carry and half-carry statuses which are traditional.

The Carry status (C) identifies carries out of the high
order Accumulator bit; it is affected by arithmetic. compare
and logical operations.

The EA9002 carry status is unusual in subtract opera
tions, when compared to common microcomputer prac
tice. The EA9002 has direct subtract logic. it does not
use twos complement addition. This means that a

CARRY
STATUS

CARRY
STATUS
AND
SUBTRACT
LOGIC

negative result following a subtract will set the Carry to 1; a positive
result resets the Carry to O.

The Half-carry status (HI identifies carries out of Ac
cumulator bit 3; it is used for binary-coded decimal arithmetic
and logical operations.

The Interrupt status {II, when 1, indicates that external
interrupts have been enabled. When this status contains 4.
all interrupts are disabled.

The Accumulator and Decimal mode status are unusual.

2-10

HALF
CARRY

INTERRUPT
STATUS

The Accumulator status identifies the current Ac
cumulator contents as being 0 (A = 0) or non-zero
(A = 1). Following Compare instructions however. the Ac

ACCUMULATOR
STATUS

cumulator status identifies the result of the Compare operation. but only during ex
ecution of the single. next sequential instruction.

The Accumulator status· differs from the traditional Zero status in these two respects:

1) The Accumulator status has opposite interpretation; traditionally. a "1" Zero status
indicates a zero value, while a "O" Zero status indicates a non-zero value; this is the
exact opposite of the Accumulator status's interpretation.

2) The Accumulator status represents current Accumulator contents. whereas a Zero
status is set or reset by selected instructions. not necessarily reflecting Accumulator
contents at all times.

The Decimal status (D) allows arithmetic operations to DECIMAL
occur in decimal mode or in binary mode. When set to STATUS
one. this status causes data to be interpreted as packed binary
coded decimal for all arithmetic operations. This status eliminates the need for sepa
rate decimal adjust or decimal arithmetic instructions.

Decimal mode operations in the EA9002 are very complete; for example,
binary values in excess of 9 are adjusted. Here are some examples of ad
dition in decimal mode:

09 01 ., 10 c -. 0 H

OA 00 10 c - () H 1

C2 ()() . 22 c H ()

C2 20 42 c "1 II

OA C2 32 c - 1 H

C2 DFi "' ~) 7 c 1 H

So long as the result of an addition is 199 or less, an accurate decimal
result will be generated - whatever the condition of addition inputs.

STATUS FLAG SUMMARY

The EA9002 status register is, in reality, an 8-bit register, whose·con
tents can be transferred to the Accumulator; Accumulator contents are
then interpreted as follows:

2-11

Stack Prn11ter

811 set, for the following statuses means·

Half Carry

Accumulator 1mt zmo

lr1terrupts Enabler!

Decunal Mode specified

Cmry

vss RES'

All iNT

AIO 'WAs

Ag "5CiS'

AB vcc

A7 DiS

A6 Do

A5 DI

A4 02

A3 03

A2 04

Al 05

AO 06

CLK 07

Figure 2-4 EA9002 Pins

PINS AND SIGNALS

EA9002 pins are identified in Figure 2-4.

The twelve address pins provide a 12-bit extended
memory address. These pins are connected to the microcom
puter system address bus.

The eight data pins drive the bidirectional microcom
puter system data bus.

The control bus has five simple signals which make it very easy
to interface external logic asynchronously to the EA9002. All
control bus signals are active-low.

ADDRESS
BUS

CONTROL
BUS

Reset (RES) is a typical asynchronous Reset input sig- f RESET I
nal. When this signal is input low (for a minimum of 3 external
clock periods) the Program Counter is set to 0. and the stack is emptied. Program ex
ecution will now branch to memory location 000. The D and I status flags are set to 0.
which means that interrupts are inhibited and arithmetic operations are set to binary
mode.

2-12

When interrupt (INTI is input low, external logic is re- I INTERRUPT J
questing an interrupt. Providing the Interrupt status is set to 1.
at the conclusion of the current instruction's execution (with some exceptions). the in
terrupt will be acknowledged. When an interrupt is acknowledged. a Jump-to
Subroutine instruction is executed. with the subroutine start address identified as
memory location 002. The interrupt status is reset to 0. inhibiting further interrupts.

In order to handle reset and interrupt logic, the first bytes of memory are
usually used as follows:

Jur11p 111structHJ11

\!1 still\ (if Rcsd

PnJnr<irn

M<nrn1ry

Pcoqrnm ~ ~ 000 I 001

I 002
Ju111p 111s1ruct1nr1 tu ~1 003

stml 111 lr1tn1rupt

IJ1(1ccss1nq pniqr;ir11

WAIT/SYNC (WAS) is a bidirectional control line; it WAIT
provides the logic necessary for the EA 9002 to com- /SYNC
municate asynchronously with external logic. This signal
is output low during the last clock period of an instruction cycle. indicating to external
logic that an instruction fetch is to initiate a new instruction cycle during the next clock
period.

External logic may at any time hold WAS low. So long as WAS is held low. the 9002
enters a Wait state during which pending operations internal to the CPU are com
pleted. then no further operations occur.

Use of the WAS signal is described in Chapter 3.

When the EA9002 is outputting data, DATA OUT
STROBE (DOSI is output low while data and memory
addresses are stable on their respective busses. This

DATA OUT
STROBE

signal may be used as a write (R/W) input strobe to external read/write memory or
peripheral devices.

When the EA 9002 requires data input, it outputs DATA
IN STROBE (DIS) low in order to indicate that the appropriate
memory address is on the address bus and external logic is to

DATA IN
STROBE

place data on the data bus. This signal may be used as an enable strobe for any exter
nal logic that has to transmit data to the EA9002.

CLK 1s the Clock signal input pin A single phase clock with a cy- I CLOCK I
cle time of 250 nanoseconds or longer is required. See Chapter 3
for signal characteristics.

Vss and V CC provide power and ground connections. A single I POWER I
+ 5V power supply is all that is required.

2-13

Chapter 3
EA9002 MICROPROCESSOR

CHARACTERISTICS
EA9002 characteristics are identified in terms of signals and timing,
since these parameters may be used to explain instruction execution se
quences.

Instructions' timing given in Figures 3-1 through 3-9 separately illustrate
signal interactions and wave form timing.

INSTRUCTION TIMING

All EA9002 instructions are executed synchronously, via instruction cy
cles that are timed by clock signal CLK.

An instruction cycle defines the time required to fetch and ex- INSTRUCTION
ecute an instruction. Every instruction cycle consists of CYCLE
one or two machine cycles. referred to as M1 or M2. ------
Each machine cycle consists of four state times; MACHINE
each state time is referred to as T1. T2. T3, or T4 CYCLE
and is defined as the time interval between the posi-
tive transitions of alternate input clock pulses (CLK). I STATE TIME l
See Figure 3-1. The first clock input to occur during
each state time is defined as <1>1 and the second clock input as <1>2.

Ml M2

Tl T2 T3 T4 Tl T2 T3 T4

CLK

Figure 3- 1. Machine Cycle, State Time And Clock Timing

If you need to initially synchronize CLK, include logic that suppresses clock in
puts to the EA9002 during power up. Once power has been applied, initiate clock fre
quency inputs. and the first CLK output will be a <1>1 pulse.

3-1

In general. single byte instructions require one machine cycle to ex
ecute, whereas two byte instructions require two machine cycles to ex
ecute. Exceptions do exist. Those single byte instructions using decimal
mode require two machine cycles, as do the single byte LRN and SRN in
structions.

WAIT (WAS) and RESET (RES) operations are externally controlled,
therefore. the duration of certain state times becomes indeterminate,
although internal logic keeps these states synchronized with the clock
input. The operations of WAS and RES are described later in this chapter.

For external logic synchronization, the EA9002 pro- I I
vides a SYNC pulse, via the WAIT AND SYNC pin SYNC
(WAS). SYNC identifies the beginning of a new instruction cycle.

The SYNC pulse is an active low output which occurs during the last T 4 state time of
an instruction cycle as shown in Figure 3-2A and 3-28.

WAS is forced low by the positive transition of <f>1 and is held low during the <1>1
pulse input:

~ -rfT\..f"\.._
WAS~

The positive transition of <f>2 forces WAS high; WAS is held high during the <1>2 pulse
input. WAs is in a high impedence state after the negative transition of <f>1 and re
mains there until the positive transition of <1>2:

:_~ WAS

I :II
L

WAS is in a high
impedence state

An internal pullup resistor on the WAS pin will cause the SYNC to return to a high
level during the high impedence state. if for any reason the time interval between
clocks is sufficiently long.

Ml Ml

Tl T2 T3 T4 Tl T2 T3 T4

CLK

Figure 3-2A. Sync Timing For Single Byte Instructions

3-2

Ml M2

T1 T2 T3 T4 T1 T2 T3 T4

CLK

Figure 3-2B. Sync Timing For Two Byte, Decimal Mode, LRN, And SRN Instructions

INSTRUCTION FETCH AND EXECUTION
Every instruction cycle refers to memory at least once, I FETCH I
during which an instruction is fetched. An instruction . .
cycle must always have a FETCH and the fetch occurs during T1 and T2
of the first machine cycle M 1.
Externally, the instruction fetch is a simple "read memory" opera-
tion. The EA9002 places the contents of the Program Counter onto the Address Bus
and forces the Data In Strobe (DIS) low. The addressed memory byte must return on
the Data Bus while DIS is low, and is sampled during <1>1. T2 as shown in Figure 3-3.

Ml

r1 T2 T3 T4

CLK

AO-Al I

00-07

IN

Figure 3-3. Instruction Fetch Timing

Following the instruction fetch, one of seven different instruction se
quences may occur. These are best understood by examining the various
instruction cycles.

3-3

SINGLE BYTE. INSTRUCTIONS

Single byte instructions require only one machine cycle, Ml, to perform
the fetch and execution. The state times T 1. T2 are used to fetch the· instruction.
and T3, T4 are used to perform the required' internal operations. As shown in
Figure 3-4, only one memory reference is generated.

Ml Ml

Tl T2 T3 T4 Tl T2 T3 T4

CLK

AO-A_l 1

DIS

DO-D7

INSTRUCTION
iN .

WAS

Figure 3-4. Single Byte Instruction Cycle

Exceptions to the timing shown in Fig. 3-4 exist for the single byte instruc
tions INP, OUT. LRN. and SRN, as well as for those single byte instructions used in
decimal mode.

Figure 3-5 illustrates the timing required for the Input instruction (INP).
Only one machine cycle M 1 is required to fetch and execute INP. The contents of the
selected Page and General Register are placed on the Address Bus during T3. T4.
which is used to select the external device from which data is to be read. The Dat(! In
Strobe (DIS) is.also forced low allowing the data on the Data Bus to be stored in the
Accumulator during <1>1.T4.

Shown in Figure 3-6 is the cycle timing for the output (OUT)_ instr.uction.
Again. on1y one machine cycle M 1 is required. During T3. T 4 the content of the Ac
cumulator is placed onto the Data Bus; the selected Page and General Register con
tents are placed onto t_he Address Bus and are used to define the external device into
which data is to be transferred. The Data Out Strobe (DOS) is forced low after the Data
Bus is stable.

3-4

CLK

AO-A 11

DIS

DO-D7

WAS

CLK

AO-Al 1

DO-D7

Ml

Tl T2 T3 T4 Tl T2

Figure 3-5. Input (INP) Instruction Cycle

Tl T2

INSTRUCTION
IN

Ml

T3 T4 Tl T2

Ml

Ml

Figure 3-6. Output (OUT) Instruction Cycle

T3 T4

T3 T4

DIS low defines the time interval when the Address Bus is valid and must be decoded
to enable an external device. such as a memory. to transfer data to the Accumulator.

DOS low defines the time interval when the value.of the Accumulator is stable on the
Data Bus and can be transferred to the external device identified by the Address Bus.

3-5

Hence, DIS and DOS control Read and Write operations performed by external
devices, since DIS can be used as a Chip Select for Read operations and DOS can be
used as a Chip Select and a Write pulse during Write operations.

Load Register Indirect (LRN). is a· single byte instruction, but it requires
two machine cycles, M1 and M2. Figure 3-7 shows the LRN instruction
cycle. LRN may be thought of as an implied address instruction, since a General Pur
pose Register is implied as the source of the indirect address.

The content of the General Purpose Register is·placed on the Address Bus during T2,
T3, T 4, of M2 and is used to select the external device from which data is to be read.
The Data In Strobe (DIS) is forced low, allowing the data to be stored in the selected
General Register during <1>1, T3 as shown in Figure 3-7.

Ml

T 1 T2 T3 T4 Tl T2 T3 T4

CLK

AO-A 11

D0-07

WAS

Figure 3- 7, Load Register Indirect (LRN) Instruction Cycle

Store Register Indirect (SRN), shown in Figure 3-8, is also a single byte
instruction which requires two machine cycles, M1 and M2. A General
Purpose Register is implied as the source of the indirect address which is placed on
the Address Bus during T2, T3, T4 of M2. This address is used to select the external
device into which data is to be transferred. The content of the selected General Pur
pose Register is placed onto the Data Bus during T2, T3 of M2, and the Data Out
Strobe (DOS) is forced low after the Data Bus is stable.

3-6

CLK

AO-A 11

DIS

DO-D7

DOS

Tl T2

INSTRUCTION
'1N

Ml

T3 T_4 T 1

M2

T2 T3 T4

OUTPUT DEVICE ADDRESS

DATA OU_T

Figure 3-8. Store Register Indirect (SRN) Instruction Cycle

Figure 3-9 illustrates the instruction cycle timing of single byte instru
tions used in decimal mode. Decimal Mode instructions require two machine cy
cles. M 1 and M2. for internal logic to have time needed to perform necessary BCD
operations. With this exception. the instruction cycle is the same as the single byte in
struction cycle illustrated in Figure 3-4.

Ml M2

T 1 T2 T3 T4 T 1 T2 T3 T4

CLK

AO-A 11

DIS

DO-D7

WAS

Figure 3-9. Decimal Mode Instruction Cycle

3 7

TWO BYTE INSTRUCTIONS

Immediate and Jump instructions (except JIN) require two bytes of ob
ject code, and hence, two machine cycles, M1 and M2, to fetch and ex
ecute the instruction. Figure 3-10 shows the instruction cycle for two
byte instructions. During the second machine cycle (M2), the content of the Pro
gram Counter is placed on the Address Bus to FETCH the second byte of the instruc
tion. The Data In Strobe (DIS) is forced low during T 1, T2 of M2 and allows the data
fetched to be loaded into the EA9002 during <t>1, T2.

CLK

DIS

Tl T2

INSTRUCTION

TN

Ml M2

T3 T4 T 1 T2 T3

WAS SYNC
I

Figure 3-10. Two Byte Instruction Cycle

T4

INTERMEDIATE STATE TIME BUS UTILIZATION
The Address Bus and the Data Bus, when not transferring data required
by an instruction, output intermediate data. This data can be useful dur
ing functional testing of the microprocessor, and in program de-bugging.
Referring to Figures 3-4 through 3-10, the intermediate data appear as
shaded areas on the Address Bus and Data Bus.

Intermediate data timing should be computed by adding the propagation delays
defined in Figure 3-15 to the active CLK signal edge. On the data bus, this is the result:

CLK~
I <1>1 <1>2 <1>1

I I

I, .0--
00-07 ---'1---
~
' tcH I

3-8

When CLK has maximum frequency, tCH may cause 1ntermed1ate data to appear dur
ing the next time period, that is. during the next <1>2. If the clock frequency slows
down. intermediate data will appear during the current <1>1 ·

'
CLK _J <l>l \._ _____ _,/

DOD?~-l--~~~-~--~~--~~
..-~~-tCH~~--1•M:

L

Intermediate address bus outputs will appear similarly, originating in the next <1>2 clock
pulse for maximum frequency operations. or in the current <1>1 clock pulse for slow
clocks.

Timing of intermediate data will generally be the same as timing for cor
responding data as required by an instruction cycle; but intermediate
data timing is not guaranteed.

Table 3-1 summarizes the intermediate Address Bus and Data Bus infor
mation during each state time of all instructions.

Table 3-1 assumes that you understand the EA9002 instruction set--wh1ch will not
be done until you have read Chapter 5. Therefore, bypass Table 3-1 when reading this
book to gain a general understanding of the EA9002.

Improvements-embodied in future EA9002 type products may occur
from time to time which will eliminate some of the intermediate data and
address bus utilization which appear in this version of the EA9002
microprocessor. You are cautioned to refer to the detail.specifications for
the particular version being employed. Any product improvements, refer
red to above, are intended to maintain complete electrical, software and
hardware compatibility.

The following abbreviations are used in Table 3-1:

AC Accumulator contents just before being modified by the instruction.

AD Accumulator contents JUSt before decimal correction for decimal mode
instruction.

GDX Low order eight bits of selected general purpose register.

GPX High order four bits of selected general purpose register. output on low
order four data bus lines.

GRX All twelve bits of selected general purpose register in GPX, GDX. or
GRX, if x is a digit between 0 and 7, it specifies one general purpose
register. Thus GR4 specifies the 12-bit contents of general purpose
register 4.

11 Low order four bits of the first byte in a two byte instruction.

12 Second byte of a two byte instruction.

KK Correction constant used in decimal arithmetic.

PC Program counter contents.

SM Selected scratchpad memory byte content.

SW Status word.

3-9

Table 3-1 Intermediate Data and Address Bus Utilization

Instruction Ml M2
Bus

Mnemonic Tl T2 T3 T4 Tl T2 T3 T4

ADD (Bwiary) Addr PC PC GRX GRX

Figure 3-4 Data GDX AC

ADD (Decimal} Addr PC PC GRX GRX PC PC PC PC
Figure 3-9 Data GDX AC KK AD

ADSIB1naryl Addr PC PC GRX GRX

Figure 3-4 Data SM AC

ADS (Decirnal) Addr PC PC GRX GRX PC PC PC PC
Figure 3-9 Data SM AC KK AD

AND Addr PC PC GRX GRX

F1guru 3-4 Data GDX AC

'f CAP Addr PC PC GRX GRX

0
Figure 3-4 Data AC AC

CAR Addr PC PC GRX GRX

Figure 3-4 Data AC AC

CLA Addr PC PC GR6 GR6

Figure 3-4 Data SW AC

CLB Addr PC PC GR2 GR2

Figure 3-4 Data SW AC

CLC Addr PC PC GRO GRO

Figure 3-4 Data SW AC

CMA Addr PC PC GR7 GR7

Figure 3-4 Data SW AC

CMC Addr PC PC GR3 GR3

Figure 3-4 Data SW AC

CMP Addr PC PC GRX GRX

Figure 3-4 Data GDX AC

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)

Instruction Ml "'12
Bus

Mnemonic Tl T2 T3 T4 Tl T2 T3 T4

CPA Addr PC PC GRX GRX
Figure 3.4 Data GPX 0

CRA Addr PC PC GRX GRX
Figure 3-4 Data GDX 0

CSA Addr PC PC GR4 GR4
Figure 3-4 Data SW 0

DAC {Binary) Addr PC PC GR4 GR4
Figure 3-4 Data SW AC

DAC (Decimal) Addr PC PC GR4 GR4 PC PC PC PC

Figure 3-4 Data SW AC SW AD

OCR Addr PC PC GRX GRX

~ Figure 3-4 Data GDX I AC

DLY Addr PC PC GRO GRO PC PC PC PC

Figure 3-4 Data SW AC SW AC

DRJ Addr PC PC GRO GRO PC PC PC PC

Figure 3-10 Data SW AC SW AC

DSI Addr PC PC GR2 GR2

Figure 3-4 Data SW AC

ENI Addr PC PC GR3 GR3

Figure 3-4 Data SW AC

IAC (Binary) Addr PC PC GR4 GR4

Figure 3-4 Data SW AC

IAC (Decimal) Addr PC PC GR4 ·GR4 PC PC PC PC

Figure 3-9 Data SW AC SW AD

INP Addr PC PC GRX GRX

Figure 3-5 Data

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)

lr•5\f\JC\l(JI' Ml M2
Bus

M,1,;11HllllC Tl T2 T3 T4 T1 T2 T3 T4

INR Adcir PC PC GRX GRX

hq11•1 '~ .; Dc1t<1 GDX-1 0

i(JH Addr PC PC GRX GRX

f-iqLff(' 3 4 D,itci GDX AC

IRJ Addr PC PC GRX GRX PC PC PC PC
F1qtm' 3 10 Dilt<1 GDX + 1 AC SW AC

JIN Addr PC PC GRX GRX

F1qurE' 3 4 Ddtd SW GDX

JSR, JUN Addr PC PC GRX GRX PC PC PC PC
hqur(· 3 10 D;1t;1 SW AC SW 11

w All .lt11>1p C1>t'd Arldr PC PC GRX GRX PC PC PC PC
i 1 1 11 D:1tr1 SW AC SW AC

N
Lnl Arldr pC PC GR1 GR1 PC PC PC PC
f 1q1,;, { I(' Dc1tci SW AC SW 12

LRI Adrlr PC PC GRX GRX PC PC PC PC

F-1c1ur1' 3 10 0;1\;l SW AC SW AC

LRN Arldr PC PC GRX GRX PC GRO GRO GRO

F-1qu11' 3 7 D<1\c1 SW AC AC

NOP Arlrlr PC PC GR7 GR7

F1(]Uf(' 3 4 0d\r1 SW AC

OUT Adrlr PC PC GRX GRX

hqurr' 3 6 Odtil AC AC

RAL Adrlr PC PC GRO GRO

F1qut'' 3 4 Diltci AC AC

RAR I· Addr PC PC GR1 GR1

F-1qL1r1' 3 4 Dilt<i AC AC

Table 3~ 1 Intermediate Data and Address Bus Utilization (Continued)

l11struct1(11' M1 l M2
Bus

Mnt'l 'Ol'IC Tl T2 T3 T4 T Tl I T2 T T3 I T4

RDS Addr PC PC GRX GRX
F1qur(' 3 4 Ddtd SM 0

RET Arirlr PC PC GR6 GR6
F-1r1ur(' 3 4 Dcllil SW AC

RLC Adrlr PC PC GR2 GR2
~ 1r1urr 3 4 D<llil AC AC

RRC ArlcJr PC PC GR3 GR3
F-1~1ur1' 3 4 D,1t;1 AC AC

SEB Adrlr PC PC GR5 GR5
F-1~JLJI(3 4 Dcn:1 SW AC

w

~
SEC Adrir PC PC GR1 GR1

~
F-1qur1 3 4 Diltd SW AC

w
SEO Addr PC PC GR4 GR4
F-1qur1 3 ,~ Dc1\cl SW AC

SRN Arlrlr PC PC GRX GRX T PC T GRO 1 GRO T
GRO

F-iciuri' 3 8 Dri1d GOY AC AC

SUB (b11•,irv1 Arlrlr PC re GRX GRX:

f"'""' 3 4 Diltc1 GDX AC

SUB (d1'cir>1,il> Addr PC PC GRX GRX T PC T PC T PC T
PC

r·1qur1, 3 0 Dc1t;1 GDX AC KK AD

SUS {h11 1arv1 Arldr p< PC GRX GRX
flflilCP 3 4 Dmci SM AC

SUS ldr 1u•1 1il!I Adclr PC PC GRX GRX I PC T PC T PC T PC

f1u11~I' J 0 Drnr1 SM AC KK AD

WRS Addr PC PL GRX GRX
F-,q1J1(1 Drltd AC AC

w
'

-!'>

Instruction

Mnemonic

XCH

Figure 3-4

XOR
Figure 3-4

Bus

Addr

Data

Addr

Data

Table 3-1 Intermediate Data and Address Bus Utilization (Continued)

Ml M2

Tl T2 T3 T4 Tl T2 T3 T4 ..
PC PC GRX AC

AC GDX

PC PC GRX GRX
GDX AC

The status word is output as follows:

"------ Half carry
.._ ______ Accumulator

'-------- Interrupt Enable
'---------Decimal Mode

"---------- Carry

THE WAIT STATE

The EA9002 will suspend any instruction cycle when the WAIT input is
externally forced low. Functionally. the WAIT input is inter-
nally sampled every <P1 clock time during the-state times indi- I WAIT I
cated in Table 3-2. If WAS is low and meets the timing shown in
Figure 3- 11. the instruction cycle is suspended for the duration of the WAIT signal~
in the state time during which WAS was sampled. The machine cycle cannot advance
to the next state time until the <P1 clock following the return of WAS to a high level.
Data within the EA9002 is unaffected by WAIT. The Address Bus, Data
Bus (for Data out only). DIS, and DOS will remain stable.

TABLE 3-2. WAIT STATES

INSTRUCTION WAIT OCCURS

TYPES Ml M2

SINGLE BYTE Tl

INPUT Tl.T3

OUTPUT Tl.T3
LAN Tl T2

SAN Tl T2

DECIMAL Tl

TWO BYTE Tl Tl

WAIT can be used to force a temporary CPU halt such as required by
single step operations, or to extend the response time of the EA 9002
during data read and write operations with slower peripheral devices.

MI or M2 SEE TABLE 3-2

CLK

Figure 3-11. Wait Timing

3-lb

A conflict can exist between SYNC generated by the EA 9002 and exter
nal logic attempting to control WAIT. If the external logic attempts to force
WAS to a high level while SYNC is driving low (<1>1. T4 of the last state time of an in
struction cycle). an indeterminate logic level may exist during <P 1 Likewise if external
logic attempts to force WAS low while SYNC is driving high (<P2. T4 of the last state
time of an instruction cycle), an indeterminate level may exist during <P2. No damage
should occur to either the goo2 or external logic under these conditions, provided
rated currents are not exceeded. Care should be taken in normal implementation such
that this conflict does not occur.

Ways of implementing a WAIT sequence are discussed in Chapter 4.

INTERRUPT SEQUENCE
The Interrupt sequence starts with the EA9002 sam- j 1NTERRUPT I
piing INT during <P2, T3 of the machine cycle during
which a SYNC will be generated. Timing is illustrated in Figure 3-12. If
INT was low during the sample. the EA9002 acknowledges the interrupt at the begin
ning of the next M 1 machine cycle, providing two prior conditions exist:

1) The interrupt enable status flag must be set to "enable interrupt"·
2) the compare instruction (CMP) is not being executed.

If neither of these two conditions exists, or if one. but not both of these conditions ex
ist. the Interrupt is ignored.

When the EA9002 acknowledges an interrupt, a Jump-to-Subroutine in
struction (JSR) is executed, forcing the subroutines starting address to location
002. The interrupt enable status flag is set to "disable interrupt" No other status or
register contents are modified in any way.

CLK

Ml M2 Ml

T3 14 Tl

I- JSR FORCED --..

iN'f SAMPLE
r- - - - - - - - - - -- - - -
I

LJsYNC
Figure 3-12A. INT Sample Time r--- FORCED JSR ~

M1 or M2 Ml M2

T3 T4 Tl T2 T3 T4 Tl T2 T3 T4 Tl T2

iNT ==-::::\ .r------- ----- ----------
AOAl I~~=~~-~{~~= ~;.'.:~-~~~~-~--=x:=:: '

t ADDRESS BUS FORCED

TO 002

Figure 3-128. Interrupt Cycle

3-16

Since INT is an as~hronous input it must be held low sufficiently long
to guarantee that INT has a valid sample. For example. consider the instruction
sequence INP. CMP. JCN. The iNT input must be held low for slightly longer than
twelve state times to guarantee an interrupt acknowledge by the EA9002. This time
interval will be extended if a WAIT sequence is initiated prior to the INT sample.

Note that INT 1s not sampled during CMP.

INP CMP JCN

M1 M1

Tl T2 T2 T3 T4 T 1 T2 T3 T4 Tl

M2

JSR IS

FORCED

i
T4 T1

INT ---""""' ,----------
WAS v v+ ~YNC v-

Figure 3-13. Interrupt Hold Time

It is good design practice to hold INT low until this interrupt request has been
acknowleged. by whatever interrupt acknowlege logic is in effect. Some possiblities
are described in Chapter 4.

RESET

When power is applied to the EA9002, all logic in the processor begins
operating. The contents of its registers, program counter, etc. start at a
random state; therefore, a RESET (RES) is provided to force the pro
cessor to a known starting condition. RES is sampled during every <1>2
clock input. When this signal is low. the EA9002 responds by setting the program
counter and the stack pointer to 000; the interrupt enable and decimal mode flags are
reset to 0. The machine cycle reverts to T1. M1 until RES is returned high.

The EA9002 will begin program execution starting at memory location 000. Binary
mode is set and Interrupts are disabled.

The RES input must be held low for four clock periods in order to com
plete the Reset. Figure 3-14 shows the Reset timing.

The control output signals are held at a high level while Reset 1s active.

3-17

ANY MACHINE CYCLE

ANY Tl/ T11 + 1

CLK

RES

Figure 3- 14A. Reset Sample Time

Mk INTERNAL RESET Ml

Tn Tn +- 1 Tn + 2 Tn ~ .3 Tl T2

RES

END RESET ~ri

...
----B-E-Gl-N-RE-S-ET---0-iN THIS SAMPLE /,,. _______ _

ON THIS SAMPLE •

AO-Al 1

Figure 3-148. Reset Cycle

As illustrated in Figure 3-148, a new machine cycle will begin on the
fourth CLK pulse following RES high:

detect acknowldge start of new time period, T 1 of Mt

DETAILED SIGNAL TIMING
An overall system timing diagram is presented in Figure 3-15 using sym
bols and data from Table 3-3. Table 3-3 is subject to change as improve
ments in operational characteristics are implemented in the EA9002,
therefore, the reader is cautioned to refer to the latest detailed specifica
tion sheet for most current information.

3-18

Table 3-3. Timing Characteristics (Vee =5.0v ±5 % . Vss =Ov. Ta =0°C to 70°C
Unless Otherwise Noted.)

SYMBOL PARAMETER MIN MAX UNIT CONDITION

tCY CLOCK PERIOD 250 2500 ns

\T CLOCK TRANSITION TIME 5 25 ns

t<l>W CLOCK PULSE WIDTH 140 ns

t<l>S CLOCK PULSE SPACE 60 ns

tDA ADDRESS OUTPUT DELAY TIME 195 ns F.O. =TEST LOAD

tAH ADDRESS HOLD TIME 40 ns F .0. =TESTLOAD

tco DIS DELAY TIME 195 ns F.0. =TEST LOAD

tCH ""Dir HOLD TIME 165 ns F.O.=TEST LOAD

too Em; TD DATA IN DELAY TIME 0 ns F.O. ON DiS =TEST LOAD

tACC ACCESS TIME FROM ADDRESS STABLE 475[11 ns F.O. ON AO-A 11 =TEST LOAD
T ACC =3T CY+ T <l>w-T DA--

tos DATA IN SETUP TIMEc 220 ns Tos

tDH DATA IN HOLD TIME 0 ns

too DATA OUT DELAY TIME 315 ns F.O. =TEST LOAD

t01 DOS DELAY TIME 165 ns F.O. =TEST LOAD

t02 DOS HOLDTIME 125 ns F.O.=TESTLOAD

ts I SYNC (WAS) DELAY TIME 165 ns F 0 ~TEST LOAD

tS2 SYNC IWAs) HOLD TIME 125 ns F.O. =TEST LOAD

tws WAIT (WAS) SETUP TIME 20 ns

tRW RES PULSE WIDTH 1 1tS 'Rw=4tcy

tRS RES SETUP TIME 40 ns

11s
INT SETUP TIME 40 ns

1 tACC =475nsec fortCY =250nsec

3-19

w
N
0

CLOCK

AO-All

i5iS

D0-07

Tm Tm+ 1

<M (1)2 <l>I <1>2

VCH

VCL

VoH , - ~~ - I • ~ "" ... ·- J

Vol

VoH ----·

Vol ~

VoH· VIL -•D•A•T•A•O•U•T..__""""'\

OR

Vol VIL INTERNAL BUS

VoH--------;--t-----+-----:..:;..+-...!.,,;;_.;;;;.;, _______!,,:~~

Vol -

V1H I'

'IL =t1 I~ 1RW .. ,, r-=

Chapter 4
SYSTEMS CONFIGURATIONS

This chapter explains how to configure total microprocessor systems
around the EA9002, we illustrate various means of interfacing the
EA9002 to ROM, RAM and 1/0.

Any microcomputer system must be able to input data or control signals. execute a
predetermined sequence of program instructions (usually in ROM). temporarily storing
the data (usually in RAM). then output data or control signals. Thus. the elements
referred to as CPU (Central Process Unit). ROM (Read Only Memory), RAM (Random
Access Memory), and 1/0 (input/output) must exist in one form or another within a
total microprocessor system.

The EA9002 CPU chip contains a 64 x 8-bit RAM. Many real time data controllers will
not need additional external RAM devices. External ROM devices. however. are al
ways part of an EA9002 system. since there are no provisions for storing programs
within EA9002 CPU. This allows you the freedom to select ROM devices which ex
actly fit your application. You may choose a few hundred bytes of ROM. or many
thousand bytes of ROM. EA, a major supplier of ROM devices, offers many
varieties of ROM for every type of application and will be happy to help
you select that device most suited to your needs. This section describes
some of the available EA ROM's and how they are controlled by the
EA9002.

EA is also a major supplier of static and dynamic RAM devices of various
sizes and speeds. Static RAM's like the EA2111 (256x4) are most often
used in an EA9002 system. Therefore interface logic for this device is shown in
this chapter.

New ROM's and RAM's of larger size and faster speed are a continuous
development activity with EA, so it is advisable to stay in touch with EA
sales for information and availability of new memory products.

1/0 flexibility for microcomputer systems is another area wher.e a great deal of effort is
being applied by EA and other semiconductor manufacturers. The EA9002, with
its TTL bus structure and versatile control signals can interface with
standard TTL devices, as well as speciality programmable 1/0 con
trollers.

When implementing a microprocessor system with the EA9002, you may
use industry standard devices such as A/D and D/A converters, UARTS,
SDLC and other specialty communication controllers.

EA is developing programmable 1/0 devices specially for the EA9002
systems. Included are the EA9255 GP 1/0 and the EA9250
Keyboard/Display Controller.

4-1

The EA9255 GP 1/0 is a replacement part for the popular 8255 and pro
vides up to 24 input/output pins definable under program control. See the product
specifications on the EA9255 for complete details.

The EA9250 Keyboard/Display Programmable Controller is a new part
which interfaces both keyboards (static and momentary) and displays.
This device contains four basic modes of operation. which under program control in
terface with a broad variety of switches. as well as numeric and alpha-numeric dis
plays. The device performs the functions of automatic keyboard scanning and display
refresh. allowing the CPU to perform calculations and other tasks at real time speeds.
See the 9250 product specifications and application notes for complete datails. Figure
4-11 shows how the EA9250 is interconnected to the 9002 system bus.

EXTERNAL MEMORY

INTERFACING ROM

The most elementary EA9002 system consists of just I PROM I
two devices: the CPU and external program storage
memory. Program storage memory usually consists of a PROM I ROM I
or ROM device.

Figure 4-1 illustrates a very simple, two device configuration.The EA4600
is a 2048 x 8-bit ROM. Being the only memory device present. its eleven address lines
are connected directly to the AO through A 10 outputs of the EA9002; the remaining
EA9002 address line is ignored. Also. in an elementary. two device configuration. we
can simply tie the output lines of the EA4600 directly to the data pins of the EA9002.

The EA4600 ROM requires two output enables: OE 1 and 0E2: Each signal enables
four of the eight data output lines. Since this device is being treated as an 8-bit
memory, both enables are tied directly to the inverse of DIS. DOS and WAS outputs of
the EA9002 may be ignored. since this simple configuration makes no allowance for
data output and the EA4600 ROM is fast enough that it does not need to input WAS
low.

The EA4600 has an additional address enable input AR. This signal can be perma
nently enabled by tying to power. since all address outputs from the EA9002 that oc
cur when DIS is low will be true.

Since interrupt logic is not being used. the INT input is permanently disabled by tying
to power. However. even in such a simple configuration as illustrated in Figure 4-1.
reset logic is enabled. In this case. it is shown with a switch to ground. Closing the
switch will automatically reset the system.

Staying within the normal address space of the EA9002, that is 4096-
bits of external memory,. very little additiOnal logic is needed upon in
creasing the size of external memory. Figure 4-2 illustrates two EA4600
ROM devices connected to an EA9002 CPU. As compared to Figure 4-1. the
only innovation is the need for chip-select logic based on the condition of address line
A11.

4-2

5V

*
0

REs
CLK

Vss
INT

All VCC vcc
GND

AR AlO
WA5

EA 00s
OE2

9002 '5iS OEl EA

DO OUT 0
4600

AO OUT 7 AO

Figure 4-1 A Simple, Two Device, CPU - ROM System

Since each EA4600 ROM provides 2048-bits of memory, they cover the EA9002 ad
dress space as follows:

ROM 2

11 10 9 5 4 3 2 1 0

x Ix I pi-~ _x l_x l_x l_x l_xj>~
~ Bit No

800 16 FFF 16

ROM 1

11 10 0

lo Ix Ix I xix Ix Ix Ix Ix Ix Ix Ix I

000 16 7FF 16

X rf:pr1~sp11ts 0 or 1

All

High OE2

Selects

ROM 2 OEl

Thus, address line A 11 may be used as a chip-select. The NOR of A 11 and DIS will
generate OE 1 and OE2 true for the EA4600 ROM to the right of CPU if A 11 1s 0. If A 11
is 1. A.11 NOR DIS will generate OE 1 and OE2 true for the EA4600 ROM to the left of
the CPU.

Note the simplicity of chip-select logic.

4 3

Figure 4-2 4096 Bytes Of ROM Connected To An EA9002

INTERFACING RAM

Suppose the 64 bytes of RAM provided within the EA9002 CPU is in
sufficient. External RAM may be added to the system. Figure 4-3 shows
how one of the EA4600 ROM devices may be removed from the Figure
4-2 configuration, and two EA21 n RAM devices may be added, to pro
vide 256 bytes of external RAM.

Select logic in Figure 4-3. defines address spaces as follows:

Low

Selects

RAM

RAM

11 10 9 8 7 6 5 4 3 2 1

! 1
I 0 I 0 I 0 Ix 12)1 x I x I x I x I

800 16 -- 7FF 16

ROM

11 10 9 8 7 ' 6 5 3 2

{o Ix Ix I x Ix 1(91 x I x I x I x I

00016 -- 7FF 16

X represents 0 or 1.

AS A9 A10 All

t:--cEdJ
Low reads

from RAM

if ffi and

ffi are low

4-4

0

J

xi

Bit No.

Bit No

OE2 High
Selects

OE1 ROM

Figure 4-3 2048 Bytes Of ROM And 256 Bytes Of
RAM Connected To A EA9002 CPU

The EA2111 RAM devices each provide 4 bits of 256 bytes. Each device is therefore
connected to the low order or high order four bits of the data bus. Providing the two
devices receive the same read, write and select logic, they will communicate 8-bit
parallel data.

Each EA2111 device has two chip enable signals ffi and CE2. These signals have
been enabled as illustrated above.

Additional control signals required by the EA2111 are R/W and OD. R/W is a write
enable; therefore it is connected to DOS. OD is a read enable, therefore it is connected
to DIS.

Adding more read-write memory to the configuration illustrated in Figure 4-3 is very
straightforward. Within the configuration illustrated in this figure, 16 EA2111 RAM
devices may be included, providing 2048 bytes of external RAM. In order to support
this number of RAM devices. two steps will be required:

1) the address. data and control lines will have to be buffered 1n order to support the
current load.

4-5

2) Chip-select logic must decode the complete address space in order to select ap
propriate RAM devices. Here is one simple possibility:

000 select RAM 0. address space 800i- BFF

AS 001 select RAM 1. address space 900 9FF 010 select RAM 2. addrnss space AOO - AFF

1of8 011 select RAM 3, address space BOO - BFF
A9 DECODE 100 select RAM 4. address space COO ·CFF

IOI select RAM 5. address space DOD OFF

AIO 110 select RAM 6. address space EOO EFF 111 select RAM 7. address space FOO FFF

A 11------,r•--t[>o>O-->-C----I:: :elects all RAM memory

- ~ H1gl1

51s----------1.L- selects

OE I ROM

ROM address space =--= 000 7FF

SYSTEM CONFIGURATIONS WITH 1/0

A minimum system will include the EA9002 CPU, a single ROM device
and 1/0.

1/0 is very application oriented; it can be as simple as 1 to 8 flip-flop out
puts, as illustrated in Figure 4-4.

The system in Figure 4-4 uses four 7 4 7 4 dual D-type flip flops as output latches and
one EA4 700 1 K x 8 ROM for program storage. The internal RAM within the 9002 is
assumed sufficient for this simplified controller. This minumum system can be very
useful for alarm or signalling systems which simply respond to an interrupt input by
providing an output signal. Each interrupt response may terminate with a reset. to in
itialize the controller for the next occurance of an interrupt.

Another minimum system utilizing TTL components for 1/0 is shown in
Figure 4-5 which uses two 7 4125 tri-state buffers to create a single 8-bit parallel in
put port. plus two 74175 quad D latches for a single 8-bit parallel output port. Assum
ing the internal RAM of the 9002 and a single 1 K x 8 ROM (EA8308/2708 type) for
program storage, the total system requires only 7 1/4 TTL packages. All required con
trols and strobes are obtained by gating DIS and DOS from the EA9002.

A more versatile system with TTL circuits is shown in Figure 4-6. Two
74175 flip-flops provide 8 latched outputs, while two 8233's are used to buffer two 8-
bit parallel input ports. A single EA8308 PROM or EA2308 ROM is shown for program
storage along with a single 7 4155 dual 2 of 4 decoder circuit for address decoding
and chip-select function. Two 8 T 28's provide splitting and buffering of the data bus
to interface with the ROM and 1/0 devices. Total TTL package count is seven. Addi
tional 8233's and 74175's can be added to expand inputs and outputs. Also, there is
another ROM chip select available to expand program memory to 2048 bytes (two
8308/2708) The separate DIS and DOS strobes as illustrated in this example show
how four output ports can be configured with the 7 4155 device. Output ports C and

4-6

D. enabled by DOS, occupy the same address space as do the ROM's; but the ROM
only inputs information to the CPU. Thus. 1t only needs to be enabled by the DIS
strobe.

RESET

All

AlO

MPU
EA9002

CLOCK

MPU

EA 9002

AO Al I

DO D7

Dis cs 1

A 11 ffi EA 4 700

AlO

AO Al I

DO D7

INTERRUPT

ROM

lK x 8

Figure 4-4 Minimum 9002 System

ROM
EA8308/

2708
1Kx8

Al I

AO A9 DIS

8T28
121

DOS

Figure 4-5 Minimum System With TTL

4-7

CLK Q

7474

141

D Ci

CLR

RESET

IN

OUT

Di5S

A 11

A 10

i5iS

CLOCK

MPU

EA9002

74155

DUAL

2

of

2Y3 OUT PORT A

2Y2 -OUT PORT B

2YI --- OUT PORT C

2YO --- OUT PORT D

1Y3 - IN PORT A

IY2 --- IN PORT B

IY1 --- ROM 2

IYO - ROM 1

EA8308/

2708

1K x 8

- ROM/PROM

AO-A9

i5iS
i'iiS

AO- A 11

DO 07 8T28121

--

so
8233

S1

8233

CLK

04-07 74175

CLK

DD-03 74175

RESET

Figure 4-6 Minimum System Using TTL

4 8

INPUT

PORT

INPUT

PORT

A

OUTPUT

PORT

A

CLOCK

MPU

EA9002

ADDRESS BUS

DATA BUS

ROM

EA4700

1K x 8

INT

8212 OUT

8212 IN

STROBE

Figure 4- 7 Minimum System With Intel 8212 1/0

It would be difficult to beat the minimum component parts count of the
system shown in Figure 4- 7. The 8212 is an 8-bit parallel buffered and
latched Schottky TTL device. Again the versatility of the EA9002's DIS
and DOS strobes are illustrated in that they allow both 8212's to occupy
the same address space (A11 true). The EA4700 ROM, in this applica
tion, occupies memory space 000 to 300 (Hex) or the first 1 K of directly
addressable memory.

ROM

EA8308/ RAM
-

2708
EA2111

CLOCK

J ~ ~ ~ ~ -4 ~ ~

CONTROL __,,_
~

MPU ADDRESS _.. 1/0
~ EA9002 EA9255

CO Cl

..._DATA • w _..
~ --

Figure 4-8 System With ROM/RAM And Programmable 1/0

4-9

The system shown in Figure 4-8 makes use of the EA9255 GP 1/0 along
with the EA8308/2708 PROM/ROM and EA2111 type 256 x 4 RAM.
RAM. in addition to that provided within the 9002 along with flexibility in 1/0 defini
tion is featured in this example. Component count is certainly not excessive as illustr
ated in Figure 4-9 which details required logic and address decoding. As is shown.
only one 7406 hex inverter and one 7403 quad 2-input NANO gate is required.

A Memory Mup

11109876543210

0 0-lK ROM>l-

0 0 -1 K ROM >2-

1 0 -1 K RAM---

1 1 -1/0 PORTS ---

B Cuntrol Gnncrot1011

DiS~DiS
v- ~DIS

iiOS~OOs
v- ~DOS

A11.~A11 v- ~Ali
A10~A10 v- ~AlO

C EA8308/2708 ROM CONTROL

ROM 1

E EA9255 CONTROL
D. EA2111 RAM CONTROL

All

AlO

DIS

DOS
DIS-__,>-i-T-tOD OD

A11----W CTi'
Al

AO

D0-07 DO D7

Cs

w

Al

AO

Figure 4-9 Details Of Peripheral Control With 3 TTL Package.

ROM 2

1/0

Ability to use other manufacturers microprocessor 1/0 devices is shown
in Figure 4-10. Here. the Motorola MC 6820 PIA device is interconnected into an
EA9002 system. along with the EA4600 2K x 8 ROM. Minimum parts counts is again
achieved due to the flexibility of the 9002 control signals.

4-10

A system making use of the EA9250 Keyboard/Display Controller and
the EA9255 GP 1/0 controller is shown in Figure 4-11.The 9250 automat
ically scans, encodes and debounces a keyboard of up to 128 key or switch positions
while. at the same time. helps a dynamic LED or gas-discharge display refreshed. This
relieves the software programmer from the necces1ty of writing keyboard scanning
and encoding programs as well as having to periodically refresh multiplexed displays.

MPU

EA9002

AO

INT
AlO

Al All iRciA
ROM cso

EA4600 CSl

2K x 8 CS2 MC
RSl 6820

DO·D7 RSO

R/W

DO D7

DATA BUS

Figure 4-10 Minimum System With Motorola MC6820 PIA

ADDRESS

DECODE

8

CHIP

SELECT

ROM

RAM

K/D

GP 1/0

KID

CONTROLLER

EA9250

GP 1/0

EA9255

Figure 4- 11 Using The EA9250 Keyboard Controller

MEMORY BANK SWITCHING

PAO

pi\7

PBO

PB7

DISPLAY

In the event that more than 4096 bytes of external memory are required,
adding memory is quite straight-forward.

Now address space must be shared by memory banks and bank switch
ing will be needed to insure that just one memory bank within any ad
dress space is selected at any time.

4-11

The simplest technique for bank switching is to use an 1/0 port (such as
the 821 2) to generate select lines which are AN Ded with memory select
logic. Figure 4-12 shows how an 8212 1/0 port assigned addresse FFF1e
is used to create eight select lines.

Assuming that each ouput line of the 8212 1/0 port is an individual memory bank
select line. eight memory banks may be present.

By combining the outputs of the 8212 1/0 port. 256 memory banks sharing the ad
dress space may be implemented.

The following instruction sequence will select the appropriate memory bank:

LAI
CAP
CAR
LAI
OUT

FF
7
7

SEL
7

SET PAGE FIN R7

SET ADDRESS TO FF IN R7
LOAD MEMORY BANK SELECT INDICATOR
OUTPUT MEMORY BANK SELECT

Observe that the select lines illustrated in Figure 4-12. do not have to be used to
select 4096 byte memory banks. If they are used in this fash[on. then the memory
bank select instructions illustrated above. when executed. will branch program logic
out of one memory bank and into another memory bank at the next sequential
memory location:

l111t1al

ll)(;!lHJry

har1k

LAI FF _ctJ_
F-
F

~ _E 7

CAP 7

CAR 7

LAI SEL C!2: ...
S L ""-~

OUT 7 F
~-
....-

::.--

Arh1trary

rrn~1nory

ilddress

3EA

3EB·

3EC

3ED

3EE

3EF

3FO

3F1

3F2

3F3

3F4

3F5

...

......

::
.....
......

..lo

.....
+
,

New

snlncted

rncrrniry

hcink

Path of

(Jbiect

code

access

If considerable external data memory is needed. then the select lines illustrated in
Figure 4-12. could be used to select banks of data memory only. For example. memo
ry locations 00016 through 7FF 16 could be reserved for program memory. while eight
separate implementations of memory locations 800 through BFF16 could provide 8 K
bytes of external data memory. Address space C0016 through FFF16 remains
unassigned.

4-12

AO-.r""

AI
A2 __ _

A3--
A4 A5---

Vee

00
CLR

07 ...

DS2

STB

so All

8212 i'ils
S7

f~tc

OSI

GND

Figure 4- 12 Using An 8212 I I 0 Port To Select Memory Banks

SEPARATING PROGRAM AND DATA MEMORY

OE2

OEI

A technique for expanding directly addressable memory of the EA9002
from 4K to SK. with the simple addition of a few TTL components uses a
13th address line (A 12) generated by control logic. This scheme is illustr
ated in Figure 4-13. When A 12 output is false, the normal 12 address
outputs are used to select an instruction related word from ROM. When
A 12 output is true. the 12 address outputs are used to select a data loca
tion in RAM or 1/0. This allows the implementation of a system contain
ing up to 4096 instruction codes and 4096 data RAM and 1/0 locations.

This technique takes advantage of the fact that the EA9002 CPU always addresses
and fetches an instruction immediately following a sync output pulse from the WAS
output pin. If the instruction fetched is one of the four data transfer instructions (INP.
OUT. LRN. SRN) then and only then is a data transfer to memory or I /0 to take place.
Otherwise. the instruction performs operations internal to the CPU only -- in which
case there is no communication with data memory or 1/0 devices.

A 12
PROGRAM DATA MEMORY
MEMORY IRAMl8

CONTROL
IROMI 1/0

~ l 1 ~ 1 ~
A 12*

ADDRESS BUS AO A 11

MPU CONTROL BUS

9002
DATA BUS DO D7 ,

'A 12 FALSE - SELECT ROM

A I 2TRUE SELECT RAM 8 1/0

Figure 4-13 SK Memory System

4-13

The four 1/0 instructions binary op codes. as they appear on the data bus. are as
follows:

Instruction Op Code
MSB
D7 D6 .122_

INP 0 1 0
OUT 0 0
LRN 1
SRN

Op codes are described 1n Chapter 5.

DECODING LOGIC

PARTS LIST

I 7400 DUAL 2-INPUT NAND

I 7420 DUAL 4-INPUT NAND

I 7474 DUAL D FLIP FLOP

I 100 !! RESISTOR

I 200pf CAPACITOR

D4

1
0
0

D3 D2 D1
0 x x
1 x x
0 x x

x x

,-, PR

Q
FFI

i3iS >----1 CLK Ci
CLR

D Q

FF2

WAS >----I CLK

CLR

* 200pf

Figure 4-14 Control Generation

LSB
QQ_
x
x
x
x

A 12

'U"
RESET

The three least significant bits (D2. D 1. & DO) are used to designate one of the 8 GP
registers. B'1t D3 is also a "don't care" condition for decoding purposes since it selects
between INP and OUT or LRN and SRN. Therefore. it is only necessary to decode the
four most significant bits to ascertain that the instruction is one of the four possible
data transfer codes. An implementation of the logic equation

D7•D6·D5•D4 + D7•D6·D5·04

will select the unique 1/0 instruction op codes from the total op code field. We must
test for this condition immediately following a sync output pulse. Thus. the WAS sync
pulse will initialize a flip-flop to the 0 (false) state, while the DIS (Data In) strobe
will clock the flip-flop into the 1 (true) state, providing the test condition 1s true.

4-14

Figure 4-14 illustrates an implementation of logic to create address bit
A12.

Figure 4-15 illustrates the timing associated with Figures 4-13 and 4-14.
During T 1 and T2 of an instruction cycle, an instruction is addressed via the address
bus; the op code is transferred to the CPU via the data bus. If this instruction is not one
of the four data transfer instructions, then no output occurs from the instruction
decoder of Figure 4-13; the control flip-flop is not set. A 12 remains low and all ad
dresses remain directed to the program field of memory.

If the instruction is an INP. OUT, LRN or SRN, the DIS strobe sets the control flip-flop,
and thus A 12. to the 1 state. The control flip-flop will remain in the 1 state until reset
by the output of the reset flip-flop shown in Figure 4-14. The reset flip-flop acts as a
one-shot; it provides a delay beyond the end of the WAS sync pulse to ensure that
the control flip-flop remains reset until the beginning of the next T1 period.

Implementation of the logic shown in Figure 4-14 is not necessarily the lowest cost
approach. It is shown as a technique which has been tested and will work. The signifi
cant events to consider when implementing this scheme are that A 12 should always
be low at the beginning of a CPU cycle which is signaled by the WAS sync strobe.
After T2 time, if A 12 has been set, it must remain set until the required data transfer
has taken place. WAS sync occurs before the ending of a DIS or DOS strobe,
therefore, it is necessary to delay the resetting of A 12 to avoid shortening the DIS or
DOS cycle.

If -data on the data bus coincides with an 1/0 instruction code and this occurs after
A 12 has been set the most that can happen is that A 12 toggles to the zero state -
but it is supposed to go to the zero state at this time anyway. If A 12 is in the zero
state and gets toggled to the one state by spurious data. it will be immediately reset as
a result of the sync pulse.

Additional considerations may be required in the use of this memory bank select tech
nique if the WAs pin is to be pulled down by external networks to initiate a WAIT
period. It may be necessary to isolate the clocking of the reset flip-flop from this con
dition.

INTERRUPT PROCESSING
Most microcomputer applications have their needs met by a single inter
rupt request line. Only in special circumstances will multiple interrupt,
single- CPU logic configurations be justifiable.

Within the minicomputer industry, interrupts are frequently used to
share the expensive and underused capabilities of a Central Processing
Unit for a variety of operations. Microcomputer Central Processing Units
are so inexpensive that any attempt to share them, simply as a means of
reducing the number of CPU's within a system, is almost certain to be
economically unsound.

4-15

EXTERNAL

CLOCK

DiS

'WAS

FF1 RESET

t"' A 12

i'iiS

iNiiS

FF1 RESET

FF1 A 12

T,

INSTf1UCTION

FIELD

INSTRUCTION

FIELD

T,

DATA

FIELD

~ 211d CYCLE OF LRN & SRN INST

T, I T; I T, I T I T,

____ j

DATA FIELD

Figure 4- 15 One Cycle And Two Cycle Timing

Nevertheless, there will be circumstances in which multiple interrupt
configurations are both economical and viable, since to a microcom
puter, interrupts signal asychronous events. A multiple interrupt, single
CPU microcomputer configur~tion would economically support slow
asychronous event sequences.

A multiple interrupt microcomputer system should handle interrupts
serially; once one interrupt has been acknowledged, all other interrupts should wait
until the acknowledged interrupt is serviced. In other words, interrupt priorities should
only be arbitrated if the actual interrupt requests occur simultaneously from two or
more external sources.

When an EA9002 configuration includes a single external interrupt (in ad
dition to the Reset), then implementing interrupt logic becomes trivially simple. Pro
viding external logic creates interrupts or reset request signals with the appropriate
timing, as described in Chapter 3, no other external logic is required
specifically to support the interrupt. Of course. subsequent 1/0 operations may
be necessary following the interrupt acknowledge, but these are normal 1/0 opera
tions.

In a microcomputer configuration where multiple interrupts are justified,
an effective way of handling multiple interrupts is using a daisy chain, as
illustrated in Figure 4-16. Every external logic source capable of requesting an in
terrupt has its own interrupt request line, illustrated in Figure 4-16 by INTO, INT1,
INT2, etc .. These interrupt requests are active low. By ANDing all interrupt requests
together, a master interrupt request INT, is created for transmittal to the CPU.

4-16

When acknowledging the interrupt. in order to support the logic illustrated in Figure
4-16. the CPU must output a master acknowledge. shown as IACK. IACK is negative
true. If IACK arrives at the first NANO gate and is matched by INTO low. then the first
NANO gate will generate a high output. which will cause all subsequent NANO gates
to generate low outputs. Thus. IACKO will become a high true interrupt acknowledge
to the first device in the daisy chain.

If INTO is high. then the first NANO gate will propagate a low output to the second
NAND·gate. This propagation will continue down the daisy chain until the first low
output from one NANO gate is matched by a low interrupt request INTX. That NANO
gate will generate a high output. which becomes a high interrupt acknowledge
IACKX - and simultaneously forces all subsequent NANO gates to output low.

In summary. therefore. IACKX will be output high by the NANO gate which receives
INTN low when the master interrupt acknowledge IACK is output low by the CPU.

IACKO IACK1 IACK2

iACK---

Figure 4-16 An Interrupt Request Daisy Crh_a_in ______ '""'I

There are numerous ways in which the CPU can INTERRUPT
output IACK low. Figure 4-17 illustrates how data ACKNOWLEDGE
bus line DO. in conjunction with memory address
FFO, can create IACK. The logic in Figure 4-17 requires the EA9002 CPU to res
pond to an interrupt by executing the following instruction sequence:

*INTERRUPT RESPONSE MUST BE ORIGINED AT MEMORY LOCATION 2
ORG 2
LAI OF
CAP 7
LRI 7.FO
CLA
OUT 7

ESTABLISH ADDRESS FFO IN R7
OUTPUT 0 ON DO LINE OF DAT A BUSS AS
INTERRUPT ACKNOWLEDGE

Observe that so long as the low order accumulator bit is 0 when data is output to
memory location FFO. it does not matter what values the other Accumulator bits have.

An alternate method of generating an interrupt acknowledge is by decod
ing the Address bus. Recall that when an interrupt is acknowledged, pro-

4-17

gram execution branches to memory location 0021s. You may therfore
decode this single value off the address bus to generate an interrupt
acknowledge signal. This scheme relies entirely on external logic to generate
IACK. No instructions are executed for this purpose.

IACK

Figure 4- 17 Logic To Transmit IACK Low If A 11-AO Is FFO And DO Is 1

The external device whose interrupt has been acknowledged is informed
of this circumstance by its interrupt acknowledge signal IACKX being
high. There are many ways in which this high signal can be used by the
CPU to determine which interrupting external logic must be serviced.
Here are two possibilities:

1) The individual IACKX signals can be input to an 8212 1/0 port. or to an 1/0 port of
an 8255 type parallel interface device. By inputing the contents of this 1/0 port.
the interrupt service program can determine which device is requesting an inter
rupt.

2) The interrupt service program associated with each external logic source can be
implemented on a separate ROM device sharing the same memory space.

Suppose each external source has a IK byte ROM in which its interrupt service
program has been implemented. Let us suppose all of these IK byte ROMs share
the address space 80016 through BFF16. If there are eight external logic sources
which can request interrupt service. there will be eight ROM devices. all of which
are selected by the address range 8001s through BFF16. However. all of the ROM
selects will be tied to the interrupt acknowledge signals. thus only the ROM for
acknowledged logic will indeed be selected. Of course. the last instruction ex
ecuted within the interrupt service program. must be a jump back to some in
struction implemented in the memory range 0001s through 7FF16. since this ad
dress range is not duplicated.

The logic needed to select alternate ROMs has been described earlier in this
Chapter in conjunction with memory bank switching.

Chapter 5
THE INSTRUCTION SET

In this chapter we are going to identify the operations performed by in
dividual instructions of the EA9002 instruction set. This is an instruction
look-up chapter. which means that operations performed by instructions
are described individually, isolated from program flow considerations.
Programming techniques and efficient use of the 9002 instruction set are
treated separately in Chapters 6. 7 and 8.

Because this is an instruction look-up chapter. instructions are listed in
alphabetic order of instruction mnemonic.

Once you are familiar with the EA9002 instruction set, use the instruc
tion set summaries provided in Appendix A.

A generalized format has been adopted in this chapter to describe all in
structions.

Each instruction begins with a graphic representation of active ac
cumulators, registers. memory locations and statuses.

ABBREVIATIONS

A number of abbreviations have been adopted in this chapter. and they
are summarized next.

Lower case 'm' is used to represent hexadecimal digits of program
memory addresses:

Program

Memory

mmn1 • 1

mmm' 2
mmm 1 3

Any valid program

memory addrnsses

Upper case •p• and 'Q' are used to represent hexadecimal digits of im
mediate data:

Instruction

obiect code

5-1

lrmnedmte data

mmm '2

mmm '3

Upper case '.J' and 'K' are used to represent hexadecimal digits stored in
the accumulator, or the low-order eight bits of general purpose registers:

R2

R3
R4

..__..J_..J _ _,I Accumulator

If a status flag may either be set or reset by an instruction, an X is placed
in the appropriate status box. A D is .placed in a status box if the status is
modified in decimal mode only. An 0 is placed in the status box if the
status flag is unconditionally reset. A blank means that the status is in no
way modified by execution of the instruction:

I A D C H

Will be set or ceset in

decimal mode only

U11cond1t1onally rnset to 0

Unaffected

Will be set or reset

to n~flect results of

111struct1011 cxecut1(H1

Instruction object codes are represented by two hexadecimal digits
wherever an instruction has only one version:

CLC 111structiun has

\Jn~~ object code C1nly

Many 9002 instructions are register-dependent; the low-order three ob
ject code bits specify one of eight registers. Object codes for these in
structions are shown in binary format. Here is a general example:

ADS N

1 IOOOXXX ,_,,....
000 tor RO

001 tor RI

010 for

011 for

100 Im

5-2

Recall that general-purpose registers are sometimes treated as single
12-bit units. A 12-bit unit being selected by an instruction object code is
illustrated as follows:

RO

RI

R2

R3

R4

R5

R6

R7

At other times general-purpose registers are treated as separate 4-bit
and 8-bit units.

Selection of a register's 8 low order bits is identified as follows:

RO I
RI I
R2

R3

R4

R5 I
R6

R7

"i::

Selection of a register's high-order 4 bits is represented as- follows:

RO

RI

R2

R3

R4

R5

R6

R7

T
:

l

l

5-3

ADD-ADD REGISTER TO ACCUMULATOR WITH CARRY

Stack

Pq

RO.,_ ___ ot

Al ----·--t
R21-t---'4
R3 R4.,_._ __ '4

R5 t-+---'4
R6
R7 l-t---'4

Scratch
Memory

ADD N -..- -..-

')J _._._._.
10000XXX

Data
Memory

Program

Memory

To the Accumulator add the Carry status and the low order eight bits of register N. If
the D status is 0. the Accumulator and Register contents are treated as 8-b1t binary
data. If the D status is 1, the Accumulator and Register contents are each treated as a
pair of BCD digits.

Suppose the Accumulator contains 7316, Register R5 contains 34716 and the Carry
status is 1: after execution of the instruction sequence:

SEB Set binary mode

ADD 5

The Accumulator will contain 8816:
73 ~01110011

47 ~ 01000111

c ~
1011 1011 .._ Nrn1 zero result so A =1

No carry so~ ~
c ~ 0

No carry so H = 0 (Dec1111al rnode 011ly)

Now look at decimal addition:

7 3

4 7

1
-2-1-..,_ Nori zero result so A =1

Carry sets

C to 1

1 _.,/ \;_)
Carry sets H to 1

5-4

Decimal addition will result from execution of the sequence:

SEO
ADD 5

Set decimal mode

This is what happens when the ADD 5 instruction is executed:

Stack

RO ... ___ ...

R1 l-+----1
R2 t-+.---1
R3 I-"---.,,
R4 ...,.._ __ ..._,.

R5 ,,;4,.;7,,,_-1

R6 t-+-""""~V
R7 L...r--..;;;.i

Scratch

Memory

~a
nnE3

nn + 1

Data
Memory

Program

Memory

mmm
mmm+ 1

ADS -ADD SCRATCH MEMORY TO ACCUMULATOR WITH
CARRY

Scratch

Memory

~a
nnt::'Ed
nn+l~

~~a
PC~.1

ADS N

---~z
11000XXX

5-5

Data

Memory

Program

To the Accumulator add the Carry status and contents of the scratch memory byte ad
dressed by the low order six bits of Register N.

The ADS instruction is identical to the ADD instruction except for the source of the
addend byte.

For a discussion of scratch memory addressing see the RDS instruction.

AND -AND REGISTER WITH ACCUMULATOR

Stack

RO ___ _

Rlt-t--'""1
R2 t-1---t
R3
R41-.... --t

R5 l-l---t
RS
R7 ___ _

Scratch
Memory

AND N

ll
10010XXX

Data
Memory

Program

Memory

100 lOXXX mmm
mmm+1 ---

Logically AND the Accumulator with the low order eight bits of Register N.

Suppose the Accumulator contains 3E 16 and Register 3 contains 2F31s; after execu
tion of the instruction

AND 3

the Accumulator will contain 3216:

3E 00111110

F3 ~
AND 00110010

The C and H statuses are unconditionally reset to 0. The A status is set to 1 since the
result in the Accumulator is not zero.

This is what happens:

Stack

Scratch

Memory

~a

I A D C H

CAP - COPY ACCUMULATOR TO PAGE

Stack

ROl-~--t Al ____ ..

A21-+----I
A3.,_.._ __ .. A4 ____ ..
A5 ____ ..

AG
A7 l-+----I

Scratch

Memory

~a
XXE3

xx . 1

3Ei------i
3Fc::::J

CAP N

\I
01001XXX

A

Data
Memory

Program

Memory

93 mmm
mmm+l ----t

Data
Memory

Program
M8mory

Copy the low order four Accumulator bits into the high order four (Page) bits of
Register N.

5-7

Suppose the Accumulator contains 3E16 and Register R2 contains 4FA16; after the in
struction:

CAP 2

is executed, the Accumulator will contain 3E1s, while Register R2 contains EFA16:

RO
R1
R2

R3
R4

R5

RS
R7

Stack

~
I
T

E_i_ F A

~· ~ .
I

Scratch

Memory

~a
"B . 1

3EE3 3F

--::::::::,., CT:JA
I I I I I I Stil!US

I A D C H

CAR - COPY ACCUMULATOR TO REGISTER

Stack

R3
R41----of

R5-----t
RS
R7 t-+----t

Scratch

Memory

~a
xx t:::::j
·I C===l

-x·t
10110XXX

Data
Memory

~
Program
Memory

~
01001010

Dara

Memory

Program

Memory

mmm
mrnm + 1

101 lOXXX mmm

mmm+l
1----i

Store Accumulator contents in the low order eight bits of Register N.

Suppose the Accumulator contains 3E1s and Register R2 contains 4FA16; after the in
struction:

CAR 2

5-8

is executed, Register R2 will contain 43E 1s:

Stack

Scratch

Memory

~a
xxx~a

~~a
PC~

I
""""!'"

4_l 3 E

I

RO
Rl
R2

R3

R4

R5

R6

R7

...l
,.

::s,,.
[JL] A

I I I I I
I A D C H

CLA - CLEAR THE ACCUMULATOR

Stack

Scratch

Memory

~a
,,t==I

xx j 1 c====l
3Er----i
3Fc::::J

PC~1

l.

:I
-1.
::t:

I St;itus

RO
Rl

R2

R3

R4

R5

RS

R7
.
I I I 0 I I I I St<>tus

I A D C H

CLA

I
F6

Unconditionally reset the Accumulator contents to 0.

5-9

r-

Data
Memory

Program

Memory

82

Data

Memory

Program
Memory

F6

mmm
mmm+ 1

~---lmmm+1

CLB - CLEAR THE ACCUMULATOR AND CARRY STATUS

RO
Al
A2
A3
A4
A5

A6
R7

Stack

I
!

_i
I

::r

Scratch

Memory

~a
nn:~s
~~a

~A

I Io I Io I I
I A D C H

CLB

I
F2

Data
Memory

Program

Memory

F2 mmm
1-----1

mmm+ 1
1-----1

Unconditionally reset the Accumulator contents and the Carry status to O.

CLC - RESET THE CARRY STATUS TO 0

RO

Rl
R2

• R3

R4

R5

R6

R7

Stack

:::r
T

_i
I

::r

Scratch

Memory

~a
"E3 xx 1 .

Unconditionally clear the Carry status.

I I I Io! I
I A D C H

CLC

I
FO

5-10

S1;1tus

Data
Memory

Program

Memory

CMA - COMPLEMENT ACCUMULATOR

RO

R1

R2

R3
R4

R5
R6

R7

Stack

~
I
!
:I
J

...1 .
T

Scratch

Memory

~a
""E3 nn + 1

3EE3 3F

I I x I I I I StillllS

I A D C H
CMA

I
Fl

Ones complement the Accumulator contents.

Data
Memory

Program

Memory

F 7

mmm+ l
t-----1

Suppose the Accumulator contains 3E 1s. After ~xecution of the instruction:

CMA

the Accumulator will contain C 116:

3E =00111110
ones complement = 11000001

The A status will be set to 1 since the result is not zero.

5-11

CMC - COMPLEMENT THE CARRY STATUS
Scratch

Stack Memory

~
~a
nnE3

nn + 1

3E8
3F

PC I mmB;; ;S>
RO
R1

R2

R3
R4
R5

R6
R7

I
T

_I

:r I I X I l Status

I A D C H

CMC

I
F3

Unconditionally complement the Carry status.

Data
Memory

Program

Memory

F3 mmm
1-----1 mmm + 1

CMP - COMPARE REGISTER WITH ACCUMULATOR
Scratch Data

Stack Memory Memory

~
~a

~ nnE3
nn + 1

3E8
3F

PC I Program

Memory

RO
Rl
R2
R3 10101XXX mmm

R4 mmm+ 1

R5
R6
R7

CMP N

j_I
10101XXX

5-12

Compare the Accumulator contents with the contents of Register N's low order eight
bits. Neither the Accumulator nor Register N contents are modified, but the C and A
statuses reflect the result of the compare as follows:

c

A~R

A<R 1

A>R 0

A~R

A,;;R 0 or 1

AfR 0 or 1

A

0 ()f 1

0 or 1

Tl)St Cond1t1rn1

A~O

c~1

C-=0 ilrlrl A=1

C•O

C=-ol or A=O

A 0 1

Interrupts are disabled during execution of the CMP instruction and the next sequen
tial instruction. However the interrupt status flag itself is not changed. This prevents an
interrupt from dividing a CMP instruction's execution from execution of the Jump on
condition instruction which usually follows directly.

CPA- COPY PAGE TO ACCUMULATOR
Scratch

Stack Memory

~
~a
""E3 nn + 1

3E8 3F

I A D C H

CPA N v
OlOOlOXX

Data

Memory

Program

Memory

OOOOlOXX mmm
mmm t1

1-----1

Copy the high order four (page) bits of Register RO. R 1, R2 or R3 to low order four Ac
cumulator bits. Clear four high order Accumulator bits.

Suppose the Accumulator contains 3E 1s and Register R2 contains 4FA 15; after the in
struction:

CPA 2

5-13

is executed, the Accumulator will contain 041s, while Register R2 contains 4FA16:

Stack

RJ..,..._ __ ..

R41-.i.;:i,,,""""""""L-
R51----.;I
R6._ ___ ..

R7._.._ __ ..

Scratch
Memory

~a
nnt=:::1

nn+1c:::J

3Et--I
3Fc::::J

A

I A D C H

CRA- COPY REGISTER TO ACCUMULATOR

Stack

~
Ro._,._ __ -1
Rt ._ ___ -I
R2 ._.._ __ _.

R3._.._ __ ..I
R4 ._.I.. __ _,
R5 ._._ __ _,
R6 ._.._ __ _.

R7._.._ __ _.

Scratch

Memory

~a
nnB

nn + 1

3EE]
3F

A

Status

CRA N

TI
10111XXX

Data
Memory

Program

Memory

Data
Memory

Program

Memory

mmm
mmm+ 1

1011 OXXX mmm
mmm+1

Store contents of low order eight bits of Register N in Accumulator

Suppose the Accumulator contains 3E 16 and Register R2 contains 4FA 15; after the in
struction:

CRA 2

5-14

is executed. the Accumulator will contain FA1s:

RO
R1
R2

A3

A4

A5

A6
A7

::I
I

4

...I.
::t

::r

Stack

FA -3"'
::s

""-.

Scratch

Memory

~a
nnE3

nn + 1

I

.. CE:] A

Ix I I I I S\dlUS

I A D C H

CSA - COPY STATUS TO ACCUMULATOR
Scratch

Stack Memory

~
~a
x;E3
3EE3
3F

PC mmm

RO
R1
R2
R3

R4
R5 A

R6
R7

CSA

I
OC

Copy status flags and Stack Pointer to the Accumulator.

5 15

Data

Memory

Program

Memory

~
10111010

Data

Memory

mmm
mmm+ 1

~
Program

Memory

oc mmm
mmm+1

This is how Accumulator bits are interpreted following execution of the CSA instruc-
ti on:

~------ Accumulator status

Interrupt enable I disable

Dec1mal/B111ary status

~--------- Carry status

The statuses are straightforward and easy to understand.

The Stack Pointer identifies the level to which the stack has been pushed. For exam
ple. a value of 101 in the Stack Pointer stipulates that five more subroutine calls than
returns have been executed; that means subroutines are currently nested to a level of
5.

DAC - DECREMENT THE ACCUMULATOR

Stack

Scratch

Memory

~a
nnt::::I

nn+ 1 c::::J
3EE3
3F

PC~
RO

R1

A2

A3

A4

A5
A6

A7

I
:
.I

..L

'

9ZI?
Ci]

I x I I x I D I StillUS

I A D C H

DAC

I
F5

Data

Memory

Program

Memory

F5 mmm
1----'--t mmm + 1

Decrement the Accumulator contents. If the D status is 0. the Accumulator contents
are treated as an 8-bit binary number. If the D status is 1, the Accumulator contents
are treated as two BCD digits.

Suppose the Accumulator contains 7316. Execution of the instruction:

DAC

will decrement the Accumulator to 7216 in either binary or decimal mode.

5-16

Now suppose the Accumulator contains 8016. The instruction sequence:

SEB Set binary mode
DAC Decrement Accumulator

leaves 7F16 in the Accumulator; the C status is 0. However. the instruction sequence:

SEO Set decimal mode
DAC Decrement Accumulator

leaves 7916 in the Accumulator. 1 in the H status and 0 in the C status.

Now suppose the Accumulator initially contains 0016. The instruction sequence:

SEB Set binary mode
DAC Decrement Accumulator

leaves FF16 in the Accumulator and 1 in the C status. The instruction sequence:

SEO Set decimal mode
DAC Decrement Accumulator

leaves 9916 in the Accumulator and 1 in both C and H statuses.

OCR - DECREMENT REGISTER

Stack

PC I

Scratch

Memory

~a
nnE3

nn + 1

AOt-+---"'I
Alr-!"-~-1,J-~...,_J
A2 l-+----I
A3 A4_ __ ..

A5 l-+----I
A6
A7t----ol

c::::J A

I I I I S1"1us
I A D C H

DCR. N

ll 0111 IXXX

Decrement the twelve bit contents of Register N.

Data
Memory

Program

Memory

mmm+1
1----t

Suppose Register R3 contains 23A 15; after execution of the instruction:

OCR 3

5-17

Register 3 will contain 2391s. Had Register R3 contained 30016. it would now contain
2FF1s; had the register contained 0001a. it would now contain FFF1a.

DLY - DELAY TWO CYCLES

Scratch
Stack Memory

~
~a
""E3 nn + 1

:E3
PCI mmm@m+j:>

RO
RI
R2
R3
R4
R5
R6

R7

.l.
~

:..:_
:I
::I: .
.!.
::r

c:::::J A

I I I I I I Status

I A D C H

DLY DATA

lI
00 QQ

Data
Memory

Program

Memory

..,__oo_-t mmm ;

..,__a_a_ ~~~ ~ ~

Nothing happens when this instruction is executed. but the Program Counter is incre
mented by 2. skipping the byte that follows the DL Y object code.

The DL Y instruction may be used to implement skip logic: For example. all addition
and subtraction instructions include the Carry status. You can clear the Carry status
optionally as follows:

LABEL DLY FO
ADD. 3

FO is the CLC instruction object code; normally this object code will be skipped by the
DL Y instruction. By jumping to LABEL+ 1. you can clear the Carry status before exc
ecuting the ADD instruction.

5-18

DRJ - DECREMENT REGISTER AND JUMP

Stack

PC mmm

RO
R1

R2
R3
R4

R5
R6
R7

Scratch

Memory

~ E3 ~ Af\r·r hrnt1q d(;Cr1 1 nu:l'trni

I Rc~q1sl1!r XXX crn1ta111s

E3 / POO

nn + 1 I B Alh·r IJp1nq dccrc:1111!111cd. nn I~
J R1'q1stm XXX dot's 11111 3EB' I U111tni11POO
I I

3F : I
I I
I I
I I
I I
I I
I I
I I
I f

I I I I s1 .. 1us

I A D C H

DRJ N. LABEL

II_
00111 xxx 00

Data

Memory

Pf-ogram

Memory

·Decrement the 12 bit contents of Register ·N. After decrementing. test the low order
eight bits; if they are all zero. program execution continues with the next sequential
instruction; if they are not all zero. program execution branches to the instruction on
the same page identified by the label LABEL.

For a discussion of how the label LABEL is handled when the DRJ instruction object
code resides at. or across a page boundary, see the JCY instruction.

Consider the instruction sequence: 9JD2

3. LABEL
R 4

The DRJ instruction specifies Register 3 as the register to be decremented. After
decrementing, if the low order eight bits of Register 3 are all 0. then the INR instruc
tion will be executed; otherwise the ADD instruction will be executed.

5-19

With reference to case Bin the instruction illustration. note that if the DRJ instruction's
object code ends at. or lies across a page boundary, then the branch will occur into
the next page. For example, suppose object code resides in these program memory
bytes:

Register 3 is to be decremented; if it decrements to POO. then a branch to memory
location 54A16 will occur.

OSI - DISABLE INTERRUPTS

Scratch

Stack Memory

~
~a

""B nn + 1

3E8 3F
PC~ mmm+

RO

Al
R2

R3

R4

R5

R6

R7

J_
!
:r
..!.

•
.l j 0 I I I I j Status

I A D C H

OSI

I
OE

Data
Memory

~
Program

Memory

OE mmm
t----1 mmm + 1

Reset the Interrupt status to O; this disables all interrupts. Interrupts remain disabled
until an ENI instruction is executed.

5-20

ENI - ENABLE INTERRUPTS
Scratch

Stack Memory

~
~a
nnE3

nn + 1

3E8
3F

PC~l
......__,~

RO
Al
R2

R3
R4
R5

R6
R7

_l
!

:.:::
...i
::t

•
.l l 1 I I I I I Sliltus

I A D C H

ENI

J

Data
Memory

Program

Memory

OF mmm
t----t mmm+l

Set the Interrupt status to O; this enables interrupts after execution of the next sequen
tial instruction.

This is how an interrupt service subroutine frequently ends:

=
ENI Enable interrupts
RET Return from subroutine

Interrupts remain disabled until the RET instruction has completed execution; thus a
new interrupt cannot be acknowledged until program execution has returned to the
calling program.

Once enabled. interrupts remain enabled until a OSI instruction is executed, the
system is reset. or an interrupt occurs.

5-21

IAC - INCREMENT THE ACCUMULATOR
Scra·tch

Stack Memory

~
~a
nnE3

nn + l

3EE3
3F

PC~
RO I
Rl !
R2 :.:::
R3
R41-...L'--~ R5 ___ _

R6 T
R7_._ __

s
MA

j !xi !x!o!status
I A D C H

I
F4

Data
Memory

Program

Memory

F4 mmm
---mmm+1

Increment the Accumulator contents. If the D status is 0. the Accumulator contents
are treated as an 8-bit binary number. If the D status is 1, the Accumulator contents
are treated as two BCD digits.

Suppose the Accumulator contains 7316. Execution of the instruction:

IAC

will increment the Accumulator to 7416 in either binary or decimal mode.

Now suppose the Accumulator contains 7916. The instruction sequence:

SEB Set binary mode
IAC Increment Accumulator

leaves 7A1s in the Accumulator; the C status is 0. However, the instruction sequence:

SEO Set decimal mode
IAC Increment Accumulator

leaves 801s in the .Accumulator. 1 in the H status and 0 in the C' status.

Now suppose the Accumulator initially contains 991s. The instruction sequence:

SEB Set binary mode
IAC Increment Accumulator

5-22

leaves 9A16 in the Accumulator and 0 in the C status. The instruction sequence:

SED Set decimal mode
IAC Increment Accumulator

leaves 0016 in the Accumulator and 1 in both C and H statuses.

INP - INPUT TO ACCUMULATOR

Stack

Scratch

Memory

~a
""E3 nn + 1

3Er----i
3Fc:::::J

PC I mmnflSmmm+D
RO t--"""I
R1 --"""I
R21-t---t R3.,_ __ -t

R4 ---t
R61-1---t
R6
R7 ___ _

I !xi I j j Status

I A D C H

n
OIOIOXXX

Load into the Accumulator the contents of the memory byte addressed by Register N.

Register N may also ad~ress an external device; in other words. the contents of
. Register N are output on the Address bus. Any logic external to the 9002 may decode
the Address bus. select itself and return data on the data bus.

Suppose the data memory byte with address 34F1s contains the value 3E1s; when the
instruction:

5-23

INP 6

is executed, assuming the Register R6 contains 34F16, this is what happens:

Stack

Scratch

Memory

~a
nnE3

nn + 1

3Er-----i
3Fc:::::J

Pq mmml g > 1C;> mmm+

RO 11-+----t
Rlt-----1
R2 --'1
R3 R4 ,_.._ __ '1

R5.,_ ___ ..

4F .:::<::::::::::::::....---

Program

Memory

----ve----"F_.;5;;:6:_-1 ::: + ,

! 1 I I I I Status

A D C H

fll!Tllll . 2
1----4

INR - INCREMENT REGISTER

Stack

Scratch

Memory

~a
nn:~a

3Er-----i
3Fc:::::J

PC~l
~~

RO

Al
R2

R3
R4

R5

R6
R7

I
!

:.:.:
.
...L .
T

C::JA

I I I I I Status

I A D C H

INR N

II
011 lOXXX

5-24

Data

Memory

Program

Memory

01110XXX mmm
mmm+ 1

1----4

Increment the twelve bit contents of Register N.

Suppose Register R3 contains 23A16; after execution of the instruction:

INR 3

Register 3 will contain 23616. Had Register R3 contained 2FF16. it would now contain
30016; had the register contained FFF16. it would now contain 00016.

IOR - INCLUSIVE OR REGISTER WITH ACCUMULATOR

Stack

Scratch

Memory

~a
""E3 nn + 1

3Er----i
3Fc:::J

Data
Memory

PC~ Program

~----..._Memory
AOt-1--""'1
Al t---""'1
A21-l---I
A3
A4 ___ _

A5t-l---I
A6
A7 ___ _

j X j j 0 j 0 j Stntus

I A D C H

IOR N

Il
1001 lXXX

Logically OR the Accumulator with the low order eight bits of Register N.

Suppose the Accumulator contains 3E16 and Register 3 contains 2F316; after execu
tion of the instruction

IOR 3

the Accumulator will contain FF16:

3E~ 00111110

F3~ 11110011

OR ~ '"ii1i1i1i

The C and H statuses are unconditionally reset to 0. The A status is set to 1 since the
result in the Accumulator is not zero.

5-25

This is what happens:

Stack

~
RO
Al

F3

R4
._,_

R5
RS
R7

Scratch

Memory

~a nna
nn + 1

3EE3 3F

A

I 1 I I O I O j Status

I A D C H

5 26

Data
M€mory

Program

Memory

1001 lXXX mmm
mmm+ 1

1-----1

IRJ- INCREMENT REGISTER AND JUMP

Stack

PC mmm

Ro..., ___ .,.
Rt..., ___ .,.

R21-+----t

Scratch Data
Memo~ Memo~ ()() E3 ~,\IH•1 IH'""l '"'"'"''"i<•d ~

01 ,,...,,,, H1·111s\l'f XXX n11il'11tl'i

t~roo
nn E3 ,' B /\lt1·r IH·11H1111cr\•111<•11t(•r!

I R1'q1~11~r XXX d1H''> 1>(i1
nn + 1 f

I I c1111'rn11 POO

3Ea::
3F I I

I I
I I

/ I I Program
I Memo~

/

/

R3 R4_ __ "4 ,.,.__.-- mmm
--~-------~-t"-r;n-"1mmm+1

R51-+----t
R6
R7 l-+----t I I I I StillUS

I A D C H

IRJ N LABEL

1-TT
001 lOXXX 00

lllllllll 2

Increment the 12 bit contents of Register N. After incrementing, test the low order
eight bits; 1f they are all zero. program execution continues with the next sequential
instruction; if they are not all zero. program execution branches to the instruction on
the same page identified by the label LABEL.

For a d1scuss1on of how the label LABEL is handled when the IRJ instruction object
code resides at. or across a page boundary, see the JCY instruction.

Consider the instruction sequence:

~D~D 42 --i 3 LABEL

The IRJ instruction specifies Register 3 as the register to be incremented. After incre
menting, if the low order eight bits of Register 3 are all 0. then the INR instruction will
be executed; otherwise the ADD instruction will be executed.

- ·.As-described for the DRJ instruction. note that a jump into the next page will occur if
.the IRJ instruction object code terminates at. or lies across a page boundary.

5-27

JCY - JUMP IF CARRY EQUALS 1

RO
R1

R2
R3
R4
R5
R6
R7

Stack.

~
.l.
!
.l
l

I

..:..
:I

Scratch
Memory

~a
""E3 nn + l

3EE3
3F

l l l !110! l Stotus

I A D C H

JCY LABEL

II
05 qq

Data

Memory

Program

Memory

05
qq !11llll1 . 1 ---

If Carry status equals 1. jump to instruction with label LABEL in current page; other
wise execute the next sequential instruction.

Consider the instruction sequence: q1
Y LABEL
D 2

C=O
R 4

If the Carry status equals 1. then the INR 4 instruction will be executed following the
JCY instruction. providing the INR 4 instruction is on the same program memory page
as the JCY instruction.

If the Carry status equals 0. then the ADD 2 instruction will be executed following the
JCY instruction.

Suppose the JCY instruction object code is stored in program memory bytes 3CA16
and 3CB1s; that is to say nmm = 3CA16. Suppose also that the INR 4 instruction object
code is stored in program memory byte 3211s. If the Carry status equals 1. this is how
the JCY instruction will be executed:

5-28

Scratch Data
Stack Memory Memory

~
~a

~ ""E3 nn + 1

3EE3
3F

PC 3CA Program
Memory

RO
RI
R2 3CA
R3 05 3CA
R4 21 3CB
R5 3CC
R6
R7 I I l I 1 1. j Sliltus

1 A D C H

Now consider what happens when the JCY instruction object code is located on. or
across a page boundary:

Stack

PC 3FF"

RO
Rl
R2
R3
R4
R5
R6
R7

...1
I

__:

:I
::i
'

......
:I

Scratch
Memory

~a
""E3 nn + 1 .

3EE3
3F

Data
Memory

~
Program
Memory

3FE

05 3FF

21 400

401

l I I I q j Status

I A D C H

As illustrated above. the branch occurs into the page occupied by the instruction
following the JCY instructions.

JEQ - JUMP IF ACCUMULATOR AND REGISTER ARE EQUAL

This instruction is identical to the JZE instruction. but it is phrased to represent condi
tions after execution of a CMP. SUB or SUS instruction.

5-29

JGE - JUMP IF ACCUMULATOR IS GREATER THAN, OR EQUAL
TO REGISTER

This instruction is identical to the JNC instruction, but it is phrased to represent condi
tions after execution of a CMP, SUB or SUS instruction.

JGT- JUMP IF ACCUMULATOR IS GREATER THAN REGISTER
JGT LABEL

03 QQ

This instruction is similar to the JCY instruction, except that the jump only occurs if.the
Carry status equals 0 and the Accumulator status equals 1.

This instruction can be executed at any time, but it is phrased to represent conditions
after execution of a CMP, SUB or SUS instruction.

JHC - JUMP IF HALF CARRY

This instruction is similar to the JCY instruction. except that the jump only occurs if the
Half Carry status equals 1.

JIN - JUMP INDIRECT (IMPLIED)

Stack

RO ___ _
R1 ___ _

R2 --t
R3 ...,...__

R4t----I
R5 --t
R6 --t
R7_.._ _ _.

Scratch
Memory

~a
nnE3

nn + 1

3E8
3F

l l l l l l Status

I A D C H

ti
01 IOIXXX

Data
Memory

~
Program

Memory

OllOIXXX
nrnrn · 1 ---

Jump to the memory location specified by the identified general purpose register.

5-30

Suppose register R3 contains 3CA16; the instruction:

JIN 3

will cause program execution to continue with the instruction whose object code is
stored in program memory byte 3CA16.

Now suppose the label LABEL is equivalent to the value 3CA16 in the following in
struction sequence:

JIN 3
ADD 2

LABEL INR 4

This means the INR 4 instruction code is stored in program memory byte 3CA1s.
Again assuming that Register R3 contains 3CA 16, the instruction sequence above
becomes identical to the instruction sequence illustrated for the JUN instruction.

The JIN 3 instruction specifically may be Illustrated as follows:

Stack

~
ROt-t---t Rl ___ _

R2 to--t---t
CA

Scratch

Memory

~a
nnE3

nn + 1

3E8 3F

I I I I Swtus

I A D C H

JIN 3

'I.I
01101011 -..--.-

JLE - JUMP IF ACCUMULATOR IS LESS THAN
OR EQUAL TO REGISTER

Data
Memory

Program

Memory

This instruction is similar to the JCY instruction. except that the jump only occurs if the
Carry status equals 1 or the Accumulator status equals 0.

This instruction can be executed at any time. but it is phrased to represent conditions
after execution of a CMP. SUB or SUS instruction.

5-31

JLT- JUMP IF ACCUMULATOR IS LESS THAN REGISTER

This instruction is identical to the JCY instruct.ion. but it is phrased to represent condi
tions after execution of a CMP. SUB or SUS instruction.

JNC - JUMP IF NO CARRY
JNC

I
01

LAB~L -.-
J_
00

This instruction is similar to the JCY instruction. except that the jump only occurs if the
Carry status equals 0.

JNE - JUMP IF ACCUMULATOR IS NOT EQUAL TO REGISTER

This instruction is identical to the JNZ instruction. but it is phrased to represent condi
tions after execution of a CMP. SUB or SUS instruction.

JNZ - JUMP IF ACCUMULATOR IS NOT ZERO
JNZ LABEL

I I
02 00

.This instruction is similar to the JCY instruction; except that the jump only occurs if the
Accumulator status equals 1.

JSR - JUMP TO SUBROUTINE

Stack

mmm

Scratch·

Mem0<v

~a
nn:~E3
~~a

iflJilstntus
I A D C. H

JSR LABEL

IT
2P 00

Data
Memory

~
Program
Memory

{ 2P mmm
_...,00,---t mmm + 1

--- mrnrn'?

Save the program memory address of the next instruction on the stack; then load the
twelve bit address provided by the JSR instruction into the Program Counter.

5-32

Consider the following instruction sequence:

,.-~.-~-,.!!SR SUB
ADD-.+----...

4

The JSR instruction causes program execution to branch unconditionally to the in
struction labeled SUB; the JSR instruction also saves the address of the ADD instruc
tion on the stack.

The first RET instruction executed following the INR instruction will branch program
execution back to the ADD instruction.

JUN - JUMP UNCONDITIONAL

RO
Al

R2

R3

R4

R5
, R6

R7

Stack

~
POO

...l
!
.l
.i.

T

...:..

Scratch

Memory

~a nna
nn + 1

3EE3 3F

c:::J A

I I I I Stotus

I A 0 C H

f_!
IP 00

Jump to the instruction identified by the label, LABEL.

Consider this instruction sequence:

JUN LABEL
ADD 2

LABEL INR 4

Data
Memory

Program

Memory

IP

00 1mm1· 1

After JUN LABEL. the INR 4 instruction will be executed. Unless some other instruc
tion jumps to ADD 2. this instruction will r.iever be executed.

5-33

Suppose the object code for the INR 4 instruction happens to be stored in memory
location 3FA1s; the JUN LABEL instruction's object code will be:

13.FA

JZE - JUMP IF ACCUMULATOR IS ZERO
This instruction is similar to the JCY instruction. except that the jump only occurs if the
Accumulator status equals 0.

LAI - LOAD ACCUMULATOR IMMEDIATE
Saatch

Stack Memory

~
~a
""E3 nn+ 1

3EE3 3F
PC I mmmi=:s;mm ,D
RO
Rl

R2
R3
R4
R5

R6
R7

....:..
T

.l.
l !xi I j !Status

I A 0 C H
LAI DATA.

II
OD 00

Data
Memory

Program
Memory

OD mmm ----.;;,....;;:0:;;:,0--1 mmm + l

--- rnmm+-2

Load the contents of the second instructiOn object code byte into the Accumulator.
Set the A status to 1 if the Accumulator now contains a non zero value; reset the A
status to 0 if the Accumulator now contains a zero value.

5-34

LRI - LOAD REGISTER IMMEDIATE

Stack

Scratch
Memory

~a
""E3 nn + 1

3EE3
3F

Data
Memory

Program

Memory

Rl1-----I
R21-"'----1
R3._.._ __ ..

R4 l-.&...---1
R51-----1
R6 11-+----I
Al ._.._ __ ..

01100XXX
i...<-----~---~--t"'"'r'i:oo:'i"'4 mmm+1

C::JA
I I I I I Slilll>S

I A D C H

11\ _.__._ __.._
01100XXX 00

• • lllllHll . 2

Load the contents of the second instruction object code byte into the low order eight
bits of Register N.

Consider the instruction:

LRI 3.4C

When executed. this is what happens:

Stack

RO._<i--.....1
Rl 1-----1
R21-.... ---I

R41-L..;;
R5 1-i--....jl""--
R6 -----R7.._,,,_ __ ,.,

Scratch

Memory

C::JA
I I I I Sli11US

I A D C H

5-35

Data
Memory

Program

Memory

63

4 C mmm + 1
1----1
1-----1 ll11111Tl 2

Now Register R3 will contain A4C1s.

LRN - LOAD REGISTER INDIRECT

Stack
Scratch

Memory

~a
""E3 nn + 1

3Er----i 3Fr::::::J
PCI mmm8mm+C)

00

R1t----t
R2 l---t
R3 R4 ___ _

R51-1---t
R6
R71-l---t j j j j j I Status

I A D C H

LAN N

II
11 IOOXXX

Program
Memory

Load into the low order eight bi,ts of Register N .the contents of the memory byte or
external device addressed by register RO.

The contents of Register RO are output on the Address bus. Either external memory or
any external logic may decode the Address bus. select itself and place data on the
data bus.

5-36

Suppose RO contains 2FA16 and memory byte 2FA16 contains 3E1s. After the instruc
tion:

LRN 3

1s executed. 1f Register 3 onginally contained A2016. it will now contain A3E16:

Scratch

Stack Memory

~
~a
""E3 nn + 1

3EE3 3F
PC~l

The instruction:

c:::J A

l l l l State"

I A D C H

LRN 0

Program
Memory

mmm+1
1----t

is allowed; in the above Illustration it would leave 23E 1s in Register 0

NOP - NO OPERATION

Stack

Scratch

Memory

~a
""E3 nn + 1

3EE3 3F
PC~
RO

Rl

R2

R3

R4

R5

R6

R7

I
T

j

T

!

c:::J A

l l l l St;nas

I A D C H

NOP

I
FF

5-37

Data
Memory

Program

Memory

FF
mmm+ 1

1----1

Nothing happens when this instruction is executed. but the Program Counter is Incre
mented to address the next sequential instruction code.

The NOP instruction is frequently used to create time delays for signal synchroniza
tion. There are also circumstances in which it is used to create an address to which
jumps can be specified.

OUT- OUTPUT FROM ACCUMULATOR
Scratch

Stack Memory

~
~a
""E3 nn + 1

3EE3 3F
PC~
RO
Rl

R2

R3

R4

R5

R6

R7

:I
__;_

..I
'

I I A D

OUT N

II
0101 IXXX

Program

Memory

Store the Accumulator contents in the memory byte addressed by Register N .

. Register N may also address an external device; in other words. the contents of
Register N are output on the Address bus. Any logic external to the 9002 may decode
the Address bus. select itself and accept the data on the data bus.

Suppose the Accumulator contains 3E16 and Register R6 contains 34F16; after the in
struction:

OUT 6

5-38

is executed, the memory byte (or external logic device) with address 34F16 will contain

3E16:

Stack

Scratch

Memory

~~a

""E3 nn + 1

ROl-.&...--..1 R1._ ___ ...

R2._,._ __ ...
R31-.&---ol
R4 a...r---..1
R5._.._ __ ...

R6 &;;;,,.__;4;::;F_..;i;.,:--
R7 L....L...--..1

3Er---i
3Fc::J

I A D C H

RAL - ROTATE ACCUMULATOR LEFT
Scratch

Stack Memory

~
DOB
01

""E3 nn + 1

3EB
3F

PC~
RO

Rl
R2

R3

R4

R5
R6
R7

I

i
""'i

; I A D C H

RAL

T _,._
F8

Rotate the Accumulator left one bit pos1t1on.

5 39

Program

Memory

mmm+1

1----1 '"""" . 2

Data
Memory

Program
Memory

mmm
mmm+ 1

Suppose the Accumulator initially contains 3E16. After execution of the

RAL

instruction. the Accumulator will contain 7C16:

0 0 I I I I 1 0

///////o
I

H~1 c~o

RAR - ROTATE ACCUMULATOR RIGHT

Stack
Scratch

Memory

~~a
nn t::::==1

nn+1c===l

3E i-----i
3Fc::::::J

PC~I

RO
Al

R2
R3
R4

R5

RS

R7

..1

.l.
:.L

I I A D C H
RAR

T _..._
F9

Rotate the Accumulator right one bit position.

Data
Memory

Program

Memory

1----1 mmm + 1

Suppose the Accumulator initially contains 3E16. After execution of the

SEB
R,b.R

instruction. the Accumulator will contain 1F16:

0 O 1 I 1 I Cl

\\\\\\\
n (J n 1 1 1 i i

\ \
c~o II I

5 40

In decimal mode. the right rotate is executed as follows:
Scratch

Stack Memory

~
~a
""E3 nn + 1

3E8 3F
PC~l

RO T
RI =
R2 J:
RJ
R4 to-.J.---t
RS ____ ...

R6 ,-
R7 _.._ __ ..

~
76543210

I A D C H

Data
Memory

Program

Memory

F9 mmm
1----t mmm + 1

Suppose the Accumulator contains 9416; after execution of the instruction sequence:

SEO Set decimal mode

RAR

the Accumulator will contain 4916:

I 0 0 I 0 I (I 0

=--~ 0 I 0 0 I 0 0 I

\ ~
c-o H~l

You can use decimal mode right rotate even 1f the Accumulator contains non BCD
data (e.g. FA16).

5-41

RDS - READ SCRATCH MEMORY TO ACCUMULATOR

Stack

~
Scratch

Memory

~a

l X l l j j Stntus

I A D C H

RDS N

1T
-""---,,.,,-~ ...
11010XXX

Data

Memory

~
Program

Memory

11010XXX mmm
mmm+1

Input to the Accumulator the contents of the scratch memory byte addressed by the
low order six bits of Register N.

Suppose Register 4 contains 02F16 and scratch memory byte 02F16 contains 3E16.
After the instruction:

RDS 4

has executed. the Accumulator will contain 3E 16 and the A status will be set to 1.

Note that only the low order six bits of the Register are significant; a scratch memory
address of 02F16 would be derived from any of these register contents:

A

__....__ ~ ~
1 0 1 1 1 0 1 0 1 1 1 1 -.- _._.._,

~ ,..,,.___,..__...._,,
1 1 1 1 1 1 1 0 1 1 1 1

-.- _._.._,

5-42

RET - RETURN FROM SUBROUTINE

RO

RI

R2

R3

R4

R5

R6
R7

Stack

POO

j_

..1.
:::i:

:::::

Scratch

Memory

~a
nn t:::::1

nn + 1 C=:::J
3Ell
3F c:::::J

RET

I
FE

I I I I Sldlt"

I A D C H

Data

Memory

Program

Memory

mmm
t-----1 mmm+1

The address at the top of the stack is popped into the Program Counter. thus effecting
a return from subroutine.

Consider the following instruction sequence:

R SUB
AQD

:.
4

When the JSR instruction is executed. the address of the ADD instruction is pushed
onto the stack. This is the address popped off the stack and into the Program Counter
by the RET instruction. thus causing program execution to continue with the ADD in
struction.

5-43

RLC - ROTATE ACCUMULATOR LEFT THROUGH CARRY

Stack

PC I mmm

RO
RI
R2
R3
R4

R!i
R6

R7

I
""T
...:._

_L

...L .

...:._

Scratch
Memory

~a

""E3 nn t 1

3Er---i
3Fc::::::J

RLC

I
FA

Rotate the Accumulator left one bit position. through carry.

Data
Memory

Program

Memory

FA mmm
i----mmm+l

Suppose the Accumulator initially contains 3E1s and the Carry status is 1. After execu
tion of the instruction:

RLC

the Accumulator will contain 7B1s:

0 0 1 1 1 1 1 0

/ ///////,
~ t

0 H = 1 Previous C
New C

5-44

RRC - ROTATE ACCUMULATOR RIGHT THROUGH CARRY

Stack

~
PC I
RO
Al
R2

R3
R4
R5

R6
R7

~ • --.-
J:
I

::r

Scratch
Memory

~a

""El nn + 1

3EE3
3F

76543210

~ .. 1'.Z'.~.) IADV
ARC

I
FB

Rotate the Accumulator right one bit position. through carry.

Data
Memory

~
Program

Memory

1--..;.F.:;.B--1 mmm
L-----1 mmm + 1

Suppose the Accumulator initially contains 3E1s and the Carry status is 1. After execu
tion of. the instruction:

ARC

the Accumulator will contain 9F1s:

0 0 I I I I I 0

\\\\\\\\
t i \

Pmvi<ius New C

c

5-45

SEB - SET BINARY MODE

RO
Rl
R2
R3

R4

R5
R6

R7

_l
!

.:::

..i
:J:

...:.

Stack

.J

Scratch

Memory

~a
nnt:::::1

nn + 1 C:::::J

c::::J A

I 0 I ·! I Stntus

I A D C H

SEB

T _,._
FD

Data
Memory

Program

Memory

FD mmm
t------1 mmm + 1

Unconditionally reset the Decimal status to 0. This selects binary mode when any of
the following instructions Bre executed: ADD. ADS. DAC. IAC. RAR. SUB. SUS.

Binary mode remains in .effect until an SED instruction is executed to set Decimal
mode.

SEC - SET THE CARRY STATUS TO 1

PC I

·RO

Rl
R2
R3

R4

R5

R6

R7

Stack

_l

..1.
:::t:

I

Scratch

Memory

c::::J A

I I I ! 1 I I Status

I A D C H

SEC

I
Fl

Unconditionally set the Carry status to 1.

5-46

Data

Memory

Program

Memory

Fl

-mmm+1
t------1

SEO - SET DECIMAL MODE

Stack

Scratch

Memory

~~a
nnt==°j

nn + 1 c====l
3E r----i
3FC=:J

PC~l

RO

Rl

R2

R3

R4

R5

R6

R7

j
!

:.:::
_L

J.

T

SED

I
FC

! 1 ! I I Stotus

I A D C H

Data

Memory

Program

Memory

FC

mmm + 1
t----1

Unconditionally set the Decimal status to 1. This selects decimal mode when any of
the following instructions are executed: ADD. ADS. DAC. IAC. RAR. SUB. SUS.

Decimal mode remains in effect until an SEB instruction is executed to set binary
mode. or until the system is reset.

SRN - STORE REGISTER INDIRECT

Stack

Rl ._ ___

R2 l-+----1
R3
R4_ __ ..

R5 ____ ,,.

R6
R7 l-t----1

Scratch

Memory

~~a
nnt==°j

nn + 1 c====l

C:=:J A

I I I) I I Stotus

I A D C H
SRN N

II
11 lOlXXX

5-47

Data

Memory

JJ

Program

Memory

mmm + 1
1----1

Store the low order eight bits of Register N into the memory byte or external device
addressed by register RO.

The contents of Register RO are output on the Address bus. Either external memory or
any external logic may decode the Address bus. select itself and accept the data on
the data bus.

Suppose RO contains 2FA16 and Register R3 contains A2016. After the instruction:

SRN 3

is executed. the data memory byte (or external logic) selected.by address 2FA1s will
contain 201s:

Stack

PC I

The instruction:

Scratch

Memory

~a
nn:~a

c:::::J A

l l l l l l Status

I A D C H

SRN 0

Program

Memory

11101011 mmm
mmm+1

1------1

is allowed; in the above illustration it would leave FA1s in memory byte 2FA16.

5-48

SUB - SUBTRACT REGISTER FROM ACCUMULATOR WITH
BORROW

Stack

RO---Rl t-t---t R2.,_.,__
R3.,_..__-t
R4t-.._--t
R51-t---t
R61-l---t R7_.__,....,,_.

Scratch
Memory

~a
""E3 nn + l

3EE3
3F

SUB N

II
10001 xxx

Data
Memory

Program

Memory

From the Accumulator subtract the Carry status and the low order eight bits of register
N. If the D status is 0. the Accumulator and Register contents are treated as 8-bit bin
ary data. If the D status is 1. the Accumulator and Register contents are each treated
as a pair of BCD digits.

Suppose the Accumulator contains 7316, Register R5 contains 34716 and the Carry
status is 1; after execution of the instruction sequence:

SEB Set binary mode
=

SUB

the Accumulator will contain 2B1a:

73 ~ 01110011
·147 • c1·= I ·481 ·.~ 01001000

Now look at decimal subtraction:

00'101011

C=O

73

.. 49

=25

H=l
C=O

5-49

Note that as illustrated above, the EA9002 has subtract logic; it does not
use twos complement addition. The principal effect this has is on the Ca
rry status, which is set for a negative result, and is ·reset for a positive
result. This is opposite from Carry status interpretation when using twos
complement subtract logic.

SUS - SUBTRACT SCRATCH MEMORY FROM ACCUMULATOR
WITH BORROW

Stack

oo..,_.,__-t Rl ___ _

R2..,_l---t
R3 R4..,_.__
R5t-l---t
R6
R7t-l---I

Scratch
Memory

~a
nnt::E:::j

nn + 1 c:::==l

~:a

SUS N

II
11001XXX

Data
Memory

Program

Memory

From the Accumulator subtract the Carry status and the contents of the scratch
memory byte addressed by the low order six bits of Register N.

The SUS instruction is identical to the SUB instruction except that the subtrahend byte
is fetched from scratch memory.

For a discussion of scratch memory addressing see the RDS instruction.

550

WRS -WRITE ACCUMULATOR TO SCRATCH MEMORY

Stack

Scratch

Memory

PC~l
~~

I I I j Status

I A D C H

TI
1 l(Jl lX\X

Data
Memory

Program

Memory

Output the Accumulator contents to the scratch memory byte addressed by the low
order six bits of Register N.

Suppose Register 4 contains 02F16 and the Accumulator contains 3E16. After the in
struction:

WRS 4

has executed scratch memory byte 02F16 will contain 3E16.

Note that only the low order six bits of the Register are significant; a scratch memory
address of 02F15 would be derived from any of these other register contents:

A
~_.._..~

1 0 1 I I 0 1 0 1 1 1 1 -- ._..,,...__.

__..__ ~ ,_,..__.
1 I I 1 1 1 1 0 1 1 1 1 -- ._..,,...__.

5-51

XCH- EXCHANGE REGISTER AND ACCUMULATOR CONTNETS

Stack

RO 1-.a---..I
Al._._ __ ..
A2 ._,,_ __ ..

A3 ._,,_ __ ..

A4 &-.a..--..11 A5._.._ __ ...
As._,._ __ ...
A7._.._ __ _,

Scratch

Memory

~a
nnt=::j

nn+1C==l

I A D C H

XCH N

II
01000XXX

Data
Memory

Program

Memory

OlOOOXXX mmm
mmm+1

1----4

Exchange the contents of low order eight bits of Register N with the Accumulator.

Suppose the Accumulator contains 3E16 and Register R2 contains 4FA16; after the in
struction:

XCH 2

is executed, the Accumulator will contain FA16, while Register R2 contains 43E16.

Stack

Scratch

Memory

~a
nnt=::j

nn+1C==l

3Ei----i
3Fc:::::J

A

I A D C H

5-52

Data
Memory

~
Program

Memory

01000010 mmm
mmm+l

XOR - EXCLl,JSIVE OR REGISTER WITH ACCUMULATOR

Scratch

Stack Memory

~
~a
""E3 nn + 1

3E8 3F
PC~l

ROl-+----t R1 ____ ..

R21-'f----t
R3 R4.._.._ __ "4
R5 ____ ..

R6
R7 t-+----t

XOR N

II
101DOXXX

Data
Memory

Program

Memory

Exclusive OR the Accumulator with the low order eight bits of Register N.

Suppose the Accumulator contains 3E16 and Register 3 contains 2F16; after execution
of the instruction:

XOR 3

the Accumulator will contain CD 16:

3E~ 00111110

F3 11110011

XOR llOOllnl

5-53

The C and H statuses are unconditionally reset to 0. The A status is set to 1 since the
result in the Accumulator is not zero.

This is what happens:

Scratch Data
Stack Memory Memory

~
~a

~ nnE3
nn + 1

3E8
3F

PC~ Program mmm+

Memory

RO
Rl
R2
R3 A3 mmm
R4 mmm+1
R5

R6

R7

5-54

Chapter 6
ELEMENTARY PROGRAMMING

TECHNIQUE
A logic designer with no prior programming background may well have
less trouble than a programmer, understanding the basic concepts of
efficient microcomputer programming. When compared to many
minicomputers. the average microcomputer may indeed appear to have
both a primitive instruction set and limited processing capabilities;
however, many microcomputer features which look like handicaps to the
traditional programmer, are in fact advantages in typical microcomputer
applications.

The key to understanding efficient microcomputer programming is to
bear in mind that the typical microcomputer program is going to become
a PROM or ROM chip.

The microcomputer is not a vehicle for the execution of an indeterminate
sequence of undefined programs.

MICROCOMPUTER PROGRAMMING CONCEPTS

If we are to define "microcomputer programming" as a technique for the
creation of ROM or PROM chips, then programming economy becomes
very important. "Programming economy" means that you should at
tempt to create object programs that are as short as possible - without
resorting to expensive or strange gimmicks.

The cost of program memory is not in itself the overwhelming reason for
keeping programs short; but there is a snowball cost effect.

First consider read/write memory. If you can confine your data to using 64
bytes of read/write memory, then your 9002 microcomputer system will require no
external RAM. This eliminates the cost of the external RAM. it's select and interface
logic. plus design and fabrication expenses

Similar reasoning applies to the number of PROM or ROM chips needed
to implement your program. It 1s not 1ust the cost of the extra chips that are im
portant; there is also cost of support and interface logic -- plus design and imple
mentation costs associated with the extra real estate on PC cards. which additional
chips will require. Also. remember that each additional ROM chip requires the addi
tional expense of defining and creating a ROM mask.

The problem with allowing your chip count to proliferate is that what used to fit on
one PC card may soon require two; that means additional edge connectors. perhaps a
more costly back plane, or even a larger power supply.

6-1

Chip counts and system configurations can vary significantly when different logic
designers implement the same .system; this will come as no surprise to an ex
perienced logic designer. but it has some important. non obvious ramifications:
microcomputer programs have to consider every hardware configuration as possibly
unique. Thus definition of memory and 1/0 becomes an integral part of the
system creation process; writing the microcomputer program is merely
another step of the same process. This being the case. you must use general
purpose subroutines with extreme caution. The minicomputer programmer takes
general purpose subroutines for granted - to the point where many such
subroutines are packaged into standard program modules. referred to as "systems
software". and included in every program. whether they will be needed or not. To the
microcomputer programmer. using system software will probably make no
sense. Saving a little programming cost cannot be justified if the price
paid is more memory and a significantly more complex eventual
microcomputer systems.

MICROCOMPUTER PROGRAM
INPLEMENTATION SEQUENCE

In order to program a microcomputer efficiently, you must start by defin
ing the hardware that your system is going to require. Some hardware
definition is a necessary beginning. but this definition is likely to change frequently in
the course of system implementation and debugging.

Beyond the microcomputer CPU itself. you must define the address spaces that have
been allocated to program memory. to data memory and to external devices. You
must also define the address spaces that are to be implemented in ROM or RAM. Pro
gram memory will invariably be implemented in ROM; data memory is frequently
RAM. it can be ROM when used to store tables or other nonvarying data.

The next step is to flow chart functions which the
microcomputer program must perform. Figure 6-1. illustr- FLOW
ate_s a simple program flow chart. The flow chart illustrates a sim- CHART
pie program which receives digital input signal in the range 0.
through 255 from an instrument -- then uses this input signal to access a table out of
which a 5 decimal digit number will be read for display. This program could be used
by any instrument whose sensor outputs a millivo\tage which must be converted.
using a nonlinear transfer function. into a panel digital display. Figure 6-2 illustrates
the hardware configuration and address spaces assumed.

Having drawn your program flow chart, the next step is to break this
flow chart into program modules. The extent of a single program module is not
easily defined in advance: however. once you have written a few programs for any
microcomputer. you will find it quite easy to estimate the extent of an individual pro
gram module. A program module begins with instruction sequences that
load data or parameters into general purpose registers and/or scratchpad
memory; the program module operates on this data, then outputs results
at the end of the modu1e. You should not have to reuse general purpose registers
or scratch pad memory in unrelated ways for the ·duration of any single program
module. Program modules may also pass data. one tci the next, by leaving the data in
preassigned registers or scratchpad memory.

6-2

ln1t1alize display
--.. digit address

1
Input 8-bit data
from channel 1

1
Add three times input

data to output
table base address

I
Input next BCD

display data byte ---
I

Expand into two ASC\1
decimal d1g1ts

t
Output decimal d1g1t

to display d1g1t address

j_
Increment display

digit address

I
Output decimal d1g1t

to display d1g1t address

j_
Increment display

d1g1t address

~ Yes

Byte

'

Figure 6-1 A Sample Program Flow Chart

6-3

8 hit

ADC

arlrlress

FFF, 6

for rl<itd

1r•rut

Display
CPU

Pa11el

6 ci1~11ts
addWSS()S

'"

} Program memory

ROM 00015 4FF 16

} Data Tahlc

50016 7FF16

Figure 6-2 System Configuration For Sample Problem

As the above definition of a program module would imply, you should begin by
defining the use to which every single general purpose register will be
put for the duration of the program module. You should also define
scratchpad memory utilization.

First consider general purpose registers. You have
eight such registers, which will support a program module of
significant size. Recall that there are four ways in which a
general purpose register may be used:

1) The register may identify a 12-bit external data or pro
gram memory address:

12·b1t extemal

memory address

GENERAL
PURPOSE
REGISTERS
ALLOCATION

General purpose register RO always holds the 12-bit external memory address for
register indirect load and store instructions; therefore RO will commonly be used
as an external memory addressing register.

Also, the page bits of registers RO, R 1, R2 and R3, only, can be copied to the Ac
cumulator; therefore make these four registers your first choices for external
memory addressing.

You may also use a general purpose register to store a program memory address.
This is useful if your program has one or more instructions to which you will fre
quently want to jump from various other points in the program. Remember that
the EA9002 provides register direct addressing jump instruction; this is a single

6 4

byte instruction that jumps to any memory location addressed by one of the eight
general purpose registers

2) General purpose registers may be used to address scratchpad memo
ry; the low order six bits of any general purpose register provide a scratchpad
memory address.

11 B 7 6 5

\,- I'

scratcl1pad

rrn;rnliry

riddress

3) Any general purpose register may be used as an 8-bit or a 12-bit
counter. Remember that when the contents of a general purpose register are
either incremen;ed or decremented, the entire 12-bit value of the register is
affected.

4) General purpose registers may also be used for data storage and
manipulation. Remember. only the low order eight bits of the general purpose
register can be used for data access. In fact. there 1s no way of reading the high
order four bits of registers R4. R5. R6. or R7: therefore do not attempt to store data
for subsequent retrieval.

Consider the application illustrated in Figures 6 1 and 6- 7.
This is how we might allocate registers:

Register RO Display Panel addresses
Register R 1 Data input ADC address
Register R2 Data table base address
Register R3 Data table computed address
Register R4 ASCII digit to be output
Register R5 ASCII digit to be output
Register R6 & R7 - Undefined scratch registers

Our sample program is so small that it does not use scratchpad memory.
General purpose registers provide sufficient read/write memory space.
What is interesting about this observation is the fact that a carefully
organized program of considerable size can get by with the read/write
memory provided by the scratchpad. If your program makes extensive use of
scratchpad. you should map out the way in which different areas of scratchpad will be
allocated. just as we have done above for the general registers.

Let us now examine some frequently used instruction SUBROUTINE
sequences. Examples will be presented in this CREATION
chapter as subroutines, since frequently used pro-
gram sequences are most effectively implemented as subroutines. Note,
however, that in order to convert an instruction sequence to a
subroutine, you must provide a label for the entry point instruction and to
add a return instruction at the point of exit - that is all.

6-5

DATA MOVEMENT SUBROUTINES
Moving blocks of data from one memory location to another is a frequently needed
operation.

For example. frequently one memory buffer may be set aside for entry of data from all
external sources. Depending on the external data source. the data may subsequently
have to be moved to one of many permanent buffers.

Below are three subroutines that load a block of data from external
memory into the scratchpad, from scratchpad into external memory, and
from one external memory buffer to another. Registers have been ar
bitrarily assigned in these three subroutines; if you change register
assignments, associated program changes are self-evident.

* SUBROUTINE TO LOAD A BLOCK OF DATA INTO SCRATCHPAD.
* FROM EXTERNAL MEMORY
* R 1 ADDRESSES ST ART OF EXTERNAL MEMORY BUFFER

R2 ADDRESSES ST ART OF SCRATCHPAD BUFFER.
* R3 HOLDS BUFFER LENGTH
FMTS INP 1 INPUT NEXT EXTERNAL MEMORY BYTE

WRS 2 WRITE TO SCRATCHPAD
INR 1 INCREMENT SOURCE ADDRESS
INR 2 INCREMENT DESTINATION ADDRESS
DRJ 3. FMTS DECREMENT BYTE COUNT. RETURN FOR MORE
RET AT END. RETURN FROM SUBROUTINE

Before calling subroutine FMTS. registers R 1. R2 and R3 must hold appropriate data.
Observe that providing registers are used on a modular basis. as suggested earlier in
this chapter. you will find that every subroutine does not have to be preceded with
register loading instruction -~registers will normally be correctly loaded.

* SUBROUTINE TO STORE A BLOCK OF DATA FROM SCRATCHPAD.
* INTO EXTERNAL MEMORY
* R 1 ADDRESSES ST ART OF EXTERNAL MEMORY BUFFER
* R2 ADDRESSES START OF SCRATCHPAD BUFFER
* R3 HOLDS BUFFER LENGTH
FSTM RDS 2 INPUT NEXT BYTE FROM SCRATCHPAD

OUT 1 WRITE TO EXTERNAL MEMORY
INR 1 INCREMENT SOURCE ADDRESS
INR 2 INCREMENT DESTINATION ADDRESS
DRJ 3. FSTM DECREMENT BYTE COUNT. RETURN FOR MORE
RET AT END. RETURN FROM SUBROUTINE

Subroutine FSTM simply moves data in the opposite direction to subroutine FMTS.

Subroutines FMTM and FMTL move data between two external memory data buffers.
External memory data buffers can be more than 256 bytes long. in which case a
slightly different end of buffer testing technique must be employed. as illustrated by
subroutine FMTL.

6-6

* SUBROUTINE TO MOVE DAT A BETWEEN EXTERNAL MEMORY
* BUFFERS THAT ARE 256 BYTES IN LENGTH, OR LESS
* R3 HOLDS BUFFER LENGTH
* R4 HOLDS STARTING ADDRESS FOR SOURCE BUFFER
* R5 HOLDS STARTING ADDRESS FOR DESTINATION BUFFER

FMTM INP 4 INPUT NEXT SOURCE BYTE
OUT 5 OUTPUT TO DESTINATION
INR 4 INCREMENT BUFFER ADDRESSES
INR 5
DRJ 3. FMTM DECREMENT COUNTER. RETURN FOR MORE
RET END OF SUBROUTINE

* SUBROUTINE TO MOVE DAT A BETWEEN EXTERNAL MEMORY
* BUFFERS THAT ARE MORE THAN 256 BYTES IN LENGTH

R3 HOLDS BUFFER LENGTH
R4 HOLDS STARTING ADDRESS FOR SOURCE BUFFER
R5 HOLDS STARTING ADDRESS FOR DESTINATION BUFFER

FMTL INP 4 INPUT NEXT SOURCE BYTE
OUT 5 OUTPUT TO DESTINATION
INR 4. INCREMENT BUFFER ADDRESS
INR 5
DRJ 3. FMTL DECREMENT COUNTER. RETURN FOR MORE
CPA 3 IF LOWORDER EIGHT BITS ARE 0.
JNZ FMTL TEST PAGE. IF NOT ZERO CONTINUE
RET RETURN AT END

SEtf DEFINING DATA TABLES

There are message switching applications that must handle many tables of various
sizes. A common technique assigns scratchpad memory locations to tables by table
type. For example. an application may process raw ASCII text strings. ASCII digit
strings. packed BCD data and pure binary data; each table type may have its own.
reserved area of scratchpad memory.

Consider reserving the first two bytes of every table in external memory
to define the table as follows:

First byte: Starting address in scratchpad for this table type.
Second byte: Table length.

Subroutines DMTS and DSTM move self defining data from memory to
scratchpad, and from scratchpad to memory.

* SUBROUTINE TO LOAD A BLOCK OF SELF DEFINING DAT A INTO
* SCRATCHPAD, FROM EXTERNAL MEMORY
* RO ADDRESSES THE FIRST PARAMETER BYTE IN EXTERNAL MEMORY
* RI IS TO HOLD THE SCRATCHPAD STARTING ADDRESS

R2 IS TO HOLD THE BYTE COUNT

6-7

DMTS LRN 1 LOAD SCRATCHPAD STARTING ADDRESS
INR 0 INCREMENT EXTERNAL MEMORY ADDRESS
LRN 2 LOAD BYTE COUNT

LOOP INR 0 INCREMENT EXTERNAL MEMORY ADDRESS
INP 0 INPUT NEXT EXTERNAL MEMORY BYTE
WRS WRITE TO SCRATCHPAD
INR 1 INCREMENT SCRATCHPAD ADDRESS
DRJ 2. LOOP DECREMENT BYTE COUNT. RETURN FOR MORE
RET AT END. RETURN FROM SUBROUTINE

* SUBROUTINE TO STORE A BLOCK OF SELF DEFINING DA TA
* FROM SCRATCHPAD. INTO EXTERNAL MEMORY
* RO ADDRESSES THE FIRST PARAMETER BYTE IN EXTERNAL MEMORY
* R1 IS TO HOLD THE SCRATCHPAD STARTING ADDRESS
* R2 IS TO HOLD THE BYTE COUNT
DSTM LRN 1 LOAD SCRATCHPAD STARTING ADDRESS

INR 0 INCREMENT EXTERNAL MEMORY ADDRESS
LRN 2 LOAD BYTE COUNT

LOOP INR 0 INCREMENT EXTERNAL MEMORY ADDRESS
RDS 1 READ NEXT SCRATCHPAD MEMORY BYTE
OUT 0 OUTPUT TO EXTERNAL MEMORY
INR 1 INCREMENT SCRATCHPAD ADDRESS
DRJ 2. LOOP DECREMENT BYTE COUNT. RETURN FOR MORE
RET AT END. RETURN FROM SUBROUTINE

TABLE LOOKUPS
A data buffer may in reality be a data table. A data table may consist of a se
quence of single byte data items:

Data

etc

Or individual units of a data table may be two or more bytes long:

Data U111t 1

Data Unit 2

oa"ta
Memory

etc

6-8

81~g1nn111g of Table

Table lookups are very easy to perform given the EA9002 instruction set.
At the most general level, begin by loading the table base address into one general
purpose register. Create the required table address by adding an
index to the base address. In the following instruction sequence. TABLE
the index is in the Accumulator. and the table consists of one INDEX
byte data units:

*LOAD TABLE BASE ADDRESS INTO R 1
LAI TPAG 'TPAG IS A SYMBOL REPRESENTING BASE ADDRESS

PAGE
CAP 1
LRI 1.TADR T ADR IS A SYMBOL REPRESENTING BASE ADDRESS

WITHIN THE PAGE

(other instructions can follow here)

*ASSUMING TABLE INDEX IS IN THE ACCUMULATOR.
*CREATE TABLE ADDRESS IN RO

ADD 1 ADD INDEX TO BASE ADDRESS
CAR 0
CPA 1 IF THERE IS A CARRY, INCREMENT
JNC NOCAR THE PAGE
IAC

NOCAR CAP 0

*THE TABLE ADDRESS IS IN RO

Now suppose there are four bytes per data unit in the table. The index in
the Accumulator must be multiplied by four before being added to the base address.

To multiply Accumulator contents by four. shift the Accumulator contents left two bit
positions; however. that may lose the two high order bits. Therefore. save the two
high order bits of the Accumulator for subsequent addition to the Page bits:

R 1 co11te11ts· P P P P ~ A A A A A A A

Accumulator 0 0 x x Ix x x x x x 0 0

T ahlr; address 1 Sum

P. A and X r-€present any binary digits.

Here is the appropriate instruction sequence. assuming the table base address is
already in R 1:

ASSUMING TABLE INDEX IS IN THE ACCUMULATOR,
CREATE TABLE ADDRESS IN RO

RAL ROT ATE ACCUMULATOR CONTENTS LEFT
RAL TWO BIT POSITIONS
CAR 0 SAVE IN RO

* PAGE BITS OF INDEX ARE NOW IN BIT POSITIONS
0 AND 1 OF RO. FOLLOWING THE TWO ROT ATES

* ISOLATE THESE TWO BITS IN THE ACCUMULATOR
* BY ANDING WITH THE APPROPRIATE MASK

LAI 3 LOAD MASK INTO ACCUMULATOR
AND 0 ISOLATE PAGE BITS
CAP 0 SAVE IN PAGE BITS OF RO

6-9

* ACCUMULATOR NOW CONTAINS THE SAME BITS 0 AND 1
* AS RO. ACCUMULATOR CONTAINS 0 IN ALL OTHER
* BITS. XOR ACCUMULATOR WITH RO. THIS
* WILL CLEAR BITS 0 AND 1. WHILE COPYING
* BITS 2 THROUGH 7, ISOLATING THE SHIFTED
* ADDRESS BITS

XOR
ADD
CAR
CPA
CAR
CPA
ADD
CAP

0
1
0
1
2
0
2
0

ADD TABLE BASE ADDRESS
SAVE IN RO
LOAD TABLE BASE PAGE TO ACCUMULATOR
SAVE IN R2
ADD SAVED HIGH ORDER ACCUMULATOR
INDEX BITS
TABLE ADDRESS IS IN RO

While the illustrated table lookups are general purpose. they are frequently more com
plex than they need be. Providing you can keep table length below 256
bytes, origin tables at page boundaries. Now the data bits of a general purpose
register directly become the table index:

General Purpose register: P P P P 0 0 0 0 0 0 0 0 Table base address

Table lookup address: P P P P x x x x x x x x

P and X represent any binary digits.

Initializing a table base address now simply involves correctly setting the page bits:

LAI TPAG

CAP

TPAG IS A SYMBOL REPRESENTING BASE

ADDRESS PAGE

R1 WILL BE USED TO ADDRESS THE TABLE

Assuming the index is in the Accumulator, one instruction creates the required table
address:

CAR

Since the low order eight bits of the table base address are all 0. they do not need to
be saved; thus R 1 serves double duty as the register which holds the table base ad
dress and the required address.

DELA VS AND ONE-SHOTS
You can compute a time delay by executing instructions within a loop
some fixed number of times. Consider this instruction sequence:
Cycles

1
1
2

LRI O.TIME
LOOP NOP

DRJ O.LOOP

LOAD TIME CONST ANT
NO OPERATION
DECREMENT TIME CONSTANT. RETURN
IF NOT END OF TIME LOOP

6-10

The length of the delay equals 3 * TIME + 2 cycles. Assuming a 2µ, sec cycle time,
the above program computes delays of 10 through 1540 µ, sec. in 6 µ, sec incre
ments. Remember, TIME is an 8 bit value. with a maximum of 256 10 : the maximum
value is achieved by loading 0 initially, since on first decrement it will go to FF. For
longer delays you can include additional NOP instructions within the
loop:

LRI O,TIME LOAD TIME CONST ANT
LOOP NOP

NOP
NOP
DRJ O,LOOP DECREMENT TIME CONSTANT

For very long time constants you can loop within a loop:

LRI
LRI

LOOP DRJ
DRJ

0,0
1.TIME
O,LOOP
1.LOOP

CLEAR RO
SET TIME CONST ANT IN R 1
CREATE 1024µ, SEC DELAY BY DECREMENTING RO
CREATE TIME 1024µ, SEC DELAYS

BCD DATA MANIPULATION
BCD data can be processed in four bit units by treating the low and high
order four bits of every data byte as discrete data units:

BCD SHIFTS

76543210

I I I I
High

order

dig ti

I I I
Low

order

d1g1t

Use of the RAR instruction in decimal mode allows multibyte BCD data
to be shifted left or right in single digit increments.

A left shift may be illustrated as follows:

Assuming that R 1 addresses the start of the BCD buffer and R2 holds the buffer byte
count. here is the instruction sequence which performs the left shift:

LOOP

SEO
LRI
LRI
INP

3 X 'FO'
4 Y 'OF'

1

SET DECIMAL MODE
LOAD HIGH ORDER DIGIT MASK
LOAD LOW ORDER DIGIT MASK
INPUT NEXT BYTE

6-11

AND
CAR
INR
INP
AND
IOR
RAR
OCR
OUT
INR
DRJ
SEB

4
5

SAVE LOW ORDER DIGIT IN R5

1 INPUT NEXT BYTE
1
3 ISOLATE HIGH ORDER DIGIT
5 ADD LOW ORDER DIGIT

SWITCH DIGITS

1
1

OUTPUT TO OVERSTORE PREVIOUS BYTE

2.LOOP RETURN FOR MORE BYTES
SET BINARY MODE

A right shift may be illustrated as follows:

Assuming that R 1 addresses the end of the BCD buffer and R2 holds the buffer byte
count. here is the instruction sequence which performs the right shift:

SEO SET DECIMAL MODE
LAI 3 X 'FO' LOAD HIGH ORDER DIGIT MASK
LRI 4 Y 'OF' LOAD LOW ORDER DIGIT MASK

LOOP INP 1 INPUT NEXT BYTE
AND 3 SAVE HIGH ORDER DIGIT IN R5
CAR 5
OCR 1 INPUT NEXT BYTE
INP 1
AND 4 ISOLATE LOW ORDER DIGIT
IOR 5 ADD HIGH ORDER DIGIT
RAR SWITCH DIGITS
INR 1 OUTPUT TO OVERSTORE PREVIOUS BYTE
OUT 1
OCR 1
DRJ 2.LOOP RETURN FOR MORE BYTES
SEB SET BINARY MODE

6-12

PACKING A BCD DATA STREAM

BCD digits, input as discrete 4-bit units, may be packed into bytes. This is
what has to be done:

Data as

111put

I
:r
J

I

I

i

h

c

d

()

f

g

h

I

Data as
packcrl

c I il

() I " g I f

'l h

Assume that the four bit data is being input by an external device, via a
5-bit 1/0 port, as follows:

4 3 2 1 0 .__ 811 No
POLLING
FOR DATA
INPUT

Set to 1 to sig111fy new data. Reset to 0 by CPU after readi11g data

This 1/0 port is addressed by R1. RO addresses the beginning of the
packed BCD buffer. Here is the appropriate instruction sequence:

SEO SET DECIMAL MODE
LRI 2.X '10' LOAD 1/0 CONTROL BIT MASK

BACK JSR IN LOAD FIRST BCD DIGIT
CAR 3 SAVE IN R3
JSR IN LOAD SECOND BCD DIGIT
RAR MOVE TO HIGH ORDER FOUR BITS
IOR 3 ADD LOW ORDER FOUR BITS
OUT 0 OUTPUT PACKED BYTE
INR 0 INCREMENT PACKED DAT A BUFFER ADDRESS
JUN BACK

•SUBROUTINE TO INPUT A BCD DIGIT FROM 1/0 PORT
•ADDRESSED BY R1
IN INP

AND
JZE
INP
CAP
CPA
OUT
RET

2
IN
1
2
2
1

INPUT PORT CONTENTS
ISOLATE CONTROL BIT
IF 0, RETURN AND TEST AGAIN
IF 1, LOAD DATA
CLEAR CONTROL BIT BY MOVING
LOW ORDER FOUR BITS TO AND FROM R2 PAGE
OUTPUT TO 1/0 PORT TO CLEAR CONTROL
RETURN

The.program illustrated has a.flow -it forms an end- ~~~J1~~~NS
less loop with no logic to exit. Let us look at some
ways in which we could test for the end of data transmission.

6-13

We could terminate the packed BCD data buffer on a page boundary. When the INR O
instruction leaves zero in the data bits of RO. the end of transmission could be
assumed. This is how our program changes:

IRJ O.BACK INCREMENT PACKED DATA BUFFER ADDRESS

*Continue here if page boundary has been reached.
*This is the program exit.

The exit sequence illustrated above requires the program to call the end
of data transmission. That is not always feasible. We can allow the ex
ternal transmitting logic to identify the end of transmission by adding an
extra control bit to the 1/0 port for this purpose:

U11used

1 1f new data has arrived

0 1f no ne.w data

if e11d ol transmission

otherwise

Subroutine IN must be modified so that it tests for end of transmission. The end of
transmission bit will be returned in the carry status, allowing the calling pro~
gram to know whether or not transmission has ended. This is how subroutine IN must
be modified:

IN INP INPUT PORT CONTENTS
RAL MOVE END OF TRANSMISSION BIT TO CARRY
JCY OUT IF CARRY IS 1. TERMINATE
RAL MOVE NEW DAT A BIT TO CARRY
JNC IN IF 0. RETURN AND TEST AGAIN
INP 1 IF 1. LOAD DATA
CAP 2 CLEAR CONTROL BITS BY MOVING LOW
CPA 2 ORDER FOUR BITS TO AND FROM R2 PAGE
OUT OUTPUT TO 1/0 PORT TO CLEAR CONTROL
CLC CLEAR CARRY FOR DAT A RETURNED

OUT RET

The calling program now tests for end of transmission via the carry status:

BACK JSR IN LOAD FIRST BCD DIGIT
JCY NEXT IF CARRY IS SET. EXIT
CAR 3 SAVE IN R3
JSR IN LOAD SECOND BCD DIGIT
JCY NEXT IF CARRY IS SET, EXIT
RAR MOVE TO HIGH ORDER FOUR BITS

6 14

CONDITION TESTING
We have already tested a condition bit in the previous example. when determining if
an 1/0 port has new data. or transmission has ended.

Being able to test conditions and status is a very important aspect of
many microcomputer applications. These are the conditions that you may
wish to test:

1. A signal or status going from zero to one.
2. A signal or status going from one to zero.
3. A signal or status changing state.

An effective way of handling signals and status is to assign dedicated
scratchpad memory locations as status storage buffers. You can store
the status of eight signals or condition indicators per byte.

BIT ISOLATION

To isolate a single bit out of any status buffer, AND the buffer contents
with a mask that contains 1 bit in the bit location or locations that must be saved
and 0 bits elsewhere. Assuming that scratchpad byte 5 holds status information. the
following instruction sequence isolates within the Accumulator bit 3 of scratchpad
byte 5:

LRI 1. 5 ADDRESS SCRATCHPAD VIA R1
LRI 2. 8 LOAD MASK INTO R2
RDS 1 MOVE FLAGS TO ACCUMULATOR
AND 2 MASK OUT ALL BAR BIT 3

This is the mask in R2:

0000 1000 -.- -.-
0

This is the result of the AND:

x x x x y x x x 1n .l\ccurnulator

0 0 0 0 1 0 0 0 1n R2

0 0 0 0 y 0 0 0 in Accumulator

BIT TESTING

Having isolated a single bit, you can use the JZE and JNZ instructions to
determine subsequent program execution paths as a function of the isolated
bit level.

6-15

RESETTING A BIT

In or-der to reset to 0 a single bit of any scratchpad byte,. AND with a
mask that contains 0 in all bit positions that must be reset and 1 elsewhere. For ex
ample. bit 2 of scratchpad byte 5 may be reset to 0 as follows:

LRI . 1. 5 ADDRESS SCRATCHPAD VIA Rl
LRI 2. X 'FB' LOAD MASK INTO R2
RDS 1 MOVE FLAGS TO ACCUMULATOR
AND 2 CLEAR BIT 2
WRS RETURN RESULT

This is the mask in R2:

This is the result of the AND

SETTING A BIT

1111 1011
.-.- -

B

x x x x x x x x 111- Accumulator

1 1 1 1 1 0 1 1 in R2

x x x x x 0 X x 1n Accumulator

In order to set to 1 a bit of any scratchpad byte, OR with a mask that con
tains 1 in all bit positions that must be unconditionally set to 1. The following instruc
tion sequence unconditionally sets to 1 bits 5 and l of scratchpad byte 5:

LRI 1. 5 ADDRESS SCRATCHPAD VIA Rl
LRI 2. X '22' LOAD MASK INTO R2
RDS 1 MOVE FLAGE INTO ACCUMULATOR
IOR 2 SET BITS 5 AND 1
WRS 1 RETURN RESULT

This is the mask in R2:

This is the result of the OR:

0010 0010 ----2 2

x x x x x x x x 1n Accumulator

0 0 1 0 0 0 1 0 in R2

x x 1 x x x 1 x in Accumulator

BIT CONDITION CHANGE TEST

If you want to test flags for change of state, then you must reserve two
scratchpad bytes for each set of eight flags; one byte holds the old values while the
other byte holds the new values. Exclusive OR the old and new flag values in
order to determine flags which may have changed.

6-16

Suppose scratchpad bytes 5 and 6 contain the old and new flags values. respectively;
the following instruction sequence leaves 1 in Accumulator bits for flags that have
changed state:

LRI 1. 5 ADDRESS SCRATCHPAD VIA R1
RDS 1 LOAD OLD FLAGS INTO ACCUMULATOR
CAR 2 SAVE IN R2
INR INCREMENT SCRATCHPAD ADDRESS
RDS 1 LOAD NEW FLAGS INTO ACCUMULATOR
XOR 2 EXCLUSIVE OR WITH OLD FLAGS

Suppose "new flags" are 01100101 and "old flags" are 11100001. At the conclusion of
the instruction sequence illustrated above. R2 contains 11100001; the Accumulator
contains 10000100:

new flags O 1 1 O 0 1 0 1 in Accumulator

old flags 1 1 1 0 0 0 0 1 in A2

XOR 1 0 0 0 0 1 0 0 1n Accumulator

To determine whether changed statuses went from 0 to or from 1 to 0. AND the
change indicator with the old status values:

XOR 1 0 0 0 0 1 0 O in Accumulator

old flags 1 1 1 0 0 0 0 1 still 111 R2

AND 1 0 0 0 0 0 0 0 in Accumulator

went from 1 to 0-_j L went from 0 to 1

All boolean instructions "clear" the CPU "C and H" status flags. This makes it very
easy for instruction sequences that modify flags to be followed by jump on condition
instructions.

Thus program logic can be controlled by signal or condition bit level changes.

6-17

Chapter 7
INPUT/OUTPUT PROGRAMMING

EA9002 Input/Output Programming is very straightforward; it is de
scribed in this chapter as Programmed 1/0 or Interrupt 1/0.

PROGRAMMED 1/0

The EA9002 Microcomputer has no special 1/0 instructions. As illustr
ated in Figure 6-2. external logic which communicates with the CPU
must decode the address lines and respond to the general input and out
put instructions. The Input, Output, Load Register Indirect and Store
Register Indirect instructions all serve double purpose as input/output in
structions-providing the specified external addresses are decoded to
select external logic.

To illustrate programmed 1/0. refer to Figures 6-1 and 6-2. The following instruction
sequence will input an 8-bit value from the ADC:

LAI
CAP
CAR
LRN

X'FF'
0
0
1

SET 1/0 PAGE IN RO

SET ADC ADDRESS IN RO
INPUT ADC VALUE TO R1

The following instruction sequence will output a series of five digits, assumed to
reside in scratchpad bytes 2016 through 2416. to the display panel:

LAI X'FF' SET 1/0 PAGE IN RO
CAP 0
CAR 0 SET LOW PANEL ADDRESS IN RO
LRI l,X'20' SET SCRATCHPAD ADDRESS IN R1
LRI 2.5 SET COUNTER IN R2

LOOP RDS 1 INPUT NEXT DISPLAY DIGIT FROM SCRATCHPAD
OUT 0 OUTPUT TO DISPLAY PANEL
INR 0 INCREMENT ADDRESSES
INR 1
DRJ 2.LOOP DECREMENT COUNTER. RETURN FOR MORE DIGITS

INTERRUPT 1/0

As we stated at the beginning of Chapter 6, interrupts are used in
microcomputer systems as a means of clocking slow, asynchronous
events. In minicomputer and large computer applications, interrupts are also used as
a means of sharing a central processing unit between a number of diverse applica
tions with differing priorities. This use of interrupts within a microcomputer system

7-1

may be counterproductive; the overhead associated with such interrupt processing
might cost more than implementing a multiple CPU system in which each potentially
interrupting external source is assigned its own CPU.

A SINGLE INTERRUPT CONFIGURATION

Consider first a simple, one interrupt configuration. When this interrupt is
acknowledged. current Program Counter contents are pushed onto the Stack and pro
gram execution branches to memory location 002.

If we are to assume that interrupts are constantly enabled. then we must also assume
that the interrupt may occur at any time. with any register or status flag holding infor
mation which must be preserved. This being the case. an instruction sequence
beginning at memory location 002 must save the contents of all registers
whose contents may be altered by the interrupt service routine; this will
include Accumulator contents, status conditions and some, or all general
purpose register contents. This information may be saved in scratchpad memory,
or in external RAM. In the program below. selected scratchpad memory bytes are
reserved for this function; the first scratchpad byte is addressed by general purpose
register R7. Here is the appropriate instruction sequence:

* INTERRUPT SERVICE ROUTINE
* INTERRUPT SERVICE PROGRAM INITIATION
*SAVE STATUS AND ALL REGISTERS IN SCRATCHPAD
* BYTES. BEGINNING WITH BYTE ADDRESSED BY R7
* R7 IS RESERVED FOR INTERRUPT PROCESSING
* IF R7 IS USED IN ANY OTHER WAY. INTERRUPTS MUST BE
* INHIBITED. AND R7 CONTENTS MUST BE SAVED. THEN RESTORED

ORG 2
WRS 7
INR 7
CSA
WRS 7
INR 7
CRA 6
WRS 7
INR 7
CRA 5
WRS 7
INt-1 7
CRA 4
WRS 7
INR 7
CRA 3
WRS 7
INR 7
CPA 3
WRS 7
INR 7
CRA 2
WRS 7

SAVE ACCUMULATOR CONTENTS

MOVE STATUS FLAGS TO ACCUMULATOR
THEN SAVE IN SCRATCHPAD

SAVE R6

SAVE R5

SAVE R4

SAVE R3. PAGE AND DATA
BITS

REPEAT FOR R2

7-2

INR 7
CPA 2
WRS 7
INR 7
CRA 1 REPEAT FOR R 1
WRS 7
INR 7
CPA 1
WRS 7
INR 7
CRA 0 REPEAT FOR RO
WRS 7
INR 7
CPA 0
WRS 7

* INTERRUPT SERVICE PROGRAM FOLLOWS

Observe that since the page bits of registers R4. R5. R6 and R7 cannot be read into the
Accumulator. they cannot be saved across an interrupt. Therefore. if the page bits of
registers R4. R5. R6 or R7 contain meaningful data. do not increment or decrement
these registers' contents following an interrupt; if you do. you may alter the page bits'
contents.

:Once the interrupt service program has completed execution, registers,
status and Accumulator contents must be restored in the reverse order
from which they were saved. Here is the completely general restoration instruc
tion sequence:

* POST INTERRUPT REGISTERS AND ST A TUS RESTORATION
RDS 7 RESTORE RO. PAGE AND DATA BITS
OCR 7
CAP 0
RDS 7
OCR 7
CAR 0
RDS 7 REPEAT FOR R 1
OCR 7
CAP 1
RDS 7
OCR 7
CAR
RDS 7 REPEAT FOR R2
OCR 7
CAP 2
RDS 7
OCR 7
CAR 2
RDS 7 REPEAT FOR R3
OCR 7
CAP 3
RDS 7

7-3

OCR 7
CAR 3
RDS 7 RESTORE R4 DAT A BITS
OCR 7
CAR 4
RDS 7 REPEAT FOR R5
OCR 7
CAR 5
RDS 7 REPEAT FOR R6
OCR 7
CAR 6

* READ STATUS. ASSUME CARRY AND DECIMAL
* MODES HAVE BEEN MODIFIED. THEREFORE MUST
* BE RESTORED.

DEC

RDS
OCR
SEO
RLC
RLC
JCY
SEB
RRC
RDS
ENI
RET

7
7

DEC

7

LOAD STATUSES

SET DECIMAL MODE
GET PREVIOUS DECIMAL MODE FLAG

IF NOT SET, SET BINARY MODE
SHIFT PREVIOUS CARRY INTO CARRY
RESTORE ACCUMULATOR
ENABLE INTERRUPTS
RETURN

Another approach to interrupt handling is to keep in- INTERRUPT
terrupts disabled during the execution of program WINDOWS
modules that use general purpose registers, status
and the Accumulator. At the conclusion of every such module, and before execut
ing the next module, interrupts are enabled for a short window which may consist of
nothing more than two no operation instructions:

ENI
NOP
NOP
OSI

ENABLE INTERRUPTS
INTERRUPT ACKNOWLEDGE WINDOW

DISABLE INTERRUPTS

With just a little caution you can insure that interrupt enable windows
are spaced not more than a few milliseconds apart - which identifies the
maximum period for which an interrupt request could be denied 'and external logic
could be kept waiting.

If the use of interrupt windows is acceptable, then the interrupt service and restoration
routines disappear. Since there is nothing .to save, there is no initial housekeeping in
struction sequence; the actual interrupt service routine can begin at memory location

7-4

002. Since nothing has to be restored. the interrupt service routine can terminatewith
a simple RET instruction. The interrupt service routine now looks like this:

ORG 002
* ST ART INTERRUPT SERVICE PROGRAM

* END INTERRUPT SERVICE PROGRAM
ENI ENABLE INTERRUPTS
RET RETURN FROM INTERRUPT

DELAY LOOPS

Frequently in microcomputer applications, real time
events occur too slowly to keep the microcomputer
completely busy. When idle. such applications usually will
execute a simple delay loop as follows:

* DELAY LOOP EXECUTED WHILE MICROCOMPUTER IS IDLE

DELAY JUN DELAY

INTERRUPTING
OUT OF
DELAY LOOPS

The period during which the delay loop is being executed is an ideal time
for interrupts to be enabled; in fact, acknowledgment of an interrupt is
the only way in which program execution can leave the delay loop.

A microcomputer application that uses the delay loop may be illustrated
by an enhancement of the configuration illustrated in Figure 6-2.

Consider a dozen or more ADC's being monitored by a single EA9002 CPU.

It is conceivable that a number of seconds may elapse between any ADC receiving
data to transmit to the CPU. Thus the CPU spends the bulk of its time executing the
delay loop illustrated above.

When an ADC does have a new reading to transmit to the CPU. it will request an inter
rupt. The NANO gate daisy chain described in Chapter 4 can be used to interface a
number of interrupt requesting ADC's to the CPU. Now all programs executing outside
the delay loop are interrupt service routines. In other words. all non-trivial program ex
ecution is confined to interrupt service routines; and at the conclusion of every inter
rupt service routine. program execution will return to the delay loop. The program ex
ecution sequence which results may be illustrated as follows:

~Interrupt requests~ .,

Interrupt

&lrvlC(l

routine

Delay

7-5

Interrupt

service

routine

The actual program which services each interrupt will be structured as follows:

ORG 2
*ALL INTERRUPT SERVICE ROUTINES ST ART HERE
*LOCATE SOURCE OF INTERRUPT

*BRANCH TO PROGRAM THAT SERVICES IDENTIFIED
*INTERRUPTING SOURCE

*EXECUTE INTERRUPT SERVICE PROGRAM

*ALL INTERRUPT SERVICE PROGRAMS END WITH
*THE FOLLOWING TWO INSTRUCTIONS

ENI ENABLE INTERRUPTS
RET RETURN FROM INTERRUPT

1/0 POLLING AS A SUBSTITUTE FOR INTERRUPTS

When a microcomputer program consists of a no operation loop with in
terrupt exits, as we have just described, an alternative is to execute a
polling program instead of the no operation loop. Interrupts are elimi
nated.
Consider again numerous ADC's and panel displays being serv.iced by a single
EA9002 CPU. Now the microprocessor will spend the bulk of its time executing a pro·
gram which tests each ADC in turn, until it locates one that is ready to transmit data.
At that time a branch will occur to the instruction sequence supporting the particular
ADC requesting service. Once this ADC has been serviced. program execution returns
to the polling routine. This sequence may be illustrated as follows:

7 6

Return

to poll1n~1

111struct1t111

](lop

Execute

requestEod

rrogrn111

Let us assume that there are 16 ADC's, with addresses FE0 16 through FEF 16 . Each
ADC specifies that it has data to send by storing a nonzero value in its addressed
buffer. The CPU clears this buffer after reading its contents.

Here is the necessary polling program which substitutes for a no operation sequence
followed by an interrupt exit. Real memory addresses have been arbitrarily selected
since they make the sample program easier to follow.

* PROGRAM INITIALIZATION
* Rl WILL ADDRESS ADC's
* R2 WILL ADDRESS BRANCH TABLE
* SET UP PAGE PORTION OF EACH ADDRESS
START LAI X'OF' POLL PAGE IS F

CAP 1
LAI 04 BRANCH TABLE PAGE IS 4
CAP 2

POLL LRI 1 ,X'EO' INITIALIZE POLL ADDRESS
LRI 2,X'80' INITIALIZE BRANCH TABLE BASE ADDRESS

LOOP INP 1 INPUT CONTENTS OF NEXT ADC BUFFER
JNZ BRANCH IF A NON ZERO VALUE IS INPUT, BRANCH OUT
INR 1 INCREMENT POLL ADDRESS
INR 2 DOUBLE INCREMENT BRANCH TABLE ADDRESS
INR 2
LAI X'FO' COMPARE POLL ADDRESS FOR END OF LOOP
CMP 1
JNE LOOP NOT END OF 16 DEVICES LOOP
JUN POLL END OF 16 DEVICES LOOP

* A NON ZERO VALUE HAS BEEN INPUT. THE DEVICE
* CAN BE IDENTIFIED BY THE CURRENT BRANCH
* TABLE ADDRESS POINTER. LOAD THE
* APPROPRIATE BRANCH TABLE ADDRESS. PAGE AND
* ADDRESS WITHIN PAGE, INTO RO
BRANCH JIN 2 JUMP INTO BRANCH TABLE

ORG X'480'
* BRANCH TABLE IS ORIG I NED AT 480 16 .

JUN ADDR1 16 UNCONDITIONAL JUMPS
JUN ADDR2 TO 16 SERVICE ROUTINES
JUN ADDR3 THESE JUMP INSTRUCTIONS
JUN ADDR4 CONSTITUTE A BRANCH TABLE
JUN ADDR5
etc

ORG ADDR1
* FIRST SERVICE PROGRAM

JUN ST ART END OF FIRST SERVICE PROGRAM
ORG ADDR2

7-7

* SECOND SERVICE PROGRAM

JUN ST ART END OF SECOND SERVICE PROGRAM

ETC

There are two parts to the polling program illustrated above; there is the detection of
an external device requesting service and there is the branch table which follows.

The branch table requires special mention since it is a BRANCH
very common microcomputer feature. with univer- TABLE
sal application. The purpose of a branch table is to
allow logic to select one of many execution paths based on a sensed
status. which in this case happens to be an ADC device number. The logic of a
branch table may be illustrated by the following completely general instruction se
quence:

ORG BTBL
* THIS BRANCH TABLE CONSISTS OF A NUMBER OF
* ADDRESSES. THE SYMBOL BTBL REPRESENTS
* THE MEMORY ADDRESS OF THE FIRST BRANCH TABLE BYTE
* EACH ADDRESS OCCUPIES TWO BYTES. THE
* FIRST BYTE SPECIFIES A PAGE. THE SECOND
* BYTE SPECIFIES AN ADDRESS WITHIN THE PAGE.

DC ADDR1
DC ADDR2
DC ADDR3

ETC
ORG PROG

* THE BRANCH TABLE PROGRAM ITSELF FOLLOWS.
* ASSUME THAT THE BRANCH TABLE PROGRAM IS ENTERED
*WITH A NUMBER IN THE ACCUMULATOR. THIS
* NUMBER SPECIFIES THE ADDRESS WITHIN THE
* BRANCH TABLE TO WHICH A JUMP MUST
*OCCUR. FOR EXAMPLE. 3 MEANS THAT
* A JUMP TO ADDR3 MUST OCCUR.
* SINCE EACH BRANCH TABLE ADDRESS OCCUPIES
* TWO BYTES. MULTIPLY THE ACCUMULATOR CONTENTS
* BY 2. ASSUME THAT THE ACCUMULATOR
* CONTAINS 7F OR LESS.

RAL
CLC

7-8

* CREATE THE BRANCH TABLE ADDRESS IN R 1.
CAR R 1 MOVE ADDRESS INDEX TO R 1
LAI BT AD LOAD ADDRESS PORTION OF BTBL
ADD 1 ADD INDEX, CURRENTLY IN R 1
CAR 1 RETURN SUM TO R 1
LAI BTPG LOAD PAGE PORTION OF BTBL
JNC NEXT INCREMENT IF CARRY IS SET
IAC

NEXT CAP MOVE TO PAGE BITS OF Rl

INP
CAP
INR
INP
CAR
JIN

1
0
1
1
0
0

LOAD ADDRESS INTO RO

JUMP TO SELECTED ADDRESS

7-9

Chapter 8
SOME USEFUL SUBROUTINES

This chapter provides a number of frequently used subroutines and in
struction sequences.

MATHEMATICAL SUBROUTINES
ADDITION AND SUBTRACTION
Binary or decimal addition and subtraction can use the same subroutines,
providing initial conditions are met.

For binary addition or subtraction, the input data must be in pure binary
form, signed or unsigned. The binary/decimal flag must be set to binary
mode.

For decimal addition or subtraction, the input data must be in BCD form.
The binary/decimal flag must be set to decimal mode.

Below are multibyte addition and subtraction subroutines.

* BINARY OR DECIMAL MUL TIBYTE SCRATCHPAD ADDITION.
R 1 ADDRESSES LOW AUGE ND BYTE
R2 ADDRESSES LOW ADDEND BYTE
R3 ADDRESSES LOW ANSWER BYTE
R4 HOLDS BYTE COUNT

ADD CLC CLEAR CARRY
LOOP RDS LOAD NEXT AUGEND BYTE

ADS 2 ADD NEXT ADDEND BYTE
WRS 3 STORE ANSWER
INR 1 INCREMENT ADDRESSES
INR 2
INR 3
DRJ 4,LOOP DECREMENT BYTE COUNT. RETURN FOR MORE
RET AT END. RETURN FROM SUBROUTINE

* BINARY OR DECIMAi MUL TIBYTE SCRATCHPAD SUBTRACTION
* R 1 ADDRESSES LOW SUBTRAHEND BYTE

R2 ADDRESSES LOW MINUEND BYTE
R3 ADDRESSES LOW ANSWER BYTE
R4 HOLDS BYTE COUNT

SUB CLC CLEAR CARRY
LOOP RDS 1 LOAD NEXT SUBTRAHEND BYTE

SUS 2 SUBTRACT NEXT MINUEND BYTE
WRS 3 STORE ANSWER
INR INCREMENT ADDRESSES

8-1

INR 2
INR 3
DRJ 4.LOOP DECREMENT BYTE COUNT, RETURN FOR MORE
RET AT END, RETURN FROM SUBROUTINE

Note that subroutines ADD and SUB can return the answer to either of the source
buffers. Simply eliminate R3, and modify the "WRS 3" instruction· appropriately to
"WRS 2" or "WRS .1" Of course, the "INR 3" instruction is also eliminated.

BINARY MULTIPLICATION
Any multiplication can be implemented by repeated addition; for example.
25 x 31 = 775 can be created by adding 25 thirty-one times to a buffer which initially
holds zero. But you would never use this simple scheme to perform binary multiplica
tion, it takes too long to execute.

Remember, binary digits can have a value of 0 or 1. At the digit level. therefore.
multiplication degenerates to addition. since "multiply by 1" is the same
as "add". This makes a "shift-and-add" algorithm work for binary
multiplication.

Consider B5 * 6D, the binary representation may be illustrated thus:

Multiplier 0 1 0 1 0
Multiplicand 1 0 1 0 0

RESULT

HIGH ORDER LOW ORDER

BYTE BYTE
Start 00000000 00000000

0 1 1 0 1 1 0 1 Step 1 (a\ 1 0 1 1 0 1 0 1 00000000

1 (bl 0 1 0 1 1 0 1 0 10000000

0 1 1 0 1 1 0 1 Step 2 {a.h) 0 0 1 0 1 1 0 1 01000000

0 1 1 0 1 1 0 1 Step 3 (a) 1 0 1 1 0 1 0 1

1 1 1 0 0 0 1 o. 01000000

3 lb) 0 1 1 1 0 0 0 1 00100000

0 1 1 0 1 1 0 1 Step 4 la) 1 0 1 1 0 1 0 1

c-1 00t00110 OOtOOOOO

4 (bl 1 0 0 t 0 0 t t 00010000

0 1 1 0 t t 0 t Step 5 la.bl 01001001 10001000

0 1 1 0 1 t 0 1 Step 6 (a) 1 0 1 t 0 1 0 1

1 1 1 1 1 1 1 0 10001000

6 (b) 0 1 t 1 t 1 1 1 OlOOOtOO

0 1 1 0 1 1 0 1 Step 7 (a) 1 0 1 1 0 1 0 1

c-1 0 0 1 1 0 1 0 0 01000100

7 lb) t 0 0 t 1 0 1 0 OOtOOOlO

0 1 1 0 1 1 0 1 Slep 8 la.bl 0 1 0 0 1 1 0 1 ~~ ..__.,.__.,
D

This algorithm has eight steps, one for each bit of the multiplier and
multiplicand.

Each step has two parts. Part (a) tests the status of the next multiplier bit; part (b) adds
the multiplicand to the result if part (a) locates a 1 bit.

8-2

If part (b) is needed, the multiplicand must be added to the correct eight bits of the 16
bit result. The high order eight bits of the result space is always assumed to constitute
a "window" on the required eight b'1ts; for this to be the case, the high order eight bits
must initially contain the low order eight answer bits:

Answer IHts

H.O. Byte

76543210

76543210

L.0. Bytn

76543210

1514131211109 8

After each step, Part (a), the answer 16 bits must be rotated right one bit.

For example, we enter Step 2 as follows:

Answer hits

H.0. Bytn

76543210

87654321

L.0. Byte'

76543210

0 15 14 13 12 11 10 9

After eight shifts, we will have the correct final bit configuration for the answer:

Answer IJ1ts

H.0. Byll'

76443210

15 14 13 12 11 10 9 8

L.0_ Byti'

76543210

76543210

Now consider a program to implement this 8-bit multiplication algorithm.

Assume that Registers R4 and R5 hold the 8-bit multiplier and multiplicand, respec
tively. The 16-bit result will be stored in the data bits of registers R7 (high order) and
R6 (low order).

The algorithm clears R7 and R6, and assumes that the 8 data bits of R7 act as the
"window" on the 16-bit answer. Initially, therefore, R7 holds the low order 8 bits.

With each step of the multiplication, the next low order multiplier bit is tested, these
are the shaded bits in the leftmost.column of numbers illustrated above. If the tested
bit is 1, then the multiplicand is added to R7.

Whether or not the multiplicand is added to R7, the contents of R7 and R6 data bits
are rotated right one bit, as a 16 bit unit. Thus after 8 shifts for the eight binary digits of
the source numbers. R7 becomes the high order 8 bits and R6 holds the low order 8
bits.

* 8 BIT MULTIPLICATION PROGRAM USING FIVE REGISTERS

MUL 4

LOOP

NOAD

LRI
LRI
LAI
XCH
RRC
XCH

7,0
6,0
7
4

4

CLEAR GENERAL PURPOSE REGISTERS.
R7 AND R6 TO HOLD THE ANSWER.
LOAD BIT COUNT INTO ACCUMULATOR.
SHIFT LOW ORDER BIT OF R4 INTO CARRY
TO TEST ITS ST A TUS.

XCH 7 IF BIT IS 1, ADD R5 TO R7
JNC NOAD IF BIT IS 0, BYPASS ADDITION
CLC
ADD
JNC
INR
CLC

5
NOAD IF THERE IS A CARRY. INCREMENT R6
6

ROT ATE ACCUMULATOR - R6 16-BIT UNIT

8-3

RRC
XCH
XCH
RRC
XCH
JNC
XCH
RLC
SEC
RRC
XCH

RIGHT ONE BIT. FIRST CLEAR CARRY
7 THEN ROT ATE ACCUMULATOR RIGHT ONE BIT
6 NOW MOVE R6 TO ACCUMULATOR AND

ROTATE RIGHT WITH CARRY.
6
NOST IF CARRY IS NOT SET. THIS STEP IS FINISHED
7 IF CARRY IS SET. SET BIT 7 OF R7 TO 1

7
NOST DAC DECREMENT BIT COUNTER IN ACCUMULATOR

JNZ LOOP CONTINUE IF NOT END
RET RETURN AT END.

* 8 BIT MULTIPLICATION PROGRAM USING FIVE REGISTERS
MUL 5 LRI 7, 0 CLEAR GENERAL PURPOSE REGISTERS

LRI 6, 0 R7 AND R6 TO HOLD THE ANSWER
LAI 1 LOAD BIT MASK INTO ACCUMULATOR

LOOP CAR 3 SAVE IN R3
AND 4 TEST NEXT R4 BIT
JZE NOAD IF BIT IS 0. BYPASS ADDITION
CRA 5 BIT IS 1. SO ADD R5 TO R7
ADD 7
CAR 7
JNC NOAD IF THERE IS A CARRY. INCREMENT R6
INR 6

NOAD RRC
CRA 6
RRC
CAR 6
CRA 7
RRC
CAR 7
CRA 3
RAL

MOVE THE LOW ORDER ACCUMULATOR BIT INTO CARRY
ROT ATE R7-R6 RIGHT ONE BIT AS
A 16 BIT UNIT

SHIFT BIT MASK LEFT ONE BIT

JNC LOOP IF CARRY IS NOT SET. CONTINUE TO NEXT BIT
RET IF CARRY IS SET. END.

Two multiplication subroutines are illustrated.

The first multiplication subroutine is longer, but it uses only four
registers. To do this. the bit counter is held in the Accumulator; XCH instructions
save the counter whenever the Accumulator must operate on data.

The second multiplication subroutine uses R3 to hold a bit mask. in lieu of a bit
counter. The mask initially identifies the low order bit:

00000001

on the eighth rotate right. the 1 will shift into the carry. triggering an exit from the
subroutine. This second subroutine is five instructions shorter, but it uses
an additional general purpose register.

8-4

BINARY DIVISION
When dealing with small numbers. simple binary division is most effec
tively implemented using multiple subtractions. Continuously subtract the
divisor from the dividend until a negative answer is detected.

Add the divisor to the negative answer in order to determine the remainder.

The answer 1s equal to the number of subtractions performed. less one. before a
negative result was generated.

DATA HANDLING PROGRAMS
Programs in this category convert data from one coded form to another.
Recall that data ITlay be interpreted as binary, BCD. or ASCII.

Binary and BCD data represent numeric information: therefore. only the
numeric subset of ASCII characters is relevant when making binary
ASCII or BCD-ASCII conversions.

HEXADECIMAL - ASCII CONVERSION

The following subroutine converts a hexadecimal digit into its ASCII
equivalent, using a table lookup.

* ROUTINE TO CONVERT HEXADECIMAL TO ASCII
* ENTER WITH HEXADECIMAL VALUE IN REGISTER 5
* EXIT WITH ASCII CHARACTER IN ACCUMULATOR
HASC LAI TBPG GET PAGE VALUE OF CONVERSION TABLE

Table

CAP 5 SET PAGE
LAI TBAD GET WORD ADDRESS OF TABLE ST ART
ADD 5 ADD CHARACTER VALUE (TABLE DOES NOT OVERLAP PAGE

CAR 5
INP 5
RET
DC ·o·
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

'1'
·2·
·3·
·4·
·5·
'6'
'7'
·s·
·g·

'A'
'B'

DC 'C'
DC 'D'

DC 'E'
DC 'F'

END

BOUNDARY)
SET ADDRESS
GET ASCII CHARACTER
RETURN FROM SUBROUTINE

8-5

Next, a subroutine is given to convert ASCII digits 0-9 and A-F to hex
adecimal equivalents.

* ROUTINE TO CONVERT ASCII 0-9 AND A-F TO HEXADECIMAL EQUIVALENT
* ENTER WITH CHARACTER IN ACCUMULATOR
* EXIT WITH VALUE IN ACCUMULATOR
* NON-HEXADECIMAL CHARACTER CAUSE JUMP TO ERR
AHEX LR\ 6X7F' LOAD MASK FOR PARITY BIT

GOOD
ERR

*

AND 6 MASK OFF PARITY AND CLEAR CARRY
LR\ 6,X'30' LOAD ASCII ZERO IN R6
SUB 6 IS CHARACTER < 0
JLT ERR YES. ERROR
LR\ 6.9 TEST FOR 9
CMP 6 IS IT 0-9?
JLE GOOD YES, GOOD NUMBER
LR\ 6,X'11' NO. LOAD DIFFERENCE BETWEEN
SUB 6 ASCII A AND 0 AND SUBTRACT
JL T ERR ERROR IF BETWEEN 9 AND A
LR\ 6.5 TEST FOR A-F
CMP 6 IS IT > F
JGT ERR YES, ERROR
CLC CLEAR CARRY
ADD 6
ADD 6
RET
EOU *

NO.ADD 10
RETURN FROM SUBROUTINE

BINARY - BCD CONVERSIONS

Two programs are described for converting binary data to its BCD
equivalent.

The first program takes eight data bits of a general purpose register, il
lustrated in the first program as R4 and creates three decimal digits in
two general purpose registers, illustrated as R4 and RS. The conversion
technique is based on the fact that each binary digit within an 8 bit unit has a decimal
representation, as follows:

76543210

Decimal

1

10

16

32

1000000 64

10000000 128

8-6

The first program tests each individual binary digit position of the initial binary value.
Upon detecting a 1 in any binary bit position. the decimal equivalent is added to R4.
the BCD low order decimal digits space -- which must in1t1ally be cleared. Recall that
BCD add1t1on is easy to do. since the EA9002 has decimal addition logic. The most
significant decimal digit 1s created by incrementing R5 whenever decimal addition to
R4 creates a carry.

The eight decimal equivalents for each binary digit position are stored in eight con
tiguous scratch-pad bytes. Because the high order binary digit is equivalent to 128
decimal. C816 is stored. When this value is added to zero. the EA9002 automatically
corrects the "C" to a "2" and generates a Carry. The result is 28 in the low order
register. and a carry. The carry is detected and causes the high order register to be in
cremented by 1.

Here are two examples of how the first program's logic works:

Here is the program:

Binary

Value

"'T ;· ~ "'
0 01
__ 4

0 05 __ s

Binary

Value

0 13

64

77

10110000 R5 R4

~
0 16
__ 32

0 48
_1 __ 2s

1 76

* CONVERT THE BINARY CONTENTS OF REGISTER 4 TO THREE BCD DIGITS.
* STORE THE LEAST SIGNIFICANT TWO DIGITS IN REGISTER 4 AND THE MOST
* SIGNIFICANT DIGIT IN BITS 0-3 OF REGISTER 5. SCRATCH MEMORY
* LOCATIONS 1-8 CONTAIN THE FOLLOWING HEX VALUES. RESPECTIVELY:
* 01. 02. 04. 08. 16. 32. 64. cs
BBCD LRI 7.8 SET BIT COUNTER AND CONST ANT TABLE POINTER

CLA ZERO ACCUMULATOR
CAR 5 ZERO REGISTER 5
XCH 4 ZERO REGISTER 4. LOAD BINARY VALUE
SEO SET DECIMAL MODE

CON 1 RAL TEST NEXT BIT
JNC CONB NOT SET. GO DECREMENT BIT COUNTER
XCH 4 SET. EXCHANGE FOR RUNNING BCD VALUE
ADS 7 ADD CONST ANT CORRESPONDING TO THIS BIT

8-7

JNC CON2 IF NO CARRY, GO ON
INR 5 CARRY, INCREMENT MOST SIGNIFICANT DIGIT

CON2 XCH 4 EXCHANGE BCD VALUE FOR SHIFED BINARY
CON3 DRJ 7,CON1 DECREMENT BIT COUNTER, NOT DONE GO DO NEXT

BIT
SEB RESTORE BINARY MODE
RET RETURN FROM SUBROUTINE

The next program converts sixteen binary digits into five BCD digits.

* CONVERT THE BINARY CONTENTS OF TWO CONSECUTIVE MEMORY LOCA
TIONS TO
* FIVE BCD DIGITS AND STORE IN THREE CONSECUTIVE MEMORY LOCATIONS.
* THE BINARY DATA IS STORED WITH THE LEAST SIGNIFICANT HALF AT THE
* LOWER ADDRESS. THE BCD DAT A IS STORED WITH THE LEAST SIGNIFICANT
* DIGIT IN THE LOWER HALF OF THE BYTE AT THE LOWEST ADDRESS, AND
* THE MOST SIGNIFICANT DIGIT IN THE LOWER HALF OF THE BYTE AT THE
* HIGHEST ADDRESS. THE BCD RESULT MAY OVERLAP THE ORIGINAL BINARY
* DATA.

LADR
INP
CAR
INR
INP
CAR
CLA
CAR
CAR
CAR
LADR
CRA
SEO

CNVT4 LRI
CNVT5 RRC

JNC

*
CAR
INP
ADD
CAR
INR
INP
ADD
CAR
INR
INP
ADD
CAR

7,BNRY
7
2
7
7
7

LOAD ADDRESS OF BINARY L.S. BYTE
READ IT
SAVE IN R2
INCREMENT ADDRESS
READ M.S. BYTE
SAVE IN R7
ZERO ACCUMULATOR

4 ZERO
5 INITIAL
6 BCD DIGITS
3,CNVTB LOAD ADDRESS OF CONVERSION TABLE
2 GET L.S. BYTE

SET DECIMAL MODE
1,8 SET BIT COUNTER

GET NEXT BIT
CNVT7 IF NOT SET, GO ON

2
3
4
4
3
3
5
5
3
3
6
6

SET, GET CORRESPONDING POWER OF 2 AND ADD
TO RUNNING BCD VALUE
SAVE BINARY
GET DIGITS 1 AND 2
ADD RUNNING DIGITS 1 AND 2
SAVE
NEXT BYTE
GET DIGITS 3 AND 4

ADD RUNNING DIGITS AND 4
SAVE
NEXT BYTE
GET DIGIT 5
ADD RUNNING DIGIT 5
SAVE

8-8

CRA 2 RESTORE BINARY
CNVT6 INR 3 NEXT BYTE

DRJ 1.CNVT5 DECREMENT BIT COUNTER. NOT DONE GO DO NEXT
BIT

CLA DONE. TEST FOR COMPLETION OF BOTH HALVES
XCH 7 ZERO R7 AND GET PREVIOUS VALUE
JNZ CNVT4 NOT DONE. DO SECOND HALF
LADR O.BCDVAL

LOAD ADDRESS WHERE RESULT IS TO BE STORED
SRN 4 STORE DIGITS 1 AND 2
INR 0 NEXT BYTE
SRN 5 STORE DIGITS 3 AND 4
INR 0 NEXT BYTE
SRN 6 STORE DIGIT 6
(FALL THROUGH)

CNVT7 INR 3 SKIP 2 CONVERSION TABLE BYTES
INR 3
JUN CNVT6 RE-ENTER MAIN LINE

BNRY EOU 450
BCDVAL EOU 460
CNVTB EOU 470

8-9

Appendix A
AN INSTRUCTION SET SUMMARY

A-1

Appendix A
AN INSTRUCTION SET SUMMARY

EA9002 instructions are summarized by ·instruction type, for quick reference once you
are familiar with the EA9002 instruction set.

Within this appendix. symbols and abbreviations are used as follows:

A
AC
ACL
c
D
GDN
GPN
GRN
H
11
12
IL
MGRN
PC
SW
SGDN
[]

+

I\
v
>o'"

- Accumulator stated
- Accumulator
- Low order four Accumulator bits
- Carry status
- Decimal status
- Data bits of general purpose register N
- Page bits of general purpose register N
- All twelve bits of general purpose register N
- Half carry status
- First. or only byte of instruction object code
- Second byte of instruction object code
- Low order four bits of first. or only object code byte
- External memory byte addressed by all twelve bits Of GRN
- Pro-gram counter
- Status word
- Scratchpad byte addressed by low order six bits of GDN
- Contents location enclosed by brackets
- Move data in indicated direction
- Exchange data
Add
Subtract
AND
OR
XDR

Under status flag columns only:
X - specifies the status is set or reset to reflect the results of instruction exec-

tion
1 - the flag is unconditionally set to 1
0 - the flag is unconditionally set to 0

A blank space implies that the flag is not modified in any way.

For the operand field. these abbreviations are used:
DATA - An 8-bit. binary data value
LABEL - A 17-bit address '
N - A digit in the range 0 through 7. specifying a register number

A-2

Object code is normally identified in hexadecimal digits; if binary digit options need to
be defined at the binary digit level. then object code is identified using binary digits.
These special symbols are used:

P - Variable hexadecimal digit representing the page of an address
00 - Two variable hexadecimal digits representing the low order eight bits of as

memory address
X - Variable binary digit
ZZ - Two variable hexadecimal data digits

A-3

l>
.;,..

~
·~ rl

a: IU z
0 :! IU

0 > ffi . ::;: IC I.I.
c(IU
:! a:

if
Q.

fc : ~ ""::c z.
:it CJ IU

- !(ffi
ffitt;

"' a:

> Q a: c(IU
c(IL CJ
Q ::c z z CJ IU
0 ~ a:
fd: 5
UJ ~ a:

~
0
IU

::t
:!!]

IL

~ ..,

MNEMONIC OPERAND Ill)

INP N

LAN N

OUT N

SRN N

RDS N

WAS N

ADS N

SUS N

LAI DATA

LAI N.DATA

JIN N

JUN LABEL

JSR LABEL

OBJECT
CODE

01010XXX

11100XXX

0101 lXXX

11101XXX

11010XXX

1101 l)(XX

11QOOXXX

1l001XXX

OD·

zz

01100XXX

zz

01101XXX

00
1P
QQ

2P
QQ

Table A- 1. An Instruction Set Summary

MPU CYCLE
(NOTE 1)

1121

STATUSES

C D A H

x

x

x x x

x x x

x

(ACJ-(MGRNJ

Input to Accumulator

[GDN]-[MGRO]

OPERATIONS PEl!FORMED

Load Register. Register 0 indirect

(MGRN]-[AC]

Output from Accumulator

(MGROJ-[GDNJ

Store Register. Register O indirect

[ACJ-[SGDNJ

Read scratch memory to Accumulator

[SGDNJ-[ACJ

Write scratch memory to Accumulator

[ACJ-[ACJ · [SGDNJ · [CJ

Decimal or binary addition specified by 0

[AC]-[ACJ. [SGDNJ. [CJ

Subtract scratchpad frorn Accumulator

[ACJ-zz

Load Accurn_ulator immediate

[GDNJ-zz

Load Register 1mrnediate

[PC]-[GRNJ

Jump uncrn1d1tional, register 111d1rec1

[PCJ--PQQ

Ju1np ur 1plnditio11al

[STACK)-[PC]. [PCJ--POQ

Jurnp to subroutnw

TYPI MNEMONIC OPERAND IS)

DRJ I N.LABEL

IRJ I N.LABEL

JCY LABEL

z 1ir JLT
0

:;:- I
E JEO LABEL Q
z

01 0 nr JZE
(,)

z
JGE LABEL 0 ... or JNC

:!!
:::> .,

JGT LABEL

JHC LABEL

JLE

I
LABEL

JNE LABEL

or JNZ

Table A-1. An Instruction Set Summary (Continued)

OBJECT

CODE

I OOlllXXX 1
00

I 001 lOXXX I
00

05

00

06

00

01

00

03

00

04

00

I
07

I
00
02

00

MPU CYCLE
(NOTE 1)

2

2

2

2

2

2

2

2

2

I

I

I

STATUSES

OPERATIONS PERFORMED
C D A H

I (GRN]-(GRN] · rFF

II (GDNJ~o. [PC]-00 '"s" [PC]-[PC. 2]

Dc~r;rc~11u~11t rc~q1st1~r ;u•rl 1u111p

I [GRN]-[GRN] · 1

II (GDN]~O. [PC]-00<'1S<· [PC]-[PC · 2]

111crrnrn~11t rt~q1swr mirl 1u111p

If [C] 1. [PC)-00 <'IS<' [PC)-[PC · 2]

Ju111p if Cmry

If [A)~O. [PC]-00 <'IS<· [PC]-[PC 2]

Jun1p !I t~qu;il

II (CJ·~O. [PC]-00<'1s<' [PC]-[PC · 2]

Jurnp 11 ~IH~iltc~r (1r Pqual

If (C]~O ""<f [A]~l. [PC]-00 <'IS<' [PC)-[PC· 21

Ju111p 11 Accurnulillc 1r 1s qru;ltl'r tlit111 Aq1S\t~r

If [H]~l. [PC)-00 "Is" (PC)-{PC · 2]

Ju111p 11 l•;ilf c;my

I
If [C]~l <H•rl [A)~O. [PC]-00 <'IS<' [PC)-[PC · 2]

Ju111p 11 h~ss tl 1il1' c>r t~quill

If [A)·=l. [PC)-00 <'IS" (PC)-[PC · 2]

Julllp if PC•! l~(jUill

)>
a,

TYPE

a:
"' ij
a:> ·o
ffi :E
"' ij ..
a:

a:
"' ij w
a: c
' a: a: ..
.. II.
:;; 0
ij ..
a:

..
c a: ..
II.
0
a:
"' ij ..
a:

MNEMONIC OPERAND(S)

CAP N

CAR N

CPA N

CRA N

XCH N

ADD N

AND N

CMP N

IOR N

SUB N

XOR N

CLA

CLB

CMA

DAC

DCR N

Table A-1. An Instruction Set Summary (Continued)

STATUSES
OBJECT MPU CYCLE OPERATIONS PERFORMED

CODE (NOTE 1) c D A H

01001XXX 1 [GPN)-[ACL]

Copy Accumulator to Page

10110XXX 1 [GDN)-[AC)

Copy Accumulator to Register

010010XX 1 x [ACL)-[GPN)

Copy Page to Accumulator (N-=.O. 1. 2 or 3 only)

IOlllXXX I x [AC]-[GDN)

Copy RXEGlSTER TO Accumulator

OIOOOXXX I x [AC)--[GDN)

Exchange Register with Accumulator

lOOOOXXX 1121 x x x [AC)-[AC) · [GDN) · [C)

Decimal or binary addit1or1 specified by D

10010XXX I 0 x 0 [AC)-[AC) I [GDN) AND Register with Acct11nulator

lOlOIXXX I x x Compare Accumulator with register

1001 IXXX I 0 x 0 [AC)-[AC)V[GDN)

OR Register with Accumulator

lOOOIXXX 1 x x x [AC)-[AC). [GDN)- [Cl
Subtract Register from Accumulator

lOIOOXXX 1121 o. x 0 [AC)-[AC)V[GDN)
XOR Register with Accumulator

F6 I 0 [ACJ-00
Clear Accumulator

F2 [AC]-00 a 0 Clear Accumulator and Carry
f 7 1 x [AC)-[AC)

Cornplt:_1ne11t Accu1nulatcir

F5 I x x x [AC)-[AC)· 1
Decmme11t t!1e Accurnulatc)r

01111XXX I [GRN)-iGRN) FFF

Decrerne11t R.eg1ster

Table A, 1. An Instruction Set Summary (Continued)

STATUSES

TYPE MNEMONIC OPERAND($}
OBJECT MPU CYCLE OPERATIONS PERFORMED

CODE (NOTE 1) c D A H

IAC F4 1121 x x x (AC]-(AC] · 1

lrlCH~nH~11t Ar:cu111ulntr,r

INR N 011 lOXXX 1121 (GRN]-(GRN) 1

lr1cr(~llH~f't R(:q1st(~!

RAL F8 1, x x ti e H RoW1'' Accumul;>to• ldl I I I I I I I
I

~

w RAR F9 1121 x x
~ e ... Rrit'11(' Accu111ul<1t(1r nq1'1 h11,r1rv

<(I I I I I I I a: RAR rl1,rir11al swilps HO ilr·rl LO 4 hits
w c I 0. H

-.J 0

f1~~
a:
w (rl1•c11 1;il 1!1(1(11·1 ...
(/) Swcip BCD d1q1ts 811 7 t<, H

a 811 3 t< c
w
a: .. H

RLC FA 1 x x x Le~ I I !iH
R11totl· Acru1•:uiil11)r i!'ft ti r(1ll(I! Ciirry

I I I I I I

RRC rn 1 x x x le~ I~ R1itiltr Ac.uir1 ul;1t1•r r1qil\ \l 1 r<·11q 1 C;irrv

I I I I I I I
I !lo H

"' JSR LABEL 2P 2 (STACK]-(PC] (PC].-POO
u
<(00 1 JL1111p \1, suhr1 ·ut1• f' ...
(/)

RET FE I (PC]-(STACK]

l>
00

TYPE

.... ...
::>
a:
a:
!!:

"' :::>
<(
I-

"'

MNEMO.NIC OPERAND IS)

OSI

ENI

RET

CLB

CLC

CMC

CSA

SEB

SEC

SEO

DLY DATA

NOP

Table A-1. An Instruction Set Summary (Continued)

STATUSES
OBJECT MPU CYCLE

OPERATIONS PERFORMED
CODE (NOTE 1)

OE 1 [l]-D

Disable interrupts

OF 1 [l]-1

Enable interrupts

FE 1 [PC]-Stack up

F2 1 0 0 [AC]-DO

Clear Accumulator arid Carry

FO 1 0 [C]-D

Clear Carry

F3 1 x [C]-[C]

Complement Carry

QC 1 x (AC]-(SW]

Copy sratus to Accumulator

FD 1 0 (D]-D

Set h1nnry mode
Fl· I 1 (C]-1

Set Cmry stcitus t(l 1

FC 1 1 (D]-1

Sc(decimal 111orlc

00 2 Oday anrl skip 12

zz
FF 1 No opmati()t1

Table A-2 Instructions Affecting Status Flags

A Flag C Flag H Flag

l!!!!!:.. 1:1.!!!!! Arithmetic = 0 Arithmetic ~ 1 Carry 0 O Carry = 1 H. Carry = 0 H. Carr~ = 1

ADD B Accumr = 0 Accurn "'I' 0
r Sum < FF Surn > FF

D Accumr = 0 Accumr I- O Sum < 99 Sum > 99 Sum of lowm digits ~ 9 Su111 of lower d1g1ts >

ADS B Accumr = 0 Accumr ":#: O Sum < FF Sum > FF

D Accumr = 0 Accumr I 0 Sum < 99 Sum > 99 Sum uf lowPr d1q1ts :::;, 9 Surn (11 lower ci1g1ts > 9

AND Accumr = 0 Accumr "'#- O Always Never Always Nt~Vl~f

CLA Always Nr;ver

CLB Always Never Always Ni:vcr

CLC Alwoys Nnvm

CMA Accurnr -. 0 Accuinr ;/- 0

l> I CMC Cmry
1

= 1 Cmry1 = 0
cb

CMP Accum =Reg Accum -# R1:g Accu111 > Accurn < Always Nevr'r

Req Req

CPA Accun\ = 0 Accumr '/- 0

CRA Accu111r = 0 Accun\ j 0

CSA Accu111r = 0 Accurnr j 0

DAC B Accurn
1

= 1 Accum
1

-I 1 Accu1111 =I 0 Accum
1

= 0

D Accum 1 = 1 Accum 1 4 1 Accum 1 1'- O Accum 1 = 0 ACCllllll ""'NO Accurn
1

=NO

IAC B Accum 1 = FF Accum 1 #FF Accurn 1 1 FF Accu1111 = FF

D Accum
1

= 99 Accum1 1 99 Accum 1 I 99 Accum 1 = 99 Accun\ j N9 Accu111 1 = N9

INP Accu11\ = 0 Accumr * 0

IOR Accu111r = 0 Accumr T 0 Alwnys Ncvm Always Never

LAI Accun\ = 0 Accun\ T- 0

RAL Bit 71 = O 811 71 = 1 81! 31 = 0 Bit 31 -= 1

~
0

lna~r · ~

RAR

RDS

RLC

RAC

SEC

SUB

SUS

XCH
XOR

B
D

B

D

B

D

Notes:

B =Binary

D =Decimal

N =Any Digit

i = Initial Value

r = Resulting Value

Table A-2 Instructions Affecting Status Flags (Continued)

A Flag C Flag H Flag

Arithmetic = 0 Arithmetic = 1 Carry= 0 ~ H. Carry= 0 H. Carry··.~ 1

Bit Oi = 0 Bit O; = 1 Bit 4i = 0 Bit 4i = 1
Bit 3. = 0 Bit 71 = 0 Bit 7 = 1

I Bit 31 = 1 I

Accumr = 0 Accumr '* 0

Accumr = 0 Accumr-:/= 0 Bit 7. = 0 Bit 7i = 1 B1t 31 = 0 Bit 3. = 1
I I

Accumr = 0 Accumr "I= 0 Bit 01 =0 Bit 01 = 1 Bit 4i = 0 Bit 41 = 1

Never Always

Accum = 0 Accumr =I 0 Differnece Oiffomnc()
r >0 <0

Accumr = 0 Accumr '4 0 6rtterer1ce D1fh:rnr10;
D1fferencf) of D1ffnrence of

;:: 0 <0 lower d1g1ts ::;:, 0 lower ci1g1ts < 0

Accumr = 0 Accumr '# 0 Difference 01f1£;m11Cf'

~o <O Difference of Difference nf
Accumr = 0 Accurnr -:/- O Difference 01ffnrc1 IC(!

F. Q. <O le iwer digits 2!_ O lower digits < 0

.6:ccumr = 0 Accumr ~ 0

Accumr = 0 Accumr '=#- 0 Always N1!V1!r Always Never

All digits shown are hexadecimal.

Half carry is. set to zero at the beginning of any instruction which affects it.

The following instructions do not affect status fl8gs: SEO. SEB. AET. NOP, JIN, LAN. AOR. CAR, OUT. WRS, LRI. JUN. JSR. JCN. INR, IRJ. OCR, ORJ. SAN. CAP, ENI, OSI.

Bit references are to the accumulator.

~

Bl
:;;

0

A

c
D

Table A-3 An Object Code Map

4 LSB

A fl

DLYj_ J CONDITIONAL JUMPS' i CPA i CSAi LAl'i OSI i ENI

JUN* UNCONDITIONALLY

JSR* TO SUBROUTINE

IRJ* INCREMENT DRJ' DECREMENT

XCH EXCHANGE CAP ACC TO PAGE

INP INPUT OUT OUT

LAI* LOAD IMMEDIATE JIN INDIRECT

INR INCREMENT DCR DECREMENT

ADD ADD SUB SUBTRACT

AND AND IOR INC OR

XOR EX. OR CMP COMPARE

CAR ACC - REG CAA REG - ACC

ADS ADD SCRATCH SUS SUB SCRATCH

RDS READ SCRATCH WAS WRITE SCRATCH

LAN LOAD REG SAN STORE REG

CLC 1 SEC 1 CLB l CMC 1 IAC l DAC I CLA I CMA RAL l RAR l RLC l ARC l SEO l SEB 1 RET l NOP

*Tw{• Bytt~ l1 •slnic!1<>1'S

Appendix B
HEXADECIMAL-DECIMAL INTEGER CONVERSION

B-1

Appendix B
HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for .direct conversions between hexa
decimal integers in the range 0-FFF and decimal integen in
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal Decimal

01 000
02 000
03 000
04 000
05 000
06 000
07 000
OB 000
09 000
OA 000
OB 000
oc 000
OD 000
OE 000
OF 000
10 000
11 000
12 000
13 000
14 000
15 000
16 000
17 000
lB 000
19 000
IA 000
lB 000
1C 000
JD 000
IE 000
IF 000

00
01
02
03

04
05
06
07

08
09
QA
OB

oc
OD
OE
OF

0

0000
0016
0032
004B

0064
0080
0096
0112

0128
0144
0160
0176

0192
0208
0224
0240

4 096
B 192

12 288
16 384
20 4BO
24 576
2B 672
32 76B
36 B64
40 960
45 056
49 152
53 24B
57 344
61 440
65 536
69 632
73 72B
77 B24
Bl 920
86 016
90 112
94 20B
9B 304

102 400
106 496
110 592
114 6BB
1 lB 784
122 8BO
126 976

1 2

0001 0002
0017 0018
0033 0034
0049 0050

0065 0066
OOBl OOB2
0097 0098
0113 0114

0129 0130
0145 0146
0161 0162
0177 017B

0193 0194
0209 0210
0225 0226
0241 0242

Hexadecimal Decimal

20 000
30 000
40 000
50 000
60 000
70 000
BO 000
90 000
AO 000
BO 000
co 000
DO 000
EO 000
FO 000

100 000
200 000
300 000
400 000
500 000
600 000
700 000
800 000
900 000
AOO 000
BOO 000
coo 000
DOD 000
EOO 000
FOO 000

1 000 000
2 000 000

3 4

0003 0004
0019 0020
0035 0036
0051 0052

0067 006B
0083 0084
0099 0100
0115 0116

0131 0132
0147 0148
0163 0164
0179 0180

0195 0196
0211 0212
0227 0228
0243 024-4

131 072
196 60B
262 144
327 680
393 216
45B 752
524 2BB
5B9 B24
655 360
720 896
786 432
851 96B
917 504
9B3 040

1 04B 576
2 097 152
3 145 72B
4 194 304
5 242 B80
6 291 456
7 340 032
B 3BB 60B
9437184

10 4B5 760
11 534 336
12 5B2 912
13 631 488
14 680 064
15 72B 640
16 777 216
33 554 432

5 6

0005 0006
0021 0022
0037 003B
0053 0054

0069 0070
0085 0086
0101 0102
0117 0118

0133 0134
0149 0150
0165 0166
0181 01B2

0197 019B
0213 0214
0229 0230
0245 0246

7

0007
0023
0039
0055

0071
OOB7
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

B-2

Hexadecimal fractions may be converted to decimal fractions
as follows:

1. Express the hexadecimal fraction as on integer times
16-n, where n is the number of significant hexadecimal
places to the right of the hexadecimal point.

0. CA9BF3 16 = CA9 BF3 16 x 16-6

2. Find the decimal equivalent of the hexadecimal integer

CA9 BF3 16 = 13 27B 19510

3. Multiply the decimal equivalent by 16-n

13 27B 195
x 596 046 44B x 10-16

0. 791 442 09610

Decimal fractions may be converted to hexadecimal fractions
by successively multiplying the decimal fraction by 16 10.
After each multiplication, the integer portion is removeO to
form a hexadecimal fraction by building to the right of the
hexadecimal point. However, since decimal arithmetic is
used in this conversion, the integer portion of each product
must be converted to hexadecimal numbers.

Example: Convert 0.89510 to its hexadecimal equivalent

O.B95

IF~ II ~
II ~

O.E5JE 16 ¢o
8 9 A B c D E F

0008 0009 0010 0011 0012 0013 0014 0015
0024 0025 0026 0027 0028 0029 0030 0031
0040 0041 0042 0043 0044 0045 0046 0047
0056 0057 0058 0059 0060 0061 0062 0063

0072 0073 0074 0075 0076 0077 007B 0079
0088 OOB9 0090 0091 0092 0093 0094 0095
0104 0105 0106 0107 0108 0109 0110 0111
0120 0121 0122 0123 0124 0125 0126 0127

0136 0137 0138 0139 0140 0141 0142 0143
0152 0153 0154 0155 0156 0157 0158 0159
0168 0169 0170 0171 0172 0173 0174 0175
0184 0185 0186 0187 0188 0189 0190 0191

0200 0201 0202 0203 0204 0205 0206 0207
0216 0217 0218 0219 0220 0221 0222 0223
0232 0233 0234 0235 0236 0237 0238 0239
024B 0249 0250 0251 0252 0253 0254 0255

HEXADECIMAL-DECIMAL INTEGER CONVERSION
(Continued)

0 I 2 3 4 5 6 7 8 9 A 8 c D E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317. 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 03•5 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0.00 0401 °'02 0403 0404 0405 0406 °'07 0408 0409 0410 0411 0412 0413 0414 0415
IAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 0432 0433 0434 o+35 0436 0437 0438 0439 04.0 0441 0442 0443 0444 0445 0446 0447

\CO 0448 0449 °'50 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 046• 0465 °'66 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
IEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
IFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0411 0612 0613 0614 0615 f\;16 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 06.o 0641 06•2 0643 ~ 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 0688 0689 0690 o&91 0692 0693 0694 0695 0696 069' 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

3'0 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 093' 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1000 1005 10<:0 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

B-3

HEXADECIMAL-DECIMAL INTEGER CONVERSION
(Continued)

0 1 2 3 4 5 6 7 8 9 A 8 c D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SEO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 -1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 l614 1615
650 1616 1617 16.18 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6(0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

B-4

HEXADECIMAL-DECIMAL INTEGER CONVERSION
(Continued}

0 1 2 3 4 5 6 7 8 9 A 8 c D E F

700 1792 1793 1794 1795 1796 1797 1798' 1799 1800 1801 1802 1803 1804 1805 1806 1807

710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097- 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
BAO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

BCO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
BEO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
BFO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

B-5

HEXADECIMAL-DECIMAL INTEGER CONVERSION
(Continued)

0 1 2 3 4 5 6 7 8 9 A 8 c 0 E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
ABO 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 267.1
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

ABO 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

800 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
810 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
820 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
830 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

840 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
850 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
860 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
870 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

880 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
890 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

coo 3072 3073 3074 3075 3076 3Q77 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 31'59 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

CBO 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

cco 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
coo 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

B-6

HEXADECIMAL-DECIMAL INTEGER CONVERSION
{Continued)

o 1 2 3 4 5 6 7 8 9 A 8 c D E F

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
080 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
ODO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3832 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3848 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ESQ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
EGO 3680 3681 3682 3683 3684 3885 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

EBO 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3l59
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

FBO 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

B-7

POWERS OF TWO

0 1.0
1 0.5
2 0.25
3 0.125

16 4 0.082 5
32 5 0.031 25
64 6 0.015 625

128 7 0.0()7 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 03S 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789" 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000. 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 38·7 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536· 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 66't 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 ·125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34. 359 738 368 35 0.000 000 000 029 .103 830 456 733 703 613 281 25

68 719 47"6 736 36 0.000 000 000 014' 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818- 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 : ~= g:~ ~~~ ~g: :~ g:ggg ~ ~ ggg 1~~ ill :~~ ~~~ ~~~ ~:. ~~: ~~~ ~~ :~~ 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 BOO 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 so 0.000 000 000 000 000 888 178 419 7-00 125 232 338 905 334 472 61i6 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 S03. 599 627 370 496 52 0.000 Ooo ODO 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014"398 509 481 984 54 0..000 000 000 000 000 055 S.11 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 210 507 812 5

72 057 59 .. 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906· 25
144 115 1..ae 015 855 872 s.1 o.ooo ooo 000-000 ooo oos 938 893 903 901 229.311 647 697 925 567 676 sso 125
288 230 375-151 711 744 58 0.000 000 000 000- 000 003 469 4:46 951 953 614 188 823 848 962 783 813 4~ 562 5
576 460 75~ 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 00() 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000· 000 000 000 000 433 680 868 994 20J 773 602 981 120 347 976 684 570 312 5
4 611. 686.018 427 387 904 62 0.000 000 000 000 000 000 2't6 840 434. 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000, 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

B-8

TABLE OF POWERS OF SIXTEEN10

16" n 1&""

1 0 0.10000 00000 00000 00000 x 10

16 1 0.62500 00000 00000 00000 x 10-1

256 2 0.39062 50000 00000 00000 x 10-2

4 096 3 0.24414 06250 00000 00000 x 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-B

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91522 83668 51807 x 10-10

099 511 627 776 10 0.90949 47017 72928 23792 x 10-12

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10-13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10-14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10-15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10-16

152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10-18

10" n 10·"

0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.28F5 C28F 5C28 F5C3 X 16" I

3E8 3 0.4189 3748 C6A7 EF9E x 15-2

2710 4 0.6808 88AC 710C 8296 x 15-3

86AO 5 0.A7C5 AC47 1847 8423 x 15-4

F 4240 6 0.10C6 F7AO 85EO 8037 x 15·-4

98 9680 7 0.1A07 F29A 8CAF 4858 >< 15-s

5F5 E100 8 0.2AF3 1DC4 6118 738F x 16-6

389A CAOO 9 0.4488 2FAO 985A 52CC x 16-7

2 5408 E400 10 0.60F3 7F67 SEF6 EAOF x 16-8

17 4876 EBOO 11 O.AFE8 FF08 C824 AAFF)(15-9

EB 04A5 1000 12 0.1197 9981 2DE.A 1119)(15-9

918 4E72 AOOO 13 0.1C25 C268 4976 81C2)(15-10

5AF3 107A 4000 14 0.2009 3700 4257 3604 x 15-ll

3 807E A4C6 8000 15 0.480E 8E78 9058 5660)(15-12

23 8652 6FC1 0000 16 0.734A CA5F 6226 FOAE)(16-13

163 4578 508A 0000 17 0.8877 AA32 36A4 8449)(15-14

OEO 8683 A764 0000 18 0.1272 5001 0243 A8A1)(15-14

8AC7 2304 89E8 0000 19 0.1083 C94F 8602 AC35 >< 15-IS

B-9

Appendix C
STANDARD CHARACTER CODES

C-1

Hexadecimal
Representation

0
1
2
3
4
5
6
7
8
9
A
8
c
0
E
F
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
28
2C
2D
2E
2F
30

Appendix C
STANDARD CHARACTER CODES

ASCII EBCDIC Hexadecimal ASCII
17 bit) {8 bit) Representation {7bit)

31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A
38
3C (
30 =
3E)
3F ?
40 @

41 A
42 8
43 c
44 0
45 E
46 F
47 G
48 H
49 I
4A J
48 K
4C L
40 M
4E N
4F 0
50 p

blank 51 0
52 R
53 s

54 T
$ 55 u
% 56 v
& 57 w

58 x
59 y

5A z
58 [

+ 5C \
50 I
5E
5F

I 60
0 61 a

C-2

EBCDIC
(8 bit)

blank

I

(
(

+
!

&

[
$.
)

A

Appendix C (Continued)

Hexadecimal ASCII EBCDIC Hexadecimal ASCII EBCDIC
Representation (7 bit) (8 bit) Representation (7bit) (8 bit)

62 b 97 p
63 c 9B q
64 d 99
65 9A
66 f 9B
67 g 9C
6B h 90
69 9E
6A 9F
6B AO
6C % A1
60 m A2
6E A3
6F 0 A4
70 p A5
71 q A6 w
72 A7
73 A8 y
74 A9
75 AA
76 v AB
77 w AC
7B AD
79 AE
7A AF
7B # BO
7C @ B1
70 B2
7E B3
7F B4
80 B5
81 B6
82 b B7
83 c B8
84 d B9
85 BA
B6 BB
87 g BC
88 h BO
89 BE
8A BF
BB co
BC C1 A
BO C2 B
8E C3 c
8F C4 D
90 C5 E
91 C6 F
92 Cl G
93 CB H
94 m C9
95 n CA
96 0 CB

C-3

Appendix C (Continued)

Hexadecimal ASCII EBCDIC Hexadecimal ASCII EBCDIC
Representation (7 bit) (8 bit) Representation (7bit) (8 bit)

cc E6 w
co E7 x
CE E8 y

CF E9 z
DO EA
Dl EB
D2 K EC
D3 ED
D4 M EE
D5 N EF
D6 0 FO 0
D7 p Fl
DB 0 F2
D9 R F3 3
DA F4 4
DB F5
DC F6 6
DD F7 7
DE FB 8
DF F9 9
EO FA
El FB
E2 s FC
E3 T FD
E4 u FE
E5 v FF

C-4

No attempt has been made in this handbook to teach basic boolean
algebra, binary arithmetic, logic design or software programming.
Rather, the objective is to present the unique features of Electronic Ar
ray's EA9002 MPU and how it may be applied. For basic understanding
of digital logic implemented with TTL the reader is directed to "Logic
Design With Integrated Circuits" by W.E. Wickes published by Wiley &
Sons. N.Y .• N.Y. For better understanding of logic techniques and
microprocessor architecture the reader is directed to "An Introduction to
Microcomputers" written and published by Adam Osborne and Assoc.
Inc .• 2950 Seventh Street, Berkeley, CA. 94710.

Electronic Arrays Sales Offices

EA SALES OFFICES

U.S. SALES REPRESENTATIVES

INTERNATIONAL SALES
REPRESENTATIVES AND DISTRIBUTORS

Electronic Arrays Sales Offices
EA SALES OFFICES

Vice President of Marketing

Ed Turney
Tel: (415) 964-4321

Headquarters Sales Manager .

Ed Meagher
Tel: (415) 964-4321

Headquarters

550 E. Middlefield Road
Mountain View, CA 94043
Tel: (415) 964-4321
TWX: 910-379-6985
Toll Free WATS:

(800) 277-9962

Eastern Area

Jim Carr
Regional Sales Manager
2 Coleman Avenue
Cherry Hill, NJ 08034
Tel: (609) 795-5066
TWX: 710-896-1488

Mid-America Area

Shel Schumaker
Regional Sales Manager
11960 Westline Industrial Drive
Suite 322
St. Louis, MO 63141
Tel: (314) 878-6446
TWX: 910-764-0872

Western Area

Dick Goodman
Regional Sales Manager
9932 Voyager Circle
Huntington Beach, CA 92646
Tel: (714) 968-3775

Ed Meagher
Regional Sales Manager
San Francisco Bay Area
550 E. Middlefield Road
Mountain View, CA 94043
Tel: (415) 964-4321
TWX: 910-379-6985

Europe

Chris P. Carli
Sales Manager - Europe
Hobbema, Str. 26
Amsterdam /Zuid, Netherlands
Tel: (020)712560
TLX: 12674

Far East

Jim Shales
Sales Manager - Far East
550 E. Middlefield Road
Mountain View, CA 94043
Tel: (415) 964-4321
TWX: 910-379-6985

U.S. SALES REPRESENTATIVES
Arizona

Chaparral-Dorton
P.O. Box 16127
364 E. Virginia Avenue
Phoenix, AZ 85011
Tel: (602) 263-0414
TWX: 910-951-4225

Southern California

Bestronics
1728 S. La Cienega Boulevard
Los Angeles, CA 90035
Tel: (213) 870-9191
TWX: 910-340-6369

Bestronics
8369 Vickers Street
San Diego, CA 92111
Tel: (714) 278-2150
TWX: 910-335-1267

Northern California

Ca Itron I Pyle.Inc.
415 Clyde Avenue, Suite D
Mountain View, CA 94043
Tel: (415) 964-3244

Colorado

The Thorson Company
5290 Yale Circle
Denver, CO 80222
Tel: (303) 759-0809
TWX: 910-931-0429

Connecticut

Com-Sale, Inc.
633 Williams Road
Wallingford, CT 06492
Tel: (203) 269-7964

Crane & Egert Corp.
Greenwich, CT 06830
Tel: (203) 622-9191

Florida

Electrocomp Associates, Inc.
4101 N. Andrews Ave., Suite 101
Ft. Lauderdale, FL 33309
Tel: (305) 564-8571
TWX: 510-955-9735

Illinois

Gassner & Clark Company
1127 S. Mannheim Road
Westchester, IL 60153
Tel: (312) 345-4245
TWX: 910-234-2082

Indiana

Ihrig Associates, Inc.
6410 Woodwind Drive
Indianapolis, IN 462 17
Tel: (317) 783-7630

Iowa

Engineering Services Co.
P.O. Box 2145
Cedar Rapids, IA 52406
Tel: (319) 362-0503

Kansas

Engineering Services Co.
7830 State Line Road
Prairie Village, KS 66208
Tel: (913) 649-4000

Massachusetts

Com-Sale, Inc.
235 Bear Hill Road
Waltham, MA 02154
Tel: (617) 890-0011

Michigan

A.P. Associates
39950 Grand River
Novi, Ml 48050
Tel: (313) 476-2300
TWX: 810-223-6031

Missouri Ohio Harry Nash Associates

Engineering Services Co. K. W. Electronic Sales, Inc. P.O. Box 188
8420 Delmar Boulevard 8312 North Main Street 1009 York Road
St. Louis, MO 63124 Dayton, OH 45415 Willow Grove, PA 19090
Tel: (314) 997-1515 Tel: (513) 890-2150 Tel: (215) 657-2213

TWX: 810-450-2521 TWX: 510-665-6273
New Hampshire

Com-Sale, Inc. K.W. Electronic Sales, Inc. Texas

c/o Yankee Electronics 3439 West Brainard Road J. Clay Co.

Grenier Industrial Village Cleveland, OH 44122 2619 Electronic Lane, Suite 302
Manchester, NH 03053 Tel: (216) 831-8292 Dallas, TX 75220
Tel: (603) 668-8500 TWX: 810-427-2902 Tel: (214) 350-1281

New Mexico Oregon
TWX: 910-861-9160

The Thorson Company N.R. Schultz Company Virginia

2201 San Pedro Drive, NE P.O. Box 156 Boyle Associates

Building 2, Suite 107 4195 S.W. Cedar Hills Boulevard 12001 Whip Road
Albuquerque, NM 87110 Beaverton, OR 97005 Reston, VA 22091
Tel: (505) 265-5655 Tel: (503) 643-1644 Tel: (703) 620-9558

TWX: 910-989-1174 TWX: 910-467-8707
Washington

New York Pennsylvania N.R. Schultz Co.

Crane & Egert Corp. K. W. Electronic Sales, Inc. P.O. Box 159

146 Meacham Avenue 4024 William Flynn Highway 855-106th NE

Elmont, NY 11003 Route 8 Bellevue, WA 98009
Tel: (516) 488-2100 Allison Park, PA 15101 Tel: (206) 454-0300

TWX: 510-223-0417 Tel: (412) 487-4300 TWX: 910-443-2329
TWX: 710-795-3636

INTERNATIONAL SALES
REPRESENTATIVES AND DISTRIBUTORS

Australia

A .J. Ferguson
44 Prospect Road
Prospect 5082, S. Australia
Tel: 269-1244
TLX: 82635

Belgium

Betea Sprl.
15 Av. Geo Bernier
Brussels 5, Belgium
Tel: 02c649-99-00
TLX: 23188

Electronic Arrays
Hobbema, Str.26
Amsterdam/Zuid, Netherlands
Tel: (020) 712560
TLX: 12674

Finland

S. W. Instruments
Karstulantie 4B
Helsinki 55, Finland 00550
Tel: 738265/713575
TLX: 122411

France

Technology Resources SA.
27-29 Rue des Poissonniers
92200 Neuilly-Sur-Seine
Paris, France
Tel: 01 747 4717
TLX: 610657

Germany

Electronic Arrays, GmbH
8000 Munchen 70
Hofmannstrasse 20
West Germany
Tel: (089) 7853168
TLX: 5213066

Holland

Famatra Benelux
Ginnenkenweg 128
Breda, Holland
Tel: 01600-33457
TLX: 54521

Electronic Arrays
Hobbema, Str. 26
Amsterdam/Zuid, Netherlands
Tel: (020) 712560
TLX: 12674

Hong Kong•

Caduceus Ltd.
Rm. 1204 Hang Lung Center
Patterson Street
Causeway Bay, Hong Kong
Tel: 5-770504,505
TLX: 83640

India

Hinditron Services Pvt. Ltd.
69/ A.L. Jagmohandas Marg
Bombay, 400 006, India
Tel: 36-5-3-44
TLX: 0112594 or 0112326
Cable: TEKHIND

Israel

Te/sys Ltd.
54, Jabotinsky Road
Ramat-Gan 52-462, Israel
Tel: 739865, 722362
TLX: 032392

Italy

Memos ltaliana S .R .L.
Via Boccaccio 2
20123 Milano, Italy
Tel: 02-871353 or 867589
TLX: 34343

Japan

Rikei Corporation
1-18-14 Nishi-Shimbashi
Minato-ku
Tokyo 105, Japan
Tel: 03-591-5241
TLX: 24208

Korea

Caduceus ltd.
Rm. 301 Sung Won Bldg.
15, 2-GA Hyehyun-Dong
Chung-ku, Seoul, Korea
Tel: 28-6108

Norway

Kjell Bakke
NYGT 48 P.O. Box 143
Strom men 2011 Norway
Tel: 02-711872
TLX: 19407

South and Central America

lntectra
1950 Colony Street
Mountain View, CA 94043
Tel: (415) 967-8818
Cable: INTECTRA

Spain

Be/port Electronica
Canillas 22
Madrid 2, Spain
Tel: 01 262 88 37 /8
TLX: 22048

Sweden

Svensk T e/e /ndustri
Box 502
162 05 Vallingby, Sweden
Tel: 08/89 04 35
TLX: 13033

Switzerland

Dimas AG
Badenerstrasse 701
8048 Zurich, Switzerland
Tel: 01-626-140
TLX: 52028

Taiwan•

Caduceus Ltd.
Lincoln Center
Flat "N" 7th Floor
121 Szu-Wei Road
Taipei, Taiwan
Tel: 721-0431,0483
TLX: 21071

United Kingdom

Analog Devices, Ltd.
Central Ave. Trading Estate
W. Molesey
Surrey, England
Tel: 01-941-0466
TLX: 929962

Yugoslavia

Ellyptic AG
Ptujska 14
62000 Maribor, Yugoslavia
Tel: 062 31041

*U.S. Contact: Centauri Trading Co., 1245 S. Winchester, Suite 101,
San Jose, CA 95128, Tel: (408) 246-4071, TLX: 352020

