FAIRCHILD SEMICONDUCTOR

Mos/CCD
ロATA BOOK

1975

MOS/CCD DATA BOOK

FAIRCHILD
 SEMICDNDUCTDR
 464 Ellis Street, Mountain View, California 94042

TABLE OF CONTENTS

Page
SECTION 1
Introduction 1-3
SECTION 2
Product Index - Alphanumeric Listing of Devices 2-3
SECTION 3 - NMOS/PMOS
Introduction 3-3
Memory Products 3-7
Consumer/Industrial Products 3-75
Microprocessor Products 3-95
Multiplexers and Counters 3-113
SECTION 4 - CMOS
F4000 Series General Description 4-3
Design Considerations with F4000 Series CMOS 4-9
Technical Data 4-19
Bipolar Interface Circuits for CMOS 4-291
SECTION 5 - CCD
Introduction 5-3
Technical Data 5-9
SECTION 6
Order and Package Information 6-3
SECTION 7
Fairchild Field Sales Offices, Representatives and Distributor Outlets 7-3

INTRODUCTION	1
PRODUCT INDEX - ALPHANUMERIC LISTING	
OF DEVICES	

CMOS

F4000 SERIES GENERAL DESCRIPTION
DESIGN CONSIDERATIONS WITH F4000
SERIES CMOS
TECHNICAL DATA
BIPOLAR INTERFACE CIRCUITS FOR CMOS
CCD
INTRODUCTION
TECHNICALDATA

INTRODUCTION

This data book provides complete technical information on Fairchild's full lines of n and p-channel MOS, CMOS, and charge-coupled devices (CCD). These products have important features in common - similar technologies, high packing densities providing low cost per bit, and applications in moderate speed, low power digital systems.

While most of the CMOS circuits are of SSI or MSI < 200 gates) complexity, MOS and CCD are LSI devices that can provide subsystems from several hundred to tens of thousands of memory or logic elements. Recent MOS technology improvements, refinement of the Isoplanar process in particular, have quadrupled circuit performance in the past few years, at the same time substantially reducing cost. Today, the equipment designer has a wide choice of standard low-cost MOS, CMOS and CCD devices to meet virtually all system requirements from simple logic gates to 16,000 -bit memories. Of course, no single design approach covers all needs. However, striking the right balance among these high performance products is the key to successful cost-effective design.

For easy reference to the broad range of MOS, CMOS and CCD products, information within each section of this data book is organized by function. Also, an alphanumeric listing, order information, and sales and distributor locations are included.

PRODUCT INDEX - ALPHANUMERIC LISTING OF DEVICES

NMOS/PMOS

INTRODUCTION
MEMORY PRODUCTS
CONSUMER/INDUSTRIAL PRODUCTS
MICROPROCESSOR PRODUCTS
MULTIPLEXERS AND COUNTERS

CMOS

F4000 SERIES GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH F4000 SERIES CMOS

TECHNICAL DATA

BIPOLAR INTERFACE CIRCUITS FOR CMOS

CCD

PRODUCT INDEX

DEVICE NO.	FAMILY	DESCRIPTION	PAGE
CCD101	CCD	500-Element Linear Image Sensor	5-9
CCD110	CCD	256-Element Linear Image Sensor	5-12
CCD110F	CCD	256-Element Linear Image Sensor	5-12
CCD121	CCD	1728-Element Linear Image Sensor	5-18
CCD201	CCD	100×100-Element Self-Scanning Image Sensor	5-24
CCD311	CCD	130/260-Bit Analog Shift Register	5-30
CCD450A	CCD	9216-Bit Dynamic Shift Register Memory	5-38
CCD450B	CCD	9216-Bit Dynamic Shift Register Memory	5-38
CCD460	CCD	16,384-Bit Dynamic Line Addressable RAM (LARAM)	5-43
1103	MOS	1024×1 Dynamic Random Access Memory	3-7
1103F	MOS	1024×1 Dynamic Random Access Memory	3-7
11035	MOS	1024×1 Dynamic Random Access Memory	3-7
1103-1	MOS	1024×1 Dynamic Random Access Memory	3-7
21 LO2	MOS	1024×1 Static Random Access Memory	3-12
21L02A	MOS	1024×1 Static Random Access Memory	3-12
21L02B	MOS	1024×1 Static Random Access Memory	3-12
2102	MOS	1024×1 Static Random Access Memory	3-15
2102F	MOS	1024×1 Static Random Access Memory	3-15
2102-1	MOS	1024×1 Static Random Access Memory	3-15
2102-2	MOS	1024×1 Static Random Access Memory	3-15
2533	MOS	1024-Bit Static Shift Register	3-49
3257	MOS	$64 \times 5 \times 7$ Character Generator	3-18
3258	MOS	$64 \times 7 \times 5$ Character Generator	3-24
3260	MOS	$64 \times 9 \times 7$ Character Generator	3-29
3262A	MOS	TV Sync Generator	3-75
3262B	MOS	TV Sync Generator for Gen-Lock	3-80
3341	MOS	64×4 First-In First-Out Serial Memory	3-35
3341A	MOS	64×4 First-In First-Out Serial Memory	3-35
3342	MOS	Quad 64-Bit Static Shift Register	3-39
3347	MOS	Quad 80-Bit Static Shift Register	3-39
3348	MOS	Hex 32-Bit Static Shift Register	3-42
3349	MOS	Hex 32-Bit Static Shift Register	3-42
3351-1	MOS	40×9 First-In First-Out Memory	3-44
3351-2	MOS	40×9 First-In First-Out Memory	3-44
3355	MOS	1024-Bit Static Shift Register	3-49
3357-1	MOS	Quad 80-Bit Static Shift Register	3-52
3357-2	MOS	Quad 80-Bit Static Shift Register	3-52
34001	CMOS	Quad 2-Input NOR Gate	4-44
34002	CMOS	Dual 4-Input NOR Gate	4-44
34006	CMOS	18-Stage Static Shift Register	4-46
34007	CMOS	Dual Complementary Pair Plus Inverter	4-48
34008	CMOS	4-Bit Binary Full Adder	4-50
340085	CMOS	4-Bit Magnitude Comparator	4-256
340097	CMOS	3-State Hex Non-Inverting Buffer	4-259
340098	CMOS	3-State Hex Inverting Buffer	4-259
34011	CMOS	Quad 2-Input NAND Gate	4-52
34012	CMOS	Dual 4-Input NAND Gate	4-52
34013	CMOS	Dual D Flip-Flop	4-54
34014	CMOS	8-Bit Shift Register	4-57
34015	CMOS	Dual 4-Bit Shift Register	4-59
34016	CMOS	Quad Bilateral Switch	4-62
340160	CMOS	4-Bit Synchronous Decade Counter with Asynchronous Reset	4-263
340161	CMOS	4-Bit Synchronous Binary Counter with Asynchronous Reset	4-263
340162	CMOS	4-Bit Synchronous Decade Counter with Synchronous Reset	4-263
340163	CMOS	4-Bit Synchronous Binary Counter with Synchronous Reset	4-263
34017	CMOS	5-Stage Johnson Decade Counter	4-65
340174	CMOS	Hex D Flip-Flop	4-269

9216-Bit Dynamic Shift Register Memory . 5-38
16,384-Bit Dynamic Line Addressable RAM (LARAM) 5-43
1024×1 Dynamic Random Access Memory 3-7
1024×1 Dynamic Random Access Memory 3-7

1024×1 Static Random Access Memory . 3-12
1024×1 Static Random Access Memory . 3-12
1024×1 Static Random Access Memory . 3-15
1024×1 Static Random Access Memory . 3-15
1024×1 Static Random Access Memory . 3-15
1024-Bit Static Shift Register .. 3-49

$64 \times 9 \times 7$ Character Generator .. 3-29
.. 3-75
64×4 First-In First-Out Serial Memory .. 3-35
64×4 First-In First-Out Serial Memory ... 3-35

Hex 32-Bit Static Shift Register .. 3 . 3-42
Hex 32-Bit Static Shift Register .. . 3-42
40×9 First-In First-Out Memory . 3-44
40×9 First-In First-Out Memory . 3-44
1024-Bit Static Shift Register 3-49

Quad 2-Input NOR Gate ... 4-4 4
Dual 4-Input NOR Gate ... 4-44

4-Bit Binary Full Adder 4-50
4-Bit Magnitude Comparator . 4-256
3-State Hex Inverting Buffer . 4- 259
Quad 2-Input NAND Gate 4-52
Dual 4-Input NAND Gate . 4 4-52

Dual 4-Bit Shift Register 4-59
Quad Bilateral Switch ... 4-62
4-Bit Synchronous Decade Counter with Asynchronous Reset 4-263
4-Bit Synchronous Binary Counter with Asynchronous Reset 4-263
. 4-263
5-Stage Johnson Decade Counter 4-65
Hex D Flip-Flop . 4-269

PRODUCT INDEX

DEVICE NO.
PAGE

FAMILY
34018 CMOS
Presettable Divide-by-N Counter 4-272 4-68

cMOS34019CMOSQuad 2-Input Multiplexer
340192

CMOS340193340194340195
3402034021 CMOS CMOSCMOS CMOS CMOS CMOS CMOS CMOS CMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOSCMOS4-69
4-Bit Up/Down Synchronous Decade Counter 4-274
4-Bit Up/Dowu Synchronous Binary Counter 4-274
4-Bit Bidirectional Universal Shift Register 4-278
4-Bit Universal Shift Register 4-282
14-Stage Binary Counter 4-71
8-Bit Shift Register 4-74
4-Stage Divide-by-8 Johnson Counter 4-76
Triple 3-Input NAND Gate 4-77
7-Stage Binary Counter 4-78
Triple 3-Input NOR Gate 4-81
Dual JK Flip-Flop 4-82
1-of-10 Decoder 4-85
4-Bit Binary Full Adder 4-286
Synchronous Up/Down, Binary/Decade Counter 4-87
Quad Exclusive-OR Gate 4-92
64-Stage Static Shift Register 4-93
4-Bit Universal Shift Register 4-95
12-Stage Binary Counter 4-98
Quad True/Complement Buffer 4-101
Quad D Latch 4-102
Quad R/S Latch with 3-State Outputs 4-105
Quad R/S Latch with 3-State Outputs 4-108
Micropower Phase-Locked Loop 4-111
Low Power Monostable/Astable Multivibrator 4-113
Hex Inverting Buffer 4-114
Hex Non-Inverting Buffer 4-114
8-Channel Analog Multiplexer/Demultiplexer 4-117
Dual 4-Channel Analog Multiplexer/Demultiplexer 4-120
Triple 2-Channel Analog Multiplexer/Demultiplexer 4-123
Quad Bilateral Switch 4-124
16-Channel Analog Multiplexer/Demultiplexer 4-127
8-Input NAND Gate 4-128
CMOS Hex Inverter 4-129
Quad Exclusive-OR Gate 4-131
Quad 2-Input OR Gate 4-132
Dual 4-Input OR Gate 4-133
Triple 3-Input AND Gate 4-134
Triple 3-Input OR Gate 4-135
Quad D Flip-Flop with 3-State Outputs 4-136
Quad Exclusive-NOR Gate 4-137
8-Input NOR Gate 4-138
Quad 2-Input AND Gate 4-140
Dual 4-Input AND Gate 4-141
Dual 2-Wide, 2-Input AND-OR-Invert Gate 4-142
4-Wide, 2-Input AND-OR-Invert Gate 4-144
Quad Low Voltage to High Voltage Translator with 3-State Outputs 4-146
BCD Up/Down Counter 4-149
BCD-to-7-Segment Latch/Decoder/Driver 4-153
8 -Input Multiplexer with 3-State Outputs 4-154
1-of-16 Decoder/Demultiplexer with Input Latch 4-159
1-of-16 Decoder/Demultiplexer with Input Latch 4-162
Binary Up/Down Counter 4-165
Dual 4-Bit Decade Counter 4-169
Quad 2-Input Multiplexer 4-171

PRODUCT INDEX

DEVICE NO.
FAMILY

DESCRIPTION
PAGE
34520 CMOS
34522 CMOS34526 CMOS3452834531 CMOSCMOS
34532 CMOS34539 CMOS34555CMOS3458234702 CMOS34703 CMOS34704 CMOS34705 CMOSCMOS
34707 CMOS34710 CMOS
34720 CMOS34723 CMOS34724 CMOS
3472534731CMOSCMOS34734 CMOS
3515 MOS
35L38 MOS35L38A MOS35L38B MOS
3538 MOS3538F MOS3538-1 MOS
3539 MOS
3705 MOS3708 MOS
3814 MOS3815 MOS
MOS3817A MOS
3817D MOS3843 MOS3850 MOS3851 MOS
3852 MOS
3853 MOS3854 MOS
40014002 CMOS
40064007
4008 CMOS
40085 CMOS40097 CMOS
40098 CMOS4011 CMOS
401 CMOSCMOS4014 CMOS
Dual 4-Bit Binary Counter 4-173
4-Bit BCD Programmable Down Counter 4-175
4-Bit Binary Programmable Down Counter 4-175
Dual Retriggerable Resettable Monostable Multivibrator 4-176
13-Input Parity Checker/Generator 4-177
8-Input Priority Encoder 4-179
Dual 4-Input Multiplexer 4-182
Dual 1-of-4 Decoder with Active HIGH Outputs 4-184
Dual 1-of-4 Decoder with Active LOW Outputs 4-184
Lookahead Carry Generator 4-186
Programmable Bit Rate Generator 4-189
16×4 Parallel/Serial FIFO 4-197
Data Path Switch 4-211
Arithmetic Logic Register Stack 4-215
Program Stack 4-220
Data Access Register 4-232
16×4-Bit Clocked RAM with 3-State Output Register 4-238
256-Bit Random Access Memory 4-241
Dual 4-Bit Addressable Latch 4-244
8-Bit Addressable Latch 4-247
64-Bit Random Access Memory 4-250
Quad 64-Bit Static Shift Register 4-253
BCD-to-7-Segment Latch/Decoder/Driver with Ripple Blanking 4-255
4096-Bit Read Only Memory 3-55
256×4 Static Random Access Memory 3-58
256×4 Static Random Access Memory 3-58
256×4 Static Random Access Memory 3-58
256×4 Static Random Access Memory 3-61
256×4 Static Random Access Memory 3-61
256×4 Static Random Access Memory 3-61
256×8 Static Random Access Memory 3-64
Monolithic 8-Channel Multiplex Switch 3-113
Monolithic 8-Channel Multiplex Switch 3-113
Digital Voltmeter Logic Array 3-85
5-Decade Counter 3-116
Programmable Divider 3-119
Digital Clock Radio $3-89$
Digital Alarm Clock 3-89
Universal Synchronous and Asynchronous Receiver/Transmitter (USART) 3-110
Microprocessor Central Processing Unit 3-96
Microprocessor Program Storage Unit 3-96
Microprocessor Dynamic Memory Interface 3-97
Microprocessor Static Memory Interface 3-97
Microprocessor Direct Memory Access 3-97
Quad 2-Input NOR Gate 4-44
Dual 4-Input NOR Gate 4-44
18-Stage Static Shift Register $4-46$
Dual Complementary Pair Plus Inverter 4-48
4-Bit Binary Full Adder 4-50
4-Bit Magnitude Comparator 4-256
3-State Hex Non-Inverting Buffer 4-259
3-State Hex Inverting Buffer 4-259
Quad 2-Input NAND Gate 4-52
Dual 4-Input NAND Gate 4-52
Dual D Flip-Flop 4-54
8-Bit Shift Register 4-57
Dual 4-Bit Shift Register 4-59

PRODUCT INDEX

DEVICE NO.
FAMILY
4016 CMOS
Quad Bilateral Switch 4-62
4-Bit Synchronous Decade Counter with Asynchronous Reset 4-263
4-Bit Synchronous Binary Counter with Asynchronous Reset 4-263
4-Bit Synchronous Decade Counter with Synchronous Reset 4-263
4-Bit Synchronous Binary Counter with Synchronous Reset 4-263
5-Stage Johnson Decade Counter 4-65
Hex D Flip-Flop 4-269
Quad D Flip-Flop 4-272
Presettable Divide-by-N Counter 4-68
Quad 2-Input Multiplexer 4-69
4-Bit Up/Down Synchronous Decade Counter 4-274
4-Bit Up/Down Synchronous Binary Counter 4-274
4-Bit Bidirectional Universal Shift Register 4-278
4-Bit Universal Shift Register 4-282
14-Stage Binary Counter 4-71
8-Bit Shift Register 4-74
4-Stage Divide-by-8 Johnson Counter 4-76
cMOS Triple 3-Input NAND Gate 4-77
7-State Binary Counter 4-78
Triple 3-Input NOR Gate 4-81
4027 Dual JK Flip-Flop 4-82CMOS
402840283
40294030403140351-of-10 Decoder4-85
4-Bit Binary Full Adder 4-286
Synchronous Up/Down, Binary/Decade Counter 4-87
Quad Exclusive-OR Gate 4-92
64-Stage Static Shift Register 4-93
4-Bit Universal Shift Register 4-95
12-Stage Binary Counter 4-98
Quad True/Complement Buffer 4-101
Quad D Latch 4-102
Quad R/S Latch with 3-State Outputs 4-105
Quad R/S Latch with 3-State Outputs 4-108
Micropower Phase-Locked Loop 4-111
Low Power Monostable/Astable Multivibrator 4-113
Hex Inverting Buffer 4-114
Hex Non-Inverting Buffer 4-114
8-Channel Analog Multiplexer/Demultiplexer 4-117
Dual 4-Channel Analog Multiplexer/Demultiplexer 4-120
Triple 2-Channel Analog Multiplexer/Demultiplexer 4-123
Quad Bilateral Switch 4-124
16-Channel Analog Multiplexer/Demultiplexer 4-127
8 -Input NAND Gate 4-128
CMOS
Hex Inverter 4-129
Quad Exclusive-OR Gate 4-131
Quad 2-Input OR Gate 4-132
Dual 4-Input OR Gate 4-133
Triple 3-Input AND Gate 4-134
Triple 3-Input OR Gate 4-135
Quad D Flip-Flop with 3-State Outputs 4-136
Quad Exclusive-NOR Gate 4-137
8 -Input NOR Gate 4-138
Quad 2-Input AND Gate 4-140
Dual 4-Input AND Gate 4-141
CMOS
Dual 2-Wide, 2-Input AND-OR-Invert Gate 4-142
4-Wide, 2-Input AND-OR-Invert Gate 4-144
4096×1 Dynamic Random Access Memory 3-67
4096-2
CMOSMOS

PRODUCT INDEX

DEVICE NO.
FAMILY
4096-3MOSMOSMOS3-67
4096-44096-54104
CMOS4096×1 Dynamic Random Access Memory3-67
Quad Low Voltage to High Voltage Translator with 3-State Outputs3-67
4510 CMOS 451 4-149
CMOS BCD-to-7-Segment Latch/Decoder/Driver 4511 4-153CMOS8-Input Multiplexer with 3-State Outputs4-154
4514 CMOS 1-of-16 Decoder/Demultiplexer with Input Latch 4-159
4515 CMOS 1-of-16 Decoder/Demultiplexer with Input Latch 4-1624516
CMOS Binary Up/Down Counter 4-165
CMOS Dual 4-Bit Decade Counter 4-169
CMOS Quad 2-Input Multiplexer 4-171
CMOS Dual 4-Bit Binary Counter 4-173
CMOS 4-Bit BCD Programmable Down Counter 4-175
CMOS 4-Bit Binary Programmable Down Counter 4-175
4528 CMOS Dual Retriggerable Resettable Monostable Multivibrator 4-176
4531453245394555
45564582CMOSCMOS
13-Input Parity Checker/Generator 4-177
8-Input Priority Encoder 4-179
CMOS Dual 4-Input Multiplexer 4-182
CMOS Dual 1-of-4 Decoder with Active HIGH Outputs 4-184
CMOS Dual 1-of-4 Decoder with Active LOW Outputs 4-184
CMOS Lookahead Carry Generator 4-186
CMOS Programmable Bit Rate Generator 4-189
cMOS 16×4 Parallel/Serial FIFO 4-197
CMOS Data Path Switch 4-211
CMOS Arithmetic Logic Register Stack 4-215
CMOS Program Stack 4-220
CMOS Data Access Register 4-232
CMOS 16×4-Bit Clocked RAM with 3-State Output Register 4-238
CMOS 256-Bit Random Access Memory 4-241
CMOS Dual 4-Bit Addressable Latch 4-244
CMOS 8-Bit Addressable Latch 4-247
CMOS 64-Bit Random Access Memory 4-250
cMOS Quad 64-Bit Static Shift Register 4-253
cMOS 4-255

INTRODUCTION

NMOS/PMOS
INTRODUCTION

MEMORY PRODUCTS
CONSUMER/INDUSTRIAL PRODUCTS
MICROPROCESSOR PRODUCTS

MULTIPLEXERS AND COUNTERS

CMOS

F4OOO SERIES GENERALDESCRIPTION
DESIGN CONSIDERATIONS WITH F4000
SERIES CMOS
TECHNICAL DATA
BIPOLAR INTERFACE CIRCUITS FOR CMOS
CCD
INTRODUCTION
TECHNICALDATA

ORDER AND PACKAGE INFORMATION

NMOS-PMOS INTRODUCTION

During the past few years, improved MOS technology resulting in increased chip densities and higher yields has caused a significant reduction in the cost of MOS/ LSI devices. In digital processing systems that do not require critically high circuit speeds or drive capability, MOS/LSI ensures appreciable cost savings in overall system development and production. MOS/LSI subsystems are now available, ranging in complexity from digital clocks and TV sync generators to large memories for mainframe computers, at a fraction of the cost of other types of circuits. The selection guide included in this section best illustrates the wide range of available products.

Perhaps the most significant new MOS/LSI product is the general-purpose microprocessor, a family of standard building blocks offering the logic versatility previously found only in custom LSI. The F8 Microprocessor consists of five individual modules that can be combined to implement virtually any programmed digital system. For many applications such as data terminals, calculators and appliance controllers, only two chips are required, thus reducing part count from up to 30 devices using other microprocessors and dramatically cutting system cost. More powerful systems can be realized by simply adding more F8 modules. A description of this universal microprocessor is included in this section. Contact the nearest Fairchild sales office or representative for more complete data and design assistance.

SELECTOR GUIDE BY FUNCTION

FUNCTION PAGE
Memories
11031024×1 Dynamic Random Access Memory 3-7
21 L02 1024×1 Static Random Access Memory 3-12
21021024×1 Static Random Access Memory 3-15
2533 Single 1024-Bit Static Shift Register 3-49
$325764 \times 5 \times 7$ Character Generator 3-18
$3258 \quad 64 \times 7 \times 5$ Character Generator 3-24
$3260 \quad 64 \times 9 \times 7$ Character Generator 3-29
$3341 \quad 64 \times 4$ First-In First-Out Buffer 3-35
3342 Quad 64-Bit Static Shift Register 3-39
3347 Quad 80-Bit Static Shift Register 3-39
3348 Hex 32-Bit Static Shift Register 3-42
3349 Hex 32-Bit Static Shift Register 3-42
$3351 \quad 40 \times 9$ First-In First-Out Buffer 3-44
3355 Single 1024-Bit Static Shift Register 3-49
3357 Quad 80-Bit Static Shift Register 3-52
$3515 \quad 512 \times 8$ Read Only Memory 3-55
35L38 256×4 Static Random Access Memory 3-58
3538 256 x 4 Static Random Access Memory 3-61
3539256×8 Static Random Access Memory 3-64
40964096×1 Dynamic Random Access Memory 3-67
Commercial/Industrial
3262A TV Sync Generator 3-75
3262B TV Sync Generator for Gen-Lock 3-80
3814 Digital Volt Meter 3-85
3817A Digital Clock Radio 3-89
3817D Digital Alarm Clock 3-89
Microprocessors*
3843 Universal Sync/Async Receiver-Transmitter 3-110
3850 F8 Central Processing Unit 3-96
3851 F8 Program Storage Unit 3-96
3852 F8 Dynamic Memory Interface 3-97
3853 F8 Static Memory Interface 3-97
3854 F8 Direct Memory Access 3-97
Multiplexers and Counters
3705 8-Channel Decoded Multiplexer 3-113
3708 8-Channel Decoded Multiplexer 3-113
3815 5-Decade Counter 3-116
3816 Programmable Counter 3-119

1103

1024×1 DYNAMIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 1103 is a fully decoded 1024-word by 1 -bit Dynamic Random Access Memory, especially suited for main memory applications. The circuitry is designed for maximum speed and low standby power dissipation. It requires two power supplies and two clocks including the Chip Enable (CE). Readout is non destructive and the Data Out can be wired-OR for ease of expansion. Exercise of the 32 row addresses is required for refresh.

The 1103 is manufactured with the p-channel Isoplanar process. It is available in 18 -pin ceramic Dual In-line Packages in the commercial temperature range.

- FAST ACCESS (120, 150, 220 AND 300 ns$)$
- LOW POWER
- fully expandable
- Fully decoded
- WIRED-OR CAPABILITY
- 18-PIN CERAMIC DUAL IN-LINE PACKAGE

PIN NAMES

A_{n}	Address Inputs
$D_{\text {IN }}$	Data Input Data Output
$\overline{D_{O U T}}$	Chip Enable
$\overline{C E}$	Read/Write
R	Precharge

ABSOLUTE MAXIMUM RATINGS
All Pins with Respect to $V_{B B}$
Storage Temperature
Operating Temperature: 1103-1, 1103S, 1103F
1103
-25 V to +0.3 V
(1103 1103s, 1103F $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

BLOCK DIAGRAM

DC REQUIREMENTS: $1103 F, T_{A}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; 1103, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103F		1103		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{v}_{\text {SS }}$	Positive Supply Voltage	18	20	15.2	16.8	V	
$V_{B B}$	Bias Supply Voltage	$\mathrm{v}_{\mathrm{SS}}+3$	$\mathrm{v}_{\text {SS }}{ }^{+4}$	$\mathrm{V}_{\mathrm{SS}}{ }^{+3}$	$\mathrm{V}_{\text {SS }}{ }^{+4}$	V	
$V_{\text {DD }}$	Negative Supply Voltage	0	0	0	0	V	
$\mathrm{V}_{\text {IH1 }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1}$	$\mathrm{v}_{\text {SS }}{ }^{+1}$	$\mathrm{V}_{\mathrm{SS}}-1$	$\mathrm{v}_{\mathrm{SS}}+1$	V	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$
$\mathrm{V}_{\text {IH2 }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1}$	$\mathrm{V}_{\text {SS }}{ }^{+1}$	$\mathrm{v}_{\mathrm{SS}}-0.7$	$\mathrm{V}_{\mathrm{SS}}+1$	V	$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$
$\mathrm{V}_{\text {IL1* }}$	Input LOW Voltage (A)	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}-18$	$\mathrm{V}_{\text {SS }}-17$	$\mathrm{V}_{\text {SS }}-14.2$	V	$T_{A}=$ Min
$V_{\text {IL2* }}$	Input LOW Voltage (A)	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}-18$	$\mathrm{V}_{\text {SS }}-17$	$\mathrm{V}_{\text {SS }}-14.5$	V	$\mathrm{T}_{\mathrm{A}}=$ Max
$V_{\text {IL3* }}$	Input LOW Voltage (B)	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}$-18	$\mathrm{V}_{\text {SS }}-17$	$\mathrm{V}_{\text {SS }}-14.7$	V	$\mathrm{T}_{A}=\mathrm{Min}$
$V_{\text {IL4* }}$	Input LOW Voltage (B)	$\mathrm{V}_{\text {SS }}{ }^{-20}$	$\mathrm{V}_{\text {SS }}-18$	$\mathrm{v}_{\text {SS }}-17$	$\mathrm{V}_{\text {SS }}{ }^{-15}$	V	$\mathrm{T}_{\mathrm{A}}=$ Max

*See waveforms input type.
DC CHARACTERISITCS: $1103 F, T_{A}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; 1103, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103F		1103		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	115	700	60	400	mV	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 1
$\mathrm{v}_{\mathrm{OH} 2}$	Output HIGH Voltage	90	700	50	400	mV	$\mathrm{T}_{\mathrm{A}}=$ Max Operating Temperature, Note 1
V_{OL}	Output LOW Voltage						Note 2
IOH^{1}	Output HIGH Current	1150	7000	600	4000	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
${ }^{\text {OH2 }}$	Output HIGH Current	900	7000	500	4000	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=$ Max Operating Temperature
$\underline{\mathrm{OL}}$	Output LOW Current						Note 2
In	Input Load Current		10		1.0	$\mu \mathrm{A}$	
IOUT	Output Leakage Current		10		1.0	$\mu \mathrm{A}$	
IBB	$\mathrm{V}_{\text {BB }}$ Supply Current		100		100	$\mu \mathrm{A}$	
IDD1	Supply Current During tPC		60		56	mA	
IDD2	Supply Current During tov		68.5		59	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
'DD3	Supply Current During tpoV		11		11	mA	
'DD4	Supply Current During t CP		4.0		4.0	mA	
IDDAV	Average Supply Current		26		25	mA	$\mathrm{T} \mathrm{A}=25^{\circ} \mathrm{C}$, Note 3

1. Assumes a load resistor of 100 S .
2. The output current and voltage for LOW is a function of load resistor.
3. ${ }^{\text {t }}$ RWC $=\min$; Precharge width at $50 \%: 1103 \mathrm{~F}, 60 \mathrm{~ns} ; 1103,190 \mathrm{~ns}$.

AC REQUIREMENTS: $\mathbf{1 1 0 3 F}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; 1103, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103F		1103		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
treF	Time Between Refresh		2.0		2.0	ms	
${ }^{\text {t }}$ AC	Address to Chip Enable Set-up Time	30		115		ns	
${ }^{t} \mathrm{CA}$	Chip Enable to Address Hold Time	10		20		ns	
tPC	Precharge to Chip Enable Delay	35		125		ns	
${ }^{\text {t }}$ CP	Chip Enable to Precharge Delay	40		85		ns	
toVL	Precharge and Chip Enable Overlap LOW			25	75	ns	
tove	Precharge and Chip Enable Overlap HIGH				140	ns	
tovm	Precharge and Chip Enable Overlap, 50\% Points	13	50	45	95	ns	
trc	Read Cycle	238		480		ns	Note 4
tPOV	Precharge to End Chip Enable (Read Cycle)	114	700	165	500	ns	
twc	Write Cycle	270		580		ns	Note 4
trwC	Read/Write Cycle	270		580		ns	Note 4
tPW	Precharge to Read/Write Delay	114	700	165	500	ns	
twp	Read/Write Pulse Width	20		50		ns	
tw	Read/Write Set-up Time	20		80		ns	
tDW	Data Set-up Time	25		105		ns	
tDH	Data Hold Time	10		10		ns	
${ }^{\text {t }} \mathrm{CW}$	Relationship between Chip Enable and Read/Write		5.0		0	ns	

4. Assumes $\tau_{\mathrm{t}}=12 \mathrm{~ns}$ for $1103 \mathrm{~F}, 20 \mathrm{~ns}$ for 1103.

FAIRCHILD MOS INTEGRATED CIRCUITS • 1103

AC CHARACTERISTICS: $1103 \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} ; 1103, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103F		1103		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
tPO	End of Precharge to Output Delay (See Waveforms)		65		120	ns	
${ }^{\text {t }} \mathrm{ACC1}$	Address to Output Access		120		300	ns	Note 5
${ }^{\text {t }}$ ACC2	Precharge to Output Access		125		310	ns	Note 6

5. ${ }^{t} \mathrm{ACC}_{1}(\max)=\mathrm{t}_{\mathrm{AC}}$ min $+\mathrm{t}_{\mathrm{OVL}}$ min $+\mathrm{t}_{\mathrm{P}} \mathrm{Amax}_{\max }+2 \tau_{\mathrm{t}}$.
6. $t_{A C C}(\max)=t_{P C}$ min $+t_{O V L}$ min $+t_{P O}$ max $+2 \tau_{\text {t }}$.

WRITE CYCLE OR READ/WRITE CYCLE

NOTES:
A. Point (1) $\left.=V_{D D}+2.0 \mathrm{~V}\right\}$

Point (2) $\left.=\mathrm{V}_{\mathrm{SS}}-2.0 \mathrm{~V}\right\} \tau_{\mathrm{t}}$ is defined as the transitions between these two points.
B. $t_{D H}$ is referenced to point (2) of the rising edge of Chip Enable or Read/ $\overline{\text { Write; }}$; whichever occurs first.
C. $V_{\text {REF }}=80 \mathrm{mV}(1103 \mathrm{~F}, 1103-1), 40 \mathrm{mV}(1103,1103 \mathrm{~S})$
D. $C_{\text {LOAD }}=50 \mathrm{pF}(1103 \mathrm{~F}, 1103-1), 100 \mathrm{pF}(1103,1103 \mathrm{~S})$

FAIRCHILD MOS INTEGRATED CIRCUITS • 1103

DC REQUIREMENTS: $\mathbf{1 1 0 3 - 1}$ and $1103 S, T_{A}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103-1		1103s		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {SS }}$	Positive Supply Voltage	18.05	19.95	18.05	19.95	v	
$V_{B B}$	Bias Supply Voltage	$\mathrm{V}_{\mathrm{SS}}+3$	$\mathrm{V}_{\text {SS }}{ }^{+4}$	$\mathrm{V}_{\mathrm{SS}}+3$	$\mathrm{V}_{\mathrm{SS}}+4$	V	
$V_{\text {DD }}$	Negative Supply Voltage	0	0	0	0	V	
$\mathrm{V}_{1 \mathrm{H} 1}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}$-1	$\mathrm{V}_{\text {SS }}{ }^{+1}$	$\mathrm{V}_{\text {SS }}$-1	$\mathrm{V}_{\mathrm{SS}}+1$	V	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
$\mathrm{V}_{1 \mathrm{H} 2}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-1$	$\mathrm{V}_{\text {SS }}+1$	$\mathrm{V}_{\text {SS }}-0.7$	$\mathrm{V}_{\mathrm{SS}}+1$	V	$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IL1* }}$	Input LOW Voltage (A)	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}-18$	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}-17$	V	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
$V_{\text {IL2* }}$	Input LOW Voltage (A)	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}$-18	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}$-17.3	V	$\mathrm{T}^{\text {A }}=55^{\circ} \mathrm{C}$
$V_{\text {IL3* }}$	Input LOW Voltage (B)	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\text {SS }}-18$	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\mathrm{SS}}-17$	V	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
$V_{1 L 4 *}$	Input LOW Voltage (B)	$\mathrm{v}_{\mathrm{SS}}-20$	$\mathrm{v}_{\text {SS }}-18$	$\mathrm{V}_{\text {SS }}-20$	$\mathrm{V}_{\mathrm{SS}}-17.3$	V	$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$

*See waveforms input type.
DC CHARACTERISITCS: $1103-1$ and $1103 \mathrm{~S}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103-1		1103S		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	115	700	60	700	mV	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Note 1
$\mathrm{V}^{\mathrm{OH} 2}$	Output HIGH Voltage	90	700	50	700	mV	$\mathrm{T}_{A}=55^{\circ} \mathrm{C}$, Note 1
VOL	Output LOW Voltage						Note 2
OH_{1}	Output HIGH Current	1150	7000	600	7000	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\underline{\mathrm{OH} 2}$	Output HIGH Current	900	7000	500	7000	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$
$\underline{\mathrm{OL}}$	Output LOW Current						Note 2
ILI	Input Load Current		10		10	$\mu \mathrm{A}$	
ILO	Output Leakage Current		10		10	$\mu \mathrm{A}$	
$I_{B B}$	VBB Supply Current		100		100	$\mu \mathrm{A}$	
IDD1	Supply Current During tPC		60		60	mA	
IDD2	Supply Current During tov		68.5		68.5	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
IDD3	Supply Current During tpoV		11		11	mA	$T_{A}=25^{\circ}$
IDD4	Supply Current During t ${ }_{\text {CP }}$		4.0		4.0	mA	
IDDAV	Average Supply Current		26		24	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 7

7. ${ }^{\text {t }}$ RWC $=\mathbf{m i n}$; Precharge width at $50 \%: 1103-1,105 \mathrm{~ns} ; 11035,95 \mathrm{~ns}$.

AC REQUIREMENTS: $\mathbf{1 1 0 3 - 1}$ and $1103 \mathrm{~S}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103-1		1103s		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
tref	Time Between Refresh		1.0		1.0	ms	
${ }^{t} A C$	Address to Chip Enable Set-up Time	30		70		ns	
${ }_{\text {t }}$	Chip Enable to Address Hold Time	10		20		ns	
tPC	Precharge to Chip Enable Delay	60		70		ns	
${ }^{\text {t }}$ CP	Chip Enable to Precharge Delay	40		50		ns	
toVL	Precharge and Chip Enable Overlap LOW	5.0	30	5.0	45	ns	
toVH	Precharge and Chip Enable Overlap HIGH		85		105	ns	
tovm	Precharge and Chip Enable Overlap, 50\% Points	25	50			ns	
tre	Read Cycle	300		345		ns	$\tau_{\mathrm{t}}=20 \mathrm{~ns}$
tpov	Precharge to End Chip Enable (Read Cycle)	115	500	140	500	ns	
twc	Write Cycle	340		390		ns	$\tau_{\mathrm{t}}=20 \mathrm{~ns}$
trwC	Read/Write Cycle	340		390		ns	$\tau_{\mathrm{t}}=20 \mathrm{~ns}$
tPW	Precharge to Read/Write Delay	115	500	140	500	ns	
twP	Read/Write Pulse Width	20		25		ns	
tw	Read/Write Set-up Time	20		25		ns	
tDW	Data Set-up Time	40		45		ns	
tDH	Data Hold Time	10		10		ns	
${ }^{\text {t }} \mathrm{CW}$	Relationship between Chip Enable and Read/Write		0			ns	

FAIRCHILD MOS INTEGRATED CIRCUITS • 1103

AC CHARACTERISTICS: $1103-1$ and $1103 \mathrm{~S}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	1103-1		1103 S		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
tPO	End of Precharge to Output Delay (See Waveforms)		75		105	ns	
${ }^{\text {t } A C C 1}$	Address to Output Access		150		220	ns	Note 5
${ }^{\text {t } A C C 2}$	Precharge to Output Access		180		220	ns	Note 6

CAPACITANCE CHARACTERISTICS (pF): All unused pins at AC ground; $f_{0}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{BB}}=+3.0$ Volts

SYMBOL	CAPACITANCE	1103, 1103-1, 1103S, 1103F		CONDITIONS
		TYP	MAX	
$\mathrm{C}_{\text {AD }}$	Address	6.0	8.0	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
${ }_{\text {CPR }}$	Precharge	19	23	$V_{\text {IN }}=V_{\text {SS }}$
$\mathrm{C}_{\text {CE }}$	Chip Enable	15	18	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {RW }}$	Read/Write	15	18	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{CiN}^{\text {c }}$	Data Input	5.0	7.0	Chip Enable $=V_{\text {DD }}$ or $V_{\text {SS }} ; \mathrm{V}_{\text {IN }}=V_{\text {SS }}$
COUT	Data Output	3.0	4.0	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$

21L02

1024×1 STATIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 21 L02 is a 1024 -word by 1 -bit Static Random Access Memory. It requires a single 5 V power supply, is fully TTL compatible on the inputs and outputs and requires no clocking or refresh. The Chip Select ($\overline{\mathrm{CS}}$) provides a 3 -state output which allows the outputs to be wired-OR. The 21L02 features a power-down mode during standby operation where the device dissipates a maximum of 32 mW .

The 21 L 02 is manufactured with the n -channel Isoplanar process. It is available in the 16-pin ceramic Dual In-line Package in the commercial temperature range, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

- FAST ACCESS TIME (400 ns and $\mathbf{5 0 0} \mathbf{n s}$)
- SINGLE +5 V POWER SUPPLY
- TTL COMPATIBLE ON INPUTS AND OUTPUT
- TOTALLY STATIC - NO CLOCKS OR REFRESH
- 3-STATE OUTPUT
- FULLY EXPANDABLE
- FULLY DECODED
- 16-PIN CERAMIC DUAL IN-LINE PACKAGE
- 158 mW PD GUARANTEED
- POWER DOWN STANDBY MODE

PIN NAMES

A_{n}	Address Inputs
DOUT	Data Output
$D_{I N}^{N}$	Data Input
R/W	Read/Write
$\overline{C S}$	Chip Select (active LOW)

ABSOLUTE MAXIMUM RATINGS

Any Lead with Respect to $V_{S S}$
-0.5 V to +7.0 V
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

BLOCK DIAGRAM

FAIRCHILD MOS INTEGRATED CIRCUITS • 21 L02

FUNCTIONAL DESCRIPTION - The 21 LO2 is a 1024×1 static RAM. When the Chip Select ($\overline{\mathrm{CS}}$) goes HIGH, the Read/Write (R / \bar{W}) input is disabled and the Data Output (DOUT) is forced into a high impedance state. When Chip Select goes LOW, the Read/Write is enabled.
When R/W goes LOW, data from the Data Input ($D_{I N}$) is written at the location specified by the Address Inputs (A_{n}). The Data Output will be identical to the Data Input during a write command. When R/W goes HIGH, the contents of the addressed location will appear at DOUT. DOUT is not inverted from DIN in the 21L02. (See Truth Table)

DC REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	21L02B		21L02A		$21 \mathrm{LO2}$		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$V_{\text {IH }}$	Input HIGH Voltage	2.0	VDD	2.0	$V_{\text {DD }}$	2.0	$V_{\text {DD }}$	V	$V_{\text {DD }}=+5 \mathrm{~V} \pm 5 \%$,
$V_{\text {IL }}$	Input LOW Voltage	-0.5	0.8	-0.5	0.8	-0.5	0.8	V	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$
$\underline{V_{D D}}$	Power Supply Voltage	4.75	5.25	4.75	5.25	4.75	5.25	V	

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	21L02B		21L02A		21 L02		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
V_{OH}	Output HIGH Voltage	2.4		2.4		2.4		V	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$
V_{OL}	Output LOW Voltage		0.4		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
IIN	Input Leakage Current		10		10		10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {DD }}$
IOUT	Output Leakage Current	-10	10	-10	10	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}, \mathrm{CS}=\mathrm{V}_{\text {IH }}$
IDD	Power Supply Current		30		30		30	mA	
${ }^{P_{D}}$	Power Dissipation		158		158		158	mW	$V_{D D}=5.25 \mathrm{~V}$, All Inputs HIGH

POWER DOWN CHARACTERISTICS : $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

IDD(PD)	Power Supply Current		20		20		20	mA	$\mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}$
$\mathrm{V}_{\text {DD }}(\mathrm{PD})$	Power Supply Voltage	1.6		1.6		1.6		V	
${ }^{\text {t CSS }}$	Chip Select Set-Up Time	100		100		100		ns	See Fig. 3
${ }^{\text {t }}$ CSH	Chip Select Hold Time	100		100		100		ns	See Fig. 3
$\overline{\mathrm{V}} \overline{\mathrm{CS}}$	Chip Select Voltage	2.0		2.0		2.0		V	See Fig. 3
V'DD	Power Supply Slew Rate		100		100		100	$\mathrm{V} / \mu \mathrm{s}$	See Fig. 3

AC REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	21L02B		21L02A		$21 \mathrm{LO2}$		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {t }}$ CYC	Read or Write Cycle Time	400		500		650		ns	$\begin{aligned} & V_{D D}=+5 V \pm 5 \%, \\ & V_{S S}=0 V \end{aligned}$
${ }^{\text {t } A W}$	Address to Write Time	100		150		200		ns	
twP	Write Pulse Width	200		250		350		ns	
twR	Write Recovery Time	50		50		50		ns	
tos	Data Set-Up Time	150		200		250		ns	
${ }^{\text {t }} \mathrm{DH}$	Data Hold Time	50		50		50		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Select to Write Time	200		250		350		ns	
twC	Write to Chip Select Time	50		50		50		ns	

AC CHARACTERISTICS: $\mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	21L02B		21L02A		21L02		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{t} \mathrm{~A}$	Read Access Time		400		500		650	ns	$\begin{aligned} & V_{D D}=+5 V \pm 5 \%, \\ & V_{S S}=0 \mathrm{~V} \end{aligned}$
${ }^{\text {t }} \mathrm{CO}$	Chip Select to Output Time		200		200		250	ns	
${ }^{\text {toH1 }}$	Data Valid After Address	50		50		50		ns	
${ }^{\text {toh2 }}$	Previous Data Valid After Chip Deselect	0	150	0	150	0	200	ns	
$\mathrm{CIN}^{\text {c }}$	Input Capacitance		5		5		5	pF	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
COUT	Output Capacitance		10		10		10	pF	

WAVEFORMS

READ CYCLE TIMING

Fig. 1

WRITE CYCLE TIMING

Fig. 2

POWER DOWN MODE TIMING

Fig. 3

2102
 1024×1 STATIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 2102 is a 1024 -word by 1 -bit Static Random Access Memory. It requires a single 5 V power supply, is fully TTL compatible on the inputs and the output and requires no clocking or refresh. The Chip Select (CS) provides a 3-state output which allows the outputs to be wired-OR.
The 2102 is manufactured with the n-channel Isoplanar process. It is available in the $\mathbf{1 6}$ pin ceramic Dual In-line Package in either commercial, limited military or military temperature ranges.

- FAST ACCESS TIME (350 ns and 450 ns)
- SINGLE +5 V POWER SUPPLY
- TTL COMPATIBLE ON INPUTS AND OUTPUT
- TOTALLY STATIC - NO CLOCKS OR REFRESH
- 3-STATE OUTPUT
- FULLY EXPANDABLE
- FULLY DECODED
- 16-PIN CERAMIC DUAL IN-LINE PACKAGE

PIN NAMES	
A_{n}	Address Inputs
DOUT	Data Output
$D_{I N}^{N}$	Data Input
$\frac{R / W}{C S}$	Read/Write
	Chip Select (active LOW)

ABSOLUTE MAXIMUM RATINGS

Any Lead with Respect to $V_{\text {SS }}$
Storage Temperature
Operating Temperature DC
DL
DM

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{array}
$$

BLOCK DIAGRAM

FAIRCHILD MOS INTEGRATED CIRCUITS • 2102

FUNCTIONAL DESCRIPTION - The 2102 is a 1024×1 static RAM. When the Chip Select ($\overline{\mathrm{CS}}$) goes HIGH, the Read/Write (R / \bar{W}) input is disabled and the Data Output (DOUT) is forced into a high impedance state. When Chip Select goes LOW, the Read/Write is enabled.
When R / \bar{W} goes LOW, data from the Data Input (D_{IN}) is written at the location specified by the Address Inputs (A_{n}). The Data Output will be identical to the Data Input during a write command. When R/W goes HIGH, the contents of the addressed location will appear at DOUT. DOUT is not inverted from DIN in the 2102. (See Truth Table)

DC REQUIREMENTS: DC: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; DM : $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	DC		DL		DM		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.2	V_{DD}	2.0	$V_{\text {DD }}$	2.0	$V_{D D}$	v	
$V_{\text {IL }}$	Input LOW Voltage	-0.5	0.65	-0.5	0.8	-0.5	0.8	v	
$\mathrm{V}_{\text {DD }}$	Power Supply Voltage	4.75	5.25	4.5	5.5	4.5	5.5	V	

DC CHARACTERISTICS: $V_{S S}=0 \mathrm{~V}$; $\mathrm{DC}: \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; $\mathrm{DL}: V_{D D}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{DM}: \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	DC		DL		DM		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
v_{OH}	Output HIGH Voltage	2.2		2.2		2.2		V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
V_{OL}	Output LOW Voltage		0.4		0.4		0.4	V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
IIN	Input Leakage Current		10		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=V_{\text {DD }}$
IOUT	Output Leakage Current	-10	10	-10	10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}$
IDD	Power Supply Current		50		70		70	mA	

AC REQUIREMENTS: DC: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL : $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; DM : $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	$\begin{gathered} 2102 \mathrm{~F} \\ \mathrm{DC}, \mathrm{DL}, \mathrm{DM} \end{gathered}$	$\begin{gathered} 2102-1 \\ \mathrm{DC}, \mathrm{DL}, \mathrm{DM} \\ \hline \end{gathered}$	$\begin{gathered} 2102-2 \\ \mathrm{DC}, \mathrm{DL}, \mathrm{DM} \\ \hline \end{gathered}$	$\begin{gathered} 2102 \\ \text { DC } \end{gathered}$	UNITS	CONDITIONS
		MIN	MIN	MIN	MIN		
${ }^{t} \mathrm{CYC}$	Read or Write Cycle Time	350	450	650	1000	ns	$\begin{aligned} & V_{S S}=0 \mathrm{~V} \\ & V_{D D}=+5.0 \mathrm{~V} \pm 5 \% \\ & \text { For } D L, D M: \\ & V_{D D}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$
${ }^{\text {t }} \mathrm{AW}$	Address to Write Time	100	150	200	200	ns	
tWP	Write Pulse Width	170	200	350	550	ns	
tWR	Write Recovery Time	50	50	50	50	ns	
tDS	Data Set-up Time	170	200	350	550	ns	
tDH	Data Hold Time	50	50	50	50	ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Select to Write Time	200	250	400	600	ns	
twC	Write to Chip Select Time	50	50	50	50	ns	

AC CHARACTERISTICS: DC: $\mathrm{TA}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; DM: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	$\begin{gathered} 2102 \mathrm{~F} \\ \mathrm{DC}, \mathrm{DL}, \mathrm{DM} \\ \hline \end{gathered}$		$\begin{gathered} 2102-1 \\ \mathrm{DC}, \mathrm{DL}, \mathrm{DM} \\ \hline \end{gathered}$		$\begin{gathered} 2102-2 \\ \mathrm{DC}, \mathrm{DL}, \mathrm{DM} \\ \hline \end{gathered}$		$\begin{gathered} 2102 \\ \mathrm{DC} \end{gathered}$		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{t}$ A	Read Access Time		350		450		650		1000	ns	$\begin{aligned} & V_{S S}=0 \mathrm{~V} \\ & V_{D D}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \text { For DL, } \mathrm{DM}: \\ & V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \end{aligned}$
${ }^{\text {t }} \mathrm{CO}$	Chip Select to Output Time		180		200		400		500	ns	
${ }^{\text {toH1 }}$	Data Valid After Address	50		50		50		50		ns	
toh2	Previous Data Valid After Chip Deselect	0		0		0		0		ns	
$\mathrm{CIN}^{\text {IN }}$	Input Capacitance		5		5		5		5		$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \end{aligned}$
Cout	Output Capacitance		10		10		10		10		$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$

FAIRCHILD MOS INTEGRATED CIRCUITS • 2102

WAVEFORMS

READ CYCLE TIMING

Fig. 1

WRITE CYCLE TIMING

Fig. 2

AC CONDITIONS:

Input Levels: $V_{\text {IL }}$ MAX to $V_{\text {IH }}$ MIN Input Rise and Fall Times: 10 ns Timing Measurement Reference Level: 1.5 V Output Load: 1 TTL Gate + 100 pF

3257
 $64 \times 5 \times 7$ CHARACTER GENERATOR

GENERAL DESCRIPTION - The 3257 is a Character Generator designed to display 64 characters in a 5×7 font. An on chip column select counter sequences through the five columns of each character. The seven output buffers will each drive one TTL/DTL load directly at a 1 MHz input address rate making the 3257 an ideal device for vertical scan displays. The chip enable allows wired-OR capability if more than 64 characters are required.

- PROGRAMMABLE WITH A CUSTOM CHARACTER FONT
- STANDARD PRODUCT ASCII ENCODED
- DIRECT INTERFACING WITH TTL/DTL
- WIRED - OR CAPABILITY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Operating Temperature
Voltage on any Pin Relative to V_{SS}

APPLICATIONS:

CRT Displays
Billboard Displays
LED Matrix Displays

BLOCK DIAGRAM

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
-20 V to +0.3 V

FAIRCHILD MOS INTEGRATED CIRCUITS • 3257

FUNCTIONAL DESCRIPTION - A Reset pulse ($\sim G N D$) is required to set the counter to the last state. A 6 -bit binary word presented to the character address inputs is decoded to select 1 of 64 characters in the memory. Information, representing the first column of the character is available the next clock time after Reset returns HIGH ($\left.\sim \mathrm{V}_{\mathrm{SS}}\right)$. The remaining four columns are sequentially selected by the next four states of the counter. The last state of the counter clamps the outputs $\mathrm{HIGH}\left(\sim \mathrm{V}_{\mathrm{SS}}\right)$ to provide 1 or 2 space blanking between characters (Count Control $\sim V_{S S} \Rightarrow$ MOD 7, Count Control $\sim G N D \Rightarrow$ MOD 6). When the last state (6 th or 7th) of the counter is reached, the Counter Output goes HIGH $\left(\sim V_{S S}\right)$. When Chip Enable goes HIGH $\left(\sim V_{S S}\right)$, the chip is activated while a LOW ($\left.\sim G N D\right)$ at this lead floats the outputs to allow common output bussing. A LOW (\sim GND) on the Blanking input pulls the outputs HIGH ($\sim V_{S S}$), providing blanking independent of the counter state or the character address.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{v}_{\text {SS }}-1$	$\mathrm{v}_{\text {SS }}$	v	Note 1
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	V_{GG}	0.8	V	Note 1
V_{OH}	Output HIGH Voltage	$\begin{array}{r} \mathrm{v}_{\mathrm{SS}}-0.5 \\ 2.4 \end{array}$	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	0	0.4	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
In	Input Leakage Current		-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-18 \mathrm{~V}$, Note 1
IOUT	Output Leakage Current		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-6 \mathrm{~V}$, Note 2
Iss	VSS Current		40	mA	$\mathrm{V}_{\mathrm{SS}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12.6 \mathrm{~V}$ Outputs Open
$\mathrm{PD}^{\text {c }}$	Power Dissipation		715	mW	

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
f	Clock Frequency	DC	1.0	MHz	
tPWL	Clock Pulse Width LOW	500		ns	
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Clock Rise \& Fall Time (10\%-90\%)		2.0	$\mu \mathrm{s}$	
trPW	Reset Puise Width	500		ns	
trs	Reset to Clock Set Up Time	100		ns	
${ }^{t} A$	Character Address to Output Access Time		1000	ns	Notes 4 \& 5
${ }^{\text {t }} \mathrm{CO}$	Clock to Output Access Time		1000	ns	Notes 4 \& 5
tro	Reset to Output Time Delay		600	ns	Notes 4 \& 5
${ }_{\text {tBO }}$	Blanking to Output Time Delay		1000	ns	Notes 4 \& 5
${ }_{\text {t }}$	Clock to Counter Output Time Delay		500	ns	Notes 4 \& 5
trc	Reset to Counter Output Time Delay		500	ns	Notes 4 \& 5
toe	Output Enable Delay Time		600	ns	Notes 4 \& 5
${ }_{\text {tod }}$	Output Disable Delay Time		600	ns	Notes 4 \& 5
$\mathrm{Cin}_{\text {I }}$	Input Capacitance		1.0	pF	$\mathrm{f}=1.0 \mathrm{MHz}, 0 \mathrm{~V} \text { Bias }$ Note 1

NOTES:

1. Inputs include Addresses, Count Control, Clock and Reset.
2. Chip Enable = LOW.
3. ISS $=-I_{G G}$ (VGG Supply Current).

AC Output LOW level is defined as $0.4 \mathrm{~V} @ 1.6 \mathrm{~mA}$, current sinking (i.e., 1 TTL load).
AC Output HIGH level is defined as $2.4 \mathrm{~V} @-40 \mu \mathrm{~A}$, current sourcing (i.e., 1 TTL load).

INTERFACING

 needed if TTL output swings to ($V_{S S}-1$) volts.

NOTES:
6. Last two counter states (count mode control $=\mathrm{HIGH} \Rightarrow$ MOD 7) provide blanking.
7. Counter is Reset to the last state.

3257A - STANDARD ASCII CHARACTER FONT
COUNT MODE CONTROL \cong GND \Rightarrow MOD 6

NOTE:

Horizontal and vertical are referred to as in a standard TV type raster.
16 characters per line, 32 character lines in system.
Each character 10 raster lines wide.

CUSTOM FONT ORDERING INFORMATION

Additional patterns may be made available upon request. The 3257 is programmed on IBM cards or IBM forms in the coding format shown below:

> A logic " 1 " = A more positive voltage nominally +5 V
> A logic " 0 " $=$ A more negative voltage nominally 0 V
> The character "dots" are defined as logic " 0 "

6, 7, 8, 9, 10, 11
$22,23,24,25,26,27,28$
$30,31,32,33,34,35,36$
38, 39, 40, 41, 42, 43, 44
$46,47,48,49,50,51,52$
$54,55,56,57,58,59,60$
$73,74,75,76,77,78,79,80$

Character address input code. The most significant bit (A5) is in column 11.
The first column of the character addressed. The most significant bit (07) is in Column 28. The next column of the character addressed. The most significant bit (07) is in Column 36. The next column of the character addressed. The most significant bit (07) is in Column 44. The next column of the character addressed. The most significant bit (07) is in Column 52. The last column of the character addressed. The most significant bit (07) is in Column 60 Coding these columns is not essential and may be used for card identification purpose.

3258

$64 \times 7 \times 5$ CHARACTER GENERATOR

GENERAL DESCRIPTION - The 3258 is a Character Generator designed to display 64 characters in a 5×7 dot matrix. An on-chip row select counter sequences through the seven rows of each character. The five output buffers will each drive one TTL/DTL. load directly at a 1.6 MHz input address rate making the 3258 an ideal device for CRT displays. Special input amplifiers on the Clock, Master Reset, and Address lines have eliminated the need for pull up resistors and allow direct operation at TTL/DTL logic levels.

- PROGRAMMABLE WITH A CUSTOM CHARACTER FONT
- STANDARD PRODUCT: ASCII FONT
- 16-PIN DUAL IN-LINE PACKAGE
- DIRECT TTL/DTL INTERFACE AT INPUTS AND OUTPUTS
- ON-CHIP ROW SELECT COUNTER

PIN NAMES

$\frac{A_{n}}{O_{n}}$	Character Address Inputs
$\overline{C P}$	Character Outputs
$\overline{M R}$	Clock Pulse Input
$V_{G G}$	Master Reset Input
$V_{D D}$	$-12 V$ Power Supply
$V_{S S}$	$0 \vee$ Power Supply
	$+5.0 V$ Power Supply

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Operating Temperature
Voltage on any Pin Relative to V_{SS}
-65° to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
-20 V to +0.3 V
APPLICATIONS:
CRT Displays
Billboard Displays
LED Matrix Displays

BLOCK DIAGRAM

FAIRCHILD MOS INTEGRATED CIRCUITS • 3258

FUNCTIONAL DESCRIPTION - A Master Reset pulse ($\cong G N D$) is required to set the Modulo 9 counter to the first state. A 6-bit binary word present at the address inputs is decoded to select 1 of 64 characters in the memory. Information, representing the first row of the character, will be available at the five outputs the next clock time after the Master Reset goes HIGH ($\cong \mathrm{V}_{\mathrm{SS}}$). The next six rows of the character are sequentially selected by the counter. The last state of the counter, like the first state, clamps the outputs HIGH ($\cong \mathrm{V}_{\text {SS }}$) which provides 2 -space blanking between lines. The counter dead ends at the last state and the outputs will remain HIGH ($\cong V_{\text {SS }}$) providing blanking, until another Master Reset pulse is provided.

DC CHARACTERISTICS: $V_{S S}=+5 \mathrm{~V} \pm 5 \%, V_{G G}=-12 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	CONDITIONS
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}-2.35$	$\mathrm{~V}_{\mathrm{SS}}$	V	All Inputs
V_{IL}	Input LOW Voltage	V_{GG}	0.55	V	All Inputs
V_{OH}	Output HIGH Voltage	2.4	$\mathrm{~V}_{\mathrm{SS}}$	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	0	0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.4 \mathrm{~mA}$
I_{IN}	Input Leakage Current		1.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=-13 \mathrm{~V}$ (Note 1)
I_{SS}	V_{SS} Current		28	mA	$\mathrm{V}_{\mathrm{SS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12.6 \mathrm{~V}$ Outputs Open
I_{GG}	V_{GG} Current		-28	mA	$\mathrm{V}_{\mathrm{SS}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12.6 \mathrm{~V}$ Outputs Open
P_{D}	Power Dissipation		500	mW	

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER		MIN.	MAX.	UNITS	CONDITIONS
f	Clock Frequency		0	500	kHz	
${ }^{\text {t PWW }}$	Clock Pulse Width		1.0		$\mu \mathrm{s}$	
t_{r}, t_{f}	Clock Rise and Fall Time			2.0	$\mu \mathrm{s}$	
${ }^{\text {t }}$ RPW	Reset Pulse Width		500		ns	
${ }^{\text {tr }}$ S	Reset to Clock Set-up		200	-	ns	
${ }^{t} A$	Character Address to Output Time Delay	3258-1		550	ns	
		3258-2		625	ns	
		3258		800	ns	
${ }^{\text {t }} \mathrm{CO}$	Clock to Output Time Delay			2.0	$\mu \mathrm{s}$	
${ }^{\text {tro }}$	Reset to Output Time Delay			2.0	$\mu \mathrm{s}$	

TIMING DIAGRAM

FAIRCHILD MOS INTEGRATED CIRCUITS • 3258

APPLICATIONS

OPERATION:

The two 9300 registers and the 9008 , eight-input gate combine to form the character clock counter and the parallel to serial converter required for the outputs of the 3258 character generator.

When all the gate inputs are HIGH, the gate output is LOW which enables the parallel load (PE) of the shift registers. On the next clock pulse, positive edge after PE goes LOW, the contents of the 3258 character generator and the LOW on $P_{0}(A)$ are transferred into the registers. This LOW is shifted down the registers followed by all HIGH's from the JK input. On reaching $Q_{2}(B)$ all the outputs to the gates are once again HIGH, therefore reloading the shift registers again. The modulo count of the system can easily be changed to Modulo 7 by loading in a zero on $\mathrm{P}_{0}(\mathrm{~A})$.
The shift counter is reset at the beginning of each horizontal raster line to ensure that it has the correct time phase.

CUSTOM FONT ORDERING INFORMATION

Additional character fonts are available on request. The 3258 is programmed on IBM cards or IBM coding forms in the coding format shown below:

A logic "1" = A more positive voltage nominally +5 V
A logic " 0 " = A more negative voltage nominally 0 V
The character must be defined by a logic " 0 ". The background by a logic " 1 ". Each character is programmed on one IBM card or a single line on the coding form.

COLUMN NUMBER

6,7,8,9,10,11
22,23,24,25,26
28,29,30,31,32
34,35,36,37,38
40,41,42,43,44
46,47,48,49,50
52,53,54,55,56
58,59,60,61,62
73,74,75,76,77,78,79,80

DESCRIPTION

Character address input code. The most significant bit (A32) is in Column 11. The top line of the character addressed. The most significant bit (05) is in Column 26. The next line of the character addressed. The most significant bit (05) is in Column 32. The next line of the character addressed. The most significant bit (05) is in Column 38. The next line of the character addressed. The most significant bit (05) is in Column 44. The next line of the character addressed. The most significant bit (05) is in Column 50. The next line of the character addressed. The most significant bit (05) is in Column 56. The bottom line of the character addressed. The most significant bit (05) is in Column 62. Coding these columns is not essential and may be used for card identification purpose.

STANDARD ASCII CHARACTER FONT

-	-	-	$\begin{array}{lll} \bullet & \bullet \bullet \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet \bullet & \bullet \end{array}$	$\stackrel{\bullet \bullet \bullet \bullet \bullet}{\bullet}$	$\begin{array}{r} \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \end{array}$				$\stackrel{\bullet}{\bullet \bullet}$	$\bullet_{\bullet}^{\bullet} \cdot \bullet$
0	\leftarrow	-	$\begin{array}{ll} \hline \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array}$	$\begin{gathered} \bullet \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \bullet \end{gathered}$		\bullet^{\bullet}	$\bullet \bullet \bullet^{\bullet}$	$\bullet \bullet$	$\bullet \bullet_{\bullet}^{\bullet} \cdot$	$\bullet^{\bullet \bullet} \bullet$
-	0	-	$\begin{array}{lll} \bullet & \bullet & \bullet \\ \bullet & 0 \end{array}$	$\begin{aligned} & \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \end{aligned}$		$\stackrel{\bullet \bullet \bullet \bullet \bullet}{\bullet}$		$\stackrel{\bullet}{\bullet}$	$\left.\begin{array}{lll} \bullet & \bullet \bullet \\ \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & 0 \\ \bullet & 0 \end{array}\right)$	$\bullet \bullet \cdot$
0	0	\checkmark	$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \hline \end{aligned}$		$\begin{aligned} & \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \end{aligned}$	$\bullet^{\bullet} \bullet^{\bullet}$	$\stackrel{\bullet}{\bullet}$	$\bullet \bullet$	$\begin{aligned} & \bullet \bullet \bullet \bullet \bullet \\ & \bullet \bullet \\ & \bullet \bullet \end{aligned}$	$\bullet \bullet \bullet^{\bullet}$
-	-	0			$\bullet \bullet \cdot \bullet \bullet \bullet$	$\stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet}$	$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \bullet \bullet \end{aligned}$	$\stackrel{\bullet}{\bullet} \cdot \bullet$	$\bullet \bullet \bullet \bullet \bullet$	- -
0	-	0	$\begin{array}{lll} \hline \bullet \bullet & \bullet \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet \bullet & \bullet \\ \hline \end{array}$	$\bullet \bullet \bullet \bullet \bullet \bullet$	$\begin{aligned} & \bullet \bullet \\ & \bullet \bullet \\ & \bullet \bullet \bullet \\ & \bullet \end{aligned}$	$\begin{array}{llll} \bullet \bullet & & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & & \bullet & \bullet \\ 0 & & \bullet \\ \hline \end{array}$	$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \end{aligned}$	$\begin{aligned} & \bullet \bullet \\ & \bullet \bullet \bullet \bullet \\ & \bullet \bullet \\ & \hline \end{aligned}$		$\bullet \bullet \bullet \bullet$
-	0	0	$\begin{aligned} & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \quad \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet} \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet \quad \bullet$	$\bullet^{\bullet \bullet}$	$\bullet \bullet \bullet \bullet \bullet \bullet$	
-	-	0		$\bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ \bullet	$\begin{aligned} & \bullet \bullet \\ & \stackrel{\bullet}{\bullet} \\ & \bullet \bullet \bullet \bullet \bullet \end{aligned}$			$\bullet \bullet \bullet^{\bullet}$	$\stackrel{\bullet \bullet \bullet \bullet}{\bullet} \bullet \bullet \bullet$	$\stackrel{\bullet}{\bullet \bullet \bullet} \bullet \bullet \bullet$
			$\begin{array}{ll} \stackrel{\infty}{4} & 0 \\ \frac{0}{4} & 0 \end{array}$	-	0 -	-	0 0	-	0 -	-
			~NO	0	0	0	-	-	-	-

3260

$64 \times 9 \times 7$ CHARACTER GENERATOR

GENERAL DESCRIPTION - The 3260 is a Character Generator designed to display 64 characters in a 7×9 dot matrix. An on-chip row select counter sequences through the nine rows of each character. Each of the seven output buffers will directly drive one TTL/DTL load. A unique 2-pin programming feature is provided enabling the user (if using a 7×16 display matrix) to select one of four display modes: Normal, Normal with Underline, Superscript, and Subscript.

- SUPERSCRIPT, SUBSCRIPT, \& UNDERLINE CAPABILITY
- OUTPUT INVERSION CONTROL
- DIRECT TTL/DTL INTERFACING
- 3-STATE OUTPUT CAPABILITY
- ASCII ENCODED

PIN NAMES

A_{n}	Character Address Inputs M_{n}
Display Mode Inputs	
RST A	Reset Input "A"
RST B	Reset Input " B " Chip Enable Input
$\overline{C E}$	CP Clock Input

Output Invert Control Input Character Outputs Terminal Count Output Substrate Power Supply ($\approx 5 \mathrm{~V}$) 0 V Power Supply Gate Power Supply ($\approx-12 \mathrm{~V}$)

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-20 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
-7 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
-7 \mathrm{~V} \text { to }+0.3 \mathrm{~V}
\end{array}
$$

Voltage on Any Input ($\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}$)
Voltage on $V_{D D}\left(V_{S S}=G N D\right)$
Voltage on Outputs ($\mathrm{V}_{\text {SS }}=$ GND, Output Current $@+10 \mathrm{~mA}$)

APPLICATIONS

CRT Displays
Billboard Displays

$$
\begin{aligned}
& V_{\mathrm{SS}}=\text { PIN } 24 \\
& \mathrm{~V}_{\mathrm{GG}}=\text { PIN } 1 \\
& \mathrm{~V}_{\mathrm{DD}}=\text { PIN } 12
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

FUNCTIONAL DESCRIPTION - A 6-bit binary word present at the address inputs ($A_{1}-A_{32}$) is decoded to select one of 64 characters in the memory. Information, representing a horizontal line of the character addressed, will be available at the 7 outputs $\left(O_{1}-O_{7}\right)$ within t_{A} after the address is present. The MOD 16 line counter sequences through the rows of the character with the application of a clock pulse (CP). A HIGH ($\sim V_{S S}$) on both RSTA and RSTB allows the counter to be free running. A LOW ($\left.\sim G N D\right)$ on RSTA will cause the counter to dead end at T_{16} when reached. T_{1} will again be reached the next clock time after RSTA returns HIGH. A LOW applied to RSTB sets the counter to T_{7} independent of its previous state. This is useful when implementing a 9 -line display.

To select the display mode for a specific character (this mode may be changed as often as the character address with no loss in access time), M_{1} and M_{2} are used. For normal operation (the character displayed during $T_{4}-T_{12}$) M_{1} and M_{2} must both be LOW. For underline operation (character displayed during $\mathrm{T}_{4}-\mathrm{T}_{12}$ underlline displayed during T_{14}), M_{1} must be HIGH and M_{2} must be LOW. For subscript operation (character displayed during $T_{7}-T_{15}$), M_{1} must be LOW and M_{2} must be HIGH; and for superscript operation (character displayed during $T_{1}-T_{g}$), both M_{1} and M_{2} must be HIGH (See Figure 1). When the counter reaches T_{16}, the Terminal Count (TC) output will go HIGH and will remain there until another counter state (T_{1} or T_{7}) is reached, at which time TC returns LOW.

If the Output Invert (OI) pin is held HIGH, the resulting display will be a character of " 0 "'s on a field of " 1 "s. A LOW on OI will produce the opposite effect.

The Chip Enable (CE) pin is provided to enable the user to combine the outputs of two or more 3260's if, for example, a 128 -character font is desired.

On chip input pull up circuits will bring a normal TTL output to the desired level (at least $\mathrm{V}_{\mathrm{SS}}-1 \mathrm{~V}$) while the output buffers are capable of driving 1.5 TTL loads each.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
$V_{1 H}$	Input HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}-1 \mathrm{~V}$	$\mathrm{V}_{\text {SS }}$	V	Note 1
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	0	0.8	V	
V_{OH}	Output HIGH Voltage	$\begin{array}{r} 2.4 \\ \mathrm{~V}_{\mathrm{SS}}-1 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A} \end{aligned}$
V_{OL}	Output LOW Voltage	0	0.4	V	$1 \mathrm{OL}=2.4 \mathrm{~mA}$
IIH	Input HIGH Pull-up Current	100		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-1 \mathrm{~V}$
IIL	Input LOW Current		615	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
IIN	Input Leakage Current		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-6 \mathrm{~V}$, Note 2
IOUT	Character Output Leakage Current		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-6 \mathrm{~V}$, Note 3
IDD	$V_{\text {DD }}$ Current		36	mW	CE = Disable Code
I_{GG}	V_{GG} Current		24	mA	Outputs disabled
ISS	$\mathrm{V}_{\text {SS }}$ Current		68	mA	Outputs Open
P_{D}	Power Dissipation		660	mW	Remaining Inputs $=0 \mathrm{~V}$

NOTES:

1. Input pull up resistors to $V_{S S}$ are provided on all inputs. The minimum $V_{1 H}$ is the level the resistors will pull a TTL input high voltage with $100 \mu \mathrm{~A}$ into the TTL output.
2. All pins at V_{SS} except pin under test.
3. Character outputs disabled. TC output is not three state.

DISPLAY MODE TRUTH TABLE
DISPLAY MODE ADDRESS
$M_{2}, M_{1} \longrightarrow$

Fig. 1

FAIRCHILD MOS INTEGRATED CIRCUIT • 3260

AC CHARACTERISTICS: $\mathrm{V}_{S S}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
f	Clock Frequency	0		250	kHz	
tPWL	Clock Pulse Width LOW	2.0			$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Clock Rise and Fall Time			2.0	$\mu \mathrm{s}$	10\% to 90\% Points
tRPW	Reset Pulse Width	2.0			$\mu \mathrm{s}$	
trs	Reset to Clock Set-up Time Delay	500			ns	
${ }_{t}{ }_{\text {A }}$	Character Address to Character Output Time Delay	200		1000	ns	Note 1
${ }_{\text {t }}$	Display Mode Address to Character Output Time Delay	200		1000	ns	Note 1
10	Output Invert to Character Output Time Delay	200		1000	ns	Note 1
toe	Character Output Enable Time Delay			100	ns	Note 1
tod	Character Output Disable Time Delay			1000	ns	Note 1
${ }_{\text {too }}$	Clock to Output Time Delay			2.5	$\mu \mathrm{s}$	
${ }_{\text {t }}$	Clock to Terminal Count Output Time Delay			2.5	$\mu \mathrm{s}$	
tro	Reset " B " to Character Output Time Delay			2.5	$\mu \mathrm{s}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			8.0	pF	$\mathrm{f}=1 \mathrm{MHz}, 0 \vee$ Bias
COUT	Output Capacitance			10	pF	$f=1 \mathrm{MHz}, 0 \vee$ Bias

TIMING DIAGRAM

CUSTOM FONT ORDERING INFORMATION

Custom patterns may be made available upon request. The coding format is shown below. Specify access time desired on Purchase Order.

A Logic " 1 " = A more positive voltage, nominally +5 V
A Logic " 0 " = A more negative voltage, nominally 0 V
Character outline dots must be programmed Logic " 0 ", field Logic " 1 ", for maximum access rate.

FIRST CARD:

COLUMN NUMBER

29

REMAINING 64 CARDS:
COLUMN NUMBER
1, 2, 3, 4, 5, 6
$8,9,10,11,12,13,14$
$15,16,17,18,19,20,21$
$22,23,24,25,26,27,28$
29, 30, 31, 32, 33, 34, 35
36, 37, 38, 39, 40, 41, 42
$43,44,45,46,47,48,49$
50, 51, 52, 53, 54, 55, 56
57, 58, 59, 60, 61, 62, 63
64, 65, 66, 67, 68, 69, 70
$73,74,75,76,77,78,79,80$

DESCRIPTION

Logic level at chip enable input required to enable chip.

DESCRIPTION

Character address input code, the MSB (A5) is in Column 6.
The top line of the character addressed, the MSB 07 is in Column 14.
The next line of the character addressed, the MSB 07 is in Column 21.
The next line of the character addressed, the MSB 07 is in Column 28.
The next line of the character addressed, the MSB 0_{7} is in Column 35. The next line of the character addressed, the MSB 0_{7} is in Column 42. The next line of the character addressed, the MSB 0_{7} is in Column 49. The next line of the character addressed, the MSB 0_{7} is in Column 56. The next line of the character addressed, the MSB 0_{7} is in Column 63. The bottom line of the character addressed, the MSB 0_{7} is in Column 70. Coding these columns is not essential and may be used for card identification purpose.

	S						S	
Top Line	B						B	
	0	0	0	0	0	0	0	
	1	2	3	4	5	6	7	
	1	0	0	0	0	0	1	T1
	0	1	1	1	1	1	0	T2
	0	1	1	1	1	1	1	T3
	0	1	1	1	1	1	1	T4
	0	1	1	0	0	0	0	T5
	0	1	1	0	1	1	0	T6
	0	1	1	1	1	1	0	T7
	0	1	1	1	1	1	0	T8
	1	0	0	0	0	0	1	T9

FUNCTIONAL TIMING DIAGRAM

	CHARACTER FONT								
$\left.\begin{array}{lll} A & A & A \\ 5 & 4 & 3 \end{array} \right\rvert\,$	$\begin{aligned} & A_{0} \\ & A_{1} \\ & A_{2} \end{aligned}$	000	100	010	110	001	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	$C E=1$	
								0	1
								1	1
								1	1
		$\begin{aligned} & 0000000 \\ & 1234567 \end{aligned}$	1234567	1234567	1234567	1234567	1234567	1234567	1234567
$0 \quad 0 \mathrm{C}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 2 \\ & \mathrm{~T} 3 \\ & \mathrm{~T} 4 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 6 \\ & \mathrm{~T} 7 \\ & \mathrm{~T} 8 \\ & \mathrm{~T} 9 \end{aligned}$		$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned} \quad \stackrel{\bullet}{\bullet}$		$\begin{gathered} \bullet \bullet \bullet \bullet \\ \bullet \end{gathered}$		$\begin{aligned} & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \\ & \bullet \bullet \bullet \\ & \bullet \bullet \\ & \bullet \\ & \bullet \bullet \bullet \bullet \bullet \bullet \bullet \end{aligned}$	$\begin{aligned} & \bullet \bullet \bullet \bullet \bullet \bullet \\ & \bullet \\ & \bullet \bullet \\ & \bullet \cdot \\ & \bullet \cdot \\ & \bullet \cdot \end{aligned}$	$\begin{array}{ccc} \bullet \bullet \bullet \bullet \bullet \\ \bullet & \bullet \bullet \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet \bullet & \bullet \end{array}$
$\begin{array}{llll}0 & 0 & 1\end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 0 \end{aligned}$	$\begin{array}{ll} \bullet & \stackrel{\bullet}{\bullet} \\ \bullet & \stackrel{\bullet}{\bullet} \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \stackrel{\bullet}{\bullet} \\ \bullet & \bullet \end{array}$	$\begin{gathered} \bullet \bullet \\ \bullet \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \bullet \\ \bullet \cdot \end{gathered}$		$\stackrel{\bullet}{\bullet} \bullet_{\bullet}^{\bullet} \bullet_{-}^{\bullet} \bullet_{\bullet}^{\bullet}$		$\begin{array}{lll} \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & & \bullet \end{array}$	$\begin{array}{llll} \bullet & & \bullet \\ \bullet & \bullet & & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & & \bullet & \bullet \\ \bullet & & \ddots & \bullet \\ \bullet & & & \bullet \\ \bullet & & & \bullet \\ \bullet \end{array}$	
$\begin{array}{lll} 0 & 1 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \bullet \bullet \bullet \bullet \bullet \\ & \bullet \\ & \bullet \\ & \bullet \bullet \bullet \bullet \\ & \bullet \\ & \bullet \\ & \bullet \bullet \\ & \bullet \end{aligned}$	$\begin{array}{ccc} \bullet & \bullet \bullet \bullet & \bullet \\ \bullet & & \bullet \\ \bullet & & \bullet \\ \bullet & \bullet \end{array}$						$\begin{array}{lll} \bullet & & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & & \bullet \end{array}$
$\begin{array}{lll} 0 & 1 & 1 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\bullet_{\bullet}^{\bullet}$			$\begin{aligned} & \bullet \bullet \bullet \bullet \\ & \bullet \end{aligned}$			$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet$
$\begin{array}{llll} 1 & 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$				$\begin{array}{cc} \bullet & \bullet \\ \bullet & \bullet \end{array}$	$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \\ & \bullet \bullet \bullet \\ & \bullet \bullet \\ & \bullet \cdot \\ & \hline \end{aligned}$	$\bullet^{\bullet} \bullet^{\bullet} \bullet^{\bullet}$		
$\begin{array}{lll} 1 & 0 & 1 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$				$\bullet \bullet \bullet \bullet \bullet \bullet \cdot \stackrel{\bullet}{\bullet}$	$\begin{aligned} & \bullet \bullet \\ & \bullet \bullet \\ & \bullet \bullet \end{aligned}$	$\bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet$	$\bullet^{\bullet^{\bullet}}$
$\begin{array}{lll} 1 & 1 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\bullet_{0}^{\bullet} \bullet_{0}^{\bullet} \cdot \stackrel{\bullet}{\bullet}$	$\begin{array}{r} \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \\ \bullet \cdot \\ \bullet \cdot \\ \bullet \cdot{ }_{\bullet}^{\bullet} \\ \bullet \end{array}$			$\stackrel{\bullet}{\bullet}_{\bullet-\stackrel{\bullet}{\bullet}}^{\bullet-} \stackrel{\bullet}{\bullet}_{\bullet}^{\bullet}$		$\bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet \bullet \bullet$ \bullet $\bullet \bullet$ $\bullet \bullet$ \bullet $\bullet \bullet$ $\bullet \bullet$	
$\left.\begin{array}{lll} 1 & 1 & 1 \end{array} \right\rvert\,$	1 2 3 4 5 6 7 8 9			$\begin{aligned} & \bullet \bullet \\ & \bullet \bullet \\ & \bullet \bullet \end{aligned}$			$\begin{aligned} & \bullet \bullet \bullet \bullet \\ & \bullet \bullet \bullet \bullet \bullet \end{aligned}$		

3341/3341A

64-WORD $\times 4$-BIT FIRST-IN FIRST-OUT SERIAL MEMORY

GENERAL DESCRIPTION - The 3341 or 3341 A is a 64 -word $\times 4$-bit memory that operates in a first-in first-out (FIFO) mode. Inputs and the output are completely independent (no common clocks) making the 3341/3341A ideal for asynchronous buffer applications.
Special on-chip input pull-up circuits and bipolar-compatible output buffers provide direct bipolar interfacing with no external components required. Control signals are provided so that both vertical and horizontal cascading may be easily achieved.

- 1 MHz SHIFT-IN SHIFT-OUT RATE (3341A)
- DIRECT TTL/DTL INTERFACE AT INPUTS AND OUTPUTS
- 16-PIN DUAL IN-LINE PACKAGE
- READILY EXPANDABLE IN EITHER DIRECTION
- ASYNCHRONOUS OR SYNCHRONOUS OPERATION
- CONVENIENT PIN ORIENTATION FOR EASY BREADBOARDING
- UNIQUE TTL INPUT STAGE

PIN NAMES

IR	Input Ready
SI	Shift In
Dn	Data Inputs
Qn	Data Outputs
$\overline{M R}$	Master Reset
OR	Output Ready
SO	Shift Out
VSS	+5 Volt Power Supply
VDD	0 Volt Power Supply
VGG	-12 Volt Power Supply

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$3341 \mathrm{ADC}, 3341 \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
3341 DL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3341 DM	-20 V to +0.3 V
Voltage on alt pins ex cept $V_{\text {DD }}$ with respect to $\mathrm{V}_{\text {SS }}$	-7.0 V to +0.3 V
Voltage on $V_{\text {DD }}$	

BLOCK DIAGRAM

LOGIC SYMBOL

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SS}}=\operatorname{Pin} 16 \\
& \mathrm{~V}_{\mathrm{DD}}=\operatorname{Pin} 8 \\
& \mathrm{~V}_{\mathrm{GG}}=\operatorname{Pin} 1
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

FUNCTIONAL DESCRIPTION:

DATA INPUT:

The four bits of data on the D_{0} through D_{3} inputs are entered into the first bit location when both Input Ready (IR) and Shift In (SI) are HIGH ($\approx V_{S S}$). This causes IR to go LOW ($\approx V_{D D}$), but data will stay locked in the first bit location until both IR and SI are LOW. Then data will propagate to the second bit location, provided the location is empty. When data is transferred, IR will go HIGH indicating that the device is ready to accept new data. If the memory is full, IR will stay LOW.

DATA TRANSFER:

Once data is entered into the second cell, the transfer of any full cell to the adjacent (downstream) empty cell is automatic, activated by an on chip control. Thus data will stack up at the end of the device while empty locations will "bubble" to the front. tBT defines the time required for the first data to travel from input to the output of a previously empty device, or for the first empty space to travel from the output to the input of a previously full device.

DATA OUTPUT:

When data has been transferred into the last cell, Output Ready (OR) goes HIGH, indicating the presence of a valid data at the output pins Q_{0} through Q_{3}. The transfer of data is initiated when both the Output Ready output from the device and the Shift Out (SO) input to the device are HIGH. This causes OR to go LOW; output data, however, is maintained until both OR and SO are LOW. Then the content of the adjacent (upstream) cell (provided it is full) will be transferred into the last cell, causing OR to go HIGH again. If the memory has been emptied, OR will stay LOW.

Input Ready and Output Ready may also be used as status signals indicating that the FIFO is completely full (Input Ready stays LOW for at least $t_{B T}$) or completely empty (Output Ready stays LOW for at least $t_{B T}$).

RESET:

When Master Reset ($\overline{M R}$) goes LOW, the control logic is cleared. When $\overline{M R}$ returns HIGH, Output Ready (OR) stays LOW, and Input Ready (IR) goes HIGH if Shift In (SI) was LOW. Since the Data Outputs (Q_{0} through Q_{3}) are unaffected by $\overline{M R}$, Data on Q_{0} through Q_{3} should be considered valid only while OR is HIGH.

SPECIAL INPUT CHARACTERISTICS:

The 3341 and 3341A use a TTL-compatible input pull-up circuit. When going HIGH, the TTL driver need only provide 2.2 V minimum. The input is then internally pulled up to $V_{\text {SS }}$.

When going LOW, the TTL driver must overcome a maximum current barrier of 1.6 mA at 2 V . Once this current is reached, the input current drops to IIL.

All inputs are returned to $V_{\text {SS }}$ internally through a switched pull-up resistor.

DC CHARACTERISTICS: DC, DL, DM: $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$. (Note 1)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$V_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.0$			V	Notes 2 and 3
$V_{\text {IL }}$	Input LOW Voltage			0.8	V	Note 2
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.0$		- *	V	$1 \mathrm{OH}=0.3 \mathrm{~mA}$
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$V_{\text {II }}$	Input Pull-up Initiation Voltage			2.0	V	$\mathrm{V}_{\text {SS }}=4.75 \mathrm{~V}$
				2.2	V	$\mathrm{V}_{\mathrm{SS}}=5.25 \mathrm{~V}$
$V_{\text {IP }}$	Peak Input Current Voltage Point			$\mathrm{V}_{\mathrm{SS}}-1.5$	V	
IIH	Input HIGH Current	250			$\mu \mathrm{A}$	Note 2, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$
IIL	Input Leakage Current			30	$\mu \mathrm{A}$	Note 2, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
IIP	Input Barrier Current			1.6	mA	Note 2
${ }^{\prime} \mathrm{GG}$	VGG Current			12	mA	3341DC, 3341ADC
				16	mA	3341 DL , 3341DM
${ }^{\prime}$ DD	VDD Current			45	mA	3341 DC, 3341ADC
				60	mA	$3341 \mathrm{DL}, 3341 \mathrm{DM}$
$P_{\text {D }}$	Power Dissipation			450	mW	3341 DC, 3341ADC
				600	mW	$3341 \mathrm{DL}, 3341 \mathrm{DM}$

NOTES:

1. See Operating Temperatures on preceeding page.
2. Inputs include $D_{0}-D_{3}$. Master Reset, Shift In, and Shift Out.
3. Internal pull up circuits are provided on all inputs to insure proper HIGH level.

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=12 \mathrm{~V} \pm 5 \%$ (Note 1)

SYMBOL	PARAMETER	3341A DC			3341 DC, DL, DM			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
tIRH	Input Ready HIGH Time	50		400	90	300	550	ns	Fig. 1, Note A, Note F
tIRL	Input Ready LOW Time	100		550	138	300	550	ns	Fig. 1, Note B
tovi	Control Overlap HIGH Time	80			100			ns	Figs. 1 and 2, Note 4, Note K
toVL	Control Overlap LOW Time	80			100			ns	Figs. 1 and 2, Note 4, Note L
${ }^{\text {t }}$ DH	Data Input Stable Time	200			400			ns	Fig. 1
tDD	Data Input Delay Time			0			25	ns	Fig. 1, Note C
tory	Output Ready HIGH Time	70		450	90	300	500	ns	Fig. 2, Note G
torL	Output Ready LOW Time	70		550	170	450	850	ns	Fig. 2, Note H
tBT	Data Bubble-through Time			16			32	$\mu \mathrm{S}$	Note 5
tDV	Data Valid After SI or OR	75			75			ns	Fig. 2, Note J
tMRW	Master Reset Pulse Width	400			400			ns	Note 7
${ }_{\text {t }}$	Data Output Available Time	0			0			ns	Fig. 2
$\mathrm{CIN}^{\text {IN }}$	Input Cap. of Data and Control Lines			7.0			7.0	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=V_{\text {SS }}$
C_{MR}	Input Cap. of $\overline{\mathrm{MR}}$			7.0			15	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {MR }}=\mathrm{V}_{\text {SS }}$

NOTES:
4. Control signals include Input Ready, Shift In, Output Ready, and Shift Out.
5. This parameter defines total time from the time data is loaded into the first word location to the time it is available at $\mathrm{O}_{0}-\mathrm{Q}_{3}$ with FIFO initially empty. Conversely, $t_{B T}$ also defines the time required for an empty space to propagate from the last word location back to the first word location. When the FIFO is full, this is the time from the HIGH to LOW transition of OR to the LOW to HIGH transition of IR.
6. 1 TTL load +20 pF
7. The $\overline{M R}$ input overrides all other control functions. It resets the control register and the input and output control logic while disabling any SI or SO inputs.

TIMING DIAGRAMS

Figure 1

Input data must remain stable during timing window ${ }^{t} \mathrm{DH}$. Both SI and IR must be HIGH for tOVH. Similarly, both SI and IR must be LOW for toVL.

NOTES:

A. $t_{\text {IRH }}$ is referenced to the positive going edge of IR or SI, whichever occurs later.
B. $t_{I R L}$ is referenced to the negative going edge of IR or SI, whichever occurs later.
C. tDD is referenced to the positive going edge of IR or SI, whichever occurs later.
D. t_{OVH} is referenced to the positive going edge of IR or SI, whichever occurs later.
E. tOVL is referenced to the negative going edge of IR or SI whichever occurs later.
F. Data must be stable for $t_{D H}$ or t_{IRH}, whichever is shorter.

OUTPUT TIMING

Figure 2

Both SO and OR must be HIGH for tOVH. Similarly both SO and OR must be LOW for tOVL. Data will remain stable for tDV after both SO and OR are LOW.

NOTES:
G. tORH is referenced to the positive going edge of OR or SO, whichever occurs later.
H. tORL is referenced to the negative going edge of OR or SO, whichever occurs later.
J. tDV is referenced to the negative going edge of OR or SO, whichever occurs later.
K . tOVH is referenced to the positive going edge of IR or SI , whichever occurs later.
L tOVL is referenced to the negative going edge of IR or SI, whichever occurs later.

NOTE: Composite Shift In should be LOW when Master Reset goes HIGH. Input data may be changed after Composite IR goes LOW. Composite IR will not go HIGH until Composite Shift In goes LOW. When Composite IR goes HIGH, FIFO's will accept new data. 3341's will operate at full speed if these rules are followed.

3342/3347
 QUAD 64-QUAD/80-BIT STATIC SHIFT REGISTERS

GENERAL DESCRIPTION - The 3342 and 3347 are Static Shift Registers in Quad 64-bit and Quad 80 -bit organizations, respectively. An on-chip clock generator provides appropriate internal clock phases from a single external TTL-level clock input. Passive on-chip input pull-up resistors allow direct TTL compatibility on all inputs. The outputs are capable of driving a single TTL load directly without the need for external components. Both the 3342 and 3347 are manufactured with the p-channel silicon gate technology. They are available in ceramic or plastic 16-pin Dual In-line Packages in the commercial temperature range, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

- SINGLE TTL COMPATIBLE EXTERNAL CLOCK
- DIRECT TTL COMPATIBILITY
- 1.5 MHz OPERATION GUARANTEED
- LOW CLOCK CAPACITANCE
- INPUT OVERVOLTAGE PROTECTION
- EXTERNAL RECIRCULATE CONTROL
- 16-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE

PIN NAMES

Q_{n}	Data Outputs	$V_{S S}$
D_{n}	Data Inputs	$V_{D D}$
$R e c_{n}$	Recirculate Inputs	$V_{G G}$
$C P$	Clock Pulse Input	

+5-volt Power Supply
0-volt Power Supply
-12-volt Power Supply

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION - The 3342 and 3347 are Single Phase Static Shift Registers. Data is accepted at the inputs when the external clock is HIGH. Data is available at the outputs after the negative clock transition as illustrated in Figure 1. All inputs are connected by an MOS transistor to V_{SS} allowing complete TTL compatibility. The recirculate inputs allow data to be entered externally (LOW logic level) or internally recirculated in the registers (HIGH logic level). The output stageslare push/pull amplifiers and can drive one TTL load.

DC REQUIREMENTS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}-1.0$			V	Notes 1 and 2
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	V_{GG}		0.80	V	Note 1

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
V_{OH}	Output HIGH Voltage	2.4		$\mathrm{V}_{\text {SS }}$	v	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	0		0.4	v	$\mathrm{I}_{\mathrm{OL}}=-1.6 \mathrm{~mA}$
${ }^{1 / \mathrm{H}}$	Input HIGH Current	-0.10			mA	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$, Note 1
IIL	Input LOW Current			-1.6	mA	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$, Note 1
IIN	Input Leakage Current			1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-5.0 \mathrm{~V}, \text { Note } 1 \\ & \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$
IDD	V_{DD} Current			28	mA	
$\mathrm{I}_{\underline{\mathrm{GG}}}$	V_{GG} Current			12	mA	
${ }^{\text {ISS }}$	$\mathrm{V}_{\text {SS }}$ Current			40	mA	
P_{D}	Power Dissipation			380	mW	${ }_{\text {tPWH }}=265 \mathrm{~ns}, \mathrm{f}=1.5 \mathrm{MHz}$

NOTES:

1. These parameters apply to all data, recirculate, and clock inputs.
2. On-chip pull-up resistors are provided on all inputs to effect the proper logic level when driving with TTL/DTL.

FAIRCHILD MOS MEMORY PRODUCTS • 3342/3347

AC REQUIREMENTS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. (Note 4)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
f	Operating Frequency	0		1.5	MHz	Note 4
$\mathrm{t}_{\text {PWH }}$	Clock Pulse Width HIGH	.265		10	$\mu \mathrm{~s}$	Note 3
$\mathrm{t}_{\text {PWL }}$	Clock Pulse Width LOW	.320			$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Times $(10 \%$ to 90\%)			1.0	$\mu \mathrm{~s}$	
t_{DS}	Data Input Set-up Time	200			ns	
t_{DH}	Data Input Hold Time	100			ns	
$\mathrm{t}_{\text {RS }}$	Recirculate Set-up Time	200			ns	
$\mathrm{t}_{\text {RH }}$	Recirculate Hold Time	130			ns	

NOTES:
3. Outputs remain valid until negative-going edge of next clock pulse.
4. $\mathbf{1 / f}=\mathrm{t}$ PWH +t PW $+\mathrm{tr}+\mathrm{tf}$.

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
t_{A}	Clock to Output Delay		265	ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ Load $=1 \mathrm{TTL}$ Input	
C_{IN}	Capacitance (All Inputs Including Clock)		5.0	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ $\mathrm{f}=1.0 \mathrm{MHz}$	

WAVEFORM

3348/3349
 HEX 32-BIT STATIC SHIFT REGISTER

GENERAL DESCRIPTION - The 3348/3349 contains six separate 32-Bit Static Shift Registers constructed in a single chip using P -channel enhancement mode silicon gate MOS technology. Only two power pins, V_{SS} and V_{GG}, are needed for circuit operation. An on-chip clock generator provides all internal clock phases from a single TTL clock pulse. Each output is a bare drain, and therefore requires a $7.5 \mathrm{k} \Omega$ load resistor to V_{GG}. A recirculate data input allows the user to either enter data from the outside (LOW logic level) or to internally recirculate the contents of the registers (HIGH logic level).

The 3348 is available in a 24 -pin ceramic Dual In-line Package and the 3349 is available in a 16 -pin plastic or ceramic Dual In-line Package. The 3348 option provides an output disable pin for wired-OR operation. The outputs are disabled when Output Enable is HIGH.

```
- SINGLE TTL EXTERNAL CLOCK - SINGLE POWER SUPPLY OPERATION
- INPUT OVERVOLTAGE PROTECTION
- LOW CLOCKLINE CAPACITANCE
- TTL COMPATIBLE INPUTS
- CASCADE CAPABILITY
```


- SINGLE POWER SUPPLY OPERATION - INTERNAL RECIRCULATION CONTROL
 - DC TO 1 MHz OPERATION GUARANTEED
 - OUTPUT DISABLE CONTROL (3348 ONLY)
 - SINGLE ENDED (BARE DRAIN) BUFFERS

PIN NAMES	
D_{n}	Data Inputs
Q_{n}	Data Outputs
$\frac{R}{\overline{C P}}$	Recirculate Input
$O E$	Clock Pulse
	Output Enable

ABSOLUTE MAXIMUM RATINGS

All Inputs, V_{GG}
All Outputs
Output Current
Storage Temperature
Operating Temperature
-22 V to +0.3 V
-19 V to +0.3 V
$+10 \mathrm{~mA}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: All voltages with respect to V_{SS}.

LOGIC SYMBOL

CONNECTION DIAGRAMS DIP (TOP VIEW)

3348

3349

FAIRCHILD MOS INTEGRATED CIRCUITS • 3348/3349

FUNCTIONAL DESCRIPTION - The $3348 / 3349$ is a two-phase static shift register. The single external clock phase generates two shift phases as well as a static operation phase via the on-chip clock generator. Data is accepted at the inputs after the negative-going transition of the external clock. Output information is available after the positive clock transition as illustrated in Figure 1. For long-term storage, the external clock should be held HIGH.

DC REQUIREMENTS: $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$V_{I H}$	Input HIGH Voltage	$V_{S S}-1.5$			V	All Inputs Including Clocks
$V_{I L}$	Input LOW Voltage			0.6	V	All Inputs Including Clocks
R_{L}	Output Load Resistor to V_{GG}	7.5			$\mathrm{k} \Omega$	

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
V_{OH}	Output HIGH VoItage	$\mathrm{V}_{\mathrm{SS}}-1.2$			V	7500Ω Load to V_{GG}
$\mathrm{V}_{\mathrm{SS}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-11 \mathrm{~V}$						
I_{IN}	Input Leakage Current				1.0	$\mu \mathrm{~A}$
I_{GG}	V_{GG} Current			27	mA	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$

AC REQUIREMENTS: $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
f	Operating Frequency			1.0	MHz	
tPWL	Clock Pulse Width LOW	0.35		50	$\mu \mathrm{s}$	
tPWH	Clock Pulse Width HIGH	0.6			$\mu \mathrm{s}$	
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise Time and Fall Time			0.5	$\mu \mathrm{s}$	
tDS	Input Data Set-Up Time	180			ns	
${ }^{\text {t }} \mathrm{DH}$	Input Data Hold Time	40			ns	
trPW	Recirculate Pulse Width	350			ns	
tRS	Recirculate Set-Up Time	225			ns	
${ }_{\text {tr }}$	Recirculate Hold Time	100			ns	

AC CHARACTERISTICS: $V_{S S}=5 \mathrm{~V} \pm 5 \%, V_{G G}=-12 \pm 1 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
t_{A}	Clock to Data Out Delay Time	125		520	ns	$\mathrm{C}_{\mathrm{L}}=0$ to $20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega$
t EO	Output Enable Time Delay (3348 Only)			350	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega$ to V_{GG}
t_{DO}	Output Disable Time Delay (3348 Only)			350	ns	

Fig. 1. 3348 / 3349 Timing Diagram and Voltage Waveforms

3351
 40×9 FIRST-IN FIRST-OUT MEMORY

GENERAL DESCRIPTION - The 3351 is a First-In First-Out (FIFO) Memory used in data rate buffering applications. The 3351 has a capacity of 40 nine-bit words. The words are accepted at the input, automatically shifted toward the output, and removed at any rate in the same sequence in which they were entered.
The 3351 has status indicators on both the input and output to signal an available empty input or a valid data word at the output. It also has separate input and output enable lines, in addition to a master reset line. A unique input stage interfaces to TTL without external components. The 3351 is manufactured using the p-channel Isoplanar silicon gate process with ion-implantation.

- 2 MHz (3351-1) AND 1 MHz (3351-2) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS AND OUTPUTS
- FULLY TTL COMPATIBLE
- 3-STATE OUTPUTS
- INPUT AND OUTPUT ENABLES
- EXPANDABLE IN EITHER DIRECTION
- STATUS INDICATORS ON INPUT AND OUTPUT
- 28-PIN CERAMIC DUAL IN-LINE PACKAGE

PIN NAMES

Q_{n}	Outputs	IR	Input Ready
D_{n}	Data Inputs	OR	Output Ready
$\overline{M R}$	Master Reset	$\overline{I E}$	Input Enable
SI	Shift In	$\overline{O E}$	Output Enable
SO	Shift Out		

ABSOLUTE MAXIMUM RATINGS

$V_{G G}$ and Inputs
-20 V to +0.3 V
$V_{D D}$ and Outputs
Output Sink Current
-7.0 V to +0.3 V
5.0 mA

Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
NOTE: All Voltages with respect to $V_{\text {SS }}$

FUNCTIONAL DESCRIPTION - The 40 by 9 memory array is under the constant control of a control logic network (See Fig. 1). Each word position in the array is clocked by a control register, which also stores a marker bit; a " 1 " signifies that that position's data is filled and a " 0 " indicates a vacancy at that location. Each control register clocks data from the preceding nine data flip-flops to its own set of nine data flip-flops. The register logic detects the status of the preceding and succeeding registers' marker bits to determine when to clock its data flip-flops. When data has been transferred from location " n " to location " $n+1$ ", the $n+1$ control circuitry changes the marker bit at control register " n " from a " 1 " to a " 0 ", indicating that the data at location " n " has been transferred elsewhere in the array. This " 0 " will then propagate back to the first control register signifying that the FIFO is capable of accepting more data.

Fig. 1
The 3351 buffers the first and last control registers and uses them as input/output status indicators. Since all status marker " 0 " s propagate toward the first control register, a " 0 " at the first register indicates the FIFO is ready to clock in more data. Likewise, all " 1 "s propagate towards the last control register, and a " 1 " here means that data is valid at the outputs.
A Master Reset control is provided to set all the control registers' status markers to " 0 ". Note that the data registers are not reset by $\overline{M R}$.
SHIFT IN (SI), INPUT READY (IR) - A LOW to HIGH transition of the Shift In command does two things: 1) the first control register is enabled, permitting input data to be loaded into the first set of data registers and setting the first marker bit to a " 1 ", and 2) the second control register is locked out by means of an inverted SI command. At this point, data from the first data register cannot be transferred to the second data register. The Input Ready signal indicates the status of the first marker bit and accordingly goes LOW(not ready).
The HIGH to LOW transition of the SI locks out the first control register and causes data from the first data registers to propagate down the FIFO under the control of the control logic. This action sets the first marker bit to a " 0 " and the Input Ready returns HIGH (input ready). When the FIFO becomes full, the IR will stay LOW after SI returns LOW and any further SI commands will be ignored by the circuit. When a " 0 " ripples back from the last to the first control register the Input Ready (IR) will return to HIGH (if SI is LOW).

Fig. 2
INPUT ENABLE ($\overline{I E}$) - A HIGH on the Input Enable disables the SI input and the current-sourcing capability of the special TTL pull-up networks of the data inputs and the SI. A LOW enables these inputs.
SHIFT OUT (SO), OUTPUT READY (OR) - The HIGH to LOW transition of Shift Out command disables the clocking line of the last control register and changes the 40 th bit marker to a " 0 ". The Output Ready is then forced LOW. Note that data is not transferred from the 39th position to the 40th position on this edge. When SO makes the LOW to HIGH transition, the FIFO is again under control of its control logic circuitry, new data is transferred to the 40th location and the 40th marker bit is reset to a " 1 ". The Output Ready returns to HIGH, signifying the new data at the output leads is now valid.

When the FIFO is empty, the OR remains LOW after SO goes HIGH. SO commands will be ignored until a " 1 "marker ripples down to the last control register, after which the OR goes HIGH (if SO is HIGH).

Fig. 3
OUTPUT ENABLE ($\overline{O E}$) - A HIGH on Output Enable forces the nine outputs to a high impedance state, disables the shift out command, and disables the current-sourcing capability of the special TTL pull-up network of SO. A LOW again enables SO, and the outputs revert back to their normal TTL states.
MASTER RESET ($\overline{M R}$) - A LOW on Master Reset sets all the control logic marker bits to " 0 ". Consequently, IR will go HIGH (if SI is LOW) and OR will go LOW, indicating that the FIFO is now empty.

FAIRCHILD MOS INTEGRATED CIRCUIT • 3351

DC REQUIREMENTS: $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
$V_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.0$	$\mathrm{V}_{\text {SS }}+0.3$	$\mathrm{V}_{\text {SS }}-1.0$	$\mathrm{V}_{\text {SS }}+0.3$	V	Note 1
$V_{\text {IL }}$	Input LOW Voltage	V_{GG}	0.8	V_{GG}	0.8	V	Note 1

DC CHARACTERISTICS: $V_{S S}=5.0 \vee \pm 5 \%, V_{D D}=0 \vee, V_{G G}=-12 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	$\mathrm{V}_{\text {SS }}-0.5$		$\mathrm{V}_{\text {SS }}-0.5$		V	$\mathrm{I}^{\mathrm{OH}}=50 \mu \mathrm{~A}$
VOH	Output HIGH Voltage	2.4		2.4		V	${ }^{1} \mathrm{OH}=-0.2 \mathrm{~mA}$
V_{OL}	Output LOW Voltage		0.4		0.4	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
V_{11}	Pull Up Initiation Voltage		2.2		2.2	V	$\begin{aligned} & \text { Fig. } 2, \text { Note } 1 \\ & \mathrm{I}_{\mathrm{N}}=-0.12 \mathrm{~mA} \end{aligned}$
$V_{\text {IP }}$	Peak Current Voltage		$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}-1.5$	V	Fig. 6, Note 1
IIP	Peak Current		1.6		1.6	mA	Fig. 6, Note 1
I/H	Input HIGH Current	0.22		0.22		mA	Fig. 6, Note 1 $V_{I N}=V_{S S}-1.0 \mathrm{~V}$
IIL	Input LOW Current		50		50	$\mu \mathrm{A}$	Fig. 6, Note 1 $V_{\text {IN }}=0.4 \mathrm{~V}$
IDD	$V_{\text {DD }}$ Current		65		50	mA	
IGG	$\mathrm{V}_{\text {GG }}$ Current		10		8.0	mA	
${ }_{P D}$	Power Dissipation		520		420	mA	

AC REQUIREMENTS: $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
IIDS	IE Disable Set-Up Time	20		20		ns	Fig. 6
tIDH	IE Disable Hold Time	20		20		ns	Fig. 6
tIES	IE Enable Set-Up Time	0		0		ns	Fig. 6
tIEH	IE Enable Hold Time	0		0		ns	Fig. 6
${ }^{\text {t }}$ D	Input Data Set-Up Time	0		0		ns	Fig. 6
${ }^{\text {t }}$ D	Input Data Hold Time	220		440		ns	Fig. 6
${ }^{\text {tSIH }}$	SI HIGH Time	220		440		ns	Fig. 6
${ }^{\text {tSIL }}$	SI LOW Time	280		560		ns	Fig. 6
${ }^{\text {tods }}$	$\overline{\text { OE Disable Set-Up Time }}$	20		20		ns	Fig. 8
${ }^{\text {toDH }}$	$\overline{\mathrm{OE}}$ Disable Hold Time	20		20		ns	Fig. 8
toES	OE Enable Set-Up Time	0		0		ns	Fig. 8
toEH	OE Enable Hold Time	0		0		ns	Fig. 8
${ }^{\text {tSOL }}$	SO LOW Time	200		400		ns	Fig. 8
${ }^{\text {tSOH}}$	SO HIGH Time	300		600		ns	Fig. 8
trPW	$\overline{M R}$ Pulse Width	100		200		ns	Fig. 8
trs	$\overline{\mathrm{MR}}$ to SI Set-Up Time	0		0		ns	Fig. 8

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
${ }^{\text {t }}$ SI-IRHL	SI to IR Delay Time		220		440	ns	Fig. 6, Note 2
${ }^{\text {t SI-IRLH }}$	SI to IR Delay Time		280		560	ns	Fig. 6, Note 2
${ }^{\text {t SO-ORLL }}$	SO to OR Delay Time		200		400	ns	Fig. 7, Note 2
tSO-ORHH	SO to OR Delay Time		300		600	ns	Fig. 7, Note 2
${ }^{\text {tMR-IR }}$	$\overline{M R}$ to IR Delay Time		300		480	ns	Fig. 8
${ }^{\text {tMR-OR }}$	$\overline{M R}$ to OR Delay Time		240		480	ns	Fig. 8
${ }^{\text {t }}$ T	Bubble-Through Time		9.0		15	$\mu \mathrm{s}$	Fig. 7, Note 3
${ }^{\text {t }}$ E	Output Enable Time		300		600	ns	Fig. 7
${ }^{\text {t }}$ D	Output Disable Time		300		600	ns	Fig. 7

NOTES: 1. Includes all Data Inputs, $\overline{I E}, \overline{O E}, S I, S O$ and $\overline{M R}$. (See Feedback Resistor, Figure 2).
2. HL means positive-going edge of first signal to negative-going edge of second signal, etc.
3. Forward and reverse.

TYPICAL INPUT CHARACTERISTICS

Fig. 4

TIMING DIAGRAMS

Fig. 6. INPUT TIMING

Fig. 8 OUTPUT TIMING

FAIRCHILD MOS INTEGRATED CIRCUIT • 3351

Fig. 9 SIMPLE WORD EXPANSION

Fig. 10 HIGH SPEED WORD EXPANSION

NOTES:
A. All input t_{r} and $t_{f}: 10 \mathrm{~ns}$.
B. All times measurements referenced to 1.5 level.

Fig. 11 OUTPUT LOADING

3355/2533

1024-BIT STATIC SHIFT REGISTER

GENERAL DESCRIPTION - The 3355/2533 is a single phase 1024-Bit Static Shift Register with an on-chip clock generator that is driven by a single phase TTL clock. A multiplexer is provided to select from two input sources. A unique on-chip input pull up circuit allows interfacing directly from TTL to all inputs without external components.

The $3355 / 2533$ is manufactured with the P -channel Isoplanar process and is available in 8-pin ceramic or plastic Dual In-line Packages in the commercial temperature range.

- 4.0 MHz (3355) AND 1.5 MHz (2533) GUARANTEED OPERATION
- TTL COMPATIBILITY
- SINGLE PHASE TTL CLOCK
- LOW CLOCK CAPACITANCE
- OPEN RECIRCULATE LOOP
- 8-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE

PIN NAMES

D_{n}	Data Inputs
Q_{n}	Data Output
SEL	Data Input Select
CP	Clock Input

ABSOLUTE MAXIMUM RATINGS

VGG and Inputs $^{\text {VDD }}$ and Outputs	-20 V to +0.3 V
Output Sink Current	-7.0 V to +0.3 V
Storage Temperature	10 mA
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note: All voltages with respect to $\mathrm{V}_{\text {SS }}$.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION - The $3355 / 2533$ is a single phase 1024 -Bit Static Shift Register. Data is loaded into the register on the negative transition of the external clock.

The Select Input allows data to enter the register from either D_{1} or D_{2}. D_{1} is selected with a LOW on Select and D_{2} is selected with a HIGH on Select. This feature allows recirculating of data around all of a cascaded bit string without external logic.

Input Characteristics - The $3355 / 2533$ has a unique pull-up circuit on each input, including the clock, to ensure TTL compatibility. P-channel MOS requires a resistor to pull a TTL output from the HIGH state of 2.4 V toward the +5.0 V power supply (to a minimum of $\mathrm{V}_{\mathrm{SS}}-1$). A voltage controlled resistor performs this pull-up function but does not load the TTL output in the LOW state (see Figures 3 and 4).

Output Characteristics - Each output will drive one unit TTL load (1.6 mA at 0.4 V) directly or another unit Shift Register load without any external components.

DC REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	3355		2533		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		V
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}{ }^{-1}$	$\mathrm{~V}_{\mathrm{SS}}+0.3$	$\mathrm{~V}_{\mathrm{SS}}{ }^{-1}$	$\mathrm{~V}_{\mathrm{SS}}+0.3$	Note 1, Note 2	
V_{IL}	Input LOW Voltage	V_{GG}	+0.8	$\mathrm{~V}_{\mathrm{GG}}$	+0.8	V	Note 1

DC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	3355		2533		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1}$		$\mathrm{V}_{\text {SS }}{ }^{-1}$		V	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$, Note 2
v_{OL}	Output LOW Voltage		0.4		0.4	V	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{11}	Pull-up Initiation Voltage		2.2		2.2	V	Note 1, Figs. 3 and 4
$\mathrm{V}_{\text {IP }}$	Peak Current Voltage		$\mathrm{V}_{\text {SS }}{ }^{-1.5}$		$\mathrm{V}_{\text {SS }}{ }^{-1.5}$	V	Note 1, Figs. 3 and 4
IP	Peak Input Current		1.6		1.6	mA	Note 1, Figs. 3 and 4
${ }^{\prime} \mathrm{IH}$	Input HIGH Current	0.22		0.22		mA	Note 1, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$
IIL	Input LOW Current		30		30	$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
'DD	V_{DD} Current		34		35	mA	
${ }^{1} \mathrm{GG}$	V_{GG} Current		15		12	mA	Max Operating Frequency
${ }^{P_{D}}$	Power Dissipation		446		398	mW	

AC REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	3355		2533		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
f	Operating Frequency	0	4.0	0	1.5	MHz	
${ }^{\text {t PWWH }}$	Clock Pulse Width HIGH	0.095	100	0.35	100	$\mu \mathrm{s}$	Fig. 1, Note 3
${ }^{\text {t PWWL }}$	Clock Pulse Width LOW	0.135	∞	0.25	∞	$\mu \mathrm{s}$	
${ }^{\text {t }}$ D	Data Set-Up Time	25		40		ns	
${ }^{\text {t }} \mathrm{DH}$	Data Hold Time	0		0		ns	
${ }^{\text {t }}$ S	Select Set-Up Time	40		70		ns	
${ }^{\text {tSH}}$	Select Hold Time	10		10		ns	

AC CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	3355		2533		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
${ }^{t} A$	Clock to Output Delay		215		300	ns	Fig. 2
$\mathrm{CIN}^{\text {I }}$	Input Capacitance		5		5	pF	Note 1
COUT	Output Capacitance		5		5	pF	

NOTES:

1. Applies to inputs $\mathrm{D}_{1}, \mathrm{D}_{2}$, Clock and Select.
2. See Input Characteristics.
3. $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=$ Clock Transition Time $=0.5 \mu \mathrm{~s}$ maximum. $\mathrm{I} / \mathrm{f}=\mathrm{t}_{\mathrm{PWH}}+\mathrm{t}_{\mathrm{PWL}}+\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}$.

TIMING DIAGRAM

NOTE: Data inputs and Select must be above 90% or below 10% during valid time.
Fig. 1

AC LOAD

Fig. 2

TYPICAL INPUT CHARACTERISTICS

Fig. 3

Fig. 4

3357

QUAD 80-BIT STATIC SHIFT REGISTER

GENERAL DESCRIPTION - The 3357 is a single phase Quad 80 -Bit Static Shift Register with an on-chip clock generator that is driven by a single phase TTL clock. A multiplexer is provided to allow data to be entered from the input or recirculated from the output. A unique on-chip input pull-up circuit allows interfacing directly from TTL to all inputs without external components.

The 3357 is manufactured with the p-channel Isoplanar process and is available in 16 -pin ceramic or plastic Dual In-line Packages in the commercial temperature range.

- 4.0 MHz (33571) AND 2.0 MHz (33572) GUARANTEED OPERATION
- ZERO DATA hOLD TIME
- TTL COMPATIBILITY
- SINGLE PHASE TTL CLOCK
- LOW CLOCK CAPACITANCE
- INPUT MULTIPLEXER
- 16-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE

PIN NAMES

D_{n}	Data Inputs
Q_{n}	Data Outputs
R_{n}	Recirculate Inputs
$C P$	Clock Input

ABSOLUTE MAXIMUM RATINGS

V_{GG} and Inputs

$$
-20 \vee \text { to }+0.3 \mathrm{~V}
$$

$V_{D D}$ and Outputs
Output Sink Current
Storage Temperature
Operating Temperature
Note: All voltages with respect to V_{SS}.

BLOCK DIAGRAM

FAIRCHILD MOS INTEGRATED CIRCUITS • 3357

FUNCTIONAL DESCRIPTION - The 3357 is a single phase Quad 80-Bit Static Shift Register. Data is loaded into the register on the negative transition of the external clock. The Recirculate input choose-between loading new data from the input or recirculating old data from the output. A LOW on Recirculate loads data from the input, and a HIGH loads data from the output.

Input Characteristics - The 3357 has a unique pull-up circuit on each input, including the clock, to ensure TTL compatibility. P-channel MOS requires a resistor to pull a TTL output from the HIGH state of 2.4 V toward the +5.0 V power supply (to a minimum of $\mathrm{V}_{\mathrm{SS}}-1$). A voltage controlled resistor performs this pull-up function but does not load the TTL output in the LOW state (see Figures 3 and 4).

Output Characteristics - Each output will drive one unit TTL load (1.6 mA at 0.4 V) directly or another unit Shift Register load without any external components.

DC REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	33571		33572		UNITS	CONDITIONS
		MiN	MAX	MIN	MAX		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1}$	$\mathrm{V}_{\text {SS }}+0.3$	$\mathrm{V}_{\text {SS }}{ }^{-1}$	$\mathrm{V}_{\mathrm{SS}}+0.3$	V	Note 1
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	V_{GG}	+0.8	V_{GG}	+0.8	V	Note 1

DC CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	33571		33572		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
v_{OH}	Output HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1}$		$\mathrm{V}_{\text {SS }}{ }^{-1}$		V	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$,
v_{OL}	Output LOW Voltage		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {II }}$	Input Pull-up Initiation Volt.		2.2		2.2	V	Note 1, $\mathrm{I}_{\mathrm{I}} \times-0.12 \mathrm{~mA}$
$V_{\text {IP }}$	Input Peak Current Voltage		$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}{ }^{-1.5}$	V	Note 1
$\underline{I P}$	Input Peak Current		1.6		1.6	mA	Note 1
${ }_{\text {IH }}$	Input HIGH Current	0.22		0.22		mA	Note 1, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}{ }^{-1.0 ~ V}$
IL	Input LOW Current		30		30	$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
${ }^{\text {I D D }}$	$V_{\text {DD }}$ Current		20		18	mA	
I_{GG}	$\mathrm{V}_{\text {GG }}$ Current		15		10.5	mA	Max Operating Frequency
P_{D}	Power Dissipation		375		285	mW	

AC REQUIREMENTS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	33571		33572		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
f	Operating Frequency	0	4.0	0	2.0	MHz	
${ }^{\text {t PWWH }}$	Clock Pulse Width HIGH	0.095	100	0.25	100	$\mu \mathrm{s}$	Fig. 1, Note 2
${ }^{\text {t PWWL }}$	Clock Pulse Width LOW	0.135		0.25		$\mu \mathrm{s}$	
${ }^{\text {t }} \mathrm{DS}$	Data Set-Up Time	25		40		ns	
${ }^{\text {t }}$ D ${ }^{\text {d }}$	Data Hold Time	0		0		ns	
${ }^{\text {tss }}$	Select Set-Up Time	40		70		ns	
${ }^{\text {t }} \mathrm{SH}$	Select Hold Time	10		10		ns	

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	33571		33572	UNITS	CONDITIONS	
		MIN	MAX				ns
t_{A}	Clock to Output Delay		215		260	Fig. 2	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5		5	pF	Note 1
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		5		5	pF	

NOTES:

1. Applies to all inputs including Clock.
2. $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=$ Clock Transition Time $=0.5 \mu \mathrm{~s}$.

FAIRCHILD MOS INTEGRATED CIRCUITS • 3357

NOTE: Data Inputs and Select must be above 90% or below 10% during valid time.
Fig. 1

AC LOAD

Fig. 2

TYPICAL
INPUT CHARACTERISTICS

Fig. 3

Fig. 4

3515
 4096-BIT READ ONLY MEMORY

GENERAL DESCRIPTION - The 3515 is a 4096-Bit Last Mask Programmable Read Only Memory. It is organized in a 512 -word by 8 -bit format. There are four programmable Chip Selects to allow up to 16 chips to be wired-OR. The 3515 is manufactured with the p-channel Isoplanar Silicon Gate process and is available in the 24-pin ceramic Dual in-line Package in the commercial temperature range, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

- FAST CODE TURNAROUND (LAST MASK PROGRAMMABLE)
- INTERFACES DIRECTLY WITH TTL - NO EXTERNAL COMPONENTS
- 600 ns ACCESS TIME (MAX)
- 4-BIT PROGRAMMABLE CHIP SELECT CODE
- 3-STATE OUTPUTS FOR WIRED-OR CAPABILITY
- STATIC LOGIC - NO CLOCKS REQUIRED
- 24-PIN CERAMIC DUAL IN-LINE PACKAGE
- APPLICATIONS - CODE CONVERSION, TABLE LOOK-UP, CONTROL LOGIC, PROGRAM STORAGE

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Voltage on Any Input Pin	-20 V to +0.3 V
Voltage on $\mathrm{V}_{\text {DD }}$	-7 V to +0.3 V
Voltage on Output Pin (Output Current @ $\pm 10 \mathrm{~mA})$	-7 V to +0.3 V

Note: All voltages with respect to V_{SS}

PIN NAMES	
A_{n}	Address Inputs
Q_{n}	Data Outputs
C_{n}	Chip Selects

LOGIC BLOCK DIAGRAM

CONNECTION DIAGRAM DIP (TOP VIEW)

FAIRCHILD MOS INTEGRATED CIRCUITS • 3515

FUNCTIONAL DESCRIPTION - A 9-bit binary address applied to the address ($A_{0}-A_{8}$) will cause a corresponding 8 -bit word to appear on the outputs $\left(Q_{0}-Q_{7}\right)$. A 4-bit programmable Chip Select $\left(C_{0}{ }_{0}\right)$ allows selection of 1 of 16 memories without external gating. When a chip is not selected, its outputs are turned off, i.e., a high impedance to both V_{SS} and V_{DD}. This feature allows expansion of up to 16 memories without external components, either for chip select decoding or for output gating. Each output of the device will drive 1.5 unit TTL loads.
Each input to the 3515 drives a special input amplifier stage which eliminates the need for pull-up resistors.
Two types of information must be supplied when ordering the 3515: first, the bit pattern to be stored in the 512 word locations of the memory; and second, the 4 -bit chip enable code which will activate the chip.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITIONS
$V_{1 H}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-2.75 \mathrm{~V}$	VSS	V	
VIL	Input LOW Voltage	V_{GG}	0.55	V	
V_{OH}	Output HIGH Voltage	2.4	$\mathrm{V}_{\text {SS }}$	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
VOL	Output LOW Voltage	0	0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.4 \mathrm{~mA}$
IIN	Input Leakage Current		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-6 \mathrm{~V}$, Note 1
IOUT	Output Leakage Current		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-6 \mathrm{~V}$, Note 2
IDD	VDD Current		35	mA	
${ }^{\text {IGG }}$	VGG Current		19	mA	
PD	Power Dissipation		510	mW	

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITIONS
${ }^{\text {t }}$ ACC	Access Time Address to Output		600	ns	Note 3
${ }^{\text {t }}$ E	Access Time Chip Select Enable to Output		600	ns	
${ }^{1}$ D	Access Time Chip Select Disable to Output		600	ns	
CIN	Input Capacitance		8.0	pF	$f=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
COUT	Output Capacitance		12	pF	Note 2, $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$

NOTES:

1. All pins at $O \vee$ except those under test.
2. Output floating (chip not selected).
3. 1.5 TTL load.

= HIGH IMPEDANCE (DESELECTED)

ORDERING INFORMATION - The 3515 is programmed from punched cards or a coding form in the format shown below.
Logic " 1 " = a more positive voltage ($\approx \mathrm{V}_{\mathrm{SS}}$)
Logic " 0 " = a more negative voltage ($\approx V_{D D}$)

FIRST CARD

Column Number

10 thru 29
35 thru 39
50 thru 62

65 thru 80

SECOND CARD

Column Number

29

31

33

35

REMAINING 512 CARDS

Column Number

$10,12,14,16,18,20,22,24,26$
$40,42,44,46,48,50,42,54$
73 thru 80

CUSTOMER INFORMATION

Description

Customer Name
Blank
3515
Customer Comment Field

Description

CS_{3} input required to select chip
CS_{2} input required to select chip
CS_{1} input required to select chip
CS_{0} input required to select chip

35L38
 256×4 STATIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 35L38 is a 256 -word by 4 -bit Static Random Access Memory. It requires a single 5 V power supply, is fully TTL compatible on the inputs and outputs and requires no clocking or refresh. The Chip Select ($\overline{\mathrm{CS}}$) controls a 3 -state output which allows the outputs to be wired-OR. The 35L38 features a power-down mode during standby operation where the device dissipates a maximum of 37 mW .
The 35 L 38 is manufactured with the n -channel Isoplanar process. It is available in the $\mathbf{2 2}$-pin ceramic Dual In-line Package in the commercial temperature range, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

- FAST ACCESS TIME ($\mathbf{4 0 0} \mathrm{ns}$ and 500 ns)
- SINGLE 5 V POWER SUPPLY
- TTL COMPATIBLE ON INPUTS AND OUTPUTS
- totally static - no clocks or refresh
- 3-STATE OUTPUTS
- FULLY EXPANDABLE
- FULLY DECODED
- 22-PIN CERAMIC DUAL IN-LINE PACKAGE
- 184 mW PD GUARANTEED
- POWER DOWN STANDBY MODE

PIN NAMES

A $_{n}$	Address Inputs
DOUTX	Data Outputs
DINX	Data Inputs
R/W	Read/Write Control Input
$\overline{C S}$	Chip Select

ABSOLUTE MAXIMUM RATINGS

Any Pin with Respect to V_{SS}
Storage Temperature
Operating Temperature

> -0.5 V to +7.0 V $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}$	R/W	DINX	Doutx	Comments
H	x	x	*	Chip Deselected
L	L	H	H	Write "1" \dagger
L	L	L	L	Write " 0 " \dagger
L	H	\times	D_{n}	Read t

$x=$ Don't Care

* = Output HIGH Impedance State
$D_{n}=$ Data at Addressed Location
$\dagger=$ Chip Selected

FAIRCHILD MOS INTEGRATED CIRCUITS • 35L38

FUNCTIONAL DESCRIPTION - The 35 L 38 is a 256×4 static RAM. When the Chip Select $(\overline{\mathrm{CS}})$ goes HIGH, the Read/Write (R/W) input is disabled and the Data Outputs (DOUT) are forced into a high impedance state. When Chip Select goes LOW, the Read/Write is enabled.
When R / \bar{W} goes LOW, data from the Data Inputs ($D_{I N}$) is written at the location specified by the Address Inputs (A_{n}). The Data Outputs will be identical to the Data Inputs during a write command. When R/W goes HIGH, the contents of the addressed location will appear at DOUT. DOUT is not inverted from DIN in the 35 L 38 .

DC REQUIREMENTS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	35L38BDC		35L38ADC		35L38DC		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	$\mathrm{V}_{\text {DD }}$	2.0	$\mathrm{V}_{\text {DD }}$	2.0	$V_{\text {DD }}$	V	$\mathrm{V}_{\text {DD }}=+5.0 \mathrm{~V} \pm 5 \%$,
$V_{\text {IL }}$	Input LOW Voltage	-0.5	0.8	-0.5	0.8	-0.5	0.8	V	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

DC CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	35L38BDC		35L38ADC		35L38DC		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
V_{OH}	Output HIGH Voltage	2.4		2.4		2.4		V	$\mathrm{I}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$
V_{OL}	Output LOW Voltage		0.4		0.4		0.4	V	${ }^{\prime} \mathrm{OL}=3.2 \mathrm{~mA}$
IIN	Input Leakage Current		10		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}(\mathrm{Max}$)
IOUT	Output Leakage Current	-10	10	-10	10	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}(\mathrm{Max}$)
IDD	Power Supply Current		35		35		35	mA	
P_{D}	Power Dissipation		184		184		184	mW	

POWER DOWN CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	35L38B, 35L38A, 35L38		UNITS	CONDITIONS
		MIN	MAX		
IDD (P.D.)	Power Supply Current		23	mA	$V_{\text {DD }}=1.6 \mathrm{~V}$
VDD (P.D.)	Power Supply Voltage	1.6		V	
${ }^{\text {t }}$ CSS	Chip Select Set-Up Time	100		ns	
${ }^{\text {t }} \mathrm{CSH}$	Chip Select Hold Time	100		ns	See Fig. 2
$\overline{\mathrm{V} \overline{\mathrm{CS}}}$	Chip Select Voltage	2.0		V	See Fig. 2
$\mathrm{V}_{\text {DD }}$	Power Supply Slew Rate		100	$\mathrm{V} / \mu \mathrm{s}$	

AC REQUIREMENTS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	$\begin{gathered} 35 \mathrm{~L} 38 \\ \text { BDC } \end{gathered}$		$\begin{gathered} \text { 35L38 } \\ \text { ADC } \end{gathered}$		$\begin{gathered} \text { 35L38 } \\ \text { DC } \end{gathered}$		UNITS	CONDITIONS
Y		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {t }} \mathrm{CYC}$	Read or Write Cycle Time	400		500		650		ns	$\begin{aligned} & V_{D D}=+5.0 \mathrm{~V} \pm 5 \%, \\ & V_{S S}=0 \mathrm{~V} \end{aligned}$
${ }^{\text {t }}$ AW	Address to Write Time	100		150		200		ns	
twP	Write Pulse Width	200		250		350		ns	
${ }^{t}$ WR	Write Recovery Time	50		50		50		ns	
tDS	Data Set-up Time	150		200		250		ns	
${ }^{\text {t }} \mathrm{DH}$	Data Hold Time	50		50		50		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Select to Write Time	200		250		350		ns	
twC	Write to Chip Select Time	50		50		50		ns	

AC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	35L38B		35L38A		35L38		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{t}$ A	Read Access Time		400		500		650	ns	$\begin{aligned} & V_{D D}=+5.0 \mathrm{~V} \pm 5 \%, \\ & V_{S S}=0 \mathrm{~V} \end{aligned}$
${ }^{\text {t }} \mathrm{CO}$	Chip Select to Output Time		200		200		250	ns	
tor1	Data Valid After Address	50		50		50		ns	
${ }^{\text {t }} \mathrm{OH} 2$	Previous Data Valid After Chip Deselect	0	150	0	150	0	200	ns	
$\mathrm{CiN}^{\text {IN }}$	Input Capacitance		5		5		5	pF	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & V_{\text {IN }}=V_{S S}, V_{\text {OUT }}=V_{\text {SS }} \end{aligned}$
COUT	Output Capacitance		10		10		10	pF	

READ CYCLE TIMING

Fig. 1

Fig. 2

WRITE CYCLE TIMING

AC CONDITIONS
Input Levels: $V_{I L}(\max)$ to $V_{1 H}(\min)$
Input Rise and Fall Times: 10 ns

Timing Measurement Reference Level: 1.5 V Output Load: 2 TTL Gate +100 pF

Fig. 3

3538
 256×4 STATIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 3538 is a 256 -word by 4-bit Static Random Access Memory. It requires a single 5 V power supply, is fully TTL compatible on the inputs and outputs and requires no clocking or refresh. The Chip Select ($\overline{\mathrm{CS}}$) controls a 3 -state output which allows the outputs to be wired-OR.

The 3538 is manufactured with the n-channel Isoplanar process. It is available in the 22-pin ceramic Dual In-line Package in commercial, limited military or military temperature ranges.

- FAST ACCESS TIME (350 ns and 450 ns)
- SINGLE 5 V POWER SUPPLY
- TTL COMPATIBLE ON INPUTS AND OUTPUTS
- TOTALLY STATIC - NO CLOCKS OR REFRESH
- 3-STATE OUTPUTS
- FULLY EXPANDABLE
- FULLY DECODED
- 22-PIN CERAMIC DUAL IN-LINE PACKAGE

PIN NAMES	
A_{n}	Address Inputs
DOUTX	Data Outputs
$D_{\text {INX }}$	Data Inputs
$\frac{R / W}{C S}$	Read/Write Control Input
	Chip Select

ABSOLUTE MAXIMUM RATINGS		
Any Pin with Respect to		-0.5 V to +7.0 V
Storage Temperature		$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature:	DC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	DL	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	DM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

BLOCK DIAGRAM

DIP (TOP VIEW)

$N / C=$ No Connection
TRUTH TABLE

$\overline{\text { CS }}$	R/何	DINX	DOUTX	Comments
H	X	X	$*$	Chip
				Deselected
L	L	H	H	Write "1" \dagger
L	L	L	L	Write " $0 " \dagger$
L	H	X	D $_{n}$	Read \dagger

[^0]FUNCTIONAL DESCRIPTION - The 3538 is a 256×4 static RAM. When the Chip Select ($\overline{\mathrm{CS}})$ goes HIGH, the Read/Write (R/W) input is disabled and the Data Outputs (DOUT) are forced into a high impedance state. When Chip Select goes LOW, the Read/Write is enabled.
When R / \bar{W} goes LOW, data from the Data Inputs ($D_{I N}$) is written at the location specified by the Address Inputs (A_{n}). The Data Outputs will be identical to the Data Inputs during a write command. When R/W goes HIGH, the contents of the addressed location will appear at DOUT. DOUT is not inverted from DIN in the 3538.

DC REQUIREMENTS: DC: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; DM: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	DC		DL		DM		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$V_{\text {IH }}$	Input HIGH Voltage	2.2	$V_{\text {DD }}$	2.0	$V_{\text {DD }}$	2.0	$V_{\text {DD }}$	V	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
$V_{\text {IL }}$	Input LOW Voltage	-0.5	0.65	-0.5	0.8	-0.5	0.8	V	
$V_{\text {DD }}$	Power Supply Voltage	4.75	5.25	4.50	5.50	4.50	5.50	V	

DC CHARACTERISTICS: DC: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; DM: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $V_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}(\mathrm{Min})} \leqslant \mathrm{V}_{\mathrm{DD}} \leqslant \mathrm{V}_{\mathrm{DD}(\text { Max })}$ (Note 1)

SYMBOL	PARAMETER	DC		DL		DM		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{VOH}^{\text {OH}}$	Output HIGH Voltage	2.2		2.2		2.2		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
V_{OL}	Output LOW Voltage		0.45		0.45		0.45	V	${ }^{1} \mathrm{OL}=1.9 \mathrm{~mA}$
In	Input Leakage Current		10		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}(\mathrm{Max})$
IOUT	Output Leakage Current	-10	10	-10	10	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD(Max }}$
IDD	Power Supply Current		60		70		70	mA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}(\mathrm{Max})$

AC REQUIREMENTS: DC: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; $\mathrm{DM}: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	$\begin{gathered} 3538 \mathrm{~F} \\ \mathrm{DC} / \mathrm{DL} / \mathrm{DM} \end{gathered}$		$\begin{gathered} 3538-1 \\ \text { DC/DL/DM } \end{gathered}$		$\begin{gathered} 3538 \\ \mathrm{DC} / \mathrm{DL} / \mathrm{DM} \end{gathered}$		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {t }}$ CYC	Read or Write Cycle Time	350		450		650		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}(\operatorname{Min}) \leqslant \mathrm{V}_{\mathrm{DD}} \\ & \leqslant \mathrm{~V}_{\mathrm{DD}(\mathrm{Max})} \\ & (\text { See Note } 1) \\ & \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \end{aligned}$
${ }^{\text {t }}$ AW	Address to Write Time	100		170		200		ns	
twp	Write Pulse Width	170		200		350		ns	
tWR	Write Recovery Time	50		50		50		ns	
tDS	Data Set-up Time	170		200		350		ns	
${ }^{\text {t }}$ DH	Data Hold Time	50		50		50		ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Select to Write Time	200		250		400		ns	
twC	Write to Chip Select Time	50		50		50		ns	

AC CHARACTERISTICS: DC: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; DL: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; DM : $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	$\begin{gathered} 3538 \mathrm{~F} \\ \mathrm{DC} / \mathrm{DL} / \mathrm{DM} \end{gathered}$		$\begin{gathered} \text { 3538-1 } \\ \text { DC/DL/DM } \end{gathered}$		$\begin{gathered} 3538 \\ \text { DC/DL/DM } \end{gathered}$		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{t}$ A	Read Access Time		350		450		650	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Select to Output Time		180		200		400	ns	$\mathrm{V}_{\mathrm{DD}}(\mathrm{Min}) \leqslant \mathrm{V}_{\text {DD }}$
${ }^{\text {toH1 }}$	Data Valid After Address	50		50		50		ns	$\leqslant V_{\text {DD }}($ Max $) ~$
${ }^{1} \mathrm{OH} 2$	Previous Data Valid After Chip Deselect	0		0		0		ns	(See note 1) $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance		5		5		5	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$,
COUT	Output Capacitance		10		10		10	pF	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

[^1]READ CYCLE TIMING

WRITE CYCLE TIMING

AC CONDITIONS:
Input Levels: $\mathrm{V}_{\text {IL }}$ (Max) to $\mathrm{V}_{\text {IH }}$ (Max)
Input Rise and Fall Times: 10 ns
Timing Measurement Reference Level: 1.5 V
Output Load: 1 TTL Gate +100 pF

3539

256×8 STATIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 3539 is a 2048 -bit Static Read/Write Random Access Memory. Organized as 2568 -bit words, the 3239 features a common I/O structure which allows packaging in a standard 22-pin ceramic DIP. This device uses a single +5 volt power supply and is TTL-compatible on inputs and outputs. The 3539 is manufactured using Fairchild's n -channel Isoplanar process.

- 256×8 WITH COMMON I/O BUS
- STANDARD 22-PIN DIP
- SINGLE +5 VOLT POWER SUPPLY
- COMPLETELY STATIC - NO CLOCKS OR REFRESH
- tOTALLYTTL-COMPATIBLE
- 650 NS MAXIMUM ACCESS TIME
- <500 mW POWER DISSIPATION
- TWO SEPARATE CHIP SELECT INPUTS
- SEPARATE OUTPUT DISABLE FUNCTION

PIN NAMES

An	Address Inputs
CS	Chip Select Inputs
OD	Output Disable
R/W	Read/Write Control Input
$1 / O_{n}$	Data Buss Pins
V_{n}	+5 V Power Supply
$\mathrm{V}_{\text {DS }}$	0 OV Power Supply

ABSOLUTE MAXIMUM RATINGS

Any Pin with Respect to $\mathrm{V}_{\text {SS }}$	-0.5 V to +7.0 V
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=\text { PIN } 22 \\
& \mathrm{v}_{\mathrm{SS}}=\text { PIN } 11
\end{aligned}
$$

CONNECTION DIAGRAM
(TOP VIEW)

FAIRCHILD MOS INTEGRATED CIRCUITS

FUNCTIONAL DESCRIPTION: The 3539 uses a multiplexed Input/Output ($1 / \mathrm{O}$) structure, allowing the device to be packaged in a 22-pin DIP. The I/O network is controlled by the Read/Write ($\mathrm{R} / \overline{\mathrm{W}}$), Output Disable ($\overline{\mathrm{OD}}$), and two Chip Select ($\overline{\mathrm{CS}}_{1}$ and CS_{2}) inputs.
The I/O network is in a high impedance state and the $\mathrm{R} / \overline{\mathrm{W}}$ input disabled whenever $\overline{\mathrm{CS}}_{1}$ is HIGH or CS_{2} is LOW. When $\overline{\mathrm{CS}}_{1}$ is LOW and CS_{2} is HIGH the circuit will read or write, depending on the $\overline{\mathrm{OD}}$ and R / \bar{W} inputs.
When $\overline{O D}$ is HIGH, the eight I/O pins are in the Output mode, so that the $\mathrm{R} / \overline{\mathrm{W}}$ input should be HIGH to force the chip into a read mode. However, when R/W is HIGH, the $\overline{O D}$ can be used as a chip select input, turning the outputs off when it goes LOW.
When the $\mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{CS}}_{1}$ are LOW and CS_{2} is HIGH, the circuit is in the write mode. $\overline{\mathrm{OD}}$ must be LOW to turn off the output structures. Data is then entered from the $1 / O$ pins. The $\overline{O D}$ is used to turn off the output structures independent of the Chip Selects, allowing input data to be entered at the I/O ports sooner than if the I/O were controlled by R/W. Output data is not inverted by the 3539 . The output buffers will each drive one standard TTL Load.

The eight address inputs specify which location of the memory array will be selected for the read or write operations. Each control, address and I/O input is directly TTL-compatible.

DC CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	35391		35392		3539		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$V_{\text {IH }}$	Input HIGH Voltage	2.2		2.2		2.2		v	
V_{IL}	Input LOW Voltage		0.65		0.65		0.65	V	
v_{OH}	Output HIGH Voltage	2.2		2.2		2.2		V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
v_{OL}	Output LOW Voltage		0.4		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
${ }^{\text {'BH }}$	Bus HIGH Current		10		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$, Chip Deselected
${ }^{\text {b }}$ '	Bus LOW Current		-10		-10		-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Chip Deselected
${ }^{\text {I DD }}$	Power Supply Current		95		95		95	mA	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$
PD	Power Dissipation		500		500		500	mW	

AC CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	35391		35392		3539		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {t }}$ CYC	Read or Write Cycle Time	400		500		650		ns	
${ }^{t}$ A	Read Access Time		400		500		650	ns	
${ }_{\text {t }}$ AW	Address to Write Delay	150		200		300		ns	
tDS	Data Set-Up Time	200		250		275		ns	
to	Data Hold Time	25		25		50		ns	
tWR	Write Recovery Time	75		75		100		ns	
tww	Write Pulse Width	175		225		250		ns	
${ }^{\text {t CS }}$	Chip select to write set-up time	100		125		200		ns	
${ }^{\text {t }} \mathrm{CD}$	Chip Select Delay Time		100		100		100	ns	
${ }^{\text {t }} \mathrm{CH}$	Chip select to write hold time	25		25		50		ns	
tod	Output Disable Time		150		150		150	ns	
toe	Output Enable Time		150		150		150	ns	

FAIRCHILD MOS INTEGRATED CIRCUITS • 3539

TRUTH TABLE

CONTROL INPUTS				3539 OPERATING MODE			I/O BUS MODE			
$\overline{\text { CS }}_{\mathbf{1}}$	CS $_{\mathbf{2}}$	$\overline{\text { OD }}$	R/W	Selected	Deselected	Write	Read	Input	Output	HI-Z
H	X	X	X		\bullet					\bullet
X	L	X	X		\bullet					\bullet
L	H	L	L	\bullet		\bullet		\bullet		
L	H	H	L	\bullet		\bullet		\bullet		
L	H	L	H	\bullet		\bullet			\bullet	
L	H	H	H	\bullet			\bullet			\bullet

$x=$ IRRELEVENT STATE
$L=\operatorname{LOW}\left(-V_{S S}\right)$
$H=H I G H\left(-V_{D D}\right)$

3539 TIMING DIAGRAM

4096
 4096×1 DYNAMIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION - The 4096DC is a 4096-bit dynamic Random Access Memory organized as 4096 one-bit words. This device is designed utilizing the single transistor dynamic memory cell.
A unique address multiplexing and latching technique permits the packaging of the 4096DC in a standard 16-pin ceramic Dual In-line Package. The use of this package allows construction of highly dense memory systems utilizing widely available automated testing and insertion equipment.
The 4096DC features direct TTL compatibility, on-chip address, data input and data output latches, TTL-level clocks with extremely low capacitance and a range of access times from $200 \mathrm{~ns}(4096-2 D C)$ to 350 ns (4096-5DC). The 4096DC is manufactured using the n-channel Isoplanar process.

- ALL INPUTS TTL-COMPATIBLE, INCLUDING CLOCKS
- ON-CHIP LATCHES FOR ADDRESSES, CHIP SELECT, DATA INPUT
- THREE-STATE TTL-COMPATIBLE OUTPUT
- CHIP SELECT DECODING DOES NOT ADD TO ACCESS TIME
- READ OR WRITE CYCLES: 4096-2: $300 \mathrm{~ns}, 4096-3$: $360 \mathrm{~ns}, 4096-4$: 420 ns , 4096-5: 500 ns
- ACTIVE POWER: 4096-2: <431 mW, 4096-3: <378 mW, 4096-4: <341 mW, 4096-5: $<315 \mathrm{~mW}$
- STANDBY POWER: $<\mathbf{2 5} \mathrm{mW}$
- STANDARD 16-PIN CERAMIC PACKAGE

PIN NAMES

An	Address Inputs
$\frac{D_{\text {IN }}}{}$	Data Input
$\frac{\mathrm{CS}}{\text { WE }}$	Chip Select Input
$\frac{\text { Write Enable Input }}{\text { RAS }}$	Row Address Strobe (Clock) Input
$\overline{\text { CAS }}$	Column Address Strobe (Clock) Input

DOUT	Data Output	
VCC	+5 V	Power Supply
V SS	0 V	Power Supply
V BB	-5 V	Power Supply
VDD	+12 V	Power Supply

ABSOLUTE MAXIMUM RATINGS (Note 1)
Voltage of any pin relative to $V_{B B}$
Operating Temperature
Storage Temperature (Ambient)

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to }+25.0 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{array}
$$

ADDRESSING - The 12 address bits required to decode 1 of 4096 cell locations are multiplexed onto the 6 address pins and latched into the on-chip row and column address latches. The Row Address Strobe ($\overline{\mathrm{RAS}}$) latches the 6 row address bits onto the chip. The Column Address Strobe ($\overline{\mathrm{CAS}}$) latches the 6 column address bits plus Chip Select ($\overline{\mathrm{CS}}$) onto the chip. Since the Chip Select signal is not required until well into the cycle, its decoding time does not add to the system access or cycle time.

DATA INPUT/OUTPUT - Data to be written into a selected cell is latched into an on-chip register by a combination of WE and $\overline{\mathrm{CAS}}$. The last of these signals making its negative transition is the strobe for the Data In register. This permits several options in the write timing. In a write cycle, if the $\overline{W E}$ input is activated prior to $\overline{\mathrm{CAS}}$, the Data In is strobed by $\overline{\mathrm{CAS}}$ and the set-up and hold times are referenced to this signal. If the cycle is to be a read-write cycle or read-modify-write cycle, then the $\overline{W E}$ input will not go to a logic 0 until after the access time has elapsed. But now, because $\overline{\mathrm{CAS}}$ is ready at a logic 0 , the Data In is strobed in by $\overline{W E}$ and the set-up hold times are referenced to $\overline{W E}$.
At the beginning of a memory cycle the state of the Data Out Latch and buffer depend on the previous memory cycle. If during the previous cycle the chip was unselected, the output buffer will be in its open-circuit condition. If the previous cycle was a read, read-write, or read-modify-write cycle and the chip was selected, then the output latch and buffer will contain the data read from the selected cell. This output data is the same polarity (not inverted) as the input data. If the previous cycle was a write cycle ($\overline{W E}$ active low before access time) and the chip was selected, then the output latch and buffer will contain a logic 1. Regardless of the state of the output it will remain valid until $\overline{\mathrm{CA}} \overline{\mathrm{S}}$ goes negative. At that time the output will unconditionally go to its open-circuit state. It will remain open circuit until after an access time has elapsed. At access time the output will assume the proper state for the type of cycle performed. If the chip is unselected, it will not accept a WRITE command and the output will remain in the open-circuit state.

INPUT/OUTPUT LEVELS - All inputs, including the two address strobes, will interface directly with TTL. The high impedance, low capacitance input characteristics simplify input driver selection by allowing use of standard logic elements rather than specially designed driver elements. Even though the inputs may be driven directly by TTL gates, pull-up or termination resistors are normally required in a system to prevent ringing of the input signals due to line inductance and reflections. In high speed memory systems, transmission line techniques must be employed on the signal lines to achieve optimum system speeds. Series rather than parallel terminations may be employed at some degradation of system speed.
The three-state output buffer is a low impedance to V_{CC} for a logic 1 and a low impedance to V_{SS}, for a logic 0 . The resistance to $V_{C C}$ is 500 ohms maximum and 150 ohms typically. The resistance to $V_{S S}$ is 200 ohms maximum and 100 ohms typically. The separate $V_{C C}$ pin allows the output buffer to be powered from the supply voltage of the logic to which chips are interfaced. During battery standby operation, the $V_{C C}$ pin may be unpowered without affecting the 4096 refresh operation. This allows all system logic except the $\overline{\mathrm{RAS}}$ timing circuitry and the refresh address logic to be turned off during battery standby to conserve power.
REFRESH - Refresh of the cell matrix is accomplished by performing a memory cycle at each of the 64 row addresses every 2 milliseconds or less. Any read cycle refreshes the selected row, regardless of the state of the Chip Select. A write, read-write, or read-modify-write cycle also refreshes the selected row but the chip should be unselected to prevent writing data into the selected cell.
POWER DISSIPATION/STANDBY MODE - Most of the circuitry used in the 4096 is dynamic and draws power only as the result of an address strobe edge. Because the power is not drawn during the whole time the strobe is active, the dynamic power is a function of operating frequency. Typically, the power is 120 mW at a $1 \mu \mathrm{~S}$ cycle time for the 4096 DC with a worst case power of less than 341 mW at a 420 ns cycle time. To reduce the overall system power the Row Address Strobe ($\overline{\mathrm{RAS}}$) must be decoded and supplied to only the selected chips. The $\overline{\mathrm{CAS}}$ must be supplied to all chips (to turn off the unselected outputs). But those chips that did not receive a $\overline{\mathrm{RAS}}$ will not dissipate any power on the $\overline{\mathrm{CAS}}$ edges, except for that required to turn off the output. If the $\overline{\mathrm{RAS}}$ is decoded and supplied to the selected chips, then the Chip Select input of all chips can be at a logic 0 . The chips that receive a $\overline{\mathrm{CAS}}$ but no $\overline{\mathrm{RAS}}$ will be unselected (output open-circuited) regardless of the Chip Select input.

RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
$V_{D D}$	Supply Voltage	11.4	12.0	12.6	V	2
V_{CC}	Supply Voltage	4.5	5.0	V_{DD}	V	2
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V	2,12
$\mathrm{~V}_{\mathrm{BB}}$	Supply Voltage	-5.5	-5.0	-4.5	V	2
$\mathrm{~V}_{\mathrm{IH} 1}$	Input HIGH Voltage Address Input	2.4	5.0	$\mathrm{~V}_{\mathrm{GG}}$	V	2,14
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage, All Inputs	-1.0	0	0.6	V	2,14
$\mathrm{~V}_{\mathrm{IH} 2}$	Input HIGH Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$	2.7	5.0	$\mathrm{~V}_{\mathrm{GG}}$	V	2,14

DC ELECTRICAL CHARACTERISTICS $\left(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{DD}}=12.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right.$, $\left.V_{B B}=-5.0 \vee \pm 10 \%\right)$

SYMBOL	PARAMETER	PART NUMBER								UNITS	NOTES
		4096-2		4096-3		4096-4		4096-5			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
IDD1	Average $\mathrm{V}_{\text {DD }}$ Power Supply Current		35		30		27		25	mA	16
${ }^{\text {ICC }}$	$V_{\text {CC }}$ Power Supply Current									mA	9
$I_{\text {BB }}$	Average $\mathrm{V}_{\text {BB }}$ Power Supply Current		75		75		75		75	$\mu \mathrm{A}$	
IDD2	Standby $V_{\text {DD }}$ Power Supply Current		2		2		2		2	mA	
IIN	Input Leakage Current (Any Input)		10		10		10		10	$\mu \mathrm{A}$	10
IOUT	Output Leakage Current		10		10		10		10	$\mu \mathrm{A}$	11
V_{OH}	Output HIGH Voltage at IOUT $=-5 \mathrm{~mA}$	2.4		2.4		2.4		2.4		V	
V_{OL}	Output LOW Voltage at IOUT $=2 \mathrm{~mA}$		0.4		0.4		0.4		0.4	V	
CIN1	Input Capacitance ($\mathrm{A}_{0}-\mathrm{A}_{5}$)		10		10		10		10	pF	
Cin2	Input Capacitance ($\overline{\mathrm{RAS}}, \overline{\mathrm{C} A S}, \mathrm{D}_{1 N}, \overline{\mathrm{WE}}, \overline{\mathrm{CS}}$)		7		7		7		7	pF	
COUT	Output Capacitance (DOUT)		8		8		8		8	pF	

RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{DD}}=12.0 \mathrm{~V} \pm 5 \%\right.$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, $\left.\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 10 \%\right)($ Note 17)

SYMBOL	PARAMETER	PART NUMBER								UNITS	NOTES
		4096-2		4096-3		4096-4		4096-5			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
${ }^{\text {tRC }}$	Random Read or Write Cycle Time	300		365		425		500		ns	3
${ }^{\text {tRAC }}$	Access Time from ROW Address Strobe		200		250		300		350	ns	3,15
${ }^{\text {t }} \mathrm{CAC}$	Access Time from Column Address Strobe		120		150		175		200	ns	4
${ }^{\text {toFF }}$	Output Buffer Turn-Off Delay	0	70	0	80	0	90	0	100	ns	4
trP	ROW Address Strobe Precharge Time	100		115		125		150		ns	
${ }^{\text {t R }}$ CL	ROW to Column Strobe Lead Time	80		100		125		150		ns	3
${ }^{\text {t }}$ PPW	Column Address Strobe Pulse Width	120		150		175		200		ns	
${ }^{\text {t }}$ AS	Address Set-Up Time	0		0		0		0		ns	3,4
${ }^{t} \mathrm{AH}$	Address Hold Time	50		60		70		80		ns	3,4
${ }^{\text {t }}$ CH	Chip Select Hold Time	70		80		90		100		ns	
tres	Read Command Set-Up Time	0		0		0		0		ns	4
${ }^{\text {t } R C H}$	Read Command Hold Time	30		35		40		45		ns	5
${ }^{\text {t }} \mathrm{WCH}$	Write Command Hold Time	90		110		140		150		ns	4,6
twp	Write Command Pulse Width	120		150		175		200		ns	
${ }^{\text {t CRL }}$	Column to ROW Strobe Lead Time	-20		-20		-20	+20	-20		ns	7
${ }^{\text {t }}$ CWL	Write Command to Column Strobe Lead Time	120		150		175		200		ns	13
${ }^{\text {t DS }}$	Data In Set-Up Time	0		0		0		0		ns	13
${ }^{\text {t }}$ DH	Data In Hold Time	90		110		130		150		ns	13
${ }^{\text {t RFSH }}$	Refresh Period		2		2		2		2	ms	
${ }^{\text {tMOD }}$	Modify Time		10		10		10		10	$\mu \mathrm{s}$	8

[^2]
NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages referenced to $V_{S S}$.
3. Referenced to RAS leading edge.
4. Referenced to $\overline{C A S}$ leading edge.
5. Referenced to CAS trailing edge.
6. Write Command Hold Time is important only when performing normal random write cycles. During read-write or read-modify-write cycles, the Write Command Pulse Width is the limiting parameter.
7. Referenced to the $\overline{\operatorname{RAS}}$ trailing edge.
8. Referenced to access time.
9. Depends upon output loading. The V_{CC} supply is connected only to the output buffer.
10. All device pins at 0 volts except $V_{B B}$ at -5 volts and pin under test which is at +10 volts.
11. Output disabled by chip select input.
12. Output voltage will swing from $V_{S S}$ to $V_{C C}$ independent of differential between $V_{S S}$ and $V_{C C}$.
13. These parameters are referenced to the CAS leading edge in random write cycle operation and to the $\overline{W E}$ leading edge in read-write or read-modify-write cycles.
14. Input voltages greater than TTL levels (0 to 5 V) require device operation at reduced speed.
15. Assumes $t_{\text {RCL }}$ minimum.
16. Current is proportional to speed with maximum current measured at fastest cycle rate.
17. $A C$ measurements assume $\approx 10 \mathrm{~ns}$ rise and fall times.

TIMING DIAGRAMS

$=$ May change in either direction
$=$ May change HIGH to LOW
$=$ May change LOW to HIGH

FAIRCHILD MOS INTEGRATED CIRCUITS • 4096

${ }^{*}$ Read-modify-write cycle time $=t_{R C L}+t_{C A C}+t_{M O D}+t_{C W L}+t_{C R L}+t_{R P}+3 t_{f}+t_{r}$.
INTRODUCTION $\quad=2-2=0$
PRODUCT INDEX - ALPHANUMERIC LISTING
OF DEVICES

NMOS/PMOS

INTRODUCTION
MEMORY PRODUCTS
CONSUMER/INDUSTRIAL PRODUCTS
MICROPROCESSOR PRODUCTS
MULTIPLEXERS AND COUNTERS
CMOS
F4OOO SERIES GENERAL DESCRIPTION
DESIGN CONSIDERATIONS WITH F4000
SERIES CMOS
TECHNICAL DATA
BIPOLAR INTERFACE CIRCUITS FOR CMOS

3262A
 TV SYNC GENERATOR

GENERAL DESCRIPTION - The 3262A is a Sync Pulse Generator that produces the necessary outputs for synchronizing television broadcast information. These outputs include Horizontal Drive, Vertical Drive, Composite Sync, Composite Blanking, and Even and Odd Fields, all of which are provided in the format specified by RS170EIA Standard Output Signals. The Color Subcarrier (3.58 MHz) and the Color Burst Flag outputs are provided for color operation. All waveforms are derived from a low-voltage two-phase clock (for color operation) or a single phase low-voltage clock for black and white operation. All outputs except the Color Subcarrier are capable of driving a TTL load directly. The Color Subcarrier is designed to drive a capacitive load. The 3262A is a monolithic integrated circuit manufactured with Isoplanar p-channel silicon gate technology.

- COLOR OR BLACK/WHITE OPERATION
- ALL COUNTERS SYNCHRONOUS
- PULSE WIDTHS DERIVED DIGITALLY
- LOW POWER DISSIPATION - < 567 mW
- OUTPUTS DRIVE TTL DIRECTLY (EXCEPT COLOR SUBCARRIER)
- SEPARATE VERTICAL AND HORIZONTAL RESET

APPLICATIONS

- CAMERA LOGIC REPLACEMENT
- hOME TV GAMES
- VIDEO TAPE RECORDERS
- VIDEO TERMINALS

ABSOLUTE MAXIMUM RATINGS

All Inputs (Note 1)
V_{GG}

$$
\begin{array}{r}
-20 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
-20 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
-6 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
<10 \mathrm{~mA}
\end{array}
$$

DC Output Current (when output LOW)
Storage Temperature Operating Temperature
Maximum Power Dissipation

FAIRCHILD MOS INTEGRATED CIRCUIT • 3262A

FUNCTIONAL DESCRIPTION - The 3262A block diagram shows the counting and decoding scheme used to generate all output waveforms. The clock frequency is divided down in three steps $(\div 7, \div 65, \div 2)$ and decoded to generate the horizontal drive. A signal at twice the horizontal frequency is divided by 525 to generate the vertical drive. The Color Subcarrier is generated by a $\div 4$ Johnson counter driven directly from the input clock. This is approximately a sinusoidal signal. Pulses at the horizontal and vertical frequencies are combined in the composite decoder to generate the outputs Composite Sync, Composite Blanking, and Color Burst Flag.

For use in special applications, the 3262A provides a 30 Hz pulse at the start of the field (Odd Field) and again at the start of the next field (Even Field).
Separate Horizontal and Vertical Reset input pins are provided to allow the 3262A to be used in systems requiring gen-lock operation. Tie Horizontal and Vertical Resets to $\mathrm{V}_{\text {SS }}$ when they are not used.

The C/BW input is used to select either color or black and white operation. A logic HIGH applied to C/BW will select color operation; if C/BW is LOW, the $\div 4$ and $\div 7$ counters will be bypassed for black and white operation. In addition, the only clock needed for black and white operation is Clock 1 ; Clock 2 should be tied to $V_{S S}$. The input frequency should be 2.0475 MHz for normal operation.

C/BW when LOW also resets the Color Subcarrier. If the LOW pulse on C/BW is within the specification for t $_{\text {RS }}$ - Color Subcarrier Reset Pulse - the color operation for the 3262A will be unaffected.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=5.1 \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}{ }^{-0.8}$		$\mathrm{v}_{\text {SS }}+0.3$	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-5.0		$\mathrm{V}_{\text {SS }}-4.35$	V	
V_{OH}	Output HIGH Voltage	2.4			V	${ }^{\mathrm{OH}}=-0.1 \mathrm{~mA}$
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{IHC}}$	Clock Input HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1.0}$		$\mathrm{v}_{\text {SS }}+0.3$	V	
$\mathrm{V}_{\text {ILC }}$	Clock Input LOW Voltage	-5.0 V		$\mathrm{V}_{\text {SS }}{ }^{-4.35}$	V	
$V_{\text {SUBCARRIER }}$	Subcarrier Output Voltages Approx. Sine Wave	0.5			$\begin{gathered} V \\ \text { (Peak to Peak) } \end{gathered}$	$\begin{aligned} & \mathrm{C}=10 \mathrm{pF} \text { to } \mathrm{V}_{\mathrm{DD}}{ }^{*} \\ & \mathrm{R}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}^{*}} \end{aligned}$
IN	Input Leakage Current		1.0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
IDD	V_{DD} Current		30		mA	
I_{GG}	V_{GG} Current		15		mA	

*Subcarrier Output should be D.C. blocked with $.01 \mu \mathrm{~F}$ before loading.

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=5.1 \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, 1 \mathrm{TTL}$ Load (1.6 mA),
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (See Timing diagrams)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
f	Input Frequency Color	13.3	14.31818	15.4	MHz	See Fig. 2, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$
f_{1}	Input Frequency Black/White	1.5	2.0475	2.2	MHz	See Fig. 2, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{\text {t PWW1 }}$	B/W Clock LOW Time	200	215	230	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{\text {t }} \overline{\text { PW1 }}$	B/W Clock HIGH Time	200	215		ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ +W2	Color Clock LOW Time	30	35	40	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$
t $\overline{\text { PW2 }}$	Color Clock HIGH Time	30	35		ns	$t_{r}, t_{f} \leqslant 5 \mathrm{~ns}$
${ }^{\text {toV }}$	Color Clock Overlap Time			5	ns	
thr PW	Horizontal Reset Pulse Width	200			ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{t} \mathrm{VR}$ PW	Vertical Reset Pulse Width	200*			ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{t}$ RS	Color Subcarrier Reset Pulse Width on C/BW	130		200	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$

*If $t_{H R}$ occurs simultaneously; if $t_{H R}$ does not occur, $t_{V R}=400 \mathrm{~ns} \mathrm{~min}$.

FAIRCHILD MOS INTEGRATED CIRCUIT • 3262A

Fig. 1

CLOCK TIMING DIAGRAMS

a) Black and White Clock

*MAX. SUBCARRIER AMPLITUDE ATTAINED WITHIN 8 COLOR CLOCK PERIODS FOLLOWING RISING EDGE OF C/BW. c) Color Subcarrier Timing and Reset Detail

d) RS170EIA Timing Details

Fig. 2

Fig. 3

CLOCK GENERATOR CIRCUITRY

a) Color Clocks

b) Black and White Clock

Fig. 4

FAIRCHILD MOS INTEGRATED CIRCUIT • 3262A

APPLICATION TV CAMERA SYSTEM

Fig. 5

3262B
 TV SYNC GENERATOR FOR GEN-LOCK

GENERAL DESCRIPTION - The 3262B is a Sync Pulse Generator that produces the necessary outputs for synchronizing television broadcast information. These outputs include Horizontal Drive, Vertical Drive, Composite Sync, Composite Blanking, and Even and Odd Fields, all of which are provided in the format specified by RS170EIA Standard Output Signals. The Color Subcarrier (3.58 MHz) and the Color Burst Flag outputs are provided for color operation. All waveforms are derived from a low-voltage two-phase clock (for color operation) or a single phase low-voltage clock for black and white operation. All outputs except the Color Subcarrier are capable of driving a TTL load directly. The Color Subcarrier is designed to drive a capacitive load. The 3262B is a monolithic integrated circuit manufactured with Isoplanar p-channel silicon gate technology.

- COLOR OR BLACK/WHITE OPERATION
- ALL COUNTERS SYNCHRONOUS
- PULSE WIDTHS DERIVED DIGITALLY
- LOW POWER DISSIPATION - < $\mathbf{5 6 7} \mathbf{~ m W}$
- OUTPUTS DRIVE TTL DIRECTLY (EXCEPT COLOR SUBCARRIER)
- IDEAL FOR GEN-LOCK OPERATION - SYNCHRONIZES TO COMPOSITE SYNC INPUT

APPLICATIONS

- camera logic replacement
- HOME TV GAMES
- VIDEO TAPE RECORDERS
- VIDEO TERMINALS

$V_{S S}=\operatorname{Pin} 16$
$V_{D D}=P$ in 9
$V_{G G}=P$ in 8

CONNECTION DIAGRAM DIP (TOP VIEW)

NC $=$ NO CONNECTION

ABSOLUTE MAXIMUM RATINGS

```
All Inputs (Note 1)
VGG
VDD and Outputs
DC Output Current (when output LOW)
Storage Temperature
Operating Temperature
Maximum Power Dissipation
```

```
-20 V to +0.3 V
```

-20 V to +0.3 V
-20 V to +0.3 V
-20 V to +0.3 V
-6V to +0.3V
-6V to +0.3V
< 10 mA
< 10 mA
-55*}\textrm{C}\mathrm{ to }15\mp@subsup{0}{}{\circ}\textrm{C
-55*}\textrm{C}\mathrm{ to }15\mp@subsup{0}{}{\circ}\textrm{C
0.}\textrm{C}\mathrm{ to 70}\mp@subsup{0}{}{\circ}\textrm{C
0.}\textrm{C}\mathrm{ to 70}\mp@subsup{0}{}{\circ}\textrm{C
750 mW

```
        750 mW
```

Note 1. All Inputs with respect to V_{SS}

FUNCTIONAL DESCRIPTION - The 3262B block diagram shows the counting and decoding scheme used to generate all output waveforms. The clock frequency is divided down in three steps $(\div 7, \div 65, \div 2)$ and decoded to generate the horizontal drive. A signal at twice the horizontal frequency is divided by 525 to generate the vertical drive. The Color Subcarrier is generated by $a \div 4$ Johnson counter driven directly from the input clock. This is approximately a sinusoidal signal. Pulses at the horizontal and vertical frequencies are combined in the composite decoder to generate the outputs Composite Sync, Composite Blanking, and Color Burst Flag.

For use in special applications, the 3262B provides a 30 Hz pulse at the start of the field (Odd Field) and again at the start of the next field (Even Field).

The Composite Sync Input is provided for gen-lock operation. The detection circuit shown in the block diagram detects the first equalizing pulse in the Odd Field and, as a result, generates a reset. This causes the Composite Sync Output and Composite Sync Input to synchronize such that Composite Sync Ouiput occurs before Composite Sync Input (See Figure 3). For gen-lock application the input clock must be locked to master generator clock in order to provide stable operation.

The C/BW input is used to select either color or black and white operation. A logic HIGH applied to C/BW will select color operation; if C/BW is LOW, the $\div 4$ and $\div 7$ counters will be bypassed for black and white operation. In addition, the only clock needed for black and white operation is Clock 1; Clock 2 should be tied to V_{SS}. The input frequency should be 2.0475 MHz for normal operation.

C/BW when LOW also resets the Color Subcarrier. If the LOW pulse on C/BW is within the specification for t_{RS} - Color Subcarrier Reset Pulse - the color operation for the 3262B will be unaffected.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1.0}$		$\mathrm{V}_{\text {SS }}+0.3$	v	
V_{IL}	Input LOW Voltage	-5.0		$\mathrm{V}_{\text {SS }}{ }^{-4.35}$	V	
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-0.1 \mathrm{~mA}$
V_{OL}	Output LOW Voltage			0.4	V	${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{IHC}}$	Clock Input HIGH Voltage	$\mathrm{V}_{\text {SS }}{ }^{-1.0}$		$\mathrm{v}_{\text {SS }}+0.3$	V	
$\mathrm{V}_{\text {ILC }}$	Clock Input LOW Voltage	-5.0 V		$\mathrm{V}_{\text {SS }}-4.35$	V	
VSUBCARRIER	Subcarrier Output Voltages Approx. Sine Wave	0.5			```(Peak to Peak)```	$\begin{aligned} & C=10 \mathrm{pF} \text { to } V_{D D}{ }^{*} \\ & R=10 \mathrm{k} \Omega \text { to } V_{D D}{ }^{*} \end{aligned}$
${ }^{\text {IN }}$	Input Leakage Current		1.0		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
IDD	V_{DD} Current		30		mA	
${ }^{\prime} \mathrm{GG}$	V_{GG} Current		15		mA	

*Subcarrier Output should be D.C. blocked with $.01 \mu$ F before loading.

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=5.1 \pm .25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, 1 \mathrm{TTL}$ Load (1.6 mA),
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (See Timing diagrams)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
f	Input Frequency Color	13.3	14.31818	15.4	MHz	See Fig. 2, $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$
f_{1}	Input Frequency Black/White	1.5	2.0475	2.2	MHz	See Fig. 2, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ WW1	B/W Clock LOW Time	200	215	230	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ ¢W1	B/W Clock HIGH Time	200	215		ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}{ }^{\text {PW2 }}$	Color Clock LOW Time	30	35	40	ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$
${ }^{\text {t }}$ ($\overline{\text { W2 }}$	Color Clock HIGH Time	30	35		ns	$\mathrm{t}_{\mathrm{r},}, \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$
${ }^{\text {tov }}$	Color Clock Overlap Time			5	ns	
${ }^{\text {t }} \mathrm{CA}{ }^{*}$	Time by which Composite Sync Output preceeds Composite Sync Input		2.0		$\mu \mathrm{s}$	Black/White
			500		ns	Color
t_{s}	Synchronization Time for Composite Sync Input			34**	ms	Fig. 1
${ }^{\text {tr }}$ S	Color Subcarrier Reset Pulse	130		200	ns	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}$

${ }^{*} \mathrm{CA}$ is derived digitally from the input clock. ${ }^{\mathrm{t}} \mathrm{CA}=4$ black and white clock periods (7 color clock periods) + skew between Composite Sync Input and negative clock transition +250 ns propagation delay.
**One full frame maximum. Synchronizes as a result of the region detected in Composite Sync Input as shown in Figure 3 . The minimum time is the width of this region.

RS170EIA TIMING DIAGRAM

Fig. 1

c) Color Subcarrier Timing and Reset Detail

*Max. subcarrier amplitude attained within 8 color clock periods following rising edge of C/BW.
d) RS170EIA Timing Details

Fig. 2

3262B RESET DETAIL

Fig. 3

Fig. 4

GEN-LOCK OPERATION

NOTE: Due to propagation delay associated with distance, Composite Sync at (3) is delayed from (1). Since Composite Sync Out from the Slave camera is advanced by t_{CA} from (3), the RC network can be adjusted so that (1) and (2) are exactly in sync.

Fig. 5

3814
 DIGITAL VOLTMETER LOGIC ARRAY

GENERAL DESCRIPTION - The 3814 provides the logic required to implement a four and one-half decade Digital Voltmeter. In addition to four full decade counters and two overflow latches, the device provides a Binary Coded Decimal output (to drive a BCD converter) and five decoded outputs to strobe a multiplexed display.

Automatic leading-zero blanking is simply accomplished, and a separate input is provided to blank the entire display. Other outputs provide counter overflow information and auto-ranging control signals. The 3814 is manufactured using silicon gate p -channel enhancement mode technology.

- DIRECT TTL/DTL COMPATIBILITY - NO EXTERNAL COMPONENTS
- DC TO 600 kHz OPERATION
- BCD OUTPUT - COMPATIBLE WITH DISPLAY DECODERS
- EXTERNAL CONTROL MULTIPLEX FREQUENCY - ACCOMMODATES LED DISPLAYS
- UNDERRANGE AND OVERRANGE OUTPUTS
- 10-COUNT DELAY TO MASK ANALOG SWITCHING NOISE

ABSOLUTE MAXIMUM RATINGS	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating Temperature	+0.3 to -24 V
VGG	+0.3 to -16 V
All Other Inputs	+0.3 to $-8 \mathrm{~V}(\mathrm{l} \mathrm{L}<10 \mathrm{~mA})$
Outputs	

FUNCTIONAL DESCRIPTION - The 3814 is intended for use as the digital logic portion of digital voltmeter systems. An input clock $(\overline{C P})$ drives $4-1 / 2$ decades of BCD counters, with the counters changing state on the LOW to HIGH clock transition. The output of the second decade is gated with the input clock ($\overline{\mathrm{CP}}$) and brought off chip $(\div 100)$ for use as an additional clock. This clock may be used to drive the multiplexer input ($\overline{\mathrm{Step}}$).
A clock input synchronized with a LOW state on Master Preset ($\overline{\mathrm{MP}}$) will set the counters to 30,000 . The 3814 will then count the next 10,000 clock pulses, and be in the 00,000 state. At this count the device will ignore the next 10 clock inputs. This feature is useful when the device is used in systems where the current switching associated with analog to digital conversion generates transients which might cause false triggering. This 10 count correction requires a small current (equal to the integral of 10 counts of the standard current) be added to the unknown current. Thus, even if the current to be measured is zero, the integrator output voltage is moved off zero, eliminating comparator transient triggering. Following this 10 count pause, the 3814 continues to count; in normal operation the A/D circuitry will provide a transfer input, causing the count to be loaded into the latches. The count stored (and present at the output multiplexer) will be proportional to the ratio of the unknown current to the standard current. The counter will continue to accept clock pulses, and at 20,000 the OE_{E} output will go LOW and the OE2 output will go HIGH. This state may be decoded and used to reset the analog circuitry. Since current switching associated with this reset may again cause false triggering, only one transfer command is accepted during the interval from 00,000 to 39,000 .

In typical operation, the states of the two overflow flip-flops ($\mathrm{Q}_{\mathrm{E} 1}$ and Q_{E}) may be used to control system operation.

Table 1.

COUNT	$\mathrm{Q}_{\mathrm{E} 1}$	$\mathrm{Q}_{\mathrm{E} 2}$
30,000 to 00,000	1	1
00,000 to 10,000	0	0
10,000 to 20,000	1	0
20,000 to 30,000	0	1

COUNT CONTROL OUTPUTS

Table 2.

DIGIT FED BACK TO DP	EXAMPLE COUNT	DISPLAY*
A, or $D P=V_{\text {SS }}$	00000	0
A, or DP $=V_{S S}$	00120	120
B	00120	12.0
C	00120	1.20
D	00120	0.120
E, or DP $=V_{\text {DD }}$	00120	0.0120
		E DCBA

*The decimal point itself in the display is not controlled by the 3814.

LEADING-ZERO BLANKING

In addition, the QE2 output is latched and brought out as QE2L. If a system utilizing a full scale count of 19,999 is implemented with the 3814 , the HIGH state of OE2L will indicate an overrange condition. The divide by 2,000 output $(\div 2,000)$ is intended for use as an underrange indicator. If this output has not gone HIGH when a transfer command is received, the total count is less than 10% of full scale.

A power-on reset should be provided externally to insure proper counter initialization.
DATA OUTPUTS - The state of one of the $4-1 / 2$ decade counters is presented as a $B C D$ multiplexed output $\left(\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}\right.$, $\left.\mathrm{O}_{8}\right)$. One of the five decoded outputs ($\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{OD}_{\mathrm{D}}, \mathrm{O}_{\mathrm{E}}$) will be HIGH, indicating which decade's count is present at the BCD outputs. The multiplexer is clocked by a separate input ($\overline{\mathrm{Step}}$) which may be driven at $1 / 100$ of the clock frequency by directly connecting the $\div 100$ output to the $\overline{\text { Step }}$ input.
BLANKING - Automatic leading zero blanking is simply accomplished by directly wiring two pins of the 3814. One of the decade outputs (O_{A} through $\left.O_{E}\right)$ when wired to the decimal point (DP) input will cause all leading zeros to the left of the feedback decade to be automatically blanked. For example if the count is 00120 and decade " A " (OA) is connected to DP, the display will be " 120 ". With the same count, and decade " D " (O_{D}) connected to $D P$, the display will be 0120 . When the

TEST INPUT - This pin is used during the testing of the 3814 and must be wired to $\mathrm{V}_{\text {SS }}$ for operation.

FAIRCHILD MOS INTEGRATED CIRCUIT • 3814
DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.0$		$\mathrm{V}_{\mathrm{SS}}+0.3$	V	All Inputs Including $\overline{\mathrm{CP}}$
$V_{\text {IL1 }}$	Input LOW Voltage	-2		0.5	V	$\overline{\mathrm{CP}}$ and $\overline{\text { STEP }}$
VIL2	Input LOW Voltage	-2		+0.8	V	All Inputs Except $\overline{\mathrm{CP}}$ and $\overline{\text { STEP }}$ a) Sourcing $200 \mu \mathrm{~A}$ for Outputs; $\mathrm{Q}_{\mathrm{E} 1}$, $Q_{E 2}, Q_{E 2 L}, \div 2000, C_{L}<20 p F$.
VOH^{\prime}	Output HIGH Voltage	2.4		$\mathrm{V}_{\text {SS }}$	V	b) Sourcing $400 \mu \mathrm{~A}$ for Outputs; $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}, \mathrm{O}_{8} ; \mathrm{C}_{\mathrm{L}}<30 \mathrm{pF}$.
$\mathrm{V}_{\mathrm{OH} 2}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}-1.0$		$\mathrm{V}_{\text {SS }}$	V	Sourcing $200 \mu \mathrm{~A}$ for Outputs $\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$, $O_{D}, O_{E}, \div 100 ; C_{L}<20 p F$ a) Sink 1.6 mA on Outputs $\mathrm{Q}_{\mathrm{E} 1}, \mathrm{Q}_{\mathrm{E} 2}$, $\mathrm{O}_{\mathrm{E} 2 \mathrm{~L}}, \mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}, \mathrm{O}_{\mathrm{E}}, \div 100$,
V_{OL}	Output LOW Voltage			0.4	V	$\div 2000 ; C_{L}<20 \mathrm{pF}$ b) Sink 2.0 mA on Outputs $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}$, $\mathrm{O}_{8}, \mathrm{C}_{\mathrm{L}}<30 \mathrm{pF}$.
RIN1	Input Resistor Returned to $\mathrm{V}_{\text {SS }}$	1	2.5	5	$\mathrm{k} \Omega$	Inputs: $\overline{\mathrm{CP}}, \overline{\mathrm{Blank}}, \overline{\mathrm{MP}}, \overline{\text { Trans }}$.
$\mathrm{R}_{\text {IN2 }}$	Input Resistor Returned to $\mathrm{V}_{\text {SS }}$	10	25	50	$\mathrm{k} \Omega$	Inputs: $\overline{\text { Step, DP }}$
I_{GG}	$\mathrm{V}_{\text {GG }}$ Supply Current	3	5	15	mA	
ISS	$V_{\text {SS }}$ Supply Current	20	30	50	mA	

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to 70 C

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
f	Operating Frequency	DC		600	kHz	Fig. 1
tpWC	Clock Pulse Width	300	220		ns	Fig. 1
tTS	TRANS Set Up Time	250			ns	Fig. 2
tith	TRANS Hold Time	50			ns	Fig. 2
${ }^{\text {t }} \mathrm{DHL}$	$\begin{aligned} & \hline \text { HIGH to LOW Transition for Outputs } \\ & \div 100 \\ & \div 2000 \\ & \mathrm{O}_{\mathrm{E} 1}, \mathrm{O}_{\mathrm{E} 2} \\ & \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}, \mathrm{O}_{8} \\ & \hline \end{aligned}$		$\begin{aligned} & 320 \\ & 375 \\ & 400 \\ & 450 \end{aligned}$	$\begin{array}{r} 1000 \\ 1000 \\ 800 \\ 1000 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Fig. 3 Fig. 3 Fig. 3 Fig. 4
${ }^{\text {t }}$ L ${ }^{\text {H }}$	LOW to HIGH Transition for Outputs $\div 100$ $\div 2000$ $\mathrm{Q}_{\mathrm{E} 1}, \mathrm{o}_{\mathrm{E} 2}$ $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}, \mathrm{O}_{8}$		$\begin{aligned} & 350 \\ & 450 \\ & 425 \\ & 550 \end{aligned}$	$\begin{array}{r} 1000 \\ 1000 \\ 800 \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Fig. 3 Fig. 3 Fig. 3 Fig. 4
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Clock Rise and Fall Times			200	ns	Fig. 1
${ }^{\text {t MPS }}$	Master Preset Set-up Time	300			ns	Fig. 1
${ }^{\text {tMPH }}$	Master Preset Hold Time	200			ns	Fig. 1

INPUT CLOCK ($\overline{\text { STEP OR }} \overline{\mathrm{CP}}$) WAVEFORM

TIMING DIAGRAMS

TRANSFER SETUP AND HOLD TIMES

PROPAGATION DELAY-OUTPUTS

Fig. 3.

Fig. 2.
PROPAGATION DELAY - BCD OUTPUTS

Fig. 4.

LOW COST DVM - Figure 5 shows one version of a basic DVM. An input buffer, such as $\mu A 776$, could have been added to boost the input resistance to $400 \mathrm{M} \Omega$ and provide isolation of the unknown from the action of the current sources. If source resistance is low, the buffer may not be needed. The $I_{Z O}$ and I_{S} current sources have been implemented with discrete components. Also, temperature compensation has been added to the I_{s} circuit as this is most critical to system accuracy. As designed, only positive inputs are properly integrated. If negative input capability is also desired, additional current sources and gating are needed.
Ideally, SW_{1} and SW_{2} have zero resistance when on, infinite resistance when off and no offset voltage. For an accurate system then, bipolar transistors cannot be used because of offset. P-Channel or N-Channel FETs ably satisfy all three of the switch criteria. To avoid gate-to-source debiasing, P-Channel devices should be used for negative input voltages and N-Channel devices for positive inputs. The versatile $\mu \mathrm{A} 776$ is used again as the integrator amplifier; the $\mu \mathrm{A} 734$ comparator receives the integrator signal and upon a null crossing, generates the transfer command to the 3814 . All gating for mode control to SW_{1}, SW_{2} and SW_{3} is obtained from the QE_{2} and Q_{E} output. The FND21 LED Display Module and the associated decoder and drivers are also shown. For flexibility of decimal point location and zero suppression, a five position SPST switch has been added to appropriately gate the DIGIT SELECT outputs to the DP inputs.

This DVM (exclusive of display circuitry) can be built with a total of only six integrated circuits - seven if input buffering is required.

3817A/3817D DIGITAL CLOCK RADIO OR DIGITAL ALARM CLOCK

GENERAL DESCRIPTION - The 3817A and 3817D are 4 digit Alarm Clocks utilizing the MOS P-channel Isoplanar, silicon gate process. The 3817A and 3817D contain all the logic required to build a variety of clocks and timers using 50 or 60 Hz line frequencies. Interfacing to LED, LCD, Gas Discharge and Vacuum Fluroescent displays is possible with a minimum number of external components.
Four different display modes may be selected:

- Time (unselected) - Hours and minutes
- Seconds - Minutes and seconds
- Alarm - Display the present setting of the alarm
- Sleep (countdown) - Displays time (minutes) to turn-off of radio

A display format of either 12 or 24 hours may be externally selected. These devices operate from a single unregulated power supply over a range of 8 to 22 volts with an indication to inform the viewer that a power failure has occurred. They are available in the 40 -pin ceramic or plastic Dual In-line Package.

- 50 OR 60 Hz OPERATION
- SINGLE POWER SUPPLY
- 12 OR 24 HOUR DISPLAY FORMAT
- AM/PM OUTPUTS (12-HOUR DISPLAY FORMAT)
- LEADING ZERO BLANKING (12-HOUR DISPLAY FORMAT)
- FAST AND SLOW SET CONTROLS
- POWER FAILURE INDICATION
- BLANKING/BRIGHTNESS CONTROL CAPABILITY
- DIRECT INTERFACE TO LED, FLUORESCENT TUBES, OR LCD DISPLAYS
- 9 MINUTE SNOOZE ALARM
- PRESETTABLE 59 MINUTE SLEEP TIME

ABSOLUTE MAXIMUM RATINGS (All voltages relative to V_{SS})

Supply Voltage Range, VDD	-22 V to +0.3 V
Input Voltage Range	-22 V to +0.3 V
Output Voltage Range	-22 V to +0.3 V
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

TABLE 1: OPERATING MODES FOR 3817A AND 3817D

DISPLAY MODE	DISPLAY CONTROL (PIN) CONNECTED TO VSS	SET CONTROL CONNECTED TO VSS			
		NONE	FAST SET (34)	$\begin{aligned} & \text { SLOW SET } \\ & (33) \end{aligned}$	BOTH
Time-of-Day	None	Time-of-Day Display	Time Set Advance $(60 \mathrm{~Hz}$)	Time Set Advance (1 Hz)	Same as FAST SET
Seconds	Seconds (32)	Seconds Display (1M, 10S, 1S) *	Seconds Reset to 00 (No Carry to Minutes)	Time Count Inhibited (Hold Mode)	$\begin{aligned} & \text { Time Reset } \\ & \text { 12:00:00AM (12 hr) } \\ & \text { 00:00:00 (24 hr) } \end{aligned}$
Alarm Time	Alarm Time (31)	Alarm Time Display (10H, 1H, 10M, 1M)	Alarm Set Advance $(60 \mathrm{~Hz})$	Alarm Set Advance $(1 \mathrm{~Hz})$	$\begin{aligned} & \text { Alarm Reset } \\ & \text { 12:00AM (12 hr) } \\ & 00: 00(24 \mathrm{hr}) \end{aligned}$
Sleep Countdown	Sleep Countdown (30)	Sleep Countdown Display (10M, 1M)**	Sleep Countdown Set (Countback from 00 at 1 Hz)	Sleep Countdown Set (Countback from 00 at 1 Hz)	Same as FAST SET

*Leading digit is blanked.
** Leading two digits are blanked.

FUNCTIONAL DESCRIPTION

$50 / 60 \mathrm{~Hz}$ Input (Pin 35) and Select (Pin 36) - The timing for the Clock is obtained from the 50 Hz or 60 Hz ac line. Internal circuitry allows interfacing with the ac line through a high-value resistor. Internal limiting is provided, and hysteresis is designed in to minimize noise response. A series resistor is always necessary to limit the current at this input.

The input frequency may be 50 or 60 Hz . To select a frequency of 50 Hz connect pin 36 to V_{SS}; to select a 60 Hz frequency leave pin 36 disconnected. An internal pull-down resistor provides the logic level.

Display Modes/Time Settings (Pins 30 to 32) - There are four display modes:

1) Time-of-day - This is the normal mode of operation where tens and unit hours ($10 \mathrm{H}, 1 \mathrm{H}$) and tens and unit minutes ($10 \mathrm{M}, 1 \mathrm{M}$) are displayed. It is obtained by leaving all Display Controls unconnected. To set any desired time, the Fast Set and/or Slow Set inputs must be connected to V_{SS}. Fast Set advances the time at a 60 Hz rate; Slow Set advances. the time at a 1 Hz rate (see Table 1).
2) Seconds Display Input (Pin 32) - If a more accurate time display is desired, the Seconds Display mode may be activated by connecting the Seconds Display input to V_{SS}. The Output will display unit minutes (1 M) and tens and unit seconds ($10 \mathrm{~S}, 1 \mathrm{~S}$). If, during a Seconds Display, Fast Set is connected to V_{SS}, seconds will reset to 00 with no effect on the minutes display. If Slow Set is connected to V_{SS}, the entire counter will stop (Hold mode) until Slow Set is disconnected. Activating both Fast Set and Slow Set simultaneously will reset the time-of-day to 12:00 AM (12-hour format). (See Table 1)
3) Alarm Display Input (Pin 31) - The contents of the alarm register may be displayed by connecting pin 31 to V_{SS} causing $10 \mathrm{H}, 1 \mathrm{H}, 10 \mathrm{M}, 1 \mathrm{M}$ to be displayed. The Alarm is set in the same manner as "time-of-day". Activating both Fast Set and Slow Set simultaneously will reset the Alarm Time to 12:00 AM (12-hour format) or 00:00 (24-hour format). (See Table 1)

FUNCTIONAL DESCRIPTION (Cont'd)

4) Sleep Display Input (Pin 30) - The Sleep Countdown is generally used to turn off a radio after falling asleep. It displays in minutes ($10 \mathrm{M}, 1 \mathrm{M}$) and counts down the time remaining from a maximum of 59 minutes until any external circuitry is turned off. The Sleep Time is set by using the Fast Set and/or Slow Set inputs which decrement the counter from $00(00,59,58$, etc.) to the desired Countdown time. Once set, the counter will count down to 00 . For times other than 00, the Sleep Countdown output (open-drain device) is pulled toward $V_{S S}$. A 00 display will cause a high impedance at the Sleep Countdown output. The countdown may be terminated at any time by momentarily connecting the Snooze input to $V_{S S}$.
Time Setting Inputs - Fast (Pin 34) and Slow (Pin 33) - Two inputs are provided to set time, where the Fast Set is 50 or 60 Hz and the Slow Set is 1 Hz . Their function varies for each of the four display modes: Time, Seconds, Alarm and Sleep Countdown (see Table 1)

Alarm Output (Pin 25), Snooze (Alarm) Input (Pin 24) and Alarm Off (Pin 26) - The Alarm has the option to output either a dc level (3817D) or a 700 Hz frequency (3817A) for a variety of industrial or commercial applications. The level or tone output will be active for 60 minutes after the Alarm setting.
Connecting the Snooze input to V_{SS} during the 60 -minute period while the alarm is active will inhibit the Alarm Output for about 9 minutes. The Alarm is turned off by momentarily connecting Pin 26 to V_{SS}. The alarm is inhibited as long as Pin 26 is left at $V_{S S}$.
A Power Failure is caused when the $V_{S S}-$ to $-V_{D D}$ voltage difference drops below 8 volts and is indicated by a 1 Hz flashing of the AM or PM segments in the 12 -hour mode and the C/F, C, or G segments in the 24 -hour mode. The failure indicator is reset by connecting either the Fast or Slow Set Inputs to $\mathrm{V}_{\text {SS }}$ (Pins 33 or 34).
Blanking Input (Pin 37) - The displays will be enabled or be blanked by connecting Pin 37 to V_{SS} (HIGH) or V_{DD} (LOW), respectively. This is the only control pin where the input must be connected to a voltage.

Common Source Connection (Pin 23) - All segments including AM and PM are open drain devices with all sources connected in common to Pin 23. Connecting all sources in common permits these devices to be used with a multitude of display devices, even those which have different power supply requirements.

Segment Outputs (Pins 1, 3 to 11, 13 to 22, and 40) - Each of these segment outputs may source a maximum of 8 milliamps of direct current. The maximum power is 25 milliwatts per output device (see Figure 1), at an ambient temperature of $50^{\circ} \mathrm{C}$.

Segment Outputs (Pins 2 and 12) - Each of these segment outputs may source a maximum of 16 milliamps of direct current or a maximum power of 50 milliwatts per output device at an ambient temperature of $50^{\circ} \mathrm{C}$.

DC REQUIREMENTS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+15 \mathrm{~V} \pm 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {FIH }}$	$50 / 60 \mathrm{~Hz}$ Input HIGH Voltage	$\mathrm{V}_{\text {SS }}$-1		V	$\begin{aligned} & \text { External Series Resistor to limit current to } \\ & -10 \mu \mathrm{~A} \leqslant \mathrm{I}_{\text {FIL }} \leqslant-350 \mu \mathrm{~A} \text { and } \\ & 10 \mu \mathrm{~A} \leqslant \mathrm{I}_{\text {FIH }} \leqslant 150 \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {FIL }}$	$50 / 60 \mathrm{~Hz}$ Input LOW Voltage		$\mathrm{V}_{\text {SS }}{ }^{-6}$	V	
$\mathrm{V}_{\text {IH }}$	Control Input HIGH Voltage	$\mathrm{V}_{\text {SS }}$-1	$\mathrm{V}_{\text {SS }}$	V	Internal R, typically $2.5 \mathrm{M} \Omega$ to V_{DD}
$\mathrm{V}_{\text {IL }}$	Control Input LOW Voltage	$\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\text {DD }}{ }^{+2}$	V	
$\mathrm{V}_{\text {BIH }}$	Blanking Input HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}-2$	$\mathrm{V}_{\text {SS }}$	V	
$\mathrm{V}_{\text {BIL }}$	Blanking Input LOW Voltage		$\mathrm{V}_{\text {SS }}$-4	V	

DC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+15 \mathrm{~V} \pm 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {PF }}$	Power Failure Detect Voltage	8		V	
$\underline{\text { IN }}$	Input Leakage Current		1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=-20 \mathrm{~V}$, Pin 37 only
IDD	Power Supply Current		6	mA	No output loading
$\underline{\mathrm{OH}}$	Output HIGH Current	1.5		mA	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}-2$
${ }^{1} \mathrm{OL}$	Output LOW Current		1.0	$\mu \mathrm{A}$	$\begin{aligned} & v_{\text {COMMON }}=v_{\text {SS }} \\ & v_{\text {OL }}=v_{\text {DD }} \\ & \text { See Fig. } 1 \end{aligned}$
${ }^{*} \mathrm{OH} 2$	Output HIGH Current	3.0		mA	
${ }^{*} \mathrm{OL} 2$	Output LOW Current		1.0	$\mu \mathrm{A}$	
$\underline{\mathrm{IOH}}$	1 Hz Output HIGH Current	4.5		mA	

*Pins 2 and 12

AC REQUIREMENT: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+15 \mathrm{~V} \pm 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
fIN	$50 / 60 \mathrm{~Hz}$ Input Frequency	0	400	Hz	

AC CHARACTERISTIC: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+15 \mathrm{~V} \pm 7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathbf{f}_{\mathbf{N}}$	3817 Alarm Output	350	700	1200	Hz	Fundamental Harmonic

Fig. 1

*May be replaced with alarm speaker coil.
** May be replaced with Solenoid or relay coil.

Fig. 2

PRODUCT INDEX - ALPHANUMERIC LISTING
OF DEVICES

NMOS/PMOS
INTRODUCTION
MEMORY PRODUCTS
CONSUMER/INDUSTRIAL PRODUCTS

MICROPROCESSOR PRODUCTS

MULTIPLEXERS AND COUNTERS

CMOS

F4000 SERIES GENERAL DESCRIPTION:
DESIGN CONSIDERATIONS WITH F4000
SERIES CMOS

BIPOLAR INTERFACE CIRCUITS FOR CMOS

CCD

INTRODUCTION

TECHNICAL DATA

ORDER AND PACKAGE INFORMATION

THINK FB UNIVERSAL STANDARD MICROPROCESSOR

VERSATILE . .EFFICIENT . .COST EFFECTIVE

The ultimate goal, from F8 design concept through development and production, was to produce the most versatile, efficient, cost-effective microprocessor system available today. To accomplish this, five stringent parameters, based on user experience with other systems, were set forth as guidelines for the F8.

- Minimum Parts Count
- Cost Effectiveness
- Simple Peripheral Interfaces
- Easy Expansion through Modular Architecture
- Simplified Programming and Debugging

HOW WERE FE GDALS MET ?

By ... unique system partitioning the system functions have been divided among the various circuits of the F8 family to provide sophisticated modularity. As a result, it is now possible to build a minimum microprocessor system with only two devices. To this system PSU, RAM and I/O devices can be added to form medium size or memory intensive systems with a minimum use of external parts. And, finally, for
solving complex problems, the F8 devices can be connected as subsystems into a synergistic system of independent microprocessors.

By ... incorporating the $1 / O$ structure on the chips so that the majority (95%) of the peripheral devices can be directly controlled without the need for special circuits. The trick is to accommodate the characteristics of a given peripheral device in the software. The I/O hardware structure includes a programmable timer, an efficient interrupt system and bidirectional I / O ports.

By . . . providing carefully thought out software for generating and debugging microprograms and a choice of three hardware modules for speeding up prototype development.

WHAT IS THE RESULT?

. . . a complete family of $L S I$ circuits that can be used as building blocks to construct versatile, efficient, cost effective systems from the most simple to the highly complex.

3850 CENTRAL PROCESSING UNIT

3851 PROGRAM STORAGE UNIT

Fairchild's F8 Central Processing Unit (CPU) contains all of the functions of an ordinary central processor and adds some time and money saving features uniquely its own. For instance, the 64 bytes of scratchpad RAM memory already included on the F8 CPU eliminate the need for external RAM circuits in many applications. Clock and power-on-reset circuitry, normally requiring additional integrated circuit packages, are included on-chip. Fairchild's CPU also contains 16 bits of fully bidirectional input and output lines internally latched (for storing output data) and capable of driving a standard TTL load.

It is important to note that Fairchild's Program Storage Unit (PSU) is not just a conventional Read Only Memory. In addition to containing 1024 bytes of mask programmable ROM for program and constant storage, the F8 PSU includes the addressing logic for memory referencing, a Program Counter, an Indirect Address Register (the Data Counter) and a Stack Register. A complete vectored interrupt level, including an external interrupt line to alert the central processor, is provided. All of the logic necessary to request, acknowledge and reset the interrupt is on the F8 PSU. The 8-bit Programmable Timer is especially useful for generating real time delays. The PSU has an additional 16 bits of TTL compatible, bidirectional, fully latched I/O lines.

Systems requiring more program storage may be expanded by adding more PSU circuits. For example, one F8 CPU and three F8 PSUs will produce a microprocessor system complete with 64 bytes of RAM, 3072 bytes of ROM, 64 I/O bits, three interrupt levels, and three programmable timers. This complete system will require only four IC packages.

3854 DIRECT MEMORY ACCESS

Fairchild's Direct Memory Access (DMA) device sets up a high speed data path to link F8 memory with peripheral electronics. The F8 DMA circuit, when working in conjunction with the F8 DMI, does not require overhead electronics to keep track of memory addresses, bytes transferred and handshaking signals. The data transfer is initiated by the CPU under program control. Once started, the DMA transfer will continue without CPU intervention. The CPU can sense the enable line of the DMA to determine the completion of a transfer. The entire DMA transfer will take place without halting the central processor.

FE MICROPROCESEOR APPLICATION SPECTRUM

Because of its unique system partitioning, the F8 device set can be applied across a wide range of applications. The minimum two-circuit system is the basis for a modular architecture that can handle increasingly complex problems. A system of medium complexity can be designed by adding more F8 PSUs. The use of an F8 memory interface device allows up to 65 K bytes of standard memories to be incorporated into the F8 system. For highly complex applications, independent F8 subsystems can be connected into a multiprocessing system in which each subsystem can operate independently yet can be controlled by one CPU that is the coordinator.

AUTOMOTIVE IGNITION CONTROL AUTOMOTIVE BRAKES AUTOMOTIVE DASH CONTROL

HOME APPLIANCES
VENDING MACHINES ELECTRONIC SCALES SPECIALTY CALCULATORS ELECTRONIC GAMES AUTOMATED GAS PUMPS FAST FOOD CASH REGISTERS PAPER TAPE HANDLERS

CASSETTE TAPE HANDLERS
CASH REGISTERS
COMMUNICATION LINE CONTROLLERS
PRINTER CONTROLLERS
TRAFFIC LIGHT CONTROLLERS
COPIERS
PABX
FILM PROCESSING
AUTOMOTIVE ANALYZERS
FLOPPY DISK CONTROLLERS
MESSAGE CONCENTRATORS
MEDICAL INSTRUMENTS
MACHINE TOOL CONTROL
STORAGE AND FORWARD MESSAGE SWITCHING

ADAPTIVE EQUALIZERS
FAST FOURIER TRANSFORM
ANALYZERS

A TWO-CIRCUIT SYSTEM

The two-circuit F8 microprocessor is suitable for small data terminals, controllers, and specialty calculators. The keyboard is connected directly to the $\mathrm{F} 8 \mathrm{I} / \mathrm{O}$ ports without special interfaces. Switch-bounce protection, rollover, and key encoding are all under software control. Software also decodes signals for LED readouts.

As an appliance controller, for example, the two-circuit system can perform all input-output sensing, actuating, timing, and computation operations. A system like the combination washing-machine-and-dryer controller in Figure 1 requires more than 250 components when other microprocessor device sets are used, but with the F8 devices uses only 55 components, including 28 LEDs and the power semiconductor devices and relays used to control the motors. A set of custom circuits would also require about 50 parts, but initial engineering expense is heavy and severe penalties are incurred if changes are required. With the F8 system changes can be made by merely changing the program.

Fig. 1. Two-Circuit System

A MORE COMPLEX SYSTEM

The versatility of the F8 system is indicated by the traffic-light-controls system in Figure 2. The use of one CPU and two PSU circuits provides the designer with two timers, two interrupts, an onboard clock, onboard power-on reset, onboard switch decoding, and 48 bidirectional I/O bits. This system could be tied to vehicle detectors in the road, to monitor traffic for left-turn lanes as well as through-traffic flow in four directions. It would also react to interrupts from the pedestrian control buttons at each corner. There also is sufficient I/O capability to permit communication with and control of neighboring intersections and to allow the system to be operated manually or tested for proper operation.

Five F8 features are of particular interest for this type of application. One of the interrupts can eliminate the need for
such external circuits as a comparator to compare a count of the cars with a predetermined value to cause the light to change. (The CPU can handle the simple arithmetic of counting cars.) This interrupt also eliminates the need for continuous polling of traffic count by the microcomputer. The second interrupt would be ideal for permitting pedestrian control to override the automatic system. The internal clock, with an external crystal, can also control light routines.

The two timers permit simultaneous counting of delay for vehicle signals and flashing warning lights for pedestrians. The onboard power-on reset acts in case of power failure to start the system automatically when power is renewed. The bidirectional I Os have built-in latches that eliminate the need for external latches for the job of "holding" commands for lights as well as the momentary commands provided by timers and sensors.

Fig. 2. Medium Complexity System

A MEMORY INTENSIVE SYSTEM

A typical application is a printing credit-verification terminal (Figure 3). Such a system requires high performance and yet must be low in cost if it is to reach a large market. Only four different F8 devices are required to handle a keyboard input, visual display, card reader, and printer as well as provide a
modem interface and memory interface for external RAM storage. This printing credit-verification system might be compared to a "bare mini-computer" in terms of utility; however, a detailed engineering evaluation would show that it costs less, has fewer parts and a more flexible I/O structure.

Fig. 3. Memory Intensive System

MULTI-MICROPROCESSOR SYSTEM

Figure 4 shows a specific application of the multi-processing concept as applied to a keyboard-to-floppy-disk system. Possibly this is the most cost-effective way of implementing this system, conservatively costing less than 50% of a conventional implementation. This system involves concurrent operation of three floppy disks, magnetic tape, CRT, keyboard, printer, and modem. While the low-speed devices (the keyboard, printer, and modem) can be adequately handled by the programmed I/O structure, the high-speed devices (disks, mag-
netic tape, and CRT) require separate F8 CPUs and PSUs.
This scheme provides simplicity of control, modularity, and freedom to expand. In this case, the units operating concurrently are: one magnetic-tape unit ($25 \mu \mathrm{~s} /$ byte); three floppy-disk units ($32 \mu \mathrm{~s} /$ byte each); and a CRT unit ($71 \mu \mathrm{~s} /$ byte). This combination requires an aggregate bandwidth of 0.1478 byte/ $\mu \mathrm{s}$. This is well within the F8's upper bandwidth limit of 0.5 byte $/ \mu \mathrm{s}$.

Fig. 4. Multi Microprocessor System

F8 MICROPROCESSOR DEVELOPMENT SUPPORT HARDWARE

Development support hardware is an integral part of Fairchild's F8 Microprocessor product concept. Fairchild's Microprocessor Support Engineering Group has developed an extensive set of design aids to enable customers to shorten their development cycle time and speed up programming. The F8 development support hardware provides a working model of the user's system and facilitates:

- Evaluation of F8 Microprocessor hardware operation
- Reduction of engineering time and development costs
- Preparation of system software and firmware programs
- Reduction of system hardware, software and firmware evaluation and debug time

F8 MICROPROCESSOR EVALUATION KIT

The lowest cost method for quick evaluation of the operation of the F8 Microprocessor hardware. Comes complete with a preprogrammed debug ROM device, PC card, complete instructions on the operation of all devices in the kit and all pertinent F8 literature.

F8M - MICROMODULE

A complete printed circuit subassembly capable of demonstrating the operation of a customer's program. Comes complete with F8M User's Manual and all pertinent F8 literature.

F8S - DEVELOPMENT MODULE

A complete printed circuit subassembly capable of developing, debugging and demonstrating the operation of a customer's program. Comes complete with F8S User's Manual and all pertinent F8 literature.

F8SEM - SYSTEM EXPANSION MODULE

A printed circuit subassembly designed to be used with the F8S Development Module to expand the system memory in 4 K byte increments, and to expand the number of I / O ports in increments of four each.

F8SPDM - DEVELOPMENT MODULE SET

A combination set of modules containing one F8S Development Module, two F8SEM System Expansion Modules, an F8S Native Assembler, F8S and SEM User's Manuals and all other pertinent F8 literature. A more economical solution for the user requiring the expansion modules.

F8 FORMULATOR - COMPLETE MICROPROCESSOR DEVELOPMENT SYSTEM

A benchtop self-contained, modularized F8 development system, complete with front panel controls, cabinet, power supply, resident assembler and text editor, complete F8 Formulator Operating and System Reference manuals, and all other pertinent F8 literature.

F8 MICROPROCESSOR EVALUATION KIT

Fairchild's Microprocessor Evaluation Kit is designed for use by engineers, scientists and technicians in order to provide a straightforward method for constructing, using and evaluating prototype F8 microprocessor systems in real applications or training situations. It provides all of the semiconductor components, technical specifications, and instructions necessary to interconnect devices, demonstrate microprocessor programs up to 1 K bytes in length, and to debug those programs.

The F8 Microprocessor Evaluation Kit contains the following semiconductor parts and documentation:

- 16 Semiconductor Devices, including

> 1 - 3850 Central Processing Unit
> 1 - $3851 A^{*}$ FAIR-BUG Programmed Storage Unit
> $1-3853$ Static Memory Interface
> $8-2102-2$ K Static RAM Devices
*The 3851 FAIR-BUG PSU is a fixed programmed Fairchild 3851 PSU which provides the programmer with all its $1 / O$ subroutines and allows the programmer to display or alter memory and register contents via a teletype terminal.
$\left.\begin{array}{l}1-34001 \\ 2-340097 \\ 1-34023\end{array}\right\}$ CMOS Gates and Buffers
$1-9$ NO6 TTL Hex Inverter

- 1 PC Card to Facilitate Device Hook-up
- F8 Microprocessor Brochure
- F8 Design Evaluation Kit Instruction Manual
- A Guide to Programming the Fairchild F8 Microprocessor
- F8 Microprocessor Data Book
- F8 Timesharing Systems Operators Guide

The F8 Microprocessor Evaluation Kit is available now from your local Fairchild Franchised Distributor.

F8M - MICROMODULE

The F8M Micromodule is an inexpensive prototyping subassembly for the development and breadboarding of F8 Microprocessor designs. It is a complete printed circuit subassembly, requiring only the addition of power supplies and connection to a teleprinter to become fully operational.

Features of the F8M include:

- Switches and LEDs Provide Control and Monitor Functions
- 1K Bytes of Static MOS RAM
- Sockets for 2K Bytes of Bipolar PROM (Fairchild 93426)
- 2 Preprogrammed 93426 Devices Forming a Bootstrap Loader
- External Interrupt
- 4 I/O Ports Available on the Edge Connector
- Programmable Interval Timer
- Serial Communications Interface, RS232 Format, 20 mA Current Loop

The customer's system is ready to demonstrate after the connection of peripheral circuits and either loading an object program into the RAM, or plugging in preprogrammed PROMs. The program can be halted and single-stepped to demonstrate statically how the design functions. Any PROM or ROM memory location can be monitored by halting the program. RAM memory locations can be altered before resuming operation of the system.

The F8M is supported by a Cross Assembler available for purchase from Fairchild Semiconductor or through a National Timesharing Network. Contact your Fairchild Sales Representative for more information.

The F8M Micromodule is available off the shelf for immediate delivery from your Fairchild Franchised Distributor.

F8S - DEVELOPMENT MODULE

The F8S is an inexpensive F8 development and debugging subassembly. A self-contained complete printed circuit module, the F8S needs only power supply and connection to a teleprinter and the customer's peripheral circuits to form a complete F8 microcomputer system. Memory may be expanded to a maximum of 64 K bytes with the system expansion modules described elsewhere in this brochure.

Features of the F8S include:

- Switches and LEDs Provide Control and Monitor Functions
- 64K Bytes of Addressable Memory Space (1K of Semiconductor Static RAM is Provided)
- Sockets for 2K Bytes of Bipolar PROM (Fairchild 93446)
- 2 External Interrupts
- 2 Programmable Interval Timers
- 4 Input/Output Ports (8 Bits Each)
- FAIR-BUG* Debugging Program

The F8S Development Module, with System Expansion Modules, allows source programs to be assembled inexpensively at the customer's location. Switches permit program RUN, HALT, and Single Step. Program breakpoints may be activated by changing instructions at the breakpoint locations. When a breakpoint is encountered, FAIR-BUG turns control over to you through the teleprinter. Commands consisting of single alphabetics allow you to examine or alter the contents of any memory location, group of locations or internal register of the CPU. Connection of peripheral circuits to the input/output ports enables the user to demonstrate his application.

The F8S is available now from your local Fairchild Franchised Distributor.

[^3]

F8SEM - SYSTEM EXPANSION MODULE

Designed to operate with the F8S Development Module, the F8SEM System Expansion Module adds 4 K byte increments of memory to the F8 development system and four additional I/O ports. Switches contained on the module allow the user to select the active page address that the module will respond to, the addresses of the input/output ports and the interrupt addresses.

Features of the F8SEM System Expansion Module include:

- 4K Bytes of Static RAM
.
- Memory Page Selection
- 4 Input/Output Ports (8 Bits Each)
- Switch Selectable I/O Port Addresses
- 2 External Interrupts
- 2 Programmable Interval Timers
- Switch Selectable Interrupt Addresses

Available October 1, 1975 from your local Fairchild Franchised Distributor.

F8SPDM - DEVELOPMENT MODULE SET

The F8SPDM is a combination set of modules containing one F8S module card, two F8SEM module cards, a paper tape F8S Native Assembler, and all necessary users manuals and F8 documentation literature.

Available October 1, 1975 from your local Fairchild Franchised Distributor.

F8 FORMULATOR

The F8 Formulator is a complete benchtop microprocessor development system designed to support every F8 application.

F8 Formulator features and capability include:

- F8 CPU Module
- Up to 64 K Bytes of Addressable Memory
- Control and Monitor Console
- Virtually Unlimited Expansion of I/O Ports
- 2 External Interrupts Available for Every 4 I/O Ports
- Modular Construction
- Self-contained Power Supplies
- Resident Assembler
- Source Text Editor
- Complete Debug Capability

Standard memory modules and input/output modules permit expansion of the F8 Formulator to meet your need. Additional peripheral interfaces will also be available.

Available January 1976. Contact your local Fairchild salesman, representative or franchised distributor for pricing information.

FB INSTRUCTION SET SUMMARY

The F8 instruction set contains over 60 different instructions which may be subdivided into 10 categories: Accumulator, Scratchpad Register, Indirect Scratchpad Address Register, Memory Reference, Data Counter, Status Register, Program Counter, Branch, Interrupt Control and Input/Output instructions. Because 55\% of the F8 instructions are only one byte long, programs are short and memory requirements significantly reduced. An alphabetic listing of the instructions is shown below. The following pages contain a complete description of the F8 instructions, including the cycle time. Each cycle is $2 \mu \mathrm{~s}$ for a system with a 2 MHz clock frequency.

F8 ADDRESSING MODES

The F8 instruction set has eight modes of referencing either $\mathrm{I}, \mathrm{O}, \mathrm{CPU}$ registers or bulk memory.

Implied Addressing - The data for this one-byte instruction is implied by the actual instruction. For example, the POP instruction automatically implies that the content of the Program Counter will be set to the value contained in the Stack Register.

Direct Addressing - In these two-byte instructions, the address of the operand is contained in the second byte of the instruction. The Direct Addressing mode is used in the Input/ Output class of instructions.

Short Immediate Addressing - Instructions whose addressing mode is Short Immediate have the instruction op code as the first four bits and the operand as the last four bits. They are all one-byte instructions.

Long Immediate Addressing -- In these two-byte instructions, the first instruction byte is the op code and the second byte is the 8 -bit operand.

Direct Register Addressing - This mode of addressing may be used to directly reference the Scratchpad Registers. By including the register number in the one-byte instruction, 12 of the 64 Scratchpad Registers may be referenced directly.

Indirect Register Addressing - All 64 Scratchpad Registers may be indirectly referenced, using the Indirect Scratchpad Register in the CPU. This 6 -bit register, which acts as a pointer to the scratchpad memory, may either be incremented, decremented, or left unchanged while accessing the scratchpad register.

Indirect Memory Addressing - A 16-bit Indirect Address Register, the Data Counter, points to either data or constants in bulk memory. A group of one-byte instructions is provided to manipulate this area of memory. These instructions imply that the Data Counter is pointing to the desired memory byte. The Data Counter is self-incrementing, allowing for an entire data field to be scanned and manipulated without requiring special instructions to increment its content. The memory interface circuit contains two interchangeable data counters.

Relative Addressing - All F8 Branch Instructions use the relative addressing mode. Whenever a branch is taken, the Program Counter is updated by an 8 -bit relative address contained in the second byte of the instruction. A branch may extend 128 locations forward or 127 locations back.

ALPHABETIC LIST OF INSTRUCTIONS

ADC	Add Data Counter with Accumulator	DCl	Load Data Counter Immediate	NI	Logical AND Accumulator Immediate
AI	Add Immediate with Accumulator	DI	Disable Interrupt	NM	Logical AND from Memory
AM	Add Binary Accumulator with Memory	DS	Decrement Scratchpad Register	NOP	No Operation
AMD	Add Decimal Accumulator with Memory			NS	Logical AND Scratchpad and Accumulator
AS	Add Binary Accumulator with Scratchpad Register	EI	Enable Interrupt		
ASD	Add Decimal Accumulator with Scratchpad Register			OI	Logical OR Immediate
		INC	Increment Accumulator	OM	Logical OR Memory with Accumulator
BC	Branch on Carry	IN	Input	OUT	Output
BF	Branch on False Condition	INS	Input Short	OUTS	Output Short
BM	Branch if Negative				
BNC	Branch if no Carry	JMP	Jump	PI	Push Program Counter into Stack Register
BNO	Branch if no Overflow	LI	Load Accumulator Immediate		Set Program Counter to New Location
BNZ	Branch if no Zero	LIS	Load Accumulator Short	PK	Push Program Counter into Stack Register
BP	Branch if Positive	LISL	Load ISAR - Lower 3 Bits		Set Program Counter from Scratchpad
BR	Unconditional Branch	LISU	Load ISAR - Upper 3 Bits	POP	Put Stack Register into Program Counter
BR7	Branch if ISAR is not 7	LM	Load Memory		
BT	Branch on True Condition	LNK	Link Carry into Accumulator	SL	Shift Left
BZ	Branch on Zero Condition	LR	Load Register (5 Types)	SR	Shift Right
			Scratchpad	ST	Store to Memory
Cl	Compare Immediate		Program Counter	XDC	Exchange Data Counters
CLR	Clear Accumulator		ISAR	XI	Exclusive OR Immediate
CM	Compare with Memory		Status	XM	Exclusive OR Accumulator with Memory
COM	Complement Accumulator		Data Counter	XS	Exclusive OR Accumulator with Scratchpad

ACCUMULATOR GROUP INSTRUCTIONS

BRANCH INSTRUCTIONS in all conditional branches $\mathrm{PC}_{0}-\left(\mathrm{PC}_{0}\right)+2$ if the test condition is not met. Execution is complete in 3.0 cycles.

MEMORY REFERENCE INSTRUCTIONS
In all Memory Reference Instructions, the Data Counter is incremented $D C \rightarrow-D C+1$

ADDRESS REGISTER GROUP INSTRUCTIONS

OPERATION	MNEMONIC OP CODE	OPERAND	FUNCTION	MACHINE CODE	BYTES	cycles	ovF	STATU ZERO	CRY	SIGN
ADD to DATA COUNTER	ADC		$D C-(D C)+(A C C)$	8 E	1	2.5	-	-	-	-
CALL to SUBROUTINE*	PK		$P C_{0} \mathrm{U}-(\mathrm{r} 12) ; \mathrm{PC}_{0} \mathrm{~L}-(\mathrm{r} 13) ; \mathrm{PC}_{1}-\left(\mathrm{PC}_{0}\right)$	OC	1	4	-	-	-	-
CALL to SUBROUTINE IMMEDIATE*	Pl	aaaa	$\mathrm{PC}_{1}-\left(\mathrm{PC}_{0}\right): \mathrm{PC}_{0}-\mathrm{H}^{\prime}$ aaaa	28 aaaa	3	6.5	-	-	-	-
EXCHANGE DC	XDC		$\left(\mathrm{DC}_{0}\right)=\left(\mathrm{DC}_{1}\right)$	2 C	1	2	-	-	-	-
load data counter	LR	DC, O	DCU-(r14): $\mathrm{DCL}-(\mathrm{r} 15)$	OF	1	4	-	-	-	-
LOAD DATA COUNTER	LR	DC.H	$\mathrm{DCO}-(\mathrm{r} 10): \mathrm{DCL}$ (r11)	10	1	4	-	-	-	-
LOAD DC IMMEDIATE	DCI	aaaa	DC-H'aaaa'	2Aaaaa	3	6	-	-	-	-
LOAD PROGRAM COUNTER	LR	PO, Q	$P C_{0} \mathrm{U}-(\mathrm{r} 14) ; \mathrm{PC}_{0} \mathrm{~L}-(\mathrm{r} 15)$	OD	1	4	-	-	-	-
LOAD STACK REGISTER	LR	P,K	$P C_{1} U-(r 12) ; P C_{1} L-(r 13)$	09	1	4	-	-	-	--
RETURN FROM SUBROUTINE*	POP		$\mathrm{PC}_{0}-\left(\mathrm{PC}_{1}\right)$	1C	1	2	-	-	-	-
STORE DATA COUNTER	LR	Q,DC	r14-(DCU): $\mathrm{r} 15-(\mathrm{DCL})$	OE	1	4	-	-	-	-
STORE DATA COUNTER	LR	H,DC	r10-(DCU): $\mathrm{r} 11 \rightarrow(\mathrm{DCL})$	11	1	4	-	-	-	-
STORE STACK REGISTER	LR	K.P	$r 12-\left(\mathrm{PC}_{1} \mathrm{U}\right): \mathrm{r} 13-\left(\mathrm{PC}_{1} \mathrm{~L}\right)$	08	1	4	-	-	-	-

SCRATCHPAD REGISTER INSTRUCTIONS
(Refer to Scratchpad Addressing Modes)

MISCELLANEOUS INSTRUCTIONS

- Privileged instruction
- 3-bit octal digit
$\cdots 2$ machıne cycles for CPU ports

NOTES.

Each lower case character represents a Hexadecimal digit
Each cycle equals 4 machine clock periods
Lower case denotes variables specified by programmer

Function Definitions

()	is replaced by
the contents of	
$(-)$	Binary "1"s complement of
+	Arithmetic Add (Binary or Decimal)
	Logical "OR" exclusive
	Logical "AND"
	Logical "OR" inclusive
	Hexadecimal digit

Register Names

a	Address Variable
A	Accumulator
DC	Data Counter (Indirect Address Register)
DC $_{\text {O }}$	Data Counter \#O (Indirect Address Register \#O)
DC $_{1}$	Data Counter \#1 (Indirect Address Register \#1)
DCL	Least significant 8 bits of Data Counter Addressed
DCU	Most significant 8 bits of Data Counter Addressed
H	Scratchpad Register \#10 and \#11
i and ii	immediate operand
ICB	Interrupt Control Bit
IS	Indirect Scratchpad Address Register
ISAR	Indirect Scratchpad Address Register
ISARL	Least Significant 3 bits of ISAR
ISARU	Most Significant 3 bits of ISAR
J	Scratchpad Register \#9

K	Registers \#12 and \#13
KL	Register \#13
KU	Register \#12
PC_{O}	Program Counter
$\mathrm{PC}_{\mathrm{O}} \mathrm{L}$	Least Significant 8 bits of Program Counter
$\mathrm{PC}_{\mathrm{O}} \mathrm{U}$	Most Significant 8 bits of Program Counter
PC_{1}	Stack Register
$\mathrm{PC}_{1} \mathrm{~L}$	Least Significant 8 bits of Program Counter
$\mathrm{PC}_{1} \mathrm{U}$	Most Significant 8 bits of Active Stack Register
Q	Registers \#14 and \#15
QL	Register \#15
QU	Register \#14
r	Scratchpad Register (any address thru 11)
W	Status Register

Scratchpad Addressing Modes (Machine Code Format)
$r=C \quad$ (Hexadecimal), Register Addressed by ISAR (Unmodified)
$r=D \quad$ (Hexadecimal), Register Addressed by ISAR; ISARL Incremented
$r=E \quad$ (Hexadecimal). Register Addressed by ISAR; ISARL Decremented
$r=F \quad$ (No operation performed)
$r=0 \quad$ (Hexadecimal), Register 0 thru 11 addressed directly from
thru B the Instruction

Status Register

-	No change in condition
1,0	is set to "1" or " 0 " depending on conditions
CRY	Carry Flag
OVF	Overflow Flag
SIGN	Sign of Result Flag
ZERO	Zero Flag

POWER REQUIREMENTS: $V_{D D}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{GG}}=+12.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; f=2 \mathrm{MHz}$

PART TYPE	SYMBOL	PARAMETER	TYP	MAX	UNITS	TEST CONDITIONS (Outputs Unloaded)
3850	IDD	$V_{\text {DD }}$ Current	30	80	mA	2 MHz
	${ }^{1} \mathrm{GG}$	V_{GG} Current	15	25	mA	
3851	${ }^{\text {I D D }}$	$V_{\text {DD }}$ Current	30	70	mA	2 MHz
	${ }^{1} \mathrm{GG}$	V_{GG} Current	10	18	mA	
3852	${ }^{\text {I D D }}$	$V_{\text {DD }}$ Current	35	70	mA	2 MHz
3853	${ }^{\prime} \mathrm{GG}$	V_{GG} Current	13	30	mA	
3854	${ }^{1} \mathrm{DD}$	$V_{\text {DD }}$ Current	20	40	mA	2 MHz
	${ }^{\prime} \mathrm{GG}$	$\mathrm{V}_{\text {GG }}$ Current	15	28	mA	

SIGNAL ELECTRICAL
$\underline{\text { SPECIFICATIONS : } \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{GG}}=+12.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}_{\mathrm{I}} \mathrm{T}_{\mathrm{A}}-0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} ; \mathrm{f}-2 \mathrm{MHz}, ~}$

SIGNAL NAME (NUMBER, TYPE)	SOURCE OR RECEIVING DEVICE	$\mathrm{V}_{\mathrm{OH}} \mathrm{MIN}$	$\mathrm{V}_{\mathrm{IH}} \mathrm{MIN}$	$V_{\text {OL }}$ MAX	$V_{\text {IL }}$ MAX	LOAD
DATA BUS (8 INPUTS, OUTPUTS)	$\begin{aligned} & 3850 \\ & 3851 \\ & 3852 / 3 \\ & 3854 \end{aligned}$	3.9	3.5	0.4	0.8	$\begin{aligned} & 100 \mathrm{pF} \\ & \text { I'SOURCE } \quad 100 \mu \mathrm{~A} \\ & \text { ISINK } 900 \mu \mathrm{~A} \end{aligned}$
CONTROL BUS (5 OUTPUTS)	3850	3.9		0.4		$\begin{aligned} & 100 \mathrm{pF}, \mathrm{I}_{\text {SINK }}-900 \mu \mathrm{~A} \\ & \text { ISOUCE } \quad-100 \mu \mathrm{~A} \end{aligned}$
CONTROL BUS (5 INPUTS) ${ }^{1}$	$\begin{aligned} & 3851 \\ & 3852 / 3 \end{aligned}$		3.5		0.8	
I, O PORTS (16 INPUTS, OUTPUTS)	$\begin{aligned} & 3850 \\ & 3851 \end{aligned}$	2.9 (1 TTL) 3.9 (unloaded)	$3.5{ }^{2}$	0.4	0.8	100 pF plus 1 H -TTL Load
CLOCK REFERENCE (INPUT)	3850		4.0		0.8	
SYSTEM CLOCKS (PHI AND WRITE OUTPUTS)	3850	4.4		0.4		$\begin{aligned} & 100 \mathrm{pF}, \text { ISINK }=900 \mu \mathrm{~A} \\ & \text { I'SOURCE } \quad-100 \mu \mathrm{~A} \end{aligned}$
SYSTEM CLOCKS (PHI AND WRITE INPUTS)	3851 3852/3 3854		4.0		0.8	
RESET (INPUT)	3850		3.52		0.8	$\mathrm{I}_{\mathrm{IL}}=0.3 \mathrm{~mA} \mathrm{Max}$ at $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
INTERRUPT CONTROL BIT (OUTPUT)	3850	3.9		0.4		50 pF plus $100 \mu \mathrm{~A}$ 'SOURCE or ISINK
INTERRUPT REQUEST (INPUT)	3850		$3.5{ }^{2}$		0.8	$\mathrm{I}_{\mathrm{IL}}=1 \mathrm{~mA} \mathrm{Max}$ at $\mathrm{V}_{\text {IN }}=0.4$
INTERRUPT REQUEST (OUTPUT)	$\begin{aligned} & 3851 \\ & 3853 \end{aligned}$	OPEN DRAIN		0.4		100 pF plus $\mathrm{I}^{\text {SINK }}$ = 1 mA
EXTERNAL INTERRUPT (INPUT)	$\begin{aligned} & 3851 \\ & 3853 \end{aligned}$		3.5		1.2	
PRIORITY IN (INPUT)	$\begin{aligned} & 3851 \\ & 3853 \end{aligned}$		3.5		0.8	
PRIORITY OUT (OUTPUT)	3851	3.9		0.4	-	50 pF plus $100 \mu \mathrm{~A}$ 'SOURCE or ISINK
DBDR (OUTPUT)	3851	OPEN DRAIN ${ }^{3}$		0.4		100 pF plus $\mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA}$
ADDRESS LINES and RAM WRITE (16 OUTPUTS)	$\begin{aligned} & 3852 / 3 \\ & 3854 \end{aligned}$	4.0		0.4		500 pF plus 2 TTL Loads
REGDR (INPUT/ OUTPUT)	3852/3	3.9	3.5	0.4	0.8	100 pF plus $1 \mathrm{H}-\mathrm{TTL}$ Load
CPU READ (OUTPUT)	3852/3	3.9		0.4		50 pF plus 1 H -TTL Load
MEM IDLE, CYCLE REO and CPU SLOT (OUTPUTS)	3852	3.9		0.4		50 pF plus 1 H -TTL Load
MEM IDLE (INPUT)	3854		3.5		0.8	
ENABLE, DIRECTION, TRANSFER, DMA WRITE SLOT, STROBE (OUTPUTS)	3854	3.9		0.4		50 pF plus 1 H -TTL Load
XFER REQ, P1,P2 (INPUTS)	3854		3.5		0.8	
LOAD REG, READ REG (INPUTS)	3854		3.5		0.8	

[^4]
3843
 UNIVERSAL SYNCHRONOUS AND ASYNCHRONOUS RECEIVER/TRANSMITTER (USART)

GENERAL DESCRIPTION - The 3843 USART is a complete serial communications formatting device. It receives serial data in virtually any format now in use and converts that data to parallel data in a form suitable for inputing to a microcomputer system. Conversely, it transmits microcomputer output data in a program-determined format. The USART is a peripheral device intended for use with a CPU controlling the format/ configuration of the USART logic.

The USART has the capability of detecting simple parity errors and notifying the CPU of such errors in data transmission. It will also detect framing and overrun errors and notify the CPU when they occur.

The USART can simultaneously receive and transmit data in the format specified by the CPU.

- VARIABLE CHARACTER LENGTH - 5, 6, 7, 8 BITS
- VARIABLE NUMBER OF STOP BITS - 1, 1-1/2, OR 2
- SELECTABLE TRANSMIT AND RECEIVE CLOCK RATES
- EVEN OR ODD PARITY DETECTION AND GENERATION
- FULL DUPLEX OPERATION - DOUBLE BUFFERED
- TTL COMPATIBLE ON INPUTS AND OUTPUTS
- STANDARD 28-PIN DUAL IN-LINE PACKAGE

PIN NAMES

PIN NO. LABEL/NAME
$4,5,6, \quad D_{0}-D_{7}$
$8,9,10$, DATA BUS PORTS
11,12
$7 \quad V_{D D}$, DRAIN VOLTAGE
13 RCP, RECEIVER CLOCK INPUT

14

15

16

RDA, RECEIVER DATA AVAILABLE
$\overline{\mathrm{CTS}}, \mathrm{CLEAR}$ TO SEND

TMT, TRANSMITTER REGISTER EMPTY

TCP, TRANSMITTER CLOCK IN

FUNCTION

FLAG - Data available in receiver buffer register.

Serial input port for receiver.
During Write mode - This input differentiates a control word from a data word. C/D equal to a" 1 " indicates a control word.
During Read mode - The input selects the data presented to the Data Bus Ports. C/D equal to " 1 " selects the status register. C/D equal to " 0 " selects the receiver register.

3-state I/O controlled by the $\overline{\mathrm{READ}}$ input. $\overline{\mathrm{READ}}$ equal to " 0 ' drives out data.

Power

Clock

The transmitter is disabled until $\overline{\mathrm{CTS}}$ is dropped.
FLAG - Transmission of last word complete. TSO is mark time or sync words.

Clock

TBMT, TRANSMITTER BUFFER EMPTY

TSO, TRANSMITTER SERIAL OUT
$\mathrm{V}_{\text {SS }}$, SOURCE VOLTAGE $\overline{\text { WRITE }}$
$\overline{\text { RTS }}$, REQUEST TO SEND
$\overline{\mathrm{Cl}}$, CHIP INITIALIZE

OE, OVERRUN ERROR
FESD, FRAMING ERROR,
SYNC DETECTED, or
EXTERNAL SYNC
$\overline{\mathrm{CE}}$, CHIP ENABLE
$\overline{\text { READ }}$

PE, PARITY ERROR
V_{GG}, GATE VOLTAGE

FLAG - Last word has been transferred to transmitter register and the buffer can accept a new word.

Serial data output port for transmitter.

Power
Input is dropped to write data or control word into device.

Output from command register bit 1.

Input is dropped to cancel flags and initialize counters.

FLAG - Receiver buffer has been loaded with new data and the prior data had not been read out by controller.

FLAG/INPUT - This pin is a FLAG during asynchronous and internal sync modes and an input during external sync mode.

Input is dropped when the device is selected for a READ/ WRITE operation.

Input is dropped to read Data Bus Ports, outputs.

FLAG
Power

PRODUCT INDEX - ALPHANUMERIC LISTING OF DEVICES

NMOS/PMOS

INTRODUCTION

MEMORY PRODUCTS

CONSUMER/INDUSTRIAL PRODUCTS

MICROPROCESSOR PRODUCTS

MULTIPLEXERS AND COUNTERS
CMOS
F4000 SERIES GENERAL DESCRIPTION

DESIGN CONSIDERATIONS WITH F4000. SERIES CMOS

TECHNICAL DATA
BIPOLAR INTERFACE CIRCUITS FOR CMOS
CCD
INTRODUCTION

TECHNICAL DATA

3705/3708

MOS MONOLITHIC 8-CHANNEL MULTIPLEX SWITCH

GENERAL DESCRIPTION - The 3705/3708 are 8-Channel Multiplex Switches with an output enable control and one-out-of-eight decoder included on-chip. They are manufactured using p-channel enhancement mode silicon gate technology. The logic input lines are npn bipolar compatible and can be used directly with TTL 5.0 V logic levels with no level shifting interface required. This device is intended for use in A/D converters, multiplexing in analog or digital data transmission systems, and other airborne or ground instrumentation signal routing applications.

- ONE-OUT-OF-EIGHT DECODER ON THE CHIP
- HIGH OFF-RESISTANCE-TO-ON-RESISTANCE RATIO
- OUTPUT ENABLE CONTROL
- LOW LEAKAGE CURRENT
- ZERO OFFSET VOLTAGE
- FAST SWITCHING TIME: $1.0 \mu_{\mathrm{S}}$ (MAX) AT $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ (3705 DL)
- TTL COMPATIBLE INPUT LOGIC LEVELS

ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DC	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM	+0.3 V
Positive Voltage on any Pin	-30 V
Negative Voltage on Digital and Analog Input Pins	-30 V
Negative Voltage on Digital and Analog Output Pins	-30 V
Negative Voltage on VDD	200 mW

NOTES:

1. These ratings are limiting values above which the serviceability of the device mav be impaired.
2. Voltage ratings are all referenced to pins 2 and $4\left(\mathrm{~V}_{\mathrm{SS}}\right)$.

BLOCK DIAGRAM

$V_{S S}=P$ ins 2 and 4 $V_{D D}=\operatorname{Pin} 13$

CONNECTION DIAGRAM DIP (TOP VIEW)

LOGIC INPUTS				CHANNEL
A_{0}	A1		OE	'ON'
L	L	L	H	S_{1}
H	L	L	H	S_{2}
L	H	L	H	S3
H	H	L	H	S_{4}
L	L	H	H	S_{5}
H	L	H	H	S_{6}
L	H	H	H	S_{7}
H	H	H	H	S_{8}
x	X	X	L	OFF

[^5]
ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
${ }^{*} \mathrm{~V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}$-1.5		$\mathrm{V}_{\text {SS }}$	V	
${ }^{*} \mathrm{~V}_{\text {IL }}$	Input LOW Voltage	$V_{\text {DD }}$		0.8	V	
ILI	Logic Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {LOGIC-IN }}=15 \mathrm{~V}$
ILD	Data Input Leakage Current			500	nA	$V_{S S}-V_{\text {IN }}=15 \mathrm{~V}$
ILO	Output Leakage Current			500	nA	$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$
Ron	Data Channel "ON" Resistance 3705			400	Ω	$\mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$
	3708			450	Ω	$\mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V}, \mathrm{IOUT}^{\text {O }}=-100 \mu \mathrm{~A}$
$P_{\text {D }}$	Power Dissipation			175	mW	$\mathrm{V}_{\mathrm{DD}}=-26 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
${ }^{\text {ts }}$	Channel Switching Time			1.3	$\mu \mathrm{s}$	3705 DM (Fig. 1)
				1.0	$\mu \mathrm{s}$	3705 DL, DC (Fig. 1)
				1.5	$\mu \mathrm{s}$	3708 DL, DC (Fig. 1)

*When driven by TTL elements, avoid excessive dc loading of TTL elements to insure 3708 logic levels under maximum fanout conditions. Analog input signal swing should not exceed $\mathrm{V}_{\mathrm{SS}}\left(=\mathrm{V}_{\mathrm{CC}}\right)$.

SCHEMATIC DIAGRAM

Fig. 1 SWITCHING TIME TEST CIRCUIT

* Optional components - not needed if TTL fanout is limited to 1.

Fig. 2 TYPICAL CONTROL CIRCUIT

3815
 5-DECADE COUNTER

GENERAL DESCRIPTION - The 3815 is a 5-Decade Counter which includes a memory with static latches for each counter digit and an output multiplexer. Cathode driving, clock synchronization and decimal point logic are also provided. The 3815 is designed to drive a multiplexed display which has a Binary Coded Decimal output (drives a BCD converter plus low power latches, if necessary) and five decoded outputs to strobe the display.

Automatic leading zero blanking is simply accomplished and a separate input is provided to blank the entire display. Other outputs provide terminal count indication and an output which can be used to drive the display outputs. The 3815 is manufactured using silicon gate p-channel technology.

- DIRECT TTL/DTL COMPATIBILITY - NO EXTERNAL COMPONENTS
- DC TO 600 kHz OPERATION
- BCD OUTPUT - COMPATIBLE WITH DISPLAY DECODERS
- EXTERNAL CONTROL MULTIPLEX FREQUENCY - ACCOMMODATES LED DISPLAYS

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
V $_{\text {GG }}$	+0.3 to -24 V
All Other Inputs	+0.3 to -16 V
Outputs	+0.3 to $-8 \mathrm{~V}\left({ }_{\mathrm{L}}<10 \mathrm{~mA}\right)$

FUNCTIONAL DESCRIPTION - Incrementing the counters is accomplished through a coordination of a clock input to $\overline{\mathbf{C P}}$ (pin 1) and the count enables $C E_{1}$ (pin 18) and $C E_{2}$ (pin 19) being in a logic " 1 " or HIGH state. Both $C E_{1}$ and $C E_{2}$ will be enabled if these inputs are left open. Both must be HIGH for counting to occur. Output of the second decade is gated with the input clock and brought off chip as the $\div 100$ (pin 20) output. Count 99999 is gated with input clock LOW to provide a terminal count indication, TC (pin 16).

Memory update is accomplished in either of two ways. Present count may be transferred to the latches using the asynchronous transfer AT (pin 9) if there is no clock at the $\overline{C P}$ input during transfer or if clock LOW cannot be guaranteed. Synchronous Transfer $\overline{S T}$ (pin 2) is gated with the clock input on-chip during clock LOW. It is possible to load erronous results into memory if an AT command is received during the $\overline{C P}$ LOW to HIGH transition. It is during this transition that the flip-flops are settling out information on the slaves. Sync Transfer is active LOW and Async Transfer is active HIGH. $\overline{M R}$ (pin 23) is a master reset which synchronously sets all the counters to zero. Note that $\overline{M R}$ resets the scanner counter to the A decade.

The latched state of each decade is multiplexed out as $B C D$ data on the outputs labeled O_{1}, O_{2}, O_{4}, and O_{8} (pins $4,5,6$, and 10 , respectively). The on chip multiplexer is driven by a 5 -state scanner counter whose outputs are gated out as the $\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$, and O_{E} (pins $8,7,17,22$, and 21 respectively) outputs. The scanner counter is advanced by pulses fed into the STEP (pin 11) input. As the scanner is clocked, the stored data appears, decade by decade on the O_{1} through O_{8} outputs. Simultaneously, one of the O_{A} through O_{E} outputs will go HIGH indicating which decade is being displayed. A LOW on the BLANK input (pin 3) causes all five O_{A} through O_{E} outputs to go LOW. Because outputs O_{A} through O_{E} can drive display lamps in a multiplexed system, the display will blank when they are LOW.

The position of the decimal point in the display is selected by an external control. For zero suppression, the DP input of the 3815 must be driven by one of the five Digit Select $\left(O_{A}\right.$ through $\left.O_{E}\right)$ outputs. This feedback inhibits the zero suppression for that decade and all remaining decades to the right. If the DP input is tied to $V_{S S}$, all digits are displayed. Tying DP to $V_{D D}$ has the same effect as tying it to output O_{E}.

DIGIT CONNECTED TO	EXAMPLE COUNT	DISPLAY*
AECIMAL POINT		

*The decimal point itself in the display is not controlled by the 3815.

TEST INPUT - This pin is used during the testing of the 3815 and must be wired to $\mathrm{V}_{\text {SS }}$ for operation.

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.0$		$\mathrm{V}_{\text {SS }}+0.3$	V	All Inputs Including $\overline{\mathrm{CP}}$
$\mathrm{V}_{\text {IL } 1}$	Input LOW Voltage	-2		+0.5	V	$\overline{\mathrm{CP}}$ and STEP
VIL2	Input LOW Voltage	-2		0.8	V	All Other Inputs
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	2.4		$\mathrm{v}_{\text {SS }}$	V	a) Sourcing $200 \mu \mathrm{~A}$ for Output TC, $\mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$ b) Sourcing $400 \mu \mathrm{~A}$ for Outputs $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}, \mathrm{O}_{8} ; \mathrm{C}_{\mathrm{L}}<30 \mathrm{pF}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output HIGH Voltage	$\mathrm{v}_{\text {SS }}{ }^{-1.0}$		$\mathrm{v}_{\text {Ss }}$	V	Sourcing $200 \mu \mathrm{~A}$ for Outputs $\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$, $O_{D}, O_{E}, \div 100 ; C_{1}<20 \mathrm{pF}$
VOL	Output LOW Voltage			0.4	v	a) Sink 1.6 mA on Outputs $\mathrm{TC}, \mathrm{O}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}, \mathrm{O}_{\mathrm{E}}, \div 100$, $\mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$ b) Sink 2.0 mA on Outputs $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}$, $\mathrm{O}_{8} ; \mathrm{C}_{\mathrm{L}}<30 \mathrm{pF}$
RIN1	Input Resistor Returned to $\mathrm{V}_{\text {SS }}$	1	2.5	5	k Ω	Inputs: $\overline{\mathrm{CP}} \overline{\mathrm{Blank}} \overline{\mathrm{MR}}, \overline{\text { Sync Transfer }}$ Async Transfer, Count Enable
RIN2	Input Resistor Returned to $\mathrm{V}_{\text {SS }}$	10	25	50	k Ω	Inputs: $\overline{\text { Step, }}$ DP, Test
IGG	$\mathrm{V}_{\text {GG }}$ Supply Current	3	5	15	mA	
ISS	$\mathrm{V}_{\text {SS }}$ Supply Current	20	30	50	mA	

FAIRCHILD MOS INTEGRATED CIRCUIT • 3815

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
f	Operating Frequency	DC		600	kHz	Fig. 1
tpWC	Clock Pulse Width (STEP and $\overline{\text { CP }}$)	300	220		ns	Fig. 1
tSTS	SYNC TRANS Set Up Time	300			ns	Fig. 2
tSTH	SYNC TRANS Hold Time	200			ns	Fig. 2
tSET	Separation, Count Enable to ASYNC TRANS	500			ns	Fig. 5
tPWAT	ASYNC TRANS Pulse Width	500			ns	Fig. 5
tSCT	Separation Clock to SYNC TRANS	200			ns	Fig. 2
tSTC	Separation SYNC TRANS to Clock	200			ns	Fig. 2
${ }^{\text {t DHL }}$	```HIGH to LOW Transition for Outputs \(\div 100\) TC \(\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}, \mathrm{O}_{8}\)```		$\begin{array}{r} 320 \\ 400 \\ 450 \\ \hline \end{array}$	$\begin{array}{r} 1000 \\ 800 \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Fig. 3 Fig. 3 Fig. 4
${ }^{\text {t DLH }}$	LOW to HIGH Transition for Outputs $\begin{aligned} & \div 100 \\ & \mathrm{TC} \\ & \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{4}, \mathrm{O}_{8} \\ & \hline \end{aligned}$		$\begin{aligned} & 350 \\ & 425 \\ & 550 \end{aligned}$	$\begin{array}{r} 1000 \\ 800 \\ 1000 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Fig. 3 Fig. 3 Fig. 4
$t_{r, f}$	Clock Rise and Fall Times			200	ns	Fig. 1
${ }^{\text {t MRS }}$	Master Reset Set-Up Time	300			ns	Fig. 1
${ }^{\text {t MRH }}$	Master Reset Hold Time	200			ns	Fig. 1

TIMING DIAGRAMS

PROPAGATION DELAY-OUTPUTS

Fig. 3

SYNC TRANSFER SETUP AND HOLD TIMES

Fig. 2

PROPAGATION DELAY-BCD OUTPUTS

Fig. 4

Fig. 5

3816
 PROGRAMMABLE DIVIDER (3 through 262,145)

GENERAL DESCRIPTION - The 3816 is a programmable counter capable of dividing by any modulo from three to $262,145\left(2^{18}+1\right)$. The 3816 uses only nine leads to program 18 bits by applying one of four conditions to the nine leads.
This device is packaged in a hermetic ceramic 16-pin Dual In-line package and is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. It is manufactured using silicon gate p-channel technology.

- DC - 1.5 MHz
- FULL 18 BITS IN 16-LEAD PACKAGE
- TTL COMPATIBILITY

PIN NAMES

$\frac{\text { A-I }}{M P}$	Program Inputs Master Preset
$\overline{\mathrm{CLK}}$	Clock
$\overline{\mathrm{TC}}$	Terminal Count
TC	Terminal Count

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Operating Temperature
$V_{G G}$
All other inputs
Outputs (<10 mA)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+0.3 \mathrm{~V} \text { to }-24 \mathrm{~V} \\
+0.3 \mathrm{~V} \text { to }-16 \mathrm{~V} \\
+0.3 \mathrm{~V} \text { to }-16 \mathrm{~V}
\end{array}
$$

Note: All voltages referenced to V_{SS}

BLOCK DIAGRAM

LOGIC SYMBOL

CONNECTION DIAGRAM DIP (TOP VIEW)

FAIRCHILD MOS INTEGRATED CIRCUIT• 3816
DC CHARACTERISTICS: $V_{S S}=+5.0 \vee+5 \%, V_{G G}=-12 V \pm 5 \%, V_{D D}=0 V, T_{A}=0{ }^{\circ} \mathrm{C}$ to $+70^{\prime \prime} \mathrm{C}$ (unless otherwise specified)

| SYMBOL | PARAMETER | | LIMITS | | | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | CONDITIONS

AC CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=+5.0 \vee: 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}+5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS		UNITS
		MIN	MAX	
f	Operating Frequency		1.5	MHz
tpWH	Clock Pulse Width HIGH	300		ns
${ }_{\text {tPWL }}$	Clock Pulse Width LOW	300		ns
t_{r}, t_{f}	Clock Rise and Fall		500	ns
tpWP	Preset Pulse Width	1000		ns
${ }^{\text {t }}$ CTD	Clock to TC, $\overline{\text { TC }}$ Delay		300	ns

APPLICATION

DIGITAL ONE SHOT - This circuit provides a pulse of duration n/f starting at the first positive transition of Input Clock following a Start Command. Start Command HIGH must be shorter than n/f.

PROGRAMMABLE COUNTER - This circuit converts regular binary instructions into the required coding for programming the 3816 . As the diagram shows, any ROM or PROM with at least nine outputs will work. Twice as many words are required as there are different divisions required.

FUNCTIONAL DESCRIPTION - The 3816 is intended for application where a division of a central timing signal is required. An 18 -bit linear feedback shift register provides the counting medium. Nine inputs are used to program the counter with each lead selectively connected to $V_{D D}$ (Ground), $V_{S S}(+5.0 \mathrm{~V})$, TC (Terminal Count) or $\overline{T C}$ (Not Terminal Count). This method allows each lead to preset two flip-flops consecutively (one at TC being HIGH and the other at one clock time later). This allows the programming of 18 bits with nine leads.

TIMING - A Master Preset ($\overline{\mathrm{MP}}$) LOW always overrides the counter and forces the 3816 to the TC HIGH state. When $\overline{\mathrm{MP}}$ is brought HIGH, the counter will increment on the first positive going $\overline{C L K}$ transition if $\overline{C L K}$ is LOW. When the counter increments, TC will go LOW. TC will go HIGH again n (the programmed number) $\overline{\mathrm{CLK}}$ pulses after $\overline{\mathrm{MP}}$ goes HIGH. The 3816 increments on the positive going transition of $\overline{\mathrm{CLK}}$.

PROGRAMMING - The 3816 is programmed by applying one of four conditions to nine leads. These conditions are labeled as follows:

SYMBOL	TIE TO	TC = 1	
1ST TRANSFER	TC = 0		
S	$V_{S S}$	1	1
D	$V_{D D}$	0	0
T	$T C$	1	0
N	$T C$	0	1

A shorthand notation has been developed to represent the connections required for a specific division. This shorthand is a group of nine of the above four symbols. These symbols are written with A (Pin 5) on the left followed by B (Pin 4), C (Pin 3), D (Pin 7), E (Pin 2), $F(\operatorname{Pin} 1), G(\operatorname{Pin} 15), H(\operatorname{Pin} 14)$ and ending with I (Pin 9$)$ on the right.

Some examples of this shorthand for specific divisions are:

Count	Shorthand	Count	Shorthand
50	SSTNSNSNS	20,000	SNDSDNTNT
60	NSNSTSSNT	50,000	SSNNSSDNS
500	DTSNNSSSN	86,400	SNDNTDTSS
1,000	NSTSTNNNN	100,000	TNDNNNSDT
3,600	TDNTTTNDT	150,000	NTNSNTTNT
5.000	TNNTSSSSD	200,000	DNDSDSTNS
10,000	TDSNNNNNS	262,145	NSSSSSSSS

A Fortran program to determine the connections has been included in this data sheet. Other connections can also be obtained by contacting the MOS Marketing group at Fairchild.

FORTRAN PROGRAM

This Fortran program calculates the 3816 inputs required for any given count. The required count should be entered right justified in columns 2 through 7 of data set reference number 5 ; the 3816 inputs are read in order from data set reference number 6.

DIMENSION L(35),N(19), PRINT(2,2)
DATA PRINT /'D','N','T','S'/
WRITE $(6,100)$
100 FORMAT (1X,'NOTE: $D=V D D, S=V S S, T=T C, N=T C N ')$
110 READ $(5,120, E N D=999)$ M
120 FORMAT (1X,16)
IF (M.GE.3.AND.M.LE.262145) GO TO 140
WRITE $(6,130) \mathrm{M}$
130 FORMAT ($1 \times,{ }^{\prime}{ }^{\prime}={ }^{\prime}, 16,1 \mathrm{X}$, 'IS AN ILLEGAL COUNT') GO TO 110
$140 \quad K=M+3$
DO $150 \mathrm{I}=1,19$
$N(1)=K-2^{*}(K / 2)$
$150 \mathrm{~K}=\mathrm{K} / 2$
DO 160 I=1,18
$160 \quad L(1)=1$
$L(2)=-1$
$J=20$
$170 \mathrm{~J}=\mathrm{J}-1$
IF (N(J).EQ.0) GO TO 170
$180 \mathrm{~J}=\mathrm{J}-1$
IF (J.EQ.0) GO TO 220
DO 190 I=1,17
$L\left(37-2^{*} 1\right)=L(19-1)$
$190 \mathrm{~L}\left(36-2^{*}\right)=1$
DO $200 \mathrm{I}=1,17$
$\mathrm{L}(25-1)=\mathrm{L}(25-1) * \mathrm{~L}(36-1)$
$\mathrm{L}(18-\mathrm{I})=\mathrm{L}(18-\mathrm{I})^{*} \mathrm{~L}(36-\mathrm{I})$
200 CONTINUE
IF (N(J).EQ.0) GO TO 180
DO $210 \mathrm{I}=1$, 18
$210 L(20-1)=L(19-1)$
$L(1)=L(19)$
$L(8)=L(8) * L(1)$
GO TO 180
220 DO $230 \mathrm{I}=1,18$
$230 \quad L(30-1)=(L(19-1)+3) / 2$
DO 240 I=1,11
$240 \quad L(1)=L(1+18)$
WRITE $(6,250) \mathrm{M},(\operatorname{PRINT}(\mathrm{L}(19-1), \mathrm{L}(18-1)), I=1,17,2)$
250 FORMAT ($1 \times,{ }^{\prime} \mathrm{N}={ }^{\prime}, 16,1 \times$, INPUTS $={ }^{\prime}, 9 A 1$)
GO TO 110
999 CALL EXIT
END

F4000
 SERIES CMOS

GENERAL DESCRIPTION - Fairchild CMOS logic combines popular 4000 series functions with the advanced isoplanar C process. The result is a logic family with a superior combination of noise immunity and standardized drive characteristics. Under static conditions, these devices dissipate very low power, typically 10 nW per gate. The low power combined with the wide (3 to 15 V) recommended operating supply voltage requirement greatly minimizes power supply costs. The CMOS family is designed with standardized output drive characteristics which, combined with relative insensitivity to output capacitance loading, simplify system design.

- LOW POWER - TYPICALLY 10 nW PER GATE STATIC
- WIDE OPERATING SUPPLY VOLTAGE RANGE 3 TO 15 V RECOMMENDED 18 V ABSOLUTE MAXIMUM
- HIGH NOISE IMMUNITY
- BUFFERED OUTPUTS STANDARDIZE OUTPUT DRIVE AND REDUCE VARIATION OF PROPAGATION DELAY WITH OUTPUT CAPACITANCE
- WIDE OPERATING TEMPERATURE RANGE

```
COMMERCIAL }-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ TO +85 }\mp@subsup{}{}{\circ}\textrm{C
MILITARY 
```

- HIGH DC FAN OUT - GREATER THAN 50

Fig. 1-1a. ISOPLANAR C CMOS STRUCTURE REDUCES AREA 35\%

ISOPLANAR C
The Fairchild CMOS logic family uses isoplanar C for high performance. This technology combines local oxidation isolation techniques with silicon gate technology to achieve an approximate 35% to 100% savings in area as shown in Figure 1-1a. Operating speeds are increased due to the self-alignment of the silicon gate and reduced sidewall capacitance.

Conventional CMOS circuits are fabricated on an n-type substrate as shown in Figure 1-1b. The p-type substrate required for complementary n-channel MOS is obtained by diffusing a lightly doped p -region into the n -type substrate. Conventional CMOS fabrication requires more chip area and has slower circuit speeds than Isoplanar C CMOS. This is a result of the $n+$ or $\mathrm{p}+$ channel stop which surrounds the p - or n -channels respectively in conventional metal gate CMOS, Silicon gate CMOS (Figure 1-1c) has a negligible reduction in area, though transient performance is improved.

Fig. 1-1b. CONVENTIONAL METAL GATE CMOS STRUCTURE

Fig. 1-1c. CONVENTIONAL SILICON GATE CMOS STRUCTURE REDUCES AREA 8\%

FULLY BUFFERED CONFIGURATION DESCRIPTION

Fairchild CMOS logic is designed with the system user in mind. Output buffering is used on all devices to achieve high performance, standardized output drive, highest noise immunity and decreased ac sensitivity to output loading. Figure 1-2 illustrates a conventional unbuffered 2 -Input NOR Gate. Either n-channel transistor connected to V_{SS} (ground) conducts when either input is HIGH, causing the output to go LOW through the ON resistance of the device. If both inputs are HIGH, both n-channel devices are on; effectively halving the ON resistance, thereby making the output impedance (and hence fall time) a function of input variables. Similarly the p-channel devices are switched on by LOW signals; i.e., when both inputs are LOW, conduction from $V_{D D}$ to the output will occur.
Since the p-channel devices are in series, their ON resistance must be decreased (larger chip area) to hold output HIGH impedance within specification. As the number of gate inputs increases, even larger p-channel devices are required, and the output impedance to V_{SS} becomes even more pattern sensitive.
A conventional unbuffered CMOS 2-Input NAND Gate interchanges the parallel and serial transistor gating to achieve the NAND function (Figure 1-3). The changes in output resistance then move to the p-channel transistors connected to V_{DD} while the n-channel devices must be increased in size due to their serial connection.

Fairchild CMOS uses small geometry logic transistors to generate the required function which drive standard low impedance output buffers (Figures 1-4 and 5). This technique reduces chip size, since only two large output transistors are required and rise and fall times are independent of input pattern. Buffered outputs also increase system speeds and make propagation delay less sensitive to output capacitance. Figure 1-6 illustrates typical propagation delay vs. output capacitance for conventional and buffered CMOS Gates.

Another advantage of the Fairchild approach is improved noise immunity. Because of the increased voltage gain, nearly ideal transfer characteristics are realized as shown in Figure 1-7. The high gain (greater than 10,000) also provides significant pulse shaping; the waveforms of Figures 1-8 and 9 compare the output waveforms of conventional and buffered CMOS gates. For input transition times of 100 ns or less, the outputs of both gate types are similar. When the input transitions are stretched to one microsecond, the conventional gate exhibits increased transition times while the buffered gate has unchanged output transition times. This feature eliminates progressive deterioration of pulse characteristics in a system. The combination of Isoplanar C and buffered outputs results in new standards of CMOS logic performance.

Fig. 1-2. CONVENTIONAL NON-BUFFERED 2-INPUT NOR GATE

Fig. 1-3. CONVENTIONAL NON-BUFFERED 2-INPUT NAND GATE

Fig. 1-4. FAIRCHILD F4001 FULLY BUFFERED NOR GATE

Fig. 1-5. FAIRCHILD F4011FULLY BUFFERED NAND GATE

Fig. 1-6
COMPARISON OF PROPAGATION DELAY VS LOAD CAPACITANCE FOR CONVENTIONAL AND FULLY BUFFERED NAND GATES

Fig. 1.8
POSITIVE-GOING INPUT RAMPS OF $0.1 \mu \mathrm{~s}$ AND $1.0 \mu \mathrm{~s}$ APPLIED TO CONVENTIONAL AND FULLY BUFFERED GATES

Fig. 1-7
TYPICAL VOLTAGE TRANSFER CHARACTERISTICS FOR CONVENTIONAL AND FULLY BUFFERED DEVICES

Fig. 1-9
NEGATIVE-GOING INPUT RAMPS OF $0.1 \mu \mathrm{~s}$ AND $1.0 \mu \mathrm{~s}$ APPLIED TO CONVENTIONAL AND FULLY BUFFERED GATES

PRODUCT INDEX - ALPHANUMERIC LISTING : 2
OF DEVICES

NMOS/PMOS

INTRODUCTION	3
MEMORY PRODUCTS	
CONSUMER/INDUSTRIAL PRODUCTS	
MICROPROCESSOR PRODUCTS	
MULTIPLEXERS AND COUNTERS	
FMOS SERIES GENERAL DESCRIPTION	
FMOS	
DESIGN CONSIDERATIONS WITH F4OOO	
SERIES CMOS	
TECHNICAL DATA	4
BIPOLAR INTERFACE CIRCUITS FOR CMOS	
CCD	
INTRODUCTION	
TECHNICAL DATA	5

DESIGN CONSIDERATIONS WITH F4000 SERIES CMOS

INTRODUCTION

Complementary MOS digital logic building blocks of SSI and MSI complexity have been hailed as the ideal logic family. They are rapidly gaining popularity as more and more manufacturers introduce increasing numbers of parts at reasonable prices.

Originally designed for aerospace applications, CMOS now finds its way into portable instruments, industrial and medical electronics, automotive applications and computer peripherals, besides dominating the electronic watch market.

In late 1973, Fairchild introduced the F4000 CMOS family, using Isoplanar technology to achieve superior electrical performance. Most of these devices are functional equivalents and pin-for-pin replacements of the well-known 4000 series; some are equivalent to TTL circuits and some are proprietary logic designs.

A few CMOS devices, such as bidirectional analog switches, exploit the unique features of CMOS technology; some take advantage of the smaller device size and higher potential packing density to achieve true LSI complexity; but most of the available CMOS elements today are of SSI and MSI complexity and perform logic functions that have been available in DTL or TTL for many years. Therefore, it is both helpful and practical to compare the performance of CMOS with that of
the more familiar DTL/TTL (Figure 2-1). The TTL to CMOS Comparison Guide in Section 3 lists numerous CMOS circuits that are pinout identical to their TTL counterparts, others that are functionally identical only, still others that are similar and, in most cases, offer added features.

CMOS speed is comparable to $74 \mathrm{~L}-\mathrm{TTL}$ and DTL, and about three to six times slower than TTL or Low Power Schottky (LS-TTL). Voltage noise immunity and fan out are almost ideal, supply voltage is noncritical, and the quiescent power consumption is close to zero-several orders of magnitude lower than for any competing technology.

POWER CONSUMPTION

Under static conditions, the p-channel (top) and the n -channel (bottom) transistors are not conducting simultaneously, thus only leakage current flows from the positive (V_{DD}) to the negative (V_{SS}) supply connection. This leakage current is typically 0.5 nA per gate, resulting in very attractive low power consumption of 2.5 nW per gate (at 5 V).

Whenever a CMOS circuit is exercised, when data or clock inputs change, additional power is consumed to charge and discharge capacitances (on-chip parasitic capacitances as well as load capacitances). Moreover, there is a short time during the transition when both the top and the bottom transistors are partially conducting. This dynamic power consumption is

PARAMETER	$\begin{gathered} \text { STANDARD } \\ \text { TTL } \end{gathered}$	74L	DTL	LOW POWER SCHOTTKY	$\begin{gathered} \text { F4000 } \\ \text { CMOS } \\ 5 \mathrm{~V} \text { SUPPLY } \end{gathered}$	F4000 CMOS 10 V SUPPLY
PROPAGATION DELAY	10 ns	33 ns	30 ns	5 ns	40 ns	20 ns
FLIP-FLOP TOGGLE FREQUENCY	35 MHz	3 MHz	5 MHz	45 MHz	8 MHz	16 MHz
QUIESCENT POWER	10 mW	1 mW	8.5 mW	2 mW	10 nW	10 nW
NOISE IMMUNITY	1 V	1 V	1 V	0.8 V	2 V	4 V
FAN OUT	10	10	8	20	50*	50*

*OR AS DETERMINED BY ALLOWABLE PROPAGATION DELAY
Fig. 2-1 CMOS COMPARED TO OTHER LOGIC FAMILIES
obviously proportional to the frequency at which the circuit is exercised, to the load capacitance and to the square of the supply voltage. As shown in Figure 2-2, the power consumption of a CMOS gate exceeds that of a Low Power Schottky gate somewhere between 500 kHz and 2 MHz of actual output frequency.

At 100 transitions per second, the dynamic power consumption is far greater than the static dissipation; at one million transitions per second, it exceeds the power consumption of LS-TTL. Comparing the power consumption of more complex devices (MSI) in various technologies may show a different result. In any complex design, only a small fraction of the gates actually switch at the full clock frequency, most gates operate at a much lower average rate and consume, therefore, much less power.

A realistic comparison of power consumption between different technologies involves a thorough analysis of the average switching speed of each gate in the circuit. The small static supply current, IDD is specified on individual data sheets for 5,10 and 15 V . The dynamic power dissipation for 5,10 and $15 \mathrm{~V}, 15$ and 50 pF may be found in graph form for frequencies of 100 Hz to 10 MHz . The total power may be calculated, $\mathrm{P}_{\mathrm{T}}=\left(I_{\mathrm{DD}} \times \mathrm{V}_{\mathrm{DD}}\right)+$ dynamic power dissipation.

SUPPLY VOLTAGE RANGE

CMOS is guaranteed to function over the unprecedented range of 3 to 15 V supply voltage. Characteristics are guaranteed for 5,10 and 15 V operation and can be extrapolated for any voltage in between. Operation below 4.5 V is not very meaningful because of the increase in delay (loss of speed), the increase in output impedance and the loss of noise immunity. Operation above 15 V is not recommended because of high dynamic power consumption and risk of noise spikes on the power supply exceeding the breakdown voltage (typ>20 V), causing SCR-latch-up and destroying the device unless the current is externally limited.

The lower limit of power supply voltage, including ripple, is determined by the required noise immunity, propagation delay or interface to TTL. The upper limit of supply voltage, including ripple and transients, is determined by power dissipation or direct interface to TTL. The F4049, F4050 and F4104 provide level translation between TTL and CMOS when CMOS supply voltages over 5 V are used. While devices are usable to 18 V , operation above 12 V is discouraged for reasons of power dissipation.
Low static power consumption combined with wide supply voltage range make CMOS the ideal logic family for battery operated equipment.

Fig. 2-2
TYPICAL POWER DISSIPATION VERSUS INPUT FREQUENCY FOR SEVERAL POPULAR LOGIC FAMILIES

PROPAGATION DELAY

Compared to TTL and LS-TTL, all CMOS devices are slow and very sensitive to capacitive loading. See Figure 2-3. The Fairchild F4000 family uses both advanced processing (Isoplanar) and improved circuit design (buffered gates) to achieve propagation delays and output rise times that are superior to any other junction-isolated CMOS design. (Silicon-on-sapphire, SOS, can achieve similar performance but at a substantial cost penalty).
Isoplanar processing achieves lower parasitic capacitances which reduce the on-chip delay and increase the maximum toggle frequency of flip-flops, registers and counters. Buffering all outputs, even on gates, results in lower output impedance and thus reduces the effect of capacitive loading.
Propagation delay is affected by three parameters: capacitive loading, supply voltage, and temperature.

Capacitive Loading Effect

Historically, semiconductor manufacturers have always specified the propagation delay at an output load of 15 pF , not because anybody considers this a representative systems environment, but rather because it was the lowest practical test-jig capacitance. It also generated the most impressive specifications. TTL with an output impedance less than 100Ω is little affected by an increase in capacitive loading; a 100 pF load increases the delay by only about 4 ns. CMOS, however, with an output impedance of $1 \mathrm{k} \Omega$ (worst case at 5 V) is 10 times more sensitive to capacitive loading. Figure 2-4 shows the positive- and negative-going delays as a function of load capacitance. It should be noted that the older, unbuffered gates have an even higher output impedance, a larger dependence on output loading, and do not show the same symmetry.

Fig. 2-3
NORMALIZED PROPAGATION
DELAY VERSUS LOAD
CAPACITANCE FOR TTL AND CMOS

Fig. 2-4a
POSITIVE-GOING PROPAGATION delay versus load capacitance

Fig. 2-4b NEGATIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Supply Voltage Effect

Figure 2-5 shows propagation delay as a function of supply voltage and again indicates the symmetry of the positive- and negative-going delays. Increasing the supply voltage from 5 to 10 V more than doubles the speed of CMOS gates. Increasing the supply voltage to 15 V almost doubles the speed again, but, as mentioned before, results in a significant increase in dynamic power dissipation.
The best choice for slow applications is 5 V . For reasonably fast systems, choose 10 or 12 V . Any application requiring 15 V to achieve short delays and fast operation should be investigated for excessive power dissipation and should be weighed against an LS-TTL approach.

Fig. 2-5a
POSITIVE-GOING PROPAGATION DELAY VERSUS POWER SUPPLY VOLTAGE

Fig. 2-5b
NEGATIVE-GOING PROPAGATION dELAY VERSUS POWER SUPPLY VOLTAGE

Temperature Effect

Figure 2-6 shows propagation delay as a function of ambient temperature. The temperature dependence of CMOS is much simpler than with TTL, where three factors contributeincrease of beta with temperature, increase of resistor value with temperature, and decrease of junction forward voltage drop with increasing temperature. In CMOS, essentially only the carrier mobility changes, thus increasing the impedance and hence the delay with temperature. For F4000 devices, this temperature dependence is less than 0.3% per ${ }^{\circ} \mathrm{C}$, practically linear over the full temperature range. Note that the commercial temperature range is -40 to $+85^{\circ} \mathrm{C}$ rather than the usual 0 to $+75^{\circ} \mathrm{C}$.

Fig. 2-6a
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE WITH VDD $=5 \mathrm{~V}$

Fig. 2-6b PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE WITH VDD $=10 \mathrm{~V}$

CMOS delays increase with temperature. They are very sensitive to capacitive loading but can be reduced by increasing the supply voltage to 10 or even 15 V .

To determine propagation delays, the effects of capacitive loading, supply voltage, manufacturing tolerances and ambient temperature must be considered. Start with the values of tPLH (propagation delay, a LOW-to-HIGH output transition) and tPHL (propagation delay, a HIGH-to-LOW output transition) given in the individual data sheets. Delay values for $V_{D D}$ at 5 , 10 and 15 V and output capacity of 15 and 50 pF are provided. Manufacturing tolerances account for the differences between MIN, TYP and MAX. Starting with the nearest applicable delay value, correct for effects of capacitive loading, ambient temperature and supply voltage using the general family characteristics of Section 3.

Fig. 2-7
TYPICAL TRANSFER CHARACTERISTICS FOR TTL AND CMOS

NOISE IMMUNITY

One of the most advertised and also misunderstood CMOS features is noise immunity. The input threshold of a CMOS gate is approximately 50% of the supply voltage and the voltage transfer curve is almost ideal. As a result, CMOS can claim very good voltage noise immunity, typically 45% of the supply voltage, i.e., 2.25 V in a 5 V system, 4.5 V in a 20 V system. Compare this with the TTL transfer curve in Figure 2-7 and its resultant 1 V noise immunity in a lightly loaded system and only 0.4 V worst case.

Since CMOS output impedance, output voltage and input threshold are symmetrical with respect to the supply voltage, the LOW and HIGH level noise immunities are practically equal. Therefore, a CMOS system can tolerate ground or V_{DD} drops and noise on these supply lines of more than 1 V , even in a 5 V system. Moreover, the inherent CMOS delays act as a noise filter; 10 ns spikes tend to disappear in a chain of CMOS gates, but are amplified in a chain of TTL gates. Because of these features, CMOS is very popular with designers of industrial control equipment that must operate in an electrically and electromagnetically "polluted" environment.

Unfortunately these impressive noise margin specifications disregard one important fact: the output impedance of CMOS is 10 to 100 times higher than that of TTL. CMOS interconnections are therfore less "stiff" and much more susceptible to capacitively coupled noise. In terms of such current injected crosstalk from high noise voltages through small coupling capacitances, CMOS has about six times less noise margin than TTL. It takes more than 20 mA to pull a TTL output into the threshold region, but it takes only 3 mA to pull a CMOS output into the threshold of a 5 V system.

The nearly ideal transfer characteristic and the slow response of CMOS circuits make them insensitive to low voltage, magnetically coupled noise. The high output impedance, however, results in a poor rejection of capacitively coupled noise.

INTERFACE TO TTL

When CMOS is operated with a 5 V power supply, interface to TTL is straightforward. The input impedance of CMOS is very high, so that any form of TTL will drive CMOS without loss of fan out in the LOW state. Unfortunately, most TTL has insufficient HIGH state voltage (typically 3.5 V) to drive CMOS reliably. A pull up resistor ($1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$) from the output of the TTL device to the 5 V power supply will effectively pull the HIGH state level to 4.5 V or above. Alternately, DTL Hex inverters may be used between the TTL and CMOS. 9LS Low Power Schottky and 93L00 Low Power TTL/MSI utilize the unique output configuration shown in Figure 2-8 to pull its output to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BC}}$ or approximately 4.3 V when lightly loaded.

All F4000 logic elements will drive a single 9LS Low Power Schottky input fan in directly. A 9LS Hex inverter such as the 9LS04 makes an excellent low cost TTL buffer with a fan out of 20 into 9LS or 5 into standard TTL. Alternately, the F4049 and F4050 Hex buffers may be used to drive a fan out of 8 into 9LS or 2 into standard TTL.

When operating CMOS at voltages higher than 5 V direct interface to TTL cannot be used. The F4104 Quad Level Translator converts TTL levels to high voltage CMOS up to 15 V. The F4049 and F4050 Hex Buffers will accept high voltage CMOS levels up to 15 V and drive 2 standard TTL loads.

Fig. 2-8
THE 93L00 AND 9LS00 TTL FAMILIES WILL DRIVE CMOS DIRECTLY WITHOUT RESISTORS AS LONG AS THERE ARE ONLY CMOS DEVICES BEING DRIVEN FROM THE OUTPUT.

INPUT/OUTPUT CAPACITY

CMOS devices exhibit input capacities in the 1.5 to 5 pF range and output capacity in the 3 to 7 pF range.

OUTPUT IMPEDANCE

All F4000 logic devices employ standardized output buffers. Section 3 details output characteristics. It should be noted that these impedances do not change with input pattern as do conventional CMOS gates. Buffers, analog switches and analog multiplexers employ special output configurations which are detailed in individual data sheets.

INPUT PROTECTION

The gate input to any MOS transistor appears like a small $(<1 \mathrm{pF})$ very low leakage $\left(<10^{-12} \mathrm{~A}\right)$ capacitor. Without special precautions, these inputs could be electrostatically charged to a high voltage, causing a destructive breakdown of the dielectric and permanently damaging the device. Therefore, all CMOS inputs are protected by a combination of series resistor and shunt diodes. Various manufacturers have used different approaches; some use a single diode, others use two diodes, and some use a resistor with a parasitic substrate diode.

Each member of the F 4000 family utilizes a series resistor, nominally 200Ω, and two diodes, one to $V_{D D}$, and the other to V_{SS} (Figure 2-9). The resistor is a poly-silicon "true resistor" without a parasitic substrate diode. This ensures that the input impedance is always at least 200Ω under all biasing conditions, even when V_{DD} is short circuited to $\mathrm{V}_{\text {SS }}$. A parasitic substrate diode would represent a poorly defined shunt to V_{SS} in this particular case.

The diodes exhibit typical forward voltage drops of 0.9 V at 1 mA and reverse breakdowns of 20 V for D1 and 20 V for D2. For certain special applications such as oscillators, the diodes actually conduct during normal operation. However, currents must be limited to 10 mA .

HANDLING PRECAUTIONS

All MOS devices are subject to damage by large electrostatic charges. All F4000 devices employ the input protection described in Figure 2.9, however, electrostatic damage can still occur. The following handling precautions should be observed.

1. All F4000 devices are shipped in conducting foam or tubes. They should be removed for inspection or assembly using proper precautions.
2. Ionized air blowers are recommended when automatic incoming inspection is performed.
3. F4000 devices, after removal from their shipping material, should be placed leads down on a grounded surface. Conventional cookie tins work well. Under no circumstances should they be placed in polystyrene foam or plastic trays used for shipment and handling of conventional ICs.
4. Individuals and tools should be grounded before coming in contact with F4000 devices.
5. Do not insert or remove devices in sockets with power applied. Ensure power supply transients, such as occur during power turn-on or off; do not exceed maximum ratings.
6. In the system, all unused inputs must be connected to either a logic HIGH or logic LOW level such as $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$ or the output of a logic element.
7. After assembly on PC boards, ensure that static discharge cannot occur during storage or maintenance. Boards may be stored with their connectors surrounded with conductive foam. Board input/output pins may be protected with large value resistors ($10 \mathrm{M} \Omega$) to ground.
8. In extremely hostile environments, an additional series input resistor (10 to $100 \mathrm{k} \Omega$) provides even better protection at a slight speed penalty.

A WORD TO THE TTL DESIGNER

Designing with CMOS is generally an easy transition and allows the designer to discard many of the old design inhibitions for new found freedoms. A few of these are:

Fan out-It is practically unlimited from a dc point of view and is restricted only by delay and rise time considerations.

Power Supply Regulation-Anything between 3 V and 15 V goes, as long as all communicating circuits are fed from the same voltage.

Ground and $\mathrm{V}_{\mathbf{C C}}$ Line Drops-The currents are normally so small that there is no need for heavy supply line bussing.
$\mathbf{V}_{\mathbf{C C}}$ Decoupling-It can be reduced to a few capacitors per board.

Heat Problems-They do not exist, unless an attempt is made to run CMOS very fast and from more than 10 V .

It should also be noted that there are a few warnings called for when designing with CMOS and that many of the hard-earned good engineering basics cannot be forgotten. A few of the new design challenges include:

Unused Inputs-They must be connected to V_{SS} or V_{DD} (V_{CC} or ground) lest they generate a logical "maybe". The bad TTL habit of leaving unused inputs open is definitely out.

Oscillations-Slowly rising or falling input signals can lead to oscillations and multiple triggering. A poorly regulated and decoupled power supply magnifies this problem since the CMOS input threshold varies with the supply voltage.

Timing Details-Even slow systems require a careful analysis of worst case timing delays, derated for maximum temperature, minimum supply voltage and maximum capacitive loading. Many CMOS flip-flops, registers and latches have a real hold time requirement, i.e., inputs must remain stable even after the active clock edge; some require a minimum clock rise time. This hasn't been a problem with TTL. CMOS systems, even slow ones, are prone to unsuspected clock skew problems, especially since a heavily loaded clock generator can have a poor rise time.

Compatibility-The TTL designer knows that devices sold by different manufacturers under the same generic part number are electrically almost identical. The same electrical compatibility is not yet achieved in CMOS. Many semiconductor houses manufacture 4000-type devices with wide variations in output drive capability and speed. Sometimes even the functions are different and incompatible; two cases in point are the 1 -of-10 decoder (CD4028A and MC14028) and the magnitude comparator (MC14585 and MM74C85).

Data Sheet Format-The original CD4000 series data sheets may appear confusing to the TTL user because a range of input voltage requirements is not specified. Rather, this information is contained in a "noise immunity" specification and is not immediately obvious.

Both TTL and CMOS tolerate deviations from the ideal LOW and HIGH input voltages. TTL is therefore specified as follows:

	MIN	MAX	
$V_{I H}$	2.0		V
$V_{I L}$		0.8	V

Any voltage below 0.8 V is considered LOW; any voltage above +2.0 V is considered HIGH. The actual threshold is somewhere in between these values, depending on manufacturing tolerances, supply voltage, and temperature.
Fairchild's F4000 CMOS is specified in a similar way. For $V_{D D}=5 \mathrm{~V}$;

	MIN	MAX	
V_{IH}	3.5		V
$\mathrm{~V}_{\mathrm{IL}}$		1.5	V

The CD4000 data sheets, on the other hand, do not call out $\mathrm{V}_{\text {IH }}$ and $\mathrm{V}_{\text {IL }}$ but specify a "noise immunity" which is somewhat arbitrarily defined relative to the appropriate supply voltage.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{NH}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}
\end{aligned}
$$

For $V_{D D}=5 \mathrm{~V}$, therefore
$\mathrm{V}_{\mathrm{NL}}=1.5 \mathrm{~V}$ min is equivalent to $\mathrm{V}_{\mathrm{IL}}=1.5 \mathrm{~V}$ max
$\mathrm{V}_{\mathrm{NH}}=1.4 \mathrm{~V}$ min is equivalent to $\mathrm{V}_{\mathrm{IH}}=3.6 \mathrm{~V}$ min, etc.
Systems Oriented MSI-Available CMOS circuits, especially the original 4000 series, are not as well suited for synchronous systems as are the 9300/7400 TTL families. Control polarities are inconsistent; many circuits cannot be cascaded or extended synchronously without additional gates, etc. This will improve as more good synchronous building blocks, like the F40160 are introduced.
PRODUCT INDEX - ALPHANUMERIC LISTING
OF DEVICES

NMOS/PMOS
INTRODUCTION
MEMORY PRODUCTS
CONSUMERINDUSTRIAL PRODUCTS
MICROPROCESSOR PRODUCTS
MULTPLEXERS AND COUNTERS

CMOS

F4000 SERIES GENERAL DESCAIPTION	4
$\begin{aligned} & \text { DESIGN CONSIDERATIONS WITH F4000 } \\ & \text { SERIES CMOS } \end{aligned}$	
TECHNICAL DATA	
BIROLAR INTERFACE CIRCUITS FOR CMOS	
CCD	
INTRODUCTION	5
TECHNICAL DATA	

SELECTOR GUIDE BY FUNCTION

FUNCTION PAGE
NAND Gates
F4011 Quad 2-Input NAND Gate 4-52
F4012 Dual 4-Input NAND Gate 4-52
F4023 Triple 3-Input NAND Gate 4-77
F4068 8-Input NAND Gate 4-128
AND Gates
F4073 Triple 3-Input AND Gate 4-134
F4081 Quad 2-Input AND Gate 4-140
F4082 Dual 4-Input AND Gate 4-141
NOR Gates
F4001 Quad 2-Input NOR Gate 4-44
F4002 Dual 4-Input NOR Gate 4-44
F4025 Triple 3-Input NOR Gate 4-81
F4078 8-Input NOR Gate 4-138
OR Gates
F4071 Quad 2-Input OR Gate 4-132
F4072 Dual 4-Input OR Gate 4-133
F4075 Triple 3-Input OR Gate 4-135
Inverters and Buffers
F4041 Quad True/Complement Buffer 4-101
F4049 Hex Inverting Buffer 4-114
F4050 Hex Non-Inverting Buffer 4-114
F4069 Hex Inverter 4-129
F40097 3-State Hex Non-Inverting Buffer 4-259
F40098 3-State Hex Inverting Buffer 4-259
Complex Gates
F4007 Dual Complementary Pair Plus Inverter 4-48
F4030 Quad Exclusive-OR Gate 4-92
F4070 Quad Exclusive-OR Gate 4-131
F4077 Quad Exclusive-NOR Gate 4-137
F4085 Dual 2-Wide, 2-Input AND-OR-Invert Gate 4-142
F4086 4-Wide, 2-Input AND-OR-Invert Gate 4-144
Flip-Flops
F4013 Dual D Flip-Flop 4-54
F4027 Dual JK Flip-Flop 4-82
F4076 Quad D Flip-Flop with 3-State Outputs 4-136
F40174 Hex D Flip-Flop 4-269
F40175 Quad D Flip-Flop 4-272
Counters
F4017 5-Stage Johnson Decade Counter 4-65
F4018 Presettable Divide-by-N Counter 4-68
F4020 14-Stage Binary Counter 4-71
F4024 7-Stage Binary Counter 4-78
F4029 Synchronous Up/Down, Binary/Decade Counter 4-87
F4040 12-Stage Binary Counter 4-98
F4510 BCD Up/Down Counter 4-149
F4516 Binary Up/Down Counter 4-165
F4518 Dual 4-Bit Decade Counter 4-169
F4520 Dual 4-Bit Binary Counter 4-173
F4522 4-Bit BCD Programmable Down Counter 4-175

SELECTOR GUIDE BY FUNCTION

Counters (Cont'd)
F4526 4-Bit Binary Programmable Down Counter 4-175
F40160 4-Bit Synchronous Decade Counter with Asynchronous Reset 4-263
F40161 4-Bit Synchronous Binary Counter with Asynchronous Reset 4-263
F40162 4-Bit Synchronous Decade Counter with Synchronous Reset 4-263
F40163 4-Bit Synchronous Binary Counter with Synchronous Reset 4-263
F40192 4-Bit Up/Down Synchronous Decade Counter 4-274
F40193 4-Bit Up/Down Synchronous Binary Counter 4-274
Registers
F4006 18-Stage Static Shift Register 4-46
F4014 8-Bit Shift Register 4-57
F4015 Dual 4-Bit Shift Register 4-59
F4021 8-Bit Shift Register 4-74
F4031 64-Stage Static Shift Register 4-93
F4035 4-Bit Universal Shift Register 4-95
F4731 Quad 64-Bit Static Shift Register 4-253
F40194 4-Bit Bidirectional Universal Shift Register 4-278
F40195 4-Bit Universal Shift Register 4-282
Decoders and Demultiplexers
F4028 1-of-10 Decoder 4-85
F4511 BCD-to-7-Segment Latch/Decoder/Driver 4-153
F4514 1-of-16 Decoder/Demultiplexer with Input Latch 4-159
F4515 1-of-16 Decoder/Demultiplexer with Input Latch 4-162
F4555 Dual 1-of-4 Decoder with Active HIGH Outputs 4-184
F4556 Dual 1-of-4 Decoder with Active LOW Outputs 4-184
Digital Multiplexers
F4019 Quad 2-Input Multiplexer 4-69
F4512 8-Input Multiplexer with 3-State Outputs 4-154
F4519 Quad 2-Input Multiplexer 4-171
F4539 Dual 4-Input Multiplexer 4-182
Analog Switches and Multiplexers/Demultiplexers
F4016 Quad Bilateral Switch 4-62
F4051 8-Channel Analog Multiplexer/Demultiplexer 4-117
F4052 Dual 4-Channel Analog Multiplexer/Demultiplexer 4-120
F4053 Triple 2-Channel Analog Multiplexer/Demultiplexer 4-123
F4066 Quad Bilateral Switch 4-124
F4067 16-Channel Analog Multiplexer/Demultiplexer 4-127
Latches
F4042 Quad D Latch 4-102
F4043 Quad R/S Latch with 3-State Outputs 4-105
F4044 Quad R/S Latch with 3-State Outputs 4-108
F4723 Dual 4-Bit Addressable Latch 4-244
F4724 8-Bit Addressable Latch 4-247
F4734 BCD-to-7-Segment Latch/Decoder/Driver 4-255
Translators
F4104 Quad Low Voltage to High Voltage Translator with 3-State Outputs 4-146
Arithmetic Operators
F4008 4-Bit Binary Full Adder 4-50
F4531 12-Bit Parity Checker/Generator 4-177
F4532 8-Input Priority Encoder 4-179
F4582 Carry Lookahead Generator 4-186

SELECTOR GUIDE BY FUNCTION

Arithmetic Operators (Cont'd)
F4704 Data Path Switch 4-211
F4705 Arithmetic Logic Register Stack 4-215
F4707 Data Access Register 4-232
F40085 4-Bit Magnitude Comparator 4-256
F40283 4-Bit Binary Full Adder 4-286
Memories
F4703 16×4 Parallel/Serial FIFO 4-197
F4706 Program Stack 4-220
F4710 16×4-Bit Clocked RAM with 3-State Output Register 4-238
F4720 256-Bit RAM 4-241
F4725 64-Bit RAM 4-250
Frequency Generator
F4702 Programmable Bit Rate Generator 4-189
Multivibrators, Phase-Locked Loops
F4046 Micropower Phase-Locked Loop 4-111
F4047 Low Power Monostable/Astable Multivibrator 4-113
F4528 Dual Retriggerable Resettable Monostable Multivibrator 4-176

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	PAGE NO.
NAND GATES				
$\begin{aligned} & 7400 \\ & 9002 \\ & \hline \end{aligned}$	Quad 2-Input NAND Gate	F4011	Different Pinout, Functionally Identical	4-52
$\begin{array}{r} 7410 \\ 9003 \\ \hline \end{array}$	Triple 3-Input NAND Gate	F4023	Different Pinout, Functionally Identical	4-77
$\begin{aligned} & 7420 \\ & 9004 \\ & \hline \end{aligned}$	Dual 4-Input NAND Gate	F4012	Different Pinout, Functionally Identical	4-52
$\begin{aligned} & 7430 \\ & 9007 \\ & \hline \end{aligned}$	8-Input NAND Gate	F4068	Different Pinout, Functionally Identical	4-128
AND GATES				
7408	Quad 2-Input AND Gate	F4081	Different Pinout, Functionally Identical	4-140
74LS11	Triple 3-Input AND Gate	F4073	Different Pinout, Functionally Identical	4-134
74LS21	Dual 4-Input AND Gate	F4082	Different Pinout, Functionally Identical	4-141
NOR GATES				
7402	Quad 2-Input NOR Gate	F4001	Different Pinout, Functionally Identical	4-44
7427	Triple 3-Input NOR Gate	F4025	Different Pinout, Functionally Identical	4-81
7425	Dual 4-Input NOR Gate	F4002	Different Pinout. The 7425 has a Strobe input on each gate; the F4002 does not.	4-44
	8-Input NOR Gate	F4078	No TTL Equivalent	4-138
OR GATES				
7432	Quad 2-Input OR Gate	F4071	Different Pinout, Functionally Identical	4-132
	Triple 3-Input OR Gate	F4075	No TTL. Equivalent	4-135
	Dual 4-Input OR Gate	F4072	No TTL Equivalent	4-133
INVERTERS AND BUFFERS				
$\begin{aligned} & 7404 \\ & 9016 \\ & \hline \end{aligned}$	Hex Inverter	F4069	Same Pinout, Functionally Identical	4-129
$\begin{aligned} & 7416 \\ & 7404 \\ & 9016 \\ & \hline \end{aligned}$	Hex Buffer, Inverting	F4049	Different Pinout. The F4049 has an active pull-up and pull-down output. The 7416 has an open collector output. The 7404 and 9016 have an active pull-up and pull-down output.	4-114
7417	Hex Buffer, Non-Inverting	F4050	Different Pinout. The F4050 has an active pull-up and pull-down output. The 7417 has an open collector output.	4-114
$\begin{aligned} & 74367 \\ & 8097 \\ & \hline \end{aligned}$	Hex Buffer, Non-Inverting, 3-State Outputs	F40097	Same Pinout, Functionally Identical	4-259
$\begin{aligned} & 74368 \\ & 8098 \\ & \hline \end{aligned}$	Hex Buffer, Inverting, 3-State Outputs	F40098	Same Pinout, Functionally Identical	4-259
	Dual Complementary Pair Plus Inverter	F4007	No TTL Equivalent	4-48
	Quad True/ Complement Buffer	F4041	No TTL Equivalent	4-101

TTL TO CMOS FUNCTION SELECTOR GUIDE

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
$N C=\operatorname{Pins} 6,8$

F4068
$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
NC $=$ Pins 1, 6, 8
2-a-
F4081
$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
${ }_{5}^{3}=\square 0-$
${ }_{12}^{11}=\square 0-10$
${ }^{1}{ }_{8}^{1}=\square 0-{ }^{13}$
$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
F4073

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
$N C=\operatorname{Pins} 6,8$
?

F4082

F4001

F4025

$$
\text { ? }{ }_{5}^{3} \Longrightarrow 0-10
$$

$$
{ }_{8}^{1} \Longrightarrow 0-9
$$

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$

品
F4002
$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
$V_{S S}=\operatorname{Pin} 7$
$N C=\operatorname{Pins} 6,8$

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$
$V_{S S}=P$ in 7
$N C=$ Pins 1,
F4078

NC $=$ Pins 1, 6, 8

F4071

$$
V_{D D}=\operatorname{Pin} 14
$$

$$
V_{S S}=\operatorname{Pin} 7
$$

F4012

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	$\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$
COMPLEX GATES				
74L86	Quad Exclusive-OR Gate	$\begin{aligned} & \text { F4030/ } \\ & \text { F4070 } \end{aligned}$	Same Pinout, Functionally Identical	$\begin{array}{r} 4-92 \\ 4-131 \end{array}$
74LS266	Quad Exclusive-NOR Gate	F4077	Same Pinout, Functionally Identical	4-137
$\begin{aligned} & 7450 \\ & 9005 \end{aligned}$	Dual 2-Wide, 2-Input AND-OR-INVERT Gate	F4085	Different Pinout. The F4085 has an extra input which can be used as either an expander input or an inhibit input by connecting it to any standard CMOS output. Only one-half of a 7450 and 9005 can be expanded by connecting ti to a special expander circuit. The 7450 and 9005 do not have an inhibit capability.	4-142
7453	4-Wide, 2-Input AND-ORINVERT Gate	F4086	Different Pinout. The F4086 has two additional inputs which can be used as either expander inputs or inhibit inputs by connecting them to any standard CMOS output. The $\mathbf{7 4 5 3}$ can be expanded only by connecting it to a special expander circuit. The 7453 does not have an inhibit capability.	4-144
FLIP-FLOPS				
7474	Dual D Flip-Flop	F4013	Different Pinout. The 7474 has active LOW S_{D} and C_{D} inputs; the $F 4013$ has active HIGH S_{D} and C_{D} inputs.	4-54
$\begin{aligned} & 74109 \\ & 9024 \end{aligned}$	Dual JK Flip-Flop, Edge-Triggered	F4027	Different Pinout. The 74109 and 9024 have active LOW S_{D}, C_{D}, and K inputs; the F 4027 has active HIGH S_{D}, C_{D} and K inputs.	4-82
74175	Quad D Flip-Flop	F40175	Same Pinout, Functionally Identical	4-272
74173	Quad D Flip-Flop With 3-State Outputs	F4076	Same Pinout, Functionally Identical	4-136
74174	Hex D Flip-Flop	F40174	Same Pinout, Functionally Identical	4-269
COUNTERS				
$\begin{aligned} & 93 S 10 \\ & 9310 \\ & 74160 \end{aligned}$	Synchronous, BCD Up Counter, Asynchronous Master Reset	F40160	Same Pinout. The F40160 and 93S10 are fully edge-triggered. The $\mathbf{7 4 1 6 0}$ and 9310 are "opposite state catching" on the Count Enable and Parallel Enable inputs. The Terminal Count is fully decoded on the F40160, 9310 and 93S10 ($\mathrm{TC}=\mathrm{CET} \bullet \mathrm{Q}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{O}}_{2} \bullet \mathrm{Q}_{3}$); but is not fully decoded on the 74160 (TC $=\operatorname{CET} \bullet Q_{0} \bullet Q_{3}$). For the count sequence above 9 , the F 40160 is the same as the 74160, different than the 9310 and 93S10.	4-263
$\begin{aligned} & 93 \mathrm{~S} 16 \\ & 9316 \\ & 74161 \\ & \hline \end{aligned}$	Synchronous, Binary Up Counter, Asynchronous Master Reset	F40161	Same Pinout. The F40161 is fully edge-triggered; the 74161 and 9316 are "opposite state catching" on the Count Enable and Parallel Enable inputs. The F40161 is functionally identical to the 93S16.	4-263
74162	Synchronous, BCD Up Counter, Synchronous Reset	F40162	Same Pinout. The F40162 is fully edge-triggered and the Terminal Count is fully decoded (TC $=\operatorname{CET} \bullet \mathrm{O}_{0} \bullet \overline{\mathrm{O}}_{1} \bullet \overline{\mathrm{O}}_{2} \bullet \mathrm{O}_{3}$); the 74162 is "opposite state catching" on the Count Enable, Parallel Enable and Synchronous Reset inputs and the Terminal Count is not fully decoded ($\mathrm{TC}=\mathrm{CET} \bullet \mathrm{O}_{0} \bullet \mathrm{O}_{3}$).	4-263
74163	Synchronous Binary Up Counter, Synchronous Reset	F40163	Same Pinout. The F40163 is fully edge-triggered; the 74163 is "opposite state catching" on the Count Enable, Parallel Enable and Synchronous Reset inputs.	4-263
74490	Dual BCD Up Counter	F4518	Different Pinout. The F4518 has two clock inputs per counter and is fully synchronous internally. The 74490 has a single clock input per counter, has a 'set to nine" input and is a ripple counter internally.	4-169
74393	Dual Binary Up Counter	F4520	Different Pinout. The F4520 has two clock inputs per counter and is fully synchronous internally. The 74393 has a single clock input per counter and is internally organized as a ripple counter.	4-173
	Programmable 4-Bit BCD Down Counter	F4522	No TTL Equivalent	4-175
	Programmable 4-Bit Binary Down Counter	F4526	No TTL Equivalent	4-175

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

$\left.\begin{array}{lllll}\hline \text { TTL } & \text { FUNCTION } & \text { CMOS } & & \text { FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL }\end{array}\right]$| PAGE |
| :--- |
| NO. |

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	cmos	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	$\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$
REGISTERS (Cont'd)				
	18-Stage Static Shift Register	F4006	No TTL Equivalent	4-46
	64-Stage Static Shift Register	F4031	No TTL Equivalent	4-93
	Quad 64-Bit Static Shift Register	F4731	No TTL Equivalent	4-253
DECODERS/DEMULTIPLEXERS				
$\begin{aligned} & \hline \text { 74LS139 } \\ & 9321 \\ & \hline \end{aligned}$	Dual 1-of-4 Decoder, Active LOW Outputs	F4556	Same Pinout, Functionally Identical	4-184
$\begin{aligned} & \text { 74LS139 } \\ & 9321 \\ & \hline \end{aligned}$	Dual 1-of-4 Decoder, Active HIGH Outputs	F4555	Same Pinout. The outputs of the F4555 are the complement of the outputs of the 74LS139 and 9321.	4-184
$\begin{aligned} & 7442 \mathrm{~A} \\ & 9301 \end{aligned}$	1-of-10 Decoder, Active HIGH Outputs	F4028	Different Pinout. For input codes 0-9, the outputs of the F4028 are the complements of the outputs of the 7442A and 9301. For input codes 10-15, all outputs of the 7442A and the 9301 are HIGH. On the F4028, input codes 10, 12 and 14 generate a HIGH on O_{8} a LOW on all other outputs, while input codes 11,13 and 15 generate a HIGH on O_{9}, a LOW on all other outputs.	4-85
$\begin{aligned} & 74154 \\ & 9311 \end{aligned}$	1-of-16 Decoder/ Demultiplexer with Input Latches	F4514	Different Pinout. The F4514 has an input latch, active HIGH outputs, one active LOW Enable input which forces all outputs LOW and a Latch Enable input. The 74154 and 9311 do not have an input latch, have active LOW outputs and have two active LOW Enable inputs which force all outputs HIGH.	4-159
$\begin{aligned} & 74154 \\ & 9311 \end{aligned}$	1-of-16 Decoder/ Demultiplexer with Input Latches	F4515	Different Pinout. The F4515 has an input latch with an active HIGH Latch Enable, and an active LOW Enable input. The 74154 and 9311 do not have an input latch and have two active LOW Enable inputs.	4-162
9368	BCD-to-7-Segment Latch/Decoder/ Driver	F4511	Different Pinout. The F4511 has active LOW lamp test and Blanking inputs. The 9368 has a Ripple Blanking input and a Ripple Blanking output in lieu of the lamp test and Blanking inputs. The F4511 forces all segment outputs (a-f) LOW for input codes greater than nine, the 9368 generates the segment codes for a-f for input codes 10 to 15 .	4-153
9368	BCD-to-7-Segment Latch/Decoder/ Driver	F4734	Different Package. The F4734 is in an 18-pin package; the 9368 is in a 16-pin package. The F4734 has active HIGH Ripple Blanking input and Ripple Blanking output; the 9368 has active LOW Ripple Blanking input and Ripple Blanking output. The F4734 has active LOW lamp test and Blanking inputs; the 9368 does not have these inputs. The F4734 forces all segment outputs (a-f) LOW for input codes greater than nine; the 9368 generates the segment codes for a-f for input codes 10 to 15.	4-255

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	PAGE NO.
MULTIPLEXERS				
$\begin{aligned} & 74157 \\ & 9322 \end{aligned}$	Quad 2-Input Multiplexer	F4019	Different Pinout. The F4019 has two Select inputs which allow the choice of four possible outputs: O, A, B, A+B. The 74157 and 9322 have a single Select input which allows the selection of either A or B inputs, and an active LOW Enable input.	4-69
$\begin{aligned} & 74157 \\ & 9322 \end{aligned}$	Quad 2-Input Multiplexer	F4519	Different Pinout. The F4519 has two Select inputs which allow the choice of four possible outputs: O, A, B, A•B. The 74157 and 9322 have a single Select input which allows the selection of either A or B inputs and an active LOW Enable input.	4-171
74153	Dual 4-Input Multiplexer	F4539	Same Pinout, Functionally Identical	4-182
74251	8 -Input Multiplexer 3-State Outputs	F4512	Different Pinout. The F4512 has an Enable input which forces all outputs LOW, but it does not have a $\overline{\mathbf{Z}}$ output. The $\mathbf{7 4 2 5 1}$ does not have an Enable input, but has both Z and $\overline{\mathrm{Z}}$ outputs.	4-154
$\begin{aligned} & \text { (74151 } \\ & 9312) \end{aligned}$			The $\mathbf{7 4 1 5 1}$ and 9312 do not have 3 -state outputs; they provide the $\overline{\mathbf{Z}}$ output in lieu of the Output Enable input. The F4512 can perform the same function as the 74151 and 9312.	
ANALOG SWITCHES AND MULTIPLEXERS/DEMULTIPLEXERS				
	Quad Bilateral Switch	$\begin{aligned} & \text { F4016/ } \\ & \text { F4066 } \\ & \hline \end{aligned}$	No TTL Equivalent. The F4016 and F4066 are "analog" switches.	$\begin{array}{r} 4-62 \\ 4-124 \\ \hline \end{array}$
	8-Channel Analog Multiplexer/Demultiplexer	F4051	No TTL Equivalent. The F4051 is an "analog" multiplexer/demultiplexer.	4-117
	Dual 4-Channel Analog Multiplexer/Demultiplexer	F4052	No TTL Equivalent. The F4052 is an "analog" multiplexer/demultiplexer.	4-120
	Triple 2-Channel Analog Multiplexer/ Demultiplexer	F4053	No TTL Equivalent. The F4053 is an "analog" multiplexer/demultiplexer.	4-123
	16-Channel Analog Multiplexer/Demultiplexer	F4067	No TTL Equivalent. The F4067 is an "analog" multiplexer/demultiplexer.	4-127

TTL TO CMOS FUNCTION SELECTOR GUIDE

4

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL	FUNCTION	CMOS	FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL	$\begin{aligned} & \text { PAGE } \\ & \text { NO. } \end{aligned}$
LATCHES				
7475	4-Bit Latch	F4042	Different Pinout. The 7475 has separate Enable inputs for bits 0,1 and 2,3. The F4042 has a Common Enable input for all four bits; but with the Exclusive-NOR Enable inputs, it is possible to have either an active HIGH or an active LOW Enable input.	4-102
74279	Quad R/S Latch with 3-State Outputs	F4043	Different Pinout. The F4043 has 3-state outputs and active LOW Set and Reset inputs. The 74279 does not have 3 -state outputs and has two Set inputs on two of the latches.	4-105
74279	Quad R/S Latch with 3-State Outputs	F4044	Different Pinout. The F4044 has 3-state outputs and the Reset inputs override the Set inputs. The 74279 does not have 3 -state outputs, has two Set inputs on two of the latches and the Set inputs override the Reset inputs.	4-108
$\begin{aligned} & 9334 \\ & 74259 \\ & \hline \end{aligned}$	8-Bit Addressable Latch	F4724	Same Pinout. The 9334 and 74259 have active LOW Clear inputs, the F4724 has an active HIGH Clear input.	4-247
	Dual 4-Bit Addressable Latch	F4723	No TTL Equivalent	4-244
TRANSLATORS				
75367	Quad TTL-to-CMOS Converter, 3-State Outputs	F4104	Different Pinout. The F4104 has true and complement outputs and a common active HIGH Output Enable input. The 75367 has only the inverted outputs available and has individual active LOW Output Enable inputs.	4-146
ARITHMETIC OPERATORS, ADDERS, COMPARATORS				
$74 \mathrm{L85}$	4-Bit Magnitude Comparator	F40085	Same Pinout, Functionally Identical	4-256
9348	13-Bit Parity Checker/Generator	F4531	Different Pinout. The F4531 is a 13 -bit parity checker/generator with a single output. The 9348 is a 12 -bit parity checker/generator with two outputs, odd parity and even parity.	4-177
$\begin{aligned} & 74148 \\ & 9318 \\ & \hline \end{aligned}$	8-Input Priority Encoder	F4532	Same Pinout. The F4532 has active HIGH inputs and outputs. Tine 74148 and 9318 have active LOW inputs and outputs.	4-179
$\begin{aligned} & 74182 \\ & 9342 \\ & \hline \end{aligned}$	Lookahead Carry Generator	F4582	Same Pinout, Functionally Identical	4-186
9404	Data Path Switch	F4704	Same Pinout, Functionally Identical	4-211
9405	Arithmetic Logic Register Stack	F4705	Same Pinout, Functionally Identical	4-215
9407	Data Access Register	F4707	Same Pinout, Functionally Identical	4-232

TTL TO CMOS FUNCTION SELECTOR GUIDE

TTL TO CMOS FUNCTION SELECTOR GUIDE

$\left.\begin{array}{lllll}\hline & & \text { FUNCTION } & \text { CMOS } & \text { FUNCTIONAL DIFFERENCES BETWEEN CMOS AND TTL }\end{array}\right]$| PAGE |
| :--- |
| TTL |

TTL TO CMOS FUNCTION SELECTOR GUIDE

CROSS REFERENCE GUIDE

Fairchild	RCA Series A	RCA* Series B	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments	Signetics
F4001	CD4001A		MC14001A	CD4001A	SCL4001A	CM4001A	HD4001A	TP4001A	4001A
F4002	CD4002A		MC14002A	CD4002A	SCL4002A	CM4002A	HD4002A	TP4002A	4002A
F4006	CD4006A		MC14006A	CD4006A	SCL4006A	CM4006A	HD4006A		4006A
F4007	CD4007A		MC14007A	CD4007A	SCL4007A	CM4007A	HD4007A	TP4007A	4007A
F4008	CD4008A		MC14008A		SCL4008A	CM4008A	HD4008A	TP4008A	4008A
F4011	CD4011A		MC14011A	CD4011A	SCL4011A	CM4011A	HD4011A	TP4011A	4011A
F4012	CD4012A		MC14012A	CD4012A	SCL4012A	CM4012A	HD4012A	TP4012A	4012A
F4013	CD4013A		MC14013A	CD4013A	SCL4013A	CM4013A	HD4013A	TP4013A	4013A
F4014	CD4014A		MC14014A	CD4014A	SCL4014A	CM4014A	HD4014A	TP4014A	4014A
F4015	CD4015A		MC14015A	CD4015A	SCL4015A		HD4015A	TP4015A	4015A
F4016	CD4016A		MC14016A	CD4016A	SCL4016A	CM4016A		TP4016A	4016A
F4017	CD4017A		MC14017A	CD4017A	SCL4017A	CM4017A	HD4017A	TP4017A	4017A
F4018	CD4018A			CD4018A	SCL4018A	CM4018A	HD4018A	TP4018A	4018A
F4019	CD4019A			CD4019A	SCL4019A	CM4019A	HD4019A	TP4019A	4019A
F4020	CD4020A		MC14020A	CD4020A	SCL4020A	CM4020A	HD4020A	TP4020A	4020A
F4021	CD4021A		MC14021A	CD4021A	SCL4021A	CM4021A	HD4021A	TP4021A	4021A
F4022	CD4022A		MC14022A	CD4022A	SCL4022A	CM4022A	HD4022A	TP4022A	4022A
F4023	CD4023A		MC14023A	CD4023A	SCL4023A	CM4023A	HD4023A	TP4023A	4023A
F4024	CD4024A		MC14024A	CD4024A	SCL4024A	CM4024A	HD4024A	TP4024A	4024A
F4025	CD4025A		MC14025A	CD4025A	SCL4025A	CM4025A	HD4025A	TP4025A	4025A
F4027	CD4027A		MC14027A	CD4027A	SCL4027A		HD4027A	TP4027A	4027A
F4028	CD4028A		MC14028A	CD4028A	SCL4028A		HD4028A	TP4028A	4028A
F4029	CD4029A			CD4029A	SCL4029A		HD4029A	TP4029A	4029A
F4030	CD4030A			CD4030A	SCL4030A		HD4030A	TP4030A	4030A
F4031	CD4031A			CD4031A					
F4035	CD4035A		MC14035A	CD4035A	SCL4035A		HD4035A	TP4035A	4035A
F4040	CD4040A		MC14040A	CD4040A	SCL4040A		HD4040A	TP4040A	4040A
F4041	CD4041A				SCL4041A	CM4041A		TP4041A	4041A
F4042	CD4042A		MC14042A	CD4042A	SCL4042A		HD4042A	TP4042A	4042A
F4043	CD4043A			CD4043A	SCL4043A	CM4043A	HD4043A	TP4043A	4043A
F4044	CD4044A			CD4044A	SCL4044A	CM4044A	HD4044A	TP4044A	4044A
F4046	CD4046A		MC14046A						
F4047	CD4047A					CM4047A			
F4049	CD4049A		MC14049A	CD4049A	SCL4049A		HD4049A	TP4049A	4049A
F4050	CD4050A		MC14050A	CD4050A	SCL4050A		HD4050A	TP4050A	4050A
F4051	CD4051A			CD4051A				TP4051A	4051A
F4052	CD4052A			CD4052A				TP4052A	4052A
F4053	CD4053A		MC14053A	CD4053A	SCL4053A			TP4053A	
F4066	CD4066A			CD4066A			HD4066A		4066A
F4067		CD4067B							
F4068		CD4068B							4068B
F4069		CD4069B		CD4069B					4069B
F4070		CD4070B	MC14507	CD4070B					
F4071		CD4071B							4071B
F4072		CD4072B							4072B
F4073		CD4073B							4073B
F4075		CD4075B							4075B
F4076		CD4076B	MC14076B	CD4076B					
F4077		CD4077B					HD4811		
F4078		CD4078B							4078B

CROSS REFERENCE GUIDE

Fairchild	RCA Series A	RCA* Series B	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments	Signetics
F4081		CD4081B							4081B
F4082		CD4082B							4082B
F4085		CD4085B							
F4086		CD4086B							
F4104						CM4104			
F4510		CD4510B	MC14510		SCL14510				14510
F4511		CD4511B	MC14511	MM14511	SCL14511				
F4512			MC14512					TP4512A	
F4514		CD4514B	MC14514		SCL14514			TP4514A	
F4515		CD4515B	MC14515		SCL14515			TP4515A	
F4516		CD4516B	MC14516		SCL14516				14516
F4518		CD4518B	MC14518		SCL14518			TP4518A	14518
F4519			MC14519					TP4519A	
F4520		CD4520B	MC14520		SCL14520			TP4520A	14520
F4522			MC14522					TP4522A	
F4526			MC14526					TP4526A	
F4528			MC14528		SCL14528				14528
F4531			MC14531					TP4531A	
F4532		CD4532B	MC14532						
F4539			MC14539					TP4539A	
F4555		CD4555B	MC14555						
F4556		CD4556B	MC14556						
F4582			MC14582						
F4702									
F4703									
F4704									
F4705									
F4706									
F4707									
F4710									
F4720	**CD4061A	**CD4099B							
F4723									
F4724									
F4725									
F4731									
F4734			MC14513						
F40085			**MC14585	MM74C85					
F40097				MM80C97					
F40098				MM80C98					
F40160			MC14160	MM74C160			HD74C160	TP4360	
F40161			MC14161	MM74C161			HD74C161	TP4361	
F40162			MC14162	MM74C162			HD74C162	TP4362	
F40163			MC14163	MM74C163			HD74C163	TP4363	
F40174			MC14174	MM74C174			HD74C174		
F40175			MC14175	MM74C175					
F40192		CD40192B		MM74C192			HD74C192		
F40193		CD40193B		MM74C193			HD74C193		
F40194		CD40194B	MC14194						
F40195				MM74C195			HD74C195		
F40283									

CROSS REFERENCE GUIDE

PACKAGE CODE CROSS REFERENCE

Package	Fairchild	RCA	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments	Signetics
Plastic DIP	P	E	P	N	E	E	1		N
Ceramic DIP	D	D or F	L	D B, N					
Ceramic Flatpak	F	K	-	F	D	D	1	J	E, F, Y

TEMPERATURE CODE CROSS REFERENCE

Temperature Range	Fairchild	RCA	Motorola	National	Solid State Scientific	Solitron	Harris	Texas Instruments	Signetics
$\begin{aligned} & \text { Military } \\ & \left(-55^{\circ} \mathrm{C}\right. \text { to } \\ & \left.+125^{\circ} \mathrm{C}\right) \end{aligned}$	M	D, K, F Packages Only	A	$\begin{gathered} 54 C X X \\ 70 C X X \\ M \end{gathered}$	D, F Packages Only	D Package Only	2	TF	S
Commercial $\begin{gathered} \left(-40^{\circ} \mathrm{C}\right. \text { to } \\ \left.+85^{\circ} \mathrm{C}\right) \end{gathered}$	C	E Package Only	C	C	E Package Only	E Package Only	4	TP	N
$\begin{aligned} & \text { Commercial } \\ & \qquad \begin{array}{l} \left(0^{\circ} \mathrm{C}\right. \text { to } \\ \left.+70^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	-	-	-	$\begin{aligned} & 74 C X X \\ & 80 C X X \end{aligned}$	-	-	5	TL	N

[^6]
F4000
 SERIES CMOS FAMILY CHARACTERISTICS

RECOMMENDED OPERATING CONDITIONS

Fairchild CMOS will operate over a recommended $V_{D D}$ power supply range of 3 to 15 V , as referenced to $\mathrm{V}_{\text {SS }}$ (usually ground). Parametric limits are guaranteed for $V_{\text {DD }}$ equal to 5,10 and 15 V . Where low power dissipation is required, the lowest power supply voltage, consistent with required speed, should be used. For larger noise immunity, higher power supply voltages should be specified. Because of its wide operating range, power supply regulation and filtering are less critical than with other types of logic. The lower limit of supply regulation is 3 V , or as determined by required system speed and/or noise immunity or interface to other logic. The recommended upper limit is 15 V or as determined by power dissipation constraints or interface to other logic.
Unused inputs must be connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or another input.
Care should be used in handling CMOS devices; large static charges may damage the device.
Operating temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for Commercial and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for Military.

PARAMETER	F4000XC			F4000XM			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage, VDD	3		15	3		15	V
Operating Free Air Temperature Range	-40	+25	+85	-55	+25	+125	${ }^{\circ} \mathrm{C}$

$X=$ Package Type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Ordering Information section.

DC CHARACTERISTICS FOR THE F4000 SERIES CMOS FAMILY - Parametric Limits listed below are guaranteed for the entire Fairchild CMOS Family unless otherwise specified on the individual data sheets.

DC CHARACTERISTICS: $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS	
			MIN	TYP	MAX				
$V_{\text {IH }}$	Input HIGH Voltage		3.5			V	All	Guarante	nput HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage				1.5	V	All	Guarant	nput LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 4.99 \\ & 4.95 \end{aligned}$			V	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{IOH}=0$ the Logic	Inputs at 0 or 5 V per nction or Truth Table
			4.0			V	All	$\mathrm{IOH}^{\prime}=0$	Inputs at 1.5 or 3.5 V
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAIX } \end{gathered}$	$\mathrm{IOL}=0 \mathrm{r}$ the Logic	Inputs at 0 or 5 V per nction or Truth Table
					0.5	V	All	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~m}$	Inputs at 1.5 or 3.5 V
IIN	Input Current	XC			0.1	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead under test at 0 or 5 V All other Inputs simultaneously at 0 or 5 V	
		XM			0.01				
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{array}{r} -1.5 \\ -1.0 \end{array}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 2.5 \mathrm{~V} \end{aligned}$	Inputs at 0 or 5 V per the Logic Function or Truth Table
			$\begin{aligned} & -0.7 \\ & -0.4 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 4.5 \mathrm{~V} \end{aligned}$	
${ }^{\prime} \mathrm{OL}$	Output LOW Current		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.4 \end{aligned}$			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \\ & 0.4 \mathrm{~V} \end{aligned}$	

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

DC CHARACTERISTICS: $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS	
			MIN	TYP	MAX				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		10.5			V	All	Guarant	Input HIGH Voltage
$V_{\text {IL }}$	Input LOW Voltage				4.5	V	All	Guarant	nput LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 14.99 \\ & 14.95 \end{aligned}$			V	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{IOH}=0 \mathrm{r}$ the Logic	, Inputs at 0 or 15 V per nction or Truth Table
			13.0			v	All	$\mathrm{I}^{\mathrm{OH}}=0$, Inputs at 4.5 or 10.5 V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage				$\begin{aligned} & \hline 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{IOL}=0 \mathrm{r} \\ & \text { the Logic } \end{aligned}$	Inputs at 0 or 15 V per nction or Truth Table
					2.0	v	All	$\mathrm{I}_{\mathrm{OL}}=0$	Inputs at 4.5 or 10.5 V
IN	Input Current	XC			1.0	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead under test at 0 or 15 V	
		XM			1.0			All other	uts Simultaneously at 0
${ }^{1} \mathrm{OH}$	Output HIGH Current		$\begin{aligned} & -2.2 \\ & -1.4 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 14.5 \mathrm{~V} \end{aligned}$	Inputs at 0 or 15 V per
IOL	Output LOW Current		$\begin{aligned} & 3.6 \\ & 2.0 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \\ & 0.5 \mathrm{~V} \end{aligned}$	Truth Table

TYPICAL F4000 SERIES CHARACTERISTICS

Fig. 3-1
POSITIVE-GOING PROPAGATION DELAY VERSUS SUPPLY VOLTAGE

Fig. 3-2
NEGATIVE-GOING PROPAGATION DELAY VERSUS SUPPLY VOLTAGE

Fig. 3-3
POSITIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 3-4
NEGATIVE-GOING PROPAGATION DELAY VERSUS LOAD CAPACITANCE

Fig. 3-7
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE @ VDD $=5.0 \mathrm{~V}$

Fig. 3-10
p-CHANNEL DRAIN CHARACTERISTICS

VDS - DRAIN TO SOURCE VOLTAGE - v

Fig. 3-5
VOLTAGE TRANSFER ChARACTERISTICS OVER
$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ RANGE

Fig. 3-8
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE @ VDD $=\mathbf{1 0} \mathrm{V}$

Fig. 3-11
n-CHANNEL DRAIN CHARACTERISTICS

Fig. 3-6
GATE POWER DISSIPATION VERSUS FREQUENCY

Fig. 3-9
PROPAGATION DELAY VERSUS AMBIENT TEMPERATURE @ VDD $=15 \mathrm{~V}$

Fig. 3-12
OUTPUT TRANSITION TIME \because VERSUS LOAD CAPACITANCE

Fig. 3-13
INPUT PROTECTION CIRCUIT

INPUT CIRCUITRY
All inputs are protected by the network of Figure 3-13; a series input resistor plus diodes D1 and D2 clamp input voltages between V_{SS} and V_{DD}. Forward conduction of these diodes is typically 0.9 V at 1 mA . When V_{SS} or V_{DD} is not connected, avalanche breakdown of the diodes limit input voltage; D1 typically breaks down at 20 V , D2 at 20 V . In normal logic operation the diodes never conduct, but for certain special applications such as oscillators, circuit operation may actually depend on diode conduction. Operation in this mode is permissible so long as input currents do not exceed 10 mA .
Input capacitance is typically 5 pF across temperature for any input.

DEFINITION OF SYMBOLS AND TERMS USED IN DATA SHEETS

CURRENTS - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device.
$I_{I N}$ - (Input Current) - The current flowing into a device at specified input voltage and $V_{D D}$.
${ }^{\prime} \mathrm{OH}$ - (Output HIGH Current) - The drive current flowing out of the device at specified HIGH output voltage and $V_{\text {DD }}$.
I_{OL} - (Output LOW Current) - The drive current flowing into the device at specified LOW output voltage and V_{DD}.
IDD - (Quiescent Power Supply Current) - The current flowing into the V_{DD} lead at specified input and V_{DD} conditions.
IOZH^{-}(Output OFF Current HIGH) - The leakage current flowing into the output of a 3-state device in the "OFF" state at a specified HIGH output voltage and $\mathrm{V}_{\text {DD }}$.
${ }^{\prime} \mathrm{OZL}$ - (Output OFF Current LOW) - The leakage current flowing out of a 3 -state device in the "OFF" state at a specified HIGH output voltage and $V_{\text {DD }}$.
IL - (Input Current LOW) - The current flowing into a device at a specified LOW level input voltage and a specified VD.
$I_{I H}$ - (Input Current HIGH) - The current flowing into a device at a specified HIGH level input voltage and a specified $V_{D D}$.
IDDL - (Quiescent Power Supply Current LOW) - The current flowing into the $V_{D D}$ lead with a specified LOW level input voltage on all inputs and specified V_{DD} conditions.

IDDH - (Quiescent Power Supply Current HIGH) - The current flowing into the V_{DD} lead with a specified HIGH level input voltage on all inputs and specified $V_{D D}$ conditions.
I_{Z} - (OFF State Leakage Current) - The leakage current flowing into the output of a 3-state device in the "OFF" state at a specified output voltage and $V_{D D}$.

VOLTAGES - All voltages are referenced to V_{SS} (or V_{EE}) which is the most negative potential applied to the device.
V_{DD} - (Drain Voltage) - The most positive potential on the device.
V_{IH} - (Input HIGH Voltage) - The range of input voltages that represents a logic HIGH level in the system.
V_{IL} - (Input LOW Voltage) - The range of input voltages that represents a logic LOW level in the system.
$\mathrm{V}_{I H}(\mathrm{~min})$ - (Minimum Input HIGH Voltage) - The minimum allowed input HIGH tevel in a logic system.
V_{IL} (max) - (Maximum Input LOW Voltage) - The maximum allowed input LOW level in a system.
V_{OH} - (Output HIGH Voltage) - The range of voltages at an output terminal with specified output loading and supply voltage. Device inputs are conditioned to establish a HIGH level at the output.
V_{OL} - (Output LOW Voltage) - The range of voltages at an output terminal with specified output loading and supply voltage. Device inputs are conditioned to establish a LOW level at the output.
V_{SS} - (Source Voltage) - For a device with a single negative power supply, the most negative power supply, used as the reference level for other voltages. Typically ground.
V_{EE} - (Source Voltage) - One of two $\left(\mathrm{V}_{\mathrm{SS}}\right.$ and $\left.\mathrm{V}_{\mathrm{EE}}\right)$ negative power supplies. For a device with dual negative power supplies, the most negative power supply used as a reference level for other voltages.

ANALOG TERMS

R_{ON} - (ON Resistance) - The effective "ON" state resistance of an analog transmission gate, at specified input voltage, output load and V_{DD}.
$\Delta R_{\text {ON }}$ - (" Δ " ON Resistance) - The difference in effective "ON" resistance between any two transmission gates of an analog device at specified input voltage, output load and $V_{D D}$.

AC SWITCHING PARAMETERS

$f_{M A X}$ - (Toggle Frequency/Operating Frequency) - The maximum rate at which clock pulses may be applied to a sequential circuit with the output of the circuit changing between 30% of $V_{D D}$ and 70% of $V_{D D}$. Above this frequency the device may cease to function. See Figure 3-15.
${ }^{\text {tPLH }}$ - (Propagation Delay Time) - The time between the specified reference points, normally 50% points on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level. See Figure 3-14.
${ }^{\text {t PHL }}$ - (Propagation Delay Time) - The time between the specified reference points, normally 50\% points on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level. See Figure 3-14.
${ }^{\text {t }}$ LLH - (Transition Time, LOW to HIGH) - The time between two specified reference points on a waveform, normally 10\% to 90% of V_{DD}, which is changing from LOW to HIGH. See Figure 3-14.
${ }^{\mathrm{T}}$ THL - (Transition Time, HIGH to LOW) - The time between two specified reference points on a waveform, normally 90% to 10% of $V_{D D}$, which is changing from HIGH to LOW. See Figure 3-14.
t_{w} - (Pulse Width) - The time between 50% amplitude points on the leading and trailing edges of pulse.
t_{h} - (Hold Time) - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized.
t_{s} - (Set-up Time) - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative set-up time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.
${ }^{\text {tpHZ }}$ - (3-State Output Disable Time, HIGH to Z) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing a $0.1 \mathrm{~V}_{\mathrm{DD}}$ drop on the Output voltage waveform of a 3 -state device, with the output changing from the defined HIGH level to a high impedance OFF state.
${ }^{\text {t PLZ }}$ - (3-State Output Disable Time, LOW to Z) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing a $0.1 \mathrm{~V}_{\mathrm{DD}}$ rise on the Output voltage waveform of a 3 -state device, with, the output changing from the defined LOW level to a high impedance OFF state.
$t_{\text {PZH }}$ - (3-State Output Enable Time, Z to HIGH) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing $0.5 \mathrm{~V}_{\mathrm{DD}}$ on the Output voltage waveform of a 3 -state device, with the output changing from a high impedance OFF state to the defined HIGH level.
${ }^{\text {t PZL }}$ - (3-State Output Enable Time, Z to LOW) - The time between the specified reference points, normally the 50\% point on the Output Enable input voltage waveform and a point representing $0.5 \mathrm{~V}_{\mathrm{DD}}$ on the Output voltage waveform of a 3 -state device, with the output changing from a high impedance OFF state to the defined LOW level.
$t_{\text {rec }}$ - (Recovery Time) - The time between the end of an overriding asynchronous input, typically a Clear or Reset input, and the earliest allowable beginning of a synchronous control input, typically a Clock input, normally measured at 50\% points on both input voltage waveforms.
${ }^{\mathbf{t}} \mathrm{CW}$ (Clock Period) - The time between 50% amplitude points on the leading edges of a clock pulse.

Fig. 3-14. Propagation Delay, Transition Time

Fig. 3-15. Maximum Operating Frequency

F4001 QUAD 2-INPUT NOR GATE • F4002 DUAL 4-INPUT NOR GATE

DESCRIPTION - These CMOS logic elements provide the positive input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

F4001
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

F4002
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS See Note 1
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, F4001 only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONSSee Note 2
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t PHL }}$	Propagation Delay		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	75 75		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{1}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	75 75		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH}}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {t }}$ TLH ${ }^{\text {t }}{ }^{\text {THL }}$	Output Transition Time		60	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 30	70 70		20 20	45	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F} 4002$ only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONSSee Note 2
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t PHL }}$	Propagation Delay		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		30 25	75 75		15 10	40 40		$\begin{array}{r}11 \\ 7 \\ \hline\end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$t_{\text {PLH }}$ ${ }^{{ }^{\mathrm{t} P H L}}$	Propagation Delay		$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{t} \text { LH }$ ${ }^{{ }^{\mathrm{T}} \mathrm{HL}}$	Output Transition Time		75 60	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		40 23	70 70		30 15	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

F4001
PROPAGATION DELAY VERSUS TEMPERATURE

F4001
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

F4002
PROPAGATION DELAY VERSUS TEMPERATURE

F4002
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

F4006/34006 18-STAGE STATIC SHIFT REGISTER

DESCRIPTION - The F4006 is an 18 -stage Shift Register arranged as two 4 -stage and two 5 -stage shift regsiters with a common Clock Input ($\overline{C P}$). The two 4 -stage shift registers, each have a Data Input ($\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$) and a Data Output ($\mathrm{Q}_{3 \mathrm{a}}, \mathrm{Q}_{3 \mathrm{~b}}$); the two 5 -stage shift registers each have a Data Input ($\mathrm{D}_{\mathrm{c}}, \mathrm{D}_{\mathrm{d}}$) and Data Outputs from the fourth and fifth stages $\left(\mathrm{O}_{3 \mathrm{c}}, \mathrm{O}_{4 \mathrm{c}}, \mathrm{O}_{3 \mathrm{~d}}, \mathrm{O}_{4 \mathrm{~d}}\right)$.
The registers can be operated in parallel or interconnected to form a single shift register of up to 18 bits. Data is shifted into the first register position of each register from the Data Inputs ($\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$) and all the data in each register is shifted one position to the right on the HIGH-to-LOW transition of the Clock Input (CP).

- CLOCK EDGE-TRIGGERED ON A HIGH-TO-LOW

TRANSITION

- CASCADABLE
- SERIAL-TO-SERIAL DATA TRANSFER

PIN NAMES

$\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$	Data Inputs
CP	Clock Input (H L Edge-Triggered)
$\mathrm{O}_{\mathbf{3 a}}-\mathrm{O}_{\mathbf{3 d}}, \mathrm{O}_{4 c}, \mathrm{O}_{4 \mathrm{~d}}$	Data Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70			140		28			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60		12			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L H} \\ & { }_{\mathrm{t} P \mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{C P}$ to any Q_{n}		$\begin{aligned} & 125 \\ & 125 \\ & \hline \end{aligned}$			60			40 40		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{gathered} { }^{\mathrm{t} \mathrm{TLH}} \\ { }^{\mathrm{t}} \mathrm{THL} \\ \hline \end{gathered}$	Output Transition Time		30 30			20 20			$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & { }^{\text {t}} \mathrm{PHL} \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}}$ to any Q_{n}		$\begin{aligned} & 140 \\ & 140 \end{aligned}$			70 70			50 50		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			20 20		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}$	$\overline{\mathrm{CP}}$ Minimum Pulse Width		50			30			20		ns	
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time D_{n} to $\overline{C P}$ Hold Time D_{n} to $\overline{C P}$		$\begin{array}{r} -30 \\ 50 \end{array}$			-15 25			-10 15		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Max. Input Clock Frequency (Note 4)		5			10					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics,
3. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{P H L}$) and Output Transition Times ($\mathrm{T}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}) Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $\mathrm{f}_{\mathrm{MAX}}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, D_{n} TO $\overline{\mathbf{C P}}$

F4007/34007
 DUAL COMPLEMENTARY PAIR PLUS INVERTER

DESCRIPTION - The F4007 is a Dual Complementary Pair and an Inverter with access to each device. It has three n-channel and three p-channel enhancement mode MOS transistors. For proper operation $\mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\mathrm{D}}$.

- INPUT DIODE PROTECTION ON ALL INPUTS

- DRAINS AND SOURCES TO N- AND P-CHANNEL TRANSISTORS AVAILABLE

PIN NAMES

Sp2, Sp3
DP1, DP2
DN1, DN2
SN2, SN3
DN/P3
Source Connection to Second and Third p-channel Transistors Drain Connection from the First and Second p-channel Transistors Drain Connection from the First and Second n-channel Transistors Source Connection to the Second and Third n-channel Transistors Common Connection to the Third p-channel and n-channel Transistor Drains
$\mathrm{G}_{1}-\mathrm{G}_{3} \quad$ Gate Connection to n - and p-channel Transistors 1,2 and 3

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package,

LOGIC SYMBOL

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}^{2} \end{aligned}$	Propagation Delay		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 18 \\ & 18 \end{aligned}$		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{TLH}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 30	70 70		25	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTE:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000Series CMOS Family Characteristics.

F4008/34008 4-BIT BINARY FULL ADDER

DESCRIPTION - The F4008 is a 4-Bit Binary Full Adder with two 4-bit Data Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}$); a Carry Input (C_{0}), four Sum Outputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and a Carry Output (C_{4}).

The F4008 uses full lookahead across 4-bits to generate the Carry Output (C_{4}). This minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

- CARRY LOOKAHEAD BUFFERED OUTPUT
- EASILY CASCADED

PIN NAMES

$A_{0}-A_{3}, B_{0}-B_{3}$	Data Inputs
C_{0}	Carry Input
$S_{0}-S_{3}$	Sum Outputs
C_{4}	Carry Output

FAIRCHILD CMOS • F4008/34008

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC			50			100		20			MIN, $25^{\circ} \mathrm{C}$	
D	Power	XC			700			1400		280		$\mu \mathrm{A}$	MAX	All inputs common
D	Supply	XM			5			10		2.0		μ	MIN, $25^{\circ} \mathrm{C}$	and at 0 V or V_{DD}
	Current	XM			300			600		120		$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L H}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, A_{n}, B_{n} to S_{n}		$\begin{aligned} & 210 \\ & 210 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 62 \\ & 62 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, A_{n}, B_{n} to C_{4}		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			57 57			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\text {t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, C_{o} to S_{n}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 62 \\ & 62 \end{aligned}$			$\begin{aligned} & 47 \\ & 47 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {PPLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, C_{o} to C_{4}		57 57			$\begin{array}{r} 25 \\ 25 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 17 \\ & 17 \\ & \hline \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PH} H} \end{aligned}$	Propagation Delay, A_{n}, B_{n} to S_{n}		$\begin{array}{\|l} 230 \\ 230 \\ \hline \end{array}$			94 94			69 69		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to C_{4}		$\begin{aligned} & 138 \\ & 138 \end{aligned}$			$\begin{aligned} & 63 \\ & 63 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pH}} \end{aligned}$	Propagation Delay, C_{o} to S_{n}		$\begin{aligned} & 178 \\ & 178 \end{aligned}$			$\begin{aligned} & 69 \\ & 69 \end{aligned}$			$\begin{aligned} & 52 \\ & 52 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, C_{O} to C_{4}		$\begin{aligned} & 63 \\ & 63 \end{aligned}$			$\begin{aligned} & 28 \\ & 28 \end{aligned}$			$\begin{aligned} & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{TLH}} \\ & { }_{\mathrm{THL}} \end{aligned}$	Output Transition Time		60			30 30			20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4011 QUAD 2-INPUT NAND GATE • F4012 DUAL 4-INPUT NAND GATE

DESCRIPTION - These CMOS logic elements provide the positive input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

F4011
LOGIC AND CONNECTION DIAGRAM
DIP (TOP VIEW)

F4012
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS (See Note 1)
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F} 4011$ only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS (See Note 2)
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\text {PPLH }} \\ & t^{\mathrm{t}} \end{aligned}$	Propagation Delay		40 40	75 75		20 20	40 40		15 15		ns ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\text {tTLH }} \\ & { }^{\text {tTHL }} \end{aligned}$	Output Transition Time		25	75 75		10 10	40 40		8 8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay		60	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		25	60 60		20 20		ns ns	$C_{L}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		60 60	135 135		30 30	70 70		20 20	45 45	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, F4012 only

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS (See Note 2)
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay		54	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		24 23	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 18 \\ & 15 \end{aligned}$		ns ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		22 31	75 75		16 12	40 40		11 8	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ PLH ${ }^{\text {tpHL }}$	Propagation Delay		73 85	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		33 31	60		$\begin{aligned} & 24 \\ & 20 \end{aligned}$		ns ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		76 67	135 135		37 25	70 70		27	45 45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $F 4000$ Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

F4011
PROPAGATION DELAY VERSUS TEMPERATURE

F4011
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

F4012
PROPAGATION DELAY VERSUS TEMPERATURE

F4012
PROPAGATION DELAY VERSUS LOAD CAPACITANCE

F4013/34013 DUAL D FLIP-FLOP

DESCRIPTION - The F4013 is a CMOS Dual D Flip-Flop which is edge-triggered and features independent Set Direct, Clear Direct, and Clock inputs. Data is accepted when the Clock is LOW and transferred to the output on the positive-going edge of the Clock. The active HIGH asynchronous Clear Direct (C_{D}) and Set Direct (S_{D}) are independent and override the D or Clock inputs. The outputs are buffered for best system performance.

PIN NAMES

D	Data Input
$C P$	Clock Input (L \rightarrow H Edge-Triggered)
S_{D}	Asynchronous Set Direct Input (Active HIGH)
C_{D}	Asynchronous Clear Direct Input (Active HIGH)
\bar{Q}	True Output
\bar{Q}	Complement Output

F4013 TRUTH TABLES

ASYNCHRONOUS INPUTS		OUTPUTS	
S_{D}	C_{D}	Q	$\overline{\mathrm{Q}}$
L	H	L	H
H	L	H	L
H	H	L	L

[^7]$\mathrm{Q}_{\mathrm{n}+1}=$ State After Clock Positive Transition

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ (See Note 4)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, S_{D} or C_{D} to \bar{Q}		$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 171 \\ & 110 \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 72 \\ & 55 \end{aligned}$		$\begin{aligned} & 30 \\ & 20 \end{aligned}$		ns ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathbf{t}_{\mathrm{t} L \mathrm{H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, S_{D} or C_{D} to Q		$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }_{t_{\mathrm{TLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}$ PLH ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, CP to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 72 \\ & 72 \end{aligned}$		$\begin{aligned} & 29 \\ & 29 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\overline{t^{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, S_{D} or C_{D} to \bar{Q}		$\begin{array}{\|r\|} \hline 130 \\ 75 \end{array}$	$\begin{aligned} & 220 \\ & 135 \end{aligned}$		$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 90 \\ & 65 \end{aligned}$		$\begin{aligned} & 32 \\ & 20 \end{aligned}$		ns ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\begin{aligned} & { }^{\mathbf{t}_{\text {PLH }}} \\ & { }^{\mathbf{t}_{\text {PHL }}} \\ & \hline \end{aligned}$	Propagation Delay, S_{D} or C_{D} to Q		$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tTLH }}$ ${ }^{\text {tTHL }}$	Output Transition Time		$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}} \\ & \mathbf{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Data to CP Hold Time, Data to CP	$\begin{array}{r} 80 \\ 0 \end{array}$	$\begin{array}{r} 30 \\ -25 \end{array}$		$\begin{array}{r} 40 \\ 0 \end{array}$	$\begin{array}{r} 15 \\ -12 \end{array}$			$\begin{array}{r} 8 \\ -6 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {t }}{ }^{\text {CP(L) }}$	Minimum Clock Pulse Width	100	55		55	30			18		ns	
${ }^{t_{w} S_{D}(H)}$	Minimum S_{D} Pulse Width	60	30		30	15			10		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{w} C_{D}(H)}$	Minimum C_{D} Pulse Width	60	30		30	15			10		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {trec }}{ }^{\text {S }}$ D	Recovery Time for S_{D}	-20	-9		-10	-4			-2		ns	
${ }^{\text {rec }} \mathrm{C}_{\mathrm{D}}$	Recovery Time for C_{D}	0	11		0	6			6		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 3)	5	8		8	16					MHz	

notes:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{LLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $f_{\text {MAX }}$ input rise and fall times are greater than or equal to $\mathbf{5} \mathbf{~ n s ~ a n d ~ l e s s ~ t h a n ~ o r ~ e q u a l ~ t o ~} \mathbf{2 0} \mathbf{n s}$.
4. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics. 5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

WAVEFORMS

SET-UP TIMES, HOLD TIMES, AND MINIMUM CLOCK PULSE WIDTH

RECOVERY TIME FOR S_{D}, RECOVERY TIME FOR C_{D}, MINIMUM SD PULSE WIDTH, AND MINIMUM CD PULSE WIDTH

NOTE: Set-up Times and Hold Times are shown as positive values but may be specified as negative values.

F4014/34014
 8 -BIT SHIFT REGISTER

DESCRIPTION - The F4014 is a fully synchronous edge-triggered 8-Bit Shift Register with eight synchronous Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$), a synchronous Serial Data Input (D_{S}), a synchronous Parallel Enable Input (PE), a LOW-to-HIGH edge-triggered Clock Input (CP) and Buffered Parallel Outputs from the last three stages ($\mathrm{O}_{5}-\mathrm{O}_{7}$).
Operation is synchronous and the device is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is HIGH, data is loaded into the register from the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is LOW, data is shifted into the first register position from the Serial Data Input (DS) and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP).

- TYPICAL SHIFT FREQUENCY OF $14.7 \mathbf{M H z} A T V_{D D}=10 \mathrm{~V}$
- PARALLEL OR SERIAL TO SERIAL DATA TRANSFER
- AVAILABLE OUTPUTS FROM THE LAST THREE STAGES
- FULLY SYNCHRONOUS

PIN NAMES

PE	Parallel Enable Input
$\mathrm{P}_{0}-\mathrm{P}_{7}$	Parallel Data Inputs
DS_{S}	Serial Data Input
CP	Clock Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
$\mathrm{O}_{5}, \mathrm{O}_{6}, \mathrm{Q}_{7}$	Buffered Parallel Outputs from the Last Three Stages

LOGIC DIAGRAM

$V_{S S}=P$ in 8
$\bigcirc=P$ in Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM						10				$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

AC CHARACTERISTICS AÑ SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to any 0		$\begin{aligned} & 109 \\ & 139 \end{aligned}$			$\begin{aligned} & 47 \\ & 57 \end{aligned}$			$\begin{aligned} & 33 \\ & 38 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \hline{ }^{\mathrm{t}_{\mathrm{THL}}} \\ & { }^{\text {THL }} \end{aligned}$	Output Transition Time		$\begin{aligned} & 33 \\ & 37 \end{aligned}$			$\begin{aligned} & 19 \\ & 19 \end{aligned}$			$\begin{aligned} & 13 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CP to any 0		$\begin{aligned} & 129 \\ & 165 \end{aligned}$			$\begin{aligned} & 57 \\ & 68 \end{aligned}$			$\begin{aligned} & \hline 41 \\ & 47 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\begin{aligned} & { }^{\mathbf{t} \mathrm{TLH}} \\ & { }^{\mathbf{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 70 \\ & 77 \end{aligned}$			37 34			21 21		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}{ }^{\text {c }}$ CP	CP Minimum Pulse Width		93			33			22		ns	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}} \\ & \mathbf{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time PE to CP Hold Time PE to CP		$\begin{aligned} & 118 \\ & 117 \end{aligned}$			$\begin{aligned} & 44 \\ & 43 \end{aligned}$			29		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time D_{S} to CP Hold Time D_{S} to CP		$\begin{aligned} & 80 \\ & 77 \\ & \hline \end{aligned}$			$\begin{aligned} & 28 \\ & 27 \end{aligned}$			$\begin{aligned} & 17 \\ & 16 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & t_{\mathbf{s}} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time P_{n} to $C P$ Hold Time P_{n} to CP		$\begin{aligned} & \hline 108 \\ & 107 \end{aligned}$			$\begin{aligned} & 37 \\ & 36 \end{aligned}$			$\begin{aligned} & 23 \\ & 22 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {f MAX }}$	Max. Input Clock Frequency (Note 4)		5.8			14.7					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics. 3. Propagation Delays ($T_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For ${ }^{\text {f MAX }}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to $\mathbf{2 0} \mathbf{~ n s}$.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, PE TO CP, DS TO CP, AND P_{n} TO CP
NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

F4015/34015 DUAL 4-BIT STATIC SHIFT REGISTER

DESCRIPTION - The F4015 is a Dual Edge-Triggered 4-Bit Static Shift Register (Serial-to-Parallel Converter). Each Shift Register has a Serial Data Input (D), a Clock Input (CP), four fully buffered parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ and an overriding asynchronous Master Reset Input (MR).
Information present on the serial Data Input (D) is shifted into the first register position, and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP).
A HIGH on the Master Reset Input (MR) clears the register and forces the Outputs ($\mathrm{O}_{\mathrm{O}}-\mathrm{O}_{3}$) LOW, independent of the Clock and Data Inputs (CP and D).

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- SERIAL-TO-PARALLEL DATA TRANSFER
- FULLY buffered outputs from each stage

PIN NAMES

$\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$
$M R_{A}, M_{B}$
${ }^{C P} A, P_{B}$
$\mathrm{a}_{0 A}, \mathrm{o}_{1 A}, \mathrm{o}_{2 A}, \mathrm{a}_{3 A}$
$\mathrm{a}_{0 \mathrm{~B}}, \mathrm{a}_{1 \mathrm{~B}}, \mathrm{a}_{2 \mathrm{~B}}, \mathrm{Q}_{3 \mathrm{~B}}$

Serial Data Input
Master Reset Input (Active HIGH)
Clock Input ($L \rightarrow H$ Edge-Triggered)
Parallel Outputs
Parallel Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent				10			20		4			MIN, $25^{\circ} \mathrm{C}$	All inputs common
	Power	Xc			100			200		40			MAX	and at 0 V or V_{DD}
DD	Supply				1			2		0.4			MIN, $25^{\circ} \mathrm{C}$	
	Current	XM			30			60		12		$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to Q		$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, MR to Q		150	300		85	150		60		ns	Input Transition
$\begin{aligned} & { }^{{ }^{t^{T} L H}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, CP to 0		$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	$C_{L}=50 \mathrm{pF}$
${ }^{\text {t }}$ PHL	Propagation Delay, MR to Q		180	325		90	160		60		ns	Input Transition
$\begin{aligned} & { }_{t_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D to CP Hold Time, D to CP	$\begin{array}{\|r\|} \hline 150 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & -5 \end{aligned}$		50	$\begin{array}{r} 30 \\ -20 \end{array}$			$\begin{array}{r} 25 \\ -10 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {w }} \mathrm{CP}$ (L)	Minimum Clock Pulse Width	120	60		70	35			25		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t} w^{\text {MR(H) }}$	Minimum MR Pulse Width	75	40		45	25			20		ns	Input Transition
${ }^{\text {trec }}$	MR Recovery Time	300	160		120	60			45		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 4)	4	8		7	14					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns.
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

SET-UP TIMES, HOLD TIMES AND MINIMUM CLOCK PUESE WIDTH NOTE:
t_{s} and t_{h} are shown as positive values but may be specified as negative values.

RECOVERY TIME FOR MR AND MINIMUM MR PULSE WIDTH

F4016/34016
 QUAD BILATERAL SWITCHES

DESCRIPTION - The F4016 has four independent bilateral analog switches (transmission gates). Each switch has two Input/Output Terminals (Y_{n}, Z_{n}) and an active HIGH Enable Input (E_{n}). A HIGH on the Enable Input establishes a low impedance bidirectional path between Y_{n} and Z_{n} (ON condition). A LOW on the Enable Input disables the switch and establishes a high impedance between Y_{n} and Z_{n} (OFF condition).

- DIGITAL OR ANALOG SIGNAL SWITCHING

- INDIVIDUAL ENABLE INPUTS (ACTIVE HIGH)

PIN NAMES

$E_{0}-E_{3}$	Enable Inputs
$Y_{0}-Y_{3}$	Input/Output Terminals
$Z_{0}-Z_{3}$	Input/Output Terminals

LOGIC DIAGRAM(1/4 OF A F4016)

FAIRCHILD CMOS • F4016/34016

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & { }_{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		4 3			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			1		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) } \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{PZL}}} \\ & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 26 \\ & 26 \end{aligned}$			$\begin{aligned} & 14 \\ & 14 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & E_{n}=V_{D D} \text { (square wave) } \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF} \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{PLZ}}} \\ & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 170 \\ & 170 \end{aligned}$			$\begin{aligned} & 182 \\ & 182 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { Input Trans } \\ & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		$\begin{aligned} & 8 \\ & 8 \end{aligned}$			3 4			$\begin{array}{r} 2 \\ 2.5 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) } \\ & \hline \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P}} \mathrm{PZL}} \\ & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 32 \\ & 32 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$R_{L}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLZ}} \\ & { }^{\mathrm{t} \mathrm{FHZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 5_{n}=v_{D D} \\ & v_{i s}=v_{D D} \end{aligned}$
	Distortion, Sine Wave Response		0.31			0.31			0.31		\%	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF} \\ & \text { Input Frequency }=1 \mathrm{kHz} \\ & E_{\mathrm{n}}=V_{D D} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \end{aligned}$
	Crosstalk Between Any Two Switches					0.9					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & E_{A}=V_{D D^{\prime}} E_{B}=v_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { sine wave } \\ & \text { at }-50 \mathrm{~dB}, 20 \log _{10} \\ & {\left[V_{\text {os }}(B) / v_{\text {is }}(A)\right]=-50 \mathrm{~dB}} \end{aligned}$
	Crosstalk, Enable Input to Output					50					mV	$R_{L(O U T)}=10 \mathrm{k} \Omega, R_{L(I N)}=1 \mathrm{k} \Omega$ Input Transition Times $\leqslant 20 \mathrm{~ns}$ $E_{n}=V_{D D}$ (square wave)
	OFF State Feedthrough					1.25					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & E_{n}=V_{S S} \\ & V_{i s}=V_{D D} / 2 \text { sine wave } \\ & 20 \log _{10}\left(V_{o s} / V_{\text {is }}\right)=-50 \mathrm{~dB} \end{aligned}$
	ON State Frequency Response					90					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & V_{\text {is }}=V_{D D^{\prime}} / 2 \text { sine wave } \\ & E_{n}=V_{D D^{\prime}} \\ & 20 \log _{10}\left(V_{o s} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$
${ }^{\text {f MAX }}$	Enable Input Frequency (Note 4)					10					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \\ & V_{\text {is }}=V_{D D} \end{aligned}$

NOTES:

1. Additional DC Characteristics for the Enable Inputs are listed in this section under F 4000 Series CMOS Family Characteristics.
2. $V_{\text {is }} / V_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(Y_{n} / Z_{n}\right)$.
3. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .

F4017/34017
 5-STAGE JOHNSON COUNTER

DESCRIPTION - The F4017 is a 5-Stage Johnson Decade Counter with ten glitch free decoded active HIGH Outputs ($\mathrm{O}_{0}-\mathrm{O}_{9}$), an active LOW Output from the most significant flip-flop (O_{5-9}), active HIGH and active LOW Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}} \mathrm{P}_{1}$) and an overriding asynchronous Master Reset Input (MR).
The counter is advanced by either a LOW-to-HIGH transition at CP_{0} while $\overline{\mathrm{CP}_{1}}$ is LOW or a HIGH-to-LOW transition at CP_{1} while CP_{0} is HIGH (see Functional Truth Table). When cascading F4017 counters, the Q_{5-9} output, which is LOW while the counter is in states 5, 6, 7, 8 and 9 , can be used to drive the CP_{0} input of the next F4017.
A HIGH on the Master Reset Input (MR) resets the counter to zero ($\mathrm{O}_{0}=\overline{\mathrm{O}_{5-9}}=\mathrm{HIGH}, \mathrm{O}_{1}-\mathrm{O}_{9}=$ LOW) independent of the Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}_{1}}$).

- TYPICAL COUNT FREQUENCY OF $\mathbf{1 3 . 8} \mathbf{~ M H z ~ A T ~} \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ACTIVE HIGH DECODED OUTPUTS
- triggers on either a high-to-low or low-to-high transition
- CASCADABLE

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$O=$ Pin Number
$H=H I G H$ Level
L = LOW Level
$\mathrm{L} \rightarrow \mathrm{H}=\mathrm{LOW}$-to-HIGH Transition $\mathrm{H} \rightarrow \mathrm{L}=$ HIGH-to-LOW Transition X = Don't Care

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to O_{n}		$\begin{aligned} & 262 \\ & 197 \end{aligned}$	$\begin{aligned} & 650 \\ & 500 \end{aligned}$		$\begin{array}{r} 104 \\ 86 \end{array}$	$\begin{aligned} & 260 \\ & 215 \end{aligned}$		76 61		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to $\overline{\mathrm{O}_{5-9}}$		$\begin{aligned} & 189 \\ & 240 \end{aligned}$	$\begin{aligned} & 475 \\ & 600 \end{aligned}$		$\begin{aligned} & \hline 80 \\ & 96 \end{aligned}$	$\begin{aligned} & 200 \\ & 225 \end{aligned}$		$\begin{aligned} & 57 \\ & 67 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}$ PHL	Propagation Delay, MR to O_{n}		151	380		62	150		45		ns	Input Transition
${ }^{\text {teLH }}$	Propagation Delay, MR to $\overline{\mathrm{O}_{5-9}}$		102	250		42	105		34		ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 32 \\ & 27 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{t} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP_{0} or CP_{1} to O_{n}		$\begin{aligned} & 278 \\ & 226 \end{aligned}$	$\begin{aligned} & 700 \\ & 550 \end{aligned}$		$\begin{array}{\|r\|} \hline 114 \\ 94 \end{array}$	$\begin{aligned} & 285 \\ & 240 \end{aligned}$		$\begin{aligned} & 82 \\ & 67 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}}_{1}$ to $\overline{\mathrm{O}_{5-9}}$		$\begin{aligned} & 205 \\ & 261 \end{aligned}$	$\begin{aligned} & 525 \\ & 650 \end{aligned}$		$\begin{array}{r} 87 \\ 105 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 250 \end{aligned}$		$\begin{aligned} & 63 \\ & 73 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {teht }}$	Propagation Delay, MR to O_{n}		170	430		80	175		52		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ PLH	Propagation Delay, MR to $\overline{\mathrm{O}_{5-9}}$		125	300		65	130		40		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & { }^{\mathrm{t} T \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & \hline 59 \\ & 63 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 23 \\ & 19 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{t_{w} \mathrm{CP}}$	Min. CP_{0} or $\overline{\mathrm{CP}}_{1}$ Pulse Width	200	85		70	37			28		ns	
${ }_{\text {t }}{ }^{\text {mR }}$	Minimum MR Pulse Width	130	52		55	22			18		ns	
$\mathrm{t}_{\text {rec }}$	MR Recovery Time	50	16		25	6			3		ns	$C_{L}=15 \mathrm{pF}$
t_{h}	Hold Time, CP_{0} to $\overline{\mathrm{CP}}_{1}$	200	90		90	39			26		ns	
t_{h}	Hold Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}	200	89		90	39			22		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 4)	2.5	5.8		7	13.8					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under $\mathbf{F} 4000$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F 4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to either Clock Input (CO_{0} or $\overline{\mathrm{CP}}_{1}$) be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

Hold Times are shown as positive values, but may be specified as negative values.

MINIMUM PULSE WIDTHS FOR CP AND MR AND RECOVERY TIME FOR MR

CONDITIONS: $\overline{\mathrm{CP}_{1}}=$ LOW while CP_{0} is triggered on a LOW-to-HIGH transition. $\mathrm{t}_{\mathrm{w}} \mathrm{CP}$ and $\mathrm{t}_{\text {rec }}$ also apply when $\mathrm{CP} P_{0}=\mathrm{HIGH}$ and $\overline{\mathrm{CP}} \mathrm{P}_{1}$ is triggered on a HIGH-to-LOW transition.

F4018/34018
 PRESETTABLE DIVIDE-BY-N COUNTER

DESCRIPTION - The F4018 is a 5 -Stage Johnson Counter with a Clock Input (CP), a Data Input (D), an asynchronous Parallel Load Input (PL), five Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{4}$), five active LOW buffered Outputs ($\mathrm{O}_{0}-\mathrm{O}_{4}$) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{4}$) is asynchronously loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of the Clock (CP) and Data (D) Inputs. Data present in the counter is stored on the HIGH-to-LOW transition of the Parallel Load Input (PL). When the Parallel Load Input is LOW, the counter advances on the LOW-to-HIGH transition of the Clock lmput (CP). By connecting the Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{4}\right)$ to the Data Input (D), the counter operates as a divide-by-n counter ($2 \leqslant n \leqslant 10$); see below.
A HIGH on the Master Reset Input (MR) resets the counter $\left(\bar{Q}_{0}-\bar{Q}_{4}=\right.$ HIGHI thdependent of all other inputs.

- ASYNCHRONOUS MASTER RESET INPUT (ACTIVEHIGH)
- ACTIVE LOW FULLY BUFFERED DECODED OUTPUTS
- DIVIDE-BY-N WITH $2 \leqslant N \leqslant 10$
- CLOCK INPUT L \rightarrow H EDGE-TRIGGERED
- ASYNCHRONOUS PARALLEL LOAD INPUT (ACTIVE HIGH)

PIN NAMES

PL	Parallel Load Input
$\mathrm{P}_{0}-\mathrm{P}_{4}$	Parallel Inputs
D	Data Input
CP	Clock Input (L \rightarrow H Edge-Triggered)
MR	Master Reset Input
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{4}$	Buffered Outputs (Active LOW)

DIVIDE-BY-N MODE
SELECTION

DIVIDE BY	D INPUT
2	$\overline{\mathrm{a}}_{0}$
3	$\overline{\mathrm{a}}_{0} \cdot \overline{\mathrm{Q}}_{1}$
4	$\overline{\mathrm{a}}_{1}$
5	$\overline{\mathrm{Q}}_{1} \cdot \overline{\mathrm{Q}}_{2}$
6	$\overline{\mathrm{o}}_{2}$
7	$\overline{\mathrm{a}}_{2} \cdot \overline{\mathrm{Q}}_{3}$
8	$\overline{\mathrm{Q}}_{3}$
9	$\overline{\mathrm{a}}_{3} \cdot \overline{\mathrm{Q}}_{4}$
10	$\overline{\mathrm{o}}_{4}$

F4019/34019
 QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The F4019 provides four multiplexing circuits with common selection inputs; each circuit contains two inputs and one output. It may be used to select four bits of information from one of two sources. The A inputs are selected when S_{A} is HIGH, the B inputs when S_{B} is HIGH. When S_{A} and S_{B} are HIGH, output $\left(Z_{n}\right)$ is the logical $O R$ of the A_{n} and B_{n} inputs $\left(Z_{n}=A_{n}+B_{n}\right)$. When S_{A} and S_{B} are LOW, output $\left(Z_{n}\right)$ is LOW independent of the multiplexer inputs (A_{n} and B_{n}). The F4019 cannot be used to multiplex analog signals. The outputs utilize standard buffers for best performance.

PIN NAMES

$$
\begin{aligned}
& S_{A}, S_{B} \\
& A_{0}-A_{3}, B_{0}-B_{3} \\
& Z_{0}-Z_{3}
\end{aligned}
$$

Select Inputs (Active HIGH)
Multiplexer Inputs
Multiplexer Outputs

TRUTH TABLE

SELECT		INPUTS		OUTPUT
S_{A}	S_{B}	A_{n}	B_{n}	Z_{n}
L	L	X	X	L
H	L	L	X	L
H	L	H	X	H
L	H	X	L	L
L	H	X	H	H
H	H	H	X	H
H	H	X	L	L

$H=$ HIGH Level
$L=$ LOW Level
$X=$ Don't Care

LOGIC DIAGRAM

$V_{D D}=P$ in 16
$V_{S S}=P$ in 8
$O=$ Pin Number

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=P \text { in } 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

$\sqrt{\mathrm{B}_{3}}$		$\square 16$
$2 \square A_{2}$	A_{3}	$\square 15$
B_{2}	S_{B}	$\square 14$
A_{1}	Z_{3}	$\square 13$
B_{1}	z_{2}	$\square 12$
$6 \square A_{0}$	Z_{1}	11
B_{0}	z_{0}	$\square 10$
$8 \square \mathrm{~V}_{S S}$	$\mathrm{S}_{\text {A }}$	$\square 9$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)														
SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			30			60		12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at OV or V_{DD}
					600			1200		24			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{P} L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $S_{A}, S_{B}, A_{n} \text { or } B_{n} \text { to } Z_{n}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	40 40		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, $S_{A^{\prime}}, S_{B}, A_{n} \text { or } B_{n} \text { to } Z_{n}$		$\begin{aligned} & 75 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 160 \end{aligned}$		$\begin{aligned} & 35 \\ & 37 \end{aligned}$	$\begin{aligned} & 70 \\ & 75 \end{aligned}$		$\begin{aligned} & 24 \\ & 29 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} \text { LH }}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		80 90	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		42 40	70 70		32 30	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

F4020/34020
 14-STAGE BINARY COUNTER

DESCRIPTION - The F4020 is a 14 -Stage Binary Ripple Counter with a Clock Input (CP), an overriding asynchronous Master Reset Input (MR) and twelve fully buffered Outputs ($\mathrm{O}_{0}, \mathrm{Q}_{3}-\mathrm{Q}_{13}$). The counter advances on the HIGH-to-LOW transition of the Clock Input ($\overline{C P}$). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs $\left(Q_{0}, Q_{3}-Q_{13}\right)$ LOW, independent of the Clock Input (CP).

- 25 MHz TYPICAL COUNT FREQUENCY AT $V_{D D}=10 \mathrm{~V}$
- COMMON ASYNCHRONOUS MASTER RESET
- FULLY BUFFERED OUTPUTS FROM THE FIRST STAGE AND THE LAST ELEVEN STAGES

PIN NAMES

$\overline{C P}$	Clock Input $(H \rightarrow L$ Triggered)
$M R$	Master Reset Input (Active HIGH)
$\mathrm{O}_{\mathrm{O}}, \mathrm{Q}_{3}-\mathrm{O}_{13}$	Parallel Outputs

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC DIAGRAM

O $=\operatorname{Pin}$ Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		300			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{0}		$\begin{array}{r} 110 \\ 85 \end{array}$	$\begin{aligned} & 220 \\ & 170 \end{aligned}$		$\begin{aligned} & 45 \\ & 37 \end{aligned}$	90 75		$\begin{aligned} & 30 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, MR to Q_{n}		150	300		65	130		43		ns	Input Transition
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }_{\mathrm{t} \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	<20
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{CP}}$ to O_{0}		$\begin{aligned} & \hline 130 \\ & 110 \end{aligned}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 37 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		180	360		75	150		50		ns	Input Transition
$\overline{{ }^{t^{T L H}}}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	70 70		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\mathrm{t}_{\mathrm{w}} \overline{\overline{\mathrm{CP}}(\mathrm{H})}$	Minimum Clock Pulse Width	100	50		40	20			16		ns	
${ }^{\text {t }}$ WR(H)	Minimum MR Pulse Width	140	70		55	27			20		ns	$C_{L}=15 \mathrm{pF}$
${ }^{\text {trec }}$	Recovery Time for MR	85	43		35	17			12		ns	Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Input Clock Frequency (Note 3)	5	10		12	25					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($T_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

PROPAGATION DELAY MASTER RESET TO OUTPUT, MINIMUM MASTER RESET PULSE WIDTH AND RECOVERY TIME FOR MASTER RESET

PROPAGATION DELAY CLOCK TO OUTPUT Q_{0}, OUTPUT TRANSITION TIMES AND MINIMUM CLOCK PULSE WIDTH

F4021/34021
 8 -BIT SHIFT REGISTER

DESCRIPTION - The F4021 is an edge-triggered 8-Bit Shift Register (Parallel-to-Serial Converter) with a synchronous Serial Data Input (D_{S}), a Clock Input (CP), an asynchronous active HIGH Parallel Load Input (PL), eight asynchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{7}$) and Buffered Parallel Outputs from the last three stages $\left(\mathrm{O}_{5}-\mathrm{Q}_{7}\right)$.
Information on the Parallel Data Inputs ($\mathrm{P}_{0^{-}} \mathrm{P}_{7}$) is asynchronously loaded into the register while the Parallel Load Input (PL) is HIGH, independent of the Clock (CP) and Serial Data (DS) inputs. Data present in the register is stored on the HIGH-to-LOW transition of the Parallel Load Input.(PL).
When the Parallel Load'Input is LOW, data on the Serial Data Input (D_{S}) is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW-toHIGH transition of the Clock input (CP).

- TYPICAL SHIFT FREQUENCY OF 18.1 MHz AT VDD $=10 \mathrm{~V}$
- PARALLEL-TO-SERIAL DATA TRANSFER
- BUFFERED OUTPUTS AVAILABLE LAST THREE STAGES
- CLOCK INPUT IS L \rightarrow H EDGE-TRIGGERED

PIN NAMES

PL
Parallel Load Input
$\mathrm{P}_{0}-\mathrm{P}_{7} \quad$ Parallel Data Inputs
DS Serial Data Input
$\mathrm{CP} \quad$ Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\mathrm{O}_{5}-\mathrm{O}_{7}$

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$O=$ Pin Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PH} H} . \end{aligned}$	Propagation Delay, $C P$ to O_{n}		$\begin{aligned} & 119 \\ & 161 \end{aligned}$			$\begin{aligned} & 51 \\ & 64 \end{aligned}$			$\begin{aligned} & 34 \\ & 43 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, PL to O_{n}		$\begin{aligned} & \hline 172 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 96 \end{aligned}$			$\begin{aligned} & 48 \\ & 66 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{{ }^{\prime} T L H}$ ${ }_{\mathrm{THL}}$	Output Transition Time		28 32			$\begin{aligned} & 15 \\ & 14 \end{aligned}$			10 9		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{tHHL}} \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 134 \\ & 184 \end{aligned}$			59 74			$\begin{aligned} & 40 \\ & 49 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, PL to O_{n}		$\begin{aligned} & 188 \\ & 274 \end{aligned}$			$\begin{array}{r} 78 \\ 105 \end{array}$			$\begin{aligned} & 54 \\ & 72 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 58 \\ & 69 \end{aligned}$			31 27			22 22		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {w }}{ }^{\text {CP }}$	CP Minimum Pulse Width		61			21			14		ns	
${ }^{\mathrm{t}}{ }^{\text {PLL}}$	PL Minimum Pulse Width		67			24			16		ns	
${ }_{\text {trec }}$	PL Recovery Time		71			28			21		ns	
$\begin{aligned} & t_{s} \\ & t_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time D_{S} to CP Hold Time D_{S} to CP		$\begin{aligned} & 51 \\ & 49 \end{aligned}$			$\begin{aligned} & 16 \\ & 15 \end{aligned}$			$\begin{aligned} & 12 \\ & 11 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times < 20 ns
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 78 \\ & 72 \end{aligned}$			$\begin{aligned} & 28 \\ & 28 \end{aligned}$			$\begin{aligned} & 18 \\ & 16 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {f MAX }}$	Shift Frequency (Note 4)		7.8			18.1					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For f MAX input rise and fall times are greater than or equal to $5 \mathbf{n s}$ and less than or equal to $\mathbf{2 0} \mathbf{~ n s}$.
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, DS TO CP

MINIMUM PL PULSE WIDTH, RECOVERY TIME FOR PL, AND SET-UP AND HOLD TIMES, $\mathrm{P}_{\mathbf{n}}$ TO PL

F4022/34022
 4-STAGE DIVIDE-BY-8 JOHNSON COUNTER

DESCRIPTION - The F4022 is a 4-Stage Divide-by-8 Johnson Counter with eight glitch free active HIGH Decoded Outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$), an active LOW Output from the most significant flip-flop ($\mathrm{O}_{4}-7$), an active HIGH and an active LOW Clock Input ($\mathrm{CP}_{\mathbf{0}}, \overline{\mathrm{CP}}_{1}$) and an overriding asynchronous Master Reset Input (MR).

The counter is advanced by either a LOW-to-HIGH transition at CP_{0} while $\overline{\mathrm{CP}}_{1}$ is LOW or a HIGH-toLOW transition at $\overline{\mathrm{CP}}_{1}$ while CP_{0} is HIGH (see Functional Truth Table). When cascading the counters, the $\overline{\mathbf{Q}_{4-7}}$ Output (which is LOW while the counter is in states $4,5,6$ and 7) can be used to drive the CP_{0} Input of the next F4022. A HIGH on the Master Reset Input (MR) resets the counter to Zemo $1 \mathrm{O}_{0}=\overline{\mathrm{O}_{4-7}}=\mathrm{HIGH}, \mathrm{O}_{1}-\mathrm{O}_{7}=$ LOW) independent of the Clock Inputs (CPOTPD .

- CLOCK EDGE-TRIGGERED ON EITHER A LOW-TO-HIGMTRANSITION OR A HIGH-TO-LOW TRANSITION
- BUFFERED CARRY OUTPUT $\left(\overline{0_{4-7}}\right)$ AYAILABLE FOR CASCADING
- BUFFERED FULLY DECODED OUTPUTS

PIN NAMES

CP_{0}	Clock Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
$\frac{C P_{1}}{}$	Clock Input (H \rightarrow L Edge-Triggered)
$M R$	Master Reset Input
$\frac{\mathrm{O}_{0}-\mathrm{O}_{7}}{\mathrm{O}_{4-7}}$	Decoded Outputs
Carry Output (Active LOW)	

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8 \\
& N C=\operatorname{Pin} 6,9
\end{aligned}
$$

CONNECTION DIAGRAM DIP(TOP VIEW)

$\boxed{o_{1}}$	$V_{\text {DD }}$
$2 \mathrm{HO}_{0}$	MR
$3 \mathrm{CO}_{2}$	CP_{0}
$4 \mathrm{CO}_{5}$	$\overline{\mathrm{CP}_{1}}$
O_{6}	$\overline{\mathrm{Q}_{4-7}}$
NC	O_{4}
$7 \mathrm{HO}_{3}$	O_{7}
$8 \mathrm{~V}_{\text {SS }}$	NC

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

FAIRCHILD CMOS • F4023/34023

TRIPLE 3-INPUT NAND GATE

DESCRIPTION - This CMOS logic element provides a 3-input positive NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM

 DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V($ See Note 1$)$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at O V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		20 20	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{array}{r} 15 \\ 9 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		9 7	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		6 5	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\text {PLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 45 \\ & 51 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 19 \\ & 12 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{~T} \mathrm{THL}} \end{aligned}$	Output Transition Time		45	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		18 18	70 70		17 12	45 45	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

F4024/34024 7-STAGE BINARY COUNTER

DESCRIPTION - The F4024 is a 7-Stage Binary Ripple Counter with a Clock Input ($\overline{\mathrm{CP}}$), an overriding asynchronous Master Reset Input (MR) and seven fully Buffered Parallel Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{6}$). The counter advances on the HIGH-to-LOW transition of the Clock Input (CP). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{6}$) LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- TYPICAL COUNT FREQUENCY OF $\mathbf{3 0} \mathbf{~ M H z ~ A T ~} V_{D D}=10 \mathrm{~V}$
- CLOCK TRIGGERED ON THE HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- OUTPUTS AVAILABLE FROM ALL SEVEN STAGES

PIN NAMES
$\overline{\mathrm{CP}}$
Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
MR
Master Reset Input Buffered Parallel Outputs

LOGIC SYMBOL

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

$V_{D D}=\operatorname{Pin} 14$
VSS $=\operatorname{Pin} 7$
NC $=$ Pins 8, 10 and 13
O = Pin Number

FAIRCHILD CMOS • F4024/34024
DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at 0 V or V_{DD}
					700			1400		280				
		XM			5			10		2		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
					300			600		120				

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t} \text { PLH }$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, $\overline{\mathrm{CP}}$ to O_{0}		$\begin{aligned} & 82 \\ & 75 \end{aligned}$	$\begin{aligned} & 165 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 37 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & 23 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$C_{L}=15$
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q_{n}		105	210		42	85		30		ns	Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{T} T \mathrm{LH}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{n}$
${ }^{t}$ PLH ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, $\overline{C P}$ to O_{0}		$\begin{array}{\|r\|} \hline 100 \\ 97 \end{array}$	$\begin{aligned} & 200 \\ & 195 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t PHL }}$	Propagation Delay, MR to O_{n}		130	260		50	100		35		ns	Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{t} \mathrm{TLH}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{w} \overline{C P}}$	$\overline{\mathrm{CP}}$ Minimum Pulse Width	90	45		35	17			13		ns	
${ }^{\text {t }}$ w MR	MR Minimum Pulse Width	80	40		30	15			12		ns	
$\mathrm{t}_{\text {ree }}$	MR Recovery Time	60	30		25	12			9		ns	$\begin{aligned} & \text { Input Transition } \\ & \text { Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
${ }_{\text {f MAX }}$	Input Count Frequency (Note 4)	6	12		15	30					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Recovery Times ($t_{\text {rec }}$) and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTH FOR $\overline{C P}$ AND MR AND MR RECOVERY TIME

FAIRCHILD CMOS • F4025/34025

TRIPLE 3-INPUT NOR GATE

DESCRIPTION - This CMOS logic element provides a 3-input positive NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V($ See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at OV or V_{DD}
	Power				15.0			30.0		6.0			MAX	
	Supply	XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
	Current				3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNFTS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay		30 35	75 75		13 20	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 12 \\ & 16 \end{aligned}$		ns ns	$C_{L}=15 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		15	75 75		8	40 40		6 4	25	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}$ PLH ${ }^{\text {t PHL }}$	Propagation Delay		$\begin{aligned} & 45 \\ & 47 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$		20 25	60 60		$\begin{aligned} & 15 \\ & 21 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }_{\mathrm{T}}^{\mathrm{TLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		38 38	135 135		20 15	70 70		15 11	45 45	ns ns	Input Transition Times $\leqslant 20$ ns

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

F4027/34027
 DUAL JK FLIP-FLOP

DESCRIPTION - The F4027 is a Dual JK Flip-Flop which is edge-triggered and features independent Direct Set, Direct Clear, and Clock inputs. Data is accepted when the Clock is LOW and transferred to the output on the positive-going edge of the Clock. The active HIGH asynchronous Clear Direct (C_{D}) and Set Direct (S_{D}) are independent and override the J, K, or Clock inputs. The outputs are buffered for best system performance.

PIN NAMES

J, K	Synchronous Inputs
CP	Clock Input $(\mathrm{L} \rightarrow$ H Edge-Triggered)
S_{D}	Asynchronous Direct Set Input (Active HIGH)
C_{D}	Asynchronous Direct Clear Input (Active HIGH)
Q	True Output
$\overline{\mathrm{Q}}$	Complement Output

TRUTH TABLES

ASYNCHRONOUS INPUTS		OUTPUTS	
SD $^{2} \mathrm{C}_{\mathrm{D}}$	Q	$\overline{\text { Q }}$	
L	H	L	H
H	L	H	L
H	H	H	H

L	$=$ LOW Level
H	$=$ HIGH Level
$J \quad=$	Positive-Going Transition
$X \quad$	Don't Care
$Q_{n+1}=$	State After Clock Positive
	Transition

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 4)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, CP to $\mathrm{O}, \overline{\mathrm{O}}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t PLH }}$	Propagation Delay, S_{D} to Q		160	300		80	150		60		ns	Input Transition
${ }^{\text {t }}$ PHL	Propagation Delay, C_{D} to Q		160	300		80	150		60		ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\text {tTLH }} \\ & { }^{\mathbf{t} \text { THL }} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to $\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\text {t PLH }}$	Propagation Delay, S_{D} to Q		180	350		90	175		75		ns	Input Transition
${ }^{\text {t PHL }}$	Propagation Delay, C_{D} to Q		180	350		90	175		75		ns	Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, J, K to CP Hold Time, J, K to CP	$\begin{array}{\|r} 100 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ -25 \end{array}$		40 0	$\begin{array}{r} 20 \\ -10 \end{array}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}$ CP(L)	Minimum Clock Pulse Width	150	75		70	35			25		ns	$C_{L}=15 \mathrm{pF}$
${ }^{t_{w} S_{D}(H)}$	Minimum S_{D} Pulse Width	150	75		60	30			25		ns	Input Transition
${ }^{t_{w} C_{D}(H)}$	Minimum C_{D} Pulse Width	150	75		60	30			25		ns	Times $\leqslant 20 \mathrm{~ns}$
$\mathrm{t}_{\text {rec }} \mathrm{S}_{\mathrm{D}}$	Recovery Time for S_{D}	0	-5		0	-4			-3		ns	
${ }_{\text {trec }} C_{D}$	Recovery Time for C_{D}	0	-5		0	-4			-3		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 3)	4	8		8	16					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
 Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
2. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

NOTE:
$t_{s} \& t_{h}$ are shown as positive values but may be specified as negative values.

SET-UP TIMES, HOLD TIMES, AND MINIMUM CLOCK PULSE WIDTH

RECOVERY TIME FOR S_{D}, RECOVERY TIME FOR C_{D}, MINIMUM S_{D} PULSE WIDTH, AND MINIMUM CD ${ }_{D}$ PULSE WIDTH

F4028/34028 1-OF-10 DECODER

PIN NAMES
$A_{0}-A_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{9}$

DESCRIPTION - The F4028 is a CMOS 4-bit BCD to 1-of-10 active HIGH decoder. A 1-2-4-8 BCD code applied to inputs A_{0} through A_{3} causes the selected output to be HIGH, the other nine will be LOW. If desired, the F4028 may be used as a 1-of-8 decoder with enable; 3-bit octal inputs are applied to inputs A_{0}, A_{1}, and A_{2} selecting an output 0 through 7. Input A_{3} then becomes an active LOW enable, forcing the selected output LOW when A_{3} is HIGH. The F4028 may also be used as an 8 -input demultiplexer with an active LOW data input. The outputs are fully buffered for best performance.

- BCD TO 1-OF-10 DECODER
- 1-OF-8 DECODER WITH ACTIVE LOW ENABLE
- 8-INPUT DEMULTIPLEXER WITH ACTIVE LOW DATA INPUT

Address Inputs, 1-2-4-8 BCD
Outputs (Active HIGH)

TRUTH TABLE

| | INPUTS | | | | | OUTPUTS | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A_{3} | A_{2} | A_{1} | A_{0} | O_{0} | O_{1} | O_{2} | O_{3} | O_{4} | O_{5} | O_{6} | O_{7} | O_{8} | O_{9} |
| L | L | L | L | H | L |
| L | L | L | H | L | H | L |
| L | L | H | L | L | L | H | L |
| L | L | H | H | L | L | L | H | L | L | L | L | L | L |
| L | H | L | L | L | L | L | L | H | L | L | L | L | L |
| L | H | L | H | L | L | L | L | L | H | L | L | L | L |
| L | H | H | L | H | L | L | L |
| L | H | H | H | L | H | L | L |
| H | L | H | L |
| H | L | L | H | L | H |
| H | L | H | L | H | L |
| H | L | H | H | L | H |
| H | H | L | H | L |
| H | H | L | H | L | H |
| H | H | H | L | H | L |
| H | H | H | H | L | H |

$H=H I G H$ Level
L= LOW Level

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.
$V_{D D}=P$ in 16
$v_{S S}=\operatorname{Pin} 8$
$O^{=P i n}$ Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			30			60		12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, $A_{n} \text { to } O_{n}$		$\begin{aligned} & 145 \\ & 125 \end{aligned}$	$\begin{aligned} & 290 \\ & 290 \end{aligned}$		$\begin{aligned} & 60 \\ & 45 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 37 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	60 60		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ PLH ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $A_{n} \text { to } O_{n}$		$\begin{aligned} & 167 \\ & 157 \end{aligned}$	$\begin{aligned} & 325 \\ & 325 \end{aligned}$		$\begin{aligned} & 66 \\ & 57 \end{aligned}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ne } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathbf{t}_{\mathrm{TLH}}} \\ & { }^{\mathbf{t} \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{array}{\|r} 85 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$		40 37	100 100		31 25	70 70	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under $F 4000$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

F4029/34029 SYNCHRONOUS UP/DOWN COUNTER

DESCRIPTION - The F4029 is a Synchronous Edge-Triggered Up/Down 4-Bit Binary/BCD Decade Counter with a Clock Input (CP), an active LOW Count Enable Input ($\overline{\mathrm{CE}}$), an Up/Down Control Input (UP/ $\overline{D N}$), a Binary/Decade Control Input (BIN/DEC), an overriding asynchronous active HIGH Parallel Load Input (PL), four Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four Parallel Buffered Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) and an active LOW Terminal Count Output (TC).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions. With the Parallel Load Input (PL) LOW, operation is synchronous and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). Operation is determined by the three synchronous Mode Control Inputs; UP/DN, BIN/DEC and $\overline{\mathrm{CE}}$ (see the Mode Selection Table). These inputs must be stable only during the set-up time prior to the LOW-to-HIGH transition of the Clock Input (CP) and the hold time after this clock transition. The Terminal Count Output (TC) is LOW when the counter is at its terminal count, as determined by the counting mode, and the Count Enable Input ($\overline{\mathrm{CE}}$) is LOW (see Logic Equation for TC).

- BINARY OR DECADE UP/DOWN COUNTER
- ASYNCHRONOUS PARALLEL LOAD
- ACTIVE LOW COUNT ENABLE
- CLOCK EDGE-TRIGGERED ON THE LOW-TO-HIGH TRANSITION
- ACTIVE LOW TERMINAL COUNT FOR CASCADING
- TYPICAL COUNT FREQUENCY OF $\mathbf{1 2} \mathbf{~ M H z ~ A T ~} \mathrm{V}_{\mathrm{DD}}=\mathbf{1 0} \mathrm{V}$

PIN NAMES

PL
$\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}$
BIN/DEC
UP/DN
$\overline{C E}$
$C P$
$\mathrm{C}_{0}-\mathrm{Q}_{3}$
TC Terminal Count Output (Active LOW)

mode selection table

PL	BIN/ $\overline{\mathrm{DEC}}$	UP/DN	$\overline{C E}$	CP	MODE
H	X	x	X	X	Parallel Load ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$)
L	X	X	H	\times	No Change
L	L	L	L	5	Count Down, Decade
L	L	H	L	\checkmark	Count Up, Decade
L	H	L	L	\checkmark	Count Down, Binary
L	H	H	L	5	Count Up, Binary

드 (Parallel Load Input) - Asynchronously Loads Pinto Q , Overriding all Other Inputs
P (Parallel Input) - Data on this Pin is Asynchronously Loaded into Q, when $\overline{P L}$ is LOW Overriding all Other Inputs $\overline{\mathrm{T}}$ (Toggle Input) - Forces the Q Output to Synchronously Toggle when a LOW is Placed on this Input. CP (Clock Pulse Input)
$\mathrm{Q}, \overline{\mathrm{Q}}$ (True and Complimentary Outputs)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at O or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}_{\mathrm{I}} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 54 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{t_{\mathrm{PLH}}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, CP to TC		$\begin{aligned} & 150 \\ & 228 \end{aligned}$			62 90			$\begin{aligned} & 42 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 152 \\ & 194 \end{aligned}$			59 80			$\begin{aligned} & 38 \\ & 56 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{LH}} \\ & { }^{\mathrm{t} T \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			13 13			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			62 59			$\begin{aligned} & 41 \\ & 39 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to TC		$\begin{aligned} & 167 \\ & 252 \end{aligned}$			$\begin{array}{r} 71 \\ 100 \end{array}$			$\begin{aligned} & 48 \\ & 66 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition
${ }^{\text {tpLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, PL to Q_{n}		$\begin{array}{\|l\|} \hline 170 \\ 220 \\ \hline \end{array}$			70 90			$\begin{aligned} & 45 \\ & 62 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ TLH ${ }^{\text {tTHL }}$	Output Transition Time		$\begin{aligned} & 60 \\ & 65 \end{aligned}$			$\begin{aligned} & 31 \\ & 25 \end{aligned}$			$\begin{aligned} & 23 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {t }}{ }^{\text {CP }}$	CP Minimum Pulse Width		50			21			14		ns	
${ }_{\text {t }}{ }^{\text {PL }}$	PL Minimum Pulse Width		60			21			16		ns	
${ }^{\text {rec }}$	PL Recovery Time		62			24			17		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Hold Time, BIN/ $\overline{D E C}$ to CP		$\begin{aligned} & 106 \\ & 104 \end{aligned}$			$\begin{aligned} & 41 \\ & 40 \end{aligned}$			$\begin{aligned} & 29 \\ & 28 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{th}_{\mathrm{h}} \end{aligned}$	Set-Up Time, UP/ $\overline{\mathrm{DN}}$ to CP Hold Time, UP/ $\overline{\mathrm{DN}}$ to CP		$\begin{array}{\|l\|} \hline 145 \\ 101 \end{array}$			$\begin{aligned} & 55 \\ & 38 \end{aligned}$			$\begin{aligned} & 38 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, $\overline{C E}$ to $C P$ Hold Time, $\overline{\mathrm{CE}}$ to CP		$\begin{aligned} & 118 \\ & 101 \end{aligned}$			49 38			$\begin{aligned} & 33 \\ & 25 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 29 \\ & 26 \end{aligned}$			11 7			8		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {f MAX }}$	Input Clock Frequency (Note 4)		5			12					MHz	

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

TYPICAL ELECTRICAL CHARACTERISTICS

APPLICATIONS

Interconnection techniques for multistage counting are shown in Figures 1 through 4 . When using the schemes shown in Figures 1,3 and 4 , the BIN/ $\overline{D E C}$ and UP/ $\overline{D N}$ Inputs may be changed only when the Clock Input to the first stage is HIGH. However, when using the scheme shown in Figure 2, UP/DN, BIN/DEC and $\overline{C E}$ may be changed independent of the state of the Clock Input. The methods illustrated in Figures 1 and 3 will operate with long transition times at the Clock Input to the first counter; whereas, the other schemes require a fast transition at the Clock Input.

Figure 1 is a ripple clock expansion scheme in which the maximum counting frequency is limited only by the frequency capability of the first counter. The disadvantage of this technique is that the Outputs of the most significant stage do not change until the clock has rippled through all the preceding stages.

A fully synchronous expansion method is shown in Figure 2. Since the Clock Input is applied simultaneously to all stages, the Outputs of all stages change simultaneously. The maximum counting frequency is limited by the time required for the Count Enable to ripple through all the stages before the next Clock Input is applied.
The semi-synchronous technique illustrated in Figure 3 allows a higher counting frequency than the method shown in Figure 2 by allowing TC to take either 10 or 16 clock periods to ripple from the second stage to the most significant stage (10 clock periods when BIN/DEC $=L, 16$ clock periods when BIN/ $\overline{\mathrm{DEC}}=\mathrm{H}$). The Outputs of all stages, except the first, change simultaneously. The Outputs of the first stage change before the other stages.

The speed advantage of this scheme is lost if the count direction or count modulus is rapidly changed.
The method shown in Figure 4 is the same as in Figure 3 except an external gate is added to reduce the delay between the Clock Input to the first stage and the Clock Input to the following stages.

APPLICATIONS (Cont'd)

Fig. 1 RIPPLE CLOCK EXPANSION

Fig. 2 PARALLEL CLOCK EXPANSION (FULLY SYNCHRONOUS)

Fig. 3 SEMI-SYNCHRONOUS EXPANSION

Fig. 4 HIGH SPEED SEMI-SYNCHRONOUS EXPANSION

DESCRIPTION - The F4030 CMOS logic element provides the Exclusive-OR function. The outputs are fully buffered for best performance.

F4030 QUAD EXCLUSIVE-OR GATE

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			5.0			10.0		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at O V or V_{DD}
					70.0			140.0		28			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30.0			60.0		12			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t }}$ PLH ${ }^{{ }^{\mathrm{P}} \mathrm{PHL}}$	Propagation Delay, A or B to X		65	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		33 33	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \end{aligned}$		ns ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		23 23	45 45		10 10	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		8	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \end{aligned}$	Propagation Delay, A or B to X		85 85	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		45 45	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		50	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		23	50		17	35 35	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F 4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

F4031/34031 64-STAGE STATIC SHIFT REGISTER

DESCRIPTION - The F4031 is an edge-triggered 64-Stage Static Shift Register with two Serial Data Inputs (D_{0}, D_{1}), a Data Select Input (S), a Clock Input (CP), a buffered Clock Output (CO) and buffered Outputs from the 64th bit position ($\mathrm{Q}_{63}, \overline{\mathrm{Q}_{63}}$).
Data from the selected Data Inputs (D_{0} or D_{1}), as determined by the state of the Select Input (S), is shifted into the first shift register position and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP). D_{0} is selected by a LOW on the Select Input (S) and D_{1} is selected by a HIGH on the Select Input (S).
Registers can be cascaded by connecting all the Clock Inputs (CP) together or by driving the Clock Input (CP) of the right-most register with the system clock and connecting the Clock Output (CO) to the Clock Input (CP) of the preceding register. When the second technique is used in the recirculating mode, a flip-flop must be used to store the Output $\left(\mathrm{Q}_{\mathbf{6 3}}\right)$ of the right-most register until the left-most register is clocked.

- CLOCK INPUT IS L \rightarrow H EDGE-TRIGGERED
- DATA SELECT INPUT (S) ALLOWS DATA INPUT AT EITHER D_{0} OR D_{1} INPUTS
- EASILY CASCADED
- TRUE AND COMPLEMENTARY BUFFERED OUTPUTS AVAILABLE FROM 64TH STAGE

PIN NAMES

$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data Inputs
S	Data Select Input
CP	Clock Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
CO	Buffered Clock Output
Q_{63}	Buffered Output from the 64th Stage
Q_{63}	Complementary Buffered Output from the 64th Stage

TRUTH TABLE

S	D_{0}	D_{1}	Data Into Flip-Flop 1
L	L	X	L
L	H	X	H
H	X	L	L
H	X	H	H

L = Low Level
$H=$ High Level
$X=$ Don't Care

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
		XC			700			1400		280			MAX	
		XM			10			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					600			1500		300			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$t_{P L H}$ $t_{P H L}$	Propagation Delay, $C P$ to $Q_{63}, \overline{Q_{63}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{tPHL} \end{aligned}$	Propagation Delay, CP to CO		40			20			15 15		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{TLH}} \\ & { }_{\mathrm{T} H \mathrm{H}} \end{aligned}$	Output Transition Time		35 35			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, CP to $\mathrm{Q}_{63}, \overline{\mathrm{Q}_{63}}$		$\begin{aligned} & 120 \\ & 120 \end{aligned}$			$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\text {t}} \mathrm{PLH} \\ & { }^{\text {t}} \mathrm{PH} \end{aligned}$	Propagation Delay, CP to CO		$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & { }^{t_{T L L H}} \\ & { }^{\text {to }} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tw }}$ CP(L)	Minimum Clock Pulse Width		25			10			8		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, S to CP Hold Time, S to CP		$\begin{aligned} & 75 \\ & 40 \end{aligned}$			$\begin{aligned} & 40 \\ & 20 \end{aligned}$			$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time, D_{n} to CP Hold Time, D_{n} to CP		$\begin{array}{r} 75 \\ 40 \\ \hline \end{array}$			$\begin{aligned} & 40 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 30 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
${ }^{\text {f MAX }}$	Maximum Clock Frequency (Note4)		4			8					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{LL}} \mathrm{H}$ and tPHL) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For fMAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

MINIMUM CLOCK PULSE WIDTH, SET-UP AND HOLD TIMES, $\mathrm{D}_{\mathbf{n}}$ TO CP AND S TO CP

NOTE: Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

F4035/34035 4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The F4035 is a fully synchronous edge-triggered 4-Bit Shift Register with a Clock Input (CP), four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), two synchronous Serial Data Inputs (J, $\overline{\mathrm{K}}$), a synchronous Parallel Enable Input (PE), Buffered Parallel Outputs from all 4 -bit positions ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$), a True/Complement Input (T/ $\overline{\mathrm{C}}$) and an overriding asynchronous Master Reset Input (MR).
Operation is synchronous (except for Master Reset) and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is HIGH, data is loaded into the register from Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input (PE) is LOW, data is shifted into the first register position from the Serial Data Inputs (J, \bar{K}) and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of the Clock Input (CP). D-type entry is obtained by tying the two Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$) together.
The Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ are either inverting or non-inverting, depending on the True/Complement Input $(T / \overline{\mathrm{C}})$. With the $\mathrm{T} / \overline{\mathrm{C}}$ Input HIGH, the Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ are non-inverting (Active HIGH). With the T / \bar{C} Input LOW, the Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) are inverting (Active LOW).
A HIGH on the Master Reset Input (MR) resets all four bit positions ($Q_{0}-Q_{3}=$ LOW if $T / \overline{\mathrm{C}}=\mathrm{HIGH}$, $\mathrm{Q}_{0}-\mathrm{O}_{3}=$ HIGH if $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{LOW}$) independent of all other input conditions.

- TYPICAL SHIFT FREQUENCY OF 12 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- J, \bar{K} inputs to the first stage
- T/C INPUT FOR TRUE OR COMPLEMENTARY OUTPUTS
- SYNCHRONOUS PARALLEL ENABLE
- CLOCK EDGE-TRIGGERED ON LOW-TO-HIGH TRANSITION
- ASYNCHRONOUS MASTER RESET

PIN NAMES

PE
$\mathrm{P}_{0}-\mathrm{P}_{3}$
$\overline{\mathrm{J}}$ CP
T/C
MR
$\mathrm{a}_{0}-\mathrm{O}_{3}$

Parallel Enable Input
Parallel Data Inputs
First Stage J Input (Active HIGH)
First Stage K Input (Active LOW)
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
True/Complement Input
Master Reset Input
Buffered Parallel Outputs

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD}, as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					500			1000		200			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					40			80		16			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t} \mathrm{PHL}}$	Propagation Delay, $C P$ to O_{n}		$\begin{aligned} & 180 \\ & 180 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, MR to Q_{n}		$\begin{aligned} & 225 \\ & 225 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, T / C to Q_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		50 50			25 25			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{t}_{\mathrm{PH}}}} \\ & { }^{\mathrm{t}} \mathrm{l} \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 90 \\ & 90 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{t} \text { PLH }$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, $M R$ to Q_{n}		$\begin{aligned} & 250 \\ & 250 \end{aligned}$			$\begin{array}{\|l\|} \hline 120 \\ 120 \\ \hline \end{array}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{t_{P H L}}$	Propagation Delay, T / C to Q_{n}		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20$ ns
$\begin{aligned} & t_{\mathrm{TLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t }}{ }^{\text {c }}$ CP	CP Minimum Pulse Width		75			30			20		ns	
${ }^{\text {t }}{ }^{\text {MR }}$	MR Minimum Pulse Width		60			25			20		ns	
${ }^{\text {trec }}$	MR Recovery Time		160			60			45		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, P_{n} to CP Hold Time, P_{n} to CP		$\begin{aligned} & 100 \\ & -10 \end{aligned}$			$\begin{aligned} & 40 \\ & -5 \end{aligned}$			$\begin{aligned} & 25 \\ & -5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, PE to CP Hold Time, PE to CP		$\begin{array}{\|r\|} \hline 100 \\ -10 \end{array}$			$\begin{aligned} & 40 \\ & -5 \end{aligned}$			$\begin{aligned} & 25 \\ & -5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, J, K to CP Hold Time, J, K to CP		$\begin{array}{\|l\|} \hline 100 \\ -10 \\ \hline \end{array}$			$\begin{aligned} & \hline 40 \\ & -5 \end{aligned}$			$\begin{aligned} & 25 \\ & -5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {f MAX }}$	Max. Input Clock Frequency (Note 4)		5			12					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics. 3. Propagation Delays ($\mathrm{tPLH}_{\mathrm{L}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t} \mathrm{TLH}^{\prime}$ and $\mathrm{T}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For f MAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $\mathbf{1 5} \mu \mathrm{s}$.

MR RECOVERY TIME AND MINIMUM MR PULSE WIDTH

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

F4040/34040 12-STAGE BINARY COUNTER

DESCRIPTION - The F4040 is a 12-Stage Binary Ripple Counter with a Clock Input ($\overline{\mathrm{CP}})$, an overriding asynchronous Master Reset Input (MR) and twelve fully buffered Outputs $\left(Q_{0}-Q_{11}\right)$. The counter advances on the HIGH-to-LOW transition of the Clock Input ($\overline{\mathrm{CP}}$). A HIGH on the Master Reset Input (MR) clears all counter stages and forces all Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{11}\right)$ LOW, independent of the Clock Input ($\overline{\mathrm{CP}}$).

- 25 MHz TYPICAL COUNT FREQUENCY AT VDD $=10 \mathrm{~V}$
- CLOCK IS H \rightarrow L TRIGGERED
- COMMON ASYNCHRONOUS MASTER RESET
- FULLY BUFFERED OUTPUTS FROM ALL 12 STAGES

$\overline{P I N}$ NAMES	
$\overline{C P}$	Clock Input $(H \rightarrow L$ Triggered)
$M R$	Master Reset Input (Active HIGH)
$\mathrm{Q}_{0}-\mathrm{Q}_{11}$	Parallel Outputs

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		300			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, $\overline{\mathrm{CP}}$ to O_{0}		$\begin{array}{r} 110 \\ 85 \end{array}$	$\begin{aligned} & 220 \\ & 170 \end{aligned}$		45 37	90 75		$\begin{aligned} & 30 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {t PHL }}$	Propagation Delay, MR to Q_{n}		150	300		65	130		43		ns	Input Transition
$\overline{{ }^{t_{T L H}}}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$	40 40		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}$ PLH ${ }^{\text {t PHL }}$	Propagation Delay, $\overline{C P}$ to O_{0}		$\begin{array}{\|l\|} \hline 130 \\ 110 \end{array}$	$\begin{aligned} & 260 \\ & 220 \end{aligned}$		55 45	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 37 \\ & 33 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t PHL }}$	Propagation Delay, MR to O_{n}		180	360		75	150		50		ns	Input Transition
${ }^{t}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{w} \overline{C P}(H)}$	Minimum Clock Pulse Width	100	50		40	20			16		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\mathrm{t}_{\mathrm{w}} \mathrm{MR}(\mathrm{H})}$	Minimum MR Pulse Width	140	70		55	27			20		ns	Input Transition
$\mathrm{t}_{\text {rec }}$	Recovery Time for MR	85	43		35	17			12		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {f MAX }}$	Input Clock Frequency (Note 3)	5	10		12	25					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
 Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
2. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
3. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

VDD - POWER SUPPLY VOLTAGE - V

C_{L} - LOAD CAPACITANCE - pF

SWITCHING WAVEFORMS

PROPAGATION DELAY MASTER RESET TO OUTPUT, MINIMUM MASTER RESET PULSE WIDTH AND RECOVERY TIME FOR MASTER RESET

PROPAGATION DELAY CLOCK TO OUTPUT 0_{0}, OUTPUT TRANSITION TIMES AND MINIMUM CLOCK PULSE WIDTH

QUAD TRUE/COMPLEMENT BUFFER

DESCRIPTION - The F4041 iș a Quad True/Complement Buffer which provides both an inverted active LOW Output (\bar{Z}) and a non-inverted active HIGH Output (Z) for each Input (I).

LOGIC DIAGRAM

(6)

(13)

$V_{D D}=\operatorname{Pin} 14$
$V_{S S}=\operatorname{Pin} 7$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpack version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES

$I_{a}, I_{b}, I_{c}, I_{d}$
$Z_{a}, Z_{b}, Z_{c}, Z_{d}$
$\bar{Z}_{a}, \overline{\mathbf{Z}}_{b}, \overline{\mathbf{Z}}_{c}, \overline{\mathbf{Z}}_{\mathrm{d}}$

Buffer Input
Buffered True Output
Buffered Complementary Output

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {ID }}$	Quiescent Power Supply Current	XC			10			20		4.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56.0			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24.0			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{t_{P L H}} \\ & { }^{\text {t}} \mathrm{PHL} \end{aligned}$	Propagation Delay		40 40			20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{t_{\mathrm{TLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		25 25			$\begin{aligned} & 10 \\ & 10 \end{aligned}$			8 8		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay		60			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		60 60			30 30			20 20		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characterístics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4042/34042 QUAD D LATCH

DESCRIPTION - The F4042 is a 4-Bit Latch with four Data Inputs ($D_{0}-D_{3}$), four buffered Latch Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), four buffered Complementary Latch Outputs ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}$) and two Common Enable Inputs (E_{0} and E_{1}). Information on the Data Inputs ($D_{0}-D_{3}$) is transferred to the Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) while both Enable Inputs (E_{0}, E_{1}) are in the same state, either HIGH or LOW. The Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) follow the Data Inputs ($D_{0}-D_{3}$) as long as both Enable Inputs (E_{0}, E_{1}) remain in the same state. When the two Enable Inputs (E_{0}, E_{1}) are different, the Data Inputs ($D_{0}-D_{3}$) do not affect the Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$ and the information in the latch is stored. The $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ Outputs are always the complement of the $\mathrm{a}_{0}-\mathrm{O}_{3}$ Outputs. The Exclusive-OR input structure allows the choice of either polarity for the Enable Input. With one Enable Input HIGH, the other Enable Input is active HIGH; with one Enable Input LOW, the other Enable Input is active LoW.

The last moment prior to the trailing end of the enable condition that the Latch Outputs can still be affected by the inputs is specified as a set-up time. A negative set-up time, as typically exhibited by this device, means that the latches respond to input changes after the end of the enable condition. Following established industry practice, a hold time is specified, defining the time after the end of the enable condition, that the inputs must be held stable, so that they do not affect the state of the latches. It follows from this definition, that the hold time is identical with the negative set-up time. Set-up and hold times have a tolerance, due to manufacturing process variations, temperature and supply valtage changes. For predictable operation the data input levels must be held stable over the full spread of this timing window starting with the earliest set-up time (largest positive or smallest negative value) to the latest hold time.

- ACTIVE HIGH OR ACTIVE LOW ENABLE
 - TRUE AND COMPLEMENTARY OUTPUTS ($\mathrm{O} \& \overline{\mathrm{Q}}$)

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{3}$
E_{0}, E_{1}
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$
$\overline{\mathrm{a}}_{0}-\overline{\mathrm{Q}}_{3}$

Data Inputs
Enable Inputs
Parallel Latch Outputs
Complementary Parallel Latch Outputs

TRUTH TABLE

E_{0}	E_{1}	LATCH CONDITION
L	L	Enabled
L	H	Not Enabled
H	L	Not Enabled
H	H	Enabled

$$
\begin{aligned}
L & =\text { LOW Level } \\
H & =\text { HIGH Level }
\end{aligned}
$$

LOGIC DIAGRAM

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					140			280		56			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					60			120		24			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Output		85	$\begin{aligned} & 170 \\ & 160 \end{aligned}$		36 35	72 70		27		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {t }}$ PLH ${ }^{\text {t PHL }}$	Propagation Delay, Enable to Output		$\begin{array}{\|l\|} \hline 135 \\ 115 \end{array}$	$\begin{aligned} & 270 \\ & 230 \end{aligned}$		$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{array}{r} 110 \\ 90 \end{array}$		$\begin{aligned} & 41 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 29 \\ & 27 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\overline{t_{\text {PLH }}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, Data to Output		$\begin{array}{\|r} \hline 101 \\ 99 \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		45	90 88		33 33		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$t_{\text {PLH }}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Enable to Output		$\begin{aligned} & 156 \\ & 137 \end{aligned}$	$\begin{aligned} & 310 \\ & 275 \end{aligned}$		$\begin{aligned} & \hline 66 \\ & 58 \end{aligned}$	$\begin{aligned} & 132 \\ & 116 \end{aligned}$		$\begin{aligned} & \hline 47 \\ & 41 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20$ ns
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, D_{n} to E_{0} or E_{1} Hold Time, D_{n} to E_{0} or E_{1}	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\begin{array}{r} -12 \\ 25 \end{array}$		$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & -6 \\ & 13 \end{aligned}$			$\begin{array}{r}-4 \\ 7 \\ \hline\end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
${ }^{\text {t }} \mathrm{E}_{\mathrm{n}}$	Minimum Enable Pulse Width	80	40		32	16			12		ns	Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times ($t_{\mathbf{s}}$), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL POWER DISSIPATION $\sum_{E} 1000$ VERSUS FREQUENCY

MINIMUM ENABLE PULSE WIDTH VERSUS
POWER SUPPLY VOLTAGE

PROPAGATION DELAY

SWITCHING WAVEFORMS

PROPAGATION DELAY DATA TO OUTPUT AND TRANSITION TIMES, WITH LATCH ENABLED
-

SET-UP AND HOLD TIMES, MINIMUM ENABLE PULSE WID́TH

NOTE:

Either E_{0} or E_{1} is held HIGH or LOW while the other Enable Input is pulsed as per the Truth Table. t_{s} and t_{h} are shown as positive values but may be specified as negative values.

D

PROPAGATION DELAY ENABLE TO OUTPUT

NOTE:
Either E_{0} or E_{1} is held HIGH or LOW while the other Enable Input is pulsed as per the Truth Table.

F4043/34043 QUAD R/S LATCH WITH 3-STATE OUTPUTS

DESCRIPTION - The F4043 is a Quad R/S Latch with 3-State Outputs with a common Output Enable (EO). Each latch has an active HIGH Set Input (\mathbf{S}_{n}), an active HIGH Reset Input (R_{n}) and an active HIGH 3-State Output (O_{n}).
When the Output Enable Input (EO) is HIGH, the state of the Latch Outputs (O_{n}) can be determined from the Truth Table (see below). When the Output Enable Input (EO) is LOW, the Latch Outputs are in the high impedance OFF state. The Output Enable Input (EO) does not affect the state of the latch.

- 3-STATE BUFFERED OUTPUTS (ACTIVE HIGH)
- COMMON OUTPUT ENABLE
- SET INPUTS TO EACH LATCH (ACTIVE HIGH)
- RESET INPUTS TO EACH LATCH (ACTIVE HIGH)

PIN NAMES

EO	Common Output Enable Input
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Set Inputs
$\mathrm{R}_{0}-\mathrm{R}_{3}$	Reset Inputs
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	3-State Buffered Latch Outputs

TRUTH TABLE

INPUTS			OUTPUT
EO	S_{n}	R_{n}	Q_{n}
L	X	X	High Impedance
H	H	L	H
H	L	H	L
H	H	H	H
H	L	L	No Change

LOGIC DIAGRAM

LOGIC SYMBOL

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpack version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {IOZH }}$	Output OFF Current HIGH	XC		$\begin{aligned} & 0.05 \\ & 3 \\ & \hline \end{aligned}$			0.1 6			$\begin{aligned} & 0.2 \\ & 12 \end{aligned}$		$\mu \mathrm{A}$	$\text { MIN, } 25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{D D}, E O=V_{S S}$
		XM		$\begin{aligned} & 0.005 \\ & 0.3 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.6 \\ & \hline \end{aligned}$			0.02 1.2			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	
lozl ${ }^{\prime}$	Output OFF Current LOW	XC		$\left\lvert\, \begin{aligned} & -0.05 \\ & -3 \\ & \hline \end{aligned}\right.$			$\begin{aligned} & -0.1 \\ & -6 \\ & \hline \end{aligned}$			$\begin{aligned} & -0.2 \\ & -12 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$	$\text { MIN, } 25^{\circ} \mathrm{C}$ MAX	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
		XM		$\begin{array}{\|l\|} \hline-0.005 \\ -0.3 \end{array}$			$\begin{array}{\|c\|} \hline-0.01 \\ -0.6 \end{array}$			$\begin{aligned} & \hline-0.02 \\ & -1.2 \end{aligned}$			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			$\begin{array}{r} 10 \\ 140 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 280 \end{array}$		$\begin{aligned} & 4 \\ & 56 \end{aligned}$		$\mu \mathrm{A}$	$\text { MIN, } 25^{\circ} \mathrm{C}$ MAX	All inputs common and at 0 V or V_{DD}
		XM			1 60			$\begin{array}{r} 2 \\ 120 \end{array}$		$\begin{aligned} & 0.4 \\ & 24 \end{aligned}$		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\text {tphL }}$	Propagation Delay, S_{n} to Q_{n}		90 90			45 45			35 35		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, R_{n} to Q_{n}		$\begin{aligned} & 90 \\ & 90 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{t^{P} \mathrm{PZH}} \\ & { }^{\mathrm{t}} \mathrm{PZL} \end{aligned}$	Output Enable Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}^{\mathrm{PHZ}}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, S_{n} to Q_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {t PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, R_{n} to Q_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{array}{r} 40 \\ 40 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline{ }^{\mathrm{t}_{\mathrm{PZH}}} \\ & \mathrm{t}^{2} \end{aligned}$	Output Enable Time		$\begin{array}{r} 40 \\ 40 \\ \hline \end{array}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }^{\text {PLLZ }} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
$t_{w} S_{n}$	Minimum S_{n} Pulse Width		40			20			15		ns	
$t_{w} R_{n}$	Minimum R_{n} Pulse Width		40			20			15		ns	
${ }^{\text {trec }}$	S_{n} Recovery Time		10			5			3		ns	$C_{L}=15 \mathrm{pF}$
trec	R_{n} Recovery Time		10			5			3		ns	Times $\leq 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

OUTPUT ENABLE TIME
(tpZH) AND OUTPUT DISABLE TIME (tphz)

OUTPUT ENABLE TIME
(tpZL) AND OUTPUT DISABLE TIME (tpLZ)

F4044/34044
 QUAD R/S LATCH WITH 3-STATE OUTPUTS

DESCRIPTION - The F4044 is a Quad R/S Latch with 3-state Outputs with a common Output Enable Input (EO). Each latch has an active LOW Set Input (S_{n}), an active LOW Reset Input $\left(R_{n}\right)$ and an active HIGH 3-State Output (Q_{n}).
When the Output Enable Input (EO), is HIGH, the state of the Latch Outputs $\left(Q_{n}\right)$ can be determined from the Truth Table (see below). When the Output Enable Input (EO) is LOW, the Latch Outputs are in the high impedance OFF state. The Output Enable Input (EO) does not affect the state of the latch.

- 3-STATE BUFFERED OUTPUTS (ACTIVE HIGH)
- COMMON OUTPUT ENABLE
- SET INPUTS TO EACH LATCH (ACTIVE LOW)
- RESET INPUTS TO EACH LATCH (ACTIVE LOW)

PIN NAMES

$\overline{E O}$	Output Enable Input
$\overline{\mathrm{S}_{0}}-\overline{\mathrm{S}_{3}}$	Set Inputs (Active LOW)
$\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{3}}$	Reset Inputs (Active LOW)
$\mathrm{O}_{0}-\mathrm{Q}_{3}$	3-State Buffered Latch Outputs

TRUTH TABLE

INPUTS		OUTPUT	
EO	\bar{S}_{n}	\bar{R}_{n}	Q_{n}
L	X	X	High Impedance
H	L	H	H
H	H	L	L
H	L	L	L
H	H	H	No Change

$H=$ HIGH Level
$L=$ LOW Level
$X=$ Don't Care

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=P$ in 8
$N C=P$ in 2
$\bigcirc=$ Pin Numbers

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8 \\
& N C=\operatorname{Pin} 2
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpack version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IOZH	Output OFF Current HIGH	xc		0.05 3			0.1 6			0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{D D}, E O=V_{S S}$
		XM		$\begin{aligned} & 0.005 \\ & 0.3 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.6 \end{aligned}$			$\begin{aligned} & 0.02 \\ & 1.2 \end{aligned}$			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
Iozl	Output OFF Current LOW	XC		$\begin{array}{\|l\|} \hline-0.05 \\ -3 \\ \hline \end{array}$			$\begin{aligned} & -0.1 \\ & -6 \\ & \hline \end{aligned}$			$\begin{array}{\|l} -0.2 \\ -12 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{S S}, E O=V_{S S}$
		XM		$\left\lvert\, \begin{aligned} & -0.005 \\ & -0.3 \end{aligned}\right.$			$\begin{aligned} & -0.01 \\ & -0.6 \end{aligned}$			$\begin{aligned} & -0.02 \\ & -1.2 \end{aligned}$			MIN, $25^{\circ} \mathrm{C}$ MAX	
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			$\begin{array}{r} 10 \\ 140 \\ \hline \end{array}$			$\begin{array}{\|r\|} \hline 20 \\ 280 \\ \hline \end{array}$		$\begin{aligned} & 4 \\ & 56 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common and at 0 V or V_{DD}
		XM			1 60			$\begin{array}{\|r\|} \hline 2 \\ 120 \end{array}$		$\begin{aligned} & 0.4 \\ & 24 \end{aligned}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHL}} \end{aligned}$	Propagation Delay, $\bar{S}_{\boldsymbol{n}}$ to Q_{n}		90 90			45 45			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{R}_{\mathrm{n}}}$ to Q_{n}		$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\left(\begin{array}{l} \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{array}\right.$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }^{\mathrm{T} H L} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, $\overline{S_{n}}$ to Q_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{R_{n}}$ to Q_{n}		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$			$\begin{array}{r} 50 \\ 50 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 40 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }_{\mathrm{t}}^{\mathrm{PZL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}}\right) \\ & \left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{array}{r} 40 \\ 40 \\ \hline \end{array}$			$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}}\right) \\ & \left(R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}}\right) \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{TLH}} \\ & { }^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{w} S_{n}}$	Minimum $\overline{S_{n}}$ Pulse Width		40			20			15		ns	
$t_{w} \overline{R_{n}}$	Minimum $\overline{R_{n}}$ Pulse Width		40			20			15		ns	
${ }^{\text {rec }}$	$\overline{\mathrm{S}_{\mathrm{n}}}$ Recovery Time		10			5			3		ns	$C_{L}=15 \mathrm{pF}$
${ }^{\text {trec }}$	$\overline{R_{n}}$ Recovery Time		10			5			3		ns	$\text { Times } \leq 20 \mathrm{~ns}$

MINIMUM $\overline{S_{\mathbf{N}}}$ AND $\overline{\mathbf{R}_{\mathbf{N}}}$ PULSE WIDTHS AND RECOVERY TIMES FOR $\overline{\mathbf{S}_{\mathbf{N}}}$ AND $\overline{\mathbf{R}_{\mathbf{N}}}$

F4046/34046
 MICROPOWER PHASE-LOCKED LOOP

DESCRIPTION - The F4046 is a Micropower Phase-Locked Loop consisting of a low power linear Voltage-Controlled Oscillator, a Source Follower Circuit, two different Phase Comparators, and a Zener diode. The Voltage-Controlled Oscillator has two External Capacitor connections ($\mathrm{C}_{\mathrm{exta}}, \mathrm{C}_{\mathrm{extb}}$), two External Resistor connections ($R_{\text {exta }}, R_{\text {extb }}$), a Voltage-Controlled Oscillator Input (IVCO) and a Voltage-Controlled Oscillator Output (OVCO). The Source Follower Circuit provides a Demodulated Output (O_{D}) from the Voltage-Controlled Oscillator. An active LOW Enable Input (\bar{E}) common to both the Voltage-Controlled Oscillator and the Source Follower Circuit is also provided. Phase Comparator I and Phase Comparator II have common Signal (IS) and Comparator (IC) Inputs and separate outputs; Phase Comparator I Output ($\mathrm{OPCI}_{\mathrm{PCI}}$), Phase Comparator II Output ($\mathrm{OPCII}^{\mathrm{P}}$), and Phase Pulse Output (OPII). An input to the Zener diode (I_{Z}) is also provided.

The Voltage-Controlled Oscillator requires one external capacitor (C_{1}) and one external resistor (R_{1}) to determine operational frequency range. A second external resistor (R_{2}) may be used to allow frequency offset. External resistor \mathbf{R}_{3} and external capacitor C_{2} combined serve as a low pass filter to the Voltage-Controlled Oscillator Input (1 VCO). Output O_{D} is provided to avoid loading the low pass filter. External resistor R_{4} is required if this output is utilized. O_{D} must be left open when not utilized. The output from the Voltage-Controlled Oscillator (O VCO) may be connected directly or indirectly through CMOS frequency dividers (i.e., the F4018, F4020, F4022, F4024, F4029, F4040, F4518, F4520, F40160, F40161, F40162, F40163, F40192, or F40193) to the Comparator Input (1c) With the Enable Input (\bar{E}) HIGH both the Voltage-Controlled Oscillator and the Source Follower Circuit are OFF to minimize power consumption. With \bar{E} LOW, both are enabled.

For direct-coupling between $\mathrm{O}_{\mathrm{VCO}}$ and I_{C}, the voltage swing at the Voitage-Controlled Oscillator Output ($\mathrm{O}_{\mathrm{VCO}}$) must be within standard CMOS logic levels ($\mathrm{VOH}_{\mathrm{OH}} \geqslant 07 \mathrm{~T}_{\mathrm{N}} \mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{OL}} \leqslant 0.3$ $\times \mathrm{V}_{\mathrm{DD}}$); otherwise the signal from OVCO must be capacitively coupled to the Signal Input (IS).
Phase Comparator I is an Exclusive OR circuitlC. is). IC and Is must have 50% duty cycles to maximize lock range. When the Output of Pbase Comparator I (OPCI) is connected back to the Voltage-Controlled Oscillator through the low passfilter network, an averaged voltage to IVCO forces oscillation at a center frequency.

Phase Comparator $I I$ is an edge-triggered digital memory network with four flip-flop stages, associated control circuitry and a 3 -state output. Phase Comparator 11 triggers on LOW-to-HIGH transitions at the Signal (I_{S}) and Comparator (I_{C}) Inputs and is independent of duty cycle at these inputs. The Output of Phase Comparator II (OPCII) provides voltage levels and duty cycles corresponding to frequency and phase differentials between IC and IS. When OpCII is connected to the VoltageControlled Oscillator Input (IVCO) through the low pass filter network, a corresponding voltage across capacitor C_{2} is adjusted until the Signal (IS) and Comparator (I_{C}) Inputs are equal in both frequency and phase. At this point Phase Comparator II maintains a constant voltage across Capacitor C_{2}. When this stability has been established, the Phase Pulse Output (OPII) is HIGH indicating a locked condition. Power dissipation in the low pass filter is reduced when Phase Comparator II is used.

A 5.2 V , on chip zener diode is provided for regulating the power supply voltage, if necessary.

- CHOICE OF 2-PHASE COMPARATORS
- ENABLE INPUT (ACTIVE LOW) FOR LOW POWER DISSIPATION IN STANDBY MODE
- ON-CHIP ZENER DIODE FOR SUPPLY REGULATION

PIN NAMES	
Iz	Zener Diode Input
Is	Signal Input
${ }^{1} \mathrm{C}$	Comparator Input
IVCo	Voltage-Controlled Oscillator Input
\bar{E}	Enable Input (Active LOW)
$\mathrm{C}_{\text {exta }}, \mathrm{C}_{\text {extb }}$	External Capacitor Connections
$\mathrm{R}_{\text {exta }}, \mathrm{R}_{\text {extb }}$	External Resistor Connections
OPCI	Phase Comparator I Output
OpCII	Phase Comparator II Output
Oplı	Phase Pulse Output
O_{D}	Demodulator Output
Ovco	Voltage-Controlled Oscillator Output

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD CMOS • F4046/34046

BLOCK DIAGRAM

F4047/34047 MONOSTABLE/ASTABLE MULTIVIBRATOR

DESCRIPTION - The F4047 is a Monostable/Astable Multivibrator capable of operating in either the monostable or astable mode. Operation in either mode requires an external capacitor (C_{x}) between pins 1 and $3\left(C_{\text {ext }}, R_{\text {ext }} / C_{\text {ext }}\right)$ and an external resistor $\left(R_{x}\right)$ between pins 2 and $3\left(R_{\text {ext }}, R_{\text {ext }} / C_{\text {ext }}\right)$. These external timing components ($\mathrm{R}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}$) determine the output pulse width in the monostable mode and the output frequency in the astable mode. The F4O47 also has active HIGH and active LOW astable mode Enable Inputs ($E_{A 0}, E_{A 1}$), active HIGH and active LOW Trigger Inputs (T_{0}, \bar{T}_{1}) for operation in the monostable mode, a Retrigger Input ($I_{R T}$), an Oscillator Output (O), active HUG and active LOW flip-flop Outputs ($\mathrm{Q}, \overline{\mathrm{Q}}$) and an overriding asynchronous Master Reset Input (MR)

ASTABLE OPERATION. Astable operation is obtained by either a HIGH on the EAO input or a LOW on the $\bar{E}_{A 1}$ input. The frequency of the 50% duty cycle output at the 0 and \bar{C} outputs is determined by the external timing components ($\mathrm{R}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}$). A frequency twice that of the Q and Q outputs is available at the Oscillator Output (O). However, a 50% duty cycle is not guaranteed. The F4047 can be used as a gated oscillator by controlling the $E_{A O}$ and EAt inputs. $^{\text {to }}$

MONOSTABLE OPERATION. Monostable operation is obtained by connecting the $E_{A 0}$ input LOW and the $\bar{E}_{A 1}$ input HIGH. The device can be triggered by either a LOW-to-HIGH transition at the T_{0} input while the \bar{T}_{1} input is LOW or a HIGH-to-LOW transition at the \bar{T}_{1} input while the T_{0} is HIGH. The output pulse width at Q and $\overline{\mathrm{Q}}$ is determined by the external timing components ($\mathrm{R}_{\mathrm{x}}, \mathrm{C}_{\mathrm{x}}$). The device can be retriggered by applying a simultaneous LOW-to-HIGH transition to both the Retrigger Input ($I_{R T}$) and the T_{0} input while the T_{1} input is LOW.
A HIGH on the Master Reset Input (MR) resets the output flip-flop ($\mathrm{Q}=$ LOW, $\overline{\mathrm{Q}}=\mathrm{HIGH}$) independent of all other input conditions.

- monostable or astable operation
- TRUE AND COMPLEMENTARY BUFFERED OUTPUTS
- enabled with either a low or a high level in the astable mode
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION IN THE MONOSTABLE MODE
- ASYNCHRONOUS MASTER RESET

PIN NAMES

$C_{\text {ext }}$	External Capacitor Connection
$R_{\text {ext }}$	External Resistor Connection
$R_{\text {ext }} / C_{\text {ext }}$	Common External Capacitor and Resistor Connection
$I_{R T}$	Retrigger Input
T_{0}	Trigger Input ($L \rightarrow H$ Triggered)
T_{1}	Trigger Input (H L Triggered)
$E_{A O}$	Enable Input (Active HIGH)
$\bar{E}_{A 1}$	Enable Input (Active LOW)
$M R$	Master Reset
O	Oscillator Output
Q, \bar{Q}	True and Complementary Buffered Outputs

F4049 HEX INVERTING BUFFER • F4050 HEX NON-INVERTING BUFFER

DESCRIPTION - These CMOS buffers provide high current output capability suitable for driving TTL or high capacitance loads. Since input voltages in excess of the buffers' supply voltage are permitted, these buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. The F4049 provides six inverting buffers, the F4050 six non-inverting buffers. Their guaranteed fan out into common bipolar logic elements is shown in Table 1.

F4050
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

TABLE 1
Guaranteed fan out of F4049, F4050 into common logic families

DRIVEN ELEMENT	GUARANTEED FAN OUT
Standard TTL, DTL	2
9LS, 93L, 74LS	9
74 L	16

Conditions: $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.25 \mathrm{~V}$
$V_{\mathrm{OL}} \leqslant 0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $75^{\circ} \mathrm{C}$

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$, F4049XM and F4050XM (See Note 1)

SYMBOL	PARAM ETER	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\mathrm{O}} \mathrm{OH}$	Output HIGH Current	$\left\lvert\, \begin{aligned} & -1.85 \\ & -1.25 \\ & -0.9 \end{aligned}\right.$	-2.5								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\mathrm{OUT}}=2.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
		$\left\lvert\, \begin{aligned} & -0.62 \\ & -0.5 \\ & -0.35 \end{aligned}\right.$	-1.0		$\left\lvert\, \begin{aligned} & -1.85 \\ & -1.25 \\ & -0.9 \end{aligned}\right.$	-2.5			$\begin{aligned} & -5.2 \\ & -4.7 \\ & -3.5 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\text {OUT }}=4.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{\text {OUT }}=9.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $V_{\text {OUT }}=14.5 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
${ }^{1} \mathrm{OL}$	Output LOW	$\begin{aligned} & 3.75 \\ & 3.0 \\ & 2.1 \end{aligned}$	6.0		$\begin{array}{\|r} 10.0 \\ 8.0 \\ 5.6 \end{array}$	16.0			$\begin{aligned} & 24.5 \\ & 22.0 \\ & 16.8 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & V_{O U T}=0.4 \mathrm{~V} \text { for } V_{D D}=5 \mathrm{~V} \\ & V_{O U T}=0.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \text { Inputs at } 0 \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { per Function } \end{aligned}$
		$\begin{aligned} & 3.3 \\ & 2.6 \\ & 1.8 \end{aligned}$	5.2								mA mA mA	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\mathrm{OUT}}=0.4 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ Inputs at OV or V_{DD} per Function
IDD	Quiescent Power Supply Current			$\begin{array}{r} 0.3 \\ 20.0 \end{array}$			$\begin{array}{r} 0.5 \\ 30.0 \end{array}$		$\begin{aligned} & 0.1 \\ & 6.0 \end{aligned}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs common and at O or V_{DD}

[^8]FAIRCHILD CMOS • F4049/34049 • F4050/34050

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$, F4049XC and F4050XC (Cont'd) (See Note 1)

SYMBOL	PARAM -ETER	LIMITS									UNITS	TEMP	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{OH}$	$\begin{aligned} & \text { Output } \\ & \text { HIGH } \\ & \text { Current } \end{aligned}$	$\begin{array}{\|l} -1.5 \\ -1.25 \\ -1.0 \end{array}$	-2.5								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & V_{O U T}=2.5 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \text { Inputs at } \mathrm{O} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { per Function } \end{aligned}$
		$\begin{array}{\|l} -0.6 \\ -0.5 \\ -0.4 \end{array}$	-1.0		$\left\lvert\, \begin{aligned} & -1.5 \\ & -1.25 \\ & -1.0 \end{aligned}\right.$	-2.5			$\begin{aligned} & -5.2 \\ & -4.7 \\ & -4.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\mathrm{V}_{\mathrm{OUT}}=4.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{\text {OUT }}=9.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $V_{\text {OUT }}=14.5 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$ Inputs at O or $V_{D D}$ per Function
${ }^{1} \mathrm{OL}$	Output LOW	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.5 \end{aligned}$	6.0		$\begin{aligned} & 9.6 \\ & 8.0 \\ & 6.6 \end{aligned}$	16.0			$\begin{aligned} & 24.5 \\ & 22.0 \\ & 19.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\text {OUT }}=0.4 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$. $V_{\text {OUT }}=0.5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $V_{\text {OUT }}=0.5 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$ Inputs at 0 or $V_{D D}$ per Function
		$\begin{aligned} & 3.1 \\ & 2.6 \\ & 2.1 \end{aligned}$	5.2								$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{\mathrm{OUT}}=0.4 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ Inputs at $O V$ or $V_{D D}$ per Function
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current			$\begin{array}{r} 3.0 \\ 42.0 \end{array}$			$\begin{array}{r} 5.0 \\ 70.0 \end{array}$		$\begin{array}{r} 1.0 \\ 14.0 \end{array}$		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN }, 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs common and at O or V_{DD}

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, F 4049 only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay		$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{\mathrm{t}} \mathrm{THL}^{\mathrm{TH}}$	Output Transition Time		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$		17 7	35 20		12 5	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & \hline 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 130 \\ & 105 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$		$\begin{aligned} & 29 \\ & 17 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ & { }^{\mathrm{T} T \mathrm{HL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 73 \\ & 33 \end{aligned}$	145 65		40 13	80 25		17 9	60 20	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, F4050 only(See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay		$\begin{aligned} & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}$ TLH ${ }^{\mathrm{t}}{ }^{\mathrm{T} H \mathrm{H}}$	Output Transition Time		30 20	60 40		$\begin{array}{r}17 \\ 7 \\ \hline\end{array}$	35 20		$\begin{array}{r} 12 \\ 5 \end{array}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH}}$ ${ }^{\mathrm{t} P H L}$	Propagation Delay		$\begin{aligned} & 65 \\ & 43 \end{aligned}$	$\begin{array}{r} 130 \\ 95 \end{array}$		30 23	$\begin{aligned} & 65 \\ & 45 \end{aligned}$		$\begin{aligned} & 24 \\ & 17 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\mathrm{t}} \mathrm{T}$ HL	Output Transition Time		$\begin{aligned} & 73 \\ & 33 \end{aligned}$	$\begin{array}{r} 145 \\ 65 \end{array}$		90 13	80 25		30 9	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

Notes on preceeding page.

TYPICAL ELECTRICAL CHARACTERISTICS

F4051/34051 8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The F4051 is an 8-Channel Analog Multiplexer/Demultiplexer with three Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{2}$), an active LOW Enable Input ($\overline{\mathrm{E}}$), eight Independent Inputs/Outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{7}$) and a Common Input/Output (Z).
The F4051 contains eight bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}-\mathrm{Y}_{7}$) and the other side connected to a Common Input/Output (Z). With the Enable Input (E LOW, one of the eight switches is selected (low impedance, ON state) by the three Address Inputs ($A_{0}-A_{2}$). With the Enable Input (\bar{E}) HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs.
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the digital control inputs $\left(A_{0}-A_{2}, \bar{E}\right)$. Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs $\left(\mathrm{Y}_{0}-\mathrm{Y}_{7}, \mathrm{Z}\right)$ can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D^{-}} V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES

$\mathrm{Y}_{0}-\mathrm{Y}_{7}$	Independent Inputs/Outputs
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
Z	Common Input/Output

TRUTH TABLE

INPUTS				CHANNELS										
\bar{E}	A_{2}	A $_{1}$	A O $_{0}$	$Y_{0}-Z$	$Y_{1}-Z$	$Y_{2}-Z$	$Y_{3}-Z$	$Y_{4}-Z$	$Y_{5}-Z$	$Y_{6}-Z$	$Y_{7}-Z$			
L	L	L	L	ON	OFF									
L	L	L	H	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF			
L	L	H	L	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF			
L	L	H	H	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF			
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF			
L	H	L	H	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF			
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF			
L	H	H	H	OFF	ON									
H	X	X	X	OFF										

$$
\begin{aligned}
& L=\text { LOW Level } \\
& H=\text { HIGH Level } \\
& X=\text { Don't Care }
\end{aligned}
$$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON Resistance	XC		95 100 125			55 65 100			$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$		$\boldsymbol{\Omega}$	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{D D}$ Note 2
				95 100 125			55 65 100			$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$		$\boldsymbol{\Omega}$	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{E E}$ Note 2
				1600 1000 850			110 125 200			55 60 95		Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	Note 3
		XM		90 100 150			50 65 110			30 40 70		$\boldsymbol{\Omega}$	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{D D}$ Note 2
				90 100 150			50 65 110			30 40 70		Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$v_{i s}=v_{E E}$ Note 2
				$\begin{array}{r} 1750 \\ 1000 \\ 700 \end{array}$			$\begin{aligned} & 100 \\ & 125 \\ & 220 \end{aligned}$			$\begin{array}{r} 50 \\ 60 \\ 100 \\ \hline \end{array}$		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	Note 3
$\Delta \mathrm{R}_{\mathrm{ON}}$	" Δ " ON Re ance Betwee Two Channe	sistn Any els					10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
${ }^{\prime}$	OFF State Leakage Current, All Channels OFF XC							800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \bar{E}=V_{D D} \\ & v_{S S}=V_{D D} / 2 \\ & v_{i s}=v_{D D} \text { or } v_{E E} \end{aligned}$
	Any Channel OFF	XC						100						$\begin{aligned} & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
${ }^{\text {I D D }}$	Quiescent Power Supply Dissipation	XC			$\begin{array}{r} 20 \\ 700 \\ \hline \end{array}$			$\begin{array}{\|r\|} 40 \\ 1400 \\ \hline \end{array}$		$\begin{array}{r} 8 \\ 280 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	$v_{S S}=v_{E E}$ All inputs common and
		XM			2 70			4 140		$\begin{array}{r} \hline 0.8 \\ 28 \end{array}$		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN }, 25^{\circ} \mathrm{C} \\ & \operatorname{MAX} \end{aligned}$	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 4)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{t_{P L H}} \\ & { }^{t_{P H L}} \end{aligned}$	Propagation Delay, Input to Output		$\begin{array}{r} 20 \\ 8 \end{array}$			7 4			4 3		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}$ $=V_{E E}, A_{n}$ or $V_{\text {is }}=$ $V_{D D}$ or $V_{E E}$
${ }^{t}$ PLH ${ }^{t_{P H L}}$	Propagation Delay, Address to Output		$\begin{aligned} & 160 \\ & 200 \end{aligned}$			$\begin{array}{r} 90 \\ 120 \end{array}$			$\begin{aligned} & 75 \\ & 90 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \hline{ }^{t_{\mathrm{PZL}}} \\ & { }^{\mathrm{t}^{2}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 180 \\ & 200 \end{aligned}$			$\begin{array}{r} 90 \\ 100 \end{array}$			$\begin{aligned} & 70 \\ & 80 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \overline{\mathrm{E}} \text { or } \\ & A_{n}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & \hline{ }^{t_{\mathrm{PLZ}}} \\ & { }^{\mathrm{t}} \mathrm{PHZ} \end{aligned}$	Output Disable Time		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$			$\begin{aligned} & 900 \\ & 900 \end{aligned}$			$\begin{aligned} & 860 \\ & 850 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$v_{\text {is }}=V_{D D} \text { or } V_{E E}$ $\text { Note } 6$
$\begin{aligned} & \hline{ }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Input to Output		$\begin{aligned} & 25 \\ & 10 \end{aligned}$			$\begin{array}{r} 10 \\ 6 \end{array}$			6 4		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \bar{E}=V_{S S}=V_{E E}, \end{aligned}$
$\begin{aligned} & \hline{ }^{t^{\prime} \mathrm{PLH}} \\ & { }^{\mathrm{t} P H L} \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			$\begin{aligned} & 80 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\begin{aligned} & A_{n} \text { or } V_{i s}=V_{D D} \text { or } \\ & V_{E E} \\ & \text { Note } 6 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \\ & \hline \end{aligned}$			$\begin{array}{r} 95 \\ 105 \\ \hline \end{array}$			$\begin{aligned} & 75 \\ & 85 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \bar{E}_{\text {or }} \\ & A_{n}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{array}{\|l\|} \hline 1250 \\ 1240 \\ \hline \end{array}$			$\begin{aligned} & 1130 \\ & 1120 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 1080 \\ 1070 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 6 \end{aligned}$
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{array}{\|l} \hline C_{\mathrm{L}}=15 \mathrm{pF} \\ R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}= \\ \mathrm{V}_{\mathrm{DD}} / 2 \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}}, \\ \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} / 2(\text { sine } \\ \text { wave }) \mathrm{f}_{\mathrm{iS}}=1 \mathrm{kHz} \\ \hline \end{array}$
	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2(\text { sine } \\ & \text { wave }) \text { a }-40 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2,20 \\ & \mathrm{Log}_{10}\left(\mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\text {is }}\right)= \\ & -40 \mathrm{~dB} \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}= \\ & \mathrm{V}_{\mathrm{DD}} / 2 \mathrm{E}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} / 2(\text { sine } \\ & \text { wave } 20 \log _{10} \\ & \left(\mathrm{~V}_{\mathrm{oS}} / \mathrm{V}_{\mathrm{is}}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
$\mathrm{f}_{\text {MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2(\text { sine } \\ & \text { wave } V_{\mathrm{SS}}=V_{\mathrm{DD}} / 2 \\ & 20 \mathrm{Log}_{10}\left(\mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\text {is }}\right)= \\ & -3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Additional DC Characteristics for the Address and Enable Inputs are listed in this section under F4000 Series CMOS Family Characteristics.
2. $\bar{E}=V_{S S}, R_{L}=10 \mathrm{k} \Omega$, any channel selected and $V_{S S}=V_{E E}$ or $V_{D D / 2}$.
3. $V_{\text {is }}=8.6 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$.
$V_{\text {is }}=5.1 \mathrm{~V}$ for $V_{D D}=10 \mathrm{~V}$
$V_{\text {is }}=1.9 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$
4. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
5. $V_{\text {is }} / V_{\text {os }}$ is the voltage signal at an Input/Output terminal $\left(Y_{n} / Z_{n}\right)$.
6. $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ (Square Wave), Input transition times $\leqslant 20 \mathrm{~ns}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.

F4052/34052
 DUAL 4-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The F4052 is a Dual 4-Channel Analog Multiplexer/Demultiplexer with common channel select logic. Each Multiplexer/Demultiplexer has four Independent Inputs/Outputs ($\mathrm{Y}_{0} \mathrm{O}_{3}$) and a Common Input/Output (Z). The common channel select logic includes two Address Inputs (A_{0}, A_{1}) and an active LOW Enable Input (\bar{E}).
Both multiplexer/demultiplexers contain four bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}-\mathrm{Y}_{3}$) and the other side connected to a Common Input/Output (Z). With the Enable Input LOW, one of the four switches is selected (low impedance, ON state) by the two Address Inputs. With the Enable Input HIGH, all switches are in the high impedance OFF state, independent of the Address Inputs.
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the digital control inputs (A_{0}, A_{1}, \bar{E}). Their voltage limits are the same as for all other digital CMOS. The analog inputs/outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{3}, \mathrm{Z}$) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, $V_{E E}$ is connected to $V_{S S}$ (typically ground).

- DIGITAL OR ANALOG MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES

$\mathrm{Y}_{0 \mathrm{a}}-\mathrm{Y}_{3 a}$	Independent Inputs/Outputs
$\mathrm{Y}_{0 \mathrm{~b}}-\mathrm{Y}_{3 \mathrm{~b}}$	Independent Inputs/Outputs
A_{0}, A_{1}	Address Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
$\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$	Common Input/Output

TRUTH TABLE

INPUTS			CHANNELS			
\bar{E}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	$Y_{2}-Z$	$Y_{3}-Z$
L	L	L	ON	OFF	OFF	OFF
L	L	H	OFF	ON	OFF	OFF
L	H	L	OFF	OFF	ON	OFF
L	H	H	OFF	OFF	OFF	ON
H	X	X	OFF	OFF	OFF	OFF

L = LOW Level, $H=$ HIGH Level, $X=$ Don't care.
F4052 FUNCTIONAL LOGIC DIAGRAM

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=P \text { in } 8 \\
& V_{E E}=P \text { in } 7
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON Resistance	XC		95 100 125			55 65 100			$\begin{aligned} & 35 \\ & 40 \\ & 65 \end{aligned}$		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{\text {is }}=v_{D D}$ Note 2
				95 100 125			55 65 100			35 40 65		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{i s}=v_{E E}$ Note 2
				$\begin{array}{r} 1600 \\ 1000 \\ 850 \\ \hline \end{array}$			$\begin{aligned} & 110 \\ & 125 \\ & 200 \\ & \hline \end{aligned}$			55 60 95		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	Note 3
		XM		90 100 150			50 65 110			30 40 70		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$v_{\text {is }}=v_{D D}$ Note 2
				90 100 150			$\begin{array}{r} 50 \\ 65 \\ 110 \\ \hline \end{array}$			30 40 70		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$V_{i s}=V_{E E}$ Note 2
				$\begin{array}{r} 1750 \\ 1000 \\ 700 \end{array}$			$\begin{aligned} & 100 \\ & 125 \\ & 220 \end{aligned}$			50 60 100		Ω	MIN $25^{\circ} \mathrm{C}$ MAX	Note 3
$\Delta \mathrm{R}_{\mathrm{ON}}$	" Δ " ON Re ance Betwee Two Channe	sist- Any ls					10			5		Ω	$25^{\circ} \mathrm{C}$	Note 2
${ }^{\prime} \mathrm{Z}$	OFF State Leakage Current, All Channels OFF XM							800 80				nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
	Any Channel OFF	XC						100						$\begin{aligned} & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
${ }^{\prime}$ DD	Quiescent Power Supply Dissipation	$X C$ $X M$			$\begin{array}{r} 20 \\ 700 \\ \hline 2 \\ 70 \end{array}$			$\begin{array}{r} 40 \\ 1400 \\ \hline 4 \\ 140 \end{array}$		$\begin{array}{r} 8 \\ 280 \\ \hline 0.8 \\ 28 \end{array}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	$\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}$ All Inputs Common and at $\mathrm{O} V$ or V_{DD}

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{E E}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$ (See Note 4)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Input to Output		$\begin{array}{r} 20 \\ 8 \\ \hline \end{array}$			7 4			4 3		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~A}_{\mathrm{n}} \text { or } \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 160 \\ & 200 \end{aligned}$			$\begin{array}{r} 90 \\ 120 \end{array}$			$\begin{aligned} & 75 \\ & 90 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Note 6
$\begin{aligned} & { }^{t_{\mathrm{PZL}}} \\ & { }_{\mathrm{t}}^{\mathrm{P}} \mathrm{CZH} \end{aligned}$	Output Enable Time		$\begin{aligned} & 180 \\ & 200 \end{aligned}$			$\begin{array}{r} 90 \\ 100 \end{array}$			$\begin{aligned} & 70 \\ & 80 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{E} \text { or } A_{n}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & { }^{\text {}} \mathrm{PLZ} \\ & { }^{\text {t}} \mathrm{PHZ} \\ & \hline \end{aligned}$	Output Disable Time		$\left\lvert\, \begin{aligned} & 1000 \\ & 1000 \end{aligned}\right.$			$\begin{aligned} & 900 \\ & 900 \end{aligned}$			$\begin{aligned} & 860 \\ & 850 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { Note } 6 \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{tPLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Input to Output		$\begin{aligned} & 25 \\ & 10 \end{aligned}$			$\begin{array}{r}10 \\ 6 \\ \hline\end{array}$			6 4		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \bar{E}=V_{S S}=V_{E E} \end{aligned}$
${ }^{\text {t }}{ }^{\text {PLH }}$ ${ }^{{ }^{\text {P PHL }}}$	Propagation Delay, Address to Output		$\begin{aligned} & 170 \\ & 210 \end{aligned}$			$\begin{array}{r} 95 \\ 125 \end{array}$			$\begin{aligned} & 80 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & A_{n} \text { or } V_{\text {is }}=V_{D D} \text { or } V_{E E} \\ & \text { Note } 6 \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & { }^{\mathrm{t}_{\mathrm{P}}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 185 \\ & 205 \end{aligned}$			$\begin{array}{r} 95 \\ 105 \\ \hline \end{array}$			$\begin{aligned} & 75 \\ & 85 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \bar{E}_{\text {or }} A_{n}=V_{S S}=V_{E E} \end{aligned}$
$\begin{aligned} & { }^{{ }^{{ }^{\mathrm{t}}} \mathbf{4 L Z}} \\ & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 1250 \\ & 1240 \end{aligned}$			$\begin{aligned} & 1130 \\ & 1120 \end{aligned}$			$\begin{aligned} & 1080 \\ & 1070 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & v_{\text {is }}=v_{D D} \text { or } v_{E E} \\ & \text { Note } 6 \end{aligned}$
	Distortion, Sine Wave Response		0.2			0.2			0.2		\%	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \mathrm{E}^{\prime}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{v}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \mathrm{f}_{\mathrm{is}}=1 \mathrm{kHz} \\ & \hline \end{aligned}$
	Crosstalk Between Any Two Channels					1					MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \text { at }-40 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2,20 \mathrm{Log}_{10} \\ & \left(\mathrm{~V}_{\mathrm{os}} / \mathrm{V}_{\text {is }}\right)=-40 \mathrm{~dB} \end{aligned}$
	OFF State Feedthrough					1					MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2(\text { sine wave }) \\ & 20 \log _{10}\left(\mathrm{~V}_{\mathrm{os}} / \mathrm{v}_{\text {is }}\right)=-40 \mathrm{~dB} \\ & \hline \end{aligned}$
${ }^{\text {f MAX }}$	ON State Frequency Response		13			40			70		MHz	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \\ & \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & 20 \log _{10}\left(\mathrm{~V}_{\text {os }} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$

NOTES:

1. Additional DC Characteristics for the Address and Enable Inputs are listed in this section under F 4000 Series CMOS Family Characteristics.
2. $\bar{E}=V_{S S}, R_{L}=10 \mathrm{k} \Omega$, any channel selected and $V_{S S}=V_{E E}$ or $V_{D D} / 2$.
3. $V_{\text {is }}=8.6 \mathrm{~V}$ for $V_{D D}=15 \mathrm{~V}$
$V_{\text {is }}=5.1 \mathrm{~V}$ for $\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$
$V_{\text {is }}=1.9 \mathrm{~V}$ for $V_{D D}=5 \mathrm{~V}$
4. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
5. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(\mathrm{Y}_{n} / Z_{n}\right)$.
6. $V_{I N}=V_{D D}$ (Square Wave), Input Transition Times $\leqslant 20 \mathrm{~ns}$ and $R_{L}=10 \mathrm{k} \Omega$.

F4053/34053 TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The F4053 is a Triple 2-Channel Analog Multiplexer/Demultiplexer with a common Enable Input (\bar{E}). Each Multiplexer/Demultiplexer has two Independent Inputs/Outputs ($\mathrm{Y}_{0}, \mathrm{Y}_{1}$), a Common Input/Output (Z), and a Select Input (S). Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an Independent Input/Output (Y_{0}, Y_{1}) and the other side connected to a Common Input/Output (Z). With the Enable Input (\bar{E}) LOW, one of the two switches is selected (low impedance, ON state) by the Select Input (S). With the Enable Input (E) HIGH, all switches are in the high impedance OFF state, independent of the Select Inputs ($\mathrm{S}_{a}-\mathrm{S}_{\mathrm{c}}$)
$V_{D D}$ and $V_{S S}$ are the two supply voltage connections for the Digital Control Inputs ($\mathrm{S}_{\mathrm{a}} \mathrm{S}_{\mathrm{c}}, \overrightarrow{\mathrm{E}}$) , Their voltage limits are the same as for all other digital CMOS. The analog Inputs/Outputs ($10 . Y 1, Z$) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V . For operation as a digital multiplexer/demultiplexer, $V_{E E}$ is connected to $V \mathrm{SS}$ (ty pically ground).

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- COMMON ENABLE INPUT (ACTIVE LOW)

PIN NAMES

$Y_{0 a}-Y_{0 c}, Y_{1 a}-Y_{1 c}$
$S_{a}-S_{c}$
\bar{E}
$Z_{a}-Z_{c}$

Independent Input/Outputs
Select Inputs
Enable Input (Active LOW)
Common Input/Outputs

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

F4066/34066
 QUAD BILATERAL SWITCHES

DESCRIPTION - The F4066 has four independent bilateral analog switches (transmission gates). Each switch has two Input/Output Terminals $\left(Y_{n}, Z_{n}\right)$ and an active HIGH Enable Input (E_{n}). A HIGH on the Enable Input establishes a low impedance bidirectional path between Y_{n} and Z_{n} (ON condition). A LOW on the Enable Input disables the switch; high impedance between Y_{n} and Z_{n} (OFF condition).

- DIGITAL OR ANALOG SIGNAL SWITCHING

- INDIVIDUAL ENABLE INPUTS (ACTIVE HIGH)

PIN NAMES

$E_{0}-E_{3}$	Enable Inputs
$Y_{0}-Y_{3}$	Input/Output Terminals
$Z_{0}-Z_{3}$	Input/Output Terminals

LOGIC DIAGRAM (1/4 OF A F4066)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
R_{ON}	ON Resistance	XC		$\begin{aligned} & 190 \\ & 270 \\ & 330 \end{aligned}$	$\begin{array}{r} 900 \\ 1000 \\ 1090 \end{array}$		$\begin{aligned} & 100 \\ & 120 \\ & 170 \end{aligned}$	$\begin{aligned} & 450 \\ & 500 \\ & 520 \end{aligned}$		$\begin{array}{r} 80 \\ 80 \\ 130 \end{array}$	$\begin{aligned} & 250 \\ & 280 \\ & 300 \end{aligned}$	Ω	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{DD}} \text { to } \mathrm{V}_{\mathrm{SS}} \end{aligned}$
		XM		$\begin{aligned} & 160 \\ & 270 \\ & 360 \\ & \hline \end{aligned}$	$\begin{array}{r} 850 \\ 1000 \\ 1150 \end{array}$		$\begin{array}{r} 85 \\ 120 \\ 190 \end{array}$	$\begin{aligned} & 400 \\ & 500 \\ & 550 \end{aligned}$		$\begin{array}{r} 60 \\ 80 \\ 145 \end{array}$	$\begin{aligned} & 220 \\ & 280 \\ & 320 \end{aligned}$	Ω	MIN $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & R_{L}=10 k \Omega \\ & E_{n}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { to } V_{S S} \\ & \hline \end{aligned}$
$\Delta \mathrm{R}_{\mathrm{ON}}$	" Δ " ON Resistance Between Any Two Switches						10			5		Ω	$25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \text { to } V_{S S} \\ & E_{n}=V_{D D} \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$
${ }^{\prime} \mathrm{z}$	OFF State Leakage Current, Any Y to Z							100			100	nA	$25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{i s}=V_{D D} \text { or } V_{S S} \\ & E_{n}=v_{S S} \end{aligned}$
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			$\begin{array}{r} 0.25 \\ 25 \\ \hline \end{array}$			$\begin{array}{r} 0.5 \\ 30 \end{array}$		$\begin{array}{r} 0.1 \\ 6 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common
		XM			$\begin{array}{r} 0.25 \\ 25 \end{array}$			$\begin{array}{r} 0.5 \\ 30 \end{array}$		0.1 6		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	and at $V_{D D}$ or $V_{S S}$

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		4 3			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			1		ns	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \\ & V_{\text {is }}=V_{D D} \text { (square wave) } \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}}}{ }^{\mathrm{t}} \\ & { }^{\mathrm{PPZH}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 24 \\ & 24 \end{aligned}$			$\begin{aligned} & 14 \\ & 14 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) } \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L Z}} \\ & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{array}{\|l\|} \hline 160 \\ 160 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 170 \\ 170 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 182 \\ 182 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20$ ns $v_{i s}=v_{D D}$
$\begin{aligned} & { }^{{ }^{t_{P L H}}} \end{aligned}$	Propagation Delay, Y_{n} to Z_{n} or Z_{n} to Y_{n}		$\begin{aligned} & 8 \\ & 8 \end{aligned}$			3 4			$\begin{array}{r} 2 \\ 2.5 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{L}=10 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \\ & \mathrm{~V}_{\text {is }}=V_{D D} \text { (square wave) } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 32 \\ & 32 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \text { (square wave) } \end{aligned}$
$\begin{aligned} & { }^{{ }^{t} \mathrm{PLZ}} \\ & { }^{\mathrm{t}_{\mathrm{PHZ}}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 380 \\ & 380 \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$ $v_{i s}=v_{D D}$
	Distortion, Sine Wave Response		0.31			0.31			0.31		\%	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { Input Frequency }=1 \mathrm{kHz} \\ & \mathrm{E}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}} / 2 \text { (sine wave) } \end{aligned}$
	Crosstalk Between Any Two Switches					0.9					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & E_{A}=V_{D D} E_{B}=V_{S S} \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \\ & \text { at }-50 \mathrm{~dB}, 20 \text { Log }_{10} \\ & {\left[V_{\text {os }}(B) / V_{\text {is }}(A)\right]=-50 \mathrm{~dB}} \end{aligned}$
	Crosstalk, Enable Input to Output					50					mV	Input Transition Times $\leqslant 20 \mathrm{~ns}$ $R_{\text {L(OUT) }}=10 \mathrm{k} \Omega, R_{\mathrm{L}(\mathrm{N})}=1 \mathrm{k} \Omega$ $E_{n}=V_{D D}$ (square wave)
	OFF State Feedthrough					1.25					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & E_{n}=V_{S S} \\ & V_{i s}=V_{D D} / 2 \text { (sine wave) } \\ & 20 \log _{10}\left(V_{\text {os }} / V_{\text {is }}\right)=-50 \mathrm{~dB} \end{aligned}$
	ON State Frequency Response					90					MHz	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & V_{\text {is }}=V_{D D} / 2 \text { (sine wave) } \\ & E_{n}=V_{D D^{\prime}} \\ & 20 \log _{10}\left(V_{o s} / V_{\text {is }}\right)=-3 \mathrm{~dB} \end{aligned}$
${ }_{\text {f MAX }}$	Enable Input Frequency (Note 3)					10					MHz	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \\ & E_{\mathrm{n}}=V_{D D} \text { (square wave) } \\ & V_{\text {is }}=V_{D D} \end{aligned}$

NOTES:

1. Additional DC Characteristics for the Enable Inputs are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
4. $\mathrm{V}_{\text {is }} / \mathrm{V}_{\text {os }}$ is the voltage signal at an Input/Output Terminal $\left(\mathrm{Y}_{\mathrm{n}} / \mathrm{Z}_{\mathrm{n}}\right)$.

F4067/34067
 16-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

DESCRIPTION - The F4067 is a 16 -Channel Analog Multiplexer/Demultiplexer with four Address Inputs ($A_{0}-A_{3}$), 16 Independent Inputs/Outputs ($Y_{0}-Y_{15}$), an active LOW Output Enable input (EO), and a Common Input/Output (Z). The F4067 contains 16 bidirectional analog switches, each with one side connected to an Independent Input/Output ($\mathrm{Y}_{0}-\mathrm{Y}_{15}$) and the other side connected to a Common Input/Output (Z). One of the 16 switches is selected (low impedance, ON state) by the four Address Inputs ($A_{0}-A_{3}$) when the Output Enable input ($\overline{E O}$) is LOW. All unselected switches are in the high impedance OFF state. With the Output Enable input ($\overline{\mathrm{EO}}$) HIGH , all 16 switches are in the high impedance OFF state. The Analog Input/Outputs ($\mathrm{Y}_{0}-\mathrm{Y}_{15}, \mathrm{Z}$) can swing between $\mathrm{V}_{D D}$ and V_{SS}. $\mathrm{V}_{\text {DD }} \mathrm{V}_{\text {SS }}$ may not exceed 15 V .

- ANALOG OR DIGITAL MULTIPLEXER/DEMULTIPLEXER
- 24-PIN PACKAGE
- SINGLE POWER SUPPLY

PIN NAMES

$\mathrm{Y}_{0}-\mathrm{Y}_{15}$
Independent Inputs/Outputs
$\mathrm{A}_{0}-\mathrm{A}_{3}$
Z Common Input/Output
EO Output Enable Input (Active LOW)
LOGIC SYMBOL

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS				CHANNEL															
A_{3}	A_{2}	A_{1}	A_{0}	$Y_{0}-Z$	$Y_{1}-Z$	Y_{2}-Z	$Y_{3}-Z$	$Y_{4}-\mathrm{Z}$	$Y_{5}-2$	Y_{6}-Z	Y7-Z	$Y_{8}-Z$	Yg-Z	$Y_{10}{ }^{-Z}$	$Y_{11}-Z$	Y_{12}-Z	Y_{13}-Z	Y_{14}-Z	$\mathrm{Y}_{15}{ }^{-Z}$
L	L	L	L	ON	OFF														
L	L	L	H	OFF	ON	OFF													
L	L	H	L	OFF	OFF	ON	OFF												
L	L	H	H	OFF	OFF	OFF	ON	OFF											
L	H	L	L	OFF	OFF	OFF	OFF	ON	OFF										
L	H	L	H	OFF	OFF	OFF	OFF	OFF	ON	OFF									
L	H	H	L	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF								
L	H	H	H	OFF	ON	OFF													
H	L	L	L	OFF	ON	OFF													
H	L	L	H	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF								
H	L	H	L	OFF	ON	OFF	OFF	OFF	OFF	OFF									
H	L	H	H	OFF	ON	OFF	OFF	OFF	OFF										
H	H	L	L	OFF	ON	OFF	OFF	OFF											
H	H	L	H	OFF	ON	OFF	OFF												
H	H	H	L	OFF	ON	OFF													
H	H	H	H	OFF	ON														

FAIRCHILD CMOS MACROLOGIC• F4068/34068

8-INPUT NAND GATE

DESCRIPTION - This CMOS logic element provides the positive 8-Input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

F4068 LOGIC SYMBOL

$V_{D D}=P$ in 14
$V_{\text {SS }}=\operatorname{Pin} 7$
$N C=P$ ins $1,6,8$

(2) $\frac{I_{0}}{1_{1}}$
(4) $\frac{1}{T_{2}}$

(4)	$\frac{I_{2}}{I_{3}}$	$F 4068$
(5)		
I_{4}		$0-$

(10) $\frac{1}{1}$
(11) $\frac{1_{6}}{1_{7}}$
(12) 17

PIN NAMES

$\mathrm{I}^{-1} 7$	NAND Gate
$\overline{\mathrm{Z}}$	Inputs
	Output
	(Active LOW)

CONNECTION DIAGRAM DIP (TOP VIEW)

NC	$\mathrm{V}_{\text {DD }}$	-
$2 \square \mathrm{I}_{0}$	$\overline{\mathbf{z}}$	13
$3 \square 1$	${ }_{7}$	$\square 12$
4 \square I_{2}	1_{6}	11
$5 \square^{\prime}$	I_{5}	$\square 10$
$6 \square N C$	14	$\square 9$
$v_{s s}$	NC	[8

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 22 \\ & 22 \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{array}{r} 10 \\ 8 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns	Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay		$\begin{aligned} & 82 \\ & 88 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 29 \\ & 28 \end{aligned}$		ns	$C_{L}=50 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 64 \\ & 55 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 32 \\ & 23 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 24 \\ & 16 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Times $\leqslant 20$ ns

NOTE:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY VERSUS TEMPERATURE

PROPAGATION DELAY VERSUS LOAD CAPACITANCE

HEX INVERTER

DESCRIPTION - The F4069 is a general purpose Hex Inverter which has standard Fairchild input and output characteristics. A single-stage design has been used since the output impedance of a single-input gate is not pattern sensitive.

LOGIC AND CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			3.0			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at O or V_{DD}
					42.0			70.0		14.0			MAX	
		XM			0.3			0.5		0.1		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					20.0			30.0		6.0			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & { }^{\text {t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$		10 10	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		7		ns ns	$C_{L}=15 \mathrm{pF}$
${ }^{\mathrm{t}}{ }^{\text {TLH }}$ ${ }^{\mathrm{t}}{ }^{\mathrm{THL}}$	Output Transition Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		11 11	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	64		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		45	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		23 23	70 70		18 18	45 45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leq 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL VOLTAGE TRANSFER CHARACTERISTICS

DESCRIPTION - The F4070 CMOS logic element provides the Exclusive-OR function. The outputs are fully buffered for best performance.
LOGIC AND CONNECTION DIAGRAM

> DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D D$	Quiescent Power Supply Current	XC			5.0			10.0		2.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70.0			140.0		18.0			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30.0			60.0		12.0			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t} \mathrm{PLH}$ ${ }^{\text {tPHL }}$	Propagation Delay, A or B to X		65	130 130		33 33	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Output Transition Time		23 23	45 45		10 10	25 25		8 8	20 20	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20$ ns
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {tPHL }}$	Propagation Delay, A or B to X		85 85	$\begin{aligned} & 170 \\ & 170 \end{aligned}$		45 45	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		50 50	100 100		23	50 50		17 17	35 35	ns ns	Input Transition Times $\leqslant 20$ ns

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

OUAD 2-INPUT OR GATE

DESCRIPTION - The F4071 is a positive logic Quad 2-Input OR Gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\text {PLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	60 60		$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 19 \\ & 24 \end{aligned}$	75 75		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		8 7	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay		$\begin{aligned} & 43 \\ & 52 \end{aligned}$	$\begin{array}{r} 85 \\ 100 \end{array}$		$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 17 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 45 \\ & 54 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 24 \\ & 21 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

FAIRCHILD CMOS • F4072/34072

DUAL 4-INPUT OR GATE

DESCRIPTION - This CMOS logic element provides the positive Dual 4-Input OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Comection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			0.5			5		1		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15			30		6			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3			6		1.2			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\mathrm{t}_{\mathrm{PLH}}$ $t_{P H L}$	Propagation Delay		$\begin{aligned} & 50 \\ & 50 \end{aligned}$			25 25			$\begin{aligned} & 17 \\ & 17 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		30 30			15 15			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \text { tpLH } \\ & { }^{\text {tPHL }} \end{aligned}$	Propagation Delay		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			30 30			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
${ }^{t}$ TLH ${ }^{\mathrm{t}} \mathrm{T} \mathrm{HL}$	Output Transition Time		70 70			35 35			30 30		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
NOTE: 1. Addition	nal DC Characteristics are lis	s sect	n unde	F4000	O Seri	CMO	Fam	ly Cha		tics.		

TRIPLE 3-INPUT AND GATE

DESCRIPTION - This CMOS logic element provides the positive Triple 3-Input AND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} D$	Quiescent Power Supply Current	Xc			0.5			5		1		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
		XC			15			30		6			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3			6		1.2			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$t_{\text {PLH }}$ $t_{P H L}$	Propagation Delay		60 60			30 30			20		ns ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{T}} \mathrm{HL} \end{aligned}$	Output Transition Time		25 25			15 15			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
${ }^{\text {t }}$ PLH ${ }^{\text {tpHL }}$	Propagation Delay		80			35 35			25 25		ns ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{t}$ TLH ${ }^{t}$ THL	Output Transition Time		70 70			35 35			25 25		ns	Times $\leq 20 \mathrm{~ns}$

NOTE:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TRIPLE 3-INPUT OR GATE

DESCRIPTION - This CMOS logic element provides the positive Triple 3-Input OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM
 DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			0.5			5		1		$\mu \mathrm{A}$	MIIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15			30		6			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3			6		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			20 20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		15 15			10 10			8 8		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay		45			25 25			20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & t_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		38 38			20			15 15		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTE:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F 4000 Series CMOS Family Characteristics.

F4076/34076

QUAD D FLIP-FLOP WITH 3-STATE OUTPUTS

DESCRIPTION - The F4076 is a Quad Edge-Triggered D Flip-Flop with four Data Inputs ($D_{0}-D_{3}$), two active LOW Data Enable Inputs ($\overline{E D_{0}}-E_{1}$), an edge-triggered Clock Input (CP), four 3-State Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$, two active LOW Output Enable inputs $\left(\overline{\mathrm{EO}_{0}}, \overline{\mathrm{EO}_{1}}\right)$, and an overriding asynchronous Master Reset Input (MR).

Information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is stored in the four Flip-Flops on the LOW-to-HIGH transition of the Clock Input (CP) if both Data Enable Inputs ($\overline{E D_{0}}-\overline{E D_{1}}$) are LOW. A HIGH on either Data Enable input ($\overline{E D_{0}}-\overline{E D_{1}}$) prevents the Flip-Flops from changing on the LOW-to-HIGH transition of the Clock Input (CP), independent of the information on the Data Inputs ($D_{0}-D_{3}$).

When both Output Enable inputs ($\overline{\mathrm{EO}_{0}}-\overline{\mathrm{EO}_{1}}$) are LOW, the contents of the four Flip-Flops are available at the Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$. A HIGH on either Output Enable input ($\overline{\mathrm{EO}_{0}}, \overline{E O_{1}}$) forces the Outputs (O_{0} Q_{3}) into the high impedance OFF state.
A HIGH on the overriding asynchronous Master Reset Input (MR) resets all four Flip-Flops, indepedent of all other input conditions.

- 3-STATE OUTPUTS
- CLOCK IS L \rightarrow H EDGE-TRIGGERED
- ACTIVE LOW DATA ENABLE INPUTS
- ACTIVE LOW OUTPUT ENABLE INPUTS
- ASYNCHRONOUS MASTER RESET

PIN NAMES

$\frac{D_{0}-D_{3}}{E D_{0}-E D_{1}}$
$\overline{E O_{0}}, E D_{1}$
$C P$
$M R$
$Q_{0}-Q_{3}$

Data Inputs
Data Enable Inputs (Active LOW)
Output Enable Inputs (Active LOW)
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Master Reset Input
Data Outputs

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD CMOS • F4077/34077

QUAD EXCLUSIVE-NOR GATE

DESCRIPTION - The F4077 CMOS logic element provides the Exclusive-NOR function. The outputs are fully buffered for best performance. The F4077 may be used interchangeably for the 4811.

LOGIC AND CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			5.0			10.0		2.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70.0			140.0		28.0			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30.0			60.0		12.0			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpL }} \mathrm{H}$ ${ }^{\text {tpHL }}$	Propagation Delay, A or B to X		$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\begin{array}{r} 90 \\ 110 \end{array}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 17 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	45 45		10 10	25 25		7 7	20 20	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{P L H}}$ ${ }^{{ }^{\mathrm{P} P \mathrm{LH}}}$	Propagation Delay, A or B to X		$\begin{aligned} & 55 \\ & 65 \end{aligned}$	$\begin{aligned} & 110 \\ & 130 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$		17		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Output Transition Time		53	100 100		20 20	50		15 15	35 35	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

8-INPUT NOR GATE

DESCRIPTION - This CMOS logic element provides the positive 8-Input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

F4078 LOGIC SYMBOL
(2)
(4)
(9)
(11) 16

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 14 \\
& V_{S S}=\operatorname{Pin} 7 \\
& N C=\operatorname{Pins} 1,6,8
\end{aligned}
$$

PIN NAMES
$\begin{array}{ll}\mathrm{I}_{\mathrm{Z}}^{-1} & \text { NOR Gate Inputs } \\ & \text { Output (Active LOW) }\end{array}$

CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{array}{r} 87 \\ 102 \end{array}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		36 40	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 27 \\ & 29 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{t_{T L H}}$ ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 35 \\ & 37 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		20 17	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 108 \\ & 129 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 46 \\ & 50 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 34 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		76 80	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		39 32	70 70		30	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

QUAD 2-INPUT AND GATE

DESCRIPTION - The F4081 is a positive logic Quad 2-Input AND Gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM

DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ pLH ${ }^{\text {t }}$ PHL	Propagation Delay		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	60 60		$\begin{aligned} & 16 \\ & 18 \end{aligned}$	33 33		$\begin{aligned} & 11 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}$ TLH ${ }^{t}$ THL	Output Transition Time		$\begin{aligned} & 27 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{array}{r} 10 \\ 7 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tpLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay		$\begin{aligned} & 55 \\ & 60 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		$\begin{aligned} & 23 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 17 \\ & 19 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} \text { LLH }}} \\ & { }^{{ }^{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		70 57	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		30 23	70 70		23 16	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

DUAL 4-INPUT AND GATE

DESCRIPTION - This CMOS logic element provides the positive Dual 4-Input AND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

LOGIC AND CONNECTION DIAGRAM
 DIP (TOP VIEW)

NOTE: The Flatpak version has the samepinouts (Connection Diagram) as the Dual In-line Package,

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee($ See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			0.5			5		1		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15			30		6			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3			6		1.2			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\text {PLLH }}} \end{aligned}$	Propagation Delay		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			20 20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} T \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$			8		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay		$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns ns	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation delays and output transition times are graphically described in this section under F 4000 Series CMOS Family Characteristics.

DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE

DESCRIPTION - The F4085 is a Dual 2-Wide 2-Input AND-OR-Invert (AOI) Gate, each with an additional input (I4A or I4B) which can be used as either an Expander Input or an Inhibit Input by connecting it to any standard CMOS output. A HIGH on this Input (I_{4}) forces the Output (\bar{F}) LOW independent of the other four inputs ($I_{0^{-}-3}$). The Outputs (\bar{F}_{A} and \bar{F}_{B}) are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

PIN NAMES

$\frac{I_{0 A}-I_{4 A}, I_{0 B}-14 B}{F_{A}, \bar{F}_{B}} \quad \begin{aligned} & \text { Gate Inputs } \\ & \text { Outputs (Active LOW) }\end{aligned}$

CONNECTION DIAGRAM DIP (TOP VIEW)

LOGIC DIAGRAM

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}}{ }^{\mathrm{PHL}}$	Propagation Delay, Any I to \bar{F}		$\begin{aligned} & 40 \\ & 54 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 100 \\ \hline \end{array}$		$\begin{aligned} & 18 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 12 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Any I to \bar{F}		$\begin{aligned} & 56 \\ & 74 \end{aligned}$	$\begin{aligned} & 115 \\ & 135 \end{aligned}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$		$\begin{aligned} & 17 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} \text { LH }}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \\ & \hline \end{aligned}$	Output Transition Time		45 45	100 100		22 22	50 50		15 15	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

4-WIDE 2-INPUT AND-OR-INVERT GATE

DESCRIPTION - The F4086 is a 4-Wide 2-Input AND-OR-Invert (AOI) Gate with two additional inputs (I_{8} and $\bar{T}_{\underline{g}}$) which can be used as either expander inputs or inhibit inputs by connecting them to any standard CMOS output. A HIGH on I_{8} or a LOW on T_{9} forces the Output (F) LOW independent of the other eight inputs ($\left.\right|_{0^{-1}}$). The Output (\bar{F}) is fully buffered for highest noise immunity and pattern insensitivity of output impedance.

PIN NAMES

$\frac{\mathrm{I}_{0}-\mathrm{I} 8}{\mathrm{I}_{9}}$	Gate Inputs
$\frac{\text { Gate Input (Active LOW) }}{\mathrm{F}}$	Output (Active LOW)

LOGIC DIAGRAM

NOTE:
A HIGH on I_{8} or a LOW on \bar{T}_{9} forces the output (\bar{F}) LOW.

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			0.5			5.0		1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					15.0			30.0		6.0			MAX	
		XM			0.05			0.1		0.02		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					3.0			6.0		1.2			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, I_{0} through I_{8} to \bar{F}		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{t_{P H L}}$	Propagation Delay, T_{9} to \bar{F}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \overline{t_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}_{\mathrm{THL}}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\text {tpLH }} \\ & { }^{\text {tpHL }} \end{aligned}$	Propagation Delay, I_{0} through I_{8} to \bar{F}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, \bar{T}_{g} to \bar{F}		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{TLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

PROPAGATION DELAY
VERSUS
POWER SUPPLY VOLTAGE

VDD - POWER SUPPLY VOLTAGE - V

\mathbf{T}_{A} - AMBIENT TEMPERATURE - ${ }^{\circ} \mathbf{C}$

F4104/34104 QUAD LOW VOLTAGE TO HIGH VOLTAGE TRANSLATER WITH 3-STATE OUTPUTS

DESCRIPTION - The F4104 Quad Low Voltage to High Voltage Translator with 3-State Outputs provides the capability of interfacing low voltage circuits to high voltage circuits, such as low voltage CMOS and TTL to high voltage CMOS. It has four Data Inputs ($1_{0-1}{ }^{-1}$), an active HIGH Output Enable input ($E O$), four Data Outputs $\left(Z_{0}-Z_{3}\right)$ and their Complements $\left(Z_{0}-\bar{Z}_{3}\right)$. With the Output Enable input HIGH, the Outputs ($\mathrm{Z}_{0}-\mathrm{Z}_{3}, \mathrm{Z}_{0}-\mathrm{Z}_{3}$) are in the low impedance "ON" state, either HIGH or LOW as determined by the Data Inputs; with the Output Enable input LOW, the Outputs are in the high impedance "OFF" state.
The device uses a common negative supply (V_{SS}) and separate positive supplies for inputs ($\mathrm{V}_{\text {DDI }}$) and outputs ($V_{D D O}$). $V_{\text {DDI }}$ must always be less than or equal to $V_{D D O}$, even during power turn-on and turn-off. For the allowable operating range of $V_{D D I}$ and $V_{D D O}$ see Figure 1. Each input protection circuit is terminated between $V_{\text {DDO }}$ and $V_{S S}$. This allows the input signals to be driven from any potential between $\mathrm{V}_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$, without regard to current limiting. When driving from potentials greater than $V_{\text {DDO }}$ or less than $V_{S S}$, the current at each input must be limited to 10 mA .
When used in a bus organized system, all F4104 devices on the same bus line should be connected to the same $\mathrm{V}_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$ supplies. Otherwise, parasitic diodes from the output to $\mathrm{V}_{\text {DDO }}$ and $\mathrm{V}_{\text {SS }}$ can become forward biased, even while the device is in the OFF state, causing catastrophic failure if the current is not limited to 10 mA .

- 3-STATE FULLY BUFFERED OUTPUTS
- output enable input (Active high)
- DUAL POWER SUPPLY

PIN NAMES	FUNCTION
$I_{0}-I_{3}$	Data Inputs
EO	Output Enable Input
$\frac{z_{0}-Z_{3}}{Z_{0}-Z_{3}}$	Data Outputs
	Complimentary Data Outputs

LOGIC SYMBOL

$$
\begin{aligned}
V_{\text {DDO }} & =\operatorname{Pin} 1 \\
V_{\text {DDI }} & =P \text { in } 16 \\
V_{\text {SS }} & =P \text { in } 8 \\
O & =\operatorname{Pin} \text { Number }
\end{aligned}
$$

DC CHARACTERISTICS: $\mathrm{V}_{\text {DDO }}=\mathrm{V}_{\mathrm{DDI}}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DDO/I }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DDO/I }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DDO/ }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\overline{V_{I H}}$	Input HIGH Voltage		3.5		Note 1	7.0		$\begin{gathered} \text { Note } \\ 1 \\ \hline \end{gathered}$	10.5		Note 1	V	All	Guaranteed Input HIGH Voltage
V_{IL}	Input LOW Voltage		Note		1.5	$\begin{array}{\|c\|} \text { Note } \\ 2 \end{array}$		3.0	$\begin{gathered} \text { Note } \\ 2 \end{gathered}$		4.5	V	All	Guaranteed Input LOW Voltage
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 4.99 \\ & 4.95 \\ & \hline \end{aligned}$			$\begin{aligned} & 9.99 \\ & 9.95 \\ & \hline \end{aligned}$			$\begin{aligned} & 14.99 \\ & 14.95 \\ & \hline \end{aligned}$			V	MIN, $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{OHH}=0 \mathrm{~mA} \\ & \text { Note } 3 \end{aligned}$
			4.0			9.0			13.0				All	$\begin{aligned} & \mathrm{OH}=0 \mathrm{~mA} \\ & \text { Note } 4 \end{aligned}$
V_{OL}	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 0.01 \\ 0.05 \\ \hline \end{array}$	V	$\mathrm{MIN}, 25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{l} \mathrm{OL}=\mathrm{mA} \\ & \text { Note } 3 \end{aligned}$
					0.5			1.0			2.0		All	$\begin{aligned} & \mathrm{TOL}=0 \mathrm{~mA} \\ & \text { Note } 4 \end{aligned}$
IN	Input Current	$\begin{array}{\|l\|} \hline X C \\ \hline X M \\ \hline \end{array}$			$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Lead Under Test at 0 V or $V_{\text {DDO }}$. All Other Inputs Simultaneously at 0 V or $\mathrm{V}_{\mathrm{DDO}}$
${ }^{\mathrm{I} O H}$	Output HIGH Current		$\begin{aligned} & -1.5 \\ & -1.0 \end{aligned}$									mA	$\text { MIN, } 25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=5 \mathrm{~V} \\ & \text { Note } 3 \end{aligned}$
			$\begin{array}{\|l\|} \hline-0.7 \\ -0.4 \end{array}$			$\begin{array}{\|l\|} \hline-1.4 \\ -0.8 \end{array}$			$\begin{array}{r} -2.2 \\ -1.4 \end{array}$				MIN, $25^{\circ} \mathrm{C}$ MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DDO}} \\ & -0.5 \mathrm{~V} \\ & \text { Note } 3 \end{aligned}$
${ }^{1} \mathrm{OL}$	Output LOW Current		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.4 \end{aligned}$			$\begin{aligned} & 2.6 \\ & 2.0 \\ & 1.2 \end{aligned}$			3.6 3.6 2.0			mA	$\begin{aligned} & \text { MIN } \\ & 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \text { for } \\ & \mathrm{V}_{\text {DDO }}=15 \mathrm{~V} \\ & \text { Note } 3 \end{aligned}$
IOZH	Output OFF Current HIGH	$X C$ $X M$			0.5 30.0 0.05 3.0			$\begin{array}{r} 1.0 \\ 60.0 \\ \hline 0.1 \\ 6.0 \\ \hline \end{array}$		$\begin{gathered} 0.2 \\ 12.0 \\ \hline 0.02 \\ 1.2 \\ \hline \end{gathered}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{DDO}}, \mathrm{EO}=\mathrm{V}_{\mathrm{SS}}$
IOZL	Output OFF Current LOW	XC XM			$\begin{array}{\|c\|} \hline-0.5 \\ -30.0 \\ \hline-0.05 \\ \hline 3.0 \\ \hline \end{array}$			$\begin{array}{r} -1.0 \\ -60.0 \\ \hline-0.1 \\ -6.0 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline-0.2 \\ \hline-12.0 \\ \hline-0.02 \\ \hline-1.2 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned $V_{S S}, E O=V_{S S}$
${ }^{\text {I DD }}$	Quiescent Power Supply Current	$X C$ $X M$			$\begin{array}{r} 50 \\ 700 \\ \hline 5 \\ 300 \end{array}$			$\begin{array}{r} 100 \\ 1400 \\ \hline 10 \\ 600 \end{array}$		$\begin{array}{r} 20 \\ 280 \\ \hline 60 \\ 120 \end{array}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All Inputs Common and at 0 V or $\mathrm{V}_{\mathrm{DDI}}$ $=V_{D D O}$

NOTES:

1. $\mathrm{V}_{\text {IH }}$ must be less than or equal to $\mathrm{V}_{\text {DDO }}$. If $\mathrm{V}_{1 H}$ is greater than $\mathrm{V}_{\text {DDO }}$, current at each input must be limited to 10 mA .
2. $V_{\text {IL }}$ must be greater than or equal to $V_{S S}$, if $V_{I L}$ is less than $V_{S S}$, current at each input must be limited to 10 mA .
3. Inputs at OV or $\mathrm{V}_{\text {DDO }}$ per function.
4. Inputs at $0.3 \mathrm{~V}_{\text {DDO }}$ or 0.7 VDD per function.
5. Propagation Delays and Output Transition Times are graphically described in this section under F 4000 Series CMOS Family Characteristics.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{D D I}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 5)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DDO }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DDO }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DDO }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, I_{n} to Z_{n} or $\overline{Z_{n}}$		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & { }^{\mathrm{t}^{\mathrm{P} Z \mathrm{~L}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 190 \\ & 185 \end{aligned}$			$\begin{aligned} & 95 \\ & 90 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D O} \end{aligned}$
$\begin{aligned} & { }^{{ }^{\mathrm{P}} \mathrm{PHZ}} \\ & { }^{\text {t}} \mathrm{P} \mathrm{P} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 75 \\ & 70 \end{aligned}$			$\begin{aligned} & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{DDO}} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L H} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, $I_{n} \text { to } Z_{n} \text { or } \overline{Z_{n}}$		$\begin{aligned} & \hline 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			75		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{t_{\mathrm{PZH}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DDO}} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}^{\mathrm{t} \mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 115 \\ & 110 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 75 \\ & 70 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D O} \end{aligned}$
${ }^{\text {t }}$ TLH ${ }^{\text {t }}{ }^{\text {THL }}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	

Notes on privious page.

Fig. 1 TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
(tpZH) AND OUTPUT DISABLE TIME (tphz)

OUTPUT ENABLE TIME
(tpZl) AND OUTPUT DISABLE TIME (tPLZ)

F4510/34510
 UP/DOWN DECADE COUNTER

DESCRIPTION - The F4510 is an Edge-Triggered Synchronous Up/Down BCD Counter with a Clock. Input (CP), an active HIGH Up/Down Count Control Input (Up/Dn), an active LOW Count Enable Input ($\overline{\mathrm{CE}}$), an asynchronous active HIGH Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}{ }^{-\mathrm{P}_{3}}$), four Parallel Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$, an active LOW Terminal Count Output (TC) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except the Master Reset Input (MR) which must be LOW. With the Parallel Load Input (PL) LOW, the counter changes on the LOW-to-HIGH transition of the Clock Input (CP) if the Count Enable Input ($\overline{\mathrm{CE}}$) is LOW. The Up/Down Count Control Input (Up/Dn) determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, the Terminal Count Output ($\overline{\mathrm{TC}}$) is LOW when the Parallel Outputs $\mathrm{Q}_{0} \cdot \mathrm{O}_{3}$ are HIGH and the Count Enable ($\overline{\mathrm{CE}}$) is LOW. When counting down, the Terminal Count Output ($\overline{T C}$) is LOW when all the Parallel Outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{3}\right)$ and the Count Enable Input ($\overline{\mathrm{CE}}$) are LOW. A HIGH on the Master Reset Input resets the counter ($\mathrm{O}_{0}-\mathrm{O}_{3}=\mathrm{LOW}$) independent of all other input conditions.

- UP/DOWN COUNT CONTROL
- SINGLE CLOCK INPUT (L \rightarrow H EDGE-TRIGGERED)
- ASYNCHRONOUS PARALLEL LOAD INPUT
- ASYNCHRONOUS MASTER RESET
- EASILY CASCADABLE

MODE SELECTION TABLE

$P L$	UP/ $\overline{D N}$	$\overline{C E}$	$C P$	MODE
H	X	X	X	Parallel Load $\left(P_{n} \rightarrow Q_{n}\right)$
L	X	H	X	No Change
L	L	L	Γ	Count Down, Decade
L	H	L	Γ	Count Up, Decade

$$
\begin{array}{lc}
M R=\text { LOW } & X=\text { Don't Care } \\
H=\text { HIGH Level } & -\quad=\text { Positive-Going } \\
L=\text { LOW Level } & \text { Transition }
\end{array}
$$

F4510 STATE DIAGRAM

Count Up
Count Down - - - - -

LOGIC EQUATION FOR TERMINAL COUNT
$T C=C E \bullet\left[\left(U P \bullet \mathrm{Q}_{0} \bullet \mathrm{Q}_{3}\right)+\left(\overline{\mathrm{UP}} \bullet \overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3}\right)\right]$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES

PL Parallel Load Input (Active HIGH)
$\mathrm{P}_{0}-\mathrm{P}_{3} \quad$ Parallel Inputs
$\overline{C E} \quad$ Count Enable Input
(Active LOW)
$\mathrm{CP} \quad$ Clock Pulse Input $(\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Up/ $\overline{\mathrm{Dn}} \quad$ Up/Down Count Control Input
MR Master Reset Input
$\overline{T C} \quad$ Terminal Count Output
(Active LOW)
$\mathrm{O}_{0}-\mathrm{Q}_{3} \quad$ Parallel Outputs

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	Xc			50			100		20			MIN, $25^{\circ} \mathrm{C}$	
	Power				700			1400		280		$\mu \mathrm{A}$	MAX	All inputs common
IDD	Supply				5			10		2			MIN, $25^{\circ} \mathrm{C}$	and at 0 V or V_{DD}
	Current	XM			300			600		120		$\mu \mathrm{A}$	MAX	

Notes on folowing page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$V_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			54 50			35 33		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 150 \\ & 228 \end{aligned}$			$\begin{aligned} & 62 \\ & 90 \end{aligned}$			42 60		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 152 \\ & 194 \end{aligned}$			59 80			38 56		ns	Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, MR to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{TC}}$		$\begin{aligned} & 350 \\ & 250 \end{aligned}$			$\begin{aligned} & 150 \\ & 110 \end{aligned}$			$\begin{array}{r} 100 \\ 75 \end{array}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$			10 10		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			62 59			$\begin{aligned} & 41 \\ & 39 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 167 \\ & 252 \end{aligned}$			$\begin{array}{r} 71 \\ 100 \end{array}$			$\begin{aligned} & 48 \\ & 66 \end{aligned}$		ns	50 pF
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 170 \\ & 220 \end{aligned}$			70 90			45 62		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, MR to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{TC}}$		$\begin{aligned} & 370 \\ & 270 \end{aligned}$			$\begin{aligned} & 170 \\ & 120 \end{aligned}$			$\begin{array}{r} 105 \\ 80 \end{array}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{H} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 65 \end{aligned}$			$\begin{aligned} & 31 \\ & 25 \end{aligned}$			$\begin{aligned} & 23 \\ & 18 \end{aligned}$		ns	
${ }^{\mathrm{w}_{W} \mathrm{CP}}$	CP Minimum Pulse Width		50			21			14		ns	
${ }^{t_{W} P \mathrm{PL}}$	PL Minimum Pulse Width		60			21			16		ns	
${ }^{\text {w }}$ MR	MR Minimum Pulse Width		60			30			20		ns	
$t_{\text {rec }}$	MR Recovery Time		75			30			20		ns	
${ }_{\text {trec }}$	PL Recovery Time		62			24			17		ns	$C_{L}=15 \mathrm{pF}$
t_{s} $t_{\text {h }}$	Set-Up Time, UP/ $\overline{\mathrm{DN}}$ to CP Hold Time, UP/ $\overline{D N}$ to $C P$		$\begin{aligned} & 145 \\ & 101 \end{aligned}$			$\begin{aligned} & 55 \\ & 38 \end{aligned}$			$\begin{aligned} & 38 \\ & 25 \end{aligned}$		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
ts th	Set-Up Time, $\overline{\mathrm{CE}}$ to CP Hold Time, $\overline{\mathrm{CE}}$ to CP		$\begin{aligned} & 118 \\ & 101 \end{aligned}$			$\begin{aligned} & 49 \\ & 38 \end{aligned}$			33 25		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 29 \\ & 26 \\ & \hline \end{aligned}$			11 7			8 4		ns	
${ }^{\text {f MAX }}$	Input Clock Frequency(Note 4)		5			12					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{tPLH}_{\mathrm{L}}$ and $\mathrm{tPHL}^{\text {) }}$ and Output Transition Times (t TLH and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input (CP) be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM CP WIDTH, SET-UP AND HOLD TIMES, $\overline{C E}$ TO CP AND UP/DN TO CP

MINIMUM PL AND MR PULSE WIDTH, RECOVERY TIME FOR PL AND MR, AND SET-UP AND HOLD TIMES, P_{n} TO PL

F4511/34511 BCD-TO-7 SEGMENT LATCH/DECODER/DRIVER

DESCRIPTION - The F4511 is a BCD-to-7-Segment Latch/Decoder/Driver with four Address Inputs ($A_{0}-A_{3}$), an active LOW Latch Enable Input ($\overline{E L}$), an active Low Blanking Input ($\overline{\mathrm{B}}$), an active LOW Lamp Test Input (iLT) and seven active HIGH NPN bipolar segment outputs (a-g).
When the Latch Enable Input ($\overline{E L}$) is LOW, the state of the Segment Outputs (a-g) is determined by the data on the Address Inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$. When the Latch Enable Input (EL) goes HIGH, the last data present at the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) is stored in the latches and the Segment Outputs ($\mathrm{a}-\mathrm{g}$) remain stable.

When the Lamp Test Input ($\overline{I_{L T}}$) is LOW, all the Segment Outputs (a-g) are HIGH independent of all other input conditions. With the Lamp Test Input ($\left.\overline{\overline{I L T}_{\mathrm{L}}}\right)$ HIGH, a LOW on the Blanking Input ($\overline{\bar{I}_{\mathrm{B}}}$) forces all Outputs (a-g) LOW. The Lamp Test Input ($\overline{\mathrm{L}} \mathrm{LT}$) and the Blanking Input ($\overline{\mathrm{I}_{\mathrm{B}}}$) do not affect the latch circuit.

- HIGH CURRENT SOURCING OUTPUTS (UP TO 25 mA)
- blanking input (active low)
- LAMP test input (active low)
- LAMP INTENSITY MODULATION CAPABILITY
- MULTIPLEXING CAPABILITY

PIN NAMES
$\frac{\frac{A_{0}-A_{3}}{\frac{E L}{I_{B}}}}{\frac{I_{L T}}{a^{-g}}}$

Address (Data) thouts
Latch Enable Input (Active LOW)
Blanking Input (Active LOW)
Lamp Test Input (Active LOW)
Segment Outputs

TRUTH TABLE

INPUTS							OUTPUTS							
EL	$\overline{\mathrm{I}}$	$\overline{\text { LTT }}$	A_{3}	A_{2}	A_{1}	A_{0}	a	b	c	d	e	f	g	DISPLAY
X	X	L	X	X	X	X	H	H	H	H	H	H	H	8
X	L	H	X	X	X	X	L	L	L	L	L	L	L	BLANK
L	H	H	L	L	L	L	H	H	H	H	H	H	L	0
L	H	H	L	L	L	H	L	H	H	L	L	L	L	1
L	H	H	L	L	H	L	H	H	L	H	H	L	H	2
L	H	H	L	L	H	H	H	H	H	H	L	L	H	3
L	H	H	L	H	L	L	L	H	H	L	L	H	H	4
L	H	H	L	H	L	H	H	L	H	H	L	H	H	5
L	H	H	L	H	H	L	L	L	H	H	H	H	H	6
L	H	H	L	H	H	H	H	H	H	L	L	L	L	7
L	H	H	H	L	L	L	H	H	H	H	H	H	H	8
L	H	H	H	L	L	H	H	H	H	L	L	H	H	9
L	H	H	H	L	H	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	L	H	H	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	L	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	L	H	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	H	L	L	L	L	L	L	L	L	BLANK
L	H	H	H	H	H	H	L	L	L	L	L	L	L	BLANK
H	H	H	X	X	\times	X				*				*

[^9]LOGIC SYMBOL

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=P$ in 8

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

NUMERICAL DESIGNATIONS

F4512/34512 8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION - The F4512 is an 8 -Input Multiplexer with Active LOW logic and output enables ($\overline{\mathbf{E}}$, $\overline{E O}$). One of eight binary inputs is selected by Select Inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and S_{2} and is routed to the output F. A HIGH on the Output Enable ($\overline{E O}$) causes the F output to assume a high impedance or "OFF" state, regardless of other input conditions. This allows the output to interface directly with bus oriented systems (3-state). When the active LOW Enable (\bar{E}) is HIGH, it forces the output LOW provided the Output Enable ($\overline{\mathrm{EO}}$) is LOW. By proper manipulation of the inputs, the F4512 can provide any logic functions of four variables. The F4512 cannot be used to multiplex analog signals.

- SELECTS ONE-OF-EIGHT DATA SOURCES
- PERFORMS PARALLEL-TO-SERIAL CONVERSION
- 3-STATE OUTPUTS WITH ACTIVE LOW OUTPUT ENABLE
- active low logic enable

PIN NAMES

$\mathrm{S}_{\mathbf{O}}, \mathrm{S}_{1}, \mathrm{~S}_{2}$	Select Inputs
EO	Output Enable (Active LOW)
$\overline{\mathrm{E}}$	Enable (Active LOW)
I_{0} to I_{7}	Multiplexer Inputs
F	Multiplexer Output

TRUTH TABLE

INPUTS													OUTPUT
EO	\bar{E}	S_{2}	S_{1}	S_{0}	10	11	12	13	14	I_{5}	16	17	F
L	H	x	x	x	x	x	x	X	X	x	x	x	L
L	L	L	L	L	L	X	X	X	X	X	X	X	L
L	L	L	L	L	H	X	X	X	X	X	X	x	H
L	L	L	L	H	X	L	X	X	X	X	x	x	L
L	L	L	L	H	X	H	X	X	X	X	x	x	H
L	L	L	H	L	X	X	L	X	X	X	X	X	L
L	L	L	H	L	X	X	H	X	X	X	X	x	H
L	L	L	H	H	X	X	X	L	X	X	X	x	L
L	L	L	H	H	X	X	X	H	X	X	X	X	H
L	L	H	L	L	X	x	x	X	L	x	x	x	L
L	L	H	L	L	x	x	\times	x	H	x	x	x	H
L	L	H	L	H	X	X	X	X	X	L	X	x	L
L	L	H	L	H	x	X	x	x	X	H	x	x	H
L	L	H	H	L	x	x	x	x	X	X	L	x	L
L	L	H	H	L	X	X	x	X	X	X	H	x	H
L	L	H	H	H	x	X	x	X	x	X	X	L	L
L	L	H	H	H	x	x	x	x	x	x	\times	H	H
H		X	x	x	X	x	x	X	X	X	x	x	Z

$$
L=\text { LOW Level }
$$

$\mathrm{H}=\mathrm{HIGH}$ Level
$x=$ Don't Care
$z=$ High Impedance State

FAIRCHILD CMOS • F4512/34512

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{\text {SS }}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDTIONS		
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$							
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
$\overline{\mathrm{IOZH}}$	Output OFF Current HIGH	XC			$\begin{array}{r} 0.5 \\ 30.0 \\ \hline \end{array}$			1.0 60.0		0.2 12.0		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output returned to $V_{D D}, \overline{E O}=V_{D D}$		
		XM			0.05 3.0			0.1 6.0		0.02 1.2			MIN, $25^{\circ} \mathrm{C}$ MAX			
${ }^{\prime} \mathrm{OZL}$	Output OFF Current LOW	XC			$\begin{array}{r} -0.5 \\ -30.0 \\ \hline \end{array}$			$\left.\begin{array}{\|r} -1.0 \\ -60.0 \end{array} \right\rvert\,$		$\begin{array}{r} -0.2 \\ -12.0 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$		
		XM			\|l	l	$\begin{aligned} & -0.05 \\ & -3.0\end{aligned}$			-0.1 -6.0		 -0.02 1.2			$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
IDD	Quiescent Power Supply Current	XC			30 600			$\begin{array}{r} 60 \\ 1200 \\ \hline \end{array}$		12 240		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at O or V_{DD}		
		XM			100			$\begin{array}{r} 10 \\ 200 \end{array}$		2 40		$\mu \mathrm{A}$	$\mathrm{MIN}, 25^{\circ} \mathrm{C}$ MAX			

AC CHARACTERISTICS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHLL}}} \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 260 \\ & 260 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, Select to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{\mathrm{t}_{\mathrm{PLH}}}$ ${ }^{\mathrm{t} \mathrm{PHL}}$	Propagation Delay, E to Output		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 26 \\ & 28 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 34 \\ & 39 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
${ }^{t}$ TLH ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 52 \\ & 52 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & { }^{{ }^{{ }^{\mathrm{t} P H}}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 175 \\ & 175 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}} \mathrm{PLH} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, E to Output		$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 30 \\ & 32 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{P} Z \mathrm{H}}} \\ & { }^{\mathrm{t}_{\mathrm{PZL}}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 18 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}}\right) \\ & \left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}}\right) \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & { }^{\mathrm{t}} \mathrm{PLZ} \end{aligned}$	Output Disable Time		$\begin{aligned} & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { t'LH } \\ & { }^{\text {tTHL }} \end{aligned}$	Output Transition Time		$\begin{array}{r} 90 \\ 100 \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME (tpZH) AND OUTPUT DISABLE TIME (tPHZ)

OUTPUT ENABLE TIME (tPZL) AND OUTPUT DISABLE TIME (tPLZ)

APPLICATIONS

MULTIPLEXER AS A FUNCTION GENERATOR - In most digital systems there are areas, usually in the control section, where a number of inputs generate an output in a highly irregular way. In other words, an unusual function must be generated which is apparently not available as an MSI building block. In such cases, many designers tend to return to classical methods of logic design with NAND and NOR gates using Boolean Algebra, Karnaugh maps and Veitch diagrams for logic minimization. Surprisingly enough, multiplexers can simplify these designs.
The F4512 8-Input multiplexer can generate any one of the 65,536 different functions of four variables. An example will illustrate the technique. Assume four binary inputs are A, B, C and D and F is the desired function (See Fig. 1). If C is connected to $S_{0,} B$ to S_{1} and A to S_{2}, any combination of A, B and C will select an input (assuming the output is enabled). For each combination of A, B and C, the required output, as a function of the fourth variable D, is either H or L the same as D or the opposite of D. Therefore, the truth table may be examined and each input of the F 4512 is connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{D}$ or $\overline{\mathrm{D}}$ as required and in such fashion the function is generated.
In the example shown, (Fig. 1) the first two outputs are the opposite of D, so I_{0} is connected to D. The second two are HIGH , so I_{1} is connected to V_{DD}, etc.

32-INPUT MULTIPLEXER - The 3-State Output Enable can be used to expand the F4512. A 32-Input Multiplexer utilizing four F4512s and a F4011 is shown in Fig. 2.

Fig. 1

Fig. 2

F4514/34514
 1-OF-16 DECODER/DEMULTIPLEXER WITH INPUT LATCH

DESCRIPTION - The F4514 is a 1 -of-16 Decoder/Demultiplexer with four binary weighted Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Latch Enable Input (EL), an active LOW Enable Input ($\overline{\mathrm{E}}$) and sixteen mutually exclusive active HIGH Outputs ($\mathrm{O}_{0}-\mathrm{O}_{15}$).
When the Latch Enable Input (EL) is HIGH, the selected Output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input (EL) goes LOW, the last data present at the Address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ is stored in the latches and the Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ remain stable. When the Enable Input (\bar{E}) is LOW, the selected Output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$, determined by the contents of the latch, is HIGH. When the Enable Input (\bar{E}) is HIGH, all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ are LOW. The Enable Input ($\overline{\mathrm{E}}$) does not affect the state of the latch.
With the Latch Enable Input (EL) HIGH, 16-channel demultiplexing results when data is applied to the Enable Input (\bar{E}) and the desired output is selected by $\mathrm{A}_{0}-\mathrm{A}_{3}$. The selected output $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ will follow as the inverse of the data. All unselected outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{15}\right)$ are LOW.

- LATCH ENABLE INPUT (ACTIVE HIGH)
- enAble input (active low)
- SELECTED BUFFERED OUTPUTS
(ACTIVE HIGH) COMPLEMENT OF THE INPUT

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$
Address Inputs
$\overline{\mathrm{E}} \quad$ Enable Input (Active Low)
EL Latch Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{15}$

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS					OUTPUTS															
\bar{E}	A_{0}	A_{1}	A_{2}	A_{3}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	O_{10}	O_{11}	O_{12}	O_{13}	O_{14}	O_{15}
H	X	X	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L
L	H	L	H	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L
L	H	H	H	L	L	L	L	L.	L	L	L	H	L	L	L	L	L	L	L	L
L	L	L	L	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L
L	H	L	L	H	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L
L	L	H	L	H	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L
L	H	H	L	H	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L
L	L	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L
L	H	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L
L	L	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L
L	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H

[^10]

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC			50			100		20			MIN, $25^{\circ} \mathrm{C}$	
ID	Power	XC			700			1400		280		$\mu \mathrm{A}$	MAX	All inputs common
DD	Supply	XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	and at 0 V or V_{DD}
	Current	XM			300			600		120		$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay, A_{n} to O_{n}		400 400			150 150			110 110 110		ns	
tpLH ${ }^{\text {tpHL }}$	Propagation Delay, EL to O_{n}		$\begin{aligned} & 400 \\ & 400 \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{array}{\|l\|} \hline 110 \\ 110 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to O_{n}		$\begin{array}{r} 175 \\ 175 \\ \hline \end{array}$			75 75		-	60 60 60		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{T} L \mathrm{LH}}} \\ & { }^{\mathrm{t} \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		35 35		-	$\begin{array}{r}20 \\ 20 \\ \hline\end{array}$	3		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, A_{n} to O_{n}		$\begin{array}{r}450 \\ 450 \\ \hline\end{array}$	-		$\frac{165}{165}$			120 120 120		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, EL to O_{n}	,	450			$\begin{array}{\|l\|} \hline 165 \\ 165 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 120 \\ 120 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\overline{\mathrm{E}}$ to O_{n}		$\begin{aligned} & 190 \\ & 190 \\ & \hline \end{aligned}$			80 80			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\text { Times } \leq 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{TH} H \mathrm{~L}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			35 35			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, A_{n} to EL Hold Time, A_{n} to EL		$\begin{aligned} & 75 \\ & 35 \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \end{aligned}$			$\begin{aligned} & 25 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
${ }^{t}{ }_{w} \mathrm{EL}$	Minimum EL Pulse Width		100			30			25		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{T}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{T}_{\mathrm{L}} \mathrm{H}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

MINIMUM EL PULSE WIDTH AND SET-UP AND HOLD TIMES, A_{n} TO EL

NOTE:
Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

F4515/34515
 1-OF-16 DECODER/DEMULTIPLEXER WITH INPUT LATCH

DESCRIPTION - The F4515 is a 1 -of-16 Decoder/Demultiplexer with four binary weighted Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$), a Latch Enable Input ($E L$), an active LOW Enable Input (\bar{E}) and sixteen mutually exclusive active LOW Outputs ($\overline{\mathrm{O}_{0}}-\overline{O_{15}}$).
When the Latch Enable Input (EL) is HIGH, the selected Output ($\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}$) is determined by the data on the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). When the Latch Enable Input (EL) goes LOW, the last data present at the Address Inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ is stored in the latches and the Outputs $\left(\overline{\mathrm{O}_{0}}-\overline{O_{15}}\right)$ remain stable. When the Enable Input (\bar{E}) is LOW, the selected Output $\left(\mathrm{O}_{0}-\overline{O_{15}}\right)$, determined by the contents of the latch, is LOW. When the Enable Input ($\overline{\mathrm{E}}$) is HIGH, all Outputs $\left(\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}\right)$ are HIGH. The Enable Input ($\overline{\mathrm{E}}$) does not affect the state of the latch.
With the Latch Enable Input (EL) HIGH, 16 -channel demultiplexing results when data is applied to the Enable Input (E) and the desired output is selected by $A_{0}-A_{3}$. The selected Output $\left(\overline{O_{0}}-\bar{O}_{15}\right)$ will follow the data at the Enable Input (\bar{E}). All unselected outputs ($\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{15}}$) are HIGH .

- LATCH ENABLE INPUT (ACTIVE HIGH)
- ENABLE INPUT (ACTIVE LOW)
- bUFFERED OUTPUTS (ACTIVE LOW)

PIN NAMES

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TRUTH TABLE

INPUTS					OUTPUTS															
E	A_{0}	A_{1}	A_{2}	A_{3}	\bar{O}_{0}	$\overline{\mathrm{O}} 1$	O_{2}	$\overline{O_{3}}$	O_{4}	$\overline{O_{5}}$	$\overline{\mathrm{O}_{6}}$	$\overline{O_{7}}$	$\overline{\mathrm{O}}$	$\overline{\mathrm{O}}$	$\overline{\mathrm{O}_{10}}$	$\overline{O_{11}}$	$\overline{O_{12}}$	$\overline{\mathrm{O}_{13}}$	$\overline{\mathrm{O}} 14$	$\overline{0_{15}}$
H	X	X	\times	\times	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	L	L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	H	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	H	L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

$$
\begin{aligned}
& H=\text { HIGH Level } \\
& L=\text { LOW Level } \\
& E L=\text { HIGH }
\end{aligned}
$$

DC CHARACTERISTICS: VDD as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent Power	XC			$\begin{array}{r} 50 \\ 700 \\ \hline \end{array}$			$\begin{array}{r} 100 \\ 1400 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 20 \\ 280 \\ \hline \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common
${ }^{\text {D }}$	Supply Current	XM			5 300			$\begin{array}{r} 10 \\ 600 \end{array}$		$\begin{array}{r} 2 \\ 120 \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	and at 0 V or V_{DD}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay, A_{n} to $\overline{\mathrm{O}_{\mathrm{n}}}$		$\begin{aligned} & 400 \\ & 400 \end{aligned}$			$\begin{array}{\|l\|} \hline 150 \\ 150 \\ \hline \end{array}$			$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & \overline{t^{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, EL to $\overline{\mathrm{O}_{\mathrm{n}}}$		$\begin{aligned} & 400 \\ & 400 \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t}$ PLH ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{E}}$ to $\overline{\mathrm{O}_{\mathrm{n}}}$		$\begin{aligned} & 175 \\ & 175 \end{aligned}$			75 75			60 60		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	-		10 10		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{t_{P L H}}$ ${ }^{\mathrm{t} P \mathrm{PL}}$	Propagation Delay, A_{n} to $\overline{O_{n}}$		$\begin{aligned} & 450 \\ & 450 \end{aligned}$			$\begin{aligned} & 165 \\ & 165 \end{aligned}$	\%		$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation Delay, EL to $\overline{\mathrm{O}_{\mathrm{n}}}$		450	3	\geqslant	$\begin{array}{\|l\|} 165 \\ 165 \end{array}$			$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{t_{\text {PLH }}}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, $\overline{\mathrm{E}}$ to $\overline{\mathrm{O}_{\mathrm{n}}}$		$\begin{aligned} & 190 \\ & 190 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }_{\mathrm{t}} \mathrm{HLH} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time, A_{n} to EL Hold Time, A_{n} to EL		75			$\begin{aligned} & 30 \\ & 20 \end{aligned}$			$\begin{aligned} & 25 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{t}{ }^{\text {EL }}$	Minimum EL Pulse Width		100			30			25		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and t_{PH}) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

NOTE:
Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

F4516/34516
 UP/DOWN COUNTER

DESCRIPTION - The F4516 is an edge-triggered synchronous Up/Down 4-Bit Binary Counter with a Clock Input (CP), an active HIGH Count Up/Down Control Input (Up/ $\overline{\mathrm{Dn}}$), an active LOW count Enable Input ($\overline{\mathrm{CE}}$), an asynchronous active HIGH Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), four parallel Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$), an active LOW Terminal Count Output ($\overline{\mathrm{TC}}$) and an overriding asynchronous Master Reset Input (MR).
Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except the Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the Count Enable Input ($\overline{\mathrm{CE}}$) are LOW, the counter changes on the LOW-to-HIGH transition of the Clock Input (CP). The Count Up/Down Control Input ($\mathrm{Up} / \overline{\mathrm{Dn}}$) determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, the Terminal Count Output (TC) is LOW when $\mathrm{Q}_{0}=\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=$ HIGH and $\overline{\mathrm{CE}}=$ LOW. When counting down the Terminal Count Output ($\overline{\mathrm{TC}}$) is LOW when $\mathrm{O}_{0}=$ $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=$ LOW and the $\overline{\mathrm{CE}}=$ LOW. A HIGH on the Master Reset Input (MR) resets the counter $\mathrm{O}_{0}=\mathrm{O}_{1}=\mathrm{O}_{2}=\mathrm{O}_{3}=$ LOW) independent of all other input conditions.

- UP/DOWN COUNT CONTROL

- SINGLE CLOCK INPUT (L \rightarrow H EDGE-TRIGGERED)
- ASYNCHRONOUS PARALLEL LOAD INPUT
- ASYNCHRONOUS MASTER RESET

MODE SELECTION TABLE

$P L$	UP/DN	$\overline{C E}$	$C P$	MODE
H	X	X	X	Parallel Load $\left(P_{n} \rightarrow Q_{n}\right)$
L	X	H	X	No Change
L	L	L	Γ	Count Down, Binary
L	H	L	Γ	Count Up, Binary

$$
\begin{array}{ll}
\text { MR }=\text { LOW } & X=\text { Don't Care } \\
H=H I G H \text { Level } & 5=\text { Positive-Going } \\
\text { L }=\text { LOW Level } & \\
\text { Transition }
\end{array}
$$

STATE DIAGRAM

COUNT UP COUNT DOWN

LOGIC EQUATION FOR TERMINAL COUNT
$\overline{\mathrm{TC}}=\overline{\overline{\mathrm{CE}} \cdot\left[(\mathrm{UP} / \overline{\mathrm{DN}}) \bullet \mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3}\right]+\left[(\mathrm{UP} / \overline{\mathrm{DN}}) \bullet \overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3}\right]}$

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package,

PIN NAMES	
PL	Parallel Load Input (Active HIGH)
$\mathrm{PO}_{0}-\mathrm{P}_{3}$	Parallel Inputs
CE	Count Enable Input (Active LOW)
CP	Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Up/Dn	Up/Down Count Control Input
MR	Master Reset Input
$\overline{T C}$	Terminal Count Output (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Parallel Outputs

LOGIC DIAGRAM

PL (Parallel Load Input) - Asynchronously Loads P into Q, Overriding all Other Inputs
$\overline{\bar{P}}$ (Parallel Input) - Data on this Pin is Asynchronously Loaded into Q, when PL is HIGH Overriding all Other Inputs T (Toggle Input) - Forces the Q Output to Synchronously Toggle when a HIGH is placed on this Input CP (Clock Pulse Input)
$\mathrm{Q}, \overline{\mathrm{Q}}$ (True and Complementary Outputs)

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

[^11]AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH tPHL	Propagation Delay, $C P$ to Q_{n}		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			54 50			35 33		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 150 \\ & 228 \end{aligned}$			62 90			$\begin{aligned} & 42 \\ & 60 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, PL to O_{n}		$\begin{aligned} & 152 \\ & 194 \end{aligned}$			59 80			$\begin{aligned} & 38 \\ & 56 \end{aligned}$		ns	Input Transition
tpLH tè HL	Propagation Delay, MR to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{TC}}$		$\begin{aligned} & 350 \\ & 250 \end{aligned}$			$\begin{aligned} & 150 \\ & 110 \end{aligned}$			$\begin{array}{r} 100 \\ 75 \end{array}$		ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			13 13			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			62 59			$\begin{aligned} & 41 \\ & 39 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{TC}}$		$\begin{aligned} & 167 \\ & 252 \end{aligned}$			$\begin{array}{r} 71 \\ 100 \end{array}$			$\begin{aligned} & 48 \\ & 66 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, PL to Q_{n}		$\begin{aligned} & 170 \\ & 220 \end{aligned}$			70 90			45 62		ns	Input Transition
tPLH ${ }^{\text {tPHL }}$	Propagation Delay, MR to $\mathrm{O}_{\mathrm{n}}, \overline{\mathrm{TC}}$		$\begin{aligned} & 370 \\ & 270 \end{aligned}$			$\begin{aligned} & 170 \\ & 120 \end{aligned}$			$\begin{array}{r} 105 \\ 80 \end{array}$		ns	
$\begin{aligned} & { }^{\mathrm{T} T L H} \\ & { }^{\mathrm{T}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 65 \end{aligned}$			$\begin{aligned} & 31 \\ & 25 \end{aligned}$			$\begin{aligned} & 23 \\ & 18 \end{aligned}$		ns	
${ }_{\text {tw }} \mathrm{CP}$	CP Minimum Pulse Width		50			21			14		ns	
$\mathrm{t}_{w} \mathrm{PL}$	PL Minimum Pulse Width		60			21			16		ns	
$\mathrm{t}_{\mathrm{w}} \mathrm{MR}$	MR Minimum Pulse Width		60			30			20		ns	
trec	MR Recovery Time		75			30			20		ns	
trec	PL Recovery Time		62			24			17		ns	
t_{s} t_{h}	Set-Up Time, UP/ $\overline{D N}$ to CP Hold Time, UP/ $\overline{D N}$ to CP		$\begin{aligned} & 145 \\ & 101 \end{aligned}$			$\begin{aligned} & 55 \\ & 38 \end{aligned}$			$\begin{aligned} & 38 \\ & 25 \end{aligned}$		ns	Input Transition Times $\leqslant 20$ ns
ts $t_{\text {h }}$	Set-Up Time, $\overline{\mathrm{CE}}$ to CP Hold Time, $\overline{\mathrm{CE}}$ to CP		$\begin{aligned} & 118 \\ & 101 \end{aligned}$			$\begin{aligned} & 49 \\ & 38 \end{aligned}$			$\begin{aligned} & 33 \\ & 25 \end{aligned}$		ns	
t_{s} t_{h}	Set-Up Time, P_{n} to PL Hold Time, P_{n} to PL		$\begin{aligned} & 29 \\ & 26 \end{aligned}$			$\begin{array}{r} 11 \\ 7 \end{array}$			8 4		ns	
${ }^{\text {f MAX }}$	Input Clock Frequency (Note 4)		5			12					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $f_{\text {MAX }}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input (CP) be less than $15 \mu \mathrm{~s}$.

MINIMUM CP WIDTH, SET-UP AND HOLD TIMES, CE TO CP AND UP/DN TO CP

MINIMUM PL AND MR PULSE WIDTH, RECOVERY TIME FOR PL AND MR, AND SET-UP AND HOLD TIMES, P_{n} TO PL

F4518/34518
 DUAL 4-BIT DECADE COUNTER

DESCRIPTION - The F4518 is a Dual 4-Bit Internally Synchronous BCD Counter. Each counter has both an active HIGH Clock Input (CP_{0}) and an active LOW Clock Input ($\overline{C P}_{1}$), buffered Outputs from all four bit positions $\left(\mathrm{Q}_{0}-\mathrm{O}_{3}\right)$ and an active HIGH overriding asynchronous Master Reset Input (MR).
The counter advances on either the LOW-to-HIGH transition of the CP_{0} Input if $\overline{\mathrm{CP}}_{1}$ is HIGH or the HIGH-to-LOW transition of the $\overline{C P}_{1}$ Input if CP_{0} is LOW (see the Truth Table). Either Clock Input $\left(C P_{0}, \overline{C P}_{1}\right)$ may be used as the Clock Input to the counter and the other Clock Input may be used as a Clock Inhibit Input.
A HIGH on the Master Reset Input (MR) resets the counter ($Q_{0}-Q_{3}=$ LOW) independent of the Clock Inputs ($\mathrm{CP}_{\mathrm{O}}, \overline{\mathrm{CP}}_{1}$).

- TYPICAL COUNT FREQUENCY OF $10 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION
- ASYNCHRONOUS ACTIVE HIGH MASTER RESET
- BUFFERED OUTPUTS FROM ALL FOUR BIT POSITIONS
- FULLY SYNCHRONOUS COUNTING

TRUTH TABLE				
CP_{0}	$\overline{\mathrm{CP}}_{1}$	MR	MODE	
Γ	H	L	Counter Advances	
L	-	L	Counter Advances	
	X	L	No Change	
X	Γ	L	No Change	
Γ	L	L	No Change	
H		L	No Change	
X	X	H	Reset (Asynchronous)	

$$
\begin{aligned}
X & =\text { Don't Care } \\
L & =\text { LOW Level } \\
H & =\text { HIGH Level } \\
- & =\text { Positive-Going Transition } \\
& =\text { Negative-Going Transition }
\end{aligned}
$$

1/2 OF A F4518 LOGIC DIAGRAM

$V_{D D}=P$ in 16
$V_{S S}=\operatorname{Pin} 8$
$O=$ Pin Number
NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES	
$\mathrm{CP}_{0 \mathrm{Oa}}, \mathrm{CP} 0 \mathrm{ob}$	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ (Triggered)
$\overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{1 \mathrm{~b}}$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
MR ${ }_{\mathrm{a}}, \mathrm{MR}_{\mathrm{b}}$	Master Reset Inputs
$\mathrm{O}_{0 \mathrm{a}}-\mathrm{O}_{3 \mathrm{a}}$	Outputs
$\mathrm{O}_{0 b}-\mathrm{Q}_{3 \mathrm{~b}}$	Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		300			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}_{1}}$ to Q_{n}		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$
tpHL	Propagation Delay, MR to Q_{n}		200			80			55		ns	Input Transition
tTLH $\underline{\mathrm{t}} \mathrm{HL}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \end{aligned}$		ns	Times $\leqslant 20 \mathrm{~ns}$
tPLH $\underline{\text { tpHL }}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}_{1}}$ to Q_{n}		$\begin{aligned} & 220 \\ & 220 \end{aligned}$			95			$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		220			90			60		ns	Input Transition
tilit ${ }^{t}$ thi	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tw }}$ MR	MR Minimum Pulse Width		70			30			20		ns	
${ }^{\text {tw }}$ CP	CP_{0} or $\overline{\mathrm{CP}}{ }_{1}$ Minimum Pulse Width		120			50			35		ns	$C_{L}=15 \mathrm{pF}$
${ }_{\text {trec }}$	MR Recovery Time		15			5			0		ns	Input Transition
$\mathrm{t}_{\text {s }}$	Set-Up Time, CP_{0} to $\overline{\mathrm{CP}_{1}}$		130			57			40		ns	Times $\leqslant 20 \mathrm{~ns}$
$\mathrm{t}_{\text {s }}$	Set-Up Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}		130			57			40		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 4)		4			10					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays (tPLLH^{2} and tPHL) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}).

Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{\text {rec }}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For fMAX, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

CONDITIONS: $\overline{\mathrm{CP}_{1}}=$ HIGH and the device triggers on a LOW-to-HIGH transition at CP_{O}. The timing also applies when $\mathrm{CP}_{0}=$ LOW and the device triggers on a HIGH-toLOW transition at $\overline{\mathrm{CP}_{1}}$.

SET-UP AND HOLD TIMES, CP_{0} TO $\overline{\mathrm{CP}} \mathbf{1}$ AND $\overline{\mathbf{C P}_{1}}$ TO CP_{0}

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The F4519 provides four multiplexing circuits with common selection inputs; each circuit contains two inputs and one output. It may be used to select four bits of information from one of two sources. The A inputs are selected when S_{A} is HIGH, the B inputs when S_{B} is HIGH. When S_{A} and S_{B} are HIGH, the output $\left(Z_{a}\right)$ is the logical Exclusive-NOR of the A_{n} and B_{n} input $\left(Z_{n}=A_{n} \odot B_{n}\right)$. When S_{A} and S_{B} are LOW, the output $\left(Z_{n}\right)$ is LOW, independent of the multiplexer inputs (A_{n} and B_{n}). The F4519 cannot be used to multiplex analog signals. The outputs utilize standard buffers for best performance.

- COMMON SELECT INPUTS
- FULLY BUFFERED OUTPUTS

TRUTH TABLE

SELECT		INPUTS		OUTPUT
S_{A}	S_{B}	A_{n}	B_{n}	Z_{n}
L	L	X	X	L
H	L	L	X	L
H	L	H	X	H
L	H	X		L
L	H		H	
H	H	H	H	
H	H	L	H	L
H	H	H	L	L
H	H	H	H	H

$$
\begin{aligned}
& H=H I G H \text { Level } \\
& L=\text { LOW Level } \\
& X=\text { Don't Care }
\end{aligned}
$$

LOGIC DIAGRAM

$=$ Pin Number

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES
S_{A}, S_{B}
Select Inputs (Active HIGH)
$\mathrm{A}_{0}-\mathrm{A}_{3}$,
$\mathrm{B}_{0}-\mathrm{B}_{3}$
$Z_{0}-Z_{3}$ Multiplexer Inputs

Multiplexer Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					150			300		60			MAX	
		XM			0.5			1		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60		12			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, S_{n} to Z_{n}		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$			45 45			$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$		ns	$=15 \mathrm{pF}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, A_{n}, B_{n} to Z_{n}		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$			45 45			35 35		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	+	\%	$\begin{array}{r} 10 \\ 10 \\ \hline \end{array}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, S_{n} to Z_{n}		$\begin{aligned} & 110 \\ & 110 \end{aligned}$		+	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	3		$\begin{aligned} & 40 \\ & 40 \end{aligned}$		ns	
tpLH tpHL	Propagation Delay, A_{n}, B_{n} to Z_{n}	+ 4	$\begin{array}{r} 10 \\ 10 \end{array}$			$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$		ns	$C_{L}=50 \mathrm{pF}$ Input Transition
${ }^{\mathrm{t}} \mathrm{TLH}$ ${ }^{t}$ THL	Output Transition Time	7	65 65			35 35			15 15		ns	

NOTE:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4520/34520

DUAL 4-BIT BINARY COUNTER

DESCRIPTION - The F4520 is a Dual 4-Bit Internally Synchronous Binary Counter. Each counter has both an active HIGH Clock Input (CP_{0}) and an active LOW Clock Input ($\overline{\mathrm{CP}}_{1}$), buffered Outputs from all four bit positions ($\mathrm{O}_{0}-\mathrm{Q}_{3}$) and an active HIGH overriding asynchronous Master Reset Input (MR).
The counter advances on either the LOW-to-HIGH transition of the CP_{0} Input if $\overline{\mathrm{CP}}_{1}$ is HIGH or the HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input if CP_{0} is LOW (see the Truth Table). Either Clock Input (CP ${ }_{0}, \overline{\mathrm{CP}}_{1}$) may be used as the Clock Input to the counter and the other Clock Input may be used as a Clock Inhibit Input.
A HIGH on the Master Reset Input (MR) resets the counter ($\mathrm{O}_{0}-\mathrm{O}_{3}=$ LOW) independent of the Clock Inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$).

- TYPICAL COUNT FREQUENCY OF 10 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- TRIGGERED ON EITHER A LOW-TO-HIGH OR A HIGH-TO-LOW TRANSITION
- asynchronous active high master reset
- BUFFERED OUTPUTS FROM ALL FOUR BIT POSITIONS
- FULLY SYNCHRONOUS COUNTING

TRUTH TABLE

CP_{0}	$\overline{\mathrm{CP}}_{1}$	MR	MODE
Γ	H	L	Counter Advances
L	X	L	Counter Advances
	X	L	No Change
X	Γ	L	No Change
Γ	L	L	No Change
H	X	L	No Change
X	X	H	Reset (Asynchronous)

$\mathrm{X}=$ Don't Care
$L=$ Low Level
$\mathrm{H}=\mathrm{HIGH}$ Level
$\int=$ Positive-Going Transition
$\checkmark=$ Negative-Going Transition

1/2 OF A F4520 LOGIC DIAGRAM

(2) $O R$ (10)

$$
\begin{aligned}
V_{D D} & =\operatorname{Pin} 16 \\
V_{S S} & =\operatorname{Pin} 8 \\
O & =\operatorname{Pin} \text { Number }
\end{aligned}
$$

LOGIC SYMBOLS

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES

$\mathrm{CP}_{0 \mathrm{Oa}}, \mathrm{CP}_{0 \mathrm{~b}}$	Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Triggered)
$\overline{C P}_{1 a}, \mathrm{CP}_{1 \mathrm{~b}}$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
$M R_{\text {a }}, M R_{\text {b }}$	Master Reset Inputs
$\mathrm{Q}_{0 a}-\mathrm{Q}_{3 a}$	Outputs
$\mathrm{O}_{0 b}-\mathrm{O}_{3 b}$	Outputs

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		300			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}_{1}}$ to Q_{n}		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$
tPHL	Propagation Delay, MR to Q_{n}		200			80			55		ns	Input Transition
$\begin{aligned} & { }^{\text {TTLH }} \\ & \text { t THL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \\ & \hline \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$		ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} or $\overline{\mathrm{CP}_{1}}$ to Q_{n}		$\begin{array}{\|l\|} \hline 220 \\ 220 \\ \hline \end{array}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }_{\text {tPHL }}$	Propagation Delay, MR to Q_{n}		220			90			60		ns	Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {tw }}$ MR	MR Minimum Pulse Width		70			30			20		ns	
${ }^{t}{ }_{w} C P$	CP_{0} or $\overline{\mathrm{CP}_{1}}$ Minimum Pulse Width		120			50			35		ns	
$t_{\text {rec }}$	MR Recovery Time		15			5			0		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, CP_{0} to $\overline{\mathrm{CP}} 1$		130			57			40		ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, $\overline{\mathrm{CP}}_{1}$ to CP_{0}		130			57			40		ns	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 4)		4			10					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{IPLH}_{\mathrm{LH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns.
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTHS FOR CP $\mathbf{0}_{0}, \overline{\mathbf{C P}_{1}}$ AND MR AND MR RECOVERY TIME

SET-UP AND HOLD TIMES, CP_{0} TO $\overline{\mathbf{C P}} 1$ AND $\overline{\mathrm{CP}_{1}}$ TO CP 0

CONDITIONS: $\overline{\mathrm{CP}_{1}}=\mathrm{HIGH}$ and the device triggers on a LOW-to-HIGH transition at CP_{0}. The timing also applies when $\mathrm{CP}_{0}=$ LOW and the device triggers on a HIGH-toLOW transition at $\overline{\mathrm{CP}}_{1}$.

NOTE:
Set-up and Hold Times are shown as positive values but may be specified as negative values.

F4522/34522

PROGRAMMABLE 4-BIT BCD DOWN COUNTER

DESCRIPTION - The F4522 is a synchronous Programmable 4-Bit BCD Down Counter with an active HIGH and an active LOW Clock Input ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$), an asynchronous Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), a Carry Forward Input (CF), four buffered Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$, a Terminal Count Output (TC) and an overriding asynchronous Master Reset Input (MR).

Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the active LOW Clock Input $\left(\overline{\mathrm{CP}_{1}}\right)$ are LOW, the counter advances on a LOW-to-HIGH transition of the active HIGH Clock Input (CP_{0}). When the Parallel Load Input (PL.) is LOW and the active HIGH Clock Input (CP_{0}) is HIGH, the counter advances on a HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input. The Terminal Count Output (TC) is HIGH when the counter is in the zero state $\left(Q_{0}=\right.$ $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=$ LOW) and the Carry Forward Input (CF) is H1GH. A HIGH on the Master Reset Input (MR) resets the counter $10_{0}-\mathrm{O}_{3}=$ LOW) independent of other input conditions.

- FULLY SYNCHRONOUS PROGRAMMABLE BCD DOWN COUNTER
- CLOCK INPUT EITHER HIGH-TO-IOW OR LOW-TO-HIGH EDGE-TRIGGERED
- ASYNCHRONOUS MASTER RESET
- CASCADABLE
- ASYNCHRONOUS PARALLEL LOAD

PIN NAMES

PL

$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Inputs
CF	Carry Forward Input
CP	Clock Input $(\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{\mathrm{CP}}_{1}$	Clock Input $(\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
MR	Asynchronous Master Reset Input
TC	TC Terminal Count Output
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Buffered Outputs

$\mathrm{a}_{0}-\mathrm{O}_{3}$
Buffered Outputs
 DIP (TOP VIEW)

O_{3}	VDD
$2 \mathrm{P}_{3}$	Q_{2}
-PL	P_{2}
${ }^{-1} \overline{C P}_{1}$	CF
$5 \square \mathrm{P}_{0}$	TC
${ }_{6} \square \mathrm{CP}_{0}$	P_{1}
O_{0}	MR
$8 \square \mathrm{~V}_{\mathrm{SS}}$	Q_{1}

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

F4526/34526

PROGRAMMABLE 4-BIT BINARY DOWN COUNTER

DESCRIPTION - The F4526 is a synchronous Programmable 4-Bit Binary Down Counter with an active HIGH and an active LOW Clock Input ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$), an asynchronous Parallel Load Input (PL), four Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), a Carry Forward Input (CF), four buffered Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right)$, a Terminal Count Output (TC) and an overriding asynchronous Master Reset Input (MR).

Information on the Parallel Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter while the Parallel Load Input (PL) is HIGH, independent of all other input conditions except Master Reset Input (MR) which must be LOW. When the Parallel Load Input (PL) and the active LOW Clock Input ($\overline{\mathrm{CP}}_{1}$) are LOW, the counter advances on a LOW-to-HIGH transition of the active HIGH Clock Input (CP_{0}). When the Parallel Load Input (PL) is LOW and the active HIGH Clock Input (CP_{0}) is HIGH, the counter advances on a HIGH-to-LOW transition of the $\overline{\mathrm{CP}}_{1}$ Input. The Terminal Count Output (TC) is HIGH when the counter is in the zero state $\left(\mathrm{Q}_{0}=\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}=\mathrm{LOW}\right)$ and the Carry Forward Input (CF) is HIGH. A HIGH on the Master Reset Input (MR) resetsthe counter $\left(\mathrm{Q}_{0}-\mathrm{O}_{3}=\mathrm{LOW}\right)$ independent of other input conditions

- FULLY SYNCHRONOUS PROGRANMIABLE BCD DOWN COUNTER
- CLOCK INPUT EITHER HIGH-TO-LOW OR LOW-TO-HIGH EDGE-TRIGGERED
- ASYNCHRONOUS MASTER RESET
- CASCADABLE
- ASYNCHRONOUS PARALLEL LOAD PIN NAMES
PL
$\mathrm{P}_{0}-\mathrm{P}_{3}$
CF
$\frac{\mathrm{CP}_{0}}{\mathrm{CP}_{1}}$
MR
TC
$\mathrm{O}_{0}-\mathrm{Q}_{3}$
Parallel Load Input
Parallel Inputs
Carry Forward Input
Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered) Clock Input ($\mathrm{H} \rightarrow \mathrm{L}$ Edge-Triggered)
Asynchronous Master Reset Input
Terminal Count Output
Buffered Outputs

F4528/34528
 DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The F4528 is a Dual Retriggerable Resettable Monostable Multivibrator. Each Multivibrator has an active LOW Input (\bar{I}_{0}), an active HIGH Input (I_{1}), an active LOW Clear Direct Input ($\overline{C_{D}}$), an Output (Q), its Complement ($\overline{\mathrm{Q}}$) and two pins for connecting the external timing components ($C_{\text {ext }}, C_{\text {ext }} / R_{\text {ext }}$). An external timing capacitor must be connected between $C_{e x t}$ and $\mathrm{C}_{\text {ext }} / R_{\text {ext }}$ and an external resistor must be connected between $\mathrm{C}_{\mathrm{ext}} / \mathrm{R}_{\mathrm{ext}}$ and V_{DD}.
A HIGH-to-LOW transition on the \bar{I}_{0} Input when the I_{1} Input is LOW or a LOW-to-HIGH transition on the I_{1} Input when the \bar{I}_{0} Input is HIGH produces a positive pulse ($L \rightarrow H \rightarrow L$) on the Q Outputand a negative pulse $(H \rightarrow L \rightarrow H)$ on the $\overline{\mathrm{Q}}$ Output if the Clear Direct Input $\left(\overline{C_{D}}\right)$ is HIGH. A LOW on the Clear Direct Input ($\overline{C_{D}}$) forces the Q Output LOW, $\overline{\mathrm{Q}}$ Output HIGH and inhibits any further pulses until the Clear Direct Input ($\overline{C_{D}}$) is HIGH.

- RESETTABLE

- TRIGGER ON EITHER A HIGH-TO-LOW TRANSITION ON TO OR A LOW-TO-HIGH TRANSITION ON I_{1}
- COMPLEMENTARY OUTPUTS AVAILABLE

PIN NAMES

$\overline{\Gamma_{0}}, \bar{I}_{0}$
$1_{1 a}, I_{1 b}$
$\overline{\mathrm{CD}}_{\mathrm{a}}, \overline{\mathrm{CD}}_{\mathrm{b}}$
Q_{a}, Q_{b}
$\overline{\mathrm{Q}_{\mathrm{a}}}, \overline{\mathrm{Q}_{\mathrm{b}}}$
$\mathrm{C}_{\text {exta }}, \mathrm{C}_{\text {extb }}$
$\mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {exta }}, \mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {extb }}$

Input ($\mathrm{H} \rightarrow \mathrm{L}$ Triggered)
Input ($L \rightarrow H$ Triggered)
Clear Direct Input (Active LOW)
Output
Complimentary Output (Active LOW)
External Capacitor Connections
External Capacitor/Resistor Connections

F4531/34531 13-INPUT PARITY CHECKER GENERATOR

DESCRIPTION - The F4531 is a 13 -Input Parity Checker/Generator with 13 Parity Inputs ($\mathrm{I}_{0}{ }^{-1} 12$) and a Parity Output (Z). When the number of Parity Inputs that are HIGH is even, the Output (Z) is LOW. When the number of Parity Inputs that are HIGH is odd, the Output (Z) is HIGH. For words of 12 bits or less, the Output (Z) can be used to generate either odd or even parity by appropriate termination of the unused Parity Input (s). For words of 14 or more bits, the devices can be cascaded by connecting the output (Z) of one device to any Parity Input ($I_{0}{ }^{-1} \mathbf{I}_{12}$) of another device. When cascading devices, it is recommended that the Output (Z) of one device be connected to the 12 input of the other device since there is less delay to the Output (Z) from the I_{12} input than from any other Input ($\mathrm{I}_{0}-\mathrm{I}_{11}$).

- VARIABLE WORD LENGTH
- FULLY BUFFERED OUTPUT (ACTIVE HIGH)
- PARITY INPUTS (ACTIVE HIGH)

PIN NAMES

$\mathrm{I}^{1-1} 12$

z

FUNCTION
Parity Inputs
Buffered Output

TRUTH TABLE

INPUTS		OUTPUT
	$l_{7} l_{8} \quad l_{9} \quad l_{10} \quad l_{11} \quad l_{12}$	Z
All Thirteen	Inputs LOW	L
Any One	Input HIGH	H
Any Two	Inputs HIGH	L
Any Three	Inputs HIGH	H
Any Four	Inputs HIGH	L
Any Five	Inputs HIGH	H
Any Six	Inputs HIGH	L
Any Seven	Inputs HIGH	H
Any Eight	Inputs HIGH	L
Any Nine	Inputs HIGH	H
Any Ten	Inputs HIGH	L
Any Eleven	Inputs HIGH	H
Any Twelve	Inputs HIGH	L
All Thirteen	Inputs HIGH	H

[^12]

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOGIC DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}$. O V See Note il

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

AC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\mathrm{I}_{0} \mathrm{l}_{11}$ to Z		$\begin{aligned} & 175 \\ & 175 \end{aligned}$			70 70			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, I_{12} to Z		$\begin{array}{\|l\|l\|} \hline 105 \\ 105 \\ \hline \end{array}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\mathrm{t}} \mathrm{TLH}$ ${ }_{\mathrm{T} H \mathrm{~L}}$	Output Transition Time		35 35			20 20			10 10		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{t^{\prime} P L H}$ $t_{P H L}$	Propagation Delay, $\mathrm{I}^{-1} 11$ to Z		$\begin{aligned} & 195 \\ & 195 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & { }^{\text {tPHL }} \end{aligned}$	Propagation Delay, l_{12} to Z		$\begin{aligned} & 115 \\ & 115 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {tTLH }}$ ${ }^{t_{T H L}}$	Output Transition Time		65			35 35			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4532/34532 8-INPUT PRIORITY ENCODER

DESCRIPTION - The F4532 is an 8 -Input Priority Encoder with eight active HIGH Priority Inputs $\left(I_{0}{ }^{-17}\right)$, three active HIGH Address Outputs ($A_{0}-A_{2}$), an active HIGH Enable Input ($E_{1 n}$), an active HIGH Enable Output ($E_{\text {Out }}$) and an active HIGH Group Select Output (GS).

Data is accepted on the eight Priority Inputs ($I_{0-1}{ }^{-1}$). The binary code corresponding to the highest Priority Input ($\mathrm{I}^{-1} 7$) which is HIGH is generated on the Address Outputs ($\mathrm{A}_{0} 0^{-} \mathrm{A}_{2}$) if the Enable Input ($E_{I n}$) is HIGH. Priority Input I_{7} is assigned the highest priority. The Group Select output (GS) is HIGH when one or more Priority Inputs ($I_{0} 0^{-17}$) and the Enable Input ($E_{\text {In }}$) are HIGH. The Enable Output ($E_{\text {Out }}$) is HIGH when all the Priority Inputs (I_{0-1}) are LOW and the Enable Input ($E_{\text {In }}$) is HIGH. The Enable Input (E_{In}) when LOW, forces all Outputs ($A_{0}-A_{2}, G S, E_{O u t}$) LOW.

- ACTIVE HIGH PRIORITY INPUTS
- CASCADABLE

PIN NAMES

$\mathrm{I}_{0-17} \mathrm{I}_{7}$	Priority Inputs
$\mathrm{E}_{\ln }$	Enable Input
$\mathrm{E}_{\mathrm{Out}}$	Enable Output
GS	Group Select Output
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Outputs

TRUTH TABLE

INPUTS									OUTPUTS				
$E_{\text {ln }}$	17	I_{6}	15	14	I_{3}	12	I_{1}	${ }^{1} 0$	GS	A_{2}	A_{1}	A_{0}	Eout
L	X	X	X	X	X	X	X	X	L	L	L	L	L
H	L	L	L	L	L	L	L	L	L	L	L	L	H
H	H	X	X	X	X	X	x	x	H	H	H	H	L
H	L	H	X	X	X	X	x	X	H	H	H	L	L
H	L	L	H	X	X	X	x	x	H	H	L	H	L
H	L	L	L	H	X	X	x	x	H	H	L	L	L
H	L	L	L	L	H	X	x	X	H	L	H	H	L
H	L	L	L	L	L	H	X	X	H	L	H	L	L
H	L	L	L	L	L	L	H	X	H	L	L	H	L
H	L	L	L	L	L	L	L	H	H	L	L	L	L

[^13]

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$\mathrm{O}=$ Pin Number

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					70			140		28			MAX	
		XM			0.5			1		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60		12			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, EIN to EOUT		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			40 40			$\begin{array}{r}30 \\ 30 \\ \hline\end{array}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, EIN to GS		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		4	$\begin{array}{r} 20 \\ 20 \\ 20 \end{array}$		ns	
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & { }^{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{EIN}_{\text {IN }}$ to A_{n}		$\begin{aligned} & 120 \\ & 120 \end{aligned}$		$\underline{1}$	60			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		ns	Input Transition
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, I_{n} to A_{n}		$\begin{aligned} & 125 \\ & 125 \end{aligned}$,	$\begin{array}{\|c\|} \hline 60 \\ 60 \\ \hline \end{array}$			45 45		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, In_{n} to GS ${ }^{\text {a }}$		120 120			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			40 40		ns	
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, EIN to EOUT		$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, EIN to GS		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\mathrm{EIN}^{\text {d }}$ to A_{n}		$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$		ns	Input Transition Times $\leqslant 20$ ns
tPLH $\underline{\mathrm{tPHL}}$	Propagation Delay, In_{n} to A_{n}		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			50 50		ns	
tPLH $\underline{\mathrm{tPHL}}$	Propagation Delay, In_{n} to GS		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$		ns	
$\begin{aligned} & \text { t TLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			15 15		ns	

NOTE:

1. Additional DC Characteristics are listed in this section under $F 4000$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4539/34539
 DUAL 4-INPUT MULTIPLEXER

DESCRIPTION - The F4539 is a Dual 4-Input Digital Multiplexer with common select logic. Each multiplexer has four Multiplexer Inputs (${ }^{(} 0^{-1} 3$), an active LOW Enable Input (\bar{E}) and a Multiplexer Output (Z). When HIGH, the Enable Input (\bar{E}) forces the Multiplexer Output (Z) of the respective multiplexer LOW, independent of the Select $\left(S_{0}, S_{1}\right)$ and Multiplexer ($\left(I_{0}-1{ }_{3}\right)$ Inputs. With the Enable Input (E) LOW, the common Select Inputs $\left(S_{0}, S_{1}\right)$ determine which Multiplexer Input (I_{0-1}) on each of the multiplexers is routed to the respective Multiplexer Output (Z).

- COMMON SELECT LOGIC
- ACTIVE LOW ENABLES

PIN NAMES

$I_{0 a}, I_{1 a}, I_{2 a}, I_{3 a}$
Multiplexer Inputs
$1_{0 b}, I_{1 b}, I_{2 b}, I_{3 b}$
$\frac{S_{0}}{E_{a}}, S_{1}$
Z_{a}, Z_{b}
Select Inputs
Enable Inputs (Active LOW)
Multiplexer Outputs

TRUTH TABLE

INPUTS			OUTPUT
S_{0}	S_{1}	\bar{E}	Z
X	X	H	L
L	L	L	I_{0}
H	L	L	I_{1}
L $=$ HIGH Level			
L	H	L	I_{2}
H	H	L	I_{3}

LOGIC DIAGRAM

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Power Supply Current	XC			30			60		12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					600			1200		240			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $\mathrm{V}_{\text {DD }}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {t}} \text { PLH }$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, ${ }^{1} \times$ to Z		$\begin{aligned} & 145 \\ & 120 \end{aligned}$			$\begin{aligned} & 61 \\ & 50 \end{aligned}$			$\begin{aligned} & 43 \\ & 33 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {PPLH }}} \\ & { }^{t^{\mathrm{P}}} \\ & \hline \end{aligned}$	Propagation Delay, Select to Z		$\begin{aligned} & 190 \\ & 192 \end{aligned}$			$\begin{aligned} & 78 \\ & 78 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & { }^{{ }^{\text {PPLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to Z		$\begin{array}{r} 100 \\ 96 \end{array}$			42 42			$\begin{aligned} & 29 \\ & 32 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THLL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 38 \\ & 31 \end{aligned}$			$\begin{aligned} & 19 \\ & 15 \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {PLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, ${ }^{\prime} \mathrm{X}$ to Z		$\begin{aligned} & 166 \\ & 140 \end{aligned}$			$\begin{aligned} & 71 \\ & 58 \end{aligned}$			$\begin{aligned} & 51 \\ & 40 \end{aligned}$		ns	
$\begin{aligned} & { }^{{ }^{7} \mathrm{PLH}} \\ & { }^{\text {t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, Select to Z		$\begin{aligned} & 210 \\ & 210 \end{aligned}$			$\begin{aligned} & 88 \\ & 88 \end{aligned}$			$\begin{aligned} & 62 \\ & 62 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Input Transition } \end{aligned}$
$\begin{aligned} & { }^{{ }^{{ }^{\mathrm{P} L H}}} \\ & { }^{\mathrm{P} \mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, \bar{E} to Z		$\begin{aligned} & 120 \\ & 118 \end{aligned}$			53 51			$\begin{aligned} & 37 \\ & 38 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\text {THL }} \end{aligned}$	Output Transition Time		$\begin{aligned} & 76 \\ & 66 \end{aligned}$			39 30			$\begin{aligned} & 29 \\ & 22 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4555/34555 •F4556/34556
 DUAL 1-OF-4 DECODERS/DEMULTIPLEXERS

DESCRIPTION - The F4555 and F4556 are Dual 1-of-4 Decoders/Demultiplexers. Each decoder/ demultiplexer has two Address Inputs (A_{0}, A_{1}), an active LOW Enable Input (E) and four mutually exclusive Outputs which are active HIGH for the $\mathrm{F} 4555\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ and active LOW for the F 4556 ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$).

When the F 4555 is used as a decoder, the Enable Input $(\overline{\mathrm{E}})$ when HIGH, forces all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ LOW. When used as a demultiplexer, the appropriate Output is selected by the data on the Address Inputs (A_{0}, A_{1}) and follows as the inverse of the Enable Input (\bar{E}). All unselected Outputs are LOW.

When the F 4556 is used as a decoder, the Enable Input ($\overline{\mathrm{E}}$) when HIGH forces all Outputs ($\overline{\mathrm{O}}_{0}$ - $\overline{\mathrm{O}}_{3}$) HIGH. When used as a demultiplexer, the appropriate Output is selected by the data on the Address Inputs ($\mathrm{A}_{0}, \mathrm{~A}_{1}$) and follows the state of the Enable Input (E). All unselected Outputs are HIGH.

- ACTIVE HIGH OUTPUTS FOR THE F34555 AND ACTIVE LOW OUTPUTS FOR THE F34556
 - overriding active low enable

PIN NAMES	
\bar{E}	Enable Input (Active LOW)
A_{0}, A_{1}	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Outputs (Active HIGH -F 4555 Only)
$\overline{\mathrm{O}}_{0}-\bar{O}_{3}$	Outputs (Active LOW - F4556 Only)

LOGIC DIAGRAMS
1/2 OF A F4555

1/2 OF A F4556

LOGIC SYMBOLS

F4555				F4556			
1	2	3		1	2		
OR	OR	OR		OR	OR	O	
$\begin{gathered} 15 \\ 6 \\ \hline \end{gathered}$	${ }_{1}^{14}$			$\begin{gathered} 15 \\ 1 \\ \hline \end{gathered}$	14	13	
$E \quad A_{0} A_{1}$				$E \quad A_{0} A_{1}$			
1/2 OF F4555				1/2 OF F4556			
$\begin{array}{lllll}\mathrm{O}_{0} & \mathrm{O}_{1} & \mathrm{O}_{2} & \mathrm{O}_{3}\end{array}$				$\begin{array}{llllll}\mathrm{O}_{0} & \mathrm{O}_{1} & \mathrm{O}_{2} & \mathrm{O}_{3}\end{array}$			
				9			
4	5	6	7	4	5	6	7
OR							
12	11	10	9	12	11	10	9

$$
\begin{aligned}
V_{D D} & =\operatorname{Pin} 16 \\
V_{S S} & =P \text { Pin } 8 \\
O & =P \text { in Number }
\end{aligned}
$$

CONNECTION DIAGRAMS DIP (TOP VIEW)

F4556

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

F4556 TRUTH TABLE

$\overline{\mathbf{E}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{0}}$	$\overline{\mathbf{O}}_{\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{2}}$	$\overline{\mathbf{O}}_{\mathbf{3}}$
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L
H	X	X	H	H	H	H

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			20			40		$\begin{array}{r} 8 \\ 80 \\ \hline \end{array}$		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at O V or V_{DD}
					200			400					MAX	
		XM										$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V, T_{A}=25^{\circ} \mathrm{C}$, F 4555 only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, Address to Output		$\begin{aligned} & 130 \\ & 105 \end{aligned}$			$\begin{aligned} & 54 \\ & 45 \end{aligned}$			$\begin{aligned} & 33 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tpLH}}$ ${ }^{\text {t PHL }}$	Propagation Delay, \bar{E} to Output		$\begin{aligned} & 130 \\ & 105 \end{aligned}$			$\begin{aligned} & 51 \\ & 45 \end{aligned}$			$\begin{aligned} & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		35 33			15 13			$\begin{aligned} & 12 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 148 \\ & 127 \end{aligned}$			$\begin{aligned} & \hline 60 \\ & 54 \end{aligned}$			$\begin{aligned} & 40 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t PLH }}$ ${ }^{\mathrm{t}} \mathrm{PHL}$	Propagation Delay, \bar{E} to Output		$\begin{aligned} & 148 \\ & 127 \end{aligned}$			$\begin{aligned} & \hline 60 \\ & 53 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time		65 66			20			25 20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{A} T_{A}=25^{\circ} \mathrm{C}$, F 4556 only (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t} \mathrm{PLH}$ ${ }^{\mathrm{t} P H L}$	Propagation Delay, Address to Output		$\begin{aligned} & 120 \\ & 160 \end{aligned}$			$\begin{aligned} & 48 \\ & 58 \end{aligned}$			$\begin{aligned} & 33 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, \bar{E} to Output		$\begin{aligned} & 114 \\ & 125 \end{aligned}$			45 50			32 32		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t} \mathrm{TLH}} \\ & { }^{\mathrm{t}}{ }^{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		37 35			18 15			12 10		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Output		$\begin{aligned} & 140 \\ & 185 \end{aligned}$			57 68			40 45		ns	
$\begin{aligned} & { }^{\mathrm{t} P L H} \\ & { }_{\mathrm{t}}^{\mathrm{t} H \mathrm{HL}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{E}}$ to Output		$\begin{aligned} & 134 \\ & 145 \\ & \hline \end{aligned}$			55 58			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition
$\begin{aligned} & { }^{{ }^{\mathrm{T} T \mathrm{LH}}} \\ & { }^{\mathrm{THLL}} \\ & \hline \end{aligned}$	Output Transition Time		75 77			37 29			25 20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

F4582/34582
 CARRY LOOKAHEAD GENERATOR

DESCRIPTION - The F4582 is a Lookahead Carry Generator which provides high speed lookahead over word lengths of more than four bits. The device has a Carry Input (C_{n}), four active LOW Carry Generate Inputs ($G_{0}-G_{3}$), four active LOW Carry Propagate Inputs ($P_{0}-P_{3}$), three Carry Outputs ($C_{n+x}, C_{n+y}, C_{n+z}$), an active LOW Carry Propagate Output (P) and an active LOW Carry Generate Output (G). The logic equations for all outputs are shown below.

- EXPANDABLE TO ANY NUMBER OF BITS
- HIGH SPEED LOOKAHEAD OVER WORD LENGTHS OF MORE THAN FOUR BITS

PIN NAMES

C_{n}
$\bar{G}_{0}-\bar{G}_{3}$
$\bar{P}_{0}-\bar{P}_{3}$
$C_{n+x}, C_{n+y}, C_{n+z}$
\bar{G}

Carry Input

Carry Generate Inputs (Active LOW)
Carry Propagate Inputs (Active LOW)
Carry Outputs
Carry Generate Output (Active LOW)
Carry Propagate Output Actyelow

$$
\begin{aligned}
& \text { LOGIC EQUATIONS } \\
& C_{n+x}=G_{0}+P_{0} \cdot C_{n} \\
& C_{n+y}=G_{1}+P_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot C_{n} \\
& C_{n+z}=G_{2}+P_{2} \cdot G_{1}+P_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{n} \\
& \bar{G}=\overline{G_{3}+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}} \\
& \bar{P}=\overline{P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& V_{D D}=P \text { in } 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1}$ DD	Quiescent Power Supply Current	XC			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					150			300		60			MAX	
		XM			0.5			1.0		0.2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					30			60		12			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \text { tPHL } \end{aligned}$	Propagation Delay, C_{n} to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, C_{n+y} or C_{n+z}		$\begin{aligned} & 140 \\ & 140 \end{aligned}$			65 65			$\begin{array}{\|l\|} \hline 45 \\ 45 \\ \hline \end{array}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, P_{n} to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, C_{n+y} or C_{n+z}		$\begin{aligned} & 140 \\ & 140 \end{aligned}$			$\begin{array}{r} 65 \\ 65 \end{array}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		ns	
tPLH tPHL	Propagation Delay, G_{n} to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, C_{n+y} or C_{n+z}		$\begin{aligned} & 140 \\ & 140 \end{aligned}$		"	65	,		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{P}_{1}}, \overline{\mathrm{P}_{2}}, \overline{\mathrm{P}_{3}}$ to \bar{G}		$\begin{aligned} & 149 \\ & 140 \end{aligned}$	W ${ }^{2}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			45 45		ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{G}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$		$\begin{aligned} & 140 \\ & 140 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$			45 45		ns	
tPLH tpHL	Propagation Delay, $\overline{\mathrm{P}}_{\mathrm{n}}$ to $\overline{\mathrm{P}}$		$\begin{aligned} & 140 \\ & 140 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Output Transition Time		30 30			$\begin{aligned} & 17 \\ & 17 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, C_{n} to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, C_{n+y} or C_{n+z}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{P_{n}}$ to C_{n+x}, C_{n+y} or C_{n+z}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
tPLH tPHL	Propagation Delay, $\overline{\mathrm{G}_{\mathrm{n}}}$ to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, C_{n+y} or C_{n+z}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{P}_{1}}, \overline{\mathrm{P}_{2}}, \overline{\mathrm{P}_{3}}$ to \bar{G}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{G}_{\mathrm{n}}}$ to $\overline{\mathrm{G}}$		$\begin{aligned} & 160 \\ & 160 \\ & \hline \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{P}_{\mathrm{n}}}$ to $\overline{\mathbf{P}}$		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			55		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			20		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $F 4000$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

FAIRCHILD CMOS • F4582/34582

TRUTH TABLE													
INPUTS									OUTPUTS				
c_{n}	$\overline{\mathrm{G}}$	$\overline{P_{0}}$	$\overline{\mathrm{G}} 1$	$\overline{P_{1}}$	$\overline{\mathrm{G}} 2$	$\overline{P_{2}}$	$\overline{\mathrm{G}} 3$	$\overline{P_{3}}$	$\mathrm{C}_{\mathrm{n}+\mathrm{x}}$	$\mathrm{c}_{\mathrm{n}+\mathrm{y}}$	$\mathrm{C}_{\mathrm{n}+\mathrm{z}}$	$\overline{\mathrm{G}}$	$\overline{\mathrm{P}}$
$\bar{\chi}$	H	H							L				
L	H	x							L				
x	L	x							H				
H	x	L							H				
X	X	X	H	H						L			
x	H	H	H	x						L			
L	H	X	H	X						L			
x	x	x	L	x						H			
x	L	x	x	L						H			
H	x	L	x	L						H			
X	X	X	X	X	H	H					L		
x	x	\times	H	H	H	x					L		
x	H	H	H	\times	H	x					L		
L	H	x	H	x	H	x					L		
x	x	x	X	x	L	x					H		
x	x	x	L	x	x	L					H		
x	L	x	x	L	x	L					H		
H	x	L	x	L	x	L					H		
	X		X	X	x	x						H	
	x		\times	\times	H							H	
	x		H	H				x				H	
	H		H	x			H	x				H	
	x		x	${ }^{x}$		x	L	x				L	
	x		x		L	x	x	L				L	
	x		L	\times	x	L	x	L				L	
	L		x	L	x	L	\times	L				L	
		H		X		X		X					H
		x		H		x		x					H
		x		\times		H		x					H
		\times		\times				H					H
		L		L		L		L					L
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level L = LOW Voltage Level X $=$ Don't Care													

F4702/34702
 PROGRAMMABLE BIT RATE GENERATOR FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ CMOS

DESCRIPTION - The F4702 Bit Rate Generator provides the necessary clock signals for digital data transmission systems, such as Universal Asynchronous Receiver and Transmitter circuits (UARTs). It generates any of the 14 commonly used bit rates using an on-chip crystal oscillator, but it's design also provides for easy and economical multichannel operation, where any of the possible frequencies must be made available on any output channel.

One F4702 can control up to eight output channels. When more than one bit rate generator is required, they can still be operated from one crystal.

- PROVIDES 14 COMMONLY USED BIT RATES
- ONE F4702 CONTROLS UP TO EIGHT TRANSMISSION CHANNELS
- USES 2.4576 MHz INPUT FOR STANDARD FREQUENCY OUTPUTS (16 TIMES BIT RATE)
- CONFORMS TO EIA RS-404
- ON-CHIP INPUT PULL UP CIRCUITS
- TTL COMPATIBLE-OUTPUTS WILL SINK 1.6 mA
- INITIALIZATION CIRCUIT FACILITATES DIAGNOSTIC FAULT ISOLATION
- LOW POWER DISSIPATION-1.35 mA POWER DISSIPATION AT 5 V AND 2.4576 MHz
- 16-PIN DUAL IN-LINE PACKAGE

TABLE 1
CLOCK MODES AND INITIALIZATION

I_{x}	$\overline{\mathbf{E}_{\mathbf{C P}}}$	CP	OPERATION		$\mathrm{H}=\mathrm{HIGH}$ Level
	H	L	Clocked from IX		$\mathrm{X}=$ Don't Care
x	L		Clocked from CP		$\begin{aligned} \Omega= & 1 \text { st HIGH Level } \\ & \text { Clock Pulse } \end{aligned}$
X	H	H	Continuous Reset		After ECP Goes
\times	L	\square	Reset During First CP $=$ HIGH Time		C Clock Pulses

Note : Actual output frequency is 16 times the indicated Output Rate, assuming a clock frequency of 2.4576 MHz .

TABLE 2
truth table for rate select inputs

$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Output Rate (Z) Note 1
L	L	L	L	Multiplexed Input (IM)
L	L	L	H	Multiplexed Input (IM)
L	L	H	L	50 Baud
L	L	H	H	75 Baud
L	H	L	L	134.5 Baud
L	H	L	H	200 Baud
L	H	H	L	600 Baud
L	H	H	H	2400 Baud
H	L	L	L	9600 Baud
H	L	L	H	4800 Baud
H	L	H	L	1800 Baud
H	L	H	H	1200 Baud
H	H	L	L	2400 Baud
H	H	L	H	300 Baud
H	H	H	L	150 Baud
H	H	H	H	110 Baud

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

PIN NAMES	
CP	External Clocl Input
$E_{C P}$	External Clock Enable Input (Active LOW)
${ }^{1} \times$	Crystal Input
1 M	Multiplexed Input
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Rate Select Inputs
CO	Clock Output
O_{X}	Crystal Drive Output
$\mathrm{O}_{0}-\mathrm{O}_{2}$	Scan Counter Outputs
Z	Bit Rate Output

BLOCK DIAGRAM

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 16 \\
& V_{S S}=\operatorname{Pin} 8 \\
& O=\operatorname{Pin} \text { Number }
\end{aligned}
$$

FUNCTIONAL DESCRIPTION - Digital data transmission systems employ a wide range of standardized bit rates, ranging from 50 baud interfacing with electromechanical devices, to 9600 baud for high speed modems. Modern electronic systems commonly use Universal Asynchronous Receiver and Transmitter circuits (UARTs) to convert parallel data inputs into a serial bit stream (transmitter) and to reconvert the serial bit stream into parallel outputs (receiver). In order to resynchronize the incoming serial data, the receiver requires a clock rate that is a multiple of the incoming bit rate. Popular MOS-LSI UART circuits use a clock that is 16 times the transmitted bit rate. The F4702 can generate 14 standardized clock rates from one common high frequency input.

The F4702 contains the following five functional subsystems which are discussed in detail below:

1. An Oscillator Circuit with associated gating.
2. A Prescaler used as scan counter for multichannel operation (described in the applications section).
3. A network of Counter Chains to generate the required standardized frequencies.
4. An Output Multiplexer (frequency selector) with resynchronizing output flip-flop.
5. An Initializing (reset) Circuit.

OSCILLATOR

For conventional operation generating 16 output clock pulses ber bit period, the input clock frequency must be 2.4576 MHz (i.e. 9600 baud x 16×16, since the scan counter and the first flip-flop of the counter chain act as an internal $\div 16$ prescaler). A lower input frequency will obviously result in a proportionally lower output frequency.

The F4702 can be driven from two alternate clock sources: (1) When the $\overline{E_{C P}}$ (active LOW External Clock Enable) input is LOW, the CP input is the clock source. (2) When the $\overline{E_{C P}}$ input is HIGH, a crystal connected between I_{X} and $O X$, or a signal applied to the I_{x} input is the clock source.

PRESCALER (SCAN COUNTER)

The clock frequency is made available on the $C O$ (Clock Output) pin and is applied to the $\div 8$ prescaler with buffered $O_{\text {otputs }} Q_{0}, Q_{1}$, and Q_{2}. This prescaler is of no particular advantage in single frequency applications, but it is essential for the simple economical multichannel scheme described in the Application section of this data sheet.

COUNTER NETWORK

The prescaler Output O_{2} is a square wave of $1 / 8$ the input frequency and is used to drive the frequency counter network generating 13 standardized frequencies. Note that the frequencies are labeled in the Block Diagram and described in terms of the transmission bit rate. In a conventional system using a 2.4576 MHz clock input, the actual output frequencies are 16 times higher.

The output from the first frequency divider flip-flop is thus labeled 9600, since it is used to transmit or receive 9600 baud (bits per second). The actual frequency at this node is $16 \times 9.6 \mathrm{kHz}=153.6 \mathrm{kHz}$. Seven more cascaded binaries generate the appropriate frequencies for bit rates $4800,2400,1200,600,300,150$, and 75.

The other five bit rates are generated by individual counters:
bit rate 1200 is divided by 6 to generate bit rate 200,
bit rate 200 is divided by 4 to generate bit rate 50 ,
bit rate 2400 is divided by 18 to generate bit rate 134.5 with a frequency error of -0.87%,
bit rate 2400 is also divided by 22 to generate bit rate 110 with a frequency error of -0.83%, and
bit rate 9600 is divided by $16 / 3$ to generate bit rate 1800 .
The $16 / 3$ division is accomplished by alternating the divide ratio between 5 (twice) and 6 (once). The result is an exact average output frequency with some frequency modulation. Taking advantage of the $\div 16$ feature of the UART, the resulting distortion is less than 0.78%, irrespective of the number of elements in a character, and therefore well within the timing accuracy specified for high speed communications equipment. All signals except 1800, have a 50% duty cycle.

OUTPUT MULTIPLEXER

The outputs of the counter network are fed to a 16 -input multiplexer, which is controlled by the Rate Select Inputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$. The multiplexer output is then resynchronized with the incoming clock in order to cancel all cumulative delays and to present an output signal at the buffered Output (Z) that is synchronous with the prescaler Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{2}\right)$. Table 2 lists the correspondence between select code and output bit rate. Two of the 16 codes do not select an internally generated frequency, but select an input into which the user can feed either a different, non-standardized frequency, or a static level (HIGH or LOW) to generate "zero baud".

The bit rates most commonly used in modern data terminals (110, 150, 300, 1200, 2400 baud) require that no more than one input be grounded, easily achieved with a single pole, 5-position switch. 2400 baud is selected by two different codes, so that the whole spectrum of modern digital communication rates has a common HIGH on the S_{3} input.

INITIALIZATION (RESET)

The initialization circuit generates a common master reset signal for all flip-flops in the F4702. This signal is derived from a digital differentiator that senses the first HIGH level on the CP input after the $\bar{E}_{C P}$ input goes LOW. When $\bar{E}_{C P}$ is HIGH, selecting the Crystal Input, CP must be LOW. A HIGH level on CP would apply a continuous reset.

All inputs to the F4702, except \mathbf{I}^{X} have on-chip pull up circuits which improve TTL compatibility and eliminate the need to tie a permanently HIGH input to VDD.

FAIRCHILD MACROLOGIC CMOS
F4702/34702

DC CHARACTERISTICS: $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$

SYMBOL	PARAMETER		LIMITS			UNITS	TEMP	TEST CONDITIONS		
			MIN	TYP	MAX					
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		3.5			V	All	Guaranteed Input HIGH Voltage		
$V_{\text {IL }}$	Input LOW Voltage				1.5	V	All	Guaranteed Input LOW Voltage		
VOH	Output HIGH Voltage		$\begin{aligned} & 4.99 \\ & 4.95 \end{aligned}$			V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}^{\mathrm{OH}}=0 \mathrm{~mA}$, Inputs at 0 or 5 V per the Logic Function or Truth Table		
			4.0			V	All	$1 \mathrm{OH}=0 \mathrm{~mA}$, Inputs at 1.5 or 3.5 V		
$\mathrm{VOL}_{\text {O }}$	Output LOW Voltage				$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	V	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$, Inputs at 0 or 5 V per the Logic Function or Truth Table		
					0.5	V	All	$\mathrm{I} \mathrm{OL}=0 \mathrm{~mA}$, Inputs at 1.5 or 3.5 V .		
IIL (See Note 5)	Input LOW Current for Input IX	XC			-0.1	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Pin Under Test at 0 V All Other Inputs Simultaneously at 5 V		
		XM			-0.01					
	Input LOW Current for all Other Inputs	XC		-30						
		XM		-30						
IIH	Input HIGH Current for Input IX	XC			0.1	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	Pin Under Test at 5 V All Other Inputs Simultaneously at 0 V		
		XM			0.01					
	Input HIGH Current for all Other Inputs	XC			0.1					
		XM			0.01					
IOH	Output HIGH Current for all Output OX_{X}		$\begin{aligned} & -0.5 \\ & -0.3 \\ & -0.1 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	Inputs at 0 or 5 V per Logic	
	Output HIGH Current for all Other Outputs		$\begin{aligned} & -1.5 \\ & -1.0 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$		
			$\begin{aligned} & -0.5 \\ & -0.3 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$		
${ }^{\prime} \mathrm{OL}$	Output LOW Current for all Output OX_{X}		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \|$Function or Truth Table		
	Output LOW Current for all Other Outputs		$\begin{aligned} & 3.2 \\ & 3.2 \\ & 1.6 \end{aligned}$			mA	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$			
IDD	Quiescent Power Supply Current	XC			$\begin{array}{r} 100 \\ 1000 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	$\overline{E_{C P}}=V_{D D}, C P=0 V,$ All Other Inputs Common and at $0 \vee$ or $V_{D D}$		
		XM			$\begin{array}{r} 10 \\ 150 \end{array}$	$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$			

See Notes on following page.

FAIRCHILD MACROLOGIC CMOS • F4702/34702

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $1 \times \text { to } \mathrm{CO}$		$\begin{aligned} & 105 \\ & 105 \end{aligned}$			55 55			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to CO		$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\mathrm{CO} \text { to } \mathrm{Q}_{n}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	Input Transition
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CO to Z		$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns	
tTLH tTHL	Output Transition Time		$\begin{aligned} & 50 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 10 \end{aligned}$		ns	
tPLH tPHL	Propagation Delay, IX to CO		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to CO		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			50 50			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CO to O_{n}		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CO to Z		$\begin{aligned} & 70 \\ & 70 \end{aligned}$			35 35			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	
tTLH t THL	Output Transition Time		$\begin{aligned} & 70 \\ & 40 \end{aligned}$			35 25			$\begin{aligned} & 25 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Select to CO Hold Time, Select to CO		$\begin{array}{r} 150 \\ -10 \end{array}$			$\begin{array}{r} 100 \\ -7 \end{array}$			$\begin{array}{r} 75 \\ -5 \end{array}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{th}_{\mathrm{h}} \end{aligned}$	Set-Up Time, I_{M} to CO Hold Time, I_{M} to CO		$\begin{array}{r} 150 \\ -10 \\ \hline \end{array}$			$\begin{array}{r} 70 \\ -7 \end{array}$			$\begin{array}{r} 50 \\ -5 \end{array}$		ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & t_{w} C P(L) \\ & t_{w} C P(H) \end{aligned}$	Minimum Clock Pulse Width, LOW and HIGH		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & t_{w}{ }^{\prime} X(L) \\ & t_{w}{ }^{\prime} X(H) \end{aligned}$	Minimum IX Pulse Width, LOW and HIGH		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	

NOTES:

1. Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull up circuits on all inputs except $1 \times$. This is done for TTL compatibility.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. The first HIGH Level Clock Pulse after $\overline{E_{C P}}$ goes LOW must be at least 350 ns long to guarantee reset of all Counters.
5. It is recommended that input rise and fall times to the Clock Inputs ($C P, I_{X}$) be less than 15μ s.

SWITCHING WAVEFORMS

MINIMUM CP AND IX PULSE WIDTHS AND SET-UP AND HOLD TIMES, SELECT INPUT (\mathbf{S}_{n}) TO CLOCK OUTPUT (CO) AND I_{M} INPUT TO CLOCK OUTPUT (CO)

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

APPLICATIONS

SINGLE CHANNEL BIT RATE GENERATOR

Figure 1 shows the simplest application of the F4702. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5 -position switch. The Bit Rate Output (Z) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to $110,150,300,1200$, and 2400 Baud. For many low cost terminals these five bit rates are adequate.

SIMULTANEOUS GENERATION OF SEVERAL BIT RATES

Fixed Programmed Multichannel Operation

Figure 2 shows a simple scheme that generates eight bit rates on eight output lines, using one F4702 and one 93L34 8-Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs $\left(Q_{0}\right.$ to $\left.Q_{2}\right)$ go through a complete sequence of eight states for every half-period of the highest output frequency (9600 Baud). Feeding these Scan Counter Outputs back to the Select Inputs of the multiplexer causes the F4702 to interrogate sequentially the state of eight different frequency signals. The 93L34 8-Bit Addressable Latch, addressed by the same Scan Counter Outputs, reconverts the multiplexed single Output (Z) of the F 4702 into eight parallel output frequency signals. In the simple scheme of Figure 2 , input $\mathrm{S}_{\mathbf{3}}$ is left open (HIGH) and the following bit rates are generated:

$\mathrm{O}_{0}:$	110 Baud,	$\mathrm{Q}_{1}:$	9600 Baud,	$\mathrm{Q}_{2}:$	4800 Baud,	$\mathrm{Q}_{3}:$
$\mathrm{Q}_{4}:$	1200 Baud,	$\mathrm{Q}_{5}:$	2400 Baud,	$\mathrm{Q}_{6}:$	300 Baud,	$\mathrm{Q}_{7}:$

Other bit rate combinations can be generated by changing the Scan Counter to Selector interconnection or by inserting logic gates into this path.

Fully Programmable Multichannel Operation

Figure 3 shows a fully programmable 8 -channel bit rate generator system that, under computer control, generates arbitrarily assigned bit rates on all eight outputs simultaneously. The basic operation is similar to the previously described fixed programmed system, but two 9 LS170 4×4 Register File MSI packages are connected as programmable look-up tables between the Scan Counter Outputs (Q_{0} to Q_{2}) and the multiplexer Select Inputs (S_{0} to S_{3}). The content of this 8 -word by 4-bit memory determines which frequency appears at what output.

19200 Baud Operation

Though a 19200 Baud signal is not internally routed to the multiplexer, the $F 4702$ can be used to generate this bit rate by connecting the Q_{2} output to the I_{M} input and applying select code 0 or 1 . An additional 2-input NAND gate can be used to retain the "Zero Baud" feature on select code 0. Any multichannel operation that involves 19200 Baud must be limited to four outputs as shown in Figure 4. Only the two least significant Scan Counter Outputs are used, so that the scan is completed within one half period of the 19200 output frequency.

CLOCK EXPANSION

One F4702 can control up to eight output channels. For more than eight channels, additional Bit Rate Generators are required. These Bit Rate Generators can all be run from the same crystal or clock input. Figure 5 shows one possible expansion scheme. One F4702 is provided with a crystal. All other devices derive their clock from this master. Figure 6 shows a different scheme where the master clock output feeds into the IX input of all slaves and all E_{CP} inputs are normally held HIGH. This scheme retains the reset feature and the selection between two different clock sources of the basic F4702 circuit.

During normal operation, the common $\bar{E}_{C P}$ line is HIGH and the common clock line (CP) is LOW. For diagnostic purposes the common E_{CP} is forced LOW. This deselects the crystal frequency and initiates the diagnostic mode. When CP goes HIGH for the first time, all F4702s are reset through their individual on-chip initialization circuitry. Subsequent LOW-to-HIGH clock transitions on the common CP line advance the scan counter, causing all F4702s to operate synchronously.

TYPICAL APPLICATIONS

SWITCH SELECTABLE BIT RATE GENERATOR CONFIGURATION PROVIDING FIVE BIT RATES

BIT RATE GENERATOR CONFIGURATION WITH EIGHT SIMULTANEOUS FREQUENCIES

TYPICAL APPLICATIONS (Cont'd)

FULLY PROGRAMMABLE 8-CHANNEL BIT RATE GENERATOR SYSTEM
Fig. 3

FULLY PROGRAMMABLE 4-CHANNEL BIT RATE GENERATOR SYSTEM WITH THE 19.2k BAUD FEATURE

TYPICAL APPLICATIONS (Cont'd)

CASCADE CLOCK EXPANSION SCHEME
Fig. 5

TANDEM CLOCK EXPANSION SCHEME

CRYSTAL SPECIFICATION RECOMMENDATIONS - Table 3 is a convenient listing of recommended crystal specifications.
Crystal manufacturers are also listed below.

TABLE 3 CRYSTAL SPECIFICATIONS

	PARAMETERS	TYPICAL CRYSTAL SPEC
Frequency	$2.4576 \mathrm{MHz}^{\prime \prime} \mathrm{AT}^{\prime \prime} \mathrm{Cut}$	
Series Resistance (Max)	250Ω	
Unwanted Modes	$-6.0 \mathrm{~dB}(\mathrm{Min})$	
Type of Operation	Parallel	
Load Capacitance	$32 \mathrm{pF} \pm 0.5$	

CRYSTAL MANUFACTURERS

CTS Knights, Inc.
Sandwich, III. 60548
(815) 786-8411

Crystal \#F1004
X - Tron Electronics
1869 National Ave.
Hayward, Calif.
(415) 783-2145

International Crystal Mfg. Company
10 No. Lee
Oklahoma City, Okla. 73102
(405) 236-3741

Sentry Manufacturing Co.
Crystal Park
Chickasha, Oklahoma 73018
(405) 224-6780

Erie Frequency Control
499 Lincoln St.
Carlisle, Pa. 17013
(717) 249-2232

F4703/34703

 16×4 PARALLEL/SERIAL FIFO

 16×4 PARALLEL/SERIAL FIFO FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ CMOS

DESCRIPTION - The F4703 is an expandable high speed First-In First Out (FIFO) buffer memory with totally asynchronous and independent data inputs and outputs, in either serial or 4-bit parallel form. It can be extended to any number of words and to any number of parallel bits without additional circuitry and without compromising any features. It has 3-state output buffers which provide added versatility and make the F4703 compatible with the other circuits of the bus-oriented Macrologic CMOS family.

- 2 MHz DATA RATE
- SERIAL OR PARALLEL INPUT
- SERIAL OR PARALLEL OUTPUT
- EXPANDABLE WITHOUT EXTERNAL LOGIC
- 3-STATE FULLY BUFFERED OUTPUTS
- 24-PIN PACKAGE
- NEW SLIM 24-PIN DIP

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel Data Inputs
D_{S}	Serial Data Input
PL	Parallel Load Input
$\overline{\text { CPSI }}$	Serial Input Clock Input (HIGH-to-LOW Triggered)
$\overline{\text { CPSO }}$	Serial Output Clock Input (HIGH-to-LOW (riggered)
$\overline{\text { IES }}$	Serial Input Enable (Active LOW) , +
TTS	Transfer to Stack Input (Active LOW)
TOS	Transfer Out Serial Input Active LOWN)
TOP	Transfer Out Parallel Input
$\overline{\mathrm{OES}}$	Serial Output Enable Input (Active LOW)
$\overline{\mathrm{EO}}$	Output Enable Input (Active LOW)
$\overline{M R}$	Master Reset Input (Active LOW)
$\overline{\text { IRF }}$	Input Register Full Output (Active LOW)
$\overline{\text { ORE }}$	Output Register Empty Output (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Parallel Data Outputs
Q_{S}	Serial Data Output

BLOCK DIAGRAM

CONNECTION DIAGRAM
DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FUNCTIONAL DESCRIPTION - As shown in the block diagram, the F4703 consists of three parts: 1) an input register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion. 2) a 4-bit wide, 14 -word deep fall-through stack with self-contained control logic. 3) an output register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion. Since these three sections operate asynchronously and almost independently, they will be described separately below:

INPUT REGISTER (DATA ENTRY):
The input register can receive data in either bit-serial or in 4-bit parallel form, store it until it is sent to the fall-through stack, and generate and accept the necessary status and control signals.
Figure 1 is a conceptual logic diagram of the input section. As described later, this 5 -bit register is initialized by setting the F3 flip-flop and resetting the other flip-flops. The $\overline{\mathrm{Q}}$ output of the last flip-flop (FC) is brought out as the "Input Register Full" output ($\overline{\mathrm{IRF}}$). After initialization this output is HIGH.

PARALLEL ENTRY:

A HIGH level on the PL input loads the $D_{0}-D_{3}$ data inputs into the $F_{0}-F_{3}$ flip-flops and sets the FC flip-flop, which forces $\overline{1 R F}$ LOW, indicating "input register full". The D inputs must be stable while PL is HIGH. During parallel entry the IES input should be LOW; the CPSI input may be either HIGH or LOW.

SERIAL ENTRY:

Data on the DS input is serially entered into the $F_{3}, F_{2}, F_{1}, F_{0}, F C$ shift register on each HIGH-to-LOW transition of the CPSI clock input, provided IES and PL are LOW.

After the fourth clock transition the four serial data bits are aligned in the four data flip-flops and the FC flip-flop is set, forcing IRF LOW (input register full) and internally inhibiting further CPSI clock pulses.
Figure 3 illustrates the final positions in a F4703 resulting from a 64 -bit serial bit train. B_{0} is the first bit, B_{63} the last bit.

TRANSFER TO THE FALL-THROUGH STACK:

The outputs of the flip-flops $F_{0}-F_{3}$ feed the stack. A LOW level on the TTS input attempts to initiate a "fall-through" action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus automatic FIFO action is achieved by connecting the IRF outpul to the TTS input.

Data falls through the stack automatically, pausing only when it is necessary for an empty next location. In the F4703, like in most modern FIFO designs, the $\overline{M R}$ input initializes the stack control section ony and does not clear the data.

Fig. 1 CONCEPTUAL INPUT SECTION

OUTPUT REGISTER (DATA EXTRACTION):
The output register receives a 4-bit data word from the bottom stack location, stores it and puts it on a 3-state 4-bit parallel data bus or on a 3 -state serial data bus. The output section generates and receives the necessary status and control signals. Figure 2 is a conceptual logic diagram of the output section.
PARALLEL DATA EXTRACTION:
When the FIFO is empty (after a LOW pulse is applied to MR), the Output Register Empty ($\overline{O R E}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the output register, provided the "Transfer Out Parallel" (TOP) input is HIGH, and the OES input is LOW. As a result of the data transfer ORE goes HIGH, indicating valid data on the data outputs (provided the 3 -state buffer is enabled).
TOP can now be used to clock out the next word. When TOP goes LOW, $\overline{O R E}$ will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until the next LOW-to-HIGH transition of TOP transfers the next word (if available) into the output register as explained above. During parallel data extraction TOS, $\overline{\mathrm{CPSO}}$ and OES should be LOW.
SERIAL DATA EXTRACTION:
When the FIFO is empty (after a LOW pulse is applied to $\overline{M R}$), the Output Register Empty ($\overline{\mathrm{ORE}}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the output shift register provided the "Transfer Out Serial" ($\overline{\text { TOS }}$) input is LOW. TOP must be HIGH, and $\overline{\text { OES }}$ and $\overline{\text { CPSO }}$ must be LOW.
As a result of the data transfer $\overline{O R E}$ goes HIGH indicating valid data in the shift register. The 3 -state serial data output Q_{S} is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. The fourth transition empties the shift register, forces $\overline{O R E}$ LOW and disables the serial output Q_{S}. For serial operation the $\overline{\text { ORE output is tied to the TOS }}$ input, requesting a new word from the stack as soon as the previous one has been shifted out.

Fig. 2 CONCEPTUAL OUTPUT SECTION

Fig. 3 FINAL POSITIONS IN A F4703RESULTING FROM A 64-BIT SERIAL TRAIN

EXPANSION

VERTICAL EXPANSION - The F4703 can be vertically expanded to store more words without any external parts. The interconnections necessary to form a 46 -word by 4 -bit FIFO are shown in Figure 4 . Using the same technique, any FIFO of $15 \mathrm{n}+1$ words by four bits can be constructed. Note that expansion does not sacrifice any of the FIFO's flexibility for Serial/Parallel input and output.

HORIZONTAL EXPANSION - The F4703 can also be horizontally expanded to store long words (in multiples of four bits) without any external logic. The inter-connections necessary to form a 16 -word by 12 -bit FIFO are shown in Figure 5 . Using the same technique, any FIFO of 16 words by $4 \times n$ bits can be constructed. When expanding in the horizontal direction, it is necessary to connect the IRF and ORE outputs of the right most device (most significant device) to the TTS and TOS inputs respectively of all devices to the left (less significant devices).
As in the vertical expansion scheme, horizontal expansion does not require sacrificing any of the FIFO's flexibility for Serial/Parallel input and output.

HORIZONTAL AND VERTICAL EXPANSION - The F4703 can be expanded in both the horizontal and vertical direction without any external parts and without sacrificing any of the FIFO's flexibility for Serial/Parallel input and output. The interconnections necessary to form a 31 -word by 16 -bit FIFO are shown in Figure 6.

Figures 7 and 8 show the timing diagrams for serial data entry and extraction for the 31 -word by 16 -bit FIFO shown in Figure 6 . The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.

Fig. 4 A VERTICAL EXPANSION SCHEME FOR THE F4703

Fig. 5 A HORIZONTAL EXPANSION SCHEME FOR THE F4703

Fig. 6 A 31×16 FIFO ARRAY

Fig. 7 SERIAL'DATA ENTRY FOR ARRAY OF FIG. 6

O_{0}	a_{1}	O_{2}	0_{3}	O_{4}	O_{5}	Q_{6}	O_{7}	Q_{8}	O_{9}	O_{10}	o_{11}	Q_{12}	o_{13}	Q_{14}	Q_{15}
DEVICE 5				DEVICE 6				DEVICE 7				DEVICE 8			

Fig. 8 SERIAL DATA EXTRACTION FOR ARRAY OF FIG. 6

INTERLOCKING CIRCUITRY

Most conventional FIFO designs provide status signals analogous to $\overline{I R F}$ and $\overline{O R E}$; however, when these devices are operated in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The F4703 incorporates simple but effective "Master-Slave" interlocking circuitry to eliminate the need for external gating.

In the F4703 array of Figure 6 Devices 1 and 5 are defined as "Row Masters" and the other devices are slaves to the Master in their row. No slave in a given row will initialize its input register until it has received a LOW on its $\overline{I E S}$ input from a Row Master or a Slave of higher priority.

In a similar fashion, the $\overline{\text { ORE }}$ outputs of slaves will not go HIGH until their $\overline{\mathrm{OES}}$ input has gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the $\overline{\operatorname{RFF}}$ output of the final slave goes LOW and that output data for the array may be extracted when the $\overline{\text { ORE }}$ of the final slave in the output row goes HIGH.

The Row Master is established by connecting its $\overline{\operatorname{IES}}$ input to ground while a slave receives its $\overline{\operatorname{IES}}$ input from the $\overline{\mathrm{IRF}}$ output of the next higher priority device. When an array of F4703 FIFOs is initialized with a LOW on the $\overline{M R}$ inputs of all devices, the $\overline{I R F}$ outputs of all devices will be HIGH. Thus, only the Row Master receives a LOW on the $\overline{\mathrm{IES}}$ input during initialization. Figure 10 is a conceptual logic diagram of the internal circuitry which determines Master-Slave operation. Whenever $\overline{M R}$ and $\overline{I E S}$ are LOW, the Master latch is set. Whenever TTS goes LOW the Request Initialization flip-flop will be set. If the Master latch is HIGH, the input register will be immediately initialized and the Request Initialization flip-flop reset. If the Master latch is reset, the input register is not initialized until IES goes LOW. In array operation, activating the $\overline{T T S}$ initiates a ripple input register initialization from the Row Master to the last Slave.

A similar operation takes place for the output register. Either a $\overline{\text { TOS }}$ or TOP input initiates a load-from-stack operation and sets the $\overline{O R E}$ Request flip-flop. If the Master latch is set, the last output register flip-flop is set, and $\overline{O R E}$ goes HIGH . If the Master latch is reset, the $\overline{\mathrm{ORE}}$ output will be LOW until an $\overline{\mathrm{OES}}$ input is received.

Table 1 summarizes Master-Slave status outputs.

Fig. 9 FINAL POSITION OF A 496-BIT SERIAL INPUT

TABLE 1

OUTPUT CONDITION	INTERNAL STATE	
	Master Operation - IES LOW when initialized	Slave Operation - IES HIGH when initialized
$\overline{\text { IRF LOW }}$	Input Register Full	Input Register Full and IES LOW
$\overline{\text { ORE LOW }}$	Output Register not full	 OES LOW

Fig. 10 CONCEPTUAL DIAGRAM, INTERLOCKING CIRCUITRY

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1 OZH	Output OFF Current HIGH	XC			0.5 30			1.0 60		0.2 12		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $V_{D D}, \overline{\mathrm{EO}}=V_{D D}$
		XM			0.05 3.0			0.1 6.0		0.02 1.2			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\prime} \mathrm{OZL}$	Output OFF Current LOW	XC			$\begin{array}{r} -0.5 \\ -30 \\ \hline \end{array}$			$\begin{array}{r} -1.0 \\ -60 \\ \hline \end{array}$		$\begin{array}{r} -0.2 \\ -12 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{S S}, \overline{E O}=V_{D D}$
		XM			$\begin{array}{r} -0.05 \\ -3.0 \end{array}$			$\begin{gathered} -0.1 \\ -6.0 \end{gathered}$		$\left\lvert\, \begin{array}{r} -0.02 \\ -1.2 \end{array}\right.$			$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
IDD	Quiescent Power Supply Current	XC	-									$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs common
		XM										$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	and at 0 V or $\mathrm{V}_{\text {DD }}$

[^14]AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPHL	Propagation Delay, $\overline{\text { CPSI }}$ to $\overline{\text { IRF }}$										ns	
tPLH	Propagation Delay, $\overline{\text { TTS }}$ to $\overline{\text { IRF }}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\text { CPSO }}$ to $\mathrm{QS}^{\text {S }}$										ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, TOP to Q_{n}										ns	
tPHL	Propagation Delay, $\overline{\mathrm{CPSO}}$ to $\overline{\mathrm{ORE}}$										ns	
tPLH	Propagation Delay, $\overline{\text { TOS }}$ to $\overline{\text { ORE }}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\text { TOP }}$ to $\overline{\text { ORE }}$										ns	
tPHL	Propagation Delay, PL to $\overline{\text { IRF }}$										ns	
${ }_{\text {tFT }}$	Fall Through Time										ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZ } \end{aligned}$	Output Enable Time										ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time										ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { TTLH } \\ & \text { tTHL } \end{aligned}$	Output Transition Time				-						ns	
tPHL	Propagation Delay, $\overline{\mathrm{CPSI}}$ to $\overline{\text { IRF }}$, ${ }^{\text {a }}$	-						ns	
tPLH	Propagation Delay, $\overline{\mathrm{TTS}}$ to $\overline{\mathrm{IRF}}$	4									ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\text { CPSO }} \mathrm{t}_{5}$		\pm								ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{T O P}$ to Q_{n}										ns	
tPHL	Propagation Delay, $\overline{\mathrm{CPSO}}$ to $\overline{\mathrm{ORE}}$										ns	
tPLH	Propagation Delay, $\overline{\text { TOS }}$ to $\overline{\text { ORE }}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, TOP to $\overline{\text { ORE }}$										ns	
tPHL	Propagation Delay, PL to $\overline{\text { IRF }}$										ns	
${ }^{\text {F F }}$ T	Fall Through Time										ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Cont'd)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Output Enable Time										ns	$\begin{aligned} & \left(R_{L}=1-\mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time										ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { TTLH } \\ & \text { t THL } \\ & \hline \end{aligned}$	Output Transition Time										ns	
${ }^{\mathrm{w}_{w} \overline{C P}(H)}$	Min CPSI Pulse Width (HIGH)										ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}(\mathrm{L})$	Min CPSI Pulse Width (LOW)										ns	
$\mathrm{tw}_{w} \overline{\mathrm{CP}}(\mathrm{L})$	Min CPSO Pulse Width (LOW)										ns	$C_{L}=15 \mathrm{pF}$
${ }^{t_{w} \overline{C P}(H)}$	Min CPSO Pulse Width (HIGH)										ns	$\text { Times } \leqslant 20 \mathrm{~ns}$
$\mathrm{tww}^{\text {PL }}$ (H)	Min PL Pulse Width (HIGH)										ns	
$t_{w} \overline{T T S}(L)$	Min TTS Pulse Width (LOW)										ns	
t_{w} TOS(L)	Min. TOS Pulse width (LOW)										ns	
	Min TOP Pulse Width (LOW)										ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{MR}}$ (L)	Min MR Pulse Width (LOW)										ns	
$t_{\text {rec }}$	$\overline{M R}$ Recovery Time										ns	
$\mathrm{t}_{\mathrm{s}}, \mathrm{th}^{\text {r }}$	Set-up and Hold Times, $\mathrm{D}_{\text {s }}$ to $\overline{\mathrm{CPSI}}$,			ns	
$\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{h}}$	Set-up and Hold Times, TTS to IRF IRF, Serial or Parallel Mode										ns	
t_{s}	Set-Up Time, $\overline{\mathrm{ORE}}$ to $\overline{\mathrm{TOS}}$		-								ns	
${ }^{\text {f MAX }}$	Input CLOCK Frequency (Note 4)		z	σ							MHz	

SWITCHING WAVEFORNIS

OUTPUT ENABLE TIME
(tpZH) AND OUTPUT DISABLE TIME (tphz)

OUTPUT ENABLE TIME
($\mathrm{tpZL}_{\mathrm{L}}$) AND OUTPUT DISABLE TIME (tplz)

SWITCHING WAVEFORMS (Cont'd)
SERIAL INPUT UNEXPANDED OR MASTER OPERATION

MINIMUM CPSI PULSE WIDTH, PROPAGATION DELAY, CPSITO IRFAND TTS TO TRF, RECOVERY TIME, $\overline{I R F}$ TO CPSI, AND SETUP AND HOLD TIMES, DS TO CPSI, AND TTSTO TRF.
CONDITIONS: STACK NOT FULL, $\overline{I E S},=P L=L O W$

PROPAGATION DELAY, $\overline{\text { CPSI TO }} \overline{\mathrm{IRF}}$ AND $\overline{\text { TTS }}$ TO $\overline{\mathrm{IRF}}$, RECOVERY TIME, $\overline{I R F}$ TO CPSI AND SET-UP AND HOLD TIMES, $\overline{I E S}$ TO $\overline{\text { CPSII, DS TO }} \overline{\text { CPSI AND TTS TO }}$ IRF.

CONDITIONS: STACK NOT FULL $\overline{I E S}=\mathrm{HIGH}$ WHEN INITIALIZED, PL = LOW

NOTE:
Set-up and hold times are shown as positive values but may be specified as negative values.

SWITCHING WAVEFORMS (Cont'd)
FALL THROUGH TIME

MINIMUM $\overline{M R}$ AND PL PULSE WIDTHS, RECOVERY TIME FOR MR AND FALL THROUGH TIME

CONDITIONS: $\overline{T T S}$ CONNECTED TO $\overline{\text { IRF }}, \overline{T O S}$ CONNECTED
TO $\overline{O R E}, \overline{I E S}, \overline{O E S}, \overline{E O}, \overline{C P S O}=L O W, T O P=H I G H$

PARALLEL OUTPUT, FOUR BIT WORD OR MASTER IN PARALLEL EXPANSION

PROPAGATION DELAY, TOP TO $\overline{O R E}$, TOP TO Q_{n}, AND MINIMUM TOP PULSE WIDTH

CONDITIONS: $\overline{I E S}=$ LOW WHEN INITIALIZED, $\overline{E O}=\overline{\mathrm{CPSO}}=$
LOW. DATA AVAILABLE IN STACK

FAIRCHILD MACROLOGIC CMOS • F4703/34703

PARALLEL LOAD, SLAVE MODE

PROPAGATION DELAY, TTS TO IES, IES TO IRF, PL TO IRF, MINIMUM PL AND TTS PULSE WIDTHS, AND SET-UP AND HOLD TIMES, D_{n} TO PL, $\overline{I R F}$ TO TTS,$\overline{I R F}$ TO PL

CONDITIONS: STACK NOT FULL, DEVICE INITIALIZED (NOTE 1) WITH IES HIGH
NOTE:
Set-up (t_{s}) and hold times (t_{h}) are shown as positive values but may be specified as negative values.

F4704/34704
 DATA PATH SWITCH
 FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ CMOS

DESCRIPTION - The F4704 Data Path Switch (DPS) is a combinatorial array for closing data path loops around arithmetic/logic networks such as the F4705 (Arithmetic Logic Register Stack). A total of 32 instructions (see Table 1) facilitate logic shifting, byte swapping, masking, sign extension, introduction of common constants and other operations.

The 5-bit Instruction word ($10-14$) selects one of the 32 instructions operating on two sets of 4-bit Data Inputs ($\bar{D}_{0}-\bar{D}_{3}, \bar{K}_{0}-\bar{K}_{3}$). Shift Left Input ($\left.\overline{\mathrm{LI}}\right)$ and Output ($\overline{\mathrm{LO}}$) and Shift Right Input ($\overline{\mathrm{RI}}$) and Output ($\overline{\mathrm{RO}}$) are available for expansion in 4-bit increments. An active LOW Output Enable Input (EO) provides for 3-state control of the Data Outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$) for bus oriented applications.
The F4704 is packaged in the new slim 24-pin Dual In-line package.

- EXPANDABLE IN MULTIPLES OF FOUR BITS
- TWO 4-BIT DATA INPUT BUSES
- 4-BIT DATA OUTPUT BUS WITH 3-STATE OUTPUT BUFFERS
- USEFUL FOR BYTE MASKING AND SWAPPING
- PROVIDES ARITHMETIC OR LOGIC SHIFT
- PROVIDES FOR SIGN EXTENSION
- GENERATES COMMONLY USED CONSTANTS
- NEW SLIM 24-PIN DIP

PIN NAMES
 $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}, \overline{\mathrm{~K}}_{0}-\bar{K}_{3}$
 $\frac{10}{L I}^{-1} 4$
 $\frac{\frac{L I}{L O}}{\frac{R I}{R O}}$
 $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$

Data Inputs (Active LOW)
Instruction Word Inpui
Shift Left Input (Active Low
Shift Left Output (Active LOW)
Shift Right Input (Active LOW)
Shift Right Output (Active LOW)
Output Enable Input (Active LOW) Data Output (Active LOW)

BLOCK DIAGRAM

LOGIC SYMBOL

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 24 \\
& V_{S S}=\operatorname{Pin} 12
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

TABLE 1
INSTRUCTION SET FOR THE F4704

$H=$ HIGH Level
$L=$ LOW Level
(1) Comp = Complement
(2) Arith $=$ Arithmetic

FUNCTIONAL DESCRIPTION

The F4704 Data Path Switch combines the functions of a dual four-input multiplexer, a true/complement one/zero generator, and a shift left/shift right array.

As shown in Table 1, there are two shift right modes. The arithmetic right shift preserves the sign bit in the most significant position while the logic shift moves all positions. Right shift is defined as a one-bit shift toward the least significant position.

For half word arithmetic the F4704 provides instructions which extend the sign bit left through the more significant slices. Shift linkages are available as individual inputs and outputs for complete flexibility.

The F4704 may be used to generate constants $+1,0,-1$ and -2 in two's complement notation.

ARRAYS

Arrays of larger than 4 -bit word lengths are easily obtained. Figure 1 illustrates a 16 -bit array constructed using 4 devices; device 1 is the least significant and device 4 is the most significant slice. Within each slice, inputs and outputs with ' 0 ' subscript are the least significant bits.

The I_{1} through 1_{4} inputs of all devices are bussed. These four bus lines together with the I_{0} inputs of the devices form an 8 -bit instruction bus to control the array. In some applications, it may be possible to connect the I_{0} inputs of devices $1 \& 2$ together and the I_{0} inputs of devices $3 \& 4$ together, so that only 6 bits are needed to control the arrays. Connecting the $\overline{\mathrm{LO}}$ of device 1 to $\overline{\mathrm{RI}}$ of device 2 , $\overline{\mathrm{LO}}$ of device 2 to RI of device 3, etc. provides left shift (i.e., shift towards most significant bit) and sign extension. From Table 1 it can be seen that "sign extend" consists of two adjacent instructions differing only in 1_{0}; one of these instructions connects the most significant bit of the selected input bus (i.e., $\overline{\mathrm{D}_{3}}$ or $\overline{\mathrm{K}_{3}}$) to the $\overline{\mathrm{LO}}$ output while the other instruction forces the output bus and $\overline{\mathrm{LO}}$ to the $\overline{\mathrm{RI}}$ input. In a similar fashion right shift operation is accomplished by connecting the $\overline{\mathrm{LI}}$ input of a device to the $\overline{\mathrm{RO}}$ of the next more significant device.

Fig. 1 16-BIT F4707 ARRAY

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$V_{D D}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{OZH}$	Output OFF Current HIGH	XC			$\begin{array}{r}0.5 \\ 30 \\ \hline\end{array}$			$\begin{array}{r}1.0 \\ 60 \\ \hline\end{array}$		$\begin{array}{r}0.2 \\ 12 \\ \hline\end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{D D}, \overline{E O}=V_{D D}$
		XM			0.05 3.0			0.1 6.0		1.02 1.2			$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	
IOZL	Output OFF Current LOW	XC			$\begin{array}{r} -0.5 \\ -30 \end{array}$			$\begin{array}{r} -1.0 \\ -60 \end{array}$		$\begin{array}{r} -0.2 \\ -12 \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{S S}, \overline{E O}=V_{D D}$
		XM			$\begin{array}{r} -0.05 \\ -3.0 \end{array}$			$\begin{aligned} & -0.1 \\ & -6.0 \end{aligned}$		$\left\|\begin{array}{r} -0.02 \\ -1.2 \end{array}\right\|$			$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	
IDD	Quiescent Power Supply Current	XC										$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All inputs common and at 0 V or V_{DD}
		XM										$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

Notes on following page.

FAIRCHILD MACROLOGIC CMOS • F4704/34704
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V_{V} T_{A}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D}_{n}}, \overline{\mathrm{~K}_{\mathrm{n}}}$ to $\overline{\mathrm{O}_{n}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$								ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D}_{\mathrm{n}}}, \overline{\mathrm{K}_{n}}$ to $\overline{\mathrm{L}_{\mathrm{O}}}$, $\overline{\mathrm{R}_{\mathrm{O}}}$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{R_{1}}$ to $\overline{L_{O}}$		50 50								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{L_{1}}$ to $\overline{R_{O}}$		50 50								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, I_{n} to $\overline{\mathrm{Q}_{\mathrm{n}}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$								ns	
$\begin{aligned} & \mathrm{tPLH} \\ & \text { tPHL } \end{aligned}$	Propagation Delay, I_{n} to $\overline{\mathrm{R}_{\mathrm{O}}}, \overline{\mathrm{L}_{\mathrm{O}}}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$								ns	
$\begin{aligned} & \mathrm{tPZH} \\ & \mathrm{tPZL} \end{aligned}$	Output Enable Time		30 30								ns	$\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time		30 30								ns	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{D_{n}}, \overline{K_{n}}$ to $\overline{O_{n}}$ $\frac{\text { Propagation Delay, } \overline{D_{n}}, \overline{K_{n}} \text { to } \overline{L_{O}},}{}$					4\%	+	4			ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant \mathbf{2 0}$ ns $\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right. \end{aligned}$
tPLH tPHL	Propagation Delay, $\overline{\mathrm{R}_{1}}$ to $\overline{\mathrm{L}_{\mathrm{O}}}$,		,								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{L}_{1}}$ to $\overline{\mathrm{R}_{\mathrm{O}}}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, In_{n} to O_{n}										ns	
tPLH tPHL	Propagation Delay, I_{n} to $\overline{R_{O}}, \overline{L_{O}}$										ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time										ns	
$\begin{aligned} & \mathrm{tPHZ} \\ & \mathrm{t} P \mathrm{LZ} \\ & \hline \end{aligned}$	Output Disable Time						'				ns	
tTLH tTHL	Output Transition Time										ns	

NOTE:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
(tPZH) AND OUTPUT DISABLE TIME (tPHZ)

OUTPUT ENABLE TIME
($\mathrm{t}_{\mathrm{PZ}} \mathrm{L}$) AND OUTPUT DISABLE TIME (tplz)

F4705/34705

ARITHMETIC LOGIC REGISTER STACK
 FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ CMOS

DESCRIPTION - The Arithmetic Logic Register Stack (ALRS) is designed to implement general registers in programmable digital systems. The device contains a 4-bit arithmetic logic unit (ALU), an 8 -word by 4 -bit RAM and associated control logic. The ALU implements eight arithmetic and logic functions where one 4-bit operand is supplied from an external source (input data bus) and the second 4-bit operand is supplied internally from one of the eight RAM words selected by the Address Inputs ($A_{0}-A_{2}$). The result of the operation performed on the operands is loaded into the same RAM location and simultaneously loaded into the output register, making it available at the 3-state output data bus.

The F4705 operates on four bits of data but features are provided for expansion to longer word lengths. Carry Propagate and Carry Generate outputs are provided for an external carry lookahead where maximum operating speed is required. In applications where high speed arithmetic is not needed, ripple expansion may also be implemented. The F4705 provides three status signals - Zero, Negative and Overflow - to qualify the result of an operation.

The F4705 is a member of Fairchild's F4000 CMOS Macrologic family and is available in the new slim 24-pin Dual In-line package.

- EIGHT GENERAL REGISTERS/ACCUMULATORS IN A SINGLE PACKAGE
- 2 MHz MICROINSTUCTION RATE
- VERY LOW POWER - IDEAL FOR BATTERY OPERATION
- EXPANDABLE IN MULTIPLES OF FOUR BITS
- PROVIDES FOR RIPPLE OR CARRY LOOKAHEAD
- IMPLEMENTS 64 MICROINSTRUCTIONS
- PROVIDES THREE STATUS SIGNALS - ZERO, NEGATIVE AND OVERFLOW
- 3-STATE OUTPUTS
- NEW SLIM 24-PIN DIP

PIN NAMES
$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$
Data Inputs (Active LOW)
$A_{0}-A_{2} \quad$ Address Instruction Inputs
$\mathrm{I}^{-1} 2 \quad$ ALU Instruction Inputs (Note a)
MSS Most Significant Slice Input
$\overline{C P} \quad$ Clock Input
EO Output Enable Input (Active LOW)
$\overline{E X} \quad$ Execute Input (Active LOW)
$\begin{array}{ll}\overline{\mathrm{O}}_{0} \\ \bar{W} & \overline{\mathrm{O}}_{3} \\ \overline{\mathrm{X}} & \text { Data Outputs (Active LOW) } \\ \text { Ripple Carry Output Active LOW, Note b) }\end{array}$
$\begin{array}{ll}\overline{\mathrm{W}} & \text { Ripple Carry Output Active LOW, Note b) } \\ \overline{\mathrm{X}} & \text { Carry Propagate Output (Active LOW, Note c) }\end{array}$
Carry Generate Output (Active LOW, Note d)
Zero Status Output (Active HIGH, Open Drain, Note e)
NOTES:
a. ' O is also used for Carry Input on lesser significant slices.
b. \bar{W} output also carries instruction information.
c. \bar{X} output provides negative status on most significant slice.
d. \bar{Y} output provides overflow status on most significant slice.
e. An external pull-up resistor is required to supply HIGH level output drive.

TABLE 1 INSTRUCTION FIELD ASSIGNMENT

$l_{2} \quad l_{1} l_{0}$	INTERNAL OPERATION	FUNCTION
L L L	$R \times$ plus D-Bus plus $1 \rightarrow R \times$	Accumulate
L L H	$R \times$ plus D-Bus $\rightarrow R x$	Accumulate
L HL	$R x \cdot D-B u s \rightarrow R x$	Logic AND
L H H	$D-$ Bus $\rightarrow R x$	
H L L	$\mathrm{Rx}_{\mathrm{x}} \rightarrow \mathrm{R}_{\mathbf{X}}+$ Output Register	Load Output
H L H	$R x+D-B u s \rightarrow R x$	Logic OR
H H L	$R x \oplus D-B u s \rightarrow R x$	Exclusive OR
H H H	$\overline{\text { D-Bus }} \rightarrow R \mathrm{R}$	Load Complement

$$
H=\text { Logic HIGH Level } L=\text { Logic LOW Level }
$$

NOTES:

1. $R x$ is the RAM location addressed by $A_{0}-A_{2}$.
2. The result of any operation is always loaded into the Output Register.

$$
\begin{aligned}
& V_{D D}=P \text { in } 24 \\
& V_{S S}=P \text { in } 12
\end{aligned}
$$

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram, the F4705 Arithmetic Logic Register Stack (ALRS) consists of a 4-bit ALU, an 8-word by 4-bit RAM with output latches, an instruction decode network, control logic, and a 4-bit output register.
The ALU receives the active LOW input data $\left(\bar{D}_{0}-\bar{D}_{3}\right)$ as one operand while the RAM provides the second operand through latches. The ALU output is stored in both the RAM and output register. The active LOW output data bus ($\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}_{3}}$) is obtained from the output register through 3 -state buffers. An active LOW Output Enable ($\overline{E O}$) input controls these buffers; a HIGH level on $\overline{\mathrm{EO}}$ disables them (high impedance state).
The instruction bus for the $F 4705$ consists of two fields, A and $I ; A_{0}, A_{1}, A_{2}$ specify the desired location on the RAM and I_{0}, I_{1}, I_{2} specify the desired function to be performed. Table 1 lists Instruction Field Code assignments. Thus, the F 4705 provides eight registers ($\mathrm{R}_{0}-\mathrm{R}_{7}$) and eight different operations may be performed on any of these registers. The I_{0}, I_{1}, I_{2} inputs are decoded by the instruction decode network to generate necessary control signals for the ALU. The ALU also generates and transmits to the control logic the following signals: carry out, carry propagate, carry generate, negative status and overflow status. The control logic manipulates the status signals as a function of I_{0}, I_{1}, I_{2} and a control input MSS. A HIGH level on the MSS (Most Significant Slice Input) declares the most significant slice in a F4705 array. All devices, except the most significant F4705 should have a LOW level (ground) on the MSS input. The control logic generates three device outputs, \bar{W}, \bar{X} and \bar{Y} for arrayed operation of F4705 arrays. An all zero result from the ALU is decoded and presented at the open drain Zero Status (Z) Output.

The I_{0} input serves a dual purpose: for arithmetic instructions, it is used as the carry input and for non-arithmetic instructions it serves as an instruction input. This is possible because only two arithmetic instructions require carry. The dual purpose use of I_{0} plays an important role in F4705 expansion schemes.

OPERATION - The F4705 operates on a single clock. CP and $\overline{E X}$ are inputs to a 2 -input active LOW AND gate. A microcycle starts as the clock goes HIGH. For normal operation the Execute $(\overline{E X})$ is LOW. Data is read from the RAM through enabled latches and applied as one operand to the ALU. Data inputs ($\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$) are applied to the ALU as the other operand and the operation as determined by instruction lines I_{0}, I_{1}, I_{2} is executed. When CP is LOW, the latches are disabled and the result of the operation is written back into the RAM provided that EX is LOW. Then A lines must obviously be held stable during this time. On the LOW-to-HIGH CP transition, the result of the operation is loaded into the output register and a new microcycle can start. If $\overline{E X}$ is held HIGH, the operation selected by the I and A inputs is performed, but the result is not written back into the RAM and is not clocked into the output register.

F4705 ARRAYS

The F4705 is organized to operate on a 4-bit wide data bus but can easily be expanded for longer words. Expansion requires that carries from lesser significant slices be propagated towards the most significant slice. The F4705 provides full lookahead capability for high speed arithmetic. Appropriate Carry Generate (\bar{Y}) and Carry Propagate (\bar{X}) outputs are provided so that only one external carry lookahead generator is needed for every four F4705s. When speed is not a prime consideration, it is possible to implement ripple carry expansion.
In arrayed operation, it is common to bus $\overline{E X}, C P$ and $\overline{E O}$ inputs of all devices. The Z output is open drain and is normally OR-tied with the other devices and to an external load resistor so that a HIGH level indicates a zero result from an operation in the array.
Figure 1 shows a ripple carry 16 -bit wide array using four F4705s. The MSS input is tied to $V_{D D}$ on the most significant slice (ALRS 4). The MSS input of the other devices are tied to ground (V_{SS}). The instruction bus of this array consists of A-Field and I-Field. A-Field is obtained by connecting corresponding A inputs of all 4 devices. The I_{0} input of device 1 (i.e., least significant slice) in conjunction with the bussed I_{1}, I_{2} inputs forms the I-Field for the array. The I_{0} inputs of devices 2,3 and 4 are connected to the \bar{W} outputs of devices 1,2 and 3 respectively. The ALU network generates the carry propagate output. The control logic operates on this signal as a function of I_{1} and I_{2} to generate the \bar{W} output. If both I_{1} and I_{2} are LOW (i.e., an arithmetic instruction), the \bar{W} output is the carry output of that slice. In case of non-arithmetic instructions, it will assume the state of the I_{0} input. Thus, in Figure 1 , if an arithmetic instruction is specified, carry will propagate through the \bar{W} output to I_{0} input of the next higher significant slice. On the other hand, non-arithmetic instructions will effectively connect all I_{0} inputs together to form the I-Field for the array. The \bar{W} output of device 4 is the carry output from the array. The control logic also generates \bar{X} and \bar{Y} outputs which participate in expansion when full carry lookahead is required. These outputs are normally ignored in ripple expansion except for the most significant slice. If a device is the most significant slice, \bar{X} and \bar{Y} correspond to negative and overflow status signals. Thus \bar{X} output of Device 4 will be LOW, if the result of an operation has its most significant bit as "1" (i.e., negative result). Similarly a LOW level on \bar{Y}. output of device 4 indicates that arithmetic overflow has occurred. If the two operands have the same sign and the result has the opposite sign. then it is assumed that an overflow has occurred. It should be noted that W, X and Y are not controlled by EX or CP. Figure 2 shows a 16 -bit array with full carry lookahead expansion. Implementation of the lookahead scheme requires the use of an external F4582 in addition to the four F4705s in the array. Since device 1 is the least significant and device 4 is the most significant slice, the MSS inputs of the first three devices are connected to ground while device 4 has a HIGH level at this input. The A-Field for the array instruction bus is obtained by connecting corresponding A inputs of all four devices. Bussed I_{1} and I_{2} inputs together with the I_{0} input of device 1 form the I-Field for the array. The I_{0} inputs for devices 2,3 and 4 are obtained from the F 4582 carry outputs ($\mathrm{C} n+\mathrm{x}, \mathrm{C}+\mathrm{y}$ y and $\mathrm{Cm}+\mathrm{z}$ respectively). Also the P and G inputs of F4582 are connected to \bar{X} and \bar{Y} outputs of the F4705s as shown. The control logic in the F4705 (see Block Diagram) generates \bar{X} and \bar{Y} outputs as a function of I_{1}, I_{2} and MSS inputs as well as the carry generate and carry propagate outputs of the ALU. If the MSS input of a slice is LOW and an arithmetic instruction is specified, its \bar{X} output will reflect carry propagate and \bar{Y} will reflect carry generate outputs from that slice. For an arithmetic instruction the I_{0} input will be treated as carryin into a sllee irrespective of MSS. Thus, whenever I_{1} and I_{2} are $L O W$, the array behaves as an adder with full carry lookahead. The \bar{W} outputs still reflect carry output, which is ignored for devices 1,2 and 3 . The \bar{W} carry input to the array so the I_{0} input of device 1 must be connected to the appropriate $F 4582$ input as shown.
When a non-arithmetic instruction is specified to the array, the control logic of the F4705 forces a LOW level on \bar{X} and a HIGH level on \bar{Y} outputs on all except the most significantshce. An examination of the F4582 logic reveals that whenever \bar{P} is LOW and \bar{G} is HIGH, the associated carry output is the same as the carry inputthus, in Figure 2, devices 23 and 4 will assume the logic level as that presented to the I_{0} input of device 1 during non-arithmetic instructions effectively bussing I_{0} through all four devices. As in the case of ripple expansion, \bar{X} and \bar{Y} outputs of device 4 represent negative and overflow from the array.

Fig. 2 16-BIT ALRS WITH FULL LOOK-AHEAD CARRY EXPANSION

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (Note 3)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IOZH	Output OFF Current HIGH	XC			$\begin{array}{r}0.5 \\ 30 \\ \hline\end{array}$			$\begin{array}{r}1.0 \\ 60 \\ \hline\end{array}$		0.2 12		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{D D}, \overline{E O}=V_{D D}$
		XM			0.05 3.0			0.1 6.0		0.02 1.2			$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	
${ }^{\prime} \mathrm{OZL}$	Output OFF Current LOW	XC			-0.5 -30			$\begin{array}{r} -1.0 \\ -60 \end{array}$		-0.2 -12		$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{\|r\|} \hline-0.05 \\ -3.0 \\ \hline \end{array}$			$\begin{aligned} & \hline-0.1 \\ & -6.0 \\ & \hline \end{aligned}$		$\left\|\begin{array}{r} -0.02 \\ -1.2 \end{array}\right\|$			$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	
IDD	Quiescent Power Supply Current	XC										$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at 0 V or V_{DD}
		XM											$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{array}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}_{\text {(}}$ (See Note 4)

SYMBOL	PARAMETER	LIMITS $\mathrm{N}^{\text {a }}$									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$V_{D P}=10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$							
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$		$\begin{array}{r} 125 \\ 125 \end{array}$,					ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$ $\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, I_{0} to \bar{W}	,	100								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, \bar{D}_{n} to \bar{W}		$\begin{aligned} & 150 \\ & 150 \end{aligned}$								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D}}_{\mathrm{n}}$ to $\bar{X}, \overline{\mathrm{Y}}$		275 275								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D}_{\mathrm{n}}}$ to Z		$\begin{aligned} & 275 \\ & 275 \end{aligned}$								ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZ } \end{aligned}$	Output Enable Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$								ns	
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$								ns	
tTLH tTHL	Output Transition Time		$\begin{aligned} & 45 \\ & 45 \end{aligned}$								ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant \mathbf{2 0}$ ns $\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\ & \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right) \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, I_{0} to \bar{W}										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\overline{D_{n}}$ to \bar{W}										ns	
tPLH tPHL	Propagation Delay, $\overline{D_{n}}$ to \bar{X}, \bar{Y}										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D}_{\mathrm{n}}}$ to Z										ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time										ns	
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time										ns	
${ }^{\mathrm{t}} \mathrm{T}$ LH ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time										ns	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Cont'd)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tcW	Minimum Clock Period		375								ns	
${ }^{\text {w }}$ WP(L)	CP Minimum Pulse Width, LOW		100								ns	
$t_{w} \mathrm{CP}(\mathrm{H})$	CP Minimum Pulse Width, HIGH		200								ns	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, $\overline{E X}$ to CP Hold Time, $\overline{E X}$ to CP		0 0								ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, A_{n} to CP Hold Time, A_{n} to CP		$\begin{array}{r}75 \\ 0 \\ \hline\end{array}$								ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
t_{s} t_{h}	Set-Up Time, $\overline{D_{n}}$ to $C P$ Hold Time, $\overline{D_{n}}$ to CP		$\begin{array}{r} 275 \\ 0 \\ \hline \end{array}$								ns	
t_{s} $t_{\text {h }}$	Set-Up Time, I_{n} to $C P$ Hold Time, I_{n} to $C P$		$\begin{array}{r} 250 \\ 0 \end{array}$								ns	
$\mathrm{f}_{\text {MAX }}$	Input Count Frequency (Note 1)		2.6								MHz	

NOTES:

1. For fMAX input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
2. It is recommended that input rise and fall times to the Clock Input be less than 15μ s.
3. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Charactelistics.
4. Propagation Delays and Output transition times are graphically described in this section under F4000 Series CMOS Family Characteristcs.
5. Both Set-up times must be met simultaneously.
6. The Internal Clock is generated from CP and $\overline{E X}$. The Internal Clock is HIGHif $\overline{E X}$ or $C \bar{F}$ is HiGH; LOW if $\overline{E X}$ and $C P$ are LOW. For timing considerations the $\overline{E X}, C P$ two input active LOW AND gate is consideredto exhthtro propagation delay. Actual timing requirements are referenced to the extrenal $C P$ and $\overline{E X}$ inputs.

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME (tpzL) AND OUTPUT DISABLE TIME (tpLz)

PROPAGATION DELAYS, A_{n} to Z, I_{n} to Z, \bar{D}_{n} to Z, A_{n} to \bar{X}, \bar{Y}, I_{n} to $\bar{X}, \bar{Y}, \bar{D}_{n}$ to \bar{X}, \bar{Y}, A_{n} to \bar{W}, I_{n} to \bar{W}, \bar{D}_{n} to \bar{W}, I_{n} to \bar{O}_{n} SET-UP AND HOLD TIMES $\overline{E X}$ TO CP, A_{n} TO CP,
\bar{D}_{n} to CP, I_{n} to CP, MINIMUM INTERNAL CLOCK PULSE
NOTES:
a. Delay for logical operation (I_{1} or $\left.I_{2}=\mathrm{HIGH}\right)$
b. Delay for arithmetic operation ($I_{1}=I_{2}=$ LOW $)$
c. Set-up Times (t_{s}) and Hold Times (t_{h}) are shown as positive values but may be specified as negative values.

F4706/34706 PROGRAM STACK
 FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ CMOS

DESCRIPTION - The F4706 is a 16 -word by 4-bit "Push-Down Pop-Up" Program Stack. It is designed to implement Program Counter (PC) and return address storage for nested subroutines in programmable digital systems. The F4706 executes four instructions: Return, Branch, Call and Fetch as specified by a 2-bit instruction. When the device is initialized, the program counter (PC) is in the top location of the stack. As a new PC value is "pushed" into the stack (Call Operation), all previous PC values effectively move down one level. The top location of the stack is the current PC. Up to 16 PC values can be stored, which gives the F4706 a 15 level nesting capability. "Popping" the stack (Return Operation) brings the most recent PC to the top of the stack and makes it available at the two output buses. The remaining two instructions affect only the top location of the stack. In the Branch Operation a new PC value is loaded into the top location of the stack from the $\bar{D}_{0}-\bar{D}_{3}$ inputs. In the Fetch Operation, the contents of the top stack location (current PC value) are put on the $X_{0}-X_{3}$ bus and the current PC value is incremented.
The F4706 may be expanded to any word length without additional logic. Three-state output drivers are provided on the 4-bit Address $\left(\mathrm{X}_{0}-\mathrm{X}_{3}\right)$ and Data Outputs, $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$; the X-bus outputs are enabled internally and only during the Fetch Instruction whereas the O-bus outputs are controlled by an Output Enable ($\overline{\mathrm{EO}}_{0}$). Two status outputs, Stack Full ($\overline{\mathrm{SF}}$) and Stack Empty ($\overline{\mathrm{SE}}$) are provided. The F4706 is a member of Fairchild's F4000 Macrologic CMOS family, and is available in the new slim 24-pin package.

- 16-WORD BY 4-BIT LIFO
- 15-LEVEL NESTING CAPABILITY
- VERY LOW POWER - IDEAL FOR BATTERY OPERATION
- RELATIVE ADDRESSING CAPABILITY
- 2 MHz MICROINSTRUCTION RATE
- PROGRAM COUNTER LOADABLE FROM DATA BUS
- OPTIONAL AUTOMATIC INCREMENT OF PROGRAM COUNTER
- STACK LIMIT STATUS INDICATORS
- 3-STATE OUTPUTS
- EXPANDABLE IN MULTIPLES OF 4 BITS
- NEW SLIM 24-PIN DIP

PIN NAMES

$\overline{\mathrm{D}}_{\mathrm{O}}-\overline{\mathrm{D}}_{3}$	Data Inputs (Active LOW)
$\mathrm{I}_{0}, \mathrm{I}_{1}$	Instruction Inputs
$\overline{\mathrm{EX}}$	Execute Input (Active LOW)
CP	Clock Input
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)
$\overline{\mathrm{Cl}}$	Carry Input (Active LOW)
$\overline{\mathrm{EO}}{ }_{0}$	Output Enable Input (Active LOW)
$\overline{\mathrm{O}_{0}-\bar{O}_{3}}$	Output Data Outputs (Active LOW)
$\frac{X_{0}-X_{3}}{\overline{\mathrm{CO}}}$	Address Outputs
$\overline{\mathrm{SF}}$	Carry Output (Active LOW)
$\overline{\mathrm{SE}}$	Stack Full Output (Active LOW)
	Stack Empty Output (Active LOW)

$$
\begin{aligned}
& V_{D D}=\operatorname{Pin} 24 \\
& V_{S S}=\operatorname{Pin} 12
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD MACROLOGIC CMOS • F4706/34706

TABLE I
INSTRUCTION SET FOR THE F4706

I_{1}	${ }^{1} 0$	INSTRUCTION	INTERNAL OPERATION	X-bus	O-BUS (WITH $\overline{\mathrm{EO}}_{\mathrm{O}}$ LOW)
L	L	Return (Pop)	Decrement Stack Pointer	Disabled	Depending on the relative timing of $\overline{\mathrm{EX}}$ and CP, the outputs will reflect the current program counter or the new value while CP is LOW. When CP goes HIGH again, the output will reflect the new value.
L	H	Branch (Load PC)	Load D-Bus into current Program Counter location	Disabled	Current Program Counter until CP goes HIGH again, then updated with newly entered PC value.
H	L	Call (Push)	Increment Stack Pointer and Load D-Bus into new Program Counter Location	Disabled	Depending on the relative timing of $\overline{\mathrm{EX}}$ and CP, the outputs will reflect the current program counter or the previous contents of the incremented SP location. When CP goes HIGH again, the outputs will reflect the newly entered PC value. See Timing Diagrams for details.
H	H	Fetch (Increment PC)	Increment Current Program Counter if $\overline{\mathrm{Cl}}$ is LOW	Current Program Counter while both CP and $\overline{\mathrm{EX}}$ are LOW, disabled while CP or $\overline{\mathrm{EX}}$ is HIGH	Current Program Counter until CP goes HIGH again, then updated with increfented PC value.

H = HIGH Level; L = LOW Level

$$
\begin{aligned}
V_{D D} & =P \text { in } 24 \\
V_{S S} & =P \text { in } 12 \\
& =P \text { in Number }
\end{aligned}
$$

FUNCTIONAL DESCRIPTION - As shown in the Block Diagram, the F4706 consists of an input multiplexer, a 16×4 RAM with output latches addressed by the Stack Pointer (SP), an incrementor, control logic, and output buffers. The F4706 is organized around three 4-bit buses; the Input Data (D) Bus ($\bar{D}_{0}, \bar{D}_{1}, \bar{D}_{2}, \bar{D}_{3}$), Output Data (O) Bus ($\bar{O}_{0}, \overline{\mathrm{O}}_{1}, \overline{\mathrm{O}}_{2}, \overline{\mathrm{O}}_{3}$) and the Address (X) Bus ($\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$). The F4706 implements four instructions as determined by inputs I_{0} and I_{1}. (See Table I). The O-bus is derived from the RAM output latches and enabled by the active LOW Output Enable ($\overline{E O}_{0}$) input. The X-bus is also derived from the output latches; it is enabled internally during the Fetch Instruction. Execution of instructions is controlled by the Execute ($\overline{E X}$) and Clock (CP) inputs.

FETCH OPERATION - The Fetch Operation places the content of the current Program Counter (PC) on the X-bus. If the Carry In ($\overline{C I}$) is LOW, the current PC is incremented in preparation for the next Fetch. If $\overline{\mathrm{Cl}}$ is HIGH , the value of the current program is unchanged, (Iterative Fetch).

The instruction code is set up on the I lines when CP is HIGH. The active level LOW Execute ($\overline{E X}$) is normally set up at this time as well. The control logic interprets I_{0} and I_{1} and selects the incrementor output as the data source to the RAM via the input multiplexer. The current PC value is loaded into the latches and is available on the O-bus if $\overline{E O}_{0}$ is LOW. When CP is LOW (assuming $\overline{E X}$ is also LOW) the output latches are disabled from following the RAM output and the X-bus Output buffers are enabled, applying the current PC to the X-bus. The output of the incrementor is written into the RAM during the period when CP and $\overline{E X}$ are LOW. If $\overline{C I}$ is LOW, the value stored in the current PC, plus one, is written into the RAM. If $\overline{\mathrm{CI}}$ is HIGH , the current PC is not incremented. Carry Out ($\overline{\mathrm{CO}}$) is LOW when the contents of the current PC is at its maximum, i.e., all ones. When CP or $\overline{E X}$ goes $H I G H$, writing into the RAM is inhibited and the Address buffers ($X_{0}-X_{3}$) are disabled.

BRANCH OPERATION - During a Branch Operation, the Data Inputs ($\overline{D_{0}}-\overline{D_{3}}$) are loaded into the current program counter.
The instruction code and the $\overline{E X}$ input are set up when $C P$ is HIGH. The stack pointer remains unchanged. When CP goes LOW lassuming $\overline{E X}$ is LOW), the D-bus inputs are written into the current PC. The X-bus drivers are not enabled during a Branch Operation.
CALL OPERATION - During a Call Operation the content of the data bus is loaded into the top location of the stack and all previous PC values are effectively moved down one level.
The instruction code and the $\overline{E X}$ input are set up when $C P$ is HIGH. When $\bar{E} \bar{X}$ is LOW, a "one" is added to the stack pointer value thus incrementing the RAM address. When CP is LOW (assuming $\overline{E X}$ is LOW), the D-bus inputs are written into this new RAM location. On the LOW-to-HIGH CP transition, the incremented stack pointer value is loaded into the stack pointer register. When the RAM address is "1111" the Stack Full output ($\overline{\mathrm{SF}}$) is LOW, indicating that no further Call Operations should be Initiated. If an additional Call Operation is performed SP is incremented to " $0000^{\prime \prime}$, the contents of that location will be written over, $\overline{\text { SF }}$ will $90 H \mathrm{HH}$ and the Stack Empty ($\overline{\mathrm{SE}}$) will go LOW.

The X-bus drivers are not enabled during a Call Operation.
RETURN OPERATION - During the Return Operation the previous"PC is "popped" to become the current PC.
The instruction is set up when $C P$ is HIGH. When $E X$ is $\mathbb{O W}$, a "one" is subtracted from the stack pointer value, thus decrementing the RAM address, presenting the "popped" PC value through the enabled latches to the three-state O-bus drivers. When CP is LOW, the latches are disabled, thereby holding the new current value of the PC. On the LOW-to-HIGH CP transition the decremented stack pointer value is loaded into the stack pointer register.

The X-bus drivers are not enabled during a return operation.
When the RAM address is " 0000 ", the Stack Empty output ($\overline{S E}$) is LOW, indicating that no further return operations should be initiated. If an additional Return Operation is performed, SP is decremented to "1111", the $\overline{\mathrm{SE}}$ will go HIGH and the Stack Full output ($\overline{\mathrm{SF}}$) will go LOW. Operation of the active LOW Master Reset ($\overline{\mathrm{MR}}$) causes the SP to be reset and the contents of that RAM location (0000) to be cleared. The Stack Empty ($\overline{\mathrm{SE}}$) output goes LOW. This operation overrides all other inputs.

MULTIPLE F4706OPERATION - The F4706 may be expanded to any word length in multiples of four without external logic. The connection for expanded operation is shown in Figure 1. Carry In ($\overline{\mathrm{CI}})$ and Carry Out ($\overline{\mathrm{CO}}$) are connected to provide automatic increment of the current program counter during the Fetch Operation. The $\overline{\mathrm{Cl}}$ input of the least significant F4706 is tied LOW to ground; the $\overline{\mathrm{CO}}$ input of the least significant F4706 is connected to the $\overline{\mathrm{Cl}}$ input of the next significant F 4706 . If automatic increment during fetch is not desired, the $\overline{\mathrm{Cl}}$ input of the least significant F 4706 is held high.

Fig. 1 F4706 EXPANSION, A 16 BY 12 PROGRAM STACK

*Tie to $V_{D D}$ to disable automatic increment.

FAIRCHILD MACROLOGIC CMOS • F4706/34706

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (Note 1)

SYMBOL	PARAMETER						LIMITS					UNITS	TEMP	TEST CONDITIONS
			$V_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\mathrm{I}} \mathrm{OZH}$	Output OFF Current HIGH	XC			0.5 30			1.0 60		0.2 12		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{EO}}_{0}=\mathrm{V}_{\mathrm{DD}}$
		XM			0.05 3.0			0.1 6.0		10.02 1.2			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
'OZL	Output OFF Current LOW	XC			$\begin{gathered} \hline-0.5 \\ -30 \end{gathered}$			$\begin{array}{r} -1.0 \\ -60 \end{array}$		-0.2 -12		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}_{0}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{\|c\|} \hline-0.05 \\ -3.0 \end{array}$			$\begin{aligned} & -0.1 \\ & -6.0 \\ & \hline \end{aligned}$		$\begin{array}{r} -0.02 \\ -1.2 \end{array}$			$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
IDD	Quiescent Power Supply Current	XC										$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs common and at 0 V or V_{DD}
		XM											$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (ALL MODES OF OPERATION)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$V D D=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$							$\sqrt{3}$	\%		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{CO}}$			7		W					ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Deiay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{CO}}$		\ldots								ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time										ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time										ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{T} H \mathrm{HL}} \end{aligned}$	Output Transition Time										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$										ns	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{CO}}$										ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{CO}}$										ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time										ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \hline \mathrm{tPHZ} \\ & \text { tPLZ } \end{aligned}$	Output Disable Time										ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \text { t} \text { TLH } \\ & \text { t } \mathrm{THL} \\ & \hline \end{aligned}$	Output Transition Time										ns	
trec	$\overline{\mathrm{MR}}$ Recovery Time										ns	
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{MR}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Minimum Pulse Width										ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{~L}) \\ & \mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{H}) \end{aligned}$	CP Minimum Pulse Width, LOW CP Minimum Pulse Width, HIGH										ns	
${ }^{\text {t }} \mathrm{CW}$	Clock Period										ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, $\overline{E X}$ to CP Hold Time, $\overline{E X}$ to CP										ns	$C_{L}=15 \mathrm{pF}$
$\begin{array}{r} \mathrm{t}_{\mathrm{s}} \\ \mathrm{th}_{\mathrm{h}} \\ \hline \end{array}$	Set-Up Time, I_{n} to $C P$ Hold Time, I_{n} to CP										ns	Input Transition Times $\leqslant 20$ ns
t_{s} t_{h}	Set-Up Time, $\overline{\mathrm{Cl}}$ to CP Hold Time, $\overline{\mathrm{Cl}}$ to CP										ns	

Notes on following pages.

SWITCHING WAVEFORMS FOR ALL MODES OF OPERATION

PROPAGATION DELAY, $\overline{E X}$ TO $\overline{\operatorname{CO}}$

CLOCK PERIOD, MINIMUM CP PULSE WIDTH, AND SET-UP AND HOLD TIMES $\overline{C l}$ TO $\mathrm{CP}, \overline{\mathrm{D}}_{\mathrm{n}}$ TO CP, EX TO CP, In TO CP

RESET OPERATION

MINIMUM $\overline{M R}$ PULSE WIDTH AND $\overline{M R}$ RECOVERY TIME

PROPAGATION DELAY, $\overline{\mathrm{CI}}$ tо $\overline{\mathrm{CO}}$

$\overline{\mathrm{EO}}_{\mathbf{0}}$ TO OUTPUT ENABLE AND DISABLE TIMES

NOTE: Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (BRANCH OPERATION)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL }^{2} \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
tpLH tPHL	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
	Set-Up Time, I_{n} to $\overline{\mathrm{EX}}$ Hold Time, I_{n} to $\overline{E X}$										ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, $\overline{D_{n}}$ to $C P$ Hold Time, $\overline{D_{n}}$ to CP										ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
th	Hold Time, I_{n} to CP										ns	
$\mathrm{tw}^{\mathrm{E}} \overline{\mathrm{EX}}$	Min. EX Pulse Width										ns	

BRANCH OPERATION, CP GOES HIGH BEFORE EX

PROPAGATION DELAY CP TO $\overline{\mathbf{Q}_{\mathrm{n}}}$ AND SET-UP AND HOLD TIMES, In TO $\overline{E X}, \overline{D_{n}}$ TO CP AND I_{n} TO CP.

CONDITIONS: $\overline{E O}_{0}=$ LOW

NOTE: Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

FAIRCHILD MACROLOGIC CMOS • F4706/34706

PROPAGATION DELAY, CP TO $\overline{O_{n}}$, MINIMUM EX PULSE WIDTH AND SET-UP AND HOLD TIMES, I_{n} TO $\overline{E X}, \overline{E X}$ TO CP AND I_{n} TO CP

CONDITIONS: $\overline{E O}_{0}=$ LOW
NOTE: Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (CALL OPERATION ONLY)

ṠYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH }}$ tpHL	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	
${ }^{\text {tpLH}}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	Input Transition
$\overline{\text { tPLH }}$ $\underline{\mathrm{tPHL}}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{SE}}$ or $\overline{\mathrm{SF}}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
tplH tPHL	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{SE}}$ or $\overline{\mathrm{SF}}$										ns	
t_{5}	Set-Up Time, $\overline{\mathrm{EX}}$ to I_{n}										ns	
th	Hold Time, CP to I_{n}											
$\mathrm{t}_{51} \overline{\mathrm{EX}}$	Set-Up Time, EX to CP With Data On $\overline{\mathrm{O}_{n}}$ While CP $=$ LOW										ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\mathrm{s} 2} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{\mathrm{EX}}$ to CP With No Change In $\overline{\mathrm{O}_{n}}$ While CP $=$ LOW										ns	Input Transition Times $\leqslant 20$ ns
$t_{\text {the }}$	Hold Time, CP to EX										ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, $\overline{\mathrm{D}_{n}}$ to CP										ns	
th	Hold Time, $\overline{\mathrm{D}}_{\mathrm{n}}$ to CP											

SWITCHING WAVEFORMS FOR A CALL (PUSH) OPERATION

PROPAGATION DELAY, CP TO $\overline{\sigma_{n}}, \overline{E X}$ TO $\overline{\sigma_{n}}$, $\overline{E X}$ TO $\overline{\text { SE OR OR }} \overline{\text { SF }}$, AND SET-UP AND HOLD TIMES,

CONDITIONS: $\overline{E O}_{0}=$ LOW

NOTES: a. Condition which occurs when $\overline{E X}$ goes LOW considerably before CP goes LOW ($t_{s 1} E X$ is met).
b. Condition which occurs when EX goes LOW slightly before CP goes LOW ($\mathrm{t}_{\mathrm{s} 2} \mathrm{EX}$ is met).
c. Set-up and Hold Times are shown as positive values but may be specified as negative values.

FAIRCHILD MACROLOGIC CMOS • F4706/34706

AC CHARACTERISTICS AND SWITCHING REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (RETURN OPERATION ONLY)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	
$\overline{\mathrm{tPLH}}$ tPHL	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{SE}}$ or $\overline{\mathrm{SF}}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{\mathrm{tPLH}^{2}}$ $\underline{\mathrm{t} P \mathrm{HL}}$	Propagation Delay, $\overline{\mathrm{EX}}$ to $\overline{\mathrm{SE}}$ or $\overline{\mathrm{SF}}$										ns	
$\mathrm{t}_{\text {s }}$	Set-Up Time, $\overline{\text { EX }}$ to I_{n}										ns	
th	Hold Time, In_{n} to CP										ns	
$\mathrm{t}_{51} \overline{\mathrm{EX}}$	Set-Up Time, EX to CP Which Guarantees a New Value On $\overline{\mathrm{O}_{\mathrm{n}}}$ While CP is Low.							2	願		ns	
$\mathrm{t}_{\mathrm{s} 2} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{\mathrm{EX}}$ to CP Either $\mathrm{t}_{\mathrm{s} 2} \overline{\mathrm{EX}}$ or $\mathrm{t}_{\mathrm{s} 3} \overline{\mathrm{EX}}$ Must Be Met For Proper Operation				1 ± 4	4		m	\%		ns	$C_{L}=15 \mathrm{pF}$ Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
$\mathrm{t}_{53} \overline{\mathrm{EX}}$	Set-Up Time, $\overline{\mathrm{EX}}$ to CP Either $\mathrm{t}_{\mathrm{s} 2} \overline{\mathrm{EX}}$ or $\mathrm{t}_{\mathrm{s} 3} \overline{\mathrm{EX}}$ Must Be Met For Proper Operation		15		52						ns	

SWITCHING WAVEFORMS FOR A RETURN (POP) OPERATION

PROPAGATION DELAY, CP TO $\overline{O_{n}}, \overline{E X}$ TO $\overline{O_{n}}, \overline{E X}$ TO $\overline{S E}$ OR $\overline{S F}$, AND SET-UP AND HOLD TIMES, EX TO I_{n}, I_{n} TO CP, EX TO CP

CONDITIONS: $\overline{E O}_{0}=$ LOW
NOTES: a. Condition which occurs when $\overline{E X}$ goes LOW considerably before CP goes LOW ($T_{s 1} \overline{E X}$ is met).
b. Condition which occurs when $\overline{E X}$ goes LOW slightly before or after CP goes LOW (Either $t_{s 2} \overline{E X}$ or $t_{s 3} \overline{E X}$ are met).
c. Set-up and Hold Times are shown as positive values but may be specified as negative values.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (FETCH OPERATION ONLY)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \hline \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Output Enable Time (X_{n})										ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tplZ } \\ & \hline \end{aligned}$	Output Disable Time (X_{n})										ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to $\overline{\mathrm{O}_{\mathrm{n}}}$										ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Output Enable Time (X_{n})										ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \hline \text { tPHZ } \\ & \text { tPLZ } \\ & \hline \end{aligned}$	Output Disable Time (X_{n})										ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Set-Up Time, I_{n} to $\overline{\mathrm{EX}}$										ns	
th	Hold Time, I_{n} to CP or $\overline{\mathrm{EX}}$								析		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }_{\text {t }}$	Set-Up Time, $\overline{\mathrm{EX}}$ to CP							$\underline{4}$			ns	Input Transition
${ }^{\text {t }}$	Set-Up Time, $\overline{\mathrm{Cl}}$ to CP										ns	Times $\leqslant 20 \mathrm{~ns}$
th	Hold Time, $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{EX}}$							-			ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F4OOO Serles CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
 Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
3. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater then or equal to 5 ns and less than or equal to 20 ns .
4. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS FOR AN ITERATIVE FETCH

OUTPUT X_{n} DISABLE DELAY, OUTPUT X_{n} ENABLE DELAY, AND SET-UP AND HOLD TIMES, I_{n} TO EX, I_{n} TO CP, EX TO CP, AND CI TO EX.
CONDITIONS: $\overline{E O}_{0}=$ LOW, CP GOES HIGH bEFORE EX
NOTES: a. $X_{0}-X_{3}$ turn on delay measured from time both $E X$ and $C P$ go LOW.
b. $X_{0}-X_{3}$ turn off delay measured from time either EX or CP goes HIGH.
c. Set-up and Hold Times are shown as positive values but may be specified as negative values.

SWITCHING WAVEFORMS FOR AN ITERATIVE FETCH (Cont.)

OUTPUT X_{n} ENABLE ANDDISABLE TIMES AND SET-UP AND HOLD TIMES, In TO EX, CI TO EX AND EX TO CP.

CONDITIONS: EOQ $=$ LOW, $\overline{E X}$ GOES HIGH BEFORE CP
SWITCHING WAVEFORMS FOR A FETCH OPERATION WITH INCREMENT PC

PROPAGATION DELAY, CP TO ${\overline{O_{n}}}_{n}$, OUTPUT X_{n} ENABLE AND DISABLE TIMES AND SET-UP AND HOLD TIMES, In TO EX, EX TO CP, AND CI TO CP

CONDITIONS: $\overline{\mathrm{EO}}_{0}=$ LOW, CP GOES HIGH BEFORE $\overline{\mathrm{EX}}$
NOTES: a. $X_{0}-X_{3}$ turn on delay measured from time both $\overline{E X}$ and $C P$ go LOW.
b. $X_{0}-X_{3}$ turn off delay measured from time either $\overline{E X}$ or CP goes HIGH.
c. Set-up and Hold Times are shown as positive values but may be specified as negative values.

SWITCHING WAVEFORMS FOR A FETCH OPERATION WITH INCREMENT PC

PROPAGATION DELAY CP TO $\overline{O_{n}}$, OUTP ${ }^{T} X_{n}$ ENABME AND DISABLE TIMES, AND SET-UP AND HOLD TIMES, 1_{n} TO $E X$, EX TO CP AND CI TO CP

CONDITIONS: $\overline{E D}_{0}=$ LOW, EX GOES HIGH BEFORE $C P$
NOTES: a. $X_{0}-X_{3}$ turn on delaymeasured from the time both $\overline{E X}$ and CP go LOW.
b. $X_{0}-X_{3}$ turn on delay measured from the time either $\overline{E X}$ or $C P$ go $H I G H$.
c. Set-up and hold才imes are shown as positive values but may be specified as negative values.

F4707/34707 DATA ACCESS REGISTER FAIRCHILD MACROLOGIC ${ }^{\text {TM }}$ CMOS

DESCRIPTION - The F4707 Data Access Register (DAR) performs memory address arithmetic for RAM resident stack applications. It contains three 4-bit registers intended for program counter (R_{0}), stack pointer (R_{1}) and operand address (R_{2}). The F4707 implements 16 instructions (see Table 1) which allow either pre or post decrement/increment and register-to-register transfer in a single clock cycle. It is expandable in 4 -bit increments and can operate at a 2 MHz microinstruction rate on a 16 -bit word. The 3 -state outputs are provided for bus oriented applications. The F4707 is packaged in the new slim 24-pin Dual In-line Package.

- 16 INSTRUCTIONS FOR ADDRESS MANIPULATION
- EXPANDABLE IN 4-BIT INCREMENTS
- OPTIONAL PRE OR POST INCREMENT/DECREMENT
- 3-STATE OUTPUTS
- 2 MHz MICROINSTRUCTION RATE ON A 16-BIT WORD
- NEW SLIM 24-PIN DIP

PIN NAMES
${ }^{10^{-1} 3}$
$\bar{D}_{0}-\bar{D}_{3}$
$\overline{C P}$
$\overline{C I}$
$\overline{C O}$
$\overline{E X}$
$\overline{E O_{X}}$
$\overline{E O_{O}}$
$X_{0}-X_{3}$
$\bar{O}_{0}-\bar{O}_{3}$

Instruction Word Inputs
Data Inputs (Active LOW)
Clock Input ($L \rightarrow$ H Edge-T igigered
Carry Input (Active LOV)
Carry Output (Active LOW)
Execute Input (Active LOW)
Address Output Enable Input (Active LOW)
Data Output Enable Input (Active LOW)
Address Outputs
Data Outputs (Active LOW)

TABLE 1
INSTRUCTION SET FOR THE F4707

INSTRUCTION				COMBINATORIAL FUNCTION AVAILABLE ON THE X-BUS	SEQUENTIAL FUNCTION OCCURRING ON THE NEXT RISING CP EDGE
13	12	11	${ }_{1}$		
L	L	L	L	R_{0}	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-register
L	L	L	H	R_{0} plus D plus Cl	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and O-register
L	L	H	L	R_{0}	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0 -regist
L	L	H	H	R_{0} plus D plus Cl	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and O-register
L	H	L	L	R_{0}	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0 -register
L	H	L	H	R_{0} plus D plus Cl	R_{0} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and O-register
L	H	H	L	R_{1}	R_{1} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0 -register
L	H	H	H	R_{1} plus D plus Cl	R_{1} plus D plus $\mathrm{Cl} \rightarrow R_{1}$ and O-register
H	L	L	L	R_{2}	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	L	L	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	L	H	L	R_{0}	
H	L	H	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{\mathbf{0}}$ and 0-register
H	H	L	L	R_{2}	
H	H	L	H	R_{2} plus D plus Cl	R_{2} plus D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-register
H	H	H	L	R_{1}	
H	H	H	H	D plus Cl	D plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-register

L $=$ LOW Level $H=$ HIGH Level

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD MACROLOGIC CMOS • F4707/34707

FUNCTIONAL DESCRIPTION - The F4707 contains a 4-bit slice of three registers ($\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}$), a 4-bit adder, a 3 -state address output buffer $\left(X_{0}-X_{3}\right)$, and a separate output register with 3 -state buffers $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$, that can put the register contents on the data bus (refer to the Block Diagram). The DAR can perform 16 instructions, selected by $\mathrm{I}_{0} \mathrm{I}_{3}$, as listed in Table 1.
OPERATION - The F4707 operates on a single clock. CP and $\overline{E X}$ are inputs to a two input, active LOW NAND gate. For normal operation $\overline{E X}$ is LOW. A microcyle starts as the clock goes HIGH. Data inputs $\bar{D}_{0}-\bar{D}_{3}$ are applied to the Adder as one of the operands. Three $\left(I_{1}, I_{2}, I_{3}\right)$ of the four instruction lines select which of the three registers, if any, is to be used as the other operand. The next LOW-to-HIGH CP transition writes the result from the Adder into one register $\left(R_{0}, R_{1}, R_{2}\right)$ and into the output register provided $\overline{E X}$ is LOW. If the I_{0} instruction input is HIGH, the multiplexer routes the result from the Adder to the 3 -state buffer controlling the address bus ($X_{0}-X_{3}$) independent of $E X$ and $C P$. If I_{0} is LOW, the multiplexer routes the output of the selected register directly into the 3 -state buffer controlling the address bus ($X_{0}-X_{3}$), independent of $\overline{E X}$ and $C P$.
F4707 ARRAYS - The F4707 is organized as a 4-bit register slice. The active LOW $\overline{\mathrm{Cl}}$ and $\overline{\mathrm{CO}}$ lines allow ripple-carry expansion over longer word lengths.

APPLICATIONS - In a typical application, the register utilization in the DAR may be as follows: R_{0} is the program counter (PC), R_{1} is the stack pointer (SP) for memory resident stacks and R_{2} contains the operand address. For an instruction fetch, PC can be gated on the X-bus while it is being incremented (i.e., D-bus =1). If the instruction fetched calls for an effective address for execution, which is displaced from the PC, the displacement can be added to the PC and loaded into R_{2} during the next microcycle.
DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IOZH	Output OFF Current HIGH	XC			$\begin{array}{r}0.5 \\ 30 \\ \hline\end{array}$			1.0 60		0.2 12		- $\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned$\begin{aligned} & \text { to } V_{D D}, \overline{E O}_{0}=V_{D D} \\ & \overline{E O}_{x}=V_{D D} \end{aligned}$
		XM			0.05 3.0			0.1 6.0		$\begin{array}{r} 0.02 \\ 1.2 \end{array}$	\% ${ }^{4}$		$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
${ }^{\text {IOZL }}$	Output OFF Current LOW	XC			$\begin{array}{r} -0.5 \\ -30 \end{array}$			$\begin{array}{r} -1.0 \\ -60 \end{array}$		$\frac{-02}{-12}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned$\begin{aligned} & \text { to } V_{S S}, \overline{E O}_{0}=V_{D D}, \\ & \overline{E O}_{x}=V_{D D} \end{aligned}$
		XM			$\left\|\begin{array}{r} -0.05 \\ -3.0 \end{array}\right\|$,	W)	$\begin{array}{r} -0.1 \\ -6.0 \end{array}$	-	$\begin{array}{r} -0.02 \\ -1.2 \\ \hline \end{array}$			$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
IDD	Quiescent Power Supply Current	XC										$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	All inputs common and at 0 V or V_{DD}
		XM										$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Internal Clock to $\overline{\mathrm{Q}}_{\mathrm{n}}$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, 1_{1-1} to X_{n} With $\mathrm{I}_{0}=$ LOW										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $I_{1}-I_{3}$ to X_{n} With $I_{0}=$ HIGH										ns	Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Internal Clock to X_{n} With $I_{0}=$ LOW										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Internal Clock to X_{n} With $I_{0}=H I G H$										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{D}}_{\mathrm{n}}$ to X_{n}										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, $\overline{\mathrm{Cl}}$ to X_{n}										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, I_{0} to X_{n}										ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Positive-going Internal Clock to $\overline{\mathrm{CO}}$										ns	
$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$										ns	

FAIRCHILD MACROLOGIC CMOS • F4707/34707

AC CHARACTERISTICS AND SET-UP REQUIREMENTS (Cont'd): $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{SYMBOL} \& \multirow{3}{*}{PARAMETER} \& \multicolumn{9}{|c|}{LIMITS} \& \multirow{3}{*}{UNITS} \& \multirow{3}{*}{TEST CONDITIONS} \\
\hline \& \& \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\)} \& \multicolumn{3}{|r|}{\(V_{D D}=10 \mathrm{~V}\)} \& \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}\)} \& \& \\
\hline \& \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& MIN \& TYP \& MAX \& \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(\overline{\mathrm{D}_{\mathrm{n}}}\) to \(\overline{\mathrm{CO}}\) \& \& \& \& \& \& \& \& \& \& ns \& \begin{tabular}{l}
\[
C_{L}=15 \mathrm{pF}
\] \\
Input Transition
\end{tabular} \\
\hline \begin{tabular}{l}
tPLH \\
tPHL
\end{tabular} \& Propagation Delay, \(\mathrm{I}_{1}-\mathrm{I}_{3}\) to \(\overline{\mathrm{CO}}\) \& \& \& \& \& \& \& \& \& \& ns \& Times \(\leqslant 20\) ns \\
\hline \[
\begin{aligned}
\& \text { tPZH } \\
\& \text { tPZL }
\end{aligned}
\] \& Output Enable Time \& \& \& \& \& \& \& \& \& \& ns \& \[
\begin{aligned}
\& \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\
\& \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \text { tPHZ } \\
\& \text { tPLZ }
\end{aligned}
\] \& Output Disable Time \& \& \& \& \& \& \& \& \& \& ns \& \[
\begin{aligned}
\& \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\
\& \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \mathrm{t} \text { TLH } \\
\& \text { t THL }
\end{aligned}
\] \& Output Transition Time \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, Internal Clock to \(\overline{\mathrm{Q}}_{\mathrm{n}}\) \& \& \& \& \& \& \& \& \& \& ns \& \begin{tabular}{l}
\[
C_{L}=50 \mathrm{pF}
\] \\
Input Transition
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(I_{1}-I_{3}\) to \(X_{n}\) With \(I_{0}=\) LOW \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tpHL }
\end{aligned}
\] \& Propagation Delay, \(I_{1-13}\) to \(X_{n}\) With \(\mathrm{I}_{0}=\mathrm{HIGH}\) \& \& \& \& \& \& \& \& \% \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, Internal Clock to \(X_{n}\) With \(I_{0}=\) LOW \& \& \& \& \& \% \& \& \& 新 \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, Internal Clock to \(X_{n}\) With \(I_{0}=H I G H\) \& \& \& \& \[
{ }^{2}
\] \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(\overline{\mathrm{D}_{n}}\) to \(\mathrm{X}_{\mathrm{n}}\) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(\overline{\mathbf{C I}}\) to \(X_{n}\) \& \[
2
\] \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(I_{0}\) to \(X_{n}\) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, Positive-going Internal Clock to \(\overline{\mathrm{CO}}\) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPLH } \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(\overline{\mathrm{Cl}}\) to \(\overline{\mathrm{CO}}\) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \begin{tabular}{l}
tPLH \\
tPHL
\end{tabular} \& Propagation Delay, \(\overline{D_{n}}\) to \(\overline{C O}\) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \mathrm{tPLH} \\
\& \text { tPHL }
\end{aligned}
\] \& Propagation Delay, \(\mathrm{I}_{1} \mathrm{I}_{3}\) to \(\overline{\mathrm{CO}}\) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \[
\begin{aligned}
\& \text { tPZH } \\
\& \text { tpZ }
\end{aligned}
\] \& Output Enable Time \& \& \& \& \& \& \& \& \& \& ns \& \[
\begin{aligned}
\& \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}\right) \\
\& \left(R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \text { tPHZ } \\
\& \text { tPLZ }
\end{aligned}
\] \& Output Disable Time \& \& \& \& \& \& \& \& \& \& ns \& \[
\begin{aligned}
\& \left(R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{S S}\right) \\
\& \left(R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \mathrm{t} \text { TLH } \\
\& \mathrm{t} \text { THL }
\end{aligned}
\] \& Output Transition Time \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \(t_{w} \mathbf{C P}(\mathrm{H})\) \& Internal CP Minimum Pulse Width (HIGH) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \(t_{w} \mathbf{C P}(\mathrm{~L})\) \& Internal CP Minimum Pulse Width (LOW) \& \& \& \& \& \& \& \& \& \& ns \& \\
\hline \(t_{s}\)
\(t_{h}\) \& \begin{tabular}{l}
Set-up Time, \(\mathrm{I}_{1}-\mathrm{I}_{3}\) to Internal \\
Clock \\
Hold Time, \(\mathrm{I}_{1}-\mathrm{I}_{3}\) to Internal Clock
\end{tabular} \& \& \& \& \& \& \& \& \& \& ns \& \begin{tabular}{l}
\[
C_{L}=15 \mathrm{pF}
\] \\
Input Transition \\
Times \(\leqslant 20 \mathrm{~ns}\)
\end{tabular} \\
\hline ts

$t_{\text {h }}$ \& | Set-up Time, $\overline{\mathrm{D}_{\mathrm{n}}}, \overline{\mathrm{Cl}}$ to Internal Clock |
| :--- |
| Hold Time, $\overline{\mathrm{D}_{\mathrm{n}}}, \overline{\mathrm{Cl}}$ to Internal Clock | \& \& \& \& \& \& \& \& \& \& ns \&

\hline
\end{tabular}

AC CHARACTERISTICS AND SET-UP REQUIREMENTS (Cont'd): V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
t_{s}	Set-up Time, $\overline{\text { Cl }}$ to Internal Clock										ns	$C_{L}=15 \mathrm{pF}$
th	Hold Time, Cl to Internal Clock											Input Transition
${ }^{\text {t }}$ CW	Internal Clock Period (Note 3)										ns	Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {f MAX }}$	Input Count Frequency (Note 5)										MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. The Internal Clock is generated from CP and $\overline{E X}$. The Internal Clock is HIGH if $\overline{E X}$ or CP is HIGH, LOW if $\overline{E X}$ and CP are LOW. For timing considerations the $\overline{E X}, C P$ two input active LOW NAND gate is considered to exhibit no propagation delay. Actual timing requirements are referenced to the external $C P$ and $\overline{E X}$ inputs.
4. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
5. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to $\mathbf{2 0} \mathrm{ns}$.
6. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

PROPAGATION DELAY, I_{0} TO X_{n} CONDITIONS: $\overline{E O}_{x}=$ LOW

PROPAGATION DELAY, $\overline{\mathrm{Cl}}$ TO $\mathrm{X}_{\mathbf{n}}$ AND $\overline{\mathrm{CI}}$ TO $\overline{\mathrm{CO}}$
CONDITIONS: $\overline{E O}_{X}=$ LOW, $I_{0}=H I G H$

PROPAGATION DELAYS, INTERNAL CLOCK TO $\overline{\mathbf{O}_{\mathbf{n}}}$, INTERNAL CLOCK TO X_{n}, INTERNAL CLOCK TO $\overline{\mathbf{C O}}$, SET-UP AND HOLD TIMES, $l_{1}-I_{3}$ TO INTERNAL CLOCK,
Dn TO INTERNAL CLOCK, $\overline{C l}$ TO INTERNAL CLOCK, AND MINIMUM INTERNAL CLOCK PULSE WIDTH CONDITIONS: $\overline{E O}_{\mathrm{x}}=\overline{\mathrm{EO}}_{\mathrm{o}}=$ LOW

NOTE: Set-up (t_{s}) and Hold (t_{h}) Times are shown as positive values but may be specified as negative values.

F4710/34710
 16×4 BIT CLOCKED RAM WITH 3-STATE OUTPUT REGISTER FAIRCHILD MACROLOGICTM CMOS

DESCRIPTION - The F4710 is a register-oriented 64-Bit Read/Write Memory organized as 16 words by four bits. An edge-triggered 4-bit output register allows new data to be written while the previous data is held. The 3 -state data outputs provide flexibility and make the F4710 compatible with the other bus oriented circuits in the CMOS Macrologic family.

The F4710 consists of a 16×4-bit RAM selected by the four Address Inputs ($A_{0}-A_{3}$) and an edge-triggered 4-bit output register with 3 -state output buffers.
WRITE OPERATION - When the three control inputs; Write Enable ($\overline{W E}$), Chip Select $(\overline{C S})$, and Clock (CP), are LOW the information on the Data Inputs ($\bar{D}_{0}-\bar{D}_{3}$) is written into the memory location selected by the Address Inputs $\left(A_{0}-A_{3}\right)$. If the input data changes while $\overline{W E}, \overline{C S}$, and $C P$ are LOW, the contents of the selected memory location follows these changes, provided set-up time criteria are met.
READ OPERATION - Whenever CS is LOW, WE is HIGH and CP goes from LOW-to-HIGH, the contents of the memory location selected by the Address Inputs ($A_{0}-A_{3}$) is edge-triggered into the Output Register.
A 3-State Output Enable ($\overline{E O}$) controls the output buffers. When $\overline{E O}$ is HIGH the four Outputs $\left(\overline{\mathrm{Q}}_{0} \cdot \overline{\mathrm{Q}}_{3}\right)$ are in a high impedance or OFF state; when $\overline{\mathrm{EO}}$ is LOW, the Outputs are determined by the state of the output register.

- 2 MHz CLOCK RATE
- EDGE-TRIGGERED OUTPUT REGISTER
- 3-STATE OUTPUTS
- OPTIMIZED FOR REGISTER STACK OPERATION
- 18-PIN PACKAGE

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{3}$
$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$
$\overline{\mathrm{CS}}$
$\overline{\mathrm{EO}}$
$\overline{W E}$
CP
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$

Address Inputs

Data Inputs (Active LOW)
Chip Select (Active LOW) Input
Output Enable (Active LOW) Input
Write Enable (Active LOW) Input
Clock Input (L \rightarrow H Edge-Triggered)
Buffered Outputs (Active LOW)

BLOCK DIAGRAM

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 \vee$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
Iozh	Output OFF Current HIGH	XC			$\begin{array}{r} 0.5 \\ 30 \\ \hline \end{array}$			$\begin{array}{r} 1.0 \\ 60 \\ \hline \end{array}$		$\begin{array}{r} 0.2 \\ 12 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN }, 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{D D}, \overline{E O}=V_{D D}$
		XM			$\begin{array}{r} 0.05 \\ 3.0 \\ \hline \end{array}$			$\begin{array}{r} 0.1 \\ 60 \end{array}$		$\begin{array}{r} \hline 0.02 \\ 1.2 \end{array}$			$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$	
Iozl	Output OFF Current LOW	XC			$\begin{array}{r} -0.5 \\ -30 \end{array}$			$\begin{aligned} & \hline-1.0 \\ & -6.0 \\ & \hline \end{aligned}$		$\begin{array}{r} -0.2 \\ -12 \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{\|r\|} \hline-0.05 \\ -3.0 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline-0.1 \\ -6.0 \end{array}$		$\begin{array}{r} -0.02 \\ -1.2 \end{array}$			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\prime}$ DD	Quiescent Power Supply Current	XC		$\begin{array}{r} 2.5 \\ 15 \end{array}$			5 30			$\begin{aligned} & 10 \\ & 60 \end{aligned}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	All Inputs common and at 0 V or V_{DD}
		XM		$\begin{array}{r} 2.5 \\ 15 \end{array}$			5 30			10 60		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			VDD 15 V				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	READ MODE Propagation Delay, CP to Output		4								ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \hline \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Time, EO to Output		2								ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \hline \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{\mathrm{EO}}$ to Output										ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time										ns	
$\begin{aligned} & \text { tPLH } \\ & { }^{\text {tPHL }} \\ & \hline \end{aligned}$	READ MODE Propagation Delay, CP to Output										ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Enable Time, $\overline{\text { EO }}$ to Output										ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \\ & \hline \end{aligned}$	Disable Time, $\overline{\mathrm{EO}}$ to Output										ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & { }^{\mathrm{t} T \mathrm{HL}} \end{aligned}$	Output Transition Time										ns	
${ }^{\text {t }}$ w $\bar{W} E$	WRITE MODE Minimum $\overline{W E}$ Pulse Width (Note 4)										ns	
${ }_{\text {t }}{ }_{w} \overline{C S}$	Minimum CS Pulse Width (Note 4)										ns	
${ }_{t_{w} C P}$	Minimum CP Pulse Width (Note 4)										ns	
	Set-Up Time $\overline{D_{n}}$ to $\overline{W E}$ (Note 5) Hold Time, $\overline{D_{n}}$ to $\overline{W E}$										ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{th}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Address to $\overline{W E}$ Hold Time, Address to $\overline{W E}$ (Note 5)										ns	
t_{s} $t_{\text {h }}$	READ MODE Set-Up Time Address to CP Hold Time Address to CP										ns	

NOTES:

1. Additional DC Characteristics are listed in this section under $F 4000$ Series CMOS Family Characteristics.
2. Propagation delays and Output Transition times are graphically described in this section under F 4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{P}_{\mathrm{PLH}}$ and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{T H L}$) will change with output load capacitance (C_{L}). Set-up $\mathrm{Times}^{(} \mathrm{t}_{\mathrm{s}}$), Hold Times (t_{h}), Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. Writing occurs when $\overline{W E}, \overline{C E}$, and $C P$ are LOW.
5. Assuming $\overline{W E}$ is utilized as a Writing STROBE.

SWITCHING WAVEFORMS

READ MODE

$\overline{\overline{E O}}$ то OUTPUT ENABLE AND DISABLE TIMES

MINIMUM CP PULSE WIDTH, PROPAGATION DELAY CLOCK TO OUTPUT, AND SET.UP AND HOLD TIMES ADDRESS TO CLOCK

CONDITIONS: $\overline{\mathrm{CS}}=\overline{\mathrm{EO}}=$ LOW, $\overline{\mathrm{WE}}=\mathrm{HIGH}$

Write mode

MINIMUM C̄ PULSE WIDTH, MINIMUM WRITE ENABLE PULSE WIDTH, SET-UP AND HOLD TIMES ADDRESS TO WE AND DATA TO $\overline{W E}$ CONDITIONS: CP = LOW
NOTE:
Set-up (t_{s}) and Hold Times (t_{h}) are shown as positive values but may be specified as negative values.

F4720/34720
 256-BIT RANDOM ACCESS MEMORY WITH 3-STATE OUTPUTS FAIRCHILD CMOS LSI

DESCRIPTION - The F4720 is a 256 -Bit Random Access Memory with 3-State Outputs. It has a Data Input (D), eight Address Inputs ($A_{0}-A_{7}$), an active HIGH Write Enable Input (WE), an active LOW Chip Select Input (CS), an active HIGH 3-State Output (Q) and an active LOW 3-State Output (Q). Information on the Data Input (D) is written into the memory location selected by the Address Inputs ($A_{0}-A_{7}$) when the Chip Select Input (CS) is LOW and the Write Enable Input (WE) is HIGH. Under these conditions, the device is transparent, i.e. the data input is reflected at the True and Complementary Outputs ($\mathrm{O}, \overline{\mathrm{Q}}$). Information is read from the memory location selected by the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{7}$) while the Chip Select ($\overline{\mathrm{CS}}$) and the Write Enable (WE) Inputs are LOW. The Q Output is the information written into the memory, $\overline{\mathrm{Q}}$ is its complement. When the Chip Select Input $(\overline{\mathrm{CS}})$ is HIGH, both Outputs ($\mathrm{Q}, \overline{\mathrm{C}}$) are held in the high impedance OFF state. This allows other 3-State outputs to be wired together in a bus arrangement. The F4720 offers fully static operation.

- 3-STATE OUTPUTS
- ORGANIZATION - 256 WORDS X 1-BIT
- ON-CHIP DECODING
- TRUE AND COMPLEMENT OUTPUTS AVAILABLE
- FULLY STATIC
- LOW POWER DISSIPATION
- HIGH SPEED

$\overline{\mathbf{C S}}$	WE	Q	$\overline{\mathbf{Q}}$	MODE
L	H	Data Written Into Memory	Complement of Data Written Into Memory	Write
L	L	Data Written Into Memory	Complement of Data Written Into Memory	Read
H	X	High Impedance	High Impedance	Inhibit

FAIRCHILD CMOS LSI • F4720/34720

DC CHARACTERISTICS: VDD as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IOZH	Output OFF Current, HIGH	Xc			$\begin{array}{r} 0.5 \\ 30.0 \\ \hline \end{array}$			$\begin{array}{r} 1.0 \\ 60.0 \\ \hline \end{array}$		$\begin{array}{r} 0.2 \\ 12 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{D D}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{r} 0.05 \\ 3.0 \\ \hline \end{array}$			0.1 6.0		$\begin{array}{r} \hline 0.02 \\ 1.2 \end{array}$			$\begin{array}{\|c\|} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{array}$	
IOZL	Output OFF Current, LOW	XC			-0.5 -30.0			-1.0 -60.0		$\begin{array}{r} -0.2 \\ -12 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	Output Returned to $V_{S S}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{r} -0.05 \\ -3.0 \\ \hline \end{array}$			-0.1 -6.0		$\begin{array}{r} -0.02 \\ -1.2 \end{array}$			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
IDD	Quiescent Power	XC		$\begin{array}{r} 20 \\ 280 \\ \hline \end{array}$			$\begin{array}{r} 40 \\ 560 \\ \hline \end{array}$			$\begin{array}{r} 8 \\ 112 \\ \hline \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at 0 V or V_{DD}
	Supply Current	XM		$\begin{array}{r} 10 \\ 140 \end{array}$			$\begin{array}{r} 20 \\ 280 \end{array}$			4 56		$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } \mathbf{2 5 ^ { \circ }} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			75 75		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition } \\ & \text { Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Enable Time, $\overline{\text { CS }}$ to Output		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			40 40		ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time $\overline{\text { CS }}$ to Output		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { TTLH } \\ & \text { tTHL } \end{aligned}$	Output Transition Time		40 40			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	WRITE MODE Propagation Delay, WE to Output		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		ns	
tPLH tPHL	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$			$\begin{aligned} & 125 \\ & 125 \\ & \hline \end{aligned}$			$\begin{array}{\|l} 100 \\ 100 \\ \hline \end{array}$		ns	$C_{L}=50 \mathrm{pF}$ Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Time, $\overline{C S}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{\text { CS }}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	WRITE MODE Propagation Delay, WE to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	
${ }^{\text {tw }}$ WE	WRITE MODE Minimum WE Pulse Width		100			80			60		ns	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \overline{\mathbf{t}_{\mathbf{s}}} \\ & \mathrm{t}_{\mathrm{n}} \end{aligned}$	Set-Up Time, D to WE Hold Time, D to WE		$\begin{aligned} & 50 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{th}_{\mathrm{h}} \end{aligned}$	Set-Up Time, Address to WE Hold Time, Address to WE		$\begin{aligned} & 50 \\ & 40 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, $\overline{\mathbf{C S}}$ to WE Hold Time, $\overline{\mathrm{CS}}$ to WE		$\begin{aligned} & 50 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			15 15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{LLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

$\overline{\mathbf{C S}}$ TO OUTPUT ENABLE AND DISABLE TIMES

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

F4723/34723
 DUAL 4-BIT ADDRESSABLE LATCH

DESCRIPTION - The F4723 is a Dual 4-Bit Addressable Latch with common control inputs; these include two Address Inputs (A_{0}, A_{1}), an active LOW Enable Input (\bar{E}) and an active HIGH Clear Input (CL). Each latch has a Data Input (D) and four Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$).

When the Enable (\bar{E}) and Clear (CL) Inputs are HIGH, all Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ are LOW. Dual 4-channel demultiplexing occurs when the Clear Input (CL) is HIGH and the Enable Input (\bar{E}) is LOW.

When the Clear (CL) and Enable (\bar{E}) inputs are LOW, the selected Output ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), determined by the Address Inputs $\left(A_{0}, A_{1}\right)$, follows the Data Input (D). When the Enable Input (\bar{E}) goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($E=C L=L O W$), changing more than one bit of the address $\left(A_{0}, A_{1}\right)$ could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\bar{E}=H I G H, C L=L O W$).

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT IS AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DECODING OR DEMULTIPLEXING CAPABILITY
- EASILY EXPANDABLE
- ACTIVE HIGH COMMON CLEAR

PIN NAMES

$\mathrm{A}_{0}, \mathrm{~A}_{1}$	Address Inputs
$\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$	Data Inputs
$\overline{\mathrm{E}}$	Enable Input (Active LOW)
CL	Clear Input (Active HIGH)
$\mathrm{Q}_{\mathrm{Oa}}-\mathrm{Q}_{3 \mathrm{a}}, \mathrm{Q}_{0 \mathrm{Ob}}-\mathrm{Q}_{3 \mathrm{~b}}$	Parallel Latch Outputs

LOGIC DIAGRAM

$V_{D D}=P$ in 16
$V_{S S}=P$ in 8
$\bigcirc=P$ in Numbers

FAIRCHILD CMOS • F4723/34723

MODE SELECTION		
\mathbf{E}	CL	MODE
L	L	Addressable Latch
H	L	Memory
L	H	Dual 4-Channel Demultiplexer
H	H	Clear

$$
\begin{aligned}
H & =\text { HIGH Level } \\
L & =\text { LOW Level }
\end{aligned}
$$

CL	$\overline{\mathrm{E}}$	D	A_{0}	A_{1}	\mathbf{O}_{0}	\mathbf{Q}_{1}	\mathbf{Q}_{2}	\mathbf{O}_{3}	MODE
H	H	X	X	X	L	L	L	L	Clear
H	L	L	L	L	L	L	L	L	Demultiplex
H	L	H	L	L	H	L	L	L	
H	L	L	H	L	L	L	L	L	
H	L	H	H	L	L	H	L	L	
H	L	L	L	H	L	L	L	L	
H	L	H	L	H	L	L	H	L	
H	L	L	H	H	L	L	L	L	
H	L	H	H	H	L	L	L	H	
L	H	X	X	X	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Q_{N-1}	Q_{N-1}	Memory
L	L	L	L	L	L	QN-1	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Addressable
L	L	H	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Q_{N-1}	Latch
L	L	L	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	Q_{N-1}	
L	L	H	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	L	L	H	Q_{N-1}	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	H	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	
L	L	L	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	L	
L	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	

$L=$ LOW Level
$H=H I G H$ Level
$X=$ Don't Care
$Q_{N-1}=$ State before the positive
\quad transition of the Enable Input

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					100			200		40			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					15			30		6	*		MAX	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tpLH } \\ & \text { t }_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay, \bar{E} to Q_{n}		$\begin{aligned} & 90 \\ & 90 \end{aligned}$			40 40			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $D \text { to } Q_{n}$		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			35 35			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\overline{t_{\text {PLH }}}$ ${ }^{t_{\mathrm{PHL}}}$	Propagation Delay, Address to Q_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			45			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $<20 \mathrm{~ns}$
${ }^{\text {tPHL }}$	Propagation Delay, CL to O_{n}		75			35			25		ns	
$\begin{aligned} & { }^{{ }^{\mathrm{T} T L H}} \\ & { }^{\mathrm{T} T H L} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			20 20			15 15		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \text { tpLH }^{\text {tPL }} \\ & t^{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay, \bar{E} to α_{n}		$\begin{array}{\|l\|} \hline 110 \\ 100 \end{array}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			35 35		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{P}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 95 \\ & 95 \end{aligned}$			45			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {PLLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Q_{n}		$\begin{array}{\|l\|} \hline 120 \\ 120 \\ \hline \end{array}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $<20 \mathrm{~ns}$
${ }^{\text {tPHL }}$	Propagation Delay, CL to Q_{n}		95			45			30		ns	
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{TLH}} \\ & { }^{\mathrm{T} H \mathrm{~L}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			40 40			25 25		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, D to $\overline{\mathrm{E}}$ Hold Time, D to \bar{E}		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			10 20			5 20		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, Address to $\overline{\mathrm{E}}$ Hold Time, Address to $\overline{\mathrm{E}}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			10 20			$\begin{array}{r}5 \\ 20 \\ \hline\end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition
${ }^{t}{ }_{w} \bar{E}$	Minimum Ē Pulse Width		50			20			15		ns	Times $<20 \mathrm{~ns}$
${ }^{\text {t }}$ w CL	Minimum CL Pulse Width		50			20			15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($T_{T L H}$ and $t_{T H L}$) will change with output load capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

NOTES:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.
2. The Address to Enable Set-up Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

F4724/34724 8-BIT ADDRESSABLE LATCH

DESCRIPTION - The F4724 is an 8-Bit Addressable Latch with three Address Inputs ($A_{0}-A_{2}$), a Data Input (D), an active LOW Enable Input (E), an active HIGH Clear Input (CL) and eight Parallel Latch Outputs ($\mathrm{O}_{0}-\mathrm{O}_{7}$).

When the Enable (\bar{E}) and the Clear (CL) Inputs are HIGH, all Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{7}$) are LOW. Eightchannel demultiplexing or active HIGH 1-of-8 decoding with output enable operation occurs when the Clear Inpuit (CL) is HIGH and the Enable Input (\bar{E}) is LOW.

When the Clear (CL) and Enable (\bar{E}) Inputs are LOW, the selected Output ($\mathrm{O}_{0}-\mathrm{Q}_{7}$) (determined by the address Inputs $A_{0}-A_{2}$) follows the Data Input (D). When the Enable Input (\bar{E}) goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=C L=L O W$), changing more than one bit of the address $\left(A_{0}-A_{2}\right)$ could impose a transient wrong address. Therefore, this should only be done while in the memory mode ($\bar{E}=$ HIGH, CL $=$ LOW).

- SERIAL-TO-PARALLEL CAPABILITY
- EIGHT BITS OF STORAGE WITH THE OUTPUT OF EACH BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEXING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- COMMON ACTIVE HIGH CLEAR

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs
\bar{D}	Data Input
\bar{E}	Enable Input (Active LOW)
CL	Clear Input (Active HIGH)
$\mathrm{Q}_{0}-\mathrm{O}_{7}$	Parallel Latch Outputs

MODE SELECTION		
$\overline{\mathrm{E}}$	CL	MODE
L	L	Addressable Latch
H	L	Memory
L	H	Active HIGH 8-Channel Demultiplexer
H	H	Clear
L	= LOW Level	
$\mathrm{H}=$	= HIGH Level	
$\mathrm{Q}_{\mathrm{N}-1}=$ State Before the Positive Transition of the Ena		

TRUTH TABLE

CL	$\overline{\mathrm{E}}$	D	A_{0}	A_{1}	A_{2}	Q_{0}	Q_{1}	PRESENT OUTPUT STATES				Q_{6}	Q_{7}	MODE
								Q_{2}	O_{3}	O_{4}	Q_{5}			
H	H	X	X	X	X	L	L	L	L	L	L	L	L	CLEAR
H	L	L	L	L	L	L	L	L	L	L	L	L	L	DEMULTIPLEX
H	L	H	L	L	L	H	L	L	L	L	L	L	L	
H	L	L	H	L	L	L	L	L	L	L	L	L	L	
H	L	H	H	L	L	L	H	L	L	L	L	L.	L	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	
\dot{H}	L	\dot{H}	$\stackrel{+}{H}$	\dot{H}	\dot{H}	i	L	i	i	i	i	i	\dot{H}	
L	H	X	X	X	X	$\mathrm{Q}_{\mathrm{N}-1}$							\rightarrow	MEMORY
L	L	L	L	L	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	Q_{N}	Q_{N}					ADDRESSABLE
L	L	H	L	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	Q_{N}						LATCH
L	L	L	H	L	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$						
L	L	H	H	L	L	$\mathrm{Q}_{\mathrm{N}-1}$								
:	:	:	:	:	:	:								
L	L	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$							L	
L	L	H	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$						Q_{N}	H	

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D }}$	Quiescent Power Supply Current	XC			10			20		4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					100			200		40			MAX	
		XM			1			2		0.4		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					15			30		6			MAX	

Notes on following page.

FAIRCHILD CMOS • F4724/34724
AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, \bar{E} to O_{n}		$\begin{aligned} & 90 \\ & 90 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			30 30		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\text {PPLH }}} \\ & { }^{t_{P H L}^{2}} \\ & \hline \end{aligned}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{t} \text { PLH }$ ${ }^{t_{P H L}}$	Propagation Delay, Address to O_{n}		$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {t }}$ PHL	Propagation Delay, CL to Q_{n}		75			35			25		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{\mathrm{t} T \mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation Delay, \bar{E} to Q_{n}		$\begin{aligned} & 110 \\ & 110 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		ns	
$\begin{aligned} & { }^{{ }^{\text {PPLH }}} \\ & \\ & \hline \end{aligned}$	Propagation Delay, D to Q_{n}		$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & { }^{{ }^{\text {PLH }}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Address to Q_{n}		$\begin{array}{\|l\|} \hline 120 \\ 120 \\ \hline \end{array}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{\text {PHL }}}$	Propagation Delay, CL to Q_{n}		95			45			30		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }_{\mathrm{t}}^{\mathrm{THL}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			25 25		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, D to $\overline{\mathrm{E}}$ Hold Time, D to $\overline{\mathrm{E}}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{array}{r}5 \\ 20 \\ \hline\end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, Address to $\overline{\mathrm{E}}$ Hold Time, Address to $\overline{\mathrm{E}}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{array}{r}5 \\ 20 \\ \hline\end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{w} \bar{E}}$	Minimum E $\overline{\mathrm{E}}$ Pulse Width		50			20			15		ns	
${ }^{\text {tw }}{ }^{\text {CL }}$	Minimum CL Pulse Width		50			20			15		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{IPLH}_{\mathrm{L}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

NOTES:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.
2. The Address to Enable Set-up Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

MINIMUM PULSE WIDTH FOR E AND CL AND SET-UP AND HOLD TIMES, D TO \bar{E} AND A_{n} TO \bar{E}

F4725/34725

64-BIT (16×4) RANDOM ACCESS MEMORY WITH 3-STATE OUTPUTS

DESCRIPTION - The F4725 is a 64-Bit Random Access Memory with 3-State Outputs organized as 16 words by four bits with four Data Inputs ($D_{0}-D_{3}$), four Address Inputs ($A_{0}-A_{3}$), an active LOW Write Enable Input ($\overline{W E}$), an active LOW Chip Select Input ($\overline{\mathrm{CS}}$) and four active LOW 3-State Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$.

Information on the four Data Inputs ($\mathrm{DO}_{0}-\mathrm{D}_{3}$) is written into the memory location selected by the Address Inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) when both the Chip Select Input ($\overline{\mathrm{CS}}$) and the Write Enable Input ($\overline{\mathrm{WE}}$) are LOW. Under these conditions, the Outputs $\left(\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}\right)$ are held in a high impedance OFF state. Information is read from the memory location selected by the Address Inputs ($A_{0}-A_{3}$) while the Chip Select Input ($\overline{\mathrm{CS}}$) is LOW and the Write Enable Input ($\overline{\mathrm{WE}})$ is HIGH. The Outputs $\left(\overline{\mathrm{Q}}_{0} \overline{\mathrm{Q}}_{3}\right)$ are the complement of the information written into the memory. When the Chip Select Input (CS) is HIGH, all Outputs ($\overline{\mathrm{Q}}_{\mathrm{O}}-\overline{\mathrm{Q}}_{3}$) are held in the high impedance OFF state. This allows other 3-State outputs to be wired together in a bus arrangement. The F4725 offers fully static operation.

- 3-STATE OUTPUTS
- ORGANIZATION - 16 WORDS X 4 BITS
- ON-CHIP DECODING
- INVERTED DATA OUTPUT
- FULLY STATIC OPERATION

MODE SELECTION			
L	$\overline{W E}$	OUTPUTS	MODE
L	H	High Impedance Outputs are Complement of Data Written into Location	Read
H	X	High Impedance	Inhibit

DC CHARACTERISTICS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS	
			$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$						
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX				
${ }^{1} \mathrm{OZH}$	Output OFF Current HIGH	XC			0.5 30.0			$\begin{array}{r} 1.0 \\ 60.0 \end{array}$		$\begin{array}{r} 0.2 \\ 12.0 \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{D D}, \overline{\mathrm{CS}}=V_{D D}$	
		XM			0.05 3.0			0.1 6.0		0.02 1.2			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$		
${ }^{\prime} \mathrm{OZL}$	Output OFF Current LOW	XC			\|r	r $\begin{array}{r}-0.5 \\ -30.0\end{array}$			-1.0 $\begin{array}{r}\text {-60.0 }\end{array}$		-0.2 -12.0		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	Output Returned to $V_{S S}, \overline{C S}=V_{D D}$
		XM			$\begin{array}{\|l\|} -0.05 \\ -30.0 \end{array}$			$\begin{aligned} & -0.1 \\ & -6.0 \end{aligned}$		$\left\|\begin{array}{r} -0.02 \\ -1.2 \end{array}\right\|$			$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$		
IDD	Quiescent Power Supply Current	XC		$\begin{array}{r}2.5 \\ 15 \\ \hline\end{array}$			$\begin{array}{r}5 \\ 30 \\ \hline\end{array}$			10 60		$\mu \mathrm{A}$	$\begin{gathered} \hline \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at 0 V or V_{DD}	
		XM		2.5 15			$\begin{array}{r}5 \\ 30 \\ \hline\end{array}$			10 60		$\mu \mathrm{A}$	$\begin{aligned} & \text { MIN, } 25^{\circ} \mathrm{C} \\ & \text { MAX } \end{aligned}$		

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
tPLH tPHL	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 180 \\ & 180 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			50 50		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant \mathbf{2 0}$ ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		ns	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
${ }^{t}$ TLH tTHL	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	WRITE MODE Enable Time $\overline{\mathrm{WE}}$ to Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			45 45		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \end{aligned}$	Disable Time, $\overline{W E}$ to Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL. } \end{aligned}$	READ MODE Propagation Delay, Address to Output		$\begin{aligned} & 200 \\ & 200 \end{aligned}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$		ns	$C_{L}=50 \mathrm{pF}$ Input Transition $\text { Times } \leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZ } \end{aligned}$	Enable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			50 50		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Disable Time, $\overline{\mathrm{CS}}$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			50 50		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
tTLH tTHL	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			25 25		ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	WRITE MODE Enable Time, $\bar{W} E$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			70 70			50 50		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
tpHZ tpLZ	Disable Time, $\bar{W} E$ to Output		$\begin{aligned} & 150 \\ & 150 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			50 50		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
${ }_{t w} \overline{W E}$	WRITE MODE Minimum WE Pulse Width		180			100			80		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{th}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D_{n} to WE Hold Time, D_{n} to $\overline{W E}$		$\begin{array}{r} 150 \\ 40 \end{array}$			$\begin{array}{r} 120 \\ 20 \end{array}$			$\begin{array}{r} 115 \\ 15 \end{array}$		ns	
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time, Address to $\overline{W E}$ Hold Time, Address to $\overline{W E}$		$\begin{array}{r} 150 \\ 40 \\ \hline \end{array}$			$\begin{array}{r} 120 \\ 20 \\ \hline \end{array}$			$\begin{array}{r} 115 \\ 15 \\ \hline \end{array}$		ns	Input Transition Times $\leqslant \mathbf{2 0}$ ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$ Hold Time, $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$		$\begin{array}{r} 150 \\ 40 \end{array}$			$\begin{array}{r} 120 \\ 20 \end{array}$			$\begin{array}{r} 115 \\ 15 \end{array}$		ns	
Notes on following page												

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F 4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{tPLH}_{\mathrm{L}}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.

SWITCHING WAVEFORMS

READ MODE

$\overline{\mathrm{CS}}$ TO OUTPUT ENABLE AND DISABLE TIMES

WRITE MODE

WE TO OUTPUT ENABLE AND DISABLE TIMES

MINIMUM $\overline{\text { WE }}$ PULSE WIDTH AND SET-UP AND HOLD TIMES, D_{n} TO $\overline{W E}, A_{n}$ TO $\overline{W E}, A N D \overline{C S}$ TO $\overline{W E}$

Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

F4731/34731

QUAD 64-BIT STATIC SHIFT REGISTER

FAIRCHILD CMOS LSI

DESCRIPTION - The F4731 is a Quad 64-Bit Shift Register each with separate Serial Data Inputs ($D_{A}-D_{D}$), Clock Inputs ($\overline{C P}_{A}-C P P_{D}$) and Data Outputs ($Q_{63 A}-Q_{63 D}$) from the 64th register position. Information present on the Serial Data Inputs is shifted into the first register position and all the data in the register is shifted one position to the right on a HIGH-to-LOW transition of the Clock Inputs $\left(\overline{\mathrm{CP}}_{\mathrm{A}}-\overline{\mathrm{CP}}_{\mathrm{D}}\right)$.
Low impedance outputs are provided for direct interface to TTL.

- FREQUENCIES UP TO 4 MHz AT VDD $=10 \mathrm{~V}$
- SERIAL-TO-SERIAL DATA TRANSFER
- SEPARATE CLOCK INPUTS, DATA INPUTS AND FULLY BUFFERED OUTPUTS FOR EACH REGISTER
- DIRECT INTERFACE TO TTL
- 14-PIN PACKAGE

PIN NAMES

$\mathrm{D}_{A}-D_{D}$	Serial Data Inputs
$\overline{C P}_{A}-\overline{C P}_{D}$	Clock Input $(H \rightarrow$ L Edge-Triggered)
$\mathrm{Q}_{63}-\mathrm{Q}_{63 \mathrm{D}}$	Buffered Outputs from the 64th Register Position

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC		2.5			5			10		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common
D	Power	XC		35			70			140		$\mu \mathrm{A}$	MAX	and at 0 V or V_{DD}
DD	Supply	XM		0.25			0.5			1.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
	Current			15			30			60		$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{63}		$\begin{aligned} & 175 \\ & 175 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathbf{t}_{\text {TLH }} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\begin{aligned} & t_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{CP}}$ to Q_{63}		$\begin{aligned} & 190 \\ & 190 \end{aligned}$			$\begin{aligned} & 95 \\ & 95 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	Times $\leq 20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{CP}}$	$\overline{\mathrm{CP}}$ Minimum Pulse Width		100			50			40		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time D to $\overline{C P}$ Hold Time D to $\overline{\mathrm{CP}}$		$\begin{aligned} & 75 \\ & 40 \end{aligned}$			$\begin{aligned} & 40 \\ & 20 \end{aligned}$			$\begin{aligned} & 30 \\ & 15 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Max. Input Clock Frequency (Note4)		4			8					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}), Set-up Times (t_{s}), Hold Times (t_{h}), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM CLOCK PULSE WIDTH AND SET-UP AND HOLD TIMES, D TO $\overline{\mathbf{C P}}$
NOTE:

1. Set-up and Hold Times are shown as positive values but may be specified as negative values.

F4734/34734

 BCD-TO-7 SEGMENT LATCH/DECODER/DRIVER

 BCD-TO-7 SEGMENT LATCH/DECODER/DRIVER WITH RIPPLE BLANKING

 WITH RIPPLE BLANKING}

DESCRIPTION - The F4734 is a BCD-to-7 Segment Latch/Decoder/Driver with Ripple Blanking. It has four Address Inputs ($A_{0}-A_{3}$), an active LOW Latch Enable Input ($\overline{E L}$), an active LOW Blanking Input (\bar{I}_{B}), an active LOW Lamp Test Input ($\bar{I}_{L T}$), a Ripple Blanking Input (I $I_{R B}$), a Ripple Blanking Output (O_{RB}) and seven active HIGH NPN bipolar Segment Outputs (a-g).
When the Lamp Test Input ($\bar{I}_{L T}$) is LOW, all the Segment Outputs (a-g) are HIGH; independent of all other input conditions. The Lamp Test Input ($\bar{I}_{L T}$) does not affect the Ripple Blanking Output ($\mathrm{ORB}_{\mathrm{R}}$). With the Lamp Test Input ($\bar{I}_{\text {LT }}$) HIGH, a LOW on the Blanking Input (\bar{I}_{B}) forces the Segment Outputs ($\mathrm{a}-\mathrm{g}$) LOW; independent of all other input conditions. The Blanking Input (\bar{I}_{B}) does not affect the Ripple Blanking Output (O_{RB}). The Ripple Blanking Output (O_{RB}) is HIGH when the Ripple Blanking Input ($I_{R B}$) is HIGH and the latch contains binary zero. With the Lamp Test Input (I $\mathcal{I}_{\mathrm{LT}}$) HIGH, the display is blank when the Ripple Blank Output (O_{RB}) is HIGH.
When the Latch Enable Input ($\overline{E L}$) is LOW, the state of the latch is determined by the data on the Address Inputs $\left(A_{0}-A_{3}\right)$. When the Latch Enable Input ($\overline{E L}$) goes HIGH, the last data present at the Address Inputs $\left(A_{0}-A_{3}\right)$ is stored in the latch. The Lamp Test ($\bar{I}_{L T}$), Blanking (${ }_{B}$) and Ripple Blanking (IRB) inputs do not affect the latch circuit.

- HIGH CURRENT SOURCING OUTPUTS (UP TO 25 mA)
- BLANKING INPUT (ACTIVE LOW)
- LAMP TEST INPUT (ACTIVE LOW)
- LAMP INTENSITY MODULATION CAPABILITY
- MULTIPLEXING CAPABILITY
- RIPPLE BLANKING INPUT/OUTPUT

PIN NAMES
$\frac{A_{0}}{E L}-A_{3}$
T_{B}

Address (Data) Inputs
Latch Enalbe Input (Active LOW)
Blanking Input (Active LOW)

TLT
$I_{R B}$
$O_{R B}$
$a-g$

Lamp Test Input (Active LOW) Ripple Blanking Input
Ripple Blanking Output Segment Outputs

TRUTH TABLE

INPUTS				OUTPUTS							
A_{3}	A_{2}	A_{1}	A_{0}	a	b	c	d	e	f	g	DISPLAY
X	X	X	X	H	H	H	H	H	H	H	8
X	X	X	X	L	L	L	L	L	L	L	BLANK
L	L	L	L	H	H	H	H	H	H	L	0
L	L	L	H	L	H	H	L	L	L	L	1
L	L	H	L	H	H	L	H	H	L	H	2
L	L	H	H	H	H	H	H	L	L	H	3
L	H	L	L	L	H	H	L	L	H	H	4
L	H	L	H	H	L	H	H	L	H	H	5
L	H	H	L	H	L	H	H	H	H	H	6
L	H	H	H	H	H	H	L	L	L	L	7
H	L	L	L	H	H	H	H	H	H	H	8
H	L	L	H	H	H	H	H	L	H	H	9
H	L	H	L	L	L	L	L	L	L	L	BLANK
H	L	H	H	L	L	L	L	L	L	L	BLANK
H	H	L	L	L	L	L	L	L	L	L	BLANK
H	H	L	H	L	L	L	L	L	L	L	BLANK
H	H	H	L	L	L	L	L	L	L	L	BLANK
H	H	H	H	L	L	L	L	L	L	L	BLANK

CONDITIONS:
$E L=L O W, T_{B}=H I G H$,
$T_{L T}=H I G H$, and $I_{R B}=L O W$

F40085/340085 4-BIT MAGNITUDE COMPARATOR

DESCRIPTION - The F40085 is a 4-Bit Magnitude Comparator which compares two 4-bit words (A, B), each word having four Parallel Inputs ($A_{0}-A_{3}, B_{0}-B_{3}$); A_{3}, B_{3} being the most significant inputs. Operation is not restricted to binary codes, the device will work with any monotonic code. Three Outputs are provided: "A greater than B " ($O_{A>B}$), " A less than B " ($O_{A<B}$), "A equal to B " $\left(O_{A=B}\right)$. Three Expander Inputs, $I_{A}>B, I_{A<B}, I_{A=B}$, allow cascading without external gates. For proper compare operation the Expander Inputs to the least significant position must be connected as follows: $I_{A<B}=I_{A>B}=L, I_{A=B}=H$. For serial (ripple) expansion, the $O_{A}>B, O_{A<B}$ and $O_{A=B}$ Outputs are connected respectively to the $I_{A}>B, I_{A}<B$, and $I_{A=B}$ inputs of the next most significant comparator, as shown in Figure 1. Refer to Applications section of data sheet for high speed method of comparing large words.
The Truth Table on the following page describes the operation of the F40085 under all possible logic conditions. The upper 11 lines describe the normal operation under all conditions that will occur in a single device or in a series expansion scheme. The lower five lines describe the operation under abnormal conditions on the cascading inputs. These conditions occur when the parallel expansion technique is used.

- EASILY EXPANDABLE

- BINARY OR BCD COMPARISON
- $\mathrm{O}_{A>B}, \mathrm{O}_{A<B}, A^{\prime} \mathrm{O}_{A=B}$ OUTPUTS AVAILABLE

PIN NAMES

$\mathrm{A}_{\mathrm{o}}-\mathrm{A}_{3}$
$\mathrm{B}_{0}-\mathrm{B}_{3}$
${ }^{\prime} A>B, I_{A}<B, I_{A}=B$
${ }^{0} A>B$
${ }^{\circ} \mathrm{A}<\mathrm{B}$
$\mathrm{O}_{\mathrm{A}}=\mathrm{B}$
Word A Parallel Inputs
Word B Parallel Inputs
Expander Inputs
A Greater than B Output
A Less than B Output
A Equal to B Output

$$
\begin{aligned}
& V_{D D}=P \text { in } 16 \\
& V_{S S}=\operatorname{Pin} 8
\end{aligned}
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD CMOS • F40085/340085

TRUTH TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A_{3}, B_{3}	$\mathrm{A}_{2}, \mathrm{~B}_{2}$	A_{1}, B_{1}	A_{0}, B_{0}	$\mathbf{I}_{\mathbf{A}}>\mathbf{B}$	$\mathbf{I}_{\mathbf{A}<\mathbf{B}}$	$I_{A=B}$	$\mathrm{O}_{\mathrm{A}} \times \mathrm{B}$	$\mathrm{O}_{\mathrm{A}<\mathrm{B}}$	$\mathrm{O}_{\mathrm{A}}=\mathrm{B}$
$A_{3}>B_{3}$	x	x	x	x	x	X	H	L	L
$A_{3}<B_{3}$	X	x	x	x	x	x	L	H	L
$A_{3}=B_{3}$	$A_{2}>B_{2}$	x	x	x	x	x	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}<B_{2}$	X	x	x	x	x	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}>B_{1}$	x	x	x	x	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}<B_{1}$	x	x	x	x	L	H	L.
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}>B_{0}$	x	x	x	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}<B_{0}$	X	x	X	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	L	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	H	L	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	L	H	L	L	H
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	H	H	L	H	H
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	H	H	L	H
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	H	H	H	H	H
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	H	L	H	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	L	L	L	L	L	L

$H=$ HiGH Level
L LOW Level
$X=$ Don't Care

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$ MAX	All inputs common and at 0 V or V_{DD}
					700			1400		280				
		XM			5			10		2		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	
					300			600		120				

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, A_{n} or B_{n} to any Output		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, Any I to any Output		$\begin{array}{\|l\|} \hline 115 \\ 115 \\ \hline \end{array}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
$\overline{t_{T L H}}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 17 \\ & 17 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, A_{n} or B_{n} to any Output		$\begin{aligned} & 180 \\ & 180 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, Any I to any Output		$\begin{aligned} & 135 \\ & 135 \end{aligned}$			$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{{ }^{t} T L H}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		60			30 30			20 20		ns	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

$$
\begin{aligned}
L & =\text { LOW Level } \\
H & =H I G H \text { Level }
\end{aligned}
$$

Fig. 1. COMPARING TWO n-BIT WORDS

APPLICATIONS

Figure 2 shows a high speed method of comparing two 24 -bit words with only two levels of device delay. With the technique shown in Figure 1 , six levels of device delay result when comparing two 24 -bit words. The parallel technique can be expanded to any number of bits, see Table 1 .

TABLE I

WORD LENGTH	NUMBER OF PKGS.
$1-4$ Bits	1
$5-24$ Bits	$2-6$
$25-120$ Bits	$8-31$

NOTE:

The F40085 can be used as a 5-bit comparator only when the outputs are used to drive the $\mathrm{A}_{0}-\mathrm{A}_{3}$ and $\mathrm{B}_{0}-\mathrm{B}_{3}$ inputs of another $\mathrm{F}_{4} 0085$ as shown in Figure 2 in positions \#1, 2, 3, and 4.

> MSB = Most Significant Bit LSB $=$ Least Significant Bit
> $L=$ LOW Level
> $H=$ HIGH Level
> NC $=$ No Connection

Fig. 2. COMPARISON OF TWO 24-BIT WORDS

F40097/340097•F40098/340098 3-STATE HEX NON-INVERTING AND INVERTING BUFFERS

DESCRIPTION - These two CMOS buffers provide high current output capability suitable for driving high capacitance loads. The F40097 is a Non-Inverting CMOS Buffer with 3 -state outputs and the F40098 is an Inverting CMOS Buffer with 3-state outputs. The 3-state outputs of each device are controlled by two Enable Inputs ($\overline{\mathrm{EO}}_{4}, \overline{\mathrm{EO}}_{2}$). A HIGH on Enable Input $\overline{\mathrm{EO}}_{4}$ causes the Outputs of four of the six buffer elements to assume a high impedance or OFF state, regardless of other input conditions and a HIGH on Enable Input $\overline{\mathrm{EO}}_{2}$ causes the Outputs of the remaining two buffer elements to assume a high impedance or OFF state, regardless of other input conditions.

- 3STATE OUTPUTS
- TTL COMPATIBLE - FAN OUT OF ONE TTL LOAD
- ACTIVE LOW ENABLE INPUTS

PIN NAMES

1A-6A
$\overline{\mathrm{EO}}_{4}, \overline{\mathrm{EO}}_{2}$
Buffer Inputs
$1 x-6 x$
Enable Inputs (Active LOW)
Buffer Outputs (Active HIGH for the 340097 and Active LOW for the 340098)

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FAIRCHILD CMOS • F40097/340097 • F40098/340098

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{ISC}^{(H)}$	Output Short Circuit Current		-4.35			-20						mA	All	$V_{\text {IN }}=V_{D D}$ or $V_{S S}$ per Function, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{SS}}$
${ }^{1} \mathrm{SC}^{(L)}$	Output Short Circuit Current		4.35			20						mA	All	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} per Function, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}$
${ }^{\mathrm{I} O H}$	Output HIGH Current		$\begin{array}{\|c\|} \hline-1.6 \\ \text { Note } \\ 2 \end{array}$									mA	All	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$, Inputs at 0 V or V_{DD} per Function
${ }^{\text {IOL }}$	Output LOW Current		$\begin{array}{\|c\|} \hline 1.6 \\ \text { Note } \\ 2 \end{array}$									mA	All	$V_{\text {OUT }}=0.4 \mathrm{~V}$, Inputs at 0 V or V_{DD} per Function
${ }^{\text {IOZH }}$	Output OFF Current HIGH	XC			0.5 7			0.5 7			$\begin{array}{r} 0.5 \\ 7 \end{array}$		MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{EO}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$
		XM			0.05 3			$\begin{array}{r} 0.05 \\ 3 \end{array}$			$\begin{array}{r} 0.05 \\ 3 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\prime}$ OZL	Output OFF Current LOW	XC			$\begin{array}{r} \hline-0.5 \\ -7 \\ \hline \end{array}$			$\begin{array}{r} -0.5 \\ -7 \end{array}$			$\begin{array}{r} -0.5 \\ -7 \\ \hline \end{array}$		MIN, $25^{\circ} \mathrm{C}$ MAX	Output Returned to $\mathrm{V}_{\mathrm{SS}}, \overline{\mathrm{EO}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$
		XM			$\begin{array}{r} -0.05 \\ -3 \end{array}$			$\begin{array}{r} -0.05 \\ -3 \end{array}$			$\begin{array}{r} -0.05 \\ -3 \end{array}$		$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	
${ }^{\text {I D D }}$	Quiescent Power Supply Current	XC			3			5 70		$\begin{array}{r} 1 \\ 14 \end{array}$		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \\ \hline \end{gathered}$	All inputs common and at 0 V or V_{DD}
		XM			0.3 20			0.5 30		0.1 6		$\mu \mathrm{A}$	$\begin{gathered} \text { MIN, } 25^{\circ} \mathrm{C} \\ \text { MAX } \end{gathered}$	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $\mathrm{V}_{\mathrm{SS}}=25^{\circ} \mathrm{C}$, F 40097 only (See Note 3)

SYMBOL	PARAMETER	LIMITS									UṄITS	TEST CONDITIONS
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 40 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 85 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & 18 \\ & 18 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { Input Transition Times } \leqslant 20 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 60 \\ & 85 \end{aligned}$	$\begin{array}{r} 95 \\ 135 \end{array}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$		$\begin{aligned} & 25 \\ & 28 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{array}{r} \text { tPHZ } \\ \text { tPLZ } \\ \hline \end{array}$	Output Disable Time		$\begin{aligned} & 35 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 83 \end{aligned}$		$\begin{aligned} & 28 \\ & 33 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 25 \\ & 27 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$		$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 28 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 70 \\ & 95 \end{aligned}$	$\begin{aligned} & 110 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 95 \end{aligned}$		$\begin{aligned} & 31 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

Notes on following page.

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: $V_{D D}$ as shown, $V_{S S}=0 V, T_{A}=25^{\circ} \mathbf{C}$, F 40098 only (See Note 3)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$V_{D D}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 55 \\ & 75 \end{aligned}$	$\begin{aligned} & 105 \\ & 135 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 33 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20$ ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 60 \\ & 85 \end{aligned}$	$\begin{aligned} & 100 \\ & 145 \end{aligned}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$		$\begin{aligned} & 25 \\ & 28 \end{aligned}$		ns ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 35 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 85 \end{aligned}$		$\begin{aligned} & 28 \\ & 33 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 25 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Output Transition Time		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$		$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 65 \\ & 85 \end{aligned}$	$\begin{aligned} & 120 \\ & 155 \end{aligned}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$		ns ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 70 \\ & 95 \end{aligned}$	$\begin{aligned} & 110 \\ & 170 \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
tPHZ tPLZ	Outside Disable Time		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{array}{r} 70 \\ 105 \end{array}$		$\begin{aligned} & 31 \\ & 35 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$		$\begin{aligned} & 29 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S} \\ & R_{L}=1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$
tTLH tTHL	Output Transition Time		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	30	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. For $I_{O H}$ and $I_{O L}$ tests, $V_{D D}=4.5 \mathrm{~V}$ for military grade product and $V_{D D}=4.75 \mathrm{~V}$ for commercial grade product.
3. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL ELECTRICAL CHARACTERISTICS (Cont'd)

F40097

PROPAGATION DELAY VERSUS
TEMPERATURE

F40097
PROPAGATION DELAY VERSUS

SWITCHING WAVEFORMS

OUTPUT ENABLE TIME
($\mathrm{t} \mathbf{2} \mathrm{ZH}$) AND OUTPUT DISABLE TIME (tpHz)

OUTPUT ENABLE TIME
(tpZL) AND OUTPUT DISABLE TIME (tplz)

F40160/340160•F40161/340161 F40162/340162 •F40163/340163 4-BIT SYNCHRONOUS COUNTERS

DESCRIPTION - The F40160 and the F40162 are fully synchronous edge-triggered 4-Bit Decade Counters. The F40161 and the F40163 are fully synchronous edge-triggered 4-Bit Binary Counters. Each device has a Clock Input (CP); four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$); three synchronous Mode Control Inputs, Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable trickle (CET); Buffered Outputs from all four bit positions ($\mathrm{O}_{0}-\mathrm{Q}_{3}$); and a Terminal Count Output (TC). The F40162 and F40163 have an additional synchronous Mode Control Input, Synchronous Reset ($\overline{\mathrm{SR}}$). Alternately, the F40160 and F40161 have an overriding asynchronous Master Reset ($\overline{\mathrm{MR}}$).

Operation is fully synchronous (except for Master Reset on the F40160 and F40161 and occurs on the LOW-to-HIGH transition of the Clock Input (CP). When the Parallel Enable Input ($\overline{\mathrm{PE}}$) is LOW, the next LOW-to-HIGH transition of the Clock Input (CP) loads data into the counter from Parallel Inputs $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$. When the Parallel Enable Input ($\left.\overline{\mathrm{PE}}\right)$ is HIGH, the next LOW-to-HIGH transition of the Clock Input (CP) advances the counter to its next state only if both Count Enable Inputs (CEP and CET) are HIGH; otherwise, no change occurs in the state of the counter. The Terminal Count Output (TC) is HIGH when the state of the counter is nine ($Q_{0}=Q_{3}=\mathrm{HIGH}, \mathrm{Q}_{1}=\mathrm{Q}_{2}=$ LOW) for the F 40160 and F40162/fifteen $\left(Q_{0}=Q_{1}=Q_{2}=Q_{3}=\right.$ HIGH) for the F40161 and F40163 and the Count Enable Trickle Input (CET) is HIGH. For the F40162 and F40163, a LOW on the Synchronous Reset Input $(\overline{\mathrm{SR}})$ sets all Outputs ($\mathrm{O}_{0}-\mathrm{Q}_{3}$ and TC) LOW on the next LOW-to-HIGH transition of the Clock Input (CP) independent of the state of all other synchronous Mode Control Inputs (CEP, CET, PE). For the F40160 and F40161, a LOW on the overriding asynchronous Master Reset ($\overline{\mathrm{MR}}$) sets all outputs $\left(\mathrm{O}_{0}-\mathrm{Q}_{3}\right.$ and TC) LOW, independent of the state of all other inputs.

These devices perform multistage synchronous counting without additional components by using a carry look-ahead counting technique.
The F40160, F40161, F40162, and F40163 are edge-triggered; therefore, the synchronous Mode Control Input (CEP, CET, $\overline{\mathrm{PE}}$ for the F40160/F40161 and CEP, CET, $\overline{\mathrm{PE}}, \overline{\mathrm{SR}}$ for the F40162/F40163) must be stable only during the set-up time before the LOW-to-HIGH transition of the Clock Input (CP).

- 12 MHz TYPICAL COUNT FREQUENCY AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- DECODED TERMINAL COUNT
- FULLY SYNCHRONOUS COUNTING AND PARALLEL ENTRY
- SYNCHRONOUS (F40162/F40163) OR ASYNCHRONOUS (F40160/F40161) RESET
- BUILT-IN CARRY CIRCUITRY
- FULLY EDGE-TRIGGERED

PIN NAMES

$\overline{P E}$	Parallel Enable Input (Active LOW)
$\mathrm{P}_{0^{-}} \mathrm{P}_{3}$	Parallel Inputs
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
CP	Clock Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{M R}$	Master Reset Input (Active LOW) for the F40160/F40161 Only
$\overline{S R}$	Synchronous Reset Input (Active LOW) for the F40162/F40163 Only
$\mathrm{Q}_{\mathrm{O}^{-} \mathrm{Q}_{3}}$	Parallel Outputs
TC	Terminal Count Output

SELECTOR GUIDE

RESET	MODULUS	
	DECADE	BINARY
Asynchronous	F40160	F40161
Synchronous	F40162	F40163

SYNCHRONOUS MODE SELECTION
F40160/F40161

$\overline{P E}$	CEP	CET	MODE
L	X	X	Preset
H	L	X	No Change
H	X	L	No Change
H	H	H	Count

SYNCHRONOUS MODE SELECTION
F40162/F40163

$\overline{S R}$	$\overline{P E}$	CEP	CET	MODE
H	L	X	X	Preset
H	H	L	X	No Change
H	H	X	L	No Change
H	H	H	H	Count
L	X	X	X	Reset

TERMINAL COUNT GENERATION

CET	$\mathrm{F} 40160 / \mathrm{F40162}$ $\left(Q_{0} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot Q_{3}\right)$	$\mathrm{F} 40161 / \mathrm{F40163}$ $\left(Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}\right)$	TC
L	L	L	L
L	H	H	L
H	L	L	L
H	H	H	H

$T C=C E T \cdot Q_{0} \cdot \overline{\alpha_{1}} \cdot \overline{\alpha_{2}} \cdot Q_{3}(F 40160 / F 40162)$
$T C=C E T \cdot Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3}(F 40161 / F 40163)$

STATE DIAGRAM
F40161 • F40163

NOTE:
The F40160 or F40162 can be preset to any state, but will not count beyond 9 . If preset to state 10, 11, 12, 13, 14 or 15 , they will return to their normal sequence within two clock pulses.

F40161/F40163 LOGIC DIAGRAM
The F40161 and F40163 binary synchronous counters are similar. However, the F40161 has an asynchronous master reset circuit as shown on the F40160/F40162 Logic Diagram.

F40160/F40162 LOGIC DIAGRAM
The F40160 and F40162 BCD synchronous counters are similar. However, the F40162 has a synchronous reset circuit as shown on the F40161/ F40163 Logic Diagram.

FAIRCHILD CMOS • F40160/340160 • F40161/340161 • F40162/340162 • F40163/340163

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			100			200		40		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			20			40		8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{t_{P H L}}$	Propagation Delay, CP to Q		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 33 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t}}{ }^{\mathrm{PLH}}$ ${ }^{\text {t }}$ PHL	Propagation Delay, CP to TC		$\begin{array}{\|l\|} \hline 130 \\ 130 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & \hline \end{aligned}$		$\begin{aligned} & 37 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, CET to TC		70 75	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 32 \\ & 45 \end{aligned}$	65 80		$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}$ PHL	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		128	250		55	110		37		ns	(F40160/F40161)
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to TC		153	300		65	130		45		ns	(F40160/F40161)
	Output Transition Time		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to Q		$\begin{array}{\|l\|} \hline 120 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 220 \\ & 220 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$		$\begin{aligned} & 40 \\ & 38 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, CP to TC		$\begin{array}{\|l\|} \hline 155 \\ 155 \end{array}$	$\begin{aligned} & 285 \\ & 285 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 45 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t}$ PLH ${ }^{t} \mathrm{PHL}$	Propagation Delay, CET to TC		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$		$\begin{aligned} & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & 80 \\ & 95 \end{aligned}$		$\begin{aligned} & 27 \\ & 36 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		150	285		65	125		44		ns	(F40160/F40161)
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{M R}$ to.TC		175	335		75	145		52		ns	(F40160/F40161)
$\begin{aligned} & { }^{{ }^{\mathrm{t} T L H}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {trec }}$	$\overline{\text { MR Recovery Time }}$	50	15		30	10			7		ns	(F40160/F40161)
${ }_{t_{w} \overline{M R}(L)}$	$\overline{\mathrm{MR}}$ Minimum Pulse Width	110	60		55	27			17		ns	(F40160/F40161)
${ }^{\text {w }}{ }^{\text {CP }}$	CP Minimum Pulse Width	90	50		40	20			15		ns	
$\begin{aligned} & t_{s} \\ & t_{h} \\ & \hline \end{aligned}$	Set-Up Time, Data to CP Hold Time, Data to CP	$\begin{array}{r} 70 \\ 0 \end{array}$	$\begin{array}{r} 35 \\ -30 \end{array}$		35 0	$\begin{array}{r} 18 \\ -15 \end{array}$			$\begin{array}{r\|} \hline 13 \\ -10 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, $\overline{\text { PE }}$ to CP Hold Time, $\overline{\text { PE }}$ to CP	$\begin{aligned} & 110 \\ & -10 \end{aligned}$	$\begin{array}{r} 60 \\ -57 \end{array}$		-60	$\begin{array}{r} 30 \\ -28 \end{array}$			$\begin{array}{r\|} \hline 20 \\ -18 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \\ & \hline \end{aligned}$	Set-Up Time, CEP, CET to CP Hold Time, CEP, CET to CP	$\begin{aligned} & 200 \\ & -20 \end{aligned}$	$\begin{array}{r} 115 \\ -110 \end{array}$		$\begin{array}{r} 95 \\ -10 \end{array}$	$\begin{array}{r} 50 \\ -48 \end{array}$			$\begin{array}{\|r\|} \hline 35 \\ -32 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, $\overline{\mathrm{SR}}$ to CP Hold Time, $\overline{\mathrm{SR}}$ to CP	$\begin{array}{r} 40 \\ 0 \end{array}$	$\begin{aligned} & 15 \\ & -5 \end{aligned}$		18	15 -2			4 0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { (F40162/F40163) } \\ & \text { (F40162/F40163) } \end{aligned}$
${ }^{\text {f MAX }}$	Input Count Frequency (Note 4)	3	6		7	12					MHz	

Notes:

1. Additional DC Characteristics are listed in this section under $\mathbf{F} 4000$ Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F 4000 Series CMOS Family Characteristics.
3. Propagation Delays ($\mathrm{t}_{\mathrm{L}} \mathrm{H}$ and $\mathrm{t}_{\mathrm{PHL}}$) and Output Transition Times ($\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($\mathrm{t}_{\mathrm{rec}}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to $\mathbf{2 0} \mathrm{ns}$.
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

SWITCHING DIAGRAMS

CLOCK (CP) TO OUTPUT (Q)
PROPAGATION DELAYS AND MINIMUM CLOCK PULSE WIDTH

CONDITIONS: $\overline{P E}=\overline{M R}=C E P=C E T=H$ for $\mathrm{F} 40160 / \mathrm{F} 40161$ and $\overline{\mathrm{PE}}=\overline{\mathrm{SR}}=\mathrm{CEP}=$ $C E T=H$ for $F 40162 / F 40163$.

CLOCK (CP) TO TERMINAL COUNT (TC) PROPAGATION DELAYS

CONDITIONS: See the Terminal Count Generation Table $\overline{P E}=C E P=C E T=\overline{M R}=$ H for $F 40160 / F 40161$ and $\overline{P E}=C E P=C E T$ = SR = H for F40162/F40163.

COUNT ENABLE TRICKLE INPUT (CET) TO TERMINAL COUNT OUTPUT (TC) PROPAGATION DELAYS

CONDITIONS: See the Terminal Count Generation Table. $C P=\overline{P E}=C E P=\overline{M R}=H$ for $F 40160 / F 40161$ and $C P=\overline{P E}=C E P=$ $\overline{S R}=H$ for F40162/F40163.

SWITCHING DIAGRAMS (Cont'd)

F40162/F40163
SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR SYNCHRONOUS RESET ($\overline{S R}$)

SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR PARALLEL DATA INPUTS $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$.

0

CONDITIONS: $\overline{P E}=L, \overline{M R}=H$ for F40160/F40161 and $\overline{P E}=L, \overline{S R}=H$ for F40162/F40163.

SET-UP TIMES (t_{s}) AND HOLD TIMES (t_{h}) FOR PARALLEL ENABLE INPUT $\overline{\text { PE }}$

CONDITIONS: $\overline{M R}=\mathrm{H}$ for $\mathrm{F} 40160 / \mathrm{F} 40161$ and $\overline{S R}=H$ for $F 40162 / F 40163$.

F40160/F40161

MASTER RESET (MR) TO OUTPUT (Q) DELAY, MASTER RESET PULSE WIDTH, MASTER RESET RECOVERY TIME, AND MASTER RESET TO TERMINAL COUNT (TC) DELAY

CONDITIONS: $\overline{\mathrm{PE}}=L$ and $\mathrm{P}_{\mathbf{0}}=\mathrm{P}_{1}=\mathrm{P}_{2}=$ $P_{3}=H$.

SET-UP TIMES ($\mathrm{t}_{\mathbf{s}}$) AND HOLD TIMES (t_{h}) FOR COUNT ENABLE INPUTS (CEP AND CET)

CONDITIONS: $\overline{\mathrm{PE}}=\overline{\mathrm{MR}}=\mathrm{H}$ for $\mathrm{F} 40160 /$
F40161 and $\overline{P E}=\overline{S R}=H$ for F40162/ F40163.

NOTE:

1. Set-up Times (t_{s}) and Hold Times (t_{h}) are shown as positive values, but may be specified as negative values.

F40174/340174 HEX D FLIP-FLOP

DESCRIPTION - The F40174 is a Hex Edge-Triggered D Flip-Flop with six Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{5}$), a Clock Input (CP) an overriding asynchronous Master Reset (MR), and six Buffered Outputs ($\mathrm{O}_{0}-\mathrm{O}_{5}$).
Information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{5}$) is transferred to the Buffered Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{5}\right)$ on the LOW-to-HIGH transition of the Clock Input (CP) if the Master Reset Input (MR) is HIGH. When LOW, the Master Reset Input (MR) resets all flip-flops ($\mathrm{O}_{0}-\mathrm{O}_{5}=$ LOW) independent of the Clock (CP) and Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{5}$).

- TYPICAL CLOCK FREQUENCY OF 16 MHz AT VDD $=10 \mathrm{~V}$
- COMMON CLOCK TRIGGERED ON LOW-TO-HIGH TRANSITION
- common active low master reset
- FULLY EDGE-TRIGGERED CLOCK INPUT

PIN NAMES

$D_{0}-D_{5}$	Data Inputs
$C P$	Clock Input (L $\rightarrow H$ Edge-Triggered)
$\overline{M R}$	Master Reset Input (Active LOW)
$Q_{0}-Q_{5}$	Buffered Outputs from the Flip-Flops

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			20			40		8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					200			400		80			MAX	
		XM			2			4		0.8		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					100			200		40			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t}$ PLH ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{array}{r} 25 \\ .25 \end{array}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		18 18		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{M R}$ to O_{n}		65	105		30	50		20		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
${ }^{t_{\mathrm{TLH}}}$ ${ }^{\mathrm{t}} \mathrm{THL}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, CP to Q_{n}		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{M R}$ to Q_{n}		80	125		40	65		25		ns	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\overline{t^{T L H}}$ ${ }^{\mathrm{t}} \mathrm{THL}^{2}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {t }}{ }^{\text {c }}$ CP(L)	Minimum Clock Pulse Width	45	25		20	10			8		ns	
${ }^{\mathrm{t}_{w} \overline{M R}(L)}$	Minimum $\overline{M R}$ Pulse Width	55	35		35	20			15		ns	
${ }_{\text {trec }}$	$\overline{\mathrm{MR}}$ Recovery Time	25	6		13	5			2		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, D_{n} to CP Hold Time, D_{n} to CP	$\begin{array}{r} 5 \\ 20 \end{array}$	$\begin{array}{r} 1 \\ 10 \end{array}$		$\begin{array}{r} 5 \\ 10 \end{array}$	1			0 1		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $<20 \mathrm{~ns}$
${ }^{\text {f MAX }}$	Maximum Clock Frequency (Note 4)	5	9		8	16					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}); Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

MINIMUM PULSE WIDTHS FOR CP AND $\overline{M R}, \overline{M R}$ RECOVERY TIME, AND SET-UP AND HOLD TIMES, D_{n} TO CP
NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values

F40175/340175
 QUAD D FLIP-FLOP

DESCRIPTION - The F40175 is a Quad Edge-Triggered D Flip-Flop with four Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) a Clock Input (CP) an overriding asynchronous Master Reset ($\overline{M R}$), four Buffered Outputs ($Q_{0}-\mathrm{Q}_{3}$) and four Complementary Buffered Outputs ($\overline{\mathrm{Q}}_{0}-\overline{\mathrm{a}}_{3}$).
Information on the Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is transferred to Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$ on the LOW-to-HIGH Transition of the Clock Input (CP) if the Master Reset Input (MR) is HIGH. When LOW, the Master Reset Input ($\overline{M R}$) resets all flip-flops ($\mathrm{Q}_{0}-\mathrm{Q}_{3}=$ LOW, $\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}=\mathrm{HIGH}$), independent of the Clock (CP) and Data ($\mathrm{D}_{0}-\mathrm{D}_{3}$) Inputs.

- TYPICAL CLOCK FREQUENCY OF 16 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- COMMON CLOCK TRIGGERED ON LOW-TO-HIGH TRANSITION
- COMMON ACtive low master reset
- TRUE AND COMPLEMENTARY OUTPUTS AVAILABLE
- FULLY EDGE-TRIGGERED CLOCK INPUT

PIN NAMES

$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
CP	Clock Input (L $\rightarrow H$ Edge-Triggered)
$\overline{M R}$	Master Reset Input (Active LOW)
$\bar{O}_{0}-\mathrm{Q}_{3}$	Buffered Outputs from the Flip-Flops
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{Q}}_{3}$	Complimentary Buffered Outputs from the Flip-Flops

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS .									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC			20			40		8		μ	MIN, $25^{\circ} \mathrm{C}$	All inputs common
	Power	-			200			400	,	80		A	MAX	and at 0 V or V_{DD}
${ }^{\text {D }}$	Supply	XM			2			4		0.8		$\mu \mathrm{A}$	$\mathrm{MIN}, 25^{\circ} \mathrm{C}$	
	Current	XM			100			200		40		$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, CP to O_{n} or $\overline{\mathrm{a}_{\mathrm{n}}}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{{ }^{\mathrm{t}_{\mathrm{PLH}}}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{M R}$ to Q_{n} or $\overline{\mathrm{Q}_{\mathrm{n}}}$		$\begin{aligned} & 65 \\ & 65 \\ & \hline \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=15 \mathrm{pF}$ Input Transition Times $<20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{LLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{T} H \mathrm{~L}} \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, $C P$ to Q_{n} or $\overline{Q_{n}}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{M R} \text { to } Q_{n} \text { or } \overline{Q_{n}}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times <20 ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{LH}} \\ & { }^{\mathrm{t}} \mathrm{THL} \end{aligned}$	Output Transition Time		$\begin{aligned} & 65 \\ & 65 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t}_{w} \mathrm{CP}(\mathrm{L})}$	Minimum Clock Pulse Width		25			10			8		ns	
${ }^{t_{w} \overline{M R}(L)}$	Minimum $\overline{\text { MR }}$ Pulse Width		35			20			15		ns	
${ }^{\text {trec }}$	$\overline{\mathrm{MR}}$ Recovery Time		6			5			2		ns	$C_{L}=15 \mathrm{pF}$ Input Transition
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, D_{n} to CP Hold Time, D_{n} to CP		$\begin{array}{r} 1 \\ 10 \end{array}$			1 2			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
${ }_{\text {f MAX }}$	Maximum Clock Frequency (Note 4)		9			16					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

MINIMUM PULSE WIDTHS FOR CP AND $\overline{M R}$,
$\overline{M R}$ RECOVERY TIME, AND SET-UP AND HOLD TIMES, D_{n} TO CP
Note: Set-up and Hold Times are shown as positive values but may be specified as negative values.

F40192/340192•F40193/340193
 4-BIT UP/DOWN DECADE AND BINARY COUNTER

DESCRIPTION - The F40192 is a 4-Bit Synchronous Up/Down BCD Decade Counter and the F40193 is a 4-Bit Synchronous Up/Down Binary Counter. Both operate the same except for the count sequence. Both counters have a Count Up Clock Input (CPU), a Count Down Clock Input (CP ${ }_{\mathrm{D}}$), an asynchronous Parallel Load Input ($\overline{\mathrm{PL}}$), four Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), an overriding asynchronous Master Reset (MR), four Counter Outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{3}$), a Terminal Count Up (Carry) Output ($\overline{\mathrm{TC}} \mathrm{U}$) and a Terminal Count Down (Borrow) Output ($\overline{T C_{D}}$).
When the Master Reset Input (MR) is LOW and the Parallel Load Input ($\overline{\mathrm{PL}}$) is HIGH, the Counter Outputs change state on the LOW-to-HIGH transition of either Clock Input. However, for correct counting, both Clock Inputs cannot be LOW simultaneously. With the Master Reset Input (MR) LOW, information on the Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter when the Parallel Load Input ($(\overline{\mathrm{PL}})$ is LOW and stored in the counter when the Parallel Load Input ($\overline{\mathrm{PL}}$) goes HIGH, independent of Clock Inputs (CPU, CPD). When HIGH, the Master Reset (MR) resets the counter independent of all other input conditions. See equations below for Terminal Count Outputs ($\overline{T C_{U}}, \overline{T C_{D}}$).

- TYPICAL COUNT FREQUENCY OF $8 \mathrm{MHz} A T V_{D D}=10 \mathrm{~V}$
- SYNCHRONOUS OPERATION
- INTERNAL CASCADING CIRCUITRY PROVIDED
- ACTIVE LOW PARALLEL LOAD
- ACTIVE HIGH ASYNCHRONOUS MASTER RESET

PIN NAMES

$\overline{\text { PL }}$
$\mathrm{PO}_{0}-\mathrm{P}_{3}$
CPU
CPD
$M R$
CR_{0}
$\frac{Q_{0}-Q_{3}}{T C_{U}}$
$\frac{T C_{D}}{}$

Parallel Load Input (Active LOW)
Parallel Data Inputs
Count Up Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Count Down Clock Pulse Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
Master Reset Input (Asynchronous)
Buffered Counter Outputs
Buffered Terminal Count Up (Carry) Output (Active Low)
Buffered Terminal Count Down (Borrow) Output (Active LOW)
MODE SELECTION
(Both Counters)

MR	$\overline{P L}$	CPU	CP	MODE
H	X	X	X	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	H	H	H	No Change
L	H	S	H	Count Up
L	H	H	S	Count Down

LOGIC SYMBOL

$$
V_{D D}=\operatorname{Pin} 16
$$

$$
V_{S S}=\operatorname{Pin} 8
$$

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

F40192 STATE DIAGRAM

F40192 LOGIC EQUATIONS FOR TERMINAL COUNT

$$
\begin{aligned}
& \mathrm{TC}_{U}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}_{U}} \\
& \mathrm{TC}_{\mathrm{D}}=\overline{\mathrm{Q}_{0}} \bullet \overline{\mathrm{Q}_{1}} \bullet \overline{\mathrm{Q}_{2}} \bullet \overline{\mathrm{Q}_{3}} \bullet \overline{\mathrm{CP}_{\mathrm{D}}}
\end{aligned}
$$

F40193 STATE DIAGRAM

F40193 LOGIC EQUATIONS FOR TERMINAL COUNT

$$
\begin{aligned}
& \mathrm{TC}_{\mathrm{U}}=\mathrm{O}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}_{U}} \\
& \mathrm{TC}_{\mathrm{D}}=\overline{\mathrm{O}_{0}} \bullet \overline{\mathrm{Q}_{1}} \bullet \overline{\mathrm{O}_{2}} \bullet \overline{\mathrm{Q}_{3}} \bullet \overline{\mathrm{CP}_{\mathrm{D}}}
\end{aligned}
$$

FAIRCHILD CMOS • F40192/340192 • F40193/340193

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			15			25		5		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					900			1500		3000			MAX	

AC CHARACTERISTICS AND SWITCHING REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH}}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay, CP_{U} to Q_{n}		$\begin{aligned} & 225 \\ & 225 \end{aligned}$			95 95			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ Input Transition Times $\leqslant 20 \mathrm{~ns}$
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{{ }^{\mathrm{t}} \mathrm{PH}} \end{aligned}$	Propagation Delay, $\mathrm{CP}_{\mathrm{D}} \text { to } \mathrm{Q}_{\mathrm{n}}$		$\begin{aligned} & 225 \\ & 225 \end{aligned}$			95 95			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{1} \mathrm{PLH}$ ${ }^{\text {t PHL }}$	Propagation Delay, CP_{U} to $\overline{\mathrm{TC}_{U}}$		$\begin{aligned} & 110 \\ & 110 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\mathrm{t}} \mathrm{PLH}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay, } \\ & C P_{D} \text { to } \overline{T C_{D}} \end{aligned}$		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }_{\text {t }}$ HL	Propagation Delay, MR to Q_{n}		250			110			75		ns	
${ }_{\text {tPLH }}$	Propagation Delay, MR to $\overline{T C_{U}}$ or $\overline{T C_{D}}$		350			150			100		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\text { PL }}$ to Q_{n}		$\begin{aligned} & 250 \\ & 250 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & { }^{\mathrm{t} \mathrm{~T} \mathrm{LH}} \\ & { }^{\mathrm{t} T \mathrm{HL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 35 \\ & 35 \end{aligned}$			20			$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tPLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay, $\mathrm{CP}_{\mathrm{U}} \text { to } \mathrm{O}_{\mathrm{n}}$		$\begin{aligned} & 245 \\ & 245 \end{aligned}$			$\begin{aligned} & 105 \\ & 105 \end{aligned}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times <20 ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $C P_{D} \text { to } Q_{n}$		$\begin{array}{\|l\|} \hline 245 \\ 245 \end{array}$			$\begin{aligned} & 105 \\ & 105 \end{aligned}$			70 70		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{gathered} \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Propagation Delay, } \\ & \mathrm{CP}_{U} \text { to } \overline{T C_{U}} \end{aligned}$		$\begin{aligned} & 130 \\ & 130 \end{aligned}$			60 60			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {tpLH }}$ ${ }^{\text {t }}$ PHL	$\begin{aligned} & \text { Propagation Delay, } \\ & \mathrm{CP}_{\mathrm{D}} \text { to } \overline{\mathrm{T}} \mathrm{C}_{\mathrm{D}} \end{aligned}$		$\begin{aligned} & 145 \\ & 145 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
${ }^{\text {t PHL }}$	Propagation Delay, MR to O_{n}		270			120			80		ns	
${ }_{\text {tPLH }}$	Propagation Delay, MR to $\overline{T C}_{U}$ or $\overline{T_{D}}$		370			170			105		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L H} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{\mathrm{PL}}$ to Q_{n}		$\begin{aligned} & 270 \\ & 270 \end{aligned}$			$\begin{array}{\|l\|} \hline 110 \\ 110 \end{array}$			$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 55 \\ & 55 \end{aligned}$			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {t }}{ }^{\text {CP }}$	Min. CP_{U} or CP_{D} Pulse Width		85			30			20		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $<20 \mathrm{~ns}$
${ }_{\text {t }}{ }^{\text {m }}$ M	Minimum MR Pulse Width		60			30			20		ns	
$\mathrm{t}_{\mathrm{w}} \overline{\text { PL }}$	Minimum $\overline{\text { PL }}$ Pulse Width		75			25			20		ns	
${ }^{\text {rec }}$	MR Recovery Time		75			30			20		ns	
${ }^{\text {trec }}$	$\overline{\text { PL Recovery Time }}$		75			30			20		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{h}} \end{aligned}$	Set-Up Time, P_{n} to $\overline{\mathrm{PL}}$ Hold Time, P_{n} to $\overline{\mathrm{PL}}$		$\begin{array}{r} 85 \\ -83 \end{array}$			$\begin{array}{r} 30 \\ -28 \end{array}$			$\begin{array}{r} 20 \\ -19 \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {f MAX }}$	Input Count Frequency (Note 4)		4			8					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}); Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
4. For $\mathrm{f}_{\mathrm{MAX}}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Inputs ($C P_{\cup}$ or $C P_{\mathrm{D}}$) be less than $15 \mu \mathrm{~s}$.

SWITCHING WAVEFORMS

RECOVERY TIMES FOR PL AND MR,
MINIMUM PULSE WIDTHS FOR CPU, CPD,

NOTE: Set-up and Hold Times are shown as positive values but may be specified as negative values.

F40194/340194 4-BIT BIDIRECTIONAL UNVERSAL SHIFT REGISTER

DESCRIPTION - The F40194 is a 4-Bit Bidirectional Shift Register with two Mode Control Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$), a Clock Input (CP), a Serial Data Shift Left Input (D_{SL}), a Serial Data Shift Right input (D_{SR}), four Parallel Data Inputs ($\mathrm{PO}_{0}-\mathrm{P}_{3}$), an overriding asynchronous Master Reset Input (MR) and four Buffered Parallel Outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.
When LOW, the Master Reset Input ($\overline{M R}$) resets all stages and forces all Outputs ($Q_{0}-Q_{3}$) LOW, overriding all other input conditions. When the Master Reset Input (MR) is HIGH, the operating mode is controlled by the two Mode Control Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) as shown in the Truth Table. Serial and parallel operation is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). The inputs at which the data is to be entered and the Mode Control Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) must be stable for a set-up time before the LOW-to-HIGH transition of the Clock Input CP).

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- ASYNCHRONOUS MASTER RESET
- hOLD (DO NOTHING) MODE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- POSItive edge-triggered clock

PIN NAMES

$\mathrm{S}_{0}, \mathrm{~S}_{1}$
Mode Control Inputs
$\mathrm{P}_{0}-\mathrm{P}_{3}$
Parallel Data Inputs
DSR Serial (Shift Right) Data Input
DSL Serial (Shift Left) Data Input
$\overline{\mathrm{CP}} \quad$ Clock Input ($\mathrm{L} \rightarrow \mathrm{H}$ Edge-Triggered)
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Master Reset Input (Active LOW)
Parallel Outputs

LOGIC DIAGRAM

FAIRCHILD CMOS • F40194/340194

OPERATING MODE	INPUTS ($\overline{\mathrm{MR}}=\mathrm{H})$					OUTPUTS AT t_{n+1}			
	S_{1}	S_{0}	DSR	DSL	$\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$	Q_{0}	Q_{1}	Q_{2}	O_{3}
Hold	L	L	x	X	x	Q_{0}	Q_{1}	Q_{2}	Q_{3}
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{3} \\ & \mathrm{Q}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{0} \\ & \mathrm{Q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1} \\ & \mathrm{Q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{2} \end{aligned}$
Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$				

$H=H I G H$ Voltage Level
$x=$ Don't Care
L $=$ LOW Voltage Level
$\left(t_{n+1}\right)=$ Indicates state after next LOW-to-HIGH clock transition.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					500			1000		200			MAX	
		XM			5			10		2		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					40			80		16			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{t_{P L H}}$ t_{PHL}	Propagation Delay, CP to 0		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		80	150		35	65		25		ns	Input Transition
$\begin{aligned} & \mathbf{t}_{\mathrm{THL}} \\ & { }^{\mathrm{t} T \mathrm{TLH}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		20 20	40 40		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, CP to 0		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to Q		100	180		45	80		35		ns	Input Transition
$\begin{aligned} & { }^{\mathrm{T}_{\mathrm{THL}}} \\ & { }^{\mathrm{t} T \mathrm{LH}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Times $\leqslant 20 \mathrm{~ns}$
ts t_{h}	Set-Up Time, $\mathrm{P}_{\mathrm{O}}-\mathrm{P}_{3}, \mathrm{D}_{\mathrm{SL}}, \mathrm{D}_{\mathrm{SR}}$ to CP Hold Time, $P_{0}-P_{3}, D_{S L}, D_{S R} \text { to } C P$	$\begin{array}{r} 80 \\ 0 \end{array}$	$\begin{array}{r} \hline 40 \\ -10 \end{array}$		$\begin{gathered} 40 \\ 0 \end{gathered}$	$\begin{aligned} & \hline 20 \\ & -5 \end{aligned}$			$\begin{aligned} & 15 \\ & -5 \end{aligned}$		ns ns	
	Set-Up Time, S to CP Hold Time, S to CP	$\begin{array}{r} 100 \\ 0 \end{array}$	$\begin{array}{\|r\|} \hline 60 \\ -10 \\ \hline \end{array}$		$\begin{array}{r} 50 \\ 0 \end{array}$	$\begin{aligned} & 30 \\ & -5 \end{aligned}$			$\begin{aligned} & 20 \\ & -5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {t }}{ }^{\text {c }}$ CP(L)	Minimum Clock Pulse Width	100	60		60	35			25		ns	Input Transition
$\mathrm{t}_{\mathrm{w}} \overline{\mathrm{MR}}(\mathrm{L})$	Minimum $\overline{\mathrm{MR}}$ Pulse Width	75	40		45	25			15		ns	Times $\leqslant 20 \mathrm{~ns}$
${ }^{\text {trec }}$	Recovery Time for $\overline{\mathrm{MR}}$	180	100		90	50			35		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 4)	4.5	9		9	14					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
3. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{r e c}$), and Minimum Pulse Widths (t_{w}) do not vary with load capacitance.
4. For $f_{M A X}$ input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns .
5. It is recommended that input rise and fall times to the Clock Input be less than $15 \mu \mathrm{~s}$.

PROPAGATION DELAY

SWITCHING TIME WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS CLOCK PULSE WIDTH

OTHER CONDITIONS: $S_{1}=L, \overline{M R}=H, S_{0}=H$

MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

OTHER CONDITIONS: $\quad \mathrm{S}_{\mathrm{o}}, \mathrm{S}_{\mathbf{1}}=\mathrm{H}$

$$
P_{0}=P_{1}=P_{2}=P_{3}=H
$$

SET-UP $\left(t_{s}\right)$ AND HOLD (t_{h}) TIME FOR S INPUT

OTHER CONDITIONS: $\quad \overline{M R}=H$

F40195/340195 4-BIT UNIVERSAL SHIFT REGISTER

DESCRIPTION - The F40195 is a fully synchronous edge-triggered 4-Bit Shift Register with a Clock Input (CP), four synchronous Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$), two synchronous Serial Data Inputs ($\mathrm{J}, \overline{\mathrm{K}}$), a synchronous Mode Control Input ($\overline{\mathrm{PE}}$), Buffered Outputs from all four bit positions ($\mathrm{O}_{0}-\mathrm{Q}_{3}$), a Buffered Inverted Output from the last bit position ($\overline{\mathrm{Q}}_{3}$) and an overriding asynchronous Master Reset Input (MR).

Operation is synchronous (except for Master Reset) and is edge-triggered on the LOW-to-HIGH transition of the Clock Input (CP). When the Mode Control Input (PE) is LOW, a LOW-to-HIGH clock transition loads data into the register from Parallel Data Inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$). When the Mode Control Input $(\overline{P E})$ is HIGH, a LOW-to-HIGH clock transition shifts data into the first register position from the Serial Data Inputs (J, \bar{K}), and shifts all the data in the register one position to the right. D-type entry is obtained by tying the two Serial Data Inputs ($J, \overline{\mathrm{~K}}$) together. A LOW on the Master Reset Input ($\overline{\mathrm{MR}}$) resets all four bit positions $\left(Q_{0}-Q_{3}=\right.$ LOW, $\left.\overline{\mathrm{O}}_{3}=\mathrm{HIGH}\right)$ independent of all other input conditions.

- TYPICAL SHIFT FREQUENCY OF 14 MHz AT $\mathrm{V}_{\mathrm{DD}}=\mathbf{1 0} \mathrm{V}$
- ASYNCHRONOUS MASTER RESET
- J, \bar{K} INPUTS TO THE FIRST STAGE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS
- COMPLEMENTARY OUTPUT FROM THE LAST STAGE
- POSitive edge-triggered clock

PIN NAMES	
$\overline{P E}$	Parallel Enable Input (Active LOW)
$\mathrm{PO}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs
J	First Stage J Input (Active HIGH)
\bar{K}	First Stage K Input (Active LOW)
$\overline{\mathrm{CP}}$	Clock Input (L $\rightarrow \mathrm{H}$ Edge-Triggered)
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Outputs
$\overline{\mathrm{O}_{3}}$	Complementary Last Stage Output

LOGIC DIAGRAM

$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$
$V_{S S}=\operatorname{Pin} 8$
$O=P$ in Numbers

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram)' as the Dual In-line Package.

FAIRCHILD CMOS • F40195/340195

TRUTH TABLE

OPERATING MODE	INPUTS ($\overline{\mathrm{MR}}=\mathrm{H}$)							OUTPUTS AT t_{n+1}				
	$\overline{\mathrm{PE}}$	J	$\overline{\mathrm{K}}$	P_{0}	P_{1}	P_{2}	P_{3}	Q_{0}	Q_{1}	Q_{2}	O_{3}	$\overline{\mathrm{Q}}_{3}$
Shift Mode	H	L	L	x	x	x	x	L	0	Q_{1}	Q_{2}	$\overline{\mathrm{Q}}_{2}$
	H	L	H	x	X	X	X	Q_{0}	Q_{0}	Q_{1}	O_{2}	$\overline{\mathrm{Q}}_{2}$
	H	H	L	X	X	x	x	$\overline{\mathrm{Q}}_{0}$	Q_{0}	Q_{1}	Q_{2}	$\overline{\mathrm{Q}}_{2}$
	H	H	H	X	X	X	X	H	O_{0}	Q_{1}	O_{2}	$\overline{\mathrm{Q}}_{2}$
Parallel Entry Mode	L	X	X	L	L	L	L	L	L	L	L	H
	L	X	X	H	H	H	H	H	H	H	H	L

$H=H I G H$ Voltage Level
L $=$ LOW Voltage Level
$X=$ Don't Care
$\left(t_{n+1}\right)=$ Indicates state after next LOW to HIGH clock transition.

DC CHARACTERISTICS: $V_{D D}$ as shown, $V_{S S}=0 V$ (See Note 1$)$

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
	Quiescent	XC			50			100		200		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common
	Power	Xc			500			1000		200		$\mu \mathrm{A}$	MAX	and at 0 V or V_{DD}
${ }^{\text {D }}$ D	Supply	XM			5			10		2			MIN, $25^{\circ} \mathrm{C}$	
	Current	XM			40			80		16		$\mu \mathrm{A}$	MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tpLH}}$ ${ }^{\text {tenL }}$	Propagation Delay, CP to O_{n} or Q_{3}		$\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
tPHL	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}_{3}}$		80	150		35	65		25		ns	Input Transition
${ }_{\text {tPHL }}$	Propagation Delay, $\overline{M R}$ to Q_{n}		80	150		35	65		25		ns	Times $\leq 20 \mathrm{~ns}$
${ }^{\mathrm{t}} \mathrm{THL}$ ${ }^{\text {t TLH }}$	Output Transition Time		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
tpLH ${ }^{\text {tpHL }}$	Propagation Delay, CP to O_{n} or $\overline{\mathrm{Q}_{3}}$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 180 \\ & 180 \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {tPHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}_{3}}$		100	180		45	80		35		ns	Input Transition
${ }^{\text {tPHL }}$	Propagation Delay, $\overline{M R}$ to Q_{n}		100	180		45	80		35		ns	Times $\leq 20 \mathrm{~ns}$
${ }^{\mathrm{t}} \mathrm{THL}$ ${ }^{\text {t TLH }}$	Output Transition Time		$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{array}{r} 45 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
t_{s} $t_{\text {h }}$	Set-Up Time, $J, \bar{K}, P_{0}-P_{3}$ to $C P$ Hold Time, $\mathrm{J}, \overline{\mathrm{K}}, \mathrm{P}_{0}-\mathrm{P}_{3}$ to CP	80	$\begin{array}{r} 40 \\ -10 \end{array}$		40	$\begin{array}{r} 20 \\ -5 \end{array}$			$\begin{array}{r} 15 \\ -5 \end{array}$		ns ns	
$\begin{aligned} & t_{s} \\ & t_{h} \end{aligned}$	Set-Up Time, $\overline{P E}$ to CP Hold Time, $\overline{P E}$ to CP	$\begin{array}{r} 100 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 60 \\ -10 \\ \hline \end{array}$		$\begin{array}{r} 50 \\ 0 \end{array}$	$\begin{array}{r} 30 \\ -5 \end{array}$			$\begin{array}{r} 20 \\ -5 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
${ }^{\text {tw }} \mathrm{CP}(\mathrm{L})$	Minimum Clock Pulse Width	100	60		60	35			25		ns	Input Transition
${ }^{t}{ }^{\text {w MR }}$ (L)	Minimum $\overline{\text { MR }}$ Pulse Width	75	40		45	25			15		ns	Times ≤ 20 ns
trec	Recovery Time for $\overline{\text { MR }}$	180	100		90	50			35		ns	
${ }^{\text {f MAX }}$	Maximum CP Frequency (Note 4)	4.5	9		9	14					MHz	

NOTES:

1. Additional DC Characteristics are listed in this section under F4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.
 Set-up Times (t_{s}), Hold Times (t_{h}), Recovery Times ($t_{\text {rece }}$), and Minimum Pulse Widths (t_{w}), do not vary with load capacitance.
3. For $f_{M A X}$, input rise and fall times are greater than or equal to 5 ns and less than or equal to 20 ns.
4. It is recommended that input rise and fall times be less than $15 \mu \mathrm{~s}$.

TYPICAL ELECTRICAL CHARACTERISTICS

PROPAGATION DELAY

C_{L} - LOAD CAPACITANCE - pF

PROPAGATION DELAY

SWITCHING TIME WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH

MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

$$
\begin{array}{ll|ll}
\text { OTHER CONDITIONS: } & J=\overline{P E}=\overline{M R}=H I G H & \text { OTHER CONDITIONS: } & \overline{P E}=L O W \\
& \bar{K}=L \& W & & P_{0}=P_{1}=P_{2}=P_{3}=H I G H
\end{array}
$$

SET-UP (t_{s}) AND HOLD (t_{h}) TIME FOR SERIAL DATA ($\mathrm{J} \& \mathrm{~K}$) AND PARALLEL DATA ($\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$)

OTHER CONDITIONS: \quad MR $=$ HIGH

* $J \& \bar{K}$ Set-up Time Affects O_{0} Only

SET-UP ($\mathbf{t}_{\mathbf{s}}$) AND HOLD (t_{h}) TIME FOR $\overline{\text { PE INPUT }}$

OTHER CONDITIONS: $\overline{M R}=$ HIGH
${ }^{*} Q_{0}$ State will be Determined by $\mathrm{J} \& \overline{\mathrm{~K}}$ Inputs NOTE:

Set-up Times (t_{s}) and Hold Times (t_{h}) are shown as positive values but may be specified as negative values.

F40283/340283
 4-BIT BINARY FULL ADDER

DESCRIPTION - The F40283 is a 4-Bit Binary Full Adder with two 4-bit Data Inputs ($A_{0}-A_{3}$, $\mathrm{B}_{0}-\mathrm{B}_{3}$), a Carry Input (C_{0}), four Sum Outputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and a Carry Output (C_{4}).

The F40283 uses full lookahead across 4-bits to generate the Carry Output (C_{4}). This minimizes the necessity for extensive "lookahead" and carry-cascading circuits.

- FULL CARRY LOOKAHEAD ACROSS FOUR BITS
- EASILY CASCADED

PIN NAMES	FUNCTION
$A_{0}, B_{0}, A_{1}, B_{1}$	Data Inputs
$A_{2}, B_{2}, A_{3}, B_{3}$	Data Inputs
C_{0}	Carry Input
$S_{0}-S_{3}$	Sum Outputs
C_{4}	Carry Output

LOGIC DIAGRAM

[^15]

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DC CHARACTERISTICS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (See Note 1)

SYMBOL	PARAMETER		LIMITS									UNITS	TEMP	TEST CONDITIONS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
IDD	Quiescent Power Supply Current	XC			50			100		20		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	All inputs common and at 0 V or V_{DD}
					700			1400		280			MAX	
		XM			5			10		2.0		$\mu \mathrm{A}$	MIN, $25^{\circ} \mathrm{C}$	
					300			600		120			MAX	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS: V_{DD} as shown, $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Note 2)

SYMBOL	PARAMETER	LIMITS									UNITS	TEST CONDITIONS
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
${ }^{\text {tPLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to S_{n}		160 160			62 62			47 47		ns	
${ }^{\text {tpLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay, $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to C_{4}		$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & 57 \\ & 57 \end{aligned}$			$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }_{\text {tpLH }}$ tpHL	Propagation Delay, C_{o} to S_{n}		$\begin{aligned} & 160 \\ & 160 \end{aligned}$			62			$\begin{aligned} & 47 \\ & 47 \end{aligned}$		ns	$C_{L}=15 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, C_{o} to C_{4}		$\begin{array}{r} 57 \\ 57 \\ \hline \end{array}$			25 25			20 20		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ THL	Output Transition Time		$\begin{aligned} & 30 \\ & 30 \end{aligned}$			$\begin{aligned} & 17 \\ & 17 \end{aligned}$			$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
${ }^{\text {tpLH}}$ ${ }^{\text {tpHL }}$	Propagation Delay, A_{n}, B_{n} to S_{n}		$\begin{aligned} & 178 \\ & 178 \end{aligned}$			$\begin{aligned} & 69 \\ & 69 \\ & \hline \end{aligned}$			$\begin{aligned} & 52 \\ & 52 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
${ }^{t}$ PLH ${ }^{\text {tPHL }}$	Propagation Delay, $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ to C_{4}		$\begin{aligned} & 138 \\ & 138 \end{aligned}$			$\begin{aligned} & 63 \\ & 63 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation Delay, C_{o} to S_{n}		$\begin{aligned} & 178 \\ & 178 \end{aligned}$			$\begin{aligned} & 69 \\ & 69 \end{aligned}$			$\begin{aligned} & 52 \\ & 52 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$C_{L}=50 \mathrm{pF}$ Input Transition Times $\leq 20 \mathrm{~ns}$
${ }^{t}$ PLH tphL	Propagation Delay, C_{0} to C_{4}		$\begin{aligned} & 63 \\ & 63 \end{aligned}$			$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$			$\begin{array}{r} 23 \\ 23 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{LLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Output Transition Time		$\begin{aligned} & 60 \\ & 60 \end{aligned}$			30 30			20 20		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

NOTES:

1. Additional DC Characteristics are listed in this section under F 4000 Series CMOS Family Characteristics.
2. Propagation Delays and Output Transition Times are graphically described in this section under F4000 Series CMOS Family Characteristics.

PRODUCTINDEX - ALPHANUMERIC LISTING OF DEVICES

NMOS/PMOS

INTRODUCTION

3

MEMORY PRODUCTS
CONSUMER/INDUSTRIAL PRODUCTS
MICROPROCESSOR PRODUCTS
MULTIPLEXERS AND COUNTERS

CMOS
F4000 SERIES GENERAL DESCRIPTION
DESIGN CONSIDERATIONS WITH F4000 SERIES CMOS

TECHNICAL DATA

BIPOLAR INTERFACE CIRCUITS FOR CMOS

CCD

INTRODUCTION

TECHNICAL DATA

ORDER AND PACKAGE INFORMATION

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

BIPOLAR INTERFACE CIRCUITS FOR CMOS

CMOS TO TTL DRIVER
9LS04 • 54/74LS04 Hex Inverter
(Reference: Fairchild Low Power TTL Data Book)

CMOS TO 7-SEGMENT LED DISPLAY
 9374 7-Segment Decoder/Driver/Latch
 (Reference: Fairchild 9374 Data Sheet)

When multi-TTL drive capability is required, the CMOS F4049 and F4050 Hex Buffers can be used to drive two standard TTL loads with typical delays of $45 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$. However, the 9LSO4 drives five standard TTL loads with typical delays of 5 ns . The 9LSO4 must be operated from a 5 V TTL supply, but it can accept input voltage to 11 V , allowing its use with CMOS operated up to 10 V .

- F4000 COMPATIBLE INPUTS
- DRIVES FIVE TTL LOADS
- 5 ns DELAY
- ACCEPTS 11 V inputs
- 2 mW PER INVERTER

MOS TO LED DIGIT DRIVER
9664 MOS to LED Digit Driver
(Reference: Fairchild 9664 Data Sheet)

This driver is ideal for driving high current devices such as LEDs, relays and lamps. High input impedance allows direct drive from F4000 CMOS devices; however, there is some degradation in logic level at the CMOS output. The 9664 is specified to 10 V operation, the 9664A to 20 V .

- 150 mA SINK CAPABILITY
- CMOS COMPATIBLE INPUTS
- VERY LOW STANDBY POWER
- SIX HIGH GAIN DARLINGTON CIRCUITS
- 10 AND 20 V OPERATION

This bipolar device contains latches for storage, a 7 -segment decoder and 15 mA constant current drivers. The 9374 must operate at 5 V ; its inputs are also limited to 5 V .

- HIGH SPEED INPUT LATCHES FOR DATA STORAGE
- 15 mA CONSTANT CURRENT SINK CAPABILITY TO DIRECTLY DRIVE COMMON ANODE LED DISPLAYS
- INCREASES INCANDESCENT DISPLAY LIFE
- DATA INPUT LOADING ESSENTIALLY ZERO WHEN LATCH DISABLED
- AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING EDGE ZEROS AND/OR TRAILING EDGE ZEROS

BIPOLAR INTERFACE CIRCUITS FOR CMOS (Cont'd)

ONE-SHOT MULTIVIBRATOR
96L02 Low Power Dual
Retriggerable Resettable Monostable Multivibrator

(Reference: Fairchild Low Power TTL Book)

The 96LO2 is pin and function compatible with the F4528 Dual Monostable and exhibits improved stability and speed. It is usable in 5 V CMOS systems.

- TYPICAL POWER DISSIPATION OF 25 mW/ONE SHOT
- 50 ns TYPICAL PROPAGATION DELAY
- RETRIGGERABLE 0 TO 100\% DUTY CYCLE
- F4000 COMPATIBLE INPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR VCC AND TEMPERATURE VARIATIONS
- RESETTABLE

96L02 LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

* Leads for external timing

VOLTAGE COMPARATOR

$\mu \mathrm{A} 775$-Quad Comparator
(Reference: Fairchild μ A775 Data Sheet)

In a CMOS system it may be necessary to detect differences between two voltage levels and convert to logic levels. The $\mu \mathrm{A} 775$ Quad Comparator is capable of operating over the CMOS power supply range. These comparators have a unique characteristic in that the input common mode voltage range includes ground, even though operated from a single power supply voltage. Applications include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators and wide range V_{CO}.

- SINGLE SUPPLY OPERATION-+2.0 V TO +36 V
- COMPARES VOLTAGES NEAR GROUND POTENTIAL
- LOW CURRENT DRAIN-700 μ A TYPICAL
- COMPATIBLE WITH ALL FORMS OF CMOS
- LOW INPUT BIAS CURRENT-25 nA TYPICAL
- LOW INPUT OFFSET CURRENT-25 nA
- LOW OFFSET VOLTAGE-5 mV MAX

POWER SUPPLY REGULATOR

$\mu \mathrm{A} 78 \mathrm{MG}$ 4-Terminal Regulator
(Reference: Fairchild $\mu \mathrm{A} 78 \mathrm{MG} \bullet \mu \mathrm{A} 79 \mathrm{MG}$ Data Sheet)

[^16]INTRODUCTION

> PRODUCT INDEX - ALPHANUMERIC LISTING OF DEVICES
NMOS/PMOS

MEMORY PRODUCTS

CONSUMER/INDUSTRIAL PRODUCTS

MICROPROCESSOR PRODUCTS

MULTIPLEXERS AND COUNTERS

CMOS

DESIGN CONSIDERATIONS WITH F4000 SERIES CMOS

TECHNICAL DATA

BIPOLAR INTERFACE CIRCUITS FOR CMOS
CCD
INTRODUCTION

TECHNICAL DATA

ORDER AND PACKAGE INFORMATION

FAIRCHILD FIELD SALES OFFICES, SALES
REPRESENTATIVES, DISTRIBUTOR LOCATIONS

CHARGE COUPLED DEVICE INTRODUCTION

Charge-coupled devices are a new class of monolithic integrated circuits based on the principle of discrete charge-packet transfer. They are characterized by high packing density, low power dissipation and low noise. Although they share the same technological base with transistors, they are functional devices that manipulate information in charge packets rather than devices that modulate electrical currents. Charge coupling is the collective transfer of all the mobile electric charge stored within a semiconductor storage element to a similar adjacent storage element. These storage elements are potential wells created in the silicon channel below closely spaced gate electrodes. External clocking of these electrodes transfers the electric charge from one potential well the the next. The clock frequency determines the shift rate. The quantity of stored charge in the "mobile packet" is determined by the input signal, the applied voltage and the capacitance of the storage cell. The amount of electric charge in each packet represents information. The basic CCD structure is a near ideal analog shift register where the number of stages in a line of the CCD structure determines the length of the register.

The input-charge information to a CCD comes from one of two sources, depending on the circuit application. A memory or analog shift register receives information from a charge injection port at the input; image-sensor information is supplied from hole-electron pairs created by incident light energy on one or more of the sensor cells. When a charge packet is transferred through the CCD register, it must neither gain nor lose significant charge or the information will change and no longer represent the input signal. The index of charge retention as the charge packet moves from one cell to the next is called transfer efficiency. All Fairchild CCD products utilize an ion-implanted buried-channel structure and closely spaced gate electrodes to provide high transfer efficiency, $\geqslant 99.99 \%$, and reduce transfer transit time to assure high frequency performance.

CCD IMAGE SENSORS

CCD image sensors fall into two categories - linear and area. The inputs of both types are light photons which are converted to charge packets in closely spaced photosites. A linear array is composed of a row of photosites exposed to incident illumination and opaque transport registers for transferring the charge packets representing information to an output amplifier. Charge packets are transferred from the photosites to the registers after a period of integration determined by external clocking. The registers are then clocked and the light-generated charge packets are delivered to the output amplifier for conversion to proportional voltage levels. The CCD110, 101 and 121 are typical linear arrays with 256,500 and 1728 elements respectively. The CCD131, to be announced in late 1975, has 1024 elements.

Area arrays are similar devices except that the photosites are arranged in a matrix format and the opaque transport registers are located between the photosite columns. The charge packets are transferred to the output amplifier in two separate fields, line by line. This is called the interline transfer approach. The CCD201 area image sensor has a matrix size of 100×100 and the CCD211, to be announced in late 1975, has a 244 x 190 matrix size.

CCD MEMORIES

Since its invention, the CCD concept has been recognized as having a great potential for digital memories. Although CCD memories can be configured in a number of ways, all are basically serial in nature and hence are block or line-access oriented rather than bit-access oriented. Their high density; low power dissipation and structural simplicity provide high performance at low cost in many cache, buffer and main-frame applications. Also, they will compete with high speed discs and other peripheral memories.

General Properties of CCD Memories

Speed - The movement of charge from one CCD electrode to the next is inherently fast, limited only by the carrier saturation velocity. A practical memory device requires several peripheral and interface circuits including read/write logic, level converters, sense amplifiers and I/O buffers. In the CCD memory, these circuits are implemented on chip by Isoplanar n-channel MOS technology and, for standard voltages, operate in the 100 kHz to 5 MHz range.

Power Dissipation - The dynamic non-equilibrium operating mode of the CCD element assures an almost ideal energy-transfer condition where on-chip power dissipation is associated primarily with the movement of signal charge (data). If, on the average, one-half the bit sites contain charge, the speed-power product is typically 0.2 pJ per bit transferred. For example, consider a simple series shift register block of N bits. The average power dissipated on-chip for a data frequency of f_{c} is given by the following.

$$
P_{D}=2 N\left(0.2 \times 10^{-12}\right) \mathrm{f}_{\mathrm{c}}
$$

If $N=1024$ and $f_{c}=5 \mathrm{MHz}$, then

$$
P_{D}=2 \mathrm{~mW}
$$

This is very low power for a memory of this size; moreover, in other configurations where most of the data is moving slowly or not at all, the power per bit is considerably lower.

Temperature Behavior - The CCD storage element is dynamic and therefore must be periodically refreshed similarly to a dynamic MOS RAM. Minimum required refresh rate is temperature dependent. At room temperature $\left(25^{\circ} \mathrm{C}\right)$, the element storage time can be as high as one second. This value decreases by a factor of two for every $9^{\circ} \mathrm{C}$ increase in temperature up to approximately $70^{\circ} \mathrm{C}$. Above this, it decreases even more rapidly, until at $125^{\circ} \mathrm{C}$, it is falling by a factor of two every $4.5^{\circ} \mathrm{C}$. For an ambient temperature of $70^{\circ} \mathrm{C}$, a typical die temperature is approximately $90^{\circ} \mathrm{C}$. Since the storage time is less than 5 ms under these conditions, the memory must be refreshed more frequently than at lower temperatures. The increase in refresh rate raises the power dissipation which, in turn, increases the difference between the ambient temperature and the die temperature thereby further increasing the required refresh rate. Conversely, at lowered temperatures $\left(<25^{\circ} \mathrm{C}\right)$, the power and time required for refresh rapidly becomes insignificant. For example, at $-30^{\circ} \mathrm{C}$ ambient, the storage time of approximately one-third of a minute renders the memory close to non-volatile from a power dissipation standpoint. It may be advantageous, in many instances, to incorporate cooling to increase the performance of CCD memory systems.

CCD450 Dynamic Shift-Register Memory

The CCD450 is a 1 -kilobyte serial storage memory consisting of 9216 bits, organized 1024 bytes by nine bits. It contains nine 1024-bit low power CCD shift registers which are shifted in parallel providing for storage and retrieval of 9-bit bytes in a byte-serial mode.

This CCD memory is a buried-channel gapless structure with ion-implanted barriers in the registers, combined with Isoplanar n-channel silicon-gate structures for on-chip timing, charge detection and level conversion. The registers are organized in a serpentine fashion with turn-around cells every 128 bits.

A byte-organized dynamic shift register complete with overhead functions, the CCD450 is particularly attractive for terminal applications where the byte organization and low power are highly important. In this application, it replaces more than nine packages, saves several square inches of board space and reduces power dissipation by more than an order of magnitude. The low power recirculate mode permits battery back-up for non-volatile and portable systems.

CCD460 LARAM (Line Addressable Random Access Memory)

Although the very nature of the CCD storage structure precludes a true random bit-access capability, an organization has been conceived that provides a pseudorandom access with access times in the tens of microseconds. This is the line-addressable random-access memory (LARAM), an integration of CCD and MOS memory concepts. Basically, the memory is composed of an MOS address selection matrix and a number of CCD sequential shift registers, each representing a line. When an address is selected, the driving waveforms are applied to the chosen line (register) to initiate readout, write in or refresh of information in that register.

This configuration allows an access time that is essentially dependent on the number of elements per line. In addition, since only one line is operative at any one time, clock capacitance and power dissipation are minimal. Depending on the stack configuration, a memory system using a line-addressable structure can be either word-organized where each line represents one or more words, or bit-organized, where each line contains one particular bit of a number of words. This organization is very flexible and can be used to advantage in cache buffers, swapping stores and mainframes.

CCD ANALOG SHIFT REGISTERS

The capability to manipulate information in the form of charge packets makes the CCD technology ideal for analog signal processing. In a CCD analog shift register (see block diagram), electrical inputs are applied to the charge injection port which samples the input signal at a rate determined by the input signal bandwidth.

ANALOG SHIFT REGISTER

This signal is then transformed into a charge packet and injected into the register. The 2-phase clocks shift the charge packet through the register to the output amplifier for conversion to output signal voltage. A filtering or sample-and-hold technique is usually required to recover the analog information. The time delay τ between the input and output signals is directly related to the number of elements in the CCD register, N, and the clock rate (frequency), $\tau=N /$ f. Since N is fixed, varying the clock rate provides a variable delay which makes the CCD shift register a powerful device
for applications that require highly precise delay of analog information such as video time-base correctors.

CCD311 Analog Shift Register

The CCD311 is a $130 / 260$-bit analog shift register that can be operated as either a single 130-bit device, or as a 260 -bit device using multiplexing techniques. It has a typical clock rate of 10 MHz and an operating frequency range of 10 kHz to 15 MHz . Delay time can be varied from 26μ s to 26 ms by simply varying the clock rate.

INTRODUCTION	1
PRODUCT INAEX - ALPHANUMERICIISTING OFDEVICES	2
NMOS/PMOS	
INTRODUCTION MEMORY PRODUCTS	3
CONSUMER/INDUSTRIAL PRODUCTS	
MICROPROCESSOR PRODUCTS	
MULTIPLEXERS AND COUNTERS	

CMOS

FAOOO SERIES GENERAL DESCRIPTION	4
DESIGN CONSIDERATIONS WITH FA000	
SERIES CMOS	
TECHNICAL DATA	
BIPOLAR INTERFACE CIRCUITS FOR CMOS	
CCD	
INTRODUCTION	
TECHNICAL DATA	5
	6
ORDER AND PACKAGE INFORMATION	

CCD101 500-ELEMENT SOLID STATE LINEAR IMAGE SENSOR

GENERAL DESCRIPTION - The CCD101 is a monolithic self-scanned 500-Element Image Sensor designed for slow scan TV, document reading, and other high sensitivity imaging applications. Buried channel and sealed silicon gate structure combined with advanced CCD processing achieve a large high-resolution optical array with high transfer efficiency and wide dynamic range.
In addition to the 500 -element image sensing strip, the CCD101 includes a charge transfer gate, two 250 -element analog shift registers, a 2 element analog output register, and an output detector/amplifier. The analog registers are 3 -phase and provide the self scanning feature. The output signal is a sequential reading of the 500 imaging elements with a dynamic range of at least 200:1 at 1.0 MHz .

The device is packaged in a $24-$ Pin Dual In-line Package with a sealed glass optical window. The image sensing elements are on 0.030 mm centers.

- DYNAMIC RANGE GUARANTEED 200:1 AT 1.0 MHz
- SENSITIVITY BETTER THAN 75×10^{-6} FT. CD. SEC.
- 500 ELEMENTS ON A SINGLE CHIP
- buried channel and sealed silicon gate structure
- ON-CHIP PREAMPLIFIER PROVIDES LOW OUTPUT IMPEDANCE
- LOW POWER REQUIREMENTS
- ALL OPERATING VOLTAGES UNDER 20 V
- PACKAGED IN 24-PIN DIP WITH GLASS WINDOW AND NON-REFLECTIVE INTERIOR

PIN NAMES

ϕ_{P}	Photogate Clock
ϕ_{X}	Transfer Gate Clock
$\phi_{1 \mathrm{~A}}$ and B	Clocks, Analog Trans- $\phi_{2 \mathrm{~A}}$ and B $\phi_{3 \mathrm{~A}}$ and B
$\phi_{1 \mathrm{C}} \phi_{2 \mathrm{C}} \phi_{3 \mathrm{C}}$	Clocks, Outsters gister
V_{OG}	Output Gate Bias Voltage
O_{S}	Output Transistor Source
O_{D}	Output Transistor Drain
ϕ_{R}	Reset Transistor Gate Clock
V_{SS}	Substrate Voltage (Ground)
R_{D}	Reset Transistor Drain

FUNCTIONAL DESCRIPTION - The CCD101 consists of five functional elements, illustrated in the Block Diagram:

1. A row of 500 Image Sensor Elements separated by diffused channel stops and covered by a sealed silicon photogate. This is shown in the center of the illustration.
2. Transfer Gate - a sealed silicon gate structure adjacent to both edges of the row of 500 Image Sensor Elements.
3. Two 250-Element Analog Transport Shift Registers - one on each side of the row of Image Sensor Elements and separated from it only by the Transfer Gate.
4. A 2-Element Analog Output Shift Register - shown at the bottom of the diagram. Charge coupled to both of the 250 -element Transport Registers.
5. A Gated Charge Detector Output Preamplifier - shown at the right end of the Output Register. Detects the charges delivered and converts the signal to a video output voltage at terminal O_{S}.

Complete Device - Light energy falling on the Image Sensor Elements generates a proportional packet of electron-charge in each element. Electrical clocking of the Photogate, Transfer Gate, and the 3-Phase Transport and Output Registers delivers the charge packet from each element in a spatially related time sequence to the Gated Charge Detector Preamplifier which then delivers the resulting video signal to the output load resistor.

Image Sensor Elements and Photogate - Image photons pass through the transparent photogate and are absorbed in the single crystal silicon by hole-electron pair production. The resulting electrons are accumulated in the image sensor elements during the HIGH state of the photogate. The duration of the HIGH state is the integration period ($\mathrm{T}_{\mathrm{int}}$). The amount of charge accumulated is a linear function of the incident illumination intensity and the integration period. This charge packet can vary in an analog manner from a thermally generated minimum at zero illumination to saturation. The ratio of light level at saturation to the barely detectable light level (above the background noise) is a measure of the dynamic range of the device.
Transfer Gate - The charge packets accumulated in the image sensor elements are transferred out via the transfer gate to the transport registers. Alternating charge packets are transferred out to the left register (A) and to the right (B) simultaneously. This parallel arrangement of the transport registers permits closer spacing of the image sensor elements and, thus, improves resolution. The HIGH state of the transfer gate must overlap the LOW state of both the photogate and the adjacent CCD electrode to transfer all the accumulated charge from the sensor element to the transport register. The transfer gate must then go LOW, and the photogate HIGH, to start the next light integration period.
Transport Shift Registers - The two 3-phase 250-element analog transport shift registers are used to move the image generated charge packets serially from the sensor elements to the output register, with both transport shift registers transferring charge packets to the output register simultaneously. The transport shift register clock rate is one half the output register clock rate, since the output register is handling data from both transport registers. (See Timing Diagram Figure 1.)
Output Shift Register - The output register is a 2-element 3-phase analog shift register, clocked at twice the transport register frequency. It receives inputs from both transport registers and arranges the elements in serial form in the same sequence as accumulated by the 500 image sensor elements. The clock rate of the output register is, therefore, the output data rate. The output signal is a sequential reading of the 500 image sensor elements.

The output gate is dc biased (and ac grounded). It interfaces the output register to the gated charge-detector diode, and provides shielding from clock transients.
Gated Charge Detector Output Preamplifier - The output signal (charge packet) is applied to a pre-charged diode and changes its potential linearly in response to the quantity of signal charge delivered. This potential is applied to the gate of the output n-channel MOST, producing a signal output in the external load connected to lead 13 or 14 . The output impedance is 500Ω when connected as a source follower with a 1000Ω load. The g_{m} of the output transistor is approximately $1000 \mu \mathrm{mhos}$.
The reset transistor is clocked by a reset signal $(\phi \mathrm{R})$ and recharges the charge-detector diode capacitance during the interval between delivery of signal charge packets from the output register.
All relationships of the above functions are illustrated in the Timing Diagram, Figure 1.

DEFINITION OF TERMS

Charge Coupling - A method of moving finite charge-packets of electrons from one position in the semiconductor to an adjacent position by the use of sequential gate induced depletion regions (potential wells) and electric fields. The packets of charge are minority carriers and no junctions are required, thus, providing low noise level operation.
Dynamic Range - The ratio of the saturation light signal level and the minimum light signal detectable above the background electronic noise level.

Charge Transfer Efficiency - The degree to which the entire charge packet of electrons is moved from one potential well to the next'without loss.
Photogate Clock $\phi_{\mathbf{P}}$ - The positive swinging voltage clock applied to the photogate to enable the sensor areas to accumulate light generated charge and to move that charge at a finite time through the transfer gate to the transport register.

Transfer Clock $\phi_{\mathbf{X}}$ - The positive swinging voltage clock applied to the transfer gate to move the accumulated charge from the image sensor elements to the analog transport registers.
Analog Transport Register Clocks $\phi_{1 A}$ and B, $\phi_{\mathbf{2 A}}$ and B, $\phi_{\mathbf{3}}$ A and B - The 3-phase clock voltages applied to the gates of the transport registers to move the charge packets received from the image sensor elements to the output register.

Analog Output Register Clocks $\phi_{\mathbf{1}} \mathbf{C}, \phi_{\mathbf{2}} \mathbf{C}, \phi_{\mathbf{3}} \mathbf{C}$ - The 3-phase clock voltages applied to the gates of the output register to move the charge packets received from the two transport registers to the gated charge detector output preamplifier.
Gated Charge Detector Preamplifier - The output circuit portion of the CCD101 linear image sensor which receives the charge packets from the output register and converts them to video voltage output signals.

Dark Signal Non-Uniformity - The peak-to-peak variation in background signal level in the absence of light as a percentage of saturation signal level.
Photoresponse Non-Uniformity - The percentage difference in signal levels from different sensing elements exposed to the same light source, measured at the output of the CCD image sensor.

FAIRCHILD CHARGE COUPLED DEVICE • CCD101

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
Clock Inputs
Pins 1 through 12, 16 through $23 \quad+20 \mathrm{~V}$ to -20 V *
Pins 13, 14, 15
+20 V to -0.6 V *

* with respect to V_{SS}, $\operatorname{Pin} 24$.

CAUTION:

Static discharge to any pin may cause permanent damage. Use shorting clip provided during insertion and removal. Store in shorting clip or conductive foam. Use grounded soldering irons and tools. Personnel should wear grounding bracelets and avoid synthetic smocks and gloves when handling devices.

OPERATING CHARACTERISTICS: Over guaranteed operating range with $R_{L}=2.0 \mathrm{k} \Omega$ to ground, unless otherwise noted.

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN.	TYP.	MAX.		
	Dynamic Range	2×10^{2}	5×10^{2}	3×10^{3}		F_{ϕ} Max, $25^{\circ} \mathrm{C}$
	Sensitivity			75×10^{-6}	Ft cd s	
	Spectral Response Range	500		1,000	n m	
	Saturation Exposure		15×10^{-3}		Ft cd s	$2800^{\circ} \mathrm{C}$ Tungsten
	Photoresponse Non-Uniformity			± 15	\%	F_{ϕ} Max.
	Average Dark Signal		1.0		mV	F_{ϕ} Max, $25^{\circ} \mathrm{C}$
	Dark Signal Non-Uniformity		1.0	2.0	\% (Note 1)	F_{ϕ} Max.
$\overline{F_{\phi}}$	Output Register Clock Frequency	0.01		1.0	MHz	$25^{\circ} \mathrm{C}$
$\mathrm{V}_{\phi \mathrm{L}}$	Register and Transfer Gate, Clock LOW Voltage		-4.0		V	
$\mathrm{V}_{\phi H}$	Register and Transfer Gate, Clock HIGH Voltage		+6.0		V	
$\mathrm{V}_{\phi R L}$	Reset Clock LOW Voltage		0		V	
$\mathrm{V}_{\phi \text { RH }}$	Reset Clock HIGH Voltage		+7.0		V	
$\mathrm{V}_{\phi \text { PL }}$	Photogate Clock LOW Voltage		-2.0		V	
$\mathrm{V}_{\phi \text { PH }}$	Photogate Clock HIGH Voltage		+5.0		V	
$V_{\text {RD }}$	Reset Transistor Drain Bias Voltage	+12	+13	+14	V	DC Voltage
$\mathrm{V}_{\text {OD }}$	Output Transistor Drain Bias Voltage	+15	+17	+20	V	DC Voltage
$\mathrm{V}_{\text {OG }}$	Output Gate Bias Voltage		0		V	DC Voltage
V_{O}	Saturation Output Voltage		500		mV	
PC	Power Consumption		50		mW	F_{ϕ} Max.

NOTE:

1. Dark signal non-uniformity is specified as a percentage of the saturation output signal at $\mathrm{F}_{\phi}=1.0 \mathrm{MHz}$ and at the prescribed clock voltage levels.

CCD110/110F 256-ELEMENT LINEAR IMAGE SENSOR

GENERAL DESCRIPTION - The CCD110/110F are monolithic self-scanned 256Element Image Sensors designed for optical character recognition and other high sensitivity, high speed imaging applications.

The device contains a row of 256 sensing elements that accept light photons and converts them to electrical charge packets.

In addition to a row of 256 sensing elements, the CCD110/110F chips include: two charge transfer gates, two 2-phase analog shift registers, an output charge detector/preamplifier, and a compensation output amplifier. The 2 -phase analog shift registers both feed the input of the charge detector resulting in sequential reading of the 256 imaging elements.

The cell size is 13μ (0.51 mils) by 17μ (0.67 mils) on 13μ (0.51 mils) centers. The device is manufactured using Fairchild charge coupled device buried channel technology.

- DYNAMIC RANGE TYPICAL: 500 TO 1 (PEAK TO PEAK), 2500 TO 1 (RMS)
- 256 ELEMENTS ON A SINGLE CHIP
- ON-CHIP PREAMPLIFIER AND COMPENSATION AMPLIFIER
- LOW POWER REQUIREMENTS
- ALL OPERATING VOLTAGES UNDER 15 V
- PACKAGED IN 18-PIN DUAL IN-LINE PACKAGE
- LOW NOISE EQUIVALENT EXPOSURE
- WIDE RANGE OF VIDEO DATA RATE
- DIMENSIONALLY PRECISE PHOTOSITE SPACING

BLOCK DIAGRAM

PIN NAMES

PG	Photogate			
$\phi_{\mathrm{XA}}, \phi_{\mathrm{XB}}$	Transfer Gate Clock			
$\phi_{1 \mathrm{~A}}, \phi_{2 \mathrm{~A}}$	Analog Shift Register			
$\phi_{1 \mathrm{~B}}, \phi_{2 \mathrm{~B}}$	Transport Clocks	,	OG	Output Gate
:---	:---			
OS	Output Transistor Source			
OD	Output Transistor Drain			
CS	Compensation Tran- sistor Source			
ϕ_{R}	Reset Transistor Gate Clock			
RD	Reset Transistor Drain			
TP	Test Point			
V_{SS}	Substrate (Ground)			

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Operating Temperature
Clock Inputs, Pins $2,3,4,5,6,7,10,12,13,14,15$
Pins 1, 8, 11, 16, 17, 18

$$
\begin{aligned}
& -25^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\
& -0.3 \mathrm{~V} \text { to } 12 \mathrm{~V} \\
& -0.3 \mathrm{~V} \text { to } 18 \mathrm{~V}
\end{aligned}
$$

Caution: The device has limited built-in gate protection. It is recommended to control and minimize static charge build-up. Care should be taken to avoid shorting pins OS and CS to ground during operation of the device.

FUNCTIONAL DESCRIPTION - The CCD110/110F consists of the following functional elements illustrated in the Block Diagram:

Image Sensor Elements - A row of 256 Image sensor elements separated by diffused channel stops and covered by a silicon photogate. Image photons pass through the transparent polycrystalline silicon photogate and are absorbed in the single crystal silicon by hole-electron pair production. The photon generated electrons are accumulated in the photosites. The amount of charge accumulated is a linear function of the incident illumination intensity and the integration period. The output signal will vary in this analog manner from a thermally generated noise background at zero illumination to a maximum at saturation.

Two Transfer Gates - Gate structures adjacent to the row of Image Sensor Elements. The charge packets accumulated in the image sensor elements are transferred out via the transfer gates to the transport registers. Alternating charge packets are transferred to the right and left (A and B) analog transport shift registers. The HIGH states of the transfer-gates must be contained by the HIGH state of the transport shift register clocks. The next light integration period is started when transfer gates go LOW.

Two 130-Bit Analog Shift Registers - One on each side of the row of Image Sensor Elements and separated from it by a Transfer Gate. The two registers are used to move the image generated charge packets serially from the sensor elements to the charge detector/preamplifier. The phase relationship of the last elements of the two shift registers provide for alternate delivery of charge packets to re-establish the serial sequence of the photosites.

A Gated Charge Detector/Preamplifier - Charge packets are transported to a precharged diode whose potential changes linearly in response to the quantity of the signal charge delivered. This potential is applied to the gate of the output n-channel MOS transistor producing a signal output at OS. The reset transistor is driven by a reset clock ($\phi \mathrm{R}$) so as to recharge the charge-detector diode capacitance before the arrival of each new signal charge packet from the transport registers.

Generation of the necessary waveforms to operate the device is explained in detail in the CCD110/110F Board Brochure that includes a typical drive circuit diagram, a printed copy of the layout of a two-sided PC board, a parts list of components that are needed to build the board and oscilloscope photographs of the driving waveforms.

DEFINITION OF TERMS

Charge Coupled Device - A charge coupled device is a semiconductor device in which isolated charge-packets are transported from one position in the semiconductor to an adjacent position by sequential clocking of an array of gates. The chargepackets are minority carriers with respect to the semiconductor substrate.

Transfer Gate Clock $\phi \mathbf{X A}, \phi \mathbf{X B}$ - The voltage waveform applied to the transfer gate to move the accumulated charge from the image sensor elements to the CCD shift registers.

Analog Shift Register Transport Clocks, ϕ_{1} A $\phi_{\mathbf{2 A}}$, $\phi_{1 B}, \phi_{\mathbf{2 B}}$ - The two sets of 2-phase clock applied to the gates of the CCD shift registers to move the charge packets received trom the image sensor elements to the gated charge-detecting preamplifier.

Gated Charge Detector Preamplifier - The output circuit of the CCD110/110F which receives the charge packets from the CCD shift registers and provides a signal voltage proportional to the size of each charge packet. Before each new charge packet is sensed, a reset clock returns the output voltage to a base level.

Reset Clock $\phi_{\mathbf{R}}$ - The voltage waveform required to drive the gated charge detector preamplifier.
Dynamic Range - The saturation exposure divided by the peak to peak noise equivalent exposure.
This does not take into account dark signal non-uniformities or average dark signal.
Dynamic range is sometimes defined in terms of rms noise. To compare the two definitions a factor of 4 to 6 is generally appropriate. (Peak to peak noise is approximately equal to 4 to 6 times rms noise.)

DEFINITION OF TERMS (Cont'd)

Peak to Peak Noise Equivalent Exposure - The exposure level which gives an output signal equal to the peak to peak noise level at the output in the dark.
Saturation Exposure - The minimum exposure level that will produce a saturated output signal. Saturation exposure is equal to the light intensity times the photosite integration time.
Spectral Response Range - The spectral band in which the response per unit of radiant power is more than 10% of the peak response.

Responsivity - The output signal voltage per unit exposure for a specified spectral type of radiation. Responsivity equals output voltage divided by exposure level.
Photoresponse Non-uniformity - The difference of the response levels of the most and the least sensitive element under uniform illumination. This is commonly expressed as a percentage of the saturation output voltage.
Average Dark Signal - The output signal level in the dark averaged over all elements and measured relative to the base line output voltage established by the reset clock. This is a linear function of the integration time. It is also strongly dependent on temperature. This is commonly expressed as a percentage of the saturation output voltage.
Dark Signal Non-uniformity - Maximum deviation of the output voltage of any element from the background level in the dark. This is commonly expressed as a percentage of the saturation voltage.
Saturation Output Voltage - The maximum signal output voltage.
Integration Time - The time interval between the falling edges of any transfer pulse ϕ_{XA} and ϕ_{XB} as shown in the timing diagram. The integration time is the time allowed for the photosites to collect charge.
Output Signal Range - The output signal range is defined as OSR $=\mathrm{V}_{\text {sat }}-\left(\mathrm{t} \mathrm{INT}^{+}+\mathrm{t}\right.$ Transfer) \times Rate of Average Dark Signal where: t INT $=$ Integration Time; t Transfer $=$ time necessary to transfer the charge packets from the analog shift registers and is equal to $\frac{260}{f_{\phi R}}$. Integration time ($t / N T$) does not necessarily equal transfer time (tTransfer). If long integration times are required, $t_{T r a n s f e r ~ s h o u l d ~ b e ~ m i n i m i z e d ~(i n c r e a s e ~} f_{\phi R}$) to maximize OSR.

TEST LOAD CONFIGURATION

Fig. 1

DC CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
$\mathrm{V}_{\text {OD }}$	Output Transistor Drain Voltage	14.5	15.0	15.5	v	
$V_{\text {RD }}$	Reset Transistor Drain Voltage	14.5	15.0	15.5	V	
V_{OG}	Output Gate Voltage		6.0			Note 1
V_{PG}	Photogate Voltage		9.0		V	Note 2
TP1, TP3	Test Points		0.0		V	
TP2, TP4	Test Points	14.5	15.0	15.5	V	

FAIRCHILD CHARGE COUPLED DEVICE • CCD110/110F

CLOCK CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
$\mathrm{V}_{\phi 1 \mathrm{AL}}, \mathrm{~V}_{\phi 1 B L}$ $v_{\phi 2 A L}, v_{\phi 2 B L}$	Analog Shift Register Transport Clocks LOW	0.0	0.5	0.8	V	Notes 3, 4
$\begin{aligned} & v_{\phi 1 A H}, v_{\phi 1 B H} \\ & v_{\phi 2 A H} \quad \phi 2 B H \\ & \hline \end{aligned}$	Analog Shift Register Transport Clocks HIGH		8.0			Notes 3, 4, 12
$\mathrm{v}_{\boldsymbol{\phi} \mathrm{XAL}}$	Transfer Gate Clock LOW	0.0	0.5	0.8	V	Notes 3, 4
$V_{\text {¢ }}{ }^{\text {PAH }}$	Transfer Gate Clock HIGH		8.0		V	Notes 3, 4, 12
$\mathrm{V}_{\phi \text { RL }}$	Reset Clock LOW	0.0	0.5	0.8	\checkmark	Notes 3, 4
$\mathrm{v}_{\boldsymbol{\phi} \mathrm{RH}}$	Reset Clock HIGH		10.0		V	
$\begin{array}{r} { }^{f} \phi 1 A^{\prime}{ }^{\prime} \phi 1 B \\ f_{\phi 2 A^{\prime}}{ }^{\mathrm{f}} \phi 2 \mathrm{~B} \\ \hline \end{array}$	Analog Shift Register Transport Clock Frequency		5.0		MHz	Notes 5, 6
${ }^{\prime}{ }_{\phi} \mathrm{R}$	Reset Clock Frequency (Output Bit Rate)		10		MHz	Notes 5, 6

AC CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\phi 1}=\mathrm{f}_{\phi 2}=2.5 \mathrm{MHz}, \mathrm{f}_{\phi \mathrm{R}}=5 \mathrm{MHz}, \mathrm{t}_{\mathrm{INT}} \cong 275 \mu \mathrm{~s}, \mathrm{t}^{\text {TRANSFER }} \cong 260 \mu \mathrm{~s}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
DR	Dynamic Range	250	500			Notes, 7, 8, 9
NEE	Peak-to-Peak Noise Equivalent Exposure		1×10^{-3}		$\mu \mathrm{J} / \mathrm{cm}^{2}$	Notes 8, 9
SE	Saturation Exposure		0.5		$\mu \mathrm{J} / \mathrm{cm}^{2}$	Notes 8, 9
SR	Spectral Response Range Limits		0.45-1.05		$\mu \mathrm{m}$	
R	Responsivity		0.4		\checkmark per $\mu \mathrm{J} / \mathrm{cm}^{2}$	Note 13
PRNU	Photoresponse Non-uniformity		± 4	± 6	$\%$ of $\mathrm{V}_{\text {sat }}$	Note 10
ADS	Average Dark Signal		0.25	1.25	$\%$ of $\mathrm{V}_{\text {sat }}$	
DSNU	Dark Signal Non-uniformity		0.5	2.5	$\%$ of $\mathrm{V}_{\text {sat }}$	
$\mathrm{V}_{\text {sat }}$	Saturation Output Voltage	100	200		mV	Note 11
P	Power Dissipation		100		mW	$\mathrm{V}_{\mathrm{OD}}=15 \mathrm{~V}$
Z	Output Impedance		1000		Ω	
N	Peak-to-Peak Noise		400		$\mu \mathrm{V}$	
RDS	Rate of Average Dark Signal		2		$\mathrm{mV} / \mathrm{ms}$	

NOTES:

1. Adjustment in the range of 4 V to 8 V may be required for optimum operation.
2. Adjustment in the range of 5 V to 12 V may be required for optimum operation.
3. Negative transients on the clocks below 0.0 V may cause an increase in apparent dark signal.
4. $C_{\phi \times A}=C_{\phi \times B}=C_{\phi 1 A}=C_{\phi 1 B}=C_{\phi 2 A}=C_{\phi 2 B} \cong 50 \mathrm{pF}, C_{\phi R} \cong 1.5 \mathrm{pF}$
5. The resulting data output frequency $f_{\phi R}$ is twice that of each analog shift register clock, $f_{\phi 1 A}, f_{\phi 2 A}, f_{\phi 1 B}, f_{\phi 2 B}$.
6. Clock rates shown are typical rates at which the device operates. Operation of the devices at lower or higher frequencies will not damage the device.
7. $T_{\text {int }}=$ integration time $\cong 275 \mu \mathrm{~s}$.
8. The dynamic range is measured by taking the ratio of the saturation output voltage to the peak-to-peak noise of the device in the dark. Because of the high degree of linearity of the device the dynamic range measurement is also approximately equal to the ratio of the saturation exposure to the peak-to-peak noise equivalent exposure.
9. $1 \mu \mathrm{~J} / \mathrm{cm}^{2}=0.02 \mathrm{fcs}$ at $2854^{\circ} \mathrm{K} .1 \mathrm{fcs}=50 \mu \mathrm{~J} / \mathrm{cm}^{2}$ at $2854^{\circ} \mathrm{K}$.
10. Measurement is done at 50% of saturation output level. Measurement excludes first and last elements.
11. See Fig. 1 for test load configuration.
12. Adjustment in the range of 6 V to 10 V may be required for optimum operation.
13. See definition of terms.

TIMING DIAGRAM DRIVE SIGNALS

Fig. 4

Fig. 5

CCD121

1728-ELEMENT LINEAR IMAGE SENSOR

GENERAL DESCRIPTION - The CCD121 is a monolithic self-scanned 1728 Element Image Sensor designed for page scanning applications. The device provides a 200 line per inch resolution across an 8-1/2 inch page.

The device is also intended to be used for facsimile readers, optical character recognition, as well as imaging applications that require high resolution, high sensitivity and high speed.

In addition to a row of 1728 sensing elements, the CCD 121 chip includes: two charge transfer gates, two 2-phase analog shift registers, an output charge detector/preamplifier, and a compensation output amplifier. The 2 -phase analog shift registers both feed the input of the charge detector resulting in sequential reading of the 1728 imaging elements.

The cell size is 13μ (0.51 mils) by 17μ (0.67 mils) on 13μ (0.51 mils) centers. The device is manufactured using Fairchild charge coupled device buried channel technology.

- DYNAMIC RANGE 500:1 TYPICAL AT 1 MHz
- 1728 ELEMENTS ON A SINGLE CHIP
- ON-CHIP PREAMPLIFIER AND COMPENSATION AMPLIFIER
- LOW POWER REQUIREMENTS
- ALL OPERATING VOLTAGES UNDER 15 V
- PACKAGED IN 24-PIN DUAL IN-LINE PACKAGE
- LOW NOISE EQUIVALENT EXPOSURE
- WIDE RANGE OF VIDEO DATA RATE
- DIMENSIONALLY PRECISE PHOTOSITE SPACING

BLOCK DIAGRAM

CONNECTION DIAGRAM
DIP (TOP VIEW)

PIN NAMES

PG	Photogate
$\phi_{\mathrm{XA}}, \phi_{\mathrm{XB}}$	Transfer Gate Clock
$\phi_{1}, \phi_{2 \mathrm{~A}}$	
$\phi_{1 \mathrm{~B}}, \phi_{2 \mathrm{~B}}$	Analog Shift Register Transport Clocks
OG	Output Gate
OS	Output Transistor Source
OD	Output Transistor Drain
CS	Compensation Tran- sistor Source
$\phi \mathrm{R}$	Reset Transistor Gate Clock
RD	Reset Transistor Drain
TP	Test Point
VSS	Substrate (Ground)
NC	No Connection

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
$-25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Clock Inputs, Pins 3, 7, 8, 9, 10, 13, 15, 16, 17, 18 $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Pins 2, 4, 11, 14, 21, 22, 23

Caution: The device has limited built-in gate protection. It is recommended to control and minimize static charge build-up. Care should be taken to avoid shorting bins OS and CS to ground during operation of the device.

FUNCTIONAL DESCRIPTION - The CCD121 consists of the following functional elements illustrated in the Block Diagram:
Image Sensor Elements - A row of 1728 Image sensor elements separated by diffused channel stops and covered by a silicon photogate. Image photons pass through the transparent polycrystalline silicon photogate and are absorbed in the single crystal silicon by hole-electron pair production. The photon generated electrons are accumulated in the photosites. The amount of charge accumulated is a linear function of the incident illumination intensity and the integration period. The output signal will vary in this analog manner from a thermally generated noise background at zero illumination to a maximum at saturation.

Two Transfer Gates - Gate structures adjacent to the row of Image Sensor Elements. The charge packets accumulated in the image sensor elements are transferred out via the transfer gates to the transport registers. Alternating charge packets are transferred to the right and left (A and B) analog transport shift registers. The HIGH states of the transfer-gates must be contained by the HIGH state of the transport shift register clocks. The next light integration period is started when transfer gates go LOW.

Two 866-Bit Analog Shift Registers - One on each side of the row of Image Sensor Elements and separated from it by a Transfer Gate. The two registers are used to move the image generated charge packets serially from the sensor elements to the charge detector/preamplifier. The phase relationship of the last elements of the two shift registers provide for alternate delivery of charge packets to re-establish the serial sequence of the photosites.

A Gated Charge Detector/Preamplifier - Charge packets are transported to a precharged diode whose potential changes linearly in response to the quantity of the signal charge delivered. This potential is applied to the gate of the output n-channel MOS transistor producing a signal output at OS. The reset transistor is driven by a reset clock ($\phi \mathrm{R}$) so as to recharge the charge-detector diode capacitance before the arrival of each new signal charge packet from the transport registers.

Generation of the necessary waveforms to operate the device is explained in detail in the CCD 121 Board Brochure that includes a typical drive circuit diagram, a printed copy of the layout of a two-sided PC board, a parts list of components that are needed to build the board and oscilloscope photographs of the driving waveforms.

DEFINITION OF TERMS

Charge Coupled Device - A charge coupled device is a semiconductor device in which isolated charge-packets are transported from one position in the semiconductor to an adjacent position by sequential clocking of an array of gates. The chargepackets are minority carriers with respect to the semiconductor substrate.

Transfer Gate Clock $\phi \mathbf{X A}, \phi \mathbf{X B}$ - The voltage waveform applied to the transfer gate to move the accumulated charge from the image sensor elements to the CCD shift registers.

Analog Shift Register Transport Clocks, $\phi_{14}, \phi_{\mathbf{2 A}}, \phi_{1 B}, \phi \mathbf{2 B}$ - The two sets of 2-phase clock applied to the gates of the CCD shift registers to move the charge packets received from the image sensor elements to the gated charge-detecting preamplifier.

Gated Charge Detector Preamplifier - The output circuit of the CCD121 which receives the charge packets from the CCD shift registers and provides a signal voltage proportional to the size of each charge packet. Before each new charge packet is sensed, a reset clock returns the output voltage to a base level.

Reset Clock $\phi \mathbf{R}$ - The voltage waveform required to drive the gated charge detector preamplifier.
Dynamic Range - The saturation exposure divided by the peak to peak noise equivalent exposure.
This does not take into account dark signal non-uniformities or average dark signal.
Dynamic range is sometimes defined in terms of rms noise. To compare the two definitions a factor of 4 to 6 is generally appropriate. (Peak to peak noise is approximately equal to 4 to 6 times rms noise.)

DEFINITION OF TERMS (Cont'd)

Peak to Peak Noise Equivalent Exposure - The exposure level which gives an output signal equal to the peak to peak noise level at the output in the dark.
Saturation Exposure - The minimum exposure level that will produce a saturated output signal. Saturation exposure is equal to the light intensity times the photosite integration time.
Spectral Response Range - The spectral band in which the response per unit of radiant power is more than 10% of the peak response.

Responsivity - The output signal voltage per unit exposure for a specified spectral type of radiation. Responsivity equals output voltage divided by exposure level.
Photoresponse Non-uniformity - The difference of the response levels of the most and the least sensitive element under uniform illumination. This is commonly expressed as a percentage of the saturation output voltage.
Average Dark Signal - The output signal level in the dark averaged over all elements and measured relative to the base line output voltage established by the reset clock. This is a linear function of the integration time. It is also strongly dependent on temperature. This is commonly expressed as a percentage of the saturation output voltage.

Dark Signal Non-uniformity - Maximum deviation of the output voltage of any element from the background level in the dark. This is commonly expressed as a percentage of the saturation voltage.
Saturation Output Voltage - The maximum signal output voltage.
Integration Time - The time interval between the falling edges of any transfer pulse $\phi_{X A}$ and $\phi \times B$ as shown in the timing diagram. The integration time is the time allowed for the photosites to collect charge.

Output Signal Range - The output signal range is defined as OSR $=\mathrm{V}_{\text {sat }}-\left(\mathrm{t} \mid \mathrm{INT}^{+}+\mathrm{t}\right.$ Transfer) \times Rate of Average Signal Offset where: $\mathrm{tINT}=$ Integration Time; t Transfer $=$ time necessary to transfer the charge packets from the analog shift registers and is equal to $\frac{1728}{f_{\phi R}}$. Integration time ($t_{I N T}$) does not necessarily equal transfer time (tTransfer). If long integration

Average Signal Offset - Average signal offset is a dc offset of the output voltage (due to the average leakage current in the CCD registers) which increases linearly with the transfer time.

TEST LOAD CONFIGURATION

Fig. 1
DC CHARACTERISTICS: $\boldsymbol{T}_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		LIMITS			UNITS
		MIN	TYP	MAX		
V_{OD}	Output Transistor Drain Voltage	14.5	15.0	15.5	V	
$\mathrm{~V}_{\mathrm{RD}}$	Reset Transistor Drain Voltage	14.5	15.0	15.5	V	
$\mathrm{~V}_{\mathrm{OG}}$	Output Gate Voltage		6.0			Note 1
$\mathrm{~V}_{\text {PG }}$	Photogate Voltage		9.0		V	Note 2
TP1, TP3	Test Points		0.0		V	
TP2, TP4	Test Points	14.5	15.0	15.5	V	

FAIRCHILD CHARGE COUPLED DEVICE • CCD121

CLOCK CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
$\begin{aligned} & v_{\phi 1 A L}, v_{\phi 1 B L} \\ & v_{\phi 2 A L}, v_{\phi 2 B L} \\ & \hline \end{aligned}$	Analog Shift Register Transport Clocks LOW	0.0	0.5	0.8	V	Notes 3, 4
$\begin{aligned} & v_{\phi 1 A H}, v_{\phi 1 B H} \\ & v_{\phi 2 A H} \quad \phi 2 B H \\ & \hline \end{aligned}$	Analog Shift Register Transport Clocks HIGH		8.0			Notes 3, 4, 12
$\mathrm{V}_{\boldsymbol{\phi X A L}}$	Transfer Gate Clock LOW	0.0	0.5	0.8	V	Notes 3, 4
	Transfer Gate Clock HIGH		8.0		V	Notes 3, 4, 12
$\mathrm{V}_{\phi \overline{R L}}$	Reset Clock LOW	0.0	0.5	0.8	V	Notes 3, 4
$\mathrm{V}_{\boldsymbol{\phi} \mathrm{RH}}$	Reset Clock HIGH		10.0		V	
$\begin{aligned} & { }^{f_{\phi 1} A^{\prime}, f_{\phi 1 B}} \\ & f_{\phi 2 A^{\prime}} f_{\phi 2 B} \\ & \hline \end{aligned}$	Analog Shift Register Transport Clock Frequency		0.5		MHz	Notes 5, 6
${ }^{\mathbf{f}} \boldsymbol{\phi} \mathbf{R}$	Reset Clock Frequency (Output Bit Rate)		1.0		MHz	Notes 5, 6

AC CHARACTERISTICS: $\boldsymbol{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\boldsymbol{\phi} 1}=\mathrm{f}_{\boldsymbol{\phi} 2}=0.5 \mathrm{MHz}, \mathrm{f}_{\boldsymbol{\phi}}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{INT}} \cong 1.94 \mathrm{~ms}, \mathrm{t}_{\text {TRANSFER }}=1.73 \mathrm{~ms}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
DR	Dynamic Range		500			Notes, 7, 8, 9
NEE	Peak-to-Peak Noise Equivalent Exposure		1×10^{-3}		$\mu \mathrm{J} / \mathrm{cm}^{2}$	Notes 8, 9
SE	Saturation Exposure		0.5		$\mu \mathrm{J} / \mathrm{cm}^{2}$	Notes 8, 9
SR	Spectral Response Range Limits	0.45		1.05	$\mu \mathrm{m}$	
R	Responsivity		0.4		\checkmark per $\mu \mathrm{J} / \mathrm{cm}^{2}$	Note 13
PRNU	Photoresponse Non-uniformity		± 6	± 10	$\%$ of $\mathrm{V}_{\text {sat }}$	Note 10
ADS	Average Dark Signal		2		$\%$ of $\mathrm{V}_{\text {sat }}$	
DSNU	Dark Signal Non-uniformity		3		$\%$ of $\mathrm{V}_{\text {sat }}$	
$\mathrm{V}_{\text {sat }}$	Saturation Output Voltage	100	200		mV	Note 11
P	Power Dissipation		100		mW	$\mathrm{v}_{\mathrm{OD}}=15 \mathrm{~V}$
Z	Output Impedance		1000		Ω	
N	Peak-to-Peak Noise		400		$\mu \mathrm{V}$	
RSO	Rate of Average Signal Offset		1		$\mathrm{mV} / \mathrm{ms}$	

NOTES:

1. Adjustment in the range of 4 V to 8 V may be required for optimum operation.
2. Adjustment in the range of 5 V to 12 V may be required for optimum operation.
3. Negative transients on the clocks below 0.0 V may cause an increase in apparent dark signal.
4. $C_{\phi \times A}=C_{\phi \times B}=C_{\phi 1 A}=C_{\phi 1 B}=C_{\phi 2 A}=C_{\phi 2 B} \cong 400 p F . C_{\phi R} \cong 1.5 p F$.
5. The resulting data output frequency $f_{\phi R}$ is twice that of each analog shift register clock, $f_{\phi 1 A}, f_{\phi 2 A}, f_{\phi 1 B}, f_{\phi 2 B}$.
6. Clock rates shown are typical rates at which the device operates. Operation of the devices at lower or higher frequencies will not damage the device.
7. $T_{\text {int }}=$ integration time $\cong \mathbf{1 . 9 4} \mathrm{ms}$.
8. The dynamic range is measured by taking the ratio of the saturation output voltage to the peak-to-peak noise of the device in the dark. Because of the high degree of linearity of the device the dynamic range measurement is also approximately equal to the ratio of the saturation exposure to the peak-to-peak noise equivalent exposure.
9. $1 \mu \mathrm{~J} / \mathrm{cm}^{2}=0.02 \mathrm{fcs}$ at $2854^{\circ} \mathrm{K}$. $1 \mathrm{fcs}=50 \mu \mathrm{~J} / \mathrm{cm}^{2}$ at $2854^{\circ} \mathrm{K}$.
10. Measurement is done at 50% of saturation output level. Measurement excludes first and last elements.
11. See Fig. 1 for test load configuration.
12. Adjustment in the range of 6 V to 10 V may be required for optimum operation.
13. See definition of terms.

Fig. 2
TIMING DIAGRAM DRIVE SIGNALS

$20 \mathrm{~ns}<\left(\mathrm{t}_{\mathrm{r}} \approx \mathrm{t}_{\mathrm{f}}\right)<100 \mathrm{~ns}$
Fig. 4

O $=$ Lead Numbers
Fig. 5

CCD201 100×100-ELEMENT SELF-SCANNING IMAGE SENSOR

GENERAL DESCRIPTION - The CCD201 is a 2-Phase 10,000-Element Self-Scanning Image Sensor. It uses charge coupled technology with buried channels and ion-implanted barriers. The light sensitive area is a 100×100 array of photo elements which provide an image aspect ratio of 4×3. The image sensing elements are 1.2 mils $\times 0.8$ mils located on 1.2 mil vertical centers and 1.6 mil horizontal centers.

In addition to the image sensing array; the CCD201 chip includes: 100 columns of 2-phase analog shift registers interdigitated in the photosensor array, a 102-element 2-phase analog output shift register, an output detector/preamplifier and a compensation output amplifier.

The device is packaged in a 24 -Pin Dual In-line Package with an optical glass window.

- 2-PHASE CLOCK OPERATION
- 100×100-ELEMENT ARRAY ON A SINGLE CHIP
- INTERLACED SELF SCANNING
- ALL OPERATING VOLTAGES UNDER 20 V
- ON-CHIP VIDEO PREAMPLIFIER AND COMPENSATION CIRCUIT
- LOW POWER 50 mW TYP
- PACKAGED IN 24-PIN DIP WITH OPTICAL GLASS WINDOW

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

S_{1}	Output Amplifier Source
RD	Reset Drain
RG	Reset Gate
$\phi \mathrm{R}$	Reset Clock
CS	Compensation Ampli- fier Source
CD	Compensation Ampli- fier Drain
$\phi_{\mathrm{H} 1}, \phi \mathrm{H} 2$	Horizontal Register Clocks
$\phi \mathrm{V} 1, \phi \mathrm{~V} 2$,	Vertical Clocks
$\phi \mathrm{P}$	Photogate Clock
OD	Output Amplifier Drain
TP	Production Test Points

FAIRCHILD CHARGE COUPLED DEVICE • CCD201

FUNCTIONAL DESCRIPTION - The CCD201 consists of the following functional subsections as illustrated in the Block Diagram:

1. 10,000 image sensors in a 100×100 array
2. 100 Columns of 2 -phase vertical analog shift registers interdigitated with the photosensor array.
3. A 102 element 2 -phase horizontal analog output shift register charge coupled to the output of each of the 100 column shift registers.
4. A gated charge detector output preamplifier which detects and converts the charges delivered to a video output voltage at terminal S_{1}.
5. A compensation output amplifier that provides the capability for differential amplification and suppression of reset clock noise in the video output.
Light energy incident on the image sensor elements generates a packet of electrons in each element. Electrical clocking of the photogate, 2-phase vertical transport registers, and 2-phase horizontal output register delivers the charge packet from each photoelement to the gated charge detector preamplifier which provides a video signal output. The reset clock pulse is proportionately amplified by the compensation amplifier and is provided for suppression purposes. Detailed descriptions of the functional subsections follow.

Image Sensor Elements - Image photons pass through the transparent polycrystaline silicon photogate and are absorbed in the single crystal silicon by hole-electron pair production. The resulting photo electrons are accumulated in the photosites during the HIGH state of the photogates. The duration of this HIGH state is the integration period. The amount of charge accumulated is a linear function of the incident illumination intensity and the integration period. The output signal will vary in this analog manner from a thermally generated noise background at zero illumination to a maximum at saturation.

2-Phase Vertical Shift Registers - At the end of the integration period, the photogate voltage ($\phi \mathrm{p}$) is lowered and alternate vertical site charge packets (corresponding to one field, i.e., the odd-numbered photoelements) are transferred to their associated vertical shift register. They are then transported to the output register, a row at a time, by the vertical clocks ($\phi \mathrm{V} 1 \& \phi \mathrm{~V} 2$). Fifty vertical transfers are required to remove one field of information from the vertical register. Subsequent to removal of one field of information, a second frame cycle is instituted to gather the information from photosites corresponding to the other field (i.e., the even numbered photoelements).
Output Shift Register - The output register is a 102-element 2-phase analog shift register clocked at over 102 times the vertical shift register frequency. As each row of information is transferred from the column registers to the output register, it is serially moved to the output amplifier by the horizontal clocks $\left(\phi_{\mathrm{H}} 1 \& \phi_{\mathrm{H}}^{2}\right)$. A minimum of 102 horizontal clock pulse sets are required to complete one row of information transfer to the gated charge detector.

Gated Charge Detector and Output Preamplifier - The output shift register data (in the form of charge packets) are applied to a precharged diode where the potential is changed linearly in response to the quantity of signal charge delivered. This potential is applied to the gate of the output n-channel MOS transistor which produces a signal output at S_{1}. The dual gate reset circuit is clocked by reset signal ($\phi \mathrm{R}$) and recharges the charge-detector diode capacitance during the interval between transfer of signal charge packets from the output register.

Compensation Amplifier - An additional output amplifier is driven with only the reset signal (ϕ_{R}) to provide an output at CS which is similar in wave shape to the reset transient contained in the video signal output. This can be used to suppress the reset clock noise by use of a differential amplifier in the external video circuitry.

DRIVE CIRCUITRY - Figure 6 gives the basic timing and drive voltages required to operate the CCD201. Outputs are also available for X-Y oscilloscope deflection to form a raster which displays the area sensor's video output. The amplified output of the CCD201 is applied to the \mathbf{Z} axis input of the oscilloscope.

One-half of a 9016 Hex Inverter is the master oscillator which runs at twice the horizontal clocking frequency (a crystal oscillator could be used for better stability). The oscillator frequency should be between 200 kHz and 8 MHz . This master clock drives the horizontal counter which consists of a pair of 9316s counting modulo $224(14 \times 16)$. This is equivalent to 112 horizontal drive pulses (ϕH) which are at half the clock frequency. The divide by 224 is accomplished by preloading the first counter to 2 when it reaches a full count, making it effectively a count by 14. The output of the first stage acts as a divide by 2 counter to provide the horizontal drive pulses (ϕ_{H}). IC 8 provides both the reset clock $\left(\overline{\phi_{R}}\right)$ and the delay necessary to compensate for the delay through the first stage of the counter. The reset clock ($\overline{\phi_{R}}$) is a 25% duty cycle signal used to precharge the detector diode of the CCD device. The sample and hold clock ($\overline{\phi_{S}}$), also generated by IC 12 , is to be used in a sample and hold amplifier to smooth the CCD201 video output.

The terminal count of IC 3 is true for 7 horizontal clock $\left(\phi_{\mathrm{H}}\right)$ pulses and is used as the CRT horizontal retrace period. The $\phi_{\mathrm{H}} 1$ and $\phi_{\mathrm{H}} 2$ outputs consist of strings of 105 pulses used to shift out the horizontal information before the vertical shift pulse refills the register with the next line of information

The Q_{3} output of the second 9316 counter (IC 3) is inverted and used to clock the vertical counters. IC 4 and 5 count the vertical lines and keep track of the odd and even fields. The first seven stages of the counter are counting modulo 51. This is accomplished by preloading the $2 s$ complement of the modulo into the first six stages of this counter when the Q_{2} output of IC 5 has gone LOW. When the Q_{2} output went LOW, the last stage of the counter was incremented. Q_{2} activates the Parallel Enable input which on the next clock pulse loads a binary 13 into the first six stages, presents $\mathrm{Q}_{\mathbf{2}}$ back to a HIGH state, but retains the information in Q_{3}, since it is reloaded from its own output.
Q_{3} effectively is a toggle flip-flop driven by the Q_{2} output and acts as odd/even field identifier. IC 7 (a 9309 Dual 4-Input Multiplexer) is used as a combinatorial logic element to derive from the outputs of the various counters, the drive signals for the discrete drivers and the sweep circuits.

Horizontal sweep output for the oscilloscope is generated by a $\mu \mathrm{A} 748$ fast operational amplifier acting as an integrator. The values shown in Figure 6 are selected to be compatible with a 2 MHz oscillator and a 1 MHz horizontal drive frequency. The integration capacitor must be increased if the oscillator frequency is lowered and decreased if the frequency is raised significantly. The transistor driving the input to the operational amplifier force a discharge of the integration capacitor. The vertical integrator is similar in function but is much slower and a $\mu \mathrm{A} 741$ is sufficient. Since the output voltage increases positively with time, the inverted polarity should be used on the oscilloscope to form a normal raster. The capacitor on this sweep generator must be changed with a frequency change as outlined above. On the odd fields, the sweep is allowed to start early, this forms the line interlacing on the monitoring oscilloscope.
Composite blanking is available to blank the video signal on horizontal and vertical retrace in a video amplifier.
The transistor devices and the SH0013 provide the necessary complementary signals with the proper capacitive drive capability.
This circuit is intended to provide a starting point for circuit development and as such does not necessarily provide the optimum drive voltage to the CCD201. Note that all drive voltages are of the same level, controlled by the setting of the -8.5 V supply. Individual adjustment of $\mathrm{V}_{\phi} P L, V_{\phi} \mathrm{VL}, \mathrm{V}_{\phi H L}$ and $\mathrm{V}_{\phi R L}$ will optimize the CCD201's performance.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

Operating Temperature
Clock Inputs
Pins 7, 8, 13, 14, 18, 23
$V_{S S}=0 V$
Pins 1, 2, 5, 6, 24
+15 V to -.6 V
Pins 3, 4, 10, 11, 15, 21, 22

CAUTION:

Static discharge to any pin may cause permanent damage. Store in shorting clip or conductive foam. Use grounded soldering irons and tools. Personnel should wear grounding bracelets and avoid synthetic smocks and gloves.

FORCING FUNCTIONS: See Note 6

SYMBOL	PARAMETER	LIMITS			UNITS	COMMENTS
		MIN	TYP	MAX		
$\mathrm{f}_{\phi} \mathrm{H}$	Output (horizontal) Register Clock Frequency	0.1		4.0	MHz	
$\begin{aligned} & \bar{V}_{\phi H L} \\ & \mathrm{~V}_{\phi \mathrm{HH}} \end{aligned}$	Horizontal Register Clock LOW Voltage Horizontal Register Clock HIGH Voltage	-10	$\begin{array}{r} -8.0 \\ +2.0 \end{array}$	+10	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\mathrm{C}_{\phi} \mathrm{H} 1=\mathrm{C}_{\phi} \mathrm{H} 2 \approx 20 \mathrm{pF}$
$\begin{aligned} & \overline{\mathrm{V}_{\phi} \mathrm{VL}} \\ & \mathrm{~V}_{\phi \mathrm{VH}} \end{aligned}$	Vertical Register Clock LOW Voltage Vertical Register Clock HIGH Voltage	-10	$\begin{array}{r} -8.0 \\ +2.0 \end{array}$	+10	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\mathrm{C}_{\phi} \mathrm{V} 1{ }^{\text {l }} \mathrm{C}_{\phi} \mathrm{V} 2201500 \mathrm{pF}$
$\bar{V}_{\phi R L}$ $\mathrm{V}_{\phi \mathrm{RH}}$	Reset Clock LOW Voltage Reset Clock HIGH Voltage	-10	$\begin{array}{r} -8.0 \\ +2.0 \end{array}$	+10	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\mathrm{C}_{\phi \mathrm{R}} \approx 5 \mathrm{pF}$
$\bar{V}_{\phi P L}$ $V_{\phi \mathrm{PH}}$	Photogate Clock LOW Voltage Photogate Clock HIGH Voltage	-10	$\begin{array}{r} -8.0 \\ +2.0 \end{array}$	+10	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$C_{\phi} \mathrm{P} \approx 1500 \mathrm{pF}$
VRD	Reset Transistor Drain Bias Voltage		+12	+15	V	
$V_{\text {OD }}$	Output Transistor Drain Bias Voltage		+12	+15	V	
$\mathrm{V}_{\text {RG }}$	Reset Gate Bias Voltage		+12	+15	V	
$\bar{V}_{\text {CD }}$	Compensation Amplifier Drain Voltage		+12	+15	V	

OPERATING CHARACTERISTICS: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ from S_{1} to Ground, See Note 5.

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
	Dynamic Range	100	200			Note 1
	Responsivity	400	600		$\mathrm{mV} / \mathrm{ftc}$	Notes 1 \& 2
	Spectral Response Range	480		1100	nm	
	Saturation Exposure		3.125×10^{-3}		ftcds	Notes 1 \& 2
	Photo Response Non-Uniformity			± 15	\%	Notes 1 \& 4
	Average Dark Signal		5.0		mV	Notes 1 \& 4
	Modulation Transfer Function		0.6			Notes 1 \& 3
V_{0}	Saturation Output Voltage	50	75		mV	Note 1
P_{D}	Power Dissipation		50		mW	

NOTES:

1. $f_{\phi H}=500 \mathrm{kHz}, \mathrm{f}_{\phi \mathrm{V}}=4.5 \mathrm{kHz}, \mathrm{f}_{\phi \mathrm{P}}=40 \mathrm{~Hz}$.
2. Tungsten Light source at 28540 K color temperature.
3. Measured with 100% contrast test pattern at 70 lines resolution.
4. Elements in the outer columns (1 and 100), due to edge effects, may exceed these parameters.
5. 16, 17, 19 and 20 are test points used during production. During normal operation they must be connected as follows:

Pin 16 to 6 or equivalent voltage.
Pins 13, 19 and 20 to $V_{\text {SS }}$.
6. Optimum performance will be realized by adjustment of clock voltage levels. Adjustment of $V_{\phi} P L, V_{\phi} V L, V_{\phi H L}$ and $V_{\phi R L}$ will have the most significant effect on performance.

FAIRCHILD CHARGE COUPLED DEVICE • CCD201

Fig. 2

Fig. 3

Fig. 4

Fig. 5
frequency and pulse generating circuits

Fig. 6

Parts List

IC 1	9016
IC 2, 3, 4, 5	9316
IC 6,12	9002
IC	9309
IC 8	9003
IC 9	$\mu A 748$
IC 10	$\mu A 741$
IC 11	SH0013
All PNPs	$2 N 5910$

CLASSIFICATIONS - Image Sensors are classified in terms of the maximum number of defective photosites allowed and their position in the array. The array is divided into three zones (see Fig. G), since defects near the periphery of the array are usually less objectionable than those near the center.

The following classification tables specify the maximum number of defects by size and position in the array.

CCD201ADC - CLASS A			
Maximum Number of Elements in Cluster	Maximum No. of Clusters per Zone		
	Zone 1 16% of Area	Zone 2 33% of Area	Zone 3 51% of Area
4	0	0	1
2	0	1	2
1	0	3	5

CCD201BDC - CLASS B

Maximum Number of Elements in Cluster	Maximum No. of Clusters per Zone		
	Zone 1	Zone 2	Zone 3
9	0	0	1
6	0	0	2
4	0	1	2
2	0	2	3
1	2	5	9

All dimensions in Elements

Fig. 7

CCD311

130/260 BIT ANALOG SHIFT REGISTER

GENERAL DESCRIPTION - The CCD311 is a buried channel charge coupled device intended to be used in analog signal processing systems that include delay and temporary storage of analog information.

The CCD311 consists of two 130 bit analog shift registers each with its own charge injection port and sampling control enabling manipulation of a total of 260 bits of analog data. The chip includes a single preamplifier and a compensation output amplifier and is packaged in an 18-pin Dual In-line Package.

- 130 OR 260 BITS OF ANALOG DELAY ON A SINGLE CHIP
 - TWO SEPARATE CHARGE INJECTION PORTS
 - GREATER THAN 10 MHz SAMPLING RATE
 - SIGNAL-TO-NOISE RATIO OF GREATER THAN 50 dB
 - ON-CHIP OUTPUT BUFFER AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

Storage temperature
Pins 2, 3, 4, 5, 7, 12, 14 and 15
Pins 1, 8, 11, 16, 17 and 18
Pins 6, 9, 10 and 13
*Note: with respect to ground.

Caution: The device has limited built-in gate protection. It is recommended to control and minimize static charge build-up. Care should be taken to avoid shorting pins OS and CS to ground during operation of the device. Pins 6, 9, 10 and 13 should be externally grounded during operation.

FUNCTIONAL DESCRIPTION - The CCD311 consists of the following functional elements illustrated in the Block Diagram:

Two Charge Injection Ports - The analog information in voltage form is applied to two input ports at $\mathrm{V}_{1 \mathrm{~A}}$ and $\mathrm{V}_{\text {IB }}$ Upon the activation of the analog sample clocks ϕ SA and ϕ SB a charge packet linearly dependent on the voltage applied at the port input is injected into its corresponding 130 bit analog shift register.

Two 130 Bit Analog Shift Registers - These registers transport the charge packets from the charge injection ports to a gated charge detector. Transport of charge packets is accomplished by external clocking of the registers. Analog shift register A is clocked by $\phi_{1 A}$ and $\phi_{2} A$. Similarly register B is clocked by $\phi_{1 B}$ and $\phi_{2 B}$.

A Differential Gated Charge Detector/Preamplifier - Charge packets from the analog shift registers are delivered to the gated charge detector. A reset transistor in the gated charge detector is driven by the external reset clock ($\phi \mathrm{R}$).

MODES OF OPERATION

130-Bit Analog Delay - Either 130 bit Analog Shift Register (A or B) can be operated as an analog delay line. The driving waveforms to operate shift register A is shown in Fig. 3. The input voltage signal is applied directly to $V_{I A}$. The Analog Sample Clock ϕ SA samples this input voltage and injects a proportional amount of charge packet into the first bit of Register A. The input voltage A1 which is sampled between $t=0$ and $t=t c$, appears (inverted) at the output terminal OS at $t=260$ tc. A2 appears at $t=262 \mathrm{tc}$, and so on. A reset clock ϕ_{R} is applied in order to recharge the charge detector diode of the gated charge detector before the arrival of each charge packet from the transport register. This reset clock is capacitively coupled on chip into the output waveform OS. Terminal CS provides the reset clock so that off chip differential amplification can be used to remove reset clock coupling from the video waveform. When only the A register is used, $\phi_{1 B}, \phi_{2 B}$ and $V_{1 B}$, should be grounded, and $\phi S B=15 \mathrm{Vdc}$.

Shift register B can be operated in the analogous fashion as shown in Fig. 4. When only the B register is used, $\phi_{1} A, \phi_{2} A$ and $V_{\text {IA }}$ should be grounded and ϕ SA $=15 \mathrm{Vdc}$.

260-Bit Analog Delay - The two registers can be multiplexed to double the sampling rate of an input voltage signal. Fig. 5 in the timing diagram shows the relationship of the timing waveforms for this mode of operation. Here $\phi_{1 A}=\phi_{1} B$, $\phi_{2 A}=\phi_{2 B}, \phi_{S A}$ and $\phi_{S B}$ are clocked as before. The same input signal voltage is applied to both $V_{\text {IA }}$ and $V_{\text {IB }}$. Between $t=0$ and $t=t c$, the input signal voltage A_{1} is sampled by register A. Between $t=t c$ and $t=2 t c$, the input signal voltage B_{1} is sampled by register B. The charge packet corresponding to A_{1} appears at the output at $t=260$ tc and the charge packet corresponding to B_{1} appears at a $\mathrm{t}=261 \mathrm{tc}$. The gated charge integrator has to be recharged twice as often, ϕ_{R} has to be clocked at twice the original frequency.

When the device is operated in the multiplexed mode, it is recommended to provide at least one dc level control on the two inputs ($V_{I A}$ or $V_{\mid B}$) to balance the two input ports.

Fig. 1
Fig. 2

FAIRCHILD CHARGE COUPLED DEVICE • CCD311

DC CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
$\mathrm{V}_{\text {OD }}$	Output Transistor Drain Voltage	14.5	15.0	15.5	V	
$V_{\text {RD }}$	Reset Transistor Drain Voltage	14.5	15.0	15.5	V	
$\mathrm{V}_{\text {OG }}$	Output Gate Voltage		5.0		V	Note 3
RIN_{1}	Input Resistance (Injection Port)		1		$\mathrm{M} \Omega$	Resistance from Pins 7 or 12 to Ground, Note 10
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance (Injection Port)		3		pF	Capacitance from Pin 7 or 12 to Ground, Note 10
TP1, TP2, TP3	Test Points		0.0		V	

CLOCK CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
$v_{\phi 1 A L}, v_{\phi 1 B L}$ $V_{\phi 2 A L}, V_{\phi 2 B L}$	Analog Shift Register Transport Clocks LOW	0.0	0.5	0.8	V	Note 1
$\begin{aligned} & \mathrm{V}_{\phi 1 \mathrm{AH}}, \mathrm{~V}_{\phi 1 \mathrm{BH}} \\ & \mathrm{~V}_{\phi 2 \mathrm{AH}}, \mathrm{~V}_{\phi 2 \mathrm{BH}} \end{aligned}$	Analog Shift Register Transport Clocks HIGH	9.5	10.0	10.5	V	Note 1
$\mathrm{V}_{\phi \text { RL }}$	Reset Clock LOW	0.0	0.5	0.8	V	Note 2
$\mathrm{V}_{\phi \text { RH }}$	Reset Clock HIGH	10.0	11.0	12.0	V	Notes 2, 9
$\mathrm{V}_{\phi S A L}, \mathrm{~V}_{\phi S B L}$	Analog Sample Clock LOW	4.5	5.0	5.5	V	
$\mathrm{V}_{\phi S A H}, \mathrm{~V}_{\phi S B H}$	Analog Sample Clock HIGH	9.5	10.0	10.5	V	
$\underline{V_{\text {IA }}, V_{\text {IB }}}$	Analog Input Gate Range		0.3-1.3		V	Note 4

AC CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, R_{L}=1 \mathrm{k}$ All parameters measured in a multiplex mode with balanced inputs and $F_{\phi R}=10 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS			UNITS	CONDITIONS
		MIN	TYP	MAX		
$\begin{aligned} & \mathrm{f}_{\phi 1} A, \mathrm{f}_{\phi 1 B} \\ & \mathrm{f}_{\phi 2 \mathrm{~A}}, \mathrm{f}_{\phi 2 \mathrm{~B}} \\ & \hline \end{aligned}$	Analog Shift Register Transport Clock Frequency		5		MHz	See Fig. 2
${ }^{\dagger}$ ¢ R	Reset Clock Frequency		10		MHz	Note 5
${ }^{\dagger}{ }_{\phi S A},{ }^{f_{\phi S B}}$	Analog Sample Clock Frequency		5		MHz	Note 6
BW	Input Signal Bandwidth (3 dB down)		4		MHz	Note 7
IL	Insertion Loss		15		dB	
NL	Non-Linearity		5		\%	
S/N	Signal to Noise Ratio		50		dB	
RSO	Rate of Average Signal Offset		1		$\mathrm{mV} / \mathrm{ms}$	
VOUT (max)	Maximum Output Signal Voltage		200		mV	Note 8

NOTES:

1. $C_{\phi 1 A}=C_{\phi 1 B}=C_{\phi 2 A}=C_{\phi 2 B} \cong 50 p F=$ capacitance with respect to ground.
2. $C_{\phi R} \cong 1.5 \mathrm{pF}=$ capacitance with respect to ground.
3. Adjustment in the range of $4 \vee-6 \vee$ is required for optimum performance.
4. dc bias adjustment is the range of $0 \vee-2.5 \mathrm{~V}$ may be necessary for a 1 V Analog Input Gate Range in order to optimize non-linearity.
5. If the device is operated using either the A or B register only, then the $f_{\phi R}$ should be the same as $f_{\phi 1 A}, f_{\phi 1 B}, f_{\phi 2 A}, f_{\phi 2 B}$.
6. In a multiplex mode of operation $f_{\phi S A}=f_{\phi S B}=5 \mathrm{MHz}$ typically (refer to timing diagram for phase relationships). In that case the total sampling rate on the input signal is 10 MHz .
7. For proper reconstruction of the input signal information, the sampling rate should be more than twice the input bandwidth. In a multiplex mode of operation and with a 4 MHz input bandwidth, $f_{\phi S A}=f_{\phi S B}=5 \mathrm{MHz}, f_{\phi R}=10 \mathrm{MHz}$ and $f_{\phi 1 A}=f_{\phi 1 B}=f_{\phi 2 A}=f_{\phi 2 B}=5 \mathrm{MHz}$.
8. See test load configuration, Fig. 1.
9. $V_{\phi R H} \geqslant V_{R D}-5.0 \mathrm{~V}$.
10. The signal acquisition time is not dependent upon the RC time constant of the input port.

Fig. 3
ANALOG SHIFT REGISTER A OPERATION

Fig. 4
ANALOG SHIFT REGISTER B OPERATION

NOTE:
For multiplexed operation, the output signal appears during ts. Therefore, it is recommended to maximize t8.

CIRCUIT DIAGRAM

CCD311 DRIVE CIRCUITRY

Due to the flexibility of the CCD311 timing and clocking requirements various schemes can be used to clock the device. In particular the timing diagrams shown in Figures 3, 4 and 5 are the most general timing relationships to operate the device. The typical drive circuitry shown in Figure 6 generates a timing relationship as shown in Figure 7. This scheme is the simplest timing diagram for the device. The drive circuitry is intended for device operation (ϕ_{R} clock) of 10 kHz to 12 MHz (video rate). An external clock of twice the desired ϕ_{R} frequency is applied to IC1A and IC1B which are interconnected in a synchronous mode of counting. The clock is divided by 2 in IC1A. Pin 9 of IC1A is $\bar{\phi}_{R}$ which is connected to IC2 pin 11. IC2 is a quad TTL to MOS driver. The $\bar{\phi}_{R}$ pulse is inverted and level shifted which results in a ϕ_{R} pulse of approximately 0 to 10 V . The 68 pF capacitor on the ϕ_{R} line speeds up the rise time of ϕ_{R}. The output of IC1B is $1 / 2$ of the ϕ_{R} frequency. IC1B pins 6 and 7 are $\bar{\phi}_{1}$ and $\bar{\phi}_{2}$ respectively. They are applied to pins 3 and 6 of IC2 where they are level shifted and inverted. This results in ϕ_{1} and ϕ_{2} clocks of 0 to 10 V amplitude.
$\phi_{S A}$ and $\phi_{S B}$ are generated by IC3. $\phi_{S A}$ is equal to $\overline{\phi_{R} \bullet \bar{\phi}_{2}} \cdot \phi_{S B}$ is equal to $\overline{\phi_{R} \bullet \bar{\phi}_{1}}$. IC3 has the ground connection tied to +5 V . The V_{CC} connection is tied to +10 V . The pull-up resistors on the output insure a full 5 V swing. The ϕ_{SA} and $\phi_{\text {SB }}$ pulses out of IC3 swing from +5 V to +10 V . The sync pulse is buffered by IC3. The timing relation of the sync pulse is the same as ϕ_{2}. The inputs to IC3 are all capacitively coupled because of the level shift function. The 1 k resistors supply a zero signal reference. ϕ_{1}, ϕ_{2} and ϕ_{R} have diode clamps to eliminate any clock excursions that may go below V_{SS}. The 22Ω series resistors in the ϕ_{1} and ϕ_{2} lines smooth the rise and fall transitions. The input signal is capacitively coupled and routed through two dc bias circuits. This gives separate dc balance control for $\mathrm{V}_{\text {IA }}$ and V_{IB}.

The OS and CS outputs are terminated with 1 k load resistor. The 1 k pot at IC4 pin 1 adjusts the amount of CS fed to IC4 to balance the ϕ_{R} feedthrough in the OS signal. The 5 k pot between pin 4 and 11 of IC4 is a gain adjust. The output of the transistor buffer lowers the output impedance to drive a 50Ω cable. The output should be terminated into 50Ω.

In order to get the circuitry to operate properly, apply an external clock at a rate of 2 X at the desired output video frequency. Observe the $\phi_{\mathrm{R}}, \phi_{1}$ and ϕ_{2} output waveforms and adjust the A power supply so that ϕ_{1} and ϕ_{2} will have a 10 V swing, ϕ_{R} should be about 1 V higher than ϕ_{1} and ϕ_{2}. While observing the ϕ_{SA} and ϕ_{SB} pulses, adjust the B power supply for a swing of +5 V to +10 V on ϕ_{SA} and ϕ_{SB}. (Note: the potential between V_{CC} and the ground pin on IC3 should not exceed 5.5 V.| Next, adjust the V_{OG} adjust pot for +5 V on pin 3 of the CCD311 and adjust IC4 for minimum gain ($\cong \times 10$). Ground the input port and adjust dc balance pots to 0 V . Observing the video output adjust the 1 k pot on IC4 pin 1 for minimum video output then adjust dc balance pots for 0.7 V . Apply a 0.5 V peak-to-peak sine wave at the signal input. The output video signal should be approximately 1 V peak-to-peak.

FAIRCHILD CHARGE COUPLED DEVICE • CCD311

TYPICAL DRIVE CIRCUITRY

Fig. 6

TIMING DIAGRAM GENERATED BY THE TYPICAL DRIVE CIRCUITRY

DEFINITION OF TERMS

Insertion Loss - Insertion loss is defined as: $20 \log \frac{\text { input signal }}{\text { output signal }}$
Non-Linearity - Non-linearity is defined as the maximum deviation $(\Delta \mathrm{V})$ of the output voltage expressed as a percentage of the maximum output signal voltage using a 5 -step standard NTSC input signal.

Signal-to-Noise Ratio $-S / N=20 \log \frac{V_{\text {out }}(\max)}{r m s \text { noise }}$. The rms noise is measured at $V_{\text {out }}=\frac{1}{2} V_{\text {out }}(\max)$.
Average Signal Offset - The average signal offset is a DC offset of the output voltage (due to the average leakage current in the CCD register) which increases linearly with delay time and is temperature dependent. It has the effect of reducing the output signal range as the delay time is increased.

Output Signal Range - The output signal range is the difference between $\mathrm{V}_{\text {OUT }}(\max)$ (the maximum voltage at the output OS of the device) and the average signal offset.

CCD450/450A 9216-BIT DYNAMIC SHIFT REGISTER MEMORY

GENERAL DESCRIPTION - The CCD450/450A are 1-kilobyte serial storage devices organized 1024 words by nine bits. They contain nine 1024-bit low power CCD shift registers which are shifted in parallel providing for storage and retrieval of 9 -bit words in a word-serial mode. The nine bi-directional TTL compatible data lines have 3 -state output buffers. Operating frequency is 100 kHz to 2 MHz . Common to all nine registers are two clock lines, a Data Enable line, a $\overline{R E}$ line and a $\overline{W E}$ line. The devices operate in four modes: read, write, read/modify/write, and recirculate.
The CCD450/450A utilize a buried channel ion-implanted barrier structure for the CCD registers and an n-channel, silicon gate, Isoplanar structure for the on-chip MOS circuitry.

- LOW POWER DISSIPATION: 250 mW IN THE READ MODE,

40 mW IN THE LOW SPEED STANDBY MODE

- CLOCK RATE: 2 MHz GUARANTEED (CCD450A)
- STANDARD 18-PIN DUAL IN-LINE PACKAGE
- 3-STATE OUTPUTS
- NINE PARALLEL REGISTERS FOR BYTE-PLUS-PARITY OPERATION
- TTL COMPATIBLE

PIN NAMES		LEVEL	CAPACITANCE	CURRENT
$I / O_{0}-1 / O_{8}$	Data Lines	TTL	8 pF	$10 \mu \mathrm{~A}$
ϕ_{1}	Clock	$0-12 \mathrm{~V}$	400 pF	2 mA
ϕ_{2}	Clock	$0-12 \mathrm{~V}$	400 pF	
$\overline{R E}$	Read Enable (Active LOW)	TTL	8 pF	$10 \mu \mathrm{~A}$
$\overline{W E}$	Write Enable (Active LOW)	TTL	8 pF	$10 \mu \mathrm{~A}$
DE	Data Enable	$0-12 \mathrm{~V}$	8 pF	6 mA
VSS	Power Supply	Ground		
VCC	Power Supply	+5.0 V		
V $_{\text {DD }}$	Power Supply	+12 V		
VBB	Power Supply	-2.5 V		

DE	$\overline{\mathrm{RE}}$	$\overline{\mathrm{WE}}$	I / O LINES	MODE
L	X	X	Z_{H}	Recirculate (Low Power)
H	H	H	Z_{H}	Recirculate
H	H	L	I	Write
H	L	H	O	Read
H	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{X} \rightarrow \mathrm{L}$	$0 \rightarrow \mathrm{Z}_{\mathrm{H}} \rightarrow \mathrm{I}$	Read/ Modify/ Write

$$
\begin{array}{rlrl}
I= & \text { Input } & & H= \\
O= & \text { Output Voltage } \\
Z_{H}= & \text { High } & L & \text { IOW Voltage } \\
& \text { Impedance } & & X=\text { Don't Care } \\
& \text { State } & & \text { (HIGH or LOW) }
\end{array}
$$

FUNCTIONAL DESCRIPTION - The CCD450/450A are serial storage memories consisting of 9216 bits which are organized in a format of 1024 words by 9 bits. This architecture is realized by the use of nine shift registers each containing 1024 bits. Since these registers are shifted in parallel, 9 -bit words are stored or retrieved in a word-serial mode.

The basic timing is established by two clocks (ϕ_{1} and ϕ_{2}) as shown in the timing diagram. During ϕ_{2} HIGH time the logic is reset, data is shifted by one-half bit and the mode control level conversion from TTL to MOS levels is accomplished. During ϕ_{1} HIGH time the data is shifted by one-half bit, the output charge state is sensed and presented to the output. The charge level written into the first CCD cell during $\phi_{1} \mathrm{HIGH}$ time is controlled by:
a. the output charge level during the Read or Recirculate mode, or
b. the data line during the Write mode.

The read and write operations are controlled by the state of Read Enable (pin 12), Write Enable (pin 14) and Data Enable (pin 15). The modes of operation are shown in the Truth Table.

MODES OF OPERATION (Refer to timing diagram)

Read Mode. In the read mode the Data Enable line (DE) is raised, and $\overline{R E}$ is lowered, as shown in the timing diagram, during $\phi_{2} H I G H$ time. Both lines are held stable during $\phi_{1} \mathrm{HIGH}$ time. The data appears at the Input/Output ($1 / O_{0}-1 / O_{8}$) pins tRA after the leading edge of ϕ_{1} HIGH time. Automatic recirculation of the data is provided in this mode.

Write Mode. In the write mode the Data Enable line (DE) is raised, and WE is lowered as shown in the timing diagram. Data must be valid at the 1/O pins tSWD prior to the trailing edge of ϕ_{1}. This data replaces any previous data in the current memory location.

Recirculate Mode 1. In the low power recirculate mode the Data Enable line (DE) is held LOW and all other inputs are ignored. Power is removed from on-chip and buffer circuits. Power consumption can be further reduced by lowering the clock frequency to the minimum allowable rate. 2. Data can also be recirculated with $1 / O$ lines at high impedance by holding DE, $\overline{R E}$, and $\overline{W E}$ all HIGH. Power consumption will be higher than in the recirculate mode, example 1 but less than in the read mode.

Read/Modify/Write. In the read/modify/write mode the first part of ϕ_{1} HIGH time provides the read function which is followed immediately by the write function during the second part of $\phi_{1} \mathrm{HIGH}$ time. The read data becomes available after trA and is present until $\overline{\mathrm{RE}}$ goes HIGH. The new data inputs must be present on the I/O lines tSWD prior to the trailing edge of ϕ_{1}.
Clear Memory. To clear memory upon start-up requires 4000 clock cycles minimum with DE and $\overline{R E}$ held HIGH and $\overline{W E}$ and I/Os held LOW.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature
Pins with Respect to $V_{S S}$
$1 / O, \overline{R E}, \overline{W E}, V_{C C}$
-0.5 V to +8.0 V
$D E, \phi_{1}, \phi_{2}, V_{D D}$
$V_{B B}$
-0.5 V to +18 V
+0.5 V to -5.0 V
(current limited to less than 10 mA)

CAUTION: Static discharge to any gate pin may cause permanent damage. Store with shorting clip or on conductive foam. Use grounded soldering irons, tools and personnel when handling devices. Avoid synthetic fabric smocks and gloves. It is recommended that the device be inserted into socket before turning power on.

DC REQUIREMENTS: $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}+10 \%,-5 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-2.5 \mathrm{~V} \pm 20 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ($1 / \mathrm{O}_{0}$ thru $\mathrm{I} / \mathrm{O}_{8}, \overline{\mathrm{RE}}$ and $\left.\overline{\mathrm{WE}}\right)$	-0.3		+0.8	V	
$V_{\text {IH }}$	Input HIGH Voltage ($1 / \mathrm{O}_{0}$ thru $1 / \mathrm{O}_{8}, \overline{\mathrm{RE}}$ and WE)	+2.2			V	
$v_{\phi L}$	Clock LOW Voltage (ϕ_{1}, ϕ_{2})	-0.3		+0.4	V	
$v_{\phi H}$	Clock HIGH Voitage (ϕ_{1}, ϕ_{2})	+11.0		Note 1	V	See Note 1, Fig. 2
$V_{\text {DEL }}$	Data Enable LOW Voltage	-0.3		+0.8	V	
$\mathrm{V}_{\text {DEH }}$	Data Enable HIGH Voltage	10.8		13.2	V	

DC CHARACTERISTICS: $V_{D D}=12 \mathrm{~V}+10 \%,-5 \%, V_{C C}=5.0 \vee \pm 5 \%, V_{B B}=-2.5 \mathrm{~V} \pm 20 \%, T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

SYMBOL		PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
v_{OL}		Output LOW Voltage ($1 / \mathrm{O}_{0}$ thru $1 / \mathrm{O}_{8}$)			+0.4	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
$\mathrm{VOH}^{\mathrm{VOL}}$		Output HIGH Voltage ($1 / \mathrm{O}_{0}$ thru $1 / \mathrm{O}_{8}$)	+2.4			V	$\mathrm{IOH}=0.2 \mathrm{~mA}$
IIN		Input Leakage Current $\overline{\mathrm{RE}}$ \& $\overline{\mathrm{WE}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}$
		ϕ_{2}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\phi 2 \mathrm{H}}=12 \mathrm{~V}$
		ϕ_{1}			2	mA	$\mathrm{V}_{\phi 1 \mathrm{H}}=12 \mathrm{~V}$
		I/O Leakage Current ($1 / \mathrm{O}_{0}$ thru $1 / \mathrm{O}_{8}$)			± 10	$\mu \mathrm{A}$	$\overline{\mathrm{RE}}=\mathrm{V}_{\text {IH }}$
		Data Enable			6	mA	$\mathrm{V}_{\text {DEH }}=13.2 \mathrm{~V}$
IDD	VDD Current	Read Mode			18	mA	at f Max
		Standby Mode			2	mA	at f Min
Icc	$V_{\text {CC }}$ Current	Read Mode			5	mA	at f Max
		Standby Mode			0.1	mA	at ${ }^{\text {f }} \mathrm{Min}$
$I_{\text {B }}$	$V_{B B}$ Current				10	$\mu \mathrm{A}$	at f Max

NOTE 1:
$\mathrm{V}_{\phi H}$ max is dependent on value of V_{DD} as shown: operation is guaranteed within enclosed region shown in Fig . 2.

Fig. 2

FAIRCHILD CHARGE COUPLED DEVICE • CCD450/450A

AC CHARACTERISTICS: $V_{D D}=12 \mathrm{~V}+10 \%,-5 \%, V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{B B}=-2.5 \mathrm{~V} \pm 20 \%, T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CCD450A		CCD450		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
${ }^{\text {tra }}$	Read Access		140		180	ns	Note 1
trp	Read Persistence Time		0		0	ns	Note 2
C_{ϕ}	Clock Capacitance		400		400	pF	
$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{W}$	$\overline{\text { RE }}$ and $\overline{W E}$ Capacitance		8		8	pF	
$\mathrm{C}_{\text {DE }}$	Data Enable Capacitance		8		8	pF	

AC REQUIREMENTS: $V_{D D}=12 \mathrm{~V}+10 \%,-5 \%, V_{C C}=5.0 \mathrm{~V} \pm 5 \%, V_{B B}=-2.5 \mathrm{~V} \pm 20 \%, T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CCD450A		CCD450		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
${ }_{\text {t }}{ }_{\text {1RWC }}$	ϕ_{1} Clock HIGH Time in the Read, Write \& Recirculate Modes	150	500	200	500	ns	
${ }_{\text {t }}{ }_{\text {¢ }}$ RMW	ϕ_{1} Clock HIGH Time in the Read/Modify/Write Mode	300	500	350	500	ns	
${ }_{\underline{\text { ¢ }} \text { 2 }}$	ϕ_{2} Clock HIGH	70	500	100	500	ns	
tul	Underlap 1	20	200	20	200	ns	
	Underlap 2	20	9560	20	9480	ns	Note 3
${ }^{\text {tSW }}$	Write Set-Up	100		100		ns	
${ }^{\text {thw }}$	Write Hold	0		0		ns	
${ }^{\text {t SWDE }}$	Write Mode Data Enable Set-Up	100		100		ns	
${ }^{\text {t }}$ HWDE	Write Mode Data Enable Hold	0		0		ns	
${ }^{\text {t }}$ SWD	Write Data Set-Up	50		50		ns	
${ }^{\text {tHWD }}$	Write Data Hold	0		0		ns	
${ }^{\text {tsRDE }}$	Recirculate Mode Data Enable Set-Up	0		0		ns	
${ }^{\text {thRDE }}$	Recirculate Mode Data Enable Hold	0		0		ns	
tr1	ϕ_{1} Rise Time	50	200	50	200	ns	
tr2	ϕ_{2} Rise Time	50		50		ns	
${ }_{1}$	$\phi_{1} \& \phi_{2}$ Fall Time	50		50		ns	
${ }^{\text {traw }}$	Read Enable High Time in Read/Modify/Write Mode	50		50		ns	
f	Clock Rate	0.1	2.0	0.1	1.0	MHz	

NOTES:

1. Propagation delay depends on the occurrence of the last one of the three events: $\overline{R E}$ going LOW, ϕ_{1} going HIGH, or DE going HIGH.
2. Read persistence time (valid data period) terminates with first one of three events to occur: ϕ_{2} going HIGH, DE going LOW, or RE going HIGH.
3. $t_{U L 2}(M A X)=10 \mu s-\left(t_{\phi 1}+t_{\phi 2}+t_{U L 1}+2 t_{r}+2 t_{f}\right)$

Fig. 3

Fig. 4

CCD460 16,384-BIT DYNAMIC LINE ADDRESABLE RAM,LARAM

GENERAL DESCRIPTION - The Fairchild CCD460 is a fast 16,384 bit dynamic CCD memory designed for fast access cache, swapping store, mainframe, and other memory applications where its LARAM performance features are required. The Line Addressable Random Access Memory organization provides a data rate of 20 megabits per second with an average random access time of $12.8 \mu \mathrm{~s}$ at an operating frequency of 5 MHz , and with typically less than 200 mW of power. It also provides very low clock drive capacitance loading. The 5 -bit address selects one of 32128 -bit registers in each section and those registers deliver or receive data through their input and output pins. Data is not inverted and is available 4 bits parallel. Recirculation is automatic in accessed registers.
Operation is straightforward and support circuitry kept simple by the TTL compatibility of data in and out lines and address lines, 3-state outputs, and very low drive capacitance loading on the 0-12 V inputs to Address Enable, Data Transfer, and Precharge pins. Readout is non-destructive and data out lines can be wired-OR for flexibility and ease of expansion. The device operates in four modes: read, write, read/modify/write, and low power standby recirculate.
The CCD460 features Isoplanar, NMOS, buried channel, and silicon gate structure for high density and reliable performance.

- high data rate - 20 megabits per second
- FAST READ ACCESS TIME $-<100 \mathrm{~ns}$
- FAST AVERAGE RANDOM ACCESS TIME - $12.8 \mu \mathrm{~s}$
- LOW POWER - 200 mW MAX @ $5 \mathrm{MHz}, 50 \mathrm{~mW}$ STANDBYRECIRCULATE @ 400 kHz
- LOW CLOCK CAPACITANCES - 120 pEAND 16 pF
- TWO PHASE OPERATION - 0 TO + 12 V CLOCKS
- TTL COMPATIBLE
- 3-STATE OUTPUTS
- FOUR MODE OPERATION READ, WRITE, READ/MODIFY/WRITE, RECIRCULATE
- FOUR INPUTS AND FOUR OUTPUTS
- STANDARD 22-PIN DIP
- ISOPLANAR, NMOS, BURIED CHANNEL, SILICON GATE STRUCTURE

CONNECTION DIAGRAM DIP (TOP VIEW)

PRODUCT INDEX - ALPHANUMERIC LISTING : OF DEVICES	2
NMOS/PMOS	
INTRODUCTION	3
MEMORY PRODUCTS	
CONSUMER/INDUSTRIAL PRODUCTS	
MICROPROCESSOR PRODUCTS	
MULTIPLEXERS AND COUNTERS	

CMOS
F4000 SERIES GENERAL DESCRIPTION
DESIGN CONSIDERATIONS WITH F4000 SERIES CMOS

TECHNICAL DATA

BIPOLAR INTERFACE CIRCUITS FOR CMOS
CCD
INTRODUCTION

TECHNICAL DATA

ORDER AND PACKAGE INFORMATION

FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES, DISTRIBUTOR LOCATIONS

ORDER AND PACKAGE INFORMATION

Fairchild integrated circuits may be ordered using a simplified purchasing code where the package style and temperature range are defined as follows:

PACKAGE STYLE

D = Dual In-line - Ceramic (hermetic)
P = Dual In-line - Plastic
F = Flatpak

In order to accommodate varying die sizes and numbers of pins (14, 16, 24, etc.), a number of different package forms are required. The Package Information list on the following pages indicates the specific package codes currently used for each device type. The detailed package outline corresponding to each package code is shown at the end of this section.

Temperature Range

Three basic temperature grades are in common use: $\mathrm{C}=$ Commercial-Industrial (MOS), $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; $\mathrm{C}=$ CommercialIndustrial (CMOS), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; $\mathrm{L}=$ Limited Military (MOS), $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{M}=$ Military, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Exact values and conditions are indicated on the data sheets. For CCD temperature range, check the individual data sheets.

Examples

(a) 4014FM

This number code indicates a 4014 Register in a Flatpak with military temperature rating.
(b) 4720 DC

This number code indicates a 4720256×1 RAM in a ceramic Dual In-line Package with commercial temperature rating.
(d) 2102 DM

This number code indicates a 2102 RAM in a ceramic package with a military temperature rating.

Device Identification/Marking

All Fairchild standard catalog integrated circuits will be marked as follows:

> Device Type XX
> Date Code

ORDER AND PACKAGE INFORMATION

MOS PACKAGE INFORMATION						
DEVICE	PACKAGE CODE			TEMPERATURE RANGE		
	D	P	F	C	L	M
1103	7D			X		
1103F	7D			X		
11035	7D			X		
11031	7D			X		
21 LO2	6D			X		
21L02A	6D			X		
21L02B	6D			X		
2102	6D			X	X	x
2102F	6D			X	X	X
21021	6D			X	X	X
21022	6D			X	X	X
2533	6C			X	X	x
3257	6 K			X		
3258	7 J			X		
3260	7M			X		
3262A	7J			X		
3262B	7J			X		
3341	6D	9 R		X	X	X
3341 A	6D	9R		X		
3342	7J	9B		X		
3347	7J	9 B		X		
3348	7M			X		
3349	7J	9 B		X		
33511	$7 Y$			X	X	x
33512	7 Y			X	X	X
3355	6C	9L		X		
33571	7J			X		
33752	7J			X		
3515	7M			X		
35L38	71			X		
35L38A	71			X		
35L38B	71			X		
3538	71			X	X	X
3538F	71			X	X	X
35381	71			X	X	X
3539*	71			x		
3705	7J		4A	X	x	x
3708	7J		4A	X	X	X
3814	7M			X		
3815	7M			X		
3816	7J	9B		X		
3817A		8P		X		
3817D		8P		X		
3843*	7Y			X		
3850	61			X	x	X
3851	61			X	X	X
3852	61			X	X	X
3853	61			X	X	X
3854	61			X	X	X
40962	6D		4D	X	X	
40963	6D		4D	X	X	
40964	6D		4D	X	X	
40965	6D		4D	X	X	

DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		COMMERCIAL (C)/INDUSTRIAL $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)	$\begin{aligned} & \hline \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	PLASTIC DIP (P)	FLATPAK (F)
4001	6A	31	6A	9A	31
4002	6A	31	6A	9A	31
4006	6A	31	6A	9A	31
4007	6 A	31	6A	9A	31
4008	6 B	4L	6B	9B	4 L
4011	6 6	31	6 A	9A	31
4012	6 A	31	6A	9A	31
4013	6A	31	6A	9A	31
4014	6 B	4L	6B	9 B	4L
4015	6B	4L	6B	9 B	4L
4016	6 A	31	6A	9A	31
4017	6 B	4L	6B	9 B	4L
4018	6B	4L	6B	9B	4L
4019	6B	4L	6B	9 B	4L
4020	6B	4L	6B	9 B	4L
4021	6B	4L	6B	9 B	4L
4022	6B	4L	6B	9 B	4L
4023	6A	31	6A	9A	31
4024	6A	31	6A	9A	31
4025	6A	31	6A	9A	31
4027	6B	4L	6B	9B	4L
4028	6B	4L	6B	9 B	4L
4029	6B	4L	6B	9 B	4L
4030	6A	31	6A	9A	31
4031	6B	4 L	6B	9 B	4L
4035	6B	4L	6B	9 B	4L
4040	6B	4L	6B	9 B	4L
4041	6A	31	6A	9A	31
4042	6B	4L	6B	9B	4L
4043	6B	4 L	6 B	9 B	4L
4044	6B	4L	6B	9 B	4L
4046	6B	4L	6 B	9 B	4L
4047	6A	31	6A	9A	31
4049	6B	4L	6B	9 B	4L
4050	6B	4L	6B	9 B	4L
4051	6B	4L	6B	9 B	4L
4052	6B	4L	6B	9B	4L
4053	6 B	4L	6 B	9 B	4L
4066	6A	31	6A	9A	31
4067	6N,60	4M	6N,60	9N,9U	4M
4068	6A	31	6A	9A	31
4069	6A	31	6A	9A	31
4070	6A	31	6A	9A	31
4071	6A	31	6A	9A	31
4072	6A	31	6A	9A	31
4073	6A	31	6A	9A	31
4075	6A	31	6A	9A	31
4076	6B	4L	6B	9 B	4L
4077	6A	31	6A	9A	31
4078	6A	31	6A	9A	31
4081	6A	31	6 A	9A	31
4082	6A	31	6A	9A	31
4085	6A	31	6A	9A	31
4086	6A	31	6A	9A	31

ORDER AND PACKAGE INFORMATION
CMOS PACKAGE INFORMATION (Cont'd)

DEVICE	$\begin{aligned} & \text { MILITARY (M) } \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		COMMERCIAL (C)/INDUSTRIAL $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
	CERAMIC DIP (D)	FLATPAK (F)	$\begin{aligned} & \text { CERAMIC } \\ & \text { DIP (D) } \end{aligned}$	$\begin{aligned} & \text { PLASTIC } \\ & \text { DIP (P) } \end{aligned}$	FLATPAK (F)
4104	6B	4L	6B	9B	4L
4510	6B	4L	6B	9 B	4L
4511	6B	4L	6B	9B	4L
4512	6B	4L	6B	9B	4L
4514	6N,60	4M	6N,60	9N,9U	4M
4515	6N,60	4M	6N,60	9N,9U	4M
4516	6B	4L	6B	9B	4L
4518	6B	4L	6B	9 B	4L
4519	6B	4L	6B	9B	4L
4520	6B	4L	6B	9 B	4L
4522	6B	4L	6B	9B	4L
4526	6B	4L	6B	9 B	4L
4528	6B	4L	6B	9B	4L
4531	6B	4L	6B	9 B	4L
4532	6B	4L	6B	9 B	4L
4539	6B	4L	6B	9 B	4L
4555	6B	4L	6B	9B	4L
4556	6B	4L	6B	9 B	4L
4582	6B	4L	6B	9 B	4L
4702	6B	4L	6B	9 B	4L
4703	60	4M	60	9 U	4M
4704	60	4M	60	9 U	4M
4705	60	4M	60	9 U	4M
4706	60	4M	60	9 U	4M
4707	60	4 M	60	9 U	4M
4710	7 D		7 D	9 M	
4720	6B	4L	6B	9B	4L
4723	6B	4L	6B	9 B	4L
4724	6B	4L	6B	9 B	4L
4725	6 B	4L	6 B	9 B	4L
4731	6A	31	6A	9A	31
4734	7 D		7 D	9M	
40085	6B	4L	6B	9 B	4L
40097	6B	4L	6B	9B	4L
40098	6B	4L	6B	9 B	4L
40160	6 B	4L	6 B	9 B	4L
40161	6B	4L	6B	9 B	4L
40162	6 B	4L	6 B	9 B	4L
40163	6B	4L	6B	9 B	4L
40174	6B	4L	6B	9B	4L
40175	6B	4L	6B	9B	4L
40192	6B	4L	6B	9 B	4L
40193	6 B	4L	68	9B	4L
40194	6B	4L	6B	9 B	4L
40195	6B	4L	6B	9 B	4L
40283	6 B	4L	6 B	9B	4L

CCD PACKAGE INFORMATION

DEVICE	PACKAGE CODE -D	TEMPERATURE RANGE
CCD101	7E1	C
CCD110	7E2	C
CC110F	7E7	C
CCD121	7E4	C
CCD201	$7 E 3$	C
CCD311	7E6	C
CC450A	7E5	C
CC450B	7E5	C
CCD460	$7 E 8$	C

MATRIX VI PROGRAM ORDERING INFORMATION

Matrix VI is a full spectrum/cost effective reliability and quality program for commercial/industrial ICs only. It features six levels of screening/package flows, each tailored to a user's field application/environment and his incoming quality/ equipment reliability requirements.
A Matrix VI part number consists of the device type followed by the package code letter, the temperature range code letter, and the Matrix VI code letter (as applicable, see flow chart).

EXAMPLES

(a) 4001PC Device type 4001, packaged in plastic Dual In-line (P), in commercial temperature range (C) and processed to Matrix VI Level 1.
(b) 4001PCQM Device type 4001, packaged in plastic Dual In-line (P), in commercial temperature range (C) with supplemental Matrix VI Level 2 testing including 100\% thermal shock, "hot rail" test and $0.15 \% \mathrm{AQL}$ functional testing.
(c) 4001 DC
(d) 4001 DCQM
(e) $4001 P C Q R \quad$ Device type 4001, packaged in Dual In-line, in commercial temperature range (C) with supplemental Matrix VI Level 5 screening including 100% thermal shock, "hot rail" test, 168 hours $125^{\circ} \mathrm{C}$ burn-in and 0.15% AQL functional testing.
(f) 4001DCQR Device type 4001, packaged in ceramic Dual In-line, in commercial temperature range with supplemental Matrix VI Level 6 screening including burn-in, three 100% DC/functional tests and 0.15% AQL functional testing.

6 MATRIX VI PROCESS FLOW OPTIONS \& COST EFFECTIVENESS

UNIQUE 38510 PROGRAM ORDERING INFORMATION

The Fairchild Unique 38510 Program is written in accordance with MIL-M-38510 and MIL-STD-883
To meet the need of improved reliability in the military market, CMOS Integrated Circuits are available with special processing. Devices ordered to this program are subjected to the 100% screening as outlined in the Process. Devices will be marked in accordance with MIL-M-38510 unless otherwise specified under number Option 6.

UNIQUE 38510 devices are not normally stocked by distributors.
Customer procurement documents should specify the following:
(a) Fairchild Product Code indicating the basic device type and package combination.
(b) The Unique 38510 Device Class. (A, B, C, S, P)
(c) Number and/or Letter Options required.
(d) Special Marking requirements.

The order code number consists of (a) and (b) as shown above. The order code detailed format is shown below.

DEVICE
TYPE

PACKAGE TYPE
$D=C E R A M I C D I P$
$P=$ PLASTIC DIP
$F=$ CERAMIC FLAT

TEMPERATURE RANGE
$\mathrm{C}=-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}(59 \mathrm{X})$
$M=-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}(51 \mathrm{X})$ REQUIREMENTS
DESIGNATES UNIQUE 38510 PROCESSING IF REQUIRED. SEE DESCRIPTION OF SCREENING

Order code examples are:

4029FMOB
Class QB Unique 38510

4001DMOC
Class QC Unique 38510

Number Options: These options apply to operations performed on each unit delivered:
OPTION 1 Lead form to dimensions in detail specifications, followed by hermetic seal tests.
OPTION 2 Hot solder dip finish.
OPTION 3 Read and record critical parameters before and after burn-in.
OPTION 4 Initial qualification, Group B \& C quality conformance not required.
OPTION 5 Radiographic inspection shall be performed on all devices.
OPTION 6 Special marking required.
OPTION 7 Non-conforming variation - refer to procurement documents for details (must be negotiated with factory).
Letter Options: These options apply once per Purchase Order or line item and are considered Test Charges:
OPTION A Group B testing shall be performed on customer's parts.
OPTION B Group C testing shall be performed on customer's parts.
OPTION C Generic data to be supplied from the latest completed lot.
OPTION D Unique 38510 program plan, pertinent to the device family being purchased, shall be supplied.

PROCESS SCREENING REQUIREMENTS

MIL-STD-883 TEST METHODS	DESCRIPTION
Preseal Visual MTD. 2010.1:	Cond. A Maximum Visual Criteria
	Cond. B Optimum Visual Criteria
	FICF-ST-02011 Fairchild Standard
Bond Strength:	Bond strength is monitored on a sample basis three times per shift per mach.
Seal:	Devices are hermetically sealed for compliance to MIL-STD-883 requirements
High Temperature Storage:	Cond. B Tstg $=125^{\circ} \mathrm{C}$ Specify Time
	Cond. C Tstg $=150^{\circ} \mathrm{C}$
	Cond. D Tstg $=200^{\circ} \mathrm{C}$
Thermal Shock MTD 1011:	Cond. A $0^{\circ} / 100^{\circ} \mathrm{C} 15$ cycles
	Cond. B $-55^{\circ} / 125^{\circ} \mathrm{C}$
Temperature Cycle MTD 1011:	Cond. B $-55^{\circ} / 125^{\circ} \mathrm{C}$
	Cond. C $-65^{\circ} / 150^{\circ} \mathrm{C} 10$ cycles
	Cond. D $-65^{\circ} / 200^{\circ} \mathrm{C}$
Mechanical Shock MTD 2002:	Cond. A 500 Gs 5 Shocks in $\mathrm{X}_{1}, \mathrm{X}_{2}$
	Cond. B $1500 \mathrm{Gs} \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Z}_{1}$ \& Z_{2}
Constant Acceleration MTD 2001:	Cond. D 20000 Gs 2 minute in each
	Cond. E $30000 \mathrm{Gs} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2}$
	Cond. $\mathrm{F} 50000 \mathrm{Gs} \mathrm{Z}_{1} \mathrm{Z}_{2}$
Hermetic Seal MTD 1014:	Cond. A Fine-Helium $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$
	Cond. B Fine-Radiflo $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$
	Cond. C1 Gross-FC43/Hot $10^{-3} \mathrm{cc} / \mathrm{sec}$
	Cond. C2 Gross-FC78/Vacuum $10^{-5} \mathrm{cc} / \mathrm{sec}$
Pre Burn-in Electrical (5004.1):	$25^{\circ} \mathrm{C}$ DC electrical testing to remove rejects prior to submission to burn-in screen
Burn-in Screen MTD 1015:	Cond. A, Cond. B, Cond. C
	Cond. D and Cond. E
Post Burn-in Electrical (5004.1):	Post Burn-in electrical screening to cull out devices which failed as a result of burn-in. Test Parameters may include: $25^{\circ} \mathrm{C}$ DC, $125^{\circ} \mathrm{C}$ DC, $-55^{\circ} \mathrm{CDC}, 25^{\circ} \mathrm{C} \mathrm{AC}$ and $25^{\circ} \mathrm{C}$ Functional tests.
Radiography MTD 2012:	$6 \mathrm{X}, 8 \mathrm{X}$ magnification and criteria specify number of views.
Quality Conformance Inspection MTD 5005:1:	Group A: Electrical Characteristics
	Group B: Package oriented Tests
	Group C: Environmental and Life Tests
External Visual MTD 2009:	3X, 20X magnification: Verify dimensions, configuration, lead structure, marking and workmanship

UNIQUE 38510

* Upon customer request only. Class B processing in this case includes adding post burn-in testing; dc testing at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ and ac testing. at $25^{\circ} \mathrm{C}$

In Accordance with JEDEC TO-86 Outline 14-Pin Cerpak

NOTES:
All dimensions in inches
Pins are alloy 42
Package weight is 0.26 gram
Pin 1 orientation may be either tab or dot

16-Pin 3/8 Pk Flatpak

NOTES:
All dimensions in inches
Pins are NiAu plated kovar
Cap is kovar
Base is $\mathrm{Al}_{2} \mathrm{O}_{3}$
Cavity size is $.180 \times .180$
Package weight is 0.6 gram approx.

16-Pin Flatpak

NOTES:
All dimensions in inches
Pins are NiAu plated kovar
Cap is kovar
Base is $\mathrm{Al}_{2} \mathrm{O}_{3}$
Cavity size is $.110 \times .180$
Package weight is 0.6 gram approx.

16-Pin Cerpak

NOTES:
All dimensions in inches
Pins are alloy 42
Package weight is 0.4 gram
Hermetically sealed beryllia package

24-Pin BeO Cerpak

NOTES:

All dimensions in inches
Pins are alloy 42
Package weight is 0.8 gram
Hermetically sealed beryllia package

4M
14-Pin Ceramic Dual In-line

NOTES:
All dimensions in inches
Pins are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter pin
Pins are tin-plated kovar
Package weight is 2.0 grams
6B
16-Pin Ceramic Dual In-line
8-Pin Side Brazed Dual In-line

NOTES:
All dimensions in inches
Pins are tin-plated kovar
Pins are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 inch diameter pin
Hermetically sealed alumina package
Cavity size is $.130 \times .230$
*The $.034 / .030$ dimension does not apply to the corner pins
Package weight is 2.2 grams

24-Pin Top Brazed Dual In-line
6K

NOTES:
All dimensions in inches
Cap material is kovar
Base material is $\mathrm{Al}_{2} \mathrm{O}_{3}$
Cavity size is $.210 \times .210$
Pins may be formed as a top or bottom brazed package
Package weight is 3.0 grams

NOTES:
All dimensions in inches
Pin material nickel gold-plated kovar
Cap is kovar
Base is ceramic
Cavity size is $.310 \times .310$
Package weight is 6.5 grams

24-Pin Ceramic MSI Dual In-line

NOTES:
All dimensions in inches
Pins are intended for insertion in hole rows on .700' centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Pins are tin-plated kovar
Package weight is 6.5 grams Package material is alumina

24-Pin Ceramic Dual In-line

NOTES:
All dimensions in inches
Pins are intended for insertion in hole rows on .500" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter pin Pins are tin-plated kovar

7E1

24-Pin Dual In-line Seated Glass Optical Window

18-Pin Ceramic Dual In-line

NOTES:
All dimensions in inches
Pins are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter pin Pins are tin-plated kovar

PACKAGE OUTLINES

22-Pin Dual In-line Side Brazed

NOTES:
All dimensions in inches
Pins are intended for insertion in hole rows on .400" centers
Pins are gold-plated kovar
Package weight is 2.0 grams Typ.
Die mounting pad and cover both electrically
connected to Pin 19 (Initial phototypes only)

16-Pin MSI Dual In-line

NOTES:
All dimensions in inches
Pins are tin-plated alloy-42
Pins are intended for insertion in hole rows on .300" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter pin
Hermetically sealed alumina package
Cavity size is $.130 \times .230$
*The .037/. 027 dimension does not apply to the corner pins
Package weight is $\mathbf{2 . 2}$ grams

40-Pin Plastic Dip (Production Mold)

NOTES:
All dimensions in inches
Pins are tin-plated kovar
Package material is plastic
Pins are intended for insertion in hole
rows on .600" centers
They are purposely shipped with "positive" misalignment to facilitate insertion

PACKAGE OUTLINES

24-Pin Plastic MSI Dual In-line

NOTES:
All dimensions in inches
PIns are intended for insertion in hole rows on .700" centers
They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 inch diameter pin
Pins are tin-plated kovar

24-Pin Plastic Dual In-line

NOTES:
All dimensions in inches
Pins are intended for insertion in hole rows on .500" centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch diameter pin
Pins are tin-plated kovar

OF DEVICES
 NMOS/PMOS

PRODUCT INDEX - ALPHANUMERIC LISTING

INTRODUCTION

3

MEMORY PRODUCTS

CONSUMER/INDUSTRIAL PRODUCTS

MICROPROCESSOR PRODUCTS

MULTIPLEXERS AND COUNTERS
CMOS
F4000 SERIES GENERAL DESCRIPTION
DESIGN CONSIDERATIONS WITH F4000 SERIES CMOS

TECHNICAL DATA

BIPOLAR INTERFACE CIRCUITS FOR CMOS

CCD

INTRODUCTION

TECHNICAL DATA

FAIRCHILD FRANCHISED DISTRIBUTORS

UNITED STATES AND CANADA

ALABAMA
HALLMARK ELECTRONICS
4739 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-8700 TWX: 810-726-2187
HAMILTON/AVNET ELECTRONICS
805 Oster Drive, N.W.
Huntsville, Alabama 35805
Tel: 205-533-1170
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

ARIZONA
HAMILTON/AVNET ELECTRONICS
2615 S. 21st Street
Phoenix, Arizona 85034
Tel: 602-275-7851 TWX: 910-951-1535
LIBERTY ELECTRONICS/ARIZONA
3130 N. 27th Avenue
Phoenix, Arizona 85016
Tel: 602-257-1272 TWX: 910-951-4282
MIRCO ELECTRONIC DISTRIBUTORS
2005 West Peoria Avenue
Phoenix, Arizona 85029
Tel: 602-944-2281
Telex: 668-403
CALIFORNIA
AVNET ELECTRONICS
10916 W. Washington Blvd.
Culver City, California 90230
Tel: 213-558-2345 TWX: 910-340-6364
BELL INDUSTRIES
Electronic Distributor Division
161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378

ELMAR ELECTRONICS

2288 Charleston Rd.
Mountain View, California 94042
Tel: 415-961-3611 TWX: 910-379-6437
HAMII.TON ELECTRO SALES
10912 W. Washington Blvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
HAMILTON/AVNET ELECTRONICS
575 E. Middlefield Road
Mountain View, California 94040
Tel: 415-961-7000 TWX: 910-379-6486
HAMILTON/AVNET ELECTRONICS
8917 Complex Drive
San Diego, California 92123
Tel: 714-279-2421
Telex: HAMAVELEC SDG 69-5415
G.S. MARSHALL COMPANY

9674 Telstar Avenue
El Monte, California 91731
Tel: 213-686-0141 TWX: 910-587-1565
G.S. MARSHALL COMPANY

17975 Skypark Blvd.
rvine, California 92707
Tel: 714-556-6400
G.S. MARSHALL COMPANY

8057 Raytheon Rd., Suite 1
San Diego, California 9211
Tel: 714-278-6350 TWX: 910-335-1191

IBERTY ELECTRONICS

124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7111
LIBERTY ELECTRONICS/SAN DIEGO
8248 Mercury Court
San Diego, California 92111
Tel: 714-565-9171 TWX: 910-335-1590

COLORADO

ELMAR ELECTRONICS
6777 E. 50th Avenue
Commerce City, Colorado 80022
Tel: 303-287-9611 TWX: 910-936-0770
G.S. MARSHALL COMPANY

5633 Kendall Court
Arvada, Colorado 80002
Tel: 303-423-9670 TWX: 910-938-2902
HAMILTON/AVNET ELECTRONICS
5921 N. Broadway
el: 303-534-1212 TWX: 910-931-0510

CONNECTICUT
HAMILTON/AVNET ELECTRONICS
643 Danbury Road
Georgetown, Connecticut 06829
Tel: 203-762-0361
TWX: None - use 710-897-1405
(Regional Hq. in Mt. Laurel, N.J.)
HARVEY ELECTRONICS
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515
SCHWEBER ELECTRONICS
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500

FLORIDA

HALLMARK ELECTRONICS
1302 W. McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
HALLMARK ELECTRONICS
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
HAMILTON/AVNET ELECTRONICS
4020 North 29th Avenue
Hollywood, Florida 33021
Tel: 305-925-5401 TWX: 510-954-9808
SCHWEBER ELECTRONICS
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304
GEORGIA
HAMILTON/AVNET ELECTRONICS
6700 Interstate 85 Access Road, Suite 1E
Norcross, Ga. 30071
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

LYKES ELECTRONICS CORP.
1135 Chattahoochee Ave. N.W
P.O. Box 19837 - Station N.W

Atlanta Georgia 30318
Tel: 404-355-2223
SCHWEBER ELECTRONICS
4126 Pleasantdale Rd., Suite 14
Atlanta, Ga. 30340
Tel: 404-449-9170
ILLINOIS
ALLIED ELECTRONICS
1355 Sleepy Hollow Road
Elgin, Illinois 60120
Telex: 72-2465 or $72-2466$
KIERULFF ELECTRONICS
9340 Williams Street
Rosemont, Illinois 60018
Tel: 312-678-8560 TWX: 910-227-3166
HAMILTON/AVNET ELECTRONICS
3901 N. 25th Avenue
3901 N. 25th Avenue
Schiller Park, Illinois 60176
Tel: 312-678-6310 TWX: 910-227-0060
SCHWEBER ELECTRONICS, INC.
1380 Jarvis Ave
Elk Grove Village, III. 60007
Tel: 312-593-2740 TWX: 910-222-3453
SEMICONDUCTOR SPECIALISTS, INC (mailing address)
O'Hare International Airport
P.O. Box 66125

Chicago, lllinois 60666

(shipping address)

195 Spangler Avenue
Elmhurst Industrial Park
Elmhurst, Illinois 60126
Tel: 312-279-1000 TWX: 910-254-0169

INDIANA

GRAHAM ELECTRONICS SUPPLY, INC
133 So. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8486 TWX: 810-341-3481
PIONEER INDIANA ELECTRONICS, INC.
6408 Castleplace Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794

SEMICONDUCTOR SPECIALISTS, INC. (mailing address)
Weir Cook Airpor
P.O. Box 41630

Indianapolis, Indiana 46241
(shipping address)
1885 Banner Ave
Indianapolis, Indiana 46241
Tel: 317-243-8271 TWX: 810-341-3126

KANSAS

HAMILTON/AVNET ELECTRONICS
37 Lenexa Industrial Center
9900 Pflumm Road
Lenexa, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

LOUISIANA
STERLING ELECTRONICS CORP 4613 Fairfield
Metairie, Louisiana
Telex: STERLE LEC MRIE 58-328

MARYLAND

HAMILTON/AVNET ELECTRONICS
(mailing address)
riendship International Airport
P.O. Box 8647

Baltimore, Maryland 21240
(shipping address
7255 Standard Drive
Hanover, Maryland 21076
Tel 301-796-5000 TWX: 710-862-1861
Telex: HAMAVLECA HNVE 87.968
SCHWEBER ELECTRONICS
5640 Fisher Lane
Rockville, Maryland 20852
Tel: 301-881-2970 TWX: 710-828-0536
PIONEER WASHINGTON ELECTRONICS; INC 9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784

MASSACHUSETTS

GERBER ELECTRONICS
852 Providence Highway
U.S. Route 1

Dedham, Massachusetts 02026
Tel: 617-329-2400
HAMILTON/AVNET ELECTRONICS
185 Cambridge Street
Burlington, Massachusetts 01803
Tel: 617-273-2120 TWX: 710-332-1201
HARVEY ELECTRONICS
44 Hartwell Ave.
Lexington, Massachusetts 02173
Tel: 617-861-9200 TWX: 710-326-6617
KIERULFF ELECTRONICS
13 Fortune Drive
Billerica, Massachusetts 01865
Tel: 617-667-8331 (Local)
617.935-5134 (from Boston Area)

TWX: 710-390-1449
SCHWEBER ELECTRONICS
213 Third Avenue
Waltham, Massachusetts 02154
Tel: 617-890-8484

MICHIGAN

HAMILTON/AVNET ELECTRONICS
12870 Farmington Rd.
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775
PIONEER/DETROIT
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
SCHWEBER ELECTRONICS
86 Executive Drive
Troy. Michigan 48084
Tel: 313-583-9242
SHERIDAN SALES CO
24543 Indoplex Drive (P.O. Box 529)
Farmington, Mich. 48024
Tel: 313-477-3800

FAIRCHILD FRANCHISED DISTRIBUTORS (Cont'd) UNITED STATES AND CANADA

minnesota
HAMILTON/AVNET ELECTRONICS
7683 Washington Ave. South
Edina, Minnesota 55435
tel: 612-941-3801
TWX: None - use 910-227-0060 (Regional Hq. in Chicago. III.)
SCHWEBER ELECTRONICS
7015 Washington Ave. South
Edina, Minnesota 55435
Tel: 612-941-5280
SEMICONDUCTOR SPECIALISTS, INC. 3030 Cedar Avenue South
Minneapolis, Minnesota 55420 Tel: 612-854-8841 TWX: 910-576-2812

MISSISSIPPI

ELLINGTON ELECTRONICS SUPPLY, INC. 1425 Terry Road
Jackson, Mississippi 39204
Tel: 601-355-0561

missouri

HAMILTON/AVNET ELECTRONICS
400 Brookes Lane
P.O. Box 387

Hazelwood, Missouri 63042
Tel: 314-731-1144
Telex: HAMAVLECA HAZW 44-2348
SEMICONDUCTOR SPECIALISTS, INC
3805 N. Oak Trafficway
Kansas City, Mo. 64116
Tel: 816-452-3900 TWX: 910-771-2114
SEMICONDUCTOR SPECIALISTS, INC.
Lakeview Square
1020 Anglum Road
Hazelwood. Missouri 63042
Tel: 314-731-2400 TWX: 910-762-0645

NEW JERSEY

HAMILTON/AVNET ELECTRONICS
113 Gaither Drive
East Gate Industrial Park
Mt. Laurel, N.J. 08057
Tel: 609-234-2133 TWX: 710-897-1405
AMILTON/AVNET ELECTRONICS
218 Little Falls Road
Cedar Grove, New Jersey 07009
Tel: 201-239-0800 TWX: 710-994-5787

IERULFF ELECTRONICS

\#5 Industrial Drive
Rutherford, New Jersey 07070
Tel: 201-935-2120 TWX: 710-989-0225
TERLING ELECTRONICS
774 Pfeiffer Blvd.
Perth Amboy, N.J. 08861
Tel: 201-442-8000 Telex: $138-679$
SCHWEBER ELECTRONICS
43 Belmont Drive
Somerset, N.J. 08873
Tel: 201-469-6008 TWX: 710-480-4733

NEW MEXICO

CENTURY ELECTRONICS
121 Elizabeth, N.E
Albuquerque, New Mexico 87123
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625
HAMILTON/AVNET ELECTRONICS
2450 Baylor Dr. S.E.
Albuquerque, New Mexico 87119
el: 505-765-1500
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View. Ca.)
NEW YORK
HAMILTON/AVNET ELECTRONICS
167 Clay Road
Rochester. New York 14623
el: 716 -442-7820
TWX: None - use 710-332-1201 (Regional Hq. in Burlington, Mass.)

HAMILTON/AVNET ELECTRONICS 6500 Joy Road
Syracuse, New York 13057
Tel: 315-437-2642 TWX: 710-541-0959
HAMILTON/AVNET ELECTRONICS
70 State Street
Westbury. L.I.. New York 11590
Tel: 516-333-5800 TWX: 510-222.8237
ROCHESTER RADIO SUPPLY CO., INC.
140 W. Main Street
(P.O. Box 1971)
ochester. New York 14603
Tel: 716-454-7800

SCHWEBER ELECTRONICS
Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
SCHWEBER ELECTRONICS, INC.
2 Town Line Circle
Rochester. New York 14623
Tel: 716-461-4000
SEMICONDUCTOR CONCEPTS
195 Engineers Rd
Hauppauge, New York 11787
Tel: 516-273-1234 TWX: 510-227-6232
SUMMIT DISTRIBUTORS, INC
916 Main Street
Buffalo. New York 14202
Tel: 716-884-3450 TWX: 710-522-1692

NORTH CAROLINA

HALLMARK ELECTRONICS
3000 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-832-4465 TWX: 510-928-1831
KIRKMAN ELECTRONICS, INC
901 W. Second Street
Winston-Saiem, North Carolina 27108
Tel: 919-722-9131
PIONEER/CAROLINA ELECTRONICS
2906 Baltic Avenue
Greensboro, North Carolina 27406 Tel: 919-273-4441

OHIO
HAMILTON/AVNET ELECTRONICS
761 Beta Drive, Suite " E "
tel: 216.461-1400
TWX: None - use 910-227-0060
(Regional Hq. in Chicago, III.)
HAMILTON/AVNET ELECTRONICS
118 Westpark Road
Tel: 513-433-0610 TWX: 810-450-2531
PIONEER/CLEVELAND
4800 East 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600
PIONEER/DAYTON
1900 Troy Street
Dayton Ohio 45404
Tel: 513-236-9900 TWX: 810-459-1622
SCHWEBER ELECTRONICS
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
SHERIDAN SALES COMPANY
23224 Commerce Park Road
eachwood Ohio 44122
Tel: 216-831-0130 TWX: 810:427-2957
Sheridan sales co.
(mailing address)
$\xrightarrow{\text { P.O. Box } 37826}$ Cincinnati, Ohio 45222
(shipping address)
10 Knollicrest Drive
Reading, Ohio 45237
Tel: 513.761-5432 TWX: 810-461-2670

OKLAHOMA

ALLMARK ELECTRONICS
4846 South 83rd East Avenue
Tuisa, Oklahoma 74145
Tel: 918-835-8458 TWX: 910-845-2290

ENNSYLVANIA

HALLMARK ELECTRONICS. INC
458 Pike Road
Huntingdon Valley, Pennsylvania 19006
Tel: 215-355-7300 TWX: 510-667-1727
PIONEER/DELWARE VALLEY, INC
203 Witmer Rd.
Horsham, Pennsylvania 19044
Tel: 215-674-5710 (from Pennsylvania phones)
Tel: 609-541-1120 (from New Jersey phones)
IONEER ELECTRONICS. INC
560 Alpha Drive
Pittsburgh, Pennsyivania 15238
Tel: 412-782-2300 TWX: 710-795-3122

SHERIDAN SALES COMPANY 1717 Penn Ave.
Suite 5009
Pittsburgh, Pennsylvania 15221
Tel: 412-244-1640
SOUTH CAROLINA
DIXIE RADIO SUPPLY CO., INC
P.O. Box 408

1900 Barnwell Stree
Columbia, South Carolina 29202
Tel: 803-253-5333

TEXAS

HAMILTON/AVNET ELECTRONICS
4445 Sigma Road
Dallas. Texas 75240
el: 214-661-8661
Telex: HAMAVLECB DAL 73-0511
HAMILTON/AVNET ELECTRONICS
1216 West Clay
Houston, Texas 77019
Tel: 713-526-4661
Telex: HAMAVLECB HOU 76-2589
NORVELL ELECTRONICS, INC.
10210 Monroe Drive
(P.O. Box 20279)

Dallas, Texas 75220
Tel: 214-350-6771 TWX: 910-861-4512
NORVELL ELECTRONICS, INC.
6440 Hillcroft Avenue
Houston, Texas 77036
Tel: 713-774-2568 TWX: 910-881-2560
SCHWEBER ELECTRONICS, INC.
2628 Longhorn Blvd.
Austin, Texas 78758
Tel: 512-837-2890 TWX: 910-874-1359
SCHWEBER ELECTRONICS, INC.
14177 Proton Road
Dallas, Texas 75240
Tel: 214-661-5010 TWX: 910-860-5493
SCHWEBER ELECTRONICS, INC.
7420 Harwin Drive
Houston, Texas 77036
Tel: 713-784-3600 TWX: 910-881-1109
STERLING ELECTRONICS
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

UTAH

CENTURY ELECTRONICS
2150 South 300 West
Salt Lake City, Utah 84115
Tel: 801-487-8551
HAMILTON/AVNET ELECTRONICS
647 W. Billinis Rd.
Salt Lake City, Utah 84119
Tel: 801-262-8451
TWX: None - use 910-379-6486 (Regional Hq . in Mt. View, Ca.)

WASHINGTON

HAMILTON/AVNET ELECTRONICS
13407 Northrup Way
Bellevue, Washington 98005
Tel: 206-746-8750 TWX: 910-443-2449

LIBERTY ELECTRONICS

5305 2nd Ave. South
Seattle, Washington 98108
Tel: 206-763-8200 TWX: 910-444-1379
RADAR ELECTRIC CO., INC.
168 Western Avenue West
Seattle, Washington 98119
Tel: 206-282-2511

WISCONSIN

HAMILTON/AVNET ELECTRONICS
6055 N. Santa Monica Blvd
Whitefish Bay. Wisconsin 53717
Tel: 414-964-3482
MARSH ELECTRONICS. INC
6047 Beloit Road
Milwaukee, Wisconsın 53219
Tel: 414-545-6500 TWX: 910-262-3321
SEMICONDUCTOR SPECIALISTS, INC
10855 W. Potter Road
Wauwatosa, Wisconsin 53226
Tel: $414 \cdot 257 \cdot 1330$ TWX: 910-262.3022

FAIRCHILD FRANCHISED DISTRIBUTORS (Cont'd)
 UNITED STATES AND CANADA

CANADA

CAM GARD SUPPLY LTD.
640 42nd Avenue S.E.
Calgary, Alberta, T2G 1Y6, Canad
Tel: 403-287-0520 Telex: 03-822811
CAM GARD SUPPLY LTD.
10505 111th Street
Edmonton, Alberta, T5H 3E8, Canada
Tel: 403-426-1805 Telex: 03.72960
CAM GARD SUPPLY LTD.
4910 52nd Street
Red Deer, Alberta, T4N 2C8, Canada
Tel: 403-346-2088
CAM GARD SUPPLY LTD
825 Notre Dame Drive
Kamloops, British Columbia, V2C 5N8, Canada Kel: 604-372-3338
CAM GARD SUPPLY LTD. 1777 Ellice Avenue
Winnepeg, Manitoba, R3H OW5, Canada Tel: 204-786-8401 Telex: 07-57622

CAM GARD SUPPLY LTD.
Rookwood Avenue
Fredericton, New ${ }^{\text {Br }}$
Tel: 506-455-8891
CAM GARD SUPPLY LTD
15 Mount Royal Blvd.
Moncton, New Brunswick, E1C 8N6, Canada Tel: 506.855-2200

CAM GARD SUPPLY LTD.

Courtenay Center
Saint John, New Brunswick, E2L 2X6, Canada Tel: 506-657-4666 Telex: 01-447489

CAM GARD SUPPLY LTD.
3065 Robie Street
Halifax, Nova Scotia, B3K 4P6, Canada
Tel: 902-454-8581 Telex: 01.921528
CAM GARD SUPPLY LTD
1303 Scarth Street
Regina, Saskatchewan, S4R 27, Canada
Tel: 306-525-1317 Telex: 07-12667
CAM GARD SUPPLY LTD
1501 Ontario Avenue
Saskatoon, Saskatchewan, S7K 17, Canada
Tel: 306-652-6424 Telex: 07-42825
ELECTRO SONIC INDUSTRIAL SALES (TORONTO) LTD
1100 Gordon Baker Rd.
Willowdale, Ontario, M2H 3B3, Canada
Tel: 416.494 .1666 , 2 2H
Telex: ESSCO TOR 06-22030
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD
6291 Dorman Rd., Unit \#16
Mississauga, Ontario, L4V 1H2, Canada
Tel: 416-677-7432 TWX: 610-492-8867
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD.
1735 Courtwood Crescen
Ottawa, Ontario, K1Z 5L9, Canada
Ottawa, Ontario, K
Tel: 613-226-1700

HAMILTON/AVNET INTERNATIONAL (CANADA) LTD.
2670 Paulus Stree
St. Laurent, Quebec, H4S 1G2, Canada
Tel: 514-331-6443 TWX: 610.421-3731
R.A.E. INDUSTRIAL ELECTRONICS. LTD 1629 Main Street
Vancouver, British Columbia, V6A 2W5, Canada Tel: 604-687-2621 TWX: 610-929-3065
Telex: RAE-VCR 04-54550
SCHWEBER ELECTRONICS
2724 Rena Road
Mississauga, Ontario, L4T 3J9, Canada Tel: 416-678-9050

SEMAD ELECTRONICS LTD
625 Marshall Ave., Suite 2
Dorval, Quebec, H9P 1E1, Canada
Tel: 514-636-4614 TWX: 610-422-3048
SEMAD ELECTRONICS LTD
1111 Finch Ave. W., Suite 102
1111 Finch Ave. W., Suite 102 , Canada
Downsview, Ontario, M3J 2E5,
Tel: 416-635-9880 TWX: 610-492-2510
SEMAD ELECTRONICS LTD
1485 Laperriere Ave
Ottawa, Ontario, K1Z 7S8, Canada
Tel: 613-722-6571 TWX: 610-562-8966

FAIRCHILD SALES REPRESENTATIVES

 UNITED STATES AND CANADA

 UNITED STATES AND CANADA}

ALABAMA
CARTWRIGHT \& BEAN, INC.
901 Magnolia Drive, N.W. Huntsville, Alabama 35805 Tel: 205-533-3509

CALIFORNIA

CELTEC COMPANY
7380 Clairemont Mesa Blvd., Suite 109 San Diego, California 92111 Tel: 714-279-7961 TWX: 910-335-1512

CELTEC COMPANY
2041 Business Center Drive, Suite 211
Irvine, California 92664
Tel: 714-752-6111 TWX: 910-595-2512
CELTEC COMPANY
6767 Forest Lawn Drive
Los Angeles, California 90068
Tel: 213-874-6002 TWX: 910-321-2884
MAGNA SALES, INC.
3080 Olcott Street, Suite 210A
Santa Clara, California 95050
Tel: 408-985-1750 TWX: 910-338-0241

COLORADO

SIMPSON ASSOCIATES, INC
2552 Ridge Road
Littleton, Colorado 80120
Tel: 303-794-8381 TWX: 910-935-0719
CONNECTICUT
LORAC SALES, INC.
2777 Summer Street
Stamford, Connecticut 06905
Tel: 203-327-6238 TWX: 710-474-1763

FLORIDA

WMM ASSOCIATES, INC
101 Wymore Road, Suite 300
Altamonte Springs, Florida 32701
Tel: 305-862-4700 TWX: 810-853-0263
WMM ASSOCIATES, INC.
1822 Drew Street
Clearwater, Florida 33519
Tel: 813-447-2533 TWX: 810-866-4108
WMM ASSOCIATES, INC.
1628 E. Atlantic Blvd.
Pompano Beach, Florida 33060
Tel: 305-943-3091 TWX: 510-956-9891

GEORGIA

CARTWRIGHT \& BEAN, INC
P.O. Box 52846

90 W. Wieuca Square, Suite 155
Atlanta, Georgia 30342
Tel: 404-255-5262 TWX: 810-751-3220

INDIANA

LESEIE M. DEVOE COMPANY
7172 North Keystone Ave., Suite C
Indianapolis, Indiana 46240
Tel: 317-257-1227 TWX: 810-341-3284

KANSAS

B.C. ELECTRONIC SALES, INC

1015 West Santa Fe
Olathe, Kansas 66061
Tel: 913-782-6696 TWX: 910-749-6414

maryland

L.D. LOWERY

5801 Annapolis Road, Suite 500
Bladensburg, Maryland 20710
Tel: 301-277-6565 TWX: 710-826-9654

MASSACHUSETTS

SPECTRUM ASSOCIATES, INC. 888 Worcester Street
Wellesley, Massachusetts 02181 Tel: 617-237-2796 TWX: 710-348-0424

MICHIGAN

RATHSBURG ASSOCIATES
16621 E. Warren Ave.
Detroit, Michigan 48224
Tel: 313-882-1717 Telex: 23-5229

MINNESOTA

7710 Computer Avenue
Minneapolis, Minnesota 55435
Tel: 612-835-1777 TWX: 910-576-2740

MISSISSIPPI

CARTWRIGHT \& BEAN, INC
P.O. Box 3730

5250 Galaxy Drive, Suite J
Jackson, Mississippi 39207
Tel: 601-981-1368

MISSOURI

B.C. ELECTRONIC SALES, INC.

320 Brookes Drive, Suite 204
Hazelwood, Missouri 63042
Tel: 314-731-1255 TWX: 910-762-0600

NEW JERSEY

LORAC SALES, INC.
580 Valley Road
Wayne, New Jersey 07470
Tel: 201-696-8875 TWX: 710-988-5846

NEW YORK

ADVANCED COMPONENTS, INC
South Bay Road
P.O. Box 276

North Syracuse, New York 13212
Tel: 315-699-2671 TWX: 710-541-0439
LORAC SALES, INC.
275 Broadhollow Road
Melville, L.I., New York 11746
Tel: 516-293-2970 TWX: 510-224-6480
SPECTRUM SALES, INC.
65 Circuit Avenue
Tuckahoe, New York 10707
Tel: 914-793-1660
(Microwave Product Only)

NORTH CAROLINA

CARTWRIGHT \& BEAN, INC
625 Harwyn Drive
Charlotte, North Carolina 28215
Tel: 704-333-6457
CARTWRIGHT \& BEAN, INC
P.O. Box 11209

2415-G Crabtree Blvd
Raleigh, North Carolina 27604
Tel: 919-834-1186

OHIO

COMPONENTS, INC.
16600 Sprague. Rd., Suite 235
Interstate Plaza
Cleveland, Ohio 44130
Tel: 216-243-9200 TWX: 810-423-9435
COMPONENTS, INC.
9 Pierce Street
West Carrollton, Ohio 45449
Tel: 513-866-0661

PENNSYLVANIA

BGR ASSOCIATES
500 Office Center
Fort Washington Industrial Park
Fort Washington, Pennsylvania 19034
Tel: 215-643-4111 TWX: 510-665-1654

L.D. LOWERY

801 West Chester Pike
Broomall. Pennsylvania 19008
Tel: 215-356-5300 or $215 \cdot 528-5170$
TWX: 510-662-9072
TENNESSEE
CARTWRIGHT \& BEAN, INC
P.O. Box 4760

560 S. Cooper Street
Memphis, Tennessee 38104 Tel: 901-276-4442

CARTWRIGHT \& BEAN, INC
8501 Kingston Pike
Knoxville, Tennessee 37919
Tel: 615-693-7450
TEXAS
TECHNICAL MARKETING
4445 Alpha Road
Dallas, Texas 75240
Tel: 214-387-3601 TWX: 910-860-5158
TECHNICAL MARKETING
6430 Hillcroft, Suite 104
Houston, Texas 77036
Tel: 713.777-9228

WASHINGTON

QUADRA CORPORATION
1621 - 114th Avenue S.E
Suite 212
Bellevue, Washington 98004
Tel: 206-454-4946 TWX: 910-443-2318

WISCONSIN

ARSEN ASSOCIATES
10855 West Potter Road
Wauwatosa, Wisconsin 53226
Tel: 414-258-0529

CANADA

AVOTRONICS LIMITED
200 Consumers Road, Suite 200
Willowdale, Ontario, M2J 1P8, Canada
Tel: 416-493-9711

AVOTRONICS LIMITED

6600 Trans Canada Highway, Suite 750
Pointe Claire Quebec H9R 4S2 Canada
Tel: 514-697-2135 TWX: 610-422-3908 Telex: 05-821-762

FAIRCHILD SALES OFFICES

UNITED STATES AND CANADA

*HUNTSVILLE, ALABAMA

3322 So. Memorial Parkway 35801
Suite 92
Tel: 205-883-7020 TWX: 810-726-2214
PHOENIX, ARIZONA
4414 N. 19th Avenue 85015
Suite G
Tel: 602-264-4948 TWX: 910-951-1544
*LOS ANGELES, CALIFORNIA
6922 Hollywood Blvd. 90028
Suite 818
Tel: 213-466-8393 TWX: 910-321-3009
*SAN DIEGO, CALIFORNIA
83'33 Clairemont Mesa Blvd. 92111 Suite 109
Tel: 714-279-6021
SANTA ANA, CALIFORNIA
2101 East Fourth St. 92705
Bldg. B, Suite 185
Tel: 714-558-1881 TWX: 910-595-1109

SANTA CLARA, CALIFORNIA
3080 Olcott Street 95050
Tel: 408-244-1400 TWX: 910-338-0241
DENVER, COLORADO
7475 W. 5th Ave., Suite 100 Lakewood, Colo. 80226
Tel: 303-234-9292
STAMFORD, CONNECTICUT
2nd Floor
2777 Summers Street 06905
Tel: 203-348-7701 TWX: 710-474-1763
*ORLANDO, FLORIDA
Crane's Roost Office Park
303 Whooping Loop
Altamonte Springs, Fla. 32701
Tel: 305-834-7000 TWX: 810-850-0152
TAMPA, FLORIDA
12945 Seminole Blvd.
Florida Twin Towers Bldg. 2, Room 6
Largo, Fla. 33540
Tel: 813-585-3892
*MELVILLE, NEW YORK
275 Broadhollow Road 11746
Tel: 516-293-2900 TWX: 510-224-6480

CHICAGO, ILLINOIS
9950 W. Lawrence Avenue
Room 311
Schiller Park, III. 60176
Tel: 312-671-4660 TWX: 910-227-0051
FORT WAYNE, INDIANA
2118 Inwood Drive 46805
Suite 111
Tel: 219-483-6453 TWX: 810-332-1507
INDIANAPOLIS, INDIANA
7202 N. Shadeland 46250
Tel: 317-849-5412 TWX: 810-260-1793
BLADENSBURG, MARYLAND
5801 Annapolis Road 20710
Suite 500
Tel: 301-779-0954 TWX: 710-826-9654

BOSTON, MASSACHUSETTS

888 Worcester Street
Wellesiey Hills, Mass. 02181
Tel: 617-237-3400 TWX: 710-348-0424
*DETROIT, MICHIGAN
Westland Office Plaza
33300 Warren Avenue Suite 101
Westland, Mich. 48185
Tel: 313-425-3250 TWX: 810-242-2973
*MINNEAPOLIS. MINNESOTA
7600 Parklawn Avenue
Room 251
Edina, Minn. 55435
Tel: 612-835-3322 TWX:910-576-2944
WAYNE, NEW JERSEY
580 Valley Road 07490
Suite
Tel: 201-696-7070
ALBUQUERQUE, NEW MEXICO 2403 San Mateo N.E. 87110 Plaza \#2
Tel: 505-265-5601 TWX: 910-989-1186
BINGHAMTON, NEW YORK
3215 E. Main St. Suite 7
Endwell, NY 13760
Tel: 607-754-1094
ATLANTA, GEORGIA
1504 Idlehour Way
Tucker, Georgia 30084
Tel: 404-939-2595

POUGHKEEPSIE, NEW YORK

15 College View Ave. 12603 Tel: 914-452-4200 TWX: 510-248-0030

ROCHESTER, NEW YORK

260 Perinton Hills Office Park
Fairport, New York 14450
Tel: 716-223-7700
CLEVELAND, OHIO
6151 Wilson Mills Rd
Suite 101
Highland Heights, Ohio 44143
Tel: 216-461-8288 TWX: 810-427-9271

DAYTON, OHIO

4812 Frederick Road 45414
Suite 101
Tel: 513-278-8278 TWX: 810-459-1803

TULSA, OKLAHOMA
5321 S. Sheridan Road 74145
Suite 15
Tel: 918-663-7131
PHILADEPHIA, PENNSYLVANIA
Fort Washington Industrial Park
500 Office Center
Tel: 215-886-6623 TWX 510-665-1654
SENECA, SOUTH CAROLINA
27 Normandy Shores
Annex \#2, RFD \#1
Seneca, South Carolina 29678
Tel: 803-882-1760
DALLAS. TEXAS
13771 N. Central Expressway 75231
Suite 809
Tel: 214-234-3391 TWX: 910-867-4757
*HOUSTON, TEXAS
6430 Hillcroft 77036
Suite 102
Tel: 713-771-3547 TWX: 910-881-6278
MILWAUKEE, WISCONSIN
4642 76th Street
Suite 101
Greenfield, Wisconsin 53220
Tel: 414-282-5260

CANADA

Toronto Regional Office
SC
1590 Matheson Blvd. Unit 26
Mississauga, Ontario L4W 1J1, Canada
Tel: 416-625-7070 TWX: 610-492-4311
Fairchild Semiconductor
1385 Mazurette Suite 3
Montreal, Quebec, H4N 1G8, Canada
Tel: 514-382-2552 TWX: 610-421-3178

FAIRCHILD INTERNATIONAL DISTRIBUTORS

AUSTRIA AND
EASTERN EUROPE
Burisch GmbH \& Co. KG
Scheydgasse 3
A-1210 Wien
el: (0222) 387638
Telex: 13310
R.I.Z.

Bozidariceva 13
YU-41000 Zagreb
Telex: 21288

BENELUX
Sotronic S.A.
Rue Pere de Deken 14
B-1010 Bruxelles
Telex: 25141
Inelco Nederland BV Joan Muyskenweg 22 Tel: (020) 934824
Telex: 14622

FRANCE
Almex S.A.
48, Rue de I'Aubepine Z.I.
Tel: 6662112
Telex: 28823
Almex (Aldrodis)
40 Rue Villon
Tel: (1) 69595
Disten S.A.
Filiale de Scaib
32. Place de la Loire, Zone Silic 94150 Rungis
Tel: 6866663
R.E.A. Distribution
57. Rue Henri Litolff
92270 Bois-Colombes

92270 Bois-Colombes
rel: 7847119
Telex: 63694
Scientech S.A.

1. Avenue Ferdinand Buisson

75016 Paris
el: 6099136
Telex: 26042
SFDI
3, Rue Rixens
31200 Toulouse
Tel 61485739

GERMANY

Dohrenberg
1000 Berlin 30
Tel: (030)
$2138043-45$
Telex: 0184860
Unitronic GmbH \& Co. KG
2360 Bad Segeberg
Lindhofstr. 3
Tel: (0455) 20 65/20 65
Telex: 0261646
Unitronic GmbH Co. KG
3160 Lehrte
Markscheider Weg 41
Tel: (05132) 53001 - 3
Telex: 0922084
Unitronic GmbH, Ing. R. Breiden
4000 Duesseldorf 30
4000 Duesseldorf 30 An der Thomaskirche 50A
An der Thomaskirche 50A
Tel: (0211) $624439 / 634214$
Telex: 08586434
Berger Elektronik GmbH
6000 Frankfurt
Am Tiergarten 14
Tel: (0611) 490311
Telex: 0412649
Elcowa GmbH
6200 Wiesbaden-Schierstein
Zeilstrasse 32
Tel: (06121) 230 01/2
Telex: 04186202

GERMANY
Electronic 2000
7000 Stuttgart 1
Weisstannen 10
Tel: (0711) 2329 27/28
Telex: 0722179
Technoprojekt
7000 Stuttgart 50
Heinrich-Ebner-Str. 13
Tel: (0711) 561712
Telex: 07254490
Electronic 2000
8000 Muenchen 80
Neumarkter Str. 75
Tel: (089) 434061
Telex: 0522561
Unitronic GmbH
8019 Ebersberg
Hochfelln 4
Tel: (08092) 21333
Electronic 2000
8501 Eckental
Rodelhang 7
Tel: (09126) 8401

ITALY
 AEP

Via Terracina 311
80125 Napoli
Tet: (081) 630006
Adelsy S.a.S.
Via Savigno 5
40141 Bologna
Tel: (051) 4706 22/48 1149
Gagliardi S.n.C.
Via Vacchieri 8
10093 Collegno (Torino)
Tel: (011) 78081 - 84
Telex: 20270
Marini Nicola
Via Silvati 415
80141 Napoli
Tel: (081) 299703
Microlem S.a.S.
Via Monteverdi 5
20131 Milano
Tel: (02) 2203 17/22 0326
Pantronic S.r.L.
Via della Mendola 10
00135 Roma
Tel; (06) 3248 66/3 288048
Silverstar S.p.A.
Via dei Gracchi 20
Tel
Tel: (O2) 4996
Telex: 32634

SCANDINAVIA
E. Friis-Mikkelsen A/S

51 Krogshojvej
DK-2880 Bagsvaerd
Tel: (02) 986333
Telex: 22350
Findip AB
Teollisuustie 7
P.O. Box 34

SF-02700 Kauniainen
Tel: (90) 502255
Telex: 123129
Datamatik AS
Pstersjoveien 62
Oslo 6, Norway
Tel: (02) 266330
Telex: 16067
Nordquist \& Berg
P.O. Box 9145

S- 10272 Stockholm
Tel: (08) 690400
Telex: 10407

UNITED KINGDOM
Comway Electronics Lidd.
John Scott House
Market Street
Bracknell, Berks. RG12 1 JU
el: Bracknell (0344) 247 65/2 4571
Telex: 847201
Gothic Electronics Ltd.
Beacon House
Hampton Street
Birmingham 19B9 31P
Tel: (021) 236 5060/236 8541
Telex: 338731
I.T.T. Electronics Services

Edinburgh Way
Harlow Essex
Tel: Harlow (02796) 26871
Telex: 81146

Macro Marketing Ltd.
396 Bath Road
Slough, Bucks
Tel: Slough (0753) 35444
Burnham (06286) 63011
Telex: 847083

Salford Electrical Instruments Ltd.
Peel Works, Barton Lane
Eccles Manchester M30 8HL
Tel: (061) 7895081
Telex: 667711
S.C. European Components Ltd.

Unit 9, M 40 Industrial Centre
Coronation Road
High Wycombe, Bucks.
Tel: (9494) 36146
Telex: 837163
Superdis Ltd.
41 Loverock Road
Reading RG3 IED, Berks.
Tel: (0734) 594933
Telex: 847147
Neltronics Ltd.
John F. Kennedy-Road.
Naas Road
Dublin 12, Ireland
Tel: (Dublin) 501845
Telex: 4837
Telex: 4837

OTHER

W. Moor AG

Bahnstr. 58
CH-8105 Regensdorf
Tel: (01) 8406644
Telex: 52042
STG International Ltd
52 Nachlat Benyamin Street
P.O. Box 1275

Tel Aviv, Israel
Telex. 33229
Suin
Espronceda 200-206
Barcelona 5, Spain
rel: (03) 3072204
Teknim Ltd.
Tersani Cad. Kut Han No. 38/605
Karahoy, Istanbul
Turkey
Tel: 444033
Telex: 23540

Teknim Ltd.
Riza Sah Pehlevi Cad. 7
Kavaklidere, Ankara
Turkey
Tel: 275800
Telex: 42155
Fairmont Electronics (Pty.) Ltd
"Northwards"
Jan Smuts Avenue, Craighall Park
Johannesburg 2001, S. Africa
Johannesturg 2001, S. Africa
Tel: (48) $6421 / 6481-2 / 7613$
Telex: 83227

INTERNATIONAL FIELD SALES OFFICES

AUSTRALIA

Fairchild Australia Pty. Ltd A.D.C. Pacific Building 77 Pacific Highway
North Sydney, N.S.W. 2060

Australia

Tel: 929-6711
Telex: AA20053 FAIRSYD
(mailing address)
P.O. Box 450

North Sydney, N.S.W. 2060
Australia

AUSTRIA

Fairchild Electronics
A-1010 Wien
Schwedenplatz 2
Tel: 0222635821 Telex: 75096

BRAZIL

Fairchild Electronica Ltc.
Caixa Postal 30407
Rua de Consola Cao, 3542
Sao Paulo S.P., Brazil
Tel: 81-6168 Telex: 021-261
Cable: FAIRLEC

FRANCE

Fairchild Semiconducteurs S.A.
121. Avenue d'talie

75013-Paris
Tel: 5805566 Telex: 20614

GERMANY

Fairchild Halbleiter GmbH
Verkaufsleitung Deutschland
8 Muenchen 80
Truderinger Str. 13
Tel. (0 89) 47019
Telex: 524831 fair d

Fairchild Halbleiter GmbH
European Headquarters
62 Wiesbaden 12
Hagenauer Str.
Postfach 9549
Tel: 061212051 Telex: 04186588
Fairchild Halbleiter GmbH
3000 Hannover
Koenigsworther Strasse 23
Tel: 051117844 Telex: 0922922
Fairchild Halbleiter GmbH
7251 Leonberg
Poststr. 37
Tele: 0715241026 Telex: 07245711
Fairchild Halbleiter GmbH
85 Nuernbergit;
Waldlustsrasse 1
Tel: 0911407005 Telex: 0623665

HONG KONG

Fairchild Semiconductor (HK) Ltd
135 Hoi Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel: K-890271 Telex: HKG-531

ITALY

Fairchild Semiconduttori, S.p.A.
Via Citta' Di Castello, 13
00191 Roma, Italy
Tel: 003963274006
Fairchild Semiconduttori S.p.A.
Via Rosellini, 12
20124 Milano. Italy
Tel: 003926887451 Telex: 36522

JAPAN

TDK-Fairchild
Sanyo Kokusaku Pulp Bldg. 2nd FI.
7-8 Shibuya 1-Chome
Shibuya-ku
Tokyo 150, Japan
Tel: 03-400-8351 Telex: 2424173

MEXICO

Fairchild Mexicana S.A.
Blvd. Adolfo Lopez Mateos No. 163
Mexico 19, D.F
Tel: 905-563-5411 Telex: 017-71-038

SCOTLAND

Fairchild Semiconductor Ltd.
Shiel House
Craigshill -
Livingston
West Lothian, Scotland
Tel: 004458932891
Telex: 005172629

SWEDEN

Fairchild Semiconductor AB
Svartensgatan 6,
11620 Stockholm
Sweden
Tel: 00468-449255 Telex: 0054-17759
TAIWAN
Fairchild Semiconductor (Taiwan) Ltd.
Hsietsu Building. Room 502
47 Chuing Shan North Road
Sec. 3. Taipei, Taiwan
Tel: 573205 thru 573207
THE NETHERLANDS
Fairchild Semiconductor
Paradijslaan 39
Eindhoven, Holland
Tel: 0031-4067727 Telex: 0044-51024

UNITED KINGDOM

Fairchild Semiconductor Ltd.
Kingmaker House
Station Road
Herts EN5 1NX England
Tel: 004414407311 Telex: 0051262835

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice
Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product. No other circuit patent licenses are implied. Printed in U.S.A./ 2020-12-0001-065/50M

[^0]: X = Don't Care

 * = Output HIGH Impedance State
 $\mathrm{D}_{\mathrm{n}}=$ Data at Addressed Location
 $\dagger=$ Chip Selected

[^1]: NOTE 1: See DC Requirements.

[^2]: Notes on following page.

[^3]: *The 3851 FAIR-BUG PSU is a fixed programmed Fairchild 3851 PSU which provides the programmer with all its I / O subroutines and allows the programmer to display or alter memory and register contents via a teletype ter minal.

[^4]: ${ }^{1} 3854$ receives two control signals from external decoding device. ${ }^{2}$ Internal pull-up resistor to $V_{\text {DD }} \quad{ }^{3}$ External pull-up resistor required.

[^5]: * Both $V_{S S}$ lines are internally connected; either one or both may be used.

[^6]: *These devices are members of the new RCA Series B CMOS. All Fairchild F4000 Series CMOS devices are direct pin-for-pin replacements for RCA's Series A and Series B CMOS.
 ** This device is a functional equivalent only.
 *** This device is a pin-for-pin compatible if leads 4 and 8 are tied together.

[^7]: L = LOW Level
 $\mathrm{H}=\mathrm{HIGH}$ Level
 $J=$ Positive-Going Transition
 $X=$ Don't Care

[^8]: Notes on the following page.

[^9]: $H=$ HIGH Level
 L = LOW Levẹl
 $X=$ Don't Care
 $*=$ Depends upon the BCD code applied during the LOW-to-HIGH transition of EL.

[^10]: $H=$ HIGH Level
 L $=$ LOW Level
 $E L=H I G H$

[^11]: Notes on following page

[^12]: L = LOW Level
 H = HIGH Level

[^13]: X = Don't Care
 L = LOW Level $\mathrm{H}=\mathrm{HIGH}$ Level

[^14]: Nates on following page.

[^15]: $V_{D D}=\operatorname{Pin} 16$
 $V_{S S}=P$ in 8
 $\bigcirc=P$ in Number

[^16]: This single compact regulator with its 500 mA capability is sufficient for all but the very largest CMOS systems. The adjustable output voltage feature allows fine tuning of system speed product.

 - OUTPUT CURRENT IN EXCESS OF 0.5 A
 - POSITIVE OUTPUT VOLTAGE 5 TO 30 V
 - INTERNAL THERMAL OVERLOAD PROTECTION
 - INTERNAL SHORT CIRCUIT CURRENT PROTECTION
 - OUTPUT SAFE AREA PROTECTION
 - POWER MINI DUAL IN-LINE PACKAGE
 $\mu A 78$ MGCONNECTION DIAGRAM
 DIP (TOP VIEW)

 NOTE: Heat sink tabs connected to common

