HUGHES
 SOLID STATE PRODUCTS

1982
CMOS
DATABOOK

Hughes-Solid State Products reserves the right to make revisions at any time without advance notice.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor infringement on patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

CMOS EEPROMs

Device	Size	Organization	Access Time (Typ.)	Read Supply Voltage	Erase/ Program Time	Endurance (Typ.)	Data Retention	CS Function To Enable EEPROM	No. of Pins
HNVM 3004	4096	512×8	500 ns	$4-6 \mathrm{~V}$	$100 \mu \mathrm{~s} @ 17 \mathrm{~V} / \mathrm{byte}$	$10^{4} \mathrm{cycles}$	10 yrs at $125^{\circ} \mathrm{C}$	no	24
HNVM 3704	4096	512×8	500 ns	$4-6 \mathrm{~V}$	$1 \mathrm{msec} @ 16 \mathrm{~V} / \mathrm{byte}$	$10^{2} \mathrm{cycles}$	10 yrs at $125^{\circ} \mathrm{C}$	no	24
HNVM 3008	8192	1024×8	500 ns	$4-6 \mathrm{~V}$	$100 \mu \mathrm{~s} @ 17 \mathrm{~V} / \mathrm{byte}$	$10^{4} \mathrm{cycles}$	10 yrs at $125^{\circ} \mathrm{C}$	no	24
HNVM 3108	8192	1024×8	500 ns	$4-6 \mathrm{~V}$	$100 \mu \mathrm{~s} @ 17 \mathrm{~V} / \mathrm{byte}$	$10^{4} \mathrm{cycles}$	10 yrs at $125^{\circ} \mathrm{C}$	yes	24
HNVM 3708	8192	1024×8	500 ns	$4-6 \mathrm{~V}$	$1 \mathrm{msec} @ 16 \mathrm{~V} / \mathrm{byte}$	$10^{2} \mathrm{cycles}$	10 yrs at $125^{\circ} \mathrm{C}$	no	24

CMOS LCD DRIVERS

Device	Type of Drive	Input	Output	Buffer Size	Supply Voltage	Cascadable	No. of Pins
HLCD 0437	Direct Segment	4 Bit BCD	28 Segments (4×7)	28 Bits	3-15V	Yes	40
HLCD 7211-1	Direct Segment	4 Bit Multiplexed	Hexidecimal 28 Segments (4 x 7)	28 Bits	3-6V	Yes	40
HLCD 7211.2	Direct Segment	4 Bit Multiplexed	Code B 28 Segments (4×7)	28 Bits	3-6V	Yes	40
HLCD 7211-3	Direct Segment	4 Digit Select Microprocessor Interface	Hexidecimal 28 Segments (4×7)	28 Bits	3-6V	Yes	40
HLCD 7211-4	Direct Segment	4 Digit Select Microprocessor Interface	Code B 28 Segments (4×7)	28 Bits	3-6V	Yes	40
HLCD 0438A	Direct Segment	1 Bit Serial	32 Segments	32 Bits	$3-10 \mathrm{~V}$	Yes	40
HLCD 0488	Multiplexed	4 Bit Parallel	16 Rows $\times 16$ Columns	32 Bits	3-8V	Yes	40
HLCD 0538A	Multiplexed	Serial	8 Rows $\times 26$ Columns	34 Bits	$3-10 \mathrm{~V}$	Yes	40
HLCD 0539A	Multiplexed	Serial	34 Columns	34 Bits	$3-10 \mathrm{~V}$	Yes	40
HLCD 0540	Multiplexed	Serial	32 Rows or 32 Columns	31 Bits	$3-12 \mathrm{~V}$	Yes	40
HLCD 0541	Multiplexed	4 Bit Parallel	8 Rows $\times 23$ Columns	32 Bits	$3-12 \mathrm{~V}$	Yes	40
HLCD 0542	Multiplexed	4 Bit Parallel	32 Columns	32 Bits	3-12V	Yes	40
HLCD 0548	Multiplexed	Serial	16 Rows $\times 16$ Columns	200 Bits	$3-12 \mathrm{~V}$	Yes	40
HLCD 0607A	Multiplexed	Serial	4 Rows $\times 30$ Columns	34 Bits	$3-12 \mathrm{~V}$	Yes	40
HLCD 0515	Multiplexed Auto-Refresh	Serial	8 Rows $\times 25$ Columns	32 Bits	$5-10 \mathrm{~V}$	Yes	40
HLCD 0550	Multiplexed/ Auto-Refresh	8 Bit Parallel/ASCII	8 Rows $\times 12$ Columns	32 Char	$3-10 \mathrm{~V}$	Yes	40
HLCD 0551	Multiplexed/ Auto-Refresh	Serial	34 Columns	34 Bits	$3-10 \mathrm{~V}$	Yes	40

CMOS ROMs

Device	Size	Organization	Access Time (Typ.)		Temperature Range		Supply Voltages		Output	No. of Pins
			5 V	10V	Ceramic	Plastic	Low Voltage	High Voltage		
HCMP 1831	4096	512×8	850 ns	400 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	3-state	24
HCMP 1832	. 4096	512×8	850 ns	400 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	3-state	24
HCMP 1833	8192	1024×8	650 ns	350 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	3-state	24
HCMP 1834	8192	1024×8	575 ns	350 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$4-6.5 \mathrm{~V}$	4-10.5V	3-state	24
HCMP 1835	16384	2048×8	900 ns	500 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$4-6.5 \mathrm{~V}$	4-10.5V	3-state	24
HCMP 23C16	16834	2048×8	900 ns	500 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$4-6.5 \mathrm{~V}$	4-10.5V	3-state	24
HCMP 1837	32768	4096×8	750 ns	450 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$4-6.5 \mathrm{~V}$	4-10.5V	3-state	24
HCMP 23C32	32768	4096×8	750 ns	450 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	3-state	24
HCMP 23C64	65536	8192×8	300 ns	-	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	3 -state	24

CMOS RAMs

Device	Size	Organization	Access Time (Typ.)		Temperature Range		Supply Voltages		Output	No. of Pins
			5 V	10V	Ceramic	Plastic	Low Voltage	High Voltage		
HCMP 1822C	1024	256×4	250 ns	-	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	-	3-state	22
HCMP 1823C	1024	128×8	250 ns	-	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$4-6.5 \mathrm{~V}$	-	3-state	24
HCMP 1824	256	32×8	400 ns	200 ns	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	3-state	18

1800 MICROPROCESSOR FAMILY

Device	Description	Temperature Range		Voltage Range		No. of Pins
		Ceramic	Plastic	Low Voltage	High Voltage	
HCMP 1802A	CPU - 8 Bit Parallel with 3.2 MHz clock at 5 V	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	40
HCMP 1802B	$\mathrm{CPU}-8$ Bit Parallel with 5 MHz clock at 5 V	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	-	40
HCMP 1852	INPUT/OUTPUT PORT - 8 Bit Parallel with mode programmable 3-state data bus	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$4-6.5 \mathrm{~V}$	4-10.5V	24
HCMP 1853	N-BIT DECODER - 1 of 8 Decoder for I/O Expansion	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	16
HCMP 1854A	UART - Full duplex organization with serial/ parallel inputs/outputs	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	40
HCMP 1855	MULTIPLY/DIVIDE -8×8 Multiply or $16 \div 8$ Divide with bi-directional 3 -state data bus	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	28
HCMP 1856/57	BUFFER/SEPARATOR - 4 Bit with bi-directional 3-state data bus	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	16
HCMP 1858/59	LATCH/DECODER - 4 Bit Memory Address to select 1 K RAMS	-55 to $+125^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	4-6.5V	4-10.5V	16

EEPROMs

LCD DRIVERs

1800 MICROPROCESSOR FAMILY

PACKAGE

D = Ceramic DIP
H = Dice
L = Leadless Chip Carrier
$P=$ Plastic DIP
$Y=$ Cerdip

DEVICE FAMILY
HNVM = Hughes Nonvolatile Memories
HLCD = Hughes Liquid Crystal Display Drivers
HCMP = Hughes Commercial Microprocessor Products
HMMP = Hughes Military Microcomputer Products
-

CMOS NONVOLATILE MEMORIES

HUGHES
 SOLID STATE PRODUCTS

 512×8

 512×8 CMOS EEPROM

 CMOS EEPROM}

DESCRIPTION

EXTENDED ENDURANCE EEPROM

The HNVM 3004 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) organized 512×8. It is ideal for applications where large amounts of data must occasionally be altered and then stored during power down conditions such as program storage, data tables or data collection.

Erasing and programming are accomplished by applying low level signals to the control inputs $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ while the power supply volage VDD is elevated to + VPP. The bulk erase (entire memory) and byte programming both require $100 \mu \mathrm{sec}$ per operation with + VPP at +17 V .

All read operations are performed with VDD at a nominal 5 volts. The falling edge of the Chip Enable signal ($\overline{\mathrm{CE}}$) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable ($\overline{\mathrm{OE}}$) is a low level and Chip Select (CS) is a high level.

The HNVM 3004 is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package.

FEATURES

- Nonvolatile storage of 4096 bits, organized as 512×8
- Electrically erasable and programmable in-circuit. No UV light required.
- Extended endurance.
- Fast erase time - $100 \mu \mathrm{sec}$
- Fast programming time - 100 $\mu \mathrm{sec} / \mathrm{byte}$ or 50 msec for all 4 K bits.

PIN CONFIGURATION

- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and T^{2} L compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and $T^{2} L$.

FUNCTIONAL DIAGRAM

[^0]MAXIMUM RATINGS

DC Supply Voltage Range (All Voltages referenced to GND terminal)	-0.3 to +18 V
Input Voltage Range	-0.3 to $\mathrm{V} D \mathrm{DD}+0.3 \mathrm{~V}$
Operating Temperature Range	
Ceramic Package	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATION $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5$ Volts unless otherwise noted.

Note 1 - Erase/program time is a function of V_{PP} - see characteristic curve.
TIMING SPECIFICATIONS Input $t_{r}=t_{f}=10 \mathrm{nsec}, C_{L}=50_{p f}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ or $+\mathrm{V}_{\mathrm{PP}}$

DESCRIPTION		FROM					то						SPECIFICATION			
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION Address Set-up Time	${ }^{t}$ ASU	Address			X		$\overline{C E}$		X				50	-	-	nsec
Address Hold Time	${ }^{t}$ AH	$\overline{C E}$		X			Address			X			100	50	-	ns ${ }^{\text {c }}$
Access Time	${ }^{\text {t }}$ ACE	$\overline{C E}$		X			Data				X		-	500	650	nsec
Output Enable Time	${ }^{\text {t }}$ AOE	$\overline{\mathrm{OE}}$		X			Data				X		-	250	325	nsec
Chip Select Time	${ }^{t} \mathrm{ACS}$	CS	x				Data				X		-	200	260	nsec
Output Disable Time.	${ }^{\text {t }}$ DOE	$\overline{\mathrm{OE}}$	X				Data					X	-	300	-	nsec
Chip Deselect Time	${ }^{\text {t }}$ DCS	CS		X			Data					X	-	400	-	nsec
Chip Disable Time	${ }^{\text {t DCE }}$	$\overline{C E}$	X				Data					\times	-	300	-	nsec
$\begin{array}{\|} \hline \text { Cycle Time } \\ \text { (See Note 2) } \\ \hline \end{array}$	${ }^{t} \mathrm{CYC}$	$\overline{\mathrm{CE}}$		X			$\overline{C E}$		X				-.	0.95	1.75	$\mu \mathrm{sec}$
ERASE OPERATION Vpp Set-up Time	${ }^{\text {t VPSU }}$	$V_{D D}$	X				$\overline{O E}$		X				5	-	-	$\mu \mathrm{sec}$
Erase Width (See Note 3)	${ }^{\text {toEW }}$	$\overline{\mathrm{OE}}$		X			$\overline{O E}$	X					0.1	-	10	msec
PROGRAM OPERAT VPP Set-up Time	ION ${ }^{t}$ VPSU	$V_{\text {DD }}$	\times				$\overline{\mathrm{CE}}$		X				5	-	-	$\mu \mathrm{sec}$
$\begin{aligned} & \text { Write Width } \\ & \text { (See Note 3) } \\ & \hline \end{aligned}$	${ }^{\text {t CEWP }}$	$\overline{C E}$		X			$\overline{C E}$	X					0.1	-	10	msec
Data Set-up Time	${ }^{\text {tosu }}$	Data			X		$\overline{C E}$		X				-	200	-	nsec
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	$\overline{\mathrm{CE}}$	x				Data			X			-	200	-	nsec
Address Set-up Time	${ }^{\text {t }}$ ASUP	Address			X		$\overline{C E}$		X				-	200	-	nsec
Address Hold Time	${ }^{\text {t }}$ AHP	$\overline{\mathrm{CE}}$		X			Address			X			-	200	-	nsec

Note $2-\overline{\mathrm{CE}}$ low $=650 \mathrm{nsec}$.
3 - Erase/program time is a function of V_{PP} - see characteristic curve.

ERASE/PROGRAM OPERATIONS

EXTENDED TEMPERATURE RANGE OPERATION

PROGRAM CHARACTERISTICS VS. SUPPLY VOLTAGE

READ CHARACTERISTICS
VS. SUPPLY VOLTAGE

OPERATING MODES

The HNVM 3004 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3004 functions as a normal CMOS ROM. When the power input (VDD) is raised to + Vpp, the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:

READ MODE The circuit reads addresses on the falling edge of $\overline{C E}$ and latches the accessed data until $\overline{C E}$ goes high again. The latched data will appear at the outputs whenever $\overline{\mathrm{CE}}$ is low, CS is high, and $\overline{O E}$ is low.

ERASE MODE A Block Erase (all O's in memory) is accomplished by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP and then pulsing $\overline{O E}$ low. When the circuit internally senses the + VPP voltage, it floats the outputs, preventing + VPP level signals from appearing on the data I/O bus.
PROGRAM MODE Programming consists of writing 1 's into bits that contain a 0 . A byte is programmed by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP, and pulsing $\overline{\mathrm{CE}}$ low. The address lines must have valid data when $\overline{C E}$ falls and the data to be programmed must be valid on the data $1 / O$ lines while $\overline{\mathrm{CE}}$ is low. A Program operation can follow an Erase while holding VDD at + VPP, and several or all the bytes can be programmed with VDD held at + VPP.

SUMMARY OF OPERATING MODES

State	$\overline{\mathrm{CE}}$	CS	$\overline{O E}$	VDD	I/O Bus
Standby	1	X	X	+5	Floating
Standby	X	0	X	+5	Floating
Standby	X	X	1	+5	Floating
Read	$0{ }^{1}$	1	0	+5	Data Output
Standby ${ }^{2}$	1	X	1	$+\mathrm{V}_{\text {PP }}$	Floating
Erase	1	X	01	+VPP	Floating
Program	0^{1}	X	1	+VPP	Floating (Data Input)
Prohibited State	0	X	0	+VPP	Floating (Data Input)

Note 1 - Pulse to indicate stat
2 - Recommended mode for $V_{D D}$ transitions to and from $V_{P P}$
PIN DESCRIPTIONS
MA0-MA8 Address inputs which select one of 512 bytes of memory for either Read or Program. The addresses are latched during the falling edge of $\overline{C E}$.
BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.
GND Negative supply terminal and $V=0$ reference.
VDD Positive supply terminal. It is raised to + VPP for Erase and Program operations.
CS Chip Select. A Logic Low disables the Data Output Drivers in all modes.
$\overline{\mathbf{O E}} \quad$ Output Enable. A Logic High disables the Data Output Drivers in normal operation. If VDD $=+$ VPP, a Logic Low performs a block erase operation.
$\overline{\mathbf{C E}} \quad$ Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as $\overline{C E}$ is held at Logic Low. If $V_{D D}=+V_{P P}, a$ Logic Low performs a byte program operation.
SEL The select input requires connection to GND for 3004-2 or to VDD for 3004-1.
Additional EEPROM devices which are available from Hughes include the HNVM 3704 (512×8) aimed at specific applications where programming time and endurance are not critical.
Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

HUGHES
 HUGHESA AIRCRAFT COMPANY
 SOLID STATE PRODUCTS

 1024×8

 1024×8 CMOS EEPROM

 CMOS EEPROM}

EXTENDED ENDURANCE EEPROM

DESCRIPTION

The HNVM 3008 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) organized 1024×8. It is ideal for applications where large amounts of data must occasionally be altered and then stored during power down conditions such as program storage, data tables or data collection.

Erasing and programming are accomplished by applying low level signals to the control inputs $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ while the power supply voltage VDD is elevated to + VPP. The bulk erase (entire memory) and byte programming both require $100 \mu \mathrm{sec}$ per operation with +VPP at +17 V .

All read operations are performed with VDD at a nominal 5 volts. The falling edge of the Chip Enable signal ($\overline{\mathrm{CE}}$) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable $(\overline{\mathrm{OE}})$ is a low level and Chip Select (CS) is a high level.

The HNVM 3008 is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Devices in chip form (H suffix) are supplied upon request.

FEATURES

- Nonvolatile storage of 8192 bits, organized as 1024×8
- Electrically erasable and programmable in-circuit. No UV light required.
- Extended endurance.
- Fast erase time - $100 \mu \mathrm{sec}$
- Fast programming time - 100 $\mu \mathrm{sec} / \mathrm{byte}$ or 100 msec for entire memory

FUNCTIONAL DIAGRAM

- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and $T^{2} L$ compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and $\mathrm{T}^{2} \mathrm{~L}$.

MAXIMUM RATINGS

DC Supply Voltage Range . -0.3 to +18 V
(All Voltages referenced to GND terminal)
Input Voltage Range -0.3 to $V_{D D}+0.3 \mathrm{~V}$
Operating Temperature Range
Ceramic Package.................................... -55 to $+125^{\circ} \mathrm{C}$
Plastic Package -40 to $+85^{\circ} \mathrm{C}$
Storage Temperature Range 65 to $+150^{\circ} \mathrm{C}$
ELECTRICAL SPECIFICATION $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Read	$+V_{\text {DD }}$	-	4	5	6	V
Supply Voltage, Program (See Note	$+V_{\text {PP }}$	-	15	-	18	\checkmark
Quiescent Current	${ }^{1} \mathrm{Q}$	Inputs $=$ GND or $\mathrm{V}_{\text {DD }}$	-	-	100	$\mu \mathrm{A}$
Operating Current	IDD1	$f=100 \mathrm{KH}_{\mathbf{z}} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	0.5	1	mA
High Voltage Current	'DD2	$V_{D D}=17 \mathrm{~V}$, Inputs $=$ GND or	DD -	1	3	mA
High Voltage Current	IDD3	$V_{D D}=17 \mathrm{~V}$, Inputs $=5 \mathrm{~V}$	-	15	20	mA
Outputs Low Level	V_{OL}	open	0	-	0.05	V
Low Level	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{L}}=1.6 \mathrm{~mA}$	-	-	0.4	V
High Level	V_{OH}	open	4.95	-	5	V
High Level	V_{OH}	$\mathrm{I}_{\mathrm{H}}=-1 \mathrm{~mA}$	4	-	-	V
3-State Output Leakage	I_{OL}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
3-State Output Leakage	${ }^{1} \mathrm{OL}$	$V_{D D}=17 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Inputs Low Level	$V_{\text {IL }}$	$V_{D D}=5 \mathrm{~V}$	-	-	0.8	V
Low Level	$\mathrm{V}_{\text {IL }}$	$V_{\text {DD }}=17 \mathrm{~V}$	-	-	0.6	V
High Level	$\mathrm{V}_{\text {IH }}$	$V_{\text {DD }}=5 \mathrm{~V}$	2.5	1.5	-	V
High Level	$\mathrm{V}_{\text {IH }}$	$V_{\text {DD }}=17 \mathrm{~V}$	3.5	2.5	-	V
Leakage Low	I_{L}	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{I N}=1 \mathrm{~V} \end{aligned}$	-	-	± 1	$\mu \mathrm{A}$
Endurance (number of erase/program cycles)	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16 \mathrm{~V}, \\ & \text { Program Time } \\ & \quad=1 \mathrm{msec} \end{aligned}$	-	10^{4}	-	Cycles
Retention Time	-	$\mathrm{T}=125^{\circ} \mathrm{C}$	-	10	-	yr

Note 1 - Erase/program time is a function of V_{PP} - see characteristic curve.
TIMING SPECIFICATIONS Input $t_{r}=t_{f}=10 \mathrm{nsec}, C_{L}=50_{p f}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ or $+\mathrm{V}_{P P}$

DESCRIPTION		FROM					TO						SPECIFICATION			
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION Address Set-up Time	${ }^{t}$ ASU	Address			X		$\overline{C E}$		X				50	-	-	nsec
Address Hold Time	${ }^{t}{ }^{\text {AH }}$	$\overline{\mathrm{CE}}$		x			Address			X			100	50	-	nsec
Access Time	${ }^{\text {t }} \mathrm{ACE}$	$\overline{C E}$		X			Data				x		-	500	650	nsec
Output Enable Time	${ }^{\text {t }}$ AOE	$\overline{O E}$		X			Data				X		-	250	325	nsec
Chip Select Time	${ }^{t} A C S$	CS	X				Data				X		-	200	260	nsec
Output Disable Time	${ }^{\text {t DOE }}$	$\overline{O E}$	X				Data					X	-	300	-	nsec
Chip Deselect Time	${ }^{\text {t }}$ DCS	CS		X			Data					X	-	400	-	nsec
Chip Disable Time	${ }^{\text {t }}$ DCE	$\overline{C E}$	X				Data					X	-	300	-	nsec
$\begin{array}{\|c\|} \hline \text { Cycle Time } \\ \text { (See Note 2) } \\ \hline \end{array}$	${ }^{\text {t }} \mathrm{CYC}$	$\overline{C E}$		X			$\overline{C E}$		X				-	0.95	1.75	$\mu \mathrm{sec}$
ERASE OPERATION Vpp Set-up Time	${ }^{\text {t VPSU }}$	$V_{\text {DD }}$	X				$\overline{O E}$		X				5	-	-	$\mu \mathrm{sec}$
Erase Width (See Note 3)	${ }^{\text {toEW }}$	$\overline{O E}$		X			$\overline{O E}$	X					0.1	-	10	msec
PROGRAM OPERAT Vpp Set-up Time	ION ${ }^{t}$ VPSU	$V_{\text {DD }}$	x				$\overline{C E}$		x				5	-	-	$\mu \mathrm{sec}$
Write Width (See Note 3)	${ }^{\text {t }}$ CEWP	CE		X			$\overline{C E}$	X					0.1	-	10	msec
Data Set-up Time	${ }^{\text {t DSU }}$	Data			X		$\overline{C E}$		\times				-	200	-	nsec
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	$\overline{C E}$	X				Data			X			-	200	-	nsec
Address Set-up Time	${ }^{\text {t ASUP }}$	Address			X		$\overline{C E}$		X				-	200	-	nsec
Address Hold Time	${ }^{\text {t }}$ AHP	$\overline{\mathrm{CE}}$		X			Address	.		X			-	200	-	nsec

Note $2-\overline{C E}$ low $=650 \mathrm{nsec}$.
3 - Erase/program time is a function of V_{PP} - see characteristic curve.

ERASE/PROGRAM OPERATIONS

EXTENDED TEMPERATURE RANGE OPERATION

PROGRAM CHARACTERISTICS
VS. SUPPLY VOLTAGE

READ CHARACTERISTICS
VS. SUPPLY VOLTAGE

OPERATING MODES

The HNVM 3008 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3008 functions as a normal CMOS ROM. When the power input (VDD) is raised to + VPP, the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:
READ MODE The circuit reads addresses on the falling edge of $\overline{C E}$ and latches the accessed data until $\overline{C E}$ goes high again. The latched data will appear at the outputs whenever $\overline{\mathrm{CE}}$ is low, CS is high, and $\overline{O E}$ is low.
ERASE MODE A Block Erase (all O's in memory) is accomplished by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP and then pulsing $\overline{O E}$ low. When the circuit internally senses the + VPP voltage, it floats the outputs, preventing $+V_{P P}$ level signals from appearing on the data I/O bus.
PROGRAM MODE Programming consists of writing 1's into bits that contain a 0 . A byte programmed by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to +VPP , and pulsing $\overline{\mathrm{CE}}$ low. The address lines must have valid data when $\overline{C E}$ falls and the data to be programmed must be valid on the data I/O lines while $\overline{C E}$ is low. A Program operation can follow an Erase while holding VDD at + VPP, and several or all the bytes can be programmed with VDD held at + VPP.

SUMMARY OF OPERATING MODES

State	$\overline{\mathrm{CE}}$	CS	$\overline{\mathrm{OE}}$	VDD	I/O Bus
Standby	1	X	X	+5	Floating
Standby	X	0	X	+5	Floating
Standby	X	X	1	+5	Floating
Read	0^{1}	1	0	+5	Data Output
Standby	1	X	1	$+V_{\mathrm{PP}}$	Floating
Erase	1	X	0^{1}	$+\mathrm{V}_{\mathrm{PP}}$	Floating
Program	0^{1}	X	1	$+\mathrm{VPP}_{\mathrm{PP}}$	Floating (Data Input)
Prohibited State	0	X	0	$+\mathrm{V}_{\mathrm{PP}}$	Floating (Data Input)

Note 1 - Pulse to indicate state
2 - Recommended mode for $V_{D D}$ transitions to and from $+V_{P P}$

PIN DESCRIPTIONS

MA0-MA9 Address inputs which select one of 1024 bytes of memory for either Read or Program. The addresses are latched during the falling edge of $\overline{\mathrm{CE}}$.
BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.
GND \quad Negative supply terminal and $\mathrm{V}=0$ reference.
VDD Positive supply terminal. It is raised to + VPP for Erase and Program operations.
CS Chip Select. A Logic Low disables the Data Output Drivers in all modes.
$\overline{\mathbf{O E}} \quad$ Output Enable. A Logic High disables the Data Output Drivers in normal operation. If $\mathrm{V}_{\mathrm{DD}}=+\mathrm{V}_{\mathrm{PP}}$, a Logic Low performs a block erase operation.
$\overline{\mathbf{C E}} \quad$ Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as $\overline{C E}$ is held at Logic Low. If $\mathrm{V}_{\mathrm{DD}}=+\mathrm{V}_{\mathrm{PP}}$, a Logic Low performs a byte program operation.
Additional EEPROM devices which are available from Hughes include the HNVM 3708 (1024×8) aimed at specific applications where programming time and endurance are not critical.
Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHĒSAIRCRAFT COMPANY
500 Superior Avenue. Newport Beach. CA 92663
Telephone (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich. West Germany
Telephone 49-89-834.7088 Telex: 5213856 HSPD

DESCRIPTION

EXTENDED ENDURANCE EEPROM

The HNVM 3108 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) organized 1024×8. It is ideal for applications where large amounts of data must occasionally be altered and then stored during power down conditions such as program storage, data tables or data collection.

Data modification is accomplished by first raising the power voltage, VDD to +VPP and selecting the device with CS high $(+5 \mathrm{~V})$. Then, erasing or programming is controlled with $\mathrm{T}^{2} \mathrm{~L}$ level signals to the appropriate control inputs $\overline{\mathrm{OE}}$ (Erase) and $\overline{\mathrm{CE}}$ (Program).
All read operations are performed with VDD at 5 volts. With CS at a high level, the falling edge of the Chip Enable signal ($\overline{\mathrm{CE}}$) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable ($\overline{\mathrm{OE}}$) is a low level.
The Chip Select (CS) input for this device is functional in all modes, allowing for chip selection in the Read, Erase, or Program modes independent of $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ inputs.
The HNVM 3108 is available in a 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Devices in chip form (H suffix) are supplied on request.

FEATURES

- Nonvolatile storage of 8192 bits, organized as 1024×8
- Electrically erasable and programmable in-circuit. No UV light required
- Extended endurance
- Fast erase time - $100 \mu \mathrm{sec}$
- Fast programming time - 100 $\mu \mathrm{sec} / \mathrm{byte}$, or 100 msec for all 8 K bits

FUNCTIONAL DIAGRAM

- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and $T 2$ compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and T2L
PIN CONFIGURATION

ADDRESS INPUTS

MAXIMUM RATINGS

DC Supply Voltage Range
(All Voltages referenced to GND terminal)
Input Voltage Range . -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range

Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$
ELECTRICAL SPECIFICATION $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5$ Volts unless otherwise noted.

Note 1 - Erase/program time is a function of $V_{P P}$ - see characteristic curve.
TIMING SPECIFICATIONS Input $t_{r}=t_{f}=10 \mathrm{nsec}, C_{L}=50_{p f,}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ or $+\mathrm{V}_{\mathrm{PP}}$

DESCRIPTION		FROM					TO						SPECIFICATION			
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION Address Set-up Time	${ }^{\text {t }}$ ASU	Address			X		$\overline{C E}$		X				50	-	-	nsec
Address Hold Time	${ }^{\text {t }}$ A ${ }^{\text {H }}$	$\overline{C E}$		x			Address			X			100	50	-	nsec
Access Time	${ }^{\text {t }}$ ACE	CE		X			Data				X		-	500	650	nsec
Output Enable Time	${ }^{\text {t }}$ AOE	$\overline{O E}$		X			Data				X		-	250	325	nsec
Chip Select Time	${ }^{t} A C S$	CS	x				Data				X		-	500	650	nsec
Output Disable Time	${ }^{\text {t DOE }}$	OE	\times				Data					x	-	300	-	nsec
Chip Deselect Time	${ }^{\text {t DCS }}$	CS		X			Data					X	-	400	-	nsec
Chip Disable Time	${ }^{\text {t }}$ DCE	$\overline{C E}$	\times				Data					X	-	300	-	nsec
$\begin{gathered} \text { Cycle Time } \\ \text { (See Note 2) } \end{gathered}$	${ }^{\mathbf{t}} \mathrm{CYC}$	$\overline{C E}$		X			$\overline{C E}$		X				-	0.95	1.75	$\mu \mathrm{sec}$
ERASE OPERATION VPP Set-up Time	${ }^{\text {t VPSU }}$	$V_{D D}$	X				$\overline{O E}$		X				5	-	-	$\mu \mathrm{sec}$
Erase Width (See Note 3)	${ }^{\text {t OEW }}$	$\overline{O E}$		X			$\overline{O E}$	X					0.1	-	10	msec
PROGRAM OPERAT VPP Set-up Time	ION tVPSU	$V_{\text {DD }}$	X				$\overline{C E}$		X				5	-	-	$\mu \mathrm{sec}$
Write Width (See Note 3)	${ }^{\text {t CEWP }}$	$\overline{C E}$		X			$\overline{C E}$	X					0.1	-	10	msec
Data Set-up Time	${ }^{\text {t }}$ DSU	Data			X		$\overline{C E}$		\times				-	200	-	nsec
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	CE	X				Data			X			-	200	-	nsec
Address Set-up Time	${ }^{\text {t ASUP }}$	Address			\times		CE		X				-	200	-	nsec
Address Hold Time	${ }^{\text {t }}$ AHP	$\overline{C E}$		X			Address			X			-	200	-	nsec

Note $2-$ CE low $=650 \mathrm{nsec}$.
3 - Erase/program time is a function of V_{PP} - see characteristic curve.

READ SPECIFICATIONS

EXTENDED TEMPERATURE RANGE OPERATION

PROGRAM CHARACTERISTICS

VS. SUPPLY VOLTAGE

READ CHARACTERISTICS
VS. SUPPLY VOLTAGE

OPERATING MODES

The HNVM 3108 has three modes of operation: Read, Block Erase and Byte Program, all enabled when the chip is selected (CS = high). In the Read Mode the HNVM 3108 functions as a normal CMOS ROM. When the power input (VDD) is raised to + VPP, the Erase or Program Mode is enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. An Erase Operation is required before re-writing over previously Programmed data. Detailed procedures for each mode follow:
READ MODE The circuit reads addresses on the falling edge of $\overline{C E}$ and latches the accessed data until $\overline{C E}$ goes high again. The latched data will appear at the outputs whenever $\overline{\mathrm{CE}}$ is low, CS is high, and $\overline{\mathrm{OE}}$ is low. A read is initiated with CS going high if $\overline{\mathrm{CE}}$ is already low.
ERASE MODE A Block Erase (all 0's in memory) is accomplished by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP and then pulsing $\overline{O E}$ low. When the circuit internally senses the + VPP voltage, it floats the outputs, preventing + VPP level signals from appearing on the data I/O bus. Erasure can also be controlled by CS if $\overline{O E}$ is already low.
PROGRAM MODE Programming consists of writing 1 's into bits that contain a 0 . A byte is programmed by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP, and pulsing $\overline{\mathrm{CE}}$ low. The address lines must have valid data when $\overline{\mathrm{CE}}$ falls and the data to be programmed must be valid on the data I/O lines while $\overline{\mathrm{CE}}$ is low. A Program operation can follow an Erase while holding + VDD at + VPP, and several or all the bytes can be programmed with $+V_{D D}$ held at + VPP. Programming can also be controlled by CS if $\overline{C E}$ is already low.

SUMMARY OF OPERATING MODES

State	$\overline{\mathrm{CE}}$	CS	$\overline{\mathrm{OE}}$	VDD	I/O Bus
Standby (unselected)					
Standby (unselected) 1	X	0	X	X	Floating
Standby (selected)	1	1	1	X	Floating.
Read	1	1	0	+5	Floating
Read	0	1	1	+5	Floating
Erase	0	1	0	+5	Data Out
Program	1	1	0	+ VPP	Floating
Prohibited State	0	1	1	+ VPP	Data Input
Sta	0	1	0	+ VPP	Data Input

Note 1 - Recommended modes for $V_{D D}$ transition to and from $+V_{P P}$. $V_{D D}$ should not fall below input levels during transition.

PIN DESCRIPTIONS

MA0-MA9 Address inputs which select one of 1024 bytes of memory for either Read or Program. The addresses need to be valid only during the falling edge of $\overline{\mathrm{CE}}$.
BUS0-BUS7 Bidirectional three-state data lines that are Data outputs during Read operation and Data inputs during Program operation.
GND
Negative supply terminal and $\mathrm{V}=0$ reference.
VDD Positive supply terminal. It is raised to + VPP for Erase and Program operations.
CS Chip Select. A Logic Low disables all control inputs in all modes.
$\overline{\mathbf{O E}} \quad$ Output Enable. A Logic High disables the Data Output Drivers in normal operation. If $\mathrm{V}_{\mathrm{DD}}=$ + VPP, a Logic Low causes a block erase. This input is active only when CS operates high.
$\overline{\mathbf{C E}} \quad$ Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as $\overline{\mathrm{CE}}$ is held at a Logic Low. If VDD $=+$ VPP, a Logic Low causes a byte program operation. This input is active only when CS is high.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

LUḠ̈ES AIRCRAFT COMPANY
500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES

512×8 CMOS EEPROM

DESCRIPTION

The HNVM 3704 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) intended for use as an EPROM replacement. It is ideal for applications where data needs to be altered a limited amount of times as in program development or data table storage.

No ultraviolet erasure is required. Erasing and programming are accomplished by applying low level signals to the control outputs $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ respectively while the power supply voltage ($V_{D D}$) is elevated to + VPP (approximately +16 V). The bulk erase (entire memory) and byte programming both require 1 msec per operation.

All read operations are performed with $V_{D D}$ at a nominal 5 volts. The falling edge of the Chip Enable signal ($\overline{\mathrm{CE}}$) latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable $(\overline{\mathrm{OE}})$ is a low level and Chip Select (CS) is a high level.

The HNVM 3708 is available in a 24 lead dual-in-line plastic (P suffix) package.

FEATURES

- Nonvolatile storage of 4096 bits organized as 512×8
- Electrically erasable and programmable. No UV light required for erasure.
- Fast erase time - 1 msec
- Fast programming time - 1 msec/byte
- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and $T^{2} L$ compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and $T^{2} L$.

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

[^1]
MAXIMUM RATINGS

DC Supply Voltage Range... -0.3 to +18 V
(All Voltages referenced to GND terminal)
Input Voltage Range
-0.3 to $V_{D D}+0.3 \mathrm{~V}$
Operating Temperature Range
Plastic Package.. 40 to $+85^{\circ} \mathrm{C}$
Storage Temperature Range
-65 to $+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATION $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Normal	$+V_{\text {DD }}$	-	4	5	6	V
Supply Voltage, Nonvolatile(See Note 1)	$+V_{\text {PP }}$	-	15	16	17	\checkmark
Quiescent Current	10	Inputs $=$ GND or $\mathrm{V}_{\text {DD }}$	-	-	100	$\mu \mathrm{A}$
Operating Current	IDD1	$f=100 \mathrm{KH}_{\mathbf{z}} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1	2.5	mA
High Voltage Current	'DD2	$V_{D D}=17 \mathrm{~V}$, Inputs $=G N D$ or $V_{D D}$	-	1	3	mA
High Voltage Current	IDD3	$V_{D D}=17 \mathrm{~V}$, Inputs $=5 \mathrm{~V}$	-	15	20	mA
Outputs Low Level	V_{OL}	open	0	-	0.05	V
Low Level	V_{OL}	$\mathrm{I}_{\mathrm{L}}=1.6 \mathrm{~mA}$	-	-	0.4	V
High Level	V_{OH}	open	4.95	-	5	V
High Level	V_{OH}	$1{ }^{\prime}=-1 \mathrm{~mA}$	4	-	-	V
3-State Output Leakage	${ }^{1} \mathrm{OL}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
3-State Output Leakage	IOL	$V_{\text {DD }}=17 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Inputs Low Level	$V_{\text {IL }}$	$V_{D D}=5 \mathrm{~V}$	-	-	0.8	V
Low Level	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {DD }}=17 \mathrm{~V}$	-	-	0.6	V
High Level	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	2.5	1.5	$\mathrm{V}_{\text {DD }}$	V
High Level	$\mathrm{V}_{\text {IH }}$	$V_{\text {DD }}=17 \mathrm{~V}$	4	2.5	V_{DD}	V
Leakage Low	IL	$\begin{aligned} & V_{D D}=5 V \\ & V_{I N}=1 V \end{aligned}$	-	-	± 1	$\mu \mathrm{A}$
Endurance (number of erase/program cycles)	-	$\mathrm{V}_{\mathrm{DD}}=+16 \mathrm{~V},$ Program or erase time $=1 \mathrm{msec}$	-	100	-	Cycles
Retention Time	-	$\mathrm{T}=125^{\circ} \mathrm{C}$	-	10	-	yr

Note 1 - Erase/program time is a function of $V_{P P}$ - see characteristic curve.
TIMING SPECIFICATIONS Input $t_{r}=t_{f}=10$ nsec, $C_{L}=50_{p f}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ or +16 V

description		FROM					то						SPECIFICATION			
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	Change	VALID	SIgNaL	RISE	FALL	Change	VALID	float	MIN.	TYP.	MAX.	UNITS
READ OPERATION Address Set-up Time	${ }^{\text {t }}$ ASU	Address			X		$\overline{\mathrm{CE}}$		x				50	-	-	nsec
Address Hold Time	${ }^{\text {t }}$ AH	$\overline{\mathrm{CE}}$		x			Address			x			100	50	-	nsec
Access Time	$t_{\text {ACE }}$	$\overline{\text { CE }}$		x			Data				\times		-	500	650	nsec
Output Enable Time	${ }^{\text {t }}$ AOE	$\overline{O E}$		X			Data				X		-	250	325	nsec
Chip Select Time	${ }^{\text {t }}$ ACS	Cs	x				Data				-		-	200	260	nsec
Output Disable Time	${ }^{\text {t }}$ DOE	OE	x				Data					x	-	300	-	nsec
Chip Deselect Time	${ }^{\text {t }}$ DCS	Cs		X			Data					x	-	400	-	nsec
Chip Disable Time	${ }^{\text {t }}$ DCE	$\overline{\mathrm{CE}}$	x				Data					\times	-	300	-	nsec
Cycle Time (See Note 2)	${ }^{\text {t }} \mathrm{CYC}$	$\overline{\mathrm{CE}}$		X			$\overline{\text { CE }}$		X				-	0.95	1.75	$\mu \mathrm{sec}$
ERASE OPERATION VPp Setup Time	tVPSU	V_{DD}	x				$\overline{O E}$		x				5	-	-	$\mu \mathrm{sec}$
Erase Width (See Note 3)	toew	$\overline{O E}$		x			$\overline{\mathrm{OE}}$	x					0.5	1	10	msec
PROGRAM OPERATI VPp Setup Time	ION tVPSU	$V_{\text {DD }}$	\times				$\overline{\text { CE }}$		x				5	-	-	$\mu \mathrm{sec}$
Write Width (See Note 3)	${ }^{\text {t }}$ CEWP	$\overline{C E}$		x			$\overline{\mathrm{CE}}$	x					0.5	1	10	msec
Data Set-up Time	${ }^{\text {t DSU }}$	Data			X		CE		X				-	200	-	nsec
Data Hold Time	${ }^{\text {t }}$ D H	$\overline{\mathrm{CE}}$	x				Data			x			-	200	-	nsec
Address Set-up Time	${ }^{\text {t }}$ ASUP	Address			x		$\overline{\text { CE }}$		x				-	200	-	nsec
Address Hold Time	${ }^{\text {t }}$ AHP	$\overline{\text { CE }}$		x			Address			X			-	200	-	nsec

Note $2-\overline{\mathrm{CE}}$ low $=650 \mathrm{nsec}$.
3 - Erase/program time is a function of $V_{P P}$ - see characteristic curve.

FIGURE 1 - PROGRAMMING VOLTAGE \& TIME RANGE

TIMING DIAGRAMS
READ SPECIFICATIONS

ERASE/PROGRAM OPERATIONS

* Shown for reference only. $V_{D D}$ can be held at $V_{P P}$ to perform erase followed by full EEPROM programming.

OPERATING MODES

The HNVM 3704 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3704 functions as a normal CMOS ROM. When the power input (VDD) is raised to $+\mathrm{V}_{\text {PP }}$, the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:
READ MODE The circuit reads addresses on the falling edge of $\overline{C E}$ and latches the accessed data until $\overline{C E}$ goes high again. The latched data will appear at the outputs whenever $\overline{C E}$ is low, CS is high, and $\overline{O E}$ is low.
ERASE MODE A Block Erase (all O's in memory) is accomplished by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP and then pulsing $\overline{\text { OE }}$ low. When the circuit internally senses the + VPP voltage, it floats the outputs, preventing + VPP level signals from appearing on the data I/O bus.
PROGRAM MODE Programming consists of writing 1's into bits that contain a 0 . A byte is programmed by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to + VPP, and pulsing $\overline{\mathrm{CE}}$ low. The address lines must have valid data when $\overline{\mathrm{CE}}$ falls and the data to be programmed must be valid on the data I/O lines while $\overline{C E}$ is low. A Program operation can follow an Erase while holding VDD at $+V_{P P}$, and several or all the bytes can be programmed with $V_{D D}$ held at + VPP.
SUMMARY OF OPERATING MODES

State	$\overline{C E}$	CS	$\overline{O E}$	VDD	I/O Bus
Standby	1	X	X	+5	Floating
Standby	X	0	X	+5	Floating
Standby	X	X	1	+5	Floating
Read	$0{ }^{1}$	1	0	+5	Data Output
Standby ${ }^{2}$	1	x	1	$+V_{P P}$	Floating
Erase	1	X	01	$+V_{P P}$	Floating
Program	01	x	1	$+V_{\text {PP }}$	Floating (Data Input)
Prohibited State	0	X	0	+VPP	Floating (Data Input)

[^2]PIN DESCRIPTIONS
MA0-MA8 Address inputs which select one of 512 bytes of memory for either Read or Program. The addresses are latched during the falling edge of $\overline{C E}$.
BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.
GND Negative supply terminal and $\mathrm{V}=0$ reference.
VDD Positive supply terminal. It is raised to + VPP for Erase and Program operations.
CS Chip Select. A Logic Low disables the Data Output Drivers in normal (5V) operation.
$\overline{\mathbf{O E}} \quad$ Output Enable. A Logic High disables the Data Output Drivers. If $\mathrm{V}_{\mathrm{DD}}=+\mathrm{V}_{\mathrm{PP}}, \mathrm{a}$ Logic Low performs a block erase operation.
$\overline{\mathbf{C E}} \quad$ Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as $\overline{C E}$ is held at Logic Low. If $V_{D D}=+V_{P P}$, a Logic Low performs a byte program operation.
SEL The select input requires connection to GND for 3704-2 or to VDD for 3704-1.
Additional EEPROM devices which are available from Hughes include the HNVM $3004(512 \times 8)$ aimed at specific applications where programming time and endurance are critical.
Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGAES AIRCRAFT COMPANY
500 Superior Avenue, Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES
LUGḠĒS AIRCRAFT COMPANY
SOLID STATE PRODUCTS

DESCRIPTION

The HNVM 3708 is a CMOS Electrically Erasable and Programmable Read Only Memory (EEPROM) intended for use as an EPROM replacement. It is ideal for applications where data needs to be altered a limited amount of times as in program development or data table storage.
No ultraviolet erasure is required. Erasing and programming are accomplished by applying low level signals to the control outputs $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ respectively while the power supply voltage (VDD) is elevated to + VPP (approximately +16 V). The bulk erase (entire memory) and byte programming both require 1 msec per operation.
All read operations are performed with VDD at a nominal 5 volts. The falling edge of the Chip Enable signal ($\overline{\mathrm{CE}})$ latches a valid address input and initiates the accessing of data. The information is enabled on the bus when Output Enable $(\overline{\mathrm{OE}})$ is a low level and Chip Select (CS) is a high level.
The HNVM 3708 is available in a 24 lead dual-in-line plastic (P suffix) packages. Devices in chip form (H suffix) are supplied upon request.

FEATURES

- Nonvolatile storage of 8192 bits, organized as 1024×8
- Electrically erasable and programmable. No UV light required for erasure.
- Fast erase time - 1 msec typical
- Fast programming time - 1 msec/byte
- CMOS fabrication for: Low power operation High noise immunity Wide temperature range
- CMOS, NMOS, PMOS, and T²L compatible inputs
- Three-state outputs compatible with CMOS, NMOS, PMOS, and $\mathrm{T}^{2} \mathrm{~L}$.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS

DC Supply Voltage Range -0.3 to +18 V
(All Voltages referenced to GND terminal)
Input Voltage Range
-0.3 to $V_{D D}+0.3 V$
Operating Temperature Range
Plastic Package
-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . 65 to $+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATION $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5$ Volts unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage, Normal	$+V_{\text {DD }}$	-	4	5	6	V
Supply Voltage, Nonvolatile (See Note 1)	$+V_{P P}$	-	15	16	17	\checkmark
Quiescent Current	${ }^{1} \mathrm{Q}$	Inputs $=$ GND or $\mathrm{V}_{\text {DD }}$	-	-	100	$\mu \mathrm{A}$
Operating Current	'DD1	$\mathrm{f}=100 \mathrm{KH}_{2} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1	2.5	mA
High Voltage Current	IDD2	$V_{D D}=17 \mathrm{~V}$. Inputs $=G N D$ or $V_{D D}$	-	1	3	mA
High Voltage Current	IDD3	$V_{D D}=17 \mathrm{~V}$, Inputs $=5 \mathrm{~V}$	-	15	20	mA
Outputs Low Level	$\mathrm{VOL}_{\mathrm{OL}}$	open	0	-	0.05	V
Low Level	V_{OL}	$\mathrm{I}_{\mathrm{L}}=1.6 \mathrm{~mA}$	-	-	0.4	V
High Level	V_{OH}	open	4.95	-	5	V
High Level	V_{OH}	$\mathrm{I}_{\mathrm{H}}=-1 \mathrm{~mA}$	4	-	-	V
3-State Output Leakage	${ }^{1} \mathrm{OL}$	$V_{\text {DD }}=5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
3-State Output Leakage	'OL	$V_{D D}=17 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Inputs Low Leve\|	$V_{\text {IL }}$	$V_{\text {DD }}=5 \mathrm{~V}$	-	-	0.8	V
Low Leve!	$V_{\text {IL }}$	$V_{\text {DD }}=17 \mathrm{~V}$	-	-	0.6	V
High Level	$\mathrm{V}_{\text {IH }}$	$V_{D D}=5 \mathrm{~V}$	2.5	1.5	$\mathrm{V}_{\text {DD }}$	V
High Level	$\mathrm{V}_{1} \mathrm{H}$	$V_{D D}=17 \mathrm{~V}$	4	2.5	$\mathrm{V}_{\text {DD }}$	V
Leakage Low	I_{L}	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {IN }}=1 \mathrm{~V} \end{aligned}$	-	-	± 1	$\mu \mathrm{A}$
Endurance (number of erase/program cycles)	-	$V_{D D}=+16 V,$ Program or erase time $=1 \mathrm{msec}$	-	100	-	Cycles
Retention Time	-	$T=125^{\circ} \mathrm{C}$	-	10	-	yr

Note 1 - Erase/program time is a function of VPP - see characteristic curve
TIMING SPECIFICATIONS
Input $t_{r}=t_{f}=10 \mathrm{nsec}, C_{L}=50_{p f}, T_{A}=25^{\circ} \mathrm{C}, V_{D D}=+5 \mathrm{~V}$ or +16 V

DESCRIPTION		FROM					TO						SPECIFICATION			
PARAMETER	SYMBOL	SIGNAL	RISE	FALL	CHANGE	VALID	SIGNAL	RISE	FALL	CHANGE	VALID	FLOAT	MIN.	TYP.	MAX.	UNITS
READ OPERATION Address Set-up Time	${ }^{\text {t }}$ ASU	Address			X		$\overline{\mathrm{CE}}$		X				50	-	-	nsec
Address Hold Time	${ }^{t} \mathrm{AH}$	$\overline{\mathrm{CE}}$		X			Address			X			100	50	-	nsec
Access Time	${ }^{\text {t }} \mathrm{ACE}$	$\overline{\mathrm{CE}}$		X			Data				\times		-	500	650	nsec
Output Enable Time	${ }^{\text {t }}$ AOE	$\overline{O E}$		\times			Data				X		-	250	325	nsec
Chip Select Time	${ }^{\text {t }}$ ACS	CS	\times				Data				X		-	200	260	nsec
Output Disable Time	${ }^{\text {t DOE }}$	OE	\times				Data					x	-	300	-	nsec
Chip Deselect Time	${ }^{\text {t }}$ DCS	CS		X			Data					X	-	400	-	nsec
Chip Disable Time	${ }^{\text {t }}$ DCE	$\overline{C E}$	\times				Data					X	-	300	-	nsec
$\begin{array}{\|c\|} \hline \text { Cycle Time } \\ \text { (See Note 2) } \\ \hline \end{array}$	${ }^{t} \mathrm{CYC}$	$\overline{C E}$		X			$\overline{\mathrm{CE}}$		X				-	0.95	1.75	$\mu \mathrm{sec}$
ERASE OPERATION $V_{\text {Pp }}$ Set-up Time	${ }^{\text {t VPSU }}$	$\mathrm{V}_{\text {DD }}$	X				$\overline{O E}$		X				5	-	-	$\mu \mathrm{sec}$
$\begin{array}{\|c\|} \hline \text { Erase Width } \\ \text { (See Note 3) } \end{array}$	${ }^{\text {t O P W }}$	$\overline{O E}$		X			$\overline{O E}$	X					0.5	-	10	msec
PROGRAM OPERAT VPP Set-up Time	ION ${ }^{t}$ VPSU	$V_{\text {DD }}$	X				$\overline{C E}$		X				5	1	-	$\mu \mathrm{sec}$
Write Width (See Note 3)	${ }^{\text {t }}$ CEWP	$\overline{\mathrm{CE}}$		X			$\stackrel{\rightharpoonup}{C E}$	X					0.5	1	10	msec
Data Set-up Time	${ }^{\text {t }}$ DSU	Data			\times		$\overline{C E}$		\times				-	200	-	nsec
Data Hold Time	${ }^{t} \mathrm{DH}$	$\overline{\mathrm{CE}}$	X				Data			X			-	200	-	nsec
Address Set-up Time	${ }^{\text {t }}$ ASUP	Address			\times		$\overline{C E}$		X				-	200	-	nsec
Address Hold Time	${ }^{\text {t }} \mathrm{AHP}$	$\overline{\mathrm{CE}}$		X			Address			X			-	200	-	nsec

Note $2-\overline{\mathrm{CE}}$ low $=650 \mathrm{nsec}$.
3 - Erase/program time is a function of $V_{P P}$ - see characteristic curve

FIGURE 1 - PROGRAMMING VOLTAGE \& TIME RANGE

TIMING DIAGRAMS
READ SPECIFICATIONS

ERASE/PROGRAM OPERATIONS

[^3]
OPERATING MODES

The HNVM 3708 has three modes of operation: Read, Block Erase and Byte Program. In the Read Mode the HNVM 3708 functions as a normal CMOS ROM. When the power input (VDD) is raised to + VPp, the Erase or Program Modes are enabled. In the Erase Mode, all bytes are reset to a logic low (GND). In the Program Mode, bits of the addressed byte may be set to a logic high. Detailed procedures for each Mode follow:
READ MODE The circuit reads addresses on the falling edge of $\overline{C E}$ and latches the accessed data until $\overline{\mathrm{CE}}$ goes high again. The latched data will appear at the outputs whenever $\overline{\mathrm{CE}}$ is low, CS is high, and $\overline{O E}$ is low.
ERASE MODE A Block Erase (all O's in memory) is accomplished by setting $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ high, raising the positive supply to $+\mathrm{V}_{P P}$ and then pulsing $\overline{O E}$ low. When the circuit internally senses the $+\mathrm{V}_{\mathrm{PP}}$ voltage, it floats the outputs, preventing + VPP level signals from appearing on the data I/O bus.
PROGRAM MODE Programming consists of writing 1's into bits that contain a 0 . A byte is programmed by setting $\overline{C E}$ and $\overline{O E}$ high, raising the positive supply to + VPP, and pulsing $\overline{C E}$ low. The address lines must have valid data when $\overline{C E}$ falls and the data to be programmed must be valid on the data I / O lines while $\overline{C E}$ is low. A Program operation can follow an Erase while holding VDD at + VPP, and several or all the bytes can be programmed with VDD held at $+\mathrm{V}_{\text {PP }}$.
SUMMARY OF OPERATING MODES

State	$\overline{\mathrm{CE}}$	CS	$\overline{O E}$	VDD	1/O Bus
Standby	1	X	X	+5	Floating
Standby	X	0	X	+5	Floating
Standby	X	X	1	+5	Floating
Read	$0{ }^{1}$	1	0	+5	Data Output
Standby ${ }^{2}$	1	X	1	+VPP	Floating
Erase	1	X	01	+VPP	Floating
Program	$0{ }^{1}$	X	1	+VPP	Floating (Data Input)
Prohibited State	0	X	0	$+\mathrm{V}_{\mathrm{PP}}$	Floating (Data Input)
Note 1 - Pulse to indicate state	10 and				

2 - Recommended mode for $V_{D D}$ transitions to and from $+V_{P P}$
PIN DESCRIPTIONS
MA0-MA9 Address inputs which select one of 1024 bytes of memory for either Read or Program. The addresses are latched during the falling edge of $\overline{\mathrm{CE}}$.
BUS0-BUS7 Bidirectional three-state data lines that are Data Outputs during Read operation and Data Inputs during Program operation.
GND Negative supply terminal and $\mathrm{V}=0$ reference.
VDD Positive supply terminal. It is raised to $+V_{P P}$ for Erase and Program operations.
CS Chip Select. A Logic Low disables the Data Output Drivers in normal (5V) operation.
$\overline{O E}$ Output Enable. A Logic High disables the Data Output Drivers. If $\mathrm{V}_{\mathrm{DD}}=+\mathrm{V}_{\mathrm{PP}}$, a Logic Low performs a block erase operation.
$\overline{\mathbf{C E}} \quad$ Chip Enable. This input causes the circuit to read the addresses at its falling edge for both Read and Program operations. For the Read operation, accessed data is latched and valid as long as $\overline{C E}$ is held at Logic Low. If $V_{D D}=+V_{P P}$, a Logic Low performs a byte program operation.
Additional EEPROM devices which are available from Hughes include the HNVM $3008(1024 \times 8)$ aimed at specific applications where programming time and endurance are critical.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

Hughes H3000 Eraser, Simulator, Programmer

Hughes offers a complete low power unit to evaluate the capabilities of Hughes EEPROM family. The H3000 provides the necessary modes to erase, program, read, copy, simulate, modify, and compare Hughes 3004, 3008, 3704, 3708, and the future Hughes Nonvolatile Memories, as well as members of the industry standard $2700 *$ family.

HUGHES H3000 FEATURES

Automatic SELF Test
To insure proper operation the unit runs a self-check automatically with power-on and displays the results.

Easy to Operate

A sixteen character dot matrix Liquid Crystal Display and the eight function keys lead the operator through each mode of operation without the need to refer to the manual. The H3000 requests the correct information by guiding the operator through prompter messages on the display. When an error occurs or the operation is complete, a built-in beeper sounds and appropriate messages are displayed.

Software Controlled Selection

The H3000, a microprocessor controlled unit, requires no personality boards, hardware changes, or switch settings for selection of PROM types or data transfer port characteristics. The last selected parameters remain in the memory until they are altered or the power is turned off.

Smart and Adaptive Programming

The H3000 has a $4 \mathrm{~K} \times 8$ static RAM buffer expandable up to $8 \mathrm{~K} \times 8$. The starting address for the buffer is software selectable in 4 K ranges. Programming and editing are possible on any PROM by using available memory. For example, an 8 K $\times 8$ PROM can be programmed or edited using a $4 \mathrm{~K} \times 8$ buffer.

The programming sequence is designed to minimize the possible programming time. Complete or partial programming is done

automatically after
the compare test. The H3000 is an
intelligent unit; it decides what byte(s) need to be programmed and whether the programming can be done without erasure. Also, while programming (on selected PROMs), the H3000 pulses a word for 10 ms at a time and tests the word after each pulse. Once the word adequately retains the information, it is over-programmed one more time. The unit rejects the PROM if more than five pulses are required to program. This smart and adaptive programming sequence saves significant time in programming any EPROM. The erase function can be enabled to activate automatically in the case of EEPROMs when the programming is not possible without erasure. The compare operation is performed at the end of each programming cycle for verification.

[^4]
Powerful Editor

The Edit mode allows very fast scrolling back and forth through the entire work space. In addition to the Examine and Replace commands, the editor supports many text editing commands such as Move block, Find byte(s), Write all 0 s or 1s, and Compare.

A $24 / 28$-pin simulator cable plugs into user's PROM socket, allowing their programs to run through the H3000 RAM buffer. Access time is 350 nsec or less. The simulator speeds up the development cycle by avoiding the need to erase and reprogram PROMs.

Serial and Parallel I/O

Fast data transfer in both directions is allowed through an RS232C and a parallel port. Start and end address of the block can be user specified.

In the serial transfer, baud rate, parity, bits/ character, etc. are keyboard selectable.

Users Application

Via special command, the users are able to execute their own application programs written for the HCMP 1802 microprocessor in H3000 Buffer.

This feature allows the operators to utilize the H3000 microcomputer power for their own special application and makes it possible to support additional PROMs.

The H3000 can be used to provide a number of useful functions such as an aid in program development and check-out, a functional tester for incoming inspection, a remote programming unit, a field service tool, a production programmer, and many more.

The unique capabilities of the H 3000 are established by using Hughes CMOS devices including the 1800 Microprocessor Family, the HNVM 3708 EEPROM for program storage and an Intelligent LCD Controller/Driver chip set (HLCD 0550/0551). These latter units allow a very simple interface between the microprocessor and the display.

Product Demonstration and Evaluation

The H3000 also offers a number of resident programs to demonstrate capabilities of Hughes EEPROM devices, Intelligent LCD Controller/Driver (HLCD 0550/0551) and 1800 Microprocessor Family.

Operators can use resident subroutines to create new programs and apply the capabilities of the H3000 for their needs. ASCII data can be entered or read in the H3000 without having a ASCII keyboard.

Optional Diagnostics

A series of interactive programs help the user to diagnose a fault in the H3000 if it is suspected that the unit is not functioning properly.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

DESCRIPTION

The HLCD 0437 is a CMOS/LSI circuit that drives a 4 -digit LCD display from multiplexed BCD information. The inputs are four positive true strobe (digit select) signals and four BCD data lines. Such signals are generated by several LSI counting circuits including the Hughes HCTR 4010 and HCTR 6010. The input levels are compatible with $T^{2} \mathrm{~L}$ and NMOS as well as CMOS.

The outputs are four sets of seven segment drive lines with AC waveform and a backplane signal. Input data is loaded into latches upon the positive edge of the appropriate strobe signal. The BCD codes of 0 through 9 give the usual seven segment characters, 15 causes a blank, and 10 through 14 form the letters A, C, d, E, and F. The LCD ϕ pin controls an internal oscillator that determines the LCD drive frequency. A capacitor must be attached at this point. The LCD ϕ pin can be over driven by an external signal or the backplane signal of another HLCD 0437, allowing the use of a display of over four characters. The backplane signal is, thus, the same polarity as the impressed LCD ϕ signal.
The HLCD 0437 is available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Drives a 4-digit LCD
- CMOS construction for:

Wide supply voltage range Low power operation High noise immunity Wide temperature range

- CMOS NMOS, and $T^{2} L$ compatible inputs
- Cascadable for larger displays
- On chip oscillator

BLOCK DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS

$V_{\text {DD }}$	-.3 to +17 V
Inputs	$+\mathrm{V}_{\mathrm{DD}}-17$ to $+\mathrm{V}_{\mathrm{DD}}+.3 \mathrm{~V}$
LCD Input	$\ldots-.3$ to $+\mathrm{V}_{\mathrm{DD}}+.3 \mathrm{~V}$
Power Dissipation.	250 mW
Operating Temperature	
Ceramic Package	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package	$5^{\circ} \mathrm{C}$
Storage Temperatur	-65 to +

ELECTRICAL SPECIFICATIONS $T=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted

PARAMETER	SYMBOL	CONDITION	min.	MAX.	UNITS
Supply Voltage	$\mathrm{V}_{\text {DD }}$		3	15	V
Supply Current	$\begin{aligned} & \text { 'DD1 } \\ & \mathrm{I}^{\mathrm{DD} 2} \end{aligned}$	LCD ϕ Osc at $<15 \mathrm{KHZ}$ LCD ϕ Driven		$\begin{aligned} & 65 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input High Level	$\mathrm{V}_{\text {IH }}$. $5 \mathrm{~V}_{\text {DD }}$	$V_{\text {DD }}$	V
Input Low Level	$V_{\text {IL }}$		$+\mathrm{V}_{\text {D }}{ }^{-15}$. $2 \mathrm{~V}_{\text {DD }}$	V
Input Current	${ }_{\text {L }}$			5	$\mu \mathrm{A}$
Input Capacitance	C_{1}			5	pf
Segment Output Impedance	R_{ON}	${ }_{L} \mathrm{~L}=10 \mu \mathrm{~A}$		50	$k \Omega$
Backplane Output Impedance	R_{ON}			3	$K \Omega$
Strobe Rate	f	25\% Duty Cycle	DC	500	KHZ
BCD Set-up Time	${ }^{t} \mathrm{DS}$	BCD Data change to Strobe rising edge	0		nsec
BCD Hold Time	${ }^{\text {D }} \mathrm{DH}$	Strobe rising edge to BCD Change	300		nsec
DS Rise Time	t_{R}			100	nsec
LCD ϕ Input High Level	$V_{\text {IN }}$. $8 \mathrm{~V}_{\text {DD }}$		V
LCD ϕ Input Low Level	$V_{\text {IL }}$. $2 \mathrm{~V}_{\text {DD }}$	\checkmark
LCD ϕ Input Impedance	$\mathrm{R}_{\text {IN }}$	Typical			$\mathrm{M} \Omega$

TIMING DIAGRAMS

OPERATING NOTES

1. The latches load on the rising edge of Digit Strobe (DS) signals.
2. To cascade units, either connect Backplane of one chip to LCD ϕ of another chip (thus one capacitor provides frequency control for all chips) or connect LCD ϕ of all chips to a common driving signal. If the former is chosen, don't tie all backplanes together (just use one of them) and drive LCD ϕ with a Backplane output that doesn't go to the actual backplane. (This reduces the DC component of driving signals.)
3. The supply voltage of the HLCD 0437 is equal to half the peak driving voltage of the LCD. If the HLCD 0437 supply voltage is less than the swing of the input logic signals, the positive supply leads of the logic circuitry and the HLCD 0437 should be tied in common, but not the ground (or negative) supply leads. Be careful that input level specifications are met.
4. The LCD ϕ pin can be used in two modes, driven or oscillating. If LCD ϕ is driven, the backplane will repeat its frequency. If the LCD ϕ pin is allowed to oscillate, its frequency is inversely proportional to capacitance and the LCD driving waveforms have a frequency 2^{8} slower than the oscillator itself. The relationship is shown graphically. The frequency is nearly independent of supply voltage. For a refresh rate of 40 Hz , a capacitance of 50 pf will suffice.

OPERATING NOTES (Continued)

5. Each DS signal loads latches that control 7 outputs, but the assignment of which character in the display corresponds to which DS is arbitrary. The circuit does not have a requirement that certain characters in the display must come from certain output pins.
6. All LCD Output signals are square waves of amplitude equal to the supply voltage. Compared to the backplane signal, on" segments are out of phase and "off" segments are in phase.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue. Newport Beach. CA 92663 Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

Serial Input LCD Driver

HLCD 0438A

DESCRIPTION

The HLCD 0438A is a CMOS/LSI circuit that drives an LCD display, usually under microprocessor control. The part acts as a smart peripheral that drives up to 32 LCD segments. It needs only three control lines due to its serial input construction. It latches the data to be displayed and relieves the microprocessor from the task of generating the required waveforms.
The HLCD 0438A can drive any standard or custom parallel drive LCD display whether it be field effect or dynamic scattering, $7,9,14$ or 16 segment characters, decimals, leading + or - , or special symbols. Several HLCD 0438A's can be cascaded. The AC frequency of the LCD waveforms can be supplied by the user or can be generated by attaching a capacitor to the LCD ϕ input, which controls the frequency of an internal oscillator.
The HLCD 0438A can also be used as a column driver in a multiplexed LCD display. In this application it acts as a dumb peripheral since timing and refresh must be supplied externally. The HLCD 0438A is available in 40 lead dual-in-line ceramic (D suffix) and plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Drives up to 32 LCD segments of arbitrary configuration
- CMOS construction for:

Wide supply voltage range
Low power operaton
High noise immunity
Wide temperature range

- CMOS, NMOS, and T²L compatible inputs
- Cascadable
- On chip oscillator
- Requires only 3 control lines

PIN CONFIGURATION

SVDD
SEG 32
SEG 31
SEG 30
SEG 29
SEG 28
SEG $27 \square$
SEG $26 \square$

MAXIMUM RATINGS

$V_{\text {DD }}$....................... - 3 to 15V	
Inputs (CIk, Data In, Load) ... + $\mathrm{V}_{\mathrm{DD}}-15$ to $+\mathrm{V}_{\mathrm{DD}}+.3 \mathrm{~V}$	
LCD ϕ Input	-.3 to + $\mathrm{V}_{\mathrm{DD}}+.3 \mathrm{~V}$
Power Dissipation	250 mW
Storage Temperature	-65 to $+125^{\circ} \mathrm{C}$
Operating Temperature	
Plastic Package	40 to $+85^{\circ} \mathrm{C}$
Ceramic Package	

ELECTRICAL CHARACTERISTICS

$T=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage	$V_{\text {DD }}$		3	10	V
Supply Current	'DD1	LCD ϕ Osc $<15 \mathrm{KHz}$		60	$\mu \mathrm{A}$
Quiescent Current	${ }^{1} \mathrm{Q}$	$V_{D D}=10 \mathrm{~V}$		10	$\mu \mathrm{A}$
Input High Level	$\mathrm{V}_{1 \mathrm{H}}$		$.5 \mathrm{~V}_{\text {DD }}$	$V_{\text {DD }}$	V
Input Low Level Clock,	$V_{\text {IL }}$		$V_{D D^{-15}}$	$2 \mathrm{~V}_{\text {DD }}$	V
Input Current \quad Load	${ }^{\prime}$ L			5	$\mu \mathrm{A}$
Input Capacitance	C_{1}			5	pf
Segment Output Impedance	R_{ON}	${ }_{L} \mathrm{~L}=10 \mu \mathrm{~A}$		40	K Ω
Backplane Output Impedance	R_{ON}			3	K Ω
Data Out Output Impedance	R_{ON}			3	$K \Omega$
Clock Rate	f	50% Duty Cycle, $\mathrm{V}_{\text {DD }}=10$	DC	1.5	MHz
Data Set-up Time	${ }^{\text {t }} \mathrm{ds}$	Data change to Clk falling edge, $\mathrm{V}_{\mathrm{DD}}=10$	150		nsec
Data Hold Time	${ }^{t} d h$	$V_{\text {DD }}=10$	50		nsec
Load Pulse Width	${ }^{\text {tpw }}$	$\mathrm{V}_{\mathrm{DD}}=10$	175		nsec
Data Out Prop. Delay	${ }^{\text {tpd }}$	$C_{L}=55 p f, V_{\text {DD }}=10$		500	nsec
LCD ϕ Input High Level	$V_{\text {IN }}$. $9 \mathrm{~V}_{\text {DD }}$		V
LCD ϕ Input Low Level	$V_{\text {IL }}$. $1 \mathrm{~V}_{\text {DD }}$	V
LCD ϕ Input Current Level	${ }^{\prime} \mathrm{L}$	Driven		10	$\mu \mathrm{A}$

BLOCK DIAGRAM

TIMING DIAGRAM

OPERATING NOTES

1. The shift register loads, shifts, and outputs on the falling edge of Clock.
2. A logic 1 on Data In causes a segment to be visible.
3. A logic 1 on Load causes a parallel load of the data in the shift register into latches that control the segment drivers.
4. If LCD ϕ is driven, it is in phase with the Backplane Output.
5. To cascade units, either connect Backplane of one circuit to LCD ϕ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect LCD ϕ of all circuits to a common driving signal. If the former is chosen, tie just one Backplane to the LCD and use a different Backplane output to drive the LCD ϕ inputs. The data can be loaded to all circuits in parallel or else Data Out can be connected to Data In to form a long serial shift register.
6. The supply voltage of the HLCD 0438 A is equal to half the peak driving voltage of the LCD. If the HLCD 0438A supply voltage is less than the swing of the controlling logic signals, the positive supply leads of the logic circuitry and the HLCD 0438A should be tied in common, not the ground (or negative) supply leads. Be careful that input level specifications are met.
7. The LCD ϕ pin can be used in two modes, driven or oscillating. If LCD ϕ is driven, the circuit will sense this condition and pass the LCD ϕ input to the Backplane output. If the LCD ϕ pin is allowed to oscillate, its frequency is inversely proportional to capacitance and the LCD driving waveforms have a frequency 2^{8} slower than the oscillator itself. The relationship is shown graphically. The frequency is nearly independent of supply voltage. If LCD ϕ is oscillating, it is important to keep coupling capacitance to backplane and segments as low as possible. Similarly, it is recommended that the load capacitance on LCD ϕ be as large as is practical.
8. There are two obvious signal races to be avoided in this circuit, (1) changing Data In when Clock is falling, and (2) changing Load when Clock is falling.
9. The number of a segment corresponds to how many clock pulses have occurred since its data was present at the input. For example, the data on SEG 19 was input 19 clock pulses earlier.
10. It is acceptable to tie the load line high. In this case the latches are transparent. Also, remote control would only require two signal lines, Clock and Data In.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

DESCRIPTION

The HLCD 0488 is a CMOS/LSI circuit that drives rectangular matrix LCD displays under microcomputer control. The display itself may be a standard $\mathrm{x}-\mathrm{y}$ array or a custom array that geometrically is not regular at all. Applications include games, bar graphs, and various custom patterns. The HLCD 0488 is organized as 16 rows and 16 columns. It will drive an LCD display of up to 16×16 directly and can be cascaded for larger displays.
Data is input 4 bit parallel to minimize the time required to load in data. This circuit could be referred to as a dumb driver because it drives (using a multiplexed scheme) the display with proper voltage level waveforms, but does not handle refresh, character encoding, or AC generation. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for large displays
- On chip precision voltage divider
- CMOS construction for:

Wide supply voltage range
Low power operation
High noise immunity Wide temperature range

- CMOS, NMOS, and PMOS compatible inputs
- Architecture allows arbitrary display patterns
- 4 bit parallel input
PIN CONFIGURATION

MAXIMUM RATINGS

VDD	-. 3 to 17 volts
Inputs.	$+\mathrm{V}_{\mathrm{DD}}-17$ to $+\mathrm{V}_{\mathrm{DD}}+.3$ volts
Power Dissipation.	. . 250 mW
Operating Temperature	
Ceramic Package .	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	.. -65 to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}=25^{\circ}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN	MAX	UNITS
Supply Voltage Supply Current	$\begin{aligned} & V_{D D} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$		3	$\begin{gathered} 8 \\ 1.5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
Input High Level Input Low Level Input Leakage Input Capacitance	$\begin{aligned} & \mathrm{V}_{I H} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{I}} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-.5 \\ -12 \end{gathered}$	$\begin{gathered} V_{D D} \\ V_{D D}-2 \\ 5 \\ 5 \end{gathered}$	V V $\mu \mathrm{A}$ pf
Output High Selected Output Low Selected	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$		$\begin{gathered} V_{D D}-.05 \\ 0 \end{gathered}$	$\begin{aligned} & V_{D D} \\ & .05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output High Unselected Output Low Unselected	$\begin{aligned} & V_{23} \\ & V_{13} \end{aligned}$		$\begin{aligned} & 2 / 3 V_{D D}-.05 \\ & 1 / 3 V_{D D}-.05 \end{aligned}$	$\begin{aligned} & 2 / 3 \mathrm{~V}_{\mathrm{DD}}+.05 \\ & 1 / 3 \mathrm{~V}_{\mathrm{DD}}+.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Row and Column Output Impedance	$\mathrm{R}_{\text {on }}$	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}$		15	K Ω
Data in Setup Time Data in Hold Time Latch Pulse Width	$\begin{aligned} & \mathrm{t}_{\mathrm{ds}} \\ & \mathrm{t}_{\mathrm{dh}} \\ & \mathrm{t}_{\mathrm{pw}} \end{aligned}$	Data change to clock fall Clock Fall to data change		$\begin{aligned} & 500 \\ & 250 \\ & 500 \end{aligned}$	nsec nsec nsec

TYPICAL WAVEFORMS

TYPICAL SYSTEM BLOCK DIAGRAM USING HLCD 0488

OPERATING NOTES

1. The addressed latches load when $\overline{\text { Data Clk }}$ is low.
2. A logic 1 on Data In selects a row or causes a segment to be visible.
3. A parallel transfer of data from the addressed latches to the holding latches occurs whenever Latch Pulse is high and Data Clk is high.
4. Output drive polarity is inverted upon the falling edge of Latch Pulse if Data CIk is low.
5. Latch Pulse, when high, resets the $\div 8$ latch address counter.
6. When they are selected, Row and Column waveforms are full swing and out of phase with each other. Unselected rows swing from $1 / 3$ to $2 / 3$ of supply out of phase with a selected row waveform. Unselected columns operate analogously.
7. The intended mode of operation is as follows: (see timing diagram)
A. The Polarity signal (internal to circuit) has a frequency slightly above the flicker rate. 30 Hz to 50 Hz is adequate.
B. The Polarity signal should be a square wave of precisely 50% duty cycle to keep DC off the display.
C. The latch pulse is exactly periodic with a frequency of Polarity frequency $\times 2 \times$ number of backplanes utilized, plus 2 extra pulses per Polarity period. These extra pulses are associated with a change of Polarity. The state of Data Clk must change from high to low between these first and second closely spaced pulses.
D. Each time increment contains 8 rising edges of $\overline{\text { Data Clk. }}$
8. To synchronize two circuits driving a large display, set Latch Pulse and Data 0 hi with Data CIk low, then drop Data 0, then begin normal timing. This initializes the Polarity FF.
9. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
10. Input order of HLCD 0488:

Clk Pulse	1	2	3	4	5	6	7	8
Data 0	R1	R5	R9	R13	C1	C5	C9	C13
Data 1	R2	R6	R10	R14	C2	C6	C10	C14
Data 2	R3	R7	R11	R15	C3	C7	C11	C15
Data 3	R4	R8	R12	R16	C4	C8	C12	C16

11. The RMS drive voltages supplied by this IC to an N backplane LCD are as follows:

$$
V_{O F F}=V_{D D} / 3 \quad V_{O N}=\frac{V_{D D}}{3} \sqrt{\frac{N+8}{N}}
$$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

AUTO-REFRESH CMOS LCD DRIVER

DESCRIPTION

The HLCD 0515 is a CMOS driver for multiplexed Liquid Crystal Displays. Each unit is capable of driving an LCD matrix of up to 8 rows $\times 25$ columns. This display could be a graphic array, custom array, or 5 characters in a 5×7 format. Multiple units may be cascaded for displays with more rows and/or more columns. The input is in a serial format (data is loaded in one row at a time) and requires the user to specify the on/off state of each pixel. Therefore, the user has great flexibility in displaying the shapes and figures he needs. The HLCD 0515 provides all the multi-level AC waveforms necessary for the LCD driver, automatically refreshes the display, and interfaces directly with most microprocessors and microcomputers.

The HLCD 0515 operates over 5-10 volt range. The Driver is available in a 40 pin dual-in-line ceramic package (D suffix) or plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- CMOS circuitry

Low power dissipation
Wide temperature range
Wide supply variation

- Microprocessor compatible
- CMOS and NMOS compatible
- Drives an 8×25 multiplexed LCD
- Automatic display refresh
- On-Chip oscillator
- Power down/blank display mode
- Number of backplanes is software programmable from 2 to 8 levels.

TYPICAL SYSTEM INTERCONNECT

MAXIMUM RATINGS, Absolute-Maximum Values

VDD Supply	. 03 to +12 V
Input to Voltages	$V_{D D}-12$ to $V_{D D}+.3$
Storage Temperature	-65 to $+125^{\circ} \mathrm{C}$
Operating Temperature	
Plastic Package . .	-40 to $+85^{\circ} \mathrm{C}$
Ceramic Package	-55 to $+125^{\circ}$

STATIC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, unless otherwise specified

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage	VDD		5		10	V
Supply Current	IDD				900	$\mu \mathrm{A}$
Input High Level	VIH	entire VDD range	. 75 VDD		VDD	V
Input Low Level	VIL		$\mathrm{V}_{\mathrm{DD}}{ }^{-12}$. $25 \mathrm{~V}_{\mathrm{DD}}$	V
Input Leakage	IL				5	$\mu \mathrm{A}$
Input Capacitance	C_{1}				5	pf
Row Output High (Sel)	V OH			VDD		V
Row Output Low (Sel)	VOL			0		V
Row Output High (Unsel)	VOUH			. 75 VDD		
Row Output Low (Unsel) ${ }^{1}$. 25 V DD		V
Column Output High	V OH			VDD		V
Column Output Low	VOL			0		V
Column Output (Unsel)	VOM			. 5 V DD		V
Data Out High Level	V OH	$40 \mu \mathrm{~A}$	2.4			V
Data Out Low Level	V_{OL}	$\mathrm{I}_{\mathrm{L}}=1.6 \mu \mathrm{~A}$. 4	V
Row Output Impedance	ROUTR	$\mathrm{IL}=10 \mu \mathrm{~A}$			10	K Ω
Column Output Impedance	ROUTC	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}$			40	K Ω
Offset Voltage	VOFF				50	mV

NOTE 1: See Output Waveforms

DYNAMIC ELECTRICAL CHARACTERISITICS at $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ unless otherwise specified

PARAMETER	SYMBOL	MIN	MAX	UNITS
Select enable time, chip select falling edge to clock falling edge	tEN	500		nsec
Data Setup time, data valid prior to clock falling edge	tSU	100		nsec
Data hold time, data valid after clock falling edge	tH	10		nsec
Output Prop. delay, clock-falling edge to data out valid	tACCESS		200	nsec
Disable time, chip select rising edge to data out hi-impedance	tDIS		200	nsec
Deselect time delay from clock falling edge to chip select rising edge	tEND	250		nsec

TIMING DIAGRAM

SELECT AND MODE CONTROL

There are four modes of operation in the HLCD 0515:

1. Write buffer mode
2. Read buffer mode
3. Initialization mode - blank display
4. Initialization mode - visible display

A serial data string is presented to the Data In terminal for any operation. The data format is shown below:

FIRST \sim SERIAL DATA BITS TO THE DATA IN TERMINAL LAST																										
123	45	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Row Control (8 rows)	Mode Control		Column Select (25 columns)																							

ROW CONTROL

Data bits 1, 2, and 3 represent the address of the row to be selected or the total number of rows to be selected minus 1 depending on the mode controls. The row control information is in binary and controls 8 rows from 0 through 7 . Data bit 1 is the MSB and data bit 3 is the LSB.

MODE CONTROL

Data bits 4 and 5 represent the operational mode to be selected. Each mode is described separately in the Operational Mode Section.

Data bit 4	5	
0	0	Write into RAM storage buffer
0	1	Read from RAM storage buffer
1	0	Initialization with blank display
1	1	Initialization with visible display

COLUMN SELECT

Data bits 6 through 30 represent the 25 individual column bits in the addressed row (bits 1-3) while in the write mode. Data bit 6 corresponds to column 1, data bit 7 corresponds to column $2 \ldots$, data bit 30 corresponds to column 25.

OPERATIONAL MODES

1. Initialization Mode:

There are two modes available for initialization of the HLCD 0515. The main purpose for initialization is to define the total number of rows to be used in the display, and to make the display visible or blank.
a. Initialization with Blank Display (Bit $4=1$, Bit $5=0$)

When this mode is selected, the display is blanked out and the total number of rows are selected via data bits 1, 2 and 3 . Column information may or may not be provided. If the column information is provided via data bits 6 through 30, this mode also acts as a write into RAM storage mode writing a row of data into the RAM at the row selected by data bits 1,2 and 3. (i.e. the last row of the display).
b. Initialization with Visible Display (Bit $4=1$, Bit $5=1$)

In this mode, the first three data bits represent ($\mathrm{N}-1$) where N is the total number of rows used in the display. Also it enables the display information to become visible. This mode can be terminated after five data bits, otherwise, it will read the column information of the row that is selected via the data-out line on successive clock inputs (i.e. the last row of the display).
2. Write Mode: (Bit $4=0$, Bit $5=0$)

This mode is used to write or update the data into the 8×25 RAM storage. Row address is provided by row control data bits 1,2 , and 3 , while 25 bit data for each column is provided via data bit 6 through bit 30. The display can be made visible or blank depending upon the initialization mode previously selected.
3. Read Mode: (Bit $4=0$, Bit $5=1$)

This mode is used to read the data from the 8×25 RAM storage and sequentially display it on the Data Out terminal. Row address is provided by row control data bits $1,2 \& 3$.
For each row address, column data is shifted serially on Data Out terminal from column 25 to column 1 on each successive clock.
4. Typical Mode Sequence:

With power on, the display shows random data on the display. The initialization with blank display mode can be selected and the first write can be made on the last row during the same cycle by providing column data on bit 6 through bit 30 . Additional write modes will be selected to write into all the rows in the same manner. Once the final row is written, an initialization mode with visible display must be selected.

TYPICAL MODE SEQUENCE \& TIMING

NOTE 1: SEE EXPANDED TIMING BELOW

EXPANDED INITIALIZATION/WRITE WITH BLANK DISPLAY (30 BITS)

SYNCHRONIZATION AND CASCADING

To cascade a number of HLCD 0515's, which share rows, all units must be synchronized. This can be done by driving each Osc pin of the HLCD 0515 with the same external signal and initializing all units at the same time.

In Figure A, the HLCD 0515 is used to drive 8 rows $\times 25 \mathrm{~N}$ columns. Rows from one unit are tied to the display and rows on the other units are not used. The chip select signal also controls all the HLCD 0515 at the same time on Data In pins the different data (column data) is presented by data bus to control different columns. In the initialization mode all HLCD 0515 must be presented the same data on Data In pins by software. Alternatively, a common data line and individual chip selects could be used.

Theoretically any number of HLCD 0515 can be cascaded together as shown. In reality, it depends on the characteristics of the display and the application. In a similiar manner, one can utilize a number of HLCD 0515 to drive 16 rows $\times \mathrm{m}$ column displays. For each 8×25 block, one HLCD 0515 is required as shown in Figure B.

Figure B

SIGNAL DESCRIPTION

Row 0 - Row 7; Pin 1 - Pin 8 (Outputs): These eight outputs can be connected directly to the row pins (backplanes) of the display.

Col 1 - Col 25; Pin 9 - Pin 19, Pin 21 - Pin 34 (Outputs): These twenty five outputs can be connected directly to the column pins of the display.

GND Pin 20: Ground for display and display driver.
VDD; Pin 40: Most positive supply for the display and display driver.
Data Out; Pin 35 (Output): The Data Output pin produces data serially from the RAM buffer during the read buffer mode.
$\overline{\mathbf{C S}}$; Pin 36 (Input): The chip select input enables all operating modes of HLCD 0515 when $\overline{\mathrm{CS}}$ is low.
Data $\mathbf{I n}$; Pin 37: The data input pin is used for loading the RAM buffer data serially from an external system. Positive logic is used and a logic 1 makes a pixel visible.

Clock; Pin 38 (Input): Negative going edge on this pin clocks the data in or out, depending on the mode.
OSC; Pin 39 (Input): The timing for refresh waveforms for the LCD is determined by a capacitor connected to this pin. An external signal should be used to synchronize the oscillators while cascaded.

OSCILLATOR FREQUENCY

To determine the proper frequency of operation, one must consider:

1) the external frequency is divided by two on-board.
2) number of backplanes selected (rows), and
3) 30 Hz minimum no-flicker frequency.

The f is derived as:

$$
f=\frac{1}{1 \times N \times 30}
$$

The external capacitor which will produce f is:

where the value of C is in microfarads

Example: 8 backplanes, \qquad
\qquad yields $C=.01$ microfarads

$$
2 \times 8 \times 30 \quad 50 \mathrm{~K} \times \mathrm{C}
$$

LCD DRIVER NOTES

1. RMS Drive Voltages - The On and Off RMS drive voltages supplied to each pixel by the HLCD 0515 depend on the number of backplanes, N , as follows:

$$
\begin{aligned}
& V_{\text {RMS }} O N=\frac{V_{D D}}{4} \sqrt{\frac{N+15}{N}} \\
& V_{\text {RMS }} O F F=\frac{V_{D D}}{4} \sqrt{\frac{N+3}{N}}
\end{aligned}
$$

The HLCD 0515 generates on-chip all required voltages to drive a multiplexed LCD with the $\mathrm{V} / 4$ drive scheme. The $\mathrm{V} / 4$ scheme requires the following voltages be derived (when VDD is the supply voltage):

	$V_{D D}$
.75	$V_{D D}$
.5	$V_{D D}$
.25	$V_{D D}$
	0

Note if the display requires a swing more negative than system ground, the $V_{D D}$ is tied in common with system VDD and the GND is taken sufficiently lower than system GND to provide the required swing. (The user must insure that the HLCD 0515's VIL spec is not violated and that VOL's can be read by the system.) Waveforms for the V/4 display drive scheme are shown below:

TYPICAL OUTPUT WAVEFORMS

2. Temperature Compensation - The HLCD 0515 can be used with displays requiring temperature compensation. The technique is to select a PTC (Positive Temp Compensation) thermistor with a temperature response which complements that of the display. The thermistor is inserted between the HLCD 0515's VSS and the negative reference source.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES

 SOLID STATE PRODUCTS

DESCRIPTION

The HLCD 0538A and 0539A are a set of CMOS/LSI circuits that drive a dot matrix LCD display under microcomputer control. The intended display is a 5×7 or 5×8 alphanumeric dot matrix with nearly any number of characters. Other matrix displays, such as games and custom arrays, could also be driven by this set of circuits.
The HLCD 0538A is organized as 8 rows $\times 26$ columns, and thus can handle up to five characters by itself. The HLCD 0539A is organized as 0 rows $\times 34$ columns and is used in addition to the HLCD 0538A when more than 26 columns are required. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit set drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.
The HLCD 0538A and 0539A are available in 40 lead dual-in-line ceramic (D suffix) and plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for:

Wide supply voltage range
Low power operation
High noise immunity
Wide temperature range

HLCD 0538A PIN CONFIGURATION

- CMOS, NMOS, and T2L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

HLCD 0539A PIN CONFIGURATION

MAXIMUM RATINGS

ELECTRICAL SPECIFICATIONS $T=25^{\circ} \mathrm{C}$ and $\operatorname{VDD}=\mathbf{5 V}$ unless otherwise noted

PARAMETER	SYMBOL	CONDITION	MIN.	MAX	UNITS
Supply Voltage Supply Current	$V_{D D}$ IDD		3	$\begin{array}{r} 10 \\ 750 \end{array}$	$\begin{gathered} V \\ \mu \mathrm{~A} \end{gathered}$
Input High Level Input Low Level Input Leakage Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{L}} \\ & \mathrm{c}_{\mathrm{I}} \end{aligned}$		$\begin{gathered} .8 \mathrm{~V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}}-15 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .5 \mathrm{~V}_{\mathrm{DD}} \\ 5 \\ 5 \end{gathered}$	V V $\mu \mathrm{A}$ pf
Row and Column Output Impedance Interrupt Out Impedance	$\begin{aligned} & R_{\text {on }} \\ & R_{\text {on }} \end{aligned}$	$\begin{aligned} & I_{L}=10 \mu \mathrm{~A} \\ & \mathrm{~L}=100 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 40 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Clock Rate Data in Setup Time Data in Hold Time LCD ϕ to Interrupt Out Delay	$\begin{gathered} \mathrm{f} \\ { }^{\mathrm{t}} \mathrm{DS} \\ \mathrm{t}_{\mathrm{DH}} \\ { }^{\mathrm{t}_{\mathrm{D}}} \end{gathered}$	Data change to clock fall Clock fall to data change	$\begin{gathered} \hline \text { DC } \\ 300 \\ 100 \\ 600 \end{gathered}$	1.5	MHz nsec. nsec. nsec.
LCD ϕ High Level LCD ϕ Low Level LCD ϕ Input Impedance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{R}_{\mathrm{IN}} \end{aligned}$		$\begin{gathered} .9 \mathrm{~V}_{\mathrm{DD}} \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .1 \mathrm{~V}_{\mathrm{DD}} \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{M} \end{aligned}$
DC Offset Voltage, Any Display Element	$\mathrm{V}_{\text {OFF }}$			15	mV
Row Output High Row Output Low Row Output Unselected	V_{OH} V_{OL} $V_{O M}$	Typical Typical Typical			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Column Output High Column Output Low	V_{OH} v_{OL}	Typical Typical			

TYPICAL WAVEFORMS

TYPICAL SYSTEM BLOCK DIAGRAM

TIMING DIAGRAM

OPERATING NOTES

1. The Shift register loads and shifts on the falling edge of clock.
2. A logic 1 on Data In causes a segment to be visible.
3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.
4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are $\mathrm{V}_{\mathrm{DD}}, 0$, and VDD/2.
5. Column waveforms are in phase with interrupt out if selected and out of phase if not selected. Levels are 32 VDD and 68 VDD.
6. The intended mode of operation is as follows:
a. Interrupt Output frequency is the minimum no flicker frequency ($>30 \mathrm{~Hz}$) times the number of backplanes utilized.
b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.
c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next interrupt output rising edge, which causes parallel transfer from shift register to display latches.
d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input with 50% duty cycle.
e. Backplanes are addressed sequentially and individually.
7. The LCD ϕ pin can be used in two modes. If LCD ϕ is driven, the Interrupt Output will follow it. LCD ϕ will a.lso oscillate if a resistor and capacitor are connected in parallel to ground.

The resistor value should be at least $1 \mathrm{M} \Omega$. The approximate relationship is fout $=\frac{1}{\mathrm{RC}}$, which appears at interrupt out.
8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCD ϕ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect LCD ϕ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuit's serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select.
9. There are two obvious signal races to be avoided:
a. Changing data when clock is falling, and
b. Allowing Interrupt Output rising edge to be very close to clock falling edge.
10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
11. Output locations correspond to a clockwise advancing shift register, thus R1 is the last data loaded and C26 is the first data loaded.
12. If N backplanes are utilized, this IC drives the LCD with the following RMS voltages:

$$
\begin{aligned}
& \text { VOFF }=V_{D D} \sqrt{\frac{.0324 \mathrm{~N}+.07}{\mathrm{~N}}} \\
& \text { VON }=V_{D D} \sqrt{\frac{.0324 \mathrm{~N}+.43}{\mathrm{~N}}}
\end{aligned}
$$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22. 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES
 SOLID STATE PRODUCTS

Serial Input Dot Matrix LCD Driver

DESCRIPTION

The HLCD 0540 is a CMOS/LSI circuit that drives a rectangular matrix LCD display under microcomputer control. The display itself may be a standard $x-y$ array or a custom array that geometrically is not regular at all. Applications include games, bar graphs, and various custom patterns.

The HLCD 0540 can be externally programmed as either 32 rows or 32 columns, under control of the Row/Col pin. Thus, two HLCD 0540s with opposite selections can drive a 32×32 display. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit set could be referred to as a dumb driver because it drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.

The HLCD 0540 is available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for:

Wide supply voltage range
Low power operation
High noise immunity
Wide temperature range

- CMOS, NMOS, and T2L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

PIN CONFIGURATION

MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

$\mathrm{T}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX	UNITS
Supply Voltage Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$		3	$\begin{gathered} 12 \\ 750 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
Input High Level Input Low Level Input Leakage Input Capacitance	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & I_{L} \\ & c_{I} \end{aligned}$		$\begin{aligned} & .75 V_{D D} \\ & V_{D D}-15 \end{aligned}$	$\begin{gathered} V_{D D} \\ .25 V_{D D} \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mathrm{pf} \end{gathered}$
Row Output High Row Output Low Row Output Unselected	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OM}} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}^{-}} .05 \\ 0 \\ .5 \mathrm{~V}_{\mathrm{DD}^{-.}} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .05 \\ .5 \mathrm{~V}_{\mathrm{DD}^{+.}} .05 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
Column Output High Column Output Low	V_{OH} v_{OL}		$\begin{aligned} & .68 \mathrm{~V}_{\mathrm{DD}^{-.}} .05 \\ & .32 \mathrm{~V}_{\mathrm{DD}^{-.}} .05 \end{aligned}$	$\begin{aligned} & .68 V_{D D^{+}} .05 \\ & .32 V_{D D^{+}} .05 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
Row and Column Output Impedance Interrupt Out Impedance	$\mathrm{R}_{\text {on }}$ $\mathrm{R}_{\text {on }}$	$\begin{aligned} & I_{L}=10 \mu \mathrm{~A} \\ & I_{\mathrm{L}}=100 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 40 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Clock Rate Data in Setup Time Data in Hold Time	$\begin{aligned} & f \\ & t_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \end{aligned}$	Data change to clock fall Clock fall to data change	$\begin{array}{r} \text { DC } \\ 300 \\ 100 \end{array}$	1.5	MHz nsec. nsec.
LCD ϕ High Level LCD ϕ Low Level LCD ϕ Input Impedance	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & R_{I N} \end{aligned}$		$\begin{gathered} .9 V_{D D} \\ 0 \\ 1 \end{gathered}$	$\begin{aligned} & V_{D D} \\ & .1 V_{D D} \\ & 3 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & M \Omega \end{aligned}$

TYPICAL WAVEFORMS

BLOCK DIAGRAM

TYPICAL SYSTEM BLOCK DIAGRAM

OPERATING NOTES

1. The Shift register loads and shifts on the falling edge of clock.
2. A logic 1 on Data In causes a segment to be visible.
3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.
4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are VDD, 0 , and VDD/2.
5. Column waveforms are in phase with interrupt out if selected and out of phase if not selected. Levels are . 32 VDD and .68 VDD.
6. The intended mode of operation is as follows:
a. Interrupt Output frequency is the minimum no flicker frequency $(>30 \mathrm{~Hz})$ times the number of backplanes utilized.
b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.
c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next Interrupt Output rising edge, which causes parallel transfer from shift register to display latches.
d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input with 50% duty cycle.
e. Backplanes are addressed sequentially and individually.
7. The LCD ϕ pin can be used in two modes. If LCD ϕ is driven, the Interrupt Output will follow it. LCD ϕ will also oscillate if a resistor and capacitor are connected in parallel to ground.

The resistor value should be at least $1 \mathrm{M} \Omega$. The approximate relationship is $f_{\text {out }}=\frac{1}{\text { RC }}$, which appears at Interrupt Out.
8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCD ϕ of all other circuits (thus one oscillator provides frequency control for all circuits) or connect LCD ϕ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuits' serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select. Another alternative is to use the clock enable to allow reading data into specific circuits.
9. There are two obvious signal races to be avoided
a. Changing data when clock is falling, and
b. Allowing Interrupt Output rising edge to be very close to clock falling edge.
10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
11. Output locations correspond to a clockwise advancing shift register, thus Seg 1 is the last data loaded and Seg 32 is the first data loaded.
12. If N backplanes are utilized, this IC drives the LCD with the following RMS voltages:
 nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

DESCRIPTION

The HLCD 0541 and 0542 are a set of CMOS/LSI circuits which drive a dot matrix LCD display under microcomputer control. The intended display is a 5×7 or 5×8 alphanumeric dot matrix with nearly any number of characters. Other matrix displays, such as games and custom arrays, could also be driven by this set of circuits.

The HLCD 0541 is organized as 8 rows $\times 23$ columns, and thus can handle up to four characters by itself. The HLCD 0542 is organized as 0 rows $\times 32$ columns and is used in addition to the HLCD 0541 when more than 23 columns are required. Data is input 4 bit parallel to minimize the time required to load in data. This circuit drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.
The HLCD 0541 and 0542 are available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for:

Wide supply voltage range
Low power operation
High noise immunity Wide temperature range

HLCD 0541 PIN CONFIGURATION

- CMOS, NMOS and PMOS compatible inputs
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

MAXIMUM RATINGS

VDD	-.3 to +17 V
Inputs	$+V_{D D}-17$ to $+V_{D D}+.3 \mathrm{~V}$
Power Dissipation	. 250 mW
Operating Temperature	
Ceramic Package	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+125^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS
$\mathrm{T}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX	UNITS
Supply Voltage Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$		3	$\begin{array}{r} 12 \\ 600 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
Input High Level Input Low Level Input Leakage Input Capacitance	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & I_{L} \\ & c_{I} \end{aligned}$		$\begin{aligned} & .75 V_{D D} \\ & V_{D D}-15 \end{aligned}$	$\begin{gathered} V_{D D} \\ .25 V_{D D} \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mathrm{pf} \end{gathered}$
Row Output High Row Output Low Row Output Unselected	$\begin{aligned} & v_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OM}} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-.05 \\ 0 \\ .5 \mathrm{~V}_{\mathrm{DD}}-.05 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .05 \\ .5 \mathrm{~V}_{\mathrm{DD}^{+.} .05} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Column Output High Column Output Low	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \end{aligned}$		$\begin{aligned} & .68 V_{D^{-}}-.05 \\ & .32 V_{D D}-.05 \end{aligned}$	$\begin{aligned} & .68 \mathrm{~V}_{\mathrm{DD}}{ }^{+.} 05 \\ & .32 \mathrm{~V}_{\mathrm{DD}}+.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Row and Column Output Impedance Interrupt Out Impedance	$\mathrm{R}_{\text {on }}$ $R_{\text {on }}$	$\begin{aligned} & I_{L}=10 \mu \mathrm{~A} \\ & I_{L}=100 \mu \mathrm{~A} \end{aligned}$		$\begin{gathered} 30 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Clock Rate Data in Setup Time Data in Hold Time LCD ϕ to Interrupt Out Delay	$\begin{aligned} & f \\ & { }^{t} \mathrm{DS} \\ & { }^{\mathrm{t}} \mathrm{DH} \\ & { }^{\mathrm{t}_{\mathrm{D}}} \end{aligned}$	Data change to clock fall Clock fall to data change	$\begin{array}{r} \text { DC } \\ 300 \\ 150 \\ 300 \end{array}$	1.0	MHz nsec. nsec. nsec.
LCD ϕ High Level LCD ϕ Low Level LCD ϕ Input Impedance	$\begin{aligned} & V_{I H} \\ & v_{I L} \\ & R_{I N} \end{aligned}$		$\begin{gathered} .9 V_{D D} \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .1 \mathrm{~V}_{\mathrm{DD}} \\ 3 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & M \end{aligned}$

TYPICAL WAVEFORMS

BLOCK DIAGRAM

TYPICAL SYSTEM BLOCK DIAGRAM

OPERATING NOTES

1. The addressed latches load when clock is high.
2. A logic 1 on Data In selects a row or causes a segment to be visible.
3. A parallel transfer of data from the addressed latches to the holding latches occurs upon the rising edge of interrupt out. Also, the $\div 8$ counter is reset.
4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are VDD, 0 , and VDD/2.
5. Column waveforms are in phase with Interrupt out if selected and are out of phase if not selected. Levels are $.32 \mathrm{~V}_{\mathrm{DD}}$ and $.68 \mathrm{~V}_{\mathrm{DD}}$.
6. The intended mode of operation is as follows:
a. Interrupt Output frequency is the minimum no flicker frequency ($\approx 30 \mathrm{~Hz}$) times the number of backplanes utilized.
b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from addressed latches to holding latches.
c. In between each Interrupt Output rising edge, 4 bit parallel data is clocked in with 8 clock pulses for the next time slot to await the next interrupt output rising edge, which causes the parallel transfer.
d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input.
e. Backplanes are addressed sequentially and individually.
7. The LCD ϕ pin can be used in two modes, driven or oscillating. If LCD ϕ is driven, the interrupt output will follow it. If the LCD ϕ pin is allowed to oscillate, its frequency is inversely proportional to capacitance and the interrupt output waveform has a frequency half that of the oscillator itself. The approximate relationship is fout $(\mathrm{KHz})=380 / \mathrm{c}(\mathrm{pf})$. The frequency is nearly independent of supply voltage.
8. To cascade units, either connect Interrupt Output of one circuit to LCD ϕ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect LCD ϕ of all circuits to a common driving signal. Then tie all corresponding data inputs together and clock each circuit individually when its data is on the bus. In the case of two driver circuits and an 8 bit microcomputer, the clocks could be common and each Data In tied to a different line of the data bus.
9. There are two obvious signal races to be avoided:
a. Changing data when clock is falling, and b. Allowing Interrupt Output rising edge to be very close to clock falling edge.
10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
11. Input order of HLCD 0541

Clk Pulse	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Data 0	RO	R 4	C 0	C 4	C 8	C 12	C 16	C 20
Data 1	R 1	R 5	C 1	C 5	C	C 13	C 17	C 21
Data 2	R 2	R 6	C 2	C 6	C 10	C 14	C 18	C 22
Data 3	R 3	R 7	C 3	C 7	C 11	C 15	C 19	

12. Input order of HLCD 0542 is similar, but starts at CO (Pulse 1, Data 0) and ends at C31 (Pulse 8, Data 3).

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

HUGHES

 SOLID STATE PRODUCTS

DESCRIPTION

The HLCD 0548 is a CMOS/LSI circuit that drives a rectangular matrix LCD displays under microcomputer control. The display itself may be a standard $x-y$ array or a custom array that geometrically is not regular at all. Applications include games, bar graphs, and various custom patterns.

The HLCD 0548 is organized as 16 rows and 16 columns. It will drive an LCD display of up to $16 x$ 16 directly and can be cascaded for larger displays with itself or other Hughes LCD drivers. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer. The HLCD 0548 can be used with an HLCD 0539 to drive a display that has up to 16 rows and an arbitrary number of columns.

The HLCD 0548 is available in 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for:

Wide supply voltage range
Low power operation
High noise immunity
Wide temperature range

- CMOS, NMOS, and T2L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

PIN CONFIGURATION

MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

$\mathrm{T}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX	UNITS
Supply Voltage Supply Current	$\begin{aligned} & V_{D D} \\ & I_{D D} \end{aligned}$		3	$\begin{gathered} 12 \\ 750 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
Input High Level Input Low Level Input Leakage Input Capacitance	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & i_{L} \\ & C_{1} \end{aligned}$		$\begin{aligned} & .75 V_{D D} \\ & V_{D D}-15 \end{aligned}$	$\begin{gathered} V_{D D} \\ .25 V_{D D} \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \text { pf } \end{gathered}$
Row Output High Row Output Low Row Output Unselected	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OM}} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}-.05 \\ 0 \\ .5 \mathrm{~V}_{\mathrm{DD}}-.05 \end{gathered}$	$\begin{gathered} V_{D D} \\ .05 \\ .5 V_{D D^{+}} .05 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Column Output High Column Output Low	V_{OH} V_{OL}		$\begin{aligned} & .68 \mathrm{~V}_{\mathrm{DD}^{-}} .05 \\ & .32 \mathrm{~V}_{\mathrm{DD}^{-}} .05 \end{aligned}$	$\begin{aligned} & .68 V_{D D^{+}} .05 \\ & .32 V_{D D^{+}} .05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Row and Column Output Impedance Interrupt Out Impedance	$\mathrm{R}_{\text {on }}$ $R_{\text {on }}$	$\begin{aligned} & I_{L}=10 \mu \mathrm{~A} \\ & I_{L}=100 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 40 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Clock Rate Data in Setup Time Data in Hold Time	$\begin{aligned} & f \\ & t_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \end{aligned}$	Data change to clock fall Clock fall to data change	$\begin{array}{r} \text { DC } \\ 300 \\ 100 \end{array}$	1.5	MHz nsec. nsec.
L.CD ϕ High Level LCD ϕ Low Level LCD ϕ Input Impedance	$\begin{aligned} & V_{I H} \\ & v_{I L} \\ & R_{I N} \end{aligned}$		$\begin{gathered} .9 V_{\mathrm{DD}} \\ 0 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & .1 \mathrm{~V}_{\mathrm{DD}} \\ & 3 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & M \end{aligned}$

TYPICAL WAVEFORMS

BLOCK DIAGRAM

TIMING DIAGRAM
CLKEN \qquad

TYPICAL SYSTEM BLOCK DIAGRAM

OPERATING NOTES

1. The Shift register loads and shifts on the falling edge of clock.
2. A logic 1 on Data In causes a segment to be visible.
3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.
4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are VDD, 0 , and VDD/2.
5. Column waveforms are in phase with Interrupt out if selected and out of phase if not selected. Levels are . 32 VDD and 68 VDD .
6. The intended mode of operation is as follows:
a. Interrupt Output frequency is the minimum no flicker frequency $(>30 \mathrm{~Hz})$ times the number of backplanes utilized.
b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.
c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next interrupt output rising edge, which causes parallel transfer from shift register to display latches.
d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD \emptyset input with 50% duty cycle.
e. Backplanes are addressed sequentially and individually.
7. The LCDØ pin can be used in two modes. If LCDØ is driven, the Interrupt Output will follow it. LCDØ will also oscillate if a resistor and capacitor are connected in parallel to ground.
The resistor value should be at least $1 \mathrm{M} \Omega$. The approximate relationship is $\mathrm{f}_{\text {out }}=\frac{1}{\mathrm{RC}}$, which appears at Interrupt Out.
8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCDØ of all other circuits
(thus one oscillator provides frequency control for all circuits) or connect LCDØ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuits' serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select. Another alternative is to use the clock enable to allow reading data into specific circuits.
9. There are two obvious signal races to be avoided.
a. Changing data when clock is falling, and
b. Allowing Interrupt Output rising edge to be very close to clock falling edge.
10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
11. Output locations correspond to a clockwise advancing shift register, thus Row 1 is the last data loaded and Col 16 is the first data loaded.
12. The RMS voltages this circuit delivers to individual LCD pixels depends on VDD and the number of backplanes (N) used according to the following equations:

HUGHES SOLID STATE PRODUCTS

HUGKĒS AIRCRAFT COMPANY
500 Superior Avenue. Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES

 SOLID STATE PRODUCTS

Driver

DESCRIPTION

The HLCD 0550 and 0551 Chip Set will drive a 5×7 or 5×8 Liquid Crystal dot matrix of up to 32 characters. Control of the display is handled through an 8 bit bidirectional I/O port. The chip set handles character decode, display manipulation, cursor control, and all display drive functions including refresh and generation of multiple-level AC waveforms.

FEATURES

- CMOS circuitry:

Low power dissipation
Wide supply variation
High noise immunity

- Microcomputer compatible
- ASCII input format
- Display of 64 different characters
- Control of up to a 32 character display
- Generation of all drive waveforms
- Automatic refresh
- Cursor control

HLCD 0550 PIN CONFIGURATION

- Display manipulation instructions to accomplish:

Shift
Rotate
Blank
Blink
Fast load
Power down

- Instructions to control output of:

Characters
Cursor position
Display control flags
Busy status

HLCD 0551
PIN CONFIGURATION

MAXIMUM RATINGS

Supply Voltage, (+VDD)
$-3 V$ to +13 V
Input Voltage, (V_{1}) $V_{D D}-15$ to $V_{D D}+.3 V$
Operating Temperature, (Top)
Plastic Package.................................. -40 to $+85^{\circ} \mathrm{C}$
Ceramic Package............................... -55 to $+125^{\circ} \mathrm{C}$
Storage Temperature, (TSTO) -50 to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} C$ unless otherwise specified $\left(-V_{B U S}\right.$ pin is considered $\left.G N D\right) V_{D D}=V_{C C}+V_{D I S}$.

PARAMETER		SYMBOL	CONDITION	MIN.	MAX	UNITS
Environmental Power Supply Voltage		$+\mathrm{V}_{\text {DD }}$		3	10	V
Power Supply Current (HLCD 0550 and 0551)		${ }^{1}$ DD	Operating at 5V		750	$\mu \mathrm{A}$
Quiescent Current(HLCD 0550 and 0551)		${ }^{1} \mathrm{Q}$	5V, Power Down Mode Inputs at Either Supply ${ }^{1}$		20	$\mu \mathrm{A}$
Inputs$\left.\frac{\text { High Level }}{\text { Low Level }} \begin{array}{l}\text { Leakage } \\ \text { Capacitance }\end{array}\right\}, ~$	HLCD 0550 Inputs 8 Data Bus $\frac{\overline{C S}}{\overline{M R D}}$	$\mathrm{V}_{\text {IH }}$	$V_{\text {DD }}=3$ to 10 V	. $8 \mathrm{~V}_{\text {DD }}$	$V_{\text {DD }}$	V
		$V_{\text {IL }}$	8 Data Bus	0	. $5 \mathrm{~V}_{\text {DD }}$	V
		$\mathrm{V}_{\text {IL }}$	$\overline{\mathrm{CS}}, \overline{\mathrm{MRD}}, \overline{\mathrm{MWR}}$	$\mathrm{v}_{\mathrm{CC}}{ }^{-15}$. $5 \mathrm{~V}_{\text {DD }}$	V
		${ }_{\text {L }}$ L	$V_{\text {IN }}=0, V_{\text {DD }}=10$		5	$\mu \mathrm{A}$
		$\mathrm{C}_{\text {IN }}$			5	pf
High Lev	HLCD 0551 Inputs Data in LCD ϕ Clock	$\mathrm{V}_{\text {IH }}$. $8 \mathrm{~V}_{\text {DD }}$	$V_{\text {DD }}$	V
Low Level		$V_{\text {IL }}$		$V_{D D^{-15}}$. $5 \mathrm{~V}_{\text {DD }}$	V
Leakage		${ }_{1}{ }_{L}$	$V_{I N}=0, V_{D D}=10$		5	$\mu \mathrm{A}$
Capacitance		$\mathrm{C}_{\text {IN }}$			5	pf
$\left.\begin{array}{ll}\text { Outputs } \\ \text { High Level } \\ \hline \text { Low Level } \\ \text { Impedance }\end{array}\right\}$Signals to HLCD 0551 LCD ϕ Data Out Clock		V^{OH}		$\mathrm{V}_{\text {CC }}{ }^{-.05}$	$\mathrm{V}_{\text {CC }}$	V
		V_{OL}		$-^{-}$DIS	$-\mathrm{V}_{\text {DIS }}{ }^{+.05}$	\checkmark
		R_{ON}	$5 \mathrm{~V}, 1=100 \mu \mathrm{~A}$		3	$K \Omega$
Column Drive Impedance		$R_{\text {out }}$	5 V		40	$K \Omega$
Row Drive Impedance		$R_{\text {out }}$	5 V		10	$K \Omega$
Bus Drive High		$V_{1 H}$	$5 \mathrm{~V}, 1=1.6 \mathrm{~mA}$ source	4		V
Bus Drive Low		$\mathrm{V}_{\text {IL }}$	$5 \mathrm{~V}, 1=1.6 \mathrm{~mA}$ sink		. 4	V
Timing (See Note 2) Data Set-up Time		${ }^{t}$ DS	Data valid to $\overline{M W R}$ fall	20	-	nsec
Data Hold Time		${ }^{\text {t }}$ DH	$\overline{\text { MWR }}$ pulse to data change	75		nsec
$\overline{\text { MWR Pulse Width High }}$		${ }^{\text {t PW }}$	$\overline{\text { MWR }}$ pulse width high	600		nsec
$\overline{\mathrm{MRD}}$ Frequency		${ }^{\text {tPD }}$	$\overline{\text { MRD fall to data valid }}$	600		nsec
$\overline{\text { MRD Pulse Width High }}$		${ }^{\text {t }}$ WW	$\overline{\mathrm{MRD}}$ pulse width high	600		nsec

[^5]NOTE 2 - MWR and MRD negative pulses assumed to be coincident with or narrower than $\overline{\mathrm{CS}}$ negative pulse

FUNCTIONAL BLOCK DIAGRAM

The HLCD 0551 is a serially loaded column driver.
The HLCD 0550 handles all other functions and is thus the controller.
(See Operating Notes, page 8, Variable Resistor (item 2) and Power Supply (item 4)).

INPUT TIMING - HLCD 0550

OUTPUT TIMING - HLCD 0550

INSTRUCTION SET

Table I

Description	$\begin{aligned} & \text { OP Code } \\ & 76543210 \\ & \text { (see note 1) } \end{aligned}$	HEX Code	Input or Output	Immed. Exec.	Creates Short Busy	Creates Long Busy	Not During PD	Not During Busy
Load Character	$\begin{gathered} \text { 001XXXXX } \\ \text { to } \\ 010 X X X X X \end{gathered}$	20 to 5 F	1	-	-	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Load Cursor Location	000XXXXX	00 to 1 F	1	$\sqrt{ }$	-	-	-	$\stackrel{\sqrt{ }}{(\text { see note 2) }}$
Set Display Control Flag	011XXXXY	$\begin{aligned} & 60 \\ & \text { to } \\ & 71 \end{aligned}$	1	$\sqrt{ }$	-	-	-	-
Get Character	10000100	84	0	$\sqrt{ }$	-	-	$\sqrt{\text { (see }} \begin{aligned} & \text { sote 3) } \end{aligned}$	$\sqrt{\text { (see }} \text { note 3) }$
Get Cursor Location	10000010	82	0	$\sqrt{ }$	-	-	-	-
Get Display Control Flags	10000001	81	0	\checkmark	-	-	-	-
Inc/Dec Cursor	1000100X	$\begin{aligned} & 88 \\ & 89 \end{aligned}$	1	$\sqrt{ }$	-	-	-	$\begin{aligned} & \sqrt{ } \\ & \text { (see note 2) } \end{aligned}$
Shift Right	10001111	8F	1	-	-	\checkmark	$\sqrt{ }$	$\sqrt{ }$
Shift Left	10001101	8D	1	-	-	\checkmark	\checkmark	$\sqrt{ }$
Rotate Right	10001110	8E	1	-	$\sqrt{ }$	-	\checkmark	\checkmark
Rotate Left	10001100	8C	1	-	\checkmark	-	$\sqrt{ }$	$\sqrt{ }$
Clear	10001010	8A	1	-	-	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Reset Busy (Abort)	10001011	8B	1	$\sqrt{ }$	-	-	-	-

NOTE: 1. $X=$ Variable Data $\quad Y=$ Flag State
2. Only if busy is due to Load Character.
3. See Instruction Set for special precautions.

Short Busy is 5 to 10 periods of master oscillator, or $125 \mu \mathrm{sec}$. at 82 KHz . Long Busy is up to 160 periods of master oscillator, or 2 msec . at 82 KHz . Input Instructions are accomplished when $\overline{\mathrm{MWR}}$ and $\overline{\mathrm{CS}}$ are held low.
Output Instructions are accomplished when $\overline{\mathrm{MRD}}$ and $\overline{\mathrm{CS}}$ are held low.
(An output instruction must have been previously written.)

TYPICAL OUTPUT WAVEFORMS

INSTRUCTION EXPLANATION

Load Character

This instruction loads a specific character into a previously specified location. The instruction code is $0 \times X X X X X X$ where the 7 bit ASCII data must be the 64 character subset corresponding to hex addresses 20 through 5F. This instruction creates a long busy and cannot be performed during an existing busy condition or a power down. During the busy time, the ASCII data is loaded into a memory location which corresponds to the display position held in the cursor location register.

Load Cursor Location

This instruction sets the cursor location. The instruction code is 000 XXXXX where XXXXX can be any binary number 0 through 31. The cursor location serves as a pointer to one of the 32 display positions. Zero corresponds to the 1st location and 31 corresponds to the 32nd location. The left most position is the 0 location and displays of less than 32 characters use positions $0,1,2 \ldots \mathrm{~N}$.

Set Flag

This instruction sets or resets the individual flags which control the display and enable special instructions. The instruction code is 011 XXXXY , where the XXXX is a binary number 0 through 8 which corresponds to one of the 9 flag registers, and the Y is the flag state. Table Il gives the flag, the flag address, and the I/O bus on which the flag contents appear after the get display control flag instruction.

Get Character

This instruction enables an output command ($\overline{\mathrm{MRD}}=0$) to fetch the ASCII code for the character pointed to by the cursor location register. After a load cursor location instruction, a time of 160 oscillator periods must be allowed before the Get Character instruction will output correct data. Bus 7 contains the Busy status.

Get Cursor Location

This instruction enables a subsequent output command $(\overline{\mathrm{MRD}}=0)$ to fetch the cursor location. Bus 0-4 contain the cursor location, Bus 5-6 float, and Bus 7 contains the Busy status.

Get Display Control Flags

This instruction enables an output command $(\overline{\mathrm{MRD}}=0)$ to fetch the status of the display control flag registers. See the Flag Explanation on Table II for details of the positioning of the flags on the bus.
Note: Any "Get" command need be given only once. Being stored on the chip, it may be used until a different "Get" instruction is needed.

Inc/Dec Cursor

The instruction code is 1000100 X , where $\mathrm{X}=1$ will cause an immediate advancement of the cursor one position to the right, and $\mathrm{X}=0$ will cause an immediate advancement of one position to the left.

Shift

The shift right (left) instruction advances every character right (left) by one position and loads a blank into the first (last) position.

Rotate

The rotate right (left) instruction advances every character right (left) by one position and moves the last (first) character to the first (last) position.

Clear

This instruction loads a blank into every display location.

Reset Busy

This instruction aborts any instruction execution which has caused a busy signal, resets the busy flag, and allows the immediate loading of any instruction. Of course the aborted instruction may or may not have been completed.

DISPLAY CONTROL FLAGS

Table II

Flag	Address	Bus
Blink Cursor	0000	0
Blink Display	0001	1
Auto Inc/Dec	0010	2
Up/Down	0011	3
Blank Display	0100	4
Visible Cursor	0101	5
Cursor Type	0110	6
Busy	Output Only	7
Rapid Load	0111	-
Power Down	1000	-

DISPLAY DRIVE LSI REQUIREMENTS

Number of Characters	8	16	20	32
Number of HLCD 0550 Required	1	1	1	1
Number of HLCD 0551 Required	1	2	3	5

SAMPLE PROGRAMS

INITIALIZE - This sequence, performed after system power up, will initialize everything, blank the cursor and set it at the left most position, and be ready for character loading from left to right.

LOAD DISPLAY - This sequence will display a 16 character message using the rapid load feature. Assume initialization was done as in example.

CHANGE DISPLAY - Suppose the display shows the message SUM $=354.2$ (left justified) and it is desired that this be changed to SUM $=357.8$. Assume the initialization of the example.

Blink Cursor

A " 1 " in this flag register causes the cursor (the position pointed to by the cursor location register) to blink at approximately 1 Hz . The cursor visible flag must be set. The blinking is an on/off flashing for the underline cursor or an alternation between the character and solid fill (all 35 dots) for the full character cursor.

Blink Display

A "1" causes the entire display to flash on and off at approximately 1 Hz .

Auto Inc/Dec.

A "1" in this flag register causes the cursor location register to automatically be changed by one every time a character is read from or written to the character register. (See Up/Down flag.)

Up/Down

A " 1 " (" 0 ") in this flag register works in conjunction with the Auto $\mathrm{Inc} / \mathrm{Dec}$ flag to cause automatic incrementing (decrementing) of the cursor location register when a character is written to or read from the HLCD 0550.

Blank Display

A " 1 " in this flag register blanks the display, but leaves the display memory intact.

Visible Cursor

A " 1 " in this flag register causes the cursor (the position stored in the cursor location register) to be visible. The cursor cannot be blinked by the Cursor Blink flag unless it is made visible.

Cursor Type

A "1" in this register selects an underline on row 8 for the cursor, and a " 0 " selects a filled character, all 35 dots visible.

Power Down

A "1" in this flag register stops the oscillator and opens a switch in the resistor divider used in the multiple voltage generator circuit, so all LCD drive signals rise to the positive supply. To insure ultra low power, the inputs should be near the power rails, and, if driven, OSC should be held high. During this condition memory is not lost, but the circuit will not respond properly to some instructions. See Table 1.

Busy

The busy state means the circuit is processing a previous instruction and cannot be given certain other instructions (see Table 1 for details). Busy status will appear on Bus 7 during all output instructions.

Rapid Load

A "1" in this flag register stops the oscillator and resets the circuit. Each character load instruction loads a character starting with the 31st location until the mode is terminated. Rapid load can be initiated at any time and creates a busy signal. The Rapid Load instruction needs 32 loads to function properly. No other instructions should be given during a rapid load sequence. Rapid loading does not change the cursor location.

OPERATING NOTES

1. Oscillator

The on-chip oscillator is controlled by an external capacitor. The frequency must be high enough (at least 50 KHz) to ensure a flicker free display. The recommended frequency is 82 KHz for 64 Hz update rate and 1 Hz blink rate. The typical capacitor valve is 50 pf when using a $1 \mathrm{~m} \Omega$ resistor.

2. The Variable Resistor

The variable resistor indicated in the system block diagram may not be necessary, but could assist in display drive optimization and is also meant to imply possible temperature compensation. The resistor may need capacitor bypass.

3. Input Signals

The HLCD 0550 will interface with signals that come from circuits with different power supply magnitudes, either higher or lower. The constraints are (1) no signal should go more positive than the positive supply (therefore positive common is recommended) and (2) input levels must be satisfied. Input swings which are more negative than supply are allowed and input levels are biased toward the positive supply. Note that input levels are referenced to $\mathrm{V}_{\mathrm{DD}}=$ (VCC - (-VDIS)).

4. Power Supply Voltages

Two negative voltages are supplied to this chip. The microcomputer ground ($-V_{B U S}$) is used for the low output level on the I/O bus. The negative display supply ($-\mathrm{V}_{\text {DIS }}$) is chosen to give proper levels to the LCD. - VDIS must be equal to or lower than - VBUS.

5. Initialization

This circuit doesn't power up in a particular state. The recommended power up sequence is a reset busy instruction (not necessary if a long busy time period is allowed to pass), setting of all display control flags, and a clear instruction.

6. Cascading Chips

If a display of over 32 characters is being driven and row lines are shared, two HLCD 0550's can be synchronized by giving them a fast load instruction simultaneously, and driving their oscillator pins with a common signal. The row drivers of one HLCD 0550 need not be used.

7. RMS Drive Voltages

The RMS voltages supplied to the LCD by the HLCD 0550 and 0551 Chip Set are as follows:
$\mathrm{V}_{\mathrm{DD}}=$ voltage across chip, ($\left.\mathrm{V}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{DI}}\right)$
VRMS on $=.424 \mathrm{VDD}$
VRMS off $=.424 \mathrm{VDD}$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

DESCRIPTION

The HLCD 0607A is a CMOS/LSI circuit that drives a matrix LCD display under microcomputer control. The intended display is a 4×4 (16 segment) alphanumeric matrix or a 4×2 or 3×3 numeric matrix, each with nearly any number of characters. Other matrix displays, such as games and custom arrays, could also be driven by this circuit.

The HLCD 0607A is organized as 4 rows $\times 30$ columns, and thus can handle 7 alphanumeric or 15 numeric characters by itself. The HLCD 0539A, organized as 0 rows $\times 34$ columns may be used in addition to the HLCD 0607A when more than 30 columns are required. Data is serially input to maximize the number of output pins and minimize the number of control pins. This circuit drives (using a multiplexed scheme) the display with proper voltage level AC waveforms, but does not handle refresh or character encoding. This results in lower parts cost and greater design flexibility, but puts more burden on the microcomputer.
The HLCD 0607A is available in a 40 lead dual-in-line ceramic (D suffix) or plastic (P suffix) package. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Direct drive of matrix LCDs
- Cascadable for larger displays
- On chip oscillator
- CMOS construction for:

Wide supply voltage range
Low power operation High noise immunity Wide temperature range

- CMOS, NMOS, and T2L compatible inputs
- Requires only 3 control lines
- Flexible organization allows arbitrary display patterns
- Interrupt output to request data from microcomputer

BLOCK DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS

$V_{D D}$	-.3 to 15 volts
Inputs	$+V_{D D}-17$ to $+V_{D D}+3$ volts
Power Dissipation	250 mW
Storage Temperature	-65 to $+125^{\circ} \mathrm{C}$
Operating Temperature	
Ceramic Package .	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package	-40 to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNITS
Supply Voltage Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$		3	$\begin{gathered} 12 \\ 750 \end{gathered}$	V $\mu \mathrm{A}$
Input High Level Input Low Level Input Leakage Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{I}} \end{aligned}$		$\begin{gathered} .8 V_{D D} \\ V_{D D}-15 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .5 \mathrm{~V}_{\mathrm{DD}} \\ 5 \\ 5 \end{gathered}$	V V $\mu \mathrm{A}$ pf
Row and Column Output Impedance Interrupt Out Impedance	$\mathrm{R}_{\text {on }}$ $\mathrm{R}_{\text {on }}$	$\begin{aligned} & I_{L}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 40 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Clock Rate Data in Setup Time Data in Hold Time LCD ϕ to Interrupt Out Delay	$\begin{gathered} f \\ { }^{t^{t} D S} \\ { }^{t_{D D H}} \\ { }^{t_{D}} \end{gathered}$	Data change to clock fall Clock fall to data change	$\begin{gathered} \hline \mathrm{DC} \\ 300 \\ 100 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 600 \end{aligned}$	MHz nsec. nsec. nsec.
LCD ϕ High Level LCD ϕ Low Level LCD ϕ Input Impedance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{R}_{\mathrm{IN}} \end{aligned}$		$\begin{gathered} .9 \mathrm{~V}_{\mathrm{DD}} \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ .1 \mathrm{~V}_{\mathrm{DD}} \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{M} \end{aligned}$
DC Offset Voltage, Any Display Element	$\mathrm{V}_{\text {OFF }}$			50	mV
Row Output High Row Output Low Row Output Unselected	V_{OH} V_{OL} V_{OM}	Typical Typical Typical	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ 0 \\ .5 \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$		$\begin{aligned} & \hline v \\ & v \\ & v \end{aligned}$
Column Output High Column Output Low	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \end{aligned}$	Typical Typical	$\begin{aligned} & .68 \mathrm{~V}_{\mathrm{DD}} \\ & .32 \mathrm{~V}_{\mathrm{DD}} \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$

TIMING DIAGRAM

TYPICAL WAVEFORMS

TYPICAL SYSTEM BLOCK DIAGRAM

OPERATING NOTES

1. The Shift register loads and shifts on the falling edge of clock.
2. A logic 1 on Data In causes a segment to be visible.
3. A parallel transfer of data from the shift register to the latches occurs upon the rising edge of interrupt out.
4. Row waveforms are out of phase with interrupt out if selected and at midpoint voltage otherwise. Levels are VDD, 0 , and VDD/2.
5. Column waveforms are in phase with interrupt out if selected and out of phase if not selected. Levels are . 32 VDD and .68 VDD.
6. The intended mode of operation is as follows:
a. Interrupt Output frequency is the minimum no flicker frequency $(>30 \mathrm{~Hz})$ times the number of backplanes utilized.
b. Interrupt Output is exactly 50% duty cycle (to keep DC off the display) and is synchronized with loading the data from shift register to latches.
c. In between each Interrupt Output rising edge, serial data is loaded for the next row to await the next Interrupt Output rising edge, which causes parallel transfer from shift register to display latches.
d. The Interrupt Output goes to the microcomputer and is treated as a refresh request, or else the microcomputer drives the LCD ϕ input with 50% duty cycle.
e. Backplanes are addressed sequentially and individually.
7. The LCD ϕ pin can be used in two modes. If LCD ϕ is driven, the Interrupt Output will follow it. LCD ϕ will also oscillate if a resistor and capacitor are connected in parallel to ground.

The resistor value should be at least $1 \mathrm{M} \Omega$. The approximate relationship is $f_{\text {out }}=\frac{1}{R C}$, which appears at interrupt out.
8. To cascade and synchronize several circuits, either connect Interrupt Output of one circuit to LCD ϕ of all other circuits (thus one capacitor provides frequency control for all circuits) or connect LCD ϕ of all circuits to a common driving signal. Then connect all clock lines together to the clock signal and connect each Data In to a different line of the data bus, allowing a parallel loading of all circuits' serial data. It is also possible to tie all data lines together and drive each clock individually like a chip select.
9. There are two obvious signal races to be avoided:
a. Changing data when clock is falling, and b. Allowing Interrupt Output rising edge to be very close to clock falling edge.
10. If supply voltage is altered to optimize LCD contrast or for temperature compensation, it is best to tie all positive supply terminals in common and vary the negative supply. This prevents inadvertently forward biasing diodes.
11. Output locations correspond to a clockwise advancing shift register, thus R1 is the last data loaded and C30 is the first data loaded.
12. The RMS voltages this circuit delivers to individual LCD pixels depends on VDD and the number of backplanes (N) used according to the following equations:

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

DESCRIPTION:

The HLCD7211 devices are configured to drive conventional 4 digit, 7 segment, LCD displays. They feature on-chip oscillator, divider chain, backplane driver, and 28 segment drivers. These devices simplify the task of implementing a cost effective alphanumeric 7 segment display for microprocessor systems since they latch data and perform character encoding.
Two input configurations are available. One provides four data bit inputs and four digit select inputs. This configuration (HLCD7211-1, HLCD7211-2) is suitable for interfacing with multiplexed BCD or binary output devices such as counters. The microprocessor oriented interface (HLCD7211-3, HLCD7211-4) devices provide data input latches and digit select code latches under control of chip select inputs.
Two different decoder configurations are available. One configuration (HLCD7211-1, HLCD7211-3) will decode four bit binary input into a seven-segment alphanumeric hexa-decimal output. The other (HLCD7211-2, HLCD7211-4) versions will provide the output code 0-9, dash, E, H, L, P, blank. Either device will correctly decode BCD to seven segment decimal outputs.
The HLCD72111/72112/72113/72114 are packaged in a standard 40 pin plastic (P suffix) dual-in-line package.

FEATURES

- CMOS Circuitry

Wide supply voltage range
Low power operation
High noise immunity
Wide temperature range

- Four digit non-multiplexed 7 segment LCD display outputs with backplane driver
- Complete onboard RC oscillator to generate backplane frequency
- Backplane input/output allows simple synchronization of slave-device segment outputs to a master backplane signal
- HLCD7211-1, HLCD7211-2 - provide separate digit select inputs to accept multiplexed BCD input
- HLCD7211-3, HLCD7211-4 - provide data and digit select code input latches controlled by chip select inputs to provide direct microprocessor interface
- HLCD7211-1, HLCD7211-3 - decode binary to hexadecimal
- HLCD7211-2, HLCD7211-4 - decode binary to code B (0-9, dash, E, H, L, P, blank)

PIN CONFIGURATION:

MAXIMUM RATINGS:

Power Dissipation (Note 1) . 0.5 W at $70^{\circ} \mathrm{C}$
Supply Voltage . 6.5V

Operating Temperature Range . $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) . $300^{\circ} \mathrm{C}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: This limit refers to that of the package and will not be realized during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the HLCD 7211 devices be turned on first.

ELECTRICAL CHARACTERISTICS at TA $=$ Full temperature range. All parameters measured with $\mathrm{V}+=5 \mathrm{~V}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	$V_{\text {SUPP }}$		3	5	6	V
Operating Current	Iop	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Oscillator Input Current	${ }^{\text {OSCl }}$	Pin 36		± 2	± 10	
Segment Rise/Fall Time	$\mathrm{t}_{\text {rfs }}$	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		0.5		$\mu \mathrm{s}$
Backplane Rise/Fall Time	$\mathrm{t}_{\mathrm{rfb}}$	$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$		1.5		
Oscillator Frequency	${ }_{\text {fosc }}$	Pin 36 Floating		16		KHz
Backplane Frequency	f_{bp}	Pin 36 Floating		125		Hz
Logical "1" input voltage	$\mathrm{V}_{\text {IH }}$		3			V
Logical " 0 " input voltage	$\mathrm{V}_{\text {IL }}$				1	
Input Leakage current	IILK	Pins 27-34		$\pm .01$	± 1	$\mu \mathrm{A}$
Input capacitance	$\mathrm{CIN}_{\text {IN }}$	Pins 27-34		5		pF
BP/Brightness input leakage	$I_{\text {BPLK }}$	Measured at Pin 5 with Pin 36 at GND		$\pm .01$	± 1	$\mu \mathrm{A}$
BP/Brightness input capcitance	$\mathrm{C}_{\mathrm{BPI}}$	All Devices		200		pF
AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION						
Digit Select Active Pulse Width	$\mathrm{t}_{\text {sa }}$	Refer to Timing Diagrams	1			$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {d }}$ ds		500			ns
Data Hold Time	$\mathrm{t}_{\mathrm{d}} \mathrm{h}$		200			
Inter-Digit Select Time	$\mathrm{t}_{\text {ids }}$		2			$\mu \mathrm{s}$
AC CHARACTERISTICS - MICROPROCESSOR INTERFACE						
Chip Select Active Pulse Width	${ }^{\mathrm{t}} \mathrm{csa}$	other chip select either held active, or both driven together	200			ns
Data Setup Time	${ }^{\text {t }}$ ds		100			
Data Hold Time	${ }^{t}{ }^{\text {d }}$ h		10	0		
Inter-Chip Select Time	$\mathrm{t}_{\text {ics }}$		2			$\mu \mathrm{s}$

(a) Multiplexed Input Timing

(b) Microprocessor Interface Input Timing

DIGITAL WAVEFORMS:

FUNCTIONAL DESCRIPTION:

The LCD devices in the family $72111,72112,72113,72114$ provide outputs suitable for driving conventional four digit by seven segment LCD displays. They include 28 individual segment drivers, a backplane driver, and a self-contained oscillator and divider chain to generate backplane frequency.

The segment and backplane drivers consist of a CMOS inverter, with the n - and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from different rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with more than 4 digits and a single backplane. The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding 5μ s. (i.e. 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the HLCD 7211 devices be slaved to it. This external signal should be capable of driving very large capacitive loads with short ($1-2 \mu \mathrm{~s}$) rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used.

FUNCTIONAL DIAGRAMS:

HLCD 7211-1, HLCD 7211-2

HLCD 7211-3, HLCD 7211-4

(c) 1802 Microprocessor Interface via I/O Instruction Control:

(d) 80C48/8048/8748 Microcomputer Interface:

The onboard oscillator is designed to free run at approximately 16 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125 Hz with oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36): see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about 1 microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

INPUT CONFIGURATION AND OUTPUT CODES:

Part Number	Input Configuration	Output Code
HLCD 7211-1	Multiplexed 4-bit	Hexadecimal
HLCD 7211-2	Multiplexed 4-bit	Code B
HLCD 7211-3	Microprocessor Interface	Hexadecimal
HLCD 7211-4	Microprocessor Interface	Code B

OUTPUT CODES:

SEGMENT ASSIGNMENT:

BINARY					
B3	B2	B1	BO	HEXADECIMAL	CODE B
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	8
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	8	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	A	-
1	0	1	1	b	E
1	1	0	0	C	H
1	1	0	1	0	1
1	1	1	0	E	P
1	1	1	1	F	(BLANK)

A1, A2, A3, A4 - Outputs directly connected to the "a" segments of LCD
B1, B2, B3, B4 - Outputs directly connected to the "b" segments of LCD
C1, C2, C3, C4 - Outputs directly connected to the "c" segments of LCD
D1, D2, D3, D4 - Outputs directly connected to the "d" segments of LCD
E1, E2, E3, E4 - Outputs directly connected to the "e" segments of LCD
F1, F2, F3, F4 - Outputs directly connected to the " f " segments of LCD
G1, G2, G3, G4 - Outputs directly connected to the " g " segments of LCD
B0, B1, B2, B2 - Data input bits select appropriate output code B0 is the least significant bit
D1, D2, D3, D4 - Digit selects bits (HLCD 72111, HLCD 72112) D1 is the least significant bit
DS1, DS2
$\overline{\text { CS1 }}, \overline{\text { CS2 }}$ - Chip select signals (HLCD 72113, HLCD 72114) - when both $\overline{\mathrm{CS} 1}, \overline{\mathrm{CS2}}$ are low, the data at the Data Inputs (B0-B4) and Digit Select Inputs (D1-D4) are written into the input latches. On the rising edge of either chip select, the data is decoded and written into the output latches.

OSC - Oscillator input can be floating or tied to external capacitor. When grounded, disables BP output devices, allowing segments to be synched to an external signal input at the BP terminal.

BP - See OSC pin above.

APPLICATIONS:

(a) Cascading and Synchronization:

(b) 4 1/2 Digit LCD DPM With Digit Blanking on Overrange:

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

DESCRIPTION

The Intelligent Controller Evaluation Kit allows ease of design by providing a p.c. board with a complete interface circuit between 16 character dot matrix Liquid Crystal Display and the Hughes HLCD 0550/0551 Intelligent LCD Controller/Driver.

The p.c. board provides extra space (wire wrap) for users interface. Control of the display is handled through an 8 bit bi-directional I/O port. Completed circuit handles character decode, display manipulation, cursor control and all drive functions including refresh and generation of multi-level AC waveforms.

FEATURES

- Low power CMOS circuitry with power down mode
- Microprocessor compatible parallel interface
- 5×7 dot matrix; 16 character display
- ASCII input format
- Generation of all drive waveforms
- Cursor Control
- Display manipulation, Instruction to accomplish shift, rotate, blank, blink, fast load, and power down
- Instructions to control output of characters, cursor position, display control flags, and busy status, etc.
- $113 / 4^{\prime \prime} \times 23 / 4^{\prime \prime}$ p.c. board with users circuit space
- Low cost

P.C. BOARD OUTLINE DRAWING

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue. Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES

SOLID STATE PRODUCTS
IETVLMIS
HCMP 1822C

MICROPROCESSOR PRODUCTS

STATIC RAM

256×4 STATIC RAM HCMP 1822C

DESCRIPTION

The HCMP 1822C is a static CMOS Random Access Memory organized as 256 words of 4 bits. The HCMP 1822C has separate data inputs and outputs and is operated from a single voltage supply (VDD), 4 to 6.5 volts.
Two chip selects ($\overline{\mathrm{CS} 1}$ and CS2) are provided to simplify expansion within a memory system. The Output Disable (O.D.) signal controls the output data disabling and is useful in Wire - OR connections and Common Input/Output systems.
The address is decoded on the chip to access a four bit data word. When the chip is selected ($\overline{\mathrm{CS} 1}=$ low and CS2 = high) and the Output Disable signal is low (VSS), the accessed data appears on the data output lines (DOO-DO3) and remains until O.D. goes high or the device is deselected ($\overline{\mathrm{CS} 1}=$ high or CS2 = low). After valid data appears, the address inputs may be changed immediately to select another data word.
To write information, a valid address and data word is presented to the HCMP 1822C with the memory write enabled ($\mathrm{R} / \overline{\mathrm{W}}=$ low), and the chip selected. When using a common input/output data bus, the Output Disable signal must be high.
The HCMP 1822C is available in 22 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are also available upon request.

FEATURES

- Static CMOS Circuitry
- Interfaces Directly to 1802A Microprocessor
- Fast Access Time 250 ns at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- Low Quiescent and Operating Power
- No Precharge or Clock Required
- Industry Standard Pinout

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute Maximum Values
Storage Temperature Range ($\mathrm{T}_{\text {stg }}$) . -65 to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (T_{A})

DC Supply-Voltage Range (VDD)
(All voltage values referenced to V_{SS} terminal)
HCMP 1822C . -0.5 to +7 V
OPERATING CONDITIONS at $\mathbf{T}_{\mathbf{A}}=$ Full Package Temperature Range
For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	TEST CONDITIONS			LIMITS			UNITS
	v_{0}(V)	$V_{\text {IN }}$ (V)	$V_{D D}$ (V)	HCMP 1822C			
				Min.	Typ. ${ }^{1}$	Max.	
DC Operating Voltage Range	-	-	-	4	-	6.5	V
Input Voltage Range	-	-	-	$\mathrm{V}_{\text {SS }}$	-	V_{DD}	V
STATIC ELECTRICAL CHARACTERISTICS at TA $^{\text {a }} \mathbf{- 4 0}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }} \pm 5 \%$							
Quiescent Device Current, IDD	-	0,5	5	-	20	500	$\mu \mathrm{A}$
Output Voltage: Low-Level, V_{OL}	-	0,5	5	-	0	0.1	V
High-Level, V_{OH}	-	0,5	5	4.9	5	-	
Input Low Voltage, $\mathrm{V}_{\text {IL }}$	0.5, 4.5	-	5	-	-	1.5	v
Input High Voltage, $\mathrm{V}_{1 \mathrm{H}}$	0.5, 4.5	-	5	3.5	-	-	
Output Low (Sink) Current, IOL	0.4	0,5	5	1.6	2.6	-	mA
Output High (Source) Current, ${ }^{\mathrm{OHH}}$	4.6	0,5	5	-1	-1.5	-	
Input Current, IIN	-	0,5	5	-	-	± 5	$\mu \mathrm{A}$
3-State Output Leakage Current, IOUT	0,5	0,5	5	-	-	± 5	
Operating Current ${ }^{2}$, IDD1	-	0,5	5	-	4	8	mA
Input Capacitance, C_{IN} Output Capacitance, COUT	-	0,5	-	-	5	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	pF
DATA RETENTION CHARACTERISTICS at $\mathrm{T}_{\mathbf{A}}=-55$ to $+125^{\circ} \mathrm{C}$; See Timing Diagram							
CHARACTERISTICS	TEST CONDITIONS			LIMITS			UNITS
	$\begin{gathered} V_{D R} \\ (V) \end{gathered}$		$\begin{gathered} V_{\text {DD }} \\ (V) \end{gathered}$	HCMP 1822C			
				Min.	Typ. ${ }^{1}$	Max.	
Min. Data Retention Voltage, V_{DR}	-		-	-	1.5	2	V
Data Retention Quiescent Current, IDD	2		-	-	30	100	$\mu \mathrm{A}$
Chip Select to Data Retention Time, $\mathrm{C}_{\text {DR }}$	-		5	600	-	-	
Recovery to Normal Operation Time, $\mathrm{t}_{\mathrm{R} C}$	-		5	600	-	-	

NOTE 1 Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$. NOTE 2 Outputs are open circuited; cycle time $=1 \mu \mathrm{~s}$.
DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-55^{\circ}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}+5 \%, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$. See Timing Diagram

CHARACTERISTIC	VDD (V)	HCMP 1822C			UNITS
		Min. ${ }^{3}$	Typ. ${ }^{4}$	Max.	
Read Cycle Times					
Read Cycle, tre	5	450	300	-	ns
Access from Address, tADA	5	-	250	450	ns
Output Valid from Chip-Select 1 , tDOA1	5	-	100	450	ns
Output Valid from Chip-Select 2, tDOA2	5	-	100	450	ns
Output Active from Output Disable, tDOA3	5	-	75	200	ns
Output Hold from $\overline{\text { Chip-Select }} 1$, t DOH 1	5	20	-	-	ns
Output Hold from Chip-Select 2, tDOH2	5	20	-	-	ns
Output Hold from Output Disable, $\mathrm{t}_{\mathrm{DOH}}$	5	20	-	-	ns
Write Cycle Times					
Write Cycle, twC	5	500	300	-	ns
Address Set-up, tAS	5	200	-	-	ns
Write Recovery, twR	5	50	-	-	ns
Write Width, twrw	5	250	70	-	ns
Data in set-up, tDIS	5	250	70	-	ns
Data in Hold, tDIH	5	100	70	-	ns
	5	250	100	-	ns
Chip-Select 2 Set-up, tCSS2	5	250	100	-	ns
Output Disable Set-up, tODS	5	200	-	-	ns

NOTE 3: Time required by a limit is to allow for the indicated function.
NOTE 4 Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal V_{DD}.

Read cycle waveforms and timing diagram.

Write cycle waveforms and timing diagram.

NOTE 5 tODS is required for common I/O operation only;
for separate I/O operations, Output Disable is Don't Care.

Low $V_{D D}$ data retention waveforms and timing diagram.

NOTE $6 \quad t_{r}, t_{f}>1 \mu \mathrm{~S}$

SIGNAL DESCRIPTION

MA0-MA7 - The eight input address lines select one of 256 four bit words. They are statically decoded on the chip to access the memory array.
DIO-DI3 - These four data inputs are read into the memory when the chip is selected and the Memory Write control ($R / \bar{W}=$ low) is asserted.
DOO-DO3 - These four data outputs reflect the accessed data when the chip is selected and the Output Disable control is inactive (O.D. = low).
$\overline{\text { CS1, }}$ CS2 - These two input chip select signals enable the RAM when $\overline{\text { CS1 }}$ is low and CS2 is high.
O.D., R $\overline{\mathbf{W}}$ - These two input controls determine the mode of memory operation. Output Disable signal (O.D.) is inactive when performing a Read operation and enables the Data Output (DO0-DO3) three-state drivers. The Memory Write signal (R/W) is activated to perform a Write operation. A detailed control table follows:

OPERATIONAL MODES

Mode		Inputs			
		Chip Select 2 CS2	Output Disable OD	Read $\overline{\text { Write }}$ R/ $\overline{\mathbf{W}}$	
		1	0	1	Read
Write	0	1	0	0	Data In
Write	0	1	1	0	High Impedance
Standby	1	X	X	X	High Impedance
Standby	X	0	X	X	High Impedance
Output Disable	X	X	1	X	High Impedance

Logic $1=$ High; Logic $0=$ Low; $X=$ Don't Care
NOTE: 1. When using an HCMP 1802A CPU controlled system, $\overline{M W R}$ is connected to $R \bar{W}$ and $\overline{M R D}$ is connected to O.D.
NOTE: 2. For $T^{2} L$ interfacing an external pull-up is recommended at each input.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

128×8 STATIC RAM - HCMP $1823 C$

DESCRIPTION

The HCMP 1823C is a static CMOS Random Access Memory organized as 128 words of 8 bits. The HCMP 1823 has 8 common data input and output terminals and is operated from a single voltage supply (VDD), 4 to 6.5 volts.

Five chip selects (CS1, $\overline{\mathrm{CS} 2}, \overline{\mathrm{CS3}}, \mathrm{CS} 4$ and $\overline{\mathrm{CS5} 5}$) are provided to simplify expansion within a memory system. The Memory Read ($\overline{\mathrm{MRD}}$) signal controls the output data enabling and is useful in direct connection to a processor bidirectional data bus.

The address is decoded on the chip to access an 8 bit data word. When the chip is selected ($\overline{\mathrm{CS} 2}$, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CS} 5}=$ low and CS1 and CS4 $=$ high) and the $\overline{\mathrm{MRD}}$ signal is low (VSS) the accessed data appears on the data output lines (DOO-DO7). They remain valid until $\overline{M R D}$ goes high or the device is de-selected. After valid data appears, the address inputs may be changed immediately to select another data word.

To write information a valid address and data word is presented to the HCMP 1823C with the Memory Write enabled ($\overline{\mathrm{MWR}}=$ low), and the chip selected. During a write operation, the $\overline{\mathrm{MRD}}$ signal must be high.
The HCMP 1823C is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Byte wide organization
- Interfaces directly to 1802A and most microprocessors.
- Fast access time 250 ns at $V_{D D}=5 \mathrm{~V}$

FUNCTIONAL DIAGRAM

- Low quiescent and operating power
- No precharge or clock required
- Industry standard pinout

PIN CONFIGURATION

MAXIMUM RATINGS Absolute Maximum Values

Storage Temperature Range ($T_{\text {stg }}$).
65 to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (T_{A})

DC Supply-Voltage Range (VD)
(All voltage values referenced to $\mathrm{V}_{\text {SS }}$ terminal)
HCMP 1823C -0.5 to +7 V

OPERATING CONDITIONS at $\mathrm{T}_{\mathbf{A}}=$ Full Package Temperature Range
For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	TEST CONDITIONS			LIMITS			UNITS	
	$\begin{aligned} & v_{0} \\ & (v) \end{aligned}$	$V_{\text {IN }}$ (V)	V_{DD} (V)	HCMP 1823C				
				Min.	Typ. ${ }^{1}$	Max.		
DC Operating Voltage Range	-	-	-	4	-	6.5	V	
Input Voltage Range	-	-	--	$\mathrm{V}_{\text {SS }}$	-	V_{DD}	V	
STATIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\text {A }}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }} \pm 5 \%$								
Quiescent Device Current, IDD	-	0,5	5	-	20	500	$\mu \mathrm{A}$	
Output Voltage: Low-Lęvel, V_{OL}	-	0,5	5	-	0	0.1	V	
High-Level, V_{OH}	-	0,5	5	4.9	5	-		
Input Low Voltage, $\mathrm{V}_{\text {IL }}$	0.5,4.5	-	5	-	-	1.5		
Input High Voltage, $\mathrm{V}_{1 \mathrm{H}}$	0.5, 4.5	-	5	3.5	-	-	V	
Output Low (Sink) Current, IOL	0.4	0,5	5	2.0	4.0	-		
Output High (Source) Current, 1 OH	4.6	0,5	5	-1.0	-2.0	-	mA	
Input Current, I IN	-	0,5	5	-	-	± 5		
3-State Output Leakage Current, IOUT	0,5	0,5	5	-	-	± 5	$\mu \mathrm{A}$	
Operating Current, ${ }_{\text {DD1 }}{ }^{2}$	-	0,5	5	-	4	8	mA	
Input Capacitance, $\mathrm{C}_{\text {IN }}$	-	0,5	-	-	5	7.5		
Output Capacitance, $\mathrm{C}_{\text {OUT }}$				-	5	7.5	pF	
DATA RETENTION CHARACTERISITICS at $\mathrm{T}_{\mathbf{A}}=-55$ to $+125^{\circ} \mathrm{C}$; See Timing Diagram								
CHARACTERISTICS		TEST CONDITIONS		LIMITS				
		$V_{\text {DR }}$ (V)	$V_{D D}$ (V)	HCMP 1823C				
		Min.		Typ. ${ }^{1}$	Max.	UNITS		
Min. Data Retention Voltage, V_{DR}			-	-	-	1.5	2	V
Data Retention Quiescent Current, IDD		2	-	-	30	50	$\mu \mathrm{A}$	
Chip Select to Data Retention Time, C_{DR}		-	5	600	-	-		
Recovery to Normal Operation Time, ${ }^{\text {r }}$ RC		-	5	600	-	-	ns	
DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}+5 \%, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$. See Timing Diagram.								
CHARACTERISTICS		$V_{D D}$ (V)	HCMP 1823C					
		Min. ${ }^{3}$			Max.	UNITS		
Read Cycle Times (See Figure 1)								
Read Cycle, tRC			5	450		0	-	ns
Access from Address; t ADA		5	-		0	450	ns	
Output Valid from Chip Select, tDOA1		5	-		0	450	ns	
Output Valid from Chip-Select, ${ }^{\text {t }}$ DOA2		5	-		0	450	ns	
Output Active from Memory Read, $\mathrm{t}_{\text {AM }}$		5	-		5	200	ns	
Data Hold from Chip-Select, ${ }^{\text {t }}$ DOH1		5	100		0	100	ns	
Data Hold from Chip-Select, DOH_{2}		5	100		0	100	ns	
Data Hold from MRD, ${ }_{\mathrm{DOH} 3}$		5	100		0	100	ns	
Write Cycle Times (See Figure 2)								
Write Cycle, twC		5	500		00	-	ns	
Address Set-up, ${ }^{\text {A }}$ S		5	200		-	-	ns	
Write Recovery, tWR		5	75		-	-	ns	
Write Width, tWRW		5	250		0	-	ns	
Data in Set-up, t DIS		5	250		0	-	ns	
Data in Hold, tDIH		5	100		0	-	ns	
$\overline{\text { Chip Select Set-up, }} \overline{\mathrm{CSS} 1}$		5	250		0	-	ns	
Chip-Select Set-up, tcss2		5	250		00	-	ns	

NOTE 1 Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal $\mathrm{V}_{\text {DD }}$
2 Outputs open circuited; cycle time $=1 \mu \mathrm{~s}$
3 Time required by a limit is to allow for the indicated function.

Figure 1 - Read cycle waveforms and timing diagram.

Figure 2 - Write cycle waveforms and timing diagram.

Figure 3 - Low VDD data retention waveforms and timing diagram.

SIGNAL DESCRIPTION

MAO-MA6: The seven input address lines select one of 128 eight bit words. They are statically decoded on the chip to access the memory array.

BUS0-BUS7: These eight data lines are read into the memory when the chip is selected and the Memory Write control is active (MWR = low). They become data outputs and carry the accessed data when the chip is selected and the Memory Read Control is active ($\overline{\mathrm{MRD}}=$ low).

CS1, $\overline{\mathbf{C S 2}}$, These five input chip select signals enable the RAM when $\overline{\mathrm{CS} 2}, \overline{\mathrm{CS} 3}$, and $\overline{\mathrm{CS5}}$ are $\overline{\text { CS3 }}$, CS4, low and CS1 and CS4 are high.
$\overline{\text { MWD }}, \overline{\text { MWR: }}$ These two input controls determine the mode of memory operation. The memory read signal (MRD) is active when performing a Read operation and enables the Data Output (BUSO-BUS-7) three-state drivers. The Memory Write signal (MWR) is activated to perform a Write operation. A detailed control table follows:

OPERATIONAL MODES

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES
 SOLID STATE PRODUCTS

18TICMT5

 MICROPROCESSOR PRODUCTS 32×8 Static RAMHCMP 1824 HCMP 1824C

32×8 STATIC RAM - HCMP 1824

DESCRIPTION

The HCMP 1824 is a static CMOS Random Access Memory organized as 32 registers of 8 bits, and contains a common bi-directional three state data bus enabled by the Memory Read ($\overline{\mathrm{MRD}}$) signal. Data is written into the RAM when the chip is selected $(\overline{\mathrm{CS}}=0)$ and the Memory Write ($\overline{\mathrm{MRW}})$ signal is asserted. Data is accessed by decoding the address lines and is transmitted onto the data bus when $\overline{C S}$ and $\overline{M R D}$ are enabled. The HCMP 1824 is fully decoded and does not require a precharge or clocking signal. This RAM may be used to provide a data stack or buffer storage for small systems.

The HCMP 1824 operates with a single voltage supply of $4-10.5$ volts while the HCMP 1824C operates over $4-6.5$ volts. The HCMP 1824 is available in 18 pin dual-in-line ceramic packages (D suffix) or plastic packages (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly to 1802A Microprocessor without Additional Components
- Access Time 400ns typical at VDD $=5 \mathrm{~V}$
200 ns typical at VDD $=10 \mathrm{~V}$
- Single Voltage Supply
- Low Quiescent and Operating Power
- No Precharge or Clock Required

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

MAXIMUM RATINGS, Absolute-Maximum Values
Storage Temperature Range ($\mathrm{T}_{\text {stg }}$)

$$
-65 \text { to }+150^{\circ} \mathrm{C}
$$

Operating Temperature Range (T_{A})
Ceramic Package
55 to $+125^{\circ} \mathrm{C}$
Plastic Package
-40 to $+85^{\circ} \mathrm{C}$

DC Supply-Voltage Range (VDD)
(All voltage values referenced to V_{SS} terminal)

> HCMP 1824.
> -0.5 to +13 V
> HCMP 1824C . -0.5 to +7 V

OPERATING CONDITIONS at $\mathbf{T}_{\mathbf{A}}=$ Full Package Temperature Range Unless Otherwise Specified
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	ConditionsV_{DD}(V)	LIMITS				UNITS
		HCMP 1824		HCMP 1824C		
		Min.	Max.	Min.	Max.	
Supply Voltage Range	-	4	10.5	4	6.5	v
Recommended Input Voltage Range	-	$\mathrm{v}_{\text {SS }}$	$\mathrm{V}_{\text {DD }}$	v_{SS}	$V_{\text {DD }}$	V
Input Signal Rise and Fall Time, $\mathrm{t}_{r}, \mathrm{t}_{\mathrm{f}}$	5	-	5	-	5	$\mu \mathrm{s}$
Input Signal Rise and Fall Time, t_{r}, t_{f}	10	-	2	-	-	

CHARACTERISTIC	TEST CONDITIONS			LIMITS						UNITS
				HCMP 1824			HCMP 1824C			
	$\begin{aligned} & V_{O} \\ & (V) \end{aligned}$	$\begin{aligned} & \text { VIN } \\ & \text { (V) } \\ & \hline \end{aligned}$	$\begin{gathered} V_{D D} \\ (V) \end{gathered}$	Min.	Typ. ${ }^{1}$	Max.	Min.	Typ. ${ }^{1}$	Max.	
STATIC ELECTRICAL CHARACTERISTICS at TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }} \pm 5 \%$										
Quiescent Device Current, I_{L}	-	-	5	-	50	100	-	250	500	$\mu \mathrm{A}$
	-	-	10	-	250	500	-	-	-	
Output Voltage Low Level, V_{OL} High Level, V_{OH}	0,5	-	5	-	0	0.05	-	0	0.05	V
	0,10	-	10	-	0	0.05	-	-	-	
	0,5	-	5	4.95	5	-	4.95	5	-	
	0,10	-	10	9.95	10	-	-	-	-	
Input Voltage Low Level, $V_{1 L}$	-	0.5,4.5	5	-	-	1.5	-	-	1.5	V
	-	1.9	10	-	-	3	-	-	-	
High Level, $\mathrm{V}_{1 H}$	-	0.5,4.5	5	3.5	-	-	3.5	-	-	
	-	1.9	10	7	-	-	-	-	-	
$\begin{aligned} & \begin{array}{l} \text { Output Drive Current } \\ \text { N-Channel } \begin{array}{l} \text { Sink), }{ }_{D} N \end{array} \\ \hline \text { P-Channel (Source), }{ }^{I} D^{P} \end{array} \end{aligned}$	0,5	0.4	5	1.8	2.2	-	1.8	2.2	-	$m A$
	0.10	0.5	10	3.6	4.5	-		-	-	
	0,5	4.6	5	-0.9	-1.1	-	-0.9	-1.1	-	
	0,10	9.5	10	-1.8	-2.2	-	-	-	-	
Input Leakage, $\mathrm{I}_{\text {IL }} \mathrm{I}^{\prime} \mathrm{IH}_{\mathrm{H}}$	Any Input	-	5,10	-	± 0.1	± 1	-	± 0.1	± 1	$\mu \mathrm{A}$
3-State Output Leakage Current IOUT	0.5	0,5	5	--	± 0.2	± 2	-	± 0.2	± 2	$\mu \mathrm{A}$
	0,10	0,10	10	-	± 0.2	± 2	-	-	-	

DYNAMIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} \pm 5 \% ; \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega$
Read Operation

Access Time From Address Change, ${ }^{t}$ AA	-	-	5	-	400	710	-	400	710	ns
		-	10	-	200	320	-	-		
Access Time From Chip Select, ${ }^{t} A C^{2}$	-	-	5	-	300	710	-	300	710	ns
		-	10	-	150	320	-	-	-	
Output Active From $\overline{M R D},{ }_{A M}{ }^{2}$	-	-	5	-	300	710	-	300	710	ns
		-	10	-	150	320	-	-	-	
Write Operation										
Write Pulse Width, ${ }^{\text {W }}$ W	-	-	5	390	200	-	390	200	-	ns
Write Pulse Width, 'WW		-	10	180	150	-	-	-	-	
Data Setup Time, ${ }^{\text {t }}$ D	-	-	5	390	100	-	390	100	-	ns
Data Setup Time, 'DS	-	-	10	180	50	-	-	-	-	ns
Data Hold Time, ${ }^{\text {D }}$ DH	-	-	5	70	40	-	70	40	-	ns
Data Hold Time, ${ }^{\text {DH }}$		-	10	35	20	-	-	-	-	ns
Chip Select Setup Time, ${ }^{\text {c }}$ C	-	-	5	425	210	-	425	210	-	ns
Chip Select Setup Time, ${ }^{\text {c }}$ CS		-	10	215	110	-	-	-	-	ns
Address Setup Time, ${ }^{\text {t }}$ AS	-	-	5	640	500	-	640	500	-	ns
Address Setup Time, AS		-	10	390	300	-	-	-	-	ns
Address Hold Time, ${ }^{\text {t }}$ AH	-	-	5	-	100	-	-	100	-	ns
Address Hold Time, AH		-	10	-	50	-	-	-	-	ns
Power Dissipation, $P_{\text {D }}$	-	-	5	-	10	-	-	10	-	mW
(Chip Selected)		-	10	-	40	-	-	-	-	

NOTE: 1 Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$
$2{ }^{\mathrm{t}} \mathrm{AC}$ and t_{AM} are given as mınimum times for valid data outputs. Longer times will initiate an earlier but invalid input.

TIMING DIAGRAMS

Read Operation

Note: Shaded area in $\overline{\mathrm{CS}}$ is a don't care condition.

The dynamic characteristic table and the above timing diagrams represent maximum performance capability of the HCMP 1824. When used in direct system interface with the HCMP 1802A microprocessor, the timing relation will be determined by the clock frequency and timing signal generation of the microprocessor. In the latter case the following general timing conditions hold.

$$
\left.\begin{array}{l}
\mathrm{t}^{2} \mathrm{WW}=2 \mathrm{t}_{\mathrm{C}} \\
\mathrm{t}_{\mathrm{DH}}=1.0 \mathrm{t}_{\mathrm{C}} \\
\mathrm{t}_{\mathrm{DS}}=5.5 \mathrm{t}_{\mathrm{C}}
\end{array}\right\} \quad \begin{gathered}
\mathrm{t} A H=1.0 \mathrm{t}_{\mathrm{c}} \quad \mathrm{t}_{\mathrm{AS}}=4.5 \mathrm{t}_{\mathrm{C}} \\
\hline \text { Data transfers from HCMP 1802A to Memory }
\end{gathered}
$$

$\overline{\mathrm{MRD}}$ occurs one clock period (t_{c}) earlier than address bus MAO-MA7
$t_{C}=1 / H C M P 1802 \mathrm{~A}$ clock frequency
data retention characteristics at $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

CHARACTERISTIC	TEST CONDITIONS		$\begin{gathered} \text { HCMP } \\ 1824 \end{gathered}$		HCMP 1824C		UNITS
		(V)	Min.	Max.	Min.	Max.	
Data Retention Voltage, V $\mathrm{VR}^{\text {d }}$	-	-	2.5	-	2.5	-	V
Data Retention Quiescent Current, IDD	$V_{D R}=2.5 \mathrm{~V}$	-	-	50	-	250	$\mu \mathrm{A}$
Chip Deselect to Data Retention Time, ${ }^{t}$ CDR	$V_{D R}=2.5 \mathrm{~V}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	$-$	600	-	
Recovery to Normal Operation Time, $t_{\text {RC }}$	$V_{D R}=2.5 \mathrm{~V}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	-	600	-	

Low $V_{D D}$ data retention waveforms and timing diagram.

SYSTEM INTERCONNECT

*Chip select may be derived through (1) address decode, (2) CEO signal from ROM, or (3) always enabled (GND) per system requirements.

For a microprocessor system requiring a minimal amount of writable storage, the HCMP 1824 can be used as an adequate scratch pad memory and as stack storage for a wide range of control applications. No additional interface elements are required.

SIGNAL DESCRIPTION

MAO-MA4 - These five input address lines select one of 32 eight bit words. They are statically decoded on the chip to directly access the register array.
BUSO-BUS7 - These eight bi-directional three state data lines form a data bus common with the HCMP 1802A microprocessor. Data is written into the RAM or read from the RAM through these lines. $\overline{\mathbf{M R D}}, \overline{\mathrm{MWR}}, \overline{\mathbf{C S}}$ - These three control signals determine chip selection bi-directional data control and operation of the chip when activated as follows:
$\overline{\mathrm{MRD}}=$ Memory Read
$\overline{\mathrm{MWR}}=$ Memory Write
$\overline{\mathrm{CS}}=$ Chip Select (allows memory expansion)

FUNCTION	$\overline{\mathbf{C S}}$	$\overline{\text { MRD }}$	$\overline{\text { MWR }}$	DATA LINES
Read	0	0	\times	Output Mode
Write	0	1	0	Input Mode
Not Selected	1	\times	\times	High Impedance Mode
Standby	0	1	1	High Impedance Mode

Logic $\mathbf{1}=$ High
Note: $\overline{\text { MRD }}$ overrides $\overline{\text { MWR }}=$ Low

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

LUḠEESAIRCRAF̄̄COMPANY SOLID STATE PRODUCTS

512×8 STATIC ROM - HCMP 1831
 1024×8 STATIC ROM - HCMP 1833
 DESCRIPTION

The HCMP 1831 and 1833 are static CMOS Mask Programmable Read Only Memories. The HCMP 1831 and 1833 respond to a 16 -bit address time multiplexed on the 8 address lines (MA0-MA7). The eight most significant address lines are latched on chip by the clock input. This address may be decoded by mask option to allow the HCMP 1831 to operate in any 512 word area, and the 1833 in any 1024 word area within the 65,536 byte memory space. In addition, three chip select signals may be decoded for simplified system interfacing. The Chip Enable Output (CEO) is activated when the chip is selected and can be used as a disable control for small RAM memory systems. Data is accesed from memory by decoding the Address inputs and enabled on the data bus by the two Chip Selects (CS2 and CS1), the Memory Read ($\overline{\mathrm{MRD}}$) and the upper address decode. The CEI signal may be used as an additional control of the ROM selected output signal, CEO, on the HCMP 1833.

The HCMP 1831 and 1833 operate over a 4-10.5 volt range while the HCMP 1831C and 1833C operate over a $4-6.5$ volt range. The ROMs are normally supplied in 24 -lead, hermetic dual-inline ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) can be supplied upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components
- Access Time

850ns Typical at VDD $=5 \mathrm{~V}$
400 ns Typical at V DD $=10 \mathrm{~V}$

- Single Voltage Supply
- Low Quiescent and Operating Power
- Static - No Clocks Required
- Chip Select and Address Location Within 64K Memory Space, Mask Programmable

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range ($\mathrm{T}_{\text {stg }}$)
-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (T_{A})

DC Supply-Voltage Range (VDD)
(All voltage values referenced to V_{SS} terminal)

```
HCMP 1831/1833.
-0.5 to +13V
HCMP 1831C/1833C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to + 7V
```

OPERATING CONDITIONS at TA = Full Package Temperature Range Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS V_{DD} $\mathrm{IV})$	LIMITS				LIMITS				UNITS
		HCMP 1831		HCMP 1831C		HCMP 1833		HCMP 1833C		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Supply Voltage Range (At $T_{A}=$ Full Package Temperature Range)	-	4	10.5	4	6.5	4	10.5	4	6.5	V
Recommended Input Voltage Range	-	$\mathrm{V}_{\text {SS }}$	$v_{\text {DD }}$	$\mathrm{v}_{\text {SS }}$	VDD	$\mathrm{v}_{\text {SS }}$	VDD	$\mathrm{v}_{\text {Ss }}$	$V_{\text {DD }}$	V
Clock Pulse Width (TPA), tPAW	5	200	-	200	-	200	-	200	-	ns
	10	70	-	-	-	70	-	-	-	
Address Setup Time, ${ }^{\text {t }}$ AS	5	50	-	50	-	75	-	75	二	ns
	10	25	-	-	-	40	-	-	-	
Address Hold Time, ${ }^{\text {t }}$ AH	5	150	-	150	-	100	-	100	-	ns
	10	75	-	-	-	50	-	-	-	

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$ except as noted

CHARACTERISTIC	$\begin{aligned} & \text { TEST } \\ & \text { COND }-1 \\ & \text { TIONS } \\ & \hline \end{aligned}$		HCMP 1831			HCMP 1831C			HCMP 1833			HCMP 1833C			UNITS
	V_{0} (V)	VDD (V)	Min.	Typ.	Max.										
Static															
Quiescent Device Current, IL	-	5	-	0.01	50	-	0.02	200	-	0.01	50	-	0.02	200	$\mu \mathrm{A}$
	-	10	-	1	200	-	-	-	-	1	200	-	-	-	
Output Drive Current, N -Channel (Sink), IDN	0.4	5	0.55	-	-	0.55	-	-	0.8	-	-	0.8	-	-	mA
	0.5	10	1.3	-	-	-	-	-	1.8	-	-	-	-	-	
P-Channel (Source), IDP	4.6	5	-0.35	-	-	-0.35	-	-	-0.8	-	-	-0.8	-	-	
	9.5	10	-0.65	-	-	-	-	-	-1.8	-	-	-	-	-	
Output Voltage Low Level, V_{OL}	-	5	-	0	0.05	-	0	0.05	-	0	0.05	-	0	0.05	v
	-	10	-	0	0.05	-	-	-	-	0	0.05	-	-	-	
Output Voltage High Level, $\mathrm{VOH}_{\mathrm{OH}}$	-	5	4.95	5	-	4.95	5	-	4.95	5	-	4.95	5	-	V
	-	10	9.95	10	-	-	-	-	9.95	10	-	-	-	-	
Input Leakage Current,$I_{I L} \cdot I_{I H}$	-	5	-	-	± 1	$\mu \mathrm{A}$									
	-	10	-	-	± 1	-	-	-	-	-	± 1	-	-	-	
3-State Output Leakage Current, IOUT	0,5	5	-	-	± 1	$\mu \mathrm{A}$									
	0,10	10	-	-	± 1	-	-	\pm	-	-	± 1	-	-	-	
Dynamic: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega$															
Access Time From Address Change, t AA	-	5	-	850	1000	-	850	1000	-	650	775	-	650	775	ns
	-	10	-	400	500	-	-	-	-	350	425	-	-	-	
Access Time From Chip Select, tACS	-	5	-	700	800	-	700	800	-	500	625	-	500	625	ns
	-	10	-	250	300	-	-	-	-	275	310	-	-	-	
CEO From Address Change, tcA	-	5	-	500	600	-	500	600	-	120	170	-	120	170	ns
	-	10	-	200	250	-	-	-	-	70	100	-	-	-	
Bus Contention Delay,${ }^{\text {t }}$ D	-	5	-	200	350	-	200	350	-	220	270	-	220	270	ns
	-	10	-	100	150	-	-	-	-	130	150	-	-	-	
Daisy Chain Delay, ${ }^{t} 10$	-	5	-	-	-	-	-	-	-	200	250	-	200	250	ns
	-	10	-	-	-	-	-	-	-	100	150	-	-	-	
Read Delay, tMRD	-	5	-	300	500	-	300	500	-	400	500	-	400	500	ns
	-	10	-	100	150	-	-	-	-	200	275	-	-	-	
Chip Select Delay, ${ }^{t} \mathrm{CS}$	-	5	-	600	750	-	600	750	-	250	320	-	250	320	ns
	-	10	-	200	300	-	-	-	-	125	180	-	-	-	
Chip Enable Output Delay Time From CS, t_{CO}	-	5	-	400	500	-	400	500	-	200	250	-	200	250	ns
	-	10	-	200	250	-	-	-	-	100	150	-	-	-	
$\begin{aligned} & \text { Power Dissipation, } P_{D} \\ & \text { Cycle time }=2.5 \mu \mathrm{~s} \end{aligned}$	-	5	-	15	-	-	15	-	-	30	-	-	30	-	mW
	-	10	-	60	-	-	-	-	-	120	-	-	-	-	

[^6]HCMP 1831

\triangle VALID DATA
LONGER TIME WILL
INITIATE AN EARLIER BUT INVALID OUTPUT
H.O. $=$ HIGH ORDER ADDRESS
L.O.=LOW ORDER ADDRESS

HCMP 1833

INVALID OR DON'T CARE CONDITIONS

The dynamic characteristic table and the above timing diagrams represent maximum performance capability of the HCMP 1831/1833. When used in direct system interface with the HCMP 1802A microprocessor, the timing relation will be determined by the clock frequency and timing signal generation of the microprocessor. In the latter case the following general timing conditions hold: $\mathrm{t}_{\mathrm{AH}}=0.5 \mathrm{t}_{\mathrm{C}}$

$$
\text { tPAW }=1.0 \mathrm{t}_{\mathrm{c}}
$$

$\overline{\text { MRD }}$ occurs one clock period (t_{c}) earlier than address bus MAO-MA7 $\mathrm{t}_{\mathrm{C}}=1 / \mathrm{HCMP} 1802 \mathrm{~A}$ clock frequency

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA7 - High order byte of a 16-bit memory address appears on the memory address lines, MA0-MA7, first. Those bits required by the memory system are strobed into internal address latches by Clock (TPA) input. The low order byte of 16 -bit address appears on the address lines after the termination of TPA.

BUS0-BUS7 - These eight bi-directional three state data lines form a common bus with the 1802A microprocessor.

CLK (TPA) - A timing signal from HCMP 1802A microprocessor (trailing edge of TPA) is used to latch the high order byte of the 16 -bit memory address. The polarity of TPA is user mask programmable.

CS1, CS2, $\overline{\text { MRD }}$ - Chip Select and Memory Read (output enable) signals. The polarity of the chip select signals are user mask programmable.

CEO, CEI - Chip enable output signal (CEO) is high when either the chip is selected or CEI is high (1833 only). CEO and CEI can be connected in daisy chain operation between several ROMs to control selection of RAM chips in a microprocessor system without additional components. The polarity of CEI is user mask programmable in the HCMP 1833.

ORDERING INFORMATION

Contact Hughes for prices and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance is available from Hughes-Solid State Products or Hughes Representative.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

512×8 STATIC ROM - HCMP 1832
 1024×8 STATIC ROM - HCMP 1834

DESCRIPTION

The HCMP 1832 and 1834 are static CMOS Mask Programmable Read Only Memories. When an address is presented on lines MAO-MA8 (HCMP 1832) or MAO-MA9 (HCMP 1834) the decoded word location is accessed and presented to the output sense amplifiers. This 8 bit word is enabled onto the lines by the CS signal in the HCMP 1832, or the CS1 and CS2 signals in the HCMP 1834, which can be used for memory expansion. The HCMP 1832 is a pin-for-pin compatible replacement for the 2704/8704 PROMs while the HCMP 1834 is a pin-for-pin compatible replacement for the 2708 PROM or 2308 ROM.
The HCMP 1832 and 1834 operate over a $4-10.5$ volt range while the HCMP 1832C and 1834C operate over a $4-6.5$ volt range. The ROMs are supplied in a 24 lead hermetic dual-in-line ceramic (D suffix) or plastic packages (P suffix). Unpackaged dice (H suffix) can be supplied upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry	- Single Voltage Supply
- Compatible with 1802A microprocessor at	- Low Quiescent and Operating Power
maximum speed	- Static - No Clocks Required
- Access Time - 1832	- Functional Replacement for Std. Industry
850ns Typical at VDD $=5 \mathrm{~V}$	Type $2704(512 \times 8)$ PROM or Type
400ns Typical at VDD $=10 \mathrm{~V}$	$2708(1024 \times 8)$ PROM

- Access Time - 1834

575 ns Typical at VDD $=5 \mathrm{~V}$ 350 ns Typical at VDD $=10 \mathrm{~V}$

FUNCTIONAL DIAGRAM

*No Connection on HCMP 1832
** CS on 1832, CS1 on HCMP 1834

PIN CONFIGURATION


```
Operating Temperature Range ( }\mp@subsup{\textrm{T}}{\textrm{A}}{}\mathrm{ )
```



```
DC Supply-Voltage Range (VDD)
    (All voltage values referenced to }\mp@subsup{V}{SS}{}\mathrm{ terminal)
    HCMP 1832/1834
    0.5 to +13V
    HCMP 1832C/1834C .................................................................... to + + 7V
```

OPERATING CONDITIONS at $\mathbf{T}_{\mathbf{A}}=$ Full package temperature range unless otherwise specified
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS VDD (V)	LIMITS				LIMITS				UNITS
		HCMP 1832		HCMP 1832C		HCMP 1834		HCMP 1834C		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Static										
Supply Voltage Range (At $\mathbf{T}_{A}=$ Full Package Temperature Range)	-	4	10.5	4	6.5	4	10.5	4	6.5	v
Recommended Input Voltage Range	-	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	$\mathrm{v}_{\text {SS }}$	$V_{D D}$	$\mathrm{v}_{\text {SS }}$	$v_{\text {DD }}$	$\mathrm{v}_{\text {SS }}$	VDD	v

ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$ except as noted

CHARACTERISTIC	$\begin{gathered} \text { TEST } \\ \text { CONDITIONS } \end{gathered}$		HCMP 1832			HCMP 1832C			HCMP 1834			HCMP 1834C			UNITS
	V_{0} (V)	VDD (V)	Min.	Typ.	Max.										
Static															
Quiescent Device Current, ${ }^{\text {L }}$	-	5	-	0.01	50	-	0.02	200	-	0.01	50	-	0.02	200	$\mu \mathrm{A}$
	-	10	-	1	200	-	-	-	-	1	200	-	-	-	
Output Drive Current: N -Channel (Sink), $\mathrm{I}_{\mathrm{D}} \mathrm{N}$	0.4	5	0.55	-	-	0.55	-	-	0.8	-	-	0.8	-	-	mA
	0.5	10	1.30	-	-	-	-	-	1.8	-	-	-	-	-	
P-Channel (Source), IDP	4.6	5	-0.35	-	-	-0.35	-	-	-0.8	-	-	-0.8	-	-	
	9.5	10	-0.65	-	-	-	-		-1.8	-	-	-	-	-	
Output Voltage Low Level, V_{OL}	-	5	-	0	0.05	-	0	0.05	-	0	0.05	-	0	0.05	V
	-	10	-	0	0.05	-	-	-	-	0	0.05	-	-	-	
Output Voltage High Level, V_{OH}	-	5	4.95	5	-	4.95	5	-	4.95	5	-	4.95	5	-	v
	-	10	9.95	10	-	-	-	-	9.95	10	-	-	-	-	
Input Leakage Current,$I_{I L}, I_{1 H}$	-	5	-	-	± 1	$\mu \mathrm{A}$									
	-	10	-	-	± 1	-	-	-	-	-	± 1	-	-	-	
3 State Output Leakage Current, IOUT	0,5	5	-	-	± 1	$\mu \mathrm{A}$									
	0,10	10	-	-	± 1	-	-	-	-	-	± 1	-	-	-	
Dynamic: $\mathrm{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega$															
Access Time From Address Change, $\mathrm{t}_{\mathrm{A}} \mathrm{A}$	-	5	-	850	1000	-	850	1000	-	575	750	-	575	750	ns
	-	10	-	400	500	-	-	-	-	350	425	-	-	-	
Access Time From Chip Select, tAC	-	5	-	400	550	-	400	550	-	600	700	-	600	700	ns
	-	10	-	200	250	-	-	-	-	325	410	-	-	-	
Chip Select Delay, ${ }^{\text {c }}$ CS	-	5	-	200	250	-	200	250	-	480	580	-	480	580	ns
	-	10	-	100	130	-	-	-	-	250	340	-	-	-	
Power Dissipation, P_{D} Cycle Time $=2.5 \mu \mathrm{~s}$	-	5	-	15	-	-	15	-	-	30	-	-	30	-	mW
	-	10	-	60	二	-	-	-	-	120	-	-	-	-	

Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$

HCMP 1832

HCMP 1834

FUNCTIONAL OPERATION

The ROMs above are completely static - no clocks are required. Decode of the input address selects a word from the storage array. The chip select signal enables the selected word to appear on the output bus line.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MAO-MA9 - These address lines MAO-MA8 (HCMP 1832) or MAO-MA9 (HCMP 1834) select a decoded word.

BUS0-BUS7 - These eight bi-directional three-state data lines form a common bus with the 1802A microprocessor.
$\overline{\mathbf{C S}}, \mathbf{C S} 1, \mathbf{C S 2}$ - These chip select signals are provided for memory expansion. Outputs are enabled when $\overline{C S}=0$ in the HCMP 1832, while the polarity of CS1 and CS2 are user mask programmable in the HCMP 1834.

ORDERING INFORMATION

Contact Hughes for prices and other information relating to the ROMs. ROM order forms and instructions concerning means of data conveyance are available from Hughes-Solid State Products or Hughes representative.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

HUGHĒSAIRCRAFT COMPANY
500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

PRELIMINARY DATA

2048×8 STATIC ROM - HCMP 1835

DESCRIPTION

The HCMP 1835 is a static CMOS Mask Programmable Read Only Memory. The HCMP 1835 responds to a 16 bit address time multiplexed on the eight address lines (MAO-MA7). The eight most significant address lines are latched on chip by the Clock input's negative transition. This address may be decoded by mask option to allow the HCMP 1835 to operate in any 2048 byte area within the 65,636 byte memory space. In addition, three chip select signals may be decoded for simplified system interfacing. The Chip Enable Output (CEO) is activated when the chip is selected and can be used as a disable control for small memory systems. The CEI signal may be used as an additional control of the ROM selected output signal, CEO. Data is accessed from memory by decoding the Address inputs and enabled on the data bus by the two Chip Selects (CS2 and CS1), the Memory Read ($\overline{\mathrm{MRD}}$) and the upper address decode. The polarity of the CS2 and CS1 signals are mask programmable.
The HCMP 1835 operates over a 4-10.5 volt range while the HCMP 1835C operates over a 4-6.5 volt range. The ROMs are normally supplied in 24 -lead, hermetic dual-in-line ceramic package (D suffix) or a plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Interfaces Directly with 1802A

Microprocessor without Additional Components

- Access Time

900ns Typical at $V_{D D}=5 \mathrm{~V}$
500ns Typical at $\mathrm{V} D \mathrm{DD}=10 \mathrm{~V}$

- Single Voltage Supply
- Low Quiescent and Operating Power
- No Clocks Required
- Chip Select and Address Location within 64K Memory Space, Optionally Programmable

FUNCTIONAL DIAGRAM

PIN CONFIGURATION


```
Storage-Temperature Range ( }\mp@subsup{T}{\mathrm{ stg }}{}\mathrm{ )
Operating-Temperature Range (TA)
Ceramic Package -55 to \(+125^{\circ} \mathrm{C}\)
Plastic Package -40 to \(+85^{\circ} \mathrm{C}\)
```

DC Supply－Voltage Range（VDD）
（All voltage values referenced to $\mathrm{V}_{\text {ss }}$ terminal）

OPERATING CONDITIONS at TA＝Full Package Temperature Range Unless Otherwise Specified For maximum reliability，nominal operating conditions should be selected so that operation is always within the following ranges：

CHARACTERISTIC	CONDITIONS	LIMITS						UNITS
	VDD （V）	HCMP 1835			HCMP 1835C			
		Min．	Typ．	Max．	Min．	Typ．	Max．	
Supply Voltage Range（At $\mathrm{T}_{\mathrm{A}}=$ full Package Temperature Range	－	4	－	10.5	4	－	6.5	V
Recommended Input Voltage Range	－	$\mathrm{V}_{\text {SS }}$	－	V_{DD}	$\mathrm{V}_{\text {SS }}$	－	V_{DD}	V
Clock Pulse Width（TPA），tPAW	5	300	－	－	300	－	－	ns
	10	150	－	－	－	－	－	
Address Setup Time，${ }^{\text {t }}$ AS	5	300	一	－	300	－	－	ns
	10	150	一	－	－	一	－	
Address Hold Time，taH	5	0	－	－	0	－	－	ns
	10	0	－	－	－	－	－	

ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$ except as noted．

CHARACTERISTIC	TEST CONDITIONS		LIMITS						UNITS
			HCMP 1835			HCMP 1835C			
	$\begin{aligned} & V_{O} \\ & (V) \end{aligned}$	$V_{D D}$ （V）	Min．	Typ．	Max．	Min．	Typ．	Max．	
Static									
Quiescent Device Current，IO	－	5	－	1	100	－	1	100	$\mu \mathrm{A}$
	－	10	－	10	400	－	－	400	
Input Voltage Low Level，VIL	－	5	－	－	1.25	－	－	1.25	V
	－	10	－	－	2.5	－	－	－	
Input Voltage High Level， $\mathrm{V}_{1 \mathrm{H}}$	－	5	3.75	－	－	375	－	－	V
	－	10	7.5	－	－	－	－	－	
Output（Sink）Current，＇ OL	0.4	5	2	－	－	1.6	－	－	mA
	0.4	10	4	\rightarrow	－	－	－	－	
Output（Source）Current， I^{OH}	4.5	5	2	－	－	1.6	－	－	mA
	9.5	10	4	－	－	－	－	－	
Input Leakage Current， $I_{I L} \cdot I_{I H}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$-$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 10 \end{aligned}$	－	± 1 -	5	$\mu \mathrm{A}$
3 State Output Leakage Current，I OUT	$\begin{aligned} & 0,5 \\ & 0,10 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	$-$	± 1	± 10	$\mu \mathrm{A}$
Dynamic： $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$									
Power Supply Current，IDD （Chip Selecțed 400 KHz ）	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{gathered} 3 \\ 10 \end{gathered}$	－	－	3.5 -	$-$	mA
CEO from Address Change，${ }^{\text {t }} \mathrm{CA}$	－	$\begin{array}{r} 5 \\ 10 \end{array}$		－	$\begin{aligned} & 325 \\ & 200 \end{aligned}$	－	－	325	ns
Daisy Chain Delay， t_{10}	-	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	－	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$-$	－	150	ns
Read Delay， $\mathrm{t} \overline{\mathrm{MRD}}$	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	－	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	－	200	ns
Chip Select Delay，${ }^{\text {t }}$ CS	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	- -	$\begin{aligned} & 250 \\ & 125 \end{aligned}$	$-$	－	250	ns
Access Time from Chip Select，tACS	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	－	$\begin{aligned} & 325 \\ & 175 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	－	325	ns
Access Time From Address Change，tAA	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & 900 \\ & 500 \end{aligned}$	$\begin{array}{r} 1300 \\ 800 \end{array}$	$-$	900 \qquad	1300	ns

"Daisy Chaining" with CEI inputs and CEO outputs is used to avoid memory conflicts between ROM and RAM in a user system. In the above configuration, if ROM\#1 was masked-programmed for memory locations $0000-3 \mathrm{FF}_{16}$ and ROM\#2 masked-programmed for memory locations $0400-07 \mathrm{FF}_{16}$ for addresses from $0000-07 \mathrm{FF}_{16}$ the RAM would be disabled and the ROM enabled. For locations above $07 \mathrm{FF}_{16}$ the ROM s would be disabled and the RAM enabled.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA7 - Under 1802A control the high order byte of a 16-bit memory address appears on the memory address lines, MAO-MA7, first. Three bits required by the ROM Address Decodes are strobed into internal address latches by Clock (TPA) input. The low order byte of 16-bit address appears on the address lines after the termination of TPA.

BUS0-BUS7 - These eight bi-directional three state data lines form a common bus with the 1802A microprocessor.

CLK (TPA) - A timing signal from 1802A microprocessor (trailing edge of TPA) is used to latch the high order byte of the 16 -bit memory address.

CS1, CS2, $\overline{M R D}$ - Chip select and memory read (output enable) signals. The polarity of the CS1 and CS2 signals are user mask programmable.

CEO, CEI - Chip Enable Output (CEO) signal is high when either the chip is selected or CEI is high. CEO and CEI can be connected in daisy chain operation between several ROMs to control selection of RAM chips in a microprocessor system without additional components.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance are available from Hughes-Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

LUGGES AIRCRAFT COMPANY
500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

4096×8 STATIC ROM — HCMP 1837

DESCRIPTION

The HCMP 1837 is a static CMOS Mask Programmable Read Only Memory. No clocks are required. The HCMP 1837 responds to a 16 bit address time multiplexed on the eight address lines (MAO-MA7). The most significant address lines are latched on chip by the Clock input's negative transition. This address may be decoded by mask option to allow the HCMP 1837 to operate in any 4096 byte area within the 65,636 byte memory space. In addition, three chip select signals may be decoded for simplified system interfacing. The Chip Enable Output (CEO) is activated when the chip is selected and can be used as a disable control for small memory systems. The CEI signal may be used as an additional control of the ROM selected output signal, CEO. Data is accessed from memory by decoding the Address inputs and enabled on the data bus by the two Chip Selects (CS2 and CS1), the Memory Read ($\overline{\mathrm{MRD}}$) and the upper address decode.

The HCMP 1837 operates over a $4-10.5$ volt range while the HCMP 1837C operates over a $4-6.5$ volt range. The ROMs are normally supplied in a 24 -lead, hermetic dual-in-line ceramic package (D suffix) or plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Interfaces Directly with 1802A

Microprocessor without Additional Components

- Access Time

750 ns Typical at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
450 ns Typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$

- Single Voltage Supply
- Low Quiescent and Operating Power
- No Clocks Required
- Chip Select and Address Location within 64K Memory Space, Optionally Programmable

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values

Storage-Temperature Range ($\mathrm{T}_{\text {stg }}$) \qquad
Operating-Temperature Range (T_{A})
Ceramic Package..................... 55 to $+125^{\circ} \mathrm{C}$
Plastic Package..................... -40 to $+85^{\circ} \mathrm{C}$ -40 to $+85^{\circ} \mathrm{C}$

DC Supply-Voltage Range (VDD)
(All voltage values referenced to $\mathrm{V}_{\text {SS }}$ terminal)
HCMP $1837 \ldots$. . -0.5 to +13 V
HCMP 1837C -0.5 to $+7 V$

OPERATING CONDITIONS at TA $_{\text {A }}=$ Full Package Temperature Range Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS	LIMITS						UNITS
	VDD (V)	HCMP 1837			HCMP 1837C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply Voltage Range (At $T_{A}=$ full Package Temperature Range	-	4	-	10.5	4	-	6.5	V
Recommended Input Voltage Range	-	$\mathrm{V}_{\text {SS }}$	-	V_{DD}	$\mathrm{V}_{\text {SS }}$	-	$V_{\text {DD }}$	V
Clock Pulse Width (TPA), tPAW	5	300	-	-	300	-	-	ns
	10	150	-	-	-	-	-	
Address Setup Time, tas	5	300	-	-	300	-	-	ns
	10	150	-	-	-	-	-	
Address Hold Time, ${ }^{\text {t }}$ AH	5	0	-	-	0	-	-	ns
	10	0	-	-	-	-	-	

ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$ except as noted.

CHARACTERISTIC	TEST CONDITIONS		LIMITS						UNITS
			HCMP 1837			HCMP 1837C			
	$\begin{aligned} & \mathrm{V}_{0} \\ & \text { (V) } \end{aligned}$	$V_{D D}$ (V)	Min.	Typ.	Max.	Min.	Typ.	Max.	
Static									
Quiescent Device Current, IQ	-	5	-	1	50	-	1	50	$\mu \mathrm{A}$
	-	10	-	1	100	-	-	-	
Input Voltage Low Level, V/IL	-	5	-	-	1.25	-	-	1.25	V
	-	10	-	-	3	-	-	-	
Input Voltage High Level, $\mathrm{V}_{\text {IH }}$	-	5	3.75	-	-	3.75	-	-	V
	-	10	7	-	-	-	-	-	
Output (Sink) Current, IOL	0.4	5	2.2	-	-	2.2	-	-	mA
	0.4	10	4.4	-	-	-	-	-	
Output (Source) Current, ${ }^{\text {I }} \mathrm{OH}$	4.5	5	-1.6	-	-	-1.6	-	-	mA
	9.5	10	-3.2	-	-	-	-	-	
Input Leakage Current, ${ }^{\prime} \mathrm{IL}^{\prime} \mathrm{I}_{\mathrm{IH}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	± 1	± 2	$\mu \mathrm{A}$
3 State Output Leakage Current, ' OUT	$\begin{aligned} & 0,5 \\ & 0,10 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 2 \end{aligned}$	-	± 1	± 12	$\mu \mathrm{A}$
Dynamic: $\mathbf{t}_{\mathbf{r}}, \mathrm{t}_{\mathbf{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$									
Power Supply Current, IDD (Chip Selected 400 KHz)	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 4 \\ 10 \end{gathered}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	4	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	mA
CEO from Address Change, ${ }^{\text {t }}$ CA	-	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	-	-	$\begin{aligned} & 325 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	325	ns
Daisy Chain Delay, ${ }^{\text {to }}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	-	-	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$			150	ns
Read Delay, $\overline{\mathrm{MRD}}$	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	-	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{gathered} 200 \\ - \end{gathered}$	ns
Chip Select Delay, tcs	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$		-	$\begin{aligned} & 250 \\ & 125 \\ & \hline \end{aligned}$	-	-	$\begin{gathered} 250 \\ - \\ \hline \end{gathered}$	ns
Access Time from Chip Select, tACS	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	-	$\begin{aligned} & 325 \\ & 175 \end{aligned}$	-	-	325	ns
Access Time From Address Change, tAA	-	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	-	$\begin{aligned} & 750 \\ & 450 \end{aligned}$	$\begin{array}{r} 1000 \\ 600 \\ \hline \end{array}$		750 -	$\begin{gathered} 1000 \\ - \end{gathered}$	ns

"Daisy Chaining" with CEI inputs and CEO outputs is used to avoid memory conflicts between ROM and RAM in a user system. In the above configuration, if ROM\#1 was masked-programmed for memory locations $0000-0 \mathrm{FFF}_{16}$ the RAM\#2 masked-programmed for memory locations 0000-1FFF16 for addresses from $0000-1 \mathrm{FFF}_{16}$ the RAM would be disabled and the ROM enabled. For locations above 1FFF16 the ROM s would be disabled and the RAM enabled.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA7 - Under 1802A control the high order byte of a 16-bit memory address appears on the memory address lines, MAO-MA7, first. Three bits required by the ROM Address Decodes are strobed into internal address latches by Clock (TPA) input. The low order byte of 16-bit address appears on the address lines after the termination of TPA.

BUS0-BUS7 - These eight bi-directional three state data lines form a common bus with the 1802A microprocessor.

CLK (TPA) - A timing signal from 1802A microprocessor (trailing edge of TPA) is used to latch the high order byte of the 16 -bit memory address.

CS1, CS2, $\overline{M R D}$ - Chip select and memory read (output enable) signals. The polarity of the CS1 and CS2 signals are user mask programmable.

CEO, CEI - Chip Enable Output (CEO) signal is high when either the chip is selected or CEI is high. CEO and CEI can be connected in daisy chain operation between several ROMs to control selection of RAM chips in a microprocessor system without additional components.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance are available from Hughes-Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co,
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

2048×8 STATIC ROM — HCMP $23 C 16$

DESCRIPTION

The HCMP 23C16 is a CMOS Mask Programmable Read Only Memory organized $2048 \times$ 8. The ROM circuit is static and updates its outputs when any address changes. Two chip selects are included which are programmed for polarity with the same mask that programs the data pattern.
When the chip is selected, the address present on lines MAO-MA10 accesses data which is presented to the output sense amplifiers. The eight-bit output word is enabled onto the data lines by the chip select signals, which can be used for memory expansion. The HCMP 23 C 16 is a pin compatible replacement for the 2716 PROM.
The HCMP 23C16 operates over a 4-10.5 volt range while the HCMP 23C16C operates over a $4-6.5$ volt range. The ROMs are supplied in a 24 lead hermetic dual-in-line ceramic package (D suffix) or a plastic (P suffix) package. Devices in chip form (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- No Clocks are Required
- Compatible with 1802A Microprocessor at Maximum Speed
- Access Time

900ns Typical at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
500 ns Typical at $V_{D D}=10 \mathrm{~V}$

- Single Voltage Supply
- Low Quiescent and Operating Power
- Functional Replacement for Industry Standard Type $2716(2048 \times 8)$ PROM

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS Absolute-Maximum Values

Storage-Temperature Range ($\mathrm{T}_{\text {stg }}$)	-65 to $+150^{\circ} \mathrm{C}$
Operating-Temperature Range (T_{A})	
Ceramic Package	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package	-40 to $+85^{\circ} \mathrm{C}$
DC Supply - Voltage Range ($\mathrm{V}_{\text {DD }}$)	
(All voltage values referenced to $\mathrm{V}_{\text {SS }}$ terminal)	
HCMP 23 C 16.	-0.5 to +11 V
HCMP 23C16C.	-0.5 to +7 V

OPERATING CONDITIONS at $\mathbf{T A}_{\mathbf{A}}=$ Full Package Range Unless Otherwise Specified
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS		LIMITS						UNITS
	$\begin{aligned} & \mathrm{v}_{\mathrm{O}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \text { (V) } \end{aligned}$	HCMP 23C 16			HCMP 23C 16			
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$\begin{aligned} & \text { Supply Voltage Range (At } T_{A}=\text { Full } \\ & \text { Package Temperature Range) } \end{aligned}$	-	-	4	-	10.5	4	-	6.5	v
Recommended Input Voltage Range	-	-	Vss	-	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	-	${ }^{\text {DD }}$	V

ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }}= \pm 5 \%$ except as noted.

CHARACTERISTIC	CONDITIONS		LIMITS						UNITS
	v_{0} (V)	VDD (V)	HCMP 23C16			HCMP 23C16C			
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Static									
Quiescent Device Current, I_{L}	-	$\begin{array}{r} 5 \\ 10 \end{array}$			$\begin{gathered} 50 \\ 200 \end{gathered}$	-	-	50	$\mu \mathrm{A}$
$\begin{aligned} & \text { Supply Current, IDD } 1400 \mathrm{KHZ} \\ & \text { Addresses) } \end{aligned}$		$\begin{array}{r} 5 \\ 10 \end{array}$			$\begin{aligned} & 5.75 \\ & 30 \end{aligned}$		-	5.75	mA
Output Drive Current: N -Channel (Sink), IDN	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	-	-	2	-	$-$	$\mu \mathrm{A}$
P-Channel (Source), ID ${ }^{\text {P }}$	$\begin{aligned} & 4.5 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	-	-	2	-	-	$\mu \mathrm{A}$
Output Voltage Low Level, V_{OL}	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	0 0	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	-	0	0.05	V
Output Voltage High Level, V_{OH}	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	4.95	5	$-$	V
Input Low Voltage VIL	$\begin{gathered} 0.5,4.5 \\ 1,9 \end{gathered}$	$\begin{array}{r} 5 \\ 10 \end{array}$	-	-	$\begin{aligned} & 1.25 \\ & 2.50 \end{aligned}$	-		1.25	V
Input High Voltage, $\mathrm{V}_{\text {IH }}$	$\begin{gathered} 0.5,4.5 \\ 1,9 \end{gathered}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 3.75 \\ & 7.50 \end{aligned}$	-	-	3.75	-	-	V
Input Leakage Current, $I_{I L}, I_{I H}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	$-$	± 1	± 1	$\mu \mathrm{A}$
3 State Output Leakage Current, IOUT	$\begin{gathered} 0,5 \\ 0,10 \end{gathered}$	$\begin{array}{r} 5 \\ 10 \end{array}$	-	± 1 ± 1	$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	-	± 1	± 2	$\mu \mathrm{A}$
Dynamic: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},=200 \mathrm{~K}$									
Access Time From Address Change, tAA	$-$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & 900 \\ & 500 \end{aligned}$	$\begin{aligned} & 1200 \\ & 725 \end{aligned}$	-	900	1200	ns
Access Time From Chip Select, ${ }^{t}$ AC	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{aligned} & 330 \\ & 200 \end{aligned}$	$\begin{aligned} & 425 \\ & 275 \end{aligned}$	-	330	425	ns

INVALID OR DON'T CARE CONDITIONS

FUNCTIONAL OPERATION

The above ROMs are completely static-no clocks required. Decode of the input address selects a word from the storage array. The chip select signal enables the selected word to appear on the output bus line. Address rise and fall times should be less than 500 nsec .

SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA10 - These address lines select a byte location. MA10 is the high order address bit.

BUS0-BUS7 - These eight three-state data lines form a common bus with the microprocessor.

CS1, CS2 - These chip select signals are provided for memory expansion. Outputs are enabled when CS1 and CS2 are active. Polarity of CS1 and CS2 are user mask programmable.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance is available from Hughes - Solid State Products or Hughes representatives.

HUGHES : SOLID STATE PRODUCTS

HUGHES

 SOLID STATE PRODUCTS

4096×8 STATIC ROM - HCMP 23C32

DESCRIPTION

The 23C32 is CMOS MASK Programmable Read Only Memory organized 4096×8. The ROM circuit is static and updates its outputs when any address changes. Two chip selects are included which are programmed for polarity with the same mask that programs the data pattern.

When the chip is selected (CS1 and CS2 are activated) the address present on lines MA0-MA11 accesses data which is presented to the output sense amplifiers. The 3-bit output word is enabled onto the data lines by the chip select signals, which can be used for memory expansion. The HCMP 23 C 32 is a pin compatible replacement for the 2732 PROM.

The HCMP 23C32 operates over a 4-10.5 volt range while the 23C32C operates over 4-6.5 volt range. The ROMS are supplied in a 24 lead hermetic dual-in-line ceramic package (D suffix) or a plastic package (P suffix). Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static CMOS Circuitry
- Functional Replacement for Industry Standard Type $2732(4096 \times 8)$ PROM
- Compatible with 1802A Microprocessor at Maximum Speed
- Access Time

750ns Typical at VDD $=5 \mathrm{~V}$
450 ns Typical at $\mathrm{V} D \mathrm{DD}=10 \mathrm{~V}$

FUNCTIONAL DIAGRAM

* Active state is mask programmable
- Single Voltage Supply
- Low Quiescent and Operating Power
- Very Low Standby Power Mode - Less than 10 $\mu \mathrm{a}$, controlled by CS1

```
Storage-Temperature Range ( }\mp@subsup{T}{\mathrm{ stg }}{}\mathrm{ )
-65 to +150}\mp@subsup{}{}{\circ}\textrm{C
Operating-Temperature Range (TA)
```



```
    Plastic Package
        -40 to +85 C
DC Supply-Voltage Range ( }\mp@subsup{V}{DD}{}\mathrm{ )
    (All voltage values referenced to }\mp@subsup{V}{SS}{}\mathrm{ terminal)
    HCMP 23C32
    -0.5 to +13V
    HCMP 23C32C .............................................................. - 0.5 to +7V
```

OPERATING CONDITIONS at $\mathrm{TA}_{\mathrm{A}}=$ Full Package Range Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS		LIMITS						UNITS
	$\begin{aligned} & \mathrm{V}_{\mathbf{O}} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}} \\ \text { (V) } \end{gathered}$	HCMP 23C32			HCMP 23C32C			
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply Voltage Range (At $\mathrm{T}_{A}=$ Full Package Temperature Range)	-	-	4	-	10.5	4	-	6.5	V
Recommended Input Voltage Range	-	-	$\mathrm{V}_{\text {SS }}$	-	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	-	$V_{\text {DD }}$	V

ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$ except as noted.

CHARACTERISTIC	CONDITIONS		LIMITS						UNITS
	v_{0} (V)	VDD (V)	HCMP 23C32			HCMP 23C32C			
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Static									
Quiescent Device Current, IL	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \end{aligned}$	-	1	100	$\mu \mathrm{A}$
$\begin{aligned} & \text { Supply Current, IDD }(400 \mathrm{KHZ} \\ & \text { Addresses) } \end{aligned}$	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	- -	$\begin{gathered} 4 \\ 10 \end{gathered}$	-	-	4	mA
Output Drive Current: N -Channel (Sink), IDN	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 2.2 \\ & 4.4 \end{aligned}$	-	-	2.2	-	-	$\mu \mathrm{A}$
P-Channel (Source), $I_{D}{ }^{\text {P }}$	$\begin{aligned} & 4.5 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & -1.6 \\ & -3.2 \end{aligned}$	-	-	2	-	-	$\mu \mathrm{A}$
Output Voltage Low Level, V_{OL}	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	0	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	-	-	0.05	V
Output Voltage High Level, V_{OH}		$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	-	4.95	5		V
Input Low Voltage VIL	$\begin{gathered} 0.5,4.5 \\ 1,9 \\ \hline \end{gathered}$	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$-$	1.25			1.25	V
Input High Voltage, $\mathrm{V}_{\text {IH }}$	$\begin{gathered} \hline 0.5,4.5 \\ 1,9 \end{gathered}$	$\begin{array}{r} 5 \\ 10 \end{array}$	3.75	-	-	3.75	-	-	V
Input Leakage Current, $I_{I L}, I_{I H}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	± 1	± 2	$\mu \mathrm{A}$
3 State Output Leakage Current, IOUT	$\begin{gathered} \hline 0,5 \\ 0,10 \\ \hline \end{gathered}$	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	-	± 1	± 2	$\mu \mathrm{A}$
Dynamic: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},=200 \mathrm{~K}$									
Access Time From Address Change, tAA		$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 750 \\ & 450 \end{aligned}$	$\begin{aligned} & 1000 \\ & 725 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	750	1000	ns
Access Time From Chip Select, tAC	-	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{aligned} & 330 \\ & 200 \end{aligned}$	$\begin{aligned} & 425 \\ & 275 \end{aligned}$	-	330 -	425 -	ns

FUNCTIONAL OPERATION

The above ROMs are completely static-no clocks required. Decode of the input address selects a word from the storage array. The chip select signal enables the selected word to appear on the output bus line. Address rise and fall times should be less than 500 nsec .

TYPICAL SYSTEM INTERCONNECT

SIGNAL DESCRIPTION

MA0-MA11 - These address lines select a byte location. MA11 is the high order address bit.

BUS0-BUS7 - These eight three-state data lines form a common bus with the microprocessor.

CS1, CS2 - These chip select signals are provided for memory expansion. Outputs are enabled when CS1 and CS2 are active. Polarity of CS1 and CS2 are user mask programmable.

ORDERING INFORMATION

Contact Hughes for price and other information relating to ROMs. ROM order forms and instructions concerning means of data conveyance is available from Hughes - Solid State Products or Hughes representatives.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 80.00 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

MICROPROCESSOR PRODUCTS

Central Processing Unit

DESCRIPTION

The HCMP 1802A is a CMOS microprocessor available in a $4-10.5 \mathrm{~V}$ operating range (1802A) or a $4-6.5 \mathrm{~V}$ operating range (1802AC). The 1802A has an 8 bit oriented architecture with a common bi-directional bus shared between all internal data, control, status and array registers. Accessing of memory is accomplished by time multiplexing a 16 bit address representing 65,536 locations into two sequentially transmitted bytes (8 bits). The presence of the most significant address bits is signified by the TPA clock. The 16×16 array of registers may be selected by the P, X, and N register designators to represent a program counter, data pointer and general pointer register respectively. Switching of programs may be readily accomplished by manipulating the register designators.

The HCMP 1802A has a flexible I/O interface including separate control signals (NO-N2) and memory access signals allowing direct memory data transfer with peripherals under CPU program control (through I/O instructions) or under peripheral control ($\overline{\mathrm{DMA}-\mathrm{IN}}$ and DMA-OUT signals). In addition to nonprogrammed Interrupt response, the CPU can monitor 4 flag inputs (EF1-EF4) from peripherals and set an output (Q) to the peripheral under program control. This may be used for serial data transfer or general control signals. State Codes (SC0-SC1) are available to monitor the CPU internal states.
The HCMP 1802A operates over a 4-10.5 volt range while the HCMP 1802AC operates over a $4-6.5$ voltage range. The CPUs are supplied in 40 lead hermetic dual-in-line ceramic (D suffix) or plastic (P suffix) packages.

The HCMP 1802BC (operating with 5 MHz clock at 5 V) is available for designs requiring higher system speed.

FEATURES

- Instruction Cycle Time 2.5-3.75 $\mu \mathrm{s}$ at 6.4 MHz.
- 8 Bit Parallel data Organization
- Memory Addressing to 65,536 Bytes
- On Chip Direct Memory Access
- 16×16 General Purpose Register Matrix
- Four Flag Inputs and One Programmable Output
- Direct Memory to Peripheral Transfer on I/O Instructions
- T^{2} L, NMOS and CMOS Compatible
- Optional On Chip Xtal Controlled Oscillator
- Low Power Single Voltage Supply
- 91 Instructions
- Schmitt Triggered Clear

PIN CONFIGURATION

ARCHITECTURAL ORGANIZATION

N,X,P Registers - These three registers provide a 4 bit binary number which designates (selects) one of the registers in the register array to provide an address to memory. In addition, the N register holds device selection codes for input/output operations, and acts as a buffer for the lower 4 bits of the op-code.

Q-Flip Flop - This internal flip flop can be set or reset by instruction and can be sensed by conditional branch instructions. Q can also be used as a microprocessor output control.

Register Array - These 16 registers of 16 bit word size can be used to provide three separate functions: as program counters, as data pointers or as a scratch pad buffer. Each array register designated by N, X, or P provides a 16 bit memory address latched by the A register and multiplexed 8 bits at a time onto the memory address lines.

- Program Counter - Any register may be used as the main program counter or as a subroutine program counter. This is determined by the user by setting the P register (4 bits) to point to any of the 16 array registers. When interrupts are serviced $R(1)$ is used as the interrupt service routine program counter.
- Data Pointers - Any array register may be selected by the N and X registers to provide the address of a data word location in memory. The N register selects an array register to provide addresses for several Load D from memory and Store D (accumulator) to memory instructions. The X register can also select array registers to provide addresses of memory data used in ALU operations and Input/Output operations, and additional Load from Memory and Store to Memory instructions with the D register.
- Data Register - The N register also selects an array register location to act as a scratch pad buffer for data exchange with the D register. Data is transferred by a set of four instructions which select the high order byte $\mathrm{R}(\mathrm{N})$. 1 , or the low order byte $\mathrm{R}(\mathrm{N}) .0$. Additionally an array register may be incremented or decremented for usage as loop counters.

INTERFACE MODES -

There are three modes of peripheral data transfer in the HCMP 1802A. These are programmed I/O, Interrupt Servicing, and Direct Memory Access.

- Programmed I/O - The HCMP 1802A provides a direct memory to peripheral device interface. The NO-N2 lines select a peripheral device while the memory address lines access a memory location. On Input instructions the peripheral data is read into the D register and memory simultaneously. On Output instructions the memory data is sent directly to the peripheral device. The EF flags and Q output can be used as additional programmable controls or as a serial data transfer path.
- Interrupt Servicing - Upon the completion of an instruction, a non-masked (enabled) interrupt request will be acknowledged by the HCMP 1802A. This results in the saving of the present X and P register values in the T register, resetting the Interrupt Enable flip flop, and setting of X to point to Register 2 and P to Register 1. At the end of an Interrupt routine, a Return instruction restores old values of X and P and allows reactivation of the Interrupt Enable flip flop.
- Direct Memory Access - The DMA mode is entered at the end of the execute machine cycle in the currently held instruction. This is a special extension of programmed input/ output. When a DMA-In or DMA-Out request is activated, array register $R(0)$ provides the location in memory for data transfer. On each byte transfer R(0) is incremented. The DMA mode can also be used to initially load memory after Reset and eliminates the requirement for specialized "bootstrap" load programs.

FUNCTIONAL DIAGRAM

HCMP 1802A REGISTER SUMMARY

REG.	NO. OF BITS	DESCRIPTION
D	8	DATA REGISTER (ACCUMULATOR)
DF	1	DATA FLAG (ALU CARRY/BORROW)
R	16	1 OF 16 SCRATCHPAD REGISTER
P	4	DESIGNATES WHICH REGISTER IS PROGRAM COUNTER
X	4	DESIGNATES WHICH REGISTER IS DATA OR STACK POINTER
N	4	HOLDS LOW ORDER INSTRUCTION DIGIT/DESIGNATES DATA PTR
I	4	HOLD HIGH ORDER (OP CODE) INSTRUCTION DIGIT
T	8	HOLDS OLD X, P VALUES AFTER INTERRUPT (X IS HIGH BYTE)
IE	1	INTERRUPT ENABLE FLIP FLOP
Q	1	OUTPUT FLIP FLOP

DC SUPPLY-VOLTAGE RANGE (VCC, $V_{D D}$)
(All voltage values referenced to V_{SS} terminal)
$\mathrm{V}_{\mathrm{CC}} \leqslant \mathrm{V}_{\mathrm{DD}}$:

```
HCMP 1802A
-0.5 to +11 V
```

HCMP 1802AC
-0.5 to +7 V
input voltage range, all inputs -0.5 to $V_{D D}+0.5 \mathrm{~V}$
dC INPUT CURRENT, ANY ONE INPUT
$\pm 10 \mathrm{~mA}$
OPERATING-TEMPERATURE RANGE (T_{A}) CERAMIC PACKAGE $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.

```
PLASTIC PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to \(+85^{\circ} \mathrm{C}\)
```

Storage temperature range (${ }^{\text {stg }}$)
-65 to $+150^{\circ} \mathrm{C}$
STATIC ELECTRICAL CHARACTERISTICS at TA $=-40$ to $+85^{\circ} \mathrm{C}$, except as noted.

CHARACTERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (${ }^{\circ} \mathrm{C}$)									UNITS
	V_{O} (V)	$V_{\text {IN }}$ (V)	$V_{C C}$, VDD (V)	HCMP 1802A			HCMP 1802AC			HCMP 1802BC			
				Min.	Typ.*	Max.	Min.	Typ.*	Max.	Min.	Typ.*	Max.	
Quiescent Device Current, IL Max.	-	-	5	-	0.01	100	-	0.02	400	-	0.02	400	-
	-	-	10	-	1	400	-	-	-	-	-	-	
Output Low Drive (Sink) Current, IOL Min. \qquad (Except Xtal)	0.4	0,5	5	1.2	2.5	-	1.2	2.5	-	1.2	2.5	-	mA
	0.5	0,10	10	24	4.4	-	-	-	-	-	-	-	
$\overline{X t a l}$ Output ${ }^{1}$ OL Min.	0.4	5	5	200	360	-	200	360	-	200	360	-	$\mu \mathrm{A}$
Output High Drive (Source Current) ${ }^{\mathrm{O}} \mathrm{OH}$ Min. (Except $\overline{\mathrm{Xtal})}$ Xtal OUtput $\mathrm{I}_{\mathrm{OH}} \mathrm{Min}$.	4.6	0,5	5	-0.40	-0.80	-	-0.40	-0.80	-	-0.40	-0.80	-	mA
	9.5	0,10	10	-0.60	-1.2	-	-	-	-	-	-	-	
	4.6	0	5	-100	-260	-	-100	-260	-	-100	-260	-	$\mu \mathrm{A}$
Output Voltage Low-Level $V_{\text {OL }}$ Max.	-	0,5	5	-	0	0.1	-	0	0.1	-	0	0.1	V
	-	0,10	10	-	0	0.1	-	-	-	-	-	-	
Output Voltage High Level, $\mathrm{V}_{\mathrm{OH}} \mathrm{Min}$.	-	0,5	5	4.9	5	-	4.9	5	-	4.9	5	-	
	-	0,10	10	9.9	10	-	-	-		-	-		
Input Low Voltage VIL Max.	0.5, 4.5	-	5	-	-	1.5	-	-	1.5	-	-	1.5	V
	0.5,4.5	-	5,10	-	-	1	-	-	1	-	-	1	
	1,9	-	10	-	-	3	-	-	-	-	-	-	
Input High Voltage $V_{I H}$ Min.	0.5, 4.5	-	5	3.5	-	-	3.5	-	-	3.5	-	-	
	0.5,4.5	-	5,10	4	-	-	4	-	-	4	-	-	
	1,9	-	10	7	-	-	-	-	-	-	-	-	
Clear Input Voltage, V_{H}	-	-	5	0.4	0.5	-	0.4	0.5	-	0.4	0.5	-	-
	-	-	5,10	0.3	0.4	-	-	-	-	-	-	-	
	-	-	10	1.5	2	-	-	-	-	-	-	-	
Input Leakage Current IIN Max.	Any Input	0,5	5	-	$\pm 10^{-4}$	± 1	-	$\pm 10^{-4}$	+1	-	$\pm 10^{-4}$	+1	$\mu \mathrm{A}$
		0,10	10	-	$\pm 10^{-4}$	± 1	-	-	-	-	-	-	
3-State Output Leakage Current IOUT Max.	0,5	0,5	5	-	$\pm 10^{-4}$	± 1	-	$\pm 10^{-4}$	+1	-	$\pm 10^{-4}$	+1	$\mu \mathrm{A}$
	0,10	0,10	10	-	$\pm 10^{-4}$	± 1	-	-	-	-	-	-	
Minimum Data Retention Voltage, $V_{\text {DR }}$	$V_{D D}=V_{D R}$			-	2	2.4	-	2	2.4	-	2	2.4	V
Data Retention Current, IDR	$V_{D D}=2.4 \mathrm{~V}$			-	0.1	1	-	0.5	5	-	0.5	5	$\mu \mathrm{A}$
Effective Input Capacitance, C_{iN} Any Input	-			-	5	7.5	-	5	7.5	-	5	7.5	pF
Effective 3-State Terminal Capacitance Data Bus	-			-	10	15	-	10	15	-	10	15	pF

${ }^{*}$ Typical Values are for $T_{A}=25^{\circ} \mathrm{C}$ and Nominal $V_{D D}$.

RECOMMENDED OPERATING CONDITIONS at $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

CHARACTERISTIC	CONDITIONS		LIMITS			UNITS
	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}}{ }^{1} \\ & \text { (V) } \end{aligned}$	$v_{D D}$ (V)	HCMP1802A	HCMP1802AC	HCMP1802BC	
Supply-Voltage Range	-	-	4 to 10.5	4 to 6.5	4 to 6.5	V
Input Voltage Range	-	-	$\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$	V
Maximum Clock Input Rise or Fall Time, t_{r} or t_{f}	4-10.5	4-10.5	1	1	1	$\mu \mathrm{s}$
Minimum Instruction Time ${ }^{2}$ (See Fig. 6)	5	5	5	5	5	$\mu \mathrm{s}$
	5	10	4	-	-	
	10	10	2.5	-	-	
Maximum DMA Transfer Rate	5	5	400	400	400	KBytes/sec
	5	10	500	-	-	
	10	10	800	-	-	
Maximum Clock Input Frequency,${ }^{\mathrm{f}} \mathrm{CL}^{3}$	5	5	DC - 3.2	DC - 3.2	DC-5.0	MHz
	5	10	DC-4	-	-	
	10	10	DC - 6.4	-	-	

NOTES:
. $V_{C C} \leqslant V_{D D}$; for HCMP1802AC $V_{D D}=V_{C C}=5$ volts
. Equals 2 machine cycles - one Fetch and one Execute operation for all instructions except Long Branch and Long Skip, which require 3 machine cycles - one Fetch and two Execute operations.
3. Load Capacitance $\left(C_{L}\right)=50 \mathrm{pF}$.

NOTES: This timing diagram is used to show signal relationship only. All measurements are referenced to 50% point of the wave forms. Shaded areas indicate "Don't Care" on Inputs or Undefined State on Outputs.
Sample or setting action at clock is designated by an arrow.

1. The NO-N2 bits are valid during the S1 cycle of Input or Output instructions only (61-67 and 69-6F)
2. The Q line is set or reset during the $S 1$ cycle of the SEQ or REQ instructions
3. The flag inputs ($\overline{\mathrm{EF} 1}-\overline{\mathrm{EF} 4}$) are sampled during an S 1 cycle
4. The DMA and Interrupt inputs are sampled during cycles S1, S2 or S3. The priority on concurrent signal inputs are (i) DMA-In (ii) DMA-Out and (iii) Interrupt.

Figure-1 General Timing Diagram

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$
$V_{D D} \pm 5 \%$, except as noted.

CHARACTERISTIC	$\begin{aligned} & v_{c c} \\ & \text { (V) } \end{aligned}$	$V_{D D}$ (V)	LIMITS			UNITS
			Min.	Typ.	Max.	
Propagation Delay Time, ${ }^{\mathrm{t}} \mathrm{PLH},{ }^{\mathrm{t}} \mathrm{PHL}$: Clock to TPA, TPB	5	5	-	200	350	ns
	5	10	-	150	250	
	10	10	-	100	150	
Clock-to-Memory High Address Byte	5	5	-	575	850	ns
	5	10	-	350	600	
	10	10	-	240	400	
Clock-to-Memory Low Address Byte	5	5	-	220	350	ns
	5	10	-	150	250	
	10	10	-	100	150	
Clock to $\overline{\mathrm{MRD}}, \mathrm{t}_{\text {PLH }},{ }^{\text {t }}$ PHL	5	5	-	220	350	ns
	5	10	-	150	250	
	10	10	-	100	150	
Clock to $\overline{M W R}, \mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	5	5	-	190	300	ns
	5	10	-	150	250	
	10	10	-	75	150	
Clock (CPU Data to Bus)	5	5	-	310	450	ns
	5	10	-	250	350	
	10	10	-	150	200	
Clock to State Code	5	5	-	290	450	ns
	5	10	-	250	350	
	10	10	-	130	250	
Clock to Q	5	5	-	250	400	ns
	5	10	-	150	250	
	10	10	-	115	175	
Clock to $\mathrm{N}(0-2), \mathrm{t}_{\text {PLH }}{ }^{\text {t }}$ PHL	5	5	-	280	550	ns
	5	10	-	200	350	
	10	10	-	130	250	

TIMING SPECIFICATIONS as a function of $T\left(T=1 /{ }^{\text {Clock }}\right.$) at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

CHARACTERISTIC	$\begin{aligned} & v_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	V_{DD} (V)	LIMITS		UNITS
			Min.	Typ.*	
High Order Memory Address Byte Setup to TPA \square Time	5	5	2T-550	2T-300	ns
	5	10	2T-350	2T-200	
	10	10	2T-250	2T-130	
High Order Memory Address Byte Hold after TPA Time	5	5	T/2-25	T/2-15	ns
	5	10	T/2-35	T/2-25	
	10	10	T/2-10	T/2+0	
Low Order Memory Address Byte Hold after WR Time	5	5	T-30	T+0	ns
	5	10	T-20	T+0	
	10	10	T-10	T+0	
CPU Data to Bus Hold after WR Time	5	5	T-200	T-150	ns
	5	10	T-150	T-100	
	10	10	T-100	T-50	
Required Memory Access Time Address to Data ${ }^{\mathrm{t}} \mathrm{ACC}$	5	5	5T-350	5T-220	ns
	5	10	5T-250	5T-150	
	10	10	5T-150	5T-100	

${ }^{*}$ Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$

DYNAMIC ELECTRICAL CHARACTERISTICS (cont'd)

CHARACTERISTIC	V_{Cc} (V)	$V_{D D}$ (V)	LIMITS			UNITS
			Min. ${ }^{1}$	Typ. ${ }^{2}$	Max.	
Minimum Set Up and Hold Times, ${ }^{\text {S }}$ SU, ${ }^{t_{H}}$ Data Input Set Up	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -20 \\ & -15 \\ & -10 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Input Hold	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 200 \\ & 125 \\ & 100 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { DMA }}$ Set Up	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 30 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { DMA }}$ Hold	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 250 \\ & 200 \\ & 125 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Interrupt Set Up	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -75 \\ & -50 \\ & -25 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Interrupt Hold	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{array}{r} \hline 160 \\ 100 \\ 80 \\ \hline \end{array}$	$\begin{gathered} 100 \\ 75 \\ 50 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { Wait }}$ Set Up	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} -15 \\ -25 \\ -5 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { EF1-4 Set Up }}$	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -50 \\ & -30 \\ & -20 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { EF1-4 }}$ Hold	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 150 \\ & 100 \end{aligned}$	$\begin{array}{r} 100 \\ 75 \\ 50 \\ \hline \end{array}$	-	ns
Minimum Pulse Width, tWL $\overline{\text { Clear Pulse Width }}$	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 300 \\ & 200 \\ & 150 \end{aligned}$	$\begin{array}{r} 100 \\ 75 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { Clock Pulse Width, }{ }_{\text {W }} \text { L }}$	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 175 \\ & 125 \\ & 75 \end{aligned}$	$\begin{array}{r} 100 \\ 75 \\ 50 \\ \hline \end{array}$	-	ns
$\begin{array}{ll} \hline \text { Typical Total Power Dissipation } & \\ \begin{array}{ll} \text { Idle '" } 00 \text { ' ' at } M(0000), & \\ C_{L}=50 \mathrm{pF} & \mathrm{MHz} \\ \end{array} .4 .0 \mathrm{MHz} \end{array}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	5 10	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 7.5 \\ 70 \end{gathered}$	-	mW

NOTE 1 Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$
2 Minimum characteristics are the values above which all devices function, i.e., data hold at 5 volts requires $200 \mathrm{msec} . \mathrm{min}$. to function over the temperature range but only 150 msec . at $25^{\circ} \mathrm{C}$.

INSTRUCTION SUMMARY

In all registers bits are numbered from least significant bit (LSB) to most significant bit (MSB) starting with 0 .
$R(W) \quad$ Indicates an array register designated by the W register where $W=N, X$, or P. Example if $X=3$, array reg. $R(3)$ addresses memory data.
$R(W) .0$ Low order byte contents of $R(W)$
R(W). 1 High order byte contents of R(W)
$\mathrm{NO}=\quad$ Least significant bit of N register
$\mathrm{M}(\mathrm{R}(\mathrm{W}))$ = Contents of Memory addressed by selected array register
Operation Notation:
$M(R(N)) \rightarrow D ; R(N)+1$
This is interpreted as the memory byte addressed by the array register $R(N)$ is loaded into the D reg., and the contents of $R(N)$ are incremented by 1 .

CODE	MNEM ONIC	$\begin{gathered} \text { NO. } \\ \text { OF } \\ \text { BYTES } \end{gathered}$	MACH CYCLES	instruction	description of operation
REGISTER OPERATIONS					
1 N	INC	1	2	INCREMENT REGISTER N	$R(N)+1$. The register selected by the hex digit in N is incremented by 1 .
2 N	DEC	1	2	DECREMENT REGISTER N	$R(N)-1$. The register selected by the hex digit in N is decremented by 1 .
60	IRX	1	2	INCREMENT REGISTER X	$R(X)+1$. The register selected by the hex digit in X is incremented by 1 .
8 N	GLO	1	2	GET LOW REGISTER N	$R(N) \cdot O \rightarrow D$. The low order byte of the register selected by N replaces the byte in the D register.
AN	PLO	1	2	PUT LOW REGISTER N	$D \rightarrow R(N) \cdot 0$. The byte contained in the D register replaces the low order byte of the register selected by N. D is not changed.
9 N	GHI	1	2	GET HIGH REGISTER N	$R(N) \cdot 1 \rightarrow D$. The high order byte of the register selected by N replaces the byte in the D register.
BN	PHI	1	2	PUT HIGH REGISTER N	$D \rightarrow R(N) \cdot 1$. The byte contained in the D register replaces the high order byte of the register selected by N. D is unchanged.
MEMORY REFERENCE OPERATIONS					
ON	LDN	1	2	LOAD VIA N	$M(R(N)) \rightarrow D ; N \neq 0$. The memory byte addressed by the contents of the reg. selected by $N, R(N)$, replaces the byte in the D reg. Memory is unchanged.
4N	LDA	1	2	LOAD VIA N AND ADVANCE	$M(R(N)) \rightarrow D ; R(N)+1$. The memory byte addressed by $R(N)$ replaces the byte in the D reg. The memory address, $\mathrm{R}(\mathrm{N})$, is incremented. Memory is unchanged.
FO	LDX	1	2	LOAD VIA X	$M(R(X)) \rightarrow D$. The memory byte addressed by the contents of the reg. selected by $X, R(X)$, replaces the byte in the D reg. Memory is unchanged.
72	LDXA	1	2	LOAD VIA X AND ADVANCE	$M(R(X)) \rightarrow D ; R(X)+1$. The memory byte addressed by $R(X)$ replaces the byte in the D reg. The memory address, $R(X)$, is incremented. Memory is unchanged.
$\begin{gathered} \mathrm{F} 8 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	LDI	2	2	LOAD IMMEDIATE	$M(R(P)) \rightarrow D ; R(P)+1$. The memory byte following the $F 8$ instruction replaces the byte in the D reg. The program counter $R(P)$ is incremented to point to the next instruction.
5 N	STR	1	2	Store Via N	$D \rightarrow M(R(N))$. The byte in the D reg. replaces the memory byte addressed by the contents of the reg. selected by $X, R(X)$. D is unchanged.
73	STXD	1	2	STORE VIA X AND DECREMENT	$D \rightarrow M(R(X)) ; R(X)-1$. The byte in the D reg. replaces the memory byte addressed by $R(X)$. The memory address, $R(X)$, is decremented. D is unchanged.
LOGIC OPERATIONS					
F1	OR	1	2	OR MEMORY WITH D	$M(R(X)) O R D \rightarrow D$. The 8 bit contents of the D reg. are logically ORed with the contents of the memory byte addressed by $R(X)$.
$\begin{gathered} \mathrm{F} 9 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	ORI	2	2	OR IMMEDIATE WITH D	$M(R(P)) O R D \rightarrow D ; R(P)+1$. The 8 bit contents of the D reg. are logically ORed with the memory byte following the F9 instruction. $R(P)$ is incremented to point to the next instruction.
F3	XOR	1	2	EXClusive or	$M(R(X)) X O R D \rightarrow D$. The 8 bit contents of the D reg. are logically XORed with the memory byte addressed by $R(X)$.
$\begin{gathered} \mathrm{FB} \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	XRI	2	2	EXCLUSIVE OR IMMEDIATE	$M(R(P)) X O R \quad D \rightarrow D ; R(P)+1$. The 8 bit contents of the D reg. are logically XORed with the memory byte following the FB instruction. $R(P)$ is incremented to point to the next instruction.
F2	AND	1	2	AND MEMORY WITH D	$M(R(X))$ AND $D \rightarrow D$. The 8 bit contents of the D reg. are logically ANDed with the memory byte andressed by $R(X)$.
$\begin{gathered} \text { FA } \\ \langle B 2\rangle \end{gathered}$	ANI	2	2	AND IMMEDIATE WITH D	$M(R(P)) A N D D \rightarrow D ; R(P)+1$. The 8 bit contents of the D reg. are logically ANDed with the memory byte following the FA instruction. $R(P)$ is incremented to point to the next instruction.

$\langle B 2\rangle=2$ nd byte of instruction.

The DF flip flop can only be altered by arithmetic and shift operations.
After an add instruction, DF=1 denotes a carry has occurred.
After a subtraction instruction, $\mathrm{DF}=0$ denotes a borrow. D is in Two's compliment form.
The syntax - "(NOT DF)" denotes the subtraction of the borrow.
INSTRUCTION SUMMARY (Continued)

$\begin{gathered} \mathrm{OP} . \\ \text { CODE } \end{gathered}$	MENM ONIC	$\begin{gathered} \text { NO. } \\ \text { OF } \\ \text { BYTES } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MACH} \\ & \mathrm{CYCLES} \\ & \hline \end{aligned}$	S instruction	DESCRIPTION OF OPERATION
F6	SHR	1	2	SHIFT D RIGHT	SHIFT D RIGHT; LSB(D) \rightarrow DF, $\mathrm{O} \rightarrow \mathrm{MSB}(\mathrm{D})$. The 8 bits in D reg. are shifted one bit position to the right. The original LSB of D reg. is placed in DF. A " 0 " is placed in the MSB of D.
76	$\begin{aligned} & \text { SHRC } \\ & \text { RSHR } \end{aligned}$	1	2	SHIFT D RIGHT WITH CARRY RING SHIFT RIGHT	SHIFT D RIGHT; $\operatorname{LSB}(D) \rightarrow D F, D F \rightarrow M S B(D)$. The 8 bits in D are shifted one bit position to the right. The original LSB of D is placed in DF. The original content of DF is placed in MSB of D.
FE	SHL	1	2	SHIFT D LEFT	SHIFT D LEFT; MSB(D) \rightarrow DF, $\mathrm{O} \rightarrow \mathrm{LSB}(\mathrm{D})$. The 8 bits in D are shifted one bit position to the left. The original MSB of D is placed in DF. A " 0 " is placed in the LSB of D.
7E	SHLC RSHL	1	2	SHIFT D LEFT WITH CARRY RING SHIFT LEFT	SHIFT D LEFT; MSB(D$) \rightarrow \mathrm{DF}, \mathrm{DF} \rightarrow \mathrm{LSB}(\mathrm{D})$. The 8 bits in D are shifted one bit position to the left. The original MSB of D is placed in DF. The original content of DF is placed in LSB of D.
ARITHMETIC OPERATION					
F4	ADD	1	2	ADD MEMORY WITH D	$M(R(X))+D \rightarrow D F, D$. The memory byte addressed by $R(X)$ is added to the contents of the D reg. DF receives any carry generated from the addition.
$\begin{gathered} F C \\ \langle B 2\rangle \end{gathered}$	ADI	2	2	ADD IMMEDIATE WITH D	$\mathrm{M}(\mathrm{R}(\mathrm{P}))+\mathrm{D} \rightarrow \mathrm{DF}, \mathrm{D} . \mathrm{R}(\mathrm{P})+1$. The memory byte following the FC instruction is added to the D reg. DF receives any carry. $\mathrm{R}(\mathrm{P})$ is incremented to point to the next instruction.
74	ADC	1	2	ADD MEM. WITH CARRY	$M(R(X))+D+D F \rightarrow D F, D$. The memory byte addressed by $R(X)$ plus the content of DF are added to the D reg. DF receives any carry generated from the addition.
$\begin{gathered} 7 C \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	ADCI	2	2	ADD IMMED. WITH CARRY	$M(R(P))+D+D F \rightarrow D F, D ; R(P)+1$. The memory byte following the $7 C$ instruction plus DF are added to the D reg. DF receives any carry. $R(P)$ points to the next instruction.
F7	SM	1	2	SUBTRACT MEM FROM D (2's Compliment)	$D-M(R(X)) \rightarrow D F, D$. The memory byte addressed by $R(X)$ is subtracted from the D reg. Any resulting carry is stored in $D F$ ($D F=0$ indicates a borrow).
$\begin{gathered} \text { FF } \\ \langle\mathrm{B} 2\rangle \end{gathered}$	SMI	2	2	SUBTRACT MEM. IMMED. FROM D (2's Compliment)	$D-M(R(P)) \rightarrow D F, D ; R(P)+1$. The memory byte following the $F F$ instruction is subtracted from the D reg. Any carry is stored in $D F . R(P)$ points to the next instruction.
77	SMB	1	2	SUBTRACT MEMORY WITH BORROW (1's Compliment +DF)	$D-M(R(X))-(N O T D F) \rightarrow D F, D$. The memory byte addressed by $R(X)$ plus the borrow indicator, $\overline{\mathrm{DF}}$, is subtracted from the D reg. Any resulting carry is stored in DF.
$\begin{gathered} 7 F \\ \langle B 2\rangle \end{gathered}$	SMB!	2	2	SUB. MEM. IMMED. WITH BORROW (1 's Compliment +DF)	$D-M(R(P))-(N O T D F)-D F, D ; R(P)+1$. The memory byte following the $7 F$ instruction plus $\overline{\mathrm{DF}}$ is subtracted from the D reg. Any carry is stored in DF. $R(P)$ points to next instruction.
F5	SD	1	2	SUBTRACT D FROM MEMORY (2's Compliment)	$M(R(X))-D \rightarrow D F, D$. The 8 bit contents of the D reg. are subtracted from the memory byte addressed by $R(X)$. DF receives any carry. Memory is unchanged.
$\begin{gathered} \mathrm{FD} \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	SDI	2	2	SUB D FROM IMMEDIATE (2's Compliment)	$M(R(P))-D \rightarrow D F, D ; R(P)+1$. The contents of the D reg. are subtracted from the memory byte following the FD instruction. DF receives any carry. $R(P)$ points to the next instruction.
75	SDB	1	2	SUB D WITH BORROW (1's Compliment +DF)	$M(R(X))-D-(N O T D F) \rightarrow D F, D$. The contents of the D reg. plus $\overline{D F}$ are subtracted from the memory byte addressed by $R(X)$. DF receives any carry. Memory is unchanged.
$\begin{gathered} 7 D \\ \langle B 2\rangle \end{gathered}$	SDBI	2	2	SUB D WITH BORROW, IMMED. (1's Compliment +DF)	$M(R(P))-D-(N O T D F) \rightarrow D F, D ; R(P)+1$. The D reg. plus $\overline{D F}$ are subtracted from the memory byte following the 7D instruction. DF receives any carry. $R(P)$ points to the next instruction.
BRANCH OPERATIONS					
$\begin{gathered} 30 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	$B R$	2	2	UNCONDITIONAL BRANCH	$M(R(P)) \rightarrow R(P) \cdot 0$. The byte following the 30 instruction always replaces the low order byte of the program counter $R(P)$.
38	NBR	1	2	NO SHORT BRANCH	$R(P)+1$. The byte following the 38 instruction is always skipped. This instruction may also be considered a SHORT SKIP.
$\begin{gathered} 32 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	$B Z$	2	2	SHORT BRANCH IF D=0	IF $D=0, M(R(P)) \rightarrow R(P) \cdot 0 ; E L S E R(P)+1$. If each bit of the D reg. is " 0 " the byte following the 32 instruction replaces the low order byte of the program counter $R(P)$. If $D \neq 0, R(P)$ is incremented to point to the following instr.
$\begin{array}{r} 3 \mathrm{~A} \\ \langle\mathrm{~B} 2\rangle \end{array}$	BNZ	2	2	SHORT BRANCH IF D $\neq 0$	IF $D \neq 0, M(R(P)) — R(P) \cdot 0$; ELSE $R(P)+1$. If any bit of the D reg. is " 1 " the immediate byte replaces the low order I_{2} 'e of $\mathrm{R}(\mathrm{P})$. If $\mathrm{D}=0, \mathrm{R}(\mathrm{P})$ points to the following instruction. All short branches below are similar in operation.
$\begin{gathered} 33 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	BDF	2	2	SHORT BRANCH IF DF=1	IF $D F=1, M(R(P)) \rightarrow R(P) \cdot 0 ; E L S E R(P)+1$. This instruction may also be called a short branch if pos or zero (BPZ) or short branch if greater or equal (BGE).
$\begin{gathered} 3 B \\ \langle B 2\rangle \end{gathered}$	BNF	2	2	SHORT BRANCH IF DF=0	IF $D F=0, M(R(P)) \rightarrow R(P) \cdot 0 ; E L S E R(P)+1$. This instruction may also be called a short branch if minus (BM) or short branch if less ($B L$).
$\begin{gathered} 31 \\ \text { 〈B2 } \end{gathered}$	$B Q$	2	2	SHORT BRANCH IF Q=1	IF $\mathrm{Q}=1, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 0$; ELSE $\mathrm{R}(\mathrm{P})+1$.
$\begin{gathered} 39 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	BNO	2	2	SHORT BRANCH IF Q $=0$	IF $\mathrm{Q}=0, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 0 ; \mathrm{ELSE} \mathrm{R}(\mathrm{P})+1$.
$\begin{gathered} 34 \\ \langle\mathrm{~B} 2\rangle \end{gathered}$	B1	2	2	SHORT BRANCH IF EF1 $=1$	IF $E F 1=1, M(R(P)) \rightarrow R(P) \cdot 0 ; E L S E R(P)+1$.
$\begin{gathered} 3 \mathrm{C} \\ \text { (B2) } \end{gathered}$	BNI	2	2 S	SHORT BRANCH IF EF1=0	IF EF $1=0, \mathrm{M}(\mathrm{R}(\mathrm{P})$) $\rightarrow \mathrm{R}(\mathrm{P}) \cdot 0 ; \mathrm{ELSE} \mathrm{R}(\mathrm{P})+1$.
$\begin{gathered} 35 \\ \text { (B2) } \end{gathered}$	B2	2	2 S	SHORT BRANCH IF EF2=1	IF EF2 $=1, \mathrm{M}(\mathrm{R}(\mathrm{P})$) $\rightarrow \mathrm{R}(\mathrm{P}) \cdot 0 ; \mathrm{ELSE} \mathrm{R}(\mathrm{P})+1$.

Instruction is associated with more than one mnemonics.
$\langle B 2\rangle=2$ nd byte of instruction.

All instructions require two machine cycles except Long Branches and Long Skips which take three machine cycles．Each machine cycle＝ 8 external clocks，i．e．＠ 6.4 MHz ，cycle $=1.25 \mu \mathrm{~s}$ ．
$E F=1$ ，if $\overline{\mathrm{EF}}$ input $=0$（GND）．

INSTRUCTION SUMMARY（Continued）

$\begin{aligned} & \text { OP } \\ & \text { CODE } \end{aligned}$	MNEM－ ONIC	$\begin{gathered} \text { NO. } \\ \text { OF } \\ \text { BYTES } \end{gathered}$	MACH． CYCLES	INSTRUCTION	DESCRIPTION OF OPERATION
$\begin{aligned} & 3 D \\ & \langle B 2\rangle^{1} \end{aligned}$	BN2	2	2	SHORT BRANCH IF EF2 $=0$	IF EF2 $=0, \mathrm{M}(\mathrm{R}(\mathrm{P})$ ）$-\mathrm{R}(\mathrm{P}) \cdot 0$ ；Else $\mathrm{R}(\mathrm{P})+1$ ．
$\begin{aligned} & 36 \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	B3，	2	2	SHORT BRANCH IF EF3 $=1$	｜F $E F 3=1, M(R(P)) \rightarrow R(P) \cdot 0$ ；Else $R(P)+1$.
$\begin{aligned} & 3 \mathrm{E} \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	BN3，	2	2	SHORT BRANCH IF EF3 $=0$	IF EF3 $=0, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P} \cdot \cdot 0$ ；Else $\mathrm{R}(\mathrm{P})+1$ ．
$\begin{aligned} & 37 \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	B4，	2	2	SHORT BRANCH IF EF4 $=1$	IF EF4 $=1, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 0$ ；Else $\mathrm{R}(\mathrm{P})+1$ ．
$\begin{aligned} & 3 F \\ & \langle B 2\rangle \end{aligned}$	BN4，	2	2	SHORT BRANCH IF EF4 $=0$	IF EF4 $=0, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 0$ ；Else $\mathrm{R}(\mathrm{P})+1$ ．
$\begin{aligned} & \mathrm{CO} \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	$\begin{aligned} & \text { LBR } \\ & \langle\mathrm{B} 3\rangle \end{aligned}$	3	3	UNCONDITIONAL LONG BRANCH	$M(R(P)) \rightarrow R(P) \cdot 1, M(R(P+1)) \rightarrow R(P) \cdot 0$ ．The two bytes following the CO instruction always replace the high and low order bytes of the program counter $R(P)$
C82	NLBR	1	3	NO LONG BRANCH	$R(P)+2$ ．The next two bytes after the C8 instruction are always skipped．This instruction may also be considered a Long Skip．
$\begin{aligned} & \mathrm{C} 2 \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	$\begin{gathered} \mathrm{LBZ} \\ \langle\mathrm{~B}\rangle\rangle \end{gathered}$	3	3	LONG BRANCH IF $\mathrm{D}=0$	IF $D=0, M(R(P)) \rightarrow R(P) \cdot 1, M(R(P+1)) \rightarrow R(P) \cdot 0 ;$ Else $R(P)+2$ ．If all bits of the D reg． are＂ 0 ＂，the two bytes following the $C 2$ instruction replace the contents of the program counter．$R(P)$ ．If not $R(P)$ points to the next instruction．All long branches below are similar in operation．
$\begin{aligned} & \mathrm{CA} \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	$\begin{aligned} & \text { LBNZ } \\ & \langle\mathrm{B} 3\rangle \end{aligned}$	3	3	LONG BRANCH IF $\mathrm{D} \neq 0$	If D not $0, M(R(P)) \rightarrow R(P) \cdot 1, M(R(P+1)) \rightarrow R(P) \cdot 0$ ．Else $R(P)+2$ ．
$\begin{aligned} & \mathrm{C} 3 \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	$\begin{aligned} & \text { LBDF } \\ & \text { (B3) } \end{aligned}$	3	3	LONG BRANCH IF DF $=1$	IF DF $=1 . M(R(P)) \rightarrow R(P) \cdot 1, M(R(P+1)) \rightarrow R(P) \cdot 0 ;$ Else $R(P)+2$ ．
$\begin{aligned} & \mathrm{CB} \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	$\begin{aligned} & \text { LBNF } \\ & \text { 〈B3〉 } \end{aligned}$	3	3	LONG BRANCH IF DF $=0$	IF $\mathrm{DF}=0, \mathrm{M}(\mathrm{R}(\mathrm{P}) \mathrm{P} \quad \mathrm{R}(\mathrm{P}) \cdot 1, \mathrm{M}(\mathrm{R}(\mathrm{P}+1)) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 0$ ；Else $\mathrm{R}(\mathrm{P})+2$.
$\begin{aligned} & \mathrm{C} 1_{1}^{\prime} \\ & \langle\mathrm{B} 2\rangle^{1} \end{aligned}$	$\begin{aligned} & \text { LBO } \\ & \text { (B3〉 } \end{aligned}$	3	3	LONG BRANCH IF Q＝ 1	IF $\mathrm{Q}=1, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 1, \mathrm{M}(\mathrm{R}(\mathrm{P}+1)) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 0$ ；Eise $\mathrm{R}(\mathrm{P})+2$ ．
$\begin{aligned} & \mathrm{C} 9 \\ & \langle\mathrm{~B} 2\rangle^{1} \end{aligned}$	$\begin{aligned} & \text { LBNO } \\ & \langle\mathrm{B} 3\rangle \end{aligned}$	3	3	LONG BRANCH IF Q＝0	IF $\mathrm{Q}=0, \mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{R}(\mathrm{P}) \cdot 1, \mathrm{M}(\mathrm{R}(\mathrm{P}+1)) \rightarrow R(P) \cdot 0$ ；Else $\mathrm{R}(\mathrm{P})+2$ ．
38^{2}	SKP	1	2	SHORT SKIP	$R(P)+1$ ．Always skips the following byte．Also called No Short Branch（NBR）．
C82	LSKP	1	3	LONG SKIP	R（P）＋2．Always skips the following two bytes．Also called No Long Branch（NLBR）．
CE	LSZ	1	3	LONG SKIP IF $\mathrm{D}=0$	IFD $=0, R(P)+2$ ；Else Continue．If all bits of D are＂ 0 ＂，the next two bytes following the CE instruction are skipped．If not，they are accessed as the next instruction．
C6	LSNZ	1	3	LONG SKIP IF D $\neq 0$	IF D NOT 0，R（P）+2 ；Else Continue．
CF	LSDF	1	3	LONG SKIP IF DF $=1$	IF $\mathrm{DF}=1, \mathrm{R}(\mathrm{P})+2$ ；Else Continue．
C7	LSNF	1	3	LONG SKIP IF DF $=0$	IF $\mathrm{DF}=0, \mathrm{R}(\mathrm{P})+2$ ；Else Continue．
CD	LSO	1	3	LONG SKIP IF $\mathrm{Q}=1$	IF $\mathrm{Q}=1, \mathrm{R}(\mathrm{P})+2$ ；Else Continue．
C5	LSNQ	1	3	LONG SKIP IF Q $=0$	IF $\mathrm{Q}=0, \mathrm{R}(\mathrm{P})+2$ ；Else Continue．
CC	LSIE	1	3	LONG SKIP IF IE＝ 1	IF IE $=1, R(P)+2$ ；Else Continue．IE is interrupt enable．
CONTROL OPERATIONS					
00	IDL	1	2	IDLE（WAIT）	$M(R(0))$－Bus．The processor repeats execute（ S 1 ）cycles until an I／O request （INTERRUPT，$\overline{\text { DMA－IN }}$ ，or $\overline{\text { DMA－OUT）}}$ is asserted．
C4	NOP	1	3	NO OPERATION	The processor performs no change of status during this instruction．
DN	SEP	1	2	SET P	$N \rightarrow P$ ．The low order hex digit of the instruction is placed in the P register and designates which register is to serve as program counter，$R(P)$ ．
EN	SEX	1	2	SET X	$\mathrm{N} \rightarrow \mathrm{X}$ ．The low order hex digit of the instruction is placed in the X register．
7 B	SEQ	1	2	SET Q	$1 \rightarrow$ Q．Sets the Q flip flop to logic high．
7A	REQ	1	2	RESET Q	$0 \rightarrow 0$ ．Resets the Q flip flop to a logic low．
78	SAV	1	2	SAVE	$T \rightarrow M(R(X))$ ．The T reg．containing previous X and P information is stored in the memory location addressed by $R(X)$ ．
79	MARK	1	2	PUSH X，P TO STACK	$(X, P) \rightarrow T ;(X, P) \rightarrow M(R(2))$ ，Then $P-X ; R(2)-1$ ．The current contents of X and P are stored in temporary reg．T and memory addressed by $R(2)$ ．New P is set equal to X and $R(2)$ is decremented．
70	RET	1	2	RETURN	$M(R(X)) \rightarrow(X, P), R(X)+1 ; 1 \rightarrow \mid E$ ．The memory byte addressed by $R(X)$ replaces X and P contents．The memory address， $\mathrm{R}(\mathrm{X})$ ，is incremented and IE is enabled． $M(R(X)) \rightarrow(X, P), R(X)+1 ; 0 \rightarrow \mid E$ ．Same operation as RET except IE is disabled．Both
71	DIS	1	2	DISABLE	RET and DIS are used primarily in returns from interrupt processing．
INPUT／OUTPUT OPERATIONS					
6 N	OUT	1	2	OUTPUT	$M(R(X)) \rightarrow$ Bus；$R(X)+1 . N=1-7$ ．When N is 1 through 7，the memory byte addressed by $R(X)$ is accessed and placed on the memory bus．The three low order bits of N are also placed on the $N 2-N 0$ signal lines memory address．$R(X)$ is incremented．
6 N	INP	1	2	INPUT	Bus $\rightarrow M(R(X))$ ；Bus $\rightarrow D . N=9-F$ ．When N is 9 through F a byte is input to the D reg．and the memory location addressed by $R(X)$ ．The low order 3 bits of N are placed on the $N 2-N O$ signal line，$R(X)$ is not modified．

NOTE 1 Instruction associated with more than one mnemonic．
$2\langle B 2\rangle=2$ nd byte of instruction．$\langle\mathrm{B} 3\rangle=3$ rd byte of instruction．

FIG. 2 Typical transition time vs. load capacitance.

FIG. 3 Typical change in propagation delay as a function of a change in load capacitance.

FIG. 5 Typical power dissipation as a function of clock frequency for Branch instruction and Idle instruction for HCMP1802A.

FIG. 6 Required memory system address time as a function of instruction time.

TABLE 1 -
CONDITIONS ON DATA BUS AND MEMORY ADDRESS LINES DURING ALL MACHINE STATES

STATE	1	N	MNEMONIC	INSTRUCTION	OPERATION	DATA BUS	MEMORY ADDRESS	$\overline{\text { MRD }}$	NOTES
S1	RESET				$J A M: I, N, Q, X, P=0 \quad I E=1$	0	$R(0)$ UNDEFINED	1	A
	FIRST CYCLE AFTER RESET NOT PROGRAMMER ACCESSIBLE				INITIALIZE	0	$\begin{aligned} & R(0) \\ & \text { UNDEFINED } \end{aligned}$	1	B
So	FETCH				$\mathrm{M}(\mathrm{R}(\mathrm{P}) \mathrm{l} \rightarrow \mathrm{I}, \mathrm{N} R(\mathrm{P})+1$	M(R(P))	R(P)	0	C
S 1 (Exe- cute)	0	0	IDL	IDLE	[Load $=0$ (Program Idle) $]$	M(R(0))	R(0)	0	D
					[Load $=1$ (Load Mode)]	M (R(0))	PREVIOUS ADDRESS	0	E
		$\mathrm{N} \neq 0$	LDN	LOAD ID VIA N	$\mathrm{M}(\mathrm{R}(\mathrm{N}) \mathrm{)} \rightarrow \mathrm{D}$	M(R(N))	R(N)	0	
	1	N	INC	INCREMENT	$\mathrm{R}(\mathrm{N})+1$	FLOAT	R(N)	1	
	2	N	DEC	DECREMENT	$\mathrm{R}(\mathrm{N})-1$	FLOAT	R(N)	1	
	3	N	-	SHORTBRANCH	(BRANCH NOT TAKEN)	$\mathrm{M}(\mathrm{R}(\mathrm{P})$)	R(P)	0	
					(BRANCH TAKEN)	M (R(P) $)$	$\mathrm{R}(\mathrm{P})$	0	
	4	N	LDA	LOAD ADVANCE	$\mathrm{M}(\mathrm{R}(\mathrm{N})) \rightarrow \mathrm{D} \quad \mathrm{R}(\mathrm{N})+1$	M(R(N))	R(N)	0	
	5	N	STR	STORE VIA N	$\mathrm{D} \rightarrow \mathrm{M}(\mathrm{R}(\mathrm{N})$)	D	$\mathrm{R}(\mathrm{N})$	1	
	6	0	IRX	INC REG \times	$\mathrm{R}(\mathrm{X})+1$	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		$\mathrm{N}=1-7$	OUT N	OUTPUT	$\mathrm{M}(\mathrm{R}(\mathrm{X}) \mathrm{)} \rightarrow \mathrm{BUS} \quad \mathrm{R}(\mathrm{X})+1$	M $(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		$\mathrm{N}=9-\mathrm{F}$	INP N	INPUT	$B \cup S \rightarrow M(R(X)), ~ D$	$\begin{aligned} & \text { I/O } \\ & \text { DEVICE } \end{aligned}$	$\mathrm{R}(\mathrm{X})$	1	
	7	0	RET	RETURN	$\begin{aligned} & M(R)(X)) \rightarrow(X, P) \\ & R(X)+1,1 \rightarrow I E \\ & \hline \end{aligned}$	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		1	DIS	DISABLE	$\begin{aligned} & M(R(X)) \rightarrow(X, P) \\ & R(X)+1,0 \rightarrow I E \end{aligned}$	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		2	LDXA	LOAD VIA X AND ADVANCE	$\begin{aligned} & M(R(X)) \rightarrow D \\ & P(X)-1 \end{aligned}$	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		3	STXD	STORE VIA X AND DECREMENT	$\begin{aligned} & D \rightarrow M(R(X)) \\ & R(x)-1 \end{aligned}$	D	$\mathrm{R}(\mathrm{X})$	1	
		4,5,7	-		ALU OPERATION	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		6	-		ALU OPERATION	FLOAT	$R(X)$	1	
		8	SAV	SAVE	$T \rightarrow M(R(X))$	T	$\mathrm{R}(\mathrm{X})$	1	
		9	MARK	MARK	$\begin{aligned} & (X, P): T, M(R(2)) \\ & P \rightarrow X ; R(2)-1 \end{aligned}$	T	R(2)	1	
		A	REQ	RESET Q	$\mathrm{Q}=0$	FLOAT	$\mathrm{R}(\mathrm{P})$	1	
		B	SEQ	SET 0	Q = 1	FLOAT	R(P)	1	
		C, D, F			ALU OPERATION IMMEDIATE	$\mathrm{M}(\mathrm{R}(\mathrm{P}) \mathrm{l}$	$\mathrm{R}(\mathrm{P})$	0	
		E			ALU OPERATION	FLOAT	$\mathrm{R}(\mathrm{X})$	1	
	8	N	GLO	GET /LOW	$\mathrm{R}(\mathrm{N}) .0 \rightarrow \mathrm{D}$	R(N) . 0	R (N)	1	
	9	N	GHI	GET HIGH	$R(N) .1 \rightarrow D$	R(N) . 1	$\mathrm{R}(\mathrm{N})$	1	
	A	N	PLO	PUT ${ }^{\text {L }}$ (OW	$D \rightarrow R(N) .0$	D	R(N)	1	
	B	N	PHI	PUT:HIGH	$\mathrm{D} \rightarrow \mathrm{R}(\mathrm{N}) .1$	D	R(N)	1	
	C	$\begin{aligned} & 0,1,2 \\ & 3,8,9 \\ & \text { A,B } \end{aligned}$		$\begin{aligned} & \text { LONG } \\ & \text { BRANCH } \end{aligned}$	(BRANCH NOT TAKEN)	$\mathrm{M}(\mathrm{R}(\mathrm{P}) \mathrm{)}$	$\mathrm{R}(\mathrm{P})$	0	
					(BRANCH TAKEN)	$\mathrm{M}(\mathrm{R}(\mathrm{P})$)	$\mathrm{R}(\mathrm{P})$	0	
		$\begin{aligned} & \text { 5,6,7 } \\ & \text { C,D.E } \end{aligned}$		$\begin{aligned} & \text { LONG } \\ & \text { SKIP } \end{aligned}$	(SKIP/NOT TAKEN)	$\mathrm{M}(\mathrm{R}(\mathrm{P})$)	R(P)	0	
					(SKIP TAKEN)	$\mathrm{M}(\mathrm{R}(\mathrm{P})$)	R(P)	0	
		4	NOP	NO OPERATION	NO OPERATION ${ }_{1}$	M(R(P) $)$	R(P)	0	
	D	N	SEP	SET P	$N \rightarrow P$	N N	R(N)	1	
	E	N	SEX	SET \times	$N \rightarrow X$	N N	R (N)	1	
	F	0	LDX	LOAD VIA X	$M(R(X)) \cdots \mathrm{D}$	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	$\mathrm{R}(\mathrm{X})$	0	
		$\begin{aligned} & 1,2,3 \\ & 4,5,7 \end{aligned}$			ALU OPERATION	M (R(X))	$\mathrm{R}(\mathrm{X})$	0	
		6	SHR	SHIFT RIGHT	$\begin{aligned} & \hline \text { SHIFT D RIGHT } \\ & \text { LSB(D) } \rightarrow \mathrm{DF} \quad 0 \rightarrow \mathrm{MSB}(\mathrm{D}) \end{aligned}$	FLOAT	$\mathrm{R}(\mathrm{X})$	1	
		8	LDI	LOAD IMMEDIATE	$\mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{D} \quad \mathrm{R}(\mathrm{P})+1$	M (R(P))	R(P)	0	
		$\begin{aligned} & \text { 9,A,B, }, ~ \\ & \text { C,D,F } \end{aligned}$			ALU 'OPERATION IMMEDIATE	M (R(P))	R(P)	0	
		E	SHL	SHIFT LEFT	ALU OPERATION	FLOAT	R(P)	1	
S2	IN REQUEST			DMA IN	$\mathrm{BUS} \rightarrow \mathrm{M}(\mathrm{R}(0)) \quad \mathrm{R}(0)+1$.	$\begin{aligned} & 1 / O \\ & \text { DEVICE } \end{aligned}$	$\mathrm{R}(0)$	1	F
	OUT REQUEST			DMA OUT	$\mathrm{M}(\mathrm{R}(0)) \rightarrow \mathrm{BUS} \quad \mathrm{R}(0)+1$	M(R(0))	R(0)	0	F
S3	INTERRUPT				$\begin{aligned} & \mathrm{X}, \mathrm{P} \rightarrow \mathrm{~T}, \mathrm{O} \rightarrow \mathrm{IE} \\ & 2 \rightarrow \mathrm{X}, 1 \rightarrow \mathrm{P} \end{aligned}$	FLOAT	R (N)	1	

NOTES: A. $I E=1$; TPA, TPB suppressed, state $=$ S1
D. Wait for DMA or Interrupt
B. $B \cup S=0$ for entire cycle
E. Suppress TPA, wait for DMA
C. Next state always S1
F. In Request has priority over Out Request

FIG. 7 Memory - In cycle

FIG. 8 Memory - Out cycle

FIG. 9
DMA - In cycle

FIG. 10
DMA - Out cycle

FIG. 11
Interrupt cycle

User generated signal

[14
High:mpeedance slare

The HCMP 1802A state transitions when in the run mode are shown to the left. Each machine cycle requires 8 clock pulses except the initialization cycle, after reset, which requires nine clock pulses.

The execution of an instruction requires either two or three machine cycles, an S0 cycle followed by a single S1 cycle, or two S1 cycles. S2 is the response to a DMA request and S3 is the interrupt response. Table 1 shows the conditions on the Data Bus and memory address line during all machine states.

INTERFACE DESCRIPTION

CLOCK, $\overline{\text { XTAL }}$ - The clock reference to the microprocessor may be supplied by an externally generated single phase clock to the Clock input or by an on-chip oscillator by using a crystal in parallel with a resistor ($10 \mathrm{M} \Omega$ typical) tied between the Clock and XTAL inputs. Frequency trimming capacitors may be required at terminals 1 and 39 .
$\overline{\text { WAIT, }} \overline{\text { CLEAR }}$ - These input control lines provide four internal CPU modes:

$\overline{\text { Clear }}$	$\overline{\text { Wait }}$	Mode
L	L	Load
L	H	Reset
H	L	Pause
H	H	Run

The functions of the modes are defined as follows:
Load: holds the CPU in the Idle execution state and allows a peripheral device to load memory without need for a "bootstrap" loader. It modifies the Idle condition so that the DMA-IN operation does not force execution of the next instruction.
Reset: resets registers I, N and Q and places $\mathrm{O}^{\prime} \mathrm{s}$ (VSS) on the data bus, IE is set and the S1 state is forced. TPA and TPB are suppressed while Reset condition is held. The first machine cycle after termination of reset initializes the CPU by resetting registers X, P, and $R(0)$. The next cycle is an S0, S 1 , or an S 2 but never an S 3 (interrupt). By using a 71 instuction followed by 00 at memory locations 0000 and 0001, respectively, IE may be reset to preclude interrupts until the user is ready for them. Power up Reset can be realized by connecting an RC network directory to the Clear input, since it has a Schmitt triggered input.
Pause: stops the internal CPU timing generator on the first negative (high-to-low) transition of the input clock. The oscillator continues to operate but all subsequent clock transitions are ignored internally while in this mode.
Run: If initiated from the Pause mode the CPU resumes operation on the first negative transition of the input clock. When initiated from the Reset operation the first machine cycle following Reset is always the initialization cycle, followed by a DMA (S2) cycle or fetch (S0) from location 0000 in memory.

Q, $\overline{\mathrm{EF} 1}-\overline{\mathrm{EF} 4}$ - The Q output is set or reset under program control. The $\overline{\mathrm{EF} 1}-\overline{\mathrm{EF} 4}$ user generated inputs are tested under program control. These signals may be used for serial transmission or external control and status. The input flags are sampled at the beginning of every S 1 cycle. O is set or reset between the trailing edge of TPA and leading edge of TPB.

INTERFACE DESCRIPTION (Continued)

SC0, SC1 - These state code outputs indicate internal CPU modes of operation:

SC1	SC0	STATE TYPE
L	L	SO - Fetch Instruction Cycle
L	H	S1 - Execute Instruction Cycle
H	L	S2 - DMA Input or Output Cycle
H	H	S3 - Interrupt Response Cycle

$\overline{\text { MWR }}$ - The negative write pulse output indicates address lines are stable during a memory write cycle.
BUS 0-BUS 7 - These 8 bi-directional three-state lines are used to transfer data between the memory, the microprocessor, and I/O devices.
VCC, VSS, VDD - These power supply input pins allow several options since the internal voltage supply VDD is isolated from the I/O interface supply VCC. The processor may operate at maximum speed, governed by VDD, while interfacing T2L through VCC. VCC must be less than or equal to VDD. All outputs swing from VSS to VCC.

N2, N1, NO - These three lines can directly select seven input ports and seven output ports under I/O instruction control. They are all low during non I/O operations. Input ports are selected when MRD is high and output ports are selected when MRD is low.

MAO-MA7 - These 8 output lines contain the memory address. The high order 8 bits are present during the TPA timing pulse. The low order bits appear after termination of the TPA pulse.
pulse.
TPA, TPB - These positive timing pulse outputs are available once each machine cycle to control I/O interfaces. TPA is suppressed in idle when the CPU is in the load mode.
$\overline{\mathrm{MRD}}$ - The negative pulse output indicates a memory read cycle and may be used to control the three-state outputs of memories and to control I/O to memory interfacing during an I/O instruction.

- $\overline{\text { MRD }}=$ VCC indicates data transfer from I/O to CPU and Memory.
- $\overline{\text { MRD }}=$ VSS indicates data from Memory to I/O.
$\overline{\text { INTERRUPT, }} \overline{\text { DMA-IN }}, \overline{\text { DMA-OUT }}$ - These three mode request inputs are sampled during the execution cycle of each instruction. In concurrent requests the following priority is set up: (1) DMA-In (2) DMA-Out (3) Interrupt. In DMA modes, array register R (0) points to a memory area and is incremented during each data transfer. In the Interrupt mode, the X and P indicators are stored in temporary register T, the X and P indicators are set to hex 1 and 2 respectively and the Interrupt Enable flip flop is reset.

SYSTEM BLOCK DIAGRAM

APPLICATION PROGRAM

Compare changing input for Limits, and then Reset.

ASSEMBLY LANGUAGE

LOOP:	INP	OPER	- - INPUT OPERAND TO D
	SDI	\# LIMIT	-• SUBTRACT LIMIT - OPERAND
	BDF	LOOP	. . bRANCH TO LOOP IF NO BORROW (LIMIT \geqslant OPERAND)
	SEQ		-•SET Q
	NOP		- - DELAY 3 MACHINE CYCLES
	REQ		-•RESET Q
	- -		
	$\bullet \bullet$		
	INPUT CHANNEL $=4$, LIMIT $=10_{16}$		

MACHINE LANGUAGE

ADDRESS	CODE
010 F	6 C
0110	FD
0111	10
0112	33
0113	OF
0114	$7 B$
0115	C4
0116	$7 A$

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue. Newport Beach. CA 92663
Telephone (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co
Schmaedel Str. 22. 8000 Munich. West Germany
Telephone 49-89-834 7088 Telex: 5213856 HSPD

HUCHES

18TICMIF
HCMP 1852
HCMP 1852C

MICROPROCESSOR PRODUCTS Input/Output Port

DESCRIPTION

The HCMP 1852 is an 8 bit mode programmable CMOS Input or Output Port. The device acts as a buffer between the HCMP 1802A data bus and the peripheral data bus. It can also be used as an 8 bit address latch for multiplexed address buses.
The Mode control signal programs the HCMP 1582 as an input port mode (mode $=0$) or an output port (mode $=1$). As an input port, data (DIO-DI7) is strobed from the peripheral into the 8 bit buffer register by a logic high on the Clock signal input; the negative clock transition sets the service request flip flop low ($\overline{\mathrm{SR}}=0$) and latches data. When the CS1 and CS2 signals are enabled, the data (DO0-DO7) is read onto the microprocessor bus. The signal $\overline{\mathrm{SR}}$ is then reset ($\overline{\mathrm{SR}}=1$) on the negative transition CS1 \bullet CS2. As an output port, data (DIO-DI7) is strobed into the buffer register by the microprocessor when CS1, CS2, and the Clock input are activated. The Service Request is set on the negative transition of $\overline{\mathrm{CS} 1} \bullet \mathrm{CS} 2$, and will remain until the following negative transition of the clock. The Output driver is always enabled when the output mode is chosen.
A $\overline{C l e a r}$ control allows asynchronous resetting of the port's register (DOO-DO7) and service request flip flop. The HCMP 1852 has a recommended operating voltage of 4 to 10.5 volts while the 1852C has a recommended range of 4 to 6.5 volts. The HCMP 1852 is available in 24 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages and in cerdip (Y suffix) or unpackaged dice (H suffix).

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components.
- Parallel 8 Bit Data Register and Buffer
- Stored Service Request
- Asynchronous Register Clear
- Single Voltage Supply
- Low Quiescent and Operating Power

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

[^7]
MAXIMUM RATINGS, Absolute-Maximum Values

Storage Temperature Range ($T_{\text {stg }}$)	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (T_{A})	
Ceramic Package	-55 to $+125^{\circ} \mathrm{C}$
Plastic Package.	-40 to $+85^{\circ} \mathrm{C}$
DC Supply-Voltage Range (VDD)	
(All voltage values referenced to $\mathrm{V}_{\text {SS }}$ terminal)	
HCMP 1852.	-0.5 to +13 V
HCMP 1852C	-0.5 to +7 V

OPERATING CONDITION at $T_{\mathbf{A}}=$ Full Package Temperature Range. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS			LIMITS						UNITS
	Vo(V)	VIN (V)	$\begin{aligned} & \text { VDD } \\ & \text { (V) } \end{aligned}$	HCMP 1852			HCMP 1852C			
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply-Voltage Range (At TA = Full Package-Temperature Range)	-	-	-	4	-	10.5	4	-	6.5	V
Recommended Input Voltage Range	-	-	-	VSS	-	VDD	VSS	-	VDD	V
STATIC ELECTRICAL CHARACTERISTICS at $\mathrm{TA}^{\text {a }} \mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }} \pm 5 \%$										
Quiescent Device Current, IDD	-	0.5	5	-	-	10	-	-	50	$\mu \mathrm{A}$
	-	0,10	10	-	-	100	-	-	-	
Output Low Drive (Sink) Current, IOL	0.4	0,5	5	1.6	3.2	-	1.6	3.2	-	mA
	0.5	0,10	10	3	6	-	-	-	-	
Output High Drive (Source) Current, IOH	4.6	0.5	5	-1.15	-2.3	-	-1.15	-2.3	-	mA
	9.5	0.10	10	-3	-6	-	-	-	-	
Output Voltage Low Level $\mathrm{V}_{\mathrm{OL}}{ }^{1}$	-	0,5	5	-	0	0.1	-	0	0.1	V
	-	0,10	10	-	0	0.1	-	-	-	
Output Voltage High Level, V_{OH}	-	0,5	5	4.9	5	-	4.9	5	-	
	-	0,10	10	9.9	10	-	-	-	-	
Input Low Voltage, $\mathrm{V}_{\text {IL }}$	0.5,4.5	-	5	-	-	1.5	-	-	1.5	V
	0.5,9.5	-	10	-	-	3	-	-	-	
Input High Voltage, V_{IH}	0.5,4.5	-	5	3.5	-	-	3.5	-	-	
	0.5,9.5	-	10	7	-	-	-	-	-	
Input Current, IIN	-	0,5	5	-	-	± 1	-	-	± 1	$\mu \mathrm{A}$
	-	0,10	10	-	-	± 2	-	-	-	
3-State Output Leakage Current IOUT	0,5	0,5	5	-	-	± 1	-	-	± 1	
	0,10	0.10	10	-	-	± 2	-	-	-	
Operating Current, IDD1 ${ }^{2}$	-	0,5	5	-	130	200	-	150	200	$\mu \mathrm{A}$
	-	0,10	10	-	400	600	-	-	-	
Input Capacitance CIN	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance, COUT	-	-	-	-	5	7.5	-	-	-	
DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}= \pm 5 \%, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}$ $C_{L}=\mathbf{1 0 0}_{p} F$, and 1 TTL Load. LIMITS AT VDD $=10 \mathrm{~V}$ APPLY TO THE HCMP 1852 ONLY										
Required Select Pulse Width, tSW	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} 180 \\ 90 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \end{aligned}$	-	180	360	
Required Write Pulse Width, tWW	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} 130 \\ 65 \\ \hline \end{gathered}$	$\begin{aligned} & 260 \\ & 130 \\ & \hline \end{aligned}$	-	130	260	
Required Clear Pulse Width, tCLR	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	80 40	$\begin{gathered} 160 \\ 80 \\ \hline \end{gathered}$	-	80	160	ns
Required Data Setup Time, tDS	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} -10 \\ -5 \end{gathered}$	0 0	-	-10	-	
Required Data Hold Time, tDH	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	75 35	$\begin{gathered} 150 \\ 75 \\ \hline \end{gathered}$	-	75	150	
Propogation Delay Times, ${ }^{\text {t }}$ PLH, ${ }^{\text {t }}$ PHL										
Service Request: Clear to SR, tRSR	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} 170 \\ 85 \\ \hline \end{gathered}$	$\begin{aligned} & 340 \\ & 170 \\ & \hline \end{aligned}$	-	170	340	ns
Clock to SR, tcSR	-	-	5 10	-	$\begin{gathered} 120 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 240 \\ & 120 \\ & \hline \end{aligned}$	-	120	240	
Select to SR, tSSR	-	-	5 10	-	$\begin{gathered} 120 \\ 60 \end{gathered}$	240 120	-	120	240 -	
Input Mode: Data Out Hold Time ${ }^{3}$, ${ }^{\text {DOH }}$	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 185 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 370 \\ & 200 \\ & \hline \end{aligned}$	30 -	185 -	370 -	ns
Select to Data Out ${ }^{3}$, tSDO	-	-	5 10	$\begin{aligned} & 30 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 185 \\ & 100 \end{aligned}$	370 200	30	185 -	370	
Output Mode: Clear to Data Out, trDO	-	-	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	-	$\begin{gathered} 140 \\ 10 \\ \hline \end{gathered}$	280 140	-	140	280	ns
Write to Data Out, tWDO	-	-	5 10	-	$\begin{aligned} & 220 \\ & 110 \end{aligned}$	440 220	-	220	440	
Data In to Data Out, tDDO	-	-	5 10	-	$\begin{gathered} 100 \\ 50 \\ \hline \end{gathered}$	200 100	-	100	200	

Typical Values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$
NOTE 1: $\mathrm{IOL}=\mathrm{IOH}_{\mathrm{OH}}=1 \mu \mathrm{~A}$
NOTE 2: Operating current is measured at 2 MHz in an 1802 system with open outputs and a program of alternating 1 and 0 data pattern
NOTE 3: Minimum value is measured from CS2; maximum value is measured from CS1.

MODE $=V_{S S}$ MODE 0 (INPUT)

$\mathrm{CS} 1 \cdot \mathrm{CS} 2$ is the overlap of CS1 $=1$ and $\operatorname{CS} 2=1$

MODE $=V_{D D}$ MODE 1 (OUTPUT)

CLOCK	$\overline{\text { CS1 }} \cdot$ CS2	$\overline{\text { CLEAR }}$	DATA OUT
0	x	0	0
0	x	1	DATA LATCH
x	0	1	DATA LATCH
1	1	x	DATA IN

$\mathrm{SR}=1 \quad(\overline{\mathrm{CS} 1} \cdot \mathrm{CS} 2) \mathrm{Z}(\overline{\mathrm{CLEAR}}=1)$
$\mathrm{SR}=0 \quad$ CLOCK $\overline{2}(\overline{\mathrm{CLEAR}}=1, \overline{\mathrm{CS} 1} \cdot \mathrm{CS} 2=0) \mathrm{OR}(\overline{\mathrm{CLEAR}}) \boldsymbol{Z}$

APPLICATION EXAMPLES ADDRESS LATCH

HCMP 1852 can be used as an address latch to latch the upper byte of the HCMP 1802A microprocessor memory address in each machine cycle. The figure below shows the I/O port connected for this application together with its associated timing diagram.

This figure shows HCMP 1852 connected as a noninverting, three state, 8 bit buffer, with MODE $=0$, CLOCK $=1$ and CS2 = 1, CS1 can be used as a tri-state control. When CS1 $=0$, the output is a high impedance, but when CS1 = 1, data out equals data in. If a high impedance state is not required, the CS1 input can be tied high (CS1 = 1).

SIGNAL DESCRIPTION

DIO-DI1 - These 8 input lines are strobed into an internal buffer by a high level on the Clock input line and latched by the negative transition of the Clock input.
DOO-DO7 - These 8 output lines reflect the information from the internal buffer when the three state drivers are enabled by CS1 - CS2 in the input mode or, at all times, in the output mode.
MODE - This control input sets the HCMP 1852 in the input mode with a VSS applied or in the output mode with VDD applied.
$\overline{\text { CLEAR - This asynchronous reset control clears the buffer register and resets the SR flip flop. }}$
CLOCK - Input Mode: This input strobes data into the buffer when it is activated (high) and sets the SR flip flop ($\mathrm{SR}=0$) while latching data on its negative transition.

Output Mode: This input along with the chip selects ($\overline{\mathrm{CS} 1} \bullet \mathrm{CS2} \bullet$ Clock $=1$) strobes data into the buffer. The service request ($\overline{\mathrm{SR}}$) is set high on the termination of $\overline{\mathrm{CS} 1} \bullet \mathrm{CS} 2=1$ and reset low on the next negative transition of the clock.
CS1/ $\overline{\mathbf{C S} 1}, \mathbf{C S} 2$ - These chip select controls enable device selection.
$\mathbf{S R} / \overline{\mathbf{S R}}$ - This output signal is used as a service request transfer control between the microprocessor and peripheral buses.

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

TETCMM5

MICROPROCESSOR PRODUCTS

 SOLID STATE PRODUCTS

DESCRIPTION

The HCMP 1853 allows decoding of the 1802A microprocessor generated I/O lines (N0-N2) to provide direct control for up to seven input and seven output devices. The TPA and TPB clock inputs provide control signal output timing while the Chip Enable (CE) input allows multi-level I/O expansion for decoding. The HCMP 1853 can also be used as a general 1 of 8 decoder for memory system applications.
The HCMP 1853 has a recommended operating voltage range of $4-10.5$ volts while the HCMP 1853 C has the recommended range of $4-6.5$ volts. The HCMP 1853 is available in 16 lead dual in line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802A Microprocessor without Additional Components
- Provides Control for up to 7 Input and 7 Output Devices
- Low Power Dissipation
- Easy Expansion for Multi-Level I/O Systems through Chip Enable.
- Buffered Inputs and Outputs
- Strobed Outputs for Spike-Free Decoding

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

MAXIMUM RATINGS, Absolute-Maximum Values

Operating Temperature Range (T_{A})
Ceramic Package
-55 to $+125^{\circ} \mathrm{C}$
Plastic Package.
-40 to $+85^{\circ} \mathrm{C}$
DC Supply-Voltage Range (VDD)
(All voltage values referenced to V_{SS} terminal)
HCMP 1853
-0.5 to +13 V
HCMP 1853C... 0.5 to $+7 V$

OPERATING CONDITIONS at TA $_{\mathbf{A}}=$ FULL PACKAGE TEMPERATURE RANGE
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS			LIMITS						UNITS
	v_{0} (V)	$\begin{aligned} & V_{I N} \\ & \text { (V) } \end{aligned}$	VDD (V)	HCMP 1853			HCMP 1853C			
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply-Voltage Range	-	-	-	4	-	10.5	4	-	6.5	V
Recommended Input Voltage Range	-	-	-	$\mathrm{v}_{\text {SS }}$	-	V_{DD}	$\mathrm{v}_{\text {SS }}$	-	$\mathrm{V}_{\text {DD }}$	V
Static Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified										
Quiescent Device Current, IL	-	-	5	-	1	10	-	5	50	$\mu \mathrm{A}$
	-	-	10	-	10	100	-	-	-	
Output Low Drive (Sink) Current, IOL	0.4	0,5	5	1.6	3.2	-	1.6	3.2	-	mA
	0.5	0,10	10	2.6	5.2	-	-	-	-	
Output High Drive (Source Current), IOH	4.6	0,5	5	-1.15	-2.3	-	-1.15	-2.3	-	mA
	9.5	0,10	10	-2.6	-5.2	-	-	-	-	
Output Voltage Low-Level, $\mathrm{V}_{\mathrm{OL}}{ }^{1}$	-	0,5	5	-	0	0.1	-	0	0.1	v
	-	0,10	10	-	0	0.1	-	-	-	
Output Voltage High Level V_{OH}	-	0,5	5	4.95	5	-	4.95	5	-	
	-	0,10	10	9.95	10	-	-	-	-	
Input Low Voltage, VIL	0.5,4.5	-	5	-	-	1.5	-	-	1.5	v
	1,9	-	10	-	-	3	-	-	-	
Input High Voltage, $\mathrm{V}_{1} \mathrm{H}$	0.5,4.5	-	5	3.5	-	-	3.5	-	-	
	1,9	-	10	7	-	-	-	-	-	
Input Leakage Current, IIN	Any Input	0,5	5	-	-	± 1	-	-	± 1	$\mu \mathrm{A}$
		0,10	10	-	-	± 1	-	-	-	
3-State Output Leakage Current, IOUT	0,5	0,5	5	-	-	± 1	-	-	± 1	$\mu \mathrm{A}$
	0,10	0,10	10	-	-	± 1	-	-	-	
Operating Current ${ }^{\text {I DD1 }}{ }^{2}$	0,5	0.5	5	-	50	100	-	50	100	$\mu \mathrm{A}$
	0,10	0,10	10	-	150	300	-	-	-	
Input Capacitance, $\mathrm{C}_{\text {IN }}$	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance, COUT	-	-	-	-	10	15	-	10	15	pF

Dynamic Electrical Characteristics at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns} \mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0} \mathrm{pF} \mathrm{V}_{\mathrm{DD}} \pm 5 \%, \mathrm{~V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}$

Propogation Delay Time: CE to Output, tEOH, tEOL	-	-	5	-	175	275	-	175	275	ns
	-	-	10	-	90	150	-	-	-	
N to Outputs, ${ }^{\text {N }} \mathrm{NOH}, \mathrm{t}^{\text {NOL }}$	-	-	5	-	225	350	-	225	350	ns
	-	-	10	-	120	200	-	-	-	
Clock A to Output, taO	-	-	5	-	200	300	-	200	300	ns
	-	-	10	-	100	150	-	-	-	
Clock B to Output, t_{BO}	-	-	5	-	175	275	-	175	275	ns
	-	-	10	-	90	150	-	-	-	
Minimum Pulse Widths: Clock A, t CACA	-	-	5	-	50	75	-	50	75	ns
	-	-	10	-	25	50	-	-	-	
Clock B, t CBCB	-	-	5	-	50	75	-	50	75	
	-	-	10	-	25	50	-	-	-	

Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltage.
NOTE 1: $\mathrm{l}_{\mathrm{OL}}=\mathrm{l}_{\mathrm{OH}}=1 \mu \mathrm{~A}$
NOTE 2: Operating current measured in a HCMP 1802A system at 2 MHz with outputs floating.

PROPOGATION DELAY TIMING:

b) N LINES TO OUTPUT (0-7) DELAY TIME

d) CLOCK B TO OUTPUT (0-7) DELAY TIME

APPLICATIONS EXAMPLES

ADDRESS DECODER:

ONE LEVEL I/O SYSTEMS:

The Figure shows two HCMP 1853 used to decode 4 K address into 16 groups of 256 address each.

MA8 represents the 8th binary address bit. (ie $2^{8}=256$).
M0 will address 0-255
M1 will address 256-511
M15 will address 3840-4095
In the HCMP 1802A microprocessor systems, when more than three I/O ports are required, the N lines can be decoded to specify up to 7 different input and 7 different output channels as shown.

By executing Input instruction 69 (N lines $=001$) for instance, the port 1 input register is enabled to the bus since MRD is high during the memory write cycle. The HCMP 1853 decode line 1 will also be active high during an output instruction, 61 (N lines = 001) but MRD is low during the memory read cycle disabling the memory read cycle disabling the port 1 input register from the bus. At TPB, the valid byte from memory is strobed into the port 1 output register.

TWO LEVEL I/O SYSTEMS:

In the HCMP 1802A microprocessor systems, when more than 7 input or 7 output ports are required, a two level I/O system can be designed as shown in the figure.

A 61 (N lines = 001) output instruction is first executed to place an 8 -bit device selection code in the I/O device-select register, HCMP 1852. Subsequent execution of one of the 6 remaining output instructions (62-67) selects one of 48 output ports, or subsequent execution of one of the 7 input instructions (69-6F) selects one of the 56 input ports.
With additional decoding the total number of input and output ports can be further expanded.

SIGNAL DESCRIPTION

Clock A, Clock B - The selected outputs stay true from the trailing edge of the Clock A (TPA) input to the trailing edge of the Clock B (TPB) input, if the chip is enabled. The transition of both the clock inputs at the trailing edge should be from high-to-low.
CE - The Chip Enable input enables the chip when high. All outputs will be low when $\mathrm{CE}=0$.
$\mathbf{N 0} \mathbf{, ~ N 1 , ~ N 2 ~ - ~ T h e s e ~ t h r e e ~ i n p u t s ~ s e l e c t ~ o n e ~ o f ~ e i g h t ~ d e c o d e d ~ o u t p u t s ~ w h e n ~ t h e ~ c h i p ~ i s ~ e n a b l e d . ~}$ N0 is the least significant input, N 2 is the most significant input.
Output 7-Output 0 - One output can be selected at a time. The truth table is shown below.

TRUTH TABLE

CE	CLK A	CLK B	EN	N2	N1	NO	EN	0	1	2	3	4	5	6	7
1	0	0	Qn-1*	0	0	0	1	1	0	0	0	0	0	0	0
1	0	1	1	0	0	1	1	0	1	0	0	0	0	0	0
1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	0
1	1	1	1	0	1	1	1	0	0	0	1	0	0	0	0
0	X	X	0	1	0	0	1	0	0	0	0	1	0	0	0
$\begin{aligned} & 1=\text { High Level } \\ & 0=\text { Low Level } \\ & X=\text { Don't care } \end{aligned}$				1	0	1	1	0	0	0	0	0	1	0	0
				1	1	0	1	0	0	0	0	0	0	1	0
				1	1	1	1	0	0	0	0	0	0	0	1
				X	X	X	0	0	0	0	0	0	0	0	0

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

IETRLME5

DESCRIPTION

The HCMP 1854A is a CMOS Universal Asynchronous Receiver/Transmitter (UART). It is designed to provide formatting and controls to interface serial and parallel data busses, such as a telephone modem to an HCMP 1802 microprocessor bus. The HCMP 1854A is capable of full duplex operation allowing simultaneous conversion from serial to parallel (receiver section) and parallel to serial (transmitter section). A local receiver clock (R Clock) and transmitter clock (T Clock) operates at 16 times the serial data rate to provide references for receiver sampling and transmitter timing. The mode control allows the UART to be used as a functional replacement for industry standard UARTs (such as the TR1602) in mode 0 while utilizing a single supply voltage; in mode 1 the UART can be selected as a bus oriented device for direct interfacing with the HCMP 1802 microprocessor as shown below.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Two Operating Modes

Mode 0 - Functionally Compatible with Industry Standard UARTs such as TR1602A
Mode 1 - Directly Interfaces with HCMP 1802 Microprocessor without Additional Components

- Full or Half Duplex Operation

SYSTEM INTERCONNECT

NOTE: DOTTED CONNECTIONS ARE OPTIONAL

- Baud Rate - DC to 250 K at VDD $=5 \mathrm{~V}$ DC to 500 K at VDD $=10 \mathrm{~V}$
- Selectable Word Length 5, 6, 7 or 8 Bits
- Programmable Parity and Stop Bits (1, $1 \frac{1}{2}, 2$)
- Parity, Framing and Overrun Error Detection
- Single Voltage Supply
- Low Quiescent and Operating Power

MAXIMUM RATINGS, Absolute-Maximum Values

Operating-Temperature Range (T_{A})
Ceramic Package (D Suffix) 55 to $+125^{\circ} \mathrm{C}$
Plastic Package (P Suffix) . 40 to $+85^{\circ} \mathrm{C}$
DC Supply-Voltage Range (VD)
(All voltage values referenced to V_{SS} terminal)
HCMP 1854A
0.5 to +11 V

HCMP 1854AC
-0.5 to +7 V

OPERATING CONDITIONS at $\mathbf{T}_{\mathbf{A}}=$ Full Temperature Range
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	v_{DD}(V)	TYPICAL VALUES		UNITS
		HCMP 1854AD	HCMP 1854ACD	
Supply Voltage Range (At $T_{A}=$ Full Package-Temperature Range)	-	4 to 10.5	4 to 6.5	V
Recommended Input Voltage Range	-	$V_{S S}$ to $V_{\text {DD }}$	$V_{S S}$ to $V_{\text {DD }}$	V
Clock Input Frequency, ${ }^{\mathrm{f}} \mathrm{CL}$ (16 times bit rate)	5	DC-4	DC-4	MHz
	10	DC-8	-	
Minimum Clock Pulse Width, tWL, tWH	5	125	125	ns
	10	100	-	
Minimum Master Reset, $\overline{\text { Clear Pulse Width }}$	5	500	500	ns
	10	250	-	

STATIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified

CHARACTERISTIC	CONDITIONS			LIMITS						UNITS
	$\begin{aligned} & \mathrm{VO}_{0} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { VIN } \\ & \text { (V) } \end{aligned}$	VDD (V)	HCMP 1854AD			HCMP 1854ACD			
				Min.	Typ. ${ }^{1}$	Max.	Min.	Typ. ${ }^{1}$	Max.	
Quiescent Device Current IDD	-	0,5	5	-	0.01	50	-	0.02	200	$\mu \mathrm{A}$
	-	0,10	10	-	1	200	-	-	-	
Output Low Drive (Sink) Current IOL	0.4	0,5	5	0.55	1.1	-	0.55	1.1	-	mA
	0.5	0,10	10	1.3	2.6	-	-	-	-	
Output High Drive (Source) Current ${ }^{\mathrm{I} O H}$	4.6	0,5	5	-0.55	-1.1	-	-0.55	-1.1	-	mA
	9.5	0,10	10	-1.3	-2.6	-	-	-	-	
Output Voltage Low-Level	-	0,5	5	-	0	0.1	-	0	0.1	V
	-	0,10	10	-	0	0.1	-	-	-	
Output Voltage High-Level V_{OH}	-	0,5	5	4.9	5	-	4.9	5	-	V
	-	0,10	10	9.9	10	-	-	-	-	
Input Low Voltage	0.5, 4.5	-	5	-	-	1.5	-	-	1.5	V
	0.5, 9.5	-	10	-	-	3	-	-	-	
Input High Voltage	0.5, 4.5	-	5	3.5	-	-	3.5	-	-	V
	0.5, 9.5	-	10	7	-	-	-	-	-	
Input Current IIN	-	0,5	5	-	$\pm 10^{-4}$	± 1	-	$\pm 10^{-4}$	± 1	$\mu \mathrm{A}$
	-	0,10	10	-	$\pm 10^{-4}$	± 2	-	-	-	
Three State Output Leakage Current IOUT	0,5	0,5	5	-	$\pm 10^{-4}$	± 1	-	$\pm 10^{-4}$	± 1	$\mu \mathrm{A}$
	0, 10	0,10	10	-	$\pm 10^{-4}$	± 2	-	-	-	
Operating Current $\mathrm{IDD1}^{3}$	-	0,5	5	-	1.5	-	-	1.5	-	mA
	-	0,10	10	-	10	-	-	-	-	
Input Capacitance $\mathrm{CIN}^{\text {a }}$	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance COUT	-	-	-	-	10	15	-	10	15	

NOTE 1 Typical values are for $T_{A}=25^{\circ} \mathrm{C}$
NOTE $2 \mathrm{IOL}=\mathrm{I}_{\mathrm{OH}}=1 \mu \mathrm{~A}$.
NOTE 3 Operating current is measured at 200 kHz for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and 400 kHz for $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ in an HCMP 1802 system, with open outputs.

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD} \pm 5 \%$, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}, \mathrm{V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, See Fig. 1.

CHARACTERISTIC	$V_{D D}$ (V)	LIMITS				UNITS
		HCMP1854A		HCMP1854AC		
		Typ. 1	Max. 2	Typ. 1	Max. 2	
Standard Timing - MODE 0						
Minimum Pulse Width: tCRL	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	100	150	ns
Minimum Setup Time: Control Word to CRL $\quad{ }^{\text {C W WC }}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	200	300	ns
Minimum Hold Time: Control Word after CRL	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	100 -	150	ns
Propagation Delay Time: SFD High to SOD	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	200	300	ns
SFD Low to SOD tSFDL	$\begin{array}{r}5 \\ 10 \\ \hline\end{array}$	75 40	$\begin{array}{r} 120 \\ 60 \\ \hline \end{array}$	75	120 -	ns
RRD High to Receiver Register tRRDH High Impedance	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	200	300 -	ns
RRD Low to Receiver Register tRRDL Active	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	100	150 -	ns

NOTE 1 Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltages.
NOTE 2 Maximum limits of minimum characteristics are the values above which all devices function.
TABLE 1. DYNAMIC ELECTRICAL CHARACTERISTICS

MODE 0 OPERATION (MODE INPUT = VSS)

A. Initialization and Controls

The Master Reset (MR) is pulsed to initialize the UART; for example, after power turn on. It resets (zeroes) the Control, Status and Receiver Holding Registers and sets the Serial Data Output (SDO) signal to a logic high. After release of the Master Reset (return to a logic low), the internal timing is generated from the Transmitter Clock (T Clock) and Receiver Clock (R Clock) inputs which are divided internally by sixteen to provide the serial data bit rate. When the receiver data input rate and the transmitter data output rate are the same, as in two-way communications over the same channel, the T Clock and R Clock inputs may be connected together.
To set the operational mode of the UART the control inputs: Parity Inhibit (PI), Even Parity Enable (EPE), Stop Bit Select (SBS), and Word Length Selects (WLS1 and WLS2) are strobed into the UART by the Control Register Load (CRL) input signal activation (logic high). The control bits may be dynamically changed or may be hard wired to the required voltage level (VSS or $V_{D D}$) with CRL hard wired to VDD. The HCMP 1854A is then ready for transmitter and/or receiver operation.

FIGURE 1. STANDARD MODE 0 TIMING DIAGRAM

B. Word Format

A diagram of the serial data word format is shown in Fig. 2. The data, $5-8$ bits, is transmitted with the least significant bit (LSB) sent first. The parity bit, if enabled, is sent after the most significant data bit. The parity may be either odd or even as chosen by the Control Word. The data is enclosed by a Start bit (logic low) identifying start of character transmission and either $1,11 / 2$, or 2 bit wide Stop bit(s) which identifies the end of character transmission and separates successive data words. The width of each data bit is normally 16 input clock widths of $16 / \mathrm{f}$ where f is the clock frequency.

FIGURE 2. SERIAL DATA WORD FORMAT

C. Transmitter Operation

The transmitter timing diagram showing the start of data transmission are seen in Figure 3. At the beginning of a transmitting sequence the Transmitter Holding Register is empty (status signal THRE is high). A character is transferred from the transmitter bus to the Transmitter Holding Register by applying a low pulse to the Transmitter Holding Register Load (THRL) input. This causes the THRE status to go to a low state. If the Transmitter Shift Register is empty (Status signal TSRE is High) and the input clock is low, the next high-to-low transition of the clock loads the contents of the Transmitter Holding Register into the Transmitter Shift Register, preceded bÿ a start (low) bit. Serial data transmission begins one-half clock period later with a start bit, followed by 5-8 data bits, the parity bit (if programmed) and stop bit(s). The THRE status signal returns high one-half clock period later on the high-to-low transition of the input clock. When THRE goes high it signals that another character can be loaded into the Transmitter Holding Register for subsequent transmission immediately following the last stop bit of the previous character. This process is repeated until all characters are transmitted. When transmission is complete both THRE and the Transmitter Shift Register Empty (TSRE) status signals will be high.

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} \pm 5 \%$, $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathrm{f}}=\mathbf{2 0} \mathbf{n s}, \mathrm{V}_{\mathrm{IH}}=\mathbf{0 . 7} \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=\mathbf{0 . 3} \mathrm{VDD}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$. See Fig. 3.

CHARACTERISTIC		$V_{D D}$ (V)	LIMITS				UNITS	
		HCMP1854A	HCMP1854AC					
		Typ. ${ }^{1}$	Max. ${ }^{2}$	Typ. ${ }^{1}$	Max. ${ }^{2}$			
Transmitter Timing - MODE 0								
Minimum Clock Period	${ }^{\mathrm{t}} \mathrm{CC}$		$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & 155 \\ & \hline \end{aligned}$	250	310	ns
Minimum Pulse Width: Clock Low Level	${ }^{t} \mathrm{CL}$		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	100	125	ns
Clock High Level	${ }^{\mathrm{t}} \mathrm{CH}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 125 \\ & 100 \\ & \hline \end{aligned}$	100	125	ns	
THRL	${ }^{\text {t }}$ THTH	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \\ \hline \end{array}$	100	150	ns	
Minimum Setup Time: $\overline{\text { THRL }}$ to Clock	tTHC	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 175 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & 275 \\ & 150 \end{aligned}$	175 -	275	ns	
Data to THRL	${ }^{\text {t }}$ T	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} -100 \\ -50 \\ \hline \end{array}$	$\begin{aligned} & \hline-75 \\ & -35 \end{aligned}$	-100	-75	ns	
Minimum Hold Time: Data after THRL	${ }^{\text {t }}$ D	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 125 \\ 60 \\ \hline \end{array}$	75	125	ns	
Propagation Delay Time: Clock to Data Start Bit	${ }^{\text {t }} \mathrm{CD}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 450 \\ 225 \\ \hline \end{array}$	300	450	ns	
Clock to THRE	${ }^{\text {t }}$ CT	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	200	300	ns	
THRL to THRE	tTTHR	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ - \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ - \end{gathered}$	ns	
Clock to TSRE	tTTS	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	200	300	ns	

Note 1: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
Note 2: Maximum limits of minimum characteristics are the values above which all devices function.
TABLE 2. TRANSMITTER TIMING MODE 0

[^8]FIGURE 3. MODE 0 TRANSMITTER TIMING DIAGRAM

D. Receiver Operation

The receive operation begins when a Start bit (logic low) is detected at the Serial Data In (SDI) input. When a high-to-low transition is detected on the SDI line a divide by 16 internal counter is enabled, driven by the R Clock input, and a valid Start bit is verified by checking for a low level input $71 / 2$ receiver clock periods later. This prevents false triggering on noise inputs. When a valid Start bit is verified, the sampling occurs every subsequent 16 clock pulses to shift in data bits, parity bit (if programmed) and stop bit(s) into the Receiver Shift Register. If programmed, the parity bit is checked and the Parity Error (PE) status updated. The receipt of a valid Stop bit is also verified and Framing Error (FE) status updated. On count $71 / 2$ of the first Stop bit the received data is transferred to the Receiver Holding Register. If the word length is less than 8 bits, zeroes (low voltage level) are loaded into the unused most significant bits. If the Data Available (DA) flag has not been reset by the time the Receiver Holding Register is updated with new data, the Overrun Error (OE) flag is activated to a high level. One half clock after the data transfer the Parity Error (PE) and Framing Error (FE) signals become valid for the character in the Receiver Holding Register. The DA signal is also raised at this time. The three-state output drivers for the status and error flags (DA, OE, PE and FE) are enabled when Status Flag Disconnect (SFD) is pulsed or hard wired to a low voltage state. When Receiver Register Disconnect (RRD) goes low, the receiver bus three-state output drivers are enabled and data is available on the Receiver Bus (R BUS 0 R BUS 7) output lines. The DA flag is reset by a negative pulse on the Data Available Reset ($\overline{\mathrm{DAR}}$) input.

The preceding sequence of operations is repeated for each serial character received. The receiver timing diagram is shown in Figure 4.

DYNAMIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} \pm 5 \%$, $\mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$. See Fig. 4.

CHARACTERISTIC		VDD (V)	LIMITS				UNITS	
		HCMP1854A	HCMP1854AC					
		Typ. ${ }^{1}$	Max. ${ }^{2}$	Typ. ${ }^{1}$	Max. ${ }^{2}$			
Receiver Timing - MODE 0								
Minimum Clock Period	${ }^{\text {t }} \mathrm{CC}$		$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 310 \\ & 155 \\ & \hline \end{aligned}$	250	310	ns
Minimum Pulse Width: Clock Low Level	${ }^{\mathrm{t}} \mathrm{CL}$		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 75 \end{array}$	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	100	125	ns
Clock High Level	${ }^{t} \mathrm{CH}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 125 \\ & 100 \\ & \hline \end{aligned}$	100	125	ns	
$\overline{\text { Data Avarlable Reset }}$	${ }^{\text {t }} \mathrm{DD}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 40 \end{aligned}$	50	75	ns	
Minimum Setup Time: Data Start Bit to Clock	${ }^{t} \mathrm{DC}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	100	150	ns	
Propagation Delay Time: Data Available Reset to Data Available		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 150 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 125 \end{aligned}$	150	225	ns	
Clock to Data Valid	${ }^{\text {t }}$ CDV	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 325 \\ & 175 \end{aligned}$	225	325	ns	
Clock to Data Available	${ }^{\text {c }} \mathrm{CDA}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 325 \\ & 175 \\ & \hline \end{aligned}$	225	325	ns	
Clock to Overrun Error	${ }^{\text {t }}$ COE	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 210 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	210	300	ns	
Clock to Parity Error	${ }^{\text {t }}$ CPE	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 240 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 375 \\ & 175 \end{aligned}$	240	375	ns	
Clock to Framing Error	${ }^{t} \mathrm{CFE}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	200	300	ns	

NOTE 1: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
NOTE 2: Maximum limits of minimum characteristics are the values above which all devices function.
TABLE 3

* If A START BIT OCCURS AT A TIME LESS THAN tDC BEFORE A HIGH-TO-LOW TRANSITION OF THE CLOCK, THE START BIT MAY NOT BE RECOGNIZED UNTIL THE NEXT HIGH-TO-LOW TRANSITION OF THE CLOCK. THE START BIT MAY BE COMPLETELY ASYNCHRONOUS WITH THE CLOCK.
** IF A PENDING DA HAS NOT BEEN CLEARED BY A READ OF THE RECEIVER HOLDING REGISTER BY THE TIME A NEW WORD IS LOADED INTO THE RECEIVER HOLDING REGISTER, THE OE SIGNAL WILL COME TRUE

FIGURE 4. MODE 0 RECEIVER TIMING DIAGRAM

SIGNAL DESCRIPTION (Standard Mode 0)

Terminal No.

17 Receiver Clock
(R Clock)
VDD
Mode Select (Mode)
$V_{S S}$
Receiver Register
Disconnect (RRD)

Data Available
Reset (DAR)
19 Data Available (DA)

Signal

Function

Positive supply
A low level voltage at this input selects Standard Mode 0 Operation.
Ground
A high-level voltage applied to this input disconnects the Receiver Holding Register from the Receiver Bus.
Receiver parallel data outputs. R BUS 7 is the most significant bit.

A high-level voltage at this output indicates that the received parity does not compare to that programmed by the Even Parity Enable (EPE) control. This output is updated each time a character is transferred to the Receiver Holding Register. PE lines from a number of arrays can be bused together since an output disconnect capability is provided by the Status Flag Disconnect (SFD) line.

A high-level voltage at this output indicates that the received character has no valid stop bit, i.e., the bit following the parity bit (if programmed) or MSB of data (if parity is not programmed) is not a high-level voltage. This output is updated each time a character is transferred to the Receiver Holding Register. FE lines from a number of arrays can be bused together since an output disconnect capability is provided by the Status Flag Disconnect (SFD) line.

A high-level voltage at this output indicates that the Data Available (DA) flag was not reset before the next character was transferred to the Receiver Holding Register and the previous data was presumably lost. OE lines from a number of arrays can be bused together since an output disconnect capability is provided by the Status Flag Disconnect (SFD) line.
A high-level voltage applied to this input disables the 3-state output drivers for PE, FE, OE, DA, and THRE, allowing these status outputs to be bus connected.
Clock input with a frequency 16 times the desired receiver bit shift rate.
A low-level voltage applied to this input resets the DA flip-flop.

A high-level voltage at this output indicates that an entire character has been received and transferred to the Receiver Holding Register.

Serial Data In (SDI)

Master Reset (MR)

Transmitter Holding Register Empty (THRE)

Transmitter Holding
Register Load (THRL)
Transmitter Shift
Register Empty (TSRE)
Serial Data
Output (SDO)

Transmitter Bus (T BUS 0 - TBUS 7)
Control Register Load (CRL)

Parity Inhibit (PI)

Stop Bit
Select (SBS)

Word Length
Select 2 (WLS2)
Word Length
Select 1 (WLS1)

Even Parity
Enable (EPE)
Transmitter Clock
(T Clock)

Serial data received at this input enters the receiver shift register at a point determined by the character length. A high-level voltage must be present when data is not being received (IDLE STATE).
A high-level voltage at this input resets the Receiver Holding Register, Control Register, and Status Register, and sets the serial data output high.
A high-level voltage at this output indicates that the Transmitter Holding Register has transferred its contents to the Transmitter Shift Register and may be reloaded with a new character.
A low-level voltage applied to this input enters the character on the data bus into the Transmitter Holding Register. Data is latched on the trailing edge of this signal.
A high-level voltage at this output indicates that the Transmitter Shift Register has completed serial transmission of a full character including stop bit(s). It remains at this level until the start of transmission of the next character.
The contents of the Transmitter Shift Register (start bit, data bits, parity bit, and stop bit(s)) are serially shifted out on this output. When no character is being transmitted, a high-level idle state is maintained. Start of transmission is defined as the transition of the start bit from a high-level to a low-level output voltage.
Transmitter parallel data inputs. T BUS 7 is the most significant bit.

A high-level voltage at this input loads the Control Register with the control bits $(\mathrm{PI}$, EPE, SBS, WLS1, WLS2). This line may be strobed or hardwired to a high-level input voltage.
A high-level voltage at this input inhibits the parity generation and verification circuits and will clamp the PE output low. If parity is inhibited the stop bit(s) will immediately follow the last data bit on transmission.
This input selects the number of stop bits to be transmitted after the parity bit. A high-level selects two stop bits, a low-level selects one stop bit. Selection of two stop bits (logic high) with five data bits programmed (WLS2 = low, WLS1 = low) selects 1.5 stop bits.

These two inputs select the character length (exclusive of parity) as follows:

WLS2	WLS1	Word Length
Low	Low	5 Bits
Low	High	6 Bits
High	Low	7 Bits
High	High	8 Bits

A high-level voltage at this input selects even parity to be generated by the transmitter and checked by the receiver. A low-level input selects odd parity.
Clock input with a frequency 16 times the desired transmitter shift rate.

FUNCTIONAL DIAGRAM (HCMP 1802 Compatible - Mode 1)

MODE 1 OPERATION (MODE INPUT = VDD)

A. Initialization and Controls

In the microprocessor compatible mode the HCMP 1854A is configured to receive commands and transmitter data, and to send status and receiver data via the microprocessor data bus. The register selected to be connected to the transmitter bus or receiver bus is determined by the Read \bar{W} rite (RD/ $\overline{W R}$) and Register Select (RSEL) inputs as follows:

RSEL	$\overline{\text { RD/WR }}$	Function
Low	Low	Load Transmitter Holding Register from Transmitter Bus
Low	High	Read Receiver Holding Register from Receiver Bus
High	Low	Load Control Register from Trans- mitter Bus
High	High	Read Status Register from Re- ceiver Bus

TABLE 4. REGISTER SELECTION
In mode 1 the HCMP 1854A is compatible with an 8 bit bidirectional bus system. The Receiver and Transmitter buses can be connected together externally to directly interface with the microprocessor bus. The I/O control signals generated by the HCMP 1802 can be connected directly to the HCMP 1854A as shown on the front page.
To initiate the UART operation the $\overline{\text { Clear }}$ input is pulsed which resets the Control, Status and Receiver Holding Registers and sets the Serial Data Out (SDO) to a logic high. The Control Register is then loaded from the Transmitter bus to determine the operating configuration for the UART. Data is transferred over the transmitter bus to the Control Register during the TPB clock output from the HCMP 1802 when the UART is selected (CS1•CS2•CS3 $=1$) and the control Register is designated (RSEL $=$ high, $R D \overline{W R}=$ low). The status register of the HCMP 1854A can be read onto the Receiver bus (R BUS $0-R$ BUS 7) to determine the UART status. Some of these bits are also available at separate terminals as indicated in the mode 1 block diagram.

B. Transmitter Operation

Before transmitting, the Transmit Request (TR) bit in the Control Register must be set. This is done by executing the operation to load the Control Register with the TR bit set (bit 7) in the byte transmitted over the bus. When bit 7 is high it inhibits changing of the other control bits. Therefore, two loads are required: one to format the UART, the second to set TR. When TR has been set a Transmitter Holding Register Empty (THRE) interrupt will occur, signaling the microprocessor (normally through the INTR or EF lines) that the Transmitter Holding Register is empty and may be loaded with data. Setting TR also sets a low level on the Request To Send (RTS) output to peripherals (such as a modem).

The Transmitter Holding Register is loaded from the bus by TPB during execution of an Output instruction from the microprocessor. The HCMP 1854A UART is selected by (CS1•CS2•CS3 $=1$). The Transmitter Holding Register is selected by RSEL = low and RD $\overline{\mathrm{WR}}=$ low. When the $\overline{\text { Clear To Send }}(\overline{\mathrm{CTS}})$ input signal is low the Transmitter Shift Register is loaded with the contents of the Transmitter Holding Register and data transmission will begin. If CTS is low the Transmitter Shift Register will be loaded on the first high-to-low edge of the clock which occurs at least $1 / 2$ clock period after the TPB trailing edge. Transmission of the start bit occurs $1 / 2$ clock period later (see Fig. 5). Parity (if programmed) and stop bit(s) are transmitted following the last data bit. If the word length selected is less than 8 bits, the most significant unused bits in the transmitter shift register will not be transmitted.

One transmitter clock period after the Transmitter Shift Register is loaded the THRE signal goes to a low and the interrupt is asserted (INT goes low). The next character to be transmitted can then be loaded into the Transmitter Holding Register and its Start bit will immediately follow the last Stop bit of the previous character. This cycle is repeated until the last character is transmitted, at which time a final THRE•TSRE interrupt will occur. This interrupt signals the microprocessor that the TR control bit can be turned off by reloading the original control byte with the TR bit $=0$. This also terminates the $\overline{\text { Request To Send (} \overline{\text { RTS }} \text {) }}$ signal.
The Serial Data Out (SDO) line can be held low by setting the Break bit (bit 6) in the Control Register to a high. SDO is held low until the Break bit is reset.

- The Holding Register is Loaded On the Trailing Edge of TPS.
* The Transmitter Shift Register is Loaded On the First High-to-Low Transition of the Clock Which Occurs at Least $1 / 2$ Clock Period $+t_{\text {TC }}$ After the Trailing Edge of TPS, and Transmission of a Start Bit Occurs $1 / 2$ Clock Period $+{ }^{t}$ CD Later.
+ Write is the Overlap of TPS, CS1, and $\overline{\operatorname{CS3}}=1$ and CS3, RD $/ \overline{W R}=0$.
FIGURE 5. TRANSMITTER TIMING DIAGRAM - MODE 1

DYNAMIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} \pm 5 \%$, $t_{r}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}, \mathrm{V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$. See Figs. 5 and 6.

CHARACTERISTIC		$V_{D D}$ (V)	LIMITS				UNITS	
		HCMP1854A	HCMP1854AC					
		Typ. ${ }^{1}$	Max. ${ }^{2}$	Typ. ${ }^{1}$	Max. ${ }^{2}$			
Transmitter Timing - MODE 1								
Minimum Clock Period	${ }^{\mathrm{t}} \mathrm{CC}$		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 310 \\ & 155 \end{aligned}$	250	310	ns
Minimum Pulse Width: Clock Low Level	${ }^{\mathrm{t}} \mathrm{CL}$		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 75 \end{array}$	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	100 -	125	ns
Clock High Level	${ }^{\text {t }} \mathrm{CH}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 125 \\ & 100 \\ & \hline \end{aligned}$	100 -	$\begin{gathered} 125 \\ - \\ \hline \end{gathered}$	ns	
TPB	${ }^{\text {t }}$ T	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	100	150	ns	
Minimum Setup Time: TPB to Clock	${ }^{\text {tTC }}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 175 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 150 \\ & \hline \end{aligned}$	175 -	225 -	ns	
Propagation Delay Time: Clock to Data Start Bit	${ }^{t}$ CD	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 450 \\ 225 \\ \hline \end{array}$	$\begin{gathered} 300 \\ - \\ \hline \end{gathered}$	$\begin{gathered} 450 \\ - \\ \hline \end{gathered}$	ns	
TPB to THRE	${ }^{\text {tTTH }}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	$\begin{gathered} 200 \\ - \end{gathered}$	$\begin{gathered} 300 \\ - \\ \hline \end{gathered}$	ns	
Clock to $\overline{\text { THRE }}$	${ }^{\text {t CTH }}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r}200 \\ - \\ \hline\end{array}$	$\begin{array}{r}300 \\ - \\ \hline\end{array}$	ns	
CPU Interface - WRITE Timing - MODE 1								
Minimum Pulse Width: TPB	${ }^{\text {t }}$ T	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	100	150	ns	
Minimum Setup Time: RSEL to Write	trsw	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 40 \\ & \hline \end{aligned}$	50	75 -	ns	
Data to Write	${ }^{\text {t }}$ W	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} -100 \\ -50 \\ \hline \end{array}$	$\begin{aligned} & -75 \\ & -35 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-100 \\ - \\ \hline \end{array}$	-75	ns	
Minimum Hold Time: RSEL after Write	tWRS	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 40 \end{aligned}$	50	75	ns	
Data after Write	twD	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \hline 75 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 125 \\ 60 \\ \hline \end{array}$	75 -	125	ns	

Note 1: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
Note 2: Maximum limits of minimum characteristics are the values above which all devices function

FIGURE 6. MODE 1 CPU INTERFACE (WRITE) TIMING DIAGRAM

C. Receiver Operation

The receive operation begins when a start bit is detected at the Serial Data In (SDI) input. After detection of the first high-to-low transition on the SDI line, a valid START bit is verified by checking for a low level input $71 / 2$ receiver clock periods later. After verification of a valid Start bit, the following data bits, parity bit (if programmed) and Stop bit(s) are shifted into the Receiver Shift Register by being sampled every sixteen clocks (at clock pulse 71/2). On count $71 / 2$ of the first Stop bit the data in the Receiver Register is loaded into the Receiver Holding Register. If the word length is less than 8 bits, zeros (low level outputs) are loaded into the unused left-most (significant) bits. If $\overline{\text { Data Available (} \overline{\mathrm{DA}} \text {) has not been reset by the }}$ time the Receiver Holding Register is loaded, the Overrun Error (OE) status bit is set. One half clock period later the Parity Error (PE) and Framing Error (FE) status bits become valid for the character in the Receiver Holding Register. Also, at this time, the $\overline{\text { Data Available (} \overline{\mathrm{DA}} \text {) }}$ and Interrupt (INT) outputs go low, signalling to the microprocessor that a received character is available to be read. The microprocessor responds by executing an Input instruction. The UART's 3 -state bus drivers are enabled when the UART is selected (CS1••到2•CS3 $=1$) and RD $\overline{W R}$ is high. Data is read when RSEL = low and status is read when RSEL = high. When reading data, TPB latches the data in the microprocessor and resets the Data Avail$\overline{\mathrm{able}}(\overline{\mathrm{DA}})$ signal in the UART. This sequence is repeated for each serial character which is received from the peripheral.

* If a start bit occurs at a time less than tdc before a high-to-low transition of the clock, the START BIT MAY NOT BE RECOGNIZED UNTIL THE NEXT HIGH-TO-LOW TRANSITION OF THE CLOCK. THE START BIT MAY BE COMPLETELY ASYNCHRONOUS WITH THE CLOCK.
** READ IS THE OVERLAP OF CS1, CS3, RD $\overline{W R}=1$ AND $\overline{\mathrm{CS} 2}=0$.
IF A PENDING DA HAS NOT BEEN CLEARED BY A READ OF THE RECEIVER HOLDING REGISTER BY THE TIME A NEW WORD IS LOADED INTO THE RECEIVER HOLDING REGISTER, THE OE SIGNAL WILL COME TRUE.
\dagger OE AND PE SHARE TERMINAL 15 AND ARE ALSO AVAILABLE AS TWO SEPARATE BITS IN THE STATUS REGISTER

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD} \pm 5 \%$,
$\mathbf{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V} D \mathrm{CD}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.
See Figs. 7 and 8.

CHARACTERISTIC		$V_{D D}$ (V)	LIMITS						UNITS	
		HCMP1854A	HCMP1854AC							
		Min.	Typ. ${ }^{1}$	Max. ${ }^{2}$	Min.	Typ. ${ }^{1}$	Max. ${ }^{2}$			
Receiver Timing - MODE 1										
Minimum Clock Period	${ }^{\text {t }}$ C		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 310 \\ & 155 \end{aligned}$	$-$	250	310	ns
Minimum Pulse Width: Clock Low Level	${ }^{\mathrm{t}} \mathrm{CL}$		$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 100 \\ 75 \end{array}$	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	100	125	ns
Clock High Level	${ }^{1} \mathrm{CH}$	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{array}{r} 100 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 125 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 100 \\ - \\ \hline \end{gathered}$	125	ns	
TPB	${ }^{\text {t T T }}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$-$	$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	$\begin{aligned} & - \\ & -- \end{aligned}$	100	$\begin{gathered} 150 \\ - \\ \hline \end{gathered}$	ns	
Minimum Setup Time: Data Start Bit to Clock	${ }^{t} \mathrm{DC}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	100 -	150	ns	
Propagation Delay Time: TPB to DATA AVAILABLE	tTDA	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 220 \\ & 110 \end{aligned}$	$\begin{aligned} & 325 \\ & 175 \end{aligned}$	$-$	220 -	325	ns	
Clock to DATA AVAILABLE	${ }^{\mathrm{t}} \mathrm{CDA}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & 220 \\ & 110 \end{aligned}$	$\begin{aligned} & 325 \\ & 175 \end{aligned}$	$-$	220	325	ns	
Clock to Overrun Error	${ }^{\text {t }}$ COE	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$-$	$\begin{aligned} & 210 \\ & 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	-	210	300	ns	
Clock to Parity Error	${ }^{\mathrm{t}} \mathrm{CPE}$	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 240 \\ & 120 \end{aligned}$	$\begin{aligned} & 375 \\ & 175 \end{aligned}$	-	240	375	ns	
Clock to Framing Error	${ }^{\text {t }}$ CFE	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$-$	200	300	ns	
CPU Interface - READ Timing - MODE 1										
Minimum Pulse Width: TPB	${ }^{\text {t }}$ T T	$\begin{array}{r} 5 \\ 10 \end{array}$	-	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 150 \\ 75 \end{array}$	$-$	100 -	$\begin{gathered} 150 \\ - \\ \hline \end{gathered}$	ns	
Minimum Setup Time: RSEL to TPB	tRST	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 40 \end{aligned}$	-	50	75	ns	
Minimum Hold Time: RSEL after TPB	tTRS	$\begin{array}{r} 5 \\ 10 \end{array}$	$-$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 75 \\ & 40 \end{aligned}$	-	50	75 -	ns	
Read to Data Access Time	tRDDA	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 150 \end{aligned}$	$-$	200	300	ns	
Read to Data Valid Time	${ }^{\text {t R D }}$ V	$\begin{array}{r} 5 \\ 10 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	200	300 -	ns	
RSEL to Data Valid Time	${ }^{\text {t R SDV }}$	$\begin{array}{r} 5 \\ 10 \end{array}$	--	$\begin{array}{r} 150 \\ 75 \end{array}$	$\begin{aligned} & 225 \\ & 125 \end{aligned}$	-	150	225	ns	
Hold Time: Data after Read	${ }^{\text {t R DM }}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$	$\begin{array}{r} 150 \\ 75 \\ \hline \end{array}$	-	50	$\begin{gathered} 150 \\ - \\ \hline \end{gathered}$	-	ns	

Note 1: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
Note 2: Maximum limits of minimum characteristics are the values above which all devices function.

* Read is the Overlap of CS1, CS3, RD $\overline{\mathrm{WR}}=1$ and $\overline{\mathrm{CS} 2}=0$.

FIGURE 8. MODE 1 CPU INTERFACE (READ) TIMING DIAGRAM

Control Register Bit Assignment

Bit	7	6	5	4	3	2	1	0
Signal	TR	BREAK	IE	WLS2	WLS1	SBS	EPE	PI

Bit	Signal	Function			
0	Parity Inhibit (PI)	When set high parity generation and verification are inhibited and the PE Status bit is held low. If parity is inhibited the stop bit(s) will immediately follow the last data bit on transmission, and EPE is ignored.			
1	Even Parity Enable (EPE)	When set high, even parity is generated by the transmitter and checked by the receiver. When low, odd parity is selected.			
2	Stop Bit Select (SBS)	See table below.			
3	Word Length Select 1 (WLS1)	See table below.			
4	Word Length Select 2 (WLS2)	See table below.			
		Bit 4	Bit 3	Bit 2	
		WLS2	WLS1	SB S	Function
		0	0	0	5 data bits, 1 stop bit
		0	0	1	5 data bits, 1.5 stop bits
		0	1	0	6 data bits, 1 stop bit
		0	1	1	6 data bits, 2 stop bits
		1	0	0	7 data bits, 1 stop bit
		1	0	1	7 data bits, 2 stop bits
		1	1	0	8 data bits, 1 stop bit
		1	1	1	8 data bits, 2 stop bits
5	Interrupt Enable (IE)	When set high THRE, DA, THRE•TSRE, $\overline{\text { CTS }}$, and PSI interrupts are enabled (see Interrupt Conditions, Table 5			
6	Transmit Break (Break)	Holds SDO in a spacing (low) condition when set. Once the break bit in the control register has been set high, SDO will stay low until the break bit is reset low or one of the following occurs - $\overline{\text { Clear }}$ goes low; $\overline{\text { CTS }}$ goes high; or a word is transmitted. The transmitted word will not be valid since there can be no start bit if SDO is already low. SDO can be set high without intermediate transitions by transmitting a word consisting of zeros.			
7	Transmit Request (TR)	When set high, RTS is set low and data transfer through the transmitter is initiated by the initial THRE interrupt. (When loading the Control Register from the bus, this bit			

D. Peripheral Interface

In addition to serial data in and out, four signals are provided for communication with a peripheral. The Request To Send ($\overline{\mathrm{RTS}}$) output signal alerts the peripheral to get ready to receive data. The Clear To Send (CTS) input signal is the response, signalling that the peripheral is ready. The External Status ($\overline{\mathrm{ES}}$) input latches a peripheral status level, and the
 generates an interrupt. For example, the modem Data Carrier Detect line could be connected to the $\overline{\text { PSI }}$ input on the UART in order to signal the microprocessor that transmission failed because of loss of the carrier on the communications line. The $\overline{\mathrm{PSI}}$ and $\overline{\mathrm{ES}}$ bits are stored in the Status Register (see below).

Status Register Bit Assignment

Data Available (DA)

Overrun Error (OE)

Parity Error (PE)

Framing Error (FE)

External Status (ES)
Peripheral Status Interrupt (PSI)
Transmitter Shift
Register Empty (TSRE)

Transmitter Holding Register Empty (THRE)

Function

When set high, this bit indicates that an entire character has been received and transferred to the Receiver Holding Register. This signal is also available at Term. 19 but with its polarity reversed.
When set high, this bit indicates that the Data Available bit was not reset before the next character was transferred to the Receiver Holding Register (i.e. the original data was lost). This signal OR'ed with PE is output at Term. 15.
When set high, this bit indicates that the received parity bit does not compare to that programmed by the Even Parity Enable (EPE) control. This bit is updated each time a character is transferred to the Receiver Holding Register. This signal OR'ed with OE is output at Term. 15.
When set high, this bit indicates that the received character has no valid stop bit, i.e., the bit following the parity bit (if programmed) is not a high-level voltage. This bit is updated each time a character is transferred to the Receiver Holding Register. This signal is also available at Term. 14
This bit is set high a low-level input at Term. 38 ($\overline{\mathrm{ES}}$).
This bit is set high by a high-to-low voltage transition at Term. 37 ($\overline{\mathrm{PSI}})$. The Interrupt output (Term. 13) is also asserted ($\overline{\mathrm{NT}}=$ low) when this bit is set.
When set high, this bit indicates that the Transmitter Shift Register has completed serial transmission of a full character including stop bit(s). It remains set until the start of transmission of the next character.
When set high, this bit indicates that the Transmitter Holding Register has transferred its contents to the Transmitter Shift Register and may be reloaded with a new character. Setting this bit also resets the THRE output (Term. 22) low and causes an Interrupt ($\overline{\mathrm{INT}}=$ low), if TR is high.

INTERRUPT CONDITIONS

SET* * (INT $=$ LOW)	RESET ($\overline{N T T}=$ HIGH)	
CAUSE	CONDITION	TIME
DA (Receipt of data)	Read of data	TPB leading edge
THRE (Ability to reload)	Read of status or write of character	TPB leading edge
THRE•TSRE (Transmitter done)	Read of status or write of character	TPB leading edge
$\overline{\text { PSI }}$ (Negative edge)	Read of status	TPB trailing edge
$\overline{\mathrm{CTS}}$ (Positive edge when THRE•TSRE	Read of status	TPB leading edge

* Interrupts will occur only after the IE bit in the Control Register has been set

4 THRE will cause an interrupt only after the TR bit in the Control Register has been set
TABLE 5. INTERRUPT CONDITIONS

SIGNAL DESCRIPTION (1802 Combatible - Mode 1)

Terminal No.	
1	Vignal
2	Mode Select (Mode)
3	V SS $^{\text {Chip Select 2 }}(\overline{\text { CS2 }) ~}$
4	Receiver Bus (R BUS0 - R BUS7)
$5-12$	$\frac{\text { Interrupt }}{(\text { INT })}$

Function

Positive supply
A high-level voltage at this input selects the HCMP 1802 Mode of operation.
Ground
A low-level voltage at this input together with CS1 and CS3 selects the HCMP 1854A UART.
Receiver parallel data outputs (may be externally connected to corresponding transmitter bus terminals).

A low-level voltage at this output indicates the presence of one or more of the interrupt conditions listed in Table 5.

Framing Error (FE)

Parity Error or Overrun Error (PE/OE)

Register Select (RSEL)

Receiver Clock
(R Clock)
TPB
$\overline{\text { Data Available }}(\overline{\mathrm{DA}})$

Serial Data In
(SDI)
$\overline{\text { Clear }}$ (Clear)

Transmitter Holding
$\overline{\text { Register Empty }}$ (THRE)

Chip Select 1
(CS1)
Request To Send
(RTS)

Serial Data
Output (SDO)

Transmitter Bus
(T BUS0 - T BUS7)
Read/Write (RD/ $\overline{\mathrm{WR}}$)

Chip Select 3 (CS3)

No Connection
Peripheral Status
Interrupt ($\overline{\mathrm{PSI}}$)
$\overline{\text { External Status }}$ ($\overline{\mathrm{ES}}$)
Clear To Send
($\overline{\mathrm{CTS}}$)
Transmitter Clock (T Clock)

A high-level voltage at this output indicates that the received character has no valid stop bit, i.e., the bit following the parity bit (if programmed) is not a high-level voltage. This output is updated each time a character is transferred to the Receiver Holding Register.

A high-level voltage at this output indicates that either the PE or OE bit in the Status Register has been set (see Status Register Bit Assignment).
This input is used to choose either the Control/Status Registers (high input) or the transmitter/receiver data registers (low input) according to the truth table 1.

Clock input with a frequency 16 times the desired receiver shift rate.

A positive input pulse used as a data load or reset strobe.
A low-level voltage at this output indicates that an entire character has been received and transferred to the Receiver Holding Register.
Serial data received on this input line enters the Receiver Shift Register at a point determined by the character length. A high-level input voltage must be present when data is not being received.
A low-level voltage at this input resets the interrupt flip-flop, Receiver Holding Register, Control Register, and Status Register, and sets Serial Data Out (SDO) high.

A low-level voltage at this output indicates that the Transmitter Holding Register has transferred its contents to the Transmitter Shift Register and may be reloaded with a new character.

A high-level voltage at this input together with $\overline{C S 2}$ and CS3 selects the UART.

This output signal tells the peripheral to get ready to receive data. Clear To Send ($\overline{\mathrm{CTS}}$) is the response from the peripheral. $\overline{\mathrm{RTS}}$ is set to a low-level voltage when data is latched in the Transmitter Holding Register or TR is set high, and is reset high when both the Transmitter Holding Register and Transmitter Shift Register are empty and TR is low.

The contents of the Transmitter Shift Register (start bit, data bits, parity bit, and stop bit(s)) are serially shifted out on this output. When no character is being transmitted, a high level is maintained. Start of transmission is defined as the transition of the start bit from a high-level to a low-level output voltage.
Transmitter parallel data inputs. These may be externally connected to corresponding Receiver bus terminals.

A low-level voltage at this input gates data from the transmitter bus to the Transmitter Holding Register or the Control Register as chosen by register select. A high-level voltage gates data from the Receiver Holding Register or the Status Register, as chosen by register select, to the receiver bus.
A high-level voltage at this input together with CS1 and $\overline{\mathrm{CS} 2}$ selects the UART.

A high-to-low transition on this input line sets a bit in the Status Register and causes an $\overline{\text { Interrupt }}$ (INT $=$ low).

A low-level voltage at this input sets a bit in the Status Register.
When this input from peripheral is high, transfer of a character to the Transmitter Shift Register and shifting of serial data out is inhibited.
Clock input with a frequency 16 times the desired transmitter shift rate.

HUGHES

 MULTIPLY/DIVIDE UNIT

HCMP 1855
HCMP 1855C

DESCRIPTION

The HCMP 1855 is an 8 bit programmable multiply/divide unit which can be used to greatly increase the capabilities of 8 bit microprocessors. The HCMP 1855 interfaces directly to the HCMP 1802 microprocessor via the N -lines and can easily be configured to fit in either the memory or I/O space of generalized 8 bit microprocessors. The HCMP 1855 performs multiply and divide operations on unsigned, binary operators. It saves considerable memory space and execution time over the same functions as performed by coded multiply and divide software subroutines.

Add and shift right operations and subtract and shift left operations are used for multiply and divide functions respectively. The HCMP 1855 is cascadable up to 4 units for 32×32 bit multiply or $64 \div 32$ bit divide functions.

The HCMP 1855 has recommended operating voltage range of $4-10.5$ volts while the HCMP 1855C has a recommended operating voltage range of $4-6.5$ volts. The HCMP 1855 is available in 28 lead dual-in-line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static silicon gate CMOS circuitry
- Interfaces directly to HCMP 1802 microprocessor without additional components.
- Easy interface to general 8 bit microprocessors.
- Low power dissipation
- Single non-critical voltage supply

SYSTEM INTERCONNECT Typical 1800 System with HCMP 1855

- Cascadable up to 4 units for 32 bit by 32 bit multiply or $64 \div 32$ bit divide
- 8 bit by 8 bit multiply or $16 \div 8$ bit divide in $5 \mu \mathrm{~s}$ at 5 V or $2.5 \mu \mathrm{~s}$ at 10 V typical
- Significantly increased throughput of $\mu \mathrm{p}$ used for arithmetic calculations.

MAXIMUM RATINGS, Absolute-Maximum Values:

```
DC Supply-Voltage Range, (VCC},\mp@subsup{V}{DD}{}
    (All Voltage Values referenced to V}\mp@subsup{V}{SS}{}\mathrm{ Terminal)
    VCC}\leqslant\mp@subsup{V}{DD}{
        HCMP 1855......................................................................... . . . . . . . to +13V
        HCMP 1855C .............................................................................. - . . . . to +7V
```



```
DC Input Current, any one input.
Operating-Temperature Range (TA)
```


OPERATING CONDITIONS at TA $=$ Full Package Range
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC			LIMITS						UNITS	
			HCMP1855				HCMP1855C			
				Min.	Max.		Min.	Max.		
DC Operating Voltage Range				4$\mathrm{~V}_{\text {SS }}$	10.5		4	6.5		V
Input Voltage Range					VDD		V SS	VDD		
STATIC ELECTRICAL CHARACTERISTICS at TA $=-40$ to $+85^{\circ}$										
CHARACTERISTIC	CONDITIONS			LIMITS						UNITS
	v_{0}(V)	$\begin{aligned} & \text { VIN } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { VDD } \\ & \text { (V) } \end{aligned}$	HCMP1855			HCMP1855C			
				Min.	Typ. ${ }^{1}$	Max.	Min.	Typ. ${ }^{1}$	Max.	
Quiescent Device	-	0,5	5	-	0.01	50	-	0.02	200	
Current, IDD	-	0,10	10	-	1	200	-	-	-	
Output Low (Sink)	0.4	0,5	5	1.6	3.2	-	1.6	3.2	-	
Current, IOL	0.5	0,10	10	2.6	5.2	-	-	-	-	
Output High (Source)	4.6	0,5	5	1.15	2.3	-	1.15	2.3	-	
Current, I OH	9.5	0,10	10	2.6	5.2	-	-	-	-	
Output Voltage	-	0,5	5	-	0	0.1	-	0	0.1	
Low-Level, $\mathrm{V}_{\mathrm{OL}}{ }^{2}$	-	0,10	10	-	0	0.1	-	-	-	
Output Voltage	-	0,5	5	4.9	5	-	4.9	5	-	
High-Level, VOH^{2}	-	0,10	10	9.9	10	-	-	-	-	V
Input Low	0.5, 4.5	-	5	-	-	1.5	-	-	1.5	\checkmark
Voltage, $\mathrm{V}_{\text {IL }}$	0.5, 9.5	-	10	-	-	3	-	-	-	
Input High	0.5,4.5	-	5	-	3.5	-	3.5	-	-	
Voltage, $\mathrm{V}_{\text {IH }}$	0.5, 9.5	-	10	-	7	-	-	-	-	
Input Current,	-	0,5	5	-	$\pm 10^{-4}$	± 1	-	$\pm 10^{-4}$	± 1	
IN	-	0,10	10	-	$\pm 10^{-4}$	± 1	-	-	-	$\mu \mathrm{A}$
3-State Output Leakage	0,5	0,5	5	-	-	± 15	-	-	± 15	$\mu \mathrm{A}$
Current, IOUT	0,10	0,10	10	-	-	± 15	-	-	-	
Operating Current,	-	0,5	5	-	2	5	-	2	5	mA
$\mathrm{I}_{\mathrm{DD}}{ }^{3}$	-	0,10	10	-	4	10	-	-	-	mA
Input Capacitance, CIN	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance, COUT	-	-	-	-	10	15	-	-	15	pF

NOTES: 1 Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltage.
$2 \mathrm{I}_{\mathrm{OL}}=\mathrm{I}_{\mathrm{OH}}=1 \mu \mathrm{~A}$
3 Operating current is measured at 2 MHz with open outputs.

DYNAMIC ELECTRICAL CHARACERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} \pm 5 \% \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}$, $\mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (See Timing Diagram)

CHARACTERISTICs ${ }^{1}$	SYMBOL	VDD (V)	LIMITS						UNITS
			HCMP1855			HCMP1855C			
			Min.	Typ. ${ }^{2}$	Max.	Min.	Typ. ${ }^{2}$	Max.	
WRITE CYCLE									
Minimum Clear Pulse Width	${ }^{\text {ctr }}$	5	-	50	75	-	50	75	ns
		10	-	25	40	-	-	-	
Minimum Write Pulse Width	${ }^{\text {tw }}$ W	5	-	150	225	-	150	225	
		10	-	75	115	-	-	-	
Minimum Data-In Setup	${ }^{\text {t }}$ DSU	5	-	-75	0	-	-75	0	
		10	-	-40	0	-	-	-	
Minimum Data-In Hold	${ }^{\text {t }} \mathrm{DH}$	5	-	50	75	-	50	75	
		10	-	25	40	-	-	-	
Minimum Address to Write Setup	${ }^{t} \mathrm{ASU}$	5	-	50	75	-	50	75	
		10	-	25	40	-	-	-	
Minimum Address after Write Hold	${ }^{t} \mathrm{AH}$	5	-	50	75	-	50	75	
		10	-	25	40	-	-	-	
READ CYCLE									
CE to Data Out Active	${ }^{t} \mathrm{CDO}$	5	-	200	300	-	200	300	ns
		10	-	100	150	-	-	-	
CE to Data Access	${ }^{t} \mathrm{CA}$	5	-	300	450	-	300	450	
		10	-	150	225	-	-	-	
Address to Data Access	${ }^{\text {A }} \mathrm{AA}$	5	-	300	450	-	300	450	
		10	-	150	225	-	-	-	
Data Out Hold After CE	${ }^{t} \mathrm{DOH}$	5	50	150	225	50	150	225	
		10	25	75	115	-	-	-	
Data Out Hold After Read	${ }^{t} \mathrm{DOH}$	5	50	150	225	50	150	225	
		10	25	75	115	-	-	-	
Read to Data Out Active	trDO	5	-	200	300	-	200	300	
		10	-	100	150	-	-	-	
Read to Data Access	tra	5	-	200	300	-	200	300	
		10	-	100	150	-	-	-	
Strobe to Data Access	${ }^{\text {t }}$ S A	5	50	200	300	50	200	300	
		10	25	100	150	-	-	-	
Minimum Strobe Width	${ }^{\text {t }}$ SW	5	-	150	225	-	150	225	
		10	-	75	115	-	-	-	
OPERATION TIMING									
Maximum Clock Frequency ${ }^{3}$	${ }^{t} \mathrm{CF}$	5	3	4	-	3	4	-	MHz
		10	6	8	-	-	-	-	
Maximum Shift Frequency (1 Device) ${ }^{4}$	${ }^{\text {t }}$ SF	5	1.5	2	-	1.5	2	-	
		10	3	4	-	-	-	-	
Minimum Clock Width	${ }^{\text {t }}$ CLKo ${ }^{t}$ CLK1 1	5	-	100	150	-	100	150	ns
		10	-	50	75	-	-	-	
Minimum Clock Period	${ }^{\text {t CLK }}$	5	-	250	333	-	250	333	ns
		10	-	125	167	-	-	-	
Clock to Shift Prop. Delay	${ }^{t} \mathrm{CSH}$	5	-	200	300	-	200	300	
		10	-	100	150	-	-	-	
Minimum C.I. to Shift Setup	${ }^{\text {t }} \mathrm{SU}$	5	-	50	67	-	50	67	
		10	-	25	33	-	-	-	
C.O. from Shift Prog. Delay	${ }^{\text {tPLH }}$	5	-	450	600	-	450	600	
		10	-	225	300	-	-	-	
Minimum C.I. from Shift Hold	${ }^{t} \mathrm{H}$	5	-	50	75	-	50	75	
		10	-	25	40	-	-	-	
Minimum Register Input Setup	${ }^{\text {t }} \mathrm{SU}$	5	-	-20	10	-	-20	10	
		10	-	-10	10	-	-	-	
Register after Shift Prop. Delay	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	5	-	400	600	-	400	600	
		10	-	200	300	-	-	-	
Minimum Register after Shift Hold	${ }^{t} \mathrm{H}$	5	-	50	100	-	50	100	
		10	-	25	50	-	-	-	
C.O. from C.I. Prop. Delay	tpLH tpHL	5	-	100	150	-	100	150	
		10	-	50	75	-	-	-	
Register from C.I. Prop. Delay	tpl. ${ }^{\text {tPHL }}$	5	-	80	120	-	80	120	
		10	-	40	60	-	-	-	

[^9]${ }^{4}$ Shift period for cascading of devices is increased by an amount equal to the C.O. to C.I. Prop. Delay for each device added.

WRITE TIMING AND OPERATION TIMING

CONTROL TRUTH TABLE

INPUTS*						RESPONSE
CE	$\begin{aligned} & \text { RA2 } \\ & \text { (N2) } \end{aligned}$	RA1 (N1)	$\begin{aligned} & \text { RAO } \\ & \text { (NO) } \end{aligned}$	RD/ $\overline{\text { WE }}$ (MRD)	$\begin{gathered} \text { STB } \\ \text { (TPB) } \end{gathered}$	
0	X	X	X	X	X	NO ACTION (BUS FLOATS)
\times	0	X	X	x	X	NO ACTION (BUS FLOATS)
1	1	0	0	1	x	\times TO BUS) INCREMENT SEQUENCE
1	1	0	1	1	\times	Z TO BUS $\}$ COUNTER WHEN
1	1	1	0	1	\times	Y TO BUS STB AND RD $=1$
1	1	1	1	1	\times	STATUS TO BUS
1	1	0	0	0	1	LOAD X FROM BUS $\}$ INCREMENT
1	1	0	1	0	1	LOAD 2 FROM BUS $\}$ SEQUENCE
1	1	1	0	0	1	LOAD Y FROM BUS COUNTER
1	1	1	1	0	1	LOAD CONTROL REGISTER
1	1	x	x	0	0	NO ACTION (BUS FLOATS)

* $(1)=1800$ system signals. $1=$ High Level, $0=$ Low Level, $X=$ High Level or Low Leve

*Select shift rate option:
One $1855=$ shift rate $=$ clock frequency $\div 2$
Two 1855's $=$ shift rate $=$ clock frequency $\div 4$
Three or four 1855's $=$ shift rate $=$ clock frequency $\div 8$

STATUS REGISTER BIT ASSIGNMENT

BIT	7	6	5	4	3	2	1	0
Output	0	0	0	0	0	0	0	$0 . F$.

O.F. = 1 if overflow (only valid after a divide has been done).

FUNCTIONAL DESCRIPTION

The HCMP 1855 performs an 8 N -bit by 8 N -bit multiply with a 16 N -bit results and 16 N -bit by 8 N -bit divide yielding an 8 N -bit result plus an 8 bit remainder. The N represents the number of cascaded HCMP 1855 s from 1 through 4. All operations require $8 \mathrm{~N}+1$ shift pulses.

The HCMP 1855 contains X, Y and Z registers for loading the operands and saving the results, the control register for initializing the multiply or divide operation, and a status register for storing an overflow flag. There are two register address lines (RAO-RA1) provided to select the appropriate register for loading or reading. The RD/WE and STB lines are used in conjunction with the RA lines to determine the exact MDU response (see Control Truth Table).

When multiple MDUs are cascaded, the loading of each register is done sequentially. The first selection of any register loads the most significant HCMP 1855, the second loads the next significant and so on. Registers are also read out sequentially. This is accomplished by internal counters on each HCMP 1855 which are decremented by STB during each register selection. When the counter matches the chip number (CN1, CN0 lines), the device is selected. These counters must be cleared with a clear pulse on pin 2 or with bit 6 in the control word (See Control Register Bit Assignment Table) in order to start each sequence of accesses with the most significant device.

The HCMP 1855 has a built-in clock prescaler which can be selected via bit 7 on the control register. The prescaler may be necessary in cascaded systems operating at high frequencies or in systems where a suitable exact frequency is not available. This need is to provide for propagation delay of the carry output signal. Without the prescaler select, the shift frequency is equal to the clock input frequency. With the prescaler selected, the rate depends on the number of MDUs as defined by bits 4 and 5 of the control word. For one MDU, the clock frequency is divided by two; the two MDUs the clock frequency is divided by four and for three or four MDUs the clock frequency is divided by eight.

OPERATION

A. Initialization and Controls:

The HCMP 1855 must be cleared by a low signal input on pin 2 during power on. This prevents bus contention problems at $Y L$, $Y R$ and $Z \mathrm{~L}$, and $Z R$ terminals. It also resets the sequence counters and shift pulse generator.
Prior to loading any other registers, the control register must be loaded to specify the number of HCMP 1855 being cascaded. Once the number of devices has been specified and sequence counters cleared with a clear pulse or bit 6 of the control word, the X, Y and Z registers can be loaded as defined in the control truth table. Registers can be loaded in any sequence. Successive loads to a given register will always proceed sequentially from the most significant byte to the least significant byte as described previously. Resetting the sequence counters selects the most significant MDU. In a four MDU system, loading all MDUs results in the sequence counter pointing to the first MDU again while in all other configurations it must be reset prior to each series or register reads or writes.
$(\mathrm{X}) \times(\mathrm{Z})+(\mathrm{Y}) \Rightarrow(\mathrm{Y})(\mathrm{Z}) ; \quad(\mathrm{X})$ unchanged
The two numbers to be multiplied are loaded in the X and Z registers. The result will be in the Y and Z register with Y being the more significant half and Z the less significant half. The X register will be unchanged after the operation is completed.

The original contents of Y register are added to the product of X and Z . Bit 3 of the control word will reset register Y to zero if desired.

C. Divide Operation:

$\frac{(Y)(Z)}{(X)} \Rightarrow(Z)=$ quotient, $(Y)=$ remainder; $\overline{\text { C.O.O. }} \overline{\mathrm{O} . \mathrm{F}}$. in status byte.
The divisor is loaded into the X register. The dividend is loaded in the Y and Z registers with the more significant half in the Y register and less significant half in the Z register. The X register will be unaltered by the operation. The quotient will be in the Z register while the remainder will be in the Y register. An overflow will be indicated by the $\overline{\mathrm{C} . O} . / \overline{\mathrm{O} . F}$. of the most significant MDU and can also be determined by reading the status byte.

The overflow indicator will be set at the start of the divide operation if the resultant will exceed the size of the Z register (8 N -bits).

The Z register can be reset using bit 2 of the control word and another divide can be performed in order to further divide the remainder.

Programming Examples:

Connection to an HCMP 1802 Microprocessor in direct I/O mode (N lines connected to R inputs).

APPLICATION

(A) Cascading 3 MDUs in HCMP 1802A system with MDU being accessed as an I/O port.

(B) Interfacing the HCMP 1855 to 8085 microprocessor as an I/O device.

SIGNAL DESCRIPTION

CE — Chip Enable (Input):
A high on this pin enables the HCMP 1855 MDU to respond to the select lines. All cascaded MDUs must be enabled together. CE also controls the three state $\overline{\mathrm{C} . \mathrm{O}} / \overline{\mathrm{O} . F}$. output of the most significant MDU.
$\overline{\text { Clear (Input): }}$
The HCMP 1855 MDU(s) must be cleared upon power on with a low on this pin. The clear signal resets the sequence counters, the shift pulse generator, and bits 0 and 1 of the control register.

CTL-Control (Input):
This is an input pin. All CTL pins must be wired together and to the Y_{L} of the most significant HCMP 1855 MDU and the Z_{R} of the least significant HCMP 1855 MDU. This signal is used to indicate whether the registers are to be operated on or only shifted.
$\overline{\text { C.O. }} / \overline{\text { O.F. }}-\overline{\text { Carry Out }} / \overline{\text { Over Flow }}$ (Output):
The three state HCMP 1855 Carry Out signal is connected to Cl (Carry-In) of the next more significant HCMP 1855 MDU, except on the most significant MDU. On that MDU it is an overflow indicator and is enabled when a chip enable is true. A low on this pin indicates that an overflow has occurred. The overflow signal is latched each time the control register is loaded, but is only meaningful after a divide command.
$Y_{L}, Y_{R}-Y$-Left, Y-Right:
These are three state bi-directional pins for data transfer beteween the Y registers of cascaded HCMP 1855 MDUs. The Y_{R} pin is an output and Y_{L} is an input during a multiply and the reverse is true at all other times. The Y_{L} pin must be connected to the Y_{R} pin of the next more significant MDU. An exception is the Y_{L} pin of the most significant MDU must be connected to the Z_{R} pin of the least significant MDU and the CTL pins of all MDUs. Also the Y_{R} pin of the of the least significant MDU is tied to the Z_{L} pin of the most significant MDU.
Z_{L}, Z_{R} — Z-Left, Z-Right:
These are three state bi-directional pins for data transfers between the Z registers of cascaded MDUs. The Z_{R} pin is an output and Z_{L} is an input during a multiply and the reverse is true at all other times. The Z_{L} pin must be tied to the Y_{R} pin of the next most significant MDU. An exception is the Z_{L} pin of the most significant MDU must be connected to the Y_{R} pin of the least significant MDU. Also, the Z_{R} pin of the least significant MDU is tied to the Y_{L} of the most significant MDU.

$\overline{\text { Shift }}$ - Shift Clock:

This is a three state bi-directional pin. It is an output on the most significant MDU and an input on all other MDUs. It provides the MDU system's timing pulses. All Shift pins must be connected together for cascaded operation. A maximum of the $8 \mathrm{~N}+1$ shifts are required for an operation where N equals the number of MDU devices cascaded.

Clk — Clock (Input):
This pin should be grounded on all but the most significant MDU. There is an optional reduction of clock frequency available on this pin, if so desired, controlled by bit 7 of the control byte.

Stb — Strobe (Input):
When RD/WE, low data, is latched from bus lines on the falling edge of this signal, it may be asynchronous to the clock. Strobe also increments the selected register's sequence counter during reads and writes. TPB would be used in HCMP 1802A systems.

RD/ $\overline{\mathrm{WE}}$ - Read/ Write Enable (Input):
This signal defines whether the selected register is to be read from or written to. In the HCMP 1802A systems use $\overline{M R D}$ if MDUs are addressed as I/O devices; $\overline{\text { MWR }}$ is used if MDUs are addressed as memory devices.

RA ϕ, RA1, RA2 - Register Address (Input):
These input signals define which register is to be read from or written to. It can be seen in the Control Truth Table that RA2 can be used as a chip enable. It is identical to the CE pin, except only CE controls the tristate $\overline{\mathrm{C} .0}$./O.F. on the most significant MDU. In the HCMP 1802A systems use N lines if MDUs are used as I/O devices; use address lines or function of address lines if MDUs are used as memory devices.
V_{SS} - Ground:
Power supply line.
BUSO - BUS7 - Bus Lines:
Three state bidirectional bus for direct interface with HCMP 1802A series and other 8-bit microprocessors.

Z_{R} - Z-Right:

See signal Z_{L}
$Y_{R}-Y$-Right:
See signal Y_{L}
$\overline{\mathrm{Cl}}$-Carry-In (Input):
This is an input for the carry from the next less significant MDU. On the least significant MDU, it must be high (V_{DD}) on all others and connected to the $\overline{\mathrm{CO}}$ pin of the next less significant MDU.

CN $\phi, \mathrm{CN} 1$ - Chip Number (Input):
These two input pins are wired high or low to indicate the MDU position in the cascaded chain. Both are high for the most significant MDU regardless of how many HCMP 1855 MDUs are used. Then CN1 = high and CN0 $=$ low for the next MDU and so forth.

$V_{D D}-V_{+}$:

Power supply line.

HUGHES SOLID STATE PRODUCTS

LUḠEEडAIRCRAFT COMPANY
500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD
 SOLID STATE PRODUCTS

Buffers/Separators

DESCRIPTION

The HCMP 1856 and 1857 are 4-bit bus buffer/separators to allow data to be split from a single bi-directional bus into separate input and output busses. The HCMP 1857 is intended for peripheral or I/O bus control while the HCMP 1856 is intended for memory bus control. The difference between the two devices is in the polarity of the input buffer for the Memory Read ($\overline{\mathrm{MRD}}$) signal. This signal is inverted in the HCMP 1857, and enables the $\overline{\mathrm{MRD}}$ signal to set the input mode in the HCMP 1856 or to set the output mode in the HCMP 1857. When MRD $=$ VDD the output mode is set in the HCMP 1856 and the input mode is set in the HCMP 1857.

The HCMP 1856 and 1857 operate with a single voltage supply of $4-10.5$ volts while the HCMP 1856C and 1857C operate with a voltage range of 4-6.5 volts. The HCMP 1856 and 1857 are available in 16 lead dual-in-line ceramic (D suffix) or plastic (P-suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Compatible with 1802A Microprocessor
- Provides easy connection of Memory or I/O Devices to 1802A Microprocessor Bus
- Provides Non-inverted Bi-directional Buffered Data Transfer
- Chip Select for Simple System Expansion
- Low Quiescent and Operating Power

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

MAXIMUM RATINGS, Absolute-Maximum Values
Storage-Temperature Range ($\mathrm{T}_{\text {stg }}$)
DC Supply-Voltage Range (V_{DD})
(All voltage values referenced to V_{SS} terminal)
Operating-Temperature Range (T_{A})
Ceramic Package. -55 to $+125^{\circ} \mathrm{C}$
Plastic Package -40 to $+85^{\circ} \mathrm{C}$

HCMP 1856/1857 -0.5 to +11 V
HCMP 1856C/1857C $\ldots \ldots-0.5$ to +7 V

OPERATING CONDITIONS at $\mathrm{T}_{\mathbf{A}}=$ Full Package Temperature Range
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS	LIMITS				UNITS
	$V_{D D}$ (V)	HCMP 1856 HCMP 1857		HCMP 1856C HCMP 1857C		
		Min.	Max.	Min.	Max.	
Supply Voltage Range	-	4	10.5	4	6.5	V
Recommended Input Voltage Range	-	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	V_{DD}	V

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathbf{A}}=-40$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	TEST CONDITIONS			LIMITS						UNITS
	v_{0} (V)	$V_{\text {IN }}$ (V)	$V_{\text {DD }}$ (V)	HCMP 1856 HCMP 1857			HCMP 1856C HCMP 1857C			
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Static Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified										
Quiescent Device Current, IL	-	-	5	-	1	10	-	5	50	$\mu \mathrm{A}$
	-	-	10	-	10	100	-	-	-	
Output Low Drive (Sink) Current, ${ }^{1} \mathrm{OL}$	0.4	0,5	5	1.6	3.2	-	1.6	3.2	-	mA
	0.5	0,10	10	2.6	5.2	-	-	-	-	
Output High Drive (Source) Current ${ }^{\prime} \mathrm{OH}$	4.6	0,5	5	-1.15	-2.3	-	-1.15	-2.3	-	mA
	9.5	0,10	10	-2.6	-5.2	-	-	-	-	
Output Voltage Low Level $\mathrm{V}_{\mathrm{OL}}{ }^{1}$	-	0.5	5	-	0	0.1	-	0	0.1	V
	-	0,10	10	-	0	0.1	-	-	-	
Output Voltage High Level, V_{OH}	-	0,5	5	4.95	5	-	4.95	5	-	
	-	0,10	10	9.95	10	-	-	-	-	
Input Low Voltage$V_{I L}$	0.5,4.5	-	5	-	-	1.5	-	-	1.5	V
	0.5, 9.5	-	10	-	-	3	-	-	-	
Input High Voltage $\mathrm{V}_{\text {IH }}$	0.5, 9.5	-	5	3.5	-	-	3.5	-	-	
	0.5, 9.5	-	10	7	-	-	-	-	-	
Input Leakage Current, IN	Any Input	0,5	5	-	-	± 1	-	-	± 1	$\mu \mathrm{A}$
		0,10	10	-	-	± 1	-	-	-	
Operating Current IDD1 ${ }^{2}$	0,5	0,5	5	-	50	100	-	50	100	$\mu \mathrm{A}$
	0,10	0,10	10	-	150	300	-	-	-	
Input Capacitance, $\mathrm{C}_{\text {IN }}$	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance, $\mathrm{C}_{\text {OUT }}$	-	-	-	-	10	15	-	10	15	pF

Dynamic Electrical Characteristics at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0 n s} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \mathrm{V}_{\mathrm{DD}} \pm 5 \%, \mathrm{~V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}$

Propogation Delay Time: $\overline{M R D}$ or $C S$ to DO, ${ }^{t} E D$	-	-	5	-	150	225	-	150	225	ns
	-	-	10	-	75	125	-	-	-	
$\overline{M R D}$ or CS to DB, ${ }^{\text {E }}$ EB	-	-	5	-	150	225	-	150	225	ns
	-	-	10	-	75	125	-	-	-	
DI to DB,	-	-	5	-	100	150	-	100	150	ns
	-	-	10	-	50	75	-	-	-	
DB to DO, ${ }^{\text {t }}$ BD	-	-	5	-	100	150	-	100	150	ns
	-	-	10	-	50	75	-	-	-	

Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltage.
NOTE 1: $\mathrm{I}_{\mathrm{OL}}=\mathrm{I}_{\mathrm{OH}}=1 \mu \mathrm{~A}$.
NOTE 2: Operating current measured in a HCMP 1802A at 2 MHz with outputs floating.

NOTE: ALL TIMES MEASURED FROM 50\% POINT TO 50\% POINT OF SIGNAL *POLARITIES ARE REVERSED FOR HCMP 1857 P/A invalid or don't care condition

APPLICATION

The Figure shows how two HCMP 1856 or two HCMP 1857 can be used as bus buffers or separators between an 8 Bit Bi-directional Data bus and memories or between an 8 Bit Bi-directional Data bus and I/O devices. The chip select input signal enables the bus sepatator three-state output drivers. The direction of data flow, when enabled, is controlled by the state of the $\overline{\mathrm{MRD}}$ input signal.

SYSTEM INTERCONNECT

SIGNAL DESCRIPTIONS

DB0-DB3 - These four bi-directional signals can be used as data outputs or receiver inputs depending on the logic polarity of the $\overline{M R D}$ input signal. Data is non-inverted.
DIO-DI3 - The four data inputs. They are enabled onto the corresponding DB lines when Chip Select (CS) and the Memory Read ($\overline{\mathrm{MRD}}$) signals are activated.
DOO-DO3 - The four receiver outputs reflect the data on the DB lines when the Chip Select and Memory Read signals are activated.
CS - The Chip Select signal along with $\overline{\text { MRD }}$ controls the activation of the HCMP 1856 and 1857 as indicated in the table below. CS is active when it is a logic high (VDD).
$\overline{\text { MRD - The Memory Read signal controls the direction of data flow when Chip Select is ena- }}$ bled. In the HCMP 1856, when MRD $=0$, it enables the three state bus drivers (DB0-DB3), and outputs data from the driver inputs (DIO-DI3) to the data bus. When $\overline{M R D}=1$, it disables the three-state bus drivers and enables the three-state data output drivers (DO0-DO3), transferring data from the data bus to the data outputs.
In the HCMP 1857, when $\overline{\text { MRD }}=1$ it enables the three-state bus drivers (DB0-DB3) and transfers data from the driver inputs ($\mathrm{D} 10-\mathrm{DI} 3$) onto the data bus. When $\overline{\mathrm{MRD}}=0$, it disables the three-state bus drivers (DB0-DB3) and enables the three-state data output drivers (DO0-DB3), transferring data bus to the data outputs.

HCMP 1856 FUNCTION TABLE
For Memory Data Bus Separator Operation

CS	$\overline{\text { MRD }}$	DATA BUS OUT DB0 - DB3	DATA OUT DO0 - DO3
0	X	HIGH IMPEDANCE	HIGH IMPEDANCE
1	0	DATA IN	HIGH IMPEDANCE
1	1	HIGH IMPEDANCE	DATA BUS

HCMP 1857 FUNCTION TABLE
For I/O Bus Separator Operation

CS	$\overline{\text { MRD }}$	DATA BUS OUT DBO - DB3	DATA OUT DOO - DO3
0	\times	HIGH IMPEDANCE	HIGH IMPEDANCE
1	0	HIGH IMPEDANCE	DATA BUS
1	1	DATA IN	HIGH IMPEDANCE

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

HUGHES

 SOLID STATE PRODUCTS

IETRLMF5 MICROPROCESSOR PRODUCTS 4-Bit Memory Latch/Decoder

HCMP 1858/1859
HCMP 1858C/1859C

DESCRIPTION

The HCMP 1858 and 1859 are 4 bit memory address latch/decoders which control 4 K bytes of memory. The HCMP 1858 provides chip select outputs to control up to 32 HCMP 1822 (256×4 organized) RAMs. The HCMP 1859 provides chip select outputs to control 1024×1 organized RAMs. The Enable input allows expansion of memory systems beyond 4 K bytes of memory. The chip select outputs are a function of the memory address bits connected to the MAO-MA3 lines.
The HCMP 1858/1859 operate with a single voltage supply of $4-10.5$ volts while the 1858C/1859C operate with a voltage range of $4-6.5$ volts. The HCMP 1858/1859 are available in 16 lead dual in line ceramic (D suffix) or plastic (P suffix) packages. Unpackaged dice (H suffix) are available upon request.

FEATURES

- Static Silicon Gate CMOS Circuitry
- Interfaces Directly with 1802

Microprocessor

- Chip Enable Pin allows easy expansion above 4K Bytes of Memory
- Low Quiescent and Operating Power

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

- Allows direct control of 4 K bytes of memory
- HCMP 1858 is designed for 256×4 Memory Configuration
- HCMP 1859 is designed for 1024×1 Memory Configuration

HCMP 1859

CLOCK		1	16		VD
MAO	-	2	15		EN
MA1		3	14		MA
$\overline{\mathrm{AB}}$	-	4	13		MA
A8	L	5	12		CEO
$\overline{\mathrm{A} 9}$		6	11		CE1
A9		7	10		CE2
VSS		8	9		CE3

HCMP 1859

Storage-Temperature Range ($\mathrm{T}_{\text {stg }}$) \qquad -65 to $+150^{\circ} \mathrm{C}$

Operating-Temperature Range (T_{A})
Ceramic Package
-55 to $+125^{\circ} \mathrm{C}$
Plastic Package
-40 to $+85^{\circ} \mathrm{C}$

DC Supply-Voltage Range (VDD)
(All voltage values referenced to V_{SS} terminal)
HCMP 1858/1859
-0.5 to +13 V
HCMP 1858C/1859C
-0.5 to +7 V

OPERATING CONDITIONS at $\mathbf{T}_{\mathbf{A}}=$ Full Package Temperature Range
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC	CONDITIONS			LIMITS						UNITS
	v_{0}(V)	$\begin{aligned} & V_{\text {IN }} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { VDD } \\ & \text { (V) } \end{aligned}$	HCMP 1858 HCMP 1859			HCMP 1858C HCMP 1859C			
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Supply-Voltage Range	-	-	-	4	-	10.5	4	-	6.5	V
Recommended Input Voltage Range	-	-	-	$\mathrm{v}_{\text {SS }}$	-	V_{DD}	V_{SS}	-	V_{DD}	v
Minimum Clock Pulse Width, $\mathrm{t}^{\text {W }}$	-	-	5	-	50	75	-	50	75	ns
	-	-	10	-	25	40	-	-	-	
Minimum Data Setup Time, tDS^{1}	-	-	5	-	25	40	-	25	40	ns
	-	-	10	-	10	25	-	-	-	
Minimum Data Hold Time, $\mathrm{T}_{\text {DH }}{ }^{1}$	-	-	5	-	0	25	-	0	25	ns
	-	-	10	-	0	10	-	-	-	
Static Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified										
Quiescent Device Current, IL	-	0,5	5	-	0.1	10	-	5	50	$\mu \mathrm{A}$
	-	0,10	10	-	1	100	-	-	-	
Output Low Drive (Sink) Current, IOL	0.4	0, 5	5	1.6	3.2	-	1.6	3.2	-	mA
	0.5	0,10	10	2.6	5.2	-	-	-	-	
Output High Drive (Source) Current, IOH	4.6	0,5	5	-1.15	-2.3	-	-1.15	-2.3	-	mA
	9.5	0,10	10	-2.6	-5.2	-	-	-	-	
Output Voltage Low Level, $\mathrm{V}_{\mathrm{OL}}{ }^{2}$	-	0,5	5	-	0	0.1	-	0	0.1	v
	-	0,10	10	-	0	0.1	-	-	-	
Output Voltage High-Level $\mathrm{VOH}^{\text {OH}}$	-	0,5	5	4.9	5	-	4.9	5	-	
	-	0,10	10	9.9	10	-	-	-	-	
Input Low Voltage, VIL	0.5,4.5	-	5	-	-	1.5	-	-	1.5	v
	0.5, 9.5	-	10	-	-	3	-	-	-	
Input High Voltage, $\mathrm{V}_{1 \mathrm{H}}$	0.5,9.5	-	5	3.5	-	-	3.5	-	-	
	0.5,9.5	-	10	7	-	-	-	-	-	
Input Leakage Current, IIN	Any Input	0,5	5	-	10^{-4}	± 1	-	10^{-4}	± 1	$\mu \mathrm{A}$
		0,10	10	-	10^{-4}	± 2	-	-	-	
Operating Current, IDD ${ }^{3}$	-	0,5	5	-	50	100	-	50	100	$\mu \mathrm{A}$
	-	0,10	10	-	150	300	-	-	-	
Input Capacitance, $\mathrm{C}_{\text {IN }}$	-	-	-	-	5	7.5	-	5	7.5	pF
Output Capacitance, COUT	-	-	-	-	10	15	-	-	-	-
Dynamic Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \mathrm{V}_{\mathrm{DD}} \pm \mathbf{5 \%}, \mathrm{V}_{\mathbf{I H}}=0.7 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\text {DD }}$										
Propogation Delay Times: Clock (Low-to-High) to Any Output, t CO	$\overline{\text { Enable }}=0$		5	-	150	225	-	150	225	ns
			10	-	75	125	-	-	-	
Enable to Any Output, tEO	Clock $=1$		5	-	125	200	-	125	200	ns
			10	-	85		-	-	-	
Memory Address to All Outputs, t_{10}	$\begin{aligned} & \hline \text { Clock }=1 \\ & \hline \text { Enable }=0 \end{aligned}$		5	-	150	225	-	150	225	ns
			10	-	75	125	-	-	-	
Propogation Delay Times: Clock (Low-to-high) to $\mathrm{A} 8, \mathrm{~A} 9, \overline{\mathrm{~A} 8}$, or $\overline{\mathrm{A} 9}, \mathrm{t}_{\mathrm{CO}}$			5	-	125	200	-	125	200	ns
			10	-	65	100	-	-	-	
Clock (Low-to-High) to $\overline{\mathrm{CEO}}, \overline{\mathrm{CE}} 1, \overline{\mathrm{CE} 2}$, or $\overline{\mathrm{CE} 3}, \mathrm{t} \mathrm{CO}$	$\overline{\text { Enable }}=0$		$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	-	$\begin{array}{r} 175 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & \hline 275 \\ & 140 \\ & \hline \end{aligned}$	-	175	275	ns
Enable to CEO, CE1, CE2, or CE3, tEO			5	-	125	200	-	125	200	ns
			10	-	65	100	-	-	-	
MAO, MA1 to A8, A9, $\overline{\mathrm{AB}}$, or $\overline{A 9}, \mathrm{t}_{10}$			5	-	100	150	-	100	150	ns
			10	-	75		-	-	-	
MA2, MA3 to $\overline{\mathrm{CEO}}, \overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$, or $\overline{\mathrm{CE}} 3, \mathrm{t}_{10}$	$\begin{aligned} & \text { Clock }=1 \\ & \text { Enable }=0 \end{aligned}$		5	-	150	225	-	150	225	ns
			10	-	75	125	-	-	-	

Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltage
NOTE 1: Maximum limits of minimum characteristics are the values above which all devices function.
$\mathrm{I}_{\mathrm{OL}}=\mathrm{I}_{\mathrm{OH}}=1 \mu \mathrm{~A}$.
Measured in a HCMP 1802 system at 2 MHz with open outputs.

INVALID OR DON'T CARE
CONDITION

APPLICATIONS

4K x 8 memory system using HCMP 1858 and HCMP 1822|s

$4 \mathrm{~K} \times 8$ memory system design using HCMP 1859 and $1 \mathrm{~K} \times 1$ RAMs

SIGNAL DESCRIPTION

MA0-MA3 - 4 Bit Address inputs. MA0 is the least significant input address bit and MA3 is the most significant input address bit.

CLOCK - The MAO-MA3 address bits are latched at the high to low transition of Clock input (TPA) in the HCMP 1858 and the HCMP 1859.

The HCMP 1858 and the HCMP 1859 can also be used in general purpose memory system application with a non-multiplexed address bus by connecting the Clock input to VDD.
$\overline{\text { ENABLE }}$ - In the HCMP 1858, when $\overline{\text { Enable }}=$ VDD, the CS outputs $=$ VSS and the $\overline{\mathrm{CE}}$ outputs $=$ VDD. When $\overline{\text { Enable }}=$ VSS, the outputs are enabled and correspond to the binary decode of the inputs. The Enable input can be used for memory system expansion.

In the HCMP 1859, when $\overline{\text { Enable }}=$ VDD, the $\overline{C E}$ outputs $=V_{D D}$; when $\overline{\text { Enable }}=$ VSS, $\overline{C E}$ outputs are enabled and correspond to the binary decode of the MA3 and MA2 inputs. Enable does not affect the latching or state of outputs A8, $\overline{\mathrm{A} 8, ~ A 9, ~ o r ~} \overline{\mathrm{~A} 9}$.
$\mathbf{A 8}, \overline{\mathbf{A 8}}, \mathbf{A 9}, \overline{\mathbf{A 9}}$ - These outputs represent the non-inverted and inverted state of the latched address inputs, MA0 and MA1, in the HCMP 1859.
$\overline{\mathbf{C E O}}-\overline{\mathrm{CE} 3}, \mathbf{C S O} \mathbf{- C S 3}$ - Decoded outputs. The decoding is shown in the truth tables shown below.

TRUTH TABLES

HCMP 1858 DECODE TRUTH TABLE

ENABLE	DATA INPUTS		CSO	CS1	CS2	CS3	CEO	$\overline{\text { CE1 }}$	$\overline{\text { CE2 }}$	$\overline{\mathrm{CE} 3}$			
	MA1	MAO											
0	0	0	1	0	0	0	NOT AFFECTED BY MA1, MAO						
0	0	1	0	1	0	0							
0	1	0	0	0	1	0							
0	1	1	0	0	0	1							
	MA3	MA2											
0	0	0	NOT AFFECTED BY MA3, MA2				0	1	1	1			
0	0	1					1	0	1	1			
0	1	0					1	1	0	1			
0	1	1					1	1	1	0			
1	\times	X	0	0	0	0	1	1	1	1			

$X=$ MAO, MA1, MA2, MA3 DON'T CARE

HCMP 1859 DECODE TRUTH TABLE

ENABLE	DATA INPUTS		A8	A9	$\overline{\text { A8 }}$	$\overline{\text { A9 }}$	$\overline{\text { CEO }}$	$\overline{\mathrm{CE}}$	$\overline{C E 2}$	$\overline{\text { CE3 }}$			
	MA1	MAO											
0	0	0	0	0	1	1	NOT AFFECTED BY MA1, MAO						
0	0	1	0	1	1	0							
0	1	0	1	0	0	1							
0	1	1	1	1	0	0							
	MA3	MA2											
0	0	0	NOT AFFECTED BY MA3, MA 2				0	1	1	1			
0	0	1					1	0	1	1			
0	1	0					1	1	0	1			
0	1	1					1	1	1	0			
1	\times	\times	$\begin{aligned} & \text { NOT AFFECTED BY } \\ & \hline \text { ENABLE } \end{aligned}$				1	1	1	1			

$X=$ MAO, MA1, MA2, MA3 DON'T CARE

Information furnished by Hughes is believed to be accurate and reliable. However, no responsibility is assumed by Hughes for its use; nor for any infringements or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Hughes.

HUGHES : SOLID STATE PRODUCTS

LUḠĒड्ड AIRCRAFT COMPANY
500 Superior Avenue, Newport Beach, CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22. 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

SPECIAL PURPOSE PRODUCTS.

Datasheets are available from Hughes Representatives or Hughes Solid State Products.

HCTR 0107P	Counter/Latch/Decoder/Driver
HCTR 0200P	Decade Counter/Latch/Decoder/Driver
HCTR 0320AP	Frequency Synthesizer
HCTR 4010P	4 Decade Up/Down Counter
HCTR 6010	4 $1 ⁄ 2$ Decade Counter
HDGP 1000	General Purpose PMOS Fet
HDIG 1030	Insulated Gate PMOS Fet
HLSS 0533Y	Single Chip, Heart Rate Monitor

VIII MANUFACTURING FLOWS

HUGHES STANDARD COMMERCIAL PRODUCT FLOW
PRODUCTION
Q.A. MONITOR
Q.A. GATE

PRODUCTIONQ.A. MONITOR
Q.A. GATE

EEPROMs

LCD DRIVERs

1800 MICROPROCESSOR FAMILY

PACKAGE

D = Ceramic DIP
H = Dice
L = Leadless Chip Carrier
P = Plastic DIP
$Y=$ Cerdip

DEVICE FAMILY

HNVM = Hughes Nonvolatile Memories
HLCD = Hughes Liquid Crystal Display Drivers
HCMP = Hughes Commercial Microprocessor Products
HMMP = Hughes Military Microcomputer Products

HUGHES U.S. AND CANADIAN SALES REPRESENTATIVES

Representatives

1. R. H. STURDY COMPANY

167 Worcester Street
P.O. Box 328

Wellesley Hills, MA 02181
Tel: 617/235-2330
R. H. STURDY COMPANY

8 Birchwood Road Windham, NH 03087
Tel: 603/893-9506
2. TRI-TECH ELECTRONICS, INC.
P.O. Box C

6836 East Genesee
Fayetteville, NY 13066
Tel: 315/446-2881

TRI-TECH ELECTRONICS, INC. 590 Perinton Hills Off. Park
Fairport, NY 14450
Tel: 716/223-5720
TRI-TECH ELECTRONICS, INC. 3215 East Main Street Endwell, NY 13760
Tel: 607/754-1094
TRI-TECH ELECTRONICS, INC.
19 Fowler Avenue
Poughkeepsie, NY 12603
Tel: 914/473-3880
3. ROBERT DIAMOND, INC.

210-30 23rd Avenue
Bayside, NY 11360
Tel: 212/423-7330

4. B.G.R. ASSOCIATES

3001 Greentree Executive Campus Marlton, NJ 08053
Tel: 609/428-2440

5. ARBOTEK

3600 St. John's Lane Ellicott City, MD 21043
Tel: 301/461-1323
6. L. \& D., INC.
P.O. Box 8925

100 Dresser Court
Raleigh, NC 27609
Tel: 919/876-5301
L. \& D., INC.

3820 Merton Drive Raleigh, NC 27609
Tel: 919/787-6097
L. \& D., INC.

4350 Georgetown Square, Ste. 707
Atlanta, GA 30338
Tel: 404/455-3483
L. \& D., INC.

555 Sparkman Drive, Ste. 820 F
Huntsville, AI 35803
Tel: 205/837-1469
7. DELMAC SALES

520 Virginia Drive Orlando, FL 32803
Tel: 305/898-4688

DELMAC SALES

7338 N.W. 75th Street Tamarac, FL 33319
Tel: 305/726-1330

DELMAC SALES
1415 Duncan Ave. So. Clearwater, FL 33516 Tel: 813/447-5192
8. LUEBBE SALES

2649 Erie Avenue
Cincinnati, OH 45208
Tel: 513/871-4211

LUEBBE SALES
21330 Center Ridge Road
Cleveland, OH 44116
Tel: 216/333-0425

LUEBBE SALES

3832 Kettering Boulevard
Dayton, OH 45439
Tel: 513/294-0426
LUEBBE SALES
6500 Busch Boulevard, Ste. 210
Columbus, OH 43229
Tel: 614/431-0474

LUEBBE SALES

19500 Middlebelt Road, Ste. 260W
Livonia, MI 48153
Tel: 313-477-3131

LUEBBE SALES

2987 Babcock Boulevard
Pittsburgh, PA 15237
Tel: 412/931-0414

9. J \& W SALES

7202 North Shadeland Avenue Indianapolis, IN 46250
Tel: 317/842-3740
10. CARLSON ELECTRONIC SALES CO.

600 East Higgins Road
Elk Grove Village, IL 60007
Tel: 312/956-8240

CARLSON ELECTRONIC SALES CO.
204 Collins Road, N.E.
Cedar Rapids, IA 52402
Tel: 319/377-6341

CARLSON ELECTRONIC SALES CO.
10701 West North Avenue
Milwaukee, WI 53226
Tel: 414/476-2790
11. BILL DEMING \& ASSOCIATES, INC.

8053 Bloomington Freeway
Minneapolis, MN 55420
Tel: 612/888-5000
12. TECHNICAL SALES ASSOCIATES
P.O. Box 14842

9290 Bond, Ste. 114
Shawnee Mission, KS 66215
Tel: 913/888-3330

TECHNICAL SALES ASSOCIATES
P.O. Box 10907

119 Church Street, Ste. 223
St. Louis, MO 63135
Tel: 314/725-5361
13. SUNDANCE SALES

1701 North Greenville Richardson, TX 78071
Tel: 214/699-0451
SUNDANCE SALES
10116 Woodland Village Drive
Austin, TX 78750
Tel: 512/250-0320

SUNDANCE SALES
620 F.M. 1092, Ste. 206
Stafford, TX 77477
Tel: 713/499-9671
14. COMPASS MARKETING \& SALES

6516 N. Seventh Street, Ste. 3
Phoenix, AZ 85014
Tel: 602/266-5400

COMPASS MARKETING \& SALES
2632 Pennsylvania N.E., Ste. B
Albuquerque, NM 87110
Tel: 505/292-7377
16. N. R. SCHULTZ CO.

13095 S.W. Henry
Beaverton, OR 97005
Tel: 503/643-1644
N. R. SCHULTZ CO.

300 120th Avenue N.E.
Bldg. 4, Ste. 210
Bellevue, WA 98005
Tel: 206/454-0300
N. R. SCHULTZ CO.

1074B North Cole Road
Boise, ID 83704
Tel: 208/377-8686
17. I^{2} INC.

3350 Scott Blvd.
Santa Clara, CA 95051
Tel: 408/988-3400
18. SELECT ELECTRONICS
P.O. Box 9

14871 Barnwall
La Mirada, CA 90367
Tel: 714/739-8891
19. MESA ENGINEERING

7525 Convoy Court
San Diego, CA 92111
Tel: 714/278-8021
20. VITEL ELECTRONICS

3300 Cote Vertu, Ste. 203
St. Laurent, Quebec H4R 287
Tel: 514/331-7393

VITEL ELECTRONICS
5945 Airport Road, Ste. 180 Mississauga, Ontario L4V 1R9 Tel: 416/676-9720

VITEL ELECTRONICS
1050 Baxter Road
Baxter Centre
Ottawa, Ontario K2C 3P1
Tel: 613/836-1776
VITEL ELECTRONICS
141 April Road (IOCO)
Port Moody, B.C. V3H 3M4
Tel: 604/524-6677

UNITED STATES

MILGRAY

17 Dunwoody Park, Suite 102
Atlanta, GA 30338
Tel: 800/241-5523

MILGRAY

6155 Rockside Road
Cleveland, OH 44131
Tel: 216/447-1520

MILGRAY

378 Boston Post Road
Orange, CT 06477
Tel: 203/795-0711

MILGRAY

3002 Greentree Executive Campus
Marlton, NJ 08053
Tel: 800/257-7111

MILGRAY

1850 Lee Road, Suite 104
Winter Park, FL 32789
Tel: 305/647-5747

MILGRAY

191 Hanse Avenue
Freeport, NY 11520
Tel: 212/738-3100
TWX: 510-225-3673

MILGRAY

6901 West 63rd Street
Overland Park, KS 66202
Tel: 913/236-8800

MILGRAY

79 Terrace Hall Avenue
Burlington, MA 01803
Tel: 617/272-6800

CANADA

FUTURE ELECTRONICS

237 Hymus Blvd.
Pointe-Claire
Quebec H9R 5C7
Tel: 514/694-7710
TWX: 610-421-3251

FUTURE ELECTRONICS

Baxter Centre
1050 Baxter Road
Ottawa, Ontario K2C 3P2
Tel: 613/820-8313
TWX: 610-563-1697

MILGRAY

11820 Parklawn Drive
Rockville, MD 20852
Tel: 800/638-6656
ALLIANCE ELECTRONICS, INC. 11030 Cochiti S.E. Albuquerque, NM 87123
Tel: 505/292-3360
TWX: 910-989-1151
R.V. WEATHERFORD

4658 Sunbelt Drive
Dallas, TX 75248
Tel: 214/931-7333
TWX: 910-860-5544
R.V. WEATHERFORD

8515 East Orchard Rd.
Englewood, CO 80111
Tel: 303/770-9762
TWX: 910-935-0151
R.V. WEATHERFORD

1310 Kifer Road
Sunnyvale, CA 94086
Tel: 408/738-8694
TWX: 910-339-9512
R.V. WEATHERFORD

1550 Babbitt Ave.
Anaheim, CA 92805
Tel: 714/634-9600
TWX: 910-593-1334
R.V. WEATHERFORD

3500 West T.C. Jester BI.
Houston, TX 77018
Tel: 713/688-7406
TWX: 910-881-6222
R.V. WEATHERFORD

3355 West Earil Drive
Phoenix, AZ 85017
Tel: 602/272-7144
TWX: 910-951-0636
R.V. WEATHERFORD

18 East Ortega Street
Santa Barbara, CA 93101
Tel: 805/965-8551
TWX: 910-334-4835
R.V. WEATHERFORD

1095 East Third St.
Pomona, CA 91766
Tel: 714/623-1261
213/966-8461
TWX: 910-581-3811
R.V. WEATHERFORD

4861 Fredericksburg Rd.
San Antonio, TX 78229
Tel: 512/340-3764
R.V. WEATHERFORD

541 Industry Drive
Seattle, WA 98188
Tel: 206/575-1340
TWX: 910-444-2270
R.V. WEATHERFORD

6921 San Fernando Road
Glendale, CA 91201
Tel: 213/849-3451
TWX: 910-498-2223
R.V. WEATHERFORD

7665 Formula Place
San Diego, CA 92121
Tel: 714/695-1700
TWX: 910-335-1570

FUTURE ELECTRONICS
4800 Dufferin Street
Downsview, Ontario M3H 5S8
Tel: 416/663-5563
TWX: 610-491-1470

SUMMIT DISTRIBUTORS
916 Main Street
Buffalo, NY 14202
Tel: 716/887-2800
TWX: 710-522-1692

ZEUS COMPONENTS

100 Midland Avenue
Port Chester, NY 10573
Tel: 914/937-7400
TWX: 710-567-1248

ZEUS COMPONENTS
25 Adams Street
Burlington, MA 01803
Tel: 617/273-0705
TWX: 710-332-0716

ZEUS COMPONENTS
1400 Goldmark, Ste. 250
Dallas, TX 75240
Tel: 214/783-7010
TWX: 910-867-9422

ZEUS COMPONENTS
2350 Scott Blvd. Bldg. 64
Santa Clara, CA 95051
Tel: 408/727-0714
TWX: 910-338-2121
ZEUS COMPONENTS
1130 Hawk Circle
Anaheim, CA 92807
Tel: 213/924-0454
714/632-6880
TWX: 910-591-1696

FUTURE ELECTRONICS 3070 Kingsway Vancouver, B.C. V5R 5J7
Tel: 604/438-5545
TWX: 610-922-1668

EUROPE

AUSTRIA

BURISCH GES. m.b.H. \& CO. KG
A-1210 Wien, Scheydgasse 31, Austria
Telephone: (0 22 2) 3876 38-0
Telex: 0113310 Buris A

BELGIUM

AURIEMA S.A./N.V.
Rue Brogniez Straat 172A
1070 Brussels, Belgium
Telephone: (02) 5236295
Telex: 21646

DENMARK

MICRONOR APS
Herninguej 98
DK 8600 Denmark, Silkeborg
Telephone: 068-16522
TWX: 63245 Micnor

ENGLAND

PELCO ELECTRONICS
Regency Square House
26/27 Regency Square
Brighton, Sussex BN1 2FH
England
Telephone: (0273) 722155
Telex: 877893 Pelco E

FRANCE

DATA DIS
10-12 Rue Emile Landrin 92100 Boulogne, France Telephone: (1) 6056000 TWX: 201905

INTERNATIONAL SEMICONDUCTOR CORPORATION (ISC)
27, Rue Yves Kermen 92100 Boulogne, France
Telephone: (1) 6085275
TWX: 250030 ISCFRA F

GERMANY

ASTRONIC GMBH
Winzererstr 47d 8000 M̈unchen 40
Germany
Telephone: 089/309031
Telex: 5216187 Astrd

MICROSCAN COMPANY
31 Ueberseering
P.O. Box 601705

D-2000 Hamburg 60
Germany
Telephone: 40/6 305067
Telex: 2-13 288 Scand

ISRAEL
RN ELECTRONICS
15 Kineret Street
Bnei Brak, Israel
Telephone: (3) 707129
TWX: 342107 RNIS IL

ITALY

CEFRA S.R.L.
Via G. Pascoli 60
20133 Milano, Italy
Telephone: (02) 235264
TWX: 314543 CEFRA I
NETHERLANDS
KONING EN HARTMAN
ELEKTROTECHNIEK B.V.
30 Koperwerf
NL - $2544 \mathrm{En} \bullet$ the Hague
Netherlands
Telephone: (070) 210101
TWX: 31528 KOHA

NORWAY

HENACO A/S
Trondheims Veien 436
Ammerud
OS109 Norway
Telephone: 472162110
Telex: 16716 Henac N

SPAIN

COMELTA
Emilio Munoz 41
ESCI, Nave 2
Madrid-17, Spain
Telephone: 754-4530
TWX: 42007 Ceta E

SWEDEN

ALLHABO ELEKTRONIK
Alströmergatan 20, Box 49044
S-100 28 Stockholm
Sweden
Telephone: 08-224600
Telex: 19015 Allhabo S

SWITZERLAND
ABELEC AG
Landstrasse 78
8116 Wuerenlos, Switzerland
Telephone: (01) 7300453
TWX: 59834 ORBT CH

ASIA

HONG KONG
TEKTRON ELECTRONICS LTD.
1702 Bank Center
636 Nathan Road
Kowloon, Hong Kong
Telephone: 3-856199
Telex: 38513 Tekhl

INDIA

KRYONIX
Kowdiar, Trivandrum-695003
South India
Telephone: 63805
Telex: 8 84-307 Krx In

JAPAN

NIHON TEKSEL CO., LTD.
Kyoshin Bldg. 13-14
Sakuragaoka-Machi
Shibuya-Ku Tokyo 150
Japan
Telephone: (03)461-5121
Telex: J23723 Teksel

TAIWAN

MULTITECH INTERNATIONAL
977 Min Shen E. Road
Taipei, 105 Taiwan R.O.C.
Telephone: (02) 769-1225
Telex: 23756 Multiic/19162 Multiic

AUSTRALIA

COMPUTER COMPONENTS
70A Rawson Street
Epping NSW 2121
Australia
Telephone: 61 (02) 8683614
TWX: AA71207 Compco

HUGHES SOLID STATE PRODUCTS

500 Superior Avenue, Newport Beach, CA 92663
Telephone. (714) 759-2942 TWX 910-596-1374
In Europe: Hughes Solid State Products
Hughes Aircraft International Service Co.
Schmaedel Str. 22, 8000 Munich, West Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

500 Superior Avenue. Newport Beach. CA 92663
Telephone: (714) 759-2942 TWX 910-596-1374
In Europe: Hughes - Solid State Products
Schmaedel Str. 22, 8000 Munich, Germany
Telephone: 49-89-834.7088 Telex: 5213856 HSPD

[^0]: Note 1 - Select $=$ GND for $3004-2$, V $_{\text {DD }}$ for 3004-1.

[^1]: Note $1-$ Select $=$ GND for $3704-2, V_{D D}$ for 3704-1.

[^2]: 2 - Recommended mode for $V_{D D}$ transitions to and from $V_{P P}$

[^3]: * Shown for reference only. VDD can be held at VPP to perform erase followed by full EEPROM programming

[^4]: *2700 series requires uv-erasure

[^5]: NOTE 1 - Oscillator high if driven

[^6]: Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$

[^7]: * polarity depends on mode

[^8]: * THE HOLDING REGISTER IS LOADED ON THE TRAILING EDGE OF THRL
 ** THE TRANSMITTER SHIFT REGISTER, IF EMPTY, IS LOADED ON THE FIRST HIGH-TO-LOW TRANSITION OF THE CLOCK WHICH OCCURS AT LEAST $1 / 2$ CLOCK PERIOD +t THC AFTER THE TRAILING EDGE OF THRL, AND TRANSMISSION OF A START BIT OCCURS $1 / 2$ CLOCK PERIOD $+\mathrm{t}_{\mathrm{CD}}$ LATER

[^9]: NOTES: ${ }^{1}$ Maximum limits of minimum characteristics are the values above which all devices function
 ${ }^{2}$ Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltages.
 ${ }^{3}$ Clock frequency and pulse width are given for systems using the internal clock option of the HCMP 1855. Clock frequency
 equals shift frequency for systems not using the internal clock option.

