

TECHNICAL OVERVIEW

CLOCK, READY

"
82284

STATUS " 80286
CLOCK A CPU

'\r

r BUS
LOCK II ..t. �~�

READY

J ADDRESS DATA
LINES LINES

0-23 0-15

L1\
�~�J�r�:�

82289 3636-1

�~� BUS ADDRESS
ARBITER DECODER

V

..t. II II II "
II L

=v

'" .7 SELECT MULTI BUS

�I�~�~� 8283

�~� ..l\
ADDRESS

LATCH

rV LATCH -V
ENABLE

82288
Ll\ BUS

CONTROLLER

�~� TRANSMIT/ 8287

�~� �~�
RECEIVE DATA

- XCVR

-

II I
-V

I
=1

j I I SELECT LOCAL

�~�.�7�
"-

�~�
V 8282

L1\ LATCH ENABLE "-
ADDRESS

LATCH

'-V -V

82288
BUS

�~� CONTROLLER

8286

�~� TRANSMIT/RECEIVE
DATA

�~� XCVR

�~� V

I
�~�

Figure 3-30. Multibus/Multiprocessor Configuration

3-37

MULTIBUS
CONTROL

MULTIBUS
ADDRESS

MULTIBUS
DATA

MULTIBUS
COMMANDS

LOCAL
ADDRESS

LOCAL
DATA

LOCAL
COMMANDS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX A
iAPX 286 INSTRUCTIONS

This appendix describes the operation of each
iAPX 286 instruction. The list of instructions is
organized by type:

Data transfer
Arithmetic
Logic
String
Control transfer
Procedure implementation
Processor control
Protected Virtual Address Mode

For more detailed information about these in­
structions, refer to the iAPX 286 Programmer's
Reference Manual.

DATA TRANSFER
INSTRUCTIONS

General-purpose Data Transfers

MOV (Move)

MOV transfers a byte or a word from a source
operand to a destination operand.

PUSH*

PUSH decrements the stack pointer (SP) by two
and then transfers a word from the source oper­
and (register, memory, immediate) to the top of
stack indicated by SP. PUSH is often used to
place parameters on the stack before calling a
procedure; it is also the basic means of storing
temporary variables on the stack.

POP*

POP transfers the word at the current top of stack
(indicated by SP) to the destination operand (reg­
ister or memory), and then increments SP by two
to point to the new top of stack. POP moves in­
formation from the stack to either a register or
memory.

A-1

XCHG (Exchange)

XCHG exchanges the byte or word source oper­
and with the destination operand. The Exchange
instruction automatically invokes a bus LOCK
signal to support the use of semaphores in a mul­
tiprocessor system.

Accumulator-specific Transfers

IN

IN transfers a byte (or word) from an input port to
the AL register (or AX register for a word).
The port is specified either with an in-line data
byte, allowing fixed access to ports 0 through
255, or with a port number in the DX register,
allowing variable access to 64K input ports.

OUT

OUT is similar to IN except that the transfer is
from AX or AL to the output port.

XLAT (Translate)

XLAT performs a table-lookup byte translation.
The AL register is used as an index into a 256-
byte table whose base is addressed by the BX
register. The byte operand so selected is trans­
ferred to AL.

Address Transfers

LEA (Load Effective Address)

LEA transfers the offset of the source operand
(rather than its value) to the destination oper­
and. The source operand must be a memory
operand, and the destination operand must be a
16-bit general register.

* Special forms of these instructions are also available
for saving and restoring all general-purpose regis­
ters. (See the Procedure Implementation Instruc­
tions later in this appendix.)

APPENDIX A

LDS (Load Pointer Into DS)

LDS transfers a pointer (that is, a 32-bit value
containing an offset and a segment selector) from
the source operand, which must be a memory
operand, to a pair of destination registers.
The segment selector is transferred to the DS
segment register. The offset must be transferred
to a 16-bit register.

LES (Load Pointer Into ES)

LES performs the same function as LDS except
that the segment selector is transferred to the ES
segment register.

Flag Register Transfers

LAHF (Load AH With Flags)

LAHF transfers the flag registers SF, ZF, AF,
PF, and CF into specific bits of the AH register.

SAHF (Store AH Into Flags)

SAHF transfers specific bits of the AH register to
the flag registers SF, ZF, AF, PF, and CF.

PUSHF (Push Flags)

PUSHF decrements the SP register by two and
transfers all of the flag registers into specific bits
of the stack element addressed by SP.

POPF (Pop Flags)

POPF transfers specific bits ofthe stack element
addressed by the SP register to the flag registers
and then increments SP by two.

ARITHMETIC INSTRUCTIONS

Addition Instructions

ADD

ADD replaces the destination operand with the
sum of a source and a destination operand.

A-2

ADC (Add With Carry)

ADC sums the operands, which may be bytes or
words, adds one if CF is set, al1d replaces the
destination operand with the result. ADC can be
used to add numbers longer than 16 bits.

INC (InC?rement)

INC adds one to the destination operand. The
operand may be either a byte or a word and is
treated as an unsigned binary number.

AAA (ASCII Adjust For Addition)

AAA changes the contents of register AL to a
valid unpacked decimal number, and zeroes the
top four bits.

DAA (Decimal Adjust For Addition)

DAA corrects the result of adding two valid
packed decimal operands. DAA changes this re­
sult to a pair of valid packed decimal digits.

Subtraction Instructions

SUB (Subtract)

SUB subtracts the source operand from the des­
tination operand, and replaces the destination
operand with the result. The operands may be
signed or unsigned bytes or words.

SBB (Subtract With Borrow)

SBB subtracts the source operand from the des­
tination operand, subtracts one if CF is set, and
returns the result to the destination operand.
The operands may be signed or unsigned bytes or
words. SBB may be used to subtract numbers
longerthan 16 bits.

DEC (Decrement)

DEC subtracts one from the destination operand,
which may contain a byte or a word.

APPENDIX A

NEG (Negate)

NEG subtracts the byte or the word in the des­
tination operand from zero and returns the result
to the destination. This instruction forms the
two's complement of the number, effectively re­
versing the sign of an integer.

CMP (Compare)

CMP subtracts the source operand from the des­
tination operand, which may be bytes or words,
but does not return the result. The operands re­
main unchanged, but the flags are updated and
can be tested by a subsequent conditional Jump
instruction.

AAS (ASCII Adjust For Subtraction)

AAS changes the contents of register AL to a
valid unpacked decimal number, and zeroes the
top four bits.

DAS (Decimal Adjust For Subtraction)

DAS corrects the result of subtracting two valid
packed decimal operands. DAS changes this re­
sult to a pair of valid packed decimal digits.

Multiplication Instructions

MUL (Multiply)

MUL performs an unsigned multiplication of the
source operand and the AX or AL register. If the
source operand is a byte, then it is multiplied by
register AL, and the two-byte result is returned
with the most-significant byte in AH and the
least-significant byte in AL. If the source oper­
and is a word, then it is multiplied by register
AX, and the two-word result is returned in regis­
ters DX and AX with DX containing the most­
significant word.

IMUL (Integer Multiply)

IMUL performs a signed multiplication of the
source operand and the accumulator. IMUL
uses the same registers as the MUL instruction.

A-3

AAM (ASCII Adjust For Multiplication)

AAM corrects the result of a multiplication of
two valid unpacked decimal numbers.

Division Instructions

DIV (Divide)

DIY performs an unsigned division of the AX or
AX and OX registers by the source operand. If
the source operand is a byte, it is divided into the
two-byte dividend assumed to be in registers AH
and AL with the most-significant byte in AH.
The single-byte quotient is returned in AL, and
the single-byte remainder is returned in AH.

Ifthe source operand is a word, it is divided into
the two-word dividend in registers AX and DX.
The single-word quotient is returned in AX, and
the single-word remainder is returned in OX.
Nonintegral quotients are truncated to integers.

IDIV (Integer Divide)

IDlY performs a signed division of the accumu­
lator by the source operand. IDlY uses the same
registers as the DIY instruction. For byte integer
division, the maximum positive quotient
is + 127 and the minimum negative quotient is
-128. For word integer division, the maximum
positive quotient is + 32,767 and the minimum
negative quotient is - 32,768.

AAD (ASCII Adjust For Division)

AAD modifies the numerator in AL before divid­
ing two valid unpacked decimal operands so that
the quotient produced by the division will be a
valid unpacked decimal number. AH must be
zero for the subsequent DIY to produce the cor­
rect result. The quotient is returned in AL, and
the remainder is returned in AH; both high-order
half-bytes are zeroed.

CBW (Convert Byte To Word)

CBW extends the sign of the byte in register AL
throughout register AH. CBW does not affect

APPENDIX A

any flags. CBW can beused to produce a double­
length (word) dividend from a byte before a byte
division.

CWD (Convert Word To Doubleword)

CWO extends the sign of the word in register AX
throughout register OX. CWO does not affect
any flags. CWO can be used to produce a double­
length (double word) dividend from a word
before a word division.

LOGIC INSTRUCTIONS

All of the logic instructions, except NOT, affect
the sign flag (SF), zero flag (ZF), and parity flag
(PF).

NOT

NOT inverts the bits to form a one's complement
of the byte or word operand. NOT has no effect
on the flags.

AND

AND performs the logical "and" of the oper­
ands (byte or word) and returns the result to the
destination operand.

OR

OR performs the logical "inclusive or" of the
two operands (byte or word) and returns the re­
sult to the destination operand.

XOR (Exclusive Or)

XOR performs the logical' 'exclusive or" of the
two operands and returns the result to the des­
tination operand.

A-4

TEST

TEST performs the logical "and" of the two
operands (byte or word), updates the flags, but
does not return the result. Neither operand is
changed.

SHL (Shift Logical Left)

SAL (Shift Arithmetic Left)

SHL and SAL perform the same function and are
physically the same instruction. The destination
byte or word is shifted left by the number of bits
specified in the count operand. The processor
shifts zeroes in from the right.

SHR (Shift Logical Right)

SHR shifts the bits in the destination operand
(byte or word) to the right by the number of bits
specified in the count operand. The processor
shifts zeroes in from the left.

SAR (Shift Arithmetic Right)

SAR shifts the bits in the destination operand
(byte or word) to the right by the number of bits
specified in the count operand. Bits equal to the
original high-order (sign) bit are shifted in from
the left, preserving the sign of the original value.

ROL (Rotate Left)
ROR (Rotate Right)

ROL and ROR rotate the destination operand
(byte or word) left or right by the number of bits
specified in the count operand.

RCL (Rotate Through Carry Left)
RCR (Rotate Through Carry Right)

RCL and RCR rotate bits in the destination oper­
and (word or byte) to the left or right by the num­
ber of bits specified in the count operand. These

APPENDIX A

instructions treat the carry flag (CF) as a high­
order one-bit extension of the destination oper­
and taking part in the bit rotation.

STRING INSTRUCTIONS

MOVS (Move String)

MOYS transfers a byte or word operand from the
source operand to the destination operand. As a
repeated operation, this instruction moves a
string from one location in memory to another.

CMPS (Compare String)

CMPS subtracts the destination byte or word
operand from the source operand and affects the
flags, but does not return the result. As a re­
peated operation, this instruction compares
two strings. With the appropriate Repeat prefix,
it is possible to determine the string element
after which the two strings become unequal,
thereby establishing an ordering between the
strings.

SCAS (Scan String)

SCAS subtracts the destination byte or word
operand from (AL or AX) and affects the flags,
but does not return the result. As a repeated op­
eration, this instruction scans for the occurrence
of, or departure from, a given value in the string.

LODS (Load String)

LODS transfers a byte or word operand from the
source operand to AL (or AX). 1;his operation
ordinarily is not repeated.

STOS (Store String)

STOS transfers a byte or word operand from AL
(or AX) to the destination operand. As a
repeated operation, this instruction fills a string
with a given value.

A-5

REP (Repeat)
REPE (Repeat While Equal)
REPNE (Repeat While Not Equal)
REPZ (Repeat While Zero)
REPNZ (Repeat While Not Zero)

REP, REPE, REPNE, REPZ, andREPNZrepeat
the action of the Move String, Store String, and
Compare String operations to process a block of
memory with a single instruction. The Repeat
instruction uses the CX register to count repeti­
tions. Repeat While Equal and Repeat While
Zero prefixes terminate their actions when the
zero flag (ZF) is cleared. Repeat While Not
Equal and Repeat While Not Zero terminate
when the zero flag is set.

CONTROL TRANSFER
INSTRUCTIONS

Conditional Transfer Instructions

Table A-I describes the conditional transfer
mnemonics and their interpretations. The con­
ditional jumps which are listed as pairs are
actually the same instruction. The instruction set
provides the alternate mnemonics for greater
clarity within a program listing.

Unconditional Transfer
Instructions

CALL

CALL activates an out-of-line procedure, saving
information on the stack for later use by a Return
instruction. The Return instruction in the called
procedure uses this information to transfer ex­
ecution back to the calling program.

Although long calls are provided for interseg­
ment transfers, short intrasegment call instruc­
tions require fewer bytes, providing greater code

APPENDIX A

density for better use of memory. The program
uses immediate data to specify a direct call and a
register or memory to specify an indirect call.

RET (Return)

RET transfers control from a procedure back to
the instruction after the call that activated the
procedure. Long and short forms of the Return
instruction are provided for intersegment and in­
trasegment transfer, respectively.

A value which may be coded within the Return
instruction is added to the stack pointer after the
return address is popped off the stack. This op­
eration releases the stack space which was used
for parameter passing.

JMP (Jump)

JMP unconditionally transfers control to the
target location. Unlike a Call instruction, Jump

is a one-way transfer of execution; it does not
save any return information on the stack. As
with the Call instruction, the Jump instruction
can include the address of the target operand
directly or obtain the address indirectly from a
register or memory.

Iteration Control Instructions

LOOP

LOOP decrements the CX ("count") register by
one and transfers execution ifCX is not zero.

LOOPZ (Loop While Zero)
LOOPE (Loop While Equal)

LOOPZ and LOOPE decrement the CX
register by one and transfers execution if CX is
not zero and the ZF flag is set.

Table A-1 : Interpretation of Conditional Transfers

Mnemonic

JA/JNBE
JAE/JNB
JB/JNAE
JBE/JNA
JC
JE/JZ
JNC
JNE/JNZ
JNP/JPO
JP/JPE

Mnemonic

JG/JNLE
JGE/JNL
JLlJNGE
JLE/JNG
JNO
JNS
JO
JS

UNSIGNED CONDITIONAL TRANSFERS

Condition Tested

(CForZF)=O
CF= 0
CF= 1
(CF or ZF)= 1
CF= 1
ZF = 1
CF= 0
ZF= 0
PF = 0
PF = 1

"Jump If . "
above/not below nor equal
above or equal/not below
below/not above nor equal
below or equal/not above
carry
equal/zero
not carry
not equal/not zero
not parity/parity odd
parity/parity even

SIGNED CONDITIONAL TRANSFERS

Condition Tested

«SF xor OF) or ZF) = 0
(SF xor OF) = 0
(SF xor OF) = 1
«SFxor OF) or ZF) = 1
OF= 0
SF = 0
OF= 1
SF = 1

A-6

"Jump If. "
greater/not less nor equal
greater or equal/not less
less/not greater nor equal
less at equal/not greater
not overflow
not sign
overflow
sign

APPENDIX A

LOOPNZ (Loop While Not Zero)
LOOPNE (Loop While Not Equal)

LOOPNZ and LOOPNE decrement the CX reg­
ister by one and transfers if CX is not zero and the
ZF flag is cleared.

JCXZ (Jump If CX Zero)

JCXZ transfers execution if the CX register is
zero. This instruction is useful for jumping over
a loop to execute it zero times.

Flag Operations

CF (Carry Flag)

If an addition results in a carry out of the high­
order bit of the result, then CF is set; otherwise
CF is cleared. If a subtraction results in a borrow
into the high-order bit of the result, then CF is
set; otherwise CF is cleared. Add With Carry
(ADC) and Subtract With Borrow (SBB) instruc­
tions may use the carry flag to perform multibyte
addition and subtraction.

AF (Auxiliary Carry Flag)

This flag detects a carry or borrow across the
boundary between the two halves of the AL reg­
ister. AF is provided for the decimal-adjust in­
stru,ctions and is not ordinarily used for any other
purpose.

SF (Sign Flag)

Arithmetic and logic instructions set the sign flag
equal to the high-order bit (bit 7 or 15) of the re­
sult. Standard two's complement notation is
used to indicate a 1 for negative results.

ZF (Zero Flag)

If the result of an arithmetic or logical operation
is zero, then ZF is set; otherwise ZF is cleared.

A-7

PF (Parity Flag)

If the low-order eight bits of an arithmetic or
logical result contain an even number of I-bits,
then the parity flag is set; otherwise it is cleared.

OF (Overflow Flag)

If the result of an operation is a too-large positive
number or a too-small negative number to fit in
the destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared.

Interrupt Instructions

INT (Interrupt)

INT pushes the flag registers (as in PUSHF),
clears the TF, and transfers control by an indirect
call through anyone of the 256 interrupt vector
elements. The instruction mayor may not clear
IF depending on the contents of the interrupt vec­
tor table. A one-byte form of this instruction
uses an implied interrupt vector type 3 and is
used for a breakpoint interrupt.

Table A-2: Predefined Interrupt Vectors

o Divide error exception
1 Single-step interrupt
2 Nonmaskable interrupt
3 Breakpoint interrupt
4 INTO detected overflow exception
5 Bound RANGE exceeded exception
6 Invalid opcode exception
7 Processor extension not-present trap
8 Double protection exception
9 Processor extension segment overrun exception

10 Task segment format exception
11 Segment not-present exception
12 Stack under/overflow exception
13 General protection exception
14-15 Reserved
16 Processor extension error interrupt
17 -31 Reserved

APPENDIX A

INTO (Interrupt On Overflow)

INTO pushes the flag registers (as in PUSHF),
clears the TF, and transfers control to an inter­
rupt service routine for this instruction if OF is set.
The instruction mayor may not clear IF depend­
ing on the contents of the interrupt vector table.

IRET (Return From Interrupt)

IRET transfers control to the return address
saved by a previous interrupt operation and
restores the saved flag register (as in POPF).

PROCEDURE IMPLEMENTATION
INSTRUCTIONS

ENTER (Enter Procedure)

ENTER creates the stack frame required by most
block-structured high-level languages. ENTER
specifies how many bytes of dynamic storage
to allocate on the stack for the routine being
entered. It also specifies the lexical nesting level
of the routine and determines how many stack
frame pointers the CPU will copy into the new
stack frame from the preceding frame. This list
of stack frame pointers is called the display. BP
always contains the current stack frame pointer.

LEAVE (Leave Procedure)

LEA VE reverses the effects of the Enter instruc­
tion by releasing all the stack space used by a
routine for its dynamic storage and stack frame
pointers (display).

PUSHA (Push All)

PUSHA saves all registers on the stack using
a single instruction prior to the execution of a
procedure.

A-a

POPA (Pop All)

POPA restores the registers saved by the Push
All instruction, except that SP remains un­
changed as the CPU ignores the SP value saved
by Push All.

PROCESSOR CONTROL
INSTRUCTIONS

Various instructions and mechanisms control
the 80286 processor and its interaction with its
environment.

Flag Instructions

STC (Set Carry Flag)

STC sets the carry flag (CF) to 1.

CLC (Clear Carry Flag)

CLC zeroes the carry flag (CF).

CMC (Complement Carry Flag)

CMC reverses the current status of the carry flag
(CF).

STD (Set Direction Flag)

STD sets the direction flag (DF), causing the
string instructions to auto-decrement the operand
pointer(s) .

CLD (Clear Direction Flag)

CLD clears the direction flag (DF), causing the
string instructions to auto-increment the operand
pointer(s).

STI (Set Interrupt-enable Flag)

STI sets the interrupt-enable flag (IF), allowing
the processing of maskable interrupts.

APPENOIXA

CLI (Clear Interrupt-enable Flag)

CLI clears the interrupt-enable flag (IF), pre­
venting the processing of maskable interrupts.

HLT (Halt)

HLT causes the 80286 processor to halt proces­
sing. The HALT state is cleared by RESET or
an enabled external interrupt.

WAIT (Wait)

WAlT causes the processor to enter a WAlT
(idle) state until the CPU receives a signal to con­
tinue processing. The CPU includes a special
input line called TEST which is reserved for this
operation. The CPU will exit WAIT to service
interrupts and resume WAlT on return from the
interrupt service routine.

ESC (Escape)

ESC provides a mechanism by which other pro­
cessors (such as the Numeric Processor Exten­
sion) may receive their instructions from the
80286 instruction stream and make use of the
80286 addressing modes.

LOCK (Bus Lock Prefix)

LOCK precedes any instruction to cause the pro­
cessor to assert its bus LOCK signal for the dura­
tion of the operation caused by that instruction.
This prefix code has use in multiprocessing
applications.

PROTECTED VIRTUAL ADDRESS
MODE INSTRUCTIONS

Protection Control Instructions

LGOT
(Load Global Descriptor Table Register)

LGDT loads the GDT register with base and
limit information for the system's global descrip­
tor table. The CPU obtains the required six
bytes from memory beginning at the location in­
dicated within the instruction.

A-9

LlOT
(Load Interrupt Descriptor Table Register)

LIDT loads the IDT register with six pytes of
base and limit information for the system's inter­
rupt descriptor table.

LLOT
(Load Local Descriptor Table Register)

LLDT loads the LDT register with a 16-bit selec­
tor value to choose one of the local descriptor
tables listed within the GDT. The source may be
either a 16-bit register or memory operand.

LMSW
(Load Machine Status Word Register)

LMSW loads the MSW register from either a 16-
bit register or memory operand. This instruction
allows a system to enter Protected Mode after
power-up or a system reset. A power-down or a
system reset is the only way to return to Real
Address Mode.

LTR (Load Task Register)

LTR loads the task register with a 16-bit selector
value to choose one of the task state segments
listed within the GDT. The source may be either
a 16-bit register or memory operand.

SGOT (Store Global Descriptor Table)

SGDT stores the contents of the GDT register in
six consecutive bytes beginning at the location
indicated within the instruction.

SlOT (Store Interrupt Descriptor Table)

SIDT stores the contents of the IDT register in
six consecutive bytes beginning at the location
indicated within the instruction.

SLOT
(Store Local Descriptor Table Register)

SLDT stores the selector field of the LDT in the
indicated 16-bit register or memory operand.

APPENDIX A

SMSW
(Store Machine Status Word Register)

SMSW stores the Machine Status Word in the in­
dicated 16-bit register or memory operand.

STR (Store Task Register)

STR stores the selector field of the task register
in the indicated 16-bit register or in the memory
operand.

ARPL (Adjust Requested Privilege Level)

ARPL sets the RPL field of the operand to the
maximum of its original value and a value con­
tained within the instruction. This action en­
sures that a selector passed to a procedure does
not request more privilege than the caller was en­
titled to. The instruction sets ZF (zero flag) if it
alters the selector passed to the procedure. The
RPL field may be within either a 16-bit register
or memory operand.

CTS (Clear Task Switched Flag)

CTS clears the TS flag which the hardware sets
each time it performs a task switching opera­
tion. If a task switch occurs during the operation
of the Numeric Data Processor, the TS flag can
activate a routine which saves the context of the
co-processor and clears TS to prepare for the
next task switching operation.

Protection Parameter Verification
Instructions

Bound (Detect Value Out Of Range)

Bound verifies that the value contained in the in­
dicated register lies within specified limits.
These limit values reside in a two-word block of

A-10

memory beginning at a location specified within
the instruction. If the instruction detects that the
value is not within the specified range, the spe­
cial interrupt for this instruction occurs. The
Bound instruction can serve as an array bounds
check to prevent accidental overwriting of data
outside an array.

LAR (Load Access Rights)

LAR loads the high eight bits of a 16-bit register
with the access rights field of a descriptor. The
instruction indicates the 8-byte descriptor in­
directly through its associated 16-bit selector.
The selector value may be either a register or
memory operand. The instruction sets ZF to in­
dicate that the descriptor was visible and that
the access rights are present within the specified
register.

LSL (Load Segment Limit)

LSL operates in the same way as the LAR in­
struction, except that it places the 16-bit segment
limit value from a descriptor into the specified
register.

VERR (Verify Read Access)

VERR sets ZF if the segment indicated within
the instruction is readable or clears ZF if it is
read-protected. The instruction indicates the
segment to be verified with a selector value con­
tained in a 16-bit register or memory operand.
This instruction allows a segment to be tested
without causing a protection fault.

VERW (Verify Write Access)

VERW operates the same as the VERR instruc­
tion except that it verifies write-protect status.

APPENDIXB
GLOSSARY

Call gate. Each call gate represents the pro­
tected entry point of a procedure. A call gate is
the only way to increase the current privilege
level within a task. Call gates are represented by
a gate descriptor within a descriptor table.

Code segment. The code segments in the
system contain the instructions and immediate
data for the programs in the system. A code seg­
ment is also known as an executable segment.

Code segment (CS) register. The CS reg­
ister holds the selector and descriptor for the cur­
rently selected code segment. The selector
chooses the descriptor which, in tum, provides
the base address and protection information for
the system.

Control descriptor. System segment de­
scriptors and gate descriptors are control descrip­
tors. System segment descriptors enable a pro­
gram to define the protection parameters for a
system, and gate descriptors provide pathways
between protected areas of memory. The de­
scriptors for code and data segments, on the
other hand, are called segment descriptors.

Data segment. The data segments in the sys­
tem contain the data (other than immediate data)
for the programs in the system.

Data segment (DS) register. The DS regis­
ter holds the selector and the descriptor for the
currently selected data segment. The selector
chooses the descriptor which, in tum, provides
the base address and protection information for
the system.

Descriptor. Descriptors define the attributes
of all memory segments and control gates.

Descriptor table. The iAPX 286 supports
three types of memory-based tables which con­
tain the descriptors for the system. These tables
are the interrupt descriptor table (IDT), the global
descriptor table (GDT), and the local descriptor
table (LDT).

8-1

Descriptor table descriptor. The location
of all local descriptor tables within the system
memory is defined by descriptor table descriptors
within the global descriptor table (GDT).

Explicit cache. The descriptor portions of the
four segment registers comprise the explicit
cache. It is used for high-speed addressing and
the verification of access rights.

Extra segment. An extra segment is simply a
data segment which the processor may use as an
alternate data source or destination by placing the
segment's selector and descriptor in the extra seg­
ment register.

Extra segment (ES) register. The ES regis­
ter holds the selector and descriptor for an alter­
nate data segment. The selector chooses the de­
scriptor which, in tum, provides the base address
and protection information for the system.

Gate descriptor. The gate descriptors in­
clude the call, trap, task, and interrupt gates.
Unlike a memory segment, a gate descriptor de­
fines the protected entry point of a code segment.

Global descriptor table (GDT). The global
descriptor table contains descriptors which are
available to every task in the system.

Global descriptor table register. This reg­
ister contains the base address and the limit of the
global descriptor table. The contents of this
register normally remain constant during sys­
tem operation.

Interrupt descriptor table (IDT). The inter­
rupt descriptor table contains descriptors which
vector interrupts, traps, and protection excep­
tions to their respective handling routines.

Interrupt descriptor table register. This
register contains the base address and limit of the
interrupt descriptor table. The contents of this
register normally remain constant during sys­
tem operation.

APPENDIXB

1/0. The I in I/O represents the input of in­
formation from a device such as a keyboard or a
card reader, while the 0 represents output· to a
device such as a printer or a video display.

Local descriptor table (LOT). A local de­
scriptor table contains the descriptors for seg­
ments which are generally private to a single
task. The local descriptor tables enforce the
isolation of tasks from one another.

Machine status word (MSW). The Machine
Status Word contains three flags which control
system copfiguration and one flag which assists
the operating system with Numeric Data Proces­
sor control in multitasking systems.

Microsystem. A micro system is a group of
integrated circuits designed to implement micro­
processor-based computer systems. The micro­
system includes a CPU and special support
circuits. Each support circuit performs a spe­
cific function which~nables the CPU to com­
municate with the outside world or to operate
more efficiently.

Memory-mapped 1/0. Memory-mapped I/O
differs from port-oriented lIO in that it is per­
formed through a normal memory access instruc­
tion rather than a special lIO instruction which
addresses one of the 64 K ports of the iAPX 286.

MultibusT>'. The Multibus is Intel's general­
purpose multiprocessing bus for 8- and 16-bit
computer systems.

Numeric Data Processor. The iAPX 286
CPU, with the 80287 processor extension, com­
prises the iAPX 286120 Numeric Data Processor
configuration. The iAPX 286120 handles long
data types and complex arithmetic operations in
parallel with normal processing operations.

Physical memory. The physical memory of
a system is made up of random-access (read/
write) memory (RAM) and read-only memory
(ROM) which are part of a system's hardware.
The physical memory is manipulated by an oper­
ating system to support virtual memory.

8-2

Pipelining. Instruction pipelining enables the
processor to fetch an instruction while still pro­
cessing the previous instruction. This technique
maximizes bus efficiency.

Pointer. A full pointer is a complete virtual
address. It includes a selector which indirectly
chooses a segment base address and an offset
value which points to a specific address within
the segment. The offset by itself is called a short
pointer.

Port. The iAPX 286 may address a maximum
of 64K I/O ports using protected I/O instruc­
tions. These lIO ports are not part of the virtual
address space of the iAPX 286.

Privilege level. The protection mechanism
of the iAPX 286 provides four hierarchical pro­
tection levels to ensure program reliability.
The most trusted service procedures occupy the
higher levels (levels 0, 1, and 2), while the less­
trusted application programs are placed at the
lowest level of privilege (level 3).

Privileged instruction. The operating sys­
tem kernel, which operates at the highest level of
privilege (level 0), may execute privileged in­
structions. These instructions control system
setup and operation.

Real memory. See physical memory.

Segment. The virtual address space of the
iAPX 286 is made up of variable-length regions
called segments. A segment has a minimum
length of 1 byte and a maximum length of 64K
bytes. The system includes code, data, task
state, and descriptor table segments.

Segment register. The four segment regis­
ters point to the four segments of memory which
are currently available for immediate access by
the processor. The segment registers are the
code, data, extra, and stack segment registers.

Selector. Each selector specifies a descriptor
within either the global descriptor table or the

APPENDIXB

local descriptor table. The program uses a selec­
tor as part of a full pointer to gain access to a
new segment.

Stack segment. The processor uses a stack
segment to hold return addresses, dynamic data,
temporary data, and parameters. An instruction
addresses a stack segment usually with the stack
pointer or the base pointer. Each privilege level
has its own stack segment for total isolation.
Stack segments usually expand downward.

Stack segment (55) register. The SS reg­
ister holds the selector and the descriptor for the
currently selected stack segment. The selector
chooses the descriptor which, in turn, provides
the base address and protection information for
the system.

System segment descriptor. The CPU
uses the system segment descriptors to define
task state segments and local descriptor tables
within the global descriptor table.

Task. A task is a single sequential thread of exe­
cution which has an associated processor state
and a well-defined address space with specific
access rights. The processor state is defined by
the contents of the task-variable registers while
the address space and access rights are defined by
the descriptor tables within the system.

Task register. The task register points to the
task state segment of the currently active task.
The task switch hardware of the iAPX 286 saves
the state of the processor in this task state segment
before it loads the state of the incoming task.

Task state segment. The task state segment
contains the contents of the task-variable program
registers, the stack segment selectors and pointers

8-3

for the three highest privilege levels, the selector
for the task's local descriptor table, and a back
link which may point to another task in a chain of
nested task invocations.

Trusted instruction. The trusted instruc­
tions which are controlled by the I/O privilege
level flag include Block I/O, In, Out, Enable In­
terrupts, Disable Interrupts, Pop Flags (to change
the interrupt-enable flag), and Halt instructions as
well as the Lock prefix code.

Virtual address. A complete virtual address
consists of a selector and an offset value. The
selector chooses a descriptor for a code or data
segment. The offset provides an index into the
selected segment.

Virtual address space. The virtual address
space of a task consists of all possible addresses
which the task can access as defined by the sys­
tem's global descriptor table and the task's own
local descriptor table.

Virtual addressing. Virtual addressing is a
system for providing uniform names (addresses)
for areas of memory and control structures. The
entities described by virtual addresses normally
have constant attributes for size and protection
and also variable attributes for presence and loca­
tion. The operating system may make an entity
present by swapping unneeded entities to secon­
dary storage (usually a disk) and swapping the de­
sired entity to primary storage (RAM). Virtual
addressing presents the user with an address
space much larger than the actual physical mem­
ory. Any I/O operation required to access pro­
grams or data in virtual memory is transparent
to the user.

APPENDIXC
SAMPLE INSTRUCTION

TIMINGS

The following list provides the execution timing
for some of the instructions which enable the
iAPX 286 to execute up to 6 times faster than its
predecessors:

Operation

16-bit add
16-bit multiply
Complete task switch
Block I/O (12 bytes moved)
String Move (16 bytes moved)
Double-precision multiply*

*Using 80287 Numeric Processor Extension

C-1

8MHz

0.25 usec
2.60

21.00
8.60
8.60

18.00

10MHz

0.20 usec
2.00

16.80
6.80
6.80

14.40

intel Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel International
Rue du Moulin a Papier 51, Boite 1,

. B,1160 Brussels, Belgium

Intel Japan K.K.
5,6 Tokodai, Toyosatomachi
Tsukuba,gun, Ibaraki,ken 300,26
Japan

Printed in U.S.A./T-S10/30K/0282/RRD JL

