HUGHES AIRCRAFT COMPANY

HUGHES

HUGHES AIRCRAFT COMPANY

i

HUGHES CMOS DATABOOK

A.S. lighting lighting lighting in the 1 3. 4. 5

SOLID STATE PRODUCTS

1982 CMOS DATABOOK

1982

Hughes-Solid State Products reserves the right to make revisions at any time without advance notice.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor infringement on patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

	TABLE OF CONTENTS Product Selection Guide Nomenclature	Table of Contents
Π	CMOS NONVOLATILE MEMORIES Electrically Erasable PROMs H3000 Programmer	EEPROMs
Ш	CMOS LCD DRIVERS Direct Drive LCD Drivers Dot Matrix LCD Drivers Auto-Refresh Controllers/Drivers	LCD Drivers
IV	CMOS MEMORIES Random Access Memories Read Only Memories	RAMs ROMs
V	1800 MICROPROCESSOR FAMILY Central Processing Unit Peripherals	CPU Peripherals
VI	SPECIAL PURPOSE PRODUCTS	Special Purpose
VII	MILITARY/HI REL	Military/ Hi Rel
VIII	MANUFACTURING FLOWS	Manu. Flows
IX	PACKAGING AND ORDERING	Packaging & Ordering
x	REPRESENTATIVES AND DISTRIBUTORS	Reps. & Distr.

PRODUCT SELECTION GUIDE

CMOS EEPROMs

Device	Size	Organization	Access Time (Typ.)	Read Supply Voltage	Erase/ Program Time	Endurance (Typ.)	Data Retention	CS Function To Enable EEPROM	No. of Pins
HNVM 3004	4096	512 x 8	500 ns	4-6V	100 μs @ 17V/byte	10 ⁴ cycles	10 yrs at 125 ⁰ C	no	24
HNVM 3704	4096	512 x 8	500 ns	4-6V	1 msec @ 16V/byte	10 ² cycles	10 yrs at 125 ⁰ C	no	24
HNVM 3008	8192	1024 x 8	500 ns	4-6V	100 μs @ 17V/byte	10 ⁴ cycles	10 yrs at 125 ⁰ C	no	24
HNVM 3108	8192	1024 x 8	500 ns	4-6V	100µs @ 17V/byte	10 ⁴ cycles	10 yrs at 125°C	yes	24
HNVM 3708	8192	1024 x 8	500 ns	4-6V	1 msec @ 16V/byte	10 ² cycles	10 yrs at 125 ^o C	no	24

CMOS LCD DRIVERS

Device	Type of Drive	Input	Output	Buffer Size	Supply Voltage	Cascadable	No. of Pins
HLCD 0437	Direct Segment	4 Bit BCD	28 Segments (4 x 7)	28 Bits	3-15V	Yes	40
HLCD 7211-1	Direct Segment	4 Bit Multiplexed	Hexidecimal 28 Segments (4 x 7)	28 Bits	3-6V	Yes	40
HLCD 7211-2	Direct Segment	4 Bit Multiplexed	Code B 28 Segments (4 x 7)	28 Bits	3-6V	Yes	40
HLCD 7211-3	Direct Segment	4 Digit Select Microprocessor Interface	Hexidecimal 28 Segments (4 x 7)	28 Bits	3-6V	Yes	40
HLCD 7211-4	Direct Segment	4 Digit Select Microprocessor Interface	Code B 28 Bit 28 Segments (4 x 7)		3-6V	Yes	40
HLCD 0438A	Direct Segment	1 Bit Serial	32 Segments	32 Bits	3-10V	Yes	40
HLCD 0488	Multiplexed	4 Bit Parallel	16 Rows x 16 Columns	32 Bits	3-8V	Yes	40
HLCD 0538A	Multiplexed	Serial	8 Rows x 26 Columns	34 Bits	3-10V	Yes	40
HLCD 0539A	Multiplexed	Serial	34 Columns	34 Bits	3-10V	Yes	40
HLCD 0540	Multiplexed	Serial	32 Rows or 32 Columns	31 Bits	3-12V	Yes	40
HLCD 0541	Multiplexed	4 Bit Parallel	8 Rows x 23 Columns	32 Bits	3-12V	Yes	40
HLCD 0542	Multiplexed	4 Bit Parallel	32 Columns	32 Bits	3-12V	Yes	40
HLCD 0548	Multiplexed	Serial	16 Rows x 16 Columns	200 Bits	3-12V	Yes	40
HLCD 0607A	Multiplexed	Serial	4 Rows x 30 Columns	34 Bits	3-12V	Yes	40
HLCD 0515	Multiplexed Auto-Refresh	Serial	8 Rows x 25 Columns	32 Bits	5-10V	Yes	40
HLCD 0550	Multiplexed/ Auto-Refresh	8 Bit Parallel/ASCII	8 Rows x 12 Columns	32 Char	3-10V	Yes	40
HLCD 0551	Multiplexed/ Auto-Refresh	Serial	34 Columns	34 Bits	3-10V	Yes	40

PRODUCT SELECTION GUIDE_____

CMOS ROMs

			Acces (Ty	is Time /p.)	Temperature Range		Supply \		No. of	
Device	Size	Organization	5V	10V	Ceramic	Plastic	Low Voltage	High Voltage	Output	Pins
HCMP 1831	4096	512 x 8	850 ns	400 ns	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	3-state	24
HCMP 1832	4096	512 x 8	850 ns	400 ns	-55 to +125°C	-40 to +85°C	4-6.5V	4-10.5V	3-state	24
HCMP 1833	8192	1024 × 8	650 ns	350 ns	–55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	3-state	24
HCMP 1834	8192	1024 × 8	575 ns	350 ns	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	3-state	24
HCMP 1835	16384	2048 × 8	900 ns	500 ns	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	3-state	24
HCMP 23C16	16834	2048 × 8	900 ns	500 ns	-55 to +125°C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	3-state	24
HCMP 1837	32768	4096 × 8	750 ns	450 ns	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	3-state	24
HCMP 23C32	32768	4096 x 8	750 ns	450 ns	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	3-state	24
HCMP 23C64	65536	8192 x 8	300 ns	-	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	3-state	24

CMOS RAMs

			Access (Ty	s Time /p.)	Temperature Range		Supply V		No. of	
Device	Size	Organization	5V	10V	Ceramic	Plastic	Low Voltage	High Voltage	Output	Pins
HCMP 1822C	1024	256 x 4	250 ns	-	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	-	3-state	22
HCMP 1823C	1024	128 × 8	250 ns	-	-55 to +125 ^o C	-40 to +85 ^o C	4-6.5V	-	3-state	24
HCMP 1824	256	32 x 8	400 ns	200 ns	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	3-state	18

1800 MICROPROCESSOR FAMILY

		Temperature Range		Voltage	e Range	No. of
Device	Description	Ceramic	Plastic	Low Voltage	High Voltage	Pins
HCMP 1802A	$\mbox{CPU}-8$ Bit Parallel with 3.2 MHz clock at $5\mbox{V}$	-55 to +125 ⁰ C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	40
HCMP 1802B	CPU-8 Bit Parallel with 5 MHz clock at 5V	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	-	40
HCMP 1852	INPUT/OUTPUT PORT - 8 Bit Parallel with mode programmable 3-state data bus	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4~10.5V	24
HCMP 1853	N-BIT DECODER - 1 of 8 Decoder for I/O Expansion	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	16
HCMP 1854A	UART – Full duplex organization with serial/ parallel inputs/outputs	-55 to +125°C	-40 to +85 ⁰ C	4-6.5V	4-10.5V	40
HCMP 1855	MULTIPLY/DIVIDE -8×8 Multiply or 16 ÷ 8 Divide with bi-directional 3-state data bus	–55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	28
HCMP 1856/57	BUFFER/SEPARATOR – 4 Bit with bi-directional 3-state data bus	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	16
HCMP 1858/59	LATCH/DECODER – 4 Bit Memory Address to select 1K RAMS	-55 to +125 ⁰ C	-40 to +85 ^o C	4-6.5V	4-10.5V	16

_HUGHES SOLID STATE PRODUCTS

NOMENCLATURE

PACKAGE

- D = Ceramic DIP
- H = Dice
- L = Leadless Chip Carrier
- P = Plastic DIP
- Y = Cerdip

DEVICE FAMILY

- HNVM = Hughes Nonvolatile Memories
- HLCD = Hughes Liquid Crystal Display Drivers
- HCMP = Hughes Commercial Microprocessor Products
- HMMP = Hughes Military Microcomputer Products

. .

HUGHES SOLID STATE PRODUCTS

÷.

512 x 8 CMOS EEPROM

HNVM 3004

DESCRIPTION

EXTENDED ENDURANCE EEPROM

The HNVM 3004 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) organized 512 x 8. It is ideal for applications where large amounts of data must occasionally be altered and then stored during power down conditions such as program storage, data tables or data collection.

Erasing and programming are accomplished by applying low level signals to the control inputs \overline{OE} or \overline{CE} while the power supply volage VDD is elevated to +VPP. The bulk erase (entire memory) and byte programming both require 100 µsec per operation with +VPP at +17V.

All read operations are performed with V_{DD} at a nominal 5 volts. The falling edge of the Chip Enable signal (\overline{CE}) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable (\overline{OE}) is a low level and Chip Select (CS) is a high level.

The HNVM 3004 is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package.

FEATURES

- Nonvolatile storage of 4096 bits, organized as 512 x 8
 CMOS fabrication for: Low power operatio
- Electrically erasable and programmable in-circuit. No UV light required.
- Extended endurance.
- Fast erase time 100 µsec
- Fast programming time 100 μsec/byte or 50 msec for all 4K bits.
- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and T²L compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and T²L.

		/		1				
MA7		1.	24					
MA6		2	23	MA8				
MA5	\square	3	22	SEL ¹				
MA4		4	21	cs				
MA3		5	20					
MA2		6	19	NC NC				
MA1		7	18					
MA0		8	17	BUS 7				
BUS 0		9	16	BUS 6				
BUS 1		10	15	BUS 5				
BUS 2		11	14	BUS 4				
GND		12	13	BUS 3				

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

MAXIMUM RATINGS

DC Supply Voltage Range	-0.3 to + 18V
(All Voltages referenced to GND terminal)	
Input Voltage Range	-0.3 to VDD + 0.3V
Operating Temperature Range	55
Ceramic Package	-55 to + 125°C
Plastic Package	-40 to + 85°C
Storage Temperature Range	-65 to + 150°C

ELECTRICAL SPECIFICATION $T_A = 25^{\circ}C$, $V_{DD} = 5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Read	+V _{DD}	-	4	5	6	v
Supply Voltage, Program (See Note	1) +Vpp	-	15	-	18	v
Quiescent Current	١a	Inputs = GND or V _{DD}	-	-	100	μA
Operating Current	IDD1	$f = 100 \text{ KH}_{z}; V_{DD} = 5V$	-	0.5	1	mA
High Voltage Current	IDD2	V _{DD} = 17V, Inputs = GND or \	1	3	mA	
High Voltage Current	IDD3	V _{DD} = 17V, Inputs = 5V	-	15	20	mA
Outputs	· · · · · · · · · · · · · · · · · · ·					
Low Level	VOL	open	0	-	0.05	v
Low Level	VOL	IL = 1.6 mA	-	-	0.4	v
High Level	∨он	open	4.95		5	v
High Level	∨он	I _H = -1 mA	4	-	-	v
3-State Output Leakage	IOL	$V_{DD} = 5V$	-	-	±1	μA
3-State Output Leakage	IOL	V _{DD} = 17V	-	~~	±1	μΑ
Inputs						
Low Level	VIL	V _{DD} = 5V	-	-	0.8	v
Low Level	VIL	V _{DD} = 17V	-	-	0.6	v
High Level	VIH	V _{DD} = 5V	2.5	1.5	-	v
High Level	VIH	V _{DD} = 17V	3.5	2.5	-	v
Leakage Low	ار	V _{DD} = 5V	-	-	±1	μA
		V _{IN} = 1V				
Endurance (number of	-	V _{DD} = +16V,	- 1	104	-	Cycles
erase/program cycles)		Program Time = 1 msec				
Retention Time		T = 125°C		10	-	yr

Note 1 — Erase/program time is a function of Vpp — see characteristic curve. **TIMING SPECIFICATIONS** Input $t_r = t_f = 10$ nsec, $C_L = 50_{pf}$, $T_A = 25^{\circ}C$, $V_{DD} = +5V$ or $+V_{PP}$

DESCRIPTIC	ON	FROM				то					SPECIFICATION					
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION																
Address Set-up Time	tASU	Address			×		ĈĒ		х				50		_	nsec
Address Hold Time	^t AH	CE		х			Address			x			100	50	-	ns∋c
Access Time	^t ACE	CE		х			Data				×		-	500	650	nsec
Output Enable Time	^t AOE	ŌE		x			Data				×		-	250	325	nsec
Chip Select Time	tACS	CS	х				Data				×		-	200	260	nsec
Output Disable Time	^t DOE	ŌE	х				Data					x	-	300	-	nsec
Chip Deselect Time	tDCS	CS		х			Data					x	-	400	-	nsec
Chip Disable Time	^t DCE	CE	х				Data					×	-	300	-	nsec
Cycle Time (See Note 2)	tCYC	CE		x			CE		х					0.95	1.75	μsec
ERASE OPERATION																
Vpp Set-up Time	^t VPSU	V _{DD}	x				ŌĒ		x				5	-	-	μsec
Erase Width (See Note 3)	tOEW	ŌE		×			ŌE	х					0.1	-	10	msec
PROGRAM OPERAT	ION															
Vpp Set-up Time	^t VPSU	VDD	x				CE		x			1	5	-	-	μsec
Write Width (See Note 3)	tCEWP	ĈĒ		x			CE	x					0.1	-	10	msec
Data Set-up Time	^t DSU	Data			x		ĈE		х				-	200	-	nsec
Data Hold Time	^t DH	CE	×				Data			×			-	200	-	nsec
Address Set-up Time	^t ASUP	Address			×		ĈĒ		х				-	200	-	nsec
Address Hold Time	tAHP	CE		x			Address			×			-	200	-	nsec

Note 2 — CE low = 650 nsec. 3 — Erase/program time is a function of Vpp — see characteristic curve.

TIMING DIAGRAMS

OPERATING MODES

The HNVM 3004 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3004 functions as a normal CMOS ROM. When the power input (V_{DD}) is raised to + V_{PP} , the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:

READ MODE The circuit reads addresses on the falling edge of \overline{CE} and latches the accessed data until \overline{CE} goes high again. The latched data will appear at the outputs whenever \overline{CE} is low, CS is high, and \overline{OE} is low.

ERASE MODE A Block Erase (all 0's in memory) is accomplished by setting \overline{CE} and \overline{OE} high, raising the positive supply to + Vpp and then pulsing \overline{OE} low. When the circuit internally senses the + Vpp voltage, it floats the outputs, preventing + Vpp level signals from appearing on the data I/O bus.

PROGRAM MODE Programming consists of writing 1's into bits that contain a 0. A byte is programmed by setting \overline{CE} and \overline{OE} high, raising the positive supply to + VPP, and pulsing \overline{CE} low. The address lines must have valid data when \overline{CE} falls and the data to be programmed must be valid on the data I/O lines while \overline{CE} is low. A Program operation can follow an Erase while holding V_{DD} at + VPP, and several or all the bytes can be programmed with V_{DD} held at + VPP.

SUMMARY OF OPERATING MODES

State	ĈĒ	CS	ŌĒ	VDD	I/O Bus
Standby	1	X	X	+5	Floating
Standby	Х	0	х	+5	Floating
Standby	Х	х	1	+5	Floating
Read	O ¹	1	0	+5	Data Output
Standby ²	1	х	1	+Vpp	Floating
Erase	1	х	0 ¹	+VPP	Floating
Program	O1	х	1	+Vpp	Floating (Data Input)
Prohibited State	0	х	0	+V _{PP}	Floating (Data Input)
Notes a second to the second s					

Note 1 — Pulse to indicate state 2 — Recommended mode for $V_{\mbox{\scriptsize DD}}$ transitions to and from $V_{\mbox{\scriptsize PP}}$

PIN DESCRIPTIONS

MA0-MA8 Address inputs which select one of 512 bytes of memory for either Read or Program. The addresses are latched during the falling edge of CE.

- **BUS0-BUS7** Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.
- **GND** Negative supply terminal and V = 0 reference.
- **V**_{DD} Positive supply terminal. It is raised to + VPP for Erase and Program operations.
- CS Chip Select. A Logic Low disables the Data Output Drivers in all modes.
- **OE** Output Enable. A Logic High disables the Data Output Drivers in normal operation. If V_{DD} = + V_{PP}, a Logic Low performs a block erase operation.
- **CE** Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as \overline{CE} is held at Logic Low. If V_{DD} = + V_{PP}, a Logic Low performs a byte program operation.
- SEL The select input requires connection to GND for 3004-2 or to V_{DD} for 3004-1.

Additional EEPROM devices which are available from Hughes include the HNVM 3704 (512 x 8) aimed at specific applications where programming time and endurance are not critical.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834 7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data .ş

1024 x 8 CMOS EEPROM

HNVM 3008

DESCRIPTION

EXTENDED ENDURANCE EEPROM

The HNVM 3008 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) organized 1024 x 8. It is ideal for applications where large amounts of data must occasionally be altered and then stored during power down conditions such as program storage, data tables or data collection.

Erasing and programming are accomplished by applying low level signals to the control inputs \overline{OE} or \overline{CE} while the power supply voltage V_{DD} is elevated to +V_{PP}. The bulk erase (entire memory) and byte programming both require 100 µsec per operation with +V_{PP} at +17V.

All read operations are performed with V_{DD} at a nominal 5 volts. The falling edge of the Chip Enable signal (\overline{CE}) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable (\overline{OE}) is a low level and Chip Select (CS) is a high level.

The HNVM 3008 is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Devices in chip form (H suffix) are supplied upon request.

FEATURES

- Nonvolatile storage of 8192 bits, OCMOS fabrication for: organized as 1024 x 8
 Low power operation
- Electrically erasable and programmable in-circuit. No UV light required.
- Extended endurance.
- Fast erase time 100µsec
- Fast programming time 100 μsec/byte or 100 msec for entire memory
- FUNCTIONAL DIAGRAM

- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and T²L compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and T²L.

24 VDD MA7 1 2 MA8 23 MA6 ٦ MA5 3 22 MA9 CS 21 4 MA4 OE MA3 5 20 NC MA2 6 19 ĈĒ MA1 7 18 MA0 8 17 BUS 7 BUS 0 [9 16 BUS 6 BUS 1 [10 BUS 5 15 BUS 4 BUS 2 11 14 T BUS 3 GND 12 13

PIN CONFIGURATION

MAXIMUM RATINGS

DC Supply Voltage Range	−0.3 to +18V
(All Voltages referenced to GND terminal)	

Input Voltage Range	-0.3 to V _{DD} +0.3V
Operating Temperature Range	
Ceramic Package	- 55 to + 125°C
Plastic Package	-40 to +85°C
Storage Temperature Range	-65 to +150°C

ELECTRICAL SPECIFICATION $T_A = 25^{\circ}C$, $V_{DD} = 5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Read	+V _{DD}		4	5	6	v
Supply Voltage, Program (See Note	1) +V _{PP}	-	15	-	18	v
Quiescent Current	ΙQ	Inputs = GND or V _{DD}	-	-	100	μA
Operating Current	^I DD1	$f = 100 \text{ KH}_2; \text{ V}_{\text{DD}} = 5 \text{V}$		0.5	1	mA
High Voltage Current	^I DD2	V _{DD} = 17V, Inputs = GND or V	DD - DD	1	3	mA
High Voltage Current	IDD3	V _{DD} = 17V, Inputs = 5V	-	15	20	mA
Outputs						
Low Level	VOL	open	0	-	0.05	v
Low Level	VOL	I _L = 1.6 mA	-	-	0.4	v
High Level	V _{OH}	open	4.95	-	5	v
High Level	VOH	I _H = -1 mA	4	-	-	v
3-State Output Leakage	^I OL	$V_{DD} = 5V$		-	±1	μA
3-State Output Leakage	IOL	V _{DD} = 17V	-	-	±1	μA
Inputs						
Low Level	VIL	V _{DD} ≈ 5V	-	-	0.8	v
Low Level	VIL	V _{DD} = 17V	-	-	0.6	v
High Level	VIH	V _{DD} = 5V	2.5	1.5	-	v
High Level	VIH	V _{DD} = 17V	3.5	2.5	-	v
Leakage Low	١L	V _{DD} = 5V	-	-	±1	μA
		V _{IN} = 1V				
Endurance (number of	-	V _{DD} = +16V,	-	104	-	Cycles
erase/program cycles)		Program Time				
		= 1 msec				
Retention Time	-	T = 125°C		10	-	yr

Note 1 — Erase/program time is a function of Vpp — see characteristic curve.

TIMING SPECIFICATIONS Input $t_r = t_f = 10$ nsec, $C_L = 50_{pf}$, $T_A= 25^{\circ}C$, $V_{DD} = +5V$ or $+V_{PP}$

DESCRIPTIO	DESCRIPTION FROM			то				SPECIFICATION								
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION																
Address Set-up Time	^t ASU	Address			×		ĈĒ		x				50	-	-	nsec
Address Hold Time	^t AH	ĈĒ		x			Address			x			100	50	-	nsec
Access Time	TACE	CE		х			Data				×		-	500	650	nsec
Output Enable Time	^t AOE	ŌE		x			Data				×		-	250	325	nsec
Chip Select Time	^t ACS	CS	х				Data				×		-	200	260	nsec
Output Disable Time-	^t DOE	ŌĒ	х				Data					x	-	300	-	nsec
Chip Deselect Time	^t DCS	CS		x			Data					x	-	`400		nsec
Chip Disable Time	^t DCE	ĈĒ	х				Data					×	-	300	-	nsec
Cycle Time (See Note 2)	^t CYC	ĈĒ		×			ĈĒ		×				-	0.95	1.75	µsec
ERASE OPERATION																
Vpp Set-up Time	tVPSU	VDD	x				ŌĒ		x				5	-	-	μsec
Erase Width (See Note 3)	tOEW	ŌE		×			ŌĒ	×					0.1	-	10	msec
PROGRAM OPERAT	TION											[
Vpp Set-up Time	^t VPSU	VDD	x				CE	i	x				5		-	μsec
Write Width (See Note 3)	^t CEWP	ĈĒ		×			ĈĒ	×					0.1	-	10	msec
Data Set-up Time	^t DSU	Data			x		CE		X				-	200	-	nsec
Data Hold Time	^t DH	ĈĒ	x				Data			x			-	200	-	nsec
Address Set-up Time	tASUP	Address			×		CE		X				-	200	-	nsec
Address Hold Time	tAHP	CE		x			Address			×			-	200	-	nsec

Note 2 — CE low = 650 nsec. 3 — Erase/program time is a function of Vpp — see characteristic curve.

TIMING DIAGRAMS

OPERATING MODES

The HNVM 3008 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3008 functions as a normal CMOS ROM. When the power input (V_{DD}) is raised to + V_{PP} , the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:

READ MODE The circuit reads addresses on the falling edge of \overrightarrow{CE} and latches the accessed data until \overrightarrow{CE} goes high again. The latched data will appear at the outputs whenever \overrightarrow{CE} is low, CS is high, and \overrightarrow{OE} is low.

ERASE MODE A Block Erase (all 0's in memory) is accomplished by setting \overline{CE} and \overline{OE} high, raising the positive supply to + Vpp and then pulsing \overline{OE} low. When the circuit internally senses the + Vpp voltage, it floats the outputs, preventing + Vpp level signals from appearing on the data I/O bus.

PROGRAM MODE Programming consists of writing 1's into bits that contain <u>a</u> 0. A byte programmed by setting \overrightarrow{CE} and \overrightarrow{OE} high, raising the positive supply to + Vpp, and pulsing \overrightarrow{CE} low. The address lines must have valid data when \overrightarrow{CE} falls and the data to be programmed must be valid on the data I/O lines while \overrightarrow{CE} is low. A Program operation can follow an Erase while holding VDD at + Vpp, and several or all the bytes can be programmed with VDD held at + Vpp.

SUMMARY OF OPERATING MODES

State	CE	CS	ŌĒ	VDD	I/O Bus
Standby	1	х	Х	+5	Floating
Standby	X	0	Х	+5	Floating
Standby	Х	Х	1	+5	Floating
Read	01	1	0	+5	Data Output
Standby ²	1	х	1	+Vpp	Floating
Erase	1	Х	O ¹	+V _{PP}	Floating
Program	O1	Х	1	+V _{PP}	Floating (Data Input)
Prohibited State	0	Х	0	+VPP	Floating (Data Input)

Note 1 - Pulse to indicate state

2 — Recommended mode for V_{DD} transitions to and from + V_{PP}

PIN DESCRIPTIONS

MA0-MA9 Address inputs which select one of 1024 bytes of memory for either Read or Program. The addresses are latched during the falling edge of CE.

BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.

GND Negative supply terminal and V = 0 reference.

- **V**_{DD} Positive supply terminal. It is raised to + V_{PP} for Erase and Program operations.
- CS Chip Select. A Logic Low disables the Data Output Drivers in all modes.
- **OE** Output Enable. A Logic High disables the Data Output Drivers in normal operation. If V_{DD} = + V_{PP}, a Logic Low performs a block erase operation.
- **CE** Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as \overline{CE} is held at Logic Low. If V_{DD} = + V_{PP}, a Logic Low performs a byte program operation.

Additional EEPROM devices which are available from Hughes include the HNVM 3708 (1024 x 8) aimed at specific applications where programming time and endurance are not critical.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES

S SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach. CA 92663 Telephone (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany

Telephone. 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

DESCRIPTION

HUGHES

HUGHES AIRCRAFT COMPANY SOLID STATE PRODUCTS

EXTENDED ENDURANCE EEPROM

The HNVM 3108 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) organized 1024 x 8. It is ideal for applications where large amounts of data must occasionally be altered and then stored during power down conditions such as program storage, data tables or data collection.

Data modification is accomplished by first raising the power voltage, VDD to +VPP and selecting the device with CS high (+5V). Then, erasing or programming is controlled with T²L level signals to the appropriate control inputs \overline{OE} (Erase) and \overline{CE} (Program).

All read operations are performed with VDD at 5 volts. With CS at a high level, the falling edge of the Chip Enable signal (CE) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable (\overline{OE}) is a low level.

The Chip Select (CS) input for this device is functional in all modes, allowing for chip selection in the Read. Erase, or Program modes independent of OE and CE inputs.

The HNVM 3108 is available in a 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Devices in chip form (H suffix) are supplied on request.

FEATURES

- Nonvolatile storage of 8192 bits, organized as 1024 x 8
- Electrically erasable and programmable in-circuit. No UV light required
- Extended endurance
- Fast erase time 100 μsec.
- Fast programming time 100 Three-state outputs usec/byte, or 100 msec for all 8K bits

FUNCTIONAL DIAGRAM

- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and T²L compatible inputs
- compatible with CMOS, NMOS, PMOS, and T²L

an a					
MA7	1.	24		V _{DD}	
MA6	2	23		MA8	
MA5	3°	22		MA9	
MA4	4	21		CS	
MA3	5	20		ŌE	
MA2	6	19		NC	
MA1	7	18		CE	
MA0	8	17		BUS	7
BUS 0	9	16		BUS	6
BUS 1	10	15		BUS	5
BUS 2	11	14		BUS	4
GND	12	13		BUS	3
			•		

PIN CONFIGURATION

MAXIMUM RATINGS

DC Supply Voltage Range	-0.3 to +18V
Input Voltage Range Operating Temperature Range	-0.3 to V _{DD} $+0.3V$
Ceramic Package	-55 to +125°C
Storage Temperature Range	- 40 to + 85°C - 65 to + 150°C

ELECTRICAL SPECIFICATION $T_A = 25^{\circ}C$, $V_{DD} = 5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Read	+V _{DD}	-	4	5	6	v
Supply Voltage, Program (See Note	1) +V _{PP}		15	-	18	v
Quiescent Current	۱a	Inputs = GND or V _{DD}	-	-	100	μA
Operating Current	IDD1	$f = 100 \text{ KH}_2; \text{ V}_{\text{DD}} = 5 \text{V}$	-	0.5	1	mA
High Voltage Current	DD2	V _{DD} = 17V, Inputs = GND or V	dd -	1	3	mA
High Voltage Current	IDD3	V _{DD} = 17V, Inputs = 5V	-	15	20	mA
Outputs						
Low Level	VOL	open	0	-	0.05	v
Low Level	V _{OL}	iL = 1.6 mA	-	-	0.4	v
High Level	v _{он}	open	4.95	-	5	v
High Level	VOH	I _H = -1 mA	4	-	-	v
3-State Output Leakage	^I OL	$V_{DD} = 5V$	-	-	±1	μA
3-State Output Leakage	^I OL	V _{DD} = 17V		-	±1	μA
Inputs						
Low Level	VIL	V _{DD} ≈ 5V	-	-	0.8	v
Low Level	VIL	V _{DD} = 17V	-	-	0.6	v
High Level	ViH	V _{DD} ≈ 5V	2.5	1.5	-	v
High Level	VIH	V _{DD} = 17V	3.5	2.5	-	v
Leakage Low	١L	V _{DD} = 5V	-	-	±1	μA
		V _{IN} = 1V				
Endurance (number of	-	V _{DD} = +16V,	-	104	-	Cycles
erase/program cycles)		Program Time = 1 msec				
Retention Time	-	T = 125° C	-	10	-	٧r

Note 1 — Erase/program time is a function of Vpp — see characteristic curve.

TIMING SPECIFICATIONS Input $t_r = t_f = 10$ nsec, $C_L = 50_{pf}$, $T_A = 25^{\circ}C$, $V_{DD} = +5V$ or $+V_{PP}$

DESCRIPTIC	DESCRIPTION FROM			то					SPECIFICATION							
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION																
Address Set-up Time	^t ASU	Address			x		CE		x				50			nsec
Address Hold Time	^t AH	ĈĒ		х			Address			×			100	50	-	nsec
Access Time	^t ACE	CE		х			Data				x		-	500	650	nsec
Output Enable Time	^t AOE	ŌĒ		х			Data				x		-	250	325	nsec
Chip Select Time	^t ACS	CS	х				Data				x		-	500	650	nsec
Output Disable Time	^t DOE	ŌĒ	х				Data					x		300		nsec
Chip Deselect Time	^t DCS	CS		х			Data					×		400	-	nsec
Chip Disable Time	^t DCE	ĈĒ	х				Data					x		300	-	nsec
Cycle Time (See Note 2)	^t CYC	ĈĒ		x			ĈĒ		x				-	0.95	1.75	µsec
ERASE OPERATION																
Vpp Set-up Time	tVPSU	VDD	x				ŌĒ		×				5	-	-	µsec
Erase Width (See Note 3)	tOEW	ŌĒ		x			ŌĒ	х					0.1	-	10	msec
PROGRAM OPERAT	ION															
Vpp Set-up Time	^t VPSU	VDD	x				CE		x				5	-	-	µsec
Write Width (See Note 3)	tCEWP	CE		x			ĈĒ	x					0.1	-	10	msec
Data Set-up Time	^t DSU	Data			x		CE		x				-	200	-	nsec
Data Hold Time	^t DH	ĈĒ	×				Data			x			-	200	-	nsec
Address Set-up Time	TASUP	Address			×		CE		×				-	200	-	nsec
Address Hold Time	^t AHP	CE		×			Address			x			-	200	-	nsec

Note 2 — CE low = 650 nsec. 3 — Erase/program time is a function of VPP — see characteristic curve.

TIMING DIAGRAMS

21

OPERATING MODES

The HNVM 3108 has three modes of operation: Read, Block Erase and Byte Program, all enabled when the chip is selected (CS = high). In the Read Mode the HNVM 3108 functions as a normal CMOS ROM. When the power input (VDD) is raised to + VPP, the Erase or Program Mode is enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. An Erase Operation is required before re-writing over previously Programmed data. Detailed procedures for each mode follow:

READ MODE The circuit reads addresses on the falling edge of \overline{CE} and latches the accessed data until \overline{CE} goes high again. The latched data will appear at the outputs whenever CE is low. CS is high, and OE is low. A read is initiated with CS going high if \overline{CE} is already low.

ERASE MODE A Block Erase (all 0's in memory) is accomplished by setting CE and OE high, raising the positive supply to $+V_{PP}$ and then pulsing \overline{OE} low. When the circuit internally senses the $+V_{PP}$ voltage, it floats the outputs, preventing + Vpp level signals from appearing on the data I/O bus. Erasure can also be controlled by CS if OE is already low.

PROGRAM MODE Programming consists of writing 1's into bits that contain a 0. A byte is programmed by setting CE and OE high, raising the positive supply to + Vpp, and pulsing CE low. The address lines must have valid data when CE falls and the data to be programmed must be valid on the data I/O lines while CE is low. A Program operation can follow an Erase while holding $+V_{DD}$ at $+V_{PP}$, and several or all the bytes can be programmed with $+V_{DD}$ held at $+V_{PP}$. Programming can also be controlled by CS if \overline{CE} is already low.

SUMMARY OF OPERATING MODES

State	CE	CS	ŌĒ	VDD	I/O Bus
Standby (unselected) ¹	X	0	Х	X	Floating
Standby (unselected) ¹	1	1	1	Х	Floating
Standby (selected)	1	1	0	+ 5	Floating
Read	0	1	1	+5	Floating
Read	0	1	0	+ 5	Data Out
Erase	1	1	0	+ VPP	Floating
Program	0	1	1	$+ V_{PP}$	Data Input
Prohibited State	0	1	0	$+ V_{PP}$	Data Input

Note 1 — Recommended modes for VDD transition to and from + VPP. VDD should not fall below input levels during transition.

PIN DESCRIPTIONS

- **MA0-MA9** Address inputs which select one of 1024 bytes of memory for either Read or Program. The addresses need to be valid only during the falling edge of \overline{CE} .
- BUS0-BUS7 Bidirectional three-state data lines that are Data outputs during Read operation and Data inputs during Program operation.
- GND Negative supply terminal and V = 0 reference.
- VDD Positive supply terminal. It is raised to +VPP for Erase and Program operations.
- CS Chip Select. A Logic Low disables all control inputs in all modes.

OE Output Enable. A Logic High disables the Data Output Drivers in normal operation. If V_{DD} = + Vpp, a Logic Low causes a block erase. This input is active only when CS operates high.

CE Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as CE is held at a Logic Low. If $V_{DD} = +V_{PP}$, a Logic Low causes a byte program operation. This input is active only when CS is high.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4 82 Supercedes Previous Data

512 x 8 **CMOS EEPROM**

DESCRIPTION

The HNVM 3704 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) intended for use as an EPROM replacement. It is ideal for applications where data needs to be altered a limited amount of times as in program development or data table storage.

No ultraviolet erasure is required. Erasing and programming are accomplished by applying low level signals to the control outputs \overline{OE} or \overline{CE} respectively while the power supply voltage (VD) is elevated to + VPP (approximately + 16V). The bulk erase (entire memory) and byte programming both require 1 msec per operation.

All read operations are performed with VDD at a nominal 5 volts. The falling edge of the Chip Enable signal (CE) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable (\overline{OE}) is a low level and Chip Select (CS) is a high level.

The HNVM 3708 is available in a 24 lead dual-in-line plastic (P suffix) package.

FEATURES

- Nonvolatile storage of 4096 bits, CMOS fabrication for: organized as 512 x 8
- Electrically erasable and programmable. No UV light required for erasure.
- Fast erase time 1 msec
- Fast programming time 1 msec/byte
- Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and T²L M compatible inputs N

• Three-state outputs compatible with CMOS, NMOS, PMOS, and T²L.

I	PIN	CONFIGUR	AT	ION
MA7		1.	24	
MA6		2	23	MA8
MA5		3	22	SEL ¹
MA4		4	21	cs
MA3		5	20	
MA2		6	19	NC NC
MA1		7	18	
MA0		8	17	BUS 7
BUS 0		9	16	BUS 6
BUS 1		10	15	BUS 5
BUS 2		11	14	BUS 4
GND		12	13	BUS 3

FUNCTIONAL DIAGRAM

MAXIMUM RATINGS

DC Supply Voltage Range	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots -0.3$ to $+18V$
(All Voltages referenced to GND terminal)	
Input Voltage Range	0.3 to V _{DD} +0.3V
Operating Temperature Range	
Plastic Package	40 to +85°C
Storage Temperature Range	65 to + 150°C

ELECTRICAL SPECIFICATION $T_A = 25^{\circ}C$, $V_{DD} = 5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Normal	+VDD	-	4	5	6	v
Supply Voltage, Nonvolatile(See No	ote 1) +Vpp	-	15	16	17	v
Quiescent Current	١a	Inputs = GND or VDD	-	-	100	μA
Operating Current	^I DD1	$f = 100 \text{ KH}_2; \text{ V}_{\text{DD}} = 5 \text{V}$	-	1	2.5	mA
High Voltage Current	IDD2	V _{DD} = 17V, Inputs = GND or V	po –	1	3	mA
High Voltage Current	IDD3	V _{DD} = 17V, Inputs = 5V	-	15	20	mA
Outputs						
Low Level	VOL	open	0	-	0.05	v
Low Level	VOL	IL = 1.6 mA	-	-	0.4	v
High Level	V _{OH}	open	4.95	-	5	v
High Level	Voн	i _H = -1 mA	4			v
3-State Output Leakage	IOL	$V_{DD} = 5V$	-	-	±1	μA
3-State Output Leakage	^I OL	V _{DD} = 17V	-	-	±1	μA
Inputs						
Low Level	VIL	V _{DD} = 5V	-	-	0.8	• v
Low Level	VIL	V _{DD} = 17V	-	-	0.6	v
High Level	VIH	V _{DD} = 5V	2.5	1.5	VDD	v
High Level	VIH	V _{DD} = 17V	4	2.5	VDD	v
Leakage Low	١L	V _{DD} = 5V	-	-	±1	μA
		V _{IN} = 1V				
Endurance (number of	-	V _{DD} = +16V,	-	100	-	Cycles
erase/program cycles)		Program or erase time = 1 msec				
Retention Time	-	T = 125°C	-	10	-	yr

Note 1 — Erase/program time is a function of Vpp — see characteristic curve. **TIMING SPECIFICATIONS** Input $t_r = t_f = 10$ nsec, $C_L = 50_{pf}$, $T_A = 25^{\circ}$ C, $V_{DD} = +5V$ or +16V

DESCRIPTION		FROM					то						SPECIFICATION			
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION																
Address Set-up Time	tASU	Address			х		CE		x				50	-	-	nsec
Address Hold Time	^t AH	CE		х			Address			x			100	50	-	nsec
Access Time	TACE	ĈĒ		х			Data				x			500	650	nsec
Output Enable Time	^t AOE	ŌĒ		х			Data				х		-	250	325	nsec
Chip Select Time	tACS	CS	х	-			Data				×		-	200	260	nsec
Output Disable Time	^t DOE	ŌĒ	х				Data					x	-	300	-	nsec
Chip Deselect Time	^t DCS	CS		х			Data					x	-	400	-	nsec
Chip Disable Time	^t DCE	CE	х				Data					x	-	300	-	nsec
Cycle Time (See Note 2)	^t CYC	CE		×			ĈĒ		×				-	0.95	1.75	μsec
ERASE OPERATION																
Vpp Setup Time	^t VPSU	VDD	×				ŌĒ		x				5	-	- 1	μsec
Erase Width (See Note 3)	tOEW	ŌĒ		х			ŌĒ	×					0.5	1	10	msec
PROGRAM OPERAT	ION															
Vpp Setup Time	tVPSU	VDD	x				CE		x				5	-	-	µsec
Write Width (See Note 3)	tCEWP	CE		х			CE	×					0.5	1	10	msec
Data Set-up Time	^t DSU	Data			x		CE		x				- 1	200	-	nsec
Data Hold Time	^t DH	CE	х				Data			×			-	200	-	nsec
Address Set-up Time	^t ASUP	Address			×		ĈĒ		x				-	200	-	nsec
Address Hold Time	tAHP	CĚ		x			Address			×			-	200	-	nsec

Note 2 — CE low = 650 nsec. 3 — Erase/program time is a function of VPP — see characteristic curve.

FIGURE 1 — PROGRAMMING VOLTAGE & TIME RANGE

TIMING DIAGRAMS READ SPECIFICATIONS

ERASE/PROGRAM OPERATIONS

* Shown for reference only. V_{DD} can be held at V_{PP} to perform erase followed by full EEPROM programming.

OPERATING MODES

The HNVM 3704 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3704 functions as a normal CMOS ROM. When the power input (V_{DD}) is raised to + V_{PP} , the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:

READ MODE The circuit reads addresses on the falling edge of \overline{CE} and latches the accessed data until \underline{CE} goes high again. The latched data will appear at the outputs whenever \overline{CE} is low, CS is high, and \overline{OE} is low.

ERASE MODE A Block Erase (all 0's in memory) is accomplished by setting \overline{CE} and \overline{OE} high, raising the positive supply to + Vpp and then pulsing \overline{OE} low. When the circuit internally senses the + Vpp voltage, it floats the outputs, preventing + Vpp level signals from appearing on the data I/O bus.

PROGRAM MODE Programming consists of writing 1's into bits that contain a 0. A byte is programmed by setting \overline{CE} and \overline{OE} high, raising the positive supply to + Vpp, and pulsing \overline{CE} low. The address lines must have valid data when \overline{CE} falls and the data to be programmed must be valid on the data I/O lines while \overline{CE} is low. A Program operation can follow an Erase while holding V_{DD} at + V_{PP}, and several or all the bytes can be programmed with V_{DD} held at + VPP.

SUMMARY OF OPERATING MODES

State	ĈĒ	CS	ŌĒ	VDD	I/O Bus
Standby	1	X	X	+5	Floating
Standby	Х	0	х	+5	Floating
Standby	Х	Х	1	+5	Floating
Read	O1	1	0	+5	Data Output
Standby ²	1	Х	1	+Vpp	Floating
Erase	1	х	01	+V _{PP}	Floating
Program	O ¹	Х	1	+V _{PP}	Floating (Data Input)
Prohibited State	0	Х	0	+V _{PP}	Floating (Data Input)
Mate 4 Bulley As Indiana, state				• •	

Note 1 — Pulse to indicate state 2 — Recommended mode for $V_{\mbox{\scriptsize DD}}$ transitions to and from $V_{\mbox{\scriptsize PP}}$

PIN DESCRIPTIONS

MA0-MA8 Address inputs which select one of 512 bytes of memory for either Read or Program. The addresses are latched during the falling edge of CE.

BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.

GND Negative supply terminal and V = 0 reference.

VDD Positive supply terminal. It is raised to + Vpp for Erase and Program operations.

- CSChip Select. A Logic Low disables the Data Output Drivers in normal (5V) operation.OEOutput Enable. A Logic High disables the Data Output Drivers. If VDD = + VPP, a
Logic Low performs a block erase operation.
- **CE** Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as \overline{CE} is held at Logic Low. If V_{DD} = + V_{PP}, a Logic Low performs a byte program operation.

SEL The select input requires connection to GND for 3704-2 or to V_{DD} for 3704-1. Additional EEPROM devices which are available from Hughes include the HNVM 3004 (512×8) aimed at specific applications where programming time and endurance are critical.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

1024 x 8 CMOS EEPROM

DESCRIPTION

The HNVM 3708 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) intended for use as an EPROM replacement. It is ideal for applications where data needs to be altered a limited amount of times as in program development or data table storage.

No ultraviolet erasure is required. Erasing and programming are accomplished by applying low level signals to the control outputs \overline{OE} or \overline{CE} respectively while the power supply voltage (V_{DD}) is elevated to + VPP (approximately + 16V). The bulk erase (entire memory) and byte programming both require 1 msec per operation.

All read operations are performed with V_{DD} at a nominal 5 volts. The falling edge of the Chip Enable signal (\overline{CE}) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable (\overline{OE}) is a low level and Chip Select (CS) is a high level.

The HNVM 3708 is available in a 24 lead dual-in-line plastic (P suffix) packages. Devices in chip form (H suffix) are supplied upon request.

FEATURES

- Nonvolatile storage of 8192 bits,
 CMOS fabrication for: organized as 1024 x 8
 Low power operatio
- Electrically erasable and programmable. No UV light required for erasure.
- Fast erase time 1 msec typical
- Fast programming time 1 msec/byte

 CMOS fabrication for: Low power operation High noise immunity Wide temperature range

- CMOS, NMOS, PMOS, and T²L compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and T²L.

MA7	1.	24 🗖 VDD
MA6	2	23 MA8
MA5	3	22 MA9
MA4 🚞	4	21 CS
MA3 🗔	5	20 OE
MA2	6	19 NC
MA1	7 ·	18 CE
MA0	8	17 BUS 7
BUS 0 🖂	9	16 BUS 6
BUS 1	10	15 BUS 5
BUS 2	11	14 BUS 4
GND	12	13 BUS 3

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

MAXIMUM RATINGS

DC Supply Voltage Range
Input Voltage Range
Plastic Package -40 to +85°C Storage Temperature Range -65 to +150°C

ELECTRICAL SPECIFICATION $T_A = 25^{\circ}C$, $V_{DD} = 5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Supply Voltage, Normal	+V _{DD}	-	4	5	6	v	
Supply Voltage, Nonvolatile(See N	Supply Voltage, Nonvolatile(See Note 1) +Vpp			16	17	v	
Quiescent Current	١Q	Inputs = GND or V _{DD}	-	-	100	μΑ	
Operating Current	IDD1	$f = 100 \text{ KH}_2; \text{ V}_{DD} = 5 \text{ V}$	-	1	2.5	mA	
High Voltage Current	IDD2	V _{DD} = 17V. Inputs = GND or V	po –	1	3	mA	
High Voltage Current	IDD3	V _{DD} = 17V, Inputs = 5V		15	20	mA	
Outputs							
Low Level	VOL	open	0	-	0.05	v	
Low Level	VOL	1 _L = 1.6 mA	-	-	0.4	v	
High Level	VOH	open	4.95	-	5	v	
High Level	Voн	I _H = -1 mA	4	-		v	
3-State Output Leakage	[†] OL	$V_{DD} = 5V$	-		±1	μA	
3-State Output Leakage	IOL	V _{DD} = 17V	-	-	±1	μΑ	
Inputs							
Low Level	VIL	V _{DD} = 5V	-	-	0.8	v	
Low Level	VIL	V _{DD} = 17V	-		0.6	v	
High Level	VIH	V _{DD} = 5V	2.5	1.5	V _{DD}	v	
High Level	VIH	V _{DD} = 17V	4	2.5	VDD	v	
Leakage Low	١L	V _{DD} ≈ 5V	-		±1	μA	
		V _{IN} = 1V					
Endurance (number of	-	V _{DD} = +16V,	-	100		Cycles	
erase/program cycles)		Program or erase time = 1 msec					
Retention Time	-	T = 125°C	-	10	-	yr	

Note 1 — Erase/program time is a function of VPP — see characteristic curve.

TIMING SPECIFICATIONS Input $t_r = t_f = 10$ nsec, $C_L = 50_{pf}$, $T_A = 25^{\circ}C$, $V_{DD} = +5V$ or +16V

DESCRIPTIC	FROM					то					SPECIFICATION					
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION																
Address Set-up Time	^t ASU	Address			×		CE		×				50	-	-	nsec
Address Hold Time	^t AH	ĈĒ		х			Address			x			100	50	-	nsec
Access Time	^t ACE	ĈĒ		х			Data				×			500	650	nsec
Output Enable Time	^t AOE	ŌĒ		х			Data				х		-	250	325	nsec
Chip Select Time	tACS	CS	х				Data				×		-	200	260	nsec
Output Disable Time	^t DOE	ŌĒ	х				Data					х		300	-	nsec
Chip Deselect Time	tDCS	CS		х			Data					х	-	400		nsec
Chip Disable Time	^t DCE	CE	х				Data					x	-	300	-	nsec
Cycle Time (See Note 2)	^t CYC	CE		x			CE		×				-	0.95	1.75	μsec
ERASE OPERATION																
Vpp Set-up Time	^t VPSU	VDD	×				ŌĒ		x				5	-	-	μsec
Erase Width (See Note 3)	tOEW	ŌĒ		×			ŌĒ	×					0.5	-	10	msec
PROGRAM OPERAT	ION															
Vpp Set-up Time	tVPSU	V _{DD}	x				CE		x				5	1	-	µsec
Write Width (See Note 3)	tCEWP	CE		x			CE	X					0.5	1	10	msec
Data Set-up Time	^t DSU	Data			×		ĈĒ		x				-	200	-	nsec
Data Hold Time	^t DH	CE	X				Data			×				200		nsec
Address Set-up Time	tASUP	Address			×		CE		x				-	200	-	nsec
Address Hold Time	^t AHP	CE		x			Address			×				200	-	nsec

Note 2 — \overline{CE} low = 650 nsec. 3 — Erase/program time is a function of VPP — see characteristic curve.

FIGURE 1 — PROGRAMMING VOLTAGE & TIME RANGE

TIMING DIAGRAMS READ SPECIFICATIONS

ERASE/PROGRAM OPERATIONS

* Shown for reference only. VDD can be held at VPP to perform erase followed by full EEPROM programming.

OPERATING MODES

The HNVM 3708 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3708 functions as a normal CMOS ROM. When the power input (V_{DD}) is raised to + V_{PP} , the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:

READ MODE The circuit reads addresses on the falling edge of \overline{CE} and latches the accessed data until \overline{CE} goes high again. The latched data will appear at the outputs whenever \overline{CE} is low, CS is high, and \overline{OE} is low.

ERASE MODE A Block Erase (all 0's in memory) is accomplished by setting \overline{CE} and \overline{OE} high, raising the positive supply to + Vpp and then pulsing \overline{OE} low. When the circuit internally senses the + Vpp voltage, it floats the outputs, preventing + Vpp level signals from appearing on the data I/O bus.

PROGRAM MODE Programming consists of writing 1's into bits that contain a 0. A byte is programmed by setting \overline{CE} and \overline{OE} high, raising the positive supply to + Vpp, and pulsing \overline{CE} low. The address lines must have valid data when \overline{CE} falls and the data to be programmed must be valid on the data I/O lines while \overline{CE} is low. A Program operation can follow an Erase while holding VDD at + Vpp, and several or all the bytes can be programmed with VDD held at + Vpp.

SUMMARY OF OPERATING MODES

State	CE	CS	ŌĒ	VDD	I/O Bus
Standby	1	Х	X	+5	Floating
Standby	Х	0	х	+5	Floating
Standby	Х	Х	1	+5	Floating
Read	0 ¹	1	0	+5	Data Output
Standby ²	1	Х	1	+Vpp	Floating
Erase	1	Х	0 ¹		Floating
Program	O1	Х	1	+Vpp	Floating (Data Input)
Prohibited State	0	Х	0	+VPP	Floating (Data Input)

2 - Recommended mode for V_{DD} transitions to and from + V_{PP}

PIN DESCRIPTIONS

MA0-MA9 Address inputs which select one of 1024 bytes of memory for either Read or Program. The addresses are latched during the falling edge of CE.

BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.

GND Negative supply terminal and V = 0 reference.

VDD Positive supply terminal. It is raised to + Vpp for Erase and Program operations.

CSChip Select. A Logic Low disables the Data Output Drivers in normal (5V) operation.OEOutput Enable. A Logic High disables the Data Output Drivers. If VDD = + VPP, a
Logic Low performs a block erase operation.

CE Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as CE is held at Logic Low. If V_{DD} = + V_{PP}, a Logic Low performs a byte program operation.

Additional EEPROM devices which are available from Hughes include the HNVM 3008 (1024 x 8) aimed at specific applications where programming time and endurance are critical.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

Hughes H3000 ESP

ERASER SIMULATOR PROGRAMMER

Hughes H3000 Eraser, Simulator, Programmer

Hughes offers a complete low power unit to evaluate the capabilities of Hughes EEPROM family. The H3000 provides the necessary modes to erase, program, read, copy, simulate, modify, and compare Hughes 3004, 3008, 3704, 3708, and the future Hughes Nonvolatile Memories, as well as members of the industry standard 2700 * family.

HUGHES H3000 FEATURES Automatic SELF Test

To insure proper operation the unit runs a self-check automatically with power-on and displays the results.

Easy to Operate

A sixteen character dot matrix Liquid Crystal Display and the eight function keys lead the operator through each mode of operation without the need to refer to the manual. The H3000 requests the correct information by guiding the operator through prompter messages on the display. When an error occurs or the operation is complete, a built-in beeper sounds and appropriate messages are displayed.

Software Controlled Selection

The H3000, a microprocessor controlled unit, requires no personality boards, hardware changes, or switch settings for selection of PROM types or data transfer port characteristics. The last selected parameters remain in the memory until they are altered or the power is turned off.

Smart and Adaptive Programming

The H3000 has a $4K \times 8$ static RAM buffer expandable up to $8K \times 8$. The starting address for the buffer is software selectable in 4K ranges. Programming and editing are possible on any PROM by using available memory. For example, an 8K $\times 8$ PROM can be programmed or edited using a $4K \times 8$ buffer.

The programming sequence is designed to minimize the possible programming time. Complete or partial programming is done

automatically after

the compare test. The H3000 is an intelligent unit; it decides what byte(s) need to be programmed and whether the programming can be done without erasure. Also, while programming (on selected PROMs), the H3000 pulses a word for 10ms at a time and tests the word after each pulse. Once the word adequately retains the information, it is over-programmed one more time. The unit rejects the PROM if more than five pulses are required to program. This smart and adaptive programming sequence saves significant time in programming any EPROM. The erase function can be enabled to activate automatically in the case of EEPROMs when the programming is not possible without erasure. The compare operation is performed at the end of each programming cycle for verification.

*2700 series requires uv-erasure

Powerful Editor

ESD

The Edit mode allows very fast scrolling back and forth through the entire work space. In addition to the Examine and Replace commands, the editor supports many text editing commands such as Move block, Find byte(s), Write all 0s or 1s,

and Compare.

PROM Simulator

A 24/28-pin simulator cable plugs into user's PROM socket, allowing their programs to run through the H3000 RAM buffer. Access time is 350 nsec or less. The simulator

speeds up the development cycle by avoiding the need to erase and reprogram PROMs.

Serial and Parallel I/O

Fast data transfer in both directions is allowed through an RS232C and a parallel port. Start and end address of the block can be user specified.

In the serial transfer, baud rate, parity, bits/ character, etc. are keyboard selectable.

Users Application

Via special command, the users are able to execute their own application programs written for the HCMP 1802 microprocessor in H3000 Buffer. This feature allows the operators to utilize the H3000 microcomputer power for their own special application and makes it possible to support additional PROMs.

The H3000 can be used to provide a number of useful functions such as an aid in program development and check-out, a functional tester for incoming inspection, a remote programming unit, a field service tool, a production programmer, and many more.

The unique capabilities of the H3000 are established by using Hughes CMOS devices including the 1800 Microprocessor Family, the HNVM 3708 EEPROM for program storage and an Intelligent LCD Controller/Driver chip set (HLCD 0550/0551). These latter units allow a very simple interface between the microprocessor and the display.

Product Demonstration and Evaluation

The H3000 also offers a number of resident programs to demonstrate capabilities of Hughes EEPROM devices, Intelligent LCD Controller/Driver (HLCD 0550/0551) and 1800 Microprocessor Family.

Operators can use resident subroutines to create new programs and apply the capabilities of the H3000 for their needs. ASCII data can be entered or read in the H3000 without having a ASCII keyboard.

Optional Diagnostics

A series of interactive programs help the user to diagnose a fault in the H3000 if it is suspected that the unit is not functioning properly.

南日いより

のなるので

• PROM selection
• Read data into buffer
• Send data from buffer
• Inspect, change, find data byte(s), move block, scroll
• Compare, verify
• Clear buffer to zeros <u>or</u> ones
• Erase EEPROM
• Program PROM partially <u>or</u> fully
• Simulate PROM
• Special modes to evaluate Hughes EEPROMs, LCD Drivers, and
1802 Microprocessor
• Hughes 3004, 3008, 3704, 3708 and future nonvolatile
memories; Intel 2704, 2708, 2758, 2716, 2732, 2732A, 2764 or
equivalent; National 27C16, 27C32 or equivalent
• A 24 pin and a 28 pin (zero insertion force sockets)
• 16 character, dot matrix LCD
• 4 K × 8 static RAM — optional 8 K × 8 static RAM
 16 hexadecimal keys, 8 function keys
• Serial — RS232C, parallel — with ready resume handshake
Start address and end address of the block can be specified
Baud rate 110, 300, 600, 1200, 2400, 4800, 9600
Parity – odd, even, none
Bits/character $-7, 8$
Stop bits $-1, 2$
Delay
• 100/115/230 VAC, 50/60 Hz
● 4.5″ × 11″ × 14″
• 10 lbs.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

HUGHES SOLID STATE PRODUCTS

Four Digit LCD Driver

DESCRIPTION

The HLCD 0437 is a CMOS/LSI circuit that drives a 4-digit LCD display from multiplexed BCD information. The inputs are four positive true strobe (digit select) signals and four BCD data lines. Such signals are generated by several LSI counting circuits including the Hughes HCTR 4010 and HCTR 6010. The input levels are compatible with T^2L and NMOS as well as CMOS.

The outputs are four sets of seven segment drive lines with AC waveform and a backplane signal. Input data is loaded into latches upon the positive edge of the appropriate strobe signal. The BCD codes of 0 through 9 give the usual seven segment characters, 15 causes a blank, and 10 through 14 form the letters A, C, d, E, and F. The LCD φ pin controls an internal oscillator that determines the LCD drive frequency. A capacitor must be attached at this point. The LCD φ pin can be over driven by an external signal or the backplane signal of another HLCD 0437, allowing the use of a display of over four characters. The backplane signal is, thus, the same polarity as the impressed LCD φ signal.

The HLCD 0437 is available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Drives a 4-digit LCD
- CMOS construction for:
 - Wide supply voltage range Low power operation High noise immunity Wide temperature range
- CMOS NMOS, and T²L compatible inputs
- Cascadable for larger displays
- On chip oscillator

PIN CONFIGURATION

MAXIMUM RATINGS

V _{DD}	
Inputs	$\dots \dots + V_{DD} - 17 \text{ to } + V_{DD} + .3V$
LCD¢ Input	$\dots \dots $
Power Dissipation	
Operating Temperature	~
Ceramic Package	
Plastic Package	
Storage Temperature	

ELECTRICAL SPECIFICATIONS T = 25°C and VDD = 5V unless otherwise noted

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		3	15	V
Supply Current	IDD1	LCDØ Osc at <15 KHZ		65	μΑ
	IDD2	LCDØ Driven		10	μA
Input High Level	VIH		.5V _{DD}	V _{DD}	V
Input Low Level	VIL		+V _{DD} -15	.2V _{DD}	V
Input Current	۱L			5	μΑ
Input Capacitance	Cl			5	pf
Segment Output Impedance	R _{ON}	$I_{L} = 10 \ \mu A$		50	KΩ
Backplane Output Impedance	R _{ON}			3	кΩ
Strobe Rate	f	25% Duty Cycle	DC	500	кнг
BCD Set-up Time	tDS	BCD Data change to Strobe rising edge	0		nsec
BCD Hold Time	tDH	Strobe rising edge to BCD Change	300		nsec
DS Rise Time	^t R			100	nsec
LCDØ Input High Level	VIN		.8V _{DD}		V
LCDØ Input Low Level	VIL			.2V _{DD}	V
LCDØ Input Impedance	R _{IN}	Typical		MΩ	

TIMING DIAGRAMS

TYPICAL SYSTEM INTERCONNECT (CASCADED TO DRIVE 8 CHARACTERS)

OPERATING NOTES

- 1. The latches load on the rising edge of Digit Strobe (DS) signals.
- 3. The supply voltage of the HLCD 0437 is equal to half the peak driving voltage of the LCD. If the HLCD 0437 supply voltage is less than the swing of the input logic signals, the positive supply leads of the logic circuitry and the HLCD 0437 should be tied in common, but not the ground (or negative) supply leads. Be careful that input level specifications are met.
- 4. The LCDφ pin can be used in two modes, driven or oscillating. If LCDφ is driven, the backplane will repeat its frequency. If the LCDφ pin is allowed to oscillate, its frequency is inversely proportional to capacitance and the LCD driving waveforms have a frequency 2⁸ slower than the oscillator itself. The relationship is shown graphically. The frequency is nearly independent of supply voltage. For a refresh rate of 40 Hz, a capacitance of 50 pf will suffice.

OPERATING NOTES (Continued)

- 5. Each DS signal loads latches that control 7 outputs, but the assignment of which character in the display corresponds to which DS is arbitrary. The circuit does not have a requirement that certain characters in the display must come from certain output pins.
- 6. All LCD Output signals are square waves of amplitude equal to the supply voltage. Compared to the backplane signal, on" segments are out of phase and "off" segments are in phase.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4 82 Supercedes Previous Data

Serial Input LCD Driver

HLCD 0438A

DESCRIPTION

The HLCD 0438A is a CMOS/LSI circuit that drives an LCD display, usually under microprocessor control. The part acts as a smart peripheral that drives up to 32 LCD segments. It needs only three control lines due to its serial input construction. It latches the data to be displayed and relieves the microprocessor from the task of generating the required waveforms.

The HLCD 0438A can drive any standard or custom parallel drive LCD display whether it be field effect or dynamic scattering, 7, 9, 14 or 16 segment characters, decimals, leading + or -, or special symbols. Several HLCD 0438A's can be cascaded. The AC frequency of the LCD waveforms can be supplied by the user or can be generated by attaching a capacitor to the LCD ϕ input, which controls the frequency of an internal oscillator.

The HLCD 0438A can also be used as a column driver in a multiplexed LCD display. In this application it acts as a dumb peripheral since timing and refresh must be supplied externally. The HLCD 0438A is available in 40 lead dual-in-line ceramic (D suffix) and plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Drives up to 32 LCD segments of arbitrary configuration
- CMOS construction for: Wide supply voltage range Low power operaton High noise immunity Wide temperature range

- CMOS, NMOS, and T²L compatible inputs
- Cascadable
- · On chip oscillator
- Requires only 3 control lines

PIN CONFIGURATION

+V	DD		1.	\sim	40	🗀 сгоск
LO	AD		2		39	SEG 1
SEG	32		з		38	SEG 2
SEG	31		4'		37	SEG 3
SEG	30		5		36	GND GND
SEG	29		6		35	DATA OUT
SEG	28		7		34	DATA IN
SEG	27	\square	8		33	SEG 4
SEG	26		9		32	SEG 5
SEG	25		10		31	LCD Ø
SEG	24	\square	11		30] ВР
SEG	23		12		29	SEG 6
SEG	22		13		28] SEG 7
SEG	21		14		27	SEG 8
SEG	20		15		26	SEG 9
\$EG	19		16		25	SEG 10
SEG	18		17		24	SEG 11
SEG	17		18		23] SEG 12
SEG	16		19		22	SEG 13
SEG	15		20		 21	SEG 14

MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

T = 25° C and V_{DD} = 5V unless otherwise noted

PARAMETER		SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage		V _{DD}		3	10	v
Supply Current		IDD1	LCD∲ Osc <15 KHz		60	μA
Quiescent Current		۱a	$V_{DD} = 10_V$		10	μA
Input High Level		V _{IH}		.5V _{DD}	V _{DD}	v
Input Low Level	Clock,	VIL		V _{DD} -15	.2V _{DD}	v
Input Current	Load	۱L			5	μΑ
Input Capacitance		Cl		5	pf	
Segment Output Impeda	ance	R _{ON}	Ι _L = 10 μ Α		40	КΩ
Backplane Output Impedance		R _{ON}			3	кΩ
Data Out Output Impedance		R _{ON}			3	κΩ
Clock Rate		f	50% Duty Cycle, $V_{DD} = 10$	DC	1.5	MHz
Data Set-up Time		^t ds	Data change to Clk falling edge, V _{DD} = 10	150		nsec
Data Hold Time		^t dh	V _{DD} = 10	50		nsec
Load Pulse Width		^t pw	$V_{DD} = 10$	175		nsec
Data Out Prop. Delay		^t pd	C _L = 55pf, V _{DD} = 10		500	nsec
LCDo Input High Level		V _{IN}		.9V _{DD}		v
LCD¢ Input Low Level		VIL			.1V _{DD}	v
LCD¢ Input Current Leve	el	١L	Driven		10	μΑ

BLOCK DIAGRAM

TIMING DIAGRAM

OPERATING NOTES

1. The shift register loads, shifts, and outputs on the falling edge of Clock.

2. A logic 1 on Data In causes a segment to be visible.

3. A logic 1 on Load causes a parallel load of the data in the shift register into latches that control the segment drivers.

4. If LCD ϕ is driven, it is in phase with the Backplane Output.

5. To cascade units, either connect Backplane of one circuit to $LCD\phi$ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect $LCD\phi$ of all circuits to a common driving signal. If the former is chosen, tie just one Backplane to the LCD and use a different Backplane output to drive the $LCD\phi$ inputs. The data can be loaded to all circuits in parallel or else Data Out can be connected to Data In to form a long serial shift register.

6. The supply voltage of the HLCD 0438A is equal to half the peak driving voltage of the LCD. If the HLCD 0438A supply voltage is less than the swing of the controlling logic signals, the positive supply leads of the logic circuitry and the HLCD 0438A should be tied in common, not the ground (or negative) supply leads. Be careful that input level specifications are met.

7. The LCD ϕ pin can be used in two modes, driven or oscillating. If LCD ϕ is driven, the circuit will sense this condition and pass the LCD ϕ input to the Backplane output. If the LCD ϕ pin is allowed to oscillate, its frequency is inversely proportional to capacitance and the LCD driving waveforms have a frequency 2⁸ slower than the oscillator itself. The relationship is shown graphically. The frequency is nearly independent of supply voltage. If LCD ϕ is oscillating, it is important to keep coupling capacitance to backplane and segments as low as possible. Similarly, it is recommended that the load capacitance on LCD ϕ be as large as is practical.

8. There are two obvious signal races to be avoided in this circuit, (1) changing Data In when Clock is falling, and (2) changing Load when Clock is falling.

9. The number of a segment corresponds to how many clock pulses have occurred since its data was present at the input. For example, the data on SEG 19 was input 19 clock pulses earlier.

10. It is acceptable to tie the load line high. In this case the latches are transparent. Also, remote control would only require two signal lines, Clock and Data In.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES

SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co Schmaedel Str 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4 82 Supercedes Previous Data

PARALLEL INPUT DOT MATRIX LCD DRIVER

HLCD 0488

DESCRIPTION

The HLCD 0488 is a CMOS/LSI circuit that drives rectangular matrix LCD displays under microcomputer control. The display itself may be a standard x-y array or a custom array that geometrically is not regular at all. Applications include games, bar graphs, and various custom patterns. The HLCD 0488 is organized as 16 rows and 16 columns. It will drive an LCD display of up to 16 X 16 directly and can be cascaded for larger displays.

Data is input 4 bit parallel to minimize the time required to load in data. This circuit could be referred to as a dumb driver because it drives (using a multiplexed scheme) the display with proper voltage level waveforms, but does not handle refresh, character encoding, or AC generation. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for large displays
- On chip precision voltage divider
- CMOS construction for: Wide supply voltage range Low power operation High noise immunity Wide temperature range

- CMOS, NMOS, and PMOS compatible inputs
- Architecture allows arbitrary display patterns
- 4 bit parallel input

	 001111	GONAI	
Row 4 Row 5 Row 6 Data Clk Latch Puise Data 0 Data 1 Data 2 Data 3 Row 16 Row 15 Row 14 Row 13 Row 12 Row 11 Row 10	1 • 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16	40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25	$\begin{array}{c} + V_{DD} \\ Row 1 \\ Row 2 \\ Row 3 \\ Col 1 \\ Col 2 \\ Col 3 \\ Col 4 \\ Col 5 \\ Col 6 \\ Col 7 \\ Col 8 \\ Col 9 \\ Col 10 \\ Col 11 \\ Col 12 \end{array}$
Row 15 Row 14 Row 13 Row 12 Row 11 Row 10 Row 9 Row 8 Row 7 GND	11 12 13 14 15 16 17 18 19 20	30 29 28 27 26 25 24 23 22 21	Col 7 Col 8 Col 9 Col 10 Col 11 Col 12 Col 13 Col 14 Col 15 Col 16

PIN CONFIGURATION

MAXIMUM RATINGS

V _{DD}
Inputs
Power Dissipation
Operating Temperature
Ceramic Package
Plastic Package
Storage Temperature

ELECTRICAL CHARACTERISTICS

T = 25° and V_{DD} = 5V unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN	МАХ	UNITS
Supply Voltage	V _{DD}		3	8	v
Supply Current	I _{DD}			1.5	mA
Input High Level	ViH		V _{DD} 5	V _{DD}	V
Input Low Level	VIL		-12	V _{DD} -2	V
Input Leakage	۱			5	μA
Input Capacitance	Cı			5	pf
Output High Selected	V _{он}		V _{DD} 05	V _{DD}	V
Output Low Selected	V _{OL}		0	.05	V
Output High Unselected	V _{2 3}		2/3V _{DD} 05	2/3V _{DD} +.05	v
Output Low Unselected	V _{1 3}		1/3V _{DD} 05	1/3V _{DD} +.05	۷
Row and Column Output Impedance	R _{on}	$I_L = 10 \mu A$		15	KΩ
Data in Setup Time	t _{ds}	Data change		500	nsec
Data in Hold Time	t _{dh}	to clock fall Clock Fall to		250	nsec
Latch Pulse Width	t _{pw}	data change		500	nsec

TYPICAL WAVEFORMS

HLCD 0488

BLOCK DIAGRAM

TYPICAL SYSTEM BLOCK DIAGRAM USING HLCD 0488

OPERATING NOTES

- 1. The addressed latches load when Data Clk is low.
- 2. A logic 1 on Data In selects a row or causes a segment to be visible.
- 3. A parallel transfer of data from the addressed latches to the holding latches occurs whenever Latch Pulse is high and Data Clk is high.
- 4. Output drive polarity is inverted upon the falling edge of Latch Pulse if Data Clk is low.
- 5. Latch Pulse, when high, resets the \div 8 latch address counter.
- 6. When they are selected, Row and Column waveforms are full swing and out of phase with each other. Unselected rows swing from 1/3 to 2/3 of supply out of phase with a selected row waveform. Unselected columns operate analogously.
- 7. The intended mode of operation is as follows: (see timing diagram)
 - A. The Polarity signal (internal to circuit) has a frequency slightly above the flicker rate. 30Hz to 50Hz is adequate.
 - B. The Polarity signal should be a square wave of precisely 50% duty cycle to keep DC off the display.
 - C. The latch pulse is exactly periodic with a frequency of Polarity frequency x 2 x number of backplanes utilized, plus 2 extra pulses per Polarity period. These extra pulses are associated with a change of Polarity. The state of Data Clk must change from high to low between these first and second closely spaced pulses.
 - D. Each time increment contains 8 rising edges of Data Clk.
- 8. To synchronize two circuits driving a large display, set Latch Pulse and Data 0 hi with Data Clk low, then drop Data 0, then begin normal timing. This initializes the Polarity FF.
- If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
- 10. Input order of HLCD 0488:

Clk Pulse	· 1	2	3	4	5	6	7	8
Data 0	R1	R5	R9	R13	C1	C5	C9	C13
Data 1	R2	R6	R10	R14	C2	C6	C10	C14
Data 2	R3	R7	R11	R15	C3	C7	C11	C15
Data 3	R4	R8	R12	R16	C4	C8	C12	C16

11. The RMS drive voltages supplied by this IC to an N backplane LCD are as follows:

VOFF = V_{DD}/3
$$V_{ON} = \frac{V_{DD}}{3} \sqrt{\frac{N+8}{N}}$$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES

SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany

Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S A. 4 82 Supercedes Previous Data

AUTO-REFRESH CMOS LCD DRIVER

DESCRIPTION

The HLCD 0515 is a CMOS driver for multiplexed Liquid Crystal Displays. Each unit is capable of driving an LCD matrix of up to 8 rows \times 25 columns. This display could be a graphic array, custom array, or 5 characters in a 5 \times 7 format. Multiple units may be cascaded for displays with more rows and/or more columns. The input is in a serial format (data is loaded in one row at a time) and requires the user to specify the on/off state of each pixel. Therefore, the user has great flexibility in displaying the shapes and figures he needs. The HLCD 0515 provides all the multi-level AC waveforms necessary for the LCD driver, automatically refreshes the display, and interfaces directly with most microprocessors and microcomputers.

The HLCD 0515 operates over 5-10 volt range. The Driver is available in a 40 pin dual-in-line ceramic package (D suffix) or plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- CMOS circuitry Low power dissipation
 - Wide temperature range Wide supply variation
- Microprocessor compatible
- CMOS and NMOS compatible
- Drives an 8 × 25 multiplexed LCD
- Automatic display refresh
- On-Chip oscillator
- Power down/blank display mode
- Number of backplanes is software programmable from 2 to 8 levels.

TYPICAL SYSTEM INTERCONNECT

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

V _{DD} Supply	03 to +12V
Input to Voltages	$\dots \dots V_{DD}$ – 12 to V_{DD} + .3
Storage Temperature	65 to +125°C
Operating Temperature	
Plastic Package	
Ceramic Package	

STATIC ELECTRICAL CHARACTERISTICS $T_A~=~25^\circ C,~V_{DD}~=~+5V,$ unless otherwise specified

PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	МАХ	UNIT
Supply Voltage	VDD		5		10	V
Supply Current	IDD				900	μA
Input High Level	∨ін	entire VDD range	.75 V _{DD}		VDD	V
Input Low Level	VIL		V _{DD} -12		.25V _{DD}	V
Input Leakage	۱L				5	μA
Input Capacitance	CI				5	pf
Row Output High (Sel)	Vон			VDD		V
Row Output Low (Sel)	VOL			0		V
Row Output High (Unsel)	VOUH			.75 V _{DD}		
Row Output Low (Unsel) ¹				.25 V _{DD}		V
Column Output High	∨он			VDD		V
Column Output Low	VOL			0		V
Column Output (Unsel)	∨ом			.5 V _{DD}		V
Data Out High Level	∨он	40 µA	2.4			V
Data Out Low Level	VOL	Ι_ = 1.6μΑ			.4	V
Row Output Impedance	ROUTR	Ι_ = 10μΑ			10	KΩ
Column Output Impedance	ROUTC	Ι_ = 10μΑ			40	KΩ
Offset Voltage	VOFF				50	mV

NOTE 1: See Output Waveforms

DYNAMIC ELECTRICAL CHARACTERISITICS at T_A = 25°C; V_{DD} = +5V unless otherwise specified

PARAMETER	SYMBOL	MIN	MAX	UNITS
Select enable time, chip select falling edge to clock falling edge	tEN	500		nsec
Data Setup time, data valid prior to clock falling edge	tSU	100		nsec
Data hold time, data valid after clock falling edge	tН	10		nsec
Output Prop. delay, clock-falling edge to data out valid	^t ACCESS		200	nsec
Disable time, chip select rising edge to data out hi-impedance	^t DIS		200	nsec
Deselect time delay from clock falling edge to chip select rising edge	^t END	250		nsec

FUNCTIONAL DIAGRAM

TIMING DIAGRAM

SELECT AND MODE CONTROL

There are four modes of operation in the HLCD 0515:

- 1. Write buffer mode
- 2. Read buffer mode
- 3. Initialization mode blank display
- 4. Initialization mode visible display

A serial data string is presented to the Data In terminal for any operation. The data format is shown below:

FIRST - SERIAL DATA BITS TO THE DATA IN TERMINAL - LAST													ST																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Row Mode Control Con- (8 rows) trol			ode in- I		Co (25	lumr 5 coli	n Se umn	lect s)																					

ROW CONTROL

Data bits 1, 2, and 3 represent the address of the row to be selected or the total number of rows to be selected minus 1 depending on the mode controls. The row control information is in binary and controls 8 rows from 0 through 7. Data bit 1 is the MSB and data bit 3 is the LSB.

MODE CONTROL

Data bits 4 and 5 represent the operational mode to be selected. Each mode is described separately in the Operational Mode Section.

Data bit 4	5	
0	0	Write into RAM storage buffer
0	1	Read from RAM storage buffer
1	0	Initialization with blank display
1	1	Initialization with visible display

COLUMN SELECT

Data bits 6 through 30 represent the 25 individual column bits in the addressed row (bits 1-3) while in the write mode. Data bit 6 corresponds to column 1, data bit 7 corresponds to column 2..., data bit 30 corresponds to column 25.

OPERATIONAL MODES

1. Initialization Mode:

There are two modes available for initialization of the HLCD 0515. The main purpose for initialization is to define the total number of rows to be used in the display, and to make the display visible or blank.

a. Initialization with Blank Display (Bit 4 = 1, Bit 5 = 0)

When this mode is selected, the display is blanked out and the total number of rows are selected via data bits 1, 2 and 3. Column information may or may not be provided. If the column information is provided via data bits 6 through 30, this mode also acts as a write into RAM storage mode writing a row of data into the RAM at the row selected by data bits 1, 2 and 3. (i.e. the last row of the display).

b. Initialization with Visible Display (Bit 4 = 1, Bit 5 = 1)

In this mode, the first three data bits represent (N-1) where N is the total number of rows used in the display. Also it enables the display information to become visible. This mode can be terminated after five data bits, otherwise, it will read the column information of the row that is selected via the data-out line on successive clock inputs (i.e. the last row of the display).

2. Write Mode: (Bit 4 = 0, Bit 5 = 0)

This mode is used to write or update the data into the 8 x 25 RAM storage. Row address is provided by row control data bits 1, 2, and 3, while 25 bit data for each column is provided via data bit 6 through bit 30. The display can be made visible or blank depending upon the initialization mode previously selected.

3. Read Mode: (Bit 4 = 0, Bit 5 = 1)

This mode is used to read the data from the 8 \times 25 RAM storage and sequentially display it on the Data Out terminal. Row address is provided by row control data bits 1, 2 & 3.

For each row address, column data is shifted serially on Data Out terminal from column 25 to column 1 on each successive clock.

4. Typical Mode Sequence:

With power on, the display shows random data on the display. The initialization with blank display mode can be selected and the first write can be made on the last row during the same cycle by providing column data on bit 6 through bit 30. Additional write modes will be selected to write into all the rows in the same manner. Once the final row is written, an initialization mode with visible display must be selected.

TYPICAL MODE SEQUENCE & TIMING

NOTE 1: SEE EXPANDED TIMING BELOW

EXPANDED INITIALIZATION/WRITE WITH BLANK DISPLAY (30 BITS)

SYNCHRONIZATION AND CASCADING

To cascade a number of HLCD 0515's, which share rows, all units must be synchronized. This can be done by driving each Osc pin of the HLCD 0515 with the same external signal and initializing all units at the same time.

In Figure A, the HLCD 0515 is used to drive 8 rows \times 25N columns. Rows from one unit are tied to the display and rows on the other units are not used. The chip select signal also controls all the HLCD 0515 at the same time on Data In pins the different data (column data) is presented by data bus to control different columns. In the initialization mode all HLCD 0515 must be presented the same data on Data In pins by software. Alternatively, a common data line and individual chip selects could be used.

Theoretically any number of HLCD 0515 can be cascaded together as shown. In reality, it depends on the characteristics of the display and the application. In a similiar manner, one can utilize a number of HLCD 0515 to drive 16 rows x m column displays. For each 8 x 25 block, one HLCD 0515 is required as shown in Figure B.

Figure A

SIGNAL DESCRIPTION

Row 0 — Row 7; Pin 1 — Pin 8 (Outputs): These eight outputs can be connected directly to the row pins (backplanes) of the display.

Col 1 — Col 25; Pin 9 — Pin 19, Pin 21 — Pin 34 (Outputs): These twenty five outputs can be connected directly to the column pins of the display.

GND Pin 20: Ground for display and display driver.

VDD; Pin 40: Most positive supply for the display and display driver.

Data Out; Pin 35 (Output): The Data Output pin produces data serially from the RAM buffer during the read buffer mode.

CS; Pin 36 (Input): The chip select input enables all operating modes of HLCD 0515 when CS is low.

Data In; Pin 37: The data input pin is used for loading the RAM buffer data serially from an external system. Positive logic is used and a logic 1 makes a pixel visible.

Clock; Pin 38 (Input): Negative going edge on this pin clocks the data in or out, depending on the mode.

OSC; Pin 39 (Input): The timing for refresh waveforms for the LCD is determined by a capacitor connected to this pin. An external signal should be used to synchronize the oscillators while cascaded.

OSCILLATOR FREQUENCY

To determine the proper frequency of operation, one must consider:

- 1) the external frequency is divided by two on-board.
- 2) number of backplanes selected (rows), and
- 3) 30 Hz minimum no-flicker frequency.

The f is derived as:

$$f = \frac{1}{1 \text{ XN X 30}}$$

The external capacitor which will produce f is:

where the value of C is in microfarads

Example: 8 backplanes,
$$\frac{1}{2 \times 8 \times 30} = \frac{1}{50 \times C}$$
, yields C = .01 microfarads

LCD DRIVER NOTES

1. RMS Drive Voltages — The On and Off RMS drive voltages supplied to each pixel by the HLCD 0515 depend on the number of backplanes, N, as follows:

$$V_{RMS} ON = \frac{V_{DD}}{4} \sqrt{\frac{N+15}{N}}$$
$$V_{RMS} OFF = \frac{V_{DD}}{4} \sqrt{\frac{N+3}{N}}$$

The HLCD 0515 generates on-chip all required voltages to drive a multiplexed LCD with the V/4 drive scheme. The V/4 scheme requires the following voltages be derived (when V_{DD} is the supply voltage):

Note if the display requires a swing more negative than system ground, the V_{DD} is tied in common with system V_{DD} and the GND is taken sufficiently lower than system GND to provide the required swing. (The user must insure that the HLCD 0515's VIL spec is not violated and that VOL's can be read by the system.) Waveforms for the V/4 display drive scheme are shown below:

TYPICAL OUTPUT WAVEFORMS

2. Temperature Compensation — The HLCD 0515 can be used with displays requiring temperature compensation. The technique is to select a PTC (Positive Temp Compensation) thermistor with a temperature response which complements that of the display. The thermistor is inserted between the HLCD 0515's V_{SS} and the negative reference source.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

Serial Input Dot Matrix LCD Driver

DESCRIPTION

The HLCD 0538A and 0539A are a set of CMOS/LSI circuits that drive a dot matrix LCD display under microcomputer control. The intended display is a 5 \times 7 or 5 \times 8 alphanumeric dot matrix with nearly any number of characters. Other matrix displays, such as games and custom arrays, could also be driven by this set of circuits.

The HLCD 0538A is organized as 8 rows \times 26 columns, and thus can handle up to five characters by itself. The HLCD 0539A is organized as 0 rows \times 34 columns and is used in addition to the HLCD 0538A when more than 26 columns are required. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit set drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

The HLCD 0538A and 0539A are available in 40 lead dual-in-line ceramic (D suffix) and plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- · Cascadable for larger displays
- On chip oscillator
- CMOS construction for: Wide supply voltage range Low power operation High noise immunity Wide temperature range

- CMOS, NMOS, and T²L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

HLCD 0538A PIN CONFIGURATION

				-
+V	1•	\neg	40	
DATA IN 💳	2		39	
CLK 💳	3		38	
LCD ϕ	4		37	
GND 🗔	5		36	
INTERRUPT	6		35	🗖 R6
C26	7		34	
C25	8		33	
C24	9		32	
C23	10		31	
C22	11		30	C3
C21	12		29	□ C4
C20	13		28	□ C5
C19	14		27	C6
C18	15		26	C7
C17	16		25	E3 [
C16	17		24	C9
C15	18		23	C10
C14	19		22	□ C11
C13	20		21	<u>⊨</u> C12
				-

HLCD 0539A PIN CONFIGURATION

MAXIMUM RATINGS

V _{DD}	– .3 to 15 volts
Inputs	+V _{DD} -17 to +V _{DD} +.3 volts
Power Dissipation	
Operating Temperature	
Ceramic Package	– 55 to + 125°C
Plastic Package	
Storage Temperature	−65 to +125°C

ELECTRICAL SPECIFICATIONS T = 25° C and V_{DD} = 5V unless otherwise noted

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		3	10	v
Supply Current	^I DD			750	μA
Input High Level	VIH		.8 V _{DD}	V _{DD}	v
Input Low Level	VIL		V _{DD} – 15	.5V _{DD}	v
Input Leakage	۱ <u>L</u>			5.	μA
Input Capacitance	CI			5	pf
Row and Column Output Impedance	R _{on}	l _L = 10μΑ		40	ΚΩ
Interrupt Out Impedance	Ron	ί _L = 100μΑ		3	ΚΩ
Clock Rate	f		DC	1.5	MHz
Data in Setup Time	^t DS	Data change to clock fall	300		nsec.
Data in Hold Time	tDH	Clock fall to data change	100		nsec.
$LCD\phi$ to Interrupt Out Delay	tD		600		nsec.
LCD Ø High Level	VIH		.9V _{DD}	V _{DD}	v
LCD ϕ Low Level	VIL		0	.1V _{DD}	v
LCD ϕ Input Impedance	RIN		1	3	м
DC Offset Voltage, Any Display Element	VOFF			15	mV
Row Output High	V _{OH}	Typical	V	DD	v
Row Output Low	VOL	Typical		0	v
Row Output Unselected	VOM	Typical	.5	VDD	v
Column Output High	V _{OH}	Typical	.68	V _{DD}	v
Column Output Low	VOL	Typical	.32	VDD	v

TYPICAL WAVEFORMS

TYPICAL SYSTEM BLOCK DIAGRAM

TIMING DIAGRAM

OPERATING NOTES

1. The Shift register loads and shifts on the falling edge of clock.

2. A logic 1 on Data In causes a segment to be visible.

3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.

4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are V, 0, and $V_{DD}/2$.

5. Column waveforms are in phase with interrupt out if selected and out of phase if not selected. Levels are .32 VD and .68 VD.

6. The intended mode of operation is as follows:

a. Interrupt Output frequency is the minimum no flicker frequency (>30 Hz) times the number of backplanes utilized.

b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.

c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next interrupt output rising edge, which causes parallel transfer from shift register to display latches.

d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input with 50% duty cycle.

e. Backplanes are addressed sequentially and individually.

7. The LCD ϕ pin can be used in two modes. If LCD ϕ is driven, the Interrupt Output will follow it. LCD¢ will also oscillate if a resistor and capacitor are connected in parallel to around.

The resistor value should be at least $1M\Omega$. The approximate relationship is $f_{out} = \frac{1}{BC}$, which appears at interrupt out.

8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCD¢ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect LCD¢ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuit's serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select.

9. There are two obvious signal races to be avoided:

a. Changing data when clock is falling, and **b.** Allowing Interrupt Output rising edge to be very close to clock falling edge.

10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.

11. Output locations correspond to a clockwise advancing shift register, thus R1 is the last data loaded and C26 is the first data loaded.

12. If N backplanes are utilized, this IC drives the LCD with the following RMS voltages:

VOFF = V_{DD}
$$\sqrt{\frac{.0324 \text{ N} + .07}{\text{N}}}$$

VON = V_{DD} $\sqrt{\frac{.0324 \text{ N} + .43}{\text{N}}}$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany

Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4 82 Supercedes Previous Data

Serial Input Dot Matrix LCD Driver

DESCRIPTION

The HLCD 0540 is a CMOS/LSI circuit that drives a rectangular matrix LCD display under microcomputer control. The display itself may be a standard x-y array or a custom array that geometrically is not regular at all. Applications include games, bar graphs, and various custom patterns.

The HLCD 0540 can be externally programmed as either 32 rows or 32 columns, under control of the Row/Col pin. Thus, two HLCD 0540s with opposite selections can drive a 32 x 32 display. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit set could be referred to as a dumb driver because it drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

The HLCD 0540 is available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- · Direct drive of matrix LCDs
- · Cascadable for larger displays
- On chip oscillator
- CMOS construction for:
 - Wide supply voltage range Low power operation High noise immunity Wide temperature range

- CMOS, NMOS, and T²L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

PIN CONFIGURATION

MAXIMUM RATINGS

V _{DD}	3 to 15 volts
Inputs	$\dots \dots + V_{DD} - 17 \text{ to } + V_{DD} + .3 \text{ volts}$
Power Dissipation	
Operating Temperature	
Ceramic Package	55 to + 125°C
Plastic Package	
Storage Temperature	65 to +125°C

ELECTRICAL CHARACTERISTICS

T=25°C and VDD= 5V unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		3	12	V
Supply Current	IDD			750	μA
Input High Level	VIH		.75V _{DD}	V _{DD}	v
Input Low Level	VIL		V _{DD} -15	.25V _{DD}	v
Input Leakage	ΙL			5	μA
Input Capacitance	CI			5	pf
Row Output High	VOH		V _{DD} 05	V _{DD}	V
Row Output Low	VOL		0	.05	v
Row Output Unselected	V _{OM}		.5V _{DD} 05	.5V _{DD} +.05	V
Column Output High	V _{OH}		.68V _{DD} 05	.68V _{DD} +.05	V
Column Output Low	VOL		.32V _{DD} 05	.32V _{DD} +.05	V
Row and Column Output Impedance	Ron	ι _L = 10μΑ		40	КΩ
Interrupt Out Impedance	Ron	I _L = 100μΑ		3	КΩ
Clock Rate	f		DC	1.5	MHz
Data in Setup Time	t _{DS}	Data change to clock fall	300		nsec.
Data in Hold Time	^t DH	Clock fall to data change	100		nsec.
LCD¢ High Level	VIH		.9V _{DD}	V _{DD}	V
LCD& Low Level	VIL		0	.1V _{DD}	V
LCD finput Impedance	RIN		1	3	MΩ

TYPICAL WAVEFORMS

TYPICAL SYSTEM BLOCK DIAGRAM

OPERATING NOTES

- The Shift register loads and shifts on the 1 falling edge of clock.
- 2. A logic 1 on Data In causes a segment to be visible.
- A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.
- Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are VDD, 0, and VDD/2.
- 5. Column waveforms are in phase with interrupt out if selected and out of phase if not selected. Levels are .32 Vn and .חסע 88.
- 6. The intended mode of operation is as follows:
 - a. Interrupt Output frequency is the minimum no flicker frequency (>30Hz) times the number of backplanes utilized.
 - b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.
 - c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next Interrupt Output rising edge, which causes parallel transfer from shift register to display latches.
 - d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input with 50% duty cycle.
 - e. Backplanes are addressed sequentially and individually.
- The LCD pin can be used in two modes. If LCD₀ is driven, the Interrupt Output will follow it. LCDd will also oscillate if a resistor and capacitor are connected in parallel to ground.

The resistor value should be at least $1 M \Omega.$ The approximate relationship is $f_{out} = \frac{1}{RC}$, which appears at Interrupt Out.

- 8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCD₀ of all other circuits (thus one oscillator provides frequency control for all circuits) or connect LCDo of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuits' serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select. Another alternative is to use the clock enable to allow reading data into specific circuits.
- 9. There are two obvious signal races to be avoided
 - a. Changing data when clock is falling, and
 - b. Allowing Interrupt Output rising edge to be very close to clock falling edge.
- **10.** If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
- 11. Output locations correspond to a clockwise advancing shift register, thus Seg 1 is the last data loaded and Seg 32 is the first data loaded.
- 12. If N backplanes are utilized, this IC drives the LCD with the following RMS voltages:

VOFF =
$$V_{DD} \sqrt{\frac{.0324 \text{ N} + .07}{\text{N}}}$$

VON = $V_{DD} \sqrt{\frac{.0324 \text{ N} + .43}{\text{N}}}$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES | SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Auroraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

Parallel Input Dot Matrix LCD Driver

DESCRIPTION

The HLCD 0541 and 0542 are a set of CMOS/LSI circuits which drive a dot matrix LCD display under microcomputer control. The intended display is a 5 \times 7 or 5 \times 8 alphanumeric dot matrix with nearly any number of characters. Other matrix displays, such as games and custom arrays, could also be driven by this set of circuits.

The HLCD 0541 is organized as 8 rows \times 23 columns, and thus can handle up to four characters by itself. The HLCD 0542 is organized as 0 rows \times 32 columns and is used in addition to the HLCD 0541 when more than 23 columns are required. Data is input 4 bit parallel to minimize the time required to load in data. This circuit drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

The HLCD 0541 and 0542 are available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- · Direct drive of matrix LCDs
- Cascadable for larger displays
- · On chip oscillator
- CMOS construction for: Wide supply voltage range Low power operation High noise immunity Wide temperature range

- CMOS, NMOS and PMOS compatible inputs
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

HLCD 0541 PIN CONFIGURATION

+V 🚞	1•		40	
LCD ϕ	2		39	R6
GND 🗔	3		38	
INTERRUPT	4		37	R4
CLK 🖂	5		36	R3
D0 🖂	6		35	
D1 🖂	7		34	
D2	8		33	-R0
D3 🚞	9		32	
C22 🚞	10		31	
C21	11		30	
C20 🚞	12		29	C3
C19 🚞	13		28	
C18 🚞	14		27	C5
C17 🚞	15		26	
C16 🚞	16		25	
C15 🚞	17	:	24	C8
C14 🚞	18	:	23	- C9
C13 🚞	19	:	22	<u>⊢</u> C10
C12 🚞	20		21	<u> </u> ⊂11

HLCD 0542 PIN CONFIGURATION

MAXIMUM RATINGS

V _{DD}	– .3 to + 17V
Inputs	\dots + V _{DD} - 17 to + V _{DD} + .3V
Power Dissipation	
Operating Temperature	
Ceramic Package	55 to +125°C
Plastic Package	
Storage Temperature	$\dots \dots \dots -65 \text{ to } + 125^{\circ}\text{C}$

ELECTRICAL SPECIFICATIONS

 $T\!=\!25^\circ\!C$ and $V_{DD}\!=\!5V$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		3	12	V
Supply Current	IDD			600	μΑ
Input High Level	VIH		.75V _{DD}	V _{DD}	v
Input Low Level	VIL		V _{DD} -15	.25∨ _{DD}	v
Input Leakage	լ			5	μΑ
Input Capacitance	CI			5	pf
Row Output High	V _{OH}		V _{DD} 05	V _{DD}	V
Row Output Low	VOL		0	.05	V
Row Output Unselected	∨ом		.5V _{DD} 05	.5V _{DD} +.05	V
Column Output High	VOH		.68V _{DD} 05	.68V _{D.D} +.05	V
Column Output Low	VOL		.32V _{DD} 05	.32V _{DD} +.05	v
Row and Column Output Impedance	Ron	Ι _L = 10μΑ		30	КΩ
Interrupt Out Impedance	Ron	I _L = 100μA		1	КΩ
Clock Rate	f		DC	1.0	MHz
Data in Setup Time	^t DS	Data change to clock fall	300		nsec.
Data in Hold Time	^t DH	Clock fall to data change	150		nsec.
LCD ϕ to Interrupt Out Delay	^t D		300		nsec.
LCD ϕ High Level	VIH		.9V _{DD}	V _{DD}	V
LCD ϕ Low Level	VIL		0	.1V _{DD}	v
LCD ϕ Input Impedance	R _{IN}		1	3	м

TYPICAL WAVEFORMS

BLOCK DIAGRAM

TYPICAL SYSTEM BLOCK DIAGRAM

OPERATING NOTES

1. The addressed latches load when clock is high.

2. A logic 1 on Data In selects a row or causes a segment to be visible.

3. A parallel transfer of data from the addressed latches to the holding latches occurs upon the rising edge of interrupt out. Also, the $\div 8$ counter is reset.

4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are V_{DD} , 0, and $V_{DD}/2$.

5. Column waveforms are in phase with Interrupt out if selected and are out of phase if not selected. Levels are .32 VDD and .68 VDD.

6. The intended mode of operation is as follows:

a. Interrupt Output frequency is the minimum no flicker frequency (\approx 30 Hz) times the number of backplanes utilized.

b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from addressed latches to holding latches.

c. In between each Interrupt Output rising edge, 4 bit parallel data is clocked in with 8 clock pulses for the next time slot to await the next interrupt output rising edge, which causes the parallel transfer.

d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input.

e. Backplanes are addressed sequentially and individually.

7. The LCD ϕ pin can be used in two modes, driven or oscillating. If LCD ϕ is driven, the interrupt output will follow it. If the LCD ϕ pin is allowed to oscillate, its frequency is inversely proportional to capacitance and the interrupt output waveform has a frequency half that of the oscillator itself. The approximate relationship is f_{Out} (KHz) = 380/ c (pf). The frequency is nearly independent of supply voltage.

8. To cascade units, either connect Interrupt Output of one circuit to $LCD\Phi$ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect $LCD\Phi$ of all circuits to a common driving signal. Then tie all corresponding data inputs together and clock each circuit individually when its data is on the bus. In the case of two driver circuits and an 8 bit microcomputer, the clocks could be common and each Data In tied to a different line of the data bus.

9. There are two obvious signal races to be avoided:

a. Changing data when clock is falling, andb. Allowing Interrupt Output rising edge to be very close to clock falling edge.

10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.

11. Input order of HLCD 0541

Cik Pulse	1	2	3	4	5	6	7	8
Data 0	RO	R4	CO	C4	C8	C12	C16	C20
Data 1	R1	R5	C1	C5	C9	C13	C17	C21
Data 2	R2	R6	C2	C6	C10	C14	C18	C22
Data 3	R3	R7	C3	C7	C11	C15	C19	

12. Input order of HLCD 0542 is similar, but starts at CO (Pulse 1, Data 0) and ends at C31 (Pulse 8, Data 3).

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

Serial Input Dot Matrix LCD Driver

DESCRIPTION

The HLCD 0548 is a CMOS/LSI circuit that drives a rectangular matrix LCD displays under microcomputer control. The display itself may be a standard x-y array or a custom array that geometrically is not regular at all. Applications include games, bar graphs, and various custom patterns.

The HLCD 0548 is organized as 16 rows and 16 columns. It will drive an LCD display of up to 16 x 16 directly and can be cascaded for larger displays with itself or other Hughes LCD drivers. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer. The HLCD 0539 to drive a display that has up to 16 rows and an arbitrary number of columns.

The HLCD 0548 is available in 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for: Wide supply voltage range Low power operation High noise immunity

Wide temperature range

- CMOS, NMOS, and T²L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

PIN CONFIGURATION

MAXIMUM RATINGS

V _{DD}	
Inputs	$\dots \dots + V_{DD} - 17 \text{ to } + V_{DD} + .3 \text{ volts}$
Power Dissipation	
Operating Temperature	
Ceramic Package	55 to + 125°C
Plastic Package	
Storage Temperature	65 to + 125°C

ELECTRICAL CHARACTERISTICS

 $T=25^{\circ}C$ and $V_{DD}=5V$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		3	12	V
Supply Current	¹ DD			750	μΑ
Input High Level	VIH		.75V _{DD}	V _{DD}	v
Input Low Level	VIL		V _{DD} 15	.25V _{DD}	v
Input Leakage	IL.			5	μA
Input Capacitance	CI			5	pf
Row Output High	V _{OH}		V _{DD} 05	V _{DD}	V
Row Output Low	VOL		0	.05	v
Row Output Unselected	VOM		.5V _{DD} 05	.5V _{DD} +.05	v
Column Output High	V _{OH}		.68V _{DD} 05	.68V _{DD} +.05	v
Column Output Low	VOL		.32V _{DD} 05	.32V _{DD} +.05	v
Row and Column Output Impedance	Ron	I _L = 10μA		40	КΩ
Interrupt Out Impedance	Ron	IL = 100µA		1.5	КΩ
Clock Rate	f		DC	1.5	MHz
Data in Setup Time	t _{DS}	Data change to clock fall	300		nsec.
Data in Hold Time	^t DH	Clock fall to data change	100		nsec.
LCD¢ High Level	VIH		.9V _{DD}	V _{DD}	V
LCD & Low Level	VIL		0	.1V _{DD}	v
LCD¢ Input Impedance	RIN		1	3	м

TYPICAL WAVEFORMS

BLOCK DIAGRAM

TYPICAL SYSTEM BLOCK DIAGRAM

-tds-tdh-

OPERATING NOTES

- 1. The Shift register loads and shifts on the falling edge of clock.
- 2. A logic 1 on Data In causes a segment to be visible.
- 3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.
- 4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are Von. 0, and Vnn/2.
- 5. Column waveforms are in phase with Interrupt out if selected and out of phase if not selected. Levels are .32 VDD and .68 VDD.
- The intended mode of operation is as 6 follows:
 - a. Interrupt Output frequency is the minimum no flicker frequency (>30Hz) times the number of backplanes utilized.
 - b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.
 - c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next interrupt output rising edge, which causes parallel transfer from shift register to display latches.
 - d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCDØ input with 50% duty cycle.
 - e. Backplanes are addressed sequentially and individually.
- 7. The LCDØ pin can be used in two modes. If LCDØ is driven, the Interrupt Output will follow it. LCDØ will also oscillate if a resistor and capacitor are connected in parallel to ground.

The resistor value should be at least 1M Ω . The approximate relationship is $f_{OUt} = \frac{1}{RC}$, which appears at Interrupt Out.

8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCDØ of all other circuits

(thus one oscillator provides frequency control for all circuits) or connect LCDØ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuits' serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select. Another alternative is to use the clock enable to allow reading data into specific circuits.

- 9. There are two obvious signal races to be avoided.
 - a. Changing data when clock is falling. and
 - **b.** Allowing Interrupt Output rising edge to be very close to clock falling edge.
- **10.** If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
- 11. Output locations correspond to a clockwise advancing shift register, thus Row 1 is the last data loaded and Col 16 is the first data loaded.
- 12. The RMS voltages this circuit delivers to individual LCD pixels depends on VDD and the number of backplanes (N) used according to the following equations:

 $V_{RMS} \text{ OFF} = V_{DD} \sqrt{\frac{.0324 \text{ N} + .07}{N}}$ $V_{\rm RMS} \, {\rm ON} = V_{\rm DD} \, \sqrt{\frac{.0324 \, {\rm N} + .43}{N}}$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

Intelligent LCD Dot Matrix Controller/ Driver

DESCRIPTION

The HLCD 0550 and 0551 Chip Set will drive a 5 \times 7 or 5 \times 8 Liquid Crystal dot matrix of up to 32 characters. Control of the display is handled through an 8 bit bidirectional I/O port. The chip set handles character decode, display manipulation, cursor control, and all display drive functions including refresh and generation of multiple-level AC waveforms.

FEATURES

- CMOS circuitry: Low power dissipation Wide supply variation High noise immunity
- Microcomputer compatible
- ASCII input format
- Display of 64 different characters
- Control of up to a 32 character display
- · Generation of all drive waveforms
- Automatic refresh
- Cursor control

 Display manipulation instructions to accomplish:

Shift Rotate Blank Blink Fast load Power down

Instructions to control output of: Characters Cursor position Display control flags Busy status

HLCD 0551 PIN CONFIGURATION

-VDIS 20 21 Col 12 Col 22 19 22 Col 19 - VDIS 20 21 Col 12 Col 21 20 21 Col 20	Data Out 16 25 Col 8 Col 25 16 25 Col 7 -V551 17 24 Col 9 Col 24 17 24 Col 7 NC 18 23 Col 10 Col 23 18 23 Col 7	CS 14 27 Col 6 Col 28 13 28 Col 13 Clock 15 26 Col 7 Col 26 14 27 Col 14	Bus / 11 30 Col 3 Col 30 11 30 Col 1 MWR 12 29 Col 4 Col 29 12 29 Col 1 MRD 13 28 Col 5 Col 30 11 30 Col 1	Bus 0 4 37 Row 4 ICD Ø 4 37 Col 4 Bus 1 5 36 Row 5 V551 (Neg Supply) 5 36 Col 4 Bus 2 6 35 Row 6 Data Out 6 35 Col 4 Bus 3 7 34 Row 7 Col 34 7 34 Col 7 Bus 4 8 33 Row 8 Col 33 8 33 Col 8 Bus 5 9 32 Col 1 Col 32 9 32 Col 9 Bus 6 10 31 Col 2 Col 31 10 31 Col 7	+V _{CC} 1 • 40 Row 1 OSC 2 39 Row 2 -V _{BUS} (GND) 3 38 Row 3 Clock 3 38 Col 3
--	---	--	--	--	--

MAXIMUM RATINGS

Supply Voltage, (+ VDD)	-3V to +13V
Input Voltage, (V1)	V_{DD} – 15 to V_{DD} + .3V
Operating Temperature, (Top)	
Plastic Package	-40 to +85°C
Ceramic Package	-55 to +125°C
Storage Temperature, (TSTO)	-50 to +125°C

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise specified (-V_{BUS} pin is considered GND) V_{DD} = V_{CC} + V_{DIS}.

PARAMETER		SYMBOL	CONDITION	MIN.	MAX.	UNITS
Environmental						
Power Supply Voltage		+V _{DD}		3	10	v
Power Supply Current (HLCD 0550 and 0551)		I _{DD}	Operating at 5V		750	μA
Quiescent Current (HLCD 0550 and 0551)		۱a	5V, Power Down Mode Inputs at Either Supply ¹		20	μA
Inputs		VIH	V _{DD} = 3 to 10V	.8V _{DD}	V _{DD}	V
High Level	HLCD 0550	VIL	8 Data Bus	0	.5V _{DD}	v
Low Level	Inputs 8 Data Bus	V _{IL}	CS, MRD, MWR	V _{CC} - 15	.5∨ _{DD}	V
Leakage	- CS MRD MWP		V _{IN} = 0, V _{DD} = 10		5	μA
Capacitance	MWR	C _{IN}			5	pf
High Level		V _{IH}		.8V _{DD}	V _{DD}	V
Low Level	HLCD 0551 Inputs	VIL		V _{DD} -15	.5V _{DD}	V
Leakage	Data In LCDØ	1 _L	V _{IN} = 0, V _{DD} = 10		5	μA
Capacitance	Clock	C _{IN}			5	pf
Outputs						
High Level	Signals to HLCD 0551	v _{он}		V _{CC} 05	v _{cc}	V
Low Level	LCDØ	VOL		-V _{DIS}	-V _{DIS} +.05	V
Impedance	Clock	R _{ON}	5V, 1 = 100 μA		3	ΚΩ
Column Drive Impedance		R _{out}	5V		40	KΩ
Row Drive Impedance		R _{out}	5V		10	ΚΩ
Bus Drive High		V _{IH}	5V, 1 = 1.6 mA source	4		V
Bus Drive Low		V _{IL}	5V, 1 = 1.6 mA sink		.4	V
Timing (See Note 2)						
Data Set-up Time		^t DS	Data valid to MWR fall	20	_	nsec
Data Hold Time		^t DH	MWR pulse to data change	75		nsec
MWR Pulse Width High		^t PW	MWR pulse width high	600		nsec
MRD Frequency	· · · · · · · · · · · · · · · · · · ·	^t PD	MRD fall to data valid	600		nsec
MRD Pulse Width High		^t PW	MRD pulse width high	600		nsec

NOTE 1 — Oscillator high if driven NOTE 2 — MWR and MRD negative pulses assumed to be coincident with or narrower than CS negative pulse

HLCD 0550/0551

FUNCTIONAL BLOCK DIAGRAM

The HLCD 0551 is a serially loaded column driver. The HLCD 0550 handles all other functions and is thus the controller. (See Operating Notes, page 8, Variable Resistor (item 2) and Power Supply (item 4)).

OUTPUT TIMING - HLCD 0550

Description	OP Code 76543210 (see note 1)	HEX Code	Input or Output	Immed. Exec.	Creates Short Busy	Creates Long Busy	Not During PD	Not During Busy		
Load Character	001XXXXX to 010XXXXX	20 to 5F	I	-	-	\checkmark	\checkmark	\checkmark		
Load Cursor Location	000XXXXX	00 to 1F	I	\checkmark	_		-	√ (see note 2)		
Set Display Control Flag	011XXXXY	60 to 71	I	\checkmark	_	. —	_	_		
Get Character	10000100	84	0	\checkmark			√ (see note 3)	√ (see note 3)		
Get Cursor Location	10000010	82	0	\checkmark	_	-				
Get Display Control Flags	10000001	81	0	\checkmark	-	-	-	_		
Inc/Dec Cursor	1000100X	88 89	I	\checkmark	-	-	-	√ (see note 2)		
Shift Right	10001111	8F	1	-	-	\checkmark	\checkmark	\checkmark		
Shift Left	10001101	8D	1	_	-	\checkmark	\checkmark	\checkmark		
Rotate Right	10001110	8E	1	-	\checkmark	-	\checkmark	\checkmark		
Rotate Left	10001100	8C	1	-	\checkmark	-	\checkmark	\checkmark		
Clear	10001010	8A	1	_		\checkmark	\checkmark	\checkmark		
Reset Busy (Abort)	10001011	8B	1	\checkmark	-	_		_		

Table I

NOTE: 1. X = Variable Data Y = Flag State

2. Only if busy is due to Load Character.

3. See Instruction Set for special precautions.

Short Busy is 5 to 10 periods of master oscillator, or 125 $\mu sec.$ at 82 KHz. Long Busy is up to 160 periods of master oscillator, or 2 msec. at 82 KHz. Input Instructions are accomplished when \overline{MWR} and \overline{CS} are held low. Output Instructions are accomplished when \overline{MRD} and \overline{CS} are held low.

(An output instruction must have been previously written.)

TYPICAL OUTPUT WAVEFORMS

INSTRUCTION EXPLANATION

Load Character

This instruction loads a specific character into a previously specified location. The instruction code is 0XXXXXX where the 7 bit ASCII data must be the 64 character subset corresponding to hex addresses 20 through 5F. This instruction creates a long busy and cannot be performed during an existing busy condition or a power down. During the busy time, the ASCII data is loaded into a memory location which corresponds to the display position held in the cursor location register.

Load Cursor Location

This instruction sets the cursor location. The instruction code is 000XXXXX where XXXXX can be any binary number 0 through 31. The cursor location serves as a pointer to one of the 32 display positions. Zero corresponds to the 1st location and 31 corresponds to the 32nd location. The left most position is the 0 location and displays of less than 32 characters use positions 0, 1, 2.... N.

Set Flag

This instruction sets or resets the individual flags which control the display and enable special instructions. The instruction code is 011XXXXY, where the XXXX is a binary number 0 through 8 which corresponds to one of the 9 flag registers, and the Y is the flag state. Table II gives the flag, the flag address, and the I/O bus on which the flag contents appear after the get display control flag instruction.

Get Character

This instruction enables an output command $(\overline{\text{MRD}} = 0)$ to fetch the ASCII code for the character pointed to by the cursor location register. After a load cursor location instruction, a time of 160 oscillator periods must be allowed before the Get Character instruction will output correct data. Bus 7 contains the Busy status.

Get Cursor Location

This instruction enables a subsequent output command ($\overline{MRD} = 0$) to fetch the cursor location. Bus 0-4 contain the cursor location, Bus 5-6 float, and Bus 7 contains the Busy status.

Get Display Control Flags

This instruction enables an output command $(\overline{\text{MRD}} = 0)$ to fetch the status of the display control flag registers. See the Flag Explanation on Table II for details of the positioning of the flags on the bus.

Note: Any "Get" command need be given only once. Being stored on the chip, it may be used until a different "Get" instruction is needed.

Inc/Dec Cursor

The instruction code is 1000100X, where X = 1 will cause an immediate advancement of the cursor one position to the right, and X = 0 will cause an immediate advancement of one position to the left.

Shift

The shift right (left) instruction advances every character right (left) by one position and loads a blank into the first (last) position.

Rotate

The rotate right (left) instruction advances every character right (left) by one position and moves the last (first) character to the first (last) position.

Clear

This instruction loads a blank into every display location.

Reset Busy

This instruction aborts any instruction execution which has caused a busy signal, resets the busy flag, and allows the immediate loading of any instruction. Of course the aborted instruction may or may not have been completed.

DISPLAY CONTROL FLAGS

Table II

Flag	Address	Bus
Blink Cursor	0000	0
Blink Display	0001	1
Auto Inc/Dec	0010	2
Up/Down	0011	3
Blank Display	0100	4
Visible Cursor	0101	5
Cursor Type	0110	6
Busy	Output Only	7
Rapid Load	0111	_
Power Down	1000	

DISPLAY DRIVE LSI REQUIREMENTS

Number of Characters	8	16	20	32
Number of HLCD 0550 Required	1	1	1	1
Number of HLCD 0551 Required	1	2	3	5

SAMPLE PROGRAMS

- INITIALIZE This sequence, performed after system power up, will initialize everything, blank the cursor and set it at the left most position, and be ready for character loading from left to right.
- **LOAD DISPLAY** This sequence will display a 16 character message using the rapid load feature. Assume initialization was done as in example.

DISPLAY CONTROL FLAG EXPLANATION

Blink Cursor

A "1" in this flag register causes the cursor (the position pointed to by the cursor location register) to blink at approximately 1 Hz. The cursor visible flag must be set. The blinking is an on/off flashing for the underline cursor or an alternation between the character and solid fill (all 35 dots) for the full character cursor.

Blink Display

A "1" causes the entire display to flash on and off at approximately 1 Hz.

Auto Inc/Dec.

A "1" in this flag register causes the cursor location register to automatically be changed by one every time a character is read from or written to the character register. (See Up/Down flag.)

Up/Down

A "1" ("0") in this flag register works in conjunction with the Auto Inc/Dec flag to cause automatic incrementing (decrementing) of the cursor location register when a character is written to or read from the HLCD 0550.

Blank Display

A "1" in this flag register blanks the display, but leaves the display memory intact.

Visible Cursor

A "1" in this flag register causes the cursor (the position stored in the cursor location register) to be visible. The cursor cannot be blinked by the Cursor Blink flag unless it is made visible.

Cursor Type

A "1" in this register selects an underline on row 8 for the cursor, and a "0" selects a filled character, all 35 dots visible.

Power Down

A "1" in this flag register stops the oscillator and opens a switch in the resistor divider used in the multiple voltage generator circuit, so all LCD drive signals rise to the positive supply. To insure ultra low power, the inputs should be near the power rails, and, if driven, OSC should be held high. During this condition memory is not lost, but the circuit will not respond properly to some instructions. See Table 1.

Busy

The busy state means the circuit is processing a previous instruction and cannot be given certain other instructions (see Table 1 for details). Busy status will appear on Bus 7 during all output instructions.

Rapid Load

A "1" in this flag register stops the oscillator and resets the circuit. Each character load instruction loads a character starting with the 31st location until the mode is terminated. Rapid load can be initiated at any time and creates a busy signal. The Rapid Load instruction needs 32 loads to function properly. No other instructions should be given during a rapid load sequence. Rapid loading does not change the cursor location.

OPERATING NOTES

1. Oscillator

The on-chip oscillator is controlled by an external capacitor. The frequency must be high enough (at least 50KHz) to ensure a flicker free display. The recommended frequency is 82KHz for 64Hz update rate and 1Hz blink rate. The typical capacitor valve is 50pf when using a $1m\Omega$ resistor.

2. The Variable Resistor

The variable resistor indicated in the system block diagram may not be necessary, but could assist in display drive optimization and is also meant to imply possible temperature compensation. The resistor may need capacitor bypass.

3. Input Signals

The HLCD 0550 will interface with signals that come from circuits with different power supply magnitudes, either higher or lower. The constraints are (1) no signal should go more positive than the positive supply (therefore positive common is recommended) and (2) input levels must be satisfied. Input swings which are more negative than supply are allowed and input levels are biased toward the positive supply. Note that input levels are referenced to V_{DD} = (V_{CC} - (-V_{DIS})).

4. Power Supply Voltages

Two negative voltages are supplied to this chip. The microcomputer ground $(-V_{BUS})$ is used for the low output level on the I/O bus. The negative display supply $(-V_{DIS})$ is chosen to give proper levels to the LCD. $-V_{DIS}$ must be equal to or lower than $-V_{BUS}$.

5. Initialization

This circuit doesn't power up in a particular state. The recommended power up sequence is a reset busy instruction (not necessary if a long busy time period is allowed to pass), setting of all display control flags, and a clear instruction.

6. Cascading Chips

If a display of over 32 characters is being driven and row lines are shared, two HLCD 0550's can be synchronized by giving them a fast load instruction simultaneously, and driving their oscillator pins with a common signal. The row drivers of one HLCD 0550 need not be used.

7. RMS Drive Voltages

The RMS voltages supplied to the LCD by the HLCD 0550 and 0551 Chip Set are as follows:

V_{DD} = voltage across chip, (V_{CC}+ V_{DIS}) VRMS on = .424 V_{DD} VRMS off = .424 V_{DD}

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES

SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

Serial Input Dot Matrix LCD Driver

HLCD 0607A

DESCRIPTION

The HLCD 0607A is a CMOS/LSI circuit that drives a matrix LCD display under microcomputer control. The intended display is a 4 \times 4 (16 segment) alphanumeric matrix or a 4 \times 2 or 3 \times 3 numeric matrix. each with nearly any number of characters. Other matrix displays, such as games and custom arrays, could also be driven by this circuit.

The HLCD 0607A is organized as 4 rows imes 30 columns, and thus can handle 7 alphanumeric or 15 numeric characters by itself. The HLCD 0539A, organized as 0 rows imes 34 columns may be used in addition to the HLCD 0607A when more than 30 columns are required. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

The HLCD 0607A is available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for: Wide supply voltage range Low power operation High noise immunity Wide temperature range

- CMOS, NMOS, and T²L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

BLOCK DIAGRAM

PIN CONFIGURATION

3

Δ

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37 - R4 _____ C1 36

35 🗆 C2

34 🗆 СЗ

33 ___ C4

32 🗆 C5

31

30 ____ C7

29 🗀 C8

28 🗖 C9 27 ____ C10

26 🗖 C11 🗖 C12

25

24

23

22

21

C13

C14

____ C15

C16

7 R1

⊐ R3

MAXIMUM RATINGS

V _{DD}	– .3 to 15 volts
Inputs	$+ V_{DD} - 17$ to $+ V_{DD} + .3$ volts
Power Dissipation	250 mW
Storage Temperature	65 to + 125°C
Operating Temperature	
Ceramic Package	
Plastic Package	40 to + 85°C

ELECTRICAL CHARACTERISTICS

 $T\!=\!25^\circ\!C$ and $V_{DD}\!=~5V$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	V _{DD}		3	12	v
Supply Current	IDD			750	μΑ
Input High Level	VIH		.8 V _{DD}	V _{DD}	v
Input Low Level	VIL		V _{DD} - 15	.5V _{DD}	v
Input Leakage	ι			5	μΑ
Input Capacitance	CI			5	pf
Row and Column Output Impedance	Ron	I _L = 10μΑ		40	KΩ
Interrupt Out Impedance	Ron	I _L = 100μA		3	KΩ
Clock Rate	f		DC	1.5	MHz
Data in Setup Time	^t DS	Data change to clock fall	300		nsec.
Data in Hold Time	тон	Clock fall to data change	100		nsec.
LCDØ to Interrupt Out Delay	^t D			600	nsec.
LCDØ High Level	VIH		.9V _{DD}	V _{DD}	v
LCDØ Low Level	VIL		0	.1V _{DD}	v
LCDØ Input Impedance	RIN		1	3	м
DC Offset Voltage, Any Display Element	VOFF			50	mV
Row Output High	VOH	Typical	V _{DD}		v
Row Output Low	VOL	Typical	0		v
Row Output Unselected	VOM	Typical	.5V _{DD}		v
Column Output High	VOH	Typical	.68V _{DD})	v
Column Output Low	V _{OL}	Typical	.32V _{DD})	v

TIMING DIAGRAM

TYPICAL WAVEFORMS

TYPICAL SYSTEM BLOCK DIAGRAM

83

OPERATING NOTES

1. The Shift register loads and shifts on the falling edge of clock.

2. A logic 1 on Data In causes a segment to be visible.

3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.

4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are V_{DD} , 0, and $V_{DD}/2$.

5. Column waveforms are in phase with interrupt out if selected and out of phase if not selected. Levels are .32 V_{DD} and .68 V_{DD}.

6. The intended mode of operation is as follows:

a. Interrupt Output frequency is the minimum no flicker frequency (>30 Hz) times the number of backplanes utilized.

b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.

c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next Interrupt Output rising edge, which causes parallel transfer from shift register to display latches.

d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the $LCD\phi$ input with 50% duty cycle.

e. Backplanes are addressed sequentially and individually.

7. The LCD ϕ pin can be used in two modes. If LCD ϕ is driven, the Interrupt Output will follow it. LCD ϕ will also oscillate if a resistor and capacitor are connected in parallel to ground. The resistor value should be at least 1M Ω . The approximate relationship is $f_{OUt} = \frac{1}{RC}$, which appears at interrupt out.

8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to $LCD\varphi$ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect $LCD\varphi$ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuits' serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select.

9. There are two obvious signal races to be avoided:

a. Changing data when clock is falling, andb. Allowing Interrupt Output rising edge to be very close to clock falling edge.

10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.

11. Output locations correspond to a clockwise advancing shift register, thus R1 is the last data loaded and C30 is the first data loaded.

12. The RMS voltages this circuit delivers to individual LCD pixels depends on VDD and the number of backplanes (N) used according to the following equations:

$$V_{RMS} \text{ OFF} = V_{DD} \quad \sqrt{\frac{.0324 \text{ N} + .07}{\text{N}}}$$

 $V_{RMS} \text{ ON} = V_{DD} \quad \sqrt{\frac{.0324 \text{ N} + .43}{\text{N}}}$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone (714) 759-2942 TWX 910-596-1374 In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4 82 Supercedes Previous Data

FOUR DIGIT LCD DECODER/ DRIVERS

HLCD 7211

DESCRIPTION:

The HLCD7211 devices are configured to drive conventional 4 digit, 7 segment, LCD displays. They feature on-chip oscillator, divider chain, backplane driver, and 28 segment drivers. These devices simplify the task of implementing a cost effective alphanumeric 7 segment display for microprocessor systems since they latch data and perform character encoding.

Two input configurations are available. One provides four data bit inputs and four digit select inputs. This configuration (HLCD7211-1, HLCD7211-2) is suitable for interfacing with multiplexed BCD or binary output devices such as counters. The microprocessor oriented interface (HLCD7211-3, HLCD7211-4) devices provide data input latches and digit select code latches under control of chip select inputs.

Two different decoder configurations are available. One configuration (HLCD7211-1, HLCD7211-3) will decode four bit binary input into a seven-segment alphanumeric hexa-decimal output. The other (HLCD7211-2, HLCD7211-4) versions will provide the output code 0-9, dash, E, H, L, P, blank. Either device will correctly decode BCD to seven segment decimal outputs.

The HLCD72111/72112/72113/72114 are packaged in a standard 40 pin plastic (P suffix) dual-in-line package.

FEATURES

- CMOS Circuitry Wide supply voltage range Low power operation High noise immunity Wide temperature range
- Four digit non-multiplexed 7 segment LCD display outputs with backplane driver
- Complete onboard RC oscillator to generate backplane frequency
- Backplane input/output allows simple synchronization of slave-device segment outputs to a master backplane signal

PIN CONFIGURATION:

- HLCD7211-1, HLCD7211-2 provide separate digit select inputs to accept multiplexed BCD input
- HLCD7211-3, HLCD7211-4 provide data and digit select code input latches controlled by chip select inputs to provide direct microprocessor interface
- HLCD7211-1, HLCD7211-3 decode binary to hexadecimal
- HLCD7211-2, HLCD7211-4 decode binary to code B (0-9, dash, E, H, L, P, blank)

MAXIMUM RATINGS:

Power Dissipation (Note 1)	0.5 W at 70°C
Supply Voltage	6.5V
Input Voltage (Any Terminal) (Note 2) V ⁺ + 0.3V,	GROUND -0.3V
Operating Temperature Range	$-20^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range	– 55°C to + 125°C
Lead Temperature (Soldering 10 sec.)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: This limit refers to that of the package and will not be realized during normal operation.

NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than V⁺ or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the HLCD 7211 devices be turned on first.

ELECTRICAL CHARACTERISTICS at $T_{\mbox{A}}$ = Full temperature range. All parameters measured with V+ = 5V

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Operating Supply Voltage Range	V _{SUPP}		3	5	6	V
Operating Current	l _{op}	Test circuit, Display blank		10	50	
Oscillator Input Current	IOSCI	Pin 36		±2	<u>+</u> 10	μΑ
Segment Rise/Fall Time	t _{rfs}	C _L = 200 pF		0.5		
Backplane Rise/Fall Time	^t rfb	C _L = 5000 pF		1.5		μο
Oscillator Frequency	fosc	Pin 36 Floating		16		KHz
Backplane Frequency	fbp	Pin 36 Floating		125		Hz
Logical "1" input voltage	VIH		3			V
Logical "O" input voltage	VIL				1	ľ I
Input Leakage current	ILK	Pins 27-34		±.01	<u>+</u> 1	μA
Input capacitance	CIN	Pins 27-34		5		рF
BP/Brightness input leakage	IBPLK	Measured at Pin 5 with Pin 36 at GND		<u>+</u> .01	<u>+</u> 1	μA
BP/Brightness input capcitance	CBPI	All Devices		200		pF
AC CHARACTERISTICS - MULTI	PLEXED INPU	T CONFIGURATION				
Digit Select Active Pulse Width	t _{sa}	Refer to Timing Diagrams	1			μs
Data Setup Time	t _{ds}		500			ns
Data Hold Time	^t dh		200			113
Inter-Digit Select Time	^t ids		2			μs
AC CHARACTERISTICS - MICRO	PROCESSOR II	NTERFACE				
Chip Select Active Pulse Width	t _{csa}	other chip select either held active, or both driven together	200			ns
Data Setup Time	t _{ds}		100			
Datà Hold Time	tdh		10	0		
Inter-Chip Select Time	t _{ics}		2			μs

TIMING DIAGRAMS:

(a) Multiplexed Input Timing

(b) Microprocessor Interface Input Timing

DIGITAL WAVEFORMS:

FUNCTIONAL DESCRIPTION:

The LCD devices in the family 72111, 72112, 72113, 72114 provide outputs suitable for driving conventional four digit by seven segment LCD displays. They include 28 individual segment drivers, a backplane driver, and a self-contained oscillator and divider chain to generate backplane frequency.

The segment and backplane drivers consist of a CMOS inverter, with the n- and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from different rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with more than 4 digits and a single backplane. The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding 5 μ s. (i.e. 3 slave devices and the display backplane driver by a fourth master device). It is recommended that if more than four devices are to be slaved to gether, that the backplane signal be derived externally and all the HLCD 7211 devices be slaved to it. This external signal should be capable of driving very large capacitive loads with short (1-2 μ s) rise and fall times. The maximum frequency for a backplane signal should be about 125Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used.

FUNCTIONAL DIAGRAMS:

HLCD 7211-1, HLCD 7211-2

(c) 1802 Microprocessor Interface via I/O Instruction Control:

(d) 80C48/8048/8748 Microcomputer Interface:

The onboard oscillator is designed to free run at approximately 16KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125Hz with oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36): see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about 1 microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

Part Number	Input Configuration	Output Code
HLCD 7211-1	Multiplexed 4-bit	Hexadecimal
HLCD 7211-2	Multiplexed 4-bit	Code B
HLCD 7211-3	Microprocessor Interface	Hexadecimal
HLCD 7211-4	Microprocessor Interface	Code B

INPUT CONFIGURATION AND OUTPUT CODES:

OUTPUT CODES:

	DINA	An t			
B3	B2	B1	B0	HEXADECIMAL	CODE B
0	0	0	0	0	0
0	0	0	1	1	I
0	0	1	0	Z	Z
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	8	8
0	1	1	1	7	7
1	0	0	0	8	8
1	. 0	0	1	9	9
1	0	1	0	A	-
1	0	1	1	ь	ε
1	1	0	0	C	Н
1	1	0	1	d	L
1	1	1	0	ε	የ
1	1	1	1	۴	(BLANK)

SEGMENT ASSIGNMENT:

90

A1, A2, A3, A4	 Outputs directly connected to the "a" segments of LCD
B1, B2, B3, B4	 Outputs directly connected to the "b" segments of LCD
C1, C2, C3, C4	 Outputs directly connected to the "c" segments of LCD
D1, D2, D3, D4	 Outputs directly connected to the "d" segments of LCD
E1, E2, E3, E4	 Outputs directly connected to the "e" segments of LCD
F1, F2, F3, F4	 Outputs directly connected to the "f" segments of LCD
G1, G2, G3, G4	 Outputs directly connected to the "g" segments of LCD
B0, B1, B2, B2	 Data input bits select appropriate output code B0 is the least significant bit
D1, D2, D3, D4	 Digit selects bits (HLCD 72111, HLCD 72112) D1 is the least significant bit
DS1, DS2	 Two bit digit select code (HLCD 72113, HLCD 72114) DS1 is the least significant bit DS2 DS1 0 0 selects D4 0 1 selects D3 1 0 selects D2 1 1 selects D1
CS1, CS2	— Chip select signals (HLCD 72113, HLCD 72114) — when both CS1, CS2 are low, the data at the Data Inputs (B0-B4) and Digit Select Inputs (D1-D4) are written into the input latches. On the rising edge of either chip select, the data is decoded and written into the output latches.
OSC	 Oscillator input can be floating or tied to external capacitor. When grounded, disables BP output devices, allowing segments to be synched to an external signal input at the BP terminal.
BP	— See OSC pin above.

APPLICATIONS:

(a) Cascading and Synchronization:

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Autorati International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

INTELLIGENT DOT MATRIX LCD CONTROLLER/DRIVER KIT

HLCD 0550 K-16

DESCRIPTION

HUGHES

SOLID STATE PRODUCTS

The Intelligent Controller Evaluation Kit allows ease of design by providing a p.c. board with a complete interface circuit between 16 character dot matrix Liquid Crystal Display and the Hughes HLCD 0550/0551 Intelligent LCD Controller/Driver.

The p.c. board provides extra space (wire wrap) for users interface. Control of the display is handled through an 8 bit bi-directional I/O port. Completed circuit handles character decode, display manipulation, cursor control and all drive functions including refresh and generation of multi-level AC waveforms.

FEATURES

- Low power CMOS circuitry with power down mode
- Microprocessor compatible parallel interface
- 5 x 7 dot matrix; 16 character display
- ASCII input format
- Generation of all drive waveforms
- Cursor Control
- Display manipulation, Instruction to accomplish shift, rotate, blank, blink, fast load, and power down
- Instructions to control output of characters, cursor position, display control flags, and busy status, etc.
- 11¾" x 2¾" p.c. board with users circuit space
- Low cost

P.C. BOARD OUTLINE DRAWING

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374 In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

HUGHES SOLID STATE PRODUCTS

1800 **C**MOS

HCMP 1822C

MICROPROCESSOR PRODUCTS

256 × 4 STATIC RAM HCMP 1822C

DESCRIPTION

The HCMP 1822C is a static CMOS Random Access Memory organized as 256 words of 4 bits. The HCMP 1822C has separate data inputs and outputs and is operated from a single voltage supply (VDD), 4 to 6.5 volts.

Two chip selects (CS1 and CS2) are provided to simplify expansion within a memory system. The Output Disable (O.D.) signal controls the output data disabling and is useful in Wire — OR connections and Common Input/Output systems.

The address is decoded on the chip to access a four bit data word. When the chip is selected ($\overline{CS1}$ = low and CS2 = high) and the Output Disable signal is low (VSS), the accessed data appears on the data output lines (DO0-DO3) and remains until O.D. goes high or the device is deselected ($\overline{CS1}$ = high or CS2 = low). After valid data appears, the address inputs may be changed immediately to select another data word.

To write information, a valid address and data word is presented to the HCMP 1822C with the memory write enabled (R/W = low), and the chip selected. When using a common input/output data bus, the Output Disable signal must be high.

The HCMP 1822C is available in 22 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are also available upon request.

FEATURES

- Static CMOS Circuitry
- Interfaces Directly to 1802A Microprocessor
- Fast Access Time
 250ns at V_{DD} = 5V

FUNCTIONAL DIAGRAM

- Low Quiescent and Operating Power
- No Precharge or Clock Required
- Industry Standard Pinout

PIN CONFIGURATION

MA3	1 2 3 4 5 6 7 8 9 10 11	 22 21 20 19 18 17 16 15 14 13 12	VDD MA4 R/W CS1 0.D. CS2 D03 D13 D02 D12 D01

MAXIMUM RATINGS, Absolute Maximum Values
Storage Temperature Range (T _{stg})65 to +150°C
Operating Temperature Range (TA)
Ceramic Package
Plastic Package
DC Supply-Voltage Range (V _{DD})
(All voltage values referenced to V _{SS} terminal)
HCMP 1822C

6.⁴⁹⁷

.

OPERATING CONDITIONS at T_A = **Full Package Temperature Range** For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:

		TEST CONDITIONS				LIMITS			
CHARACTERISTICS	Vo	VIN		Vpp	н	CMP 1822	2C	UNITS	
	(V)	(Ÿ)	5	(V)	Min.	Typ.1	Max.		
DC Operating Voltage Range	-	-		-	4	-	6.5	V	
Input Voltage Range	-	~		-	VSS	—	VDD	v	
STATIC ELECTRICAL CHARACTERISTICS at TA = -40 to +125	°C, V _{DD} ±	5%							
Quiescent Device Current, IDD	-	0, 5	5	5	-	20	500	μA	
Output Voltage: Low-Level, V _{OL}	_	0, 8	5	5	_	0	0.1	V	
High-Level, V _{OH}		0, 5	5	5	4.9	5		v	
Input Low Voltage, VIL	0.5, 4.5			5	_	-	1.5	V	
Input High Voltage, VIH	0.5, 4.5	-		5	3.5	—	-	v	
Output Low (Sink) Current, I _{OL}	0.4	0,5	5	5	1.6	2.6	_	٣A	
Output High (Source) Current, I _{OH}	4.6	0,5	5	5	-1	-1.5	_	ilia	
Input Current, IIN	-	0,5	5	5	-	-	±5		
3-State Output Leakage Current, IOUT	0,5	0,5	5	5	-		±5	μη	
Operating Current ² , I _{DD1}	-	0,5	5	5	-	4	8	mA	
Input Capacitance, C _{IN} Output Capacitance, C _{OUT}	-	0,5	5	-	_	5 5	7.5 7.5	pF	
DC Operating Voltage Range - - - 4 - 6.5 Input Voltage Range - - - 4 - 6.5 STATIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+125^{\circ}$ C, $V_{DD} \pm 5\%$ - V_SS - V_DD STATIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+125^{\circ}$ C, $V_{DD} \pm 5\%$ - 0.5 5 - V_DD Output Voltage: - 0,5 5 - 20 500 . Output Voltage: - 0,5 5 4.9 5 - - 1.5 Input Low Voltage, VIL 0.5, 4.5 - 5 3.5 - - - 0.5 5 4.9 5 - - - - - 0.1 1 - - 0.5 5 4.9 5 - - - - 1.5 1 - 1.5 - - 1.5 - - 1.5 - - - 5									
	TEST	CON	DIT	IONS		LIMITS			
CHARACTERISTICS	Vnp			Voo	Н	CMP 1822	C	UNITS	
				(V)	Min.	Typ. ¹	Max.	1	
Min. Data Retention Voltage, V _{DR}	-			-		1.5	2	V	
Data Retention Quiescent Current, IDD	2			-	-	30	100	μA	
Chip Select to Data Retention Time, CDR	-			5	600	-	-	ne	
Recovery to Normal Operation Time, tRC	VO (V) VIN (V) VD (V) Min - - 4 - - 4 - - 4 - - 4 - - VS 125°C, VDD ±5% - 5 - 0,5 5 - - 0,5 5 - - 0,5 5 - 0.5, 4.5 - 5 3.5 0.5, 4.5 - 5 1.6 4.6 0,5 5 - 0.5 0,5 5 - 0.5 0,5 5 - - 0,5 5 - - 0,5 5 - - 0,5 5 - - 0,5 5 - - 0,5 5 - - 0,5 5 - 25°C; See Timing Diagram VDR (V)	600	-						

NOTE 1 Typical values are for T_A = 25°C and nominal $V_{\mbox{DD}}.$ NOTE 2 Outputs are open circuited; cycle time = $1\mu s$.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -55° to $+125^{\circ}$ C, V_{DD} +5%, t_r, t_f = 20ns. See Timing Diagram

CHARACTERISTIC	VDD		HCMP 1822C		
CHARACTERISTIC	(V)	Min. ³	Typ.⁴	Max.	UNITS
Read Cycle Times		•			
Read Cycle, t _{RC}	5	450	300	-	ns
Access from Address, tADA	5		250	450	ns
Output Valid from Chip-Select 1, tDOA1	5	-	100	450	ns
Output Valid from Chip-Select 2, tDOA2	5		100	450	ns
Output Active from Output Disable, tDOA3	5	_	75	200	ns
Output Hold from Chip-Select 1, tDOH1	5	20		—	ns
Output Hold from Chip-Select 2, tDOH2	5	20	_	_	ns
Output Hold from Output Disable, tDOH3	5	20		—	ns
Write Cycle Times					
Write Cycle, t _{WC}	5	500	300	<u> </u>	ns
Address Set-up, t _{AS}	5	200	-	-	ns
Write Recovery, tWR	5	50		-	ns
Write Width, tWRW	5	250	70	-	ns
Data in set-up, t _{DIS}	5	250	70	-	ns
Data in Hold, t _{DIH}	5	100	70	_	ns
Chip Select 1 Set-up, tCSS1	5	250	100		ns
Chip-Select 2 Set-up, tCSS2	5	250	100	-	ns
Output Disable Set-up, tODS	5	200	—	-	ns

NOTE 3: Time required by a limit is to allow for the indicated function.

NOTE 4 Typical values are for $T_{\mbox{A}}$ = 25°C and nominal $V_{\mbox{DD}}.$

TIMING DIAGRAMS

HCMP 1822C

Read cycle waveforms and timing diagram.

Write cycle waveforms and timing diagram.

NOTE 5 tops is required for common I/O operation only; for separate I/O operations, Output Disable is Don't Care.

Low V_{DD} data retention waveforms and timing diagram.

NOTE 6 $t_r, t_f > 1 \ \mu S$

SIGNAL DESCRIPTION

MA0-MA7 — The eight input address lines select one of 256 four bit words. They are statically decoded on the chip to access the memory array.

DI0-DI3 — These four data inputs are read into the memory when the chip is selected and the Memory Write control ($R/\overline{W} = low$) is asserted.

D00-D03 — These four data outputs reflect the accessed data when the chip is selected and the Output Disable control is inactive (O.D. = low).

CS1, CS2 — These two input chip select signals enable the RAM when CS1 is low and CS2 is high.

O.D., \mathbf{R}/\mathbf{W} — These two input controls determine the mode of memory operation. Output Disable signal (O.D.) is inactive when performing a Read operation and enables the Data Output (DO0-DO3) three-state drivers. The Memory Write signal (\mathbf{R}/\mathbf{W}) is activated to perform a Write operation. A detailed control table follows:

OPERATIONAL MODES

		Inp			
Mode	Chip Select 1 CS1	Chip Select 2 CS2	Output Disable OD	<u>Read</u> Wr <u>ite</u> R/W	Output
Read	0	1	0	1	Read
Write	0	1	0	0	Data In
Write	0	1	1	0	High Impedance
Standby	1	Х	Х	х	High Impedance
Standby	Х	0	Х	Х	High Impedance
Output Disable	х	X	1	Х	High Impedance

Logic 1 = High; Logic 0 = Low; X = Don't Care

NOTE: 1. When using an HCMP 1802A CPU controlled system, MWR is connected to R/W and MRD is connected to O.D. NOTE: 2. For T²L interfacing an external pull-up is recommended at each input.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

AICROPROCESSOR PRODUCTS Static RAM

128 \times 8 STATIC RAM — HCMP 1823C

DESCRIPTION

The HCMP 1823C is a static CMOS Random Access Memory organized as 128 words of 8 bits. The HCMP 1823 has 8 common data input and output terminals and is operated from a single voltage supply (V_{DD}), 4 to 6.5 volts.

Five chip selects (CS1, $\overline{CS2}$, $\overline{CS3}$, CS4 and $\overline{CS5}$) are provided to simplify expansion within a memory system. The Memory Read (\overline{MRD}) signal controls the output data enabling and is useful in direct connection to a processor bidirectional data bus.

The address is decoded on the chip to access an 8 bit data word. When the chip is selected ($\overline{CS2}$, $\overline{CS3}$ and $\overline{CS5}$ = low and CS1 and CS4 = high) and the MRD signal is low (VSS) the accessed data appears on the data output lines (DO0-DO7). They remain valid until MRD goes high or the device is de-selected. After valid data appears, the address inputs may be changed immediately to select another data word.

To write information a valid address and data word is presented to the HCMP 1823C with the Memory Write enabled ($\overline{MWR} =$ low), and the chip selected. During a write operation, the \overline{MRD} signal must be high.

The HCMP 1823C is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Byte wide organization
- Interfaces directly to 1802A and most microprocessors.
- Fast access time 250ns at V_{DD} = 5V

FUNCTIONAL DIAGRAM

· Low quiescent and operating power

- No precharge or clock required
- Industry standard pinout

PIN CONFIGURATION

			_		
BUS 0	1	U	24		VDD
BUS 1	2		23		MA0
BUS 2	3		22		MA1
BUS 3	4		21		MA2
BUS 4	5		20		MA3
BUS 5	6		19		MA4
BUS 6	7		18		MA5
BUS 7	8		17		MA6
CS1	9		16		MWR
CS2	10		15		MRD
CS3	11		14		CS5
VSS	12		13		CS4
				,	

MAXIMUM RATINGS Absolute Maximum Values

Storage Temperature Range (T _{stg})	- 65 to + 150°C
Operating Temperature Range (TA)	
Ceramic Package	- 55 to + 125°C
Plastic Package	-40 to $+85^{\circ}C$
DC Supply-Voltage Range (V _{DD})	
(All voltage values referenced to VSS terminal)	
НСМР 1823С	0.5 to +7V

OPERATING CONDITIONS at T_A = Full Package Temperature Range For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:

	TEST CONDITIONS						
	Vo	VIN	VDD		HCMP 1823C		
CHARACTERISTICS	(v)	(V)	(V)	Min.	Тур.	¹ Max.	UNITS
DC Operating Voltage Range	-	_		4	-	6.5	v
Input Voltage Range	-	-		V _{SS}		VDD	V
STATIC ELECTRICAL CHARACTER	ISTICS at TA	= −55 to +	- 125°C, VDD) ±5%			
Quiescent Device Current, IDD	-	0,5	5	-	20	500	μA
Output Voltage:							
Low-Level, VOL	-	0, 5	5	-	0	0.1	v
High-Level, V _{OH}	-	0, 5	5	4.9	5	-	
Input Low Voltage, VIL	0.5, 4.5	-	5		-	1.5	
Input High Voltage, V _{1H}	0.5, 4.5	-	5	3.5	-	-	- V
Output Low (Sink) Current, IOL	0.4	0, 5	5	2.0	4.0	-	
Output High (Source) Current, IOH	4.6	0, 5	5	- 1.0	-2.0	-	mA mA
Input Current, I _{IN}	-	0, 5	5	-	-	<u>+</u> 5	
3-State Output Leakage Current, IOUT	0, 5	0, 5	5	-	-	<u>+</u> 5	μΑ
Operating Current, IDD12	-	0, 5	5	-	4	8	mA
Input Capacitance, C _{IN}	-	0, 5	-	-	5	7.5	-
Output Capacitance, COUT				-	5	7.5	pF
DATA RETENTION CHARACTERISI	TICS at TA =	-55 to +1	25°C; See T	iming Diag	ram		
	TEST CO	NDITIONS	1	LIMIT	S		
		V _{DR}	V _{DD}		HCMP 1823C		
CHARACTERISTICS		(V)	(V)	Min.	Тур.	1 Max.	UNITS
Min. Data Retention Voltage, VDR			_		1.5	2	V
Data Retention Quiescent Current, 1DD		2	-	-	30	50	μA
Chip Select to Data Retention Time, CDR			5	600	-	-	
Recovery to Normal Operation Time, tRC		-	5	600	-	-	ris
DYNAMIC ELECTRICAL CHARACTE	RISTICS at 1	$A = -55^{\circ}C$	to 125°C, V	DD +5%, t	r, t _f = 20	ns. See Tim	ning Diagram.
		V _{DD}		нсмі	P 1823C		
CHARACTERISTICS		(V)	Min. ³	3 Т	yp. ¹	Max.	UNITS
Read Cycle Times (See Figure 1)							
Read Cycle, tRC		5	450		300	-	ns
Access from Address; t _{ADA}		5			250	450	ns
Output Valid from Chip Select, tDOA1		5	-		100	450	ns
Output Valid from Chip-Select, tDOA2		5	-		100	450	ns
Output Active from Memory Read, tAM		5	-		75	200	ns
Data Hold from Chip-Select, tDOH1		5	100		50	100	ns
Data Hold from Chip-Select, tDOH2		5	100		50	100	ns
Data Hold from MRD, t _{DOH3}		5	100		50	100	ns
Write Cycle Times (See Figure 2)							
Write Cycle, tWC		5	500		300	-	ns
Address Set-up, t _{AS}		5	200		-	-	ns
write Recovery, tWR		5	75		-	-	ns
Write Width, tWRW		5	250		/0	-	ns
Data in Set-up, tDIS		5	250		/0		ns
		5			100		ns
Chip Select Set-up, tCSS1		5	250		100	_	ns
Unip-Select Set-up, tCSS2		5	250		100	-	ns

NOTE 1 Typical values are for T_{A} = 25^oC and nominal V_{DD} 2 Outputs open circuited; cycle time = 1 μ s

3 Time required by a limit is to allow for the indicated function.

Figure 1 — Read cycle waveforms and timing diagram.

Figure 2 — Write cycle waveforms and timing diagram.

SIGNAL DESCRIPTION

- MA0-MA6: The seven input address lines select one of 128 eight bit words. They are statically decoded on the chip to access the memory array.
- BUS0-BUS7: These eight data lines are read into the memory when the chip is selected and the Memory Write control is active (MWR = low). They become data outputs and carry the accessed data when the chip is selected and the Memory Read Control is active $(\overline{MRD} = low).$
- $CS1, \overline{CS2},$ These five input chip select signals enable the RAM when CS2, CS3, and CS5 are **CS3**, CS4, low and CS1 and CS4 are high. CS5
- MWD, MWR: These two input controls determine the mode of memory operation. The memory read signal (MRD) is active when performing a Read operation and enables the Data Output (BUS0-BUS-7) three-state drivers. The Memory Write signal (MWR) is activated to perform a Write operation. A detailed control table follows:

OPERATIONAL MODES

FUNCTION	MRD	MWR	CS1	CS2	CS3	CS4	CS5	BUS TERMINAL STATE
Read	0	x	1	0	0	1	0	Storage State of Addressed Word
Write	1	0	1	0	0	1	0	Input High-Impedance
Stand-by	1	1	1	0	0	1	0	High-Impedance
	x	x	0	х	х	X	X	
	x	x	х	1	x	x	х	
Not Selected	X	x	х	х	1	x	х	High-Impedance
	×	x	х	х	x	0	х	
	х	х	х	х	x	x	1	

Logic 1 = High Logic 0 = Low X = Don't Care

NOTES: For T^2L interfacing an external pull-up is recommended at each point.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich. West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS 32 × 8 Static RAM

HCMP 1824 HCMP 1824C

32×8 STATIC RAM — HCMP 1824

DESCRIPTION

The HCMP 1824 is a static CMOS Random Access Memory organized as 32 registers of 8 bits, and contains a common bi-directional three state data bus enabled by the Memory Read ($\overline{\text{MRD}}$) signal. Data is written into the RAM when the chip is selected ($\overline{\text{CS}} = 0$) and the Memory Write ($\overline{\text{MRW}}$) signal is asserted. Data is accessed by decoding the address lines and is transmitted onto the data bus when $\overline{\text{CS}}$ and $\overline{\text{MRD}}$ are enabled. The HCMP 1824 is fully decoded and does not require a precharge or clocking signal. This RAM may be used to provide a data stack or buffer storage for small systems.

The HCMP 1824 operates with a single voltage supply of 4-10.5 volts while the HCMP 1824C operates over 4-6.5 volts. The HCMP 1824 is available in 18 pin dual-in-line ceramic packages (D suffix) or plastic packages (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly to 1802A Microprocessor without Additional Components
- Access Time 400ns typical at VDD = 5V 200ns typical at VDD = 10V
- Single Voltage Supply
- Low Quiescent and Operating Power
- No Precharge or Clock Required

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range (T _{Stg})
Operating Temperature Range (T _A)
Ceramic Package
Plastic Package
DC Supply-Voltage Range (V _{DD})
(All voltage values referenced to V _{SS} terminal)
HCMP 1824
HCMP 1824C

OPERATING CONDITIONS at TA=Full Package Temperature Range Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	Conditions					
CHARACTERISTIC	Van	HCM	P 1824	НСМР	UNITS	
	(V)	Min.	Max.	Min.	Max.	1
Supply Voltage Range						
	-	4	10.5	4	6.5	v
Recommended Input Voltage Range	-	V _{SS}	V _{DD}	V _{SS}	V _{DD}	v
Input Signal Rise and Fall Time, t _r , t _f	5	-	5	-	5	
	10		2	-	-	μο

	TEST COMPLETIONS			LIMITS						
CHARACTERISTIC			HCMP 1824			н	HCMP 1824C			
	V0 (V)	VIN (V)	V _{DD} (V)	Min.	Typ. ¹	Max.	Min.	Typ. ¹	Max.	014113
STATIC ELECTRICAL CHARACTER	ISTICS at T	A = -40	to +85°C	, V _{DD} ±	5%					
Quiescent Device Current	_	-	5	-	50	100	-	250	500	
	_	-	10	-	250	500		-		
Output Voltage	0,5	_	5	_	0	0.05	_	0	0.05	
Low Level, VOL	0,10	-	10	-	0	0.05				
High Level Varia	0,5	-	5	4.95	5	_	4.95	5		v
Ingli zover, VOH	0,10		10	9.95	10		-	-	-	
Input Voltage	-	0.5.4.5	5			1.5	_		1.5	
Low Level, V	_	1.9	10	-	-	3	_	-	-	
High Lavel V		0545	5	3.5			3.5			V .
Ingli Level, VIH		19	10	7	_	-				
Output Drive Current	0,5	0.4	5	1.8	2.2	-	1.8	2.2	-	
N-Channel (Sink), I _D N	0,10	0.5	10	3.6	4.5	-	-	-	_	mA
P-Channel (Source), IpP	0,5	4.6	5	-0.9	-1.1	-	-0.9	-1.1	-	
	0,10	9.5	10	-1.8	-2.2		-	-		
Input Leakage, I _{IL} , I _{IH}	Any Input	-	5,10	-	<u>+</u> 0.1	<u>+</u> 1	-	<u>+</u> 0.1	<u>+</u> 1	μA
3-State Output Leakage	0,5	0,5	5		+0.2	<u>+</u> 2	-	<u>+</u> 0.2	<u>+</u> 2	
Current OUT	0,10	0,10	10	-	+0.2	<u>+</u> 2	-		-	μΑ
DYNAMIC ELECTRICAL CHARACTI	RISTICS at	$T_{\Delta} = -4$	0 to + 85	C, Vnn ±	: 5%; tr, tf	= 10ns,	$C_1 = 50$	$\mathbf{pF}, \mathbf{R}_{\mathbf{I}} = 2$	200ΚΩ	
Read Operation										
Access Time From		_	5	_	400	710	_	400	710	
Address Change, tAA	_	-	10	-	200	320	-	-	-	ns
Access Time From		-	5	-	300	710	_	300	710	
Chip Select, t _{AC} ²	_	-	10	-	150	320	-	-	-	ns
Output Active From		- 1	5	_	300	710	_	300	710	
MRD, tAM2	-	-	10	-	150	320	-		-	ns
Write Operation	L	1				L				
		_	5	390	200	_	390	200	_	
Write Pulse Width, tww	-		10	180	150	-	-	-	-	ns
		_	5	390	100	_	390	100		
Data Setup Time, ^t DS		-	10	180	50	50 <u></u> ns				
		-	5	70	40	_	70	40	_	
Data Hold Lime, tDH	-	- 1	10	35	20	_		-	_	ns
		-	5	425	210	-	425	210		
Chip Select Setup Time, tCS	-	-	10	215	110	-	-	-	-	ns
Address Setup Time t		-	5	640	500	-	640	500	-	- ns
Address Setup Time, TAS		-	10	390	300	-			-	
Address Hold Time t			5	-	100	_	-	100	_	ns
	_	-	10	-	50	-	-	-	-	
Power Dissipation, PD	_		5	-	10	-	-	10	-	mW
(Chip Selected)		-	10		40	-		-	-	

NOTE: 1 Typical values are for $T_A = 25^{\circ}C$ and nominal V_{DD}

2 t_{AC} and t_{AM} are given as minimum times for valid data outputs. Longer times will initiate an earlier but invalid input.

TIMING DIAGRAMS

Note: Shaded area in \overline{CS} is a don't care condition.

The dynamic characteristic table and the above timing diagrams represent maximum performance capability of the HCMP 1824. When used in direct system interface with the HCMP 1802A microprocessor, the timing relation will be determined by the clock frequency and timing signal generation of the microprocessor. In the latter case the following general timing conditions hold.

$$t_{DH} = 1.0t_{C}$$

$$t_{DH} = 1.0t_{C}$$

$$t_{DS} = 5.5t_{C}$$

MRD occurs one clock period (t_c) earlier than address bus MA0-MA7

 $t_C = 1/HCMP$ 1802A clock frequency

	TEST CONDITIONS		HCMP		HCMP		
CHARACTERISTIC		Vpp	1824		1824C		UNITS
		(v)	Min.	Max.	Min.	Max.	
Data Retention Voltage, V _{DR}		-	2.5	_	2.5		v
Data Retention Quiescent Current, I _{DD}	V _{DR} = 2.5V	_	_	50	-	250	μΑ
Chip Deselect to Data Retention Time, t _{CDR}	V _{DR} = 2.5V	5 10	600 300	-	600 —	_	
Recovery to Normal Operation Time, t _{RC}	V _{DR} = 2.5V	5 10	600 300	_	600 -	-	

DATA RETENTION CHARACTERISTICS at $T_{\Delta} = -40$ to $+85^{\circ}C$

Low V_{DD} data retention waveforms and timing diagram.

SYSTEM INTERCONNECT

signal from ROM, or (3) always enabled (GND) per system requirements.

For a microprocessor system requiring a minimal amount of writable storage, the HCMP 1824 can be used as an adequate scratch pad memory and as stack storage for a wide range of control applications. No additional interface elements are required.

SIGNAL DESCRIPTION

MA0-MA4 — These five input address lines select one of 32 eight bit words. They are statically decoded on the chip to directly access the register array.

BUS0-BUS7 — These eight bi-directional three state data lines form a data bus common with the HCMP 1802A microprocessor. Data is written into the RAM or read from the RAM through these lines.

MRD, **MWR**, **CS** — These three control signals determine chip selection bi-directional data control and operation of the chip when activated as follows:

 $\label{eq:mrss} \begin{array}{l} \hline MRD = \mbox{Memory Read} \\ \hline MWR = \mbox{Memory Write} \\ \hline \overline{CS} = \mbox{Chip Select (allows memory expansion)} \end{array}$

FUNCTION	cs	MRD	MWR	DATA LINES
Read	0	0	X	Output Mode
Write	0	1	0	Input Mode
Not Selected	1	x	x	High Impedance Mode
Standby	0	1	1	High Impedance Mode
Logic 1 = High	Logic	0 = Low	X = Don't Ca	re

Note: MRD overrides MWR

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS Static ROM

HCMP 1831/1833 HCMP 1831C/1833C

512 × 8 STATIC ROM — HCMP 1831 1024 × 8 STATIC ROM — HCMP 1833

DESCRIPTION

The HCMP 1831 and 1833 are static CMOS Mask Programmable Read Only Memories. The HCMP 1831 and 1833 respond to a 16-bit address time multiplexed on the 8 address lines (MA0-MA7). The eight most significant address lines are latched on chip by the clock input. This address may be decoded by mask option to allow the HCMP 1831 to operate in any 512 word area, and the 1833 in any 1024 word area within the 65,536 byte memory space. In addition, three chip select signals may be decoded for simplified system interfacing. The Chip Enable Output (CEO) is activated when the chip is selected and can be used as a disable control for small RAM memory systems. Data is accessed from memory by decoding the Address inputs and enabled on the data bus by the two Chip Selects (CS2 and CS1), the Memory Read (MRD) and the upper address decode. The CEI signal may be used as an additional control of the ROM selected output signal, CEO, on the HCMP 1833.

The HCMP 1831 and 1833 operate over a 4-10.5 volt range while the HCMP 1831C and 1833C operate over a 4-6.5 volt range. The ROMs are normally supplied in 24-lead, hermetic dual-inline ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) can be supplied upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components
- Access Time
 850ns Typical at VDD = 5V
 400ns Typical at VDD = 10V
- Single Voltage Supply
- Low Quiescent and Operating Power
- Static No Clocks Required
- Chip Select and Address Location Within 64K Memory Space, Mask Programmable

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range (T_{stg})65 to $+ 150^{\circ}$ C
Operating Temperature Range (T _A)
Ceramic Package
Plastic Package
DC Supply-Voltage Range (V _{DD})
(All voltage values referenced to VSS terminal)
HCMP 1831/18330.5 to +13V
HCMP 1831C/1833C

OPERATING CONDITIONS at TA = Full Package Temperature Range Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS		LIM	IITS							
CHARACTERISTIC	V _{DD}	нсмр	1831	HCMP 1831C		HCMP 1833		HCMP 1833C		UNITS	
	(V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
Supply Voltage Range (At T _A = Full Package Temperature Range)	-	4	10.5	4	6.5	4	10.5	4	6.5	v	
Recommended Input Voltage Range	-	v _{ss}	V _{DD}	v _{ss}	VDD	v _{ss}	VDD	v _{ss}	VDD	v	
Clock Bulso Width (TRA) to	5	200	-	200	_	200	-	200	-	ne	
Clock I dise width (TFA), tPAW	10	70	-	-	-	70	-	-	-		
	5	50	-	50	-	75	-	75	-	ns	
Address Setup Time, t _{AS}	10	25	-	-	-	40	-	-	-		
Address Hald Times +	5	150	-	150	-	100	-	100	-	ns	
Address Hold Time, t _{AH}	10	75	-	-	-	50	-	-	-		

ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = \pm 5\%$ except as noted

01110-0-0-0	COI TIC	ST NDI- NNS	нс	CMP 18	331	нс	MP 18	31C	нс	:MP 18	33	HCMP 1833C		LINUTE	
CHARACTERISTIC	V ₀ (V)	V _{DD} (V)	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	UNITS
Static													-		
Quiescent Device Current L	_	5	-	0.01	50	-	0.02	200	-	0.01	50	-	0,02	200	
	-	10	_	1	200	-	-	-	-	1	200	-	-	-	μ-
Output Drive Current,	0.4	5	0.55	-	-	0.55	-		0.8	-	-	0.8	-	_	
N-Channel (Sink), IDN	0.5	10	1.3	-	-	-	-	_	1.8	-	-	_		_	mΔ
P-Channel (Source), IDP	4.6	5	-0.35	-	-	-0.35	-		-0.8	-	-	-0.8	-	-	
	9.5	10	-0.65	-	-	-	-	-	-1.8	-	-	-	-	-	
Output Voltage		5		0	0.05	-	0	0.05	-	0	0.05	-	0	0.05	v
Low Level, VOL	-	10	-	0	0.05	-	-		-	0	0.05	_	-	-	v
Output Voltage	-	5	4.95	5	-	4.95	5	-	4.95	5	-	4.95	5	-	v
High Level, VOH	-	10	9.95	10	-	-	-	-	9.95	10	-	_	-	-	-
Input Leakage Current,	-	5	_	_	±1	-	-	<u>±1</u>	-	_	±1	_		<u>+</u> 1	
կե/կн		10	-	-	±1	_	-	-	-	-	<u>+</u> 1	-	-	-	<i>µ</i> A
3-State Output Leakage	0,5	5	-	-	<u>+1</u>	-	-	<u>+</u> 1	-	_	<u>+</u> 1	_	-	<u>+</u> 1	
Current, IOUT	0,10	10	-	-	<u>+</u> 1	-	-	-	-	-	<u>+</u> 1	-	_	-	μΑ
Dynamic: t _r , t _f =10ns, CL =50pF	, RL =	200 K	Ω												
Access Time From Address	-	5	_	850	1000	-	850	1000	-	650	775	-	650	775	
Change, t _{AA}	-	10	-	400	500	-	-	-	-	350	425	-	-	-	113
Access Time From Chip	-	5	-	700	800	-	700	800	-	500	625	-	500	625	
Select, tACS	-	10	-	250	300	-	-	-	-	275	310	-	-	-	1.3
CEO From Address	-	5	-	500	600		500	600	-	120	170	-	120	170	ns
Change, t _{CA}	-	10	-	200	250	-	-	-	-	70	100	-	-	-	
Bus Contention Delay,	-	5	-	200	350	-	200	350	-	220	270	—	220	270	ns
^t D	-	10	—	100	150	-	-	-	_	130	150	-	-	-	
Daisy Chain Delay,	-	5	-	-	-	-	-	-	-	200	250	-	200	250	ns
^t IO	-	10	-	-	-	-	-	-	-	100	150	-	-	-	
Read Delay,	-	5	-	300	500	-	300	500	-	400	500	-	400	500	ns
tMRD	-	10	-	100	150	-	-	-		200	275	_		_	
Chip Select Delay,		5	-	600	750	-	600	750		250	320	_	250	320	ns
tCS	.—	10	-	200	300	-	-	-	-	125	180	-	-	-	
Chip Enable Output Delay	-	5	_	400	500	-	400	500	-	200	250	-	200	250	ns
Time From CS, t _{CO}	-	10	-	200	250	-	-	-		100	150	-		-	
Power Dissipation, P	-	5		15	-	-	15	-	-	30	-	-	30	-	mW
Cycle time = 2.5µs	-	10	_	60	- 1	-	-	-	-	120	- 1	- 1	-	-	1

Typical values are for $T_{\mbox{\scriptsize A}}$ = 25 $^{0}\mbox{C}$ and nominal $V_{\mbox{\scriptsize DD}}$

HCMP 1833

INVALID OR DON'T CARE CONDITIONS

The dynamic characteristic table and the above timing diagrams represent maximum performance capability of the HCMP 1831/1833. When used in direct system interface with the HCMP 1802A microprocessor, the timing relation will be determined by the clock frequency and timing signal generation of the microprocessor. In the latter case the following general timing conditions hold: $t_{AH} = 0.5 t_{C}$

 $tPAW = 1.0 t_C$

MRD occurs one clock period (t_c) earlier than address bus MA0-MA7 $t_c = 1/HCMP1802A$ clock frequency

SYSTEM INTERCONNECT CLEAR WAIT NO-N2 MRD TPB ADDR BUS ADDR BUS 0 DATA ROM тра ТРА HCMP CPU SC0 SC1 I/O 1831 HCMP 1802A OR INTERRUPT RAM ICMP CONTROL MRD MRD 1833 DMA-IN DMA-OUT MWR CEO EF1-EF4 8 BIT BI-DIRECTIONAL DATA BUS

SIGNAL DESCRIPTION

MA0-MA7 — High order byte of a 16-bit memory address appears on the memory address lines, MA0-MA7, first. Those bits required by the memory system are strobed into internal address latches by Clock (TPA) input. The low order byte of 16-bit address appears on the address lines after the termination of TPA.

BUS0-BUS7 — These eight bi-directional three state data lines form a common bus with the 1802A microprocessor.

CLK (TPA) — A timing signal from HCMP 1802A microprocessor (trailing edge of TPA) is used to latch the high order byte of the 16-bit memory address. The polarity of TPA is user mask programmable.

CS1, CS2, MRD — Chip Select and Memory Read (output enable) signals. The polarity of the chip select signals are user mask programmable.

CEO, **CEI** — Chip enable output signal (CEO) is high when either the chip is selected or CEI is high (1833 only). CEO and CEI can be connected in daisy chain operation between several ROMs to control selection of RAM chips in a microprocessor system without additional components. The polarity of CEI is user mask programmable in the HCMP 1833.

ORDERING INFORMATION

Contact Hughes for prices and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance is available from Hughes-Solid State Products or Hughes Representative.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES

SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich. West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS Static ROM

HCMP 1832/1834 HCMP 1832C/1834C

512 × 8 STATIC BOM -- HCMP 1832 1024 × 8 STATIC ROM - HCMP 1834

DESCRIPTION

The HCMP 1832 and 1834 are static CMOS Mask Programmable Read Only Memories. When an address is presented on lines MA0-MA8 (HCMP 1832) or MA0-MA9 (HCMP 1834) the decoded word location is accessed and presented to the output sense amplifiers. This 8 bit word is enabled onto the lines by the CS signal in the HCMP 1832, or the CS1 and CS2 signals in the HCMP 1834, which can be used for memory expansion. The HCMP 1832 is a pin-for-pin compatible replacement for the 2704/8704 PROMs while the HCMP 1834 is a pin-for-pin compatible replacement for the 2708 PROM or 2308 ROM.

The HCMP 1832 and 1834 operate over a 4-10.5 volt range while the HCMP 1832C and 1834C operate over a 4-6.5 volt range. The ROMs are supplied in a 24 lead hermetic dual-in-line ceramic (D suffix) or plastic packages (P suffix). Unpackaged dice (H suffix) can be supplied upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Compatible with 1802A microprocessor at
 Eve Quiescent and Operating Power maximum speed
- Access Time 1832 850ns Typical at VDD = 5V400ns Typical at VDD = 10V
- Access Time 1834 575ns Typical at VDD = 5V350ns Typical at VDD = 10V

- Single Voltage Supply
- Static No Clocks Required
- Functional Replacement for Std. Industry Type 2704 (512 \times 8) PROM or Type 2708 (1024 imes 8) PROM

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range (Tstg)	-65 to +150°C
Operating Temperature Range (TA)	
Ceramic Package	– 55 to + 125°C
Plastic Package	-40 to +85°C
DC Supply-Voltage Range (V _{DD})	
(All voltage values referenced to VSS terminal)	
HCMP 1832/1834	-0.5 to +13V

OPERATING CONDITIONS at $T_A =$ Full package temperature range unless otherwise specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS		LIM	ITS						
CHARACTERISTIC	V _{DD} (V)	нсмя	9 1832	832 HCMP		HCMP 1834		HCMP 1834C		UNITS
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Static										
Supply Voltage Range (At T _A = Full Package Temperature Range)	-	4	10.5	4	6.5	4	10.5	4	6.5	v
Recommended Input Voltage Range	-	v _{ss}	V _{DD}	v _{ss}	VDD	v _{ss}	V _{DD}	v _{ss}	V _{DD}	v

ELECTRICAL CHARACTERISTICS at T_A = -40 to 85°C, V_{DD} = \pm 5% except as noted

	TE CONDI	ST TIONS	нс	:MP 18	832	HC	VIP 18	32C	нс	MP 18	34	нс	MP 18	34C	UNITS
CHARACTERISTIC	V _O (V)	V _{DD} (V)	Min.	Тур.	Max.	Min.	Typ.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	oo
Static															1
Quiescent Device Current 1	_	5	-	0.01	50		0.02	200	-	0.01	50	_	0.02	200	Δ
	-	10	-	1	200	-	-	-	-	1	200	1	-	1	μ-
Output Drive Current:	0.4	5	0.55	1		0.55	-	-	0.8	-	_	0.8	_	_	
N-Channel (Sink), I _D N	0.5	10	1.30	-	-	-	-	-	1.8	-		-	-	1	mΑ
B Chappel (Source) I-P	4.6	5	-0.35	-	-	-0.35	-	-	-0.8	-	-	-0.8	-	-	
(Source); "Br	9.5	10	-0.65	-	-	-	-		-1.8	-			-	-	
Output Voltage	-	5		0	0.05	1	0	0.05	I	0	0.05	_	0	0.05	v
Low Level, VOL	-	10	-	0	0.05	-	-	-	-	0	0.05	-	-		v
Output Voltage	-	5	4.95	5	_	4.95	5	-	4.95	5	-	4.95	5	-	v
High Level, VOH	-	10	9.95	10	-		-	-	9.95	10	-	-	-	-	
Input Leakage Current,	_	5	-	-	<u>+</u> 1	-	-	<u>+</u> 1	-	-	<u>+</u> 1	-	-	<u>+</u> 1	// A
իլ, իր	-	10	_	-	<u>+</u> 1	-	-	-	-	-	<u>±1</u>	-	-	-	<i>µ</i>
3 State Output Leakage	0,5	5	-	-	<u>+</u> 1		-	<u>+</u> 1	-	-	<u>+</u> 1	-	-	±1	<i></i> Δ
Current, IOUT	0,10	10	_	-	<u>±1</u>	-	_	-	-	-	<u>+</u> 1	-	-	-	<u> </u>
Dynamic: t _r , t _f = 10ns, CL = 50pF,	, RL = 20	ЮКЛ													
Access Time From Address		5		850	1000	-	850	1000	-	575	750	_	575	750	ne
Change, t _{AA}	-	10	-	400	500	-	-	-	-	350	425	-	-		
Access Time From Chip	-	5	-	400	550	-	400	550	-	600	700	-	600	700	
Select, tAC	-	10	-	200	250	-	-	-	-	325	410	-	-	-	i is
Chip Select Delay, too	-	5	-	200	250	-	200	250	-	480	580	-	480	580	D 5
	-	10	-	100	130		-		-	250	340	-	-	-	
Power Dissipation, PD	-	5	-	15	-	-	15		-	30	-	-	30	-	mW
Cycle Time = 2.5 µs	<u> </u>	10	-	60		-	-	_	-	120	-	-	-		

Typical values are for $T_A = 25^{\circ}C$ and nominal V_{DD}

HCMP 1832

HCMP 1834

FUNCTIONAL OPERATION

.

The ROMs above are completely static — no clocks are required. Decode of the input address selects a word from the storage array. The chip select signal enables the selected word to appear on the output bus line.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA9 — These address lines MA0-MA8 (HCMP 1832) or MA0-MA9 (HCMP 1834) select a decoded word.

BUS0-BUS7 — These eight bi-directional three-state data lines form a common bus with the 1802A microprocessor.

CS, CS1, CS2 — These chip select signals are provided for memory expansion. Outputs are enabled when $\overline{CS} = 0$ in the HCMP 1832, while the polarity of CS1 and CS2 are user mask programmable in the HCMP 1834.

ORDERING INFORMATION

Contact Hughes for prices and other information relating to the ROMs. ROM order forms and instructions concerning means of data conveyance are available from Hughes-Solid State Products or Hughes representative.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

UGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach. CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374 In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

1800 CM05

MICROPROCESSOR PRODUCTS Static ROM HCMP 1835 HCMP 1835C

PRELIMINARY DATA

2048 × 8 STATIC ROM — HCMP 1835

DESCRIPTION

The HCMP 1835 is a static CMOS Mask Programmable Read Only Memory. The HCMP 1835 responds to a 16 bit address time multiplexed on the eight address lines (MA0-MA7). The eight most significant address lines are latched on chip by the Clock input's negative transition. This address may be decoded by mask option to allow the HCMP 1835 to operate in any 2048 byte area within the 65,636 byte memory space. In addition, three chip select signals may be decoded for simplified system interfacing. The Chip Enable Output (CEO) is activated when the chip is selected and can be used as a disable control for small memory systems. The CEI signal may be used as an additional control of the ROM selected output signal, CEO. Data is accessed from memory by decoding the Address inputs and enabled on the data bus by the two Chip Selects (CS2 and CS1), the Memory Read (MRD) and the upper address decode. The polarity of the CS2 and CS1 signals are mask programmable.

The HCMP 1835 operates over a 4-10.5 volt range while the HCMP 1835C operates over a 4-6.5 volt range. The ROMs are normally supplied in 24-lead, hermetic dual-in-line ceramic package (D suffix) or a plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components
- Access Time
 900ns Typical at V_{DD} = 5V
 500ns Typical at V_{DD} = 10V

FUNCTIONAL DIAGRAM

- Single Voltage Supply
- Low Quiescent and Operating Power
- No Clocks Required
- Chip Select and Address Location within 64K Memory Space, Optionally Programmable

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage-Temperature Range (T _{stg})	DC Supply-Voltage
	(All voltage values
Operating-Temperature Range (T _A)	HCMP 1835
Ceramic Package	
Plastic Package40 to +85°C	HCMP 1835C .

Range (V_{DD}) referenced to V_{ss} terminal) -0.5 to +11V -0.5 to +7V

OPERATING CONDITIONS at T_A = Full Package Temperature Range Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS							
CHARACTERISTIC	VDD	I	ICMP 183	5	н	UNITS		
	(V)	Min.	Typ.	Max.	Min.	Тур.	Max.	
Supply Voltage Range (At T _A = full Package Temperature Range	-	4		10.5	4	-	6.5	v
Recommended Input Voltage Range		VSS	-	VDD	VSS	-	VDD	V
Clock Bulso Width (TBA) taxus	5	300		-	300			ns
Clock Fulse Width (TFA), tPAW	10	150			-	-	-	
Address Setup Time tas	5	300		-	300		-	DE
, -A3	10	150	-	-	-	-		
Address Hold Time, t _{AH}	5	0	-	-	0	-	-	
	10	0	-	-	-		-	ns

ELECTRICAL CHARACTERISTICS at T_A = 25°C, V_{DD} = $\pm 5\%$ except as noted.

	TE	ST			LIM	ITS				
CHABACTERISTIC	CONDITIONS HCMP 1835 HCMP 1			CMP 183	5C	UNITS				
	V ₀ (V)	V _{DD} (V)	Min.	Тур.	Max.	Min.	Тур.	Max.	UNITS	
Static										
Quiescent Device Current, IQ	-	5	-	1	100	-	1	100		
	nege	10		10	400		-	400	μΑ	
Input Voltage Low Level Vu	-	5	-	-	1.25	-		1.25	V	
	-	10	-		2.5	-		-	v	
Input Voltage High Level Vuu		5	3.75	-	-	3 75		-	V	
inpar Fortage High Level, FIA	-	10	7.5	-	-	-	-	-	•	
Output (Sink) Current Iou	0.4	5	2		-	1.6		-	- V - mA - mA	
	0.4	10	4	-	-		-	-		
Output (Source) Current, Iou	4.5	5	2	_	_	1.6	-	-	mA	
	9.5	10	4	-	-	-	-	-		
Input Leakage Current,	0	5	-	<u>+</u> 1	<u>+</u> 5	-	<u>±1</u>	5	uА	
<u>'IL' 'IH</u>	0	10	-	<u>+</u> 1	<u>+</u> 10	-	-			
3 State Output Leakage	0,5	5		<u>+</u> 1	<u>+</u> 1	-	<u>+</u> 1	<u>+</u> 10	μA	
	0,10	10	-	<u>+</u> 1	<u>+2</u>	-	-	-		
Dynamic: t _r , t _f = 10 ns,C _L = 50 pF										
Power Supply Current, IDD	-	5	-	3	-	-	3.5	-	m۸	
(Chip Selected 400 KHz)		10	-	10		-	-			
CEO from Address Change, to a	-	5	-	-	325	-		325		
ozo nom radiess ondrige, tCA	-	10	-	-	200	-	-	-	115	
Daisy Chain Delay, tuo	-	5	-		150	-	-	150		
		10	-	-	100	-	-	-	113	
Bead Delay, tMPD	-	5	-	-	200	-	-	200		
HINGE DOING , CMIRD	-	10	-	-	100	-	-	ns	115	
Chip Select Delay, too		5	-	-	250		-	250	50	
	-	10	-		125	-		-	115	
Access Time from Chip	-	5	-	-	325	-		325		
Select, tACS	-	10	-	-	175	-				
Access Time From Address	-	5	-	900	1300	-	900	1300		
		10	-	500	800		-	-	115	

TIMING DIAGRAM

"Daisy Chaining" with CEI inputs and CEO outputs is used to avoid memory conflicts between ROM and RAM in a user system. In the above configuration, if ROM#1 was masked-programmed for memory locations $0000-3FF_{16}$ and ROM#2 masked-programmed for memory locations $0400-07FF_{16}$ for addresses from $0000-07FF_{16}$ the RAM would be disabled and the ROM enabled. For locations above $07FF_{16}$ the ROM s would be disabled and the RAM enabled.

SIGNAL DESCRIPTION

MA0-MA7 — Under 1802A control the high order byte of a 16-bit memory address appears on the memory address lines, MA0-MA7, first. Three bits required by the ROM Address Decodes are strobed into internal address latches by Clock (TPA) input. The low order byte of 16-bit address appears on the address lines after the termination of TPA.

BUS0-BUS7 — These eight bi-directional three state data lines form a common bus with the 1802A microprocessor.

CLK (TPA) — A timing signal from 1802A microprocessor (trailing edge of TPA) is used to latch the high order byte of the 16-bit memory address.

CS1, **CS2**, **MRD** — Chip select and memory read (output enable) signals. The polarity of the CS1 and CS2 signals are user mask programmable.

CEO, CEI — Chip Enable Output (CEO) signal is high when either the chip is selected or CEI is high. CEO and CEI can be connected in daisy chain operation between several ROMs to control selection of RAM chips in a microprocessor system without additional components.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance are available from Hughes-Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834,7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS Static ROM

HCMP 1837 HCMP 1837C

4096 × 8 STATIC ROM — HCMP 1837

DESCRIPTION

The HCMP 1837 is a static CMOS Mask Programmable Read Only Memory. No clocks are required. The HCMP 1837 responds to a 16 bit address time multiplexed on the eight address lines (MA0-MA7). The most significant address lines are latched on chip by the Clock input's negative transition. This address may be decoded by mask option to allow the HCMP 1837 to operate in any 4096 byte area within the 65,636 byte memory space. In addition, three chip select signals may be decoded for simplified system interfacing. The Chip Enable Output (CEO) is activated when the chip is selected and can be used as a disable control for small memory systems. The CEI signal may be used as an additional control of the ROM selected output signal, CEO. Data is accessed from memory by decoding the Address inputs and enabled on the data bus by the two Chip Selects (CS2 and CS1), the Memory Read (MRD) and the upper address decode.

The HCMP 1837 operates over a 4-10.5 volt range while the HCMP 1837C operates over a 4-6.5 volt range. The ROMs are normally supplied in a 24-lead, hermetic dual-in-line ceramic package (D suffix) or plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components
- Access Time

750ns Typical at $V_{\text{DD}}=5V$ 450ns Typical at $V_{\text{DD}}=10V$

FUNCTIONAL DIAGRAM

- Single Voltage Supply
- Low Quiescent and Operating Power
- No Clocks Required
- Chip Select and Address Location within 64K Memory Space, Optionally Programmable

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage-Temperature Range (T _{stg}) –65 to +150°C	DC Supply-Voltage Range (V _{DD})
Operating-Temperature Range (T.)	(All voltage values referenced to $V_{\mbox{\scriptsize SS}}$ terminal)
Operating-remperature nange (Tg)	HCMP 1837 0.5 to + 13V
Ceramic Package55 to +125°C	
Plastic Package	HCMP 1837C -0.5 to $+7V$

OPERATING CONDITIONS at T_A = Full Package Temperature Range Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS							
CHARACTERISTIC	VDD		HCMP 1837	7	н	UNITS		
	(V)	Min.	Тур.	Max.	Min.	Typ.	Max.	
Supply Voltage Range (At T _A = full Package Temperature Range		4		10.5	4	-	6.5	v
Recommended Input Voltage Range		VSS	-	V _{DD}	V _{SS}	-	VDD	V
Clock Bulse Width (TBA), to an	5	300	-	-	300		-	ns
Ciock I dise Width (TFA), tPAW	10	150	-	-		-	-	
Address Setup Time tas	5	300		-	300	-	-	
Address Setup Time, tAS	10	150		-	-	-	-	113
Address Hold Time, t _{AH}	5	0	-	-	0	-	-	
	10	0	-	-		-		ns

ELECTRICAL CHARACTERISTICS at T_A = 25°C, V_{DD} = $\pm 5\%$ except as noted.

	TEST LIMITS								
CHARACTERISTIC	COND	TIONS		HCMP 1837	,	н	CMP 183	7C	UNITO
Chanadrematic	V ₀ (V)	V _{DD} (V)	Min,	Тур.	Max.	Min.	Тур.	Max.	UNITS
Static									
Quiescent Device Current, IQ	-	5	-	1	50		1	50	
	-	10	-	1	100		-	-	μ_{A}
Input Voltage Low Level Vu	-	5			1.25	-	-	1.25	V
	-	10	-		3	~	-	-	v
Input Voltage High Level Vuu	-	5	3.75		-	3.75	-	-	v
Input voltage ringit Level, vIH	-	10	7		-	-	-	-	v
Output (Sink) Current Lou	0.4	5	2.2			2.2	-	-	m (
	0.4	10	4.4	-	-	-	-		IIA
Output (Source) Current Lou	4.5	5	- 1.6	-	-	- 1.6		-	
	9.5	10	- 3.2		-	-	-	-	
Input Leakage Current,	0	5	-	<u>+</u> 1	±2	-	±1	± 2	μΑ
1L [,] 1H	/'IH 0	10	-	<u>+</u> 1	±12	-	-	-	,
3 State Output Leakage	0,5	5	-	<u>+</u> 1	±12	-	<u>+</u> 1	±12	иА
Current, OUT	0,10	10	-	<u>+</u> 1	<u>+</u> 2		-	-	,
Dynamic: t _r , t _f = 10 ns,CL = 50 pF									
Power Supply Current, IDD	-	5	-	4	-		4		
(Chip Selected 400 KHz)	-	10	-	10	—	-		-	mA
CEO from Address Change to .	-	5	-		325	-	-	325	
CEO Hom Address Change, ICA	-	10	-		200	-	-		ns
Daisy Chain Delay, the	-	5	-		150	-	-	150	
Daisy Chain Delay, 10	-	10	-	-	100	-	-	-	ns
Bead Delay, tites		5	-		200	-	-	200	
riead Delay, (MRD	-	10	-	-	100	-	-	-	ns
Chip Select Delay, too	-	5	-		250	-	-	250	
Chip Select Delay, ICS	-	10	-	-	125	_			ns
Access Time from Chip		5	-	-	325	-	- 1	325	
Select, tACS	-	10	-		175	-		_	ns
Access Time From Address		5		750	1000	-	750	1000	
Change, tAA	-	10		450	600	-	-	_	ns

TIMING DIAGRAM

"Daisy Chaining" with CEI inputs and CEO outputs is used to avoid memory conflicts between ROM and RAM in a user system. In the above configuration, if ROM#1 was masked-programmed for memory locations 0000-0FFF16 the RAM#2 masked-programmed for memory locations 0000-1FFF16 for addresses from 0000-1FFF16 the RAM would be disabled and the ROM enabled. For locations above 1FFF16 the ROM s would be disabled and the RAM enabled.

SIGNAL DESCRIPTION

MA0-MA7 — Under 1802A control the high order byte of a 16-bit memory address appears on the memory address lines, MA0-MA7, first. Three bits required by the ROM Address Decodes are strobed into internal address latches by Clock (TPA) input. The low order byte of 16-bit address appears on the address lines after the termination of TPA.

BUS0-BUS7 — These eight bi-directional three state data lines form a common bus with the 1802A microprocessor.

CLK (TPA) — A timing signal from 1802A microprocessor (trailing edge of TPA) is used to latch the high order byte of the 16-bit memory address.

CS1, **CS2**, **MRD** — Chip select and memory read (output enable) signals. The polarity of the CS1 and CS2 signals are user mask programmable.

CEO, CEI — Chip Enable Output (CEO) signal is high when either the chip is selected or CEI is high. CEO and CEI can be connected in daisy chain operation between several ROMs to control selection of RAM chips in a microprocessor system without additional components.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance are available from Hughes-Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach. CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

1800 CM05 MICROPROCESSOR PRODUCTS

Static ROM

HCMP 23C16 HCMP 23C16C

2048 × 8 STATIC ROM — HCMP 23C16

DESCRIPTION

The HCMP 23C16 is a CMOS Mask Programmable Read Only Memory organized 2048 imes8. The ROM circuit is static and updates its outputs when any address changes. Two chip selects are included which are programmed for polarity with the same mask that programs the data pattern.

When the chip is selected, the address present on lines MA0-MA10 accesses data which is presented to the output sense amplifiers. The eight-bit output word is enabled onto the data lines by the chip select signals, which can be used for memory expansion. The HCMP 23C16 is a pin compatible replacement for the 2716 PROM.

The HCMP 23C16 operates over a 4-10.5 volt range while the HCMP 23C16C operates over a 4-6.5 volt range. The ROMs are supplied in a 24 lead hermetic dual-in-line ceramic package (D suffix) or a plastic (P suffix) package. Devices in chip form (H suffix) are available upon request.

FEATURES

Access Time

BUFFERS

NPUT

MA0-10

CS1

CS2

11

- Static CMOS Circuitry
- No Clocks are Required

- Single Voltage Supply
- Low Quiescent and Operating Power Functional Replacement for Industry
- Compatible with 1802A Microprocessor at Maximum Speed

500ns Typical at VDD = 10V

Standard Type 2716 (2048 \times 8) PROM 900ns Typical at $V_{DD} = 5V$

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

24

ססער

MAXIMUM RATINGS Absolute-Maximum Values

Storage-Temperature Range (T _{stg})	–65 to +150°C
Operating-Temperature Range (T _A)	55 to 125°C
Plastic Package	-35 to + 125 C -40 to +85°C
DC Supply-Voltage Range (V _{DD}) (All voltage values referenced to V _{SS} terminal)	
HCMP 23C16	-0.5 to +11V
	0.0 10 170

OPERATING CONDITIONS at TA = Full Package Range Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS								
			F	ICMP 23C	16	HCMP 23C 16			UNITS
	(V)	(V)	Min.	Тур.	Max.	Min.	Typ.	Max.	
Supply Voltage Range (At T _A = Full Package Temperature Range)		-	4	—	10.5	4	-	6.5	V
Recommended Input Voltage Range	-	-	V _{SS}	_	V _{DD}	V _{SS}	-	V _{DD}	V

ELECTRICAL CHARACTERISTICS at T_A = 25°C, V_{DD} = $\pm 5\%$ except as noted.

	CONDI	TIONS							
CHARACTERISTIC	Vo	VDD	F	ICMP 23C	16	н	CMP 23C	16C	UNITS
	(V)	(V)	Min.	Тур.	Max.	Min.	Typ.	Max.	
Static									
Quiescent Device Current, IL		5 10	_	-	50 200	-	-	50 —	μ_{A}
Supply Current, I _{DD} (400KHZ Addresses)	-	5 10	-	-	5.75 30	-	-	5.75 —	mA
Output Drive Current: N-Channel (Sink), I _D N	0.5 0.5	5 10	2 4	-	_	2 _	-		μΑ
P-Channel (Source), I _D P	4.5 9.5	5 10	2 4	-		2	-	-	μΑ
Output Voltage Low Level, VOL	- -	5 10		0 0	0.05 0.05		0 _	0.05 —	v
Output Voltage High Level, V _{OH}	-	5 10	4.95 9.95	5 10	-	4.95	5	-	v
Input Low Voltage VIL	0.5, 4.5	5		-	1.25	-	-	1.25	V
Input High Voltage, V _{IH}	0.5, 4.5	5 10	3.75 7.50	-		3.75 —	-		v
Input Leakage Current, IIL, IIH	0 0	5 10	-	<u>+</u> 1 <u>+</u> 1	<u>+</u> 1 <u>+</u> 2	-	<u>+</u> 1 -	<u>+</u> 1 -	μΑ
3 State Output Leakage Current, IOUT	0, 5 0, 10	5 10	-	<u>+</u> 1 <u>+</u> 1	<u>+</u> 1 <u>+</u> 2	-	<u>+</u> 1 -	<u>+</u> 2 -	μΑ
Dynamic: t_r , $t_f = 10 \text{ ns}$, $C_L = 50 \text{ pF}$,	= 200 K								
Access Time From Address Change, t_{AA}	-	5 10	_	900 500	1200 725	-	900	1200	ns
Access Time From Chip Select, t _{AC}	-	5 10	-	330 200	425 275	-	330 -	425 	ns

FUNCTIONAL OPERATION

The above ROMs are completely static-no clocks required. Decode of the input address selects a word from the storage array. The chip select signal enables the selected word to appear on the output bus line. Address rise and fall times should be less than 500 nsec.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA10 — These address lines select a byte location. MA10 is the high order address bit.

BUS0-BUS7 — These eight three-state data lines form a common bus with the microprocessor.

CS1, CS2 — These chip select signals are provided for memory expansion. Outputs are enabled when CS1 and CS2 are active. Polarity of CS1 and CS2 are user mask programmable.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance is available from Hughes - Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach. CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co.

Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich. West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

1800 CMCS MICROPROCESSOR PRODUCTS Static ROM

4096 × 8 STATIC ROM — HCMP 23C32

DESCRIPTION

The 23C32 is CMOS MASK Programmable Read Only Memory organized 4096 × 8. The ROM circuit is static and updates its outputs when any address changes. Two chip selects are included which are programmed for polarity with the same mask that programs the data pattern.

When the chip is selected (CS1 and CS2 are activated) the address present on lines MA0-MA11 accesses data which is presented to the output sense amplifiers. The 3-bit output word is enabled onto the data lines by the chip select signals, which can be used for memory expansion. The HCMP 23C32 is a pin compatible replacement for the 2732 PROM.

The HCMP 23C32 operates over a 4-10.5 volt range while the 23C32C operates over 4-6.5 volt range. The ROMS are supplied in a 24 lead hermetic dual-in-line ceramic package (D suffix) or a plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Functional Replacement for Industry Standard Type 2732 (4096 × 8) PROM
- Single Voltage Supply
- Low Quiescent and Operating Power
- Very Low Standby Power Mode Less than 10µa, controlled by CS1
- Compatible with 1802A Microprocessor at Maximum Speed
- Access Time 750ns Typical at $V_{0} = 5V$ 450ns Typical at VDD = 10V

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS Absolute-Maximum Values

Storage-Temperature Range (T $_{stg}$)
Operating-Temperature Range (T _A)
Ceramic Package
Plastic Package
DC Supply-Voltage Range (V _{DD}) (All voltage values referenced to V _{SS} terminal)
HCMP 23C32
HCMP 23C32C 0.5 to + 7V

OPERATING CONDITIONS at T_A = Full Package Range Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS								
			ŀ	ICMP 23C	32	HCMP 23C32C			UNITS
	(V)	(V)	Min.	Тур.	Max.	Min.	Typ.	Max.	
Supply Voltage Range (At T _A ≕ Full Package Temperature Range)	_	-	4	-	10.5	4	_	6.5	v
Recommended Input Voltage Range	-	-	V _{SS}	-	V _{DD}	V _{SS}	-	V _{DD}	v

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$, $V_{DD} = \pm 5\%$ except as noted.

	CONDI	TIONS			UNITE				
CHARACTERISTIC	Vo	VDD		HCMP 23C	32	н	CMP 23C	32C	UNITS
	(v)	(V)	Min.	Тур.	Max.	Min.	Typ.	Max.	
Static									
Quiescent Device Current, IL	-	5 10	-	1	50 100		1 -	100 	μΑ
Supply Current, I _{DD} (400KHZ Addresses)	_	5 10	_	-	4 10		-	4	mA
Output Drive Current: N-Channel (Sink), I _D N	0.5 0.5	5 10	2.2 4.4	-	-	2.2	-	-	μΑ
P-Channel (Source), I _D P	4.5 9.5	5 10	-1.6 -3.2	-		2 _	-		μA
Output Voltage Low Level, VOL	-	5 10	-	0 0	0.05 0.05	-	0 	0.05 —	v
Output Voltage High Level, VOH	-	5	4.95	5	-	4.95	5	-	v
Input Low Voltage VIL	 0.5, 4.5 1, 9	10 5 10	9.95	-	 1.25 	-	-	1.25	v
Input High Voltage, VIH	0.5, 4.5	5 10	3.75 —	-	_	3.75 —	-		v
Input Leakage Current, IIL, IIH	0 0	5 10	-	<u>+</u> 1 <u>+</u> 1	±2 ±2	-	<u>+</u> 1 -	±2 —	μΑ
3 State Output Leakage Current, IOUT	0, 5 0, 10	5 10	-	<u>+</u> 1 <u>+</u> 1	±2 ±2		<u>+</u> 1 -	±2 -	μΑ
Dynamic: t_r , $t_f = 10 \text{ ns}$, $C_L = 50 \text{ pF}$,	= 200 K								
Access Time From Address Change, t_{AA}	-	5	-	750 450	1000 725	-	750	1000	ns
Access Time From Chip Select, t _{AC}	-	5 10	-	330 200	425 275		330	425 _	ns

FUNCTIONAL OPERATION

The above ROMs are completely static-no clocks required. Decode of the input address selects a word from the storage array. The chip select signal enables the selected word to appear on the output bus line. Address rise and fall times should be less than 500 nsec.

TYPICAL SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA11 — These address lines select a byte location. MA11 is the high order address bit.

 $\ensuremath{\text{BUS0-BUS7}}$ — These eight three-state data lines form a common bus with the micro-processor.

 ${\rm CS1, CS2}$ — These chip select signals are provided for memory expansion. Outputs are enabled when CS1 and CS2 are active. Polarity of CS1 and CS2 are user mask programmable.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance is available from Hughes - Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES

S SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22. 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

HUGHES SOLID STATE PRODUCTS

HUGHES HUGHES AIRCRAFT COMPANY SOLID STATE PRODUCTS

18**66 CM**65

HCMP 1802A HCMP 1802B

MICROPROCESSOR PRODUCTS Central Processing Unit

DESCRIPTION

The HCMP 1802A is a CMOS microprocessor available in a 4-10.5V operating range (1802A) or a 4-6.5V operating range (1802AC). The 1802A has an 8 bit oriented architecture with a common bi-directional bus shared between all internal data, control, status and array registers. Accessing of memory is accomplished by time multiplexing a 16 bit address representing 65,536 locations into two sequentially transmitted bytes (8 bits). The presence of the most significant address bits is signified by the TPA clock. The 16 \times 16 array of registers may be selected by the P, X, and N register designators to represent a program counter, data pointer and general pointer register respectively. Switching of programs may be readily accomplished by manipulating the register designators.

The HCMP 1802A has a flexible I/O interface including separate control signals (N0-N2) and memory access signals allowing direct memory data transfer with peripherals under CPU program control (through I/O instructions) or under peripheral control (DMA-IN and DMA-OUT signals). In addition to nonprogrammed Interrupt response, the CPU can monitor 4 flag inputs (EF1-EF4) from peripherals and set an output (Q) to the peripheral under program control. This may be used for serial data transfer or general control signals. State Codes (SC0-SC1) are available to monitor the CPU internal states.

The HCMP 1802A operates over a 4-10.5 volt range while the HCMP 1802AC operates over a 4-6.5 voltage range. The CPUs are supplied in 40 lead hermetic dual-in-line ceramic (D suffix) or plastic (P suffix) packages.

The HCMP 1802BC (operating with 5 MHz clock at 5V) is available for designs requiring higher system speed.

FEATURES

- Instruction Cycle Time 2.5—3.75 μs at 6.4 MHz.
- 8 Bit Parallel data Organization
- Memory Addressing to 65,536 Bytes
- On Chip Direct Memory Access
- 16 × 16 General Purpose Register Matrix
 Four Flag Inputs and One Programmable
- Direct Memory to Peripheral Transfer on I/O Instructions
 T²L, NMOS and CMOS Compatible
- Optional On Chip Xtal Controlled Oscillator
- Low Power Single Voltage Supply
- 91 Instructions
- Schmitt Triggered Clear
- Four Flag Inputs and One Programmable
 Output

PIN CONFIGURATION

ARCHITECTURAL ORGANIZATION

N,X,P Registers — These three registers provide a 4 bit binary number which designates (selects) one of the registers in the register array to provide an address to memory. In addition, the N register holds device selection codes for input/output operations, and acts as a buffer for the lower 4 bits of the op-code.

Q-Flip Flop — This internal flip flop can be set or reset by instruction and can be sensed by conditional branch instructions. Q can also be used as a microprocessor output control.

Register Array — These 16 registers of 16 bit word size can be used to provide three separate functions: as program counters, as data pointers or as a scratch pad buffer. Each array register designated by N, X, or P provides a 16 bit memory address latched by the A register and multiplexed 8 bits at a time onto the memory address lines.

- Program Counter Any register may be used as the main program counter or as a subroutine program counter. This is determined by the user by setting the P register (4 bits) to point to any of the 16 array registers. When interrupts are serviced R(1) is used as the interrupt service routine program counter.
- Data Pointers Any array register may be selected by the N and X registers to provide the address of a data word location in memory. The N register selects an array register to provide addresses for several Load D from memory and Store D (accumulator) to memory instructions. The X register can also select array registers to provide addresses of memory data used in ALU operations and Input/Output operations, and additional Load from Memory and Store to Memory instructions with the D register.
- Data Register The N register also selects an array register location to act as a scratch pad buffer for data exchange with the D register. Data is transferred by a set of four instructions which select the high order byte R(N).1, or the low order byte R(N).0. Additionally an array register may be incremented or decremented for usage as loop counters.

INTERFACE MODES -

There are three modes of peripheral data transfer in the HCMP 1802A. These are programmed I/O, Interrupt Servicing, and Direct Memory Access.

- Programmed I/O The HCMP 1802A provides a direct memory to peripheral device interface. The N0-N2 lines select a peripheral device while the memory address lines access a memory location. On Input instructions the peripheral data is read into the D register and memory simultaneously. On Output instructions the memory data is sent directly to the peripheral device. The EF flags and Q output can be used as additional programmable controls or as a serial data transfer path.
- Interrupt Servicing Upon the completion of an instruction, a non-masked (enabled) interrupt request will be acknowledged by the HCMP 1802A. This results in the saving of the present X and P register values in the T register, resetting the Interrupt Enable flip flop, and setting of X to point to Register 2 and P to Register 1. At the end of an Interrupt routine, a Return instruction restores old values of X and P and allows reactivation of the Interrupt Enable flip flop.
- Direct Memory Access The DMA mode is entered at the end of the execute machine cycle in the currently held instruction. This is a special extension of programmed input/ output. When a DMA-In or DMA-Out request is activated, array register R(0) provides the location in memory for data transfer. On each byte transfer R(0) is incremented. The DMA mode can also be used to initially load memory after Reset and eliminates the requirement for special-ized "bootstrap" load programs.

FUNCTIONAL DIAGRAM

HCMP 1802A REGISTER SUMMARY

REG.	NO. OF BITS	DESCRIPTION
D	8	DATA REGISTER (ACCUMULATOR)
DF	1	DATA FLAG (ALU CARRY/BORROW)
R	16	1 OF 16 SCRATCHPAD REGISTER
Р	4	DESIGNATES WHICH REGISTER IS PROGRAM COUNTER
х	4	DESIGNATES WHICH REGISTER IS DATA OR STACK POINTER
N	4	HOLDS LOW ORDER INSTRUCTION DIGIT/DESIGNATES DATA PTR
I	4	HOLD HIGH ORDER (OP CODE) INSTRUCTION DIGIT
т	8	HOLDS OLD X, P VALUES AFTER INTERRUPT (X IS HIGH BYTE)
IE	1	INTERRUPT ENABLE FLIP FLOP
Q	1	OUTPUT FLIP FLOP

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE (V _{CC} , V _{DD})	
(All voltage values referenced to V_{SS} term	inal)
v _{CC} ≤v _{DD} :	
HCMP 1802A	
HCMP 1802AC	
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
OPERATING-TEMPERATURE RANGE (TA) C	ERAMIC PACKAGE 55 to + 125°C
P	LASTIC PACKAGE 40 to + 85°C
STORAGE TEMPERATURE RANGE (T_{stg})	

STATIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}C$, except as noted.

	co	CONDITIONS LIMITS AT INDICATED TEMPERATURES (°C)											
	vo	VIN	V _{CC} , V _{DD}	н	CMP 1802.	Ą	нсі	MP 1802A	с	нс	MP 1802B	С	
CHARACTERISTIC	(V)	(V)	(V)	Min.	Тур.*	Max.	Min.	Typ.*	Max.	Min,	Тур.*	Max.	UNITS
Quiescent Device	-	-	5	-	0.01	100		0.02	400		0.02	400	
Current, IL Max.		-	10	-	1	400	-	-	-		-	-	
Output Low Drive	0.4	0,5	5	1.2	2.5	-	1.2	2.5	-	1.2	2.5	-	
IOL Min. (Except Xtal)	0.5	0,10	10	2.4	4.4	-	-			-	-	-	mA
Xtal Output IOL Min.	0.4	5	5	200	360	-	200	360	-	200	360	-	μΑ
Output High Drive (Source Current)	4.6	0,5	5	- 0. 40	- 0. 80	-	-0.40	- 0. 80	-	-0.40	- 0. 80	_	mA
OH Min.	9.5	0,10	10	-0.60	- 1. 2	-	-	-	-	-	-	-	
Xtal OUtput IOH Min.	4.6	0	5	- 100	-260	-	-100	-260	-	-100	-260	-	μΑ
Output Voltage	-	0,5	5	_	0	0.1		0	0.1	_	0	0.1	
V _{OL} Max.	-	0,10	10		0	0.1	-	-	-	-			
Output Voltage High Level, VOH Min.	-	0,5	5	4.9	5	-	4.9	5	-	4.9	5	-	1 *
	-	0,10	10	9.9	10		-	-		-	-		1
Input Low Voltage	0.5, 4.5	-	5		_	1.5	_	_	1.5	-	-	1.5	
V _{IL} Max.	0.5, 4.5		5,10	-		1			1			1	-
	1,9		10	2.5		3	2.5			2.5			V
Input High Voltage Viц Min.	0.5, 4.5		5.10	3.5	-		3.5			3.5			{
	1,9	-	10	7	-	-	-	-	-	-	-	-	1
Clear Input Voltage,	_	-	5	0.4	0.5		0.4	0.5	_	0.4	0.5	-	
VH		-	5,10	0.3	0.4				-			-	
			10	1,5	2								
Input Leakage	Any	0,5	5	-	±10 ¹⁴	±1		±10-4	+1	-	±10-4	+1	
I _{IN} Max.	mpar	0,10	10	-	±10-4	± 1	-	-	-		-	-	μ.,
3-State Output	0,5	0,5	5	-	±10-4	±1	-	±10-4	+1	-	±10 ⁻⁴	+1	
Leakage Current IOUT Max.	0,10	0,10	10	-	±10 ⁻⁴	±1	-	-	-	-	-	-	
Minimum Data Retention Voltage, V _{DR}	٧ _נ	D = VDI	R	_	2	2.4	-	2	2.4		2	2.4	v
Data Retention Current, I _{DR}	VI	DD = 2.4	V	-	0.1	1	-	0.5	5	-	0.5	5	μΑ
Effective Input Capacitance, C _{IN} Any Input		_		_	5	7.5	-	5	7.5	_	5	7.5	pF
Effective 3-State Terminal Capaci- tance Data Bus		-		-	10	15	-	10	15	_	10	15	pF

*Typical Values are for $T_A = 25^{\circ}C$ and Nominal V_{DD} .

RECOMMENDED OPERATING CONDITIONS at $T_{\Delta} = -40^{\circ}$ C to $+85^{\circ}$ C **Unless Otherwise Specified**

	CONDI	TIONS					
CHARACTERISTIC	V _{CC} ¹ (V)	V _{DD} (V)	HCMP1802A	HCMP1802AC	HCMP1802BC	UNITS	
Supply-Voltage Range	-	-	4 to 10.5	4 to 6.5	4 to 6.5	v	
Input Voltage Range	-	-	V _{SS} to V _{DD}	V _{SS} to V _{DD}	V _{SS} to V _{DD}	V	
Maximum Clock Input Rise or Fall Time, t _r or t _f	4—10.5	4–10.5	1	1	1	μs	
Minimum	5	5	5	5	5		
Instruction Time ²	5	10	4	-	-	μs	
(See Fig. 6)	10	10	2.5	-	_		
	5	5	400	400	400		
Maximum DMA Transfer Rate	5	10	500	-	-	KBy tes/sec	
	10	10	800	-	-		
	5	5	DC - 3.2	DC - 3.2	DC - 5.0		
Maximum Clock Input Frequency,	5	5 10 DC - 4				MHz	
'CL ⁻	10	10	DC - 6.4	-	-		

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

NOTES:

NOTES: 1. $V_{CC} \le V_{DD}$; for HCMP1802AC $V_{DD} = V_{CC} = 5$ volts. 2. Equals 2 machine cycles – one Fetch and one Execute operation for all instructions except Long Branch and Long Skip, which require 3 machine cycles – one Fetch and two Execute operations.

3. Load Capacitance (CL) = 50 pF.

NOTES: This timing diagram is used to show signal relationship only. All measurements are referenced to 50% point of the wave forms. Shaded areas indicate "Don't Care" on Inputs or Undefined State on Outputs. Sample or setting action at clock is designated by an arrow.

1. The N0-N2 bits are valid during the S1 cycle of Input or Output instructions only (61-67 and 69-6F)

2. The Q line is set or reset during the S1 cycle of the SEQ or REQ instructions

3. The flag inputs $(\overline{\text{EF1}} \cdot \overline{\text{EF4}})$ are sampled during an S1 cycle

4. The DMA and Interrupt inputs are sampled during cycles S1, S2 or S3. The priority on concurrent signal inputs are (i) DMA-In (ii) DMA-Out and (iii) Interrupt.

Figure-1 General Timing Diagram

138

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -40 to +85 $^{\rm o}{\rm C}$ V_{DD} \pm 5%, except as noted.

				LIMITS		
CHARACTERISTIC	V _{CC} (V)	V _{DD} (V)	Min.	Тур.	Max.	UNITS
Propagation Delay Time, t _{PLH} , t _{PHL} : Clock to TPA, TPB	5 5 10	5 10 10		200 150 100	350 250 150	ns
Clock-to-Memory High Address Byte	5 5 10	5 10 10		575 350 240	850 600 400	ns
Clock-to-Memory Low Address Byte	5 5 10	5 10 10	_ _ _	220 150 100	350 250 150	ns
Clock to MRD, t _{PLH} , t _{PHL}	5 5 10	5 10 10		220 150 100	350 250 150	ns
Clock to MWR, t _{PLH} , t _{PHL}	5 5 10	5 10 10	_ _ _	190 150 75	300 250 150	ns
Clock (CPU Data to Bus)	5 5 10	5 10 10	 	310 250 150	450 350 200	ns
Clock to State Code	5 5 10	5 10 10		290 250 130	450 350 250	ns
Clock to Q	5 5 10	5 10 10		250 150 115	400 250 175	ns
Clock to N (0-2), t _{PLH} , t _{PHL}	5 5 10	5 10 10		280 200 130	550 350 250	ns

TIMING SPECIFICATIONS as a function of T (T = $1/f_{Clock}$) at T_A = -40 to +85^oC

				LIN	IITS	
CHARACTERISTIC		V _{CC} (V)	V _{DD} (V)	Min.	Typ.*	UNITS
High Order Memory Address Byte Setup to TPA 🔶 Time	⁺su	5 5 10	5 10 10	2T-550 2T-350 2T-250	2T-300 2T-200 2T-130	ns
High Order Memory Address Byte Hold after TPA Time	^t H	5 5 10	5 10 10	T/2-25 T/2-35 T/2-10	T/2-15 T/2-25 T/2+0	ns
Low Order Memory Address Byte Hold after WR Time	^t H	5 5 10	5 10 10	T-30 T-20 T-10	T+0 T+0 T+0	ns
CPU Data to Bus Hold after WR Time	^t H	5 5 10	5 10 10	T-200 T-150 T-100	T-150 T-100 T-50	ns
Required Memory Access Time Address to Data	^t ACC	5 5 10	5 10 10	5T-350 5T-250 5T-150	5T-220 5T-150 5T-100	ns

*Typical values are for $T_A = 25^{\circ}C$ and nominal V_{DD}

	V	V					
CHARACTERISTIC	*CC (V)	*DD (V)	Min. ¹	Typ.2	Max.	UNITS	
Minimum Set Up and Hold Times, t _{SU} , t _H Data Input Set Up	5 5 10	5 10 10	0 0 0	-20 -15 -10		ns	
Data Input Hold	5 5 10	5 10 10	200 125 100	150 100 75	_	ns	
DMA Set Up	5 5 10	5 10 10	30 20 10	0 0 0		ns	
DMA Hold	5 5 10	5 10 10	250 200 125	150 100 75		ns	
Interrupt Set Up	5 5 10	5 10 10	0 0 0	75 50 25	- - -	ns	
Interrupt Hold	5 5 10	5 10 10	160 100 80	100 75 50	-	ns	
Wait Set Up	5 5 10	5 10 10	0 0 0	15 25 5	-	ns	
EF1-4 Set Up	5 5 10	5 10 10	0 0 0	-50 -30 -20	-	ns	
EF1-4 Hold	5 5 10	5 10 10	200 150 100	100 75 50		ns	
Minimum Pulse Width, t _{WL} Clear Pulse Width	5 5 10	5 10 10	300 200 150	100 75 50		ns	
Clock Pulse Width, t _{WL}	5 5 10	5 10 10	175 125 75	100 75 50		ns	
Typical Total Power Dissipationf = 2.0 MHzIdle "00" at M (0000), $C_L = 50 \text{ pF}$ f = 4.0 MHz	5 10	5 10	_	7.5 70	_	mW	

DYNAMIC ELECTRICAL CHARACTERISTICS (cont'd)

NOTE 1 Typical values are for $T_A = 25^{\circ}C$ and nominal V_{DD}

2 Minimum characteristics are the values above which all devices function, i.e., data hold at 5 volts requires 200 msec. min. to function over the temperature range but only 150 msec. at 25°C.

INSTRUCTION SUMMARY

In all registers bits are numbered from least significant bit (LSB) to most significant bit (MSB) starting with 0.

- $R(W) \qquad \mbox{Indicates an array register designated by the W register where W = N, X, or P. \\ Example if X = 3, array reg. R(3) addresses memory data.$
- R(W).0 Low order byte contents of R(W)
- R(W).1 High order byte contents of R(W)
- NO = Least significant bit of N register

M(R(W)) = Contents of Memory addressed by selected array register

Operation Notation:

 $M(R(N)) \rightarrow D; R(N)+1$

This is interpreted as the memory byte addressed by the array register R(N) is loaded into the D reg., and the contents of R(N) are incremented by 1.

OP. CODE	MNEM – ONIC	NO. OF BYTES	MACH CYCLES		DESCRIPTION OF OPERATION
REGI	ISTER OPI	ERATION	NS		
1N	INC	1	2	INCREMENT REGISTER N	R(N)+1. The register selected by the hex digit in N is incremented by 1.
2N	DEC	1	2	DECREMENT REGISTER N	R(N)-1. The register selected by the hex digit in N is decremented by 1.
60	IRX	1	2	INCREMENT REGISTER X	R(X)+1. The register selected by the hex digit in X is incremented by 1.
8N	GLO	1	2	GET LOW REGISTER N	$R(N) \cdot 0 \rightarrow D$. The low order byte of the register selected by N replaces the byte in the D register.
AN	PLO	1	2	PUT LOW REGISTER N	$D \rightarrow R(N) \cdot 0$. The byte contained in the D register replaces the low order byte of the register selected by N. D is not changed.
9N	GHI	1	2	GET HIGH REGISTER N	$R(N) \cdot 1 \rightarrow D$. The high order byte of the register selected by N replaces the byte in the D register.
BN	PHI	1	2	PUT HIGH REGISTER N	$D \leftarrow R(N)$.1. The byte contained in the D register replaces the high order byte of the register selected by N. D is unchanged.
MEN		FERENCE		ATIONS	
ON	LDN	1	2	LOAD VIA N	$M(R(N))\!$
4N	LDA	1	2	LOAD VIA N AND ADVANCE	$M(R(N)) \rightarrow D; R(N)+1$. The memory byte addressed by $R(N)$ replaces the byte in the D reg. The memory address, $R(N)$, is incremented. Memory
FO	LDX	1	2	LOAD VIA X	is unconsider. M(R(X)) = D. The memory byte addressed by the contents of the reg. selected by X, $R(X)$, replaces the byte in the D reg.
72	LDXA	1	2	LOAD VIA X AND ADVANCE	when only is unchanged. $M(R(X)) = D_{1}R(X)+1$. The memory byte addressed by $R(X)$ replaces the byte in the D reg. The memory address, $R(X)$, is incremented.
F8 〈B2〉	LDI	2	2	LOAD IMMEDIATE	M(R(P)) \rightarrow D; R(P)+1. The memory byte following the F8 instruction replaces the byte in the D reg. The program counter R(P) is incremented to point to the next instruction
5N	STR	1	2	STORE VIA N	$D \rightarrow M$ (R(N)). The byte in the D reg, replaces the memory byte addressed by the contents of the reg, selected by X, R(X). D is unchanged.
73	STXD	1	2	STORE VIA X AND DECREMENT	$D \rightarrow M(R(X)); R(X)-1$. The byte in the D reg. replaces the memory byte addressed by $R(X)$. The memory address, $R(X)$, is decremented.
1.00	IC OPERA	NULL			
F1	OR	1	2	OR MEMORY WITH D	$M(B(X)) \cap B \cap D$. The 8 bit contents of the D reg are logically ORed.
1 ''	5		~		with the contents of the memory byte addressed by R(X).
F9 ⟨B2⟩	ORI	2	2	OR IMMEDIATE WITH D	M(R(P)) OR D-D; $R(P)+1$. The 8 bit contents of the D reg. are logically ORed with the memory byte following the F9 instruction. $R(P)$ is
F3	XOR	1	2	EXCLUSIVE OR	$M(R(X)) \times OR D \rightarrow D$. The 8 bit contents of the D reg, are logically XORed with the memory byte addressed by $R(X)$
FB ⟨B2⟩	XRI	2	2	EXCLUSIVE OR IMMEDIATE	M(R(P)) XOR D=D; $R(P)+1$. The 8 bit contents of the D reg, are logically XORed with the memory byte following the FB instruction. $R(P)$ is
F2	AND	1	2	AND MEMORY WITH D	M(R(X)) AND D-D. The 8 bit contents of the D reg. are logically ANDed with the memory but addressed by $P(X)$
KA ⟨B2⟩	ANI	2	2	AND IMMEDIATE WITH D	which the memory byte antressed by $R(A)$. $M(R(P))$ AND $D \rightarrow D$: $R(P)+1$. The 8 bit contents of the D reg. are logically ANDed with the memory byte following the FA instruction. $R(P)$ is incremented to point to the next instruction.

 $\langle B2 \rangle$ = 2nd byte of instruction.

The DF flip flop can only be altered by arithmetic and shift operations. After an add instruction, DF=1 denotes a carry has occurred. After a subtraction instruction, DF=0 denotes a borrow. D is in Two's compliment form.

The syntax — "(NOT DF)" denotes the subtraction of the borrow.

INSTRUCTION SUMMARY (Continued)

OP. CODE	MENM- ONIC	NO. OF BYTES	MAC	H. ES INSTRUCTION	DESCRIPTION OF OPERATION
F6	SHR	1	2	SHIFT D RIGHT	SHIFT D RIGHT; LSB(D)-DF, O-MSB(D). The 8 bits in D reg. are
			-		shifted one bit position to the right. The original LSB of D reg. is placed in
					DF. A "0" is placed in the MSB of D.
76	SHRC	1	2	SHIFT D RIGHT WITH CARRY	SHIFT D RIGHT; LSB(D)-DF, DF-MSB(D). The 8 bits in D are shifted
	RSHR			RING SHIFT RIGHT	one bit position to the right. The original LSB of D is placed in DF. The
	0		~		original content of DF is placed in MSB of D.
FE	SHL	1	2	SHIFT D LEFT	SHIFT D LEFT; MSB(D) - DF, O - LSB(D). The 8 bits in D are shifted one
					bit position to the left. The original MSB of D is placed in DF. A "U" is
75	SHIC	1	2	SHIET DI FET WITH CARRY	placed in the LSB of D. SHIET D LEET: MSP(D) - DE DE LSP(D). The 9 bits in D are shifted one
/ 2	DCLI		2	DING QUET LEET	bit position to the left. The evidence MSP of D is pleased in DE. The original
	HOIL			hind shiri Leri	content of DE is placed in LSB of D
			ION		content of bit is placed in Eab of b.
		1	2	ADD MEMORY WITH D	M(P(X)) = DE D. The momentum but and second by $P(X)$ is added to the
1.4	ADD		2	ADD MEMORY WITH D	contents of the D reg. DE receives any carry generated from the addition
FC		2	2	ADD IMMEDIATE WITH D	$M(B(P))+D \rightarrow DED_B(P)+1$ The memory byte following the EC instruction
(82)	ADI	2	2	ADD IMMEDIATE WITH D	is added to the D reg. DE receives any carry B(P) is incremented to point
102/					to the next instruction
74	ADC	1	2	ADD MEM WITH CARBY	$M(B(X))+D+DE \rightarrow DE D$ The memory byte addressed by $B(X)$ plus the
1 / 1	ADO		2	ADD MEM, WITH CARL	content of DE are added to the D reg. DE receives any carry generated
					from the addition
70	ADCI	2	2	ADD IMMED WITH CARRY	$M(B(P))+D+DE \rightarrow DE D; B(P)+1$ The memory byte following the 7C instruction
63	Aboi	2	2	ADD IMMED: WITH CAMIT	plus DE are added to the D reg. DE receives any carry B(P) points to the
194					next instruction
E7	SM	1	2	SUBTRACT MEM EROM D	$D-M(B(X)) \rightarrow DED$ The memory byte addressed by $B(X)$ is subtracted from
1 ''	0.01		2	(2's Compliment)	the D reg. Any resulting carry is stored in DE (DE=0 indicates a borrow)
FF	SMI	2	2	SUBTRACT MEM IMMED FROM D	D_{M} (B(P))-DE D: B(P)+1. The memory byte following the EE instruction
(B2)	0	-	-	(2's Compliment)	is subtracted from the D reg. Any carry is stored in DE B(P) points to the
10-/				(2 5 Gomphinent)	next instruction
77	SMB	1	2	SUBTRACT MEMORY WITH	D-M(B(X))-(NOT DE) DE D The memory byte addressed by $B(X)$ plus
			-	BORROW (1's Compliment +DF)	the borrow indicator DE is subtracted from the D reg. Any resulting carry is
					stored in DF.
7F	SMBI	2	2	SUB. MEM. IMMED. WITH BORROW	D-M(R(P))-(NOT DF)-DF,D; R(P)+1. The memory byte following the 7F
<b2></b2>				(1's Compliment +DF)	instruction plus DF is subtracted from the D reg. Any carry is stored in DF.
					R(P) points to next instruction.
F5	SD	1	2	SUBTRACT D FROM MEMORY	$M(R(X))-D \rightarrow DF,D$. The 8 bit contents of the D reg. are subtracted from
				(2's Compliment)	the memory byte addressed by R(X). DF receives any carry. Memory is
					unchanged.
FD	SDI	2	2	SUB D FROM IMMEDIATE	M(R(P))-D-DF,D; R(P)+1. The contents of the D reg. are subtracted from
(B2)				(2's Compliment)	the memory byte following the FD instruction. DF receives any carry.
					R(P) points to the next instruction.
75	SDB	1	2	SUB D WITH BORROW	$M(R(X))-D-(NOT DF) \rightarrow DF,D$. The contents of the D reg. plus \overline{DF} are
				(1's Compliment +DF)	subtracted from the memory byte addressed by R(X). DF receives any carry.
					Memory is unchanged.
7D	SDBI	2	2	SUB D WITH BORROW, IMMED.	$M(R(P))-D-(NOT DF) \rightarrow DF,D; R(P)+1$. The D reg. plus DF are subtracted
<b2></b2>				(1's Compliment +DF)	from the memory byte following the 7D instruction. DF receives any carry.
					R(P) points to the next instruction.
BRA	NCH OPER	ATIONS	;		
30	BR	2	2	UNCONDITIONAL BRANCH	$M(R(P)) \rightarrow R(P) \cdot 0$. The byte following the 30 instruction always replaces the
<b2></b2>			-		low order byte of the program counter R(P).
38	NBR	1	2	NO SHORT BRANCH	R(P)+1. The byte following the 38 instruction is always skipped. This
	07	~	~		instruction may also be considered a SHORT SKIP.
32	DΖ	2	2	SHUKT BRANCH IF D=0	IF D=0, $M(R(P)) \rightarrow R(P) 0$; ELSE R(P)+1. If each bit of the D reg. is "0" the
\62/					byte following the 32 instruction replaces the low order byte of the program
2.	DN 7	2	2	SHORT RRANCULIS D (2	counter $\pi(r)$. If $D\neq 0$, $\pi(r)$ is incremented to point to the following instr.
	DINZ	2	2	SHORT BRANCH IF DFU	IF $D\neq 0$, $M(R(P)) = R(P) \cdot 0$; ELSE $R(P) + 1$. If any bit of the D reg. is "1" the
(°2)					immediate byte replaces the low order l_2 te of $H(P)$. If $D=0$, $H(P)$ points to
22	PDE	2	2	SHORT RRANCH IE DE-1	the following instruction. All short branches below are similar in operation.
63	BUF	2	2	SHORT BRANCH IF DF-1	IF DF=1, W(R(P))
⁽⁶²⁾					called a short branch it pos or zero (BPZ) or short branch if greater or equal
20	DNE	2	2	SHORT RRANCH IE DE-0	(BGE).
100	UNI.	2	4	SHORT BRANCH IF DF-U	$r_{1} = 0$, $w_{1}(n_{1}r_{1}) \rightarrow n_{1}(r_{1}r_{1})$, $r_{1} = r_{1}(r_{1}r_{1})$. This instruction may also be
31	BO	2	2	SHORT BRANCH IF O=1	IF $O=1$ M(R(P)) \rightarrow R(P) O FI SE R(P)+1
(B2)	54	2	2	shour breach in te-r	$r \sim r$, $m(r)(r) \rightarrow r(r)(r)$, else $n(r)(r)$.
39	BNO	2	2	SHORT BRANCH IF O=0	IF $Q=0$ M(R(P)) \rightarrow R(P) $\cdot 0^{\circ}$ FLSE R(P)+1
(B2)	22	2	-		$\dots = 0, \dots, \dots, \dots, \dots = 0, \dots = 0 \in (0, 1, 1)$
34	B1	2	2	SHORT BRANCH IF FF1=1	IF EF1=1. $M(R(P)) \rightarrow R(P) \cdot 0$: ELSE $R(P) + 1$
(B2)	<i></i>	-	-		
30	BNI	2	2	SHORT BRANCH IF EF1=0	IF EF1=0, M(R(P))→R(P)·0; ELSE R(P)+1.
(B2)					
35	B2	2	2	SHORT BRANCH IF EF2=1	IF EF2=1, M(R(P))
(B2)					

Instruction is associated with more than one mnemonics.

 $\langle B2 \rangle$ = 2nd byte of instruction.

All instructions require two machine cycles except Long Branches and Long Skips which take three machine cycles. Each machine cycle= 8 external clocks, i.e. @ 6.4 MHz, cycle= 1.25μ s. EF=1, if $\overline{\text{EF}}$ input = 0 (GND).

OP CODE	MNEM- ONIC	NO. OF BYTES	MACH. CYCLES	INSTRUCTION	DESCRIPTION OF OPERATION	
3D (B2) ¹	BN2	2	2	SHORT BRANCH IF EF2=0	IF EF2=0, M(R(P)) ← R(P)-0; Else R(P)+1.	
36 (P2\1	B3,	2	2	SHORT BRANCH IF EF3=1	IF EF3 = 1, M(R(P)) - R(P)-0; Else R(P)+ 1.	
3E /B2)1	BN3,	2	2	SHORT BRANCH IF EF3=0	IF EF3=0, M(R(P)) - R(P)-0; Else R(P)+1.	
37 (B2) ¹	B4,	2	2	SHORT BRANCH IF EF4 = 1	IF EF4 = 1, M(R(P)) - R(P)·0; Else R(P)+ 1.	
3F (B2) ¹	BN4,	2	2	SHORT BRANCH IF EF4 = 0	IF EF4 = 0, $M(R(P)) \longrightarrow R(P) \cdot 0$; Else $R(P)+1$.	
CO (B2) ¹	LBR (B3)	3	3	UNCONDITIONAL LONG BRANCH	M(R(P)) → R(P)-1, M(R(P+1)) → R(P)-0. The two bytes following the CO instruction always replace the high and low order bytes of the program counter R(P)	
C82	NLBR	1	3	NO LONG BRANCH	R(P)+ 2. The next two bytes after the C8 instruction are always skipped. This instruction may also be considered a Long Skip.	
C2 (B2) ¹	LBZ (B3)	3	3	LONG BRANCH IF D=0	IF D = 0, M(R(P)) → R(P)-1, M(R(P+1)) → R(P)-0; Else R(P)+2. If all bits of the D reg. are "0", the two bytes following the C2 instruction replace the contents of the program counter, R(P). If not R(P) points to the next instruction. All long branches below are similar in operation	
CA (B2) ¹	LBNZ (B3)	3	3	LONG BRANCH IF D≠0	If D not 0, $M(R(P)) \rightarrow R(P) \cdot 1$, $M(R(P+1)) \rightarrow R(P) \cdot 0$. Else $R(P) + 2$.	
C3 (B2) ¹	LBDF (B3)	3	3	LONG BRANCH IF DF = 1	$IF \ DF = 1, \ M(R(P)) R(P) \cdot 1, \ M(R(P+1)) R(P) \cdot 0; \ Else \ R(P) + 2.$	
CB (B2) ¹	LBNF (B3)	3	3	LONG BRANCH IF DF = 0	$IF\ DF=0,\ M(R(P))\qquad R(P)\text{-}1,\ M(R(P+1)) \longrightarrow R(P)\text{-}0;\ Else\ R(P)\text{+}2.$	
C1 (B2) ¹	LBQ (B3)	3	3	LONG BRANCH IF Q = 1	IF Q = 1, M(R(P)) \rightarrow R(P)·1, M(R(P+1)) \rightarrow R(P)·0; Else R(P)+2.	
C9 (B2) ¹	LBNQ (B3)	3	3	LONG BRANCH IF Q=0	IF Q = 0, $M(R(P)) \rightarrow R(P) \cdot 1$, $M(R(P+1)) \rightarrow R(P) \cdot 0$; Else $R(P) + 2$.	
382	SKP	1	2	SHORT SKIP	R(P)+ 1. Always skips the following byte. Also called No Short Branch (NBR).	
C82 CE	LSKP LSZ	1	3 3	LONG SKIP LONG SKIP IF D=0	R(P)+2. Always skips the following two bytes. Also called No Long Branch (NLBR). F D = 0, R(P)+2; Else Continue. If all bits of D are "0", the next two bytes following the CE instruction are skipped. If not, they are accessed as the next instruction.	
C6	LSNZ	1	3	LONG SKIP IF D≠0	IF D NOT 0, R(P)+2; Else Continue.	
CF	LSDF	1	3	LONG SKIP IF DF = 1	IF DF = 1, $R(P)+2$; Else Continue.	
C7	LSNF	1	3	LONG SKIP IF DF=0	IF DF = 0, R(P)+2; Else Continue.	
CD	LSQ	1	3 ·	LONG SKIP IF Q = 1	IF Q = 1, R(P)+2; Else Continue.	
C5	LSNQ	1	3	LONG SKIP IF Q=0	IF Q = 0, R(P)+2; Else Continue.	
CC	LSIE	1	3	LONG SKIP IF IE = 1	IF IE = 1, $R(P)$ +2; Else Continue, IE is interrupt enable.	
CONTR		TIONS				
00	IDI	1	2	IDLE (WAIT)	M(B(0)) Bus The processor repeats execute (S1) cycles until an I/O request	
C4	NOP	1	3		(INTERRUPT, DMA-IN, or DMA-OUT) is asserted.	
DN	SEP	1	2	SET P	$N \rightarrow P$. The low order hex digit of the instruction is placed in the P register and designates which register is to serve as program counter. B(P).	
EN	SEX	1	2	SET X	$N \rightarrow X$ The low order hex digit of the instruction is placed in the X register.	
7B	SEQ	1	2	SET O	1 → Q. Sets the Q flip flop to logic high.	
7A	BEO	1	2	RESET O	0-> 0. Besets the 0 flip flop to a logic low.	
78	SAV	1	2	SAVE	$T \rightarrow M(R(X))$. The T reg. containing previous X and P information is stored in the memory location addressed by R(X).	
79	MARK	1	2	PUSH X, P TO STACK	(X,P) → T; (X,P) → M(R(2)), Then P → X; R(2) - 1. The current contents of X and P are stored in temporary reg. T and memory addressed by R(2). New P is set equal to X and R(2) is decremented.	
70	RET	1	2	RETURN	$M(R(X)) \longrightarrow (X,P), R(X)+1; 1 \longrightarrow IE.$ The memory byte addressed by $R(X)$ replaces X and P contents. The memory address, $R(X)$, is incremented and IE is enabled. $M(R(X)) \longrightarrow (X,P), R(X)+1; 0 \longrightarrow IE.$ Same operation as $RET exceent IE is disabled. Both$	
71	DIS	1	2	DISABLE	RET and DIS are used primarily in returns from interrupt processing.	
INPUT/OUTPUT OPERATIONS						
6N	OUT	1	2	OUTPUT	$M(R(X)) \rightarrow Bus; R(X)+1, N=1-7.$ When N is 1 through 7, the memory byte addressed by $R(X)$ is accessed and placed on the memory bus. The three low order bits of N are also placed as the N/2. N/0 circulates memory deduces $R(X)$ is intersected at the N/2. N/0 circulates $R(X)$ is intersected at the N/2. N/0 circleates $R(X)$ is	
6N	INP	1	2	INPUT	but we are also proceed on the NZ = two signal miles memory address. R(X) is informemented by a signal miles we have a signal respectively on the D reg, and the memory location addressed by R(X). The low order 3 bits of N are placed on the NZ = N0 signal line. R(X) is not modified.	

INSTRUCTION SUMMARY (Continued)

NOTE 1 Instruction associated with more than one mnemonic.

2 $\langle B2 \rangle$ = 2nd byte of instruction. $\langle B3 \rangle$ = 3rd byte of instruction.

FIG. 2 Typical transition time vs. load capacitance.

FIG. 3 Typical change in propagation delay as a function of a change in load capacitance.

FIG. 4 Typical maximum clock frequency as a function of temperature.

FIG. 6 Required memory system address time as a function of instruction time.
TABLE 1 -CONDITIONS ON DATA BUS AND MEMORY ADDRESS LINES DURING ALL MACHINE STATES

STATE	1	N	MNEMONIC	INSTRUCTION	OPERATION	DATA BUS	MEMORY ADDRESS	MRD	NOTES
S1		RESET			JAM: I,N,Q,X,P =0 IE = 1	0	R(0) UNDEFINED	1	A
	FI	RST CYC	LE AFTER RES		INITIALIZE	R(0) UNDEEINED	1	в	
SO	FETCH				$M(R(P)) \rightarrow _N R(P)+1$	M(R(P))	R(P)	0	С
					[Load = 0 (Program Idle)]	M(R(0))	R(0)	0	D
	0	0	IDL	IDLE	[Load = 1 (Load Mode)]	M(R(0))	PREVIOUS	0	E
	ľ	NH-+O			M(D(N)) · D		ADDRESS	0	_
					$\mathbb{P}(\mathbb{N}) + 1$			1	
	12	N	DEC	DECREMENT	B(N)-1	FLOAT	B(N)	1	
	Ľ.		020	DEGREMENT	(BBANCH NOT TAKEN)	M(B(P))	B(P)	0	
	3	N	-	SHORT	(BRANCH TAKEN)	M(R(P))	R(P)	0	
	4	N	I DA	LOAD ADVANCE	$M(B(N)) \rightarrow D = B(N)+1$	M(B(N))	B(N)	0	
	5	N	STR	STORE VIA N	$D \rightarrow M(B(N))$	D	B(N)	1	
	-	0	IRX	INC REG X	B(X)+1	 M(R(X))	R(X)	0	
	6	N=1-7	OUT N	OUTPUT	$M(B(X)) \rightarrow BUS B(X)+1$	M(R(X))	B(X)	0	
				INDUT		1/0	D()()		
		N-9-F			BUS → M(R(X)), D	DEVICE	R(X)	1	
		0	RET	RETURN	$ \begin{array}{c} M(R)(X)) \to (X,P) \\ R(X)+1, \ 1 \to IE \end{array} $	M(R(X))	R(X)	0	
		1	DIS	DISABLE	$ \begin{array}{c} M(R(X)) \to (X,P) \\ R(X) + 1, 0 \to IE \end{array} $	M(R(X))	R(X)	0	
		2	LDXA	LOAD VIA X AND ADVANCE	$ \begin{array}{c} M(R(X)) \to D \\ P(X) - 1 \end{array} $	M(R(X))	R(X)	0	
	3 STXD STORE VIA X AND DECREMENT		$ \begin{array}{c} D \to M(R(X)) \\ R(X) - 1 \end{array} \qquad \qquad D $		R(X)	1			
	7 4,5,7 -		ALU OPERATION	M(R(X))	R(X)	0			
		6	-		ALU OPERATION	FLOAT	R(X)	1	
		8	SAV	SAVE	$T \rightarrow M(R(X))$	Т	R(X)	1	
		9	9 MARK MARK		$\frac{(X,P) + 1, M(R(2))}{P - X; R(2) - 1} T$		R(2)	1	
S1 (Exe-		A	REQ	RESET Q	Q = 0	FLOAT	R(P)	1	
cute)				FLOAT	R(P)				
	F			M(R(P))	R(P)	0			
	8	N	N GLO GETILOW					1	
	9	N	GHI	GET HIGH	$B(N) \rightarrow D$	B(N) 1	B(N)	1	
	A	N	PLO	PUT 'LOW	$D \rightarrow B(N) = 0$	D	B(N)	1	
	в	B N PHI PUT HIGH		$D \rightarrow R(N)$.1	D	B(N)	1		
		0,1,2			(RDANCH NOT TAKEN)	M(D(D))	D(D)	0	
		3,8,9 A,B BRANCH 5.6,7		LONG	(BRANCH TAKEN)	M(B(P))	P(P)	0	
				DITANCI	(BRANCH TAKEN)	101(11(17)	1107	0	
	С	C,D,E		LONG	(SKIP NOT TAKEN)	M(R(P))	R(P)	0	
		F		5KIP	(SKIP TAKEN)	M(R(P))	R(P)	0	
		4 NOP NO OPERATION		NO OPERATION	M(R(P))	R(P)	0		
	D	D N SEP SET P		N P	NN	R(N)	1		
	E	E N SEX SET X		N X	NN	R(N)	1		
		0		LOAD VIA X	M(R(X)) D	M(R(X))	R(X)	0	
		1,2,3 4,5,7			ALU OPERATION	M(R(X))	R(X)	0	
		6	SHR	SHIFT RIGHT	SHIFT D RIGHT LSB(D) \rightarrow DF 0 \rightarrow MSB(D)	FLOAT	R(X)	1	
	F	8	LDI	LOAD IMMEDIATE	M(R(P)) → D R(P)+1	M(R(P))	R(P)	0	
		9,A,B, C,D,F			ALU OPERATION	M(R(P))	R(P)	0	
		E	SHL	SHIFT LEFT	ALU OPERATION	FLOAT	R(P)	1	
\$2	1	N REQU	EST	DMA IN	$BUS \rightarrow M(R(0)) = R(0)+1$.	I/O DEVICE	R(0)	1	F
52	0	UT REC	DUEST	DMA OUT	$M(R(0)) \rightarrow BUS = R(0)+1$	M(R(0))	R(0)	0	F
S3	INTERRUPT		PT		X, $P \rightarrow T$, $0 \rightarrow IE$ 2 \rightarrow X, 1 $\rightarrow P$	FLOAT	R(N)	1	

NOTES: A. IE = 1; TPA, TPB suppressed, state = S1

B. BUS = 0 for entire cycle C. Next state always S1

D. Wait for DMA or Interrupt E. Suppress TPA, wait for DMA F. In Request has priority over Out Request

The HCMP 1802A state transitions when in the run mode are shown to the left. Each machine cycle requires 8 clock pulses except the initialization cycle, after reset, which requires nine clock pulses.

The execution of an instruction requires either two or three machine cycles, an S0 cycle followed by a single S1 cycle, or two S1 cycles. S2 is the response to a DMA request and S3 is the interrupt response. Table 1 shows the conditions on the Data Bus and memory address line during all machine states.

INTERFACE DESCRIPTION

CLOCK, **XTAL** — The clock reference to the microprocessor may be supplied by an externally generated single phase clock to the Clock input or by an on-chip oscillator by using a crystal in parallel with a resistor (10 M Ω typical) tied between the Clock and XTAL inputs. Frequency trimming capacitors may be required at terminals 1 and 39.

WAIT, CLEAR — These input control lines provide four internal CPU modes:

Clear	Wait	Mode
L	L	Load
L	Н	Reset
н	L	Pause
Н	н	Run

The functions of the modes are defined as follows:

Load: holds the CPU in the Idle execution state and allows a peripheral device to load memory without need for a "bootstrap" loader. It modifies the Idle condition so that the DMA-IN operation does not force execution of the next instruction.

Reset: resets registers I, N and Q and places 0's (VSS) on the data bus, IE is set and the S1 state is forced. TPA and TPB are suppressed while Reset condition is held. The first machine cycle after termination of reset initializes the CPU by resetting registers X, P, and R(0). The next cycle is an S0, S1, or an S2 but never an S3 (interrupt). By using a 71 instuction followed by 00 at memory locations 0000 and 0001, respectively, IE may be reset to preclude interrupts until the user is ready for them. Power up Reset can be realized by connecting an RC network directory to the Clear input, since it has a Schmitt triggered input.

Pause: stops the internal CPU timing generator on the first negative (high-to-low) transition of the input clock. The oscillator continues to operate but all subsequent clock transitions are ignored internally while in this mode.

Run: If initiated from the Pause mode the CPU resumes operation on the first negative transition of the input clock. When initiated from the Reset operation the first machine cycle following Reset is always the initialization cycle, followed by a DMA (S2) cycle or fetch (S0) from location 0000 in memory.

Q, **EF1-EF4** — The Q output is set or reset under program control. The EF1-EF4 user generated inputs are tested under program control. These signals may be used for serial transmission or external control and status. The input flags are sampled at the beginning of every S1 cycle. Q is set or reset between the trailing edge of TPA and leading edge of TPB.

INTERFACE DESCRIPTION (Continued)

SC1	SC0	STATE TYPE
L	L	S0 - Fetch Instruction Cycle
L	н	S1 - Execute Instruction Cycle
н	L	S2 - DMA input or Output Cycle
н	н	S3 - Interrupt Response Cycle

SC0, SC1 — These state code outputs indicate internal CPU modes of operation:

 $\ensuremath{\textbf{MWR}}$ — The negative write pulse output indicates address lines are stable during a memory write cycle.

BUS 0-BUS 7 — These 8 bi-directional three-state lines are used to transfer data between the memory, the microprocessor, and I/0 devices.

VCC, VSS, VDD — These power supply input pins allow several options since the internal voltage supply VDD is isolated from the I/O interface supply VCC. The processor may operate at maximum speed, governed by VDD, while interfacing T^2L through VCC. VCC must be less than or equal to VDD. All outputs swing from VSS to VCC.

N2, **N1**, **N0** — These three lines can directly select seven input ports and seven output ports under I/O instruction control. They are all low during non I/O operations. Input ports are selected when MRD is high and output ports are selected when MRD is low.

MA0 - MA7 — These 8 output lines contain the memory address. The high order 8 bits are present during the TPA timing pulse. The low order bits appear after termination of the TPA pulse. pulse.

TPA, TPB — These positive timing pulse outputs are available once each machine cycle to control I/O interfaces. TPA is suppressed in idle when the CPU is in the load mode.

 $\overline{\text{MRD}}$ — The negative pulse output indicates a memory read cycle and may be used to control the three-state outputs of memories and to control I/O to memory interfacing during an I/O instruction.

- **MRD** = VCC indicates data transfer from I/O to CPU and Memory.
- $\overline{\text{MRD}}$ = VSS indicates data from Memory to I/O.

INTERRUPT, **DMA-IN**, **DMA-OUT** — These three mode request inputs are sampled during the execution cycle of each instruction. In concurrent requests the following priority is set up: (1) DMA-In (2) DMA-Out (3) Interrupt. In DMA modes, array register R (0) points to a memory area and is incremented during each data transfer. In the Interrupt mode, the X and P indicators are stored in temporary register T, the X and P indicators are set to hex 1 and 2 respectively and the Interrupt Enable flip flop is reset.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach. CA 92663 Telephone (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co Schmaedel Str. 22. 8000 Munich. West Germany Telephone 49-89-834 7088 Telex: 5213856 HSPD

Printed in U.S.A 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS

HCMP 1852 HCMP 1852C

DESCRIPTION

The HCMP 1852 is an 8 bit mode programmable CMOS Input or Output Port. The device acts as a buffer between the HCMP 1802A data bus and the peripheral data bus. It can also be used as an 8 bit address latch for multiplexed address buses.

The Mode control signal programs the HCMP 1582 as an input port mode (mode = 0) or an output port (mode = 1). As an input port, data (DI0-DI7) is strobed from the peripheral into the 8 bit buffer register by a logic high on the Clock signal input; the negative clock transition sets the service request flip flop low ($\overline{SR} = 0$) and latches data. When the CS1 and CS2 signals are enabled, the data (D00-D07) is read onto the microprocessor bus. The signal \overline{SR} is then reset ($\overline{SR} = 1$) on the negative transition CS1 • <u>CS2</u>. As an output port, data (DI0-DI7) is strobed into the buffer register by the microprocessor when <u>CS1</u>, CS2, and the Clock input are activated. The Service Request is set on the negative transition of CS1 • CS2, and will remain until the following negative transition of the clock. The Output driver is always enabled when the output mode is chosen.

A Clear control allows asynchronous resetting of the port's register (DO0-DO7) and service request flip flop. The HCMP 1852 has a recommended operating voltage of 4 to 10.5 volts while the 1852C has a recommended range of 4 to 6.5 volts. The HCMP 1852 is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages and in cerdip (Y suffix) or unpackaged dice (H suffix).

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components.
- Parallel 8 Bit Data Register and Buffer
- Stored Service Request
- Asynchronous Register Clear
- Single Voltage Supply
- Low Quiescent and Operating Power

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range (Tstg)
Operating Temperature Range (T _A)
Ceramic Package
Plastic Package
DC Supply-Voltage Range (V _{DD})
(All voltage values referenced to V _{SS} terminal)
HCMP 1852

operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS			LIMITS						
CHARACTERISTIC	Vo	VIN	VDD	HC	MP 18	52	НС	MP 185	52C	UNITS
	(V)	(V)	(V)	Min.	Тур.	Max.	Min.	Тур.	Max.	
Package-Temperature Range)	-	-	_	4	-	10.5	4	-	6.5	v
Recommended Input Voltage Range	-	-	—	Vss	—	VDD	VSS	-	VDD	V
STATIC ELECTRICAL CHARACTERIST	ICS at Tr	=-40 to	+85°C,	V _{DD} ±5	%					
Quint part Daving Current IDD	_	0,5	5	—	-	10	—	— —	50	
Quescent Device Current, IDD		0,10	10	—	—	100	—	—	—	μΑ
Output Low Drive (Sink) Current Jou	0.4	0,5	5	1.6	3.2	_	1.6	3.2	—	mΑ
	0.5	0,10	10	3	6			_	_	
Output High Drive (Source) Current, IOH	4.6	0,5	5	-1.15	-2.3		-1.15	-2.3		mA
	9.5	0,10	10	-3	-6	-		-	-	
Output Voltage Low Level VOL ¹		0,5	5		0	0.1	_	0	0.1	
		0,10	5	4.0	5	0.1	10	-		v
Output Voltage High Level, V _{OH}		0,5	10	4.5	10		4.5	5		
	0545	0,10	5			1.5	_		1.5	
Input Low Voltage, VIL	0.5.9.5	_	10			3	_			
	0.5,4.5		5	3.5	_		3.5	- 1	_	v
Input High Voltage, VIH	0.5,9.5		10	7	—		-	—	_	
land Constant Inc	—	0,5	5	-	_	±1	-	-	<u>±1</u>	
input Current, IN		0,10	10	—	—	±2	—	-	-	
3-State Output Leakage Current Lour	0,5	0,5	5	-	—	<u>±</u> 1	—	—	<u>±</u> 1	<u>م</u> ر (
5-State Sulpar Leakage Current 1001	0,10	0,10	10	—	-	±2	—			<u><u></u></u>
Operating Current Ipp1 ²	_	0,5	5	—	130	200		150	200	uА
		0,10 -	10	-	400	600	-	-	-	
Input Capacitance CIN					5	7.5		5	7.5	pF
Output Capacitance, COUT		_	L –	<u> </u>	5	7.5		-		
DYNAMIC ELECTRICAL CHARACTERIS	TICS at T	A = -40 t	o +85°C,		<u>+</u> 5%, t	r,t _f = 20r	is, VIH '	= 0.7 V _[, VIL	= 0.3 V _{DD} ,
CL = 100pF, and TITE Load. LIMITS A	VDD = I	UV APPL			1652 0			,	r	· · · · ·
Required Select Pulse Width, t _{SW}	_	_	5 10	_	180 90	360 180	_	180	360	
Required Write Pulse Width, tww	Ξ	_	5 10	=	130 65	260 130	=	130	260	
Required Clear Pulse Width, t _{CLR}	_	_	5 10	_	80 40	160 80	=	80	160	-
Required Data Setup Time, tos	—	-	5	-		0		-10	0	115
Pequired Data Hold Time, tou	_	_	5	_		150	_	75	150	
			10	-	35	/5	_			
Propogation Delay Times, TPLH, TPHL										
Service Request: Clear_to_SR,_tRSR	_		5 10	_	170 85	340 170	_	170	340	
Clock to SR, t _{CSR}	_	_	5 10	=	120 60	240 120	_	120	240	ns
Select to SR, t _{SSR}	-	_	5 10	_	120 60	240 120	-	120	240	
Input Mode: Data Out Hold Time ³ , ^t DOH	-	_	5 10	30 15	185 100	370 200	30	185	370	
Select to Data Out ³ , ^t SDO	_	_	5 10	30 15	185 100	370 200	30	185	370	115
Output Mode:	_	_	5	_	140	280	_	140	280	
Write to Data Out, twpo		_	5		220	440	·	220	440	ns
Data In to Data Out, toDO	_	_	5	_	100	200		100	200	
			10		50	100	L	1		

Typical Values are for $T_A = 25^{\circ}C$ and nominal V_{DD}

NOTE 1: $IOL = IOH = 1 \mu A$

NOTE 2: Operating current is measured at 2MHz in an 1802 system with open outputs and a program of alternating 1 and 0 data pattern. NOTE 3: Minimum value is measured from CS2; maximum value is measured from CS1.

SYSTEM INTERCONNECT

N₀, N₁ OR N₂

DATA BUS

Ê

CLOCK

DI0-DI7

22

D00-D07

HCMP

1852

VDD

INPUT MODE

DMA-IN

OR

EFX

BUS0-BUS7

HCMP

1802

VC

MRD

Nx

SYSTEM RESET MODE = V_{SS} MODE 0 (INPUT) MODE CLEAF

	CLOCK	CS1·CS2	CLEAR	DATA OUT		
Х		0	х	HIGH IMPEDANCE		
	0	1	0	0		
	0	1	1	DATA LATCH		
	1	1	х	DATA IN		
	$\overline{SR}=0$ CLOCK \swarrow (CLEAR = 1, CS1•CS2 = 0) SR=1 (CS1•CS2) \checkmark OR (CLEAR) \checkmark					

 $CS1 \cdot CS2$ is the overlap of CS1 = 1 and CS2 = 1

DATA AND

CONTROL

FROM

PERIPHERAL

MODE = V_{DD} MODE 1 (OUTPUT)

CLOCK	CS1 · CS2	CLEAR	DATA OUT
0	X	0	0
0	X	1	DATA LATCH
х	0	1	DATA LATCH
1	1	х	DATA IN
		1	

(CS1•CS2) (CLEAR = 1) SR=1 SR=0 CLOCK (CLEAR = 1, CS1•CS2 = 0) OR (CLEAR)

* Write is the overlap of CS1 • CS2 and Clock

HCMP 1852/1852C

APPLICATION EXAMPLES ADDRESS LATCH

HCMP 1852 can be used as an address latch to latch the upper byte of the HCMP 1802A microprocessor memory address in each machine cycle. The figure below shows the I/O port connected for this application together with its associated timing diagram.

This figure shows HCMP 1852 connected as a noninverting, three state, 8 bit buffer, with MODE = 0, CLOCK = 1 and CS2 = 1, CS1 can be used as a tri-state control. When CS1 = 0, the output is a high impedance, but when CS1 = 1, data out equals data in. If a high impedance state is not required, the CS1 input can be tied high (CS1 = 1).

SIGNAL DESCRIPTION

DI0-DI1 — These 8 input lines are strobed into an internal buffer by a high level on the Clock input line and latched by the negative transition of the Clock input.

D00-D07 — These 8 output lines reflect the information from the internal buffer when the three state drivers are enabled by CS1 • CS2 in the input mode or, at all times, in the output mode.

MODE — This control input sets the HCMP 1852 in the input mode with a VSS applied or in the output mode with VDD applied.

CLEAR — This asynchronous reset control clears the buffer register and resets the SR flip flop.

CLOCK — Input Mode: This input strobes data into the buffer when it is activated (high) and sets the SR flip flop (SR = 0) while latching data on its negative transition.

Output Mode: This input along with the chip selects ($\overline{CS1} \bullet CS2 \bullet Clock = 1$) strobes data into the buffer. The service request (\overline{SR}) is set high on the termination of $\overline{CS1} \bullet CS2 = 1$ and reset low on the next negative transition of the clock.

CS1/CS1, CS2 — These chip select controls enable device selection.

SR/SR — This output signal is used as a service request transfer control between the microprocessor and peripheral buses.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS N-Bit 1 of 8 Decoder

HCMP 1853 HCMP 1853C

DESCRIPTION

The HCMP 1853 allows decoding of the 1802A microprocessor generated I/O lines (N0-N2) to provide direct control for up to seven input and seven output devices. The TPA and TPB clock inputs provide control signal output timing while the Chip Enable (CE) input allows multi-level I/O expansion for decoding. The HCMP 1853 can also be used as a general 1 of 8 decoder for memory system applications.

The HCMP 1853 has a recommended operating voltage range of 4-10.5 volts while the HCMP 1853C has the recommended range of 4-6.5 volts. The HCMP 1853 is available in 16 lead dual in line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components
- Provides Control for up to 7 Input and 7 Output Devices
- Low Power Dissipation
- Easy Expansion for Multi-Level I/O Systems through Chip Enable.

- Buffered Inputs and Outputs
- Strobed Outputs for Spike-Free Decoding

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

CLOCK

CLOCK B

15

(TPA)

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range (T _{stg})65 to + 150°C
Operating Temperature Range (T _A)
Ceramic Package
Plastic Package40 to +85°C
DC Supply-Voltage Range (VDD)
(All voltage values referenced to V _{SS} terminal)
HCMP 1853
HCMP 1853C

OPERATING CONDITIONS at TA = FULL PACKAGE TEMPERATURE RANGE

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS			LIMITS						
CHARACTERISTIC	V _O			ŀ	ICMP 185	3	HCMP 1853C			UNITS
	,			Min.	Typ.	Max.	Min.	Тур.	Max.]
Supply-Voltage Range	-	-		4	-	10.5	4	-	6.5	v
Recommended Input Voltage Range	-	_		V _{SS}		VDD	VSS	—	VDD	v
Static Electrical Characteristics at $T_A = -4$	0 ⁰ C to +8	5 ⁰ C Unles	ss Otherw	ise Specifi	ed				I	
Quiescent Device Current, IL	-		5	-	1	10	-	5	50	
	-	-	10	-	10	100	-	-	-	
Output Low Drive (Sink) Current, IOL	0.4	0, 5	5	1.6	3.2	-	1.6	3.2	-	
	0.5	0, 10	10	2.6	5.2	-	-	-		T MA
Output High Drive (Source Current), IOH	4.6	0, 5	5	-1.15	-2.3		-1.15	-2.3	-	m۵
	9.5	0, 10	10	-2.6	-5.2	-	-		-	MA
Output Voltage Low-Level, VOL ¹	-	0, 5	5	_	0	0.1	-	0	0.1	
	-	0, 10	10	-	0	0.1	-	-		v
Output Voltage High Level V _{OH}	-	0, 5	5	4.95	5	-	4.95	5	-	
	-	0, 10	10	9.95	10	-	-	-		
Input Low Voltage, VIL	0.5, 4.5	_	5	_		1.5	-	-	1.5	
	1,9	-	10	-	-	3	-	-	-	V
Input High Voltage, V _{IH}	0.5, 4.5		5	3.5		-	3.5	-	-	
	1,9	-	10	7	-	-	-	-	-	
Input Leakage Current, I _{IN}	Any	0, 5	5			<u>+</u> 1	_	-	<u>+</u> 1	μA
	Input	0, 10	10			<u>+</u> 1	_	-		
3-State Output Leakage Current, IOUT	0,5	0, 5	5	-	-	<u>+</u> 1	-	-	±1	μA
	0,10	0, 10	10	-		<u>+1</u>	-	-	-	
Operating Current IDD1 ²	0,5	0.5	5		50	100	-	50	100	μA
	0,10	0, 10	10		150	300		-	75	-
Autout Capacitance, Court	-				10	7.5		10	15	рг
	-		_	_	10	15		10	15	pF
Dynamic Electrical Characteristics at $T_A =$	-40 to +8	5 ⁰ C, t _r , t	= 20 ns	CL = 100	PF VDD ±	5%, VIH	= 0.7 V _D), V _{IL} =0	.3 V _{DD}	
Propogation Delay Time:	-	_	5	_	175	275	-	175	275	
CE to Output, tEOH, tEOL	-		10	-	90	150	-	-	-	113
N to Outputs through the	_	_	5	-	225	350	-	225	350	ns
N to outputs, INOH, INOL	-	-	10	-	120	200	-	-	-	
Clock A to Output, the	_		5	-	200	300	-	200	300	ns
			10	-	100	150	-	-	-	
Clock B to Output, too	-	_	5	-	175	275	-	175	275	ns
clock b to output, tBO	-		10	-	90	150	-	-	-	
Minimum Pulse Widths:	-	_	5	-	50	75	-	50	75	
Clock A, tCACA	- 1	-	10	-	25	50	-	-	-	ns
	_		5	-	50	75	-	50	75	
CIOCK B, t CBCB			10	-	25	50	-	-	-	

Typical values are for $T_{\mbox{\scriptsize A}}$ = $25^{\mbox{\scriptsize O}}\mbox{\scriptsize C}$ and nominal voltage.

NOTE 1: $I_{OL} = I_{OH} = 1\mu A$

NOTE 2: Operating current measured in a HCMP 1802A system at 2MHz with outputs floating.

TIMING DIAGRAMS

*OUTPUT ENABLED WHEN EN = HIGH INTERNAL SIGNAL SHOWN FOR REFERENCE ONLY

PROPOGATION DELAY TIMING:

APPLICATIONS EXAMPLES

ADDRESS DECODER:

ONE LEVEL I/O SYSTEMS:

The Figure shows two HCMP 1853 used to decode 4 K address into 16 groups of 256 address each.

MA8 represents the 8th binary address bit. (ie $2^8 = 256$). M0 will address 0-255 M1 will address 256-511 M15 will address 3840-4095

In the HCMP 1802A microprocessor systems, when more than three I/O ports are required, the N lines can be decoded to specify up to 7 different input and 7 different output channels as shown.

By executing Input instruction 69 (N lines = 001) for instance, the port 1 input register is enabled to the bus since MRD is high during the memory write cycle. The HCMP 1853 decode line 1 will also be active high during an output instruction, 61 (N lines = 001) but MRD is low during the memory read cycle disabling the memory read cycle disabling the port 1 input register from the bus. At TPB, the valid byte from memory is strobed into the port 1 output register.

TWO LEVEL I/O SYSTEMS:

In the HCMP 1802A microprocessor systems, when more than 7 input or 7 output ports are required, a two level I/O system can be designed as shown in the figure.

A 61 (N lines = 001) output instruction is first executed to place an 8-bit device selection code in the I/O device-select register, HCMP 1852. Subsequent execution of one of the 6 remaining output instructions (62-67) selects one of 48 output ports, or subsequent execution of one of the 7 input instructions (69-6F) selects one of the 56 input ports.

With additional decoding the total number of input and output ports can be further expanded.

SIGNAL DESCRIPTION

Clock A, **Clock B** — The selected outputs stay true from the trailing edge of the Clock A (TPA) input to the trailing edge of the Clock B (TPB) input, if the chip is enabled. The transition of both the clock inputs at the trailing edge should be from high-to-low.

CE — The Chip Enable input enables the chip when high. All outputs will be low when CE = 0.

N0, N1, N2 — These three inputs select one of eight decoded outputs when the chip is enabled. N0 is the least significant input, N2 is the most significant input.

Output 7-Output 0 — One output can be selected at a time. The truth table is shown below.

TRUTH TABLE

N2	N1	NO	EN	0	1	2	3	4	5	6	7
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	0	0	0	0
1	0	0	1	0	0	0	0	1	0	0	0
1	0	1	1	0	0	0	0	0	1	0	0
1	1	0	1	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1
X	X	Х	0	0	0	0	0	0	0	0	0

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue. Newport Beach. CA 92663 Telephone (714) 759 2942 TWX 910-596 1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS Universal Asynchronous Receiver/Transmitter

HCMP 1854A HCMP 1854AC

DESCRIPTION

The HCMP 1854A is a CMOS Universal Asynchronous Receiver/Transmitter (UART). It is designed to provide formatting and controls to interface serial and parallel data busses, such as a telephone modem to an HCMP 1802 microprocessor bus. The HCMP 1854A is capable of full duplex operation allowing simultaneous conversion from serial to parallel (receiver section) and parallel to serial (transmitter section). A local receiver clock (R Clock) and transmitter clock (T Clock) operates at 16 times the serial data rate to provide references for receiver sampling and transmitter timing. The mode control allows the UART to be used as a functional replacement for industry standard UARTs (such as the TR1602) in mode 0 while utilizing a single supply voltage; in mode 1 the UART can be selected as a bus oriented device for direct interfacing with the HCMP 1802 microprocessor as shown below.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Two Operating Modes
 - Mode 0 Functionally Compatible with Industry Standard UARTs such as TR1602A
 - Mode 1 Directly Interfaces with HCMP 1802 Microprocessor without Additional Components
- Full or Half Duplex Operation
- SYSTEM INTERCONNECT

- Baud Rate DC to 250K at VDD = 5V DC to 500K at VDD = 10V
- Selectable Word Length 5, 6, 7 or 8 Bits
- Programmable Parity and Stop Bits (1, 1¹/₂, 2)
- Parity, Framing and Overrun Error Detection
- Single Voltage Supply
- Low Quiescent and Operating Power

PINOUT

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range (T _{stg})
Operating-Temperature Range (T _A)
Ceramic Package (D Suffix)
Plastic Package (P Suffix)40 to +85°C
DC Supply-Voltage Range (V _{DD})
(All voltage values referenced to V _{SS} terminal)
HCMP 1854A0.5 to + 11V
HCMP 1854AC0.5 to +7V

OPERATING CONDITIONS at TA = Full Temperature Range

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	V _{DD}	TYPICAL	- VALUES	UNITS	
CHARACTERISTIC	(V)	HCMP 1854AD	HCMP 1854ACD		
Supply Voltage Range (At T _A = Full Package-Temperature Range)	-	4 to 10.5	4 to 6.5	V	
Recommended Input Voltage Range	-	V _{SS} to V _{DD}	V _{SS} to V _{DD}	V	
Clock Input Frequency, fCI	5	DC - 4	DC - 4		
(16 times bit rate)	10	DC - 8	-	MHz	
Minimum Clock Pulse Width,	5	125	125		
^t WL, ^t WH	10	100	_	ns	
Minimum Master Reset,	5	500	500		
Clear Pulse Width	10	250	_	ns	

STATIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C, Unless Otherwise Specified

		co	DITION	S			LIM	ITS			
		Vo	VIN	Vpp	н	CMP 1854	AD	HCM	лР1854A	CD	1
CHARACTERISTIC		(V)	(V)	(V)	Min.	Typ. ¹	Max.	Min.	Typ. ¹	Max.	UNITS
Quiescent Device Current	IDD	-	0,5	5	-	0.01	50		0.02	200	
		-	0, 10	10	-	1	200	-	-	-	μΑ
Output Low Drive (Sink) Current	IOL	0.4	0, 5	- 5	0.55	1.1	-	0.55	1.1	-	
		0.5	0, 10	10	1.3	2.6	-		-	-	IIIA
Output High Drive (Source) Curren	t IOH	4.6	0, 5	5	-0.55	- 1.1	-	-0.55	-1.1	-	
		9.5	0, 10	10	-1.3	- 2.6	-	-	-	-	mA
Output Voltage Low-Level	VOL ²		0,5	5	-	0	0.1	-	0	0.1	
			0, 10	10	-	0	0.1		-	-	l v
Output Voltage High-Level	∨он	-	0, 5	5	4.9	5	-	4.9	5	-	N
		-	0, 10	10	9.9	10	-	-	-	-	, v
Input Low Voltage	VIL	0.5, 4.5	-	5	-	-	1.5	-	-	1.5	N
		0.5, 9.5		10	-	-	3	-		-	v
Input High Voltage	VtH	0.5, 4.5		5	3.5	-	-	3.5	-	-	V
		0.5, 9.5		10	7	- 1	-	-	-	-	ľ
Input Current	IIN	_	0,5	5	-	±10-4	±1	-	±10 ⁻⁴	±1	
		-	0, 10	10	-	±10 ⁻⁴	±2		-	-	μΑ
Three State Output Leakage Current	I IOUT	0, 5	0,5	5	-	±10 ⁻⁴	±1	-	±10 ⁻⁴	±1	
		0, 10	0, 10	10	-	±10 ⁻⁴	±2	-	-		μ
Operating Current	IDD1 ³	-	0, 5	5	-	1.5		-	1.5	-	m۸
			0, 10	10	-	10	-		-	-	
Input Capacitance	CIN	-	-	-	-	5	7.5	-	5	7.5	DE
Output Capacitance	COUT	-	-	-	-	10	15	-	10	ຳ5	

NOTE 1 Typical values are for $T_{\mbox{A}}\,=\,25^{\circ}\mbox{C}$

NOTE 2 $I_{OL} = I_{OH} = 1 \ \mu A$.

NOTE 3 Operating current is measured at 200 kHz for $V_{DD} = 5V$ and 400 kHz for $V_{DD} = 10V$ in an HCMP 1802 system, with open outputs.

FUNCTIONAL DIAGRAM (Industry Standard Mode 0)

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C, $V_{DD} \pm 5^{\circ}$, t_r , $t_f = 20$ ns, $V_{IH} = 0.7$ VDD, $V_{IL} = 0.3$ VDD, $C_L = 100$ pF, See Fig. 1.

		VDD	HCMP	1854A	HCMP1	1854AC	
CHARACTERISTIC		(V)	Тур. 1	Max. 2	Тур. 1	Max. 2	UNITS
Standard Timing MODE	0						
Minimum Pulse Width:	^t CR ⁱ L	5 10	100 50	150 75	100	150 —	ns
Minimum Setup Time: Control Word to CRL	tCWC	5 10	200 100	300 150	200	300 —	ns
Minimum Hold Time: Control Word after CRL	tCCW	5 10	100 50	150 75	100	150 —	ns
Propagation Delay Time: SFD High to SOD	tSFDH	5 10	200 100	300 150	200	300 -	ns
SFD Low to SOD	tSFDL	5 10	75 40	120 60	75 —	120 —	ns
RRD High to Receiver Register High Impedance	tRRDH	5 10	200 100	300 150	200	300 —	ns
RRD Low to Receiver Register Active	^t RRDL	5 10	100 50	150 75	100	150 —	ns

NOTE 1 Typical values are for $T_A = 25^{\circ}C$ and nominal voltages.

NOTE 2 Maximum limits of minimum characteristics are the values above which all devices function.

TABLE 1. DYNAMIC ELECTRICAL CHARACTERISTICS

MODE 0 OPERATION (MODE INPUT = V_{SS})

A. Initialization and Controls

The Master Reset (MR) is pulsed to initialize the UART; for example, after power turn on. It resets (zeroes) the Control, Status and Receiver Holding Registers and sets the Serial Data Output (SDO) signal to a logic high. After release of the Master Reset (return to a logic low), the internal timing is generated from the Transmitter Clock (T Clock) and Receiver Clock (R Clock) inputs which are divided internally by sixteen to provide the serial data bit rate. When the receiver data input rate and the transmitter data output rate are the same, as in two-way communications over the same channel, the T Clock and R Clock inputs may be connected together.

To set the operational mode of the UART the control inputs: Parity Inhibit (PI), Even Parity Enable (EPE), Stop Bit Select (SBS), and Word Length Selects (WLS1 and WLS2) are strobed into the UART by the Control Register Load (CRL) input signal activation (logic high). The control bits may be dynamically changed or may be hard wired to the required voltage level (VSS or VDD) with CRL hard wired to VDD. The HCMP 1854A is then ready for transmitter and/or receiver operation.

B. Word Format

A diagram of the serial data word format is shown in Fig. 2. The data, 5-8 bits, is transmitted with the least significant bit (LSB) sent first. The parity bit, if enabled, is sent after the most significant data bit. The parity may be either odd or even as chosen by the Control Word. The data is enclosed by a Start bit (logic low) identifying start of character transmission and either 1, $1\frac{1}{2}$, or 2 bit wide Stop bit(s) which identifies the end of character transmission and separates successive data words. The width of each data bit is normally 16 input clock widths of 16/f where f is the clock frequency.

C. Transmitter Operation

The transmitter timing diagram showing the start of data transmission are seen in Figure 3. At the beginning of a transmitting sequence the Transmitter Holding Register is empty (status signal THRE is high). A character is transferred from the transmitter bus to the Transmitter Holding Register by applying a low pulse to the Transmitter Holding Register Load (THRL) input. This causes the THRE status to go to a low state. If the Transmitter Shift Register is empty (Status signal TSRE is High) and the input clock is low, the next high-to-low transition of the clock loads the contents of the Transmitter Holding Register into the Transmitter Shift Register, preceded by a start (low) bit. Serial data transmission begins one-half clock period later with a start bit, followed by 5-8 data bits, the parity bit (if programmed) and stop bit(s). The THRE status signal returns high one-half clock period later on the high-to-low transition of the input clock. When THRE goes high it signals that another character can be loaded into the Transmitter Holding Register for subsequent transmission immediately following the last stop bit of the previous character. This process is repeated until all characters are transmitted. When transmission is complete both THRE and the Transmitter Shift Register Empty (TSRE) status signals will be high.

				LIMITS			
		Vnn	нсмр	1854A	HCMP1	854AC	1
CHARACTERISTIC		(V)	Typ.1	Max. ²	Typ.1	Max.2	UNITS
Transmitter Timing – I	MODE 0				-		
Minimum Clock Period	tCC	5 10	250 125	310 155	250 	310 -	ns
Minimum Pulse Width: Clock Low Level	tCL	5 10	100 75	125 100	100 —	125 -	ns
Clock High Level	tCH	5 10	100 75	125 100	100 _	125 _	ns
THRL	tthth	5 10	100 50	150 75	100	150 -	ns
Minimum Setup Time: THRL to Clock	^t THC	5 10	175 90	275 150	175	275 _	ns
Data to THRL	tDT	5 10	-100 -50	- 75 - 35	-100 —	- 75 	ns
Minimum H <u>old Tim</u> e: Data after THRL	tTD	5 10	75 40	125 60	75 —	125 —	ns
Propagation Delay Time: Clock to Data Start Bit	tCD	5 10	300 150	450 225	300 	450 	ns
Clock to THRE	^t CT	5 10	200 100	300 150	200 —	300	ns
THRE to THRE	^t TTHR	5 10	200 100	300 150	200	300 -	ns
Clock to TSRE	^t TTS	5 10	200 100	300 150	200 —	300 -	ns

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -40 to $+85^\circ\text{C},\,V_{DD}$ $\pm5\%,\,t_r,\,t_f$ = 20 ns, VIH = 0.7 VDD, VIL = 0.3 VDD, CL = 100 pF. See Fig. 3.

Note 1: Typical values are for $T_{\mbox{A}}\,=\,25^\circ\mbox{C}$ and nominal voltages.

Note 2: Maximum limits of minimum characteristics are the values above which all devices function.

TABLE 2. TRANSMITTER TIMING MODE 0

* THE HOLDING REGISTER IS LOADED ON THE TRAILING EDGE OF THRL

** THE TRANSMITTER SHIFT REGISTER, IF EMPTY, IS LOADED ON THE FIRST HIGH-TO-LOW TRANSITION OF THE CLOCK WHICH OCCURS AT LEAST 1/2 CLOCK PERIOD +tTHC AFTER THE TRAILING EDGE OF THRL, AND TRANS-MISSION OF A START BIT OCCURS 1/2 CLOCK PERIOD + tCD LATER

FIGURE 3. MODE 0 TRANSMITTER TIMING DIAGRAM

D. Receiver Operation

The receive operation begins when a Start bit (logic low) is detected at the Serial Data In (SDI) input. When a high-to-low transition is detected on the SDI line a divide by 16 internal counter is enabled, driven by the R Clock input, and a valid Start bit is verified by checking for a low level input 7¹/₂ receiver clock periods later. This prevents false triggering on noise inputs. When a valid Start bit is verified, the sampling occurs every subsequent 16 clock pulses to shift in data bits, parity bit (if programmed) and stop bit(s) into the Receiver Shift Register. If programmed, the parity bit is checked and the Parity Error (PE) status updated. The receipt of a valid Stop bit is also verified and Framing Error (FE) status updated. On count 71/2 of the first Stop bit the received data is transferred to the Receiver Holding Register. If the word length is less than 8 bits, zeroes (low voltage level) are loaded into the unused most significant bits. If the Data Available (DA) flag has not been reset by the time the Receiver Holding Register is updated with new data, the Overrun Error (OE) flag is activated to a high level. One half clock after the data transfer the Parity Error (PE) and Framing Error (FE) signals become valid for the character in the Receiver Holding Register. The DA signal is also raised at this time. The three-state output drivers for the status and error flags (DA, OE, PE and FE) are enabled when Status Flag Disconnect (SFD) is pulsed or hard wired to a low voltage state. When Receiver Register Disconnect (RRD) goes low, the receiver bus three-state output drivers are enabled and data is available on the Receiver Bus (R BUS 0 ----R BUS 7) output lines. The DA flag is reset by a negative pulse on the Data Available Reset (DAR) input.

The preceding sequence of operations is repeated for each serial character received. The receiver timing diagram is shown in Figure 4.

				LI	MITS		
		Vnn	нсм	P1854A	HCMP	1854AC	1
CHARACTERISTIC		(V)	Typ.1	Max. ²	Typ.1	Max. ²	UNITS
Receiver Timing – MOD	DE 0						
Minimum Clock Period	tCC	5 10	250 125	310 155	250	310	ns
Minimum Pulse Width: Clock Low Level	^t CL	5 10	100 75	125 100	100	125	ns
Clock High Level	^t CH	5 10	100 75	125 100	100	125	ns
Data Available Reset	tDD	5 10	50 25	75 40	50	75	ns
Minimum Setup Time: Data Start Bit to Clock	tDC	5 10	100 50	150 75	100	150	ns
Propagation Delay Time:							
Data Available Reset to Data Available	[†] DDA	5 10	150 75	225 125	150 -	225	ns
Clock to Data Valid	tCDV	5 10	225 110	325 175	225	325	ns
Clock to Data Available	tCDA	5 10	225 110	325 175	225	325	ns
Clock to Overrun Error	^t COE	5 10	210 100	300 150	210	300	ns
Clock to Parity Error	tCPE	5 10	240 120	375 175	240	375	ns
Clock to Framing Error	^t CFE	5 10	200 100	300 150	200	300	ns

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = -40 to $+85^\circ$ C, V_DD $\pm5\%$, t_r, t_f = 20 ns, V_IH = 0.7 V_DD, V_IL = 0.3 V_DD, C_L = 100 pF. See Fig. 4.

NOTE 1: Typical values are for $T_A = 25^{\circ}C$ and nominal voltages.

NOTE 2: Maximum limits of minimum characteristics are the values above which all devices function.

* IF A START BIT OCCURS AT A TIME LESS THAN 1_{DC} BEFORE A HIGH-TO-LOW TRANSITION OF THE CLOCK, THE START BIT MAY NOT BE RECOGNIZED UNTIL THE NEXT HIGH-TO-LOW TRANSITION OF THE CLOCK. THE START BIT MAY BE COMPLETELY ASYNCHRONOUS WITH THE CLOCK.

** IF A PENDING DA HAS NOT BEEN CLEARED BY A READ OF THE RECEIVER HOLDING REGISTER BY THE TIME A NEW WORD IS LOADED INTO THE RECEIVER HOLDING REGISTER, THE OE SIGNAL WILL COME TRUE.

SIGNAL DESCRIPTION (Standard Mode 0)

Terminal No.	Signal	Function
1	V _{DD}	Positive supply
2	Mode Select (Mode)	A low level voltage at this input selects Standard Mode 0 Operation.
3	V _{SS}	Ground
4	Receiver Register Disconnect (RRD)	A high-level voltage applied to this input disconnects the Receiver Holding Register from the Receiver Bus.
5-12	Receiver Bus (R BUS 0 — R BUS 7)	Receiver parallel data outputs. R BUS 7 is the most significant bit.
13	Parity Error (PE)	A high-level voltage at this output indicates that the received parity does not com- pare to that programmed by the Even Parity Enable (EPE) control. This output is updated each time a character is transferred to the Receiver Holding Register. PE lines from a number of arrays can be bused together since an output disconnect capability is provided by the Status Flag Disconnect (SFD) line.
14	Framing Error (FE)	A high-level voltage at this output indicates that the received character has no valid stop bit, i.e., the bit following the parity bit (if programmed) or MSB of data (if parity is not programmed) is not a high-level voltage. This output is updated each time a character is transferred to the Receiver Holding Register. FE lines from a number of arrays can be bused together since an output disconnect capability is provided by the Status Flag Disconnect (SFD) line.
15	Overrun Error (OE)	A high-level voltage at this output indicates that the Data Available (DA) flag was not reset before the next character was transferred to the Receiver Holding Register and the previous data was presumably lost. OE lines from a number of arrays can be bused together since an output disconnect capability is provided by the Status Flag Disconnect (SFD) line.
16	Status Flag Disconnect (SFD)	A high-level voltage applied to this input disables the 3-state output drivers for PE, FE, OE, DA, and THRE, allowing these status outputs to be bus connected.
17	Receiver Clock (R Clock)	Clock input with a frequency 16 times the desired receiver bit shift rate.
18	Data Available Reset (DAR)	A low-level voltage applied to this input resets the DA flip-flop.
19	Data Available (DA)	A high-level voltage at this output indicates that an entire character has been received and transferred to the Receiver Holding Register.

20	Serial Data In (SDI)	Serial data received at t mined by the character lo being received (IDLE ST	Serial data received at this input enters the receiver shift register at a point deter- mined by the character length. A high-level voltage must be present when data is not being received (IDLE STATE).					
21	Master Reset (MR)	A high-level voltage at the ter, and Status Register	is input resets the Re and sets the serial	ceiver Holding Register, Contro data output high.	ol Regis-			
22	Transmitter Holding Register Empty (THRE)	A high-level voltage at the has transferred its contended with a new character.	A high-level voltage at this output indicates that the Transmitter Holding Register has transferred its contents to the Transmitter Shift Register and may be reloaded with a new character.					
23	Transmitter Holding Register Load (THRL)	A low-level voltage appl Transmitter Holding Reg	A low-level voltage applied to this input enters the character on the data bus into the Transmitter Holding Register. Data is latched on the trailing edge of this signal.					
24	Transmitter Shift Register Empty (TSRE)	A high-level voltage at t completed serial transm this level until the start	A high-level voltage at this output indicates that the Transmitter Shift Register has completed serial transmission of a full character including stop bit(s). It remains at this level until the start of transmission of the next character.					
25	Serial Data Output (SDO)	The contents of the Tran bit(s)) are serially shiftec a high-level idle state is r of the start bit from a h	The contents of the Transmitter Shift Register (start bit, data bits, parity bit, and stop bit(s)) are serially shifted out on this output. When no character is being transmitted, a high-level idle state is maintained. Start of transmission is defined as the transition of the start bit from a high-level to a low-level output voltage.					
26-33	Transmitter Bus (T BUS 0 — T BUS 7)	Transmitter parallel data inputs. T BUS 7 is the most significant bit.						
34	Control Register Load (CRL)	A high-level voltage at this input loads the Control Register with the control bits (PI, EPE, SBS, WLS1, WLS2). This line may be strobed or hardwired to a high-level input voltage.						
35	Parity Inhibit (PI)	A high-level voltage at t cuits and will clamp the diately follow the last d	his input inhibits the PE output low. If parit ata bit on transmissi	parity generation and verifica y is inhibited the stop bit(s) wi on.	ation cir- II imme-			
36	Stop Bit Select (SBS)	This input selects the n high-level selects two st bits (logic high) with five 1.5 stop bits.	umber of stop bits to pp bits, a low-level se data bits programm	be transmitted after the pari ects one stop bit. Selection of t ed (WLS2 = low, WLS1 = low	ty bit. A two stop) selects			
37	Word Length Select 2 (WLS2)	These two inputs select	the character length	(exclusive of parity) as follow	vs:			
38	Word Length Select 1 (WLS1)	WLS2	WLS1	Word Length				
		Low Low High High	Low High Low High	5 Bits 6 Bits 7 Bits 8 Bits				
39	Even Parity Enable (EPE)	A high-level voltage at the ter and checked by the	is input selects even receiver. A low-level	parity to be generated by the ti input selects odd parity.	ransmit-			
40	Transmitter Clock (T Clock)	Clock input with a frequency 16 times the desired transmitter shift rate.						

FUNCTIONAL DIAGRAM (HCMP 1802 Compatible — Mode 1)

MODE 1 OPERATION (MODE INPUT = V_{DD})

A. Initialization and Controls

In the microprocessor compatible mode the HCMP 1854A is configured to receive commands and transmitter data, and to send status and receiver data via the microprocessor data bus. The register selected to be connected to the transmitter bus or receiver bus is determined by the Read/Write (RD/WR) and Register Select (RSEL) inputs as follows:

RSEL	RD/WR	Function
Low	Low	Load Transmitter Holding Register from Transmitter Bus
Low	High	Read Receiver Holding Register from Receiver Bus
High	Low	Load Control Register from Trans- mitter Bus
High	High	Read Status Register from Re- ceiver Bus

TABLE 4. REGISTER SELECTION

In mode 1 the HCMP 1854A is compatible with an 8 bit bidirectional bus system. The Receiver and Transmitter buses can be connected together externally to directly interface with the microprocessor bus. The I/O control signals generated by the HCMP 1802 can be connected directly to the HCMP 1854A as shown on the front page.

To initiate the UART operation the Clear input is pulsed which resets the Control, Status and Receiver Holding Registers and sets the Serial Data Out (SDO) to a logic high. The Control Register is then loaded from the Transmitter bus to determine the operating configuration for the UART. Data is transferred over the transmitter bus to the Control Register during the TPB clock output from the HCMP 1802 when the UART is selected (CS1•CS2•CS3 = 1) and the control Register is designated (RSEL = high, RD/WR = low). The status register of the HCMP 1854A can be read onto the Receiver bus (R BUS 0 — R BUS 7) to determine the UART status. Some of these bits are also available at separate terminals as indicated in the mode 1 block diagram.

B. Transmitter Operation

Before transmitting, the Transmit Request (TR) bit in the Control Register must be set. This is done by executing the operation to load the Control Register with the TR bit set (bit 7) in the byte transmitted over the bus. When bit 7 is high it inhibits changing of the other control bits. Therefore, two loads are required: one to format the UART, the second to set TR. When TR has been set a Transmitter Holding Register Empty (THRE) interrupt will occur, signaling the microprocessor (normally through the INTR or EF lines) that the Transmitter Holding Register is empty and may be loaded with data. Setting TR also sets a low level on the Request To Send (RTS) output to peripherals (such as a modem).

The Transmitter Holding Register is loaded from the bus by TPB during execution of an Output instruction from the microprocessor. The HCMP 1854A UART is selected by $(CS1 \cdot CS2 \cdot CS3 = 1)$. The Transmitter Holding Register is selected by RSEL = low and RD/WR = low. When the Clear To Send (CTS) input signal is low the Transmitter Shift Register is loaded with the contents of the Transmitter Holding Register and data transmission will begin. If CTS is low the Transmitter Shift Register will be loaded on the first high-to-low edge of the clock which occurs at least 1/2 clock period after the TPB trailing edge. Transmission of the start bit occurs 1/2 clock period later (see Fig. 5). Parity (if programmed) and stop bit(s) are transmitted following the last data bit. If the word length selected is less than 8 bits, the most significant unused bits in the transmitter shift register will not be transmitted.

One transmitter clock period after the Transmitter Shift Register is loaded the THRE signal goes to a low and the interrupt is asserted (\overline{INT} goes low). The next character to be transmitted can then be loaded into the Transmitter Holding Register and its Start bit will immediately follow the last Stop bit of the previous character. This cycle is repeated until the last character is transmitted, at which time a final THRE-TSRE interrupt will occur. This interrupt signals the microprocessor that the TR control bit can be turned off by reloading the original control byte with the TR bit = 0. This also terminates the Request To Send (RTS) signal.

The Serial Data Out (SDO) line can be held low by setting the Break bit (bit 6) in the Control Register to a high. SDO is held low until the Break bit is reset.

* The Holding Register is Loaded On the Trailing Edge of TPS.

** The Transmitter Shift Register is Loaded On the First High-to-Low Transition of the Clock Which Occurs at Least 1/2 Clock Period + t_{TC} After the Trailing Edge of TPS, and Transmission of a Start Bit Occurs 1/2 Clock Period + t_{CD} Later.

t Write is the Overlap of TPS, CS1, and CS3 = 1 and CS3, RD/WR = 0.

FIGURE 5. TRANSMITTER TIMING DIAGRAM — MODE 1

				LI	AITS		1
		VDD	HCMF	P1854A	HCMP	1854AC	1
CHARACTERISTIC		(V)	Typ. ¹	Max. ²	Typ.1	Max. ²	UNITS
Transmitter Timing - N	AODE 1			-			
Minimum Clock Period	tCC	5 10	250 125	310 155	250 	310 -	ns
Minimum Pulse Width: Clock Low Level	tCL	5 10	100 75	125 100	100	125	ns
Clock High Level	tCH	5 10	100 75	125 100	100	125	ns
ТРВ	tTT	5 10	100 50	150 75	100	150	ns
Minimum Setup Time: TPB to Clock	^t TC	5 10	175 90	225 150	175	225	ns
Propagation Delay Time: Clock to Data Start Bit	tCD	5 10	300 150	450 225	300	450	ns
TPB to THRE	^t TTH	5 10	200 100	300 150	200	300	ns
Clock to THRE	^t CTH	5 10	200 100	300 150	200	300 -	ns
CPU Interface - WRIT	E Timing - MOD	E 1					
Minimum Pulse Width: TPB	tTT	5 10	100 50	150 75	100	150	ns
Minimum Setup Time: RSEL to Write	tRSW	5 10	50 25	75 40	50	75 -	ns
Data to Write	tDW	5 10	-100 -50	- 75 - 35	-100	- 75	ns
Minimum Hold Time: RSEL after Write	tWRS	5 10	50 25	75 40	50 -	75 -	ns
Data after Write	tWD	5 10	75 40	125 60	75 -	125 -	ns

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C, $V_{DD} \pm 5^{\circ}$, t_r , $t_f = 20$ ns, $V_{IH} = 0.7 V_{DD}$, $V_{IL} = 0.3 V_{DD}$, $C_L = 100$ pF. See Figs. 5 and 6.

Note 1: Typical values are for $T_A = 25^{\circ}C$ and nominal voltages.

Note 2: Maximum limits of minimum characteristics are the values above which all devices function.

* WRITE IS THE OVERLAP OF TPS, CS1, CS3 = 1 AND CS2, RD/WR = 0.

C. Receiver Operation

The receive operation begins when a start bit is detected at the Serial Data In (SDI) input. After detection of the first high-to-low transition on the SDI line, a valid START bit is verified by checking for a low level input $7\frac{1}{2}$ receiver clock periods later. After verification of a valid Start bit, the following data bits, parity bit (if programmed) and Stop bit(s) are shifted into the Receiver Shift Register by being sampled every sixteen clocks (at clock pulse 7½). On count $7\frac{1}{2}$ of the first Stop bit the data in the Receiver Register is loaded into the Receiver Holding Register. If the word length is less than 8 bits, zeros (low level outputs) are loaded into the unused left-most (significant) bits. If Data Available (DA) has not been reset by the time the Receiver Holding Register is loaded, the Overrun Error (OE) status bit is set. One half clock period later the Parity Error (PE) and Framing Error (FE) status bits become valid for the character in the Receiver Holding Register. Also, at this time, the Data Available (DA) and Interrupt (INT) outputs go low, signalling to the microprocessor that a received character is available to be read. The microprocessor responds by executing an Input instruction. The UART's 3-state bus drivers are enabled when the UART is selected (CS1• $\overline{CS2}$ •CS3 = 1) and RD/WR is high. Data is read when RSEL = low and status is read when RSEL = high. When reading data, TPB latches the data in the microprocessor and resets the Data Available (DA) signal in the UART. This sequence is repeated for each serial character which is received from the peripheral.

* IF A START BIT OCCURS AT A TIME LESS THAN τ_{DC} BEFORE A HIGH-TO-LOW TRANSITION OF THE CLOCK, THE START BIT MAY NOT BE RECOGNIZED UNTIL THE NEXT HIGH-TO-LOW TRANSITION OF THE CLOCK. THE START BIT MAY BE COMPLETELY ASYNCHRONOUS WITH THE CLOCK.

* READ IS THE OVERLAP OF CS1, CS3, RD/WR = 1 AND CS2 = 0.

IF A PENDING DA HAS NOT BEEN CLEARED BY A READ OF THE RECEIVER HOLDING REGISTER BY THE TIME A NEW WORD IS LOADED INTO THE RECEIVER HOLDING REGISTER, THE OE SIGNAL WILL COME TRUE. [†] DE AND PE SHARE TERMINAL 15 AND ARE ALSO AVAILABLE AS TWO SEPARATE BITS IN THE STATUS REGISTER

FIGURE 7. MODE 1 RECEIVER TIMING DIAGRAM

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C, $V_{DD} \pm 5^{\circ}$, t_r , $t_f = 20$ ns, $V_{IH} = 0.7$ V_{DD} , $V_{IL} = 0.3$ V_{DD} , $C_L = 100$ pF.

See Figs. 7 and 8.

					LIN	IITS			
		Vnn		HCMP18544	1	1	HCMP1854A	с	1
CHARACTERISTIC		(V)	Min.	Typ.1	Max. ²	Min.	Typ. ¹	Max. ²	UNITS
Receiver Timing – MODE 1									
Minimum Clock Period	tCC	5 10	-	250 125	310 155	-	250	310 	ns
Minimum Pulse Width: Clock Low Level	tCL	5 10	_	100 75	125 100	-	100	125 -	ns
Clock High Level	tCH	5 10		100 75	125 100		100	125 -	ns
ТРВ	tŢŢ	5 10		100 50	150 75	-	100	150	ns
Minimum Setup Time: Data Start Bit to Clock	tDC	5 10		100 50	150 75		100	150	ns
Propagation Delay Time: TPB to DATA AVAILABLE	^t TDA	5 10		220 110	325 175	-	220 -	325 -	ns
Clock to DATA AVAILABLE	^t CDA	5 10		220 110	325 175	-	220	325 -	ns
Clock to Overrun Error	tCOE	5 10		210 105	300 150	-	210	300	ns
Clock to Parity Error	tCPE	5 10		240 120	375 175	-	240	375	ns
Clock to Framing Error	^t CFE	5 10	-	200 100	300 150		200	300 -	ns
CPU Interface – READ Timing	g – MODE 1					•			
Minimum Pulse Width: TPB	tTT	5 10	_	100 50	150 75	-	100	150 -	ns
Minimum Setup Time: RSEL to TPB	^t RST	5 10	-	50 25	75 40	_	50 	75 -	ns
Minimum Hold Time: RSEL after TPB	^t TRS	5 10	_	50 25	75 40	-	50 -	75 	ns
Read to Data Access Time	^t RDDA	5 10	-	200 100	300 150		200	300	ns
Read to Data Valid Time	^t RDV	5 10		200 100	300 150	-	200 -	300 -	ns
RSEL to Data Valid Time	^t RSDV	5 10		150 75	225 125	-	150 -	225	ns
Hold Time: Data after Read	^t RDM	5 10	50 25	150 75		50 	150		ns

Note 1: Typical values are for $T_{\mbox{A}}~=~25^{\circ}\mbox{C}$ and nominal voltages.

Note 2: Maximum limits of minimum characteristics are the values above which all devices function.

* Read is the Overlap of CS1, CS3, RD/ \overline{WR} = 1 and $\overline{CS2}$ = 0.

FIGURE 8. MODE 1 CPU INTERFACE (READ) TIMING DIAGRAM

Control Register Bit Assignment

	Bit	7	6	5	4	3	2	1	0		
	Signal	TR	BREAK	IE	WLS2	WLS1	SBS	EPE	PI		
		L		L		L			J		
Bit	Signal					Function					
0	Parity Inhibit (PI)		When set high parity generation and verification are inhibited and the PE Status bit is held low. If parity is inhibited the stop bit(s) will immediately follow the last data bit on transmission, and EPE is ignored.								
1	Even Parity Enable (EPE)		When set high, even parity is generated by the transmitter and checked by the receiver. When low, odd parity is selected.								
2	Stop Bit Select (SBS)		See ta	ble below.							
3	Word Length Select 1 (WLS1)		See ta	ble below.							
4	Word Length Select 2 (WLS2)		See ta	ble below.							
			E	lit 4	Bit 3	Bit 2					
			w	/LS2	WLS1	SB S		Function			
				0	0	0	5 data bit	s, 1 stop bit			
				0	0	1	5 data bit	s, 1.5 stop bi	ts		
				0	1	0	6 data bit	s, 1 stop bit			
				0	1	1	6 data bit	s, 2 stop bits			
				1	0	0	7 data bit	s, 1 stop bit			
				1	0	1	/ data bit	s, 2 stop bits			
				1	1	0	8 data bit	s, I stop bit			
				1	1	1		s, z stop bits			
5	Interrupt Enable (IE)		When rupt C	set high THR onditions, Ta	Ĕ, DA, THRE•1 Ible 5	TSRE, CTS, ar	nd PSI interru	ıpts are enabl	ed (see Inter-		
6	Transmit Break (Break)		Holds registe the fol transm SDO c consis	SDO in a spa r has been so lowing occur nitted word w an be set h ting of zeros	acing (low) co et high, SDO v s — Clear goe rill not be valio igh without i	ondition when will stay low r es low; CTS g d since there o intermediate	n set. Once t until the brea oes high; or can be no sta transitions	he break bit i ak bit is reset a word is trar rt bit if SDO is by transmi [*]	n the control low or one of ismitted. The already low. tting a word		
7	Transmit Request (TR)		When the ini inhibit	set high, RTS tial THRE int s changing o	is set low and errupt. (Wher of other contr	d data transfe n loading the ol flip-flops.)	er through th Control Reg	e transmitter ister from the	is initiated by e bus, this bit		

D. Peripheral Interface

In addition to serial data in and out, four signals are provided for communication with a peripheral. The Request To Send (RTS) output signal alerts the peripheral to get ready to receive data. The Clear To Send (CTS) input signal is the response, signalling that the peripheral is ready. The External Status (ES) input latches a peripheral status level, and the Peripheral Status Interrupt (PSI) input senses a status change edge (high-to-low) and also generates an interrupt. For example, the modern Data Carrier Detect line could be connected to the PSI input on the UART in order to signal the microprocessor that transmission failed because of loss of the carrier on the communications line. The PSI and ES bits are stored in the Status Register (see below).

Status Register Bit Assignment

Bit	Signal	Function
0	Data Available (DA)	When set high, this bit indicates that an entire character has been received and transferred to the Receiver Holding Register. This signal is also available at Term. 19 but with its polarity reversed.
1	Overrun Error (OE)	When set high, this bit indicates that the Data Available bit was not reset before the next character was transferred to the Receiver Holding Register (i.e. the original data was lost). This signal OR'ed with PE is output at Term. 15.
2	Parity Error (PE)	When set high, this bit indicates that the received parity bit does not compare to that programmed by the Even Parity Enable (EPE) control. This bit is updated each time a character is transferred to the Receiver Holding Register. This signal OR'ed with OE is output at Term. 15.
3	Framing Error (FE)	When set high, this bit indicates that the received character has no valid stop bit, i.e., the bit following the parity bit (if programmed) is not a high-level voltage. This bit is updated each time a character is transferred to the Receiver Holding Register. This signal is also available at Term. 14.
4	External Status (ES)	This bit is set high a low-level input at Term. 38 ($\overline{\text{ES}}$).
5	Peripheral Status Interrupt (PSI)	This bit is set high by a high-to-low voltage transition at Term. 37 (PSI). The Interrupt output (Term. 13) is also asserted ($\overline{INT}~=~$ low) when this bit is set.
6	Transmitter Shift Register Empty (TSRE)	When set high, this bit indicates that the Transmitter Shift Register has completed serial transmission of a full character including stop bit(s). It remains set until the start of transmission of the next character.
7	Transmitter Holding Register Empty (THRE)	When set high, this bit indicates that the Transmitter Holding Register has transferred its contents to the Transmitter Shift Register and may be reloaded with a new character. Setting this bit also resets the THRE output (Term. 22) low and causes an Interrupt ($\overline{INT} = Iow$), if TR is high.

HCMP 1854A/1854AC

INTERRUPT CONDITIONS

SET* (INT=LOW)	RESET (INT=HIGH)					
CAUSE	CONDITION	TIME				
DA (Receipt of data)	Read of data	TPB leading edge				
THRE▲ (Ability to reload)	Read of status or write of character	TPB leading edge				
THRE•TSRE (Transmitter done)	Read of status or write of character	TPB leading edge				
PSI (Negative edge)	Read of status	TPB trailing edge				
CTS (Positive edge when THRE•TSRE	Read of status	TPB leading edge				

* Interrupts will occur only after the IE bit in the Control Register has been set

▲ THRE will cause an interrupt only after the TR bit in the Control Register has been set.

TABLE 5. INTERRUPT CONDITIONS

SIGNAL DESCRIPTION (1802 Combatible --- Mode 1)

Terminal No.	Signal	Function
1	V _{DD}	Positive supply
2	Mode Select (Mode)	A high-level voltage at this input selects the HCMP 1802 Mode of operation.
3	V _{SS}	Ground
4	Chip Select 2 (CS2)	A low-level voltage at this input together with CS1 and CS3 selects the HCMP 1854A UART.
5-12	Receiver Bus (R BUS0 — R BUS7)	Receiver parallel data outputs (may be externally connected to corresponding trans- mitter bus terminals).
13	Interrupt (INT)	A low-level voltage at this output indicates the presence of one or more of the inter- rupt conditions listed in Table 5.

HCMP 1854A/1854AC

14	Framing Error (FE)	A high-level voltage at this output indicates that the received character has no valid stop bit, i.e., the bit following the parity bit (if programmed) is not a high-level vol- tage. This output is updated each time a character is transferred to the Receiver Holding Register.
15	Parity Error or Overrun Error (PE/OE)	A high-level voltage at this output indicates that either the PE or OE bit in the Status Register has been set (see Status Register Bit Assignment).
16	Register Select (RSEL)	This input is used to choose either the Control/Status Registers (high input) or the transmitter/receiver data registers (low input) according to the truth table 1.
17	Receiver Clock (R Clock)	Clock input with a frequency 16 times the desired receiver shift rate.
18	ТРВ	A positive input pulse used as a data load or reset strobe.
19	Data Available (DA)	A low-level voltage at this output indicates that an entire character has been received and transferred to the Receiver Holding Register.
20	Serial Data In (SDI)	Serial data received on this input line enters the Receiver Shift Register at a point determined by the character length. A high-level input voltage must be present when data is not being received.
21	Clear (Clear)	A low-level voltage at this input resets the interrupt flip-flop, Receiver Holding Regis- ter, Control Register, and Status Register, and sets Serial Data Out (SDO) high.
22	Transmitter Holding Register Empty (THRE)	A low-level voltage at this output indicates that the Transmitter Holding Register has transferred its contents to the Transmitter Shift Register and may be reloaded with a new character.
23	Chip Select 1 (CS1)	A high-level voltage at this input together with $\overline{\text{CS2}}$ and CS3 selects the UART.
24	Request To Send (RTS)	This output signal tells the peripheral to get ready to receive data. Clear To Send (CTS) is the response from the peripheral. RTS is set to a low-level voltage when data is latched in the Transmitter Holding Register or TR is set high, and is reset high when both the Transmitter Holding Register and Transmitter Shift Register are empty and TR is low.
25	Serial Data Output (SDO)	The contents of the Transmitter Shift Register (start bit, data bits, parity bit, and stop bit(s)) are serially shifted out on this output. When no character is being transmitted, a high level is maintained. Start of transmission is defined as the transition of the start bit from a high-level to a low-level output voltage.
26-33	Transmitter Bus (T BUS0 — T BUS7)	Transmitter parallel data inputs. These may be externally connected to correspond- ing Receiver bus terminals.
34	Read/Write (RD/WR)	A low-level voltage at this input gates data from the transmitter bus to the Transmit- ter Holding Register or the Control Register as chosen by register select. A high-level voltage gates data from the Receiver Holding Register or the Status Register, as cho- sen by register select, to the receiver bus.
35	Chip Select 3 (CS3)	A high-level voltage at this input together with CS1 and $\overline{\text{CS2}}$ selects the UART.
36	No Connection	
37	Peripheral Status Interrupt (PSI)	A high-to-low transition on this input line sets a bit in the Status Register and causes an $\overline{Interrupt}~(\overline{INT}~=~low).$
38	External Status (ES)	A low-level voltage at this input sets a bit in the Status Register.
39	Clear To Send (CTS)	When this input from peripheral is high, transfer of a character to the Transmitter Shift Register and shifting of serial data out is inhibited.
40	Transmitter Clock (T Clock)	Clock input with a frequency 16 times the desired transmitter shift rate.

8 BIT PROGRAMMABLE MULTIPLY/DIVIDE UNIT

HCMP 1855 HCMP 1855C

DESCRIPTION

The HCMP 1855 is an 8 bit programmable multiply/divide unit which can be used to greatly increase the capabilities of 8 bit microprocessors. The HCMP 1855 interfaces directly to the HCMP 1802 microprocessor via the N-lines and can easily be configured to fit in either the memory or I/O space of generalized 8 bit microprocessors. The HCMP 1855 performs multiply and divide operations on unsigned, binary operators. It saves considerable memory space and execution time over the same functions as performed by coded multiply and divide software subroutines.

Add and shift right operations and subtract and shift left operations are used for multiply and divide functions respectively. The HCMP 1855 is cascadable up to 4 units for 32×32 bit multiply or $64 \div 32$ bit divide functions.

The HCMP 1855 has recommended operating voltage range of 4-10.5 volts while the HCMP 1855C has a recommended operating voltage range of 4-6.5 volts. The HCMP 1855 is available in 28 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static silicon gate CMOS circuitry
- Interfaces directly to HCMP 1802 microprocessor without additional components.
- Easy interface to general 8 bit microprocessors.
- Low power dissipation
- Single non-critical voltage supply

- Cascadable up to 4 units for 32 bit by 32 bit multiply or 64 ÷ 32 bit divide
- 8 bit by 8 bit multiply or $16 \div 8$ bit divide in 5 μ s at 5V or 2.5 μ s at 10V typical
- Significantly increased throughput of μp used for arithmetic calculations.

SYSTEM INTERCONNECT Typical 1800 System with HCMP 1855

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values:

DC Supply-Voltage Range, (V _{CC} , V _{DD})
(All Voltage Values referenced to V _{SS} Terminal)
V ^{CC} ≤ Λ ^{DD} :
HCMP 1855
HCMP 1855C
Input Voltage Range, all inputs
DC Input Current, any one input ±10mA
Operating-Temperature Range (T _A)
Plastic Package
Ceramic Package
Storage Temperature Range (Tstg)65 to +150°C

OPERATING CONDITIONS at T_A = Full Package Range

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	•			HCN	1P1855		HCMP	1855C	- ι	UNITS	
				Min.			Min.	Max.			
DC Operating Voltage Range				4	10.5	5	4	6.5			
Input Voltage Range				VSS	VDD	>	V _{SS}	VDD			
STATIC ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$											
	со	NDITION	s	1		LI	мітѕ				
					HCMP185	5	ŀ	CMP1855	c	1	
CHARACTERISTIC	(V)	(V)	VDD (V)	Min.	Typ.1	Max.	Min.	Тур.1	Max.	UNITS	
Quiescent Device	-	0,5	5	-	0.01	50	-	0.02	200		
Current, IDD		0, 10	10	-	1	200	-	-	-		
Output Low (Sink)	0.4	0,5	5	1.6	3.2	-	1.6	3.2	-		
Current, IOL	0.5	0, 10	10	2.6	5.2	-		-	-	mA	
Output High (Source)	4.6	0, 5	5	1.15	2.3	-	1.15	2.3	-		
Current, IOH	9.5	0, 10	10	2.6	5.2	-	-	-			
Output Voltage		0,5	5	-	0	0.1	-	0	0.1		
Low-Level, VOL ²		0, 10	10	-	0	0.1	-		-		
Output Voltage	-	0, 5	5	4.9	5	-	4.9	5	-		
High-Level, VOH ²		0,10	10	9.9	10	-	-	-		1 .	
Input Low	0.5, 4.5		5	-	-	1.5	-	-	1.5] `	
Voltage, VIL	0.5, 9.5	-	10	-	-	3	-	-	-		
Input High	0.5, 4.5	-	5	-	3.5	-	3.5	-]	
Voltage, VIH	0.5, 9.5	-	10	-	7	-	-		-		
Input Current,	-	0, 5	5	-	±10-4	±1	-	±10-4	±1		
¹ IN		0, 10	10		±10-4	±1	-	-	-		
3-State Output Leakage	0, 5	0,5	5	-		±15	-	-	±15	<u>۴</u>	
Current, IOUT	0, 10	0,10	10	-	-	±15	-	-			
Operating Current,	-	0, 5	5		2	5	-	2	5	mΔ	
³ םס ^ו	-	0, 10	10	-	4	10	-	-	-		
Input Capacitance,	_	_	_		5	75		5	75		
CIN						,			/.5	nE	
Output Capacitance, COUT	-	-	-	-	10	15	-	-	15		

NOTES: 1 Typical values are for ${\sf T}_A$ = 25°C and nominal voltage.

 $2 I_{OL} = I_{OH} = 1 \mu A$

3 Operating current is measured at 2 MHz with open outputs.

DYNAMIC ELECTRICAL CHARACERISTICS at T_A = -40 to +85°C, V_DD \pm 5% t_f, t_f = 20ns, V_{IH} = 0.7 V_{DD}, V_{IL} = 0.3 V_{DD}, C_L = 100 pF (See Timing Diagram)

			LIMITS							
CHARACTERISTICS 1	SYMBOL		HCMP1855 HCMP1855C							
		VDD (V)	Min.	Typ. ²	Max.	Min.	тур. ²	Max.	UNIT	
WRITE CYCLE										
		5	-	50	75	-	50	75	Γ	
Minimum Clear Pulse Width	^t CLR	10	-	25	40	-	-		1	
		5	-	150	225	-	150	225		
Minimum Write Pulse Width	tww	10	- 1	75	115	-	-	-		
		5	-	-75	0	-	-75	0	1	
Minimum Data-In Setup	^t DSU	10	-	-40	0		-	-	ns	
		5	-	50	75	-	50	75	1	
Minimum Data-In Hold	tDH	10	-	25	40	-			1	
		5		50	75	-	50	75	1	
Minimum Address to Write Setup	^t ASU	10	-	25	40	-	-	-	1	
		5	-	50	75	-	50	75	1	
Minimum Address after Write Hold	^t AH	10	-	25	40	-	-	-	1	
READ CYCLE										
OF the Date Out Antime	•	5	-	200	300	-	200	300		
CE to Data Out Active	'CDO	10	-	100	150	-	-			
CE to Data Assar		5	-	300	450	-	300	450]	
CE to Data Access	^L CA	10		150	225		-	-]	
Address to Data Arress		5		300	450	-	300	450		
Address to Data Access	^t AA	10	-	150	225		-	-]	
Date Out Hold After CE		5	50	150	225	50	150	225		
Data Out Hold After CE	¹ DOH	10	25	75	115	-	-	-		
Date Out Hold After Read		5	50	150	225	50	150	225]	
Data Out Hold Arter Head	'DOH	10	25	75	115	-	-	-	1 "	
Road to Data Out Active		5	-	200	300	-	200	300	1	
Read to Data Out Active	RDO	10	-	100	150	-	-	-		
Read to Data Access	to A	5	-	200	300	-	200	300		
	'RA	10	-	100	150	-	-	-		
Strobe to Data Access	tea	5	50	200	300	50	200	300		
	^I SA	10	25	100	150	-	-	-	1	
Minimum Strobe Width	tew	5	-	150	225		150	225	1	
	-544	10	-	75	115			-		
OPERATION TIMING			1	1			·		1	
Maximum Clock Frequency ³	^t CF	5	3	4	-	3	4	-		
		10	6	8	-	-	-		і мн	
Maximum Shift Frequency	ter	5	1.5	2	-	1.5	2	-	-	
(1 Device)"	51	10	3	4	-	-	-	-		
Minimum Clock Width	^t CLK0	5		100	150		100	150	ns	
	^t CLK1	10	-	50	75	-	-	-		
Minimum Clock Period	• · · ·	5	-	250	333	-	250	333		
Withinum Clock Feriod	'CLK	10	-	125	167	-	-	-	1	
Clock to Shift Prop. Dolay	+	5	-	200	300	-	200	300]	
Glock to Shirt Prop. Delay	^V CSH	10	-	100	150	-		-]	
Minimum C L to Shift Satur	tau	5	-	50	67	-	50	67		
winning C.r. to annt actup	۲SU	10	-	25	33	-		-	1	
C.O. from Shift Prog. Delay	^t PLH	5	-	450	600	-	450	600	1	
o.o. Holl Shift Hog. Delay	^t PHL	10	-	225	300	-	-	-		
Minimum C L from Shift Hold	t	5	-	50	75	-	50	75]	
	чн	10	-	25	40	-	-	-	- ne	
Minimum Begister Input Setup	teu	5	-	~20	10	-	-20	10	'	
	·SU	10	-	-10	10	-	-	-	1	
Register after Shift Prop. Delay	^t PLH	5		400	600	-	400	600	1	
riegister after onite rieg. Delay	^t PHL	10	-	200	300	-	-	-	1	
Minimum Begister after Shift Hold	t.,	5	-	50	100	-	50	100		
	чн	10	-	25	50	-		-	1	
C.O. from C.I. Prop. Delay	^t PLH	5	-	100	150	-	100	150	1	
Section of those being	^t PHL	10	-	50	75	-	-	_		
		1	1	1 00	1 100	1	00	120	1	
Register from C.L. Prop. Delaw	^t PLH	5	-	80	120	_	80	120		

NOTES: $\mathbf{1}_{Maximum}$ limits of minimum characteristics are the values above which all devices function.

 2 Typical values are for T_A = 25°C and nominal voltages.

Sclock frequency and pulse width are given for systems using the internal clock option of the HCMP 1855. Clock frequency equals shift frequency for systems not using the internal clock option.
Shift period for cascading of devices is increased by an amount equal to the C.O. to C.I. Prop. Delay for each device added.

FUNCTIONAL DIAGRAM

176

TIMING DIAGRAMS

WRITE TIMING AND OPERATION TIMING

READ TIMING

CONTROL TRUTH TABLE

		INP				
CE	RA2 (N2)	RA1 (N1)	RA0 (N0)	RD/WE (MRD)	STB (TPB)	RESPONSE
0	x	x	х	x	x	NO ACTION (BUS FLOATS)
х	0	X	X	X	X	NO ACTION (BUS FLOATS)
1	1	0	0	1	X	X TO BUS) INCREMENT SEQUENCE
1	1	0	1	1	X	Z TO BUS COUNTER WHEN
1	1	1	0	1	X	Y TO BUS STB AND RD = 1
1	1 1	1 1	1	1	X	STATUS TO BUS
1	1	0	0	0	1	LOAD X FROM BUS) INCREMENT
1	1 1	0	1	0	1	LOAD Z FROM BUS SEQUENCE
1	1	1	0	Ó	1	LOAD Y FROM BUS COUNTER
1	1	1	1	Ō	1	LOAD CONTROL REGISTER
1	i	x	x	Ō	Ó	NO ACTION (BUS FLOATS)

*() = 1800 system signals. 1 = High Level, 0 = Low Level, X = High Level or Low Level

REGISTER BIT ASSIGNMENT CONTROL/REGISTER BIT ASSIGNMENT

BITS										
7	6	5	4	3	2	1	0			
SHIFT RATE SELECT	RESET CONT. SEQUENCE COUNTER	NUN OF I	IBER MDU	RESET CONT. Y REG.	RESET CONT. Z REG.	OPERATION				
0 = Clock frequency 1 = Select option *	1 = Reset sequence counters	00 = Four 1855's 01 = Three 1855's 10 = Two 1855's 11 = One 1855		1 = Reset Y register	1 ≈ Reset Z register	00 = No Operation (except reset controls) 01 = Multiply 10 = Divide 11 = Invalid State				

*Select shift rate option: One 1855 = shift rate = clock frequency ÷ 2 Two 1855's = shift rate = clock frequency ÷ 4 Three or four 1855's = shift rate = clock frequency ÷ 8

STATUS REGISTER BIT ASSIGNMENT

віт	7	6	5	4	3	2	1	0
Output	0	0	0	0	0	0	0	O.F.

O.F. = 1 if overflow (only valid after a divide has been done).

FUNCTIONAL DESCRIPTION

The HCMP 1855 performs an 8N-bit by 8N-bit multiply with a 16N-bit results and 16N-bit by 8N-bit divide yielding an 8N-bit result plus an 8 bit remainder. The N represents the number of cascaded HCMP 1855s from 1 through 4. All operations require 8N+1 shift pulses.

The HCMP 1855 contains X, Y and Z registers for loading the operands and saving the results, the control register for initializing the multiply or divide operation, and a status register for storing an overflow flag. There are two register address lines (RA0-RA1) provided to select the appropriate register for loading or reading. The RD/WE and STB lines are used in conjunction with the RA lines to determine the exact MDU response (see Control Truth Table).

When multiple MDUs are cascaded, the loading of each register is done sequentially. The first selection of any register loads the most significant HCMP 1855, the second loads the next significant and so on. Registers are also read out sequentially. This is accomplished by internal counters on each HCMP 1855 which are decremented by STB during each register selection. When the counter matches the chip number (CN1, CN0 lines), the device is selected. These counters must be cleared with a clear pulse on pin 2 or with bit 6 in the control word (See Control Register Bit Assignment Table) in order to start each sequence of accesses with the most significant device.

The HCMP 1855 has a built-in clock prescaler which can be selected via bit 7 on the control register. The prescaler may be necessary in cascaded systems operating at high frequencies or in systems where a suitable exact frequency is not available. This need is to provide for propagation delay of the carry output signal. Without the prescaler select, the shift frequency is equal to the clock input frequency. With the prescaler selected, the rate depends on the number of MDUs as defined by bits 4 and 5 of the control word. For one MDU, the clock frequency is divided by two; the two MDUs the clock frequency is divided by four and for three or four MDUs the clock frequency is divided by eight.

OPERATION

A. Initialization and Controls:

The HCMP 1855 must be cleared by a low signal input on pin 2 during power on. This prevents bus contention problems at YL, YR and ZL, and ZR terminals. It also resets the sequence counters and shift pulse generator.

Prior to loading any other registers, the control register must be loaded to specify the number of HCMP 1855 being cascaded. Once the number of devices has been specified and sequence counters cleared with a clear pulse or bit 6 of the control word, the X, Y and Z registers can be loaded as defined in the control truth table. Registers can be loaded in any sequence. Successive loads to a given register will always proceed sequentially from the most significant byte to the least significant byte as described previously. Resetting the sequence counters selects the most significant MDU. In a four MDU system, loading all MDUs results in the sequence counter pointing to the first MDU again while in all other configurations it must be reset prior to each series or register reads or writes.

B. Multiply Operation:

 $(X) \times (Z) + (Y) \Rightarrow (Y) (Z);$ (X) unchanged

The two numbers to be multiplied are loaded in the X and Z registers. The result will be in the Y and Z register with Y being the more significant half and Z the less significant half. The X register will be unchanged after the operation is completed.

The original contents of Y register are added to the product of X and Z. Bit 3 of the control word will reset register Y to zero if desired.

C. Divide Operation:

 $\frac{(Y)(Z)}{(X)} \Rightarrow (Z) = \text{quotient, } (Y) = \text{remainder; } \overline{C.O.}/\overline{O.F}. \text{ in status byte.}$

The divisor is loaded into the X register. The dividend is loaded in the Y and Z registers with the more significant half in the Y register and less significant half in the Z register. The X register will be unaltered by the operation. The quotient will be in the Z register while the remainder will be in the Y register. An overflow will be indicated by the $\overline{\text{C.O./O.F.}}$ of the most significant MDU and can also be determined by reading the status byte.

The overflow indicator will be set at the start of the divide operation if the resultant will exceed the size of the Z register (8N-bits).

The Z register can be reset using bit 2 of the control word and another divide can be performed in order to further divide the remainder.

Programming Examples:

Connection to an HCMP 1802 Microprocessor in direct I/O mode (N lines connected to R inputs).

FØE1 ₁₆	; X 2	D3C ₁₆ Multiply			Divide B4A596	⁸⁵ 16
LDI#ØØ)		LDI#ØØ)	4F3Ø16	
PLO R2	Ł	R ₂ = 1ØØØ	PLO R2	}	R2 = 2ØØØ	
LDI #1Ø	[LDI # 2Ø	J		
PHIR2	J		PHI R2			
OUT 7, #60		Load control word with 2 MDUs and reset sequence counters	OUT 7, #60		load control word	
OUT 4 HER	ì	Lood MSP of X rog	OUT 6, #B4	1	⇒V sesister (V) = B	VAE
001 4, #Fø	ļ		OUT 6, #A5	ſ	- r register (r) - B	TA5
OUT 4, #E1	J	Load LSB of X reg. (X) = FØE1	OUT 5, #96	1	⇒ 7	0E
OUT 5, #2D]	Load MSB of Z reg.	OUT 5, #85	ſ	\rightarrow Z register (Z) – 90	00
OUT 5, #3C	ł	Load LSB of Z reg.	OUT 4, #4F	l	→ X	530
)	(2) - 203C	OUT 4, #30	J	\rightarrow X register (X) = 4	F3Ø
OUT 7, #69		Load control word with 2 MDUs, reset	OUT 7, #6A		Load control word f	or divide function
		operation	SEX R2			
SEX R2			INP 5; IRX			
INP 6; IRX)	MSB of results from Y reg. to	INP 5; IRX		to mem. 2000, 2003	er
INP 6; IRX	}	Location 1000 and 1001 LSB of result from Z reg. to	INP 6; IR X			
INP 5; IRX	J	location 1002 and 1003	INP 6; IR X		Remainder from y ro to mem. 2002, 2003	egister

APPLICATION

(A) Cascading 3 MDUs in HCMP 1802A system with MDU being accessed as an I/O port.

(B) Interfacing the HCMP 1855 to 8085 microprocessor as an I/O device.

SIGNAL DESCRIPTION

CE - Chip Enable (Input):

A high on this pin enables the HCMP 1855 MDU to respond to the select lines. All cascaded MDUs must be enabled together. CE also controls the three state $\overline{CO.}/\overline{O.F}$. output of the most significant MDU.

Clear (Input):

The HCMP 1855 MDU(s) must be cleared upon power on with a low on this pin. The clear signal resets the sequence counters, the shift pulse generator, and bits 0 and 1 of the control register.

CTL-Control (Input):

This is an input pin. All CTL pins must be wired together and to the Y_L of the most significant HCMP 1855 MDU and the Z_R of the least significant HCMP 1855 MDU. This signal is used to indicate whether the registers are to be operated on or only shifted.
C.O./O.F. — Carry Out/Over Flow (Output):

The three state HCMP 1855 Carry Out signal is connected to CI (Carry-In) of the next more significant HCMP 1855 MDU, except on the most significant MDU. On that MDU it is an overflow indicator and is enabled when a chip enable is true. A low on this pin indicates that an overflow has occurred. The overflow signal is latched each time the control register is loaded, but is only meaningful after a divide command.

YL, YR - Y-Left, Y-Right:

These are three state bi-directional pins for data transfer between the Y registers of cascaded HCMP 1855 MDUs. The Y_R pin is an output and Y_L is an input during a multiply and the reverse is true at all other times. The Y_L pin must be connected to the Y_R pin of the next more significant MDU. An exception is the Y_L pin of the most significant MDU must be connected to the Z_R pin of the least significant MDU and the CTL pins of all MDUs. Also the Y_R pin of the least significant MDU is tied to the Z_L pin of the most significant MDU.

ZL, ZR --- Z-Left, Z-Right:

These are three state bi-directional pins for data transfers between the Z registers of cascaded MDUs. The Z_R pin is an output and Z_L is an input during a multiply and the reverse is true at all other times. The Z_L pin must be tied to the Y_R pin of the next most significant MDU. An exception is the Z_L pin of the most significant MDU must be connected to the Y_R pin of the least significant MDU. Also, the Z_R pin of the least significant MDU is tied to the Y_L of the most significant MDU.

Shift — Shift Clock:

This is a three state bi-directional pin. It is an output on the most significant MDU and an input on all other MDUs. It provides the MDU system's timing pulses. All Shift pins must be connected together for cascaded operation. A maximum of the 8N+1 shifts are required for an operation where N equals the number of MDU devices cascaded.

Clk — Clock (Input):

This pin should be grounded on all but the most significant MDU. There is an optional reduction of clock frequency available on this pin, if so desired, controlled by bit 7 of the control byte.

Stb — Strobe (Input):

When RD/WE, low data, is latched from bus lines on the falling edge of this signal, it may be asynchronous to the clock. Strobe also increments the selected register's sequence counter during reads and writes. TPB would be used in HCMP 1802A systems.

RD/WE — Read/Write Enable (Input):

This signal defines whether the selected register is to be read from or written to. In the HCMP 1802A systems use MRD if MDUs are addressed as I/O devices; MWR is used if MDUs are addressed as memory devices.

RA_{\$\phi\$}, RA1, RA2 — Register Address (Input):

These input signals define which register is to be read from or written to. It can be seen in the Control Truth Table that RA2 can be used as a chip enable. It is identical to the CE pin, except only CE controls the tristate $\overline{C.O./O.F.}$ on the most significant MDU. In the HCMP 1802A systems use N lines if MDUs are used as I/O devices; use address lines or function of address lines if MDUs are used as memory devices.

V_{SS} — Ground:

Power supply line.

BUS0 — BUS7 — Bus Lines:

Three state bidirectional bus for direct interface with HCMP 1802A series and other 8-bit microprocessors.

Z_R — Z-Right: See signal Z

Y_R --- Y-Right: See signal Y

CI-Carry-In (Input):

This is an input for the carry from the next less significant MDU. On the least significant MDU, it must be high (V_{DD}) on all others and connected to the CO pin of the next less significant MDU.

 $CN\phi$, CN1 — Chip Number (Input):

These two input pins are wired high or low to indicate the MDU position in the cascaded chain. Both are high for the most significant MDU regardless of how many HCMP 1855 MDUs are used. Then CN1 = high and CN0 = low for the next MDU and so forth.

V_{DD} — V+:

Power supply line.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

MICROPROCESSOR PRODUCTS 4-Bit Bus Buffers/Separators

HCMP 1856/1857 HCMP 1856C/1857C

DESCRIPTION

The HCMP 1856 and 1857 are 4-bit bus buffer/separators to allow data to be split from a single bi-directional bus into separate input and output busses. The HCMP 1857 is intended for peripheral or I/O bus control while the HCMP 1856 is intended for memory bus control. The difference between the two devices is in the polarity of the input buffer for the Memory Read (MRD) signal. This signal is inverted in the HCMP 1857, and enables the MRD signal to set the input mode in the HCMP 1856 or to set the output mode in the HCMP 1857. When MRD = VDD the output mode is set in the HCMP 1856 and the input mode is set in the HCMP 1857.

The HCMP 1856 and 1857 operate with a single voltage supply of 4-10.5 volts while the HCMP 1856C and 1857C operate with a voltage range of 4-6.5 volts. The HCMP 1856 and 1857 are available in 16 lead dual-in-line ceramic (D suffix) or plastic (P-suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Compatible with 1802A Microprocessor
- Provides easy connection of Memory or I/O Devices to 1802A Microprocessor Bus
- Provides Non-inverted Bi-directional Buffered Data Transfer
- Chip Select for Simple System Expansion
- Low Quiescent and Operating Power

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

DI0 🖂 1 💿	
DI1 🗖 2	15 🗖 CS
DO0 🔤 3	14 🗔 DB0
DO1 4	13 🗖 DB1
DO2 🗖 5	12 🗖 DB2
DO3 🗖 6	11 🖂 DB3
DI2 - 7	10 MRD
vss ⊏‡ ⁸	9 🗔 DI3

MAXIMUM RATINGS, Absolute-Maximum Values

Storage-Temperature Range (T_{stg}) $\ldots \ldots$ -65 to +150°C

DC Supply-Voltage Range (V_{DD})

(All voltage values referenced to V_{SS} terminal) HCMP 1856/1857 -0.5 to +11V

Operating-Temperature Range (T_A)

⁶HCMP 1856C/1857C..... -0.5 to +7V

OPERATING CONDITIONS at TA = Full Package Temperature Range

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS	TIONS							
CHARACTERISTIC	V _{DD} HCMP		1856 1857	HCMP 1 HCMP 1	UNITS				
	(V)	Min.	Max.	Min.	Max.				
Supply Voltage Range	_	4	10.5	4	6.5	v			
Recommended Input Voltage Range	-	V _{SS}	V _{DD}	V _{SS}	V _{DD}	v			

ELECTRICAL CHARACTERISTICS at $T_A = -40$ to $+85^{\circ}$ C Unless Otherwise Specified

	TES	r condit	TIONS	LIMITS						
CHARACTERISTIC	V _O	V _{IN}			HCMP 1856 HCMP 1857			HCMP 1856C HCMP 1857C		
	,	(•)	(•)	Min.	Typ.	Max.	Min.	Typ.	Max.	
Static Electrical Characterist	ics at TA =	-40°C t	o +85°C U	nless Othe	erwise Spe	cified				
Quiescent Device	-	-	5	-	1	10	-	5	50	
Current, IL	-	-	10	-	10	100	—	-	-	μΑ
Output Low Drive	0.4	0,5	5	1.6	3.2	-	1.6	3.2	_	
(Sink) Current, I _{OL}	0.5	0, 10	10	2.6	5.2	-	-	-	-	
Output High Drive	4.6	0,5	5	-1.15	-2.3	_	-1.15	-2.3	_	mA
(Source) Current I _{OH}	9.5	0, 10	10	-2.6	-5.2	-	-	-	-	
Output Voltage	-	0,5	5	-	0	0.1	_	0	0.1	
Low Level VOL ¹	-	0,10	10	-	0	0.1		_		
Output Voltage		0,5	5	4.95	5	-	4.95	5		v v
High Level, V _{OH}	-	0,10	10	9.95	10	-	-	-	-	
Input Low Voltage	0.5,4.5		5	-	_	1.5	-	-	1.5	
V _{IL}	0.5, 9.5	-	10	-	atum.	3			-	1 .
Input High Voltage	0.5, 9.5		5	3.5	-	-	3.5			v
v _{IH}	0.5, 9.5	-	10	7		-	-	-	-	1
Input Leakage	Any	0,5	5	<u> </u>	-	±1	_		±1	
Current, IIN	Input	0, 10	10	-		±1	-	-	-	1 "^
Operating Current	0, 5	0, 5	5	-	50	100	-	50	100	
DD1 ²	0,10	0, 10	10	-	150	300	-	-	-	
Input Capacitance, C _{IN}	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance,	-	-		-	10	15	-	10	15	
с _{оит}										pF
Dynamic Electrical Characteristics at T _A = -40 to +85°C, t _r , t _f = 20ns C _L = 100pF V _{DD} \pm 5%, V _{IH} = 0.7 V _{DD} , V _{IL} = 0.3 V _{DD}										
Propogation Delay Time:	-		5	-	150	225	-	150	225	
MRD or CS to DO, tED	_	-	10	-	75	125	-	-	-	ns
	-		5	-	150	225		150	225	
THE B	-	-	10	-	75	125	-	-	-	115
DI to DB.	-		5	-	100	150	-	100	150	
tiB	-	-	10	-	50	75	-	-	-	115
DB to DO.	-	-	5	-	100	150	-	100	150	
tBD	-	-	10	-	50	75	-	-	-	115

Typical values are for $T_A = 25^{\circ}C$ and nominal voltage.

NOTE 1: $I_{OL} = I_{OH} = 1 \ \mu A$.

NOTE 2: Operating current measured in a HCMP 1802A at 2MHz with outputs floating.

DIRECTION CONTROL -

The Figure shows how two HCMP 1856 or two HCMP 1857 can be used as bus buffers or separators between an 8 Bit Bi-directional Data bus and memories or between an 8 Bit Bi-directional Data bus and I/O devices. The chip select input signal enables the bus sepatator three-state output drivers. The direction of data flow, when enabled, is controlled by the state of the MRD input signal.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTIONS

DB0-DB3 — These four bi-directional signals can be used as data outputs or receiver inputs depending on the logic polarity of the MRD input signal. Data is non-inverted.

DI0-DI3 — The four data inputs. They are enabled onto the corresponding DB lines when Chip Select (CS) and the Memory Read (MRD) signals are activated.

D00-D03— The four receiver outputs reflect the data on the DB lines when the Chip Select and Memory Read signals are activated.

CS — The Chip Select signal along with \overline{MRD} controls the activation of the HCMP 1856 and 1857 as indicated in the table below. CS is active when it is a logic high (VDD).

MRD — The Memory Read signal controls the direction of data flow when Chip Select is enabled. In the HCMP 1856, when $\overline{\text{MRD}} = 0$, it enables the three state bus drivers (DB0-DB3), and outputs data from the driver inputs (DI0-DI3) to the data bus. When $\overline{\text{MRD}} = 1$, it disables the three-state bus drivers and enables the three-state data output drivers (DO0-DO3), transferring data from the data bus to the data outputs.

In the HCMP 1857, when $\overline{\text{MRD}} = 1$ it enables the three-state bus drivers (DB0-DB3) and transfers data from the driver inputs (DI0-DI3) onto the data bus. When $\overline{\text{MRD}} = 0$, it disables the three-state bus drivers (DB0-DB3) and enables the three-state data output drivers (DO0-DB3), transferring data bus to the data outputs.

Home food for the field	HCMP	1856	FUNCTION	TABLE
-------------------------	------	------	----------	-------

For Memory Data Bus Separator Operation

cs	MRD	DATA BUS OUT DB0 - DB3	DATA OUT DO0 - DO3
0	x	HIGH IMPEDANCE	HIGH IMPEDANCE
1	0	DATA IN	HIGH IMPEDANCE
1	1	HIGH IMPEDANCE	DATA BUS

нсмр	1857	FUNCTION	TABLE
Ear 1/	<u>م</u>	Separator O	noration

For I/O Bus Separator Operation

CS MR		DATA BUS OUT	DATA OUT
	MRD	DB0 - DB3	DO0 - DO3
0	x	HIGH IMPEDANCE	HIGH IMPEDANCE
1	0	HIGH IMPEDANCE	DATA BUS
1	1	DATA IN	HIGH IMPEDANCE

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

ACCOPROCESSOR PRODUCTS 4-Bit Memory Latch/Decoder

HCMP 1858/1859 HCMP 1858C/1859C

DESCRIPTION

The HCMP 1858 and 1859 are 4 bit memory address latch/decoders which control 4K bytes of memory. The HCMP 1858 provides chip select outputs to control up to 32 HCMP 1822 (256×4 organized) RAMs. The HCMP 1859 provides chip select outputs to control 1024 \times 1 organized RAMs. The Enable input allows expansion of memory systems beyond 4K bytes of memory. The chip select outputs are a function of the memory address bits connected to the MA0-MA3 lines.

The HCMP 1858/1859 operate with a single voltage supply of 4-10.5 volts while the 1858C/1859C operate with a voltage range of 4-6.5 volts. The HCMP 1858/1859 are available in 16 lead dual in line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802
 Microprocessor

PIN CONFIGURATION

сгоск 🗆

MA0

- Chip Enable Pin allows easy expansion above 4K Bytes of Memory
- Low Quiescent and Operating Power

1.

HCMP 1858

DENABLE

16

15

- Allows direct control of 4K bytes of memory
- HCMP 1858 is designed for 256 × 4 Memory Configuration
- HCMP 1859 is designed for 1024 × 1 Memory Configuration

MAXIMUM RATINGS, Absolute-Maximum Values

Storage-Temperature Range (T_{stg}) $\dots - 65$ to $+ 150^{\circ}$ C

Operating-Temperature Range (T_A) [·]

Ceramic Package	 $-55 \text{ to } + 125^\circ \text{C}$
Plastic Package	 -40 to +85°C

OPERATING CONDITIONS at T_A = Full Package Temperature Range

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CONDITIONS			LIMITS						
CHARACTERISTIC	vo	Vo VIN	VDD	H H	ICMP 1858 ICMP 1859	CMP 1858 CMP 1859		HCMP 1858 HCMP 1859		UNITS
	(V)	(V)	(V)	Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply-Voltage Range	-	_	-	4	-	10.5	4	_	6.5	v
Recommended Input Voltage Range	-		-	VSS		VDD	VSS		VDD	V
Minimum Clock Pulse Width, taal		_	5	-	50	75		50	75	
	-		10	-	25	40	-	-	-	ns
Minimum Data Setup Time, t _{DS} ¹	-		5	-	25	40	-	25	40	ns
	-	_	10	-	10	25	-	-	-	
Minimum Data Hold Time, TDH ¹	_		5	-	0	25	-	0	25	ns
		-	10	-	0	10		_	-	
Static Electrical Characteristics at $T_A = -4$	0 ⁰ C to +8	5 ⁰ C Unles	s Otherwi	se Specifie	d					
Quiescent Device Current, IL		0, 5	5		0,1	10	-	5	50	
	-	0, 10	10	-	1	100	-	-	-	μΑ
Output Low Drive (Sink) Current, IOL	0.4	0, 5	5	1.6	3.2	_	1.6	3.2		mΔ
	0.5	0, 10	10	2.6	5.2	-	-		-	
Output High Drive (Source) Current, IOH	4.6	0, 5	5	-1.15	-2.3	-	-1.15	-2.3	-	mA
	9.5	0, 10	10	-2.6	-5.2	-	-	-	_	
Output Voltage Low Level, VOL ²	-	0, 5	5		0	0.1	_	0	0.1	1
Output Voltage High-Level V _{OH}	-	0, 10	10	-	0	0.1		-	-	v
	-	0,5	5	4.9	5	-	4.9	5	-	1
	-	0,10	10	9.9	10	-	_	-	-	
Input Low Voltage, VIL	0.5, 4.5	-	5	-	-	1.5	-	-	1.5	1
Input High Voltage VIII	0.5, 9.5		10			3	35			v
input ingit voltage, v(H	0.5, 9.5	_	10	3.5	-			_	_	
Input Leakage Current Lini	Any	0.5	5		10-4	+1	_	10-4	+1	
input Leakage Guiterit, IJN	Input	0,10	10	-	10-4	+2	-	-	_	μΑ
Operating Current, Ipp ³	_	0,5	5	_	50	100	_	50	100	
	-	0,10	10	- 1	150	300	-	-	-	μΑ
Input Capacitance, CIN	-	-	-	_	5	7.5	-	5	7.5	pF
Output Capacitance, COUT	-	-	-	-	10	15	-		-	
	40.40.1	0590 4	20	0 - 10)		- 07.1/-		2 1/	
Dynamic Electrical Characteristics at TA =	-40 to +	85°C, τ _r ,	$t_f = 20 \text{ ns}$	CL = 10		+5%, VIH	= 0.7 VD	D, VIL =0	.3 VDD	
Propogation Delay Times:								150	205	
Clock (Low-to-High) to	Enabl	e = 0	5		150	125		150	225	ns
Any Output, (CO			- 10 E		125	200		125	200	
Any Output to	Clock	= 1	10	<u> </u>	85	200	_	-	-	ns
Mamory Address to All Outputs the	Clock	- 1	5		150	225		150	225	
Memory Address to An Outputs, 10	Enabl	0	10		75	125	_	-	-	ns
Proposation Delay Times:	LIIdol	<u>e = 0</u>								
Clock (Low-to-high) to			5	-	125	200	-	125	200	
A8, A9, A8, or A9, tCO			10	-	65	100	-	-	-	ns
Clock (Low-to-High) to			5	-	175	275		175	275	
CEO, CE1, CE2, or CE3, tCO	Enable	e = 0	10	-	90	140	-	-	-	115
Enable to CE0, CE1, CE2, or			5	-	125	200	-	125	200	
CE3, t _{EO}			10		65	100	-	—	-	ns
MA0, MA1 to A8, A9, A8, or			5	-	100	150	-	100	150	
A9 , t _{IO}			10	-	75		—	-		ns
MA2, MA3 to CE0, CE1, CE2, or	Clock	= 1	5		150	225	-	150	225	ns
CE3, tIO	Enable	ē = 0	10	-	75	125	-	-	-	

Typical values are for $T_A = 25^{\circ}C$ and nominal voltage

NOTE 1: Maximum limits of minimum characteristics are the values above which all devices function.

 $^{I}OL = ^{I}OH = ^{1}\mu A.$

Measured in a HCMP 1802 system at 2 MHz with open outputs.

TIMING DIAGRAMS

HCMP 1858/1859

INVALID OR DON'T CARE

APPLICATIONS

4K x 8 memory system using HCMP 1858 and HCMP 1822 $\!\!\!\!\!s$

4K \times 8 memory system design using HCMP 1859 and 1K \times 1 RAMs

SIGNAL DESCRIPTION

MA0-MA3 — 4 Bit Address inputs. MA0 is the least significant input address bit and MA3 is the most significant input address bit.

 \mbox{CLOCK} — The MA0-MA3 address bits are latched at the high to low transition of Clock input (TPA) in the HCMP 1858 and the HCMP 1859.

The HCMP 1858 and the HCMP 1859 can also be used in general purpose memory system application with a non-multiplexed address bus by connecting the Clock input to V_{DD} .

ENABLE — In the HCMP 1858, when Enable = V_{DD} , the CS outputs = V_{SS} and the CE outputs = V_{DD} . When Enable = V_{SS} , the outputs are enabled and correspond to the binary decode of the inputs. The Enable input can be used for memory system expansion.

In the HCMP 1859, when Enable = VDD, the \overline{CE} outputs = VDD; when Enable = VSS, \overline{CE} outputs are enabled and correspond to the binary decode of the MA3 and MA2 inputs. Enable does not affect the latching or state of outputs A8, $\overline{A8}$, A9, or $\overline{A9}$.

A8, **A9**, **A9** — These outputs represent the non-inverted and inverted state of the latched address inputs, MA0 and MA1, in the HCMP 1859.

CE0-CE3, **CS0-CS3** — Decoded outputs. The decoding is shown in the truth tables shown below.

TRUTH TABLES

HCMP 1858 DECODE TRUTH TABLE

ENABLE	DA INP	UTS						051	050	<u></u>	
	MA1	MA0	CSO	CST	CSZ	683	CEU	CET	CEZ	CES	
0	0	0	1	0	0	0					
0	0	1	0	1	0	0	NOT AFFECTED			D	
0	1	0	0	0	1	0	B	BY MA1, MA0			
0	1	1	0	0	0	1					
	MA3	MA2									
0	0	0					0	1	1	1	
0	0	1	N	OT AF	FECTE	D	1	0	1	1	
0	1	0	В	BY MA3, MA2				1	0	1	
0	1	1					1	1	1	0	
1	X	X	0	0	0	0	1	1	1	1	

HCMP 1859 DECODE TRUTH TABLE

X = MA0, MA1, MA2, MA3 DON'T CARE

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products

Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Printed in U.S.A. 4/82 Supercedes Previous Data

HUGHES SOLID STATE PRODUCTS

Datasheets are available from Hughes Representatives or Hughes Solid State Products.

HCTR 0107P	Counter/Latch/Decoder/Driver
HCTR 0200P	Decade Counter/Latch/Decoder/Driver
HCTR 0320AP	Frequency Synthesizer
HCTR 4010P	4 Decade Up/Down Counter
HCTR 6010	4 ¹ / ₂ Decade Counter
HDGP 1000	General Purpose PMOS Fet
HDIG 1030	Insulated Gate PMOS Fet
HLSS 0533Y	Single Chip, Heart Rate Monitor

HUGHES SOLID STATE PRODUCTS

HUGHES STANDARD MILITARY/HI REL CLASS B FLOW

DICE WAFER FIRST OPTICAL SORT 100% 883 METHOD 2010 CONDITION B DIE ATTACH Q.A. MONITOR WIRE BOND **ULTRASONIC AI 10% REBOND** Q.A. MONITOR PRE-SEAL OPTICAL SORT 100% 883 METHOD 2010 CONDITION B Q.A. PRE-SEAL OPTICAL INSPECTION 883 METHOD 2010 CONDITION B SEAL STABILIZATION BAKE 883 METHOD 1008 CONDITION C MIN. TEMPERATURE CYCLING 883 METHOD 1010 CONDITION C CONSTANT ACCELERATION 883 METHOD 2001 CONDITION E OR D PER PACKAGE LIMITATIONS, Y-1 AXIS MARK FINE LEAK 100% 883 METHOD 1014 CONDITION A OR B GROSS LEAK 100% 883 METHOD 1014 CONDITION C INTERIM ELECTRICAL TEST BURN-IN 883 METHOD 1015 CONDITION C 160 HOURS @ TA = 125°C MIN. **FINAL ELECTRICAL TESTS 100%** 883 METHOD 5005, TABLE 1 STATIC & FUNCTIONAL TESTS @ TA = 25°C AND 125°C SWITCHING TESTS (2) $T_A = 25^{\circ}C$ TEST REQ. PER HUGHES DATA SHEET OR CUST. SPEC. Q.A. ELECTRICAL INSPECTION: GROUP A TESTS PER PRODUCTION 883 METHOD 5005, TABLE 1 STATIC & FUNCTIONAL TESTS @ TA = 25°C AND 125°C SWITCHING TESTS @ TA = 25°C Q.A. MONITOR Q.A. EXTERNAL VISUAL LOT ACCEPTANCE

883 METHOD 2009, 2.5% AQL

Q.A. GATE

HUGHES SOLID STATE PRODUCTS

HUGHES STANDARD COMMERCIAL PRODUCT FLOW

HUGHES STANDARD INDUSTRIAL PRODUCT FLOW

HUGHES SOLID STATE PRODUCTS

NOMENCLATURE

PACKAGE

- D = Ceramic DIP
- H = Dice
- L = Leadless Chip Carrier
- P = Plastic DIP
- Y = Cerdip

DEVICE FAMILY

- HNVM = Hughes Nonvolatile Memories
- HLCD = Hughes Liquid Crystal Display Drivers
- HCMP = Hughes Commercial Microprocessor Products
- HMMP = Hughes Military Microcomputer Products

HUGHES SOLID STATE PRODUCTS

HUGHES U.S. AND CANADIAN SALES REPRESENTATIVES

Representatives

1. R. H. STURDY COMPANY 167 Worcester Street P.O. Box 328 Wellesley Hills, MA 02181 Tel: 617/235-2330

R. H. STURDY COMPANY 8 Birchwood Road Windham, NH 03087 Tel: 603/893-9506

2. TRI-TECH ELECTRONICS, INC. P.O. Box C 6836 East Genesee Fayetteville, NY 13066 Tel: 315/446-2881

TRI-TECH ELECTRONICS, INC. 590 Perinton Hills Off. Park Fairport, NY 14450 Tel: 716/223-5720

TRI-TECH ELECTRONICS, INC. 3215 East Main Street Endwell, NY 13760 Tel: 607/754-1094

TRI-TECH ELECTRONICS, INC. 19 Fowler Avenue Poughkeepsie, NY 12603 Tel: 914/473-3880

3. ROBERT DIAMOND, INC. 210-30 23rd Avenue Bayside, NY 11360 Tel: 212/423-7330

4. B.G.R. ASSOCIATES 3001 Greentree Executive Campus Marlton, NJ 08053 Tel: 609/428-2440

5. ARBOTEK 3600 St. John's Lane Ellicott City, MD 21043 Tel: 301/461-1323

6. L. & D., INC. P.O. Box 8925 100 Dresser Court Raleigh, NC 27609 Tel: 919/876-5301

> L. & D., INC. 3820 Merton Drive Raleigh, NC 27609 Tel: 919/787-6097

L. & D., INC. 4350 Georgetown Square, Ste. 707 Atlanta, GA 30338 Tel: 404/455-3483

L. & D., INC. 555 Sparkman Drive, Ste. 820F Huntsville, AI 35803 Tel: 205/837-1469

7. DELMAC SALES 520 Virginia Drive Orlando, FL 32803 Tel: 305/898-4688

DELMAC SALES 7338 N.W. 75th Street Tamarac, FL 33319 Tel: 305/726-1330

DELMAC SALES 1415 Duncan Ave. So. Clearwater, FL 33516 Tel: 813/447-5192 8. LUEBBE SALES 2649 Erie Avenue Cincinnati, OH 45208 Tel: 513/871-4211

> LUEBBE SALES 21330 Center Ridge Road Cleveland, OH 44116 Tel: 216/333-0425

LUEBBE SALES 3832 Kettering Boulevard Dayton, OH 45439 Tel: 513/294-0426

LUEBBE SALES 6500 Busch Boulevard, Ste. 210 Columbus, OH 43229 Tel: 614/431-0474

LUEBBE SALES 19500 Middlebelt Road, Ste. 260W Livonia, MI 48153 Tel: 313-477-3131

LUEBBE SALES 2987 Babcock Boulevard Pittsburgh, PA 15237 Tel: 412/931-0414

9: J & W SALES 7202 North Shadeland Avenue Indianapolis, IN 46250 Tel: 317/842-3740

10. CARLSON ELECTRONIC SALES CO. 600 East Higgins Road Elk Grove Village, IL 60007 Tel: 312/956-8240 CARLSON ELECTRONIC SALES CO. 204 Collins Road, N.E. Cedar Rapids, IA 52402

Tel: 319/377-6341

CARLSON ELECTRONIC SALES CO. 10701 West North Avenue Milwaukee, WI 53226 Tel: 414/476-2790

11. BILL DEMING & ASSOCIATES, INC. 8053 Bloomington Freeway Minneapolis, MN 55420 Tel: 612/888-5000

12. TECHNICAL SALES ASSOCIATES P.O. Box 14842 9290 Bond, Ste. 114 Shawnee Mission, KS 66215 Tel: 913/888-3330

TECHNICAL SALES ASSOCIATES P.O. Box 10907 119 Church Street, Ste. 223 St. Louis, MO 63135 Tel: 314/725-5361

13. SUNDANCE SALES 1701 North Greenville Richardson, TX 78071 Tel: 214/699-0451

> SUNDANCE SALES 10116 Woodland Village Drive Austin, TX 78750 Tel: 512/250-0320

SUNDANCE SALES 620 F.M. 1092, Ste. 206 Stafford, TX 77477 Tel: 713/499-9671

14. COMPASS MARKETING & SALES

6516 N. Seventh Street, Ste. 3 Phoenix, AZ 85014 Tel: 602/266-5400

COMPASS MARKETING & SALES 2632 Pennsylvania N.E., Ste. B Albuquerque, NM 87110 Tel: 505/292-7377

16. N. R. SCHULTZ CO. 13095 S.W. Henry

Beaverton, OR 97005 Tel: 503/643-1644

N. R. SCHULTZ CO.

300 120th Avenue N.E. Bldg. 4, Ste. 210 Bellevue, WA 98005 Tel: 206/454-0300

N. R. SCHULTZ CO. 1074B North Cole Road Boise, ID 83704 Tel: 208/377-8686

17. I² INC. 3350 Scott Blvd. Santa Clara, CA 95051 Tel: 408/988-3400

18. SELECT ELECTRONICS

P.O. Box 9 14871 Barnwall La Mirada, CA 90367 Tel: 714/739-8891

19. MESA ENGINEERING

7525 Convoy Court San Diego, CA 92111 Tel: 714/278-8021 20. VITEL ELECTRONICS 3300 Cote Vertu, Ste. 203 St. Laurent, Quebec H4R 287 Tel: 514/331-7393

VITEL ELECTRONICS

5945 Airport Road, Ste. 180 Mississauga, Ontario L4V 1R9 Tel: 416/676-9720

VITEL ELECTRONICS

1050 Baxter Road Baxter Centre Ottawa, Ontario K2C 3P1 Tel: 613/836-1776

VITEL ELECTRONICS

141 April Road (IOCO) Port Moody, B.C. V3H 3M4 Tel: 604/524-6677

HUGHES U.S. AND CANADIAN DISTRIBUTORS

UNITED STATES

MILGRAY

17 Dunwoody Park, Suite 102 Atlanta, GA 30338 Tel: 800/241-5523

MILGRAY 6155 Rockside Road Cleveland, OH 44131 Tel: 216/447-1520

MILGRAY 378 Boston Post Road Orange, CT 06477 Tel: 203/795-0711

MILGRAY 3002 Greentree Executive Campus Mariton, NJ 08053 Tel: 800/257-7111

MILGRAY 1850 Lee Road, Suite 104 Winter Park, FL 32789 Tel: 305/647-5747

MILGRAY 191 Hanse Avenue Freeport, NY 11520 Tel: 212/738-3100 TWX: 510-225-3673

MILGRAY 6901 West 63rd Street Overland Park, KS 66202 Tel: 913/236-8800

MILGRAY 79 Terrace Hall Avenue Burlington, MA 01803 Tel: 617/272-6800

CANADA

FUTURE ELECTRONICS 237 Hymus Blvd. Pointe-Claire Quebec H9R 5C7 Tel: 514/694-7710

TWX: 610-421-3251

FUTURE ELECTRONICS

Baxter Centre 1050 Baxter Road Ottawa, Ontario K2C 3P2 Tel: 613/820-8313 TWX: 610-563-1697 MILGRAY 11820 Parklawn Drive Rockville, MD 20852 Tel: 800/638-6656

ALLIANCE ELECTRONICS, INC. 11030 Cochiti S.E. Albuquerque, NM 87123 Tel: 505/292-3360 TWX: 910-989-1151

R.V. WEATHERFORD 4658 Sunbelt Drive Dallas, TX 75248 Tel: 214/931-7333 TWX: 910-860-5544

R.V. WEATHERFORD 8515 East Orchard Rd. Englewood, CO 80111 Tel: 303/770-9762 TWX: 910-935-0151

R.V. WEATHERFORD 1310 Kifer Road Sunnyvale, CA 94086 Tel: 408/738-8694 TWX: 910-339-9512

R.V. WEATHERFORD 1550 Babbitt Ave. Anaheim, CA 92805 Tel: 714/634-9600 TWX: 910-593-1334

R.V. WEATHERFORD 3500 West T.C. Jester Bl. Houston, TX 77018 Tel: 713/688-7406 TWX: 910-881-6222

R.V. WEATHERFORD

3355 West Earil Drive Phoenix, AZ 85017 Tel: 602/272-7144 TWX: 910-951-0636

R.V. WEATHERFORD 18 East Ortega Street Santa Barbara, CA 93101 Tel: 805/965-8551 TWX: 910-334-4835

R.V. WEATHERFORD

1095 East Third St. Pomona, CA 91766 Tel: 714/623-1261 213/966-8461 TWX: 910-581-3811

R.V. WEATHERFORD 4861 Fredericksburg Rd. San Antonio, TX 78229 Tel: 512/340-3764

R.V. WEATHERFORD

541 Industry Drive Seattle, WA 98188 Tel: 206/575-1340 TWX: 910-444-2270

R.V. WEATHERFORD

6921 San Fernando Road Glendale, CA 91201 Tel: 213/849-3451 TWX: 910-498-2223

R.V. WEATHERFORD 7665 Formula Place San Diego, CA 92121 Tel: 714/695-1700 TWX: 910-335-1570

SUMMIT DISTRIBUTORS

916 Main Street Buffalo, NY 14202 Tel: 716/887-2800 TWX: 710-522-1692

ZEUS COMPONENTS

100 Midland Avenue Port Chester, NY 10573 Tel: 914/937-7400 TWX: 710-567-1248

ZEUS COMPONENTS

25 Adams Street Burlington, MA 01803 Tel: 617/273-0705 TWX: 710-332-0716

ZEUS COMPONENTS 1400 Goldmark, Ste. 250 Dallas, TX 75240 Tel: 214/783-7010 TWX: 910-867-9422

ZEUS COMPONENTS 2350 Scott Blvd. Bldg. 64 Santa Clara, CA 95051 Tel: 408/727-0714 TWX: 910-338-2121

ZEUS COMPONENTS 1130 Hawk Circle Anaheim, CA 92807 Tel: 213/924-0454 714/632-6880 TWX: 910-591-1696

FUTURE ELECTRONICS

3070 Kingsway Vancouver, B.C. V5R 5J7 Tel: 604/438-5545 TWX: 610-922-1668

FUTURE ELECTRONICS 4800 Dufferin Street Downsview, Ontario M3H 5S8 Tel: 416/663-5563 TWX: 610-491-1470

FUTURE ELECTRONICS

5809 MacLeod Trail South Unit 109 Calgary, Alberta T2H 0J9 Tel: 403/259-6408 TWX: 610-821-1927

HUGHES INTERNATIONAL REPS & DISTRIBUTORS

EUROPE

AUSTRIA

BURISCH GES. m.b.H. & CO. KG A-1210 Wien, Scheydgasse 31, Austria Telephone: (0 22 2) 38 76 38-0 Telex: 0113310 Buris A

BELGIUM

AURIEMA S.A./N.V. Rue Brogniez Straat 172A 1070 Brussels, Belgium Telephone: (02) 523 62 95 Telex: 21646

DENMARK

MICRONOR APS Herninguej 98 DK 8600 Denmark, Silkeborg Telephone: 068-16522 TWX: 63245 Micnor

ENGLAND

PELCO ELECTRONICS Regency Square House 26/27 Regency Square Brighton, Sussex BN1 2FH England Telephone: (0273) 722 155 Telex: 877893 Pelco E

FRANCE

DATA DIS 10-12 Rue Emile Landrin 92100 Boulogne, France Telephone: (1) 605 60 00 TWX: 201905

INTERNATIONAL SEMICONDUCTOR CORPORATION (ISC)

27, Rue Yves Kermen 92100 Boulogne, France Telephone: (1) 608 52 75 TWX: 250030 ISCFRA F

GERMANY

ASTRONIC GMBH Winzererstr 47d 8000 Munchen 40

Germany Telephone: 089/309031 Telex: 5216187 Astrd

MICROSCAN COMPANY

31 Ueberseering P.O. Box 601705 D-2000 Hamburg 60 Germany Telephone: 40/6 30 50 67 Telex: 2- 13 288 Scand

ISRAEL

RN ELECTRONICS 15 Kineret Street Bnei Brak, Israel Telephone: (3) 70 71 29 TWX: 342107 RNIS IL

ITALY

CEFRA S.R.L. Via G. Pascoli 60 20133 Milano, Italy Telephone: (02) 23 52 64 TWX: 314543 CEFRA I

NETHERLANDS

KONING EN HARTMAN ELEKTROTECHNIEK B.V. 30 Koperwerf NL — 2544 En ● the Hague Netherlands Telephone: (070) 21 01 01 TWX: 31528 KOHA

NORWAY

HENACO A/S Trondheims Veien 436 Ammerud 0S109 Norway Telephone: 472 1621 10 Telex: 16716 Henac N

SPAIN

COMELTA

Emilio Munoz 41 ESCI, Nave 2 Madrid-17, Spain Telephone: 754-4530 TWX: 42007 Ceta E

SWEDEN

ALLHABO ELEKTRONIK

Alströmergatan 20, Box 49044 S-100 28 Stockholm Sweden Telephone: 08-224600 Telex: 19015 Allhabo S

SWITZERLAND

ABELEC AG

Landstrasse 78 8116 Wuerenlos, Switzerland Telephone: (01) 730 04 53 TWX: 59834 ORBT CH

ASIA

HONG KONG

TEKTRON ELECTRONICS LTD. 1702 Bank Center 636 Nathan Road Kowloon, Hong Kong Telephone: 3-856199 Telex: 38513 Tekhl

INDIA

KRYONIX Kowdiar, Trivandrum-695003 South India Telephone: 63805 Telex: 8 84-307 Krx In

JAPAN

NIHON TEKSEL CO., LTD. Kyoshin Bldg. 13-14 Sakuragaoka-Machi Shibuya-Ku Tokyo 150 Japan Telephone: (03)461-5121 Telex: J23723 Teksel

TAIWAN

MULTITECH INTERNATIONAL 977 Min Shen E. Road Taipei, 105 Taiwan R.O.C. Telephone: (02) 769-1225 Telex: 23756 Multiic/19162 Multiic

AUSTRALIA

COMPUTER COMPONENTS 70A Rawson Street Epping NSW 2121 Australia Telephone: 61 (02) 86 83614 TWX: AA71207 Compco

HUGHES SOLID STATE PRODUCTS

HUGHES AIRCRAFT COMPANY

500 Superior Avenue, Newport Beach, CA 92663 Telephone. (714) 759-2942 TWX 910-596-1374

In Europe: Hughes Solid State Products Hughes Aircraft International Service Co. Schmaedel Str. 22, 8000 Munich, West Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES SOLID STATE PRODUCTS

*

HUGHES AIRCRAFT COMPANY 500 Superior Avenue, Newport Beach, CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374 In Europe: Hughes — Solid State Products Schmaedel Str. 22, 8000 Munich, Germany Telephone: 49-89-834.7088 Telex: 5213856 HSPD