
Memory Management on the
StrongARM** SA-110
Application Note

September 1998

Order Number: 278191-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The SA-110 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product o rder.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

Memory Management on the StrongARM** SA-110
Contents
1.0 Introduction...1

1.1 Memory Management Concepts ...1

2.0 The ARM Architecture - MMU ..3

2.1 The Coprocessor Interface..5

3.0 The SA-110 Implementation...7

3.1 MMU and the Caches..7
3.1.1 Instruction Caching...8
3.1.2 Data Caching..8
3.1.3 Cache Management ...8

3.2 TLB Management..9
3.3 MMU Fault Handling..9

3.3.1 Prefetch Abort ..10
3.3.2 Data Abort ..10

4.0 MMU Initialization and Reset..11

4.1 A Worked Example..12

A MMU Initialization and Reset..13

B Coprocessor Access Macros..19

Figures

1 Virtual-to-Physical Address Translation ..2
2 Level 1 Page Table Format ...4
3 Level 2 Page Table Format ...4

Tables

1 Exception Vectors and Their Priorities ..4
2 CP15 Register Summary...5
3 Access Permissions ..5
4 Domain Access Values ...6
5 Cp15 Fault Status Register Format...6
6 Fault Status Encoding ...6
7 Cache Control Operations...8
8 TLB Control Operations...9
Application Note iii

Memory Management on the StrongARM SA-110
1.0 Introduction

The SA-110 is the first StrongARM** implementation of the ARM** architecture. This document
provides an overview of memory management followed by details specific to the ARM
architecture and the SA-110 implementation itself. The MMU (memory management unit) model
for the ARM architecture is described along with its relationship to cache and write buffer control.
Behavior of the SA-110 is then discussed and sample code provided for a simple one-to-one
mapped virtual-to-physical translation.

Remember that the ARM Systems Architecture Manual and the SA-110 Technical Reference
Manual remain the definitive texts for how the device operates, and provide fuller explanations in
many cases.

1.1 Memory Management Concepts

Memory management can be described as the ability to manage the system address space, typically
using a blend of software and dedicated hardware. A memory-managed address space as seen by
the program is often referred to as a virtual address (VA) space, which is then translated into a
physical address (PA) prior to accessing memory or IO.

Memory management provides three functions:

• Access control

• Relocation (address translation)

• Consistent state allowing a faulting access to be corrected and replayed by an exception
handler with the same result as a normally completing access. This is the key feature required
for a demand-paged memory system.

Translation is performed using page tables and may involve multiple steps, each step providing
finer granularity on the translated page size. Figure 1 illustrates a two-level lookup. A predefined
translation base is merged with the first-level index to provide the address of a page table entry
(PTE). The entry contains the base of the second-level table along with any associated control
information required by the MMU. Combining this base with the second-level index from the
original VA provides an address for the second-level PTE. This entry then provides the physical
base, which is concatenated with the PA index to provide the required physical address. Other
fields in the PTE are used for access control according to the MMU model.
Application Note 1

Memory Management on the StrongARM SA-110
The process of performing the above translation is commonly known as table walking, and may be
performed in hardware or software. For performance reasons, microprocessors implement a cache
of VA=>PA entries in translation lookaside buffers (TLBs) as part of the MMU.

Many schemes can be implemented using the principles outlined. Multitasking systems can
implement virtual address spaces on a per-process basis, each with their own page tables, or share a
single space across all processes. Protection can be used to prohibit access for both privileged and
nonprivileged program execution. Page faults result in access aborts where it is up to the exception
handler to determine the cause of the fault, and take the appropriate corrective action (for example,
map in the requested page from disk to physical memory on an application page miss). The onus is
normally on MMU software to keep all the TLBs and translation tables consistent and avoid
translation conflicts.

Figure 1. Virtual-to-Physical Address Translation

2nd-level table address

Translation base 0s

1st-level index 2nd-level index PA index

0sTranslation base 1st-level index

Page table 2 base 2nd-level index 0s

Physical base address Control fields/flags

Page table 2 base Control (entry type, permissions, etc.)

PA indexPhysical base address

Virtual address

MMU register

PTE (1st level)

PTE (2nd-level)

1st-level table address

Physical address
2 Application Note

Memory Management on the StrongARM SA-110
2.0 The ARM Architecture - MMU

The ARM architecture is currently at Version 4. The evolution through the four versions is
summarized in the preface to the ARM Architecture Reference Manual. Version 4 of the
architecture introduced support for what is known as the Harvard Architecture - a computer
architecture model with separate instruction and data paths to memory.

The main features of the ARM MMU architecture are as follows:

• All system architecture functions are controlled by reading or writing an ARM register (Rd)
from/to a block of sixteen 32-bit registers (Rn) accessed at coprocessor number (cp_num) 15.
Control bits are transferred within the opcode_1, opcode_2, and Rm instruction fields where
necessary.

The instruction format is:

 MRC/MCR p<cp_num>, <opcode_1>, Rd, cRn, cRm, <opcode_2>

• A single set of tables is used for both instruction and data fetches irrespective of whether a
Harvard or Von Neumann (unified address and data access stream) architecture is
implemented.

• Caches (instruction, data, or unified) are controlled through a combination of the system
control coprocessor register and control bits in the page tables.

• 1 MB sections are supported through a single-level lookup.

• 64 KB or 4 KB pages are supported by a second-level lookup.

• Level 1 page tables consist of 4096, 32-bit entries (16 KB table size).

• Level 2 page tables consist of 256, 32-bit entries (1 KB table size) for each section. 64 KB
page table entries are replicated sixteen times each within the table. This is because the level 2
table and PA page indices overlap by four bits in the VA.

• Sections and pages can be protected using access permissions (AP bits) with no_access,
read_only, or read_write for supervisor and user modes.

• Domains can be used to provide an additional level of protection across arbitrary PTEs.
Domain settings determine whether access is enabled or not, and if enabled, whether the
access permission checks are invoked or bypassed.

• Control bits are provided in the PTEs for enabling caching and write buffering on a
section/page basis.
Application Note 3

Memory Management on the StrongARM SA-110
The first- and second-level page table entries are as illustrated in Figure 2 and Figure 3,
respectively.

Apart from the performance impact, translation is transparent to the program until an exception
occurs, when the processor will enter abort mode and start executing from either the prefetch_abort or
data_abort exception vectors. Table 1 provides a summary of all exceptions and their priorities.

The ordering of data abort and FIQ exceptions are to ensure the correct capture of any faulting
status that may happen coincident with the fast interrupt. Fast interrupt status is unchanged on entry
to the data abort exception, meaning that a FIQ exception (assuming FIQs is enabled) will execute
immediately on entry to the data abort handler, should this scenario occur.

Figure 2. Level 1 Page Table Format

Fault SBZ 0 0

Page
Table Page Table Base Address

S
B
Z

Domain IMP 0 1

Section Section Base Address SBZ AP
S
B
Z

Domain
I

M
P

C B 1 0

Reserved SBZ 1 1

Figure 3. Level 2 Page Table Format

Fault SBZ 0 0

Large
Page Large Page Base Address SBZ AP3 AP2 AP1 AP0 C B 0 1

Small
Page Small Page Base Address AP3 AP2 AP1 AP0 C B 1 0

Reserved SBZ 1 1

Table 1. Exception Vectors and Their Priorities

Exception Type Exception Mode Vector Address Priority

Reset SVC 0x00000000 1 (highest)

Undefined instruction UNDEF 0x00000004 6

SW interrupt (SWI) SVC 0x00000008 6

Prefetch abort
(instruction fetch memory
abort)

ABORT 0x0000000C 5

Data abort (data access
memory abort) ABORT 0x00000010 2

IRQ (interrupt) IRQ 0x00000018 4

FIQ (fast interrupt) FIQ 0x0000001C 3
4 Application Note

Memory Management on the StrongARM SA-110
2.1 The Coprocessor Interface

The first 9 of 16 coprocessor 15 (cp15) registers are architected as shown in Table 2.

The control register includes bits for:

• Enabling the MMU

• Enabling address alignment fault checking

• Cache enables - unified/data and instruction (when separate I &D) bits

• Write buffer enable

• System (S) and ROM (R) protection bits.

Please see the SA-110 reference manual for a fuller description and complete listing of this register.

The S and R bits are used in conjunction with the AP bits in the page table entries to resolve the
protection for a given mode within a domain according to Table 3.

Table 2. CP15 Register Summary

Register Reads Writes MMU Function

0 ID register UNPREDICTABLE —

1 Control Control X

2 Translation Table Base Translation Table Base X

3 Domain Access Control Domain Access Control X

4 UNPREDICTABLE UNPREDICTABLE —

5 Fault Status Fault Status X

6 Fault Address Fault Address X

7 Cache Operations Cache Operations X

8 TLB Operations TLB Operations X

Table 3. Access Permissions

AP S R Supervisor_Mode User_Mode

00 0 0 No Access No Access

00 1 0 Read only No Access

00 0 1 Read only Read Only

00 1 1 UNPREDICTABLE UNPREDICTABLE

01 x x Read/Write No Access

10 x x Read/Write Read Only

11 x x Read/Write Read/Write
Application Note 5

Memory Management on the StrongARM SA-110
The Domain Access Control Register provides sixteen pairs of control bits, which are used to
qualify the domain field in a PTE according to Table 4.

Data aborts update two cp15 registers. Cp15_6 is updated with the faulting virtual address. Cp15_5
is updated with fault status as summarized in Table 5 and Table 6.

Processors may only implement a subset of these encodings.

Table 4. Domain Access Values

Domain_crl Access Description

00 No Access All accesses will cause a domain
fault exception

01 Client Accesses checked against the AP
bits (see Table 3)

10 Reserved UNPREDICTABLE

11 Manager No access permission checks

Table 5. Cp15 Fault Status Register Format

[31:9] [8] [7:4] [3:0]

UNPREDICTABLE/SBZ 0 domain status (FS)

Table 6. Fault Status Encoding

Priority Sources Domain FS[3:0]

highest Terminal exception invalid 0b0010

Vector exception invalid 0b0000

Alignment invalid 0b00x1

Ext. abort on translation 1st level

2nd level

invalid

valid

0b1100

0b1110

Translation section

page

invalid

valid

0b0101

0b0111

Domain section

page

valid

valid

0b1001

0b1011

Permission section

page

valid

valid

0b1101

0b1111

Ext. abort on linefetch section

page

valid

valid

0b0100

0b0110

lowest
Ext. abort on non-linefetch section

page

valid

valid

0b1000

0b1010
6 Application Note

Memory Management on the StrongARM SA-110
3.0 The SA-110 Implementation

The SA-110 has been implemented to V4 of the ARM architecture. It is the first ARM processor to
adopt a Harvard Architecture and has the following features:

• A virtually addressed, 16 KB instruction cache. The instruction cache is 32-way set
associative, with a 32-byte cache line size. No coherence is maintained with main memory.
Replacement uses a round-robin algorithm.

• A virtually addressed, 16 KB data cache. The data cache is 32-way set associative writeback
cache, with a 32-byte cache line size. Each entry has an associated valid bit and two dirty bits,
allowing victim writes to be resolved to half lines for more efficient usage of system bandwidth
to main memory. All victim writes occur through the write buffer. Data cache entries are only
allocated on reads and use a round-robin replacement algorithm. The cache entries also include
physical tag bits to allow writebacks without additional address translation.

• Fully associative instruction TLBs. These are updated using a round-robin algorithm.

• Fully associative data TLBs. These are updated using a round-robin algorithm.

• Eight 16-byte entry write buffers. These are used by the writeback cache as well as for
handling buffered writes that miss the data cache. Each entry includes physical address, data,
and byte mask information.

The SA-110 implements a five-stage pipe:

Fetch fetches an instruction from Icache or memory. An Icache miss will stall the fetch stage
of the pipeline until the full cacheline (eight memory fetches) is completed. Instruction
fetch permission checks occur here and will be flagged, however, the exception will
only execute if the instruction enters the decode stage. Branching may mean that the
faulting condition never occurs.

Decode decodes the instruction and reads input values from the register file.

Execute executes shifts and arithmetic operations. Multiplies start in this stage.

Buffer data cache or memory accesses. The integer multiplier completes execution in this
stage; it retires 12 bits per clock. Results from the execute stage are buffered here, but
available via bypasses in most cases. Translation and permission checks occur in this
stage for data accesses, and will fault immediately if an exception is generated.

Writeback the register file is updated with memory or result data.

All translation occurs automatically once the tables have been set up, the coprocessor registers
initialized, and the MMU enabled. Any of the control register functions (cp15_1 register writes)
can be enabled in parallel; it is not necessary to perform a separate read-modify-write sequence to
enable the MMU. Table walks will generate 32-bit reads from external memory. These reads do not
check the write buffer, assuming that any updates to the tables have been flushed before translation
uses the modified entries.

3.1 MMU and the Caches

The PTEs contain C and B bits for enabling caching and write buffering, respectively. While parts
of the memory subsystem can be set up as bufferable but noncachable, the B bit should always be
set for cachable D-space. This is because the write buffer is inherently used for writebacks. The
SA-110 will automatically buffer cachable writes irrespective of the state of the B bit.
Application Note 7

Memory Management on the StrongARM SA-110
3.1.1 Instruction Caching

The Icache is always checked, even when disabled. Permission checks will occur if the MMU is
enabled, otherwise, all hits will be taken. The Icache is enabled by setting bit 12 in cp15_1.

If the MMU is enabled, instruction caching is dependent on the state of the C bit in the PTE. If the
MMU is disabled, instruction fetches are considered cachable by default; instruction fetches from
memory are allocated to an entry if the Icache is enabled.

Instructions can be locked into the Icache by running a program with the Icache enabled, then
disabling the Icache to stop any Icache updates. The other option is to bound cachable code in VA
space such that no reallocation occurs, or it is minimized to a system-defined subset of the code.
Additional code paths are then always fetched from noncachable VA space.

3.1.2 Data Caching

As with the Icache, the Dcache is always checked, even when disabled. It is enabled by setting bit
2 in cp15_1.

The MMU must be enabled and the C bit set for entries to be allocated in the Dcache. Dcache
entries can be locked in a similar manner to the Icache, or by disabling the MMU with valid entries
in the Dcache. It is not possible to lock portions of the cache.

3.1.3 Cache Management

When the MMU is disabled, the cache TAGs equate to physical addresses. Any mapping changes
of virtual to physical addresses must ensure that the caches are flushed appropriately. Remapping
can occur when the MMU is enabled, when it is disabled, or while it is enabled. Coprocessor writes
to cp15_7 provide mechanisms to manage the caches as summarized in Table 7.

The whole Icache is flushed by a single instruction, whereas the Dcache can be flushed collectively
or on a single-entry basis. To ensure that memory coherence is maintained, Dcache entries need to
be cleaned prior to flushing. A loop is required to clean all Dcache entries. A fetch from a
read_only of virtual addresses can be used as an alternative to a coprocessor clean instruction for
this purpose. A clean loop needs to be terminated with a drain write buffer command to ensure that
all the victims are written to main memory.

Cache flushes may be necessary for several reasons:

• Copying code from ROM to RAM prior to execution.

• Self-modifying code. In this case the modifications will occur as data, but execution will occur
from the separate instruction stream.

• Context switches involving changes to the memory map.

Table 7. Cache Control Operations

Function Opcode_2 Rm Data

Flush I+D 0b000 0b0111 Ignored

Flush I 0b000 0b0101 Ignored

Flush D 0b000 0b0110 Ignored

Flush Dcache entry 0b001 0b0110 Virtual address

Clean Dcache entry 0b001 0b1010 Virtual address

Drain write buffer 0b100 0b1010 Ignored
8 Application Note

Memory Management on the StrongARM SA-110
3.2 TLB Management

As with the caches, it is important to flush potentially conflicting entries when a context switch
occurs. Four coprocessor write instructions to cp15_8 are provided to manage the TLBs as
illustrated in Table 8. It is again up to the MMU software to ensure that translation correctness is
maintained when PTEs are modified.

3.3 MMU Fault Handling

ARM supports five types of exceptions as summarized in Table 1.

• Two levels of interrupt (IRQ and FIQ)

• Memory aborts

• Undefined instruction

• Software interrupts (SWIs used for OS syscalls)

Memory abort is the exception mechanism applicable here. The abort mode may be entered from
one of two exception vectors, depending on whether it was an instruction or data fetch that caused
the fault. The MMU can generate a memory abort for four reasons.

• An alignment fault on word or halfword loads or stores when two/one least significant address
bits are nonzero, respectively.

Alignment faults are enabled using bit 1 of cp15_1.

• A translation fault when the PTE accessed is marked invalid.

• A domain fault when access is disallowed by the domain protection in the current mode.

• A permission fault when access is disallowed by the access permission (AP) bits in the current
mode.

An external abort pin can also be used to cause a data abort for instruction reads, data reads, PTE
reads, unbuffered writes, or lock cycles on the system bus.

Table 8. TLB Control Operations

Function Opcode_2 Rm Data

Flush I+D 0b000 0b0111 Ignored

Flush I 0b000 0b0101 Ignored

Flush D 0b000 0b0110 Ignored

Flush Dcache entry 0b001 0b0110 Virtual address
Application Note 9

Memory Management on the StrongARM SA-110
3.3.1 Prefetch Abort

Prefetch aborts occur as a result of an external abort, translation fault, or protection violation. They
are flagged at the fetch stage, but will only cause an exception if it is about to execute. It is up to the
prefetch exception handler to recover the faulting address from the link register (R14[value-4] for
the SA-110) and use this in conjunction with the relevant cp15 registers to determine the cause of
the fault and how to recover. The fault status (cp15_5) or the fault address (cp15_6) are not updated
on prefetch aborts.

Once the fetch stage has seen an abort, no other instructions will be prefetched until the program
counter (PC) has been changed by an exception, branch, or explicit write to R15.

When returning from the prefetch abort fault handler, the following instruction will reload the PC
and CPSR, then replay the previously faulting instruction:

SUBS PC, R14_abt, #4

3.3.2 Data Abort

The cp15 fault status and address registers are used to determine the VA and cause of the abort. The
registers can also be written by MCR instructions, which is useful for test and debug purposes. The
saved PC for data aborts is the actual_PC+8.

The SA-110 supports only a subset of the architected fault status encodings listed in Table 6. The
terminal exception is not supported.

When returning from the data abort fault handler, the following instruction will reload the PC and
CPSR, then replay the previously faulting data access:

SUBS PC, R14_abt, #8
10 Application Note

Memory Management on the StrongARM SA-110
4.0 MMU Initialization and Reset

To enable the MMU, the following steps are necessary:

• Initialize the domain and translation base address registers.

• Initialize the level 1 and level 2 (where appropriate) page tables.

• Enable the MMU (and optionally, alignment faults, WB, and I and D caches).

To disable the MMU:

• Clean the Dcache as appropriate.

• Disable write buffering and the caches.

• Disable the MMU.

• Ensure that all cache entries are flushed where VA address conflicts may exist (valid entries
will match as physical addresses when the MMU is disabled).

Note: When enabling or disabling the MMU, up to three instructions will be fetched and executed prior to
the change taking effect. The actual number is dependent on whether the instructions hit in the Icache
or not. Icache hits will propagate down the pipeline while the MCR instruction is executing, and will
be drained through the execution path prior to the translation change taking effect. Icache misses will
introduce pipeline bubbles that effectively introduce NOPs to the pipeline. This must be accounted
for in any MMU management routines where the translated and untranslated addresses differ. It is
normal practice to enable the MMU with a direct-mapped (VA = PA) translation, at least for the pages
used within the MMU control code. If it is necessary to change these specific pages, program control
should enable the MMU, switch to another area of memory, then modify these pages from there.
Similar care is required when disabling the MMU, should that be necessary.

If the page with the MMU_enable is changed as part of this step, the MMU enabling/disabling
routine must ensure the cp15_1 write instruction is immediately followed by the ITB and Icache
flushes, and that they all reside on the same cacheline. This is bad programming practice, which
should be avoided for code building/crafting reasons.
Application Note 11

Memory Management on the StrongARM SA-110

les

or by
vant
4.1 A Worked Example

A worked example is included as Appendix A. This code was written for the EBSA-110, a
verification and example design available as an HDK (hardware design kit) through Intel’s sa
channels.

HDK order number: QR-21A81-11

This reference manual and other Intel literature may be obtained by calling 1-800-332-2717
visiting Intel’s website for developers at:http://developer.intel.com. The HDK includes the rele
technical documentation, the hardware database (diskettes), and a firmware tree (diskette).

The code illustrates the following:

• A one-to-one mapping of VA and PA address spaces

• 1 MB sections for 16 MB of DRAM (2 SIMM slots)

• 64 KB pages for synchronous SRAM, ROM, and FLASH

• Cachable, bufferable access to SRAM and DRAM

• Read_only user access to ROM and FLASH (supervisor’s have write access, too)

• Invalid accesses configured for nonsupported memory space

• Simple noncachable, nonbufferable, aliased access to IO space

Note: The code assumes the MMU is disabled. It modifies the base address register before it generates
the page table entries.

The code was designed as part of a test harness for running demonstrations and software benchmarks
from demon, the remote debugger supplied with ARM’s Software Development Tool kit (SDT)
V2.0x. This required an extra level of link register preservation when entering supervisor mode from
the demon environment, which should be self-explanatory from the comments in the code.

The reset code used to flush the caches and TBs runs a read loop from an area of VA space reserved
specifically for this purpose. The area is mapped to SSRAM because this provides the fastest
access path. All other valid VA addresses are direct mapped to the same physical address. The
original code (as shipped in the early versions of the HDK) read ROM. This is a very slow path that
includes 8-bit to 32-bit packing.

The flushes immediately following the disable command are only guaranteed because the VA and
PA translations are the same (as described as described at the beginning of this section).

The code is written in ARM assembler.

Appendix B includes source code definitions plus macro calls for all coprocessor accesses.
12 Application Note

Memory Management on the StrongARM SA-110
Appendix A MMU Initialization and Reset

;; Memory Management and Cache Initialization Routines for EBSA-110

;

;

;

; History:

;

; V0.1 31-Jan-1996 DB first draft

; V0.2 11-Apr-1996 DB update include file references and add conditional assembly options

; V0.3 02-Aug-1996 DB cleanups and "fast path" clean loop example for appnote release

; Routines which can be conditionally assembled to enable memory management

; with the following cache options:

;

; no caches enabled

; no caches with write buffering

; Icache only

; Icache only with write buffering

; Dcache only with write buffering

; I and Dcache with write buffering

;

; PLEASE NOTE:

;

; 1) Dcache with no write buffering is a nonsupported mode

; 2) Base register updated before tables assumes MMU is DISABLED

; 3) MMU enabled with S and R bits in CP15_1 both cleared

; (AP bits govern the access making S & R "don’t cares")

; 4) Page tables require to be naturally aligned to their size

; level1 tables occupy 16KB

; level2 tables occupy 1KB

; this is stricter/more efficient than an alignment restriction to the page size

;

;

; R0 used as the default scratch data register for these routines

; R1 used as the default scratch address register for these routines

;

;

; Arguments: mmu_init(arg1)- IC/DC/WB enables passed as a value

; mmu_reset()- nil

;

INCLUDE address_map_h.s

INCLUDE EBSA_110_defs_h.s

EXPORT MMU_init

EXPORT MMU_reset

KEEP
Application Note 13

Memory Management on the StrongARM SA-110
AREA MMU_code,CODE,READONLY

; write the translation base register

; set the domain register: domain0 CLIENT, domain1-15 NO_ACCESS

;***PLEASE NOTE*** - reassigning the base register before the tables***

;*** are set up assumes the MMU is DISABLED ***

; set up the page tables - all for domain0, flat address map

; 16 x 1MB sections for DRAM - Read/write all

; - cachable, bufferable

; 2 x 64KB large pages for SSRAM - Read/Write all

; - cachable, bufferable

; 1MB section for FLASH - Read/Write spvr, Read-_only user

; - cachable, bufferable

; 8 x 64KB large pages for ROM - access as per FLASH

; - cachable

; *SPECIAL SECTION* reserved for clean loops

; ***dedicated VA space (1MB @ CLEAN_BASE)

; ***mapped to SSRAM for fastest access

; ***exception to flat map translation rule

; no access for aliased DRAM, SSRAM, FLASH and ROM

; IO map enabled noncachable, nonbufferable incl. aliases

; Flush ITBs and DTBs

; Flush the Icache

; Enable MMU, alignment faulting, and conditionally the Icache,

; ...Dcache and Write Buffer

;;; next line required for standalone execution only

;;;comment out when used with.c files

;;ENTRY

GBLACP15_1_MASK

MMU_initMOV R2, LR ; save Link Register prior to demon syscall

; needed to ensure the correct return address

; ...in a demon environment

MRS R1, CPSR ; need to save the status too!!!

SWI SWI_EnterOS ;Demon syscall to switch to spvr mode

MOV LR,R2 ; reinstate Link Register for return

MSR SPSR, R1 ; reinstate saved status to the *SPSR* for correct return

STMDB sp!, {R4-R8} ; save APCS register variables on the stack

LDR R1, =(IC_ON + DC_ON + WB_ON)

AND R0, R0, R1 ;sanitize argument passed to only valid bits
14 Application Note

Memory Management on the StrongARM SA-110
STMDB sp!, {R0};then save the argument on the stack

LDR R0, =Level1tab ;TTB address is 2**14 aligned

WRCP15_TTBase R0 ;Initialize Translation Table Base reg.

LDR R0, =1

WRCP15_DAControl R0 ;Initialize Domain Access Control

;;

;;First clear all TT entries - FAULT

;;

LDR R0, =0 ; loop count

LDR R1, =Level1tab

LDR R2, =0

LDR R3, =L1_TABLE_ENTRIES + 2*L2_TABLE_ENTRIES

TTCLR LoopSTR R2, [R1], #4

ADD R0, R0, #1 ; increment loop count

CMP R3, R0

BNE TTCLRLoop

;;

;;Configure DRAM section accesses

;;

LDR R1, =Level1tab

LDR R2, =DRAM_SIZE

LDR R3, =0 ;loop count

DRAM LoopLDR R0, =DRAM_BASE + DRAM_ACCESS

ADD R0, R0, R3, LSL #20 ; add section number field

STR R0, [R1], #4 ; store TT entry

ADD R3, R3, #1 ;increment loop count

CMP R2, R3

BNE DRAMLoop

;;

;;Configure CLEAN_LOOP special section access

;;

LDR R1, =Level1tab + CLEAN_BASE:SHR:(20-2)

LDR R0, =SSRAM_BASE + FLASH_ACCESS ;;map to SSRAM with

;; read_only user space

STR R0, [R1]

;;

;;Configure SSRAM section access

;;

LDR R1, =Level1tab + SSRAM_BASE:SHR:(20-2)

LDR R0, =Level2tab_SSRAM + L2_CONTROL

STR R0, [R1]

;;

;;Configure FLASH section access

LDR R1, =Level1tab + FLASH_BASE:SHR:(20-2)

LDR R0, =FLASH_BASE + FLASH_ACCESS

STR R0, [R1]
Application Note 15

Memory Management on the StrongARM SA-110
;;

;;Configure ROM section access

;;

LDR R1, =Level1tab + EPROM_BASE:SHR:(20-2)

LDR R0, =Level2tab_ROM + L2_CONTROL

STR R0, [R1]

;;

;;Configure IO section accesses to the end of memory

;;

LDR R1, =Level1tab + IO_BASE:SHR:(20-2)

LDR R2, =L1_TABLE_ENTRIES/4 ; update top quartile of TT entries

LDR R3, =0 ; loop count

IO_LoopLDR R0, =IO_BASE + IO_ACCESS

ADD R0, R0, R3, LSL #20 ; add section field

STR R0, [R1], #4 ; store TT entry

ADD R3, R3, #1 ; increment loop count

CMP R2, R3

BNE IO_Loop

;;

;;Configure SSRAM large page accesses - 16 aliases per entry

;;

LDR R1, =Level2tab_SSRAM

LDR R2, =SSRAM_PAGE_COUNT

LDR R3, =16

LDR R4, =0 ; loop count1 (pages)

SSRAMLoop2LDR R5, =0 ; loop count2 (aliases)

LDR R0, =SSRAM_BASE + SSRAM_ACCESS

ADD R0, R0, R4, LSL #16 ; add page field

SSRAMLoop1STR R0, [R1], #4 ; store TT entry

ADD R5, R5, #1 ; increment alias count

CMP R3, R5

BNE SSRAMLoop1 ; large page entry alias loop

ADD R4, R4, #1; increment page count

CMP R2, R4

BNE SSRAMLoop2 ; page count loop

;;

;;Configure ROM large page accesses - 16 aliases per entry

;;

LDR R1, =Level2tab_ROM

LDR R2, =EPROM_PAGE_COUNT

LDR R3, =16

LDR R4, =0 ; loop count1 (pages)

EPROMLoop2LDR R5, =0 ; loop count2 (aliases)

LDR R0, =EPROM_BASE + EPROM_ACCESS

ADD R0, R0, R4, LSL #16 ; add page field

EPROMLoop1STR R0, [R1], #4 ;store TT entry

ADD R5, R5, #1 ;increment alias count

CMP R3, R5
16 Application Note

Memory Management on the StrongARM SA-110
BNE EPROMLoop1 ;loop aliases

ADD R4, R4, #1 ;increment page count

CMP R2, R4

BNE EPROMLoop2 ;loop for all pages

;;

;;

;;

WRCP15_FlushITB_DTB R0 ;Flush ITBs + DTBs

WRCP15_FlushIC R0 ;Flush ICache

;;

;;Enable MMU, alignment faults and IC/DC/WB as required

;;

LDMIA sp!, {R0}; recover argument from the stack

LDR R1, =EnableMMU ; NOTE: no alignment checks enabled in this

; example

ORR R0, R0, R1

WRCP15_Control R0 ; Update control register

LDMIA sp!, {R4-R8};recover APCS register variables from the stack

MOVS PC,LR ; return to user mode

;;

;;end of MMU config code

;;

;;; next line used when running this source file as standalone

;; SWI SWI_Exit; Halt execution - exit back to demon

;; Function used to reset the MMU after a benchmark

;; Flushes the Icache, cleans & flushes the Dcache, disabled IC, DC, WB and

;; MMU returning the memory system to its powerup state (flat map allows this)

;;

;; Required by demon to allow multiple loads/execution of tests without resetting

;; the debugger.

;:

;; As with MMU_init, this function requires privileged mode to execute the

;; necessary coprocessor accesses

MMU_resetMOV R2, LR; save Link Register prior to demon syscall

; needed to ensure the correct return address

; ...in a demon environment

MRS R1, CPSR; need to save the status too!!!

SWI SWI_EnterOS;Demon syscall to switch to spvr mode

MRS R0, CPSR

ORR R0, R0, #0xC0
Application Note 17

Memory Management on the StrongARM SA-110
MSR CPSR, R0 ; disable interrupts

MOV LR,R2; reinstate Link Register for return

MSR SPSR, R1 ; reinstate saved status to the *SPSR* for correct return

; (this will inherently reinstate interrupts on return too)

;; First clean the Dcache

;; Use reads from ROM to evict any dirty entries

LDR R0, =CLEAN_BASE ; address for dcache loads

ADD R1, R0, #DCACHE_SIZE ; compare address for dcache clean

; completion

CLEANloopLDR R2, [R0], #DCACHE_LINE ; load a dcache line and increment address pointer

TEQ R1, R0 ; IF clean still in progress

BNE CLEANloop ; THEN loop on dcache fills

WRCP15_DrainWriteBuffer R0 ; Drain the write buffer

;;

;; Reset MMU control register

;;

LDR R0, =0

WRCP15_Control R0 ; reset the control register in CP15

;;

WRCP15_FlushITB_DTB R0 ;Flush ITBs + DTBs

WRCP15_FlushIC_DC R0 ;Flush ICache + Dcache

NOP

NOP

NOP

NOP ; make sure the pipeline clear of any cached entries

MOVS PC,LR ; return to user mode

;;

;;end of MMU config code

;;

LTORG

AREA TTentries,DATA,NOINIT,ALIGN=14

Level1tab % 1:SHL:14 ; 4-byte entries,1MB sections

Level2tab_SSRAM % 1:SHL:10 ; 4-byte entries, 64KB pages; x16 alias

Level2tab_ROM % 1:SHL:10 ; 4-byte entries, 64KB pages; x16 alias

exit

END
18 Application Note

Memory Management on the StrongARM SA-110
Appendix B Coprocessor Access Macros

;;Macros, constants and system variables associated with SA-110 and the EBSA-110 platform

;;===

;;

;;History:

;;

;; V0.1 02_Feb-1996 DB

;; V0.2 11-Apr-1996 DB Add demon SWI call number definitions

;; V0.3 12-Apr-1996 DB Merge definition and coprocessor macro files

;; V0.4 05-Aug-1996 DB Add CLEAN_BASE for new clean loop code

;;; EBSA-110 platform data

;;; DRAM_SIZE assumes 2 x 8MB SIMMs fitted -

DRAM_SIZE EQU 16 ; 16MB in 2 x SIMMs

SSRAM_PAGE_COUNT EQU 2 ; 2 x 64k = 128KB

EPROM_PAGE_COUNT EQU 8 ; 8 x 64k = 512KB

DCACHE_SIZE EQU 0x4000 ; 16KB Dcache

DCACHE_LINE EQU 0x20 ; 32B cache line entry

L2_CONTROL EQU 0x1 ; domain0, page table pointer

L1_TABLE_ENTRIES EQU 0x1000 ; 16KB table (word entries)

L2_TABLE_ENTRIES EQU 0x100 ; 1KB table (word entries)

IO_BASE EQU 0xC0000000 ; top quartile of address space

CLEAN_BASE EQU 0x3FF00000 ; reserve VA of last section in bottom quartile

DRAM_ACCESS EQU 0xC0E ; AP=11, domain0, C=1, B=1

SSRAM_ACCESS EQU 0x0FFD ; AP=11, domain0, C=1, B=1

FLASH_ACCESS EQU 0x80A ; AP=10, domain0, C=1, B=0

EPROM_ACCESS EQU 0x0AA9 ; AP=10, domain0, C=1, B=0

IO_ACCESS EQU 0xC02 ; AP=11, domain0, C=0, B=0

;;

;; Definitions used in conditional assembly of Icache, Dcache and Write Buffer

;; options

;;

IC_ON EQU 0x1000

IC_OFF EQU 0x0
Application Note 19

Memory Management on the StrongARM SA-110
DC_ON EQU 0x4

DC_OFF EQU 0x0

WB_ON EQU 0x8

WB_OFF EQU 0x0

 ;***

;* Duplicate of information in demon subdirectory’s level1_h.s*

;* (too many redundant dependencies for reuse directly)*

;* *

;* SWI numbers as used in demon *

;***

SWI_WriteC EQU &0

SWI_Write0 EQU &2

SWI_ReadC EQU &4

SWI_CLI EQU &5

SWI_GetEnv EQU &10

SWI_Exit EQU &11

SWI_EnterOS EQU &16

SWI_GetErrno EQU &60

SWI_Clock EQU &61

SWI_Time EQU &63

SWI_Remove EQU &64

SWI_Rename EQU &65

SWI_Open EQU &66

SWI_Close EQU &68

SWI_Write EQU &69

SWI_Read EQU &6a

SWI_Seek EQU &6b

SWI_Flen EQU &6c

SWI_IsTTY EQU &6e

SWI_TmpNam EQU &6f

SWI_InstallHandler EQU &70

SWI_GenerateError EQU &71

;;;

;;;

;

;Definitions and Macros for SA-110 Coprocessor Access
20 Application Note

Memory Management on the StrongARM SA-110
;==

;

; SA-110 *only* supports Coprocessor number 15

; Only MCR and MRC coprocessor instructions are supported - the others

; ...generate an UNDEFINED exception

;

; CP15 registers are architected as per the ARM V4 architecture spec

;

; Register0 ID register READ_ONLY

; Register1 Control READ_WRITE

; Register2 Translation Table Base READ_WRITE

; Register3 Domain Access Control READ_WRITE

; Register4 Reserved

; Register5 Fault Status READ_WRITE

; Register6 Fault Address READ_WRITE

; Register7 Cache Operations WRITE_ONLY

; Register8 TLB Operations WRITE_ONLY

; Register9-14 Reserved

; Register15 SA-110 specific tst/clk/idle WRITE_ONLY

;; Bit definitions for the control register:

;;

;; enables are logically OR’d with the control register

;; use bit clears (BICs) to disable functions

;; *** all bits cleared on RESET ***

;;

EnableMMU EQU 0x1

EnableAlignFault EQU 0x2

EnableDcache EQU 0x4

EnableWB EQU 0x8

EnableBigEndian EQU 0x80

EnableMMU_S EQU 0x100 ; selects MMU access checks

EnableMMU_R EQU 0x200 ; selects MMU access checks

EnableIcache EQU 0x1000

;; Defined Macros:

;;

;RDCP15_ID Rx read of ID register

;RDCP15_Control Rx read of Control register

;WRCP15_Control Rx write of Control register

;RDCP15_TTBase Rx read of Translation Table Base reg.
Application Note 21

Memory Management on the StrongARM SA-110
;WRCP15_TTBase Rx write of Translation Table Base reg.

;RDCP15_DAControl Rx read of Domain Access Control reg.

;WRCP15_DAControl Rx write of Domain Access Control reg.

;RDCP15_FaultStatus Rx read of Fault Status register

;WRCP15_FaultStatus Rx write of Fault Status register

;RDCP15_FaultAddress Rx read Fault Address register

;WRCP15_FaultAddress Rx write of Fault Address register

;WRCP15_FlushIC_DC Rx cache control - Flush ICache + DCache

;; Rx redundant but rqud for MACRO

;WRCP15_FlushIC Rx cache control - Flush ICache

;; Rx redundant but rqud for MACRO

;WRCP15_FlushDC Rx cache control - Flush DCache

;; Rx redundant but rqud for MACRO

;WRCP15_CacheFlushDentry Rx cache control - Flush DCache entry,

Rx source for VA

;WRCP15_CleanDCentry Rx cache control - Clean DCache entry,

Rx source for VA

;WRCP15_Clean_FlushDCentry Rx cache control - Clean + Flush DCache entry,

Rx source for VA

;WRCP15_DrainWriteBuffer Rx Drain Write Buffer

;; Rx redundant but rqud for MACRO

;WRCP15_FlushITB_DTB Rx TLB control - Flush ITBs + DTBs

;; Rx redundant but rqud for MACRO

;WRCP15_FlushITB Rx TLB control - Flush ITBs

;; Rx redundant but rqud for MACRO

;WRCP15_FlushDTB Rx TLB control - Flush DTBs

;; Rx redundant but rqud for MACRO

;WRCP15_FlushDTBentry Rx TLB control - Flush DTB entry, Rx source for VA

;WRCP15_EnableClockSW Rx test/clock/idle control - Enable Clock Switching

;; Rx redundant but rqud for MACRO

;WRCP15_DisableClockSW Rx test/clock/idle control - Disable Clock Switching

;; Rx redundant but rqud for MACRO

;WRCP15_DisablenMCLK Rx test/clock/idle control - Disable nMCLK output

;; Rx redundant but rqud for MACRO

;WRCP15_WaitInt Rx test/clock/idle control - Wait for Interrupt

;; Rx redundant but rqud for MACRO

;Coprocessor read of ID register

;

 MACRO

 RDCP15_ID $reg_number

 MRC p15, 0, $reg_number, c0, c0 ,0

 MEND
22 Application Note

Memory Management on the StrongARM SA-110
;Coprocessor read of Control register

;

 MACRO

 RDCP15_Control $reg_number

 MRC p15, 0, $reg_number, c1, c0 ,0

 MEND

;Coprocessor write of Control register

;

 MACRO

 WRCP15_Control $reg_number

 MCR p15, 0, $reg_number, c1, c0 ,0

 MEND

;Coprocessor read of Translation Table Base reg.

;

 MACRO

 RDCP15_TTBase $reg_number

 MRC p15, 0, $reg_number, c2, c0 ,0

 MEND

 ;Coprocessor write of Translation Table Base reg.

;

 MACRO

 WRCP15_TTBase $reg_number

 MCR p15, 0, $reg_number , c2, c0 ,0

 MEND

;Coprocessor read of Domain Access Control reg.

;

 MACRO

 RDCP15_DAControl $reg_number

 MRC p15, 0, $reg_number, c3, c0 ,0

 MEND

;Coprocessor write of Domain Access Control reg.

;

 MACRO
Application Note 23

Memory Management on the StrongARM SA-110
 WRCP15_DAControl $reg_number

 MCR p15, 0, $reg_number, c3, c0 ,0

 MEND

;Coprocessor read of Fault Status register

;

 MACRO

 RDCP15_FaultStatus $reg_number

 MRC p15, 0, $reg_number, c5, c0 ,0

 MEND

;Coprocessor write of Fault Status register

;

 MACRO

 WRCP15_FaultStatus $reg_number

 MCR p15, 0, $reg_number, c5, c0 ,0

 MEND

;Coprocessor read of Fault Address register

;

 MACRO

 RDCP15_FaultAddress $reg_number

 MRC p15, 0, $reg_number, c6, c0 ,0

 MEND

;Coprocessor write of Fault Address register

;

 MACRO

 WRCP15_FaultAddress $reg_number

 MCR p15, 0, $reg_number, c6, c0 ,0

 MEND

;Coprocessor cache control

;Flush ICache + DCache

;

 MACRO

 WRCP15_FlushIC_DC $reg_number

 MCR p15, 0, $reg_number, c7, c7 ,0
24 Application Note

Memory Management on the StrongARM SA-110
 MEND

;Coprocessor cache control

;Flush ICache

;

 MACRO

 WRCP15_FlushIC $reg_number

 MCR p15, 0, $reg_number, c7, c5 ,0

 MEND

 ;Coprocessor cache control

;Flush DCache

;

 MACRO

 WRCP15_FlushDC $reg_number

 MCR p15, 0, $reg_number, c7, c6 ,0

 MEND

;Coprocessor cache control

;Flush DCache entry

;

 MACRO

 WRCP15_CacheFlushDentry $reg_number

 MCR p15, 0, $reg_number, c7, c6 ,1

 MEND

;Coprocessor cache control

;Clean DCache entry

;

 MACRO

 WRCP15_CleanDCentry $reg_number

 MCR p15, 0, $reg_number, c7, c10 ,1

 MEND

;Coprocessor cache control

;Clean + Flush DCache entry

;

 MACRO
Application Note 25

Memory Management on the StrongARM SA-110
 WRCP15_Clean_FlushDCentry $reg_number

 MCR p15, 0, $reg_number, c7, c14 ,1

 MEND

;Coprocessor Drain Write Buffer

;

 MACRO

 WRCP15_DrainWriteBuffer $reg_number

 MCR p15, 0, $reg_number, c7, c10 ,4

 MEND

;Coprocessor TLB control

;Flush ITB + DTB

;

 MACRO

 WRCP15_FlushITB_DTB $reg_number

 MCR p15, 0, $reg_number, c8, c7 ,0

 MEND

;Coprocessor TLB control

;Flush ITB

;

 MACRO

 WRCP15_FlushITB $reg_number

 MCR p15, 0, $reg_number, c8, c5 ,0

 MEND

;Coprocessor TLB control

;Flush DTB

;

 MACRO

 WRCP15_FlushDTB $reg_number

 MCR p15, 0, $reg_number, c8, c6 ,0

 MEND

 ;Coprocessor TLB control

;Flush DTB entry
26 Application Note

Memory Management on the StrongARM SA-110
 MACRO

 WRCP15_FlushDTBentry $reg_number

 MCR p15, 0, $reg_number, c8, c6 ,1

 MEND

;Coprocessor test/clock/idle control

;Enable Clock Switching

;

 MACRO

 WRCP15_EnableClockSW $reg_number

 MCR p15, 0, $reg_number, c15, c1 ,2

 MEND

;Coprocessor test/clock/idle control

;Disable Clock Switching

;

 MACRO

 WRCP15_DisableClockSW $reg_number

 MCR p15, 0, $reg_number, c15, c2 ,2

 MEND

;Coprocessor test/clock/idle control

;Disable nMCLK output

;

 MACRO

 WRCP15_DisablenMCLK $reg_number

 MCR p15, 0, $reg_number, c15, c4 ,2

 MEND

;Coprocessor test/clock/idle control

;Wait for Interrupt

;

 MACRO

 WRCP15_WaitInt $reg_number

 MCR p15, 0, $reg_number, c15, c8 ,2

 MEND

 END
Application Note 27

stomer
Support, Products, and Documentation
If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	Memory Management on the StrongARM** SA-110
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	1.1 Memory Management Concepts

	2.0 The ARM Architecture - MMU
	2.1 The Coprocessor Interface

	3.0 The SA-110 Implementation
	3.1 MMU and the Caches
	3.1.1 Instruction Caching
	3.1.2 Data Caching
	3.1.3 Cache Management

	3.2 TLB Management
	3.3 MMU Fault Handling
	3.3.1 Prefetch Abort
	3.3.2 Data Abort

	4.0 MMU Initialization and Reset
	4.1 A Worked Example

	Appendix A MMU Initialization and Reset
	Appendix B Coprocessor Access Macros
	Support, Products, and Documentation

