

E² Prom Family Applications Handbook

Book II

Order No. 210273-001

E²PROM FAMILY APPLICATIONS HANDBOOK

))) **BOOK II**

NOVEMBER 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

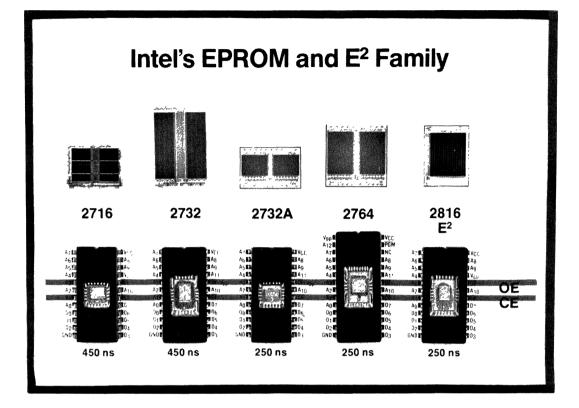
The following are trademarks of Intel Corporation and may only be used to identify Intel Products

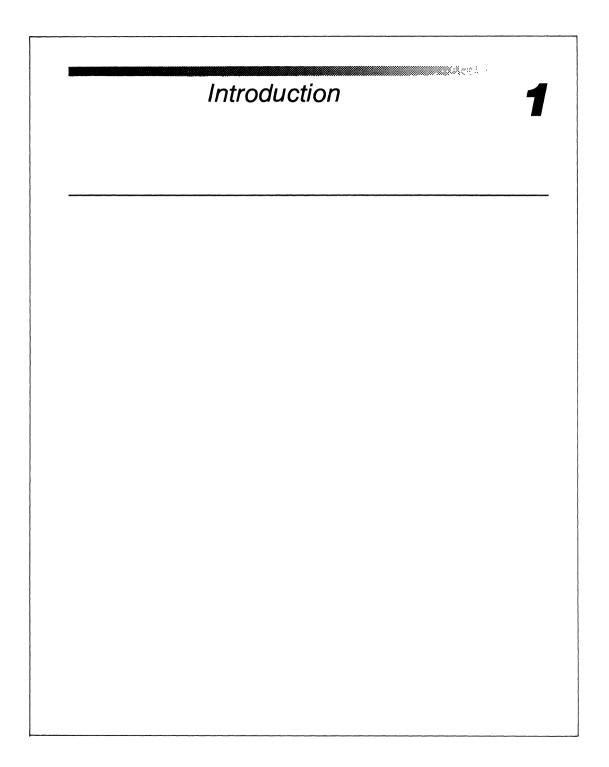
BXP, CREDIT, I, ICE, ICS, I_m, Insite, Intel, Int_el, Intelevision, Intellec, IRMX, ISBC, ISBX, Library Manager, MCS, Megachassis, Micromainframe, Micromap, Multimodule, Plug-A-Bubble, PROMPT, RMX/80, System 2000 and UPI

MDS is an ordering code only and is not used as a product name or trademark MDS® is a registered trademark of Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from


Intel Corporation Literature Department SV3-3 3065 Bowers Avenue Santa Clara, CA 95051


Table of Contents

CHAPTER 1 Introduction	1-1
Acknowledgement	1-1
CHAPTER 2	•••
E ² PROM Backgrounder Information	2-1
E ² PROM Backgrounder	2-1
AR-118A 16K Electrically Erasable Non-Volatile Memory	2-5
AR-119 16K EE-PROM Relies on Tunneling For Byte-Erasable Program Storage	2-9
CHAPTER 3	
Applications Briefs	3-1
AB-1 A Variable-Attribute CRT Terminal	3-1
AB-2 Point-of-Sale Terminal	3-5
AB-3 E ² PROM Eliminates PROM Programmer Obsolescence	
AB-4 ROMs Become Flexible with E ² PROMs	3-13
AB-5 Robotics—E ² PROMs Show Them the Way	3-21
AB-6 Prototyping with E ² PROMs	3-25
AB-7 E ² PROMs as an Error Accumulation Medium	3-29
AB-8 PC and Data Loggers—E ² PROMs Benefit User and Manufacturer Both	3-35
CHAPTER 4	
E ² PROM Applications AP-100 Reliability Aspects of a Floating-Gate E ² PROM	4-1
	4-1
Introduction	4-2
Device Operation	4-2
Read Retention	4-3 4-4
Intrinsic Charge Trapping Defect Charge Loss	4-4 4-5
Accelerated Test Results	4-6
Summary	4-7
AP-101 2816 Electrical Description	4-9
	4-10
Read Access Mode	4-10
Erase Access Mode	4-13
Write Access Mode	4-14
Chip Erase Access	4-15
DC Voltage Conditions	4-15
Endurance Issues	4-16
Conclusion	4-16
AP-102 2816 Microprocessor Interface Considerations	4-17
Introduction	4-18 4-18
Bus Dependent Transfer	4-18
Interface Overview	4-19
Controller I Description	4-20
Controller II Description	4-24
Controller III Description	4-30
Controller IV Description	4-35
V _{PP} Switching	4-40
OE Switching	4-41
Multiple 2816s	4-41
Interface Software Requirements	4-41 4-42
AP-103 Programming E ² PROM with a Single 5-Volt Power Supply	4-69

AP-107 Hardware and Software Download Techniques with 2816	4-73
Introduction	4-74
In-Field Software Updates	4-74
Downline Load Philosophy	4-75
2816 Remote Configuration Options	4-75
Receiver	
Transmitter	4-79
Conclusion	4-80
AP-135 8298 Integrated E ² Controller	4-81
	4-82
8298 Hardware	
8298 Operation	
System Configuration	4-86
Direct Configuration	
Appendix A: Command Summary	
Appendix B: Configuration Command Summary	4-92
Appendix C: Hardware Schematics	4-93
AP-136 A Multibus-Compatible 2816 E ² PROM Memory-Board Description	
Introduction	
Installation Instructions	
Procedure	
Board Address Location	4-98
Reset and Chip Erase Functions	
Interrupt Line Selection	
Data Bus Width	
MOS PROM Array Decoder	
PROM/RAM Selection	
V _{PP} Pulse Width Selection	
Adjusting the V _{PP} High Level	
XACK Delay	
User's Operation Instructions	
User Program Example	
16-Bit Data Bus Structure	
Hardware Description	
Sequencing and Timing	
XACK Generation	
Bus Address Decoding	
MOS PROM Array Decoding	
Data and Address Latches and Buffers	
V _{PP} and OE Drivers	
5V to 24V Converter	
Write Protection Circuitry	
Schematics Diagrams	
Assembly Instructions	
Appendix A: Jumper List	
Appendix B: Bipolar Decoder Data Format	
Appendix C: Parts Lists	
Appendix D: Assembly Drawing	4-134
Appendix E: Multibus PCB Dimensions	4-135
Appendix F: Multibus Signal List	
Appendix G: Blank PROM Decoder Charts	4-137
Appendix H: Test Decoding Algorithms for 2K x 8 MOS PROMs at 8000H	4-139

AP-137 8298 Functional Specification and Firmware Description	4-141
General Description	
E ² Operation	4-144
Host CPU Interaction	
Commands	
E ² PROM Interface	4-150
V _{PP} Switch	4-150
OE Switching	
Direct Access Circuits	
Chip Erase Signal	
System Operation	
Reset and Power-Up Procedure	
Appendix A: 8298 Electrical Characteristics	
Appendix B: 8243 Electrical Characteristics	
Appendix C: 8298 Firmware Description	4-165
Appendix D: 8298 UPI-41A-Based E ² PROM Controller Firmware Listing	4-167
AP-138 A 2716-to-2816 Programming Socket Adapter	4-191
Introduction	4-192
Hardware	4-192
Operation	4-194
Conclusion	4-195
AR-174 Hardware and Software Download Techniques with 2816	4-201
AR-177 Preview Reprint	4-207

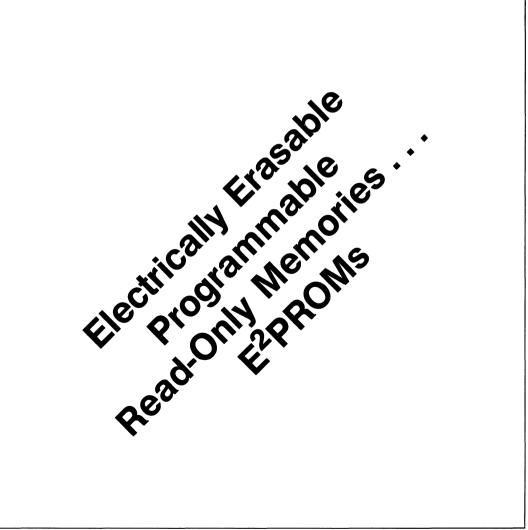
During the past ten years, Intel has developed EPROMs to meet the needs of the most demanding customer systems. The quest for a perfect non-volatile memory has been led by Intel from ROM to PROM to EPROM and now, after intense development, to the E^2 PROM. The E^2 PROM technology promises to alter dramatically the microprocessor systems of today and offer end users greatly enhanced flexibility and system cost-effectiveness.

With regard to adding functions and benefits to your systems, only you can understand the doors that the 2816 will open. Intel is committed to the technology of electrically erasable PROMs and we see it as truly a revolution in non-volatile memory.

Within this handbook are articles, application notes, application briefs, and other data which will tell you all you need to know to design the E^2 PROM into your system today.

If you would like further information, contact one of the Intel Sales Representatives listed in the back or return the reply card.

ACKNOWLEDGEMENT


The author wishes to acknowledge the following contributors to the 2816 development and introduction: K. Armstrong, A. Baluni, B.L. Barfield, N. Boruta, R. Battat, A. Chan, V. Dham, B. Euzent, H. Fung, G. Gongwer, K. Gudger, W.S. Johnson, L.N. Jordan, D. Kijanka, P. Mareno, D. Oto, B. Pochowski, D. Schaedler, B. Shiner, and R. Wood.

Without their limitless perseverance and dedication, the 2816 would not have been possible.

E²PROM 2 Backgrounder Information

E²PROM BACKGROUNDER

November 1980

INTRODUCTION

Intel Corporation, the leading manufacturer of microprocessors, semiconductor memories and microcomputer system components, has just introduced its first electrically erasable programmable read-only memory (E^2 PROM). Designated the 2816, this 16kilobit E^2 PROM is the first of a new breed of memory that will eventually become the standard storage medium for microprocessor programs.

Not only is the 2816 non-volatile, fully static and fast enough to support a high-performance microprocessor, but it can be reprogrammed electrically in the field, without removal from in-service equipment. It can even be reprogrammed remotely, via a radio or telephone link. This flexibility permits design engineers to realize applications that were either impossible to implement with less-flexible program-store devices, or prohibitively expensive due to the high cost of downtime or labor incurred by the user when changing the program.

TRENDS IN PROGRAM-STORE PERFORMANCE AND FLEXIBILITY

Since their introduction nearly a decade ago, microprocessors have become smaller, faster and much more powerful. Each new generation has been accompanied by a new class of program-store memory devices with greater flexibility—to make it easier for the original-equipment manufacturer (OEM) or end user to change its stored program—and improved performance—to match the speed of faster microprocessors.

Flexibility—From Zero to Total

The first program-store device was the masked readonly memory (ROM). Masked ROMs are custom devices programmed by the semiconductor manufacturer with instructions specified by the OEM buyer. Once programmed, they cannot be altered, so that each program change requires the purchase and manufacture of a new ROM, which may take months to obtain. ROMs are inexpensive to buy in large volumes, but they require a large initial investment by the OEM and a commitment to large quantities of each program.

Next came the programmable ROM, or PROM. PROMs can be "burned" by the OEM or end user but they can be programmed only once; however, they can be bought in advance and programmed and installed when needed. PROMs are costlier than ROMs on a per-unit basis, but they eliminate the risk and wait for delivery of a new batch of masked ROMs from the semiconductor manufacturer.

Erasable PROMs, or EPROMs, added considerable flexibility to the programming step. Like PROMs, EPROMs can be stocked and programmed by the OEM or end user, but they can be reprogrammed thousands of times. This eliminates the need to scrap expensive parts each time a program change is needed.

With regard to flexibility, the only drawback to EPROMs is that they must be removed from the equipment to be reprogrammed. EPROMs are erased optically, through exposure to ultraviolet light, and then rewritten electrically with the new program.

Despite this inconvenience, EPROMs are today the most popular program-store memory device. Originally envisioned as a development tool for designers who change programs frequently while prototyping and debugging a system, EPROMs have often been shipped in production equipment due to their potential value to the user who may wish to make a program change.

Electrically erasable (E^2) PROMs are the ultimate in program-store flexibility. They can be electrically reprogrammed by the OEM or end user, but without the inconvenience, time or expense it takes to remove an EPROM from equipment, send it to a service facility, erase and reprogram it and then reinstall it in the field.

The Intel[®] 2816 requires only the application of a 21volt pulse for 10 milliseconds to erase or write any byte of memory. The only hardware needed to interface the 2816 to a microprocessor are a programming pulse generator and a timer circuit.

Intel's 2816 E^2 PROM also features an additional degree of flexibility unmatched by other high-density E^2 PROM-type devices: individual byte-erase capability. To end users, this means that a single line program edit can be made in 20 milliseconds, or 100 times faster than it can be done on a bulk-erase part that must be completely erased and rewritten.

Performance—Ever Faster

Each new class of program-store memory must have performance comparable to that of the microprocessor it serves. Most important is access time, since a microcomputer system can only operate as fast as its slowest component. A slow program-store device can reduce the throughput and efficiency of a microprocessor which is kept waiting for its instructions. A recent trend which affects program-store memories is toward more complex systems, with multiplexed address and data lines. Program-store memories must be able to be precisely controlled by the microprocessor, to ensure that they do not read instructions onto the bus when the microprocessor is not expecting them.

The 2816 E^2 PROM has both the speed and controllability required for service in a state-of-the-art microcomputer system. It has an access time of 250 nanoseconds, which is fast enough to eliminate the need to insert so-called wait states in a highperformance microprocessor's program, just to allow for slow program memory.

The 2816 also features Two-line control, a systemcontrol function that has become essential in large, high-speed microcomputer systems. Two-line control eliminates contentions between addresses and data on bus lines. The chip has separate output-enable and chipenable pins that permit the microprocessor to control exactly when it is enabled.

In addition, the 2816 comes in a 24-pin package that conforms to the new industry-standard pinout for highdensity, byte-wide memories recently approved by the Joint Electron Device Engineering Council (JEDEC). By using the 2816 and printed-circuit boards with 28-pin sockets, system designers can be assured of future compatibility and interchangeability of microcomputersystem memory components up to 256 kilobits in density.

IMPLICATIONS AND APPLICATIONS

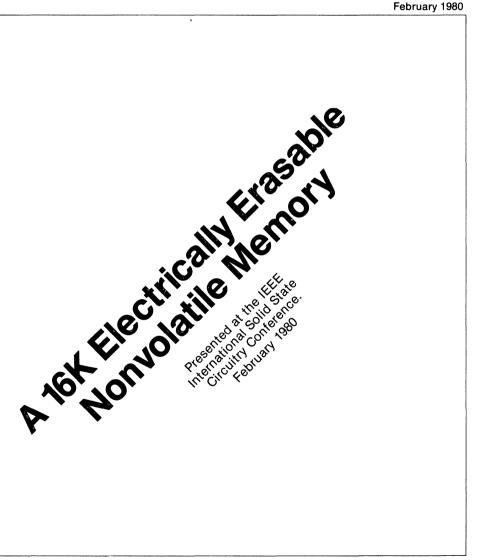
 E^2 PROMs will have a profound impact on microcomputer system design. As designers learn to fully use their flexibility, E^2 PROMs' cost per function will fall dramatically through greater design efficiency.

The semiconductor cost/volume learning curve will reduce E^2 PROM prices to parity with EPROMs by the mid-1980s, when they will replace EPROMs as the standard program-store medium in microprocessor-based equipment. In the interim, E^2 PROMs will be designed into those applications where their cost is offset by the

functional value their flexibility adds to the end-user product.

Near-Term Applications

One market segment that will find E^2 PROMs attractive immediately is industrial process control. In large plants with distributed processing stations under control of a central computer, E^2 PROMs can improve local process monitoring and control.


In such configurations, the central computer alters the E^2 PROMs' contents remotely when a change in process occurs, to optimize local processor operation to the new conditions. The E^2 PROMs can also be used as data store devices to monitor flow rates, value closures and like information, freeing the central computer for more important duties.

Another obvious application for E^2 PROMs today is as replacements for core memory or fuse-link PROMs in military equipment and commercial aircraft. Here, the cost of an E^2 PROM is more than offset by the alternative cost of replacing expensive parts each time the user wishes to change flight coordinates or radio frequencies.

Point-of-sale (POS) terminals are an ideal application for E^2 PROMs, where they function as look-up tables whose contents—product pricing, for example—do not change frequently. The central computer can poll and update the E^2 PROMs after business hours of the retail store, to monitor sales volumes and adjust pricing to inflation.

Another application for E^2 PROMs is in programmable robots like those used in automobile manufacturing or industrial metalworking. Presently, program changes require replacing the paper or magnetic tape that controls the robot's operation. An alterable, non-volatile semiconductor memory like the 2816 has distinct advantages here, especially in light of its superior reliability in dirty industrial environments. Besides its ability to be reprogrammed quickly and remotely by a central computer, an E^2 PROM can easily pay for itself by avoiding retooling charges and by preventing failures that could destroy an expensive piece of material.

AR-118

SESSION XII: ROMs, PROMs AND EROMs

THPM 12.6: A 16Kb Electrically Erasable Nonvolatile Memory

William S. Johnson, George Perlegos, Alan Renninger, Greg Kuhn and T. R. Ranganath[†]

Intel Corp.

Santa Clara, CA

FLOATING GATE STRUCTURES have been highly successful as nonvolatile devices because of their compatibility with silicon gate processing and their excellent charge retentivity with applied voltage at operating temperature. The accepted method of erasure in the commercial marketplace is ultra-violet light (EPROM)¹, although proposals have been made to erase electrically by avalanche injection of holes², electron tunneling^{3,4}, or a combination of both⁵. These methods, however, have typically suffered from poor reproducibility and very fast wearout during program/erase cycling

To realize nonvolatile devices which can be erased electrically with high program/crase endurance, many have resorted to MNOS structures⁶ which are programmed and erased by direct tunneling through a thin oxide. In this approach, charge is stored in traps within the nitride dielectric A major problem with this approach is that the properties of the nitride/oxide dielectric are difficult to control and are adversely affected by normal silicon gate processing. Furthermore, the threshold voltages of these structures are vulnerable to disturbance by even small applied voltages and data retention is not easily guaranteed for long periods (vears)

The device reported (FLOTOX, for floating gate tunnel oxide) retains the processing and the retention advantages of floating gate over MNOS while solving the traditional endurance problem This is accomplished by utilizing an oxide less than 200Å thick between a floating poly gate and an N⁺ region, as shown in

[†]Current Address Hughes Research, Malibu, CA *2716.

1

¹Salsbury, P.J., Morgan, W.L., Perlegos, G. and Simko, R.T., "High Performance MOS EPROMs Using A Stacked Gate Cell", ISSCC DIGEST OF TECHNICAL PAPERS, p. 186; Feb , 1977

²Gosney, W.M., "DIFMOS — A Floating-Gate Electrically Erasable Nonvolatile Semiconductor Memory Technology", *IEEE Transactions on Electron Devices*, ED-24, p. 594, May, 1977.

³Gulterman, D.C., Rimari, I.H., Halvorson, R.D., McElroy, D.J. and Chan, W W, "Electrically Alterable Hot-Electron Injection Floating Gate MOS Memory Cell With Series Enhancement", *IEDM Technical Digest*, p. 340; Dec., 1978

⁴Haran, E, Schmitz, L, Troutman, B and Wang, S., "A 256-Bit Nonvolatile Static RAM", *ISSCC DIGEST OF TECH-NICAL PAPERS*, p. 108; Feb , 1978.

⁵Scheibe, A and Schulte, H., "Technology of a New N-Channel One-Transistor EAROM Cell Called SIMOS", *IEEE Transactions on Electron Devices*, ED-24, p. 600; May, 1977.

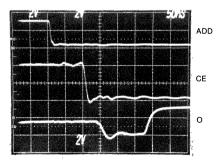
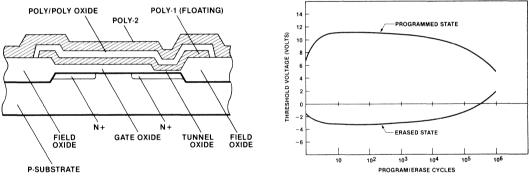
⁶Hagiwara, T., Kondo, R., Yatusuda, Y., Minami, S and Itoh, Y., "A 16Kb Electrically Erasable Programmable ROM", ISSCC DIGEST OF TECHNICAL PAPERS, p. 50, Feb., 1979

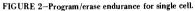
⁷Lenzlinger, M. and Snow, E.H., "Fowler-Nordheim Tunnelling into Thermally Grown SiO₂", J of Applied Physics, 40, p. 278-283, Jan., 1969. Figure 1. In FLOTOX both program and erase are accomplished by tunneling⁷ of electrons through the tunnel oxide using voltages of less than 25V. A typical endurance plot for a single cell appears in Figure 2. This shows that the threshold window remains open beyond 100,000 cycles. Also by keeping voltages low during read, this structure can retain charge over 10 years under full power, at operating temperatures. There is no refresh requirement no matter how many read accesses are made.

The FLOTOX cell configuration, shown in Figure 3, uses two devices, a select transistor and a memory transistor Cell area is 0.85mil². Clearing of the memory is accomplished by programming every device in a row. This is done by selecting a row and raising the program line to VPP, which attracts electrons to the floating gate. Writing is accomplished by erasing selected bits within a word. This is done by again selecting a row, but now the program line is held at zero volts while selected columns go to VPP. Electrons are thus removed from the floating gates of the selected devices.

Figure 4 shows the 16K chip, which is arranged as 2K/8b words. It is packaged with 24 leads with a pinout identical to the 16K EPROM^{*}. The chip is automatically powered down until selected (\overline{CE} low). Read is accomplished by selecting the part and enabling the output buffers (\overline{OE} low). On the other hand, selecting the part and taking VPP to 20V for 10ms puts the chip in write mode and writes a word. If the incoming data are all 1's, then the chip automatically goes into clear mode and clears the addressed word. Thus, a clear-write sequence requires merely two 10ms writes, first all 1s, then the data desired. If clearing of the entire chip is desired, this can be accomplished with one 10ms pulse by applying VPP to \overline{OE} as well as the VPP pin with the chip selected. This approach allows a wide variety of functions while maintaining simple control and complete EPROM compatibility.

FLOTOX utilizes a new high performance N-channel twolevel-poly silicon gate technology with channel lengths of 3.5μ . Access times for the 16K FLOTOX E^2 PROM are below 200ns as shown in Figure 5. This allows use of the device with the newer microprocessors which operate in the 5-8MHz range without wait states Other features of the 16K E^2 PROM are listed in the table


FIGURE 5-Access time for E^2 PROM.

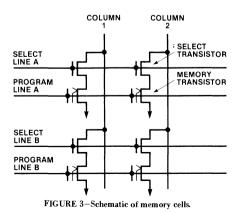
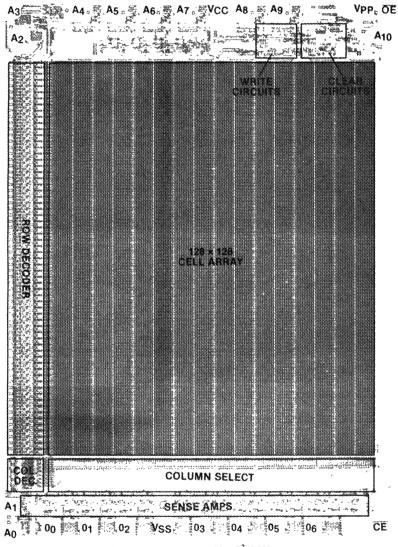
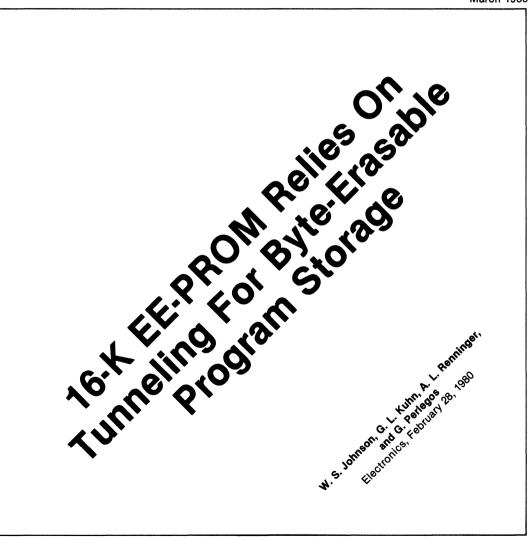

	16K E ² PROM	16K EPROM
Configuration	2K X 8	2K X 8
Package	24 pin	24 pin
Power Supplies		
read mode	+5	+5
clear/write	+5, +20	+5, +25
Write		
method	tunnel injection	hot electron injection
time/word	10ms	50ms
Clear		
method	tunnel ejection	UV hght
time/word	10ms	-
time/chip	10ms	30 min
Access Time	200ns	450ns
Power Dissipation		
active	500mW	550mW
standby	100mW	100mW
Data Retention	10 years	10 years
Refresh Requirement	None	None

TABLE 1



[See page 271 for Figure 4.]



AR-119

March 1980

he electrically erasable programmable read-only memory, or EE-PROM, will one day be the standard form of program storage in microprocessor-based systems. It will follow in the steps of the ultraviolet-light-erasable PROM, for it, too, will become available in increasingly larger byte-wide arrays and will in time share silicon with single-chip microcomputers. As with the E-PROM, the success of the EE-PROM described in this article hinges upon the mastery of a difficult process. The floating-gate avalanche cell, also pioneered by Intel. is a tricky construction that still eludes many a memory maker. Likewise, the widespread availability of large EE-PROMs is still years off. The EE PROM process will be perfected, though, because the rewards go beyond the elimination of the expensive quartz window on the E-PROM package. The electrically erasable memory will usher in systems

previously not practical. The microprocessor system whose programs can be altered remotely, as by phone, is one example. Another is the system that is immine to power outages, as it protects its contents in ROM. Perhaps most important, systems will be able to adjust their own program memory to environmental changes.

To be sure, there is more than one way to build an EE-PROM. The metal-nitride-oxide-semiconductor (MNOS) structure has served for years in modest-sized arrays for TV tuning applications, for example. In fact, a year ago Hitachi Ltd. announced a 2-K-by-8-bit MNOS replacement for the 2716 E-PROM. Compatibility with the 2716 is the impetus behind the device described in the following article, but it uses only silicon and its derivatives, plus metal. Also, in place of avalanche injection, which can injure a cell, electrons tunnel to and from a floating gate. -John G. Posa

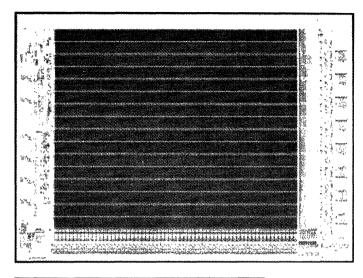
16-K EE-PROM relies on tunneling for byte-erasable program storage

Thin oxide is key to floating-gate tunnel-oxide (Flotox) process used in 2,048-by-8-bit replacement for UV-light–erasable 2716 E-PROM

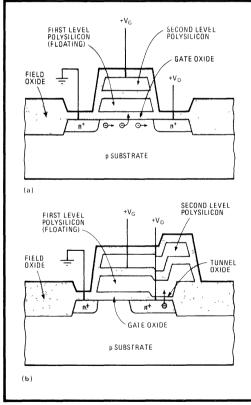
by W. S. Johnson, G. L. Kuhn, A. L. Renninger, and G Perlegos, Intel Corp., Santa Clara, Calif

□ The erasable programmable read-only memory, or E-PROM, is the workhorse program memory for microprocessor-based systems. It is able to retain data for years, and it can be reprogrammed, but to clear out its contents for new data, ultraviolet light must be made to stream through its quartz window. This works well for many applications, but the technique foregoes singlebyte—in favor of bulk—erasure and in-circuit selfmodification schemes.

Electrical erasability is clearly the next step for such memories, but like ultraviolet erasure a few years back, it is hard to achieve. In fact, the design of an electrically erasable read-only memory is paradoxical. In each cell, charge must somehow be injected into a storage node in a matter of milliseconds. Once trapped, however, this charge may have to stay put for years while still allowing the cell to be read millions of times. Although these criteria are easily met individually, the combination makes for a design with conflicting requirements.


These demands are more than met in a new EE-PROM, which is a fully static, 2-K-by-8-bit, byte- or chip-erasable nonvolatile memory. At 16,384 bits, this new design not only meets the goal of high density, but also has long-term retention, high performance, and no refreshing requirement, in addition to functional simplicity unmatched by present nonvolatile memories. The device need not be removed from a board for alterations, and performance is consistent with the latest generation of 16-bit microprocessors such as the 8086.

This achievement required the development of a new nonvolatile process technology, HMOS-E, as well as a new cell structure, Flotox, for floating-gate tunnel oxide.

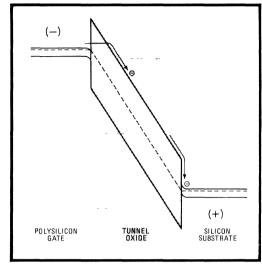

Conflicting requirements

Nonvolatile semiconductor memories generally store information in the form of electron charge. At cell sizes achievable today, this charge is represented by a few million electrons. To store that many electrons in a 10-millisecond program cycle requires an average current on the order of 10^{-10} amperes. On the other hand, if it is essential that less than 10% of this charge leaks away in 10 years, then a leakage current on the order of

Electronics / February 28, 1980

The next memory. The 16-K electrically erasable programmable read-only memory is eminently suitable for microprocessor program storage Organized as 2,048 by 8 bits, the EE-PROM allows full-chip or individual-byte erasure using the same supply ($V_{\rm sc}$) as for programming

1. First Famos, now Flotox. The Famos cell (a) found in all E-PROMs stores charge on the floating gate by avalanche means Flotox cell (b), the heart of the EE-PROM, relies on electron tunneling through thin oxide to charge and discharge the floating gate

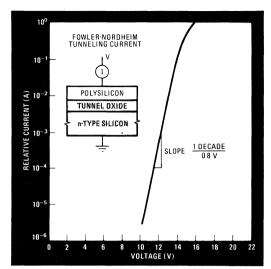

 10^{-21} A or less must be guaranteed during read or storage operations. The ratio of these currents, $1:10^{11}$, represents a difficult design problem. Few charge-injecting mechanisms are known that can be turned off reliably during nonprogram periods for such a ratio.

One structure that has proven capable of meeting such stringent reliability requirements has done so for many millions of devices over the last nine years. This is the floating-gate avalanche-injection MOS (Famos) device used in the 1702, 2708, 2716, and 2732 E-PROM families In the Famos structure, shown in Fig. 1a, a polysilicon gate is completely surrounded by silicon dioxide, one of the best insulators around. This ensures the low leakage and long-term data retention.

To charge the floating gate, electrons in the underlying MOS device are excited by high electric fields in the channel, enabling them to jump the silicon-silicon-dioxide energy barrier between the substrate and the thin gate dielectric. Once they penetrate the gate oxide, the electrons flow easily toward the floating gate as it was previously capacitively coupled with a positive bias to attract them.

Because of Famos' proven reliability, the floating-gate approach was favored for the EE-PROM. The problem, of course, was to find a way to discharge the floating gate electrically. In an E-PROM, this discharge is effected by exposing the device to ultraviolet light. Electrons absorb photons from the UV radiation and gain enough energy to jump the silicon/silicon-dioxide energy barrier in the reverse direction as they return to the substrate. This suffices for off-board program rewriting, but the object of the EE-PROM is to satisfy new applications that demand numerous alterations of the stored data without removing the memory from its system environment. What evolved was the new cell structure called Flotox (Fig. 1b).

In the quest for electrical erasability, many methods were considered, and several potentially viable solutions were pursued experimentally. One initially attractive


2. Tunneling. For a thin enough oxide, as shown here, under a field strength of 10⁷ V/cm, Fowler-Nordheim tunneling predicts that a certain number of electrons will acquire enough energy to jump the forbidden gap and make it from the gate to the substrate

approach attempts to harness a parasitic charge-loss mechanism discovered in the earliest E-PROMs. Referring again to Fig. 1a, the polysilicon grains on the top surface of the floating gate tend, under certain processing conditions, to form sharp points called asperities. The sharpness of the asperities creates a very high local electric field between the polysilicon layers, shoving electrons from the floating gate toward the second level of polysilicon. This effect is purposely subdued in today's E-PROMs by controlling oxide growth on top of the floating gate because this parasitic electron-injection mechanism would otherwise interfere with proper E-PROM programming.

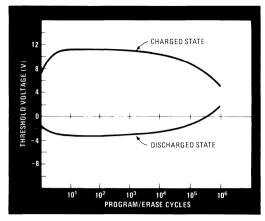
It was first thought that asperity injection could be used to erase the chip. In fact, fully functional, electrically erasable test devices were produced; but the phenomenon proved unreproducible and the devices tended to wear out quickly after repeated program and erase cycling. After over a year's effort, that approach was abandoned.

Tunneling solution

The solution turned out to be the one that initially seemed impossible. After investigating many methods of producing energetic electrons, it was decided to approach the problem from a different direction: to pass low-energy electrons through the oxide. This could be accomplished through Fowler-Nordheim tunneling, a well-known mechanism, depicted by the band diagram in Fig. 2. Basically, when the electric field applied across an insulator exceeds approximately 10^7 volts per centimeter, electrons from the negative electrode (the polysilicon in Fig. 2) can pass a short distance through the forbidden gap of the insulator and enter the conduction band. Upon their arrival there, the electrons

3. Current characteristic. In Fowler-Nordheim tunneling, current flow depends strongly on voltage across the oxide, rising an order of magnitude for every 0.8 V Charge retention is adequate so long as the difference between programming and reading is at least 8.8 V

flow freely toward the positive electrode.


This posed two fundamental problems. First, it was commonly believed that silicon dioxide breaks down catastrophically at about 10^7 V/cm, and MOS FETs are normally operated at field strengths 10 times below this. Second, to induce Fowler-Nordheim tunneling at reasonable voltages (20 V), the oxide must be less than 200 angstroms thick. Oxide thickness below about 500 Å had rarely even been attempted experimentally, and it was feared that defect densities might prove prohibitively high.

To be weighed against these risks, however, were several advantages. Tunneling in general is a low-energy, efficient process that eliminates power dissipation. Fowler-Nordheim tunneling in particular is bilateral and can be used for charging the gate as well as discharging it. Finally, the tunnel oxide area could be made very small, which is of course consistent with the needs of high-density processing.

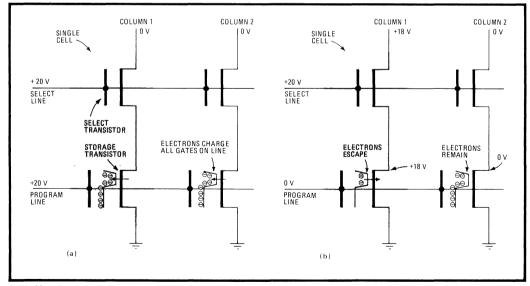
With these motivating factors, development was initiated to grow reliable, low-defect oxides less than 200 Å thick. The success of this effort resulted in the realization of a working cell structure called Flotox.

The Flotox device cross section is pictured in Fig. 1b. It resembles the Famos structure except for the additional tunnel-oxide region over the drain. With a voltage V_g applied to the top gate and with the drain voltage V_d at 0 v, the floating gate is capacitively coupled to a positive potential. Electrons are attracted through the tunnel oxide to charge the floating gate. On the other hand, applying a positive potential to the drain and grounding the gate reverses the process to discharge the floating gate.

Flotox, then, provides a simple, reproducible means for both programming and erasing a memory cell. But

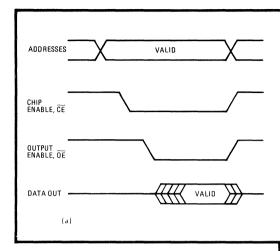
4. Good endurance. The endurance of the EE-PROM depends on the threshold-voltage difference between the charged and discharged states Though repeated cycling degrades thresholds, the chip should stay within tolerable limits for 10^4 to 10^6 cycles

what about charge retention and refresh considerations with such a thin oxide? The key to avoiding such problems is given in Fig. 3, which shows the exceedingly strong dependence of the tunnel current on the voltage across the oxide. This is characteristic of Fowler-Nordheim tunneling.


The current in Fig. 3 rises one order of magnitude for every 0.8-v change in applied voltage. If the 11 orders of magnitude requirement is recalled, it is apparent that the difference between the voltage across the tunnel oxide during programming and that during read or storage operations must be in excess of 8.8 V. This value, including margins for processing variations, is reasonable. Furthermore, data is not disrupted during reading or storage so that no refreshing is required under normal operating or storage conditions. Extensive experimental testing has verified that data retention exceeding 10 years at a temperature of 125° C is possible.

Another important consideration is the behavior of the electrically erasable memory cell under repeated program erase cycling. This is commonly referred to as endurance. The threshold voltage of a typical Flotox cell, in both the charged and discharged states, is shown in Fig. 4 as a function of the number of programming or erasing cycles. There is some variation in the threshold voltages with repeated cycling but this remains within tolerable limits out to very high numbers of cycles—somewhere between 10^4 and 10^6 cycles

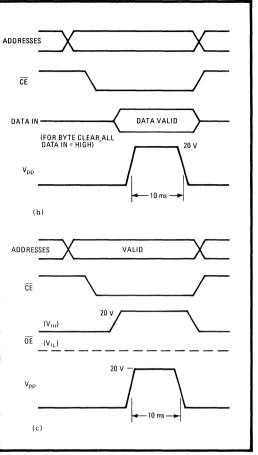
Putting Flotox to work


The Flotox cell is assembled into a memory array using two transistors per cell as shown in Fig. 5 The Flotox device is the actual storage device, whereas the upper device, called the select transistor, serves two purposes. First, when discharged, the Flotox device exhibits a negative threshold. Without the select transistor, this could result in sneak paths for current flow through nonselected memory cells. Secondly, the select transistor prevents Flotox devices on nonselected rows from discharging when a column is raised high.

The array must be cleared before information is entered. This returns all cells to a charged state as shown schematically in Fig 5a. To clear the memory all the select lines and program lines are raised to 20 v while all the columns are grounded. This forces electrons through the tunnel oxide to charge the floating gates on all of the

5. Working. To clear a Flotox cell, select and program lines are raised to 20 V and columns are grounded (a). To write a byte of data, the program line is grounded and the columns of the selected byte are raised or lowered according to the data pattern (b).

AFN-01913A

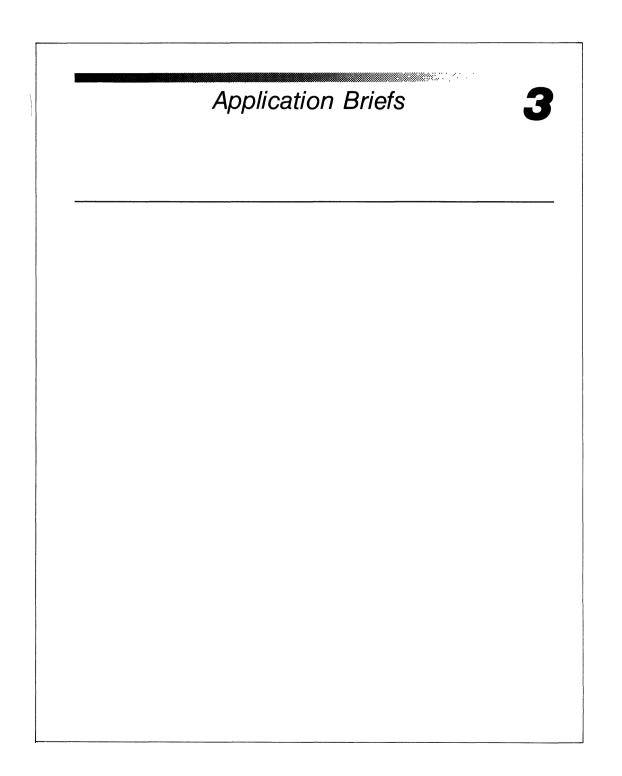

selected rows. An advantage of this EE-PROM over E-PROMs is the availability of both byte- and chip-clear operations. The byte-clear one is particularly useful for a memory of this size. When it is initiated, only the select and program lines of an addressed byte rise to 20 V.

To write a byte of data, the select line for the addressed byte is raised to 20 v while the program line is grounded as shown in Fig. 5b. Simultaneously, the columns of the selected byte are raised or lowered according to the incoming data pattern. The bit on the left in Fig. 5b, for example, has its column at a high voltage, causing the cell to discharge, whereas the bit on the right has its column at ground so its cell will experience no change. Reading is accomplished by applying a positive bias to the select and program lines of the current. A cell with a charged gate will remain off in this condition but a discharged cell will be turned on.

From the outside

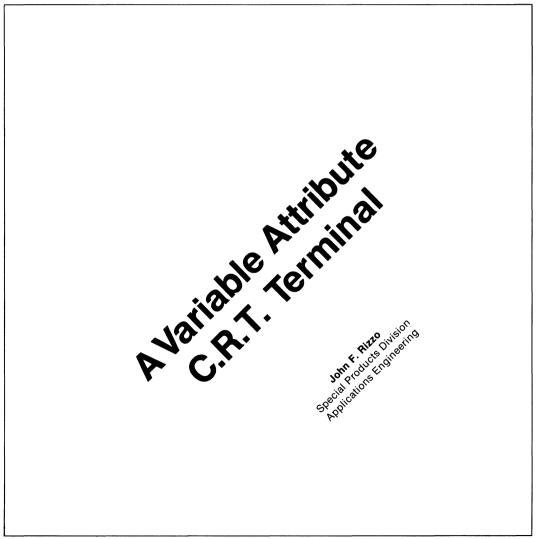
In terms of its pinout and control functions, the EE-PROM has evolved from the 2716 E-PROM. Both are housed in 24-pin dual in-line packages, for instance, and both offer a power-down standby mode. In addition, both utilize the same powerful two-line control architecture for optimal compatibility with high-performance microprocessor systems. Referring to Fig. 6a, it is seen that both control lines, chip enable (\overline{OE}) and output enable (\overline{OE}), are taken low to initiate a read operation. The purpose of chip enable is to bring the memory out of standby to prepare it for addressing and sensing. Until the outputs remain in the high-impedance state to avoid system bus contention. In its read mode, the EE-PROM is functionally identical to the 2716.

A single + 5-v supply is all that is needed for carrying out a read. For the clear and write functions, an additional supply (V_{PP}) of 20 v is necessary. The timing for writing a byte is shown in Fig. 6b. The chip is powered up by bringing \overline{CE} low. With address and data applied, the write operation is initiated with a single 10-ms, 20-v pulse applied to the V_{PP} pin. During the



6. Timing. The Flotox memory's operating modes are shown for reading (a), writing or clearing of bytes (b), and chip clearing (c) Both writing and erasing require a 10-ms program-voltage pulse The read mode is functionally identical to that of a 2716 E-PROM.

write operation, \overline{OE} is not needed and is held high.


A byte clear is really no more than a write operation. As indicated in Fig. 6b, a byte is cleared merely by being written with all 1s (high). Thus altering a byte requires nothing more than two writes to the addressed byte, first with the data set to all 1s and then with the desired data. This alteration of a single byte takes only 20 ms. In other nonvolatile memories, changing a single byte requires that the entire contents be read out into an auxiliary memory. Then the entire memory is rewritten. This process not only requires auxiliary memory; for a 2-kilobyte device it takes about one thousand times as long (20 ms vs 20 seconds).

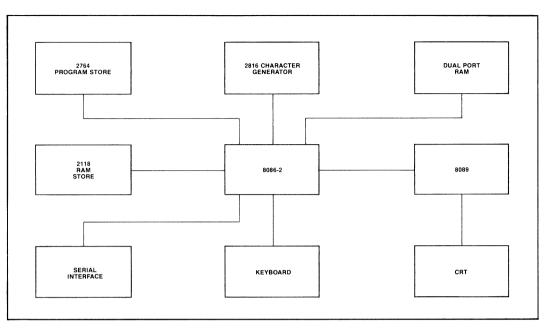
Chip clear timing is shown in Fig. 6c. The only difference between byte clear and chip clear is that \overline{OE} is raised to 20 v during chip clear. The entire 2 kilobytes are cleared with a single 10-ms pulse. Addresses and data are not all involved in a chip-clear operation.

APPLICATION BRIEF AB-1

April 1981

A VARIABLE ATTRIBUTE CRT TERMINAL

As the proliferation of the microcomputer continues, there will be an ever increasing requirement for local CRT terminals in households, businesses, and offices. This proliferation is expected to occur throughout the world, which places a burden on the terminal designer to accomodate a wide variety of languages, processing speeds, and transmission protocols. Given memory elements and tools available today, it is difficult to achieve a cost-effective design that will deal with all these variables. The 2816 offers an excellent alternative in the design of the CRT controller by allowing a high degree of universality and a virtually unlimited number of terminal attributes.


The E^2 family offers an excellent alternative to the system designer for use of a non-volatile Electrically Erasable memory device. The 2816 can contain both the raw program needed by the CRT terminal to perform basic functions, in addition to storage of the parameter information needed for local configuration. Some of the information that can be contained is baud rate transmission information, configuration of the terminal information such as parity detection reverse video, and full or half duplex modes. 2816s can contain these fundamentally basic constants which can be updated in the field by the user. This removes all of the switching components required in the past, and adds a higher degree of manufacturability and reliability to the terminal design.

In addition, the 2816 can be used as a look-up table for specific character fonts or graphic generation capabilities. This allows the terminal manufacturer to configure the font and language characteristics after manufacture, before shipment. For example, if a specific terminal is going to be shipped to a Far-Eastern nation, the font characters for that typeset can be programmed into the 2816 and shipped to that particular country. Another alternative is to allow programming of the font characters locally at the final destination of the terminal. The user can then program specific fonts and characters as required. Even greater flexibility is possible from the graphics generation standpoint. It is simple for a user to place the terminal into a graphics mode and generate special graphics characters unique to the application. This can occur through local configuration of graphic types. The terminal could have a graphics mode, where a basic map of the character is presented on the monitor. The user then locates inside the graphic boundaries the necessary information he wishes to display. After this special graphics character is composed, the user simply pushes a command key on the terminal which loads that graphic character into E^2 PROM. This is an extremely powerful application for the device because it allows each user to fit the particular terminal to a particular application. Scientific users can construct scientific or calculational characters and fonts, while businesses can configure business- or table-oriented fonts.

The block diagram of the system indicates that is used 2816 as a character generator store. The microprocessor used could be a high-speed 8086-2, or perhaps a 8088 microprocessor. Within the system is a 8279 keyboard display controller, which is used to interface with a standard terminal keyboard. In addition, we can use an Intel 8275 or 8276 CRT controller to generate graphic information on the face of the CRT. Also local to the system is an E^2 controller which is used to interface the 2816 to the microprocessor.

Other than the basic components within the system, we may wish to add a serial I/O interface which will allow remote configuring of the characters and communication protocols. The terminal can have a serial load operation where the 2816 is updated after receiving a command character. Other than the basic components, much of the functional operation of the terminal is determined by software.

The 2816 adds the capability of custom graphics, userdefinable fonts and character sets, and programmable communication protocols. All this is possible because of the capabilities that the E^2 brings to system designs.

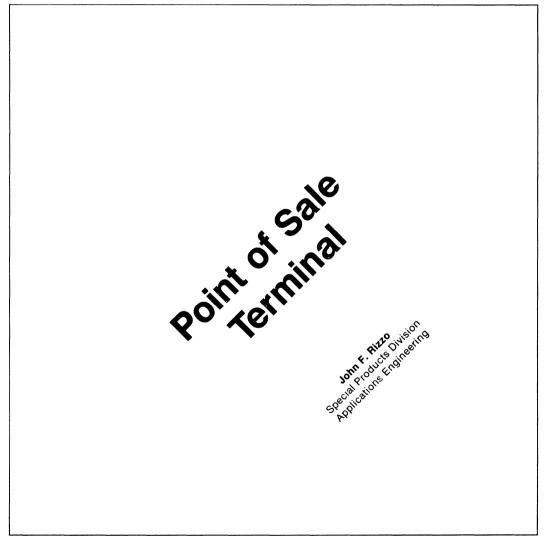

AB-1

Figure 1. Variable Font C.R.T. Terminal

intel

)))) - APPLICATION BRIEF

April 1981

POINT OF SALE TERMINAL

Remote reconfiguration capability—that design feature can save millions of dollars in Point Of Sale Terminal service costs. With the capability of Intel's 2816 Electrically Erasable PROM, remote changes in terminal constants are now possible—no service personnel are necessary. How often have product codes and pricing information needed changes? In today's economy, one might answer "too frequently". With service costs today of over \$100 per hour, those changes can be very expensive. The 2816 benefits users of Point of Sale Terminals by eliminating service costs. In this application brief the system architecture and user benefits of a 2816-based terminal will be discussed.

Point of Sale Terminals typically use look-up tables to contain product descriptions and pricing information. These tables require several different characteristics to operate optimally in a point of sale environment. The first storage attribute is non-volatility; look-up table data must be held without power for many months or years. Secondly, a dense storage media is required because typically many products with complex encoding schemes are loaded into the look-up tables. Finally, a media that can be changed relatively easily is needed because pricing and product information changes frequently. All of these necessary features have been satisfied in the past with EPROM memory, or CMOS RAM with battery backup.

Unfortunately, these media have drawbacks. EPROMs, while low cost, dense, and non-volatile, cannot be changed in the field without the use of a service technician. CMOS and battery backup offer more flexibility at a lower density, but can suffer reliability problems if the battery and backup system aren't properly designed. The 2816 E²PROM from Intel offers users all the characteristics of EPROM with the flexible advantages of battery backed up RAMs. Look-up table data can be stored non-volatily, but can be changed while in system. Figure 1 shows the block diagram for such a system. The terminal is composed of a highperformance microcomputer, such as the 8051. In addition, 2816 memory is used as data and as look-up table storage. The typical I/O device structure for a terminal also exists in the system as shown. The most important interface indicated on the block diagram is the serial I/O link. This datacom or telecom link provides the system with remote reconfiguration capability. The contents of the 2816 can be changed from a central location, without need for costly human service.

The look-up table contains product description and pricing information. Once the table has been written, the CPU can read from it as necessary to translate product entry codes to price information. If for some reason the table data needs to be changed for pricing or product updates, then the central computer simply sends update commands and new data to the remote POS processor. Since all remote terminals are linked together at a central location and are in periodic communication with other, such an update can occur as a part of normal inter-processor communication.

The in-system erase capability of 2816 memory allows the table data to be changed remotely, while preserving the stand alone nature of the terminals. Without E^2 capability, a service technician would be required to change the table data.

In addition to containing product description and pricing data, the 2816 can store special data unique to a particular location. If a set of locations within the memory is set aside for reorder codes, then as a location runs short of a particular item, the computer can automatically restock it. If particular information is sensitive, the 2816 can store encryption codes and software lockout mechanisms.

Another capability gained from the use of E^2 memory is that daily totals in sales volume and product quantities can be stored in the 2816 memory. This information can be accessed by both the local users as well as the central data bank.

To summarize, in the 2816-based P.O.S. terminal described here, flexibility and greatly reduced service costs are the key. The E^2 memory contains product information that can now be changed from a central location without the use of very costly service personnel. The 2816 yields an ideal solution to data table storage problems in frequently altered point of sale systems.

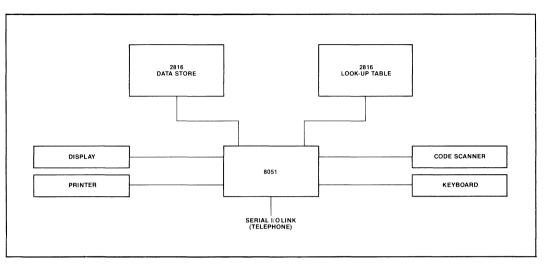



Figure 1. Point of Sale Terminal

•

inte

APPLICATION BRIEF AB-3

August 1981

AB-3 INSTRUMENTATION: 2816 E²PROM ELIMINATES PROM PROGRAMMER OBSOLESCENCE

How often are you unable to program a vendor's new PROM because programmer personality modules and software is unavailable? And how often as a programmer vendor do you lose customers because the latest programming algorithms do not exist in your machines? If the answers to the questions above are ever "too frequently," then Intel has a solution.

If a programmer vendor could eliminate hardware redesign and tooling, and a user could eliminate costly purchase of socket adaptors—would such a programmer design be attractive? If so, the Intel 2816 E^2 PROM provides a system level solution. Due to the capability of the 2816 to be erased and written electrically while soldered to a Printed Circuit Board, PROM programming systems can be free of hardware redesign and socket adaptors. The 2816 can contain both pinout and algorithm data for a universal PROM socket. When a new device becomes available—a simple code change is all that is required to update the system. With such capability, the machine can operate and be revised nearly indefinitely—thereby eliminating obsolescence.

In this Application Brief, the concept of a Programmable PROM Programmer will be discussed. The basic architectural system structure will be detailed in general, then several implementation options will be discussed specifically.

SYSTEM ARCHITECTURE

Imagine the basic architecture of such a programmer system—the user must have the capability to easily adapt the program to suit a new device or modification of an existing algorithm. In addition, the programmer itself must be flexible enough to accept a wide variety of vendors, device types and unique algorithms. The most straightforward approach, but not the simplest, is the concept of a universal socket that is programmable through software. In such a system, each pin on the socket can be software configured to perform any function. Now, when a new device or algorithm becomes available, the software need only to change—no hardware modification is necessary. The physical constraints required on the system in many ways will dictate what type memory device is appropriate.

First, the area of memory used to contain the pinout and electrical algorithms must be non-volatile-when the machine is shut off, it must not lose the critical device data. Second, since the software will be permanently imbedded into the equipment, the data must be able to be altered electrically. Third, the memory used must be low cost-the value it presents the vendor in socket adaptors or tooling must be offset by the cost it adds to the equipment. Fourth, only those locations containing new algorithm data, or modifications to existing data, need be changed. If the entire memory contents are reset, all pinout data must be reloaded-with room for error and device programming problems. Finally, the memory must be dense enough to hold a wide variety of algorithm data, and fast enough to execute high speed programming algorithms.

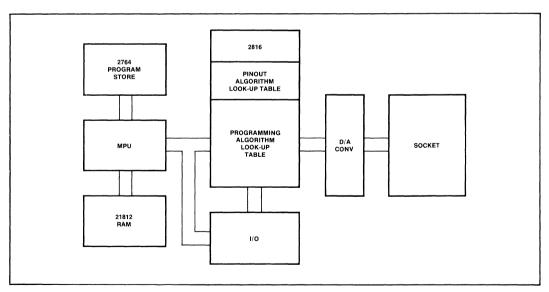
The 2816 E^2 PROM from Intel satisfies all of the above system requirements: 1) It is completely non-volatile, 2) it can be written and erased electrically while soldered to a printed circuit card, 3) the 2815 is priced at less than \$20 in quantity—making it highly cost effective, 4) the device allows byte erase operations—only those locations that need to change can change, 5) its 2KX8 density, and 6) 250 ns access time make it dense and fast enough for most applications.

BLOCK DIAGRAM

To design such a system, let us first examine the general architecture. A conceptual block diagram is shown in the figure below (Fig. A). An Intel 2764 EPROM is used to store the basic operating software that the programmer runs on. A byte wide static RAM, the 21812, is used for scratch pad and temporary data storage. 2816 is used on both pinout and programming algorithm look-up tables. Digital to Analog converters are used to interface the digital MPU commands to the programmed PROM's analog requirements. I/O is used to instruct the machine how to operate, and allows modification of E^2 memory.

The overall operation of the programmer would go as follows: The user selects a device type and pushes a few keys on the I/O device. The MPU translates those keys into a device pinout and programming algorithm type. This programming data is selected from the 2816 look-up tables. The pinout is then configured at the universal socket. The device is then programmed according to the programming look-up tables. Should a new device become available, then the user need only to modify the E^2 look-up table to allow the device to be programmed.

LOOK-UP TABLE MODIFICATION


Modifying the look-up table can be done in several different ways. Changing parameters through the keyboard is an option—but has the disadvantage that the data could be entered incorrectly, or other portions of the look-up table could be changed inadvertently.

Linking the machine to a central data computer through a modem is another option that is probably too expensive for both end-user and programmer manufacturer. Using magnetic paper tapes or cards is another possibility, but now additional I/O devices are required. The option that seems the most effective is to use the programmer itself to modify its look-up table.

In this case the programmer manufacturer need only send a low cost EPROM to the user. The user would simply place the EPROM in the programmer, placing the programmer into a "Learn" mode. This special mode would simply copy the contents of the EPROM into the E^2 PROM, free from user error or inadvertent tampering. Because the EPROM is so low in cost, the user would simply discard it after use. A low density EPROM could be used (such as a 2716) because only a small portion of the E^2 storage area needs to be changed. Figure B shows the possible memory map of the "Loader" PROM. Pointers are used for address and data and only those locations needing to be changed are modified in the E^2 memory.

CONCLUSION

Dealing with changing vendor algorithms and rapidly advancing technology can be a difficult task for both PROM programmer vendors and users alike. The 2816 E^2 PROM from Intel can eliminate problems associated with the above, through the use of software controlled pinout and programming algorithms. Changes to operating look-up tables can be done simply, easily, and error free. E^2 benefits users with more up-to-date programming systems with reduced adaptor costs. E^2 benefits programmer manufacturers through reduced hardware tooling, faster algorithm changes, and more rapid time to market entrance. Generally, it is an excellent and cost effective addition to PROM programmers of today.

Figure A

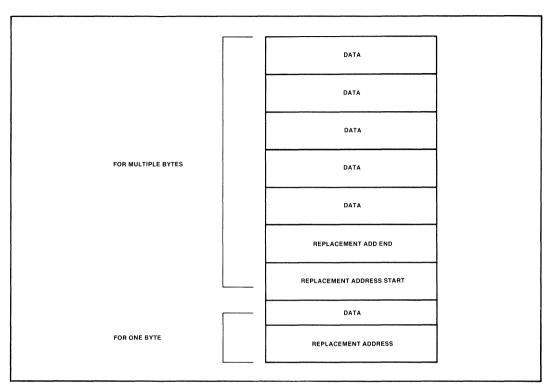
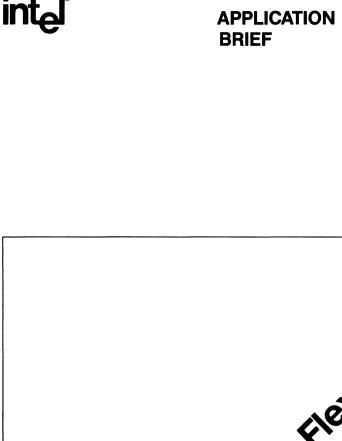



Figure B

3-12

ROMS 2816 FROMS Fire winner hopposed **AB-4**

August 1981

Users of ROMs for program storage in microprocessor based systems gain the advantage of very dense, very low cost program storage. But how often are these advantages lost when a ROM code is incorrect, or not optimized for a given customers needs? When a software bug is discovered, or an end user wants a slight program modification, ROMs must be discarded to be replaced with modified versions. If many systems undergo such a change, literally thousands of ROM's are wasted. Intel has an excellent solution to ROM modification problems that gives the end user the best of both worlds-low cost and high code flexiblity. The 2816 E²PROM, from Intel, used as a front end ROM patch allows bugs to be easily removed, and code changes simply made-without costly throwaway of incorrect Read Only Memories.

The memory systems employing both ROM and E^2 PROM gains benefits of both, through a technique called ROM patching. A ROM patch is essentially a replacement (through a software, or hardware branch) of existing ROM code. When the microprocessor requests data from a ROM that is incorrect, the E^2 patch system recognizes the bad address, disables the ROM and outputs the modified or correct data that is stored in E^2 memory. If a entire section of code is bad, then the E^2 memory is simply "patched in" through subroutine branches. Because the branch routine need only be a relatively small portion of code, the economics of

dense, low cost ROMs can be supplemented with the flexibility of higher cost, less dense E^2 PROMs. The dramatic flexibility of E^2 PROMs is gained at nearly the same low cost as ROM.

 E^2 PROM is used to advantage because now ROM patched can be made through the CPU's I/O systems. New patch data can be loaded into the E^2 electrically, without having to disassemble the equipment and swap EPROMs or PROMs. To extend the concept even further, these ROM patches can be made from a remote service processor through a data-com or telecom link. No service personnel would be necessary.

The 2816 offers features ideal for such an application. Its access time of 250ns is necessary to allow fast patching without slowing down the CPU. Because only certain bytes of information would change, the capability for individual byte erase is necessary.

A heavy user or ROMs, Tektronix, of Beaverton, Oregon, is now using the ROM patch technique. They currently use EPROMs as the patch medium, but E^2 offers a simple and more optimum use of the technique.

Attached is a reprint of an article written by Tektronix that discusses in great detail the technical implementation and advantages of such a scheme.

Field-programmable patches simplify firmware maintenance

The need to modify design firmware is virtually inevitable. Of several possible approaches to the job, one can offer higher efficiency and greater ease of use than the rest.

Kirk Wimmer, Tektronix Inc

You can use the ROM-modification technique developed in this article to easily and efficiently patch the firmware for your μC -based designs. And the users of those designs can also employ the method—without resorting to a service call. The technique overcomes most of the shortcomings of traditional firmware-modification methods, also discussed here.

The need for firmware modification arises from several sources. Implementation errors (bugs in the code) might be present, for example, or your initial design might exhibit specification errors. More importantly, though, your design will very likely require modification over its lifetime to accommodate expanded features and new options.

Planning for such changes is thus absolutely necessary. But actually changing ROM masks is an unacceptable approach because of its expense, long leadtimes and minimum-order-size requirements. Thus, you need an efficient way of fooling your design's μ C into sensing the required firmware changes even though those changes are not actually made in the system's masked ROM. Several methods of performing this task exist.

Try a transfer table

One such method, the transfer-table approach, involves dedicating approximately 20% of the ROM's address space to the task of adding a patch PROM's contents. In this PROM, you store a transfer (jump) table that serves as a directory for the ROM's routines. Every time your system's software program calls a routine, it vectors to that routine via the transfer table. To correct a firmware error, therefore, you first write a new routine in the remaining PROM space. Then you alter the transfer table so the system gains access to the new PROM routine rather than the erroneous version in ROM. Because the amount of patch space available determines the scheme's correction capacity, the approach requires that you reserve adequate patch space for several software modules and that you partition the firmware into small modules.

Transfer-table patching has several advantages. It not only works for firmware coded in assembly language, but also applies to firmware written in a high-level language. That is, you needn't be concerned about the details of the microprocessor instructions in the area where the problem exists. Additionally, after you finalize the firmware code and complete all desired modifications, you can replace the patch PROM with a pin-compatible ROM to minimize cost.

The scheme also has two disadvantages, though. First, an error in a particular routine requires—at minimum—replacement of a module from the routine's entry point through the point of the desired change. In some applications, you might need to replace the entire module, rapidly consuming available patch space. Second, the patch PROM must always be part of the system, even if you make no firmware corrections, because the method always employs the transfer table.

Vary the transfer-table approach

In another ROM-patching scheme that's similar to the transfer-table approach, you initially group the firmware modules functionally and then distribute them into several small ROMs. Next, you construct a transfer table in RAM from information found in the ROM headers upon power-up. Alternatively, you can use a dedicated, fixed location in each ROM to house the transfer table for its modules. In either case, if a problem exists in one functional area, you need replace only that function's ROM. For that purpose, you can use a pin-compatible PROM until a new masked ROM becomes available. When you install the new device, the transfer table gets updated automatically.

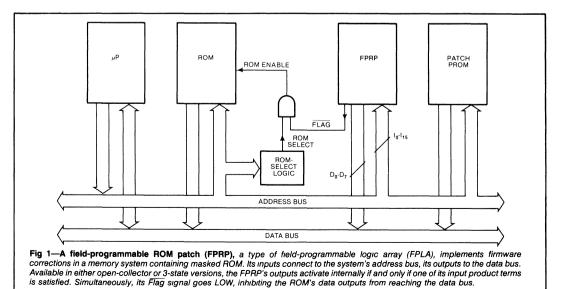
A disadvantage of this approach is that you must provide expansion space in each ROM when locating the firmware modules. Furthermore, if you require more patch space than is available in a particular ROM, you

Transfer-table scheme reserves address space for a patch PROM

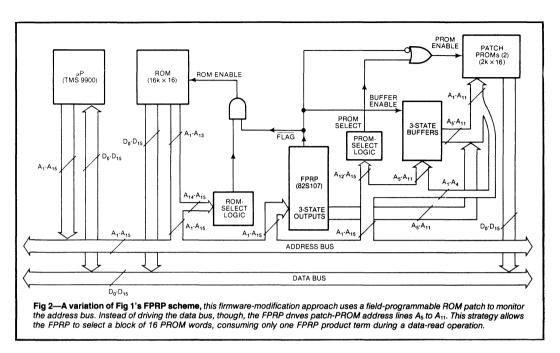
might have to change a second ROM to also utilize its patch space. And obviously, because it uses smaller ROMs, this approach consumes more space and power than the transfer-table scheme.

Field-programmable patch solves some problems

A more hardware-oriented approach to the problem of modifying a masked ROM's contents (Fig 1) utilizes a device termed a field-programmable ROM patch (FPRP). (See EDN, April 5, 1980, pg 88 for more information on these devices.) In this approach, the μP places addresses on the address bus during ROM read cycles, and the FPRP monitors those addresses. If the bus carries an address that the FPRP has been programmed to recognize, the FPRP's Flag output goes LOW, disabling the ROM and preventing it from putting its data on the 8-bit data bus. Instead, the FPRP's data outputs activate and supply the bus with a replacement byte. The µP interprets this byte as having come from the ROM. The strategy thus involves programming the FPRP to recognize addresses where erroneous ROM code exists; the FPRP in turn supplies the data bytes needed to correct the code.


You must often make insertions to existing ROM code without offsetting those insertions with deletions of corresponding size. To solve this problem, you can program the FPRP to substitute a Jump instruction to the address bus; the instruction's destination is a location in the patch PROM. You also write into the patch PROM the code slated for insertion, followed by another Jump instruction, which returns program flow back to ROM. However, because the FPRP has substituted a Jump for several bytes of ROM code, you must also duplicate the displaced bytes in the patch PROM.

You can see that the FPRP approach permits flexible firmware correction both on a byte-for-byte basis and in cases where an entire ROM routine needs modification. Its chief disadvantage is rapid consumption of FPRP capacity, because the FPRP outputs connect directly to the data bus. Furthermore, the approach uses one FPRP product term (with 16 word blocks per product term) for each byte it places on the bus. Consequently, when you need a Jump instruction, one product term serves the Jump opcode and two more serve the high and low address bytes. With only 48 product terms available, this ROM-patching configuration can thus soon become limited.


Another disadvantage of the FPRP method stems from the fact that changes occur in machine code at specific address locations, which are not readily accessible if you write the firmware in a high-level language. And if you require a 16-bit data bus, you need two FPRPs to drive the bus with the higher and lower data bytes.

An FPRP variation does the job

A variation on the FPRP approach overcomes most disadvantages. It was developed to modify firmware for Tektronix's Model 7854 oscilloscope and uses the FPRP to monitor a 15-bit address bus. But it doesn't connect the FPRP's outputs to the data bus (**Fig 2**). Instead, those outputs drive the seven most significant

address lines (A_5 to A_{11}) of two 2716 (2k×8) patch PROMs. The address bus directly drives the four least significant address lines (A_1 to A_4) of these PROMs.

This setup allows the FPRP to select a block of 16 words in the PROMs. Thus, unique data gets read while consuming only one FPRP product term. This read process takes advantage of the fact that you can program the FPRP inputs to the Don't Care state.

To employ the technique, you partition the two patch PROMs into two sections. The first contains 768 words (48 product terms \times 16 word blocks per product term), reserved for access only by the FPRP. The second stores the remaining 1280 words, which serve as patch space to hold replacement routines and code sections that in effect get inserted into the ROM. For added storage, you can install two more PROMs and obtain another 2048 words of patch space.

You can alter a single ROM word by programming the FPRP to recognize its address. You store the correct word in the appropriate location in the patch PROM. Several consecutive words might get corrected with only one FPRP product term by programming Don't Cares into the least significant inputs. All addresses affected, however, must fall within the same block of 16 words (ie, addresses A_5 through A_{15} common to each).

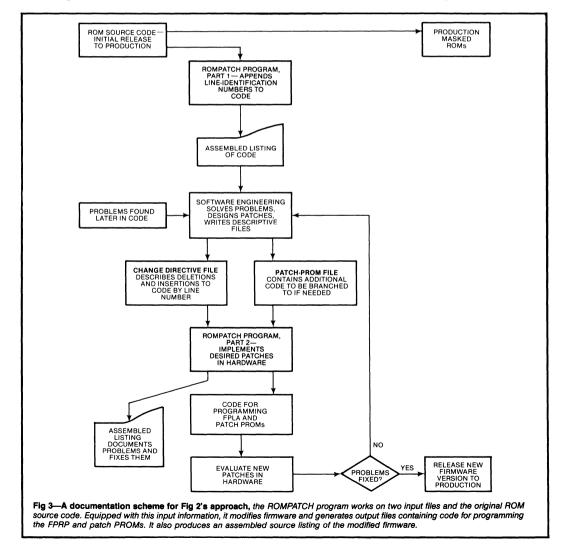
If a particular modification requires code insertion into the stream of instructions already in ROM, you can substitute a Branch instruction for two ROM-code words at the appropriate location. The code overlaid by this instruction and the code to be added can all reside in the patch-PROM area. You can address this area as ordinary memory without FPRP intervention. However, you must follow the added code with an instruction to branch back to ROM.

You can usually implement a 2-word Branchinstruction substitution of this kind with only one FPRP product term. The determining factor is whether or not address bits A_5 through A_{15} are identical for the two address locations where the branch substitution occurs. In the 7854's firmware, two FPRP product terms always get consumed to correct checksum and header information—a process that leaves 46 product terms available to fix firmware problems. Chances are thus one in 16 that a particular correction requires two product terms rather than one. Therefore, the 7854 implementation of this approach permits 40 or more separate corrections with better than a 93% confidence level.

An efficient software tool

Once you've recognized the necessity of providing for firmware modification and chosen a particular method, carefully consider the procedures required to actually make the changes. In the 7854's design process, for example, questions arose regarding how to program code into the FPRP and the patch PROMs. Hand coding proved undesirable because of its complexity and high error probability. Instead, an "intelligent" software tool implemented the desired firmware changes in hardware, easily and with minimum error. The tool also

Using small ROMs for patching consumes space and power


provided for (or encouraged) clear firmware-change documentation, which is important not only for archiving but also for adding feature modifications and, eventually, for making new ROM masks.

This intelligent software tool centers on a computer program, termed ROMPATCH (Fig 3), that permits design and documentation of firmware changes at the source-code level. To structure a program of this type, proceed in several steps.

First, assign to each ROM source-code line a unique

identification number, used to describe deletions and insertions to the ROM source code in a file that becomes one of the two ROMPATCH inputs. Second, furnish a file containing the source code for the new routines (or partial routines) as the second ROMPATCH input. The program branches to these routines when the size of a desired insertion exceeds that of the corresponding deletion. This code then becomes part of the patch PROMs.

The two input files, plus the original ROM source code, permit ROMPATCH to make modifications and to generate output files containing code for programming the FPRP and the patch PROMs. To supervise parts programming in manufacturing, you can easily download the output files into a computer.

Field-programmable ROM patch monitors address bus for faulty code

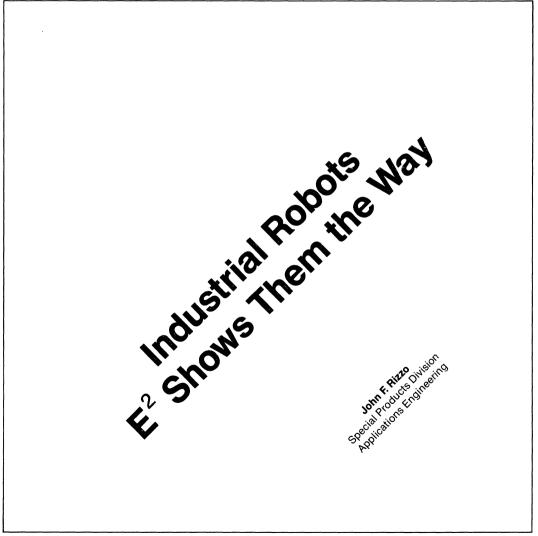
Additionally, one of ROMPATCH's outputs produces an assembled source listing of the modified firmware. The deleted ROM code remains in this listing but gets transformed into comment statements that the assembler ignores. The inserted code and descriptive comment statements follow the deletion in this listing, documenting the nature of each problem and how it's fixed. This information, all in one place, proves important when you must make future modifications and order a new set of ROM masks.

An additional benefit of the ROMPATCH program allows configuration of power-up diagnostics to test the ROMs by first calculating checksums through their contents, then comparing those checksums with values stored in the headers. However, when you modify the firmware, the checksums are effectively calculated over altered data and thus change. To deal with this problem, ROMPATCH or a program like it must automatically substitute the correct value for comparison. As a result, the power-up test not only checks the ROMs, but also checks whether the FPRP and patch PROMs are working properly.

You must establish implementation procedures like the foregoing whether you select a hardware- or a software-oriented ROM-patching approach. Try to develop software tools that lessen the laborious task of generating code for programmable devices. These tools, of which ROMPATCH is an example, serve to reduce human error, promote complete modification documentation and, most importantly, fix firmware problems.

Author's biography

Kirk Wimmer is a design engineer in the Laboratory Oscilloscopes business unit at Tektronix Inc, Beaverton, OR. Currently project leader on a 7000 Series plug-in-unit design, he previously worked on ROM-patching techniques for the firm's Model 7854 Waveform Processing Oscilloscope. A graduate (BSEE and MSEE) of the University of Colorado.



Kirk lists home remodeling and exploring alternative energy sources as his hobbies.

intel

APPLICATION BRIEF **AB-5**

August 1981

AB-5 INDUSTRIAL ROBOTS: E²PROM SHOWS THEM THE WAY

Industrial manufacturing environments are changing. Once semi-skilled or unskilled labor occupied most of the manufacturing workforce. But now—as labor costs have skyrocketed—manufacturers are looking for new ways to reduce costs and exploit new technology.

One of the most revolutionary of these concepts is the use of robots for manufacturing processes. Robotics reduces manufacturing costs and increases worker productivity. The Intel 2816 E^2 PROM can make robotics more efficient through the use of easily reprogrammable motion and action paths. In robotics systems when retooling is required, changes can be made simply, easily and cheaply by simply reprogramming E^2 memory. No physical system tampering is needed—changes in robot action are made through the cable, or through remote data link. E^2 memory offers excellent reliability and environmental capability in addition to high density and system flexibility, all needed for robotics systems.

The Intel E^2 PROM is a 16K, byte or chip-erasable device that can be erased and rewritten electrically-in addition, the device retains data without power in a completely non-volatile fashion. In robotics systems, where mechanical and pneumatic devices are controlled by microprocessors, typically the robot's path is contained in a non-volatile memory device. The microprocessor sequences through the action coordinates and directs the path of the machinery. This action path typically is changed infrequently-changes only are made for retooling or for correction of program bugs. However, because these robots are becoming extremely versatile and are being used for many different applications, the need for a flexible program memory is becoming increasingly important. One system can then be designed for a whole host of applications and the end-user can then configure the system local to the application.

 E^2 memory gives the end user this flexibility and allows robotics systems to be used in a wider variety of applications.

GENERAL SYSTEM ARCHITECTURE

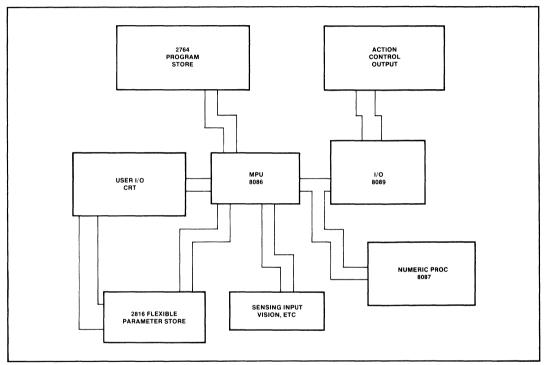
The system design for such a controller in many ways is similar to existing designs. The main distinction is the added capability with E^2 memory. A block diagram for such a robotics controller is shown in Figure 1.

The main functional units are split into general processing, performed by a 10 MHz iAPX86, numeric data processing for rapid calculation motion data, Input/Output processing to control mechanical or electrical robotic elements, and vision capability. Numeric data processing is performed by an Intel 8087. The main system program store is contained in 2764 8KX8 EPROM. User's control the system through a CRT interface. The 2816 is used to control the system through a look-up table—all parameters that are flexible can be changed directly from the keyboard.

E²/MICROPROCESSOR INTERFACE

A high-speed 16-bit MPU is used because of complex processing and numerical calculations necessary to support several degrees of freedom. Multiprocessing, in the form of 8089, and 8087, is used to offload tasks to more efficient processing elements. Because of the rate at which the CPU operates, relatively high-speed program and parameter storage is required. The 2764 and 2816 satisfies this need with read access times of 250 ns maximum.

In this system environment where E^2 is used as an infrequently changed parameter storage media, changes to E^2 memory can be made on-line. That is—the CPU can directly handle interface to the E^2 memory. No arbitration logic would be needed because the robotics would be in a retooling mode, the CPU could be dedicated to servicing the E^2 memory. Thus, the overhead logic would be minimal. A complete interconnect is shown in Figure 5.


E² MEMORY ADVANTAGES

The system's memory map would be partitioned in such a way to locate E^2 memory in the flexible portion of the memory space. This flexible memory could contain set-points, motion or control paths and other information that needs to be non-volatile but can still be changed dynamically while in system.

In addition to holding applications constant and parameters, the 2816 can contain program routines that would undergo change by the end-user. This essentially allows the users to custom fit the system to their particular application without having to require service from the equipment vendor. Such an approach reduces service costs and extends the useful life of the machine by minimizing obsolescence. E^2 memory is also more cost effective than alternative forms of flexible memory. CMOS and battery systems require costly batteries, recharging and interface circuits and have serious environmental drawbacks. When all these factors are considered with replacement of battery, E^2 is extremely cost effective.

SUMMARY

In this Application Brief, we have discussed the benefits that E^2 memory gives to manufacturers of robotics and numerical control equipment. Flexible, non-volatile storage of parameters and software makes the system dramatically more attractive to users and reduces overall support required by vendors. All in all, the Intel 2816 is a perfect choice for Robotics systems.

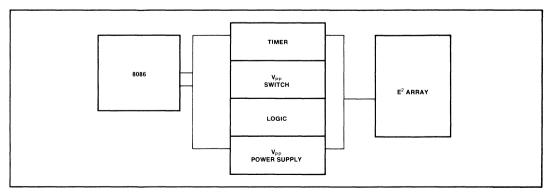


Figure 2

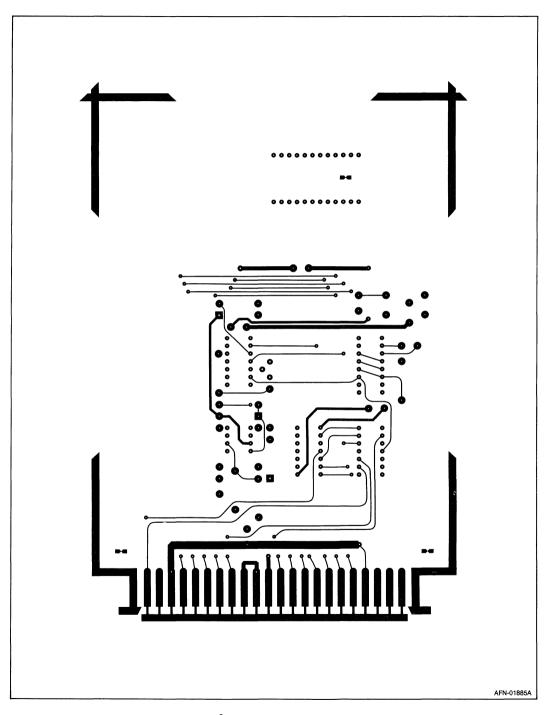
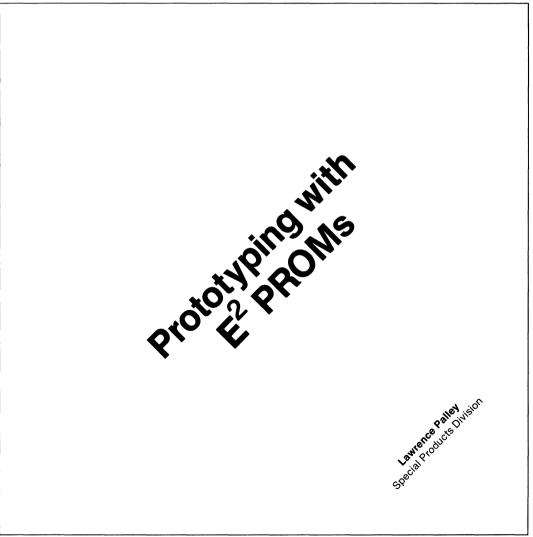



Figure 6c. E²-Demo II Controller I (Continued)

intel

APPLICATION BRIEF **AB-6**

October 1981

PROTOTYPING WITH E²PROMs

The Intel 2815 and 2816 E^2 PROM memory devices are being applied in many systems as a firmware storage medium. They give these systems a high degree of firmware flexibility in applications where firmware changes are a commonplace occurrence.

Many systems, once they are in the field, may not necessarily require the dramatic firmware flexibility which E^2 PROMs provide. For these systems, EPROM or ROM memories are often chosen for firmware storage. Even on these systems, however, E^2 PROMs offer unique opportunities for cost and time savings. Easier design and production start-up can often be realized by using E^2 PROMs as prototyping vehicles and in early production runs.

 E^2 PROMs can be used cost effectively during the development of systems which will eventually utilize ROM or EPROM memories for firmware storage. This application brief describes how E^2 PROMs can be used for firmware development prior to the actual production of ROM or EPROM memory boards. It describes the prototyping cycle and the resulting benefits E^2 PROMs provide to prototyping applications —efficient use of engineering time, a faster prototyping cycle, and a faster time to get product to market.

The complexity of today's designs requires that much time and money be spent for the development of firmware. Several iterations of firmware will usually be needed before a system is debugged and production fully under way. Resulting costs can quickly mount if designers must do these firmware updates off-line from the testing process. The flexibility to change the firmware in these prototype systems, without replacing hardware or reprogramming PROMs, is provided most effectively by E^2 PROMs.

The flowchart shown in Figure 1 illustrates a typical firmware prototyping cycle. In this cycle, firmware designs must wait for modifications to be implemented off-line. When a firmware error is detected, a new compilation of all codes must be implemented off-line, EPROMs or PROMs must be removed from the test system, erased, reprogrammed or replaced, and finally reinserted in their sockets before testing continues. During the period the update is occurring, testing is idled.

Figure 2 shows the same prototyping cycle, but with E^2 PROMs used as the firmware storage medium. While developing a system with E^2 PROMs, quickly identified firmware bugs can be immediately corrected. Firmware patches, which correct or route around the erroneous code, can be immediately inserted.

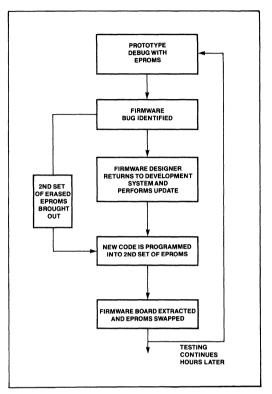


Figure 1. Typical Firmware Prototype Cycle

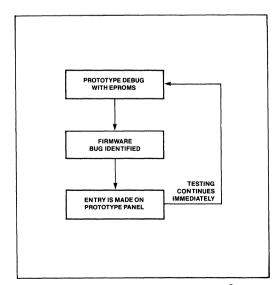


Figure 2. Firmware Prototype with E^2

Another case for E^2 usage during the prototype cycle is when a particular portion of code is not critical to the testing process. Often, it is desirable to delay testing of this code until critical code has been debugged first. Firmware branch code, which routes around this noncritical, untested code, can be inserted in the E^2 PROM during initial testing. When the critical code is debugged, this branch can be removed, and the noncritical code debugged.

 E^2 PROMs offer much greater flexibility for prototyping than ROM, PROM, or EPROM alternatives. Additionally, because E^2 PROMs are non-volatile, firmware is retained even when power is off—a significant cost savings over RAM prototypes, downloaded from disk. Continued downloads after every power down are not required.

Similar benefits are realized during a product's production start-up phase. Many times nonessential firmware for a system is not finalized until after production of the product is under way. By utilizing E^2 PROMs, finalized firmware can be loaded quickly into the product after its assembly. No boards or ICs would need replacement for the new firmware. E^2 PROMs would be used and programmed in-circuit.

IMPLEMENTATION OF AN E²PROM PROTOTYPE

A big advantage of Intel's 2815 and 2816 E^2 PROMs is their pin-for-pin read compatibility with the 2716 EPROM and other ROM ICs. Circuit boards, with sockets designed for 2816s, can easily accept 2716s when used in the read mode. This compatibility ensures that a firmware memory board needs to be designed only once for both prototyping and production. Discussed below is the design of such a board.

A major design consideration for the firmware memory board is that it has the minimum number of components, at the lowest cost, for production. For a board which is to contain ROM (e.g., it is used in a read-only mode alone after production), this necessitates that all circuitry used to program the 2815s or 2816 be located on a separate board for prototyping. This circuitry, which supplies the necessary timing, voltage, and waveshaping for programming the E²PROMs, can easily be located on a small daughter board. This small board is easily connected to the memory board through a connector or cable. A block diagram of such a configuration is shown in Figure 3.

Operation of the programming daughter board is initiated by the chip enable and write enable signals. The chip enable input is derived from the E^2 PROM address

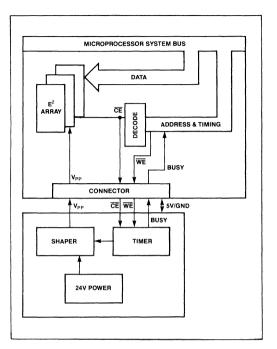


Figure 3. Firmware Board/Programming Card Circuits

decoder while the write enable signal is derived directly from the system bus. When these two signals are active, the timer (a one-shot) is triggered to time the 10ms (2816) or 50ms (2815) programming pulse. Concurrently, a busy signal is returned to the microprocessor bus for the duration of the write pulse. The write pulse from the timer is fed to the wave shaper which generates the 21V programming pulse needed to write an E^2PROM byte. Data and address are provided by the normal TTL bus signals.

When a small firmware error is found (a few lines of code) while debugging a prototype, the solution, in the form of patch code, can be entered directly via a front panel keyboard by the test engineer. This new code replaces the original code in a portion of the E^2 PROM memory.

When several patches are made during the course of testing, or at a periodic interval, the latest revision level of code would be recompiled in its entirety on an offline basis. It would then be loaded into the system. The recompiled code condenses all changes and makes sure that all printouts are up to date. The complete process of firmware revision described here maximizes the time which is spent actually checking out the prototype.

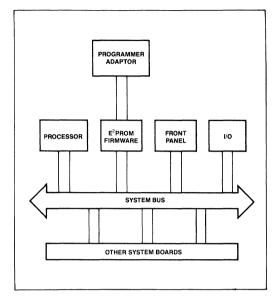
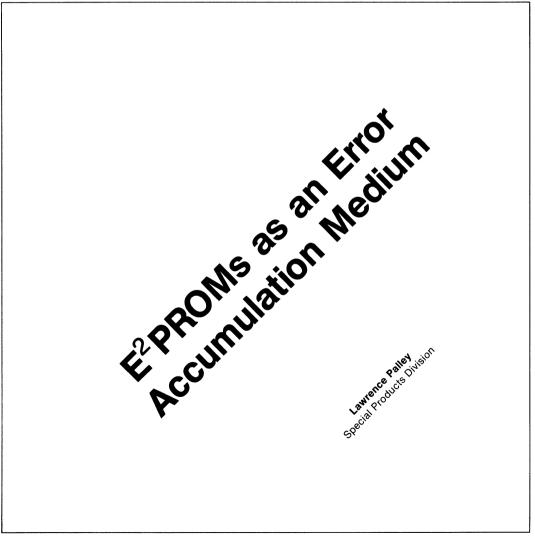


Figure 4. Prototype System Implementation

Usually, production of a new product begins before the prototypes are fully debugged and tested. Because these first production models may require final changes before leaving the factory, it is advantageous to use E^2 PROMs in these models. This allows firmware modifications to take place on the production line using the programming daughter board, during the period when the firmware is not entirely finalized. These production units will not need to be dismantled as final firmware changes are made. When the system is completely

checked out, the daughter board containing the E^2 PROM programming circuitry can be removed from the production cycle. EPROMs or ROMs can then be plugged directly into the sockets which originally used E^2 PROMs. At this stage, production will probably be fully under way.

Several advantages are derived from implementation of a firmware memory system in this way. Foremost is the compatibility of the production board with the prototype. This precludes the necessity of redesigning the memory board twice. A device swap from E^2 to ROM is all that is required when system firmware is finalized.


Since E^2 is programmed in-circuit, no extra inventory of PROM devices are required for different revision levels of code. The time it takes to replace ROM type devices and the problems of bent or broken pins, worn sockets, and worn connectors are eliminated.

Another advantage is the way all programming circuit costs for the E^2 PROMs are distributed over all firmware memory boards. Often, several prototypes are being developed at once. The same programming module can be plugged in on all these systems. Also, the power supply for the 21V V_{PP} pulse on the E^2 PROMs does not have to be resident in the final systems. For prototyping, power can be supplied by an external source or converted from 5V on the programming daughter board, eliminating the cost of an extra power supply from production models.

A final advantage is the cost savings on ROMs such a system can derive when a product needs a firmware update. No parts need changing if E^2 is the firmware storage memory!

APPLICATION BRIEF

October 1981

INTRODUCTION

The servicing of electronic equipment is a business area currently receiving much greater attention than it has in the past. Companies are now examining a product's life in the field with increasing concern. This a result of the dramatic cost increase associated with servicing a product at a remote site (up to 100% of the system's original cost). To combat these cost increases, companies are looking for more ways to build serviceability into their products before they leave the factory. They are looking to new technologies for the answers.

A recent technological innovation in semiconductor memory has been the development of the Electrically Eraseable PROM by Intel. Its availability as a non-volatile memory alternative opens up a broad spectrum of service cost-reducing applications in MPU-based equipment. These applications include remote firmware updates, diagnostic storage, signature storage, and the subject of this note—error logging.

This brief will discuss some of the problems associated with system maintenance and the types of errors which can make diagnosis a costly venture. It will then suggest methods for applications of E^2 PROMs as an error accumulation medium to aid in the solution of these problems. Finally, the benefits derived by using an E^2 PROM solution are evaluated.

FAILURE ANAYSIS DIFFICULTIES

A troublesome area for engineers is the diagnosis and repair of problems indicated by intermittent errors. These problems could be related to changes in the environment, intermittent device failure, or infrequently used timing path constraints. They are particularly hard to detect because they occur during the realtime operation of the system. Corrections for these problems are handled in a variety of ways depending on the severity. If the failures result in the shutdown of the machine, a customer engineer would be sent out immediately to diagnose the problem. Extensive diagnostics could be exercised and repairs result. On the other end of the severity spectrum, an error can be recognized by the user and ignored because it does not significantly affect his output. Because no formal record is kept, a serviceperson who is asked to fix the problem on a regular maintenance call, can only try and reenact the error condition. Many times this is not possible and several calls could be required to fix the problem. Even after these calls, the solution can be elusive and it may be required to do a total system swap. These two cases serve to show that whatever the error severity, a record of the errors could help a serviceperson quickly identify the problem.

E² APPLICATION AS AN ERROR LOG

There are two primary applications of E^2 PROM as an error logging medium. The first involves using the E^2 as a general system log where errors occurring in the entire system are stored. This application is useful to log randomly and unexpected system problems. The second is application in a dedicated error logging, and possibly correcting, system.

The first class of E^2 PROM error logging applications is depicted in Figure 1. A standard E^2 PROM array is interfaced to the microprocessor bus. An additional auxiliary register is necessary to keep track of the address identifying the next byte of E^2 PROM memory to be written in the event of an error. This register serves as an address pointer and may be implemented as a RAM location or an actual piece of hardware. The contents of this register would be saved in the last location of the E^2 PROM array upon power down so that its information would not be lost.

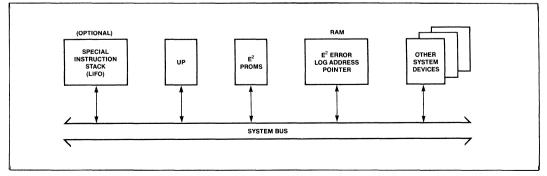


Figure 1. Typical E²PROM Error Log

The stack is optional hardware, but can be very useful in diagnosing random timing path or noise errors. At the start of every instruction, the last instruction would be automatically pushed onto the LIFO stack. In this way, a record of the previous instructions is always at hand.

The error logging process would begin with error detection through normal software and hardware flags. Upon detection of the error, the trap or interrupt routine to handle and restart the processor would be entered. At the start of the routine, the next addressed E^2 PROM byte is used to store system parameters. Instructions would be executed to store these vital system parameters including flags, status registers and the state of various CPU internal registers. A more sophisticated system would then be able to pop the stack (which was disabled at the start of the trap routine) and also store the code for previously executed instructions in the E^2 PROMs. These instructions provide a system history. The final step in the routine would be to restore the E^2 PROM address pointer register to reflect the next addressable E^2 PROM byte for the next log entry.

Since the E^2 PROM array is constrained by size, the situation of filling the entire array must be addressed. To prepare for this event the processor would, as part of the auxiliary register update routine, test the register to ensure that the next address is within E^2 bounds (Figure 2). If this is not the case, the processor would notify the operator that the array is full and/or dump the entire E^2 PROM contents to a printer. The processor would

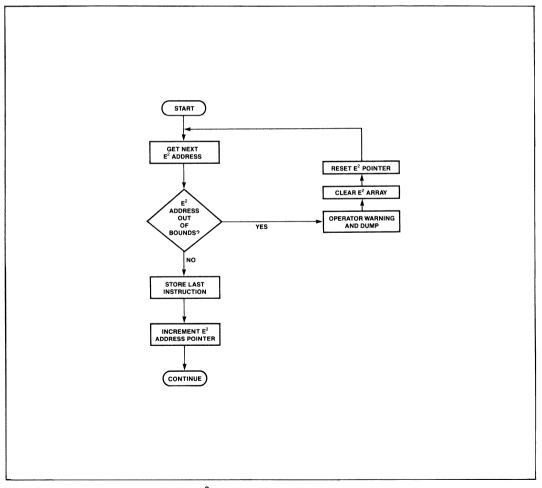


Figure 2. E² Address Pointer Update Routine

then, using the block erase features of Intel's E^2 PROMs, erase the entire array and reset the address pointer. If it is suspected that the E^2 array will quickly refill because of a hard failure, the operator would be able to disable the error logging feature so as not to overrun the E^2 PROM write capacity.

A repair person would be called in to fix faults. The error logs resulting in E^2 PROM could be quickly analyzed by the service engineer to determine system problems. Maintenance on faulty modules or to implement Engineering Change Orders to correct hard or soft errors would then be executed.

A second class of E^2 PROM applications are in those systems requiring dedicated error logging. In these applications, continuous system operation is desired even if multiple errors occur. Problems which do occur and create errors would have the errors information stored in E^2 PROMs to serve the dual function of a real-time correction feedback path and also as an off-line diagnostic tool. One example of this application is in a mechanical control positioning mechanism (Figure 3).

The first step in positioning the mechanism is for the processor to send a command to the D/A converts. This command contains the binary information necessary to instruct the activator to move the mechanism to a new location. After the mechanism is newly positioned, the processor verifies that this position is correct by reading the information presented by the sensor to the A/D converter. If the position is correct, no other processor

action is required. When the position is incorrect, the processor stores the instruction and the resulting positional information in a part of E^2 PROM used as an error log. This log would be used at a later time, off-line, to aid in the diagnosis of the problem causing the incorrect position. After logging the fault, the instruction could be retried to make sure that the problem is not random. If, after several retries, the instruction continues to position the mechanism incorrectly, then corrective action needs to be taken. The fault is indeed one that does not change over time.

To provide corrective instructions the processor would execute a program intended to discover the instruction which will position the mechanism correctly. After this instruction is found (possibly through successive approximation), it is stored in the E^2 PROM instruction store in the same location as the original instruction. Thus, when the routine in which this command was originally contained is reentered, the mechanism executes the new instruction and becomes positioned correctly.

ADVANTAGES OF AN E²PROM ERROR LOG

The foremost advantage of using E^2 PROM as an error log is its ability to be used on systems without disk media. In these applications, no easy solid-state, non-volatile alternative is available for a low-cost log.

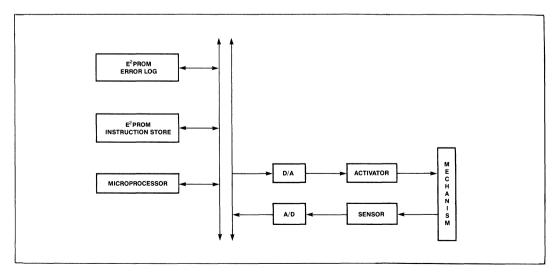
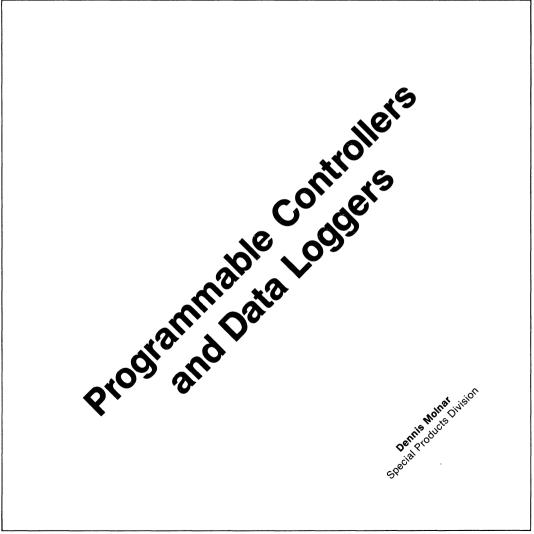


Figure 3. Mechanical Control Mechanism

An error log would substantially reduce the cost to service the equipment by significantly reducing the mean time to repair. In fact, the use of error logs can allow the user to diagnose and repair his own system—completely eliminating the service call.


Another significant advantage of E^2 PROM is its solid-state nature when used in systems which do have rotating media. Since these devices are mechanical, they are the most prone to failure. By implementing an error log on E^2 PROM, the log is accessible even after a head crash or some other disk failure. This reliability makes the capability for remote or local diagnosis an even greater certainty. Use of E^2 PROM in a dedicated environment, provides much needed logging flexibility while also providing fault diagnostic capability. Mechanisms located in remote or harsh environments which are not easily accessed by service engineers, can operate with a much higher degree of fault tolerance. Better reliability for continuous operation is the direct result.

Much reduced servicing costs plus much increased reliability are two key results manufacturers look for when designing new systems. E^2 PROMs used as an error logging medium provide a flexible, easy-to-implement, and reliable alternative toward achieving these goals.

intel

APPLICATION BRIEF **AB-8**

October 1981

© INTEL CORPORATION, 1981

AFN-02074A

INTEL'S E²PROMS CAN BENEFIT BOTH THE MANUFACTURER AND THE USER

The Industrial setting is finding Programmable Controllers and Data Loggers to be growing in sales as the cost of electronic hardware decreases, and as processes become more complex. All too often, the Industrial Process is restrained, not by its speed and dependency limitations, but by that of its supporting devices. As the cost of electronics hardware goes down, the cost of process downtime is going up because of the increased cost of labor, materials and opportunity.

This brief discusses the typical system architecture of Programmable Controllers and Data Loggers, then examines the current use of battery-backed RAM in the systems, and notes benefits received from using Intel E^2 PROMs as an alternative to the battery-backed RAM.

Typical system architecture centers around a 16-bit microprocessor with a keyboard, display, tape drive, I/O and memory. Since the system operation consists of sequentially scanning the inputs, processor operation consists of retrieving an instruction from the user memory, executing it via the operating program, using the scratchpad, performing any output required, and repeating the cycle. Should the user program need to be loaded into user memory, it can be done by keyboard, tape load or a remote processor. See figures 1 & 2.

The battery-backed up RAM is used to store the userspecified program. It must be non-volatile as the user does not want the inconvenience of reloading it (by tape or keyboard) every time the power is interrupted. Should the process be of a batch nature, the microprocessor scratchpad and data table also need nonvolatility so that if the process is interrupted by a power failure, it can be started again without initializing the process. In Data Loggers, the clock is battery backed up in order to provide correct program function on startup per time of day.

The RAM and battery back-up of the user program does serve its purpose but is susceptible to the rigors of the harsh industrial environment. Occasionally problems are caused for the user when the batteries or power sense circuitry fail to do their work. The inherent problem of batteries is that their lifetime of 1 to 4 years (depending on use) is not as long as the 10-year-plus life of the machine whose memory they back up. They must therefore be checked and replaced during the lifetime of the machine thus incurring high costs and paperwork for the user. The major concerns of industry users are twofold. First is that the batteries sometimes fail during a shut down. Second is that the power sensing circuitry can be affected by transients. Both of these can cause loss of the user program which hurts the user as it causes costly process downtime. The user does not blame all the problems of user memory loss on the reliability of the batteries and sensing circuitry. Often it is an operator who carelessly allows condensation, fluids or temperature extremes to be exposed to the

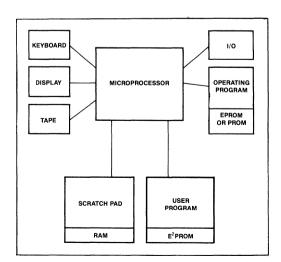


Figure 1. Programmable Control System Architecture

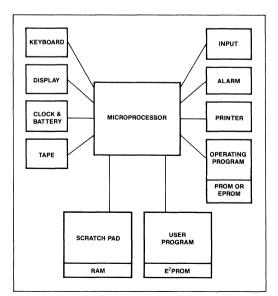
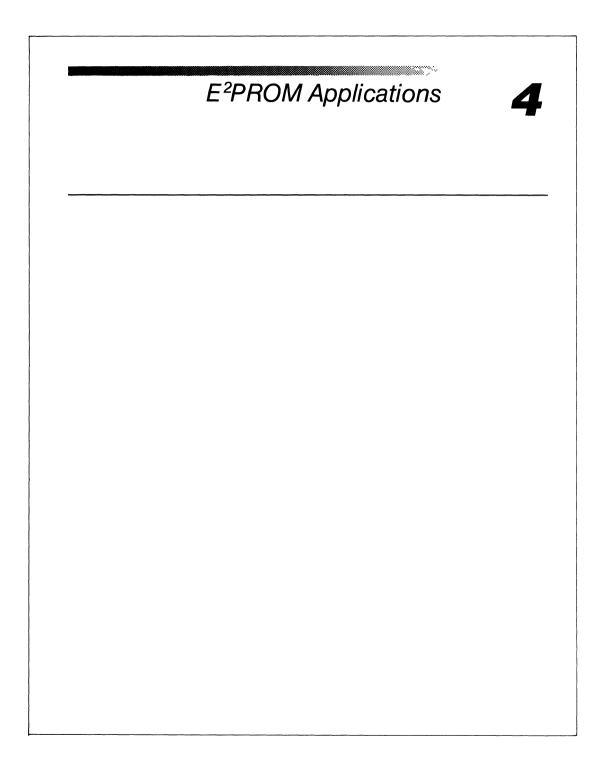
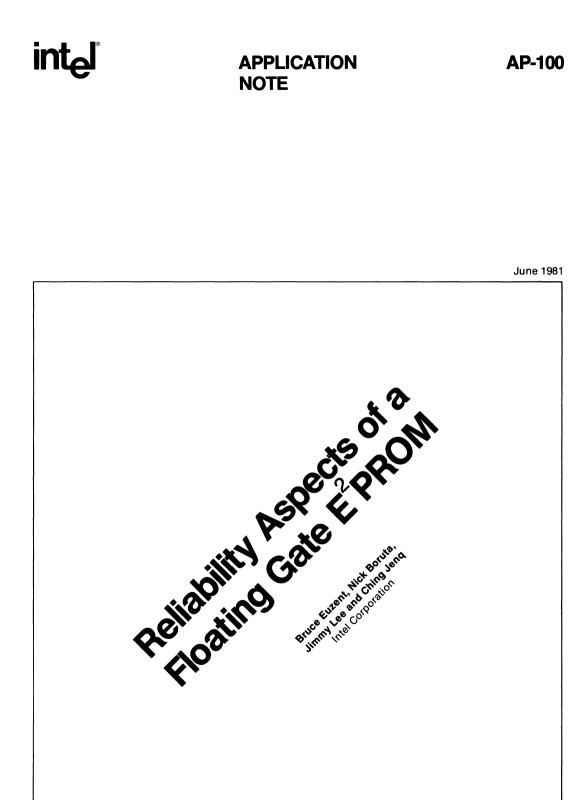


Figure 2. Data Logger System Architecture

Controller or Logger. All these factors can cause user memory loss through short circuits or through battery failure due to sensitivity to temperatures other than at room.


The costs of process downtime to the user can be from hundreds to thousands of dollars per hour. The user accepts that power failures are beyond his control but process downtime after a failure is controllable. If a user has to reload the program due to battery failure, insufficient charging, or sensing circuitry failure, the actual loading can take 10 minutes to many hours. This depends on how many machines are being used and and whether the user has already had experience (and downtime) and therefore knows the immediate solution from a previous repair. The Intel E²PROMs offer the solution to drawbacks of battery-backed up user memory as they are *truly non-volatile* and offer the fast read access speed required by the microprocessor.


The benefits to the user are as follows:

—No battery failure during a shutdown necessitating a reload upon startup and production loss. Production savings using E^2 can be up to many thousands of dollars.

- -No loss of user program due to power transients or operator negligence. Costly downtime can be avoided.
- Possible elimination of tape as a secondary storage medium saving an initial investment of hundreds of dollars.
- —Elimination of battery costs and servicing costs for user program retention. This can be in the order of \$10 or more each year depending on battery type, service method, and shut downs per year.
- -Increased confidence in machine reliability.

The benefits to the manufacturer lie in the fact that over the life of the machine, costly customer production downtime will be avoided and therefore the customer will have a higher level of confidence in the machine's memory retention. This translates directly into a higher sales price for the manufacturer. Intel's E^2 PROMs are a value adder to the manufacturer's products. They enhance product features, increase product value, reduce customer maintenance, reduce manufacturer's warranty costs and offer *true* non-volatile memory.

Based on presentation at 1981 International Reliability Physics Symposium, Orlando, Florida, April 7, 1981.

INTRODUCTION

Electrically Erasable Programmable Read Only Memories (E²PROMs) that can be electrically erased and written one byte at a time are new components being used in computer systems. The E²PROM is particularly attractive in applications requiring field update of program store memory or non-volatile data capture. It is only recently that E²PROMs which operate via Fowler-Nordheim tunneling to a floating polysilicon gate have become available. The E²PROM has the data retention requirements of earlier generations of PROMs, but also must maintain its field-programmable characteristics over its device life.

In this paper we shall first review the basic operation of the Intel[®] 2816 E^2 PROM cell. Intrinsic failure mechanisms which limit the applications of E^2 PROMs will be examined, and then defect mechanisms will be discussed. Finally lifetest data will be presented to predict operating failure rates.

Device Operation

The Intel 2816 uses the FLOTOX structure, which has been discussed in detail in previous literature¹. Basically, it utilizes an oxide of less than 200Å thick between the floating polysilicon gate and the N+ region as shown in Figure 1.

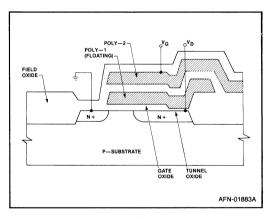


Figure 1. FLOTOX Device Structure Cross Section

Both erase and write are accomplished by tunneling the electrons through thin oxide using the Fowler-Nordheim mechanism². The I-V characteristic of Fowler-Nordheim tunneling is shown in Figure 2, where the current is approximately exponentially dependent on the electric field applied to the oxide.

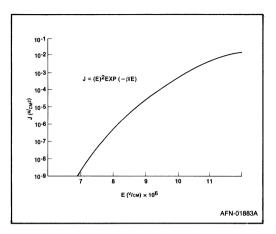


Figure 2. Fowler-Nordheim Tunneling I-V Characteristic

During the erase operation, approximately 20V is applied to the top gate of each cell in the byte while the drain is kept at ground potential. The electrical field in the thin oxide region is directed from the floating gate to the N+ region such that electrons tunnel through the oxide and are stored on the floating gate. This shifts the cell threshold in the positive direction causing the cell to shut off current flow and present a logical "1" at its output (as seen in Figure 3a).

On the other hand, when the cell is written to logic "0", the top gate is pulled down to ground potential and a high voltage is applied to the drain (with the source end floating). Electrons are depleted from the floating gate

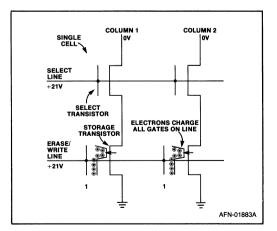


Figure 3a. Schematic of Memory Cell Operation During Erase

as seen in Figure 3b, and the cell is left with a negative threshold. Since the interpoly oxide is much thicker than the "tunnel oxide" and the electric field across the interpoly oxide is much smaller, the erase and write operations are predominantly controlled by the thin oxide region.

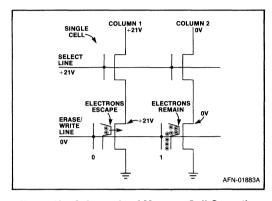


Figure 3b. Schematic of Memory Cell Operation During Write

Read Retention

The floating gate structure is known for its excellent charge retention properties. The reliability of this structure in the case of the EPROM device has been reported before³. The only remaining concern of the data retentivity of the 2816 is possible charge gain or loss through the tunnel oxide due to Fowler-Nordheim tunneling. The maximum electric field is built up across the tunnel oxide for a written cell, one that has a net positive charge on the floating gate. In this state the positive top gate voltage creates an electric field which adds to the field created by the positive charge on the floating gate, and there exists the probability that electrons may tunnel to the floating gate and shift the cell threshold. The band diagram of this condition is shown in Figure 4. However, the amount of current which may pass through the thin oxide during read or deselect is kept low by biasing the top gate of the memory cell at an internally generated voltage less than V_{CC} . The effect on the threshold shift of the cell can only be observed after long-term stress. Under this condition, the accelerated voltage test can be very useful.

If we assume Fowler-Nordheim tunneling is the predominant mechanism governing the movement of electrons, the threshold shift of the cell will be dependent solely on the voltage between the top gate and the N+ region. This has been proven to be true in both simulations and experiments, where we found that

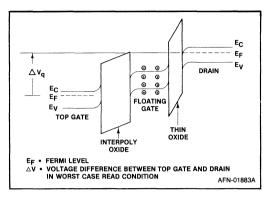


Figure 4. Band Diagram During Read of Written Cell

there is a one-to-one relationship between the V_T and the stress voltage. In other words, we can stress the device by applying a higher voltage to the top gate such that the change of the threshold voltage can be measured. The data then will be used to predict the same characteristics at the much lower normal read voltage. In Figure 5, the aforementioned simulation and experimental data are shown. The cell was biased at a voltage 4V higher than the normal read condition and the threshold voltage of the cell was monitored over a period of a week. A simulation was also generated to compare with the observed threshold shift and to demonstrate the technique we use to predict whether the data retention of the cell is accurate. As can be seen in the Figure 4, even under the accelerated voltage test the cell V_T still will not cross above the sense level after more than 10 years. Similar data has also been taken by writing the cell to a more negative initial threshold. In this case, the shift of the threshold can be observed at a stress of normal read voltage. Clearly, a 1V/1V relationship holds and an extrapolation can be made that the correct data will be retained for more than 10 years of continuous read.

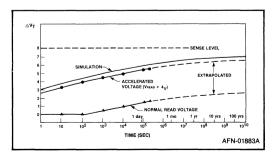


Figure 5. Single Cell Threshold Voltage Shift vs. Log Time During Read of a Written Cell

Intrinsic Charge Trapping

An ideal feature of a tunneling dielectric is that it should never remember the number of electrons that passed through it or the voltage that was previously applied across the film. Unfortunately, for thermally grown SiO₂ there always exists a certain number of electron and hole traps^{4–9}. When these traps are occupied the net charging state of the tunnel oxide will be changed and thus cause the tunneling current across the film to vary if the applied voltage has remained the same.

Figure 6 plots the threshold voltage of a 2816 cell in erase (charged) and write (discharged) states as a function of erase/write cycles. The solid line is for a single cell, while the dashed line is for a typical 2816 array. It is seen that the threshold window, defined as the difference between the erase and write threshold, is increased in the first few E/W cycles and then saturates and remains almost constant until 10^4 cycles. From that point, the window begins to narrow gradually until around 10^6 cycles where the window is collapsed.

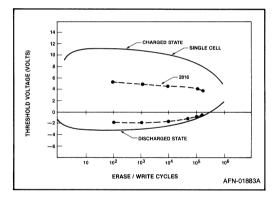


Figure 6. Typical Cell and Device Window vs. Log Cycles

Our study shows that the behavior of the widening and narrowing of the threshold window can be explained by charge trapping in tunnel oxide. The window widening effect is found to be caused by the following mechanism:

Assume a cell is to be erased following a write cycle. During the preceding write cycle, the floating gate is biased negatively relative to the substrate. A layer of positive charge will be formed, either through the tunneling of holes from Si into SiO₂ or electrons in the reverse direction. These positive charges are in general at 20–30Å away from the SiO₂/Si interface, as in Figure 7a. At the beginning of the erase step, the positive

charges will cause an increase in electric field at the injection interface, i.e., SiO₂/Si interface, as shown in Figure 7b. This will in turn increase the tunneling current to the floating gate, where the amount of stored electrons is thus increased, causing the erase threshold to increase. During the erase cycle, however, the polarity of bias voltage across the tunnel oxide will cause the positive charge at SiO₉/Si interface to be neutralized through the reverse tunneling mechanism that forms these charges. At the same time a new layer of positive charges is formed near the anode^{11, 12}, i.e., poly/SiO₂ interface, as shown in Figure 7c. These charges will then cause the write threshold to increase through the same mechanism as that discussed for the erase threshold. In addition to positive charge trapping, our study also shows that there is a uniform distribution of electron traps throughout the oxide $^{11, 12}$. When the cell is erased or written, electrons are injected through the oxide and some of them will be captured by these traps,

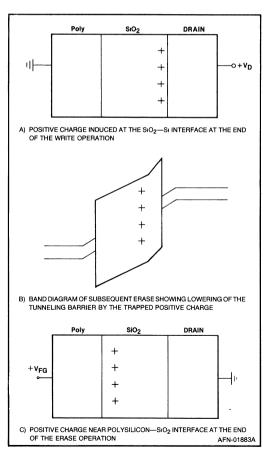
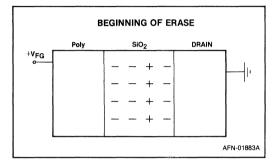
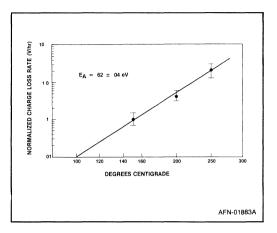


Figure 7. Threshold Window Widening

causing the build-up of negative charges in the oxide, as shown in Figure 8. The negative charges will reduce the electric field at the injection interface, thus decreasing the tunneling current and causing the threshold window to narrow. It has been found that the electron traps are not only preexisting in the oxide but also generated during the E/W cycles⁹⁻¹² because of the high field stress and the accompanying high current flow. The non-saturated build-up of negative charges, because of the continuous generation of electrons traps will finally cause the threshold window to collapse.




Figure 8. Negative Charges Trapped Uniformly Across Tunnel Oxide

Defect Charge Loss

EPROMs have been shown to have excellent data retention³. In this section we will discuss data retention studies that have been performed on the Intel 2816 E^2 PROM. Since in E^2 PROMs the number of Erase/ Write cycles during the device lifetime is 3 to 4 orders of magnitude greater than in the EPROM, we will also need to address the effects of cycling on data retention.

As in the case of EPROMs the charge loss from the floating gate can be described as either intrinsic or defect-related. We will discuss the defect-related charge loss since the intrinsic charge loss on a typical device is identical to the EPROM and has been described before³.

Devices exhibiting defect-related charge loss were erased to a logical "1" (electrons on floating gate) and stored at 250° C, 200° C and 150° C. The erase margins on the devices were monitored over various time intervals and the charge loss rate in volts per hour was determined. The results are shown in Figure 9. This data is normalized to 1 volt at 150° C. A best fit to the data shows an activation energy of .6 eV. This compares favorably to the defect-related charge loss observed in EPROMs.

Figure 9. Plot of Defective Bit Charge Loss vs. Storage Temperature

Erase/write cycling effects on data retention were then studied by comparing 250°C retention before cycling to that after 10,000 cycles. Figure 10 shows a plot of the cumulative of % data retention failure during 500 hours 250°C retention bake. Data from the Intel 2716 EPROM is included as a comparison. From this data it is clear that cycling to 10,000 cycles has minimal if any effect on data retention. In addition, the retention failure rate closely resembles that of the Intel 2716 EPROM.

Since the defect charge loss failure mechanism is temperature activated it is simple to construct screens on a production basis for these types of failures similar to those used on EPROMs.

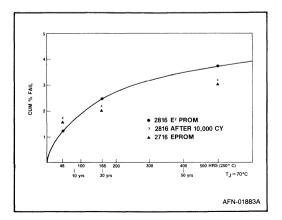


Figure 10. Intel 2816 Data Retention at 250°C, Percent Fail vs. Time

Accelerated Test Results

An E^2 PROM has an additional reliability requirement over standard PROMs. Besides the integrity of data retention, an E^2 PROM must withstand up to 10,000 erase and write programming pulses per byte. Besides the previously discussed window closing phenomenon there are reliability considerations due to high voltage operation. Dielectric breakdown¹³ is a common MOS failure mechanism, which has been shown to be highly voltage accelerated. The reliability of the Intel 2816 during erase/write cycles was measured by performing the full number of erase/write cycles on each byte. Erase/write cycling was done at 70°C and 25°C with no difference in observed failure rate between these temperatures.

The results of erase/write cycling are shown in Figure 11A. The devices under test are completely tested after 2,000, 5,000 and 10,000 total cycles on each byte. The devices are programmed to several data patterns and tested to data sheet specifications. In addition, the devices are tested for high temperature data retention. As can be seen from Figure 11A, the failure rate per 1000 cycles decreases as a function of the number of cycles, which is typical for defect mechanisms such as dielectric breakdown¹³.

Two major types of failures were found: Tunnel oxide breakdown and oxide breakdown in the row select circuitry. These failures were minimized by using standard screening techniques for oxide breakdown. Figure 11b shows the failure mode distribution found during erase/write cycling of 549 devices.

Tunnel oxide breakdown failures are cells which fail to erase or show conductive oxides. These failures can be made to both gain and lose charge and exhibit no temperature acceleration. Tunnel oxide failures lose enough charge to cause data loss within hours. No failures have been found with longer retention times as is illustrated in the life test results of Table II.

Table I shows expected failure rates in %/1000 hours at a 60% upper confidence level based on expected device life and the average number of cycles per byte. In a typical system it is expected that some bytes will be written more often than others, so these failure rates serve as a guideline.

As can be seen in Table II, acceptable failure rates are achieved for the design goal of 10,000 erase/write cycles per byte. To achieve 10,000 cycles per byte in ten (10) years, each byte must be altered approximately three times per day.

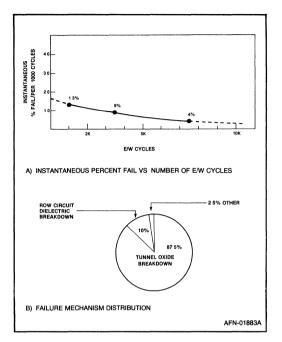


Figure 11. Erase/Write Cycling Results

Table I. Erase/Write Cycling Failure Rate (per 1000 hours at a 60% UCL)

	1	No. of Cycles	5
Device Life	2000	5000	10,000
5 years 10 years 20 years	.065% .032% .016%	.11% .054% .032%	.17% .087% .043%

Table II. 125°C Lifetest Results

Cycles	48 Hrs	168 Hrs	500 Hrs	1000 Hrs	2000 Hrs	
0	0/1422	1/1422 ^a	1/443 ^b	0/429	0/270	
10,000	0/336	0/336	0/336	0/150		
Total	0/1758	1/1758	1/779	0/579	0/270	
Failure Analysis: a) = Non-repeatable charge gain, contamination, lev. b) = Input leakage, contamination, lev.						

As a final verification of device reliability a standard high temperature lifetest at 125°C was performed on devices programmed with a checkerboard data pattern. The lifetest was performed on devices with no additional cycles and devices with 10,000 cycles on each byte. As can be seen from the data in Table II standard MOS failure mechanisms were observed. This data is significant in that it shows no additional defect mechanisms related to data retention or erase/write cycling of the Intel 2816 E^2 PROM.

Failure rate predictions are made in Table III at a 60% upper confidence level for both 55°C and 70°C operation. The .013%/1000 hrs. failure rate at 55°C shows good reliability comparable to other semiconductor memories.

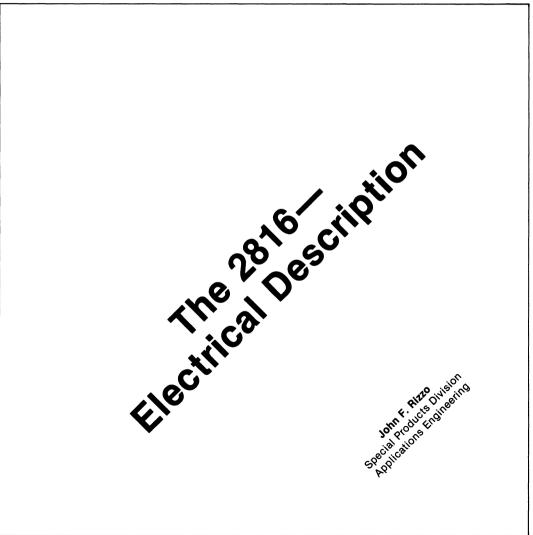
Table III. Failure Rate Predictions at a 60% U.C.L	Table III	. Failure	Rate	Predictions	at	а	60%	U.C.L.
--	-----------	-----------	------	-------------	----	---	-----	--------

125°C Device Hrs.	Activation Energy	Equivalent Hours		Lifetest Failures		e Rate 000 Hrs
		55°	70 °		55°C	70°C
1.1x10 ⁶	0.3 eV	6.8x10 ⁶	4.5x10 ⁶	0	010	.020
1.1x10	06 eV	4.4×10^{7}	1 8x107	0	002	005
1.1x10 ⁶	1.0 eV	5.3x10 ⁸	1 2x10 ⁸	2	.001	.003
				COMBINED	013	.028

SUMMARY

This paper has discussed a number of E^2 PROM failure mechanisms for both erase/write cycling and data retention. It has been shown that Fowler-Nordheim tunneling used for programming does not affect data retention. Erase/write cycling has been shown to degrade device margins by only a small amount and is easily guardbanded. Erase/write cycling does contribute to a significant portion of the observed failure rate due to oxide breakdown under high field operation. Defectrelated charge loss has been shown to be similar to that E^2 PROMs can perform reliably in applications requiring up to 10,000 erase/write cycles per byte.

REFERENCES


- W. S. Johnson, et al, "16-K EE-PROM Relies on Tunneling for Byte-Eraseable Program Storage," *Electronics*, February 28, 1980, p. 113–117.
- 2. R. Williams, Phys. Rev., Vol. 140, p. 569, 1965.
- R. E. Shiner, J. M. Caywood, B. L. Euzent, "Data Retention in EPROMs," 1980 Proceedings of the 18th Annual Reliability Physics Symposium, p. 238-243.
- E. H. Nicollian, C. N. Berglund, P. F. Schmidt, I. M. Andrews, *J. Appl. Phys.*, Vol. 42, p. 5654, 1971.

- 5. M. H. Woods and R. Williams, J. Appl. Phys., p 47, 1082, 1976.
- 6. W. C. Johnson, *IEEE Trans. Nucl. Sci.*, p. NS-22, 2144, 1975.
- D. J. DiMaria, Proceeding of the International Topical Conference on the Physics of SiO₂ and its Interfaces, p. 160, 3/78.
- 8. E. Harari, Appl. Phys. Letter, p. 30, 601, 1977.
- C. S. Jenq, "High Field Generation of Interface States and Electron Traps in MOS Capacitors," Ph.D. dissertation, Princeton Univ., 12/77.
- C. S. Jenq, W. C. Johnson, "High Field Generation of Electron Traps in MOS Capacitors," presented in Semiconductor Interface Specialist Conference, 12/77.
- C. S. Jenq, T. R. Rangarath, C. H. Huang, "Charge Trapping in Floating Gate Tunnel Oxide" presented in 1980 Non-Volatile Semiconductor Memory workshop to be published.
- D. R. Young, "Electron Trapping in SiO₂", presented in 1980 Non-Volatile Semiconductor Memory workshop.
- D. Crook, "Method of Determining Reliability Screen for Time Dependent Dielectric Breakdown," 1979 17th Annual Reliability Physics Symposium Proceedings, p. 1-5.

intel

APPLICATION NOTE

April 1981

Flexibility, non-volatility, and a highly consistent system architecture — those attributes characterize the 2816 Electrically Erasable PROM. In this application note the electrical parameters that define the performance and operation of the device will be discussed. The concept of EPROM-like read architecture, encompassing high speed and 2-line control is detailed. In addition, the write/erase access needs some discussion as well. In the context of this discussion, the device performance, in its entirety, will be considered. In other application notes (Ap 102 and Ap 105), the system hardware and software architectural implications are discussed in detail.

INTRODUCTION

The 2816 is a $2K \times 8$ bit PROM that is electrically erasable. It's contents can be changed in the system without necessary removal from a board or cabinet. Along with this dramatic flexibility, the 2816 is nonvolatile, just like the EPROM. The E^2 then benefits the user with EPROM-like data integrity and the additional capability to alter the memory data in-system. These two capabilities have never been possible with semiconductor memories. In addition to retaining data like the EPROM, the 2816 has very fast read access; data can be obtained from the device in less than 250 ns. This benefits system designers with high system performance to allow very competitive product entries.

The inherent flexibility that 2816 technology offers comes from the ability to alter single bytes of information. That is, just like a RAM, one byte of information can be erased and rewritten. Single-line editing of information is now possible. Direct register to memory transfer can occur without using additional and costly RAM buffer, which is unlike bulk erasable devices. In addition, if one wishes to erase the entire device at once, then a chip erase function is available. With this operation, all 2048 bytes of data can be returned to Logic 1 in 10 ms. The entire memory can be erased 300 thousand times faster than conventional EPROMs.

Because of the capability to write and erase data insystem, the 2816 architecture is designed to be very consistent. That is, the interface to the conventional microprocessor is simple and straight forward unweildy and costly interface circuits are unnecessary. In the following paragraphs the read access, erase access, and write access modes will be discussed.

READ ACCESS MODE

The 2816 pinout, shown in Figure 1, is nearly identical to that of the 2716 EPROM. In the read mode, there are 3 groups of pins that are relevant: address, data, and control. The address input pins simply direct information within the device to be placed on the data output pins. When either of the control pins, \overline{CE} or \overline{OE} is logic

"1", the data output pins are tri-stated. The combination of these control pins, called 2-line control, eliminates bus contention problems commonly encountered in microprocessor systems.

Chip enable is used as the primary device selection mechanism, and typically is obtained from address decoders. If chip enable alone is used to strobe data from the device to a common data base, then serious bus contention problems can result. Bus contention timing, shown in Figure 2, indicates why bus contention occurs. Basically, when one device on a common data bus is turned on, its outputs transition to either high or low levels. When it is deselected, there is a finite time delay before the output goes high impedance (this delay is a $T_{\rm DF}$ time which is specified in the data sheets).

Contention occurs, as shown, when one device is turning on while another is turning off. The timing overlap causes the data pins to be illegally driven from two sources. On any memory device with a single selection pin, system level bus contention can occur. Intel has pioneered the solution to bus contention through the use of the output enable pin. Output enable, as mentioned, simply strobes the output buffer. When output enable is connected to the microprocessor \overline{RD} (read) line, contention is eliminated because no timing overlap can occur (as shown in Figure 3). Note that \overline{CE} (derived from addresses) occurs far outside the \overline{OE} signal — no overlap is thus possible. The two line control architecture of the 2816 therefore eliminates bus contention problems.

A7 🗖 1	24	Vcc	A7 🗖 1		24 🗆 Vcc
A6 🗌 2	23	_ A8	A6 🗌 2		23 🗖 A8
A5 🗌 3	22	A9	A5 🗖 3		22 🗖 A9
A4 🗖 4	21	VPP	A4 🗖 4		21 🔤 VPP
A3 🗖 5	20	OE	A3 🔲 5		20 🗍 OE
A2 🗌 6	2816 19	A10	A2 [] 6		19 🗖 A10
A1 🗌 7	E ² 18	CE	A1 [] 7	. UV	18 🗌 CE
Ao 🗌 8	17	l7/07	A0 🗌 8		17 07
l₀/O₀ 🗌 9	16	I ₆ /O ₆	O 0 🗌 9		16 🗌 O 6
I₁/O₁ [] 10	15	I5/O5	01 🗌 1		15 🗌 O ₅
l ₂ /O ₂ [] 11	14	_] I₄/O₄	O ₂ 🗌 1		14 04
GND [] 12	13	I ₃ /O ₃	GND 🗌 1	2	13 03
		PIN N	AMES		
	A0-A10	ADDF	RESSES		
	ĈĒ	CHIP	ENABLE		
	ÖĒ	OUTF	UT ENABLE		
	00.07	DATA	OUTPUTS		
	I0-I7	DATA	INPUTS		
	VPP	PROC	RAM VOLTA	GE	

Figure 1. 2816 Pinout

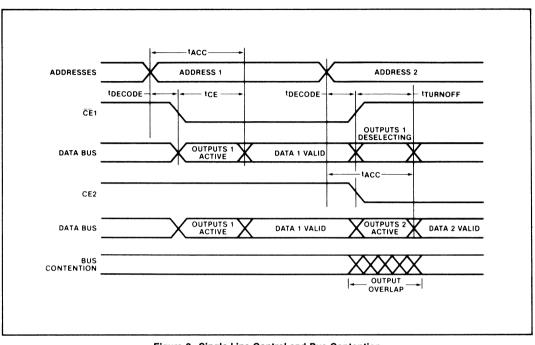


Figure 2. Single-Line Control and Bus Contention

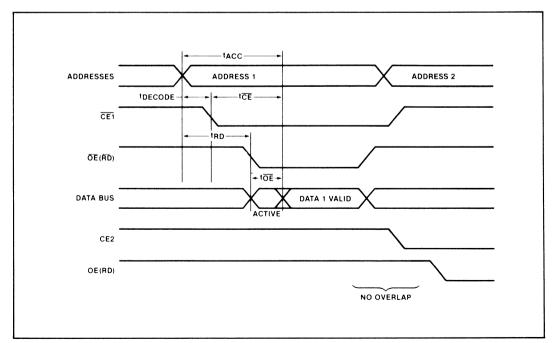


Figure 3. Two-Line Control Architecture

Another important characteristic of the memory access, is the speed at which the device can respond. In contemporary microprocessor systems, when information is requested from memory, addresses emerge from the CPU and are propagated to the memory. The memory responds, and sends its information back to the CPU. This basic cycle, shown in Figure 4, dictates the speed of the memory. Typically, the system diagram of Figure 5 is common. Delay (both address and data) exists between the CPU and memory. Any delay means that the memory must respond faster, to keep the access within the CPU cycle window. With an 8088 processor in a large system, given a delay of 100 ns, the memory must have an access time of around 200 ns.

The access timing for the 2816 is shown in Figure 6. As shown, it used 2-line control architecture and offers unparalleled high speed (250 ns). High performance designs can now operate at optimum efficiency without throwing away processor performance that cannot be used because of slow memories.

The DC voltage needed during the read access is 5 volt only. The only other pin requiring a voltage input is V_{pp} . During read operations, the V_{pp} pin must be in the range of 4 to 6 volts. The broad range of this signal is appropriate because V_{pp} must be switched to a high voltage then writing. The specification allows the design of simple and low cost voltage switches. A dramatic improvement in design ease has been made over the 2716, where V_{pp} must be connected to the V_{cc} pin.

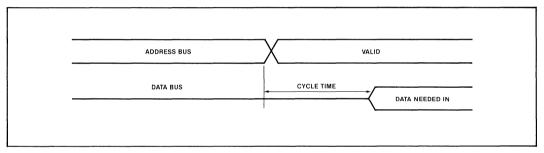


Figure 4. Basic MPU Data Read Cycle

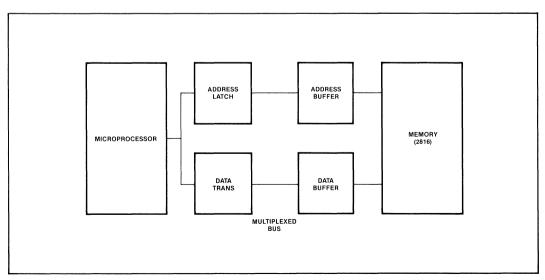


Figure 5. Common System Architecture

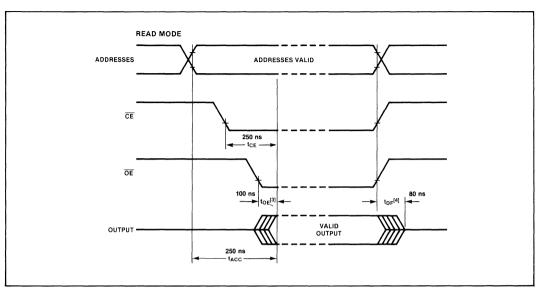


Figure 6. 2816 Read Access Timing

ERASE ACCESS MODE

The information stored in 2816 memory can be erased or changed through the application of simple electrical signals. A single, 10 ms, 21 volt pulse is all that is necessary to change any byte of information. The byte of data that needs to be altered must first be erased, then written.

The erase operation occurs automatically when certain information is presented to the 2816. In most cases, the byte must be erased prior to a data write. Whenever a bit within a byte must transition from a Logic 0 to 1, that byte must first be erased. Transitions from 1's to 0's can occur without an erase operation. Reasons behind the necessity for byte erase have been discussed in AR-118.

Mode selection for the 2816 is shown in Figure 7. The careful reader will note that the write and erase modes are basically identical with exception of the data input pins. When the input pins are all Logic Level "1", an automatic erase operation occurs. When a data pattern of ones and zeroes are presented, that data pattern is imbedded into the 2816 array. To accomplish byte erase the 2816 is selected by bringing \overline{CE} to a logic Low. The address is provided to the device as well. To erase, a data input is set to "FF" Hex. The Vpp is then pulsed, through an exponential, to 21 volts. The timing diagram for this operation is shown in Figure 8. Note that there are set-up time requirements for address and Vpp to chip enable. At the completion of the write cycle, there are hold time requirements from V_{pp} as well. V_{pp} must rise through an exponential specified by an RC time constant, and be held for a minimum of 9 ms. V_{pp} can fall as quickly as possible, in fact, V_{pp} should be driven to 4 to 6 volts immediately to allow reading from the device, after a write. V_{pp} must rise slowly to 21 volts to allow low-level cell current flow to minimize cell voltage potentials. Simple circuitry is needed to provide this rise, and is explained in AP 102. During the entire erase cycle the output enable pin is kept at a VIH level. This makes much sense from a system compatibility standpoint since \overline{OE} is an active low signal for read functions, and when high is inactive for erase/write functions.

In the erase mode \overline{CE} is brought low. Microprocessor consistancy is preserved in this case as well because \overline{CE} is derived from decoded addresses. The same address decoding circuitry — and nothing more — can be used to select the device in either READ or ERASE modes. This makes the system implementation very simple and straightforward.

PIN	CE (18)	OE (20)	V _{PP} (21)	INPUTS/ OUTPUTS
READ	VIL	VIL	+4 to +6	DOUT
STANDBY	VIH	DON'T CARE	+4 to +6	HIGH Z
BYTE ERASE	ViL	ViH	+21	$D_{IN} = V_{IH}$
BYTE WRITE	VIL	VIH	+21	DIN
CHIP ERASE	VIL	+9 to +15V	+ 21	[11] D _{IN} = V _{IH}
E/W INHIBIT	VIH	DON'T CARE	DON'T CARE	HIGH Z

Figure 7. Mode Selection $V_{CC} = \pm 5V$

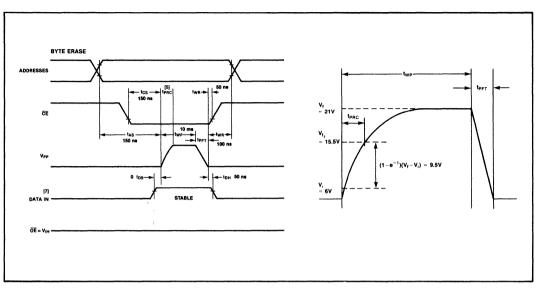


Figure 8. Byte Erase Timing

WRITE ACCESS

From the standpoint of functionality, the write access mode is identical to the erase mode. All setup times, hold times, voltage and timings are the same as used to erase the device. The only difference in operation is the data that is presented to the 2816. When a write is to occur, the data that is to be written is simply supplied to the device. The V_{pp} pin is pulsed exactly as before, all rise times and timings are consistent with the erase mode.

The timing diagrams for the write mode are shown in Figure 9. Also noted in that Figure are the actual device timing parameters.

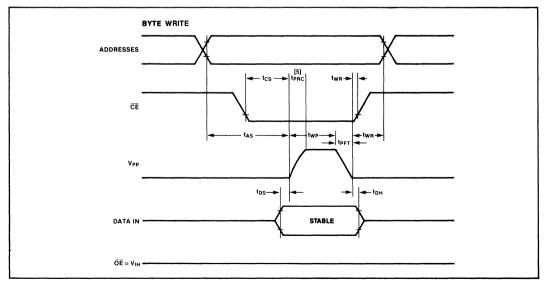


Figure 9. Byte Write Timing

In general, the 2816 has been designed to allow simple and straight forward mode selection and timing. In the erase/write mode, the control and functional pin designations reflect an in-system writable architecture. The design closely approximates RAM architecture to make system design easy.

The 2816 differs substantially from the 2716 EPROM in the write mode. The mode select tables for both devices are shown in Figure 10. In all cases, the 2816's functionality optimizes read and write operations above and beyond those inherent in the 2716 EPROM. All of the modes reflect a goal of simple designs in microprocessor systems.

IMI \	PROVED				IMPRO	DVED	
MODE	PIN	CE (18)	0E (20)	Vpp (21)	V _{CC} (24)	INPUTS/ OUTPUTS	
READ		VIL	VIL	+4 to +6	+5	DOUT	2816
	1	VIL	VIL	+5	+5	DOUT	2716
STANDE	aγ\	VIH	DON'T CARE	+4 to +6	+5	HIGH Z	2816
	· \	VIH	DON'T CARE	+5	+5	HIGH Z	2716
BYTE E	RASE	VIL	VIH	+21	+5	$D_{IN} = V_{IH}$	2816
		N/A	N/A	N/A	N/A	N/A	2716
BYTE W	RITE	VIL	VIH	+21	+5	$D_{IN} = D_{IN}$	2816
(PROGR	AM)	ViH	VIL	+25	+5	$D_{IN} = D_{IN}$	2716
	OGRAM)	/v _{ін}	DON'T CARE	DON'T CAR	+5	HIGH Z	2816
INHIBIT		VIL	VIH	DON'T CARE	5	HIGH Z	2716
IN	IPROVED			IPROVED	IN	PROVED	

Figure 10. 2716 Mode Selection

CHIP ERASE ACCESS

In order to erase all 2K bytes in 10 ms, special signalling is required. The output enable pin has been multiplexed for Chip Erase functions. To put the 2816 in that mode, \overline{OE} is set in the range of 9 to 15 volts. Once engaged, the chip erase occurs by simply pulsing V_{pp} and \overline{OE} in the same way as the write and erase modes. While a higher voltage is needed to perform chip erase, virtually no current flows into the \overline{OE} pin. A standard 10 μ A leakage current is specified over the full voltage range.

The timing diagrams and specifications for this mode are shown in Figure 11. The careful reader will notice that all of the signals (with the exception of \overline{OE}) are identical to the write/erase access modes.

DC VOLTAGE CONDITIONS

In the write and erase modes, the V_{PP} signal must be held within the 20 to 22 volts operating range. The 21 volt typical voltage is derived from Intel's patented HMOS-E processing. In the long term this will become a standard level for program voltages. If greater than the maximum of 22 volts is applied to the 2816, permanent and destructive device damage will result. If less than 20 volts is applied, then long term data retention is not guaranteed. The DC specification for the device is shown in Figure 12.

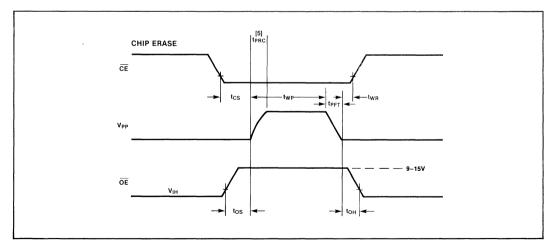


Figure 11. Chip Erase Timing

WRITE OPERATION

SYMBOL F	PARAMETER	LIMITS				
	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
VPP	WRITE/ERASE VOLTAGE	20	21	22	v	
IPP(W)	VPP CURRENT (WRITE/ERASE)			15	mA	CE = VIL
VOE	OE VOLTAGE (CHIP ERASE)	9		15	v	$I_{OE} = 10 \mu A$
IPP(I)	VPP CURRENT			5	mA	V _{PP} = 21, CE = VIH

Figure 12. Write/Erase DC Parameters

ENDURANCE ISSUES

The 2816 has a characteristic ceiling on the number of erase/write cycles that can be endured. This ceiling exists because the cell threshold window changes (or closes) as the device is cycled.

Eventually, the device becomes permanently erased. Figure 13 shows how the single bit window changes.

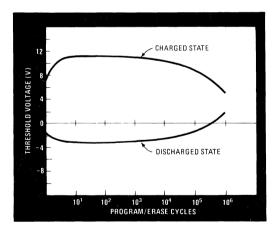


Figure 13. Single Bit Endurance Window

The E^2PROM from Intel is specified to handle 20,480,000 erase/write cycles per chip. Each byte can be cycled up to 10,000 times, and each byte operates independently of any other. Given a ten year machine life, each byte can be cycled up to 3 times per day. Figure 14 shows a graph relating product life and maximum write/erase frequency. In the majority of applications, less than 3,000 cycles are required.

This makes the 2816 an ideal device for those systems.

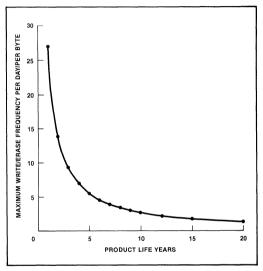
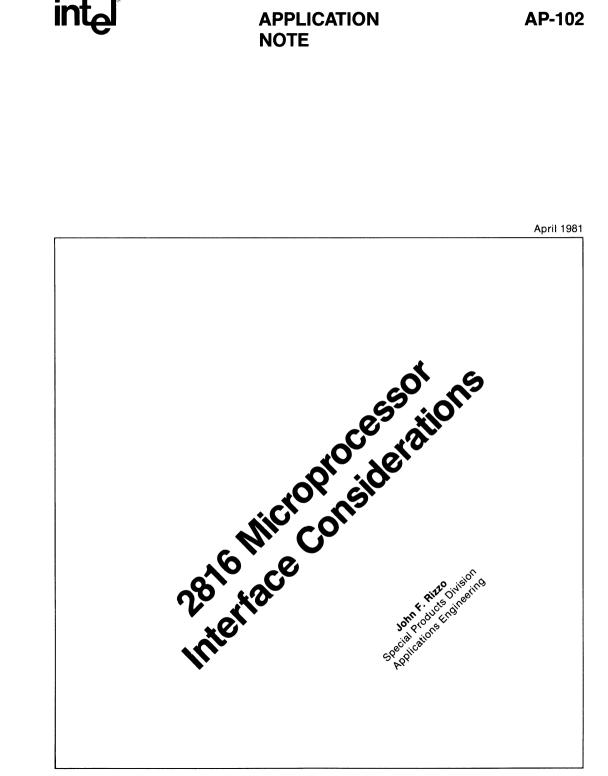



Figure 14. Write/Erase Frequency vs Product Life

CONCLUSION

In this application note the concept of 2816 functionality has been discussed. Very fast read access, with powerful control features was detailed. The functionality of powerful automatic erase, and write, make the 2816 simple and cost-effective to use. To summarize the 2816's features offer unexcelled user benefits. Never before have EPROM retention features been merged with RAM-like flexibility.

INTRODUCTION

 E^2 —Electrically Erasable, that's the key to the new 2816. The flexibility of RAM and the non-volatility of ROM have now been merged to form E^2 . System designers can now benefit from in-circuit changes to non-volatile program and data storage. Microprocessor-based systems can be extended to a higher level of functionality and performance, while costs associated with software changes, maintenance and service can be dramatically reduced. A ROM with RAM-like flexibility—that's E^2 .

This application note will discuss the concept of microprocessor interface to the 2816. Because E^2 encompasses both RAM and ROM, the interface concepts are unique. In this note, the control interface will be discussed specifically (four of which are detailed here). The concept of V_{PP} switching, and chip erase control circuits are also presented. Finally, using multiple 2816's in-system will be shown. In previous application notes (AP-101) the component characteristics were discussed. Here we will detail the interface of the component to the processor.

The specifications of the 2816 have been discussed in detail in AP-101. The most unique characteristic of the interface with the microprocessor is the concept of the write access. The read operation is fairly straightforward in that it does not depart from traditional EPROM concepts. The read operation is very fast, allowing compatibility with current and future microprocessors, benefiting the user with highest possible throughput and system performance. Because the write cycle time is not the same as read access, a unique situation exists for the system designer.

Because the 2816 requires a write time of approximately 10 milliseconds, there is an intrinsic timing difference between the microprocessor and the memory. If one applied the 10 millisecond write time to the write cycle time of the microprocessor, one could execute approximately 50 thousand write cycles in the duration of 10 milliseconds. Additional circuitry is required to properly interface these timing differences. There are several approaches for doing this, several of which will be discussed.

BUS INDEPENDENT TRANSFER

These approaches can be broken down into two general categories: bus dependent and bus independent. The bus independent concept allows the microprocessor to run at full speed while the 2816 write operation progresses. The microprocessor sends out a write operation just as usual, except that a control interface continues the 10ms write cycle independent of the CPU. The microprocessor is notified at some later time that the write operation is finished. This can occur either

through interrupt service, or through an I/O polling operation. Thus, the microprocessor can run independently of the E^2 controller during the write time. Appropriately, it is "bus independent." Table 1 shows a partial list of appropriate applications using this controller type.

Table 1.	Bus	Independent	Applications
----------	-----	-------------	---------------------

CRT Terminal Control	
Navigation Computers	
Industrial Controllers	
Telecommunications	
Military Computers	
	Industrial Controllers Telecommunications

BUS DEPENDENT TRANSFER

The other approach involves dedicating the microprocessor during the E^2 write cycle. In this case wait states are inserted into the memory cycle as the write is proceeding. The disadvantage of such an approach is that the microprocessor is inhibited from doing any other operation during the 10 millisecond write time.

In many applications, however, this can be a suitable solution to the 2816 control issue. An example is the case where information is transferred into the E^2 on system power up or power down. During the power sequencing times, one expects that the system would not be executing any other instructions, or in fact, doing anything other than servicing the E^2 device. In terms of hardware, this scheme would be implemented by controlling the microprocessor's ready or wait line while the write is occurring. This approach offers the advantage of being very simple to implement and does not require any software overhead in terms of interrupt service or I/O polling. Additionally, this scheme is acceptable in many applications where erase/write is only occasional. Such an interface is termed bus dependent. Table 2 provides an applications guide for this interface.

Table 2. Bus Dependent Applications

Program Storage Look-up Tables Remote Data Collection

We will show that the two distinct control applications dictate the amount of hardware required to interface the device to the microprocessor, as well as the efficiency at which the information transfer occurs. Above all, the individual application area for the E^2 will uniquely determine the kind of control circuitry that is required.

Based on these two distinct areas, we will discuss several different recommended interfaces that have been generated for use with the device. Though these controllers were designed to operate in an 8085/8088/8086 based system, they can be easily adapted to any kind of microprocessing environment.

INTERFACE OVERVIEW

There are five controllers at present, four of which are available for use with the 2816 Demonstration Unit. The Controller I is a small scale integration implementation which uses the microprocessor's ready line as a means of inserting wait states into the memory cycle. It is a very simple controller application; one that is dedicated to the microprocessor. For this controller, the microprocessor is inhibited from operating during the time that the 2816 is being written to. Figure 1 is a block diagram for this control interface.

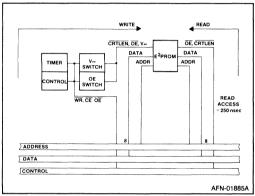


Figure 1. Controller I Block Diagram

The Controller II implementation is an interrupt driven interface, which requires little software overhead. In this case, the information is sent into the interface while the microprocessor simply strobes the write line as normal. The controller then handles all the necessary latching and generation of signals for the E^2 device. At the completion of the write cycle, the controller signals the microprocessor with a restart vector to interrupt service routines. The block diagram for Controller II is shown in Figure 2.

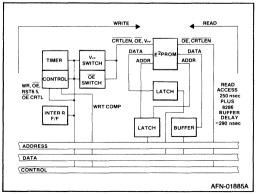


Figure 2. Controller II Block Diagram

The Controller III design is a more integrated version of II; it uses an Intel 8155 for controlling, latching, timing, and other functions. This controller, however, requires software in order to drive the 8155 and to set up the proper address/data lines to the 2816 during the write cycle. See Figure 3 for this block diagram.

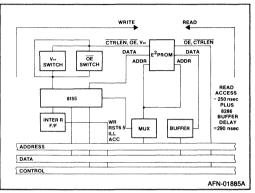


Figure 3. Controller III Block Diagram

The Controller IV implementation is a more highly integrated version of III; it uses an 8155 for writing and reading of the 2816. It also requires more software for the necessary initializations. A block diagram is given in Figure 4. Controllers I through III allow the 2816 to be read at very high speeds. Controller IV, however, requires long read times as reading occurs through the 8155 I/O port.

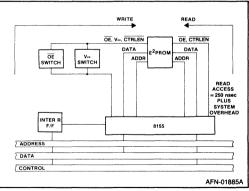
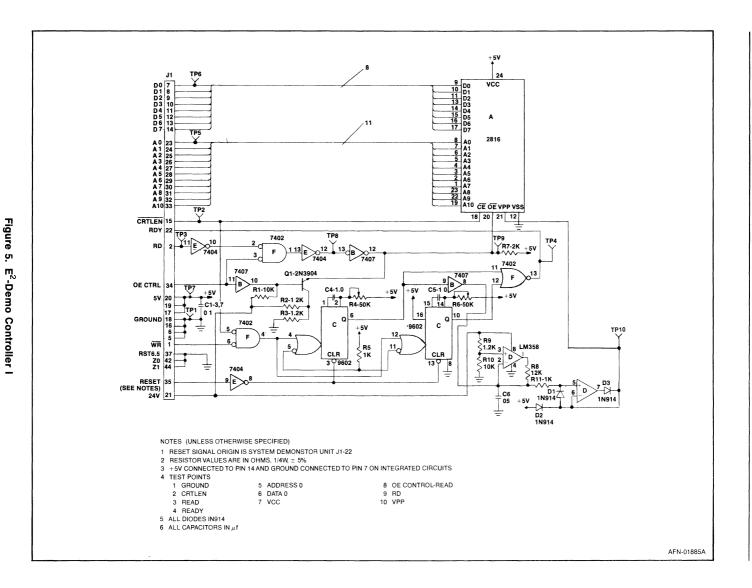


Figure 4. Controller IV Block Diagram

Controller V is an interface using a Bipolar PROM as a state machine. In this case there are two separate addresses for the E^2 device in the system; each of which corresponds to a different controller function. The first address corresponds to reading and writing of the E^2 , the second address to chip erasure of the 2816. This controller is easily applied where a large memory space is available, as in a 16-bit microprocessing system.

CONTROLLER I DESCRIPTION


Examining the controller implementations in more detail, we find that the Controller I interface inhibits the microprocessor from operating during the write time. This controller is very useful in applications where one is to load information into the E^2 during power up or power down. In the case of a test system using 2816 to contain program store, one might want to store the test code and change it periodically when new devices become available or modifications to present codes are necessary. In this kind of implementation, the E^2 holding the program store would not be doing anything during the time that its data is being changed. One sends in serial information, perhaps from a telephone line, and alters the device during the time that the machine is not operating. In this case we are not concerned with the amount of time it takes to write the 2816 because we are totally dedicated to doing so during the machine down time. Another example would be storing daily totals or other information into E^2 at the end of a service period. In this case, when the machine is powered down it will automatically update the 2816 as a data memory. The amount of time it takes to do this is irrelevant because the machine is totally dedicated to the task during its shut down period.

The Controller I implementation discussed here uses three components in the system, shown in Figure 1. The 2816 address and data lines are connected directly onto the microprocessor bus. The chip enable line for the 2816 is connected directly to the decoded output of a memory decoder. Output enable control is handled through the V_{PP} switch, which is controlled by the 9602 timer and the NOR gate logic. When a write operation to the 2816 occurs, the following sequence transpires: Addresses and data are sent into the device just as in any other memory element. When the decoded address for the 2816 appears, the 9602 one-shot is triggered. This triggering of the timer is dependent on the chip enable of the 2816 and the presence of the microprocessor write control signal. When the 9602 timer is triggered, a full 10 millisecond pulse is timed. This pulse is applied to the V_{PP} switch. When the switch receives the 10 millisecond pulse, the VPP signal is raised to the 21 volt programming level. Also, when triggered the 9602 timer pulls the microprocessor ready line to an inactive low level. This signals the microprocessor that the memory element is not ready to relinquish the data bus, or indeed requires a long write time.

The ready line inhibits the microprocessor from incrementing the program counter and causes the processor to provide stable signals to the 2816 during the 10ms pulse. At the completion of 10ms, the timer disengages the V_{PP} switch, stopping the write. It also pulls the microprocessor ready line to high level. When the ready line is pulled high, it indicates that the memory element has completed its cycle and that the microprocessor can continue execution as it normally would. Because the 2816 requires a transparent clear and write, one has to send all 1's into the device, engage the VPP switch, and repeat the sequence for the proper data. The total cycle time for the write is 20 milliseconds. It takes approximately 40 seconds in order to write the entire device in this manner, 20 seconds to erase and 20 seconds to write on a byte-per-byte basis. However, if one is going to write the entire block at one time, the chip erase function of the 2816 would be implemented. Thus, one would erase the entire chip at once for 10 milliseconds, and then write the individual data at each byte location. The total cycle time would be approximately 20 seconds. Figure 5 shows the schematic diagram, and Figure 6 the PC layout for this controller implementation. Figure 7 provides a system timing diagram.

The components mentioned were chosen for Controller I more for convenience than for circuit design requirements. Conceivably, one could have other devices operating in the system to provide timing of the 10 millisecond pulse and switching of the $V_{\rm PP}$ signals. A programmable timer could exist within the microprocessing environment and could time out the 10 milliseconds more accurately than is possible with the 9602. One of the difficulties with the one-shot is the inherent variability of the RC time constant used to time 10 milliseconds. If the system is to operate over a wide range of temperatures, it would be necessary to choose the RC constant so that it is temperature compensated.

The use of this controller presents no software burden to the CPU. The E^2 device is treated as any other memory element in the system. The reason for this lack of software requirement is the fact that all the burden is placed on the system hardware during the write time.

4-21

AFN-01913A

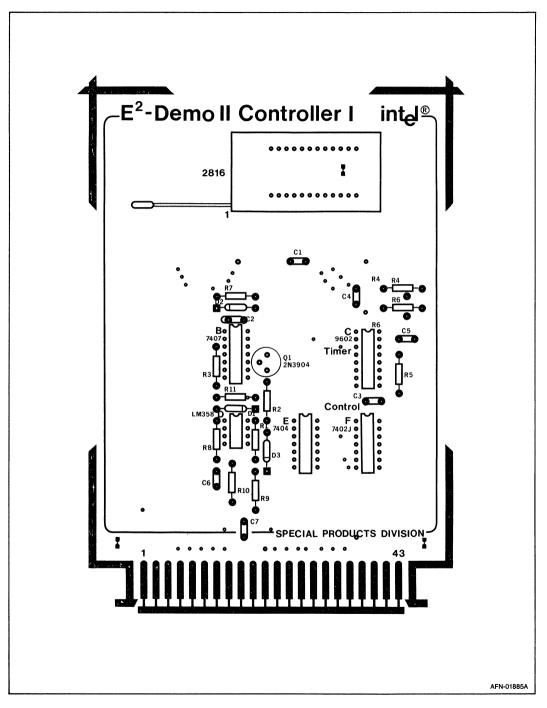


Figure 6a. E²-Demo II Controller I

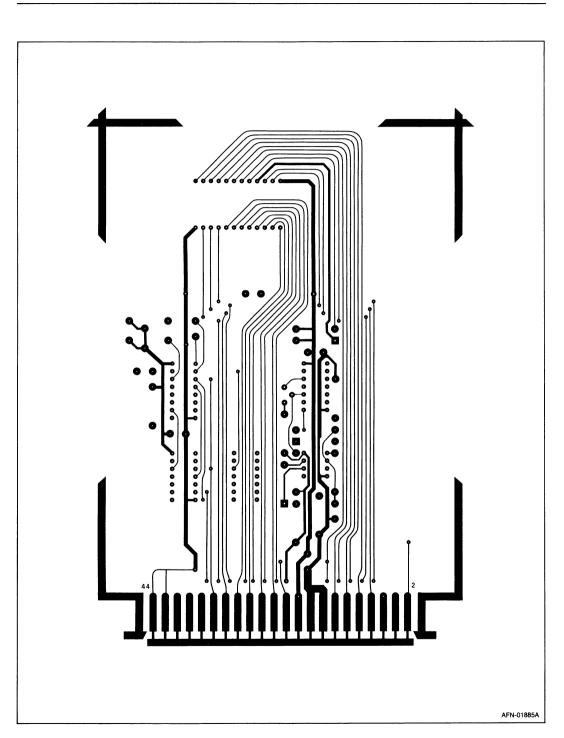


Figure 6b. E²-Demo II Controller I (Continued)

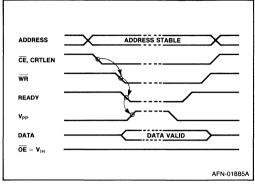
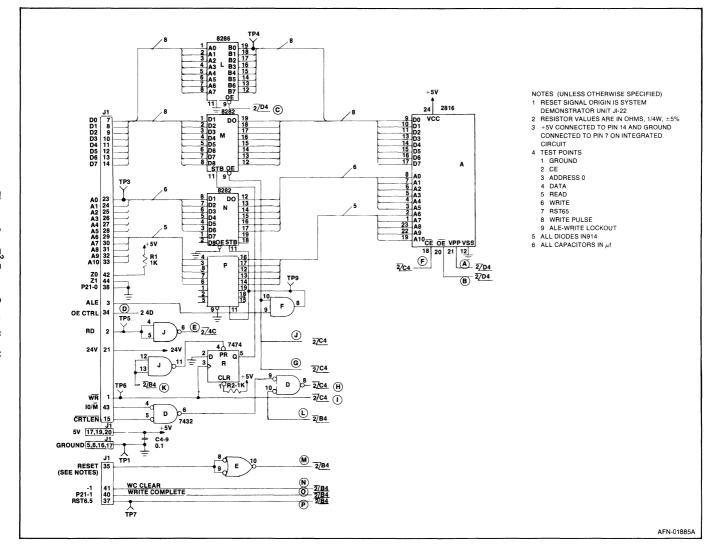


Figure 7. Controller | Write/Erase Timing

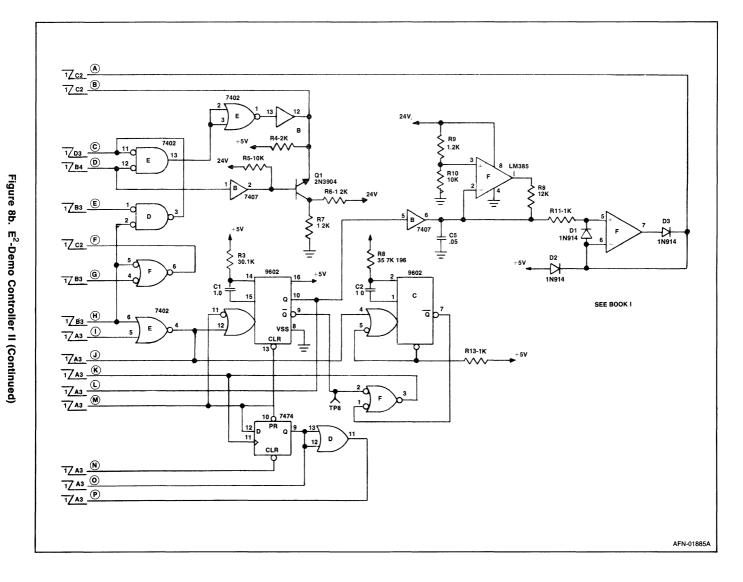
CONTROLLER II DESCRIPTION

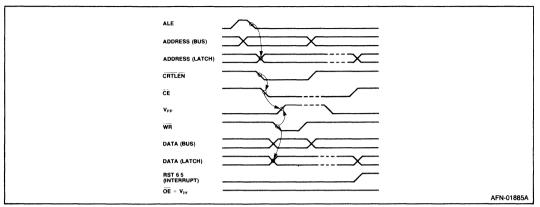

The Controller II design falls into the second realm of E^2 control. This Controller allows writing of the 2816 independent of the microprocessor system. In this case the microprocessor is free to do other tasks during the write time and is interrupted through a restart signal at an appropriate time. The Controller II interface has been optimized for system performance. There is little software burden in writing the device other than interrupt service. Such a bus-independent controller is useful in applications where real time operation is essential. Applications such as high speed process control, CRT systems, navigation, and other real time environments can use such an interface. Generally, any system implementation that cannot tolerate 10ms bus dependency is an ideal one for use with this control implementation.

The controller is composed of two main functional segments. The first consists of latches and buffers, which provide stable signals to the 2816 during the write cycle. The other section of control is the use of a timer, a V_{PP} switch, and the interrupt service logic required to manage all the latching, controlling, and timing functions. In the read operation the E^2 device can be read at very high speed. This is similar to Controller I, the only difference being that a 8286 bidirectional data transceiver is inserted between the data bus and the 2816. This was necessary in order to isolate the E^2 from the data bus during the write operation. The latching functions for the address and data are provided through Intel 8282 latches. In addition, there is a 9602 timer (as with Controller I) which provides the 10 millisecond pulse. A similar V_{PP} switch is used in this implementation. A block of interrupt service logic, which provides write complete interrupts and illegal-access interrupts, is used to signal the microprocessor after the write is complete. The illegal-access interrupt also notifies the microprocessor should it attempt to access the device during the time that the write is in progress. A block of selection logic causes the latches and the buffers to be enabled and directed in the proper fashion and also generates the proper chip enable and output enable signals for the 2816.

The basic timing of this controller is as follows: When the microprocessor sends address, data, and control signals to the interface, it causes the data and addresses to be latched in the 8282 latches. This also causes the 8286 buffer to be disabled, isolating the 2816 from the data bus. At the time that the write and chip enable appear at the select logic block, the timer is engaged. The timer causes the V_{PP} switch to pulse the V_{PP} line, causing a write, and also engages the interrupt service logic to an initialized state. When the timer completes its 10 millisecond time out, it does several things. First, the timer disengages the VPP switch, discontinuing the write. Secondly, the 8286 buffer is enabled and the 8282 latches are set into a state normal for read operation. When the timer finishes the controller is reinitialized into a read mode. Finally, the timer signals through the interrupt service block that a write complete has occurred. Should the microprocessor request access to the E^2 during the long write time, the timer and the interrupt service block would also signal an illegal access. Figure 8 is a schematic diagram, Figure 9 illustrates the controller timing relationships. Controller II implementation optimizes two different characteristics for the system. It optimizes the read characteristic, since E^2 can be read from at very high speed. Secondly, it does not require any system software other than interrupt service to perform a write. The software required is the transparent erasing and the actual data write. All of the necessary software functions that are associated with the Controller III and IV implementations (which will be discussed) are achieved through hardware design in Controller II.

Such a controller has applications in systems where real time data processing is necessary. In this case, the microprocessor can write to the E^2 and then continue with other tasks as if the device were a high speed RAM. This controller also requires little software from the system software bank, making it very useful in situations where code space is at a premium.


There is little software burden associated with this controller, making it an ideal solution for a system with low software overhead. All the hardware handles the generation of the timing pulses and the signaling of the interrupt service at the proper time. Figure 10 shows the printed circuit layouts.



4-25

AFN-01913A

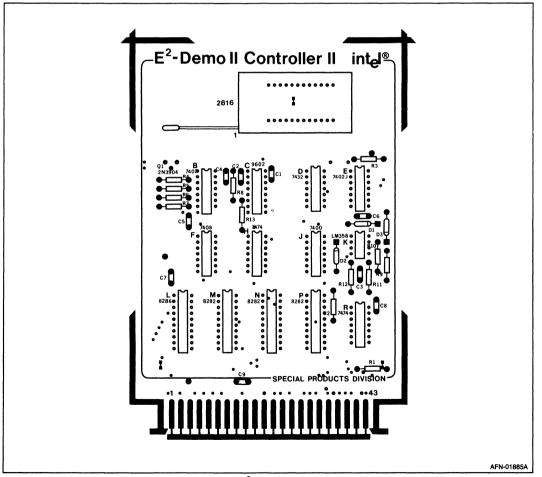


Figure 10a. E²-Demo II Controller II

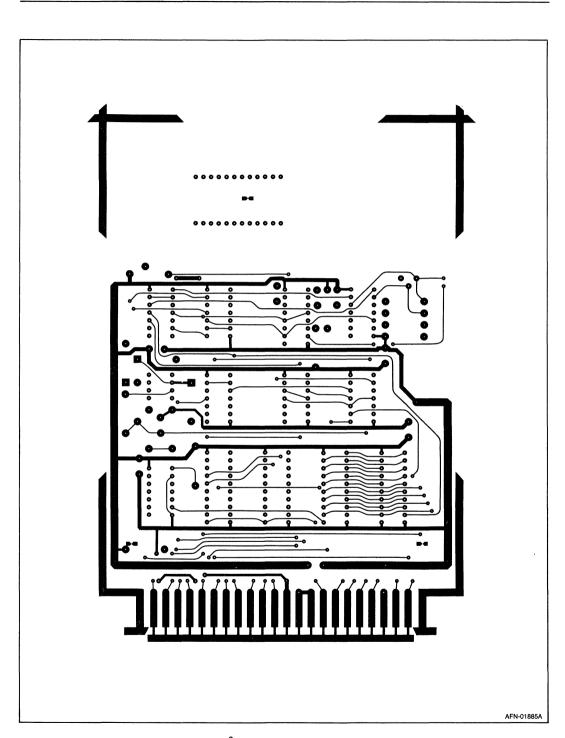


Figure 10b. E²-Demo II Controller II (Continued)

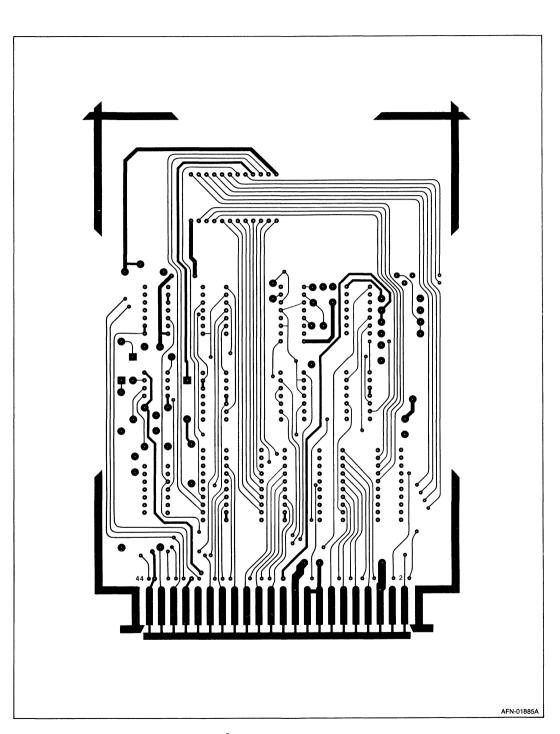


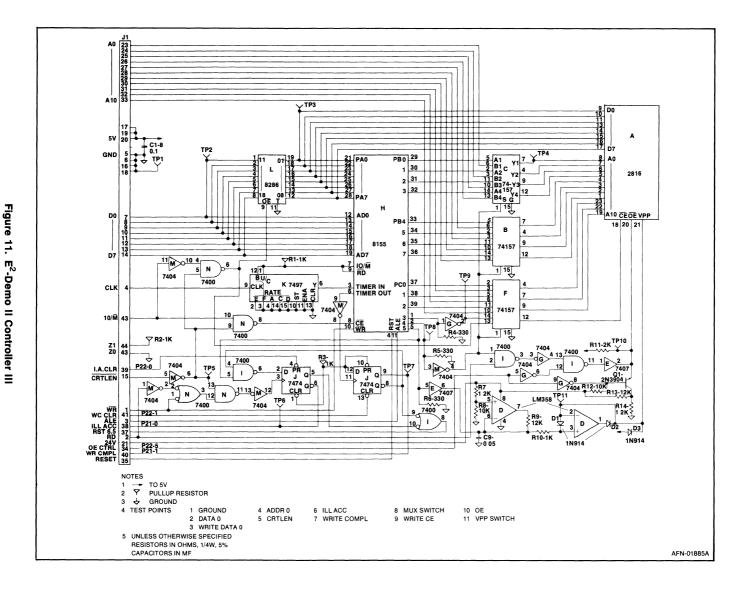
Figure 10c. E²-Demo II Controller II (Continued)

CONTROLLER III DESCRIPTION

The Controller III interface has been designed to optimize several important characteristics of the 2816. In addition, it allows real-time microprocessor control while reducing inherent hardware burdens to the system. The Controller III implementation reduces the hardware overhead of Controller II, while maintaining interrupt handling through the use of software. Much of the hardware is reduced by integrating this onto a standard Intel device; an 8155 I/O port, timer, RAM device. The 8155 is used to contain the timing and latching functions previously accomplished with the descrete devices used in Controller II.

Figure 5 details the block diagram of Controller III. The characteristics optimized in the Controller III design are read access speed and real-time processing capability. There is an 8155 device that latches the data and address during the write cycle, multiplexers which select either 8155 or system bus addressing, and an interrupt service block. The 8155 takes over most of the functions previously done with discrete latches and buffers. The read cycle is composed of sending addresses into the controller interface through the multiplexers to the 2816. After the access time delay, data appears at the 2816 outputs and is routed through a buffer to the data bus. The read path is very rapid, as address/data delays only compose the multiplexer and the buffer delay.

In the write access mode, the 8155 provides stable signals to the 2816 during the 10ms write cycle. In addition, the 8155 times out the proper write pulse width, all under software control. The internal timer within the 8155 not only controls the additional support circuitry, but the VPP switch as well. In the write operation, address and data information is sent to the 8155 through the system bus. The addresses are propagated through port B0-7 and C0-2. These port outputs are latched during the entire write cycle and provide a stable address through the multiplexer to the 2816. The remaining bits on the ports gate the chip enable, output enable control functions, as well as multiplexer and VPP switch select. The timer output of the 8155 is fed into interrupt service flip-flops and reinitialization section.


The write cycle is composed of sending address/data information to the ports and instructing the 8155 timer to time out for the full 10ms. During this time the address data signals remain stable, the V_{PP} switch is engaged, and the 2816 is written. At the completion of

this 10ms time, the multiplexers and the buffer are reinstated to a read mode and the microprocessor is interrupted. In addition to providing the interrupt on write complete, the controller interface interrupts the processor when it illegally requests information from the E^2 during the write cycle. Conceivably, one could access the E^2 during the 10ms write time. The controller disallows this through the use of an illegal access interrupt structure.

Figure 11 shows the schematic diagram of this Controller III implementation. The multiplexer elements are 2 to 1 multiplexers, which select either the address bus or the output of the 8155 ports for use in addressing the 2816. The select line, Pin 1, on these multiplexers is controlled through the additional port on the 8155 through software control. An 8286 bidirectional data transceiver is used to select either data from Port A, or data from the data bus. The direction control on the device is selected in such a fashion that data can only be driven from the E^2 device to the data bus. The buffer is enabled from a signal in the control logic, depending on whether a write is in progress. A standard VPP switch is employed in Controller III, just as I and II. In addition, a 7497 is used to reduce the clock cycle frequency provided to the 8155. In order to time out a full 10 milliseconds, the 8155 clock input must be lengthened to greater than the 320ns which the processor provides. Conceivably, a 7474 flip-flop could be used to divide the signal by a factor of 2, rather than using the 7497.

The cost of the Controller III implementation is somewhat less than a Controller II, because of the reduced hardware space. The high level of integration allowed by the 8155 yields a much more cost effective solution. The major trade-off in reducing the hardware costs and space is due to increased software burden internal to the operating system. Approximately 100 bytes of software are needed to drive the 8155 interface in the write mode and flowchart shown. In addition, there is software required for handling the interrupt service in the central processing core.

Installation of such a controller on a printed circuit board is shown in Figure 12, where the front and back layouts are shown. The main goal of the 2816 Controller III interface was to reduce hardware burden in addition to preserving the fast read access of the 2816. A higher level of integration was desired to reduce the pin and component count of the Controller II implementation. In addition, the use of the 8155 RAM section could play a considerable role in increasing the functionality of this controller. The 8155 could contain the information necessary to segment the 2816 memory.

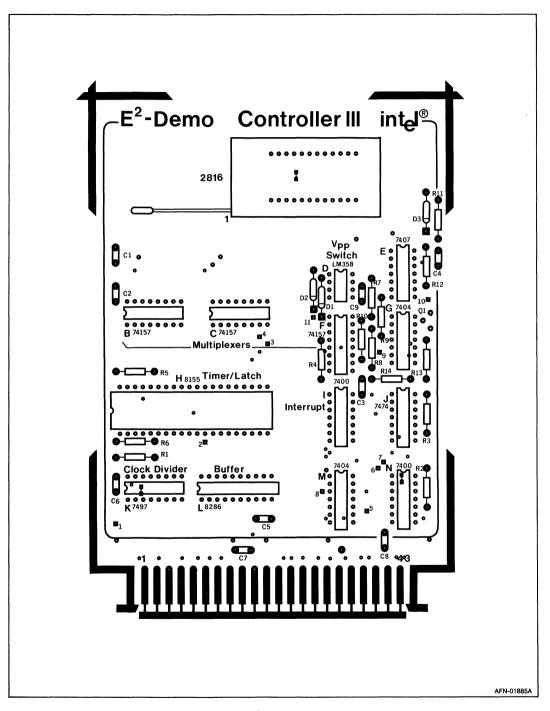


Figure 12a. E²-Demo Controller III

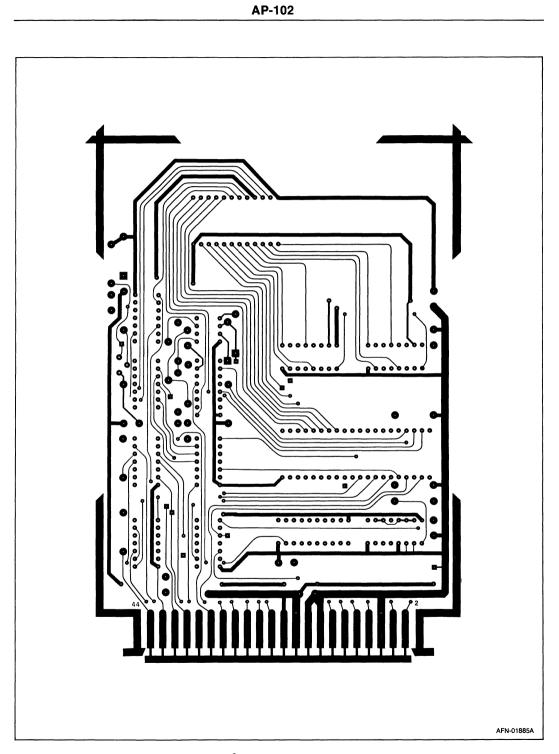


Figure 12b. E²-Demo Controller III (Continued)

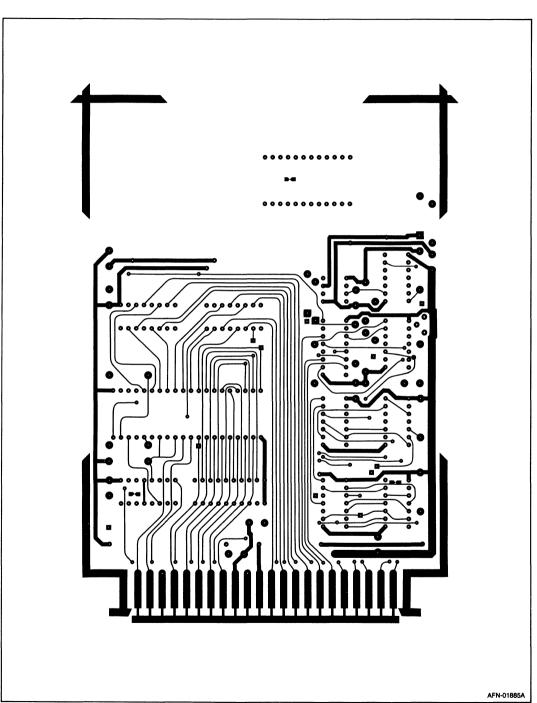
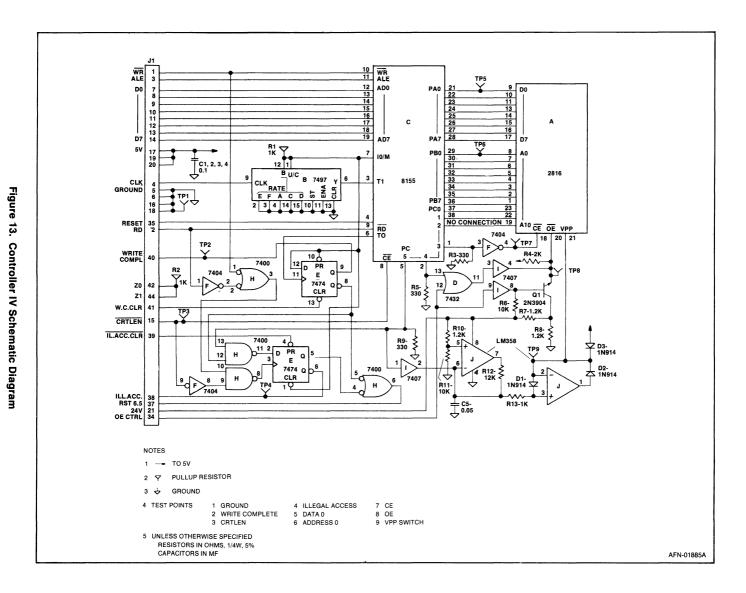


Figure 12c. E²-Demo Controller III (Continued) 4-34

CONTROLLER IV DESCRIPTION

Data collection is the key with the Controller IV implementation. The interface described here was designed to accommodate those designs in a data-logging or data-store application mode. The constraints for such a design are small size, relatively low power, and a high level of integration. Those constraints that are not of concern in a data-store application are read access time, where write time may be critical. An attempt was made to reduce the hardware burden associated with a data logging application, while maintaining a relatively efficient write access interaction. The read access time is the parameter that has been compromised for this design. In this case we use an I/O port, timer chip, as before, to cause latching of the signals for the 2816. However, the 8155 is utilized for both read and write operations. To read from the 2816, address/data information is sent into the 8155.

Addresses are sent into the 2816 through Port B and C, data is read back out from Port A. Since the I/O ports on the 8155 can be configured in either input or output modes, we can use one set for addresses and the other set for data. Data is brought back from the 2816 through the 8155 and placed on the multiplexed address/data bus. In order to write to the 2816 address, a software routine is set up which maps into the 8155 port.


Writing is accomplished by sending the address information through the address data bus into the 2816 through Ports B and C. The data is sent into Port A and is held latched while the write is in progress. Port C3 controls the chip enable function. Output enable and V_{PP} drive are controlled by peripheral logic circuitry. To cause a write to the 2816, after the address/data information is loaded into the ports, the timer is commanded to time out. At the completion of the 10ms the processor is interrupted from the interrupt service block. A 7497 divider is employed as the case of Controller III to reduce the clock input to the 8155 device. In addition, the interrupt service logic maintains the handling of write complete interrupts and illegal access interrupts. Should the processor request access to the controller through the 2816 during the write access, an illegal access interrupt is generated. At the completion of the 10ms write cycle an interrupt is also generated causing the processor to vector to a restart subroutine in the software bank.

A high level of integration is achieved in this design because of the lack of discrete hardware control of the operation. Most of the read and write operations are controlled through system software. We are able to achieve a compact hardware design while maintaining reduced overhead during the 2816 write access. The trade-off is the the 2816 read access which requires several instruction cycles to set up the address and remove the data through the I/O port.

The cost for this implementation is significantly less than those previously mentioned because of the lack of hardware and minimal space requirements. Power consumption is relatively low. The trade-off factor is in the amount of required code space in the central system core to achieve write and read access from the 2816. The requirement is approximately 130 bytes, the remaining bytes over the Controller III implementation are needed for the read mode.

Figure 13 shows the schematic diagram of this Controller IV interface. The block diagram for this controller is listed in Figure 4. Figure 14 shows the printed circuit layouts for both sides of the board.

The Controller IV interface is ideal for applications where read access time is not critical, but power supply and space constraints are more important. Remote data loggers and difficult-to-access data storage systems are ideal for this design type.

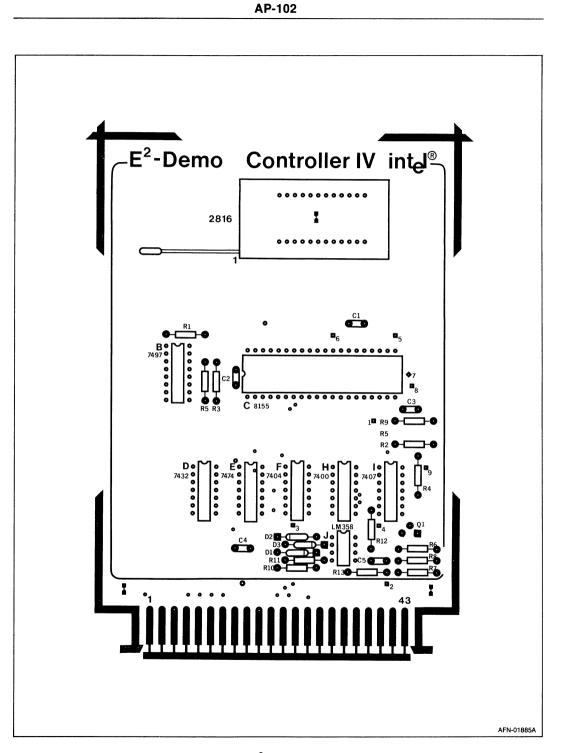


Figure 14a. E²-Demo Controller IV

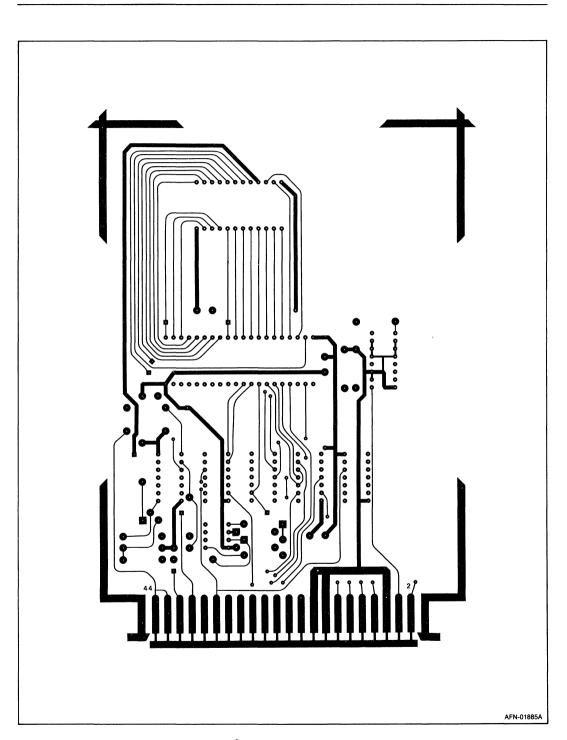


Figure 14b. E²-Demo Controller IV (Continued)

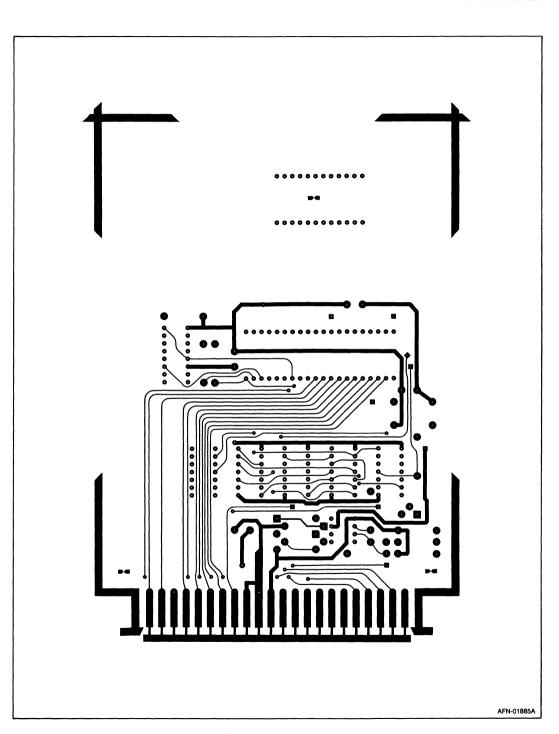


Figure 14c. E²-Demo Controller IV (Continued)

V_{PP} SWITCHING

Due to the "in-system" nature of 2816, the concept of V_{PP} switching is key to the microprocessor interface. Now, a high voltage signal must be actively present in the microprocessing environment. In addition, that signal is a dynamic one in that it must be pulsed. To make the switching task more unique, V_{PP} must be controlled over a wide temperature range.

To briefly review the Vpp pulse used for writing and erasing, recall that V_{PP} is pulsed from 4 to 6 volts, through an exponential to 21 volts. The exponential waveshape is specified through an RC time constant mentioned in the data sheet. On first pass, the switching circuit shown in Figure 15 could be acceptable. It provides the RC rise and the switching of V_{PP} through a transistor.

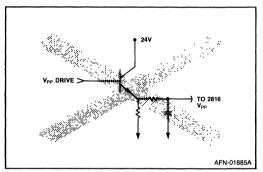


Figure 15. Unacceptable V_{PP} Switch

However, on closer examination, such a switch is not acceptable. Let's take a closer look at the circuit fundamentals. When the transistor switch is turned on, 24 volts is applied to the resistor which is connected to V_{PP} . The RC time constant present at the V_{PP} pin causes V_{PP} to rise through an exponential as needed.

Unfortunately, however, the resistor value must be relatively large to accommodate the needed RC contant. Therefore, any current that flows through the resistor causes a very significant voltage drop. There are two extremes that can be examined: The first is the case where the device draws no current. In this case the voltage applied to the resistor must be 22 volts. The other case is where the 2816 draws 15mA. In that arrangement the V_{PP} voltage at the 2816 must be a minimum of 20V. Only 2 volts of drop maximum is allowed across the resistor. If one examines the problem further, it is next to impossible to pick an RC combination that will accommodate only a 2 volt drop. Such a switch is then unacceptable.

These are two switch arrangements that are recommended for use with 2816 that overcome the problems of the previous design. Figure 16 shows a configuration using an operational amplifier. The op amp used is an LM358, which is an 8 pin dip, dual op amp device. The amplifier shown on the left acts as a voltage regulator with the positive input set as the 21 volt reference. The other amplifier serves as a voltage follower to provide proper drive and impedence matching. The 12K resistor and .05 μ F capacitor in the feedback path sets the proper RC constant.

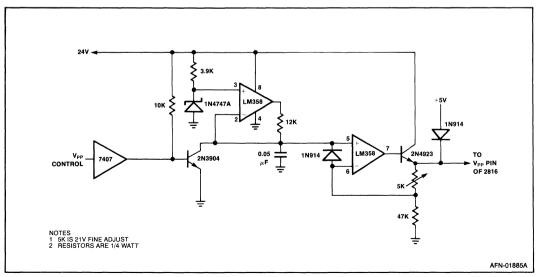


Figure 16. Operational Amplifier Switch

OE SWITCHING

The 2816, in addition to byte erase functionality, can implement chip erase. All 2048 bytes can be erased in only 10ms. To accomplish this, however, requires application of a high voltage, ultra-low current signal to the \overline{OE} pin. When the output enable pin is set into the range of 9-15 volts, and the V_{PP} pin is pulsed to 21 volts, the entire chip is erased.

The current required at \overline{OE} is a 10 μ A leakage, so little power is consumed. The switch shown in Figure 18 accomplishes switching \overline{OE} to a higher voltage level when necessary. The chip erase control line can be derived from a port or other circuitry in the microprocessor system.

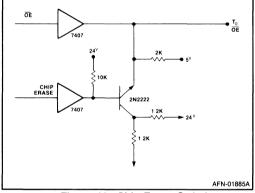


Figure 18. Chip Erase Switch

MULTIPLE 2816's

Because of the flexibility of E^2 , the capability to easily connect multiple devices together is essential. RAM's can be simply tied together, E^2 needs a similar functionality. Figure 19 shows the mode select for the 2816's write/erase inhibit mode.

PIN	CE (18)	ÖË (20)	∀рр (21)	OUTPUTS
READ	¥€L	VIL	+4 to +6	DOUT
STANDBY	ViH	DON'T CARE	+4 to +6	HIGH Z
BYTE ERASE	VsL	ViH	+21	D _{IN} ≃ V _{IH}
BYTE WRITE	VłĻ	ViH	+21	DIN
CHIP ERASE	ViL	+9 to +15V	+ 21	D _{IN} ∞ V _{IH}
E/W INHIBIT	VIH	DON'T CARE	DON'T CARE	HIGH Z

What this specification shows is that V_{PP} can be at high voltage (21V) when the 2816 is deselected. From a system perspective, V_{PP} can be bussed to multiple devices in the system. Any device that is to be written, can be, simply by TTL level control of \overline{CE} .

This allows simple and straightforward control of multiple 2816's in the system. Only one $V_{\rm PP}$ switch is needed for the entire memory array, allowing a highly compact and cost effective design. Figure 20 shows how simple such an implementation can be.

INTERFACE SOFTWARE REQUIREMENTS

As discussed, the various 2816 controllers employ various SSI and LSI devices. Each of the implementations require a varying degree of hardware and software. With Controller I, no software is necessary. Controller IV, on the other hand, needs approximately 130 bytes to handle the interface to the 8155 I/O port.

The following figures deal with the software drivers for the various controllers. These are several general subroutines that can be integrated in various ways, depending on the function and performance desired. Table 3 lists the various modules shown in the figures.

Table 3.	
Overall Write Subroutine	Figure 21
Controller I Software Driver	Figure 22
Controller II Software Driver	Figure 23
Controller III Software Driver	Figure 24
Controller IV Software Driver	Figure 25
Controller II Chip Erase Routines	Figure 26
Controller III, IV Chip Erase Routines	Figure 27
Controller I/O Poll Routines	Figure 28
Controller Interrupt Driver	Figure 29

Figure 21 shows the generalized write subroutine for all controllers. As indicated, data is passed through the 8085 A-register, and addresses passed through the HL-register pair. The routine first executes an erase, and then a write operation. The software driver that writes to the device is called WECYCL.

There is a unique WECYCL routine for each control interface. The driver for Controller I is a simple parameter pass routine, and a move to memory. This software is listed in Figure 22. The Controller II subroutine uses parameter pass, and interrupt initialization and service. The Controller II driver is listed in Figure 23. The interrupt service routine is given in Figure 29. In order to write to Controller III and IV interfaces, the 8155 I/O device must be initialized. A generalized flow chart for this operation is shown in Figure 24A. The software

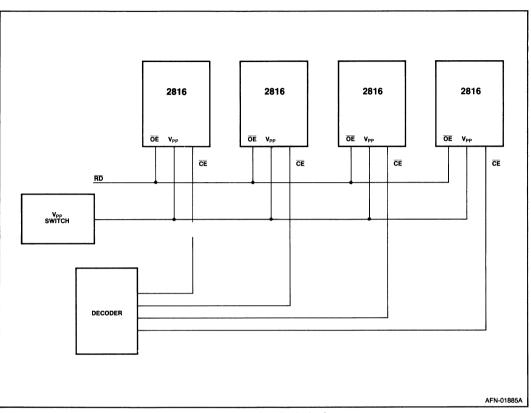


Figure 20. Multiple 2816's In System

listings are detailed in Figures 24 and 25. Both of these routines use the same interrupt service as Controller II. The remaining routines, for chip erase and I/O polling control, are shown in Figures 27, 28.

All of the interfaces, with the exception of the Controller IV, allow transparent reads of the 2816. Controller IV isolates the E^2 from the system bus through the 8155. A flowchart for Controller IV read operations is detailed in Figure 30.

CONCLUSION

Based on the previous discussion, it is apparent that the interface to the 2816 is highly application dependent. Several interfaces have been presented, each of those optimized for a different system concern. Each of the controller implementations requires a different amount of hardware and software overhead, and provides a different throughput capability to the host processor. Each of these controllers is also appropriate for one or more design types. Controller I for program store areas, Controller IV for strict data store applications.

Controllers II and III are higher performance, and yet require a larger amount of hardware and software to service interrupts and generate 8155 timing controls. Further application notes will discuss some of the enhanced controllers, such as the bipolar state machine controller. All of these controllers are also available for test in the E^2 Demonstrator, which is a highly sophisticated tool for use with the 2816. The demonstrator is available by contacting a local Intel sales office and can be used for evaluation and test purposes of the E^2 device.

Above all, the interface to the CPU has been realized in a consistent and appropriate microprocessing architecture, something that has never been possible because of prior device attributes and technology constraints. The 2816 then adds an appropriate and applicable use of non-volatile and flexible memory to the current offerings of memory devices. It will prove a useful and powerful memory supplement and yield application and system benefits never before possible through consistent, convenient, and simple microprocessor interface.

				MODULE	PAGE 1	
LOC OBJ	Ĺ	INE	SOURCE S	TATEMENT		
		1 \$DEBUG				
		2				
		3				
		4				
		5	,	****	********	
		6 7				
		8	,	2816-00	NTROLLER WRITE SUBROUTINE	
		9	,	2010-00		
		10	,			
		11	,			
		12				
		13	1	*****	*********	
		14				
		15	CUTO:	05010		
		16	EXTRN	PECYCL		
		17 18	PUBLIC	WRITE		
		18	FUDLIC	MRITE		
		20	CSEG			
		21				
		22				
		23	,	WRITE SUBROUTIN	E	
		24				
		25	,	WRITES A BYTE T	0 THE 2816	
		26				
		27	;		A = DATA TO WRITE HL = ADDRESS TO WRITE	
		28 29	, ;	REGS DESTROYED.		
		30	, ,		PECYCL - PROGRAM/ERASE CYCLE SUBROUTINE	
		31	,	011229.		
		32 WRITE:				
0000 F5		33	PUSH	PSW	, SAVE DATA WE'RE ABOUT TO WRITE	
0001 3EFF		34	MVI		; EXECUTE A BYTE ERASE FUNCTION	
0003 CD000	0 E		CALL		, BY WRITING ØFFH TO THE 2816	
0006 F1		36	POP		; RESTORE DATA BYTE	
0007 CD006	υE		CALL		, NOW WRITE THE DATA	
000a C9		38 79	RET		, AND RETURN	
		39 40	END			
		U	LIND/			
UBLIC SYMBO IRITE C 000						
external sym Pecycl e 000						
JSER S JLS						
PECYCL E 000		ITE C 0000				

Figure 21. Overall Write Subroutine

ASM80 .F1.CONT1.SRC MOD8	5			
ISIS-II 8080/8085 MACRO	Assembler, V3. Ø	MODULE	PAGE 1	
1	Source s' \$debug	Tatement		
2 3 4 5	CSEG			
673	PUBLIC	Read, Wecycl		
9 10 11	,	CONTROLLER I RE		
12 13 14 15	, , ;	data passed: Data returned. Regs destroyed		
	READ MOV RET	A, N	, JUST READ FROM MEMORY	
19 20 21				
22 23 24	;	CONTROLLER I WR	ITE/ERASE CYCLE SUBROUTINE	
24 25 26 27	; , ,	data passed:	HL = ADDRESS OF 2816 LOCATION TO WRITE A = DATA TO WRITE OR ØFFH (ERASE)	
28	,	data returned: Regs destroyed:	NONE	
	RET	M, A	, JUST WRITE TO MEMORY	
35 36	END			
PUBLIC SYMBOLS READ C 0000 WECYCL EXTERNAL SYMBOLS	C 0002			
user, symbols Read C 0000 Mecycl Assembly complete, No				
				AF

AFN-01885A

ASM8	9 F1.CONT:	2. SPC MOD85				
		085 MACRO ASSEMBL	ലാവ	MODULE	PAGE 1	
1515	-11 0000/05	967 MUKU NODENDLI	ER: V. 0	HOUGLE		
LC	IC OBJ	LINE	SOURCE 9	TATEMENT		
		1 \$DEBUG				
		2				
		2				
		4	PUPLIC	NECYCL, PEAD, END	NE, COLEAP	
		5				
		6 7	EXTPN	WEDELY		
		7 8	CSEG			
		9	0000			
		10		:		
		11		CONTPOLLER II P	EAC SUBROUTINE	
		12				
		13	,	Data Passed	HL = ADDRESS OF 2816 LOCATION TO READ	
		14	•	deta returned	a = data read	
		15	,	PEGS DESTROYED	NONE	
		16				
	100 JC	17 REAC	MOU			
	100 7E 101 C9	18 19	MOV RET	A, M	, JUST READ FROM MEMORY	
1 600	NGI UP	15 20	RE I			
		20				
		22				
		23				
		24	;	CONTROLLER II W	RITE/ERASE CYCLE SUBROUTINE	
		25				
		26	j.	data passed.	HL = ADDRESS OF 2816 LOCATION TO WRITE	
		27	3		A = DATA TO WRITE	
		28	;		OR ØFFH (ERASE)	
		29	i	DATA RETURNED:		
		30 31	;	REGS DESTROYED: CALLS:	NUNE NEDELY (1/0 POLL ROUTINE OR INTERRUPT DRIVER)	
		32	1	UNLLD.	REDELT (170 FOLL ROOTINE OR INTERROFT DRIVER)	
		33	;	1/0 PORTS USED:		
		34	;		H (OUTPUT) - CONTAINS BITS USED FOR RESETTING	
		25	;		CONTROLLER INTERRUPT FLIP/FLOPS	
		36	;		BIT 0 = WRITE COMPL RESET (ACTIVE LOW)	
		37	3		BIT 1 = ILL ACCESS RESET (ACTIVE LOW)	
		38				
		39	;	COMMENTS :	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
		40	i		IS CALLED BY INTERRUPT DRIVER OR I/O POLL	
		41	1		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
		42 43	;		This subroutine is part of the driver Package routines initiated by a call to	
		44	; ;		WECYCL.	
		45	,		NECTOE.	
		46				
		47	;	1/0 SYMBOLS		
1		48				
	122	49 CLRPRT		22H	; I/O PORT USED TO CLEAR INTERRUPT F/F'S	
- 00)00	50 CLRACT	EQU	0	; bit pattern to activate clear function	AFN-01885A

Figure 23. Controller II Software Driver

SIS-II	1 8080/80	985	Macro	ASSEMBL	.ER, V3.	0 MODULE	PAGE 2	
LOC	OBJ		LINE		Source	STATEMENT		
000 3				CLRINA	EQU	ЗН	; BIT PATTERN TO DE-ACTIVATE CLEAR FUNCTION	
			52 52	NECYCL				
0002	F5		54		PUSH	PSW	; save data to write	
	3E00		55		MVI	A, CLRACT	; CLEAR WRITE COMPLETE AND ILLEGAL ACCESS F/F/S	
0005	0322		56		OUT	CLRPRT		
0007	3E03		57		MVI	A, CLRINA	; DE-ACTIVATE CLEAR FUNCTION	
	0322		58		OUT	CLRPRT		
000B			59		POP	PSW	; RESETORE DATA TO WRITE	
0000C	77 CD0000	F	60 64		MOV	m, a Wedely	; JUST WRITE TO MEMORY ; GO TO I/O POLL ROUTINE OR INTERRUPT DRIVER	
0000 0010		E	62		call Ret	MEDELY	, GO TO T/O FOLL ROOTINE OR INTERROFT DRIVER	
0010	657		63		NL I			
			64					
			65					
			66					
			67		;	CONTROLLER II C	HIP CLEAR SUBROUTINE	
			68			DOTO DOCCED.	1017	
			69 70		;	data passed: Data returned:	NONE	
			70		, ;	REGS DESTROYED:		
			72		,	CALLS	PEDELY (I/O POLL ROUTINE OR INTERRUPT DRIVER)	
			73					
			74		;	I/0 PORTS USED:		
			75		j	PORT 22	H (OUTPUT)	
			76		j.		BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW)	
			77		;		BIT 1 = ILLEGAL ACCESS CLEAR (ACTIVE LOW)	
			78 79		;		BIT 5 = CHIP CLR (+12V TO 0E' LINE) (ACTIVE HI)	
			89		;	COMMENTS:	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
			81		;		IS CALLED BY INTERRUPT DRIVER OR 1/0 POLL	
			82		;		ROUTINE (NEDELY) TO SHUT DOWN CONTROLLER.	
			83		;		THIS SUBROUTINE IS PART OF THE DRIVER	
			84		;		PACKAGE ROUTINES INITIATED BY A CALL TO	
			85		;		CCLEAR.	
			86					
			87 88		;	1/0 SYMBOLS		
			89		,	110 5110005		
002 3				CLRCCL	EQU	23H	; data to deactivate clear NC & IA but activate	
			91				; OE' = +12V FUNCTION FOR CHIP CLEAR	
				CCLEAR				
0011			93		PUSH	PSW	; SAVE REGISTERS	
0012			94		PUSH	H A CLEACT	; get bits to reset write compl and ill acc	
	3E00 D322		95 96		MVI OUT	a, clract Clrprt	A DET DITO TO RECET MALIE COMPL MAD ILL MOU	
	3E23		97 97		MVI	A, CLRCCL	; get bits to deactivate clear function and	
0011					1111	TO OLNOOL	; TURN ON OE' = $+12Y$ FUNCTION FOR CHIP CLEAR	
0019	D322		99		OUT	CLRPRT	; OUTPUT TO I/O PORT	
	3EFF		100		MVI	A, ØFFH	; WRITE ØFFH TO THE 2816	
AR1 D	320000		101		STR	9A000H		AFN-01885

Figure 23. Controller II Software Driver (Continued)

AP-102

LOC OBJ	LINE	SOURCE	STATEMENT
0020 CD0000	E 102	CALL	WEDELY GO TO I.'O POLL LOOP OR INTERRUPT DRIVER
0023 3E03	103	MVI	A, CLRINA ; DEACTIVATE CHIP CLEAR FUNCTION
0025 D322	104	OUT	CLRPRT
0027 E1	105	POP	H RESTORE REGISTERS
0028 F1	106	POP	PSW
0029 09	107	RET	
	108		
	109		
	110		
	111	,	CONTROLLER II END-OF-WRITE/ERASE-CYCLE ROUTINE
	112		
	113	,	JUMPED TO BY 1/O POLL OR INTERRUPT DRIVER AFTER WRITE COMPLETE
	114	,	TO SHUT DOWN CONTROLLER.
	115		
	116 ENDWE		
002A C9	117	RET	, JUST RETURN NORMALLY - NOTHING TO SHUT DOWN.
	118		
	119	END	
JBLIC SYMBOLS			
LEAR C 0011	ENDWE C 002	2a read	D C 0000 NECYCL C 0002
(TERNAL SYMBOL	5		
EDELY E 0000			
SER SYMBOLS			
CLEAR C 0011	Clract a 000	NA CLRC	CCL A 0023 CLRINA A 0003 CLRPRT A 0022 ENDWE C 002A READ C 00
ECYCL C 0002	WEDELY E 000		
.0102 0 0002		~	

Figure 23. Controller II Software Driver (Continued)

ASM80 :F1.CONT3.SRC MOD85					
ISIS-II 8080/3085 MACRO 6					
LOC OBJ LINE	Source S Idebug	TATEMENT			
2	NEDUU				
3					
4	CSEG				
5					
6		NECOCI	READ, ENDWE		
8	FUDLIC	MECTOLI			
9	EXTRN	WEDELY			
10					
11		CONTROL		*****	
12	;	CONTROL	LER III 1/0 PORT DEFI	CRUTTIN	
13	,	IMPLEME	ENTED IN 8155 RAM / I/	0 / TIMER CHIP	
15					
16					
17	j	PORT	DESCRIPTION		
18	;	Ørøh	PORT DIRECTION REGIS	iter (set to off) = All Ports Output)	
20	, ;	01011			
21	;	0A1H	2816 DATA (OUTPUT)		
22	j				
23	;	0A5H	2816 LOW ORDER ADDRE	SS, A0-A7 (OUTPUT)	
24	; ,	0A3H	2816 HIGH ORDER BODE	ess and control lines (output)	
26	,	0101	BITS 0-2:	A8-A10	
27	,		BIT 3:	CE CTRL (0=SELECT READ,	
28	į			WRITE ENABLE)	
29	j		BIT 4:	MUX CTRL (0=READ, 1=WRITE)	
30	; ,		BIT 5:	VPP CTRL (0=INACTIVE,1=ACTIVE)	
32	;	0A4H	LOW ORDER TIMER COU	IT REGISTER	
33	i				
34	i	0A2H	HIGH ORDER TIMER COU	INT REGISTER	
35	i	00 0			
36	, ;	22H	BIT 0.	-FLOPS PORT (OUTPUT) WRITE COMPL CLEAR (ACTIVE LOW)	
38	;		BIT 1:	ILLEGAL ACC CLEAR (ACTIVE LOW)	
39	;		BIT 5:		
40					
41 42	CCDND COU	0000	. 0007 0100	TION DEGICTED	
	eepdr equ Datprt equ	0a0h 0a1h	; 2816 DATA	CTION REGISTER (OUTPUT)	
	Adrprt Equ	0A2H		RDER ADDRESS (OUTPUT)	
	CTLPRT EQU	ØA3H		ORDER ADDRESS AND CONTROL (OUTPUT)	
	timlow Equ	0A4H		TIMER COUNT REGISTER	
	TIMHI EQU	0A2H	; HIGH ORDE	R TIMER COUNT REGISTER	
48 00C0 49	countl equ	0C0H		TIMER COUNT FOR 10 MSEC DELRY	
	COUNTL EQU	83H		R TIMER COUNT FOR 10 MSEC DELAY	AFN-01885A
1					

Figure 24. Controller III Software Driver

AP-102

ISIS-II	8080/8085	Macro	ASSEMBL	ER, V3.	0 MODULE	PAGE 2	
LOC	OBJ	LINE	:	Source	STATEMENT		
		51					
		52 52				READ SUBROUTINE	
		54		'	CONTROLLER III	KERD SUBROOTINE	
		55		;	Data Passed	HL = ADDRESS OF 2816 LOCATION TO READ	
		56		,	DATA RETURNED:	a = data read	
		57		;	REGS DESTROYED	NONE	
		58					
0000	70		read .	MOU	0 M	TUCT DEON FROM MEMORY	
0000 0001		60 61		MOV Ret		, JUST READ FROM MEMORY	
0001	67	62		REI	2		
		63					
		64					
		65					
		66		,	CONTROLLER III	WRITE/ERASE CYCLE SUBROUTINE	
		67					
		68		,	data passed.	HL = ADDRESS OF 2816 LOCATION TO WRITE	
		69 70		,		A = DATA TO WRITE	
		70 71		,	data returned.	OR ØFFH (ERASE)	
		72		, ;	REGS DESTROYED:		
		73		;		1 BYTE FOR TEMP ADDRESS/CONTROL STORAGE	
		74		;		PEDELY (1/0 POLL ROUTINE OR INTERRUPT DRIVER)	
		75		,			
		76		j –	COMMENTS:	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
		77		;		IS CALLED BY INTERRUPT DRIVER OR I/O POLL	
		78		1		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
		79 80		;		THIS SUBROUTINE IS PART OF THE DRIVER PACKAGE ROUTINES INITIATED BY A CALL TO	
		00 81		;		PECYCL.	
		82		'			
		83					
0000			CLRACT	EQU	0H	; ACTIVE CLEAR WRITE COMPL & ILL ACC FUNCTION	
000 3		85	CLRINA	EQU	3H	; INACTIVE CLEAR WC & IA FUNCTION	
0022			CLRPRT	EQU	22H	; Port used to clear Ill ACC & Wrt Compl F/F	
		87					
		88	unoper				
0002	55	89 90	WECYCL:	PUSH	PSW	, SAYE REGISTERS	
0002 0003		50 91		PUSH	B	/ DITE REGISTERS	
0004		92		MOV		; save data to write in B-register	
0005		93		MVI		; CLEAR WRITE COMPLETE AND ILL ACC FLIP-FLOPS	
0007		94		OUT	CLRPRT		
0009		95		MVI	A, CLRINA	, DE-ACTIVATE CLEAR FUNCTION	
	D322	96		OUT	CLRPRT		
000D		97		MVI	A, 0FH	; PUT ALL 8155 I/O PORTS IN OUTPUT MODE	
000F		98		OUT MOU	EEPDR		
0011 0012		99 100		Moy Out	r, b Datprt	; Fetch data to write ; output to 2816 data lines	
0012		100		MOV	AL	; GET LOW ORDER ADDRES	AFN-01885A
				1191	: // te		AC0010-011-0

Figure 24. Controller III Software Driver (Continued)

ISIS-II	8080/80	185 Macr	0 Assembl	ER, V3.	0	MODULE	PRGE	3	
LOC	0BJ	LIN	E	SOURCE	STATEMENT				
0015	D3A2	10	2	OUT	ADRPRT		, OUTPU	TO ADDRESS LINES	
0017	70	10	3	MOV	A, H		; GET H	GH ORDER ADDRESS	
0018	E607	18	4	ANI	7H			ALL CONTROL LINES	
001A	F610	10	5	ORI	10H			IX BIT TO SELECT I/O PORTS FOR WRITE	
001 C	d3A3	10	6	OUT	CTLPRT		; OUTPU	HIGH ORDER ADDRESS AND CONTROL LINES	
001E	F608	10	7	ORI	8H		; add ci	ACTIVE BIT	
0020	d3A3	10	8	OUT	CTLPRT		, OUTPU	CONTROL LINES AGAIN	
0022	47	10	9	MOY	B, A		; save i	HIGH ORDER ADDR/CTL LINE DATA	
0023	3ECØ	11	0	MAI	A, COUNT		; OUTPU	TIMER COUNT (LOW ORDER)	
0025	D3A4	11	1	OUT	TIMLOW				
0027	3E83	11	2	MVI	A, COUNTH		; OUTPU	TIMER COUNT (HIGH ORDER)	
0029	D3A5	11	3	OUT	TIMHI				
002B	3ecf	11	.4	MVI	A, OCFH		; start	THE TIMER	
002D	d3a0	11	5	OUT	EEPDR				
002F	78	11	6	Mov	A, B		; RETRI	EVE ADDRESS/CONTROL BITS	
0030	F620	11	.7	ORI	20H			PP ACTIVE BIT	
0032	d3A3	11	.8	OUT	CTLPRT		; ACTIV	ATE VPP	
0034	320000	D 11	9	STA	TEMCTL		; save i	HIGH ADDRESS/CONTROL BITS FOR AFTER INTR	
0037	CD0000	E 12	0	CALL	WEDELY		; WAIT I	FOR END OF WRITE CYCLE BY I/O POLL OR	
		12	1				; INTER	RUPT DRIVER ROUTINE	
003A		12		POP	В		; resto	REGISTERS	
003B		12		POP	PSW				
003C	C9	12 12		RET			; back (TO CALLING ROUTINE	
		12 12 12 12	27 18	DSEG					
0000		13 13 13	2 3		1		; ram li	OCATION FOR TEMP STORAGE OF CONTROL BITS	
		13 13 13 13	15 16 17	CSEG					
		13 13		;	CONTROLL	ER III	END-OF-W	RITE/ERASE-CYCLE ROUTINE	
		14		;	JUMPED T	10 BY I/	'0 POLL 0	R INTERRUPT DRIVER AFTER WRITE COMPLETE	
		14 14		;	to shut	down co	INTROLLER		
		14	13	;	data pas	SED :	TEMCTL	(1 RAM BYTE) CONTAINING HIGH ORDER	
		14	4	;			ADDRESS	(3 BITS) & CONTROL BEFORE WRITE COMPL.	
		14	5						
		14	6 ENDWE:						
003D		14		PUSH	PS₩		; save	REGISTERS WE'LL DESTROY	
003E		14	-	PUSH	D				
	3 R0000	D 14	19	LDA	TEMCTL		; get a	DORESS LINES/CONTROL BITS	
00 42	E61F	15	50	ANI	1FH		; remov	E ACTIVE VPP BIT	
0044	D3A3	15		OUT	CTLPRT		; de-ac	TIVATE VPP	
		15	52						AFN-01885A

Figure 24. Controller III Software Driver (Continued)

AP-102

0047 110000			
004A 1B 004B 7A 004C B3 004D C24A00 C 0050 F1 0051 E617 0053 D3A3 0055 E607 0057 D3A2 0057 D3A2 0058 D3A0 0058 D3A0 0058 D1 005E F1 005F C9 005F C9 00	153 PUSI	5H PSW	; SAVE HIGH ORDER ADDRESS/CONTROL LINES
004A 1B	154 LXI	I D. 13D	, SET UP COUNT FOR 100 USEC DELAY
0048 7A 004C B3 004D C24A00 C 0051 E617 0051 E617 0055 E607 0055 E607 0055 E607 0058 D3A0 0058 D3A0 0058 D1 005E F1 005F C9 005F C9 00	155 DELAY 156 DCX	X D	/ DELAY WHILE VPP FALLS
004C B3 004D C24A00 C 005D F1 0051 E617 0053 D3A3 0055 E607 0057 D3A2 0059 3E0E 005B D3A0 005B D1 005E F1 005F C9 UBLIC SYMBOLS NDWE C 003D REAL XTERNAL SYMBOLS EDELY E 0000 SER SYMBOLS	156 DCA 157 MOV		· DONE COUNTING?
0040 C24R00 C 0050 F1 0051 E617 0053 D3R3 0055 E607 0057 D3R2 0059 3E0E 0058 D3R0 0058 D1 005E F1 005E F1 005F C9 UNE C 003D RERE VDWE C 003D RERE VDWE C 003D SER SYMBOLS EDELY E 0000 SER SYMBOLS	158 ORA		· bone boontana.
0050 F1 : : : : : : : : : : : : : : : : : :	159 JNZ	-	, NO. KEEP LOOPING
0051 E617 :	160		
0053 D3A3 0055 E607 0057 D3A2 0059 3E0E 0058 D3A0 0050 D1 005E F1 005F C9 005F	161 POP		, RESTORE ADDRESS/CONTROL LINES
0055 E607 :: 0057 D3A2 :: 0059 3E0E :: 0058 D3A0 :: 0056 D1 :: 005F C9 :: 005F C9 :: 100E C 003D REAL IDWE C 003D REAL IDWE C 003D REAL IDWE E 0000 :: IDELY E 0000 :: IDELY E 0000 ::	162 ANI		, REMOVE CE ACTIVE BIT
0057 D3A2 0059 3E0E 0058 D3A0 005E F1 005E F1 005F C9 005F C9 005F C9 005F C9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	163 OUT		DE-ACTIVATE CE
0059 3E0E 005B D3A0 005E F1 005E F1 005F C9 8LIC SYMBOLS DWE C 003D READ TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	164 ANI 165 OUT		, REMOVE MUX SELECT WRITE BIT ; LET MUX SELECT FOR READ OPERATIONS
0058 D3A0 0055 D1 0055 F1 005F C9 BLIC SYMBOLS DWE C 003D READ TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	165 OUT 166 MVI		, Let MUX select for remu operations
0050 D1 005E F1 005F C9 BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	166 HVI 167 OUT		, so as not to cause contention W/ Data BUS
005D D1	168 001		· So its not to chose contention within bos
005F C9 BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	169 POP	P D	, RESTORE REGISTERS
BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	170 POP	P PSW	
BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	171 RET	Г	; AND EXIT
BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	172		
: BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	173		
BLIC SYMBOLS DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS	174		
dwe C 003d Real Ternal Symbols Dely E 0000 Er Symbols	175 END	0	
DWE C 003D REAL TERNAL SYMBOLS DELY E 0000 ER SYMBOLS			
DELY E 0000 ER SYMBOLS	xead C 0000 W	WECYCL C 0002	
DELY E 0000 ER SYMBOLS			
ER SYMBOLS			
rprt a 00a2 🛛 Clri	LRACT A 0000 CI	CLRINA A 0003 CLRP	rt a 0022 Counth a 0083 Countl a 00 <mark>00 Ctlprt a 00</mark> 8
TPRT A 00A1 DELI	elay c 004a ei	Eepdr a 00a0 Endw	E C 003D READ C 0000 TEMCTL D 0000 TIMHI A 00A
MLOW A 00A4 WEC'	JECYCL C 0002 W	WEDELY E 0000	

Figure 24. Controller III Software Driver (Continued)

AP-102

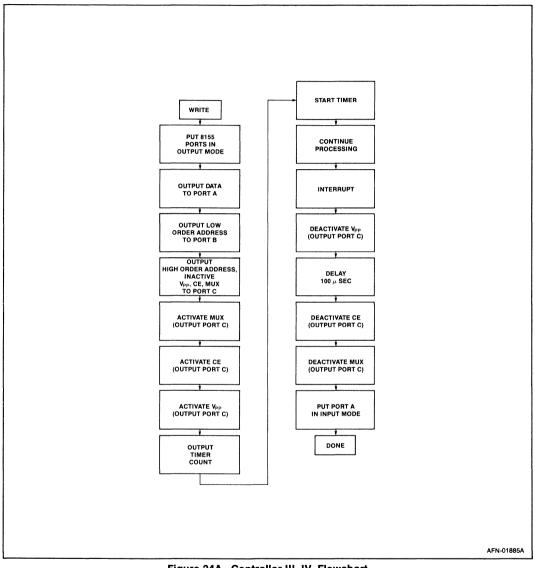


Figure 24A. Controller III, IV, Flowchart

ASM80 F1.CONT4 SRC MOD85				
ISIS-II 8080/8085 MACRO ASSEMBL	ER, V3 0		MODULE PAGE 1	
	SOURCE S	TATEMENT	ī	
1 \$DEBUG 2				
3				
4	PUBLIC	WECYCL,	READ, ENDWE	
5	-			
6	EXTRN	WEDELY		
8	CSEG			
9				
10				
11)	CONTROL	LEP IV I/O PORT DEFINITIONS	
12 13			ENTED IN 8155 RAM / I/O / TIMER CHIP	
14	•	1:11		
15				
16	1	PORT	DESCRIPTION	
17	,	 000U	 Port direction register (set to 0FH = All Ports Output)	
18 19	;	Oroh	PORT DIRECTION REGISTER (SET TO OPH = HLL PORTS OUTPOID	
28	,	ØR1H	2816 DATA (OUTPUT)	
21	,			
22	i -	0A3H	2816 LOW ORDER ADDRESS, A0-A7 (OUTPUT)	
23 24	,	0A3H	2816 HIGH ORDER ADDRESS AND CONTROL LINES (OUTPUT)	
24	;	חנחט	BITS 0-2: A8-A10	
26	,		BIT 3: CE CTRL (0=SELECT READ)	
27	,		WRITE ENABLE>	
28	,		BIT 4: MUX CTRL (0=READ, 1=WRITE)	
29 30	, ;		BIT 5. VPP CTRL (0=INACTIVE,1=ACTIVE)	
30	,	0A4H	LOW ORDER TIMER COUNT REGISTER	
32	,			
33	,	0R5H	HIGH ORDER TIMER COUNT REGISTER	
34	;	2201	DODT WEED TO CLEOD WRITE COMPL # 11 ECOL OCC INTERDURTE	
35	i	22H	PORT USED TO CLEAR WRITE COMPL & ILLEGAL ACC INTERRUPTS	
37				
00A0 38 EEPDR	EQU	ØRØH	; PORT DIRECTION REGISTER	
000A1 39 DATPRT		0A1H	; 2816 DATA (OUTPUT)	
00R2 40 ADRPRT 00A3 41 CTLPRT		0r2h 0r3h	, 2816 LOW ORDER ADDRESS (OUTPUT) ; 2816 HIGH ORDER ADDRESS AND CONTROL (OUTPUT)	
00R4 42 TIMLOW		0A4H	; LOW ORDER TIMER COUNT REGISTER	
00A5 43 TIMHI		ØASH	; HIGH ORDER TIMER COUNT REGISTER	
44				
0000 45 COUNTL		0C0H 020	; LOW ORDER TIMER COUNT FOR 10 MSEC DELAY	
0083 46 COUNTH 47	EWU	83H	, HIGH ORDER TIMER COUNT FOR 10 MSEC DELAY	
47				
49	;	CONTRO	LLER IV READ SUBROUTINE	
58				AFN-01885A

Figure 25. Controller IV Software Driver

1515-11 8080/805	RS MACRO ASSEMBLE	. V2 I	9 MODULE	PAGE 2	
LOC OBJ			STRTEMENT		
	51	j		HL = ADDRESS OF 2816 LOCATION TO READ	
	52	i	data returned.	a = data read	
	53	;	REGS DESTROYED:	FLAGS	
	54				
	55 READ:				
0000 3E0E		IVM	A, ØEH	; PUT DATA PRT IN INPUT MODE, ALL OTHERS-OUTPUT	
0002 D3A0	57	OUT	EEPDR	; OUTPUT TO PORT DIRECTRION REGISTER	
0004 7D	58	MOV	A, L	, GET LOW ORDER ADDRESS	
0005 D3A2	59 69	OUT	adrprt A. H	; output to address port ; get high order address	
0007 7C 0008 E607	60 61	MOV ANI	п, п 7Н	; PEMOVE ALL CONTROL BITS (KEEP 3 BIT ADDRESS)	
0008 E607 0008 F610	62	ORI	10H [°]	; ADD OE' INACTIVE BIT	
000C D3R3	63	OUT	CTLPRT	; OUTPUT TO CONTROL PORT	
000E E607	64	ANI	07H	; REMOVE OE' INACTIVE BIT (ACTIVATE OE)	
0010 F608	65	ORI	8H	, ADD CE' ACTIVE BIT	
0012 D3A3	66	OUT	CTLPRT	; OUTPUT TO CONTROL PORT	
0014 DBA1	67	IN	DATPRT	; INPUT DATA FROM 2816	
0016 F5	68	PUSH	PSW	; save data	
0017 AF	69	XRA	A	; zero a register	
0018 D3A3	70	OUT	CTLPRT	; DEACTIVATE ALL CONTROL LINES	
001A F1	71	POP	PSW	; RESTORE DATA	
001B C9	72	RET		; AND EXIT	
	73				
	74				
	75				
	76				
	7.	j	CONTROLLER IV W	RITE/ERASE CYCLE SUBROUTINE	
	78			H - OPPORTS OF CONCLOSOFICE TO UNITE	
	79	,	data passed:		
	20 81	;		A = DATA TO WRITE OR 9FFH (ERASE)	
	82	j	data returned.		
	62 83	2	REGS DESTROYED.		
	84 84	;	RAM REQUIRED		
	85	,	CALLS:	NEDELY (I/O POLL ROUTINE OF INTERPUPT DRIVER)	
	86	;	an Inclusion .		
	87	;	COMMENTS.	ENDWE (END OF HRITE/ERASE CYCLE) ROUTINE	
	88	,	· · · · · · · · · · · · · · · · · · ·	IS CALLED BY INTERRUPT DRIVER OR I/O POLL	
	89	;		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
	240	,		THIS SUBROUTINE IS PART OF THE DRIVER	
	91	,		PACKAGE ROUTINES INITIATED BY A CALL TO	
	92			WECYCL.	
	93				
	94				
0022	95 CLRPRT		22H	; I/O PORT USED TO RESET INTERRUPT F/F'S	
9999	96 CLRACT		ØH	; ACTIVATE CLEAR WRITE COMPL & ILL ACC INTR	
2000 2	97 CLRINA	EQU	3H	; INACTIVE CLEAR WC & IA FUNCTION	
	98				
	99 • 00 UEQUO				
0040 55	100 WECYCL.		001		
001C F5	101	PUSH	PSW	; SAVE REGISTERS	AFN-01885A

Figure 25. Controller IV Software Driver (Continued)

AP-102

			CRO ASSEMB			LE PAGE 3	
LOC	ORI	L	INE	SUURCE	STATEMENT		
001D		1	102	PUSH	8		
001E		j	103	MOV	B, A	 SAVE DATA TO WPITE IN B-REGISTER 	
001F		1	.04	fiv I	A, CLRACT	 CLEAR WRITE COMPLETE & ILLEGAL ACCESS F./F.'S 	
0021		1	.05	OUT	CLEPRT	ACTIVATE CLEAR FUNCTION	
0023	3E03	1	106	MVI	A, CLRINA	, DEACTIVATE CLEAR FUNCTION	
0025		1	107	out	CLRPRT		
0027	CEOF	1	LØ8	MVI	A, 0FH	• PUT ALL 8155 I/O PORTS IN OUTPUT MODE	
0029	D3A0	1	109	OUT	EEPDR	; OUTPUT TO PORT DIRECTION REGISTER	
002B	78	1	110	Mov	A, B	, FETCH DATA TO WRITE	
002C	D3A1		111	OUT	DATPRT	, OUTPUT TO 2816 DATA LINES	
002E	7D	:	112	Moa	A, L	, GET LOW ORDER ADDRES	
002F	D3 R 2	:	113	OUT	ADRPRT	; OUTPUT TO ADDRESS LINES	
0031			114	Mov	A, H	; GET HIGH ORDER ADDRESS	
0032			115	ANI	7H	 CLEAR ALL CONTROL LINES 	
0034			116	ORI	10H	; ADD MUX BIT TO SELECT I/O PORTS FOR WRITE	
00 36		-	117	OUT	CTLPRT	; OUTPUT HIGH ORDER ADDRESS AND CONTROL LINES	
00 38		-	118	ORI	SH	, ADD CE ACTIVE BIT	
003A		-	L19	OUT	CTLPRT	, OUTPUT CONTROL LINES AGAIN	
00 3C		-	120	Moa	B, A	; SAVE HIGH ORDER ADDR/CTL LINE DATA	
003D			121	MVI	A, COUNTL	; OUTPUT TIMER COUNT (LOW ORDER)	
003F			122	OUT	TIMLOW		
0041			123	MVI	A, COUNTH	, OUTPUT TIMER COUNT (HIGH ORDER)	
	D3A2		124	OUT	TIMHI		
0045			125	MVI	r. Ocfh	; start the timer	
	d3a0		126	OUT	EEPDR		
0049			127	Moy	A, B	; RETRIEVE ADDRESS/CONTROL BITS	
	F620		128	ORI	20H	; ADD VPP ACTIVE BIT	
004C			129	OUT	CTLPRT	, ACTIVATE VPP	
			130	STA	TEMCTL	; SAVE HIGH ADDRESS/CONTROL BITS FOR AFTER INTR	
0051	-		131	POP	В	, RESTORE REGISTERS	
0052			132	POP	PSW		
	CD0000			CALL	WEDELY	; GO TO I/O POLL LOOP OR INTERRUPT DRIVER	
0056	C9		134	RET		, AND RETURN BACK TO MAIN PROGRAM	
			135				
			136				
			137				
			138	DSEG			
			139				
0000			140 TEMCTL	.: DS	1	; RAM LOCATION FOR TEMP STORAGE OF CONTROL BITS	
			141				
			142				
			143				
			144	CSEG			
			145				
			146				
			147	i	CONTROLLER I	Y END-OF-WRITE/ERASE-CYCLE ROUTINE	
			148				
			149	i		1/0 POLL OR INTERRUPT DRIVER AFTER WRITE COMPLETE	
			150	;	to shut down	I CONTROLLER.	
			151				

Figure 25. Controller IV Software Driver (Continued)

	OBJ		LINE		SUURLE S	TATEMENT							
			152 153 154	ENDWE:	; ;	data pr	5SED :					NG HIGH ORDER EFORE WRITE COMP	۹ <u>ـ</u> .
0057	55		155	ENDWE.	PUSH	PSW		: 9	WE REGI	STERS NE	II DESTR	Ω¥	
0058			156		PUSH	D		<i>) _</i> я	WE KEUI	JILKS NE		.01	
	23 380000	D			LDA	TENCTL		: 6	T ANNER	55 LINES/	CONTROL	RITS	
005C		0	159		ANI	1FH				TIVE VPP		0110	
005E			160		OUT	CTLPRT			-ACTIVA				
OODE	6915		161		001	oren Kr		, ,,					
0060	F5		161		PUSH	PSW		. 9	IVE HIGH	ORDER AN	DRESS/00	NTROL LINES	
	110000		163		LXI	D, 13D				UNT FOR 1			
0001	1100/00			DELAY:	-01	01220		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ter hanhan t i 1	
0064	1R		165	FCF111.	DCX	D		: N	THU VAL	LE VPP FF	4) <		
0065			165		MOV	A.D			NE COUN				
0065			166		ORA	E		1 04	AL COON	1 21900 (
	C26400	С	167		JNZ	DELAY		: Mi): KEEP	ODETNO			
0001	020400	U	160		1112	VELAT		2 08	. NEEP	000 ING			
006A	F1		165		POP	PSW		: 04		DDRESS/CC	NTROL IT	NES	
006B			170		ANI	гэм 17Н				ACTIVE E		1964-0	
	D3A3		172		OUT	CTLPRT			-ACTIVA		/#1		
006F			172		ANI	7H				X SELECT	LIDITE DI	т	
000r 0071			173		OUT	CTLPRT						ERATIONS	
0073			174		MVI	A, ØEH				PORT BACK			
0075			176		OUT	EEPDR						ION W/ DATA BUS	
0010	0110		177		501			ال ر				AND ME DITTE DOD	
0077	D1		178		POP	D		; 0	STORE P	EGISTERS			
0078			179		POP	PSN		7 14	LOTONE N				
0079			180		RET	1.244		, A	ID EXIT				
5019			181		- ME-1			1.13	w wnii				
			181										
			183										
			184		END								
			104										
	SYMBOLS	_		0.0000									
idhe.	C 0057	R	EHD	C 0000	WECYC	L C 001C							
	al symbol E 0000	.s											
ER SY	YMBOLS												
RPRT	A 00A2	C	LRACT	A 0000	CLRIN	ia a 0003			0022	COUNTH (Countl a 00C0	CTLPRT A 00
ITPRT	a 00a1			C 0064	EEPDR	r a 00a0	END	EC	0057	Read (C 0000	Temctl d 0000	timhi a 00
(MLOW	A 00A4	W	ECYCL	C 001C	WEDEL	Y E 0000	I						

Figure 25. Controller IV Software Driver (Continued)

ASM80 F1 CCLR2 SRC MOD85				
ISIS-II 8080/8085 MACRO ASSE	181.EP V3.1	0 MODULE	PAGE 1	
LOC OBJ LINE	SOURCE	STATEMENT		
1 #DEB	JG			
-				
	PURL 10	CERASE		
5	TODETC	CENTER		
6	EXTRN	WEDELY, ENDWE		
7				
8	CSEG			
9				
10 11				
11	,	CONTROLLER II O	CHIP ERASE SUBROUTINE	
13	,			
14	,	data passed.	NONE	
15	;	data returned	NONE	
16	j.	REGS DESTROYED		
17 18	,	Calls	WEDELY (1/0 POLL ROUTINE OR INTERRUPT DRIVER)	
10	,	1/0 PORTS USED:		
20	,		2H (OUTPUT)	
21	1		BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW)	
22	,		BIT 1 = ILLEGAL ACCESS CLEAR (ACTIVE LOW)	
23	,		BIT 5 = CHIP CLR (+12V TO OE' LINE) (ACTIVE HI)	
24		COMMENTE		
25 26	•	COMMENTS.	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE IS CALLED BY INTERRUPT DRIVER OR I/O POLL	
20	,		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
28	,		THIS SUBROUTINE IS PART OF THE DRIVER	
29	;		PACKAGE ROUTINES INITIATED BY A CALL TO	
30	i		CERASE.	
31				
32 33	;	1/0 SYMBOLS		
34	,	1/0 5/10005		
0022 35 CLRP	rt equ	22H	, CHIP ERASE OUTPUT PORT	
0000 36 CLRA	CT EQU	00H	; ACTIVE RESET OF CLEAR WC & ILL ACC FLIP-FLOPS	
0003 37 CLRI		03H	; INACTIVE RESET OF CLEAR WC & IA FUNCTION	
0023 38 CLRC	CL EQU	23H	DATA TO DEACTIVATE CLEAR WC & IA BUT ACTIVATE DEACH AND SUMMETERS CALL OF SUMMETERS AND ADDRESS AND ADDRESS OF SUMMETERS AND ADDRESS OF SUMMETERS AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS	
39 40 CERA	ce .		; OE' = +12V FUNCTION FOR CHIP CLEAR	
0000 F5 41	PUSH	PSW	; SAVE REGISTERS	
0001 E5 42	PUSH	H		
0002 3E00 43	MVI	A, CLRACT	; GET BITS TO RESET WRITE COMPL AND ILL ACC	
0004 D322 44	OUT	CLRPRT		
0006 3E23 45	MYI	A, CLRCCL	; GET BITS TO DEACTIVATE CLEAR FUNCTION AND	
46 0008 D322 47	OUT	CLRPRT	; TURN ON OE' = +12V FUNCTION FOR CHIP ERASE ; OUTPUT TO I/O PORT	
0000 3EFF 48	MVI	A, ØFFH	WRITE OFFH TO THE 2816	
000C 3200A0 49	STA	0A000H		AFN-01885A
۱				

Figure 26. Controller II Chip Erase Routines

SIS-II	8080/808	5	Macro	assembli	ER, V3.	0	MODULE	P	AGE	2					
LOC (OBJ		LINE	3	Source	STATEMENT									
000F	CD0000	Е	50		CALL	WEDELY		;	60 TO	1/0 POLL LOC)P OR	INTERRUPT	DRIVER		
0012	3E03		51		MVI	A, CLRIN	A	į	DEACTI	/ATE CHIP CL	ear a	UNCTION			
0014	D322		52		0UT	CLRPRT									
0016	E1		53		POP	Н		i	RESTOR	E REGISTERS					
0017	F1		54		POP	PSW									
0018	C9		55		RET										
			56												
			57		END										
PUBLIC CERASE	symbols C 0000														
	IL SYMBOLS E 0000		EDELY	E 0000											
jser sy Cerase	'MBOLS C 0000	С	LRACT	A 0000	CLR	CCL A 0023	CLRI	NA	A 0003	CLRPRT f	A 002	2 ENDWE	E 000	0 WEDELY	E 000
ASSEMBL	Y COMPLET	IE'	NO	ERRORS										A	N-01885

Figure 26. Controller II Chip Erase Routines (Continued)

ASM80 :F1:CCLR34.	SRC MOD85				
ISIS-II 8080/8085	MACRO ASSEMBL	ER, V3.0)	NODULE PAGE 1	
LOC OBJ	LINE	SOURCE S	TRTEMENT	ſ	
	1 \$DEBUG				
	2				
	3				
	4	CSE6			
	5				
	6				
	7	POBLIC	CERASE		
	8 9	CUTCH	UESELU		
	9 10	EXTRN	WEDELY,	ENUME	
	11 12		CONTROL	LER III 1/0 PORT DEFINITIONS	
	12	;	CONTROL	LER III 170 FORT DEFINITIONS	
	14	,		NTED IN 8155 RAM / I/O / TIMER CHIP	
	14	,		AND IN OLDO MINI I INO I ILIULA GILI	
	15				
	17	,	PORT	DESCRIPTION	
	18	;			
	19	;	ohoh	PORT DIRECTION REGISTER (SET TO 0FH = ALL PORTS OUTPUT)	
	20	;			
	21	,	0A1H	2816 DATA (OUTPUT)	
	22	;			
	23	j –	0A2H	2816 LOW ORDER ADDRESS, A0-A7 (OUTPUT)	
	24	,			
	25	;	0A3H	2816 HIGH ORDER ADDRESS AND CONTROL LINES (OUTPUT)	
	26	i		BITS 0-2: A8-A10	
	27	i		BIT 3: CE CTRL (0=SELECT READ,	
	28	j		WRITE ENABLE)	
	29	1		BIT 4: MUX CTRL (0=READ, 1=WRITE)	
	30 34	1		BIT 5: VPP CTRL (0=INACTIVE, 1=ACTIVE)	
	31	j	0040		
	32 33	,	00 4H	LOW ORDER TIMER COUNT REGISTER	
	دد 34	; ;	0A2H	HIGH ORDER TIMER COUNT REGISTER	
	35		อกอก	HIGH ONDER THER COURT REGISTER	
	36	;	22H	Chip Erase, interrupt F/F clear ports (output)	
	30	;	5-6-I I	BIT 0: WRITE COMPL CLEAR (ACTIVE LOW)	
	38	;		BIT 1. ILLEGAL ACC CLEAR (ACTIVE LOW)	
	39	;		BIT 5: CHIP ERASE (+12V TO OE') ACT HI	
	40			د.	
	41				
	42				
00A0	43 EEPDR	EQU	ØRØH	PORT DIRECTION REGISTER	
00R1	44 DATPRT		0A1H	; 2816 DATA (OUTPUT)	
00A2	45 ADRPRT		ØR2H	; 2816 LOW ORDER ADDRESS (OUTPUT)	
00A3	46 CTLPRT		ØA3H	; 2816 HIGH ORDER ADDRESS AND CONTROL (OUTPUT)	
00A4	47 TIMLOW		0A4H	; LOW ORDER TIMER COUNT REGISTER	
00A5	48 TIMHI	EQU	0A2H	; HIGH ORDER TIMER COUNT REGISTER	
	49				AFN-01885A

	·····					
ISIS-II	8080/8085 MACRO	ASSEMBL	.ER, V3.	Ø MODULE	PAGE 2	
LOC	OBJ LINE		SOURCE	STRTEMENT		
8900	50	COUNT	C00	anau	· JOH ODDED TIMED COUNT EOD 40 MEET DELOU	
0000		COUNTL COUNTH			; LOW ORDER TIMER COUNT FOR 10 MSEC DELAY , HIGH ORDER TIMER COUNT FOR 10 MSEC DELAY	
0003	52		C&0	nco) HIGH ORDER TIMER COOM FOR 10 HILE DEENT	
	53					
	54					
	55		;	CONTROLLER III.	IV CHIP ERASE SUBROUTINE	
	56					
	57		,	data passed:	HL = ADDRESS OF 2816 LOCATION TO WRITE	
	58		;		A = DATA TO WRITE	
	59				OR ØFFH (ERASE)	
	60		,	data returned.	NONE	
	61		j.	REGS DESTROYED.	NONE	
	62		,	RAM REQUIRED.	1 BYTE FOR TEMP ADDRESS/CONTROL STORAGE	
	63		1	Calls:	PEDELY (1/0 POLL ROUTINE OR INTERRUPT DRIVER)	
	64		,			
	65		,	COMMENTS :	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
	66		j –		IS CALLED BY INTERRUPT DRIVER OR 1/0 POLL	
	67		,		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
	68		;		THIS SUBROUTINE IS PART OF THE DRIVER	
	69		i		PACKAGE ROUTINES INITIATED BY A CALL TO	
	70		;		WECYCL.	
	71 72					
0000		CLRACT	EOU	ØH	ACTIVE CLEAR WRITE COMPL & ILL ACC FUNCTION	
0023		CLRCCL		23H	, DATA TO DEACTIVATE CLEAR WC & IA BUT ACTIVATE	
	75		200	5-2/1 I	; OE' = +12V FUNCTION FOR CHIP ERASE	
0003		CLRINA	EQU	ЗH	; INACTIVE CLEAR WC & IA FUNCTION	
0022		CLRPRT		22H	; PORT USED TO CLEAR ILL ACC & WRT COMPL F/F	
	78					
	79	I				
	80	CERASE	:			
0000			PUSH		; SAVE REGISTERS	
0001			MVI	A, CLRACT	; CLEAR WRITE COMPLETE AND ILL ACC FLIP-FLOPS	
0003			OUT	CLRPRT		
0005			MVI	A, CLRCCL	; DE-ACTIVATE CLEAR FUNCTION & SET OE' = +12V	
0007			OUT	CLRPRT		
0009			MVI	A, OFH	> PUT ALL 8155 I/O PORTS IN OUTPUT MODE	
000B 000D			OUT MUT	EEPDR	; OUTPUT TO PORT DIRECTION REGISTER ; DATA TO WRITE IS ALL 1'S	
0000F			MVI	r, øffh Datprt	, OUTPUT TO 2816 DATA LINES	
0007			OUT MVI	A, Ø	; LOW ORDER ADDR (WE WRITE TO A000 FOR CCLR)	
0013			OUT	ADRPRT	; OUTPUT TO ADDRESS LINES	
0015			MVI	A, 10H	ACTIVATE MUX FOR WRITE OPERATION	
0017			OUT	CTLPRT	, OUTPUT HIGH ORDER ADDRESS AND CONTROL LINES	
0019			ORI	8H	ADD CE ACTIVE BIT	
001B			OUT	CTLPRT	; OUTPUT CONTROL LINES AGAIN	
901D			MVI	A, COUNTL	, OUTPUT TIMER COUNT (LOW ORDER)	
001F			OUT	TIMLOW		
0021		}	MVI	A, COUNTH	; OUTPUT TIMER COUNT (HIGH ORDER)	
0023	D3A5 99)	OUT	TIMHI		
0025	3ECF 100)	MVI	A, OCFH	; start the timer	AFN-01885A
L						

Figure 27. Controller III, IV Chip Erase Routines (Continued)

LITERATURE ORDER FORM

I'd like to receive free information on the following Intel products:

- XB 🗆 16-Bit Microprocessors
- XA 🗆 8-Bit Microprocessors
- XD 🗆 Single-Chip Microprocessors
- XE 🛛 Peripheral Controllers
- XS 🗆 Static RAMs
- XU 🗆 Dynamic RAMs
- XV 🗆 EPROMs
- XX 🛛 Bipolar PROMs
- XW 🗆 E²PROMs
- XY 🗆 Bubble Memories
- XF 🗆 Single-Board Computers
- XQ 🛛 Industrial Control Series
- XP 🛛 Industrial Grade Products
- XG 🗆 Development Systems
- XJ 🛛 Software High-Level Languages

(_____)

- XL 🗆 Insite-Software Program Library
- XK

 Operating Systems (RMX 80/86)
- XR 🗆 Telecom Products
- XM

 Military Products
- YC 🗆 Educational Products

- YB 🗆 Ethernet
- YA 🗆 Memory Systems
- XC 🗆 32-Bit Microprocessors

Additionally I'd like to receive free:

- YF
 Intel's Literature Guide—A complete listing of all Intel literature.
- YE D Microcomputer Workshops—Description and schedule of Intel's microcomputer workshops.

I'd like to purchase the following catalogs:

7/81

- □ Component Data Catalog—\$10.00
- □ Systems Data Catalog—\$10.00
- □ iAPX 86,88 Family User's Manual—\$10.00
- □ iAPX 88 Book—\$7.50
- □ MCS-85 User's Manual—\$7.50
- Boost Assembly Language Programming Manual-\$13.00
- Peripheral Design Handbook—\$7.50
- MCS-51 User's Manual—\$7.50
- □ MCS-48 User's Manual—\$7.50
- □ 8048 Applications Handbook—\$7.50
- UPI-41 User's Manual—\$5.00
- 2920 Analog Signal Processor Handbook—\$7.50

(Prices are subject to change without notice.)

To order send check, money order or use your VISA

or MASTERCARD.

Account No.:	V	ISA 🗆	MASTERCARD
--------------	---	-------	------------

Exp. Da	ate:	Signature:	
---------	------	------------	--

Name/Title: ______

Address: _____

City/State: _____

delivers solutions -

_____ Zip: _____

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

First Class Permit No. 1040, Santa Clara, CA 95051

Postage will be paid by

INTEL CORPORATION 3065 Bowers Avenue Santa Clara, California 95051 Attn: Literature Department

AP-102

ISIS-II 8080.'S	3085 MACRO ASSEME	BLER, VE Ø	MODULE PAGE 3
LOC OBJ	LINE	Source statemen	
0027 D3A0	101	OUT EEPDR	
0029 SE38	102	MVI AUGH	· ACTIVATE VPP, CE AND MUX
0028 D3A3	105	OUT CTLPRT	
0020 320000	ũ 104	sta temotl	
0030 (00000	E 105 106	Call Wedely	, WAIT FOR END OF WRITE CYCLE BY I/O POLL OR , INTERPUPT DRIVER ROUTINE
0003 3E03	107	MVI AUCLRI	
0035 D322	108	OUT CLRPRT	
0037 F1	109	POP PSW	
0028 69	110	RET	, BACK TO CALLING ROUTINE
	111		
	112		
	113		
	114	DSEG	
	115		
0000	116 TEMCTL	DS 1	; RAM LOCATION FOR TEMP STORAGE OF CONTROL BITS
	117		
	118		
	119	5 110	
	120	END	
PUBLIC SYMBOLS CERASE C 0000	ī		
EXTERNAL SYMBO	нс		
ENDWE E 0000	WEDELY E 0000)	
USER SYMBOLS			
ADRPRT A 00A2	CERASE C 0000) Clract a 000	0 CLRCCL A 0023 CLRINA A 0003 CLRPRT A 0022 COUNTH A 0083
COUNTL A 00C0	CTLPRT A 00A3	: Datprt a OOA	11 EEPDR A 00A0 ENDWE E 0000 TEMCTL D 0000 TIMHI A 00A5
TIMLON A 00A4	WEDELY E 0000)	
ASSEMBLY COMPL	.ete, no errors	,	AFN-01885A

Figure 27. Controller III, IV Chip Erase Routines (Continued)

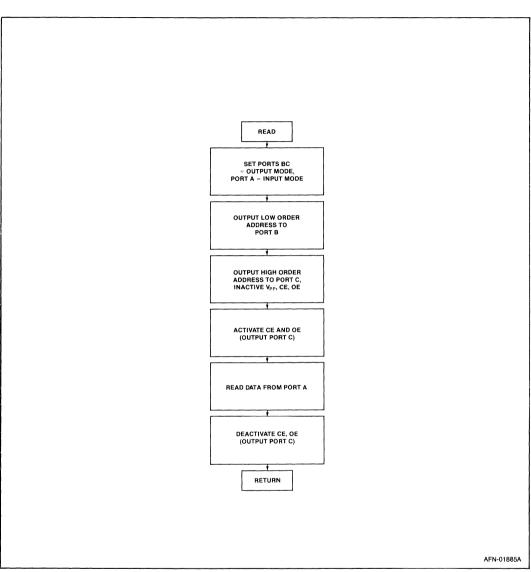
SM80 .F1.IOPOL SIS-II 8080/80		MBLER, V3.0	MODULE	PRGE 1	
LOC OBJ	LINE	SOURCE S	TATEMENT		
	1 \$DEB	110			
	1 #UED 2	03			
	3				
	4				
	5 6		a and and and and and and and and and a	****	
	6 7	,	ቀ ሎቶቶት እየተቀቀቀቀቀቀ	ሉ ቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅቅ	
	8	;	2816 CO	NTROLLER 1/0 POLL ROUTINE	
	9				
	10	;			
	11 12	j			
	12	;	****	****	
	14	•			
	15				
	16	PUBLIC	PEDELY		
	17 18	E%TRN	ENINDE		
	18	EATKN	CNUTE		
	20				
	21	CSEG			
	22				
	23 24			M/ERASE CYCLE DELAY ROUTINE	
	24 25	į	FEDELT. FROUKN	NYERDE CTOLE DELAT KOOTINE	
	26	j.	DELAYS	VIA I/O POLLED WAIT LOOP ON 'WRITE COMPLETE'	
	27	;	BIT.		
	28				
	29 30	;	data passed: Data returned:	NONE	
	31	; ;	REGS DESTROYED:		
	32	•			
	33	i	1/0 PORT USED:		
	34	,		- BIT 1 = 'WRITE COMPLETE' (ACTIVE HIGH)	
	35 36				
0021)rt equ	21H	; 1/0 PORT CONTAINING WRITE COMPLETE BIT	
	38				
	39				
	40 PEDE				
0000 F5	41 42 LOOF	PUSH	PSW	; Save A-Reg, Flags	
0001 DB21	42 LOOP 43	IN	WCPORT	; GET WRITE COMPLETE BIT	
0001 0021 0003 E602	44	ANI	2H	; MASK WC BIT	
0005 CA0100	C 45	JZ	LOOP	; IF NOT SET THEN KEEP WAITING	
0008 F1	46 47	pop	DCU	; restore a, flags	
0000 F1	47	POP	PSW) NEUTOKE NA FENGD	AFN-018854

Figure 28. Controller I/O Poll Routines

ISIS-II 8080/8085 MACRO	ASSEMBLER, V3.0	MODULE PAGE 2	
LOC LINE	SOURCE STATEMENT	IT	
0009 ה00000 E 48 49		; CALL END PROGRAM/ERASE CYCLE ROUTINE TO , SHUT DOWN 2816	
000C C9 50 51 52 53 53 54		; return back to host program.	
PUBLIC SYMBOLS PEDELY C 0000			
external symbols Endpe e 0000			
user symbols Endpe e 0000 loop	C 0001 PEDELY C 0000	30 WCPORT A 8821	
Assembly complete, No	ERRORS		AFN-01885A

Figure 28. Controller I/O Poll Routines (Continued)

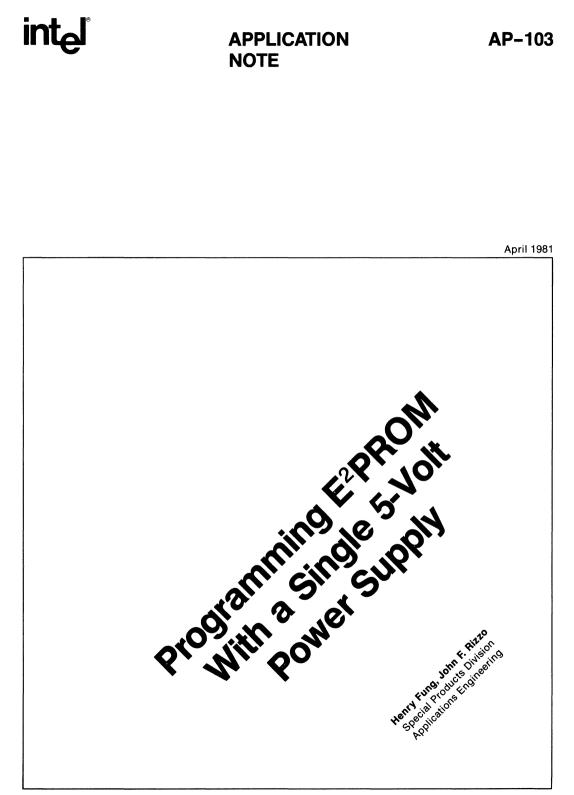
LOC OBJ	LIN	E :	SOURCE S	TATEMENT		
		1 \$DEBUG		The second se		
		2				
		3				
		4	0550			
		5	CSEG			
		6 7		WEDELY, HANDLE		
		, 8	FODLIG	MEDIE I AMMULE		
		9	EXTRN	ENDWE		
	1					
	1		CSEG			
	1					
	1	3				
	1					
		5	;		ERASE CYCLE DELAY SUBROUTINE	
	1		,	- INTERR	JPT DRIVEN	
	1				FOR INTERRUPT TO OCCUR WHILE WAITING OUT	
		8 9	, ,	2816 CONTROLLER		
	-	9 0	,	COTO COMINOLLER		
		1	,	data passed.	NONE	
		2	,	REGS DESTROYED:		
	2	3	,	INTERRUPT USED:	EXPECTS CONTROLLER TO USE INTERRUPT 6.5	
		4	;		MASKS OUT ALL OTHER INTERRUPTS	
		5	i	USED WITH.	Interrupt Handler Subourine 'Handle'	
		6		DOM DECO	1 BYTE - 'WRTCOM' - WRITE COMPLETE INTERCOM	
		!7 ю	,	KHM KEQD:	- BIT ZERO SET BY INTERRUPT HANDLER	
		18 19	i i		WHEN WRITE COMPLETE.	
		:9 :0	,		PRICE PRITE CORR CETE.	
	-					
0000		2 IONMSK	EQU	1101B	; INTERRUPT MASK ENABLING INTERRUPT 6.5 ONLY	
	3	3				
	3	4 WEDELY:				
0000 F5		5	PUSH	PSW	; SAVE A-REGISTER, FLAGS	
0001 AF		6	XRA	A UDTCOM	, ZERO WRITE COMPLETE INTERCOM REGISTER	
0002 320000		27 20	STA	WRTCOM	, ENABLE INTERRUPT 6.5 ONLY	
0005 3E0D 0007 30		18 19	MVI SIM	A, IONMSK) ENHOLE INTERNUTT O. J UNLT	
0007 30 0008 FB		59 10	EI		; Allow interrupts to occur	
000010		11 LOOP:				
0009 380000	D 4		LDA	WRTCOM	; GET WRITE COMPLETE STATUS REGISTER	
000C 1F			RAR		; PUT LEAST SIGNIFICANT BIT INTO CARRY	
		14	jnc	LOOP	; IF LSB NOT SET, KEEP LOOPING	
		45				
0010 F1		16	POP	PSW	; RESTORE A-REGISTER	
0011 C9		17	RET		; BACK TO HOST PROGRAM	
		48 49				
	•	49				


Figure 29. Controller Interrupt Driver

	۳۳، 50% Ll				0 Statement	HOVOLL	THUL	2	
	L.	1140		JUURUE	STRIEREN				
		51							
		52		DSEG			> SHVE H	RAM LOCATION	
0000			ARTCUM.	DS	1				
		54 55							
		56							
		57							
		58		ASEG					
		59		11060					
ØFEØ		60		ORG	ØFEØH				
		61							
		62							
		63							
		64		,	HANDLE -	2816 0	ontroller	INTERRUPT HANDLER	
		65				upon r	ECEIPT OF	INTERRUPT, WRITE COMPLETE BIT CHECKED.	
		66		1		IF SET	ENDWE	is called to shut down controller.	
		67		;				55 BIT SET, 'ILLACC' IS JUMPED TO.	
		68		,				SET, 'BADINT' IS JUMPED TO INDICATING	
		69		1		BAD IN	TERRUPT O	CCURED.	
		70 71							
		71		;	DATA PAS		NONE		
		72		,	REGS AFF			COM MUST SET UN INTERDURT LECTOR	
		73 74		,	REQUIRES).		GRAM MUST SET UP INTERRUPT VECTOR LEY EXECUTED UPON RECEIPT OF RST 6.5	
		75		j j			COMMAND.	LE EXECUTED OF ON RECEIPT OF RST 6.5	
		76		, i	CODE REG	ITPEL		SUBROUTINE CALLED TO SHUT DOWN	
		77		,				ER AT END OF PROGRAM/ERASE CYCLE	
		78		;	RAM USED):		WRTCOM - WRITE COMPLETE STATUS BYTE	
		79		,				BIT Ø SET WHEN WRITE COMPLETE	
		80		3					
		81		;	I/0 PORT	USED :	PORT 21:		
		82		,			- BIT (0 = WRITE COMPLETE (ACTIVE HI)	
		83		1			- BIT :	L = ILLEGAL ACCESS (ACTIVE HI)	
		84							
		85							
000R			IOFMSK		1010B			JT INTERRUPT 6.5	
0021			ACPORT	EQU	21H		, MKITET	COMPLETE STATUS I/O PORT	
		88 00 L	HANDLE :						
0FE0 F5			nnivile :	PUSH	PSW		; CAVE A	-REG, FLAGS	
0FE1 DB21		90 91		IN	WCPORT			P CONTROLLER STATUS BITS	
OFE3 1F		92		RAR	nwi Wist			LEGAL ACCESS BIT INTO CARRY	
0FE4 DA1200	С	93		JC	ILLACC			ILLEGAL ACCESS ROUTINE IF BIT SET	
0FE7 1F		94		RAR				RITE COMPLETE BIT INTO CARRY	
0FE8 D21300	С	95		JNC	BADINT			set then go to bad interrupt handler	
ØFEB 3EØA		96		MVI	A, IOFMSK		; UN-MASI	< 6.5 INTERRUPTS	
0FED 30		97		SIM					
ØFEE CD0000	ε	98		Call	ENDWE			DWN CONTROLLER	
0FF1 3E01		99		MVI	A, 1H			ITE COMPLETE INTERCOM BIT	
0FF3 320000	D 1	100		STA	WRTCOM		; and say	ve in Ram	AFN-018

Figure 29. Controller Interrupt Driver (Continued)

LOC (OBJ	LINE	-	SOURCE	STATEMENT												
ØFF6 f	-	101		POP	PSW					GISTER							
0FF7 (C9	102		ret			i	rnd	RETURN	I BACK	TO I	NTERRUPTE	d Rou	TINE			
		103 104															
		105															
		106															
		107															
		108															
		109															
		110		CSEG													
		111 112															
0012	07		ILLACC:	RST	0			ш	ACCESS	5 Resta	RT V	ector for	TEST	TNG ONLY			
0013			BADINT:		Ö		•					T VECTOR					
		115															
		116		END													
UBLIC :	Symbols																
andle i	a Ofeo	WEDELY	C 0000														
xterna	L SYMBOLS																
NDWE	E 0000																
SER SY	MBOLS																
ADINT	C 0013	ENDWE	E 0000	HAN	dle a ofeo	ILLF	ACC	C 00	112	IOFMSK	(A Ø	100a I	onmsk	A 000D	LOOP	C (000


Figure 29. Controller Interrupt Driver (Continued)

AP-102

Figure 30. Controller IV Read

.

The Intel 2816 is a new generation of non-volatile memory in which writing and erasing can be accomplished on board by providing a 21 volt pulse. Figures 1 and 2 show the wave forms for byte erase (or write) and chip erase respectively. In order to generate the V_{PP} pulse, a power supply with output voltage of +24V is needed. In a system environment where this voltage is not available, a switching regulator can be used to convert +5Vinto +24V. This Application Note will discuss the design and implementation of such a regulator.

With the advent of LSI technology, the design of a dc-to-dc converter has been greatly simplified. Figure 3 shows the circuit diagram for a voltage converter using a TL497 switching voltage regulator. The converter presented here is very low cost and is excellent for use in systems where 5 volts is the only supply available.

In order to familiarize the reader with the operation of such a converter, the following discussion is appropriate. The circuit operates as follows: the frequency at which transistor Q1 is switching is determined by capacitor C1. The converter output voltage is fedback to an internal comparator that controls the on and off time of Q1. When Q1 is turned off, voltage across the inductor inverts, and the blocking diode CR1 is forward biased to provide a current path for the discharge of the inductor into the load and filter capacitors (C2 and C3). During the time when Q1 is turned on, the current into the inductor increases linearly. The blocking diode CR1 will become reverse biased and the output load current is provided by the filter capacitors. Figure 4 shows the waveform of the current into the inductor when the output is drawing 80mA. As can be seen, there is no gap between the charge and discharge cycles. Therefore, any current output exceeding 80mA will cause the output voltage to start losing regulation. The switching regulator efficiency can be calculated as a ratio of output power to input power. Therefore,

$$\% \text{ efficiency} = \frac{\text{Output power}}{\text{Input power}} X \ 100\%$$
$$= \frac{24 \text{V X } 80 \text{mA}}{5 \text{V X } 1160 \text{mA X } 0.5} \text{X } 100\%$$
$$= 66\%$$

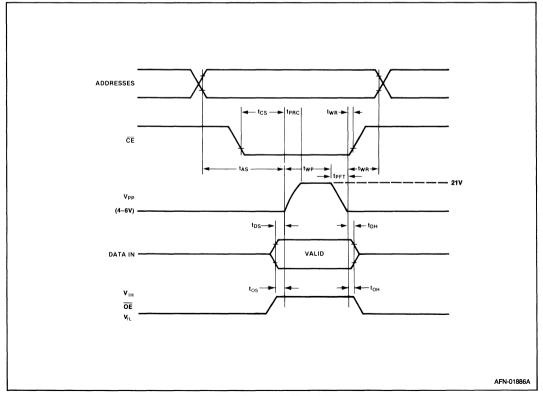


Figure 1. Byte Erase (or Write) Waveforms

The output voltage from the switching regulator can now be used to generate the Vpp pulse required to program the 2816 E^2 PROM. Figure 5 shows the V_{PP} switch circuit diagram. CR1 is used to suppress any noise on the +24V. A2 is an open-collector gate. When its output is low. C1 and pin 5 of A1 will be shorted to ground. Therefore, Q1 will be turned off and Vpp pulse will stay at V_{CC} less one diode drop. When a write cycle is initiated, output of A2 will be high for 10mS. This would allow the capacitor to charge. The time constant is determined by R1 X C1 = 600μ sec. As soon as the voltage across the capacitor is charged up to the zener voltage, the feedback amplifier will force this voltage to remain constant. The final output voltage is adjusted by R2. Q1 provides the additional current drive capability up to 75mA and CR2 across pin 5 and 6 of A1 will ensure a glitchless V_{PP} pulse.

The 2816 has an inhibit mode which allows the device to be deselected during programming. It also means that the V_{PP} switch has to supply the I_{PP} standby current for the unselected devices. Table 1 shows the maximum number of devices that can be supported by the switching regulator in an 8-bit and 16-bit system. Because of the inhibit mode device selection, only one switch is needed for many devices in system.

The dc-to-dc converter and V_{PP} circuit provide an overall solution for programming the 2816 E^2 PROM using a single +5V supply. With its high current drive capability, the V_{PP} switch should satisfy over 95% of the design requirements. Therefore, it is recommended that the circuit be implemented whenever +24V is not available. This circuit has also been designed and tested to operate over the full temperature range, just like the 2816.

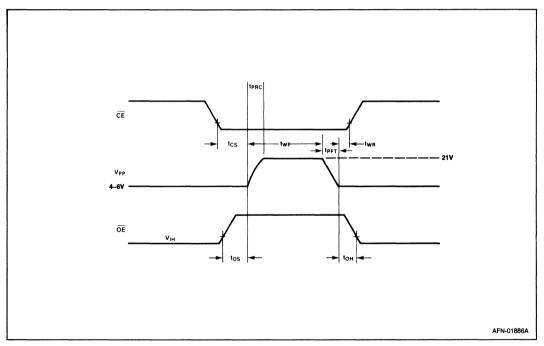


Figure 2. Chip Erase Waveforms

Та	ble	1.

Active Programming Current	Standby Current	Devices Supported	K Bytes	
15mA	60mA	13	26 20	
	Current	Current Current 15mA 60mA	Current Current Supported 15mA 60mA 13	

NOTE: Total current $(I_{PP}) = 75 \text{mA}$.

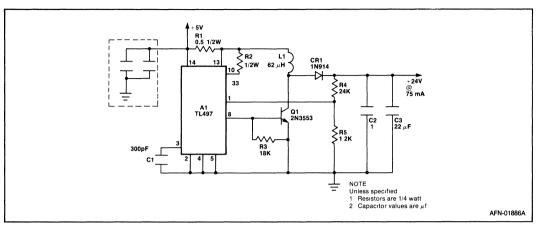


Figure 3. Step-Up Regulator Converts +5V into +24V

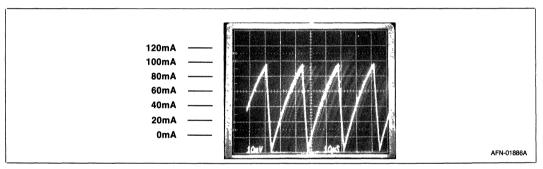


Figure 4. Inductor Current Waveform

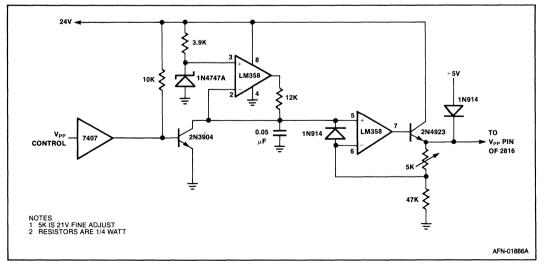
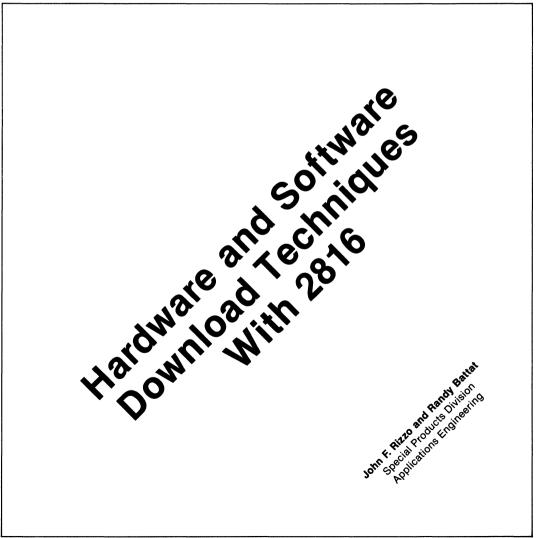



Figure 5. V_{PP} Switch

intel

APPLICATION NOTE

April 1981

INTRODUCTION

Software Updates—how many times in microprocessor systems does software undergo revision? Unfortunately, many people say that it changes frequently. As we all know, such revision can be inconvenient, difficult and extremely costly. The 2816, E^2PROM , from Intel, can not only eliminate these expenses, but increase the functionality of your designs as well. The 2816 combines the benefits of ROM-like non-volatility with RAM-like flexibility. This application notes discusses the costliness of in-field software updates, how 2816 can solve these problems, and some circuit design information detailing how to implement an evolutionary system that eliminates current service costs.

IN FIELD SOFTWARE UPDATES

As technology progresses, the cost of microprocessor systems will become more dependent on design and service costs rather than component costs. Service costs today average about \$100/hr. By 1985, assuming a typical inflation rate, those costs will approach \$200/hr. Any necessary maintenance to change software, or adjust non-volatile parameters, adds hundreds of dollars to a typical system cost.

To take a realistic example, let's assume a typical microprocessor system (2000 in the field), with a service time of 2 hours per system. Also assume that each system needs to be updated a minimum of 2 times during the product's life. Given such assumptions, the cost involved is at least \$400 per system. That's \$800,000 for the total retrofit! If one assumes a doubling of labor rates in the next 5 years, the new retrofit cost would be \$1.6 million. The 2816 can completely eliminate those costs.

By installing a remote software serial link, the software update can occur over telephone lines, free from service intervention. By 1985 service costs additional to each system will be as much as \$800. Adding 2816 and a remote link to the system will cost about \$50, a mere one-sixteenth the service cost. Today, a 40% savings can result. Figure 0 shows these cost trends.

It is clear that 2816 can save millions of dollars in maintenance costs. That is why it is such a cost effective solution to the many firmware update problems we face today.

In this application note, the hardware and software designs for such a solution will be discussed. First, though, let us examine the design criteria that are pertinent to the memory elements in such a system:

- 1) NON-VOLATILITY—data must be retained even when the host system is powered down.
- 2) FAST ACCESS TIME—With today's high speed microprocessor systems (i.e., the Intel 8086-2, the Zilog Z8000, and the Motorola MC68000) full throughput is only achieved with fast memory devices. For example, a high performance 8086-2 system for zero wait state operation requires a read access time of 250 ns.
- 3) **HIGH DENSITY**—As software costs rise, high-level languages will be used to reduce design time. Such high-level languages are often memory intensive, requiring high density memory chips to effectively contain dedicated system programs without sacrificing printed circuit board space.
- 4) READ MOSTLY OPERATION—Program memory and certain types of data memory are mostly accessed in a read mode. There are situations, however, where it is necessary to re-load an entire program (as in the case of a software revision), or reconfigure portions of data storage (e.g., when only certain parameters need to be changed). In these cases, the ability to write to the memory in-circuit is essential.

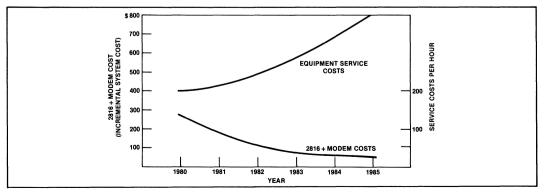


Figure 0. Service Cost Trends

The Intel 2816 fills the need for all these user requirements. It is truly non-volatile, offering greater than 20 year data retention. Access time is 250 ns, which is compatible with today's high speed microcomputer systems. The 2816 is electrically erasable on a per byte or per chip basis—a true read mostly memory, and it offers users 16,384 bits of storage organized as 2048 8-bit bytes.

Specific topics included in this Application Note are the philosophy behind downline loading, as well as the wide spectrum of application possibilities. Included here are four configuration examples. A discussion of both receiving and transmitting functions follows the examples.

DOWNLINE LOAD PHILOSOPHY

The E^2PROM is an excellent medium for storing nonvolatile program and data information. The fact that it allows in-circuit erase and write suggests many possibilities as to the information source that the 2816 can be written from. In many instances, E^2PROM memories will be written from remote data facilities.

The telephone is an ideal means of transferring such information, since it is readily available and requires no special interface. With use of an acoustic coupler, serial binary data is converted into high and low frequency tones, which can be transmitted over a datacom link world-wide. Modems interface easily with microprocessors, and the software overhead of performing a downline load operation is minimal.

2816 REMOTE CONFIGURATION OPTIONS

Programs downline loaded to E^2PROMs find many applications in both large and small microcomputer systems. All configurations require a modem to interface electrical signals from a central processor with the acoustically driven telephone. Automatic modems are usually dedicated to a specific telephone line and are completely operated by a host processor. Manual modems are usually portable, relying on the human operator to physically place a telephone receiver in an acoustic coupler cradle, thereby closing the communication loop. Both automatic and manual modems can be used in E^2PROM -telephone communication systems, resulting in four possible configurations:

Manual Receiver — Manual Transmitter

This is a cost effective solution when telephone transmission is not performed often enough to warrant a dedicated telephone line and microprocessor system. Applications include infrequent field updates of program store, where a field system user would call a central factory to have 2816 memory devices reloaded.

Manual Receiver — Automatic Transmitter

Here an automatic transmitter is connected to a microprocessor system which answers the phone and transmits information to 2816s located in remote areas. Applications include field updates, as previously discussed, though a human operator on the transmitting end is not needed. This is advantageous when many field systems will be calling the central factory.

Automatic Receiver — Manual Transmitter

In this situation a microcomputer system would automatically answer the phone to receive information which will eventually be loaded in E^2 devices. This configuration could be used in remote, unattended systems, such as a microprocessor's controlling remote communications switches or repeaters. If parameters need to be changed, the remote switching processor would be telephoned and new parameters transmitted to the E^2PROMs in the system. This application exploits the byte erase feature of the 2816. Only those E^2 locations containing parameters to be changed need be rewritten.

Automatic Receiver — Automatic Transmitter

Fully automatic systems are useful when it is desirable to eliminate the need for a human operator. Here an auto-dial modem is used (previously discussed automatic systems use auto-answer modems). A central computer could be requested to call many remote units to automatically implement program or data update in E^2 memory without human intervention.

To provide an example of one of the four configurations described above, consider a manual receiverautomatic transmitter system. Because the hardware elements of an automatic transmitter are the same as those of an automatic receiver, by considering one example system, all four configurations can be described. With the example that will be discussed, the human operator is on the receiving end and initiates transmission by dialing the transmitter and placing a telephone receiver in an acoustic coupler cradle. The transmitter answers the telephone and transmits data to the receiver which eventually is loaded into E²PROMs.

RECEIVER

A block diagram of the receiver system is shown in Figure 1. Three elements are of interest here: the modem and modem interface, the receiver CPU and associated software, and the 2816 and E^2 controller.

The receiver CPU is connected to a simple modem which converts serial binary data into acoustical tones. The standard Bell 103 modem or equivalent provides a host system with serial input/output data and various

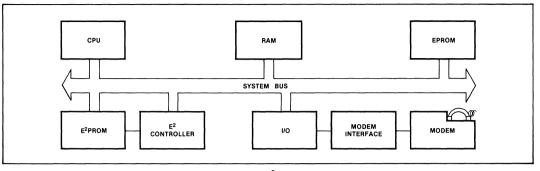


Figure 1. Typical MPU System With E²PROM Memory and Acoustic Coupler

status indicators (such as "carrier detect" which is active when a remote modem carrier signal is detected). The hardware required is minimal since a standard modem can be readily purchased. An RS232 interface is needed to interface 5V TTL signals from a CPU I/O port (or serial data line) to the \pm 12V RS232 compatible signals of the modem. The rest of the downline load operation is handled in software.

Figure 2 shows a simple modem interface. The MC1489 converts RS232 levels to TTL levels, while the MC1488 converts TTL signals to RS232. In the circuit shown, serial data I/O lines can be passed directly to a UART (Universal Asynchronous Receiver/Transmitter) for serial-parallel data conversion. Another option is to perform the serial-parallel conversion in software. If an 8085 processor is used, the serial I/O lines can be connected to the 8085 SOD and SID ports. The software required is also simple. The receiving CPU only needs to receive data bytes (possibly after a transmitter identification message is received) and program the E²PROM.

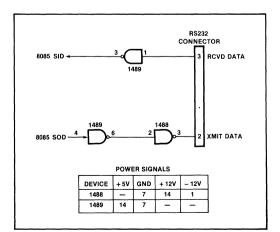


Figure 2. A Simple Modem Interface

Figure 3 contains a flow chart outlining the process of receiving data. The processor first transmits an identifier message, then looks for a return identification message sent from the remote transmitter. This latter message may consist of a sequence of binary or ASCII data detailing the location of the transmitter, date and time of transmission, the number of bytes to be transmitted, the address in E^2PROM of where data is to be located, etc. Next, the processor receives a data byte

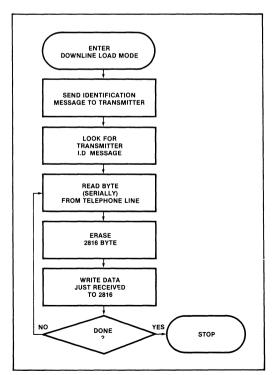


Figure 3. Receiver Software

AFN-01913A

which may be immediately programmed into the 2816 or saved temporarily in RAM. If serial-to-parallel data conversion is performed by software, data received must be saved in RAM. The 2816 cannot be programmed as each byte is received, since the processor must devote most of its time to receiving data bits and converting them to parallel form. However, if a UART circuit is used to perform data conversion in hardware, data bytes may be saved in E^2 memory as soon as they are received.

To illustrate this, assume data is transmitted at 300 baud (300 bits per second). Assuming each character consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit, then there are 11 bits per character so a character will be received every 36.7 msec. Between every character a 2816 byte must be erased (10 ms) and written (10 ms). Thus we spend 20 ms out of the 36.7 ms we have available during programming, while 16.7 ms of free time is left until the next byte is received. The final consideration in the downline load receiver is a 2816 controller circuit. (AP102 describes several different controller configurations.) Controller I is convenient to use here. Figure 4 shows a block diagram of the circuit, while Figure 5 contains the circuit diagram. The read operation for the interface is identical to that for EPROMs. To read data, \overline{CE} and \overline{OE} are taken low after addresses are set up.

To write to the 2816, the host processor simply writes to memory. The controller circuit pulls the processor "ready" line low, stalling the CPU and stabilizing addresses and data for the 10 ms write interval while $V_{\rm PP}$ is active. The controller makes the 2816 resemble a slow write RAM except for the necessity of byte erase prior to writing.

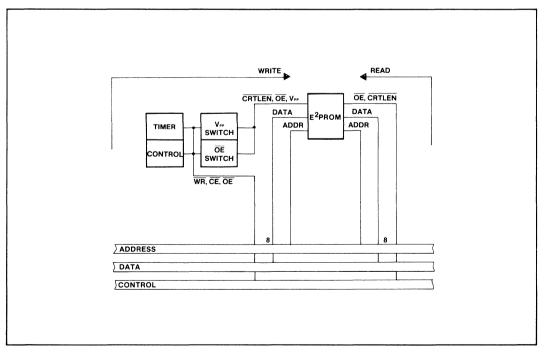
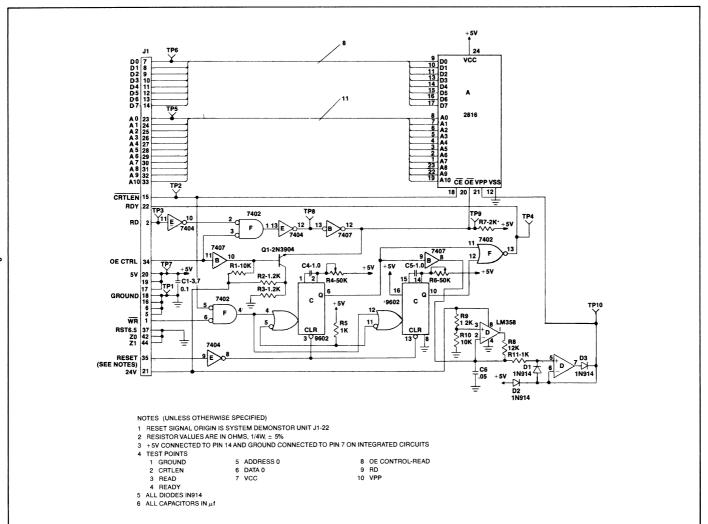



Figure 4. 2816 Controller Block Diagram

4-78

TRANSMITTER

The transmitter consists of a dedicated microcomputer connected to an auto-answer modem which in turn is attached to a telephone line. The transmit computer software, loops, waiting for an incoming call. When a call is received the modem is signaled to answer the telephone. Information, in the form of data bytes, is received and transmitted in the same fashion as is done on the receiving end. Essentially, all the base station must do is look for a remote processor identification message, send its own identification message, transmit data serially, and hang up the telephone. Additional features may also be implemented such as keeping a log of all calls received, their origins, etc.

Figure 6 contains a block diagram of a base station system. An 8085 processor is used, with an additional 512 bytes of RAM and 4K bytes of EPROM. A modem interface is shown, in addition to a keypad and display for local user operation, and a real-time clock for logging date and time information.

The EPROM memory contains program store and transmit information; i.e., the data that is to be transmitted to remote processor sites. Note that the

transmit data EPROM could be replaced by an E^2 device to allow for frequent changes in transmission data without requiring the physical replacement of the transmit data store. RAM is used to save logging information, temporary program data, and a character input buffer which is used to store received characters when looking for a specific message.

The keypad/display module enables a local base station operator to interrogate the base station and reset date or time, access a call log, etc. The clock module is used to keep track of current date and time. Such data may be transmitted to remote processors, or may be used locally as a part of the information logged pertaining to each call received.

A modem interface is very similar to the receiver modem circuit shown in Figure 2. Figure 7 contains a circuit diagram of an auto-answer modem interface. The circuit provides all signals as that of Figure 2, but additionally converts the "Data Terminal Ready" signal and the "Ring Indicator" signal. "Data Terminal Ready" is provided by the host processor and tells the modem when to answer and hang-up the phone line. "Ring Indicator" is active when the phone line is ringing, and is used here to interrupt the processor.

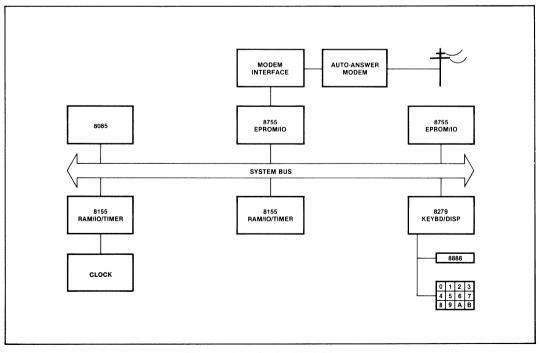


Figure 6. Base Station Block Diagram

Special Products Division Applications Engineering has constructed a base station similar to the one described here. It is used to transmit information to remote 2816s for demonstration purposes. In this unit, software consists of three operating modes:

- **Inactive Mode** is the default. The processor displays the time of day while waiting to enter one of the two modes described below.
- **Dial-In Mode** is entered whenever a call is received. A flow chart of Dial-In Mode software is shown in Figure 8. The processor answers the line, looks for a remote processor identification message, and transmits its own identification header, followed by a text data to be loaded in E²PROM memory. The telephone is hung up as soon as transmission is completed, and inactive mode is entered.
- Local User Mode contains software to allow a local user to reset implemented via the local keypad/ display.

CONCLUSION

Remote software changes—that's where 2816 is key. In this application note we've shown the costs involved in field software changes. The 2816 can eliminate field service and maintenance costs involved with software and constant changes. It can do this simply and cheaply through remote data links. Also discussed were typical circuit diagrams and system implementation. The bottom line is that 2816 can eliminate service costs in today's microprocessor systems.

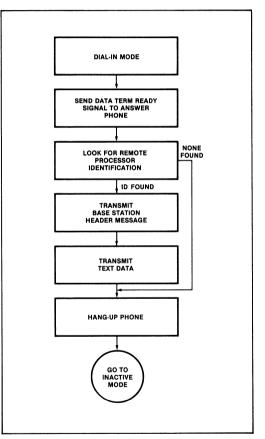


Figure 8. Dial-In Mode

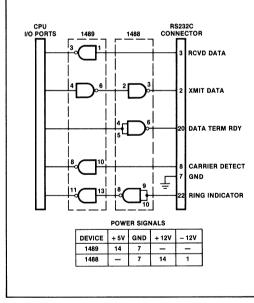



Figure 7. Auto Answer Modem Interface

intel

APPLICATION NOTE

AP-135

August 1981

INTRODUCTION

The Intel 8298 is a special function peripheral device designed to interface Intel's full line of Electrically Erasable PROM memories to Intel microprocessor systems. It also enables the interface of E^2 PROM devices to any system using an 8-bit I/O data bus. The 8298 is used to supervise the writing, erasing and reading of up to 8 2816 E^2 PROMs. It is used because the write and erase cycles of E^2 PROMs involve significant amounts of time (on the order of 10 ms each). A large portion of CPU time would be required to supervise these operations if no interface element existed. Adding the 8298 enables the supervision of these operations offline, thereby freeing up the CPU and effectively increasing the throughput of the total system.

The 8298 is designed to enable a choice of hardware configurations. The use of the 8298 in the INDIRECT mode minimizes the hardware required to interface to the E^2 PROMs, but sacrifices the ability to read and write the E^2 PROMs directly. Adding extra hardware enables the 8298 to be used in the DIRECT mode, allowing read access at full system speed.

The goal of this application note is to facilitate simple and easy implementation of the 8298 and E^2 PROMs by hardware and software engineers in their systems. Described herein are the 8298 and design configurations in which it can be used. The material is structured so that this application note can be a handy reference guide to the 8298 commands and to the two hardware configurations presented.

UPI-41A Base

The 8298 E^2 interface is based on the UPI-41A Universal Peripheral Interface. Special firmware has been written so that implementation of the E^2 interface can be undertaken in the simplest and most efficient manner. All timing signals for the 8298 are, therefore, identical to those of the UPI-41A. The use of the UPI-41A base also makes the 8298 fully compatible with all Intel microprocessors.

8298 HARDWARE

A pinout diagram of the 8298 and 8243 I/O expansion module are shown in Figure 1. The following section describes how these devices are hard-wired into the system. Each of the pin functions are described.

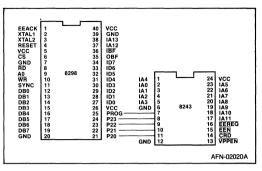


Figure 1. Pinouts of 8298 and 8243

System Interface

Interfacing the 8298 to the system is easily achieved. The 8298 is wired directly to the system bus as an I/O port with the data bus connected to the DBO-7 lines. All command, status, and data bytes are passed on this interface. The 8298 is addressed as a port using external I/O address decode hardware to enable the chip select (\overline{CS}) line. Only the A0 line is connected directly (or through a buffer) to the least significant I/O address line.

The A0 line selects between command and data input registers on writes to the 8298 and selects between the status and data output register during reads. By strobing the \overline{RD} line of the 8298, data is enabled onto the data bus for reads. Writing data to the data bus occurs on the rising edge of the \overline{WR} signal.

Two external pins are available for use as interrupts. The \overline{IBF} line, when inactive, indicates that the 8298 is waiting for an additional command or data byte. The OBF line indicates to the processor that the data output register is full. The processor must service the 8298 during reads (when OBF active) by accessing data from the data output port. This allows the 8298 to continue reading the contents of the E^2 PROMs. The \overline{IBF} , when activated during writes, indicates to the processor that it must halt data transfers to the 8298. The 8298 must write the contents of the data buffer to the E^2 PROMS before the CPU continues to transfer data.

E²PROM Interface

An array of 8 2816 E^2 PROMS has 16K bytes of memory. The 8298 alone cannot supply the necessary 14 address lines for this array, so the 8243 I/O expansion module is used. The 8243 provides the twelve low-order address bits. The 8-bit internal data bus, and extra control pins are available from the 8298 directly. Adding the 8243 expander is implemented by connecting the PROG and the P20-P23 lines of the two devices together. All necessary control and addressing data for the 8243 are passed from the 8298 through these lines.

Several control signals are necessary to read, write, and erase the E^2 PROMS. These signals, supplied by the 8298 and 8243, are described individually below:

- 1. $\overline{\text{EEN}}$ — E^2 enable is generated to access the E^2 array.
- CRD—Controller read is generated to indicate to the E²PROM array that data is being read by the 8298.
- 3. $\overline{\text{VPPEN}}$ —Programming pulse enable is generated to indicate that the programming pulse for a write should be applied to the E²PROM array.
- 4. $\overline{\text{EEREQ}}$ — E^2 request is generated to request access to the E^2 PROM array in the direct configuration.
- 5. EEACK— E^2 acknowledge indicates that the E^2 PROM array can be accessed by the 8298 in the direct configuration. It is generated by arbitration circuitry.

8298 Registers

The 8298 has four registers which the host CPU can access from the system data bus. Figure 2 shows the four registers and the method for selecting one of them. $\overline{\text{RD}}$, $\overline{\text{WR}}$, and A0 are all signals which are generated by the host CPU to perform register operations.

Command and Data Registers

The first byte of every command goes to the 8298 command register. The byte will be interpreted to determine the type of command and if additional bytes are required for the command. If a command has more than one byte, the additional bytes are sent to the data-in register. All data which is to be sent to the 8298 is written to the 8298 data-in register.

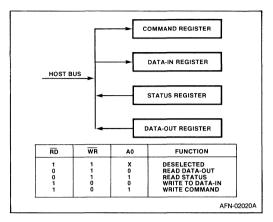


Figure 2. 8298 Ports and Selection

When the 8298 performs a read operation, the data read by the host CPU is accessed through the data-out register.

Status Register

The 8298 status register contains a byte of information which describes the current state of the 8298. The host reads this register to determine if the 8298 is waiting for bytes of command or data, has received an illegal command, or is currently busy executing a command. Figure 3 and Table 1 describe the bit definition and bit interpretation of the status byte.

7	6	5	4	3	2	1	0	
WCD	WCD S2 S1 S0 X DWP IBF OBF							
IBF = IN OBF = OU DWP = DI	$\label{eq:constraint} \begin{array}{c c c c c c } \hline & & & \\ \hline \\ \hline$							
							AFN-0202	0A

Figure 3. 8298 Status Word Bit Definition

WCD	S2	S1	S0	OBF	DESCRIPTION
1	1	1	1	0	Waiting for Command
0	0	0	0	0	Executing Command
1	1	1	0	0	Illegal Command
0	0	X	X	1*	Illegal Command During Write
1	1	1	1	1	Read Command Complete
0	0	0	0	1	Read Data Ready
1	0	0	0	0	Waiting for Data Byte 1
1	0	0	1	0	Waiting for Data Byte 2
1	0	1	0	0	Waiting for Data Byte 3
1	0	1	1	0	Waiting for Data Byte 4
0	1	0	1	0	Write in Process

Table 1. Status Definition

*Output buffer contains 10101010.

8298 OPERATION

The following section describes the operation of the 8298 as an E^2 interface element. Implicit reference is made to the 8298 block diagram shown in Figure 4. This block diagram has been included so that the 8298 user can visualize the data and command flow through the device.

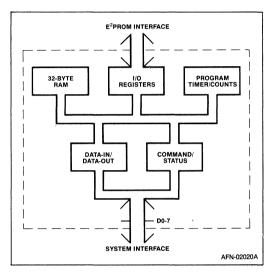


Figure 4. 8298 Block Diagram

The 8298 receives instructions from the system bus when the CPU addresses and writes to the 8298 command or data-in register. The 8298 interprets the initial command to determine if further command bytes are required. If so, the 8298 sets a bit in its status register or sends an interrupt to the processor via the IBF line.

After a full command string has been received, the 8298 determines whether the command is a read, write, erase or utility instruction. If it is a read or write command, data transfer begins. The CPU writes or reads data from the 8298 through the data input and output registers. This data is transferred directly to or from the E^2 PROMS or buffered temporarily in 32 bytes of internal RAM, in the case of a multiple or series write. The 8298 indicates to the CPU when a data transfer is complete.

Series or multiple write transfers utilize the 32-byte internal data RAM buffer to speed system throughput. Using this buffer enables the CPU to write up to 32 bytes of data at system speed. The CPU uses this buffer by sending special write commands.

For commands where multiple bytes are written, the CPU sends a series of data bytes to the input register from which they are taken and stored in the buffer. When the buffer becomes full, the host processor can determine, via the status register, that data transfer to the 8298 must be temporarily suspended. The data in the full buffer is then written to the E^2 PROMs, while the processor is freed for other processing. The 8298 notifies the CPU that data transfer can continue when the buffer is empty, with the IBF status or interrupt.

Read commands to the 8298 are all processed immediately. After receiving a read command, the 8298 accesses the E^2 PROM array at the appropriate address and transfers that data byte directly to the data-out register. The host CPU is notified via the OBF status or interrupt to read this byte.

Utility commands are used to set up the 8298 configuration (DIRECT or INDIRECT), to initialize the timer associated with writing and erasing the E^2 PROMs, to abort current commands, and to determine the address or data last written or read from the E^2 PROMs.

CPU/8298 Communication

CPU communication with the 8298 can be implemented through software polling routines or through the use of interrupts.

In the polling routines, the CPU reads the contents of the 8298 status register at regular intervals to determine if data transmission is possible. When the status of the 8298 indicates that it is ready to accept a command or data byte or that it has data ready to be transmitted, the CPU can branch to a routine which performs these functions. The use of polling routine is easy to implement in software and requires no hardware overhead. Polling, however, takes a significant amount of CPU time. This time could be put to more efficient use.

The use of 8298 interrupts in place of polling routines eliminates wasted CPU time. The CPU can send a command string to the 8298 and let the 8298 execute it while it is devoting time to other tasks. When the 8298 completes command execution, it can interrupt the CPU. The CPU can then service the interrupt by returning to an 8298 communication routine.

A sequence in which a command string is transmitted to the 8298 is flowcharted in Figure 5. In this flowchart are two conditional states where WCD set and IBF clear are tested. A polling routine would be used to read the status register of the 8298, test these two bits, and loop back if they are not set. An interrupt routine would be used to indicate the same state of these bits, but while the CPU is processing another task.

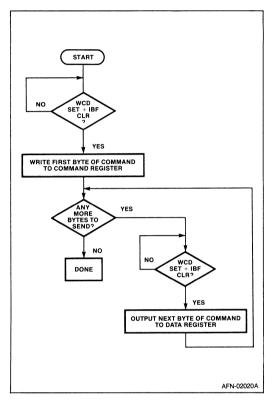


Figure 5. Flowchart for Command Transmission

Programming examples of this flowchart are shown in Figures 6 and 7. These routines are written in 8085 assembly language and are easily upgraded to 8086 code. The first set of routines is the actual module used to service the 8298. These routines are callable from a main program. The second set of routines are an example of the mulitple write command as it may exist in a main program. In this module the last statement is a call to the 8298 service routine in Figure 6 to write 10 data bytes to 10 different E^2 PROM addresses.

SNDCMD and SNDDBX are subroutines used to send a command of one or more bytes to the 8298. They read the number of bytes required for the command from a command buffer (which the user has set up) and send them one at a time to the 8298. Each transmission monitors the status of the 8298 before taking place. CHKSTS is the polling used for this purpose. This same module can be used in an interrupt-driven mode. The processor would initially call the SNDCMD routine to transmit the first command byte to the 8298. After returning to the other tasks, the CPU would later be interrupted by IBF and would send the next byte via the SNDDBX routine. Each ensuing interrupt issued by the 8298 would call the SNDDBX routine until all command bytes have been sent. The routine CHKSTS would not be needed when using interrupts. Significant savings in CPU time would result.

SNDCMD	PUSH	PSW	
	PUSH	B D	SAVE REGISTERS
	LXI MOV INX MOV	H,CMDBUF D,M H E,M	GET BYTE COUNT
	INX	н	
	MVI CALL	C,WCD CHKSTS	
	MOV OUT	A,M CMND	SEND COMMAND BYTE
	MOV ORA JNZ	A,D A DECD	TEST BYTE COUNT
	MOV ORA JZ	A,E A ENDSND	;IF ZERO, DONE
DECD	DCX MVI	D C,DB1STS	, .
SNDDBX-	INX	н	,IF NOT ZERO, SEND
	CALL	CHKSTS	,MORE DATA BYTES
	MOV OUT	A,M DATA	
	MOV ORA JNZ	A,D A DECD2	
	MOV ORA JZ	A,E A ENDSND	
DECD2:	DCX MOV ADI MOV JMP	D A,C 10H C,A SNDDBX	,CHANGE EXPECTED STATUS ;VALUE
ENDSND:	POP POP POP RET	D B PSW	RESTORE REGISTERS
СНКSTS.	IN MOV IN CMP JNZ CMP JNZ RET	STS B,A STS CHKSTS C CHKSTS CHKSTS	POLLING ROUTINE
			AFN-02020A

Figure 6. 8298 Service Routine

61

CONSTAN	rs		
, PORTS			
DATA STS CMND	EQU EQU EQU	10H 11H 11H	
, STATUS BY	TES		
WCD DB1STS DB2STS DB3STS DB4STS	EQU EQU EQU EQU EQU	0F0H 80H 90H 0A0H 0B0H	
, COMMANE	s		
SWCMND MWCMND	EQU EQU	25H 0CH	
, BUFFERS			
CMDBUF	DB	0F005H	
, LONG ENO	UGH FOR	ANY COMMAN	D
START	LXI	H, CMDBUF	
	MVI INX MVI	M,0 H M,32	,LOAD TOTAL NUMBER OF ,BYTES TO BE SENT
	INX MVI	H M, MWCMND	,LOAD COMMAND BYTE
	INX MVI	H M,10	,NUMBER OF DATA BYTES
	MVI MVI MVI	D,10H E,0 C,0	ASSUME WE ARE WRITING TO EVERY 10TH ADDRESS TARTING AT 1000H ASSUME WE ARE USING THESE LOCATIONS FOR ERROR LOGGING AND ARE NOW RESETTING THEM TO ZEROS
LDBFLP	INX MOV INX MOV INX MVI	H M,D H M,E H M,0	
	INR MOV CPI JZ	C A,C 10H SNDERR	;HAVE LOADED ALL ,TEN BYTES, CAN NOW ,SEND COMMAND
	MOV ADI MOV JMP	A,E 10 E,A LDBFLP	
SNDERR	CALL	SNDCMD	
			AFN-02020A

Figure 7. 8298 Multiple Write Routine

SYSTEM CONFIGURATIONS

The two E^2 PROM-8298 configurations presented in this section give the systems designer an option of minimal overhead hardware versus minimum E^2 PROM access time. Each is described in detail including a discussion of the relative advantages and disadvantages to the user.

Indirect Configuration

The indirect configuration is so named because the host accesses the E^2 PROMs indirectly—the 8298 acts as a buffer in all transmissions between the host and the E^2 PROMs. In this hardware implementation, all write and read operations must be executed from the 8298, making full use of its input and output capabilities.

The effect of going through the 8298 is to slow the retrieval of data from the E^2 PROMs. The host cannot read the data directly at system speed from the E^2 PROM. A general example of a read operation would be as follows: The host first sends the 8298 a read command. Upon receiving the command, the 8298 decodes it, reads in the data from the E^2 PROM and places it in the data-out register. The host can now retrieve this data. For write cycles, there is little performance degradation effect from using the Indirect Configuration since the 8298 will oversee a write operation in any case.

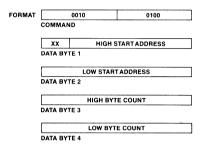
A major advantage of the Indirect Configuration is the ease of implementation. The hardware is relatively simple and straightforward, as is the interface to the host. All that is required for the interface is access to the two adjacent I/O ports within the 8298. This would make it simple to add an 8298 to an existing system, since no changes need to be made to the host's memory map and interfacing is relatively simple.

Indirect Configuration Hardware

Indirect configuration circuitry beyond the 8298 and 8243 described earlier includes an address decoder, programming pulse generation circuitry, and chip erase pulse generation circuitry. The schematics for this hardware are shown in Appendix C.

The address decoder is the Intel 8205. It selects via address lines 11, 12 and 13 the appropriate device in the E^2 PROM array. Programming and Chip Erase pulse generation circuitry are described in Ap-102 available from your Intel representative.

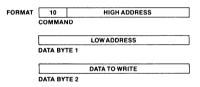
Indirect Configuration Commands


Though the hardware implementation of the Indirect Configuration is relatively simple, there are numerous commands available that make the 8298 versatile to use. The following discussion covers all commands that may be used with this configuration.

READ COMMANDS

There are two read commands available to send to the 8298. Both return the data to the data-out register of the 8298. INDIRECT READ is used to read a single byte of data from an E^2 PROM. Note that the command and high address are combined in one byte.

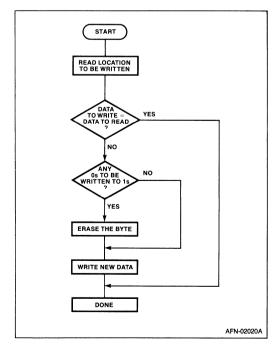
FORMAT	01	HIGH ADDRESS	
	COMMAND		
		LOWADDRESS	
	DATA BYTE 1		


SERIES READ is used to read any number of sequential data bytes up to 16K bytes. The command consists of five bytes, so that it is usually more efficient to use SERIES READ for reading 3 or more bytes.

WRITE COMMANDS

There are three commands for writing to the E^2 PROM via the 8298. They each have functions to make them useful for different applications.

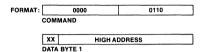
INDIRECT WRITE is similar in format to INDIRECT READ; it is for writing a single byte.


SERIES WRITE is the counterpart to SERIES READ. Note that once the command and data bytes have been sent, the 8298 asks for data byte 1 until "count" number of bytes have been sent. Up to 32 bytes of data are buffered in RAM by the 8298. Thus the data can be sent in a "burst."

FORMAT	0010	0101			
	COMMAND				
	HIGH START ADDRESS				
	DATA BYTE 1				
	LOW STAR	TADDRESS			
	DATA BYTE 2				
	HIGH BY	TE COUNT			
	DATA BYTE 3				
	LOW BYT	E COUNT			
	DATA BYTE 4				
	DATA T	OWRITE			
	DATA BYTE 5				

MULTIPLE WRITE has no counterpart READ command. It is similar to INDIRECT WRITE in that it may write to nonsequential locations. The data and addresses are buffered in the 8298 so that up to 9 data/address groups may be sent in a burst fashion (i.e., no waiting for erase/write cycle).

FORMAT		0000		1100
	COMMAN	ID		
	[DATA	BYTE COUNT	
	DATA BY			
	xx	н	GH ADDRESS	;
	DATA BY	re 1		
	[LOV	VADDRESS	
	DATA BY	TE 2		
		DAT	A TO WRITE	
	DATA BY			


The write commands have been optimized to increase throughput as much as possible. One example is the buffering of data (and possibly address) for SERIES WRITE and MULTIPLE WRITE. Another way is by reading first to check data at the address to be written. Under certain conditions, the byte erase can be avoided and thus 10 msec can be saved. If the data is identical with that to be written, the write can also be avoided. See Figure 8 below for the flowchart of the erase/write checking routine.

ERASE COMMANDS

There are two erase commands. CHIP ERASE will erase one complete E^2 PROM. The chip to be erased is specified by sending the upper six address bits of the chip.

BLOCK ERASE takes advantage of the byte erase feature of INTEL's E^2 PROM. This command will erase up to 256 sequential bytes at any location in the 16K array.

FORMAT	0000		0101	٦	
	COMMAND				
		HIGH ADDRE	SS	٦	
	DATA BYTE 1				
		LOWADDRE	6 S		
	DATA BYTE 2				
		BYTE COUN	т		
	DATA BYTE 3				

READ LAST WRITE DATA will put the data written to the E^2 PROM during the last write cycle into the data output register.

COMMAND 0010 1010

INITIALIZE WRITE TIMER VALUE is used to set the length of the write cycle time. The value is determined from the following formula:

256- (CLOCK FREQUENCY (HZ) * WRITE TIME (SEC)) 480

For example, with a 10 msec write time and a 6 MHz clock the timer value should be 131_{10} . Note: This is the default value (131_{10}). It is recommended that the 8298 be run at 6 MHz to achieve maximum efficiency. If it is run at a slower rate, the required value will have to be sent every time a reset is issued and on power-up.

0000	0111				
COMMAND					
	and the second				
WRITE	FIMER VALUE				

UTILITY COMMANDS

ABORT is used to terminate the write operation in progress. It may be sent at any time. If a write to E^2 PROM is in progress, it will be halted immediately and VPP will be brought down to 5V with a delay of approximately 100 microseconds with a 6 MHZ clock rate supplied to the 8298. After an abort, 8298 is ready to accept a new command. There are three commands that may be used after an ABORT to help in determining the address and data of the interrupted operation.

READ LAST LOW ADDRESS will cause the low order address of the last location read or written to be placed in the data output register. It can be used at any time that a command to the 8298 would be appropriate.

COMMAND: 0010 1000

READ LAST HIGH ADDRESS will place the high order address of the last location read or written in the data output register.

COMMAND 0010 1001

DIRECT CONFIGURATION

Advantages/Disadvantages

The Direct Configuration allows the CPU to bypass the 8298 to read the E^2 PROMS, thus taking advantage of the fast access times of the E^2 PROMS. Write operations do not bypass the 8298, but the host can address the E^2 PROM directly instead of through the I/O port. Therefore, it can use a move-to-memory command (MOV M,A) to perform write. There is a tradeoff involved in obtaining these advantages. Some additional circuitry is required for arbitration, since access to the array must be arbitrated between the 8298 and the host CPU.

Additional Circuitry for the Direct Configuration

A schematic of the additional direct configuration circuitry is on page C5 of Appendix C.

Host/8298 Interface

The major additions to the circuitry of the Indirect Configurations are the arbitration circuitry, and circuitry to force a write to the data-in register of the 8298 when a direct write is being made to E^2PROM address space. The 8298 recognizes this write as a direct write, gets the address from the additional address latches and completes the write. The arbitration circuitry consists of a D flip flop clocked by the SYNC output of the 8298. The SYNC output occurs once every time the 8298 performs an instruction. The 8298 sends out an EEREQ to see if it can access E^2PROMS . If it can, as determined by the arbitration circuitry, EEACK will sense a high level and the 8298 will continue the command. There are also latches for address retention and a transceiver for data in this configuration.

The addresses for direct reads or writes are strobed into these address latches which have outputs tied directly to the E^2 PROM address pins. On a direct read or write the tristate outputs of these latches are enabled. Data can be read direct from the E^2 PROM array using the data transceiver. The data being returned from a read operation goes through the transceiver when enabled by a read signal (RD) from the host. All writes continue to be supervised by the 8298, so the host *must* read the status register of the 8298 before writing to the E^2 PROMs to make sure that the 8298 is waiting for command.

Direct Configuration Commands

The added capabilities for the Direct Configuration are ease and speed of access for the host rather than a greatly extended command set. In fact, there are only two additional commands for the Direct Configuration.

ENABLE DIRECT WRITE is sent to inform the 8298 that the host may wish to use the "direct write." If this command isn't sent, and the host tries to do a direct write, it will be treated as an illegal command. If the host processor will be using direct writes, the ENABLE DIRECT WRITE command must be sent before attempting a direct write.

DISABLE DIRECT WRITE signals the 8298 that the host no longer wishes to use the direct write utility.

NOTE:

The 8298 defaults to this condition (on reset and power-up).

APPENDIX A COMMAND SUMMARY

Table A summarizes the commands available to the host processor. It includes DIRECT READ and WRITE for completeness. The first column indicates the mnemonics for the command. The second column indicates the number of bytes in the command. The third column indicates the byte sequence, and the fourth shows the format of the byte. The last column shows the status which will be displayed in the 8298 status register when it is done processing the byte and ready to continue. The status mnemonics are defined in Table A.2.

Command	# of Bytes for Commands	Byte#	Format	Next Status
INDIRECT READ	2	1 2	01 High Address Low Address	DB1 OBF
SERIES READ	5	1 2 3 4 5	00100100XXHigh Start AddressLow Start AddressHigh Byte CountLow Byte Count	DB1 DB2 DB3 DB4 OBF
INDIRECT WRITE	2+ WRITE DATA	1 2 3	01 High Address Low Address DATA TO WRITE	DB1 DB2 WCD
SERIES WRITE	5+ WRITE DATA	1 2 3 4 5	00100101XXHigh Start AddressLow StartHigh Byte CountLow Byte CountDATA TO WRITE	DB1 DB2 DB3 DB4 DB1 DB1/WCD NOTE 1
MULTIPLE WRITE	2+ ADDRESS/WRITE DATA	1 2 * *	00001100Byte CountXXHigh AddressLow AddressDATA TO WRITE	DB1 DB1 DB2 DB3 DB1/WCD NOTE 2
BLOCK ERASE	4	1 2 3 4	0000 0101 High Start Address Low Start Address Byte Count	DB1 DB2 DB3 WCD
CHIP ERASE	2	1 2	0000 0110 XX High Address	DB1 WCD NOTE 3
ENABLE DIRECT WRITE	1	1	0010 0010	WCD
DISABLE DIRECT WRITE	1	1	0010 0011	WCD
ABORT	1	1	0000 1010	WCD
READ LAST LOWADDRESS	1	1	0010 1000	WCD

Table A.1

Table A.1. Continued

Command	# of Bytes for Commands	Byte#	Format	Next Status
READ LAST HIGH ADDRESS	1	1	0010 1001	WCD
INITIALIZE WRITE TIMER VALUE	2	1 2	0000 0111 Write Timer Value	DB1 WCD

*ADDRESS + WRITE DATA

NOTES:

- 1 SERIES WRITE returns a status of DB1 whenever it is waiting for write data When BYTE COUNT bytes have been sent, it will return a status of WCD See SERIES WRITE command, under Indirect Configuration Commands, for more information
- 2. MULTIPLE WRITE works in a loop format once the command and byte count are received It requires groups of three bytes and

cycles through the status as -DB1-DB2-DB3- until "count" groups of bytes are received. It then returns a status of WCD.

3. High address is the high-order six bits of the highest address in an individual E²PROM An example might be: FOR 7FFH as the highest address in an E²PROM, to erase would require sending 0000 0111 as the high address.

Table A.2. Status Bit Representations

Status Mnemonic	Binary Representation	Hex Representation
WCD	1111 0000	F0
DB1	1000 0000	80
DB2	1001 0000	90
DB3	1010 0000	A0
DB4	1011 0000	B0
OBF	0000 0001	01

NOTE:

If DIRECT WRITES ARE ENABLED, bit 2 will be a one (e.g., WCD would be 1111 0100B or F4H).

APPENDIX B CONFIGURATION COMMAND SUMMARY

This Appendix contains a listing of the commands available to the 8298 E^2 PROM controller in each of the configurations. It has been provided so that the user can

easily look up available commands for their 8298 application.

Commands	Indirect	Direct
Indirect Read Series Read	X X	X X
Indirect Write Series Write Multiple Write	X X X X	X X X
Chip Erase Block Erase	X X	X X
Abort Read Last Low Address Read Last High Address Read Last Write Data	X X X X X	X X X X X
Initialize Write Timer Value Enable Direct Write Disable Direct Write Direct Write Direct Write Direct Read	X	X X X X X X

Table B.1. Configuration and Applicable Commands

APPENDIX C HARDWARE SCHEMATICS

Mnemonic	Description	Origin/Schematic
A0-A13	System address bus	Host/C1, C5
D0-D7	System Data bus	Host/C1, C5
Reset	System reset, active low	Host/C1, C3, C6
Reset	System reset, active high	— /C1
RD	Host read, active low	Host/C1, C5
WR	Host write, active low	Host/C1, C6
IO/\overline{M}	Host signal	Host/C1, C6
IA0–IA13	Internal address bus	8298 & 8243/C2, C5
ID0–ID7	Internal data bus	8298/C2, C5
EEN	E_{a}^{2} PROM enable, active high	8243/C3, C5, C6
EEN	E_{2}^{2} PROM enable, active low	— /C2, C6
EEREQ	E_{2}^{2} PROM request	8243/C6
EEACK	E ² PROM acknowledge	8298(I)/C6
VPPEN	V _{PP} circuitry enable, active low	8243/C4
CRD	8298 read signal, active low	8243/C3
ALEO	ALE (Qualified)	C6
HOSTACK	Host Acknowledge	C6/C5
HOSTRD	Host Read of 2816s	C5
IBF	Input Buffer (8298) not full, active low	8298/C1/C6
OBF	Output Buffer Pull	C1/C6
CS1, CS2	Chip select to enable 8298	C6
CERASE(ID7)	Chip erase signal	C3

Figure C.1. Both Configurations: Host CPU/8298 Interface Example Using 8085

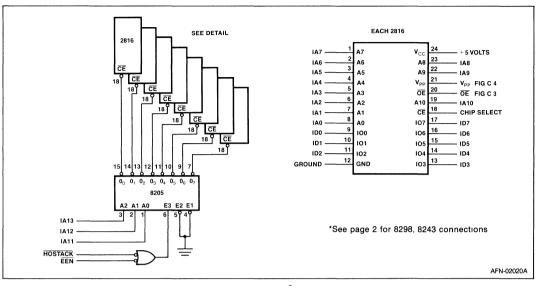


Figure C.2. Configurations: E² Array—Eight (8) 2816

Figure C.3. Both Configurations: **OE** Circuitry

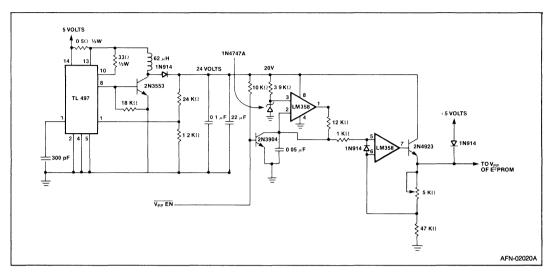


Figure C.4. Both Configurations: V_{PP} Circuitry (5 Volt Only—DC to DC Converter)

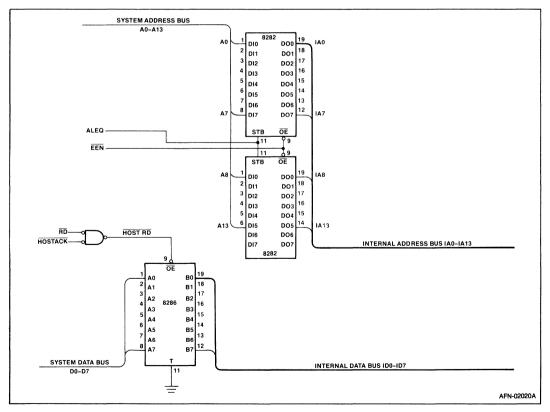


Figure C.5. Direct Configuration: Data/Address—Latches/Drivers

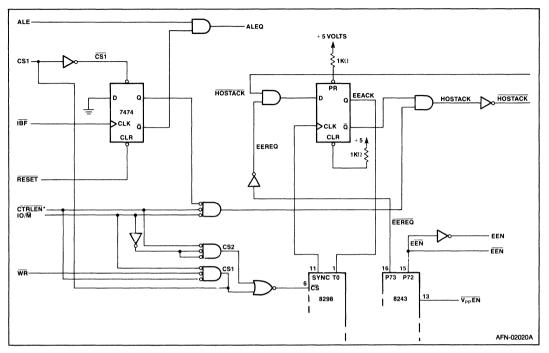
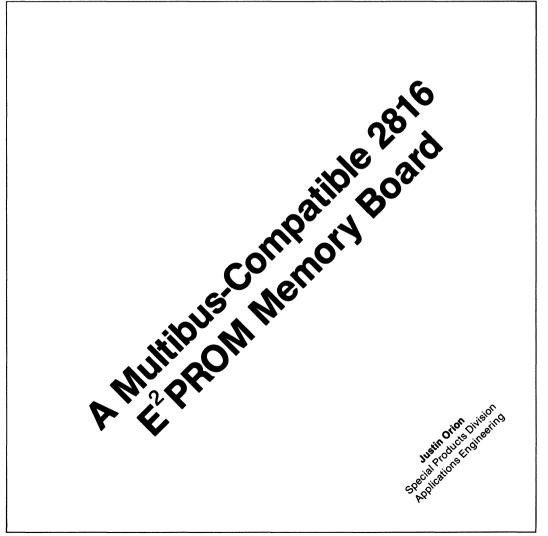



Figure C.6. Direct Configuration: Arbitration Circuitry, Chip Select Circuitry

APPLICATION NOTE

AP-136

September 1981

INTRODUCTION

The Intel Special Products Division E^2 Multibus Memory Board is an excellent example of how to implement the 2816 Electrically Erasable PROM in a multibus system. The board is completely Multibus compatible and can be plugged into any existing Intellec Microcomputer Development System. It can also be used in a Multibus-compatible system with any combination of Intel Single-Board Computer (iSBC) Modules. The memory board has a capacity of up to 16K bytes of electrically erasable non-volatile memory storage (8 2816s). The board can be read at microprocessor system speeds (250 ns). Writing to the E^2 Board requires only a single system write cycle. When the write operation is complete, the E^2 Board notifies the CPU by lowering an Interrupt Line. Individual 2816s can be erased in a similar manner with one write operation.

The E^2 Memory Board can operate with either an 8 or a 16-bit-wide data bus. This is determined by one jumper and by a 3628A Bipolar PROM used for decoding the addresses to the MOS PROM Array. The 3628A gives the board the capability of accommodating combinations of 2816s, 2815s, 2716s, 2732s, 2732As, and 2764s. The JEDEC pin compatibility of Intel's MOS EPROMs allows these devices to be plugged into the same 28-pin sockets. The 3628A, used as a decoder, allows these different memory size MOS PROMs to be used in the same array in various combinations. This enables the user to mix the devices in the memory array to fit the system's particular applications. The Multibus card can be located anywhere within up to one Megabyte of addressing space. The V_{PP} supply voltage is generated on board, and the only voltages needed are the standard Multibus +5V, +12V, and -12V power supplies. Finally, the E^2 memory system can be powered up and down repeatedly without losing one byte of its 16K bytes of data.

INSTALLATION INSTRUCTIONS

Below is a procedure to prepare the E^2 memory card for use. Following the list are detailed instructions for each step.

Procedure

1. Install the correct shorting plugs on the following jumper groups:

J9–J12 Board Address Location J13–J19 RESET and Chip Erase I/O Addresses J1–J8 Interrupt Line Selection J20 Data Bus Width J21–J24 PROM Socket Address Configuration JW1–JW8 PROM/RAM Selection

- 2. V_{PP} Pulse Width Selection
- 3. Set switches SW1-SW5 according to the MOS PROM density used.
- 4. Adjust the V_{PP} high voltage level.
- 5. Select the proper \overline{XACK} delay based on the t_{ACC} of the slowest MOS PROM used.

Board Address Location

The E^2 board can be assigned to any one of the 16 64K byte pages within a one-megabyte address space. If only 64K of address space is available, leave the jumper pairs J9–J12 open. Otherwise, install the shorting plugs to select the desired page as shown in the following chart:

Board Address Selection X = install shorting plug

O = open

As shown in the assembly drawing in Appendix D, 2 pins reside at each jumper location. A shorting plug is simply inserted at the jumper location for installation.

64K Page	Jumper			
	J12	J11	J10	J9
0K- 64K	0	0	0	0
64K- 128K	0	0	0	Х
128K- 192K	0	0	х	0
192K- 256K	0	0	х	Х
256K- 320K	0	х	0	0
320K- 384K	0	х	0	х
384K- 448K	0	Х	Х	0
448K- 512K	0	х	х	х
512K- 576K	Х	0	0	0
576K- 640K	Х	0	0	Х
640K- 704K	Х	0	х	0
704K- 768K	Х	0	Х	х
768K- 832K	Х	Х	0	0
832K- 896K	Х	х	0	Х
896K- 960K	Х	х	х	0
960K-1024K	Х	Х	Х	Х

RESET and Chip Erase Functions

The board requires two consecutive I/O addresses to control the RESET and Chip Erase functions. Doing an

I/O write cycle to one or the other address activates the particular function. The even I/O address selects the RESET function, an odd I/O address sets the Chip Erase function.

Jumpers J13 through J19 determine which two consecutive I/O addresses are to be used. The following chart shows the jumper scheme for I/O addressing.

Jumper	J19	J18	J17	J16	J15	J14	J13	A0
I/O Address bit	A7	A6	A5	A4	A3	A2	A1	
Function RESET	b	b	b	b	b	b	b	0
Chip Erase Mode	b	b	b	b	b	b	b	1
b = address bit								

Once two consecutive I/O addresses for these two functions are determined, then install shorting plugs on J13–J19 corresponding to the 1's in the upper 7 bits of the two I/O addresses.

Examples:

- for 00H = RESET 01H = Chip Erase, install *no* shorting plugs
- for 8AH = RESET 8BH = Chip Erase, put shorting plugs on J13, J15, and J19
- for 32H = RESET 33H = Chip Erase put shorting plugs on J13, J16, J17

Interrupt Line Selection

The E^2 Memory Board generates an interrupt upon completion of a Byte Erase/Write or a Chip Erase operation. Any one of the 8 Multibus Interrupt Lines can be used. To select a given Interrupt Line, install the shorting plug indicated below:

Interrupt Line	Jumper
INT 0	J1
INT 1	J2
INT 2	J3
INT 3	J4
INT 4	J5
INT 5	J6
INT 6	J7
INT 7	J8

Data Bus Width

The Multibus Card can use either an 8-bit or a 16-bit-wide data bus. Jumper J20 should be installed for 16-bit data buses, and left open for 8-bit-wide buses.

In addition, switches SW1-SW5 must be set so that the correct MOS PROM(s) are enabled for upper and/or lower byte operations. Refer to the 16-Bit Data Bus

Structure section for an explanation of the E^2 Board internal data bus structure. Refer to the following PROM Array Decoder subsection for directions on setting switches SW1-SW5.

PROM/RAM Selection

If E^2 PROMs or EPROMs are used in the MOS PROM Array, do the following:

Install shorting plugs on the following jumpers:

JW1, JW3, and JW8

Leave these jumpers OPEN:

JW2, JW4, JW5, JW6, and JW7

V_{PP} PULSE WIDTH SELECTION

Ensure that the correct RC timing components are installed for the E^2 PROM to be used:

E ² PROM	R3	C8	t_{WP}
2816	10 KΩ	$4.7 \ \mu F$	10 ms
2815	24 KΩ	10 μF	50 ms

R3 and C8 are located at the top and center of the E^2 board on the left of I.C. H1.

MOS PROM Array Decoder

(See Figure 1) The Bipolar PROM is used to select the MOS PROM or MOS PROM pair being addressed. The Bipolar PROM holds decoding algorithms for 2816s, 2815s, 2716s, 2732s, 2732As, and 2764s. The decoder also selects one or two devices at a time depending on whether an 8-bit or a 16-bit data bus is being used. The Dipswitch at the top of the board determines which decoding algorithm is to be used. Use Table 1 to choose the proper switch setting for the MOS PROMs to be loaded in the Array. The correct shorting plugs must also be installed on Jumpers J21–J24—see Table 2.

If it is desired to have devices of different densities in the Array or if a decoding algorithm other than the one provided is needed, the spare blocks in the 3628A can

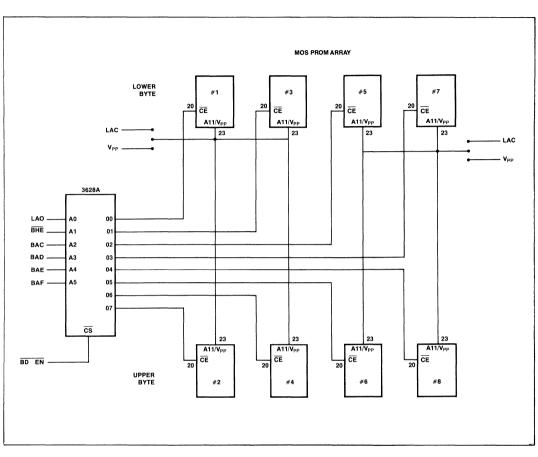


Figure 1. PROM Array Address Configuration

be programmed with new algorithms. The structure of the algorithm is determined by a simple principle. The output corresponding to the \overline{CE} of the MOS PROM to be selected should be a logic 0 for the address range of that PROM. The selecting addresses are A12, A13, A14, A15 (called BAC-BAF on the schematic), and A0 and BHE. (See section on 16-Bit Data Bus Structure for information on the use of A0 and BHE.) The smallest address range is 2K bytes. Addresses A12-A15 select a pair of PROMs while A0/BHE select one or both of the two PROMs in that pair. Figures 2 through 7 can be used as examples. (Also see Appendix B.)

The decoding algorithms must also take into account the data bus width. See figures 2 through 4 for examples of 8-bit data bus algorithms and figures 5 through 7 for examples of 16-bit data bus algorithms. Note that the proper shorting plugs must be installed on Jumpers J21-J24 according to the device densities used.

Jumpers J21–J24 simply connect address A11 or V_{PP} to pin 23 of the 28-pin MOS PROM socket. If a given Array half (sockets 1–4, for example) is to be loaded with 2816s or 2716s, then V_{PP} must go to pin 23 (Jumpers J22 and J24). If 4K or 8K byte parts are used, then All must be connected to pin 23 (Jumpers J21 and J22).

A few rules must be followed in mixed-density Arrays. (1) Each socket pair (1 and 2, 3 and 4, etc.: see Figure 1) must contain devices of the same density. (2) Each Array half (sockets 1–4 and sockets 5–8) can contain either 4K and 8K pairs, or 2K pairs, but not both.

If desired, a 3636B can be used instead of a 3628A. The 2K X 8 3636B will allow the encoding of twice as many decoding algorithms as the 1K X 8 3628A.

The blank PROM Decoder charts in Appendix G may be helpful in planning new decoding algorithms.

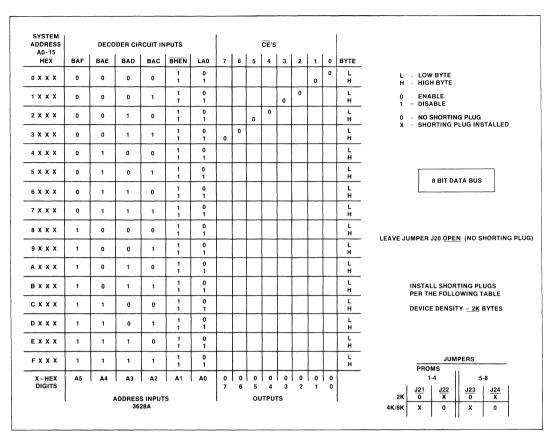


Figure 2. 2716 or 2816

Dev	Device 2816/2815/27		Device 2816/2815/2716 2732/2732A		2764	
Address Ran (For Full Arr		0000-3FFF	8000-BFFF	0000-7FFF	0000-FFFF	
8-Bit Data Bus	SW1 SW2 SW3 SW4 *SW5	ON ON ON ON ON	ON OFF OFF ON ON	OFF OFF ON ON ON	ON OFF ON ON ON	
16-Bit Data Bus	SW1 SW2 SW3 SW4 *SW5	OFF OFF ON ON ON	OFF OFF OFF ON ON	ON ON OFF ON ON	OFF ON OFF ON ON	

OFF = No shorting plug.

ON = Install shorting plug.

* Must Be "ON" for 3628A.

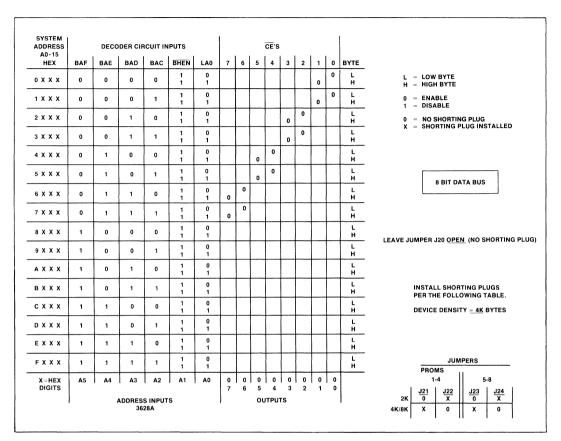


Figure 3. 2732 or 2732A

	1.	1–4		8
Device Density	J21	J22	J23	J24
2K	0	x	0	Х
4K or 8K	X	0	х	0

O = No shorting plug.

X = Install shorting plug.

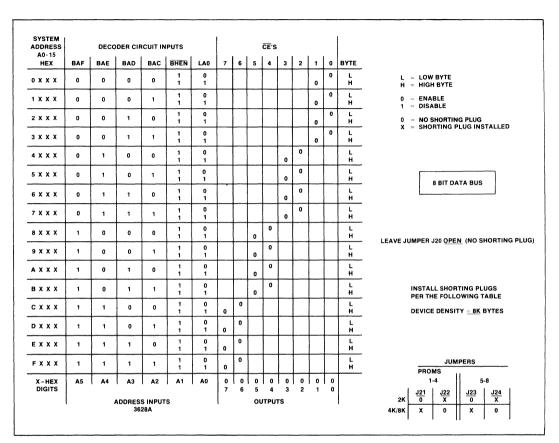


Figure 4. 2764

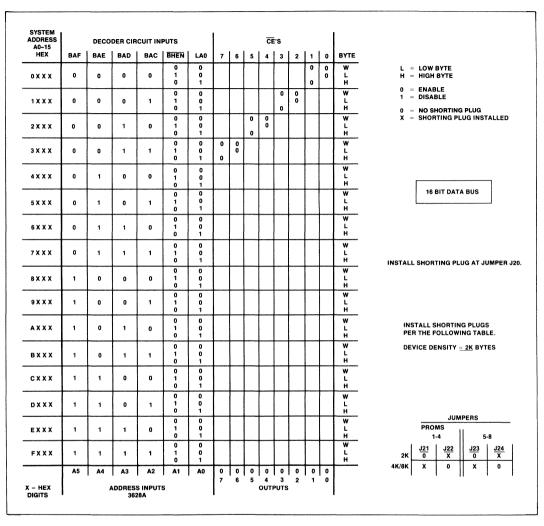


Figure 5. 2716 or 2816

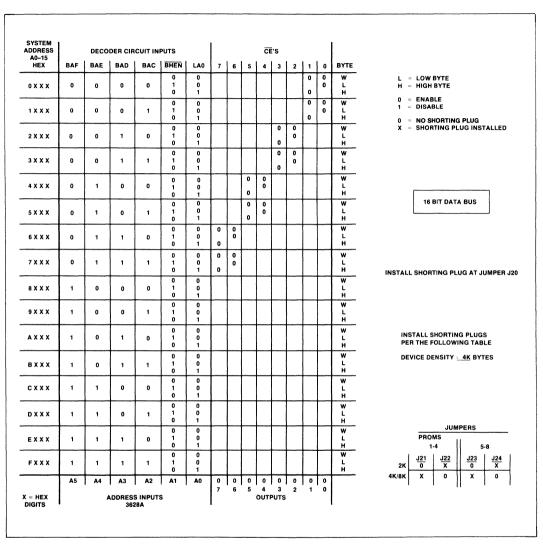


Figure 6. 2732 or 2732A

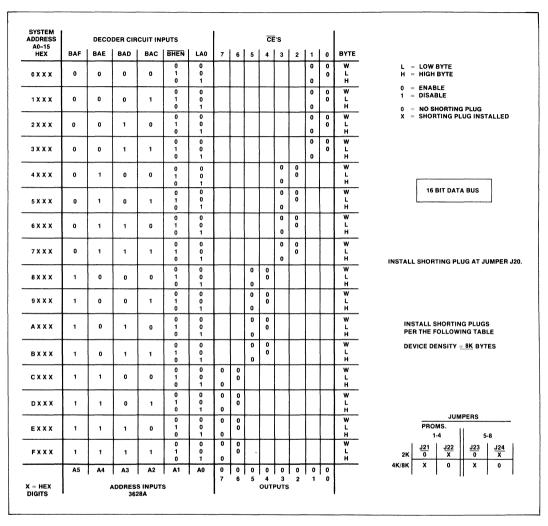


Figure 7. 2764

Adjusting the V_{PP} Voltage Level

The high level of the V_{PP} pulse must be calibrated to 21V. The 8085A code sequence shown below or an equivalent write routine can be used to generate a series of V_{PP} pulses for initial calibration purposes.

MV COU	· ·	, COUNT = number required for delay of at least 40 ms.
OU	Г О	, RESET the board
WRTLP:		
STA	8000H	, send a write command to the E^2 Memory board
LXI	B, 0	
DLYLP		
INX	В	
CM		, compare B reg with Count
JNZ	DLYLP	, done yet?
OU" JMH	Γ0 PWRTLP	; Yes, RESET board and start again

The oscilloscope used should first be calibrated against a known 21.0V DC source. For the above program

USER'S OPERATIONAL INSTRUCTIONS

The Multibus Board can be read by simply sending a Memory Read command to the board.

A byte or word write is performed on the system by doing a normal Memory Write Cycle. The Bus CPU will be informed approximately 25ms later via an Interrupt Line that the E^2 Board has completed the write operation. The CPU clears the Interrupt by RESETING the E^2 Board. The board is then ready for a new command.

Each 2816 E^2 PROM on the E^2 Board can be erased with one write operation. To accomplish this, the board is first put into Chip Erase Mode by doing an I/O Write cycle to the Chip Erase I/O address. The data written loop, the board address is 8000H and the RESET I/O address 00H. Remove the shorting plugs from J9-J12. Set switches SW 1-5 to on, off, on, on, respectively. Before running any V_{PP} pulse loop on the E^2 Board,

- 1. Remove all shorting plugs from jumpers J1-J8
- Remove *all 2816*'s from the board. Otherwise the maximum write cycle capacity at the addressed 2816 could be exceeded and the useful device life could be diminished.

XACK Delay

To select R7 use the following table and the tacc value of the slowest device in the PROM Array:

tacc (ns)	XACL delay (ns)	R7 (ohms)
200	250	6K
250	300	7.5K
350	400	12K
450	500	15K
650	700	24K

during the I/O Write cycle is not used by the E^2 Board. A Memory Write cycle is then performed on the 2816 to be erased. As with the data write cycle described above, an Interrupt Line will be lowered when the Chip Erase operation has been completed. The CPU issues a RESET to the E^2 Board by doing an I/O Write cycle to the RESET I/O address. (The data put on the system bus during the RESET I/O write cycle is not used.) The 2816 that was written now contains all 1's, the Chip Erase Mode is cleared, and the E^2 Board is ready for the next command.

After powering up the E^2 Memory Board, the CPU must send an initial RESET to the E^2 Board to prepare it for normal operation. This should not occur until the CPU has been running for at least 1 second.

Operation	CPU Action	E ² Board Action	Comments
Read	Memory Read command MRDC	data requested is put on the bus	$\frac{\text{Minimum delay from}}{\text{MRDC}} \text{ to } \overline{\text{XACK}} = 250 \text{ ns}$
Write	Memory Write <u>comma</u> nd MWTC	an INT line is pulled low when opera- tion is done	byte or word erase and byte or word write is performed on 2816 or 2816 pair
	issue RESET		
Chip Erase	Set Chip Erase Mode with an I/O Write Command—then send an MWTC to the one or two 2816's to be erased	INT goes low when done	One or two 2816's are set to all 1's
	issue RESET		
Initialize E ² Board	After the CPU starts running, wait 1 second, then send RESET command.		E ² Board is ready for operation

E² Memory Board Operation Summary

USER PROGRAM EXAMPLE

This sample program transfers a block of data from a RAM buffer to the E^2 memory on the E^2 Memory Board. The system data bus is 8-bits wide, and the RAM memory block is located from 0 to 64K. (The Memory Board is located from 8000H to BFFFH. The system RAM is inhibited by INH1 from the E^2 Board whenever the latter is accessed.) All 8 MOS PROM sockets are loaded with 2816's. The I/O addresses are 00H for RESET and 01H for Chip Erase Mode. The data transfer in this example consists of less than 4K bytes. The transfer is started by doing an initial Memory Write Cycle to the E^2 Board. Following the Write Cycle, the

interrupt subroutine (SRVINT) RESET's the E^2 Board after each write operation has been completed. The subroutine will then take the next data byte from the RAM source block and write it to the next E^2 location. At this point, the subroutine returns control to the main program which in this example idles in a tight loop. An actual system CPU would continue doing its main processing until the present write operation was done. Once the data transfer is started, the interrupt subroutine will take care of reseting the E^2 Board and writing the next byte. The subroutine takes only about 100 μ s out of every 20 ms of CPU time to carry out the data transfer. The data transfer is thus highly efficient.

LOC	0 B J	LINE	SOURCE STATEMENT	
		1;		
		2;		
			aiokaiokakaisakaisakaisakaisa	******
		4;		
		5;		
		6;	INTEL CORPOR	ATION
		7;		
		8;	SPD E2 MULTI	BUS COMPATIBLE MEMORY BOARD
		9; 10;	APPLICATION	DOCCOM
		10,	nrrcionion	FROGRAM
		12;		
		13;		
		14;		
	15 ;************************************		*******	
		17;		
		18;		
		19; 20;	THIC PROCEDU DOCC O DOTO TROVCCCD	
		20;	This program does a data transfer Between a block of ram and the E2	
		22;	MEMORY BOARD	
		23;		
		24 ;	The RAM Block is	Located at 00000H
		25;		
		26 ;	THE E2 BOARD IS LOCATED AT ADDRESS 8000H	
		27;		
		28;	IO ADDRESSES:	
		29; 30;	00H - RESET 01H - CHIP ERASE INTERRUPT LINE 7 (INT7') IS USED TO INFORM THE CPU WHEN THE E2 BOARD HAS COMPLETED A BYTE ERASE/WRITE OR A CHIP ERASE COMMAND 0E00H DATA BYTES ARE TRANSFERRED	
		30; 31;		
		32;		
		33;		
		34 ;		
		35 ;		
		36;		
		37;		
		38; 39;		
		40;		
		40 ; 41 ;		
8000	1	42 STRAD	D EQU	8000H
00FC	:	43 INTMS	K EQU	ØFCH
00FD)	44 OLRS1	r equ	OFDH
000 0	1	45 CR	EQU	ODH
000A		46 LF	EQU	GAH
0009)	47 EXIT	EQU	9
		48; 49	EXTRN	CO, CI, ISIS
		49 50;	LAIKN	0101011010
		51;		
		52;		
7800	l –	53	ORG	7800H
		54 ;		

LOC OBJ	LINE SOURCE STATEMENT
7800 C34678	55 JHP INIT 56; 57; 58;
	59; ************************************
	62; 63; DATA STRINGS 64; 65;
	66 ; **********************************
7803 5452414E 7807 53464552 7808 20494E20 780F 50524F47 7813 52455353 7817 00 7818-00	68 ; 69 TRNMSG: DB 'TRANSFER IN PROGRESS', CR, LF, ØFFH
7819 FF 781A 44415441 781E 20455252 7822 4F52 7824 00 7825 0A	70 Errmsg: DB (Data Error), Cr, LF, Offh
7826 FF 7827 5452414E 7828 53464552 782F 20434F40 7833 504C4554 7837 45 7838 00 7839 0R 7839 FF	71 FINMSG: DB 'TRANSFER COMPLETE', CR, LF, OFFN
783B 3078	72 EBLK: DW ESTAT 73 , 74 ;
	77; 78;
	79 ; TEMPORARY STORAGE SPACE
	88; 81;
	82 ; ***********************************
783D	84; 85 ESTAT: DS 2
783F	86 E2BUSY: DS 1
7840	87 MSGADD: DS 2
7842 7844	88 SRCRDD: D5 2 89 DESRDD: D5 2
1044	990;

LOC OBJ	LINE	Source :	STRTEMENT		
	91 ;				
	92;				
	93 i				
	94 INIT				
7846 31007E	95	LXI	SP, 7E00H		
7849 D300	96	OUT	0	; Reset the E2 Board	
	97;				
	98; 98;	1000 100	OTION ODDU/INTE	2000T 7 UE0TOD)	
	99; 100;		ATION 038H(INTE	REPT 7 VECTOR	
	100 ;	ATIN JON	r to service in	ICKRUFT SUDRUUTINE	
7848 3EC3	101 ,	MVI	A, OC3H		
7840 323800	103	STA	38H		
7850 21AE78	104	LXI	H SRVINT		
7853 223900	105	SHLD	39H		
	106;				
	107;	set the	SYSTEM INTERRUP	t MARSK TO	
	108 ;	ENABLE I	NTERRUPTS 1 AND	7	
	109;				
	110 ;				
	111 ;				
7856 3E7E	112	MVI	r, 7eh		
7858 D3FC	113	OUT	INTMSK		
7858 FB	114	EI	U TRANCO		noron
7858 210378	115 116	LXI	H, TRNMSG	; INFORM OPE	
	117			; HAS BEGUN	
	118;				
785E 224078	119	SHLD	MSGRDD		
7861 CDE578	120	CALL	DISMSG		
	121 ;				
	122;				
	123;				
	124;*** 125;	****	alakakakakakakakaka		
	123;	MAIN PRO	CDOM		
	127;	INTR FRO	ur.nn		
	128;				
	129 MAIN	PG:			
	130 ;				
	131 ;	lord sou	RCE RAM BLOCK W	ITH 55H	
	132 ;				
7864 210000	133	LXI	h, ramblk		
	134 LDLP	:			
7867 3655	135	MVI	M, 55H		
7869 23	136	INX	Н		
786A 3ECE	137	MVI	A, ØCEH		
786C BC	138	CMP	H		
7860 C26778	139 140;	JNZ	LDLP		
	141 ;				
7870 3EFF	142	MVI	a, offh		
7872 77	143	MOV	M, A	; Insert end of data	STRING
	144			; MARKER	
	145;				

LOC (obj	LINE	Source	STATEMENT	
		146; 147; 148; 149;	INITIATE	. Data transfer	ł
7873	210080	150	LXI	H, STRADD	
	224478	151	SHLD	DESADD	STORE STARTING ADDRESS OF
1010 1	661110	152	21 1020	VEANV	; E2 BOARD
7879	210000	153	LXI	H, RAMBLK) EZ DOIRD
	224278	154	SHLD	SRCADD	; STORE STARTING ADDRESS OF
10101		155	JI 1647	510100	SOURCE RAM BLOCK
787F 7	7F	156	MOV	ቢ M	FETCH FIRST BYTE FROM SOURCE
	284478	157	LHLD	DESROD	LOAD DESTINATION ADDRESS
1000 1	CITTI V	158		ULDINU	; (E2 BORRD)
		159 ;			I LE BONKD/
		160 STXFE	р.		
7883 7	77	161	-n. Mov	ሌብ	;WRITE FIRST BYTE TO E2
1005 1		162	101	1911	;BOARD
7884 3	7EØ4	163	MVI	R. 1) DO RO
	323F78	164	STA	E2BUSY	; set flag indicating that a
		165	2111	220001	DATA TRANSFER IS IN PROGRESS
		166;			JUINT READER 15 IN ROURESS
		167 ;			
		168 ;			
		169;			
		170;	THIS T	TGHT LOOP STM	lates an actual system CPU
		171 ;		ITS MAIN PROCE	
		172 ;			
		173;			
		174 PROCE	S:		
7889 3	3A3F78	175	LDA	E2BUSY	
788C F	FE01	176	CPI	1	
788E (CA8978	177	JZ	PROCES	
		178;			
		179 ;			
		180;			
		181 ;	once the	DATA TRANSFER	IS COMPLETED THE OPERATOR
		182;	IS INFOR	med and contro	IL IS RETURNED TO ISIS
		183 ;			
		184 ;			
		185 ;			
		186;			
		187 FINIS	5H:		
	212778	188	LXI	H, FINMSG	
	224078	189	SHLD	MSGADD	
7897 (CDE578	190	CALL	DISMSG	
		191;			
		192; 193;			
		193 ; 194 RTIS	rc.		
789A (9699	194 KIIS. 195	NVI NVI	C, EXIT	
	113878	195	LXI	D, EBLK	
	CD00000	E 197	CALL	ISIS	
1027 (198;	UNILL	1313	
		199;			
		299 ;			

LOC OBJ	LINE	SOURCE	STRTEMENT	
	201 ERRO	D .		
7882 211878	202	LXI	H, ERRMSG	
78R5 224078	203	SHLD		
7888 CDE578	204	CALL	DISMSG	
78AB C39A78	205	JMP		
	206 ;	•••		
	207;			
	208;			
	209 ; ***	****	**	***
	210;			
	211			
	212;	SUBROUTI	NES	
	213 ;			
	214 ;			
	215 ;			
	216 ;			
	217;			
	218	WHEN THE	E2 BOARD HA	5 COMPLETED ITS BYTE
	219			IS ROUTINE WILL VERIFY
	220;			HE NEXT BYTE IS FETCHED
	221 ;			ND WRITTEN TO THE NEXT
	222;		ON THE E2 B	
	223 ;			
	224;			
	225;			
	226;			
	227 SRVI	NT :		
78RE FB	228	EI		
	229;			
	230;	SAVE ALL	. REG15	
	231 ;			
78AF F5	232	PUSH	PSW	
78B0 C5	233	PUSH	В	
78 81 D5	234	PUSH	D	
78B2 E5	235	PUSH	н	
78B3 D300	236	OUT	0	; reset the e2 board
	237 ;			
7885 294478	238	LHLD	DESADD	
78B8 7E	239	MOV	A, M	
78B9 2R4278	240	LHLD	SRCADD	
78BC BE	241	CMP	M	CORRECT DATA?
78BD C2R278	242	JNZ	ERROR	
	243;	UEC 0001	* L H 10-	
	244 ;	YES, CONT	INCE	
3000 03	245 ;			
7809 23	246	INX	H	
78C1 7E	247	MOV	R.M.	
78C2 FEFF	248	CPI	ØFFH	; END OF STRING MARKER?
78C4 CRD578	249 250;	JZ	DONE	
	251;	NO, CONT	TNIF	
	252;			
7807 224278	252 ,	SHLD	SRCADD	
78CR 2R4478	253	LHLD	DESADD	
7800 23	255	INX	H	
1000 23	200	1110	n	

LOC OBJ	LINE	SOURCE	STATEMENT	
78CE 77	256	MOY	M, A	, WRITE NEW BYTE TO E2 BOARD
78CF 224478	257	SHLD	DESRDD	
7802 C30878	258	JMP	REST	; restore reg's and return
	259;			
	260;	CLEAR FL	ag to inf	orm CPU that the data transfer
	261;	IS FINIS	HED	
	262;			
	263 DOM	E:		
78D5 3E00	264	MVI	A. Ø	1
7807 323F78	265	STA	E2BUSY	
	266;			
	267 RES	5T :		
780A E1	268	POP	Н	
7808 D1	269	POP	D	
78DC C1	270	POP	В	
7800 F3	271	DI		
78DE 3E20	272	MVI	R, 20H	
78E0 D3FD	273	OUT	OLRSTR	
78E2 F1	274	POP	PSW	
78E3 FB	275	EI		
78E4 C9	276	RET		
	277 ;			
	; 278 ; 279			
	289;			
	286;			
	282;			
	283 DIS	SMSG ·		
78E5 284078	284	LHLD	MSGADD	
1020 2111010	285 MS		1201100	
78E8 4E	286	MOY	C, M	
78E9 3EFF	287	MVI	A OFFH	
78EB BE	288	CMP	M	
78EC C8	289	RZ		
78ED CD0000	E 290	CALL	CO	
78F0 23	291	INX	н	
78F1 C3E878	292	JMP	MSGLP	
	293 ;			
	294;			
	295;			
	296;	RAM BLOO		
C000	297	ORG	0C000H	
C000	298 RA	MBLK:	DS	1000H
	299;			
	300; 301;			
	301; 302;			
7846	302,	END	INIT	
	202	L147/	1111 1	

PUBLIC SYMBOLS

EXTERNAL SYMBOLS CI E 0000 CO E 0000 ISIS E 0000

USER S	USER SYMBOLS											
CI	E 0000	C0	E 0000	CR A Ø	300D	DESADD	A 7844	DISMSG	A 78E5	DONE A	7805	E2BUSY & 783F
EBLK	A 7838	ERRMSG	A 781A	ERROR A 7	78A2	ESTAT	A 783D	EXIT	A 0009	FINISH A	7891	FINMSG A 7827
INIT	A 7846	INTMSK	A 00FC	ISIS EØ	1000	LDLP	A 7867	LF	a 000a	MAINPG A	7864	msgadd a 7840
MSGLP	A 78E8	OLRSTR	A 00FD	PROCES A 7	7889	RAMBLK	A C000	REST	A 78DA	RTISIS A	789 8	SRCADD A 7842
SRVINT	a 78ae	Stradd	A 8000	STXFER A 7	7883	TRNMSG	A 7803					
ASSEMB	LY COMPLE	te, no	ERPORS									

16-BIT DATA BUS STRUCTURE

The Multibus card can use either an 8-bit or 16-bit data bus. The PROM Array is organized in pairs of 8-bit wide MOS PROM's to enable the formation of a 16-bit word. For a 16-bit data bus, the upper byte MOS PROM is enabled whenever BHE (Byte High Enable) is low. The lower byte PROM is enabled when A0 is low. The upper and lower PROM's can be enabled and accessed separately as individual bytes or together to form a word. Accessing data by words takes half the time required to do byte operations; thus the advantage of 16-bit systems over 8-bit systems.

HARDWARE DESCRIPTION

Overview

This discussion assumes an 8-bit data bus is being used and applies equally to a 16-bit-wide system except that whenever a byte-wide operation is being described, two bytes (two MOS PROMs) in parallel are being affected.

The E^2 Board hardware consists of the following sections:

- 1. Sequencing and Timing
- 2. XACK Generation
- 3. Bus Address Decoding
- 4. PROM Array Decoding
- 5. Data and Address Latches and Buffers
- 6. V_{PP} and \overline{OE} Drivers
- 7. 5V to 24V Converter
- 8. Write Protection Circuitry

See the block diagram in Figure 8.

A brief description of the function of each circuit block will be given. The circuit operation will then be discussed in detail in the subsections to follow.

The Sequencing and Timing circuitry generates the signals necessary to do the byte erase, byte write, chip erase cycles, and read cycles on the E^2 PROMs.

The XACK Generator returns the Transfer Acknowledge signal to the Multibus Bus Master after receiving any memory or I/O command.

The bus Address Decoder performs 2 functions:

- 1. Enabling the E^2 Board within its assigned address block for memory operations.
- 2. Enabling the RESET function and setting the Chip Erase Mode whenever the proper I/O addresses are written to.

The PROM Array Decoder enables the proper MOS PROM for any given memory address.

The Address and Data Latches hold the Bus address and data values for the duration of the E^2 write and Chip Erase operations. During read operations, the Data Buffers transfer the accessed data to the Multibus.

The V_{PP} and \overline{OE} Drivers provide the high voltage pulses required for the byte erase, byte write, and Chip Erase cycles while the 5V to 24V Converters provide the supply voltage for the V_{PP} and \overline{OE} drivers. Tied to these circuits is the Write Protection Circuitry which prevents any spurious write cycles from occurring during the system power up and power down transitions.

The figures referenced in the following subsections are shown in the Schematic Section.

Sequencing and Timing

READ OPERATION

When $\overline{\text{MRDC}}$ goes low the $\overline{\text{RDEN}}$ signal also goes low. WR Mode is normally high when the E^2 Board is not being accessed and is not performing an operation. WR Mode also stays high during a Read operation. The address latches in Figure 12 remain transparent, and lines BAC-BAF select one of the MOS PROMs in the PROM Array via the 3628A Bipolar PROM decoder. In Figure 13 the RDEN signal enables the 8287 transceivers to gate the output data onto the multibus. RDEN also causes OE to go low to read the data out of the MOS PROMs.

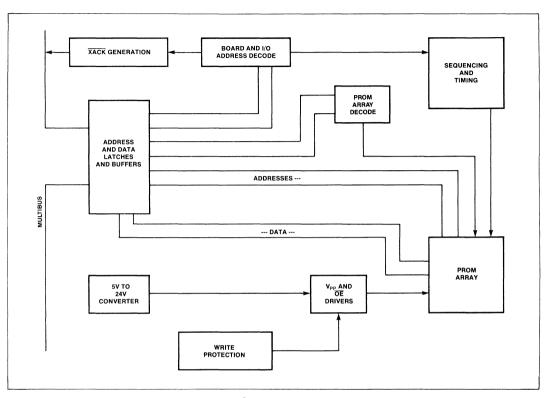


Figure 8. E² Board Block Diagram

WRITE OPERATION

Refer to Figures 10 and 11 and to the timing diagram in Figure 9.

When $\overline{\text{MWTC}}$ goes low the $\overline{\text{BDWR}}$ signal also goes low which sets the $\overline{\text{WR}}$ Mode FF. The falling edge of $\overline{\text{WR}}$ $\overline{\text{Mode}}$ latches the addresses as the falling edge of $\overline{\text{BD}}$ $\overline{\text{WR}}$ latches the data. The rising edge of BDWR sets the Start Erase Cycle FF, which in turn starts the one-shot chain.

The first one-shot delays the rising edge of V_{PP} to provide some set-up time for \overline{CE} . When the delay one-shot times out, it triggers the V_{PP} ON one-shot. This second one-shot turns on the V_{PP} driver for approximately 10ms. This is the byte erase cycle. Although the bus data has been latched, the latch outputs are not yet enabled by Data In En (Figure 13). The 1K pullup resistors on the LD0-LD15 lines pull the high-impedance latch outputs up to 5V. As a result, the data inputs to the E^2 PROM are all 1's which in turn erase the addressed data byte. When the V_{PP} ON one-shot times out, the V_{PP} Discharge one-shot is triggered. The V_{PP} driver is

now shut off $(\overline{V_{PP} ON} = 1)$ but the voltage on the V_{PP} line will take a long time to discharge to 5V. This is due to the 4.7 uf low-frequency decoupling capacitor, connected from VPP to ground; the capacitor is needed to suppress low frequency noise (See Figure 17). In order to pull the V_{PP} line down fast, the V_{PP} Discharge signal turns on Q8 which discharges the capacitor. When the third one-shot times out, the Cycle Done One-Shot starts, which clears the start Erase Cycle FF and forces $\overline{\text{CE}}$ high (Figure 16 and Figure 10). The rising edge of Cycle Done sets the Start Write Cycle FF and causes the 74LS393 counter (Figure 10) to increment from 0 to 1. This starts the one-shot chain again to perform the byte write cycle. The Data In En signal enables the latched data onto the input lines. The one-shot chain then delays, activates V_{PP} , and discharges the V_{PP} line. This time the data byte is written into the selected 2816 address location. The 74LS393 counter is incremented a second time and its QB output lowers one of the Multibus Interrupt Lines. The CPU RESETS the E^2 board with an **IOWC** command. The WR Mode FF, the Start Write FF and the 74LS393 counter are cleared, and the E^2 Board is ready for the next operation.

CHIP ERASE OPERATION

The Chip Erase Operation is quite similar to the byte erase operation. The differences are:

- 1. The Chip Erase FF is set by the Multibus CPU before initiating the write operation. The Chip Erase FF is set by doing an IOWC command to the Chip Erase address.
- 2. When the write operation begins, the OE signal is raised to 14.5V (Figure 17). The byte erase cycle proceeds as before.
- 3. At the end of the byte erase cycle the Cycle Done signal does not set the Start Write Cycle FF. Instead, the Start Write Cycle FF is held in a clear state by the INH Byte Write signal shown in Figure 10. Cycle Done increments the 74LS393 counter from 0 to 1. The Q_A output is now used to lower one of the Interrupt Lines to signal the CPU that the Chip Erase Operation is complete. When the CPU resets the E² Board, the Chip Erase FF is also cleared.

INITIALIZATION

The E^2 Board must be RESET after power up. Due to the write protection circuitry delay period after power up, the RESET should not be sent until at least 1 second after the CPU starts running. Once the board is RESET, it is ready for a command.

XACK Generation

(Figure 11) The XACK (Transfer Acknowledge) signal is driven low after a delay period determined by the t_{ACC} of the slowest MOS PROM in the PROM Array. XACK stays low until the Memory or I/O command goes back high. See the XACK delay subsection.

Bus Address Decoding

Two sets of addresses need to be decoded for the E^2 Memory Board: the memory space address for the PROM Array and the I/O address for Chip Erase Mode and the RESET function. The 74LS85 comparators in Figure 16, along with Jumpers J9–J12 and J13–J19, are used to select the desired addresses and generate the appropriate enabling signals when the selected addresses appear on the Multibus. The board memory address is determined by jumpers J9–J12. When the <u>correct</u> memory address is put on the bus, the <u>MEM</u> EN signal goes low. The INH1 (INHIBIT RAM) signal is driven low on the Multibus to disable any RAM memory that is occupying the same memory space as the E^2 Board.

When the selected I/O address appears on the system bus and \overline{IOWC} goes low the \overline{BD} \overline{IOW} signal goes low (Figure 16). If ADR0 is low, the RESET function is activated. If ADR0 is high, the Chip Erase FF is set.

MOS PROM Array Decoder

(Figure 12) Details on how to program the 3628A Bipolar PROM decoder are given in the Installation Instructions under PROM Array Decoder. The 3628A acts as a sophisticated decoder. The address input to the 3628A allows a maximum address range of 64K with a minimum resolution of 2K. The A0 and BHEN input signals enable the 3628A to select the lower byte MOS PROM, the upper byte MOS PROM, or both in parallel. The 3628A output lines connect to an 8282 8-bit latch. The 8282 latches the decoder output to provide \overline{CE} for the 10ms erase and write cycles. During read cycles the 8282 simply acts as a buffer for the decoder.

Address and Data Latches and Buffers

The 8283s and 8282 of Figures 12 and 13 latch the address and data from the Multibus when the CPU issues an \overline{MWTC} command. These address and data values stay latched throughout the Write Operation. The addresses are latched on the falling edge of \overline{WR} Mode. The input data from the bus is latched by the falling edge of \overline{WR} EN (See Figure 13). For Read operations the \overline{WR} Mode signal stays high. A high on the 8283 STB input puts these latches in "transparent" mode: they act as buffers for the bus addresses. The 8287s in Figure 13 act as data output buffers for the accessed MOS PROM data.

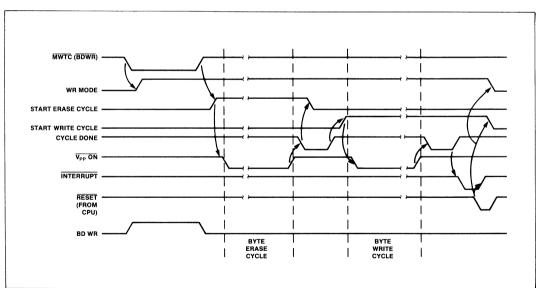
The 8286 is used when the system data bus is 8-bits wide. This transceiver transfers the data byte from the LD0-LD7 low byte data bus to LD8-LD15 upper byte data bus for write operations. For read operations, the data byte from the LD8-LD15 byte bus is transferred to the LD0-LD7 data byte bus. This byte swapping circuit is actually adapting the 16-bit upper/lower byte structure to an external 8-bit wide data bus. See the section on 16-bit Data Bus Structure for more information.

V_{PP} and OE Drivers

Refer to Figure 17. The V_{PP} driver provides the 21V V_{PP} programming pulse for the 2816. The pulse goes from 5V to 21V with an exponential rising edge. The \overline{OE} driver is used to provide nominal TTL levels for read and write operations. This driver also provides a 14.5V level for the Chip Erase cycle.

5V to 24V Converter

Refer to Applications Note AP-103 in the E^2 PROM Applications Handbook. (Also Figure 18.)


Write Protection Circuitry

The Write Protection circuits are designed to prevent the TTL control logic from causing an E^2 write/erase cycle to occur during the periods of board power up or power down. The 747 op-amp in Figure 18 senses when the board 5V supply has dropped below the voltage level on C41. When this happens, the op-amp disables the V_{PP} driver by grounding C38 (Figure 17). This prevents the capacitor from charging up the 21V—it is the exponential rising voltage on this capacitor which is used to generate the V_{PP} programming pulse's rising edge.

When the E^2 Board is powered up, the rising V_{CC} voltage begins charging up capacitor C30. Until the voltage on C30 is high enough to turn on Q4 (approximately 3.5V), this transistor will hold the $\overline{V_{PP}}$ OFF signal low. This is the same signal in Figures 18 and 17 that is used by the power-down circuit described

above. This keeps the V_{PP} driver disabled until about 500ms after V_{CC} reaches 5V. About 400ms before V_{CC} reaches 5V, the Write Protect FF in Figure 10 is set by the Multibus INIT signal. This FF will hold the V_{PP} ON one-shot disabled until the CPU RESETS the E^2 Memory Board and the Write Protect FF. Thus, the Q4/C30 circuit holds the V_{PP} driver off until long after the TTL logic has stabilized and the Write Protect FF has disabled the V_{PP} ON one-shot.

The purpose of the Write Protect Flip Flop is to prevent the 2816s from being written to by the Intellec Monitor Program immediately after power up. The Intellec Monitor tries to write to every location in its addressable range after power up. This is done to determine how much RAM is in the system. In a non-Intellec system the \overline{INIT} signal is not really needed as long as no System Write commands occur other than those generated by the user.

SCHEMATIC DIAGRAMS

Figure 9. Write Operation: Byte Erase and Byte Write Cycles

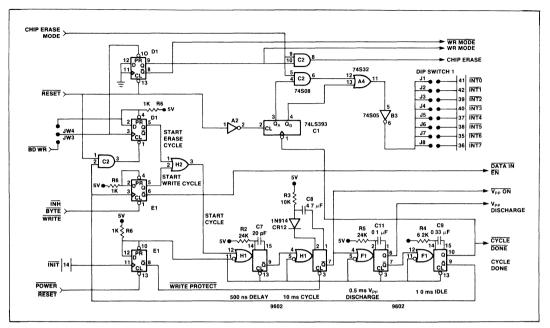


Figure 10. Write and Erase Sequencing and Timing

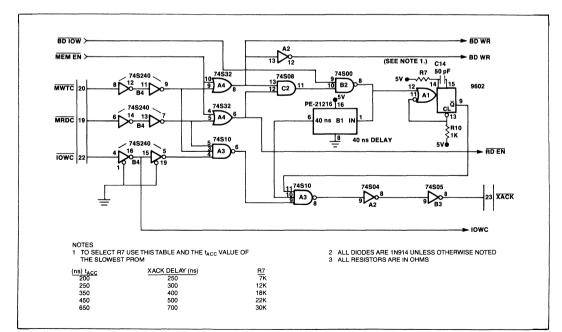
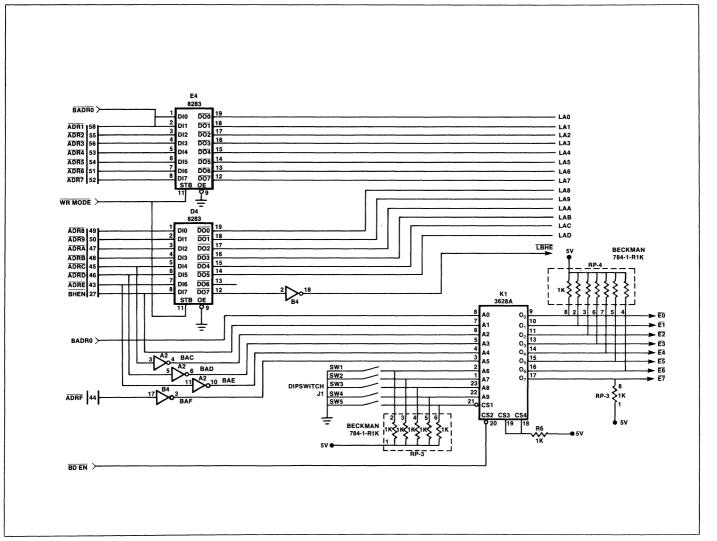



Figure 11. XACK Generator

4-120

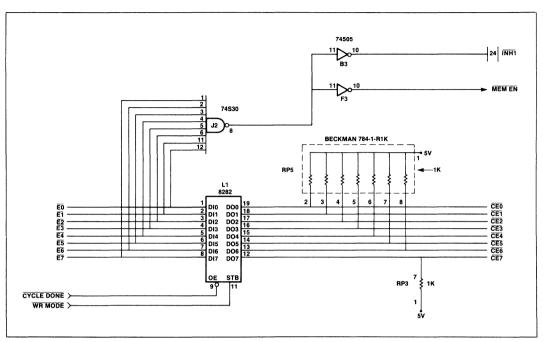


Figure 12a. CE Latch

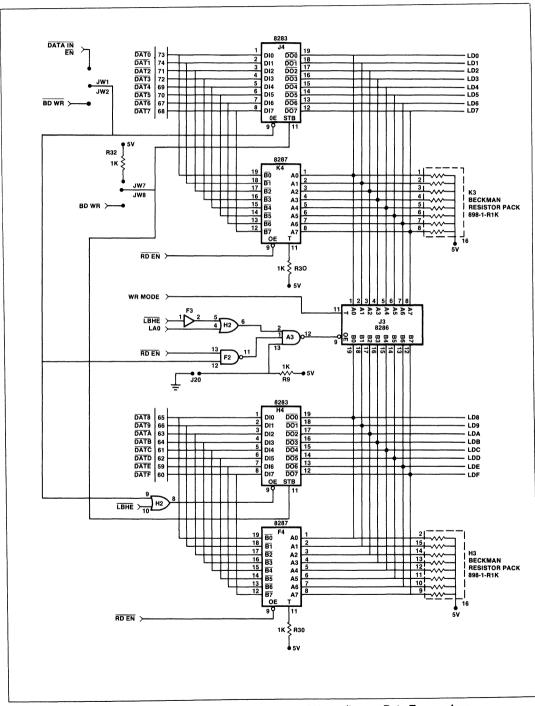


Figure 13. Data In Latch, Data Out Buffer, and Upper/Lower Byte Transceiver

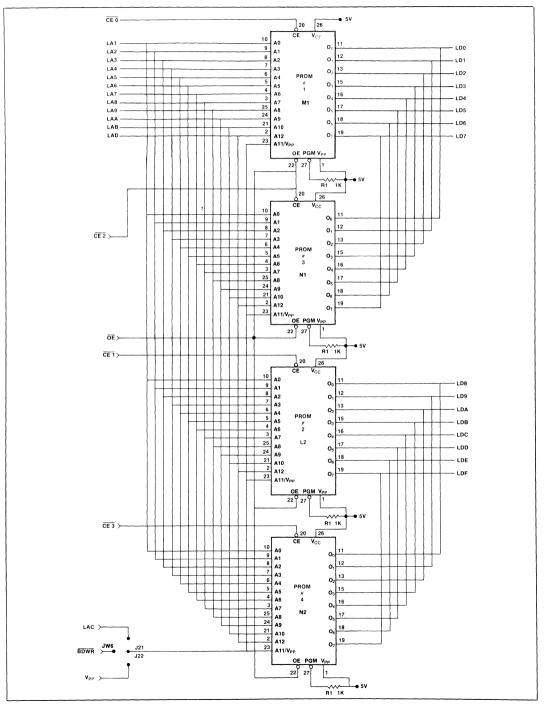


Figure 14. MOS PROM Array

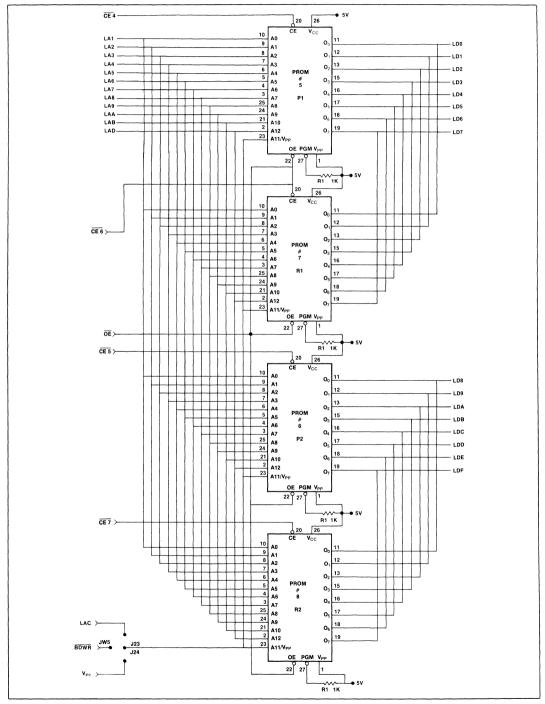


Figure 15. MOS PROM Array

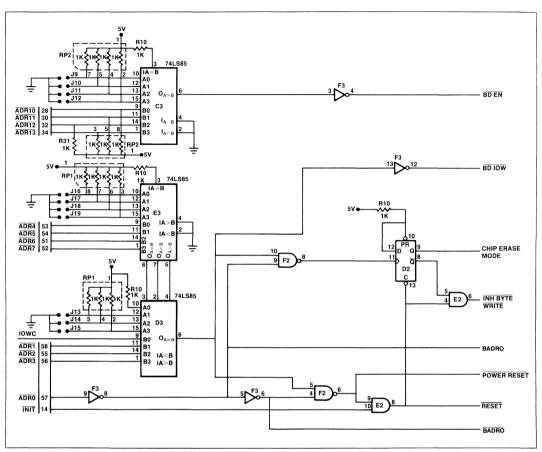


Figure 16. Board Address Location Selection, RESET and Chip Eraser I/O Address Selection

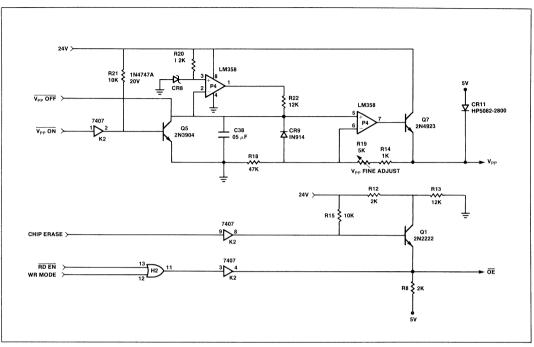


Figure 17. V_{PP} and OE Drivers

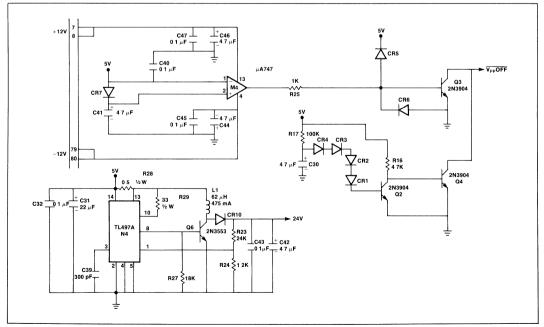


Figure 18. 5V to 23V Converter and Power Up/Power Down Write Protection Circuitry

ASSEMBLY INSTRUCTIONS

1. Install and solder the following Integrated Circuits:

A4	— 74S32	A2	— 74S04
B4	— 74S240	B2	— 74S00
D4	- 8283	C2	— 74S08
E4	- 8283	D2	— 74LS74
F4	- 8287	E2	— 74LS08
H4	- 8283	F2	— 74LS00
J4	- 8283	H2	— 74LS32
K4	- 8287	J2	— 74S30
A3	— 74S10	K2	— 7407
B3	— 74S05	A1	- 9602
C3	— 74LS85	B1	— PE-21216
D3	— 74LS85	C1	— 74LS393
E3	— 74LS85	D1	— 74LS74
F3	— 74LS04	E1	— 74LS74
J3	- 8286	F1	— <u>9602</u>
		H1	9602
		L1	- 8282
		N4	— TL497A
		M4	— UA747
		P4	— LM358

- 2. Install and solder a 24-pin socket at K1.
- 3. Install and solder 28-pin sockets at M1, L2, N1, N2, P1, P2, R1 and R2.
- 4. Install and solder jumper pin pairs at the following locations:

J 1	J5	J13	J16
J2	J6	J14	J17
J3	J7	J15	J18
J4	J 8		J19
J9		J20	
J10			
J11			
J12			

5. Break in half 4 jumper pairs.

Install and solder one jumper pair at J21. Install and solder one of the single jumper pins at J22.

Install and solder another single jumper pin and one jumper pair at J23 and J24.

Install and solder jumper pairs at JW7, JW3, and JW2.

Install and solder single jumper pins at JW8, JW4, JW1, JW6, and JW5.

6. Install and solder the Dipswitch at location J1.

7. Install and solder resistors and resistor networks at the following locations:

H3	— 898-1-R1K	R16	— 4.7K
K3	— 898-1-R1K	R17	— 100K
RP1	— 784-1-R1K	R29	— 33, 1/2 W
RP2	— 784-1-R1K	R28	- 0.5, 1/2 W
RP3	— 784-1-R1K		
RP4	— 784-1-R1K	R27	— 18K
RP5	— 784-1-R1K	R24	— 1.2K
R6	— 1K	R23	— 24K
		R15	— 10K
R5	— 24K	R22	— 12K
R4	— 6.2K	R21	— 10K
R3	— 10K	R20	— 1.2K
R2	— 24K	R18	— 47K
R 1	— 1K	R12	— 2K
R32	— 1K	R13	— 12K
R10	— 1K	R14	— 1K
R9	— 1K	R25	— 1K
R8	— 2K		
R19	— 5K		
	Mini-potentiom	eter	
R31	— 1K		
R30	— 1K		
1,50	115		

8. Install and solder capacitors in the following locations:

C13	— 0.1 μf	C19	— 0.1 μf
C12	$- 0.1 \ \mu f$	C18	— 0.1 μf
C11	$- 0.1 \mu f$	C17	— 0.1 μf
C10	— 0.1 μf	C16	— 0.1 μf
C9	$- 0.33 \ \mu f$	C15	— 0.1 μf
C8	— 4.7 μf	C28	— 0.1 μf
C7	— 20 pf	C27	$-0.1 \mu f$
C6	— 0.1 μf	C26	$- 0.1 \mu f$
C5	$- 0.1 \ \mu f$	C25	$- 0.1 \mu f$
C4	$- 0.1 \ \mu f$	C24	$- 0.1 \mu f$
C3	— 0.1 μf	~~~	
C2	$- 0.1 \mu f$	C37	$ 0.1 \ \mu f$
C1	$- 0.1 \mu f$	C49	— 22 μf
	,	C36	$- 0.1 \ \mu f$
C23	$- 0.1 \mu f$	C35	$- 0.1 \mu f$
C22	$- 0.1 \mu f$	C34	— 0.1 μf
C21	$- 0.1 \mu f$	C33	$- 0.1 \mu f$
C20	$- 0.1 \mu f$		
C20	— 0.1 µi	C48	— 22 μf

9. Install and solder the following diodes:

CR1	— 1N914	CR7 — 1N914
CR2	— 1N914	CR8 — 1N4747A
CR3	— 1N914	CR9 — 1N914
CR4	1N914	CR10 — 1N914
CR5	— 1N914	CR11 — HP5082-2800
CR6	— 1N914	CR12 — 1N914

- 10. Install and solder the following transistors:
 - Q1 2N2222A
 - Q2 2N3904
 - Q3 2N3904
 - Q4 2N3904 Q5 — 2N3904
 - $Q_{0}^{2} = 2N_{0}^{2}$ $Q_{0}^{2} = 2N_{0}^{2}$
 - If hardware is provided or available, mount transistors in the following locations:
 - Q7 2N4923

Solder the leads of Q7 and Q8 to the solder pads on the board.

11. Install and solder the following capacitors:

C40	— 0.1 μf	C41	— 4.7 μf
C47	$- 0.1 \mu f$	C44	— 4.7 μf
C45	$- 0.1 \mu f$	C42	— 4.7 μf
C39	— 300 pf	C31	$-22 \mu f$
C43	$- 0.1 \mu f$	C30	— 4.7 μf
C38	$- 0.05 \ \mu f$	C46	— 4.7 μf
C32	$- 0.1 \mu f$		

12. Install and solder the $62 \mu h RF$ choke at location L1 (just above the 60-pin edge connector).

APPENDIX A JUMPER LIST

J1	INTO	
J2	INT1	
J3	INT2	
J4	INT3	
J5	INT4	
J6	INT5	
J7	INT6	
J8	INT7	
J9	(ADR10)	4 bit selection of one of
JJ0	(ADR10) (ADR11)	16 64K pages for board
J11	(ADR12)	address
J12	. ,	-Note: these ADRs are in HEX
512	(ADR15) -	-Note: these ADRs are in TIEX
J13	(ADR1)	
J14	(ADR2)	
J15	(ADR3)	Select I/O address for Chip Erase
J16	(ADR4)	Mode (ADR $0=1$) and RESET function
J17	(ADR5)	(ADR 0=0)
J18	(ADR6)	
T 1 C	(ADR7)	
J19	(ADK)	
J19 J20	· · ·	bit wide data bus, Open for 8-bit wide data bus.
	Jumpered for 16- NOTE: The prop the BIP	bit wide data bus, Open for 8-bit wide data bus. per decoding algorithm for the data bus must be used in OLAR PROM decoder—refer to the PROM Array Address ration subsection of the Installation Instructions.
	Jumpered for 16- NOTE: The prop the BIP	per decoding algorithm for the data bus must be used in DLAR PROM decoder—refer to the PROM Array Address
J20 J21	Jumpered for 16- NOTE: The proj the BIP Configur (Select 4K/8K)	per decoding algorithm for the data bus must be used in OLAR PROM decoder—refer to the PROM Array Address ation subsection of the Installation Instructions.

APPENDIX B BIP DECODER DATA FORMAT 3628A, 1K X 8, 000-3FFH

Data = all 1's at all locations not shown.

0 =Switch is on

1 =Switch is off

SW4	SW3	SW2	SW1	(Hex) Address	(Hex) Data	Decoding for
0	0	0	0	2 3 6 7 A B E F	FE FD FB F7 EF DF BF 7F	2K X 8 (2816, 2815 OR 2716) 8-BIT DATA BUS
0	0	0	1	42 43 46 47 4A 4B 4E 4F 52 53 56 57 5A 5B 5E 5F	FE FD FE FD FB F7 FB F7 EF DF EF DF EF 7F BF 7F	4K X 8 (2732, 2732A) 8-BIT DATA BUS
0	0	1	0	82 83 86 87 8A 8B 8E 8F 92 93 96 97 9A 9B 9E 9F A2 A3 A6 A7 AA AB AE AF B2 B3	FE FD FE FD FE FD FB F7 FB F7 FB F7 FB F7 FB F7 EF DF EF DF EF DF EF DF EF 77	8K X 8 (2764) 8-BIT DATA BUS

SW4	SW3	SW2	SW1	(Hex) Address	(Hex) Data	Decoding for
0	0	1	0	B6 B7 BA BB BE BF	BF 7F BF 7F BF 7F	8K × 8 8-BIT DATA BUS (Continued)
0	0	1	1	C0 C1 C2 C4 C5 C6 C8 C9 CA CC CD CE	FC FD F3 F7 FB CF DF EF 3F 7F BF	2K X 8 16-BIT DATA BUS (2816, 2815, OR 2716)
0	1	0	0	100 101 102 104 105 106 108 109 10A 10C 10D 10C 10D 10E 110 111 112 114 115 116 118 119 11A 11C 11D 11E	FC FD FE FC FD FE F3 F7 FB F3 F7 FB CF DF EF CE DF EF 3F 7F BF 3F 7F BF	4K X 8 16-BIT DATA BUS (2732 OR 2732A)
0	1	0	1	140 141 142 144 145 146 148 149 144 140 14C 14D 14E 150 151 152 154 155 156	FC FD FE FC FD FE FC FD FE FC FD FE F3 F7 FB F3 F7 FB	8K X 8 16-BIT DATA BUS (2764)

SW4	SW3	SW2	SW1	(Hex) Address	(Hex) Data	Decoding for
0	1	0	1	158 159 15A 15C 15D 15E 160 161 162 164 165 166 168 169 16A 16C 16D 16E 170 171 172 174 175 176 178 179 17A 17C 17D 17E	F3 F7 FB F3 F7 FB CF DF EF CF DF EF CF DF EF 3F 7F BF 3F 7F BF 3F 7F BF 3F 7F BF	8K × 8 16-BIT DATA BUS (Continued)
0	1	1	0	1A2 1A3 1A6 1A7 1AA 1AB 1AE 1A7	FE FD FB F7 EF DF BF 7F	LOCATED AT 8000H 8-BIT DATA BUS (2716, 2816 OR 2815)
0	1	1	1	1E0 1E1 1E2 1E4 1E5 1E6 1E8 1E9 1EA 1EC 1ED 1EE	FC FD FE F3 F7 FB CF DF EF 3F 7F BF	LOCATED AT 8000H 16-BIT DATA BUS (2716, 2816 OR 2815)

APPENDIX C PARTS LIST

Table C-1. Integrated Circuits

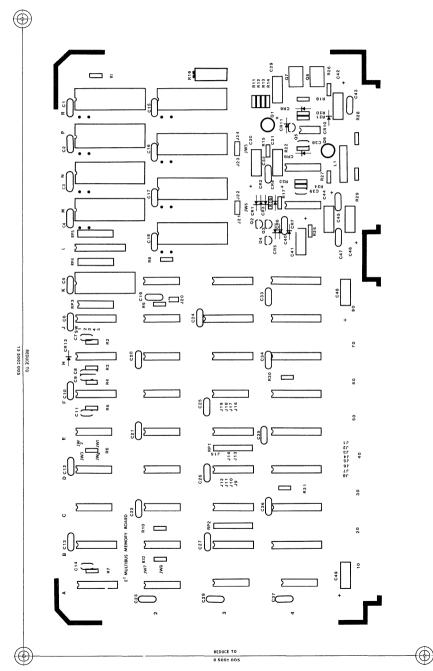

Qty	Description				
1	3628A-4				
4	8283				
1	8286				
2 3	8287				
	74LS85				
1	74LS393				
3	9602				
3	74LS74				
1	74LS08				
1	74S10				
1	74\$30				
1	74LS32				
1	74LS04				
1	74LS00				
1	74\$00				
1	74805				
1	8282				
1	74S08				
1	74S04				
1	74832				
1	74S240				
1	LM358				
1	TTL Delay Line PE-21216				
1	μΑ747				
1	7407				
1	TL497A				
36	TOTAL				

Table C-3. Discrete Components

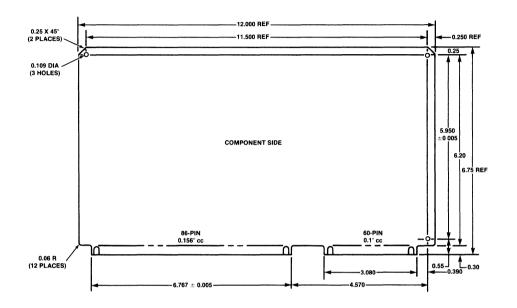
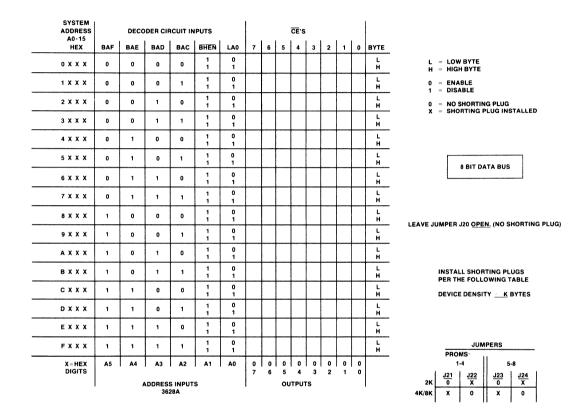

Qty	Description
1	Cap., 20 pf
1	Cap., 50 pf
2	Resistor, 12K
2 1	Cap., 0.33 µf
1	Cap., 0.05 µf
1	Resistor, 47K
1	Resistor, 6.2K
2 3	Resistor, 2K
3	Resistor, 10K
6	Cap., 4.7 µf
1	Mini-potentiometer, TrimPot
	3009p-1-502, 5K
2	Resistor, 1.2K
3	Resistor, 24K
1	Resistor, 18K
1	Resistor, 33, 1/2W
1	Resistor, 0.5, 1/2W
34	Cap., 0.1 μ f, 50V, ceramic
3	Cap., 22 µf, 25V
1	Cap., 300 pf
1	Resistor, 100K
1	Resistor, 4.7K
9	Resistor, 1K

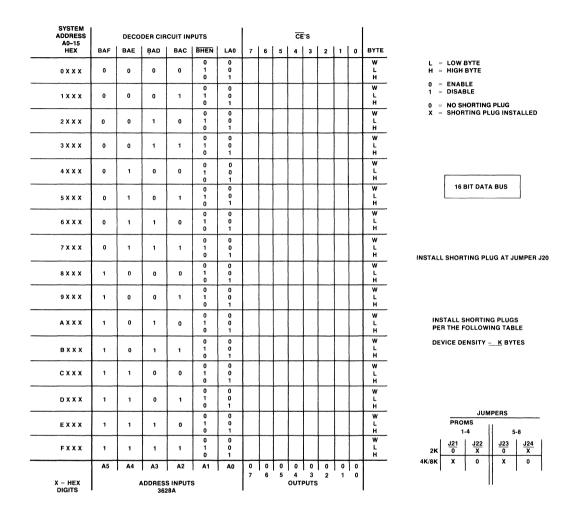
Table C-2. Discrete Components

Qty	Description
1	2N3553
1	2N4923
4	2N3904
1	2N2222A
11	1N914
1	HP5082-2800
	(Schottky Diode)
1	1N4747A
1	R.F. Choke, 62 µh, 475 ma
	J.W. Miller 4630
5	Resistor Network
	Beckman 784-1-R1K
2	Resistor Network
	Beckman 898-1-R1K
1	Dip Switch, CTS 206-8
1	24-Pin Socket
8	28-Pin Sockets
29	Header Pins
18	Shorting Plugs

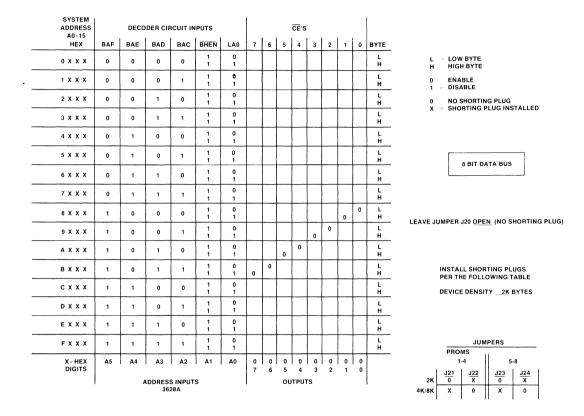
APPENDIX D ASSEMBLY DRAWING

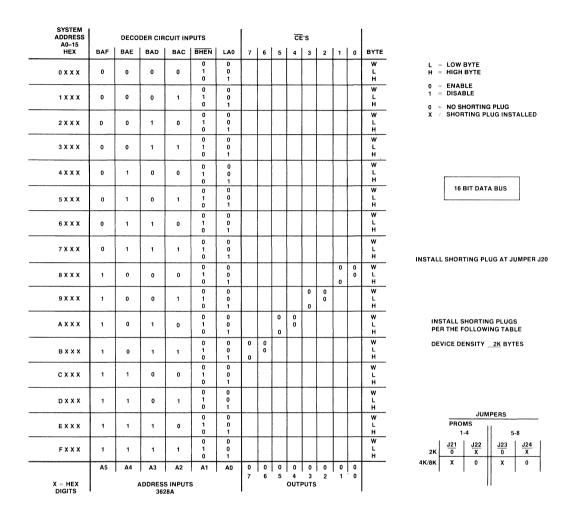


APPENDIX E MULTIBUS PCB DIMENSIONS


APPENDIX F MULTIBUS SIGNAL LIST

Pin	Signal	Function	Pin	Signal	Function
1	GND	Ground	44	ADRF/	
2	GND		45	ADRC/	
3	v _{cc}		46	ADRD/	
4	V _{CC}	Source power +5 VDC	47	ADRA/	
5	V _{CC}		48	ADRB/	
6	V _{CC}		49	ADR8/	
7	VDD		50	ADR9/	
8	V _{DD}	Source Power +12V DC	51	ADR6/	ADDRESS BUS
9	.00		52	ADR7/	
10			53	ADR4/	
11	GND	Ground	54	ADR5/	
12	GND	Ground	55	ADR2/	
12	BCLK/	Bus Clock	56	ADR3/	
14	INIT/	Initialize system	57	ADR0/	
15	BPRN/	Bus priority in	58	ADR1/	
15	BPRO/	Bus priority out	59	DATE/	
10	BUSY/	Bus busy	60	DATE/	
18	BREO/	Bus request	61	DATC/	
19	MRDC/	Memory read command	62	DATD/	
20	MWTC/	Memory write command	63	DATA/	
20	IORC/	I/O read command	64	DATB/	
21	IOWC/	I/O read command I/O write command	65	DATB/	
22	XACK/	Transfer acknowledge	66	DAT9/	
23 24	INH1/		67	DAT6/	
24	AACK/	Inhibit 1 disable RAM Advanced 8080	68		
23 26	AACK/		69	DAT7/ DAT4/	
26 27	BHEN/	acknowledge	70	DAT4/ DAT5/	
27		Byte High Enable	70		DATA DUG
	AD10/			DAT2/	DATA BUS
29	1.011		72	DAT3/	
30	AD11/		73	DAT0/	
31	1.5.0		74	DAT1/	
32	AD12/		75	GND	
33			76	GND	Ground
34	AD13/		77	V _{BB}	
35	INT6/		78	V _{BB}	Source power -12 VDC
36	INT7/		79		
37	INT4/	External Interrupt	80		
38	INT5/	Level Requests	81	V _{CC}	
39	INT2/		82	V _{CC}	Source power +5V
40	INT3/		83		
41	INT0/		84	V _{CC} GND	
42	INT1/		85		
43	ADRE/	ADDRESS BUS	86	GND	Ground





,

intel

APPLICATION NOTE

AP-137

September 1981

- Supervises Writing, Erasing and Reading of Intel E²PROMs
- Supports Up to 16K Bytes of E² Memory
- Provides Optimized Read/Write Commands for Efficient Data Transfers
- Microprocessor Peripheral, Compatible with iAPX 86/88, MCS[®]-80/85, MCS[®]-48 Families
- Provides Data Check to Minimize Necessary E² Writes
- Supports Interrupt or Polled Operation

The 8298 Intelligent E²PROM (Electrically Erasable Programmable Read Only Memory) Controller is a microprocessor peripheral designed to efficiently oversee reading, writing, and erasing of Intel E² devices. Up to 16K bytes of E²PROM memory are supported by the 8298 with a few external components. These components include an 8243 I/O expander which provides address and control signals, a V_{PP} Switch to provide program pulses, and an \overline{OE} switch to provide for erasure of a complete chip. The 8298 also provides local bus request and acknowledge signals enabling the E²PROMs to couple directly with system busses.

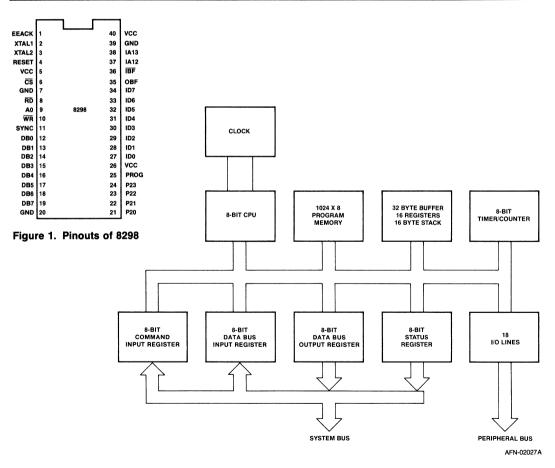
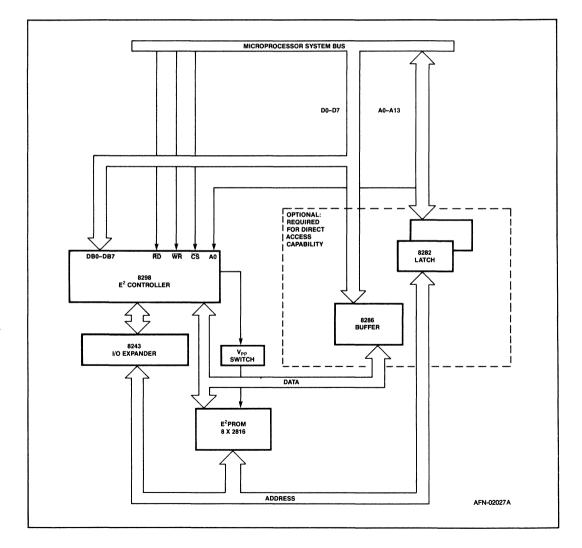


Table 1. Pin Description (8298)

Symbol	Pin No.	Туре	Function	
EEACK	1	I	E^2 Acknowledge—a logical 1 on this pin indicates that the 8298 has access to the E^2 PROM memory (via local bus)	
XTAL1, XTAL2	2, 3	1	Inputs for a crystal, LC circuit, or external timing signal to determine internal oscillator frequency.	
RESET	4	I	Used to initialize the chip to a known state during power on.	
CS	6	I	Chip Select Input—used to select the 8298 for other devices on the common data bus.	
RD	8	I	I/O read input which allows the master CPU to read from the 8298.	
A0	9	I	Address Line—used to select between data and status registers during read operations and to distinguish between data and commands written to the 8298 during write operations.	
WR	10	I	I/O or Memory Write input which allows the master CPU to write the 8298.	
SYNC	11	0	8298 cycle synchronization signal.	
DB0-DB7	12–19	I/O	8 bidirectional lines used for communications between the central processor and the 8298 registers.	
GND	7, 20, 39	P.S.	Circuit ground potential.	
P20-P23	21-24	I/O	I/O information passed to the 8243 I/O expander	
PROG	25	0	Latching signal for 8243 I/O expander.	
ID0-UD7	27-34	I/O	Internal data bus, 8 bidirectional data lines common to the 8298 and all E ² devices.	
OBF	35	0	Output Buffer Full—used to interrupt the host CPU when the data output buffer of the 8298 is full	
TBF	36	0	Input Buffer Full—used to interrupt the host CPU when the 8298 has emptied the input buffer.	
IA12, IA13	27, 38	0	Internal address bits 12, 13.	
V _{CC}	5, 40, 26	P.S.	+5V supply input ±10%.	
IA0-IA11	1–5, 17–23	I/O	Internal address bus—12 bidirectional address lines common to the 8298 and all E ² devices.	
P20-P23	8–11	I/O	I/O information passed by 8298.	
PROG	7	0	I/O information latching signal.	
VPP EN	13	0	VPP control—activates programming voltage to VPP switch when low	
CRD	14	0	Controller Read—active low enables E ² PROM output buffers when 8298 per-	
			forms an E ² read operation.	
EEN	15	0	E ² Enable—active low enables E ² PROM devices.	
EEREQ	16	0	E ² Request—active low requests 8298 access to E ² devices. 8298 will not take control of E ² PROMs (via EEN) until EEACK is brought high.	
V _{CC}	24	P.S.	±5V power supply, ±10%.	
GND	12	P.S.	System ground potential.	

GENERAL DESCRIPTION

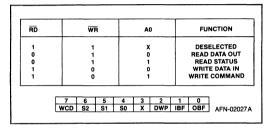

E² Operation

The 8298 receives commands and data from the host CPU to perform E^2 write, erase, and read operations. (See Figure 2 for a block diagram of the 8298.)

Before any E^2 operation is performed, however, the 8298 requests access to the local E^2 memory bus by bringing EEREQ low. If the E^2 memory bank is not being accessed by another processor, the external

hardware will raise EEACK high. Systems in which the 8298 is the only device connected to E^2 memory may tie EEACK high so the 8298 is always granted access.

The 8298 performs a read operation by outputting the address of the selected location and bringing $\overline{\text{EEN}}$ (E^2 Enable) and $\overline{\text{CRD}}$ (Controller Read) low. Data is then read through the internal data bus I/O lines of the 8298 and all control signals are returned to their inactive state. Figure 3 shows a general system interface diagram for reference.



Write and erase operations are performed in a similar manner. Address and data are output and $\overline{V_{PP}EN}$ is pulsed low for the duration of the write/erase cycle. V_{PP} pulse width is dependent upon clock oscillator frequency and is software programmable. The default value is 10 msec for a clock frequency of 6 MHz. At the end of the write/erase cycle, $\overline{V_{PP}EN}$ is brought inactive (high) and the 8298 delays while the 2816 programming voltage (V_{PP}) falls to 5V. This delay is guaranteed to be greater than 100 μ sec at 6 MHz clock frequency; at lower frequencies the delay is longer.

When the 8298 receives a write command, the E^2 location to be written is first read. If the data is the same as the data currently in memory, the write operation is terminated. If not, the 8298 checks to see if a byte erase operation is necessary. An erase is necessary when the data to write contains a logical 1 where there is a logical 0 already stored. A byte erase operation is performed by writing all 1's to the selected byte. Following the optional erase cycle, the write cycle is performed.

HOST CPU INTERACTION

The host CPU and 8298 communicate with each other by means of four registers; two input and two output registers. Commands are issued when the host CPU writes a byte to the 8298 command register. Additional information required by the 8298 is transmitted by the host writing data bytes to the 8298 data input register. The 8298 transmits data back to the host (e.g., data read from E^2 PROM) via its data output register. Data transfer is synchronized by interrupt lines or the status register which can be read by the host at any time. Register selection is done by the RD and WR signals and by A0 as shown in Figure 4.

The status register can be read at any time to determine the state of the 8298. It is defined as follows:

- OBF Output Buffer Full—The data output register has data available for the host to read.
- IBF Input Buffer Full—The data input register or command register contains information not yet recognized by the 8298. The host CPU should never write to the 8298 when IBF = 0.
- DWP Direct Write Possible—The host CPU may perform a "Direct Write" if this bit is set and all other bits indicate that the UPI is waiting for a command.
- WCD Waiting for Command/Data—The 8298 is waiting for the host CPU to write a byte to its command or data input register.
- S0, S1, Additional status information can be read at any time to determine the state of the 8298. It is defined as follows:

WCD	S2	S1	S0	OBF	Function
1	1	1	1	0	Waiting for command
0	0	0	0	0	Executing command
1	1	1	0	0	Illegal command—waiting for new command
0	0	Х	Х	1*	Illegal commmand transmitted during E ² write cycle
1	0	х	Х	1*	Command issued data expected
1	1	1	1	1	Read command complete—data output register contains data read
0	0	0	0	1	Series read command data available
0	1	0	1	0	Write cycle in progress

WCD	S2	S1	S0	OBF	Function
1	0	0	0	0	Waiting for data byte #1
1	0	0	1	0	Waiting for data byte #2
1	0	1	0	0	Waiting for data byte #3
1	9	1	1	0	Waiting for data byte #4
X = Don't d	are				

* = Data output register contains 10101010 to indicate illegal operation

COMMANDS

The host CPU issues commands by writing a command byte to the 8298 command register, optionally followed by a series of bytes written to the data input register. The status register indicates the type of data expected and when the 8298 is ready for commands and data. Figure 5 shows a flowchart detailing the transmission of a command.

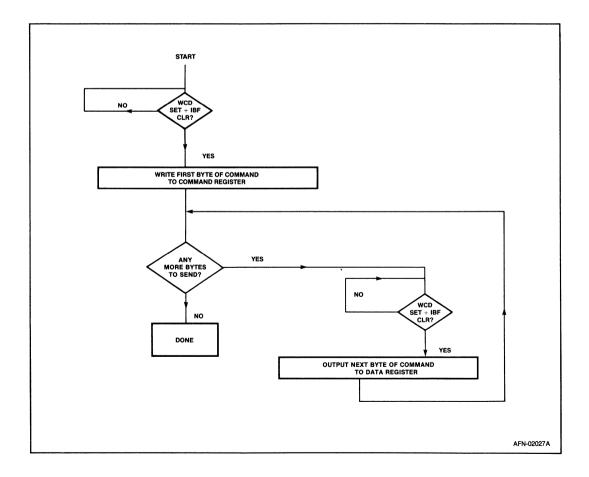
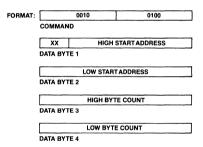


Figure 5. Flow Chart for Command Transmission

READ COMMANDS

The following commands are issued to read data from ${\rm E}^2$ memory.

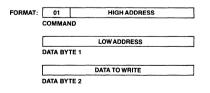

Indirect Read

Read the contents of a single location. Data read is passed to the host via the data output register. The command consists of the following sequence.

FORMAT.	01	HIGH ORDER ADDRESS
ċ	OMMAND	
Γ		LOW ORDER ADDRESS
, i	DATA BYTE	1

Series Read

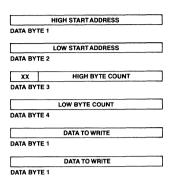
Read up to 16,384 sequential locations. Data read is placed in the data output register. As soon as the host reads a byte from this register, it is reloaded with data read from the next location. Note that the host CPU should determine that data is available by verifying that the OBF bit is set in the status register.



WRITE/ERASE COMMANDS

Five different write and erase commands are provided.

Indirect Write


Write a single E² location

Series Write

Write up to 16,384 sequential locations with increasing addresses.

Note that the 8298 expects "data byte 1" for each byte of data transmitted. Also, the 8298 internally buffers up to 32 data bytes at a time. Therefore, series writes of less than 33 locations are performed efficiently because the host CPU outputs all bytes to write in a "burst" manner before actual E^2 write cycles take place.

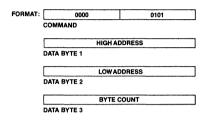
Multiple Write

FOF

Write up to 256 non-sequential bytes.

000	0	1100
COMMAND		
	co	JNT
DATA BYTE 1		
XX	н	GHADDRESS
DATA BYTE 1		
	LOWAD	DRESS
DATA BYTE 2		
	DATA T	OWRITE
DATA BYTE 3		
XX	ни	GHADDRESS
DATA BYTE 1		
	LOWAI	DRESS
DATA BYTE 2		
	DATA T	O WRITE
DATA BYTE 3		

Note the sequence (data byte 1, 2, 3, 1, 2, 3...) of data in which the 8298 receives information. Up to 9 address/data combinations are internally buffered by the 8298. Thus multiple writes of less than 10 locations are performed in a "burst" mode where all bytes are buffered by the 8298 before actual E^2 write cycles take place.


Chip Erase

Erase an entire E^2 PROM. The high order address is required to select the device to be erased.

FORMAT:	0000 0110					
	COMMAND					
[XX	HIGH ADDRESS				
	DATA BYTE	1				

Block Erase

Erase up to 256 sequential E² locations in increasing order.

UTILITY COMMANDS

Enable Direct Write

Enables direct writes. A direct write is performed when the 8298 received data when it is waiting for a command and direct writes are enabled. This topic is discussed in detail in the "system operation" section.

Disable Direct Write

After execution of this command, direct write attempts will be considered illegal commands. This is the default setting.

Abort

Abort operation in progress. This command may be given at any time. If the 8298 is in the middle of a write cycle, writing is stopped, V_{PP} is brought low, and after a delay while V_{PP} falls to 5V (approximately 100 μ sec at 6 MHz), the 8298 waits for another command.

After issuing an abort command, the 8298 may go back and, using the commands described below, determine the address and data of the interrupted write operation.

Read Last Low Address

The low order address of the last location read from or written to is placed in the data output register.

Read Last High Address

The high order address of the last location read from or written to is placed in the data output register.

Read Last Write Data

The data written to E^2 PROM during the last write cycle is placed in the data output register.

Initialize Write Timer Value

Initializes write cycle time to a value as follows:

Write Timer Value₁₀ =

480

Thus, for a 10 Msec write time with a 6 MHz clock, the write timer value should be 131_{10} . This is the default value.

FORMAT:	0000 0111						
	COMMAND						
	WRITE TIMER VALUE						
	DATA BYTE 1	·····					

Table	2
Iduit	

Command	# of Bytes for Commands	Byte#	Format	Next Status
INDIRECT READ	2	1 2	01 High Address Low Address	DB1 OBF
SERIES READ	5	1 2 3 4 5	0010 0100 XX High Start Address Low Start Address High Byte Count Low Byte Count	DB1 DB2 DB3 DB4 OBF
INDIRECT WRITE	2+ WRITE DATA	1 2 3	01 High Address Low Address DATA TO WRITE	DB1 DB2 WCD
SERIES WRITE	5+ WRITE DATA	1 2 3 4 5	00100101XXHigh Start AddressLow StartHigh Byte CountLow Byte CountDATA TO WRITE	DB1 DB2 DB3 DB4 DB1 DB1/WCD NOTE 1
MULTIPLE WRITE	2+ ADDRESS/WRITE DATA	1 2 * *	00001100Byte CountXXHigh AddressLow AddressDATA TO WRITE	DB1 DB1 DB2 DB3 DB1/WCD NOTE 2
BLOCK ERASE	4	1 2 3 4	00000101High Start AddressLow Start AddressByte Count	DB1 DB2 DB3 WCD
CHIP ERASE	2	1 2	0000 0110 XX High Address	DB1 WCD NOTE 3
ENABLE DIRECT WRITE	1	1	0010 0010	WCD
DISABLE DIRECT WRITE	1	1	0010 0011	WCD
ABORT	1	1	0000 1010	WCD
READ LAST LOWADDRESS	1	1	0010 1000	WCD
READ LAST HIGH ADDRESS	1	1	0010 1001	WCD
INITIALIZE WRITE TIMER VALUE	2	1 2	0000 0111 Write Timer Value	DB1 WCD

*ADDRESS + WRITE DATA

NOTES:

 SERIES WRITE returns a status of DB1 whenever it is waiting for write data. When BYTE COUNT bytes have been sent, it will return a status of WCD. See SERIES WRITE command, under Indirect Configuration Commands, for more information.

2. MULTIPLE WRITE works in a loop format once the command and byte count are received. It requires groups of three bytes and cycles through the status as: -DB1--DB2--DB3- until "count" groups of bytes are received. It then returns a status of WCD.

3. High address is the high-order six bits of the highest address in an individual E^2 PROM. An example might be: FOR 7FFH as the highest address in an E^2 PROM, to erase would require sending 0000 0111 as the high address.

E²PROM INTERFACE

The 8298 requires a few external components to drive E^2 PROMs. These components are organized as functional blocks as follows:

V_{PP} Switch

Used to gate 21 V to V_{PP} line of E²PROMs for writing and erasing. See AP 102.

OE Switching

Used to gate the +12V to E²PROM OE line for the chip erase function. The OE switch is also responsible for pulling OE low during Read operation.

Direct Access Circuits

Required only if the 8298 is to support direct reading and writing of E^2 PROM.

Direct reading is a function whereby the host CPU treats E^2 memory as EPROM memory and reads directly without the supervision of the 8298.

Direct writing is similar to direct reading in that the host CPU thinks it is writing to RAM. External circuitry forces a "write data register" operation to the 8298, so the data to write is latched in the 8298 data input register. External latches connected in parallel with 8298 Internal Address Lines latch the address. The 8298 reads the contents of these latches in order to determine the destination address of the write cycle. The E^2 controller seizes the internal busses, performs the write operation, and signals the host CPU when done.

The 8298 recognizes a direct write command when it is waiting for a command, *data* is received, and direct writing is enabled.

The advantage of the direct write command is that the host CPU can use its memory reference instructions to access E² memory.

Chip Erase Signal

The chip erase signal is used by the OE switch to gate +12V to the OE line of E²PROMs during the chip erase command.

This signal is multiplexed with ID7 (internal data, bit 7) and should be latched on a high-to-low transition of EEN.

SYSTEM OPERATION

The 8298 can communicate with the rest of the system using the two mechanisms described below:

- 1. I/O Polling. The host CPU repeatedly reads the 8298 status register to determine when commands and data can be transmitted.
- 2. Interrupts: The 8298 WCD and OBF lines are used to interrupt the host processor when the 8298 is ready to accept input or has output available.

Reset and Power-Up Procedure

Reset is used to bring the 8298 into a known state upon power-up. It must be held low at least 10 msec after the power supply is within tolerance.

APPENDIX A: 8298 ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	
Voltage on Any Pin With Respect to Ground0.5V to + 7V	
Power Dissipation	

*COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{SS} = 0V: 8298; V_{CC} = V_{DD} = +5V \pm 5\%)$

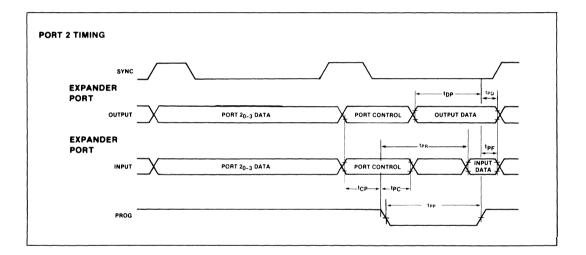
Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage (Except XTAL1, XTAL2, RESET)	- 0.5	0.8	V	
V _{IL1}	Input Low Voltage (XTAL1, XTAL2, RESET)	- 0.5	0.6	V	
VIH	Input High Voltage (Except XTAL1, XTAL2, RESET)	22	V _{cc}		
V _{IH1}	Input High Voltage (XTAL1, XTAL2, RESET)	3.8	V _{cc}	V	
VOL	Output Low Voltage (D ₀ -D ₇)		0.45	V	I _{OL} = 2.0 mA
V _{OL1}	Output Low Voltage (P10P17, P20P27, Sync)		0.45	V	I _{OL} = 1.6 mA
V _{OL2}	Output Low Voltage (Prog)		0.45	V	I _{OL} = 1.0 mA
V _{OH}	Output High Voltage (D ₀ -D ₇)	2.4		V	I _{OH} = - 400 μA
V _{OH1}	Output High Voltage (All Other Outputs)	2.4		V	I _{OH} = - 50 μA
I _{IL}	Input Leakage Current (T_0 , T_1 , \overline{RD} , \overline{WR} , \overline{CS} , A_0 , EA)		± 10	μA	$V_{SS} \leq V_{IN} \leq V_{CC}$
loz	Output Leakage Current (D0-D7, High Z State)		± 10	μA	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$
ILI	Low Input Load Current (P10P17, P20P27)		0.5	mA	$V_{IL} = 0.8V$
I _{LI1}	Low Input Load Current (RESET, SS)		0.2	mA	V _{IL} = 0.8V
IDD	V _{DD} Supply Current		15	mA	Typical = 5 mA
I _{CC} +I _{DD}	Total Supply Current	1	125	mA	Typical = 60 mA

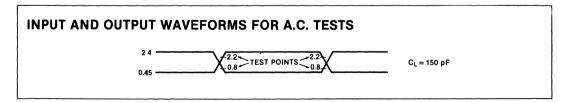
A.C. CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{SS} = 0V: 8298; V_{CC} = V_{DD} = +5V \pm 5\%)$

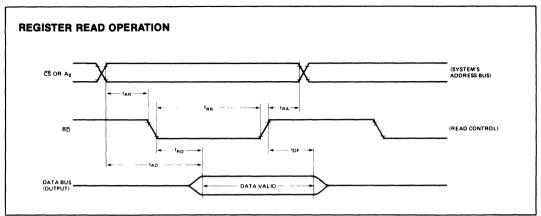
REGISTER READ

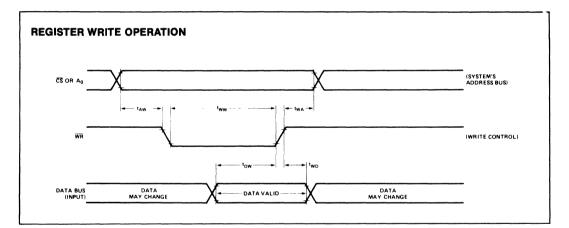
Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AR}	CS, A₀ Setup to RD↓	0		ns	
t _{RA}	CS, A ₀ Hold After RD1	0		ns	
t _{RR}	RD Pulse Width	250		ns	
t _{AD}	\overline{CS} , A ₀ to Data Out Delay		225	ns	C _L = 150 pF
t _{RD}	RD↓ to Data Out Delay		225	ns	C _L = 150 pF
t _{DF}	RD1 to Data Float Delay		100	ns	
tcy	Cycle Time (Except 8298)	2.5	15	μS	6.0 MHz XTAL
t _{CY}	Cycle Time (8298)	4.17	15	μS	3.6 MHz XTAL

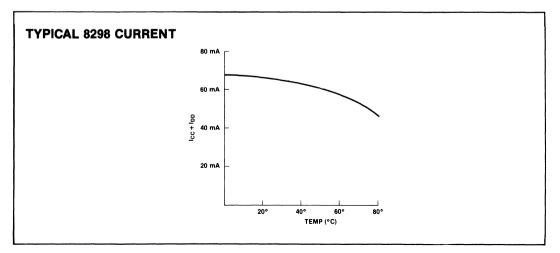

REGISTER WRITE


Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AW}	CS, A ₀ Setup to WRI	0		ns	
t _{WA}	CS, A ₀ Hold After WRt	0		ns	
t _{ww}	WR Pulse Width	250		ns	
t _{DW}	Data Setup to WR	150		ns	
twp	Data Hold After WR1	0		ns	

APPENDIX A: 8298 ELECTRICAL CHARACTERISTICS A.C. CHARACTERISTICS—PORT 2


 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C: 8298; V_{CC} = +5V \pm 5\%)$


Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tCP	Port Control Setup Before Falling Edge of PROG	110		ns	
tPC	Port Control Hold After Falling Edge of PROG	100		ns	
tPR	PROG to Time P2 Input Must Be Valid		810	ns	
tpf	Input Data Hold Time	0	150	ns	
tDP	Output Data Setup Time	250		ns	
tPD	Output Data Hold Time	65		ns	
tPP	PROG Pulse Width	1200		ns	



APPENDIX A: 8298 ELECTRICAL CHARACTERISTICS WAVEFORMS

APPENDIX A: 8298 ELECTRICAL CHARACTERISTICS

OSCILLATOR AND TIMING CIRCUITS

The 8298's internal timing generation is controlled by a self-contained oscillator and timing circuit. A 6 MHz crystal is used to derive the basic oscillator frequency. The resident timing circuit consists of an oscillator, a state counter and a cycle counter as illustrated in Figure 6.

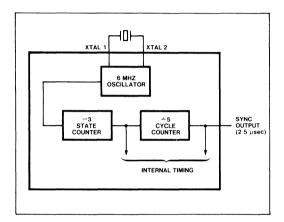


Figure 6. Oscillator Configuration

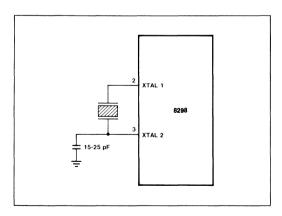
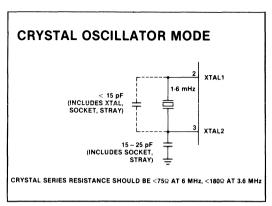
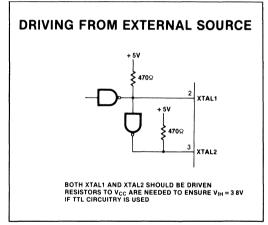
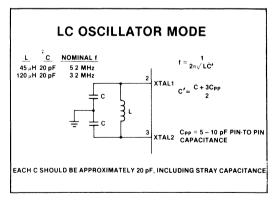





Figure 7. Recommended Crystal Connection

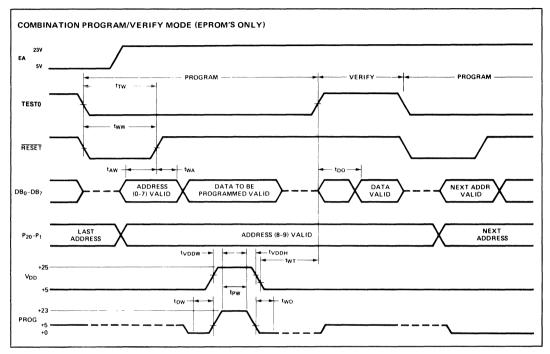
APPENDIX A: 8298 ELECTRICAL CHARACTERISTICS

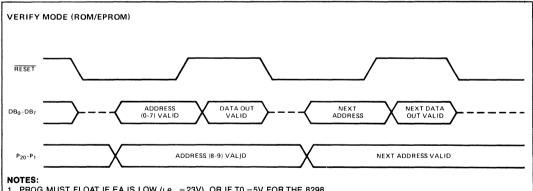
PROGRAMMING, VERIFYING, AND ERASING THE 8298 EPROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL 1	Clock Input (1 to 6MHz)
Reset	Initialization and Address Latching
Test 0	Selection of Program or Verify Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input Data Output During Verify
P20-1	Address Input
V _{DD}	Programming Power Supply
PROG	Program Pulse Input


WARNING


An attempt to program a missocketed 8298 will result in severe damage to the part. An indication of a properly socketed part is the appearance of the SYNC clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

- 1. $A_0 = 0V, \overline{CS} = 5V, EA = 5V, \overline{RESET} = 0V, TEST0 = 5V, V_{DD} = 5V, clock applied or internal oscillator operating, BUS and PROG floating.$
- 2. Insert 8298 in programming socket
- 3. TEST 0 = 0v (select program mode)
- 4. EA = 23∨ (activate program mode)
- 5. Address applied to BUS and P20-1
- 6. RESET = 5v (latch address)
- 7. Data applied to BUS
- 8. $V_{DD} = 25v$ (programming power)
- 9. PROG = 0v followed by one 50ms pulse to 23V
- 10. $V_{DD} = 5v$
- 11. TEST 0 = 5v (verify mode)
- 12. Read and verify data on BUS
- 13. TEST 0 = 0v
- 14. $\overrightarrow{\text{RESET}} = 0v$ and repeat from step 5
- 15. Programmer should be at conditions of step 1 when 8298 is removed from socket.

APPENDIX A: 8298 ELECTRICAL CHARACTERISTICS WAVEFORMS FOR PROGRAMMING

- 1. PROG MUST FLOAT IF EA IS LOW (i.e., =23V), OR IF T0 =5V FOR THE 8298.
- 2. XTAL1 AND XTAL2 DRIVEN BY 3.6 MHz CLOCK WILL GIVE 4.17 µsec t_{CY}. THIS IS ACCEPTABLE FOR 8298 PARTS AS WELL AS STANDARD PARTS.
- 3. AO MUST BE HELD LOW (i.e., = 0V) DURING PROGRAM/VERIFY MODES.

The 8298 EPROM can be programmed by either of two Intel products:

- 1. PROMPT-48 Microcomputer Design Aid, or
- 2. Universal PROM Programmer (UPP series) peripheral of the Intellec® Development System with a UPP-848 Personality Card.

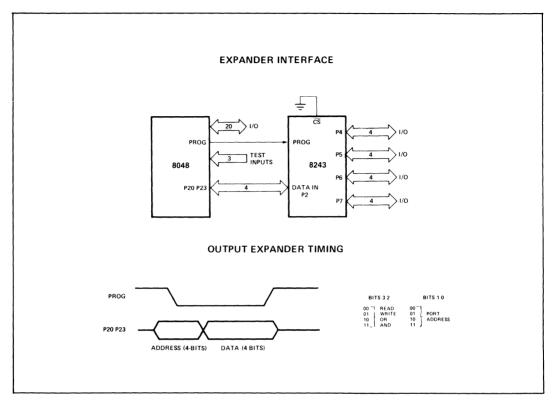
APPENDIX B: 8243 ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0 'C to 70 'C
Storage Temperature	65 C to +150 C
Voltage on Any Pin	
With Respect to Ground	0 5V to +7V
Power Dissipation	1 Watt

*COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

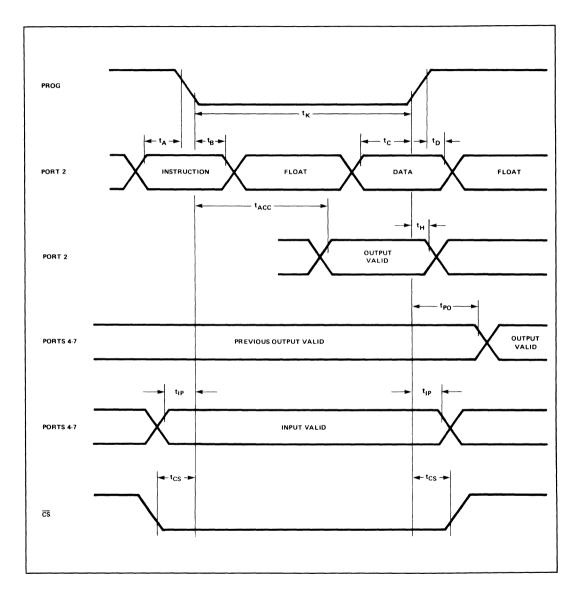
(8243 \cdot T_A = 0°C to 70°C, V_{CC} = 5V ± 10%)


SYMBOL	PARAMETER	MIN	TYP	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0 5		08	V	
VIH	Input High Voltage	2 0		V _{CC} +0 5	V	
V _{OL1}	Output Low Voltage Ports 4-7			0 45	V	I _{OL} = 5 mA*
V _{OL2}	Output Low Voltage Port 7			1	V	I _{OL} = 20 mA
V _{OH1}	Output High Voltage Ports 4-7	24			V	I _{OH} = 240µА
I _{IL1}	Input Leakage Ports 4-7	-10		20	μΑ	$V_{in} = V_{CC}$ to 0V
I _{IL2}	Input Leakage Port 2, CS, PROG	-10		10	μA	$V_{in} = V_{CC}$ to 0V
V _{OL3}	Output Low Voltage Port 2			45	V	l _{OL} =06mA
I _{CC}	V _{CC} Supply Current		10	20	mA	
VOH2	Output Voltage Port 2	24				I _{OH} = 100µА
IOL	Sum of all IOL from 16 Outputs			80	mA	5 mA Each Pin

*See following graph for additional sink current capability

A.C. CHARACTERISTICS

(8243: T_A = 0°C to 70°C, V_{CC} = 5V \pm 10%)


SYMBOL	PARAMETER	MIN.	MAX	UNITS	TEST CONDITIONS
t _A	Code Valid Before PROG	100		ns	80 pF Load
t _B	Code Valid After PROG	60		ns	20 pF Load
t _C	Data Valıd Before PROG	200		ns	80 pF Load
t _D	Data Valid After PROG	20		ns	20 pF Load
t _H	Floating After PROG	0	150	ns	20 pF Load
t _K	PROG Negative Pulse Width	700		ns	
t _{CS}	CS Valid Before/After PROG	50		ns	
t _{PO}	Ports 4-7 Valid After PROG		700	ns	100 pF Load
t _{LP1}	Ports 4-7 Valid Before/After PROG	100		ns	
tACC	Port 2 Valid After PROG		650	ns	80 pF Load

APPENDIX B: 8243 ELECTRICAL CHARACTERISTICS

APPENDIX B: 8243 ELECTRICAL CHARACTERISTICS

WAVEFORM

INTRODUCTION

The following is a description of the Firmware used in the 8298 E^2 PROM Interface Controller. Included in the appendix is the source code for the 8298 firmware for ease of reference.

The firmware is described in great detail to allow the user to modify or customize the driver for his particular application.

PROGRAM STRUCTURE

8298 Software can be thought of as consisting of the following elements:

- 1. Initialization Routines—executed after RESET is applied to initialize CPU registers to a known state.
- 2. DBB Driver-Data Bus Buffer Driver.
 - provides the software interface between the 8298 and the host CPU.

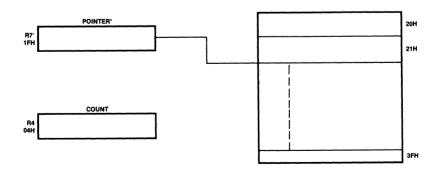
- handles receiving all commands and data.
- DBB driver consists of two sections:

Command Interpreter—Receives commands, calls data receiver to get data for command, and transfers execution to appropriate section of command driver.

Data Receiver—Receives data bytes from host CPU and loads into appropriate RAM locations.

- 3. *Command Driver*—Contains code required to execute all commands.
- 4. $E^2 PROM$ Interface—Contains routines to perform E^2 read/write operations plus code to request access to internal bus, output addresses, release internal bus, etc.

Figure 1 shows how these modules interconnect to implement the 8298 intelligent E^2 PROM Controller. Note that the command driver may call the data receiver to get more data. This occurs in the series write and multiple write.


DATA STRUCTURES

Ram Buffer

Used to save buffered data for series write and multiple write commands.

- 32 bytes dedicated to this function.
- can save 32 data bytes for series write.

- saves 10 address (2 bytes)/data (1 byte) combinations for multiple write.
- pointer register used to point to next free buffer location.
- count register used to keep track of how many entries are in buffer.

*POINTER IS ACTUALLY DATA DESTINATION REGISTER

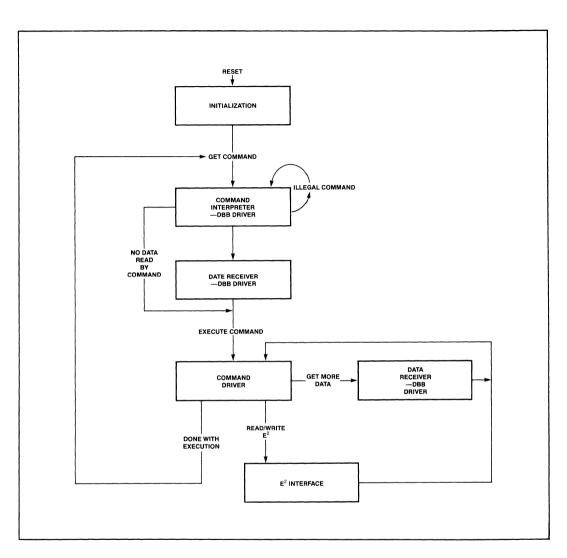
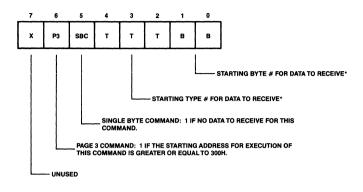


Figure C-1. 8298 Software Execution

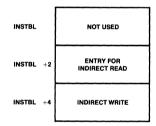


Contains entries for each command. Command table is located in ROM.

Each entry in command table consists of 2 bytes:

where the low order address is the low byte of the starting address for execution of the specified command.

The decriptor is defined as follows:



The command Table is set up as two tables:

INSTBL

For basic commands (Read, Write).

The two most significant bits of the command contain an offset into the table:

SUBTBL

For sub-commands (i.e., most significant 2 bits of command = 0).

Least significant 6 bits of command contain an offset into the sub-table.

Data Destination Table

- Contains pointers to various RAM locations to be loaded with data received for command.
- The DBB driver requires that the DBB status register bits be set with the type and byte numbers of the data to receive for the command.
- 4 bytes are associated with each type.
- 7 bytes are available.
- A routine initializes the DBB status register with the starting byte number and the type of information to get.

- --- The data destination register is loaded with the byte selected from the *Data Destination Table* by the type and byte numbers in the DBB status register.
- When data is received by the host, it is saved in the RAM location pointed to by the data destination register.
- The byte number is incremented, and the process continues until the 2-bit byte number = 0.
- Example:
 - the indirect write command is to receive 2 data bytes in addition to the command byte.
 - this command will use type 1, as defined in Table 1.

	Byte 0	Byte 1	Byte 2	Byte 3
Type $= 0$				
Type = 1	Not Used	Address Low	Address High	Write Data
Type $= 2$				

Table C-1. Data Destination Table

- --- The descriptor for this command sets Type = 1, Byte = 2.
- The DBB driver will then load RAM with the data bytes received as follows:

1st byte	High address register
2nd byte	Data to Write

— In a similar vein, a routine may initialize the DBB status register with a type and byte number and call the GETDAT subroutine to get up to 4 bytes from the host and save in appropriate RAM locations. Note: Type 7 is a special type which has the following attributes:

- 1. The data destination register is *not* loaded from the data destination table. The calling program initializes the data destination register
- 2. The data destination register is *incremented after* data is received.
- 3. 1-4 bytes are still received in this manner as selected by the starting byte number.

Figure 2 contains a graphical description of how registers are loaded.

BUS DESCRIPTION OF SOFTWARE ROUTINES

RESET

Entered upon external RESET signal. a) zeroes: — DBB status register

 $-E^2$ status register

- b) initializes default write cycle time.
- c) sets 'waiting for command' status.
- d) continues w/GETCMD routine.

GETCMD

Called to get a command from user.

- a) sets waiting for command bit in DBB status register.
- b) optionally sets direct write possible bit
- c) exits to GETDBB

CMDCPL

Command Complete—called at completion of command.

- a) stops timer/counter in case running.
- b) calls RELEAS to release internal bus.
- c) enables OBF/IBF external host interrupts.
- d) exits to GETCMD

ILLCMD

Illegal Command

- a) set 'illegal command' status.
- b) exits to GETCMD

DBBI

DBB interrupt service—actually, DBB interrupts are not used, but DBBI is called whenever a command or data is received from the host.

- a) disables timer interrupt
- b) sets STS = 0

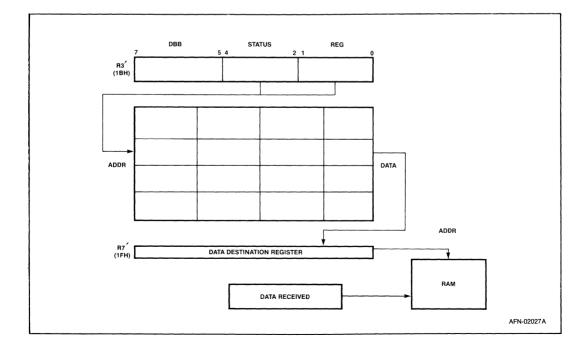


Figure C-2. Set-Up of Data Destination Information

c) determines if command or data received. If *command*:

- i) looks up command in command table, saves descriptor in DBB status register.
- ii) saves command byte in high address register if command is Read or Write.
- iii) saves address of command execution on stack.
- iv) jumps to command execution (via subroutine return) if one-byte command.
- v) continues w/GETDAT routine if *not* one-byte command.
- d) if data received, goes to DATRCL

GETDAT

Get Data

- a) Looks data destination from R3' (DBB status register) and data destination table. Places address in data destination register (R7).
 - exception: type = 111 no look up.
- b) Enables external host interrupt.
- c) Waits until data received and jumps to DBBI.

DATRCV

- If data received from host:
- a) if not waiting for command:
 - i) saves data in location determined by data destination register (R7).
 - ii) increments DBB status, if done, (Byte number = 0 then 'Returns')

Note: If we are getting data for a command, then command address is on stack, so we return to start execution of command. If not done, goes back to GETDAT.

b) if waiting for command:

- i) if direct writes *not* enabled—illegal command.
- ii) if d/w enabled:
 - 1) reads host-selected address through address ports.
 - 2) saves address in E^2 high to low addr registers.
 - 3) jumps to 'write' command.

TIMER

Timer interrupt service. Upon timer interrupt, UPI jumps to location 7, which jumps to TIMER.

- a) saves 4-reg.
- b) sets write complete bit in E^2 status register.
- c) increments internal count
- d) restarts timer
- e) returns

READ

Assumes REQALL has been called. Read subroutine to read from 2816. Address in E^2 addr registers. Returns data read in A-Reg.

- a) outputs Address (Call OUTADR)
- b) set UPI-RD I/O line = 0
- c) read data through P1
- d) sets UPI-RD I/O line = 1
- e) returns

OUTADR

- Output addresses from E^2 registers to I/O lines. (1A 0-1A 14)
- a) gets high order address.
- b) i) shifts MSBs left by 2 so they are in Bits 7, 6
 - ii) outputs to Port 2, so IA14 = 27, IA13 = P26.
- c) outputs low order address bits
- d) outputs bits IA8-IA11.
- e) leaves EEN = 1.

REQALL

Request access to local bus and waits until access acknowledged.

- a) if access received (T0 = 1) then returns, else:
- b) sets EEREQ = 1, EEREQ = 0
- c) waits until T0 = 1, (EEACK = 1) and returns,

RELEAS

Release control of local bus

- a) sets all Address lines = 1
- b) sets all data lines = 1
- c) de-activates all control lines (EEREQ, EEN, VPP, CRD)
- d) returns

REMADR

De-activates Address lines to eliminate Bus contention when switching EEN (which turns OFF/On, 8282 Latches)

- a) sets addr lines = 1
- b) sets EEN = 0
- c) returns

WRITE

Write to E^2 —assumes REQALL called.

- a) calls READ to output addresses and read 2816 location.
- b) if data to write = Data Read then return, else
- c) if Erase Read, then:
 - i) sets A = 0FFH
 - ii) calls WECYCL to Erase byte, then
- d) sets A = Data to Write
- e) calls WECYCL to write to 2816
- f) returns

WECYCL

Write/Erase cycle subroutines. A = Data to Write. a) outputs data to ID0-ID7.

- b) sets $V_{PP} = 0$
- c) resets write complete bit of E^2 status register.

APPENDIX C: 8298 FIRMWARE DESCRIPTION

- d) starts timer
- e) waits until write complete bit set by timer interrupt service routine. Calls CKDBB to check for abort command while waiting.
- f) at end of write cycle, calls SHUT to shut down $V_{\mbox{\sc PP}}$ switch
- g) returns

SHUT

Turns off V_{PP} switch

a) set $V_{PP} = 0$, UPP = 1

- b) waits a time of 100 μ s for V_{PP} signal to fall to 5V
- c) returns

CKDBB

- Check data Bus Buffer for abort command.
- a) If buffer not full THEN returns ELSE
 - If not command in buffer (F1 = 0)
 - THEN returns
 - ELSE If abort command THEN GOTO abort routine
 - ELSE set illegal command status — return

INCADR

Increments E^2 high, low address register pair.

DECCNT

Decrements count register pair. If zero, returns with REG = 0

Command Driver

The following are descriptions of routines which execute commands. When these routines are called, data for the selected command has already been received.

READC

Read Command

- a) Requests access to local bus (REQACC)
- b) Calls read Subroutine
- c) Calls OUTPUT to output result to host

OUTPUT

Called to place data in A-Reg into output buffer. Waits until host has read output buffer before exiting.

WRITEC

Write Command

a) calls REQACC to request access to local bus.b) calls write subroutine

CEREASE

Chip Erase Command a) requests access to bus

- b) moves high order address bits, IAB, IA14 to P26, P27.
- c) outputs high order address to P1 with bit 7 = 0 (CERASE) = 0
- d) pulses EEN to V_{OH} to latch high address and chip erase signal.
- e) calls WECYCL with A-REG = 0FFH to erase a chip
- f) calls REMCE to remove chip erase signal

REMCE

- Remove chip erase
- a) sets P1 = 0FFH
- b) sets EEN = 0
- c) sets EEN = 1 to latch. No chip erase
- d) exits

BLOCKE

- Block erase command
- a) requests access
- b) sets data to write = 0FFH (erase)
- c) writes to E^2
- d) remove address to prevent bus contention
- e) increment address
- f) decrements count, if not done go to step b)

MULTWR

Multiple write command

- a) zeroes buffer count and initializes buffer pointer
- b) calls GETDAT to get 10 address/data combinations or # combinations left to get, whichever is lower.
 — Data is loaded into RAM buffer
- c) dumps buffer to E^2 .
 - Note: Data is saved in RAM as follows:
 - High Addr Low Addr
 - Data to Write
- d) continues to step b) if not done

SERWRT

Series write command

- a) zeroes buffer counter and initializes buffer pointer.
- b) gets up to 32 bytes of data or # bytes left to get, whichever is less.
- c) requests access, dumps data in buffer to E^2 memory. Addresses are incremented after each byte is written.
- d) continues to step b) if not done

SERRD

- Series read command
- a) requests access to bus
- b) reads a byte
- c) outputs it to host
- d) increments address
- e) decrements count
- f) continues to step b) if not done

APPENDIX C: 8298 FIRMWARE DESCRIPTION

ABORT

- a) If V_{PP} is on (UPP = 0)
- i) calls SHUT to turn off V_{PP}.
 b) calls REMCE to remove chip erase in case activated.

READAH

Read last high address.

RADWR

Read last data to write to E^2 .

READAL

Read last low address.

AP-137

APPENDIX D: 8298 E² PROM CONTROLLER FIRMWARE LISTING

LOC	: OBJ I		source s		
		1 \$100418	MACROFI	LE DEB	UG
		2			
		3			
		4			
		5	;		
		6	;		
		7 8	i		
		8 9	;		
		-	;		
		10 11	j		
		11	;		
		12	<i>i</i>		
		13	;		
		14	j j		
		15	,		
		10			
		18			
		19			
		20	;		EGISTER DEFINITIONS
		21	•	VI I 14	
		22	;	R80 :	
		23	-		
996	19	24 SCR0	EQU	0	; r0 = scratch
999	n	25 SCR1	EQU	1	; R1 = SCRATCH
998	12	26 SCR2	EQU	2	; R2 = SCRATCH
000	3	27 INTCNT	EQU	3	; R3 = Interval count
006	14	28 BUFCNT	EQU	4	; R4 = BUFFER COUNTER
996	-	29 HRTDAT	EQU	5	; R5 = DATA TO WRITE
996	6	30 CNTLO	EQU	6	; R6 = LON ORDER COUNT
886	97	31 CNTHI	EQU	7	; r7 = high order count
		32			
		33			
		34	j	RB1 :	
	-	35			
991		36 SCROP	EQU	18H	; RØ' = SCRATCH
881		37 SCR1P	EQU	19H	; R1' = SCRATCH
001		38 COMFB	EQU	18H	; R2' = COMMAND FIRST BYTE
901		39 DBSTAT	EQU	1BH	; R3' = DBB STATUS REGISTER
991		40 ASAVE	EQU	1CH	; R4' = A-REGISTER SAVE
001		41 EESTAT	EQU	1DH	; R5' = EE STATUS REGISTER
901 001		42 INTINE 43 DATDES	equ Equ	1EH	; R6' = INITIAL WIRTE TIMER COUNT
983	r	43 UHIVES	C&U	1FH	; R7' = Data destination register
		44 45 SEJECT			

45 \$EJECT

LOC	0BJ	LINE 46	SOURCE '	Sintern	
		47 48	i	NON-REGISTER M	ENORY DEFINITIONS
8814		49 ADRL() EQU	14H ; LON (order ee address
0014		50 ADRH			RDER EE ADDRESS
8828		51 BUFS			ER START ADDRESS
8916		52 ININ			IAL INTERVAL COUNT
993E		53 NNBER			IPLE WRITE BUFFER END ADDRESS
8848		54 SHBE			AL WRITE BUFFER END ADDRESS
		55			
		56			
		57	;	1/0 DEFINITIONS	S
		58	•		
		59	;	HOST INTERRUPTS	S
		60			
000F		61 IBFI	ia equ	11011111B	; INACTIVE IBF' HOST INTERRUPT
FF20		62 IBFAC	t equ	NOT IBFINA	; ACTIVE IBF' HOST INTERRUPT
0010		63 obfac	t equ	0001.0000B	; ACTIVE OBF HOST INTERRUPT
FFEF		64 OBFI	ia equ	NOT OBFACT	; INACTIVE OBF HOST INTERRUPT
		65			
		66 -	i	CONTROL LINES	
		67			
999E		68 VPPA		11108	; ACTIVE VPP SWITCH
FFF1		69 YPPI		NOT VPPRCT	; INACTIVE YPP SWITCH
0007		70 REQA		0111B	; EEREQ ACTIVE SIGNAL
0009		71 RDACT 72 RDINE		1001B	; ACTIVATE UPIRD' AND EEN'
0002 0008				00108	; de-activate upird' ; activate een'
8884		73 EENAK 74 EENIN		1011B 0100B	; DEACTIVATE EEN'
0004		75	n Eeu	01000	
		76	;	STATUS DEFINIT	TONS
		77	•		100
8997		78 WIPS1	IS EQU	0111B	; HRITE-IN-PROGRESS STATUS
		79			
		80			
		81	;	TIME VALUES	
		82			
FF83		83 TIME	EQU	-1250	; TIMER COUNT VALUE FOR 3, 333 MSEC TIME COUNT
007F		84 INITI	ir equ	7FH	; INIT EESTAT WRT VALUE FOR WRT COMPL BIT =0
999E		85 yppfi	ill equ	140	; VPP FALL TIME. SET FOR > 100 USEC
		86			; FOR WRITE CYCLE TIMER COUNT
		87			
		88			
		89	;	MISC	
		90		001	CONT COMMONS CONT
000A	l	91. ABOR 92	IL EWU	orh	; Abort Command Code
		92 93 \$EJE	יד		
		JS ACJE			

AP-137

LOC	OBJ	LINE 94	Source statement	
		95;	REGISTER FO	RMATS:
		96		
		97		
		98 i	1) DBB STATUS REGIS	TER (R3' = 1BH)
		99;		
		199 ;	BIT(S)	DESCRIPTION
		101;		
		102 ;	0- 1	NEXT BYTE # TO GET (0-3)
		103 ;	2-4	current type of byte (from data dest table)
		104 ;	5	WAITING FOR COMMAND (=1)
		105;	6	DIRECT WRITE ENABLED (=1)
		106;		
		107;		
			2) EE STATUS REGIST	ER (R5' = 10H)
		109 ;		
		110;	BIT(S)	DESCRIPTION
		111 ;		
		112;	0-3	INTERVAL LOW ORDER COUNT (0-3)
		113 ;	7	WRITE COMPLETE INTERRUPT RECEIVED
		114 ;		
		115;		
			3) F0 = DIRECT WRIT	E PUSSIBLE
		117;		
			4) Flag F1 = Comman	D KECETVED (=1)
		119;		
		120		
		121 \$EJECT		

LOC	OBJ	LINE	SOURCE S	TATEMENT		
		122				
		123 124	;	INITIALIZATION		
8888		127	ORG	0		
		126	0110	•		
0000	4689	127 RESET:	JNT1	INIT		
		128				
0007		129	org	7H		
0007	04FC	130	JMP	TIMER	ï	TIMER INTERRUPT VECTOR
		131				
8889	55	132 INIT: 133	EN	FLAGS		ENABLE HOST INTERRUPT FLAGS
0005 0006		133	CLR	FØ		SET FØ = 0 TO INDICATE DIRECT MRITE NOT POSS
0008		135	SEL	R61		SELECT ALTERNATE REG SET TEMPORARILY
999C		136	CLR	A	;	SET A = 0
9990	AB	137	MOV	R3, A	ï	ZERO DBB STATUS REGISTER
000E	RD	138	MOV	R5, A	į	ZERO EE STATUS REGISTER
866F	BE83	139	MOV	R6, #TIME		INITIAL WRITE TIMER VALUE
0011		149	SEL	RBØ		SELECT NORMAL REGISTER SET
	23F0	141	NOV	A. 10F0H	i	output writing for command status
0014	96	142 143	MOV	STS, A		
		144 GETCHD				
0015	R5	145	CLR	F1	;	Reset last state of command/data register
001 6	05	146	SEL	RB1	;	Select Alternate Reg Bank
001 7	FB	147	MOV	A. R3	į	Get dbb status
	4320	148	ORL	R, #20H	-	OR IN WAITING FOR COMMAND BIT
001A		149	CLR	FØ	-	CLEAR DIRECT WRITE POSSIBLE BIT
001B		150	JB6	DWE		ONLY SET D/W POSSIBLE IF D/W ENABLED
0010	0420	151 152 DHE:	JMP	DHINE	j	D/W NOT ENABLED -DON'T SET BIT
001F	95	152 DME.	CPL	F0	:	SET D/W POSSIBLE BIT
		154 DHNE:	0.2		ſ	
00 20	AB	155	MOV	R3, A	;	Re-Save DBB status reg
00 21	04B3	156	JMP	GETD88	į	go get some more data
		157				
		158			-	
		159 160	;	COMMAND COMPLET	E	
		161 CMDCPL				
002 3	C5	162	SEL	R80	;	SELECT NORMAL REG SET
0024	65	163	STOP	TCNT		STOP ANY TIMER ACTIVITY
9 925	3430	164	CALL	RELEAS	į	RELEASE CONTROL OF BUS
0027	23F0	165	MOV	R. #0F0H	į	set command complete status
0029		166	MOY	STS, A		
	8R30	167	ORL			ALLON OBF, IBF HOST INTERRUPTS
0020	0415	168 169	JMP	GETCMD	ì	go get another command
		179	;	ILLEGAL COMMAND		
		171	•		•	
		172 ILLCHD	:			
802E	23E0	173	MOV	A #111000008	;	set illegal command status
0 030	90	174	MOV	STS, A		
00 31	0415	175	JMP	GETCHD		
		176				

AP-137

LOC	OBJ	LINE	source s	TATEMENT		
		178 179		NOD INTERDIOT O	CD.	vice routine and data retriever
		189	i	VOD INTERKUFT 3		The ROOTINE HAD DHIN RETRIETER
		181 DBBI:				
00 33	35	182	DIS	TCNTI	;	DISABLE INTERRUPTS
0034	27	183	CLR	A	;	ZERO STS REG BECAUSE WE'RE NO LONGER LOOKING
		184			;	For command/data
<i>2</i> 035	90	185	MOY	STS, A		
00 36	D5	186	SEL	RB1	i	SELECT THIS REGISTER SET
0037		187	MOA	R4, A		Save A-register
	9RDF	188	anl	P2, #IBFINA		DE-ACTIVATE IBF INTERRUPTS TO HOST
003A		189	CLR	F0		CLEAR DWP BIT
	763F	190	JF1	DBB107		IF COMMAND RECEIVED, CONTINUE, ELSE
0500	04C7	191	JMP	DATRCV	;	Command - Go process the command
003F	22	192 DBB107 193	IN	A, DBB		GET COMMAND
0031		193	MOA	R2, A		SAVE IT
	53F0	195	ANL	A, #0F0H		CHECK IF ILLEGAL COMMAND (30H - 3FH)
	D24D	196	JB6	NOTICD		To save space, part of table eliminated
	F24D	197	JB7	NOTICD		MUST HAVE B5 AND B4 = 1 WITH B6 AND B7
	924B	198	JB4	MAYBIC		= 0 to have an illegal command.
0049	044D	199	JMP	NOTICD		
		200 MAYBIC	:			
004B	B22E	201	JB5	ILLCMD	ï	YES, IT IS ILLEGAL. GO DEAL WITH IT
		202 NOTICD	:			
004D	5300	203	ANL	A, #0C0H		MASK ALL BUT HI ORDER BITS
	C675	204	JZ	SUBCMD		IF HI ORDER BITS ZERO THEN SUB COMMAND
0051		205	RL.	A		MOVE HI BITS TO LOW BITS
0052		206	RL.	A	;	AND MULTIPLY BY 2 IN THE PROCESS
0053		207	RL			LET & DATUE TO ENTRY IN INCERNATION TON F
6624	0365	208 209 Lookup	ADD	A, HLOW INSTEL	;	Let a point to entry in instruction table
0056	82	205 LOOKOP	Mov	R0, A		SAVE POINTER TEMPORARILY
0057		210	MOVP3	A. CA		GET COMMAND DESCRIPTOR BYTE FROM TABLE
9058		212	XCH	A, RØ		SWAP DESCRIPTOR FOR TABLE ADDRESS
0059		213	INC	8		POINT TO COMMAND START ADDRESS IN TABLE
005A		214	MOYP3	 A, eA		GET COMMAND START ADDRESS
005 8	28	215	XCH	A, RØ		SWAP DEST ADDR FOR COMMAND DESCRIPTOR
005C	A9	216	MOY	R1. A	j	SAVE DESCRIPTOR IN R1
005D	531F	217	ANL	A. #1FH	;	MASK TO KEEP DATA TO RECEIVE
005F	28	218	XCH	A, R3	j	Swap a & DBB status
8860	53E0	219	ANL	A, #0e0h	ï	REMOVE LOW ORDER BITS
00 62	4B	220	orl	A, R3	÷	ADD IN DATA DESCRIPTOR
0063		221	MOA	R3, A		save updated DBB reg
	B27D	222	JB5	PCMND		IF WRITING FOR COMMAND BIT SET GO PROCESS IT
6666	23F0	223	MOA	H, #-1*(LOW HBUR		WE'RE NOT WRITING FOR COMMAND, SO THE ONLY
		224 225				Command We'll Accept is abort - Check For
0068	68	225 226	RDD	R, RØ	,	ABORT COMMAND
	966D	220	JNZ	ILLCDO	:	Not abort - go indicate illegal command
	6410	228	JMP	ABORT		YES ABORT - GO PROCESS IT
	- 187	229		1 14/14/2 1	'	rauerrandist saler Etstefallender Alf
		230	;	ILLEGAL COMMAND) DI	JRING WRITE CYCLE
		231			- •	
		232 ILLCDO	:			

LOC OBJ	LINE SOURCE	STATEMENT
0060 23RA	233 MOV	A, HORAH ; OUTPUT ILLEGAL COMMAND MESSAGE
006F 02	234 OUT	DBB, A
0070 8910	235 ORL	P1,#OBFACT ; ALLON OBF EXTERNAL INTERUPTS
	236 EXIT:	
0072 FC	237 MOV	A, R4 ; RESTORE A-REGISTER
9973 25	238 EN	TCNTI ; RE-ENRBLE TIMER INTERRUPT
0074 93	239 RETR	; Return to user program
	240	
	241 ;	look up sub command and point to entry in table
	242	
0075 50	243 SUBCHD:	0.00
9975 FR	244 NOV	R, R2 ; GET CONMAND
0076 533F 0078 E7	245 ANL 246 RL	A, #3FH
0079 036D	246 RL 247 ADD	A #LOW SUBTEL ; ADD START ADDR OF SUB COMMAND TABLE
007B 0456	247 NOV 248 JMP	LOOKUP ; GO LOOKUP SUB COMMAND
0010 0100	249	
	258	
	251 ;	PROCESS THE COMMAND
	252	
	253 PCHND:	
007D R5	254 CLR	F1 ; CLEAR COMMAND FLAG
007E 27	255 CLR	A ; ZERO STS BITS
007F 90	256 MOV	STS, A
	257 PC03:	
0080 FB	258 MOV	A, R3 ; GET DBB STATUS
0081 53DF	259 ANL	A, #11011111B ; CLEAR WAITING FOR COMMAND BIT
0083 AB	260 MOV	R3, A ; RE-SAVE DBB STATUS
0084 C7 0085 2311	261 MOV	R, PSN ; GET PSN
0087 D7	262 MOV 263 MOV	A, #90010001B ; set stack pointer = 1st loc psw.a ; and restore psw
9988 FA	263 HOV	R,R2 ; GET COMMAND FIRST BYTE IN R
0089 F2B9	265 JB7	SAVEHI ; IF BIT 7 OR BIT 6 SET SAVE HI ADDRESS
0088 D289	266 JB6	SAVEHI STILL DITT OK DIT O DET SINE IN NOOKESS
	267 PC05:	are to be the
9980 F8	268 MOV	A, RØ ; SET COMMAND DEST ADDRESS IN STACK
008E B808	269 MOV	R9, #8H ; IN 1ST LOCATION IN STACK
0090 A0	270 MOV	ero, A
0091 F9	271 MOV	R, R1 ; GET COMMAND DESCRIPTOR
0092 D298	272 JB6	P3INST ; IF PAGE 3 BIT SET ADD PAGE 3 ADDRESS
0094 2302	273 MOV	A, #HIGH FIRSTIN ; SET HI STACK BYTE FOR RB0 SELECTED
	274	; AND HIGH ORDER ADDRESS OF 1ST INSTRUCTION
0096 049A	275 JMP	PC18
	276 P3INST:	
0098 2303	277 MOV	A, #HIGH FIRSTP3 ; SET HI STACK BYTE FOR RB0 SELECTED
	278	; AND HI ORDER ADDRESS OF 1ST PAGE 3 INSTR
	279 PC10:	
009R 18	280 INC	R0 ; POINT TO HIGH ORDER STACK LOCATION
0098 A0	281 MOV	erg, A ; SAYE ON STACK
009C F9 009D 82C3	282 MOV 283 JB5	A, R1 ; Get command descriptor exec ; go execute command if no data to receive
0000 0263	284	
	285 ;	get data (User program may enter here)
	286	
	287 Getdat:	

00A4	47	292	SHAP	A	ï	MOVE TO HIGH ORDER BITS
90A2	90	293	MOV	STS, A	į	AND OUTPUT TO STS REGISTER
80A 6	FB	294	MOY	AL R3	j	GET DBB STATUS
00A7	43E3	295	ORL	A, #11100011B	;	CHECK FOR TYPE = 111
00R9	37	296	CPL	A	;	IF TYPE = 111 THEN A-REG SHOULD BE 0
0088	C6B3	297	JZ			IF SPECIAL TYPE (=111) DON'T LOOK UP DEST
ØØAC		298	MOY			GET DBB STATUS
	531F	299	ANL			KEEP ONLY TYPE AND BYTE BITS
	03CD	300	ADD			ADD START OF DESTINATION TABLE
6981		301	MOVP3	A GR		GET DESTINATION
0082		302	MOY	R7, A	÷.,	and save in data destination register
0002	ra-		NUY	коп	,	HAV SHYE IN VAID VESIONATION REGISTER
0000	~~~~	303 GETDBB:	-			THOSE THAT THEFT
	8A20	304	ORL			ENABLE HOST INTERRUPT
	D685	305 WAITE:			-	WAIT UNTIL DATA RECEIVED
ARR1	04 33	306	JMP	DBBI	i	GO PROCESS DATA WE JUST GOT
		307				
		308	;	Save HI-Order A	DDI	RESS FOR READ OR WRITE
		309				
		310 SAVEHI:				
0089		311	XCH	A, R1	į	SAVE R1 IN R7
00BA	2F	312	XCH	AL R7		
996B	8915	313	MOY	R1. #ADRHI	j	POINT TO HI ORDER EE ADDRESS
998 D	FA	314	Moy	A, R2	j	Get command first byte to put in hi address
008E	A1.	315	MOY	erl a	ï	SAVE COMMAND IN HI ORDER ADDRESS REGISTER
008F	2F	316	XCH	R, R7	į	RESTORE R1
0000	R9	317	MOV	R1. A		
00C1	048D	318	JMP	PC85	į	CONTINUE PROCESSING COMMAND
		319				
		320	;	EXECUTE COMMAND		
		321				
		322 EXEC:				
99C 3	27	323	CLR	A	;	CLEAR STS TO INDICATE PROCESSING
00C4		324	MOY	STS, A	•	
	0472	325	JMP		:	AND EXIT.
		326	V 14		ſ	
		327	;	DATA RECEIVED		
		328	'			
		329 DATRCY:				
99C 7	22	329 DHIROY.	IN	A, DBB		get dbb data
99003			MOV			
00C9		331 332	MOY	R0, A A, R3		Save Temporarily in RØ Get DBB status
	FD B2DD	333	JB5	DWCMD		IF WE'RE WAITING FOR COMMAND THEN MAYBE D/W
0000 0000						
99CD		334	XCH XCH	AL R7		SRVE A IN R7 AND GET DATA DEST PTR
		335			•	GET DATA TO SAVE IN A & ADDR IN RO
00CE		336	MOY	ero, A		SAVE IN APPROPRIATE LOCATION
00CF		337	XCH	A, R0		RETRIEVE ADDRESS IN A
99D9	17	338	INC	A		INCREMENT DESTINATION ADDRESS IN CASE OF SPEC
		339				TYPE
8901		340	XCH	ft, R7		SAVE IN R7 & RETRIEVE DBB IN A
00 02		341	INC	A		INCREMENT BYTE # TO GET
000 3	53DF	342	anl.	r. #11011111B	j	MAKE SURE WAITING FOR COMMAND BIT = 0
						4 170

; ZERO STS DATA COUNTER

; MOVE TO HIGH ORDER BITS

; OR-IN WRITING FOR COMMAND/DATA BIT

; GET STS DATA COUNT

AP-137

LOC OBJ

009F 8900

00R1 F9

00R4 47

0082 4388

LINE

288

290

291

292

289 SETGET:

SOURCE STATEMENT

R1_#0

A, R1

A. #8H

8

MOV

MOY

ORL

SHOP

AFN-02027A

; RE-SAVE DBB STATUS

; NO - GO GET MORE DATA

; MASK OUT ALL BUT BYTE COUNT

; INCREMENT DATA BYTE COUNTER

; ELSE ILLEGAL COMMAND RECEIVED

; POINT TO WRITE DATA REGISTER

; IF ZERO THE HE'RE DONE - CONTINUE CHIND EXEC

; IF DIRECT WRITES ENABLED THEN GO PROCESS

LOC OBJ

AAD5 AB

0006 5303

9908 C6C3

00DB 04R1

0000 D2E1

880F 842E

00E1 2305

89E3 28

00E4 A0

00E7 00

00E8 47

00E9 A9

ØØER ØC

00EB 49

OPEC NO

00ED 0E

69EE 18

00EF A0

00F0 0A

00F1 77

00F2 77

00F5 40

00F6 A0

00F7 2300

00F9 D7

99FA 4419

00F3 5330

00E5 B814

88DA 19

LINE

343

344

345

346

347

348 349

350 351. Dijichid :

352

353

354 355 0405:

356

SOURCE STATEMENT

R3, A

A, #3H

EXEC

SETGET

DW05

ILLOND

A. #WRITDAT

DIRECT WRITE COMMAND

Ri

MOY

ANL

JZ

INC

JHP

;

JB6

JMP

MOV

AP-137

LOC (obj	LINE	Source s	TATEMENT	
		382			
		383	i	TIMER INTERRUPT	
		384			
		385 TIMER:			
OOFC I		386	SEL	RB1	; select alternate register bank
00FD (387	MOV	R4, A	; SAVE A-REG
00FE :		388	INC	R5	; INCREMENT INTERVAL COUNT
00FF I		389	MOV	A, R5	; GET EE STATUS
0100		390	ORL	A, #80H	; SET WRITE COMPLETE INTERRUPT BIT
0102 (391	MOY	R5, A	; RESTORE EE STATUS
0103	_	392	MOY	A, R6	; RESET TIMER COUNT
0104		393	MOV	T.A	
0105		394	MOV	R, R4	; RESTORE A-REG
01.06	93	395	RETR		; BACK TO INTERUPTED PROGRAM
		396			
		397			
		398			
		399	i	READ / WRITE SUB	SKUUTINES
		400 401			
		401 482			
		402 403		والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة والمرابعة	
		404	i		************************************
		405			- Called W/ Address in Address Reg
		485	;	EE KERV	- UNLLED W/ NAVKESS IN NAVKESS KEU
		407		NOTO DET	rurned in A-reg
		408	;		
		409	;		RØ LOCAL DUC
		409 410	;	ENHIDLES	Local Bus
		410			ACCESS TO LOCAL BUS
		412	;	CONUCCIN	NULESS IN LUCAL DUS
		412	j		kiakialajajajajajajajajajajajajajajajajajaja
		414	,	*****	rederinden in der der der der Aussissie der Aussissie der Aussissie der Aussissie der Aussissie der Aussissie d
		415 READ:			
0107	2447	415 KEND. 416	CRILL	outadr	; output ee address
0109 2		417	MOY	A, #RDACT	; ACTIVATE READ LINE
0108 9		418	ANLD	PZ R	, HOTIVITE READ LINE
010C (419	IN		; read the data
0100 f		420	MOY		; SAVE TEMPORARILY
010E 2		421	MOY		; DE-ACTIVATE READ LINE
0110 8		422	ORLD		; BUT LEAVE EEN ACTIVE
0111 F		423	MOV	A, R9	; RESTORE A
0112 8	-	424	RET	10100	, RESTORE II
OLLE (425	I'VL- I		
		426			
		427	i	a se	u a se
		428	•		
		429	;	outadr -	- OUTPUT ADDRESSES TO ADDRESS LINES
		430			
		431	;	uses a-f	XEG, RØ
		432			
		433	;	****	
		434	,		
		435 OUTADR:			
0113 E	B815	436	MOY	RØ, #ADRHI	; POINT TO HI ORDER ADDRESS REGISTER

LOC OBJ	LINE SOURC	e statement	
0115 F0	437 NOV		; get hi order address
	438		
	439 ;	HI ORDER ADDRESS	5 Output (Output A12, A13 to P26, P27)
	44 8		
0116 E7	441 RL	A	; NOVE A12, A13 TO BITS 6, 7
0117 E7	442 RL	A	
9118 5309	443 ANL		; wake sure only bits 6,7 set
011A 3A	444 OUTL		; AND OUTPUT TO PORT 2
011B 230B	445 HOV	A, HEENACT	; activate een'
011D 9F	446 ANLD 447	P7, A	
	448 OUTR20:		
011E B814	449 NOV	RO, #ADRLO	; POINT TO LOW ORDER ADDRESS REGISTER
0120 F0	458 MOV	A CRO	; GET LON ORDER ADDRESS
8121 30	451 MOVD	P4, R	; OUTPUT LON ORDER ADDRESS
8122 47	452 SHAP	8	
0123 30	453 HOVD	P5, A	
0124 18	454 INC	RØ	; Point to hi order address
0125 F0	455 MOV	A. CRO	; get hi order address
0126 3E	456 MOVD	P6, A	; AND OUTPUT IT
91 27 83	457 RET		; BACK TO CALLING PROGRAM
	458		
	459		
	468		
	461 ;		
	462		
	463 ;	REGHCC	- REQUEST ACCESS TO BUS AND
	464 ;		SIEZE BUS
	465 466 ;	USES:	A-REG
	466 ; 467	USES:	H-KEU
	468 j	sinsindesiesiesiesiesiesiesiesiesiesiesiesiesie	****
	469		
	470 REGACC:		
8128 362F	471 JT0	GOTACC	; IF ALREADY GOT ACCESS SKIP REQUEST
012A 2307	472 NOV	A, #REGACT	; REQUEST ACCESS
812C 9F	473 ANLD	P7, A	
91.2D 262D	474 WRITHC: JNTO	WAITAC	; Writ for access
	475 GOTACC:		-
612F 83	476 RET		; BACK TO CALLER
	477		
	478		
	479 ;		**********
	480		
	481 ;	KELENSE	- Release Bus
	482	ucce.	0.050
	ن 483 484	USES:	A-R EG
		<u></u>	*****
	485 ; 486	<u></u>	
	487 RELEAS;		
0130 23FF	488 MOV	A, #0FFH	; Write 1's to all addr and data lines
0132 39	489 OUTL		
0133 3C	490 MOVD		
0134 3D	491. MOVD	P5, A	

LOC OBJ	LINE	SOURCE	STATEMENT	
0135 3E	492	MOVD	P6, A	
01.36 8AC0	493	ORL	P2, #0C0H	; SET P26, P27 = 1
	494			
0138 3F	495 RELRET	: MOVD	P7, A	
0139 83	496	RET		; return to caller
	497			
	498			
	499	;	****	la l
	588			
	501	i	Rema	DR - REMOVE ADDRESSES
	582	;		(SET ADDRESS LINES = 1)
	503	;		ALSO DEACTIVATES EEN' (SETS TO 1)
	584			
	585	i	USES	: A-REG
	506			
	507	;	****	takakakakakakakakakakakakakakakakakakak
	568			
	509 REMADR			
013R 23FF	519	MOV	A. Ho ffh	; set a = all 1/s
013C 8C	511	ORLD	P4, A	; output to ag r 11
013D 8D	512	ORLD	P5, A	
01.3E 8E	513	ORLD	P6, A	
013F 8AC0	514	ORL	P2, #0C0H	
	515			
0141 2304	516 REMRET	: MOV	r, Heenina	; DE-ACTIVATE 2816'S
0143 8F	517	ORLD	P7, A	
0144 83	518	RET		
	519			
	520 \$EJECT			

LOC OBJ	LINE	SOURCE	STATEMENT	
	521			
	522			
	523	;		
	524			
	525	;	WRITE	- WRITE TO 2816
	526			
	527	j	USES :	R0, A
	528			
	529	i		*******
	530			
04.45 3403	531 WRITE:	~~ .	0500	
0145 3407	532	CALL	READ	READ DATA FIRST
0147 37	533	CPL	8	> NEGATE DATA
0148 A8	534	MOV	R0, A	; SAVE COMPLEMENTED DATA
0149 17 2140 CD	535	INC	A A DE	; NEGATE A
0148 6D	536	ADD	A, R5	; $A = (DATA TO WRITE - DATA READ)$
014B C658	537	JZ	WREND	; IF SAME DATA, DON'T BOTHER WRITING
014D F8	538	MOV	A, R0	; RETRIEVE NEGATED DATA FROM READ CYCLE
014E 5D	539	ANL.	A. R5	; ANY 0'S TO BE PROGRAMMED TO 1'S?
014F C655	540	JZ	WRCYCL	; NO -> SKIP ERRSE BYTE ROUTINE
0151 23FF	541	MOV	A, #OFFH	; SET DATA TO WRITE = OFFH
615 3 3459	542	CALL	MECYCL.	; ERASE THE BYTE
04 55 55	543 WRCYCL		0 5 7	
0155 FD	544	MOV	A. R5	; WRITE DATA NOW
0156 3459	545	CALL	MECYCL	0571011 0001 TO 0011 110 000000
6158 83	546 WREND:	RET		; return back to calling program
	547			
	548			
	549	;	***	
	549 550			
	549 550 551	j j		WRITE DATA IN A-REG TO 2816
	549 550 551 552	i	WECYCL	WRITE DATA IN A-REG TO 2816
	549 556 551 552 553			WRITE DATA IN A-REG TO 2816
	549 550 551 552 553 553 554	;	NECYCL	Write Data in A-Reg to 2816 :5: Ee Enabled, addresses output
	549 550 551 552 553 554 555	i	WECYCL	WRITE DATA IN A-REG TO 2816
	549 550 551 552 553 554 555 556	; ; ;	Hecycl Assume USES :	Write Data in A-Reg to 2816 25: Ee Enabled, addresses output R8
	549 550 551 552 553 554 555 556 556 557	; ; ;	Hecycl Assume USES :	Write Data in A-Reg to 2816 :5: Ee Enabled, addresses output
8450 70	549 550 551 552 553 554 555 556 556 557 558 MECYCL	; ; ; ;	Hecycl Assume USES :	WRITE DATA IN A-REG TO 2816 25: EE ENABLED, ADDRESSES OUTPUT R0
0159 39 0150 2205	549 550 551 552 553 554 555 556 557 558 MECYCL 559	; ; ; ; OUTL	NECYCL Assume USES : P1, A	WRITE DATA IN A-REG TO 2816 5: EE ENABLED, ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE
015A 230E	549 550 551 552 553 554 555 556 557 558 HECYCL 559 560	; ; ; ; OUTL HOV	Necycl Assume USES : ************* P1, A R, #YPPACT	WRITE DATA IN A-REG TO 2816 S: EE ENABLED, ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE ; ACTIVATE YPP
015A 230E 015C 9F	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561	; ; ; ; OUTL MOV ANLD	NECYCL ASSUME USES : ************* P1, A R, #VPPACT P7, A	WRITE DATA IN A-REG TO 2816 S: EE ENABLED, ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP
015A 230E 015C 9F 015D B81D	549 550 551 552 553 554 555 556 557 558 HECYCL 559 560 561 562	; ; ; OUTL MOV ANLD MOV	NECYCL ASSUME USES: ************** P1, A R, #VPPACT P7, A R0, #EESTAT	 WRITE DATA IN A-REG TO 2816 EE ENABLED, ADDRESSES OUTPUT R0 OUTPUT DATA TO WRITE ACTIVATE VPP ACTIVATE VPP LET R0 POINT TO EE STATUS REGISTER
015A 230E 015C 9F 015D B81D 015F F0	549 550 551 552 553 554 555 556 557 558 HECYCL 559 560 561 561 562 563	; ; ; OUTL HOV ANLD HOV HOV	WECYCL ASSUME USES: ***********************************	WRITE DATA IN A-REG TO 2816 (5: EE ENABLED, ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS
015A 230E 015C 9F 015D B81D 015F F0 0160 537F	549 550 551 552 553 554 555 556 557 558 MECYCL 559 560 561 561 562 563 563 564	; ; ; OUTL MOV ANLD MOV ANL	WECYCL ASSUME USES: ****************** P1, A A, #VPPACT P7, A R0, #EESTAT A, @R0 A, #INITWR	WRITE DATA IN A-REG TO 2816 25: EE ENABLED, ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 561 562 563 564 565	; ; ; OUTL MOV ANLD MOV ANL MOV	WECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 E WRITE DATA IN A-REG TO 2816 E WRITE DATA IN ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 561 562 563 564 565 565 566	; ; ; OUTL MOV ANLD MOV ANL MOV SEL	WECYCL ASSUME USES: ***********************************	WRITE DATA IN A-REG TO 2816 25: EE ENABLED, ADDRESSES OUTPUT R0 COUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 563 561 562 563 564 565 566 566 566 567	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR	WECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 E WRITE DATA IN A-REG TO 2816 E WRITE DATA IN ADDRESSES OUTPUT R0 ; OUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 563 561 562 563 564 563 564 565 566 567 568	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL	WECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 ES: EE ENABLED, ADDRESSES OUTPUT R0 CONTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE ; SET F0 TO INDICATE VPP IS ON
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95 0166 FE	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 563 561 562 563 564 565 565 566 567 568 568 569	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL HOV	HECYCL ASSUME USES: *************** P1. A A. #VPPACT P7. A R0. #EESTAT A. eR0 A. #INITHR eR0. A RB1 F0 F0 A. R6	WRITE DATA IN A-REG TO 2816 25: EE ENABLED, ADDRESSES OUTPUT R0 COUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95 0166 FE 0167 62	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 563 564 563 564 565 565 566 567 568 566 567 568 569 570	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL MOV MOV	HECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 ES: EE ENABLED, ADDRESSES OUTPUT R0 CONTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE ; SET F0 TO INDICATE VPP IS ON
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95 0166 FE 0167 62 0168 55	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 563 564 563 564 563 564 565 566 565 566 567 568 569 570 571	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL MOV STRT	HECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 E: EE ENABLED, ADDRESSES OUTPUT R0 CUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE ; SET F0 TO INDICATE VPP IS ON ; START TIMER
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95 0166 FE 0167 62	549 550 551 552 553 554 555 556 557 558 HECYCL 559 560 561 562 563 564 565 566 567 566 567 566 567 568 566 567 568 569 570 571 572	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL MOV STRT EN	HECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 ES: EE ENABLED, ADDRESSES OUTPUT R0 CONTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE ; SET F0 TO INDICATE VPP IS ON
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95 0166 FE 0167 62 0168 55 0169 25	549 550 551 552 553 554 555 556 557 558 WECYCL 559 560 561 562 563 564 565 566 567 568 566 567 568 566 567 568 569 570 571 572 573 WRWRIT	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL MOV MOV STRT EN	WECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 :: EE ENABLED, ADDRESSES OUTPUT R0 : OUTPUT DATA TO WRITE : ACTIVATE VPP : ACTIVATE VPP : LET R0 POINT TO EE STATUS REGISTER : GET EE STATUS : CLEAR WRITE COMPLETE BIT : RESTORE STATUS REGISTER : CHOOSE RB1 TO GET INITIAL TIMER VALUE : SET F0 TO INDICATE VPP IS ON : START TIMER : ENABLE TIMER/COUNTER INTERRUPTS
015A 230E 015C 9F 015D 881D 015F F0 0160 537F 0162 A0 0163 D5 0164 85 0165 95 0166 FE 0167 62 0168 55	549 550 551 552 553 554 555 556 557 558 HECYCL 559 560 561 562 563 564 565 566 567 566 567 566 567 568 566 567 568 569 570 571 572	; ; ; OUTL MOV ANLD MOV ANL MOV SEL CLR CPL MOV STRT EN	HECYCL ASSUME USES: ***********************************	- WRITE DATA IN A-REG TO 2816 E: EE ENABLED, ADDRESSES OUTPUT R0 CUTPUT DATA TO WRITE ; ACTIVATE VPP ; ACTIVATE VPP ; LET R0 POINT TO EE STATUS REGISTER ; GET EE STATUS ; CLEAR WRITE COMPLETE BIT ; RESTORE STATUS REGISTER ; CHOOSE RB1 TO GET INITIAL TIMER VALUE ; SET F0 TO INDICATE VPP IS ON ; START TIMER

AP-137

LOC	OBJ	LINE	source s	TATEMENT		
	F271 2468	576 577	jb7 JMP	WRENDC WRWAIT	; 9	SKIP RECHECK IF END OF CYCLE
010	21011	578 WRENDC:		enverta (
0171	3474	579	CALL	SHUT	; E	END OF WRITE CYCLE - SHUT DOWN 2816
0173	93	580	RETR		÷F	Return Back to user program
		581				
		582				
		58 3	i	Shut - Shut off	VPF	P, WAIT VPP FALL AND DEACTIVATE DATA LINES
		584				
		585 SHUT:				
	23F1	586	MOV	A, #YPPINA	;[XE-ACTIVATE VPP
0176		587	ORLD	P7, A		
	230E	588	MOV			WRIT WHILE VPP FALLS
0179		589 589	CLR	FØ	; (Clear FO to Indicate VPP is off
	347F 89FF	590 591	call Orl	delay P1. #OFFH		DEACTIVATE DATA LINES
017E		592	RET	LT #0LLU	1	
OTIC	03	593	KL (
		594				
			j	Delay - Subrout	INE	TO DELAY
		596				
		597	;	PRSS: A-REG =	: COI	unt (7.5 USEC/LOOP)
		598				
		599 DELAY:				
017F		600	DEC			DECREMENT A-REG
	967F	601	JNZ	DELAY		LOOP IF NOT ZERO
0182	83	602	RET		<i>i</i> (BACK TO CALLER
		603 604				
			;	CYDER _ CHECK E	no i	ABORT COMMAND IN DBB
		686	,	CRUDD - CRECK P	UKI	BORT CONTRACT IN DOD
			;	uses: R-R eg		
		608	•			
		609 CKDBB:				
01 83	D687	610	JNIBF	CKDEX	; ;	IF INPUT BUFFER NOT FULL THEN EXIT
0185	7688	611	JF1	CKD10	1	IF COMMAND WAITING, CHECK IT
		612 CKDEX:				
0187	83	613	RET		; [return to user
		614 CKD10:				
0188		615	IN	A, DBB		GET COMMAND
0189		616	CLR	F1		Clear Command/Data Flag
	03F6 9690	617 618	add JNZ	A, #-Abortc Illcd1		IS IT AN ABORT COMMAND? NO - ILLEGAL COMMAND
	6410	619	JMP	ABORT		GO ABORT
OTOL	0120	620 ILLCD1:		I WANT I		
0190	23AB	621	MOV	a, #Orbh	; 1	Dutput Illegal command message
0192	8 2	622	OUT	DBB, A		
0193	8810	623	ORL	P2, #OBFACT	; I	ALLOW OBF HOST INTERRRUPTS
019 5	83	624	RET			
		625				
		626 \$EJECT				

LOC	OBJ	LINE 627	SOURCE	STATEMENT	
		628 629	i		************
		630	;	GENER	AL SUBROUTINES
		631 632		والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	Andra da
		633	;	*********	***********
		634			
		635			
		636	;	Incridr - Incri	ement address register
		637			
		638 639	;	USES: RB0 - A-REG	any register bank
		640	j	IT-KEU	
		641 INCADR			
81 96	8814	642	MOV	RO, #ADRLO	; POINT TO LOW ADDRESS REGISTER
0198		643	INC	erg	; Increment Low Order Address
6199		644	MOV	a, erø	; GET LOW ORDER ADDRESS
019H 019C	969E	645 646	JNZ INC	INCEX	; IF NONZERO, EXIT
0190		647	INC	ro ero	; OVERFLOW - POINT TO HI ORDER ADDRESS REGISTER ; INCREMENT HI ORDER ADDRESS
019E		648 INCEX:		eno	; RETURN TO USER PROGRAM
		649			
		650			
		651			
		652 653	;	DECCNI - DECRI	EMENT COUNT REGISTER
		654	;	RETURNS:	A-REG = 0 IF COUNT = 0
		655	•		
		656	;	USES :	RØ, A-REG
		657			
04.05	0007	658 DECONT:		-	
01.9F 01.R1		659 660	Mov Mov	ro, #CNTLO r. erg	; Point to low order count register ; get count
01R2		661	DEC	R	; decrement low order count
01A3		662	MOV	ero, A	; RESTORE COUNT
01A4	CGAF	663	JZ	ZTEST	; IF ALREADY ZERO, TEST FOR 0 COUNT
01A6		664	INC	A	; SEE IF WE NEED TO BORROW
01A7		665	JNZ	DECEX	; NO - JUST EXIT
01a9 01aa		666 667	INC MOV	rg A. erg	; yes - point to hi order count register ; get hi order count yalue
01AB		668	DEC	A	; DECREMENT IT
Ø1AC	÷-	669	MOV	ero, a	; RESTORE COUNT VALUE
01AD	17	670	INC	A	; set a = nonzero to indicate not 0 count
01AE	83	671 DECEX: 672 ZTEST;	RET		; return to user
01AF	18	673	INC	RØ	; Point to hi order count reg to see if it's 0
0160		674	orl.	r. ero	; or in hi order count
01B1	24RE	675	JNP	DECEX	; $A = 0$ if Hi or Low = 0 50 exit
		676 677			
		678 \$EJECT			

	679			
	689	j.	****	alahalalahahahahahahahahahahahahahahaha
	681			
	682	j.	C O M I	MAND DRIVER
	683			
	684	;		
	685			
	686			
6266	687	ORG	200H	; start commands on page 2
	688			
	689 FIRSTI:			
	690 601			
	691 692	;	ILLEGAL COMMAN	U
	692 693 IC:			
0200 042E	693 IC.	JMP	ILLCMD	; Illegal command
0200 0421	695	JIH	ILLOW) ILLEGAL CORRAY
	696			
	697	;	read command	
	698	•		
	699 READC:			
0202 3428	700	CALL	REQACC	; request access to local bus
8284 3487	791	CRILL	read	; read from 2816
	702 RDCPL:			
0206 540A	703	Crill	OUTPUT	; output data to DBB
8288 842 3	784 CMDEX:	JMP	CMDCPL.	; Command Exits Here
	705			
1	706			
		;	output – outpu	t data in a-reg to dbb
	708			
0000 0040	709 OUTPUT:			ODTHOTE ODE INTERDUCT
020A 8A10	710 744	ORL	P2, #OBFACT	; ACTIVATE OBF INTERRUPT
020C 02	711	OUT	DBB, A	; output data to host
0200 8600 020F 83	712 WAITOU: 713	RET	WAITOU	; WAIT UNTIL OUTPUTPUT BUFR NOT FULL
0201 03	714	KE (
	715			
		;	WRITE COMMAND	
	717	,		
	718 HRITEC:			
0210 3428	719	CALL	REQACC	; request access to local bus
0212 3445	720	CALL	WRITE	; WRITE TO 2816
8214 8423	721	JMP	CMDCPL	; command complete
	722			
	723			
	724	j –	Chip erase com	MAND
	725			
	726 CERASE:			
0216 3428	727	CALL	REGACC	; REQUEST ACCESS TO BUS
0218 B815	728	MOV	rø, #Adrhi	; POINT TO HI ORDER ADDRESS
	729			70 000 007
	730	;	output R12, R13	10 126 127
0040 50	731	MOV	0 909	; get hi order address
021A F0 021B E7	732 733	RL	a, ero A	; MOVE TO BITS 6,7
VELU LI				A THE TO BELD ON

AP-137

APPENDIX D: 8298 E² PROM CONTROLLER FIRMWARE LISTING

LINE

LOC OBJ

SOURCE STRITEMENT

AFN-02027A

LOC OBJ	LINE	Source	STATEMENT	
821C E7	734	RL	A	
0210 5300	735	ANL	R. #9C0H	; NAKE SURE BITS 6,7 THE ONLY ONES SET
021F 3A	736	OUTL	P2; A	; output hi order address bits
0220 F0	737	MOV	r. erg	; get hi order address
8221 997F	738	ANL.	P1, #7FH	; SET D7/CERASE' = 0 (DATA LINE)
8223 2388	739	HOY	r, Heenact	; activate een' to latch cerase' bit
8225 9F	740	ANLD	P7, A	
0226 F0	741	MOV	a, ero	; get hi order address again
0227 3E	742	MOVD	P6, A	; OUTPUT ADDRESS BITS A8-A11
0228 23FF	743	MOY	A. #0FFH	<pre>\$ SET DATA TO WRITE = 0FFH FOR CHIP ERASE</pre>
022A 3459	744	Call	MECYCL	; ERASE THE SELECTED CHIP
0220 5430	745	Call	REMCE	; RENOVE CHIP ERRSE
022E 0423	746	JMP	CMDCPL.	; END OF COMMAND
	747			
	748			
	749	i	Remice - Remove	CHIP ERASE (OE'=12V)
	750			
	751	i	uses a-reg	
	752			
0000 0000	753 RENCE			
0230 89FF	754 755	ORL	P1, #OFFH	; SET DATA LINES = OFFH
0232 2304	755 757	MOV	A. HEENINA	; de-activate een
0234 8F	756	ORLD	P7, A	
0235 2308	757	MOV	a, #eenact	; D7/CERRSE' = 1 (SINCE DATA WE WRITE = FFH)
0077 05	758 759	048 5	07.0	JUST PULSE EEN TO LATCH INACTIVE CERASE
0237 9F 0238 83	769	anld Ret	P7, A	; Pulse Een' to latch inactive cerrse'
0230 03	761	KE I		
	762			
	763	;	BLOCK ERASE	
	764	,	DLUCK EKIDE	
	765 BLOCKI	c.		
0239 3428	766	CALL	REQACC	; request access to bus
0238 BDFF	767	MOY	R5, #0FFH	SE DATA TO WRITE = OFFH
0230 0011	768 BL10:	ΠQΥ	NO WOLLIN	S DE DITITI TO MALTE - OFTI
0230 3445	769	Call	WRITE	; WRITE ERASED BYTE
023F 343A	770	CALL	REMADR	; DE-ACTIVATE ADDRESS LINES
0241 3496	771	CALL	INCADR	; INCREMENT EE ADDRESS
0243 EE3D	772	DJNZ	R6, BL10	KEEP LOOPING IF NOT DONE
0245 0423	773	JMP	CMDCPL	; WHEN DONE EXIT
	774			
	775			
	776	j	MULTIPLE WRITE	
	777			
	778 MULTH	R:		
0247 BC00	779	MOV	R4, #0	; ZERO BUFFER COUNT
0249 05	780	SEL	RB1	; select alternate register set
0249 03 0248 BF20	781	MOY	R7, #BUFST	; POINT TO START OF BUFFER
	782 MINGET		the number of t	
024C D5	783	SEL	RB1	; MAKE SURE WE'RE POINTING TO RB1
8240 FB	784	MOV	A, R3	; get dbb status
024E 53E0	785	ANL	R, #0E0H	; ZERO TYPE & BYTE STATUS
0250 431D	786	ORL	A, #11101B	; SET TYPE=7, 3 BYTES TO GET (SPECIAL TYPE)
0252 AB	787	MOV	R3, A	; Restore dbb status
0253 149F	788	CALL	GETDAT	; get 3 bytes from host

1.00 00.1	1.7.18		CTOTOCOT	
LOC OBJ 0255 FF	LINE		STATEMENT	
0256 C5	789 790	MOV SEL	r, r.7 RB0	; get data destination pointer
0257 1C				
0257 IC 0258 03C2	791	INC	R4	; BUMP BUFFER COUNTER
0258 0302 0258 C65F	792	ADD 77		CHECK FOR END OF BUFFER
	793	JZ	MIDUMP	IF END GO DUMP BUFFER
825C EE4C	794	DJNZ	R6, MINGET	; IF NOT DONE THEN GET MORE
025E 1E	795	INC	R6	; INCREMENT BECRUSE MEYLL DEC NEXT CYCLE
0055 OF	796 NHOUMP		D /	
025F CE	797	DEC	R6	; DECREMENT BECAUSE MAY NOT HAVE DONE SO
0260 B920	798	YOM	R1, #BUFST	; point to start of Buffer
	799 MHDMP1		-	
0262 B815	800	MOY	RØ, #ADRHI	; POINT TO HI ORDER ADDRESS
0264 3428	801	CALL	REQACC	; REQUEST ACCESS TO BUS
0266 F1	882	MOA	A. eri	; get hi address again
0267 A0	803	MOY	ero, A	; SAVE IN HI ADDRESS REGISTER
0268 C8	804	DEC	RØ	; POINT TO LOW ADDRESS REG
0269 19	885	INC	R1.	; BUMP BUFFER POINTER
026A F1	806	MOY	r. er1	; get low order address
026B A0	807	MOV	ero, A	; AND SRVE IN LOW ORDER ADDRESS REGISTER
026C 18	808	INC	RØ	; POINT TO HI ADDRESS
026D 19	809	INC	R1	; BUMP BUFFER POINTER
026E F1	810	MOY	A, 8R1	; GET DATA TO WRITE
026F 19	811	INC	R1	; BUMP BUFFER POINTER
0270 AD	812	MOY	R5, A	; SAVE IN DATA WRITE REGISTER
0271 3445	813	Call	WRITE	; WRITE TO 2816
0273 343A	814	Call	remadr	; DE-ACTIVATE ADDRESS LINES
0275 EC62	815	DJNZ	R4, MMDMP1	; DECREMENT COUNT - KEEP WRITING IF NOT DONE
0277 FE	816	MOV	A, R6	; PICK UP COUNT TO SEE IF WE'VE DONE ALL BYTES
0278 C67C	817	JZ	MHEX	; IF DONE THEN EXIT
827A 4447	818	JMP	MULTWR	; if not done then get another block
027C 0423	819 MHEX:	JMP	CMDCPL.	; EXIT TO COMMAND COMPLETE ROUTINE
	820			
	821			
	822	;	SERIES WRITE	
	823			
	824 Serwrt	:		
027E BC00	825	MOA	R4, #0	; zero Buffer Counter
0280 05	826	SEL	RB1	; point to alternate register
0281 BF20	827	MOV	R7, #BUFST	; Point to start of Buffer in Destination Reg
	828 SHGET:			
0283 D5	829	SEL	RB1	; MAKE SURE IN REGISTER BANK 1
0284 FB	830	MOV	A, R3	; get dbb status
0285 53E0	831	ANL	r, #0e0h	; Remove type and byte bits
0287 431F	832	ORL	A, #11111B	; or int type=4, 1 type to get
0289 AB	833	MOV	R3, A	; restore dbb status
0288 149F	834	CALL	GETDAT	; GET 1 BYTE FROM HOST
028C FF	835	MOV	A, R7	; get Buffer Pointer
0280 C5	836	SEL	RBØ	; POINT TO NORMAL REGISTER SET
028E 1C	837	INC	R4	; INCREMENT BUFFER COUNTER
028F 03C0	838	add	R, #-SHBEND	; CHECK FOR END OF BUFFER
0291 C699	839	JZ	SNDMPØ	; if end of Buffer then go dump data to eeprom
0293 349F	840	CRLL	DECCNT	; DECREMENT COUNT
8295 9683	841	JNZ	SWGET	; if count not zero then get another byte
0297 449B	842	JMP	SHOUMP	; SKIP OVER FIX, SINCE K-CODE MAKES IT NEC.
	843 SWDMP0	I:		

LOC	OBJ	LINE	9	OURCE	STATEMENT	
	349F	844		CALL	DECONT	; skipped decrement above, so fix non
		845 SI	HDUMP:			
8298	8928	846		MOY	R1_ HBUFST	; Point to start of Buffer
8290	3428	847		CRILL	REGACC	; request access to internal busses
			IDNP1:			
829F		849		MOV	A, eri	; get a byte of data
82A9		858		MOV	R5, A	; SAVE DATA TO WRITE
	3445	851		CALL	WRITE	; WRITE TO 2816
02H3 02R5	343R	852 853		CRILL INC	remadr R1	; RELEASE ADDRESS LINES ; BUMP POINTER
	3496	854		CALL	KL INCADR	; INCREMENT EE ADDRESS
	EC9F	855		DJNZ	R4, SHDHP1	; DECREMENT COUNT - IF NOT ZERO, WRITE NXT BYTE
02110	60.71	856		DOING.	NT7 JAN/18 1	
		857		;	DONE HRITING B	uffer - Check IF done with All Bytes
		858		-		
02AA	FE	859		NOV	A. R6	; Check if count bytes are 0
82AB	4F	860		ORL	A, R7	; or in hi and low order count bytes
02AC	967E	861		jnz	SERWRT	; if Nonzero, get another buffer full of data
82AE	0423	862		JMP	CHIDCPL.	; IF DONE GO TO COMMAND COMPLETE ROUTINE
		863				
		864				
		865		j	series read co	MMMD
		866				
	- 400	867 5			00000	
	3428	868		CALL	REQACC	; request access to local busses ; read from 2816 memory
	3407	869		CALL	READ	; output serially or to data bus buffer
	540A 3438	870		CALL	output Renadr	; RELEASE ADDRESS PINS
	3496	871 872		CALL	INCADR	; INCREMENT EE ADDRESS
	349F	873		CRILL	DECCNT	; decrement count and set z flag if count=0
	96B0	874		JNZ	SERRD	; READ AGAIN IF NOT DONE
	8423	875		JMP	CHIDCPL	; go to command complete routine
		876				
		877				
		878				
02C0	4400	879 I	CDRD :	JNP	IC	; OFF-PAGE REFERENCE TO ILLEGAL COMMAND ROUTINE
		889				
		881				
0300		882		ORG	300H	
		883	100703	_		
			IRSTP3	•		
		885 886		;	ENABLE DIRECT	
		887		,	LIVIDLE VINCO	MALIE COMMENT
		888 E	NDU			
0300	05	889		SEL	RB1	; select alternate register set
0301		890		MOV	A, R3	; GET DBB STATUS
	4340	891		ORL	A, #040H	SET DIRECT WRITE BIT
0304		892		MOV	R3, A	; restore DBB status
0305		893		CLR	FØ	; SET DIRECT WRITE POSSIBLE FLAG
0306	95	894		CPL	FØ	
0307	0423	895		JNP	CMDCPL	; Command Complete
		896				
		897			51000 P 51000	
		898		į	DISHBLE DIRECT	r write command

AP-137

APPENDIX D: 8298 E²PROM CONTROLLER FIRMWARE LISTING

LOC	OBJ	LINE	SOURCE	STATEMENT	
		899			
0200	NE	900 DISDW:		004	
0309		901	SEL	RB1	POINT TO ALTERNATE REGISTER SET
030A		982	MOV	A, R3	; GET DBB STATUS
0308		903	ANL	A, #NOT 40H	; CLEAR D/N BIT AS WELL AS EXTRANEOUS BIT
030D		964	MOV	R3, A	; RESTORE DBB STATUS
030E	0423	985	JNP	CMDCPL	; go to command complete routine
		986 987			
		907 908		0000T DO 0 0	Software reset
		989	;	nbuki - Du ni:	DUT IMAKE KEDEI
		910 ABORT:			
0310	×	910 mouki: 911		87.0	; see if vpp on
0310		911 912	MOVD	P7, A	; SEE IF VEF UN ; IF YES, TURN OFF VPP
		912 913	jbø Crill	AB10 Shut	; IF YES, TURN UPP YPP
0313	5919		CHILL	5001	
0745	E400	914 AB10:	0011	newor	
0315		915	CRILL	REMCE	; REMOVE CHIP ERRSE IN CRSE IT WAS ON
0317	0923	916	JMP	CNIDCPL	; END OF COMMAND
		917			
		918 010			
		919 928	;	COMPANYS IN D	e used after an abort
		920 921		0000 1011 0000	
		921 922	;	Read Low addre	ESS CUTITINU
0240	004.4	923 READAL		00 40000 0	DOTHER TO LOUGODER OPPORTS DEC
0319		924	MOV	RO, #ADRLO	; POINT TO LOW ORDER ADDRESS REG.
031B		925	MOV	a, ero	READ IT INTO ACC.
031C		926	DEC	A	; DECREMENT TO GIVE CORRECT VALUE
031D	9900	927	JMP	RDCPL	
		928		0000 11701 0001	
		929	;	Read High addi	KESS CUTTERNU
		930 934 050000	i.		
031F	004 E	931 READAH 932		00 800001	; POINT TO HIGH ORDER ADDRESS REG.
031F 0321			MOV	R9, #ADRHI	; PUINT TO HIGH OKVER HOUKESS REG.
0322		933 934	nov Jnp	r, erg RDCPL	
0322	4900	934 935	JAC	KUUPL	
		935 936		READ WRITE DAT	
			;	KERV WKITE DH	IN COMMIND
		937 970 DEONID			
0704	ED	938 READWR		0.05	
0324		939	MOY	AL R5	
0325	4400	948	JMP	RDCPL	
		941			
		942 \$ Eject			

AFN-02027A

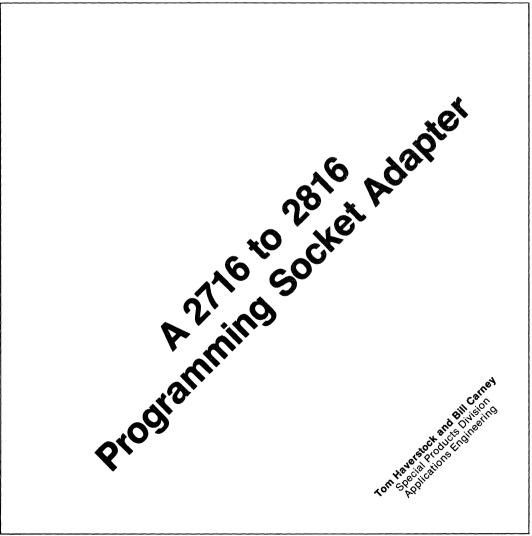
LOC OBJ	LINE 943	SOURCE	STATEMENT	
	944 945	j		*********
	945 946		Page 3 data ta	DIEC
	947	i	rnac 3 vnin in	OLES
	948 949	;	****************************	**************************************
0365	950	ORG	365H	
	951			
	952			
	953			
	954	j	INSTRUCTION TABLE	
	955 956		Format:	
	957	;	ruknni:	
	958	i i	1st byte = command desi	OTOTOD -
	959	;		
	960	;	BIT(S)	DESCRIPTION
	961	;		
	962	;	0- 1	Starting byte # (0-3) of data bytes
	963	;		to get for this command
	964	j	2-4	Type (from data dest table) of data
	965	i		BYTES TO GET
	966	i	5	NO DATA BYTES TO RECEIVE FOR THIS
	967	i	<i>c</i>	COMMAND (=1)
	968	i	6 7	PAGE 3 COMMAND
	969 970	; ;	(Command can be executed under serial. 1/0 Mode
	971	;		170 HOVE
	972	;	2ND BYTE = I ON ORDER ST	TARTING ADDRESS OF COMMAND
	973	•		
	974	;	Comment Format: CMMD #	Command, type of data, # bytes to get
	975			
	976			
	977 INSTR			
0365 20	978	DB	20H LOW IC	; SUB Command - We shouldn't get here
0366 00 0367 83	979	DB	400000440 1.00 00000	; 1 = Read, type=0, byte=1
0368 02	3(3	VD	100000110/LOW KENDC	, I - READ, (TFE-0, DTIE-I
0369 86	980	DB	10000110B, LOW WRITEC	; 2 = WRITE, TYPE=1, BYTES=2
036A 10				
0368 20	981	DB	20H, LOW IC	; 3 = IC
0360 00				
	982			
	983	j	sub commands	
	984 005 CUDTD			
07CD 20	985 SUBTB		200 1.00 10	
0360 20 036E 00	986	DB	20H, LOW IC	; 0 = Illegal command
036F 20	987	DB	20H, LOW IC	; 1 = Illegal command
0370 00	201			
0371 20	988	DB	20H, LOW IC	; 2 = IC
0372 00				
0373 20	989	DB	20H, LOW IC	; 3 = IC
8374 88				

AP-137	
AF-13/	

	APPENI	DIX D: 82	298 E ² PROM CONT	ROLLER FIRMWARE LISTING
LOC OBJ	LINE	SOURCE	STATEMENT	
0375 20 0376 00	990	DB	20H, LOW IC	; 4 = IC
0376 00 0377 09	991	DB	00001001B, LOW BLOCKE	; 5 = Block Errse, type=2, bytes=3
0378 39 0379 98	992	DB	10011011B, LON CERRSE	; 6 = CHIP ERRSE, TYPE=6, BYTES=1
1378 16 1378 17	99 3	DB	000101118, LON CMDEX	; 7 = INIT WRITE TIME, TYPE=5, BYTES=1
937C 98 937D 29	994	DB	20H, LOW IC	; 8 = IC
337E 00	551	00		, 0 - 10
037F 20	995	DB	20H, LOW IC	; 9 = IC
3380 00	00 7	50	044000000 1 011 000007	
1381 60 1382 10	996	DB	OTTOOOGOB! TOM UPOK!	; a = abort, type=0, bytes=0
3383 20	997	DB	20H, LON IC	B = IC
384 00	221			, , , , , , , , , , , , , , , , , , , ,
1385 88 1386 47	998	DB	10001011B, LOW MULTHR	; C = MULTIPLE WRITE, TYPE=2,BYTE=1
	999			
	1999	REPT	190	
	1001	DB	20H, LOW IC	; D-1F = ILLEGAL COMMAND
	1002	ENDM		
387 20	1003+	DB	20H, LOW IC	; D-1F = ILLEGAL COMMAND
388 00	400.4			
1389 210 1388 010	1004+	DB	20H LON IC	; D-1F = Illegal command
388 20	1005+	DB	20H LON IC	; D-1F = Illegal command
38C 00	10031	20	ZOID LOW IC) D-IF - ILLEURE CONTINUE
380 20	1006+	DB	20H, LOW IC	; D-1F = Illegal command
38E 00				
38F 20	1007+	DB	20H LOW IC	; D-1F = Illegal command
390 00				
391 20	1008+	DB	20H, LOW IC	; D-1F = ILLEGAL COMMAND
1392 00 1393 20	1009+	DB	20H, LON IC	; D-1F = Illegal command
1393 20 1394 00	10074	00	2005 LOW IC	, D-IL - ILLEGAL CONTAND
395 28	1010+	DB	20H, LOW IC	; D-1F = Illegal command
396 00				
397 20	1011+	DB	20H, LOW IC	; D-1F = ILLEGAL COMMAND
398 00				
399 20	1012+	DB	20H, LON IC	; D-1F = Illegal command
39A 00 39B 20	1013+	DB	29H, LOW IC	; D-1F = Illegri, command
390 20	1013.	10	2010 LON 10	
390 20	1014+	DB	20H LOW IC	; D-1F = Illegal command
139E 00				
139F 20	1015+	DB	20H, LOW IC	; D-1F = ILLEGAL COMMAND
3A0 00	1047	50	000 100 10	
13A1 20 13A2 00	1016+	DB	20H, LOW IC	; D-1F = Illegal command
3A3 20	1017+	DB	20H, LON IC	; D-1F = Illegre Command
I3A4 00	2021	20		· · · · · · · · · · · · · · · · · · ·
I3R5 20	1018+	DB	20H, LOW IC	; D-1F = Illegal command
13A6 00				
13A7 20	1019+	DB	20H, LOW IC	; D-1F = Illegal command

LOC OBJ	LINE	source s	TATEMENT	
03A8 00 03A9 20	1020+	DB	20H LON IC	; D-1F = Illegal command
03AA 00				
03AB 20 03AC 00	1021+	DB	20H LON IC	; D-1F = Illegal command
0310 00	1022			
03AD 20	1623	DB	20H LON IC	; 29 = IC
03AE 00				
03AF 20	1024	DB	20H, LOW IC	; 21 = IC
0380 00				
03B1 60	1025	DB	011000008, LOW ENDW	; $22 = \text{ENABLE D/W}$
0382 00 0383 60	4000	00		23 - NICODIE NAL
0383 60 0384 09	1026	DB	01100000B, LOW DISDW	; 23 = DISABLE D/W
0385 80	1827	DB	100011008, LON SERRD	; 24 = SERIES READ, TYPE=3, BYTES=4
03B6 B0	1011			
03B7 8C	1028	08	10001100B, LON SERNET	; 25 = SERIES WRITE, TYPE=3, BYTES=4
03B8 7E				
0389 20	1029	DB	20H LOW IC	; 26 = IC
03BA 00				
03BB 20	1030	DB	20H, LOW IC	; 27 = IC
03BC 00 03BD 60	1031	DB	9119999990 I OLI DESDOI	; 28 = read low addr, no data
03BE 19	1031	00	OTTOGOOD) FOM KEINUE	
03BF 60	1032	DB	01100000B, LOW READAH	; 29 = Read Hi Addr, No Data
03C0 1F				
03C1 60	1033	DB	01100000B, LOW READWR	; 2r = read write data, no data to rcy
03C2 24				
	1034			
	1035	REPT 5D		-20.25 = 10.5001 CONNONE
	1036 1037	db Enidmi	20H, LON IC	; 2B-3F = Illegal command ; 30-3F detected earlier
03C3 20	1037	DB	20H LON IC	; 28-3F = ILLEGAL CONTIAND
03C4 00	1030.	~	LOID LOW TO	
03C5 20	1039+	DB	20H LOW IC	; 2B-3F = Illegal Command
0306 00				
0307 20	1040+	DB	20H, LOW IC	; 2B-3F = Illegal command
03C8 00				
03C9 20	1041+	DB	20H, LOW IC	; 2B-3F = Illegal command
03CA 00 03CB 20	1842+	DB	20HLLOW IC	; 28-3F = Illegal command
03CC 00	10421	00	ZON LOW IC) 20-34 - ILLEURE CONVINC
	1043			
	1044			
	1045	;	DATA DESTINATION TABLE	
	1046			
	1047	i	FORMAT:	
	1048	;	DB ADR OF	BYTE 3, BYTE 2, BYTE 1, BYTE 0 ; TYPE=N
	1049 4050 NCCTOL			
03CD 00	1050 DESTBL: 1051	DB	0, 0, 0, ADRLO	; TYPE 0
03CE 00	1001	70	OF OF OF TRACE	/ THE V
03CF 00				
03D0 14				
03D1 00	1052	DB	0, ADRHI, ADRLO, WRTDAT	; TYPE 1

AP-137


APPENDIX D: 8298 E² PROM CONTROLLER FIRMWARE LISTING

63D2 15 93D3 14 63D4 65 63D5 66 63D9 15 63D6 165 63D7 14 63D6 15 63D7 14 63D8 66 63D9 15 15 1854 D8 63D6 14 63D6 14 63D6 16 63D7 14 63D8 14 63D9 15 15 1854 D8 63D0 14 63D0 67 63D0 67 63D1 1855 08 8, 9, 8, ADRLO 7 63D2 14 63D4 1856 63E2 14 63E3 16 63E4 18 63E5 18 63E5 18 63E5 18 63E5 18 63E5 18 63E5	
93D3 14 93D4 95 93D5 96 1953 D8 9. RORHI, RORLO, CNTLO ; TYPE 2 93D6 15 1953 D8 9. RORHI, RORLO, CNTLO ; TYPE 3 93D7 14 9306 96 9306 93D8 96 1954 D8 RORHI, RORLO, CNTHI, CNTLO ; TYPE 3 93D6 14 9306 97 93D7 14 9306 97 93D6 97 9306 98 93D6 97 9306 98 93D6 98 98 98 99 93D6 98 99 99 99 93D7 98 99 99 99 93E9 14 99 99 99 93E1 98 198 99 99 99 93E2 98 198 99 99 99 99 93E3 98 198 99 99 99 99 99 99 93E3 99 198 99	
0304 05 0305 00 1053 D8 0, ADRHI, ADRLO, CNTLO ; TYPE 2 0305 15 0307 14 0308 06 0309 15 1054 D8 ADRHI, ADRLO, CNTHI, CNTLO ; TYPE 3 0309 15 1054 D8 ADRHI, ADRLO, CNTHI, CNTLO ; TYPE 3 0309 15 1054 D8 ADRHI, ADRLO, CNTHI, CNTLO ; TYPE 3 0301 14 0302 06 0305 08 0302 06 1055 D8 0, 0, ADRLO ; TYPE 4 0305 06 0855 D8 0, 0, ADRLO ; TYPE 5 0326 04 1056 D8 0, 0, 0, INTIME ; TYPE 5 0325 06 1056 D8 0, 0, 0, ADRHI ; TYPE 5 0325 06 1057 D8 0, 0, 0, ADRHI ; TYPE 6 0325 06 1057 D8 0, 0, 0, ADRHI ; TYPE 6 0325 06 1057 D8 0, 0, 0, ADRHI ; TYPE 6 0326 06 1057 D8 <t< td=""><td></td></t<>	
0306 15 0307 14 0308 06 0309 15 1854 D8 ADRHI, ADRLO, CNTHI, CNTLO; TYPE 3 0308 07 0300 06 0300 07 0300 06 1855 D8 0, 0, 0, ADRLO ; TYPE 4 0300 06 1855 D8 0, 0, 0, ADRLO ; TYPE 4 0300 06 1855 D8 0, 0, 0, ADRLO ; TYPE 4 0301 06 0852 00 1856 D8 0, 0, 0, INTIME ; TYPE 5 0322 00 1856 D8 0, 0, 0, ADRHI ; TYPE 5 0 0324 1E 0 1857 D8 0, 0, 0, ADRHI ; TYPE 6 0325 09 1857 D8 0, 0, 0, ADRHI ; TYPE 6 0325 09 1857 D8 0, 0, 0, ADRHI ; TYPE 6 0325 09 1857 D8 0, 0, 0, ADRHI ; TYPE 6 0325 15 1858 15 1858	
9307 14 9308 96 9309 15 1954 DB ADRHI, ADRLO, CNTHI, CNTLO; TYPE 3 9308 14 9308 97 9307 14 9308 97 9308 97 9308 97 9300 96 9300 96 9300 96 9300 96 9301 96 9302 96 9305 96 9305 96 9305 96 9305 96 9325 96 9325 96 9325 96 9325 96 9325 96 9325 96 9325 96 9326 1857 9327 98 9328 15 1958 15	
03D8 06 03D9 15 1954 DB ADRHI, ADRLO, CNTHI, CNTLO; TYPE 3 03D8 07 03D8 07 03D0 06 1955 DB 0, 0, 0, ADRLO ; TYPE 4 03D6 06 03D7 06 03D7 06 03D6 06 1955 DB 0, 0, 0, ADRLO ; TYPE 4 03D7 06 08 0, 0, 0, INTIME ; TYPE 5 03E2 00 03E3 00 03E3 00 03E4 16 1857 DB 0, 0, 0, ADRHI ; TYPE 5 03E5 00 1857 DB 0, 0, 0, ADRHI ; TYPE 6 03E4 16 1857 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 03E3 10 1057 10 03E5 10 1857 10 0, 0, 0, ADRHI ; TYPE 6 03E5 10 1857 18 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
03D9 15 1054 DB ADRH1, ADRLO, CNTHI, CNTLO; TYPE 3 03DA 14 03DB 07 03DC 06 03DD 08 1055 03DE 09 03DF 00 03DF 00 03DF 00 03DF 00 03E0 14 03E1 00 03E2 00 03E3 00 03E4 1E 03E5 1057 0B 0, 0, 0, ADRHI ; TYPE 6 03E4 16 03E5 100 03E7 08 03E8 15 1058 1057	
03DA 14 03DB 07 03DC 06 03DD 00 1055 DB 0, 0, 0, ADRLO ; TYPE 4 03DE 00 03DF 00 03DF 00 03E0 14 03E1 00 1055 DB 0, 0, 0, INTIME ; TYPE 5 03E2 00 00 03E3 00 00 03E4 12 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 1057 DB 0, 0, ADRHI ; TYPE 6 03E5 00 1057 DB 0, 0, ADRHI ; TYPE 6 03E5 10 1058 1058 1058 1058	
03D8 07 03D0 06 03D0 09 1955 DB 0, 0, 0, ADRLO ; TYPE 4 03D6 09 03D7 00 03D7 00 03D7 00 03D8 0, 0, 0, ADRLO ; TYPE 4 03D6 00 03D7 00 03D7 03E1 00 1056 DB 0, 0, 0, INTIME ; TYPE 5 03E2 00 03E3 00 03E4 12 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 03E7 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 10 1058 1058 1058 1058	
03DC 06 03D0 09 1955 DB 0, 0, 0, ADRLO ; TYPE 4 03DF 09 03DF 09 03DF 09 03DF 09 03DF 09 03E0 14 03E1 09 1056 DB 0, 0, 0, INTIME ; TYPE 5 03E2 09 03E3 09 03E3 09 03E4 1E 03E5 09 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 09 0855 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 09 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E5 15 1058 1057 1058 1057	
03D0 00 1055 D8 0, 0, 0, ADRLO ; TYPE 4 03DF 00 03E0 14 03E0 14 03E1 00 1056 D8 0, 0, 0, INTIME ; TYPE 5 03E2 00 03E3 00 03E4 16 03E5 00 1057 D8 0, 0, 0, ADRHI ; TYPE 6 03E6 00 1057 D8 0, 0, 0, ADRHI ; TYPE 6 03E3 10 1058 1058 1058	
03DE 00 03DF 00 03E0 14 03E1 00 1056 DB 0, 0, 0, INTIME ; TYPE 5 03E2 00 03E3 00 03E4 1E 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058 1058 1058 1058 1058	
03DF 00 03E0 14 03E1 00 1056 DB 0,0,0,INTIME ; TYPE 5 03E2 00 03E3 00 03E4 1E 03E5 00 1057 DB 0,0,0,ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058	
03E0 14 03E1 00 1056 DB 0,0,0,INTIME ; TYPE 5 03E2 00 03E3 00 03E4 1E 03E5 00 1057 DB 0,0,0, ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058	
03E1 00 1056 DB 0, 0, 0, INTIME ; TYPE 5 03E2 00 03E3 00 03E4 1E 03E5 00 1057 DB 0, 0, 0, ADRHI ; TYPE 6 03E6 00 03E7 00 03E7 00 03E8 15 1058 1058	
03E2 00 03E3 00 03E4 1E 03E5 00 1057 DB 0,0,0, ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058	
03E3 00 03E4 1E 03E5 00 1057 DB 0,0,0,ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058	
03E4 1E 03E5 00 1057 DB 0,0,0,ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058	
03E5 00 1057 DB 0,0,0,ADRHI ; TYPE 6 03E6 00 03E7 00 03E8 15 1058	
03E6 00 03E7 00 03E8 15 1058	
03E7 00 03E8 15 1058	
03E8 15 1058	
1058	
USER SYMBOLS	
AB10 0315 ABORT 0310 ABORTC 000A ADRHI 0015 ADRLO 0014 ASAVE 001C BL10 023D BLOCKE 0	
3UFCNT 0004 BUFST 0020 CERRSE 0216 CKD10 0188 CKDBB 0183 CKDEX 0187 CHDCPL 0023 CHDEX 03	
CNTHI 9997 CNTLO 9996 CONFE 901A DATDES 901F DATRCY 99C7 DEBI 9933 DEBIO7 993F DESTAT 9	
	300
	372
FIRSTI 0200 FIRSTP 0300 GETCMD 0015 GETDAT 009F GETDBB 00B3 GOTACC 012F IBFACT FF20 IBFINA 00 4C 0200 ICDRD 02C0 ILLCD1 0190 ILLCD0 006D ILLCMD 002E INCADR 0196 INCEX 019E ININT 00	
ILLING 8288 ICOND 8208 ILLIGI 8158 ILLIGO 8880 ILLIGO 8820 INCHAR 8158 INCEX 8158 INTEN 8 INIT 8889 INITHR 887F INSTEL 8365 INTCHT 8883 INTIME 8815 LOCKUP 8856 MRYBIC 8848 MULTHR 83	
THEEND 693E NUMPER 1 6262 NULLINE 6365 NULLINE 6665 NULLINE 661E LOCKOF 6556 NULLINE 6646 NOLINIE 6	
UTR20 011E OUTADR 0113 OUTPUT 020A P3INST 0098 PC03 0080 PC05 0080 PC10 009A PCNND 00	
20ACT 0009 RDCPL 0206 RDINA 0002 READ 0107 READAH 031F READAL 0319 READC 0202 READWR 0	
RELEAS 0130 RELECT 0138 REMARK 013A REMCE 0230 REMRET 0141 REGACC 0128 REGACT 0007 RESET 0	
SAVEHI 0089 SCR0 0090 SCR0P 0018 SCR1 0001 SCR1P 0019 SCR2 0082 SERRD 0280 SERNRT 0	
SETGET 99911 SHUT 9174 SUBCHD 9975 SUBTEL 936D SWEEND 9949 SWDMP9 8299 SWDMP1 629F SWDUMP 6	
SWGET 0283 TIME FF83 TIMER 00FC VPPACT 000E VPPFAL 000E VPPFAL 000E VPPINA FFF1 WAITAC 0120 WAITB 0	
ARTDAT 8995 MRWAIT 816A ZTEST 81AF	
RSSEMBLY COMPLETE, NO ERRORS	

APPLICATION NOTE

AP-138

September 1981

INTRODUCTION

This application note will examine and discuss a socket adapter that allows the user to interface a 2816 E^2 PROM with a 2716 EPROM programmer. The adapter permits the programmer to exercise the features of the 2816—read, byte write and chip erase. Compatability with most 2716 programmers is achieved through a small component count, thereby providing a cost-efficient means of programming E^2 PROMS.

HARDWARE

The E^2 pinout, shown in Figure 1, is nearly identical to that of the industry standard, JEDEC approved 2716 EPROM. There are, however, several major differences in the three control signals, V_{PP}, CE, and OE. These signals require special circuitry to permit the 2816 to be programmed by a 2716 programmer. One of these circuits is for generating the 2816 programming voltage waveform, V_{PP}. Figure 2 exhibits the difference between the V_{PP} waveforms of the 2716 and

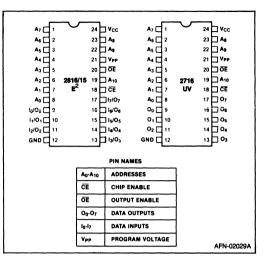


Figure 1. 2816 Pinout

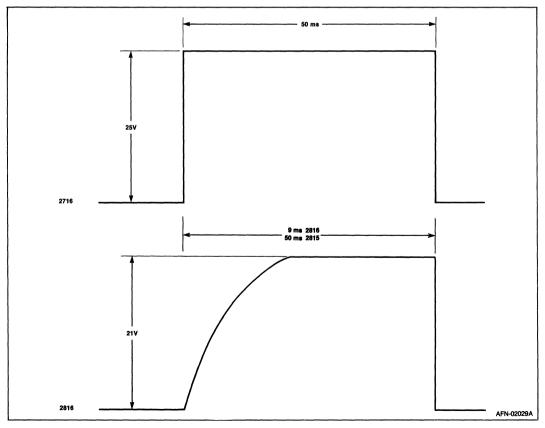


Figure 2. V_{PP} Waveform for 2716 and 2816

2816. The 2716 EPROM is programmed by a 25V, 50 ms long pulse per byte, whereas the 2816 E^2 PROM requires a 21V pulse of 9 to 15 ms in duration. The 2815, a new 16K E^2 PROM, requires a 50 ms pulse. The socket adapter can be set for either value, by a simple resistor/capacitor change. For the capability to program both, the pulse width can be set at 50 ms. Additionally, the V_{PP} pulse must possess a specific exponential rise time constant. Therefore, special waveshaping and timing circuitry is necessary to produce an E^2 PROM programming pulse from the 2716 programmer's output. (The nature of the V_{PP} pulse is explained in detail in AP-101.)

Figure 3 shows the circuit that will produce the 2816/15 compatible programming pulse as well as the \overline{CE} signal. The 4011 CMOS NAND gates are required to isolate the adapter from the programmer outputs. A TTL 7400 bipolar NAND gate cannot be used as its outputs would appear to the programmer as a leaky MOS device and can cause the programming operation to cease in some manufacturer's programmers.

Upon assertion of \overline{CE} by the 2716 programmer, the adapter circuitry provides a \overline{CE} -out signal to the socket containing the 2816. If V_{PP} should be applied at this time, the 9602 one-shot is triggered and generates a pulse of approximately 12 ms. This pulse is then shaped by the dual op-amp circuit to produce the correct exponential rise necessary to program the 2816. The rise time constant is determined by the 10K resistor and the 0.05 μ F capacitor and is nominally 500 μ sec. The net result of the circuitry of Figure 3 is the transformation of a 25V, 50 ms square pulse into a 12 ms long, 21V programming pulse with a 500 μ s rise time constant, and the generation of the CE signal. For the 2815, this pulse width is 50 ms.

In Figure 4, V_{PX} will pass uninterrupted to the 2816 through the DH0006 current driver when a programming operation is performed. If, however, the E^2 PROM is to be chip erased, then the switch is placed as shown. This causes the digital feedback network, consisting of the two 74LS74 flip-flops, to be connected to the DH0006 current driver. This feedback has the

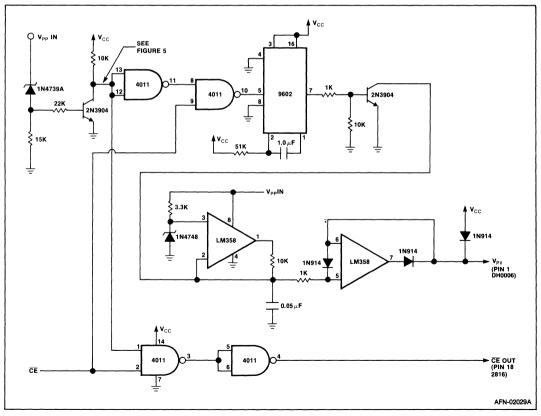


Figure 3. 2816 Socket Adapter for 2716 Programmers

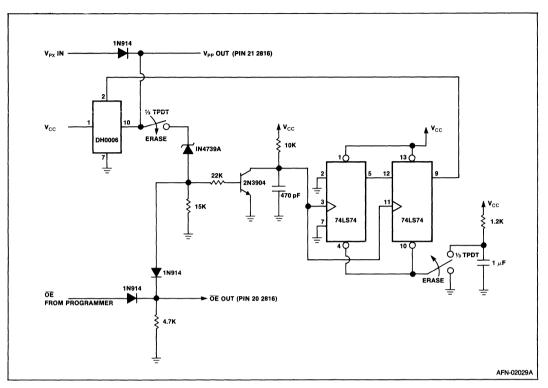


Figure 4. Multiple Erase Preventer and Chip Erase Circuitry

effect of gating the transmission of V_{PX} to the 2816. If chip erase mode is selected, only a single programming pulse will be passed to the E^2PROM . This is done to prevent the 2816 from receiving multiple chip erase commands. The functional lifetime of the device is limited to 10,000 chip erase cycles. Concurrent with the application of the V_{PP} pulse in the chip erase mode will be the generation of the OE signal that sets the 2816 chip erase function. This control signal is a non-TTL level of approximately 13 volts and is the result of the clamped zener voltage. Protection of the programmer OE output from reverse current flow is provided by the isolation diode. Thus, with one programming pulse the entire 2816 array can be quickly erased.

Some programmers will check a device before programming it to verify that it is indeed unprogrammed. If it is not erased, "programming" will not be possible. The circuit shown in Figure 5 accomplishes the task of making the programmer "think" that the device in the 2816 socket is erased prior to chip erasure by pulling all data lines to 5 volts. During read and program, the 74LS245 bus transceiver will pass the correct data between the programmer and the E^2 PROM.

OPERATION

It is necessary to configure the programmer for use with Intel 2716 devices. The adapter is inserted into the 2716 socket on the programmer and the E^2 PROM is then placed into the Textool socket on the adapter board.

Reading from the 2816 is done exactly as it would be for a 2716. The socket adapter switch must be in the PROGRAM position.

To write bytes of data to the E^2 , it is first necessary to ensure that the bytes are erased (FF hex). Chip erase mode is engaged by placing the socket adapter switch in the ERASE position. Subsequently, a program cycle is initiated by the programmer at any 2816 address with any data. Upon the assertion of the first V_{PP} pulse, the entire 2816 array will be erased. Internal circuitry on the E^2 PROM OE line is responsible for determining the chip erase operation. After the entire chip has been erased, it can then be programmed with data by placing the switch in the PROGRAM position. Data is simply programmed with the device at the desired locations.

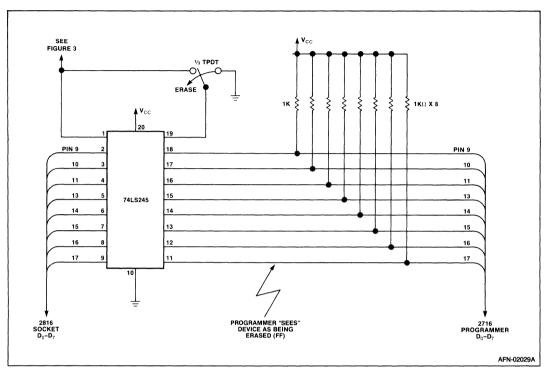
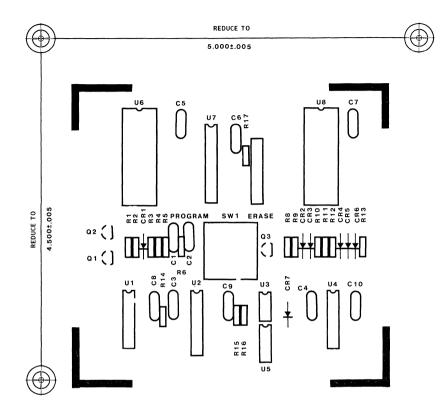
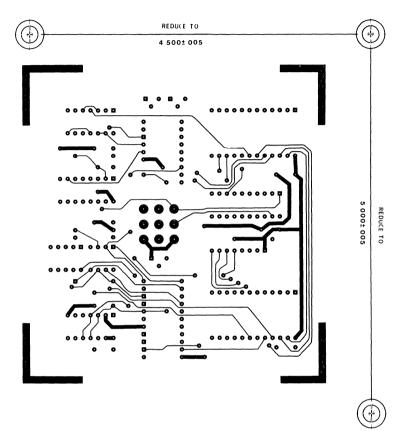


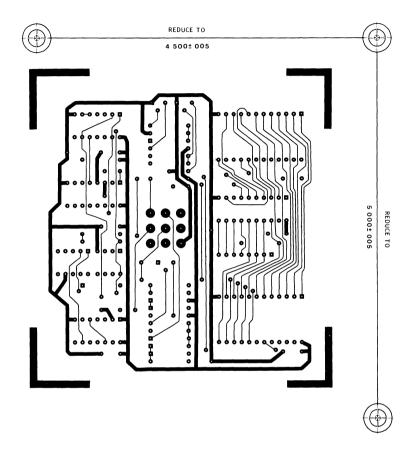
Figure 5. Erase Conditioner

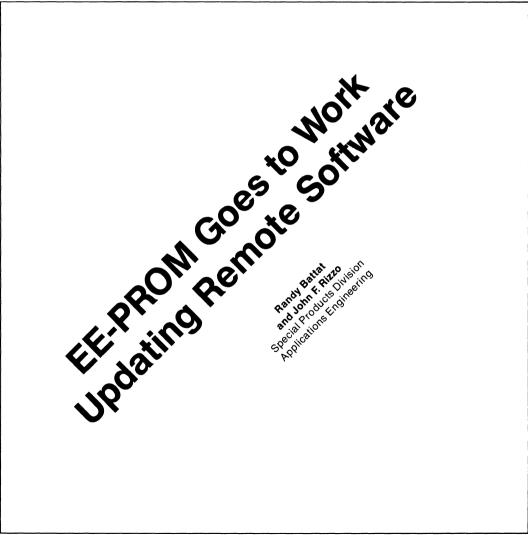

Some programmers will not generate a V_{PP} pulse or else skip over a given address if the data is FF (Pro-Log and DATA I/O are examples). For this reason, some type of data must be "programmed" into the device prior to the chip erasure mode. Since the device will become erased as expected by the user but not the programmer, the 2816 will fail subsequent verifies and an error message will ensue. This is typical of most programmers.


CONCLUSION

 E^2 PROM is ideally suited in applications requiring that program store or data be revised occasionally. The 2816 socket adapter allows the user to program E^2 PROMs on his existing EPROM hardware.

2816 Socket Adapter Parts List


R	1	22K	C1	.05 µF
R	2	15K	C2, C3	1.0 µF
R	3	10K	C4	470 pF
R	4	1K	C5-C10	0.1 μF
R	15	10K		
R	6	1.2K		
R	8	10K	Q1-Q3	2N3904
R	9	1K		
R	10	10K	U1	4011
R	11	22K	U2	9602
R	R12	15K	U3	LM358
R	13	4.7K	U4	74LS74
R	14	51K	U5	DH0006
R	15	1N4748	U6	TEXTOOL SOCKET
R	R16	2.7	U7	74LS245
R	17	1K	U8	WIRE-WRAP PINS
R	P1	SIP X 7 764-1-1K		
С	R1	1N4739A		
С	CR2	1N914		
С	CR3	1N914		
С	R4	1N4739A		
С	R5	1N914		
С	R6	1N914		
C	R7	1N914		
С	R8	1N914		
S	1	TPDT		


BACK

June 1981

EE-PROM goes to work updating remote software

Analog signals transmitted over telephone-line data links alter on-site memory for microsystem upgrading and maintenance

by Randy Battat and John F. Rizzo, Intel Corp., Santa Clara, Calif

□ Microprocessor system software needs frequent revision, which is inconvenient, difficult, and costly. But because it combines the nonvolatility of ROM and the flexibility of random-access memory, an electrically erasable programmable read-only memory at the microprocessor site allows remote software changes to be made through a telephone-line data link, eliminating field service expenses.

As technology progresses, design and service costs are coming to determine—more than component costs—the cost of microprocessor systems (see "The cost of software service"). Intel's 2816 EE-PROM not only solves the service problems, but it also makes existing designs more functional since they need only be updated, not replaced.

Memory requirements

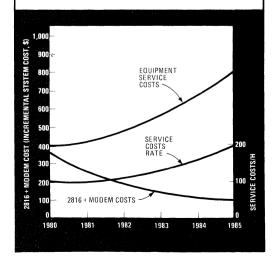
In a remotely controlled EE-PROM, the memory must be nonvolatile, retaining data even when the host system is powered down. Furthermore, with today's high-speed microprocessor systems such as the Intel 8086-2, the Zilog Z8000, and the Motorola MC68000, only fast memory devices can achieve full throughput. For example, a high-performance 8086-2 system with a zero time wait-state operation requires a memory-read access time of 250 nanoseconds.

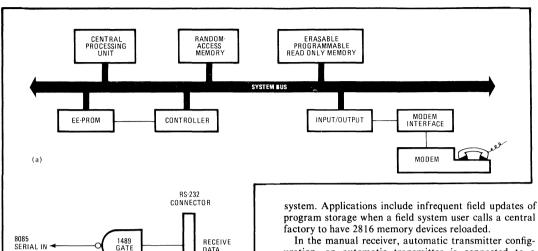
Also, as software costs rise, high-level languages will often be used to reduce design time. These languages are memory-intensive, requiring high-density memory chips to effectively contain dedicated system programs without sacrificing printed-circuit board space.

Finally, a remote link-addressable EE-PROM must have read-mostly operation. Normally program memory and certain types of data memory are accessed in a read mode. At times, however, it is necessary to reload an entire program (as in the case of a software revision) or to reconfigure portions of data storage (when only certain parameters need to be changed). Then the ability to write into the memory in the circuit is essential.

The 2816 fills all these user requirements. It is nonvolatile, having greater than 20-year data retention. Its access time of 250 ns is compatible with today's highspeed microcomputer systems. The chip is also electrically erasable on a per-byte or per-chip basis—a true read-mostly memory. It offers users 16,384 bits of storage organized as 2048 8-bit bytes.

The EE-PROM allows in-circuit erase and write, opera-


tions so it can be written into from many information sources. But because it is an excellent medium for storing nonvolatile programs and data, it is particularly suited to downline loading—in this case, in changing memory contents at remote sites via a data link.


The telephone is ideal for transferring information,

The cost of software service

Servicing a software change in a field application today averages about \$100 per hour By 1985, assuming an inflation rate of 15%, these costs will approach \$200/h. A typical microprocessor system (2,000 in the field) requires a service time of 2 h. If each system needs to be updated a minimum of two times during the product's life, the cost is at least \$400 per system That means \$800,000 for the total retrofit. If a doubling of the cost of labor in the next five years is assumed, the new retrofitting cost comes to \$1.6 million

By installing a remote-software serial link, software can be updated over telephone lines Adding a 2816 EE-PROM and a remote link to the system will cost about \$50, a mere one sixteenth the 1985 service cost Today, as seen in the figure, a 40% savings can result.

DATA

TRANSMIT

DATA

uration, an automatic transmitter is connected to a microprocessor system that answers the telephone with an automatic-answering modem and then transmits information to 2816s located in remote areas. Applications include field updates, as previously discussed, though an operator on the transmitting end is not needed. This is advantageous when many field systems will be calling the central factory.

For automatic receiver, manual transmitter operations, a microcomputer system automatically answers the phone to receive information that will eventually be loaded into EE-PROM devices. This configuration is used in unattended systems, where, for example, a processor controls remote communications switches or repeaters. If parameters need to be changed, the remote switching processor is telephoned and new parameters transmitted to the EE-PROM in the system. This application exploits the byte-erase feature of the 2816. Only those EE-PROM locations that contain parameters to be changed need be rewritten.

The last configuration, with automatic receiver and automatic transmitter, eliminates the operator. Here an automatic-dialing modem is used. A central computer could be requested to call many remote units to automatically update programs or data in the EE-PROM memory without human intervention.

The hardware elements of an automatic receiver and an automatic transmitter are the same, so describing a system with a manual receiver and an automatic transmitter can help explain all four configurations. Here the human operator on the receiving end initiates transmission by dialing the transmitter and placing a telephone receiver in an acoustic-coupler cradle. The transmitter answers the telephone and transmits data to the receiver. This data is eventually loaded into EE-PROMS.

The significant elements in this configuration are the modem and modem interface, the receiver central processing unit and associated software, and the 2816 and its controller (Fig. 1a). The receiver CPU is connected to a simple modem that converts serial binary data into acoustical tones. The standard Bell 103 modem or equiv-

1. Easy downloading. A microprocessor at a remote site with an EE-PROM as a peripheral may have its software changed by means of a telephone data link (a) An acoustically coupled modem is required with an interface (b) that is simple to implement

1488 GATE

1489

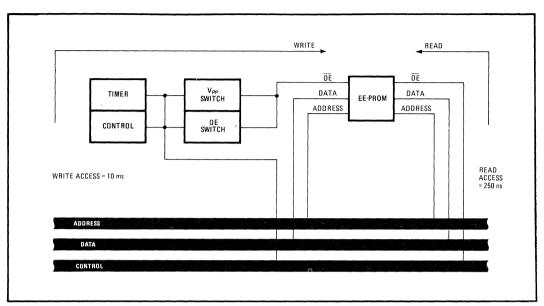
GATE

since it is readily available and requires no special interface. Using an acoustic coupler, serial binary data is converted into high- and low-frequency tones that are then transmitted over a worldwide link. Modems interface easily with microprocessors, and, in addition, the software overhead for such a downline-loading operation is minimal.

Mixing and matching

DATA

8085


DATA

SERIAL OUT

(b)

Programs downline-loaded into EE-PROMs find many applications in both large and small microcomputer systems. But regardless of size, all configurations require a modem to interface electrical signals from a host processor with the acoustically driven telephone. Automatic modems are usually dedicated to a specific telephone line and are completely operated by a host processor. Manual modems are usually portable, relying on an operator to place a telephone receiver in an acoustic-coupler cradle, thereby closing the communication loop. Both automatic and manual modems can be used in EE-PROM telephone communication systems in four possible configurations.

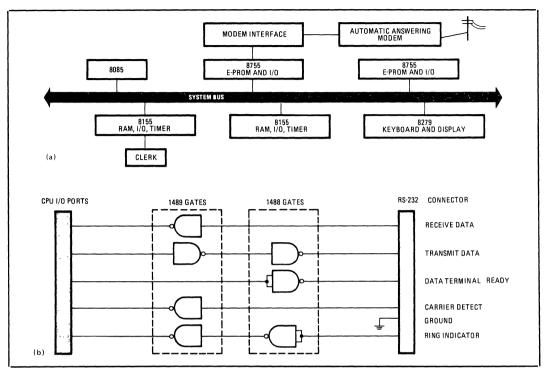
The first configuration uses a manual receiver, manual transmitter design-a cost-effective solution when telephone transmission is not performed often enough to warrant a dedicated telephone line and microprocessor

2. Controller. The circuit shown is typical of the several configurations that an EE-PROM may use to receive data Here, the controller makes the 2816 resemble a slow-write random-access memory. Other configurations may be used depending on the data link's architecture.

alent provides a host system with serial input/output data and various status indicators (such as carrierdetect, which is active when a remote-modem carrier signal is detected). The hardware required is minimal a standard modem can be readily purchased. An RS-232 interface is needed to interface 5-volt TTL signals from a CPU I/O port (or serial data line) with the ± 12 -v RS-232-compatible signals of the modem. Software handles the rest of the downline loading operation.

Figure 1b shows a simple modem interface. The MC1489 converts RS-232 levels into TTL levels, while the MC1488 converts TTL signals into RS-232. Here, serial data I/O lines can be passed directly to a universal asynchronous receiver transmitter (UART) for serial-parallel data conversion. If an 8085 processor is used, the serial I/O lines can be connected to the 8085's serial out-data (SOD) and serial in-data (SID) ports. Another option is to perform the serial-parallel conversion in software. The receiving CPU need only receive data bytes (possibly after a transmitter identification message is received) and program the EE-PROM.

The actual reception of data is simple. The processor first transmits an identifier message sent from the remote transmitter. This latter message may consist of a sequence of binary or ASCII data detailing the location of the transmitter, date and time of transmission, the number of bytes to be transmitted, and the address in EE-PROM of the data to be located. Next, the processor receives a data byte that may be immediately programmed into the 2816 or saved temporarily in RAM. If software performs serial-to-parallel data conversion, data received must be saved in RAM. The 2816 cannot be programmed as each byte is received, since the processor must devote most of its time to receiving data bits and converting them into parallel form. However, if a UART circuit does the data conversion in hardware, data bytes may be saved in EE-PROM memory as soon as they are received.


In this process, if data is transmitted at 300 bits per second and if each character consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit, there will be 11 bits per character and a character will be received every 36.7milliseconds. After every character a 2816 byte must be erased (10 ms) and written (10 ms), leaving 16.7 ms of free time until the next byte is received.

A typical controller

The final consideration in the downline load receiver is a 2816 controller circuit. Figure 2 shows a block diagram of a typical circuit. The read operation for the interface is identical to that for E-PROMS. To read data, chip enable (\overline{CE}) and output enable (\overline{OE}) are taken low after addresses are set up.

To write into the 2816, the host processor simply writes into memory. The controller circuit pulls the processor ready line low, stalling the CPU and stabilizing addresses and data for the 10-ms write interval while the programming pulse (V_{pp}) is active. With the controller, the 2816 resembles a slow-writing RAM except that it needs byte erase prior to writing.

The transmitter consists of a dedicated microcomputer connected to an automatic-answering modem, which is in turn attached to a telephone line. The transmit computer software loops while waiting for an incoming call. When a call is received the modem is signaled to answer the telephone. Information, in the form of data bytes, is received and transmitted in the same fashion as on the receiving end. Essentially, all the user's transmitter sta-

3. Base station. To transmit software changes to a remote-site EE-PROM, a base station (a) might use an 8085 microprocessor, with a keyboard display to help the user keep track of changes. Standard gates on the modem interface (b) furnish the required control signals

tion must do is look for a remote-processor identification message, send its own identification message, transmit data serially, and hang up the telephone. Additional features may be implemented, such as a log of all calls received and their origins.

Figure 3a contains a block diagram of a transmitter base station system. An 8085 processor is used, with an additional 512 bytes of RAM and 4-K bytes of E-PROM. A modem interface is shown, in addition to a key pad and display for local-user operation and a real-time clock for logging date and time information.

In this design, the E-PROM memory contains information program storage and transmittal. This is the data that is to be transmitted to remote processor sites. Note that the data transmitting E-PROM could be replaced by an EE-PROM device to allow for frequent changes in transmission data without requiring the physical replacement of the transmit-data store. RAM is used to save logging information, temporary program data, and a character input buffer that stores received characters when a specific message is sought.

The key pad and display module enables a local basestation operator to interrogate the base station and reset date or time, or access a call log. The clock module is used to keep track of current date and time. Such data may be transmitted to remote processors or may be used locally as a part of the information logged pertaining to each call received.

The modem interface for the base station is very similar to the receiver modem circuit. Figure 3b contains a circuit diagram of an automatic-answering modem interface. The circuit provides all signals and takes care of the ring indicator signals. The first is given by the host processor and tells the modem when to answer and hang up the phone. The second is active when the phone is ringing and is used to interrupt the processor.

A real circuit

A base station similar to the one described has been constructed at Intel. It is used to transmit information to remote 2816s for demonstration purposes. In this unit, the software has three operating modes. The first, the interactive mode, is the default, in which the processor displays the time of day while waiting to enter either the dial-in or local-user mode.

The dial-in mode is entered whenever a call is received. The processor answers the line, looks for a remote-processor identification message, and transmits its own identification header, followed by text data to be loaded into EE-PROM memory. The telephone is hung up as soon as transmission is completed and the inactive mode is entered. The local-user mode contains software implemented through the local keypad-display to allow a local user to reset.

EDITORIAL

A revolution in non-volatile memory

With this first PREVIEW issue of 1981, Intel is happy to announce the 2816–a 2K x 8 electrically erasable PROM. During the past ten years, Intel has developed EPROMs to meet the needs of the most demanding customer systems. The quest for a perfect non-volatile memory has been led by Intel from ROM to PROM to EPROM and now, after intense development to the E²PROM. The E²PROM technology promises to alter dramatically the microprocessor systems of today and offer end-users greatly enhanced flexibility and system costeffectiveness.

How often have you had to make changes to software in the field? Unfortunately, most of us would answer "too often" to such a question. How many times have you envisioned putting added value and capability into your designs, but did not have a memory solution to the problem? Again, the answer might be "too often."

The 2816 will dramatically change the answers to those questions. In the realm of software updates, the 2816 will be used to contain system software, diagnostics, or patch tables. When a change needs to be made, a central computer can establish a link to the unit over a telephone line without needing to send a person to service the equipment. Figure 1 shows the cost trends for such a system. If a remote line cannot be established, then the service technician only needs to plug a cable into the equipment and make a very rapid and simple change; no physical tampering is necessary.

A good example of one way to use E²PROMs 1S illustrated by Intel's Color Graphic Terminal, a demonstration unit designed with advance Intel microprocessors, memories and peripherals (see

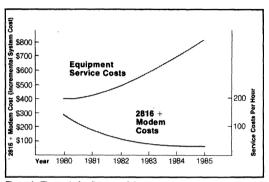


Figure 1. The cost of software updates, one reason the 2816 E²PROM is cost-effective.

sidebar on page 5). This intelligent CRT presents an eight-minute program of sophisticated graphic displays using eight different colors. An E²PROM controller board in the unit allows terminal reconfigurations to be carried out using keyboard interfaces instead of hardware switches. In addition, communications protocols can be transmitted to the terminal through remote data-link.

Another key application is in industrial and process control equipment. The Intel iSBC 88/40 Measurement and Control Computer (appearing on page 6 of this issue) uses 2816s to store process parameters and control points.

With regard to adding functions and benefits to your systems, only you can understand the doors that the 2816 will open. Intel is committed to the technology of electrically eraseable PROMs and we see it as truly a revolution in non-volatile memory.

John Rizzo

2816 Product Manager Special Products Division INTEL CORPORATION

PRODUCT FEATURE

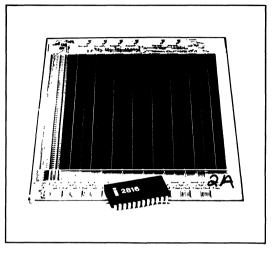
A new generation of memory devices is led by the 2816

Intel's electrically erasable PROM uses a new technology that promises to become an industry standard.

ntel has introduced its first Electrically Erasable Programmable Read-Only Memory—the ²⁹PROM. This 16kilobit E²PROM device provides non-volatile, fully static memory fast enough to support today's high-performance microprocessors. Designated the 2816, the device requires only 10 milliseconds to erase or write any byte of memory. A single program line, for example, may be modified in 20 milliseconds.

The device is quite similar in pin characteristics and read performance to current EPROM or PROM memories, but adds the ability to be electrically programmed in the field, without being removed from the system. The device can even be reprogrammed remotely, via a radio or telephone link.

This flexibility permits design engineers to create applications that were impossible or too expensive with less flexible program storage devices. Design advantages include reduced system downtime for program changes, faster modifications to stored programs through byte-for-byte replacement capability, and excellent prototyping characteristics.


The 2816 requires only the application of a 21-volt pulse for 10 milliseconds to erase or write any byte of memory. The only hardware needed to interface the 2816 to a microprocessor is a programming pulse generator and timer circuit. Because the E²PROM delivers individual byte-erase capability, the end user can make a single-line program edit in 20 milliseconds—as much as 100 times faster than systems requiring bulk-erase and complete rewrite.

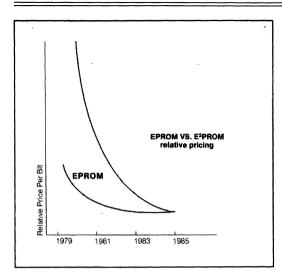
The 2816 was a well-planned advancement in erasable program-storage technology. The device is delivered in a 24-pin package that conforms to the new industry-standard pinout for high-density, Byte-Wide memories recently approved by the Joint Electron Device Engineering Council (JEDEC). It is pin-for-pin compatible with devices like the 2732 and 2764 UV EPROMs. By using the 2816 and printed circuit boards with 28-pin sockets, system designers can be assured of future compatibility and interchangeability of microcomputer system memory components of up to 256 kilobits in density.

Performance now

The 2816 E²PROM has both the speed and controllability required for service with today's high-speed microprocessors and microcomputer systems. Maximum access time is 250 nanoseconds, allowing the design of systems without "wait states" in the microprocessor's program.

The 2816 also features two-line control—a system control function essential to large, high-speed microcomputer systems. Two-line control eliminates contention between addresses and data on bus lines. The device has separate output-enable and chip-enable pins, permitting the microprocessor to control exactly when the chip is enabled.

As designers learn to use the flexibility of the E²PROM, the device will move down the production learning curve. By 1985, the E²PROM will be as inexpensive as the UV EPROM; by that time, they will replace the EPROM as the program storage medium in microprocessor-based equipment. In the interim, E²PROMs will be designed into applications where the presently higher cost is offset by the functional value of the device, and the flexibility added to the end user's products.


Endless applications

One market segment that will find E²PROMs attractive immediately is industrial process control. In large plants with distributed processing stations under control of a central computer, E²PROMs can improve local process monitoring and control.

In such configurations, the central computer alters the E²PROM contents remotely when a process change occurs, to optimize local processor operation to the new conditions. The E²PROMs can also be used as data storage devices to monitor flow rates, value closures, and like information, freeing the central computer for other duties.

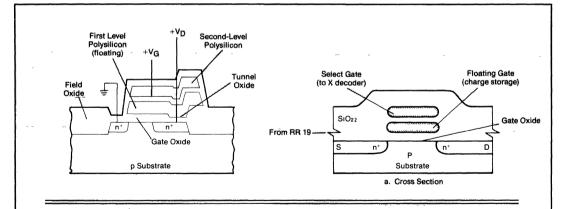
Another obvious application for E²PROMs today is replacements for core memory or fuse-link PROMs in military equipment and commercial aircraft. Here, the in-system flexibility diamatically increases overall efficiency when compared to the time and cost of replacing expensive parts each time a change in flight coordinates or radio frequencies is required.

Point-of-sale terminals are an ideal E²PROM application. The devices function as lookup tables whose contents—prod-

uct pricing, for example—change frequently The computer can poll and update the E²PROMs after business hours at the retail store, to monitor sales volumes and adjust pricing

Another immediate application for E⁴PROMs is in programmable robots like those used in automobile manufacturing or industrial metalworking Presently, program changes require replacement of the paper or magnetic tape that controls the robot's operation And E²PROMs offer superior reliability in harsh industrial environments in addition to the in-system programmability that will dramatically reduce retooling charges

General areas where E²PROM devices will find use include applications where continuous calibration, dynamic reconfiguration, programmable mapping, remote communications reprogramming, CRT terminal configuration, CRT graphics configuration, military replacement, printer control, or remote data logging are required

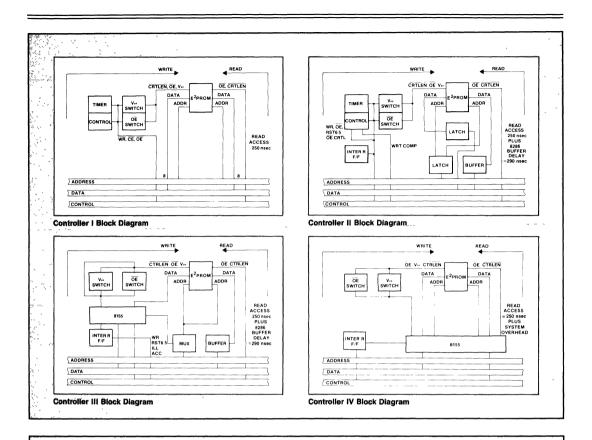

Flotox cell structure, an extension of EPROM

Intel's new flotox (floating-gate tunnel oxide) cell structure employs a mechanism called Fowler-Nordheim tunneling to write and erase data The 2816 erases and writes by causing electrons to tunnel across a thin (less than 200 Angstrom) layer of silicon dioxide The 2816's cells hold their charge in the same way as Intel's conventional EPROMs. At 125 degrees Centigrade, the 2816 will retain data for at least 20 years. The device is fully static, refreshing is never required, regardless of read frequency

Data stored in the 2816 is easy to modify Byte erase/write or chip erase requires application of a 21-volt pulse for 10 milliseconds Since it is byte-erasable, a single-byte program change can be made on the 2816 as much as 100 times faster than it can be made on a bulk-erase part. Any of the 2 kilobytes of the 2816 can be erased and rewritten in 20 milliseconds.

Rated for operation from 0–70 degrees Centigrade, the 2816 is a low-power device, dissipating 495 milliwatts from the single +5-volt read supply when active, and 132 mW when in standby mode The chip goes into standby automatically when not enabled

Four controller configurations provide the designer a choice



2816 Cell Structure

Fowler-Nordheim tunneling is bilateral. The direction of the electric field determines whether electrons tunnel to or from the floating gate. The floating gate is surrounded by silicon dioxide, giving the 2816 a 10-year data retention.

HMOS-E technology is used to produce 650 Angstrom gate oxide and 200 Angstrom tunnel oxide thickness. EPROM Cell Structure

Programming is accomplished by placing electrons on a floating gate through hot electron injection. Erasing is accomplished by exposing the device to UV light for 30 minutes. The charge can't leak off because the floating gate is surrounded by silicon dioxide.

A big step in program storage

The first program storage device was the masked read-only memory, or ROM. Masked ROMs are programmed by the semiconductor manufacturer with instructions supplied by the OEM buyer. Once programmed, they cannot be altered. Each program change, therefore, requires the purchase and manufacture of a new ROM device, which may take several months. ROM devices are inexpensive in large quantities, but require a large initial investment and a large quantity commitment.

Next came the programmable ROM, or PROM. PROMs can be "burned" by the OEM or end user, but can be programmed only once. They are costlier than ROMs on a per-unit basis, but they eliminate dependence on semiconductor manufacturers for programming.

Erasable PROMs, or EPROMs, added considerable flexibility. Like PROMs, EPROMs can be stocked and programmed by the OEM or end user. But they can be programmed many times. This eliminates the waste of PROM devices when program changes are required. EPROMs were originally envisioned as a development tool for designers, who need to change programs frequently while prototyping and debugging systems. Today they are frequently shipped in production equipment due to their potential value to the user, who may wish to make a program change. EPROMs have, in fact, become the most popular program-storage memory.

A drawback to EPROM devices is that they must be removed from the equipment to be reprogrammed. (EPROMs are erased optically, through exposure to ultraviolet light, then rewritten electrically with the new program.)

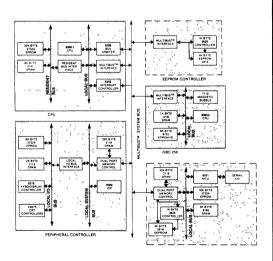
E²PROMs provide all the benefits of the popular EPROM, without the drawback of removal for reprogramming. The E²PROM can be electrically reprogrammed by the OEM or end user, but without removal from the system, and without use of exterior programming devices such as PROM programmers.

	16K E ² PROM	16K EPROM
Configuration	2K x 8	2K x 8
Package	24 Pin	24 Pin
Power Supplies		
Read Mode	+5	+5
Erase/Write	+5, +21	+5, +25
Write		
Method	Tunnel Injection	Hot Electron Injection
Time/Word	10 ms	50 ms
Erase		
Method	Tunnel Injection	UV Light
Time/Word	10 ms	
Time/Chip	10 ms	30 min
Access Time	250 ns	450 ns
Power Dissipation		
Active	500 mW	550 mW
Standby	100 mW	100 mW
Data Retention	>10 Years	>10 Years
Refresh Requirement	None	None

of trade-offs between microprocessor burden and controller device count.

Controller I requires only five IC devices, and reads at full system speed. Writes, however, stall the microprocessor for 10 ms The controller is for use when processing and control speed are not important

Controller II requires eight IC devices, employing software-driven read/write to improve writing speed. Controller III requires twelve devices, and provides close to realtime writing capabilities. Controller IV requires thirteen devices, and reduces the software overhead for true real-time high-speed processing systems.


Color Graphic Terminal displays Intel's latest technology

Intel's Color Graphic Terminal is a demonstration unit configured with high-speed, high-performance Intel components. The entire system architecture is based on the MULTIBUS bus system.

The processor module features a 16-bit iAPX 86 microprocessor operating at its full specification of 8 MHz, and a 200 nanosecond 2732A EPROM. Which allows the microprocessor to run at top speed without wait states. This combination makes our system yield the highest throughput in the 16-bit microprocessor category

The peripheral module uses an IAPX 86/11 I/O Processor. The IOP is designed to process I/O functions with the benefit of intelligent DMA (scan/match, translate, variable terminate conditions), modular programming in a full megabyte of memory address space, and a set of optimized I/O instructions that are unavailable in conventional CPUs. DMA rates of up to 1.25 megabytes/second are possible with the IAPX 86/11 This capability makes it very useful to CRT terminal applications where fast DMA is required for screen refreshing.

With an E²PROM controller module, terminal reconfigurations can be carried out using the keyboard interfaces instead of hardware switches. Using the communications module, program or data can be stored in E²PROM from a remote location without worrying about volatility A magnetic bubble memory board is used to store data where real-time access is not important. It provides a convenient and inexpensive medium for storing non-volatile data. The Color Graphic Terminal is available for demonstration to customers Call your local Intel sales office to set up an appointment to see it.

The Color Graphic Terminal achieves a 250 ns minimum access time using an 8 MHz iAPX 86 microprocessor and high-speed memory components.

3065 Bowers Avenue Santa Clara, California 95051 Tel (408) 987-8080 TWX 910-338-0026 TELEX 34-6372

ALABAMA

Intel Corp 303 Williams Avenue, S W Suite 1422 Huntsville 35801 Tel (205) 533-9353

ARIZONA Intel Corp 10210 N 25th Avenue, Suite 11 Phoenix 85021 Tel (602) 869-4980

CALIFORNIA Intel Corp 7670 Opportunity Rd Suite 135 San Diego 92111 Tel (714) 268-3563 Intel Corp * 2000 East 4th Street Suite 100 Santa Ana 92705 Tel (714) 835-9642 TWX 910-595-1114 Intel Corp * 5530 Corbin Ave Suite 120 Tarzana 91356 Tel (213) 708-0333 TWX 910-495-2045 Twx 910-495-2045 Intel Corp * 3375 Scott Blvd Santa Clara 95051 Tel (408) 987-8086 TWX 910-339-9279 910-338-0255 Earle Associates, Inc 4617 Ruffner Street Suite 202 San Diego 92111 Tel (714) 278-5441 Macil 2576 Shattuck Ave 2576 Shattuck Ave Suite 4B Berkeley, CA 94704 (415) 843-7625 Mac-I 558 Valley Way Calaveras Business Park Milpitas 95035 Tel (408) 946-8885 Mac-I P O Box 8763 FO Box 8763 Fountain Valley 92708 Tel (714) 839-3341 Mac-I 25 Village Parkway Santa Monica 90409 Tel (213) 452-7611 Mac-I 20121 Ventura Bivd , Suite 240E Woodland Hills 91364 Tel (213) 347-5900

COLORADO Intel Corp * 650 S Cherry Street Suite 720 Denver 80222 Tel (303) 321-8086 TWX 910-931-2289

CONNECTICUT Intel Corp 36 Padanaram Road Danbury 06810 Tel (203) 792-8366 TWX 710-456-1199

EMC Corp 48 Purnell Place Manchester 06040 Tel (203) 646-8085

U.S. AND CANADIAN SALES OFFICES

FLORIDA Intel Corp 1500 N W 62nd Street, Suite 104

Ft Lauderdale 33309 Tel (305) 771-0600 TWX 510-956-9407 Intel Corp 500 N Maitland Suite 205

500 N Maitland, Sur Maitland 32751 Tel (305) 628-2393 TWX 810-853-9219 GEORGIA

Intel Corp 3300 Holcomb Bridge Rd Norcross 30092 Tel (404) 449-0541 ILLINOIS

Intel Corp * 2550 Golf Road, Suite 815 Rolling Meadows 60008 Tel (312) 981-7200 TWX 910-651-5881

ΙΝΠΙΔΝΔ

Intel Corp 9101 Wesleyan Road Suite 204 Suite 204 Indianapolis 46268 Tel (317) 875-0623

IOWA Intel Corp St Andrews Building 1930 St Andrews Drive N E Cedar Rapids 52402 Tel (319) 393-5510

KANSAS Intel Corp 9393 W 110th St., Ste 265 Overland Park 66210 Tel (913) 642-8080

MARYLAND Intel Corp * 7257 Parkway Drive Hanover 21076 Tel (301) 796-7500 TWX 710-862-1944

MASSACHUSETTS Intel Corp * 27 Industrial Ave 27 Industrial Ave Cheimsford 01824 Tel (617) 256-1800 TWX 710-343-6333

EMC Corp 381 Elliot Street Newton 02164 Tel (617) 244-4740 TWX 922531

MICHIGAN Intel Corp * 26500 Northwestern Hwy Suite 401 Southfield 48075 Tel (313) 353-0920 TWX 810-244-4915

MINNESOTA MINNESOTA Intel Corp 7401 Metro Blvd Suite 355 Edina 55435 Tel (612) 835-6722 TWX 910-576-2867

MISSOURI Intel Corp 502 Earth City Plaza

Suite 121 Earth City 63045 Tel (314) 291 1990 NEW JERSEY

Intel Corp • Raritan Plaza Aaritan Plaza 2nd Floor Raritan Center Edison 08837 Tel (201) 225-3000 TWX 710 480-6238 мті 383 Route 46 West Fairfield, NJ 07006

NEW MEXICO BFA Corporation P O Box 1237 P O Box 1237 Las Cruces 88001 Tel (505) 523-0601 TWX 910 983-0543 BFA Corporation 3705 Westerfield, N E Albuquerque 87111 Tel (505) 292-1212 TWX 910 989-1157

NEW YORK Intel Corp * 300 Motor Pkwy Hauppauge 11787 Tel (516) 231-3300 TWX 510-227-6236

Intel Corp 80 Washington St Poughkeepsie 12601 Tel (914) 473-2303 TWX 510-248-0060

IWX 510-248-0060 Intel Corp * 2255 Lyell Avenue Lower Floor East Suite Rochester 14606 Tel (716) 254-6120 TWX 510-253-7391 T-Squared

4054 Newcourt Avenue Syracuse 13206 Tel (315) 463-8592 TWX 710-541-0554

T-Squared 7353 Pittsburgh Victor Road Victor 14564 Tel (716) 924-9101 TWX 510-254-8542

NORTH CAROLINA Intel Corp 2306 W Meadowview Rd Suite 206 Greensboro 27407 Tel (919) 294-1541

оню Intel Corp * 6500 Poe Avenue Dayton 45414 Tel (513) 890-5350 TWX 810-450-2528 TWX 810-450-2528 Intel Corp * Chagrin-Brainard Bidg , No 300 28001 Chagrin Blvd Cleveland 44122 Tel (216) 464-2736 TWX 810-427-9298

OREGON Intel Corp 10700 S W Beaverton Hillsdale Highway Suite 324 Beaverton 97005 Tel (503) 641-8086 TWX 910-467-8741

PENNSYLVANIA PENNSYLVANIA Intel Corp * 510 Pennsylvania Avenue 510 Pennsylvania Avenue 501 Pennsylvania Avenue Tel (215) 641-1000 TWX 510-661-2077 Intel Corp * 201 Penn Center Boulevard Suite 301W Pittsburgh 15235 Tel (412) 823-4970 0 E D. Elektropore

Q E D Electronics 300 N York Road Hatboro 19040 Tel (215) 674-9600

Tel (214) 241-9521 TWX 910-860-5617 Intel Corp * 6420 Richmond Ave Suite 280 Houston 77057 Tel (713) 784-3400 TWX 910 881-2490 Suite 101 Houston 77036 Tel (713) 988-9421 Intel Corp 313 E Anderson Lane Suite 314 Austin 78752 Tel (512) 454-3628 UTAH Intel Corp (temporary) 3519 Lexington Dr Bountiful, UT 84010 Tel (801) 292-2164 VIRGINIA Intel Corp Intel Corp 1501 Santa Rosa Road Suite C 7 Richmond, VA 23288 Tel (804) 282-5668 WASHINGTON intel Corp Suite 114, Bidg 3 1603 116th Ave N E Bellevue 98005 Tel (206) 453-8086 TWX 910-443-3002 WISCONSIN Intel Corp 150 S Sunnyslope Rd Brookfield 53005 Tel (414) 784-9060 CANADA 50 Galaxy Blvd Unit 12 Unit 12 Rexdale, Ontario M9W 4Y5 Tel (416) 675-2105 TELEX 06983574 Multilek, Inc * 15 Grenfell Crescent

TEXAS

Intel Corp 12300 Ford Rd

Suite 380

Dallae 75234

Multilek, Inc Montreal Tel 1-800-267-1070

October 1981

Industrial Digital Systems Corp 5925 Sovereign Intel Semiconductor Corp * Suite 233, Bell Mews 39 Highway 7, Bells Corners Ottawa, Ontario K2H 8R2 Tel (613) 829-9714 TELEX 053-4115 Intel Semiconductor Corp Ottawa, Ontario K2G 0G3 Tel (613) 226-2365 TELEX 053-4585 Multilek, Inc * Toronto Tel 1-800-267-1070

*Field Application Location

intel

3065 Bowers Avenue Santa Clara, California 95051 Tel (408) 987-8080 TWX 910-338-0026 TELEX 34-6372

CALIFORNIA Intel Corp 1601 Old Bayshore Hwy Suite 345 Bellind (1) 682-4762 TWX 910-375-3310 Intel Corp 1000 E th Street Suite 110 Sante Ana 92705 Tel (714) 835-2670 TWX 910-595-2475 Intel Corp 7670 Opportunity Road San Diego 92111 Tel (714) 268-3563 Intel Corp 5530 N Corbin Ave Suite 120 Tarzana 91356 Tel (213) 708-0333

COLORADO Intel Corp 650 South Cherry Suite 720 Denver 80222 Tel (303) 321-8086 TWX 910-931-2289

CONNECTICUT Intel Corp 36 Padanaram Rd Danbury, CT 06810 Tel (203) 792-8366

FLORIDA Intel Corp 1500 N W 62nd Street Suite 104 Ft Lauderdale 33309 Tel (305) 771-0600 TWX 510-956-9407

Intel Corp 500 N. Mariland Ave 500 N. Mariland Ave Suite 205 Mariland, FL 32751 Tel (306) 628-2393 TWX 810-853-9219 Intel Corp 5151 Adanson St Orlando 32804 Tel (305) 628-2393 **GEORGIA Intel Corp** 3300 Holcomb Bridge Rd #225 Norcross, GA 30092 Tel (404) 449-0541 **ILLINOIS Intel Corp** 2550 Golf Road Suite 815 Rolling Meadows 60008 Tel (312) 981-7230 TWX 910-2553-1825

KANSAS Intel Corp 9393 W 110th Street Suite 265 Overland Park 66210 Tel (913) 642-8080

MARYLAND Intel Corp 7257 Parkway Drive Hanover 21076 Tel (301) 796-7500 TWX 710-862-1944

MASSACHUSETTS Intel Corp 27 Industrial Avenue Chelmsford 01824 Tel (617) 256-1800 TWX 710-343-6333 MICHIGAN Intel Corp 26500 Northwestern Hwy Suite 401 Southfield 48075 Tel (313) 353-0920 TWX 810-244-4915 MINNESOTA Intel Corp 7401 Metro Blvd Suite 355 Edina 55435 Tel (612) 835-6722 TWX 910-576-2867 MISSOURI Intel Corp 502 Earth City Plaza Suite 121 Earth City 63045 Tel (314) 291-1990 NEW JERSEY Intel Corp 2460 Lemoine Avenue 1st Floor Ft Lee 07024 Tel (201) 947-6267 TWX 710-991-8593 NEW YORK Intel Corp 2255 Lyell Avenue Rochester, NY 14606 Tel (716) 254-6120 NORTH CAROLINA Intel Corp 2306 W Meadowview Rd Suite 206 Greensboro, NC 27407 Tel (919) 294-1541 OHIO Intel Corp Chagrin-Brainard Bldg Suite 300 28001 Chagrin Blvd Cleveland 44122 Tel (216) 464-2736 TWX 810-427-9298 Intel Corp 6500 Poe Avenue Dayton 45414 Tel (513) 890-5350 TWX 810-450-2528 OREGON Intel Corp 10700 S W Beaverton-Hillsdale Hwy Suite 22 Beaverton 97005 Tel (503) 641-8086 TWX 910-467-8741 PENNSYLVANIA Intel Corp 500 Pennsylvania Avenue Fort Washington 19034 Tel (215) 641-1000 TWX 510-861-2077 Intel Corp 201 Penn Center Blvd Suite 301 W Pittsburgh, PA 15235 Tel (412) 823-4970

TEXAS Intel Corp 313 E Anderson Lane Suite 314 Suite 314 Austin 78752 Tel (512) 454-8477 TWX 910-874-1347 Intel Corp 2925 L B J Freeway Suite 175 Dallas 75234 Tel (214) 241-2820 TWX 910-860-5617 Intel Corp 6420 Richmond Avenue Suite 280 Houston 77057 Tel (713) 784-1300 TWX 910-881-2490 VIRGINIA VINGINIA Intel Corp 7700 Leesburg Pike Suite 412 Falls Church 22043 Tel (703) 734-9707 TWX 710-931-0625 WASHINGTON Intel Corp 1603 116th Ave N E Suite 114 Bellevue 98005 Tel (206) 232-7823 TWX 910-443-3002 WISCONSIN Intel Corp 150 S Sunnyslope Road Suite 148 Brookfield 53005 Tel (414) 784-9060 CANADA Intel Corp 50 Galaxy Bivd Unit 12 Rexdale, Ontario M9W4Y5 Tel (416) 675-2105 Telex 069-89278 Intel Corp 39 Bells Corners Ottawa, Ontario K2H 8R2 Tel (613) 829-9714 Telex 053-4115

U.S. AND CANADIAN SERVICE OFFICES

October 1981

intel

3065 Bowers Avenue Santa Clara, California 95051 Tel (408) 987-8080 TWX 910-338-0026 TELEX 34-6372

ALABAMA

Acrow Electronics 4717 University Dr Suite 102 1/265 Huntsville 33405 Tel (206) 830-1103 Hamition / Avnet Electronics 4612 Commercial Drive N W Hamitsville 38605 Hamitsville 3867262162 TWX 810-726-2162 Piponeer / Huntsville

 †Pioneer / Huntsville

 1207 Putnam Drive N W

 Huntsville

 35805

 Tel

 (205)

 837-9300

 TWX

 810-726-2197

ARIZONA

 Hitamilton / Avnet Electronics

 505 S Madison Drive

 Tempe, AZ 85281

 Tell (602) 231-5140

 TWX 910-950-0077

 tWyle Distribution Group

 8155 N 24th Street

 Phoenix 85021

 Tel (602) 249-2232

 TWX 910-951-4282

CALIFORNIA

Arrow Electronics, Inc 521 Weddell Dr Sunnyvale 94086 Tel (408) 745-6600 TWX 910-339-9371

†Avnet Electronics 350 McCormick Avenue Costa Mesa 92626 Tel (714) 754-6051 TWX 910-595-1928

Hamilton / Avnet Electronics 4942 Rosecrans Hawthorne, CA 90250 Tel (213) 558:2997 Hamilton / Avnet Electronics 1175 Bordeaux Dr Sunnyvale 94086 Tel (408) 743:300 TWX 910:339-9332 Hamilton / Avnet Electronics 4545 Viewrdge Ave San Diego 92123 Tel (714) 563:1969 TWX 910:335:1216

TWX 910-335-1216 †Hamilton / Avnet Electronics 10912 W Washington Bivd Culver City 90230 Tel (213) 558-2193 TWX 910-340-6364 or 7073 THamilton Electro Salas

tHamilton Electro Sales 3170 Pullman Street Costa Mesa 92626 Tel (714) 641-4109 TWX 910-595-2638

Wyle Distribution Group 17872 Cowan Avenue Irvine 92713 Tel (714) 641-1600 TWX 910-595-1572

COLORADO †Wyle Distribution Group 451 E 124th Avenue Thornton, CO 80241 Tel (303) 457-9953 TWX 910-936-0770

tHamilton / Avnet Electronics 8765 E Orchard Road Suite 708 Englewood 80111 Tel (303) 740-1017 TWX 910-935-0787

U.S. AND CANADIAN DISTRIBUTORS

INDIANA (Cont.)

CONNECTICUT +Arrow Electonics 12 Beaumont Road Wallingford 06512 Tel (203) 265-7741 TWX 710-476-0162 †Hamilton / Avnet Electronics Commerce Industrial Park Commerce Drive Commerce Drive Danbury 06810 Tel (203) 797-2800 TWX 710-456-9974 Harvey Electronics 112 Main Street Norwalk 06851 Tel (203) 853-1515 TWX 710-468-3373 FLORIDA †Arrow Electronics 1001 N W 62nd Street Suite 108 Ft Lauderdale 33309 Tel (305) 776-7790 TWX 510-955-9456
 1WX 510-955-9456

 †Arrow Electronics

 115 Palm Bay Road, N W

 Suite 10, Bidg 200

 Paim Bay 32905

 Tel (305) 725-1480

 TWX 510-959-6337
 +Hamilton / Avnet Electronics 6800 Northwest 20th Ave Ft Lauderdale 33309 Tel (305) 971-2900 TWX 510-956-3097 Hamilton / Avnet Electronics 3197 Tech Drive North St Petersburg 33702 Tel (813) 576-3930 TWX 810-863-0374 †Pioneer/Orlando 6220 S Orange Blossom Trail Suite 412 Suite 412 Orlando 32809 Tel (305) 859-3600 TWX 810-850-0177 GEORGIA Arrow Electronics 2979 Pacific Drive Norcross 30071 Tel (404) 449-8252 TWX 810-766-0439 Hamilton / Avnet Electronics 5825 D Peachtree Corners Norcross 30092 Tel (404) 447-7500 TWX 810-766-0432 Pioneer/Georgia 5835 B Peachtree Corners E Norcross 30092 Tel (404) 448-1711 TWX 810-766-4515 ILLINOIS Arrow Electronics 492 Lunt Avenue P O Box 94248 Schaumburg 60172 Tel (312) 893-9420 TWX 910-291-3544 +Hamilton / Avnet Electronica 3901 No 25th Avenue Schiller Park 60176 Tel (312) 678-6310 TWX 910-227-0060 Pioneer/Chicago 1551 Carmen Drive Elk Grove 60007 Tel (312) 437-9680 TWX 910-222-1834 Arrow Electronics 2718 Rand Road Indianapolis 46241 (317) 243-9353 TWX: 810-341-3119 †Hamilton / Avnet Electronica 485 Gradie Drive Carmei 46032 Tel (317) 844-9333 TWX 810-260-3966

Pioneer/Indiana 6408 Castleplace Drive Indianapolis 46250 Tel (317) 849-7300 TWX 810-260-1794 KANSAS Hamilton / Avnet Electronics 9219 Quivera Road Overland Park 66215 Tel (913) 888-8900 TWX 910-743-0005 †Component Specialties, Inc 8369 Nieman Road Lenexa 66214 Tel (913) 492-3555 Hamilton/Avnet Electronics 6822 Oak Hall Lane Columbia, 21045 Tel (301) 995-3500 TWX 710-862-1861 Mesa 16021 Industrial Dr Gaithersburg 20877 Tel (301) 948-4350 +Pionee Pioneer 9100 Gaither Road Gaithersburg 20760 Tel (301) 948-0710 TWX 710-828-0545 MASSACHUSETTS †Hamilton / Avnet Electronics 50 Tower Office Park Woburn 01801 Tel (617) 935-9700 TWX 710-393-0382 tArrow Electronics Arrow Dr Woburn 01801 Tel (617) 933-8130 TWX 710-393-6770 Harvey/Boston 44 Hartwell Ave Lexington 02173 Tel (617) 863-1200 TWX 710-326-6617 MICHIGAN †Arrow Electronics 3810 Varsity Drive Ann Arbor 48104 Tel (313) 971-8220 TWX 810-223-6020 †Pioneer/Michigan 13485 Stamford Livonia 48150 Tel (313) 525-1800 TWX 810-242-3271 †Hamilton / Avnet Electronics 32487 Schoolcraft Road Livonia 48150 Tel (313) 522-4700 TWX 810-242-8775 MINNESOTA †Arrow Electronics 5230 W 73rd Street Edina 55435 Tel (612) 830-1800 TWX 910-576-3125

Tel (812) 830-1800 TWX 910-678-3125 tindustrial Componenta 5229 Edina Industrial BVA Minneapolia 56435 Tel (612) 81-2666 TWX 910-676-3153 Hamilton / Avmet Electronics 10300 Bren Rd East Minnetorika 55-456 TWX. (910) 576-2720 Hamilton / Avmet Electronics 7449 Cahili Road Edina 55435 Tel (612) 941-3801 TWX. 910-678-2720

MISSOURI †Arrow Electronics 2380 Schwatz St Louis, MO 63141 Tel: (314) 587-8688 †Hamilton / Avnet Electronics 13743 Shorline Ct Earth City 63045 Tel: (314) 344-1200 TWX 910-782-0884

October 1981

†Arrow Electronics 1 Perimeter Drive Manchester 03103 Tel (603) 668-6968 TWX 710-220-1684 NEW JEDGEV †Arrow Electronics Pleasant Valley Avenue Moorestown 08057 Tel (215) 928-1800 TWX 710-897-0829 †Arrow Electronics 285 Midland Avenue Saddle Brook 07662 Tel (201) 797-5800 TWX 710-998-2206 †Hamilton/Aynet Electronics 1 Keystone Ave Bidg 36 Cherry Hill 08003 Tel (609) 424-0100 TWX 710-940-0262 Hamilton / Avnet Electronics 10 Industrial Road Fairfield 07006 Tel (201) 575-3390 TWX 710-734-4388 Hit Pinebrook 07058 Tel (201) 227-1262 TWX 710-734-4382 Measurement Technology Sales Corp 383 Route 46 W Fairfield, NJ 07006 Tel (201) 227-5552 NEW MEXICO †Alliance Electronics Inc 11030 Cochiti S E Albuquerque 87123 Tel (505) 292-3360 TWX 910-989-1151 †Hamilton / Avnet Electronics 2524 Baylor Drive S E Albuquerque 87 1 19 Tel (505) 765-1500 TWX 910-989-0614 NEW YORK †Arrow Electronics 900 Broad Hollow Rd Farmingdale, NY 11735 Tel (516) 694-6800 TWX 510-224-6494 tArrow Electronics 3000 South Winton Road Rochester 14623 Tel (716) 275-0300 TWX 510-253-4766 †Arrow Electronics 7705 Maltage Drive Liverpool 13088 Tel (315) 652-1000 TWX 710-545-0230 Arrow Electronics 20 Oser Avenue Hauppauge 11787 Tel (518) 231-1000 TWX 510-227-6823 Hamilton / Avnet Electronics 333 Metro Park Rochester 14823 Tel. (716) 475-9130 TWX 510-253-5470 Hamilton / Avnet Electronics 16 Corporate Circle E Syracuse 13067 Tel. (315) 437-2841 TWX. 710-541-1560 +Hamilton/Avnet Electronics 5 Hub Drive Meiville, Long Island 11746 Tel. (518) 454-6000 TWX: 510-224-6166 Harvey Electronics P.O. Box 1208

P.O. Box 1208 Binghampton 13902 Tel (607) 748-8211 TWX 510-252-0893

†Microcomputer System Technical Demonstrator Centers

3065 Bowers Avenue Santa Ciara, California 95051 Tel (408) 987-8080 TWX 910-338-0026 TELEX 34-6372

NEW YORK (Cont.) Harvey Electronics 60 Crossways Park West Woodbury, Long Island 11797 Tel (516) 921-8920 TWX 510-221-2184 Harvey/Rochester 840 Fairport Park Fairport 14450 Tel (716) 381-7070 TWX 510-253-7001 Measurement Technology Sales Corp 159 Northern Blvd Greatneck 11021 Tel (516) 482-3500 TWX 510-223-0846

NORTH CAROLINA Arrow Electronics 938 Burke Street Winston-Salem 27102 Tel (919) 725-8711 TWX 510-931-3169 Hamilton / Avnet Electronics 2803 Industrial Drive Raleigh 27609 Tel (919) 829-8030 TWX 510-928-1836 Pioneer/Carolina 106 Industrial Ave Greensboro 27406 Tel (919) 273-4441 TWX 510-925-1114

OHIO Arrow Electronics 10 Knolkrest Dr Reading, OH 45237 Tel (513) 761-5432 TWX 810-461-2670 Arrow Electronics 7620 McEwen Road Centerville 45459 Tel (513) 435-5563 TWX 810-459-1611 Arrow Electronics 6238 Cochran Rd Solon 44139 Tel (216) 248-3990 TWX 810-427-9409 +Hamilton / Avnet Electronics 954 Senate Drive Dayton 45459 Tel (513) 433-0610 TWX 910-450-2531 Hamilton / Avnet Electronics 4588 Emery Industrial Parkway Warrensville Heights 44128 Tel (216) 831-3500 TWX 810-427-9452
 Twx
 5101427-9452

 †Pioneer/Dayton
 4433 Interpoint Bivd

 Dayton
 45424

 Tel
 (513) 236-9900

 TWX
 810-459-1622

 TWX 810-459-1622

 †Pioneer/Cleveland

 4800 E 131st Street

 Cleveland 44105

 Tel (216) 587-3600

 TWX 810-422-2211
 OKLAHOMA

†Components Specialties, Inc. 7920 E 40th Street Tulsa 74145 Tel (918) 664-2820 TWX 910-845-2215

OREGON UTAH tAlmac/Stroum Electronics 8022 S W Nimbus, Bldg 7 Beaverton 97005 Tel (503) 641-9070 TWX 910-467-8743 1WX 910-467-8743 +Hamilton/Avnet Electronics 6024 S W Jean Rd Bldg C, Suite 10 Lake Oswego 97034 Tel (503) 635-7848 TWX 910-455-8179 PENNSYI VANIA Arrow Electronics 650 Seco Rd Monroeville, PA 15146 Tel (412) 856-7000 †Arrow Electronics 650 Seco Rd Monroeville 15146 Tel (412) 856-7000

U.S. AND CANADIAN DISTRIBUTORS

259 Kappa Drive Pittsburgh 15238 Tel (412) 782-2300 TWX 710-795-3122 Pioneer / Delaware Valley 261 Gibraiter Road Horsham 19044 Tel (215) 674-4000 TWX 510-665-6778 TEXAS Arrow Electronics 13715 Gama Road Dallas 75234 Tel (214) 386-7500 TWX 910-860-5377 Arrow Electronics, Inc Arrow Electronics, inc 10700 Corporate Drive, Suite 100 Stafford 77477 Tel (713) 491-4100 TWX 910-880-4439 Component Specialties, Inc 8222 Jamestown Drive Suite 115 Austin 78758 Tel (512) 837-8922 TWX 910-874-1320 *Component Specialties, Inc 10907 Shady Trail, Suite 101 Dallas 75220 Tel (214) 357-6511 TWX 910-861-4999 Component Specialties, Inc 8181 Commerce Park Drive, Suite 700 Houston 77036 Tel (713) 771-7237 TWX 910-881-2422 Hamilton / Avnet Electronics 10508A Boyer Bivd Austin 78757 Tel: (512) 837-8911 TWX 910-874-1319 Hamilton / Avnet Electronics 2111 W Walnut Hill Lane Iving 75082 Tel: (214) 859-4100 TWX: 910-860-5929 Hamilton / Avnet Electronics 3939 Ann Arbor Drive Houston 77063 Tel: (713) 780-1771 TWX 910-881-5523 Pioneer / Austin 9901 Burnet Road Austin, 78758 Tel (512) 835-4000 TWX⁻ 910-874-1323

Pioneer / Pittsburgh

Hamilton / Avnet Electronics 1585 West 2100 South Salt Lake City 84119 Tel (801) 972-2800 TWX 910-925-4018 WASHINGTON †Almac/Stroum Electronics 5811 Sixth Ave South Seattle 98108 Tel (206) 763-2300 TWX 910-444-2067 Hamilton / Avnet Electronics 14212 N E 21st Street Bellevue 98005 Tel (206) 453-5844 TWX 910-443-2469 1WX 910-443-2469 1WV 910-1443-2469 1750 132nd Avenue N E Bellevue 98005 Tel (206) 453-8300 TWX 910-443-2526 WISCONSIN †Arrow Electronics 430 W Rausson Avenue Oakcreek 53154 Tel (414) 764-6600 TWX 910-262-1193 tHamilton/Avnet Electronics 2975 Moorland Road New Berlin 53151 Tel (414) 784-4510 TWX 910-262-1182 CANADA ALBERTA Hamilton / Avnet Electronics Hamilton / Avnet Elect 2816 21st Street N E Calgary T2E 6Z2 Tel (403) 230-3586 TWX 610-821-2286 tLA Varah Ltd 4742 14th Street N E Calgary T2D 6L7 Tel (403) 230-1235 TWX 038-258-97 Zentronics 9224 27th Avenue Edmonton T6N 1B2 Tel (403) 463-3014 Telex 03742841 Zentronics 3651 21st N E Calgary T2E 6T5 Tel: (403) 230-1422 BRITISH COLUMBIA †L A Varah Ltd 2077 Alberta Street Vancouver V5Y 1C4 Tel (604) 873-3211 TWX 610-929-1068 Zentronics 550 Camble St. Vancouver V6B 2N7 Tel (604) 688-2533 TWX: 04-5077-89 MANITORA L.A. Varah 1-1832 King Edward Street Winnipeg R2R 0N1 Tel. (204) 633-6190 TWX: 07-55-365 Zentronics 590 Berry St. Winnipeg R3H 0S1 Tel: (204) 775-8661

October 1981

NOVA SCOTIA Zentronics Zentronics 30 Simmonds Dr., Unit B Dartmouth, B3B 1R3 Tel (902) 463-8411 ONTARIO Hamilton / Avnet Electronics 6845 Rexwood Road, Units G & H Mississauga L4V 1M5 Tel (416) 677-7432 TWX 610-492-8867 tHamilton / Avnet Electronics Thamilton / Avnet Electron 1735 Courtwood Cresent Ottawa K2C 3J2 Tel (613) 226-1700 TWX 053-4971 tL.A Varah, Ltd 505 Kenora Avenue Hamilton L8E 3P2 Tel (416) 561-9311 TWX 061-8349 tZentronics 141 Catherine Street Ottawa K2P 1C3 Tel (613) 238-6411 TWX 053-3636 +Zentronics 72entronics 8 Kilbury Ct Brampton, Ontario Toronto, L6T 3T4 Tel (416) 451-9600 Telex 06-976-78 Zentronics 564/10 Weber St N Waterloo, N2L 5C6 Tel (519) 884-5700 OUFBEC †Hamilton / Avnet Electronics 2670 Sabourin Street St Laurent H4S 1M2 Tel (514) 331-6643 TWX 610-421-3731 Zentronics 5010 Rue Pare Street Montreal H4P 1P3 Tel. (514) 735-5361 TWX 05-827-535

†Microcomputer System Technical Demonstrator Centers

INTERNATIONAL SALES AND MARKETING OFFICES

3065 Bowers Avenue Santa Clara, California 95051 Tel (408) 987-8080 TWX 910-338-0026 TELEX 34-6372

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

A J F Systems & Components Pty Ltd A JF Systems & 0 310 Queen Street Melbourne Victoria 3000 Tel 679-702 TELEX AA 31261 TELEX AA 31261 Warburton Frankı Corporate Headquarters 372 Eastern Valley Way Chatswood, New South Wales 2067 Tel 407-3261 TELEX AA 21299

AUSTRIA

Bacher Elektronische Geraete GmbH Rotenmulgasse 26 A 1120 Vienna Tel (222) 83 56 46 TELEX 131532 Rekirsch 191932 Rekirsch Elektronik Geraete GmbH Lichtensteinstrasse 9716 A 1090 Vienna Tel (222) 347646 TELEX 134759

BELGIUM Inelco Belgium S A Ave des Croix de Guerre 94 B1120 Brussels Tel (02) 216 01 60 TELEX 25441

RRA7II Icotron S A 0511 Av Mutinga 3650 6 Andar Pirituba Sao Paulo Tel 261-0211 TELEX 1122274/ICOTBR CHILE

DIN Av Vic MacKenna 204 Casilla 6055 Santiago Tel 227 564 TELEX 3520003

CHINA C M Technologies 525 University Avenue Suite A-40 Palo Alto, CA 94301 Tel (415) 326-9150 Schmidt & Co Ltd Wing On Centre, 28th Floor Connaught Road Hong Kong Tel 011-852-5-455-644 TELEX 74766 SCHMC HX

COLOMBIA

International Computer Machines International Computer M Carrera 7 No 72-34 Apdo Aereo 19403 Bogota 1 Tel 211-7282 TELEX 44495 TOYOCO CYPRUS Cyprus Eltrom Electronics P O Box 5393 Nicosia Tel 21-27982

DENMARK ITT Multi Komponent Fabrysparken 31 DK-2600 Gloskrup Tel (02) 45 66 45 TX 33355 Scandinavian Semiconductor Supply A/S Supply A/S Nannasgade 18 DK-2200 Copenhagen Tel (01) 83 50 90 TELEX 19037

FINLAND Oy Fintronic AB Melkonkatu 24 A SE-00210 SF-00210 Helsinki 21 Tel (0) 692 60 22 TELEX 124 224 Ftron SF FRANCE Celdis S A * 53, Rue Charles Frerot F-94250 Gentilly Tel (01) 546 13 13 TELEX 200 485 Feutrier Feutrier Rue des Trois Glorieuses F-42270 St Priest-en-Jarez Tel 33 (77) 74 67 33 TELEX 300 0 21 Metrologie* La Tour d' Asnieres 1, Avenue Laurent Cely 1, Avenue Laurent 92606-Asnieres Tel (1) 791 44 44 TELEX 611 448 TELEX 611 448 Tekelec Airtronic Cite des Bruyeres Rue Carle Vernet F-92310 Sevres Tel (01) 534 75 35 TELEX 204552 GERMANY Electronic 2000 Vertriebs GmbH Neumarkter Strasse 75 D-8000 Munich 80 Tel (89) 43 40 61 TELEX 522561 Jermyn GmbH Postfach 1180 Schulstrasse 48 D-6277 Camberg Tel (6343) 4231 TELEX 484426 Kontron Elektronik GmbH Rontron Elektroniki Breslauerstrasse 2 8057 Eching B D-8000 Munich Tei (89) 319 011 TELEX 522122 Neye Enatechnik GmbH Schillerstrasse 14 D-2085 Quickborn-Hamburg Tel (4106) 6121 TELEX 213590 GREECE American Technical Enterprises P.O. Box 156 Athens Tel 30-1-8811271 TX 30-1-8219470 HONG KONG Schmidt & Co Wing on Center, 28th Floor Connaught Road Hong Kong Tel 5-455-644 TELEX 74766 Schmc Hx Micronic Devices 104/109C, Nirmal Industrial Estate Sion (E) Bombay 400022, India Tel 486-170 TELEX 011-5947 MDEV IN ISRAEL Eastronics Ltd * 11 Rozanis Street P O Box 39300 Tel Aviv 61390 Tel (3) 47 51 51 TELEX 33638 ITAL V Eledra 3S S P A Viale Elvezia, 18 I 20154 Milano Tel (2) 34 97 51 TELEX 332332

JAPAN Asahi Electronics Co Ltd KMM Bldg Room 407 2-14-1 Asano, Kokura Kita-Ku, Kitakyushu City 802 Tel (093) 511-6471 TELEX AECKY 7126-16 IELEX AECKY 7126-16 Hamilton-Avnet Electronics Japan Ltd YU and YOU Bldg 1-4 Horidome-Cho Nihonbashi Chuo-Ku, Tokyo 103 Tel (03) 662-9911 TELEX 2523774 Ryoyo Electric Corp Konwa Bidg 1-12-22, Tsukiji Chuo-Ku, Tokyo 104 Tel (03) 543-7711 Tokyo Electron i td Tokyo Electron Ltd Shin Juku, Nomura Bidg 26-2 Nishi-Shin Juku-Ichome Shin Juku-Ku, Tokyo 160 Tel (03) 343-4411 TELEX 232-2220 LABTEL J KOREA KOMEA Koram Digital Room 909 Woonam Bidg 7, 1-KA Bongre-Dong Chung-Ku Seoul Tel 238-123 TELEX K23542 HANSINT MEXICO Proveedora Electronica, S A (Proesa) Prol Moctezuma Ote 24 Col Romero de Terreros Apdo Postal 21-139 Mexico 21, D F Tel 554-8300 TELEX 017-72402 SAULME NETHERLANDS NE INERLANDS Inelco Nether Comp Sys BV Turfstekerstraat 63 P O Box 360 NL Aalsmeer 1430 Tel (2977) 28855 TELEX 14693 Koning & Hartman Koning & Hartman Koperwerf 30 P O Box 43220 2544 EN's Gravenhage Tel 31 (70) 210 101 TELEX 31528 NEW ZEALAND McLean Information Technology Ltd P O Box 18-065 Glenn Innes, Auckland, 6 Tel 587-037 TELEX NZ2763 KOSFY NORWAY Nordisk Elektronic (Norge) A/S Postoffice Box 122 Smedavingen 4 1364 Hvalstad Tel (2) 786 210 TELEX 16963 PORTUGAL Ditram Componentes E Electronica LDA Av Miguel Bombarda, 133 P1000 Lisboa Tel (19) 545 313 TELEX 14182 Brieks-P SINGAPORE SINGAPORE General Engineers Corporation Pte Ltd Bik 3, Units 1003-1008, 10th Floor P S A Multi-Storey Complex Peair Panjang Road Singapore 0511 Tel 271-3183 TELEX RS23987 GENERCO

October 1981

SOUTH AFRICA Electronic Building Elements P O Box 4609 Hazelwood, Pretoria 0001 Tel 011-27-12-46-9221 TELEX 30181SA SDAIN Interface S A Ronda San Pedro 22, 3* Barcelona 10 Tel (3) 301 78 51 TWX 51508 ITT SESA Miquel Angel 16-6 Miguel Angel 16-6 Madrid 10 Tel (1) 410 23 54 TELEX 27707/27461 SWEDEN AB Gosta Backstrom Box 12009 Alsträherçatan 22 S-10221 Stockholm 12 Tel (8) 541 080 TELEX 10135 Nordisk Electronik AB Box 27301 S-10254 Stockholr Tel (8) 635 040 TELEX 10547 CWITZEDI AND Industrade AG Industrade AG Gemsenstrasse 2 Postcheck 80 - 21190 CH-8021 Zurich Tel (1) 363 22 30 TELEX 56788 TAIWAN Taiwan Automation Co * 3d Floor #75, Section 4 Nanking East Road Taipei Tel 771-0940 TELEX 11942 TAIAUTO TURKEY Turkelek Electronics Apapurk Boulevard 169 Ankara Tel 189483 UNITED KINGDOM Comway Microsystems Ltd Market Street UK-Bracknell, Berkshire Tel 44 (344) 51654 TELEX 847201 MEDL East Lane Road North Wembley Middlesex HA9 7PP Tel 44 (01) 904-9303/908-4111 TELEX 28817 Jermyn Industries (Mogul) Vestry Estate Sevenoaks, Kent Tel (0732) 501 44 TELEX 95142 Rapid Recall, Ltd Rapid House/Denmark St High Wycombe Bucks, England HP11 2ER Tel: 44 494 28 271 TELEX 849439 Bytech Ltd Sutton Park Avenue Reading, Berkshire 61A2 Tel (0734) 61 031 TELEX 848215

*Field Application Location

INTERNATIONAL SALES AND MARKETING OFFICES

3065 Bowers Avenue Santa Clara, California 95051 Tel (408) 987-8080 TWX 910-338-0026 TELEX 34-6372

INTEL® MARKETING OFFICES

AUSTRALIA

AUSTRALIA Intel Semiconductor Pty Ltd Suite 2, Level 15, North Point 100 Miller Street North Sydney, NSW, 2060 Tel 450-847 TELEX AA 20097

BELGIUM

Intel Corporation S A Rue du Moulin a Papier 51 Boite 1 Boite 1 B-1160 Brussels Tel (02) 660 30 10 TELEX 24814

DENMARK

Intel Denmark A/S* Lyngbyvej 32F 2nd Floor DK-2100 Copenhagen East Tel (01) 18 20 00 TELEX 19567

FINLAND

Intel Finland OY Sentnerikuja 3 SF - 00400 Helsinki 40 Tel (0) 56244 55 TELEX 123 332

FRANCE

intel Corporation, SARL * 5 Place de la Balance Silic 223 Silic 223 94528 Rungis Cedex Tel (01) 687 22 21 TELEX 270475

GERMANY Intel Semiconductor GmbH* Seidistrasse 27 D-8000 Muenchen 2 Tel (89) 53891 TELEX 523 177 Intel Semiconductor GmbH Mainzer Strasse 75 D-6200 Wiesbaden 1 Tel (6121) 70 08 74 TELEX 04186183 Intel Semiconductor GmbH Intel Semiconductor Wernerstrasse 67 P O Box 1460 D-7012 Fellbach Tel (711) 58 00 82 TELEX 7254826 Intel Semiconductor GmbH Hohenzollern Strasse 5 3000 Hannover 1 Tel (511) 32 70 81 TELEX 923625 Intel Semiconductor GmbH Vertriebsburo Dusseldorf Ober-Ratherstrasse 2 4000 Dusseldorf 30 Tel (211) 65 10 54 TELEX 8586977 HONG KONG

Hong Kong Intel Semiconductor Ltd 99-105 Des Voeux Rd , Central 18F, Unit B Hong Kong Tel 5-450-847 TELEX 63869 ISRAEL

Intel Semiconductor Ltd * P O Box 1659 PO Box 1659 Haifa Tel 4/524 261 TELEX 46511

ITALY Intel Corporation Italia Spa Milanofiori, Palazzo E 20094 Assago (Milano) Tel (02) 824 00 06 TELEX 315183 INTMIL

Intel Japan K K * Flower Hill-Shnmachi East Bidg 1-23-9 Shnmachi, Setagaya-ku Tokyo 154 Tel (03) 426-9261 TELEX 781-28426

NETHERLANDS Intel Semiconductor Nederland B V Oranjestraat 1 3441 Ax Woerden Netherlands Tel 31-3480-112-64 TELEX 47970 Intel Semiconductor B V Cometongebouw Westblaak 106 Westblaak 106 3012 Km Rotterdam Tel (10) 149122 TELEX 22283

NORWAY Intel Norway A/S P O Box 92 Hvamvelen 4 N-2013 Skjetten Tel (2) 742 420 TELEX 18018

SWEDEN Intel Sweden A B Box 20092 Enighetsvagen 5 S-16120 Bromma Tel (08) 98 53 85 TELEX 12261

SWITZERLAND Intel Semiconductor A G Forchstrasse 95 CH 8032 Zurich Tel (01) 55 45 02 TELEX 557 89 ich ch

UNITED KINGDOM

Intel Corporation (U K) Ltd * 5 Hospital Street Nantwich, Cheshire CW5 5RE Tel (0270) 626 560 TELEX 36620 Intel Corporation (U K) Ltd Dorcan House Eldene Drive Swindon, Wiltshire SN3 310 Tel (0793) 26 101 TELEX 444447 INT SWN

*Field Application Location

October 1981

intel®

Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

Intel International Rue du Moulin à Papier 51, Boite 1, B-1160 Brussels, Belgium

Intel Japan K.K. Flower Hill-Shinmachi East Bldg. 1-23-9, Shinmachi, Setagayu-ku Tokyo 154, Japan