PowerpPl

Preliminary, IBM Internal Use Only

100 MHz PPC 603e Multi-Chip
Module User’s Manual

Release 0.1

This document provides a detailed technical
description of the PPC 603e MCM. It is in-
tended as a first source of information for
both hardware and software designers.
Where appropriate, other documents are
referenced.

Document Number:
G5220297-00
February, 1997

o

..lli

*—o
-0
-0

i

he !

mt

e
>m

II III

b
“a

I\

.
Q
=

Preliminary PowerP

O International Business Machines Corporation, 1997. Printed in the United States of America 1997. All
Rights reserved.

Note to US Government Users—Documentation related to restricted rights—Use, duplication, or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM Microelectronics, PowerPC, PowerPC 601, PowerPC 603, PowerPC 603e, PowerPC 604, RISCWatch,
and AIX are trademarks of the IBM corporation. IBM and the IBM logo are registered trademarks of the IBM
corporation. Other company names and product identifiers are trademarks of the respective companies.

This document contains information which is subject to change by IBM without notice. IBM assumes no re-
sponsibility or liability for any use of the information contained herein. Nothing in this document shall operate
as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. The
products described in this document are not intended for use in implantation or other direct life-support ap-
plications where malfunction may result in physical harm or injury to persons. INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS” WITHOUT WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW DISCLAIMERS OF EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS;
THEREFORE, THIS STATEMENT MAY NOT APPLY TO YOU.

Contacts

IBM Microelectronics Division

1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6531
Tel: (800) PowerPC

http://www.chips.ibm.com
http://www.ibm.com
ftp://ftp.austin.ibm.com/pub/PPC_support

Dale Elson, Applications Engineer
IBM PowerPC Embedded Processor Solutions
elson@austin.ibm.com

ESD Warning

The planar and MCM contain CMOS devices which are very susceptible to ElectroStatic
Discharge (ESD). DO NOT remove them from the antistatic bags until you have connected
yourself to an acceptable ESD grounding strap. Work in a static free environment and be
sure any person or equipment coming into contact with the cards do not have a static
charge. The cards are particularly susceptible until they are placed in a properly designed
enclosure. Bench work should be done by persons connected to ESD grounding straps.

G5220297-00

pewerp{ Preliminary

IBM 100 MHz PPC 603e MCM AGREEMENT

BEFORE READING THE REST OF THE DOCUMENT, YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS
AND CONDITIONS. OPENING THE PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDI-
TIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE UNOPENED TO
YOUR IBM SALES OFFICE.

International Business Machines Corporation ("IBM”) agrees to provide you an 100 MHz PPC 603e MCM in return for your promise to use
reasonable efforts to develop a system based on the technology inthe MCM. The MCM contains documentation and software listed below:

Documentation

IBM27-82660 PowerPC to PCI Bridge and Memory Controller User’'s Manual

PowerPC 603e RISC Microprocessor Hardware Specification

PowerPC 603e RISC Microprocessor Technical Summary

IBM 64K x 18 Burst SRAM (IBM041814PQK) Data Sheet

Texas Instruments 3.3V ABT 16-Bit Bus Transceivers with 3-State Output (SN54LVTH16245A, SN54LVTH16245A) Data Sheet

Integrated Device Technology BICMOS StaticRAM 240K (16K x 15-Bit) Cache-Tag RAM for PowerPC and RISC Processors
(IDT71216) Data Sheet

Motorola Low Voltage PLL Clock Driver (MPC970/D) Data Sheet

LICENSE TO SOFTWARE

The software is licensed not sold. IBM, or the applicable IBM country organization, grants you a license for the software only in the country
where you received the software. Title to the physical software and documentation (not the information contained in such documentation)
transfersto you upon your acceptance of these terms and conditions. The term "software” means the original and all whole or partial copies
of it, including modified copies or portions merged into other programs. IBM retains title to the software. IBM owns, or has licensed from
the owner, copyrights to the software provided under this agreement. The terms of this Agreement apply to all of the hardware, software
and documentation provided to you as part of the 100 MHz PPC 603e MCM.

With regard to the software provided hereunder, it is understood and agreed that you intend to use the software solely for the purpose of
designing PowerPC compatible products, testing your designs, and making your own independent determination of whether you wish to
eventually manufacture PowerPC compatible products commercially. In accordance with this understanding, IBM hereby grants you the
rightsto: a) use, run, and copy the software, but only make such number of copies and run on such number of machines as are reasonably
necessary for the purpose of designing PowerPC compatible products and testing such designs; and b) copy the software for the purpose
of making one archival or backup copy.

With regard to any copy made in accordance with the foregoing license, you must reproduce any copyright notice appearing thereon. With
regard to the software provided hereunder, you may not: a) use, copy, modify or merge the software, except as provided in this license;
b) reverse assemble or reverse compile it; or c) sell, sublicense, rent. lease, assign or otherwise transfer it. In the event that you no longer
wish to use the software, you will return it to IBM.

LICENSE TO DESIGN DOCUMENTATION

Withregard to the design documentation provided hereunder, itis understood that you intend to use such documentation solely for the pur-
pose ofdesigningyourown PowerPC compatible products, testingyourdesigns, and makingyour ownindependentdetermination of wheth-
er you wish to eventually manufacture PowerPC compatible products commercially. In accordance with this understanding, IBM hereby
grants you the rightto: a) use the design documentation for the purpose of desighing PowerPC compatible products and testing such de-
signs; b) make derivative works of the design documentation for the purpose of designing PowerPC compatible products, and testing such
designs; and c) make copies of the design documentation and any such derivative works, but only such numbers as are reasonably neces-
sary for designing PowerPC compatible products and testing such designs.

With regard to any copy made in accordance with the forgoing license, you must reproduce any copyright notice appearing thereon. With
regardtothe design documentation provided hereunder, you may not: a) use, copy, modify, ormerge the design documentationas provided
in this license; or b) sell, sublicense, rent, lease, assign, or otherwise transfer it.

In the event you no longer wish to use the design documentation or any derivative versions thereof, you must return them to IBM.

DISCLAIMER OF WARRANTY

IBM does not represent or warrant thatthe 100 MHz PPC 603e MCM (which may contain prototype items): a) meets any particular require-
ments; b) operates uninterrupted; ¢) is error free; or d) is non—infringing of any patent, copyright, or other intellectual property right of any
third party. IBM makes no representation or warranty regarding the performance or compatibility that may be obtained from the use of the
MCM or thatthe MCM is adequate for any use. The MCM may contain errors and may not provide the level of completeness, functionality,
support, performance, reliability, or ease of use available with other products, whether or not similar to the MCM. IBM does not represent
or warrant that errors or other defects will be identified or corrected.

THE 100 MHz PPC 603e MCM IS PROVIDED "AS IS” WITH ALL FAULTS, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS ORIMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
MCM IS WITH YOU.

Some jurisdictions do not allow exclusion of implied warranties, so the above exclusions may not apply to you.

G5220297-00 i

Preliminary PowerP

LIMITATION OF REMEDIES

IBM’s entire cumulative liability and your exclusive remedy for damages for all causes, claims or actions wherever and whenever asserted
relating in any way to the subject matter of this agreement including the contents of the 100 MHz PPC 603e MCM and any components
thereof, is limited to twenty five thousand dollars ($25,000.00) or its equivalent in your local currency and is without regard to the number
of items in the MCM that caused the damage. This limitation will apply, except as otherwise stated in this Section, regardless of the form
of the action, including negligence. This limitation will not apply to claims by you for bodily injury or damages to real property or tangible
personal property. Inno eventwill IBM be liable for any lost profits, lost savings, or any incidental damages or economic consequential dam-
ages, evenifIBMhasbeenadvised ofthe possibility of such damages, or forany damages caused by your failure to performyour responsibi-
lities. Inaddition, IBMwill not be liable for any damages claimed by you based on any third party claim. Some jurisdictions do not allow these
limitations or exclusions, so they may not apply to you.

RISK OF LOSS
You are responsible for all risk of loss or damage to the 100 MHz PPC 603e MCM upon its delivery to you.

IBM TRADEMARKS AND TRADE NAMES

This Agreement does not give you any rights to use any of IBM’s trade names or trademarks. You agree that should IBM determine that
any of your advertising, promotional, or other materials are inaccurate or misleading with respect to IBM trademarks or trade names, that
you will, upon written notice from IBM, change or correct such materials at your expense.

NO IMPLIED LICENSE TO IBM INTELLECTUAL PROPERTY

Notwithstanding the fact that IBM is hereby providing design information for your convenience, you expressly understand and agree that,
except for the rights granted under sections 1 and 2 above, no right or license of any type is granted expressly orimpliedly, under any pat-
ents, copyrights, trade secrets, trademarks, or other intellectual property rights of IBM. Moreover, you understand and agree that in the
eventyouwishtobegranted anylicense beyondthe scope ofthe expressly stated herein, youwill contact IBM’s Intellectual Property Licens-
ing and Services Office (currently located at 500 Columbus Avenue, Thornwood, N.Y.), or such other IBM offices responsible for the licens-
ing of IBM intellectual property, when you seek the license.

YOUR ASSUMPTION OF RISK

You shall be solely responsible for your success in designing, developing, manufacturing, distributing, and marketing any product(s), or
portion(s), where use of all or any part of the 100 MHz PPC 603e MCM is involved. You are solely responsible for any claims, warranties,

representations, indemnities and liabilities you undertake with your customers, distributors, resellers or others, concerning any product(s)
or portion(s) of product(s) where use of all or any part ofthe MCMis involved. You assume the risk that IBM may introduce other Reference
Design that are somehow better than the MCM which is the subject of this Agreement. Furthermore, you accept sole responsibility for your
decisionto selectand use the MCM; for attainment or non-attainment of any schedule, performance, cost, reliability, maintainability, quality,
manufacturability or the like, requirements, or goals, self—-imposed by you or accepted by you from others, concerning any product(s) or
portion(s) of product(s), or for any delays, costs, penalties, charges, damages, expenses, claims or the like, resulting from such non-attain-
ment, where use of all or any part of the MCM is involved.

GENERAL

Inthe event there is a conflict between the terms of this Agreement and the terms printed or stamped on any item or any ambiguities with
respectthereto, including documentation, contained in the 100 MHz PPC 603e MCM, the terms of this Agreement control to the extent IBM
is afforded greater protection thereby. IBM may terminate this Agreement if you fail to comply with the terms and conditions of this Agree-
ment. Upon termination of this Agreement, you must destroy all copies of the software and documentation. You are responsible for payment
of any taxes, including personal property taxes, resulting from this Agreement. Neither party may bring an action hereunder, regardliess of
form, more than one (1) year after the cause of the action arose. If you acquired the MCM in the United States, this Agreement is governed
by the laws of the State of New York. In the event of litigations, trial shall be in New York without a jury. If you acquired the MCM in Canada,
this Agreementis governed by the laws of the Province of Ontario; otherwise, this Agreement is governed by the laws of the country inwhich
you acquired the MCM. All obligations and duties which, by their nature, survive termination or expiration of this Agreement, shall remain
in effect beyond termination or expiration of this Agreement, and shall bind IBM, you and your successors and assigns. If any section or
paragraph ofthis Agreementis found by competentauthority to be invalid, illegal or unenforceable in any respect for any reason, the validity,
legality, and enforceability of any such section or paragraph in every other respect, and the remainder of this Agreement, shall continue
ineffectsolongasitstillexpressestheintentofthe parties. Iftheintentofthe parties cannotbe preserved, the parties will attemptto renegoti-
ate this Agreement and failing renegotiation, this Agreement will then be terminated. The headings in this Agreement shall not affect the
meaning or interpretation of this Agreement in any way. No failure by IBM in exercising any right, power or remedy under this Agreement
shall serve as awaiver of any such right, power or remedy. Neither this Agreement nor any activities hereunder will impair any right of IBM
to develop, manufacture, use or market, directly or indirectly, alone or with others, any products or services competitive with those offered
or to be offered by you; nor will this Agreement or any activities hereunder require IBM to disclose any business planning information to
you. You agree to comply with allapplicable governmentlaws and regulations. Any changes to this Agreement mustbe in writing and signed
by the parties.

)Y G5220297-00

pewerp{ Preliminary

Table of Contents

Section 1 INntroduction e 1-1
1.1 The MCM ... e e e e e 1-1
1.2 100 MHz PPCB03e MCM e 1-2
1.2.0 The CPU . e e e 1-3
1.2.2 L2 CacChe ... 1-3
1.2.3 System Memory Interface i 1-3
1.2.4 The PClInterface ... e 1-3
1.25 System Clocks 1-4
1.2.6 MCM Performancet e 1-4
1.3 MCM Technology OVEIVIEWiiiii ittt 1-5
1.3.1 Chip Attachmentto MCM e 1-5
1.3.2 Substrate Attachmenttothe Planar 1-6
1.4 Incorporating the MCM into a System Design 1-7

Section 2 Signal DescCriptions i 2-1
2.1 Pin DesCrPliONSot e 2-1
2.1.1 Clock Subsystem ... e 2-3
2.1.2 CPU BUS ... e 2-4
2.01.3 PCIBUS ..o 2—7
2. 0.4 DRAM . 2-8
2.1 L2 o 2-9
2.1.6 System Interface e 2-10
2.1.7 660 InterChip Communicationouuiiniininennennen. 2-11
2.1.8 TestSignals 2-13
2.2 NetNamesand MCM NOAES ...ttt 2-14
2.2.1 Complete Pin Listfor MCM i i 2-14

Section 3CPU and Level Two Cache i, 3-1
3.1 CPUBUSMASIEIS ... e 3-1
3.1.1 6036 CPU .. 3-1
3.2 System Response by CPU Bus Transfer Type 3-2
3.3 System Response by CPU Bus AddressRange 34
3.3.1 Address Mapping for Non-Contiguous I/O 34
3.3.2 Address Mapping for Contiguous I/O i, 3-6
3.3.3 PCI Final Address Formationo, 3-6
3.4 CPUtoMemory Transfers 3-7
B4 L LEMOE . ..o 3-7
3.5 CPUtoPCITransactionsottt 3-7
351 CPUIOPCIREAd ..ot e 3-7
3.5.2 CPUIO PCIWIItE ..ot e e 3-8
3.5.2.1 Eight-Byte Writes to the PCI (Memory and I/O) 3-8
G5220297-00 v ===

Preliminary

PowerP

3.5.3 CPUto PCI Memory Transactionscouuiiiininnnnannnn. 3-8
3.5.4 CPUtoO PCI /O Transactionsouuiuiiiiii it 3-8
3.5.5 CPU to PCI Configuration Transactions 3-8
3.5.6 CPU to PCI Interrupt Acknowledge Transaction 3-9
3.5.7 PCILOCK .. 3-9
3.6 CPUIOBCR Transfersiuiiiiii it 3-9
T P 3-10
3.7.1 Cache Responseto CPUBUS, 3-10
3.7.2 Cache Response toPCIBUS ...ttt 3-11
3.7.3 L2 Configurationttt 3-11
3.7.4 L2 0Organizationt e 3-11
3.75 Other L2 Related BCRSot e 3-11
3.7.6 SRAM L e 3-13
.77 TagRAM .. 3-14
SeCtioN 4 DRAM . .o 4-1
4.1 Features and Supported Devicescciiiiiiiiiiiii. 4-1
41.1 SIMM Nomenclaturei i e 4-2
4.1.1.1 DRAMTIMING ..ottt e e e e et e 4-2
4.1.1.2 DRAMErmorCheckingc.iiiiii i 4-2
4.2 DRAMPerformancecouirii e 4-2
4.2.1 Memory Timing Parameters, 4-2
4211 Memory Timing Register 1 i, 4-3
42.1.2 Memory Timing Register 2 4-4
4.2.1.3 RAS#Watchdog TimerBCR 4-4
4.2.1.4 DRAMTiming Calculationsc .. 4-5
4.2.1.5 DRAMTImMIng Examples i 4-7
4.2.1.6 70ns DRAM Calculations ...t 4-7
4.2.1.7 60ns DRAM Calculations ...t 4-8
4.2.1.8 50ns DRAM Calculationsot 4-9
4.2.1.9 60ns EDO DRAM Calculationscciiiiiiiininnnan.. 4-9
4.2.1.10 Aggressive Timing SUMMArYouuiiiirmenannnannen.. 4-10
4.2.1.11 Conservative Timing Summaryt 4-12
4.2.1.12 PageHitandPage MisSco it 4-14
4.2.1.13 CPU to Memory Access Pipelining 4-15
4.2.1.14 Extended Data Out (EDO) DRAM 4-15
4.3 System Memory Addressingoov it 4-15
4.3.1 DRAM Logical Organizationc.cciiiiininnnann.. 4-15
4.3.1.1 SIMMTOPOIOQIES ..ottt e 4-16
4.3.1.2 Row and Column Address Generationc..... 4-17
4.3.1.3 DRAMPAgES 4-18
4.3.1.4 Supported Transfer Sizes and Alignments 4-18
4.3.1.5 Unpopulated Memory Locationsccoiviiivnenenen.n. 4-18
4.3.1.6 Memory Bank AddressingMode BCRS 4-18
4.3.1.7 Memory Bank Starting AddressBCRS 4-19
T === Vi G5220297-00

pewerp{ Preliminary

4.3.1.8 Memory Bank Extended Starting AddressBCRs 4-19
4.3.1.9 Memory Bank Ending AddressBCRsS 4-19
4.3.1.10 Memory Bank Extended Ending AddressBCR 4-20
4.3.1.11 Memory Bank Enable BCR it 4-20
4.3.1.12 Memory Bank Configuration Example 4-20
4.3.1.13 Memory Bank Enable BCR 4-21
4.3.1.14 Memory Bank AddressingMode i, 4-21
4.3.1.15 Starting and Ending Addresses ... i 4-22
4.4 Error Checkingand Correctiont 4-23
441 Memory Parity 4-23
4411 ECCOVEIVIEW ..ttt ittt 4-24
4412 ECCDataFIowsot e 4-24
44.1.3 Memory Readsiuiiiiii 4-25
44.1.4 Eight-Byte Writesot e 4-25
44.15 Less-Than Eight-Byte Writes 4-26
4416 Memory Performance INECCMode, 4-26
4417 CPUtoMemoryReadinECCModeo... 4-27
44.1.8 CPUtoMemory WriteinECCMode 4-27
4419 PCltoMemoryReadinECCModecovvnn... 4-27
4.4.1.10 PCIlto Memory WriteinECCMode 4-27
4.4.1.11 CheckBitCalculation i 4-29
4.4.1.12 Syndrome Decode 4-30
45 DRAMRefresh 4-30
4.5.1 Refresh Timer Divisor Registerciiiiiiiiienan.n. 4-31
4.6 Atomic Memory Transfers 4-32
4.6.1 Memory Locks and Reservationsccoviiiiiinenan.n. 4-32
4.6.2 CPU ReEServationcouuuiii ittt eee e 4-32
4.6.3 PCILOCK .. 4-32
4.6.4 PCILOCKRElEASE oo e e 4-32
4.7 DRAM Module Loading Considerationscovun.... 4-33
4.8 Related Bridge Control Registers, 4-33
Section 5 PCI BUS .. i 5-1
5.1 PClTransaction Decodingot 5-2
5.1.1 PCI Transaction Decoding By Bus Command 5-2
5.1.2 PCI Memory Transaction Decoding By Address Range 5-2
5.1.3 PCI /O Transaction Decodingc.coiriiiinnnnnn. 5-3
5.1.4 ISA Master Considerationscouiiiiiiii . 5-4
52 PClTransactionDetails ... 5-5
5.2.1 Memory Access Range and Limitations 5-5
5.2.2 Bus Snooping on PCIto Memory Cycles 5-5
5.2.3 PCIto PCl Peer TransactionSouiuiuiinnnininenenenns 5-5
5.2.4 PCI to System Memory Transactionscoouienenn... 5-5
5.2.5 PCI to Memory Burst Transfer Completion 5-6
5.2.6 PCIto Memory ACCESS SEQUENCE i ittt it i e 5-6
G5220297-00 Vil T ===

Preliminary

PowerP

5.2.7 PCIto Memory WIEES . ..o e 5-6
5.2.7.1 Detailed Write Burst Sequence Timing 5—6
528 PCltoMemory Reads ... 5-8
5.2.8.1 Detailed Read Burst Sequence Timing 5-8
5.2.9 PCIBE#1t0 CAS# LINne Mappingouuiiiiiiiiiinnn. 5-9
5.3 Bus Arbitration LOQICt e 5-11
5.4 PCILOCK ..ot 5-12
5.4.1 PCIBusmaster LoCks 5-12
542 CPUBUSLOCKINGoii i e e e 5-12
55 PCI2.1Compliancet 5-13
5.5.1 PCl Target Initial Latencyc.iiiiiii i 5-13
5.5.2 Transaction Ordering Rules 5-13
5.5.2.1 The Problem 5-13
5.5.2.2 Solution 1: Add a dummy CPU to PClwrite: 5-14
5.5.2.3 Solution 2: Change the flag write procedure: 5-14
5.5.2.4 Solution 3: Change the data set write procedure: 5-14
5.6 Related Bridge Control Registers, 5-15
Section 6 ROM .. . 6-1
6.1 Direct-Attach ROM Mode i 6-1
6.1.1 ROM REAUS oot e e e e 6-2
6.1.1.1 ROMRead SequenCec.uuiriiriiiiiiiinnnnns 6-2
6.1.1.2 Address, Transfer Size, and Alignment 6-4
6.1.1.3 Endian Mode Considerationscuiiuiiiininann... 64
6.1.1.4 4-ByteReadsco i e 64
6.1.2 ROM WIS ..ttt e e e e e e 64
6.1.2.1 ROM Write SEQUENCEttt 6-5
6.1.2.2 Write Protection 6-5
6.1.2.3 Data Flow In Little-EndianMode 6-5
6.1.2.4 Data Flow In Big-EndianMode 6—-6
6.2 Remote ROMMOOEot 6—7
6.2.1 Remote ROM Readsoviiiii i 6-8
6.2.1.1 Remote ROMRead Sequenceoiiiiiiniinnnn... 6-8
6.2.1.2 Address, Transfer Size, and Alignment 6-11
6.2.1.3 BurstReads 6-11
6.2.1.4 Endian Mode Considerationsciiiiiiiiiian... 6-11
6.2.1.5 4-ByteReads 6-12
6.2.2 Remote ROM WIteS it e 6-12
6.2.2.1 WIIte SEQUENCEo\ttt ittt et et et 6-12
6.2.2.2 Write Protection 6-12
6.2.2.3 Address, Size, Alignment, and Endian Mode 6-12
6.3 Related Bridge Control Registers 6-13
6.3.1 ROM Write Bridge Control Registercoiiiiiin... 6-13
6.3.2 Direct-Attach ROM LockoutBCR 6-14
6.3.3 Remote ROM Lockout Bit ... 6-14
T === viii G5220297-00

pewerp{ Preliminary

6.3.4 Other Related BCRSt e e e 6-15
SeCtionN 7 ClOCKS ..o 7-1
7.1 CPU Clock Physical Design Rules iii... 7-2
7.2 CloCK Freezing 7-5
Section 8 EXCePtiONS ... 8-1
8.l INteITUPIS . e 8-1
8.1.1 Planar Interrupt Handler i i 8-1
8.1.2 MCM (660) INT_REQ and INT_CPU# 8-1
8.1.3 Interrupt Acknowledge Transactions iuniinan.. 8-2
8.1.4 NMI_REQ ... i 8-2
8.1.5 Interrupt Handling e 8-2
8.1.6 Planar Interrupt ASSIgNMENtS i 8-3
8.1.7 Scatter-Gather Interrupts 84
8.2 EITOIS .. 8-5
8.2.1 CPUBUSRelated Errorst 8-5
8.2.1.1 CPUBUSEIIMOr TYPES . ..ottt e e 8-5
8.2.1.2 CPU Bus Error Handling Protocol 8—6
8.2.2 PCIBUS Related Errors ...t 8-6
8.2.2.1 PCIBUSEIMOr TYPES . ..t e 8-6
8.2.2.2 PCI Bus Error Handling Protocol 8—6
8.2.23 PClBusDataParity Errors ... 8—6
8.2.3 CPUBuUs Transaction Errors, 87
8.2.3.1 CPU Bus Transfer Type or Size Error 87
8.2.3.2 CPUBuUs XATS# Asserted Error, 87
8.233 CPUtoMemory WHtest 8-8
8.234 CPUtoMemoryReads 8-8
8.2.3.5 CPUDataBus Parity Error 8-8
8.23.6 L2CacheParity Error 8-9
8.2.3.7 CPUBusWritetoLockedFlash 8-9
8.2.4 CPUto PCI Bus Transaction Errorscciiiiinunen.. 8-9
8.2.4.1 PCI Bus Data Parity Error While PCI Master 8-9
8.2.4.2 PCI Target Abort Received While PCl Master 8-10
8.2.4.3 PCI Master Abort Detected While PClI Master 8-10
8.2.5 PCIto Memory Transaction Errors iiiiinennnn. 8-11
8.25.1 PCItoMemory WIiteSot 8-11
8.252 PClItoMemory Readsot 8-11
8.2.5.3 Out of Bounds PCI Memory ACCESSEScovuiiriunennnen. 8-11
8.2.5.4 PCI Address Bus Parity Error While PCl Target 8-11
8.2.5.5 PCI Bus Data Parity Error While PCl Target 8-12
8.2.5.6 ErrantMasters 8-12
8.2.6 Memory Transaction Errors i 8-12
8.2.6.1 Memory SeleCtError ... e 8-12
8.2.6.2 System Memory Parity Error 8-13
G5220297-00 IX ===

Preliminary PowerP

8.2.6.3 System Memory Single-Bit ECCError 8-13
8.2.6.4 System Memory Multi-Bit ECCErrorccovuin.. 8-14
8.2.7 SERR, I/0O Channel Check, and NMI Errors 8-14
8.2.7.1 NMI_REQ Asserted Errorc.ouiuiiiiiinnn. 8-14
8.2.8 Error Reporting Protocol i 8-15
8.2.8.1 Error Reporting With MCP# it 8-15
8.2.8.2 Error Reporting With TEA# i, 8-15
8.2.8.3 Error Reporting With PCI_ SERR# 8-16
8.2.8.4 Error Reporting With PCI_ PERR# 8-16
8.2.9 Error Status Registers e e 8-16
8.2.10 Error-Related Bridge Control Registers 8-16
8.2.11 Special Events Not Reported as Errors 8-17
8.3 REBSEIS .. 8-18
8.3.1 CPU RSl ..ot 8-18
8.3.2 660 RSBt ... it 8-18
8.3.21 ResetState of 660 PINS 8-18
8.3.2.2 660 Configuration Strappingt 8-20
8.3.2.3 660 Deterministic Operation (Lockstep Applications) 8-20
8.4 TeStMOES 8-20
B.4.1 CPU TSt .ottt e 8-20
B.4.2 660 TSt ..ottt 8-20
8.4.21 LSSDTeStMOdeconiiiiii 8-21
Section 9 Set Up and Registers ... 9-1
9.1 CPUINnitializationoii 9-1
9.2 660 Bridge Initialization i 9-1
9.3 PCIConfiguration SCanirii it 9-2
9.3.1 Multi-Function Adaptors i e 9-2
9.3.2 PCItO PCI BrAgES . ..ottt e et et et e 9-2
9.3.3 Indexed BCR SUMMAIYottt e e e 9-3
Section 10 System Firmware 10-1
10.1 INtrodUCHiONot e 10-1
10.2 Power On System Testt e 10-1
10.2.1 Hardware RequUIrementsc.iuiuumininniinannn. 10-1
10.3 Boot Record FOrmatovi i e 10-1
10.3.1 BOOtRECOIdt 10-2
10.3.1.1 PCPartition Table Entry 10-2
10.3.1.2 Extended DOS Partition ..., 10-3
10.3.1.3 PowerPC Reference Platform Partition Table Entry 104
10.3.2 LoadingtheLoadIimagecoiiiiiiiiiiinnnnn. 10-4
10.4 System Configurationt 10-6
10.4.1 System CoNSOle i 10-6
10.4.2 System Initialization i 10-7
10.4.3 MaiNn MENU . ..ot e 10-8

G5220297-00

||||||||

HILU
IHH
!!:iilll
T}
x

pewerp{ Preliminary

10.4.3.1 System Configuration MeNUt 10-9
10.4.3.2 RunaProgram 10-15
10.4.3.3 Reprogram Flash Memory i, 10-16
10.4.3.4 EXit OptioNs it e e e 10-17
10.4.4 Default Configuration Values i, 10-17
Section 11 Endian Mode Considerations —ci i, 11-1
11.1 Whatthe 603 CPUDOESottt 11-2
11.1.1 The 603e AddresSS MUNQEottt 11-2
11.1.2 The 603e Data Shift i 11-2
11.2 Whatthe 660 Bridge DO€St 11-2
11.2.1 The 660 Bridge AddressUnmungeccciiiiinenon.. 11-2
11.2.2 The 660 Bridge Data Swapperouiiiii i, 11-2
11.3 BitOrdering Within Bytes i 11-4
11.4 Byte Swap INStruCtionsi ittt it 11-5
11.5 603e CPU Alignment ExceptionsInLEMode 11-5
11.6 Single-Byte Transfers i 11-6
11.7 Two-Byte Transfers ... e 11-10
11.8 Four-Byte Transfers e 11-12
11.9 Three byte Transfers e 11-14
11.10 Instruction Fetches and Endian Modes 11-15
11.11 Changing BE/LE Mode i 11-16
11.12 Summary of Bi-Endian Operationand Notes 11-18
Section 12 Electromechanical i 12-1
12.1 MCM Electrical 12-1
12.1.1 AC Electrical CharacteristiCscoviii s 12-1
12.1.2 SCM Package Delay Modeling 12-2
12.1.3 MCM Package Delay Modeling 12-2
12.1.4 MCM Net Electrical Model i 12-3
12.2 MCM Thermal e 12-11
12.2.1 Chip Thermal Requirements, 12-11
12.2.2 MCM Cooling Requirementscouiiiiiiiiannnn.. 12-12
12.2.3 Cooling Recommendationsc.ciiiiiiiniinann... 12-13
12.2.3.1 Thermal Resistance From Cap to Heat Sink 12-13
12.2.3.2 Thermal Resistance From Heat Sink to Ambient 12-13
12.3 MCM Mechanical Drawingso, 12-14
1231 MCM WIth Cap . oo oot e e e 12-14
12.3.2 MCM WIthoUut Capot 12-14
12.3.3 MCM Solder Columns 12-15
12.3.4 MCM Component Placement i, 12-16
Section 13 MCM SchematiCsS cii i e 13-1
13.1 ComponentPlacement i 13-2
G5220297-00 Xi ===

Preliminary PowerP

Appendix A Example Planar Overview i A-1
A.1 The Collateral Material A-1
A2 Example Planar A-2
A.2.1 SYstem MEMOIY ... A-3
A2.2 PClIBUS .ttt e e A-3
A.2.3 Flash ROM e e e A-3
A 2.4 ISA BUS . A-3
A25 System I/OEPLDo A-3
A.2.6 X—BUS AQENES . . i A-3
A.2.7 Power Managementt e A-3
A3 OtherHelp ... A-4
A.3.1 Example Firmware A-4
A3.2 Design Files A-4
A.3.3 Quickstart Peripheral List i A-4

Appendix B Planar I/O Subsystems B-1
B.1 ISA SUbSYStem B-1
B.1.1 The ISABHAQe e e e e B-1
B.1.2 AddresSs RaNQESo ittt e e B-2
B.1.3 ISABUS CONCUITENCY ..\ttt e e e et B-2
B.1.4 ISA Busmastersand IGN_PCI_AD31 B-2
B. 1.5 DM A B-3
B.1.5.1 Supported DMAPaths i B-3
B.1.5:2 DMA TIMING ..ttt e e B-4
B.1.5.3 Scatter-Gather B-4
B.1.5.4 X-BUS ... B-4
B.1.5.5 Control Signal Decodesc.ooiiiiiiiiiiiiii, B-4
B.1.5.6 Keyboard/Mouse Controller B4
B.1.5.7 Real Time CIock (RTC) ...t B-4
B.1.5.8 PCI Adapter Card Presence Detect Register B-5
B.1.5.9 L2 SRAM Identification Register B-5
B.1.5.10 Planar ID Detection Register, B-5
B.1.5.11 DRAM Presence Detectionc.coiiiiiiiiiiiinnnn... B-6
B.1.5.12 DRAM SIMM 1-2 Memory ID Registert B—6
B.1.5.13 DRAM SIMM 3-4 Memory ID Registercoou.. B-6
B.1.6 MisCellaneouso B-7
B.1.6.1 Speaker SUPpOrt B-7
B.2 SystemEPLD e B-7
B.2.1 System Register SUPPOItttt B-7
B.2.1.1 External Register Supportc i B-7
B.2.1.2 Internal Registersiiiiiiiii i, B-8
B.2.2 Signal DesCriptionsot B-10
B.2.3 EPLD Design Equationscciiiiiiii i, B-12
B.2.3.1 FitFile ... e B-12
B.2.3.2 TDFFIle ... B-14

Xii G5220297-00

pewerp{ Preliminary

Appendix C Planar Set Up and Registers, C-1
C.1 ISA Bridge (SIO) Initialization, C-1
C.1.1 Summary of SIO Configuration Registers C4
C.2 Example Planar Combined Register Listing C-5
C.2.1 Direct ACCeSS ReQISteIS it e e e C-5
C.3 ISA Bus Register Suggestionsc. it C-10

Appendix D Planar Electromechanical D-1
D.1 Electrical e D-1
D.1.1 Power ReqUIrEMENTSottt D-1
D.1.2 Onboard 3.3V Regulatort D-2
D.2 Physical Design RuUleS i D-3
D.2.1 CONStrUCHION ..ot e e e D-3
D.2.2 General Wiring Guidelines i D-5
D.3 CPUBUS NEIS e D-5
D.4 PCIBUS NeIS e D-5
D.5 Example Planar Mechanical D-6
D.5.1 Example Planar Connectorst D-7
D.5.2 Example Planar Connector Locations, D-8
D.5.3 Keyboard Connector J14 i D-9
D.5.4 Alternate Keyboard Connector J14A D-9
D.5.5 Mouse Connector J15t D-10
D.5.6 Speaker Connector J13 i D-10
D.5.7 Power Good LED/KEYLOCK# Connector J12 D-11
D.5.8 HDD LED Connector J11 (1 x2Berg)couuiiiiiiinnann.. D-11
D.5.9 Reset Switch Connector J10 (1 x2Berg)cccvvivivnan... D-11
D.5.10 Fan Connector J9,J35 D-12
D.5.11 3.3V Power ConnectorJS D-12
D.5.12 Power Connector J4t D-12
D.5.13 AUX5/ON-OFF Connector J6ouuiiiiiiiiiinnnnnns D-13
D.5.14 PCI Connectors J19, J25,J26,and J27 ..., D-13
D.5.15 ISA Connectors J29,J30,J31,J32ot D-15
D.5.16 DRAM SIMM Connectors J21,J22,J23,and J24 D-16
D.5.17 Power Switch Connector J8 D-18
D.5.18 Power Up Configuration Connector J7ccouun... D-18
D.5.19 RISCWatch ConnectorJ2, D-19
D.5.20 Battery Connector BT2 e D-19
D.5.21 MCM Board Connector Footprint #1 D-20
D.5.22 MCM Board Connector Footprint #2 D-21
D.6 ENCIOSUIE D-22

Appendix E Bill of Materials E-1
E.1 PlanarBillof Materials i E-1

Appendix F Planar Schematics i F-1
F1 ComponentPlacement i, F-2

Appendix G Data Sheets i e G-1
G5220297-00 Xiii T ===

Preliminary pewerp{
Figures
Figure 1-1. MCMBIlock Diagram 1-2
Figure 1-2. MCM C ..o e 1-5
Figure 1-3. Chip Wire Bond and Flip Chip Connection 1-5
Figure 1-4. MCM Flip Chips and Internal Wiring 1-6
Figure 1-5. MCM Solder Columns i, 1-6
Figure 3-1. Non-Contiguous PCI I/O Address Transformation 3-5
Figure 3-2. Non-Contiguous PCI I/O Address Translation 3-6
Figure 3-3. Contiguous PCI I/O Address Translation 3-6
Figure 3-4. L2 Mapping of System Memory — 512K Configuration 3-12
Figure 3-5. SLC L2 Cache Directory — 512K Configuration 3-13
Figure 3-6. Synchronous SRAM, 512K L2 3-14
Figure 3-7. Synchronous TagRAM, 512K L2, 3-14
Figure 4-1. CPU to Memory Transfer Timing Parameters 4-3
Figure 4-2. DRAM Logical Implementation 4-16
Figure 4-3. Example Memory Bank Configuration 4-22
Figure 4-4. CPUReadDataFlow 4-25
Figure 4-5. PCIReadDataFlow iiiiiion... 4-25
Figure 4-6. CPU 8-Byte Write DataFlow 4-25
Figure 4-7. PCIl 8-Byte Write Data Flow 4-26
Figure 4-8. PCIl or CPU Read-Modify-Write Data Flow 4-26
Figure 4-9. DRAM Refresh Timing Diagram 4-31
Figure 6-1. ROM CONNECLIONS ittt e 6-2
Figure 6-2. ROM Read Timing Diagramo iiiiiinanan.. 6-3
Figure 6-3. ROM CoNNecCtionsc.coiiiiii it 6-5
Figure 6-4. ROM Data and Address Flow In Little Endian Mode 6—6
Figure 6-5. ROM Data and Address Flow In Big Endian Mode 67
Figure 6-6. Remote ROM Connectionsc.iiuiiiinnnnannn. 6-8
Figure 6-7. Remote ROM Read — Initial Transactions 6-9
Figure 6-8. Remote ROM Read — Final Transactions 6-10
Figure 6-9. Remote ROMWrite i e 6-13
Figure 7-1. MCM CIOCKSo e e e 7-1
Figure 7-2. MCM CIOCKS e e e e e 7-4
Figure 7-3. CPU_CLKtoOPCI_CLK SKEeWo 7-4
Figure 8-1. Conceptual Block Diagram of INT Logic 8-2
Figure 8-2. InterruptHandling i 8-2
Figure 8-3. PCl Interrupt Connectionsc.c.oiiiininnn.... 84
Figure 10-1. BootRecord i, 10-2
Figure 10-2. Partition Table Entry i 10-2
Figure 10-3. Partition Table Entry Format for an Extended Partition 10-4
Figure 10-4. Partition Table Entry for PowerPC Reference Platform 10-4
Figure 10-5. PowerPC Reference Platform Partition 10-5

Xiv G5220297-00

PowerP

Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure A-1.
Figure B-1.
Figure D-1.
Figure D-2.
Figure D-3.
Figure D-5.
Figure D-6.
Figure D-7.
Figure D-8.
Figure D-9.
Figure D-10.
Figure D-11.
Figure D-12.
Figure D-13.
Figure D-14.
Figure D-15.
Figure D-16.
Figure D-17.
Figure D-18.
Figure D-109.
Figure D-20.
Figure D-21.

Preliminary
System Initialization Screen i 10-7
Configuration Utility MainMenuooon.. 10-8
System Configuration Menu 10-9
System Information Screen i 10-10
Device Configuration Screen ..., 10-11
SCSIDEVICES SCIreeN . ..ttt 10-12
BOOt DeVICES SCreeNno e 10-13
SetDateand Time Screen ..., 10-14
Run a Program Screen, 10-15
Reprogram the Flash Memory Screen 10-16
Endian Mode Block Diagram 11-3
Example at Address XxxX XXX0, 11-6
Example at Address XXXX XXX2uuuie e 11-7
Double Byte Write Data ab at Address xxxx xxx0 11-10
Word (4-Byte) Write of 0a0Ob0cOdh at Address Xxxx Xxx4 11-12
Instruction Alignment Example 11-15
Wrong Instruction Read When Unmungerisused 11-16
Instruction Stream to Switch Endian Modes 11-17
MCM Net Electrical Model 12-2
MCM Thermal Paths, 12-3
MCM Heat FIows i 12-3
Example Planar Block Diagram A-2
Typical External Register B-7
Signal and Power Layers D-3
Typical Wiring Channel Top View D-3
PowerPC 603/604 Board Fabrication D-4
The Keyboard Connector, D-9
The Alternate Keyboard Connector D-9
The Mouse ConnNectoroviiiiiiiieiannnn.. D-10
1x4 Speaker Connectoriuiiiiinnnnnnnn D-10
1x5 Power Good LED Connectorcccovuvn.... D-11
1x2 HDD LED CoNnNnectorot D-11
1x2 Reset Switch Connector, D-11
IX2 Fan Connectort e D-12
1x6 3.3V Power Connector JS D-12
1x12 Power CONNECIOrot D-12
AUX5/ON-OFF ConNnectorcouiuiiiniiinnnnn. D-13
PCl CoNNeCtOr D-13
ISA CONNECIOr e e D-15
DRAM SIMM CoNNECtOrt D-16
1x2 Power Switch Connector D-18
1x2 Power Up Configuration Connector D-18
2x8 RISCWatch Connector, D-19

G5220297-00

XV

Preliminary

PowerP

Tables

Table 2-1. Example Signal Table 2-1
Table 2-2. User Supplied Signals 2-2
Table 2-3. Clock Signals 2-3
Table 2-4. CPUBuUSSIgnals i 2-4
Table 2-5. PCIBUS Signalso 2—7
Table 2-6. DRAM Signals 2-8
Table 2-7. L2Signals ... 2-9
Table 2-8. System Interface Signals i 2-10
Table 2-9. InterChip Communication Signals 2-11
Table 2-10. Test Signal Descriptions o .. 2-13
Table 2-11. Pin List With Net Names and MCM Nodes 2-14
Table 3-1. TT[O:3] (Transfer Type) Decoding by 660 3-3
Table 3-2. 660 Address Mapping of CPU Bus Transactions 34
Table 3-3. CPU to PCI Configuration Mappingc.cccuv... 3-9
Table 3-4. L2 Cache Responsesto CPUBus Cycles 3-10
Table 3-5. L2 Operations for PCI to Memory Transactions, 603 Mode ... 3-11
Table 3-6. Other L2 Related BCRSt 3-11
Table 4-1. Memory Timing Parameters i, 4-3
Table 4-2. Page Mode DRAM Aggressive Timing Summary (1) 4-11
Table 4-3. EDO DRAM Aggressive Timing Summary (1) 4-12
Table 4-4. Page Mode DRAM Conservative Timing Summary (1) 4-13
Table 4-5. EDO DRAM Conservative Timing Summary (1) 4-14
Table 4-6. Supported SIMM Topologiescoiiiiiiinan.. 4-16
Table 4-7. Row Addressing (CPU Addressing)c..covvn... 4-17
Table 4-8. Column Addressing (CPU Addressing) 4-17
Table 4-9. Row Addressing (PCI Addressing) 4-17
Table 4-10. Column Addressing (PCl Addressing) 4-17
Table 4-11. Example Memory Bank Addressing Mode Configuration 4-21
Table 4-12. Example Memory Bank Starting

and Ending Address Configuration 4-23
Table 4-13. Bridge Response to Various PCI Write Data Phases 4-28
Table 4-14. Bridge Response to Best Case PCI Write Burst 4-28
Table 4-15. Bridge Response to Case 2 PCI Write Burst 4-28
Table 4-16. Bridge Response to Various PCI Write Bursts 4-29
Table 4-17. Check Bit Calculation 4-29
Table 4-18. Syndrome Decodecc it 4-30
Table 4-19. Typical DRAM Module Maximum Input Capacitance 4-33
Table 5-1. MCM Response to PCI_C[3:0] Bus Commands 5-2
Table 5-2. Mapping of PClI Memory Space, Part1 5-3
Table 5-3 Mapping of PCI Memory Space, Part2 5-3
Table 5-4 Mapping of PCI Master I/O Transactions 5-4
Table 5-5 PCI to Memory Write Burst Sequence Timing 5-7

XVi G5220297-00

PowerP

Preliminary

Table 5-6.
Table 5-7.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 7-1.
Table 7-2.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 9-1.
Table 9-2.

Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 11-9.
Table 11-10.
Table 11-11.
Table 11-12.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.

Table A-1.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table C-1.

PCI to Memory Read Burst Sequence Timing

Active CAS# Lines — PCI to Memory Writes, BE or LE Mode .

ROM Read Data and Address Flow
ROM Write Data Flow in Little-Endian Mode
ROM Write Data Flow in Big-Endian Mode

Remote ROM Read Sequence, CPU Address = FFFX XXXO0 .

ROM Write BCR Contents
Clock Net Calculations
Clock Net Calculations
Mapping of PCI Memory Space, Part 1
Invalid CPU Bus Operations
664 Pin Reset State
663 Pin Reset State
Configuration Strapping Options
LSSD Test Mode Pin Definitions
Configuration Address Assignments
660 Bridge Indexed BCR Listing
Endian Mode Operations
603e LE Mode Address Transform
660 Bridge Endian Mode Byte Lane Steering
660 Bit Transfer
Memory in BE Mode
Memory in LE Mode
PCI in BE Mode
PCl in LE Mode
Two Byte Transfer Information
Rearranged Two-Byte Transfer Information
Four-Byte Transfer Information
Rearranged Four-Byte Transfer Information
MCM Primary 1/0
Thermal Specifications for MCM Chips, Typical Pd
Thermal Specifications for MCM Chips, Maximum Pd

Required Maximum Thermal Resistance, Cap to Ambient

Thermal Resistance From Cap to Ambient — No Heat Sink
Thermal Resistance From Cap to Heat Sink

Required Maximum Thermal Resistance, Cap to Ambient

Quickstart Peripheral List
DMA Assignments
DRAM Module Presence Detect Bit Encoding
Planar ID Encoding
DRAM Module Presence Detect Bit Encoding
External Register Support
Signal Descriptions

Summary of SIO Register Setup
(Configuration Address = 8080 08xx)

G5220297-00

Xvii

Preliminary PowerP

Table C-2. Summary of SIO Configuration Registers C-4
Table C-3. Combined Register Listing C-6
Table C-4. Compatible ISA Ports (Not on Reference Board) C-11
Table D-1. Power Supply Specification D-1
Table D-2. Approximate Power Consumption D-1
Table D-3. Specifications for 3.3V Regulator on the Motherboard D-2
Table D-4. Keyboard Connector Pin Assignments D-9
Table D-5. Alternate Keyboard Connector Pin Assignments D-9
Table D-6. Mouse Connector Pin Assignments D-10
Table D-7. Speaker Connector Pin Assignments D-10
Table D-8. Power Good LED Connector, D-11
Table D-9. HDD LED CONNECIOr . ..ottt D-11
Table D-10. Reset Switch Connector ..., D-11
Table D-11. Fan Connector Pin Assignments D-12
Table D-12. 3.3V Power Connector J5 Pin Assignments D-12
Table D-13. Power Connector J4 Pin Assignments D-12
Table D-14. AUX5/ON-OFF Connector Pin Assignments D-13
Table D-15. PCI Connector Pin Assignments ccuuuu.. D-13
Table D-16. ISA Connector Pin Assignments D-15
Table D-17. DRAM SIMM Connector Pin Assignments D-16
Table D-18. Power Switch Connector Pin Assignments D-18
Table D-19. Power Up Configuration Connector Pin Assignments D-18
Table D-20. RISCWatch Connector Pin Assignments D-19
Table D-21. Height Considerations D-22
Table E-1. Planar Billof Materials i E-1

XVili G5220297-00

pewerp{ Preliminary

About This Book

This documentis designed for engineers and system designers who are interested in implementing PowerPC
systems that use the 100 MHz PPC 603e MCM. The material requires a detailed understanding of computer
systems at the hardware and software level.

Power management is beyond the scope of this document. This document was written by Dale Elson.

Reference Material:
Understanding of the relevant areas of the following documents is required for a good understanding of the
100 MHz PPC 603e MCM:

e PowerPC 603e RISC Microprocessor User’'s Manual, IBM document MPR603EUM-01

e PowerPC 603e Hardware Specification, IBM document MPR603EHS-01

e PowerPC 603e Technical Summary, IBM document MPR603TSU-04

e |IBM27-82660 PowerPC to PCI Bridge User’s Manual, IBM document number MPR660UMU-01
e PCI Local Bus Specification, Revision 2.1, available from the PCI SIG

e PowerPC Reference Platform Specification, Version 1.1, IBM document MPRPRPPKG

e The Power PC Architecture, second edition, Morgan Kaufmann Publishers
(800) 745-7323, IBM document MPRPPCARC-02

e Intel 82378ZB System I/O (SIO) Data Book, Intel order number 290473-004.
The following documents are useful as sources of tutorial and supplementary information about the MCM.

e PowerPC System Architecture, Tom Shanley, Mindshare Press (800) 420-2677.
e IBM27-82650 PowerPC to PCI Bridge User’s Manual, IBM document number MPR650UMU-01

Document Conventions:
The terms 660 and 660 bridge refer to the IBM27-82660.

The terms 660 UM and 660 User’s Manual refer to the current version of the IBM27-82660 PowerPC to PCI
Bridge User’s Manual.

The terms 603e UM and 603e User’s Manual refer to the IBM PowerPC 603e RISC Microprocessor User’s
Manual.

Kilobytes, megabytes, and gigabytes are indicated by a single capital letter after the numeric value. For exam-
ple, 4K means 4 kilobytes, 8M means 8 megabytes, and 4G means 4 gigabytes.

The terms DIMM and SIMM are often used to mean DRAM module.

Hexadecimal values are identified (where not clear from context) with a lower-case letter h at the end of the
value. Binary values are identified (where not clear from context) with a lower-case letter b at the end of the
value.

In identifying ranges of values from and to are used whenever possible. The range statement from 0 to 2M
means from and including zero up to (but not including) two megabytes. The hexadecimal value for the range
from 0 to 64K is: 0000h to FFFFh.

The terms asserted and negated are used extensively. The term asserted indicates that a signal is active
(logically true), regardless of whether that level is represented by a high or low voltage. The term negated
means that a signal is not asserted. The # symbol at the end of a sighal name indicates that the active state
of the signal occurs with a low voltage level.

G5220297-00 XiX

Preliminary PowerP

XX G5220297-00

pl‘l.werpc Preliminary Section 1 — Introduction

Section 1
Introduction

This document provides a detailed technical description of the 100 MHz PPC 603e Multi-
Chip Module (MCM), and is intended to be used by hardware, software, test, and simulation
engineers as a first source of information. Software developers should read through the
entire document because information relevant to their tasks may be located in hardware
sections.

11 The MCM

The MCM consists of the CPU, L2, PCI Bridge, Memory Controller and master clock ele-
ments of a PowerPC system. The chips that provide this function are all packaged on a
single ceramic substrate.

G5220297-00 1-1

Section 1 — Introduction

Preliminary

PowerP

1.2 100 MHz PPC 603e MCM

XTAL Clock [~
CTL » Driver 60X CPU 60X CPU BUS
e Control
Address (32) _
Buffer Data (72)
Control t
I Tag RAM MCM
Control SRAM
System Control | Cache
and Status Memory control
- -
— IBM27-82663
| ROM Control Address(12 DRAM
|_ Control System ||
Memory
| PCI BUS
| Y PCI_AD[31:0] ¥
| * ‘
- —t— L B
|_ System ROM—I [PCI —|‘| [be PCI to ISA —| ISA Bui|_System ROM—|
"l (Flash or Bridge —___— (Flashor
EPROM) LLDEV'CES uf el | EPROM) |

Figure 1-1. MCM Block Diagram

The MCM (see Figure 1-1) is compliant with the PowerPC Reference Platform Specifica-
tion Version 1.1, and the PCI Local Bus Specification, revision 2.0/2.1 (see Section 5.5) for

host bridges.

The MCM uses the PowerPC 603e ™ RISC microprocessor. The IBM27-82660 Bridge chip-
set (660 Bridge or 660) interfaces the CPU to the PCl bus and DRAM memory, and provides
L2 cache control. The tagRAM and 512K SRAM components are also included on the
MCM. The MCM also includes a master clock generator. For a list of the specific dice pack-

aged within the MCM, see Table 1-1.

Table 1-1. MCM Dice

Die Part Number Vendor
PowerPC 603e Processor IBM
663 Buffer IBM
664 Controller IBM
Clock Driver MPC970 Motorola
Tag RAM IDT1216 Integrated Device Technology
Buffer SCBS143F Texas Instruments
Synchronous Burst SRAM IBM
=== 1-2 G5220297-00

pl‘l.werpc Preliminary Section 1 — Introduction

1.2.1 The CPU

The MCM uses a PowerPC 603e (PID6—603e) at CPU bus speeds up to 66MHz. See the
PowerPC 603e Technical Summary, Users Manual, and Hardware Specifications for more
information. The MCM:

e Runs at 3:2 CPU_core:CPU_bus speed ratio up to 99:66 MHz. Consult your IBM
representative for available choices of CPU and operating frequency.

e Supports one level of address bus pipelining. Most data writes are posted.

e Reports precise exceptions via TEA#, and reports imprecise exceptions via MCP#.

e Operates the 603e in 64-bit data bus mode.

e Supports bi-endian operation.

e Supplies an ESP connector for RISCWatch debugging and monitor systems.

e Runs in DRTRY# mode.

1.2.2 L2 Cache
The MCM contains a complete L2. The controller is located inside the 660 Bridge. The L2:
e Uses 512K SRAM and a 16K x 15 synchronous tagRAM.
« Is unified, write-thru, direct-mapped, look-aside.
e Caches system memory from O to 1G.
« Maintains coherence for 32-byte blocks, the PowerPC 60X coherence unit.
e Supplies data to the CPU on burst read hits and snarfs the data on CPU burst read/
write misses. The L2 is not updated during a PCI transaction.
« Ignores CPU single-beat reads, and invalidates on CPU bus single-beat write hits.
e Snoops PCI to memory transactions, invalidates on PCI write hits. The L2 does not
supply data to the PCI on read hits.

1.2.3 System Memory Interface
The MCM memory controller, located in the 660, provides the system DRAM memory inter-
face as required by the PowerPC Architecture ™. System memory can be accessed from
both the CPU bus and the PCI bus. The system memory interface:

e Has a 72-bit wide data path — 64 data bits and 8 bits of optional ECC or parity data
Supports page mode and EDO (hyper-page mode) DRAM
Supplies 8 RAS# outputs, 8 CAS# outputs, and 2 WE# outputs, for up to 8 SIMM banks
Supports 8-byte, 168-pin and 4-byte, 72-pin SIMMs for up to 1G of DRAM
Allows mixed use of different size SIMMs, including mixed 4-byte and 8-byte SIMMs
Includes full refresh support, including refresh counter and programmable timer
o Implements burst-mode memory address generation for both CPU and PCI bursts
« Implements both little-endian and big-endian addressing and byte swapping modes
e Provides row and column address multiplexing for 10x10 thru 12x12 RxC DRAMSs

1.2.4 The PCI Interface
The MCM allows CPU to PCI access and PCI busmaster to system memory access (with
snooping), and handles all PCI related system memory and cache coherency issues.

The MCM supplies a 32-bit PCI host bridge interface that is:
« Compliant with the PCI Specification, revisions 2.0 and 2.1 (see Section 5.5)
« 3.3v and 5v signalling environment compliant.

G5220297-00 1-3

.. p
Section 1 — Introduction Prellmlnary pl‘l.werpﬂ

Operates up to 33MHz, at 1/2 of the CPU bus frequency.

Supports a tertiary 10 bus bridge, including support for ISA masters.
Allows system memory block locking by PCI busmasters

Supports type 0 and type 1 PCI configuration cycles

1.2.5 System Clocks

The MCM uses a Motorola™ MPC970 PLL clock generator to provide the clocks required
by the MCM components, and six clocks for system use. A 16.5 MHz quartz crystal (seed
clock) provided by the user is used as an input to the clock generator. It then produces the
system and PCI clocks.

1.2.6 MCM Performance

Minimum Cycle Times For Pipelined CPU to Memory Transfers at 66 MHz

Responding Device Read Write
L2 (9ns Synchronous SRAM) -2-1-1-1 Snarf
L2 (15ns Asynchronous SRAM) -3-2-2-2 Snarf
Page DRAM (70ns) Pipelined —4-4-4-4 -3-3-4-4
EDO DRAM (60ns) Pipelined -5-3-3-3 -3-3-3-3

Typical PCI to Memory Performance at 66 MHz CPU Clock and 33MHz PCI Clock
Read 8-1-1-1-1-1-1-1 7-1-1-1-1-1-1-1 7-1-1-1-1-1-1-1 ... 7-1-1-1-1-1-1-1
Write 5-1-1-1-3-1-1-1 3-1-1-1-3-1-1-1 3-1-1-1-3-1-1-1 ... 3-1-1-1-3-1-1-1

1

|l
il
]
T
AN

G5220297-00

pl‘l.werpc Preliminary Section 1 — Introduction

1.3 MCM Technology Overview

The IBM Multi-Chip Module (MCM) is shown in Figure 1-2. The MCM consists of a 45mm
x 45mm cofired dark ceramic substrate upon which are mounted eleven unpackaged semi-
conductor dice (chips), capacitors, and resistors. The top of the substrate and the chips are
completely covered by an aluminum cap, which is non-hermetically sealed to the substrate.
A thermally conductive grease fills the area between the cap and the chips. The MCM is
electrically connected to the circuit board (planar) by solder columns.

Cap Chips Thermal Grease

Ceramic Substrate

<— Solder Columns

Figure 1-2. MCM C

1.3.1 Chip Attachment to MCM

All die on the MCM are attached to the ceramic substrate using IBM’s C4-based flip chip
attachment technology. In this technology, C4 solder balls provide an interconnection be-
tween the die and the substrate. For those vendor die originally designed for wire bond
base interconnection, additional processing steps were applied to allow the C4 intercon-
nection. Figure 1-3 shows a typical wire—bond die. In wire bond technology, the wafer is
sliced into individual dies, each die is attached to a wire frame, and (for each chip pad) one
end of a wire is bonded to the chip pad, and the other end is bonded to the package pin.

The MCM uses the "flip—chip” process. An additional metalization layer is added to the chip,
the chip is "flipped” over, and C4 balls are used to connect the chip pads to the MCM sub-
strate pads.

Unpackaged die have a much smaller footprint than packaged die. This reduces the overall
size of the MCM circuitry and allows the MCM a much smaller footprint than would be re-
quired by the same circuitry implemented on a planar in discrete packages.

Wire Bond 10 Pad Connection Flip Chip 10 Pad Connection
W/ /1YY
I

I I Redistribution Layer
Solder Balls
<— Passivation Layer

1 Packaging I |

Figure 1-3. Chip Wire Bond and Flip Chip Connection

G5220297-00 1-5

.. p
Section 1 — Introduction Pre“mmary pl‘l.werpﬂ

Figure 1-4 shows chips mounted to the MCM substrate. Figure 1-4 also illustrates the inter-
nal structure of the MCM substrate. The MCM acts as the circuit board between the various
chips. Structures analogous to printed circuit board traces and vias form the electrical inter-
connections between the various MCM chips. The trace lengths on the MCM are much
shorter than are achievable on a planar. This means that signal propagation (flight times)
between the devices are minimized, which can allow faster operating frequencies than can
be achieved on a planar. The impedance of the various nets can be more precisely con-
trolled, which contributes to high signal quality and low noise.

Chips

i |i_|-
MCM pr—
Substrate ==

T OO OO T =——" solder Columns

Figure 1-4. MCM Flip Chips and Internal Wiring

il
1 (LTH

I

ut

1.3.2 Substrate Attachment to the Planar

Figure 1-5 shows how solder columns are used to connect the MCM to the planar. Each
column is attached to the MCM by an eutectic solder joint. The solder at this point melts
at a higher temperature than the solder used for the column itself. The MCM is then sol-
dered to the planar, again using an eutectic solder. The solder column process is robust,
and offers a lower impedance. It is also one of the higher density interconnection methods.

~— Mounting Pad

Eutectic Solder Joint

Mounting Pad Circuit Board

Figure 1-5. MCM Solder Columns

For more information on solder columns, assembly, and rework, see "Ceramic Ball and Col-
umn Grid Array Surface Mount Assembly and Rework’, IBM document number APD-
SBSC-101.0.

1-6 G5220297-00

pl‘l.werpc Preliminary Section 1 — Introduction

1.4 Incorporating the MCM into a System Design

The MCM captures, in one ceramic package, all key components of a PowerPC system
design that resides on a CPU’s local bus. The MCM'’s primary ports of interface to the rest
of a system are the PCI bus and the system memory (DRAM) port. Other signals that con-
nect the MCM to a system fall into the following groups:

e Processor PLL configuration

e« MPC 970 configuration

« Signal nets broken at the MCM level for test purposes and need to be reconnected
on the planar

e RISCWatch interface

e 60X bus signals requiring pullup/pulldown connections at the planar

e L2 cache configuration and presence detect

o Clock nets broken atthe MCM level to allow net length matching with planar resident
clock nets

« ROM control signals

e Local bus signals used for control functions by the planar.

Understanding all of these groups is vital to the use of the MCM. Pay particular attention
to those signals broken at the MCM level and which are reconnected at the planar. Those
nets are associated with MCM 1/O pairs, the names of which are prefaced by the letter "X.”

When applying the MCM to a system design, it is recommended that the designer review
the schematics for both the MCM (see Section 13) and the example planar (see Appendix
F). Although the example planar is a specific design implementation of the MCM, most
MCM interface signals are used in a manner that would be common to any PowerPC sys-
tem design. A review of the planar schematics and MCM and planar component data
sheets (see Appendix G) will quickly answer most questions concerning how to interface
with the MCM 1/0O.

Note that it is not intended for the user to interface with all of the MCM 1/O. Section 2 con-
tains 1/0O listings that distinguish between signals intended for application use and those
broken out only for manufacturing purposes.

G5220297-00 1-7

.. p
Section 1 — Introduction Prellmlnary pl‘l.werpﬂ

1-8 G5220297-00

pl‘l.werpc Preliminary Section 2 — Signals

Section 2
Signal Descriptions

This section describes the connectivity of the 100 MHz PPC 603e MCM. Tables are used
extensively for this purpose (see Table 2-1 and the following paragraphs for an explana-
tion).

The terms asserted and active indicate that a signal is logically true, regardless of the volt-
age level. The terms negated, inactive, and deasserted mean that a signal is logically false.
The # symbol at the end of a signal name indicates that the active or asserted state of the
signal occurs with a low voltage level. Otherwise the signal is active at a high voltage level.

Table 2-1. Example Signal Table

Signal Name | MCM Nodes Description

AACK# R0O8 R1.A02 |pu |CPU bus address acknowledge. The CPU bus target (660 or external CPU
U1.28 I/O | bus target) asserts AACK# to signal the end of the current address tenure.
U2.109 |[1/O |660alsoasserts AACK# for one clock to signal the end of a broadcast snoop
cycle.

AACK# is an input to the 664 when a CPU bus target claims the current
transaction by means of L2_CLAIM#. AACK# is always an input to the CPU.

The Signal Name column contains the name of the signal. In the Example Signal Table
(Table 2-1), the AACK# signal is shown.

The MmcM column shows which pin(s) (solder columns) of the MCM connect to the signal.
The AACK# net is connected to column R0O8 of the MCM.

The Nodes columns show the internal MCM devices and pins to which the signal connects.
The left column shows the device and pin number, in device.pin format. The right column
shows whether the signal is an input or output of the device. An | indicates that the signal
Is an input to the device. An O indicates that the signal is an output from that device. A pu
indicates that the resistor to which the signal is connected is a 10k pullup resistor.
AACK# connects to R1 pin A02, which is a 10k pullup resistor. AACK# also connects to Ul
pin 28 and U2 pin 109, both of which are 1/Os.

2.1 Pin Descriptions

The following sections contain information about the connectivity and function of the MCM
pins. See the 660 User’s Manual (660 UM), the 603e User’s Manual (603e UM), and the
SRAM, Tag, and buffer data sheets for more information.

Note that the MCM 1/O pins make a connection to every net on the MCM. This was only
done to aid in the manufacturing test of the MCM. Of the 1089 I/O pins that the MCM pro-
vides, only 296 signals are needed by the user to interface with the MCM. These signals
are listed in Table 2-2.

G5220297-00 2-1

Section 2 — Signals

Preliminary

PowerP

Table 2-2. User Supplied Signals

Type Signal Type Signal

PCI PCI_ADO:9 .MISC. FUNCTION X_CPU_RDL_OPEN
PCI PCI_PAR MISC. FUNCTION NMI_FROM_ISABRDG
PCI PCI_AD10:31 MISC. FUNCTION POWER_GOOD/RESET
PCI PCI_IRDY# MISC. FUNCTION HRESET#

PCI PCI_LOCK# RW TCK

PCI PCI_PERR# RW TDI

PCI PCI_SERR# RW TDO

PCI PCI_STOP# RW TMS#

PCI PCI_TRDY# RW CKSTP_OUT#
PCI PCI_AD_OE# RW_P_UP TRST#

PCI PCI_C/BEO:3# P_UP TT0:3

PCI PCI_CLK_IN P_UP SHD#

PCI PCI_DEVSEL# P_UP SMI#

PCI PCI_EXT_SEL P_UP TAG_CS2

PCI PCI_OL_OPEN P_UP TT2_664

PCI PCI_OUT_SEL P_UP DBG_60X#

PCI —664_PCI_REQ# P_UP L2_CLAIM#

PCI PCI_FRAME_664# P_UP 663 _TEST#
MEMORY MAO0:11 P_UP 664_TEST#
MEMORY MDPO0:10 P_UP TAG_MATCH
MEMORY MD10:63 P_UP BG_MASTER#
MEMORY MCEQ:7 P_UP SRAM_ADSP#
MEMORY MREOQ:7 P_UP TAG_PWRDN#
MEMORY MWEO:1 P_UP MWS_P2MRXS
MISC. FUNCTION TEA# P_UP 664_STOP_CLK_EN#
MISC. FUNCTION DRTRY# P_DOWN TT4

MISC. FUNCTION ROM_OE# P_DOWN GBL#

MISC. FUNCTION ROM_WE# P_DOWN SRAM_CS#
MISC. FUNCTION INT_60X# P_DOWN TAG_CS1#
MISC. FUNCTION MCP_60X# P_DOWN OE_245_B
MISC. FUNCTION SRAM_OE# P_DOWN DIR_245_A
MISC. FUNCTION PLL_CFGO0:3 P_DOWN DIR_245_B
MISC. FUNCTION ROM_LOAD P_DOWN TAG_SFUNC
MISC. FUNCTION 60X_AVDD P_DOWN CRS_C2PWXS
MISC. FUNCTION QACK_60X P_DOWN 663_MIO_TEST
MISC. FUNCTION QREQ_60X P_DOWN 664_MIO_TEST
MISC. FUNCTION X_INT_60X# CLK XTAL1:2

MISC. FUNCTION X_MCP_60X# CLK FRZ_CLK
MISC. FUNCTION X_SRAM_OE# CLK FRZ_DATA
MISC. FUNCTION INT_TO_664 CLK PCLK_60X
MISC. FUNCTION X_PCLK_60X CLK TAG_BCLK
MISC. FUNCTION X_TAG_BCLK CLK CLK_EXT_FB
MISC. FUNCTION SRESET_60X# CLK CLK_FB_SEL
MISC. FUNCTION TAG_ADDR_13 CLK CLK_PLL_EN
MISC. FUNCTION TAG_DATA_11 CLK SRAM_BCLKO:3
MISC. FUNCTION IGN_PCI_AD31 CLK CLK_COM_FRZ
MISC. FUNCTION X_SRAM_BCLKO0:3 CLK CLK_REF_SEL
MISC. FUNCTION X_663_CPU_CLK CLK CLK_TTL_CLK
tMISC. FUNCTION X_664_CPU_CLK CLK CLK_VCO_SEL

2-2

G5220297-00

owerpPT imi on2 s
pll & Prellmlnary Section 2 — Signals
Type Signal Type Signal
CLK 663_CPU_CLK CLK 664_PCl_CLK
CLK 664_CPU_CLK CLK CLK_PCI_DIVO:1
CLK CLK_BCLK_DIVO:1 CLK USER_PCICLKO:6
CLK CLK_FRZ_STROBE DAISEY DAISY01:20
CLK CLK_MPC601_CLKS PWR VSS
CLK CLK_MR/TRISTATE PWR VDD1:3
2.1.1 Clock Subsystem
Table 2-3. Clock Signals
Signal Name MCM Nodes 1 Description (See MPC970 data sheet for more information.)
663_CPU_CLK G04 |U4.38 O | MPC970 2x_PCLK output. These IOs are the (nominally
X_663_CPU_CLK |FO5 |U3.157 |I |The CPU bus clock input of the 663. | 66MHz) CPU bus clocks.
They are intended to be used
664_CPU_CLK G30 |U4.42 O | MPC970 BCLKO output. in pairs, where the CLOCK
X_664_CPU_CLK | H29 u2.121 |1 The CPU bus clock input of the 664. | output is connected on the
PCLK_60X E18 |U434 [0 |MPC970 PCLK_EN output. planar to the X_CLOCK input.
— =1 outpy The MPC970 drives the
X_PCLK_60X D19 |Ul.212 |I The SYSCLK input of the CPU. CLOCK outputs, and the
SRAM_BCLKO W30 |U4.44 O | MPC970 BCLK1 output. normal consumer of that clock
X_SRAM_BCLKO |Y29 |U7.51 |I |The CPU bus clock input of SRAM | IS connected to the X_CLOCK
bank 0 input. A series termination
. resistor and/or EMC
SRAM_BCLK1 AE30 | U4.46 O | MPC970 BCLK2 output. components can be used as
X_SRAM_BCLK1 [AF29 |U8.51 | The CPU bus clock input of SRAM | determined by the application.
bank 1.
SRAM_BCLK2 AGO04 | U4.48 O | MPC970 BCLKS3 output. MPC970
X_SRAM_BCLK2 [AFO05 [U9.51 | The CPU bus clock input of SRAM
bank 2. CLOCK ™
SRAM_BCLK3 AAO04 | U4.50 O | MPC970 BCLK4 output.
. Consumer
X_SRAM_BCLK3 Y05 |U10.51 |I The CPU bus clock input of SRAM
bank 3. X_CLOCK|=
TAG_BCLK N30 |U4.36 O | MPC970 BCLK_EN output.
X_TAG_BCLK P29 U5.69 | The CLK input of the TAG.
664_PCl_CLK J30 U4.18 O | MPC970 PCI_CLK1 output. Normally connected to PCI_CLK_IN. This
clock is intended to be run at one half of the CPU bus frequency. See
the PCI Bus section.
PCI_CLK_IN K29 u2.123 |1 660 PCI_CLK input. Normally connected to 664_PCI_CLK.
USER_PCICLK1 AEO1 [U4.16 O | MPC970 PCI_CLKO output. These User PCI Clock outputs
USER PCICLK2 |NO1 |U421 |O |MPC970 PCI_CLK2 output. are intended for use as PCI
clocks on the planar. They are
USER_PCICLK3 Cc0o1 U4.23 O | MPC970 PCI_CLK3 output. nominally one half ~ the
USER_PCICLK4 All U4.25 O | MPC970 PCI_CLK4 output. frequency of the CPU bus
USER PCICLKS |Al4 |U429 |O |MPC970 PCI_CLK5 output. gle();t(on See the PCl Bus
USER_PCICLK6 E33 | U4.32 O | MPC970 PCI_CLK®6 output. '
Clock Control (See MPC970 data sheet for more information.)
CLK_601_CLKS K27 U4.40 | MPC970 input. Tie to GND for normal operation.
CLK_BCLK_DIVO |C16 U4.31 | MPC970 input. Tie to GND for normal operation.
CLK_BCLK_DIV1 |B17 u4.27 | MPC970 input. Tie to GND for normal operation.
CLK_COM_FRZz A18 u4.6 | MPC970 input. Pull high or allow to float for normal operation.
CLK_EXT_FB Al7 u4.14 | MPC970 input. Pull high or allow to float for normal operation.
CLK_FB_SEL A15 u4.9 | MPC970 input. Pull high or allow to float for normal operation.
CLK_FRZ_STB F33 u4.4 | MPC970 input. Pull high or allow to float for normal operation.
CLK_MR/3S Al6 u4.2 | MPC970 input. Pull high or allow to float for normal operation.

G5220297-00

2-3

Section 2 — Signals

Preliminary PowerP

Table 2-3. Clock Signals (Continued)

Signal Name MCM Nodes! [Description (See MPC970 data sheet for more information.)
CLK_PCI_DIVO B21 U4.20 | MPC970 input. Pull high or allow to float for normal operation.
CLK_PCI_DIV1 C20 ([U4.26 | MPC970 input. Tie to GND for normal operation.
CLK_PLL_EN D33 u4.7 | MPC970 input. Pull high or allow to float for normal operation.
CLK_REF_SEL B13 u4.8 | MPC970 input. Pull high or allow to float for normal operation.
CLK_TTL_CLK A26 U4.11 | MPC970 input. Pull high or allow to float for normal operation.
CLK_VCO_SEL Al13 U4.52 | MPC970 input. Tie to GND for normal operation.
FRZ_CLK B11 u4.3 | II:/.IP|§3970 input. Can be connected to the ISA clock for use, or pulled
igh.
FRZ_DATA A22 u4.5 | MPC970 input. Pull down to GND for normal operation.
XTAL1 u30 U4.12 /0 | MPC970 crystal connection.
XTAL2 T29 U4.13 /0 | MPC970 crystal connection.
1. The following lists the names for the various nodes:

Ul =PPC 603e US = IDT Tag RAM

U2 = 664 U6 = "245 Buffer Chip

U3 =663 U7 — U10 = SRAMs

U4 = MPC970 Clock Driver
2.1.2 CPUBus

Table 2-4. CPU Bus Signals

Signal Name MCM Nodes Description
AJ0:31] (o) |ug, I/O | CPU address bus. Represents the physical address of the current
U2, I/O | transaction. Is valid from the bus cycle in which TS# is asserted through
U5, | the bus clock in which AACK# is asserted.
U6 | The CPU drives A[0:31] during transactions mastered by the CPU. The
660 drives A[0:31] while broadcasting CPU address bus snoop cycles in
response to a PCI to memory transaction.
The CPU and 660 snoop A[0:31] during transactions initiated by other
CPU bus agents.
AACK# R0O8 R1.A02 |pu |CPU bus address acknowledge. The CPU bus target (660 or external
U1.28 I/0 | CPU bus target) asserts AACK# to signal the end of the current address
U2.109 |[1/O [tenure. 660 also asserts AACK# for one clock to signal the end of a
broadcast snoop cycle.
AACK# is an input to the 664 when a CPU bus target claims the current
transaction by means of L2_CLAIM#. AACK# is always an input to the
CPU.
ABB# R30 |R1.A01 |pu [CPU busAddressBusBusy. While asserted, the address bus is busy. The
U1.36 I/0 | 660 does not touch this signal.
APO AJ30 (R1,U1 pu [CPU bus Address Parity. One bit of odd (see DP[0:7]) parity per byte. APO
AP1 AH29 [same /0 | maps to A[0:7], AP1 maps to A[8:15], AP2 maps to A[16:23], and AP3
AP2 AG30 [same maps to A[24:31]. The 660 does not check address parity.
AP3 AE28 |[same
APE_60X# AA18 [R1.FO3 |pu |CPU Address Parity Error output. The CPU signals address parity errors
U1.218 |O |[using this open drain output. The 660 does not touch this signal.
ARTRY# P07 R1.A03 |pu [CPU busAddress Retry. ARTRY#is asserted by a CPU bus device (either
U1.32 I/O | the target or a snooping master) to signal that the current address tenure
U2.110 |1/O | needs to be rerun at a later time.
The 660 samples ARTRY# (during broadcast snoops and transactions by
CPU busmasters) on the second clock after TS# is sampled active. 660
will only assert ARTRY# on the clock after it asserts AACK# (during a PCI
retry).
See the 603e User’s Manual for more information.
BG_664# F11 U2.134 |O |660 CPU_GNT1# — 660 asserts to grant the address bus to CPU1, the
MCM CPU.

2-4 G5220297-00

PowerP

Preliminary Section 2 — Signals

Table 2-4. CPU Bus Signals (Continued)

Signal Name MCM Nodes Description
BG_60X# FO9 ([R1.BO1 [pu |CPU BG# — CPU address bus grant input. Normally connected to
u1.27 I BG_664#.
BG_MASTER# N20 U2.135 |O |660 CPU_GNT2# — 660 asserts to grant the bus to a second CPU
busmaster.
BR_60X# FO3 R1.A05 |pu | CPUBR#-The CPU asserts this output to request the CPU address bus.
U1.219 |[O [Normally connected to BR_664#.
BR_664# D03 u2.127 I | 660 CPU_REQ1#—660 CPU bus requestinput for CPU1, the MCM CPU.
BR_MASTER# AGO1 | R1.HO5 | pu | 660 CPU_REQ2# - 660 CPU bus requestinput for CPU2, a second CPU
u2.128 I [busmaster.
Cl_60X# L10 R1.J02 |[pu [CPU Cache Inhibit output. Asserted to indicate that a single-beat
U1.237 |O |[transaction should not be cached. See 603e UM.
CKSTP_IN# W16 ([R1.D02 |pu |CPU ChecKSToP INput. When this signal is asserted, the CPU will enter
u1.215 |1 checkstop.
CKSTP_OUT# AJ02 [R1.J01 |pu |CPU ChecKSToP OUTput. The CPU asserts this open drain output to
U1.216 |O |[indicate that it has detected a checkstop condition and has entered the
checkstop state.
CSEO M09 |U1.225 |O |CPU Cache Set Element 0 output. See 603e UM.
CSE1 C12 U1.150 |[O [CPU Cache Set Element 1 output. See 603e UM.
D[0:63] U1, I/O [The 64-bit CPU data bus. DO is the MShit. D[0:31] connect to CPU DH[0:31].
U3, I/O [D[32:63] connect to CPU DL[0:31]. D[0:63] also connect to the 660
SRAM I/O [CPU_DATA[0:63], and to the SRAM.
DBB# Co08 R1.C04 |pu |CPU Data Bus Busy signal. The CPU that validly asserts DBB# is the
U1.145 |1/O |current CPU busmaster. The 660 does not touch this signal.
DBDIS# K21 R1.A04 |pu |CPU Data Bus DISable input. See 603e UM.
U1.153 |1
DBG_60X# G08 U1.26 I | CPU bus Data Bus Grant. 660 asserts DBG# (while ARTRY# is inactive)
(10) U2.140 | O |to signal that the requesting CPU may take ownership of the CPU data
bus. DBG# is input-only on the CPU. External agents must not drive this
signal.
DBWO_60X# N16 |R1.D05 |pu |CPU DataBus Write Only input. Asserted to allow the CPU to run the data
Ul1.25 | tenure of a write out of order. See 603e UM.
DP[0:7] U1, I/0 | CPU Data Parity bus. DPO maps to D[0:7], DP1 maps to D[8:15], ... DP7 maps to
U3, I/0 | D[56:63]. Odd parity is used; an odd number of bits (including the parity bit) are
SRAM I/O | driven high.
DPE_60X# AC18 |R1.FO2 |pu |CPU Data Parity Error. The CPU checks data parity and reports any data
(/O) |U1.217 |O |beatwith bad parity two CPU bus clocks after the TA# for that data beat.
u2.133 |I DPE# is output-only on the CPU, and input-only on 660. 660 samples
DPE# to detect L2 parity errors.
DRTRY# AJO1 [R1.HO1 |pu |CPU Data Retry input. When asserted, means that the CPU must
u1.156 || invalidate the data from the previous read data beat. DRTRY# is also
sampled at the negation of HRESET# to set the DRTRY# mode. See the
application section for details.
GBL# Al12 ul.1 I/O [Global. This signal is asserted during snoop operations to indicate that CPU
U2.120 O | busmasters must snoop the transaction. 660 does not monitor GBL#.
HRESET# E32 R1.D04 |pu |CPU Hard RESET input. Initiates hardware reset operations. See 603e
ul1.214 |1 UM for more information.

G5220297-00

Section 2 — Signals

Preliminary PowerP

Table 2-4. CPU Bus Signals (Continued)

Signal Name MCM Nodes Description

L2_CLAIM# ALO1 U2.132 I | 660 CPU_BUS_CLAIM#input. This signalis asserted by an external CPU
bus target to claim a CPU bus memory transaction. It inhibits the 660 from
driving AACK, TA#, TEA#, and the CPU data bus lines. L2_CLAIM#
connects only to 660.
L2_CLAIM# is sampled by the 660 on the second CPU_CLK after TS# is
sampled active. CPU bus targets can only map to system memory space
(0to 2G) and only to memory space that is not cached by the 660 L2. The
660 L2 caches as much of the space from 0 to 2G as is populated by
DRAM. So, if 8M is installed starting at 0, L2_CLAIM# can be asserted
from 8M to 2G. If the internal L2 is disabled, then the entire 0 to 2G
memory space can be claimed by L2_CLAIM#.

MCP_60X# R16 R1.H02 | pu | CPU MCP# Machine Check Pin input. The CPU enters either a machine

Ul.186 I [check interrupt operation or a check stop state, depending on the state

of the machine.

X_MCP_60X# H27 U2.138 |[O |660MCP#Machine Check Pin output. The 660 drives this pin to notify the
CPU of a system error from a source which may not be affiliated with the
current transaction. The 660 asserts MCP# in the event of a catastrophic
or unrecoverable system error. The 660 asserts MCP# for two CPU bus
cycles.

PLL_CFGO D25 u1.213 |1 CPU Phase Lock Loop Configuration Inputs. See the 603e UM for more
PLL_CFG1 B27 ui1.211 |1 information. Normally set to PLL_CFGJ[0:3] = 1100 for 99MHz CPU core
PLL_CFG2 A27 u1.210 |1 and 66MHz CPU bus operation.
PLL_CFG3 C28 |U1.208 |I
QACK_60X# D17 R1.E03 |[pu |CPU Quiesce Acknowledge input. Indicates that the other CPU bus
Uu1.235 |I agents have ceased any bus activity that the CPU has to snoop. QACK#
is sampled at the negation of HRESET# to select 32-bit mode. Drive
QACK# low during HRESET# with an open collector gate to select 64-bit
mode. See the applications section for details.
QREQ_60X# C18 U1.31 O | CPU QREQ# Quiescence Request output. The CPU is requesting a low
power mode. See the 603e UM.
RSRV_60X# G16 |[U1.232 [O | Represents the state of the Reservation bit. See 603e UM.
SHD# D27 U2.141 | I/O | 660 Shared output. The function of this pin is to restore the SHD# net to a high state
after it has been asserted. This pin is not used, and should be weakly pulled up.
SMI# ALO2 |R1.FO5 |pu |[CPU System Management Interrupt. The CPU initiates an interrupt if
u1.187 |1 MSR[EE] is set (603e), else itignores the input. Active low, level sensitive,
unlatched.
SRESET# D31 U1.189 |I CPU Soft RESET input. Async falling edge sensitive. Initiates reset
exception. See 603e UM for more information.
TA# AA16 [R1.CO5 |pu |CPU bus Transfer Acknowledge. TA# signals that the data is valid. For
(/O) |uU1.155 |1 every CPU clock that TA# is asserted, a data beat completes. For a
U2.111 | /O |single-beat cycle, TA# is only one clock.
TBEN_60X# L16 R1.EO01 |pu [CPU Time Base Enable input. See 603e UM. Leave this input pulled high
u1.234 |1 for normal operation.
TBST# ul10 R1.CO3 |pu |Transfer burst. TBST# indicates a burst transfer of four 64-bit
U1.192 |I/O | double-words on the 60X CPU bus.
U2.144 |1/O | The 664 does not assert TBST# during PCI to memory snoop cycles.
TCO G28 |[U1.224 [O [CPU Transfer Code outputs. See the 603e UM.
TC1 L30 ul1.223 (O
TEA# N10 R1.D01 |pu |CPU bus Transfer Error Acknowledge. Assertion of TEA# terminates the
(/o) |u1.154 |1 current data tenure, and causes a machine check exception (or
U2.137 | O |checkstop) in the CPU. The 664 asserts TEA# in the event of a
catastrophic or unrecoverable system error.
TEA# can be masked by setting the mask TEA# bit in the bridge control
registers.
If XATS# is asserted, the 660 asserts TEA# regardless of the state of
MASK_TEA#.

2-6 G5220297-00

PowerP

Preliminary Section 2 — Signals

Table 2-4. CPU Bus Signals (Continued)

Signal Name MCM Nodes Description
TLBISYNC# J16 R1.E02 |pu [CPU TLBI sync input. See 603e UM.
u1.233 |I
TS# LO8 R1.B02 |pu |CPU bus transfer start. TS# is asserted low for one CPU bus clock to
U1.149 |1/O |signal a valid address on the address bus to start a transaction.
U2.143 |1/O | TS# is an input to the 664 when a CPU busmaster initiates a CPU bus
transaction.
TS# is an output of the 664 when it initiates a snoop cycle on behalf of a
PCI busmaster accessing system memory.

TSIZ0 LO6 R1, pu [CPU bus Transfer Size in number of bytes. The TSIZ lines are valid with

TSIZ1 NO6 Ui, O | the CPU address lines.

TSIZ2 RO6 |U2 I/0

TTO A19 uU1,u2 I/0 | CPU bus TT[0:4] Transfer Type. Indicates the type of transaction currently

TT1 B19 u1,u2 in progress. The TT lines are valid with the CPU address lines. TT2

TT2 A20 Ul connects only to the CPU. Normally connect TT2 to TT2_664.

TT3 A21 u1i,u2

TT4 A23 | ULU2

TT2_664 Cl14 |U2.153 |1/O | 660 TT2. Connectto TT2.

WT_60X# D15 R1.HO3 |[pu |[CPU Write Through output. Asserted to indicate that a single-beat

U1.236 |O |[transaction is write-through.
XATS# K07 R1.B03 |pu | CPU bus eXtended Address Transfer Start for PIO operations, which are
u2.129 |1 not supported by the 660. If XATS# is asserted, the 660 generates a TEA#
error to the CPU (regardless of the setting of MASK_TEA#). The 603e
CPU does not have an XATS# output. This pin is not normally connected.
2.1.3 PCIBus
Table 2-5. PCI Bus Signals

Signal Name MCM Nodes Description

664_PCI_REQ# |AF01 [U2.58 O | 660 PCI_REQ# PCI bus request. The 660 asserts PCl_REQ# to the PCI
bus arbiter to request the PCI bus.

CPU_GNT_664# | AG02 |U2.54 | 660 PCI_GNT# PCI bus grant input. PCI_GNT# is driven by the PCI bus
arbiter in response to the 660 asserting PClI_REQ# to request the PCI
bus.

PCI_AD[31:0] U2,U3 |[1/O | 660 PCI multiplexed Address—Data bus. A PCI bus transaction consists
of an address phase followed by one or more data phases. The address
tenure is defined as one PCI bus clock in duration and is coincident with
the clock in which PCI_FRAME# is first asserted. After the first clock, the
PCI_AD pins carry data. The PCI_AD lines are driven by the initiator dur-
ing the address phase, and by the originator of the data (initiator or target)
during the data phases.

PCI_C/BE[3:0]# [VO01 u2.6 1/0 | 660 C (bus command) and BE (byte enable) multiplexed lines. During a
wo02 ([u25 I/0 | PCI address phase C[3:0] carry the bus command. During a PCI data
wo1 (u2.4 /0 | phase, PCI_C/BE[3:0]# are active low byte enables; BEO# enables
Y01 u2.3 I/0 | AD[7:0], BE1# enables AD[8:15], BE2# enables AD[16:23], and BE3# en-

ables AD24:31].
The initiator drives C/BE[3:0]#. If no bus transaction is in progress, then
the current PCI busmaster must drive the PCI_C/BE[3:0]# pins.

PCI_DEVSEL# AAO02 [U2.204 |I1/O | 660 PCI device select. PCI_DEVSEL# is driven by a PCI target that is
claiming the current transaction.

The 660 claims PCI memory transactions from 0 to 2G within the installed
DRAM space.

PCI_FRAME# ACO1 [U2.200 |I/O [660 PCIl Frame. The current PCI busmaster drives PClI_FRAME#.
PCI_FRAME# signals the beginning of the address tenure on the PCl bus
and the duration of the data tenure. PCI_FRAME# is deasserted to signal
the final data phase of the transaction.

G5220297-00

2—7

— P
Section 2 — Signals Prellmlnary pl‘l.werpﬁ

Table 2-5. PCI Bus Signals (Continued)

Signal Name MCM Nodes Description

PCI_IRDY# ABOl1 | U2.201 |I/O |660 PClinitiator ready. PCI_IRDY# is driven by the current PCI busmas-
U3.167 ter. Assertion of PCI_IRDY# indicates that the PCI initiator is ready to

complete this data phase.
PCI_LOCK# AEO4 [U2.53 | 660 PCI lock. This signal is used to allow PCI masters to establish a re-

source lock of one cache line of system memory. The 660 never asserts
LOCK# as a master, but it honors PCl busmaster locks of system memory.

PCI_PAR AHO1 [U2.7 I/0 | 660 PCI parity. Even parity across AD[31:0] and the C/BE[3:0}# lines.
PCI_PARisvalid one PCl bus clock after either an address or data tenure.
The PCI device that drove the PCI_AD lines is responsible for driving
PCI_PAR. The 660 checks and drives PCI parity.

PCI_PERR# uo1 U2.10 1/0 | 660 PCI parity error. PCI_PERR# is asserted by the PCI device receiving
the data. PCI_PERR# is sampled on the second PCI clock after the
PCI_AD lines are sampled.

PClI_SERR# u02 u2.71 O | 660 PCI system error. PCI_SERR# is asserted for one PCI clock when a
catastrophic failure is detected while the 660 is a PCl target. PCI_SERR#
is not monitored by the 660. The 660 asserts PCI_SERR# for certain PCI
bus errors.

PCI_STOP# AAO01 [U2.203 |I/O | 660 PCI stop. The target of the current PCI transaction can assert
PCI_STOP#to indicate that the PCI target wants to end the current trans-
action. Data transfer can still take place if the target also asserts
PCI_TRDY#, but that is the final data tenure.

PCI_TRDY# ACO02 [U2.02 I/O | 660 PCI target ready. The target of the current PCI transaction drives
U3.168 PCI_TRDY# to indicate that the PCI target is ready. Data transfer occurs
when both PCI_TRDY# and PCI_IRDY# are asserted.

214 DRAM

Table 2-6. DRAM Signals

Signal Name MCM Nodes Description

MA[11:0] u2 O | 660 multiplexed Memory address. MA[11] is the most significant bit.

MCE[7:0]# u2 O | 660 CAS[7:0]# Column address selects. CAS[0]# selects memory byte
lane 0.

MDI[63:0] /0 | 660 MEM_DATA[63:0] Memory data bus. MD[63:56] is always called

memory byte lane 7 and is accessed using CAS[7]#.
MEM_DATA[7,15,...63] are always the most significant bit in their memory
byte lane.
In BE mode, MEM_DATA[63:56] is steered to/from CPU_DATA[56:63]. In
LE mode, MEM_DATA[63:56] is steered to/from CPU_DATA[0:7].

Most Mem

MEM Signif. Byte Corresponding CPU Data []in:

DATA Bit Lane CAS# BE mode LE mode

63:56 63 7 7 56:63 0:7

55:48 55 6 6 48:55 8:15

47:40 47 5 5 40:47 16:23

39:32 39 4 4 32:39 24:31

31:24 31 3 3 24:31 32:39

23:16 23 2 2 16:23 40:47

15:8 15 1 1 8:15 48:55

7:0 7 0 0 0:7 56:63
MDP[7:0] u3 /0 | 660 MEM_CHECK][7:0] Memory ECC/parity bus. MDP[0] is always the

memory check bit for memory byte lane 0 (MD[7:0]). ECC or even parity
is generated and written on memory write cycles when enabled. ECC or
even parity across eight bytes is checked on memory read cycles when
enabled.

2-8 G5220297-00

PowerP

Preliminary Section 2 — Signals

Table 2-6. DRAM Signals (Contnued)

Signal Name MCM Nodes Description
MRE[7:0]# u2 O | 660 RAS[7:0]# Row Address Selects.
MWEO# M33 |U2.176 |O |[660 WE[1:0]# DRAM Write Enables. WE[1]# and WE[O]# are the same
MWE1# N33 |U2.175 |O |and are used to avoid the need for external buffers.
215 L2
Table 2-7. L2 Signals
Signal Name MCM Nodes Description
ABUF[13:28] ué6 O | Buffered CPU A[13:28], for the SRAM.
SR |
DIR_245_A G22 UGA.1 | SRAM address buffer A Direction input. Pull low for normal operation.
U6A.24 |1
DIR_245 B L22 U6B.1 | SRAM address buffer B Direction input. Pull low for normal operation.
ueB.24 |1
OE_245 B# D29 UBA.25 |1 SRAM address buffer (A & B) Output Enable input. Pull low for normal operation.
U6A.48 |I
u6B.25 |1
ueB.48 |1
SRAM_ADSH#/ N22 U2.124 | O |660SRAM ADdress Strobe. Enables latching of new address for the burst SRAM.
ADDRO SR.2 |
SRAM_ADSP# AKO3 | SR.1 | SRAM ADSP# input. Pull high for normal operation.
SRAM_ALE u22 U2.119 |O | 660 SRAM Address Latch Enable. This signal is always high when burst SRAMs
are used. This signal is not used on the MCM.
SRAM_CNT_EN [R22 U2.125 |O |660 SRAM CouNT ENable. Enables incrementing of burst address for the burst
#/ SR.52 | SRAM.
ADDR1
SRAM_CS# AD29 | SR.5 | SRAM Chip Select. Pull to GND for normal operation.
SRAM_OE# AA22 | SR.50 | SRAM Output Enable input.
X_SRAM_OE# | G26 U2.117 |[O | 660 SRAM Output Enable output. Connect to SRAM_OE# for normal operation.
SRAM_WE# W22 (U2.114 |O [660SRAM Write Enable.
SR.3,4 |
TA_GATES N24 Us.23,2 |1 TAG TT1, TAH, & TAIN# tied together and pulled high with 2 resistors. Leave pulled
7,28 high for normal operation.
TAG_ADDR_13 L26 U5.33 | TAG A13. Pull high for 256K L2. Connect to A13 for 512K L2.
TAG_A_IN ACO04 | UBA 1/0 | SRAM buffer spare inputs. Pull to GND or Vdd for normal operation.
TAG_CLR# AC22 |U2.116 |O |660Tag RAM clear. When asserted, all tags are forced to the invalid state. See the
U5.70 | L2 Invalidate BCR.
TAG_CS1# C33 U5.75 | TAG CS1# Pull this pin to GND for normal operation.
TAG_CS2 H31 U5.76 | TAG CS2. Pull this pin high for normal operation.
TAG_DATA_11 M27 [U5.65 | TAG D13. Connect to A13 for 256K L2. Pull high for 512K L2.
TAG_DTY P25 U5.34 O | TAG DTY/S3 output. Not used by MCM.
TAG_MATCH K31 U5.50 (@] TAG match indication (cache hit). This signal is asserted for a cache hit. It is an
u2.142 | active high, open drain output of the tag RAM. Pull this signal to 3.3v with a 200 ohm
(nominal) resistor.
TAG_PWRDN# M31 Us.77 | TAG Power down mode control. Pull this pin high for normal operation.
TAG_SFUNC C32 uUs.22 | TAG Status Bit Function Control input. Pull to GND for normal operation.
TAG_TA# N28 U5.51 O | TAG TA# output. Not used by MCM.
TAG_VALID AC20 | U2.115 (@] 660 Tag valid bit. The 660 asserts TAG_VALID to mark the current block valid in
U5.80 | the tag. It is negated during tag writes in response to PCI write hits, etc.
TAG_VLD L28 U5.54 O | TAG VLD/S1 output. Not used by MCM.

G5220297-00

2-9

Section 2 — Signals

Preliminary

PowerP

Table 2-7. L2 Signals (Continued)

Signal Name MCM Nodes Description
TAG_WE# AA20 | U2.114 | O | 660 Tag RAM write enable. Asserted to write to the Tag RAM.
U5.73,7 |1
4
TAG_WT J28 us.47 O | TAG WT/S3 output. Not used by MCM.
TAG_WT _DTY_I |L24 U5.5,6 | TAG DTY/S2inputtied to WT/S3 inputand pulled high. Leave pulled high for normal
N R1.G04 |pu |operation.
TAOE# P31 Us.23,2 |1 TAG TAOE#, OE_STAT#, and OE_TAG# signals wired together & pulled up. Leave
7,28 pu pulled up for normal operation.
R1,R1 |pu
2.1.6 System Interface
Table 2-8. System Interface Signals
Signal Name MCM Nodes Description
IGN_PCI_AD31 ADO1 |U2.57 | 660 Ignore PCI_ADI[31] input. This signal is required when the Intel™
SIO is the PCI master, because it does not latch ISA_MASTER on
posted ISA writes to O to 16M. IGN_PCI_AD31 is used to allow ISA
busmasters to access system memory when the SIO is used as the ISA
bridge. The 664 expects the memory address to appear in the range of
0 to 16M (it actually works over the entire 0-2G range) during the
address phase when IGN_PCI_AD31 is asserted and then maps the
access to system memory at 0 to 16M. Itis usually generated by ANDing
all of the active PCI bus grants (see note 1). IGN_PCI_AD31 must be
valid on the PCI clock before FRAME# is sampled active.
GNT 0
Z —_>7 IGN_PCI_AD31
GNT n ————
664_STOP_CLK_ | B29 R1.FO4 |pu [660 input. Prepares the 660 for stopping the CPU_CLK during power
EN# u2.151 |1 management. This feature is not supported. Leave this pin pulled high
for normal operation.
Exceptions
INT_TO_664 B31 U2.55 | 660 INT_REQ Interrupt request input. The 660 synchronizes this signal
from the interrupt controller to the CPU bus clock and passes it through
to the CPU as an interrupt.
INT_60X# ul6 R1.D03 |[pu [CPU INT# Interrupt input. The CPU initiates an interrupt if MSR[EE] is
u1.188 || set (603e), else it ignores the input. Active low, level sensitive,
unlatched.

X_INT_60X# F31 U2.139 |O |[660 INT_CPU# CPU interrupt output. The 660 asserts INT_CPU# to
signal the CPU to run an interrupt cycle. The software is expected to
eventually run a PCI interrupt acknowledge transaction to get the
interrupt vector. 660 can assert INT_CPU# in response to an INT_REQ
input. Normally connected to INT_60X#

NMI_FROM _ A3l U2.56 | 660 NMI_REQ input. Non—-maskable interrupt request. When detected

ISABRDG active (normally from the ISA bridge), an error is reported to the CPU.

POWER_GOOD/ A28 u2.156 |1 660 Power—On—RESET#. While this pin is low, all latches in the 664

RESET# enter a pre—defined state. Clocking mode is re-sampled, and ROM write
lockout is cleared.

ROM

ROM_OE# V31 uz2.47 O | 660 ROM output enable. ROM_OE# enables direct-attached ROM.
This signal is always high during remote ROM operation.

ROM_WE# T31 U2.60 O | 660 ROM write enable. Write enable for flash ROM for direct-attach
ROM. This signal is always high during remote ROM operation.

2-10 G5220297-00

PowerP

Preliminary Section 2 — Signals

Table 2-8. System Interface Signals (Continued)

Signal Name |MCM | Nodes [Description

Daisy Chain

Daisy01 EO4, D05 The DAISYxx columns are arranged in pairs which are connected to

Daisy02 E06, DO7 ea<_:h other. For example, Daisy01 consists of columns E04 and D05,
- which are connected to each other.

Daisy03 E08, D09

Daisy04 E10, D11

Daisy05 E12, D13

Daisy06 E30, F29

Daisy07 E28, F27

Daisy08 E26, F25

Daisy09 E24, F23

Daisy10 E22, F21

Daisy11 AKO5, AKO7

Daisy12 AKO9, AK11

Daisy13 AK13, AK15

Daisyl4 AK17, AK19

Daisy15 AK21, AK23

Daisy16 ADO03, AF03

Daisy17 Y03, AB0O3

Daisy18 TO3, VO3

Daisy19 MO03, P03

Daisy20 HO3, K03

Power & Ground

60X_AVpp B02 U1.209 603e Analog VDD. Bypass as recommended in the 603e

documentation.

Vbb1

Vbp2

Vbb3

Vss (GND)

2.1.7 660 InterChip Communication

These signals provide communication between the 663 and the 664. They are generally
not intended for use by the system. Note that CPU_RDL_OPEN requires a resistor or other
delay component between the 663 and the 664. For more information, see Section 2 of the
660 User’s Manual.

Table 2-9. InterChip Communication Signals

Signal Name MCM Nodes Description
663 CPU_PAR_ G18 u2.192 |1 660 CPU_PAR_ERR# signal. CPU Data Bus Parity Error. When as-
ERR# U3.174 | O | serted, this signal indicates a parity error on the CPU data bus during
a write cycle.
AOS_RR_MMRS W20 [U2.69 O | 660 All Ones Select/ROM Remote/Mask MEM_RD_SMPL signal. This
u3.166 |I signal is used to force the data bus to 64 one-bits.

While ROM_LOAD is asserted, this signal is used to determine the
location of the ROM.

When the PCI is burst reading memory, MASK_MEM_RD_SMPL is
asserted after the first MEM_RD_SMPL, and stays asserted until the
PCl-to—MEM read latch is empty.

G5220297-00

2-11

Section 2 — Signals

Preliminary

PowerP

Table 2-9. InterChip Communication Signals (Continued)

Signal Name

MCM

Nodes

Description

C2P_WRL_OPEN

AAl4

U2.61
U3.154

660 CPU-to—PCl Write Latch Open signal. When asserted, the
CPU-to—PCI write latch accepts new data on each CPU_CLK. When
deasserted, the CPU—-to—PCI write latch holds its current contents.

CPU_DATA_OFE#

J14

U2.197
U3.146

660 CPU Data Output Enable signal. When asserted, the 663 drives the
CPU_DATA bus on the next CPU_CLK.

CPU_RDL_OPEN

G12

U2.50

664 CPU Read Latch Open output. When asserted, the CPU read latch
accepts new data on each CPU_CLK. When deasserted, the CPU read
latch holds its current contents.

This signal is asserted when data is to be sampled from memory or the
PCI.

When sampling data from memory, this signal is also active on the fol-
lowing CPU_CLK to allow ECC corrections to occur if necessary. If no
ECC corrections occur, the same data is provided by the MEM read
ECC correction logic.

X_CPU_RDL_

OPEN

G10

U3.148

663 CPU Read Latch Open input. See the 660 User’s Manual for more
information.

Add a 20022 (nominal) series resister to the CPU_RDL_OPEN net
between the 664 and the 663. During a CPU to memory read, if (at the
663) CPU_RDL_OPEN goes low before MEM_RD_SMPL goes low,
then the 663 may provide incorrect data to the CPU. The Table shows
the minimum required interval between the falling edge of
MEM_RD_SMPL and the falling edge of CPU_RDL_OPEN.

Case 663 664
Requires Supplies

1 Worst Case Process, Temperature, & Vpp >1.8ns 1.3ns

2 Best Case Process, Worst Case Temp. & Vpp > 0.2ns 0.5ns

3 Best Case Process, Temperature, & Vpp >0.1ns 0.3ns

The worst practical case occurs while the 664 is at Case 2 (provides .5ns
difference) and the 663 is at Case 1 (requires 1.8ns difference). This re-
quires that a minimum delay of 1.3ns be added to the CPU_RDL_OPEN
signal. A delay of 2.4ns is recommended to allow a conservative margin
of error. (Delay = RC = 200Q * 12pf = 2.4ns). Note that this assumes
the CPU_RDL_OPEN and MEM_RD_SMPL nets are both about three
inches long and that the resister is close to the 664. A different resister
value or an R-C combination may be required if the length or capaci-
tance of the two nets are significantly different, or if the resister
placement differs significantly.

CRS_C2PWXS

A29

U2.65
U3.151

660 CPU Read Select/CPU-to-PCI Write Crossover Select signal.
When the CPU read latch is sampling data, this signal controls the CPU
read multiplexer.

When the CPU-to-PClI write latch is sampling data, this signal controls
the CPU-to-PCl write crossover. Pull down with a 1K (nominal) resistor
to select (during reset) direct-attach ROM.

DUAL_CTRL_REF

N12

U2.205
U3.170

660 Control Signal Mux Select signal. For 663 inputs that have two func-
tions this signal selects the function. This signal is generated by dividing
CPU_CLK by two. This is a useful first point to check when debugging
a "dead” system.

ECC_LE_SEL

L12

uz2.2
U3.149

660 ECC Select/Little-Endian Select signal. This signal indicates use of
ECC or byte parity when DUAL_CTRL_REF is high and indicates use
of little-endian or big-endian mode when DUAL_CTRL_REF is low.

M

EM_BE[3:0]

u2.uU3

660 Memory Byte Enables signal. The eight BEs for read-modify-write
memory cycles are multiplexed on MEM_BE[3:0].

When not running a read-mod-write cycle MEM_BE[3:0] should indicate
all data lanes are enabled—MEM_RMW_BE[7:0]# all asserted low.

M

EM_DATA_OFE#

L14

U2.196
U3.145

660 Memory Data Output Enable signal. When asserted, the 663 drives
the MEM_DATA bus on the next CPU_CLK.

2-12 G5220297-00

pl‘l.werpc Preliminary Section 2 — Signals

Table 2-9. InterChip Communication Signals (Continued)

Signal Name MCM Nodes Description
MEM_ERR# J20 u2.194 |1 660 Memory Error signal. When asserted, indicates an uncorrectable
(663_MEM_ERR#) U3.171 |O | multi-bit or parity error has occurred during a memory read. This signal

is only valid on the third CPU_CLK after MEM_RD_SMPL is asserted.

MEM_RD_SMPL J12 U2.49 O | 660 Memory Read Sample signal. This signal is used by the ECC logic
U3.161 to determine when to sample ECC results. This signal is also used by
the PCl read extension latch and the PCI-to-MEM read latch to load new
data.

MEM_WRL_OPEN | AC14 (U251 O | 660 Memory Write Latch Open signal. When asserted, the MEM write
U3.150 latch accepts new data on each CPU_CLK. When deasserted, the MEM
write latch holds its current contents.

MWS_P2MRXS C30 U2.66 O | 660 Memory write select/PCl-to-memory read crossover select signal.
u3.152 |1 When the memory write latch is sampling data, this signal controls the
memory write multiplexer. Pull up with 10K Q (nominal) resistor to select
(during reset) 603e in 3:2 core:bus clock mode.
PCI_AD_OE# N14 U2.195 |O [660 PCI Data Output Enable signal. While asserted, the 663 drives the
u3.144 |1 PCI_AD bus. Note: This is an asynchronous input to the 663.
PCI_EXT_SEL u14 U2.67 O | 660 PCl Read Extension Select/PCl Write Extension Select signal.
U3.153 |1 When the PCl is reading from memory, this signal controls the PCl read

extension multiplexer.

PCI_OL_OPEN W14 (U2.64 O | 660 PCI Other Latches Open signal. This signal controls the latch en-
U3.165 ables for the PCI-to-MEM read latch, the PCI read extension latch, and
the PCI write extension latch.

PCI_OUT_SEL R14 U2.68 O | 660 PCI Output Select signal. When asserted, memory data is routed

u3.169 |I to the PCI output bus, else CPU data is routed to the PCI output bus.
This signal is asynchronous.
ROM_LOAD u20 u2.70 O | 660 ROM Load signal. This signal is used to load data from a ROM one
u3.160 |1 byte at a time until eight bytes are received, then pass the eight bytes
to the CPU.
663_SBE# G20 |[U2.193 |I 660 SBE# Single-Bit Error signal. When asserted, indicates a correct-

U3.175 |O | able single-bit error has occurred on the memory data bus. This signal
is valid only on the CPU_CLK following the assertion of
MEM_RD_SMPL. If the memory is notin ECC mode, this signal is unde-
fined.

2.1.8 Test Signals
Table 2-10. Test Signal Descriptions

Signal Name | MCM | Nodes Description

CPU Test Signals

LSSD_MODE# R18 |R1.E04 |pu |[CPU LSSD test input. Leave this input pulled high during normal
U1.205 |I operation.

L1 TST_CLK# N18 R1.EO05 |[pu |CPU LSSD test input. Leave this input pulled high during normal
u1.204 |1 operation.

L2_TST_CLK# L18 R1.FO1 |pu |[CPU LSSD test input. Leave this input pulled high during normal
u1.203 |1 operation.

60X_CLK_OUT Ji8 U1.221 |O [CPU system CLocK OUTput. CLK_OUT is a clock test output.

TDO C26 U1.198 |O |CPU JTAG serial scan output.

TMS A24 R1.J03 |pu |CPUJTAG TAP controller mode input. Leave this input pulled high during
U1.200 |1 normal operation.

TDI A25 R1.J05 |pu |CPU JTAG serial scan input. Leave this input pulled high during normal
U1.199 |1 operation.

TCK B25 R1.J04 |pu |CPU JTAG scan clock input. Leave this input pulled high during normal
Uu1.201 |1 operation.

G5220297-00 2-13

Section 2 — Signals

Preliminary

PowerP

Table 2-10. Test Signal Descriptions (Continued)

Signal Name MCM Nodes Description

TRST# C24 ([R1.H04 |[pu | CPUJTAG TAP controller reset. Most systems will assert this signal while
u1.202 |1 either HRESET# or TRST# (from the RISCWatch connector) are

asserted. See the applications section.

660 Test Signals

663_MIO_TEST |A30 u3.156 |1 Chip [evel test. Deassert low for normal operation. Do not casually assert

664_MIO_TEST |K05 |Uz154 |1 | s signal.

663_TEST# G14 |U3.155 |I Test mode. Pull to logic high during normal operation. Do not casually as-

664 TEST# J04 |u2.185 |1 |sertthis signal.

2.2 Net Names and MCM Nodes

221

Complete Pin List for MCM

Table 2-11 matches version 5.0 of the schematic. Note that, while all nets on the MCM are
brought to the MCM 1/O, only a subset is intended for customer use (see Table 2-2). The

rest of the I/O signals can be left floating.

Table 2-11. Pin List With Net Names and MCM Nodes

Pinl |Net Name? MCM Nodes 3 Pinl |Net Name?2 MCM Nodes 3
A03 | PCLAD20 U2.24,U3.44 A30 | 663_MIO_TEST U3.156
A04 | PCLAD2L U2.23,03.45 A31 | NMI_FROM_ U2.56
AO5 | PCl_AD23 U2.21,U3.47 ISABRDG
A06 | PCI_AD24 U2.20,U3.48 BO2 | 60X AVDD U1.209
AO7 | PCLAD26 U2.18,U3.50 BO3 | PCLAD18 U2.28,Us.42
AO8 | PCLAD27 U2.15,U3 51 BO4 |VSS
A09 | PCLAD29 U2.13,U3.63 BO5 _|PCLAD22 U2.22,U3.46
AL0 | PCILAD30 U2.12,U3.64 BO6 | vDbD1
ATl [USER POICLa —or BO7 | PCLAD25 U2.19,U3.49
Al2 | GBL# UL.1,02.120 BO8 |VSS
Als ook voo st 0 B09 | PCILAD28 U2.14,U3.62
Al4d | USER_PCICLKS U4.29 B10 VDDl
Al5 | CLK_FB_SEL U4.9 Bil |FRZ CLK u4.3
AL6 | CLK MR/ U2 Bl2 |VSS
TRISTATE B13 | CLK REF_SEL Uas
Al7 | CLK EXT_FB U414 B14 |vDD1L
Al8 | CLK_COM_FRZ U4.6 B15 |vss
Al9 | TTO U1.191,U2.150 B16 |vSS
A20 |TT2 UL.185 B17 | CLK BCLK DIVI Ua.27
A21 |TT3 U1.184,U2.126 B18 |vss
A22 | FRZDATA Ua5 B19 |TTL U1.190,U2.152
A23 |14 U1.180,U2.136 B20 |vDD1
A2 | T™sH R1.J03,U1.200 B21 | CLK_PCLDIVO U4.20
A25 | TDI R1.J05,UL.199 B22 |vss
A26 | CLK TTL CLK U411 B23 |NC
A27 | PLL CFG2 U1.210 B24 | vDD1L
A28 | POWER GOOD/RE- | U2.156 B25 |TCK R1.J04,U1.201
SET# B26 | VSS
A29 | CRS_C2PWXS U2.65,U3.151

2-14

G5220297-00

’ - -
pl‘l.werpﬁ Prellmlnary Section 2 — Signals
Pinl |Net Name? MCM Nodes 3 Pinl |NetName? MCM Nodes 3
B27 |PLL CFGL UL211 D09 | DAISYO03 JLEO8
B28 | vDD1 D10 |VSs
B29 | 664 STOP CLK EN# |RLF04 U2.151 D11 | DAISYO04 JLELO
B30 |vss D12 |vDD1
B31 |INT_TO 664 U255 D13 | DAISYO05 JLEL2
B32 |vDD1 D14 |vss
COl | USER _PCICLK3 U4.23 D15 |WT 60x# RL.HO3,UL.236
C02 | PCIAD17 U2.29,U3.41 D16 |vDD1
C03 | NC, DEPOP D17 | QACK 60X# RL.E03,U1.235
Co4 | PCI_ADIO U2.25,U3.43 D18 |vDD1
C05 |NC, DEPOP D19 |X_PCLK_60X UL.212
Co6 |NC D20 |Vss
CO07 |NC, DEPOP D21 |NC
cos |pBB# R1.C04,U1.145 D22 |vDD1
C09 |NC, DEPOP D23 |NC
C10 | PCIAD3L U2.11,U3.65 D24 |vss
C1l | NC, DEPOP D25 | PLL_CFGO UL.213
C12 |603E_CSEO# UL.150 D26 | vDD1
C13 |NC, DEPOP D27 |SHD# U2.141
C14 |TT2 664 U2.153 D28 |Vss
C15 |NC, DEPOP D29 |OE 245 B UBA.25A,UGA 48A,
C16 | CLK_BCLK_DIVO U4.31 U6B.258,U68.488
C17 |NC, DEPOP D30 |vbbt
o5 ToREQ doxF T3 D31 | SRESET 60X# UL.189
C19 | NC, DEPOP D32 |VSS
C20 | CLK_PCI DIVL U4.26 D33 [CLKPLLEN va.r
51 [NC oEror EOL | PCI_AD14 U2.32,U3.20
57 Tvss E02 |PCLADI15 U2.31,U3.21
C23 | NC, DEPOP E03 | NC, DEPOP
C24 |TRsST# RL.HO04,UL.202 E04 | DAISYOL J1.005
C25 |NC, DEPOP EO5 | NC, DEPOP
=6 170 o5 EO6 | DAISYO02 J1.007
C27 |NC, DEPOP EO7 | NC, DEPOP
C28 |PLL CFG3 U1.208 E08 | DAISYO3 J1.D09
C29 |NC, DEPOP E09 [NC, DEPOP
C30 |MWS_P2MRXS U2.66,U3.152 E10 | DAISYO4 J1oi
C31 |NC, DEPOP Ell [NC, DEPOP
C32 |TAG_SFUNC U5.22 E12 | DAISY0S J1.D13
C33 |TAG CS1# U5.75 E13 | NC, DEPOP
D01 |PCI_AD16 U2.30,U3.40 El4 |NC
S0z Tvss E15 | NC, DEPOP
D03 | BR 664# U2.127 El6 |NC
502 Tvobr E17 |NC, DEPOP
D05 | DAISYOL JLEO4 E18 |PCLK 60X u4.34
506 Tvss E19 |NC, DEPOP
D07 | DAISYO02 JL.EO6 E20 |NC
508 [voot E21 | NC, DEPOP

G5220297-00

2-15

. . n ’

Section 2 — Signals Prellmlnary pvwefpu

Pinl |Net Name? MCM Nodes 3 Pinl |Net Name? MCM Nodes 3

E22 |DAISY10 J1F21 G03 |Nc, DEPOP

E23 | NC, DEPOP G04 |663_cPu_cLk

E24 | DAISY09 J1.F23 G05 [Nc, DEPOP

E25 |NC, DEPOP G06 |MEM_BE3 U2.1,U3.164

E26 |DAISY08 J1.F25 G07 |Nc, DEPOP

E27 |NC, DEPOP G08 |DBG_60x# U1.26,U2.140

E28 |DAISY07 J1.F27 G09 [Nc, DEPOP

E29 |NC, DEPOP G10 |X CcPU_RDL_OPEN |U3.148

E30 [DAISY06 J1.F29 G11 [Nc, DEPOP

E31 |NC, DEPOP G12 |CcPU_RDL_OPEN

E32 |HRESET# R1.D04,U1.214 G13 [Nc, DEPOP

E33 USER_PCICLK6 U4.32 Gl4 663_TEST# U3.155

FO1 PCI_AD13 U2.33,U3.19 G15 NC, DEPOP

Fo2 |vpbD1 G16 |#RSRV_60X U1.232

Fo3 BR_60X# R1.A05,U1.219 G17 [Nc, DEPOP

FO4 |vss G18 |663_CPU_PAR_ERR# |U2.192,U3.174

FO5 | X 663 CPU _CLK U3.157 G19 |NC, DEPOP

Fo6 |vpD1 G20 |663_SBE# U2.193,U3.175

Fo7 MEM_BE1 U2.207,U3.162 G21 |Nc, DEPOP

Fog |vss G22 |DIR 245 A UBA.1A,UBA.24A

F09 BG_60X# R1.B01,U1.27 G23 [Nc, DEPOP

F10 VDD1 G24 NC

F11 BG_664# U2.134 G25 NC, DEPOP

F12 VSS G26 X_SRAM_OE# u2.117

F13 NC G27 NC, DEPOP

F14 VDD1 G28 TCO ul1.224

F15 NC G29 NC, DEPOP

F16 VSS G30 664 _CPU_CLK

F17 [NC G31 |NC, DEPOP

F18 VSS G32 MCEG6# U2.168

F19 NC G33 MCET7# U2.165

F20 |vpbD1 HO1 |PCI_AD10 U2.3, U3.16

F21 DAISY10 J1.E22 Ho2 |vss

F22 VSS HO3 DAISY20 J1.K03

F23 DAISY09 J1.E24 Ho4 |vDD1

F24 |vDbD1 HO5 | MEM_BEO U2.206,U3.161

F25 DAISY08 J1.E26 Hoe |vss

F26 VSS HO7 NC

F27 DAISY07 J1.E28 Hos |vDD1

F28 VDD1 HO09 NC

F29 DAISY06 J1.E30 H10 |[vss

F30 VSS H11 NC

F31 X_INT_60X# U2.138 H12 |vDbD1

F32 VDD1 H13 NC

F33 CLK_FRZ_STROBE |U4.4 H14 |vss

G01 |Pcl_AD11 U2.35,U3.17 H15 |NC

G02 |Pci_AD12 U2.34,U3.18 H16 |vDD1

2-16

G5220297-00

> ..
pl‘l.werpﬁ Prellmlnary Section 2 — Signals
Pinl |Net Name? MCM Nodes 3 Pinl | Net Name? MCM Nodes 3
H17 NC J31 NC, DEPOP
H18 |vpbD1 J32 MCE3# U2.171
H19 NC J33 MCEA4# u2.170
H20 |vss K01 |PCI_AD8 U2.38,U3.14
H21 NC K02 VDD1
H22 |vbb1 KO3 | DAISY20 J1.HO3
H23 NC K04 VSS
H24 |vss KOS5 [664_MIO_TEST U2.154
H25 NC K06 VDD1
H26 |vDbD1 Ko7 [-xATs R1.803,U2.129
H27 | X_MCP_sox# U2.138 Kog |vss
H28 VSS K09 NC
H29 |X 664 _CPU_CLK U2.121 K10 [vpbD1
H30 VDD1 K11 NC
H31 [TAG Cs2 U5.76 K12 [vss
H32 VSS K13 NC
H33 | MCE5# U2.169 K14 [vDbD1
Jo1 PCI_AD9 U2.37,U3.15 K15 |NC
JO2 NC K16 VSS
Jo3 NC, DEPOP K17 |NC
Jo4 664_TEST# U2.155 K18 |vss
JO5 NC, DEPOP K19 |NC
JOo6 MEM_BE2 U2.208,U3.163 K20 |vDD1
Jo7 NC, DEPOP K21 |DBDIS# R1.A04,U1.153
Jo8 NC K22 VSS
Jo9 NC, DEPOP K23 |NC
J10 NC K24 VDD1
J11 NC, DEPOP K25 NC
J12 MEM_RD_SMPL U2.49,U3.147 K26 |vss
J13 NC, DEPOP K27 | CLK_MPC601_CLKS [U4.40
J14 CPU_DATA_OE# U2.197,U3.146 K28 |vDD1
J15 NC, DEPOP K29 [PCIL_CLK_IN U2.123
J16 TLBISYNCH# R1.E02,U1.233 K30 |vss
J17 NC, DEPOP K31 |TAG_MATCH U2.142mU5.50
J18 60X_CLK_OUT ul1.221 K32 |vDbD1
J19 NC, DEPOP K33 |MCE2# U2.172
J20 663_MEM_ERR# U2.194,U3.171 LO1 PCI_AD6 U2.40,U3.12
J21 NC, DEPOP LO2 PCI_AD7 U2.39,U3.13
J22 NC LO3 NC, DEPOP
J23 NC, DEPOP L04 |ABUF24 U7.22,U8.22,U9.22,
J24 NC U10.22,U6B.41B
Tor NC DEPOP LO5 NC, DEPOP
356 VsS L06 |Tsizo 55:?255“1'197'
J27 NC, DEPOP LO7 NC ,DEPOP
J28 TAG_WT u5.47 LO8 TS# R1.B02,U1.149,
J29 NC, DEPOP U2.143
J30 | 664 _PCI_CLK U4.18 LO9 | NC, DEPOP

G5220297-00

2-17

. . ’
Section 2 — Signals Preliminary pl".werp‘
Pinl |Net Name? MCM Nodes 3 Pinl |Net Name? MCM Nodes 3
L10 CI_60X# R1.J02,U1.237 M23 |NC
L11 NC, DEPOP M24 |vss
L12 ECC_LE_SEL U2.2,U3.149 M25 |NC
L13 NC, DEPOP M26 |vDD3
L14 MEM_DATA_OE# U2.196,U3.145 M27 | TAG_DATA 11 US.65
L15 NC, DEPOP M28 |vss
L16 | TBEN_60X# R1.E01,U1.234 M29 |NC
L17 NC, DEPOP M30 |vDbD3
L18 L2_TST_CLK# R1.FO1,U1.203 M31 | TAG_PWRDN# Us.77
L19 NC, DEPOP M32 |vss
L20 NC M33 | MwEo# U2.176
L21 NC, DEPOP NO1 [USER_PCICLK2 u4.21
L22 DIR_245_B U6B.1B,U6B.24B N02 |Pcl_AD4 U2.42,U3.10
L23 NC, DEPOP NO3 [Nc, DEPOP
L24 |TAG_WT DTY_IN R1.G04,U5.5,U5.6 NO4 |ABUF22 U7.7,U8.7,U9.7,
B NC.DEFOP U10.7,U6B.38B
L26 |TAG_ADDR 13 U5.33 NO5 [NC, DEPOP
B3 NC DEFOP NO6 [Tsiz1 S;.ﬁépl.lgs,
L28 TAG_VLD U5.54 NO7 NC, DEPOP .
L29 NC, DEPOP NO8 NC
L30 TC1 U1.223 NO9 NC, DEPOP
L31 NC, DEPOP N10 |TEA# R1.D01,U1.154,
L32 MCEO# U2.174 u2.137
L33 |MCE1# U2.173 N1l |NC, DEPOP
MOl |PCl ADS U2.41.U3 11 N12 [DUAL_CTRL_REF U2.205,U3.170
Moz |vss N13 | NC, DEPOP
Mo3 | DAISY1o 71903 N14 |PCI_AD_OE# U2.195,U3.144
M04 |vpbD1 N15 |NC, DEPOP
MO5 | ABUF23 U7.21,U8.21,U9.21, N16 | DBWO_60X# R1.D05,U1.25
U10.21,U6B.40B N17 |NC, DEPOP
MO06 | vss N18 |L1_TST_CLK# R1.E05,U1.204
MO7 N N19 |NC, DEPOP
MO8 | VvDD1 N20 |BG_MASTER# U2.135
M09 CSE U1.225 N21 NC, DEPOP
M10 |VSs N22 |SRAM_ADS/ADDRO | U2.124,U7.2,U8.2,
M11 NC U9.2,U10.2
M12 |vpbD1 N23 | NC, DEPOP
M1z |NC.DEPOP N24 | TA_GATES R1.G03,R1.GO5,
e U5.23,U5.27,U5.28
N25 |NC, DEPOP
M15 |NC, DEPOP N26 [A22 U1.160,U2.99,U5.13,
M16 |vDbD1 U6B.11B
M17 |NC, DEPOP N27 | NcC, DEPOP
M18 VvDD1 N28 TAG_TA# U5.51
M19 |NC, DEPOP N29 NC, DEPOP
M20 VSS N30 TAG_BCLK U4.36
M21 [NC, DEPOP N31 |NC, DEPOP
M22 |vDbD3 N32 |mDP7 U3.195

2-18

G5220297-00

P >~ ..
pvwefpu Prellmlnary Section 2 — Signals
Pinl |Net Name? MCM Nodes 3 Pinl | Net Name? MCM Nodes 3
N33 | MwEL# U2.175 R10 |NC
P01 |PCI_AD3 U2.43,U3.239 R11 |NC, DEPOP
P02 VvDD1 R12 NC
P03 | DAISY19 J1.M03 R13 |NC, DEPOP
P04 |vss R14 |PCI_OUT SEL U2.68,U3.169
PO5 | ABUF21 U7.6,U8.6,U9.6, R15 |vDD1
5 Tvoot U10.6,U68.378 R16 |MCP_60x# R1.H02,U1.186
P07 |ARTRY# R1.A03.U1.32, R17 |VODL
U2.110 R18 |LSSD_MODE# R1.E04,U1.205
Po8 |vss R19 |vDD1
P09 |NC R20 |NC
P10 |vpbD1 R21 |NC, DEPOP
P11 NC R22 |SRAM_CNT_EN/ U2.125,U7.52,U8.52,
= Tvss ADDRI U9.52,U10.52
=5 Tnc oeror R23 |NC, DEPOP
—TrTvoot R24 |A10 U1.170,U2.84,U5.57
S O R25 |NC, DEPOP
—Tvss R26 |A13 8%;35;81
P17 |NC, DEPOP R27 |NC, DEPOP
P18 [vss R28 [A27 U1.23,U2.104,
P19 |NC, DEPOP UBA.9A
550 TvooL R29 |NC, DEPOP
551 NG DEFOP R30 |ABB# R1.A01,U1.36
555 Tvss R31 |NC, DEPOP
523 e R32 |mDé1 U3.138
554 [voDL R33 |MmDé2 U3.139
575 [TAG DTY T3 TO1 PCI_ADO U2.48,U3.236
P26 |vsS 102 [vss
P27 | A30 U1.144,U2.107 T03 DAISY18 J1Vo3
P28 VvDD1 TO4 vDD1
P29 |X_TAG_BCLK U5.69 T05 | ABUFIS Bzgigﬁggéﬁg4&
P30 VSS TO6 VSS — -
P31 | TAOE# R1.G01,R1.G02, To7 NG
U5.66,U5.67,U5.68
P37 VDD1 TO8 VDD1
P33 |MD63 U3.140 109 [NC
RO1 |PclAD1 U2.59,U3.237 T10 _|vss
R02 |PclAD2 U2.46,U3.238 L NC
RO3 _|NC, DEPOP L
RO04 |ABUF20 U7.49,U8.49,U9.49, T3 NC, DEPOP
U10.49,U6B.36B T14 |vss
RO5 | NC, DEPOP T15 NC, DEPOP
RO6 |TsIz2 5;52?U1195 Ti6 |vDD1
RO7 NC, DEPOP 17 N©, DEPOP
RO8 | AACK# R1.A02,U1.28, 118 |vbbt
U2.109 T19 NC, DEPOP
R09 |NC, DEPOP 720 |Vvss

G5220297-00

2-19

| | Preliminar PawerP
Section 2 — Signals y (74 &
Pinl |Net Name? MCM Nodes 3 Pinl |Net Name? MCM Nodes 3
T21 NC, DEPOP U3l NC, DEPOP
T22 VDD3 u32 MD58 U3.131
T23 A26 U1.158,U2.103,U5.7, u33 MD59 U3.132
U6B 58 Vo1 PCI_C/BEO# u2.6
T24 VSS
V02 VSS
T25 A9 U1.7,U2.83,U5.56
VO3 DAISY18 J1.T03
T26 VDD3
V04 VDD2
T27 Al18 U1.165,U2.93,U5.21,
U6B.16B V05 ABUF17 U7.33,U8.33,U9.33,
T28 VSS U10.33,U6B.32B
V06 VSS
T29 XTAL2 U4.13
Vo7 ABUF27 U7.25,U8.25,U9.25,
T30 VvDD3 U10.25,U6A.40A
T31 ROM_WE# U2.60 Vo8 VvDD2
T32 VSS V09 NC
T33 MD60 U3.133 V10 VSS
uo1 PCI_PERR# U2.10 V11 DP7 U1.50,U3.137,
U02 | PCI_SERR# U2.71 U10.20
U03 | NC, DEPOP viz |vbb2
uo4 ABUF18 U7.47,U8.47,U9.47, vis NC, DEPOP
U10.47,U6B.33B V14 VSS
uos NC, DEPOP V15 NC, DEPOP
uo6 ABUF28 U7.26,U8.26,U9.26, V16 VvDD2
U10.26,U6B.47B V7 NG DEFOP
uo7 NC, DEPOP
V18 VDD2
u08 NC
V19 NC, DEPOP
uo9 NC, DEPOP
V20 VSS
u10 TBST# R1.C03,U1.192,
U2.144 V21 NC, DEPOP
U1l NC, DEPOP V22 vDD3
ui12 NC V23 A31 U1.37,U2.108
ui13 NC, DEPOP V24 VSS
ui4 PCI_EXT_SEL U2.67,U3.153 V25 A7 U1.6,U2.81,U5.46
u1s vDD1 V26 VvDD3
u16 INT_B0X# R1.D03,U1.188 V27 Al6 U1.166,U2.91,U5.30,
ui7 VDD1 UBA 11A
V28 VSS
ui1s8 NC
V29 A24 U1.159,U2.101,U5.9,
ul19 VDD1 U6B.SB
u20 ROM_LOAD U2.70,U3.160 V30 vDD3
u21 NC, DEPOP v31 ROM_OE# u2.47
u22 SRAM_ALE U2.119 V32 VSS
u23 NC, DEPOP V33 MD57 U3.130
u24 A8 U1.174,U2.82,U5.55 W01 |PCI_C/BE2# u2.4
u2s NC, DEPOP W02 |PCI_C/BE1# u2.5
uU26 Al7 U1.15,U2.92,U5.29, W03 |NC, DEPOP
U6B.17B
W04 | ABUF16 U7.32,U8.32,U9.32,
uz27 NC, DEPOP U10.32,U6A.38A
u2s A25 U1.22,U2.102,U5.8, w05 | NC, DEPOP
U6B.68 W06 | ABUF15 U7.31,U8.31,U9.31,
u29 NC, DEPOP U10.31,UBA.37A
uU30 XTAL1 U4.12 W07 |NC, DEPOP

2-20

G5220297-00

Pa2werP Preliminar . .
(74 & y Section 2 — Signals
Pinl |Net Name? MCM Nodes 3 Pinl |NetName? MCM Nodes 3
W08 |[ABUF14 U7.30,U8.30,U9.30, Y18 |vss
U10.30,U6B.27B V19 [NC oErop
W09 |NC, DEPOP
Y20 |vDD2
W10 |DP4 U1.46,U3.77,U9.46
Y21 | NC, DEPOP
W11 |NC, DEPOP
Y22 VSS
w12 |nc
Y23 |NC
W13 |NC, DEPOP
Y24 |vDD2
W14 |[PCI_OL_OPEN U2.64,U3.165
Y25 |A5 UL1.5,U2.77,U5.40
W15 [vDD2
Y26 |vss
W16 |CKSTP_IN# R1.D02,U1.215
Y27 [A14 U1.168,U2.89,U5.32,
w18 |nc v28 |vDD2
W19 |vDD2 Y29 X_SRAM_BCLKO u7.51
W20 |AOS_RR_MMRS U2.69,U3.166 Y30 |vss
W21 |NC, DEPOP Y31 [mA1L1 u2.177
W22 | SRAM_WE# U2.118,U7.3,U7.4, Y32 [vpD2
U8.3,U8.4,U9.3,
U9.4,U10.3,U10.4 Y33 [MDs5 us.121
W23 NC, DEPOP AAO01 |PCI_STOP# U2.203
W24 | A6 UL.175,U2.80,U5.45 AAO2 | PCI_DEVSEL# U2.204
W25 | NC, DEPOP AAO03 |NC, DEPOP
W26 |A15 U1.13,U2.90,U5.31, AAO04 |SRAM_BCLK3 U4.50
U6A.12A AA05 |NC, DEPOP
W27 | NC, DEPOP AAO6 | ABUF26 U7.24,U8.24,U9.24,
w28 |A23 U1.21,U2.100,U5.12, U10.24,U6B.44B
U6B.9B AA07 |[NC, DEPOP
W29 |[NC, DEPOP AR08 |NC
W30 SRAM_BCLKO U4.44 AA09 |NC, DEPOP
W31 | NC, DEPOP AA10 |DP3 UL1.42,U3.34,U8.20
W32 MDP6 U3.214 AA1L NC, DEPOP
W33 MD56 U3.123 AA12 NC
Y01 PCI_C/BE3# u2.3 AA13 |NcC, DEPOP
Y02 |vDD2 AA14 | C2P_WRL_OPEN U2.61,U3.154
Y03 DAISY17 J1.AB03 AA15 NC, DEPOP
Y04 |VSS AAL6 | TA# R1.C05,U1.155,
Y05 X_SRAM_BCLK3 U10.51 U2.111
Y06 |vDD2 AA17 |NC, DEPOP
Y07 NG AA18 |APE_60X# R1.F03,U1.218
Y08 [vss AA19 |NC, DEPOP
Y10 [vDD2 AA21 |Nc, DEPOP
Y11 DP6 UL.48.U3.116, AA22 | SRAM_OE# U7.50,U8.50,U9.50,
U10.46 U10.50
Y12 |vss AA23 |NC, DEPOP
Y13 NC, DEPOP AA24 | A4 U1.176,U2.76,U5.39
Y14 |vDD2 AA25 [NC, DEPOP
Y15 |NC, DEPOP AA26 |NC
Y16 [vss AA27 |[NcC, DEPOP
Y17 [NC, DEPOP

G5220297-00

2-21

.. >
Section 2 — Signals Prellmlnary pl‘l.werpﬁ
Pinl |Net Name? MCM Nodes 3 Pinl |Net Name? MCM Nodes 3
AA28 |[A21 U1.17,U2.98,U5.14, AC04 |TAG_A_IN UBA.2A,UBA.3A,
U6B.12B UBA.5A,UBA.6A,
AA29 [NC, DEPOP UBA.8A,UBA.13A,
UBA.14A,U6A.16A,
AA30 |A29 U1.30,U2.106 UBA.17A,UBA.19A,
AA31 [Nc, DEPOP UBA.20A,UBA.22A,
UBA.23A
AA32 |MDs3 U3.118 ~Cos [NC DEFoP
AA3S | MD54 U319 ACO06 |ABUF25 U7.23,U8.23,U9.23,
ABO1 [PCI_IRDY# U2.201,U3.167 U10.23,U6B.43B
AB02 [vss ACO07 |Nc, DEPOP
ABO3 |DAISY17 J1.YO3 ACO08 |D3 U1.110,U3.179,
ABO4 |VDD2 U7.39
ABO5 |ABUF13 U7.29,U8.29,U9.29, ACO9 | NC, DEPOP
U10.29,U6B.26B AC10 |DP2 U1.41,U3.3,U8.46
ABO6 [VSS AC11 |NcC, DEPOP
ABO7 |[D2 U1.113,U3.178, AC12 |NC
u7.38 AC13 |NC, DEPOP
ABO8 |VvDD2 AC14 |MEM_WRL_OPEN U2.51,U3.150
AB09 |DPO U1.38,U3.196,U7.46 ACIE | NG DEPOP
AB10 |VSS AC16 NG
AB11 |[DPs U1.47,U3.95,U9.20 AC17 |NC DEFoP
AB12 |vDD2 AC18 |DPE_s0x# R1.F02,U1.217,
AB13 |[NC, DEPOP U2.133
AB14 [vss AC19 [Nc, DEPOP
AB15 [NcC, DEPOP AC20 |[TAG_VALID U2.115,U5.80
AB16 |vDD2 AC21 |Nc, DEPOP
AB17 |NcC, DEPOP AC22 |TAG_CLEAR# U2.116,U5.70
AB18 |vDD2 AC23 |NC, DEPOP
AB19 [NC, DEPOP AC24 |A2 U1.178,U2.74,U5.35
AB20 [vss AC25 |[NC, DEPOP
AB21 [NcC, DEPOP AC26 |A11 U1.11,U2.85,U5.61
AB22 |vDD2 AC27 |NcC, DEPOP
AB23 |[NC AC28 [A19 U1.16,U2.96,U5.16,
AB24 [vss U6B.14B
AB25 | A3 U1.3,U2.75,U5.37 AC29 |NC, DEPOP
~526 [voD2 AC30 |[A2s Bééllsleuz.los,
AB27 |A12 U1.169,U2.86,U5.63 AC31 |NC, DEPOP
AB28 |VSS AC32 |MD50 U3.111
AB29 |A20 U1.164,U2.97,U5.15, AC33 |mDs1 U3.112
o8 138 ADO1 |IGN_PCI_AD31 U2.57
AB30 |VDD2 _PCL
AB31 [MmA10 U2.178 ADO2_ | VDD2
2535 [vss ADO3 |[DAISY16 J1.AF03
AB33 |MDs52 U3.113 ADO4 | VSS
AC01 |PCI_FRAME_664# U2.200 ADOS | D5 8%:‘11(1)8“3'186‘
ACO02 |PCI_TRDY# U2.202,U3.168 ADO6 |vDD2
ACO3 | NC, DEPOP ADO7 [D11 U1.92,U3.207,U7.13
ADO8 |VSS
ADO9 |D17 U1.84,U3.221,U8.35

2-22

G5220297-00

anrp’ Preliminar . .
(74 & y Section 2 — Signals
Pinl |Net Name?2 MCM Nodes 3 Pinl [Net Name? MCM Nodes 3
AD10 |VvDD2 AE21 |NC, DEPOP
AD11 | D23 UL.76,U3.2,U8.45 AE22 [Dss UL.56,U3.125,
AD12 |vss ulo.12
AD13 | D29 UL.68,U3.31,U8.15 AE23 | NC, DEPOP
D14 [voDz AE24 [A0 UL.179,U2.72
AD15 |D35 UL1.139,U3.57,U9.39 AE25 | NC, DEPOP
AD16 |VSs AE26 [NC
AD17 |[D41 UL1.129,U3.79,U9.9 AE27 | NC, DEPOP
2515 [vss AE28 [AP3 R1.B04,U1.226
AD19 | D47 UL.118,U3.94,U9.19 AE29 | NC, DEPOP
020 [voD2 AE30 | SRAM_BCLK1 U4.46
AD21 |D53 U1.101,U3.107, AE31 | NC, DEPOP
U10.41 AE32 [MDP5 U3.234
AD22 [vss AE33 | MD48 U3.108
AD23 [D59 U1.57,U3.126, AFO1 |664_PCl_REQ# U2.58
u10.13 AF02 [vss
AD24 |vDD2
AF03 | DAISY16 J1.ADO3
AD25 [A1 Ul2,U2.73
AF04 |vDD2
AD26 |VssS
AF05 | X_SRAM_BCLK2 U9.51
AD27 [NC
AF06 |VSS
AD28 |[vDD2
AF07 [D9 U1.94,U3.198,U7.9
AD29 |SRAM_CS# U7.5,U8.5,U9.5,
U10.5 AF08 |VvDD2
AD30 [vss AF09 |Di5 U1.87,U3.218,U7.19
AD31 |MA9 U2.179 AF10 [vss
AD32 |[vDD2 AF11 |D21 UL.80,U3.229,U8.41
AD33 | MD49 U3.109 AF12 |vDD2
AEQ1 | USER_PCICLK1 U4.16 AF13 [D27 UL.72,U3.26,U8.13
AEQ2 |PCI_LOCK# U2.53 AF14 |vss
AE03 |NC, DEPOP AF15 |D33 UL.141,U3.55,U9.35
AE04 |[D4 UL.109,U3.185, AF16 |vDD2
U7.40 AF17 | D39 UL.131,U3.70,U9.45
AEO5 |NC, DEPOP ~F15 Tvon2
AE06 | D10 UL1.93,U3.199,U7.12 ~Fio |05 11530385 U915
AE07 |NC, DEPOP o0 Tvss
AE08 |[D16 UL.85,U3.220,U8.34 ~Fo1 (oot 0T105.03.105.
AE09 [NC, DEPOP U10.39
AE10 |D22 UL.78,U3.1,U8.44 AF22 [vDD2
AE11 |NC, DEPOP AF23 |D57 UL1.55,U3.124,U10.9
AE12 [D2s UL.71,U3.27,U8.14 AF24 [vss
AE13 |NC, DEPOP AF25 | D63 UL.64,U3.136,
AE14 |D34 UL.140,U3.56,U9.38 1019
AF26 |VvDD2
AE15 |NC, DEPOP
AF27 |NC
AE16 |D40 U1.130,U3.78,U9.8
AF28 [vss
AE17 |NC, DEPOP
AF29 | X_SRAM_BCLK1 U8.51
AE18 |D46 U1.119,U3.89,U9.18
AF30 |[vDD2
AE19 |NC, DEPOP
AF31 |MAS U2.180
AE20 | D52 U1.102,U3.106,
U10.40 AF32 |VSS

G5220297-00

2-23

. >
Section 2 — Signals Prellmlnary pl‘l.werpﬁ
Pinl |Net Name? MCM Nodes 3 Pinl |Net Name? MCM Nodes 3
AF33 | MD47 U3.102 AH12 |VSS
AGO1 |BR_MASTER# R1.H05,U2.128 AH13 |D25 U1.74,U3.24,U8.9
AGO02 |CPU_GNT_664# U2.54 AH14 |vDD2
AGO03 |[Nc, DEPOP AH15 |D31 U1.66,U3.33,U8.19
AGO04 |SRAM_BCLK?2 U4.48 AH16 [vss
AGO5 |[NcC, DEPOP AH17 |D37 U1.134,U3.68, U9.41
AGO06 |Ds U1.97,U3.197,U7.8 AH18 [vss
AGO7 |[Nc, DEPOP AH19 |D43 U1.125,U3.86,U9.13
AGO08 |D14 U1.89,U3.210,U7.18 AH20 |vDD2
AGO09 [Nc, DEPOP AH21 | D49 U1.107,U3.99,U10.35
AG10 |D20 U1.81,U3.228,U8.40 AH22 |VSS
AG11 | NC, DEPOP AH23 | D55 U1.51,U3.115,U10.45
AG12 |D26 U1.73,U3.25,U8.12 AH24 |VvDD2
AG13 |NC, DEPOP AH25 | D61 U1.62,U3.134,U10.15
AG14 |D32 U1.143,U3.54,U9.34 AH26 |vss
AG15 |NC, DEPOP AH27 [NC
AG16 |D38 U1.133,U3.69,U9.44 AH28 |VDD2
AG17 |NC, DEPOP AH29 |AP1 R1.C01, U1.230
AG18 | D44 U1.124,U3.87,U9.14 AH30 |VSS
AG19 | NC, DEPOP AH31 | MA7 U2.181
AG20 | D50 U1.106,U3.104, AH32 |VvDD2
U10.38 AH33 | MD44 U3.93
AG21 |NC, DEPOP
AJO1 DRTRY# R1.HO1, U1.156
AG22 |Ds6 U1.52,U3.117,U10.8
AG23 | NG DEPOP AJO2 CKSTP_OUT# R1.J01, U1.216
AJO3 NC, DEPOP
AG24 | D62 U1.63,U3.135,
U10.18 AJO4 | DO U1.115,U3.176,U7.34
AG25 |NC, DEPOP AJO5 NC, DEPOP
AG26 [NC AJO6 D6 U1.99,U3.187,U7.44
AG27 |NC, DEPOP AJO7 NC, DEPOP
AG28 [NC AJO8 D12 U1.91,U3.208,U7.14
AG29 |NC, DEPOP AJO9 NC, DEPOP
AG30 |AP2 R1.B05,U1.227 AJ10 |Dis U1.83,U3.226,U8.38
AG31 |NC, DEPOP AJ1l NC, DEPOP
AG32 |MD45 U3.100 AJ12 |D24 U1.75,U3.4,U8.8
AG33 |MD46 U3.101 AJ13 |[Nc, DEPOP
AHO1 |PCI_PAR u2.7 AJ14 |D30 U1.67,U3.32,U8.18
AHO2 |VvDD2 AJ15 NC, DEPOP
AHO3 [NC AJ16 |D36 U1.135,U3.67,U9.40
AHO4 |VSS AJ17 NC, DEPOP
AHO5 |[D1 U1.114,U3.177, AJ18 |D42 U1.126,U3.80,U9.12
Uss AJ19 |NC, DEPOP
AHO6 | vDD2 AJ20 |D48 U1.117,U3.98,U10.34
AHO7 |D7 U1.98,U3.188,U7.45 2321 |NC.DEPOP
AHO8 | VSS AJ22 |Ds54 U1.100,U3.114,U10.44
AHQ09 |D13 U1.90,U3.209,U7.15 AJ23 NC, DEPOP
AH10 |vDD2 AJ24 |De6o U1.58,U3.127,U10.14
AH11 |D19 U1.82,U3.227, U8.39

2-24

G5220297-00

> ..
pl‘l.werpﬁ Prellmlnary Section 2 — Signals
Pinl |Net Name? MCM Nodes 3 Pinl | Net Name? MCM Nodes 3
AJ25 |NC, DEPOP ALO6 |MRE1# U2.163
AJ26 NC ALO7 |NC, DEPOP
AJ27 |NC, DEPOP ALO8 |MRE2# U2.162
AJ28 NC ALO9 |NC, DEPOP
AJ29 |NC, DEPOP AL10 |MRE3# U2.161
AJ30 |Aro R1.C02,U1.231 AL11 |NcC, DEPOP
AJ31 NC, DEPOP AL12 MRE4# U2.160
AJ32 |MD42 U3.o1 AL13 |NC, DEPOP
AJ33 MD43 U3.92 AL14 MRES# U2.159
AKO1 |NC AL15 |NC, DEPOP
AKO2 |VSS AL16 MRE6# U2.158
AKO3 | SRAM_ADSP# U7.1,U8.1,U9.1,U10.1 AL17 |NcC, DEPOP
AKO04 |vDD2 AL18 |MRE7# U2.157
AKO5 |DAISY11 J1.AKO7 AL19 |NC, DEPOP
AKO6 |vss AL20 |maA0 U2.190
AKO7 |DAISY11 J1.AK05 AL21 |NC, DEPOP
AKO8 |VvDD2 AL22 MA1 U2.189
AKO9 [DAISY12 J1.AK11 AL23 |NC, DEPOP
AK10 |VSS AL24 MA2 U2.188
AK11 |DAISY12 J1.AK09 AL25 |Nc, DEPOP
AK12 |VvDD2 AL26 MA3 U2.187
AK13 |DAISY13 J1.AK15 AL27 |NC, DEPOP
AK14 |VSS AL28 | MA4 U2.186
AK15 | DAISY13 J1.AK13 AL29 NC, DEPOP
AK16 |VDD2 AL30 MAS5 U2.185
AK17 |DAISY14 J1.AK19 AL31 NC, DEPOP
AK18 |VDD2 AL32 MDP4 U3.37
AK19 |DAISY14 J1.AK17 AL33 MD40 U3.83
AK20 |VSS AMO2 |VDD2
AK21 |DAISY15 J1.AK23 AMO3 | MD1 U3.182
AK22 |VDD2 AMO04 |VSS
AK23 |DAISY15 J1.AK21 AMO5 |wmD4 U3.189
AK24 |VSS AMO6 |VDD2
AK25 |NC AMO7 | MD7 U3.194
AK26 |VDD2 AMO8 |VSS
AK27 |NC AMO9 | MD9 U3.201
AK28 |VSS AM10 |VDD2
AK29 |NC AM11 | MD12 U3.206
AK30 |VvDD2 AM12 |VSS
AK31 |mae U2.184 AM13 |MD15 U3.213
AK32 |VSS AM14 |VDD2
AK33 | MD41 U3.90 AM15 | MD17 U3.222
ALO1 L2_CLAIM# U2.132 AM16 |VSS
ALO2 |smi# R1.FO05,U1.187 AM17 |MD20 U3.225
ALO3 NC, DEPOP AM18 |VSS
ALO4 |MREO# U2.164 AM19 |mD23 U3.233
ALO5 |Nc, DEPOP AM20 |vDD2

G5220297-00

2-25

— P
Section 2 — Signals Prellmlnary pl‘l.werpﬁ

Pinl |Net Name? MCM Nodes 3 Pinl |Net Name? MCM Nodes 3
AM21 | MD25 U3.6 AN12 |MD13 U3.211
AM22 |VSS AN13 |MD14 U3.212
AM23 | MD28 U3.29 AN14 | MDP1 U3.122
AM24 |VDD2 AN15 |MD16 U3.215
AM25 | MD31 U3.36 AN16 |MD18 U3.223
AM26 |VSS AN17 |MD19 U3.224
AM27 | MD33 U3.59 AN18 |MD21 U3.231
AM28 |VvDD2 AN19 | MD22 U3.232
AM29 | MD36 U3.74 AN20 | MDP2 U3.103
AM30 |VSS AN21 |MD24 U3.5
AM31 | MD39 U3.81 AN22 | MD26 U3.7
AM32 |VvDD2 AN23 | MD27 U3.28
ANO3 | MDO U3.180 AN24 | MD29 U3.30
ANO4 | MD2 U3.183 AN25 | MD30 U3.35
ANO5 |MD3 U3.184 AN26 |mDP3 U3.82
ANO6 | MD5 U3.190 AN27 | MD32 U3.58
ANO7 | MD6 U3.193 AN28 | MD34 U3.60
ANO8 | MDPO U3.141 AN29 | MD35 U3.73
ANQO9 | MD8 U3.200 AN30 |MD37 U3.75
AN10 |MD10 U3.202 AN31 | MD38 U3.76
AN11 |MD11 U3.203

Notes:

1.1077 pins are listed.
2.The net name is the net name from the MCM schematics (see Section 13). Use it when referring to a net. Many

pin sites are not populated with a solder column. These sites are indicated with DEPOP in the Net Name
column. NC in the Net Name column means that the MCM makes no connection to that site.

3.The MCM Nodes indicate the pins of the devices that the MCM pin is connected to. For example, U2.24 repre-
sents pin 24 of device U2.

2-26 G5220297-00

’ . .
P-‘,‘WGIPu Prellmlnary Section 3— CPU & L2

Section 3
CPU and Level Two Cache

This section discusses topics that are directly related to the CPU, CPU bus, and Level Two
(L2) cache, including how the 660 bridge decodes CPU initiated transfers as a function of
the transfer type and address range. For more information, refer to the 660 User’s Manual.

The 100 MHz PPC 603e MCM supports CPU bus speeds up to 66MHz, and PCI bus
speeds up to 33MHz. The MCM is initially configured with a CPU_core:CPU_bus:PCI bus
frequency ratio of 99:66:33 MHz. This accomplished by setting the configuration bits for
the MPC970 clock driver via off MCM pullups.

3.1 CPU Busmasters

The MCM uses a single PowerPC 603e CPU, and an internal L2 cache; thus, there are only
two busmasters on the CPU bus: the CPU and the 660. CPU bus arbitration is greatly sim-
plified, and the multi-processor capabilities of the 660 are not used. The remaining arbitra-
tion on the CPU bus is between the CPU and the snoop broadcasting logic in the 660. Since
the 660 parks the CPU bus on CPUL1 (the 603e) whenever the bus is idle, CPU latency is
minimized.

One level of address bus pipelining is supported, and most data writes are posted. Precise

exceptions are reported via TEA#, and imprecise exceptions are reported via MCP#. PIO,
or programmed 1/O transactions (XATS# type) are not supported.

The MCM is not currently specified for use with external CPU busmasters. For more in-
formation on the CPU bus protocol, see the 603e User’s Manual. For more information on
the multiprocessor capabilities of the 660, see the 660 User’s Manual. For MCM applica-
tions involving external CPU bus agents, please contact IBM PowerPC Embedded Proces-
sor Systems Application Engineering.

3.1.1 603e CPU

The MCM operates the 603e in 64-bit data bus mode. The 660 will not operate in 32-bit
mode.

The MCM is configured for DRTRY# mode, and should not be configured for no-DRTRY#
mode. In DRTRY# mode, data is assumed to have been speculatively presented to the
CPU, and so is held for one clock in the 603e BIU before being presented to the CPU core
data consumers.

The MCM runs at 3:2 603e internal clock to bus clock ratio at 99MHz:66MHz. CPU
PLL_CFGJ0:3]is setto 1100. The 603e may be run at 1:1 core:bus ratio, and the frequency
of the CPU bus clock can be varied. See Section 7, Clocks, for more information.

G5220297-00 3-1

.. p
Section 3— CPU & L2 Prellmlnary pl‘l.werpﬁ

3.2 System Response by CPU Bus Transfer Type

All access to the rest of the system is provided to the CPU by the 660. Table 3-1 shows the
660 decoding of CPU bus transfer types. Based on TT[0:3], the 660 responds to CPU bus-
master cycles by generating a read transaction, a write transaction, or an address-only re-
sponse. The 660 ignores TT[4] when it evaluates the transfer type.

The bridge decodes the target of the transaction based on the address range of the transfer
as shown in Table 3-2. The transfer type decoding shown in Table 3-1 combines with the
target decoding to produce one of the following operations:
e System memory reads and writes
PCI I/O reads and writes
PCI configuration reads and writes
PCI interrupt acknowledge reads
PCl memory reads and writes
System ROM reads and writes
Various bridge control register (BCR) reads and writes.

3-2 G5220297-00

PowerP

Preliminary

Section 3 — CPU & L2

Table 3-1. TT[0:3] (Transfer Type) Decoding by 660

60X Bus 660 Operation For CPU to 660 Operation For CPU to PCI
TT[0:3] 60X Operation Transac- Memory Transfers Transactions
tion
0000 Clean block or lwarx | Address Asserts AACK#. No other response. No PCI transaction.
only
0001 Write with flush SBW(1) Memory write operation. PCI write transaction.
or burst
0010 Flush block or stwcx | Address Asserts AACK#. No other response. No PCI transaction.
only
0011 Write with kill SBW or Memory write operation. L2 PCI write transaction.
burst invalidates addressed block.
0100 sync or tlbsync Address Asserts AACK#. No other response. No PCI transaction.
only
0101 Read or read with SBR(1) Memory read operation. PCI read transaction.
no intent to cache or burst
0110 Kill block or icbi Address Asserts AACK#. L2 invalidates Asserts AACK#. No other
only addressed block. response.
0111 Read with intentto | Burst Memory read operation. PCI read transaction.
modify
1000 eieio Address Asserts AACK#. No other response. No PCI transaction.
only
1001 Write with flush SBW Memory write operation. PCI write transaction.
atomic,
stwex
1010 ecowx SBW Asserts AACK# and TA# if the transaction is not claimed by another
60X bus device. No PCI transaction. No other response.
1011 Reserved Asserts AACK#. No other response. No PCI transaction.
1100 TLB invalidate Address Asserts AACK#. No other response. No PCI transaction.
only
1101 Read atomic, lwarx | SBR or Memory read operation. PCI read transaction.
burst
1110 External control in, | Address 660 asserts all ones on the CPU data bus. Asserts AACK# and TA#
eciwx only if the transaction is not claimed by another 60X bus device. No PCI
transaction. No other response.
1111 Read with intentto | Burst Memory read operation. PCI read transaction.
modify atomic,
stwex
Note:
1. SBR means Single-Beat Read, and SBW means Single-Beat Write

Transfer types in Table 3-1 that have the same response are handled identically by the
bridge. For example, if the address is the same, the bridge generates the same memory

read transaction for transfer types 0101, 0111, 1101, and 1111.

The 660 does not generate PCI or system memory transactions in response to address
only transfers. The bridge does drive all-ones onto the CPU bus and signals TA# during an
eciwx if no other CPU bus agent claims the transfer.

G5220297-00

3-3

Preliminary

PowerP

References in the remainder of this document to a CPU read, assume one of the transfer
types in Table 3-1 that produce the read response from the 660. Likewise, references to
a CPU write refer to those transfer type that produce the write response.

Section 3 — CPU & L2

3.3 System Response by CPU Bus Address Range

The 660 determines the target of a CPU busmaster transaction based on the CPU bus ad-
dress range as shown in Table 3-2. The acronym BCR means bridge control register.

Table 3-2. 660 Address Mapping of CPU Bus Transactions

Other
CPU Bus Address Conditions Target Transaction Target Bus Address Notes
0to 2G System Memory 0to 2G @2
0000 0000h to 7FFF 0000 0000h to 7FFF
FFFFh FFFFh
2G to 2G + 8M Contiguous PCI I/O Transaction, BCR 0 to 8M 3)
8000 0000h to 807F Mode Transaction, or 0000 0000h to 007F
FFFFh PCI Configuration FFFFh
Non-Contiguous (Type 1) Transaction 0 to 64K (4)
Mode 0000 0000h to 0000
FFFFh
2G + 8Mto 2G + 16M PCI Configuration PCI Configuration Space
8080 0000h to 80FF (Type 0) Transaction 0080 0000h to O0OFF
FFFFh FFFFh
2G + 16M to 3G — 8M PCI 1/O Transaction 16Mto 1G — 8M
8100 0000h to BF7F 0100 0000h to 3F7F
FFFFh FFFFh
3G -8Mto 3G BCR Transactions 1G-8Mto 1G (3)(6)
BF80 0000h to BFFF and PCI Interrupt 3F80 0000h — 3FFF
FFFFh Ack. Transactions FFFFh
3G to 4G -2M PCI Memory 0to 1G-2M
C000 0000h to FFDF Transaction 0000 0000h to 3FDF
FFFFh FFFFh
4G -2M to 4G Direct Attach ROM [BCR Transaction 0to 2M 2
FFEO 0000h to FFFF Read, Write, or 0000 0000h to 001F
FFFFh W“tlf FFFFh
Lockout (ROM Address Space)
Remote ROM PCI Memory Transaction to I/O | 1G - 2M to 1G 2
Bus Bridge 3FEO 0000h to 3FFF
FFFFh

Notes:

. System memory can be cached. Addresses from 2G to 4G are not cacheable.

1

2. Memory does not occupy the entire address space.

3. Registers do not occupy the entire address space.

4. Each 4K page in the 8M CPU bus address range maps to 32 bytes in PCI I/O space.

5. Registers and memory do not occupy the entire address space. Accesses to unoccupied addresses resultin all one-
bits on reads and no-ops on writes.

6. A memory read of BFFF FFFOh generates an interrupt acknowledge transaction on the PCI bus.

3.3.1

Address Mapping for Non-Contiguous 1/0

Figure 3-1 shows the address mapping that the 660 performs in non-contiguous mode. The
I/O map type register (address 8000 0850h) and the bridge chip set options 1 register (in-
dex BAh) control the selection of contiguous and non-contiguous I/O. In non-contiguous

G5220297-00

= 34

’ . .
P-‘,‘WGIPu Prellmlnary Section 3— CPU & L2

mode, the 8M address space of the 60X bus is compressed into 64K of PCl address space,
and the 60X CPU cannot create PCI I/O addresses from 64K to 8M.

In non-contiguous I/O mode, the 660 partitions the address space so that each 4K page
is remapped into a 32-byte section of the 0 to 64K ISA port address space, so that 60X CPU
protection attributes can be assigned to any of the 4K pages. This provides a flexible mech-
anism to lock the 1/0 address space from change by user-state code. This partitioning
spreads the ISA 1/0O address locations over 8M of CPU address space.

In non-contiguous mode, the first 32 bytes of a 4K page are mapped to a 32-byte space
in the PCI address space. The remainder of the addresses in the 4K page are mirrors into
the the same 32-byte PCI space. Each of the 32 contiguous port addresses in each 4K page
has the same protection attributes in the CPU.

MSB—00 = 1 31 —s MSB
01=0 30
02=0 29
03=0 28
6 04=0 27
0 05=0 26
X 06=0 25
07=0 Forced to zero | 24 P
08=0 23 C
C 09 22 |
P 10 21
11 20
U 12 19 |
13 18 /
A 14 17 o
d 15 16
d 16 15
17 14 A
r 18 13 d
e 19 ——— 12 d
S 20 /i 11
s 21 10 r
22 Discarded - 09 €
23 | 08 S
B 24 07 s
u 25 06
s 26— 05
27 — 04
28 03
29 . 02
30 01
LSB —+31 00 —» LSB
The three least-significant address bits are unmunged during the transformation if little-endian mode is selected.

Figure 3-1. Non-Contiguous PCI I/O Address Transformation

For example, in Figure 3-2, 60X CPU addresses 8000 0000h to 8000 001Fh are converted
to PCI I/O port 0000h through 001Fh. PCI I/O port 0020h starts in the next 4K page at 60X
CPU address 8000 1000h.

G5220297-00 3-5

.. p
Section 3— CPU & L2 Pre“mmary pl‘l.werpﬁ

ISA I/O 60X Address
0000 8000 0000
0001 8000 0001
0002 8000 0002
4K Page . .
001E 8000 001E
001F 8000 001F 60X Addresses
¢ 3000 0020 to 8000 OFFF
Are Wrapped and Should
0020 8000 1000 Nlot Be Used.
0021 8000 1001
4K Page) .

Figure 3-2. Non-Contiguous PCI I/O Address Translation

3.3.2 Address Mapping for Contiguous 1/O

In contiguous I/0O mode, CPU addresses from 2G to 2G + 8M generate a PCI I/O cycle on
the PCI bus with PCI_AD[29:00] unchanged. The low 64K of PCI I/O addresses are for-
warded to the ISA bus unless claimed by a PCI agent.

Memory page protection attributes may only be assigned by 4K groups of ports, rather than
by 32-port groups as in the non-contiguous mode. This is the power-on default mode.
Figure 3-3 gives an example of contiguous I/O partitioning.

ISA 1/0 60X Address
0000 8000 0000
0001 8000 0001
0002 8000 0002
001E 8000 001E
001F 8000 001F]
Contiguous 603/604
B |

hddresses (No gaps)
0020 8000 0020
0021 8000 0021
FFFE 8000 FFFE
FFFF 8000 FFFF

Figure 3-3. Contiguous PCI I/O Address Translation

3.3.3 PCI Final Address Formation

The 660 maps 60X CPU bus addresses from 2G to 4G as PCI transactions, error address
register reads, or ROM reads and writes. The 660 manipulates 60X bus addresses from
2G to 4G to generate PCI addresses as follows:

e PCI_ADJ[31:30] are set to zero.
e PCI_ADJ2:0] are unmunged if little-endian mode is selected.
e After unmunging, PCI_ADI[1:0] are set to 00b except for PCI 1/O cycles.

3—-6 G5220297-00

’ . .
P-‘,‘WGIPu Prellmlnary Section 3— CPU & L2

3.4 CPU to Memory Transfers

The system memory address space is from 0 to 2G. Physical memory does not occupy the
entire address space. When the CPU reads an unpopulated location, the 660 returns all-
ones and completes the transfer normally. When the CPU writes to an unpopulated loca-
tion, the Bridge signals normal transfer completion to the CPU but does not write the data
to memory. The memory select error bit in the error status 1 register (bit 5 in index C1h)
is set in both cases.

All CPU to memory writes are posted and can be pipelined.

The 660 supports all CPU to memory bursts, and all single-beat transfer sizes and align-
ments that do not cross an 8-byte boundary, which includes all memory transfers initiated
by the 603/604 CPU.

3.4.1 LE Mode

The bridge supports all transfer sizes and alignments that the CPU can create in LE mode,;
however, all loads or stores must be at natural alignments in LE mode (or the CPU will take
an alignment exception). Also, load/store multiple word and load/store string word instruc-
tions are not supported in the CPU in LE mode.

3.5 CPU to PCI Transactions

Since all CPU to PCI transactions are CPU memory mapped, software must in general uti-
lize the EIEIO instruction which enforces in-order execution, particularly on PCI 1/O and
configuration transactions. Some PCI memory operations can be sensitive to order of ac-
cess also. See the 660 User’'s Manual.

All addresses from 2G to 4G (including ROM space) must be marked non-cacheable. See
the PowerPC Reference Platform Specification. The MCM supports all PCI bus protocols
during CPU to PCI transactions.

The MCM supports all CPU to PCI transfer sizes that do not cross a 4-byte boundary, and
it supports 8-byte CPU to PCI writes that are aligned on an 8-byte boundary. The bridge
does not support CPU bursts to the PCI bus.

When the 660 decodes a CPU access as targeted for the PCI, the 660 requests the PCI
bus. Once the SIO grants the PCI bus to the 660, the bridge initiates the PCI cycle and re-
leases the bus.

CPU to PCI transactions that the PCI target retries, cause the 660 to deassert its
PCl_REQ# (the Bridge follows the PCI retry protocol). The Bridge stays off of the PCI bus
for two PCI clocks before reasserting PCl_REQ# (or FRAME#, if the PCI bus is idle and
the PCI_GNT# to the Bridge is active).

3.5.1 CPU to PCI Read

If the CPU to PCI cycle is aread, a PCl read cycle is run. If the PCI read cycle completes,
the data is passed to the CPU and the CPU cycle is ended. If the PCI cycle is retried, the
CPU cycle is retried. If a PCI master access to system memory is detected before the PCI
read cycle is run then the CPU cycle is retried (and no PCI cycle is generated).

G5220297-00 3-7

.. p
Section 3— CPU & L2 Prellmlnary pl‘l.werpﬁ

3.5.2 CPU to PCI Write

If the CPU to PCI cycle is a write, a PCI write cycle is run. CPU to PCI I/O writes are not
posted, as per the PCI Local Bus Specificationversion 2.1. If the PCI transaction is retried,
the Bridge retries the CPU.

CPU to PCI memory writes are posted, so the CPU write cycle is ended as soon as the data
is latched. If the PCI cycle is retried, the Bridge retries the cycle until it completes.

3.5.2.1 Eight-Byte Writes to the PCI (Memory and 1/O)

The 660 supports 1-byte, 2-byte, 3-byte, and 4-byte transfers to and from the PCI. The 660
also supports 8-byte memory and I/O writes (writes only, not reads) to the PCI bus. When
an 8-byte write to the PCI is detected, it is not posted initially. Instead the CPU waits until
the first 4-byte write occurs, then the second 4-byte write is posted. If the PCI retries on
the first 4-byte transfer or a PCI master access to system memory is detected before the
first 4-byte transfer, then the CPU is retried. If the PClI retries on the second 4-byte transfer,
then the 660 retries the PCI write.

3.5.3 CPU to PCI Memory Transactions
CPU transfers from 3G to 4G-2M are mapped to the PCI bus as memory transactions.

3.54 CPU to PCI I/O Transactions

CPU transfers from 2G+16M to 3G—8M are mapped to the PCI bus as I/O transactions. In
compliance with the PCI specification, the 660 master aborts all I/O transactions that are
not claimed by a PCI agent.

3.5.5 CPU to PCI Configuration Transactions

The MCM allows the CPU to generate type 0 and type 1 PCI configuration cycles. The CPU
initiates a transfer to the appropriate address. The 660 decodes the cycle and generates
a request to the PCI arbiter in the SIO. When the PCI bus is acquired, the 660 enables its
PCI_AD drivers and drives the address onto the PCI_AD lines for one PCI clock before it
asserts PCI_FRAME#. Predriving the PCI_AD lines for one clock before asserting
PCI_FRAME# allows the IDSELSs to be resistively connected to the PCI_AD[31:0] bus at
the system level.

The transfer size must match the capabilities of the target PCI device for configuration
cycles. The MCM supports 1-, 2-, 3-, and 4-byte transfers that do not cross a 4-byte bound-
ary.

Address unmunging and data byte swapping follow the same rules as those for system
memory with respect to BE and LE modes of operation. Address unmunging has no effect
on the CPU address lines which correspond to the IDSEL inputs of the PCI devices.

The generation of PCI configuration cycles is via the 660 indexed Bridge Control Registers
(BCR). This configuration method is described in section 4 of the 660 User’s Manual. The
IDSEL assignments and their respective PCI_AD lines are shown in Table 3-3. The ad-
dresses used for configuration are assigned as shown in Table 3-3.

3-8 G5220297-00

’ . .
P-‘,‘WGIPu Prellmlnary Section 3— CPU & L2

Table 3-3. CPU to PCI Configuration Mapping

Device IDSEL Line 60X Address (1) PCI Address
PCI to ISA Bridge A/D 11 8080 08XXh 080 08XX
PCl slot 1 A/D 12 8080 10XXh 080 10XX
PCI slot 2 A/D 13 8080 20XXh 080 20XX
PCl slot 3 A/D 14 8080 40XXh 080 40XX
PCl slot 4 A/D 15 8080 80XXh 080 80XX
PCl slot 5 A/D 16 8081 00XXh 081 00XX
PCI slot 6 A/D 17 8082 00XXh 082 00XX
PCI slot 7 A/D 18 8084 00XXh 084 00XX
PCl slot 8 A/D 19 8088 00XXh 088 00XX
PCl slot 9 A/D 20 8090 00XXh 090 00XX
PCI slot 10 A/D 21 80A0 00XXh 0AO0 00XX
PCI slot 11 A/D 22 80C0 00XXh 0CO0 00XX

Notes:
1. This address is independent of contiguous 1/0O mode.

3.5.6 CPU to PCI Interrupt Acknowledge Transaction

Reading the interrupt acknowledge address (BFFF FFFOh) causes the bridge to arbitrate
for the PCI bus and then to execute a standard PCl interrupt acknowledge transaction. The
system interrupt controller in the ISA bridge claims the transaction and supplies the 1-byte
interrupt vector. There is no physical interrupt vector BCR in the bridge. Other PCl busmas-
ters can initiate interrupt acknowledge transactions, but this may have unpredictable ef-
fects.

3.5.7 PCI Lock

The 660 does not set PCI locks when acting as the PCI master. The PCI_LOCK# signal
in the 660 supports resource locking of one 32-byte cache sector (block) of system
memory. Once a PCl lock is established, the block address is saved. Subsequent accesses
to that block from other PCI busmasters or from the CPU bus are retried until the lock is
released.

The bridge generates a flush-sector snoop cycle on the CPU bus when a PCI busmaster
sets the PCI lock. The flush-sector snoop cycle causes the L1 and L2 caches to invalidate
the locked block, which prevents cache hits on accesses to locked blocks. If the L1 contains
modified data, the PCI cycle is retried and the modified data is pushed out to memory.

Note: The 60X processors do not have bus-locking functions. Instead, they use the load
reserve and store conditionalinstructions (Iwarx and stwcx) to implement exclusive access.
To work with the lwarx and stwcx instructions, the 660 generates a flush-sector operation
to the CPU in response to the PCI read that begins a PCI lock.

3.6 CPU to BCR Transfers

The 660 can be extensively programmed by means of the Bridge Control Registers (BCR).
See the 660 User’s Manual for a description of the operation and programming of the 660
BCRs.

G5220297-00 3-9

Preliminary

PowerP

Section 3 — CPU & L2

3.7 L2

The MCM contains an L2 cache controller (located inside the 660), 512K of synchronous
SRAM, and a 16K x 15 synchronous tagRAM. This forms a unified, write-thru, direct-
mapped, look-aside level 2 cache (L2) that caches CPU memory space from 0 to 1G.

The L2 directory contains 8K entries with one tag per entry. The cache line (block) size is
32 bytes, the PowerPC 60X coherence unit. The L2 maintains coherence for the 32-byte
block and neither operates on nor maintains the status of smaller units of memory.

Typical L2 read performance is 3-1-1-1, followed by -2-1-1-1 on pipelined reads. For more
information on the operation and capabilities of the L2, see the 660 User’s Manual.

3.7.1 Cache Response to CPU Bus

The L2 supplies data to the CPU bus on burst read hits and snarfs the data (updates the
SRAM data while the memory controller is accessing the DRAM) on CPU burst read/write
misses. It snoops PCI to memory transactions, and it invalidates on PCI write hits. The L2
does not supply data to the PCI on read hits.

Table 3-4. L2 Cache Responses to CPU Bus Cycles

TT[0:3] Type CPU Bus Cycle Cache Hit Action Cache Miss

Action

0000 Clean sector Ignore Ignore
0001 Single Write with flush Invalidate Ignore
Burst Write with flush Snarf Snarf

0010 Flush sector Invalidate Ignore
0011 Single Write with kill Invalidate Ignore
Burst Write with kill Snarf Snarf

0101 Single Read Ignore Ignore
Burst Read Claim cycle and supply data Snarf

0110 Kill sector Invalidate Ignore
0111 Always Burst RWITM Claim cycle and supply data Ignore
1000 Reserved Ignore Ignore
1001 Always Single Write with flush atomic Invalidate Ignore
1010 External control out Ignore Ignore
1011 Reserved Ignore Ignore
1100 TLB invalidate Ignore Ignore
1101 Single Read atomic Ignore Ignore
Burst Read atomic Claim cycle and supply data Snarf

1110 External control in Ignore Ignore
1111 Always Burst RWITM Atomic Claim cycle and supply data Ignore

The L2 ignores CPU bus single-beat reads, and invalidates on CPU bus single-beat write
hits. Table 3-4 shows the actions taken by the L2 cache based on transfer type and single-
beat or burst mode.

The CPU cache inhibit (Cl#) signal is not used because cache-inhibited bus operations are
always single-beat. The 660 does not use TT[4]. Accesses to populated memory are
snooped by L2 regardless of the state of GBL#. The 660 only uses GBL# as an output.

3-10 G5220297-00

’ . .
P-‘,‘WGIPu Prellmlnary Section 3— CPU & L2

3.7.2 Cache Response to PCI Bus

The L2 maintains coherency during PCI to memory transactions as shown in Table 3-5. The
L2 does not supply data to the PCI bus. The L2 is not updated during a PCI transaction.

Table 3-5. L2 Operations for PCI to Memory Transactions, 603 Mode

PCI Bus CPU Bus Broadcast Snoop L2 Operation
Transaction Operation TT[0:4] L2 Hit L2 Miss
Memory Read Single-Beat Read 01010 Ignore Ignore
Memory Write Single-Beat Write with Flush 00010 Invalidate Block Ignore
Initiate Lock (Read) Single-Beat Write with Flush 00010 Invalidate Block Ignore

3.7.3 L2 Configuration

The L2 controller does not require any software configuration to set the size or organization
of the tag and data SRAM. The connection to the CPU address bus determines the size
of the tag RAM and data SRAM. Bridge Control Register D4 bit 3 should be setto 1 to select
"burst” as the SRAM type.

3.7.4 L2 Organization

The L2 directory contains 8K entries with one tag per entry. The cache line (block) size is
32 bytes, the PowerPC 60X coherence unit. The L2 maintains coherence for the 32-byte
block and neither operates on nor maintains the status of smaller units of memory. All of
the tags together are sometimes called the cache directory.

The L2 uses only A[2:31] to store and access L2 data. A[0:1] are not used or saved in the
cache directory because the MCM only caches the lowest 1G of the address space. A[0:1]
must equal 00 for the MCM to access the directory.

3.7.5 Other L2 Related BCRs

See Table 3-6.
Table 3-6. Other L2 Related BCRs

Bridge Control Register Index R/W Bytes
Error Enable 2 Index C4 R/W 1
Error Status 2 Index C5 R/W 1
Bridge Chip Set Options 3 Index D4 R/W 1
System Control 81C 8000 081C R/W 1
L2 Invalidate 8000 0814
L2 Error Status 8000 0842 R
L2 Parity Error Read and Clear 8000 0843 R
Cache Status Index B1lh R/W

G5220297-00 3-11

. Preliminar P2 DT
Section 3 — CPU & L2 y vWGf L
Memory
Index Address
A[14:26] AJ0:31]
[
. 8K-1132B | 1G-32 The L2 considers the 1G of cacheable system memory to be
A[2:13] o - -) :
e . logically organized into 4K pages. Every member of a given
Tag= ° 7B page has the same address tag, which in this case is defined
aK-1 1 as bits A[2:13] of the address.
‘ 0o |32B | 1G-256K)
Each page consists of 8K blocks of memory, where each
H § block consists of one 32-byte doubleword of memory. A block
g is referred to within the page by the index, which is defined as
1 32B | 768K+32 bits A[14:26] of the address.
0 |32B| 768K)
Thus each block of memory in the 0 to 1G range has a tag,
8K-1 | 32B | 768K-32 A[2:13], which ranges from 0 to 4K-1, and an index, A[14:26],
o e which ranges from 0 to 8K—1. All of the blocks that have the
Tag=2 * . same index are said to be in the same congruence class, or
1 |32B 512K+32 set. Each block in a given set has a unique tag. Some map-
‘ o |32B 512K ping examples:
! 8K-1[32B | 512K-32
Tag=1 . :
1 |32B 256K+32
‘ 0 3B 256K Line Memory Address Index | Tag
‘ 0 0 0
8K-1 | 32B 256K-32 256K 0 1
Tag=0 * H 256K+32 1 1
32B 32 768K-32 8K-1| 2
0 |32B 0

Figure 3-4. L2 Mapping of System Memory — 512K Configuration

Figure 3-5 shows how the MCM maps the SRAM to main memory using the index and tag
fields of the address. Notice that there are 8k tags and 8k 32-byte blocks in the SRAM, and
that the main memory is divided up into 4k pages, each one of which is composed of 8k
blocks.

When an address is presented to the cache directory for snooping, the MCM uses the index
to select which directory location to access, by presenting A[14:26] to the tagRAM address
inputs. The tagRAM then compares the tag in that location (the A[2:13] of the previous
cacheable access to that location) to the tag (A[2:13]) of the current transaction. If there
is a match, and the tag is marked "valid,” then there is a cache hit (signalled by
TAG_MATCH).

3-12 G5220297-00

’ . .
P-‘,‘WGIPu Prellmlnary Section 3— CPU & L2

Index Memory
"gk—1 [32B|1C
1 ‘—I|. e |
T xe | o |
N 32B |
.0 32B |
[[
° []
) [)
"8K-1 [32B|__|_|_|
— . ™ e |
e M
o ¢ | ° I
g1 [82B] |
0 328 | __| TagRAM SRAM
"8k—1 [32B|__|_ o[tag] K1 _ 328 8k-1
o o H A H . H
“ [] | [] | [] [] [] []
> 1 328 | |l tagl 1, [32B 1
"0 32B | tagl_0 . [32B 0
0

Figure 3-5. SLC L2 Cache Directory — 512K Configuration

Suppose the CPU requests a burst store to location 512K (8 0000h), which is initially invalid
(either stale or never accessed). The index is A[14:26], which is Oh, so the accessed ta-
gRAM location is Oh. The tag currently on the address bus is A[2:13], which equals 2. So
the MCM stores 2h into tagRAM location Oh. The valid bit is set for that location.

While the CPU is accessing other blocks of memory with different low order addresses, oth-
erlocations in the tagRAM are being accessed; however, if the CPU again accesses a block
of memory with this same low order address, then this tagRAM location will again be ac-
cessed, and the tag stored therein will be compared against A[2:13] of the current access.
If they are the same, then there is a cache hit.

3.7.6 SRAM

The MCM uses four IBM041814 synchronous 64K x 18 SRAMs to implement the SRAM
portion of the L2. Figure 3-6 shows the basic connectivity of the MCM SRAM. These are
synchronous devices, and each SRAM consumes one of the MPC970 clocks. In burst op-
eration, the address of the data for the initial beat of the burst is latched into the SRAM; the
address of the data for the next beat of the burst is incremented internally under the control
of the ADV# input (SRAM_CNT_EN#).

e Each SRAM is connected to two CPU bus data bytes and the associated two CPU
bus parity lines.

e ABUF[13:28] are a buffered copy of CPU A[13:28]. The SRAMs are arranged in par-
allel, so that an 8-byte doubleword is addressed during each access; thus,
ABUF[28] is connected to A0 of the SRAM.

e The 660 asserts SRAM_WE# to write into the SRAM and asserts SRAM_OE# to
read data out of the SRAM.

e The 660 asserts SRAM_ADS# to signal the initial beat of the burst.

G5220297-00 3-13

.. p
Section 3— CPU & L2 Pre“mmary pl‘l.werpﬁ

e Pull SRAM_CS# low for normal operation. Pull SRAM_ADSP# high for normal op-
eration.

32k x 18 D[0:15] D[16:31] D[32:47] D[48:63]

SRAMs DP[0:1] DP[2:3] DP[4:5] DP[6:7]

SRAM_BCLKs 0 | T | > | 3 |

5 oo L5 e Ly eo Ly e

I) SRAM) SRAM > SRAM) SRAM

A[13:28] | Address [

SRAM_ADSP# g ADSP —C —0 —9
SRAM_ADS# g ADSC —C —0 —9
SRAM_CNT_EN# 9 ADV —C —0 —9
SRAM_WE# 9 WE —C —0 —9
SRAM_OE# Q9 OE —C —0 —9

SRAM_CS# 9Cs U7 9 us 9 U9 49 ui10

Figure 3-6. Synchronous SRAM, 512K L2

3.7.7 TagRAM

The MCM uses an IDT71216 synchronous 16K x 15 cache tagRAM to implement the tags
of the L2. Figure 3-7 shows the basic connectivity of the MCM SRAM. The tagRAM is a
synchronous device, and so consumes one of the MPC970 clocks.

e CPU address lines A[14:26] form the index of the directory entry. Pull
TAG_ADDR_13 high for normal operation.

e CPU address lines A[2:13] form the tag of the directory entry. Tie TAG_DATA 11 to
A13 for normal operation.

e During tagRAM writes, the valid bit associated with the index is set to match the
TAG_VALID input.

e During tagRAM reads, the TAG_MATCH outputis released to the active high (open—
drain) state only when A[2:13] matches the contents of tagRAM location A[14:26],
and the Valid bit for that location is set to 1. If the the Valid bit is O (invalid) or the
address stored in the tag does not match the current value of A[2:13], then the
TAG_MATCH output is driven low.

16k x 15
X_TAG_BCLK > TagRAM
TAG_CLEAR# —0 TAG_CLEAR
TAG_WE# —9 TAG_WE Vbp
A[14:26] — A[12:0]
A[2:13] — TAG[11:0]
TAG_VALID | VALID
—OCS MATCH]| TAG_MATCH

Figure 3-7. Synchronous TagRAM, 512K L2

3-14 G5220297-00

PowerP

Preliminary

Section 4 — DRAM

Section 4
DRAM

The memory controller in the 660 bridge controls the system memory DRAM. The system
memory can be accessed from both the CPU bus and the PCI bus. Much of the information

in this section has been drawn from the 660 User’s Manual.

4.1 Features and Supported Devices

Supports memory operations for the PowerPC Architecture ™

Data bus path 72 bits wide—64 data bits and eight bits of optional ECC or parity data
Eight SIMM sockets supported

Eight RAS# outputs, eight CAS# outputs, and two write-enable outputs

Supports industry-standard 8-byte (168-pin) SIMMs of 8M, 16M, 32M, 64M, and
128M that can be individually installed for a minimum of 8M and a maximum of 1G
Supports industry-standard 4-byte (72-pin) SIMMs of 4M, 8M, 16M, 32M, 64M, and
128M that must be installed in pairs for a minimum of 8M and a maximum of 1G
Mixed use of different size SIMMSs, including mixed 4-byte and 8-byte SIMMs

Full refresh support, including refresh address counter and programmable DRAM
refresh timer

Burst-mode memory address generation logic

32-byte CPU bursts to memory

Variable length PCI burst to memory

Little-endian and big-endian addressing and byte swapping modes
Provides row and column address multiplexing for DRAM SIMMs requiring the fol-
lowing addressing:

SIMM type SIMM size Addressing
72-pin 4 Meg 10x 10

8 Meg 10x 10

16 Meg 11x11

32 Meg 11x11

64 Meg 12 x12
168-pin 8 Meg 10 x 10

16 Meg 11 x 10

32 Meg 12x10o0r11 x 11

64 Meg 12x11

128 Meg 12x 12

G5220297-00

4-1

Section 4 — DRAM Preliminary pl‘l.werpc

4.1.1 SIMM Nomenclature
The term SIMM is used extensively to mean DRAM memory module, without implying the
physical implementation of the module, which can be a SIMM, DIMM, or other package.

4111 DRAM Timing
The memory controller timing parameters are programmable to allow optimization of tim-
ings based on speed of DRAM, clock frequency, and layout topology. Timing must be pro-
grammed based on the slowest DRAM installed.
e Support for fast page-mode DRAMs
e Support for extended-data-out (EDO) DRAM (hyper-page mode)
e If 70ns DRAM is used in a system with the CPU bus at 66MHz, the minimum access
times for initial (not pipelined) CPU to memory transfers with page mode and EDO
DRAM are as follows:

Transfer EDO DRAM Page Mode DRAM | Note
Initial Read Burst 10-3-3-3 11-4-4-4 CPU clocks for 32 bytes
Initial Write Burst 5-3-3-3 5-4-4-4 CPU clocks for 32 bytes

¢ In the same system, the times for a pipelined burst following a read are as follows:

Transfer EDO DRAM Page Mode DRAM | Note

Page Hit Read -5-3-3-3 —-5-4-4-4 CPU clocks for 32 bytes

Page Hit Write -3-3-3-3 -3-3-4-4 CPU clocks for 32 bytes
¢ In the same system, the times for a pipelined burst following a write are as follows:

Transfer EDO DRAM Page Mode DRAM | Note

Page Hit Read -9-3-3-3 -11-4-4-4 CPU clocks for 32 bytes

Page Hit Write -5-3-3-3 —-6-3-4-4 CPU clocks for 32 bytes

e Other minimum memory timings are as follows:
PCI to memory read at 66 MHz CPU and 33MHz PCI
8-1-1-1-1-1-1-1 7-1-1-1-1-1-1-1 7-1-1-1-1-1-1-1...7-1-1-1 -1-1-1-1
PCI to memory write at 66MHz CPU and 33MHz PCI
5-1-1-1 -3-1-1-1 3-1-1-1-3-1-1-1 3-1-1-1-3-1-1-1...3-1-1-1-3-1-1-1
41.1.2 DRAM Error Checking
The 660 supports either no parity or one bit per byte parity DRAM SIMMs, in which one par-
ity bitis associated and accessed with each byte. The 660 is BCR programmable to support
either no parity, even parity, or ECC data error detection and correction. ECC is implement-
ed using standard parity SIMMs. All installed SIMMs must support the selected error check-
ing protocol.
Systems without error checking cost the least. Parity checking mode allows a standard lev-
el of error protection with no performance impact. ECC mode allows detection and correc-
tion of all single-bit errors and detection of all two-bit errors. ECC mode adds one CPU clock
to the latency of CPU to memory reads, and does not effect the timing of 8-byte and 32-
byte writes

4.2 DRAM Performance

4.2.1 Memory Timing Parameters
Most memory controller timing parameters can be adjusted to maximize the performance
of the system with the available resources. This adjustment is done by programming vari-

4-2 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

ous memory controller BCRs. Figure 4-1 shows the various programmable memory timing
variables. These variables control the number of CPU_CLKs between various events. The
actual amount of time between the events shown will also be affected by various other fac-
tors such as clock to output delays. The CPU_CLK signal shown is not meant to be contigu-
ous, as the number of clocks between various events is programmable.

CPU_CLKIIIIIIIIIIIIIIIIIIII

MA(11:0) .+ Row . { . Column ¥ . Column X . Column .

- RAH>

e RP - RPW———
. &ASC . eASCH
[RCD, = CPW #CR« cpw%CR

Figure 4-1. CPU to Memory Transfer Timing Parameters

S .

RASN#

CASmM#

Table 4-1 shows the function, location, and section references for the variables shown in
Figure 4-1.

Table 4-1. Memory Timing Parameters

Variable Function BCR Section
ASC Column Address Setup (min) Memory Timing Register 2 42.1.2
CP CAS# Precharge Memory Timing Register 2 42.1.2
CPW CAS# Pulse Width (Read & Write) Memory Timing Register 2 4212
RAH Row Address Hold (min) Memory Timing Register 1 4211
RCD RAS# to CAS# Delay (min) Memory Timing Register 2 42.1.2
RP RAS# Precharge Memory Timing Register 1 4211
RPW RAS# Pulse Width Memory Timing Register 1 4211

Note that ASC, RAH, and RCD are minimums. if RAH + ASC does not equal RCD, then
the larger value will be used such that:

e If RCD < RAH + ASC, then the actual RCD will be stretched to equal RAH + ASC.
e If RCD > RAH + ASC, then the actual RAH will be stretched to equal RCD — ASC.

42.1.1 Memory Timing Register 1

[Index A1 | Read/write | Reset to 3Fh |

This BCR determines the timing of RAS# signal assertion for memory cycles. RAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 4.2.1.

Bits 1:0 These bits control the number of CPU clocks for RAS# precharge.

Bits 4:2 These bits control the minimum allowed RAS# pulse width except on refresh.
For refresh, the RAS# pulse width is hard-coded to three PCI clocks.

Bit 5 This bit controls the number of CPU clocks that the row address is held follow-

ing the assertion of RAS#.

G5220297-00 4-3

Section 4 — DRAM Preliminary pl‘l.werpc

Alh |D7|D6(D5|D4|D3|(D2|D1|DO

[E— RAS precharge (RP)
00=2CLK
01=3CLK
10 =4 CLK
11 =5CLK

RAS pulse width min (RPW)
000 =reserved 100 =5 CLK
001 =reserved 101 =6 CLK
010 =reserved 110 =7 CLK
011=4CLK 111=8CLK

Row Address Hold Time (RAH)

0=1CLK
1=2CLK
RESERVED
4.2.1.2 Memory Timing Register 2
[index A2 [Read/write | Reset to AEh |

This BCR determines the timing of CAS# signal assertion for memory cycles. CAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 4.2.1.

A2h |D7|D6(D5|D4|D3|(D2|D1|DO0

I E— RAS to CAS Delay (RCD)
00 = reserved
01=2CLK
10=3 CLK
11 = reserved

CAS Pulse Width Reads/Write (CPW)
00=1CLK

01=2CLK

10 =3 CLK

11 = Reserved

CAS Pulse Width Write (CPWW)
reserved

CAS Precharge (CP)
00=1CLK
01=2CLK

10 = reserved

11 = reserved

Column Address Setup (ASC)

0=1CLK
1=2CLK
42.1.3 RAS# Watchdog Timer BCR
[index B6 [Read/write | Reset to 53h |

This BCR limits the maximum RAS# active pulse width. The value of this BCR represents
the maximum amount of time that any RAS# can remain active in units of eight CPU bus
clocks. The timer (down-counter) associated with this BCR is reloaded on the assertion of
any RAS# line. On expiration of the timer, the 660 drops out of page mode to deassert the
RAS# lines.

G5220297-00

1

|l
illl

]
T
AN

pl‘l.werpc Preliminary Section 4 — DRAM

In response to the RESET# signal, this register is reset to 53h. This value results in a maxi-
mum RAS# active time of just under 10us at 66MHz. This is the value required by most
4-byte and 8-byte SIMMs. The value of the BCR must be reprogrammed if the CPU bus
frequency is not 66MHz or a different RAS# pulse width is required.

4.2.1.4 DRAM Timing Calculations

The memory controller of the 660 features programmable DRAM access timing. DRAM tim-
ing is programmed into Memory Timing Register 1 (MTR1) and Memory Timing Register
2 (MTR2). See section 4.2.1 for an explanation of the format of these BCRs. All memory
controller outputs are switched on the rising edge of the CPU clock, with the exception of
signal assertion during refresh operations, which is timed from the PCI clock. The RAS#
Watchdog Timer Register, the Refresh Timer Divisor Register and the Bridge Chipset Op-
tions 3 (BCO3) BCRs also have an effect on DRAM timing.

The values programmed into these registers are a function of the clock frequencies, the
timing requirements of the memory, the amount of memory installed (capacitive loading),
the mode of operation (EDO vs. standard), the timing requirements of the 660, the type and
arrangement of buffering for the MA (memory address) signals, the clock skew between
the 663 and the 664, and the net lengths of the signals to/from the memory (flight time). The
calculations below ignore the factors of clock skew and flight time.

This section discusses the timing calculations that are appropriate to 660 memory control-
ler design. The timing recommendations in this section apply to all MCM configurations.
Because the MCM uses synchronous SRAM, it is not affected by the 660 DRAM special
case timing restrictions.

Each of the nine equations below lists a register or register bits that govern a memory timing
parameter. An equation is then provided for calculating the required value based on the
timing requirements of the memory and the 660. MTR1[1:0] refers to Memory Timing
Register 1 bits 1:0. See Figure 4-1 and Table 4-1.

1. MTR1[1:0] — RAS# precharge (RP). The critical path that determines the RAS#
precharge requirement is RAS# rising to RAS# falling. The minimum RAS# pre-
charge time supplied by the 660 must exceed the minimum precharge time re-
quired by the DRAM. Make:

RAS# precharge (RP) >Trpmin............ * DRAM min RAS# precharge

2. MTR1[4:2] — RAS# pulse width (RPW). The critical path that determines the
RAS# pulse width requirement is RAS# falling to RAS# rising. The minimum
RAS# pulse width supplied by the 660 must exceed the minimum RAS# pulse
width required by the DRAM plus 5ns. Make:

RAS# pulse width (RPW) > Tras min * DRAM min RAS# pulse width
+5ns ... * pulse width shrinks (note 1)

3. MTR2[6:5] — CAS# precharge (CP). The critical path that determines the CAS#
precharge requirement is CAS# rising to CAS# falling. The minimum CAS# pre-
charge time supplied by the 660 must exceed the minimum precharge time re-
quired by the DRAM. Make:

G5220297-00 4-5

Section 4 — DRAM Preliminary pl‘l.werpc

CAS# precharge (CP)>Tcpmin * DRAM min CAS# precharge

4. MTR2[3:2] — CAS# pulse width (CPW). The critical path that determines the
CAS# pulse width requirement is the data access time from CAS# plus the setup
time into the 663. Thus the minimum CAS# pulse width provided by the 660 must
exceed the minimum CAS# pulse width required by the DRAM, plus these fac-
tors. Note that the 663 samples memory data on the clock that CAS# is
deasserted for standard DRAM and on the clock after CAS# is deasserted for
EDO DRAM. Make:

CAS# pulse width (CPW) > T CAS# fall max * CAS# active out if 664

(+ 1 CLK if EDO) +Tcac * DRAM data access from CAS#
+ MD setup max * MEM_DATA setup into 663

The factor (+ 1 CLK if EDO) is included in the equation only if EDO DRAM is used.

Note that CPW must be set to 3 or fewer clocks.

5. MTR2[7] — Column Address Setup (ASC). There are two critical paths that
determine the Col addr setup requirement. The minimum column address setup
time supplied by the 660 must exceed both constraints. The first is Tasc of the
memory. Make:

a) Col Addr Setup (ASC) > Tasc min * DRAM min col addr setup time
+ T MA max ... * MA[11:0] valid out of 664
+ T 244 max .. * Buffer delay
— T CAS# max . * CAS# active out of 664

The second critical path is the data access time from MA plus the setup time into the

663. Make:
b) Col addr setup (ASC)
+ CAS# pulse width (CPW)> TMAmMax * MA[11:0] valid out of 664
(+ 1 CLK if EDO) +T244 max * Buffer delay
+Taamin * DRAM data valid from col
addr valid
+ MD setup max . * MEM_DATA setup into
663

6. MTR2[1:0] — RAS# to CAS# delay. The minimum RAS# to CAS# delay provided
by the 660 must exceed the timing of the critical path that determines the RAS#
to CAS# delay, which is the data access time from RAS# plus the setup time into
the 663. Make:

RAS# to CAS# delay (RCD)
+ CAS# pulse width (CPW) > T RAS# fall max .. * max 660 RAS# fall time

(note 1)
(+ 1 CLK if EDO) +Tracmin....... * DRAM data access from
RAS#
+ MD setup max/ . * MEM_DATA setup into
663+

7. MTR1[5] — Row address hold time. The row address hold time must be set to the
RAS#-to—CAS# delay minus the Column address setup. The timing for the row
address hold time can also be calculated as follows. Make:

4-6 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

Row addr hold (RAH) > Trahmin * DRAM min row addr hold
+T244min................ * Buffer delay
+TMAMax * MA[11:0] valid out of 664
— TRAS#fallmax * max 660 RAS# fall time
(note 1)

Note 1. The 664 drivers that drive the RAS# and CAS# signals are slower falling
than rising. This causes active high pulse widths to grow by 0 to 5ns and active low
pulse widths to shrink by 0 to 5ns.

8. Refresh Timer Divisor. The refresh timing divisor is clocked by the PCI clock.
The required value is calculated as follows:

Refresh rate = period(Tref) / period(PCI clock)

9. RAS# watchdog timer. The RAS# watchdog timer must be set to limit the max
RAS# pulse width:

RAS# watchdog timer = Tras max / [period(CPU clock) * 8].

4.2.1.5 DRAM Timing Examples

This section presents example DRAM timing calculations based on the equations found in
Section 4.2.1.4. Except as noted in Section 4.2.1.4, the timing recommendations in this
section apply to all 660 configurations.

In the equations below, first the capactive loads are calculated based on the quantity and
types of SIMMs and the buffers used. Next, the timing characteristics are calculated based
on the capacitive loads. Finally, the timing requirements and register values are caculated.

42.1.6 70ns DRAM Calculations
Ex 1: Assume 70ns standard DRAM memory, four 72—pin DRAM SIMMs, a CPU bus cycle
time of 15ns (66.7Mhz), and MA[11:0] buffered by an FCT244 (four SIMMs per driver).
Capacitive loads:
RAS# = 2*62pf + 30pf = 154pf
CAS# = 2*62pf + 30pf = 154pf
MA (to buffer) = 30pf
MA (to memory) = 4*161pf + 40pf = 684pf
Timing Characteristics:
RAS# = 13.2ns + .025*(154pf-50pf) = 16ns
CAS# = 13.3ns + .025*(154pf-50pf) = 16ns
MA to buffer = 13.6ns + .025*(30pf-50pf) = 13ns
MA to memory = 4.6ns + .007(684pf-50pf) = 9ns
663 memory data input setup = 6ns
664 Output timings are at 50pf. For loads greater than 50pf, 0.025ns/pf are added.
Timing Requirements and register value calculations:
1. 4CLK* 15ns > 50ns

60ns> 50ns MTR1[1:0]=10
2. 5CLK*15ns> 70ns + 5ns
7/ns> 75ns L.l MTR1[4:2]=100

G5220297-00 4-7

Section 4 — DRAM Preliminary pl‘l.werpc

3. 1CLK*15ns> 10ns

15ns> 10ns MTR2[6:5]=00
4, 3CLK*15ns> 16ns+ 20ns + 6ns
45ns> 42ns MTR2[3:2]=10
5. a.1 CLK *15ns >0ns + 13ns + 9ns — 16ns
15ns > 6ns
b.(1 + 3)CLK *15ns > 13ns + 9ns + 35ns + 6ns
60ns > 63ns MTR2[7]=0 (see Note 2)
6. (3+ 3)CLK* 15ns > 16ns + 70ns + 6ns

90ns > 92ns .. MTR2[1:0]=10 (see Note 2)
7. 2CLK*15ns > 10ns + 4ns + 13ns — 16ns
30ns> 11ns MTR1[5]=1

Results: Memory Timing Register 1 (index Alh) = 32h
Memory Timing Register 2 (index A2h) = 0Ah

Note 2: The timing analysis above includes two timing violations (path #5b is
violated by 5% and path #6 is violated by 2%). More conservate system designers
may wish to use the values MTR1=32h, MTR2=0Eh to ensure all timing
requirements are met under all worst—case conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h
Refresh Timer Divisor (index D1h,DOh) = 0208h
9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h
RAS# watchdog timer register (index B6h) = 53h (default value).

42.1.7 60ns DRAM Calculations
Ex 2: Same assumptions as above, but with 60ns DRAM
1. 3CLK*15ns> 40ns

45ns > 40ns MTR1[1:0]=01
2. 5CLK*15ns > 60ns + 5ns
75ns > 65ns ... MTR1[4:2]=100
3. 1CLK*15ns> 10ns
15ns> 10ns MTR2[6:5]=00
4. 3CLK*15ns> 16ns + 15ns + 6ns
45ns> 37ns ... MTR2[3:2]=10
5. a.1 CLK*15ns >0ns + 13ns + 9ns — 16ns
15ns > 6ns
b.(1 + 3)CLK * 15ns >13ns + 9ns + 30ns + 6ns
60ns> 58ns...... MTR2[7]=0
6. (2+ 3)CLK* 15ns > 16ns + 60ns + 6ns
75ns> 82ns...... MTR2[1:0]=01 (see Note 3)

7. 1CLK*15ns> 10ns + 4ns + 13ns —16ns
15ns > 1lns .. MTR1[5]=0

Results: Memory Timing Register 1 (index Alh) = 11h
Memory Timing Register 2 (index A2h) = 09h

4-8 G5220297-00

PowerP

Preliminary Section 4 — DRAM

Note 3: The timing analysis above includes one timing violation (path #6 is violated
by 9%). More conservate system designers may wish to use the values MTR1=31h
MTR2=0Ah to ensure all timing requirements are met under complete worst—case
conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h
Refresh Timer Divisor (index D1h,D0Oh) = 0208h
9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h
RAS# watchdog timer register (index B6h) = 53h (default value).
4.2.1.8 50ns DRAM Calculations
Ex 3: Same assumptions as above, but with 50ns DRAM
1. 2CLK*15ns> 30ns
30ns> 30ns MTR1[1:0]=00
2. 4CLK*15ns> 50ns +5ns
60ns> 55ns MTR1[4:2]=011
3. 1CLK*15ns> 10ns
15ns> 10ns MTR2[6:5]=00
4., 2CLK*15ns > 16ns + 13ns + 6ns
30ns> 35ns MTR2[3:2]=01 (see note 4)
5. a.1 CLK *15ns >0ns + 13ns + 9ns — 16ns
15ns > 6ns
b. (1 + 2)CLK * 15ns >13ns + 9ns + 25ns + 6ns
45ns >53ns MTR2[7]=0 (see note 4)
6. (3+2)CLK* 15ns > 16ns + 50ns + 6ns
75ns > 72ns MTR2[1:0]=10
7. 2CLK*15ns > 10ns + 4ns + 13ns — 16ns
30ns> 11ns MTR1[5]=1
Results: Memory Timing Register 1 (index Alh) = 2Ch
Memory Timing Register 2 (index A2h) = 06h
Note 4: The timing analysis above includes two timing violations (path #4 is violated
by 14% and path #5b is violated by 15%). More conservate system designers may
wish to use the values MTR1=0Ch, MTR2=09h to ensure all timing requirements are
met under complete worst—case conditions.
8. Refresh rate = 15.6us/30ns = 520d = 208h
Refresh Timer Divisor (index D1h,DOh) = 0208h
9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h
RAS# watchdog timer register (index B6h) = 53h (default value).
4.2.1.9 60ns EDO DRAM Calculations

Ex 4: Same assumptions as above, except using 60ns EDO DRAM

1.

3 CLK*15ns > 40ns
45ns > 40ns

MTR1[1:0]=01

G5220297-00

Section 4 — DRAM Preliminary pl‘l.werpc

2. 5CLK*15ns> 60ns + 5ns

75ns> 65ns ... MTR1[4:2]=100
3. 1CLK*15ns> 10ns
15ns> 10ns MTR2[6:5]=00
4. (2+ 1)CLK * 15ns >16ns + 15ns + 6ns
45ns> 37NS ... MTR2[3:2]=01
5. a.1 CLK * 15ns >0ns + 13ns + 9ns — 16ns
15ns > 6ns
b. (1+2+1)CLK*15ns> 13ns + 9ns + 30ns + 6ns
60ns>58ns MTR2[7]=0
6. (2+2+1)CLK*15ns> 16ns + 60ns + 6ns
75ns> 82ns ... MTR2[1:0]=01 (see Note 5)
7. 1CLK*15ns > 10ns + 4ns + 13ns — 16ns
15ns> 11ns MTR1[5]=0

Results: Memory Timing Register 1 (index Alh) = 11h
Memory Timing Register 2 (index A2h) = 05h

Note 5: The timing analysis above includes one timing violation (path #6 is violated
by 9%). More conservate system designers may wish to use the values MTR1=31h,
MTR2=06h to ensure all timing requirements are met under complete worst—case
conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h
Refresh Timer Divisor (index D1h,DOh) = 0208h
9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h
RAS# watchdog timer register (index B6h) = 53h (default value).

4.2.1.10 Aggressive Timing Summary

Table 4-2 contains a summary of recommended general case aggressive page mode
DRAM timing, the required control register settings, and the resulting performance of the
memory controller. Aggressive timings may generate slight violations of certain worst case
timing constraints. In many cases, these violations are of only theoretical interest, since the
conditions required to produce the violations are of such low probability.

The top section of Table 4-2 shows the settings of the memory controller BCRs. The next
section of the table shows access times from the memory controller idle state, which it en-
terswhenitis not servicing a read or write request. The other two sections of the table show
access times during back to back burst transfers. The middle section of the table shows
access times for the second of any pair of back to back transfers where the first transfer
is a read. The lowest section of the table shows access times for the second of any pair
of back to back transfers where the first transfer is a write.

4-10 G5220297-00

PowerP

Preliminary

Section 4 — DRAM

Table 4-2. Page Mode DRAM Aggressive Timing Summary (1)

Transfer 70ns Page 60ns Page 50ns Page Note
Aggressive Aggressive Aggressive
Memory Timing Register 1 32 11 2C
Memory Timing Register 2 0A 09 06
Bridge Chipset Options 3 08 08 08
Initial Read Burst 11-4-4-4 10-4-4-4 10-3-3-3
Initial Write Burst 5-4-4-4 5-3-4-4 5-4-3-3
For a pipelined burst transfer immediately following a read:
Page Hit Read -4-4-4-4 -4-4-4-4 -4-3-3-3
Page Hit Write -3-3-4-4 -3-3-4-4 -3-3-3-3
Page Miss and Bank Miss Read -8-4-4-4 -7-4-4-4 -7-3-3-3 (2)
Page Miss and Bank Hit Read -10-4-4-4 -8-4-4-4 -7-3-3-3 3)
Page Miss and Bank Miss Write -3-3-4-4 -3-3-4-4 -3-3-3-3 (2)
Page Miss and Bank Hit Write -3-5-4-4 -3-3-4-4 -3-3-3-3 3)
For a pipelined burst transfer immediately following a write:

Page Hit Read -11-4-4-4 -10-4-4-4 -8-3-3-3
Page Hit Write -6-3-4-4 -5-3-4-4 -4-3-3-3
Page Miss and Bank Miss Read -14-4-4-4 -13-4-4-4 -11-3-3-3 (2)
Page Miss and Bank Hit Read -16-4-4-4 -14-4-4-4 -11-3-3-3 3)
Page Miss and Bank Miss Write -6-6-4-4 -6-5-4-4 -5-5-3-3 (2)
Page Miss and Bank Hit Write -6-8-4-4 -6-6-4-4 -6-5-3-3 3

Notes:

1. Refresh Rate set to 0208h. RAS# watchdog timer BCR set to 53h.
2. The RAS# of the new bank is high and has been high (precharging) for the minimum RAS# high time. The
bridge places the address on the address lines and asserts RAS#.
3. The access is a page miss, but within the same bank, so the RAS# line must be sent high for at least the
minimum RAS# high (precharge) time. The bridge also places the new address on the address lines and

asserts RAS#.

Table 4-3 contains a summary of recommended general case aggressive EDO DRAM tim-
ing, the required control register settings, and the resulting performance of the memory

controller.

G5220297-00

4-11

Preliminary

PowerP

Section 4 — DRAM

Table 4-3. EDO DRAM Aggressive Timing Summary (1)

Transfer 70ns EDO 60ns EDO 50ns EDO Note
Aggressive Aggressive Aggressive

Memory Timing Register 1 32 11 2C

Memory Timing Register 2 06 05 02

Bridge Chipset Options 3 ocC oC oC

Initial Read Burst 11-3-3-3 10-3-3-3 10-2-2-2

Initial Write Burst 5-4-3-3 5-3-3-3 5-4-2-2

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-3-3-3 -5-3-3-3 -5-2-2-2

Page Hit Write -3-3-3-3 -3-3-3-3 -3-2-2-2

Page Miss & Bank Miss Read -8-3-3-3 -7-3-3-3 -7-2-2-2 (2)
Page Miss & Bank Hit Read -10-3-3-3 -8-3-3-3 -7-2-2-2 3)
Page Miss & Bank Miss Write -3-3-3-3 -3-3-3-3 -3-3-2-2 (2)
Page Miss & Bank Hit Write -3-5-3-3 -3-3-3-3 -3-3-2-2 3)

For a pipelined burst transfer immediately following a write:

Page Hit Read -9-3-3-3 -9-3-3-3 -7-2-2-2

Page Hit Write -5-3-3-3 -5-3-3-3 -4-2-2-2

Page Miss & Bank Miss Read -12-3-3-3 -11-3-3-3 -10-2-2-2 2
Page Miss & Bank Hit Read -14-3-3-3 -12-3-3-3 -10-2-2-2 3)
Page Miss & Bank Miss Write -5-5-3-3 -5-4-3-3 -4-5-2-2 2
Page Miss & Bank Hit Write -5-7-3-3 -5-5-3-3 -4-5-2-2 (3)

Notes: See Table 4-2 for notes.

4.2.1.11 Conservative Timing Summary

Table 4-4 contains a summary of recommended general case conservative page mode
DRAM timing. The table also shows the resulting performance of the memory controller.
These conservative timings may be too conservative for many applications. These timings
meet all of the worst case timing constraints for the systems described in the examples sec-

tions above.

4-12

G5220297-00

PowerP

Preliminary

Section 4 — DRAM

Table 4-4. Page Mode DRAM Conservative Timing Summary (1)

Transfer 70ns Page 60ns Page 50ns Page Note
Conservative Conservative Conservative

Memory Timing Register 1 32 31 oC

Memory Timing Register 2 OE 0A 09

Bridge Chipset Options 3 08 08 08

Initial Read Burst 12-5-5-5 11-4-4-4 10-4-4-4

Initial Write Burst 5-4-5-5 5-4-4-4 5-3-4-4

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-5-5-5 -4-4-4-4 -4-4-4-4

Page Hit Write -3-3-5-5 -3-3-4-4 -3-3-4-4

Page Miss and Bank Miss Read -9-5-5-5 -8-4-4-4 -7-4-4-4 (2)
Page Miss and Bank Hit Read -11-5-5-5 -9-4-4-4 -7-4-4-4 3)
Page Miss and Bank Miss Write -3-3-5-5 -3-3-4-4 -3-3-4-4 (2)
Page Miss and Bank Hit Write -3-5-5-5 -3-4-4-4 -3-3-4-4 3)

For a pipelined burst transfer immediately following a write:

Page Hit Read -15-5-5-5 -11-4-4-4 -11-4-4-4

Page Hit Write -6-3-5-5 -6-3-4-4 -5-3-4-4

Page Miss and Bank Miss Read -17-5-5-5 -14-4-4-4 -13-4-4-4 (2)
Page Miss and Bank Hit Read -19-5-5-5 -15-4-4-4 -13-4-4-4 3)
Page Miss and Bank Miss Write -6-6-5-5 -6-6-4-4 -6-5-4-4 (2)
Page Miss and Bank Hit Write -6-9-5-5 -6-7-4-4 -6-5-4-4 3)

Notes: See Table 4-2 for notes.

Table 4-5 contains a summary of recommended general case aggressive EDO DRAM tim-
ing, the required control register settings, and the resulting performance of the memory

controller.

G5220297-00

4-13

Section 4 — DRAM

Preliminary

PowerP

Table 4-5. EDO DRAM Conservative Timing Summary (1)

Transfer 70ns EDO 60ns EDO 50ns EDO Note
Conservative Conservative Conservative
Memory Timing Register 1 32 31 oC
Memory Timing Register 2 0A 06 05
Bridge Chipset Options 3 oC oC oC
Initial Read Burst 12-4-4-4 11-3-3-3 10-3-3-3 2
Initial Write Burst 5-4-4-4 5-4-3-3 5-3-3-3
For a pipelined burst transfer immediately following a read:
Page Hit Read -5-4-4-4 -5-3-3-3 -5-3-3-3 2
Page Hit Write -3-3-4-4 -3-3-3-3 -3-3-3-3
Page Miss & Bank Miss Read -9-4-4-4 -8-3-3-3 -7-3-3-3 1,3)
Page Miss & Bank Hit Read -11-3-3-3 -9-3-3-3 -7-3-3-3 1,4
Page Miss & Bank Miss Write -3-3-4-4 -3-3-3-3 -3-3-3-3 3)
Page Miss & Bank Hit Write -3-5-4-4 -3-4-3-3 -3-3-3-3 (4)
For a pipelined burst transfer immediately following a write:

Page Hit Read -12-4-4-4 -9-3-3-3 -9-3-3-3 (2)
Page Hit Write -6-3-4-4 -5-3-3-3 -5-3-3-3
Page Miss & Bank Miss Read -15-4-4-4 -12-3-3-3 -11-3-3-3 (2,3)
Page Miss & Bank Hit Read -17-4-4-4 -13-3-3-3 -11-3-3-3 (2,4)
Page Miss & Bank Miss Write -6-6-4-4 -5-5-3-3 -5-4-3-3 3)
Page Miss & Bank Hit Write -6-8-4-4 -5-6-3-3 -5-4-3-3 (4)

Notes: See Table 4-2 for notes.

42.1.12 Page Hit and Page Miss

PowerPC CPU bus memory transfers have the following characteristic behavior. When a
CPU issues a memory access followed immediately by another memory access, the se-
cond access is typically from the same page of memory. On the other hand, if the second
memory access does not immediately follow the first one (so that the CPU bus goes idle)
then the second memory access is typically a page miss. Thus the majority of memory ac-
cesses following a bus idle condition are page misses. 660 memory performance is opti-
mized by assuming that a CPU to memory transfer from bus idle will be a page miss.

When neither the CPU or the PCl is accessing memory, the memory controller goes to the
idle state, and all RAS# lines are precharged (deasserted). Deasserting the RAS# lines at
idle begins to satisfy the minimum RAS# precharge time requirement. Assuming that the
first access out of idle will be a page miss, this technique allows the memory controller to
reduce the time required for the initial beat of the burst DRAM read or write access by three
CPU clocks. If the initial access is a page hit, this technique results in an increase in access
time of two CPU clocks. A net gain is realized whenever the system is experiencing more
page misses from bus idle than page hits from bus idle.

For the first beat of pipelined transactions, the memory controller checks the MA[11:0]
memory address for a page hit. If the address is within the same 8K memory page as the
previous memory access it is a page hit, the row address currently latched into the DRAM
is considered valid, and the bridge accesses the DRAM using CAS# cycles. On page mis-
ses, the bridge latches the new row address into the DRAMSs before it accesses the DRAM
using CAS# cycles.

4-14 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

On CPU to memory bursts, only the address of the first beat of the burst is checked for page
hits, because the following three beats are always within the same memory page.

On PCI to memory bursts, the address of each data phase of the burst is checked for page
hits.

4.2.1.13 CPU to Memory Access Pipelining

CPU to memory accesses are pipelined, with the result that during a series of back-to-back
CPU to memory accesses, all transfers following the initial transfer are faster. The informa-
tion from the address tenure of the subsequent transfers is processed by the bridge while
the data tenure of the preceding transfer is still active.

Considering a series of CPU to memory read transfers using 60ns EDO DRAM, the initial
burst requires 10-3-3-3 CPU clocks. If this transfer is followed immediately (back-to-back)
by another CPU to memory transfer, the required cycle time is -5-3-3-3. As long as the
transfers are back-to-back, they are pipelined, and can be retired at this pipelined rate.

4.2.1.14 Extended Data Out (EDO) DRAM

The 660 is designed to support hyper-page-mode DRAM, sometimes called extended data
out (EDO) DRAM. Information about the operation of the 660 with EDO DRAM is distributed
throughout this section.

4.3 System Memory Addressing

4.3.1 DRAM Logical Organization

The DRAM system implemented by the 660 is logically arranged as shown in Figure 4-2.
Each block shown in Figure 4-2 is a 9 bit DRAM composed of 8 data bits and 1 parity (or
check) bit that is accessed whenever the 8 data bits are accessed. The RAS# (aka MRE#)
lines strobe in the row address. The CAS# (aka MCE#) lines strobe in the column address.
For a block to activate (from idle) for either a read or a write, both the RAS# and CAS# line
to it must be activated in the proper sequence. After the initial access, the device can deliver
data in fast page mode with only CAS# strobes.

The CAS# lines can be thought of as byte enables, and the RAS# lines as bank enables.

The WE# signal goes to all (each of) the devices in the memory array. The OE# of each
DRAM device is tied active. This signal is not required to be deasserted at any time, since
the DRAMs only enable their output drivers when so instructed by the RAS#/CAS#
protocol.

G5220297-00 4-15

Section 4 — DRAM Preliminary pl‘l.werpc

CAS# CAS# CAS# CAS# CAS# CAS# CAS# CAS#
7

0 1 2 3 4 5 6

! ! ! ! ! ! ! !

' IRl IR 'l I ' I ' IR N I B IR

' IR IR ' I ' IR ' IR N I N IR B
RAS2#—* — — — — — — —

N]] e) e) e

Y | Y | y | y | y | v | Y | Y |
RAS7#—* — — — - [| . |]

Mem Mem Mem Mem Mem Mem Mem Mem
Data Data Data Data Data Data Data Data
Byte Byte Byte Byte Byte Byte Byte Byte
0& 1& 2& 3& 4 & 5& 6 & 7&
Parity Parity Parity Parity Parity Parity Parity Parity
bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

Figure 4-2. DRAM Logical Implementation

43.1.1 SIMM Topologies
Table 4-6 shows the various memory module (SIMM) topologies that the 660 supports.
Each memory bank can be populated with any supported SIMM.

Table 4-6. Supported SIMM Topologies

SIMM type Size Depth Width Banks Addressing Addressing Mode (1)
4-Byte Wide 4 Meg M 4 bytes 1+ 1empty 10 x 10 2
(72-pin) 8 Meg ™ 7 bytes 2 10 x 10 2
16 Meg 4M 4 bytes 1+1empty 11x11 2
32 Meg AM 4 bytes 2 11x11 2
64 Meg 16M 4 bytes 1+ 1empty 12 x 12 3
8-Byte Wide 8 Meg M 8 bytes 1 10 x 10 2
(168-pin) 16 Meg ZM 8 bytes 1 11 x 10 2
32 Meg 4M 8 bytes 1 11 x 11 or 2

12x 10

64 Meg 8M 8 bytes 1 12x11 3
128 Meg 16M 8 bytes 1 12 x 12 3

Note:
1. See BCR(A4to A7) in Section 4.3.1.6

The 660 supports the 168-pin 8-byte SIMMs shown in Table 4-6, which are each arranged
as a single bank of 8-byte-wide DRAM. Each SIMM requires a single RAS# line. These
SIMMs do not have to be installed in pairs.

The 660 also supports the 72-pin 4-byte SIMMs shown in Table 4-6, which are each ar-
ranged as two banks of 4-byte-wide DRAM, only one bank of which may be accessed at
a given time. Each bank requires a RAS# line, and each bank is addressed by the same

4-16 G5220297-00

Preliminary

PowerP

address lines. These SIMMs must be installed in pairs (of identical devices), since itis nec-
essary to use two (72-pin) 4-byte SIMMs to construct an 8-byte-wide memory array. Since
each 72-pin 4-byte SIMM consists of two banks, this pair of SIMMs also requires two RAS#
lines. The 660 addresses a given SIMM based on the value of the associated memory bank
addressing mode BCR.

431.2 Row and Column Address Generation

The 660 formats the row and column addresses presented to the DRAM based on the orga-
nization of the DRAM. In memory bank addressing mode 2, the bridge is configured to ad-
dress devices that require 12x10, 11x11, 11x10, or 10x10 bit (row x column) addressing.
In memory bank addressing mode 3, the bridge is configured to address devices that re-
quire 12x12 or 12x11 bit (row x column) addressing (no other addressing modes are cur-
rently available).

Table 4-7 and Table 4-8 show which CPU address bits are driven onto the memory address
bus during CPU to memory transfers. Table 4-9 and Table 4-10 show which PCI_AD ad-
dress bits are driven onto the memory address bus during PCI to memory transfers. These
address line assignments are not affected by the endian mode of the system. The addres-
sing mode is selected using the memory bank addressing mode BCRs (see Section
4.3.1.6). The addressing mode of each bank of memory is individually configurable.

Section 4 — DRAM

Table 4-7. Row Addressing (CPU Addressing)

Memory Bank Addressing Mode BCR MA | MA | MA | MA | MA | MA | MA | MA | MA | MA | MA | MA
Addressing Mode 11 |10 |9 8 7 6 5 4 3 2 1 0
12x10, 11x10, 010 A A A A A A A A A A A A
10x10, 11x11 (Mode 2) 7 8 9 10 |11 |12 |13 |14 |15 |16 |17 |18
12x12, 12x11 011 A A A A A A A A A A A A
(Mode 3) 7 8 9 10 |11 |12 |13 |14 |15 |16 |17 |18
Table 4-8. Column Addressing (CPU Addressing)
Memory Bank Addressing Mode BCR MA | MA | MA | MA | MA | MA | MA | MA | MA | MA | MA | MA
Addressing Mode 11 |10 |9 8 7 6 5 4 3 2 1 0
12x10, 11x10, 010 A A A A A A A A A A A A
10x10, 11x11 5 7 19 |20 |21 |22 |23 |24 |25 |26 |27 |28
12x12, 12x11 011 A A A A A A A A A A A A
5 6 19 |20 |21 |22 |23 |24 |25 |26 |27 |28
Table 4-9. Row Addressing (PCI Addressing)
Memory Bank Addressing Mode BCR MA | MA | MA | MA | MA | MA | MA | MA | MA [MA | MA | MA
Addressing Mode 11 |10 |9 8 7 6 5 4 3 2 1 0
12x10, 11x10, 010 AD |AD |AD |AD |AD |AD |AD |AD |AD [AD |AD |AD
10x10, 11x11 24 123 |22 |21 |20 |19 |18 (17 |16 |15 |14 |13
12x12, 12x11 011 AD |AD |AD |AD |AD |AD |AD |AD |AD [AD |AD |AD
24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13
Table 4-10. Column Addressing (PCI Addressing)
Memory Bank Addressing Mode BCR MA | MA | MA | MA | MA | MA | MA | MA | MA | MA | MA | MA
Addressing Mode 11 |10 |9 8 7 6 5 4 3 2 1 0
12x10, 11x10, 010 AD |AD |AD |AD |AD |AD |AD |AD |AD [AD |AD |AD
10x10, 11x11 26 |24 |12 |11 |10 |9 8 7 6 5 4 3
12x12, 12x11 011 AD |AD |AD |AD |AD |AD |AD |AD |AD [AD |AD |AD
26 |25 |12 |11 |10 |9 8 7 6 5 4 3
G5220297-00 4-17

Section 4 — DRAM Preliminary pl‘l.werpc

In the case of 10x10 addressing, MA[9:0] are connected to the DRAM modules. In the case
of 11x10 or 11x11, connect MA[10:0], and in the case of 12x11 or 12x12, connect MA[11:0]
to the DRAM modules.

4.3.1.3 DRAM Pages
The 660 uses an 8K page size for DRAM page-mode determination.

4.3.1.4 Supported Transfer Sizes and Alignments

The 660 supports all CPU to memory transfer sizes and alignments that do not cross an
8-byte boundary.

43.15 Unpopulated Memory Locations

Physical memory does not occupy the entire address space assigned to system memory
in the memory map. While the Memory Select Error Enable bit = O:

e When the CPU reads an unpopulated location, the bridge returns all-ones, and com-
pletes the transfer normally.

e When the CPU writes to an unpopulated location, the bridge signals normal transfer
completion to the CPU, but does not write the data to memory.

The memory select error bit in the error status 1 register (index C1h) is set in both cases.
Gaps are not allowed in the DRAM memory space, but empty (size=0) memory banks are
allowed. While the Memory Select Error bit =1, a read or write to an unpopulated memory
location is reported to the initiator as an error.

4.3.1.6 Memory Bank Addressing Mode BCRs

[Index A4 toA7 | Read/write | Reset to 44h (each BCR) |

This array of four 8-bit, read/write BCRs defines the format of the row and column addres-
sing of each DRAM memory bank.

D7|D6|D5|D4|D3|D2|D1| D0

— Reserved

Even Bank Addressing Mode

00x =reserved

Mode 2 010 =12x10, 11x10, 10x10, 11x11
Mode 3 011 = 12x11, 12x12

1xx = reserved

Reserved

Odd Bank Addressing Mode

00x =reserved

Mode 2 010 =12x10, 11x10, 10x10, 11x11
Mode 3 011 = 12x11, 12x12

1xx = reserved

Register Bits Memory Bank Bits Memory Bank
Adh 3.0 0 7:4 1
A5h 3.0 2 7:4 3
A6h 3.0 4 74 5
A7h 3.0 6 74 7

4-18 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

4.3.1.7 Memory Bank Starting Address BCRs
[Index 80to 87h | Read/write | Reset to 00h (each BCR) |

This array of eight BCRs (along with the eight extended starting address registers) contains
the starting address for each memory bank. Each pair of registers maps to the correspond-
ing RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 84h and 8Ch.
The eight least-significant bits of the bank starting address are contained in the starting ad-
dress register, and the most-significant bits come from the corresponding extended starting
address register. The starting address of the bank is entered with the least significant 20
bits truncated. These BCRs must be programmed in conjunction with the ending address
and extended ending address registers.

Program the banks in ascending order, such that (for n = 0 to 6) the starting address of bank
n+1 is higher than the starting address of bank n. Each bank must be located in the 0 to
1G address range. See section 4.3.1.12.

D7|D6(D5|D4(D3|D2|{D1| D0

A20 of start address (1MB+)
A21 of start address (2MB+)
A22 of start address (4MB+)
A23 of start address (8MB+)
A24 of start address (16MB+)
A25 of start address (32MB+)
A26 of start address (64MB+)
A27 of start address (128MB+)

4.3.1.8 Memory Bank Extended Starting Address BCRs

[Index 88 to 8F | Readwrite | Reset to 00h (each BCR) |

This array of eight BCRs (along with the eight starting address registers) contains the start-
ing address for each memory bank. These BCRs contain the most-significant address bits
of the starting address of the corresponding bank.

D7|D6|(D5|D4(D3|D2|{D1| D0

A28 of start address (256MB+)
A29 of start address (512MB+)

Reserved
4.3.1.9 Memory Bank Ending Address BCRs
[Index 90 to 97h | Read/write | Reset to 00h (each BCR) |

This array of eight BCRs (along with the eight extended starting address registers) contains
the ending address for each memory bank. Each pair of registers maps to the correspond-
ing RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 94h and 9Ch.
The eight least-significant bits of the bank ending address are contained in the ending ad-
dress register, and the most-significant bits come from the corresponding extended ending
address register. The ending address of the bank is entered as the address of the next high-

G5220297-00 4-19

Section 4 — DRAM Preliminary pl‘l.werpc

est memory location minus 1, with the least significant 20 bits truncated. Each bank must
be located in the 0 to 1G address range. These BCRs must be programmed in conjunction
with the ending address and extended ending address registers. See section 4.3.1.12.

D7|D6|D5|D4|D3|D2|D1| D0

A20 of end address (1MB+)
A21 of end address (2MB+)
A22 of end address (4MB+)
A23 of end address (8MB+)
A24 of end address (16MB+)
A25 of end address (32MB+)
A26 of end address (64MB+)
A27 of end address (128MB+)

4.3.1.10 Memory Bank Extended Ending Address BCR

[Index 98 to 9F | Read/write | Reset to 00 (each BCR) |

This array of eight 8-bit, read/write registers (along with the eight ending address registers)
contains the ending address for each memory bank. These BCRs contain the most-signifi-
cant address bits of the ending address of its bank.

D7|D6({D5|D4(D3|D2|{D1| D0

—— A28 of end address (256MB+)
A29 of end address (512MB+)
Reserved

4.3.1.11 Memory Bank Enable BCR

[index A0 [Read/write | Reset to 00h |

This BCR contains a control enable for each bank of memory. Each bank of memory must
be enabled for proper refreshing. For each bit, a O disables that bank of memory and a 1
enables it.

This register must be programmed in conjunction with the starting address and ending ad-
dress registers. If a bank is disabled by this register, the corresponding starting and ending
address register entries become don't cares.

4.3.1.12 Memory Bank Configuration Example

In the example memory bank configuration shown in Figure 4-3, the eight memory banks
are populated by different size and organization devices. For convenience, this example
shows the bridge configured to address each memory bank in order with no gaps in the
populated address range but this is not required. Any bank can be placed in any (1MB
aligned) non-populated address range from 0 to 1G.

4-20 G5220297-00

pl‘l.werpc Prellmlnary Section 4 — DRAM
AOh |D7|D6(D5|D4|D3|(D2|D1|DO0
Enable Bank 0
Enable Bank 1
Enable Bank 2
Enable Bank 3
Enable Bank 4
Enable Bank 5
Enable Bank 6
Enable Bank 7
Table 4-11. Example Memory Bank Addressing Mode Configuration
Bank SIMM [SIMM | SIMMs SIMM Bank SIMM | Row x | BCR Bits Mode
Type Depth | Per Topology Size Col 0 0
Bank
0 8-Byte [1M 1 8B x 1M x 1 bank | 8M 10x10 | A4 3:1 2
1 4-Byte |4M 2 4B x 4M x 2 bank | 32M 11x11 |A4 75 2
2 4-Byte |4M 2 4B x 4M x 2 bank | 32M 11x11 | A5 3:1 2
3 8-Byte | 8M 1 8B x 8M x 1 bank | 64M 12x11 | A5 75 3
4 none — — — oM — A6 3:1 —
5 4-Byte |4M 2 4B x 4M x 2 bank | 32M 11x 11 | A6 75 2
6 8-Byte [16M 1 8Bx16Mx1bank | 128M |12x12 [A7 3:1 3
7 8-Byte |[4M 1 8B x4M x 1 bank | 32M 11 x 11 | A7 75 2
12x10
4.3.1.13 Memory Bank Enable BCR

Program indexed BCR AOh (memory bank enable) to EFh to enable all banks except # 4.

4.3.1.14

Memory Bank Addressing Mode

As shown in Table 4-11, memory bank O (connected to RAS0#) contains an 8-byte x 1M
SIMM (8M) with one bank (one RAS# line). It is addressed with 10 row and 10 column bits.
Program bits 3:1 of indexed BCR A4h with 010b (mode 2).

G5220297-00

4-21

Section 4 — DRAM Preliminary pl‘l.werpc

8 Bytes . DEPTH
4 TOTAL
RASO# >—QRAS 8MB SIMM IMx8Byte IlM 8MB
4 Bytes < 4 Bytes N
RAS1# >—CRAS0 3eMB SIMM —CJRASO 3eMB SIMM I4M 32MB
4M x 4M x
4 Byte 4 Byte I
RAS2# >—CRAS1 % 2 Bank —CJRAS1 % 2 Bonk 4M 32MB
8 Bytes .
RAS3# >—QRAS 64MB SIMM 8Mx8Byte \: 8M 64MB
RAS4# >— Not Populated :OM OMB
4 Bytes < 4 Bytes N
RASS# >—CRAS0 16MB SIMM —CJRASO 16MB SIMM \4M 16MB
4M x 4M x N\
4 Byte 4 Byte N
CRAS}\ x 1 Bank _CRASI-\ x 1 Bank /OM OMB
< AN
Bank 1 is not
Populated
/ 8 Bytes N
RAS6# >—QRAS 128MB SIMM 16Mx8Byte 116M 128MB
/ 8 Bytes .
RAS7# >—QRAS 32MB SIMM 4Mx8By te :[4M 32MB

Figure 4-3. Example Memory Bank Configuration

4.3.1.15 Starting and Ending Addresses

As shown in Table 4-12, program indexed BCR 80h with 00h to configure address bits
27:20 of the bank O starting address. Program indexed BCR 88h with 00h to configure ad-
dress bits 29:28. Also program indexed BCR 90h with 00h to configure address bits 27:20
of the bank 0 ending address, and program indexed BCR 98h with 07h to configure address
bits 29:28.

The next two physical SIMM units are 4-byte x 4M x 2 bank (16M x 2 bank = 32M) SIMMs,
used side by side to achieve 8-byte width. They form banks 1 and 2, each of which is 8-byte
X 4M (32M). Note that bank 7 is also 32M, populated by an 8-byte x 8M (32M) SIMM. Using
the same configuration, banks 1 and 2 could also be implemented using two 8-byte x 4M
(32M) SIMMs. Bank 3 is configured to the same size as bank 1 plus bank 2 and is imple-
mented using a single 8-byte x 8M (64M) SIMM.

4-22 G5220297-00

PowerP

Preliminary

Section 4 — DRAM

Bank 4 is not populated, so set memory bank enable BCR bit D4 to 0. The data in the start-
ing, extended starting, ending, and extended ending address BCRs for bank 4 is ignored.
Note that empty memory banks are allowed, but that gaps in the DRAM space are not al-

lowed.

For proper operation, program the bridge to execute memory accesses at the speed of the
slowest device. If ECC or parity is selected, all devices must support the capability. And if
the bridge is programmed to utilize hyper-page mode, all devices must support extended-

data out transfers.

Table 4-12. Example Memory Bank Starting and Ending Address Configuration

SIMM Starting Extended Base Ending Extended Base
Bank Size Address BCR | Data | BCR | Data Address BCR | Data | BCR | Data
0 8M 0000 0000 88 00 80 00 007F FFFF 98 00 90 07
1 32M 0080 0000 89 00 81 08 027F FFFF 99 00 91 27
2 32M 0280 0000 8A 00 82 28 047F FFFF 9A 00 92 47
3 64M 0480 0000 8B 00 83 48 087F FFFF 9B 00 93 87
4 oM Don’t Care 8C XX 84 XX Don’t Care 9C XX 94 XX
5 32M 0880 0000 8D 00 85 88 OA7F FFFF 9D 00 95 A7
6 128M 0A80 0000 8E 00 86 A8 127F FFFF 9E 01 96 27
7 32M 1280 0000 8F 01 87 28 147F FFFF 9F 01 97 47

4.4 Error Checking and Correction

The 660 provides three levels of memory error checking—no checking, parity checking,
and error checking and correction (ECC). If no memory checking is enabled, the system

can be configured to use lower-cost, non-parity DRAM.
While the system is configured for parity checking, the 660 performs as follows:

Uses odd parity checking
Detects all single bit errors
Allows full-speed memory accesses

While the system is configured for ECC, the 660 performs as follows:

Uses an H—matrix and syndrome ECC protocol

Uses the same memory devices and connectivity as for parity checking

Detects and corrects all single-bit errors

Detects all two-bit errors

The first beat of CPU to memory reads requires one additional CPU clock cycle
CPU to memory burst writes and 8-byte single-beat writes are full-speed

CPU to memory single-beat writes of less than eight bytes are implemented as read-
modify-write (RMW) cycles

PCI to memory reads are full-speed

PCI to memory writes are full-speed while data can be gathered into 8-byte groups
before being written to memory. Single beat or ungatherable writes require a read-
modify-write cycle

4.4.1 Memory Parity

While the 660 memory controller is configured for memory parity checking, the bridge im-
plements an odd parity generation and checking protocol, generating parity on memory

G5220297-00

4-23

Section 4 — DRAM Preliminary pl‘l.werpc

writes and checking parity on memory reads. One parity bit is associated with each data
byte and is accessed with it. When a parity error is detected during CPU to memory reads,
the error is reported by means of TEA# or MCP#. When a parity error is detected during
PCI to memory reads, the error is reported by means of PCl_SERR#.

The 660 detects all single-bit parity errors, but may not detect multi-bit parity errors. Also,
an even number of parity errors will not be detected. For example, an event which causes
a parity error in bytes 0, 1, 2, 3, 4, and 5 will not be detected.

4411 ECC Overview

While ECC is enabled, the 660 uses the ECC logic to detect and correct errors in the trans-
mission and storage of system memory data. The bridge implements the ECC protocol us-
ing the same connectivity and memory devices as parity checking.

While neither parity or ECC is enabled, the bridge executes memory writes of less than
eight bytes in response to busmaster requests to write less than eight bytes of data. The
bridge always (whether parity, ECC or neither is enabled) reads data from memory in 8-byte
groups, even if the busmaster is requesting less than eight bytes.

While parity is enabled, the bridge also executes memory writes of less than eight bytes
in response to busmaster requests to write less than eight bytes of data, since writing a byte
to memory also updates the associated parity bit. During memory writes, the bridge gener-
ates one parity bit for each byte of data and stores it with that byte of data. This parity bit
Is a function only of the data byte with which it is associated. During memory reads, the in-
tegrity of the data is parity checked by comparing each data byte with its associated parity
bit.

However, when ECC is enabled the bridge reads from and writes to system memory only
in 9-byte groups (as a 72-bit entity), even though the busmaster may be executing a less-
than-8-byte read or write. There is one byte of ECC check byte information for eight bytes
of data. During memory writes, the eight check bits are generated as a function of the 64
data bits as a whole, and the check bits are stored with the data bits as a 72-bit entity. During
memory reads, all 72 bits are read, and the eight check bits are compared with the 64 data
bits as a whole to determine the integrity of the entire 72-bit entity.

In ECC mode, single-bit errors are corrected. When a multi-bit error is detected during CPU
to memory reads, the error is reported by means of TEA# or MCP#. When a multi-bit ECC
error is detected during PCl to memory reads, the error is reported by means of
PCI_SERR#. Note that the DRTRY# function of the CPU is not used, even when the 660
is in ECC mode (the Bridge will not assert DRTRY#).

Only the data returned to the CPU (or PCI) is corrected for single-bit errors. The corrected
data is not written into the DRAM location.

4412 ECC Data Flows

While ECC is enabled, the 660 always reads eight data bytes and one check byte from
memory during CPU and PCI reads. During busmaster 8-byte writes to memory, the bridge
writes eight data bytes and one check byte to memory. When the busmaster writes less
than eight data bytes to memory, it is possible for each check bit to change due to a write
to any one of the eight data bytes. The Bridge then executes a read-modify-write (RMW)
cycle—reading all eight data bytes from memory, modifying the appropriate bytes with the
new data, recalculating all of the check bits, and writing the new data and check bits to
memory.

4-24 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

4.4.1.3 Memory Reads

Figure 4-4 shows a simplified data flow in a 660 system during CPU to memory read trans-
fers. Figure 4-5 shows the simplified data flow during PCI to memory reads. The data and
check bits flow from system memory into the bridge where the checking logic combines the
data with the check bits to generate the syndrome. If there is a single-bit error in the data,
the correction logic corrects the data and supplies it to the requesting agent. If there is a
multiple-bit error in the data, the bridge signals an error to the requesting agent.

Note that the structure of the bridge as shown in Figure 4-4 through Figure 4-8 is consider-
ably simplified and does not show the posted write buffers and other internal details.

Data(64) 660 Bridge Data(64)
System Check/
Memory Check(8) Correct TEA# or MCP# CPU
Figure 4-4. CPU Read Data Flow
Data(64) 660 Bridge Data(32)
System Check/
Memory | Check(s) Corract PCI_SERR#, PCI
PCI_AD_PAR
Figure 4-5. PCI Read Data Flow
44.1.4 Eight-Byte Writes

Figure 4-6 shows the simplified data flow in a 660 system during 8-byte CPU to memory
writes. The data flows from the CPU into the bridge and out onto the memory data bus. The
bridge generates the check bits based on the eight bytes of data, and stores them in
memory with the data.

Data(64) 660 Bridge Data(64)
- L Check Check(8) hsﬂsgsr;eorpy
Bit
Generator

Figure 4-6. CPU 8-Byte Write Data Flow

Figure 4-7 shows the simplified data flow in a 660 based system during gathered PCI to
memory 8-byte writes. During the first of the two gathered data phases (A), the data flows
from the PCI bus into a 4-byte hold latch in the bridge. On the next data phase (B), the next
4—bytes of PCI data flows into the bridge, where it is combined with the data from the pre-
vious data phase. The 8-byte data then flows onto the memory data bus. The bridge gener-
ates the check bits based on the 8-byte data, and stores them in memory with the data.

G5220297-00 4-25

Section 4 — DRAM Preliminary pl‘l.werpc

660 Bridge
Data(32)
4—Byte
PCI PCI Data
Latch
A
B 660 Bridge
4—-Byte
PCI Data| (32) Data(64)
Latch > Mtem
[]_ T Check(8) | Memory
Bit
PCI Data(32) Genelzrator

Figure 4-7. PCI 8-Byte Write Data Flow

Note that if either or both of the two gathered PCI data phases is a write of less than 4 bytes,
the two data phases will still be gathered, and then the bridge will execute a RMW cycle,
filling in the unwritten bytes (in the group of 8 bytes) with data from those locations in
memory. The same write case while ECC is disabled does not cause a RMW cycle; the
bridge merely writes only the indicated bytes, leaving the write enables of the unaccessed
bytes deasserted.

660 Bridge
Data(64) Bridge
System Check/ Data(64) -
Memory Check(8) Correct Register
A
B 660 Bridge
Bridge
Register 64-n . Data(64)
System
n| L Check Check(8) Memory
CPU or Bit
PCI Generator

Figure 4-8. PCl or CPU Read-Modify-Write Data Flow

4415 Less-Than Eight-Byte Writes

Figure 4-8 shows the simplified data flow during a CPU or PCI busmaster to memory write
of less than eight bytes, during which the bridge executes a RMW cycle. In Figure 4-8(A),
the bridge reads in the data and check bits from the addressed memory locations and
places this data (corrected as necessary) in a register. In Figure 4-8(B), this data is modi-
fied by the bridge, which replaces the appropriate memory data bytes with write data from
the busmaster. The bridge then recomputes all of the check bits and writes the new data
and check bits to memory.

4.4.1.6 Memory Performance In ECC Mode

Enabling ECC mode on the 660 affects memory performance in various ways, depending
on the transaction type. The effect is the same for both EDO and page mode DRAMs.

4-26 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

4.4.1.7 CPU to Memory Read in ECC Mode

ECC mode adds one CPU_CLK to single—beat CPU to memory read transfers and to the
first beat of CPU to memory burst read transfers. The other beats of the burst are
unaffected. During the extra CPU_CLK, the 663 holds the data while checking (and if
necessary, correcting) it.

The 660 does not use the DRTRY# function, even while in ECC mode. In no-DRTRY#
mode, during memory reads the 604 uses the data bus data internally as soon as it samples
TA# active. The 660 supports this mode by presenting correct(ed) data to the before driving
TA# valid. The Bridge does not speculatively present data to the CPU (using TA#) and then
assert DRTRY# if there is a data error.

By allowing the 604 to run in no-DRTRY# node, the 660 enables the 604 to use data from
the L2 cache at the full speed of the L2 cache, without requiring the 604 to insert an
additional (internal to the 604) one CPU clock delay on reads.

In DRTRY# mode, during memory reads the 604 holds the data internally for one CPU clock
after sampling TA# active. This delay is inserted by the 604 to allow DRTRY# to be sampled
before the data is used. Thus during CPU to memory reads in ECC mode while a 604 is
in DRTRY# mode, the 660 inserts a one CPU clock delay to check/correct the data, and
then the 604 adds a one CPU clock delay to check for DRTRY#. Thus two CPU clocks are
added to single—beat CPU to memory read transfers and to the first beat of CPU to memory
burst read transfers.

44.1.8 CPU to Memory Write in ECC Mode

ECC mode adds no additional clock cycles to 8-byte CPU to memory write transfers. Note
that all CPU bursts are composed of 8-byte beats. CPU to memory writes of less than eight
bytes are handled as RMW cycles, which usually require four additional CPU clocks as
compared to 8-byte writes.

4.4.1.9 PCI to Memory Read in ECC Mode
ECC mode adds no additional clock cycles to PCI to memory read transactions.

4.4.1.10 PCI to Memory Write in ECC Mode

ECC mode has a complex effect on PCI to memory writes. During PCI to memory writes,
the bridge attempts to gather adjacent 4-byte data phases into 8-byte memory writes. In
response to conditions during a given data phase, the bridge either gathers, writes 8 bytes,
or read-modify-writes, as shown in Table 4-13. Gather and 8-byte write operations incur no
performance penalties, but RMW cycles add from two to four (usually three) PCI clock
cycles to the transaction time. The consequences of ECC mode delays on PCI to memory
write bursts are minor and are best understood from a few examples. The following exam-
ples assume page hits and no snoop hits.

G5220297-00 4-27

Section 4 — DRAM

Preliminary

PowerP

Table 4-13. Bridge Response to Various PCI Write Data Phases

Bridge Conditions Description of Operation

Operation

Gather This data phase is not the last data phase, and The bridge latches the four bytes from this data
This is a 4-byte transfer (BE[3:0]#=0000), and phase into the low four bytes of a hold register.
This data phase is to the lower 4-byte word.

Eight-Byte | The previous data phase caused a gather, and The bridge combines the (high) four bytes from

Write This is a 4-byte transfer, and this data phase with the (low) four bytes from the
This data phase is to the upper 4-byte word. previous data phase, and writes all eight bytes to

memory.

Read- This is a single phase transaction, or The bridge Reads eight bytes from memory, mo-

Modify- This is the first data phase and difies the data by replacing the appropriate four

Write is to the upper 4-byte word, or bytes with the data from this data phase, and then

This is the last data phase and
is to the lower 4-byte word, or
This is a less-than-4-byte transfer.

writes all eight bytes to memory.

Best case (see Table 4-14) is a burst starting on a low word (memory address is 0 mod 8),
composed of an even number of data phases, in which all data phases transfer four bytes
of data. Notice that the first data phase is gathered and the second data phase causes an
8-byte memory write. The following pairs of data beats follow the same pattern. No page
misses, snoop hits, or data beats of less than 4 bytes are encountered. This case adds no

PCI clock cycles to the best-case transaction time.

Table 4-14. Bridge Response to Best Case PCI Write Burst

Data |Word |Bridge Special Conditions Performance Impact
Phase Operation

n (last) | High | 8-byte Write None None

n-1 Low | Gather None None

4 High | 8-byte Write None None

3 Low | Gather None None

2 High | 8-byte Write None None

1 (first) | Low | Setup + Gather | None None

Table 4-15 shows a case where the first data phase is to a high word (memory address is
4 mod 8), and is composed of an odd number of data phases in which all data phases trans-
fer four bytes of data. Here the total effectis to add three PCI clocks to the transaction time,
which is shown during the first data phase in Table 4-15.

Table 4-15. Bridge Response to Case 2 PCI Write Burst

Data Word | Bridge Special Conditions Performance Impact
Phase Operation

n (last) | High | 8-byte Write None None

n-1 Low | Gather None None

3 High | 8-byte Write None None

2 Low | Gather None None

1 (first) |High | Setup + RMW | None Add 3 PCI clocks

4-28

G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

Table 4-16. Bridge Response to Various PCI Write Bursts

Row | Data |Word Bridge Special Conditions Performance Impact
Phase Operation
12 |n(last) | Low RMW None Add 3 PCI clocks
11 n—-1 | High 8-byte Write None None
10 n-2 Low Gather None None
9 None
8 High RMW None Add 3 PCI clocks
7 3 Low RMW Less than 4-byte transfer Add 3 PCI clocks
6 None
5 10 High RMW Less than 4-byte transfer Add 3 PCI clocks
4 9 Low Gather None None
3 None
2 2 High 8-byte Write None None
1 1 Low | Setup + Gather None None
(first)

Table 4-16 shows the effect of several conditions on the transaction time. Rows 1 through
6 show the effects of a less-than-4-byte transfer at the high word location that occurs during
a burst. The term Nonein the column titled Performance Impactin row 6 indicates that there
are no residual performance penalties due to the events of rows 1 through 5.

Rows 7 through 9 show the effect of a less-than-4-byte transfer at the low word location that
occurs during a burst. The term None in the column titled Performance Impact in row 9 indi-
cates that there are no residual performance penalties due to the events of rows 7 and 8.

Rows 10 through 12 show the effect of a burst that ends at a low word location. The total
performance impact from this burst is to add 12 PCI clocks to the transaction time.

Note that the performance penalty for single data phase PCI writes is three additional PCI
clocks, whether the destination is the high word or the low word.

441.11 Check Bit Calculation

The 660 generates the check bits based on Table 4-17 (which is shown using little-endian
bit numbering).

Table 4-17. Check Bit Calculation
CB | Data Bits. CB(x) = XOR of Data Bits (0 is LSb)
(X)
0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,33,34,35,39,41,42,43,47,49,50,51,55,57,58,59,63
8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31,32,34,35,38,40,42,43,46,48,50,51,54,56,58,59,62
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35,37,40,41,43,45,48,49,51,53,56,57,59,6 1
0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,32,33,34,36,40,41,42,44,48,49,50,52,56,57,58,60
1,2,3,7,9,10,11,15,17,18,19,23,25,26,27,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47
0,2,3,6,8,10,11,14,16,18,19,22,24,26,27,30,40,41,42,43,44,45,46,47,56,57,58,59,60,61,62,63
0,1,3,5,8,9,11,13,16,17,19,21,24,25,27,29,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63
0,1,2,4,8,9,10,12,16,17,18,20,24,25,26,28,32,33,34,35,36,37,38,39,48,49,50,51,52,53,54,55

N|jojoalbh|lwIN]E

G5220297-00 4-29

Section 4 — DRAM Preliminary pl‘l.werpc

4.4.1.12 Syndrome Decode

The syndrome consists of an 8-bit quantity which is generated by the 660 as itis comparing
the 8 data bytes to the check byte. This syndrome contains the results of the comparison,
as shown in Table 4-18, where:

ne means that no error has been detected.

cbx means that check bit x is inverted (a single-bit error).

dx means that data bit x is inverted (a single-bit error).

blank means that a multiple bit error has occurred.
Based on the information in the syndrome, the 660 corrects all single-bit errors and signals
an error to the requesting agent on multiple-bit errors.

Table 4-18. Syndrome Decode

S0] O 1 0 1 0 J1] o 1 0 1 |o] 1 0 1 0 |1
Si1] O 0 1 1 0 0] 1 1 0 0 1] 1 0 0 1 |1
S21 O 0 0 0 1 |1 1 1 0 0 |o] o 1 1 1 1
S3]1 O 0 0 0 0 |o] o 0 1 1 1] 1 1 1 1 1

S7 S6 S5 sS4

0000O0 ne | cbO | cbl cb2 cb3

0001 ch4 d8 d24 do di6

0010 ch5 do d25 di di7

0011 d40 | d41 d42 d44 | d43 d45 d46 | d47

0100 ch6 di0 d26 d2 dis

0101

o110 d56 | d57 d58 de0 | d59 de6l d62 | d63

0111 di2 d28 d4 d20

1000 cb7 di1 d27 d3 di9

1001 d32 | d33 d34 d36 | d35 d37 d38 | d39

1010

1011 di3 d29 d5 d21

1100 d48 | d49 d50 d52 | d51 d53 d54 | d55

1101 di4 d30 dé6 d22

1110 dis d31 d7 d23

1111

45 DRAM Refresh

The memory controller provides DRAM refresh logic for system memory. The memory con-
troller supports CAS#-before-RAS# refresh only, which provides lower power consumption
and lower noise generation than RAS#-only refresh. In this refresh mode, MA[11:0] are not
required. Refresh of the odd banks of memory is staggered from the refresh of the even
banks of memory to further reduce noise (see Figure 4-9).

During refresh,

e WE[1:0] are driven high.
e MEM_DATA[63:0] are tri-stated.
e MAJ[11:0] continue to be driven to their previous state.

4-30 G5220297-00

pl‘l.werpc Preliminary Section 4 — DRAM

PCI_CLK __| | | | | —
CAS[7:0]# | \ j j j j /
RAS[6,4,20}# . | \ | | | /

RAS[7.5.3,1]# |) : :]

Figure 4-9. DRAM Refresh Timing Diagram

Refresh requests are generated internally by dividing down the PCI_CLK. The divisor value
is programmed in the refresh timer divisor register. This register is initialized to 504, a value
that provides a refresh rate of 15.1us when PCI_CLK rate is 33MHz. For other PCI_CLK
frequencies, the refresh rate register must be properly configured before accessing system
memory.

Refresh continues to occur even if CPU_CLK is stopped.

45.1 Refresh Timer Divisor Register

[Index DO to D1 | Read/write | Reset to F8 (D0) and 01 (D1) |

The refresh timer register is a 16-bit BCR that determines the memory refresh rate. Typical
refresh rates are 15.1 to 15.5 microseconds. If all DRAM in the system supports extended
(slow) refresh, the refresh rate can be slower. The refresh timer is clocked by the PCI clock
input to the 664 Controller. The reset value of 01F8h provides a refresh rate of 15.1 micro-
seconds while the PCl clock is 33MHz. (01F8h equals 504 times 30ns equals 15.12us.) Bits
3-11 of the timer allow timer values from 8 to 4096.

DOh |D7|D6|D5|D4|D3|D2|D1|D0

Hardcoded to 0

Refresh Timer Value LSBs.

Bits 7:3 Refreshtimer (7:3) : These are the five least-significant bits of the refresh tim-
er value.

D1h [D15D14D13D12D11jD10 D9 | D8

Refresh Timer Value MSBs.

Hardcoded to O

Bits 11:8 Refresh timer (11:8) : These are the four most-significant bits of the refresh
timer value.

G5220297-00 4-31

Section 4 — DRAM Preliminary pl‘l.werpc

4.6 Atomic Memory Transfers

The 660 supports atomic memory transfers by supporting the CPU reservation protocol
and the PCI lock protocol.

4.6.1 Memory Locks and Reservations

The 660 supports the lwarx and stwcx atomic memory update protocol by broadcasting
snoop cycles to the CPU bus during PCI to memory transactions. The bridge does not
otherwise take any action, nor does it enforce an external locking protocol for CPU busmas-
ters. See Section 4.6.2.

PCIl busmasters can lock and unlock a 32-byte block of system memory in compliance with
the PCI specification. This block can be located anywhere within the populated system
memory space, aligned on a 32-byte boundary. Only a single lock may be in existence at
any given time. The bridge does not implement complete bus locking. See Section 4.6.3.

4.6.2 CPU Reservation

The CPU indicates a reservation request by executing a memory read atomic
(TT[0:3]=1101). If there is no PClI lock on the addressed block of memory, the bridge allows
the transfer, but takes no other action. If there is a PCI lock on that block, the bridge termi-
nates the CPU transfer with ARTRY#, does not access the memory location, and takes no
other action.

The CPU removes a reservation by executing a memory read with intent to modify atomic
(TT[0:3]=1111) or a memory write with flush atomic (TT[0:3]=1001). The bridge treats these
accesses as a normal memory transfers.

4.6.3 PCI Lock

The bridge responds to the PCI lock request protocol in compliance with the PCI specifica-
tion. If an agent requests a lock, and no PCI lock is in effect, the lock is granted. Once a
PCl lock is granted, no other PCI locks are granted until the current lock is released.

The 660 prevents CPU busmasters and other PCI busmasters from reading or writing with-
in a block of memory which is locked by a PCI busmaster. CPU busmaster accesses to a
locked block are retried with ARTRY#. PCI busmaster accesses to a locked block are re-
tried with the PCI bus retry protocol. PCl and CPU busmaster accesses to other areas of
system memory are unrestricted.

PCI to memory transactions cause the bridge to broadcast a snoop cycle to the CPU bus.
When a PCl agent is granted a memory block lock, the bridge broadcasts a write with flush
(TT[0:3]=0001) cycle onthe CPU bus, which causes the L1 and L2 caches to invalidate that
sector (if there is an address match). This insures that there will not be a cache hit during
a CPU bus accesses to a memory block which is locked by a PCI agent.

4.6.4 PCI Lock Release

The bridge responds to the PCl lock release protocol in compliance with the PCI Specifica-
tion. If an agent releases the lock that it owned, the bridge releases the lock. The bridge
generates a normal snoop cycle on the CPU bus.

4-32 G5220297-00

PowerP

Preliminary

Section 4 — DRAM

4.7 DRAM Module Loading Considerations

The 660 directly drives up to eight 168 pin DRAM modules, which typically exhibit an input
capacitance of less than 20pf. Table 4-19 shows some maximum input capacitance num-
bers that are typical of the various DRAM modules on the market. System designers may
wish to buffer MA[11:0] (and perhaps WE#) if the system design requires the use of more

than two banks of 72 pin SIMMs (more than one pair of 2-sided 72 pin SIMMS).

Table 4-19. Typical DRAM Module Maximum Input Capacitance

SIMM Type SIMM Size Maximum Input Capacitance

Address WE#

72-pin 4 Meg 50pf 50pf

8 Meg 90pf 95pf

16 Meg 80pf 95pf

32 Meg 160pf 190pf

168-pin 8M, 16M, 13pf 13pf

32M,128M
64M 18pf 18pf
4.8 Related Bridge Control Registers
Information on these registers is contained in the 660 Bridge Manual.
Bridge Control Register Index R/W Bytes

Memory Parity Error Status 8000 0840 R 1
Single-Bit Error Counter Index B8 R/W 1
Single-Bit Error Trigger Level Index B9 R/W 1
Bridge Options 2 Index BB R/W 1
Error Enable 1 Index CO R/W 1
Error Status 1 Index C1 R/W 1
Single-Bit ECC Error Address Indx CC - CF R/W 4
Bridge Chip Set Options 3 Index D4 R/W 1

G5220297-00

4-33

Section 4 — DRAM

Preliminary

PowerP

4-34

G5220297-00

pl‘l.werpc Preliminary Section 5 — PCI Bus

Section 5
PCI Bus

The MCM includes a 32-bit PCI bus interface that runs at frequencies up to 33MHz. The
MCM PCl interface is a host PCI bridge that is compliant with the PCI Specification, revi-
sions 2.0 and 2.1 (see Section 5.5) for the 3.3v and 5v signalling environments.

The MCM PCI bus interface is designed to run at one half of the CPU bus frequency.

PCI bus activity initiated by the CPU is discussed in section 3. This section describes PCI
bus transactions initiated by a (non-660-bridge) PCI busmaster. PCI busmasters can initi-
ate arbitrary length read and write bursts to system memory.

Whenever a PCI busmaster accesses system memory, the 660 broadcasts a snoop cycle
onto the CPU bus. See the 660 User’'s Manual CPU Bus section for details.

The MCM supports ISA Master operations to system memory.

G5220297-00 5-1

Preliminary

PowerP

Section 5 — PCI Bus

5.1 PCI Transaction Decoding

When a PCl busmaster initiates a transaction on the PCI bus, the transaction either misses
all of the targets and is master aborted, or it is claimed by a PCI target. The target can be
either MCM system memory (via the 660) or another PCI target.

5.1.1 PCI Transaction Decoding By Bus Command

Table 5-1 shows the response of the 660 and other agents to various PCI bus transactions
initiated by a PCI busmaster other than the 660. The 660 ignores (No response) all PCl bus
transactions except PCl memory read and write transactions, which it decodes as possible

system memory accesses.

Table 5-1. MCM Response to PCI_C[3:0] Bus Commands

C[3:0] | PCIBus Can a PCI busmaster 660 Response to the |Can Another PCl Target
Command Initiate this Transaction? Transaction Claim the Transaction?

0000 [Interrupt No. Only the 660 is allowed | None Yes. The ISA bridge is
Acknowledge to initiate. intended to be the target.

0001 | Special Cycle Yes None Yes

0010 |I/O Read Yes None Yes

0011 |I/O Write Yes None Yes

0100 |Reserved No. Reserved None n/a

0101 |Reserved No. Reserved None n/a

0110 |Memory Read Yes System memory read Yes, if no address conflict.

0111 | Memory Write Yes System memory write. Yes, if no address conflict.

1000 |Reserved No. Reserved None n/a

1001 |Reserved No. Reserved None n/a

1010 [Configuration Read | No. Only 660. None Yes

1011 | Configuration Write | No. Only 660. None Yes

1100 | Memory Read | Yes System memory read Yes, if no address conflict.
Multiple

1101 |Dual Address Cycle | Yes None Yes

1110 |Memory Read Line | Yes System memory read Yes, if no address conflict.

1111 | Memory Write and | Yes System memory write Yes, if no address conflict.
Invalidate

PCI busmasters are not able to access the boot ROM or the BCRs in the 660.

PCl busmasters can not initiate transactions to the CPU bus. CPU bus devices can, howev-
er, initiate transfers to the PCI bus. Large amounts of data are typically moved between the
PCI bus and memory by bursts initiated by a PCI busmaster.

See Section 8.1.3 and the PCI specification for information on PCI Interrupt Acknowledge
transactions.

5.1.2 PCI Memory Transaction Decoding By Address Range

When a PCI busmaster transaction is decoded by bus command as a system memory read
or write, the 660 checks the address range. Table 5-2 shows the address mapping of PCI
busmaster memory accesses to system memory. This is the mapping that the 660 uses
when it decodes the bus command to indicate a system memory access.

G5220297-00

== 5-2

pl‘l.werpc Preliminary Section 5 — PCI Bus

Table 5-2. Mapping of PCI Memory Space, Part 1

PCI Bus Address Other Conditions Target Cycle Decoded Target Notes
Address
0to 2G IGN_PCI_AD31 Not Decoded N/A No Response.
Deasserted
IGN_PCI_AD31 System Memory * 0to 2G Snooped by caches.
Asserted
2G to 4G System Memory * 0to 2G Snooped by caches.

* Memory does not occupy this entire address space. Accesses to unoccupied space are not decoded.

Unless the IGN_PCI_AD31 signal is asserted, PCI memory accesses in the 0 to 2G ad-
dress range are ignored by the 660. There is ho system memory access, no snoop cycle,
and the 660 does not claim the transaction. When the IGN_PCI_AD31 signal is asserted,
the 660 maps PCI memory accesses from 0 to 2G directly to system memory at 0 to 2G.
PCI memory accesses from 2G to 4G are mapped to system memory from 0 to 2G.

PCI memory accesses that are mapped to system memory cause the 660 to claim the
transaction, access system memory, and arbitrate for the CPU bus and broadcast a snoop
operation on the CPU bus. A detailed description of the snoop process is presented in the
660 User’s Manual.

Table 5-3 gives a more detailed breakdown of the MCM response to PCI memory transac-
tions in the 0 to 2G range. Note that the preferred mapping of PCI memory, so that it can
be accessed both by the CPU and by PCI busmasters, is from 16M to 1G—-2M.

Table 5-3. Mapping of PCI Memory Space, Part 2

PCI Bus Address Target Resource System Memory Address Snoop Address
2G to 4G System memory (1) 0to 2G 0to 2G
1G-2M to 2G Reserved (2) No system memory access. No snoop.

The 660 ignores PCI memory

16M to 1G-2M PCI Memory ! A
transactions in this range.

0to 16M PCI/ISA Memory (3)

Notes:

1. The 660 maps PCI busmaster memory transactions in the 2G to 4G range to sys-
tem memory, and the CPU is unable to initiate PClI memory transactions to this ad-
dress range, so do not map devices to this PClI memory address range.

2. The CPU (thru the 660) can not access the 1G—-2M to 2G address range, so do
not map PCI devices herein unless the CPU will not access them.

3. Transactions initiated on the PCI bus by the ISA bridge on behalf of an ISA bus-
master only (IGN_PCI_AD31 asserted for an SIO), are forwarded to system
memory and broadcast snooped to the CPU bus from 0 to 16M. If this is not an ISA
busmaster transaction, then the 660 ignores it. Note that the 660 will also forward
PCI transactions from 16M to 2G if IGN_PCI_AD31 is asserted during an ISA-
bridge-mastered transaction, and that this capability is not normally used.

5.1.3 PCI I/O Transaction Decoding

The 660 initiates PCI I/O transactions on behalf of the CPU. Other PCl busmasters are also
allowed to initiate PCI I/O transactions. Table 5-4 shows the MCM mapping of PCI 1/O
transactions. The 660 ignores PCI I/O transactions.

G5220297-00 5-3

Section 5 — PCI Bus Preliminary pl‘l.werpc

PCI/ISA 1/0 is mapped to PCI I/O space from 0 to 64K. The ISA bridge subtractively de-
codes these transactions (and also PCl memory transactions from 0 to 16M). Other devices
may actively decode and claim these transactions without contention.

PCI 1/O is assigned from 16M to 1G—8M.

Table 5-4. Mapping of PCI Master I/O Transactions

PCI Bus Address Target Resource Other System Activity
1G-8M to 4G Reserved (1) The 660 ignores /O transactions initiated by PCI busmasters.
16M to 1G-8M PCI 1/O devices
8M to 16M Reserved (1)
64K to 8M Reserved (2)
0 to 64K PCI/ISA 1/O
Note:

1. The CPU (thru the 660) can not access this address range, so do not map PCI de-
vices herein unless the CPU will not access them.

2. In contiguous mode, the CPU (thru the 660) can create PCI I/O addresses in the
64K to 8M range. In non—contiguous mode, the CPU can only access PCl address-
es from 0O to 64K.

5.1.4 ISA Master Considerations

In systems thatimplement IGN_PCI_AD31 and use an Intel SIO, memory transactions pro-
duced on the PCI bus (by the SIO on behalf of an ISA master) are forwarded to system
memory at the corresponding address (0 —16M).

If ISA masters are utilized and the SIO is programmed to forward their cycles to the PCI
bus, then no other PCI device (e.g. video) is allowed to be mapped at the same addresses
because contention would result.

The SIO contains registers to control which ranges of ISA addresses are forwarded to the
PCI bus.

The 660 samples IGN_PCI_AD31 during PCI busmaster memory transactions from 0 to
2G. If IGN_PCI_AD31 is negated, the 660 ignores the transaction, and if IGN_PCI_AD31
Is asserted, the 660 forwards the transaction to system memory. In theory, the
IGN_PCI_AD31 signal can be used by any PCI agent for this purpose, but to ensure PR—P
compliance, this signal should be asserted only while the ISA bridge is initiating a PCI to
memory transaction on behalf of an ISA master. One way to generate IGN_PCI_AD31 is
to AND together the PCI_GNT# signals of all of the PCl agents except the SIO and the 660.
This will assert IGN_PCI_AD31 (during a PCI transaction) only while either the 660 or the
SIO is the initiator (and the 660 knows when it is the initiator).

The required connectivity of IGN_PCI_AD31 prevents the SIO from initiating peer to peer
PCI memory transactions in the 0 to 2G range. ISA masters cannot access any PCI
memory. The SIO is allowed to initiate PCl memory transactions from 2G to 4G, and other
PCI transaction types (I/0O &etc.).

G5220297-00

1

|l
illl

]
T
AN

pl‘l.werpc Preliminary Section 5 — PCI Bus

5.2 PCI Transaction Details

Further details of the MCM implementation of various PCI transactions, are found in the
660 User’s Manual.

5.2.1 Memory Access Range and Limitations

PCI memory reads and writes by PCI busmasters are decoded by the 660 to determine if
they access system memory. PCl memory reads and writes to addresses from 2G to 4G
on the PCI bus are mapped by the 660 as system memory reads and writes from 0G to 2G.
These PCI to memory transactions are checked against the top_of _memory variable to de-
termine if a given access is to a populated bank. The logic of the 660 does not recognize
unpopulated holes in the memory banks. PCl accesses to unpopulated locations below the
top_of_memory are undefined.

PCl accesses to system memory are not limited to 32 bytes. PCI burst-mode accesses are
limited only by the size of memory, PCI bus latency restrictions, and the PCI disconnect
counter.

5.2.2 Bus Snooping on PCI to Memory Cycles

Each time a PCI (or ISA) busmaster accesses memory, (and once again for each time a
PCI burst crosses a cache block boundary) the 660 broadcasts a snoop operation on the
CPU bus. If the CPU signals an L1 snoop hit by asserting ARTRY#, the 660 retries the PCI
transaction. The ISA bridge then removes the grant from the PCI agent, who (according
to PCI protocol) releases the bus for at least one cycle and then arbitrates again. Mean-
while, the 660 grants the CPU bus to the CPU, allowing it to do a snoop push. Then the PCI
agent again initiates the original transaction.

During the transaction, the 660 L2 cache is monitoring the memory addresses. The L2
takes no action on L2 misses and read hits. If there is an L2 write hit, the L2 marks that block
as invalid, does not update the block in SRAM, and does not affect the PCI transaction. L2
operations have no effect on PCI to memory bursts.

5.2.3 PCI to PCI Peer Transactions

Peerto peer PCl transactions are supported consistent with the memory maps of Table 5-1,
Table 5-2, Table 5-3, and Table 5-4, which together show the ranges of different bus com-
mand transactions that are supported. If the ISA_MASTER signal is used with the Intel SIO,
then the SIO is not allowed to perform peer to peer PClI memory transactions in the 0 to
2G range. No other transaction types are affected.

5.2.4 PCI to System Memory Transactions

Single and burst transfers are supported. Bursts are supported without special software
restrictions. That is, bursts can start at any byte address and end on any byte address and
can be of arbitrary length.

As per the PCI specification, the byte enables are allowed to change on each data phase.
This has no practical effect on reads, but is supported on writes. The memory addresses
linearly increment by 4 on each beat of the PCI burst. All PCI devices must use only linear
burst incrementing.

In ECC mode, PCI to memory transactions that result in less than 8-byte writes, cause the
memory controller in the 660 to execute a read-modify-write operation, during which 8 by-

G5220297-00 5-5

Section 5 — PCI Bus Preliminary pl‘l.werpc

tes of memory data are read, the appropriate bytes are modified, the ECC byte is modified,
and then the resulting 8-byte doubleword is written to memory.

5.2.5 PCI to Memory Burst Transfer Completion

PCI to memory burst transfers continue to normal completion unless one of the following
occurs:

e The initiating PCI busmaster disconnects. The 660 handles all master disconnects
correctly.

e The 660 target disconnects on a 1 M boundary. The 660 disconnects on all 1M
boundaries.

e The 660 target disconnects because the PCI disconnect timer has timed out.

e The CPU retries the snoop cycle thatthe 660 broadcast on the CPU bus. In this case,
the 660 target retries the PCI busmaster. (Note that L2 hits do not affect the PCI to
memory transaction. Read hits have no effect on the L2, and write hits cause the L2
to invalidate the block.)

e The 660 will target disconnect the PCI busmaster if the refresh timer times out. In
this case, the 660 will disconnect at the end of the current data phase for writes, or
at the end of the current cache block, for reads.

5.2.6 PCI to Memory Access Sequence

When a PCI access is decoded as a system memory read or write, the memory and CPU
bus are requested and, when granted, a snoop cycle to the CPU bus and a memory cycle
to system memory are generated. If the processor indicates a snoop hit in the L1 cache
(ARTRY# asserted), then the memory cycle is abandoned and the PCI cycle is retried. The
CPU then does a snoop push. The L2 cache does not need to do a snoop push because
it is write-through, and, therefore, system memory always contains the result of all write
cycles. See Section 3 for more L2 information.

5.2.7 PCI to Memory Writes

During PCI to memory burst writes, the 660 performs data gathering before initiating the
cycle to the memory controller. The data gathering involves combining two PCI write cycles
into one memory write cycle if the address of the first write cycle is even.

Minimum initial write access time to 70ns DRAM when the CPU bus is 66MHz and the PCI
bus is 33MHz is 5-1-1-1 -3-1-1-1 PCI clocks for 4-4-4-4 -4-4-4-4 bytes of data (14 PCI
clocks for 32 bytes of data). Subsequent data phases of the same burst are generally serv-
iced at -3-1-1-1 -3-1-1-1 (12 PCI clocks for 32 bytes of data), giving a peak burst write rate
of 32 bytes in 12 PCI clocks, or about 85MBps with a 33MHz PCI clock. This scenario holds
while the RAS# timer (10us typical) does not time out, the burst remains within the same
4K memory page, and no refresh is requested (15us typ).

5.2.7.1 Detailed Write Burst Sequence Timing

The detailed write sequence is affected by several factors, such as refresh requests,
memory arbitration delays, page and/or bank misses, and cache boundary alignment.
Table 5-5 shows the details of the various sequences that a PCIl to memory burst write will
experience, depending on the address (relative to a cache block boundary) of the first data
phase of the transaction. The starting address of the numbering sequence shown on the
top row was arbitrarily chosen as xx00, and could be any 32—byte aligned boundary. The
times shown in Table 5-5 are in PCI clock cycles, and do not include any cycles that the PCI

5—-6 G5220297-00

pl‘l.werpc Pre“minary Section 5 — PCI Bus

master spends acquiring the PCI bus from the PCI bus arbiter. The initial data phase is
timed from the assertion of FRAME# to the PCI clock at which the PCI master samples
TRDY# active. Subsequent data phase times are from the PCI clock at which the previous
TRDY# was sampled active to the PCI clock at which the current TRDY# is sampled active.
All the numbers shown in Table 5-5 are for parity (or none) operation. The numbers are also
correct for ECC mode operation as long as all the writes are gather-store pairs. Incurring
a RMW operation costs 3 PCI_CLKs.

Table 5-5. PCI to Memory Write Burst Sequence Timing

S indicates a cache block boundary at 0 mod 32. Snoops are broadcast to the CPU bus when a PCI burst crosses
one of these boundaries.

Wis a function of a 1.5 PCI clock snoop delay and memory arbitration delays. If the CPU is accessing memory when
the PCI agent begins the memory write burst, the 660 waits until the CPU completes the current CPU access before
allowing the PCI to memory write to proceed. If the RAS# watchdog timer has timed out, the memory controller will
precharge the RAS# lines, and if the refresh timer has timed out, the memory controller will do a refresh operation.

W(min) =5 This occurs when the memory controller is idle and no refresh or
RAS# timeout occurs.
WI(typ) =60r7 This occurs if the memory controller is in the middle (beat 3 of 4) of

serving a CPU burst transfer when the PCI burst starts, and no
refresh or RAS# timeout occurs.

W(max) =23 This occurs when CPUL is just starting a burst transfer to memory,
followed by CPU2 starting a burst transfer to memory, after which a
refresh happens to be required.

X is a function of snoop delays only. Whenever the memory access crosses a cache block boundary, the Bridge
broadcasts a snoop cycle on the CPU bus. (Due to the posted write buffer structure, delays incurred by crossing a
page boundary here do not show up until later in the sequence.)

X =3 Always. (The only benefit to disabling PCI snooping or enabling pre—snooping is to reduce this
delay to 1. Otherwise neither function increases performance.)

Y is a function of memory latency. This page and/or bank miss delay can only be incurred at a page boundary, but
shows up here due to the posted write buffer structure. The Bridge has a 4 x 4 posted PCI write buffer, which allows it
to accept data phases from the PCI bus while the memory controller is busy servicing page misses. This minimizes
the transfer delays caused by these memory overhead functions.

Y typ) =1 This occurs for a page hit with no refresh. This is also the minimum.
Y (mid) =2 This occurs for a page miss with no refresh.
Y (max) =4 This occurs for a refresh (which also forces a page miss).

Z is a function of a subset of the Wfactors (RAS# timeouts and refresh operations). This delay is only incurred due to
a RAS# timeout or refresh request that has occurred since the last WY, Z, or G

Z (typ) =2to3 This occurs for no refresh and no RAS# timeout.
Z (max) =3to4 This occurs for either a RAS# timeout or a refresh operation.

Gis the combination of X and Y, and is equal to the longer of X and Y.

G5220297-00 5-7

Section 5 — PCI Bus Preliminary pl‘l.werpc

5.2.8 PCI to Memory Reads

During PCI to memory burst reads, the 660 performs memory pre-fetching when it initiates
cycles to the memory controller. The pre-fetching involves loading or pre-loading 32 bytes
from the memory for eight 4-byte PCl read cycles. Pre-fetching is only done within the same
cache line.

Minimum initial read access time from 70ns DRAM when the CPU bus is 66MHz and the
PCl busis 33MHz, is 8-1-1-1 -1-1-1-1 PCI clocks for 4-4-4-4 -4-4-4-4 bytes of data (15 PCI
clocks for 32 bytes of data). Subsequent data phases of the same burst are generally serv-
iced at-7-1-1-1 -1-1-1-1 (14 PCI clocks for 32 bytes of data), giving a peak burst read rate
of 32 bytes in 14 PCI clocks, or about 73MBps with a 33MHz PCI clock. This scenario holds
while the RAS# timer (10us typical) does not time out and no refresh is requested (15us

typ).
5.2.8.1 Detailed Read Burst Sequence Timing

The actual detailed read sequence is affected by several factors, such as the speed of the
DRAM, refresh requests, memory arbitration delays, page and/or bank misses, and cache
boundary alignment. Table 5-6 shows the details of the various sequences that a PCI to
memory burst read will experience, depending on the address (relative to a cache block
boundary) of the first data phase of the transaction. The starting address of the numbering
sequence shown on the top row was arbitrarily chosen as xx00, and could be any 32—byte
aligned boundary. The times shown in Table 5-6 are in PCI clock cycles, and do not include
any cycles that the PCIl master spends acquiring the PCI bus from the PCI bus arbiter. The
initial data phase is timed from the assertion of FRAME# to the PCI clock at which the PCI
master samples TRDY# active. Subsequent data phase times are from the PCI clock at
which the previous TRDY# was sampled active to the PCI clock at which the current TRDY#
Is sampled active.

All the numbers shown in Table 5-6 are for ECC, parity, or no-error-checking operation.

5-8 G5220297-00

pl‘l.werpc Preliminary Section 5 — PCI Bus

Table 5-6. PCI to Memory Read Burst Sequence Timing

N1111111M..

S indicates a cache block boundary at 0 mod 32. Snoops are broadcast to the CPU bus when a PCI burst crosses
one of these boundaries.

Nis the number of PCI clocks required from the assertion of FRAME# until the master samples the first TRDY# (from
the 660) active, and is a function of snoop and memory arbitration delays. If the CPU is accessing memory when the
PCI agent begins the memory read burst, the 660 waits until the CPU completes the current CPU access before
allowing the PCI to memory read to proceed. If the RAS# watchdog timer has timed out, the memory controller will
precharge the RAS# lines, and if the refresh timer has timed out, the memory controller will do a refresh operation.

N(min) =5 This occurs when the memory controller is idle and no refresh or
RAS# timeout occurs, and the access produces a page hit.
N (typ) =8o0r9 This occurs if the memory controller is in the middle (beat 3 of 4) of

serving a CPU burst transfer when the PCI burst starts, and no
refresh or RAS# timeout occurs.

N (max) =26 This occurs when CPUL is just starting a burst transfer to memory,
followed by CPU2 starting a burst transfer to memory, after which a
refresh happens to be required.

M is a function of a 2-clock snoop delay and other delays caused by bridge overhead functions. Whenever the
memory access crosses a cache block boundary, the Bridge broadcasts a snoop cycle on the CPU bus.

M (typ) =60r7 Unless arefresh or RAS# timeout occurs.
M(typ) =7o0r8 This occurs for a refresh or RAS# timeout.

The memory controller, running at its own speed, requests up to 4, 8-byte memory reads
(into 8, 4-byte buffers in the 663) while the PCI target engine of the 660 is servicing the
memory read transaction. Under worst case conditions (slow memory, etc.), the memory
controller just keeps up with the PCI bus, and N goes up. Under better conditions, the
memory controller gets ahead of the PCI read process, and N decreases.

5.2.9 PCI BE# to CAS# Line Mapping

Table 5-7 shows which CAS# lines are activated when a PCIl master writes memory. Note
that CAS[O]# refers to byte addresses 0 mod 8, CAS[1)# refers to byte addresses 1 mod
8, etc.. Forread cycles, eight bytes of memory data are read on each access, but the master
receives only the desired 4 bytes. The bytes are read or written to memory independently
of BE or LE mode (the endian mode byte swappers are situated between the CPU and the
rest of the system, not between the PCI and the rest of the system).

G5220297-00 5-9

Section 5 — PCI Bus

Preliminary

PowerP

Table 5-7. Active CAS# Lines — PCI to Memory Writes, BE or LE Mode

PCI_ Byte Enables BE[J# Column Address Selects CAS[|#

AD2] [3 2 1 0 0 1 2 3 4 5 6 7
0 1 1 1 1
0 1 1 1 0 X
0 1 1 0 1 X
0 1 1 0 0 X X
0 1 0 1 1 X
0 1 0 1 0 X X
0 1 0 0 1 X X
0 1 0 0 0 X X X
0 0 1 1 1 X
0 0 1 1 0 X X
0 0 1 0 1 X X
0 0 1 0 0 X X X
0 0 0 1 1 X X
0 0 0 1 0 X X X
0 0 0 0 1 X X X
0 0 0 0 0 X X X X
1 1 1 1 1
1 1 1 1 0 X
1 1 1 0 1 X
1 1 1 0 0 X X
1 1 0 1 1 X
1 1 0 1 0 X X
1 1 0 0 1 X X
1 1 0 0 0 X X X
1 0 1 1 1 X
1 0 1 1 0 X X
1 0 1 0 1 X X
1 0 1 0 0 X X X
1 0 0 1 1 X X
1 0 0 1 0 X X X
1 0 0 0 1 X X X
1 0 0 0 0 X X X X

Notes:

X = active. Blank = inactive. Byte enables would normally represent contiguous addresses. This table shows what
would happen for all cases.

5-10

G5220297-00

pl‘l.werpc Preliminary Section 5 — PCI Bus

5.3 Bus Arbitration Logic

The MCM requires an external PCI arbiter such as may be supplied in the ISA bridge. The
660 sends a CPU/660 bus request to the PCI bus arbiter to request ownership of the PCI.
The 660 receives a PCI bus grant from the PCI bus arbiter. The 660 follows the PCI specifi-
cation for host bridges. The PCI arbiter typically parks the PCI bus on the 660.

The 100 MHz PPC 603e MCM example planar uses the Intel SIO as the PCI bus arbiter.
The PCI arbiter sees the 660 as one of several PCI agents. The order of priority for PCI
arbitration is programmable, and is initially set to be:

1. 660 (the SIO normally parks the bus on the 660)

2. PClslot1

3. PClslot2

4. PClslot3
For more information on arbitration, see Section 9 on planar initialization, and see the PCI
Arbitration Controller section of the SIO data book. See the example planar schematics for
the connection of the various PCI requests and grants.

There may be concurrency of cycles on the ISA bus (caused by DMA or ISA masters) with
PCI or CPU transactions as long as the ISA bus operations are not forwarded to the PCI
bus. Forwarding of ISA bus operations must wait for the ISA bridge to grant the PCI bus
to its ISA interface.

G5220297-00 5-11

Section 5 — PCI Bus Preliminary pl‘l.werpc

5.4 PCI Lock
The MCM 660 does not set PCI locks, but does honor them. Also see Section 4.6.

5.4.1 PCI Busmaster Locks

The PCI_LOCK# signal is an input-only to the 660. The 660 provides resource locking of
one 32-byte cache sector (block) of system memory. Once a PCI busmaster sets a lock on
a 32-byte block of system memory, the 660 saves the block address. Subsequent accesses
to that block from other PCI busmasters or from the CPU bus are retried until the lock is
released.

The bridge generates a write-with-flush snoop cycle on the CPU bus when a PCI busmaster
sets the PCI lock. The write-with-flush snoop cycle causes the L1 and L2 caches to invali-
date the locked block, which prevents cache hits on accesses to locked blocks. If the L1
contains modified data (as indicated by a CPU retry), the PCI cycle is retried and the modi-
fied data is pushed out to memory.

5.4.2 CPU Bus Locking
The 660 does not set PCI locks when acting as the PCI busmaster.

The 60X processors do not have bus-locking functions. Instead, they use the load reserve
and store conditional instructions (lwarx and stwcx) to implement exclusive access by set-
ting a reservation on a memory block. To work with the lwarx and stwcx instructions, the
660 snoops all PCl accesses to system memory, which allows the CPU that is holding the
reservation to detect a violation of the reservation. In addition, the 660 generates a write-
with-flush operation on the CPU bus in response to the PCI read that begins a PCI lock.

5-12 G5220297-00

pl‘l.werpc Preliminary Section 5 — PCI Bus

5.5 PCI 2.1 Compliance

The MCM contains a highly programmable system component, the 660 bridge. The 660
can be programmed to meet a wide range of application requirements. Along with this flexi-
bility comes the ability to shoot oneself in the foot. This section discusses ways to program
the 660 to ensure compliance with the PCI 2.1 specification.

5.5.1 PCI Target Initial Latency

The 2.1 PCI specification allows host bridges a Target Initial Latency (TIL) of 32 PCI clocks
under certain conditions. When the 660 isin 2:1 CPU:PCI clock mode, and is used with one
busmaster on the CPU bus, the TIL is a maximum of 32 PCI clocks.

However, when the 660 is used in 2:1 CPU:PCI clock mode with two busmasters on the
CPU bus, itis possible to configure the 660 memory controller to operate the DRAM slowly
enough that the TIL exceeds 32 PCI clocks. Program the memory controller for the fastest
settings that are consistent with good design practice.

5.5.2 Transaction Ordering Rules

Transaction ordering requirements were added to the PCI specification between revs 2.0
and 2.1. The PCI 2.1 specification states that writes from a given master must be visible
(by any other agent in the system) as completing in the order in which they were initiated.
This requirement is intended to implement the Producer—Consumer model contained in
Appendix E of the PCI 2.1 specification.

55.2.1 The Problem

There is a theoretical case in which the 660 does not comply with the PCI
Producer—Consumer model (Appendix E, Summary of PCI Ordering Rules, Item 5b). Note
that to date (6/20/96) there have been no know actual occurrances of this case with the 660.
It was recently discovered during a comprehensive review of the PCI 2.1 specification. IBM
is not aware of any existing hardware/software combination that produces a situation
where this case can be observed.

For the following discussion, please refer to the PCI 2.1 specification sections 3.2.5 and
Appendix E. Assume that the CPU is the Producer, and that it is producing the final 4 bytes
of a data set by initiating a PCI memory write (via the 660) to a particular PCI agent (the
Consumer). Assume that the 660 posts the write, and that before the posted write
completes on the PCI bus (for instance if it is retried), the CPU writes the flag to system
memory.

Meanwhile, the PCI agent is polling the flag by periodically reading the system memory
location. Assume that the PCl agent reads the flag as set, meaning that the data set transfer
is complete. At this point, the possibility exists that the PCI agent has not allowed the CPU
to PCI (data set) write to complete. If so, then the two CPU transactions have completed
out of order, and the flag will indicate that the data transfer has completed, when in fact it
has not.

To prevent this, the PCI 2.1 spec requires the bridge to react to the PCl to memory read
request by pulling all posted writes through the bridge before completing the read. In other
words, when the PCI agent initiates the read (polls the flag), the bridge is to retry (or delay)
the read until the posted CPU to PCI memory write (the data set transfer) has completed.
This has the effect of "pulling” the writes through the bridge before the read is executed.
The 660 does not implement this function.

G5220297-00 5-13

Section 5 — PCI Bus Preliminary pl‘l.werpc

Note that PCI devices (such as SCSI, Ethernet, and Token Ring adaptors) that poll the flag
in system memory typically also consume the data set by initiating PCI to system memory
reads. These devices are not affected.

Also, PCI devices (such as graphics adaptors and non—PCI busmasters) that receive the
data set as a PCl memory target typically receive indication that the data is ready (the flag)
as a PCI I/0 or PCI memory target; they do not poll system memory for the flag. These
devices are also not affected.

5.5.2.2 Solution 1: Add a dummy CPU to PCI write:

Design the device drivers to cause the CPU BIU to execute an access to the PCI bus (of
any type) after the data set is written (posted into the 660 by the CPU write to the PCl target)
and before the CPU BIU executes the write that sets the flag in system memory. This
solution forces the data set write to complete on the PCI bus before the flag write is initiated
on the CPU bus. (Remember to insert eieio instructions before and after the dummy write.)
This produces the following sequence:

1. The CPU initiates a CPU to PCI write to produce the final part of the data set. The
CPU address tenure completes, and the PCI write is posted.

2. Some time later, the 660 initiates this transaction on the PCI bus. The transaction
takes an unknown amount of time to complete. If the transaction is retried on the PCI
bus, the 660 will continue to reinnitiate the transaction until it completes.

3. After (1) and before (4), the CPU initiates a dummy CPU to PCI write to flush the
posted write buffer. The 660 does not allow this second CPU to PCI write to complete
on the CPU bus (by being written into the 660 posted write buffer) until the first CPU
to PCI transaction (the data set write) actually completes on the PCI bus. This
prevents the following transaction (the flag write) from completing before the data
set write completes.

4. The CPU initiates the CPU to memory flag write.

5.5.2.3 Solution 2: Change the flag write procedure:

Design the device drivers such that the Consumer receives the flag in some way that
ensures that the data set write completes before the flag write completes. One way to do
this is to cause the CPU to write the flag to the PCI agent using a PCI IO or memory write,
instead of a CPU to memory write.

e If the flag write is a PCI memory write, then as in item 3 in option 1, this flag write
forces the preceeding data set write to complete before the flag write completes.
e Ifthe flag write is a PCI 1O write, then the 660 will not post the flag write, which forces
the data set write(s) to complete on the PCI bus before the flag write is initiated on
the PCI bus.
55.24 Solution 3: Change the data set write procedure:

Design the device drivers such that the Consumer receives data set some way other than
as a PCl memory target (such as an as an 1/O target or a PCI busmaster).

e While the Consumer is receiving the data set as a PCI IO target, the 660 does not
post the IO writes, and so each write completes in order, even if some are retried.
This technique forces the data set writes to complete before the flag write
completes.

e If the Consumer is receiving the data set by initiating PCI to memory reads, and is
receiving the flag by initiating a PCI to memory read, then as long as the CPU

5-14 G5220297-00

PowerP

Preliminary

Section 5 — PCI Bus

initiates the data set writes to memory before the CPU initiates the flag write to
memory, then the ordering of the transactions will be preserved.

5.6 Related Bridge Control Registers

Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes
Memory Controller Misc 8000 0821 R/W 1
PCI/BCR Configuration Address 8000 OCF8 R/W 4
PCI/BCR Configuration Data 8000 OCFC R/W 4
PCI Type 0 Configuration Addresses 8080 08xx R/W 4
IBM27-82650 Compatible thru
80C0 00xx

PCI Vendor ID Index 00 — 01 R 2
PCI Device ID Index 02 — 03 R 2
PCI Command Index 04 — 05 R/W 2
PCI Device Status Index 06 — 07 R/W 2
Revision ID Index 08 R 1
PCI Standard Programming Interface Index 09 R 1
PCI Subclass Code Index OA R 1
PCI Class Code Index OB R 1
PCI Cache Line Size Index OC R 1
PCI Latency Timer Index 0D R 1
PCI Header Type Index OE R 1
PCI Built-in Self-Test (BIST) Control Index OF R 1
PCI Interrupt Line Index 3C R 1
PCI Interrupt Pin Index 3D R 1
PCI MIN_GNT Index 3E R 1
PCI MAX_LAT Index 3F R 1
PCI Bus Number Index 40 R 1
PCI Subordinate Bus Number Index 41 R 1
PCI Disconnect Counter Index 42 R/W 1
PCI Special Cycle Address BCR Index 44 —-45 R 2
Error Enable 1 Index CO R/W 1
Error Status 1 Index C1 R/W 1
Error Enable 2 Index C4 R/W 1
Error Status 2 Index C5 R/W 1
PCI Bus Error Status Index C7 R/W 1
CPU/PCI Error Address Index C8 —CB | RIW 4

G5220297-00

5-15

Section 5 — PCI Bus

Preliminary

PowerP

5-16

G5220297-00

pl‘l.werpc Preliminary Section 6 — ROM

Section 6
ROM

The MCM implements a 2M ROM space from 4G-2M to 4G (on the CPU bus) by means
of the 660 bridge. The 660 provides two boot ROM device access methods which minimize
pin and package count while still allowing a byte-wide Flash™ ROM device to source 8-byte
wide data.

The ROM mode is indicated to the 660 on the strapping pin configuration bits during power-
on-reset (POR). See section 8.3.2.2.

The ROM access method used by the example planar is referred to as the direct-attach
ROM mode; the ROM attaches directly to the 660 (MCM) using the PCI_AD lines. This
mode is required when using the Intel™ SIO ISA bridge (as the example planar does) be-
cause the SIO does not support mapping of the ROM to the ISA bus. The direct-attach
mode also supports ROM device writes and write-protect commands.

The example planar uses an AMD AM29F040-120 Flash™ ROM to contain the POST and
boot code. This is a 512K device located at 4G—-2M. It is recommended that Vital Product
Data (VPD) such as the motherboard speed and native I/O complement be programmed
into in this device. It is possible to program the Flash before or during the manufacturing
process.

The other ROM access method (remote ROM mode — see section 6.2) attaches the ROM
device to an external PCI agent which supports the PowerPC Reference Platform ROM
space map and access protocol. CPU busmaster transfers to ROM space are forwarded
to the PCI bus and claimed by the PCI agent, which supplies the ROM device data. This
PCI device is typically a PCI to ISA bridge. The ROM device attaches to the ISA bridge
through the ISA bus lines, thereby saving a PCI bus load. The 660 supplies write-protect
capability in this mode.

At power-on, the 603/604 CPU comes up in BE Mode with the L1 cache disabled, and be-
gins fetching instructions (using 8-byte single beat reads) at address FFF0 0100 (4G — 1M
+ 100h). The example planar logic also resets to BE mode.

6.1 Direct-Attach ROM Mode

The ROM device attaches to the 660 by means of control lines and the PCI_AD[31:0] lines.
When a CPU busmaster reads from the ROM, the 660 masters a BCR transaction, during
which it reads the ROM and returns the data to the CPU. CPU writes to the ROM and ROM
write-protection operations are also forwarded to the ROM device.

ROM accesses flow from the CPU bus to the 660. As shown in Figure 6-1, the data and
address flow from the 660 to the ROM over the PCI_AD lines. ROM control flows from the
660 to the ROM over control lines that are not a part of the PCI bus.

G5220297-00 6-1

Section 6 — ROM Pre“minary pl‘l.werpc

Although connected to the PCI_AD lines, the direct-attach ROM is not a PCI agent. The
ROM and the PCI agents do not interfere with each other because the ROM is under 660
control, and the 660 does not enable the ROM except during ROM cycles. The 660 ac-
cesses the ROM by means of BCR transactions. Other PCI devices cannot read or write
the ROM because they cannot generate BCR transactions.

[! System ROM
23:0

PCI_AD

60X 60X 660 Lings [31:24] Address
CPU | Bus | Bridge Data

ROM_OE#, ROM_WE# Control

Figure 6-1. ROM Connections

6.1.1 ROM Reads

When a CPU busmaster reads from memory addresses mapped to ROM space, the 660
arbitrates for the PCI bus and then masters a BCR transaction on the PCI bus. During this
transaction, the 660 reads the ROM eight times, accumulates the data, and returns the
double-word to the CPU. The 660 then completes the PClI transaction and releases the PCI
bus.

The 664 drives the address of the required byte over PCI_AD[23:0] to the ROM address
pins. The ROM drives back the data on PCI_ADI[31:24], where it is received by the 663.

This ROM read discussion assumes that the system is in big-endian mode. For the effects
of little-endian mode operation on ROM reads, see Section 6.1.1.3.

6.1.1.1 ROM Read Sequence

Figure 6-2 is a timing diagram of a CPU to ROM read transaction. This case assumes that
the PCl bus is parked on the CPU, so that the 660 has a valid PCI bus grant when the CPU
starts the CPU bus transfer.

Initially, the CPU drives the address and address attributes onto the CPU bus and asserts
TS#. The 660 decodes the CPU transfer as a ROM read transaction. It is possible for TS#
to be asserted across either a rising or falling edge of PCl_CLK. The 660 must only assert
(and negate) PCI bus signals on the rising edge of PCI_CLK, so if TS# is asserted across
a rising edge of PCI_CLK, the 660 waits one CPU_CLK to synchronize to the PCI bus.

The 660 initiates a BCR transaction by asserting PCI_FRAME# on the rising edge of
PCI_CLK. Note that the 660 is driving PCI_AD[23:0] with the ROM address of byte 0 of the
8-byte aligned double-word. The 660 leaves PCIl_AD[31:24] tri-stated, and asserts
ROM_OE# to enable the ROM to drive the data onto these bits. On the next PCI_CLK, the
660 negates PCI_FRAME# and asserts PCI_IRDY#.

The ROM drives the requested data onto its data pins, across PCl_AD[31:24], and into the
660. Seven PCI_CLKs after the 660 asserts PCI_FRAME#, it sends ROM_LOAD low. On
the next clock, the 660 latches in the ROM data on PCIl_AD[31:24], sends ROM_LOAD#
high, and increments the ROM address on PCI_AD[23:0]. The byte from the ROM is
latched into a byte shift register, which accumulates the bytes in an 8-byte double-word.
The contents of the shift register move through the 660 and onto the CPU data bus.

6-2 G5220297-00

PowerP

Preliminary

Section 6 — ROM

CPU_CLK

- T

CPU_ADDRM

AACK# — T

CPU_DATA

&

| Each Cycle ' '

pica

i

'}——7 PCI Clocks, T\

R A U AW A W WA Wae W

C/BE[3:0]#

X Addr3 X Addr4 X Addr5 X Addr6 X ' Addr7

[23:0] [664F—{_X_Byte 0 Address .

PCI_AD

.byte 0. byte 1 byte 2 byte 3 hyte 4 hyte 5 byte 6 byte 7

[31:24]

PCI_AD

ROM_OE#

Figure 6-2. ROM Read Timing Diagram

The ROM then drives the next data byte onto PCI_AD[31:24]. Seven PCI_CLKs after it ne-
gated ROM_LOAD for the previous byte, the 660 again negates ROM_LOAD, and also
shifts the previous byte of ROM data to the next position. On the next PCI_CLK, the 660
sends ROM_LOAD high and increments the ROM address on PCI_ADJ[23:0]. This pattern
is repeated until all eight bytes have been loaded into the shift register.

After the last byte has been latched into the 660 by the falling edge of ROM_LOAD, the 660
completes the PCI transaction by deasserting PCI_IRDY#. It also negates ROM_OE# to
clear the PCI bus. After the last byte of data has had time to propagate through onto the
CPU data bus, the 660 signals TA# to the CPU. Table 6-1 shows the data and address flow
during the transaction.

G5220297-00

6-3

Preliminary

PowerP

On a single-beat transfer, the CPU asserts and negates AACK# concurrently with TA#. For
a burst transfer, the 660 asserts TA# for four CPU_CLKSs to return four identical double-
words to the CPU. This is the only difference between single-beat and burst ROM reads.

Also note that PCI_DEVSEL#, PCI_TRDY#, PCI_STOP#, and ROM_WE# are negated
throughout the transaction.

Section 6 — ROM

Table 6-1. ROM Read Data and Address Flow

ROM ROM Data Byte ROM Address ROM Data CPU_DATA[0:63] | CPU_DATA[0:63]
Access PCI_AD[23:0] PCI_AD[31:24] After Shift After Shift
(BE Mode) (LE Mode)
1 Byte 0 XX XXX0h a — —
2 Byte 1 XX XXX1h b — —
3 Byte 2 XX XXX2h c — —
4 Byte 3 XX XXX3h d — —
5 Byte 4 XX XXX4h e — —
6 Byte 5 XX XXX5h f — —
7 Byte 6 XX XXX6h g — —
8 Byte 7 XX XXX7h h abcd efgh hgfe dcba
6.1.1.2 Address, Transfer Size, and Alignment

During ROM reads, system ROM is linear-mapped to CPU memory space from 4G — 2M
to 4G (FFEO 0000h to FFFF FFFFh). This address range is translated onto PCI_AD[23:0]
as 0 to 2M (0000 0000h to 001F FFFFh). Since the CPU begins fetching instructions at
FFFO 0100h after a reset, the most convenient way to use a 512K device as system ROM
with the CPU is to use it from 4G — 512K to 4G. Connecting PCI_AD[18:0] to ROM_A[18:0]
with no translation implements this. With this connection, the system ROM is aligned with
4G — 2M, but with alias addresses every 512K up to 4G. Other size devices can also be
implemented this way.

The CPU read address need not be aligned on an 8-byte boundary. A CPU read from any
ROM address of any length that does not cross an 8—byte boundary, returns all eight bytes
of that double-word from the ROM. For example, the operations shown in Table 6-1 could
have been caused by a CPU memory read to FF80 0100h, FF80 0101h, or FF80 0105h.

6.1.1.3 Endian Mode Considerations

In little-endian mode, the address munging done by the CPU has no effect because
PCI_ADJ2:0] are forced to 000 during the address phase by the 660 at the beginning of the
transaction. However, in little-endian mode the byte swapper is enabled, so the bytes of
ROM data returned to the CPU are swapped as shown in the last column of Table 6-1.

6.1.1.4 4-Byte Reads

The 660 handles 4-byte ROM reads (and all ROM reads of less than 8 bytes) as if they were
8-byte reads. All 8 bytes are gathered by the 660, and all 8 bytes are driven onto the CPU
data bus.

6.1.2 ROM Writes

The 660 decodes a CPU store word instruction to CPU address FFFF FFFOh as a ROM
write cycle. (Note that the 660 treats any access from FFEO 0000h to FFFF FFFE, with

64 G5220297-00

pl‘l.werpc Preliminary Section 6 — ROM

CPU_A[31]=0, as an access to FFFF FFFO0.) The three low-order bytes of the CPU data
word are driven onto the ROM address lines, and the high-order byte is driven onto the
ROM data lines. For example, a store word instruction with data = 0012 3456h writes 56h
to ROM location 00 1234h. Only single-beat, four-byte write transfers (store word) are sup-
ported. A ROM write is considered to be a BCR operation. The ROM write BCR is detailed
in Section 6.3.1.

The ROM write discussion assumes that the system is in big-endian mode. For the effects
of little-endian mode operation on ROM reads, see Section 6.1.2.3. In direct-attach mode,
the ROM is attached to the 660 as shown in Figure 6-3.

System ROM
[23:0]

PCI_AD
60X | 60X | 660 = [3124] | Address

Lines
cPU [Bus | Bridge Data

ROM_OE#, ROM_WE# Control

Figure 6-3. ROM Connections

6.1.2.1 ROM Write Sequence

This case assumes that the PCI bus is parked on the CPU. Initially, the CPU drives the ad-
dress and address attributes onto the CPU bus and asserts TS#. The 660 decodes the CPU
transfer as a ROM write transaction, which is a BCR transaction.

The 660 initiates a BCR transaction by asserting PCI_FRAME# on the rising edge of
PCI_CLK. Note that the 660 is driving PCl_AD[23:0] with the ROM address and
PCI_ADJ[31:24] with the ROM data. On the next PCI_CLK, the 660 negates PC|_FRAME#
and asserts IRDY#. Four PCI_CLKs after the 660 asserts PCI_FRAME#, it asserts
ROM_WEH# for two PCI_CLKs.

The 660 completes the PCI transaction by deasserting PCI_IRDY#. The 660 signals TA#
and AACK# to the CPU to signal transfer completion to the CPU. Also note that PCI_DEV-
SEL#, PCI_TRDY#, PCl_STOP#, and ROM_OE# are negated throughout the transaction.

6.1.2.2 Write Protection

Write protection for direct-attach ROM is provided through the ROM lockout BCR (see Sec-
tion 6.3.2). ROM write-lockout operations are compatible with the 650 bridge.

When a CPU busmaster writes any data to memory address FFFF FFF1h, the 660 locks
out all subsequent ROM writes until the 660 is reset. In addition, flash ROM devices can
have the means to permanently lock out sectors by writing control sequences. Flash ROM
specifications contain details. Note that the 660 treats any access from FFEO 0001 to FFFF
FFFF, with CPU_A[31]=1, as an access to FFFF FFF1.

6.1.2.3 Data Flow In Little-Endian Mode

Figure 6-4 and Table 6-2 show the flow of CPU Data through the 660 to the ROM while the
system is in little-endian mode. Note that the CPU Data bus is labeled in big-endian order,
the PCI bus is labeled in little-endian order, and the 660 is labeled to match (and the bit
significance within the bytes is maintained).

G5220297-00 6-5

| Preliminar P2 DT
Section 6 — ROM y vwef &
60X CPU Byte 660 Bridge Byte ROM
Lane — Lane
> 32 32 31 D7
- 35 —2— 3 | " 24a—2—]po Data
> 40 ~ 40}_.' 23 | A23
> 47 2 /) 47 | 16 2 /) Al6
— (%]
> 48— 48}_. 15—y A15 ©
= 55 7’| 55 | 8 7|A8 8
56 E 56]._. ™o \> a7 <
— 63 63 [0 A0
Addr| Addr| Addr CPU PCI
Data high | med | low LSB Data cPU PCl Bus
MSB CPU Register Bus Data bytes swapped.
CPU_A[29]=1 selects
Address munged. CPU data bytes 4:7.

Figure 6-4. ROM Data and Address Flow In Little Endian Mode

When the CPU executes a store word instruction to FFFF FFFOh, the contents of the source
register appear on CPU_DATA[32:63]. CPU_ADDRJ[29] is 1 (after the CPU munges the ad-
dress), so the 660 selects CPU data byte lanes 4 through 7 as the source of the data. The
system is in little-endian mode, so the buffer swaps the data bytes. If the register data is
ABO012345h, then ABh is written to address 012345h of the ROM. Only single-beat, four-
byte write transfers (store word) are supported.

Table 6-2. ROM Write Data Flow in Little-Endian Mode

CPU Register CPU DATA[0:63] Content PCI_AD[31:0] ROM Signal
MSB 32:39 ROM Data 31:24 D[7:0]
40:47 ROM Address high byte 23:16 A[23:16]
48:55 ROM Address mid byte 15:8 A[15:8]
LSB 56:63 ROM Address low byte 7:0 A[7:0]
6.1.2.4 Data Flow In Big-Endian Mode

Figure 6-5 and Table 6-3 show the flow of CPU Data through the 660 to the ROM while the
system is in big-endian mode. Note that the CPU Data bus is labeled in big-endian order,
the PCI bus is labeled in little-endian order, and the 660 is labeled to match (and the bit
significance within the bytes is maintained).

6-6 G5220297-00

~ >~ imi .
pvwefl,u Preliminary Section 6 — ROM
60X CPU
MsB CPU Register
Addr| Addr| Addr -
low | med | high Data| LSB Egﬁz 660 Bridge E%/F]ee ROM
—> 24— 24}_. 313 D7 pata
31— 7|31 | 24 DO
> 16 > 16 |,—, 23 > A23
> 23 23 | 16 Al16 ?
> 8 8 15 Al5 @
15 ——15 |' g M Y /v~ =
- 0 N 07, " 7 N a7 <
- 12— 7" L o2 o
CPU PCI
Address not munged. Data cPU PCI Bus
Bus Data bytes not swapped.
CPU_A[29]=0 selects
CPU data bytes 0:3.

Figure 6-5. ROM Data and Address Flow In Big Endian Mode
When the CPU executes a store word instruction to FFFF FFFOh, the contents of the source
register appear on CPU_DATA[0:31]. CPU_ADDR[29]=0, so the 660 selects CPU data
byte lanes 0 through 3 as the source of the data. The system is in big-endian mode, so the
buffer does not swap the data bytes. If the register data is 452301ABh, then ABh is written
to address 012345h of the ROM. Only single-beat, four-byte write transfers (store word)
are supported.

Table 6-3. ROM Write Data Flow in Big-Endian Mode

CPU Register CPU DATA[0:63] Content PCI_AD[31:0] ROM Signal
MSB 0:7 ROM Address low byte 7:0 A[7:0]
8:15 ROM Address mid byte 15:8 A[15:8]
16:23 ROM Address high byte 23:16 A[23:16]
LSB 24:31 ROM Data 31:24 D[7:0]

6.2 Remote ROM Mode

In a system that uses the remote ROM mode, the ROM device attaches to a PCI agent.
When a CPU busmaster reads from memory addresses mapped to ROM space, the 660
arbitrates for the PCI bus and then masters a memory read transaction on the PCI bus. The
PCI agent claims the transaction and supplies the ROM device data. CPU writes to the
ROM and ROM write-protection operations are also forwarded to the PCI agent.

As shown in Figure 6-6, the ROM access flows from the CPU to the 660 over the CPU bus,
from the 660 to the PCI agent over the PClI bus, and from the PCl agent to the ROM device.
The ROM device attaches to the PCI agent, not to the PCI_AD lines, so a PCI bus load is
saved by the remote ROM method.

G5220297-00 67

Section 6 — ROM Pre“minary pl‘l.werpc

System ROM
60X 60X 660 PCI PCI Address
CPU | Bus | Bridge | Bus | Agent Control

Data

Figure 6-6. Remote ROM Connections

6.2.1 Remote ROM Reads

For remote ROM reads, the 660 arbitrates for the PCI bus, initiates eight single-byte PCI
accesses, releases the PCI bus, and completes the CPU transfer. The eight single bytes
of ROM data are assembled into a double-word in the 663 and passed to the CPU.
Figure 6-7 shows the beginning of the operation, including the first two PCI transactions.
Figure 6-8 shows the last part of the operation, including the last two PCI transactions.

During and following reset, compliant PCI agents are logically disconnected from the PCI
bus except for the ability to respond to configuration transactions. These agents have not
yet been configured with necessary operational parameters. PCIl agents capable of the re-
mote ROM access protocol reset with the ability to respond to remote ROM accesses be-
fore being fully configured. The CPU begins reading instructions at FFF0 0100h before it
can configure the PCI devices.

The ROM read discussion assumes that the system is in big-endian mode.

6.2.1.1 Remote ROM Read Sequence

In response to a CPU bus read in the 4G — 2M to 4G address range, the 660 requests the
PCI bus from the PCI arbiter. When the PCI bus is granted (or if the bus is already parked
on the CPU), the 660 initiates a series of PClI memory-read transactions as shown in
Table 6-4 for a CPU read from FFEO 0000h to FFFF FFFF. Note that the last column in
Table 6-4 shows the effect of little-endian mode operation. See Section 6.2.1.4.

The address of the first transaction is the low-order byte of the double-word pointed to by
the CPU address (see Section 6.2.1.2). The 660 expects the low-order byte of ROM data
in the 8-byte double-word to be returned on PCI byte lane 0, PCI_AD][7:0]. As shown in The
660 then masters seven more PCI read transactions, each time receiving back one byte
of ROM data and driving it onto the CPU data bus as shown in Table 6-4. Note that the byte
enables are incrementing within each 4-byte word pointed to by the PCI address.

6-8 G5220297-00

Pre“minary Section 6 — ROM

PowerP

uonoesuel} ay) buunp pauasse 1ou #d40O1S ()

"9AIoR #JNVHH Sajdwes 1l Se uoos se #AQy1 Hasse Aew wabe |Dd ayl
"19]|0JU0D NOY d10Wal a3yl Aq paded si Aejap siyl (1)
‘anoe pajdwes S #FAQYL eyl X909 8y} U0 pauasseap Sl #AQMNOYS se pauasse shemje st #AQyl (€)
"8I3y Pauasse a(M #JNVH- Uyl ‘NdD 8y} Uo paxEesing 10d 8yl JI ‘NdD/099 uo paxsed jou snq 10d (2)
18nque waishs sy Aq pajjonuod si Aeap siyL (T)

q , , e , , #AQYL
j& SM1D 10d u j& ST 10d CJ
(e)\— e () , | #AQH
q B #ANVYS
q | | = | #13sA3q
g)49 e) ® [v99] #l0:€138/0
, so|qeugy alkg pPWO 3
S qgereg S eereg : : [lod]l av™ 1od
q ppvy , —(e ppy , ; [¥99] av 10d
‘NdD/099 UO pasiied SAEIS MOU SNQ [0d Tey) SaWNssy S , , __ #IN9'10d
(1)'SM10 10d ul™
, (@ #03d 10d
M1 10d
= = "]vlvd ndo
L #vL
#HIOVY
e ' #S1

S —{Jdaav ndd
(VAVE S Nt

Figure 6-7. Remote ROM Read - Initial Transactions
At the completion of the eighth PCI read, the 660 drives the assembled double-word onto

the CPU data bus. The 660 then signals completion of the transfer to the CPU.

T
©

G5220297-00

PowerP

Preliminary

Section 6 — ROM

"9AI0e #3|g9pdHies 1l Se U0oS se #AQy1 Uasse Aew juabe |Dd ayL
, 19]|0J)u0d NOY S10Wal 3y} Aq pajj01u09 s \E_m_o syl ()
"annoe _om_QEmm SI#ACQYL ey %9059 8y} Uo pauasseap sl #AQHI
‘UMOoys se cmtmmm@ skempe si #AQdl (2)
co:ommcm: ayl @c_i_o pauasse 10u #n_o.nm_o\ooo uo paxed! w:g 10d sawnssy (T)

Yy , §) #AAYL

T (esnoTodu ") sM10 10d U

#AQH|
4 ' -#INVYL
q 6 #13SA3A
1] y , 6 6 -[y99] #lo:€]ag/o0
, , , so|geug aykg puwid
S y ered S B ereq [Iodl av 1od
4 PPy B PPV - [y99] av™10d

() #LNO 10d

() #0O3d 10d

#S1

moo< Ndo
VAV avYaAY Al AYAYAY A AYAY AN AN AN AN AYAYAYAVAWAWAW RloN) i

Figure 6-8. Remote ROM Read — Final Transactions
Remote ROM reads are not pipelined. The 660 does not assert AACK# to the CPU until

the end of the remote ROM read sequence. The 660 asserts PCI

entire remote ROM read sequence.

REQ# throughout the

G5220297-00

6-10

PowerP

Preliminary

Section 6 — ROM

Table 6-4. Remote ROM Read Sequence, CPU Address = FFFX XXX0

PCI Big Endian Little Endian
Access | PCI Bus Read Memory Byte Enables ROM | ROM CPU_DATA CPU_DATA
Address PCI_AD[31:0] PCI_C/BE[3:0]# Addr | Data [0:63] [0:63]

1 FFFX XXX0h 1110 0 a — —
2 FFFX XXXO0h 1101 1 b — —
3 FFFX XXXO0h 1011 2 c — —
4 FFFX XXXO0h 0111 3 d — —
5 FFFX XXX4h 1110 4 e — —
6 FFFX XXX4h 1101 5 f — —
7 FFFX XXX4h 1011 6 g — —
8 FFFX XXX4h 0111 7 h abcd efgh hgfe dcba
6.2.1.2 Address, Transfer Size, and Alignment

The initial PCI address generated during the remote ROM read sequence is formed by co-
pying the high-order 29 bits of the CPU address, and forcing the three low order bits
PCI_ADI[2:0] to 000b. This generates a base address that is aligned on an 8-byte boundary.
While reading the lower 4 bytes, the 660 indicates which byte it is requesting using the PCI
byte enables C/BE[3:0]#. After the first four bytes of ROM data are read, the 660 increments
the address on the PCI_AD lines by 4 before executing the second four PCI reads.

The CPU read address need not be aligned on an 8-byte boundary. A CPU read from any
address (in ROM space) of any length that does not cross an 8—byte boundary within a
double-word returns all eight bytes of that double-word data from the ROM. For example,
the operations shown in Table 6-4 could have been caused by a CPU memory read to
FFFO 0100h, FFFO 0101h, or FFFO 0105h.

Errors occurring during remote ROM reads are handled as usual for the error type. No spe-
cial rules are in effect.

6.2.1.3

The 660 supports burst reads in remote ROM mode. The 660 supports a pseudo burst
mode, which supplies the same eight bytes of data (from the ROM) to the CPU on each
beat of a 4-beat CPU burst.

A burst ROM read begins with the 660 executing a single-beat ROM read operation, which
assembles eight bytes of ROM data into a double-word on the CPU data bus. For a burst
ROM read, the 660 asserts TA# for four CPU_CLK cycles, with AACK# asserted on the
fourth cycle. The same data remains asserted on the CPU data bus for all four of the data
cycles.

For a single-beat read, the 660 asserts TA# and AACK# for one CPU_CLK cycle, and the
CPU completes the transfer.

Burst Reads

6.2.1.4 Endian Mode Considerations

In little-endian mode, the address munging done by the CPU has no effect because
PCI_ADJ2:0] are forced to 000 during the address phase by the 660 at the beginning of the
transaction. However, in little-endian mode the byte swapper is enabled, so the bytes of
ROM data returned to the CPU are swapped as shown in the last column of Table 6-4.

G5220297-00 6-11

Section 6 — ROM Preliminary pl‘l.werpc

6.2.1.5 4-Byte Reads

The 660 handles 4-byte ROM reads (and all ROM reads of less than 8 bytes) as if they were
8-byte reads. All 8 bytes are gathered by the 660, and all 8 bytes are driven onto the CPU
data bus.

6.2.2 Remote ROM Writes

While the 660 is configured for remote ROM operation, the 660 forwards all CPU to ROM
write transfers to the PCI bus as memory writes. The PCI agent that is controlling the re-
mote ROM acts as the PCI target during CPU to ROM write transfers, executes the write
cycle to the ROM, and may provide ROM write-protection.

6.2.2.1 Write Sequence

A CPU busmaster begins a remote ROM write transaction by initiating a one-byte, single-
beat memory write transfer to CPU bus address range 4G — 2M to 4G (FF80 0000h to FFFF
FFFFh).

The 660 decodes the CPU transfer, arbitrates for the PCI bus, and initiates a memory write
PCI transaction to the same address in the 4G — 2M to 4G address range.

The PCI agent that is controlling the remote ROM (such as the PCI to ISA Bridge), claims
the transaction, manages the write cycle to the ROM device, and signals TRDY#.

The 660 then completes the PClI transaction, and signals AACK# and TA# to the CPU. Note
that remote ROM writes are neither posted or pipelined.

6.2.2.2 Write Protection

Write protection can be provided by the PCI agent that controls the ROM. In addition, some
flash ROM devices can have the means to permanently lock out sectors by writing control
sequences. The 660 also has a write lockout in the Bridge Chipset Options 2 register (bit
0 of index BBh).

6.2.2.3 Address, Size, Alignment, and Endian Mode

In remote ROM mode, CPU memory writes from 4G — 2M to 4G cause the 660 to generate
PCI bus memory write transactions to 4G — 2M to 4G. The 660 does not allow CPU masters
to access the rest of the PClI memory space from 2G to 4G.

In remote ROM mode, PCI busmaster memory write transactions from 4G — 2M to 4G are
ignored by the 660. However, the PCI agent that controls the ROM responds to these trans-
actions. In contrast, in direct-attach ROM mode, the 660 forwards PCI busmaster memory
transactions from 2G to 4G (to populated memory locations) to system memory from O to
2G.

Remote ROM writes must be one-byte, single-beat transfers.

The endian mode of the system has no net effect on a ROM write because the transfer size
is one byte. The address is munged by the CPU and unmunged by the 660. The data comes
out of the CPU on the byte lane associated with the munged address, and then is swapped
by the 660 to the byte lane associated with the unmunged address. Thus a ROM write in
little-endian mode puts the data byte in the same ROM location as does the same ROM
write in big-endian mode.

6-12 G5220297-00

pl‘l.werpc Preliminary Section 6 — ROM

CPU_CLK
CPU_ADDR[)~ S
TSH#, N\ L/
AACK# '
TA#:
CPUDATA (e
PCILCLK /" / "/ / ./ S S S S SN\
PCI_REQ# | @\ ‘ ‘ ‘ ‘ ‘ ‘
. nPCI_CLKS (1)
PCI_GNT# ' ‘ ‘ S ‘
PCI_AD [664] — : : : Add
PCI_AD [663] — “Data_
C/BE[3:0]# — ‘ : ‘ Cmd " Byte Enables’
DEVSEL#
FRAME# ‘
IRDY# : G
L 'nPCI_CLKs (4)__,
TRDY# ‘ ‘ ‘
(1) This delay is controlled by the system arbiter.
(2) PCI Bus not parked on CPU. If the PCI bus is parked on the CPU, FRAME# is asserted here.
(3) IRDY# is always asserted as FRAME# is deasserted.
IRDY# is deasserted on the clock that TRDY# is sampled active.
(4) This delay is paced by the remote ROM controller.
The PCI agent may assert TRDY# as soon as it samples FRAME# active.
STOP# not asserted during the transaction.

Figure 6-9. Remote ROM Write

6.3 Related Bridge Control Registers

The two BCRs most closely related to the ROM system are the ROM write BCR and the
ROM lockout register. Writes to the ROM are accomplished through the ROM write BCR.
Write-protection is provided by means of the ROM lockout BCR.

6.3.1 ROM Write Bridge Control Register

[Direct Access FFFF FFFOh [write Only | Reset NA |
This 32-bit, write-only register is used to program the ROM in direct-attach ROM systems
(see section 6.1.2). This register must be written by means of a 4-byte transfer. Bits are
shown with little-endian labels.

G5220297-00 6-13

Section 6 — ROM Preliminary pl‘l.werpc

MSb LSb
D31D30D29D28D27D26D25D24
N I
D23D22D21b20D19D18D17D16
N O I
D15D14D13D12D11D1Q D9 | D8
I
D7|D6|D5|D4|D3|D2(D1|D0
I I
Table 6-5. ROM Write BCR Contents
BCR Byte Content in Little-Endian System Content in Big-Endian System
MSB ROM Data ROM Address low byte
ROM Address high byte ROM Address mid byte
ROM Address mid byte ROM Address high byte
LSB ROM Address low byte ROM Data
6.3.2 Direct-Attach ROM Lockout BCR
| Direct Access FFFF FFF1h | Write Only | Reset NA |

After it has been written once, this 8-bit, write-only register prevents direct-attach ROM
writes.

FFFF FFF1h |D7|D6|D5|D4|D3|D2|D1| D0

Any Value

Bits 7:0 Writing any value to the register prevents all future writes to a ROM that is connected directly
to the 660 through the PCI_AD lines.

6.3.3 Remote ROM Lockout Bit

The ROM write-protect bit for remote ROM is in the Bridge Chipset Options 2 register (index

BBh). While enabled, writes to the remote ROM are forwarded to the PCI memory space.

While disabled, writes to the remote ROM are treated as no-ops and an error is signalled.

After the first time that the bit is set to O, it cannot be set back to 1.

[Index BBh [Read/write | Reset to 4Fh |

BBh |D7|D6|D5|D4|D3|D2|D1|D0

Flash Write enable
0 = Disabled
1 = Enabled

Other Functions

Bit 0 Flash write enable: When the ROM is remotely attached, this bit controls write access to the flash
ROM address space (4G — 2M to 4G). When enabled, writes to this space are forwarded to the
PCI memory space at the same address. When disabled, writes to this space are treated as no-
ops and an error is signalled. After the bit is set to O (disabled), it cannot be reset to 1 (enabled).

6-14 G5220297-00

PowerP

Preliminary

Section 6 — ROM

6.3.4 Other Related BCRs

Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes

Error Enable 1 Index CO R/W 1

Error Enable 2 Index C4 R/W 1
G5220297-00 6-15 ===

Section 6 — ROM

Preliminary

PowerP

6-16

G5220297-00

pl‘l.werpc Preliminary Section 7— Clocks

Section 7
Clocks

The 100 MHz PPC 603e MCM provides a separate clock signal for each CPU bus and PCI
bus agent in the system. The clock signals are generated by a Motorola™ MPC970. The
MPC970 inputs are brought off of the MCM to allow maximum programming flexibility. See
the data sheet for more information on MPC970 programming, capabilities, and character-
istics. See Figure 7-1.

MCM
Control 6 PCI Bus Clocks PCI Clock
Inputs > Consumers
MPC970
8 o
16.5 MHz — CPU
Crystal — Bus
—|__ Clocks
CPU Clock B
Consumers -
PCI Clock 3
Consumer -

Figure 7-1. MCM Clocks

The example planar configures the MPC970 to produce 8 CPU bus clocks, all of which are
consumed by the MCM components. When required, additional CPU bus clocks can be
generated using a 'zero delay’ clock repeater such as the Motorola MPC930 PLL, using
one of the supplied CPU clocks as the seed clock.

The planar also configures the MPC970 to produce seven PCI bus clocks, two of which are
consumed by the MCM components. The other PCI clocks are available for use on the pla-
nar. The MPC 970 is configured to interface with a 16.5 MHz crystal. An oscillator internal
to the component then produces the root frequency used to create all clock outputs.

G5220297-00 7-1

Section 7 — Clocks Pre”minary pl‘l.werpc

7.1 CPU Clock Physical Design Rules

The MCM and the example planar were physically designed with careful attention to the
fact that, at PowerPC operating frequencies, the circuit board itself becomes a component
that materially affects circuit behavior. Clock nets are the most critical wiring on the board.
Their wiring requirements should be given priority over the requirements of other groups
of signals. The following design rules are helpful in designing low-noise and low-skew clock

nets:

1. Clock nets are to have a minimum number of vias.

2. No clock wires may be routed closer than one inch to the edge of the board. Consider
adding EMC caps to the far end of the clock trace.

3. Clock nets should not have more than two nodes. Daisy chains, stubs, and star fanouts
are not allowed.

4. Clock nets are to be routed as much as possible on internal signal planes.

5. Route a ground trace as a shield in the adjacent wiring channel on both sides of the clock
trace. It is a good practice to periodically (every inch or so) connect these shield traces
to the ground plane. Completely surround the clock trace with shield traces. Avoid im-
pedance bumps.

6. Series (source) termination resistors are required. Choose them according to the
MPC970 data sheet recommendations and place them as close as possible to the clock
source pin of the MCM.

7. To minimize clock skew on the planar, design the circuit board such that the combined
length (MCM plus planar) of each of the clocks is the same. In other words, determine
the required total length of the longest clock trace, and then make all of the other traces
the same total length (see Figure 7-2).

Inside the MCM, the PCI clock traces run about 1 inch, and the CPU clock traces run
about 3.5 inches. Thus the planar runs of the clocks should be adjusted accordingly.
Suppose in Figure 7-2, one of the PCI clocks planar runs is initially the longest, at 8.5
inches. Added to the about 1 inch of MCM run, the total length is about 9.5 inches. Cor-
rect design will then stretch all of the other PCI clock lines to 8.5 inches. The required
planar run length of the CPU lines is then 9.5 — 3.5 = 6 inches. See Table 7-1 and
Table 7-2.
Table 7-1. Clock Net Lengths
Net Length Type Name Net Topology
13.7500 CLK XTALL J1.U30 u4.12
11.7071 CLK XTAL2 J1.T29 U4.13
32.5000 CLK FRZ_CLK J1B11 u4.3
18.6036 CLK FRZ_DATA J1.A22 U4.5

8.5866 CLK PCLK_60X J1.E18 U4.34

66.3536 CLK TAG_BCLK J1.N30 U4.36

29.9142 CLK CLK_EXT_FB J1LAL7 U4.14

27.0000 CLK CLK_FB_SEL J1.A15 U4.9

27.5000 CLK CLK_PLL_EN J1.D33 u4.7

67.5000 CLK SRAM_BCLKO J1.W30 U4.44

7-2 G5220297-00

pl‘l.werpc Preliminary Section 7— Clocks

Table 7-1. Clock Net Lengths (Continued)

Net Length Type Name Net Topology
66.5000 CLK SRAM_BCLK1 J1.AE30 U4.46
9.1624 CLK SRAM_BCLK2 J1.AG04 U4.48
8.6624 CLK SRAM_BCLK3 J1.AA04 U4.50
22.6036 CLK CLK_COM_FRz J1.A18 uU4.6
29.6036 CLK CLK_REF_SEL J1.B13 u4.8
24.4571 CLK CLK_TTL_CLK J1.A26 u4.11
28.0000 CLK CLK_VCO_SEL J1.A13 u4.52
1.7500 CLK 663 CPU_CLK J1.G04 U4.38
63.6036 CLK 664 CPU_CLK J1.G30 u4.42
24.1036 CLK CLK_BCLK _DIVO J1.C16 U4.31
22.2500 CLK CLK _BCLK DIV1 J1.B17 u4.27
26.3536 CLK CLK_FRZ_ J1.F33 u4.4
STROBE
14.8536 CLK CLK_MPC601 J1.K27 U4.40
CLKS
25.3536 CLK CLK_ J1.A16 u4.2
MR/TRISTATE
61.8536 CLK 664_PCI_CLK J1.J30 U4.18
20.6036 CLK CLK_PCI_DIVO J1.B21 U4.20
20.0607 CLK CLK_PCI_DIV1 J1.C20 U4.26
38.1036 CLK USER_PCICLK1 J1.AEO1 U4.16
29.5000 CLK USER_PCICLK2 J1.NO1 u4.21
42.8536 CLK USER_PCICLK3 J1.Co1 U4.23
31.1036 CLK USER_PCICLK4 J1.A11 U4.25
25.4571 CLK USER_PCICLK5 J1.A14 U4.29
29.7500 CLK USER_PCICLK6 J1.E33 U4.32
Table 7-2. Clock Net Calculations
Net MCM Run | Total Run | Required Planar Run Tolerance (Inch)
CPU Clocks 3.5(nom) |x x—-3.5 1
664 _PCl_CLK 1 (nom) X x—1 1
PCI_CLK[4:1] 1 (nom) X x—1 1

In our experience, a maximum clock trace length skew of two inches is acceptable. Itis the
responsibility of the designer to determine the appropriate amount of allowed clock trace
length variation for the individual application.

G5220297-00 7-3

Section 7 — Clocks Pre“minary pl‘l.werpc

MCM PCI Bus Clocks
ﬁ L=X-35 j
iR PCI Clock
MPC970 >
Consumer
*—— Solder Columns
PCI Clock
1 .
Consumer
(-] (-]
(-] (-]
(-] (-]
PCI Clock
- -
Consumer
PCI Bus Clock
1 >
Y L=X35 ——
8) L=X-1.0
1 >
CPU
Bus
Clocks
CPU Clock
-
Consumers
»
PCI Clock #
-
Consumer
X = the total run (including the MCM trace length) of the
longest clock net.Make all clock traces the same length.

Figure 7-2. MCM Clocks

The allowed skew of the PCI_CLK at any point in the system to the CPU_CLK at the 660
Bridge is +/- 2ns, as shown in Figure 7-3.

CPU_CLK
at 660
2ns| 2ns

max | max
PCI_CLK
at 60X

Figure 7-3. CPU_CLK to PCI_CLK Skew

If the design rules laid out in Section 7.1 are followed, the requirements are met.

G5220297-00

1

|l
illl

]
T
AN

pl‘l.werpc Preliminary Section 7— Clocks

7.2 Clock Freezing

Some of the PCI clocks may not be required. In this case, the ability of the MPC970 to stop
(freeze) the unused clocks is useful to reduce run-time power consumption and EMI emis-
sions.

The MPC970 can freeze any set of output clocks in the low state, while allowing the other
clocks to continue running. The freeze command is given to the MPC970 via a two wire
synchronous serial interface that originates in the system EPLD. See the clock freeze regis-
ter description in the System EPLD section for more information on activating this feature.
Firmware can read the presence detect bits of the PCI slots to determine which devices
are present. For PCI slots which are not populated, firmware can disable the clocks for
those slots.

This function can also be used by power management functions to further reduce power
consumption of the motherboard by freezing the clocks of devices which have been placed
in a power managed mode.

G5220297-00 7-5

Section 7 — Clocks

Preliminary

PowerP

7-6

G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

Section 8
Exceptions

This section contains information on interrupts, errors, resets, and test modes. Some of the
functionality of each area is implemented on the MCM, and some of that functionality is lo-
cated on the planar. To simplify the material, both the MCM and the planar parts of each
system are presented in this section.

8.1 Interrupts
8.1.1 Planar Interrupt Handler

Example planar interrupts are handled primarily by the interrupt controller in the ISA bridge,
the 660, the CPU, and the firmware.

There are two 8259 type interrupt controllers located in the ISA bridge. These controllers
receive and prioritize example planar interrupts, which can be asserted by motherboard
logic, PCI devices, or ISA devices. The interrupt controller then asserts an interrupt to the
660.

The interrupt controller is programmed to handle both ISA and PCI interrupts using the cor-
rect protocols, under software control. Much of the operation of the interrupt controller is
programmable. See the SIO data book for more information.

8.1.2 MCM (660) INT_REQ and INT_CPU#
The 660 features two interrupt inputs, INT_REQ and NMI_REQ.

As shown in Figure 8-1, the 660 inverts INT_REQ and passes it thru to the CPU as
INT_CPU#. While the 660 is in 601 error reporting mode, it also uses INT_CPU# to report
certain error conditions, but this function is not used by the MCM.

The only reason that the 660 connectsto INT_CPU# s to be able to use itin reporting errors
to the 601 CPU. When the bridge is not in 601 error reporting mode, the path though the
660 from INT_REQ to INT_CPU# is functionally an inverting latch. The CPU does not need
the interrupt to be synchronized to the CPU clock, and typical interrupt controllers feature
programmable output polarity, so if the target system is not using a 601, then the interrupt
can be wired around the 660, without being connected to the 660. In this case, tie the
INT_REQ input inactive. This could have been done on the example planar; the current
connectivity illustrates the use of the 660 pins.

G5220297-00 8-1

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

Error Not used on MCM

Reporting 1=601

Error _

Logic Type | 0=Other

Non-TEA# L4
CPU Bus 3

Error

\

INT_REQ QO—— INT_cPU#
CPU_CLK

]
Vv

Figure 8-1. Conceptual Block Diagram of INT Logic

8.1.3 Interrupt Acknowledge Transactions

To perform an interrupt acknowledge operation, the CPU initiates a single-byte read to ad-
dress BFFF FFFO. This causes the 660 to arbitrate for the PCI bus and then to initiate a
single-byte PCI Interrupt Acknowledge transaction with PCI_C/BE[OJ# active.
PCI_C/BE[QJ# is active regardless of the endian mode of the 660. The PCI Interrupt
Acknowledge transaction that the 660 generates is similar to those generated by x86 to PCI
bridges. The interrupt controller (eg SIO) then claims the transaction and supplies the
single-byte interrupt vector on PCI byte lane 0. The 660 then returns the vector to the CPU
on the correct byte lane.

There is no physical interrupt vector BCR in the bridge. Other PCI busmasters can initiate
interrupt acknowledge transactions.
8.1.4 NMI_REQ

The 660 considers the NMI_REQ input to be an error indicator. Note that in Figure 8-1,
there is no logical connection between NMI_REQ and INT_CPU, except through the error
handling logic. See section 8.2.7.1 for more information on NMI_REQ.

8.1.5 Interrupt Handling

INT_CPU#
ISA INT_REQ
Interrupts ISA 660
Bridge NMI_REQ | Bridge CPU
PCI —
Interrupts CPU Bus
PCI Bus

Figure 8-2. Interrupt Handling

As shown in Figure 8-2, the 100 MHz PPC 603e MCM interrupts are routed to the interrupt
controller located inside the ISA bridge. When a device signals an interrupt (which is not
masked in the interrupt controller), then for error sources, the interrupt controller is pro-

8-2 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

grammed to assert NMI_REQ. If the input to the interrupt controller signals an interrupt,
then:

1. The ISA bridge asserts INT_REQ to the 660.
2. The 660 asserts INT_CPU# to the CPU.

3. The CPU recognizes the interrupt signal (INT#) immediately (or as soon as the
MSR(EE) interrupt enable bit in the CPU is set to 1), saves its state, and then takes a
precise external interrupt exception, branching to either 500h or FFF0 0500h, depend-
ing upon the Exception Prefix (EP) bit in the MSR. The MSR(EE) bit is automatically
set to O at this time.

4. The code at the vector location requests a single-byte read of memory address BFFF
FFFOh.

5. Inresponse to the read, the 660 arbitrates for the PCI bus and then generates an inter-
rupt acknowledge transaction on the PCI bus.

6. The ISA bridge decodes and claims the PCI interrupt acknowledge transaction, and
returns the 8-bit vector which has been preprogrammed for the active interrupt, and
then negates the interrupt output.

7. The 660 accepts the interrupt vector on the PCI bus, returns it to the CPU, and signals
TA# to terminate the CPU transfer normally.

Since the CPU does not require that the interrupt signal (INT_CPU#) be deactivated be-
tween interrupts, another interrupt is allowed to occur as soon as software sets the
MSR(EE) bit back to 1. For this reason, software should enable interrupts as soon as pos-
sible after receiving the vector. Note that the load instruction that fetches the interrupt vector
IS subject to out-of-order execution; eieio as required. After servicing the interrupt, execute
a return from interrupt (RFI) instruction to return to the program that was interrupted. For
more information on interrupts, see the Exceptions section of the 603 User’s Manual.

Note that other PCI busmasters can initiate interrupt acknowledge transactions, but this
may have unpredictable effects.

8.1.6 Planar Interrupt Assignments

In general, program ISA interrupts as edge sensitive. Program PCl interrupts as level sensi-
tive. Interrupts are assigned to priority levels per ISA conventions. Table 8-1 shows the in-
terrupt assignments of the planar. IRQ[0:7] connect to the master controller, and IRQ[8:15]
connect to the cascaded controller. Figure 8-3 shows the connection of the PClI interrupts.

G5220297-00 8-3

Section 8 — Exceptions

Preliminary

PowerP

Table 8-1. Mapping of PCI Memory Space, Part 1

SIOIRQ # | Connects to Priority Assignment or (Comment)
0 no pin 1 Timer 1 Counter O (Internal to SIO).
1 Sys I/0 EPLD 2 Keyboard
2 no pin (3-10) | Cascade from controller 2
3 ISA IRQ3 11 (COM 2 or COM 4)
4 ISA IRQ4 12 (COM 1 or COM 3)
5 ISA IRQ5 13 (Parallel LPT 1 or 2)
6 ISA IRQ6 14 (Floppy)
7 ISA IRQ7 15 (Parallel LPT 2 or 3)
8# RTC 3 TOD (aka Real Time Clock)
9 ISA IRQ9 4
10 ISA IRQ10 5 (Audio)
11 ISA IRQ11 6
12/M ISA IRQ12 7 (Mouse)
13/FERR — 8 Pulled up.
14 ISA IRQ14 9 (IDE)
15 ISA IRQ15 10
PIRQ2# PCI_INTC# See Figure 8-3.
PIRQ1# PCI_INTB# See Figure 8-3.
PIRQO# PCI_INTA# See Figure 8-3.
vdd ISA
Bridge
PCI Slot 1, J26 %
INTA# PIRQ1#
INTB# PCI_INTB#
INTCH#
vdd ISA INTD# vdd
Bridge
PCI Slot 0, J25 % PCI Slot 2, J27 %
INTCH# INTCH#
INTD# INTD#
Figure 8-3. PCI Interrupt Connections
8.1.7 Scatter-Gather Interrupts

Where possible, set up the scatter-gather function to use the ISA bridge end of process
(EOP output) indicator for the termination of ISA bus DMA in which scatter-gather is
employed. The planar is initially configured to use this scheme. The EOP signal from the
ISA bridge is used as the terminal count (ISA_TC) signal on the ISA bus.

G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

8.2 Errors

Errors are handled primarily by the 660, the CPU, and the firmware. The errors are reported
to the CPU or the PCI and status information is saved in the 660 register set so that error
type determination can be done by the CPU. There are two methods which the MCM (660)
uses to report errors to the CPU, the TEA# method, and the MCP# method. Errors related
to a PCI bus transaction are reported to the PCl by means of the PCI_PERR# or the
PCl_SERR# signals.

Errors that are detected while the CPU is running a cycle that can be terminated immediate-
ly are reported using TEA#. Errors reported in this way are a direct result of the CPU transfer
that is currently in progress. For example, when the 660 detects a transfer size error, it ter-
minates the CPU transfer with TEA# instead of with TA#.

Errors that are detected while a CPU transfer is not in progress, and errors that occur be-
cause of a CPU transfer but which are detected too late to be reported using TEA#, and
errors that are not a direct result of the current CPU transfer, are reported using MCP#. For
example, memory parity errors occurring while a PCI busmaster is accessing memory are
reported using MCP#.

There are three separate data error checking systems in the 660; CPU bus, memory, and
PCI bus. The 660 does not generate or check CPU address bus parity.

Each error that can be detected has an associated mask. If the error is masked, then the
detection of that error condition is disabled. There are also assertion masks for the MCP#,
TEA#, and PCl_SERR# signals that prevent reporting of any error by means of that signal
(these masks do not affect the detection of the error).

Once an error is detected and the appropriate status, address, and control information is
saved, the detection of all subsequent error detection is disabled until the current error is
reset. For more information on error handing, see the 660 User’s Manual.

8.2.1 CPU Bus Related Errors

8211 CPU Bus Error Types

e Errors Reported With TEA# (cycle still active)
e CPU bus unsupported transfer type
e CPU bus unsupported transfer size
e CPU bus XATS# asserted

e Errors Reported With MCP# (cycle has ended)
e CPU data bus parity error
* CPU bus write to locked flash
e CPU bus memory select error
e Memory parity error during CPU to memory transfer
e Memory single-bit ECC error trigger exceeded during CPU to memory transfer
e Memory multi-bit ECC error during CPU to memory transfer
e L2 cache parity error
e PCI bus data parity error (660 is PCI busmaster) during CPU to PCI transaction
e PCI target abort received (660 is PCI busmaster) during CPU to PCI transaction
e PCI master abort generated (660 is PCI busmaster) during CPU to PCI transaction.

G5220297-00 8-5

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8.2.1.2 CPU Bus Error Handling Protocol
If the error is masked, do not detect the error.
If the error is detected, perform the following steps:

1.
2.
3.
4.

Set status bit indicating error type.

Set status bit indicating error during CPU cycle.

Save CPU address and control bus values.

Report error to the CPU. (Reported by means of TEA# if the CPU cycle is still active or
by means of MCP# if the CPU cycle has ended.)

PCI bus data parity errors also cause PCI_PERR# to be asserted.

There is a status bit (PCI Status Register bit 15) that is set whenever any type of PCI bus
parity error is detected. The setting of this status bit is not maskable.

8.2.2 PCI Bus Related Errors

8.2.21 PCI Bus Error Types
During a PCI to memory transaction (in which the 660 is the PCI target):

PCI bus address parity error

PCI bus data parity error

PCI memory select error

Memory parity error

Memory single—bit ECC error trigger exceeded
Memory multi-bit ECC error

8.2.2.2 PCI Bus Error Handling Protocol

If the error is masked, the 660 does not detect the error. If the error is detected, perform
the following steps.

1.
2
3.
4

5.

Set status bit indicating error type.

. Set status bit indicating error during PCI cycle.

Save PCI address and control bus values.

. Report error to the PCI. If the error is a PCI bus data parity error then report by means

of PCI_PERR#. Ifthe error is not a data parity error then report by means of PCl_SERR#.
If the PCI cycle is still active (not the last data phase), then target abort the cycle.

The 660 can be enabled to report PCI bus data parity errors with PCl_SERR#. This method

sh

ould only used if it is determined that PCI_PERR# is not supported by some (or all) of

the PCI masters in the system.

8.2.2.3 PCI Bus Data Parity Errors
While the 660 is the PCI busmaster (during CPU to PCI transactions):

During reads, the 660 monitors the PCI_AD (and C/BE# and PCI_PAR) lines to de-
tect data parity errors during the data phases. If an error is detected, the 660 asserts
PCI_PERR#. Unless masked, the 660 will report the error to the CPU bus using
MCP#. This error does not cause the 660 to alter the PCI transaction in any way.

During writes, the 660 monitors PCl_PERR# to detect data parity errors that are de-
tected by the target. Unless masked, the 660 will report the error to the CPU bus
using MCP#. This error does not cause the 660 to alter the PCI transaction in any
way.

8—-6 G5220297-00

Preliminary

PowerP

While the 660 is the PCI target (during PCI to memory transactions):

¢ During reads, the 660 does not monitor PCI_PERR#, and so will not detect a data
parity error.

e During writes, the 660 monitors the PCI_AD (and C/BE# and PCI_PAR) lines to de-
tect data parity errors during the data phases. If an error is detected, the 660 asserts
PCI_PERR#. The 660 will not report the error to the CPU bus. This error does not
cause the 660 to alter the PCI transaction in any way.

8.2.3

8.2.3.1 CPU Bus Transfer Type or Size Error

This error is generated when the CPU generates a bus operation that is not supported by
the 660 (see Table 8-2). An error is not generated if the cycle is claimed by another CPU
device (CPU_BUS_CLAIM# asserted).

Table 8-2. Invalid CPU Bus Operations

Section 8 — Exceptions

CPU Bus Transaction Errors

TT[0:4] Operation
1000x Reserved
1011x Reserved

Only the following transfer sizes are supported. Other transfer sizes are not supported.

1-byte to 8-byte single-beat reads or writes to memory within an 8-byte boundary
Burst reads or writes to memory (32 bytes, aligned to double-word)

1-byte to 4-byte single-beat reads or writes to the PCI bus that do not cross a 4-byte
boundary

8-byte single-beat writes to the PCI bus within an 8-byte boundary

e Allaccesses notto memory or PCI with sizes of 1 to 4 bytes within a 4-byte boundary
e ROM reads support the same sizes as memory.

Transfer type and size errors can be controlled by the indexed register set. The mask is at
register COh bit O. If an error is detected, status bits at register C1h bits 1:0 are set to 10.
Register C7h bit4 is cleared to indicate an error on a CPU cycle. The CPU address is saved
in register C8h. The CPU control is saved in register C3h and the CPU number is saved
in register C7h bit 5. Transfer type and size errors are reset by writing a 1 to register C1h
bit O or register C1h bit 1. The indexed register set uses the same mask and error reset bits
for XATS# that it uses for unsupported transfer types.

Transfer type and size errors can also be controlled by the 650-compatible register set. The
mask cannot be controlled by means of this register set. If an error is detected, the status
bit at 8000 0844h bit O is cleared. The address is saved at BFFF EFFOh. This error can be
reset by reading BFFF EFFOh. Note that the 650-compatible register set does not differenti-
ate between XATS# errors and unsupported transfer type errors.

8.2.3.2 CPU Bus XATS# Asserted Error
This error is generated when the CPU asserts the XATS# signal.

The XATS# error can be controlled by the indexed register set. The mask is at register COh
bit 0. If an error is detected, the status bits at register C1h bits 1.0 are set to 01. Register
C7hbit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in regis-
ter C8h. The CPU control is saved in register C3h and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register C1h bit O or register C1h bit 1.

G5220297-00 87

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

The indexed register set uses the same mask and error reset bits for XATS# and for unsup-
ported transfer types.

This error can also be controlled by the 650-compatible register set. The mask cannot be
controlled by means of this register set. If an error is detected, the status bit at 8000 0844h
bit 0 is cleared. The address is saved at BFFF EFFOh. This error can be reset by reading
BFFF EFFOh. The 650-compatible register set does not differentiate between XATS# er-
rors and unsupported transfer type errors.

8.2.3.3 CPU to Memory Writes

During CPU to memory writes, the CPU drives data parity information onto the CPU data
bus. Correct parity is then generated in the 660 and written to DRAM memory along with
the data. The L2 SRAM is updated (when required) with the data and the parity information
that the CPU drove onto the CPU data bus.

During CPU to memory writes, the 660 checks the data parity sourced by the CPU, and
normally reports any detected parity errors via TEA#.

8.2.3.4 CPU to Memory Reads

The MCM is initially configured to check memory data using parity. However, the 660 can
be programmed to execute an error checking and correction (ECC) algorithm on the
memory data, by generating ECC check bits during memory writes, and checking-correct-
ing the data during memory reads. ECC can be implemented using normal parity DRAM.

Note that for each memory read operation, eight bytes of memory are read, and parity on
eight bytes is checked regardless of the transfer size. Therefore, all of memory must be
initialized (at least up to the end of any cache line that can be accessed). For the same rea-
sons, memory must be initialized while ECC memory data error checking is in use.

When the CPU reads from memory, the data and accompanying parity information can
come from either the L2 SRAM or from DRAM memory. If the data is sourced from the L2,
the parity information also comes from the L2.

If the data is sourced by memory, the parity information also comes from memory. The L2
SRAM is updated (when required) using the data and parity from memory.

During CPU to memory reads, the 660 samples the DPE# output of the CPU to determine
parity errors, and reports them back to the CPU via MCP#. The particular memory read data
beat will be terminated normally with TA#.

8.2.35 CPU Data Bus Parity Error

This error is generated when a parity error on the CPU data bus is detected during a transfer
between the CPU and the 660. The full CPU data bus is always checked for parity regard-
less of which bytes lanes actually carry valid data. The parity is odd, which means that an
odd number of bits, including the parity bit, are driven high. The 660 directly checks the par-
ity during CPU write cycles. The 660 detects CPU bus parity errors by sampling the DPE#
signal from the CPU during CPU read cycles.

This error is also generated when an L2 cache data parity error (see section 8.2.3.6) is de-
tected.

CPU_DPAR][O] indicates the parity for CPU_DATA[0:7]. CPU_DPAR[1] indicates the parity
for CPU_DATAJ[8:15] and so on.

8-8 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

This error can be controlled by the indexed register set. The mask is at register C4h bit 2.
If an error is detected, the status bit at register C5h bit 2 is set. Register C7h bit 4 is cleared
to indicate an error on a CPU cycle. The CPU address is saved in register C8h, the CPU
control is saved in register C3h, and the CPU number is saved in register C7h bit 5. This
error can be reset by writing a 1 to register C5h bit 2.

This error cannot be controlled by means of the 650-compatible register set.

8.2.3.6 L2 Cache Parity Error

This error is generated when a parity error is detected during a CPU read from the L2 cache.
The parity is checked by the CPU which drives DPE# to the 660. When this error is de-
tected, the 660 indicates both this error and a CPU bus data parity error.

This error can be controlled by the indexed register set. The mask is at register C4h bit 3.
If an error is detected, the status bit at register C5h bit 3 is set. Register C7h bit 4 is cleared
to indicate error on a CPU cycle. The CPU address is saved in register C8h. The CPU con-
trol is saved in register C3h and the CPU number is saved in register C7h bit 5. This error
can be reset by writing a 1 to register C5h bit 3.

This error can also be controlled by means of a register in the 650-compatible register set.
The mask cannot be controlled by means of this register set. If an error is detected, the sta-
tus bits at 8000 0842h bit 0 and 8000 0843h bit O is cleared. The address is not saved in
a 650-compatible register (register BFFF EFFOh is undefined). This error can be reset by
reading 8000 0843h.

8.2.3.7 CPU Bus Write to Locked Flash

This error is generated when the CPU attempts to write to flash memory when write to flash
ROM has been disabled (locked out). If the flash ROM is directly attached to the 660 (see
configuration strapping), CPU writes to FFFF FFFOh are detected as an error if writing has
been locked out by means of 660 compatible register FFFF FFF1h (see note in Sections
6.1.2 and 6.1.2.2). If the flash is remotely attached then CPU writes to the 4G — 2M to 4G
address space are detected as an error if writing has been locked out by means of register
BBh bit 0.

This error can be controlled by the indexed register set. The mask is at register C4h bit O.
If an error is detected, the status bit at register C5h bit O is set. Register C7h bit 4 is cleared
to indicate error on a CPU cycle. The CPU address is saved in register C8h. The CPU con-
trol is saved in register C3h and the CPU number is saved in register C7h bit 5. This error
can be reset by writing a 1 to register C5h bit O.

This error cannot be controlled by means of the 650-compatible register set.
8.2.4 CPU to PCI Bus Transaction Errors

8.24.1 PCI Bus Data Parity Error While PCI Master

This error is generated when a PCI bus data parity error is detected during a CPU to PCI
transaction. The 660 checks parity during read cycles and samples PCI_PERR# during
write cycles. The bridge asserts PCI_PERR# if a parity error is detected on a read cycle.
The PCI bus uses even parity, which means that an even number of bits including the parity
bit are driven high.

This error can be controlled by the indexed register set. The mask is at register 04h bit 6.
If an error is detected, the status bit at register 06h bit 8 is set. Register C7h bit 4 is cleared

G5220297-00 8-9

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

to indicate an error on a CPU cycle. The CPU address is saved in register C8h. The CPU
control is saved in register C3h and the CPU number is saved in register C7h bit 5. This
error can be reset by writing a 1 to register 06h bit 8.

When this error is detected, the status bit at register 06h bit 15h is set, regardless of the
state of the mask at register 04h bit 6. The status bit at register 06h bit 15 is set by all types
of PCI bus parity errors. This bit is cleared by writing a 1 to register 06h bit 15.

This error cannot be controlled by means of the 650-compatible register set.

Unless masked, the 660 will report this error to the CPU as a PCI bus data parity error while
PCI master, using MCP#.

8.2.4.2 PCI Target Abort Received While PCI Master

This error is generated when a target abort is received on the PCI bus during a cycle which
Is mastered by the 660 for CPU access to the PCI bus. The CPU cycle is terminated with
a TEA#, the Error Address register is held, and the lllegal Transfer Error register is set.

This error can be controlled by the indexed register set. The mask is at register COh bit 7.
If an error is detected, the status bit at register 06h bit 12 is set. Register C7h bit 4 is cleared
to indicate an error on a CPU cycle. The CPU address is saved in register C8h. The CPU
control is saved in register C3h and the CPU number is save in register C7h bit 5. This error
can be reset by writing a 1 to register 06h bit 12.

This error cannot be controlled by means of the 650-compatible register set.

8.2.4.3 PCI Master Abort Detected While PCI Master

This error is generated when a master abort is detected on the PCI bus during a cycle which
is mastered by the 660 for CPU access to the PCI bus. Master aborts occur when no target
claims a PCI memory or I/O cycle—PCIl_DEVSEL# is never asserted.

The 660 master aborts if no agent responds with DEVSEL# within eight clocks after the
start of a CPU to PCI cycle. The cycle is ended with a TEA# response to the CPU, all 1's
data is returned on reads, the lllegal Transfer Error register is set, and the Error Address
register is held.

Note that some operating systems intentionally access unused addresses to determine
what devices are located on the PCI bus. These operating systems do not expect an error
to be generated by these accesses. When using such an operating system it is necessary
to leave this error masked.

This error can be controlled by the indexed register set. The mask is at register C4h bit 4.
If an error is detected, the status bit at register 06h bit 13 is set. Register C7h bit 4 is cleared
to indicate an error on a CPU cycle. The CPU address is saved in register C8h. The CPU
control is saved in register C3h and the CPU number is saved in register C7h bit 5. This
error can be reset by writing a 1 to register 06h bit 13.

This error cannot be controlled by means of the 650-compatible register set.

The 660 also checks for bus hung conditions. If a CPU to PCI cycle does not terminate with-
in approximately 60 usec. after the PCI is owned by the CPU, the cycle is terminated with
TEA#. This is true for all CPU to PCI transaction types except configuration transactions.
This feature may be disabled via a 660 control register.

In the case of configuration cycles that do not receive a DEVSEL# (no device present at
that address), the PCI cycle is master aborted, and TA# (normal response) is returned.

8-10 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

Write data is thrown away and all 1's are returned on read cycles. No error register is set
and no address is captured in the error address register.

8.2.5 PCI to Memory Transaction Errors

8.25.1 PCI to Memory Writes

During PCI to memory writes, the 660 generates the data parity that is written into DRAM
memory. The bridge also checks the parity of the data, and asserts PCl_PERR# if it detects
a data parity error.

8.2.5.2 PCI to Memory Reads

During PCI to memory reads, the 660 checks the parity of the memory data, and then gen-
erates the data parity that is driven onto the PCI bus. If there is a parity error in the data/par-
ity returned to the 660 from the DRAM, the bridge drives PCI_PAR incorrectly to propagate
the parity error (and also reports the error to the CPU via MCP#). The data beat with the
bad parity is not target aborted because doing so would slow all data beats for one PCI clock
(TRDY# is generated before the data is known good). However, if the agent is bursting and
there is another transfer in the burst, the next cycle is stopped with target abort protocol.

During PCI to memory reads, the 660 also samples the PCI_PERR# signal, which other
agents can be programmed to activate when they detect a PCI parity error.

8.2.5.3 Out of Bounds PCI Memory Accesses

If a PCI busmaster runs a cycle to a system memory address above the top of physical
memory, no one will respond, and the initiator master aborts the cycle. The initiating bus-
master must be programmed to notify the system of master aborts as needed. The system
logic does not notify the CPU.

8.25.4 PCI Address Bus Parity Error While PCI Target

This error is generated when a parity error is detected during the address phase of a PCI
access where the 660 is the PCI target of a PCI access to system memory.

This error can be controlled by the indexed register set. The mask is at register 04h bit 6.
This error does not have an explicit status bit to indicate its occurrence. However, the fol-
lowing status bits are set:

e Register 06h bit 14 is set to indicate that PCl_SERR# has been asserted. This bit
is cleared by writing a 1 to register 06h bit 14. (BCR04 b8 must be 1 to enable SERR#
assertion due to PCI bus address parity errors.)

e Register 06h bit 11 is set to indicate signalled target abort if the cycle was target
aborted. This bit is cleared by writing a 1 to register 06h bit 11.

e Register 06h bit 15 is set to indicate a PCI bus parity error regardless of the state
of the mask at register 04h bit 6. Note that this bitis set by all types of PCI bus parity
errors. This bit is cleared by writing a 1 to register 06h bit 15.

Register C7h bit 4 is set to indicate an error on a PCI cycle. The PCI address is saved in
register C8h. The PCI control is saved in register C7h.

This error cannot be controlled by means of the 650-compatible register set.

G5220297-00 8-11

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8.255 PCI Bus Data Parity Error While PCI Target

This error is generated when a PCI bus data parity error is detected during a PCl to memory
write transaction. The PCI bus uses even parity, which means that an even number of bits
including the parity bit are driven high.

This error can be controlled by means of the registers in the indexed register set. The mask
is at register 04h bit 6. This error does not have an explicit status bit to indicate its occur-
rence. However, the following status bits are set:

e Register 06h bit 11 is set to indicate signalled target abort if the cycle was target
aborted. This bit is cleared by writing a 1 to register 06h bit 11.

e Register 06h bit 15 is set to indicate a PCI bus parity error regardless of the state
of the mask at register 04h bit 6. Note that this bitis set by all types of PCI bus parity
errors. This bit is cleared by writing a 1 to register 06h bit 15.

e Register 06h bit 14, which indicates PCI_SERR#, is set if the mask at register COh
bit 6 is disabled (cleared). Note that the mask at register COh bit 6 allows the 660
to signal PCI_SERR# in addition to PCI_PERR# for this error. This bit is cleared by
writing a 1 to register 06h bit 14.

Register C7h bit 4 is set to indicate an error on a PCI cycle. The PCI address is saved in
register C8h. The PCI control is saved in register C7h.

This error cannot be controlled by means of the 650-compatible register set.

During PCI to memory reads, the 660 does not monitor PCI_PERR# to detect data parity
errors. Therefore this error is never generated during PCI to memory reads.

This error is not reported to the CPU.

8.25.6 Errant Masters

Both PCI and ISA masters can access certain planar and ISA bridge registers. For exam-
ple, various control registers such as the 1/0 Map Type register, the BE/LE mode bit, the
Memory Control registers, etc. are accessible. Faulty code in the PCI or ISA masters can
defeat password security, read the NVRAM, and cause the system to crash without recov-
ery. Take care when writing device drivers to prevent these events.

8.2.6 Memory Transaction Errors

8.2.6.1 Memory Select Error

This error is generated if a device addresses the system memory space (CPU addresses
from 0 to 2G and PCI addresses from 2G to 4G) when memory is not present at that ad-
dress. The 660 only claims PCI accesses by asserting PCI_DEVSEL# when the access
IS to an address where memory is present.

The 660 disconnects PCI burst cycles at 1M boundaries. This ensures that a PCI master
cannot begin a transfer at an address where memory is present and then burst (increment-
ing the address) to an address where memory is not present; therefore, the memory select
error is never generated on PCIl accesses to system memory.

The memory select error can be controlled by the indexed register set. The mask is at regis-
ter COh bit 5. If an error is detected, the status bit at register C1h bit 5 is set. Register C7h
bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in register
C8h. The CPU control is saved in register C3h and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register C1h bit 5.

8-12 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

This error cannot be controlled by means of the 650-compatible register set.

8.2.6.2 System Memory Parity Error

When memory is being operated in parity mode, this error is generated if a parity error is
detected during a read from system memory. Memory parity is odd, which means that an
odd number of bits including the parity bit are driven high.

MEM_CHECK]OQ] indicates the parity for MEM_DATA[7:0]. MEM_CHECK]1] indicates the
parity for MEM_DATA[15:8] and so on.

The system memory parity error can be controlled by the indexed register set. The mask
is at register COh bit 2. If an error is detected, the status bit at register C1h bit 2 is set.

If the parity error occurred while the CPU was accessing memory, then register C7h bit 4
is cleared to indicate the error occurred during a CPU cycle. The CPU address is saved
in register C8h. The CPU control is saved in register C3h and the CPU number is saved
in register C7h bit 5.

If the parity error occurred while the PCl was accessing memory, then register C7h bit 4
is set to indicate the error occurred during a PCI cycle. The PCl address is saved in register
C8h. The PCI control is saved in register C7h.

This error can be reset by writing a 1 to register C1h bit 2. Note that register locations listed
above are used to indicate single-bit ECC errors if the memory is being operated in ECC
mode.

This error can also be controlled by means of the register in the 650-compatible register
set. The mask cannot be controlled by means of this register set. If an error is detected,
the status bit at 8000 0840h bit O is cleared. The address is saved at BFFF EFFOh. This
error can be reset by reading BFFF EFFOh.

8.2.6.3 System Memory Single-Bit ECC Error

When memory is being operated in ECC mode, single-bit errors are detected and cor-
rected. Since single-bit errors are corrected, generally no error reporting is necessary. But
when a single-bit error is detected, the single—bit error counter register (register B8h) is in-
cremented and the system memory address is saved in the single-bit ECC error address
register (register CCh). If the count in the single-bit error counter register exceeds the value
in the single-bit error trigger level register (B9h), the 660 generates a single—bit ECC trigger
exceeded error.

The trigger exceeded error can be controlled by the indexed register set. The mask is at
register COh bit 2. If an error is detected, the status bit at register C1h bit 2 is set.

If the error occurs while the CPU is accessing memory, register C7h bit 4 is cleared to indi-
cate the error occurred during a CPU cycle. The CPU address is saved in register C8h. The
CPU control is saved in register C3h and the CPU number is save in register C7h bit 5.

If the error occurs while the PCI is accessing memory, register C7h bit 4 is set to indicate
the error occurred during a PCI cycle. The PCI address is saved in register C8h. The PCI
control is saved in register C7h.

This error can be reset by writing a 1 to register C1h bit 2. Note that register locations listed
above are used to indicate memory parity errors if the memory is being operated in parity
mode.

This error cannot be controlled by means of the 650-compatible register set.

G5220297-00 8-13

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8.2.6.4 System Memory Multi-Bit ECC Error

When memory is being operated in ECC mode, this error is generated if a multi-bit ECC
error (uncorrectable) is detected during a read from system memory.

The multi-bit ECC error can be controlled by the indexed register set. The mask is at regis-
ter COh bit 3. If an error is detected, the status bit at register C1h bit 3 is set.

If the error occurs while the CPU is accessing memory, then register C7h bit 4 is cleared
to indicate the error occurred during a CPU cycle. The CPU bus address is saved in register
C8h. The CPU control is saved in register C3h, and the CPU number is saved in bit 7 of
register C7h.

If the error occurs while the PCl is accessing memory, then register C7h bit 4 is set to indi-
cate the error occurred during a PCI cycle. The PCIl address is saved in register C8h. The
PCI control is saved in register C7h.

This error can be reset by writing a 1 to register C1h bit 3.

This error cannot be controlled by means of the 650-compatible register set.

8.2.7 SERR, I/O Channel Check, and NMI Errors

The PCI bus defines a signal called SERR# which any agent can pulse. This signal is to
report error events within the devices, not bus parity errors. The signal is wired to the ISA
bus bridge on the planar. The ISA bus signal IOCHCK is also wired to the ISA bridge. If ei-
ther of these lines activate, the ISA bridge asserts NMI to the 660 unless the condition is
masked by a register within the ISA bridge. The NMI signal causes the 660 to generate an
interrupt to the CPU, and to assert MCP# to the CPU. The ISA bridge contains status regis-
ters to identify the NMI source. Software may interrogate the ISA bridge and other devices
to determine the source of the error.

8.2.7.1 NMI_REQ Asserted Error
This error is generated when the NMI input is sampled asserted by the 660. External logic
can assert this signal for any type of catastrophic error it detects. The external logic should
also assert this signal if it detects PCI_SERR# asserted. The 660 does not treat NMI_REQ
as an interrupt, but as an error indicator.
NMI is handled somewhat differently from the bus related error sources.

e There are no 660 BCRs associated with NMI_REQ. The external logic that asserted

NMI to the 660 provides mask and status information.

e The NMI_REQ input contains no edge detection logic. The 660 has no memory of
any previous state of NMI_REQ.
¢ In general, the assertion of NMI_REQ has no effect on any other processes in the

660.

e MCP# is generally asserted continuously while NMI_REQ is sampled valid, howev-

er:

e If an error was detected before the NMI_REQ was detected, then the error handling
logic will not sample the NMI_REQ input (and thus will not detect it) until the previous
error is cleared using the appropriate BCRs.

e If the NMI_REQ is deasserted before the previous error is cleared, the
NMI_REQ will be lost.

e If NMI_REQ is still asserted when the previous error is cleared, then the
NMI_REQ will be sampled asserted, and MCP# will begin to be asserted.

8-14 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

e The 660 will not assert MCP# while NMI_REQ is active unless MCP# assertion is en-
abled in BCR(BA) bit 0. As before, if NMI_REQ is active when MCP# assertion is en-
abled, then MCP# will be asserted.

e Unlike with the bus related error sources, when the 660 samples NMI_REQ valid, it
does not disable further error detection. Thus PCl and CPU bus related errors will still
be detected and handled in the normal fashion. However, if the detected bus related
error causes MCP# to be asserted (for 2 CPU clocks) then at the end of the second
CPU clock, MCP# will be and remain deasserted until the current error is cleared us-
ing the appropriate BCRs, even if NMI_REQ is still asserted.

8.2.8 Error Reporting Protocol

In general, when the 660 recognizes an error condition, it sets various status BCRs, saves
address and control information (for bus related errors), disables further error recognition
(until the current error is cleared), and reports the error to either the CPU or PCI bus.

Unless otherwise noted, the 660 takes no further error handling action, but relies on the
CPU/software or PCI agent to take the next step in the error handling procedure. The 660
continues to react appropriately to CPU and PCI bus traffic, the state of the memory control-
ler is unchanged, current and pipelined CPU and PCI transactions are unaffected, and the
behavior and state of the 660 is unaffected.

For example, if a memory parity error is reported to the CPU using MCP#, and the CPU
does not respond to the MCP#, then the 660 will in all ways continue to behave as if the
MCP# had not been asserted. However, various BCRs will contain the error status and ad-
dress information, and further error recognition will be disabled until the CPU resets the
error in the 660 BCRs.

8.2.8.1 Error Reporting With MCP#
The following errors are reported to the CPU using MCP#:

e NMI errors,

e Errors that occur because of a CPU transfer but which are detected too late to be
reported using TEA#, and

e Errors that are not a direct result of the current CPU transfer.

The 660 reports an error with MCP# by asserting MCP# to the CPU bus for 2 CPU clocks.
The 660 does not itself take any other action. All current and pipelined CPU and PCI bus
transactions are unaffected. The state of the memory controller is unaffected. The asser-
tion of MCP# does not cause any change in the behavior or state of the 660.

8.2.8.2 Error Reporting With TEA#

CPU bus related errors that are detected while the CPU is running a cycle that can be termi-
nated immediately are reported using TEA#. Errors reported in this way are a direct result
of the CPU transfer thatis currently in progress. For example, when the 660 detects atrans-
fer size error, it terminates the CPU transfer with TEA# instead of with TA#.

The 660 reports an error with TEA# by asserting TEA# to the CPU in accordance with the
PowerPC bus protocol. The data beat on which TEA# is asserted becomes the final data
beat. The 660 does not itself take any other action. All other current and pipelined CPU and
PCI bus transactions are unaffected. The state of the memory controller is unaffected. The
assertion of TEA# does not cause any other change in the behavior or state of the 660.

G5220297-00 8-15

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8.2.8.3 Error Reporting With PCI_SERR#

The 660 asserts PCI_SERR# for one PCI clock when a non-data-parity error (system error)
is detected and the 660 is a PCl target. As is the case with the other error reporting signals,
the 660 may perform various operations in response to a detected error condition, but it
does not automatically perform further actions just because it asserts PCI_SERR#

The 660 does not monitor PCl_SERR# as driven by other PCIl agents. PCl_SERR# is not
an input to the 660.

8.2.8.4 Error Reporting With PClI_PERR#

The 660 asserts PCI_PERR# for one PCI clock to report PCI bus data parity errors that
occur while the 660 is receiving data; during PCI to memory writes and CPU to PCl reads.
The 660 asserts PCl_PERR# in conformance to the PCI specification.

8.2.9 Error Status Registers

Error status registers in the 660 may be read to determine the types of outstanding errors.
Errors are not accumulated while an error is outstanding; however, there will be one TEA#
or MCP# for each error that occurs. For example, if an illegal transfer error causes a TEA#,
a memory parity error can occur while the CPU is processing the code that handles the
TEA#. The second error can occur before the error status registers are read. If so, then the
second error status is not registered, but the MCP# from the memory parity error is as-
serted.

8.2.10 Error-Related Bridge Control Registers
Information on these registers is contained in the 660 Bridge Manual.

Bridge Control Register Index R/W Bytes
System Control 81C 8000 081C R/W 1
Memory Parity Error Status 8000 0840 R 1
L2 Error Status 8000 0842 R 1
L2 Parity Error Read and Clear 8000 0843 R 1
Unsupported Transfer Type Error 8000 0844 R 1
System Error Address BFFF EFFO R 4
PCI Command Index 04 — 05 R/W 2
PCI Device Status Index 06 — 07 R/W 2
Single-Bit Error Counter Index B8 R/W 1
Single-Bit Error Trigger Level Index B9 R/W 1
Bridge Options 1 Index BA R/W 1
Error Enable 1 Index CO R/W 1
Error Status 1 Index C1 R/W 1
CPU Bus Error Status Index C3 R 1
Error Enable 2 Index C4 R/W 1
Error Status 2 Index C5 R/W 1
PCI Bus Error Status Index C7 R/W 1
CPU/PCI Error Address Index C8 — CB R/W 4
Single-Bit ECC Error Address Indx CC - CF R/W 4
Bridge Chip Set Options 3 Index D4 R/W 1

8-16 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

8.2.11 Special Events Not Reported as Errors

e A PCIto memory cycle at any memory address above that programmed into the top
of memory register.

The 660 ignores this cycle and the initiator master aborts. No data is written into system
memory on writes, and the data returned on reads is indeterminate. The busmaster
must be programmed to respond to a target abort by alerting the host.

e CPU to PCI configuration cycles to which no device responds with a DEVSEL# sig-
nal within 8 clocks (no device at this address)

The data returned on aread cycle is all 1's and write data is discarded. This allows soft-
ware to scan the PCI at all possible configuration addresses, and it is also consistent
with the PCI specification.

e A CPU read of the IACK address having a transfer size other than 1, or having other
than 4—byte alignment.
These conditions return indeterminate data. The ISA bridge requires the byte enables,
CBE#3:0, to be 1110 in order to place the data on the correct byte lane (0). Accesses
other than one byte at the address BFFF FFFOh are undefined.

e A read of the IACK address when no interrupt is pending
A DEFAULT 7 vector is returned in this case. This is the same vector that is returned
on spurious interrupts.

e Parity error in Flash/ROM.
Parity is not stored in the Flash ROM. Therefore the memory parity error signal and the
DPE signal are ignored during ROM reads. The Flash or ROM should include CRC with
software checking to insure integrity.

e Write to Flash with TSIZ other than 4.
This will cause indeterminate data to be written into the Flash at an indeterminate ad-
dress.

e Caching ROM space.
An L1 or CB-L2 cast out will cause indeterminate results.

e Running any cycle to the PCI configuration space with an undefined address.
Some of these could potentially cause damage. See the warning under the PCI configu-
ration cycle section.

e Accessing any ISA device with the wrong data size for that device.
Indeterminate results will occur.

G5220297-00 8-17

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8.3 Resets

The RESET# pin of the 664 must be asserted to initialize the 660 before proper operation
commences. The 663 does not have areset pin. Since the operation of the 663 is controlled
by the 664, the entire 660 bridge will be properly initialized by the proper assertion of
RESET#.

8.3.1 CPU Reset
For information of CPU SRESET# and HRESET#, see the 603e user manual.

8.3.2 660 Reset

The entire 660 is reset to the correctinitial state by the proper assertion of the RESET# input
of the 664 (POWER_GOOD/RESET#). The following rules must be followed to ensure cor-
rect operation:

1. RESET# must be asserted for at least eight CPU consecutive CPU clocks. This is the
minimum RESET# pulse width.

2. Both the CPU and PCI clocks must be running properly during the entire reset interval.

3. Bus activity on the PCI bus must not begin until at least 4 CPU clocks after the deasser-
tion of RESET#.

4. Bus activity on the CPU bus also must not begin until at least 4 CPU clocks after the
deassertion of RESET#.

5. Assertion and deassertion of RESET# can be asynchronous for normal operation, but
if deterministic operation is required, see section 8.3.2.3.

All 660 outputs reach their reset state by the second CPU clock after RESET# is first
sampled active. The rest of the minimum RESET# pulse width is used by the 660 to initialize
internal processes, including setting internal registers and determining the CPU to PCI
clock ratio.

Exceptas noted in section 8.3.2.1, all 660 outputs maintain their reset state until an external
stimulus (CPU bus activity) forces them to change.

8.3.2.1 Reset State of 660 Pins
The following symbols are used in Table 8-3 and Table 8-4:

— means the signal is an input. The signal does not have a required state during
reset.

means that the pin is tristate (hi—Z) during reset,

means the state of the pin during reset is undefined,

means that the pin is driven to a logic 1 state (hi)

means that the pin is driven to a logic 0 state (low)

OFrRr CN

8-18 G5220297-00

PowerP

Preliminary

Section 8 — Exceptions

Table 8-3. 664 Pin Reset State

664 Signal State 664 Signal State 664 Signal State
AACK# pa MEM_BE[3:0] 1 RESET# 0
AOS_RR_MMRS 1 MEM_DATA_OE# 1 ROM_LOAD 0
ARTRY# z MEM_ERR# — ROM_OE# 1
C2P_WRL_OPEN 1 MEM_RD_SMPL 1 ROM_WE# 1
CAS[7:0]# 1 MEM_WRL_OPEN 0 SBE# —
CPU_ADDR[0:31] z MIO_TEST 0 SHD# z
CPU_BUS_CLAIM — MWS_P2MRXS z SRAM_ADS# 0
NMI_REQ — SRAM_ALE 1
CPU_CLK — PCI_AD[31:0] z SRAM_CNT_EN# 1
CPU_DATA_OE# 1 PCI_AD_OE# 1 SRAM_OE# 1
CPU_GNT1# 1 PCI_C/BE[3:0]# z SRAM_WE# 1
CPU_GNT2# 1 PCI_CLK — STOP_CLK_EN# —
CPU_PAR_ERR# - PCI_DEVSEL# z TA# 1
CPU_RDL_OPEN 1 PCI_EXT SEL 1 TAG_CLR# 0
CPU_REQ1# — PCI_FRAME# z TAG_MATCH z
CPU_REQ2# — PCI_GNT# — TAG_VALID 1
CRS_C2PWXS z PCI_IRDY# Z TAG_WE# 1
DBG# 0 PCI_LOCK# — TBST# z
DPE# — PCI_OL_OPEN 1 TEA# 1
DUAL_CTRL_REF 1 PCI_OUT SEL 1 TEST# 1
ECC_LE_SEL 1 PCI_PAR z TS# z
GBL# z PCI_PERR# z TSIZE[0:2] z
IGN_PCI_AD31 — PCI_REQ# 1 TT[0:4] z
INT_CPU# INT_REQ# PCI_SERR# z WE[1:0]# 1
INT_REQ — PCI_STOP# Z XATSH# —
MA[11:0] 1 PCI_TRDY# z
MCP# z RAS[7:0}# 1

Notes: During reset, INT_CPU# is driven to the inverse of INT_REQ. Drive TEST# continuously high and MIO_TEST
continuously low for correct operation.

Table 8-4. 663 Pin Reset State

663 Signal State 663 Signals State 663 Signals State
AOS_RR_MMRS — MEM_BE[0:1] — PCI_AD[31:0] Z
C2P_WRL_OPEN — MEM_BE[2:3] — PCI_AD_OE# —
CPU_CLK — MEM_CHECK]0:7] z PCI_EXT_SEL —
CPU_DATA[00:63] z MEM_DATA[63:0] z PCI_IRDY# —
CPU_DATA_OE# — MEM_DATA_OE# — PCI_OL_OPEN —
CPU_DPAR][0:7] z MEM_ERR# U PCI_OUT_SEL —
CPU_PAR_ERR# U MEM_RD_SMPL — PCI_TRDY# —
CPU_RDL_OPEN — MEM_WRL_OPEN — ROM_LOAD —
CRS_C2PWXS — MIO_TEST 0 SBE# U
DUAL_CTRL_REF — MWS_P2MRXS — TEST# 1
ECC_LE_SEL —

Note: For correct operation, TEST# must always be driven high and MIO_TEST must always be driven low.

G5220297-00 8-19

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8.3.2.2 660 Configuration Strapping

There are two strapping options for 660 system configuration information which is required
before the processor can execute (and which, therefore, cannot be programmed into the
660). Configuration strapping is accomplished by attaching a pullup or pulldown resister
to the specified 664 output pin. During reset, the 664 tri-states these outputs, allowing them
to assume the level to which they are strapped. When RESET# is deasserted, the 664
reads in the value from these pins.

Table 8-5 shows the strapping options and their associated pins. Pullup resistors should
be 10K ohms to 20K ohms. Pull down resistors should be 500 ohms to 2K ohms.

In Table 8-5, 603(e) refers to either a 603 or a 603e.
Table 8-5. Configuration Strapping Options

Function Pull Up/Down Pin

Location of ROM Up = Remote ROM — Down = Direct-Attach ROM CRS_C2PWXS
603(e) in 1:1 or 3:2 Down = 603(e) notin 1:1 or 3:2 mode, or 601 or 604. Up = 603(e) in 1:1 | MWS_P2MRXS
CPU core:bus mode |or 3:2 CPU core:bus mode.

8.3.2.3 660 Deterministic Operation (Lockstep Applications)

If fully deterministic operation of the chipset following RESET# is required, then the
following items must be considered:

e When RESET# is deasserted, some outputs transition to a different but stable state. This results in
requirement #3 in Section 8.3.2, that neither CPU or PCI bus activity is allowed to begin during the first
four CPU clocks after the deassertion of RESET#.

e When RESET# is deasserted, the refresh counter begins (and continues) to run, counting the interval
between refresh cycles to the memory. There are two ways to start the refresh timer deterministically:

Meet the following timing requirements for RESET#, so that the clock cycle upon which RESET# is
deasserted is known:

e Setup > 4.2ns relative to a rising PCI clock edge.
e Hold > Ons relative to a rising PCI clock edge.

Write to the Refresh Timer Divisor Register (index D1-D0) and the Suspend Refresh Timer Register
(index D3-D2) to reset the refresh counters. If this is done before any DRAM accesses occur,
then no bus activity will have been affected by the unknown state of the counters before this
point.

¢ When RESET# is deasserted, the DUAL_CTRL_REF signal begins toggling. The phase of this toggling
never effects any bus operations, and therefore need not be known for deterministic operation of the 660.
However, if it is still desirable to control the phase of DUAL_CTRL_REF, then the following timing
requirements must be met for the deassertion of RESET#:

e Setup > 4.4ns relative to a rising CPU clock edge.
¢ Hold > Ons relative to a rising CPU clock edge.

8.4 Test Modes

8.4.1 CPU Test

The three test pins of the 603e (LLSD_MODE#, L1 TST_CLK#,&L2_TST_CLK#) are only
supported for use during internal factory testing. They are not supported for customer use.
Refer to the RISCWatch documentation for use of the JTAG port for debugging and diag-
nostic purposes.

8.4.2 660 Test

Tie the MIO_TEST input of both the 663 and the 664 low during normal operation. IBM does
not support any use of MIO test mode by external customers.

8-20 G5220297-00

pl‘l.werpc Preliminary Section 8 — Exceptions

MIO test mode is enabled on the 663 (asynchronously) by asserting MIO_TEST to the 663.
MIO test mode is enabled on the 664 (asynchronously) by asserting MIO_TEST to the 664.
IBM uses LSSD test mode to verify the switching levels of the inputs of the 663 and the 664.

The TEST# and MIO_TEST pins of the 663 and 664 are intended for use by the IBM
manufacturing process only. The inclusion of the following information in this section is the
total extent to which IBM supports the use of these pins by external customers.

8421 LSSD Test Mode

Tie the TEST# input of both the 663 and the 664 high during normal operation. Do not allow
these signals to be casually asserted. Caution is advised in the use of LSSD test mode.

LSSD test mode is enabled on the 663 (asynchronously) by asserting TEST# to the 663.
In the same way, LSSD test mode is enabled on the 664 (asynchronously) by asserting
TEST# to the 664. In LSSD test mode, the 663 and 664 pins shown in Table 8-6 are rede-
fined to become LSSD test mode pins. These pins have LSSD functions only while the 663
(or 664) is in LSSD test mode. Otherwise the pins perform normally. IBM uses LSSD test
mode to verify the logical operation of the 663 and the 664.

Table 8-6. LSSD Test Mode Pin Definitions

Test Pin Name 664 Pin | 664 Pin Normal Name 663 Pin | 663 Pin Normal Name
TEST_ACLK# 194 MEM_ERR# 149 ECC_LE_SEL
TEST_BCLK# 129 XATS# 170 DUAL_CTRL_REF
TEST_CCLK# 133 DPE# 163 MEM_BE[2]
SCAN_IN 192 CPU_PAR_ERR# 145 MEM_DATA_OE#
SCAN_OUT 47 ROM_OE# 174 CPU_PAR_ERR#
RI# 56 NMI_REQ 161 MEM_BE[0]

DI# 151 STOP_CLK_EN# 162 MEM_BE[1]

In LSSD test mode, never assert more than one of TEST ACLK#, TEST BCLK#,
TEST_CCLK#, and RESET# at the same time, as this may damage the device by provok-
ing excessive internal current flows.

In LSSD test mode, the DI# pin controls the drivers of the 663 (and the 664). Assertion of
the DI# pin asynchronously causes all of the 663 (or 664) output drivers (push—pull,
tri-state, open—driver, or bi—directional) to be tristated.

In LSSD test mode, the RI# pin controls the receivers of the 663 (and the 664). Assertion
of RI# causes all of the 663 (or 664) inputs to report a certain pattern to the internal logic.
This has no effect on the external operation of the device that can be used by an external
customer.

The 660 must be reset properly after leaving LSSD test mode in order to assure correct
normal mode operation.

No further information on the use of the 660 test pins is expected to be released.

G5220297-00 8-21

.. P
Section 8 — Exceptions Prellmlnary pl‘l.werpﬂ

8-22 G5220297-00

PawerpP Preliminary Section 9 — Setup

Section 9
Set Up and Registers

The following subsections represent activities carried out early in the boot firmware. On the
MCM, allinitialization registers are contained in the 603e nd the 660 bridge controller chips.

9.1 CPU Initialization

The 603 CPU exits the reset state with the L1 cache disabled and bus error checking dis-
abled.

All memory pages 2G to 4G must be marked as non-cacheable.

The Segment Register T bit, bit 0, defaults to 0 which is the normal storage access mode.
It must be left in this state for the hardware to function. Direct store (P10) segments are not
supported.

Set the bit that controls ARTRY# negation, HIDO[7], to O to enable the precharge of
ARTRY#. It may be necessary set HIDO[7] to 1 to disable the precharge of ARTRY# for 100
MHz PPC 603e MCM configurations having a CPU bus agent (such as an added L2) that
drives the ARTRY# line. Software must set this bit before allowing any CPU bus traffic to
which the CPU agent might respond. Note that PCI to memory transactions cause the 660
bridge to broadcast snoop operations on the CPU bus.

HIDO bit 0, Master Checkstop Enable, defaults to 1 which is the enabled state. Leave it in
this state so that checkstops can occur.

MCM errors are reported through the 660 by way of the TEA# and MCP# pins. Because
of this, the bus error checking in the CPU must be disabled by setting HIDO bits 2 and 3 to
zero.

9.2 660 Bridge Initialization
Before DRAM memory operations can begin, the software must:

1. Read the SIMM presence detect and SIMM type registers.

2. Setup and check the memory-related registers in the 660 (see the 660 Bridge User’s
Manual).

3. Program the timerinthe ISA bridge register which controls ISA refresh timing. In SIO
compatible bridges it should be programmed to operate in Mode 2 with an interval
of approximately 15 usec.

4. Make sure 200 usec has elapsed since starting the refresh timer so that sufficient
refresh cycles have occurred to properly start the memory. This will be hidden if

G5220297-00 9-1

. P
Section 9 — Setup Preliminary pl‘l.werpﬁ

approximately 120 Flash accesses occur after the timer is started and before the
memory initialization starts.

5. Initialize all of memory so that all parity bits are properly set. (The CPU may cache
unnecessary data; hence, all of memory must be initialized.) The 660 does not re-
quire reconfiguration when port 4Dh in the ISA bridge is utilized to reset the native
I/O and the ISA slots.

6. Read the L2 cache presence detect bits and set register xx for 512K of synchro-
nous SRAM cache.

9.3 PCI Configuration Scan
The 660 bridge in the MCM enables the software to implement a scan to determine the
complement of PCI devices present. This is because the system returns all ones rather

than an error when no PCI device responds to initialization cycles. The software may read
each possible PCI device ID to determine devices present.

Table 9-1. Configuration Address Assignments

Device IDSEL Line 60X Address* PCI Address
ISA bus bridge (SIO) A/D 11 8080 08XXh 080 08XX
PCI Slot 1 A/D 12 8080 10XXh 080 10XX
PCI Slot 2 A/D 13 8080 20XXh 080 20XX
PCI Slot 3 A/D 14 8080 40XXh 080 40XX

Note: *This address is independent of contiguous 1/0 mode.

Software must use only the addresses specified. Using any addresses that causes more
than one IDSEL to be asserted (high) can cause bus contention, because multiple PCI
agents will be selected.

In systems that contain the Intel SIO chip, it must be configured prior to any other PCI bus
agent. The SIO PCl arbiter is automatically enabled upon power-on reset. During power-on
reset, the SIO drives the A/D(31:0), C/BE#(3:0), and PAR signals on the PCI bus.

9.3.1 Multi-Function Adaptors

The 660 supports multi-function adapters. It passes, unmodified, the address of the load
or store instruction that causes a PCI configuration cycle. The only exception is that the
three low-order bits are unmunged in little endian mode, and the two low-order address bits
are set to zero in either endian mode; therefore, addresses may be selected with non-zero
CPU address bits (21:23)—corresponding to PCI bits (10:8)—to configure multi-function
adaptors. For example, to configure device 3 in slot 1, use address 80C0 03X Xh. To config-
ure device 7 in slot 2, use address 8084 07XXh.

9.3.2 PCI to PCI Bridges
The 660 supports both Type 0 and Type 1 configuration cycles.

9.3.3 Indexed BCR Summary

Table 9-2 contains a summary listing of the indexed BCRs in the 660. Access to these regis-
ters is described in the 660 Bridge User’s Manual. The values shown in the Set To column
are for reference only, and may not apply to a particular application.

Table 9-2. 660 Bridge Indexed BCR Listing

Bridge Control Register Index R/W | Bytes |[SetTo (1)
PCI Vendor ID Index 00 — 01 R 2 1014h
PCI Device ID Index 02 — 03 R 2 0037h

9-2 G5220297-00

PawerpP Preliminary Section 9 — Setup

Table 9-2. 660 Bridge Indexed BCR Listing (Continued)

Bridge Control Register Index R/W |Bytes | SetTo (1)
PCI Command Index 04 — 05 RW |2 —

PCI Device Status Index 06 — 07 R/W |2 —
Revision ID Index 08 R 1 02h

PCI Standard Programming Interface Index 09 R 1 0

PCI Subclass Code Index OA R 1 0

PCI Class Code Index 0B R 1 06h

PCI Cache Line Size Index 0C R 1 0

PCI Latency Timer Index OD R 1 0

PCI Header Type Index OE R 1 0

PCI Built-in Self-Test (BIST) Control Index OF R 1 0

PCI Interrupt Line Index 3C R 1 0

PCI Interrupt Pin Index 3D R 1 0

PCI MIN_GNT Index 3E R 1 0

PCI MAX_LAT Index 3F R 1 0

PCI Bus Number Index 40 R 1 0

PCI Subordinate Bus Number Index 41 R 1 0

PCI Disconnect Counter Index 42 R/W |1 0

PCI Special Cycle Address BCR Index 44 —-45 R 2 0
Memory Bank O Starting Address Index 80 R/W |1 Memory
Memory Bank 1 Starting Address Index 81 R/W |1 Memory
Memory Bank 2 Starting Address Index 82 R/W |1 Memory
Memory Bank 3 Starting Address Index 83 R/W |1 Memory
Memory Bank 4 Starting Address Index 84 R/W |1 Memory
Memory Bank 5 Starting Address Index 85 R/W |1 Memory
Memory Bank 6 Starting Address Index 86 R/W |1 Memory
Memory Bank 7 Starting Address Index 87 R/W |1 Memory
Memory Bank 0 Ext Starting Address Index 88 R/W |1 Memory
Memory Bank 1 Ext Starting Address Index 89 R/W |1 Memory
Memory Bank 2 Ext Starting Address Index 8A R/W |1 Memory
Memory Bank 3 Ext Starting Address Index 8B RW |1 Memory
Memory Bank 4 Ext Starting Address Index 8C RW |1 Memory
Memory Bank 5 Ext Starting Address Index 8D RW |1 Memory
Memory Bank 6 Ext Starting Address Index 8E RW |1 Memory
Memory Bank 7 Ext Starting Address Index 8F RW |1 Memory
Memory Bank 0 Ending Address Index 90 RW |1 Memory
Memory Bank 1 Ending Address Index 91 R/W |1 Memory
Memory Bank 2 Ending Address Index 92 R/W |1 Memory
Memory Bank 3 Ending Address Index 93 R/W |1 Memory
Memory Bank 4 Ending Address Index 94 R/W |1 Memory
Memory Bank 5 Ending Address Index 95 R/W |1 Memory
Memory Bank 6 Ending Address Index 96 R/W |1 Memory
Memory Bank 7 Ending Address Index 97 R/W |1 Memory

G5220297-00 9-3

Preliminary

PowerP

Section 9 — Setup

Table 9-2. 660 Bridge Indexed BCR Listing (Continued)

Bridge Control Register Index R/W |Bytes | SetTo (1)
Memory Bank 0 Ext Ending Address Index 98 RW |1 Memory
Memory Bank 1 Ext Ending Address Index 99 RW |1 Memory
Memory Bank 2 Ext Ending Address Index 9A RW |1 Memory
Memory Bank 3 Ext Ending Address Index 9B RW |1 Memory
Memory Bank 4 Ext Ending Address Index 9C RW |1 Memory
Memory Bank 5 Ext Ending Address Index 9D RW |1 Memory
Memory Bank 6 Ext Ending Address Index 9E RW |1 Memory
Memory Bank 7 Ext Ending Address Index 9F RW |1 Memory
Memory Bank Enable Index AO R/W |1 Memory
Memory Timing 1 Index Al R/W |1 0001 0010
Memory Timing 2 Index A2 R/W |1 1000 1010
Memory Bank 0 & 1 Addressing Mode Index A4 R/W |1 Mode 2
Memory Bank 2 & 3 Addressing Mode Index A5 R/W |1 —
Memory Bank 4 & 5 Addressing Mode Index A6 R/W |1 —
Memory Bank 6 & 7 Addressing Mode Index A7 R/W |1 —
Cache Status Index B1 R/W |1 —
Refresh Cycle Definition Index B4 R 1 —
Refresh Timer B5 (Not used — see Indexed BCR DO0) Index B5 R 1 —

RAS Watchdog Timer Index B6 R/W |1 53h

PCI Bus Timer (Not used) Index B7 R 1 0
Single-Bit Error Counter Index B8 R/W |1 0
Single-Bit Error Trigger Level Index B9 R/W |1 0
Bridge Options 1 Index BA R/W |1 07h
Bridge Options 2 Index BB R/W |1 5Fh
Error Enable 1 Index CO RW |1 EDh
Error Status 1 Index C1 RW |1 0

Error Simulation 1 Index C2 RW |1 0

CPU Bus Error Status Index C3 R 1 14h
Error Enable 2 Index C4 RW |1 04h
Error Status 2 Index C5 RW |1 04h
Error Simulation 2 Index C6 RW |1 0

PCI Bus Error Status Index C7 RW |1 OFh
CPU/PCI Error Address Index C8-CB R/W |4 —
Single-Bit ECC Error Address Index CC-CF |R/W |4 —
Refresh Timer Divisor IndexDO-D1 |R/W |2 0180h
Suspend Refresh Timer IndexD2-D3 |R/W |2 01F8h
Bridge Chip Set Options 3 Index D4 R/W |1 88h

Notes:

1. Inthis column, along dash — means that the initialization firmware does not write to this register. The register
is either not used, not written to, or the value of it depends on changing circumstances.
If the word Memory appears, please refer to the System Memory section of the 660 User’s Manual.

2. The initialization firmware sets the Memory registers depending on the information reported by the DRAM

presence detect registers.

G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

Section 10
System Firmware

10.1 Introduction
The firmware on the 100 MHz PPC 603e MCM planar handles three major functions:

e Test the system in preparation for execution,
e Load and execute an executable image from a bootable device, and
e Allow user configuration of the system.

Section 10.2 briefly discusses the power on system test function.

Section 10.3 details a structure for boot records which can be loaded by the system firm-
ware.

Section 10.4 describes the system configuration utility.

This information is included for reference only. Some of the information in this section con-
cerns the example planar rather than the MCM.

To obtain a copy of the commented source code of the firmware on diskette, contact
your IBM representative. This material is available free of charge with a signed li-
cense agreement.

10.2 Power On System Test

The Power On System Test (POST) code tests those subsystems of the reference board
which are required for configuration and boot to ensure minimum operability. Tests also as-
sure validity of the firmware image and of the stored system configuration.

10.2.1 Hardware Requirements

In addition to the reference board, the firmware requires the following peripherals to be
installed as adapter cards:

e Serial Port 1 Address: 0x3F8 (COM1:) Interrupt: IRQ 4

e Serial Port 2 Address: 0x2F8 (COM2:) Interrupt: IRQ 3

e Floppy Controller Address: 0x3FO0 (Primary Floppy) Mode: PC/AT or
PS/2

e IDE Controller Address: 0x1FO0 (Primary IDE)

10.3 Boot Record Format

The firmware will attempt to boot an executable image from devices specified by the user.
See Section 10.4 for details on specifying boot devices and order.

G5220297-00 10-1

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

The PowerPC Reference Platform Specification details a structure for boot records which
can be loaded by the system firmware. This specification is described in the following sec-
tions.

10.3.1 Boot Record

The format of the boot record is an extension of the PC environment. The boot record is
composed of a PC compatibility block and a partition table. To support media interchange,
the PC compatibility block may contain an x86-type program. The entries in the partition
table identify the PowerPC Reference Platform boot partition and its location in the media.

The layout of the boot record must be designed as shown in Figure 10-1. The first 446 bytes
of the boot record contain a PC compatibility block, the next four 16-byte entries make up
a partition table totalling 64 bytes, and the last 2 bytes contain a signature.

0 0
PC Compatibility
Block
Ox1BE 446
Partition Entry 1
0x1CE 462
Partition Entry 2
Ox1DE 478
Partition Entry 3
Ox1EE 494
Partition Entry 4
Ox1FE 510
0x55 OxAA

Figure 10-1. Boot Record

10.3.1.1 PC Partition Table Entry

To support media interchange with the PC, the PowerPC Reference Platform defines the
format of the partition table entry based on that for the PC. This section describes the format
of the PC patrtition table entry, which is shown in Figure 10-2.

0
Partition Begin 4 Boot Ind Head Sector Cyl
Partition End 8 Sys Ind Head Sector Cyl
Beginning Sector 12 Low Word (LE) High Word (LE)
Number of Sectors Low Word (LE) High Word (LE)
LE = Little-Endian

Figure 10-2. Partition Table Entry

10-2 G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

e Partition Begin The beginning address of the partition in head, sector, cylinder
notation.

e Partition End The end address of the partition in cylinder, head, sector nota-
tion.

e Beginning Sector The number of sectors preceding the partition on the disk. That

is, the zero-based relative block address of the first sector of
the partition.

Number of Sectors The number of sectors allocated to the partition.

The subfields of a partition table entry are defined as follows:

e Boot Ind Boot Indicator. This byte indicates if the partition is active. If the
byte contains 0x00, then the partition is not active and will not
be considered as bootable. If the byte contains 0x80, then the
partition is considered active.

e Head An eight-bit value, zero-based.

e Sector A six-bit value, one-based. The low-order six bits are the sector
value. The high-order two bits are the high-order bits of the
10-bit cylinder value.

e Cyl Cylinder. The low-order eight-bit component of the 10-bit cylin-
der value (zero-based). The high-order two bits of the cylinder
value are found in the sector field.

e SysInd System Indicator. This byte defines the type of the partition.
There are numerous patrtition types defined. For example, the
following list shows several:

0x00 Available patrtition

0x01 DOS, 12-bit FAT

0x04 DOS, 16-bit FAT

0x05 DOS extended partition

0x41 PowerPC Reference Platform partition.

10.3.1.2 Extended DOS Partition

The extended DOS partition is used to allow more than four partitions in a device. The boot
record in the extended DOS partition has a partition table with two entries, but does not con-
tain the code section. The first entry describes the location, size and type of the partition.
The second entry points to the next partition in the chained list of partitions. The last parti-
tion in the list is indicated with a system indicator value of zero in the second entry of its
partition table.

Because of the DOS format limitations for a device partition, a partition which starts at a
location beyond the first 1 gigabyte is located by using an enhanced format shown in
Figure 10-3.

G5220297-00 10-3

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

0
Partition Begin Boot Ind -1 -1 -1
4
Partition End Sys Ind -1 -1 -1
8
Beginning Sector 32-hit start RBA (zero—based) (LE)
12
Number of Sectors 32-bit RBA count (one—based) (LE)
: ' LE = Little-Endian
—1 = All ones in the field.
RBA = Relative Block Address in units of 512 bytes.

Figure 10-3. Partition Table Entry Format for an Extended Partition

10.3.1.3 PowerPC Reference Platform Partition Table Entry

The Power PC Reference Platform partition table entry (see Figure 10-4) is identified by
the Ox41 value in the system indicator field. All other fields are ignored by the firmware ex-
cept for the Beginning Sector and Number of Sectors fields. The CV (Compatible Value —
not shown) fields must contain PC-compatible values (i.e. acceptable to DOS) to avoid con-
fusing PC software. The CV fields, however, are ignored by the firmware.

Partition Begin 0 Boot Ind Head Sector Cyl
Partition End ‘ Sys Ind Head Sector Cyl
Beginning Sector ® 32-bit start RBA (zero—based) (LE)

Number of Sectors 2 32-bit RBA count (one-based) (LE)

RBA = Relative Block Address in units of 512 bytes. LE = Little-Endian

Figure 10-4. Partition Table Entry for PowerPC Reference Platform

The 32-bit start RBA is zero-based. The 32-bit count RBA is one-based and indicates the
number of 512-byte blocks. The count is always specified in 512-byte blocks even if the
physical sectoring of the target devices is not in 512-byte sectors.

10.3.2 Loading the Load Image

This section describes the layout of the PowerPC 0x41 type partition and the process of
loading the load image.

10-4 G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

I 0
PC Compatibility
Block
512
Entry Point Offset (LE)
516
Load Image Length (LE)
Load Image __|
Flag Field 520
0S_ID 221
522
Partition Name
554
Reservedl
1024
OS-Specific Field
(Optional)
Code Section of the
Load Image
Reserved2
RBA Count * 512

Figure 10-5. PowerPC Reference Platform Partition

The layout for the 0x41 type partition is shown in Figure 10-5. The PC compatibility block
in the boot partition may contain an x86-type program. When executed on an x86 machine,
this program displays a message indicating that this partition is not applicable to the current
system environment.

The second relative block in the boot partition contains the entry point offset, load image
length, flag field, operating system ID field, ASCII partition name field, and the reservedl
area. The 32-bit entry point offset (little-endian) is the offset (into the image) of the entry
point of the PowerPC Reference Platform boot program. The entry point offset is used to
allocate the Reservedl space. The reservedl area from offset 554 to Entry Point— 1 is re-
served for implementation specific data and future expansion.

G5220297-00 10-5

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

The 32-bitload image length (little-endian) is the length in bytes of the load image. The load
image length specifies the size of the data physically copied into the system RAM by the
firmware.

The flag field is 8 bits wide. The MSb in the field is allocated for the Open Firmware flag.
If this bit is set to 1, the loader requires Open Firmware services to continue loading the
operating system.

The second MSbh is the endian mode bit. If the mode bit is 0, the code in the section is in
big-endian mode. Otherwise, the codes is in little-endian mode. The implication of the en-
dian mode bit is different depending on the Open Firmware flag. If the Open Firmware flag
is set to 1, the mode bit indicates the endian mode of the code section pointed to by the
load image offset, and the firmware has to establish the hardware endian mode according
to this bit. Otherwise, this bit is just an informative field for firmware.

The OS_ID field and partition name field are used to identify the operating system located
in the partition. The OS_ID field has the numeric identification value of the operating system
located in the partition. The 32 byes of partition name field must have the ASCII notation
of the partition name. The name and OS_ID can be used to provide to a user the identifica-
tion of the boot partition during the manual boot process.

Once the boot partition is identified by the PowerPC Reference Platform boot partition table
entry, the firmware:

¢ Reads into memory the second 512-byte block of the boot partition

e Determines the load image length for reading in the boot image up to but not includ-
ing the reserved?2 space

¢ Allocates a buffer in system RAM for the load image transfer (no fixed location)

e Transfers the load image into system RAM from the boot device (the reserved2
space is not loaded).

The load image must be fully relocatable, as it may be placed anywhere in memory by the
system firmware. Once loaded, the load image may relocate itself anywhere within system
RAM.

10.4 System Configuration

This section describes the utilities in the system firmware which allow the system to be cus-
tomized. These utilities allow viewing of the system configuration, as well as the ability to
change I/0O device configurations, console selection, boot devices, and the date and time.
These functions are described in the following sections.

10.4.1 System Console

The system console can be either a screen-oriented video display or a line-oriented serial
terminal. The example screens shown in this section show the S3 video/keyboard inter-
face. When using a serial terminal, the configuration utilities will prompt for numeric input
for each prompt instead of using the arrow keys. All choices and options are the same as
for the screen-oriented menus.

The configuration of the reference board as shipped is set for S3 video / Keyboard console.
In the case that either the video adapter or the keyboard fails the power-on test, the system

10-6 G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

console will default to serial port 1. The baud rate for the serial console is specified in the
configuration menus. The value as shipped is 9600 baud.

10.4.2 System Initialization

The logo screen, shown in Figure 10-6, is displayed at power-on. The logo screen is active

while the system initializes and tests memory and performs a scan of the SCSI bus to deter-
mine what SCSI devices are installed.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

HHHHHE BHHHRHE B
H# HHHH H# # R B O #EO#
OH#H HH HH # H#HH#E H#H#
HHHHRTE # O# # # HHAHE # 8 HEHRHE #
OH# HHHHH# B #
HE BHH# # H#H #
HiHE HOH# HEHER # OHH B

PowerPC 603/604 Reference Board
Press C during memory test for configuration utilities

Testing 8192K of memory: 8192 KB OK

Figure 10-6. System Initialization Screen

While the logo screen is displayed, pressing the 'C’ key on the console will enter the system
configuration utility. The configuration menu will also be entered if there is no bootable de-

vice present, or if the configuration stored in the system non-volatile RAM is not initialized
or is corrupt.

G5220297-00 10-7

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

10.4.3 Main Menu

Figure 10-7 shows the main menu for the system configuration utility. Selections on the
menu are highlighted by using the up and down arrow keys on the keyboard, and are cho-
sen with the Enter key. Each choice is detailed in the following sections.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

Main Menu

System Configuration Menu
Run a Program
Reprogram Flash Memory

Save and exit
Exit without saving

Press 11 to selectitem
Press Enter to perform action

Figure 10-7. Configuration Utility Main Menu

10-8 G5220297-00

PowerP Preliminary

Section 10 — Firmware

104.3.1 System Configuration Menu

Figure 10-8 shows the System Configuration menu, which has choices to display and

change the default state of the reference board on boot. Each menu item is discussed in
the following sections.

PowerPC 604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

System Configuration Menu

System Information
Configure 1/O Devices
View SCSI Devices
Set Boot Devices

Set Date and Time

Previous Menu

Press 11 to selectitem
Press Enter to perform action

Figure 10-8. System Configuration Menu

G5220297-00 10-9

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

System Information

The system configuration option shows the hardware configuration of the system at power-
up—including processor, installed options, and firmware revision level. A sample screen
is shown in Figure 10-9.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

System Configuration

System Processor PowerPC 604
Installed Memory 8 MB
Second-Level Cache Not Installed
Upgrade Processor Not Installed
Boot Firmware Revision 1.0

Go to Previous Menu

Press 11 to select item
Press Enter to perform action

Figure 10-9. System Information Screen

10-10 G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

Configure I/O Devices

The configure 1/O devices option allows the customization of system I/O ports and the sys-
tem console. The menu is shown in Figure 10-10. Options are highlighted by using the up
and down arrow keys on the keyboard and are changed with the left and right arrow keys.
Options on the menu are discussed below.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

Device Configuration

Select Console Device [S3 Video / Keyboard]
Set Serial Port 1 Speed [9600 Baud]
Set Serial Port 2 Speed [9600 Baud]

Go to Previous Menu

Press 1t | to selectitem
Press ~ - to change item

Figure 10-10. Device Configuration Screen

Any changes made in I/O device configuration are saved when the Save and Exit option
on the main menu is selected. Exiting the system configuration utility in any other manner
will cause device configuration changes to be lost.

Select Console Device
The console selection box allows the selection of an option for the system console

e Serial Port 1 or 2 Console input and output will be transmitted and received
through a serial port on an adapter card. Console input and out-
put will be transmitted and received at the baud rate selected
with Serial Port Speed.

e S3 Video/Keyboard Console output will be displayed on a video monitor connected
to an S3 PCI video adapter; console input will be received from
a keyboard connected to the keyboard connector on the refer-
ence board

G5220297-00 10-11

Section 10 — Firmware

Preliminary

PowerP

Set Serial Port 1 or 2 Speed

The serial port speed selection box sets the speed of each serial port. Baud rates for the
two serial ports are independent. If a serial portis used as the system console, set this value
to match the baud rate of the terminal.

View SCSI Devices

The SCSI devices screen shows the devices found on the SCSI bus during power-on initial-
ization. The string shown is the SCSI device’s response to the SCSI inquiry command. Ac-
cording to the SCSI specification, this data comprises the manufacturer’s ID, device model
number, and device revision level. A sample screen is shown in Figure 10-11.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

SCSI Device 0
SCSI Device 1
SCSI Device 2
SCSI Device 3
SCSI Device 4
SCSI Device 5
SCSI Device 6

Previous Menu

SCSI Devices

None
None
None
None
None
None
IBM MXT-540SL H

Press 1t | to selectitem
Press Enter to perform action

Figure 10-11. SCSI Devices Screen

10-12

G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

Set Boot Devices

The boot devices menu allows the user to select which devices are queried for boot images
and in what order they are selected for boot. Allowable selections are one of the two floppy
disk drives, any of six SCSI drive ID numbers, either of two IDE disk drives, or no device
selected. The default configuration is shown in Figure 10-12. In this configuration, the sys-
tem will attempt to find a boot image on the first floppy disk drive. If this fails, the system
will attempt to boot from the SCSI device programmed to SCSI ID 6. If this fails, the system
will attempt to boot from IDE drive zero (master).

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

Boot Device Selection

Set Boot Device 1 [Floppy 1]
Set Boot Device 2 [SCSIID 6]
Set Boot Device 3 [IDE Drive 0]
Set Boot Device 4 [None]

Go to Previous Menu

Press 1t | to selectitem
Press ~ - to change item

Figure 10-12. Boot Devices Screen

If the system fails to find a valid boot image (as discussed in Section 10.3) on any of the
selected boot devices, or if no boot device is selected, the user will be prompted to enter
the configuration menu to select a valid boot device.

Any changes made in boot device selection is saved when the Save and Exit option on the
main menu is selected. Exiting the system configuration utility in any other manner will
cause boot device changes to be lost.

G5220297-00 10-13

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

Set Date and Time

The set date and time screen allows the date and time stored in the battery-backed real
time clock to be updated. The screen is shown in Figure 10-13. To change the time, the left
and right arrow keys are used to select the digit to modify, and the digit is then typed over
with the number keys. The date or time will be updated when Enter or either the up or down
arrow is pressed. Changing the date or time is immediate, and is not affected by either the
Save and Exit or Exit Without Saving options on the main menu.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

Set Date and Time

Set Date [03/01/94]
Set Time [11:30:00]

Go to Previous Menu

Press 11 to selectitem
Enter data at cursor

Figure 10-13. Set Date and Time Screen

10-14 G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

10.4.3.2 Run a Program

The Run a Program option on the main menu loads and executes a program from a FAT
(DOS) disk or from a CD-ROM in ISO-9660 format. The program is loaded at location
0x00400000 (4 MB) and control is passed with a branch to the first address.

All boot devices specified in the Boot Devices Menu will be searched in order for FAT and
CD-ROM file systems, and the first matching file on a boot device will be loaded.

The Run a Program screen is shown in Figure 10-14. To run a program, enter the file name
in the Specify Program Filename field and select the Run the Program option.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

Run a Program

Specify Program Filename []
Run the Program

Go to Previous Menu

Press 1t | to selectitem
Enter data at cursor

Figure 10-14. Run a Program Screen

G5220297-00 10-15

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

10.4.3.3 Reprogram Flash Memory

The PowerPC 603/604 reference board stores its system firmware in a reprogrammable
flash memory on the system board. The reprogram flash memory option on the main menu
allows the reprogramming of the flash device with a DOS-formatted diskette. This allows
future revisions of the system firmware to be provided on diskette without the need for re-
moval of the device from the board.

If done improperly, reprogramming the flash memory can cause the system to become un-
usable until external means are available to reprogram the device. Use this option with
care.

All boot devices specified in the Boot Devices Menu will be searched in order for FAT and
CD-ROM file systems, and the first matching file on a boot device will be loaded.

The Reprogram the Flash Memory screen is shown in Figure 10-15. To reprogram the
flash, enter the file name in the Specify Image Filename field and select the Reprogram the
Memory option.

PowerPC 603/604 Reference Board System Firmware
(C) Copyright 1994 IBM Corp. All Rights Reserved.

Reprogram Flash Memory

Image Filename []
Reprogram the Memory

Go to Previous Menu

Press 1t | to selectitem
Enter data at cursor

Figure 10-15. Reprogram the Flash Memory Screen

10-16 G5220297-00

pl‘l.werpc Preliminary Section 10 — Firmware

10.4.3.4 Exit Options

The two exit options at the bottom of the main menu leave the system configuration utility.
The two options are:

e Save and Exit Saves any changes made in the Configure 1/0 Devices and Set
Boot Devices screens, and restarts the system.
e EXxit without Saving Proceeds with the boot process as if the configuration utility

had not been entered. Any changes made in Configure 1/0 De-
vices or Set Boot Devices are lost.

10.4.4 Default Configuration Values

When the PowerPC 603/604 reference board is shipped from the factory, it has the follow-
ing default configuration:

e Console Device S3 Video / Keyboard
e Serial Port 1 9600 Baud

e Serial Port 2 9600 Baud

e Boot Devices Device 1 - Floppy 1

Device 2 - SCSI ID 6
Device 3 - IDE Drive O

These default values also take effect whenever the system configuration in system nonvol-
atile RAM becomes corrupted.

G5220297-00 10-17

.. p
Section 10 — Firmware Prellmlnary pl‘l.werpﬂ

10-18 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

Section 11
Endian Mode Considerations

Data represented in memory or media storage is said to be in big endian (BE) order when
the most significant byte is stored at the lowest numbered address, and less significant by-
tes are at successively higher numbered addresses.

Data is stored in little endian (LE) order when it is stored with the order of bytes reversed
from that of BE order. In other words, the most significant byte is stored at the highest num-
bered address. The endian ordering of data never extends past an 8-byte group of storage.

The 100 MHz PPC 603e MCM normally operates with big endian (BE) byte significance,
which is the native mode of the PowerPC 603e CPU. Internally, the CPU always operates
with big endian addresses, data, and instructions, which is ideal for operating systems such
as AIX™, which store data in memory and on media in big endian byte significance. In BE
mode, neither the CPU nor the 660 Bridge perform address or data byte lane manipulations
that are due to the endian mode. Addresses and data pass 'straight through’ the CPU bus
interface and the 660.

The CPU also features a mode of operation designed to efficiently process code and oper-
ating systems such as WindowsNT ™, which store data in memory and on media in LE byte
significance. The MCM also supports this mode of operation.

When the MCM is in little endian mode, data is stored in memory with LE ordering. The 660
has hardware to select the proper bytes in the memory and on the PCI bus (via address
transforms), and to steer the data to the correct CPU data lane (via a data byte lane swap-
per). Also, see the 603e CPU and 660 Bridge User’s Manuals.

Table 11-1 summarizes the operation of the MCM in the two different modes.

Table 11-1. Endian Mode Operations

Mode What the 603e Does What the 660 Does
Big Endian (BE) No munge, no shift No unmunge, no swap
Little Endian (LE) Address Munged & Data Shifted Address Unmunged & Data Swapped

In BE mode, the CPU emits the address unchanged, and does not shift the data. This is
the native mode of the 603e CPU. In BE mode, the 660 passes the address and data
through to the target without any changes (that are due to endian mode).

In LE mode, the CPU transforms (munges) the three least significant address bits, and
shifts the data on the byte lanes to match the munged address. In LE mode, the 660 un-
munges the address and swaps the data on the byte lanes.

G5220297-00 11-1

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

11.1 What the 603e CPU Does

11.1.1 The 603e Address Munge

The 603e CPU assumes that the significance of memory is BE. When it operates in LE
mode, it internally generates the same effective address as the LE code would generate.
Since it assumes that the memory is stored with BE significance, it transforms (munges)
the three low order addresses when it activates the address pins. For example, in the 1-byte
transfer case, address 7 is munged to 0, 6 to 1, 5 to 2, and so on. Table 11-2 shows the
address transform rules for the allowed LE mode transfer sizes.

Table 11-2. 603e LE Mode Address Transform

Transfer Size Address Transform
8 None
4 Physical Address[29:31] XOR 100 => A[29:31]
2 Physical Address[29:31] XOR 110 => A[29:31]
1 Physical Address[29:31] XOR 111 => A[29:31]

11.1.2 The 603e Data Shift

The data transfer occurs on the byte lanes identified by the address pins and transfer size
(TSIZ) pinsin either BE or LE mode. In LE mode, the CPU shifts the data from the byte lanes
pointed to by the unmunged address, over to the byte lanes pointed to by the munged ad-
dress. This shift is linear in that it does not rotate or alter the order of the bytes, which are
now in the proper set of byte lanes. Note that the individual bytes are still in BE order.

11.2 What the 660 Bridge Does

While the MCM is operating properly, data is stored in system memory in the same endian
mode as the mode in which the CPU operates. That is, the byte significance in memory is
BE in BE mode and it is LE in LE mode. Because of this, hardware is included in the 660
that (in LE mode) will swap the data bytes to the correct byte lanes, and that will transform
(or un-munge) the address coming from the 603e.

11.2.1 The 660 Bridge Address Unmunge

In LE mode, the 660 unmunges address lines A[29:31]. This unmunge merely applies the
same XOR transformation to the three low-order address lines as did the CPU. This effec-
tively reverses the effect of the munge that occurs within the CPU. For example, if the CPU
executes a one-byte load coded to access byte 0 of memory in LE mode, it will munge its
internal address and emit address A[29:31] = 7h. The 660 will then unmunge the 7 on
A[29:31] back to 0, and use this address to access memory.

11.2.2 The 660 Bridge Data Swapper

The 660 contains a byte swapper. As shown in Figure 11-1, the byte swapper is placed be-
tween the CPU data bus and the memory and PCI data busses. This allows the byte lanes
to be swapped between the CPU bus and the PCI bus, or between the CPU bus and
memory, but not between the PCI bus and memory. Thus, when a PCl busmaster accesses
memory, the MCM does not change either the address or the data location to adjust for en-
dian mode. In either mode, data is stored or fetched from memory at the address presented
on the PCI bus.

11-2 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

The 660 cannot tell the endian mode of the CPU directly, and so cannot automatically
change endian mode to match the CPU. There is a control bit located in ISA 1/O space (port
0092) that the CPU can write to in order to set the endian mode of the motherboard.

Memory

Byte Swap

Address and
CPU Unmunge
Data

1=D0,0=PASS

PCI Bus
LE Mode Bit
Port 92

Figure 11-1. Endian Mode Block Diagram

In BE mode, the 660 byte swapper is off, and data passes through it with no changes. In
LE mode, the byte swapper is on, and the order of the byte lanes is rotated (swapped) about
the center. As shown in Table 11-3, the data on CPU byte lane 0 is steered to memory byte
lane 7, the data on CPU byte lane 1 is steered to memory byte lane 6, and so on. During
reads, the data flows in the opposite direction over the same paths.

Table 11-3. 660 Bridge Endian Mode Byte Lane Steering

CPU Byte Lane BE Mode Connection LE Mode Connection
CPU byte lane 0 (MSB) Memory byte lane 0, PClI lane 0 Memory byte lane 7, PCI lane 7*
CPU byte lane 1 Memory byte lane 1, PCl lane 1 Memory Byte lane 6, PCI lane 6*
CPU byte lane 2 Memory byte lane 2, PCl lane 2 Memory byte lane 5, PCI lane 5*
CPU byte lane 3 Memory byte lane 3, PCl lane 3 Memory byte lane 4, PCI lane 4*
CPU byte lane 4 Memory byte lane 4, PCI lane 4* Memory byte lane 3, PCl lane 3
CPU byte lane 5 Memory byte lane 5, PCI lane 5* Memory byte lane 2, PCI lane 2
CPU byte lane 6 Memory byte lane 6, PCI lane 6* Memory byte lane 1, PCl lane 1
CPU byte lane 7 (LSB) Memory byte lane 7, PCI lane 7* Memory byte lane 0, PCI lane 0

Note: * In this table, PCI byte lanes 3:0 refer to the data bytes associated with PCI_C/BE[3:0]# when the third least
significant bit of the target PCl address (PCI_AD[29]) is 0, as coded in the instruction. PCI byte lanes [7:4] refer to the
data bytes associated with PCI_C/BE[3:0]# when PCI_AD[29] is a 1.

G5220297-00 11-3

Section 11 — Endian

Preliminary

PowerP

11.3 Bit Ordering Within Bytes

The LE convention of numbering bits is followed for the memory and PCI busses, and the
CPU busses are labeled in BE nomenclature. The various busses are connected to the 660
with their (traditional) native significance maintained (BE for CPU, and LE for PCI and
memory), so that MSb connects to MSb and so on. The bit paths between the CPU and
memory data busses are shown in Table 11-4 for both BE and LE mode operation.

Table 11-4. 660 Bit Transfer

CPU_DATA[] BE Mode LE Mode CPU_DATA[] BE Mode LE Mode
MEM_DATA[] | MEM_DATA[] MEM_DATA[] | MEM_DATA[]
0 7 63 32 39 31
1 6 62 33 38 30
2 5 61 34 37 29
3 4 60 35 36 28
4 3 59 36 35 27
5 2 58 37 34 26
6 1 57 38 33 25
7 0 56 39 32 24
8 15 55 40 47 23
9 14 54 41 46 22
10 13 53 42 45 21
11 12 52 43 a4 20
12 11 51 a4 43 19
13 10 50 45 42 18
14 9 49 46 41 17
15 8 48 47 40 16
16 23 47 48 55 15
17 22 46 49 54 14
18 21 45 50 53 13
19 20 a4 51 52 12
20 19 43 52 51 11
21 18 42 53 50 10
22 17 41 54 49 9
23 16 40 55 48 8
24 31 39 56 63 7
25 30 38 57 62 6
26 29 37 58 61 5
27 28 36 59 60 4
28 27 35 60 59 3
29 26 34 61 58 2
30 25 33 62 57 1
31 24 32 63 56 0
== 11-4 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

11.4 Byte Swap Instructions

The Power PC architecture defines both word and halfword load/store instructions that
have byte swapping capability. Programmers will find these instructions valuable for deal-
ing with the BE nature of this architecture. For example, if a 32-bit configuration register
of a typical LE PCI device is read in BE mode, the bytes will appear out of order unless the
"load word with byte swap” instruction is used. The byte swap instructions are:

Ihbrx (load half word byte-reverse indexed)
lwbrx (load word byte-reverse indexed)
sthbrx (store half word byte-reverse indexed)
stwbrx (store word byte-reverse indexed)

The byte-reverse instructions should be used in BE mode to access LE devices and in LE
mode to access BE devices.

11.5 603e CPU Alignment Exceptions In LE Mode

The CPU does not support a number of instructions and data alignments in the LE mode
that it supports in BE mode. When it encounters an unsupportable situation, it takes an in-
ternal alignment exception (machine check) and does not produce an external bus cycle.
See the latest 603e CPU documentation for details. Examples include:

LMW instruction

STMW instruction

Move assist instructions (LSWI, LSWX, STSWI, STWX)

Unaligned loads and stores.

G5220297-00 11-5

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

11.6 Single-Byte Transfers
Figure 11-2 is an example of byte write data a at address xxxx xxx0.

Big Endian Little Endian
603e Swap Off Memory 603e Swap On Memory
LSB LSB
7 7 7 7 LSB 7—a—7 7 7 MSB
6 6 6 6 6 6 6 6
5 5 5 5 5 5 5 5
data 4 4 4 4 data 4 4 4 4
lane 3 3 3 3 lane 3 3 3 3
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
OF—a— O++++++0 0a MSB 0 0 0Oa LSB
MSB MSB
253‘? addr 3low addr
0 addr 7
bits Unmunge 0 e Unmunge 0
T size Off OR T size On OR
1 1
PCI PCI
A/D 2 3210 A/D 2 3210
[0 (N
0 a 0 a

Figure 11-2. Example at Address xxxx xxx0

11-6 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

Big Endian Little Endian
603e Swap Off Memory 603e Swap On Memory
LSB LSB
7 7 7—7 LsB 7 7 7 MSB
6 6 6 6 6 6 6 6
5 5 5 5 5—a—5 5 5
data g4 4 4 4 data 4 4 4 4
lane 3 3 3 3 lane 3 3 3 3
2—a— 2+ +++++2 2a 2 2 2 2a
1 1 1 1 1 1 1 1
0 0 0 0 MSB 0 0 0 0 LsB
MSB MSB
3 low addr 3 low addr
addr 2 |unmunge 2 addr 5 |Unmunge 2
bits bits
T size 1 ot OR T size 1 On OR
PCI PCI
wp2 | 3310 woz | 41
11 (N
0 a 0 a

Figure 11-3. Example at Address xXxxx xXxx2
Figure 11-3 is an example of byte write data a at address Xxxx Xxx2.

For single byte accesses to memory in BE mode, Table 11-5 applies.

Table 11-5. Memory in BE Mode

603e 603e BYTE BYTE MEMBYTE CAS
A313029 add LANE LANE* LANE ACTIVE
000 O OMSB O O 0
100 1 1 1 1 1
010 2 2 2 2 2
110 3 3 3 3 3
001 4 4 4 4 4
101 5 5 5 5 5
011 6 6 6 6 6
111 7 7LSB7 7 7
NOT MUNGED SWAP NOT UNMUNGED
OFF

Note: * At the CPU side.

G5220297-00 11-7

. P
Section 11 — Endian Prellmlnary pl‘l.werpﬁ

For single byte accesses to memory in LE mode, Table 11-6 applies.

Table 11-6. Memory in LE Mode

663
603e 603e BYTE BYTE MEMBYTE CAS
A31 3029 add LANE LANE* LANE ACTIVE

000 0 0MSB O 7 7

100 1 1 1 6 6

010 2 2 2 5 5

110 3 3 3 4 4

001 4 4 4 3 3

101 5 5 5 2 2

011 6 6 6 1 1

111 7 7LSB7 0 0

MUNGED SWAP UNMUNGED

ON

Note: * At the CPU side.

For single byte accesses to PCI in BE mode, Table 11-7 applies.

Table 11-7. PCI in BE Mode

603e 603e BYTEBYTE PCIBYTE A/D* BE#
A313029 add LANE LANE LANE 210 3210

(O=active byte enable)

000 0O OMSBO O 000 1110

100 1 1 1 1 001 1101

010 2 2 2 2 010 1011

110 3 3 3 3 011 0111

001 4 4 4 0 100 1110

101 5 5 5 1 101 1101

011 6 6 6 2 110 1011

111 7 7LSB7 3 111 0111

NOT MUNGED SWAP NOT UNMUNGED

OFF

Note: ** AD[0:1] set to 00 for all PCI transactions except I/O cycles.

11-8 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

For single byte accesses to PCI in LE mode, Table 11-8 applies.

Table 11-8. PCIl in LE Mode

663*
603e 603e BYTE BYTE PCIBYTE A/D** BE#
A313029 add LANE LANE LANE 210 3210
(O=active byte enable)
000 O 0MSBO 3 111 0111
100 1 1 1 2 110 1011
010 2 2 2 1 101 1101
110 3 3 3 0 100 1110
001 4 4 4 3 011 0111
101 5 5 5 2 010 1011
011 6 6 6 1 001 1101
111 7 7LSB7 0 000 1110
MUNGED SWAP UNMUNGED
ON

Notes:
*At the CPU side.
**AD[0:1] set to 00 for all PCI transactions except I/O cycles.

G5220297-00 11-9

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

11.7 Two-Byte Transfers
Figure 11-4 gives an example of double byte write data ab at address xxxx xxx0.

Big Endian Little Endian
603e Swap Off Memory 603e Swap On Memory
LSB LSB
7 7 7 7 LSB 7—b—7 7 7 MSB
6 6 6 6 er—a 6 6 6
5 5 5——5 5 5 55
data 4 4 4 4 data 4 4 4 4
lane 3 3 3 3 lane 3 3 3 3
2 2 2 2 2 2 2 2
U—b—{1++++++1 1b 1 1 1 1a
OF—a— O+ +++++0 0a MSB 0 0 Ob LSB
MSB MSB
3 low addr 3 low addr
addr 0 [unmunge 01 addr 6 |unmunge 0,1
bits bits
Tsize [off OR T size 5 On OR
PCI PCI
oo | 131g wz | H
11 [0
0 ba 0 ab

Figure 11-4. Double Byte Write Data ab at Address xxxx xxx0

Table 11-9 and Table 11-10 illustrate all cases that can occur. The columns of Table 11-9
have these meanings:

e The first column indicates target address (e.g. the address of the byte coded into
a store half-word instruction).
e The next two columns show the state of the address pins for BE mode.

e The next two columns show the state of the address pins for the same target data
when the machine is in LE mode.

e The remaining columns show the CASs and the PCI byte enables associated with
the target data.

e The notes indicate which combinations either do not occur at the pins because of
internal exceptions, or are not supported externally.

11-10 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

For 2-byte transfers, Table 11-9 holds:

Table 11-9. Two Byte Transfer Information

PROG BE MODE LE MODE BEORLE BEORLE BEORLE
TARG 603e BE (xorw110) Target CAS#0:7 PCICBE#
ADDR add a29:31 Adda29:31 bytes 0O 7 AD23210

0 000 6 110 0-1 0011 1111 O 1100

001 7E111 1-2 E 10011111 OE 1001

010 4 100 2-3 11001111 0 0011

011 5E101 3-4 E 11100111 1EPPPP

100 2 010 4-5 11110011 1 1100

101 3EO11 5-6 E 11111001 1E 1001

110 0 000 6-7 11111100 1 0011

~N|o|a|ls|w|v] -
Zlola|s|lw|[Nv|R]|o

NNN 1EO001 NNN E NNNN NNNN N E NNNN

Notes:

N= not emitted by 60X because it crosses 8 bytes (transforms to 2 singles in BE, machine CH in LE)
P= not allowed on PCI (crosses 4 bytes)

E= causes exception (does not come out on 603e bus) in LE mode

Table 11-10 contains the same information as found in Table 11-9, butitis arranged to show
the CAS and PCI byte enables that activate as a function of the address presented at the

pins of the 603e and as a function of BE/LE mode.

Table 11-10. Rearranged Two-Byte Transfer Information

2 BYTE XFERS BE BE LE LE
60X ADDRESS PINS CAS#0:7 PCICBE# CAS#0:7 PCI CBE#
0 7 A2 3210 0 7 AD2 3210
0 000 0011 1111 O 1100 11111100 1 0011
1 001 1001 1111 O 1001 E NNNNNNNN N E NNNN
2 010 1100 1111 O 0011 11110011 1 1100
3 011 1110 0111 0O PPPP E 11111001 1 E 1001
4 100 1111 0011 1 1100 11001111 O 0011
5 101 1111 1001 1 1001 E11100111E O E PPPP
6 110 1111 1100 1 0011 00111111 O 1100
7 111 NNNN NNNN N NNNN E 1001 1111E O E 1001

Notes:

N= not emitted by 60X because it crosses 8 bytes (transforms to 2 singles in BE, machine CH in LE)
P= not allowed on PCI (crosses 4 bytes)

E= causes exception (does not come out on 603e bus) in LE mode

G5220297-00 11-11

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

11.8 Four-Byte Transfers

Figure 11-5 gives an example of Word (4-BYTE) Write of 0a0b0cOdh AT ADDRESS Xxxx
XXX4.

Big Endian Little Endian
603e Swap Off Memory 603e Swap On Memory
LSB LSB
70 0d 47 4444 7 7d LSB 7 7 7 7 a MSB
6t OC 16 ++++ 6 6C 6 6 6 6 b
5| Ob {5 ++++ 5 5b 5 5 5 5¢C
data 4| 0a {4 ++++ 4 4 a data 4 4 4 4 d
lane 3 3 3 3 lane 3t 0d {3 3 3
2 2 2 2 2l Oc |2 2 2
1 1 1 1 14 Ob 41 1 1
0 0 0 0 MSB ol 0a {0 0 0 LSB
3low |MSB addr 3low |MSB addr
addr 4 |Unmunge 4-7 addr 0 |unmunge 4-7
bits bits
T size 1 off OR T size 2 On OR
PCI PCI
HER [11]
A/D 2 3210 AD 2 3210
data 1 data 1
A/D31 A/D24 A/D31 A/D24
od Oa
0000|1101 0[0cd0j101(0
23 16 23 16
Oc Ob
0|0 @ 0|1 1 O[O 00QOj1011
15 8 15 8
Ob Oc
opgqofro1a 0pqQofr10/0
7 0 7 0
Oa od
opgopqg1io opgofri1o0f1

Figure 11-5. Word (4-Byte) Write of 0a0b0cOdh at Address xxxx xxx4

11-12 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

Table 11-11 and Table 11-12 illustrate the cases that can occur. The columns of Table 11-11
have these meanings:

e Thefirst columnindicates the target address (e.g. the address of the byte coded into
a store word instruction).

e The next two columns show the state of the address pins for BE mode.

e The next two columns show the state of the address pins for the same target data
when the machine is in LE mode.

e The remaining columns show the CASs and the PCI byte enables associated with
the target data.

e The notes indicate which combinations either do not occur at the 603e pins because
of internal exceptions, or are not supported externally.

Table 11-11. Four-Byte Transfer Information
PROG BE MODE LEMODE BEORLE BEORLE BE OR LE
TARG 603e BE (xorw 100) Target CAS#0:7 PCI CBE#
ADDR add a29:31 adda29:31 bytes O 7 AD2 3210
000 4 100 0-3 0000 1111 O 0000
001 5 E101 1-4 E 10000111 OEPPPP
010 6 E110 2-5 E 11000011 OEPPPP
011 7 E111 36 E 11100001 1EPPPP
100 O 000 4-7 11110000 1 0000
NNN 1 E NNN N-N NNNN NNNN 1 E NNNN
NNN 2 ENNN N-N NNNN NNNN 1 E NNNN
NNN 3 ENNN N-N NNNN NNNN 1 E NNNN

N[OOI~ WIN][FRL]O
N[OOI~ WIN]F]O

Notes:

N= not emitted by 60X because it crosses 8 bytes (transformed into 2 bus cycles)
P= not allowed on PCI (crosses 4 bytes)

E= causes exception (does not come out on 603e bus) in LE mode

G5220297-00 11-13

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

Table 11-12 contains the same information as found in Table 11-11, but it is arranged to
show the CAS and PCI byte enables that activate as a function of the address presented
at the pins of the 603e and as a function of BE/LE mode.

Rearranging Table 11-12 for 4-byte transfers:

Table 11-12. Rearranged Four-Byte Transfer Information
4 BYTE XFERS BE BE LE LE
60X ADDRESS PINS CAS#0:7 PCICBE# CAS#0:7 PCICBE#
0 7 A2 3210 0 7 AD2 3210

0 000 0000 1111 0 0000 11110000 O 0000

1 001 1000 0111 0 PPPP E NNNNNNNN OE NNNN
2 010 11000011 O PPPP E NNNNNNNN OE NNNN
3 011 11100001 0 PPPP E NNNNNNNN ENNNN
4 100 11110000 1 0000 00001111 1 0000

5 101 NNNN NNNN 1 NNNN E 10000111 1EPPPP
6 110 NNNN NNNN 1 NNNN E 11000011 1E PPPP
7 111 NNNN NNNN 1 NNNN E 11100001 1E PPPP

Notes:

N= not emitted by 60X because it crosses 8 bytes (transformed into 2 bus cycles)
P= not allowed on PCI (crosses 4 bytes)

E= causes exception (does not come out on 603e bus) in LE mode

X= not supported in memory controller (crosses 4-byte boundary

11.9 Three byte Transfers

There are no explicit Load/Store three-byte instructions; however, three-byte transfers oc-
cur as a result of unaligned four-byte loads and stores as well as a result of move multiple
and string instructions.

The TSIZ=3 transfers with address pins =0, 1, 2, 3, 4, or 5 may occur in BE. All of the other
TSIZ and address combinations produced by move multiple and string operations are the
same as those produced by aligned or unaligned word and half-word loads and stores.

Since move multiples, strings, and unaligned transfers cause machine checks in LE mode,
they are not of concern in the BE design.

11-14 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

11.10Instruction Fetches and Endian Modes

Most instruction fetching is with cache on. Therefore memory is fetched eight bytes wide.
Figure 11-6 shows the instruction alignment.

Example: 8 byte instruction fetch 11=abcd, 12=efgh at address xxxx xxx0

Big Endian Little Endian
603e Swap Off Memory 603e Swap On Memory
LSB LSB
7—h—7——=7—7h 7—d4—7 7—17a
6—9—6—"6 69 6—C—16 6 6b 12
5—f—5 =5 5f 12 5—b—5 5 5cC
data 4|l e |[4—»y 4e data 4l _a |4 4 4d
lane 3—d—3 -3 3d lane 3—h—3 3—i3¢€
2l—c—2 =2 12¢ 2l—g—|2 2l—2 f
1}—b—1 -1 1p 11 13—f—1 1 19 11
Oo—a 0 »0 Oa o—e 0 Oh
MSB MSB
3 low addr 3 low addr
addr 0 |unmunge 0-7 addr 0 {Unmunge 0-7
bits bits no
T size P Off T size 3 effect

Figure 11-6. Instruction Alignment Example

G5220297-00 11-15

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

Itis possible to fetch instructions with 4 byte aligned transfers when the cache is turned off.
In that case, the 603e does not munge the address in LE mode. The memory controller
does not differentiate between instruction and data fetches, but the unmunger is ineffective
because the memory is always read 8 byte wide, and data is presented on all 8 byte lanes.
If the unmunger were used, the wrong instruction would be read. The net resultis illustrated
in Figure 11-7.

Example: 4 byte instruction fetch, I12=efgh at address xxxx xxx4

Big Endian Little Endian
603e Swap Off Memory 603e Swap Off Memory
LSB LSB
7—h—7——7—7h 7—*x—7 —i7e
6r—9—6 6 69 6—Xx—16 6 6f 12
5(—f—5 5 5f 12 5—x—5 5 59
data g4l _e__{4 4 4e data gl—x—{4 4 4 n
lane 3—x—I,3 3 3x lane 3—h—3 3 3 X
2—X—2 2 2X 2—9 2 2 2 X
1—x—1 1—J1x 11 1—f—1 1—1x 11
OF—X—0——0 0X O—e—0 0 0 X
MSB MSB
3 low addr 3 low addr
addr 4 |unmunge 0-7 addr 0 Unmunge 0-7
bits bits
T size 2 Off T size 2 On

Figure 11-7. Wrong Instruction Read When Unmunger is used

11.11 Changing BE/LE Mode

There are two BE/LE mode controls. One is inside the 603e CPU and the other is aregister
bit on the motherboard. The 603e CPU interior mode is not visible to the motherboard hard-
ware. The BE mode bit referred to in this document is the register bit on the motherboard.
It is a bit in 1/0O space which is memory mapped just like other 1/O registers. It defaults to
BE mode.

The 603e CPU always powers up in the BE mode and begins fetching to fill its cache. Con-
sequently, at least the first of the ROM code must be BE code. It is beyond the scope of
this document to define how the system will know to switch to LE mode; however, great care
must be made during the switch in order to synchronize the internal and external mode bits,
to flush all caches, and to avoid executing extraneous code.

The following process switches the system from BE to LE mode when used in this system:

Disable L1 caching.

Disable L2 caching.

Flush all system caches.

Turn off interrupts immediately after a timer tick so no timer interrupts will occur dur-
ing the next set of cycles.

Mask all interrupts.

rwpPE

o

11-16 G5220297-00

pl‘l.werpc Pre”minary Section 11 — Endian

Set the CPU state and the motherboard to LE (see Figure 11-8). Note that CPU is
now in LE mode. All instructions must be in LE order.

Put interrupt handlers and CPU data structures in LE format.

Enable caches.

. Enable Interrupts.

0. Start the LE operating system initialization.

o

Figure 11-8 shows the instruction stream to switch endian modes.

X mfspr R2,1008 ;Load the HDO register

:Instructions to set the Little-Endian bit in R2

0 sync
4 sync
8 sync
C mtspr 1008,R2 ;Moves to HIDO register
10 sync
14 sync
18 sync
1c sync

20 Store to external Endian control port (X8000 0092)
;The above instruction must be on a double word boundary
;So the following instruction is executed first (due to pipeline)
24 eieio
; To this point all instructions are in Big Endian format
; The following instructions look the same in either Endian mode
28 X38010138
2C X38010138
;Enough of these instructions must be executed
;to guarantee the above store has occurred.
;before any memory or I/O cycles are listed.

XX X38010138

Figure 11-8. Instruction Stream to Switch Endian Modes

G5220297-00 11-17

. P
Section 11 — Endian Pre“mmary pl‘l.werpﬁ

11.12 Summary of Bi-Endian Operation and Notes

e When the 603e CPU is in BE mode, the memory is in BE mode, and data flowing
on the PCl is in BE order so that it is recorded on the media in BE order. Byte 0O is
the most significant byte.

¢ When the 603e CPU is in LE mode, the memory is in LE mode, and data flowing on
the PCl is in LE order so that it is recorded on the media in LE order. Byte O is the
least significant byte.

e The PCI bus is addressed in the same manner that memory is when the 603e CPU
runs a cycle. The unmunging in LE mode changes the effective low-order address
bits (the byte enables and A/D 2). On all but I/O cycles, the two low-order A/D lines
are set to zero. On PCI 1/O cycles, A/D 1,0 are also transformed by the unmunge
operation

¢ No translations are made when PCl accesses memory so that the byte with address
0 on the PCI flows to byte 0 in memory — 1 to 1, 2 to 2, and so on. For example,
if BEO# and BE1# are active and A/D 2 is a 0, then memory byte lanes 0 and 1 are
addressed (cas 0 and cas 1 active on writes).

¢ Note that the LE devices which interpret data structures in the memory require that
their control data be arranged in LE order even in BE mode. For example, SCSI
scripts in memory must always be arranged in LE order because that is what the
device expects.

e Devices such as video may require the bytes to be swapped unless these devices
have byte swap capability.

11-18 G5220297-00

pl‘l.werpc Preliminary Section 12 — Electromechanical

Section 12
Electromechanical

12.1 MCM Electrical

The electrical characteristics of the MCM IOs are obtained by reference to the electrical
characteristics of the individual devices to which a given 10 is connected. The ratings of the
MCM IOs, including the package effects, are better than or equal to the ratings of the indi-
vidual devices. Please refer to the appropriate sections in the following documents:

e IBM27-82660 User’s Manual
PowerPC 603e (PID6—603¢e) Hardware Specifications
TI1 74LVT16245 Data Sheet
IBM IBM041814 SRAM Data Sheet
IDT IDT71216 TagRAM Data Sheet
Motorola MPC970 Data Sheet.

The conditions under which the MCM operates must not exceed the Absolute Maximum
Ratings of any of the individual devices.

The AC and DC Electrical Specifications, and Timing Specifications of each 10 is affected
by the combined characteristics of the devices that are attached to that net. For example,
the characteristics of the PCI_AD lines are the sum of the characteristics of the 663 and
the 664. The characteristics of the memory lines are those stated in the 660 User’s Manual.
The characteristics of the CPU bus lines are the sum of the characteristics of all of the at-
tached devices.

For the specifications in the individual documents to apply, the MCM must be operated with-
in the Recommended Operating Conditions of each of the individual devices.

12.1.1 AC Electrical Characteristics

The single-chip module (SCM) data sheets for the die packaged in the MCM are contained
in Appendix G. As a first approximation, it is accurate to use AC characteristics (setup and
hold) specifications from the SCM data sheets when doing a system timing analysis of the
MCM. The MCM package contains both the semiconductiors and the wiring network inter-
connecting them.

Overall, a system timing budget is much improved by the density of the wiring; however,

when referenced from the package 1/0, MCM AC characteristics differ (in theory) from
those listed in the SCM data sheets. Actually, such differences are less than 0.5 nanosec-

G5220297-00 12-1

.. >~
Section 12 — Electromechanical Prellmlnary pl‘l‘werp‘

onds due to the short net lengths in the MCM ceramic substrate and to the extremely small
paracitic capacitances of flip chip packaging.

In order to adjust SCM AC characteristics to values appropriate to the MCM package, sub-
tract out the SCM package delay component of a timing parameter then add back in the
corresponding delay for the MCM.

Example//??//

Package modeling information that allows such an analysis is found in Section 12.1.2. Note
that the dynamic interfaces between the MCM and a system planar consist of the PCI port
and the system memory port. Both interfaces are contained within the 660 bridge compo-
nents. For this reason, only a paper model of the 660 SCM package is included here for
use in package delay comparison.

12.1.2 SCM Package Delay Modeling

Figure 12-1 is a paper electrical model of the quad flatpack package that houses the 660
bridge die. Typical delays attributed to this package are //??// nanoseconds.

Figure 12-1. QFP Package

12.1.3 MCM Package Delay Modeling

To provide information needed to correctly model the MCM package, a paper model of the
MCM package has been included in Figure 12-1. In this model, a transmission line is used
to model the effects of a net trace in ceramic. The length of this transmission line is different
for each signal that is considered. Refer to Table 12-1 for a listing of the net lengths for all
MCM signals to which the user is expected to interface.

12-2 G5220297-00

PowerP

Pre“mmary Section 12 — Electromechanical

12.1.4 MCM Net Electrical Model

Figure 12-1 shows a typical electrical model of the major nets on the MCM. This model ap-
plies to the PCI, DRAM, and clock net groups. The segment labeled C shows the effects
of the chip IO pad. The Redistribution segment shows the effects of the redistribution meta-
lization that is added to the chips to produce flip-chips. The Ceramic Vias segments show
the effects of vias in the MCM ceramic substrate. The Routed Signal segment shows the

effects of trace lengths in

the ceramic. The Solder Column segment shows the effects of

the solder columns. For net lengths see Table 12-1.

| Cc4 | Redistribution—|
gni/pelro LC4 Lred Rred
A 100pH B 2.5nH 20 C
| 1wy
CC4 o Credl o~ Cred2”TS
1pf 1pf 1pf
| Ceramic Vias | Routed Signal —|
Lvial Rvial
0.5nH 50 uQ D E
C I mm MWV I TXYplane |—&—>
Cvial Cvia2 Z0=45Q
0.2pf | 0.2pf | To = 117ps/cm
— — L(typ) =5cm
| Ceramic Vias | Solder Column—l
Lvia2 Rvia2 Linter Rinter
0.5nH 50 uQ F .79pH 3mQ G
E Ty ‘Nv I \'4 I Planar
Cinterl Cinter2
.23pf | .23pf |

Figure 12-1. MCM Net Electrical Model

G5220297-00

12-3

Section 12 — Electromechanical

Preliminary

PowerP

Table 12-1. MCM Primary 1/O

Net Length Type Name Net Topology
63.0000 pci PCI_ADO J1.T01 u2.48 U3.236
44.2500 pci PCI_AD1 J1.RO1 U2.59 U3.237
50.6036 pci PCI_AD2 J1.R02 U2.46 U3.238
47.5000 pci PCI_AD3 J1.pO1 u2.43 U3.239
42.1036 pci PCI_AD4 J1.NO2 u2.42 U3.10
41.0000 pci PCI_AD5 J1.mM01 U241 U3.11
42.3536 pci PCI_AD6 J1.L01 U2.40 U3.12
39.9571 pci PCI_AD7 J1.L02 U2.39 U3.13
40.1036 pci PCI_ADS8 J1.K01 U2.38 U3.14
49.7500 pci PCI_AD9 J1.J01 u2.37 U3.15
58.8536 pci PCI_PAR J1.AHO1 u2.7
40.1036 pci PCI_AD10 J1.HO1 U2.36 U3.16
46.9571 pci PCI_AD11 J1.G01 u2.35 uU3.17
36.1036 pci PCI_AD12 J1.G02 U2.34 U3.18
55.0000 pci PCI_AD13 J1.FO1 u2.33 U3.19
39.8536 pci PCI_AD14 J1.E01 u2.32 U3.20
46.9571 pci PCI_AD15 J1.E02 u2.31 u3.21
47.9571 pci PCI_AD16 J1.D01 U2.30 U3.40
48.6036 pci PCI_AD17 J1.C02 u2.29 u3.41
44.2500 pci PCI_AD18 J1.B03 u2.28 u3.42
47.5000 pci PCI_AD19 J1.C04 u2.25 U3.43
50.6036 pci PCI_AD20 J1.A03 u2.24 u3.44
49.4571 pci PCI_AD21 J1.A04 u2.23 u3.45
46.8536 pci PCI_AD22 J1.B05 u2.22 U3.46
51.0000 pci PCI_AD23 J1.A05 u2.21 us.47
41.3536 pci PCI_AD24 J1.A06 u2.20 U3.48
44,2071 pci PCI_AD25 J1.BO7 u2.19 U3.49
47.6036 pci PCI_AD26 J1.A07 u2.18 U3.50
47.6036 pci PCI_AD27 J1.A08 u2.15 U351
46.4571 pci PCI_AD28 J1.B09 u2.14 U3.62
43.7500 pci PCI_AD29 J1.A09 U2.13 U3.63
47.5000 pci PCI_AD30 J1.A10 u2.12 U3.64
42.2071 pci PCI_AD31 J1.C10 u2.11 U3.65
73.5000 pci PCI_IRDY# J1.ABO1 U2.201 U3.167
49.1036 pci PCI_LOCK# J1.AE02 U2.53
72.6036 pci PCI_PERR# J1.U01 U2.10
52.8536 pci PCI_SERR# J1.U02 u2.71
56.1036 pci PCI_STOP# J1.AA01 U2.203
64.9571 pci PCI_TRDY# J1.AC02 U2.202 U3.168
44.3536 pci PCI_AD_OE# J1.N14 U2.195 U3.144
46.1036 pci PCI_C/BEO# Ji.vol U2.6
53.6036 pci PCI_C/BE1# J1.wW02 u2.5
48.2071 pci PCI_C/BE2# J1.wo1 u2.4
49.2500 pci PCI_C/BE3# Ji.yol u2.3
12.5000 pci PCI_CLK_IN J1.K29 U2.123
54.3536 pci PCI_DEVSEL# J1.AA02 U2.204

=== 124 G5220297-00

pl‘l.werpc Preliminary Section 12 — Electromechanical

Table 12-1. MCM Primary 1/0O (Continued)

Net Length Type Name Net Topology
41.6036 pci PCI_EXT_SEL J1.U14 u2.67 U3.153
62.2071 pci PCI_OL_OPEN Ji.wl4 U2.64 U3.165
50.2071 pci PCI_OUT_SEL J1.R14 U2.68 U3.169
52.8536 pci 664 PCl_REQ# J1.AFO01 U2.58
55.5000 pci PCI_FRAME_664# J1.AC01 U2.200
42.2500 memory MAO J1.AL20 U2.190
20.2500 memory MA1 J1.AL22 U2.189
36.3536 memory MA2 J1.AL24 U2.188
36.0000 memory MA3 J1.AL26 u2.187
32.7500 memory MA4 J1.AL28 U2.186
32.3536 memory MAS J1.AL30 U2.185
31.1036 memory MAG6 J1.AK31 u2.184
28.6036 memory MA7 J1.AH31 u2.181
29.8536 memory MAS8 J1.AF31 U2.180
25.6036 memory MA9 J1.AD31 u2.179
39.8536 memory MDO J1.ANO3 U3.180
36.5000 memory MD1 J1.AMO03 U3.182
45.7500 memory MD2 J1.ANO4 U3.183
50.0000 memory MD3 J1.ANO5 u3.184
54.5000 memory MD4 J1.AMO5 U3.189
53.3536 memory MD5 J1.ANO6 U3.190
53.2500 memory MD6 J1.ANO7 U3.193
45.1036 memory MD7 J1.AMO7 U3.194
39.5000 memory MD8 J1.ANOQ9 U3.200
38.7500 memory MD9 J1.AM09 U3.201
22.5000 memory MA10 J1.AB31 u2.178
20.2500 memory MA11 J1.Y31 u2.177
35.0000 memory MDPO J1.ANO8 U3.141
43.2500 memory MDP1 J1.AN14 U3.122
48.6036 memory MDP2 J1.AN20 U3.103
52.0000 memory MDP3 J1.AN26 U3.82
58.2500 memory MDP4 J1.AL32 U3.37
65.5000 memory MDP5 J1.AE32 U3.234
61.0000 memory MDP6 J1.W32 u3.214
53.8536 memory MDP7 J1.N32 U3.195
54.1036 memory MD10 J1.AN10 U3.202
45.3536 memory MD11 J1.AN11 U3.203
41.2500 memory MD12 J1.AM11 U3.206
42.7500 memory MD13 J1.AN12 U3.211
43.1036 memory MD14 J1.AN13 U3.212
44.3536 memory MD15 J1.AM13 U3.213
46.2500 memory MD16 J1.AN15 U3.215
65.8536 memory MD17 J1.AM15 U3.222
45.6036 memory MD18 J1.AN16 U3.223
47.2500 memory MD19 J1.AN17 U3.224
45.7500 memory MD20 J1.AM17 U3.225

G5220297-00 12-5

Section 12 — Electromechanical

Preliminary

PowerP

Table 12-1. MCM Primary 1/0O (Continued)

Net Length Type Name Net Topology
51.3536 memory MD21 J1.AN18 U3.231
52.1036 memory MD22 J1.AN19 U3.232
70.2500 memory MD23 J1.AM19 U3.233
51.1036 memory MD24 J1.AN21 U3.5
48.5000 memory MD25 J1.AM21 U3.6
50.2500 memory MD26 J1.AN22 U3.7
50.5000 memory MD27 J1.AN23 U3.28
48.7500 memory MD28 J1.AM23 U3.29
52.6036 memory MD29 J1.AN24 U3.30
52.3536 memory MD30 J1.AN25 U3.35
50.0000 memory MD31 J1.AM25 U3.36
52.8536 memory MD32 J1.AN27 U3.58
50.1036 memory MD33 J1.AM27 U3.59
51.9571 memory MD34 J1.AN28 U3.60
54.2500 memory MD35 J1.AN29 U3.73
53.0000 memory MD36 J1.AM29 U3.74
56.8536 memory MD37 J1.AN30 U3.75
59.6036 memory MD38 J1.AN31 U3.76
56.2500 memory MD39 J1.AM31 u3.81
58.8536 memory MD40 J1.AL33 U3.83
57.7500 memory MD41 J1.AK33 U3.90
56.0000 memory MD42 J1.AJ32 U3.91
56.3536 memory MD43 J1.AJ33 U3.92
57.6036 memory MD44 J1.AH33 u3.93
54.2500 memory MD45 J1.AG32 U3.100
56.0000 memory MD46 J1.AG33 U3.101
54.3536 memory MD47 J1.AF33 U3.102
52.9571 memory MD48 J1.AE33 U3.108
54.5000 memory MD49 J1.AD33 U3.109
49.8536 memory MD50 J1.AC32 U3.111
51.1036 memory MD51 J1.AC33 U3.112
50.7500 memory MD52 J1.AB33 U3.113
50.2500 memory MD53 J1.AA32 U3.118
49.8536 memory MD54 J1.AA33 U3.119
54.5000 memory MD55 J1.Y33 u3.121
49.8536 memory MD56 J1.W33 U3.123
49.8536 memory MD57 J1.V33 U3.130
53.3536 memory MD58 J1.U32 U3.131
60.7500 memory MD59 J1.U33 U3.132
45.5000 memory MD60 J1.T33 U3.133
56.8536 memory MD61 J1.R32 U3.138
48.6036 memory MD62 J1.R33 U3.139
53.2500 memory MD63 J1.P33 U3.140
10.2500 memory MCEO# J1.L.32 u2.174
10.5000 memory MCE1# J1.L.33 u2.173
13.3536 memory MCE2# J1.K33 uz2.172
12-6 G5220297-00

pl‘l.werpc Preliminary Section 12 — Electromechanical

Table 12-1. MCM Primary 1/0O (Continued)

Net Length Type Name Net Topology

6.6036 memory MCE3# J1.J32 uz2.171

9.5000 memory MCE4# J1.J33 U2.170

7.5000 memory MCE5# J1.H33 U2.169

4.7500 memory MCE6# J1.G32 U2.168

7.5000 memory MCE7# J1.G33 U2.165

64.7500 memory MREO# J1.ALO4 U2.164

67.3536 memory MRE1# J1.ALO6 U2.163

65.1036 memory MRE2# J1.ALO8 U2.162

60.6036 memory MRE3# J1.AL10 u2.161

57.0000 memory MREA4# J1.AL12 U2.160

54.2500 memory MRES5# J1.AL14 U2.159

52.1036 memory MREG6# J1.AL16 U2.158

53.8536 memory MRE7# J1.AL18 U2.157

13.8536 memory MWEO# J1.M33 U2.176

12.6036 memory MWE1# J1.N33 U2.175

38.7950 funct. TEA# J1.N10 R1.D01 U1.154 U2.137

46.2857 funct. DRTRY# J1.AJ01 R1.HO1 U1.156

19.2500 funct. ROM_OE# J1.v3l u2.47

17.5000 funct. ROM_WE# J1.7T31 u2.60

39.4691 funct. INT_60X# J1.U16 R1.D03 U1.188

40.7150 funct. MCP_60X# J1.R16 R1.H02 U1.186

81.0192 funct. SRAM_OE# J1.AA22 U7.50 uUs.50 U9.50,
U10.50

10.2020 funct. PLL_CFGO J1.D25 U1.213

16.6744 funct. PLL_CFG1 J1.B27 U1.211

17.1617 funct. PLL_CFG2 J1.A27 U1.210

15.3550 funct. PLL_CFG3 J1.C28 U1.208

53.8536 funct. ROM_LOAD J1.U20 u2.70 U3.160

32.4704 funct. 60X_AvVDD J1.B02 U1.209

27.2459 funct. QACK_60X# J1.D17 R1.E03 U1.235

4.2367 funct. QREQ_60X# J1.C18 U1.31

4.2367 funct. X_INT_60X# J1.F31 U2.139

4.2367 funct. X_MCP_60X# J1.H27 U2.138

4.2367 funct. X_SRAM_OE# J1.G26 u2.117

19.0000 funct. INT_TO_664 J1.B31 U2.55

8.5866 funct. X_PCLK_60X J1.D19 ul1.212

5.6036 funct. X_TAG_BCLK J1.P29 U5.69

21.9935 funct. SRESET_60X# J1.D31 U1.189

7.3536 funct. TAG_ADDR_13 J1.L.26 U5.33

6.0000 funct. TAG_DATA 11 J1.M27 U5.65

52.1036 funct. IGN_PCI_AD31 J1.ADO1 u2.57

4.6624 funct. X_SRAM_BCLKO J1.Y29 U7.51

5.1624 funct. X_SRAM_BCLK1 J1.AF29 uU8.51

9.1624 funct. X_SRAM_BCLK2 J1.AF05 U9.51

8.6624 funct. X_SRAM_BCLK3 J1.Y05 U10.51

1.7500 funct. X_663_CPU_CLK J1.F05 U3.157

G5220297-00 127

.. >~
Section 12 — Electromechanical Prellmlnary pl‘l‘werp‘

Table 12-1. MCM Primary 1/0O (Continued)

Net Length Type Name Net Topology

10.1036 funct. X_664_CPU_CLK J1.H29 u2.121

8.6036 funct. X_CPU_RDL_ J1.G10 U3.148

OPEN
22.2500 funct. NMI_FROM _ J1.A31 U2.56
ISABRDG
7.2071 funct. POWER _ J1.A28 U2.156
GOOD/RESET#

7.2071 funct rw HRESET# J1.E32 R1.D04 ul.214

35.6584 w TCK J1.B25 R1.J04 Ul.201

41.2051 w TDI J1.A25 R1.J05 Ul1.199

14.6846 w TDO J1.C26 Ul1l.198

34.9543 w TMS# J1.A24 R1.J03 U1.200

58.3719 w CKSTP_OUT# J1.AJ02 R1.J01 Ul.216

58.3719 rw p_up TRST# J1.C24 R1.HO4 Ul1.202

29.4987 p_up TTO J1.A19 Ul.191 U2.150

27.6398 p_up TT1 J1.B19 U1.190 U2.152

15.3133 p_up TT2 J1.A20 Ul.185

28.0788 p_up TT3 J1.A21 U1.184 U2.126

5.3536 p_up SHD# J1.D27 u2.141

51.7310 p_up SMI# J1.ALO2 R1.FO5 ul1.187

11.6036 p_up TAG_CS2 J1.H31 U5.76

21.5000 p_up TT2_664 J1.C14 U2.153

35.9554 p_up DBG_60X# J1.G08 U1.26 U2.140

70.1036 p_up L2_CLAIM# J1.ALO1 u2.132

21.8536 p_up 663_TEST# J1.G14 U3.155

49.6036 p_up 664_TEST# J1.J04 U2.155

30.8536 p_up TAG_MATCH J1.K31 U2.142 U5.50

22.0000 p_up BG_MASTER# J1.N20 U2.135

56.1497 p_up SRAM_ADSP# J1.AKO3 u7.1 us.1 uo.1,
U10.1

5.0000 p_up TAG_PWRDN# J1.M31 Us.77

48.1036 p_up MWS_P2MRXS J1.C30 U2.66 U3.152

40.9072 p_up 664 _STOP_ J1.B29 R1.FO4 U2.151

CLK_EN

30.7884 p_down TT4 J1.A23 U1.180 U2.136

24.5780 p_down GBL# J1.A12 Ul.1l u2.120

43.8399 p_down SRAM_CS# J1.AD29 u7.5 uU8.5 U9.5,
U10.5

19.5000 p_down TAG_CS1# J1.c33 U5.75

72.1036 p_down OE_245 B J1.D29 UBA.25A | UBA.48A | U6B.25B,
U6B.48B

32.2071 p_down DIR_245 A J1.G22 UBA.1A UGBA.24A

43.6036 p_down DIR_245 B J1.L.22 U6B.1B U6B.24B

20.7500 p_down TAG_SFUNC J1.C32 U5.22

52.6036 p_down CRS_C2PWXS J1.A29 U2.65 U3.151

39.1036 p_down 663 MIO_TEST J1.A30 U3.156

49.2500 p_down 664 MIO_TEST J1.K05 U2.154

13.7500 clk XTAL1 J1.U30 u4.12

12-8 G5220297-00

pl‘l.werpc Preliminary Section 12 — Electromechanical

Table 12-1. MCM Primary 1/0O (Continued)

Net Length Type Name Net Topology
11.7071 clk XTAL2 J1.T29 U4.13
32.5000 clk FRZ_CLK J1.B11 U4.3
18.6036 clk FRZ_DATA J1.A22 u4.5
8.5866 clk PCLK_60X J1.E18 u4.34
66.3536 clk TAG_BCLK J1.N30 U4.36
29.9142 clk CLK_EXT_FB J1.A17 u4.14
27.0000 clk CLK_FB_SEL J1.A15 u4.9
27.5000 clk CLK_PLL_EN J1.D33 u4.7
67.5000 clk SRAM_BCLKO J1.W30 u4.44
66.5000 clk SRAM_BCLK1 J1.AE30 U4.46
9.1624 clk SRAM_BCLK2 J1.AG04 U4.48
8.6624 clk SRAM_BCLK3 J1.AA04 U4.50
22.6036 clk CLK_COM_FRz J1.A18 U4.6
29.6036 clk CLK_REF_SEL J1.B13 u4.8
24.4571 clk CLK_TTL_CLK J1.A26 u4.11
28.0000 clk CLK_VCO_SEL J1.A13 U4.52
1.7500 clk 663_CPU_CLK J1.G04 U4.38
63.6036 clk 664_CPU_CLK J1.G30 U4.42
24.1036 clk CLK_BCLK_DIVO J1.C16 u4.31
22.2500 clk CLK_BCLK_DIV1 J1.B17 u4.27
26.3536 clk CLK_FRZ_ J1.F33 u4.4
STROBE
14.8536 clk CLK_MPC601_ J1.K27 U4.40
CLKS
25.3536 clk CLK_ J1.A16 u4.2
MR/TRISTATE

61.8536 clk 664_PCI_CLK J1.J30 u4.18
20.6036 clk CLK_PCI_DIVO J1.B21 U4.20
20.0607 clk CLK_PCI_DIV1 J1.C20 U4.26
38.1036 clk USER_PCICLK1 J1.AEO1 U4.16
29.5000 clk USER_PCICLK2 J1.NO1 u4.21
42.8536 clk USER_PCICLK3 J1.Co1 u4.23
31.1036 clk USER_PCICLK4 J1.A11 u4.25
25.4571 clk USER_PCICLK5 J1.A14 U4.29
29.7500 clk USER_PCICLK6 J1.E33 U4.32
3.0000 daisy DAISY01 J1.D05

3.0000 daisy DAISYO01 J1.E04

2.5000 daisy DAISYO02 J1.D07

2.5000 daisy DAISYO02 J1.E06

2.5000 daisy DAISYO03 J1.D09

2.5000 daisy DAISYO03 J1.E08

2.5000 daisy DAISY04 J1.D11

2.5000 daisy DAISY04 J1.E10

2.5000 daisy DAISYO05 J1.D13

2.5000 daisy DAISYO05 J1.E12

2.5000 daisy DAISY06 J1.E30

2.5000 daisy DAISY06 J1.F29

G5220297-00 12-9

Section 12 — Electromechanical

Preliminary

PowerP

Table 12-1. MCM Primary 1/0O (Continued)

Net Length Type Name Net Topology
3.0000 daisy DAISYO07 J1.E28
3.0000 daisy DAISYO07 J1.F27
2.5000 daisy DAISY08 J1.E26
2.5000 daisy DAISY08 J1.F25
3.2500 daisy DAISY09 J1.E24
3.2500 daisy DAISY09 J1.F23
4.3536 daisy DAISY10 J1.E22
4.3536 daisy DAISY10 J1.F21
3.0000 daisy DAISY11 J1.AKO05
3.0000 daisy DAISY11 J1.AKO7
3.0000 daisy DAISY12 J1.AK09
3.0000 daisy DAISY12 J1.AK11
3.2500 daisy DAISY13 J1.AK13
3.2500 daisy DAISY13 J1.AK15
4.0000 daisy DAISY14 J1.AK17
4.0000 daisy DAISY14 J1.AK19
3.0000 daisy DAISY15 J1.AK21
3.0000 daisy DAISY15 J1.AK23
3.0000 daisy DAISY16 J1.ADO3
3.0000 daisy DAISY16 J1.AF03
3.0000 daisy DAISY17 J1.Y03
3.0000 daisy DAISY17 J1.AB03
3.0000 daisy DAISY18 J1.T03
3.0000 daisy DAISY18 J1.vV03
3.0000 daisy DAISY19 J1.M03
3.0000 daisy DAISY19 J1.P03
3.0000 daisy DAISY20 J1.HO03
3.0000 daisy DAISY20 J1.K03
3.0000 daisy DAISY20 J1.K03
=== 12-10 G5220297-00

’ - -
pl‘l.werpﬁ Prellmmary Section 12 — Electromechanical

12.2 MCM Thermal

Figure 12-2 contains a simplified drawing of the construction of the MCM. The individual
devices are mounted to the ceramic substrate, which is mounted to the circuit board by sol-
der columns. The cap covers the devices and the top of the substrate, and is filled with a
thermal grease. The cap is non-hermetically sealed to the substrate.

As shown in Figure 12-3, the major heat flow path is from the devices to the thermal grease,
to the aluminum cap, and to ambient. A heat sink can be attached to the cap if required.

Thermal Grease Cap

Solder Columns

Figure 12-2. MCM Thermal Paths

Heat Flow for Rj-c

Actual Heat Flow

N

Ceramic Substrate

Figure 12-3. MCM Heat Flows

12.2.1 Chip Thermal Requirements

Table 12-2 shows many of the thermal specifications of the chips in the MCM. The values
given for non-IBM products are superceded by any values found in the manufacturers’ data
sheets.

At a typical power dissipation, the difference between the temperature of the center of the
chip and the temperature of the center of the MCM cap was measured (see Figure 12-3).
The thermal resistance values from chip junction to MCM cap (Rj-c) shown in Table 12-2
were derived from these measurements:

R(j-c) = [T(chip) — T(cap)] / Power(chip),

and do not change significantly over the operating range of the MCM. Rj-c describes the
thermal resistance along the path from the center of the device to the center of the MCM
cap. This specification can be used with the MCM to simplify thermal calculations.
Table 12-3 shows the same data as Table 12-2, but for the expected maximum power dis-
sipation of the MCM. All references to the MCM cap in Table 12-2 and Table 12-3 refer to
the center of the MCM cap.

G5220297-00 12-11

.. >~
Section 12 — Electromechanical Prellmlnary pl‘l‘werp‘

Table 12-2. Thermal Specifications for MCM Chips, Typical Pd

Parameter 603e 663 664 245 MPC |SRAM | Tag
970 RAM
Maximum Junction Temperature (°C) 105 85 85 85 70 70 70
Thermal Resistance, Junction to MCM Cap (° C/W) 1.22 A1 .88 11.6 4.24 .55 .53
Power Dissipation, Typical (W) 3.2 5 1 2 7 7 5
Junction Temp Rise Above Cap (°C) 3.9 .05 .88 2.3 3.0 .39 .27
Maximum Allowed Cap Temperature at TypicalPd(°C) | 101 85 84.1 82.7 67 69.6 69.7

Typical MCM Total Pd =9 W

Table 12-3. Thermal Specifications for MCM Chips, Maximum Pd

Parameter 603e 663 664 245 MPC |SRAM | Tag
970 RAM
Maximum Junction Temperature (°C) 105 85 85 85 70 70 70
Thermal Resistance, Junction to MCM Cap (° C/W) 1.22 A .88 116 | 4.24 .55 .53
Power Dissipation, Maximum (W) 4 .6 1.3 2 .83 1 1
Junction Temp Rise Above Cap (°C) 4.9 .06 11 2.3 3.5 .55 .53
Maximum Allowed Cap Temperature at Max Pd (°C) 100 85 83.9 82.7 66.5 69.5 69.5

Maximum MCM Total Pd =12 W

12.2.2 MCM Cooling Requirements

Table 12-2 and Table 12-3 show the typical and maximum total power dissipation of the
MCM. Additionally, the tables show that the MCM cap must be maintained below 67°C at
typical Pd and 66°C at maximum Pd to ensure that all of the chips are adequately cooled.

There are other factors, such as heat spreading and alternate heat conduction pathways,
that tend to reduce the cooling requirements. Treatment of these complex MCM topics is
beyond the scope of this document.

The total power entering the MCM cap from the chips is the sum of the power dissipation
of each individual chip. This power must be removed from the MCM while ensuring that the
temperature of the center of the MCM cap does not exceed the value derived in Section
12.2.1 for various operating conditions. Table 12-4 shows the required total thermal resis-
tance from the cap of the MCM to ambient at various ambient temperatures.

Table 12-4. Required Maximum Thermal Resistance, Cap to Ambient

Ambient Temperature At Typical Pd At Maximum Pd
65 °C 0.10 0.08
60 °C 0.67 0.50
55°C 1.20 0.92
50 °C 1.80 1.33
45 °C 2.33 1.75
40 °C 2.88 2.17
35°C 3.44 2.60
30°C 4.00 3.00
25°C 4.55 3.40

12-12 G5220297-00

pl‘l.werpc Preliminary Section 12 — Electromechanical

12.2.3 Cooling Recommendations
Table 12-5 shows the thermal resistance from the MCM cap to ambient at various airflows.

Table 12-5. Thermal Resistance From Cap to Ambient — No Heat Sink

Air Flow (Linear Feet Per Minute) Oc-a (Thermal Resistance, Cap to Ambient)
50 15.45° C/W
100 12.7° C/W
200 9.7 ° CIW
300 8.5° C/W
400 7.7°CIW
500 7.4°CIW
600 7.1°C/W
700 6.9 ° C/W

Comparison of Table 12-4 with Table 12-5 shows that a heat sink will be required to meet
the MCM maximum cooling requirement.
12.2.3.1 Thermal Resistance From Cap to Heat Sink

Table 12-6 shows the thermal resistance from the MCM cap to a heat sink for two different
cases. Each case assumes a 45mm x 45mm heat sink (the same size as the MCM cap),
with 100% coverage of a thermally conductive adhesive between the cap and the heatsink.

Table 12-6. Thermal Resistance From Cap to Heat Sink

Parameter Chromerics T405 Al Epoxy 7655
Reworkable Adhesive Non-Reworkable
Thermal Conductivity (K, Watts per meter—deg Kelvin) 4 W/mk 1.06 W/mK
Thickness 0.14 mm 0.1 mm
®c—hs (Thermal Resistance, Cap to Heat Sink) 0.18° C/W 0.05° C/W

12.2.3.2 Thermal Resistance From Heat Sink to Ambient

Table 12-7 shows the required heat sink performance at various ambient temperatures, us-
ing a value of .1°C/W for the thermal resistance from the MCM cap to the heat sink, 100%
coverage, and 45mm x 45mm heat sink base.

Table 12-7. Required Maximum Thermal Resistance, Cap to Ambient

Ambient Temperature At Typical Pd At Maximum Pd
65 °C n/a n/a
60 °C 0.57 0.40
55°C 1.10 0.82
50 °C 1.70 1.23
45 °C 2.23 1.65
40 °C 2.78 2.07
35°C 3.34 2.50
30°C 3.90 2.90
25°C 4.45 3.30

High performance passive heatsinks with good forced air flow and typical fansinks are able
to perform to these specifications.

G5220297-00 12-13

.. >~
Section 12 — Electromechanical Prellmlnary pl‘l‘werp‘

12.3 MCM Mechanical Drawings

12.3.1 MCM with Cap

47G9687
Thermal Paste Chip Chip Cap Chip

|
i v NN A/] ML K

I I HHUM@L UUHUUUHUUHHWUUUUUUUUU
ofl @28 2% T= 2|2 2= 2=
12.3.2 MCM Without Cap
Capacitor Capacitor Capacitor Capacitor C4 Encapsulant
Chip Chip Chip \ Chip & / Fillet
M * Ly MU M s

JUTUTTUU Ui oeuruoeuuouut

12-14 G5220297-00

Electromechanical

Section 12

Preliminary

PowerP

12.3.3 MCM Solder Columns

Solder Column\

1/0 Pad with

/10 Pad\

@@@@@@@@@@@@@@%@@@@@@@@@@@@@@

H

CZzT] (xee)

(G¥'vv)

A01

Locator

®

%

©©@%©@@@@@@@@@@@ ©OOOO®OOOO®O®O®©O©®®®®——=&
©@©O0®0®O0®0® O®O®O®(DO®O®O@®O®O®O®O®O®®——=
©OOOO®O®®OOOO©OO®®O©O®@®O®®®O®©®®®OO®©®©®®®®®®——«
©@©0®0®0®0®O0®O0®O®H®0®O®O®O®O0®O®O®®— =«
©OOOOOO®O®O®©O®®O®O®®©O®©O®O@®®O®O©O®O©O®®®®©®®®® ®®—
©@O0®O®0O®@0O®O

CIC.OOI0I0I0I0I00IO00]

©@©O0®O0®0O®@0O® OO0

CIC.OOI0I0I0I00IOI0I0OIO] @®®
©%%©O©O©O©OOOO© ®0
OIC.0I0I0I0I0I00I0I0I0I0I0IOI0; ®® -

—®®©C®O®O®O®OOOO®0 CaS, — 3
OICO0I0I0I0I0I00I00I00I0I0] OJIOIOOIOIOO O -
©@O®O@®O®O® OOO0®O@®O®OO00®O®@O®O®0 ®@——=
CIC0I0I00I0I00I0I0IOI0IOIOIOIOIOIOIOIOIOIOIOICIOIOIOIOIOIOIOIC
©@0®O®0O0®0O® OOO000POO0000®O® O®O®0 ®®——=
OICCOI0IO0I0I0IOI0IOOI0IOIOI0IOOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
©@©0® 0@®0®0O® O@O®O®()®O®O®O®O®O®O®0 ®®—— -

B OIC.OO0I0I0I0I00I0OI00IO0IOOIOIOOIOIOIOIOIOIOIOIOIOIOIOIC s
OICI®OISIOISIOISIOISIOISIOISIOIQIOISIOISIOIGIOIGIOISIOIGIOIOIOIC k-
OIC.O00I0I0I00IOI0I0OOIOIOIOIOIOIOI0IOIOIOIOOIOIOIOIOIOIOIC
©0©O0®00©0®0O® O®O®O®()®O®0O®O®O®O®@O®@O®®— =
0OOOOOOO®OO®O®©O®O®O®O®O®O®O©©®©O®©O®©®©O®®©O®©O®©®®©®®® ®W®—— = E
@©@0®O0®@O®0O® O®O®O®D@®O® O@®O@®O®O®O® O ®®——:
%@@@@@@@ ©O©OOOO®OOO®®OO®®O©O©®O©O©O©®©®® ®® T3

©0@000®0®O®O®)®@0O®O0®O®O®O®O®O®® ——= §

[Tp983999433433330488333388088 11

| |
PP 5
MM%MHM%FEM%%MYWVUTRPNMLKJHOFEDC <

12-15

G5220297-00

PowerP

Preliminary

Section 12 — Electromechanical
12.3.4 MCM Component Placement

L)
G5220297-00

. BH|A* B=

——
(44485)
12-16

2D

AUEMN

[[T
[} .
N I _mm_
[l

« ow [l

1

PowerP

Preliminary

Section 12 — Electromechanical

Part Number 91H5797
Sheet 1 of 5

G5220297-00

12-17

’ . .
Pawefl’s Preliminary Section 13 — MCM Schematics

Section 13
MCM Schematics

This section contains the schematics of the Odyssey MCM. For schematics of the planar,
see Appendix F.

The schematics are numbered separately from the rest of the MCM technical specification.

G5220297-00 13-1

. p=
Section 13 — MCM Schematics Pre“mmary pl".werp‘

13.1 Component Placement

13-2 G5220297-00

[£ 4 S 9 [L [8

7 2
gz 0 T 133 o8t \.qmnuqmmmmomu._mmw O e
NOWLSO3 T 11LND >W_OZMHQ¢,WOHONWM v”_m%m
g |NOILBHOdHOD WEI
HIAWNN Labd ONMAT [NOTSINZ[az1g| SE6T LHOIHALOD @ £v9odd

Zm H AF1sdged WOL

AN

¢ JISHITIHHONOA

NOW1lSYd ddr0
:1D81NOD

“d31SITT STIPNAINIANI 3HL 40 3NO LDULINOD “INIWNDO0O0 SIHL 40 NOISH3IN 1S319

JHL 3NPH NOA 1uHL 3FdNSN3I OL "IN3IWNO00d SIHL NI d3NIYLINOD NOILUWHOANI ANY
ONINHIONOD NINIO SI FIINYHENO d0 ALINGHdUM ON ‘S3ILdYd HIHL H0 WAI 40 S1HOIY
ALd3d0dd TBNLIDITIIINI IHL H30NN ALINWIAONI dO0 ISNIDITT d3IITdWI 40 SS3ddX3

N SY J18d3d0 TIBHS INIWNDO0O SIHL NI ONIHLION ‘NIZH3H O3INIYLINOD NOILYWHOANI

3HL 40 38N ANY d04 ALITIIEUIT 40 ALITTIGISNOGS3d ON S3IWNSSY WAI *30I1ON

LNOHLIM FONGHO OL LO3rdNs SI aNY NOILYWHOANI ASUNIWITIEEd SNIULINOD LNIWND0A SIHL

Jbobl ‘o ABW

IS NOLSdadn

CWNOW? - F1NdOW dIHO—=1T 1 1MW

155 AUO

ONIHIEINIONG SSHH1LS ONY 1531 WOW

NOW

1 [

e [£ 4 S

0 L33He BE6T B.W%"Mmﬂm.lu."%mn._—OI._uJ._ﬂ_”m.__w_ PAM=03I 4IO0W~ 1SYT “SNIWNTI0D
Sc*©c NoWLGoT T ONIMET 40 03LYINEOC3A 38 NUD SNId OISANN
g |NOILYHOCHOD WaI @ az1 e
UIAWIN Laiod ONMAO [NOISInTaz1s| SE6T LHOTHALOD 6 :e0an gzc ON

NOI LdId0S30
NG S1INILINOD

Zm H »9 :2aan @F NIGHD ASIOQ
»9 100N Spy TONOIS

(Saod> 20T :SNId U101

BXD0d LON “3HNLYTTONIWON_D Ol ONIJH0JJY O3HIM SJIHD T1d
€T3 ANY ‘2TJ ‘11D Sagd 40 ONINHIM
d3sv33d T 'S NOISdHIN 967275

2°S NOISdH3IN OL ONIOYOODOY 171INd Sldud "WILINI

*I0OTWERIS ONO “*X@9TLNI **X@97DdW ‘03103449 S13N € - O3TJIOO0W LNONId

Q3SY33d @°S NOISHIN 9675777
ONIY¥IM 0¥U08 3SY3 OL 3NAOW 40 LNONId OL S3IONGHD HOLUW
a3SP313y @°F NOISHIN s67/1727

a3SU3713Y €°E NOISH3N S6/E/TT

03190dN LMAONId €98 @ 2 NOISH3IN
03SY3T13y 2 °E NOISH3IN S6/92/871
CXHTIDETHEAS XY O3ddUMS SHD0T1D WodS

Q3su3N3y T "E NOISHIN S6/217/@7
Q@2 IUNJT ¥04 HOLSIS3M_S3ITHIS WHO @@] ¥O4 L3N N3O~ I0d~NdD 3IHouE
dN-T11Nd OL dIHD ¥OLSIS3Y 40 NOILD3S M O3IONYHO
NOILldO H952 ¥04 ITIAOW 440 SYL 40 €TY ANY <JF>09L LHONONE
071 FINAON 0L S3IONUHD ¥OLUW - SLBEDdW WOMH B26D0dW Ol O3ONGHO
a3SY3138 @°E NOISHIN S6/81/6@
€000 OL TOON WOdd4 O3HDLIMS 22W NId WOW
NId 37NQOW OL S1NaNI ¢(o8N> U DYl O3IL
N E°E WOH4 N @°S OL SdNT1INd TUH3NIS O3IONGHD
SHOLSISIH SMAOHIWMN 4O LNIWNOISEU3
aan ONY ONO MON TEZ ONY TIT SNId “71300W IUNoUT O3I14I00W
L3N 30790l O3ONDHD ‘'P@O0 NId 3dudS 27 4ngs
SL3N NIUHD ASIUO0 d3WON
ONINIM QdU0d 3SU3 OL ScduMS NId SNO™IWNN
a3SY33 € °2 NOISHIN S6/62/680
ST_LON *T910L €] - SID ONY PTD SHOLIDUAYD O3NOW3N
ONINNL 304 37NAOW OLINO >DOud ONY 440 SHI0TD SNE X@3 LHONOXNE
a3sP313y 2°2 NOISHIN S6/€2/80
STD MEHL TTD SHOLIDUdUD 4O NOILIOOu
ONHS3d WON4 *980 OL @rT NId :7300W 3€@S O3ONUHD
ST4 - B@4 @11
STH iX@97@3SD 973 - 284 :TLLl
Cly - 6@4 kg3l pyJ3 - 89D 2Ll
STA - 6B8d *X@SIM 873 - 104 :Ell
880 - BTH *x@910 @23 - 80[:pll
:S13N ONIMOTT04 304 SNId 40 LNIWNDISBUIY
71D 0L LTH WO¥4 0ONY™X@9 NOISBU3
T=£0an ‘2=200n ‘L=7A0N *SHOLIOYdYD ONITIHMODO3A 40 LNIWNDISBUIY
a3sp3N3d T2 NOISHIN S6s/8c/80
HINI 1S3L WOMd IDY4NILNI HICN *SSOU™WONS
0O/1 3TNOOW ALO7SUL ONY dud™Idd 03009
SIONUHD LNIWNOISSY NId d43MOd HOLOW
O/I ¥3SN OL X@3™9340 ONY X@S™HIOUO O3IONUHD
AONIONILNOD #04 O/I Tod LNO 3xoNE
NO >008 ONY 440 D010 IOd ¥99 L1HONO¥E
d3SY313d @°2 NOISHIN S6/802/80

(Eddn> N B°S 1Y S318d3d0 HOIHM
‘W OY1l 1d30X3 N € °E 1Y J1Yd3d0 SdIHD 1718

WHOH41871d 3ON3FH3 43
13SdIHD 8838 NO 0d3sud SI A3ISSAAO

‘OSI” d3sn SI dIHD

HOLSISEY WOLSND © “WOW 3IHL Ol O3NIOL
O0ST” SI BL6D0dW BT1I0d0L0W B "NOIS3d

JHL NI d3sn SI Wod 991 J134068Id ©¥ “3Id
WodS 8TXMPS v A9 d3AINO0dd SI 3IHOYD 71
40 AH9S2 ‘NOILONN4 3F90Idd IDd aNY
TI0HINOD AHOW3AW 3IHL JAINOHd ¢L13ISHIHD ©8838H
SdIHO IuNgAH ONY IUNYT 3IHL “3HDOGED

271 40 XH9S2 HLIIM JINAOW dIHD-ILINKW
a3sud-3EQ9 Odd3IMOd 8 SI WOW AISSAOO 3IHL

:NOI1dIdgOS3d NOIsHd

3O8d HNYTId EC
JON3H343d SS0dD ‘e
JONIH343d SS0dD *T2

HOOTD "@C
WoHS ‘BT
Wods 8T

SH344Ng SpE9T ONG Wod 9Pl AT

ulod d344n8 v8S 97

SINIOd 1S3l ONY NOILD3S SNd Idd +98/€99 ST

JOB4d31INI NG TI0HINOD d344Nd $98-7€939 “pT

NOILd0d TIOHLINOD "HWHINID — H3FT1104LINOD 99 €T
T1IND NG SOTIANOD

fSHOOTD ‘HOLBMOSIY - d0S5300dd 27

SNd gled J0SS3008d "TT

SNd vlod dJ0sSs3d0odd 0T

ONIIdNOO3d NG d3MOd

ONNOHS ONY d3MOd — III SNId WOW

AOY4H3INT 1531 - II SNId WOW

JOU4dFINT 935N — I SNId WOW

SJLION NOIL-dNSI ANOD

NOI1UWAOANI NOIS3Id "BOISAHA

WoHO-YIa XH207d

SO3 ‘NOILdIdOS3d “SINILINOD

SAMTNONGo

U3X14 SHOLIOUAD +e0ISISI H3IN0D
a3sSy3T3d T°T NOISH3IN C6/EQ/80
MIIA3N 304 AILNGINLISIA B@°T NOISHIN 1400 S67@27.8
: AH4OLSTH 3IONGHD SLINGLNOO
T 2 € /4 | S | E 7 | 8

1 [

e [£

wm 40 m 133HS

BE6ET T@:ES:ST
TA3SSA00=31111

1 fe paM=03I AIJ0W"1Su1

NOW1SE3 ‘T ONIMId

g |NOILBHOdHOD WEI @
HIAWNN Laod ONMET [NOISInTy[azis| SBBT LHOIEALOD
Nelom
WEHOYIO »o07d Zm H cn
2 6T :d
WS
(6 d :dMd> gIXNZE
971 ¢GT *¢T :dd s o, 1P T8TrENET
.. <@ " "€9>a %
A g g5 yg344Nd vilud 1N
ALTdEd ONY 9180 AMOWIW £9g9eB-22dl
67 :d
1 (IYNY . @ e>da 2 WOHS
o gIXNZE
SNy TUND Ju344n8 18T roWd I
L 2 <Lyt 2eE>
AHOW AN A_H @ €Dy 6 d &Md> 6N
SS3HOOY AHOW3W 97 ‘g7
A» @I @7 ITN ch vI‘eET :dd a7 :d
TIIND W3W *
smd @ Tesd-1n d3T10HLINOD o o0 oo 50 :d e m:zqwm
IEXaYTI0d MLIND 3HOUD v ACISIESICHR XM
8¢9 :dg | Huﬂ_Av gled-4aay 10d r99e8-2eldl STXX3T r18TrogdI
o/T 1D . IHNYM . 9127.101 <1E 97>
W 8N
T1LND IDd <2 " '2T>”Y | SLNANI ulbd
S1NdNI SS3dadg
<9e " 'ET>Y
vI i SR
87 :d
H ST 2> WS
2 ST TTQT 6 idg | 1 €S ONG Bon STXHEE
1 ’ 18T roIWg I
VD S J gled HVJ._ =4
n M Av H:H_UD 2N
ge :d g 0 evs N0 Sg=ps
SMD0T1D IDd ONE X@9 S ~m @1 - 82> anay SS3u0ay
BLEDAW Y1080 LOW I ss3aa8 @ "1e>y NEgn
S| o
n Shd XUS

7 | z | 9 B 8
o gz = HEEELE T e anatiad
9c 4 NOWLSE3 T ONIMBE
g [NOTLEHORIOD WA AHU
HIAWNN Laod ONMMO |NOTSInGaz1g| SE6T LHOTHALOD
NOI LBWHO NI Z m H
NOISTIO YD ISAHG
“37INA3HOS Ol SNIOHO0IOY O3IHIM 39 LSNW S13N
‘@3MOTIY LON JaY SLIN aUlS

69°'sn 62d°1C HIDETO8L X
8E'pn BEN'TIL SdE-591
15'@IN SBA ‘1L E5TIDETWIRIS X
@SN pdge 1r ESTEOHS
1S 6N SR4Y 1L SHIDE"WEHIS ™%
8y ‘pn P@2ou 10 SHTIDETWEES
1S'en 6249 1L THIE-WGHS ™
Sppn BEIGCIL THTE-IGHS
1520 B2A'IL @RS X
ppyn GEM-IC OSTE TS

212°In 810 1L X@9™HIDd™X
pE ‘pn 813°1r X@9™M1Dd

€271 ‘en B6C8H 1L NI~XTID™IDd
8T°bN @EL°TL N10"15d 789
o SID~NAD 99

187+én 6eH-1r DN ~F83~x

LST'EN SB4°IC SID~NAD"E99™X
8e'pn pBOIL S$d-Na>-€89

S3HONI S2'@ -+ @°E OL dn

LeNn1r
:3791SS0d SY L¥0HS Su

‘SLAN H3HLIO WOdH4 U3ATIIHS 3d ONY HLIONIT NI
adoy 1SN SL13N 40 SdIbd ONIMOTTIO4 3HL 40 HOu3

N —
AN Q=== MO
MNOQLIQE)—-— M —i
CCNCZOTTLIHNT
gg—a—a—a—a—a—a—a—a—a—a
inlalelslelelelelele]

9)

b4

)

O

—

o]

D.I

14

L)

0]

=)

1d3X ONY 03073IHS 39 LSNW SL3IN ONIMOTTIO4 3HL

:SHLION NOISHO "IBOISAHG

1 _

2 _

BE6T dE :ES :S7T

1__fen peM=03I AIJOW"1Su1

H3AWNN Ldod ONMHA (NOISINZH|3ZIS

S66T LHOIHALOD

40 133HS TAISSAOO=3T1LIL
wm m NOWLSEH3 L ONIMId
g |NOILLMOCH0D WAl

©

S31O0N
NOT L5HNOT ANOD

Nall

“1NGNI 20710
YLSAHD ZHW 9SS O

HLIM TT @2 oL

H

YN

) 201D 2
ATNO 2°1
8-z
201 9ot .
:SNOISYHIN dTHD oS

:SHLON NOI1-gdNOI ANOD

T _ c _ v _ =1 9 L 8
BEET 9T:ES:.@ B Ao NuUI=03I AIO0W™1SU1
wmuo w 133HS q>umwwmwmww._.uw _
. £ drermmiae] 5| aeod gra | 3 a5
1259 SOASIOO 213
8 Ll © Sl i Jm—n)
TASIBO o 213
UIAWIN Lo ONMAA |NOISINR|IZIS = 4 S 583 e &= 53 o NIGHD
€IASTOOED® 503
SNTId N JA €20 o} yeod r120 _E+F§H roa *-
€20 6oxY_| €220 £7120 S@3_| €20 fm H qa
cps— Al e A
PSS CaEZE T@ASTEd ved |2 SNId]
79
<€ g *XAQ_INT X Ted KXGLNX | €90
2821 | wI0GT *J0JL =4=lul
<€2€1 ©|ary kgl N KL wen
«ewar P 1M #X@3 LM _ - 230
cevar S0 bl HXPSID g —1 Teud T XAa N TI"X 61 990ax 650
U BLl 2] QEY d = MI1D_ NdD_£99-X Sod EXDdOX 860l
s | c=E{l = el | SRl &
<>BEET <>EUAT AH 0 PoLL WI T2Y_| E11 22 soo | e d > Nzn_umnzu S—X_S@i9_| SHOEaSX S&a
822 =CH pll = 209 SeY”d ! ° M12-NdD Q—x &eH_| PXIdOX 7Sa
8312 »83a2e >86T *d NS E@NY *dSYWS == 22d Sey”d Z ZEN 2dW €50
= Rt R = SEil = ——— 3| & e
= -ec_ sou | —§ Zed0 |
M Z;l n.w.v w mm_ul N31d “m ceo’d 2 %w ydh ©sa
>8uLT X]GD)-Og] €e0 | *XTSIOL Hmw 2] Tcu”d 92Ng EdW era
>pasl o] S—og| eeo | 24591 €29 @cy_d @eNY 2di 8ral
»easT oq9dgSI e JEY_| SIIWN gal ¥@D 618" d wmzq TdW Lral
»8ast 799 01 1 TE! PINI 87 €08 8lu"d a QdW -9F ___€€9 gpa
89rT OEY_| E1SLW 2T Zoo | 219”d <>ea97 R R T= ("] L —ce5 | *2SHD S 565 Spaun
<8orT SXTNCH_SM @ED | SdSMW 120 91Y”d] ZED *9SYD A5 448!
<eert SXMdEO-S&HD 62y_| 2258 FZE] SIg’d S EEH *GSGUD Ey €€ €pa
Meid) M EEW_| K@ IMW 123 yio_d 2 €EL *PSYD 2y ze cral
<ayT *T IM EEN_| *T IMW 124 €l9°d [ZEL *ESHD Hmv EE. 48!
<EBET *IM_WON TEL K IMNOH 225 2iv’d <wayt EEx *ZSYD 4 € oral
Soer Tt | Wasie 1o g19-g v o g e 8ed
»82eT %13535,0009 S3MOd__82y *1 5804 Tor 6@9-d TTOM 1 ZEa
829 €£277d - i 889-d 3T9W S 6o 9EQ
229 c217d «>east 289”d BaYN "GE BN SEQl
>8ec1 pR=ic| 727d @ o 13T 9vY”d 880 - 7E_ 8N veQ
620 @071d SPY”d 22BN ' EE zew €Ed
<1821 925 oal <@* *7€>09710d | yoo_d SN 2E___Z2N ced
8821 S2y_| 1al £EBY"d SBIN S2N TEQ
»aeey ceg] D1 ggo_d P@IN = ZEQ
= e (S e il s LS| o
18221 e 1 3IGHH < Hodd TQOW [t Leq
»aszr SS—TEd] *1 3SHS OF: *HH IS QOIW 32N geq
HM g4 e] 107 OF: O 3d 1) Hxv Sdd Hhma\w_ SS___Ten Scdl
== it |~ | oiage st *3839 oo P £sa
>9868 ONI0-1od 1) i1es enidd *E292d *FSOE = ceql
NS M0 NdD—p99 eeo | PX2d) — *EG Do KESHH 12d
)80@2 T 1G9l —X_ b2y | MHIISX < - E) 30— *1S5Ndd *ZSo Hmw acdl
28087 1D IWEHS 624 | mv_ummx © " *dO1S— *dO1Sd *TSHH 6T 610
9veZ 3G0H1S-7 by EES | [Z o) 2SIYT < - E3 I- *AQHId *@SEH 81d
9veZ 284 47INOD ™ 8TY | ZAWOD 28I¥T € - KA — *AQHLld EXDdD 210
982 TAI0_ o0 @20 | NI1ad o o PO WG 1 * IS Ad pX2dN 91d
e bt s 5, gt i
»98E2 eI TR =Y [=TRZ=11] € * T XpSOodd ITBLX €10
g e He e e DA B e EE{Bi:
roEEz Exunﬂn 2 X12T@9 D Jim * R GO = *YLGWE 210
<ED| XA~ DX _2Z2H | *X9dIX ’8: 3 XIS I 6 6ou [Su
)9%€2 13IS"0DA M) To_| 13501 T *1N0— 1S * 10D 87 40 & -8 6o 8a
r9%ee 36TIIE AD €T] <»eay K AN L kA Led SNId . Jon 20
o NI 1D T 7120d 5 JoN 9a
<E: [SYmel=] EXDIS 1r S goN Sa
— € FA