
5.0.3 TRANSITION GUIDE

Intel Corporation

Copyright e Intel Corporation 1991

Portions Copyright e Wind River Systems, Inc. Reproduced with permission.

ALL RIGHTS RFSERVED.

No part of this publication may be reproduced in any form. by photocopy, microfilm, retrieval system, or by
any other means now known or hereafter invented without the prior written permission of Intel Corpora
tion.

Intel Corporation makes no warranty for use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a oommitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

i960, Intel. Vx960

COMPANY AND PRODUcrNAMfS USED IN THIS DOCUMENT ARE TRADFMARKSORREGISTERED
TRADEMARKS OF THEIR RFSPECIlVE CORPORATIONS.

Additional copies of this manual or other Intelliteratme may be obtained from:

Intel Corporation

literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

Order No. 517913

Contents

1 INTRODUcrION _ e... 5

2 PORTING APPLICATIONS TO 5.0.3... 7
2.1 Compiling 7
2.2 Summary of User-Interface Changes 00....................................... 8

3 KERNEL ENHANCEMENTS _ _ _..... 18

3.1 Queue Implementation ... ".. 19
3.2 Tasking .. 19
3.3 Semaphores 22

3.4 Message Queues ... ~........................... 30
35 Watdldog TImers ... 32
3.6 Alternative Kernels and the TCB Extension .. 32
3.7 Floating Point ... 33
3.8 Symbol Table and Hashing Ubraries .. 33
3.9 Error Status Handling ... 33

Intel Vx960

· Vx960 5.0.3 - Transition Guide

4 110 SYSTEM 11.. 34
4.1 Select .. 34
4.2 SCSI Support ... 34
4.3 POSIX Standard Directory Handling .. 35

5 LOCAL FILE SySTEMS... 35
5.1 New DOS-Compatible File System ... 36
5.2 New Raw Disk File System ... 37
5.3 Changes in Block Device Drivers ... 37
5.4 Buffering 44

6 NETWORK ENHANCEMENTS 45
6.1 Optimizations 45

6.2 Transmission Media ... 45

6.3 Communications Protocols ... 46
6.4 Security .. 46
6.5 New NFS Option .. 47

7 SHELL CHANGES.. 48
7.1 Task Referencing .. 48
7.2 Idle Task .. 48
7.3 Task Activity Reporting: spy() ... 49
7.4 Information Commands: i(), ti() .. 49

8 DEVELOPMENT:ENVIRONMENT ... 49
8.1 ANSI Support .. 49
8.2 X Windows Based Source-Level Debugging Support 49

9 CONFIGURATION AND BOOTING .. 50
9.1 Booting from Vx9ffJ ... 50
9.2 New Boot Line Fields ... 50
9.3 New INCLUDE Options ... 51
9.4 Boot ROM Compression ... 52

Ii Intel Vx96IJ

Contents

10 DIRECTORY AND FILE REORGANIZATION................................... 53
10.1 Directory Changes ... 53
10.2 Hosts Supported .. 53
10.3 Renamed Libraries ... 54
10.4 New Ubraries ... 54
10.5 Unsupported ... 54

11 NEW MODULES AND ROUTINES ... 55

Intel Vx960 iii

Vx900 5.0.3 - Transition Guide

Iv Intel Vx960

Vx960 4.012 to 5.0.3 Transition Guide

1. INTRODUCTION

Release 5.0.3 of the Vx960 real-time operating system and development environ
ment offers major enhancements over the previous release, 4.0.2. Changes include
the following:

• an extensively rewritten kernel providing a significant increase in perfor-
mance and functionality

• a highly optimized network
• a new file system
• SCSI support
• new booting options
• additional support for the 89609AI£BiptoceSsprpp
• ... additional support for the 8960~/KBprocesS0nr

The beginning section of this guide disci.ts~es 5.0~ systems. application compatibility .
and conversion. Be sure to read the following section: .

2. PORTING APPUCATIONS TO 5.0.3

Rev: 15 Nov 91

Applications developed on 4.0.2 Vx960 will require minimal changes to be com
patible with Vx960 5.0.3. This section itemizes these minimal yet important
changes and should be reviewed carefully for their potential effect on pre-exist
ing applications.

Intel Vx960 5

Vx.960 5.0.3 - Transition Guide

6

Subsequent sections expand on the information covered in these sections and dis
cuss Vx96O's new features and optimizations:

3. KERNEL ENHANCEMENTS

- Improved context switching time
- New scheduling algoritluns
- New semaphore types and options
- Improved error status handling
- Message queues

4. 1/0 SYSTEM

- Improvements in select{)
- SCSI support

5. LOCAL FILE SYSTEMS

- New DOS-compatible file system
- New raw disk file system
- Changes in block-device driver implementation

6. NETWORK ENHANCEMENTS

- Optimizations
- Serial-Line Interface Protocol (SLIP)
- Security Feature

7. SHELL CHANGES

- Changes in task referencing
- Changes in information reporting

8. DEVELOPMENT ENVIRONMENT

- ANSI header support
- Support for SQ~level debugging with VxGDB

9. CONFIGURATION AND BOOTING

- Booting from Vx960
- Boot ROM compression
- New INCLUDE options

10. DIRECTORY AND FILE REORGANIZATION

- Directory changes
- Renamed libraries
- New libraries
- Unsupported material

11. NEW MODULES AND ROUTINES

- Summary listing of new modules and routines

InteIVx960 Rev: 15 Nov 91

2. PORTING APPUCATIONS TO 5.0.3

2. PORTING APPLICATIONS TO 5.0.3

2. 1 Compiling

2.1.1 Applications Must Be Recompiled

Before loading applications developed under 4.0.2, review the changes outlined
below in 2.2 Summary of User-Interface Changes which may affect the compatibility
of your application.

2.1.1. 1 Object Compatibility

Regardless of whether code adjustments are necessary, 5.0.3 and 4.0.2 are not object
compatible; applications developed under 4.0.2 must be recompiled with 5.0.3
header files.

2.1.1.2 GNU/960 Rl.3

This release was built with Release 1.3 of the GNU /960 toolset from Intel. Develop
ment of code to run on top of Vx960 must be done with the same release. Since Vx960
5.0.3 uses GNU1.3, all applications must be recompiled with GNU13. If you do not
have GNU /960 Rl.3, contact your local Intel sales office.

Install the GNU /960 R1.3 toolset before you install or use the Vx960 Release 5.03.
Vx960 does not install correctly if your GNU /960 R13 tape has not been installed.
Your G960BASE environment variable must point to the GNU /960 directory for
your host. For complete details on installing GNU /960 Rl.3 and setting your envi
ronment variables, see your GNU/96O Rl.3 documentation.

Rev: 15 Nov 91 Intel Vx960 7

Vx960 5.0.3 - Transition GuIde

2.1.2 Host Development Tree

With Vx960 4.0.2 it was necessary to maintain separate and redundant development
trees for use from host to host This was required because the ma.kefiles differed in
the invocation of the compiler, assembler, and loader, using the native tools for dif
ferent hosts. Also, certain Vx960 host tools in lusrJvxlbin (e.g., hex and xsym) were
different object modules for different hosts.

At the time of installation, a host is selected and appropriate makefiles are created
for that host.

The directory lusrlvxlbin has been reorganized into lusr/vxlbinlsun3, lusrlvxlhinl
sun4, etc., with the appropriate versions of tools in each. The makefiles have been
changed to invoke Vx960 tools out of the appropriate bin directory. You may also
want to put the appropriate bin directory in your UNIX shell search path. On Sun
systems the tool arch is useful for this. For example, you might add the following to
your .cshrc:

•• t arch: 'arch '
•• tanv PAm .: /uar/vx/bin./$arch: ..•

2.2 Summary of User-Interface Changes

8

In implementing the,manychangescincluded in release 5.0.3, a major concern was to
keep 'the user interface:i'SJ:ompatible __ ~ possible with the .pr~vious -release, so that
applis=ations deve.!.~~~A~~~ lip~,ruimingimd~ 5.0.3 withfeW, if
an modi.ficati.o~~r.l.ti;;.,\;~iBdiii2:At'bjl~ir~~ to ;sitUa .. y, . .A~"~~~ .. __ ~ .• ~"""""~., _

tio~ where no othet.rec:GnRwasfeaSibleiWithdutsacrificiitg-funclionalityarid effi-
cient and consistent deSign.' -... -

Interface changes reflect- a -wide range. of -issues: from ~ major new features,
enhancements, and -methodologies disCussed :elsewhere in this document to the
minor changes necessary to comply with ANSI requirements. Wherever pOSSible,
routines and options which are now outmoded are still included with the system to
maintain backward compatibility.

This section serves as a guide to converting applications developed under the pre
vious release to work with Vx960 5.0.3. Of the following tables, Table 1 lists routines
that have been deleted and Table 2 lists routines that are now obsolete. Table 3 is a

Intel Vx960 Rev: 15 Nov 91

2. PORTING APPUCATIONS TO 5.0.3

quick reference to the routines that have changed, and includes cross-references to
subsequent pages that discuss these changes in greater detail.

Table 1. Modules and Routines Deleted in 5.0.3

Module/Routlne Reason/SUbstitute

fioFormat() Use fioFormatV() with varargs.
fioStdln() Use STDJN (0).
fioStdOut() Use STD_OUT (1),
fioStdErr() Use STD_ERR (2).
nfsAliUnmount() Obsolete
nfsMntDump() Obsolete
pathlib Internal use only.
ramMkfs() Use ramDevCreate() + rtllFsMkfs<) or dosFsMkfs() (see page 13).
selectDelaySet() Select no longer polls.
sysMemProbe() Use vxMem.Probe().
taskTcbX() TCB extension (tcbX) no longer exists.
wd1ick() Subsumed by tickAnnounce().

Table 2. Obsolete Routines in 5.0.3 •

Routine Reason/SUbstitute';' .' ~~L;'~:";&oi· '

semCreate() . Use semBCrettet~liS&£lc~e)zte(), semMcr.e.te(?). .,.

semClear()' Use semTake(llwtthNO.;.W~.
taskACWGet() Obsolete. Usej taskRegsGet().
taskPCWGet() Obsolete. Use; taskRegsGet().
taskTCWGet() Obsolete. UsejtaskRegsGet().
taskACWSet() Obsolete. Use: taskRegsGet().
taskCreate() Renamed taskInit().
taskPCwSet() Obsolete. Use taskRegsGet().
taskTCWSet() Obsolete. Use taskRegsGet().

• These routines remain in the standard system for backward compatibility .

Rev: 15 Nov 91 Intel Vx:960 9

Vx960 5.0.3 - Transition GuIde

Table 3. Routines Changed in 5.0.3

Routine Reason Transparentt Page

sClJn/() Floating-point field specs ANSI rompatible. no 7
sscltn/() Floating-poi~t field specs ANSI rompatible. no 7
fscltnf() Floating-point field specs ANSI rompatible. no 7
print{() Returns character rount instead of VOID. yes 7
fprint[() Returns character rount instead of OK. probably 7
fdprint[() Returns character rount instead of VOID. yes 7
printEn() Returns character rount instead of VOID. yes 7
sprintft.) Return value excludes null termination. no 7

symTbICreate() Symbol access time decreased by hashing. no 8
symTbUnit() Symbol access time decreased by hashing. no 8
1cerneUnit() No longer uses trap number. no 8
taskRegsGet() Takes pointer to REG_SET structure. no 9
tlZSkRegsSet() Takes pointer to REG_SET structure. no 9

semTake() Takes new timeout parameter. yes, wi semCreau 9
semGi'De() Returns STATUS instead of vom. yes 10
semlnit() Returns STATUS instead of VOID. yes 10
semDekte() Returns STATUS instead of vom. yes 10

CltZZoe() Returns vom· instead of ch.a.r-. yes 10
"""Zoe() Returns VOID· instead of ch.a.r-. yes 10
reltlloe() Returns VOID· instead of cha,.... yes 10
memInit() Returns STATUS instead of vom. yes 10
memPartAddToPool() Returns STATUS instead of VOID. yes 10
memPartAlloc() Returns VOID· instead of ch.a.r-. yes 10
memPartRealloc() . Returns VOID· instead of cha,-. yes 10
memP;:artOptionsSet() Returns STATUS instead of vom. yes 10
memP;:artShow() Returns STATUS instead of VOID. yes 10

wdLiblnit() Returns STATUS instead of VOID. yes 10
ld(r Takes new parameter for filename. yes, from shell 10
isO Takes new parameter for long format. yes, from shell 11
reltd() Number of bytes read conforms to POSIX. yes 11
period() Returns task ID instead of STATUS. probably 11
repeat() Returns task ID instead of STATUS. probably 11
lIT-ll routines Name prefix is HrtllFs" instead of "rtll" no 12
rt11FsDevlnit() Takes pointer to a BLK_DEV structure. no 12
TllmDevCrellte() Creates BLlCDEV structure. no 12

t "Transparent" means no code changes should be required.

10 Intel Vx960 Rev: 15 Nov 91

2. PORTING APPUCATIONS TO 5.0.3

2.2.1 Scan-Routine FormaHing: scant<), etc.

For ANSI compliance, changes were made to the fonnatting specifications used by
scant<), sscanf(), and fscanf(). These changes are not backward compatible.

In 4.0.2, the uppercase floating-point field specifications, %E, %F, and %G, implied
that the corresponding argument was a double, while the lowercase specifications,
%e, %f, and %g, implied that the corresponding argwnent was a float.

In 5.03, as specified by ANSI, the uppercase specifications are identical to their low
ercase counterparts. To indicate that the corresponding argument is a double, use the
"l" modifier, e.g., %le, '101f, %lg.

2.2.2 Print-Routine Retum Values: printfi.). etc.

OLD: VOID printf (fmt, ...)
VOID fdprintf (fd, fmt, ...)
VOID printErr (fmt, •••)
int .printf (buffer, £mt, ••.)
int fprintf (fp, £mt, •••)

NEW: int printf (f=, ...)
int fdprintf (fd, f=, ...)
int printErr (f=, ...)
int sprintf (buffer, £mt, ..•)
int fprintf (£p, £mt, •••)

In 4.0.2, printf(), fdprintf(), and printErr() returned no value (VOID) and the rou
tine /Print!<) returned OK if the output was successful.

In 5.0.3, all formatted "print" routines return a count of the characters successfully
output, or ERROR if the output is unsuccessful

In 4.0.2, sprintf() returned the number of characters put into the specified buffer
including the null termination. In 5.0.3, as specified by ANSI, it returns the number
of characters put into the specified buffer excluding the null termination. Thus the
count returned by sprintf() in 5.0.3 is one less than the count returned in 4.0.2.

Rev: 15 Nov 91 Intel Vx960 11

Vx960 5.0.3 - Transition Guide

2.2.3 Symbol Table Creation and Initialization: symTblCreate(), symThllnit()

OLD: SYMTAB_ID aymt'blCraata (maxSymbola, ma.xSymLen)
S'l'MO'S aym1'blInit (p'l'bl, maxSymbola, maxSymLan)

NEW: SYMTAB_ID aymt'blCraata (haahSizaLog2, aamaNamaOk, aymPartld)
S'l'MO'S aymrblInit (pSym'l'bl., aamaNameOk, aymPartld, aymRaah'l'blld)

In 4.0.2, the routines symTbICreate() and symTbUnit<) used parameters for the
maximum number of symbols that could be entered in the table, and the maximum
symbol length. The symbol table was structured as a fixed linear list.

In 5.0.3, symbol tables are hash tables that can grow dynamically and indefinitely
(see 3.8 Symbol Table and Hashing Ubrarles). The parameters for symTblCreate() are:

• the size of the hash table as a power of two,

• a flag indicating whether duplicate symbols are to be allowed,

• the ID of a memory partition from which to allocate space for symbols as
they are added.

The main parameter to symTblInit() is the ID of the hash table to use for the symbol
table.

2.2.4 Kernel Initialization Routine: kernelInit()

12

. OLD:

NEW:

VOID kernallnit (trapNum, rootRtn, rootStackSiza, memPoolStart,
memPoolEnd, intStaclcSiza, lockOutLaval)·

VOI]) ~Hrilf:·.(XO:OtRtnj;;~~ooJ.:Stal::b.,s~oolEnd, ,.; .
intStacltSiza, locltOut.Level.)

In 4.0.2, the kernel initialization routine, kernelInit(), defined a trapNum parameter,
which was the fault nuinber to use for kernel traps.

In 5.0.3, this parameter has been removed since Vx960 does not use kernel traps. Its
historical justification no longer exists.

Intel Vx96() Rev: 15 Nov 91

2. PORTING APPUCATIONS TO 5.0.3

2.2.5 Take-Semaphore Routine: semTake{)

OLD: VOID eemTake (aemId)

NEW: S'l'A~S aemTake (aemId, tJ.maout)

In 5.0.3, semTake() offers a new, optional parameter, timeout, that can be one of the
following:

Symbol Value

WAIT_FOREVER -1

NO_WAIT 0
>0

Meaning

no timeout; equivalent to 4.0.2 semTake

return immediately
return ERROR if not available after timeout ticks

Hawever, for backward compatibility, this parameter is only used if the semaphore
was created with one of the new 5.0.3 semaphore-creation ca1ls: semBCreate(),
semCCreate(), or semMCreate() (see 3.3 Semaphores). A semaphore created with
the 4.0.2-compatible semCreate() does not use the timeout parameter. Thus applica
tions that used semaphores in 4.0.2 do not have to be changed immediately in order
to run under 5.0.3. Eventually, however, all semaphore ca1ls should be converted to
the 5.0.3 preferred calls.

If you do not use th~timeou~ pa+ame~;you will see-the.f-ollow4\g warning:

In spite of the warning, the currentimR1emet\tation-:ofl~¢mpilen:wil1g~eratethe,
correct code. 'i'" Tr,C.~j-,-'

2.2.6 Memory Allocation: malloc{). etc.,

NEW: VOID *cal.~oc (e~emNum, elemSi.ze)
VOID *mal~oc (nBytea)

Rev: 15 Nov 91

VOID *rea~~oc (pB~ock, DewSi.ze)
VOID *mcamPartAl~oc (partld, nBytea)
VOID *mcamPartR.ea~~oc (partld, pB~ock, nBytes)

Intel Vx960 13

Vx96IJ 5.0.3 - Transition Guide

In 4.02, memory allocation routines returned type char*. For ANSI compliance, they
now return a value of type VOID-. The actual value they return is unchanged. In
ANSI C, void- is used as a "generic object pointer type."

2.2.7 Routines Changed from VOID to STATUS

NEW: STATOS lII8III.lnit (ppool, poolSiza)
S1'~OS memPartAddToP001 (partld, ppool, pocl.Siza)
S1'A1'OS memPartOptionssat (partld, options)
S1'ATOS memPartShov (partld, typal
STATOS samInit (pSamaphore)
S1'~OS aamDalata (.amId)
S1'~OS aamGi va (.amId)
S1'~OS wdLibInit ()

In 4.0.2, the above routines returned no value (VOID). In 5.0.3, they return the status
of the invocation (STATUS), i.e., OK or ERROR.

2.2.8 Load Routine: Id()

OLD: ST~OS l.d (8yma, noAbort)

NEW: S1'ATOS 1d (8yma, noAbort, nama)

In 5.0.3, the shell routine ld() takes an additional parameter name. If name is non
NULL, it is used as the file name to be opened and loaded from. If name is NULL, stan
dard input is used. Thus, in the following example, omitting name calls the routi.ne
with the default value of NULL and still loads from standard input:

-> 1c:l <1:00

2.2.9 Ust-Files Routine: Is()

14

OLD: ST~OS 18 (dirName)

NEW: ST~OS 1. (dirName, deLong)

In 5.0.3, the shell routine ls() takes an additional flag doLong. U TRUE, it causes the
directory listing to be in long format, as in ''Is -1" in UNIX. If FALSE, e.g., if omitted,

Intel Vx960 Rev: 15 Nov 91

2. PORTING APPUCATIONS TO 5.0.3

it outputs the list in short form. Note that there is also a new usrUb routine ll() Gong
list), which is equivalent to calling ls{) with doLong set to TRUE.

NOTE: The ls{) routine no longer works with netDrv and no longer displays
RT-ll"empty" entries. Use IsOldC) in such cases.

2.2.10 Read Routine: read()

In 4.0.2, the read{) routine was specified as reading any number of bytes from 1 to
the number of bytes specified in the call, even if there were more bytes· available.
Each driver could read a convenient number of bytes. The number of bytes read with
NFS and RT-l1 was often less than the specified number, typically corresponding to
a sector or other buffer-size variable.

In 5.0.3, the number of bytes read by read{) is always the full number of bytes spec
ified, or the number of bytes remaining in the file, whichever is less. lbis behavior
conforms to the POSIX definition of read().

2.2. 11 Task Repetition Routines: period(). repeat()

OLD: STATUS period (aeca, func, argl, ar9'2, arg3, •••)
STATUS repeat (n, func, argl, arg2, arg3, •..

NEW: int period (aeca, func, argl, arg2, arg3, .••)
int repeat (n, fUllC, arg1, arg2, arg3, •..)

In 4.0.2, the routines period() and repeat() returned the status value OK if the call
was successful, or ERROR if unable to spawn the task..

In 5.0.3, both routines return the ID of the task that was spawned, or ERROR if unable
to spawn the task..

2.2. 12 RT -11 Module and Routine Names

OLD: rtllLib

NEW: rtllFsLib

Rev: 15 Nov 91 Intel Vx960 15

Vx960 5.0.3 - Transition GuIde

The RT-ll file system library has been renamed rtl1FsLib for consistency. Accord
ingly, names for all RT-ll file system routines are now prefixed with "rtllFs" instead
of "rtll". These names are typically called by disk drivers rather than directly by
users, and due to changes in disk-driver implementation, the drivers must be rewrit
ten anyway (see 5.3 Changes In Block Device Drivers).

2.2.13 RT -11 Device Initialization: rt11FsDevlnit{)

OLD: STATOS rtllDevInit (vdptr, bytesPerSec, aecPerTrack, nSector.,
:z:tllFmt, nEntries, rdSec_func, wrtSec_func,
reset_func)

NEW: R'r_VOL_DESC *rtlU'aDevInit (devNa.ma, pBlltDev, rtl1F111t, nEntriea,
changeNoWarn)

In 5.0.3, rlllFsDevlnit<) has changed to take a pBlkDev parameter that is the block
I/O device to use for the RT-ll device. See 5.3 Changes In Block Device Drivers.

2.2.14 RAM Device Creation: ramDevCreate{)

16

OLD: STATOS ramDevCreate (nama, where, bytes Sec , aecTrack, nSectora,
rtFmt, .ecOffaet)

NEW: BLlC_DEV *ra.mDevCreate ... (.ramAddr, byteaPerSec, aecPerTrack,
nSectora, .ecOffaet)

In 5.0.3, ramDevCTeateUthasJ~)~encllangedto.:create a/'blockI/O device," which is
a new type of objectthat.caabe-"q>mledej:,l~£Ues.~p.e;;,.ei~er RT-119r Vx96Q- .
DOS} to make a filesysteiWf1Qclellic:f!~~;Previ:I}USl¥&ipplied.v.i':t~
to the, tamDev Create () 'calHs nows.peCified inrl11FsDevlnjt() 'or dosFsDevlnit<).· .,
See 5.3 Changes In Block'Devlce Drivers. ~ ,

IntelVx960 Rev: 15 Nov 91

2. PORTING APPUCATIONS TO 5.0.3

2.2.15 RAM Disk Fiie System Initialization: ram},ti'k!s() Deleted

OLD: STA~S ramMkf. (nama,
char *name:
int nbyte.;
char *where;
BOOL dontInit;

nbyte., where, dontlnit)
1* Device nama *1
1* No. of byte. total for RAM diak * I
1* Where it i. in memory (O=ma.lloc) *1
1* FALBE=init RT-ll dir, TR'OE=don't *1

NEW: BUt_DW *ramDeVCreate (ramAddr, byteaPerSec, .ecPeJ:'l'rack,
nSector., aecOffaet)

char *ramAddr; 1* Addrea. of ram diak (0 = malloc) *1
int byteaPerSec; 1* Number of byte. per .ector *1
int .ecPeJ:'l'rack; 1* Number of .ector. per track * I
int nSectora; 1* Number of .ector. on this device * I
int .ecOffset; 1* Number of .ectora to .kip at *1

* beginning of physical device *1

RT VOL DESC *rtllFaKlt.fa (volName, pBl.kDev)
char *volName; 1* volume name to u.e *1
BLK_DEV *pBlltDev; 1* pointer to block device atruct *1

DOS _ VOL-PESC *doaFaMkfa (volName, pBlkDev)
char *volName; 1* volume nama to u.e *1
BLK_DEV *pBlltDev; 1* pointer to block device .truct *1

In 5.0.3, as described elsewhere, the standard interface between block I/O devices
and file systems is the BLK_DEV structure (see 5.3 Changes In Block Device Drivers).
The old call ramMkfs() was not sUfficiertt.to:support:,this structure. Instead, use_
-ramDevCreate(-) to create a RAM block.ftS!device and,theneall eitherrlllFsMkfs(-) ,-
or dosFsMkfs() to create either an RT4b0i;1a€~Sfi1esystem oo.the device.· - - -- -. --

For example, to create a 200Kb.:RAMr~th;~aUoGatEiGllusing~m.allocO,,;_
and to create either ari RT-ll~or.IDE>S~:m(U·:t-the:foUoWingiOOuldi~voked:r
from the sheIl: . t- __ - _ i ,~<;: -~ _.

-> pBlltDev = ramDevCreate (0, 512,--400,400, ,0)

-> rtllFaMkf. (M Irtll/", pBl.ltDev)
or

-> doaFaMkfa (Of /doa/", pBl.kDev)

In 4.0.2, the ramMkfs<) call took a parameter dontInit, which, if TRUE, would inhibit
writing a new directory, etc. on the disk. In 5.0.3, if a new directory should not be
written, use dosFsDevInit<) or rlllFsDevInit<) in place of dosFsMkfs() or
rt11Mkfs()1 which always write a new directory on the disk.

Rev: 15 Nov 91 Intel Vx960 17

Vx960 5.0.3 - Transition Guide

2.2.16 Task Stack Space

In 4.0.2, several extended task facilities dynamically allocated memory at task cre
ation and freed that memory at task deletion. This was done for optional or variable
length extensions to a task's context.

In 5.0.3, this mechanism was changed to carve the necessary optional or variable
length space from the specified task stack size. This eliminates the need for task cre
ation and deletion hooks to do dynamic memory allocation. However, the actual
stack space available to the task is reduced from the amount specified in the
faskSpawn() or taskInit() call, by the amount required by these facilities.

It may be necessary to increase stack sizes of applications which ran under 4.0.2. The
routine checkStack() can be used to determine a task's stack usage.

The following is a list of facilities that carve space from the task stack space:

Facility SIze

task name atrlan (taskname) + 1

signals ai.zQof (TASK_SIGNAL_INFO) (592 bytes)

floating point support ai.zQof (FP _CONTEXT) (64 bytes>

3. KERNEL ENHANCEMENTS

18

The internal implementation of the Vx960 kernel has changed considerably in 5.0.3.
It requires less memory and operates at higher speed. The give/take timings of
binary semaphores are much faster; context switching time is now extremely fast
and performs in constant time;· the implementation of floating point processing is
much improved; and interrupt latency has been greatly reduced.

Intel Vx960 Rev: 15 Nov 91

3. KERNEL ENHANCEMENTS

3. 1 Queue Implementation

New queuing algorithms have been added to Vx960 and have been implemented
separately from the operation system facilities that use them, thus providing flexi
bility for the future implementation of new queuing methods.

There are a variety of kernel queues in Vx960: the ready queue is a priOrity-sorted
queue of all tasks eligible for scheduling; the tick queue is used by functions involv
ing timing; the semaphore queue is the list of blocked tasks waiting on a semaphore.
The active queue is a FIFO (first-in-first-out) list of all tasks in the system. Each of
these specialized queues requires a different queuing algorithm. Instead of hiding
the algorithms in the libraries that use them, they have been extracted into autono
mous queuing libraries that are interchangeable. These libraries have a common
interface and data structure, allowing Vx960 kernel queues to be configurable and
extendable.

None of the changes in queue implementation have significantly altered the user
interface; however, they form the basis for many of the optimizations, scheduling
algorithms, and semaphore options now available with release 5.0.3.

3.2 Tasking

·3.2.1

Release 5.0.3 introduces a number of enhancements to the kernel's tasking facility.
Fundamental features of task scheduling have been tuned for better performance.
Routines have been added, providing new functionality, and some existing routines
have been made more flexible.

Context Switching TIme

When one task stops executing and another begins, the context of the old task is
saved in its associated task control block (TCB) and the context of the new task is
restored. This is known as a task context switch. Context Switching time is greatly
reduced in release 5.0.3 due, in part, to a new queuing mechanism for the ready
queue. During a context switch, the previously executing task must be inserted.
Context Switching time is therefore directly affected by the performance of the ready
queue.

Rev: 15 Nov 91 Intel Vx960 19

Vx960 5.0.3 - Transition GuIde

Prior versions of Vx960 use a prioritized, doubly-linked list as the basis of the ready
queue. While nodes in such a list can be removed in fixed time, the insertion time
degrades proportionally with the nwnber of nodes in the queue; thus context
switching time was degraded as the ready queue grew in length. The 5.0.3 ready
queue uses a newly created bitmap priority queue, which exhibits fixed-time perfor
mance for both node insertion and node removal. The result of this enhancement is
that context switching time is of higher perfonnance and in constant time.

Context switching time has been further reduced by eliminating the use of task vari
ables in Vx960 facilities. Since task variables must be saved and restored during a
context switch, rewriting facilities to avoid their use has resulted in a much faster
context Switching time for the basic system.

The libraries which previously depended on task variables are rpcLib, stdioLib, err
noLib, and dbgu.". Instead of task variables, they now use macros referenced
through the global variables taskidCurrent, which is always a pointer to the TCB of
the current executing task. All information needed for standard I/O, RPC, and ermo
is contained within the TCB. The use of switch hooks-by these libraries has also been
cut back or eliminated, further contributing to the reduction of context switching
time in the basic system.

Context switching time has also been improve by no longer saving the floating-point
registers with every context switch involving a floating point task. See 3.7 FIoaHng
Point.

3.2.2 Basic Routines

20

New tasks are createdJttJbfJ~~t:ine.·:Thisd'dp.tine:allocates
memory' required·for:1he~daqustni~.taek}iinitialiZes(t:be>taSkfs,d~ta -:.~
structUres, and then activates' the, task. ~Vx960als&-mcludes-lower-4evel-roiltines to
perform these functions.. independently.ln~.Q.2, the.routine ta1kCTeate() performed
the data structure initialiution only but. not.:themem.ory ~ocation; 'allowing the
memory for the task's data:structures to be determined by the caller. In 5.0.3, this
routine has been renamed taskInit() to maintain consistency with overall Vx960
naming conventions. For backwards compatibility, the old taskCTeate() call is still
included but will be deleted in a future release.

Intel Vx960 Rev: 15 Nov 91

3. KERNEL ENHANCEMENTS

3.2.3 Deletion Safety: taskSafe<). taskUnsafe<)

Two new routines, taskSafe<) and taskUnsafe(), address problems stemming from
unexpected deletion of tasks. The basic function of taskSafe() is to protect a task
from deletion by other tasks. Frequently, a task executing in a critical region or
engaging a critical resource is particularly important to protect. Consider the follow
ing scenario. A task takes a semaphore for exclusive access to some data structure.
While executing inside the critical region, the task is deleted by another task.
Because the task was unable to complete the critical region, the data structure may
have been left in a corrupt or inconsistent state. Furthennore, the semaphore can
never be released by the task. Hence, the critical resource is now unavailable for use
by any other task; it is essentially frozen.

Using taskSafe<) to protect the task that took the semaphore prevents such an out
come. Any task that tries to delete a task thus protected will block. When finished
with its critical resource, the protecteci:task can make itself available for deletion by
calling taskUnsafe(), which unblockSicmy: of 'the deleting tasks. To SUPPOFt nested
deletion-safe regions, a count is kept of the number of times taskSafe<) and
taskUnsafe<) are called. The safe count is checked by taskDelete() whenever it tries
to delete. Protection operates only on the calling task; Le., a task cannot make
another task safe or unsafe from deletion.

The following code fragment shows how a critical region of code can be protected
using taskSafe<) and taskUnsafe():.

taakSa.fe ();
aamTake (aam:rd, 'NAl:T_i'OREVER);

(critical region)

aemGive (aam:rd);
t&akUnaafe ();

However, for convenience and e!fiQe.ncy;-d~eti"n,-safetylomrehandledwitha new
semaphore option that works wiili$luplalfexquSion ;setnaphbres,a -new' class of
semaphore available in Release S.:O.6v:Jf·the optibn'is "enabled, each semTakeO
includes the task-safe operation and,eaclisemGive() includes the task-unsafe oper
ation. See 3.3.2 Mutual-Exclusion Semaphores for more infonnationo

The 5.0.3 operating system facilities have been made more robust with the addition
of deletion safety in most places where mutual exclusion has been used. Users of
earlier versions of Vx960 noticed that if they spawned a task that sent serial output

Rev: 15 Nov 91 Intel Vx960 21

Vx960 5.0.3 - Transition GuIde

to the console and then deleted the task, console output would occasionally be lost
and could only be regained by restarting the shell. This happened because the task
perfonning serial output was deleted while it had the console semaphore, which left
the console device with an empty semaphore. This and similar scenarios are
resolved in 5.0.3.

3.3 Semaphores

Semaphores are the fundamental synchronization/mutual exclusion mechanism at
the foundation of all intertask communications in Vx960. Release 5.0.3 now offers
two new types of semaphores in addition to the standard binary semaphore: the
counting senuzpluJre and the mutual-exclusion senuzphme. The counting semaphore is
useful for coordinating access to resources of which there are multiple copies. The
mutual-exclusion semaphore is a specialized binary semaphore designed to handle
problems inherent in mutual exclusion.

All semaphores have been highly optimized. Two major new features now offered
with all semaphores are time-outs and queue options.

3.3.1 Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements of
the two fundamental forms of task coordination: mutual exclusion and synchroni
zation. The binary semaphore has the least overhead associated with it, making it
particularly applicable to high-performance requirements. The mutual-exclusion
semaphore described below in 3.3.2 Mufucll-Excluslon Semaphores is also a binary
semaphore, but it has been tailored to address problems inherent to mutual exclu
sion. Alternatively, the binary semaphore may be utilized for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

3.3.1.1 Mutual exclusion

22

Binary semaphores interlock access to a shared resource efficiently. Unlike disabling
interrupts or preemptive locks, binary semaphores limit the scope of the mutual
exclusion to only the associated resource. In this technique, a semaphore is created
to guard the resource. Initially the semaphore is full.

Intel Vx960 Rev: 15 Nov 91

3.3.1.2

3. KERNEL ENHANCEMENTS

s:&:!LID aamMatex;

1* create a b1na%y aemapho:re that ia initial.ly full *1
aeml4utex = aemBCraate (SE!LQ_PRIORI'l'r, SDLFOLL);

When a task wants to access the resource, it must first take that semaphore. So long
as the task keeps the semaphore, all other tasks seeking access to the resource will
be blocked from execution. When the task is finished with the resource, it gives back
the semaphore allowing another task to use to the resource.

Thus all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

(critical region, only accessible by a single task at a time)

aemGive (aemMatex);

Synchronization

When used for task synchronization, a semaphore may represent a condition or
event that a task is waiting for. Initially the semaphore is empty. A task or interrupt
service routine signals the occurrence of the event by giving the semaphore. Another
task waits for the semaphore by calling semTake(). The waiting task will be blocked
Wlti1 the event occurs and the semaphore is given.

Note the difference in sequence when semaphores are used for mutual exclusion
and when they are used for synchronization. For mutual exclusion, the semaphore
is initially full, and each task first takes and then gives back the semaphore. For syn
chronization, the semaphore is initially empty, and one task waits to take the sema
phore, which will be given by another task.

Rev: 15 Nov 91 Intel Vx960 23

Vx9MJ 5.0.3 - Tronsl11on Guide

The following is an example of using semaphores for task synchronization:

SDLIJ) ayncSea; /* IJ) of aync aemaphore */

init ()
{
intCozmect (••• , eventInterruptSvcRout, •••):
ayncSem - aemBCreate (SE!L~Li'I:ro, SE!LEMl?1'Y);
taskSpawn (••• , ta.ki);
}

taski ()
{

aamTake (syncSem, WAIT i'0REVER); /* wait for event to occur * /
... /* prOCesa event */-
}

eventInterruptSvcRout ()
{

semGive (ayncSem); /* let task 1 process event */

}

In the above example, when the init() routine is called, the binary semaphore is cre
ated, an interrupt service routine 'is attached to an event, and a task is spawned to
process the event. The routine taskl () will run until it calls semTake(). It will remain
blocked at that point until an ·event causes the interrupt service routine to call
semGiveO. When the .interrupt ser·vice routine completes,taskH)'.will execute tp
process the event. The.re:..is- an advantage of. haridJ.in:g- event w.-ocessing witJ::rln the .
context of a dedicatecttask:;Lesspri>£essmg.~tak.es. p.lalle_~aUntetrqpt.level, thereby
reducing interrupt Jaten$~lDOEieh.qj~~~ded.fot_r~
time applications. :.:";":;' time7applicatior.s; \: t:rrr;et-pp15cp.'-:c :;:.

3.3.2 Mutual-Exclusion Semapbore&_:

24

The mutual exclusion semaphore !is a-speaalized- yersion of the biliary "semaphore
designed to address issueS)nhetentin: mutUal exclusion; including priority inver
sion, deletion safety, and recursive acceSs to reSources.·

Intel Vx960 Rev: 15 Nov 91

3. KERNEL ENHANCEMENTS

3.3.2. 1 Priority Inversion

3.3.2.2

Priority inversion arises when. a higher-priority task is forced to wait an indefinite
period of time for the completion of a lower-priority task. Consider the following
scenario: tl, t2, and t3 are tasks of high, medium, and low priority, respectively. t3
has acquired some resource by taking its associated semaphore. When tl preempts
t3 and contends for the resource by taking the same semaphore, it becomes blocked.
If we could be assured that tl would be blocked no longer than the time it takes t3
to finish with the resource, the situation would not be particularly problematic.
After all the resource is non-preemptible. However, the low-priOrity task is vulner
able to preemption by medium-priority tasks; a preempting task, t2, will inhibit t3
from relinquishing the resource. This condition could persist, blocking tl for an
indefinite period of time. See the diagram in Figure 1.

The mutual exclusion semaphore has an additional optionSEM3NVERSION_SAFE,
which enables a priority inheritance algorithm. Priority:iri:heritance solves the prob
lem of priority inversion by elevating, the prioriW~llf.t3::...tQ~thejpriority\of tl,during
the time t1 is blocked on t3. This prbtects t3"and-;indirectly tt, frOiD preemptibn'by
t2. Stated more generally, the priority inheritance~~tocoL~sures that ~ task which
owns a resource will execute at the;prierit}c::of~es.t.priority laskblocked on
that resource. When execution is .. completer- the task '.gives -up the resource and
returns to its normal or standard priority. Mei:t£e}(the~'in1leritin~:_-.task is protected
from preemption by any intermediate-priority-tasks:Seethe diagram in Figure 2

Deletion Safety

Another problem of mutual exclusi6nmvolyestaskddmo1UW~aiadtiaaltegif>n::.
guarded by semaphores, it is often~esirabreltsr~tiftg~~ro
peeted deletion. Deleting a taskexecutingiiel<Djjlibill~can};ecatas_~.:Thei;
resourCe could be left in a corrupted:state:arid;~ Sanaprn;;i-e.~~g the~tirde::
left unavailable, 'effectively shutting_offali·acCeSS_jpi1ie.resou.rce.~::-7"~ ,. "-,, - .

As discussed previously, the primitiveStaskSdf~{-hfnd't~kf1n$afe(;)'provide th~··
desired protection, but as this protection-_goesharidln band with mutualcexclusion,
the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE, which
enables an implicit taskSafe() with each semTake(), and a taskUnsafe() with each
semGive(). "This convenience is also more efficient as the resulting code requires
fewer entrances to the kernel.

Rev: 15 Nov 91 Intel Vx.960 25

Yx960 5.0.3 - Translllon Guide

26

I ,
I mCH I tl

~

! MEDIUM :~ I t2
~ , J

....... ~

'iJ
~:;:tt.ijIM LOW

mCH

MEDIUM

WW

Intel Vx960

I j[!~!ti!!!::j::j~f@I::1 1:::~:::::m:::::::::::1
,--_____ :_::::::::::0_:0:00"::::::::::: time _

)

Figure 1. Priority Inversion

I t1

J i 1 ,---I _t2_ ,
~--------------------- time ----------------------~)

Figure 2. Priority Inheritance

Key: , - take semaphore l' -preemption

"V - give semaphore t ~ -priority inheritance/release

::11: - own semaphore I -block

Rev: 15 Nov 91

3.3.2.3

3. KERNEL ENHANCEMENTS

Recursion

One last feature of mutual exclusion semaphores is that they may be taken Urecur_
sively," i.e., a mutual exclusion semaphore can be taken more than once by the task
that owns it before finally being released. Recursion is useful for a set of routines that
need mutually exclusive access to a resource, but may need to call each other. It is
made possible by the fact that with mutual exclusion semaphores, the system keeps
track of which task currently owns the semaphore.

Before being released, a mutual exclusion semaphore taken recursively must be
given the same number of times it has been taken; this is tracked by means of a count
which is incremented with each semTake{) and decremented with each semGive{).

The example below illustrates recursive use of a mutual exclusion semaphore. Func
tion A requires access to a resource which it acquires by taking mySem; function A
may also need to call function B, which also requires mySem:

SEll! _10 mysam.;

mySem. - aamMCreate (•••) ;

funcA ()
{
aemTake (mySem, WAIT_FOREVER);

funcB ();

aeuGi ve (mySam.);
}

funcB ()
{

aemTake (mysam., WAIT_FOREVER);

aeuGi ve (mySem);
}

3.3.3 Counting Semaphores

The counting semaphore works like the binary semaphore except that it keeps track
of the number of times a semaphore has been given. Every time a semaphore is
given, the count is incremented; every time a semaphore is taken, the count is

Rev: 16 Nov 91 Intel Vx960 21

Vx960 5.0.3 - Translflon Guide

decremented. When the count reaches zero, a task that tries to take the semaphore is
blocked. As with the binary semaphore, if a semaphore is given and a task is
blocked, it becomes unblocked. However, if a semaphore is given and no tasks are
blocked, then the count is incremented. This means that a semaphore that has been
given twice can be taken a second time without being blocked, unlike the binary
semaphore .

. Counting semaphores are useful for guarding resources of which there are multiple
copies. For example, the use of five tape drives could be coordinated using a count
ing semaphore with an initial count of five, or a ring buffer with 256 entries could be
implemented using a counting semaphore with an initial count of 256.

3.3.4 Unblocking Tasks: semFlush()

3.3.5

Counting and binary semaphores support a new function, semFlush<). This routine
automatically unbloeks"all-.tasks pended on the specified semaphore. (When a
semFlush() has unblocked all pending tasks specific to that semaphore, the
semTake() routine returns OK.) Unlike semGive(), semFlush() never changes the
state of a semaphore. ThesemFlush() routine is used primarily as a broadcast mech
anism for synchronization. This new routine also works with the old-version binary
semaphores (see 3.3.7 Vx960 4.0.2-Compatlble Semaphores).

TImeouts -..)

All three new semaph~ineludei~ability:"tp:ti.me.eutrwhichis·Y1anaged·.by.
a parameter to semTake(paJeta~tn mes~~t&supp~.it.alu.etfiat;.·
specifies the amoun~fip.mif1.m'1icltstha~r«ait;~-:state;:..ftdhe~~~
task . succeeds intakin~~hote in:.fhEt aHottedrapiGllRf of 'time; -semTake()
returns OK; if it t:iJnes oIlt-beiere t4kirig,the semaph6re~ it~etllJns ERROJ..t. Av~ue of
WAIT_FOREVER ni'eans<iG neptUne out~ waitindefinite1y;a-value of NO:':WAlTmeans'
do not wait at alI. ,i- -

3.3.6 Semaphore Wait Queue: FIFO vs. Priority

28

Tasks blocked on a semaphore can now be queued based on either of two criteria:
first-in-first-out (FIFO) order or priority order. Previously, tasks were queued only
on the basis of assigned priority.

Intel V.x960 Rev: 16 Nov 91

3. KERNEL ENHANCEMENTS

This option is specified with the semaphore-creation routine. Semaphores using pri
ority inheritance (SEM_INVERSION_SAFE option) can use priority-order queuing
only.

3.3.7 Vx960 4.0.2-Compatible Semaphores

While the new semaphore types and features have meant changes in the user inter
face, the syntax for the binary semaphores used in Vx960 4.0.2 remains unchanged,
providing backward compatibility for applications developed under the previous
release. 1bis means that there are now two versions of binary semaphores. Sema
phores compatible with 4.0.2 can be crea~ed with semCreate(). The interface for
these old-version binary semaphores differs from the new only in that it has no
options for time-outs or queues; however, it has been implemented to use ahnost all
the performance optimizations achieved with the new binary semaphores. In future
releases of Vx960, the 4.0.2 semaphore interface will become obsolete in favor of the
more flexible 5.0.3 interface.

oldSem .. .amCraate ()
.emTake (old.Sem)

3.3.8 User Interface

/* DO timeout .pacified */

Instead of creating a complete ~et.o'£ functi.on~_specifis .toeacp:sema:phore.type,~_l'
the 5.0.3 semaphore interface has .. beeri~gned:::to.~as-:uniform:as-possib1e,As::;
shown in Figure 3, the primitives for th6HeletejJgiV.~take pmctionsSWOI'~;:;

. the semaphore types; orily the O:eatiolipbase::a;~~~mays~~
. - '" • .I.:. ...

larly powerM becaUse it means.,an~;~om~rom~e3sily.tpev.i:
changed from one type to another just hjum~ltheiaitW-6eatecaN"':r. ;"!1stb~chai

In the new semaphores, the functiona1it1-mf §em~r>l-bas$een subsumediiby,;l
semTake(): a value of NO_WAlTin the·~tfieldll1E!,aJlSi:dO.iiQywait foJ!a~sema-.c
phore to become available. For addition~!infe:tmation~··see-!±6Take"Semaphore Rou..::-
tine: sem Take(). :'

Rev: 15 Nov 91 Intel Vx960 29

Vx960 5.0.3 - Transition Guide

OLD BINARY

Options:

NEW BINARY

timeouts,
queues

COUNTING

timeouts,
queues

MUTUAL EXCL.

timeouts,
queues,

deletion safety,
inversion safety

create li~ij!i.mf..i!!}iii~:jl 1~:~.iQf.¢..::).~i~il 1~~.gql#.t~J:i}~!jl 1::l!IIiql~rl1f.~::1

delete li~:j:~.ti~m~:!if:::i::!i!i!i:ii::!i:ij:i::!i~~:::::I::!j::i::::~::~!:i::::!::~!!!:i!~!i:ii~:::ii:::ij:::~::::ii:i:ii~j!!j~iijjji~i!iiiii~i!i:i!:j:ii::i:ji:ijij!iij!!!!ij:!!!:!:::~~::!::i!!:i~::~::!!:~!!!!!j!!:j::I!!i!!!!j!;~!!!i!!ji!!:i!i:!!!ji~:!j!::I!::i:::I!::~!!!!:i:::::~!il

give 1:!i!::~~il~::J:::!::::::!!::!::!!!!!::!::!!:!:!:iii!!!i:!li!::!:!::!::ii:i::j:!:!::i!!~j:!ji!:!!::i::::::!!:::!j::!::!:!::l!:!!!:!:::j::::j::;:!~!:!:!:!::!::iiii:!!:::!:!:::!:!::i::!!t!:!i!::!:::!:i!:!::i:::i!i!t:!!i!!;:!;!ii:i:::i!!:!!i:!;!:::::!!::i!:::::i!::::i::;!::!!::!::i!!:;;1

take l:i:::::i.~r.4m:j~:!::::!:!!:!::jjj!:!~j!j!::::::::~!:i!:~!;!!::!j::::j:j:;!!:::::j::!~:;j;j::!!!l::::::ij::::!:::!::!:~:!~l::!:!:!i:;!:::;:~:!:i!!!:i~!:!i:!:;:j!::~:;!::!::;i:;::ij:i!::!!!:ii:::!:!!!:!::::::i:;:f!!::!::i!!!:i:;!!::::;::!:::!:j::!:!::::!:!:::::!:!:;:!:::!::!!:!i!I:I:1

flush l:j:ii:.gi~I{:l:!:;:;:::::::!:!:::::::!I:::i!!ii!i!:!::;!::::j:j:i!~:!i:ij!;:!j!:::::::::i:!:::::!!!i:!:::::i!:;i:!:::::;:::::::::!!::ii::!!!::i!!:i:::!::::!:;::!!!!it!:::::::::!:!::::::j:j~:j!1

clear 1~!::i!.gtf.4ii:~iiijiii~i:i!1

Figure 3. Semaphore Routines in Vx960 5.0.3

3.4 Message Queues

30

Modern real-time applications are constructed as a set of independent but cooperat
ing tasks. While semaphores provide a high-speed mechanism for the synchroniza
tion and interlocking of tasks, often a higher-level mechanism is necessary to allow
cooperating tasks to communicate with each other. In Vx960, the primary intertask
communication mechanism within a single CPU is message queues. Message queues
allow a variable number of messages, each of variable length, to be queued in first
in-first-out order. Any task or interrupt service routine can send messages to a mes
sage queue. Any task can receive messages from a message queue. Multiple tasks
can send to and receive from the same message queue. Full-duplex communication
between two tasks generally requires two message queues, one for each direction.

Intel Vx960 Rev: 15 Nov 91

3. KERNEL ENHANCEMENTS

3.4.1 Creating and Using Message Queues

A message queue is created with msgQCreate(). Its parameters specify the maxi
mum number of messages that can be queued to the message queue and the maxi
mum length in bytes of each message. Enough buffer space is preallocated for the
specified number and length of messages.

A task or interrupt service routine sends a message to a message queue with
msgQSend(). If no tasks are waiting for messages on that queue, the message is
added to the queue's buffer of messages. If any tasks are already waiting for a mes
sage from that message queue, the message is immediately delivered to the first
waiting task.

A task receives a message from a message queue with msgQReceive<). If any mes
sages are a1read y available in the message queue's buffer, the first message is imme
diately dequeued and returned to the caller. If no messages are available, then the
calling task will block and be added to a queue of tasks waiting for messages. This
queue of waiting tasks can be ordered either by task priority or BFO, as specified in
an option parameter when the queue is created. The number of messages available
in a message queue can be obtained using msgQNumMesgs<) or msgQlnfoGet<).

3.4.2 Message Queues and Pipes

Pipes provide an alternative interface to the message queue facility that goes through
the Vx960 I/O system. Pipes are virtual I/O devices managed by the pipeDrv
driver. Pipes are created and given names with pipeDevCreate() and can then be
read and written with normal read() and write() calls.

The pipeDrv driver uses the Vx960 message queue facility to buffer and deliver the
messages. The pipe driver gives access to the message queue facility through the
I/O system. The main differences between using pipes and using message queues
directly are:

Rev: 15 Nov 91

• Pipes have I/O device names.

• Pipes use the standard I/O functions open(), close(), read(), write() while
message queues use the specific functions msgQSend() and msgQReceive().

• Pipes respond to standard ioctl() functions.

• Pipes can be used in a select{) call.

Intel Vx960 31

Vx960 5.0.3 - Tronslffon GuIde

• Message queues have more flexible options for time-outs and message priori
ties.

• Pipes are less efficient than message queues because of the additional overhead
of the I/O system.

3.5 Watchdog Timers

The watchdog timer facility was previously implemented with its own separate
queue. In 5.0.3 it is included as part of the kernel, since it is now based on the opti
mized tick queue, shared by all other kernel timing functions. The use of this queue
significantly improves watchdog perfonnance.

The 5.0.3 watchdog timer facility is fully compatible with 4.0.2, and also includes the
new routine wdDelete<). However, the time-out feature of the new semaphore rou
tines obviates the need for some watchdogs that may have been used by applica
tions developed under 4.0.2

3.6 Alternative Kernels and the TeB Extension

32

The pSOS and VRfX kernels are not support~ in Vx960. For this reason, the TCB
extension has been eliminated. Useful information in the TCB extension has been
moved into the TCB proper. Perhaps the most subtle change resulting from this
modification is that task create/ switch/delete hooks no longer take a pointer to the
TCB extension, but a pointer to the task TCB.

Intel Vx:960 Rev: 15 Nov 91

3. KERNEL ENHANCEMENTS

3.7 Floating Point

In 5.0.3, saving the floating-point register state during context switching has been
significantly optimized. The floating-point state is not necessarily saved when a task
using floating point is switched out; instead, saving is delayed until another float
ing-point task is switched in. Therefore, in switching between floating-point and
non-floating-point tasks, the kernel may not need to save and restore the floating
point state at all.

3.8 Symbol Table and Hashing Ubraries

The library symLib, which manages Vx960 symbol tables, has been changed to use
a hash table, with the result that symbol lookup in 5.0.3 is hundreds of times faster.
Due to the efficiency of hashing, the facilities that use the symbol table can now run
much faster. This includes the Vx960 loader, shell, and source-level debugger.

The switch to hashing has necessitated changes to the routines symTblInit() and
symTblCreate(). Both take arguments specifying whether or not symbols of the
same name should be allowed, and the memory partition for symbol allocation. An
additional argument to symTblCreate() specifies the hash table size. For additional
infonnation, see 2.2.3 Symbol Table Creation and Initialization: symTblCreate(),
symTbllnlt<).

3.9 Error Status Handling

ANSI C requires a global integer ermo to be set to an appropriate error nwnber
whenever a library function is to return infonnation about an error. Previously,
Vx960 used errnoSet() and errnoGet() to fulfill this function. However, in 5.0.3,
Vx960 applications can directly reference the global variable erma, which is saved
and restored as part of a task's context. Interrupt service routines may also utilize
erma since it is saved and restored off the interrupt stack as part of the functionality
of the code generated by intConnect(). For backward compatibility, errnoSet{) and
errnoGet{) are still fully functional.

Rev: 15 Nov 91 Intel Vx960 33

Vx96IJ 5.0.3 - Transition GuIde

4. 1/0 SYSTEM

4.1 Select

The implementation of select<) in release 5.0.3 has been modified extensively, pro
viding wider functionality and a substantial increase in performance.

The function of select() is to wait for activity on a set of file descriptors. Previous
implementations polled the requested file descriptors periodically, with the polling
period specified as a number of clock ticks. This technique resulted in a worst-case
latency equal to the polling period, thereby causing applications that use select(),
such as RPC, to perform poorly.

The new implementation of select<) uses a set of functions that permits tasks
pended in select() and waiting for I/O on a device to be detected by the device's
driver. Thus, the driver's interrupt service routine directly wakes up tasks that are
pended on device activity, eliminating the need for polling. These functions, along
with select(), are contained in the new moduleselectLib.

Applications may now use select() with pipes and serial devices in addition to sock
ets. Also, select<) now examines write file descriptors in addition to read file descrip
tors; however, exception file descriptors are still unsupported.

Driv~ implementors should review the new documentation for selectLib if they
wish to support select<).

4.2 SCSI Support

34

Vx960 now offers support for SCSI (Small Computer System Interface), an increas
ingly popular interface standard for a wide-ranging variety of computer peripher
als. Release 5.0.3 supports the SCSI protocols for Wmchester disks, optical disks,
floppy disks, and tape drives. Both file systems currently used by Vx9fJJ - RT-ll and
Vx960 DOS - can be used on SCSI disks.

Intel Vx96IJ Rev: 15Nov 91

5. LOCAL FILE SYSTEMS

Drivers are supplied for the Fujitsu MB87030 and Western Digital WD33C93 SCSI
devices. The Western Digital device is used by the Heurikon HK80/V960 target
board.

The device-independent interface for handling the basic SCSI protocol is supplied in
the module scsiLib. The device-dependent interfaces are mb87030Lib and
wd33c93Lib. The SCSI interface is included in the Vx960 system image by defining
INCLUDE_SCSI in lusr/configltarget/config.h for relevant targets.

The SCSI disconnect/reconnect feature, which is used only by systems using multi
ple peripherals, is not yet implemented. The option of using the DMA (Direct Mem
ory Access) controller with SCSI may be available on a per-target basis.

4.3 POSIX Standard Directory Handling

Vx960 5.0.3 routines for manipulating and searching directories follow the POSIX
standard. The functions mkdir{), rmdir{), opendirl.), closedir<), readdir<),
rewinddir<), stat(), and fstat<) are provided in dirLib(1). Code developed with
these functions on other systems can easily be converted to Vx960.

5. LOCAL FILE SYSTEMS

Vx960 5.0.3 now offers a new file system compatible with the file systems of MS-DOS
and other versions of DOS for pcs. The performance of the RT-ll file system, the
only file system offered previously, has also been improved. Changes to Vx9(JJ file
system support and implementation are discussed below. A fuller discussion of
Vx960 file systems is provided in Chapter 5 of the Vx960 Programmer's Guide. See also
the discussion of changes in RT-ll routines and RAM disk routines under
2.2 Summary of User-Interlace Changes.

Rev: 15 Nov 91 ~'ltel Vx960 35

Vx960 5.0.3 - Translflon GuIde

5.1 New DOS-Compatibie Fiie System

36

The new Vx960 DOS file system is compatible with versions of M~DOS up to and
including 4.0, as well as other versions of DOS for PCS.

The Vx960 DOS file system is considerably more flexible than RT-l1:

• It offers the ad vantage of allowing files and directories to be arranged hierarchi
cally, while RT-l1 allows only a "flat" arrangement using a single directory. This
provides the added advantage of pennitting an indefinite number of·OOS files
to be created on a volume, while RT-U is limited to a fixed number of files.

• Unlike RT-ll, blocks of files need not be contiguous. While such fragmentation
may cause some increase in physical I/O time, it ultimately results in more effi
cient use of available disk space. To provide enhanced performance, the Vx960
DOS file system offers an II 0 control option which can be used to preallocate
contiguous disk space to files when required by application demands.

• DOS files can be appended, while RT-l1 files generally cannot; the size of RT-l1
files is usually fixed once they are initially created and closed.

• Multiple DOS files can be created without being closed; in some circumstances,
an open RT-ll file must be closed before another file can be created.

• The Vx960 DOS file system supports disk volumes larger than 32 megabytes.

• Using the Vx960 DOS file system provides compatibility with widely available
storage and retrieval media. Disks created under Vx960 and on MS-DOS per
sonal computers and other systems may be freely interchanged.

Services for file-oriented device drivers using Vx960 DOS are provided in dosFsLib.
The file system is included in the Vx960 system image by defining INCLUDE_DOSFS
in the configuration file lusrlmconfiglalllconfigAll.h or in
fusrlmconfig/<target>/config.h.

NOTE: /usrlVX/config/a1lIconfigAll.h and /usrlvxlconfig/<target>/config.h
will be referred to as configAlLh' or <target>/config.h respectively
throughout the rest of this document.

Intel Vx960 Rev: 15 Nov 91

5. LOCAL ALE SYSTEMS

5.2 New Raw Disk File System

Vx960 5.0.3 also offers a simple "raw file system" for use with disk devices. The raw
file system treats the entire disk much like a single large file. Portions of the disk can
be read and written, specified by byte offset, and simple buffering is performed. The
raw file system offers advantages of size and speed when only very Simple, low
level disk I/O is required.

This functionality was previously available by using the RT-ll file system and spec
ifying the device name as a file name for file operations. Services for file-oriented
device drivers using the raw file system are now provided in rawFsLib. The file sys
tem can be included in the Vx960 system image by defining INCLUDE_RAWFS in the
configuration files configAll.h or <target>/config.h.

5.3 Changes in Block Device Drivers

5.3.1 Summary

Moving Vx960 from an I/O structure based on a single-file-system (RT-ll) to one
supporting multiple-file-systems has resulted in some fundamental changes in how
I/O requests are routed to block device controllersl . Previously, the Vx960 I/O sys
tern issued I/O calls directly to block device drivers, which in turn madeRT-ll file
system calls. However, to allow a block device driver to be used with more than one
type of file system, this sequence has been rearranged. Entries in the Vx960 driver
table now refer to an RT":l1, Vx960 DOS, or raw disk function library, rather than the
actual device driver. I/O calls are routed directly to the appropriate file system,
which in turn calls the device driver to perform physical I/O and other disk control
ler functions. Figure 4 shows a comparison of I/O routing for block devices in Vx960
releases 5.0.3 and 4.0.2.

In general, block device drivers for Vx960 5.0.3 are simpler than their earlier coun
tezparts, since they no longer· must route high-level I/O requests to the file system.
The device driver, during its device initialization, describes the block device in a

1. A block device is a device that is organized as a sequence of individually accessible blocks of data.

Rev: 15 Nov 91

The most common type of block device is a disk. The term block refers to the smallest address
able unit on the device. For most disk devices, a Vx960 block corresponds to a sector, although
terminology varies.

Intel Vx960 37

Vx960 5.0.3 - Transition GuIde

38

Application

I/O System

driver table

File System
(RT-ll)

Vx9604.0.2

Application

I/O System

driver table

File System
(DOS, RT-ll, 01' faN dIslc:)

Vx960 5.0.3

Figure 4. Implementation Changes in Block Device Drivers

standard data structure (BLK_DEV). The application program then calls a function
(e_g., dosFsDevlnit() or rt11.FsDevlnit(» specifying the name to be used for the
device, the address of the BLK_DEV structure describing the device~ and other con
figuration data specific to the file system. This process associates the generic block
device with the speci.fic file system (e.g., Vx960 DOS or RT-ll).

Intel Vx960 Rev: 15 Nov 91

5. LOCAL FILE SYSTEMS

Existing device drivers for disk controller boards (Vx960 4.0.2 and earlier) require
modification to remove code specific to RT-ll, to implement the BLK_DEV descrip
tion structure, and to no longer be installed in the I/O system driver table. The
Vx960 RAM disk driver, ramDrv, has been modified to reflect these changes and can
serve as an example for creating or modifying other disk device drivers.

The sections below outline the differences between 5.0.3 block device drivers and
their previous counterparts, and should be useful for converting existing drivers to
the new implementation.

5.3.2 Initializing the Driver

In previous versions of Vx960, a block device driver's initialization routine would
install the driver in the I/O system's driver table using iosDrolnstall(). Now, the
file system is installed in the driver table instead, allowing the file system to be called
cfuectly by the I/O system in response to the basic I/O calls (open(), read(), etc.). As
a result, iosDroInstall() should not be called by the driver's initialization routine.

5.3.3 The BLK_DEV Structure

The BLK_DEV structure, defined in the include file bIldo.h, serves as a standard
interface between the device driver and the file system. Several parameters previ
ously passed to the file system via the device initialization call, rlllFsDevlnit<), are
now specified in this structure.

The BLK_DEV structure contains fields which describe both the physical configura
tion of the device (e.g., number of blocks on the device) and the addresses of routines
within the driver.

Three of the five routines whose addresses are passed to the file system via the
BLK_DEV structure were previously parameters to rlllFsDevInit(). These are the
routines to read a block, write a block, and reset the device. The fourth routine is the
device driver's I/O control routine. The fifth routine is an optional status-cJ:leck rou
tine that is called by the file system at the start of every open or create operation.

Rev: 15 Nov 91 Intel Vx960 39

Vx960 5.0.3 - Translflon GuIde

The BLK_DEV structure must be the first element in the device descriptor structure
used by the device driver. an previous versions of Vx960, the required first element
was an Rf-ll volume descriptor.) The file system passes the pointer to the BLK_DEV
structure when calling the driver's routines. If the BLK_DEV structure is the first ele
ment, this is equivalent to a pointer to the device descriptor.

5.3.4 Creating Devices

The BLK_DEV structure should be initialized by the driver's device creation routine.
A pointer to the BLK_DEV structure must be returned to the caller, so that it may then
be used during dosFsDevlnit(), rlllFsDevlnit(), or rawFsDevlnit().

In previous Vx960 device drivers, the device name was assigned by the driver when
the device was created. This was done with a call to iosDevAdd(), which installs the
device in the I/O system device table. The device name was a parameter to the driv
er's device creation routine.

In current device drivers, iosDevAdd() is not called by the device driver. Instead, the
device is installed in the device table by the file system, via dosFsDevlnit(),
rtllFsDevlnit(), or rawFsDevlnit(). Therefore, no name is assigned to the device
during its creation, and the device name is no longer a parameter to the driver's
device creation routine. Immediately after it is created, the device does not have a
particular file system associated with it (this is done by the file system's device ini
tialization routine).

5.3.5 Block Read and Write Routines

40

The routines provided by the device driver to read and write blocks must now sup
port reads and writes of multiple blocks. This takes advantage of current disk con
troller hardware that supports such calls directly.

Intel Vx960 Rev: 15 Nov 91

5. LOCAL FILE SYSTEMS

The new call interfaces for these routines are:

and

STATUS xxBl.lcRd (pDev,
DEVICE *pDev;
int atartBlk;
int numBlJea;
char *pBuf;

STATOS xxBlJeWrt (pDev,
DEVICE *pDevi
int atartBl.k;
int numBlka;
char *pBuf;

.tartBl.k, numBl.ka, pBuf)
/* pointer to device daacriptor * /
/* starting bl.ock to read * /
/* number of bl.ocka to read */
/* pointer to buffer of data to read * /

atartBlk, numBl.ks, pBuf)
/* pointer to device daacriptor *1
/* starti.ng bl.ock for write */
/* number of bl.ocks to write */
/* pointer to buffer to write data to */

NOTE: In the above examples, the subroutine names xxBlkRd and xxBlk Wrt
are user-supplied names, and this convention is used throughout the
remainder of this section. The symbol DEVICE is used here to indi
cate the device descriptor used by the particular device driver.

The BLK_DEV structure must be the first element in the device descriptor used by the
device driver. The file system passes the pointer to the BLK_DEV structure when call
ing the driver routine. As long as the BLK_DEV structure is the first element, these
pointers are equivalent. ..

If your hardware does not directly support multiple-block reads and writes, the rou
tines in your device driver must loop to perform the necessary number of transfers.
For example:

int i;
for (i = 0; i < numSeca; i++)

{

/* perfol:m singl.e-bl.ock read or write * /

/* incrQmQnt bl.ock number */

/* advanCQ buffer pointer by nUInbar of bytes par bl.ock * /
}

Be aware that if your device driver rehrrns an error to the file system from a block
read or block-write routine, the file system retries the transfer, based upon the bd_re
tIy field specified in the BLK_DEV structure. The entire transfer is retried, even if the
error occurred after some of the blocks were correctly transferred.

Rev: 15 Nov 91 Intel Vx960 41

Vx960 5.0.3 - Transition GuIde

5.3.6 1/0 Control Routine

The call interface for the I/O control routine is:

funcCoda, axv) smros zxloctl (pDev,
DEVICE *pDev:
int funcCoda;

/* pointer to davic. descriptor * /
/* ioctl function coda * /

int arg: /* function-specific argument * /
This is the same as in previous versions of Vx960. However, in previous versions, the
driver's I/O control routine was called directly by the I/O system. If an I/O control
function could not be handled locally by the driver, it would then be passed to the
file system. For new block device drivers, this arrangement is reversed. The I/O sys
tem now calls the file system directly for I/O control functions. If the file system is
unable to service a request, the driver's I/O control routine is called.

As a result, it is now the responsibility of the device driver's I/O control routine to
declare an error if it cannot handle a request. This is typically done in the default: case
for a C-language switch statement The driver's I/O control routine should set the
task's error number to S_ioLib_UNKNOWN_REQUEST, and should return ERROR.

For example:

.witch (£uncCoda)
(
cas. FIOOISKF~T:

/* do disk fOl::lnatting */
break:

default:

}

.rxnoSat (S _ ioLib _UNKNOWN_REQUEST) :
retw::n (ERROR);

5.3.7 Device-Reset Routine

The reset routine is unchanged from previous versions of Vx960. If no reset function
is required by your device dri ver, the bd_reset field in the BLICDEV structure should
be set to NULL by the device creation routine.

Intel VK960 Rev: 15 Nov 91

5. LOCAL FILE SYSTEMS

5.3.8 Status-Check Routine

This is an optional routine that allows the device driver to perfonn any necessary
functions at the beginning of open or create operations on the device. It is particu
larly useful for calling routines to check the status of the disk.

The call interface for the status-check routine is:

STATUS xxStatusCbk (pDev)
DEVICIi'! *pDev; 1* pointer to cWvice descriptor *1

This routine, if present, is called by the file system at the beginning of each open()
or create) on the device. It should return OK if the open or create may continue. If it
detects a problem with the device, the routine should set errno to some value indi
cating the problem, and return ERROR. If ERROR is returned, the open or create will
not be completed.

A primary use of the status-check routine is to check. for a disk change on devices
that do not detect the change until after a new disk has been inserted. For such
devices, the routine should determine whether a new disk has been inserted. If a
new disk is present, the routine should set the bd_readyChanged field in the
BLK_DEV structure to TRUE and then return OK, allowing the open or create to con
tinue. The new disk is mounted automatically by the file system.

If no status-<:heck routine is needed in your device driver, the bd_statusChk field in
the BLK_DEV structure should be set to NULL by the device creation routine.

5.3.9 Obsolete Functions

Several functions that were previously required in Vx960 block device drivers are no
longer necessary. These are the routines which called the file system to perfonn the
actual services:

• xxCreate ()
• xxDelete()
• xxOpen()
• xxClose()
• xxRead()
• xxWrite()

Rev: 15 Nov 91 Intel Vx960 43

Vx960 5.0.3 - Transition GuIde

Now, the I/O system calls the file system directly for such functions in response to
high-level system calls <e.g., open(».

5.3.10 Change in Ready Status

In previous device drivers, if a change in the device's ready status was detected <e.g.,
if a disk change was recognized), the device driver would call the file system's
ready-change routine, rt11FsReadyChange().

To allow the driver to notify the file system in a more general way, the BLICDEV
structure contains a boolean field, bd_readyChanged. The device driver should set
this field to TRUE whenever a change in ready status is observed, or any other con
dition that implies the volume should be remounted. 1bis field is cleared by the file
system; it should never be cleared by the device driver.

5.3.11 Write-Protected Media

In previous device drivers, if the device driver recognized that the disk had been
write-protected, it would call the file system's mode-change routine,
rt11FsModeChange(), to mark the volume as read-only. This was required because
the volume mode was kept in the file system's volume descriptor.

To allow the driver to notify the file system in a more general way, the volume mode
is now kept in the BLK_DEV structure. The bd_mode field should initially be set to
UPDATE when the device is created. If the disk has been write-protected, the driver
should change the field's value to READ. This field may also be modified by the file
system's mode-change routine.

5.4 Buffering

The Vx960 DOS file system uses a combination of internal buffering and direct use
of the caller's buffer to handle large I/O transfers efficiently. The buffering mecha
nism for the RT -11 file system has also been improved, and speed is now comparable
to the DOS file system. While RT-ll previously could read or write only a single
block at a time, it is now capable of efficiently handling much larger reads and

Intel Vx960 Rev: 15 Nov 91

6. NEnNORKENHANCEME~

writes. In tests of the new buffe.ii.J.lg scheme, RT-ll performed up to three times i1

fast as in Vx960 4.0.2.

6. NETWORK ENHANCEMENTS

6. 1 Optimizations

Vx960 networking facilities have been significantly improved in release 5.0.3
Depending on network configuration, users will see as much as 50 to 100 percen
increase in throughput.

The major optimization that made this possible was to redesign the network buffer·
ing mechanism to use UNIX-style clusters in addition to mbufs. Speed was a1sc
increased by optimizing the socket code and by basing network code on the 4.3 BS'C
Tahoe release of Tep / IP (see 6.3.1 rep liP).

6.2 Transmission Media

6.2.1 SUP

Vx960 can now be networked with the host operating system using the Serial Line
Interface Protocol (SLIP).

In Vx960, SLIP has been implemented as a network interface driver that can be
attached to the IP software in the same manner as other network interface drivers.
For more information on the use of SLIP, see the manual entry for iCsl(l).

SLIP is particularly useful for corrununications setups where Ethernet or other high
speed networks cannot be used, such as long-distance connections requiring phone
lines. However, such communications have two fundamental restrictions. Since they
rely on serial line connections, throughput is inherently slower: a maximum of
38.4Kbits/sec as compared to Ethernet's 10Mbits/sec. SLIP communications are

Rev: 15 Nov 91 Intel Vx960 4S

Vx960 5.0.3 - Translflon Guide

aiso point-to-point, as opposed to broadcast. Tnis means that packets can only be
routed between two endpoints of a serial connection. However, if the host at either
end of ~ serial connection has other network interfaces, such as Ethernet, and can
forward packets to additional machines, it can act as a gateway between SLIP and
other systems on the network.

6.3 Communications Protocols

6.3. 1 Tep /1 p

Vx960 TCP lIP has been upgraded to the Tahoe maintenance release of 4.3 BSD
UNIX. This upgrade includes the Van Jacobsen optimizations for TCP lIP.

6.3.2 FW Service

Vx960 can now function as an ftp server. In previous releases Vx9fIJ was an ftpclient
only; all ftp communications relied on the UNIX host acting as server. The ftp dae
mon running on .Vx960 allows ftp calls from a UNIX client to a Vx960 server, and
from a Vx960 client to a Vx9fIJ server. In particular, this makes it possible to boot
another Vx960 system directly from a Vx960 server. On the Vx960 server, calling
ftpdInit() initializes the ftp server task. For more infonnation see the manual entry
for ftpdLib(l).

6.3.3 RPC

Vx960 RPC has been upgraded to RPC release 4.0.

6.4 Security

46

Release 5.0.3 offers a new security feature so that users can be required to enter a
user name and password when accessing the Vx9fIJ shell via the network with tel
net or rlogin.

Intel Vx960 Rev: 15 Nov 91

6. NENVORKENHANCEME~

This facility is activated by defining INCLUDE_SECURITY in the Vx960 configuration
files configAlLh or <target>/config.h. It can also be disabled at boot time by speci
fying the flag SYSFLG_NO_SECURITY flag bit (value = Ox20) in the flags parameter on
the boot line.

The password table is initialized with a single entry with the following user name
and password:

user name:

password:

targ'Qt

password

Passwords are created using the supplied tool vxencrypt, which is run on the UNIX
host. See the manual entry for vxencrypt(3). Users can also supply their own encryp
tion algorithm in place of vxencrypt(3).

The Vx960 login prompt string can also be changed using loginStringSet<). This can
be useful to reflect system identity where there are multiple targets on a network.

6.5 New NFS Option

Vx960 offers a new configuration option for automatically mounting all exportable
NFS file systems from the host system. Each file system is NFS mounted if
INCLUDE_NFS_MOUNT_ALL is defined in the Vx960 configuration file. If onI y INCLU
DE_NFS is defined, Vx960 mounts the file system from which Vx960 was booted, as
in the previous release.

Certain precautions must be observed if the host file system "/" is mounted in Vx960.
If you try to reference a file whose name begins with a slash, Vx960 confuses the
slash with the NFS-mounted file system "/". For example, if your current directory
is the DOS device DEVI: and you try to open a file on this device called Imyfile,
V x960 will look only for myfile on the file system "I", unless the full device name is
specified.

If "/" has been mounted because INCLUDE_NFS_MOUNT_ALL is defined, it may be
more convenient to urunount "/" using nfsUnmount<) in your startup script.

Rev: 15 Nov 91 Intel Vx960 47

Vx960 5.0.3 - Transition Guide

7. SHELL CHANGES

7. 1 Task Referencing

Most Vx9fJJ routines that take a task parameter require a task 10. However, when
invoking routines interactively, specifying a task ID can be cumbersome since the ID
is an arbitrary and possibly lengthy number.

To accommodate interactive use, all Vx960 shell expressions can now reference a
task by either task 10 or task name. The Vx960 shell attempts to resolve a task argu
ment to a task 10; if no match is found in the system symbol table, it searches for the
argument in the list of active tasks. When it finds a match, it substitutes the task
name with its matching task ID. In symbol lookup, symbol names take precedence
over task names.

By convention, task names are now prefixed with a lit". This avoids name conflicts
with entries in the system symbol table. The names of system tasks and the default
task names assigned when tasks are spawned use this convention. For example,
tasks spawned by sp() will be given names such as tl, t2, and t3. Users are encour
aged to adopt this convention.

7.2 Idle Task

48

In 5.0.3 the function of the idle task is now internal to the kernel; it no longer appears
With system tasks displayed by the i() command. In previous versions, the idle task
merely looped to itself using all remaining CPU cycles in an application. Removing
it as a system task represents an optimization because there is no idle context to be
saved and restored when an application enters or exits the idle state. The time spent
taking the system out of the idle state is therefore much faster.

Intel Vx:9aJ Rev: 15 Nov 91

8. DEVELOPMENT ENVIRONMENT

7.3 Task Activity Reporting: spy()

The task activity report displayed by spy() now shows the time spent at kernel state,
in addition to the time spent by each task. This is useful for understanding where
processor time is being spent in the system.

7.4 Information Commands: i(>. ti(>

U a task's priority is inherited, this appears as "+1" in the status field when display
ing task infonnation with i(). In addition, the ti() command now summarizes the
task's stack and options in a more presentable fonn.

8. DEVELOPMENT ENVIRONMENT

8. 1 ANSI Support

Vx960 now supplies ANSI C function prototype declarations for all global routines
in the Vx960 header files. The ANSI prototypes are conditionally compiled; to use
them, define the macro _STDC_ either in vxWorks.h or in the application code
before any include statements. Vx960 5.0.3 provides the ANSI-specified header files
stddef.h, stdlib.h, and string.h.

8.2 X Windows Based Source-Level Debugging Support

VxGDB 3.2 extends the line-oriented mode of the GNU Source-Level Debugger
(GDB), Version 3.2, with a graphical user-interface based on the X Wmdow System.
The graphical user-interface lets you enter commands either by selecting a com-

Rev: IS Nov 91 Intel Vx960 49

Vx960 5.0.3 - Transition Guide

mand button with the mouse or typing the command directly into a dialogue win
dow. The User's Guide to VxGDB describes how to use the new VxGDB interface.

9. CONFIGURATION AND BOOTING

Release 5.0.3 of Vx:960 adds a number of new features that improve booting proce
dures, including the ability to boot from another Vx960 system. New configuration
and boot-line options have been added as well.

9.1 Booting from Vx960

With release 5.0.3, it is possible to boot Vx:960 from another Vx960 system running
an ttp daemon, since Vx960 can now function as an fip server, as explained earlier.
CallingftpdInit<) on the Vx960 server initializes the ftp server task. To boot from the
Vx960 server, just specify the Internet address of the Vx960 server in the "host" field
of the boot parameters and supply a password in the "ftp password" field. For more
information see the manual entry for ftpdLib(1).

9.2 New Boot Line Fields

50

The Vx960 boot line now accepts the following additional fields:

Reid

tn=targetname

s=startupScript

o=other

Meaning

add targetname to host table as name of target system

execute startupScript on system startup

unused - available for application use

The addition of a target name allows the target to know a "hostname" for itself ..

In 4.0.2, a start-up script was sought with a fixed name (host:bootDir/startup.cmd)
and executed if found. 1his was enabled at build time by the
INCLUDE_STARTUP _SCRIYf option in configAlLh, or <target>/config.h and could be

Intel Vx960 Rev: 15 Nov 91

9. CONFIGURA nON AND BOOnNG

disabled at boot time by setting the SYSFLG_NO_STARTUP_SCRIPT option bit in the
"flags" boot parameter.

In 5.0.3, the start-up script filename is specified by the "S=" boot parameter. If the
parameter is missing, no start-up script is executed. As in 4.0.2, this is enabled at
build time by the INCLUDE_STAKIUP _SCRIPT option in configAll.h or <target>/con
fig.h. The SYSFLG_NO_STARTUP _SCRIPT option bit is now ignored..

In 5.0.3, an optional uoilier" field can be specified. This field is ignored by Vx960
oilier than to enter it in the structure containing the system boot parameters,
sysBootParams. 1bis field is thus available for application use.

9.3 New INCLUDE Options

The INCLUDE options, INCLUDE_GNU_CLIB and INCLUDE_GNU_FLOATLIB,
can be defined in configAlLh or <target>/config.h to force all of the GNU libraries
to be loaded into the kerneL When an application is downloaded, the loader resolves
the library references.

To obtain the standard C library functionality or the floating point library function
ality, you can do one of the following:

• 1£ you want the standard C library as part of your application, you can spec
ify the -leg option on the command line or you can speci1y
INCLUDE_GNU_960_CUB as a preprocessor option to the kernel configura
tion.

• If you want the floating point library as part of your application, you can
specify the -lfpg option on the command line or you can specify
INCLUDE_GNU_960_FLOATLIB as a preprocessor option to the kernel config
uration.

The following table illustrates the choices described above.

Command-line Option Preprocessor Option

standard C Ubfary -leg

F10ating Point Ubrary -lfpg

Rev: 15 Nov 91 Intel Vx960 51

Vx960 5.0.3 - Transition Guide

When you define INCLUDE_GNU_CUB or INCLUDE_GNU_FLOATIlB, do not specify
the options -leg or -lfpg respectively on the gld960 -r command line. If you specify
these INCLUDE options, the application runs, but memory is wasted since some rou
tines will be loaded twice - the first time, since they already exist in the kernel and
the second time, when the application is downloaded.

The following table outlines what will occur if you do or do not specify the INCLUDE
. options.

Preprocessor OpHon Specified Preprocessor Not-Specified

Convnand·line OpHon Specified The appDcation runs but
memory Is wasted

Command-line OpHon Not Specified The appUcation runs.

The application runs.

The application downloads
with unresolved symbols.

For additional information on other INCLUDE options see Table 8-1. Selectable
Vx960 Options in the Vx960 Programmer's Guide.

9.4 Boot ROM Compression

52

With the addition of new functionality in the Vx960 boot ROMs, the memory
required exceeded the maximum on-board ROM capacity of some systems. In 5.0.3,
the Vx960 boot ROMs are compressed to about 50% of their actual size using a
binary compression algorithm. When control is passed to the ROMs on system reset
or reboot, a small (8 Kbytes) decompression routine, which is not compressed, is exe
cuted. It then decompresses the remainder of the ROM into RAM and jumps to the
~tart of the decompressed image in RAM. There is a short delay during the decom
pression (about 1 second) before the Vx960 prompt appears.

Vx960 4.0.2 runs with the Vx960 5.0.3 boot ROMs even though these ROMs contain
the decompression routines. However, Vx960 4.0.2 cannot use Vx960 5.0.3 exten
sions on the boot line.

The compression mechanism is available to application builders who wish to com
press a ROMable Vx960 application into ROM. For more information, see the man
ual entries for bootInit(l) and compress(3).

Intel Vx960 Rev: 15 Nov 91

10. DIRECTORY AND FILE REORGANIZATION

10. DIRECTORY AND FILE REORGANIZATION

10. 1 Directory Changes

Several directories in the vx tree have been reorganized:

lusr/vxlh/drv contains hardware-specific headers for drivers, etc.

lusr/vxlh/i960 contains versions of architecture-<lependent header files2

lusrlvxfbinllwst contains shell scripts and host-specific executables of Vx960
tools

10.2 Hosts Supported

The following is a list of the hosts supported by Vx960. If the operating system for
your host is upwardly compatible, the existing GNU /960 tools may be supported.
The source for all Vx960 binaries are provided to allow other hosts to be supported.
If the GNU /960 tools are supported, Vx960 supports that host.

Processor Operating System Host Type

Sun4 Sun0s4.0.3c Sun4
Sun-3 Sun0s4.0.3c Sun3
Sun-386i Sun0s4.0.1 386i
VAX 8600 Ultrix-32 V3.1 (Rev.9)
HP9000/300 HP/UXV7.0 hp300
Compaq Deskpro 386/33 Intel System V R3.2 i386v
DECStation 2100 ULTRIX V2.0 (Rev 7)
IBMRS/6000 AIX Version 3.1 rs6000
HP / Apollo Series 400 Domain/OS SR 10.3 ap400
i386 systems System V R3.2 i386v

2. Note that lusr/vxlh still contains architecture-independent versions, which include appropriate
architecture-dependent versions <e.g., lusr/vxlhldsmLiblt includes lusrlvxlhli9601dsm960-
Lib.h depending on the definition of the CPU variable).

Rev: 15 Nov 91 Intel Vx960 53

Vx960 5.0.3 - Transition GuIde

10.3 Renamed Ubraries

The Vx960 libraries in lusrlvxlliblarch were renamed to be more consistent:

all.a

config.a

nela

rpc.a

formerly vxWorks.a

formerly vxConfig.a

formerly network.a

formerly rpclib.a

10.4 New Ubraries

The following libraries were added:

drv.a drivers

netif.a network interface drivers

i960.a i960 microprocessor specific modules

10.5 Unsupported

54

Several hardware support packages that are no longer supported by Intel have been
moved to lusrlvxlunsupported. These include several board support packages, net-

. work drivers, and device drivers. Also, some software developed for hardware that
is not suited to an i960 environment is no longer available.

Some tools developed for in-house use are also supplied lias is" in lusrlVX/unsup
ported/tools. They are:

mangen

mofset

mkmk

shadow

Intel V>e960

- generate the manual entries for a specified library

- make structure member offset definitions header

- generate a makefile from makefile skeletons and source files

- create a private workspace with links to shared files

Rev: 15 Nov 91

11. NEW MODULES AND ROunNES

Manual entries for these tools can be generated using mangen:

manqen too~ filename

These tools can be copied (minus the .sh extension) to a directory in your executable
search path as desired. You are free to use these tools, but Intel does not provide sup
port for them.

11. NEW MODULES AND ROUTINES

The following list is a summary of new libraries, drivers, routines, and tools intro
duced with Vx.960 5.0.3:

New Ubrarles

- POSIX directory handling library
- open a directory for searching
- read one entry from a directory
- reset position to start of directory
- close directory
- get file status information

dirUb.c
opendirl.)
readdirl.)
rewinddirl.)
dosedirl.)
fstat<)
stat<) - get file status information (using pathname)

dosFsLib.c - MS-OOS media-compatible file system library
dosFsConfiglnit<) - initialize dosFs volume configuration structure
dosFsDateSet<) - set current date
dosFsDateTtmeInstall{) - install user-supplied date/time function
dosFsDevInit<) - associate block device with dosFs file system functions
dosFslnit<) - prepare to use dosFs library
dosFsMkfs<) - initialize device and create dosFs file system
dosFsModeCJumgcl.) - modify mode of dosFs volume
dosFsReadyChange<) - notify dosFsUb of a change in ready status
dosFsTimeSet<) - set current time
dosFs VolUnmount() - unmount a dosFs volume

Rev: 15 Nov 91 Intel Vx960 55

Vx960 5.0.3 - Translflon Guide

56

ftpdUb.c
ftpdTask()
ftpdInit{)
ftpdDelete<)

loginUb.c
loginInit{)
loginUserAdd()
loginUserDelete< }
loginUserVerify()
loginUserShow()
loginPrompt{)
loginStringSet{)
loginEncryptlnstall()
loginDefaultEncrypt{)

msgQLib.c
msgQCreate()
msgQDelete()
msgQInfoGet<)
msgQSh.ow()
msgQSend()
msgQReceive()

netShow.c
ifShow()
icmpstatShow()
inetstatShow()
ipstatShoW()
mbufShoW()
netShowlnit<)
tcpstatShow()
udpstatShowO
arptabShow()

rawFsLib.c
rawFsDevlnit{)
rawFslnit{)

Intel Vx960

- File Transfer Protocol server
- FfP server daemon task
- initialize the FfP server task
- clean up and finalize FTP server task

- user login/password subroutine library
- initialize the login table
- add a user to the login table
- delete a user entry from the login table
- verify a user name and password in the login table
- display the user login table
- display a login prompt and validate user entry
- change the login string
- installation of encryption routine
- password encryption routine

- message queue library
- create and initialize a message queue
- delete message queue
- get list of task IDs that are blocked on message queue
- show information about a message queue
- send a message to a message queue
- receive a message from a message queue

- network related information display routines
- display available network interfaces
- printout statistics for ICMP
- show all active connections for Internet protocol sockets

- display IP statistics
- report mbuf statistics
- initialize network show routines.
- show all statistics for TCP protocol
- print out statistics for UDP
- show a list of known ARP entries

- raw disk file system library
- associate block device with raw volume functions
- prepare to use raw volume library

Rev: 15 Nov 91

11. NEW MODULES AND ROUTINES

rawFsModeChange() - modify mode of raw device volume
rawFsReadyChange() - notify rawFsLib of a change in ready status
rawFsVoIUnmountC.) - disable a raw device volume

- Small Computer System Interface (SCSI) hbrary
- delete a SCSI physical device structure
- create a SCSI physical device structure
- list the physical devices attached to a SCSI controller
- define a logical partition on a SCSI block device
- initialize fields in a SCSI logical partition
- pulse the reset signal on the SCSI bus
- issue a TEST_UNiT_READY command to a SCSI device
- issue a FORMAT_UNIT command to a SCSI device
- issue an INQUIRY command to a SCSI device
- issue a MODE SELECf command to a SCSI device
- issue a MODE SENSE command to a SCSI device
- issue a READ_CAPACITY conunand to a SCSI device
- read sector(s) from an SCSI block device
- write sector{s) to an SCSI block device

scsiLib.c
scsiPhysDevDelete()
scsiPhysDevCreate()
scsiShow()
scsiBlkDevCreate()
scsiBlkDevlnitC.)
scsiBusResetC.)
scsiTestUnitRdy()
scsiFonnatUnit<)
scsilnquiry()
scsiModeSelect()
scsiModeSense<)
scsiReadCapacity()
scsiRdSecs()
scsiWrtSecs()

scsiReqSense<) - issue a REQUEST SENSE command to a device and read

. scsiloctl()

selectLib.c
selectlnitC.)
select()

selWakeup()
selWakeupAll()
selNodeAdd()
selNodeDelete<)
selWakeupListlnitC.)
selWakeupListLen()
selWakeupType()

semBLib.c
semBCreate()

Rev: lS Nov 91

results
- do a device-specific control function

- UNIX BSD 4.3 select library
- initialize the select library
- pend on a set of file descriptors
- wake up a task pended in select
- wake up everyone on a select wake up list
- add a copy of this wake up node to the wake up list
- find a node on a wake up list and delete it
- initialize a select wake up list
- return number of nodes currently on wake up list
- return the type of the given SEL_WAKEUP _NODE

- Vx960 binary semaphore library
- create and initialize a binary semaphore

Intel Vx960 57

Vx96JJ 5.0.3 - Transition Guide

semCLib.c
semCCreate()

semMLib.c
semMCreate()

semOLib.c
semCreate()
semClear()

taskArchLib.c
taskRegsShow()

- Vx960 counting semaphore library
- create and initialize a counting semaphore

- Vx960 mutual exclusion semaphore libraty
- create and initialize a mutual exclusion semaphore

- Vx960 4.0 binary semaphore library
- create and initialize a binary semaphore
- take binary semaphore if semaphore is available

- architecture specific task management routines for kernel
- print contents of a task's registers

New Routines in Existing libraries

58

bindresvport()
bootStringToStruct()
bootStructToString()
fioFormatV{)
getsockop#,.)
getwd()
ifAddrGet()
ifBroadcastGet()
ifDstAddrGet()
ifDstAddrSet()

ifFlagChange<)
ifFlagGet()
ifFlagSet()
ifMaskGet()
ifMetricGet()
ifMetricSet<)
ifRouteDelete()
intLockLevelGet()
intLockLevelSet()
lI()

IsOld()

Intel Vx960

- bind a socket to a privileged IP port
- interpret the boot parameters from the boot line
- construct a boot line
- fonnat processor
- get socket options
- get Current default path
- get Internet address of a network interface
- get broadcast address for network interface
- get point-ta-point peer's Internet address
- define address for the opposite end of a

point-ta-point link
- change network interface flags
- get network interface flags
- specify flags for a network interface
- get the subnet mask for a network interface
- get the metric for a network interface
- specify a network interface hop count
- delete routes associated with a network interface
- get the current interrupt lock-out level
- set the current interrupt lock-out level
- do long listing of directory contents
- list contents of RT-ll directory

Rev: 15 Nov 91

nfsMount402{)
nfsMountAll<)
rll1FsMkfs{)
semFlush()
semlnfo()
symFindByValueAndType{)
symRemove<)
symTbLDelete<)
taskCreateHookShoW<)
taskDeleteHookShow{)
taskInit<)
taskSafe()
taskSwitchHookShow()
taskTerminate<)
taskUnsafe()
unlink()

usrStartupScript<)
usrStartupScript402()
vfdprintf()

vprintf()

vsprintf()

wdDelete()

New Drivers

memDrv
memDevCreate<)

memDrv()

New Tools

aoutToBin.<:

Rev: 15 Nov 91

11. NEW MODULES AND ROUllNES

- mount NFS directory as in 4.0.2
- mount all file systems exported by specified host
- initialize device and create Rr-ll file system
- unblock every task pended on a semaphore
- get list of task IDs that are blocked on semaphore
- find a symbol in a symbol table, given the value
- remove and delete a symbol from a symbol table
- delete a symbol table
- show create routines
- show delete routines
- ini tialize a task with stack at specified address
- make calling task safe from deletion
- show switch routines
- terminate a task
- make calling task unsafe from deletion
- delete a file
- make shell read initial startup script file
- execute startup script from network
- print formatted string with variable argument list

to specified field
- print formatted string with variable argument list

to standard output
- put fonnatted string with variable argument list in

specified buffer
- delete a watchdog timer

- install memory driver
- create a memory device
- install memory driver

- strip text and data segments from a.out file

Intel Vx960 59

Vx960 5.0.3 - Transition GuIde

60

compress.c
picLib.c
vxenaypt.c

Intel Vx960

- general purpose file compression utility
- jump program support routines
- encryption program for IoginLib

Rev: 15 Nov 91

11. NEW MODULES AND ROUTINES

Rev: 15 Nov 91 Intel Vx960 61

