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CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide —in the
U.S., Canada, Europe and the Far East. So wherever you’re using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your invest-
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel’s Networking Specialists can optimize network performance for you.
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CHAPTER 1
INTRODUCTION

The 80C186EB is the third generation addition to the Intel’s 80186 family of embedded microproces-
sors. Intel’s advanced CHMOS IV semiconductor fabrication technology has allowed the integration
of many of today’s most used peripherals with a high performance, low-power, 8086 compatible CPU
core. The 80C186EB is the first choice in portable office and communication equipment due to its low
power and high integration. The flexible power management strategy of the 80C186EB allows for
low-power applications that do not sacrifice performance.
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Figure 1.1. 80C186EB Block Diagram
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The 80C186EB maintains full code compatibility with it’s older relatives the 80186 and 80C186, but
adds a new, and enhanced, feature set:

¢ Low Power/Static CMOS Modular CPU core
*  Power Management Unit

¢ Serial Communications Unit

*  Input/Output Port Unit

*  Enhanced Chip Select Unit

¢ Refresh Control Unit

»  Interrupt Control Unit

¢ Timer/Counter Unit

The brains of the 80C186EB is the new Modular CPU Core. The CPU core shares the same
instruction set as the immensely popular 8086/8088 while adding the new instructions found on the
80186 and 80C186. There is no larger software base available today than that written for 8086
compatible products. Intel provides the programmer with a wide array of programming solutions
such as ASM86, C-86, PASCAL-86, and PLM-86. For those users requiring enhanced floating point
performance, the 80C186EB interfaces directly with the 80C187 Numerics Processor Extension.

The 80C186EB is a fully static device. The clock to the 80C186EB may be shut off indefinitely
without the device losing its state. Once the clock is restored to the 80C186EB it will begin executing
as if there had been no interruption. The integrated Power Management Unit uses this feature to turn
off sections of the chip while they are not being used and re-awaken them as they are needed.

The Serial Communications Unit is a new peripheral in the 80C186 product family. This new unit
includes two synchronous/asynchronous serial communications ports. The Serial Communications
Unit allows the 80C186EB family to be connected to serial based devices such as printers and PC
serial ports. The new serial ports are also fully compatible with those found on other popular Intel
microcontrollers such as the MCS-51 and MCS-96 families. Systems using an 80C186EB and a
compatible controller can now communicate without the need for board space robbing mailbox
memories.

The Enhanced Chip Select Unit is another new peripheral added to the 80C186EB family. It has
enormous flexibility. Each of the 10 available chip select lines can be programmed to select varying
sized regions in memory or I/O space. The chip selects can select overlapping regions and can be
enabled and disabled through software. Taken to the extreme this unit can extend the address space
of the 80C186EB to 10 megabytes of software paged memory.
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Some customers may not need all the pin functions available on the 80C186EB. The Input/Output
portunit was added to allow the user to swap unused internal peripheral pins for input and output ports.
For example, eight of the ten chip select pins may be converted, via software, into output ports.

The Refresh Control Unit has been provided to simplify the design of dynamic memory systems. At
programmable intervals, the 80C186EB will run dummy read cycles to refresh the dynamic RAM.

The Interrupt Control Unit handles the 80C186EB interrupt duties. The Interrupt Controller handles
interrupt requests from all internal sources as well as the 5 external interrupt pins. If more than five
external interrupts are required, the Interrupt Unit can be cascaded to external 82C59 controllers
increasing the handling capacity to 129 interrupts.

Many systems require the handling of time related events. The Timer/Counter Unit provides a
flexible solution for this system need. The Timer/Counter unit contains three sixteen bit timers that
canbe configured to perform many tasks including: real time clock, event counter, programmable one
shot.

The introduction of the 80C186EB signals a new direction for the successful 80186 family. The
80C186EB story began over a decade ago with the introduction of Intel’s first 16-bit microprocessor,
the 8086.

1.1 THE 80186 FAMILY LEGACY

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcomputer
engine of choice. There are literally millions of 8086/8088 based systems in the world today. The
amount of software written for the 8086/8088 microprocessor can be rivaled by no other architecture.

The 8086, however, required dozens of support chips to implement even a moderately complex
system. Intel recognized the need to integrate commonly used system peripherals onto the same
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family of
embedded microprocessors. The 80186 integrated the following peripherals with the CPU: Chip
Select Unit, Interrupt Unit, Clock Generator, DMA Unit, Interrupt Unit, and a Timer Counter Unit.
In addition to the new integrated peripherals, the CPU was enhanced by adding new instructions and
reducing the time required to perform all memory access instructions.

As technology advanced and turned towards small geometry CMOS processes, it became clear that
anew 80186 was needed. In 1987 Intel announced the second generation of the 80186 family: the
80C186. The 80C186 is pin compatible with the 80C186 while adding an enhanced feature set
including apower save unit, arefresh control unit, and adirect 80C187 interface. The high performance
CHMOS III process allowed the 80C186 to run at twice the clock rate of the NMOS 80186.

1-3



intel INTRODUCTION

In the past 5 years the size of personal computing equipment has shrunk dramatically. Computers that
once took up half the desk now sit comfortably on your lap during a long flight. Portable phones, once
a bulky and expensive luxury, are now commonplace. The FAX machine, a now critical piece of
office equipment, is now venturing into the automobile.

Intel saw the need for highly integrated yet low power solutions for these and many other computing
applications. Once again, the 80186 architecture was the answer.

The 80C186EB is the first member of the 80C186 Modular Core family. In following with the
electronics industry trend towards application specific products, the CPU of the 80C186 was rede-
signed to be a stand alone, proliferatable, core. The core was given an internal interface bus to which
a wide array of integrated peripherals could be attached.

The entire system was designed to be static. When the clock is disabled, while waiting for arelatively
slow human to touch the keyboard for instance, the chip will shut off and consume almost no power.
This kind of power management is critical in portable applications.

A new and enhanced feature set was added to the 80C186 Modular Core. This new feature set
exchanges the DMA controller for 2 serial ports and enhances the capabilities of the original periph-
erals.

The 80C186EB is the direct result of eight years of 80186 family development. It offers the designer
the peace of mind of a well established architecture with benefits of state of the art technology.

1.2 HOW TO USE THIS MANUAL

Throughout this manual you will come across phrases such as “80C186 Modular Core Family” or
“80C186EB family”. Each of these terms refers to a specific set of SOC186EB products. The phrases
and the products they refer to are as follows:

80C186 Modular Core Family: This phrase refers to any product that uses the embedded
80C186 CPU core architecture. At this time these are the 80C186EB and 80C188EB. Most
discussions that refer to the Modular Core Family are also true of the 80186 and 80C186 CPU’s.

80C186 Modular Core: Without the family, this refers to just the 16-bit bus members of the
modular core family.

80C188 Modular Core: This phrase refers to the 8-bit bus products.

80C186EB Family: This phrase refers specifically to the 80C186EB and the 80C188EB; both
the Modular CPU core and the specific peripheral set.

14
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80C186EB: This refers to just the 80C186EB (16-bit bus) version of the 80C186EB family.
80C188EB: The 8-bit bus member of the 80C186EB family.

Each chapter covers a specific section of the device beginning with the CPU core. In the appendices
you will find information regarding the differences among family members, instruction set references,
and special topics.

This user’s guide is intended to be a supplement to the device data sheet. Specific timing values are
not discussed in this guide; they can be found in the data sheet.
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CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086, 8088,
80186, 80188, 80286, i1386™, and i486™ processors. The 80C186 Modular Core maintains full
object code compatibility with the well-known 8086/8088 family of 16-bit microprocessors, while
adding additional hardware and software performance enhancements. Most instructions require
fewer clocks to execute on the 80C186 Modular Core because of hardware enhancements in the Bus
Interface Unit and the Execution Unit. In addition, there are anumber of additional instructions which
simplify programming and reduce code size (see Appendix A.7).

This section describes the base architecture of the 80C186 Modular Core family. Those readers
already familiar with the 8086/8088 architecture will find this section to be, for the most part, areview
and may wish to read Appendix A (“Differences Between the 80C186 Modular Core Family and the
8086/8088”) instead.

2.1 ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an Execution
Unit(EU) and a Bus Interface Unit (BIU). The EU is functionally identical among all family members.
In the 80C186 Core the BIU is configured for a 16-bit external data bus and in the 80C188 Core the
BIU s configured foran 8-bit external data bus. The two units are connected by an instruction prefetch
queue.

The EU executes instructions and the BIU fetches instructions, reads operands, and writes results.
Whenever the EU requires another opcode byte, it takes the byte out of the prefetch queue. The two
units can operate independently of one another and are able, under most circumstances, to extensively
overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU) which performs 8-bit
or 16-bit arithmetic and logical operations. It provides for data movement among registers, memory
and I/O space. In addition, the CPU allows for high speed data transfer from one area of memory to
another using string move instructions, and to or from an I/O port and memory using block I/O
instructions. Finally, the CPU provides many conditional branch and control instructions.

This architecture features 14 basic registers which are grouped as general registers, segment registers,
pointer registers, and status and control registers. The four 16-bit general purpose registers (AX, BX,
CX, and DX) may be used as operands in most arithmetic operations in either 8- or 16-bit units. The
four 16-bit pointer registers (SI, DI, BP, and SP) may be used both in arithmetic operations and in
accessing memory-based variables. Four 16-bit segmentregisters (CS, DS, SS, and ES) allow simple
memory partitioning to aid modular programming. The status and control registers consist of an
instruction pointer (IP) and a status word register containing flag bits.
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Figure 2.1 is a simplified CPU block diagram.

I ADDRESS BUS
AR AL I S
BH BL
CH CL | / \
GENERAL DH DL | \ )
REGISTERS P 'DATA BU:S
SP | y teBmS)
5 | 3
DS
ES
| E
Y | COMMUNIATION
BUS
ALU DATA BUS REGISTERS I CONTROL |-t EXTERNAL
| I 4 (16 BITS) | \ LOGIC
\ \
[TEMPORARY REGISTERSjat—e |
r y | |
INSTRUCTION
_\_/_ | QUEUE
b | eu | asus
ALU b— CONTROL |t 1]2|al4]|s]6 e

SYSTEM | (8 BllTS)

| FLAGS - l
| EXECUTION UNIT I BUS INTERFACE UNIT
(EV) (BIU)

Figure 2.1. Simplified Functional Block Diagram of the 80C186 Modular Core Family CPU

270288-001-03

2.1.1 EXECUTION UNIT

The EU is responsible for the execution of all instructions, for providing data and addresses to the
BIU, and for manipulating the general registers and the flag register. A 16-bit ALU in the EU
maintains the CPU status and control flags, and manipulates the general registers and instruction
operands. All registers and data paths in the EU are 16 bits wide for fast internal transfers.

The EU does not connect directly to the system bus. It obtains instructions from a queue maintained
by the BIU. Likewise, when an instruction requires access to memory or to a peripheral device, the
EU requests the BIU to obtain and store the data. All addresses manipulated by the EU are 16 bits
wide. The BIU, however, performs an address calculation that gives the EU access to the full
megabyte of memory space.

When the EU is ready to execute an instruction, it fetches the instruction object code byte from the
BIU’s instruction queue and then executes the instruction. If the queue is empty when the EU is ready
to fetch an instruction byte, the EU waits for the instruction byte to be fetched. If a memory location
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or I/O port must be addressed during the execution of an instruction, the EU requests the BIU to
perform the required bus cycle.

2.1.2 BUS INTERFACE UNIT

The 80C186 Core and 80C188 Core BIUs are functionally identical, but are implemented differently
to match the structure and performance characteristics of their respective system buses. Data is
transferred between the CPU and memory or peripheral devices upon demand from the EU. The BIU
executes all external bus cycles. This unit consists of the segment registers, the instruction pointer, the
instruction code queue, and several miscellaneous registers. The BIU transfers data to and from the
EU on the ALU data bus.

The BIU generates 20-bit physical addresses in a dedicated adder. The adder shifts a 16-bit segment
value left 4 bits and then adds an offset value derived from combinations of the pointer registers, the
instruction pointer, and immediate values (see Figure 2.2). Any carry of this addition is ignored.

SHIFT LEFT 4 BITS SEGMENT
123 4 BASE
LOGICAL

T 15 0 ADDRESS
3 4 I°J
0

| 1 2 3 6 2J PHYSICAL ADDRESS
19 * 0
TO MEMORY

270288-001-04

Figure 2.2. Physical Address Generation

During periods when the EU is busy executing instructions, the BIU “looks ahead” and prefetches
more instructions from memory. As long as the prefetch queue is partially full, the EU can quickly
retrieve instructions upon demand.

2.1.3 GENERAL REGISTERS

80C186 Modular Core family CPUs have eight 16-bit general registers (see Figure 2.3). The general
registers are subdivided into two sets of four registers each. These are the data registers (also called
the H & L group for high and low), and the pointer and index registers (also called the P & I group).
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Figure 2.3. General Registers

The data registers are unique in that their upper and lower halves are separately addressable. This
means that each data register can be used interchangeably as a 16-bit register or as two 8-bitregisters.
The other CPU registers are always accessed as 16-bit only. The CPU can use data registers without
constraint in most arithmetic and logic operations. Most arithmetic and logic operations can also use
the pointer and index registers. Additionally, some instructions use certain registers implicitly (see
Table 2.1), therefore allowing compact yet powerful encoding.
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Table 2.1. Implicit Use of General Registers

REGISTER

OPERATIONS

AX

AL

AH
BX
CX
CL
DX

SP
Sl
DI

Word Multiply, Word Divide,
Word I/O

Byte Multiply, Byte Divide, Byte
I/0, Translate, Decimal Arithmetic

Byte Multiply, Byte Divide
Translate

String Operations, Loops
Variable Shift and Rotate

Word Multiply, Word Divide,
Indirect /O

Stack Operations
String Operations
String Operations

The state of any of the general registers is undefined at RESET.

2.1.4 SEGMENT REGISTERS

The 80C186 Modular Core family memory space (up to one megabyte) is divided into logical
segments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The base
addresses (starting locations) of these memory segments are contained in the segment registers (see
Figure 2.4). The CS register points to the current code segment. Instructions are fetched from the CS
segment. The SS register points to the current stack segment. Stack operations are performed on
locations in the SS segment. The DS register points to the current data segment. The data segment
generally contains program variables. The ES register points to the current extra segment, which also
is typically used for data storage. The segment registers are accessible to programs and can be
manipulated with several instructions.

Cs

DS

SS

ES

CODE SEGMENT

DATA SEGMENT

STACK SEGMENT

EXTRA SEGMENT

27088-001-6

Figure 2.4. Segment Registers
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Upon RESET, the CS register is initialized to OFFFFH, and the DS, ES, and SS register are all
initialized to zero.

2.1.5 INSTRUCTION POINTER

The BIU updates a 16-bit instruction pointer (IP) register so that it contains the offset (distance in
bytes) of the next instruction from the beginning of the current code segment. In other words, the IP
register points to the next instruction. During normal execution, the instruction pointer contains the
offset of the next instruction to be fetched by the BIU. Whenever the [P register is saved on the stack,
however, itis first automatically adjusted to point to the next instruction to be executed. Programs do
not have direct access to the instruction pointer, but it may change, be saved, or be restored as a result
of program execution.

RESET initializes the instruction pointer to 0000H. The concatenation of CS and IP values comprises
a starting execution address of OFFFFOH (see Section 2.1.8 for a description of address formation).

2.1.6 FLAGS

The 80C186 Core family has six one-bit status flags (see Figure 2.5) that the EU posts as the result of
an arithmetic or logic operation. Program branch instructions allow a program to alter its execution
depending on conditions flagged by prior operation. Different instructions affect the status flags
differently, generally reflecting the following states: '

« Iftheauxiliary flag (AF) is set, there has been a carry out from the low nibble into the high nibble
or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order byte of a 16-
bit quantity). This flag is used by decimal arithmetic instructions.

« If the carry flag (CF) is set, there has been a carry out of, or a borrow into, the high-order bit of
the instruction result (8- or 16-bit). The flag is used by instructions that add and subtract multibyte
numbers. Rotate instructions can also isolate a bit in memory or aregister by placing it in the carry
flag. ‘

o Iftheoverflow flag (OF) s set, an arithmetic overflow has occurred; that is, a significant digit has
been lost because the size of the result exceeded the capacity of its destination location. An
Interrupt On Overflow instruction is available that will generate an interrupt in this situation.

« Ifthe sign flag (SF) is set, the high-order bit of the result is a 1. Since negative binary numbers
are represented in standard two’s complement notation, SF indicates the sign of the result (0 =
positive, 1 = negative). ’

. Ifthe parity flag (PF) is set, the result has even parity, an even number of 1-bits. This flag can be
used to check for data transmission errors. ‘

o If the zero flag (ZF) is set, the result of the operation is O.
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Figure 2.5. Status Word Format

The additional control flags (see Figure 2.5) can be set and cleared by programs to alter processor
operations:

«  Setting the direction flag (DF) causes string instructions to auto-decrement; that is, to process
strings from the high address to the low address, or “right to left”. Clearing DF causes string
instructions to auto-increment, or process strings “left to right.”

»  Setting the interrupt-enable flag (IF) allows the CPU to recognize maskable external or internal
interrupt requests. Clearing IF disables these interrupts. The interrupt-enable flag has no effect
upon software interrupts or non-maskable externally generated interrupts.

e Setting the trap flag (TF) puts the processor into single-step mode for debugging. In this mode,
the CPU automatically generates an internal interrupt after each instruction, allowing a program
to be inspected as it executes instruction by instruction.

Both the status and control flags are contained in a 16-bit status word (see Figure 2.5). The RESET
condition of the status word is OFOO0H.

2.1.7 MEMORY SEGMENTATION

Programs for the 80C186 Modular Core family view the one megabyte memory space as a group of
segments that are user-defined according to application. A segment is a logical unit of memory that
may be up to 64 Kbytes long. Each segment if made up of contiguous memory locations and is an
independent, separately-addressable unit. Software assigns every segment a base address (starting
location) in memory space. All segments begin on 16-bit memory boundaries. There are no other
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restrictions on segment locations. Segments may be adjacent, disjoint, partially overlapped, or fully
overlapped (see Figure 2.6). A physical memory location may be mapped into (covered by) one or

more logical segments.

FULLY

OVERLAPPED SEGMENT D
PARTLY :
OVERLAPPED DISJOINT
CONTIGUOUS LOGICAL
SEGMENTS

SEGMENT E

[ SEGMENT A rSEGMENT B |
i 1|

|7 Yo

4 {\ A !
oH 10000H 20000H 30000H
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Figure 2.6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2.7). The
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64K stack,
and 128K of data storage. Programs obtain access to code and data in other segments by changing the

segment registers to point to the desired segments.
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Figure 2.7. Currently Addressable Segments

The segmented memory structure of the 80C186 Modular Core family is a hardware provision to
encourage modular programming. Every program will use segmentation differently. Smaller appli-
cations tend to initialize the segment registers and then simply forget them. Larger applications give
careful consideration to segment definition and use.

2.1.8 LOGICAL ADDRESSES

It is useful to think of every memory location as having two kinds of addresses, physical and logical.
A physical address is a 20-bit value that identifies each unique byte location in the memory space.
Physical addresses range from OH to FFFFFH. All exchanges between the CPU and memory com-
ponents use a physical address.

Programs deal with logical, rather than physical addresses. Program code can be developed without
prior knowledge of where the code is to be located in memory; in larger applications, dynamic
management of memory resources is a necessity. A logical address consists of a segment base value
and an offset value. For any given memory location, the segment base value locates the first byte of
the segment and the offset value is the distance, in bytes, of the target location from the beginning of
the segment. Segment base and offset values are unsigned 16-bit quantities. Many different logical
addresses can map to the same physical location. In the example (see Figure 2.8), physical memory
location 2C3H is contained in two different overlapping segments, one beginning at 2BOH and the
other at 2COH.
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If left alone, the processor automatically assigns segments based on the specific addressing needs of
the program. The segment register to be selected is automatically chosen according to the rules in
Table 2.2. All information in one segment type generally shares the same logical attributes (e.g., code
or data), leading to programs which are shorter, faster, and better structured.

To generate a physical address, the BIU must first obtain the logical address. The logical address of
amemory location can come from different sources, depending on the type of reference that is being

Figure 2.8. Logical and Physical Address

made (see Table 2.2).
Table 2.2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CS NONE IP
Stack Operation SS NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS, ES, SS Si
String Destination ES NONE DI
BP Used As Base Register SS CS, DS, ES Effective Address
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Segment base addresses are always held in the segment registers. The BIU conveniently assumes
which segment register contains the base address according to the type of memory reference made.
However, it is possible for a programmer to explicitly direct the BIU to access a variable in any of the
currently addressable segments (except for the destination operand of a string instruction). In assembly
language, this is done by preceding an instruction with a segment override prefix.

Instructions are always fetched from the current code segment; the IP register contains the offset of
the target instruction from the beginning of the segment. Stack instructions always operate on the
current stack segment; the SP (stack pointer) register contains the offset of the top of the stack. Most
variables (memory operands) are assumed to reside in the current data segment, but a program can
instruct the BIU to override this assumption. Often, the offset of a memory variable is not directly
available and must be calculated at execution time. This calculation is based on the addressing mode
(see Section 2.2.2) specified in the instruction; the result is called the operand’s effective address
(EA).

Strings are addressed differently than other variables. The source operand of a string instruction is
assumed to lie in the current data segment, but the program may use another currently addressable
segment. The operand’s offset is taken from the SI (source index) register. The destination operand
of a string instruction always resides in the current extra segment; its offset is taken from the DI
(destination index) register. The string instructions automatically adjust the ST and DIregisters as they
process the strings one byte or word at a time.

When register BP, the base pointer register, is designated as a base register in an instruction, the
variable is assumed toreside in the current stack segment. Therefore, register BP provides aconvenient
way to address data on the stack. However, the BP register can also be used to access data in any of
the other currently addressable segments.

2.1.9 DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 80C186 Modular Core family makes it possible to write
programs that are position-independent, or dynamically relocatable. Dynamic relocation allows a
multiprogramming or multitasking system to make particularly effective use of available memory.
The processor can write inactive programs to a disk and reallocate the space they occupied to other
programs. If a disk-resident program is needed later, it can be read back into any available memory
location and restarted. Similarly, if a program needs a large contiguous block of storage, and the total
amount is only available in non-adjacent fragments, other program segments can be compacted to
free up a continuous space. This process is illustrated graphically in Figure 2.9.
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Figure 2.9. Dynamic Code Relocation

To be dynamically relocatable, a program must not load or alter its segment registers and must not
transfer directly to a location outside the current code segment. In other words, all offsets in the
program must be relative to fixed values contained in the segment registers. This allows the program
to be moved anywhere in memory as long as the segment registers are updated to point to the new base
addresses.

2.1.10 STACKIMPLEMENTATION

Stacks in the 80C186 Modular Core family are implemented in memory and are located by the stack
segment register (SS) and the stack pointer (SP). A system may have numerous stacks, and a stack
may be up to 64 Kbytes long, the maximum length of a segment. An attempt to grow a stack beyond
64K overwrites the beginning of the segment. Only one stack is directly addressable at a time. The SS
register contains the base address of the current stack; however, the base address is not the origination
point of the stack. The SP register contains an offset which points to the top of stack (TOS).

2-12



inter’ OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Stacks are 16 bits wide; instructions that operate on a stack add and remove stack elements one word
atatime. An element is pushed onto the stack (see Figure 2.10) by first decrementing the SP register
by 2 and then writing the data word. An element is popped off the stack by copying it from the TOS
and then incrementing the SP register by 2. In other words, the stack goes down in memory toward
its base address. Stack operations never move elements on the stack, nor do they erase them. The top
of the stack changes only as a result of updating the stack pointer.
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STACK OPERATION FOR CODE SEQUENCE

270288-001-12

Figure 2.10. Stack Operation

2.1.11 RESERVED MEMORY AND I/0 SPACE
Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core family.

¢ Locations OH through 3FFH in low memory are reserved for interrupt vectors.

*  Locations OFFFFOH through OFFFFFH in high memory are reserved for system reset code since
the processor begins execution at OFFFFOH.

*  Locations OF8H through OFFH in I/O space are reserved for communication with other Intel

2-13



inte|° OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

hardware products. On the 80C186 Core, these addresses are used as I/O ports for the 80C187
numerics processor extension.

The peripheral control block (see Section 5.0) may reside in memory or 1/O space. All unused
locations in the peripheral control block are also reserved.

2.2 SOFTWARE OVERVIEW

Al180C186 Modular Core family members execute exactly the same instructions. This instruction set
includes all the 8086/8088 instructions plus several usefuladditions and enhancements. The following
sections provide a description of the instructions by category and a detailed discussion of the various
operand addressing modes. ’

Software for 80C186 Core family systems does not need to be written in assembly language. The
processor provides direct hardware support for programs written in the many high-level languages
available. Most high-level languages store variables in memory; the symmetrical instruction set
supports direct operation on memory operands, including operands on the stack. The hardware
addressing modes provide efficient, straightforward implementations of based variables, arrays,
arrays of structures and other high-level language data constructs. A powerful set of memory-to-
memory string operations is available for efficient character data manipulation. Finally, routines with
critical performance requirements that cannot be met with high- level languages may be written in
assembly language and linked with high-level code.

221 INSTRUCTION SET

Instructions in the 80C186 Modular Core family treat different types of operands uniformly. Nearly
every instruction can operate on either byte or word data. Register, memory and immediate operands
may be specified interchangeably in most instructions. The exception to this is that immediate values.
serve as source and not destination operands. In particular, memory variables may be added to,
subtracted from, shifted, compared, and so on, in place, without moving them in and out of registers.
This saves instructions, registers, and execution time in assembly language programs. In high-level
languages, where most variables are memory-based, compilers can produce faster and shorter object
programs.

The 80C186 Core family instruction set can be viewed as existing on two levels. One is the assembly
level and the other is the machine level. To the assembly language programmer, the 80C186 Core
family appears to have a repertoire of about 100 instructions. One MOV (data move) instruction, for
example, transfers a byte of a word from a register of a memory location or an immediate value to
either a register or a memory location. The 80C186 Modular Core family CPUs, however, recognize
28 different machine versions of the MOV instruction.

The two levels of instruction set address two different requirements: efficiency and simplicity. The
approximately 300 forms of machine-level instructions make very efficient use of storage. For
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example, the machine instruction that increments a memory operand is three or four bytes long
because the address of the operand must be encoded in the instruction. To increment a register,
however, does not require as much information, so the instruction can be shorter. The 80C186 Core
family has eight different machine-level instructions that increment a different 16-bit register. Each
of these instructions is only one byte long.

The assembly level instructions simplify the programmer’s view of the instruction set. The program-
mer writes one form of an INC (increment) instruction and the assembler examines the operand to
determine which machine level instruction to generate. The following paragraphs provide a func-
tional description of the assembly-level instructions.

2.2.1.1 DATA TRANSFER INSTRUCTIONS

The instruction set contains 14 data transfer instructions. These instructions move single bytes and
words between memory and registers, and also move single bytes and words between the AL or AX
registers and I/O ports. Table 2.3 lists the four types of data transfer instructions and their functions.
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Table 2.3. Data Transfer Instructions

Table 2.4. Arithmetic Instructions

GENERAL PURPOSE ADDITION
MOV Move byte or word ADD Add byte or word
PUSH Push word onto stack ADC Add byte or word with carry
POP Pop word off stack INC Increment byte or word by 1
PUSHA Push registers onto stack AAA ASCII adjust for addition
POPA Pop registers off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate b
ranslate byte suB Subtract byte or word
INPUT/OUTPUT SBB Subtract byte or word with
IN Input byte or word borrow
ouT Output byte or word DEC Decrement byte or word by 1
NEG Negate byte or word
ADDRESS OBJECT AND STACK FRAME
- 'S CMP Compare byte or word
LEA Load effective address AAS ASCIi adjust for subtraction
LDS Load pointer using DS DAS Decimal adjust for subtraction
LES Load pointer using ES
ENTER Build stack frame MULTIPLICATION -
LEAVE Tear down stack frame MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
FLAG TRANSFER
G S AAM ASCII adjust for multiply
LAHF Load AH register from flags
SAHF Store AH register in flags I_)IVISION -
PUSHF Push flags onto stack DIv Divide byte or word unsigned
POPF Pop flags off stack IDIV Integer divide byte or word
AAD ASCII adjust for division
cBw Convert byte to word
CWD Convert word to doubleword
Table 2.5. Arithmetic Interpretation of 8-Bit Numbers
UNSIGNED SIGNED UNPACKED PACKED
HEX BIT PATTERN BINARY BINARY DECIMAL DECIMAL
07 00000111 7 +7 7 7
89 10001001 137 -119 invalid 89
C5 11000101 197 -59 invalid invalid

Data transfer instructions are categorized as general purpose, input/output, address object, and flag
transfer. The stack manipulation instructions which are used for transferring flag contents, and the
instructions for loading segment registers are also included in this group. Figure 2.11 shows the flag
storage formats. The address object instructions manipulate the addresses of variables instead of the
contents of values of the variables. This is useful for list processing, based variable, and string
operations.
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Figure 2.11. Flag Storage Format
2.2.1.2 ARITHMETIC INSTRUCTIONS
The arithmetic instructions (see Table 2.4) operate on four types of numbers:

1. Unsigned binary.

2. Signed binary (integers).
3. Unsigned packed decimal.
4

Unsigned unpacked decimal.
Table 2.5 shows the interpretations of various bit patterns according to each number type.

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for
packed decimal and one digit per byte for unpacked decimal. The processor always assumes that the
operands specified in arithmetic instructions contain data that represent valid numbers for the instruc-
tion being performed. Invalid data may produce unpredictable results. The processor analyzes
arithmetic results and posts certain characteristics of the operation to six flags.

2.2.1.3 BIT MANIPULATION INSTRUCTIONS

There are three groups of instructions for manipulating bits within both bytes and word. These three
groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit manipulation instructions
with their functions.
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The logical instructions include the Boolean operators NOT, AND, inclusive OR, and exclusive OR
(XOR). A TEST instruction that sets the flags as a result of a Boolean AND operation, but does not
alter either of its operands, is also included.

The bits in bytes and words may be shifted arithmetically or logically. Up to 255 shifts may be
performed, according to the value of the count operand coded in the instruction. The count may be
specified as an immediate value or as a variable in the CL register, allowing the shift count to be a
variable supplied at execution time. Arithmetic shifts may be used to multiply and divide binary
numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words.

Bits in bytes and words can also be rotated. The processor does not discard the bits rotated out of an
operand; the bits circles back to the other end of the operand. As in the shift instructions, the number
of bits to be rotated is taken from the count operand, which may specify either an immediate value,
or the CL register. The carry flag may act as an extension of the operand in two of the rotate
instructions, allowing a bit to be isolated in CF and then tested by a JC (jump if carry) or INC (jump
if not carry) instruction.

2.2.1.4 STRING INSTRUCTIONS

Five basic string operations allow strings of bytes or words to be operated on, one element (byte or
word) at a time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions
are available to move, compare and scan for a value, as well as moving string elements to and from
the accumulator. Table 2.7 lists the string instructions. These basic operations may be preceded by a
special one-byte prefix that causes the instruction to be repeated by the hardware, allowing long
strings to be processed much faster than would be possible with a software loop. The repetitions can
be terminated by a variety of conditions, and repeated operations may be interrupted and resumed.

The string instructions operate similarly in many respects (refer to Table 2.8). A string instruction
may have a source operand, a destination operand, or both. The hardware assumes that a source string
resides in the current data segment. A segment prefix may be used to override this assumption. A
destination string must be in the current extra segment. The assembler checks the attributes of the
operands to determine if the elements of the strings are bytes or words. However, the assembler does
not use the operand names to address strings. Instead, the contents of register SI (source index) are
used as an offset to address the current element of the source string. Also, the contents of register DI
(destination index) are taken as the offset of the current destination string element. These registers
must be initialized to point to the source/destination strings before executing the string instructions.
The LDS, LES and LEA instructions are useful in performing this function.

String instructions automatically update the ST or DI register or both prior to processing the next string
element. Setting the direction flag (DF) determines whether the index registers are auto-incremented
(DF =0) or auto-decremented (DF = 1). The processor adjusts the DI or SI register or both by one if
byte strings are being processed. The adjustment is two for word strings.



intal’

OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

Table 2.6. Bit Manipulation Instructions

Table 2.9. Program Transfer Instructions

2-19

LOGICALS UNCONDITIONAL TRANSFERS
NOT “Not” byte or word CALL Call procedure
AND “And” byte or word RET Return from procedure
OR “Inclusive or” byte or word JMP Jump
XOR “Exclusive or” byte or word CONDITIONAL TRANSFERS
TEST “Test” byte or word SAUNBE 3 T above/mot bol
ump if above/not below
SHIFTS nor equal
SHL/SAL Shift logical/arithmetic left JAE/UNB Jump if above or equal/
‘byte or word not below
SHR Shift logical right byte or word JB/UNAE Jump if below/not above
SAR Shift arithmetic right byte or nor equal
word JBE/UNA Jump if below or equal/
ROTATES not above
ROL Rotate left byte or word JC Jump !f carry
. JENZ Jump.if equal/zero
ROR Rotate right byte or word JG/INLE Jumb if areater/not les
RCL Rotate through carry left byte no?quuael erinotless
or word .
RCR Rotate through carry right byte JGEANL Jun;f"f sgreater or equal/
or word notiess
JLANGE Jump if less/not greater
Table 2.7. String Instructions nor gqual
JLE/ING Jump if less or equal/
REP Repeat not greater
ggﬁ; ot —oro JNE/JNZ Jum if not equal/not zero
MOVS Move byte or word string JNO Jump ff not overﬂow .
MOVSB/MOVSW | Move byte or word string JNP/JPO Jump if not parity/parity odd
INS Input byte or word string JNS Jump if not sign
ouTsS Output byte or word string JO Jump if overflow
CMPS Co;n_pare byte or word JP/JPE Jump if parity/parity even
string .l
SCAS Scan byte or word string JS Jump if sign
LODS Load byte or word string ITERATION CONTROLS
STOS Store byte or word string LOOP Loop ‘
. LOOPE/LOOPZ Loop if equal/zero
Table 2.8. String Instruction Register and Flag Use LOOPNE/LOOPNZ| Loop if not equal/not zero
Si Index (offset) for source string JCXZ Jump if register CX=0
DI Intsjter:;:1 (goffset) for destination INTERRUPTS
CX Repetition counter INT Interrupt
AL/AX gcarg value for LODS INTO Interrupt if overflow
sgﬁ?g: ;g’rnS?'rOLS D BOUND Interrupt if out of array
DF 0 SI, DI pounds
= auto-increment S,
1 = auto-decrement SI, DI IRET Interrupt return
ZF Scan/compare terminator
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Ifarepeat prefix has been coded, thenregister CX (the count register) is decremented by one aftereach
repetition of the string instruction. The CX register must be initialized to the number of repetitions
desired before the string instruction is executed. If the CX register is 0, the string instruction is not
executed and control goes to the following instruction.

2.2.1.5 PROGRAM TRANSFER INSTRUCTIONS

The sequence in which instructions are executed in the 80C186 Modular Core family is determined
by the contents of the CS and IPregisters. The CS register contains the base address of the current code
segment. The IP register points to the memory locations from which the next instruction is to be
fetched. In most operating conditions, the next instruction to be executed will have already been
fetched and is waiting in the CPU instruction queue. The program transfer instructions operate on the
instruction pointer and on the CS register; changing the content of these causes normal sequential
operation to be altered. When a program transfer occurs, the queue no longer contains the correct
instruction. When the BIU obtains the next instruction from memory using the new IP and CS values,
it passes the instruction directly to the EU and begins refilling the queue from the new location.

Four groups of program transfers are available with the 80C186 Core family processors. See Table
2.9. These are unconditional transfers, conditional transfers, iteration control instructions, and in-
terrupt-related instructions.

The unconditional transfer instructions may transfer control to a target instruction within the current
code segment (intrasegment transfer) or to a different code segment (intersegment transfer). The
assembler terms an intrasegment transfer SHORT or NEAR and an intersegment transfer FAR. The
transfer is made unconditionally any time the instruction is executed.

The conditional transfer instructions are jumps that may or may not transfer control depending on the
state of the CPU flags at the time the instruction is executed. These 18 instructions (see Table 2.10)
each test a different combination of flags for a condition. If the condition is logically TRUE then
control is transferred to the target specified in the instruction. If the condition is FALSE then control
passes to the instruction that follows the conditional jump. All conditional jumps are SHORT, that is,
the target must be in the current code segment and within -128 to +127 bytes of the first byte of the
next instruction. For example, JMP O0H causes a jump to the first byte of the next instruction. Since
jumps are made by adding the relative displacement of the target to the instruction pointer, all
conditional jumps are self-relative and are appropriate for position-independent routines.
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Table 2.10. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF...”

JA/UJNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/UNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JENZ ZF=1 equal/zero

JG/JNLE ((SF xor OF) or ZF) =0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/UNGE (SF xor OF)=1 less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/JNZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

JS SF=1 sign

Note: “above” and “below” refer to the relationship of two unsigned values;
“greater” and “less” refer to the relationship of two signed values.

The iteration control instructions can be used to regulate the repetition of software loops. These
instructions use the CX register as a counter. Like the conditional transfers, the iteration control
instructions are self-relative and may only transfer to targets that are within -128 to +127 bytes of
themselves, i.e., they are SHORT transfers.

The interrupt instructions allow interrupt service routines to be activated by programs as well as by
external hardware devices. The effect of software interrupts is similar to hardware-initiated inter-
rupts. However, the processor cannot execute an interrupt acknowledge bus cycle if the interrupt
originates in software or with an NMI (Non-Maskable Interrupt).

2.2.1.6 PROCESSOR CONTROL INSTRUCTIONS

The processor control instructions (see Table 2.11) allow programs to control various CPU functions.
One group of instructions updates flags, and another group is used primarily for synchronizing the
microprocessor to external events. A final instruction causes the CPU to do nothing. Except for the
flag operations, none of the processor control instructions affects the flags.
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Table 2.11. Processor Control Instructions

FLAG OPERATIONS
STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next
instruction
NO OPERATION
NOP I No operation

22.2 ADDRESSING MODES

An 80C186 Modular Core family member accesses instruction operands in many different ways.
Operands may be contained in registers, within the instruction itself, in memory, or atI/O ports. Also,
the addresses of memory and I/O port operands can be calculated in several different ways. These
addressing modes greatly extend the flexibility and convenience of the instruction set. The following
paragraphs briefly describe the register and immediate modes of operand addressing, and then
provide a detailed description of the memory and I/O addressing modes.

2.2.2.1 REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES

Instructions that specify only register operands are usually the most compact and fastest executing of
the operand addressing forms. This is because the register operand addresses are encoded in in-
structions in justa few bits, and because these operands are performed entirely within the CPU (nobus
cycles are run). Registers may serve as source operands, destination operands, or both.

Immediate operands are constant data contained in an instruction. The data may be either 8 or 16 bits
in length. Immediate operands can be accessed quickly because they are available directly from the
instruction queue. Like the register operand, no bus cycles need to be run to get an immediate operand.
The limitations on immediate operands are that they may only serve as source operands and that they
are constant in value.
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2.2.2.2 MEMORY ADDRESSING MODES

Although the EU has direct access to register and immediate operands, memory operands must be
transferred to and from the CPU over the bus. When the EU needs to read or write a memory operand,
it must pass an offset value to the BIU. The BIU adds the offset to the shifted contents of a segment
register producing a 20-bit physical address and then executes the bus cycle or cycles needed to access
the operand.

The offset that the EU calculates for memory operand is called the operand’s effective address or EA.
This address is an unsigned 16-bit number that expresses the operand’s distance in bytes from the
beginning of the segment in which it resides. The EU can calculate the effective address in several
ways. Information encoded in the second byte of the instruction tells the EU how to calculate the
effective address of each memory operand. A compiler or assembler derives this information from the
statement or instruction written by the programmer. Assembly language programmers have access to
all addressing modes.

The EU calculates the EA by summing a displacement, the content of a base register and the content
of an index register (see Figure 2.12). Any combination of these three components may be present in
a given instruction. This allows a variety of memory addressing modes.
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The displacement element is an 8-bit or 16-bit number that is contained in the instruction. The
displacement generally is derived from the position of the operand name (a variable or label) in the

Figure 2.12. Memory Address Computation

program. The programmer can also modify this value or explicitly specify the displacement.

A programmer may specify that either the BX or BP register is to serve as a base register whose

content is to be used in the EA computation.

Similarly, either the SI or DI register may be specified as the index register. The displacement value
is a constant. The contents of the base and index registers may change during execution. This allows
one instruction to access different memory locations as determined by the current values in the base
or base and index registers. Effective address calculations with the BP register are made using the SS

register, by default, although either the DS or the ES register may be specified instead.
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Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are
involved and the EA is taken directly from the displacement of the instruction. The programmer
typically uses direct addressing to access scaler variables.

T |
OPCODE l MOD R/M r DISPLACEMENT J

270288-001-15

Figure 2.13. Direct Addressing

With register indirect addressing, the effective address of a memory operand may be taken directly
from one of the base or index registers (see Figure 2.14). One instruction can operate on many
different memory locations if the value in the base or index register is updated appropriately. Any 16-
bit general register may be used for register indirect addressing with the JMP or CALL instructions.

[ OPCODET MOD R/M J

> BX
——OR
BP r
OR — EA |
Si L
—OR
DI
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Figure 2.14. Register Indirect Addressing
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Inbased addressing (see Figure 2.15), the effective address is the sum of a displacement value and the
content of register BX or BP. Specifying register BP as a base register directs the BIU to obtain the
operand from the current stack segment (unless a segment override prefix is present). This makes
based addressing with the BP register a very convenient way to access stack data.

T A
OPCODE MOD R/M L DISPLACEMENT -}
BX
— OR—
% )

270288-001-17

Figure 2.15. Based Addressing

Based addressing also provides a simple way to address data structures which may be located at
different places in memory (see Figure 2.16). A base register can be pointed at the structure and
elements of the structure can be addressed by their displacement. Different copies of the same
structure can be accessed by simply changing the base register.
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LOW ADDRESS
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Figure 2.16. Accessing a Structure with Based Addressing
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With indexed addressing, the effective address is calculated from the sum of a displacement plus the
content of an index register (SI or DI). See Figure 2.17. Indexed addressing is often used to access
elements in an array (see Figure 2.18). The displacement locates the beginning of the array, and the
value of the index register selects one element. If the index register contains 0000H, the processor
selects the firstelement. Since all array elements are the same length, simple arithmetic on the register
may select any element.

T——=—=—= |
l OPCODE MOD R/IM DISPLACEMENT :
Si
> OR (¥
DI

270288-001-19

Figure 2.17. Indexed Addressing
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Figure 2.18. Accessing an Array with Indexed Addressing
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Based index addressing generates an effective address that is the sum of a base register, an index
register, and a displacement (see Figure 2.19). This mode of addressing is very flexible because the
values of two address components can be determined at execution time.

r————=—"
I OPCODE | MOD R/M r DISPLACEMENT !
BX
> OR — (+)
BP
]
- OR —(+)
DI
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Figure 2.19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array allocated on
astack (see Figure 2.20). Register BP can contain the offset of a reference point on the stack, typically
the top of the stack after the procedure has saved registers and allocated local storage. The offset of
the beginning of the array from the reference point can be expressed by a displacement value, and the
index register can be used to access individual array elements. Arrays contained in structures and
matrices (two-dimensional arrays) can also be accessed with based indexed addressing.
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Figure 2.20. Accessing a Stacked Array with Based Index Addressing

String instructions do not use the normal memory addressing modes to access operands. Instead, the
index registers are used implicitly (see Figure 2.21). When a string instruction is executed, the SI
register is assumed to point to the first byte or word of the source string. The DI register is assumed
to point to the first byte or word of the destination string. In a repeated string operation, the CPU will
automatically adjust the SI and DI registers to obtain subsequent bytes or words. Note that for string
instructions the DS register is the default segment register for the SI register and the ES register is the
default segment register for the DI register. This allows string instructions to easily operate on data
located anywhere within the one megabyte address space.
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Figure 2.21. String Operand

2.2.2.3 /O PORT ADDRESSING

Any of the memory operand addressing modes may be used to access an I/O port if the portis memory-
mapped. String instructions can also be used to transfer data to memory-mapped ports with an
appropriate hardware interface. ‘

Two different address modes can be used to access ports located in the I/O space (see Figure 2.22):
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access to ports
numbered 0-255. Indirect I/O port addressing is similar to register indirect addressing of memory
operands. The port number is taken from register DX and can range from 0 to 65,535. By previously
adjusting the content of register DX, one instruction can access any port in the I/O space. A group of
adjacent ports can be accessed using a simple software loop that adjusts the value of the DX register.

OPCODE | DATA | OPCODE I
: ) : \
PORT ADDRESS | DX }—={ PorT ADDRESS |

DIRECT PORT ADDRESSING INDIRECT PORT ADDRESSING

270288-001-24

Figure 2.22. 1/O Port Addressing

2-30



inter OVERVIEW OF THE 80C186 FAMILY MODULAR
MICROPROCESSOR CORE ARCHITECTURE

2.2.3 DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY
The 80C186 Modular Core family supports the following data types:

¢ Integer- A signed binary numeric value contained in an 8-bit byte ora 16-bit word. All operations
assume a 2’s complement representation. Signed 32-and 64-bit integers are directly supported
with the addition of an 80C187 Numerics Processor Extension to an 80C186 Modular Core
system. The 80C188 Modular Core does not support the 80C187.

¢ Ordinal - An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word.

« Pointer - A 16- or 32-bit quantity, composed of a 16-bit offset component or a 16-bit segment
base component in addition to a 16-bit offset component.

e String - A contiguous sequence of bytes of words. A string may contain from one byte to 64
Kbytes.

e ASCII- A byte representation of alphanumeric and control characters using the ASCII standard.
e BCD - A byte (unpacked) representation of the decimal digits 0-9.

«  Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is stored in
each nibble (4 bits) of the byte.

»  Floating Point - A signed 32-, 64-, or 80-bit real number representation. Floating point operands
are directly supported with the addition of an 80C187 Numerics Processor Extension to an
80C186 Modular Core system. The 80C188 Modular Core does not support the 80C187.

In general, individual data elements must fit within defined segment limits. Figure 2.23 graphically
represents the data types supported by the 80C186 Modular Core family.
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Figure 2.23. 80C186 Modular Core Family Supported Data Types
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CHAPTER 3
BUS INTERFACE UNIT

The 80C186 Modular Core family products are true 16-bit embedded microprocessors with 16-bit
internal data paths, one megabyte (2%°) of memory address space, and a separate 64 Kbyte (2!°) I/O
address space. The CPU communicates with its external environment via a twenty-bit, time-multi-
plexed address and data bus. There also exists a command and status bus (see Table 3.1). This
communication is managed by the Bus Interface Unit. To understand the operation of the address/data
bus requires an understanding of the BIU’s bus cycles.

Table 3.1. 80C186 Family Bus Signals

Function Signal Name
address/data AD15:0
address A19:16 _
coprocessor interface TEST/BUSY, PEREQ, ERROR, NCS
local bus arbitration HOLD, HLDA R
local bus control ALE, RD, WR, DT/R, DEN
multi-master bus LOCK
ready interface READY
status information S2:0

3.1 T-STATES

Totransfer data or fetch instructions the CPU executes abus cycle. A buscycle consists of aminimum
of four CPU clock cycles or T-states plus any number of wait states necessary to accommodate the
access time limitations of external memory or peripheral devices. T-states are numbered sequentially
T,T, T, T, and T,. Additional idle T-states (T, can occur between T, and T, when the processor
requires no bus activity. The beginning of a T-state is signaled by a HIGH-to-LOW transition of the
CPU clock. Each T-state is divided into two phases, phase 1 (the LOW phase) and phase 2 (the HIGH

phase). Figure 3.1 illustrates an 80C186 Modular Core family clock cycle.
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Figure 3.1. T-State in 2 80C186 Modular Core Family Processor

Different types of bus activity occur for all of the T-states (see Figure 3.2). Address generation
information occurs during T , and data generation occurs during T, T,, T, and T,. The beginning of
abus cycle is signaled by the status lines of the processor going from a passive state (all HIGH) to an
active state in the middle of the T-state immediately before T, (either a T, or a T)). Information
concerning an impending bus cycle appears during the T-state immediately before the first T-state of
the cycle itself. Two different types of T, and T, can be generated, one where the T-state is immedi-
ately followed by a bus cycle, and one where the T-state is immediately followed by an idle T-state.
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Figure 3.2. Example Bus Cycle of the 80C186 Core Family
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During the first type of T, or T,, the processor generates status information concerning the impending
bus cycle. This information will be available no later than T, after the LOW-to-HIGH transition
of the processor’s CLKOUT in the middle of the T-state. During the second type of T, or T, the status
outputs remain inactive because no bus cycle will follow. The decision on which type T, or T, state
to present is made at the beginning of the T-state preceding the T, or T, state (see Figure 3.3). This

determination has an effect on bus latency (see Section 3.8.2).
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Figure 3.3. Active-Inactive Status Transitions in 80C186 Core Family Processor

The READY signal controls the number of wait states (T,,) inserted in each bus cycle. The maximum
number of wait states is unbounded.

The bus may remain idle for several T-states (T,) between accesses initiated by an 80C186 Modular
Core family processor. This situation occurs under the following diverse conditions:

e When the prefetch queue is full.

*  When the processor is running a type of bus cycle which always includes idle states (interrupt
acknowledge, for example).

¢ When an instruction forces idle states (LOCK, for example).

During idle states, the processor may not necessarily float the bus; however, if the processor does
drive the bus, no control strobes are active.
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3.2 PHYSICAL ADDRESS GENERATION

Physical addresses are generated by 80C186 Modular Core family processors during T, of abus cycle.
Since the address and data lines are multiplexed, addresses must be latched during T, if they are re-
quired to remain stable for the duration of the bus cycle. To facilitate latching of the physical address,
80C186 Modular Core family processors generate an active-HIGH ALE (Address Latch Enable)
signal which can be directly connected to the strobe input of a transparent latch. ALE is active for all
bus cycles and never floats (except during ONCE Mode for system testing).

Figure 3.4 illustrates the physical address generation parameters. Addresses are valid no later than

T, oy after the beginning of T , and remain valid at least T, . after the end of T,. The ALE signal is
driven HIGH in the middle of the T-state (either T, or T,) immediately preceding T, and is driven
LOW inthe middle of T, no soonerthan T AVLL after address becomes valid. T AVLL satisfies the address
latch set-up times of address valid to strobe inactive. Addresses remain stable on the address/data bus

atleast T, ,, after ALE goes inactive to satisfy address latch hold times.

CLOCK

ALE

A0-A19

. TCHOV: Clock high to ALE high.

: Clock low to address valid.
cHov: Clock high to ALE low.

- ToLor: Clock low to address invalid (address hold from clock low).
- TLAx ALE low to address invalid (address hold from ALE).

. T pyLo* Address valid to ALE low (address setup to ALE). 270830-001-100

=

CLov

oA WD = Z
- -~

-

Figure 3.4. Address Generation Timing

Because ALE goes HIGH before addresses become valid, the delay through the address latches will
be the propagation delay through the latch rather than the delay from the latch strobe.
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A typical circuit for latching physical addresses is shown in Figure 3.4. This circuit uses 3 transparent
non-inverting latches to demultiplex the 20 address bits provided on all 80C186 Modular Core family
microprocessors. Typically, the upper 4 address bits only select among various memory components
or subsystems, so when the integrated chip selects (see Chapter 7) are used, these upper bits need not
be latched. The worst case address generation time from the beginning of T, (including address latch
propagation) time for the circuit is:

TCLOV + TPD

Some memory and peripheral devices do not require addresses to remain stable throughout a data
transfer. If a system is constructed wholly with these types of devices, addresses need not be latched.

oo
4 ADDRESS
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._.‘ OE
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Figure 3.5. Demultiplexing the Address Bus of an 80C186 Modular Core Family Processor Using
Transparent Latches.

The 80C186 Core generates one more signal, BHE (Bus High Enable), to address memory. BHE and
A0 are used to enable data transfers on either or both halves of the 16-bit bus. Since A0 only enables
devices onto the lower half of the data bus, systems commonly drive address inputs with address bits
A1-A19. This provides 512K unique word addresses, or 1M unique byte addresses. BHE does not
need to be latched. On the 80C188 Core, BHE is absent; all data transfers take place across a single
byte-wide data bus.

On 80C186 Modular Core family processors, effective (physical) address calculations take place in
dedicated hardware. An effective address (EA) calculation may be either fully-pipelined or non-
pipelined. The BIU gives no indication when a fully-pipelined address calculation occurs.
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Non-pipelined EA calculations are required anytime an instruction has MOD and R/M bits in its
opcode. These bits often denote addressing modes which take longer to calculate the EA, such as
register-offset or two-register addressing. Here are some assembly code examples which cause non-
pipelined EA calculations:

MOV AX, ES:[DI] ; Uses indirect addressing.

AND AX,[DI]+5 ; Uses register-offset addressing.
XCHG mem_variable, DX ; Direct offset but has MOD and
; R/M bits.

A non-pipelined EA calculation takes four clocks, and occurs during T,(or T,)-T,-T-T, T (or T)-T--
T-T,, cycle sequences. In addition to inserting any necessary idle T-states, a non-pipelined EA
calculation alters the usual bus cycle priority scheme. Data cycles (reads or writes) associated with the
instruction temporarily take the highest bus priority possible, higher than even DRAM refresh cycles.
The altered priority scheme is a mechanism to better utilize the Execution Unit.

3.3 DATABUS

Many small systems do not require buffering because 80C186 Modular Core family devices have
adequate bus drive capabilities. If data buffers are not used, care should be taken not to allow bus
contention between the processor and the devices directly connected to the data bus. Since the
processor floats the address/data bus before activating any command lines, the only requirement on
adirectly connected device is that it float its output drivers after a read before the processor begins to
drive address information for the next bus cycle. The parameter of interest here is the minimum time
from RD inactive until addresses go active for the next bus cycle. If the memory or peripheral device
cannotdisable its output drivers in this time, data buffers will be required to prevent both the processor
and the device from driving these lines simultaneously. This parameter is unaffected by the addition
of wait states. Data buffers solve this problem because their output float times are typically much
faster than the required minimum.

3.3.1 80C186 MODULAR CORE DATA BUS OPERATION

Throughout T,, T,, T,, and T, of a bus cycle the multiplexed address/data bus becomes a 16-bit data
bus. Data transfers on this bus may be either bytes or words. All memory is byte addressable (see
Figure 3.6).
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Figure 3.6. Physical Memory Byte/Word Addressing in 80C186 Modular Core Family Microprocessors

All bytes with even addresses (A0 = 0) reside on the lower 8 bits of the data bus, while all bytes with
odd addresses (A0 = 1) reside on the upper 8 bits of the data bus. Whenever an access is made to only
the even byte, AQ is driven LOW, BHE is driven HIGH, and the data transfer occurs on DO-D7 of the
data bus. Whenever an access is made to only the od d byte, BHE is driven LOW, AOis driven HIGH,
and the data transfer occurs on D8-D15 of the data bus. Finally, if a word access is performed to an
even address, both AO and BHE are driven LOW and the data transfer occurs on D0-D15 of the data
bus.

Word accesses are made to the addressed byte and to the next higher numbered byte. If a word access
is performed to an odd address, two byte accesses must be performed, the first to access the odd byte
at the first word address on D8-D135, the second to access the even byte at the next sequential word
address on DO-D7. For example, in Figure 3.6, byte 0 and byte 1 can be individually accessed in two
separate bus cycles to byte address 0 and 1 at word address 0. They may also be accessed together in
a single bus cycle to word address 0. However, if a word access is made to address 1, two bus cycles
will be required, the first to access byte 1 at word address 0 (byte O will not be accessed), and the
second to access byte 2 at word address 2 (byte 3 will not be accessed). This is why all word data
should be located at even addresses to increase processor performance.

When byte reads are made, the data returned on the unused half of the data bus is ignored. When byte
writes are made, the data driven on the unused half of the data bus is indeterminate.

The 80C186 Core always fetches the instruction stream in words from even addresses except that the
first fetch after a program transfer to an odd address obtains a byte. The processor disassembles the
instruction stream inside the processor; so instruction alignment will not materially affect the per-
formance of most systems.

3.3.2 80C188 MODULAR CORE DATA BUS OPERATION

Because the 80C188 core externally has only an 8-bit data bus, the above discussion about upper and
lower bytes of the data bus does not apply. No performance improvement will occur if word data is
placed on even boundaries in memory space. All word accesses require two bus cycles, the first to
access the lower byte of the word and the second to access the upper byte of the word.
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Any 80C188 Core access to the integrated peripherals is performed 16 bits at a time, whether byte or
word addressing is used. If a byte operation is used, the external bus indicates only a single byte
transfer even though the word access takes place. See Chapter 5 for more information on peripheral
control block registers.

3.3.3 PERIPHERAL INTERFACE

The 80C186 Modular Core family can interface with peripheral devices using either I/O instructions
or memory instructions (memory-mapped 1/0). The I/O instructions allow the peripheral devices to
reside in a separate I/O address space while memory-mapped I/O allows the full power of the
instruction set to be used for peripheral operations. Up to 64 Kbytes of I/O address space may be
defined for system peripherals. To the programmer, the separate I/O address space is only accessible
with IN and OUT commands, which transfer data between peripheral devices and the AX register (or
AL for 8-bit data). The first 256 bytes of I/O space (0 to 255) are directly addressable while the entire
64K is only accessible via register indirect addressing through the DX register. The latter technique
is particularly desirable for service procedures that handle more than one peripheral by allowing the
desired device address to be passed to the procedure as a parameter. Peripherals may be connected
to the local CPU bus or a buffered system bus.

On the 80C186 Modular Core, 8-bit peripherals may be connected to either the upper or lower half
of the data bus. Assigning an equal number of devices to the upper and lower halves of the bus will
distribute the bus loading. If a device is connected to the upper half of the data bus, all I/O addresses
assigned to the device must be odd (A0 = 1). If the device is on the lower half of the bus, its addresses
must be even (A0 = 0). The address assignment directs the 8-bit transfer to the upper (odd) or lower
(even) half of the 16-bit data bus. Since AQ will always be a one or zero for a specific device, AO
cannot be used as an address input to select registers within a specific device. If a device on the upper
half of the bus and one on the lower half are assigned addresses that differ only in AO (adjacent odd
and even address), AO and BHE must be conditions of chip select decode to prevent a write to one
device from erroneously performing a write to the other.

16-bit peripheral devices should be assigned even addresses for reasons of efficient bus utilization
and simplicity of device selection. To guarantee the device is selected only for word operations, AQ
and BHE should be conditions of chip select decode.

3.4 BUS CONTROL SIGNALS

80C186 Modular Core family processors directly provide the control signals RD, WR, LOCK, and
TEST. In addition, the processors provide the status signals SO-S2 from which other required bus
control signals can be generated.
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3.4.1 RD AND WR
The RD and WR signals strobe data from or to memory or I/O space.

The RD signal is driven LOW at the beginning of T , during all memory and I/O reads (see Figure 3.7).
RD will not become active until the microprocessor ceases driving address information on the
address/data bus. Data is sampled into the processor at the beginning of T,. RD will not go inactive
until the processor’s data hold time has been satisfied.

ADO-
D15 ADDRESS ; !

RD DATA FROM MEMORY i
NOTES: ' ORl0 !
1. TCLOF Clock low unit address float.
2 Clock low unit RD active.
3. TpeRL Address float unit RD active.
4 To s : Data valid until clock low (data input set-up time).
5.
6
7

S

. TCI_"_| Clock low until data invalid (data input hold time).
3 CLOV : Clock low until RD high.
- Tanax: D high until addresses valid. 270830-001-102

Figure 3.7. Read Cycle Timing of 80C186 Family Microprocessors

Note that 80C186 Modular Core family processors do not provide separate I/O and memory RD
signals. If separate I/O read and memory read signals are required, they can be synthesized using the
S2 signal (LOW for 1/O operations and HIGH for memory operations) and the RD signal (see Figure
3.8). If this approach is used, the S2 signal will require latching, since the S2 signal (like SO and S1)
goes to an inactive state well before the beginning of T, (where RD goes inactive). If S2 was directly
used for this purpose, the type of read command (I/O or memory) could change just before T, as S2
goes to the inactive state (HIGH). The status signals may be latched using ALE.
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Figure 3.8. Generating /0O and Memory Read Signals

2

270288-001-33

Often the lack of separate I/O and memory RD signals is not important in a system. Each chip select
signal will respond to accesses exclusively in memory or I/O space. Thus, when a chip selectis used,
the external device is enabled only during accesses to the proper address in the proper space.

The WR signal is alsodriven LOW at the beginning of T, and driven HIGH at the beginning of T, (see
Figure 3.9). The WR signal is active for all memory and I/O writes, similar to the RD signal. Again,
separate memory and I/O control lines may be generated using the latched S2 signal along with WR.
More important, however, is the role of the active-going edge of WR. At the time WR makes its
HIGH-to-LOW transition, valid write data is not present on the data bus. This has consequences when
using WR to generate signals such as column address strobe (CAS) for DRAMs where data is required
to be stable on the falling edge. In DRAM applications, the problem is solved by a DRAM controller.
For other applications which require valid data before the WR transition, place cross-coupled NAND
gates between the CPU and the device on the WR line (see Figure 3.10). The added gates delay the
active-going edge of WR to the device by one clock phase, at which time valid data is driven on the
bus by the microprocessor.

-
“

r 75@ l

1
|
|
|

CLKOouT

ADO- - ADDRESS
AD15 __INFO

WR

$|
53

\

©)

L
T
v

N
1. TeLov: Clock low until data valid.
2. Tg oy Clock low until WR active.
3. TCLov: Clock low until WR inactive.
;. Toov- Clock high until data valid.

X TWHDX: WR inactive until data invalid. 270830-001-103

Figure 3.9. Family Write Cycle Timing
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Figure 3.10. Synthesizing a Delayed Write Signal
3.4.2 STATUS LINES

An 80C186 *Jodular Core family processor provides three status outputs which indicate the type of
bus cycle in progress. These signals go from an inactive state (all HIGH) to one of seven possible
active states during the T-state immediately preceding T, of a bus cycle (see Figure 3.3). The possible
status line encodings are given in Table 3.2. The status lines are driven inactive in the T, or T, state
immediately preceding T, of the current bus cycle.

Table 3.2. Status Line Interpretation

S2 | S1 | SO Operation
0 0 0 interrupt acknowledge
0 0 1 read /0
0 1 0 write /0
0 1 1 halt
1 0 0 instruction fetch
1 0 1 read memory
1 1 0 write memory
1 1 1 passive

The status lines may be directly connected to an 82C88 Bus Controller, which provides local bus
control signals or MULTIBUS™ control signals. Use of the 82C88 Bus Controller does not preclude
the use of the CPU-generated RD, WR and ALE signals, however. The processor-generated signals
can provide local bus control signals, while an 82C88 can provide MULTIBUS control signals.

3.4.3 SOFTWARE-INITIATED BUS CONTROL

The programmer may control the progress of 80C186 Modular Core family execution-related bus
activity by using the WAIT (or FWAIT), LOCK, and HLT instructions.
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3.4.3.1 TEST INPUT AND LOCK OUTPUT

The 80C186 Modular Core family processor provides a TEST input and a LOCK output for coor-
dinating instruction execution and bus activity.

The TEST input is used in conjunction with the processor WAIT instruction, typically in a system
containing acoprocessor. If the inputis HIGH when WAIT executes, instruction execution suspends.
TEST will be resampled every five clocks until it goes LOW, resuming execution. Any enabled
interrupts will be serviced while the processor waits for TEST.

The LOCK output is driven LOW whenever the data cycles of a LOCKed instruction are executed.
A LOCKed instruction is generated whenever the LOCK prefix occurs immediately before an in-
struction. The LOCK prefix is active for the single instruction immediately following the LOCK
prefix. The LOCK signal indicates to a bus arbiter (e.g., the 8289) that an atomic (uninterruptible) bus
operation is occurring. The bus arbiter should under no circumstances release the bus while LOCKed
transfers are occurring. An 80C186 Modular Core family processor will not recognize a bus HOLD
during LOCKed operations. LOCKed transfers are typically used in multiprocessor systems to
access memory-based semaphore variables which control access to shared system resources.

On 80C186 Modular Core family devices, the LOCK signal will go active during T1 of the first data
cycle of the LOCKed transfer. Itis driveninactive at the end of T4 of the last data cycle of the LOCKed
transfers independent of the number of wait states.

The LOCK output is also driven LOW during interrupt acknowledge cycles when the integrated
Interrupt Controller is connected to an external interrupt controller (i.e. 82C59A).

80C186 Modular Core family processors drive LOCK HIGH for one clock during RESET. Then, the
pin floats until the start of the first bus cycle. LOCK also floats during HOLD.

3.4.3.2 PROCESSOR HALT

AHALT bus cycle signifies that the CPU has executed the HLT (HALT) instruction. It differs from
aregular bus cycle in two ways.

The first way a HALT bus cycle differs is that neither RD nor WR will be driven active. Address and
data information will not be driven by the processor. The second way a HALT bus cycle differs is that
the SO-S2 status lines go to their inactive state (all HIGH) during T, of the bus cycle, well before they
go to their inactive state during a regular bus cycle.

Like a normal bus cycle, however, ALE is driven active. Since no valid address information is
present, the information strobed into the address latches should be ignored. This ALE pulse can be
used, however, to latch the HALT status from the SO-S2 status lines. READY is ignored during
HALT cycles.
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The HALTed state of the processor does not interfere with the operation of any of the 80C186
Modular Core family integrated peripheral units. After the processor HALTs, a HOLD input can
elicit HLDA and release of the bus by the processor as usual.

Activation of RESIN, an NMI request, or a non-masked interrupt request from the integrated
Interrupt Controller forces the processor out of the HALT state.

Exiting from the HALT state is also dependent on the power management mode that the 80C186
Modular Core family device is operating in. Please see the Power Management chapter of this user’s
guide for more details.

3.5 TRANSCEIVER CONTROL SIGNALS
If data buffers are required, the 80C186 Modular Core family processor provides DEN (Data ENable)

and DT/R (Data Transmit/Receive) signals to simplify buffer interfacing. The DEN and DT/R
signals are activated during all bus cycles, including transfers between the 80C186 core and 80C187.

The DEN signal is driven LOW whenever the processor is either ready to receive data (during aread)
or when the processor is ready to send data (during a write). In other words, DEN is LOW during any
active bus cycle when address information is not being generated on the address/data pins. In most
systems, the DEN signal should not be directly connected to the OE inputs of a buffer, since unbuf-
fered devices (or other buffers) may be directly connected to the processors’s address/data pins. If
DEN were directly connected to several buffers, contention would occur during read cycles, as many
devices attempt to drive the processor bus. Rather, it should be a factor along with the chip selects in
generating the output enable. DEN is HIGH whenever DT/R changes state.

The DT/R signal determines the direction of data through the bi-directional buffers. It is HIGH
whenever data is being written from the processor, and is LOW whenever data is being read into the
processor. Unlike the DEN signal, it may be directly connected to bus buffers, since this signal does
not usually enable the output drivers of the buffer. Figure 3.11 shows an example data bus subsystem
supporting both buffered and unbuffered devices. Note that the A side of the buffer is connected to
the 80C186 Modular Core family device, the B side to the external device. The DT/R signal can
directly drive the T (transmit) signal of a typical buffer since it has the correct polarity.
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CPU-DERIVED SIGNALS
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Figure 3.11. Example Buffered/Unbuffered Data Bus

The processor drives the DT/R and DEN pins HIGH for one clock during RESET. Then the pins float
until the first bus cycle.

3.6 READY INTERFACING

80C186EB family devices provide a READY line to allow the connection of slower memory and
peripheral devices to the system bus. This line signals the Bus Interface Unit to insert wait states (T,,)
into a CPU bus cycle, allowing slower devices to respond to bus activity. Wait states will only be
inserted when READY is LOW. Any number of wait states may be inserted into a bus cycle. The
processor willignore the READY input during any accesses to the integrated peripheral registers and
to any area where the chip select READY bits indicate that the external READY should be ignored.

The READY line is synchronized (see Appendix D) by the CPU before presentation to the rest of the
bus control logic. As shown in Figure 3.12, the first flip-flop is used to resolve the asynchronous
transition of the READY line. It will achieve adefinite HIGH or LOW level before its output is latched
into the second flip-flop. When latched HIGH, it passes along the level present on the READY line;
when latched LOW, it forces Not READY to be passed along to the rest of the circuit. With this
design, note that only the rising edge of READY is fully synchronized; the falling edge of READY
must be externally synchronized to the processor clock. Any asynchronous transition onthe READY
line when the processor is not sampling the input does not matter.
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READY

READY BIU
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Figure 3.12. 80C186 Core Family READY Circuitry

Figure 3.13 depicts activity for Normally-READY and Normally-Not-READY configurations of
external logic.
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1- Teus
2 Toy X on will t
READY must meet TCLIS and TCLlH or undesired CPU operation will result.

Figure 3.13. READY Transitions

InaNormally-Not-READY implementation the setup and hold times of both the resolution flip-flop
and theREADY latchmustbe satisfied. The READY pinmust goactive atleast T, before therising
edge of T,, T, or T, and stay active until T, ,, after the falling edge of T, or T, to stop generation of
wait states and terminate the bus cycle. If READY goes active after the falling edge of T, there will

be no wait state inserted.
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In a Normally-READY implementation the setup and hold times of either the resolution flip-flop or
the READY latch must be met. If the external hardware does not meet this requirement, the CPU will
not function properly. Wait states will be generated if READY goes inactive T, before the rising
edge of T, and stays inactive a minimum of T, after the edge, or if READY goes inactive at least
T, s before the falling edge of T, and stays inactive a minimum of T, ,, after the edge. The READY
circuitry performs this way to allow a slow device the maximum amount of time to respond with a Not

READY after it has been selected.

3.7 EXECUTION UNIT/BUS INTERFACE UNIT RELATIONSHIP

The 80C186 Modular Core family employs a pipelined architecture that allows instructions to be
prefetched during spare bus cycles. The Bus Interface Unit (BIU) fetches instructions from memory
and loads them into a prefetch queue. The Execution Unit (EU) executes instructions from the
prefetch queue while other instructions are prefetched. The process of fetching new instructions
while executing the current instruction is invisible to the user.

3.7.1 PREFETCH QUEUE AND BUS PERFORMANCE

The prefetch queue is six bytes long on the 80C186 Core. When two or more bytes are empty and the
EU does not require the BIU to perform a bus cycle, the BIU executes instruction fetch cycles to refill
the queue. Figure 3.14 shows how instruction fetches are interleaved with EU-initiated bus cycles.
The chosen queue size allows the BIU to keep the EU supplied with prefetched instructions under
most conditions without monopolizing the system bus. Recall that the 80C186 Core BIU normally
accesses two bytes (one word) of opcode per bus cycle. If a program transfer forces fetching from an
odd address, the 80C186 Core automatically reads one byte from the odd address and then resumes
fetching words from the subsequent even addresses.

3-17



intel BUS INTERFACE UNIT

80C186

MODULAR CORE TITITIT NN = — T
FAMILY B|U:_ FETCH “FETﬁ-l I WRITE —FETCH READ
MICROPROCESSOR 111 LT

BUS:I BUSY—l | BUSYj I BUSY—l I BUSY ] | BUSY I l BUSY |
\

INSTRUCTION STREAM
\\\‘ 1st INSTRUCTION (ALREADY FETCHED):
N EXECUTE AND WRITE RESULT

% 2nd INSTRUCTION:

M EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
: (UNDEFINED)
5th INSTRUCTION:
(UNDEFINED)

270830-001-107

Figure 3.14. Overlapped Instruction Fetch and Execution

The prefetch queue is four bytes long on the 80C188 Core. When one or more bytes are empty, the
processor attempts to refill the queue. With an 8-bit data bus, the 80C188 Core BIU accesses one byte
of opcode per bus cycle.

In most circumstances the queues contain at least one byte of the instruction stream and the EU does
not have to wait for instructions to be fetched. The queue holds instructions from memory locations
just above the source of the current instruction. That is, they are the next logical instructions so long
as execution proceeds serially. If the EU executes an instruction that transfers control to another
location, the BIU resets the queue, fetches the instruction from the new address, passes itimmediately
to the EU, and then begins refilling the queue from the new location. In addition, the BIU suspends
instruction fetching whenever the EU requests a memory or I/O read or write, except for a fetch
already in progress.

Bus cycles occur sequentially, but do not necessarily follow immediately one after another. Since the
CPU prefetches up to six bytes of the instruction siream for storage and execution from an internal
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instruction queue, the relationship between prefetching and instruction execution may be skewed in
time and separated by additional instruction fetch bus cycles. In general, if the BIU fetches an
instruction into the processor’s internal instruction queue, it may also fetch several additional instruc-
tions before the EU removes the instruction from the queue and executes it. If the EU executes a jump
or other control transfer instruction from the queue, itignores any instructions remaining in the queue;
the CPU discards these instructions with no effect on operation. The bus activity observed during
execution of a specific instruction depends on the preceding instructions; the activity, however, may
always be determined within a specific sequence.

3.7.2 BUS PERFORMANCE AND CPU PERFORMANCE

Overall performance of a system based on an 80C186 Modular Core family member system depends
on both the bus bandwidth and execution rate.

The number of clock cycles required to execute an instruction varies from two clocks for aregister to
register move to 67 clocks for an integer divide. If a program contains many long instructions,
program execution will be CPU-limited, i.e., the prefetch queue will be full most of the time. If a
program contains mainly short instructions or data move instructions, execution will be bus-limited.
Here the processor will be required to wait often for an instruction to be fetched before it continues
its operation.

With an 8-bit external data bus, the 80C188 M »dular Core can provide an opportunity for significant
system cost savings over its 16-bit counterpe.t, the 80C186 Modular Core. In applications which
manipulate only 8-bit quantities, the performance of the 80C188 Core can approach that of the
80C186 Core. The same is true for applications that are highly CPU-intensive (but not memory-
intensive) since all 80C186 Modular Core family CPUs are internally 16-bit.

Typical 80C186 Modular Core family applications are more data-intensive than computation-in-
tensive. The processor with an 8-bit bus must not only move data around eight bits at a time but also
fetch instructions eight bits at a time. A sufficient number of prefetched bytes may not reside in the
prefetch queue much of the time. In many cases, the performance degradation of an 8-bit bus will be
significant.

Adding up instruction clock counts given in 80C186 Modular Core family data sheets and reference
manuals yields only a rough approximation of execution time. Published clock counts assume that
all the necessary opcode bytes reside.in the prefetch queue, frequently not the case for the 80C188
Core. A conservative rule of thumb for the 80C188 Core is to add 100 per cent to the calculated clock
count. The correction for the 80C186 Core is typically about five to seven per cent. If there is any
doubt of the performance capabilities of either the 80C186 Core or the 80C188 Core, we suggest the
use of a performance analyzer on critical code sections early in the design process.
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3.7.3 WAIT STATES AND CPU PERFORMANCE

Because an 80C186 Modular Core family processor contains separate Bus Interface and Execution
Units, the actual performance of the processor will not degrade at a constant rate as wait states are
added to the memory cycle time from the processor. Shown below are two disparate ASM186
assembly language routines, and the actual execution time for the two procedures as wait states are
added to the memory system of the processor (CLKOUT =8 MHz). The percentage degradation from
each wait state level to the following wait state level is also indicated. The actual rate of performance
degradation is not as important as the conclusion that wait state degradation will depend on the type
and mix of instructions encountered in the user’s program.

Example 1

$modlab

name example_wait_state_performance

hl

This file contains two programs which demonstrate the 8018k family processor
performance degradation as wait states are:inserted. Procedure Benchl
performs a transformation betrween two types of of characters sets. then
copies the transformed characters back to the original buffer (which is
b4 bytes long. Procedure Bench_2 performs the same type of
transformation. however instead of performing a table lookup. it
multiplies each number in the original 32 word buffer by a constant 3
(note the use of the integer immediate multiply instruction). Program
nothing_is used to measure the call and the return time from the
driver program only-

4% a0 s ae e ae e av ge ae

)

cgroup group code

dgroup group data

data segment public_data_.
t_table db 25k dup (?2)
t_string db b4 dup (?)
m_array dw 32 dup(?)
data ends

code segment public'code'

assume C(S:cgroup.DS:dgroup
public bench_l. bench_2- nothing_-wait state_. set_timer_.

bench_1 proc near isave registers used
push ST
push X
push BX
push AX
mov CXabY itranslate b4 bytes
mov SI.0
mov BH~0
loop_back:
mov BL.t_string sget the byte
mov AL.t_tablelBX1 jand store it
mov t_stringCSIJ.AL 5and store it
inc SI sincrement index
loop loop_back 5do the next byte
pop AX
pop BX
pop X
pop SI
bench_1 endp
bench_g proc near
puxh AX 3save registers used
push SI
push X
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mov CX.32 smultiply 32 numbers

mov SI.offset m_array
loop_back_g2:

imul AXawordptr [sil.3 simmediate multiply

mov word ptr LESIX. AX

inc SI

inc SI

loop loop_back_2

pop X

pop SI

pop AX

ret
bench_¢2 endp
nothing_- proc near

ret
nothing_. endp
Al
5 Wait_staten sets the 80CLBLEB family processor LCSST register to the number of
3 wait states (0 to 3) indicated by the parameter n (which is passed on
5 the stack). No other bits of the LCSST register are modified.
wait_state_- proc near

enter 0.0 5 set up stack frame

push AX 5 save registers used

push BX

push DX

mov BX. word ptr [BP+41 3 get argument

mov DX. OFFAO 5 get current LCSST register

3 contents

in AXaDX

and AX.OFFFOH 5 and off existing ready bits

and BX.3 53 insure ws count is good

or AX.BX sadjust the ready bits

out DX.AX 5 and write to LCSST

pop DX

pop BX

pop AX

leave 5 tear downstack frame
wait_state_. endp
3
5 Set_timer ( ) initializes the B80CLABLEB family processor timers to count
3 microseconds. Timer 2 is set up as a prescaler to timer 0. the
5 register at location FFS50H is I/0 space-
hl
set_timer_. proc near

push AX

push DX

mov DX.0ffUkH 5 stop timer 2

mov AX.4000h

out DX.AX

mov DX.0ff30H 5clear timer 0 count

mov AX.0

out DX.AX

mov DX.0ff32H 5timer 0 counts up to b553b

mov AX.0

out DX.AX

mov DX.0ff3kLH 5enable timer O

mov AX-0c009H

ocut DX.AX

mov DX.0ffudH sclear timer 2 count

mov AX0

out DX.AX
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mov DX.0ffu2H iset maximum count of timer 2
mov AX.0

out DX AX

mov DX.0ffUbH sre-enable timer 2

mov AX.0

out DX.AX

Table 3.3. Performance Degradation vs. Wait States

Program 1 Program 2

#of
Wait Exec Exec
States | Time Perf Time Perf
(usec) Degr | (usec) Degr

0 505 294

595 18% 311 6%
2 669 12% 337 8%
3 752 12% 347 3%

Procedure Bench_1 is very bus intensive. It performs many memory operations using elaborate
addressing modes which also require more opcode bytes. As a result, the Execution Unit must
constantly wait for the Bus Interface Unit to fetch and perform the memory cycles to allow it to
continue. Thus, the execution time of this type of routine will grow quickly as wait states are added,
since the execution time depends mainly on the speed at which the processor can run bus cycles.

Note also that the program execution time calculated by merely summing up the number of clock
cycles given in the data sheet will typically be less than the number of clock cycles actually required
to run the program. This is true because the numbers quoted in the data sheet assume that the opcode
bytes have been prefetched and reside in the prefetch queue for immediate access by the Execution
Unit. If the Execution Unit cannot access the opcode bytes immediately upon request, dead clock
cycles will be inserted in which the Execution Unit will remain idle, thus increasing the number of
clock cycles required to complete execution of the program.

On the other hand, procedure Bench_2 is more CPU intensive. The Bus Interface Unit can fill up the
instruction prefetch queue in parallel with the Execution Unit performing integer multiplies. In this
program, the Bus Interface Unit can perform bus operations faster than the Execution Unit actually
requires them to be run. The performance degradation is much less as wait states are added to the
memory interface. The execution time of this program is close to the number calculated by adding
the number of cycles per instruction because the Execution Unit does not have to wait for the Bus
Interface Unit to place an opcode byte in the prefetch queue as often. Fewer clock cycles are wasted
by the Execution Unit lying idle for want of instructions.
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3.8 HOLD/HLDA INTERFACE

The 80C186 Modular Core family employs a HOLD/HLDA bus exchange protocol. This protocol
allows other asynchronous bus masters (i.e., ones which drive address, data, and control information
on the bus) to gain control.

3.8.1 RESPONSE TO HOLD

In the HOLD/HLDA protocol, a device requiring bus control (e.g., a token-ring communications
controller) raises the HOLD line. Inresponse to this HOLD request, the processor will raise its HLDA
line after it has finished its current bus activity. When the external device is finished with the bus, it
drops its bus HOLD request. The processor responds by dropping its HLDA line and resuming bus
operation.

‘When the processor recognizes a bus HOLD by driving HLDA HIGH, it will float many of its signals
(see Figure 3.15). ADO-AD15 and DEN are floated within T, . after the clock edge when HLDA is
driven active. A16-A19, RD, WR, BHE, DT/R, and S0-S2 are floated within T after the clock

A CHOF
edge on which HLDA becomes active.

CLOCK
ouTt

HOLD

HLDA

AD15-ADO
DEN
A16-A19,

270288-001-45

Figure 3.15. Signal Float/HLDA Timing of 80C186 Core Family Processor

Only the above mentioned signals are floated during bus HOLD. Of the signals not floated by the
processor, some have to do with peripheral functionality (e.g., timer outputs). Many others either
directly or indirectly control bus devices. These signals are ALE and all chip select lines (UCS, LCS,
GCS0-7).
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3.8.2 HOLD/HLDA TIMING AND BUS LATENCY

The time required between HOLD going active and the microprocessor driving HLDA active is
known as bus latency. Many factors affect bus latency, including synchronization delays, bus cycle
times, LOCKed transfer times, interrupt acknowledge cycles, and DRAM refresh cycles.

The HOLD request line is internally synchronized by the 80C186 Modular Core family processor,
and may therefore be an asynchronous input. To guarantee recognition on a particular falling clock
edge, it must satisfy setup and hold times. A full CPU clock cycle is required for synchronization (see
Appendix B). If the bus is idle, HLDA will follow HOLD by two CPU clock cycles plus setup and
propagation delay time. The first clock cycle synchronizes the input; the second signals the internal
circuitry to initiate a bus HOLD (see Figure 3.16).

ra

rEn=,

)
HLDA ’
[
NOTES:
1. Tcus: Hold valid until clock low.
2. T : Clock low until HLDA active. 270830-001-108

CLov

Figure 3.16. idle Bus Hold/HLDA Timing

Many factors make bus latency longer than the best case described above. Perhaps the mostimportant
factor is that the processor will not relinquish the local bus until the bus is idle. The bus can become
idle only at the end of a bus cycle. The processor will normally insert no T, states between T, and T
of the next bus cycle if it requires any bus activity (e.g., instruction fetches or I/O reads). However,
the processor may not have an immediate need for the bus after a bus cycle, and will insert T; states

independent of the HOLD input (see Section 3.1).
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When the HOLD request is active, the 80C186 Modular Core family BIU will proceed from T, to T;
torelinquish the bus. HOLD must go active two T-states before the end of a bus cycle to force the BIU
toinsert idle T-states after T,. One T-state is spent synchronizing the request and one T-state is spent
signaling the processor that T, of the bus cycle will be followed by idle T-states (see Section 3.1).
After the bus cycle has ended, the HOLD will be immediately acknowledged. If, however, the
processor has already determined that an idle T-state will follow T, of the current bus cycle, HOLD
needs to go active only two T-states before the end of the bus cycle to force the microprocessor to
relinquish the bus. Figure 3.17 shows these processes. Also,if HOLD is asserted during RESET, the
processor releases the bus prior to the first fetch.
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— . @ !
f——
| | |
HLDA

270830-001-110

NOTES:

1. Decision: Additional internal bus cycles required, no idle T-states will be inserted, HOLD not active soon enough to force idle T-states.
2. Greater than TCLIS: not required since it will not get recognized anyway.

3. HOLD request internally synchronized.

TuTyor Tyor
TO

CLOCK___I (i I @ I J
our ®

3 ?
HoL SO ®

—— e e - p—

270830-001-111
NOTES:
1. HOLD request internally synchronized.
2. Decision: HOLD request active, idle T-states will be inserted at end of current bus cycle.
3. GreaterthanT,
4

CLIs’
. Lessthan TCLOV.

Figure 3.17. HOLD/HLDA Timing in the 80C186 Modular Core Family
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Anexternal HOLD has higher priority than a CPU bus request. However, an external HOLD will not
separate the two cycles needed to perform a word access when the word accessed is located at an odd
location (see Section 3.3.1).

Another factor influencing bus latency time is LOCKed transfers. Whenever a LOCKed transfer is
occurring, the processor will not recognize external HOLDs. LOCKed transfers are programmed by
preceding an instruction with the LOCK prefix. String instructions may be LOCKed. Since string
transfers may require thousands of bus cycles, bus latency time will suffer if they are LOCKed.

The final factor affecting bus latency time is interrupt acknowledge cycles. When an external
interrupt controller is used the CPU will run two interrupt acknowledge cycles back-to-back. These
cycles are automatically LOCKed and will never be separated by bus HOLD.

3.8.3 LEAVING HOLD

When the HOLD input goes inactive, the processor lowers its HLDA line in a single clock as shown
in Figure 3.18, If there is pending bus activity, only two T, states will be inserted after HLDA goes
inactive. Status information will go active during the last idle state concerning the bus cycle about to
berun (see Section 3.1). If there are no bus cycles to be run by the CPU, it will continue to float all lines
until the last Ti before it begins its first bus cycle after the HOLD.

T, ! T, I T,

CLKOUT J

@\ | i
HOLD e >
1

©)

N
-

HLDA

s S (C)

[

r-

NOTES:

1. HOLD internally synchronized.
2. Greater than Tcus‘
3. Lessthan TeLov:

4. Lines come out of float only if a bus cycle is pending. 270830-001-113

Figure 3.18. 80C186 Modular Core Family
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A special mechanism exists on the 80C186/80C188 to provide for DRAM refreshing while the bus
is in HOLD. See the chapter of this manual on the Refresh Control Unit for details.

3.9 PRIORITY OF BUS CYCLE TYPES

The 80C186EB family Bus Interface Unit arbitrates requests for bus cycles originating in the inte-
grated peripherals as well as the Execution Unit. Here is a summary of the overall priority for all bus
cycle types (highest to lowest): '

Instruction execution reads or writes following a non-pipelined effective address calculation.
DRAM refresh cycles.

Bus cycles run by an external bus master during HOLD. The 80C186 Modular Core family
signals its need to use the bus for a DRAM refresh cycle by lowering HLDA.

Vectoring sequence for the single step interrupt.
Vectoring sequence for the NMI interrupt.

Vectoring sequence for divide error, breakpoint, overflow, array bounds, unused opcode, and
ESCape trap interrupts, according to priority resolution.

Vectoring sequence for hardware interrupts from the timers, Serial Communications Unit, and
external pins.

Vectoring sequence for 80C187 Numerics Coprocessor Extension errors. Such exceptions are
sampled on the 80C186EB ERROR pin during numerics code execution.

General instruction execution. This category includes reads or writes following a fully-pipelined
effective address calculation, vectoring sequences for user-designated software interrupts, and
numerics code execution. The following points are applicable to sequences of related execution
cycles:

The second read/write cycle of an 80C186 Core odd-addressed word operation is inseparable
from the first bus cycle.

On the 80C188 Core, the two bus cycles associated with any word operation are inseparable.

The second read/write cycle of an instruction with both load and store accesses (e.g.,
XCHG) may be separated from the first cycle by other bus cycles.

Successive execution cycles of string instructions (e.g., MOVS) may be separated by other
bus cycles.

When a LOCKed instruction begins, its execution cycles are elevated to the highest priority
level, making LOCKed cycles inseparable even to DRAM refresh cycles. String operations
and 80C186EB/80C187 execution may be LOCKed like any other instructions.

10. Fetches necessary to fill the prefetch queue with opcodes and operands.
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CHAPTER 4

CLOCK GENERATOR

The clock generator provides the main clock signal for all integrated components and all CPU
synchronous devices in a system based on the 80C186EB family. This clock generator includes a
crystal oscillator, divide-by-two counter, RESET circuitry, and power management circuitry. A
block diagram of the clock generator is shown in Figure 4.1.

~{ POWERDOWN
—< ibLE
SCHMIDTT TRIGER
"SQUARES-UP" CLKIN
 o—»D — o1
D ol st PHASE.
| 2| cLOCKS
'
oscout - TO CLKOUT
Y
v - INTERNAL
RESIN > RESET CIRCUITRY — NTEER
270830-001-69
Figure 4.1. Clock Generator
4.1 CRYSTAL OSCILLATOR

80C186EB family microprocessors use a parallel resonant Pierce oscillator. For low frequency
80C186EB family applications, afundamental mode crystal is appropriate. Athigher frequencies, the
diminishing thickness of fundamental mode crystals makes a third overtone crystal the appropriate
choice. The addition of external capacitors at CLKIN and OSCOUT is always required, and a third
overtone crystal also requires an RC tank circuit to select the third overtone frequency over the
fundamental frequency (see Figure 4.2).
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80C186EB 80C186EB
80C188EB 80C188EB

i e aa i i S B

osouTt osouT

bH—q
B

0

B

(a) (b)
(a) - FUNDAMENTAL MODE OPERATION

(b) - THIRD OVERTONE OPERATION 270830-001-70

Figure 4.2. 80C186EB Family Crystal Connections

A Pierce oscillator is a specific form of the common phase shift oscillator. Phase shift oscillators
operate by feeding a non-inverted, amplified, version of the input signal back into their input. This is
known as positive feedback. For the 80C186EB oscillator cicuitry, a 360 degree phase shift is needed
around the feedback loop to insure positive feedback. The inverter itself provides 180 degrees. The
combination of the outputimpedance of the inverter and C1 (Figure 4.3) provides another 90 degrees.
Atresonance the crystal becomes primarily aresistive component. The combination of the crystal and
C2 provide the final 90 degrees for the full 360 degree phase shift. Above and below resonance the
crystal is reactive and tends to force the oscillator back towards the crystal’s rated frequency.

180°
@ R = INVERTER OUTPUT RESISTANCE

90° 5

M
Il

XTAL = =AW\~ AT RESONANCE

<Hh

270830-001-71

Figure 4.3. Pierce Oscillator
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The RC tank circuit, used for third overtone crystals, suppresses oscillation at the fundamental
frequency. This is accomplished by preventing the first 90 degree phase shift from occurring. A more
detailed analysis of crystal oscillator circuits is beyond the scope of this user’s guide. Several excel-
lent articles and texts can be found on the subject of crystal oscillators should more information be
necessary.

The recommendations given in 80C186EB family data sheets for the values of the external com-
ponents should be taken only as rough guidelines, since there are situations which alter typical
oscillator characteristics. One example would be the case in which the circuit layout introduces
significant stray capacitance to the CLKIN and OSCOUT pins. Another exampleis atlow frequencies
(CLKOUT less than 6 MHz) where slightly larger capacitors are desirable. Finally, it is also possible
to use ceramic resonators in place of crystals for low cost when precise frequencies are not required.

For assistance in selecting the external oscillator components for unusual circumstances, the best
resource is the crystal manufacturer. In general, almost any microprocessor grade crystal will work
satisfactorily with any member of the 80C186EB family. The foremost circuit consideration is that
the oscillator start correctly over the entire voltage and temperature ranges expected in operation.

4.2 USING AN EXTERNAL OSCILLATOR

An external oscillator may be used with the 80C186EB family. The external frequency input (EFI)
signalis connected directly to the CLKIN input of the oscillator. OSCOUT must be left unconnected.
This oscillator input drives an internal divide-by-two counter to generate the CPU clock signal. Thus
the external frequency input can be of practically any duty cycle, so long as the minimum HIGH and
LOW times for the signal (as stated in the data sheet) are met.

4.3 OUTPUT FROM CLOCK GENERATOR

The output of the crystal oscillator (or the external frequency input) drives a divide-by-two circuit
which generates a 50 per cent duty cycle clock for the 80186 family processor system. All processor
timing is referenced to this clock, available externally at the CLKOUT pin. CLKOUT changes state
on the HIGH-to-LOW transition of the CLKIN signal, and is active during RESET and bus HOLD.
CLKOUT is also available during Idle mode but not during Powerdown Mode (see the Chapter 12 for
more details).

4.4 RESET

The 80C186EB family clock generator also provides a synchronized RESET signal for the system.
This signal is generated from the RESIN input to the device. The clock generator synchronizes this
signal to the CLKOUT signal.

A Schmitt trigger in the RESIN input circuit ensures that a voltage difference separates the switch
points for logic states 0 and 1. This hysteresis measures approximately 600 mV. An 80C186EB
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family processor mustremain in RESET a minimum of four CLKOUT cycles after V,.and CLKOUT
stabilize. The hysteresis allows the RESIN input to be driven with a simple RC 01rcu1t as shown in
Figure 4.4. Typical applications can use an RC time constant of approximately 100 ms. RESIN
must be held LOW upon power-up for correct processor initialization.

VCC
' (17c)
100K typ. 3 Vo) = V\1-eRC
RESET IN ¢ RESIN
80C186EB
L
1uF typ. AN
= 270830-001-72

Figure 4.4. Simple RC Circuit for Power Up RESET

There are two types of RESETs than can occur: cold and warm. A cold reset takes place only at
powerup (Figure 4.5). The RESIN input must be held low during power supply and oscillator startup.
The device pins will assume their RESET pin states a maximum of 28 CLKIN periods after CLKIN
and VCC have stabilized. RESIN must be held low an additional 4 CLKIN periods after the device
pins have assumed their RESET state.

A warm RESET takes place when the device is RESET while it is running (Figure 4.6). In thisy case,‘
RESIN must be held low atleast4 CLKOUT periods. The device pins will assume their RESET states
on the second falling edge of CLKIN following the assertion of RESIN.

Exiting RESET is the same in both cases. The rising edge of RESIN generates an internal RESYNC
pulse (Figure 4.7) that resynchronizes the divide-by-2 internal phase clock. RESIN is sampled by the
falling edge of CLKIN. If RESIN is sampled high while CLKOUT is high, then CLKOUT will be
forced low for the next 2 CLKOUT cycles. The clock essentially “skips a beat” to synchronize the
internal phases. If RESIN is sampled high while CLKOUT is low, CLKOUT will not be affected (it
is already in phase).

RESOUT is deasserted on the second falling edge of CLKOUT after the internal clocks have re-
synchronized. Bus activity will begin seven CLKOUT periods after RESIN goes high. If HOLD is
asserted during RESET, the processor will immediately assert HLDA (noinstructions will be fetched).

The state of all device pins at RESET can be found in Appendix H “Modal Pin States”.
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Figure 4.5. Cold Reset Waveform
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CLKIN

RESIN \

RESYNC
(INTERNAL)

CLKOUT

RESOUT ’ ‘\

@ sSetup of RESIN to CLKIN falling.

(@ Next [ transition of CLKIN starts RESYNC.
@ [ transition ends RESYNC.

@ _4- of RESYNC resynchronizes the @ clock.

@ 2 1 of CLKOUT later RESOUT goes low. 270830-001-75

Figure 4.7. Clock Synchronization
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CHAPTER 5
PERIPHERAL CONTROL BLOCK

All the integrated peripherals on the 80C186EB/80C188EB are controlled by sets of registers con-
tained within an integrated peripheral control block (PCB). The registers are physically located in the
peripheral devices they control, but are addressed as a single block of registers. This set of registers
encompasses 256 contiguous bytes and can be located on any 256 byte boundary of the memory or
I/O space. Maps of these registers are shown in Figure 5.1. Any unused locations are reserved.

40H T2 Count
42H T2 Compare

46H T2 Control

80H GCSO0 Start
82H GCSO0 Stop
84H GCS1 Start
86H GCS1 Stop
88H GCS2 Start
8AH  GCS2 Stop

End Of Interrupt
04H Poll

06H Poll Status
08H  Interrupt Mask
0AH  Priority Mask
OCH In-Service 8CH  GCS3 Start
OEH Interrupt Request 8EH  GCS3 Stop
10H Interrupt Status 50H PORT1 Direction | 90H GCS4 Start
12H  Timer Control 52H PORT1 Pin 92H GCS4 Stop
14H  Serial Control 54H PORT1 Control 94H GCS5 Start
16H  INT4 Control 56H PORT1 Latch 96H GCS5 Stop
18H  INTO Control 58H PORT2 Direction | 98H GCS6 Start
1AH - INT1 Control 5AH  PORT2 Pin 9AH  GCS6 Stop
1CH  INT2 Control 5CH PORT2 Control 9CH  GCS7 Start
INT3 Control SEH PORT2 Latch 9EH GCS7 Stop
60H SERIALO Baud AOH LCS Start
62H SERIALO Count A2H LCS Stop
64H SERIALO Control | A4H UCS Start
66H SERIALO Status | Ae6H UCS Stop
68H SERIALO RBUF RELOCATION
SERIALO TBUF

TO Count SERIAL1 Baud BOH REFRESH Base
32H TO Compare A SERIAL1 Count B2H REFRESH Time
34H TO Compare B SERIAL1 Control B4H REFRESH Contro
36H TO Control SERIAL1 Status | B6HREFRESH Addres
38H T1 Count SERIAL1 RBUF B8H POWER Control
3AH T1 Compare A SERIAL1 TBUF

3CH T1CompareB
3EH T1 Control

BCH

Figure 5.1. PCB Register Map
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5.1 SETTING THE BASE LOCATION

Inaddition to the control registers for each of the integrated peripheral devices, the peripheral control
block contains the peripheral control block relocation register. This register allows the PCB to be
relocated on any 256 byte boundary within the processor’s memory or I/O space. Figure 5.2 shows
the layout of this register.

RCB RELOCATION REGISTER: (RELREG)

THE UPPER ADDRESS BITS OF THE PCB BASE ADDRESS.
LOWER BITS FIXED AT 0. .
R19 THROUGH R16 IGNORED WHEN PCB /O MAPPED.

©-
®—=
~N—
o=
a-=3
-
W=
-
-
o

MEMORY /O BIT:
0=PCB IN I/O SPACE
1= PCB IN MEMORY SPACE

ESCAPE TRAP BIT:
0=NO TRAP ON ESCape
1= TRAP ON ESCape

= UNDEFINED WHEN READ.
MUST WRITE "0".

RELREG 00FFH

270830-001-49

Figure 5.2.

The relocation register is located at offset 0A8H within the PCB. Since it is contained within the
peripheral control block, any time the peripheral control block is moved, the relocation register will
also move.

In addition to the PCB relocation information, the relocation register contains an additional bit used
to force the processor to trap whenever an ESCape (coprocessor) instruction is encountered. The
function of this bit is described in greater detail in the “Provisions for Floating Point Math” section
of this manual.

The relocationre gister contains the value 00FFH upon RESET. This means that the peripheral control
block will be located at the very top (OFFOOH to OFFFFH) of 1/O space. Thus after RESET the
relocation register will be located at word location OFFA8H in I/O space.

To relocate the PCB to the memory range 10000-100FFH, for example, the user programs the
relocation register with the value 1100H. Since the relocation register is contained within the periph-
eral control block, it moves to word location 100A8H.
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All communication between the integrated peripherals and the Modular CPU Core takes place over
a special bus called the F-Bus. The F-Bus always carries 16 bit data for both the 80C186EB and the
80C188EB.

Whenever mapping the 80C188EB peripheral control block to another location, the pro-
gramming of the relocation register should be done with a byte write (i.e., OUT DX, AL). Any
access to the control block is done 16 bits at a time. Thus, internally, the relocation register will be
written with 16 bits of the AX register while externally, the BIU will run only one 8-bit bus cycle. If
a word instruction is used (i.e., OUT DX, AX), the relocation register will be written on the first bus
cycle. The BIU will then run a second bus cycle which is unnecessary. The address of the second bus
cycle will no longer be within the control block (i.e., the control block was moved on the first cycle),
and therefore will require the generation of external READY to complete the cycle. For this reason
we recommend the use of byte operations for the relocation register. Byte instructions may also be
used for the other registers in the control block of a 80C 188EB and will eliminate half of the bus cycles
required if a word operation had been specified. Byte operations are only valid for even addressed
writes to the PCB. A word read (i.e., IN AX, DX) must be performed to read a 16-bit PCB register.

5.2 PERIPHERAL CONTROL BLOCK REGISTERS

Each of the integrated peripherals’ control and status registers are located at a fixed location above the
programmed base location of the peripheral control block. There are many locations within the
peripheral control block which are not assigned to any peripheral. If a write is made to any of these
locations, the bus cycle will be run, but the value will not be stored in any internal location. This means
that if a subsequent read is made to the same location, the value written will not be read back.

The processor will run an external bus cycle for any memory or I/O cycle which accesses a location
within the integrated control block. This means that the address, data, and control information will be
driven on the processor external pins just as if an ordinary bus cycle had been run. Any information
returned by an external device will be ignored, however, even if the access was to a location which
does not correspond to any of the integrated peripheral control registers. The above is true for the
80C188EB except that the word access made to the integrated registers will be performed in two bus
cycles.

The processor internally generates a READY signal whenever any of the integrated peripherals are
accessed; any external READY signal is ignored. This READY will also be returned if an access is
made to alocation within the 256 byte area of the peripheral control block which does not correspond
to any integrated peripheral control register. The processor will insert no wait states for any access
within the integrated peripheral control clock except for accesses to the timer registers. Any access
to the timer control and counting registers will incur one wait state. This wait state is required to
properly multiplex processor and counter element accesses to the timer control registers.
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The F-Bus does not function the same as the external data bus with regards to byte and word accesses.
All write transfers on the F-Bus take place as words regardless of how they are encoded. For example,
the instruction OUT DX, AL (DX is even) will write the entire AX register to the PCB register ateven
location [DX]. If DX were an odd location, AL would be placed in [DX] and AH would be placed at
[DX-1]. Similarly, a word operation to an odd address would modify [DX] and [DX-1] with the AH
and AL bytes swapped. This is different from normal external bus operation where unaligned
word writes would cause the modification of [DX] and [DX+1].

Aligned word reads work normally, however, unaligned word reads do not. Forexample, IN AX, DX
(DX is odd) will actually transfer [DX] into AL and [DX-1] into AH. Byte reads from either even or
odd addresses work normally, however only a byte will be read. Unlike the write operation, an IN
AL, DX will not transfer [DX] into AX (only AL is modified).

No problems will arise if the following recommendations are adhered to. For the 80C186EB:

~ Word reads: Access only even aligned word with IN AX, DX or MOV <word register>,
<even PCB address>.

Byte reads: Work normally. Beware of reading word wide PCB registers that may change value
between successive reads (i.e. Timer count value).

. Word writes: Always write even aligned words. Writing an odd aligned word will give unex-
pected results. Use either OUT DX, AX or OUT DX, AL (or MOV <even PCB address>,
<word register>). ‘

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will modify the
entire word PCB location.

For the 80C188EB:

Word reads: Access only even aligned words with IN AX, DX or MOV <word register>,
<even PCB address>.

Byte reads: Work normally. Beware of reading word wide PCB registers that may change value
between successive reads (i.e. Timer count value).

Word writes: Always write even aligned words. Writing an odd aligned word will give unex-
pected results. Use OUT DX, AL or MOV <even aligned byte PCB address>, <byte register low
byte>. Using OUT DX, AX will perform an unnecessary extra bus cycle.

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will modify the
entire word PCB location.
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5.3 RESERVED LOCATIONS AND THE NUMERICS INTERFACE

Any location within the 256 byte peripheral control block that are not explicitly used are reserved.
Reading from these locations yields an undefined result. If reserved registers are written, for example
during a block MOVe instruction, they must be set to OH. Failure to follow this guideline could
result in incompatibilities with future 80C186EB and other 80C186 Modular Core family
products.

Systems using the 80C187 Numeric Processor Extension must not relocate the PCB to location OH
in I/O space. The 80C186EB/80C187 interface uses I/O locations 0F84 through OFFH. If the PCB
were relocated over these locations, the 80C186EB would be communicating with the PCB and not
the 80C187 interface circuitry. This will cause indeterminate system operation if a numerics instruc-
tion is encountered when the escape trap bit is cleared.
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CHAPTER 6
TIMER / COUNTER UNIT

The 80C186EB family includes a Timer/Counter Unit which consists of three independent 16-bit
timers (figure 6.1). These timers operate independently of the CPU. Two have input and output pins
allowing counting of external events and generation of arbitrary waveforms. The third can be used
as a free running timer or as a prescaler for the other timers.

All of the timers can generate internal interrupt requests. Although the three timers share one request,
they each have their own vectoring location and have a fixed priority amongst themselves.

Timers 0 and 1 have two maximum count compare registers. Timers O and 1 also can be enabled or
disabled via a package pin. This allows for convenient measurement of external pulse widths. The
timer O and 1 in and out pins can also be configured as a digital one-shot.

TOIN TIIN
TRANSITION TRANSITION
LATCH/ LATCH/
SYNCHRONIZER | | SYNCHRONIZER
| Y
- TIMER 0 . w—e
%  RecisTERs [P > ?_LATCL,{, ToouT
T TIMER 1 o COUNTER
P REGISTERS s ELEMENT
> OUTPUT —-»Dn ouTt
-— TIMER 2 _ >
1  geGisTERs | LATCH
[}
cPU INTERRUPT
cLocK LATCHES
270830-001-89

Figure 6.1. Timer/Counter Unit Block Diagram

Three peripheral control block registers are used for each timer: the control register, the countregister,
and the compare register. Timers 0 and 1 have an additional compare register. The PCB map and
summary of operation are shown in figure 6.2.
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REGISTER NAME

TOCNT

TOCMPA

TOCMPB

TOCON

T1CNT

T1CMPA

T1CMPB

T1CON

T2CNT

T2CMPA

RESERVED

T2CON

Figure 6.2(a). PCB Map For Timer/Counter Unit

TIMER MAXCOUNT COMPARE REGISTERS:
(TOCMPA, TOCMPB, TICMPA, TICMPB, T2CMPA)

15 . 0
ISR EEEE R EEE:
itz (T|T
SISISISHIS IS cic]]clclclc]]cic]|c]c
il Melelell? 54 2|10

TIMER COMPARE VALUE —+

RESET = UNDEFINED 270830-001-61
Figure 6.2(b).
TIMER COUNT REGISTERS:
(TOCNT, TICNT, T2CNT)
15 0
ittt ]T
itttz
CIS1SISHIS IS clel]clciclc]]c|c|c|c
5 32 1lo 918 7]16}|51|4 3 ’\2 0
TIMER COUNT VALUE —j
RESET = UNDEFINED 270830-001-61A

Figure 6.2(c).
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TIMER 0 and TIMER 1 CONTROL REGISTERS:
(TOCON, T1CON)

ENABLE BIT:
0 = TIMER DISABLED.
1 = TIMER ENABLED.

INHIBIT:

REGISTER IN USE:

<
-

15 V}

—
-

z
Tz—|

MAX COUNT OCCURED: ——1

0 = NO MAXCOUNT YET.
1 =MAXCOUNT HAS OCCURRED.

RETRIGGER:

— INTERRUPT ON TERMINAL COUNT:
0 = NO INTERRUPT REQUESTS FROM THIS TIMER.
1 = GENERATE INTERRUPT REQUEST AT MAXCOUNT.

0 = COMPARE REGISTER A IN USE.
1 = COMPARE REGISTER B IN USE.

0 = WRITES TO ENABLE BIT IGNORED.
1=ALLOWS WRITE TO ENABLE BIT.

O-4D

—-xm
-“r->
-Z00

g
-

0 = TIMER INPUT SENSES
LEVEL TO GATE CLOCK
FOR INTERNAL CLOCKING.
1 = TIMER INPUT SENSES 0-1
EDGE TO RESET COUNT REGISTER
FOR INTERNAL CLOCKING.

PRESCALAR ON:
0 = TIMER COUNTS 1/4 CLKOUT
WHEN INTERNAL CLOCK
SELECTED.
1=TIMER COUNTS TIMER 2
MAXCOUNTS WHEN INTERNAL
CLOCK SELECTED.

EXTERNAL CLOCKING:

-
po
-
e
-

0 = INTERNAL CLOCK (CONTROLLED
BY RTG).

1 = EXTERNAL CLOCK (COUNT
TRANSITIONS ON INPUT PIN).

ALTERNATE COMPARE REGISTERS:

0= ALWAYS USE A.
1=USE A THEN B.

CONTINUOUS MODE:
0 = CLEAR EN BIT (STOP TIMER)
AFTER EACH CYCLE.
1 = TIMER RUNS CONTINUOUSLY.

270830-001-62

Figure 6.2(d).

6-3




intel TIMER/COUNTER UNIT

TIMER 2 CONTROL REGISTER: SRR

CONTINUOUS MODE:
0 =CLEAR EN BIT AFTER
EACH TIMER CYCLE.
1 = TIMER RUNS CONTINUOUSLY.

MAX COUNT OCCURED:
0 = NO MAXCOUNT YET.
1 = MAXCOUNT HAS OCCURRED.

z
z—|
H4zZ—

P
—

L INTERRUPT ON TERMINAL COUNT: R :
0 = NO INTERRUPT REQUESTS FROM THIS TIMER.
1 = GENERATE INTERRUPT REQUEST AT MAXCOUNT.

INHIBIT WRITES TO ENABLE:
0 = WRITES TO ENABLE IGNORED.
- 1 = ALLOWS WRITE TO ENABLE BIT.

. ENABLEBIT:
0 = TIMER DISABLED:
1= TIMER ENABLED.

RESET: EN = 0 ALL OTHER BITS UNDEFINED

= UNDEFINED WHEN READ.
MUST WRITE "0".

270830-001-63

Figure 6.2(e). ;

6.1 FUNCTIONAL OVERVIEW

The internal Timer Unit on the 80C186EB family can be modeled by a single counter element, time-
multiplexed to three register banks, each of which contains different control and count values. These
register banks are, in turn, dual-ported between the counter element and the CPU (see Figure 6.1).
Figure 6.3 shows the timer element sequencing and the subsequent constraints on input and output
signals. There is no connection between the sequencing of the counter element through the timer
register banks and the BIU’s sequencing through T-states. Timer operation and bus interface opera-

tion are completely asynchronous.
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TIMER 0 TIMER 1 TIMER 2 TIMERO .
SERVICED SERVICED SERVICED DEAD SERVICED

— N

[ 1 o] ¢2] I I
LA
L
TIMEEOUT \x [

TIMER OUT
1

TIMER IN
0

TIMER IN
1

NOTES: 1. Timer In 0 resolution time.
2. Timer In 1 resolution time.
3. Modified count value written into Timer 0 count register.
4. Modified count value written into Timer 1 count register. 270288-001-60

Figure 6.3. Counter Element Multiplexing and Timer Input Synchronization

Each timer is controlled by a register block (see Figure 6.2). Each of these registers can be read or
written whether or not the timer is operating. All processor accesses to these registers are synchro-
nized to all counter accesses to these registers, meaning that one will never read a count register in
which only half of the bits have been modified.

The Bus Interface Unit automatically inserts one wait state for any access to the timer registers to
perform this synchronization. LOCKing accesses to timer registers will not prevent the timer’s
counter elements from accessing the timer registers.

Each timer has a 16-bit count register which is incremented for each timer event. A timer event can
bea LOW-to-HIGH transition on a timer input pin (for Timers 0 and 1), a pulse generated every fourth
CPU Clock, or atime out of Timer 2 (for Timers 0 and 1). The count register is 16 bits wide, allowing
up to 65536 (2'6) events to be counted. Upon RESET, the contents of the count registers are inde-
terminate and they should be initialized to zero before any timer operation.

Each timer includes a maximum count register. Whenever the timer count register is equal to the
maximum count register, the count register resets to zero, so the maximum count value is never stored
in the count register. This maximum count value may be written while the timer is operating. A
maximum count value of 0 implies a maximum count of 65536, a maximum count value of 1 implies
a maximum count of 1, etc. Only equivalence between the count value and the maximum count
register value is checked. This means that the count value will not be cleared if the value in the count

6-5



intel TIMER/COUNTER UNIT

register is greater than the value in the maximum count register. If the timer is programmed in this
way, it will count to the maximum count (OFFFFH), increment to 0, then count up to the value in the
maximum count register. The terminal count (TC) bit in the timer control register will not be set when
the counter overflows to 0, nor will an interrupt be generated from the Timer Unit.

Timers 0 and 1 each contain an additional maximum count register. When both maximum count
registers are used, the timer will first count up to the value in maximum count register A, reset to zero,
count up to the value in maximum count register B, and reset to zero again. The ALTernate bit in the
timer control register determines whether one or both maximum count registers are used. If this bit
is LOW, only maximum count register A is used; maximum count register B is ignored. Ifitis HIGH,
both registers are used. The RIU (register in use) bit in the timer control register indicates which
maximum count register is presently counting up. This bit is 0 when maximum count register A is
being used, 1 when maximum count register B is being used. The RIU bit is read only. It will always
beread 0 in single maximum count register mode (since only maximum countregister A will be used).

Each timer can generate an interrupt whenever the timer count value reaches a maximum count value,
All timers may use maximum count A in single max count mode. Timers 0 and 1 (dual max count
mode) may also use maximum count B. In addition, the maximum count (MC) bit in the timer control
register is set whenever the timer count reaches a maximum count value. This bit is never automati-
cally cleared, i.e., programmer intervention is required. If atimer generates a second interrupt request
before the first interrupt request has been serviced, the first interrupt request to the CPU will be lost.

Each timer has an ENable bitin the timer control register. The timer will count timer events only when
this bit is set. Any write to the timer control register will modify the ENable bit only if the INHibit
bit is also set. The INHibit bit in the timer control register allows selective updating of the timer
ENable bit. The value of the INHibit bit is not stored in a write to the timer control register; it will
always be read as logic zero.

Each timer has a CONTinuous bit in the timer control register. If this bit is cleared, the timer ENable
bit will be automatically cleared at the end of each timing cycle. If a single maximum count register
is used, the end of a timing cycle occurs when the count value resets to zero after reaching the value
in maximum count register A. If dual maximum count registers are used, the end of a timing cycle
occurs when the count value resets to zero after reaching the value in maximum count register B. If
the CONTinuous bit is set, the ENable bit will never be automatically reset. Thus, after each timing
cycle, another timing cycle will automatically begin. For example, in single maximum countregister
mode, the timer will count up to the value in maximum count register A, reset to zero, ad infinitum.
In dual maximum countregister mode, the timer will count up to the value in maximum count register
A, reset to zero, count up to the value in maximum count register B, reset to zero, and repeat.

A flowchart of timer 0 and 1 operation can be found in Figure 6.4.
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Figure 6.4(a). Timer 0 and 1 Flowchart.
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Figure 6.4(b). Timer 0 and 1 Fiowchari (continued)
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6.2 TIMER EVENTS

Each timer counts events. All timers can use a transition of the CPU clock as an event. If the internal
clock is used, the count increments every fourth CPU clock because of timer element multiplexing.
For Timer 2, this is the only timer event which can be used. For Timers 0 and 1, this event is selected
by clearing the EXTernal and Prescaler bits in the timer control register.

Timers 0 and 1 can use Timer 2 reaching its maximum count as a timer event. This is selected by
clearing the EXTernal bit and setting the Prescaler bit in the timer control register. When this is done,
the timer will increment whenever Timer 2 resets to zero having reached its own maximum count.
Note that Timer 2 must be initialized and running in order to increment the value in the other timer/
counter.

Timers 0 and 1 can also be programmed to count LOW-to-HIGH transitions on the external input pin.
Each transition on the external pin is synchronized to the 80C186EB family processor clock before
it is presented to the timer circuitry (see Appendix B for information on synchronizers). The timer
counts transitions on the input pin; the input value must go LOW, then HIGH, to cause the timer to
increment. Transitions on this line are latched. The maximum count rate for the timer is 1/4 the CPU
clock rate measured at CLKOUT.

6.3 TIMER INPUT PIN OPERATION

Timers 0 and 1 each have individual timer input pins. All LOW-to-HIGH transitions on these input
pins are synchronized, latched, and presented to the counter element when the particular timeris being
serviced by the counter element.

Signals on this input can affect timer operation in three different ways. The manner in which the pin
signals are used is determined by the EXTernal and RTG (retrigger) bits in the timer control register.
If the EXTernal bit is set, transitions on the input pin will cause the timer count value to increment if
the timer is enabled (that is, the ENable bit in the timer control register is set). Thus, the timer counts
external events. If the EXTernal bitis cleared, all timer increments are caused by either the CPU clock
or by Timer 2 reaching its maximum count. In this mode, the RTG bit determines whether the input
pin will enable timer operation, or whether it will retrigger timer operation.

‘When the EXTernal bit is LOW and RTG bit is also LOW, the timer will count internal timer events
only when the timer input pin is HIGH and the ENable bit in the timer control register is set. Note that
in this mode, the pin is level sensitive, not edge sensitive. A LOW-to-HIGH transition on the timer
input pin is not required to enable timer operation. If the input is tied HIGH, the timer will be
continually enabled. The timer enable input signal is completely independent of the ENable bit in the
timer control register. Both must be HIGH for the timer to count. Examples of uses for the timer in
this mode would be a real time clock or a baud rate generator.

6-9



intgl’ TIMER/COUNTER UNIT

‘When the EXTernal bit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the
timer input pin causes the timer count register to reset to zero. This mode of operation can be used to
generate a retriggerable digital one-shot. After the timer is enabled (i.e., the ENable bit in the timer
control register is set), timer operation (counting) will begin only after the first LOW-to-HIGH
transition of the timer input pin has been detected. If another LOW-to-HIGH transition occurs on the
input pin before the end of the timer cycle, the timer will reset to zero and begin the timer cycle again.
Atimer cycle is defined as the time the timer is counting from zero to the maximum count (either max
count A or max count B). This means that in the dual max count mode, the RIU bit is not set if the timer
isreset by the LOW-to-HIGH transition on the input pin. Should a timer reset occur when RIU is set
(indicating max count B), the timer will again begin to count up to max count B before resetting the
RIU bit. Thus, when the ALTernate bit is set, a timer reset will retrigger (or extend) the duration of
the current max count in use (which means that either the LOW or HIGH level of the timer output will
be extended). If the CONTinuous bit in the timer control register is cleared, the timer ENable bit will
automatically be cleared whenever a timer cycle has been completed (max count is reached). If the
CONTtinuous bit in the timer control register is set, the timer will reset to zero and begin another timer
cycle whenever the current cycle has completed.

6.4 TIMER OUTPUT PIN OPERATION

Timers 0 and 1 each have a timer output pin which can perform two functions. The first is a single
pulse indicating the end of a timing cycle. The second is a level indication of the maximum count
register being used. The timer outputs operate as outlined below whether internal or external clocking
of the timer is used. With external clocking, the time between a transition on the timer input pin and
a corresponding transition on the timer output pin varies from 2 1/2 to 6 clocks. The exact timing
depends on when the input transition occurs relative to timer service by the counter element.

When the timer is in single maximum count register mode, the timer output pin will go LOW for a
single CPU clock one clock after the timer is serviced by the counter element when maximum count
isreached (see Figure 6.5).

TIMER 0 SERVICED
INTERNAL |
COUNT ~ MAXCOUNT-1 X /] 0
VALUE 7
TMR OUT ] |
PIN
270830-001-90

Figure 6.5. TxOUT Signal.
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When the timer is programmed in dual maximum count register mode, the timer output pin indicates
which maximum count register is being used. It is LOW if maximum count register B is being used
and HIGH if maximum count register A is being used. The timer can generate a repetitive waveform
if the CONTinuous bit in the timer control register is set. The frequency and duty cycle of this
waveform is easily controlled by the programmer. For example, if maximum count register A
contains 10, maximum countregister B contains 20, and CLKOUT is 12.5 MHz, the timer generates
a 33 per cent duty cycle waveform at 104 kHz. If the timer is programmed to halt upon maximum
count, the output pin will go HIGH when the timer halts.

The timer output pins do not float during bus HOLD.
6.5 PROGRAMMING THE TIMER/COUNTER UNIT REGISTERS

Each timer is controlled through the use of at least three registers. The Timer Control Registers
(T2CON, T1CON, and TOCON) control the functional modes for the timers. The Timer Count
Registers (T2CNT, TICNT, and TOCNT) hold the count value for the timers. The maximum count
compare A registers hold the maxcount compare value for each timer (TOCMPA, TICMPA, and
T2CMPA). Timers 0 and 1 add two additional compare registers, TOCMPB and TOCMPA.

The compare and count registers have already been described. The following section describes the
control register in detail.

6.5.1 THE TIMER CONTROL REGISTER (TOCON, T1CON, AND T2CON)

The timer 0 and 1 control registers contain 10 fields. Timer 2 uses only 5 fields since it lacks some
of the functionality of the other timers.

The ten bit fields are as follows:

ALT:

The ALT bit determines which of two MAX COUNT registers is used for count comparison. If
ALT=0, register A for that timer is always used, while if ALT=1, the comparison will alternate
between register A and register B when each maximum count is reached. This alternation allows the
user to change one MAX COUNT register while the other is being used, and thus provides a method
of generating non-repetitive waveforms. Square waves and pulse outputs of any duty cycle are a
subset of available signals obtained by not changing the final count registers. The ALT bit also de-
termines the function of the timer output pin. If ALT is zero, the output pin will go LOW for one clock,
the clock after the maximum count is reached. If ALT is one, the output pin will reflect the current
MAX COUNT register being used (0/1 for B/A).
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CONT: .

Setting the CONT bit causes the associated timer to run continuously, while resetting it causes the
timer to halt upon maximum count. If CONT=0and ALT=1, the timer will count to the MAX COUNT
register A value, reset, count to the register B value, reset, and halt.

EXT:

The external bit selects between internal and external clocking for the timer. The external signal may
be asynchronous with respect to the 80C186EB family clock. If this bit is set the timer will count
LOW-to-HIGH transitions for the input pin. If cleared, it will count an internal clock while using the
input pin for control. In this mode, the function of the external pin is defined by the RTF bit. The
maximum input to output transition latency time may be as much as 6 clocks. However, clock i 1nputs
may be pipelined as closely together as every 4 clocks without losing clock pulses.

P: .

The prescaler bit is ignored unless internal clocking has been selected (EXT=0). If the P bit is a zero,
the timer will count at one-forth the internal CPU clock rate. If the P bit is a one, the output of timer
2 will be used as a clock for the timer. Note that the user must initialize and start timer 2 to obtain the
prescaled clock.

RTG:
Retrigger bit is only active for internal clocking (EXT=0). In this case it determines the control
function provided by the input pin.

If RTG=0, the input level gates the internal clock on and off. If the input pin is HIGH, the timer will
count; if the input pin is LOW, the timer will hold its value. As indicated previously, the input signal
may be asynchronous with respect to the 80C186EB family clock.

When RTG=1 , the input pin detects LOW-to-HIGH transitions. The first such transition starts the
timer running, clearing the timer value to zero on the first clock and then incrementing thereafter.
Further transitions on the input pin will again reset the timer to zero, from which it will start counting
up again. If CONT=0 when the timer has reached maximum count, the EN bit will be cleared,
inhibiting further timer activity.

EN:

The enable bit provides programmer control over the timer's RUN/HALT status. When set, the timer
is enabled to increment subject to the input pin constraints in the internal clock mode (discussed
previously). When cleared, the timer will be inhibited from counting. All input pin transitions during
the time EN is zero will be ignored. If CONT as zero, the EN bit is automatically cleared upon
maximum count.

INH:
The inhibit bit allows for selective updating of the enable (EN) bit. If INH is a one during the write to
mode/control word, then the state of the EN bit will be modified by the write. If INH is a zero during
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the write, the EN bit will be unaffected by the operation. This bit is not stored; it will always be a0 on
aread.

INT:

When set, the INT bit enables interrupts from the timer, which will be generated on every terminal
count. If the timer is configured in dual MAX COUNT register mode, an interrupt will be generated
each time the value in MAX COUNT register A is reached, and each time the value in MAX COUNT
register B is reached. If this enable bit is cleared after the interrupt request has been generated, but
before a pending interrupt is serviced, the interrupt request will still be in force. (The request is latched
in the interrupt Controller.)

MC:

The Maximum Count is set whenever the timer reaches its final maximum count value. If the timer
is configured in dual MAX COUNT register mode, this bit will be set each time the value in TxCMPA
is reached, and each time the value in the TXCMPB is reached. The MC bit gives the user the ability
to monitor timer status through software instead of through interrupts. Programmer intervention is
required to clear this bit.

RIU:

The Registerin Use bitindicates which MAX COUNT register is currently being used for comparison
to the timer count value. A zero value indicates register A. The RIU bit cannot be written, i.e., its value
is not affected when the control register is written. It is always cleared when the ALT bit is zero.

The following fields are not used for the T2CON register: ALT, EXT, P, RTG, and RIU. Note that
these bits will return a zero when read.

6.6 EXAMPLE TIMER INITIALIZATION CODE

The 80C186EB family timers possess great flexibility. It is easy to program them as baud rate -
generators, digital one-shots, pulse width modulators, event counters, and pulse width measurement
applications.

6.6.1 REAL TIME CLOCK

Example 1 contains sample code to initialize Timer 2 to generate interrupts every millisecond. The
CPU then increments memory-based clock variables.
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Example 1

smodl8k
name

ae

required.

e as ae ge ge ae e e

example_B801l8L_family_timer_code

This file contains an example 8018k family timer routine to set
up the timer and interrupt controller to cause the timer to
generate an interrupt every 10 milliseconds-, and to service
1nterrupts to implement a real time clock. Timer 2 is used
in this example because no input or output signals are

The code example assumes that the peripheral

control block has not been moved from its reset 10cat1on

(FFOO-FFFF in I/0 space).

argl equ word ptr LBP + 4l
arge equ word ptr L[BP + k1
arg3 equ word ptr L[BP + 81
timer_2 nt equ 19 5timer 2 has vector type 19
T2CON equ OFF4BH
T2CMPA equ OFF42H
TE2CNT equ OFF40H
TCUCON equ OFFL2H
EOI equ OFFO2H sinterrupt controller reg
INTSTS equ 0FF10H
data segment public 'data'
public hour_- minute_asecond_.mesc_-
mesc_. db ?
hour_. db ?
minute_. db ?
second_. db ?
data ends
cgroup group code
dgroup group data
code segment public_code_-
public set_time
assume c¢sicode. ds:dgroup

set_time(Chouraminute-second)
sets the time variables. initializes timer 2 to pro-

the interrupt vector for timer 2

B
B
B
5 vide interrupts every 10 milliseconds. and programs
.
H
s

et_time proc near 5set stack addressability

enter 0.0 jsave registers used

push AX

push DX

push SI

push DS

xor AX-AX iset the interrupt vector
ithe timers have unique
5interrupt vectors even though
ithey share the same control
iregister

mov DS.AX

mov SI 4xtimer_g2int

mov word ptr DS:LSIJ.offset timer_2_interrupt_routine

inc ST

inc ST

mov DS:LCSIJ.CS

pop DS

mov AX-argl iset the time values

mov hour_- AL

mov X-arge
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mov minute_~AL
mov AX.arg3
mov second_-AL
mov msec_-0

mov DXT2CNT
xor AX.AX
out DX.AX

mov DX-T2CMPA
mov AX-2000

out DX AX
mov DX.T2CON

iclear the
scount
sregister

iset the max count vlaue
510mx/500 ns(timer 2 counts
5at 1/4 the CPU clock rate)

iset up the control word

mov AX.1110000000000001b senable counting.generate

out DX AX
mov dx-TCUCON
mov AX.0000b
out DX AX

sti

pop SI
pop DX
pop AX
leave
ret

set_time endp

timer_2_interrupt_routine

bump_second:

bump_minute:

bmp_hour:

proc
push
push

cmp

jae
inc
jmp

move
cmp

jae
%nc
mp

move
cmp

jae
inc
jmp
pop
pop
ret

mov
cmp

jae
inc
jmp

sinterrupts on TC- continuous
Scounting

5set up the interrupt
5controller

sunmask interrupts highest
spriority interrupt

5enable processor interrupts

far
AX
DX

msec_-99 5see if one second has
jpassed

bump_second 3if above or equal...

mesc_.

reset_int_ctl

mesc_-0 sreset millisecond
minute_+59 3see if one minute has
spassed

bump_minute
second_.
reset_int_ctl

second_-0
minute_-59 35see if one hour has

ipasssed

bump_hour

minute_.

reset_int_ctl

DX

AX

minute_-0

hour_.1l2 35see if 12 hours have
ipassed

reset_hour
hour_.
reset_int_ctl
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reset_hour:
mov hour_-1
reser_int_ctl:
mov DX.EOI
mov AX.8000h inon-specific end of
Sinterrupt
out DX AX

pop DX
pop AX
iret
timer_2_interrupt_routine endp
code ends
end 270288-001-63

6.6.2 EVENT COUNTER

An 80C186EB family timer can count events using the timer input pins. Sample code for such an
application is shown in Example 2. '

Example 2

smodl8kb
name example_8018k_family_timer_code

This file contains an example 8018k family timer routine to set
up the timer as an external event counter. In this mode-
Timer 1 is used to count transitions on its input pin. After
the timer has been set up by the routine- the number of
events counted can be directly read from the timer count
register. The timer will count a maximum of L5535 timer
events before wrapping around to zero. This code example
also assumes that the peripheral control block has not been
moved from its reset location (FFOO-FFFF in I/0 space).

o g% e e as ae ge g g ge ge

s
TLICON equ OFF3EH
TLICMPA equ OFF3AH
TLCNT equ OFF38H
code segment public'code'
assume csicode
5
5 set_count() initializes the 8018k timer 1 as an event
E} counter
1
set_count proc near 3save registers used
push AX
push DX
mov DX-TLICMPA 5set the max count value
mov AX.0 5allows the timer to count
5all the way to FFFFH
out DX.AX
mov DX-TLCON 3set the control word
mov AX-1100000000000101b 3senable counting
ino interrupt on TC
jcontinuous counting
35single max count register
5external clocking
out DX.AX
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xor DX-TLCNT 5zero AX
mov DX-TLCNT 5and zero the count in the
stimer

out DX AX
pop DX
pop AX
ret

set_count endp

code ends
end

270288-001-65
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CHAPTER 7
CHIP SELECT/READY LOGIC UNIT

The 80C186EB contains an integrated Chip Select and Ready Logic Unit capable of supplying chip
select signals for up to ten memory and peripheral devices. The Chip Select Unit (CSU) can often
eliminate the need for external chip select decoding logic in small to medium sized systems (see
Figure7.1). READY signal generation, needed for slower memory or peripheral devices, is integrated
into the CSU.

The CSUis anextremely flexible unit. The ten chip selects areallidenticaland completely independent
in operation. Two PCB registers define the operational characteristics of each channel (20 total
registers).

Each chip selectis active foraprogrammable active range in either memory or peripheral (I/O) space.
The chip selects can be individually disabled under software control. An enabled chip select line
becomes active low whenever the Bus Interface Unit accesses a location (memory or I/O) within the
channel’s active range. Channels configured for memory accesses can select ranges in 1K byte
increments from O to the full 1 megabyte of physical memory. Those channels configured for I/O
accesses can select ranges in 64 byte increments from 0 to the full 64K byte size of I/O space.

Chip select ranges may overlap. Overlapping chip selects will all become active during accesses to
their shared ranges. This allows for the easy implementation of shadowed and paged memory.
Devices can share the same physical address space and be selectively enabled by software. The user
could configure the CSU for up to ten megabytes of software paged memory withoutexternal paging
hardware. ’

The granularity of the CSU is not fixed as it is with many popular external decoding schemes.
Typically, a simple external chip select decoding scheme will select one of several equally sized
ranges. The CSU can select varying sized ranges. This allows for optimization of the full memory and
peripheral space.

Each chip select has integrated programmable READY logic. This logic can automatically insert
between 0 and 15 wait states into bus cycles accessing memory or I/O locations within a chip select’s
range. If greater than 15 waits states are required the READY pin can be used to extend the bus cycle
indefinitely.

The integrated chip select unit has advantages beyond reducing the chip count of a system. Externally
generated chip selects are delayed from a valid address by the propagation delay of the decoding
circuitry. Chip select signals generated by the CSU become active at the same time as the address. This
time savings can, in some instances, allow the use of slower memory devices without the insertion
of wait states.
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The Chip Select Unit will generate chip select signals only for accesses generated by the CPU ( BIU
cyclesand DRAM refresh cycles). An external bus master must supply its own chip select signals. See
Section 7.1.5 below for a discussion of external bus masters.

The Chip Select Unit PCB map and summary of register operation is shown in Figure 7.2.

REGISTER NAME
GCSO0ST
GCS0SP
GCS1ST
GCS1SP
GCS2ST
GCS2SP
GCS3ST
GCS3SP
GCS4ST
GCS4SP
GCS5ST
GCS5SP
GCS6ST
GCS6SP
GCS7ST
GCS7SP

LCSST
LCSSP
UCSST
ucssp

Figure 7.2(a). PCB Map for Chip Select Unit
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CHIP SELECT CHANNEL START REGISTERS: (UCSST, LCSST, GCSO0ST through GCS7ST)

THE UPPER 10 BITS OF THE STARTING ADDRESS
FOR THE CHIP SELECT ACTIVE REGION
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GCSxST OFFCFH MUST WRITE "0".
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ucssT FF8FH
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Figure 7.2(b).
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CHIP SELECT CHANNEL STOP REGISTERS: (UCSSP, LCSSP, GCSOSP through GCS7SP)

THE UPPER 10 BITS OF THE ENDING ADDRESS
FOR THE ACTIVE CHIP SELECT REGION
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CHIP SELECT ENABLE BIT:
0 = CHIP SELECT CHANNEL OFF
1 = CHIP SELECT CHANNEL ON

IGNORE STOP ADDRESS BIT:
0 = USE STOP ADDRESS
1 = IGNORE STOP ADDRESS. STOP
ADDRESS IS THE TOP OF PHYSICAL
MEMORY (OFFFFH MEMORY,
OFFFFH FOR I/O)

MEMORY CHIP SELECT BIT:
0 = CHIP SELECT IS ACTIVE FOR /O
ACCESSES
1 = CHIP SELECT ACTIVE FOR MEMORY
ACCESSES

USE EXTERNAL READY PIN BIT:
0 = WAIT STATE GENERATOR IGNORES
EXTERNAL READY PIN
1 = WAIT STATES WILL BE INSERTED UNTIL
EXTERNAL READY IS ASSERTED

= UNDEFINED WHEN READ.

GCSxSP OFFC3H MUST WRITE "0".

LCSSP OFFC3H
UCssP OFFCFH
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Figure 7.2(c).
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7.1 FUNCTIONAL OVERVIEW

There are a total of ten chip select channels available: eight general purpose chip selects (GCSO0-
GCS7), the Upper Chip Select (UCS), and the Lower Chip Select (LCS). The GCS channels are
multiplexed with output Port 1.

7.1.1 CHIP SELECT OPERATION
There are five conditions that must be met to activate a chip select line:

1. The current address (A19:0 in memory or A15:0 in I/O) must be greater than or equal to the
chip select channel’s starting address. The starting address defines the beginning of a chip
select’s active range.

2. The current address must be less than the chip select channel’s stopping address. This address
defines the upper limit of a chip select channel’s active range. Optionally, the stop address may
be ignored effectively making the top of physical memory (OFFFFFH memory; OFFFFH I/O) the
end of a channel’s range.

3. The channel must be enabled. Disabled channels always drive their chip select line high, dese-
lecting the attached device.

4. The current access must be to the same device space, memory or I/O, that the chip select is
programmed for. A chip select programmed for memory accesses will not be active for IN or
OUT instructions; a channel programmed for I/O will not be active for memory accesses.

5. The memory or I/O location being accessed must not be in the Peripheral Control Block.
Accesses to the PCB take place internally and do not require a chip select signal. All CSU lines
will remain high during a PCB access.

6. For the General Purpose Chip Selects (GCS7-GCSO0), the Port 1 multiplexer must be pro-
grammed to select CSU functions (see the I/O Unit section of this manual for details).

Every chip select channel that meets all these criteria will become active for a given 80C186EB bus
cycle. Since each channel is independent, it is possible to have more than one channel active at a time.
The operation of overlapping channels is explained below. A logic block diagram describing chip
select operation is shown in Figure 7.3.
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Case 1: GCS configured for Memory Decoding (MEM=1)

PCB IS NOT LOCATED IN
CURRENT RANGE

CSEN=1
CHIP SELECT ENABLE

PORT 1 LATCH

!

=—o0-

A19:10 > START
ADDRESS FIELD

o

A19:10 < STOP
ADDRESS FIELD

ISTOP=1
IGNORE STOP

—

Case 2: GCS configured for /0 Decoding (MEM=0)

PCB IS NOT LOCATED IN
CURRENT RANGE

CSEN=1
CHIP SELECT ENABLE

|

PORT 1 MUX
CONTROL
(GCS ONLY)

PORT 1 LATCH

!

=0

A15:6 > START
ADDRESS FIELD

—0

D

A15:6 < STOP
ADDRESS FIELD

ISTOP=1
IGNORE STOP

D

PORT 1 MUX
CONTROL
(GCS ONLY)

270830-001-4

Figure 7.3. CSU Logic Block Diagram
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The granularity of a chip select decoder refers to the size of the range for which each signal is active.
Inmost simple decoding schemes a portion of the high order address bits are fed into a demultiplexing
(decoder) chip. The outputs of the demultiplexing chip would then select one of several equally sized
areas of memory. For example, consider the typical chip select decoding scheme in Figure 7.4. The
three highest order bits of the memory address bus (A19:17) are connected to a 74138 3 to 8 decoder.
The resulting chip selects would resultin 8 128K byte ranges (a granularity of 128K). The granularity
for such schemes is fixed. Such arrangements can leave holes in the memory map when devices
smaller than the granularity are used. More elaborate decoding schemes could be devised to provide
for greater and more flexible granularity.

A19 et A2 07— SELECTS 896K TO 1 MEG

A18 m—— A1 06 e~ SELECTS 768K TO 896K
A17 sem— AQ [l .
- [ ]
[oY N S ——— .
74138 °
03 |r—e——
[ ]
E3 02 |-
é E2 o1 p————————— SELECTS 128K TO 256K .
; E1 00 pmeeee - SELECTS 0 TO 128K

270830-001-5

Figure 7.4. Simple Chip Select Decoder Example

The CSU uses the 10 most significant bits of the address to decode each channel. The beginning and
ending addresses for each chip select are defined by separate ten bit fields in 2 PCB registers. The
lower bits are fixed at zero in hardware. The ten bit field width results in aminimum granularity of 1K
bytes for memory accesses and 64 bytes for I/O. The example in Figure 7.5 illustrates this.
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EXAMPLE A: MEMORY ADDRESSING

TEN BIT PROGRAMMABLE
ADDRESS FIELD

LOW ORDER ADDRESS
BITS FIXED AT ZERO

1A19 L] Aol

STOP
ADDRESS

A19 ) AO

START
ADDRESS

1 0 0 0 0 0 0O O O O O =400H=1028BYTES

270830-001-6

Figure 7.5(a).
EXAMPLE B: PERIPHERAL ADDRESSING
TEN BIT PROGRAMMABLE LOW ORDER ADDRESS
ADDRESS FIELD BITS FIXED AT ZERO
Ia15 L Aol

STOP
ADDRESS

A15

START
ADDRESS

1 0 0 0 0 O O =40H=64BYTES

270830-001-7

Figure 7.5(b).

Active ranges all begin on modulo 1K boundaries for memory and modulo 64 byte for I/O. The end
of a chip select range is one less than the stop address (unless the ignore stop address option is

selected). Figure 7.6 illustrates how the startmg and stopping address fields are used to select the
active range for a chip select.
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MEMORY SPACE

ojofojojjofojoj1jjofo -
00C00 TO 00FFF
STOP ADDRESS FIELD BITS FIXED AT ZERO
ACTIVE
00800 TO 00BFF RANGE
0 0 4 0 0 00400 TO 007FF

1K BYTE
PAGES

START ADDRESS FIELD BITS FIXED AT ZERO

270830-001-8

Figure 7.6. Programming an Active Range

The Ignore STOP address option is provided for chip select channels to access the final 1K byte of
memory (or 64 bytes of I/O). Using the largest value possible in the stop address field (FFCOOH)
would result in a stop address of FFBFFH (one less than FFCOOH). The ISTOP option tells the chip
select channel to ignore the programmed stop address making the end of the range the top of physical
memory. This allows access to the memory above FFBFFH. Similarly, I/O chip selects must use the
ISTOP option to gain access to I/O ports above FFBFH.

7.1.2 READY GENERATION AND WAIT STATE INSERTION

Each channel has an associated wait state/ready logic circuit. For any accesses within a chip select’s
range, between 0 and 15 wait states will automatically be inserted into the bus cycle. Withthe READY
control enabled, the programmed number of wait states will be inserted then control will pass to the
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READY pin. Wait states will continue to be inserted until READY is asserted. With READY control
disabled, only the programmed number of wait states will be inserted; the state of the READY pin
is ignored.

Proper READY signal interfacing is explained in the Bus Interface Unit section.
7.1.3 OVERLAPPING RANGES

Chip select channels are permitted to have overlapping active ranges. An access to an overlapping
range results in all of the enabled overlapping chip selects becoming active. If all the overlapping
channels ignore external READY, then the maximum programmed number of wait states will be
inserted by the BIU. If one or more are programmed for external READY control, the minimum
number of programmed wait states are inserted after which control is passed to the READY signal.

As an example, consider the following three chip selects:

UCS:  Active Range = 0 to OFFFFFH in memory
Enabled with 5 wait states, NO external READY

GCS0: Active Range = 01000H to 01400H in memory
Enabled with 3 wait states, NO external READY

GCS3: Active Range = 0400H to 01800H in memory
Enabled with 1 wait state, NO external READY

Any access to the overlapping region (01000H to 013FFH) will result in all chip selects going active
and 5 wait states inserted in the cycle. As a second example, let’s assume GCSO required external
READY (though still with 3 wait states programmed). In this case an access to the overlapping region
would again result in all chip selects going active. This time, however, only one wait state is inserted;
control then passes to external READY. Once READY is asserted the bus cycle completes.

7.1.4 PORT 1 MULTIPLEXER

GCS7 through GCS0 are multiplexed with output port 1 functions. The Port 1 Control registers must
be properly programmed for the GCS signals to appear at the package pins. Refer to the I/O Ports
section of this manual for further information.

7.1.5 EXTERNAL BUS MASTERS

The Chip Select Unit is active only for internally generated bus accesses. These include any opcode
fetch, memory or I/O access, or DRAM refresh cycle. Any bus cycles generated by an external master
will notcause the chip selects to go active. During abus HOLD sequence the chip selects will not float,
but will instead remain in their inactive HIGH state. Systems utilizing external bus masters will
require the logic shown in Figure 7.7 to generate the proper chip select signals.
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80C186EB

MEMORY OR I/0
CHIP SELECT :ﬂ >°_" DEVICE CHIP SELECT
EXTERNALLY

GENERATED =
CHIP SELECT

270830-001-9

Figure 7.7. CS Generation with External Bus Masters
7.1.6 NUMERICS 1/0 LOCATIONS (I/0O LOCATIONS 00F8H TO 00FFH)

The interface between the 80C186EB and the 80C 187 numerics processor extension makes use of the
I/O ports located between 00F8H and O00FFH. Programming a chip select with an active range that
includes these locations is not recommended.

7.1.7 CSU TIMINGS

The decision to activate a particular chip select is performed just after the effective address calculation
is completed. Both of these events occur before the address appears on the bus. The address and chip
select signals are gated on to the bus simultaneously in T1. The status lines (S2:0) become valid one
halfacycle earlier. The status lines can be combined with the chip selects to create early read and write
selects for slow memory and peripheral devices.

The relative timings for the address lines, chip selects, and status lines can be found in Figure 7.8.
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Figure 7.8. CSU Relative Timings
7.2 PROGRAMMING THE CSU

7.2.1 THE CHIP SELECT REGISTERS

Two PCB registers are used to program each channel. The chip select start registers ( GCSOST to
GCS7ST, UCSST, and LCSST) define both the starting address for a chip select and the desired
number of wait states. The chip select stop registers (GCSOSP to GCS7SP, UCSSP, LCSSP) define
the ending address for a chip select’s range as well as selecting the READY, ignore stop address,
memory/peripheral, and enable options (Figure 7.2).
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7.2.1.1 THE CHIP SELECT START REGISTER

The CS9:0bits of the start register define the upper ten address bits for the beginning of the channel’s
range. The lower bits (10 for memory and 6 for I/O) are fixed at 0. The WS3:0 field indicates the
number of wait states (0 to 15) to be inserted for accesses in the chip select’s range.

7.2.1.2 THE CHIP SELECT STOP REGISTER

The CS9:0 bits of the stop register define the upper ten bits for the ending address of the channel’s
range. As with the start register, the lower bits are fixed at zero. The last address for which the
channel’s chip select line is active will actually be one less than the full stop address. For example, if
CS9:0 contained 0000.0000.01 the stop address would be 0000.0000.0100.0000.0000 (400H) for
memory. The last active address would then be 3FFH.

The Chip Select ENable (CSEN) bit must be set for the channel to be active. Clearing this bit forces
the chip select line to remain high.

The Ignore STOP (ISTOP) bit, when set, forces the chip select unit to ignore the stop address. This
has the effect of making the stop address of the chip select’s range FFFFFH in physical memory
(OFFFFH for I/O). The MEM bit selects between memory and 1/O mapping for the channel. When
MEM is set the channel will be active for memory accesses in the selected range; with this bit cleared
it will be active for I/O.

The READY bit is used with the wait state field in the start register to control the ready generation
circuitry. When READY is cleared the Bus Interface Unit will ignore the external READY pin and
insert the number of wait states in the wait state field. If READY is set, the BIU will first insert the
programmed number of wait states then transfer control to the READY pin. The bus cycle is extended
until READY is asserted.

7.3 INITIAL CONDITIONS ( RESET)

Following a RESET only UCS is enabled. The active range for UCS after reset is from FFCOOH to
FFFFFH in memory. This allows for the fetching of the initialization code at FFFFOH. Fifteen wait
states are inserted and external READY control is enabled. Systems using external READY should
be sure this line is valid during RESET. Systems not using READY should tie this pin high.

The Port 1 multiplexer selects the CSU as the source of data following a RESET.

Figure 7.2 shows the initial values for all of the CSU registers.
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7.4 APPLICATIONS EXAMPLES

The following sections illustrate two potential applications of the CSU. The first is a small system
with 3 separate memory selects and 2 I/O selects. The second example shows how bank switching can
be used to access 2 megabytes of DRAM through a 512K byte window.

The following sections are provided as examples of CSU programming. As such the examples do not
go into detailed timing analysis or hardware design issues.

7.4.1 EXAMPLE 1: SIMPLE CSU APPLICATION

The system shown in Figure 7.1 is a typical small 80C186EB system utilizing ROM, 2 separate banks
of RAM, aFloppy Disk controller,and a DMA controller. The schematic has been simplified showing
only the connections necessary for memory and I/O access. Detailed information on memory and
1/O device connection can be found in the bus interface unit section.

The ROM occupies 128K bytes (64K words) from EOOOOH to FFFFFH (3 wait states, no external
READY). The low RAM is 32K bytes and is located from OH to 7FFFH (0 wait states, no external
READY). The middle RAM is 64K bytes located at 10000H (1 wait state, no READY). At OH in
1/O space is the DMA controller with 16 total locations (2 wait states, no READY). The Floppy Disk
controller is at 40H using 1 location. The Floppy Disk controller requires external READY. A
memory map is shown in Figure 7.9.
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MEMORY SPACE MAP 1/0O SPACE MAP

OFFFFFH _
OFFFFH

OFFFOH
OE0000H OFFEFR
L ~U
REGION NOT USED o ‘ "N
UNUSED 1/0 SPACE
01FFFFH
0080H
- 007FH
010000H
' . 0040H-004FH
0040H
003FH
007FFFH
000000H 0000H 0000H-0001H

270830-001-11

Figure 7.9. Memory Map for Example 1

The first step in setting up the CSU is assigning chip select channels to the individual memory and
T/O blocks. The selection is arbitrary with the exception of UCS. Since UCS is the only channel
enabled at reset, it must select the ROM in which the boot code resides. The remainder of the devices
are assigned as follows: low RAM is selected by LCS, middle RAM is selected by GCS1, the DMA
controller is selected by GCSO, and the disk controller is selected by GCS2.
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Example 1

$modl8k
name csu_initialization_example

This file contains an example of initialization code for
the Chip Select Unit on the 80CL8LEB-.

a0 e e ge

reset segment at OFFFFh 5 The 80C1BLEB resets to
% OFFFFOH.

jmp far ptr initialize
reset ends

5 A new segment is located at FFFO:OH. The UCS channel is active

5 down to FFCO:0 after reset. We do not need to jump this far for
5 the setup. By jumping to FFFO:0 we stay within the active region
5 of UCS. By not jumping all the way down to FFCO:0 we keep from

5 fragmenting the ROM. We have 240 bytes from FFFO:0 to FFFF:0 in
5 which to perform our initialization.

UCSST EqQu OFFAY4H 5 UCS START ADDRESS REG
UCSSP EqQu OFFABH 5 UCS STOP ADDRESS REG
LCSST EqQU OFFADH 5 LCS START ADDRESS REG
LCSSP EQU OFFA2H 5 LCS STOP ADDRESS REG
GCSOST EqQu OFFA0H 5 GCSO START

GCSOSP EqQU OFF82H 5 GCSO STOP

GCSLST EQU OFF8Y4H 5 GCSY START

GCSLSP EqQU OFF8LH 5 GCS1 STOP

GCS2sST Equ OFF88H 5 GCS2 START

GCS2SP EqQU OFF8AH 5 GCS2 STOP

GCS3ST EqQU OFF8CH 5 GCS3 START

GCS3SP EQU OFF8EH 5 GCS3 STOP

PLCON EQU OFF5S4H 5 Port 1 mux control
init_seg segment at OFFFOH

assume csiinit_seg

initialize proc far

mov dx~ UCSST :
mov ax- OEOO3H 5 UCS begins at EOOO0:0
out dxa ax 5 and requires 3 wait states
mov dx. UCSSP :
mov ax~ OFFFEH 5 disable external ready
out dxa ax 5 control. Top of range
5 is set at FFFF:F. Chip
5 select is enabled. ISTOP=1.
mov dx+ LCSST
mov ax- 0OOH 5 LCS starts at OH
out dxa ax 5 and requires no wait states
mov dx~ LCSSP 5 or external ready-.
mov ax- 080AH 5 LCS ends at O7FFFH.
out dxa ax
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Example 1 (Continued)

mov dx+ GCSIST

mov axs 0LOLH 5 GCS1l starts at 10000H
out dx+ ax 5 with 1 wait state.
mov dx~ GCS1SP 5 6CS1 stops at LFFFFH
mov ax. 020AH 5 ENabled for memory.

5 All of the memory chip selects have now been set up. The next thing
5 to do is set up the I/0 chip selects.

mov dx+ GCSOST 5 This (S selects the DMA chip-.
mov ax+ 00ugH 5 Starts at U40OHS 2 wait states.
out dx~ ax

mov dx+ GCSOSP 5 Stop at ?FH. I/0 mapped.

mov ax- 00&8&H 5 ENabled. no external READY.
mov dx+ GCS2ST 5 This €S is for FDC system.
mov ax+ ODOFH 5 Starts at:-0OH3 15 wait states.
out dx+ ax E

mov dx+ GCS2SP 5 Stops at 3FH-. I/0 mapped.

mov ax~ 0049H 5 ENabled. use READY.
5 The I/0 chip selects have now been‘set up and énabled-

jmp far ptr program_code 5 jump to program code
initialize endp
init_seg ends

code_seg segment at OEOOOH
assume csi:code_seg

program_code? NOP
5 program continues here........

code_seg ends
end

Figure 7.10 contains the ASM186 code to properly initialize the CSU for this application. The
80C186EB begins fetching instructions at FFFF:0H immediately after reset. The UCS channel is
active after reset with a range of FFCOOH to FFFFFH in memory. The UCS is also programmed for
15 wait states with external READY. READY must be asserted for the boot code to be fetched. In
this system the boot ROM requires 3 wait states with no external READY. For an in depth discussion
of READY usage please refer to the Bus Interface Unit section.
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The first instruction executed following reset is a JMP to location FFEOOH (still within the UCS
range). FFCOOH was not jumped to in order to save contiguous memory space. The PCB is not being
relocated for this example so it resides at FFOOH in I/O space. The UCSST register has start field of
1110.0000.00 (EOOOOH start address) and a wait state field of 2 (2 wait states). The UCSSP register
has the stop field programmed to O but the ISTOP bit is set making the stop address FFFFFH. In
addition the MEM bit is set (memory chip select) and the READY bitis cleared (no external READY).
Finally the CSEN bit is set to keep the UCS enabled. The LCS register is set up similarly in the
following instructions.

Next, the middle RAM is set up. The same procedure is used as for UCS and LCS. The setup for the
peripherals follows; the only difference being in the programming of the MEM bit and the READY
bit for the floppy disk controller.

The CSU initialization sequence is now completed. The program jumps to location EOOOOH to
continue execution.

7.4.2 EXAMPLE 2: TWO MEGABYTE SOFTWARE PAGED RAM

Example 2 illustrates how the CSU can be used to extend the 80C186EB addressing capability
beyond 1 megabyte through the use of software paging.

The paged memory array is shown in Figure 7.11. Each page is 512K bytes arranged as 256K x 16.
The actual implementation of the memory is not pertinent to this example. Each page is enabled by
a separate GCS line, GCSO through GCS3. The four pages all occupy the same 512K space, or
window, in physical memory from 10000H to 7FFFFH.
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Two procedures are used in the paging implementation (Figure 7.12). The first procedure,
SET_UP_PAGES, initializes the GCSO0 through GCS3 channels. All four channels occupy the same
memory space with zero wait states. The channels are all disabled when the procedure is exited.

The second procedure, SELECT_PAGE, enables the individual pages. The page to be enabled is
passed on the stack by the calling program. Only one page is enabled at a time; enabling multiple pages
would result in bus contention. If a page other than O through 3 is selected all pages will be disabled.

Example 2

$modlak
name csu_paged_memory_example

This file contains an example of a paged memory implementation
with the Chip Select Unit on the 80CLBLEB.

4% ae a0 g

UCSST EQU OFFAU4H 5 UCS START ADDRESS REG
UCSSP EQU OFFABH 5 UCS STOP ADDRESS REG
LCSST EqQU OFFADH 5 LCS START ADDRESS REG
LCSSP EQU OFFA2H 5 LCS STOP ADDRESS REG
GCSOST EqQU OFF&0H 35 GCSO START

GCSOSP EqQU OFF82H 5 GCSO STOP

GCS1ST EQU OFF8Y4H 5 GCS1 START

GCS1SP EQU OFF8ELH 3 GCSL STOP

GCSEST EQU OFFA88H 5 GCS2 START

GCS2SP EQU OFFBAH 5 6CS2 STOP

GCS3ST EqU OFFBCH 5 GCS3 START

GCS3S EqQU OFF8EH 5 6CS3 STOP

PLCON EQU OFF5U4H 5 Port 1 mux control

This example uses 2 procedures: SET_UP_PAGES and SELECT_PAGE.
It is assumed that proper initialization of the other chip selects
has already been accomplished-.

4% e ae

5 This code also assumes that the P(B is still located in I/0 space
5 at OFFOOH.

code_seg segment
assume cs: code_seg

TRKKEKKKKKKKKKKKRKKKKKKKRKKRKKKRKKKRKKKRKRKRK K KX

3%%x PROC: SET_UP_PAGES * X
3R * %
3% PARAMETERS: NONE * X
SXX X X
5%x% FUNCTION: Sets up 4 overlap- XX
3%%x pages in memory from 10000H X%
5% to BFFFFH. Leaves all of x X
35%% disabled. X X
33K 3K 5k 3K 5K %k XK XK XK 3K 5K 3K K 3K XK %K XK %K %K XK K XK XK K XK XK XK KK KK KKK XKXXXX
SET_UP_PAGES proc far
mov ax~ 0LOOH 5 The pages start at 10000H.
5 No wait states-
mov dx. GCSOST 5 Set all pages the same.
out dxa ax
mov dx~ GCSLST
out dx. ax
mov dx+ GCSEST
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Example 2 (Continued)
out dx. ax
mov dx+ GCS3ST
out dxs ax
mov ax~ 9002H 5 Pages stop at 90000H.
5 They are DISABLED (CSEN=0).
5 Memory mapped without
5 external READY.
mov dx+ GCSOSP 5 Set up all pages the same.
out dx. ax
mov dx~ GCS1SP
out dx~ ax
mov dx+ GCSE2SP
out dx. ax
mov dx+ GCS3SP
out dx+ ax

The next step is programming the Port 1 Control to allow GCSO-3 to
appear at the package pins. UWe must perform a READ-MODIFY-WRITE
so that any previous setups for the other GCS pins are not
affected.

4 ae ae ge

mov dx- PLCON
in axa dx 5 read the previous setup
or ax- 00001111B 5 Set the lower 4 bits

5 to select GCS lines

5 at the package pins.
out dx. ax

5 At this point the 4 Chip selects share the overlapping region
5 10000H to BFFFFH. a total of 512K bytes. They are all disabled.

ret

SET_UP_PAGES ENDP

5K KKK KKK KK KK KKK KKK K KKK KKK KKK KKK KKKk
5%x PROC: SELECT_PAGE XX
LR 3 3 X X
3%x PARAMETERS: Passes page * %
3%%X number on the stack. X X
Sx%x FUNCTION: Accepts page X%
3%Xx number then enables the * %
%% selected page. If page XX
3%% does not exists (>3) all * X
5%% pages will be disabled. * X

SKKKKKKKKKKKKKKKKKRKKKRKKKKRRK KKK KKKk

SELECT_PAGE proc far
5 first. disable
5 all pages to prevent
3 connection.

mov dx+ GCSOSP 5 Read current setup-
in axa dx

and ax. OFFF7H 5 Turn off CSEN bit.
out dxa ax 5 Repeat for other 3
mov dx. GCSLSP 5 channels.

out dx. ax

mov dx~ GCS2SP

out dxa. ax

mov dx+ GCIS3SP

out dx+ ax

mov bp. sp
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Example 2 (Continued)
mov axs Cbp+u4l 5 Cbp+41 points to page number
5 stored on the stack above
5 (S:IP.
cmp axa 3
jg invalid page 5 If the page is not between
5 0 and 3 THEN shut them all
5 off.

Since the stop registers we will be modifying are sequential the
following alogorithm may be used to calculate the I/0 address:
Page stop register address = GCSOSP address + page * 2

4% ae g0

imul axa 2 5 Calculate offset into P(CB.
add ax+ GCSOSP
mov dx+ ax

Now we enable the selected page. A READ-MODIFY-WRITE is used to
set just the enable bit without affecting any others.

FLReT]

in axs dx
or ax- 0008H 5 set CSEN bit
out dx~ ax

invalid_page:

ret 2 return and clean up

stack
SELECT_PAGE endp

code_seg ends
end

7-23







Serial Communications Unit 8




&



CHAPTER 8
SERIAL COMMUNICATIONS UNIT

The Serial Communications Unit of the 80C186EB contains two independent channels. The Serial
Communications Unit (SCU) can implement several different serial communications protocols:
Synchronous mode is used to expand the I/O capability of the 80C186EB by communicating with
serial I/O peripherals, the asynchronous modes all implement the standard “start bit-data-stop bit”
protocol. The asynchronous data frame size is programmable between seven and nine bits. Parity
generation/checking and break detection/transmission are additional features available in the asyn-
chronous modes. The synchronous and asynchronous modes both have the “Clear-To-Send” feature.
Clear-To-Send control allows external devices to selectively enable the transmitter.

The serial ports on the 80C186EB can be readily interfaced with those found on a wide variety of
embedded controller (e.g. MCS-51, MCS-96) and data communications devices. Several different
processors and systems can be connected to acommon serial bus using a multiprocessor protocol (see
8.1.1.3.2). Such serial networks are attractive in systems where full parallel bus connectivity is either
impossible or impractical.

A block diagram of the Serial Communications Unit is shown in Figure 8.1. The two serial channels
are identical in operation although only channel O is supported by the integrated interrupt controller.
The interrupt request signal from channel 1 can be routed to an output pin through the port 2 multi-
plexer. Each channel generates an interrupt request when either a reception or a transmission is
completed. Both channels have independent baud rate generators that can use either the CPU clock
or an external clock as their time base.

Communication between the Serial Communications Unit and the CPU takes place through several
Peripheral Control Block (PCB) registers. The PCB map and a summary of register operation is
shown in Figure 8.2.

8.1 FUNCTIONAL OVERVIEW

The operation of the Serial Communications unit is logically divided between the synchronous and
asynchronous modes. The following discussions apply to both channels. Programming of the SCU
is described in Section 8.2.

8.1.1 ASYNCHRONOUS COMMUNICATION

The asynchronous serial communication modes ( Modes 1 through 4 ) of the 80C186EB follow the
industry standard “‘start bit-data-stop bit” protocol. Data is transmitted and received in serial frames.
A frame is a sequence of bits shifted serially on to (or off of) the communication line. The baud rate
of a channel is the number of bits per second shifted on to the line. The amount of time that each bit
is valid is called the “bit-time” (equal to 1/baudrate).
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REGISTER NAME
BOCMP
BOCNT
SOCON
S0STS
SORBUF
SOTBUF

RESERVED
RESERVED
B1CMP
B1CNT
S1CON
S18TS
S1RBUF
S1TBUF

Figure 8.2(a)

BAUD RATE COMPARE REGISTERS: (BOCMP, B1CMP)

T
w-—=DW
- D0
=L
o—=JTW
©IDD
© [w
~NIDw
o IDm
onw
»~DO
wnw
oW
Twm
oxnw

xXrO—

p
>

P

-

BAUD RATE COMPARE VALUE. SEE TEXT.

INTERNAL CLOCKING BIT
0= SELECTS BCLK PIN AS INPUT TO BAUD CLOCK

@ IS OP
BOCMP oH OPERATION.

B1CMP OH

1 = SELECTS INTERNAL CPU CLOCK AS INPUT TO BAUD CLOCK

CAUTION: WRITING TO THIS REGISTER WHILE THE SCU
ERATING WILL CAUSE INDETERMINATE

270830-001-14

Figure 8.2(b).
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BAUD RATE COUNTER REGISTERS: (BOCNT, B1CNT)

Aol ]
=0
—=ow
o=0w
©oOw
[ Jeol::]
NOwW
o0Ow
aOw
ENel:
WwOw
nOw

ow
[=Tel: )

o
L

BAUD RATE COUNTER VALUE. SEE TEXT.

OPERATING WILL CAUSE INDETERMINATE

@ CAUTION: WRITING TO THIS REGISTER WHILE THE SCU
OPERATION.

UNDEFINED WHEN READ.
MUST WRITE 0.

BOCNT OH
B1CNT OH

270830-001-15

Figure 8.2(c).
SERIAL TRANSMIT BUFFER REGISTERS: (SOTBUF, S1TBUF)

TIT|T TIT(T|T
B|B|B|(B||B|B|B|B
71615 3

DATA BYTE TO BE TRANSMITTED

UNDEFINED WHEN READ.
MUST WRITE 0.

SOTBUF OH
S1TBUF OH

270830-001-16

Figure 8.2(d).
SERIAL RECEIVE BUFFER REGISTERS: (SORBUF, S1RBUF)
15 9
RIR[R|[R]|R|R|R|R
B(ef(e|B||B|B|B|B
7|6|5|4fl3|2]|1]0
A
THE LOWER EIGHT BITS OF THE
LAST COMPLETED RECEPTION
SORBUF UNDEFINED WHEN READ.
S1RBUF MUST WRITE 0.
270830-001-17
Figure 8.2(e).
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SERIAL STATUS REGISTERS: (S0STS, S1STS)

RECEIVE INTERRUPT:
0 = NO RECEIVE INTERRUPT REQUESTED
1 = RECEIVE INTERRUPT REQUESTED

RECEIVED BIT 8/ PARITY ERROR:
WHEN PARITY IS DISABLED THIS
BIT CONTAINS THE 9th DATA BIT
RECEIVED IN MODES 2 &3
FOR PARITY ERROR:

0 = NO PARITY ERROR
1 = PARITY ERROR

DETECT BREAK 1:
0 = NO BREAK 1 DETECTED
1 = BREAK LONGER THAN 2M + 3
BIT-TIMES DETECTED
DETECT BREAK 0:
0 =NO BREAK 0 DETECTED
1 = BREAK LONGER THAN M
BIT-TIMES DETECTED

<
-
<
-
<
-

mm
mx—
mo
n-0

muXwDn

~XDWO
ox1wo

P
-

TRANSMIT INTERRUPT:
0 = NO TX INTERRUPT REQUESTED
1 = TX INTERRUPT REQUESTED

FRAMING ERROR:
0 = NO ERROR
1 = NO STOP BIT FOUND

TRANSMITTER EMPTY:
0 = TRANSMITTER NOT EMPTY
1=TXEMPTY

OVERRUN ERROR:
0 = NO ERROR
1 = RBUF NOT READ PRIOR TO

RECEPTION OF NEW DATA

CLEAR TO SEND VALUE; =

COMPLEMENTED VALUE OF CTS PIN

Y A READ OF THIS REGISTER.

ERROR AND BREAK BITS CAN ONLY BE CLEARED BY A READ.
THEY CANNOT BE CLEARED BY A SUBSEQUENT
ERROR FREE RECEPTION

@ WRITING-TO Rl AND TI WILL NOT
GENERATE INTERRUPTS

@ ® ALLBITS, EXCEPT TS AND TXE, ARE CLEARED

UNDEFINED WHEN READ.
MUST WRITE 0.

S0STS 08H
S18TS 0gH

270830-001-18

Figure 8.2(f).
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SERIAL CONTROL REGISTERS: (SOCON, S1CON)

CTS ENABLE:
0= CTS IGNORED ‘
1= CTS MUST BE ASSERTED TO BEGIN TRANSMISSION

TRANSMIT BIT 8:
oth DATA BIT IN
MODES 2 AND 3

SEND BREAK:
0 = NORMAL TXD OPERATION
1=TXD DRIVEN LOW REGARDLESS

OF MODE

-
<
-%

o

L
-=Z
oZ

©w—
Zmo
ZmxI
z<m

P
e
P

=i

1 = RECEIVER ENABLED

EVEN PARITY:
0=0DD PARITY
1 = EVEN PARITY

PARITY ENABLE:
0 =NO PARITY
1=PARITY

MODE SELECT BITS:
000 = MODE 0
001 = MODE 1
010 = MODE 2
011 = MODE 3
100 = MODE 4
101, 110, 111 = RESERVED (DO NOT USE)

P
E
N
A
RECEIVER ENABLE: )
0 = RECEIVER DISABLED

= UNDEFINED WHEN READ.
MUST WRITE 0.

SOCON OH

S1CON OH

270830-001-19

Figure 8.2(g).
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Each frame consists of a start bit (a logic 0) followed by the data bits ( 7,8, or 9 for the 80C186EB )
and a terminating stop bit (a logic one). The last data bit may replaced by a parity bit in situations
where error detection is needed. Figure 8.3 shows a typical ten bit frame ( 8 bits data plus stop and start
bits ).

7 8 9 10

I | I | | I I | I

! I | | I I | I I

| | I I I I ! I I

] | | | | | | | |

\ START PARITY || STOP |
BIT / snox BIT 1 X BITZX BITSX BIT4X BITSX BITGX T

I I I | I | I I |

| I I ! I | I I |

270830-001-20

Figure 8.3. Typical 10-bit Asynchronous Data Frame.

A special “break character” may be used in some systems. The term “break character” is a misnomer
as the break condition is really a signal that extends longer than a serial frame. The break condition
is indicated on a serial channel by the presence of a logic low value for a preset amount of time equal
to or longer than an entire frame. This signal is used for several purposes. Popular applications for
break signalling include modem handshaking and catastrophic condition indication.

The serial communications unit on the 80C186EB recognizes only CMOS logic levels. Some serial
communications systems may require the use of alternate levels. RS232-C, for example, requires a
logic 1 be between -5V and -25V and alogic 0 be between+5V and +25V. Another common standard,
the 20ma current loop, requires the presence and absence of current to indicate logic states. Interface
circuitry for such systems is readily available from several manufacturers.

Each serial communications channel is divided into separate reception and transmission modules.
These are referred to as the “RX Machine” and the “TX Machine” respectively. These modules are
autonomous allowing transmission and reception to occur simultaneously (full duplex). Both the RX
and TX machines operate at the baud rate supplied by the baud rate generator for that channel. The
following sections describe the operation of the RX and TX machines in the asynchronous modes.
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8.1.1.1 RXMACHINE

The RX machine must be enabled (through the REN bit) before reception in any mode can occur.
Once enabled, the RX machine begins sampling the RXD pin in search of a falling edge signifying
a start bit. Each data bit following the start bit is sampled three times near the center of the bit time.
The actual datareceived is based on a two-out-of-three majority of these samples. This oversampling
improves noise immunity. Each received data bit is shifted into the RX Machine receive shift register,
least significant bit first. A stop bit is expected by the RX Machine after the proper number of bits for
the selected mode have been received. The data in the receive shift register is copied to the RBUF
(receive buffer) register at the middle of stop bit time. A receive interrupt request is generated, and the
receive interrupt flag (RI) is set, when the shift register to RBUF transfer is completed.

The RX machine is capable of detecting several error conditions that may occur during reception.
These include:

1) Parity Errors: If the parity feature has been enabled and the parity of the received data is incorrect,
the Parity Error (PE) bit will be set.

2)  Framing Errors: Failure to receive a valid stop bit during the bit time in which it is expected will
result in the Framing Error (FE) bit being set.

3) OverrunErrors: If the RBUF register (containing the data from a previous reception) has not been
read before the current reception completes, the Overrun Error bit (OE) will be set. This bit
indicates that data from an earlier reception has been lost. The data in RBUF will always be the
last byte received.

In addition, the RX Machine can recognize two different break signals. The DBRKO bit indicates the
detection of a break condition on the RXD pin of longer than M bit times, where M is equal to the total
number of bits ( start+data+stop ) in a frame. The DBRK 1 bit signifies that a longer break condition,
greater than 2*M-+3 bit times, has been received. It’s important to note that the break condition will
result in the RX Machine receiving at least one null ( all zeros ) character with the framing error bit
set. Other error bits may also be set depending on the length of the break s1gnal and the mode of
operation of the channel.

The receiver can tolerate incoming baud rates that differ from the internal baud rate by 2.5% overspeed
and 5.5% underspeed. These values exceed the CCITT extended signalling rate specifications.

A block diagram of the RX Machine is shown in Figure 8.4.

8-8
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8.1.1.2 TX MACHINE

The transmission sequence begins with a write to the TBUF (transmit buffer) register. The TBUF is
aholding register for the transmit shift register. The contents of the TBUF register are copied to the
transmit shift register as soon as the current transmission is completed. If no transmission is in
progress (i.e. the transmit shift register is empty) the TBUF is copied immediately to the transmit shift
register. The start and stop bits are appended during the TBUF to shift register transfer. Concurrently,
the parity bit is also generated and inserted in the data frame, if the parity feature has been selected.
At this point the TX Machine begins shifting the contents of the transmit shift register on to the TXD
pin. At the middle of the stop bit time the transmit interrupt request is generated and the transmit
interrupt bit (TI) is set.

Double buffering is an important feature of the TX Machine. When the transmit shift register is empty,
the TX Machine can accept two sequential writes to the TBUF register. The first byte is immediately
transferred to the transmit shift register. The second byte is then held in the TBUF pending completion
of the first transmission. The Transmitter Empty (TXE) bit signifies that both registers of the TX
Machine are empty. When this bit is set the user can safely write sequential bytes for transmission
without loss of data.

The transmitter can be selectively disabled through the “Clear-To-Send” feature. This feature is
selected through the programming of the CEN bit. When CEN is set, the TX Machine will not begin
transmission until CTS has been asserted. The entire frame will then be transmitted. Data will
continue to transmit as long as CTS is asserted and the transmitter is full.

The CTS pin is level sensitive. The state of the CTS pin is only looked at just prior to a pending
transmission. Holding the CTS pin low for 1 1/2 clock cycles when a transmission is pending will
insure that the transmission will occur. Section 8.4.3 discusses the CT'S timings in greater detail.

Monitoring the state of the TXE bit is especially important while using CTS. When the transmitter is
disabled there is only room for two bytes in the transmitter; one in the TBUF and one in the transmit
shift register. Any further writes to the TBUF will result in a loss of data. The user must be sure that
the TBUF is empty before writing to it.

The TX Machine is also capable of transmitting a break signal. Setting the SBRK bit immediately
forces the TXD pin to a logic zero state. The TXD pin will remain low until the user clears the SBRK
bit. It is up to the user to time the duration of the break signal. Setting SBRK does not halt the internal
transmission sequence. In other words, the TX Machine will continue to run despite the fact that the
TXD pin is being held low. Transmit interrupts will still be generated as if normal transmission were
taking place.

The same baud rate generator is used for the RX Machine and the TX Machine for a given channel.
For this reason reception and transmission must occur at the same rate. If it is necessary to have
different baud rates for reception and transmission then the user must use both channels. One would
be dedicated to reception, the other to transmission.
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8.1.1.3 THE ASYNCHRONOUS MODES

Modes 1 through 4 of the SCU implement variations of the asynchronous protocol described above.
The RX and TX Machines operate the same for all four modes with some minor exceptions.

8.1.1.3.1 MODE 1: ( 10 bit frame)

Mode 1 is the standard 8 bit asynchronous communications mode. Each data frame consists of one
start bit, eight databits, and a stop bit. Enabling the parity feature replaces the eighth data bit by a parity
bit. The sense, even or odd, of the parity is programmable. The data frame for Mode 1 is shown in
Figure 8.6. Both the RX and TX Machines operate as described above with no exceptions.

| | | | | | | | | |
| | l | | | | | | |
| | | | | | | | ] 1
‘ START x PARITY J STOP |
TXD/RXD BIT 1 BITO X BIT 1 X BIT 2 X BIT3 X BIT4 BITSX BITGAX ORBIT7 BT |
| | | | | | | | |
| | | | | | | | |

270830-001-23

Figure 8.6. Mode 1 Waveform
8.1.1.3.2 MODES 2 AND 3: (11 bit frames)

Modes 2 and 3 both make use of 11 bit frames. The data frame consists of a start bit, nine data bits,
and a stop bit (Figure 8.7).

1 2 3 o 5 6 7 8 9 1o I 1

| |
| | |
o I
I | |
TXD/RXD ‘ STAET 1’ BITO X BIT 1 X BIT 2
’ | I
, |- | |

| I [ I | I I

[ | I I [ I | I

I I i I | I | I

| | | | | I ' L

x PARITY | STOP |

X BIT3 X BIT4 X BITS XBITG BIT 7X RBIT / BIT |

[ I I 1 | I I |

. | I I I [ I | I [
270830-001-24

Figure 8.7. Modes 2 and 3 Waveform

The TX Machine gets the ninth bit (MSB) for transmission from the TB8 bit in the SXCON register.
This bit feeds directly into the transmit shift register, bypassing the TBUF. TB8 is not double
bufferred. A new TB8 value must be specified for each byte to be transmitted. This precludes the use
of the double buffering feature when the user needs to explicitly program the ninth bit value.
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There are two situations where TB8 can be generated by the TX Machine. The TB8 bit is cleared after
every transmission. If TB8 is cleared before transmission starts, and never set thereafter, every
transmission will have the ninth bit low. If the parity feature has been selected, bit 9 will be replaced
with the parity bit. This is a convenient method of generating an 8 bits plus parity data frame. In both
cases double buffering may once again be used since TB8 is automatically generated.

The RX Machine places the ninth received data bit in the RB8/PE (Receive Bit 8 / Parity Error) bit in
the SxSTS register. If the parity feature is enabled, the RB8/PE bit will instead contain the parity error
flag (set to indicate an error). All other error detection capabilities and interrupt requests function as
described above.

The RX Machine has an important functional difference between Modes 2 and 3. Mode 2 is com-
monly referred to as the “ninth bit recognition mode”. Receptionin Mode 2 will not complete unless
bit 9 of the data frame is a logic one. Any data received with bit 9 cleared will be completely ig-
nored. No flags will be set, no interrupts will be generated, and no data will be transferred to RBUF.
Reception in Mode 3, however, will complete regardless of the state of bit 9.

Modes 2 and 3 are commonly combined to implement multiprocessor communications. One possible
application is called the “master/slave network” (Figure 8.8). All slaves connected to the network
have their RXD pins directly connected to the “master transmit” line (TXD pin of the master). The
slaves’ TXD pins are all tied to the “master receive” line (RXD pin of the master) through a 3-state
buffer. The buffer is necessary to avoid contention as the TXD line cannot be floated.

80C186EB
XD MASTER TRANSMIT LINE >
RXD MASTER RECEIVE LINE <

RXD TXD RXD TXD RXD TXD
87C196KB 87C51 80C186EB
SLAVE SLAVE SLAVE
PORT PORT PORT
PIN PIN PIN

T

COMMON GND.

270830-001-25

Figure 8.8. Multiprocessor Network
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Initially all slaves are receiving in Mode 2 with their transmitters disconnected from the master
receive line. The master is set permanently in Mode 3. There are two types of transactions that can
occur in this system: a global slave command and a local master/slave data transfer.

When the master wishes to broadcast acommand to all slaves, it transmits the eight bit command with
bit 9 set high. Every slave in the network is interrupted upon reception of the global command byte.
Anexample of a global command is “initiate system reset routine” to force all slaves to aknown state.
Such global commands are unidirectional and require no response from the slaves.

If the master wishes to communicate bidirectionally with a particular slave it would issue a special
global “address” command (again with bit 9 high). Each slave would check its address against the
received address. The addressed slave would then gate its TXD line onto the master receive bus and
switch to Mode 3. Once in Mode 3 the slave could freely communicate with the master. During a
master/slave data transfer bit 9 would be kept low to prevent interrupting the other slave processors
on the network. Once the transaction was completed, the slave would detach itself from the master
receive bus and return to Mode 2.

Itis not recommended that the parity feature be used in Mode 2, as bit 9 is intended to be a control bit.
If parity were used in Mode 2 only those data frames whose parity resulted in setting bit 9 would be
received.

8.1.1.3.3 MODE 4 (9 bit frame)

Some older serial devices require the use of a seven bit data frame instead of the newer eight and nine
bit formats. To accommodate this need Mode 4 transmits and receives only 7 data bits. The lower 7
bits of TBUF are transmitted; received data is placed in the lower 7 bits of RBUF. RB7 in RBUF is
undefined and should be ignored. The parity feature is not available in this mode.

All other features function as described in the asynchronous description section above. The data
frame for Mode 4 is shown in Figure 8.9.

12 3:4 5 6 7 8 9

I | | I I | I I

| | | I I [ I [

I I [ | | | I I |

| | | | | | | i I
TXD/RXD\SL"'\.?T / BITO X BIT 1 X anx BITSX BIT4X BITSX BIT6 / SToP

I I I I I I [ I

| I I I I I I I

270830-001-26

Figure 8.9. Mode 4 Waveform
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8.1.2 SYNCHRONOUS COMMUNICATION

The synchronous mode ( Mode 0 ) of the SCU is intended for use primarily with shift register based
peripheral devices. In this mode the TXD pin provides the synchronizing transmission/reception
clock while the RXD pin sends or receives data in eight bit frames (Figure 8.10). Communication in
Mode 0 is half-duplex; the RXD pin cannot receive and transmit data simultaneously.

ST €0 £ € €2 €0 €0 1|

MODE 0 TRANSMIT

MODE 0 RECEIVE 270830-001-27

Figure 8.10. Mode 0 Waveforms

Transmission in Mode 0 begins with a write to the TBUF register. TBUF will be copied into the
transmit shift register as soon as that register is empty (i.e. when any previous transmission is
completed). The data in the transmit shift register is then shifted out of the RXD pin (vs. the TXD pin
for the asynchronous modes) while the synchronizing clock is provided on the TXD pin. The re-
ceiving circuit must sample the transmitted data on the rising edge of TXD. The 80C186EB always
provides the synchronizing clock signal; it can never receive a synchronous clock signal on
TXD. The TI request bit is set in the middle of the 8th bit time; when transmission is complete. The
RXD pin floats prior to and following a transmission. The TXD pin never floats; when it is inactive
between transmissions it remains at a high logic state.

Transmissions are double bufferred in Mode 0 just as they are in the asynchronous modes described
above.

Reception in Mode 0 is initiated only when the receiver enable (REN) bit is set and the receiver
interrupt request (RI) bit is clear. As soon as these conditions are met the SCU begins shifting in the
data on the RXD pin. The TXD pin provides the synchronizing clock as in the case of transmission.

-8-15



intel SERIAL COMMUNICATIONS UNIT

Received data is sampled by the SCU just prior to the rising edge of TXD. The device driving the RXD
pin must adhere to the setup and hold times (with respect to TXD) outlined in the 80C186EB
datasheet. Reception of the eighth bit sets the receive interrupt request (RI) bit. Simultaneously, the
contents of the receive shift register are copied into the RBUF.

Reception of another data byte will not begin until the RI bit is cleared. The receiver can be disabled
during a reception although this will result in a loss of data.
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Figure 8.11. Mode 0 Port Expansion
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A typical application for Mode 0 is shown in Figure 8.11. The 74HC165 is a parallel in/ serial out shift
register. The eight configuration byte dip switches control the logic level applied to the parallel input
pins of the 74HC165. To read the configuration byte the port 1.7 pin is pulsed low to latch the parallel
data. Then the receiver would be enabled in Mode 0. This would immediately shift the eight bits in
the 74HC165 into the serial receive buffer. A similar design could be used to construct an output port.

8.2 PROGRAMMING THE SERIAL COMMUNICATIONS UNIT

Six Peripheral Control Block registers are used to program each channel of the SCU. The receive and
transmit buffers, RBUF and TBUF, have already been described. The Baud Rate Compare (BxCMP)
and Baud Rate Count (BxCNT) Registers are used by the Baud Rate Generator as described in the
Baud Rate section below. The Serial Control (SxXCON) Register is used to set the mode of operation
and select the feature set for a channel. Each channel reports its current operational state through the
use of the Serial Status (SxSTS) Register. This section will highlight the function of these two
registers.

8.2.1 THE SERIAL CONTROL REGISTER (SOCON, S1CON)
The SxCON registers consists of the following seven fields:

Mode Field: These three bits, M2 to MO, control the operational mode of the channel. They are
defined as follows:

=
]
E
=
S

0 0 0 ModeO
0 0 1  Model
0 1 0 Mode2
0 1 1 Mode3
1 0 0 Mode4
1 0 1  Reserved for future use
1 1 0  Reserved for future use
1 1 1 Reserved for future use

PEN Bit: The Parity Enable Bit. When this bit is set the parity feature will be enabled. Every
transmission (except in modes 0 and 4) will have the MSB replaced by a parity bit. All
receptions will be parity checked and error conditions will be reported in the PE bit. The sense
of the parity is controlled by the EVN bit.

EVN Bit: EVEN/ODD Parity Sense Select. Setting this bit selects even parity; clearing it
selects odd.
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REN Bit: Receiver enable bit. Setting this bit enables reception in all Modes.

CEN Bit: Clear-To-Send enable. Setting this bit invokes the Clear-To-Send transmission
control feature. With this option selected transmission will not begin until CTS is asserted.

TB8 Bit: The eighth bit for data transmission in Modes 2 and 3. This bit is cleared after every
transmission. This bit is not double buffered.

SBRK Bit: Send Break Bit. When this bit is set the TXD is immediately driven low regardless
of the current mode. TXD will remain low until this bit is cleared. Timing for break signal
duration is the users responsibility.

All of the remaining bits in the SXCON register are reserved for future use. These are all undefined
when read.

The SxCON is a read/write register. Reading the SXCON register will not affect its contents.
8.2.2 THE SERIAL STATUS REGISTER (SOSTS, S1STS)

The Serial Status Register is used to monitor the current state of a channel. It is important to note that
the entire SxSTS register (with the exception of the CTS bit) is cleared every time it is accessed
(either read or written). If it is necessary to preserve the contents of the SxSTS register, it must be
saved in memory.

The Serial Status Register has nine bit fields:

CTS bit: Clear to Send status. This bit is the complement of the value on CTS pin. This bit is
the only one in the SxSTS that is not cleared by a read.

OE bit: Overrun error flag. This bit is set by the RX Machine to indicate areceive overrun error
has occurred. An overrun error occurs when the data in the RBUF register is not read before the
data in the receive shift register has overwritten it.

TXE bit: Transmitter Empty Flag. This bit will be set when both the TBUF and the transmit
shift register are empty. This indicates that the TX Machine can accept 2 sequential bytes for
transmission.

FE bit: Framing Error Flag. Set to indicate a framing error (valid stop bit not detected) has
occurred.

TI bit: Transmit Interrupt Request Flag. Set to indicate a transmission has completed and a
transmit interrupt request has been issued. Writing this bit wili not generate an interrupt for
channel 0.
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RI bit: Receive Interrupt Request Flag. Set to indicate a reception has completed and a receive
interrupt has been issued. Clearing this bit when REN is set in Mode 0 initiates a reception.
Writing this bit will not generate an interrupt for channel 0.

RBS/PE bit: Received Bit 8 / Parity Error Flag. In Modes 2 and 3 this will be the value of the
ninth received bit if parity is not enabled. If parity is enabled (in Modes 1, 2, and 3) this bit will
be set to indicate a parity error was detected for the byte currently in RBUF (the last received
byte).

DBRKO bit: Break Detect O flag. Set to indicate the detection of a break condition of longer
than M bit times ( M = total bits in frame ).

DBRK1 bit: Break Detect 1 flag. Set to indicate the detection of a break condition of longer
than 2M+3 bit times ( M = total bits in frame ).

All of the error bits (OE, PE, and FE) and the break detect bits (DBRK 1 and DBRKO) are only cleared
by reading the SxSTS register. For example, if a frame is received with a parity error (setting the PE
bit) then a subsequent error-free frame is received, and the SxSTS has not been read between the
two receptions, the PE bit will remain set. This allows the SxSTS register to be checked only at the
end of a long block of receptions.

8.3 OPERATION AND PROGRAMMING OF BAUD RATE GENERATOR

The Baud Rate Generator uses two PCB registers: the Baud Rate Counter (BxCNT) and the Baud Rate
Compare (BxXCMP) Register. The Baud Rate Counter is a free running fifteen bit counter that
increments every cycle of the baud timebase clock. The baud timebase clock can either be the CPU
clock (1/2 the CLKIN frequency) or an external clocking signal applied to the BCLKx pin. If an
external timebase is selected, itis limited to 1/2 the frequency of the CPU clock. This limitation stems
from synchronization requirements.

The Baud Rate Compare Register contains two fields. The most significant bit is the ICLK select bit.
Setting this bit selects the internal CPU clock for the baud timebase; clearing it selects the BCLKX pin.
The lower 15 bits make up the baud rate comparison value. The Baud Rate Counter is compared
against the Baud Rate Compare value after every cycle of the baud timebase clock. If the two match,
the baud rate generator outputs a pulse and resets the BXCNT register. This repetitive process
generates a pulse train that is equal to the baud rate in Mode 0. Modes 1 through 4, due to their
asynchronous nature, require repetitive sampling of the input waveform to insure reliable reception.
Eight baud rate generator cycles are required to perform this operation. For this reason, the baud rate
in Modes 1 through 4 is 1/8 the frequency of the baud rate pulse train.
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The following equations may be used to calculate the proper value of the BxCMP for a specific
desired baud rate (FCPU=CPU operating frequency, 1/2 CLKIN frequency):

Mode 0:
Baud Rate Compare value= [FCPU/(BAUDRATE)]-1

Mode 1: . )
Baud Rate Compare value= [FCPU/(8*BAUDRATE)]-1

For an external clock source with a frequency Fbclk, use the following:
Mode 0:
Baud Rate Compare value= [FBCLK/(BAUDRATE)]-1

Mode 1:
Baud Rate Compare value= [FBLCK/(8*BAUDRATE)]-1

Note that a baud rate compare value of O is illegal and will result in unpredictable operation. Common
baud rates based on the crystal frequency are shown in Table 8.1.

Table 8.1 Common Baud Rates in Asynchronous Modes

CPU FREQUENCY BAUD RATE BxCMP Value % ERROR
16 MHz 19,200 8067H 0.16
16 MHz : 9,600 : 80CFH 0.16

- 16 MHz - 4,800 81A0H -0.08
16 MHz 2,400 8340H 0.04
16 MHz ~ 1,200 8682H -0.02
16 MHz ' 600 8D04H 0.01
16 MHz 300 9A0AH 0
13 MHz 19,200 8054H -0.43
13 MHz 9,600 80A8H 0.16
13 MHz 4,800 8152H -0.14
13 MHz 2,400 82A4H 0.01
13 MHz 1,200 8549H 0.01
13 MHz 600 ‘ 8A93H ‘ 0.01
13 MHz 300 9528H -0.01
8 MHz 19,200 8033H 0.16
8 MHz 9,600 8067H 0.16
8 MHz 4,800 80CFH 0.16
8 MHz 2,400 81A0H -0.08
8 MHz 1,200 ' 8340H 0.04
8 MHz 600 8682H -0.02
8 MHz 300 8D04H 0.01
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8.4 TIMINGS
8.4.1 ASYNCHRONOUS (MODES 1-4)

For the asynchronous Modes (1 through 4) each bit of a data frame is valid for what is called a “bit-
time” (Figure 8.12). A bit-time is equal to 1/(baud rate). As an example, if the baud rate is set at 9600
each bit s valid for 104uS. Since it takes 10 bits (in Mode 1) to transmit one ASCII character the data
rate is 960 characters per second. The RX Machine expects the incoming data to have a baud rate
within a +2.5% to -5.5% range from internal (transmit) baud rate.

1
"' “_ BIT TIME= BAUD RATE

5 6

1 2 7 8 9 10

| | | | | | | | |
| [ | | | | | | |
| | | I | | | | |
| | | | | | | | |
START PARITY J STOP |
\ BIT / BITO x BIT1X BITZX BIT3 X BIT 4 X BITS X BIT6 X ORBIT7 BT |
| | | I | | l | | |
| ! | | | | | [ | |

270830-001-29

Figure 8.12. Asynchronous Timings
8.4.2 SYNCHRONOUS (MODE 0)

InMode 0 all timings are relative to the baud timebase clock (either CLKOUT or BCLK). Two cases
govern the behavior of the transmit/receive clock (on the TXD pin).

The first case is unique and occurs when the Baud Rate Compare Value is equal to 1 (see Figure 8.13).
In this situation the TXD pin toggles every cycle of the baud timebase clock resulting in a 50% duty
cycle waveform at 1/2 the baud timebase frequency. Transitions on TXD occur on the falling edge of
the timebase clock.
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CLKOUT

TXD

(cHpEmEnN

270830-001-30

Figure 8.13. Mode 0, BXCMP=2

Figure 8.14 shows the TXD waveform for baud rate compare values greater than 1. The TXD pin
remains high for N-1 clock cycles. On the falling edge beginning the Nth clock cycle TXD is driven
low where it remains for the next 2 clock cycles. The next falling edge of the timebase clock restarts
the TXD cycle.

0000
CLKOUT , \ ,

TXD

HIGH FOR
N-1 CLOCKS

RXD BITX \X BIT X +1 q

270830-001-31

LOWFOR
2 CLOCKS

Figure 8.14. Mode 0, BxCMP>2

During a transmission the state of the RXD pin changes state on the first falling edge of CLKOUT
following the rising edge of TXD. This is true for both of the above cases. For reception incoming data
on RXD must meet setup and hold timings with respect to the rising edge of TXD (Figure 15). These
timings can be found in the data sheet.
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LN NN N NN

Tdvxh |

Txhdx

- OEOEOE0EOE0E0

' ' 270830-001-32

Figure 8.15. Mode 0, Receive Timings
8.4.3 CTS PIN TIMINGS

When the clear-to-send feature is enabled (CEN bit is set) transmission will not begin in any mode
until the CTS signal is asserted while a transmission is pending. Figure 8.16 shows the sequence of
events involved in the recognition of a valid CTS signal.

The CTS pinis sampled by the rising edge of CLKOUT (not BCLKx). The high time of the clock cycle
is used to resolve (synchronize) the CTS signal. On the falling edge of CLKOUT the synchronized
CTS signal is presented to the SCU. If it is necessary to have a very narrow pulse on CTS, the set up
and hold times in Figure 8.17 must be met. It is recommded that CTS have a valid pulse width of at
least 1 1/2 clock periods. This will guarantee recognition.

The state of CTS is not latched. If it is asserted before a transmission is initiated (i.e., a write to TBUF
occurs) the subsequent transmission will not begin. One can think of a write to the TBUF as “arming”’
the CTS sense circuitry.
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CTS SAMPLED CTS RESOLVED
HERE DURING CLKOUT
HIGH TIME

TRANSMISSION
PENDING o

CLKOUT

CTS [ T I
| | | | | | |
| | | | | | | | | |
[ N R N T VN O O O |

J— | | | | | \ OK TO START |

cTs | Lo TRANSMISSION

(NTERNAL) | I Fa
| | | | | | |
I | | | |
| | | | |

270830-001-45

cTS

270830-001-46

Figure 8.17. CTS Setup and Hold
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8.5 SERIAL CONTROL UNIT INTERRUPTS

A serial interrupt request will be generated when either channel completes a serial transaction (trans-
mission or reception). For the asynchronous modes, a reception or transmission is completed at the
middle of the stop bit. During synchronous communication the transaction is completed in the middle
of the eighth bit. The RI and TI bits (in the SxSTS register) indicate that either a receive or transmit
interrupt request has been generated.

The interrupt request circuitry differs between channel 0 and channel 1. The difference between the
two is best understood by following the interrupt request signals for each channel.

8.5.1 CHANNEL 0 INTERRUPTS

When a reception completes in channel 0, an internal receive-interrupt-request signal is generated.
This signal is routed to the SOSTS register and the internal interrupt controller (Figure 8.18). The RI
bit of the SOSTS signal is set by the receive-interrupt-request signal. Note that the RI bit does not
generate or affect the internal interrupt request. RI is merely an indicator that says: “Channel 0
has posted a receive-interrupt-request with the integrated interrupt unit.” The transmit-interrupt-
request signal and TI behave the same for the case of transmission.

CHANNEL_0_INTERRUPT_REQUEST

TO SO0STS

Y
-

TI

y

TRANSMIT_INTERRUPT_REQUEST_0

Y
»

READ_S0STS

A

>R TO SOSTS

y

RI
RECEIVE_INTERRUPT_REQUEST_0

270830-001-47

Figure 8.18. Channel 0 Interrupt Model
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At the interrupt unit the receive interrupt request is ORed with the transmit interrupt request from
channel 0 to generate a single “serial channel O interrupt request.” The interrupt controller, however,
maintains separate vectors for receive and transmit interrupts. The receive and transmit interrupt
requests cannot be independently masked.

Itis not necessary to clear the RI and TI bits for channel O to prevent further interrupts from occurring.
They are an indication that arequest has occurred; they are not the source of the request. Setting these
bits by writing SOSTS will not generate an interrupt.

Receive interrupts take priority over transmit interrupts. They cannot nest, however, since they share
one interrupt request.

8.5.2 CHANNEL 1 INTERRUPTS

Channel 1 is not directly supported by the integrated interrupt controller. When a receive or
transmit interrupt request is generated by channel 1 the appropriate bit, RI or T1, is set in the SISTS.
The serial channel 1 interruptrequest signal (SINT1) is adirect ORing of these register bits (see Figure
8.19). This s different from channel 0. For channel 1, setting the Rl and TI bits by writing to S1STS
will cause the SINT'1 line to go active. The only way to deassert SINT1 is by clearing the RI and TI
bits (by reading S1STS). SINT1 is routed to a package pin through the Port 2 multiplexer.

Inorderfor SINT1 to generate a CPU interrupt, it must be tied to one of the external interrupt pins (e.g.,
NMI or INTO). .

< | READ_S1STS

P2.3 LATCH
—r
TRANSMIT_INTERRUPT_REQUEST_1 s m P2
_ T —Dpz.a/smn
RECEIVE_INTERRUPT_REQUEST._1 s Al
270830-001-48

Figure 8.19. Channel 1 Interrupt Model
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8.6 PORT 2 MULTIPLEXER

All of the pins for channel 1, and the BCLKO pin for channel 0, are multiplexed with output port 2.
The I/O port section of this manual describes programming of the multiplexer.

8.7 APPLICATION EXAMPLES

The following sections show the proper programming of the SCU for two different applications. The
first application configures channel 0 as a standard 9600 baud full duplex asynchronous port. The
second application uses channel 1 to read the configuration dip switch example shown in Figure 8.11.

8.7.1 Example 1: 9600 Baud, Full-Duplex Asynchronous Channel

The ASM186 code forexample 1 consists of 3 procedures. Procedure ASYNC_CHANNEL_SETUP
configures channel 0 for 9600 baud, 7 bits plus even parity, with CTS control enabled.
ASYNC_CHANNEL_SETUP also initializes the interrupt vectors for the two interrupt procedures
ASYNC_REC_INT_PROC and ASYNC_XMIT_INT_PROC.

The body of the two interrupt handler procedures has been left empty. The code inserted in these
procedures is application dependent. Typically the receive procedure would check for error condi-
tions then store the received byte in a buffer. The transmit routine would get the next byte for
transmission out of a buffer and write it to the TBUF.

8.7.2 Example 2: Synchronous Port Expansion

Section 8.1.2 detailed how the SCU could be used in synchronous mode to expand the I/O capability
of the 80C186EB. This example shows the ASM186 code necessary to read the configuration byte
information for the circuit in Figure 8.11.

The code consists of one procedure: READ_CONFIG_BYTE. First, the procedure sets up channel
1 as a synchronous (mode 0) channel. A baud rate of 1 Mbaud is chosen. Next, the RXD1 and TXD1
signals are routed to the package pins by programming the Port 1 multiplexer.

To read the expansion port, pin P1.7 is pulsed low to load the 74HC165 register with the dip switch
values. The REN (Receiver ENable) bit is then set and the data is shifted in to the RBUF. Since the
SINT line is not being used the RI bit must be polled. When a “1” is found in the RI flag the reception
is completed. The configuration data is returned in the AL register.
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Example 1

smodlak
name

d% e e e e e e e e e e e 36 e s e e e e ge ge

ae

BOCMP
SOCON
SOSTS
SORBUF
SOTBUF
RI_TYPE
TI_TYPE
EOT
SCUCON

code_seg

ASYNC_CHANNEL_SETUP proc near

5 Firsta

xor
mov

mov
mov
mov
mov
mov

ASYNC_REC_INT_PROC:

ASYNC_ XMIT_INT_PROC:

EqU
EqU
EqU
EQU
Equ
EQU
EqU
EQU
EqU

scu_async_example

This example has 3 procedures:

ASYNC_CHANNEL_SETUP:

This file contains an example of initialization code for the
Serial Communications Unit on the 80CLALEB.

Sets up channel 0 as 9L00 baud»

full duplex. 7 data bits-plus-partiya.

with CTS# control.
Interrupt handler for a reception.

This procedure is nearly empty since

the code to perform error checking and
receive buffer handling is application
dependent.

Interrupt handler for a transmission.

As with the above procedure this is
nearly devoid of code. A typical appli-
cation would test the TXE bit and then
copy data from the transmit buffer in
memory to the TBUF.

OFFLOH
OFFB4H
OFFbBEH
OFFL&H
OFFBAH
20

2l

OFFO2H
OFFL4H

segment public

assume cs:code_seg

d% av g% g% g a0 ae ae ae

We assume PCB has NOT BEEN RELOCATED!

Channel
Channel
Channel
Channel
Channel
Receive
Xmit is

Baud Rate Compare
Control

Status

Receive Buffer
Transmit Buffer

is type 20 interrupt
type 21 interrupt

ooooo

End-0f-Interrupt Register
SCU interrupt control reg

set up the Interrupt handler vectors....

axna
dsas

bx~ RI_TYPExY
axs offset ASYNC_ REC_INT_PROC

Cbx1a

axa

ax
seg ASYNC REC_INT_PROC
Cox+27A

ax

5 Need DS to point to
int vector table at OH

.
Y
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Example 1 (Continued)

mov bx+ TI_TYPExY

mov ax~s offset ASYNC XMIT_INT_PROC

mov CbxJ+ ax

mov axas seg ASYNC XMIT_INT_PROC

mov Cbx+21.+ ax

5 Now set up channel 0O options

mov ax+ B80CFH
mov dx- BOCMP
out dxa ax

mov ax- 0059H

mov dx- SOCON
out dx~ ax

......

for 9600 baud from 1lbMHz
CPU clock.
Set baud rate.

CEN=1 (CTS enabled)

REN=0 (receiver not enabled yet)
EVN=1 (even parity)

PEN=1 (parity turned ON)

MODE=1 (10 bit frame)

g% ae ae

a% s a0 g e

5 write to Serial Control Reg-.

5 Clear any old pending RI or TI. just for safety's sake.

mov dx+ SOSTS
in axa dx

5 clear any old RI or TI

5 Clear interrupt mask bit in interrupt unit to allow SCU

interrupts.
mov dx~ SCUCON
in axs dx
and ax~ 0007H
5 Turn on the receiver

mov dx- SOCON

in axas dx
or ax- 0020
out dxs ax

5 SCU interrupt control

5 Clear mask bit to enable

5 Read SOCON

5 Set REN bit
3 Write SOCON

5 Now receiver is enabled and sampling of the RXD line begins.

5 Any write to the TBUF will initiate a transmission.

ret

ASYNC_CHANNEL_SETUP endp

5 The next procedure is executed every time a reception is

completed.

ASYNC_REC_INT_PROC proc near

mov dx. SOSTS

in axi dx

test al- 10000000B
jnz parity error
test al. 00010000B
jnz framing_error
test al. 00000100B
jnz overrun_error

5 Get status info

5 Test for parity error

5 Test for framing error

5 Test for overrun error
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Example 1 (Continued)

5 At this point we know the received data is 0K.

mov dx. SORBUF
in axas dx 5 Read received data

and ax~ O7FH 5 Strip off parity bit

Code to store the data in a receive buffer would go here-.
It has been ommitted since this is heavily application dependent.

an ae

jmp eoi_rcv_int
parity_error:
5 Code for parity error handling goes here.

jmp eoi_rcv_int
framing_error:
5 Code for framing error handling goes here.

imp eoi_rcv_int
overrun_error:
5 Code for overrun error handling goes here.

jmp eoi_rcv_int
5 Must now issue END-OF-INTERRUPT command to interrupt unit....
eoi_rcv_int: mov dx. EOI

mov ax- 8000H 5 issue non-specific EOQOI
out dx. ax

iret
ASYNC_REC_INT_PROC endp
ASYNC_XMIT_INT_PROC proc near
This procedure is entered whenever a transmission completes.
Typical code would be inserted here to transmit the next byte
from a transmit buffer set up in memory. Since the configuration

of such a buffer is application dependent this section wil be
left blank.

UL

5 Must now issue END-OF-INTERRUPT command to interrupt unit....
eoi_xmit_int: mov dxa EOI
mov ax~ 8000H 5 issue non-specific EOI
out dx. ax
iret

ASYNC_XMIT_INT_PROC endp

code_seg ends
end
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Example 2
:Z:glﬂh scu_sync_port_example

This file contains an example of initialization code for the
Serial Communications Unit on the 80CLALEB-.

This example has 1 procedure:

READ_CONFIG_BYTE: Sets up channel 1 as 1 M baud-
synchronous with no CTS# control.
It then reads in the configuration
byte from the shift register connected
as in Figure 8.11.

d% e e ae ue ue e g U ae ge ge e

We assume PCB has NOT BEEN RELOCATED!

ae

BLCMP EQU OFF?0H 5 Channel 1 Baud Rate Compare
S1CON EQU OFF?74H 5 Channel 1 Control

S1STS EQU OFF?kH 5 Channel 1 Status

S1IRBUF EQU OFF?78H 5 Channel 1 Receive Buffer
PLCON EQU OFF54H 5 Port 1 Multiplex control
PLLTCH EqQU OFF5EH 5 Port 1 data latch

P2CON EQU OFFSCH 5 Port 2 Multiplex control
code_seg segment public

assume cs:i:code_seg

READ_CONFIG BYTE proc near

mov ax. 8007H 5 Mode 0 baud rate of
mov dx- BLCMP 5 1 megabaud

out dx~ ax

mov ax. OFFH 5 Set Port 2.1 for TXD
mov dxa P2CON

out dx. ax

5 The next piece of code pulses Pl.7 low to load the 74HCLES.

mov dx~ PLCON 5 Get state of Pl controls
in axa. dx

or axs 7?FH 5 Make sure PL.7 is port
out dxa ax

mov dx~ PILTCH

in axa dx 5 get state of Pl Latch
or ax- 0080H 5 set P1.7 to 1N

out dx~ ax

and ax~ OFF7FH 5 Clear P1.7

out dx~ ax

or ax~ 0080H 5 Set P1.7

out dx+ ax
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Example 2 (Continued)

5 Now set up the receiver in mode 0 and turn it on.

mov ax- 0020H 5 Mode 0. No CTS
mov dxa S1ICON 5 Receiver ON
out dx. ax
mov dx+ SISTS
check_4_RI: in axa dx
test ax~ OO4YOH 5 look for SET RI bit
jz check_4_RI 5 loop until RI set.

5 RI bit set. Reception is completed-

mov dx+ SIRBUF
in axa+ dx
ret

READ_CONFIG BYTE endp

code_seg ends
end
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CHAPTER 9
INTERRUPTS

80C186EB family interrupts can be software- or hardware-initiated. Software interrupts originate
from three sources:

* Execution of INT instructions.
e A direct result of program execution, that is, execution of a breakpointed instruction.

*  An indirect result of program logic, for example, attempted division by zero.

Hardware interrupts originate from either the integrated peripherals orexternal logic. In the 8S0C186EB
family, an integrated Interrupt Control Unit performs the tasks which would otherwise be left to an
external 82C59 Interrupt Controller. Hardware interrupts are classified as either non-maskable or
maskable.

All interrupts, whether software- or hardware-initiated, result in the transfer of control to a new
program location. A 256-entry vector table (see Figure 9.1), which contains address pointers to the
interrupt routines, resides in memory locations O through 3FFH. Each entry in this table consists of
two 16-bit address values (four bytes) that are loaded into the code segment (CS) and the instruction
pointer (IP) registers when an interrupt is accepted.

Allinterrupts save the machine status by pushing the current contents of the flags onto the stack. The
80C186EB family CPU then clears the interrupt-enable and trap bits in the flags register to prevent
subsequent maskable and single step interrupts. Next, the CPU establishes the routine return linkage
by pushing the current CS and IP register contents onto the stack before loading the new CS and IP
register values from the vector table.
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MEMORY TABLE VECTOR MEMORY TABLE VECTOR
ADDRESS ENTRY DEFINITION ADDRESS ENTRY DEFINITION
3Fe S 2% TYPE 255 2 csi TYPE 11 — RESERVED
3FC 1P 255 2c 1P 11
! ! USER 2A cs1o TYPE 10— RESERVED
i 1 AVAILABLE 28 10
cs 32
82 TYPE 32 % cse TYPE 9 — RESERVED
80 IP 32 24 P9
7E ossi TYPE 31 2 css TYPE 8 — TIMER 0
7c 1P 31 20 P8
RESERVED .
: : 18 s TYPE 7 — ESC OPCODE
1c P7
56 cs2l TYPE 21 - SERIAL CHANNEL 0 1A csse TYPE 6 — UNUSED
54 1P 21 TRANSMIT 18 P6 OPCODE
52 g820 TYPE 20 - SERIAL CHANNEL 0 1 css ;&igs— ARRAY
50 1P 20 RECEIVE 14 P5
4 cs 19 12 cs4
TYPE 19 — TIMER 2 TYPE 4 — OVERFLOW
4C 1P 19 10 P4
4A cs 18 E
TYPE 18 — TIMER 1 0 ess TYPE 3 — BREAKPOINT
48 1P 18 0c P3
46 cs 17 A 2
TYPE 17 — INT4 0 S TYPE 2—NMI
44 1P 17 08 P2
2 cs 16 TYPE 16 — NUMERICS 06 cs1
4 COPROCESSOR TYPE 1 — SINGLE-STEP
40 IP 16 EXCEPTION (80C186EB) 04 IP1
3E cs 15 YR 16— TS 02 €S0 TYPE 0 — DIVIDE
3C IP 15 00 PO ERROR
3A 'CS 14 -— —]
TYPE 14 — INT2 |=—-28vTES |
38 1P 14
36 cs13 TYPE 13— INT{ CS = CODE SEGMENT VALUE
34 P13 IP = INSTRUCTION POINTER VALUE
32 cs 12
TYPE 12 — INTO
30 P12
|=—2BYTES—=| 270830-001-76

Figure 9.1. Interrupt Vector Table

9.1 INTERRUPT CONTROL MODEL

80C186EB family software interrupts are presented directly to the CPU, while hardware interrupts
are managed through the integrated Interrupt Controller.

The tasks performed by the integrated Interrupt Controller include synchronization of interrupt
requests, prioritization of interrupt requests, and management of interrupt acknowledge sequences.
Nesting is provided so interrupt service routines for lower priority interrupts may themselves be
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interrupted by higher priority interrupts. The integrated Interrupt Controller can be a master to two
external 8259A or 82C59A Interrupt Controllers.

The integrated Interrupt Controller block diagram is shown in Figure 9.2. It contains registers and a
control element. Five inputs are provided for external interfacing to the Interrupt Controller. Their
functions change according to the mode of the Interrupt Controller. Like the other 80C186EB family
integrated peripheral registers, the Interrupt Controller registers are available for CPU reading or
writing at any time.

TIMER TIMER TIMER SERIAL SERIAL INT INT INT INT INT
W RECEIVE TRANSMIT 0 1 2 3 4
Y Y Yvy
TIMER CONTROL REGISTER | INTERRUPT REQUEST PENDING
o REGISTER
SERIAL nge?sr\!'!ESONTROL - INTERRUPT MASK
— REGISTER
INTO PIN CONTROL REGISTER INTERRUPT PRIGRITY < IN-SERVICE REGISTER
INT1 PIN CONTROL REGISTER RESOLVER - PRIORITY LEVEL MASK REGISTER
INT2 PIN CONTROL REGISTER | INTERRUPT STATUS REGISTER
INT3 PIN CONTROL REGISTER
INT4 PIN CONTROL REGISTER
VECTOR
GENERATION
LOGIC
TO CPU INTERRUPT <
REQUEST
¢ F-BUS
270830-001-77

Figure 9.2. Interrupt Controller Block Diagram

9.2 INTERRUPT CHARACTERISTICS RELATED TO INTERRUPT TYPE

The interrupts handled directly by the CPU are varied and specific, while the interrupts handled by the
integrated Interrupt Controller are processed like each other.

9.2.1 INTERRUPTS HANDLED DIRECTLY BY THE CPU

The integrated Interrupt Controller does not intervene in interrupt processing related to INT instruc-
tions, instruction traps and exceptions, and the Non-Maskable Interrupt.

93 .
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9.2.1.1 INSTRUCTION-GENERATED TRAPS AND EXCEPTIONS

Software interrupts have higher priority than hardware interrupts, with the exception of NMIL. There
are eight dedicated software interrupts associated with instruction execution or attempted instruction
execution, leaving room in the vector table from Type numbers 32 through 255 for user-defined
interrupts. '

The predefined software interrupts in the 80C186EB family are listed below with brief descriptions.
When an interrupt is invoked, the CPU will transfer control to the memory location specified by the
vector associated with the specific type. The user must provide the interrupt service routine and
initialize the interrupt vector table with the appropriate service routine address. The user may addi-
tionally invoke these interrupts through hardware or software. If the preassigned function is not used
in the system, the user may assign some other function to the associated type. However, for com-
patibility with future Intel products, interrupt Types 0-31 should not be reassigned as user defined
interrupts.

Divide Error - Type 0:

Type O interrupts are invoked by an attempted division in which the quotient exceeds the maximum
value (e.g., division by zero). The interrupt is non-maskable and is entered as part of the execution of
the divide instruction. If divide errors are common in an application and interrupts are not re-enabled
by the interrupt service routine, add the interrupt routine execution time to the worst case divide
instruction execution time to calculate interrupt latency for hardware interrupts.

Single Step - Type 1:

This interrupt occurs one instruction after the trap flag (TF) is set in the flag register. Itis used to allow
software single stepping through a sequence of code. Single stepping is initiated by copying the flags
onto the stack, setting the TF bit on the stack and popping the flags. The interrupt routine should be
the single step routine. The interrupt sequence saves the flags and program counter, then resets TF to
allow the single step routine to execute normally. To return to the routine under test, an interrupt return
restores the IP register, CS register, and flags (with TF set). This allows the execution of the next
instruction in the program under test before trapping back to the single step routine.

Breakpoint Interrupt - Type 3:

This is a special version of the INT instruction. Since it requires only a single byte of code space, the
breakpoint interrupt can map into the smallest instruction for absolute breakpoint resolution. This
interrupt is not maskable. .
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Interrupt on Overflow - Type 4:

This non-maskable interrupt occurs if the overflow flag (OF) is set in the flag register and the INTO
instruction is executed. This instruction allows trapping to an overflow error service routine.

Array Bounds Exception - Type §:

If an array index is outside the array bounds during the BOUND instruction, a Type 5 interrupt results.
The array bounds are located in memory at alocation indicated by one of the instruction operands. The
other operand indicates the value of the index to be checked.

Unused Opcode Exception - Type 6:
Attempted execution of undefined opcodes generates this interrupt. This interrupt is non-maskable.
ESCape Opcode Exception - Type 7:

This exception is the result of attempted ESCape opcode (D8H-DFH) execution. On the 80C186EB,
the ESC trap is enabled by setting a bit in the relocation register. On the 80C188EB, ESC instructions
always generate this trap. The return address of this exception will point to the ESC instruction
causing the exception. If a segment override prefix preceded the ESC instruction, the return address
will point to the segment override prefix.

Numerics Coprocessor Exception (§0C186EB Only) - Type 16:

‘When the execution of numerics (ESCape) instruction causes an unmasked exception in the 80C187
Numerics Processor Extension, the result is an interrupt Type 16. Although this is classified as a
software interrupt, signaling is performed in hardware from the 80C187 to the 80C186EB on the
ERROR pin. In general, this exception is detected by the 80C186EB upon execution of the instruction
subsequent to the one causing the error condition.

9.2.1.2 NON-MASKABLE INTERRUPT (NMI)

The Non-Maskable Interrupt (NMI), a hardware interrupt, is interrupt Type 2. It has the highest
priority among hardware interrupts and is typically reserved for catastrophic events such asimpending
power failure or timeout of a system watchdog timer. NMI cannot be prevented by programming and
multiple NMI inputs will lead to nesting of NMI interrupt service routines. Noise on the NMI pin can
cause unnecessary system upsets.

NMI must be asserted for one CLKOUT period in order to be internally synchronized. The signal is
edge-triggered and level-latched. The vectoring sequence for NMI starts at the next available in-
struction edge after NMI is latched. The interrupt response time for NMI is 42 processor clocks.

9-5
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The processor will start recognizing the NMI input pin at the same clock edge on which the RES input
goes inactive. If NMI is asserted within 10 clocks after RESET goes inactive, the processor will vector
to the NMI service routine before it executes the first instruction. This procedure is useful when it is
desired to begin execution somewhere other than the default starting address of OFFFFOH.

9.2.1.3 USER-DEFINED SOFTWARE INTERRUPTS

The user can generate an interrupt through the software with a two byte interrupt instruction INT nn.
The first byte is the INT opcode while the second byte (nn) contains the type number of the interrupt
to be performed. The INT instruction is not maskable by the interrupt-enable flag. This instruction can
be used to transfer control to routines that are dynamically relocatable and whose location in memory
is notknown by the calling program. This technique also saves the flags of the calling program on the
stack prior to transferring control. The called procedure must return control with an interrupt return
(IRET) instruction to remove the flags from the stack and fully restore the state of the calling program.

Allinterrupts invoked through software (all interrupts discussed thus far with the exception of NMI)
are not maskable with IF and initiate the transfer of control at the end of the instruction in which they
occur. They do not initiate interrupt acknowledge bus cycles and will disable subsequent maskable
interrupts by resetting the flags IF and TF. The vectors for these interrupts are implied in the instruction.

9.2.2 INTERRUPTS HANDLED BY THE INTEGRATED INTERRUPT CONTROLLER

The 80C186EB family integrated Interrupt Controller receives and prioritizes hardware interrupts
from five external pins and five integrated peripheral sources. The Interrupt Controller was designed
to allow these interrupts to be flexibly managed. For example, it is possible to mask one or more
interrupt sources and handle them by polling while allowing vectored interrupts for all the other
sources to proceed. .

Requests on interrupt pins INTO-4 are not latched. If a normally LOW INT input is pulsed HIGH
briefly while that interrupt is disabled or another interrupt is in service, that request will not be saved,
even if the corresponding bit gets temporarily set in the interrupt request register. It is necessary to
hold the INT input active until the processor starts the vectoring sequence, either by running interrupt
acknowledge cycles or reading the new CS and IP values from the interrupt vector table. The
80C186EB processor family does not employ a default vector as does the 8259A or 82C59A.

All interrupt requests from the integrated peripherals are latched in the integrated Interrupt Con-
troller for presentation to the CPU.

9.3 OTHER INTERRUPT CHARACTERISTICS

To understand how interrupts participate in the overall microprocessor system it is necessary to
understand latency, masking and pnonty
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9.3.1 INTERRUPT LATENCY

Interrupt latency is the time it takes the 80C186EB family processor to begin to respond to an
interrupt. This is different from interrupt response time, the time from reception of the interrupt until
it actually executes the first instruction of the interrupt service routine.

Twofactors affecting interrupt latency are the instruction being executed and the state of the interrupt-
enable flip-flop. The interrupt-enable flip-flop must be explicitly set by issuing the STI instruction.
Since interrupt vectoring automatically clears the flip-flop, it is necessary to set the flip-flop within
the interrupt service routine if nested interrupts are desired.

In general, an interrupt can be acknowledged only when the CPU finishes executing an instruction,
i.e., interrupts are acknowledged at the first available instruction boundary. For the purpose of
determining instruction boundaries, prefixes (LOCK, REP, and segment override) are considered to
be part of the following instruction. Thus, interrupt latency time can be as long as 69 CPU clocks, the
amount of time it takes the processor to execute an integer divide instruction with a segment override
prefix. There are a number of exceptions to these rules.

MOVs and POPs to a segment register cause interrupt processing to be delayed until after the next
instruction. This delay allows a 32-bit pointer to be loaded to the SS and SP stack registers without the
danger of an interrupt occurring between the two loads.

The WAIT instruction causes the CPU to suspend processing while checking the TEST pin for alogic
LOW condition. If an interrupt is detected, the processor will vector to the interrupt service routine
with the return pointer aimed back to the WAIT instruction. The 80C186EB does not check the
ERROR pin for 80C187 exceptions during the WAIT instruction.

‘When the repeat prefix (REP) is used in front of a string operation, the processor does allow interrupt
vectoring between repetitions, including those which are LOCKed. If multiple prefixes precede a
repeated string operation and the instruction is interrupted, only the prefix immediately preceding the
string primitive is restored.

With the 80C186EB/80C187 processor combination, interrupts on the external interrupt pins INTO-
4 can be serviced after the 80C186 starts a numerics instruction. However, once communication is
completely established with the 80C187 (i.e., the 80C187 is not busy), interrupts are blocked until the
end of the instruction.

Interrupt latency is also affected by activity of the integrated peripheral set. Interrupt latency is
increased if the processor does not have control of the bus due to the HOLD/HLDA protocol.

Finally, the 80C186EB/80C188EB will not accept interrupts during DRAM refresh bus cycles.

9-7
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9.3.2 INTERRUPT MASKS AND NESTING

To provide a high degree of flexibility in designing complex interrupt structures, the 80C186EB
family has an elaborate mechanism to control the enabling and disenabling of individual interrupts.
The programmer must understand this structure to utilize the processor most efficiently in a heavily
interrupt-driven system. The rules of masking are as follows:

*  The non-maskable interrupt (NMI), cannot be prevented by programming, as its name implies.
*  Software interrupts, both user-defined and execution exception, cannot be masked.

+  Allother hardware interrupts are subject to the condition of the interrupt-enable flag which is set
by the STI instruction and cleared by the CLI instruction. Since every interrupt vectoring se-
quence clears the flag, programmer intervention is required to enable interrupt nesting. The flag
is automatically restored upon execution of the IRET instruction.

» - The integrated Interrupt Controller has a priority mask register which disables interrupts below
a programmable priority limit.

»  Theintegrated Interrupt Controller has a mask register with programmable bits for each possible
interrupt source, including the Serial Communications Unit, timers, and the external interrupt
pins. (Timers share a mask bit. The receive and transmit interrupt requests share a bit.)

+  Theintegrated Interrupt Controller has a control register for each interrupt source. (Timers share
a control register.) Each control register addresses the same mask bit as does the mask register.

Interrupts under control of the integrated Interrupt Controller are nestable subject to the states of their
in-service bits. Additionally, INTO and INT1 have a provision called Special Fully Nested Mode
(SFNM), which allows successive interrupts on those pins to ignore the state of their in-service bits.

9.3.3 INTERRUPT PRIORITY

When considering the precedence of interrupts for multiple simultaneous interrupts, apply the fol-
lowing guidelines:

1. Of the non-maskable interrupts (NMI, instruction trap, and user-defined software), single step
has the highest priority (will be serviced first), followed by NMI, followed by all other software
interrupts. '

2. The interrupts controlled by the 80C186EB family integrated Interrupt Controller are all mask-
able hardware interrupts. Their priorities levels are lower than the non-maskable interrupts.

A simultaneous NMI and single step trap will cause the NMI service routine to follow single step. A
simultaneous software trap and single step trap will cause the software interrupt service routine to
follow single step. Finally, and simultaneous NMI and software trap will cause the NMI service
routine to be executed followed by the software interrupt service routine. An exception to this priority
structure occurs if all three interrupts are pending. For this case, transfer of control to the software
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interrupt service routine followed by the NMI trap will cause both the NMI and software interrupt
service routines to be executed without single stepping. Single stepping resumes upon execution of
the instruction following the instruction causing the software interrupt (the next instruction in the
routine being single stepped).

If the user does not wish to single step before hardware interrupt service routines, the single step
routine need only disable interrupts during execution of the program being single stepped and re-
enable interrupts on entry to the single step routine. Disabling the interrupts within the program under
test prevents entry into the interrupt service routine while single step (TF = 1) is active. To prevent
single stepping before NMI service routines, the single step routine must check the return address and
return control to that routine without single step enabled. As examples, consider Figures 9.3 and 9.4.
In Figure 9.3 single step and NMI occur simultaneously. In Figure 9.4, NMI, a timer interrupt and a
divide error all occur while single stepping a divide instruction.

TF,IF =1

NMI INSTRUCTION

NMI TRAP (TF, IF = 1)

!

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL

[SINGLE STEP TRAP (TF, IF = 0)

PUSH FLAGS, CS, IP
CLEAR IF & TF
TRANSFER CONTROL

Y

EXECUTE SINGLE
STEP ROUTINE

(TF, IF = 0) RETURN]

EXECUTE NMI
SERVICE ROUTINE

(TF, IF = 1) RETURN |

Y

EXECUTE NEXT 3
INSTRUCTION
| SINGLE STEP TRAP
PUSH FLAGS, CS, IP NORMAL SINGLE STEP
CLEAR IF & TF OPERATION
TRANSFER CONTROL
EXECUTE SINGLE
STEP ROUTINE
(TF, IF = 1) RETURN| J

270288-001-81

Figure 9.3. NMI During Single Stepping and Normal Single Step Operation
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TF=1
IF=1

TIMER NMI

DIVIDE ERROR TRAP

PUSH FLAGS, CS, IP

CLEAR IF & TF
TRANSFER CONTROL
INMI(IF, TF = 0)
PUSH FLAGS, CS, IP
CLEAR IF & TF
TRANSFER CONTROL
EXECUTE NMI

(IF, TF = 0) RETURN |

EXECUTE DIVIDE
ERROR ROUTINE

(IF, TF = 1) RETURN |

Y

EXECUTE NEXT INSTR |  TIMER INTERRUPT
RECOGNIZE INTR STILL ACTIVE
| TIMER INTERRUPT

PUSH FLAGS, CS, IP
CLEAR IF & TF
TRANSFER CONTROL

| SINGLE STEP (IF, TF = 0)

PUSH FLAGS, CS, IP
CLEAR IF & TF
TRANSFER CONTROL

Y

EXECUTE SINGLE
STEP

(IF, TF = 0) RETURN |

SERVICE
TIMER INTERRUPT

(IF, TF = 1) RETURN]

J

CONTINUE TO SINGLE STEP
THE PROGRAM 270288-001-82

Figure 9.4. NMI, Timer, Single Step and Divide Error Simultaneous Interrupts
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9.4 INTERRUPT CONTROL UNIT OPERATION

The Interrupt Control Unit acts as the master interrupt controller for the system, receiving and
arbitrating hardware interrupts generated both internally and externally. The Interrupt Controller
presents interrupts directly to the CPU of the 80C186EB family processor. As many as two 8259A (or
82C59A) Interrupt Controllers may act as slaves to the master processor.

User’s familiar with the 80186 and 80C186 may remember that the interrupt controller on those
products has two modes: Master and Slave. The 80C186EB has only one mode which is functionally
equivalent to master mode. Slave mode was rarely used on the 80186 and 80C186 and was deleted
from the 80C186EB.

9.4.1 EXTERNAL CONNECTIONS

The INTO through INT3 external interrupt pins are configurable according to two options, direct and
cascade. INT4 can only be configured as a direct input. With the pins configured in Direct Input Mode
the integrated Interrupt Controller provides interrupt vectors. With the pins configured in Cascade
Mode, interrupt types are furnished by an external Interrupt Controller. Mixed mode operation (two
pins as direct inputs and two pins as an INT/INTA pair) is also possible.

9.4.1.1 DIRECT INPUT MODE

When the Cascade Mode bits are cleared, the interrupt input pins are configured as direct interrupt
pins (see Figure 9.5). Whenever an interrupt is received on the input line, the integrated controller will
donothing unless the interrupt is enabled, and it is the highest priority pending interrupt. At this time,
the Interrupt Controller will present the interrupt to the CPU and wait for an interrupt acknowledge.
When the acknowledge occurs, it will present the interrupt vector address to the CPU. In Direct Input
Mode, the CPU will not run any external interrupt acknowledge (INTA) cycles.

———|INTO
— - |INT1

INTERRUPT SOURCES { ———— INT2 800‘32598';’;‘“”
————|INT3
—pINT4

270288-001-83

Figure 9.5. Direct Input Mode Interrupt Connections
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9.4.1.2 CASCADE MODE

The INT2/INTAO and INT3/INTA1 lines are dual purpose; they can function as direct input lines, or
they can function as interrupt acknowledge outputs. When the Cascade Mode bit is set, the interrupt
input lines are configured in Cascade Mode. In this mode, the interrupt input line is paired with an
interrupt acknowledge line. INTAOQ provides the interrupt acknowledge for an INTO input, and
INTA1 provides the interrupt acknowledge for an INT1 input. Figure 9.6 shows this connection.

The INTAO and INTA1 are configured as inputs until cascade mode is selected. The pullup resisters
in Figure 9.6 insure that the INTA lines never float (and thus issue a spurious interrupt acknowledge
to the 8259). The value of the resisters is not critical. The value must be high enough to prevent
excessive loading on the INTAO and INTA1 pins.

INT - INTO
Vee
8250A ‘
OR
82C59A
iNTA iNTAO
80C186EB FAMILY
MEMBER
INT 1 INT1
Vee
8259A
OR
82C59A
iNTA : iNTA1

270288-001-84

Figure 9.6. 80C186EB Family Cascade Mode Interface

The 8259A or 82C59A Interrupt Controllers may each be further cascaded to eight more Interrupt
Controllers. Cascading Interrupt Controllers in this way allows up to 64 interrupt levels.

INTO with INT2/INTAOQ and INT1 with INT3/INTA1 may be individually programmed into inter-
rupt request/acknowledge pairs, or programmed as direct inputs. For example, INTO and INT2/
INTAO may be programmed as an interrupt and interrupt acknowledge pair, while INT1 and INT3/
INTAT1 each provide separate internally vectored interrupt inputs.
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9.4.2 INTERRUPT UNIT PROGRAMMING

The Interrupt Controller registers are defined according to Figure 9.7.

REGISTER NAME
EOI
POLL

POLL STS
IMASK
PRIMSK
INSERV
REQST
INTSTS
TCUCON
SCUCON
14CON
IOCON
11CON
12CON
I3CON

Figure 9.7. Peripheral Control Block Map

9.4.2.1 THE CONTROL REGISTERS

Each interrupt source to an 80C186EB family processor has a control register in the internal control-
ler. These registers contain three bits which select one of eight interrupt priority levels for the device
(Ois highest priority, 7 is lowest priority), and a mask bit to enable the interrupt (see Figure 9.8). When
the mask bit is zero, the interrupt is enabled; when it is one, the interrupt is masked. All interrupt
sources have default priority levels.
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INTERRUPT CONTROL REGISTER (Internal Sources):
(SCUCON, TCUCON)

INTERRUPT MASK:
0 = ENABLE INTERRUPTS FROM
THIS SOURCE
1 =MASK INTERRUPTS

<
-

<0z
N

<
oZ7T

PRIORITY LEVEL: }
0 = HIGHEST

7 = LOWEST

UNDEFINED WHEN READ.
MUST WRITE "0".

TCUCON XXF
SCUCON XXF

270830-001-78

Figure 9.8(a).

INTERRUPT CONTROL REGISTER (Cascadable Pins):
(IOCON, I1CON)

LEVEL TRIGGER PIN:
0 = EDGE MODE
1 = LEVEL MODE

CASCADE MODE:
0 = NO CASCADE
1= CASCADE TO

EXTERNAL CONTROLLER

SPECIAL FULLY NESTED MODE:
0 =NO NESTING
1 = ENABLE NESTING

<
-
—
-
<
-

Slelttvlrlr|r
FIALEL S M m|wm
Nis|V|k|2 0
“L_‘_l
)
INTERRUPT MASK:
0 = ENABLE INTERRUPTS FROM
THIS SOURCE
1= MASK THIS INTERRUPT
PRIORITY LEVEL:
0 = HIGHEST
7 = LOWEST

UNDEFINED WHEN READ.
MUST WRITE "0".

IOCON XXOF
11CON XXOF

270830-001-79

Figure 9.8(b).
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INTERRUPT CONTROL REGISTER (External Pins):
(I2CON, I3CON, I14CON)

INTERRUPT MASK:
0 = ENABLE INTERRUPTS FROM
THIS SOURCE
1 =MASK INTERRUPTS

LEVEL TRIGGER PIN:
0 = EDGE MODE
1 =LEVEL MODE

<
-

X0z
LNE—<n-]

<v
oZ7v

PRIORITY LEVEL: }
0 = HIGHEST

7 =LOWEST

UNDEFINED WHEN READ.
MUST WRITE "0".

270830-001-80

Figure 9.8(c).

There are seven control registers in the integrated Interrupt Controller: five of these serve the external
interrupt inputs, one for serial channel zero, and one for the collective timer interrupts.

The control registers for the external interrupt pins contain special bits not present for other interrupt
sources. Setting the LTM bit in these registers selects level-triggered operation as opposed to edge-
triggered operation. The INTO and INT1 control registers contain C and SFNM bits to select Cascade
and Special Fully Nested Modes, respectively.

Setting the LTM bit in these registers selects level-triggered operation over edge-triggered operation.
With edge-triggered operation, a LOW-to-HIGH transition must occur before the interrupt will be
recognized. The interrupt input must also be LOW for one clock before the active-going edge. With
level-triggered operation, only a HIGH level is required to generate an interrupt. In both types of
operation, the interrupt input must remain active until acknowledged.

With level-triggered operation only, an interrupt request input left active until after the end-of-
interrupt causes another interrupt request.

Level triggering must be used when an 8259 (or 82C59) is cascaded to the Interrupt Control
Unit.
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9.4.2.2 CASCADE MODE

‘When programmed in cascade mode, the 80C186EB family processor will provide two interrupt
acknowledge pulses in response to external interrupts. These pulses will be provided on the INT2/
INTAO line, and will also be reflected by interrupt acknowledge status being generated on the SO-S2
status lines. The interrupt type will be read on the second pulse. Similarly, the processor will provide
two interrupt acknowledge pulses on INT3/INTA1 in response to an interrupt request on the INT1
line.

When an interrupt is received on a cascaded interrupt pin, the priority mask bits and the in-service bits
in the particular interrupt control register will be set. This prevents the controller from generating a
CPU interrupt request from a lower priority interrupt. Also, any subsequent interrupt requests on the
same interrupt input line will not cause the integrated Interrupt Controller to generate an interrupt
request to the 80C186EB family CPU. This means that if the external Interrupt Controller receives a
higher priority interrupt request on one of its interrupt request lines and presents it to the CPU, the
Interrupt Controller will not present it to the CPU until the in-service bit for the interrupt line has been
cleared.

9.4.2.3 SPECIAL FULLY NESTED MODE

‘When both the Cascade Mode bit and the SFNM bit are set, the interrupt input lines are configured
in Special Fully Nested Mode. The external interface in this mode is exactly as in Cascade Mode. The
only difference is in the conditions which allow an external interrupt to interrupt the CPU.

When an interrupt is received from a Special Fully Nested Mode interrupt line, it will interrupt the
CPU if it is the highest priority pending interrupt regardless of the state of the in-service bit for the
source in the Interrupt Controller. Whenthe processor acknowledges an interrupt from a Special Fully
Nested Mode interrupt line, it sets corresponding bits in the priority mask and in-service registers.
This prevents the Interrupt Controller from accepting alower priority interrupt. However, the Interrupt
Controller will allow additional requests generated by the same external source to interrupt the CPU.
This means that if the external (cascaded) Interrupt Controller receives higher priority interrupts on
its interrupt request lines and presents them to the integrated controller’s request line, these interrupts
will be nested.

If the SFNM bit is set and the Cascade Mode bit is not set, the controller will provide internal interrupt
vectoring. It will also ignore the state of the in-service bit in determining whether to present an
interrupt request to the CPU. In other words, it will use the SFNM conditions of interrupt generation
with an internally vectored interrupt response, i.e., if the interrupt pending is the highest priority type
pending, it will cause a CPU interrupt regardless of the state of the in-service bit for the interrupt. This
operation is only applicable to INTO and INT1, which have SFNM bits in their control registers.
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9.4.2.4 THE REQUEST REGISTER

The Interrupt Controller includes an interrupt request register (see Figure 9.9). This register contains
seven active bits, one for every interrupt source with an interrupt control register. Whenever an
interrupt request is made, the bit in the interrupt request register is set regardless of whether the
interrupt is enabled. Interrupt request bits are automatically cleared when the interrupt is acknowl-
edged by starting the interrupt vectoring sequence.

INTERRUPT REQUEST REGISTER:
(REQST)

EXTERNAL PIN HAS
REQUESTED AN INTERRUPT:
0 = NO REQUEST
1 = REQUEST PENDING

Iyt
NIN|NIN
T|IT|TI|T
3j2]1]0
SERIAL PORT 0
INTERRUPT REQUEST:
0 =NO REQUEST

1 = REQUEST PENDING

TIMER/COUNTER UNIT REQUEST:
0 = NO REQUEST
1 = REQUEST PENDING

UNDEFINED WHEN READ.
MUST WRITE "0".

270830-001-81

Figure 9.9.
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9.4.2.5 THE MASK REGISTER

The Interrupt Controller mask register (see Figure 9.10) contains a mask bit for each interrupt source
associated with an interrupt control register. The bit for an interrupt source in the mask register is the
same bit as provided in the interrupt control register; modifying a mask bit in the control register will
also modify it in the mask register, and vice versa.

INTERRUPT MASK REGISTER:
(IMASK)

EXTERNAL PINS:

clalefi st
NIN|NIN]INE
TIT{T|T|[T|E
al2|1]o]]a]P}
A
SERIAL CHANNEL 0
TIMER/COUNTER UNIT °
ALL SOURCES:
0 = ENABLE INTERRUPTS
1 = MASK INTERRUPTS
UNDEFINED WHEN READ,
MUST WRITE "0".

270830-001-82

Figure 9.10.
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9.4.2.6 THE PRIORITY MASK REGISTER

The interrupt priority mask register (see Figure 9.11) contains three bits which indicate the lowest
priority an interrupt must have to cause an interrupt request to be serviced. Interrupts which have a
lower priority will be masked. Upon RESET, the register is set to the lowest priority of 7 to enable
interrupts of any priority. This register may be read or written.

INTERRUPT PRIORITY MASK REGISTER:
(PRIMASK)

=4
[SF-<4a-]

PRIORITY MASK:
INTERRUPTS WITH
A PRIORTY LOWER
THAN THIS VALUE WILL
NOT BE SERVICED.

0 = HIGHEST

7 = LOWEST

= UNDEFINED WHEN READ.
MUST WRITE "0".

PRIMSK

270830-001-83

Figure 9.11.

9.4.2.7 THE IN-SERVICE REGISTER

The Interrupt Controller contains an in-service register (see Figure 9.12). A bit in the in-service
register is associated with each interrupt control register so that when an interrupt request by the
device associated with the control register is acknowledged by the processor (either by interrupt
acknowledge cycles or by reading the poll register) the bit is set. The bit is reset when the CPU issues
an End Of Interrupt to the Interrupt Controller. This register may be both read and written, i.e., the
CPU may set in-service bits without an interrupt ever occurring, or may reset them without using the
EOI function of the Interrupt Controller.
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INTERRUPT IN-SERVICE REGISTER:
(INSERV)

EXTERNAL PIN INTERRUPT
REQUEST IN SERVICE:

0 =NOT IN SERVICE

1 =IN SERVICE

wAZ—
pHZ—

SERIAL PORT 0 INTERRUPT
REQUEST IN SERVICE:
0 =NOT IN SERVICE
1=IN SERVICE

TIMER INTERRUPT IN SERVICE:
0=NOT IN SERVICE
1 =IN SERVICE
ALL SOURCES:
0 = ENABLE INTERRUPTS
1 = MASK INTERRUPTS

AR i UNDEFINED WHEN READ.
INSERV MUST WRITE "0".

270830-001-84

Figure 9.12.

9.4.2.8 THE POLL AND POLL STATUS REGISTERS

The Interrupt Controller contains both a poll register and a poll status register (see Figure 9.13). These
registers contain the same information. They have a single bit to indicate an interrupt is pending and
five bits to indicate the type of the pending interrupt. The request bit is set if an interrupt of sufficient
priority has been received. It is automatically cleared when the interrupt is acknowledged. If an
interrupt is pending, the remaining bits contain information about the highest priority pending inter-
rupt. These registers are read-only.

Reading the poll register will acknowledge the pending interrupt to the Interrupt Controller just as if
the processor had started the interrupt vectoring sequence. The processor will not actually run any
interrupt acknowledge cycles, and will not vector through a location in the interrupt vector table. The
contents of the interrupt request, in-service, poll, and poll status registers will change appropriately.

Reading the poll status register will merely transmit the status of the polling bits without modifying
any of the other Interrupt Controller registers.
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POLL AND POLL STATUS REGISTERS:
(POLL, POLLSTS) READ ONLY

INTERRUPT REQUEST PENDING:
0 = NO INTERRUPT PENDING
1 = INTERRUPT PENDING

viviv]|v
T|T|T|T
3|2(1]o

I

HIGHEST PRIORITY 4#

PENDING INTERRUPT
(BY VECTOR TYPE)

@@ READING THE POLL REGISTER
WILL ACKNOWLEDGE A
PENDING INTERRUPT (SEE TEXT).

= UNDEFINED WHEN READ.
POLL OH MUST WRITE "0".

POLLSTS OH

270830-001-85

Figure 9.13.

9.4.2.9 THE END OF INTERRUPT REGISTER

The Interrupt Controller contains an End Of Interrupt register (see Figure 9.14). The programmer
issues an End Of Interrupt (EOI) to the controller by writing to this register. After receiving the EOI,
the Interrupt Controller automatically resets the in-service bit for the interrupt. The value of the word
written to this register determines whether the EOI is specific or non-specific. A non-specific EOI is
requested by setting the non-specific bitin the word written to the EOI register. In anon-specific EOI,
the in-service bit of the highest priority interrupt set is automatically cleared, while a specific EOI
allows the in-service bit cleared to be explicitly specified. If the highest priority interrupt is reset, the
poll and poll status registers change to reflect the next lowest priority interrupt to be serviced. If aless
than highest priority interrupt in-service bit is reset, the poll and poll status registers will not be
modified (because the highest priority interrupt to be serviced has not changed). This register is write-
only.

To issue a specific EOI for any timer interrupt the value 8 must be written to the EOI register.
Similarly, for both receive and transmit SCU interrupts the EOI register must be written with a 20
(decimal) for a specific EOL

To issue a non-specific end-of-interrupt a value of 8000H is written to the EOI register. To issue a
specific end-of-interrupt the interrupt vector type of the interrupt to clear is written to the EOI register.
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END OF INTERRUPT REGISTER:
(EOI) WRITE ONLY

NON-SPECIFIC EOL:
0 =NO OPERATION
1 = CLEAR HIGHEST PRIORITY REQUEST

viv]|v]v
TiT|T|T
alaf1]o
1
1

INTERRUPT REQUEST

(BY VECTOR TYPE)

TO CLEAR

UNDEFINED WHEN READ.
MUST WRITE "0".

EOI OH

270830-001-86

Figure 9.14.

9.4.2.10 INTERRUPT STATUS REGISTER IN MASTER MODE

The Interrupt Controller also contains an interrupt status register (see Figure 9.15). This register
contains five bits. Three bits show which timer is causing an interrupt. This is required because the
timers share a single interrupt control register. A bit in this register is set to indicate which timer
generated an interrupt. The bit associated with a timer is automatically cleared after the interrupt
request for the timer is acknowledged. More than one of these bits may be set at a time.

The transmit and receive interrupt requests from serial channel 0 also share on interrupt request. The
SRX and STX bits are provided to distinguish between these interrupts.
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INTERRUPT STATUS REGISTER:
(INTSTS)

D = NO NMI REQUEST
| = NMI REQUEST

xXIT»
nDZ A

J
L

SERIAL TRANSMIT:
0 =NO TX INTERRUPT
1=TXINTERRUPT

SERIAL RECIEVE:
0 =NO RX INTERRUPT
1=RXINTERRUPT

TIMER/COUNTER INTERRUPT:

0 =NO INTERRUPT REQUEST
1 = CORRESPONDING TIMER
REQUESTED INTERRUPT.

UNDEFINED WHEN READ.
INTSTS MUST WRITE "0".

270830-001-87

Figure 9.15.
9.4.3 INTERRUPT SOURCES

The 80C186EB family Interrupt Controller receives requests and arbitrates among many different
interrupt sources, both internal and external. Each interrupt source may be programmed to be a
different priority level.

9.4.3.1 INTERNAL SOURCES

The internal interrupt sources are the three timers and serial channel 0. An interrupt from any of these
interrupt sources is latched in the Interrupt Controller. The state of the pending interrupt can be
obtained by reading the interrupt request register. Note that all timers share a common bit in the
interrupt request register. The Interrupt Controller status register may be read to determine which
timer is actually causing the interrupt request. Each timer has a unique interrupt vector (see Section
9.0). Thus, polling is not required to determine which timer has caused the interrupt in the interrupt
service routine. Also, because the timers share a common interrupt control register, they are placed
at a common priority level relative to other interrupt sources. Among themselves they have a fixed
priority, with Timer O as the highest priority timer and Timer 2 as the lowest priority timer.
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Serial channel O generates an interrupt request whenever a reception or transmission is completed.
Like the timers, there is only one bit in the request register for the two serial interrupts. The interrupt
status register contains two bits, SRX and STX, which differentiate the source of the interrupt.
Receive and transmit interrupts have seperate vectors; polling is not necessary to determine the source
of the interrupt. The serial communications unit interrupts have a single priority with respect to other
internal and external sources (because they are one request). Receive has a higher priority than
transmit when both occur at the same time.

9.4.3.2 EXTERNAL SOURCES

The external pins associated with the Interrupt Controller may serve either as direct interrupt inputs,
or as cascaded interrupt inputs from other Interrupt Controllers. These options are selected by pro-
gramming the C and SFNM bits in the INTO and INT1 control registers (see Figure 9.8(b)).

When programmed as direct interrupt inputs, the five interrupt inputs are each controlled by an
individual interrupt control register. As stated earlier, each of these registers contain bits which select
the priority level for the interrupt and a mask bit. In addition, each of these control registers contains
abit which selects edge- or level-triggered mode for the interrupt input. When edge-triggered opera-
tion is selected, a LOW-to-HIGH transition must occur on the interrupt input before an interrupt is
generated, while in level-triggered mode, only a HIGH level needs to be maintained to generate an
interrupt. In edge-triggered mode, the input must remain LOW at least one clock cycle before the
input is rearmed. In both modes, the interrupt level must remain HIGH until the interrupt is acknowl-
edged, i.e., the interrupt request is not latched in the Interrupt Controller. The status of the interrupt
input can be shown by reading the interrupt request register. Since interrupt requests on these inputs
are not latched by the Interrupt Controller, if an input goes inactive, the interrupt request (and its
request bit) will also go inactive.

If the C (Cascade) bit of either the INTO0 or INT1 control register is set, the interrupt input is cascaded
to an external Interrupt Controller. In this mode, whenever the interrupt presented on the INTO or
INT1 line is acknowledged, the integrated Interrupt Controller will not provide the interrupt type for
the interrupt. Instead, two INTA bus cycles will be run, with INTAO or INTA1 lines providing the
interrupt acknowledge pulses for the INTO and INT1 interrupt requests, respectively. This allows up
to 128 (plus INT4) individually vectored interrupt sources if two banks of 8 external Interrupt
Controllers each are used.

9.4.4 INTERRUPT RESPONSE

The 80C186EB family processor can respond to an interrupt in two different ways. The first response
will occur if the internal controller is providing the interrupt vector information with the controller.
The second response will occur if the CPU reads interrupt type information from an external Interrupt
Controller. In both instances the interrupt vector information driven by the integrated Interrupt
Controller is not available outside the microprocessor.

9-24



intel INTERRUPTS

‘When the integrated Interrupt Controller receives an interrupt, it will automatically set the in-service
bit and reset the interrupt request bit. In addition, unless the interrupt control register for the interrupt
is set in Special Fully Nested Mode, the Interrupt Controller will prevent any interrupts from occur-
ring from the same interrupt line until the in-service bit for that line has been cleared.

9.4.4.1 INTERNAL VECTORING

The interrupt types associated with all the interrupt sources are fixed and unalterable. These types are
givenin Table 9.1. In response to an internal CPU interrupt acknowledge the Interrupt Controller will
generate the vector address rather than the interrupt type. On 80C186EB family microprocessors the
interrupt vector address is the interrupt type multiplied by four.

Table 9.1. 80C186EB Internal Vectoring Default Priority

Interrupt Name Vector Type Relative Priority
Timer 0 8 0(a)
Timer 1 18 0(b)
Timer 2 19 0(c)
Serial Channel 0: Receive 20 1 (a)
Serial Channel 0: Transmit 21 1 (b)
INT4 17 2
INTO 12 3
INT1 13 4
INT2 14 5
INT3 15 6

No external Interrupt Controller need know when the integrated controller is providing an interrupt
vector, nor when the interrupt acknowledge is taking place. As a result, no interrupt acknowledge bus
cycles will be generated. The first external indication that an interrupt has been acknowledged will be
the processor reading the interrupt vector from the interrupt vector table in memory.

Interruptresponse to an internally vectored interrupt is 42 clock cycles because the processor does not
run interrupt acknowledge cycles. This is faster than the interrupt response when external vectoring
is required.

If two interrupts of the same programmed priority occur, the default priority scheme (shown in Table
9.1) is used.
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9.4.4.2 EXTERNAL VECTORING

External interrupt vectoring occurs whenever the Interrupt Controller is placed in Cascade Mode.
With external vectoring, the 80C186EB family processor generates two interrupt acknowledge
cycles, reading the interrupt type off the lower 8 bits of the address/data bus on the second interrupt
acknowledge cycle (see Figure 9.16). In the 8259A or 82C59A, the upper five bits are user-pro-
grammable and the lower three bits are determined by a defined interrupt request level. Interrupt
acknowledge bus cycles have the following characteristics:

»  The two interrupt acknowledge cycles are LOCKed.
» Two idle T-states are always inserted between the two interrupt acknowledge cycles.

*  Wait states will be inserted in an interrupt acknowledge cycle if READY is not returned to the
Pprocessor.

Alsonotice that the processor provides two interrupt acknowledge signals, one for interrupts signaled
by the INTO line, and one for interrupts signaled by the INT1 line (on the INT2/INTAOQ and INT3/
INTAL lines, respectively). These two interrupt acknowledge signals are mutually exclusive. Inter-
rupt acknowledge status will be driven on the status lines (S0-S2) when either INT2/INTAO or INT3/
INTA1 signal an interrupt acknowledge. The interrupt type generated on the second INTA cycle is
read by the CPU and then multiplied by four. The resultant value is used as a pointer into the interrupt
vector table.

' % | = | % | » | % | % | % | = | % | % |
| | | | | | | | |
S0-52 INTERRUPT | INTERRUPT | |
ACKNOWLEDGE ACKNOWLEDGE |

- | [ | |
INTA | I

'I
'/
INTERRUPT TYPE

(FROM EXTERNAL
CONTROLLER)

LOCK | \

|

|

|

| |

ADO-AD7 | }
| |

|

|

|

his
|
|
I

NOTES: 1. ALE is generated for each INTA cycle.

2. RD is inactive.
Is Inactive 270288-001-94

Figure 9.16. Cascaded Interrupt Acknowledge Timing
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9.4.4.3 INTERRUPT RESPONSE TIME

The interrupt response time for the 80C186EB family is 42-55 CPU clocks. Figure 9.17 shows how
the total is obtained. The clock count changes when the processor replaces the indicated idle states
with bus cycles for other tasks such as refresh cycles. The processor does not necessarily flush the
queue until the very last moment, so prefetching may continue for a while during the vectoring
sequence. Also, the clock count must be adjusted for wait states or for the 80C188EB. For the
80C188EB, double the number of clocks given for each bus cycle accessing the stack or memory.

CLOCKS
Interrupt presented to the interrupt controller >
5
Interrupt presented to CPU >
INTA 4 CASCADE
IDLE 2 MODE
INTA 4 ONLY
IDLE 5
READ IP 4
IDLE 3 (5IF NOT CASCADE MODE)
READ CS 4
IDLE .4
PUSH FLAGS 4
IF<-0, TF«0 IDLE 3
PUSH CS 4
PUSH IP 4
First instruction fetch IDLE 5
from interrupt routine >
Total 42-55
270288-001-66

Figure 9.17. 80C186EB Family Master Mode Interrupt Response Time

These clock counts are also applicable to software interrupts and NMI (notice there are no INTA
cycles).

9.4.5 INITIALIZATION EXAMPLE

The code to initialize the Interrupt Control Unit for a combination of direct inputs and Cascade Mode
inputs is given in Figure 9.18. Refer to Figures 9.5 and 9.6 for the corresponding hardware configu-
rations. Notice that a READY signal must be returned to the processor to prevent the generation of
wait states in response to the interrupt acknowledge cycles. This configuration provides 10 external
input lines: two provided by the Interrupt Controller itself (pins INT1 and INT3), and eight from the
external 8259A (cascaded at pins INTO and INTAQ). The 80C186EB integrated Interrupt Control
Unit is the master system Interrupt Controller. The 8259A will only receive interrupt acknowledge
pulses in response to interrupts it has generated. The 8259A may be cascaded again as a master to as
many as eight additional 8259A Interrupt Controllers (configured as slaves).
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name
3
b
5
and
3
L]
hl

3
IOCON
IMASK

b
code

code

$modlab

set_int_

set_int_

example_8018L_family_interrupt_code

This routine configures the interrupt controller to provide two cascaded

interrupt inputs (through an external 8259A internal controller on
pins INTO and INT2/INTAO0) and two direct interrupt inputs (on pins INT1

INT3). The default priority levels are used. Because of this. the
priority level programmed into the control register is set to 1ll. the
level all interrupts assume at reset-

equ OFFLA8H

equ OFFD8H

segment 3 public’code

assume (S:code

proc near

push DX

push AX

mov AX-.0100111B 5 Cascade Mode
5interrupt unmasked

mov DX.-IOCON

out DX.AX

mov AX-+01001101B 5 now unmask the other external
5interrupts

mov DX.IMASK

out DX~ AX

pop AX

pop DX

ret

endp

ends

end

Figure 9.18. Example 80C186EB Family Interrupt Initialization for Master Mode

9.5 INTERRUPT CONTROLLER FLOW CHARTS

Figure 9.19 shows an interrupt request generation flow chart and Figure 9.20 shows an interrupt
acknowledge sequence flow chart. Each interrupt source processed by an 80C186EB family inte-

grated Interrupt Controller follows each flow chart independently.
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INTERRUPT
RECEIVED

\

SET INTERRUPT
REQUEST BIT

HIGHER

REGISTER

PRIORITY THAN
PRIORITY MASK

MASK\ NO -

BIT CLEARED
?

HIGHEST

PRIORITY

INTERRUPT
?

NO -

YES SPECIAL NO
IN-SERVICE BIT > FULLY NESTED
SET MODE (INTO-1)
? ?

YES

PRESENT INTERRUPT
REQUEST TO
EXTERNAL CONTROLLER
PRESENT INTERRUPT | _g
REQUEST TO CPU B
270288-001-111

Figure 9.19. Interrupt Request Sequencing
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INTERRUPTS

GENERATE INTA
CYCLES FOR EXTERNAL
INTERRUPT CONTROLLER

SET IN-SERVICE

NOTES:

INTERRUPT (D
ACKNOWLEDGE

CASCADE
MODE

PROVIDE HIGHEST
PRIORITY INTERRUPT
VECTOR ON INTERNAL BUS

!

SET IN-SERVICE

1.Before actual interrupt acknowledge is run by CPU.
2. Two interrupt acknowledge cycles will be run; the interrupt type is read by

the CPU on the second cycle.

3. Interrupt acknowledge cycles will not be run; the interrupt vector address
is placed on an internal bus and is not available outside the processor.

270830-001-88

Figure 9.20. Interrupt Acknowledge Sequencing
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CHAPTER 10
REFRESH CONTROL UNIT

To simplify the design of a dynamic memory controller, the 80C186EB family incorporates inte-
grated address and clock counters into a Refresh Control Unit (RCU). Its relationship to the BIU is
shown in Figure 10.1. To the memory interface a refresh request looks exactly like amemory read bus
cycle. Integration of the RCU into the 80C186EB family means that chip selects, wait state logic, and
status lines may be used by an external DRAM controller. The external DRAM controller generates
the RAS, CAS, and enable signals actually needed by the DRAMs.

N\
<:> RFTIME REGISTER

CPU CLOCK REFRESH REQUEST . BIU
9-BIT DOWN " INTERFACE
8 COUNTER ¢ q| _ REFRESH ACKNOWLEDGE
i REQ
w
RFCON REGISTER

Vv
12-BIT ADDRESS COUNTER

RFBASE REGISTER

1

RFADDR REGISTER

7L 13]
I~ 4 4

20-BIT REFRESH ADDRESS 270830-001-50

Figure 10.1 Refresh Control Unit Block Diagram

The 12-bit address counter is used in the formation of refresh addresses. Thus, any dynamic memory
whose refresh address requirements (rows of memory cells) do not exceed twelve bits can be directly
supported by the S0OC186EB. The 12-bit address counter, a 7-bit base register, and one fixed bit define
a full 20-bit refresh address. The 9-bit refresh clock counter decrements every clock cycle and
generates a refresh request to the BIU whenever it reaches 1. When the bus is free, the BIU will run
the refresh (dummy read) bus cycle. Refresh requests have a higher priority than any other bus request
(i.e., CPU, HOLD).
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10.1 REFRESH CONTROL UNIT PROGRAMMING

There are three registers in the Peripheral Control Block that control the RCU. The three control
registers are RFBASE, RFTIME, and RFCON (see Figure 10.2). These registers define the operating
characteristics of the RCU.

REGISTER NAME:
RFBASE
RFTIME
RFCON
RFADDR

Figure 10.2(a). PCB Map of Refresh Control Unit

REFRESH BASE ADDRESS REGISTER: (RFBASE)

0
R{R||R|R|R|R
AlA]JA|JA|ALA
111 111111
8|7]|6|5]|4]|3

L

A19 THROUGH A13 OF J

THE REFRESH ADDRESS

= UNDEFINED WHEN READ.
MUST WRITE "0".

RFBASE

270830-001-51

Figure 10.2(b).

The RFBASE register programs the base address (upper 7 bits) of the refresh address. This allows the
refresh address to be mapped to any 4 kilobyte boundary within the one megabyte address space. The
RFBASE registeris not altered whenever the refresh address bits (RA1 through RA12 in Figure 10.3)
roll over. In other words, the refresh address does not act like a linear counter found in a typical DMA
controller.
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REFRESH CLOCK RELOAD VALUE: (RFTIME)

15 0
RIIR|R|R|R||R|R|IR|R
cllclcicicliclcic|c
s|l7|6]|5|4]}|3|2]1]|0
L ]

VALUE TO RELOAD REFRESH QT
DOWN COUNTER CLOCK WITH
AFTER EVERY REFRESH CLOCK
CYCLE.
= UNDEFINED WHEN READ.
MUST WRITE "0".
RFTIME OH
270830-001-52
Figure 10.2(c).

REFRESH CONTROL REGISTER: (RFCON)

REFRESH CONTROLLER ENABLE:
WHEN WRITTEN:
0 = DISABLE RCU
1 = ENABLE RCU
WHEN READ:
0 = RCU STOPPED
1 =RCU RUNNING

RIR[R|R]|R|R|R|R
clclclcllc|c|cic
7|6|5f4]|3 1]0
L 1
CURRENT VALUE IN RCU ————jr
CLOCK DOWN COUNTER.
(READ ONLY)
"= UNDEFINED WHEN READ.
MUST WRITE "0".
RFCON OH
270830-001-53
Figure 10.2(d).
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REFRESH ADDRESS REGISTER: (RFADDR)

RIBIr|rlr|R|R|R||R|R|R
AMATAlAllalalala]lalalal
Halelell716|5(4]l2]2
L ]
) jl
A12 THROUGH A1 OF =
REFRESH ADDRESS (A0=1).
GENERATED BY REFRESH
ADDRESS COUNTER.
= UNDEFINED WHEN READ.
MUST WRITE "0".
RFADDR 1FFFH
270830-001-54
Figure 10.2(e).
FROM RFBASE REGISTER FROM RFADDR REGISTER
I | I 1
rR{rR|{R|R] [R[R|R rRilr|R
AlA|AIAL[AlAIA AlALA[RIA] [A|R[A|A] |A|A|A]1
9ls|7]|s 5|43 21|08 76154 3f2
R|R|R|RNIR|R|R|REIR|R
RIRENR|R|R|RIAIR|R]|R
SHUE BHUA BuEE Haad HakE
ols|7|e6|\Y5|a|3]|2f|1]0]®]8 765|482
19 0
L ]
20-BIT REFRESH ADDRESS 270830-001-55

Figure 10.3. Refresh Address Generation

The RFTIME register defines the interval between refresh requests by initializing the value loaded
into the 9-bit down counter. Thus, the higher the value, the longer the amount of time between
requests. The down counter is decremented every falling edge of CLKOUT, regardless of the activity
of the CPU or BIU. When the counter decrements to 1, arequest is generated and the counter is again
loaded with the value in the RFTIME register. The amount of time between refresh requests can be
calculated using the equation shown in Figure 10.4.
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Rperiop (18) X f(MHz2)
= RFTIME Register Value

# Refresh Rows + # (Refresh Rows x % Overhead)

RPEmOD = Maximum refresh period specified by DRAM manufacturer (microseconds).
f = Operating frequency of 80C186/C188EB in MHz.
# Refresh Rows = Total number of rows to be refreshed.

% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%).

270830-001-56

Figure10.4. Equation to Calculate Refresh Interval

The minimum value that can be programmed into the RFTIME register is 18 (12H) regardless of
operating frequency. This minimum count ensures that the BIU has enough time to execute the refresh
bus cycle. The BIU cannot queue DRAM refresh requests. If another request is generated before the
current request is executed, the current request is lost. However, the address associated with the
request is not lost; the refresh address changes only after the BIU runs a refresh bus cycle. Thus it is
possible to miss refresh requests, but not refresh addresses.

The RFCON register has two functions, depending on whether it is being written or read. During
writes to the RFCON register, only the Enable bit is active. Setting the Enable bit turns on the RCU
while clearing the Enable bit deactivates the RCU. When the RCU is enabled, the contents of the
RFCON register are loaded into the 9-bit down counter and refresh requests are generated when the
counter reaches 1. Disabling the RCU stops and clears the counter. A read of the RFCON register will
return the current value of the Enable bit as well as the current value of the 9-bit down counter (zero
if the RCU is not enabled). Writing to the RFCON register when the RCU is running does not
modify the count value in the 10-bit counter.

10.2 REFRESH CONTROL UNIT OPERATION

Figure 10.5 illustrates the two major functions of the Refresh Control Unit that are responsible for
initiating and controlling the refresh bus cycles.

The RFCON down counter is loaded on the falling edge of CLKOUT, when either the Enable bit is
set or the counter decrements to 1. Once loaded, the RFCON down counter will decrement every
falling edge of CLKOUT (as long as the Enable bit remains set).
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REFRESH CONTROL UNIT ) BIU REFRESH BUS
OPERATION OPERATION
( SET'E"BIT ) REFRESH REQUEST
ACKNOWLEDGED
Y {
LOAD COUNTER
FROM RFTIME EXECU;EH)EMORY
o i |
> I
Y l y
|
| INCREMENT
COUNTER = 1? : ADDRESS
| EXECUTED
-~ EVERY
CLOCK
' Y
|
I REMOVE
| REQUEST
- DECREMENT i
COUNTER |
-
CONTINUE
GENERATED BIU
REQUEST
‘ 270830-001-57

Figure 10.5. Flowchart of RCU Operation

When the counter decrements to 1, two things happen. First, a request is generated to the BIU to run
arefresh bus cycle. Therequest remains active until the bus cycle is run or the RCU is disabled. Second,
the down counter is reloaded with the value contained in the RFTIME register. At this time, the down
counter will again begin counting down every clock cycle. It does not wait until the request has been
serviced. This is done to ensure that each refresh request occurs at the correct interval. Otherwise, the
time between refresh requests would also be a function of varying bus activities. When the BIU
services the refresh request, it will clear the request and increment the refresh address.
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Refresh bus cycles are specially encoded to distinguish them from ordinary read cycles according to
Table 10.1.

Table 10.1. Identification of 80C186EB/80C188EB DRAM Refresh Cycles

BHE/RFSH A0
80C186EB 1 1
80C188EB 0 1

NOTE:
BHE applies to be 80C186EB and
RFSH applies to the 80C188EB.

10.3 REFRESH ADDRESSES

The physical address that is generated during a refresh bus cycle is shown in Figure 10.3, and applies
to both the 80C186EB and 80C188EB. The refresh address bits RA1 through RA12 are generated
using a linear-feedback shift counter which does not increment the addresses linearly from O through
FFFH (although they do follow a predicable algorithm). Further, note that for the 80C188EB, address
bit AO does not toggle during refresh operation, which means that it cannot be used as part of the
refresh (row) address applied to the dynamic memory device. Typically, AOis used as part of memory
decoding in 80C188EB applications, unlike 80C186EB applications which use A0 along with BHE
to select an upper or lower bank.

10.4 REFRESH OPERATION AND BUS HOLD

When another bus master has control of the bus, the HLDA signal is kept active as long as the HOLD
input remains active. If a refresh request is generated while HOLD is active, the S0C186EB/C188EB
will drive the HLDA signal inactive to indicate to the current bus master that the CPU wishes toregain
control of the bus (see Figure 10.6). Only when the HOLD input is removed will the BIU begin the
refresh bus cycle.
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T T1 T T1 T1 T4 T1
[ | | | | |
& | |, N
CLKOUT —X
| [ @ | @ | | |
HOLD T I« |
o 1 X\ W
| | 5) 4 T r f
| [Rd | l | @ | @
HLDA ! ' ! !
| | | | |
| Iy | | | |
| [N | | | |
| | | | | |
ADO-AD1S, | | 5 ' | |
P 1 T K& T 1 1 1
DEN | | | [ | ) N—
| [ | | [ |
AT6/S3-A19/S6, ! ' ' | |
RD, WR, BHE : L : : : {
DT/R, SO-82 \ \ | | | 1
NOTES:
1. HLDA deasserted, signaling need to run DRAM refresh cycles less than TCLOV
2. External bus master terminates use of the bus.
3. HOLD deasserted; greater than TCLIS
4. HOLD may be reasserted after one clock.
5. Lines come out of float in order to run DRAM refresh cycle. 270830-001-58

Figure 10.6. Release of 80C186/80C188 HOLD to Run Refresh Cycle.

Therefore, it is the responsibility of the system designer to ensure that the 80C186EB/C188EB can
regain the bus if a refresh request is signalled. The sequence of HLDA going inactive while HOLD
is active can be used to signal a pending refresh. If HOLD is again asserted, the CPU core will give
up the bus after the refresh bus cycle has been run (provided another refresh request is not generated
during that time).

10.5 DECODING REFRESH BUS CYCLES

The BIU distinguishes between refresh cycles and other bus cycle types. The 80C186EB and
80C188EB differ in their methods of signalling a refresh in progress. .

On the 80C186EB, a refresh cycle is indicated when both BHE and AO are high. These two signals
may be ANDed together to signal a refresh in progress.

The 80C188EB does not use the BHE pin. The BHE signal has been replaced by the RFSH signal
which is LOW whenever a refresh cycle is in progress. The RFSH signal has the same timings as the
BHE signal on the 80C186EB.
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10.6 EXAMPLE RCU INITIALIZATION CODE

Sample code to initialize the 80C186EB/80C188EB DRAM Refresh Control Unit is included in
Example 1.

Example 1.

smodla8kb
namercu_initialization_example

This file contains an example of initialization code for the
Refresh Control Unit on the 80C1ALEB.

For the purposes of our example we will assume the system has
512K of DRAM at 40000H. We choose 25bK x 4 DRAMS with 2 chips in
the low byte and 2 chips in the high byte. The data sheet specs
25k refresh cycles are required every 4 milliseconds. This
information also tells us that the array is organized as 25b rous
by 1024 columns. To calculate the maximum number of clocks
between refresh cycles. we multiply the totalrefresh period by
the CLKOUT frequency and divide by the total number of rows. For
an 80CLALEB at 1bMHz. the refresh rate is:

YE-O03 x LLE+0Ok / 25k = 250 clocks-

We will assume the chip selects have been set up to select the
DRAM array correctly.

% % g% ae e e e e e ge g0 ae g

4% ae ae

RFBASE EQU OFFBOH
RFTIME EQU OFFB2H
RFCON EQU OFFBY4H
code segment public

assume cs:code

init_rcu proc near
mov dx. RFBASE
mov ax- 4000H 5 Set upper 7 address bits for
out dxa+ ax 5 starting address of 40000OH.
mov dx+ RFTIME
mov ax. 250 5 Set up down counter start value.
out dxa ax 3 RCU request every 250 clocks.
mov dx+ RFCON
mov ax~ 8000H 5 Set ENable bit to start RCU.
out dxs ax

5 The RCU is now initialized and running.

ret
init_rcu endp
code ends

end

10-9
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CHAPTER 11
INPUT/OUTPUT PORT UNIT

Two general purpose I/O ports are available on the S0C186EB. Port 1 is an 8 bit output only port. Port
2 is an 8 bit port consisting of 4 pure input, 2 pure output, and 2 open drain bidirectional signals.

Both ports are multiplexed with other integrated peripherals. Port 1 shares its pins with the general
purpose chip select (GCS) lines of the chip select unit. The pure input and output lines of Port 2 are
multiplexed with some serial communications unit signals. The open drain I/O pins of Port 2 are not
multiplexed. A block diagram of the I/O Port unit is shown in Figure 11.1.

Each I/O port is controlled by 4 Peripheral Control Block registers. The PCB map and a summary of
register operation can be found in Figure 11.2.

REGISTER NAME
P1DIR
P1PIN

P1CON
P1LTCH
P2DIR
P2PIN
P2CON
P2LTCH

Figure 11.2(a). PCB Map of /O Port Unit

11.1 FUNCTIONAL OVERVIEW

All three port pin types are derived from a common logic module (Figure 11.3). Every port pin, be it
an input or an output, was derived from the common bi-directional module. This modular design
approach results in some normally unused circuitry. For example, the Port Direction Control register
bit exists for output only ports although it is not used.

These normally unused features are not necessarily useless. In the following discussions the
unimplemented functions are described along with potential secondary uses for them.



ntel INPUT/OUTPUT PORT UNIT

F-BUS 8

/} e AN 4\
GCS7 - GCSO
FROM CSU
r___,/% v
A JYYYYVYY
N\
P1 CON PORT 1 MUX
I P1PIN

AAAAAAAL

¢
[
4
[
!
P1.7/ P1.6/ P1.5/ P1.4/ P1.3/ P1.2/ P1.1/ P1.0/
GCS7 GCs6 GCS5 GCs4 GCs3 GCs2 Gest GCS0

270830-001-33

Figure 11.1(a). Port 1 Block Diagram
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PORT 1 DIRECTION REGISTER: (P1DIR)

1 0
plelepir|lrlr|P|Pr
p|pfp|p]lp|p|bfD
7|6|5|4|[3]2]1]0

| J
UNUSED REGISTER 4#
(MAY BE USED FOR STORAGE)

UNDEFINED WHEN READ.
MUST WRITE "0".

PIDIR xxFFH

x=UNDEFINED

270830-001-35

Figure 11.2(b).

PORT 2 DIRECTION REGISTER: (P2DIR)

15 0
plrle|eflr|rP|r|P
pfofpo|p]llp|p|D|D
7|le|s|4fl3]|2|1]o0
4\ Al J

PORT 2.7 DIRECTION: :

0=0UTPUT

1=INPUT
PORT 2.6 DIRECTION:

0=OUTPUT .

1=INPUT
UNUSED BITS

= UNDEFINED WHEN READ.
MUST WRITE 0",

x=UNDEFINED

270830-001-36

Figure 11.2(c).
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PORT PIN REGISTERS: (P1PIN, P2PIN) READ ONLY

0
plp|p|lr|P|P|P
plplrPllPiP|P|P
6l5(4fl3]|2]1]0

J
A
STATE OF PORT PIN

(SYNCHRONIZED)

UNDEFINED WHEN READ.
MUST WRITE "0".

270830-001-37

Figure 11.2(d).

PORT 1 MULTIPLEXER CONTROL REGISTER: (P1CON)

15 0

-0
[=Neoks)

PORT 1 MULTIPLEXER CONTROL BITS
1=PERIPHERAL (GCS) SIGNAL TO PIN
0=PORT LATCH VALUE TO PIN

= UNDEFINED WHEN READ.
MUST WRITE "0".

PICON xxFFH

x=UNDEFINED
270830-001-38

Figure 11.2(e).
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PORT 2 MULTIPLEXER CONTROL REGISTER (P2CON)

UNUSED
15

NO T g
o

2+ 07T |-
(o]
o0

NO T
o0
a0
WO

P

-
=
-

OPEN DRAIN 1/O SELECT: -——-L}

1= FLOAT
0 =PORT

P2.3/SINT1 SELECT:
1=SINT1 TOPIN
0=P23 LATCHBIT TOPIN

P2.1/TXD1 SELECT:
1=TXD1 TOPIN
0 =P2.1 LATCH BIT TO PIN

RXD1 DATA SOURCE SELECT IN MODE 0 (TRANSMIT e
1 =TBUF IS DATA SOURCE
0 =P2.0 LATCH BIT IS DATA SOURCE

= UNDEFINED WHEN READ.
MUST WRITE "0".

x=UNDEFINED 270830-001-39

Figure 11.2(f).

PORT LATCH REGISTERS: (P1LTCH, P2LTCH)

15 0
plrpllplr|r|P
cjeffefefefe
slallal2]1]o

1

PORT LATCH VALUE

= — UNDEFINED WHEN READ.
P1LTCH xxFFH

MUST WRITE "0".
P2LTCH xxFFH
x=UNDEFINED

270830-001-40

Figure 11.2(g).
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11.1.1 OUTPUT PORTS

The internal construction of an output port pin is shown in Figure 11.4. An internal connection
permanently enables the 3-state output driver. The source of the data driven on the pin is selected by
the Port Control bit. This bit controls the multiplexing of data between the Port Latch bit and the
integrated peripheral. If the Port Control bit is a logic one, the pin will be controlled by the integrated
peripheral. A logic zero Port Control bit gates the data in the Port Latch to the pin.

The Port Latch bit value is set by writing to the corresponding Port Latch register in the PCB. The
latched value can be read back from this register. Note that the value read from the Port Latch Register
is the state of the latch, not the state of the pin.

The actual state of the output pin can be read from the Port Pin register.
All of Port 1 and pins P2.1 and P2.3 of Port 2 are pure output.
11.1.2 INPUT PORTS

The internal control logic for an input port pin is shown in Figure 11.5. The 3-state output driver has
been internally disabled making the pin input only. The current state of the input pin is read from the
Port Pin register. The state of the port pin is synchronized to the CPU clock.

The Serial Communications Unit shares the input pins of Port 2. There is no need to configure these
pins as either peripheral or port as the input signals route to both units. Users can still read the state of
these pins even when they are being used for Serial Control Unit functions.

The Port Latch circuitry functions the same as it does for the output port described above. Since the
output is disabled, however, the value cannot affect the port pin. This vestigial latch can be used as bit
storage.

Port pins P2.2, P2.4, and P2.5 are pure input pins.

Input port P2.0 is a special case. P2.0 is shared with the RXD1 function of serial communications
channel 1. The RXD1 pin becomes an output during a synchronous transmission (Mode 0) regardless
of the state of the P2.0 Direction Bit. The data that appears at the P2.0/RXD1 pin during synchronous
transmission depends on the P2.0 Control bit. If the P2.0 Control bit is a 1 (peripheral function
selected) the proper data from the TBUF will appear at the P2.0/RXD1 pin. If the control bitis a 0, the
data contained in the Port 2.0 Latch bit will appear at the P2.0/RXD1 pin. In both cases when the
transmission is completed the P2.0/RXD1 will float.
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Figure 11.3. Common /O Moduie Biock Diagram

11-8




INPUT/OUTPUT PORT UNIT

INTERNAL PERIPHERAL
SIGNAL (e.g. GCS7)

READ PORT LATCH
REGISTER (PxLTCH)

INTERNAL BUS
(F-BUS)

PORT LATCH
REGISTER BIT

[=]]

d——‘ D
WRITE PORT LATCH N
REGISTER (PXLTCH)

READ PORT PIN
REGISTER (PxPIN)

FROM PORT MULTIPLEX
CONTROL REGISTER (PxCON)

2-1 MULTIPLEXER

o1

OUTPUT
DRIVER

SYNCH

PX/PERIPHERAL

270830-001-42

Figure 11.4. Pure Output Pins
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READ PORT LATCH
REGISTER (PxLTCH)

INTERNAL BUS
(F-BUS)

PORT LATCH
OUTPUT
REGISTER BIT DRIVER
(DISABLED)
PX/PERIPHERAL
@—1D (_)
WRITE PORT LATCH N
REGISTER (PxLTCH) =
SYNCH

READ PORT PIN
REGISTER (PxPIN)

TO INTEGRATED
PERIPHERAL

270830-001-43

Figure 11.5. Pure Input Pins
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11.1.3 OPEN DRAIN BI-DIRECTIONAL PORTS

Port pins P2.6 and P2.7 are open drain bi-directional (Figure 11.4). With alow logic level on the Port
Direction signal the state of the PX Pin s controlled by the Q signal from the Port Latch. Writing a zero
to the Port Latch turns on the N-channel driver resulting in a “hard zero” being present at the PX Pin.
A one value in the Port Latch shuts off the driver resulting in a high impedance (input) state at the Px
Pin.

The PX Pin can be floated directly by setting its Port Direction bit to a 1. The state of the PX Pin can
be read from the Port Pin register.

The port/peripheral multiplexer exists for P2.6 and P2.7 even though the pins are not shared with 2
peripheral functions. The peripheral function input multiplexer is internally strapped to always float
the open drain pin if it is selected.

11.2 PROGRAMMING THE I/O PORT UNIT
11.2.1 PORT DIRECTION REGISTER

The Port Direction Register (P1DIR, P2DIR) controls the direction (input or output) for each bit in
the port. The direction control feature is not enabled for Port 1 and pins P2.0 through P2.5 of Port 2.
These unused direction control bits may be used for bit storage.

Only the direction bits for the open drain pins (P2.6 and 2.7) are used by the IPU. Setting the direction
bits for these pins puts the P2.6 and P2.7 pins in a high impedance state. Clearing these bits allows the
state of the open drain pins to be controlled by the Port 2 Latch Register.

The Port Direction Register is read/write. When read each register will return the value written to it
previously. Pins with their direction fixed will return the value in this register, not a value indicating
their direction.

11.2.2 PORT PIN REGISTER

The Port Pin Register (P1PIN, P2PIN) is a read only register that is used to determine the state of a
port pin. When read, the current state of the port pins (either an input or output) will be gated to the
internal data bus.

11.2.3 PORT CONTROL REGISTER

The Port Control Register (P1CON, P2CON) selects the source of data driven on each output port
pin. Setting a bit in this register selects an integrated peripheral as the source; clearing it selects the
corresponding Port Latch bit. Tables 11.1 and 11.2 show the multiplexing options available for Port
1 and Port 2 respectively.
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PORT DIRECTION
(PxDIR)

READ PORT LATCH
REGISTER (PxLTCH)

INTERNAL BUS
(F-BUS)

PORT LATCH

PX PIN

|||—|

st
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REGISTER (PXLTCH)

READ PORT PIN
REGISTER (PxPIN)

FROM PX CON

s2
82

SYNCH

270830-001-44

Figure 11.6. Open Drain Pins (P2.6, P2.7)
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Table 11.1. P1CON Port 1 Multiplex Control

Table 11.2. P2CON Port 2 Multiplex Control

P1CON BIT PIN FUNCTION P2CON BIT FUNCTION PIN FUNCTION

P1CON.7 =1 GCS7 P2CON.7 =1 FLOAT

=0 PORT1.7 =0 P2.7
P1CON.6 =1 GCS6 P2CON.6 =1 FLOAT

=0 PORT1.6 =0 P2.6
P1CON.5 =1 GCS5 P2CON.5 NOT USED

=0 PORT1.5 P2CON.4 NOT USED
P1CON4 =1 GCS4 P2CON.3 =1 SINT1.

=0 PORT1.4 =0 P2.3
P1CON.3 =1 GCS3 P2CON.1 =1 TXD1

=0 PORT1.3 =0 P2.1
P1CON.2 =1 GCS2 P2CON.0 =1 RXD1*

=0 PORT1.2 =0 PS.0
P1CON.1 =1 GCS1 -

=0 PORT1.1 * NOTE: P2CON.0 only has an effect during a synchronous
P1CON.0 =1 GCSO0 transmission in Mode 0 by SCU channel 1. See text.

=0 PORT1.0

The Port Control Register exists for input only pins although it has no affect on their operation (except
P2.0/RXD], see 11.2.1). These unused bits may be used as storage.

11.2.4 PORT LATCH REGISTER

The Port Latch Register (PLLTCH, P2LTCH) holds the value to be driven on an output pin. This
value will only appear at an output pin if the corresponding bit in the Port Control Register is cleared.

The Port Latch Register bits corresponding to input only pins exist but are not used by the IPU. These
vestigial latches may be used as storage.

The Port Latch Registeris read/write. Reading a Port Latch Register returns the value of the latch itself
and not the associated port pin.

11.3 INITIAL CONDITIONS (RESET)

Atreset the Port 1 multiplexer is configured with the Generic Chip Selects as the source of the output
data.

The Port 2 multiplexer resets with serial channel 1 as the source of data for all output pins. The P2.6
and P2.7 open drain ports reset to a high impedance state ( their corresponding PxDIR bits are = 1).

The reset values for all of the IPU registers is shown in Figuré 11.2.
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11.4 PROGRAMMING EXAMPLE

The example in Figure 11.7 shows a typical ASM186 routine to configure the IPU. GCS7 through
GCS4 are routed to the pins while P1.0 throught P1.4 are used as output ports. The binary value 0101
is written to P1.0 through P1.3. The state of pins P2.6 and P2.7 is read and stored in the AL register.

4% g g e

.
3

.
hl

as

.
3

$modlab
name io_port_unit_example

P1DIR EQU OFF50H
PLPIN EQU " OFF52H
PLCON EQU OFF54H
PLLTCH EQU OFF5kH
P2DIR EQU OFF58H
P2PIN EQU OFFS5AH
P2CON EQU OFF5CH
P2LTCH EQU OFFSEH
code_seg segment public

IO _UNIT_EXMPL proc near

I0_UNIT_EXMPL endp -

code_seg ends
end

This file contains an example of programming code for
the I/0 Port Unit on the &DCLBFEB-

We assume PCB has NOT BEEN RELOCATED!

assume cs:code_seg

first. select GCS7# through GCSU# to output pins.

mov dx+ PLCON
mov axa OFOH
out dx~ ax

write 0L01B to pins P1.3 through P1.0

mov dx+ PLLTCH
mov ax~ 0101B
out dx. ax

Read P2:b+ P2.7. We assume they have not been changed to output
pins since reset. . .

mov dx- P2PIN
in axas. dx
and axi 3H " % strip unused and undefined bits

AL now holds the state of the P2.b and P2.7 pins

Figure 11.7. IPU Programming Example
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CHAPTER 12
POWER MANAGEMENT UNIT

The majority of VLSI devices on the market today make use of dynamic circuitry. A dynamic circuit
is one that makes use of a capacitance (usually parasitic gate or diffusion capacitance) to store
information. The charge stored on the capacitance will decay through time due to leakage currents in
the silicon. If the information stored on a dynamic node is not used before it decays, the state of the
entire machine may be lost. Dynamic RAMs, for example, must be refreshed periodically to insure
data retention. A dynamic microprocessor is one for which the minimum clock frequency is greater
than zero. When the clock on a dynamic microprocessor is frozen, the dynamic nodes within it will
begin to discharge. With a long enough delay it is likely that, when the clock is restarted, the
microprocessor will begin to execute in an unknown state. Normal operation can only be reinstated
through a reset.

The 80C186EB is a fully static device. The clock signal to both the CPU core and the peripherals may
be stopped without the loss of any internal information (provided Vcc is maintained). When the clock
isrestarted the 80C186EB will begin to execute in the same state as when the clock was stopped. This
feature, coupled with the fact that CMOS devices consume virtually no current when quiescent,
allows tremendous power savings in applications where the 80C186EB will be idle for long periods.

The Power Management Unit of the 80C186EB is provided to control the current consumption of the
device. Three modes are available: Active, Idle, and Powerdown.

In Active Mode the clock signal is gated to the CPU core and all of the integrated peripherals. This is
the default operating mode that the 80C186EB enters on reset. Current consumption is at its maxi-
mum.

During Idle Mode operation the clock signal is routed only to the integrated peripheral devices. The
clock to the CPU core ( Execution and Bus Interface Units ) is frozen. All peripherals operate
normally. Any unmasked interrupt, NMI, or a processor reset will return the 80C186EB to Active
mode. A DRAM refresh or HOLD request will awaken the core temporarily in order to respond.
Current consumption in Idle Mode is reduced to just the amount necessary tomaintain the peripherals.

Entering Powerdown Mode freezes the clock to the entire device (CPU and peripherals) and disables
the crystal oscillator. All internal devices (registers, state machines, etc.) maintain their state as long
as Vccisapplied. DRAM refresh and HOLD requests will not be acknowledged in Powerdown mode.
An NMI or a processor reset will cause the 80C186EB to return to Active Mode. A timing pin is
provided to allow the crystal oscillator to stabilize before restarting the internal clocks. Current
consumption in Powerdown Mode is reduced to just transistor junction leakage (typically in the
microamp range).

The Power Management Unit is programmed through the use of the Power Control Register at offset
B8H in the Peripheral Control Block (Figure 12.1).
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POWER MANAGEMENT CONTROL REGISTER:
(PWRCON):

OFFSET = 0B8H

ZODET |;n

Py
-

IDLE MODE:

0 = IDLE MODE NOT SELECTED

1 = ENTER IDLE MODE AT NEXT
HALT CYCLE

POWERDOWN MODE:
0 = POWERDOWN MODE NOT SELECTED
1=ENTER POWERDOWN MODE AT NEXT

HALT CYCLE

RESET = XXXX. XXXX. XXXX. XX00B

SETTING BOTH IDLE AND POWERDOWN WILL
RESULT IN A DEFAULT TO ACTIVE MODE.

UNDEFINED WHEN READ.
MUST WRITE 0.

270830-001-91

Figure 12.1.
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12.1 FUNCTIONAL OVERVIEW

The two low-power modes are armed by setting the appropriate bitin the Power Control Register. The
chosen mode is entered when a HLT instruction is executed. If both modes are selected (or no mode
is selected) the device will HalLT and remain in Active Mode. Section 3.4.4.2 describes the HALT
cycle in detail.

12.1.1 IDLE MODE

At the completion of the HALT execution, with the IDLE bit set, the clock signals routed to the CPU
core (Execution and Bus Unit) will be frozen in a logic low state. The clock signals to the integrated
peripherals continue to toggle as does CLKOUT. Current consumption will be cut by nearly half,
although this is dependent on the level of activity in the peripheral units.

Figure 12.2 shows the internal and external waveforms during entry into Idle Mode.

The core clocks can be restarted by several means. A DRAM refresh will turn on the core clock
temporarily in order to run the dummy read cycle. A HOLD request will turn on the core clock as long
as HOLD is asserted. Any unmasked interrupt or NMI will return the 80C186EB family device to
Active mode. A RESET will also return the device to Active Mode (although the state of the device
when the HALT was executed is lost). The following sections describe, in detail, cach of these
situations.

12.1.1.1 REFRESH DURING IDLE MODE

Figure 12.3 shows the sequence of events for a refresh cycle while the CPU is in Idle Mode. The
refresh counter decrements on the falling edge of CLKOUT. The internal core clock begins to toggle
on the falling edge of CLKOUT after the down-counter reaches zero. After one idle T-state the refresh
request is run (the T,-T,-T,-T,-T, sequence in Figure 12.3). There is one idle T-state after T, before
the internal core clock shuts off again.

The READY, wait state generation, and chip select circuitry are all active for refresh cycles during
Idle Mode.

12.1.1.2 HOLD/HLDA DURING IDLE MODE

The core in Idle Mode will also respond to bus HOLD requests (Figure 12.4). The core clock restarts
one CLKOUT cycle after HOLD has been asserted (see Section 3.6 for requirements on HOLD
timing). HLDA is driven high one cycle after the core clock starts. The core clock turns off and HLDA
is deasserted one cycle after HOLD is dropped.

Refresh requests will force the BIU to drop HLDA during a HOLD request. Section 10.4 contains
more information on refresh cycles during HOLD.
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Figure 12.2. Entering Idle Mode
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12.1.1.3 EXITING IDLE MODE VIA AN UNMASKED INTERRUPT

Any unmasked interrupt received by the core will return the 80C186EB to Active Mode. Unlike the
HOLD and refresh situations, another HALT must be executed for the core to return to Idle Mode.

For the example shown in Figure 12.5, the Interrupt Unit has been programmed for cascade mode on
pin INTO. The core clock begins toggling seven clocks after INTO (which is unmasked) goes high.
These seven clocks are required to perform mask and priority level checking. It takes another 6
CLKOUT cycles for the core to begin to respond to the interrupt request (in this case begin the
interrupt acknowledge cycle).

Afterthe execution of the IRET (interrupt return) instruction in the interrupt service routine, the CS:IP
will be pointing to the instruction following the HALT. The PWRCON register is not modified by
interrupt execution. If the PWRCON register is not modified after exiting Idle Mode then the
80C186EB family device will re-enter IDLE at the next HALT instruction.

12.1.1.4 EXITING IDLE MODE VIA A NON-MASKABLE INTERRUPT (NMI)

Like an unmasked interrupt, a non-maskable interrupt will return the core to Active mode from Idle
mode (Figure 12.6). It takes only 2 CLKOUT cycles to restart the core clock after an NMI is received.
The NMI signal does not have to go through the mask and priority checks that a maskable interrupt
does. This results in the 5 clock cycle difference in clock restart time between an NMI and an
unmasked interrupt.

The core begins the interrupt response 6 cycles after the core clock re-starts when it fetches the NMI
vector from location 00008. The PWRCON register is not affected by an NMI.

12.1.1.5 EXITING IDLE MODE VIA A RESET

Resetting the 80C186EB family processor will return the device to Active Mode. Unlike the case of
the interrupts, however, the PWRCON register will be cleared. Execution begins as it would following
a warm reset (see Section 4.4).

12.1.2 POWERDOWN MODE

Powerdown Mode is entered by the execution of a HLT instruction after the PWRDN bit in the Power
Control Register has been set. Following a normal software HLT cycle both the core and peripheral
clocks will be shut off and the crystal oscillator will be disabled. While in Powerdown Mode the
device will not respond to HOLD requests, nor will it run DRAM refresh cycles (as the clock to the
DRAM Refresh Unit is turned off).

Active Mode is re-entered after the reception of an NMI or areset. A delay must be provided after the
NMI request to allow the crystal oscillator to stabilize before it is connected to the internal phase
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clocks. This delay is set by the discharge of an external capacitor through an internal pulldown on the
PDTMR pin (Figure 12.7). The operation of the powerdown timer circuitry is described in section
12.1.2.2 below.

Current consumption in Powerdown Mode is just the leakage currents of the quiescent CMOS circuits
within the 80C186EB family processor. This current is typically in the microampere (10) range.
Consult the datasheet for actual values.

12.1.2.1 ENTERING POWERDOWN MODE

Figure 12.8 shows the internal waveforms during entry into Powerdown Mode. During the T, phase
of the HaLT instruction, a signal is generated called Enter_Powerdown. Enter_Powerdown disables
the internal CPU core and peripheral clocks immediately. The oscillator inverter and the Schmidtt
trigger that drives the internal phase clocks are disabled during the next CLKOUT cycle. If a crystal
oscillator is being used, it will stop immediately. When CLKIN is driven by an external frequency
input (EFI), the signal on the CLKIN pin is isolated from the internal circuitry. Therefore, CLKIN
may be driven during Powerdown Mode although it will not clock the 80C186EB family device.

CLKOUT freezes in a logic high state during Powerdown.
12.1.2.2 EXITING POWERDOWN MODE

In order to reliably restart the internal phase clocks of the 80C186EB processor after Powerdown,
sufficient time must be provided to allow the crystal oscillator circuit to stabilize. This stabilization
time may be on the order of hundreds of milliseconds in some designs. The powerdown timer circuit
allows the designer to control the gating of the crystal oscillator to the internal clocks.

The powerdown timer circuit is shown in Figure 12.7. The strong P-channel device is on at all times
except during exit from Powerdown. This pullup keeps the Powerdown capacitor (C,) charged up
to Vce. When an NMI is detected, the weak N-channel device turns on and the P turns off. C, begins
to discharge. At the same time the feedback inverter on the crystal oscillator is enabled and the
oscillator begins its startup processes. The Schmidtt trigger connected to the PDTMR pin asserts the
internal OSC_OK signal when the voltage at the pin drops below its switching threshold.

The OSC_OK signal gates the crystal oscillator output to the internal clock circuitry. One CLKOUT
cycleis run before the internal clocks turn back on (see Figure 12.9). Ittakes two additional CLKOUT
cycles before the NMI is presented to the CPU. Six cycles later the NMI vector is fetched. The
PWRCON register is not affected by exiting Powerdown Mode via an NML

Powerdown mode can also be exited via a processor reset. Since the oscillator has been stopped, the
guidelines for a cold reset (Section 4.4) should be followed when RESETting out of Powerdown
Mode.
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12.1.1.2.1 CALCULATION OF PDTMR CAPACITOR VALUE

The first step in determining the proper value for C, is to characterize the startup time for crystal
oscillator circuit being used. The simplest way to do this is with a storage oscilloscope. Be sure to
compensate for the loading effects of the scope probe on the oscillator circuit. Startup should be
characterized over the full range of operating voltages and temperatures.

Given the oscillator startup time, one can refer to the “Powerdown capacitor value vs. Oscillator
startup time” graph from the data sheet for the powerdown capacitor value. Typical values are in the
1uF range.

12.2 PROGRAMMING EXAMPLE

Example 1 shows the 80C186EB entering Idle Mode. The interrupts from the serial port and timers
have been unmasked. The serial port is connected to a keyboard controller. Whenever a byte is
received from the keyboard (a key has been touched) the 80C186EB will wake up to service the
interrupt. After taking action on the keystroke, the core will go back into Idle Mode.

The processing of the keystroke are not relevant to this example, and has been omitted.
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Example 1.

$modléb
namepmu_initialization_example

This file contains an example of initialization code for the
Power Management Unit on the 80C1A8LEB.

For this example~ the CPU core is placed in IDLE Mode while
waiting for serial input from an keyboard controller.

Timer interrupts will also be recognized.

After interrupt processing the core will return to IDLE Mode.

4% a0 a0 g a0 ge e g

It is assumed that all interrupt vectors and procedures have
been previously set up-.

ac ae

5 The PCB is at FFOOH in I/0 space.

IMASK EQU OFFO8H
PWRCON EQU OFFBA&H
code segment public

assume cs:code

idleproc near

mov dx. IMASK

mov ax+ 0005H 5 Enable Timer and SCU interrupts

out dx+ ax

mov dx+ PWRCON

mov ax~ 02H 5 Arm IDLE Mode

out dx ax

cli 5 Clear global interrupt mask.
in_idle: hlt 5 Enter IDLE Mode

jmp in_idle 5 After INT return to IDLE
idle endp
code ends

end
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CHAPTER 13
HARDWARE PROVISIONS FOR FLOATING POINT MATH

The 80C186EB microprocessor family was designed for general-purpose microprocessing. In most
data controller applications, the actual arithmetic performed on data values is fairly simple, while fast,
efficient data movement and control instructions are very important. However, some applications
require more powerful arithmetic instructions and more complex data types than provided by a
general purpose data processor. Characteristics of such applications include the following:

*  Numeric data vary over a wide range of values or include non-integral values.
e Algorithms produce very large or very small intermediate results.
«  Computations must be very precise, i.e., a large number of significant digits must be retained.

¢ Computations must be extremely reliable without undue dependence on programmed algo-
rithms.

¢ Opverall math performance exceeds the power provided by a general-purpose processor and
software alone.

The 80C186EB family supports these needs by providing the necessary hardware interface to the
80C187, Figure 13.2 and anumerics coprocessor extension. The 80C188EB does not support numer-
ics coprocessing.

13.1 80C187 INSTRUCTION SET

80C187 instructions are divided into six functional groups: data transfer, arithmetic, comparison,
transcendental, constant, and processor control. Typical 80C187 instructions accept one or two
operands and produce a single result. Operands are most often located in memory or the 80C187
stack. The operands of some instructions are predefined; for example, FSQRT always takes the
square root of the number in the top stack element. Others allow, or require, the programmer to
explicitly code the operand(s) along with the instruction mnemonic. Still others accept one explicit
operand and one implicit operand, usually the top stack element.

As with the basic 80C186EB family instruction set, there are two types of oper