
Vx960™

PROGRAMMER'S
GU IDE

Intel Corporation

Contents

Documentation Guide ... v

l Overview .. . 1

1.1 Introduction .. 3
1.2 Vx960 A Real-Time Partner for UNIX ... 5
1.3 Development Cycle ... 6
1.4 Multitasking and Intertask Communications .. 8
1.5 Network... 9
1.6 Module Loader and System Symbol Table .. 11
1.7 Shell .. 12
1.8 Debugging Facilities .. 12
1.9 Performance Evaluation.. 13
1.10 I/0 System.. 14
1.11 Local File Systems .. 15
1.12 Utility Libraries .. 16
1.13 Board Support Pack.ages ... 18

Intel Vx960

Vx960 5.0 - Programmer's Gulde

2 Getting Started .. 19

2.1 Introduction .. 21
2.2 Installing Cross-Development Tools ... 23
2.3 Installing Vx960 .. 23

2.4 Configuring the Host System ... 24
2.5 Configuring the Target Hardware... 26

2.6 Booting Vx960 ... 29

2.7 Playing With Vx960 and a Demo Program .. 38
2.8 Troubleshooting 46

3 Basic OS ... 51

3.1 Introduction .. 55
3.2 Tasks 56
3.3 Intertask Communications .. 73
3.4 Interrupt Service Code .. 89
3.5 Watchdog Timers ... 95

4 1/0 System .. 97

4.1 Introduction ~.. 101

4.2 Files, Devices, and Drivers .. 102

4.3 Basic I/0 .. 104

4.4 Buffered I/ 0: Stdio ... 109

4.5 Other Formatted I/0 ... 111
4.6 Devices in Vx960 .. 112

4.7 Initializing the II 0 System ... 125
4.8 Differences Between Vx960 and UNIX I/O ... 125
4. 9 Internal Structure 126

II Intel Vx960

Contents

5 Local File Systems .. 149

5.1 Introduction .. 151
5.2 DOS-Compatible File System ... 152
5.3 RT-11 File System... 174
5.4 Raw File System ... 179

6 Network ... 187

6.1 Introduction .. 189
6.2 Network Components ... 190
6.3 Configuring the Network ... 201
6.4 Network Initialization on Startup ... 216
6.5 Serial Line Interface Protocol ... 218
6.6 Backplane Networks .. 218

7 Cross-Development .. 231

7.1 Introduction .. ., 233
7.2 The Vx960 Cross-Development Environment 234
7.3 The Module Loader and System Symbol Table 235
7.4 Building and Loading Application Modules ... 237

8 Configuration ... 245

8.1 Introduction 247
8.2 Configuring Vx960 ... 248
8.3 Building a Vx960 System Image .. 259
8.4 Alternative Vx960 Configurations ... 263

9 Shell ... 269

9.1 Introduction .. 271
9.2 General Use ... 272
9.3 Shell Language ... 275
9.4 Redirection .. 285

Intel Vx960 Ill

Vx960 5.0 - Programmer's Gulde

9.5 Shell Line Editing ... 288
9 6 Aborting the Shell 290
9.7 The User Library .. 291
9.8 Remote Login .. 292
9.9 The Shell Task ... 294

1 0 Debugging .. 295

10.1 Introduction .. 297
10.2 The Shell 298
10.3 Task Names and IDs, and the "Current" Task and Address............... 302
10.4 Task and System Information ... ;.................... 303
10.5 Breakpoints and Single-Stepping ... 305
10.6 Disassembler ~... 308
10.7 Exception Faults ... 309
10.8 Miscellaneous Useful Utilities .. 309
10.9 Tips ... 313

Appendices

A Directories and Files .. 317

B Memory Layout ... 325

C Coding Conventions ... 329

D Bibliography ... 339

Index .. 357

Iv Intel Vx960

Documentation Guide

Vx960 documentation is divided into the following manuals:

•

•

•

•

The Vx960 Programmer's Guide describes the components of the Vx960 system
and how they interrelate.

The Vx960 Reference Manual contains UNIX-style manual page entries for all
Vx960 modules and subroutines.

The Board Support Package Manual describes each board in man page format

The GNU/960 Manual contains the following documentation:

• The GNU/960 Tools Release Notice provides an overview of the highlights of
the GNU I 960 release. It covers the differences between the GNU I 960
release and previous releases, and it includes information on fixes to known
bugs.

• Installing the GNU/960 Tools gives detailed step-by-step installation informa
tion for the GNU /960 tools (source1 binaries, and documentation).

• Using tlze GNU/960 Tools is an entry-point document that describes the his
tory and usage of the tools, gives a summary overview of each command in
the tool set, and explains the concepts and process of developing an applica
tion using the GNU/ 960 tools.

• The GNU/960 Tool Development manual describes how to customize the
GNU/ 960 tools for a variety of purposes, including porting to other hosts.

• The GNU/960 Reference Manual contains the man pages which provide
detailed information on each GNU /960 command. Many man pages also
provide feature examples. The intro(lGNU) man page gives an overview of
all the GNU I 960 tools.

Intel Vx960 v

Vx960 5.0 - Programmer's Gulde

• Using Intel i960 GNU CC provides in-depth information on gcc960, the
GNU I 960 C compiler, including detailed descriptions of all commandline
options. This is the source for complete reference information on gcc960.

• Using GDB/960 provides in-depth information on gdb960, the GNU/960
debugger, including detailed descriptions of all commandline options. This
is· the source for complete reference information on gdb960. A gdb960 quick
reference is also included.

Note: For additional information on the gdb-based debugger available for
Vx960, refer to the Vx960 Release Notes.

• Using GAS/960 provides in-depth information on gas960, the GNU I 960
assembler, including detailed descriptions of all commandline options. This
is the source for complete reference information on gas960.

• Using GLD/960 provides in-depth information on gld960, the GNU/960
linker including detailed descriptions of all commandline options. This is
the source for complete reference information on gld960.

Vx960 Programmer's Guide

The Vx960 Programmer's Guide contains the following chapters:

• Chapter 1. Overview
Outlines all Vx960 facilities and subsystems, and indicates where to find addi
tional information about each.

• Chapter 2. Getting Started
Provides step-by-step procedures for:

• installing Vx960
• configuring host software and target hardware and software
• booting Vx960
• loading and running the demo programs.

vi Intel Vx960

Documentation Gulde

• Chapter 3. Basic OS
Describes the fundamentals of the Vx960 run-time environment including:

• multitasking kernel
• spawning and manipulation of tasks
• intertask communication facilities
• interrupt service code.

• Chapter 4. 1/0 System

•

•

•

..

•

•

Describes the user view of the Vx960 II 0 system in general, the specifics of
Vx960 supplied device drivers, and the internal details of the I/O system,
including how to write device drivers.

Chapter 5. Local File Systems
Describes available local file systems: a DOS-compatible file system, an RT-11
file system, and a raw file system.

Chapter 6. Network
Describes the Vx960 network and remote file system. Covers TCP /IP, Ethernet,
backplane network, remote procedure calls, and network file systems.

Chapter 7. Cross-Development
Discusses Vx960 cross-development facilities and procedures. Describes the
module loader and system symbol table, how to build and load application
modules, and how to configure and build Vx960 itself.

Chapters. Configuration
Discusses the Vx960 standard configuration, plus the various options that can
be exercised to tailor the system to particular hardware and software require
ments.

Chapter 9. Shell

Describes the Vx960 shell, an interactive C-expression interpreter.

Chapter 10. Debugging
Describes Vx960 debugging facilities and techniques.

Appendix A. Directories and Fifes
Describes Vx960 directories and files, showing the Vx960 system directory
structure and summarizing the role of each component.

Appendix B. Memory Layout
Provides a map of system memory layout.

Intel Vx960 vii

Vx960 5.U - Programmer's Gulde

• Appendix C. Coding Conventions
Describes coding conventions used by Intel in all source modules.

• Appendix D. Bibliography
Provides a collection of resources on internetworking, operating systems in
general, and UNIX in particular. This bibliography is meant as a starting point
for further research.

• Index
Provides an extensive topical index.

Vx960 Reference Manual

The Vx960 Reference Manual consists of UNIX-style man page entries, and it is
divided into the sections summarized below.

• Master lntex
Contains the table of contents for Vx960 libraries and routines.

• Libraries (1)
Contains manual entries for all Vx960 libraries. Each manual entry lists the rou
tines found in a given library, including a one-line synopsis of each, along with
a general description of their use. Individual manual entries for each subroutine
follow the general description. Entries for libraries that are target-specific (e.g.,
sysLib and sysAlib) are found in the Supplements section.

• Drivers (2)
Contains manual entries for all Vx960 supplied drivers. Entries for drivers that
are target-specific (e.g., tyCoDrv) are found in the Supplements section.

• Tools (3)
Contains manual entries for all Vx960 tools that run under UNIX.

viii Intel Vx960

Documentation Gulde

Target Supplements

The following supplements are supplied separately. These supplements provide
information specific to each target supported by Vx960 and contain the manual
entries for the target-specific modules. The following is a list of currently supported
targets for which the supplements are available:

Cyclone CVME960
Heurikon HK80/V960E
Tadpole TP-960V

Intel EV80960CA
Intel EV80960SX
Intel TomCAT

Note: The Intel TomCAT board is not commercially available at this time. It is
included in the list above for completeness.

The targets in the first column are commercial Versa Module Eurocards (VMEs). The
Intel targets listed in the second column are Intel processor evaluation boards. For
additional information on each of these, refer to the Solutions 960 catalogue.

To obtain the Solutions 960 catalogue write to:

Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

For phone orders in the U.S. and Canada call toll free: (800) 548-4725.

On-Line Documentation

The Vx960 distribution includes the nroff sources for the entire Vx960 Reference Man
ual. Formatted entries can be accessed on-line from the host using the tool vxman(3).
For more information, see 2.7.2 On-Line Help and the manual entry for vxman(3).

Intel Vx960 Ix

Vx960 5.0 - Programmer's Gulde

Typographical Conventions

Vx960 printed documentation uses the font conventions shown in the table below to
differentiate various elements. In addition, parentheses are always included with
subroutine names, and a caret(") is used to indicate control characters. Also, when
libraries, drivers, or tools are cross-referenced to a section of the Vx960 Reference
Manual, the section number is shown in parentheses after the name, e.g., tasklib(l).

Font Style for Special Terms

Term Example

files, pathnames /etc/hosts
libraries, drivers memlib.c, nfsDrv.c
UNIX shell tools vxman
subroutines semTake()
boot commands p

code display main {);

keyboard input rlogin vx

display output value • 0

user-supplied parameters name
constants INCLUDE_NFS

C directives I data types #define
keyboard return RETURN

control characters "C
lower-case acronyms f d

x tntetVx960

Overview ..

Contents

1.1 Introduction : .. 3

1.2 Vx960 A Real-Time Partner for UNIX .. 5

1.3 Development Cycle ... 6

1.4 Multitasking and Intertask Communications ... 8

1.5 Net\vork .. 9

1.5.1 Sockets .. 9

1.5.2 Remote File Access: NFS, ftp, rsh .. 10

1.5.3 Remote Login: rlogin, telnet ... 10

1.5.4 Remote Procedure Calls (RPC) ... 10

1.6 Module Loader and System Symbol Table : .. 11

1.7 Shell ... 12

1.8 Debugging Facilities ... 12

1.9 Performance Evaluation ... 13

1.10 I/O System .. ~ 14

Intel Vx960 1

/ .
Vx960 5.0 -· Programmer's Gulde

1.11 Local File Systems ... 15

1.11.1 DOS File System ... 15

1.11.2 RT-11 File System ... 15

1.11.3 Raw Disk File System ~ , 16

1.11.4 Alternative File Systems :._ ... 16

1.12 Utility Libraries 16

1.13 Board Support Packages ... ; 18

2 lnte1Vx960

l

Overview

1.1 Introduction

Vx960 is a high-performance, real-time operating system and a powerful develop
ment environment for real-time applications. Vx960 includes a fast and flexible run
time system, powerful testing and debugging facilities, and an unparalleled UNIX
cross-development package, at the heart of which lies Vx960' s extensive UNIX-com
patible networking facilities.

The networking facilities allow Vx960 and UNIX to combine to form a complete,
integrated development and operational environment. Each is used for what it does
best. The UNIX system is used for software development and the non-real-time
components of applications, while Vx960 is used for testing, debugging, and run
ning real-time applications.

Once development is complete, the Vx960 system can operate either stand-alone or
networked with other systems running Vx960 or UNIX.

Vx960 is available for several target intel960™ microprocessor, CPU boards and can
be networked with any BSD 4.2 or 4.3 UNIX host systems, or any other operating
system with TCP /IP networking facilities.

Intel Vx960 3

Vx960 5.0 - Programmer's Gulde

The Vx960 real-time system includes:

High-Performance Real-Time Kernel Facilities
Multitasking with preemptive priority scheduling, intertask
synchronization and communications facilities, interrupt han
dling support, watchdog timers, and memory management.

Network Facllltles Transparent access to other Vx960 and UNIX systems via UNIX
source-comoatible sockets, remote command execution, remote .
login, remote procedure calls (RPC), source-level remote debug-
ging, and remote file access, all using TCP /IP network protocols
both loosely-coupled over standard Ethernet connections and
tightly-coupled over a backplane bus using shared memory.

Module Loader and System Symbol Table

Shell

Debugging Facilities

1/0 System

Local File Systems

Remote File System

4 Intel Vx960

Dynamic loading of object modules over the network or from a
disk, with run-time relocation and linking.

A C-interpreter interface that allows interactive execution of
most C language expressions, Vx960 functions, and any other
loaded functions, and also includes symbolic references to vari
ables.

Source-level debugging, a symbolic disassembler, symbolic C
subroutine traceba_ck, task-specific breakpoints and single-step
ping, system status displays, and exception handling to fault
and report on interrupts and hardware exceptions such as bus or
address errors.

A fast and flexible UNIX-source-compatible II 0 system, includ
ing UNIX standard buffered I/ 0.

Fast file systems appropriate for real-time and compatible with
the MS-DOS and RT-11 file systems, as well as a raw disk file sys
tem.

Network File System (NFS) facilities for accessing files transpar
ently on any NFS server on the network, and a non-NFS network
facility for accessing the host file systems using rsh or ftp.

1. Overview

Performance Evaluation Tools

Utility libraries

1/0 Drivers

An execution timer for timing a routine or group of routines, and
utilities to show CPU utilization percentage by ta.sk.

An extensive set of utility functions available to application
developers, including: message logging,. string formatting and
scanning,. linear and ring buffer manipulations, linked-list
manipulations, and symbol table manipulation.

Ty driver
Network driver
Pipe driver
RAM "disk" driver
SCSI library

for serial II 0 devices
for remote files
for intertask communication
for memory resident files
for SCSI hard disks and floppies.

Board-Support Packages

Boot.ROMS

Routines for hardware initialization, interrupt setup, timers,
memory mapping, etc.

Allow a target CPU to be booted over the network.

System Configuration Utilities
Allow reconfiguration and extension of Vx960 and building
applications in ROM.

1.2 Vx960 A Real-Time Partner for UNIX

The UNIX Operating System is an excellent system for program development and
for many interactive applications. However, it does not support real-time applica
tions well. On the other hand, traditional real-time operating systems provide poor
environments for program development or for non-real-time components of an
application.

Intel Vx960 5

.~

Vx960 5.0 - Programmer's Gulde

Rather than create a single ·operating system that does it all, Intel has networked two
different, but cooperating operating systems, Vx960 and UNIX. Vx960 handles the
critical real-time chores, while UNIX is used for program development and for non
time-critical applications. Vx960 and UNIX work well together because Vx960 has
been designed to be UNIX-compatible at many levels, in its extensive networking
facilities.

As a cross--development host, UNIX is used to edit, compile, link, and store real-time
code, which is run and debugged on Vx960. The resulting Vx960 application can be
run stand-alone either in ROM or disk based, with no further need for the network
or the host system.

However, UNIX and Vx960 can also work together in a hybrid application, with
UNIX systems using Vx960 systems as real-time servers in a networked environ
ment. For instance, a Vx960 system controlling a robot might itself be controlled by
the UNIX system running an expert system, or a number of Vx960 systems running
factory equipment might be connected to UNIX systems tracking inventory or gen
erating reports.

1.3 Development Cycle

To help you understand the environment provided by Vx960, we have outlined a
typical development cycle. The hardware in a typical development environment
includes one or more multi-user UNIX host systems and one or more single-user
Vx960 target systems connected by an Ethernet network. The UNIX system can be
loaded with large main memory, large disks, backup media, printers, and terminals.

The target systems, on the other hand, have only the resources required by the real
time system, plus some for testing and debugging. This can be as little as a CPU,
some serial I/0 channels, and an Ethernet connection.

Software development for a real-time system begins on the UNIX host development
system. Using the development and management tools on UNIX, the application
team begins to design and implement the application modules. Developers are free
to use the usual UNIX tools such as text editors, compilers, assemblers, make,
source-code control, and so on. The applications themselves can make use of the
many libraries supplied by Vx960.

6 . Intel Vx960

1. Overview

Application modules in Care compiled in the usual way with a cross-compiler. The
application modules do not need to be linked with the Vx960 system libraries or
even with each other. Instead, Vx960 can load the UNIX-generated object modules,
using the symbol table contained in all object modules to resolve external symbol
references.

Selected modules can be dynamically loaded across the network for testing and
debugging. The Vx960 "shell" program can then be use<l to invoke and test individ
ual application subroutines, or complete tasks.

Vx960 remembers the symbol tables from previously-loaded object modules, giving
symbolic access to data and subroutine names. You can examine data variables, call
subroutines, spawn tasks, disassemble code in memory, set breakpoints, obtain sub
routine call tracebacks, and so on, all using the original symbolic names. Also, pro
gram errors detected by the hardware, such as illegal memory references or illegal
instructions, are faulted and reported by Vx960, allowing further symbolic debug
ging.

Source-level debuggers are available that allow the application to be viewed and
debugged in the original source code. Setting breakpoints, single-stepping, examin
ing variables, and so on, can be done at the source level, using either commands at
an ASCII terminal or a mouse-based menu-driven interface on a windowed work
station.

The cycle of building, downloading, and testing modules is iterated until the appli
cation is ready for the production environment. You can remove Vx960 debugging
facilities from the production system, if necessary, to produce a system requiring
minimal resources. At that point, you can link the application with Vx960, and put
it into ROM if desired.

The remainder of this chapter outlines each of the components listed in the overview
above and provides reference to further documentation.

In tel Vx960 7

Vx960 5.0 - Programmer's Gulde

1.4 Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of multitasking
and intertask communications. A multitasking environment allows real-time appli
cations to be constructed as set of independent tasks, each with its own thread of
execution and set of system resources. The intertask communication facilities allow
these tasks to synchronize and communicate in order to coordinate their activity.

The Vx960 multitasking kernel uses interrupt-driven, priority-based task schedul
ing. It features fast, context-switch times and low, interrupt latency.

Under Vx960, any C subroutine can be "spa\vned" as a separate task, with its own
context and stack. Other basic task-control allows tasks to be suspended, resumed,
deleted, delayed, and moved in priority. See 3.2 Tasks in the Basic CS chapter as well
as the manual entry for taskLib(l).

Vx960 supplies several types of traditional task-blocking semaphores as the basic.
task synchronization and mutual-exclusion mechanism. Vx960 semaphores are fast
and efficient. In addition to being available to application builders, they have been
used in building higher level facilities in Vx960.

For intertask communications, Vx960 supplies a fast and flexible message queue
facility, intertask pipes, sockets, and signals. Sockets are a UNIX-compatible mecha
nism for exchanging byte streams between tasks regardless of location in a net
worked application. Signals are a UNIX-compatible mechanism for asynchronous
transfer of control within a task based on hardware or software exceptions. For addi
tional information see the following:

• semaphores are described in the manual entry for semLib(l) and in Chapter 3.
Basic OS;

• message queues are described in msgQLib(1) and in Chapter 3. Basic OS;

• pipes are described in pipeDrv(2) and in Chapters 3. Basic OS and 4. 1/0 Sys
tem;

• sockets are described in sockLib(l) and in Chapters 3. Basic OS and 6. Network;

• signals are described in sigLib(l) and in Chapter 3. Basic OS.

8 Intel Vx960

l. Overview

1.5 Network

The key to Vx960' s partnership with UNIX is its extensive networking facilities.
Since the network provides a fast, easy-to-use connection between the two systems,
you can use UNIX as a development system, as a debugging host, and as a provider
of non-real-time services in a final system.

Vx960 supports network connections both loosely-coupled over Ethernet networks
(IEEE 802.3), and tightly-coupled over a backplane bus using shared memory. Vx960
uses the TCP I IP net\vork protocols as implemented in BSD 4.3 for all network com
munications.

Vx960 provides several levels of network access: process-to-process sockets, remote
command execution, remote login, remote procedure calls, remote file access, and
remote source-level debugging.

l .5.1 Sockets

Vx960 provides standard UNIX socket calls, which allow real-time Vx960 processes
and other processes, such as UNIX processes, to communicate in any combination
with each other over the network. Vx960 socket calls are source compatible with
UNIX BSD 4.3.

Any process can open one or more sockets to which other sockets can be connected.
Data written to one socket of a connected pair can be read from the other socket. The
network link is transparent in the communications. In fact, the two processes do not
know whether they are communicating with another process on the same CPU or
another CPU, or with a Vx960 process or a UNIX process.

See the manual entry for sockLib(l).

Intel Vx960 9

Vx960 5.0 - Programmer's Gulde

1.5.2 Remote Fiie Access: NFS. ftp. rsh

Remote file access across the net\.•1ork is also available. A program running on Vx960
is able to use a UNIX system as a "virtual file system." Files on any UNIX system can
be accessed~ via the network, as if they were local to the Vx960 system. A program
running under Vx960 does not need to know where that file is or how to access it.
For example, /dk/file might be a file local to the Vx960 system, while host:file might
be a file located on another machine.

Vx960 includes the SUN Microsystems standard Network File System (NFS). It runs
as an NFS client with any other system that runs an NFS server. Vx960 can also use
two older protocols to provide transparent remote file access: rsh, or ftp. An ftp
serVer provides remote access to Vx960 from other Vx960 or UNIX systems usingftp.

See the manual entries for nfsLib(l), remLib(l), ftpLib(l), and ftpdLib(l), and the
sections 4.6.4 Network Fiie System (NFS) Devices and 4.6.5 Non-NFS Network Devices in
the 1/0 System chapter.

1.5.3 Remote Login: rlogln. telnet

The remote login feature allows you to log into Vx960 or UNIX machines from any
other Vx960 or UNIX machine on the network. On a UNIX workstation, you can
open an rlogin window that communicates with the Vx960 shell. By opening such
windows, you can monitor and control real-time Vx960 systems right from their
desks.

Vx960 can also be accessed via telnet, for systems that do not have rlogin.

See the manual entries for rlogLib(1) and telnetLib(l).

1.5.4 Remote Procedure Calls (RPC)

Designed by.SUN Microsystems and available in the public domain, Remote Proce
dure Call (RPC) is a facility that allows a process on one machine to call a procedure
which is executed by another process on another machine. Thus with RPC, a Vx960
task or UNIX process can invoke routines that are executed on other Vx960 or UNIX
machines, in any combination. See the public domain RPC documentation and the
manual entry for rpcLib(l).

10 Intel Vx960

1. Overview

1.6 Module Loader and System Symbol Table

The communication mechanism from application to Vx960 real-time, operating sys
tem is a subroutine call. Vx960 does not need mechanisms such as system faults to
get to system functions. Instead Vx960 supplies a system symbol table and a loader
with run-time linking to give dynamic and even interactive access to all loaded mod
ules.

The Vx960 module loader can load object modules over the network or from a disk,
and relocate them anywhere in memory. The loader also uses the symbol table con
tained in every object module to build a system-wide symbol table of loaded func
tion and variable names. Names from system and application modules alike are
added to the system symbol table.

This symbol table is the heart of many of Vx960' s most significant development aids.
The loader itself uses the system symbol table to resolve undefined references in
modules being loaded, linking newly loaded module? to previously loaded mod
ules. Also, Vx960 uses the system symbol table to provide interactive access to all
system and application modules that have been loaded. Finally, all of Vx960's·
debugging facilities use the system symbol table to provide symbolic references
wherever possible.

Run-time linking makes it easy to have shared subroutine libraries, in which a single
copy of a set of subroutines can be used by several tasks, rather than requiring each
task to be linked with separate copies of needed subroutines. As a result, there is no
inherent distinction between Vx960 "system" modules and user "application" mod
ules. This makes the Vx960 real-time system an open system: the system facilities are
easy to access, modify, and extend.

For more information on the module loader and the system symbol table, see
7. Cross-Development. Also see the manual entries for loadLib(l) and symLib(l).

Intel Vx960 11

Vx960 5.0 - Programmer's Gulde

1.7 Shell

Vx960 includes an interactive program called the "shell," which allows developers
to interact with all Vx960 facilities. The Vx960 shell provides one simple but power
ful capability: it can interpret and execute almost all C-language expressions, includ
ing calls to functions and references to variables whose names are found in the
system symbol table.

Thus the shell can be used to call Vx960 system functions, call any application func
tions, examine and set application variables, create new variables, and even as a gen
eral purpose calculator with all C operators.

In addition, the shell includes a command history facility and vi-like command-line
editing, and can also be used to log into a remote UNIX or Vx960 machine with rlo
gin.

The Vx960 shell is discussed in detail in 9. Shell. See also the manual entries for
shellLib(l), usrLib(l), and dbgLib(l), which contain routines suited for interactive
access of Vx960 facilities.

1.8 Debugging Facilities

Vx960 supplies a powerful set of debugging facilities. These include:

• routines to display system and task status

• a symbolic disassembler that can disassemble any loaded module

• a symbolic C-subroutine traceback f~cility that can be called at any time to list
the current sequence of nested subroutine calls of any task

• complete trapping of hardware exceptions in a non-fatal way that allows sym
bolic debugging to continue

• a breakpoint and single-stepping facility that can be applied to specific tasks,
even in shared code.

12 Intel Vx960

1. Overview

As noted above, all these facilities use the system symbol table to provide symbolic
references wherever possible.

For more information on Vx960's debugging facilities, see 10. Debugging. See also
the manual entries for usrLib(l), dbgLib(l), excLib(l), and dsmlib(l).

In addition, the Vx960 distribution includes a port for a gdb-based, source-level
debugger, an extended version of the GNU Source-Level Debugger (GDB). This
allows full source-level debugging of remote Vx960 applications from a variety of
host UNIX systems.

Using the gdb-based debugger, you can spawn and debug tasks that are running on
networked Vx960 targets. You can also debug already-running tasks spawned from
the Vx960 shell. While using this debugger, you can continue to take advantage of
Vx960's native development tools. By combining the Vx960 shell, symbolic debug
ging and disassembly, and performance monitoring facilities with the gdb-based
debugger capabilities, you have a comprehensive high-level d_ebugging solution.

For additional information on the gdb-based debugger, refer to the Vx960 Release
Notes.

1.9 Performance Evaluation

To understand and optimize the performance of a real-time system, you must time
various functions that the system performs. Vx960 provides various timing facilities
to help with this task.

The Vx960 execution timer is able to time any C subroutine or group of subroutines.
Because the system clock is too slow to provide the resolution necessary to time fast
functions, the timer is also able to iterate execution of a group of functions until the
time of a single iteration is known to a reasonable tolerance. For more information
on the execution timer, see the manual entry for timexLib(l).

Vx960 provides a utility that shows, for each task, the amount of CPU time utilized,
the amount of time spent at interrupt level, and the amount of idle time. Time is dis
played in ticks and in percentage. For more information, see the manual entry for
spyLib(l).

Intel Vx960 13

Vx960 5.0 - Programmer's Gulde

1.10 1/0 System

The Vx9601/0 system provides uniform device-independent access to many kinds
of devices. The user can call seven basic II 0 functions: creat(), delete(), open(),
close(), read(), write(), and ioctl(). Higher-level II 0 functions, such as UNIX-com
patible print/() and scan/() routines, are provided and built on these basic func
tions.

Vx960 also provides an stdio buffered II 0 package that includes UNIX-compatible
routines such as /open(), /close(), fread(), fwrite(), getclz(), putclz(), etc. These rou
tines increase II 0 performance in many cases.

Vx960 includes device drivers for serial communications lines, disks, "RAM disks,"
intertask communication devices called pipes, and devices on a network. Applica
tion developers can write additional drivers. Vx960 allows dynamic installation and
removal of drivers without rebooting the system.

The Vx960 I/ 0 system is fast and flexible, allowing individual drivers complete con
trol over how the user requests are serviced. Drivers can implement different proto
cols, unique device-specific functions, and even different file systems, without
interference from the II 0 system itself. Vx960 also supplies several high-level pack
ages that make it easy for drivers to implement common device protocols and file
systems.

For a detailed discussion of the I/0 system, see 4. 1/0 System. Relevant manual
entries include ioLib(l) for basic I/ 0 routines available to user tasks, fioLib(l) and
stdioLib(l) for various format-driven I/0 routines, and ioslib(l) and tyLib(l) for
routines available to driver writers. Also see the manual entries for the supplied
drivers.

14 Intel Vx960

l. Overview

1.11 Local File Systems

1.11.l

Vx960 includes different local files systems for use with block devices (disks). These
devices all use a standard interface so that file systems can be mixed with device
drivers. Vx960 II 0 architecture makes it possible to have several different file sys
tems, even at the same time, on a single Vx960 system.

DOS File System

Vx960 offers a file system compatible with DOS for personal computers. Vx960 DOS
is compatible with versions of MS-DOS up to and including 4.0. Vx960 DOS capabil
ities offer flexibility appropriate to the varying demands of real-time applications.
Major features include:

• A hierarchical arrangement of files and directories, allowing efficient organiza
tion and permitting an indefinite number of files to be created on a volume.

• A choice of file fragmentation or contiguity on a per-file basis. File fragmenta
tion results in more efficient use of available disk space while contiguity offers
enhanced performance.

• Compatibility with available s.torage and retrieval media. Disks created with
Vx960 DOS and on DOS personal computers can be interchanged.

The Vx960 DOS file system is implemented in dosFsLib(l).

1.11.2 RT- 11 File System

Vx960 is supplied with a file system compatible with that of the RT-11 operating sys
tem. This file system is appropriate for many real-time file systems, since all files are
contiguous. File accesses require one disk access, and sequential file accesses involve
minimal disk movement.

The RT-11 file system lacks a hierarchical file organization that is useful on large
disks. Also, the contiguous allocation scheme can result in fragmented disk space.

Intel Vx960 15

Vx960 5.0 - Programmer's Gulde

The Vx960 implementation of the RT-11 file system includes byte-addressable ran
dom access (seeking) to all files. Each open file has a block buffer for optimized read
ing and writing. The RT-11 file system is implemented in rtllFsLib(l).

1.11.3 Raw Disk Fiie System

Vx960 offers a simple "raw file system" for use with disk devices. The raw file sys
tem treats the entire disk much like a single large file. Portions of the disk can be read
and written, specified by byte offset, and simple buffering is performed. The raw file
system offers advantages of size and speed when low-level disk II 0 is required.

This functionality was available by using the RT-11 file system and specifying the
device name as a file name for file operations. Services for file-oriented device driv
ers using the raw file system are implemented in rawFsLib(l).

1.11.4 Alternative File Systems

1.12

In Vx960, the file system is not tied to the device or its driver. A device can be asso
ciated with any file system. Alternative, user-supplied file systems can be written
and used by drivers in the same way, by following the same standard interfaces
between the file system, the driver, and the Vx960 I/O system.

Utility Libraries

Vx960 supplies many subroutines of general utility to application developers. These
routines are organized as a set of subroutine libraries, which are described below.
Application developers are encouraged to use these libraries wherever possible.
Doing so reduces both development time and memory requirements for the appli
cation.

16 Intel Vx960

1. Overview

Interrupt Handling Support

Watchdog Timers

Message logging

Memory Allocation

Vx960 supplies routines for handling hardware interrupts and
faults without having to resort to assembly language coding.
Routines are provided to connect C routines to hardware inter
rupt vectors, and to manipulate the processor interrupt level.

See the manual entries for intLib(l) and intALib(l) for more
information. Also see 3. Basic OS for information about the con
text in which interrupt level code runs, and for special restric
tions that apply.

A watchdog facility allows callers to schedule execution of their
own routines after specified time delays. As soon as the specified
number of ticks has elapsed, the specified timeout routine is
called at the interrupt level of the system clock, unless the watch
dog is canceled first. Note that this mechanism is different from
the kernel's task delay facility.

See the chapter 3. Basic OS and the manual entry for wdLib(l)
for more information.

A simple message logging facility allows error or status mes
sages to be sent to a logging task, which formats and outputs the
messages to a system-wide logging device, such as the system
console, disk, or accessible memory. The message logging facil
ity can be used from interrupt level or task level.

See 4. 1/0 System and the manual entry for logLib(l) for more
information.

Vx960 supplies a UNIX source-compatible memory manage
ment facility useful for allocating, freeing, and reallocating
blocks of memory from a "memory pool." The size of the pool
can be set by the user. Blocks of arbitrary size can be allocated.
This memory scheme is built on a much more general mecha
nism that allows Vx960 to manage several separate memory
pools.

See the manual entry for memLib(l) for more information.

Intel Vx960 17

Vx960 5.0 - Programmer's Gulde

1.13

String Formatting and Scanning
Vx960 includes string formatting and scanning subroutines that
implement UNIX-compatible print[/ scan{ format-driven
encoding and decoding.

See the manual entries for fioLib(l) and stdioLib(l) for more
information.

linear and Ring Buffer Manlpulatlons
The library bLib(l) contains buffer manipulation functions such
as copying, filling, comparing, and so on, that have been opti
mized for speed. The library rnglib(l) provides a set of general
ring buffer routines that manage first-in-first-out circular buff
ers. These ring buffers allow a single writer and a single reader
to access a ring buffer simultaneously without being required to
interlock their accesses.

Linked-List Manipulations
The library lstlib(l) contains a complete set of routines for cre
ating and manipulating doubly-linked lists.

Board Support Packages

Two target-specific libraries, sysLib and sysALib, are included with each port of
Vx960. These libraries are the heart of Vx960' s portability because they provide an
identical software interface to the hardware functions of all boards. They include
routines for hardware initialization, interrupt handling and generation, hardware
clock and timer management, mapping of local and bus memory spaces, memory
sizing, and so on.

18 Intel Vx960

2

Getting Started

Contents

2.1 Introduction .. "' ... 21

2.2 Installing Cross-Development Tools .. 23

2.3 Installing Vx960 .. " ,. .. 23

2.4 Configuring the Host System ... 24

2.4.1 Hosts Supported ... 24

2.4.2 Initializing the Host Network Software .. 25

2.4.3 Establishing the Vx960 System Name and Address: I etc/hosts 25

2.4.4 Giving Vx960 Access to the Host: .rhosts and /etdhosts.equiv 26

2.5 Configuring the Target Hardware .. 26

2.5.1 Installing the Boot ROMs " .. 27

2.5.2 Setting the Board Jumpers ... 27

2.5.3 Installing the Boards in the Backplane .. 28

2.5.4 Connecting the Cables .. 29

2.6 Booting Vx960 .. 29

2.6.1 Boot ROM Commands ... 30

Intel Vx960 19

Vx960 5.0 - Programmer's Gulde

2.6.2 Entering Boot Parameters· ... ; ... : 30

2.6.3 Description of Boot Information .. 33

2.6.4 Booting ... 35

2.6.5 Alternative Booting Procedures ... 36

2.6;5.1 Command-Line Parameters 36
2.6.5.2 Non-Volatile RAM 36
2.6.5.3 Reprogramming Boot ROMs 36
2.6.5.4 Using Alternate ROMs 37

2.6.6 Rebooting ... 37

2.6.7 Reconfiguring and Rebuilding Vx960 ... 38

2.7 Playing With Vx960 and a Demo Program ... 38

2.7.1 The Vx960 Shell ... -.................................. 38

2.7.1.1 Special Characters 39
2.7.1.2 Examples of Shell Usage 39
2.7.1.3 Shell History and Line Editing 39
2.7.1.4 Remote Access to the Shell 40

2.7.2 On-Line Help .. ~ .. 40

2.7.2.1 From Vx960 40
2.7.2.2 From the Host: vxman 41

2.7.3 A Demo Program .. 41

2.8 Troubleshooting .. 46

2.8.1 Things to Check ... 47
2.8.1.1 Hardware Configuration 47
2.8.1.2 Booting Problems 48

20 Intel Vx960

;.

2

Getting Started

2.1 Introduction

One of Vx960's biggest strengths is the ease with which you can get your develop
ment environment up and running. If you have the necessary hardware and soft
ware components, you should be able to install, configure, and boot Vx960, and be
downloading and debugging application code in less than a day.

This chapter provides step-by-step procedures for getting started with Vx960.
It covers:

• Installing the Vx960 files from the distribution tape.

• Configuring the software on the UNIX host1 system.

• Configuring the target hardware, typically a single board computer plus Ether
net hardware.

• Booting Vx960 via Ethernet using the boot ROMs.

• Downloading and running a demo program on Vx960, and exercising Vx960's
testing and debugging facilities.

• Troubleshooting, if anything goes wrong while bringing up Vx960.

1. In network terminology, each node, including a Vx960 target, is a network host. Do not confuse
this host with the cross-development host/target distinction in Vx960 documentation.

Intel Vx960 21

Vx960- Programmer's Gulde

This chapter discusses bringing up Vx960 in a relatively simple configuration. Other
chapters elaborate more advanced options. In particular, 6. Network discusses gate
ways, NFS, multiprocessor target systems, and so on. Also, 8. Configuration discusses
the procedures for reconfiguring and rebuilding Vx960.

Vx960 is a flexible system that has been ported to many different hardware configu
rations. This chapter assumes the typical minimum target system configuration
shown below in Figure 2-1 and consisting of the following:

Chassis A card cage with backplane, typically VMEbus, and power supply.
(An embedded board design may not have a backplane bus.)

CPU board A single-board computer (target) that Vx960 has been ported to.

Ethernet board An Ethernet controller board (some CPU boards include the
Ethernet controller on-board).

Console An ASCII terminal or a serial port on a workstation; this is
required for initial setup only.

File Server Workstation Chassis

Vx960 Ethernet
target CPU board

\tF-r
\ 0

Ethernet

Figure 2-1. Example Minimum Configuration for Vx960

22 Intel Vx960

2.2

2. Getting Started

For more detailed information pertaining to your target CPU, you should also con
sult the target-specific information supplied for each port of Vx960.

Installing Cross-Development Tools

If you want to install the GNU /960 tool set, refer to Installing the GNU/960 Tools sec
tion in your GNU /960 documentation. This section provides step-by-step instruc
tions on installing the GNU /960 tool set.

2.3 Installing Vx960

Vx960 is distributed on a tape in tar format.This tape contains the generic Vx960 files
and all the current Board Support Package for the i960 microprocessor. To install
Vx960, create a directory on your host system, for example, /usr/vx, change to that
directory, and extract the system from the tape using tar. Typical commands to do
this are:

% mkdir /usr/vx
% chmod 755 /usr/vx
% cd /usr/vx
% tar xvf [tape_device_of_choice]

Note: This manual refers to Vx960 directories and files with the pathname starting
at /usr/vx However, Vx960 does not assume or require this pathname.

Refer to the Vx960 Release Notes or see your system administrator for the commands
specific to your host. In the /usr/vx directory there is a file called READ ME. Consult
this file for the most current information about the version of Vx960 that you are
installing. Run the shell script /bin/vxlnstall.sh to install Vx960.

Intel Vx960 23

Vx960- Programmer's Gulde

Your vx directory has a number of subdirectories and files in it. The directory
/usr/vx/config contains a directory for each of the target types you have ordered. In
each of those directories you find the system boot image and its symbol table, i.e.:

/usr/vx/config/target/vxWorks

/usr/vx/config/target/vxWorks.sym

system boot image

system symbol table

These are the only files you need to get started with Vx960.

For access to Vx960 tools that run on the host, you may also want to put the appro
priate bin directory in your UNIX shell search path. If you are using a Sun system,
the tool arch is useful for this. For example, you might add the following to your
.cshrc file:

set arch•'arch'
setenv PATH .:/usr/vx/bin/$arch: •••

The Vx960 directory tree and file contents are described in A. Directories and Flies.

2.4 Configuring the Host System

Before you can boot the Vx960 from the host, you must configure the network soft
ware on the UNIX host. In configuring the host network software, you must:

• Initialize the host network software.

• Establish the Vx960 system name and network address on the host.

• Give the Vx960 system appropriate access permissions on the host.

The following sections describe the procedures in detail. Some of these procedures
may require root permissions. Also, some· UNIX systems may require different pro
cedures. Consult your system administrator.

2.4.1 Hosts Supported

The following is a list of the hosts supported by Vx96q. If the operating system for
your host is upwardly compatible, the existing GNU /960 tools may be supported.

24 Intel Vx960

2. Getting Started

The source for all Vx960 binaries are provided to allow other hosts to be supported.
If the GNU/960 tools are supported, Vx960 supports that host.

Processor

Sun-4
Sun-3
Sun-386i
VAX 8600
HP9000/300
Compaq Deskpro 386/33
DECStation 3100
IBM RS/6000
HP I Apollo Series 400
i386 systems

Operating System

Sun0s4.0.3c
Sun0s4.0.3c
Sun0s4.0.1
Ultrix-32 V3.1 (Rev.9)
HP/UX V7.0
Intel System V R3.2
ULTRIX V2.0 (Rev 7)
AIX Version 3.1
Domain/OS SR 10.3
System V R3.2

2.4.2 lnltiallzlng the Host Network Software

You cannot initialize most UNIX systems without going through a process of execut
ing multiple startup Scripts. For additional information, consult your UNIX system
administration manuals if network initialization needs to be added to your UNIX
startup procedure.

2.4.3 Establishing the Vx960 System Name and Address: /etc/hosts

The UNIX host system maintains a database of the names and network addresses of
systems accessible from the local system. This database is kept in the ASCII file
/etc/hosts which contains a line for each system. Each line consists of an Internet
address and the name(s) of the system at that address. This file must have entries for
your host UNIX system and the Vx960 target system.

For example, suppose your UNIX host system is called "mars" and has been
assigned Internet address 90.0.0.1, and you want to name your Vx960 target "pho
bos" and assign it address 90.0.0.50. The file /etc/hosts should then contain the fol
lowing lines:

90.0.0.1
90.0.0.50

mars
phobos

Intel Vx960 25

-
Vx960- Programmer's Gulde

Note: If your system is running the Network Information Service (NIS), formerly
the Yellow Pages service, then the hosts database is maintained by NIS facil
ities that are beyond the scope of this i..11troduction. Consult your UNIX sys
tem administration manuals if you are running NIS.

2.4.4 Giving Vx960 Access to the Host: :rhosts and /etc/hosts.equiv

The UNIX system restricts network access via remote login, remote command exe
cution, and remote file access. This is done with the .rhosts file in the user's home
directory, and more globally with the /etc/hosts.equiv file. The .rhosts file contains
a list of system names that have access to your login. Thus, in our example, to allow
your Vx960 system to log in with your user name and access files with your permis
sions, you would create a .rhosts file in your home directory containing the line:

phobos

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in this
file are allowed login access to any user defined on the local system (except the
super-user root). Thus, adding the Vx960 system name to /etc/hosts.equiv allows
the Vx960 system to log in with any user name on the system.

2.5 Configuring the Target Hardware

Configuring the target hardware involves the following tasks:

• Installing the Vx960 boot ROMs.

• Jumpering the target CPU and Ethernet boards.

• Installing the boards in the backplane.

• Connecting the serial and Ethernet cables.

Use the following general procedures, as appropriate to your p~rticular target sys
tem hardware. Refer to the specific information in the documentation supplement
for your target.

26 Intel Vx960

~-:

2. Getting Started

2.5. l lnstalllng the Boot ROMs

2.5.2

Intel supplies boot ROMs for your selected targets as part of the Vx960 delivery. Use
these ROMs to boot Vx960 over the network. Install the appropriate set of boot
ROMs on your target board(s).

When installing these devices, observe the following:

• Install each device only in the socket indicated on the label.

• Note the correct orientation of pin 1 for each device.

.. Use anti-static precautions whenever working with integrated circuit devices.

The file bootrom.hex exists or can be made in each target directory. This file contains
the boot RO Ms in Intel Hex format, and is suitable for downloading to a PROM pro
grammer for making your own Vx960 boot ROMs. To make bootrom.hex, change to
the vx/config!target directory for your target, and type:

% make bootrom.hex

Note: On targets with more than one boot ROM, this command produces an equal
number of boot ROM files. See the appropriate target Board Support Pack
age document for more information.

Setting the Board Jumpers

Many CPU and Ethernet controller boards have configuration options that are
selected by hardware jumpers. These jumpers must be installed correctly to bring up
Vx960. You can determine the correct jumper configuration for your target CPU
from the information provided in the documentation supplement for your target or
use the jump program supplied with the Vx960 system. The jump program runs on
UNIX and uses simple ASCII graphics to display jumpering diagrams for CPU and
Ethernet controller boards.

To run jump, type:

% jump /usr/vx/config/target

Intel Vx960 27

Vx960- Programmer's Gulde

where target is the Vx960 directory name which corresponds to your target system.
The program prompts you with a selection of CPU boards for which jumpering dia
grams can be displayed. This invocation of jump assumes you have included the
appropriate Vx960 bin directory in your UNIX shell search path as described in 2.2
Installing Vx960.

2.5.3 Installing the Boards in the Backplane

To assemble your target hardware, first install the CPU board in slot 1 of the back
plane. If you are using a separate Ethernet controller board, install it in slot 2 of the
backplane.

If you are using a VMEbus backplane, consider the following:

• Pl and P2 Connectors

The Pl connector must be bussed across all the boards in the system. Many sys
tems also require the P2 bus. Some boards require power on the P2 connector.
Also some configurations require the extended address and data lines of the B
row of the P2 bus.

• System Controller

The VMEbus requires a "system controller" to be present in slot 1. Many CPU
boards have a system controller on board that can be enabled or disabled by
hardware jumpers. On such boards, the system controller should be enabled in
slot 1 and disabled in all others. The diagrams shown by the jump program
(described above) indicate the location of the system controller enable jumper,
where available. Alternatively, a separate system controller board can be
installed in slot l, and the CPU and Ethernet boards can be plugged into the
next two slots.

• Empty Slots

The VMEbus has several daisy chained signals that must be propagated to all
the boards on the backplane. If you leave any slot empty between boards on the
backplane, you must jumper the backplane to propagate the BUS GRANT and
INT A CK daisy chains.

28 Intel Vx960

2. Getting Started

2.5.4 Connecting the Cables

Ail Vx960 supported target CPUs include at least one on-board serial port. This
serial port must be connected to an ASCII terminal, at least for the initial configura
tion of the boot ROMs and getting started with Vx960. Subsequently, Vx960 can be
configured to boot automatically without a terminal. Refer to the CPU board hard
ware documentation for proper connection of the RS-232 signals.

For the Ethernet connection, a transceiver cable must be connected from the Ether
net controller to an Ethernet transceiver.

2.6 Booting Vx960

If you have correctly configured your host software and target hardware, you are
ready to turn on the target system power and to boot Vx960. When you power-on
and reset the target hardware, the target system terminal or workstation serial port
is talking to the Vx960 boot ROMs. The boot ROMs first display a banner page and
then start a 7-second countdown, visible on the screen as shown in Figure 2-2. Unless
you press any key on the keyboard within that 7 seconds, Vx960 automatically boots
with a default configuration.

Power-on, reset the target, and stop the automatic boot by pressing any key on the
keyboard. The boot ROMs display the Vx960 boot prompt:

[Vx960 Boot]:

Intel Vx960 29

Vx960- Programmer's Gulde

-
target
CPU

Figure 2-2. Boot ROMs Communication and Initial Display

2.6. l Boot ROM Commands

2.6.2

The Vx960 boot ROMs provide a limited set of commands. To see a list of available
commands, type the help command h or ? followed by a RETURN:

[Vx960 Boot): ?

Table 2-1 lists the Vx960 boot commands and parameters, with a brief description of
each.

Entering Boot Parameters

Before booting Vx960, set the configuration parameters for the boot, including the
host and target network addresses, the file to be booted, the user name, etc. To dis
play the current boot parameters, type:

(Vx960 Boot): p

30 Intel Vx960

Command

h

?

@

p

c

l

gadrs

dadrs[, n]

madrs

2. Getting Started

Table 2-1. Vx960 Boot Commands

Description

"Help" command - print a list of available boot commands.

Same ash.

Boot (load and execute the file) using the current boot parameters.

Print the current boot parameter values.

Change the boot parameter values.

Load the file using current boot parameters, but without executing.

Go (execute) at hex address adrs.

Display n words of memory starting at hex address adrs. If n is
omitted, the default is 64.

Modify memory at location adrs (hex). The system prompts for
modifications to memory, starting at the specified address. It
prints each address, and the current 16-bit value at that address, in
turn. You can respond in one of several ways:

RETURN

number

• (dot)

Do not change that address, but continue prompt
ing at the next address.

Set the 16-bit contents to number.

Do not change that address and quit.

f adrs, nbytes, value Fill nbytes of memory starting at adrs with value.

t adrsl , adrs2, nbytes Copy nbytes of memory starting at adrsl to adrs2.

s [O I 1] Turn the CPU system controller ON (1) or OFF (0) (only on boards
that have software enable of the system controller).

e Display a synopsis of the last occurring Vx960 exception.

n netif Display the ethernet address of the network interface device netif.

Intel Vx960 31

Vx960- Programmer's Gulde

You see a display similar to the following, which corresponds to the example config
uration shown in Figure 2-3. (The p command does not display blank fields as in this
illustration.)

boot device
pro~essor number
host name
file name
inet on ethernet
inet on backplane
host inet (h)
gateway inet (g)

: ei
0
mars

: /usr/vx/config/hkv960/vxWorks
(e) : 90.0.0.SO

(b) :

: 90.0.0.1

user (u) fred
ftp password (pw)(blank•use rsh)
flags (f) 0
target name (tn}
startup script (s)
other (o}

host

90.0.0.l

phobos
/usr/vx/config/hkv960/startup.cmd

/usr/vx/config/target/vxWorks

/
/

target

"phobos"

T
90.0.0.50

Figure 2-3. Boot Configuration Example

The meaning of each of these parameters is described in the next section.

To change the boot parameters type:

[Vx960 Boot]: c

32 Intel Vx960

2.6.3

2. Getting Started

You are prompted for each parameter. If the contents of a particular field need not
be changed, press RETURN. If a field is to be cleared, type a period (.), followed by
RETURN.

Network information must be entered to match your particular system configura
tion. The Internet addresses should correspond to those in /etc/hosts on your UNIX
host, as described previously.

If your target board has non-volatile RAM, the boot parameters are stored there and
retained even while the system power is turned off. For subsequent power-ons or
system resets, the boot ROMs use the stored parameters for the automatic boot con
figuration.

Description of Boot Information

Each of the boot parameters is described below. The letters in parentheses indicate
how the parameters can be specified in the command-line boot procedure described
in 2.6.5 Alternative Booting Procedures.

boot device The type of network device Vx960 boots from. This must
be one of the network drivers included in the boot ROMs
(e.g., "ei" for an Intel 82596 LAN Coprocessor). Due to
limited space in the boot ROMs, only a few drivers can be
included. A list of included drivers is displayed at the bot
tom of the help screen (type ? or h).

host name The name of the host machine to boot from; "mars" in our
example. This is the name by which the host is known to
Vx960; it need not be the same name used internally by the
host.

boot file The full pathname of the Vx960 object module to be
booted (/usr/vx/config/target/vxWorks in the example).

inet on Ethernet (e) The Internet address of a target system with an Ethernet
interface (90.0.0.50 in the example).

inet on backplane (b) The Internet address of a target system with a backplane
interface (this should be blank in our example).

host inet (h) The Internet address of the UNIX host to boot from
(90.0.0.1 in our example).

Intel Vx960 33

Vx960-- Programmer's Gulde

gateway inet (g)

user (u)

ftp password (pw)

processor number

flags (f)

target name (tn)

startup script (s)

other (o)

34 Intel Vx960

The Internet address of a gateway node if the host is not
on the same network as the target (this should be blank in
our example).

The user name with which Vx960 accesses the UNIX host;
the named user should have read access to the Vx960 file
being booted. Vx960 must have access to this user's
account, either via the files .rhosts or /etc/hosts.equiv dis
cussed above, or by the ftp password provided below. ·

The "user" password. This field is optional. If a password
is given, ftp is used instead of rsh. If you do not want to use
ftp, leave this field blank.

A unique identifier for the target in systems with multiple
targets on a backplane (this should be zero in our exam
ple). For an embedded control system, the number is
always zero.

Configuration options specified as a numeric value that is
the sum of the values of selected option bits defined
below.

oxol = Do not enable the system controller, even if the
processor number is 0. (This option is board ·Spe
cific; refer to your target documentation.)

oxo2 = Load all Vx960 symbols, instead of just globals.

Ox04 = Do not auto-boot.

oxoa = Auto-boot fast (short countdown).

ox20 = Disable login security.

The name of the target system to be added to the host
table; "phobos" in our example.

The complete path name of the startup script to execute
after the system boots. If omitted, no script is executed. To
enable this feature, INCLUDE_STARTUP _SCRIPT must be
defined in configAll.h. For more information on the use of
startup scripts, see 9.4.3 Scripts.

This parameter is unused and available for applications.

2.6.4

2. Getting Started

Booting

Once you have entered the boot parameters, initiate booting by typing:

[Vx960 aoot): @

The Vx960 boot ROMs print the boot parameters and the download begins. While
Vx960 is booting, you see the size of each Vx960 segment as it is loaded. Once the
system is loaded, the boot ROMs display the entry address and transfer control to
the loaded Vx960 system. When Vx960 has completed initialization, it displays a
banner page like the one shown in Figure 2-4, followed by the Vx960 shell prompt
"->".

18] Vx960 i i
~t.taching network int.erface eiO. • • done.
~oadini ••• 354120 + 70088 + 21480
~t.art.1ng at OxlOOO •••

~tt.aching network int.erface eiO, •• done.
~t.taching network interface loO, •• done.
,_oadini syP1bol table fT'Olll !shark :/usr/vx/conf1£/lorllcat/vxWorks .s~ ••• done

iiiiiiiiiiiiiiiiiiiiiiiiii
1111111111111111111111111

11111111111 111111 1111111 11111 1111111
1 11i1111ii iiii11 ii11 ii iii1 1111 ii
ii ii ii iii ii ii ii iiii ii iiii ii ii ii
iii iii ii i
1111 ii1 ii
111ii i !iii
1iiii1 11111
111iiii 11ii1
iiiiiiii iii ii i

ii ii iiii J.J. ii ii iiii ii
ii i11ii11 iiii1ii1 ii ii ii

11 ii !iii ii iiii ii
iii ii 1111 ii 1111 11

ii111 11 1111 ii 11ii ii
ii ii ii iiiiiii iii ii ii

Develapcllent S~ste~

Vx960 version 5.0
KERNEL: WIHD version 2.0.

TH

iiiiiiiiiiiiiiiii
iiiiii1iiiiiii11
iiiiiiii111ii11
11111111111iii
iiiiiiiiiiiii
iiiiiiiiiiii
1ii11111111

Co~right Wind River ~st.e111s, Inc., 1984-1991
Copyright. Int.el Corportation, 1990-1991

CPU: Intel Toll\cat 960CA board. Processor •O.
Me-ory Size: Ox100000.

Figure 2-4. Vx960 Booting Display and Banner

Intel Vx960 35

Vx960- Programmer's Gulde

2.6.5 Alternative Booting Procedures

2.6.5.1 Command-Una Parameters

2.6.5.2

2.6.5.3

You can supply the boot ROMs with all the parameters on a single command line at
the boot prompt (cvx960 Boot]:). For example:

$ ei(O,O)mars1/usr/vx/config/hkv960/vxWorks e•90.0.0.50 b•90.0.0.l u•fred

The order of the assigned fields (containing "=" signs) is not important. Assigned
fields that are irrelevant should be omitted. The codes for the assigned fields corre
spond to the letter codes shown in parentheses when you typed the p command to
display the boot parameters. For a complete description of the format, see the man
ual entry for bootStringToStruct() in bootLib(l).

This method can be useful if you have programmable function keys. You can pro
gram a function key with a command line appropriate to your configuration.

Non-Volatile RAM

As noted previously, if your target CPU has non-volatile RAM, all the values you
enter in the booting parameters are retained in the non-volatile RAM. In this case,
you can let the boot ROMs auto-boot without even having a terminal connected to
the target system.

Reprogramming Boot ROMs

You can burn your boot ROMs with the correct boot parameter values. With this
method, you no longer need to alter the boot parameters when Vx960 attempts to
boot. The default boot parameters are specified in the file config.h in the configura
tion directory for your target CPU (/usr/vx/config/target/config.h). This file contains
a #define of DEFAULT_BOOT_LINE. The value of this constant can be changed to the
appropriate boot parameters for your system. After editing co~fig.h, type the fol
lowing in the configuration directory for your target:

\ make bootrom.hex

36 Intel Vx960

2.6.5.4

2. Getting Started

The file bootrom.hex contains the boot ROMs in standard Intel Hex format and is
ready to download to an EPROM programmer. For the sake of thoroughness, type
"make" so that any other files affected by your changes are remade.

Using Alternate ROMs

When the target system is initialized, it starts executing from the boot ROMs. Boot
ROMs can be built three ways: compressed, normal, or ROM resident. A compressed
boot ROM has a smaller image but takes longer to boot because it must uncompress
the data from ROM to RAM. A normal ROM will boot faster, but takes up more
space in the ROM. The normal method was the method supported in the 4.0.2
release of Vx960. When the boot RO Ms are built ROM resident, only the data section
is copied from the ROM to RAM at initialization time. The actual code will run from
ROM. This will probably execute slower than the same code executing from RAM.
Using the ROM resident option allows for the fastest boot. The file /usr/vw/confi
g/all/bootlnit.c can be compiled three different ways. The ~DROM_RESIDENT, -
DUNCOMPRESS and flags create ROM_RESIDENT and normal code respectively.
The default is to create compressed code.

See /usr/vw/configl<target>/Makefile or /usr/vw/configlall/bootlnit.c for more
information.

2.6.6 Rebooting

When Vx960 is running, there are several way you can reboot Vx960:

• Press the reset button on the target system.

• Type a "X at the target console terminal.

• Invoke reboot(.) from the Vx960 shell. This can be done even when remotely
logged in to Vx960.

When Vx960 is rebooted in any of these ways, the auto-boot sequence begins again
from the countdown.

Intel Vx960 3 7

Vx960- Programmer's Gulde

2.6.7 Reconfiguring and Rebuilding Vx960

The Vx960 image supplied on the distribution tape works with all standard config
urations of your supported targets. You may find that you want to reconfigure the
distributed Vx960 to change a parameter or to include or exclude optional modules.

Many Vx960 parameters are specified in the two configuration headers:

• /usr/vx/config/alVconfigAU.h

• /usr/vx/config/target/config.h

You can modify these headers to suit your configuration. Then change to the
/usr/vx/configltarget directory and type:

% make

This rebuilds the system image vxWorks and the system symbol table
vxWorks.sym. Reconfiguration of Vx960 is discussed in detail in 8. Configuration.

2. 7 Playing With Vx960 and a Demo Program

This section introduces you to program development and debugging using Vx960.
The instructions in this section describe how to use the shell to load and run a very
simple program on the Vx960 system you just booted.

2.7.1 The Vx960 Shell

When Vx960 comes up, you are interacting with the Vx960 shell. The Vx960 shell is
an interactive C-expression interpreter. The shell reads lines of input from the termi
nal, parses and evaluates each line, and writes the result of the evaluation to an out
put stream. The shell accepts the same expression syntax as the C compiler with a
few variations. This simple mechanism can be used in many different ways.

The sections below provide a brief introduction to using the Vx960 shell. For a more
detailed discussion, see 9. Shell.

38 Intel Vx960

2.7 .1.1

2.7. l.2

2.7.1.3

2. Getting Started

Special Characters

As you type in commands to the shell, you can use the following special characters:

Table 2-2. Vx960 Shell Special Characters

Command Description

"H Delete a character (backspace).
"U Delete an entire line.
"C Abort and restart the shell.
"X Reboot (trap to the ROM monitor).

"s Temporarily suspend output.
"Q Resume output.

ESC Toggle between input mode and edit mode.

Examples of Shell Usage

The following examples illustrate some typical uses of the shell. The shell prompt
for interactive input is "->". User input is shown in bold face and shell responses
are shown in regular face.

-> 68
value = 68 = Ox44 = 'D'

-> x - 13
new symbol "x" added to symbol table
x address= value= 13

-> printf ("hello world, x • \d\n", x)
hello world, x = 13
value= ...

Shell History and line Editing

The Vx960 shell keeps a list of the commands that were typed in previously. To see
this list, type the "history" command:

-> h

Intel Vx960 39

Vx960- Programmer's Gulde

2.7.1.4

2.7.2

2.7.2.1

A list of the last 20 shell commands is displayed on the screen.

The Vx960 shell provides a history mechanism similar to the UN1X K-Shell, which
allows you to recall lines from the shell history, edit them, and re-execute them. Typ
ing the ESC key changes the shell from input mode to editing mode.

In editing mode, you can change previous command lines using UNIX vi-like com
mands. The k command recalls successive previous commands from the history list,
and the j command moves you forward in the history list. The h and 1 commands
move the cursor left and right; an x deletes a character; etc. A RETURN sends the
entire command to the shell regardless of cursor position or input mode. The Vx960
shell history and editing commands are described in detail in 9. Shell.

Remote Access to the Shell

In addition to accessing the Vx960 shell on the target console terminal, you can also
access the shell from a terminal or workstation on your UNIX host using the remote
login facility rlogin. To log in to our example Vx960 tnrget system, you would type
the following on your UNIX terminal:

% rlogin phobos

The telnet remote login protocol is also available. See 9. Shell for more information.

On-Line Help

Two sources of on-line help are provided: one from the host UNIX system and the
other from Vx960 directly.

From Vx960

The following help commands are available if the corresponding subsystem has
been included in your Vx960 system configuration:

• help()
• dbgHelp()
• timexHelp()

40 Intel Vx960

2.7.2.2

2.7.3

2. Getting Started

• spyHelp()
• 1zetHelp()
• nfsHelp()

These help commands display brief summaries of various Vx960 subsystems. They
are not intended to be tutorial, but rather are convenient memory joggers for some
commonly used Vx960 functions.

From the Host: vxman

All Vx960 reference documentation is distributed for on-line use from the UNIX host
using vxman, which is analogous to the UNIX man command. The vxman facility
lets you to display the manual page for any Vx960 library, subroutine, driver, or tool.
For example, to display the manual entry for taskSpawn(), type:

% vxman taskSpawn

To include vxman in your UNIX shell search path, follow the procedures suggested
in 2.2 Installing Vx960. For more information on the use of this facility, see the manual
entry for vxman, or type:

% vxman vxman

A Demo Program

To illustrate some basic Vx960 concepts and techniques, this section describes load
ing and debugging a demonstration program called demo.c. This program prints its
own task ID, task name, and start-up parameter on the console, and then exits. Addi
tional demo programs are provided in the /usr/vx/ demo directory.

In this example, the following assumptions are made:

• The Vx960 tape was loaded into /usr/vx.
• Your home directory is /usr/fred.
• You are playing with the demo program in the directory /usr/fred/vxdemo.
• The host machine's name is mars.

In tel Vx960 41

Vx960- Programmer's Gulde -

To begin, create a working directory somewhere on your host system
(/usr/fred/vxdemo for this example) and copy /usr/vx/demo/l/demo.c into it:

\ cd /usr/fred
\ 111kdir vxdemo
\ cd vxdemo
\ cp /usr/vx/demo/1/demo.c demo•c

Compile demo with the following command:

\ gcc960 -c -ACA -0 -I/usr/vx/h demo.c

The -c flag suppresses linking with the GNU /960 C libraries and leaves the unde
fined externals unresolved. These are resolved by the Vx960 linking loader. The -0
flag optimizes the code (this flag is optional). The -I flag tells the compiler where to
find the Vx960 header files that are included in demo.c. You need to include archi
tecture-specific flags; for example, if you are cross-compiling for a 80960CA proces
sor, you need to include the -ACA flag.

If you are on a "big-endian" architecture host such as a Sun-4 or HP 9000, you also
need to swap the byte order of the object file. With the GNU I 960 tool set, this is
accomplished with a command of the following form:

\ objcopy -1 demo.o

The -1 flag specifies that the named files are to be byte-swapped to "little-endian"
format, which is the Vx960 native byte order. On little-endian hosts, such as a Com
paq, this step isn't necessary, but performing this step on such hosts is harmless and
the resulting object loads without problems.

If Vx960 has not yet been booted, now is the time to do so. Then access Vx960 either
by its system console or by remote login using rlogin.

Next check the user name that the Vx960 system uses on the remote host system with
the whoami() command:

-> whoami

The user name is used for access privileges. When Vx960 first comes up, the user
name is set to the user name specified in the boot parameters. If the current user
name is not yours, change it with the iam() command:

-> iam "fred"

42 lnte/Vx960

2. Getting Started

Next set your current working directory with the cd() command:

-> cd "mars:/usr/fred/vxdemo"

(where mars is the name of the host system as specified in the boot parameters). This
sets the default directory to be the directory where you compiled demo.c.

The command to load applications into Vx960 system memory is ld(), which per
forms three functions:

• Loads the program into memory.

• Adds the program's symbols to the system symbol table.

• Resolves the program's external referenceso

host

ld < demo.o

Figure 2-5. Downloading a Program

To load the demo program, type:

-> ld < demo.o
value= 0 •.•

target

{_demo.

When loaded, all the program's undefined externals are resolved by the Vx960 link
ing loadero You can see this by disassembling the routineo Type:

-> l demo
-> l
-> l

Intel Vx960 43

Vx960- Programmer's Gulde

The l() command shows a symbolic disassembly of the code in demo.c. The assem
bler code shows addresses symbolically. Any code in the system can be disassem
bled (try !() with print/(), for example). By default, l() disassembles ten
instructions at a time; subsequent calls continue from the previous address.

Try the following commands:

-> demo 1234
-> sp demo, 1234
-> taskSpawn "tdemo", 100, O, 2000, demo, 1234

Each of these runs the demo program, but in a different way. Example 0 runs demo
as a subroutine in the shell's context and tells you that its task name is tSlzell. €)

spawns demo as a separate task, and assigns it a default task name and a default pri
ority. The default task name is a number prefixed with a "t". €) aiso spawns demo,
but with explicit parameters for the task name (tdemo), priority (100), and stack size
(2000).

The convention of using a "t" to prefix default task names and the names of system
tasks avoids name conflicts with symbols in the system symbol table. For more
information, see 9.3.3.6 Task References.

Type:

•> i

NAME ENTRY TIO PRI STATUS PC SP ERRNO DELAY

---------- --------- ------- ------ ------ -------
tExcTask excTask 3fbe04 0 PEND lSdee 3fbd48 0 0 -
tLogTask _logTask 3fa8c8 0 PEND lSdee 3fa804 0 0
tShell shell 3c60f8 1 READY 2b590 3c5dcc 0 0 -
tRlogind _rlogind 3d7084 2 PEND 4b374 3d6ea4 0 0
tNetTask net Task 3f5298 50 PEND 4b374 3£5240 0 0

The i() command shows the tasks currently running. The tasks that you· see- tShell,
tLogTask, tExcTask, tNetTask, and tRlogind - are system tz.sks that are present.

Now try:

-> period S, demo, 5
-> i

44 Intel Vx960

2. Getting Started

The period() command spawns periodRzm() as a new task which calls demo in its
context every 5 seconds. Now demo should be printing its message every five sec
onds. The next i() command again shows all the tasks currently running. Notice
the new task whose entry point is _periodRun:

t2 _perlodRun 3c3894 100 DELAY 433d0 3c3858 0 136

You can insert a breakpoint with the b() command:

-> b printf

This sets a breakpoint at the address of printf(). The _periodRzm task should hit it
within 5 seconds. When it does, a message prints out telling you about it:

Break at Ox00b2la: _printf Task: Ox3c3894 (t2)

Now type:

-> i

t2 _periodRun 3c3894 100 SUSPEND b2la 3c3828 0 0

The information that i() prints now shows that _periodRun is suspended (because it
hit a breakpoint).

Then type:

-> tt

547a0 _vxTaskEntry +10
2f4a4 _periodRun +24

ffee60 _demo +24

_periodRun ()
_demo ()
_printf (feecO, c4170, c9130, 5, 0,)

The task trace command tt() shows where the task was when it hit the breakpoint.
You can see which routines were called by other routines, and you can see what
parameters were used in the call to the routine at which the breakpoint occurred.

To continue, type:

-> bdall
-> c

The bdall() command deletes all breakpoints, and the c() command continues the
task. If the breakpoint had not been deleted, the task would have hit it again in 5 sec
onds.

Intel Vx960 45

Vx960- Programmer's Gulde

Now type:

->period 7, demo, 7
-> i
-> sp demo, 1111

When you type 0, you spawn another task, whose entry point is also _periodRun (in
fact, it is the same code in memory), which calls demo every 7 seconds. The infor
mation display e) shows another task, with a different ID and task name but the
same entry point. Since demo is called from the context of a different task, the 7-sec
ond cycle gives you an ID different from the 5-second cycle which is still running. In
fact, when you spawn demo as a task again©, it tells you another ID, even though
it is the same code in memory. Remember, there is only one copy of the demo code
in memory, but it is being executed in three different task contexts.

To delete the periodic _periodRun tasks, use the task-delete command td(). The argu
ment to td() is the task ID, which you can find using i(). Thus, our S~second exam
ple, whose task whose name is t2 and whose ID is 3c3894, can be deleted by typing:

-> td Ox3c3894

Most Vx960 routines that take a task parameter require a task ID. However, specify
ing a task ID can be cumbersome since the ID is an arbitrary and possibly lengthy
number.

To accommodate interactive use, Vx960 shell expressions can reference a task by
either task ID or task name. The Vx960 shell attempts to.resolve a task argument to
a task ID; if no match is found in the system symbol table, it searches for the argu
ment in the list of active tasks. When it finds a match, it substitutes the task name
with its matching task ID.

Thus, a simpler way of deleting the task in the previous example is:

-> td t2

2.8 Troubleshooting

If you encountered problems booting or exercising Vx960, there are many possible
causes. This section discusses the most common sources of error and how to narrow

46 Intel Vx960

2. Getting Started

the possibilities. Please read 2.8.1 Things to Check below before contacting your tech
nical support group. Often, by rechecking the installation steps, your hardware con
figuration, and so forth, you can locate the problem.

2.8.1 Things to Check

2.8.1.1

Most often, a problem with running Vx960 can be traced to hardware or software
configuration errors. Consult the following checklist to locate a problem.

Hardware Configuration

• Limit the number of variables. Start with a minimal configuration of a single
target CPU board and an Ethernet board.

• Be sure your backplane is powered and bussed. For the VMEbus backplane,
most configurations require that the P2 B-Row be bussed and that there is
power supplied to both the Pl and P2 connectors.

• Be sure boards are in adjacent slots. The only exception to this is if the back
plane is jumpered to propagate the BUS GRANT and INT ACK daisy chains.

• Check that the RS-232 cables are correctly constructed. In most cases, the doc
umentation accompanying the hardware explains the cabling requirements for
that hardware.

• Check the boot ROMs for correct insertion. If the CPU board seems dead
when applying power (some have front panel LEDs), the boot ROMs can not be
correctly inserted. You can also validate the checksum printed on the boot ROM
labels.

• Press the RESET button if required. Some system controller boards do not
reset the backplane on power-on, requiring you to reset manually.

• Make sure all boards are jumpered properly. Use the jump program
described in this chapter to determine the correct jumpering of your target and
Ethernet boards.

Intel Vx960 47

Vx960- Programmer's Gulde

2.8.1.2 Boottng Problems

• Check the Ethernet transceiver site. For example, connect a kno\'Vn working
system to the transceiver and check whether the network functions.

• Verify Internet addresses. An Internet address consists of a network number
and a host number. There are several different classes of Internet addresses that
assign different parts of the 32-bit Internet address to these two parts, but in all
cases the network number is the most significant bits and the host number is
least significant bits. The simple configuration described in this chapter
assumes that the host and target are on the same network, i.e., have the same
network number. (See 6. Network for a discussion of setting up gateways if the
host and target are not on the same network.) If the target Internet address is
not on the same network as the host, the Vx960 boot RO Ms say:

Error loading file: status • Ox33.

Ox33 corresponds to host errno 51 (decimal) ENETUNREACH.

If the target Internet address is not in /etc/hosts, then the host does not know
about your target. The Vx960 boot ROMs receive an error message from the
host:

host name for your address unknown
Error loading file: status • Ox320001.

The V~960 module number for hostlib 50 (decimal) is Ox32. The digit "1" cor
responds to S_hostLib_UNKNOWN_HOST.

• Verify host file permissions. The target name must be listed in either
user-home-dir/.rhosts or /etc/hosts.equiv (the target user-name can be any user
on the host). Note that the user name "root" is special: having the target name
in /etc/hosts.equiv is not sufficient for root access; the target name must appear
in /.rhosts for root access.

Make sure that the user name you are using on the target has access to the host
files. To verify that the user name has permission to read the vxWorks file, try
logging in on the host with the target user name and accessing the file (for
instance, with the UNIX size command). This is what the target does when it
boots.

If you have trouble with access permissions, you might try usmgftp (File Trans
fer Protocol) instead of relying on rsh (remote shell). If no password is specified
in the boot parameters, the Vx960 object module is loaded using the rsh service.

48 lnte/Vx960

2. Getting Started

However, if a password is specified, ftp is used. Sometimes ftp is easier because
you specify the password instead of relying on the configuration files en the
host. Also some non-UNIX systems do not support rsh, in which case you must
use ftp.

• Check host account .cshrc file. If NFS has not been included, the Vx960 symbol
table is downloaded using rcmd, which automatically executes the .cshrc of
your host user account. If the processing of your .cshrc is set up to generate any
standard output, it can interfere with the loading of the symbol table.

To check whether the .cshrc file is causing booting problems, rename it tempo
rarily and try booting Vx960 again. If this proves ~o be the source of the prob
lem, you may want to set up your .cshrc file to execute conditionally any
commands that generate standard output. For example, commands used to set
up interactive C-shells could be grouped at the end of the .cshrc file and pre
ceded with the following line:

I skip remaining setup if a non-interactive shell:

if (${?USER} •m 0 I I ${?prompt} •• 0 I I ${?TERM} •• 0) exit

• Helpful Troubleshooting Tools. In tracking down configuration problems, the
following UNIX tools can be helpful (you can also see your system administra
tor or refer to the UNIX man pages for additional information on these com
mands):

nets tat

ifconfig

arp-a

This command gives various network status reports. A -r
option displays the network routing tables. This is useful when
gateways are used to access the target. The -s option tells you
the names of the interfaces so that you can use ifconfig.

This command reports the configuration of the specified net
work interface (e.g., ieO or leO on a SUN system). It should
report that the interface is configured for the appropriate Inter
net address and that the interface is up.

This command displays the address resolution protocol tables
that map Internet addresses to Ethernet addresses. Your target
machine is listed if at least one packet was transferred from
your target to your host.

Intel Vx960 49

Vx960- Programmer's Gulde

ether.find

ping

50 lnte/Vx960

This command can be used on many UNIX systems to watch
all traffic on a network. You may need root privileges to run
this command.

This command can be used on UNIX systems to determine
whether Vx960 is up and responding up to the IP /ICMP pro
tocol levels. You can also use ping to send packets and then
determine if any of the packets were lost. Lost packets might
indicate that there is a cable or hardware problem.

3

Basic OS

Contents

3.1

3.2

Introduction ... 55

Tasks .. 56

3.2.1 Multitasking ... 56

3.2.2 Task State Transition ,. .. 57

3.2.3 Task Scheduling .. 57

3.2.3.l Preemptive Priority Scheduling 57
3.2.3.2 Round-Robin Scheduling 59
3.2.3.3 Preemption Locks 60

3.2.4 Tasking Control ... 60

3.2.4.1 Task Creation and Activation 61
3.2.4.2 Task Names and IDs 61
3.2.4.3 Task Deletion and Deletion Safety 62
3.2.4.4 Task Options 64
3.2.4.5 Task Control 65
3.2.4.6 Task Information 66

3.2.5 Task Error Status: errno .. 66

3.2.6 Task Exception Handling .. 68

3.2.7 Tasking Extensions ... °" 68

3.2.8 Shared Code and Reentrancy .. 69

Intel Vx960 51

Vx960 5.0 - Programmer's Gulde

3.2.8.1 Dynamic Stack Variables 70
3.2.8.2 Guarded Global and Static Variables 70
3.2.8.3 Task Variables 70
3.2.8.4 Multiple Tasks with the Same Main Routine 71

3.2.9 Vx960 System Tasks ... 71
3.2.9.1 The Root Task: tUsrRoot 71
3.2.9.2 The Shell: tShell 72
3.2. 9.3 The Logging Task: tLogTask 72
3.2.9.4 The Exception Task: tExcTask 72
3.2.9.5 The Network Task: tNetTask 72
3.2.9.6 The Remote Login Daemon: tRlogind 72
3.2.9.7 The Telnet Daemon: tTelnetd 73
3.2.9.8 The Portmap Daemon: tPortmapd 73
3.2.9.9 The Remote Debugging Server: tRdbTask 73

3.3 Intertask Communications .. 73

3.3.1 Shared Memory .. 7 4

3.3.2 Mutual Exclusion .. 74

3.3.2.1 Interrupt Locks and Latency 74
3.3.2.2 Preemptive Locks and Latency 75

3.3.3 Semaphores ... 75

3.3.3.1 Semaphore Control 76
3.3.3.2 Binary Semaphores 77
3.3.3.3 Mutual-Exclusion Semaphores 79
3.3.3.4 Counting Semaphores 82
3.3.3.5 Special Semaphore Options 83

3.3.4 Message Queues ... 83

3.3.4.1 Creating and Using Message Queues 84
3.3.4.2 Servers and Clients with Message Queues 85

3.3.5 Pipes ... 86

3.3.6 Network Intertask Communication ... 86

3.3.6.1 Sockets 86
3.3.6.2 Remote Procedure Calls (RPC) 87

3.3.7 Signals .. 88

3.4 Interrupt Service Code ... 89

3.4.1 Connecting Application Code to Interrupts ... 89

3.4.2 Interrupt Stack .. 90

52 Intel Vx960

3. Basic OS

3.4.3 Special Limitations of Interrupt Code ... 90

3.4.4 Exceptions At Interrupt Level ... '°°' .. 91

3.4.5 Interrupt-to-Task Communication ... 92

3.5 Watchdog Timers ,. .. 95

Intel Vx960 53

Vx960 5.0 - Programmer's Gulde

54 Intel Vx960

3

Basic OS

3.1 Introduction

Modern real-time systems are based on the complementary concepts of multitasking
and intertask communications. A multitasking environment allows a real-time
application to be constructed as a set of independent tasks, each with its own thread
of execution and set of system resources. The intertask communication facilities
allow these tasks to synchronize and communicate in order to coordinate their activ
ity. In Vx960, the intertask communication facilities range from fast semaphores to
message queues and UNIX-like pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, since inter
rupts are the usual mechanism used to inform a system of external events. To get the
fastest possible response to interrupts, interrupt handling code in Vx960 runs in a
special context of its own, outside of the context of any task.

This chapter discusses the multitasking kernel, tasking facilities, intertask commu
nication, and interrupt handling facilities, which are at the heart of the Vx960 run
time environment.

Intel Vx960 55

Vx960 5.0 - Programmer's Gulde- ---· ··

3.2 Tasks

3.2.1 Multitas.klng

Multitasking provides the fundamental mechanism for an application to control and
react to multiple, discrete real-world events. The basic multitasking environment is
provided by the Vx960 real-time kernel. Multitasking creates the appearance of
many programs executing concurrently when, in fact, the kernel interleaves their
execution on the basis of a scheduling algorithm. Each apparently independent pro
gram is called a task. Each task has its own context, which is the CPU environment
and system resources the task sees each time it is scheduled to run by the kernel. A
task's context includes:

• a thread of execution, i.e., the task's program counter
• the CPU registers and (optionally) floating-point registers
• a stack for dynamic variables and function calls
• I/ 0 assignments for standard input, output, and error
• a delay timer
• a timeslice timer
• kernel control structures
• signal handlers
• debugging and performance monitoring values.

In Vx960, one important resource that is not part of a task's context is memory
address space. In Vx960, all code executes in a single common address space. Giving
each task its own memory space would require virtual-to-physical memory map
ping, which runs counter to the Vx960 high-performance, real-time philosophy.

56 Intel Vx960

3.2.2

3.2.3

3.2.3.1

3. aas16 os

Task State Transition

The kernel maintains the current state of each task in the system. State transitions
take place as the result of kernel function calls made by the application. When cre
ated, tasks enter the suspended state. Activation is necessary for a created task to
enter the ready state. The activation phase is fast, enabling applications to pre-create
tasks and activate them in a timely manner. A primitive is supplied for both creating
and activating a task, referred to more as spawning. Tasks can be deleted from any
state.

Vx960 kernel states are shown in the state transition diagram in Figure 3-1.

Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks. Pri
ority based preemptive scheduling is the default algorithm in Vx960, but applica
tions can use round-robin selection as well. The following routines control task
scheduling:

Table 3-1. Task Scheduler Control Routines

Call Description

kerne!Timeslice() Control round-robin scheduling.

taskPrioritySet() Change the priority of a task

taskLock() Disable task rescheduling.

taskUnlock() Enable task rescheduling.

Preemptive Priority Scheduling

With a preemptive priority-based scheduler, each task is assigned a priority and the
kernel ensures that the CPU is allocated to the highest priority task that is ready to
run. The scheduling is preemptive in that if a task becomes ready to run that has

Intel Vx960 57

Vx960 5.0 - Programmer's Gulde

ready

pended

The highest priority task ready to run is executing.

task!nit()

ready .. pended semTake() I msgQReceive()

ready .. delayed taskDelay()
ready .. suspended taskSuspend()

pended .. ready semGive() I msgQSend()

pended .. suspended task.Suspend()

delay ... ready expired delay
delay ... suspended task.Suspend()

suspended ... ready taskResume() I taskActivate()

suspended ... pend9d taskResume()

suspended ... delayed taskResume()

The state of a task that is not waiting for any resource other than the CPU.

The state of a task that is blocked due to the unavailability of some
resource.

delayed The state of a task that is asleep for some duration.

suspended The suspended state is a secondary state used for debugging. Suspen
sion does not inhibit state transition, only task execution. Thus sus
pended-pended tasks can still unblock and suspended-delayed tasks can still
awaken. In either case the resulting state would be suspended-ready.

Figure 3-1. Task State Transitions

58 Intel Vx960

3.2.3.2

3. Basic OS

higher priority than the current task, the kernel saves the current task's context and
switches to the context of the higher priority task.

Vx960 has 256 priority levels, numbered 0 through 255. Priority 0 is the highest and
priority 255 is the lowest. Tasks are assigned a priority when created; however, while
executing, a task can change its priority using taskPrioritt1Set(). Dynamic prioriti
zation of tasks enables an application to track precedence changes in the real world.

Round-Robin Scheduling

You can augment preemptive priority scheduling with round-robin scheduling. A
round· robin scheduling algorithm attempts to share the CPU among all ready tasks
of the same priority. Without round-robin scheduling, when multiple tasks of equal
priority must share the processor, a single task can usurp the processor by never
blocking, thus never giving other equal-priority tasks a chance to run.

Round-robin scheduling achieves fair allocation of the CPU to tasks of the same pri
ority by an approach known as time slicing. The time line is cut into slices of equal
duration and each slice is allocated in rotation to one of a group of tasks. The alloca
tion is fair in that no task of a priority group is allocated a second slice of time before
all tasks of a group have been given a slice. Round-robin scheduling can be enabled
with the routine kenzelTimeSlice(), which takes a parameter for the "time slice," or
interval, that each task is allowed to run before relinquishing the processor to
another equal-priority task.

A run-time counter is kept for each task and incremented on every clock tick. When
the specified time slice interval is completed, the counter is cleared and the task is
placed at the tail of the queue of tasks at its priority. New tasks joining a given pri
ority group are placed at the tail of the group with a run-time counter initialized to
zero.

If a task is preempted by a higher priority task during its interval, its run-time count
is saved and then restored when the task is again eligible for execution. Figure 3-2
shows round-robin scheduling for three tasks of the same priority: t1, t2, and t3. Task
t2 is preempted by a higher priority task t4 but resumes at the count where it left off
when t4 is finished.

The kernelTimeSlice() routine affects tasks at all priority levels. After time slicing is
enabled, all tasks at the same priority level use round-robin scheduling.

Intel Vx960 59

Vx960 5.0 - Programmer's Gulde

3.2.3.3

HIGH i
~
·5
·s_

LOW

I
Key:

Preemption Locks

i time slice i
:< >!
: :
: ! !

time

J -preemption I -task completion

Figure 3-2. Round-Robin Scheduling

The Vx960 scheduler can be disabled and enabled on a per-task basis with the rou
tines taskLock() and taskUulock(). When a task disables the scheduler by calling
taskLock(), priority-based preemption does not occur while the task is running.
However, if the task blocks or suspends, the scheduler selects the next highest pri
ority eligible task to execute. When the preemption-locked task unblocks and begins
running again, preemption again is disabled.

Preemption locks prevent task context switching but do not lock out interrupt han
dling. Preemption locks can be used to achieve mutual exclusion. See 3.3.2 Mutual
Exclusion for a more complete discussion.

3.2.4 Tasking Control

The following sections give an overview of Vx960's basic tasking routines, which are
found in the Vx960 library taskLib. These routines provide the means for task cre
ation, control, and information. See the manual entry for taskLib(l) for further dis
cussion.

There are also many routines in usrLib that provide a more interactive interface to
the tasking functions described here.

60 Intel Vx960

3.2.4.1

3.2.4.2

3. Baste os

Task Creation and Activation

The following routines are used to create tasks:

Table 3-2. Task Creation Routines

Call Description

taskSpawn() Spawn (create and activate) a new task.

taskbtit() Initialize a new task.

taskActivate() Activate an initialized task.

The arguments to taskSpawn() are the new task's name (an ASCII string), priority,
an "options" word, stack size, main routine address, and up tO 10 arguments to be
passed to the main routine as startup parameters:

id • taskSpawn (name, priority, options, stacksize, main, argl, ... arg10) 1

If the specified routine takes fewer than 10 arguments, you should pass 0 to
taskSpaw11() for those unused arguments.

The taskSpawn() routine creates the new task context, which includes allocating the
stack and setting up the task environment to call the main routine (a normal C rou- ll
tine) with the specified arguments. When the new task begins execution, it begins at
the entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation, initialization,
and activation. The initialization and activation functions are provided by the rou
tines taskfoit() and taskActivate(); however, these routines are only used when
special circumstances dictate greater control over allocation or activation.

Task Names and IDs

When a task is spawned, the user specifies a task name, which is an ASCII string of
arbitrary length. The system returns a task ID which is a four-byte handle to the
task's data structures. Most Vx960 tasking routines take a task ID as the argument
specifying a task. Vx960 uses a convention that a task ID of 0 always implies the call
ing task.

Intel Vx960 61

Vx960 5.0...;. Programmer's Gulde

3.2.4.3

A task name should not conflict with any existing task name. Furthermore, to use
the interactive shell fully, task names should not conflict with globally visible rou
tine and variable names. Vx960 uses a convention of prefixing all task names with
the letter "t" to avoid name conflicts.

You may not want to name some or any of your tasks. If a NULL pointer is supplied
for the name argument of taskSpawtt()i then Vx960 assigns a name. The name is of
the form "tN" where N is a decimal value that is incremented once for each
unnamed task that is spawned.

When working interactively with the Vx960 shell, task names are resolved to their
corresponding task ID to simplify interaction with existing tasks. See 9. Shell for a
more complete discussion of this feature.

The following taskLib routines manage task IDs and names:

Table 3-3. Task Name and ID Routines

Coll Description

taskName() Get the task name associated with a task ID.

taskNameTold() Look up the task ID associated with a task name.

taskldSelf() Get the calling task's ID.

taskldVerify() Verify the existence of a specified task.

Task Deletion and Deletion Safety

Tasks can be deleted from the system. Considerable care should be taken to avoid
deleting tasks at inappropriate times. Tasks should be dormant before an application
deletes them. Vx960 includes the following routines to delete tasks and protect tasks
from unexpected deletion.

62 Intel Vx960

3. Basic OS

Table 3-4. Task Deletion Routines

Call Description

exit() Terminate and deallocate memory of calling task

taskDelete() Terminate and deallocate memory of a task.

taskSafe() Make a task safe from deletion.

taskUnsafe() Make a task unsafe for deletion.

Tasks call exit() if the entry routine specified during task creation returns. Alterna
tively, a task can call exit() at any point to kill itself. A task can kill another task by
calling taskDelete().

The routines taskSafe() and taskUnsafe() address problems that stem from unex
pected deletion of tasks. The routine taskSafe() protects a task from deletion by
other tasks. This protection is often needed when a task executes in a critical region
or engages a critical resource.

For example, a task could take a semaphore for exclusive access to some data struc
ture. While executing inside the critical region, the task could be deleted by another
task. Since the task was unable to complete the critical region, the data structure may
have been left in a corrupt or inconsistent state. Furthermore, the semaphore can
never be released by the task. Hence, the critical resource is now unavailable for use
by any other task and is frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an out
come. Any task that tries to delete a task protected with taskSafe() blocks. When fin
ished with its critical resource, the protected task can make itself available for
deletion by calling taskUnsafe(), which unblocks any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, i.e., there
are as many "unsafes" as" safes." Protection operates only on the calling task. A task
cannot make another to.sk safe or unsafe from deletion.

Intel Vx960 63

..

Vx960 5.0 - Programmer's Gulde

3.2.4.4

The following code fragment shows how a critical region of code can be protected
using taskSafe() and taskU11safe():

taskSafe ();
semTake (semid, WAIT_FOREVER);

(critical region)

semGive (semid);
taskUnsafe ();

As shown in this example, deletion safety is often coupled with mutual exclusion.
Thus, for convenience and efficiency, a special kind of semaphore, the mutual-exclu
sion semaphore, offers an option for deletion safety. See 3.3.2 Mutual Exclusion for
more information.

Task Options

When a task is spawned, the user specifies an option parameter that selects the
options in the following table. The value of the option parameter is specified by per
forming a logical OR operation on the desired options.

VX_FP _TASK must be specified if the task performs any hardware floating-point
operations. Similarly, VX_STDIO must be specified if the task uses any stdio functions
other than print/() and ssca11f().

Table 3-5. Task Options

Name Description

VX_UNBREAKABLE Disable breakpoints for the task.

VX_FP_TASK Execute with hardware floating-point support, if
available.

VX_STDIO Execute with stdio buffered II 0 support.

VX_DEALLOC_STACK Deallocate the stack on termination.

'

Task options can also be examined and altered after a task is spawned by means of
the following routines. Currently only the VX_UNBREAKABLE option can be altered.

64 lnte/Vx960

3.2.4.5

3. Basic OS

Table 3-6. Task Options Routines

Call Description

taskOptionsGet() Examine task options.

taskOptionsSet() Set task options.

Task Control

The following routines provide direct control over a task's execution:

Table 3-7. Task Control Routines

Call Description

taskSuspeud() Suspend a task.

taskResume() Resume a task.

taskRestart() Restart a task.

taskDelay() Delay a task for a number of ticks.

Vx960' s debugging facilities require task suspension and resumption routines. They.
are useful to freeze a task's state for examination. Delay operations provide a simple
mechanism for a task to sleep for a fixed duration. Task delaying is often used for
polling applications.

Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism recreates a task with the original creation arguments.
The Vx960 shell also uses this mechanism to restart the shell in response to a task
abort request.

Intel Vx960 65

Vx960 5.0 -·Programmer's Gulde

3.2.4.6 Task Information

The following routines get information about a task by taking a snapshot of a task's
context when called. The state of a task is dynamic, and the information may not be
current unless the task is known to be dormant {i.e., suspended).

Table 3-8. Task Information Routines

Call Description

taskldListGet() Fill an array with the IDs of all active tasks.

task111f0Get() Get information about a task.

taskPriorityGet() Examine the priority of a task.

taskRegsGet() Examine a task's registers.

taskRegsSet() Set a task's registers.

tasklsSuspmded() Check if a task is suspended.

tasklsReady() Check if a task is ready to run.

taskTcb() Get a pointer to task's control block.

3.2.5 Task Error Status: errno

By convention, C library functions use a global mechanism for returning status
codes when errors occur. A single global integer variable errno is set to an appropri
ate error number whenever a library function is to return information about an error.
This convention is specified as part of the ANSI C standard.

Vx960 has a single pre-defined global variable errno that can be referenced directly
by application code that is linked with Vx960 (either statically on the host or dynam
ically at load-time). However, to be useful in the multitasking environment of Vx960,
each task must see its own version of ermo. Thus errno is saved and restored by the
kernel as part of each task's context every time a context switch occurs. Similarly,
interrupt service routines must see their own versions of errno. Accomplish this by
saving and restoring errno on the interrupt stack as part of the interrupt enter and

66 Intel Vx960

3. Basic OS

exit code provided automatically by Vx960 (see 3.4.1 Connecting Application Code to
Interrupts). Thus, regardless of Vx960 context, an error code can be stored or con
sulted with direct manipulation of the global variable ermo.

Almost all Vx960 functions follow a convention that indicates simple success or fail
ure of. their operation by the actual return value of the function. Many functions
return the status values OK (0) or ERROR (-1). Some functions which return a non
negative number (e.g., open() returns a file descriptor) also return ERROR to indicate
an error. Functions which return a pointer return NULL (0) to indicate an error. In
most cases, a function returning sud1 an error indication also sets ermo to the specific
error code.

The global variable errno is never cleared by Vx960 routines. Thus, its value indicates
the last error status set. When a Vx960 subroutine gets an error indication from a call
to another routine, it returns its own error indication without modifying ernw. Thus,
the value of errno that was set in the lower-level routine remains available as the
indication of error type.

For example, the Vx960 routine iJZtComzect(), which connects a user routine to a
hard\vare interrupt, allocates memory by calling malloc() and builds the interrupt
driver in this allocated memory. If ma/Zoe() fails because insufficient memory
remains in the pool, it sets ermo to a code indicating an insufficient memory error
was encountered in the memory allocation library, memlib(l). The mal/oc() routine
then returns NULL to indicate the failure. The ilztComzect() routine, receiving the
NULL from malloc(), then returns its own error indication of ERROR. However, it
does not alter ermo, leaving it at the "insufficient memory" code set by malloc().

Application developers are encouraged to employ this mechanism in their own sub
routines, setting and examining ernw as a debugging technique. See the manual
entry errnoLib(l) for details on the composition of status values, and defined status
values available to applications.

Intel Vx960 67

Vx960 5.0 - Programmer's Gulde

3.2.6 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as ille
gal instructions, bus or address errors, divide by zero, and so forth. The Vx960
exception handling package handles all such exceptions. The default exception han
dler suspends the task that caused the exception, and saves the state of task at the
point of the exception. A description of the exception is displayed on standard out
put. The Vx960 kernel and other tasks continue uninterrupted. The suspended task
can be examined with the usual Vx960 routines, including ti() for task information
and tt() for a stack trace.

Tasks can also attach their own handlers for certain hardware exceptions through
the UNIX-compatible signal facility. If a task has supplied a signal handler for an
exception, the default exception handling described above is not performed. Signals
are also used for signaling software exceptions as well as hardware exceptions. They
are described in more detail in 3.3.7 Signals below and in the manual entry for
siglib(l).

Note: The GNU/960 C runtime library includes signal routines (signal and
raise) that are incompatible with the Vx960. Do not use these routines in
your Vx960 applications.

3.2.7 Tasking Extensions

To allow additional task related facilities to be added to the system without modify
ing the kernel, Vx960 provides task create, switch, and delete hooks which allow
additional routines to be invoked whenever a task is created, a task context switch
occurs, or a task is deleted. There are spare fields in the task control block available
for application extension of a task's context.

These hook routines are shown in the table below. For more information, see the
manual entry for taskHookLib(l).

68 Intel Vx960

3.2.8

3. Basic OS

Table 3-9. Task Create, Switch, and Delete "Hooks"

Call Description

taskCreateHookAdd() Add routine to be called at every task create.

taskCreateHookDelete() Delete previously added task create routine.

taskSwitcltHookAdd() Add routine to be called at every task switch.

taskSwitcltHookDelete() Delete previously added task switch routine.

taskDeleteHookAdd() Add routine to be called at every task delete.

taskDeleteHookDelete() Delete previously added task delete routine.

Shared Code and Reentrancy

In Vx960, it is very common for a single copy of a subroutine or subroutine library
to be invoked by many different tasks. For example, many tasks can call pl'intf(), but
there is only a single copy of the subroutine in the system. This is called shared code.
Shared code makes the system more efficient and easier to maintain.

However, shared code must be reentrant. A subroutine is reentrant if a single copy of
the routine can be called from several task contexts simultaneously without conflict.
Such conflict would occur when a subroutine modifies global or static variables,
since there is only a single copy of the data and code. A routine's references to such
variables can overlap and interfere in invocations from different task contexts.

All routines in Vx960 are made reentrant with the following techniques:

• use of dynamic stack variables

• guarding of global and static variables with semaphores

• use of task variables

These techniques should be used when writing application code that can be called
from several task contexts simultaneously.

Intel Vx960 69

Vx960 5.0 - Programmer's Gulde

3.2.8.1

3.2.8.2

3.2.8.3

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stacl<
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, lstLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Such subroutines of this kind are reentrant. Multiple tasks can use such routines
without interfering with each other, since each task does indeed have its own stack

Guarded Global and Static Variables

Some libraries encapsulate access to common data. An obvious example is the
memory allocation library, memLib, which manages pools of memory to be used by
many tasks. This library declares and uses its own static data variables to keep tracl<
of pool allocation.

This kind of library requires some caution since the routines are not reentrant. Mul·
tiple tasks invoking the routines in the library could interfere with access to common
variables. Such libraries must be made reentrant by providing a mutual-exclusion
mechanism to prohibit tasks from executing critical sections of code. The usual
mutual-exclusion mechanism is the semaphore facility provided by semLib(l) and
described in 3.3.3 Semaphores.

Task Variables

Some routines that can be called by multiple tasks may require global or static vari·
ables that should have a distinct value for each calling task. For example, tasks car
reference a private buffer of memory and yet refer to it with the same global variable

'T'~ ---~~~~,.:i~i~ ii.: ... '\TvOt:.n ,._.,:,.:io,.. ... t ... ,..;1;.., ,...,.Jlort 1,,,,,z, .,,,.,;,,J,7o" urhir'h .,.11"',.'" LL
-- ------------ - - . - , J. .I ..

byte variables to be added to a task's context, so that the value of such a variable i~
switched every time a task switch occurs to or from its owner task. Several tas~
declare the same variable (4-byte memory location) as a task variable. Each of thosE
tasks can then treat that single memory location as its own private variable. Thh
facility is provided by the routines taskVarAdd(), taskVarDelete(), taskVarSet()
and taskVarGet(), which are described in the manual entry for taskVarLib(l).

70 Intel Vx960

3.2.8.4

3.2.9

3.2.9.1

3. Basic OS

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task since the value of the variable must be saved and
restored as part of the task's context. It is prudent to collect all of a module's task
variables into a single dynamically allocated structure, and then make all accesses to
that structure be indirect through a single pointer. This pointer can then be the task
variable for all tasks using that module.

Multiple Tasks with the Same Main Routine

With Vx960, it is possible to spawn several tasks with the same main routine. Each
spawn creates a new task with its own stack and context. Each spawn can also pass
the main routine different parameters to the new task. In this case, the same rules of
reentrancy described in 3.2.8.3 Task Variables apply to the entire task.

This is useful when the same function needs to be performed concurrently with dif
ferent sets of parameters. For example, a routine that monitors a particular kind of
equipment can be spawned several times to monitor several different pieces of that
equipment. The arguments to the main routine could indicate which particular piece
of equipment the task is to monitor.

Vx960 System Tasks

Vx960 includes several system tasks, described in the following sections.

The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. In Vx960, the root task
is in the module usrConfig and is used to initialize most Vx960 facilities. It spawns
such tasks as the shell, the logging task, the exception task, the network task, and the
tRiogind daemon. The root task terminates and is deleted when all initialization has
been performed. You are free to add any necessary initialization of your own to the
root task. For more information, see 8. Configuration.

Intel Vx960 71

Vx960 5.0 - Programmer's Guide

3.2.9.2

3.2.9.3

3.2.9.4

3.2.9.5

3.2.9.6

The Shell: tShell

The Vx960 shell, tShell, is also spawned as a task. The shell allows application devel
opers to interact with Vx960 facilities and with their own application modules by
invoking any subroutine that has been entered in the system symbol table. Routines
that are called from the shell, rather than spawned, run in the context of the shell
task.

The logging Task: tLogTask

The log task, tLogtask, is used by Vx960 modules to log system messages without
having to do I/ 0 in the current task context. For more information, see 4.5.3 Message
Logging and the manual entry for logLib(l).

The Exception Task: tExcTask

The exception task, tExcTask, supports the Vx960 exception handling package by
performing functions that cannot occur at interrupt level. It must have the highest
priority in the system. Do not suspend, delete, or change the priority of this task. For
more information, see the manual entry for excLib(l).

The Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the Vx960 net
work.

The Remote login Daemon: tR/ogind

The remote login daemon, tRlogind, allows remote users to log in to Vx960. It accepts
remote login requests from other Vx960 or host systems, and causes the shell's input
and output to be redirected to the remote user. A tty-like interface is provided to the
remote user through the use of the Vx960 pseudo-terminal driver, ptyDrv. For more
information, see 4.6.2 Serial 1/0 Devices (Terminal and Pseudo-Terminal Devices) and
the manual entry for ptyDrv(2).

72 Intel Vx960

3.2.9.7

3.2.9.8

3.2.9.9

3.3

3. Basic OS

The Telnet Daemon: tTelnetd

The telnet daemon, tTelnetd, allows remote users to log into Vx960 via telnet. It
accepts remote connection requests from any other system, and causes the shell's
input and output to be redirected to the remote user. A tty-like interface is provided
to the remote user through the use of the Vx960 pseudo-terminal driver, ptyDrv. See
4.6.2 Serial 1/0 Devices (Terminal and Pseudo-Terminal Devices) and the manual entry
for ptyDrv for further explanation.

The Portmap Daemon: f Porlmapd

The tPortmapd daemon is an RPC server that acts as a central registrar for RPC serv
ers running on the same machine. RPC clients query the tPortmapd daemon to find
out how to contact the various servers.

The Remote Debugging Server: tRdbTask

The tRdbTask services RPC requests made by remote source-level debuggers.

Intertask Communications

The intertask communication facilities complement the multitasking functions
described previously. These facilities permit independent tasks to coordinate their
actions.

Vx960 supplies a rich set of intertask communication mechanisms, including:

• shared memory, for simple sharing of data

• semaphores, for basic mutual exclusion and synchronization

• message queues and pipes, for intertask message passing within a CPU

• sockets and remote procedure calls, for network-transparent intertask communica
tion

• signals, for exception handling.

Intel Vx960 73

Vx960 5.0 - Programmer's Gulde

3.3.1 Shared Memory

3.3.2

3.3.2.1

The most obvious way for tasks to communicate in Vx960 is by accessing shared
data structures. Because all tasks in Vx960 exist in a single linear address space, shar
ing data structures between tasks is trivial. Global variables, linear buffers, ring buff
ers, linked lists, and pointers can be referenced by code running in different contexts.

Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many mechanisms exist for obtaining exclu
sive access to a resource and differ only in the scope for which the exclusion applies.
Methods of mutual exclusion include disabling interrupts, disabling preemption,
and resource locking with semaphores.

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of inter
rupts. Such a lock guarantees exclusive access to the CPU.

funcA ()
{
int lock• intLock();

(critical region that cannot be interrupted)

intUnlock (lock);
}

While this solves problems involving mutual exclusion with interrupt service rou
tines, it is inappropriate as a general-purpose mutual exclusion method for most
real-time systems because of the inherent inability to respond to external events for
the duration of these locks. High interrupt latency is unacceptable in applications for
which deterministic response is a requirement.

However, interrupt locking can sometimes be necessary where mutual exclusion
involves interrupt service routines. In any situation, the duration of interrupt lock
outs should be kept short.

74 Intel Vx960

3.3.2.2

3. Basic OS

Preemptive Locks and latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, interrupt ser
vice routines are able to execute.

funcA ()
{
taskLock ();

(critical region that cannot be preempted)

taskUnlock ();
}

However, this method can also lead to unacceptable real-time response. Tasks of
higher priority are unable to execute until the locking task leaves the critical region,
even though the higher priority task was not itself involved with the critical region.
\i\'hile this kind of mutual exclusion is simple, the duration should be kept short. A
better mechanism is provided by semaphores, discussed in the following sections.

3.3.3 Semaphores

Vx960 semaphores are optimized and provide the fastest intertask communication
mechanism in Vx960. They are the primary means for addressing the requirements
of both mutual exclusion and task synchronization:

• When used for mutual exclusion, Vx960 semaphores interlock access to shared
resources. They provide mutual exclusion with finer granularity than either
interrupt disabling or preemptive locks, discussed above.

• \Vhen used for synchro12izatio12, Vx960 semaphores coordinate a task's execution
with an external event.

There are three semaphore types provided in Vx960, each optimized to address a dif
ferent class of problem:

• The basic binary semaphore is the fastest, most general-purpose semaphore.

• The extended mutual-exclusion semaphore is a specialized form of the binary
semaphore that addresses problems inherent in mutual exclusion.

• The counting semaphore works like the binary semaphore except that it keeps
track of the number of times a semaphore has been given.

Intel Vx960 75

Vx960 5.0 - Programmer's Gulde

3.3.3.1

Table 3-10. Semaphore Types

Type Uses

binary General; for synchronization or mutual exclusion.

mutual exclusion For priority inheritance, deletion safety, and recursion.

counting For guarding multiple instances of a resource.

Semaphore Control

Instead of defining a complete set of semaphore control functions for each type of
semaphore, Vx960 provides a single uniform interface for semaphore control. An
entire set of semaphore calls can be changed from one type of semaphore to another.
Only the creation routines are specific to the semaphore type used. The following
semaphore control functions are provided:

Table 3-11. Semaphore Control Routines

Coll Description

semBCreate() Allocate and initialize a binary semaphore.
semMCreate() Allocate and initialize a mutual-exclusion semaphore.
semCCreate() Allocate and initialize a counting semaphore.

semDelete() Terminate and deallocate a semaphore.

semTake() Take a semaphore.

semGive() Give a semaphore.

semFlusli() Flush all pended tasks off a semaphore.

The sem[BMC]Create() routines return a semaphore ID that serves as a handle on
the semaphore during subsequent use by the other semaphore-control routines.

76 Intel Vx960

3.3.3.2

3. Basic OS

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements of
both forms of task coordination: mutual exclusion and synchronization. The binary
semaphore has the least overhead associated with it, making it applicable to high
performance requirements. The mutual-exclusion semaphore described below in
3.3.3.3 Mutual-Exclus!on Semaphores is also a binary semaphore, but it has been tai
lored to address problems inherent to mutual exclusion. Alternatively, the binary
semaphore can be used for mutual exclusion if the advanced features of the mutual
exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a cell in memory that can be full or empty.
When a task takes a binary semaphore, using semTake(), the outcome depends on
whether the semaphore was full or empty at the time of the call. If the semaphore
was full, then the semaphore is made empty and the task continues execution. If the
semaphore was empty, then the task is put on a queue of blocked tasks and enters a
state of pending on the availability of the semaphore.

When a task gives a binary semaphore, using semGive(), the outcome also depends
on whether the semaphore was full or empty at the time of the call. If the semaphore
was already full, giving the semaphore has no effect at all. If the semaphore was
empty and no task was waiting to take it, then the semaphore is made full. If the
semaphore was empty and one or more tasks were pending on its availability, then
the first task in the queue of blocked tasks is unblocked, and the semaphore is left
empty.

Mutual Exclusion

Binary semaphores interlock access to a shared resource. Unlike disabling interrupts
or preemptive locks, binary semaphores limit the scope of the mutual exclusion to
the associated resource. In this technique, a semaphore is created to guard the
resource" Initially the semaphore is full.

SEM_ID semMutex;

/* create a binary semaphore that is initially full */
semMutex • semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. So long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore allowing another task to use the resource.

Intel Vx960 77

Vx960 5.0 - Programmer's Gulde

Thus all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);

(critical region, only accessible by a single task at a time)

semGive (semMutex);

• Synchronization

·When used for task synchronization, a semaphore can represent a condition or event
that a task is waiting for. Initially the semaphore is empty. A task or interrupt servke
routine signals the occurrence of the event by giving the semaphore. Another task
waits for the semaphore by calling semTake(). The waiting task is blocked until the
event occurs and the semaphore is given.

Note the difference in sequence when semaphores are used for mutual exclusion
and when they are used for synchronization. For mutual exclusion, the semaphore
is initially full, and each task first takes and then gives back the semaphore. For syn
chronization, the semaphore is initially empty, and one task waits to take the sema
phore, which is given by another task.

The following is an example of using semaphores for task synchronization:

SEM_ID syncSem; /* lD of sync semaphore */

init ()
{
intConnect (••• , eventinterruptSvcRout, •••);
syncsem - setnBCreate (SEM_Q_FIFO, SEM_EMPTY);
taskSpawn (••• , taskl);
}

taskl ()
{

semTake (syncSem, WAIT_FOREVER); /*wait for event to occur*/
••• /*process event*/
}

eventinterruptSvcRout ()
{

semGive (syncSem); /* let task 1 process event */

}

7 8 Intel Vx960

3.3.3.3

3. Basic OS

In the above example, when the init() routine is called, the binary semaphore is cre
ated, an interrupt service routine is attached to an event, and a task is spawned to
process the event. The routine taskl() runs until it calls semTalce(). It remains
blocked at that point until an event causes the interrupt service routine to call
semGive(). When the interrupt service routine completes, taskl() executes to pro
cess the event. There is an advantage to handling event processing within the con
text of a dedicated task. Less processing takes place at interrupt level, thereby
reducing interrupt latency. This model of event processing is recommended for real
time applications.

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

• It can only be used for mutual exclusion.
• It can only be given by the task that took it.
• It can not be given from interrupt-level code.
• The semFluslz() operation is illegaL

• Priority Inversion

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for the completion of a lower-priority task. Consider the following
scenario: tl, t2, and t3 are tasks of high, medium, and low priority, respectively. t3
has acquired some resource by taking its associated binary guard semaphore. When
tl preempts t3 and contends for the resource by taking the same semaphore, it
becomes blocked. If we could be assured that t1 would be blocked no longer than
the time it takes t3 to finish with the resource, there would be no problem since the
resource cannot be preempted. However, the low-priority task is vulnerable to pre
emption by medium-priority tasks (like t2), which could inhibit t3 from relinquish
ing the resource. This condition could persist, blocking t1 for an indefinite period of
time. See the diagram in Figure 3-3.

The mutual-exclusion semaphore has an additional option SEM_INVERSION_SAFE,
which enables a priority inheritance algorithm. The priority inheritance protocol
assures that a task which owns a resource executes at the priority of the highest pri-

Intel Vx960 79

-
Vx960 5.0 - Programmer's Gulde

HIGH i I ti I
~

MEDIUM . :l I t2

I ._ .. , ! -····-~

v
1~3tt1 LOW

------------ time --·· --------

Figure 3-3. Priority Inversion

HIGH i t1
~ ·c

MEDIUM·~ ! i l t2

LOW

80 Intel Vx960

.__ ___________ time -----------~

Key:

Figure 3-4. Priority Inheritance

'f - take semaphore

V - give semaphore

§1~ - own semaphore

J -preemption

ti -priority inheritance/release

I -block

3. Basic OS

ority task blocked on that resource. When execution is complete, the task gives up
the resource and returns to its normal or standard priority. Hence, the inheriting task
is protected from preemption by any intermediate-priority tasks. Priority inherit
ance solves the problem of priority inversion by elevating the priority of t3 to the pri
ority of tl during the time t1 is blocked on t3. This protects t3, and indirectly t1, from
preemption by t2. See the diagram in Figure 3-4.

• Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical region
guarded by semaphores, it is often desirable to protect the executing task from unex
pected deletion. Deleting a task executing in a critical region can be catastrophic. The
resource could be left in a corrupted state and the semaphore guarding the resource
left unavailable, preventing all access to the resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe() with
each semGive(). In this way, a task can be protected fron1 deletion while it has the

, semaphore. This option is more efficient than the primitives taskSafe() and
taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

• Recursive Resource Access

Mutual-exchi.sion semaphores can be taken recursively. This means that the sema
phore can be taken more than once by the task that owns it before being released.
Recursion is useful for a set of routines that need mutually exclusive access to a
resource, but may need to call each other. This is possible because the system keeps
track of which task currently owns the mutual-exclusion semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it has been taken. This is tracked by a count which
is incremented with each semTake() and decremented with each semGive().

Intel Vx960 81

Vx960 5.0 - Programmer's Gulde

3.3.3.4

The example below illustrates recursive use of a mutual exclusion semaphore. Func
tion A requires access to a resource which it acquires by taking mySem; function A
may also need to call function B, which also requires mySem:

SEM_ID . mySem;

mySem • semMCreate (•••);

funcA ()
{
semTake (mySem, WAIT_FOREVER);

funcB ();

semGive (mySem);
}

funcB ()
{
semTake (mySem, WAIT_FOREVER);

semGive (mySem);
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore except
that it keeps track of the number of times a semaphore has been given. Every time a
semaphore is given, the count is incremented; every time a semaphore is taken, the
count is decremented. When the count reaches zero, a task that tries to take the sema
phore is blocked. As with the binary semaphore, if a semaphore is given and a task
is blocked, it becomes unblocked. However, if a semaphore is given and no tasks are
blocked, then the count is incremented. This means that a semaphore that has been
given twice can be taken twice without blocking, in contrast to a binary semaphore.

Counting semaphores are useful for guarding resources of which there are multiple
copies. For example, the use of five tape drives could be coordinated using a count
ing semaphore with an initial count of five, or a ring buffer with 256 entries could be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

82 Intel Vx960

3.3.3.5

3. Basic OS

Special Semaphore Options

Timeouts

All semaphore types include the ability to time out from the pended state. This is
controlled by a parameter to semTake() that specifies the amount of time in ticks that
the task is to wait in a blocked state. If the task takes the semaphore within the allot
ted time, semTake() returns OK; if it times out before taking the semaphore, it
returns ERROR. A timeout value ofWAIT_FOREVER means wait indefinitely; a value
of NO_WAIT means do not wait at all.

• Queues

All semaphore types include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two crite
ria: first-in-first-out (FIFO) order, or priority order. Priority ordering better preserves
the intended priority structure of the system at the expense of some overhead in
semTake(} in sorting the tasks by priority. A FIFO queue requires no priority sorting
overhead and leads to constant-time performance. The selection of queue type is
specified during semaphore creation with sem[BMC]Create(}. Semaphores using
priority inheritance (SEM_INVERSION_SAFE option) must select priority-order
queuing.

3.3.4 Message Queues

Modern real-time applications are constructed as a set of independent but cooperat
ing tasks. While semaphores provide a high-speed mechanism for the synchroniza
tion and interlocking of tasks, often a higher-level mechanism is necessary to allow
cooperating tasks to communicate with each other. In Vx960, the primary intertask
communication mechanism within a single CPU is message queues. Message queues
allow a variable number of messages, each of variable length, to be queued in first
in-first-out order. Any task or interrup~ service routine can send messages to a mes
sage queue. Any task can receive messages from a message queue. Multiple tasks
can send to and receive from the same message queue. Full-duplex communication
between two tasks requires two message queues, one for each direction.

Intel Vx960 83

Vx960 5.0 - Programmer's Gulde

3.3.4.1 Creating and Using Message Queues

Message queues are created and deleted with the routines shown in the table belov.r.

A message queue is created with msgQCreate(). Its parameters specify the maxi
mum number of messages that can be queued to the message queue and the maxi
mum length in bytes of each message. Enough buffer space is preallocated for the
specified number and length of messages.

Table 3-12. Message Queue Creation/Deletion/Control

Coll Description

msgQCreate() Allocate and initialize a message queue.

msgQDelete() Terminate and deallocate a message queue.

msgQSend() Send a message to a message queue.

msgQReceive() Receive a message from a message queue.

A task or interrupt service routine sends a message to a message queue with
msgQSend(). If no tasks are waiting for messages on that queue, the message is
added to the queue's buffer of messages. If any tasks are already waiting for a mes
sage from that message queue, the message is delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages
are already available in the message queue's buffer, the first message is dequeued
and returned to the caller. If no messages are available, then the calling task blocks
and be added to a queue of tasks waiting for messages. This queue of waiting tasks
can be ordered either by task priority or FIFO, as specified in an option parameter
when the queue is created.

• Timeouts·

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, if no buffer space is available to queue the message, the timeout specifies
how many ticks to wait for space to become available. When receiving a message, if
no message is available, the timeout specifies how many ticks to wait for a message
to become available. As with semaphores, the value of the timeout parameter can

84 Intel Vx960

3.3.4.2

3. Basic OS

have the special values of NO_WAIT (0) meaning to always return immediately or
WAIT_FOREVER (-1) meaning to never time out the function.

• · Urgent Messages

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRl_NORMAL) or urgent (MSG_PRI_URGENT). Normal priority
messages are added to the tail of the list of queued messages, while urgent priority
messages are added to the head of the list.

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service and
return some reply. The requests and replies are made in the form of intertask mes
sages. In Vx960, message queues, or pipes (see below), are a natural way to imple
ment this.

For example, client-server communications could bf implemented as follows. Each
server task would create a message queue to receive request messages from clients.
Each client task would create a message queue to receive reply messages from serv
ers. Each request message would include a field containing the msqQid of the client's
reply message queue. A server task's "main loop" would consist of reading request
messages from its request message queue, performing the request, and sending a
reply to the client's reply message queue.

The same architecture could be achieved with pipes instead of message queues. Of
course, there can be many variations of this example, tailored to the needs of the par
ticular application.

Intel Vx960 85

Vx960 5.0 - Programmer's Gulde

3.3.5 Pipes

3.3.6

3.3.6.1

Pipes provide an alternative interface to the message queue facility that goes through
the Vx960 I/ 0 system. Pipes are virtual I/ 0 devices managed by the pipe Orv
driver. The routine pipeDevCreate() creates a pipe device and the underlying mes
sage queue associated with that pipe. The call specifies the name of the created pipe,
the maximum number of messages that can be queued to the pipe, and the maxi
mum length of each message:

status • pipeDevCreate ("/pipe/name", max_msgs, max_length);

The created pipe is a named I/ 0 device. Tasks can use the standard II 0 routines to
open, read, and write pipes, and invoke ioctl functions. As they do with other I/ 0
devices, tasks block when they read from an empty pipe until data is available, and
block when they write to a full pipe until there is space available. Like message
queues, interrupt service routines can write to a pipe, but cannot read from a pipe.

As I/ 0 devices, one important feature that pipes provide that message queues can
not, is the ability to be used with select(). This routine allows a task to wait for data
to be available on any set of II 0 devices. The select() routine also works with other
asynchronous I/ 0 devices including network sockets and serial devices. Thus,
using select(), a task can wait for data on a combination of several pipes, sockets,
and serial devices.

Pipes, like message queues, are a natural way to implement a client-server model of
intertask communications. See the section above, 3.3.4.2 Servers and Clients with Mes
sage Queues.

Network Intertask Communication

Sockets

In Vx960, the basis of intertask communications across the network is sockets. A
socket is an endpoint for communications between tasks; data is sent from one
socket to another. When you create a socket, you specify an Internet communica
tions protocol that is used to transmit the data. Vx960 supports the Internet protocols
TCP and UDP. Vx960 socket facilities are source compatible with BSD 4.3 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data via stream sockets.
In a stream-socket communication, two sockets are connected, allowing a reliable

86 Intel Vx960

3.3.6.2

3. Basic OS

. ~

byte-stream to flow between them in each direction like a ciryuit. For this reason TCP
is often referred to as a virtual circuit protocol.

UDP provides a simpler but lessrobust form of communication. In a lJDP commu
nicaffon, data is sent bet\Vee_n sockets in .separate, unconnected, individually
addressed packets called datagrams. A process creates a datagram socket and binds
it to a particular port number. There is no notion of a UDP connection. Any UDP
socket, on any host in fhe"network, can send messages to ariy other UDP socket by
specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is homogeneous.
Socket communications among processes are the same regardless of the location of
the processes in the network, or the operating system under which they are running.
Processes can communicate within a single CPU, across a backplane, across an
Ethernet, or across any connected combination of networks. Socket communications
can occur between Vx960 tasks and UNIX processes in any combination. In all cases,
the communications look identical to the application, except, of course, for the speed
of the communications.

For more information, see 6.2.5 Sockets and the manual entry for sockLib(l).

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) is a facility which allows a process on one machine
to call a procedure which is executed by another process on either the same machine
or a remote machine. Internally, RPC uses sockets as the underlying communication
mechanism. Thus with RPC, Vx960 tasks and UNIX processes can invoke routines
that are executed on other Vx960 or UNIX machines, in any combination.

As discussed in the sections above on message queues and pipes, many real-time
systems are structured with a client-server model of tasks. In this model, client tasks
request services of server tasks, and then wait for their reply. RPC formalizes this
model and provides a standard protocol for passing requests and returning replies.
Also, RPC includes tools to help generate the client interface routines and the server
skeleton.

For more information on RPC, see 6.2.6 Remote Procedure Calls.

Intel Vx960 8 7

Vx960 5.0 - Programmer's Gulde

3.3.7 Signals

Vx960 supports UNIX BSD-style signals. Signals asynchronously alter the control
flow of a task. Any task or interrupt service routine can raise a signal for a particular
task. The task being signaled suspends its current thread of execution and begins
execution of a task-specified signal handler routine, the next time the task is sched
uled to run. Signals are more appropriate for error and exception handling than as a
general-purpose intertask communication mechanism.

The primary signal routines are shown in the table below. These routines are source
compatible with UNIX BSD 4.3 signal functions, hence the odd name of kill() for the
"raise signal" function. For more information on these and other signal functions,
see the manual entry sigLib(l).

Table 3-13. Signal Functions

Call Description

sigvec() Set signal handler routine for a signal.

kill() Raise a signal.

sigsetmask() Set mask of blocked signals.

sigblock() Block ~ single signal.

In many ways, signals are analogous to hardware interrupts. The signal facility pro
vides a set of 31 distinct signals. A signal handler binds to a particular signal with
sigvec(), in much the same way that an interrupt service routine is connected to an
interrupt vector with intComiect(). A signal can be asserted by calling kill(). This is
analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

88 Intel Vx960

3. Basic OS

3.4 Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems since it is
through interrupts that the system is informed of external events. For the fastest pos
sible response to interrupts, interrupt service code in Vx960 runs in a special context
outside of the context of other tasks. Thus, handling an interrupt does not involve a
task context switch.

3.4.1 Connecting Application Code to Interrupts

System hardware interrupts other than those used by Vx960 are available for use by
application developers. Vx960 supplies a routine, intComiect(), that allows C func
tions to be connected to any interrupt. The arguments to intComiect() are the byte
offset of the interrupt vector to connect to, the address of the C function to be con
nected, and an argument to be passed to the C function. When an interrupt occurs
whose vector has been established in this way, the connected C function is called at
interrupt level with the specified argument. To return from interrupt, the connected
function returns. A routine connected to an interrupt in this way is referred to as
interrupt service routine (ISR) or interrupt handler.

Interrupts cannot vector to C functions. Instead, the intComiect() routine builds a
small amount of code which saves the necessary registers, sets up the stack with the
argument to be passed, and calls the connected function. Upon return from the func
tion, it restores the registers and stack, and exits the interrupt.

The interrupt routines, shown below, are provided in intLib(l).

Intel Vx960 89

Vx960 5.0 - Programmer's Gulde

Table 3-14. Interrupt Routines

Call Description

intConnect() Connect C routine to interrupt vector.

intContext() Return TRUE if called from interrupt level.

itttCount() Get current interrupt nesting depth.

intLevelSet() Set processor interrupt mask level.

intLock() Disable interrupts.

intUnlock() Enable intLock.

intVecBaseGet() Get the vector base address.

intVecSet() Set an exception vector.

intVecGet() Get an exception vector.

3.4.2 Interrupt Steck

All ISR code uses the same interrupt stack. This stack is allocated and initialized by
the system at startup according to specified configuration parameters. It must be
large enough to handle the worst possible combination of nested interrupts. The
facility clteckStack() shows interrupt stack utilization. See 8. Configuration for
details of setting the interrupt stack size.

3.4.3 Special Limitations of Interrupt Code

Many Vx960 facilities are available to interrupt service code, but there are some
important limitations. These limitations stem from the fact that interrupt service
code does not run in a regular task context: it has no task control block, for example,
and all ISRs share a single stack.

For this reason, the basic restriction on ISRs is that they must not invoke functions
that might cause "blocking" of the caller. For example, they must not try to take a

90 Intel Vx960

3.4.4

3. Basic OS

semaphore, because if the semaphore is unavailable, the kernel trys to "block" the
caller. However, ISRs may give semaphores that tasks are waiting on.

The memory fadiities malloc() and free() take a semaphore and are therefore not
interrupt callable, nor are routines which make calls to malloc() and free(). For
example all creation and deletion routines are restricted from interrupt-level use.

An ISR also must not perfom1 I/ 0 through Vx960 drivers. Although there are no
inherent restrictions in the Vx960 I/O system, most device drivers require a task
context since they might block the caller to wait for the device. An important excep
tion is the Vx960 pipe driver which has been designed to permit writes by interrupt
service code.

Vx960 supplies a logging facility that allows text messages to be logged to the sys
tem console via a logging task. This mechanism has been designed to be callable by
ISRs. This is the most common way to print out messages from interrupt service
code. For more information, see the manual entry for loglib(l).

On i960 microprocessors with on-chip floating-point support (e.g., 80960 KB and
80960 SB), an ISR must not execute code that makes use of this support. In Vx960,
the interrupt driver code created by intConnect() does not save and restore floating
point registers; thus, ISRs must not include floating-point instructions. If an ISR
requires floating-point instructions, the floating-point registers must be saved and
restored using routines in fppALib(l).

All Vx960 utility libraries, such as the linked-list and ring buffer libraries, are usable
in interrupt service code. As was mentioned in the section on errno above (3.2.5 Task
Error Status: ermo), the global variable errno is saved and restored as a part of the inter
rupt enter and exit code generated by the Vx960 intConnect() facility. Thus errno can
be referenced and modified by ISRs just as in any other code.

Exceptions At Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error, the
task is suspended and the rest of the system continues uninterrupted. However,
when an JSR causes such an exception, there is no safe recourse for the system to
handle the exception. The ISR has no context that can be suspended. Instead, Vx960
stores the description of the exception in a special location in low memory and exe
cutes a system restart.

Intel Vx960 91

Vx960 5.0 - Programmer's Gulde

The Vx960 boot ROMs test for the presence of the exception description in low mem
ory and if detected, print it out on the system console. The e command in the boot
ROMs redisplays the exception description.

3.4.5 Interrupt-to-Task Communication

While it is important that Vx960 support direct connection of ISRs that run at inter
rupt level, interrupt events propagate to task-levei code. Many Vx960 facilities are
not available to interrupt-level code, including I/ 0 to any device other than pipes.
The following techniques can be used to communicate from interrupt service code
to task-level code.

Shared Memory and Ring Buffers
Interrupt service code can share variables, buffers, and ring buff
ers with task-level code.

Semaphores Interrupt service code can give semaphores that tasks take and
wait for.

Message Queues Interrupt service code can send messages to message queues for
tasks to receive. If the queue is full, the message is discarded.

Pipes Interrupt service code can write messages to pipes that tasks
read. Tasks and interrupt service code can write to the same
pipes. However, if the pipe is full, the message written is dis
carded since the interrupt service code cannot block. Interrupt
service code must not invoke any II 0 function on pipes other
than write().

Signals Interrupt service code can signal tasks, causing asynchronous
scheduling of their signal handlers.

Note: Table 3-15 lists the routines callable by the interrupt service routines. The
libc routines follow the arrangement set up in C: A Reference Manual,
Samuel P. Harbison and Guy L. Steele Jr., Second Edition. Prentice Hall,
Inc., Englewood Cliffs, New Jersey. 1987.

92 Intel Vx960

3.- Basic OS

Table 3-15. Routines Callable by Interrupt Service Routines

Library Routines

bLib All rou tint:s.

errnolib errnoGet(), err1t0Set()

fppALib.s fppSave(), fppR.estore()

int Lib ilttContext(), intCount(), iutVecSet(), intVecGet()

libc Math Functions:
abs(), f abs(), labs()
div(), ldiv()
ceil(), floor(), /mod()
exp(), log(), log10()
frexp(), ldexp(), mod/()
pow(), sqrt()
srand()
cos(), sin(), tall()
acos(), asin(), atan(), atan2()
cosh(), sinh(), talllt()

atanh(), poly(), mod(), rint(), sign(), matherr(), max(), mill()
dabs(), acoslt()

Search and Sort Functions:
bsearclz()

String Functions:
strcat(), stntcat()
strc111p(), strncmp()
strcpy(), strncpy()
strlen()
strclir(), strpos(), strrchr(), strrpos()
strspn(), strcspn(), strpbrk(), strtpbrk()
strstr()
strtod(), strtol(), strtoul()
atof(), atoi(), atol()

strcoll(), str~1()

Intel Vx960 93

Vx960 5.0 - Programmer's Gulde

Table 3-15. Routines Callable by Interrupt Services Routines (continued)

Library Routtnes

Memory Functions :
memclzr()
memcmp()
memcpy(), memccpy(), memmove(), bcopy()
memset(), bzero()

Character Functions:
isalnum(), isalplza(), isascii(), iscntrl()
isdigit(), isxdigit()
isprint()
islower(), isupper()
isspace()
toascii()
tolower(), toupper()

log Lib IogMsg()

lstLib All routines.

msgQLib msgQSend()

pipe Orv write()

mg Lib All routines except mgCreate().

semLib semGive(), semFlush()

sigLib kill(), sigRnise()

strLib All routines.

task Lib taskSuspettd(), taskResume(), task.Prioritt;Set(),
taskPriorityGet(), taskldVerify(), taskldDefault(),
tasklsReady(), tasklsSuspended(), taskTcb()

tick Lib tick.A1111ou11ce(), tickSet(), tickGet()

vxLib vxTas()

wdLib wdStart(), wdCmtcel()

94 Intel Vx960

3. Basic OS

3.5 Watchdog Timers

Vx960 includes a watchdog timer mechanism that allows arbitrary C functions to be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock interrupt service routine. Functions invoked by watchdog timers exe
cute as interrupt service code at the interrupt level of the system clock. The restric
tions on interrupt service code apply to routines connected to watchdog timers.

The watchdog timer functions in the following table are provided by the wdLib
library.

Table 3-16. Watchdog Timer Functions

Call Description

wdCreate() Allocate and initialize a watchdog timer.

wdDelete() Terminate and deallocate a watchdog timer.

wdStart() Start a watchdog timer.

wdCancel() Cancel a currently counting watchdog timer.

A watchdog timer is first created by calling the Vx960 routine wdCreate(). Then the
timer can be started by calling wdStart(), which takes as arguments the number of
ticks to delay, the C function to call, and an argument to be passed to that function.
After the specified number of ticks have elapsed, the C function is called with the
specified argument You can cancel Watchdog timers any time before the specified
delay has elapsed by calling wdCancel().

Intel Vx960 95

Vx960 5.0 - Programmer's Gulde

96 Intel Vx960

4

1/0 System

Contents

4.1 Introduction ... 101

4.2 Files, Devices, and Drivers ... 102

4.2.1 File Names and the Default Device .. 102

4.3 Basic I/0 .. ., 104

4.3.1 File Descriptors ... 104

4.3.2 Standard Input, Standard Output, Standard Error .. 105

4.3.2.1 Global Redirection 105
4.3.2.2 Task-Specific Redirection 106

4.3.3 Open and Close ... , 106

4.3.4 Create and Delete ... · ... "' .. 107

4.3.5 Read and Write ... ,. ... 108

4.3.6 1/0 Control .. 109

4.4 Buffered I/ 0: Stdio .. 109

4.4.1 Using Stdio ... 110

4.4.2 Standard Input, Standard Output, Standard Error .. 111

4.5 Other Formatted I/ 0 .. 111

Intel Vx960 9 7

Vx960 5.0 - Programmer's Gulde

4.5.1 Special Cases: printf(), sprilltf(), and ssca1tf() .. 111

4.5.2 Additional Routines: printErr() and f dprilltf() ... 112

4.5.3 Message Logging .. 112

4.6 Devices in Vx960 ... 112

4.6.1 Supplied Drivers ... 113

4.6.2 Serial 1/0 Devices (Terminal and Pseudo-Terminal Devices) 113
4.6.2.1 Tty Options 114
4.6.2.2 Raw Mode and Line Mode 114
4.6.2.3 Tty Special Characters 115
4.6.2.4 I/0 Control Functions 116

4.6.3 Pipe Devices .. 117
4.6.3.1 Creating Pipes 117
4.6.3.2 Writing to Pipes from Interrupt Service Routines 118
4.6.3.3 I/ 0 Control Functions 118

4.6.4 Network File System (NFS) Devices '. .. 118
4.6.4.1 Mounting an NFS File System 119
4.6.4.2 I I 0 Control Functions 119

4.6.5 Non-NFS Network Devices .. 120

4.6.5.1 Creating Network Devices 120
4.6.5.2 I/0 Control Functions 121

4.6.6 Block Devices (Disk and RAM Disk Devices) .. '. 121

4.6.6.1 File Systems 122
4.6.6.2 SCSI Devices 122
4.6.6.3 RAM Disk Devices 123

4.6.7 Sockets .. 124

4.7 Initializing the I/ 0 System .. · 125

4.8 Differences Between Vx960 and UNIX I/O .. 125

4.9 Internal Structure .. 126

4.9.1 Drivers .. 128

4.9.1.1 The Driver Table and Installing Drivers 129
4.9.1.2 Example of Installing a Driver 129

4.9.2 Devices ... 129

4.9.2.1 The Device List and Adding Devices 131
4.9.2.2 Example of Adding Devices 131

98 Intel Vx960

4. 1/0 System

4.9.3 File Descriptors ... 131

4.9.3.1 The Fd Table 133
4.9.3.2 Example of Opening a File 133
4.9.3.3 Example of Reading Data from the File 136
4.9.3.4 Example of Closing a File 136

4.9.4 Block Devices ... 138

4.9.4.1 General L11plementation 138
4.9.4.2 Driver Initialization Routine 140
4.9.4.3 Device Creation Routine 140
4.9.4.4 Read-Blocks Routine 142
4.9.4.5 Write-Blocks Routine 143
4.9.4.6 1/0 Control Routine 143
4.9.4.7 Device Reset Routine 144
4.9.4.8 Status-Check Routine 145
4.9.4.9 Write-Protected Media 145
4.9.4.10 Change in Ready Status 146

4.9.5 Driver Support Libraries ,. ,. ... 146

In tel Vx960 99

Vx960 5.0 - Programmer's Gulde

100 Intel Vx960

4

1/0 System

4.1 Introduction

The Vx960 II 0 system is designed to present a simple, uniform, device-independent
interface to any kind of device including:

• character-oriented devices such as terminals or communications lines

• random-access block devices such as disks

• virtual devices such as intertask pipes and sockets

• monitor and control devices such as digital/analog II 0 devices

• network devices that give access to remote devices on other computers.

The user view of the Vx960 IIO system is source-compatible with that of the UNIX
I I 0 system. Standard C language libraries for both basic and buffered II 0 functions
are provided. Internally, however, the II 0 system has a design that makes the Vx960
II 0 system faster and more flexible than the UNIX II 0 system and most other II 0
systems. These are important attributes in a real-time system.

This chapter discusses the following:

• the nature of files and devices

• the user view of basic and buffered II 0

Intel Vx960 101

Vx960 5.0 - Programmer's Gulde

• the details of some specific devices

• the internal structure of the Vx960 I/ 0 system.

4.2 Files, Devices, and Drivers

. ·In Vx960, as in UNIX, applications access II 0 devices by opening named files. A file
can refer to one of two things:

• an unstructured "raw" device such as a serial communications channel or an
intertask pipe

• a logical file on a structured, random-access device containing a file system.

Consider the following named files:

/usr/myfile /pipe/mypipe /tyCo/0

The first refers to a file called "myfile", on a disk device "I usr". The second is a
named pipe (by convention, pipe names begin with" /pipe"). The third refers to a
physical serial channel. However, I/0 can be done to or from any of these in the
same way. Within Vx960, they are called files, even though they refer to different
physical objects.

Devices are handled by program modules called drivers. In general, using the I/O
system does not require any further understanding of the implementation of devices
and drivers. However, the Vx9601/0 system gives drivers flexibility in the way they
handle specific devices. Drivers strive to follow the conventional user view pre
sented here, but can differ in the specifics. See the section below, 4.6 Devices In Vx960.

Although all I/0 is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that you can make. These two levels are discussed in later sections.

4.2.1 File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is followed

102 lntef Vx960

4. 1/0 System

by a file name. Thus the name" /tyO" might name a particular serial 1/0 channel,
and the name "DEVl:/filel" would indicate the file "file!" on the device "DEVI:".

When a file name is specified in an I/O call, the l/O system searches for a device
whose name matches at least an initial substring of the file name. The 1/0 function
is then. directed at this device.

If a matching device name cannot be found, then the l/ 0 function is directed at a
default device. You can set this default device to be any device in the system, including
no device at all, in which case failure to match a device name returns an error.

Non-block devices are named when they are added to the 1/0 system, at system ini
tialization time. Block devices are named when they are initialized for use ·with a
specific file system. The Vx960 I/O system imposes no restrictions on the names
given to devices. The I/O system does not interpret device or file names in any way,
other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names. Conven
tions used in Vx960 give the names a UN1X look, although the semantics are some
what different. Most device names begin with a slash (" /"), except non-NFS
network devices and DOS file system devices.

By convention, NFS-based network devices are mounted with names that begin with
a slash; for example:

/usr

~~~~~~; :::;i::devices are named with the remote machine name followed by a ii 
host: 

The remainder of the name is the file name in the remote directory on the remote sys
tem. 

File system devices using DOS are often named with uppercase letters and/or digits 
followed by a colon; for example: 

DEVl: 

Files in DOS file systems are often separated by backslashes("\"). These can be used 
interchangeably with forward slashes (" /"). 

Intel Vx960 103 



Vx960 5.0 - Programmer's Gulde 

4.3 Basic I/ O 

Basic 1/0 is the lowest level ofl/0 in Vx960. The basic 1/0 interface is source com
patible with the 1/0 primitives in the standard C library. There are seven basic 1/0 
calls, shown in the following table. 

Table 4-1. Basic 1/0 Routines 

Call Description 

creat() Create a file. 

delete() Delete a file. 

open() Open a file. (Optionally, create a file.) 

close() Close a file. 

read() Read a created or opened file. 

write() Write a created or opened file. 

ioctl() Perform special control functions on files or devices. 

4.3. l Fiie Descriptors 

At the basic I I 0 level, files are referred to by a file descriptor, or fd. An fd is a small 
integer returned by a call to open() or creat( ). The other basic l/O calls take anfd as 
a parameter to specify the intended file. An fd has no meaning discernible to you. It 
is a handle for the I/ 0 system. 

When a file is opened, an fd is allocated and returned. When the file is closed, the fd 
is deallocated. There is a finite number of fds available within the Vx960 system. To 
avoid exceeding the system limit, it is important to close fds that are no longer in use. 
The number of available fds is specified in the initialization of the I/0 system. For 
more information, see the section below, 4.7 Initializing the 1/0 System, and 7. Cross
Development. 

104 Intel Vx960 



4. 1/0 System 

4.3.2 Standard Input, Standard Output, Standard Error 

4.3.2.1 

Three fds are reserved and have special meanings: 

0 = standard input 
1 = standard output 
2 = standard error output 

These fds are never returned as the result of an open() or creat( ), but serve as indi
rect references that can be redirected to any other open fd. 

These standard/ds are used to make tasks and modules independent of their actual 
I/O assignments. If a module sends its output to standard output (fd = 1), then its 
output can be redirected to any file or device without altering the module. 

Vx960 allows two ievels of redirection. First, there is a global assignment of the three 
standard fds. Second, individual tasks can override the global assignment of these 
fds with their own assignments that apply only to that task. 

Global Redirection 

When Vx960 is initialized, the global assignments of the standard fds are directed, 
by default, to the system console. When tasks are spawned, they have no task-spe
cific assignments, but instead use the global assignments. 

The global assignments can be redirected using ioGlobalStdSet( ). The parameters 
to this routine are the global standard fd to be redirected, and the fd it should be 
directed to. For example, the following call sets global standard output (fd = 1) to be 
the open file whose fd is fileFd: 

ioGlobalStdSet ( 1, fileFd ) ; 

All tasks in the system that do not have their own task-specific redirection write 
standard output to that file. 

The Vx960 shell operators "<" and">" allow the assignments of the global standard 
input and output to be redirected for the duration of a shell command. See 9. Shell 
for more information. 

Intel Vx960 l 05 



Vx960 5.0 - Programmer's Gulde 

4.3.2.2 

4.3.3 

Task-Specific Redirection 

The assignments for a specific task can be redirected using the routine 
ioTaskStdSet( ). The parameters to this routine are the task ID (0 = self) whose 
assignment is to be redirected, the standard f d to be redirected, and the f d to which 
it should be directed. For example, a task making the following call writes standard 
output to fileFd: 

ioTaskStdSet (0, 1, fileFd); 

All other tasks are unaffected by this redirection, and subsequent global redirections 
of standard output do not affect this task. 

Open and Close 

Before I/ 0 can be performed to a device, an fd must be opened to that device by 
invoking the open( ) routine (or creat( ), as discussed in the next section). The argu
ments to open() are the file name, the type of access, and, when necessary, the 
"mode": 

fd .. open ("name", flag, mode); 

The possible access flags are shown in the following table. 

Table 4-2. File Access Flags 

Flog Description 

O_RDONLY or READ Open for reading only. 

O_WRONLY or WRITE Open for writing only. 

O_RDWR or UPDATE Open for reading and writing. 

O_CREAT Create a new file. 

The mode parameter is used in the following special cases to specify the UNIX mode 
of a file or create subdirectories. 

i 06 Intel Vx960 

... 



4.3.4 

4. 1/0 System 

In general, only preexisting devices and files can be opened with open( ). However, 
with NFS network devices and with DOS and. RT-11 file system devices, files can also 
be created with open() by combining O_CREAT with one of the access flags. In the 
case of NFS devices, open( ) requires the third parameter specifying the UNIX mode 
of the file: 

fd •open ("name", O_CREAT I O_RDWR, 0644); 

With both DOS and NFS devices, the O_CREAT option can also be used to create a 
subdirectory by setting mode to FSTAT_DIR. Other uses of the mode parameter with 
DOS devices are ignored. 

The open() routine, if successful, returns anfd (a small integer). This fd is then used 
in subsequent I/ 0 calls to specify that file. 

The fd is a global identifier that is not task specific. One task can open a file, and then 
any other tasks can use the resultingfd. 

The fd remains valid until close() is invoked with that fd: 

close ( fd); 

At that point, I/ 0 to the file is flushed (written out) and the fd can no longer be used 
by any task. However, the same fd number can be assigned again by the II 0 system 
in any subsequent open( ). 

When a task exits or is deleted, the files opened by that task are not automatically 
closed, since fds are not task specific. Tasks should close all files when they are no 
longer needed. There is a limit to the number of files that can be open at once. 

Create and Delete 

File-oriented devices need to be able to create and delete files as well as open existing 
files. The creat( ) routine directs a file-oriented device to make a new file on the 
device and return a file descriptor forit. The arguments to creat() are similar to 
those of open( ) except that the file name specifies the name of the new file rather 
than an existing one: 

fd • creat ("name", flag); 

The creat() routine returns anfd identifying the new file. 

Intel Vx960 107 



Vx960 5.0 - Programmer's Gulde 

The delete( ) routine deletes a named file on a file-oriented device: 

delete ("name~); 

Files should not be deleted while they are open. 

With non-file-system oriented device names, creat( ) acts like open( ); however, 
delete( ) has no effect. 

4.3.5 Read and Write 

Once an fd has been obtained by invoking open() or creat( ), tasks can read bytes 
from a file with read() and write bytes to a file with write( ). The arguments to 
read() are the fd, the address of the buffer to receive the input, and the maximum 
number of bytes to read: 

nBytes • read <fd, &buffer, maxBytes ) ; 

The read( ) routine waits for input to be available from the specified file and returns 
the number of bytes read. For file-system devices, if the number of bytes read is less 
than the number requested, a subsequent read( ) should return 0, indicating end-of
file. For non-file-system devices, the number of bytes read can be less than the num
ber requested even if more bytes are available; a subsequent read() may or may not 
return 0. In this case, repeated calls to read( ) may be necessary to read a specific 
number of bytes. (See the manual entry for fio"Read() in fioLib(1)). A return value of 
ERROR (-1) indicates an unsuccessful read. 

The arguments to write() are the fd, the address of the buffer that contains the data 
to be output, and the number of bytes to be written: 

actualBytes • write ( fd, &buffer, nBytes); 

The write( ) routine ensures that all specified data is at least queued for output 
before returning to the caller, though the data may not have been written to the 
device (this is driver dependent). The write( ) routine returns the number of bytes 
written; if the number returned is not equal to the number requested, an error has 
occurred. 

108 Intel Vx960 



4.3.6 

4. 1/0 System 

1/0 Control 

The ioctl() routine is an open-ended mechanism for performing any II 0 functions 
that do not fit the other basic 1/0 calls. Examples include determining how many 
bytes are available for input, setting device-specific options, obtaining information 
about a file system, and positioning random-access files to specific byte positions. 
The arguments to the ioctl( ) routine are the fd, a code that identifies the specific con
trol function requested, and an optional function-dependent argument: 

result • ioctl (jd, fu11ctio11, arg); 

For example, the call: 

status - ioctl (jd, FIOBAUDRATE, 9600); 

uses the FIOBAUDRATE function to the set baud rate of a tty device to 9600. 

The discussions of the specific devices in the section below,· 4.6 Devices In Vx960, 
summarize the ioctl() functions available for each device. The specific ioctl() con
trol codes are defined in the header file ioLib.h. See Drivers(2), of the Vx960 Reference 
Manual for information on individual device drivers. 

4.4 Buffered 1/0: Stdio 

The Vx960 "standard 1/0 library," stdioLib(l), provides a complete, buffered I/O 
package compatible with the stdio package in UNIX. The package includes routines 
for opening buffered files, getting characters from a file and putting characters into 
a file, formatting input and output, and other utility functions. For a task to use the 
Vx960 stdio facility, it must be spawned with the stdio option bit VX_STDIO set in the 
task option word. 

The implementation of printf( ) and sscanf( ), considered part of the stdio package, 
is different in Vx960. This is discussed in the section below, 4.5 Other Formatted 1/0. 

Intel Vx960 109 



Vx960 5.0 .:.... Programmer's Gulde 

4.4.1 Using Stdio 

Although the Vx960 II 0 system is efficient, some overhead is associated with each 
low-level call to the I/ 0 system. First, the II 0 system must dispatch from the 
device-independent user call (read( ), write( ), etc.) to the driver's specific routine for 
that function. Then, most drivers invoke some mutual exclusion or queuing mecha
nism, such as semaphores, to prevent simultaneous requests by multiple users from 
interfering with each other. 

Because the Vx960 primitives are fast, this overhead is small. However, an applica
tion processing a character at a time from a file would incur that overhead for each 
character if it were to read each character with the basic I/ 0 read( ) function: 

n • read (jd, &char, l); 

To make this sort of I/0 more efficient and flexible, the stdio package implements a 
buffering scheme in which data is read and written in large chunks and buffered pri
vately. This buffering is transparent to the application; it is handled by the stdio rou
tines and macros. 

To access a file with stdio, a file is opened with /open( ) instead of open( ) (many stdio 
calls begin with" f"): 

Jp • fopen ("/usr/foo", O_RDONLY); 

The returned value, a file pointer, or fp, is a handle for the opened file and its associ
ated buffers and pointers. An fp is a pointer to the associated data structure of type 
FILE (i.e., it is declared as "FILE•"). By contrast, the low-level 1/0 routines identify 
a file with a file descriptor (fd) which is a small integer. In fact, the FILE structure 
pointed to by the fp contains the underlyingfd of the open file. 

An already open fd can be associated with a FILE buffer by calling f dopen( ): 

fp - fdopen <fd, O_RDONLY); 

After a file has been opened with /open( ), data can be read with /read( ), or a char
acter at a time with getc( ), and data can be written with fwri te( ), or a character at a 
time with putc( ). 

The routines and macros to get data into or out of a file are efficient. They access the 
buffer via direct pointers that are incremented as you read or write data. They pause 
to call the low-level read or write functions only when a read buffer is empty or a 
write buffer is full. 

110 Intel Vx960 



4. 1/0 System 

Note: The stdio buffers and pointers are private to a particular task. They are 
not interlocked with semaphores or any other mutual exclusion mech
anism, as this would defeat the point of an efficient private buffering 
scheme. Therefore, multiple tasks must not perform I/ 0 to the same 
stdio FILE pointer at the same time. 

4.4.2 Standard Input, Standard Output, Standard Error 

As discussed earlier in section 4.3 Basic 1/0, there are three special file descriptors (0, 
l, and 2) reserved for standard input, standard output, and standard error. When a 
task is spawned with the VX_STDIO option bit-set, three corresponding stdio FILE 
buffers are automatically created and associated with those file descriptors: stdin, 
stdout, and stderr. These can be used, as in UNIX, to do buffered I/ 0 to the standard 
fds. For more information, see 3.2.4.4 Task Options. 

4.5 Other Formatted I/ O 

4.5.1 Special Cases: printf( ), sprin,tf( ), and sscanf( ) 

The routines printf( ), sprint[(), and sscanf() are considered to be part of the stan
dard stdio package. However, the Vx960 implementation of these routines, while the 
same, does not use the stdio package. Instead, it uses a self-contained, formatted, but 
unbuffered interface to the l/0 system in the library fioLib(l). 

There are two principal reasons for implementing these routines in this way. With
out sacrificing their availability, (1) a task can be spawned without the VX_STDIO 
option; and (2) the entire stdiO package, which is optional, can be omitted from a 
Vx960 configuration. Applications requiring printf-style output which is buffered 
can still accomplish this by calling/print[( ) to stdout. 

While ssca11f() is implemented in fioLib and can be ased even if stdio is omitted, the 
same is not true of the routine scanf( ), which is implemented in the usual way in 
stdio. 

Intel Vx960 111 



Vx960 5.0 - Programmer's Gulde 

4.5.2 Addltlonal Routines: printErr( ) and fdprintf( ) 

There are additional routines in .fioLib that provide formatted but unbuffered out
put. The routine printErr() is analogous to printf() but outputs formatted strings to 
the standard error fd (2). The routine fdprintf( ) outputs formatted strings to a spec
ified fd. 

4.5.3 Message Logging 

Another higher-level I/ 0 facility is provided by the library logLib(l), which allows 
formatted messages to be logged without having to do II 0 in the current task's con
text, or when there is no task context. The message format and parameters are sent 
on a message queue to a logging task, which then formats and outputs the message. 
This is useful when messages must be logged from interrupt level, or when you do 
not want to delay the current task for II 0 or you use the current task's stack for mes
sage formatting (formatting can take up significant stack space). The message is dis
played on the console unless otherwise redirected by Iogfoit( ) or logFdSet( ). 

4.6 Devices in Vx960 

The Vx960 II 0 system allows considerable flexibility in the way specific device driv
ers handle the seven II 0 functions. All device drivers follow the basic conventions 
outlined above, but differ in specifics. The following sections describe the nature of 
II 0 for each of the devices supplied with Vx960. 

112 Intel Vx960 



4. 1/0 Sysiem 

4.6.1 Supplied Drivers 

The following drivers are provided with Vx960: 

Table 4-3. Vx960 Drivers 

Module Driver Description 

tyCoDrv(2) Terminal Driver (target specific) 

ptyDrv(2) Pseudo-terminal Driver 

pipeDrv(2) Pipe Driver 

netDrv(2) Network Driver 

nfsDrv(2) NFS Driver 

ramDrv(2) RAM Driver 

scsiLib(l) SCSI interface library 

- Other hardware-specific drivers 

4.6.2 Serial 1/0 Devices (Terminal and Pseudo-Terminal Devices) 

Vx960 provides terminal and pseudo-terminal device drivers (tty and pty drivers). 
The tty driver is used for actual terminals. The pty driver is used for processes which 
simulate terminals. Pseudo terminals are useful in applications such as remote login 
facilities1, 

Vx960 serial I/O devices are buffered serial byte streams. Each device has a ring 
buffer (circular buffer) for both input and output. Reading from a tty device extracts 
bytes from the input ring. Writing to a tty device adds bytes to the output ring. The 
size of each ring buffer is specified when the device is created during system initial
ization. 

1. For the remainder of this section, the term tty is used to indicate both tty and pty devices. 

Intel Vx960 1 13 



Vx960 5.0 - Programmer's Gulde 

4.6.2.1 

4.6.2.2 

Tty Options 

The tty devices have a full range of options that affect t.l-ie behavior of the device. 
These options are selected by setting bits in the device option word using the ioctl( ) 
routine with the FIOSETOPTIONS function (see 4.6.2.4 1/0 Control Functions below). 
For example: 

status ·- ioctl <fd, FIOSETOPTIOHS, OPT_TERMIHAL) 1 

Table 4-4 below is a summary of the available options. The listed names are defined 
in the header file ioLib.h. For more detailed information see the manual entry for 
ioLib(l). 

Table 4-4. Tty Options 

Library Description 

OPT_LINE Select line mode. (See the following section.) 

OPT_ECHO Echo input characters to the output of the same channel. 

OPT_CRMOD Translate input RETURN characters into NEWLINES (\n); 
translate output NEWLINES into RETURN-LINEFEEDs. 

OPT_TANDEM Respond to X-on/X-off protocol ("Q and "S). 

OPT_7_BIT Strip the most significant bit from all input bytes. 

OPT_MON_TRAP Enable the special ROM monitor trap character, "X by 
default. 

OPT_ABORT Enable the special shell abort character, "C by default. 

OPT_TERMINAL Set all of the above option bits. 

OPT_RAW Set none of the above option bits. 

Raw Mode and Line Mode 

A tty device operates in one of two modes: raw mode (unbuffered) or line nwde. Raw 
mode is the default mode. Line mode is selected by the OPT_LINE bit of the device 
option word (see the previous section). 

114 Intel Vx960 



4.6.2.3 

4. 1/0 System 

In raw mode, each input character is available to readers as soon as it is input from 
the device. Reading from a tty device in raw mode causes as many characters as pos
sible to be extracted from the input ring, up to the limit of the user's read buffer. 
Input cannot be modified except as directed by other tty option bits. 

In line mode, all input characters are saved until a NEWLINE character is input; then 
the entire line of characters, including the NEWLINE, is made available in the ring all 
at once. Reading from a tty device in line mode causes characters up to the end of 
the next line to be extracted from the input ring, up to the limit of the user's read 
buffer. Input can be modified by the special characters "H (backspace), "U (line
delete), and "D (end-of-file) discussed in the following section. 

Tty Special Characters 

The following special characters are enabled if the tty device operates in line mode, 
i.e., with the OPT_LINE bit set: 

• The backspace character, by default "H, causes successive previous characters 
to be deleted from the current line, up to the start of the line. It does this by 
echoing a backspace followed by a space, and then another backspace. 

• The line-delete character, by default "U, deletes all the characters of the current 
line. 

• The end-of-file (EOF) character, by default "D, causes the current line to become 
available in the input ring without a NEWLINE and without entering the EOF 
character itself. Thus if the EOF character is the first character typed on a line, 
reading that line returns a zero byte count, which is the usual indication of end
of-file. 

The following special characters are enabled if the tty device operates with their 
respective option bits set: 

• The flow control characters, "Q and "S, in what is known as X-on/X-off proto
col. Receipt of a "S input character suspends output to that channel. Subse
quent receipt of a "Q resumes the output. Also, when the Vx960 input buffer is 
almost full, a "S is output to signal the other side to suspend transmission. 
When the input buffer is empty enough, a "Q is output to signal the other side 
to resume transmission. X-on/X-off protocol is enabled by OPT_TANDEM. 

• The ROM monitor trap character, by default "X, faults to the ROM resident mon
itor program. Vx960 functioning is suspended, and the computer system is con-

Intel Vx960 115 



Vx960 5.0 - Programmer's Gulde 

4.6.2.4 

trolled by the monitor. Depending on the particular monitor, it may or may not 
be possible to restart Vx960 from the point of interruption. The monitor fault 
character is enabled by OPT_MON_TRAP. 

• Enables the special shell abort character, by default "C. When this character is 
received and this option is enabled, the Vx960 shell is restarted. This is useful 
for freeing a shell caught in an infinite loop or one that has taken an unavailable 
semaphore. For more information see 9. Shell. The shell abort character is 
enabled by OPT_ABORT. 

The characters for most of these functions can be changed using the tyLib(l) rou
tines shown in Table 4-5 below. 

Table 4-5. Tty Special Characters 

Character Description Modifier 

"H backspace (character delete) tyBackspaceSet( ) 

"U line delete tt;DeleteLineSet() 

"D EOF (end of file) tyEOFSet() 

"C shell abort tyAbortSet( ) 

"X ROM monitor trap tyMonitorTrapSet() 

"S output suspend NIA 

"Q output resume NIA 

1/0 Control Functions 

The tty devices respond to the ioctl() functions summarized in the following table. 
The functions listed are defined in the header ioLib.h. For more information, see the 
manual entry for tyLib(l) and the manual entry for ioctl() in ioLib(l). 

116 Intel Vx960 



4. 1/0 System 

Table 4-6. 1/0 Control Functions Supported by tyllb 

Function Meaning 

FIOGETNAME Get the file name of the f d. 

FIOSETOPTIONS Set the device option word. 

FIOGETOPTIONS Return the current device option word. 

FIONREAD Get the number of unread bytes in the input buffer. 

FIONWRITE Get the number of bytes in the output buffer. 

FIOFLUSH Discard all bytes in the input and output buffers. 

FIOCANCEL Cancel a read or write. 

FIOBAUDRATE Set the baud rate to the specified argument. 

4.6.3 Pipe Devices 

4.6.3.1 

Pipes are virtual devices by which tasks communicate with each other through the 
I/O system. Tasks write messages to pipes which can then be read by other tasks. 
Pipe devices are managed by pipeDrv and use the kernel message queue facility to 
bear the actual message traffic. 

Creating Pipes 

Pipes are created by calling the pipe create routine: 

status • pipeDevCreate ("/pipe/name", maxMsgs, maxLength); 

The new pipe is able to have at most maxMsgs messages queued at a time. Tasks that 
write to a pipe that already has the maximum number of messages queued are 
delayed until room is made available by the dequeuing of a message. Each message 
in the pipe can be at most maxLength bytes long. Attempts to write messages longer 
than the maximum result in an error. 

Intel Vx960 117 



Vx960 5.0 - Programmer's Gulde 

4.6.3.2 

4.6.3.3 

4.6.4 

Writing to Pipes from Interrupt Service Routines 

Vx960 pipes are designed to make it possible for interrupt service routines to write 
to pipes in the same way as task-level code. Many Vx960 facilities are not available 
to interrupt service routines, including I/0 to devices other than pipes. However, 
interrupt service routines can use pipes to communicate with tasks which can then 
invoke such facilities. 

Interrupt service routines write to a pipe using the normal write() call. Tasks and 
interrupt routines can write to the same pipes. However, if the pipe is full, the mes
sage written is discarded since the interrupt service routines cannot pend. Interrupt 
service routines must not invoke any II 0 function on pipes other than write( ). 

I/ O Control Functions 

Pipe devices respond to the ioctl() functions summarized in the following table. 
The functions listed are defined in the header ioLib.h. For more information, see the 
manual entry for pipeDrv(2) and the manual entry for ioctl( ) in ioLib(l). 

Table 4-7. 1/0 Control Functions Supported by plpeDrv 

Function Meaning 

FIOGETNAME Get the file name of the f d. 

FIONREAD Get the number of unread bytes in the pipe. 

FIOFLUSH Discard all messages in the pipe. 

FIONMSGS Get the number of messages remaining in the pipe. 

Network File System (NFS) Devices 

NFS devices allow files on remote hosts to be accessed via the NFS protocol. The 
driver nfsDrv acts as an NFS client to access files on any NFS server on the network. 
Using NFS devices, remote files are created, opened, and accessed as though they 
were on a file system on a local disk. This is called network transparency. 

11 8 Intel Vx960 



4.6.4.1 

4.6.4.2 

4: 110 System 

Mounting an NFS File System 

Access to a remote NFS file system is established by mounting that file system 
locally and creating an I/ 0 device for it using nfsMount( ). Its arguments are (1) the 
host name of the NFS server, (2) the name of the host file system, and (3) the local 
name for the file system. 

For example, the following call mounts /usr of the host mars as /vxusr locally: 

nfsMount ("mars", "/usr", "/vxusr"); 

This creates a Vx960 I/0 device with the specified local name (i.e., /vxusr in this 
example). If the local name is specified NULL, the local name is the same as the 
remote name. 

After a remote file system is mounted, the files are accessed as though the file system 
were local. Thus, after the example above, opening the file /vxusr/foo opens the file 
/usr/foo on the host mars. 

The remote file system must have been exported by the system on which it resides. 
Also NFS requires authentication parameters to identify the user making the remote 
access. These parameters are set using the routines nfsAutlzUttixSet() and 
nfsAutlzUnixPrompt( ). 

The issues of exporting and mounting NFS file systems, and authenticating access 
permissions, are discussed in more detail in 6.3.3.2 Transparent Remote Fiie Access via 
NFS. See also the manual entries nfsLib(l) and nfsDrv(2), and the NFS documenta
tion from Sun Microsystems. 

1/0 Control Functions 

NFS devices respond to the ioctl() functions summarized in the following table. 
The functions listed are defined in the header ioLib.h. For more information, see the 
manual entry for nfsDrv(2) and the manual entry for ioctl( ) in ioLib(l). 

Intel Vx960 119 



Vx960 5.0 - Programmer's Gulde 

Table 4-8.1/0 Control Functions Supported by nfsDrv 

Function Meaning 

FIOGETNAME Get the file name of the fd. 

FIONREAD Get the number of unread bytes in_ the file. 

FI OS EEK Set the current byte offset in the file. 

FIOWHERE Return the current byte position in the file. 

FIOREADDIR Read the next directory entry. 

FIOFSTATGET Get file status information (directory entry data). 

4.6.5 Non-NFS Network Devices 

Vx960 supports network access to files on the remote host via the UNIX remote shell, 
rsh, or the File Transfer Protocol, ftp. These implementations of network devices use 
the driver netDrv(2). When a remote file is opened using rsh or ftp, the entire file is 
copied into local memory. Subsequent read and write operations are performed on 
the in-memory copy of the file. When closed, the file is copied back to the original 
remote file if it has been modified. 

In general, NFS devices are preferable to rsh. and ftp devices for performance and 
flexibility, since NFS does not copy the entire file into local memory. However, NFS 
is more cumbersome to administer and is not supported by all host systems. 

4.6.5.1 Creating Network Devices 

To access files on a remote host using either rsh or ftp, a network device must first be 
created by calling the routine netDevCreate( ). The arguments to netDevCreate() are 
(1) the name of the device, (2) the name of the host the device accesses and (3) which 
protocol is used: 0 (rsh) or 1(/tp). 

120 Intel Vx960 



4.6.5.2 

4. 1/0 System 

For example, the following call creates an rsh device called "mars:" that accesses the 
host "mars". By convention, a network device's name is the remote machine's name 
followed by a colon (" :"). 

netDevCreate ("mars:", "mars", O); 

Files on a network device can be created, opened, and manipulated just like files on 
a local disk. Thus, opening the file mars:/usr/foo would open /usr/foo on host mars. 

Creating a network device allows access to any file or device on the remote system, 
while mounting an NFS file system allows access only to a specified file system. 

For the files of a remote host to be accessible via rsh or ftp, permissions and user iden
tification must be established on both the remote and local systems. Creating and 
configuring network devices is discussed in more detail in 6.3.3.1 Transparent Remote 
File Access via rsh and ftp. See also the manual entry netDrv(2). 

1/0 Control Functions 

Rsh and ftp devices respond to the same ioctl() requests as NFS devices. The func
tions are defined in the header ioLib.h. For more information, see the manual entry 
for netDrv(2) and the manual entry for ioctl() in ioLib(l). 

4.6.6 Block Devices (Disk and RAM Disk Devices) 

A block device is a device that is organized as a sequence of individually accessible 
blocks of data. The most common type of block device is a disk. 

When discussing a block device in Vx960, the term block refers to the smallest 
addressable unit on the device. For most disk devices, a Vx960 block corresponds to 
a sector, although terminology varies. 

Block devices in Vx960 have a different interface than other I/ 0 devices. Rather than 
interacting with the I/ 0 system, block device drivers instead interact with a file sys
tem. The file system, in turn, interacts with the I/ 0 system. This arrangement allows 
a single block device driver to be used with various different file systems and 
reduces the number of I/ 0 functions that must be supported in the driver. The inter
nal implementation of block device drivers is discussed in section 4.9.4 Block 
Devices. 

Intel Vx960 121 



Vx960 5.0 -- Programmer's Gulde 

4.6.6.1 File Systems 

4.6.6.2 

For use with block devices, Vx960 is supplied with file system libraries compatible 
with the MS-DOS and RT-11 file systems. Also supplied is a library for a simple 
"raw" disk file system, which treats an entire disk much like a single large file. Use 
of these file systems is discussed in 5. Local File Systems. Also see the manuals entries 
for dosFsLib(l), rtllFsLib(l), and rawFsLib(l). 

SCSI Devices 

SCSI is a standard peripheral interface that allows connection with a wide variety of 
Winchester disks, optical disks, floppy disks, and tape drives. SCSI block devices are 
compatible with the DOS and RT-11 file system libraries, and offer several advan
tages for target configurations. They provide: 

• local mass storage in non-networked environments 

• faster and more deterministic I/ 0 throughput than Ethernet networks. 

The Vx960 SCSI implementation consists of two modules. The routines that support 
the device-independent SCSI interface are found in scsiLib. Libraries of configura
tion routines exist that support specific SCSI controllers (e.g., wd33c93Lib for the 
Western Digital WD33C93 device or mb87030Lib for the Fujitsu MB87030 device). 
Additional support routines exist for individual targets in sysLib.c. 

• Configuring SCSI Devices 

The SCSI interface is included in the Vx960 system image by adding the line: 

ldefine INCLUDE_SCSI 

to the file config.h. After Vx960 is built, the include file initializes the.SCSI interface 
by executing sysScsilnit() and usrScsiConfig( ). 

The routine sysScsilnit( ) initializes the SCSI controller and sets up interrupt han
dling. The physical device configuration is specified in the routine usrScsiConfig( ) 
which is found in usrConfig.c. The routine contains an example of the calling 
sequence to declare a hypothetical configuration, including the definition of physi
cal devices with scsiPlzysDevCreate( ), the creation of logical partitions with 
scsiBlkDevCreate( ), and the specification of a file system with either 
dosFsDevlnit() or rt11FsDevlnit( ). 

122 Intel Vx960 



4.6.6.3 

4. 110 System 

Modify the routine usrScsiConfig( ) to reflect your actual configuration. For more 
information on the routines used in usrScsiConfig( ), see the manual entries for 
scsiPltysDevCreate( ), scsiBlkDevCreate( ), dosFsDevlnit( ), rt11FsDevlnit( ), 
dosFsMkfs( ), and rt11FsMkfs( ). 

If problems with your configuration occur, insert the following lines at the beginning of 
usrScsiC011fig( ): 

scsiDebug • TRUE; 

scsiintsDebug • TRUE; 

to obtain further information on SCSI bus activity. Do not declare the global vari
ables scsiDebug and scsilntsDebug locally. You can set or reset them from the Vx960 
shell. 

RAM Disk Devices 

RAM devices, as implemented in ramDrv, emulate disk devices but keep all data in 
memory. Memory location and "disk" size are specified when a RAM device is cre
ated by calling ramDevCreate( ). You can call this routine repeatedly to create mul
tiple RAM disks. 

Memory for the RAM disk can be preallocated and the address passed to 
ramDevCreate( ), or memory can be allocated from the system memory pool using 
malloc( ). 

Once the device has been created, a name and file system (DOS, RT-11, or raw disk) 
must be associated with it using the file system's device initialization routine or 
make-file-system routine, e.g., dosFsDevluit( ) or dosFsMkfs( ). Information 
describing the device is passed to the file system via a BLK_DEV structure. The RAM 
disk creation routine returns a pointer to this structure. 

In the following example, a 200-Kbyte RAM disk is created with allocated memory, 
512-byte sections, a single track, and no sector offset. The device is then initialized 
for use with DOS and assigned the name "DEVl:". 

BLK DEV *pBlkDev; 
DOS_VOL_DESC *pVolDesc; 

pBlkDev • ramDevCreate (0, 512, 400, 400, O); 
pVolDesc • dosFsMkfs ("DEVl:", pBlkDev); 

Intel Vx960 123 



Vx960 5.0 - Programmer's Gulde 

The dosFsMkfs( ) routine calls dosFsDevlnit( ) with default parameters and initial
izes the file system on the disk by calling ioctl( ) with the FIODISKINIT function. 

If the RAM disk memory already contains a disk image, the first argument to 
ramDevCreate( ) is the address in memory, and the formatting arguments must be 
identical to those used when the image was created. For example: 

pBlkDev • ramDevCreate (OxcOOOO, 512, 400, 400, O); 
pVolDesc • dosFsDevinit ("DEVl:", pBlkDev, NULL); 

In this case, dosFsDevbiit( ) must be used instead, since the file system already exists 
on the disk and should not be re-initialized. This procedure is useful if a RAM disk 
is to be created at the same address used in a previous boot of Vx960. The contents 
of the RAM disk is then preserved. 

Follow these same procedures to create a RAM disk with RT-11 using rtllFsMkfs() 
and rt11FsDevlnit( ). 

For more information on RAM disk devices, see the manual entry for ramDrv(2). 
For more information on file systems, see 5. local File Systems. 

4.6.7 Sockets 

In Vx960, the underlying basis of network communications is sockets. A socket is an 
endpoint for communication between.tasks; data is sent from one socket to another. 

Sockets are not created or opened using the standard II 0 functions. Instead they are 
created by calling socket( ), and connected and accessed using other routines in 
socklib(l). However, once you create and connect a stream socket (using TCP), you 
can access it as a standard I/ 0 device, using read( ), write( ), ioctl( ), and close( ). 
The value returned by socket() as the socket handle is an 1/0 systemfd. 

These routines are source compatible with the socket functions of BSD 4.3 UNIX. 
Use of these routines is discussed in 6.2.5 Sockets. 

124 Intel Vx960 



4. 1/0 System 

4.7 Initializing the 1/0 System 

Before using the I/ 0 system, you must initialize it by calling ioslnit( ). Call ioslnit( ) 
in the root task in usrCon.fig. You cannot call I/ 0 functions until you have initialized 
the 1/0 system. 

The arguments to ioslnit( ) are the maximum number of drivers and the maximum 
number of open files that are allowed in the system. The 1/0 system allocates space 
for the driver table and the fd table large enough to accommodate the specified max
imums. 

4.8 Differences Between Vx960 and UNIX 1/0 

Most uses of 1/0 in Vx960 are source-compatible with I/0 in UNIX. However, note 
the following differences: 

Device Configuration 

Fiie Descriptors 

1/0 Control 

In Vx960 device drivers can be installed and removed dynami
cally. 

In UNIX, fds are unique to each process. In Vx960, fds are global 
entities, accessible by any tas~ except for standard input, stan
dard output, and standard error (0, 1, and 2), which can be task
specific. 

The specific parameters passed to ioctl( ) functions may be dif
ferent in UNIX and Vx960. 

Intel Vx960 125 



Vx960 5.0 - Programmer's Gulde 

4. 9 Internal Structure 

The Vx960 II 0 system is different from most in the way the work of performing user 
II 0 requests is partitioned between the device-independent I/ 0 system and the 
individual device drivers. 

In many systems, the device driver supplies a few functions to perform low-level 
II 0 functions such as inputting or outputting a sequence of bytes to character-ori-

. ented devices. The higher-level protocols, such as communications protocols on 
character-oriented devices, are implemented in the device-independent part of the 
IIO system. The user requests are processed by the I/0 system before the driver 
functions get control. 

While this approach is designed to make it easy to implement drivers and to ensure 
that devices behave as much alike as possible, it has several drawbacks. The driver 
writer is often hampered in implementing alternative protocols that are not pro
vided by the existing I/ 0 system. In a real-time system, you may want to bypass the 
standard protocols altogether in certain devices vvhere throughput is critical or 
where the device does not fit the standard model. 

In the Vx960 I/ 0 system, on the other hand, minimal processing is done on user II 0 
requests before control is given to the device driver. Instead, the Vx960 II 0 system 
acts as a switch to route user requests to appropriate driver-supplied routines. Each 
driver can then process the raw user requests as appropriate to its devices. In addi
tion, however, several high-level, subroutine libraries are available to driver writers 
that implement standard protocols for both character- and block-oriented devices. 
Thus the Vx960 I/ 0 system gives you the best of both worlds: while it is easy to 
write a standard driver for most devices with just a few pages of device-specific 
code, driver writers are free to execute the user requests in nonstandard ways where 
appropriate. Block devices, because they must interact with Vx960 file systems, use 
a different organization, described in 4.9.4 Block Devices. 

As discussed earlier, the three main elements of the Vx960 II 0 system are drivers, 
devices, and files. The following sections describe these elements in detail. 

Figure 4-1 shows the abbreviated code for a hypothetical driver which is used as an 
example throughout the following discussions. It is typical of drivers for character
oriented devices. 

126 Intel Vx960 



4. 1/0 System 

/************************************************************************* 
* xxDrv - driver initialization routine 
* * Thia routine is called to initialize the driver. It inatalla the driver 
* by calling iosDrvinstall. It may allocate data structures, connect 
* interrupt routinea to their interrupta, and initialize device hardware. 
•/ 
STATUS xxDrv () 

{' 
xxDrvNum • iosDrvinstall (xxCreat, O, xxOpen, O, xxRead, xxwrite, xxioctl)J 
(void) intConnact (intvac, xxinterrupt, ••• )J 

} , ........................................................................ . 
• xxDavCraate - device creation routine 
* * This routine is called to add a device to the system that will be 
* serviced by this driver, by the specified name. Other driver-dependent 
* arguments may be required such as buffer sizes, device addresses, etc. 
* The routine adds the device to the I/O system by calling iosDevAdd. 
• It may also allocate and initialize data structures for the device, 
* initialize semaphores, initialize device hardware, etc. 
•/ 
STATUS xxDevcreate (name, ••• ) 

char •name1 

{ 
atatua • iosOevAdd (xxDav, name, xxDrvNWll)J 

} 
/************************************************************************* 
* The following routines implement the basic I/O functions. Note that the 
* return value type is driver dependent. 
•/ 
XXDEV •xxOpen (xxDev, remainder, mode) 

XXDEV •xxDev1 
char •remainder1 
int moda1 
{ 
/* serial devices should have no file name part •/ 

if (remainder[O] I• 0) 
return (ERROR)J 

else 
return (xxDev)1 

} 
int xxRead {xxDev, buffer, nBytes) 

XXDEV *XxDev; 
char •buffer; 
int nBytes; 

int xxwrite (xxDev, buffer, nBytes) 

int xxioctl (xxDev, requastCode, arg) ... 
/************************************************************************* 
* xxinterrupt - interrupt service routine 
* * Most drivers have routines that handle interrupts from the devices 
* serviced by the driver. These routines are connected to the interrupts 
•by calling intConnect {usually in xxDrv above). Thay can receive a 
* single argument, specified in the call to intConnact (sea intLib). 
*/ 
VOID xxintarrupt (arg) 

Figure 4-1. Example -Abbreviated Driver Code 

Intel Vx960 127 



Vx960 5.0 - Programmer's Gulde 

In Vx960, each driver has a short, unique abbreviation such as "net" or "tyCo", that 
is prefixed to each of its routines. The abbreviation for the example driver is "xx". 

4. 9. l Drivers 

A driver for a non-block device implements the seven basic I/0 functions, creat( ), 
delete( }, open( ), close( ), read( ), write( ), and ioctl( ), for a particular kind of device. 
In general, this type of driver has routines that implement each of these functions, 
although some of the routines can be omitted if the function is non-operative with 
that device. 

A driver for a block device interfaces with a file system, rather than with the II 0 sys
tem. The file system in tum implements most 1/0 functions. The driver need supply 
routines to read and write blocks, reset the device, perform 1/0 control, and check 
device status. Device drivers for block devices have a number of special require
ments which are discussed in a separate section, 4.9.4 Block Devices. 

When you invoke one of the basic 1/0 functions, the 1/0 system routes the request 
to the appropriate routine of a specific driver, through a path that is discussed in 
subsequent sections. The driver's routine runs in the calling task's context, just as 
though it had been called from the user program. Thus, the driver is free to use any 
facilities available to tasks, including I/ 0 to other devices. This means that most 
drivers have to use some mechanism to provide mutual-exclusion to critical regions 
of code. The usual mechanism is the semaphore facility provided in semLib{l). 

In addition to the routines that implement the seven basic I/ 0 functions, drivers 
also have three other routines: 

• an initialization routine that installs the driver in the 1/0 system, connects to 
any interrupts used by the devices serviced by the driver, and performs any 
necessary hardware initialization (named xxDrv( )) 

• a routine to add devices to the I/0 system that are to be serviced by the driver 
(named xxDevCreate( )) 

• interrupt-level routines that are connected to the interrupts of the devices ser
viced by the driver. 

128 Intel Vx960 



4.9.1.1 

4. 9.1.2 

4.9.2 

4. 1/0 System 

The Driver Table and lnstalllng Drivers 

The function of the I/0 system is to route user I/0 requests to the appropriate rou
tine of the appropriate driver. This is done by means of a table maintained by the I/ 0 
system that contains the address of each routine for each driver. Drivers are installed 
by calling the I/ 0 system internal function iosDrvlnstall( ). The arguments to this 
routine are the addresses of the seven I/ 0 routines for the new driver. The 
iosDrvlnstall( ) routine enters these addresses in a free slot in the driver table and 
returns the index of this slot. This index is known as the driver number and is used to 
associate particular devices with the driver. 

Null (0) addresses can be specified for some of the seven routines. This indicates that 
the driver need not process those functions. For non-file system drivers, close() and 
delete() are often non-operative as far as the driver is concerned. 

Vx960 file systems (dosFsLib, rtllFsLib, and rawFsLib) contain their own entries in 
the driver table, which are created when the file system library is initialized. 

Example of Installing a Driver 

Figure 4-2 shows the actions taken when our example driver calls its initialization 
routine xxDrv( ). 

0 The driver calls iosDrvlnstall( ), specifying the addresses of the driver's rou
tines for the seven basic I/ 0 functions. 

The I/ 0 system: 

€) Locates the next available slot in the driver table, in this case slot 2. 

© Enters the addresses of the driver routines in the driver table. 

0 Returns the slot number as the driver number of the installed driver. 

Devices 

A driver can be capable of servicing many instances of a particular kind of device. 
For example, a single driver for a serial communications device can often handle 
many individual channels that differ in a few parameters, such as device address. 

Intel Vx960 129 



Vx960 5.0 - Programmer's Gulde 

DRIVER CALL: 

drvnum • iosDrvinstall (xxCreat, O, xxOpen, O, xxRead, xxWrite, xxioctl); 

\ 
0 II 0 system returns 

driver number 
(drvnum = 2). 

DRIVER TABLE: 

0 Driver's install routine specifies driver 
routines for seven II 0 functions. \ 

© 1/0 system locates next 
available slot in driver table. 

create delete open close reod write Ioctl 

2 l&cieot ': 
3 
1--~--1~~-+~~-+~~-+-~~-+-~~-+-~--t 

4 

€) IIO system enters driver 
routines in driver table. 

Figure 4-2. Example - Driver Initialization for Non-Block Devices 

130 Intel Vx960 



4.9.2.1 

4.9.2.2 

4.9.3 

4. 1/0 System 

In the Vx960 II 0 system, devices are defined by a data structure called a device header 
(DEV _HDR). This data structure contains the device name string and the driver num
ber for the driver that services this device. The device headers for all the devices in 
the system are kept in a memory-resident linked list called the device list. The device 
header is the initial part of a larger structure determined by the individual drivers. 
This larger stru~ture, called a device descriptor, contains additional device-specific 
data such as device addresses, buffers, semaphores, etc. 

The Device List and Adding Devices 

Non-block devices are added to the I/0 system by calling the internal I/0 function 
iosDevAdd( ). The arguments to iosDevAdd( ) are the address of the device descrip
tor for the new device, the device's name, and the driver number of the driver that 
services the device. The device descriptor specified by the driver can contain any 
necessary device-dependent information, as long as it begins with a device header. 
The driver does not need to fill in the device header, only the device-dependent 
information. The iosDevAdd() routine enters the specified device name and the 
driver number in the device header and adds it to the system device list. 

Block devices are added to the I/ 0 system by calling the device initialization routine 
for the file system that is needed with the device (i.e., dosFsDevlnit( ), 
rt11FsDevlnit( ), and rawFsDevlnit( )). The file system routine then calls 
iosDevAdd( ). 

Example of Adding Devices 

In Figure 4-3, the device creation routine xxDevCreate( ) of our example driver adds 
devices to the II 0 system by calling iosDevAdd( ). 

File Descriptors 

Severalfds can be open to a single device at one time. A device driver can maintain 
additional information associated with anfd beyond the I/0 system's device infor
mation. In particular, devices on which multiple files can be open at once have file
specific information (e.g., file offset) associated with each fd. You can also have sev
eral fds open to a non-block device, such as a tty. No additional information exists, 
and thus writing on any of the fds has identical results. 

Intel Vx960 131 



Vx960 5.0 - Programmer's Gulde 

DRIVER CALLS: 

DEVICE LIST: 

DRIVER TABLE: 

status• iosDevAdd (devO, "/xxo", drvnum)1 
status• iosDevAdd (devl, "/xxl", drvnum)1 

1/0 system adds device descriptors 
to device list. Each descriptor contains 
device name and driver number (in this 

case 2) and any device-specific data. 

( 

create delete open close read write Ioctl 

Figure 4-3. Example,.... Addition of Devices to VO System 

132 Intel Vx960 



4.9.3.1 

4.9.3.2 

4. 1/0 System 

The Fd Table 

Files are opened with the I/O routine open() (or creat( )). The I/0 system searches 
the device list for a device name that matches the file name (or an initial substring) 
specified by the caller. If such a match is found, the I/ 0 system then uses the driver 
number contained in the corresponding device header to locate and call the driver's 
open routine via the driver table. 

The I/ 0 system needs to establish an association between the file descriptor that is 
used by the caller in subsequent I/ 0 calls, and the driver that services it. Addition
ally, the driver needs to associate some data structure per descriptor. In the case of 
non-block devices, this is just the device descriptor that was located by the I/ 0 sys
tem. 

The I/ 0 system maintains these associations in a table called the fd table. This table 
contains the driver number and an additional driver determined 4-byte value. The 
driver value is the internal descriptor returned by the driver's open routine, and can 
be any nonnegative value the driver requires to identify the file. In subsequent calls 
to the driver's other 1/0 functions (read(), wn"te( ), ioctl(), and close()), this value 
is supplied to the driver in place of the fd in the user's I/ 0 call. 

Example of Opening a File 

In Figure 4-4 and Figure 4-5, a user calls open( ) to open the file "/ xxO". The I/ 0 
system takes the following series of actions: 

0 It searches the device list for a device name that matches the specified file name, 
or an initial substring of the file name. In this case, a complete device name 
match is found. 

© It reserves a slot in the fd table, which is used if the open is successful. 

© It then looks up the address of the driver's open routine, xxOpen( ), and calls 
that routine. The arguments to xxOpen( ) are transformed by the I/ 0 system 
from the user's original arguments to open(). The first argument to xxOpen() 
is a pointer to the device descriptor the I/ 0 system located in the full file name 
search. The next parameter is the remainder of .the file name specified by the user, 
after removing the initial substring that matched the device name. In this case, 
since the device name matched the entire file name, the remainder passed to the 
driver is a null string. The driver is free to interpret this remainder in any way 
it wants. In the case of block devices, this remainder is the name of a file on the 

Intel Vx960 133 



Vx960 5.0 - Programmer's Gulde 

USER CALL: DRIVER CALL: 

fd •open ("/xxO", READ); xxdev • xxOpen (xxdev, "", READ); 

FD TABLE: 

0 J/0 system finds 
name in device list. 

DEVICE LIST: 

DRIVER TABLE: 

f!) I/ 0 system reserves 
a slot in the fd table. 

€> 1/0 system calls 
driver's "open" routine 

with pointer to 
device descriptor. 

create delete open close read write Ioctl 

Figure 4-4. Example - Call to I/0 Routine open() (Part 1) 

134 Intel Vx960 



USER CALL: 

fd •open ("/xxO", READ); 

\ 
0 II 0 system returns 

index in fd table of 
new open file (fd = 3). 

4. 1/0 System 

DRIVER CALL: 

xxdev • xxOpen (xxdev, , READ); 

\~ 
© 1/0 system enters 
driver number and 
identifying value in 

reserved fd table slot. 

0 Driver returns any 
identifying value, in 

this case the pointer to 
the device descriptor. 

FD TABLE: 
drvnum value 

DEVICE LIST: 

DRIVER TABLE: 

"/dkO/" 
l 

"/xxl '' 
2 

Figure 4-5. Example - Call to VO Routine open() (Part 2) 

Intel Vx960 1 35 



Vx960 5.0 - Programmer's Gulde 

4.9.3.3 

4.9.3.4 

device. In the case of non-block devices like this one, it is an error for the 
remainder to be anything but the null string. 

0 It executes xxOpen( ), which returns a vaiue by which the opened fiie is identi
fied. In this case, the value is the pointer to the device descriptor. This value is 
supplied to the driver in subsequent I/ 0 calls that refer to the file being opened. 
If the driver returns just the device descriptor, the driver is not able to distin
guish multiple files opened to the same device. In the case of non-block device 
drivers, this is appropriate. 

© The I/O system then enters the driver number and the value returned by 
xxOpen( ) in the reserved slot in the fd table. Again, the value entered in the fd 
table is meaningful to the driver and is arbitrary as far as the I/ 0 system is con
cerned. 

0 Finally, the I/ 0 system returns the index of the slot in the fd table, in this case 3. 

Example of Reading Data from the File 

In Figure 4-6, the user calls read( ) to obtain input data from the file. The specified fd 
is the index into the fd table for this file. The I/ 0 system uses the driver number con
tained in thefd table to locate the driver's read routine, xxRead( ). The I/0 system 
calls xxRead( ), passing it the identifying value in the fd table that was returned by 
the ddver' s open routine, xxOpen( ). Again, in this case the value is just the pointer 
to the device descriptor. The driver's.read routine then does whatever is necessary 
to read data from the device. 

The process for user calls to write( ) and ioctl( ) follow the same procedure. 

Example of Closing a File 

You terminate the use of a file by calling close(). As in the case of read( ), the II 0 
system uses the driver number contained in thefd table to locate the driver's close 
routine. In the example driver, no close routine has been specified; therefore, no 
driver routines are called. Instead, the 1/0 system marks the slot in the fd table as 
being available. Any subsequent references to thatfd causes an error. However, sub
sequent calls to open( ) can reuse that slot. 

136 Intel Vx960 



4. 110 System 

USER CALL: DRIVER CALL: 

n • read (fd, buf, len); n • xxRead (xxdev, buf, len); 

FD TABLE: 

DEVICE LIST: 

DRIVER TABLE: 

I/ 0 system transforms 
user's 1/0 routine calls into 

driver routine calls, replacing 
the fd with value returned by 

driver's N open" routine, xxOpen( ). 

drvnum value 

0 
l---+---4· 

1 
1---+---4 

2 
3l==~=,,,,,,,,"'1 

4 

create delete open close read write Ioctl 

4 

Figure 4-6. Example - Call to 1/0 Routine read( ) 

Intel Vx960 137 



Vx960 5.0 - Programmer's Gulde 

4.9.4 

4.9.4.1 

Block Devices 

General Implementation 

In Vx960, block devices have a different interface than other 1/0 devices. Rather 
than interacting with the 1/0 system, block device drivers interact with a file sys
tem. The file system, in tum, interacts with the I/ 0 system. Figure 4-7 shows a lay
ered model of 1/0 for both block and non-block devices. This arrangement allows 
the same block device driver to be used with different file systems and reduces the 

· number of 1/0 functions that must be supported in the driver. 

A device driver for a block device must provide a means for creating a logical block 
device structure, known as a BLK_DEV. The BLK_DEV structure describes the device 
in a generic fashion, specifying those common characteristics that must be known to 
a file system being used with the device. Fields within the structure specify various 
physical configuration variables for the device (e.g., block size, total number of 
blocks, etc.) as well as routines within the device driver which are to be used for 
manipulating the device (reading blocks, writing blocks, doing II 0 control func
tions, resetting the device, and checking device status). The BLK_DEV structure also 
contains fields used by the driver to indicate certain conditions (e.g., a disk change) 
to the file system. 

When the driver creates the block device, the device has no name or file system asso
ciated with it. These are assigned during the device initialization routine for the cho
sen file system (e.g., dosFsDevlnit() or rt11FsDevlnit( )). 

The device driver for a block device is not installed in the II 0 system driver table, 
as are non-block device drivers. Instead, each file system in the Vx960 system is 
installed in the table as a "driver." Each file system has one entry in the table, even 
though several different device drivers can have devices served by that file system. 

After a device is initialized for use with a particular file system, all II 0 operations 
for the device are routed through that file system. To perform specific device oper
ations, the file system in turn calls the routines whose addresses were placed in the 
BLK_DEV structure. 

The driver for a block device must provide the interface between the Vx960 and the 
device. Vx960 requires a specific set of functions; individual devices vary in terms of 
what additional functions must be provided. The user manual for the particular 
device used, as well as any other drivers for the device, is invaluable in creating the 

138 Intel Vx960 



Application I 
1/0 System 

driver table 

NON-BLOCK DEVICES 

4. 1/0 System 

Application 

1/0 System 

driver table 

File System 
(DOS, RT-11, or raw disk) 

driver driver 

BLOCK DEVICES 

Figure 4-7. Implementation of Vx960 Device Drivers 

Intel Yx960 139 



Vx960 5.0 - Programmer's Gulde 

4.9.4.2 

4.9.4.3 

Vx960 driver. The following sections describe the components necessary to build 
block device drivers that adhere to the standard interface for Vx960 file systems. 

Driver Initialization Routine 

The driver requires a general initialization routine. This routine should perform all 
operations which are done once only, as opposed to functions which must be per
formed for each device served by the driver. As a general guideline, the functions in 
the initialization routine affects the whole device controller, while later functions 
affect specific devices. 

Common operations in block device driver initialization routines include: 

• hardware initialization 
• allocation and initialization of data structures 
• semaphore creation 
• interrupt vector initialization 
• enabling interrupts. 

The functions performed in the initialization routine are specific to the device (con
troller) being used; Vx960 has no requirements for a driver initialization routine. 

Unlike non-block device drivers, the driver initialization routine does not call 
iosDrolnstall( ) to install the driver in the I/ 0 system driver table. Instead, the file 
system used installs itself as a "driver". This file system routes calls to the actual 
driver via the routine addresses placed in the block device structure, BLK_DEV (see 
below). 

Device Creation Routine 

The driver must provide a routine that creates (defines) a logical disk device. This 
logical device can in fact be a portion of a larger physical device. If this is the case, it 
is the responsibility of the device driver to keep track of any block offset values or 
other means of identifying the physical area corresponding to the logical device. 
Vx960 file systems always use block numbers beginning with zero for the start of a 
device. 

The device creation routine allocates a device descriptor structure which the driver 
uses to manage the device. The first item in this device descriptor must be a Vx960 
block device structure (BLK_DEV). The BLK_DEV must appear first because its 

140 Intel Vx960 



4. 1/0 System 

address is passed by the file system during calls to the driver; by having the 
BLK_DEV be the first item, this address serves to identify the device descriptor. 

The device creation routine must initialize the fields within the BLK_DEV structure. 
The BLK_DEV fields and their initialization values are shown in the following table: 

Field 

bd blkRd 

bd_blkWrt 

bd_ioctl 

bd_reset 

bd_statusChk 

bd removable 

bd_nBlocks 

bd_bytesPerBlk 

Table 4-9. Fields In the BLK_DEV Structure 

Value 

address of driver routine that reads blocks from the device. 

address of driver routine that writes blocks to the device. 

address of driver routine that performs device 1/0 control. 

address of driver routine that resets the device {NULL if none). 

address of driver routine that checks disk status {NULL if none). 

TRUE if device is removable (e.g., floppy disk); otherwise 
FALSE. 

total number of blocks on device. 

number of bytes per block on device. 

bd_blksPerTrack number of blocks per track on device. 

bd_nHeads number of heads (surfaces). 

bd_reh:y number of times failed reads or writes should be retried. 

bd mode device mode (write protect status); set to UPDATE. 

bd_readyChanged TRUE if device ready status has changed; should be 
initialized to TRUE to cause disk to be mounted. 

The device creation routine should return the address of the BLK_DEV structure. This 
address is passed during the file system device initialization call to identify the 
device. 

Intel Vx960 141 



Vx960 5.0 - Programmer's Gulde 

4.9.4.4 

Unlike non-block device drivers, the device creation routine for a block device does 
not call iosDevAdd( ) to install the device in the II 0 system device table. This is done 
by the file system's device initialization routine. 

Read-Blocks Routine 

The driver must supply a routine that reads one or more blocks from the device. This 
routine must be defined as follows: 

STATUS xxBlkRd (pDev, startBlk, numBlks, pBuf) 
DEVICE *pDev; /* pointer to device descriptor •/ 
int startBlk; /* starting block to read */ 
int numBlks; /* number of blocks to read */ 
char *pBuf; /* pointer to buffer to receive data*/ 

Note: In this and following examples, the routine names begin with "xx". 
These names are for illustration, and do not have to be used by your 
device driver. Vx960 references the routines by address only - the 
name can be anything. 

The pDev parameter is a pointer to the driver's device descriptor structure, repre
sented here by the symbolic name DEVICE. (The file system passes the BLK_DEV 
structure address; these are equivalent since the BLK_DEV is the first item in the 
device descriptor.) This identifies the device. 

The startBlk parameter is the starting block number to be read from the device. The 
file system always uses block numbers beginning with zero for the start of the 
device. Any offset value used for this logical device must be added in by the driver. 

The numBlks parameter specifies the number of blocks to be read. If the underlying 
device hardware does not support multiple-block reads, the driver routine must do 
the necessary looping to emulate this ability. 

The pBuf parameter is the address where data read from the disk is to be copied. 

The read-blocks routine should return OK if the transfer was completed, or ERROR 
if a problem occurred. 

142 Intel Vx960 



4.9.4.5 

4.9.4.6 

4. 1/0 System 

Write-Blocks Routine 

The driver must supply a routine that writes one or more blocks to the device. The 
definition of this routine paraiieis that of the read-blocks routine: 

STATUS xxBlkWrt (pDev, startBlk, numBlks, pBuf) 
DEVICE *pDev; /* pointer to device descriptor */ 
int startBlk; /* starting block for write */ 
int numBlks; /* number of blocks to write */ 
char *pBuf; /* pointer to buffer of data to write */ 

The pDev parameter is a pointer to the driver's device descriptor structure. 

The startBlk parameter is the starting block number to be written to the device. 

The numBlks parameter specifies the number of blocks to be written. If the under
lying device hardware does not support multiple-block writes, the driver routine 
must do the necessary looping to emulate this ability. 

The pBuf parameter is the address of the data to be written to the disk. 

The write-blocks routine should return OK if the transfer was completed, or ERROR 
if a problem occurred. 

1/0 Control Routine 

The driver must provide a routine that can handle II 0 control requests. In Vx960, 
most II 0 operations beyond basic file handling are implemented through ioctl( ) 
functions. The majority of these are handled by the file system. However, if the file 
system does not recognize a request, it is passed to the driver's I/0 control routine. 

The driver's IIO control routine should be defined as follows: 

STATUS xxioctl (pDev, funcCode, arg) 
DEVICE *pDev; /* pointer to device descriptor */ 
int funcCode; /* ioctl function code */ 
int arg; /* function-specific argument */ 

The pDev parameter is a pointer to the driver's device descriptor structure. 

The funcCode parameter is the ioctl( ) function that was requested. Standard Vx960 
1/0 control functions are defined in the include file ioLib.h. Other user-defined 
function code values can be used as required by your device driver. I/0 control 

Intel Vx960 143 



Vx960 5.0 - Programmer's Gulde 

4.9.4.7 

functions supported by the DOS, RT-11, and raw file systems are summarized in 
5. Local Fiie Systems. 

The arg parameter is an argument specific to the particular ioctl( ) function 
requested. Not all ioctl() functions use this parameter. 

The driver's I/ 0 control routine takes the form of a multi-way switch statement, 
based on the function code. The driver's 1/0 control routine must supply a default 
case for function code requests it does not recognize. If such a request occurs, the 
1/0 control routine should set errno to S_iolib_UNKNOWN_REQUEST and return 
ERROR. 

The driver's I/0 control routine should return OK if the request was handled, oth
erwise ERROR. 

Device Reset Routine 

The driver should supply a routine that resets a specific device. This routine is called 
when a disk is first mounted by a Vx960 file system, and again during retry opera
tions when a read or write fails. 

The driver's device-reset routine is declared as follows: 

STATUS xxReset (pDev) 
DEVICE *pDev; 

The pDev parameter is a pointer to the driver's device descriptor structure. 

When called, this routine resets the device and controller. Other devices should not 
be reset, if it can be avoided. The routine ~hould return OK if the device was reset, 
otherwise ERROR. 

If no reset function is required for the device, this routine can be omitted. In this case, 
the bd_reset field in the BLK_DEV structure should be set to NULL by the device cre
ation routine. 

144 Intel Vx960 



4.9.4.8 

4.9.4.9 

4. 1/0 System 

Status-Check Routine 

The driver can provide a routine to check device status or perform other necessary 
functions that should precede open and create operations on the device. If present, 
this routine is called by the file system at the beginning of each open( ) or creat( ) on 
the device. 

The status-check routine should be defined as follows: 

STATUS xxStatusChk (pDev) 
DEVICE *pDev; /* pointer to device descriptor */ 

The pDev parameter is a pointer to the driver's device descriptor structure. 

The routine should return OK if the open or create operation can continue. If it 
detects a problem with the device, the routine should set errno to some value indi
cating the problem, and return ERROR. If ERROR is returned, the file system does not 
continue operation. 

A primary use of the status-check routine is to check for a disk change on devices 
that do not detect the change until after a new disk has been inserted. For such 
devices, the routine should determine whether a new disk has been inserted. If a 
new disk is present, the routine sets the bd_readyChanged field in the BLK_DEV 
structure to TRUE and then returns OK so that the open or create operation can con
tinue. The new disk is mounted by the file system. (See 4.9.4.1 O Change In Ready Sta
tus.) 

If no status-check routine is required by the device driver, the bd_statusChk field in 
the BLK_DEV structure is set to NULL by the device creation routine. 

Write-Protected Media 

The device driver can detect that the disk in place has been write-protected. If this is 
the case, the driver sets the bd_mode field in the BLK_DEV structure to READ. This 
can be done at any time (i.e., even after the device has been initialized for use with 
the file system). The file system checks this value and does not allow writes to the 
device until the bd_mode field is changed (to UPDATE) or the file system's mode 
change routine (e.g., dosFsModeChange( )) has been called to change the mode. {The 
bd_mode field is changed if the file system's mode change routine is used.) 

Intel Vx960 145 



Vx960 5.0 ..,... Programmer's Gulde 

4.9.4.10 Change In Ready Status 

ThE: driver should inform the file system whenever a change in the device's ready 
status is recognized. This change couid be the changing of a floppy disk, or any other 
situation that would make it advisable for the file system to remount the disk. 

To announce a change in ready status, the driver should set the bd_readyChanged 
field in the BLK_DEV structure to TRUE. This is recognized by the file system and the 
disk is remounted during the next I I 0 initiated on the disk. The file system sets the 
bd_readyChanged field to FALSE. The bd_readyChanged field should never be 
cleared by the device driver. 

Setting bd_readyChanged to TRUE has the same effect as calling the file system's 
ready-change routine (e.g., dosFsReadyC!tange()) or calling ioctl() with the 
FIODISKCHANGE function code. 

A status-check routine (see above) can provide a convenient mechanism for assert
ing a ready-change, for devices that cannot detect a disk change until after the new 
disk has been inserted. If the status-check routine detects that a new disk has been 
inserted, it should set bd_readyChanged to TRUE. The status-check routine, if 
present, is called by the file system at the beginning of each open or create operation. 

4. 9 .5 Driver Support Libraries 

There are several subroutine libraries that can assist in writing device drivers. Using 
these libraries, drivers for most devices following standard protocols can be written 
with just a few pages of device-dependent code. See the manual entries on these 
libraries for details. 

146 Intel Vx960 



4. 1/0 System 

Table 4-10. Vx960 Driver Support Libraries 

Library Description 

errnoLib(l) Error status library 

ftpLib(l) ARPA File Transfer Protocol library 

ioLib(l) I/ 0 interface library 

iosLib(l) I/ 0 system library 

intLib(l) Interrupt support subroutine library 

remLib(l) Remote command library 

mgLib(l) Ring buffer subroutine library 

tyLib(l) Serial device driver subroutine library 

wdLib(l) Watchdog timer subroutine library 

Intel Vx960 14 7 



Vx960 5.0 - Programmer's Gulde 

148 Intel Vx960 



5 

Local File Systems 

Contents 

5.1 Introduction ............................................................................................................................... 151 

5.2 DOS-Compatible File System .................................................................................................. 152 

5.2.1 Disk Organization ....................................................................................................... 152 

5.2.1.1 Clusters 152 
5.2.1.2 Boot Sector 153 
5.2.1.3 File ABocation Table 154 
5.2.1.4 Root Directory 154 
5.2.1.5 Subdirectories 155 
5.2.1.6 Files 155 
5.2.1.7 Volume Label 156 

5.2.2 Using the DOS File System ........................................................................................ 156 

5.2.2.1 Initializing the File System 156 
5.2.2.2 Initializing a Device for Use with DOS 157 
5.2.2.3 Volume Configuration 158 
5.2.2.4 Changes In Volume Configuration 162 
5.2.2.5 Using an Already Initialized Disk 162 
5.2.2.6 Mounting Volumes 162 
5.2.2.7 File 1/0 163 
5.2.2.8 Opening the Whole Device (Raw Mode) 163 
5.2.2.9 Creating Subdirectories 164 
5.2.2.10 Removing Subdirectories 164 
5.2.2.11 DOS Directory Entries 165 

Intel Vx960 149 



. 
Vx960 5.0 - Programmer's Gulde 

5.2.2.12 Reading Directory Entries 165 
5.2.2.13 File Attributes 165 
5.2.2.14 File Date and Time 167 
5.2.2.15 Changing Disks 168 
5.2.2.16 Contiguous File Support 171 
5.2.2.17 1/0 Control Functions Supported by dosFsLib 172 

5.3 RT-11 File System ...................................................................................................................... 174 

5.3.1 Disk Organization ...................................................................................................... 174 

5.3.2 Using the RT-11 File System ..................................................................................... 174 

5.3.2.1 Initializing the File System 174 
5.3.2.2 Initializing a Device for Use with RT-11 175 
5.3.2.3 Mounting Volumes 176 
5.3.2.4 File II 0 176 
5.3.2.5 Opening the Whole Device (Raw Mode) 176 
5.3.2.6 Reclaiming Fragmented Free Disk Space 177 
5.3.2. 7 Changing Disks 177 
5.3.2.8 I/0 Control Functions Supported by rtllFsLib 178 

5.4 Raw File System ........................................................................................................................ 179 

5.4.1 Disk Organization ...................................................................................................... 180 

5.4.2 Using the Raw File System ........................................................................................ 180 

5.4.2.1 Initializing the Raw File System 180 
5.4.2.2 Initializing a Device for Use with the Raw File System 181 
5.4.2.3 Mounting Volumes 181 
5.4.2.4 File I/0 182 
5.4.2.5 Changing Disks 182 
5.4.2.6 I/0 Control Functions Supported by rawFsLib 184 

150 Intel Vx960 



Local File Systems 

5.1 Introduction 

Vx960 provides two local file systems appropriate for real-time use with block 
devices (disks): one is compatible with DOS file systems and the other with the 
RT-11 file system. The support libraries for these file systems are dosFsLib(l) and 
rtllFsLib(l). Vx960 also provides a simple "raw file system," which treats an entire 
disk much like a single large file. The support library for this" file system" is 
rawFsLib(l). 

In Vx960, the file system is not tied to a specific type of block device or its driver. 
V:;x960 block devices all use a standard interface so that file systems can be freely 
mixed with device drivers. Alternative, user-supplied file systems can be written 
and used by drivers in the same way, by following the same standard interfaces 
between the file system, the driver, and the Vx960 I/O system. Vx960 I/0 architec
ture makes it possible to have multiple file systems, even of different types, at the 
same time in a single Vx960 system. The block device interface is discussed in detail 
in the previous chapter under 4.9.4 Block Devices. 

This chapter discusses the organization, configuration, and use of Vx960 file sys
tems. 

Intel Vx960 151 



Vx960 5.0 - Programmer's GUide 

5.2 DOS-Compatible File System 

The Vx960 DOS file system is media-compatible with versions of MS-DOS up to and 
including release 4.0. Vx960 DOS file system capabilities offer considerable flexibil
ity appropriate to the varying demands of real-time applications. Major features 
include: 

• A hierarchical arrangement of files and' directories that allows efficient organi
zation and permits an indefinite number of files to be created on a volume. 

• A choice of contiguous or non-contiguous files on a per-file basis. Non-contig
uous files result in more efficient use of available disk space while contiguous 
files offer enhanced performance. 

• Compatibility with widely available storage and retrieval media. Disks created 
with Vx960 and MS-DOS PCs and other systems can be freely interchanged. 

5.2.1 Disk Organization 

5.2.1.1 

The Vx960 DOS-compatible file system provides the means for organizing disk data 
in a flexible manner. It maintains a hierarchical set of named directories, each con
taining files or other directories. Files can be appended, and as they expand, new 
disk space is allocated automatically. The allocation of disk space to files is not nec
essarily contiguous, which results in a minimum of wasted space. However, to 
enhance its real-time performance, the Vx960 DOS file system allows contiguous 
space to be pre-allocated to files individually, thereby minimizing seek operations. 

The general organization of a DOS file system is shown in Figure 5-1, and the vari
ous elements are discussed in the following sections. 

Clusters 

A file in a DOS file system consists of one or more disk clusters. A cluster is a set of 
contiguous disk sectors1. For floppy disks, two sectors make up a cluster; for fixed 

1. In this and subsequent sections covering the DOS file system, the term sector refers to the mini
mum addressable unit on a disk, since this is the term used by most MS-DOS documentation. 
In Vx960, the units are normally referred to as blocks, and a disk device is called a block device. 

152 Intel Vx960 



5.2.1.2 

Sector 0: 

5. Local Fiie Systems 

Boot Sector 

FAT Table 

(possibly multiple copies) 

Root Directory 

Files and Subdirectories 

Note: If number of reserved sectors (dosvc_nResrvd) 
is greater than 1, the first FAT table copy will 
not immediately follow the boot sector. 

Figure 5-1. DOS Disk Organization 

disks, there may be more sectors per cluster. A cluster is the smallest amount of disk 
space the file system can allocate at a time. A large number of sectors per cluster 
allows a larger disk to be described in a fixed-size file allocation table (FAT- see 
below), but can result in wasted disk space. 

Boot Sector 

The first sector on a DOS disk is called the boot sector. This sector contains a variety 
of configuration data. Some of the data fields describe the physical properties of the 
disk (e.g., the total number of sectors), and other fields describe file system variables 
(e.g., the size of the root directory). 

Intel Vx960 153 



Vx960 5.0 - Programmer's Gulde 

5.2.1.3 

5.2.1.4 

The boot sector information is written to the disk when it is initialized. The Vx960 
DOS file system can use disks which have been initialized on another system (for 
example, using the FORMAT program on an MS-DOS PC), or Vx960 can initialize the 
disk itself, using the F~ODISKINIT function with an ioctl( ) call. 

As the DOS standard has evolved, various fields have been added to the boot sector 
definition. Disks initialized under Vx960 use the boot sector fields defined by 
MS-DOS version 4.0. 

Fiie Allocatlon Table 

Each DOS volume contains a File Allocation Table, commonly called the FAT table. 
The FAT table contains an entry for each cluster on the disk that can be allocated to 
a file or directory. When a cluster is unused (available for allocation) its entry is zero. 
If a cluster is allocated to a file, its entry is the cluster number of the next portion of 
the file. If a cluster is the last in a file, its entry is -1. Thus, the representation of a file 
(or directory) consists of a linked list of FAT table entries. 

FAT tables use either 12 or 16 bits per entry. Disk volumes that contain up to 4085 
clusters use 12-bit entries; disks with more than 4085 dusters use 16-bit entries. The 
entries themselves (particularly 12-bit entries) are encoded in a specific manner, 
done originally to take advantage of the Intel 8088 architecture. However, all FAT 
table handling is done by the Vx960 DOS file system; therefore, the encoding and 
decoding is of no concern to Vx960 applications. 

A volume contains multiple copies of the FAT table. This redundancy allows data 
recovery in the event of a media error in the first FAT copy. The Vx960 DOS file sys
tem maintains multiple FAT copies; however, the copies are not automatically used 
in the event of an error. 

The size of the FAT table and the number of FAT copies are determined by fields in 
the boot sector. For disks initialized using the Vx960 DOS file system, these param
eters are specified during the dosFsDevlnit( ) call by setting fields in the volume 
configuration structure, DOS_ VOL_CONFIG. 

Root Directory 

Each DOS volume contains a root directory. The root directory occupies a set of con
tiguous disk sectors following the FAT table copies. The disk area occupied by the 
root directory is not described by entries in the FAT table. 

154 Intel Vx960 



5.2.1.5 

5.2.1.6 

5. Local File Systems 

The root directory is of a fixed size; this size is specified by a field in the boot sector 
as the maximum allowed number of directory entries. For disks initialized using the 
Vx960 DOS file system, this size is specified during the dosFsDevlnit( ) call, by set
ting a field in the volume configuration structure, DOS_ VOL_CONFIG. 

Since the root directory has a fixed size, attempts to add entries once the directory is 
full returns an error. 

For information on the contents of the directory entry, see 5.2.2.11 DOS Directory 
Entries. 

Subdirectories 

In addition to the root directory, DOS volumes may contain a hierarchy of subdirec
tories. Like the root directory, subdirectories contain entries for files and other sub
directories; however, in other ways they differ from the root directory and resemble 
files: 

First, they are described by an entry in another directory, as is a file. The directory 
entry has a bit set in the file attribute byte to indicate that it describes a subdirectory. 
Because they are described by directory entries, subdirectories have names, unlike 
the root directory. 

Second, subdirectories are composed of a set of disk clusters, linked by FAT table 
entries. Subdirectories may grow as entries are added to it and subdirectories are not 
necessarily made up of contiguous clusters. The root directory, unlike subdirecto
ries, can be made up of any number of sectors, not necessarily equal to a whole num
ber of clusters. 

Third, subdirectories always contain two special entries. The "." entry refers to the 
subdirectory itself, while the " .. " entry refers to the subdirectory' s parent directory. 
The root directory does not contain these special entries. 

Flies 

A file in the DOS file system is a set of clusters that are chained together via entries 
in the FAT table. A file is not necessarily made up of contiguous clusters; the various 
clusters may be located anywhere on the disk and in any order .. 

Intel Vx960 155 



Vx960 5.0 - Programmer's Gulde 

S.2.1.7 

Each file has a descriptive entry in its parent directory. This entry contains the file's 
name, size, modification date and time, and a special field giving the file's attribute 
(e.g., a read-only file). It also contains the starting cluster number for the file; subse
quent clusters are located using the FAT table. 

Volume Label 

A DOS disk may have a volume label associated with it. The volume label is a special 
entry in the root directory. Rather than containing the name of a file or subdirectory, 
the volume label entry contains a string used to identify the volume. This string can 
contain up to 11 characters. The volume label entry is identified by a special value of 
the file attribute byte in the directory entry. 

The volume label can be added to a Vx960 DOS volume by using the ioctl() call with 
the FIOLABELSET function. This will add a label entry to the volume's root directory 
if none exists, or it will change the label string in an existing volume label entry. The 
volume label entry takes up one of the fixed number of root directory entries; 
attempting to add a volume label entry when the root directory is full will result in 
an error. 

The current volume label string for a volume can be obtained by using the ioctl( ) 
function with the FIOLABELGET function. If the volume has no label, this call will 
return ERROR and will set errno to S_dosFsLib_NO_LABEL. 

Disks initialized under Vx960 or under MS-DOS 4.0 (or later) also contain the vol
ume label string within a boot sector field. 

5.2.2 Using the DOS File System 

5.2.2.1 Initializing the File System 

Before you can perform any other operations, you must initialize the Vx960 DOS file 
system library, dosFsLib(l) by calling dosFslnit( ). This routine takes a single 
parameter, the maximum number of dosFs file descriptors that can be open at one 
time. This count is used to allocate a set of file descriptors which can be used as files, 
directories, or the file-system device. · 

156 Intel Vx960 



5.2.2.2 

5. Local File.Systems 

Note: Vx960 includes optional features and device drivers that can be added 
or omitted from the system. These features and drivers are controlled 
by special symbols that can be defined in the configuration headers to 
cause conditionai compiiation in the usrConfig.c module. For a list of 
the optional elements and their control symbols, refer to Table 8-1. 

The dosFslnit() routine also makes an entry for the DOS file system in the I/ 0 sys
tem system driver table (via iosDrvlnstall( )). This entry defines specific entry 
points for DOS file operations and is used for all devices which use the DOS file sys
tem. The driver number assigned to the DOS file systems is placed in a global vari
able dosFsDrvNum( ). 

The dosFslnit() routine also makes an entry for the DOS file system in the l/O sys
tem driver table (via iosDrvlnstall( )). This entry defines specific entry points for 
DOS file operations and is used for all devices which use the DOS file system. The 
driver number assigned to the DOS file system is placed in a global variable 
dosFsDrvNum( ). 

If you prefer to initialize the DOS file system at a different time, do not define 
INCLUDE_DOSFS in configAll.h. dosFslnit() can then be called at any later time; 
however, it should not be called more than once. 

lnltlallzlng a Device for Use with DOS 

Once the DOS file system has been initialized, the next step is to create one or more 
devices. Devices are created by the device driver's device creation routine. The 
driver routine returns a pointer to a block device descriptor structure (BLK_DEV}. 
The BLK_DEV structure describes the physical aspects of the device and specifies the 
routines in the device driver that a file system will use. 

After its creation, the block device has neither a name nor a file system associated 
with it. To initialize a block device for use with the DOS file system, the already-cre
ated block device must be associated with dosFs and a name must be assigned to it 
Do this with the dosFsDevlnit( ) routine. Its parameters are the name to be used to 
identify the device, a pointer to the block device descriptor structure (BLK_DEV), and 
a pointer to the volume configuration structure DOS_ VOL_CONFIG (see 
5.2.2.3 Volume Configuration below). For example: 

DOS_VOL_DESC *pVolDesc; 

pVolDesc • dosFsDevinit ("DEV!:", pBlkDev, &configStruct); 

Intel Vx960 157 



Vx960 5.0 - Programmer's Gulde 

5.2.2.3 

The dosFsDevlnit() call performs the following tasks: 

• assigns the specified name to the device and enters the device in the I/ 0 system 
device table (via iosDev.A.dd( }). 

• allocates and initializes the file system's volume descriptor for the device. 

• returns a pointer to the volume descriptor. This pointer is used to identify the 
volume during certain file system calls. 

Initializing the device for use with a DOS file system does not format the disk, nor 
does it initialize the DOS disk structures (root directory, FAT table, etc.). These are 
done using the ioctl( ) functions FIODISKFORMAT and FIODISKINIT, respectively. 

Volume Configuration 

The volume configuration structure, DOS_ VOL_CONFIG, is used during the 
dosFsDevlnit( ) call. This structure contains various DOS file system variables 
describing the layout of data on the disk. The majority of the fields in the structure 
correspond to those found in the boot sector. 

The dosFsConfig!Itit( ) call provides a convenient way to initialize the 
DOS_ VOL_CONFIG structure. It takes the configuration variables as parameters and 
fills in the structure. This is useful for initializing devices interactively from the 
Vx960 shell. The DOS_ VOL_CONFIG structure must be allocated before 
dosFsConfiglnit( ) is called. 

158 Intel Vx960 



5. Local Fiie Systems 

oos_ VOL_ CONFIG Fields 

The table below lists the fields in the DOS_ VOL_CONFIG structure: 

Table 5-1. DOS_ VOL_CONFIG Fields 

Function Meaning 

dosvc_secPerClust number of sectors per cluster 

dosvc_nResrvd number of reserved sectors that precedes the first FAT 
table copy; the minimum is 1 (the boot sector) 

dosvc_nFats number of FAT table copies 

dosvc_maxRootEnts maximum number of entries in root directory 

dosvc_mediaByte media descriptor byte 

dosvc_secPerFat number of sectors per FAT table copy 

dosvc _ nHidden number of hidden sectors, normally 0 

dosvc_changeN o Warn TRUE = disk change is unannounced 

dosvc_autoSync TRUE= synchronize disk during I/O 

All but the last two DOS_ VOL_CONFIG fields in Table 5-1 describe standard DOS 
characteristics; the last two are specific to the Vx960 DOS file system. These two 
fields specify the action used to synchronize the disk buffers to the physical device: 

dosvc_changeNoWarn: This field should be set to TRUE if the device is a disk that 
might be replaced without being unmounted or a change in ready status being 
declared. In this situation, it is necessary to recheck the disk regularly to determine 
if it has been changed. Since this causes significant overhead, it is desirable to pro
vide a mechanism for synchronizing and unmounting a disk before it is removed, or 
at least announcing a change in ready status. If such a mechanism is in place, or if 
the disk is not removable, the dosvc_changeNoWam field should be defined as 
FALSE. If dosvc_changeNoWarn is set to TRUE, auto-sync mode is automatically 
enabled (see below). For more information on the use of this field, see 
5.2.2.15 Changing Disks. 

dosvc_autoSync: Setting this field to TRUE assures that the data in the disk's buffers 
will be written to the physical device as soon as possible after modification, rather 
than only when the file is closed. This may be desirable for critical data in situations 
where it is important that a maximum amount of data be stored safely on the phys-

Intel Vx960 159 



Vx960 5.0 - Programmer's Gulde 

ical media, e.g., to avoid loss in the event of a system crash. There is a significant per
formance penalty incurred when using auto-sync mode; its use should therefore be 
limited to special circumstances where data integrity is of greater concern than per
formance. Auto-sync mode is automatically enabled if dosvc_changeNoWarn is set 
to TRUE. For more information on auto-sync mode, see 5.2.2.15 Changing Disks. 

Calculating Configuration Values 

The values for dosvc_secPerClust and dosvc_secPerFat must be calculated based on 
the particular device being used. 

dosvc_secPerClust: This field specifies how many contiguous disk sectors make up 
a single cluster. Since a cluster is the smallest amount of disk space that can be allo
cated at a time, the size of a cluster determines how finely the disk allocation can be 
controlled. A large number of sectors per cluster causes more sectors to be allocated 
at a time and reduces the overall efficiency of disk space usage. For this reason, it is 
generally preferable to use the smallest possible number of sectors per cluster, 
although having less that 2 sectors per cluster is generally not necessary. 

Since the maximum size of a FAT table entry is 16 bits, there is a maximum of 65536 
(64K, or OxlOOOO) clusters which can be described. This is therefore the maximum 
number of clusters for a device. To determine the number of sectors per cluster, 
divide the total number of sectors on the disk (i.e., the bd_nBlocks field in the 
device's BLK_DEV structure) by OxlOOOO (64K). The resulting value should then be 
rounded up to the next whole number.. The final result is the number of sectors per 
cluster, and this value should be placed in the dosvc_secPerClust field in the 
DOS_ VOL_ CONFIG structure. 

dosvc_secPerFat: This field specifies the number of sectors required on the disk for 
each copy of the FAT table. To calculate this value, you must first determine the total 
number of clusters on the disk. The total number of clusters is equal to the total 
number of sectors (bd_nBlocks in the BLK_DEV structure) divided by the number of 
sectors per cluster. As mentioned above, the maximum number of clusters on a disk 
is 64K. 

The cluster count must then be multiplied by the size of each FAT entry: if the total 
number of clusters is 4085 or less, each FAT entry requires 1.5 bytes; if the number of 
clusters is greater than 4085, each FAT entry requires 2 bytes. The result of this mul
tiplication is the total number of bytes required by each copy of the FAT table. This 
byte count is then divided by the size of each sector (i.e., the bd_bytesPerBlk field in 
the BLK_DEV structure) to determine the number of sectors required for each FAT 

160 Intel Vx960 



5. Local File Systems 

copy; if there is any remainder, add one (1) to the result. This final value should be 
placed in the dosvc_secPerFat field. 

Assuming 512-byte sectors, the largest possible FAT table (with entries describing 
64K clusters) occupies 256 sectors per copy, calculated as follows: 

64K entries x 2 bytes/ entry 
= 256 sectors 

512 bytes I sector 

Standard Disk Configurations 

For floppy disks, there are a number of standard disk configurations used in DOS 
systems. In general, these are identified by the media descriptor byte value (at least 
for a given size of floppy disk), although some manufacturers have used duplicate 
values for different formats. Some widely used configurations are summarized in 
Table 5-2 below. 

Fixed disks do not use such standard disk configurations, since they seldom are 
attached to a foreign system. In general, fixed disks use a media format byte of OxF8. 

Table 5-2. DOS Floppy Disk Configurations 

~ ... ... 0 2 - -Q ... c t ~ 0 :J w 0 I-

<J --- Cl) 0 c 
0 r? V> 'U 0 

ca 't: Cl) 

0 
.. 

0 -- " ~ IX 0 GI 'U .. ~ .. a. ... l! '6 a. 
GI a. Cl) 0 - t >< "O 

0 'U z 0 0 Cl) 0 0 Cl> 0 x .... Cl> Cl) IX .... 
E E GI c;; 0 c;; V> a:a .. c c .. c 

5.25" 160K 1 40 8 512 1 1 2 64 Ox FE 1 0 

5.25" 180K 1 40 9 512 1 1 2 64 OxFC 2 0 

5.25" 320K 2 40 8 512 2 1 2 112 Ox FF 1 0 

5.25" 360K 2 40 9 512 2 1 2 112 Ox FD 2 0 

5.25" l.2M 2 80 15 512 1 1 2 224 OxF9 7 0 

3.5" 720K 2 80 9 512 2 1 2 112 OxF9 3 0 

3.5" l.44M 2 80 18 512 1 1 2 224 OxFO 9 0 

Intel Vx960 161 



Vx960 5.0 - Programmer's Gulde 

5.2.2.4 

S.2.2.5 

5.2.2.6 

Changes In Volume Configuration 

As mentioned above, various disk configuration parameters are specified when the 
DOS file system device is first initialized using dosFsDevlnit( ). This data is kept in 
the volume descriptor, oos_ voL_DESC, for the device. However, it is possible for a 
disk with different parameter values to be placed m a drive after the device has 
already been initialized. For such a disk to be usable, you must modify the configu
ration data in the volume descriptor when a new disk is present. 

When a disk is mounted, the boot sector information is read from the disk. This data 
. is used to update the configuration data in the volume descriptor. This happens the 

first time the disk is accessed, and again after the volume has been unmounted 
(using dosFsVolUnmozmt()) or a ready-change operation is performed. For more 
information, see 5.2.2.15 Changing Disks 

This automatic re-initialization of the configuration data has an important implica
tion. Since the volume descriptor data is used when initializing a disk (with 
FIODISKINIT) it initializes a disk with the configuration of the most recently 
mounted disk, regardless of the original specification during dosFsDevlnit( ). There
fore, we recommend that you use FIODISKINIT after dosFsDevlnit( ) and before any 
disk has been mounted. (The device is opened in raw mode, the FIODISKINIT 1/0 
control call is performed, and the device is closed.) 

Using an Already Initialized Disk 

If you are using a disk that has already been initialized with a DOS boot sector, FAT 
table, and root directory (for example, by using the PC-based FORMAT utility), it is 
not necessary to provide the volume configuration data during dosFsDevluit( ). 

Since the values in the volume descriptor are reset when a volume is mounted, it is 
possible to omit the DOS configuration data (by specifying a NULL pointer instead 
of the address of a DOS_ VOL_CONFIG structure during dosFsDevlnit( )), provided it 
is absolutely certain that the first use of the volume will be with a properly formatted 
and initialized disk. 

Mounting Volumes 

A disk volume is mounted automatically during the first opeu() or creat() operation 
for a file or directory on the disk. (Certain ioctl() calls also cause the disk to be 
mounted.) If a NULL pointer is specified instead of the address of a DOS_ VOL_CON-

162 Intel Vx960 



5.2.2.7 

5.2.2.8 

5. local Fiie Systems 

FIG structure during the dosFsDevlnit() call, the disk is mounted immediately to 
obtain the configuration values. . 

When a disk is mounted, the boot sector, FAT table, and directory data are read from 
the disk. The volume de.:;criptor, DOS_ VOL_DESC, is updated to reflect the configu
ration of the newly mounted disk. 

Automatic mounting reoccurs on the first file access following dosFsVolUmnount() 
or a ready-change operation (see 5.2.2.15 Changing Disks) or periodically if the disk 
is defined during the dosFsDevlnit() call with the dosvc_changeNoWarn field set to 
TRUE. Automatic mounting does not occur when a disk is opened in raw mode (see 
5.2.2.8 Opening the Whole Device (Raw Mode)). 

File 1/0 

Files on a DOS file system device are created, deleted, written, and read using the 
standard Vx960 I/ 0 routines (creat( ), delete(), write(), and read()). See 4.3 Basic 1/0 
in the previous chapter for more information. 

Opening the Whole Device (Raw Mode) 

It is possible to open an entire DOS volume, by specifying only the device name dur
ing the open( ) or creat( ) call. A file descriptor is returned, as when opening a regu
lar file; however, operations on that file descriptor affect the entire device. Opening 
the entire volume in this manner is called raw mode. 

The most common reason for opening the entire device is to obtain a file descriptor 
to perform an ioctl() function that does not pertain to an individual file. An example 
is the FIONFREE function, which returns the number of available bytes on the vol
ume. For many of these functions, however, the file descriptor can be any open file 
descriptor to the volume, even one for a specific file. 

When a disk is initialized with DOS data structures (boot sector, empty root direc
tory, FAT table), the device should be opened in raw mode. The ioctl() function 
FIODISKINIT performs the initialization. 

A disk can be read or written in raw mode. In this case, the entire disk data area (i.e., 
the disk portion following the boot sector, root directory, and FAT table) is treated 
much like a single large file. No directory entry is made to describe any data written 

Intel Vx960 163 



Vx960 5.0 - Programmer's Gulde 

5.2.2.9 

using raw mode. For low-level I/ 0 to the entire device, including the area used by 
DOS data structures, see rawFsLib(l). 

Creating Subdirectories 

Subdirectories can be created in any DOS directory at any time, except in the root 
directory if it has reached its maximum entry count. Subdirectories may be created 
in either of two ways: 

• Using ioctl( ) with the FIOMKDIR function: The name of the directory to be cre
ated is passed as a parameter to ioctl( ). The file descriptor used for the ioctl( ) 
call may have been acquired through opening the entire volume (raw mode), a 
regular file, or another directory on the volume. 

• Using open(): To create a directory, the O_CREAT option must be set in the 
"flags" parameter to open, and the FSTAT_DIR option must be set in the "mode" 
parameter. The open( ) call returns a file descriptor which describes the new 
directory; this file descriptor can be used for reading only and should be closed 
when no longer needed. This second method of directory creation is the one 
used by the Vx960 command mkdir() in usrLib. 

When creating a directory using either method, the name of the new directory must 
be specified. This name can be either a full path name or a path name relative to the 
current working directory. 

5.2.2.1 o Removing Subdirectories 

There are also two methods to remove a directory. A directory must be empty 
(except for the "." and " .. " entries) to be deleted. The root directory can never be 
deleted. 

The first method of removing a directory is to use an ioctl( ) call with the FIORMDIR 
function code. The name of the directory is given as a parameter to ioctl(). Again, 
the file descriptor used can refer to any file or directory on the volume, or to the 
entire volume itself. 

The second way to remove a directory is to use the delete( ) function, specifying the 
name of the directory. This is the method used by the nndir( ) command in usrLib. 

164 Intel Vx960 



5.2.2.11 

5. Local Fii~ Systems 

DOS Directory Entries 

Each DOS directory contdins a set of entries describing files and subdirectories. 
Each entry contains the following information about a file or subdirectory: 

file name 

file extension 

file attribute 

time 

date 

cluster number 

file size 

an 8-byte string (padded with spaces, if necessary) specifying 
the base name of the file. 

a 3-byte string (space-padded) specifying the optional exten
sion portion of the file name. Subdirectory names cannot use 
the extension portion. 

a one-byte field specifying file characteristics. (See 5.2.2.13 File 
Attributes below.) 

the encoded creation or modification time for the file. 

the encoded creation or modification date for the file. 

the number of the starting cluster within the file. Subsequent 
clusters are found by searching the FAT table. 

the size of the file, in bytes. This field is always 0 for entries 
describing subdirectories. 

5.2.2.12 Reading Directory Entries 

Directories on Vx960 DOS volumes can be searched using the opendir( ), readdir( ), 
rewillddir( ), and closedir() routines. These calls can be used to determine the names 
of files and subdirectories. 

To obtain more detailed information about a specific file, use the fstat() or stat() 
function. Along with standard file information, the structure used by these routines 
also returns the file attribute byte from a directory entry. For more information, see 
dirLib(l). 

5.2.2.13 File Attributes 

The file attribute byte in a DOS directory entry consists of a set of flag bits, each indi
cating a particular file characteristic. The characteristics described by the file 
attribute byte are: 

Intel Vx960 165 



Vx960 5.0 - Programmer's Gulde 

Table 5-3. Flags In the Fiie Attribute Byte 

Hex value Vx960 Flag Name Meaning 

OxOl DOS_AITR_RDONLY read-only file 

Ox02 DOS_AITR_HIDDEN hidden file 

Ox04 DOS_ATIR_SYSTEM system file 

Ox08 DOS_AITR_ VOL_LABEL volume label (not afile) 

Ox IO DOS _AITR_DIRECTORY subdirectory 

Ox20 DOS_ATIR_ARCHIVE file is subject to archiving 

The read-only flag, DOS_AITR_RDONLY, is checked when a file is opened for WRITE 
or UPDATE. If the flag is set, the open fails. 

The hidden file and system file flags, DOS_ATTR_HIDDEN and DOS_AITR_SYSTEM, 
are ignored by dosFsLib. If present, they are kept intact, but no special handling 
results (for example, these t!ntries are reported when searching directories). 

The volume label flag, DOS_ATTR_ VOL_LABEL, indicates that lhis directory entry 
contains the DOS volume label for this disk. There can be only one volume label 
entry per volume, and it must be in the root directory. A volume does not require a 
label. The volume label entry is not reported when reading the contents of a direc
tory (using readdir( )). It can only be determined using the ioctl( ) function FIOLA
BELGET. The volume label can be set (or reset) to any string of 11 or fewer characters, 
using the ioctl( ) function FIOLABELSET. Any file descriptor open to the volume can 
be used during these ioctl( ) calls. 

The directory flag, DOS_ATTR_DIRECTORY, indicates that this entry is not a regular 
file but a subdirectory. 

The archive flag, DOS_ATTR_ARCHIVE, is set when a file is created or modified. It is 
never cleared by Vx960. This flag is intended for use by other DOS programs that 
search a volume for modified files and selectively archive them. Such a program 
should also clear the archive flag. 

166 Intel Vx960 



5. local Fiie Systems 

All the flags in the attribute byte, except the directory and volume label flags, can be 
set or cleared using the ioctl( ) function FIOAITRIBSET. This function is called after 
opening the specific file whose attributes are to be changed. The attribute byte value 
specified in the FIOATTRIBSET call is copied directly; to preserve existing flag set
tings, the current attributes should first be determined using stat( ) or /stat( ) and 
then changed using bitwise and or or operations. For example, to make a file read
only, while leaving other attributes intact: 

fd •open ("file", READ, O); 
fstat (fd, &statStruct); 

/* open file */ 
/* get dir entry data */ 

ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib I DOS_ATTR_RDONLY)); 
/* set read-only flag •/ 

close (fd); /* close file •/ 

5.2.2.14 File Date and Time 

Directory entries contain a time and date for each file or directory. This time is set 
when the file is created, and it is updated at the close of a file that has been modified. 
Entries describing subdirectories are not updated - they always contain the creation 
date and time for the subdirectory. 

dosFs Lib maintains the date and time in an internal structure. While there is cur
rently no mechanism for automatically advancing the date or time, two different 
methods for setting the date and time are provided. 

The first method involves using two routines, dosFsDateSet( ) and dosFsTimeSet( ). 
The following examples illustrate their use: 

dosFsDateSet (1990, 12, 25); /* set date to Dec-25-1990 */ 

dosFsTimeSet (14, 30, 22); /* set time to 14:30:22 */ 

Call these routines periodically to update the time and date values. 

The second method requires a user-supplied hook routine. If a time and date hook 
routine is installed using dosFsDateTimelnstall( ), the routine will be called when
ever dosFsLib requires the current date and time. This facility is provided to take 
advantage of hardware time-of-day clocks which can be read to obtain the current 
time. It can also be used with other user-supplied application programs that main
tain actual time and date. 

Intel Vx960 16 7 



Vx960 5.0 - Programmer's Gulde 

The date I time hook routine should be defined as follows (the name dateTimeHook is 
an example, the actual routine name can be anything): 

VOID dateTimeHook (pDateTime) 
DOS_DATE_TIME *pDateTime; /* ptr to DOS date ~ time struct •/ 

On entry to the hook routine, the DOS_DATE_TIME structure contains the last time 
and date that was set in dosFsLib. The hook routine should then fill the structure 
with the correct values for the current time and date. Unchanged fields in the struc
ture retain their previous values. 

The DOS specification only provides for 2-second granularity for file time stamps. If 
the number of seconds in the time specified during dosFsTimeSet( ) or the date I time 
hook routine is odd, it is rounded down to the next even number. 

The date and time used by dosFsLib is initially Jan-01-1980, 00:00:00. 

5.2.2.15 Changing Disks 

To increase performance, the Vx960 DOS file system keeps copies of directory entries 
and the file allocation table (FAT) for each volume in memory. While this greatly 
speeds up access to files, it requires that dosFsLib be notified when removable disks 
are changed (e.g., floppies are swapped). Two different notification methods are pro
vided and discussed below: (1) dosFsVolUmnount() and (2) the ready-change 
mechanism. 

Unmountlng Volumes 

The preferred method of announcing a disk change is to call dosFsVolUmnount() 
before removing the disk. This call flushes all modified data structures to disk if pos
sible (see description of disk synchronization, below) and also marks any open file 
descriptors as obsolete. During the next II 0 operation, the disk is remounted. The 
ioctl() call can also be used to initiate dosFsVolUmnount( ), by specifying the 
FIOUNMOUNT function code. Any open file descriptor to the device can be used in 
the ioctl( ) call. 

Subsequent attempts to use obsolete file descriptors for further II 0 operations will 
return an S_dosFsLib_FD_OBSOLETE error. To free such file descriptors, use the 
close() call, as usual. This frees the descriptor, but still returns S_dosFsLib_FD_OBSO
LETE. File descriptors acquired when opening the entire volume (raw mode) are not 
marked as obsolete during dosFsVolUmnount() and can still be used. 

168 Intel Vx960 



5. Local FUe Systems 

Interrupt handlers must not call dosFsVolU11mou11t() directly, since it is possible for 
the call to pend while the device becomes available. The interrupt handler can 
instead give a semaphore that prepares a task to unmount the volume. 
(dosFsReadyChange() can be called directly from interrupt handlers.) 

When dosFsVolU11mou11t() is called, it attempts to write buffered data out to the 
disk. It's use is inappropriate for situations where the disk-change notification does 
not occur until a new disk has been inserted - the old buffered data would be writ
ten to the new disk. In these circumstances, use dosFsReadyCha11ge( ) (see below). 

If dosFsVolU11111ouut() is called after the disk is physically removed, the data flush
ing portion of its operation fails. However, the file descriptors is still marked as 
obsolete, and the disk is marked as requiring remounting. An error is not returned 
by dosFsVolUm11ouut() in this situation. To avoid lost data in such a situation, syn
chronize the disk before you remove it (see Synchronizing Volumes below). 

Announcing Disk Changes with Ready-Change 

The second method of informing dosFsLib that a disk change is taking place is via 
the ready-change mechanism. A change in the disk's ready status is interpreted by 
dosFsLib to indicate that the disk should be remounted during the next I/0 opera
tion. 

There are three ways to announce a ready-change: 

• Call the dosFsReadyChange( ) routine directly. 

• Use the ioctl( ) call with the FIODISKCHANGE function code. 

• The device driver can set the bd_readyChanged field in the BLK_DEV structure 
to TRUE; this has the same effect as notifying dosFsLib directly. 

The ready-change mechanism does not provide the ability to flush data structures to 
the disk. It merely marks the volume as needing remounting. As a result, you can 
lose buffered data (data written to files, directory entries, or FAT table changes). You 
can avoid this lost data by synchronizing the disk before asserting ready-change (see 
Synchronizing Volumes below). The combination of synchronizing and asserting 
ready-change provides all the functionality of dosFsVolUnmount() except for mark
ing file descriptors as obsolete. 

Since it does not attempt to flush data or perform other operations that could cause 
delay, ready-change can be used in interrupt handlers. 

Intel Vx960 169 



Vx960 5.0 - Programmer's Gulde 

The block device driver status-check routine (identified by the bd_statusChk field in 
the BLK_DEV structure) can be useful for asserting ready-change for devices which 
only detect a disk change after the new disk has been inserted. This routine is called 
at the beginning of each open( ) or creat( ) operation, before the file system checks 
for ready-change. See 4.9.4 Block Devices. 

Disks with No Change Notification 

If it is not possible for dosFsVolUmnount() to be called or a ready-change to be 
announced each time the disk is changed, the device must be identified when it is 
initialized for use with the file system. You can do this by setting the dosvc_change
NoWam field of the DOS_ VOL_CONFIG structure to TRUE when calling 
dosFsDevluit( ) (see 5.2.2.3 Volume Configuration). 

This configuration option results in a significant performance disadvantage, since 
the disk configuration data must be read in from the physical disk (in case it has been 
removed and a new one inserted). In addition, setting dosvc_ changeN o Warn to TRUE 
also enables auto-sync mode (see below). All that is required for disk change notifi
cation is that either the dosFsVolUmnozmt() call or ready-change be issued each 
time the disk is changed. It is not necessary that it be called from the device driver 
or an interrupt handler. For example, if your application provided a user- interface 
through which an operator could enter a command resulting in a 
dosFsVolUmnount() call before removing the disk, that would be sufficient, and 
dosvc_changeNoWarn should be defined as FALSE. It is important, however, that the 
operator follow such a procedure strictly. 

Synchronizing Volumes 

When a disk is synchronized, all buffered data that has been modified is written to the 
physical device so that the disk is "up-to-date." This includes data written to files, 
updated directory information, and the FAT table. 

To avoid loss of data, synchronize a disk before it is removed. It may or may not be 
necessary to explicitly synchronize a disk, depending on when (or if) the 
dosFsVolUnmount() call is issued. 

When dosFsVolUnmount() is called, an attempt is made to synchronize the device 
before unmounting. If the disk is still present and writable at the time of the call, syn
chronization takes place; there is no need to synchronize the disk independently. 

However, if the dosFsVolUmnount() call is made after a disk has been removed, it 
is too late to synchronize - dosFsVolUmnount() discards the buffered data. There-

170 Intel Vx960 



s: Local Fiie Systems 

fore, make a separate ioctl( ) call specifying the FIOSYNC function before the disk is 
removed. (This could be done in response to an operator command.) The file 
descriptor used during the ioctl() call should have been obtained by openLti.g the 
whole volume (raw mode). 

Auto-Sync Mode 

dosFsLib provides a modified mode of synchronization called auto-sync. When this 
option is enabled, data for modified directories and the FAT table is written to the 
physical device as soon as these structures are altered. (Normally, such changes are 
not written out until the involved file is closed.) 

Enable auto-sync mode by setting dosvc_autoSync in the DOS_ VOL_CONFIG struc
ture to TRUE when calling dosFsDevlnit( ). It is automatically enabled if the volume 
does not have disk change notification (i.e., dosvc_changeNoWarn is TRUE during 
dosFsDevlnit( )). 

Auto-sync results in a performance penalty, but it provides the highest level of data 
security, since it minimizes the amount of time when directory and FAT data are not 
up-to-date on the disk. Auto-sync may be desirable for applications where data 
integrity in the event of a system crash is a greater concern than simple disk I/ 0 per
formance. 

5.2.2.16 Contiguous File Support 

dosFsLib provides for efficient handling of contiguous files. A contiguous file is 
made up of a series of consecutive disk sectors. This capability includes both the 
allocation of contiguous space to a specified file (or directory) and optimized access 
to such a file. 

To allocate a contiguous area to a file, the file is first created in the normal fashion, 
using open() or creat( ). The file descriptor returned during the creation of the file is 
then used to make an the ioctl() call, specifying the FIOCONTIG function. The 
parameter to the FIOCONTIG function is the size of the requested contiguous area, 
in bytes. The FAT table is searched for a suitable section of the disk, and if found, it 
is assigned to the file. (If there is no contiguous area on the volume large enough to 
satisfy the request, an error is returned.) The file can then be closed or used for fur
ther I/0 operations. For example, the following creates a file and allocates OxlOOOO 
contiguous bytes on disk to it: 

Intel Vx960 171 



Vx960 5.0 - Programmer's Gulde 

fd - creat ("file", UPDATE, O)J 
status• ioctl (fd, FIOCON'l'IG, Oxl0000)1 
if (statas I• OK) 

/* do error handling */ 
close (fd); 

/* open file */ 
/* get contiguous area */ 

/* close file */ 

It is important that the file descriptor used for the ioctl( ) call is the only descriptor 
open to the file. Furthermore, since a file could be assigned a different area of the 
disk than was originally allocated, the ioctl( ) (FIOCONTIG) operation should take 
place before any data is written to the file. 

After the contiguous space has been allocated to a file, the file's size (kept in its direc
tory entry) remains unchanged. The size value is increased only as space is actually 
used by writing to the file.2 

Subdirectories can also be allocated a contiguous disk area in the same manner. If the 
directory was created using the ioctl( ) function FIOMKDIR, it must be explicitly 
opened to obtain a file descriptor to it; if the directory was created using options to 
open( ), the returned file descriptor from that call can be used. A directory should be 
empty (except for the"." and" .. " entries) before it has contiguous space allocated to 
it. 

When any file is opened, it is checked for contiguity. If a file is recognized as contig
uous, more efficient techniques for locating specific sections of the file are used, 
rather than following cluster chains in the FAT table as must be done for fragmented 
files. This enhanced handling of contiguous files takes place regardless of whether 
the space was actually allocated using FIOCONTIG. 

5.2.2.17 1/0 Control Functions Supported by dosFsLib 

The Vx960 DOS file system supports the following ioctl() functions. The functions 
listed are defined in the header iolib.h. For more information, see the manual entry 
for dosFsLib(l) and the manual entry for ioctl() in ioLib(l). 

2. If you examine Vx960 DOS disks by using a PC-based disk debugging utility, errors may be 
reported for files which have had additional space allocated to them via FIOCONTIG. This is 
due to mismatches between the file size and the amount of allocated space. Howeve~ there 
should be no difficulty in using such a disk for normal PC applications. 

172 Intel Vx960 



5. Local Fiie Systems 

Table 5-4. 1/0 Control Functions Supported by dosFsllb 

Function Meaning 

FIODISKFORMAT Format the disk (device driver function). 
FIODISKINIT Initialize a DOS file system on a disk volume. 
FIODISKCHANGE Announce a media change. 
FIOUNMOUNT Unmount a disk volume. 
FIOGETNAME Get the file name of the fd. 
FI OREN AME Rename a file. 
FI OS EEK Set the current byte offset in a file. 
FIOWHERE Return the current byte position in a file. 
FIOFLUSH Flush the file output buffer. 
FIOSYNC Same as FIOFLUSH. 

FIONREAD Get the number of unread bytes in a file. 
FIONFREE Get the number of free bytes on the volume. 
FIOMKDIR Create a new directory. 
FIORMDIR Remove a directory. 
FIOLABELGET Get the volume label. 
FIOLABELSET Set the volume label. 
FIOATIRIBSET Set the file attribute byte in the DOS directory entry. 
FIOCONTIG Allocate contiguous disk space for a file or directory. 
FIOREADDIR Read the next directory entry. 
FIOFSTATGET Get file status information (directory entry data). 

Intel Vx960 173 



Vx960 5.0 - Programmer's Gulde 

5.3 RT-11 File System 

5.3.1 Disk Organization 

The RT-11.file system employs a very simple disk organization. Although this sim
plicity results in some loss of flexibility, RT-11 is suitable for a variety of real-time 
applications. 

The RT-11 file system maintains only contiguous files. A contiguous file consists of a 
series of disk sectors that are consecutive. Contiguous files are well-suited to real
time applications, because little time is spent lo.eating specific portions of a file. The 
disadvantage of using contiguous files exclusively is that a disk can gradually 
become fragmented, reducing the efficiency of the disk space allocation. 

The RT-11 disk format uses a single directory to describe all files on the disk The 
size of this directory is limited to a fixed number of directory entries. Along with 
regular files, unused areas of the disk are also described by special directory entries. 
These special entries are used to keep track of individual sections of free space on 
the disk 

5.3.2 Using the RT-11 File System 

5.3.2.1 Initializing the File System 

Before you can perform any other operations, you must initialize the Vx960 RT-11 
file system library, rtllFslib(l), by calling rt11Fslllit( ). This routine takes a single 
parameter, the maximum number of file descriptors which can be open at one time. 
This count is used to allocate a set of descriptors which can be used as files or rtllFs 
devices. 

The rt11Fslttit() routine also makes an entry for the RT-11 file system in the 1/0 sys
tem system driver table (via iosDrvlnstall( )). This entry defines specific entry 
points for RT-11 file operations and is used for all devices which use the RT-11 file 
system. The drive number assigned to the RT-11 file systems is placed in a global 
variable rt11FsDrvNum( ). 

174 Intel Vx960 



5.3.2.2 

5. Local Fiie Systems 

The rt11Fslnit( ) routine is called by the usrRoot( ) task after starting the Vx960 sys
tem. To use this initialization, make sure the symbol INCLUDE_RTtlFS is de.fined in 
the configuration file configAll.h, and set NUM_RTllFS_FILES to the desired maxi
mum open file count. 

If you prefer to initialize the RT-11 file system at a different time, do not define 
INCLUDE_RTtlFS in the configuration file. rt11Fslnit() can then be called at a later 
time; however, it should not be called more than once. 

Initializing a Device for Use with RT-11 

Once the RT-11 file system has been initialized, the next step is to create one or more 
devices. Devices are created by the device driver's device creation routine. The 
driver routine returns a pointer to a block device descriptor structure {BLK_DEV). 
The BLK_DEV structure describes the physical aspects of the device and specifies the 
routines in the device driver that a file system will use. 

After its creation, the block device has neither a name nor a file system associated 
with it. To initialize a block device for use with RT-11, the already-created block 
device must be associated with rtllFs and a name must be assigned to it. This is 
done with rt11FsDevlnit( ). Its parameters are: 

• the name to be used to identify the device 

• a pointer to the BLK_DEV structure 

• a boolean value indicating whether the disk uses standard RT-11 skew and 
interleave 

• the number of entries to be used in the disk directory (in some cases, the actual 
number is greater than the number specified) 

• a boolean value indicating whether this disk is subject to being_ changed with
out the file system being notified. 

For example: 

RT_VOL_DESC *pVolDesc1 

pVolDesc • rtllFsDevinit ("DEVli", pBlkDev, rtFmt, nEntries, changeNoWarn); 

The rt11FsDevlnit() call assigns the specified name to the device and enters the 
device in the 1/0 system device table (via iosDevAdd( )). It allocates and initializes 
the file system's volume descriptor for the device. A pointer to the volume descrip-

lnte/Vx960 175 



Vx960 5.0 - Programmer's Gulde 

5.3.2.3 

5.3.2.4 

5.3.2.5 

tor is returned to the caller; this pointer is used to identify the volume during some 
file system calls. 

Initializing the device for use with the RT-11 file system does not format the disk, nor 
does it initialize the RT-11 disk directory. These are done using ioctl() with the func
tions FIODISKFORMAT and FIODISKINIT, respectively. 

Mounting Volumes 

A disk volume is mounted automatically, during the first open() or creat( ) for a file 
or directory on the disk. (Certain ioctl() calls also cause the disk to be mounted.) 
When a disk is mounted, the directory data is read from the disk. 

Automatic mounting reoccurs on the first file access following a ready-change oper
ation (see Changing Disks} or periodically if the disk is defined during the 
rt11FsDevlnit() call with the changeNoWarn parameter set to TRUE. Automatic 
mounting does not occur when a disk is opened in raw mode. For more information, 
see 5.3.2.5 Opening the Whole Device (Raw Mode). 

File 1/0 

Files on an RT-11 file system device are created, deleted, written, and read using the 
standard Vx9601/0 routines (creat( ), delete(), write(), and read()). For more infor
mation, see 4.3 Basic 1/0. 

Opening the Whole Device (Raw Mode) 

You can open an entire RT-11 volume by specifying only the device name during the 
open( ) or creat( ) call. A file descriptor is returned, as when opening a regular file; 
however, operations on that file de~criptor affect the entire device. Opening the 
entire volume in this manner is called raw mode. 

The most common reason for opening the entire device is to obtain a file descriptor 
to perform an ioctl() function that does not pertain to an individual file. An example 
is the FIOSQUEEZE function, which combines fragmented free space across the entire 
volume. 

When a disk is initialized with an RT-11 directory, the device should be opened in 
raw mode. The ioctl( ) function FIODISKINIT performs the initialization. 

176 Intel Vx960 



5.3.2.6 

5.3.2.7 

5. Local Fiie Systems 

A disk can be read or written in raw mode. In this case, the entire disk area is treated 
much like a single large file. No directory entry is made to describe any data written 
using raw mode, and care must be taken to avoid overwriting the regular RT-11 
directory at the beginning of the disk. This type of I/0 is also provided by 
rawFsLib(l). 

Reclaiming Fragmented Free Disk Space 

The contiguous file allocation scheme used by the RT-11 file system can gradually 
result in disk fragmentation. In this situation, the available free space on the disk is 
scattered in a number of small chunks. This reduces the ability of the system to cre
ate new files. 

To correct this condition, rtllFsLib includes a special utility, rt11FsSqueeze( ). This 
routine moves files so that the free space is combined at the end of the disk. 

When rt11FsSqueeze( ) is called, it is absolutely critical that there be no open files on 
the device. This routine can take time to execute, particularly with large disks. 

Changing Disks 

To increase performance, the Vx960 RT-11 file system keeps copies of directory 
entries for each volume in memory. While this speeds up access to files, it requires 
that rtllFsLib be notified when removable disks are changed (e.g., floppies are 
swapped). This notification is provided by the ready-change mechanism. 

Announcing Disk Changes with Ready-Change 

A change in the disk's ready status is interpreted by rtllFsLib to indicate that the 
disk should be remounted during the next II 0 operation. There are three ways to 
announce a ready-change: 

• by calling rt11FsReadyCha11ge( ) directly 

• by calling ioctl() with FIODISKCHANGE 

• by having the device driver set the bd_readyChanged field in the BLK_DEV 
structure to TRUE; this has the same effect as notifying rtllFsLib directly. 

The ready-change announcement does not cause buffered data to be flushed to the 
disk. It merely marks the volume as needing remounting. As a result, data written 

Intel Vx960 1 7 7 



Vx960 5.0 - Programmer's Gulde 

S.3.2.8 

to files or directory-entry changes can be lost. To avoid this loss of data, close all files 
on the volume before you change the disk. 

Since it does not attempt to flush data or perform other operations that could cause 
delay, ready-change can be used in interrupt handlers. 

The block device driver status-check routine (identified by the bd_statusChk field in 
the BLI<_DEV structure) can be useful for asserting ready-change for devices which 
only detect a disk change after the new disk has been inserted. This routine is called 
at the beginning of each open( ) or creat( ) operation, before the file system checks 
for ready-change. 

• Disks with No Change Notification 

If a ready-change cannot be announced each time the disk is changed, the device 
must be identified when it is initialized for use with the file system. This is done by 
setting the changeNoWarn parameter to TRUE when calling rtllFsDevlnit( ). 

When this parameter is defined as TRUE, the disk is regularly re-read to obtain the 
current directory information (in case the disk has been removed and a new one 
inserted). As a result, this option causes a significant loss in performance. 

1/0 Control Functions Supported by rtllFsLib 

The RT-11 file system supports the ioctl() functions as shown in Table 5-5. The func
tions listed are defined in the header ioLib.h. For more information, see the manual 
entry for rtllFsLib(l) and the manual entry for ioctl() in ioLib(l). 

178 Intel Vx960 



5. Local File Systems 

Table 5-5. 1/0 Control Functions Supported by rtl lfsllb 

FuncHon Meaning 

FIODISI<FORMAT Format the disk. 

FIODISKINIT Initialize an RT-11 file system on a disk volume. 

FIODISKCHANGE Announce a media change. 

FIOGETNAME Get the file name of the fd. 

F!ORENAME Rename a file. 

FI OS EEK Reset the current byte offset in a file. 

FIOWHERE Return the current byte position in a file. 

FIOFLUSH Flush the file output buffer. 

FIONREAD Get the number of unread bytes in a file. 

FIOSQUEEZE Coalesce fragmented free space on an RT-11 volume. 

FIODIRENTRY Get information about specified device directory entries. 

FIOREADDIR Read the next directory entry. 

FIOFSTATGET Get file status information (directory entry data). 

5.4 Raw File System 

Vx960 provides a minimal "file system" for use in systems which require only the 
most basic disk 1/0 functions. The "raw file system," implemented in rawFsLib, 
treats the entire disk volume much like a single large file. Although the Vx960 DOS 
and RT-11 file systems do provide this ability to varying degrees, the raw file system 
offers advantages in size and performance if more complex functions are not 
required. 

Intel Vx960 179 



Vx960 5.0 - Programmer's Gulde 

5.4.1 Disk Organization 

5.4.2 

5.4.2.1 

As mentioned above, rawFs imposes no organization of the data on the disk. 

The raw file system does not maintain any directory information; therefore, no divi
sion of the disk area into specific files exists, and no file names are used. All open( ) 
operations on rawFs devices specify only the device name; no additional file names 
are allowed. 

The entire disk area is available to any file descriptor which is opened for the device. 
All read and write operations on the disk use a byte-offset relative to the start of the 
first block on the disk. 

Using the Raw Fiie System 

lnltlallzlng the Raw Fiie System 

Before you can perform any other operations, you must initialize the Vx960 raw file 
system library, rawFsLib(l) by calling rawFslnit( ). This routine takes a single 
parameter, the maximum number of file descriptors which can be open at one time. 
This count is used to allocate a set of descriptors which can be used as rawFs devices. 

The rawFslnit() routine makes an entry for the raw disk file system in the 1/0 sys
tem driver table (via iosDrvlnstall( )). This entry defines specific entry points for 
raw disk file operations and is used for all devices which use the raw disk file sys
tem. The drive number assigned to the raw disk file systems is placed in a global 
variable rawFsDrvNum( ). 

The rawFslnit() routine is called by the usrRoot() task after starting the Vx960 sys
tem. To use this initialization, the symbol INCLUDE_RAWFS should be defined in 
configAll.h, and NUM_RAWFS_FILES should be set to the desired maximum open file 
descriptor count. 

If you prefer to initialize the raw file system at a different time, do not define 
INCLUDE_RAWFS in configAll.h. You can call rawFslnit( ) at a later time; however, 
do not call it more than once. 

180 Intel Vx960 



5.4.2.2 

5.4.2.3 

5. Local Fiie Systems 

Initializing a Device for Use with the Raw File System 

Once the raw file system has been initialized, the next step is to create one or more 
devices. Devices are created by the device driver's device creation routine. The 
driver routine returns a pointer to a block device descriptor structure (BLK_DEV). 
The BLK_DEV structure describes the physical aspects of the device and specifies the 
routines in the device driver that a file system will use. 

Immediately after its creation, the block device has neither a name nor a file system 
associated with it. To initialize a block device for use with the raw file system, the 
already-created block device must be associated with rawFs and a name must be 
assigned to it. This is done with the rawFsDevlnit( ) routine. Its parameters are the 
name to be used to identify the device and a pointer to the block device descriptor 
structure (BLK_DEV): 

RAW_VOL_DESC *pVolDesc; 

pVolDesc • rawFsDevinit ("DEVl:", pBlkDev); 

The rawFsDevlnit( ) call assigns the specified name to the device and enters the 
device in the II 0 system device table (via iosDevAdd( )). It also allocates and ini
tializes the file system's volume descriptor for the device. A pointer to the volume 
descriptor is returned to the caller; this pointer is used to identify the volume during 
certain file system calls. 

Initializing the device for use with the raw file system does not format the disk. That 
is done using an ioctl( ) call with the FIODISKFORMAT function. 

Since there are no file system structures on the disk, no disk initialization 
{FIODISKINIT) is required, although rawFs accepts such an ioctl() call for compati
bility with other file systems (it performs no action and always returns OK). 

Mounting Volumes 

A disk volu,me is "mounted" automatically, generally during the first open() or 
creat() operation for a file or directory on the disk. (Certain ioctl() calls also cause 
the disk to be mounted.) When a disk is mounted, the directory data is read from the 
disk. Automatic mounting reoccurs on the first file access following a ready-change 
operation (see 5.4.2.5 Changing Disks). 

Intel Vx960 181 



Vx960 5.0 - Programmer's Gulde 

5.4.2.4 

5.4.2.5 

File 1/0 

To begin I/ 0 to a raw file system device, the device is first opened using the stan
dard open() function. (The creat() function can also be used, although nothing is 
actually" created.") Data on the raw file system device is written and read using the 
standard I/ 0 routines write() and read(). For more information, see 4.3 Basic 1/0. 

The character pointer associated with a file descriptor (i.e., the byte offset at which 
reads and writes take place) can be set by using the ioctl() with the FIOSEEK func
tion. 

Multiple file descriptors can be open simultaneously for a single device. These must 
be carefully managed to avoid modifying data which is also being used by another 
file descriptor. In most cases, such multiple open descriptors should use FIOSEEK to 
set their character pointers to separate disk areas. 

Changing Disks 

The raw file system should be notified when removable disks are changed (e.g., flop
pies are swapped). Two different notification methods are provided and discussed 
below: (1) rawFsVolUnmount() and (2) the ready-change mechanism. 

• Unmountlng Volumes 

The first method of announcing a disk change is to call rawFsVolUnmoimt() before 
removing the disk. This call flushes all modified file descriptor buffers if possible 
(see description of disk synchronization, below) and also marks any open file 
descriptors as obsolete. During the next I/ 0 operation, the disk will be remounted. 
rawFsVolUnmount() can also be initiated by using ioctl() with FIOUNMOUNT. Any 
open file descriptor to the device can be used in the ioctl( ) call. 

Subsequent attempts to use obsolete file descriptors for further I/ 0 operations 
return an s_rawFsLib_FD_OBSOLETE error. To free such a descriptor, use close(), as 
usual. This frees the descriptor, but still returns S_rawFsLib_FD_OBSOLETE. 

Interrupt handlers must not call rawFsVolUnmount() directly, because it is possible 
for the call to pend while the device becomes available. The interrupt handler can 
instead give a semaphore that prepares a task to unmount the volume. 
(rawFsReadyChange() can be called directly from interrupt handlers, see below.) 

182 Intel Vx960 



5. Local Fiie Systems 

When rawFsVolUnmount() is called, it attempts to write buffered data out to the 
disk. Its use is therefore inappropriate for situations where the disk-change notifica
tion does not occur until a new disk is inserted- the old buffered data would be writ
ten to the new disk. In these circumstances, use rawFsReadyChange( ) (see below). 

If rawFsVolUnmount() is called after the disk is physically removed, the data flush
ing portion of its operation will fail. However, the file descriptors are still marked as 
obsolete, and the disk is marked as requiring remounting. An error is not returned 
by rawFsVolUnmount() in this situation. To avoid lost data in such a situation, the 
disk should be synchronized before it is removed (see Synchronizing Volumes below). 

• Announcing Disk Changes with Ready-Change 

The second method of informing rawFsLib that a disk change is taking place is via 
the ready-change mechanism. A change in the disk's ready status is interpreted by 
rawFsLib to indicate that the disk should be remounted during the next I/0 opera
tion. 

There are three ways to announce a ready-change: 

• by calling rawFsReadyChange( ) directly 

• by calling ioctl( ) with FIODISKCHANGE 

• by having the device driver set the bd_readyChanged field in the BLK_DEV 
structure to TRUE; this has the same effect as notifying rawFsLib directly. 

The ready-change announcement does not cause buffered data to be flushed to the 
disk. It merely marks the volume as needing remounting. As a result, data written 
to files may be lost. This can be avoided by synchronizing the disk before asserting 
ready-change (see Synchronizing Volumes below). The combination of synchronizing 
and asserting ready-change provides all the functionality of rawFsVolU11mount() 
except for marking file descriptors as obsolete. 

Since it does not attempt to flush data or perform other operations that could cause 
delay, ready-change can be used in interrupt handlers. 

The block device driver status-check routine (identified by the bd_statusChk field in 
the BLK_DEV structure) may be useful for asserting ready-change for devices which 
only detect a disk change after the new disk has been inserted. This routine is called 
at the beginning of each open( ) or creat( ) operation, before the file system checks 
for ready-change. 

Intel Vx960 183 



Vx960 5.0 - Programmer's Gulde 

5.4.2.6 

• Disks with No Change Notification 

If it is not possible for a ready-change to be announced each time the disk is changed, 
all file descriptors for the volume should be closed before the disk is changed. 

• Synchronizing Volumes 

When a disk is synchronized, all buffered data that has been modified is written to the 
physical device so that the disk is "up-to-date." For the raw file system, the only 
such data is that contained in open file descriptor buffers. 

To avoid loss of data, a disk should be synchronized before it is removed. It may or 
may not be necessary to explicitly synchronize a disk. depending on when (or if) the 
rawFs Vol Unmount( ) call is issued. 

When rawFsVolUnmount() is called, an attempt is made to synchronize the device 
before unmounting. If this disk is still present and writable at the time of the call, 
synchronization takes place; there is no need to synchronize the disk independently. 

However, if the rawFs Vol Unmount( ) call is made after a disk has been removed, it 
is too late to synchronize - rawFsVolUnmount() discards the buffered data. There
fore, make a separate ioctl( ) call with the FIOSYNC function before the disk is 
removed. (This could be done in response to an operator command.) Any open file 
descriptor to the device can be used during the ioctl( ) call. This call causes all mod
ified file-descriptor-buffers for the device to be written out to the disk. 

1/0 Control Functions Supported by rawFsLib 

The raw disk file system supports the ioctl() functions shown in Table 5-6 below. 
The functions listed are defined in the header ioLib.h. For more information, see the 
manual entry for rawFsLib(l) and the manual entry for ioctl() in ioLib(l). 

184 Intel Vx960 



5. local File Systems 

Table 5-6. 1/0 Control Functions Supported by rawFsllb 

Function Meaning 

FIODISKFORMAT Format the disk (device driver function). 

FIODISKINIT Initialize a raw file system on a disk volume (not 
required). 

FIODISKCHANGE Announce a media change. 

FIOUNMOUNT Unmount a disk volume. 

FIOGETNAME Get the file name of the fd. 

Fl OS EEK Set the current byte offset on the device. 

FIOWHERE Return the current byte position on the device. 

FIOSYNC Write out all modified file descriptor buffers. 

FIOFLUSH Same as FIOSYNC. 

FIONREAD Get the number of unread bytes on the device. 

Intel Vx960 185 



Vx960 5.0 - Programmer's Gulde 

186 Intel Vx960 



Network 

Contents 

6.1 Introduction ............................................................................................................................... 189 

6.2 Network Components .............................................................................................................. 190 

6.2.1 Ethernet ........................................................................................................................ 190 

6.2.2 Serial Line Interface Protocol (SLIP) ........................................................................ 192 

6.2.3 Backplane Network .................................... ~ ............................................................... 192 

6.2.4 TCP I IP Internet Protocols and Addresses .............................................................. 192 

6.2.4.1 Protocols 192 
6.2.4.2 Internet Addresses 193 
6.2.4.3 Packet Routing 195 

6.2.5 Sockets ........................................................................................................................... 196 

6.2.5.1 Stream Sockets (TCP) 198 
6.2.5.2 Datagram Sockets (UDP) 199 

6.2.6 Remote Procedure Calls ............................................................................................. 199 

6.2.7 Remote Login .............................................................................................................. 199 

6.2.8 Remote File Access ..................................................................................................... 200 

6.2.9 Remote Command Execution ................................................................................... 201 

6.2.10 Loopback Interface ..................................................................................................... 201 

Intel Vx960 18 7 



Vx960 5.0 - Programmer's Gulde 

6.3 Configuring the Network ........................................................................................................ 201 

6.3.i. Associating Inet Addresses with Network Interfaces ........................................... 202 

6.3.2 Associating Inet Addresses with Host Names ....................................................... 202 

6.3.3 Transparent Remote File Access .............................................................................. 203 
6.3.3.1 Transparent Remote File Access via rsh and ftp 204 
6.3.3.2 Transparent Remote File Access via NFS 206 · 

6.3.4 Remote Login from UNIX to Vx960: rlogin and telnet ........................................ 208 

6.3.5 Remote Login from Vx960 to UNIX: rlogin( ) ........................................................ 209 

6.3.6 Adding Gateways to a Network .............................................................................. 209 
6.3.6.1 Adding a Route on UNIX 209 
6.3.6.2 Adding a Route on Vx960 210 

6.3.7 Broadcast Addresses .................................................................................................. 211 

6.3.8 Using Subnets ............................................................................................................. 211 

6.3.9 Network Management and Information ................................................................. 212 
6.3.9.1 Ping Messages From a Host 213 

6.4 Network Initialization on Startup .......................................................................................... 216 

6.5 Serial Line Interface Protocol .... ~ ............................................................................................. 218 

6.6 Backplane Networks ................................................................................................................. 218 

6.6.1 The Backplane Shared Memory Pool ...................................................................... 220 
6.6.1.1 Backplane Processor Numbers 220 
6.6.1.2 The Backplane Master: Processor 0 220 
6.6.1.3 The Backplane Anchor 221 
6.6.1.4 The Backplane Heartbeat 222 
6.6.1.5 Shared Memory Location 222 
6.6.1.6 Shared Memory Size 222 
6.6.1.7 "On-Board" and "Off-Board" Options 223 
6.6.1.8 Test-and-Set to Shared Memory 223 

6.6.2 Inter-Processor Interrupts ......................................................................................... 224 

6.6.3 Configuring the UNIX Host ...................................................................................... 225 

6.6.4 Example Configuration ............................................................................................. 226 

6.6.5 Troubleshooting .......................................................................................................... 229 

188 Intel Vx960 



6 

Network 

6.1 Introduction 

The Vx960 network is the link that connects Vx960 systems with UNIX systems and 
other Vx960 systems. It is compatible with the 4.3 BSD Tahoe UNIX network facili
ties. Vx960 also is compatible with the Network File System (NFS) developed by 
SUN Microsystems. 

This link provides a seamless development environment between UNIX hosts and 
Vx960 target systems. Remote login facilities allow remote access to the Vx960 shell 
by users on UNIX systems, and remote access to UNIX shells by users on Vx960 sys
tems. Remote file access allows Vx960 tasks to access UNIX files across the network. 
Remote procedure calls allow a task on one machine to invoke procedures which 
actually run on another machine. 

This document gives an overview of the Vx960 network components, and the pro
cedures necessary to configure the network. 

Intel Vx960 1 89 



Vx960 5.0 - Programmer's Gulde 

6.2 Network Components 

The hierarchy of Vx960 network components is shown in Figure 6-1. At the lowest 
level, Vx960 uses Ethernet as the basic transmission medium. Vx960 can also use 
serial lines for long-distance connections or shared memory on a common backplane 
in more closely coupled environments. On top of the transmission media, Vx960 
uses the Internet protocols TCP /IP and UDP /IP to transport data between processes 
running under either Vx960 or UNIX. 

Using Internet protocols, Vx960 makes several types of network facilities available 
to the user: 

Sockets Allow communications between tasks, running either under Vx960 
or UNIX. 

Remote Procedure Calls 
Allow a task on one machine to invoke procedures which actually 
run on other machines. Both the calling task and the called proce
dure may run under either Vx960 or UNIX. 

Remote Login Allows remote access to the Vx960 from a UNIX system and remote 
access to a UNIX shell from a Vx960 system. 

Remote File Access 
Allows Vx960 tasks to access UNIX files remotely, via the Network 
File System (NFS), UNIX remote shell (rsh), or Internet File Transfer 
Protocol (ftp). 

Remote Command Execution 

6.2. l Ethernet 

Allows Vx960 tasks to invoke shell commands on a UNIX system, 
via the network. 

Ethernet is one of the available mediums over which the Vx960 network operates. 
Ethernet is a 10 MBit I sec local area network specification that is standardized and 
supported by numerous vendors. It is ideal for most Vx960 applications, but there is 
nothing that is inherently tied to Ethernet in either the Vx960 or UNIX network sys
tems. 

190 Intel Vx960 



Ethernet 

TCP 

Source 
Debugger 

Sockets 

IP+ ICMP 

Backplane 

UDP 

SLIP 

Figure 6-1. Vx960 Network Components 

x 
Windows 
Protocol 

Custom 
Interface 

6. Network 

Intel Vx960 191 



Vx960 5.0 - Programmer's Gulde 

6.2.2 Serlal Line Interface Protocol (SLIP) 

The Vx960 network can communicate with the host operating system over serial 
connections using the Serial Line Interface Protocol (SLIP). Using SLIP as a network 
interface driver is a straightforward way to use TCP /IP software with point-to-point 
configurations such as long-distance telephone lines or RS-232 serial connections 
between machines. 

6.2.3 Backplane Network 

6.2.4 

6.2.4.1 

The Vx960 network can be used for communication among multiple processors on 
a common backplane. In this case, data is passed via shared memory. This is imple
mented in the form of a standard network driver so that all the higher levels of net
work components are fully functional over this backplane "network." Thus, all the 
high-level network facilities provided over Ethernet are also available over the back
plane. 

·The backplane network allows multiple Vx960 CPUs to communicate with each 
other over a backplane. In addition, it allows Vx960 CPUs to be plugged directly into 
the backplane of some UNIX systems and to communicate with a UNIX CPU using 
the same shared memory scheme. In this configuration, all Vx960-to- UNIX network 
facilities available over Ethernet are also available over the backplane. This involves 
a special UNIX version of the Vx960 backplane network driver that must be config
ured into the UNIX system. 

TCP /IP Internet Protocols and Addresses 

Protocols 

On top of the raw Ethernet and backplane transmission mechanisms, Vx960 uses the 
Internet protocol suite (often referred to as TCP /IP) to affect process-to-process 
communication across the network. Three main protocols are used: 

• Internet Protocol (IP) 

IP is the base network protocol of the Internet protocol family. With IP, each host 
(computer} in the network has a unique four-byte Internet address (described 
below}. IP accepts packets addressed to a particular host and tries to deliver 

192 Intel Vx960 



6.2.4.2 

6~ Network 

them. If multiple networks are connected by gateways, IP forwards a packet 
from gateway to gateway until the packet reaches a network where it can be 
delivered directly. IP breaks up and reassembles packets to fit the packet size of 
the physical network. However, IP makes no guarantees that packets will be 
delivered to the destination correctly. Although it is possible to access IP 
directly, most applications use one of the higher-level protocols such as UDP or 
TCP. 

• User Datagram Protocol (UDP) 

UDP provides a datagram-based process-to-process communication mecha
nism. UDP extends the message address to include a port address in addition to 
the host Internet address, where a port address identifies one of several distinct 
destinations within a single host. Thus UDP accepts messages addressed to a 
particular port on a particular host, and tries to deliver them, using IP to trans
port the messages between the hosts. Like IP, UDP makes no guarantees that 
messages will be delivered correctly or delivered at all. 

• Transmission Control Protocol (TCP) 

TCP provides reliable, flow-controlled, two-way, process-to-process transmis
sion of data. TCP is a connection-based communication mechanism. This means 
that before data can be exchanged via TCP, the two communicating processes 
must first establish a connection via a distinct connection phase. Data is then 
sent and received as a byte stream at both ends. Like UDP, TCP extends the con
nection address to include a port address in addition to the host Internet 
address. That is, a connection is established between a particular port in one 
host and a particular port in another host. TCP guarantees that the delivery of 
data will be correct, in the proper order, and without duplication. 

The Vx960 network also supports the associated Internet Control Message Protocol 
(ICMP) and the Ethernet Address Resolution Protocol (ARP), as implemented in 
UNIX BSD 4.3. 

Internet Addresses 

Each host in an Internet network has a unique Internet address and an associated 
address mask. An Internet address is 32 bits long, and begins with a Internet 
address class, followed by a network identifier and host identifier. The address 
mask is set to a default value according to class if subnets are not used. For more 
information, see 6.3.8 Using Subnets. 

Intel Vx960 193 

llj~ . . 
. 



Vx960 5.0 - Programmer's Gulde 

Three classes of Internet addresses exist to accommodate different network configu
rations: 

• Ciass A addresses support a small number of networks, each with a large num
ber of hosts. 

• Class B addresses support a moderate number of networks, each with a moder
ate number of hosts. 

• Class C addresses support a large number of networks, each with a small num
ber of hosts. 

The three classes are distinguished by the high-order bits (in network byte order) of 
an Internet address as shown in Figure 6-2. 

A I 1 I network: 7 bits I host: 24 bits 90.1.2.3 

B I 1I 01 network: 14 bits host: 16 bits 128.0.1.2 

c I 1I1I 0 1 network: 21 bits host: 8 bits 192.0.0.1 

Figure 6-2 Internet Address Classes 

By convention, Internet addresses are usually represented as a character string with 
a dot (.)notation. Dot notation lists the 32-bit number as a string of four 8-bit values 
separated by dots. Internally, the Internet address is often kept as a simple 32-bit 
value (e.g., as an int, long, u_long, struct in_addr, etc.). For example, the Internet 
address Ox5a010203 is 90.1.2.3 in standard dot notation. Each Internet address class 
has a unique address range determined by the high-order bits and the default 
address mask as shown in Table 6-1. 

Vx960 includes routines for manipulating Internet addresses. For instance, there are 
routines for converting between dot notation and integer notation, routines for 
extracting network and host portions of an address, and routines for creating a new 
address from a network and host number. See the manual entry inetLib(l). 

194 Intel Vx960 



6.2.4.3 

6. Network 

Table 6-1. Internet Address Ranges 

Class High Order Bits Default Address Mask Address Range 

A 0 OxffOOOOOO 0.0.0.0 - 126.255.255.255 

Reserved 127.0.0.0 - 127.255.255.255 

B 10 OxffffOOOO 128.0.0.0- 191.255.255.255 

c 110 OxffffffOO 192.0.0.0 - 223.255.255.255 

Packet Routing 

The IP layer software handles packet routing. For each device connected to the net
work, internal routing tables contain information about possible destination 
addresses. These routing tables contains two types of entries: host-specific route 
entries and network-specific route entries. Host-specific route entries contain the 
host destination address and the address of the gateway to use for packets destined 
for this host. Network-specific route entries contain a network destination address 
and the Internet address of the gateway to use for packets destined for this network. 
An example of Internet routing is, shown in Figure 6-3. 

The host-specific route entries have precedence over network-specific route entries. 
The IP layer software first compares the destination address against any host- spe
cific route entries in the table. If there is no matching entry, the IP layer software 
searches for an appropriate network-specific routing table entry. The appropriate 
address mask is applied to the destination address to obtain the network identifier. 
This network identifier is then compared against the network-specific entries in the 
routing table. 

The Vx960 routing table is manually edited using routeAdd() and routeDelete() to 
add or delete route entries: 

routeAdd ("91.0.0.0", "90.0.0.2"); 

routeDelete ("91.0.0.51", "90.0.0.2"); 

Intel Vx960 195 



Vx960 5.0 - Programmer's Gulde 

Internet RouHng Table 

De,HnaHon Gateway 

Ho,t-Speclftc Entry 91.0.0.51 90.0.0.2 

Network·Speclnc Entry 91.0.0.0 90.0.0.2 

90.0.0.0 

91.0.0.0 

Figure 6-3. Internet Routing 

6.2.5 Sockets 

In Vx960, just as in many UNIX systems, the direct user interface to the Internet pro
tocol suite is via sockets. A socket is an end-point for communications which gets 
"bound" to a UDP or TCP port within the host. 

A process can create a datagram socket (UDP) and bind it to a particular port num
ber. Other processes, on any host in the network, can then send messages to that 
socket by specifying the host Internet address and the port number. 

Similarly, a process can create a stream socket (TCP) and bind it to a particular port 
number. Another process, on any host in the network, can then create another 
stream socket and request that it be connected to the first socket by specifying its 
host Internet address and port number. Once the two TCP sockets have been thus 
connected, there is a virtual circuit set up between them allowing error-free, socket
to-socket communications. 

196 Intel Vx960 



6. Network 

Socket communications is a homogeneous mechanism. Socket communications 
among processes is the same regardless of the location of the processes in the net
work, or the operating system under which they are running. Processes can commu
nicate within a single CPU, across a backplane, across an Ethernet, or across any 
connected combination of networks. Socket communications can occur between 
Vx960 tasks and UNIX processes in any combination. In all cases, the communica
tions look identical to the application, except for the speed of the communications. 

The basic socket functions shown in Table 6-2 are provided by the library sockLib(l). 
Some II 0 functions can be invoked on sockets. 

Table 6-2. Socket Functions 

Call Description 

socket() Create a socket 
bind() Bind a name to a socket. 
listen() Listen for connections on a TCP socket. 
accept() Accept a connection on a TCP socket. 
connect( ) Initiate a connection on a socket. 
shutdown( ) Shutdown a socket connection. 
send() Send data on a socket. 
sendto() Send a message to a socket. 
seudmsg() Send a message on a socket. 
recv() Receive on a socket. 
recvfrom() Receive a datagram. 
recvmsg() Receive a message. 
setsockopt( ) Set socket options. 
getsockname( ) Get socket name. 

getpeemame( ) Get name of connected peer socket. 
read() Read f rorn a socket 
write() Write to a socket. 
ioctl() Perform control functions on a socket. 
close() Close a socket. 
select() Multiplex file I/O. 

Intel Vx960 197 

I 
I 



Vx960 5.0 - Programmer's Gulde 

6.2.S.1 Stream Sockets (TCP) 

The Transmission Control Protocol (TCP) provides reliable, guaranteed, two-way 
transmission of data. In a TCP communication, two sockets are connected, allowing 
a reliable byte-stream to flow between them in each direction. TCP is referred to as 
a virtual circuit protocol, because it behaves as though a circuit is created between the 
two sockets. 

A good analogy for TCP communications is a telephone system. Connecting two 
sockets is analogous to calling from one phone to another. After the connection is 

. established, you write and read data (talk and listen). 

Table 6-3 shows the steps in establishing socket communications with TCP, and the 
analogy of each step with telephone communications. 

Table 6-3. TCP Analogy to Telephone Communication 

Task 1 Task 2 
Walts Calls Function Analogy 

socket() socket() Create sockets. Hook up telephones. 

bind() Assign address to socket. Assign phone numbers. 

listen() Allow others to connect Allow others to call. 
to socket. 

connect( ) Request connection to Dial another phone's 
another socket. number. 

accept() Complete connection Answer phone and 
between sockets. establish connection. 

write() write() Send data to other socket. Talk. 

read() read() Receive data from other Listen. 
socket. 

close() close() Close sockets. Hangup. 

198 Intel Vx960 



6.2.5.2 

6. Network 

Datagram Sockets (UDP) 

The User Datagram Protocol (UDP) provides a simpler but less robust way of com
municating. In a UDP communication, data is sent between sockets in separate, 
unconnected, individually addressed packets called datagrams. 

As TCP is analogous to telephone communications, UDP is analogous to sending 
mail. Each UDP packet is like a letter. Each packet carries the address of both the 
destination and the sender. Like the mail, UDP is unreliable in that packets which 
are lost or out-of-sequence may not be reported. 

6.2.6 Remote Procedure Calls 

Remote Procedure Call (RPC) implements a client-server model of task interaction. 
In this model, client tasks request services of server tasks, and then wait for their 
reply. RPC formalizes this model and provides a standard protocol for passing 
requests and returning replies. Thus, a Vx960 or UNIX client task can request that 
services from Vx960 or UNIX servers in any combination. 

Internally, RPC uses sockets as the underlying communication mechanism. RPC, in 
turn, is used in the implementation of several higher-level facilities, including the 
Network File System (NFS) and remote source-level debugging. Also, RPC includes 
tools to help generate the client interface routines and the server skeleton. 

The Vx960 implementation of RPC was originally designed by SUN Microsystems 
and is in the public domain. See the public domain RPC documentation (supplied in 
source form in the directories vx/pub/rpc4.0/doc and vx/pub/rpc4.0/man) and the 
manual entry for rpcLib(l) for more information. 

6.2.7 Remote Login 

The Vx960 rlogin facilities allow remote access to the Vx960 shell by users on UNIX 
systems, and remote access to UNIX shells by users on Vx960 systems. Using the 
UNIX rlogin function, you can access the Vx960 target system's shell from a UNIX 
terminal or workstation. In fact, with a window-based UNIX workstation, you can 
access many Vx960 target systems at the same time, each in a separate window on 
the workstation. From Vx960, you can also log in to a UNIX shell or another Vx960 
shell using rlogin( ). 

Intel Vx960 199 



Vx960 5.0 - Programmer's Gulde 

Vx960 also allows remote access to the Vx960 shell via telnet. From the host com
puter, this works similarly to rlogin. However, Vx960 does not support telnet access 
from the Vx960 system to the host. 

Vx960 allows only one remote login session at a time on a target system. If remote 
login security has been included, users must enter a user name and password when 
accessing the Vx960 shell across the network using rlogin or telnet. See 9.8 Remote 
Login. 

6.2.8 Remote Fiie Access 

Transparent remote file access allows files on remote systems to be accessed just as if 
they were local. Programs running under Vx960 can access files on any UNIX sys
tem, via the network, exactly as if they were local to the Vx960 system. For example, 
/dkO/file might be a file local to the Vx960 system, while /host/file might be a file 
located on another machine entirely. To programs running under Vx960, the files 
operate in exactly the same way; only the name is different. 

Remote file access can be provided using any of three different protocols: 

• UNIX Remote Shell (rsh) 

The UNIX remote shell protocol is serviced by the remote shell daemon rshd on 
UNIX. See the manual entry for remLib(l). 

• Internet File Transfer Protocol (ftp) 

The Internet File Transfer Protocol (ftp) client and server functions are serviced 
by a library of routines in ftp Lib to transfer files between ftp servers on the net
work and invoke other ftp functions. See the manual entry for ftpLib(l) and 
ftpdLib(l). 

• Network File System (NFS) 

Developed by SUN Microsystems, the Network File System (NFS) "client" pro
tocol is implemented in the I/O driver nfsDrv to access files on any NFS server 
on the network. This I/ 0 driver has been tested with approximately 70 differ
ent implementations of NFS file servers on various operating systems. See the 
manual entry for nfsDrv(2). 

200 Intel Vx960 



6. Network 

6.2. 9 Remote Command Execution 

The Vx960 remote command execution facilities allow programs runnL11g on Vx960 
to invoke UNIX commands and have the results returned on standard out and stan
dard error via socket connections. This is accomplished using the UNIX remote shell 
protocol, which is serviced by the remote shell daemon rshd on UNIX. See the man
ual entry for remLib(l). 

6.2. l 0 loopback Interface 

In addition to the ethemet driver, there is a software-only, network pseudo-device 
called the loopback interface that has the special IP address, 127.0.0.l associated 
with it. If a TCP or UDP socket is bound to this address, and data is written to it, the 
data will be available on the local machine only; i.e., it does not actually go out on 
the physical network. All data sent to 127.0.0.1 is routed automatically back to the 
local machine by the IP network layer. This address is usually given the name "local
host". You can see "localhost" with a hostShow command. The loopback interface 
is used for software testing purposes and in some cases, local inter-process commu
nication on UNIX or inter-task communication on the Vx960 system; e.g., two tasks 
on the Vx960 could use this interface to communicate via TCP without ever putting 
packets on the physical network. The driver associated with the loopback interface 
takes packets written to it and hands them back to IP as input. 

6.3 Configuring the Network 

Before you can use the Vx960 network, you must configure both the UNIX and the 
Vx960 systems. There are two main concerns in configuring the network: establish
ing system names and addresses, and establishing appropriate access permissions 
for each system. 

On UNIX, most of the configuration procedures consist of setting up various net
work" database" files and the system startup files. In Vx960, most of the configura
tion information necessary for access to a single host is contained in the boot line. 
Further initialization can be added to usrConfig.c, or handled by application code, 
or done interactively from the shell. 

Intel Vx960 201 



Vx960 5.0 - Programmer's Gulde 

The network configuration procedures for Vx960 and the host are discussed below 
and summarized in the Network Procedures Summary table on page 214. 

6.3.1 Associating lnet Addresses with Network Interfaces 

A system's physical connection to a network is called a network interface. Each net
work interface must be assigned a unique Internet ("inet") address. Since a system 
can be connected to several networks, or can even have several connections to the 
same network, it can have several network interfaces. 

On a UNIX system, the Internet address of a network interface is specified using the 
Heon.fig command: 

% ifconfig exO 90.0.0.1 

This is usually done in the UNIX startup file /etc/re.local. For more information, see 
the UNIX manual entry for ifconfig. 

In Vx960, the Internet address of a network interface is specified by calling the rou
tine if AddrSet( ): 

ifAddrSet ("eiO", "90.0.0.2"); 

See the Vx960 manual entry for iflib(l). 

The Vx960 network startup routine, usrNetinit() in usrCon.fig.c, sets the address of 
the interface used to boot Vx960 to the Internet address specified in the Vx960 boot 
parameters. 

6.3.2 Associating lnet Addresses with Host Names 

The underlying Internet protocol uses systems' 32-bit Internet addresses. Some 
users, however, prefer to use system names that are more meaningful to them. Thus 
both UNIX and Vx960 maintain a map between system names and Internet 
addresses. 

On UNIX, the file /etc/hosts contains the map between system names and Internet 
addresses. Each line consists of an Internet address and the name(s) of the computer 
at that address: 

90.0.0.2 vxl 

202 lnte1Vx960 



6. Network 

There must be a line in this file for each UNIX system and for each Vx960 system in 
the network. For more information on /etc/hosts, see your UNIX system manual 
entry hosts(S). 

In Vx960, calls to the routine ltostAdd( ) are used to associate system names with 
Internet addresses. Make one call to hostAdd( ) for each system the Vx960 system 
communicates with: 

hostAdd ("host", "90.0.0.l"); 

To associate more than one name with an Internet address, hostAdd() can be called 
several times with different host names and the same Internet address. The routine 
hostSlzow( ) displays the current system name and Internet address associations. 

The Vx960 network startup routine, usrNetlnit() in usrConfig.c, automatically adds 
the name of the host Vx960 was booted from, using the host name specified in the 
Vx960 boot parameters. 

6.3.3 Transparent Remote File Access 

As discussed previously, Vx960 can use any of three different underlying protocols 
to provide transparent remote file access: UNIX remote shell (rsh), the Internet File 
Transfer Protocol <ftp), or the Network File System (NFS). 

The Vx960 II 0 driver net Orv implements remote file access using either of the first 
two protocols, rsh or ftp. The netDrv driver uses these protocols to read the entire 
remote file into local memory when the file is opened and to write the file back when 
it is closed if it was modified. 

The Vx960 II 0 driver nfsDrv implements remote file access using NFS. This proto
col transfers only the data actually read or written to the file and so is considerably 
more efficient, both in terms of memory utilization and throughput. However, it is 
somewhat more cumbersome to set up initially than the other protocols. 

The following sections describe the implementation and configuration of these pro
tocols in detail. 

Intel Vx960 203 



Vx960 5.0 - Programmer's Gulde 

6.3.3.1 Transparent Remote File Access via rsh and ftp 

A separate Vx960 II 0 device is created for every host which services remote file 
accesses. When a file on one of these devices is accessed, netDrv uses either rsh or 
ftp to transfer the file to or from Vx960. 

Using rsh, netDrv remotely executes the UNIX cat command to copy the entire 
requested file to and from the target. The rsh protocol is serviced by the remote shell 
daemon rshd on UNIX. See the manual entry remLib(l). 

Using ftp, netDrv uses the RETR and STOR commands to "retrieve" and "store" the 
entire requested file. The netDrv driver uses a library of routines, in ftpLib, that 
implements the "client" side for the Internet File Transfer Protocol. Vx960 tasks can 
transfer files to and from ftp servers on the network and invoke other ftp functions. 
See the manual entry ftpLib(l). 

Vx960 can also function as an ftp server. The ftp daemon running on a Vx960 server 
handles calls from UNIX and Vx960 clients, and can also boot another Vx960 system. 
The ftp server daemon is initialized on the Vx960 server using ftpdlnit( ). See the 
manual entry for ftpdlnit() in ftpdLib(l). 

• Allowing Remote Fiie Access via rsh on UNIX 

An rsh request includes the name of the requesting user. The request is treated just 
like a remote login by that user. UNIX restricts such remote logins via the file .rhosts 
in users' home directories, and more globally with the file /etc/hosts.equiv. The 
.rhos ts file contains a list of system names (as defined in the /etc/hosts file) that have 
access to that user's login. 

Therefore, you should have a .rhosts file in your home directory listing the Vx960 
systems, each on a separate line, that are allowed to access files remotely using your 
user name. 

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in this 
file are allowed login access to any user defined on the local system (except the 
super-user root). Thus, adding Vx960 system names to /etc/hosts.equiv allows those 
Vx960 systems to access files using any user name on the UNIX system. 

The ftp protocol, unlike rslt, specifies both the user name and password on every 
request. Therefore, when using ftp, the UNIX system does not use .rhosts or 
/etc/hosts.equiv to authorize remote access. 

204 Intel Vx960 



6.· Network 

• Creating Vx960 Network Devices That Use rsh or ftp 

The routine netDevCreate( ) is used to create a Vx960 I/ 0 device for a particular 
remote host system: 

netDevCreate ( "devName", "host", protocol) 1 

Its arguments are: 

devName the name of the device to be created. 

host the Internet address of the host in dot notation or the name of 
the remote system as specified in a previous call to ltostAdd( ). 
It is traditional to make the device name be the host name fol
lowed by a colon. 

protocol the file transfer protocol: 0 for rslz or 1 for ftp. 

For example, the call: 

netDevCreate ("mars:", "mars", O); 

creates a new I/O device on Vx960 called "mars:", which accesses files on the host 
system "mars" using rsh. 

Once a network device has been created, files on that host can be accessed by 
appending the host path name to the device name. For example, the file name 
mars:/usr/fred/myfile refers to the file /usr/fred/myfile on the "mars" system. This 
file can be read and/ or written exactly like a local file. For example, the Vx960 shell 
command: 

-> fd •open ("mars:/usr/fred/myfile", UPDATE) 

would open that file for II 0 access. 

The Vx960 network startup routine, usrNetlnit( ) in usrConfig.c, automatically cre
ates a network device for the host name specified in the Vx960 boot parameters. If 
no ftp password was specified in the boot parameters, the network device is speci
fied with the rsh protocol. If a password was specified, ftp is used. 

• Setting the User ID for Remote File Access via rsh or ftp 

All ftp and rsh requests to a remote system include the name of the user. All ftp 
requests include a password as well as a user name. From Vx960 you can specify the 
user name and password for remote requests by calling the routine iam( ): 

Intel Vx960 205 



Vx960 ~.O - Programmer's Gulde 

6.3.3.2 

iam ( "username", "password") 1 

The firs~ argument to iam( ) is the user name which is used when you access remote 
systems. The second argument is the ftp password. This is ignored if using rsh, and 
can be specified as NULL or 0. 

For example, the call: 

iam ("fred", "flintstone")1 

tells Vx960 that all accesses to remote systems via either rsh or ftp are through user 
11 fred", and if ftp is used, the password is /1 flintstone". 

The Vx960 network startup routine, usrNetinit() in usrConfig.c, initially sets the 
user name and password to those specified in the boot parameters. 

• File Permissions 

For a Vx960 system to have access to a particular file on a host, permissions on the 
host system must be set up so that the user name Vx960 is using has permission to 
read that file (and write it, if necessary). This means that Vx960 must have permis
sion to access all directories in the path, as well as the file itself. 

The easiest way to check this is to log in to the host with the user name that Vx960 
is using, and try to read or write the file in question. If you cannot do this, neither 
can the Vx960 system. 

Transparent Remote File Access via NFS 

The II 0 driver nfsDrv uses the "client" routines in the library nfsLib to access files 
on an NFS file server. The routines in nfslib are implemented using Remote Proce
dure Call. For more information, see the manual entry nfsLib(l) and 6.2.6 Remote 
Procedure Calls. 

• Allowing Remote File Access via NFS on UNIX 

To access files, NFS clients mount file systems from NFS servers. On a UNIX NFS 
server, the file /etc/exports specifies which of the server's file systems can be 
mounted by NFS clients. For example, if this file contained the line: 

/usr 

206 Intel Vx960 



6. Network 

then the file system /usr could be mounted by NFS clients such as Vx960. If a file sys
tem is not listed in this file, then it cannot be mounted by other machines. Other 
optional fields in /etdexports allow the exporting of a file system to be restricted to 
certain machines or users. 

In addition to modifying the /etdexports file, you must notify local servers that the 
file /etdexports has been changed. You can reboot the host, or you can issue an 
exportfs -a command on the Sun, for example. See your host documentation for 
more details. 

• Creating Vx960 Network Devices That Use NFS 

Access to a remote NFS file system is established by mounting that file system locally 
and creating an I/ 0 device for it using the routine nfsMoimt( ): 

nfsMount ("host", "hostFileSys", "loailName"); 

Its arguments are: 

host 

hostFileSys 

localName 

the host name of the NFS server where the file system resides 

the name of the desired host file system or subdirectory 

the local name to assign to the file system 

For example, the following call would mount "/ usr" of the host "mars" as "/vxusr" 
locally: 

nfsMount ("mars", "/usr", "/vxusr"); 

The host name "mars" must have already been added to Vx960's list of hosts using 
the routine lwstAdd( ). Vx960 then creates the local I/ 0 device /vxusr that refers to 
the mounted file system. A reference on Vx960 to a file with the name 
/vxusr/fred/myfile refers to the file /usr/fred/myfile on the host machine "mars" as 
if it were local to the Vx960 system. 

Vx960 mounts all exported NFS file systems if the option 
INCLUDE_NFS_MOUNT_ALL is defined in the Vx960 configuration file. Otherwise, 
the network startup routine, usrNetlnit( ) in usrCon.fig.c, tries to mount the file sys
tem Vx960 was booted from, as long as NFS is included in the Vx960 configuration 
and the Vx960 boot file begins with a" I". For example, if NFS is included and you 
boot /usr/vx/config/target/vxWorks, then Vx960 attempts to mount /usr from the 
boot host via NFS. 

Intel Vx960 207 



Vx960 5.0 - Programmer's Gulde 

• Setting the User ID for Remote File Access via NFS 

When making an NFS request to a host system, the NFS server needs more informa
tion about the user than just the user's name. NFS is built on top of Remote Proce
dure Call (RPC) and uses a type of RPC authentication known as AUTH_UNIX. This 
authentication mechanism requires the user ID and a list of group IDs that user 
belongs to. 

These parameters can be set on Vx960 using the routine nfsAutltUnixSet( ): 

nfsAuthUnixSet ("mars", 1000, 200, O); 

This would set the NFS authentication to user ID 1000 with the single group ID 200. 
The routine nfsAutlzUnixPrompt() provides a more interactive way of setting the 
NFS authentication parameters from the shell. 

On UNIX systems, a user ID is specified in the/etc/passwd file. A list of groups that 
a user belongs to is specified in the /etc/group file. 

A default user ID and group 'ro is specified in the Vx960 configuration header 
/usr/vx/config/alL/configAll.h by defining the values of NFS_USER_ID and 
NFS_GROUP _ID respectively. The NFS authentication parameters is set to these val
ues at system startup. 

6.3.4 Remote Login from UNIX to Vx960: rlogin and telnet 
.. 

You can log in to a Vx960 shell from a UNIX terminal or workstation using either rlo-
gin or telnet. These facilities are initialized on Vx960 by the routines rloglnit( ) and 
telnetlnit( ), respectively. 

The Vx960 network startup routine, usrNetlnit() in usrConfig.c, automatically ini
tializes either rlogin or telnet. If no password is specified in the boot parameters, 
then rlogin automatically is initialized. If a password is specified in the boot param
eters, then telnet automatically is initialized. 

If remote login security has been included, users are required to enter a user name 
and password when accessing the Vx960 shell across the network using rlogin or 
telnet. For more information, see 9.8 Remote login. 

208 Intel Vx960 



6.3.5 

6.3.6 

6.3.6.1 

6. Networl< 

Remote Login from Vx960 to UNIX: rlogin() 

You can log in to a UNIX shell from a Vx960 terminal using rlogin( ). To do this, 
access permission must be granted to the Vx960 system by entering its system name 
either in the .rhosts fil•! (in the user home directory) or in the /etc/hosts.equiv file. 
For more information, see Allowing Remote File Access via rsh on UNIX under 
section 6.3.3.1. 

Adding Gateways to a Network 

The Internet protocols allow hosts on different but connected networks to commu
nicate. If a machine on one network sends a packet to a machine on another net
work, then a gateway is sought that can forward the message from the sender's 
network to the destination's network. If a system has interfaces to more than one 
network, then it can be a gateway between those networks. One of the primary func
tions of IP (the lower-level protocol of TCP /IP) is to perform this routing and for
warding among interconnected networks. 

Many systems, including most UNIX systems, have a routing daemon (routed) 
which exchanges routing information with other systems to determine network con
nectivity. Vx960, however, has no routing daemon, and must instead be told explic
itly about any gateways it may need. Similarly, if Vx960 systems are gateways, the 
UNIX systems must be told about them, since the Vx960 systems do not broadcast 
their routing information. 

Adding a Route on UNIX 

A UNIX system can be told explicitly about a gateway in one of two ways: by editing 
/etc/gateways or using the route command. 

When the UNIX route daemon routed is started (usually at boot time), it reads a 
static routing configuration from/etc/gateways. Each line in/etc/gateways specifies 
a network gateway in the following format: 

net destiruztion-addr gateway gateway-addr metric n passive 

where n is the "hop count" from the host machine to the destination network (i.e., 
the number of gateways between the host and the destination network). 

Intel Vx960 209 



Vx<:/60 5.0 - Programmer's Gulde 

6.3.6.2 

For example, consider a system on network 90. The following line in /etc/gateways 
describes a gateway between networks 90 and 91, with an Internet address 90.0.0.3 
on network 90; a hop count (metric) of 1 specifies that the gateway is a direct con
nection between the two networks: 

net 91.o.o.o gateway 90.0.0.3 metric 1 passive 

After editi.ng /etc/gateways, you must kill the route daemon and restart it, since it 
only reads /etc/gateways when it starts, and otherwise is unaware of subsequent 
changes to the file. 

· Alternatively, you can use the route command to add routing information: 

route add destination-network gateway-addr [metric] 

For example, the command: 

route add 91.0.0.0 90.0.0.31 

configures the gateway as in the above example with the /etc/gateways file. Routes 
added with this "manual" method are lost the next time the system is rebooted. 

Adding a Route on Vx960 

To add gateways to the Vx960 network routing tables, use the routeA.dd() routine: 

routeAdd ( "destination-addr", "gateway-addr") 

The arguments to the routeA.dd() routine are: 

destination-addr the address you want to reach 

gateway-addr the address of a gateway 

In other words, use gateway-addr to reach destination-addr. Both addresses can be speci
fied by dot notation or by the host names defined by the routine lzostAdd( ). 

For example, consider two Vx960 machines vx2 and vx3, both interfaced to network 
91. Suppose that vx3 is a gateway between networks 90 and 91 and that its Internet 
address on network 91 is 91.0.0.3. The following calls can then be made on vx2 to 
establish vx3 as a gateway to network 90: 

210 Intel Vx960 



6. Network 

routeAdd ("90.0.0.0", "vx3"); 

or 

routeAdd ("90.0.0.0", "91.0.0.3"); 

Other routing routines are available in the routin~ library routeLib(1). 

The Vx960 network startup routine, usrNetlnit() in usrConfig.c, automatically adds 
the gateway specified in the boot parameters (if any) to the routing tables. In this 
case, the address specified in the gateway field (" g = ") is added as the gateway to 
the network of the boot host. 

6.3.7 Broadcast Addresses 

Many physical networks support the notion of broadcasting a packet to all hosts on 
the network. A special Internet broadcast address is interpreted by the network sub
system to mean "all systems" when specified as the destination address of a data
gram message (UDP). An example of this can be found in the demo program 
/usr/vx/ demo/dg/ dgTest.c. 

Unfortunately there is some ambiguity about what address is to be interpreted as the 
broadcast address. The Internet specification now states that the broadcast address 
is an Internet address with a host part of all ones. However, some older systems use 
an Internet address with a host part of all zeros as the broadcast address. 

Most newer systems, including Vx960, accept either address on incoming packets as 
being a broadcast packet. But when an application wants to send a broadcast packet, 
it must use the correct broadcast address for its system. 

Vx960 uses a host part of all ones as the broadcast address. Thus a datagram sent to 
Internet address 90.255.255.255 (Ox5affffff) would be broadcast to all systems on net
work 90. However, to allow compatibility with other systems, Vx960 allows the 
broadcast address to be reassigned for each network interface by calling the routine 
ifBroadcastSet( ). Similarly, most UNIX systems have a broadcast option to the 
ifconfig command that allows the broadcast address for an interface to be reas
signed. See the Vx960 manual entry for ifBroadcastSet() and the UNIX manual 
entry for ifconfig for more information. 

Intel Vx960 211 



Vx960 5.0 - Programmer's Gulde 

6.3.8 Using Subnets 

An Internet address consists of a network address portion and a host address por
tion. As described previously, there are different classes of Internet addresses in 
which different parts of the 32-bit address are assigned to each portion. This pro
vides a great deal of flexibility in network addressing. Even so, in some environ
ments network addresses are a scarce resource - an organization may be limited to 
certain number of network addresses by a higher authority. 

To allow a single network address to be subdivided into multiple sub-networks, a 
technique called subnet addressing is used. This technique involves extending the 
network portion of the addresses used on a particular set of physical networks. The 
interpretation of the Internet address is altered to include more bits in the network 
portion and fewer in host portion. 

The specification of which bits are to be interpreted as network address is called the 
net mask. A net mask is a 32-bit value with l's in all bit positions that are to be inter
preted as the network portion. In Vx960, the net mask can be specified for a particu
lar network interface with the routine ifM.askSet( ). See the manual entry for 
if}IIaskSet( ) for more information. 

It may be necessary to specify a net mask during booting, in order to correctly access 
the host from which you are booting. This can be done by appending ":mask" to the 
Internet address specifications for the Ethernet and/ or backplane interfaces in the 
boot parameters, where mask is the desired net mask in hexadecimal. For example, 
when entering boot parameters interactively: 

inet on ethernet (e): 90.0.0.l:ffffffOO 
inet on backplane (b): 90.0.1.l:ffffffOO 

or when specifying the boot parameters in a boot string: 

e•90.0.0.l:ffffff00 b•90.0.l.l:ffffff00 

6.3.9 Network Management and Information 

The following Vx960 statistical reporting features allow you to analyze the status of 
the network. 

Note: If you do not understand the information provided by the show com
mands, refer to your local network expert. 

212 Intel Vx960 



6.3.9.1 

6. Network 

ifSltow( ) displays the attached network interfaces. This is similar to the 
BSD ifconfig command. 

icmpstatSitow() displays ICMP protocol statistics. This is similar to the BSD 
netstat -s command. 

inetstatSlzow() displays active connections for Internet protocol sockets. This is 
similar to the BSD netstat -a command. 

ipstatSlzow( ) 

mbufSlzow( ) 

tcpstatSlzow() 

udpstatSlzow( ) 

arptabS!tow( ) 

displays IP protocol statistics. This is sin1ilar to the BSD netstat 
-s command. 

reports mbuf (network buffer) statistics. This is similar to the 
BSD netstat -m command. 

displays all statistics for the TCP protocol. This is similar to the 
BSD nets tat -s command. 

displays statistics for the UDP protocol. This is similar to the 
BSD netstat -s command. 

displays the current ARP table entries. This is similar to the BSD 
arp -a command. 

Refer to Chapter 8, Configuration, to make sure that these statistical reporting fea
tures are configured into your kernel. 

Ping Messages From a Host 

The Vx960 system responds to ping messages from a host. These messages tell you 
that a system is up and responding to at least the IP /ICMP protocol levels. Another 
common thing to do with ping is to send a number of packets and see if any of the 
packets are lost. This loss might indicate cable or other hardware problems, e.g., on 
a Sun host, you might do the following: 

sun> /usr/etc/ping phobos 

See the ping man page on your host for additional information. 

Intel Vx960 213 

i 
111 



Vx960 5.0 - Programmer's Gulde 

Function 

Associate Internet 
addresses with 
network 
interfaces. 

Associate Internet 
addresses with 
system names. 

Examine host 
names. 

Transparent 
remote file access 
via rsh. 

Transparent 
remote file access 
via ftp. 

Transparent remote 
file access via NFS. 

214 Intel Vx960 

Network Procedures Summary 

On UNIX 

Use ifconfig in/etc/rc.loc: 
ifconfig exO 90.0.0l 

or: 
if conf ig exO host 

Add address-name pairs to 
/etc/hosts and one of these: 

90.0.0.l host 

90.0.0.2 vxl sonny 
90.0.0.3 vx3 

Look at /etc/hosts. 

Add remote system names to 
/etc/hosts.equiv or 
/userhome/.rhosts: 

vxl 

vx2 

No action necessary. 

On Vx960 

Call if AddrSet: 
ifAddrSet (Maio•, #90.0.0.2•)1 

Call hostAdd( ): 
bostAdd (Mhost•, M90.0.o.1•)7 
bostAdd (Mvx1•, #90.0.0.2•)1 
hostAdd (uaonny•, #90.0.0.2•)7 

Call hostShows( ). 

Create network devices to 
remote systems using rsh: 

netDevCreate("bost1","host", 0)1 

Set user name using iam( ): 
iam ("fred", 0)1 

Access files with created device name: 
fd •open ("host1/usr/myfile", UPDATE)1 

Create network devices to remote systems 
using ftp: 

netDevCreate ("bost1", "host", 1)1 

Set user name and password using iam( ): 
iam ("fred", "flintstone")1 

Access files with created device name: 
copy < bost1/usr/fred/myfile 

Add the names of mountable Create NFS device 
file systems and a list of groups nfsMount ("host•, "/usr", "/hostUsr"); 

that have access to them Set NFS authentication with 11fsAuthU11ixSet() 
in/etc/exports. or 11fsAuthU11ixPro111pt( ): 

nfsAutbUnixSet ("host", uid, gid, 0)7 



6. Network 

Network Procedures Summary (continued) 
I 

Function On UNiX On Vx960 

Access files with mounted name: 
copy < /hoatUar/fred/myfil• 

Remote login from Use rlogin: Initialize rlogin: 
UNIX to Vx960 \ rlogin vx rloginit. ()I 

via rlogin. (Automatically called in usrConfig.c.) 

Remote login from Use telnet: Initialize telnet: 
UNIX to Vx960 via \ telnet vx telnetinit () 1 

telnet (Automatically called in usrConfig.c.) 

Remote login Add remote system names Set user name with iam( ): 
UNIX via rlogin( ). to/etc/hosts.equiv iam ("fred")J 

/userhome/.chosts: Use rlogin( ): 
vxl -> rlogin "boat" 

Add gateways to a Add gateway to /etc/gateways and Call routeAdd( ): 
network. restart routed: routeAdd ("9o.o.o.o·, "vx3") J 

\ net 91.0.o.o gateway 90.0.0.3 \ routeAdd ("90.o.o.o•,·91.0.0.3") 
metric 1 passive 

or use route: 
\ route add 91.0.0.0 90.0.0.J 1 

Examine routing Use netstat: Call routeSlrow( ). 
tables. \ netstat -r 

Examine network Use ifconfig: Call ifSltow( ): 
interfaces. \ ifconfig leO ifShow ("eiO"); 

Examine arp tables. Use arp-a Call arptabSlzow. 

Add arp entry · Use arp -a 90.0.0.3 Call arpAdd ("90.0.0.3" 
(with Int.el arpLib.o). 01801f91l1213 temp "01801f91l1213", 0) 

lnte/Vx960 215 



Vx960 5.0 - Programmer's Gulde 

6.4 Network Initialization on Startup 

Most of the information that Vx960 needs to set up its network and access its boot 
host is taken from the boot parameters you supply to the Vx960 boot ROMs via the 
boot line or the boot menu commands. This section summarizes the network config
uration performed automatically by Vx960, based on these parameters. Most of this 
configuration is done by the routine usrNetlnit( ) in the configuration module 
/usr/vx/config/all/usrConfig.c. See 8. Configuration for more information on usrCon
fig. 

Vx960 startup procedures configure the network based on the following boot 
parameters: 

boot device The network device to boot from, e.g., "ei" for Intel 82596 
coprocessor. This device is attached and configured automati
cally with the correct Internet address. 

host name The name of the host to boot from. This need not be the same 
name used internally by that system. Vx960 adds the host 
name to the host table and creates a device by that name. 

host inet The Internet address of the host to boot from. 

inet on ethernet The Internet address of this target on the Ethernet, if any. If the 
target has no Ethernet controller (perhaps because it boots 
from a backplane network through a gateway) this field should 
be blank. A subnet mask can also be specified as described pre
viously. 

inet on backplane The Internet address of this target on the backplane network. 
This field can be blank if no backplane network is required. 
Again, .a subnet mask can be specified as described previously. 

gateway inet The Internet address of the gateway to boot through, if the host 
is not on the same network as the target. 

boot file The full path name of the Vx960 object module to be booted. 

processor number The backplane processor number of the target CPU. The first 
CPU must be processor number 0. 

216 In tel Vx960 



6. Network 

The following network elements are configured from the above parameters: 

ethernet interface If "Inet On Ethernet" is specified, the Ethernet interface is 
attached; the Internet address and the optional net mask are set 
(if AddrSet( ) and ifMaskSet( )). 

backplane interface 

host names 

routing 

If "Inet on Backplane" is specified, the backplane interface is 
attached; the Internet address and the optional net mask are set 
(if AddrSet( ) and ifMaskSet( )). 

Host name entries are added (TtostAdd( )) for the specified boot 
host and for loopback ("localhost"). 

If a gateway address is specified, a routing entry is added indi
cating that address is a gateway to the network of the specified 
boot host. 

remote file access device 

network file system 

remote login 

This device is created with the name "boothost:". If a password 
is specified, ftp is used. Otherwise, rsh is used. 

If NFS is included, a mount of the first directory in the boot file 
path is attempted if its name begins with a"/". For example, if 
you boot /usr/vx/config/target/vxWorks, Vx960 attempts an 
NFS mount of /usr. If INCLUDE NFS MOUNT ALL is defined, - - -
Vx960 mounts all exported NFS file systems. The NFS user ID 
and group ID are initialized to values defined in /usr/vx/confi
g/all/configAll.h. 

rlogin is initialized if no password was specified, otherwise tel
net is initialized. 

user name and password 
These are initialized as specified in the boot parameters. 

current working directory 
This is set to the remote file access device "boothost:". 

Intel Vx960 217 

~-' 



Vx960 5.0 - Programmer's Gulde 

6.5 Serial Line Interface Protocol 

Vx960 can communicate with the host operating system over serial connections as 
well as over networks and backplanes. The Serial Line Interface Protocol (SLIP) sup
ports TCP /IP layer software where high-speed networks are not feasible like long
distance telephone lines. If either end of a SLIP connection has other network inter
faces (e.g., Ethernet) and can forward packets to other machines, a SLIP connection 
can serve as a gateway between networks. 

Implementing SLIP as a network interface driver provides a ready connection to the 
IP layer software. The SLIP driver treats IP packets as streams of data suitable for 
serial transmission. 

Since a SLIP connection is point-to-point, a pair of valid Internet addresses must be 
specified to inform the IP layer about how to route IP packets between the two end 
points of a serial line connection. The SLIP device initialization routine slipfoit( ) 
contains the Internet addresses for both ends of the SLIP point-to-point connection 
and the name of a serial I/0 device used for full-duplex communications. 

For example, 

slipZnit (0, "/tyCo/l", "192.lO.l.l", "192.lO.l.2", O); 

initializes a SLIP device which uses the console' s second port whose Internet 
address is 192.10.1.1 and whose remote peer's address is 192.10.1.2. 

6.6 Backplane Networks 

The Vx960 network subsystem has many layers of protocols. At the bottom layer are 
the network interface drivers whose job is to transmit and receive packets on the 
physical network medium. In addition to supplying drivers for traditional network 
media such as Ethernet, Vx960 also supplies a backplane driver, bp, which provides 
communication over a backplane bus. 

The advantage of a backplane driver compatible with the rest of the network sub
system is that all higher-level protocols are immediately available over the back-

218 Intel Vx960 



6. Network 

plane, just as they are over Ethernet. Socket communications, remote login, remote 
file access, NFS, remote procedure calls, and remote source debugging are all avail
able to and from any processor on the backplane, simultaneously. Use of the net
work facilities over the backplane is indistinguishable from use over any other 
medium. 

A multiprocessor backplane bus becomes an Internet network of its own. Each 
backplane network has its own network number. As usual, each processor on the 
backplane has a unique Internet address. 

The routing capabilities of the Vx960 Internet protocols allow the processors on the 
backplane network to reach systems on other networks via a gateway processor on 
the backplane. The gateway processor has connections to both the backplane net
work and an external network, typically an Ethernet network. This makes all levels 
of network communications available between any processor on the backplane and 
any other host or target system on the external network. 

Finally, the low-level transport mechanism of the backplane driver is also available 
directly. This allows alternative protocols to be run over the backplane in parallel 
with the standard ones. 

The Vx960 backplane driver uses the following techniques to send network packets 
from one processor on the backplane to another: 

• Packets are transferred across the backplane via a pool of shared memory that can 
be accessed by all processors o.n the backplane. 

• Access to the shared memory pool is interlocked by use of a "test-and-set" 
instruction. 

• Processors can either poll the shared memory data structures for input packets 
periodically or be notified of input packets by interrupts. 

The backplane network is configured by constants in the configuration header 
config.h and by parameters specified to the Vx960 boot ROMs. The following sec
tions give the details of the backplane network operation and configuration. 

lnte/Vx960 219 



Vx960 5.0 - Programmer's Gulde 

6.6.1 The Backplane Shared Memory Pool 

6.6.1.1 

6.6.1.2 

The basis of the Vx960 backplane network is the shared memory pool. 11-Js is a contig
uous block of memory that must be accessible to all processors on the backplane. 
This memory is either part of one of the processors' on-board, dual-ported memory, 
or on a separate memory board. ( 

Backplane Processor Numbers 

The processors on the backplane are each assigned a unique backplane processor num
ber starting with 0. The assignment of numbers is arbitrary, except for processor 0, 
which by convention is the backplane maste~ described in the next section. 

The processor numbers are established when the system is booted by the parameters 
supplied to the boot ROMs. These parameters can be burned into ROM, set in the 
processor's nonvolatile RAM if available, or entered interactively. 

The Backplane Master: Processor O 

One of the processors on the backplane is the backplane master. The backplane master 
has the following responsibilities: 

• Initializing the shared memory pool and the backplane anchor. 

• Maintaining the backplane heartbeat. 

• Functioning (usually) as the gateway to the external (Ethernet) network. 

• Allocating the shared memory pool itself from its dual-ported memory, in some 
configurations. 

No processor can use the backplane network until the mi;ister has initialized it. 
However, the master processor is not involved in the actual transmission of packets 
on the backplane between other processors. Once the shared memory pool is initial
ized, the processors, including the master, are all peers. 

The configuration module usrConfig.c is set up to establish backplane processor 0 
as the master. The master processor usually boots from the external (Ethernet) net
work directly. The master has two Internet addresses in the system: its Internet 
address on the Ethernet and its address on the backplane network. See the manual 
entry for usrConfig(l). 

220 Intel Vx960 



6.6.1.3 

6. Network 

The other processors on the backplane boot indirectly via the backplane network, 
using the master as the gateway. They have only an Internet address on the back
plane network. These processors specify the backplane interface, bp, as the boot 
device in the boot parameters. 

The Backplane Anchor 

In various configurations, the shared memory pool may be located at different loca
tions. In many situations, it is desirable to allocate the shared memory at run-time, 
rather than fixing its location at the time the system is built. 

All processors on the backplane need to be able to locate the shared memory pool, 
even when its location is not known at the time the system is built. The backplane 
anchor serves as a common point of reference for all processors. The anchor is a small 
data structure located at a fixed location at the time the system is built. This is usu
ally either in low memory of the dual-ported memory of one of the processors, or at 
some fixed address on the separate memory board. 

The anchor contains a pointer to the actual shared memory pool. This is set up by 
the backplane master when the backplane network is initialized. The anchor's 
"pointer" to the shared memory pool is actually a relative offset from the anchor 
itself, so the anchor and pool must be in the same address space, so that this offset is 
the same for all processors. 

The backplane anchor address is established in two ways: either by parameters in 
config.h, or by boot parameters. For the backplane master, the anchor address is 
established in the master's configuration header config.h at the time the system 
image is built. The value of the constant BP _ANCHOR_ADRS, in config.h of the back
plane master, should be set to the address of the anchor as seen by the master. 

For the other processors on the backplane, a default anchor address can be estab
lished in the same way, by the setting of BP_ANCHOR_ADRS in config.h, but this 
requires burning boot RO Ms with that configuration since the other processors must 
boot from the backplane to begin with. For this reason, the anchor address can also 
be specified in the boot parameters, if the backplane network is the boot device. This 
is done by appending the address to the backplane boot device code "bp", separated 
by "=". Thus the following boot parameter: 

boot device: bp•800000 

Intel Vx960 221 



Vx960 5.0 - Programmer's Gulde 

6.6.1.4 

6.6.1.5 

6.6.1.6 

establishes the anchor address at Ox800000. In this case, this should be the address 
of the anchor as seen by the processor being booted. 

The Backplane Heartbeat 

The processors on the backplane must not attach to the backplane network until the 
shared meinory pool initialization has been completed. To let the other processors 
know when the backplane is "alive," the master maintains a backplane heartbeat. 
This heartbeat is a value in the second long word of the anchor data structure that is 

·incremented by the master once per second. Processors on the backplane determine 
that the backplane is alive by watching the heartbeat for a few seconds. 

Shored Memory Location 

As mentioned above, the backplane shared memory can either be located at a fixed 
location at the time the system is built, or be dynamically allocated at run-time. The 
location is determined by the value of the constant BP _MEM_ADRS in the header 
config.h. This constant can be specified as follows: 

• Specifying "NONE" (-1) means that the shared memory pool is to be dynami
cally allocated from the master's on-board dual-ported memory. 

• Specifying an absolute address that is different from the anchor address 
BP _ANCHOR_ADRS means that the shared memory pool starts at that fixed 
address. 

• For convenience, specifying the same absolute address as the anchor address 
means the shared memory pool starts immediately after the anchor data struc
ture, without having to know the size of that structure. 

Shared Memory Size 

The size of the shared memory pool is determined by the value of the constant 
BP _MEM_SIZE in the header file config.h. 

The size required for the shared memory pool is dependent on the number of pro
cessors and the expected traffic. There is less than 2 Kbytes of overhead for data 
structures. After that, the shared memory pool is divided into 2-Kbyte packets. 
Thus, the maximum number of packets that can be outstanding on the backplane 

222 Intel Vx960 



6.6.1.7 

6.6.1.8 

6. Network 

network is (poolsize - 2K) I 2K A reasonable minimum is 64K. A configuration with 
a large number of processors on one backplane and many simultaneous connections 
could require 512 Kbytes. Having too small a pool slows down communications. 

"On-Board" and "Off-Board• Options 

The config.h files delivered with Vx960 contain a conditional compilation that 
makes it easy to select a pair of typical configurations. The constant BP _OFF_BOARD 

can be defined TRUE to select a typical off-board shared memory pool, or FALSE to 
select a typical on-board shared memory pool. 

The off-board configuration establishes the backplane anchor and pool to be located 
at an absolute address of Ox800000 on a separate memory board with a size of 512 
Kbytes. 

The on-board configuration establishes the backplane anchor at a low address in the 
master processor's dual-ported memory. The shared memory pool is configured to 
be allocated from the master's own memory (with malloc()) at run time. The size 
of the pool allocated is set to 64K. 

These configurations are provided as examples and should be changed to suit the 
actual configuration. 

Test-and-Set to Shared Memory 

Unless some form cf mutual exclusion is provided, multiple processors simulta
neously accessing certain critical data structures of the shared memory pool could 
interfere with each other's access and cause fatal errors. The Vx960 backplane net
work uses an indivisible, atomic-modify instruction to obtain exclusive use of a 
shared memory data structure. This translates into a read-modify:write (RMW) cycle 
on the backplane bus. · 

It is important that the selected shared memory support the Rt\1W cycle on the bus 
and guarantee the indivisibility of such cycles. This is especially problematic if the 
memory is dual-ported, as the memory must then also lock out one port during a 
RMW cycle on the other. 

Some processors do not support RMW indivisibly in hardware, but do have soft
ware hooks to allow this. For example, some processor boards have a flag that can 
be set to prevent the board from releasing the backplane bus, once it has been 

Intel Vx960 223 

... 



Vx960 5.0 - Programmer's Gulde 

6.6.2 

acquired, until that flag is cleared. These techniques can be implemented in the sys
tem-dependent library syslib.c for the processor, in the routine sysBusTas( ). The 
backolane driver calls this routine to affect the mutual exclusion on shared memory 

& • 

data structures. 

Inter-Processor Interrupts 

Each processor on the backplane has a single input queue of packets sent from other 
processors to that destination processor. There are three methods processors use to 
determine when to examine the input queue: polling, bus interrupts, and mailbox 
interrupts. 

When using polling, the processor simply examines its input queue periodically. 
When using interrupts, the processor receives an interrupt from the sending proces
sor when its input queue has packets. Interrupt-driven communication is much 
more efficient than polling. 

Most backplane busses have a limited number of bus-interrupt lines available on the 
backplane (e.g., VMEbus has seven). A processor can use one of these interrupt lines 
as its input interrupt. However, each processor must have its own interrupt line. 
Furthermore, not all processor boards are capable of generating bus interrupts. 
Thus, bus interrupts are difficult to use. 

mailbox interrupts, also called location monitors, monitors the access to specific mem
ory locations. A mailbox interrupt is a bus address which, when written to, causes a 
specific interrupt on the processor board. Each board can be set, with hardware 
jumpers or software registers, to use a different address for its mailbox interrupt. 

To generate a mailbox interrupt, a processor writes to that location. There is effec
tively no limit to the number of processors that can use mailbox interrupts because 
each processor takes up a single address on the bus. Most modern processor boards 
include some kind of mailbox interrupt. 

Each processor must tell the other processors what method to use to notify it when 
its input queue has packets. In the shared memory data structures, each processor 

- enters its interrupt type and up to three parameters about that type. This information 
is used by the backplane driver of the other processors when sending packets to that 
processor. 

The interrupt type and parameters for each processor are specified in config.h by the 
constants BP _INT_TYPE and BP _INT_ARGn. The possible values of BP _INT_TYPE and 

224 Intel Vx960 



6. Network 

the corresponding parameters are defined in the header if_bp.h. They are summa
rized in Table 6-4. 

Table 6-4. Backplane Interrupt Types 

Type Arg 1 Arg 2 Arg 3 Meaning 

BP _INT_NONE - - - Polling 

BP_INT_BUS level vector - Bus interrupt 

BP _INT_MAILBOX_l address space address value I-byte write 
mailbox 

BP_INT_MAILBOX_2 address space address value 2-byte write 
mailbox 

BP _INT_MAILBOX_4 address space address value 4-byte write 
mailbox 

BP _INT_MAILBOX_Rl address space address - I-byte read 
mailbox 

BP _INT_MAILBOX_R2 address space address - 2-byte read 
mailbox 

BP _INT _MAILBOX_R4 address space address - 4-byte read 
mailbox 

6.6.3 Configuring the UNIX Host 

The UNIX host is configured to support the backplane network using the proce
dures outlined earlier in this chapter for non-backplane networks. In particular, a 
backplane network requires: 

• all backplane host names and addresses entered in /etc/hosts 

• all backplane host names entered in .rhosts in your home directory or in 
/etc/hosts.equiv 

• a gateway entry specifying the master's Internet address on the Ethernet as the 
gateway to the backplane network. 

Intel Vx960 225 



Vx960 5.0 - Programmer's Gulde 

6.6.4 Example Configuration 

This section pulls the foregoing discussion together in an example of a simple back
plane network. The configuration consists of a single UNIX host and two target pro
cessors on a single backplane. In addition to the two processors, the backplane also 
has a separate memory board for the shared memory pool and an Ethernet controller 
board. The additional memory board is not essential, but makes for a configuration 
that is easier to describe. 

In this configuration, shown in Figure 3, we have two networks: the Ethernet and 
the backplane. The Ethernet is assigned network number 90 and the backplane is 
assigned 91. 

ETHERNET 

BACKPLANE 

90.0.0.2 

mars 
Jwst 

T 
90.0.0.1 

Figure 6-4. Example Backplane Network 

The host is "mars" and is assigned the Internet address 90.0.0.1. 

90.0.0.0 

91.0.0.0 

The backplane master is "phobos" and functions as the gateway between the Ether
net and backplane networks. It has two Internet addresses: 90.0.0.2 on the Ethernet 
network and 91.0.0.2 on the backplane network. 

226 Intel Vx960 



6.· Network 

The other backplane processor is 11 deimosn and is assigned the backplane address I 
91.0.0.3. It has no address on the Ethernet because it is not, in fact, on the Ethernet. •.· 
However, it can communicate with "mars" via the backplane network, using "pho-
bos" as a gateway. Of course, the use of the gateway is handled by the Internet pro-
tocol and is completely transparent to the user. 

The example network address assignments are as follows: 

Name 

mars 

phobos 

deimos 

lnet on Ethernet 

90.0.0.1 

90.0.0.2 

lnet on Backplane 

91.0.0.2 

91.0.0.3 

To configure the UNIX system in our example, the /etc/hosts file must contain the 
Internet address and name of each system. The backplane master has two entries. 
The second entry, "phobos.bp", is not really necessary since the UNIX system never 
accesses that system with that address, but it is useful to include it in the file. 

The entries in /etc/hosts are as follows: 

90.0.0.1 
90.0.0.2 
91.0.0.2 
91.0.0.3 

mars 
phobos 
phobos.bp 
deimos 

To allow remote access of the UNIX host from the target systems, the .rhos ts file in 
the users home directory, or the file /etc/hC1sts.equiv, must contain their names: 

phobos 
deimos 

To inform the UNIX system of the existence of the Ethernet-to-backplane network 
gateway, the following line should be in the file /etc/gateways, at the time the route 
daenwn routed is started. 

net 91.0.0.0 gateway 90.0.0.2 metric 1 passive 

Alternatively, you can add the route manually with the folloWing UNIX command: 

\ route add 91.0.0.0 90.0.0.2 1 

Intel Vx960 227 



Vx960 5.0 - Programmer's Gulde 

The target systems are configured in part by the parameters shown below in the con
figuration header config.h: 

Parameter Value Comment 

BP_ANCHOR_ADRS OxBOOOOO Address of anchor as seen by 
phobos. 

BP _MEM_ADRS OxBOOOOO Address of shared memory 
pool as seen by phobos. 

BP _MEM_SIZE OxBOOOO Size in bytes of shared 
memory pool. 

BP_INT_TYPE BP _INT _MAILBOX_l Interrupt targets with 1-byte 
mailbox. 

BP _INT_ARGl VME_AM_SUP _SHORT_IO Mailbox in short I/ 0 space. 

BP _INT _ARG2 (OxcOOO I (sysProcNum * 2) ) Mailbox at: 
OxcOOO for phobos 
Oxc002 for aeimos 

BP _INT_ARG3 0 Write 0 value to mailbox. 

The backplane master "phobos" have the following boot parameters: 

boot device 
host name 
file name 
inet on ethernet (e) 
inet on backplane (b} 
host inet (h) 
gateway inet (g) 
user (u) 

enp 
mars 

i /usr/vx/config/target/vxWorks 
90.0.0.2 

' 91.0.0.2 
90.0.0.l 

: fred 
ftp password (pw) (blank•use rsh) i 

processor number 
flags (£) 

228 Intel Vx960 

' 0 
0 



6.6.5 

The other target "deimos" have the following boot parameters: 

: bp•SOOOOO 
: mars 

6. Network 

boot. device 
host. name 
file name : /usr/vx/config/target/vx'fforks 
inet. on et.hernet. (e) 
inet. on backplane (b) : 91.0.0.3 
host. inet. (h) : 90.0.0.l 
gateway inet. (g) : 91.0.0.2 
user (u) : fred 
ftp password (pw) (blank•use rsh) : 
processor number 
flags (f) 

Troubleshooting 

: 1 
: 0 

If you have trouble configuring a backplane network, here are a few troubleshooting 
procedures you can use. 

1. Boot a single processor in the backplane without any additional memory or 
processor cards. Omit the inet 011 backplane parameter to prevent the processor 
from trying to initialize the backplane. 

2. Power off and add the memory board, if you are using one. Power on and boot 
the system again. With the Vx960 boot ROM commands for display memory {d) 
and modify memory (m), verify that you can access the shared memory at the 
address you expect, with the size you expect. 

3. Reboot the system, this time filling in the inet on backplane parameter. This 
parameter causes Vx960 to initialize the backplane. While booting, you see the 
message: 

At~taching backplane interface bpO at anchor-addrs. done. 

4. When Vx960 is up, you can display the state of the backplane network by typ
ing: 

-> bpShow ["interface"] [, 1) 

The interface parameter is "bpO" by default. bpSlzow() displays cumulative 
activity statistics; specifying 1 as the second argument resets totals to zero. 

5. Now power off and add the second processor board. Remember that the sec
ond processor must not be configured to be the system controller board. Power 

Intel Vx960 229 



Vx960 5.0 - Programmer's·Galde ··-·-------- · ·· · ·---

on and stop the second processor from booting by typing any key to the boot 
ROM program. Boot the first processor as you did before. 

6. If you have trouble booting the first processor with the second processor 
plugged in, you have a hardware conflict. Check that only the first processor 
board is the system controller. Check that there are no conflicts in the position 
of the various boards' memory addresses. 

7. With the d and m boot ROM commands, verify that you can see the shared mem
ory from the second processor. This is either the memory of the separate mem
ory board if you are using the off-board configuration, or the dual-ported 
memory of the first processor if you are using the on-board configuration. 

8. Using the d command on the second processor, look for the backplane anchor. 
The anchor begins with the telltale value of Ox1234. Also you should be able to 
see the backplane heartbeat - the second long word of the anchor, counting 
once per second. 

9. When you have found the anchor from the second processor, enter the boot 
parameter for the boot device with that address as the anchor address: 

boot device: bp-800000 

Enter the other boot parameters and try booting the second processor. 

10. If the second processor does not boot, you can use bpShow() on the first pro
cessor to see if the second processor is attaching correctly to the backplane. If 
not, then you have probably specified the anchor address incorrectly on the sec
ond processor. If the second processor is attached, then the problem is more 
likely to be with the gateway or with the UNIX configuration. 

11. You can use some of the UNIX tools to examine the state of the network from 
the UNIX side. Use arp, netstat, etherfind, and ping as suggested in 
2.8 Troubleshooting. 

12. If all else fails, call your technical support organization. 

230 Intel Vx960 



7 

Cross-Development 

Contents 

7.1 Introduction ............................................................................................................................... 233 

7.2 The Vx960 Cross-Development Environment ...................................................................... 234 

7.3 The Module Loader and System Symbol Table .................................................................... 235 

7.3.1 Run-Time Linking ....................................................................................................... 235 

7.3.2 Symbolic Debugging ................ : ................................................................................. 236 

7.4 Building and Loading Application Modules ........................................................................ 237 

7.4.l Compiling Application Modules .............................................................................. 237 

7.4.2 Using Vx960 Include Files .................................................................... .," ................. 238 

7.4.2.1 Vx960 Header File: vxWorks.h 238 
7.4.2.2 Other Vx960 Include Files 239 
7.4.2.3 UN1X Include Files 239 
7.4.2.4 The -I Compiler Flag 239 
7.4.2.5 Vx960 Nested Include Files 240 
7.4.2.6 Network Include Files 240 
7.4.2.7 Hidden Parts of Vx960 Include Files 241 

7.4.3 Linking an Application Module ........................................... ,, .................................. 242 

7.4.4 Loading an Application Module .............................................................................. 243 

Intel Vx960 231 



Vx960 5.0 - Programmer's Gulde 

232 Intel Vx960 



7 

Cross-Development 

7 .1 Introduction 

The Vx960 provides a highly integrated, cross-development environment. In Vx960, 
UNIX-based development systems support the development and maintenance of 
real-time applications that run on target systems under the Vx960 operating system. 
This chapter describes in detail the cross-development procedures used to create 
and run Vx960 systems and applications. It covers the following topics: 

• The nature of the Vx960 cross-development environment. 

• How to build, load, and run applications under Vx960. 

Vx960 has been ported to numerous development and target systems, and can sup
port many different hardware configurations. Some of the cross-development pro
cedures discussed in this chapter depend somewhat on the exact system and 
configuration you are running. The procedures in this chapter are presented in 
generic form and may differ slightly on your particular system. 

Intel Vx960 233 



Vx960 5.0 - Programmer's-Gulde ----- --- --------- - - -·-- -- -

7 .2 The Vx960 Cross-Development Environment 

All Vx960 facilities are based on a single simple construct: the C subroutine (or C
compatible subroutine). 

• All Vx960 facilities are provided by libraries of C subroutines. 

• Any C subroutine can be invoked interactively, using the Vx960 shell. 

• Any C subroutine can be spawned as a Vx960 task. 

• Any C subroutine can be connected to an interrupt, a watchdog timer, or an 
auxiliary timer. 

This uniformity makes Vx960 a very efficient development system. No special code 
must be written to interface to "system faults." No special processing is required to 
"build" a task. No special user interface programs or interactive test-bed programs 
must be written to test new code. 

Instead, you simply write subroutines. As usual, of course, they can be called from 
other program modules to perform their function. But they can also be called inter
actively, from the shell, to perform their function spontaneously as needed, for test
ing or debugging. They can be spawned with their own task context, either from 
another program module or interactively from the shell. They can be connected to 
interrupts or timers, again either from another program module or interactively 
from the shell. 

To provide this environment, Vx960 has a key set of facilities that set up the appro
priate program environment to call subroutines in particular contexts: the 
taskSpawn( ) routine establishes the environment necessary for a routine to be exe
cuted as a task; and the routines intC011nect( ), sysAuxClkComzect( ), and wdStart( ) 
establish the environment necessary for routines to be executed as the result of hard
ware interrupts, an auxiliary timer, and watchdog timer expirations, respectively. 

Perhaps the most significant facility for the development environment is the Vx960 
shell, from which you can interactively call any routine. This is made possible by the 
system symbol table maintained by the Vx960 module loader. 

234 Intel Vx960 



7. Cross-Developrrienf 

7 .3 The Module Loader and System Symbol Table 

Vx960 includes a module loader which loads object modules into memory from the 
host over a network or from a local disk. These object modules are in GNU I 960 
module format (b.out or coff, b.out is assumed in the following discussion), which 
includes the code, data, relocation directives, and a symbol table containing all of the 
module's subroutine and variable names and addresses. 

When loading an object module, the Vx960 loader performs the following functions: 

• Loads the module's code and data segments into memory. 

• Relocates the module according to relocation directives in the object module. 

• Resolves external references using the memory-resident, system-symbol table. 

• Optionally, adds the module's symbols to the system-symbol table. 

The system-symbol table thus contains the subroutine and variable names, and their 
addresses, from all loaded program modules, including Vx960 modules themselves. 
The system-symbol table then gives run-time access to subroutine and variable 
addresses by name. 

As explained below, Vx960 makes heavy use of the system symbol table in two 
important areas: run-time linking and symbolic debugging under the Vx960 shell. 

7 .3.1 Run-Time linking 

The module loader uses the system symbol table to resolve undefined symbols in 
modules being loaded. This run-time linking allows applications to be built and 
maintained in conveniently sized pieces, rather than requiring the entire application 
to be linked together into a single module. 

Furthermore, run-time linking makes it easy to have genuinely shared subroutine 
libraries, in which a single copy of a set of subroutines can be used by several tasks, 
rather than requiring each task to be linked with separate copies of needed subrou
tines. 

However, there is the following limitation: the loader can only resolve names that 
have already been loaded in previous modules. Thus, modules must be loaded in 
order, according to their hierarchy of routine and variable references. 

Intel Vx960 235 



Vx960 5.0 - Programmer's Gulde 

Of course, you can link some modules together on your host system, rather than 
have them linked by the Vx960 loader. This may be necessary if two modules cross
reference each other, prohibiting the hierarchical loading order mentioned above. 

In some cases, it can also prove more convenient to link some modules together on 
the host,. rather than loading each module separately under Vx960. Such linking of 
modules does not sacrifice their accessibility under Vx960 in any way, since the 
GNU/960 linker retains all the symbols of each module in the resulting composite 
symbol table. 

It is important to understand that after a module has been downloaded, its symbols 
are not updated with subsequent downloads. The following example illustrates this 
point. Module A, which contains the routine process_tlting(), is downloaded. Mod
ule B, which calls the routine process_tlting(), is downloaded. The entry point to 
module B is the routine makeltHappen(). When module B is downloaded, its reloca
tion-information is used to resolve the external reference to process_tlting(). A bug 
is discovered and fixed in process_thiltg(), and a new module A is downloaded. It 
downloads correctly, but executing makeltHappen() still indicates the bug in pro
cess_tlting(). This bug exists because makeltHappen() code still points to the old 
copy of process_tlting(). If module B is downloaded again, it resolves process_tlt
itzg() to the most recent downloaded copy, and makeltHappen() works correctly. 

7 .3.2 Symbolic Debugging 

The other important use of the system symbol table is to provide interactive run
time access to routine and variable names. In particular, the Vx960 shell allows you 
to interactively call any subroutines and access any variables entered in the system 
symbol table. 

This is particularly useful during symbolic and source-level debugging. For exam
ple, Vx960 offers symbolic disassembly of any loaded modules and symbolic trace
back of the current nesting of subroutine calls of any task. You can also debug tasks 
from a source-level debugger running remotely on a UNIX machine. 

236 Intel Vx960 



7. Cross-Development 

7 .4 Building and Loading Application Modules 

In the Vx960 development environment, application modules for the target system 
are created and maintained on a UNIX host system. First, the source code, generally 
in C (or in a C-compatible language}, is edited and compiled in the usual way to pro
duce a relocatable object module. The resulting object modules can then be loaded 
and dynamically linked by a running Vx960 system via the network. The following 
sections describe these cross-development procedures in detail. 

7.4. l Compiling Application Modules 

Vx960 can support multiple target architectures in a single development tree. To 
accommodate this, several Vx960 include files contain conditional compilation 
directives based on the definition of the variable CPU. When using these include 
files, the variable CPU must be defined in one of the following: 

• the source modules 

• the include files 

• the compilation command line. 

To define CPU in the source modules or include files, add the line: 

ldefine CPU I960CA 

To define CPU on the compilation command line, add the flag: 

-DCPU•1960CA 

With makefiles, the CPU definition can be added to the definition of the flags passed 
to the compiler (e.g., CFLAGS). -

The GNU /960 tool set is used to compile application modules. The following is a 
typical command for compiling an application module for a Vx960 or compatible 
system: 

\ gcc960 -c -ACA -I/usr/vx/h -03 applic.c 

Intel Vx960 237 



Vx960 5.0 - Programmer's Gulde 

This command compiles the module applic.c. The meaning of the flags is as follows: 

-c 

-I/usr/vx/h 

-03 

-ACA 

specifies that the module is to be compiled onl}'I and not linked 
for execution under UNIX. The output is an unlinked object 
module with the suffix .o, i.e., applic.o. 

gives access to the Vx960 include files (see the section below). 

tells the compiler to perform various optimizations, in this case 
at level 3. 

tells the compiler to generate code for the 80960CA processor. 

7.4.2 Using Vx960 Include Files 

Many application modules make use of Vx960' s operating system facilities or utility 
libraries. This may require that the source module include various Vx960 include 
files. The following sections discuss the use of Vx960 include files. 

Vx960 supplies ANSI C function prototype declarations for all global routines in the 
Vx960 include files. The ANSI C prototypes are used by default with GNU/960; to 
suppress them, the macro _STDC_ must be undefined either in the application 
code before any include statements with the #undefC-preprocessor directive or on 
the command line using the -traditional flag. 

Vx960 5.0 provides the ANSI header files stddef.h, stdlib.h, and string.h. 

See the GNU/960 documentation for additional information on the compiler com
mand line flags. 

7.4.2.1 Vx960 Header File: vxWorks.h 

The include file /usr/vx/h/vxWorks.h contains many basic definitions and types that 
are used extensively by other Vx960 modules. Many other Vx960 include files 
require these definitions, so this file should be included first by every application 
module that uses Vx960 facilities. The vxWorks.h file is included in a source module 
with the following line: 

#include "vxWorks.h" 

238 Intel Vx960 



7.4.2.2 

7.4.2.3 

7.4.2.4 

7. Cross-Development 

Other Vx960 Include Files 

Application modules may include other Vx960 include files as needed to access 
Vx960 facilities. For example, an application module that used Vx960 linked-list sub
routine library needs to include the lstLib.h file with the following line: 

tinclude "lstLib.h" 

The manual entry for each library lists all include files necessary to use that library. 

UNIX Include Flies 

Application modules should not include certain UNIX include files for which there 
are Vx960 equivalents. The following table shows the correspondence between 
UNIX and Vx960 include files. Some of these include files resolve to GNU/960 
include files. 

Table 7-1. Vx960/UNIX Include Fiie Equivalents 

Vx960 UNIX 

bout.h/coff.h a.out.h 
ctype.h ctype.h 
errno.h errno.h 
in.h in.h 
ioctl.h ioctl.h 
memLib.h malloc.h 
setjmp.h setjmp.h 
socket.h socket.h 
stdioLib.h stdio.h 
strLib.h string.h 
types.h types.h 

The -I Compiler Flag 

By default, the compiler searches for include files first in the directory of the source 
module and then in the $G960BASE/include directory. The environment variable 

Intel Vx960 239 



Vx960 5.0 - Programmer's Gulde 

7.4.2.5 

7.4.2.6 

G960BASE contains the path of GNU /960 installation directory. Refer to the appro
priate GNU I 960 documentation for additional information. 

To access the Vx960 include files, the compiler must be directed to search /usr/vx/h 
for include files. This is done by specifying the flag: 

-I/usr/vx/h 

to the compiler. 

Vx960 Nested Include Flies 

Some Vx960 facilities make use of other, lower-level Vx960 facilities. For example, 
the watchdog timer facility uses the linked-list subroutine library. The watchdog 
timer include file wdLib.h uses definitions that are supplied by the linked-list 
include file lstLib.h. Thus lstLib.h must be included before wdlib.h. 

It would be undesirable to require that the application programmer know of such 
. include file interdependencies and orderings. Instead, all Vx960 include files explic
itly include any other prerequisite include files. Thus wdLib.h itself contains an 
include of lstLib.h. (The exception to this is the basic Vx960 include file vxWorks.h, 
which all other include files assume is already included.) 

This, in tum leads to the problem that an include file could get included more than 
once, if one were included by several other include files, or was also included 
directly by the application module. Normally, including an include file more than 
once generates fatal compilation errors, because definitions get made more than 
once. To solve this problem, all Vx960 include files contain conditional compilation 
statements and definitions that ensure that their text only gets included once, no 
matter how many times they are specified by include statements. 

In short, an application module can include just those include files it needs, without 
regard to interdependencies or ordering, and no conflicts will arise. 

Network Include Flies 

In addition to the general include files in /usr/vx/h, the Vx960 network modules use 
a set of internal include files in /usr/vx/h/net. These include files should not be 
required by any application programs. Other than the Vx960 network modules 
themselves, the only modules that should include headers from/usr/vx/h/net are the 
network drivers for specific network controllers. 

240 Intel Vx960 



7.4.2.7 

7. Cross-Development 

The directory /usr/vx/h also contains a subdirectory called rpc, which contains 
header files that must be included by applications using the remote procedure call 
library. 

Hidden Parts of Vx960 Include Files 

Vx960 modules are designed so that you never need to know or reference the mod
ules' internal data structures. In general, all legitimate access to a facility is provided 
by the module's subroutine interfaces. The internal details should be thought of as 
"hidden" from the user. This means, in fact, that the internal implementations can 
change without affecting the users of the facilities. 

Unfortunately, the C language provides no mechanisms to "export" only the "visi
ble" portions of a module's interface, while keeping the internal details "hidden." 
As a compromise, however, Vx960 include files designate with comments those def
initions and declarations that are supposed to be hidden. The hidden portions of 
include files are bracketed by comment lines of the form: 

/* HIDDEN */ 

/* END_HIDDEN */ 

You should never make any references to any of the definitions in these hidden sec
tions, nor should any assumptions be made based on those definitions. The only 
acceptable use of a module's facilities is through the visible definitions in the include 
file and the module's subroutine interfaces. 

Although this rule is not currently enforced in any way, adherence ensures that your 
application code will not be affected by internal changes in the implementation of a 
Vx960 module. 

Intel Vx960 241 



Vx960 5.0 ....,. Programmer's Gulde - - · ·· ---- - - - -- - · 

7.4.3 Linking an Application Module 

After an application module has been compiled, it can be loaded directly by the 
Vx960 linking loader. In general, application modules do not need to be linked with 
the GNU I 960 linker, gld960. However, using gld960 may be necessary if several 
application modules cross-reference each other such that the Vx960 loader cannot 
resolve all the external references as each is loaded. The following is a typical UNIX 
command to link several cross-referencing application modules: 

% gld960 -o applic.o -r applicl.o applic2.o applic3.o 

This creates another object module, applic.o, from the object modules applicl.o, 
applic2.o, and applic3.o. The -r flag causes the resulting object module to be left in 
relocatable form (i.e., not linked for standalone execution). 

Vx960 facilities called by the application modules are left unresolved. These are 
resolved by the Vx960 loader when the module is loaded into Vx960 memory. Do not 
link each of the application modules with the Vx960 libraries. That would defeat the 
load-time, linking feature of Vx960, causing there to be multiple copies of Vx960 sys
tem modules. 

Many of the Vx960 facilities come from the libraries supplied with the compiler. For 
example, a C run-time library supplied with your tool set might be used for atoi( ), 
bcopy( ), sqrt( ), etc. Similarly, floating point support can come from these libraries. 
However, these libraries are likely to include routines that conflict with or are incom
patible with Vx960 facilities, so it is also important that you do not link your appli
cation code with these libraries directly if you wish to use the Vx960 runtime loader. 
Instead you must configure the Vx960 to include the facilities you need and let the 
Vx960 do the linking. 

Just as Vx960 can be built with certain facilities disabled, Vx960 may not need all the 
routines in the libraries, so these routines may not be present in your Vx960 execut
able (vxWorks) and therefore cannot be resolved by the loader. You must ensure that 
your vxWorks image is built with the routines that you need. If these routines come 
from a source outside of Vx960, you must ensure that they do not conflict with the 
Vx960 facilities. · 

If you are using the GNU/ 960 tool set, you can define the configuration macro 
INCLUDE_GNU_960_LIBC in your target/config.h file to get those parts of libcg
ca.a (or libcgka.a or libcgkb.a) that are compatible with the Vx960 loaded with the 
rest of Vx960. Similarly, you can get the GNU /960 libfpg.a floating point library 
included by defining INCLUDE_GNU_960_LIBFP. 

242 Intel Vx960 



7. Cross-Development 

See 8.2 Configuring Vx960, 8.3 Building a Vx960 System Image, and the GNU /960 
manuals for complete information. 

7.4.4 Loading an Application Module 

Once application object modules have been compiled (and possibly linked by 
gld960), they can be loaded by a running Vx960 system via the network. This 
involves invoking the Vx960 module loader from the Vx960 shell using the Vx960 
command ld( ) (not to be confused with the UNIX Id command). 

The following is a typical Vx960 load command from the Vx960 shell: 

-> ld < host:/usr/fred/applic.o 

This causes the object module /usr/fred/applic.o on the system called "host" to be 
loaded into memory, relocated, and linked to previously loaded modules. It is com
mon to set the current default I/0 device to be the host file system and directory 
containing your application modules, as follows: 

-> cd "host:/usr/fred" 

Then the load command becomes just: 

-> ld < applic.o 

Once application modules have been loaded into memory, any subroutine in the 
module can be invoked directly from the shell, spawned as a task, connected to an 
interrupt, and so forth. 

Intel Vx960 243 



Vx960 5.0 - Programmer's Gulde 

244 Intel Vx960 



8 

Configuration 

Contents 

8.1 

8.2 

Introduction ............................................................................................................................... 247 

Configuring Vx960 .......................................................... '" ........................................................ 248 

8.2.1 The Configuration Headers ....................................................................................... 248 

8.2.1.1 The Global Configuration Header: configAll.h 248 
8.2.1.2 The Target-Specific Configuration Header: config.h 249 
8.2.1.3 Selection of Optional Features 249 

8.2.2 The Configuration Module: usrConfig.c ................................................................ 251 

8.2.3 The Initial Entry Point: syslnit( ) ............................................................................. 252 

8.2.4 The Initial Routine: usrlnit() ............ .,,. .................................. ,, ............................... 252 

8.2.4.1 Initializing the Memory Pool 253 
8.2.5 The Initial Task: usrRoot() ........................................................................................ 254 

8.2.5.1 Initialization of the System Clock 254 
8.2.5.2 Initialization of the II 0 System 255 
8.2.5.3 Creation of the Console Devices 255 
8.2.5.4 Setting of Standard In and Standard Out 255 
8.2.5.5 Installation of Exception Handling, Debugging, and Logging 255 
8.2.5.6 Initialization of Standard II 0 256 
8.2.5.7 Creation of File System Devices 256 
8.2.5.8 Initialization of Floating Point Support 256 
8.2.5.9 Inclusion of Performance Monitoring Tools 257 

Intel Vx960 245 



Vx960 5.0 - Programmer's Gulde 

8.2.5.10 Initialization of the Network 257 
8.2.5.11 Creation and Loading of the System Symbol Table 257 
8.2.5.12 Execution of a Startup Script 258 
8.2.5.13 Spawning of the Shell 258 

8.2.6 The System Clock Routine: usrClock() ....•.............................................................. 259· 

8.3 Building a Vx960 System Image ............................................................................................. 259 

8.3.1 Rebuilding Vx960 with make ................................................................................... 259 

8.3.2 Linking the System Modules .................................................................................... 260 

8.-3.3 Creating the System Symbol Table Module ........................................................... 263 

8.4 Alternative Vx960 Configurations .......................................................................................... 263 

8.4.1 Excluding Development Facilities ................................................... ; ...................... 263 
8.4.1.1 Excluding the Shell 264 
8.4.1.2 Excluding Network Facilities 264 

8.4.2 Creating Bootable Applications ................................................................................ 265 

8.4.3 Creating a Stand-Alone Vx960 System with a Built-In Symbol Table ................ , 266 

8.4.4 Creating a Vx960 System In ROM ............................................................................ 267 
8.4.4.1 General Procedures 267 
8.4.4.2 Boot ROM Compression 268 

246 Intel Vx960 



8 

Configuration 

8.1 Introduction 

The Vx960 distribution files include a Vx960 system image for the target(s) ordered. 
A Vx960 system image is a binary module that can be booted and run on a target sys
tem. The system image consists of all the desired system object modules linked 
together into a single non-relocatable object module with no unresolved external ref
erences. 

At first, you will find the supplied system image adequate for development. Even
tually, you will want to tailor its configuration to your own needs. This chapter 
describes in detail the procedures used to configure and build Vx960 systems. It cov
ers the following topics: 

• Vx960 configuration files and configuration options and parameters 

• How to build Vx960 system images with alternative configurations. 

Intel Vx960 247 



Vx960 5.0 - Programmer's Gulde 

8.2 Configuring Vx960 

Vx960 has many options and parameters that can be specified to tailor the system to 
particular hardware and software requirements. The configuration of Vx960 is 
almost completely determined by a single C language module, usrConfig.c, which 
contains the Vx960 start-up routines, and by the configuration headers configAll.h 
and config.h, which contain definitions of selected options and parameters. 

The Vx960 distribution includes the configuration files for the default development 
configuration. Application builders can alter these files, or create their own versions, 
to better suit their particular configurations. Vx960 can then be rebuilt using the pro
cedures described in the section below, 8.3 Building a Vx960 System Image. This sec
tion describes the Vx960 configuration files in detail. 

8.2.1 The Configuration Headers 

Many of the most common Vx960 configuration options and parameters are control
lable by definitions in the global configuration header vx/config/alVconfigAll.h and 
in the target-specific configuration header vx/config/target/config.h. 

8.2.1.1 The Global Configuration Header: configAll.h 

The configAll.h header, in the directory vx/config/all, contains default definitions 
that apply to all targets, unless redefined in the target-specific header config.h. The 
following options and parameters are defined in configAll.h: 

• kernel configuration parameters 
• I/ 0 system parameters 
• NFS parameters 
• selection of optional software modules 
• selection of optional device controllers 
• device controller II 0 addresses, interrupt vectors, and interrupt levels 
• miscellaneous addresses and constants. 

248 lntal Vx960 



8.2.1.2 

8.2.1.3 

8. Configuration 

The Target-Specific Configuration Header: config.h 

There is also a target-specific headex;. config.h, in the target-specific Vx960 directory 
vx/config/target. This header contains definitions that apply just to that specific tar
get. This header may also redefine default definitions in configAll.h that are inap
propriate for the particular target. For example, if a particular target cannot access a 
device controller at the default I/O address defined in configAll.h because of 
addressing limitations, the I/0 address may be redefined in con.fig.h. 

The config.h header includes definitions for the following parameters: 

• default boot parameter string for boot RO Ms 

• interrupt vectors for system clock and parity errors 

• target-specific device controller I/0 addresses, interrupt vectors, interrupt lev
els 

• backplane network parameters 

• miscellaneous memory addresses and constants. 

Selection of Optional Features 

Vx960 includes optional features and device drivers that can be included or omitted 
from a Vx960 system. These are controlled by special symbols that can be defined or 
undefined in the configuration headers to cause conditional compilation in the usr
Config.c module. These symbols all start with the prefix INCLUDE_. Table 8-1 lists 
the optional elements and their control symbols. 

For example, to include the network driver for the Intel 82596 LAN coprocessor, the 
symbol INCLUDE_EI should be defined, or to include the Network File System (NFS) 
facility, INCLUDE_NFS should be defined. 

The distributed version of configAll.h includes all the available software options, 
and includes several network device drivers. 

Exclusion of the shell and networking facilities is discussed in detail in 8.4 Alternative 
Vx960 Configurations. 

Intel Vx960 249 



Vx960 5.0 - Programmer's Gulde 

Table 8· 1. Selectable Vx960 Options 

Symbol 

Modules 
INCLUDE_ADA 

INCLUDE_DEBUG 

INCLUDE_DOSFS 

INCLUDE_ENV _VARS 

INCLUDE_FLOATING_POINT 

INCLUDE_FTPD 

INCLUDE_NET_INIT 

INCLUDE_NET_SHOW 

INCLUDE_NETWORK 

INCLUDE_NFS 

INCLUDE_PIPES 

INCLUDE_RAMDRV 

INCLUDE_RAWFS 

INCLUDE_RDB 

INCLUDE_RLOGIN 

INCLUDE_RPC 

INCLUDE_RTllFS 

INCLUDE_SECURITY 

INCLUDE_ SHELL 

INCLUDE_SPY 

INCLUDE_STDIO 

INCLUDE_ TELNET 

INCLUDE_ TIMEX 

INCLUDE_SCSI 

INCLUDE_STAT_SYM_TBL 

INCLUDE_SYM_TBL 

INCLUDE_TASK_VARS 

250 Intel Vx960 

Option 

Ada support 
Native debugging 
DOS-compatible file system 
UNIX compatible environment variables 
Floating point II 0 
FTP server daemon 
Network subsystem initialization 
Extended network status/information routines 
Network subsystem code 
Network File System (NFS) 
Pipe driver 
RAM disk driver 
"Raw" file system 
RDB Package (Remote Debugging) 
Remote login with rlogin 
Remote Procedure Calls (RPC) 
RT-11 file system 
Remote login security package. 
C-expression interpreter shell 
Task activity monitor 
Standard II 0 package 
Remote login with telnet 
Function execution timer 
SCSI device support 
Create user-readable error status 
Symbol table package 
Task variable package 



8. Configuration 

Table 8-1. Selectable Vx960 Options (continued) 

Symbol Option 

Network Interfaces 
INCLUDE_BP 

INCLUDE_ EI 

INCLUDE_ENP 

INCLUDE_ EX 

INCLUDE_IE 

Backplane network interface 
Intel 8259'6 LAN coprocessor Ethernet interface 
CMC Ethernet interface 
Excelan Ethernet interface 
SUN Ethernet interface 

Other 
INCLUDE_NET_SYM_TBL Load the system symbol table from the network. 
INCLUDE_NFS_MOUNT_402 NFS mount the boot file system as in 4.0.2 
INCLUDE_NFS_MOUNT_ALL Mount all mountable NFS file systems from the 

host. 
INCLUDE_STANDALONE_SYM_TBL 

Use a built-in symbol table; do not load 
vxWorks.sym. 

INCLUDE_STARTUP _SCRIPT_402 Run <host>:<bootdir>startup.cmd 
INCLUDE_STARTUP _SCRIPT Execute a startup script after booting. 

8.2.2 The Configuration Module: usrConfig.c 

Many Vx960 options and parameters can be set simply by modifying definitions in 
the configuration headers described in the previous section. However, for some 
applications it may be desirable to configure Vx960 in ways not provided by the con
figuration headers, and in such cases, application builders can modify the code in 
the configuration module usrConfig.c. 

The usrConfig.c module consists of four main pieces: 

usrlnit() 

usrRoot() 

an initialization routine that runs before multitasking is 
enabled, 

the initial task to be executed, 

Inter Vx960 251 



Vx960 5.0 - Programmer's Gulde 

usrClock() 

usrNetlnit( ) 

the routine that is called on every interrupt of the system clock, 

the routine that initializes the network (called by usrRoot( )). 

The elements of usrConfig.c are best understood by going through each step of the 
system start-up sequence. The next sections trace the flow of control during the boot
ing and initialization of a Vx960 system. 

8.2.3 The Initial Entry Point: syslnit( ) 

To bring up a Vx960 system, get an image of a Vx960 system into main memory. This 
is usually done via the Vx960 boot ROM. Once a Vx960 system image has been 
loaded into the proper position in main memory, the boot ROM transfers control to 
the Vx960 start-up entry point, syslnit( ). 

This entry point is in the system-dependent, assembly-language module, sysALib.s. 
It locks out all interrupts, sets up the initial C stack pointer, and jumps to usrlnit( ), 
a C subroutine in the usrConfig.c module. For some targets, syslnit() also performs 

. some minimal system-dependent hardware initialization, just enough to execute the 
remaining initialization in usrlnit( ). 

8.2.4 The Initial Routine: usrltiit( ) 

The usrlnit( ) routine, in the usrConfig.c module, first does all the initialization that 
must be performed before the multitasking kernel is actually started, and then starts 
the kernel execution. It is the first C code to run in Vx960. It is invoked in supervisor 
mode with all hardware interrupts locked out. 

There are many Vx960 facilities that cannot be invoked from this routine. In general, 
since there is no task context as yet (e.g., no TCB and no task stack), facilities that 
require a task context canno.t be invoked. This includes any facility that might cause 
the caller to be suspended, such as semaphores or any facility that uses them. 
Instead; the usrlnit() routine does only.what is necessary to create an initial task, 
usrRoot( ), that will complete the start-up. 

The initialization in usrlnit( ) includes the following: 

• Zeroing out the system bss segment: The C language specifies. that all uninitial
ized variables will have initial values of 0. These uninitialized variables are put 
together in a segment called bss. This segment is not actually loaded during the 

252 Intel Vx960 



8.2.4.1 

8. Configuration 

bootstrap, since it is known to be all 0. Since the usrlnit() routine is the first C 
code to be executed, it clears the section of memory containing bss as its very 
first action. 

• Initializing interrupt vectors: Before enabling interrupts and starting the ker
nel, the interrupt and fault vectors of the i960 microprocessor must be set up. 
The routine excVecI11it() is called to initialize all exception vectors to default 
handlers that will report exceptions caused by program errors or unexpected 
hardware interrupts. 

• Initializing system hardware to a quiescent state: System hardware is initial
ized by calling the system dependent routine sysHwlnit( ). This mainly consists 
of resetting and disabling hardware devices that may cause interrupts once 
interrupts are enabled when the kernel is started. This is important because the 
Vx960 interrupt handlers for I/O devices, system clocks, etc, are not connected 
to their interrupt vectors until the system initialization is completed in the 
usrRoot( ) task. 

• Initializing the multitasking kernel: The last act of usrfoit( ) is to initialize the 
multitasking kernel by calling the routine kemelfoit( ). This call specifies: 

• the entry point and stack size of the root task 
• start and end address of the initial memory pool 
• the interrupt stack size and lock level. 

The call actually initiates the multitasking environment and never returns. The 
usrlnit() thread of execution is terminated and control is transferred to the root 
task, usrRoot( ). 

Initializing the Memory Pool 

Vx960 includes a memory allocation facility, in the module memlib, that manages 
a pool of available memory. The malloc( ) routine allows callers to obtain variable 
size blocks of memory from the pool. Internally, Vx960 uses malloc( ) for all dynamic 
allocation of memory. In particular, many Vx960 facilities allocate data structures 
upon initialization. Therefore, the memory pool must be initialized before any other 
Vx960 facilities are initialized. 

Vx960 makes heavy use of malloc( ), including allocation of space for loaded mod
ules, allocation of stacks for spawned tasks, and allocation of data structures upon 
initialization. Application programmers are also encouraged to use malloc( ) to allo
cate memory as needed. Therefore, it is recommended that you assign to the Vx960 

Intel Vx960 253 



Vx960 5.0 - Programmer's Gulde 

memory pool all unused memory, unless you specifically must reserve some fixed 
absolute memory area for a particular application use. 

The memory pool is initialized in the routine kernellnit( ). The parameters to 
kernellnit( ) specify the start and end address of the initial memory pool. In the 
default usrlnit( ) distributed with Vx960, the pool is set to start immediately follow
ing the end of the booted system, and to contain all the rest of available memory. 

The extent of available memory is determined by the routine sysMemTop( ) which is 
a system-dependent routine that determines the size of available memory by prob
ing specific addresses. If your system has other non- contiguous memory areas that 
you would like to make available in the general memory pool, you can add them to 
the pool by calling the routine memAddToPool( ) later in the usrRoot( ) task. 

8.2.5 The Initial Task: usrRoot( ) 

Once the multitasking kernel is executing and control is transferred to the usrRoot( ) 
task, all Vx960 multitasking facilities are available, and the initialization of the sys
tem can be completed. The standard usrRoot() task distributed with Vx960 per
forms the following: 

• initialization of the system dock 
• initialization of the II 0 system and drivers 
• initialization of the network 
• initialization of optional facilities 
• creation and loading of the system symbol table 
• execution of a user-supplied startup script 
• spawning of the shell. 

You are free to modify these initializations to suit your particular configuration. The 
meaning of each step and the significance of the various parameters are explained 
in the following sections. · 

8.2.5.1 Initialization of the System Clock 

The first action in the usrRoot() task is to initialize the Vx960 clock. The system clock 
interrupt vector is connected to the system dock service routine usrClock() 
(described later), by calling the routine sysClkConnect( ). Then, the system clock rate 
is set to 60 ticks per second by calling the routine sysClkRateSet( ). 

254 Intel Vx960 



8.2.5.2 

8.2.5.3 

8.2.5.4 

8.2.5.5 

B. Configuration 

Initialization of the 1/0 System 

The Vx960 II 0 system is initialized by calling the routine ioslnit( ). The arguments 
specify the maximum number of drivers that may be subsequently installed, the 
maximum numbe:- of files that may be open in the system simultaneously, and the 
desired name of the" null" device which is built into the Vx960 II 0 system. This null 
device is a "bit-bucket" on output and always returns end-of-file for input. 

Creation of the Console Devices 

Next, the driver for the primary or console serial ports is installed by calling the 
driver's initialization routine, which is typically called tyCoDrv( ). The actual 
devices are then created and named by calling the driver's device creation routine, 
typically tyCoDevCreate( ). The arguments to this routine include the device name, 
a channel number if the driver supports multiple ports, and input and output buffer 
size. The macro NUM_TTY, specifying the number of tty ports (default 2), and the 
macro CONSOLE_TTY, specifying which port is console (default 0), are specified in 
configAll.h but may be overridden in config.h for boards with a non-standard num
ber of ports. 

Setting of Standard In and Standard Out 

Next, establish the system-wide standard in, standard out, and standard error 
assignments by opening the desired devices and calling ioGloba/StdSet( ). These are 
used throughout Vx960 as the default device for communicating with the user. The 
devices are set to have the options usual for interactive terminals by calling ioctl() 
to set the device options to OPT_TERMINAL. 

Installation of Exception Handling, Debugging, and Logging 

It is desirable to initialize the Vx960 exception handling facilities (supplied by the 
module exclib), debugging facilities (supplied by dbgLib), and logging facilities 
(supplied by log Lib), as soon as possible in the root task. This facilitates detection 
and debugging of program errors in the root task itself or in the initialization of the 
various facilities. 

The exception handling facilities are initialized by calling exclnit( ). This will spawn 
the exception support task, excTask( ). Following this initialization, program errors 

Intel Vx960 255 



Vx960 5.0 - Programmer's Gulde 

8.2.5.6 

8.2.5.7 

8.2.5.8 

causing hardware faults are safely reported, and hardware interrupts to uninitial
ized vectors are reported and dismissed. The Vx960 signal facility, used for task-spe
cific exception handling, is initialized by calling siglnit( ). 

The logging facilities are initialized by calling logl11it( ). The arguments specify the 
fd of the device to which logging messages are to be written, and the number of log 
message buffers to allocate. The logging initialization also includes spawning the 
logging task, logTask( ). 

The debugging facilities are initialized, if they have been selected by defining 
INCLUDE_DEBUG, by calling dbgbtit( ). 

Initialization of Standard 1/0 

Vx960 includes an optional standard IIO package that provides the functionality of 
the UNIX buffered II 0 facility. This can be included by defining the symbol 
INCLUDE_STDIO in the header configAll.h. 

Creation of Fiie System Devices 

Many Vx960 configurations include at least one disk device or RAM disk with a 
DOS, RT-11, or "raw" file system. Before any disk drivers or the RAM-disk driver 
are initialized, the file system module must be initialized by calling the routine 
dosFslnit( ), rt11Fsbtit( ), or rawFsbiit( ). The argument specifies the maximum 
number of file descriptors per file system that may be open simultaneously. 

Next, any disk drivers are installed by calling the drivers' initialization routines. 
The actual devices can then be created and named by calling the driver's device cre
ation routine. The arguments to these routines depend on the particular driver, but 
typically include the device name, a drive number if the driver supports multiple 
drives, and possibly some media specifications (single/ double density I sided, etc.). 

lnltlallzatlon of Floating Point Support 

Support for floating point II 0 is initialized by calling the routine floatl11it( ). This 
facility is included by defining the symbol INCLUDE_FLOATING_POINT in confi
gAll.h. 

256 Intel Vx960 



8.2.5.9 

8. Configuration 

lncluslon of Performance Monitoring Tools 

Vx960 has two performance monitoring tools. A task activity summary is provided 
by spyLib, and a subroutine execution timer is provided by timexLib. These facili
ties are included by defining the symbols INCLUDE_SPY and INCLUDE_TIMEX, 
respectively, in configAll.h. 

8.2.5.1 o lnttlallzatlon of the Network 

Before the network can be used, it must be initialized. This is handled by the routine 
usrNetlnit( ), which is called by usrRoot( ). The routine usrNetlnit( ) takes a config
uration string as an argument. This configuration string is usually the "boot line" 
that was specified to the Vx960 boot ROMs to boot the system. Based on this config
uration string, usrNetlnit( ) does the following network initialization: 

• Initializes the network subsystem by calling the routine netLibinit( ). 

• Attaches and configures the appropriate network drivers. 

• Adds gateway routes. 

• Initializes the remote file access driver netDrv and adds the remote file access 
device. 

• Initializes the remote login facilities. 

• Optionally initializes the remote procedure calls (RPC) facility. 

• Optionally initializes the remote source debugging facility. 

• Optionally initializes the Network File System (NFS) facility. As noted above, 
the inclusion of some of these network facilities are controlled by definitions in 
the configAll.h header file. 

The network initializations are described in detail in 6. Network. 

8.2.5.11 Creation and Loading of the System Symbol Table 

The Vx960 interactive development environment relies heavily on its memory resi
dent system symbol table, which contains the names and addresses of variables and 
functions that have been loaded into memory. This symbol table is generally 
obtained from the host system from which Vx960 was booted. However, in" stand
alone" configurations (described below, under 8.4 Alternative Vx960 Configurations) 

Intel Vx960 25 7 



Vx960 5.0 - Programmer's Gulde 

the system symbol table is not read in; in such configurations, the remainder of this 
section does not apply. 

First, the system symbol table is created by calling symTblCreate( ). For conve
nience during debugging, it is most useful to have access to all symbols in the sys
tem. On the other hand, a production version of a system can be built that does not 
require any system symbol table at all, if memory use is a factor. 

The call to symTblCreate( ) creates an empty system symbol table. Vx960 system 
facilities are not accessible interactively via the shell until the symbol definitions for 

. the booted Vx960 system are entered into the system symbol table. This is done by 
reading the system's symbol table from a file called vxWorks.sym in the same direc
tory from which vxWorks was loaded. This file contains an object module that con
sists only of a symbol table section containing the symbol definitions for all the 
variables and functions in the booted system module. It has zero-length (empty) 
code, data, and relocation sections. Nonetheless, it is a legitimate object module in 
the standard object module format. 

The symbols in vxWorks.sym are entered in the system symbol table by calling 
loadSymTbl( ) (whose source is in usrConfig.c). This routine uses the Vx960 loader 
to load symbols from vxWorks.sym into the system symbol table. 

8.2.5.12 Execution of a Startup Script 

Before finally turning control over to the shell, usrRoot() executes a user-supplied 
startup script if this option has been enabled. The startup script is executed if its file
name was specified at boot time with the startup-script parameter (see 2.5 Booting 
Vx960). If the parameter is missing, no startup script is executed. This feature is 
enabled by defining INCLUDE_STARTUP _SCRIPT in configAU.h. 

Startup scripts can be particularly useful for tailoring the configuration of a Vx960 
system without having to rebuild it. For more information on the use of startup 
scripts, see 9.4.3 Scripts. 

8.2.5.13 Spawning of the Shell 

In a typical development configuration, the usrRoot( ) task spawns the Vx960 shell 
task by calling sltelllnit( ). The first argument to sltelllnit() specifies the shell's stack 
size which must be large enough to accommodate any routines you call from the 
shell. The second argument is a boolean that specifies whether the shell's input is 

258 Intel Vx960 



8. Configuration 

from an interactive source (TRUE), or a non-interactive source (FALSE) such as a 
script file. If the source is interactive, then shell prompts for commands but does not 
echo them to standard out, and vice-versa if the source is non-interactive. 

8.2.6 The System Clock Routine: usrClock() 

8.3 

The final element in the usrCon.fig.c module is the system clock interrupt routine 
usrClock( ). This interrupt-level routine is attached to the system clock timer inter
rupt by the usrRoot( ) task described above. The routine must call the kernel clock 
tick routine tickAmzounce( ). Application developers may also add any application
specific processing to this routine. 

Building a Vx960 System Image 

The configuration of Vx960 is determined by the source files discussed in the previ
ous section, 8.2 Configuring Vx960. If any of these files are modified to alter the con
figuration, Vx960 must be rebuilt. This includes re-compiling certain modules and 
re-linking the system image. This section explains the procedures for rebuilding the 
Vx960 system image. 

8.3. l Rebuilding Vx960 with make 

Vx960 uses the UNIX make facility to re-compile and re-fink modules. The file 
Makefile is provided in each Vx960 target directory and contains the directives for 
rebuilding Vx960 for that target. (See the UNIX manual entry for make for more 
information on makefiles.) 

To rebuild Vx960, change to the Vx960 target directory for the desired target, and 
invoke make as follows: 

\ cd /usr/vx/config/target 
\ make 

make re-compiles and re-links modules as necessary, based on the directives in the 
target directory's Makefile. 

Intel Vx960 259 



Vx960 5.0 - Programmer's Gulde 

8.3.2 Linking the System Modules 

The UNIX commands to link a Vx960 system image are somewhat complicated. For
tunately, it is not necessary to understand those commands in detail since the Make· 
file in each Vx960 target directory includes the necessary commands. However, for 
completeness, this section gives an explanation of the flags and parameters used by 
Vx960. 

Most of the Vx960 operating system modules are distributed in the form of UNIX 
archive libraries including all.a, net.a, config.a, etc. There is a complete set of these 
libraries in vx/lib/arch for each architecture supported by Vx960. 

These modules are combined with the configuration module usrConfig.o by the 
GNU/960 linker gld960. (The usrCon.fig.c module is described in the previous sec
tion, 8.2 Configuring Vx960.) The following is a typical command for linking a Vx960 
system: 

gld960 -o vxWorks -ACA -T 1000 -e _sysinit \ 
sysALib.o sysLib.o tyCoDrv.o usrConfig.o version.o \ 
/usr/vx/lib/i960ca/all.a /usr/vx/lib/i960ca/config.a \ 
/usr/vx/lib/i960ca/net.a /usr/vx/lib/i960ca/rpc.a \ 
/usr/vx/lib/i960ca/netif.a /usr/vx/lib/i960ca/wind.a 
/usr/vx/lib/i960ca/i960.a -leg -lfpg 

The meanings of the flags in this command are as follows: 

-ovxWorks 

-ACA 

-T 1000 

-e _syslnit 

260 lnte1Vx960 

This causes the resulting object module to be named vxWorks. 

This flag specifies the use of the 80960CA-specific version of 
the C runtime library. 

This flag specifies the relocation address, in this example 1000 
hex. This is the address at which the system must be loaded in 
the target, and is also the address at which execution starts. 
Some target systems may have limitations on where this relo
cation address can be. 

This flag defines the entry point to vxWorks. Note that 
syslnit( ) is the first routine in sysALib.o, which is the first 
module loaded by Id. 



8. Configuration 

sysALib.o and sysLib.o 
These are modules with CPU-dependent initialization and 
support routines. The module sysALib.o must be the first 
module specified in the Id command. 

tyCoD.rv.o This is the CPU-specific console 1/0 driver. 

usrConfig.o 

version.a 

This is the configuration module described in detail in a section 
below. If you have several different system configurations, you 
may have several different configuration modules, either in 
/usr/vx or in your own directory. 

This module contains data structures which define the creation 
date and version number of this vxWorks object module. It is 
created by compiling the output of make Version. 

/usr/vx/lib/i960ca/ all.a 
This is the archive format library that contains all the system
independent Vx960 modules. This library is searched, and the 
necessary Vx960 modules included, to satisfy the external ref
erences of the usrConfig module. 

/usr/vx/lib/i960ca/ con.fig.a 
This is the archive format library that contains all the I/ 0 driv
ers and user-alterableVx960 modules. This library is searched 
and the necessary Vx960 modules included, to satisfy external 
references. 

/usr/vx/lib/i960ca/net.a 
This archive contains all of the Vx960 network support code. 

/usr/vx/lib/i960ca/rpc.a 
This archive contains the Remote Procedure Call library. 

/usr/vx/lib/i960ca/netif.a 
This archive contains the network interface drivers; for exam
ple, if_ei.c for the Intel 82596 coprocessor and ENP-10/L 
Ethernet controllers. 

/usr/vx/lib/i960ca/wind.a 
This archive contains the Vx960 kernel. 

Intel Vx960 261 



Vx960 5.0 - Programmer's Gulde 

/usr/vx/lib/i960ca/i960.a 
This archive contains the processor specific, optimized assem
bly routines. 

-leg This is the GNU/960 C run-time library. This library is 
searched and necessary routines included, to satisfy remaining 
unresolved references. Typically, this includes internal com
piler support routines. The -leg must come after the Vx960 
libraries. Otherwise, some GNU /960 routines are linked in 
instead of Vx960 routines with identical names (the I/ 0 library, 
for instance). 

-lfpg This is the GNU /960 C floating-point support library. This 
library is searched and necessary routines included, to satisfy 
remaining unresolved references. Typically, this includes inter
nal compiler support routines. The -lfpg must come after the 
Vx960 libraries. 

Note: Refer to Section 7.4.3 Unklng an Application Module to allow optimum 
code sharing of routines from the C run-time library and the C floating
point library. 

Additional object modules: 

262 Intel Vx960 

Additional object moqules (with .o suffix) can be linked in with 
the Vx960 system simply by naming them on the gld960 com
mand. Note that during development, application object mod
ules are generally not linked with the system unless they are 
needed by the usrConfig module since they may be incremen
tally loaded after Vx960 is booted. See Section 8.4 Alternative 
Vx960 Configurations for more detail on linking application 
modules in a bootable system. 



8. Configuration 

8.3.3 Creating the System Symbol Table Module 

8.4 

In a standard Vx960 configuration, part of the initialization procedure is for Vx960 
to read its own symbol table, so system symbols are available to applications loaded 
later, and from the shell. The symbol table file is created by a the supplied tool xsym. 
Processing an object module with xsym creates a new object module that contains 
all the symbols of the original file, but with no code or data. The line in Makefile that 
creates this file is: 

xsym < vxWorks > vxWorks.sym 

The file vxWorks.sym is the symbol table loaded during Vx960 initialization. 

Alternative Vx960 Configurations 

The preceding discussion of the usrConfig module outlined a typical configuration 
for a development environment. In this configuration, the Vx960 system image con
tains all of the Vx960 modules that are necessary to allow you to interact with the 
system through the shell. Once the system is up, you can interactively load, execute, 
and debug other Vx960 and application modules, via the Vx960 shell. 

However, as you approach a debugged "production" version of your application, 
you may want to add application modules to the bootable system image and add 
application startup to the system initialization. In a final version, you may also want 
to remove the shell altogether, create a stand-alone application requiring no net
work, or create a system completely bootable from RO Ms. 

The following sections discuss these alternatives to the typical development config
uration. 

8.4.1 Excluding Development Facllltles 

In a production configuration, it may be desirable to remove some of Vx960 devel
opment facilities to reduce the memory requirements of the system, to reduce boot 
time, or for security purposes. 

Intel Vx960 263 



Vx960 5.0 - Programmer's Gulde 

8.4.1.1 

8.4.1.2 

Optional Vx960 facilities can easily be omitted from Vx960 by commenting out or 
using #undef to undefine their corresponding control constants in the header files 
configAll.h or config.h. For example, debugging facilities can be omitted by unde
fining INCJ.UDE_DEBUG. RT-11 file support and the RAM-disk driver can be omitted 
by undefining INCLUDE_RTllFS and INCLUDE_RAMDRV, respectively. Many more 
facilities can be omitted in this way. See the list of INCLUDE options in Table 8-1. 

Excluding the Shell 

Application startup can be made a part of system initialization, in which case there 
may be no need to interact with the system through the Vx960 shell. The shell can be 
excluded by undefining INCLUDE_SHELL. If the shell is excluded, there is no need to 
look up symbol names; thus, the creation and loading of the system symbol table can 
also be omitted. This is done by undefining INCLUDE_NET_SYM_TBL. 

If the shell is excluded, usrRoot() spawns a simple demo which serves as an exam
ple for initializing bootable applications. This routine loops forever prompting for a 
string and echoing it. If the string "O" or "1" is entered, it displays various memory 
statistics. For more information, see 8.4.2 Creating Bootable Applications. 

Excluding Network Facllltles 

In some applications you might want to eliminate the Vx960 network facilities. For 
example in the ROM-based systems or stand-alone configurations described below, 
there may be no need for the network facilities. 

To exclude the network facilities, undefine the options INCLUDE_NElWORK, 
INCLUDE_NET_INIT, and INCLUDE_NET_SYM_TBL. To exclude the Remote Proce
dure Call library (RPC) undefine INCLUDE_RPC, INCLUDE_NFS, and INCLUDE_RDB. 

Any configuration option that requires another configuration option automatically 
includes that option. For example, if the INCLUDE_RPC is undefined, but INCLU
DE_NFS is defined, NFS will be included for RPC. NFS requires RPC to function. 
The file /usr/vw/config/configAll.h details these interdependencies. 

264 Intel Vx960 



8. Configuration 

8.4.2 Creating Bootable Applications 

In general, during development it is preferable not to include extraneous modules 
in the Vx960 bootable system, since any changes to those modules would then 
require recreating the Vx960 system. However, as you approach a final version of 
your system, you may want to add application modules to the bootable system 
image, and include startup of your application ·with the system initialization rou
tines. In this way, you can create a "bootable" application, which is completely ini
tialized and functional after booting, without requiring any interaction with the 
Vx960 shell. 

To include your application modules in the bootable system image, add the names 
of the application object modules (with the .o suffix) to the list of modules to be 
linked with the gld960 command. Look for the Makefile entry vxWorks and add 
your object modules after the $(LD) instruction. 

To start up your application with the initialization of the system, add the necessary 
code to the usrRoot() routine in usrConfig.c. This code can call application initial
ization routines, create additional I/ 0 devices, spawn application tasks, and so 
forth, just as you might do from the shell in a development configuration. The fol
lowing model for this is provided: since users typically exclude the shell from boot
able applications, usrConfig.c has been set up to include and initialize a simple 
demo if INCLUDE_SHELL is not defined - usrRoot( ) spav.'Tis usrDemo() as a task 
instead of the shell. If you are excluding the shell, replace the spawning of 
usrDemo() with the appropriate initialization of your application. For additional 
information on the demo and removing the shell, see 8.4.1.1 Excluding the Shell. 

Application size is an important consideration in building bootable applications. 
Vx960 boot ROM code is copied to starting address Ox90000 in RAM, and the system 
image is copied to OxlOOO on Vx960 systems. If the entire system image requires 570 
Kbytes or more, it writes over the boot ROM code while dov.-nloading, thereby kill
ing the booting process. To prevent this, reprogram the boot RO Ms to copy the boot 
ROM code to a sufficiently higher memory address by increasing the value of RAM_
HIGH_ADR in the makefile. 

Then remake the boot ROMs by typing: 

% make bootrom.hex 

The binary image size of typical boot ROM code is 256 Kbytes or less. 

Intel Vx960 265 



Vx960 5.0 - Programmer's Gulde 

8.4.3 Creating a Stand-Alone Vx960 System with a Bunt-In Symbol Table 

It is sometimes necessary to create a Vx960 system that does not load its own symbol 
table during initialization. This might be necessary, for instance, if network facilities 
are not initialized or included and the system does not have access to a device from 
which it can read the symbol table. 

The procedure for building such a system is somewhat different from the normal 
procedure described above. No change is necessary in the application code or in 
usrConfig.c. Only the make procedure must be changed. 

In the target directory's Makefile, one of the Vx960 versions that can be built is 
vxWorks.st, which includes a built-in symbol table. The following is a copy of a typ
ical Makefile entry for creating vxWorks.st: 

vxWorks.st : usrConfig_st.o $(MACH_DEP) $(LIBS) $(LDDEPS) 
@ $(RM) $@ symTbl.c symTbl.o 
@ make version.o 
$(LD) -o tmp.o -r $(MACH_DEP) usrConfig_st.o version.o $(LIBS) 
$(BIN)makeSymTbl tmp.o > symTbl.c 
$(CC) $(CFLAGS) -s symTbl.c 
sed -e 's/_\(.*\)_DOT_EL_EF_/\l.lf/g' \ 

-e 's/_DOT_EL_EF_/.lf/g' symTbl.s > tmp.s 
$(AS) -o symTbl.o tmp.s 
$(LD) -o $@ $(LD_LOW_FLAGS) -e _sysinit tmp.o symTbl.o 
@ $(RM) tmp.o tmp.s tmp.c version.o 

The module usrConfig_st.o is the usrConfig.c module compiled with the STANDA
LONE flag defined. The STANDALONE flag causes the usrConfig.c module to be com
piled with the built-in system symbol table. 

The STANDALONE flag also suppresses the initialization of the network, since the 
network is not now needed to download the system symbol table. If you want the 
network initialized, either call usrNetlnit() from the shell, or modify usrRoot( ) to 
call usrNetlnit().1 . 

The makefile macro references are defined as follows: 

$(MACH_DEP) the machine-dependent modules sysALib.o, sysLib.o and 
tyCoDrv.o. 

1. While vxWorks.st suppresses network initialization, it still includes the network. Specifically, 
the STANDALONE flag defines INCLUDE_STANDALONE_SYM_ TBL and INCLUDE_NETWORK 
and undefines INCLUDE_NET_SYM_TBL and INCLUDE_NET_INIT. 

266 Intel Vx960 



8.4.4 

8.4.4.1 

8. Configuration 

$(LIBS) the archives in/usr/vx/lib. 

$(LO) and $(CC) 

$(BIN) 

architecture-specific commands for loading and compiling. 

architecture-specific /usr/vx/bin directory. 

Vx960 is linked as described previously, except that the first pass through the loader 
does not specify the final load address, so that the output from this stage is still relo
catable. 

The makeSymTbl tool is invoked on the loader output; it constructs a data structure 
containing all the symbols in Vx960. This structure is then compiled and linked with 
Vx960 itself to produce the final bootable Vx96J object module. 

To include your own application 1n the system image, add the object modules after 
the first $(LD) instruction and observe the procedures discussed in the previous sec
tion. 

To create the vxWorks.st version, type: 

\ make vxWorks.st 

Creating a Vx960 System In ROM 

General Procedures 

To put Vx960 or a Vx960-based application into ROM, modify the command to the 
UNIX loader to load the module romlnit.o before sysALib.o. The entry point option 
must then be changed to -e _romlnit. The romlnit routine initializes the stack to 
point directly below the text segment. It then calls bootinit( ), which clears memory 
and copies the Vx960 text and data segments to the proper location in RAM. Control 
is then passed to usrlnit( ). 

A good example of a ROM-based Vx960 application is the Vx960 boot ROM program 
itself. The file /usr/vx/config/all/bootConfig.c is the configuration module for the 
boot ROM, replacing the file usrConfig.c provided for the default Vx960 develop
ment system. The makefiles in the target-spec.J:ic directories contain directives for 
building the boot ROMs, including an Intel Hex format file suitable for downloading 
to a PROM programmer. This is done by invok.ng the UNIX make command as fol
lows: 

% make bootrom.hex 

Intel Vx960 267 



Vx960 5.0 ....;.. Programmer's Gulde 

8.4.4.2 

Vx960 target makefiles also include the entry vxWorks.st_rom for creating a ROM
able version of the stand-alone system described in the previous section. 
vxWorks.st_rom differs from vxWorks.st in two respects: (1) romlnit code is loaded 
as discussed above, and (2) the portion of the system image that is not essential for 
booting is compressed by approximately 40% using the Vx960 compress tool (see 
below). To use this makefile entry and to create an Intel Hex version, type: 

% make vxWorks.st_rom.hex 

When adding application modules to a RO Mable system, size is an important con
sideration. Keep in mind that by using the compress tool, what normally requires a 
256-I<byte ROM may well fit into a 128-I<byte ROM. Also, space can be gained by 
removing the shell and system symbol table, which account for approximately 66% 
of the standard Vx960 configuration. 

If the RO Ms' contents are to exceed 256 Kbytes, modify both config.h and the make
file to reset ROM_SIZE. 

By default, romlnit copies the boot ROM contents into memory starting at address 
Ox90000. However, target boards with only 1 Mbyte of RAM are unable to accommo
date more than 448 !<bytes at this address. This can be remedied by resetting 
ROM_TEXT_ADRS in the makefile to copy the ROM code to a sufficiently lower mem
ory address. Since no system image is downloaded over the network as in a standard 
configuration, the normal entry point at OxlOOO can be used for this. 

Boot ROM Compression 

Vx960 boot ROMs are compressed to about 60% of their actual size using a binary 
compression algorithm, which is supplied as the tool compress. \\'hen control is 
passed to the ROMs on system reset or reboot, a small (8 Kbytes) uncompress rou
tine, which is not compressed, is executed. It then uncompresses the remainder of 
the ROM into RAM and jumps to the start of the uncompressed image in RAM. 
There is a short delay during the uncompression (about 4 seconds) before the Vx960 
prompt appears. 

This mechanism is also available to application builders who wish to compress a 
ROMable Vx960 application. The Makefile entry for vx\'\'orks.st_rom demonstrates 
how this can be accomplished. For more information, see also the manual entries for 
bootlnit(l) and compress(3). 

268 Intel Vx960 



9 

Shell 

Contents 

9.1 Introduction ............................................................................................................................... 271 

9.2 General Use ................................................................................................................................ 272 

9.3 

9.2.1 Accessing the Shell ..................................................................................................... 272 

9.2.2 Terminal Control Characters ..................................................................................... 272 

9.2.3 Shell Examples ............................................................................................................ 273 

9.2.4 The Nature of the Shell: A Caveat ........................................................................... 274 

Shell Language ........................................................................................................................... 275 

9.3.1 Data Types ................................................................................................................... 275 

9.3.2 Lines and Statements .................................................................................................. 277 

9.3.3 Expressions ...................... , ........................................................................................... 277 

9.3.3.1 Literals 278 
9.3.3.2 Data Variable References 278 
9.3.3.3 Operators 279 
9.3.3.4 Function Calls 279 
9.3.3.5 Omitting Parentheses 280 
9.3.3.6 Task References 281 

9.3.4 Assignments ................................................................................................................ 281 

9.3.4.1 Automatic Creation of New Variables 282 

lntal Vx960 269 



Vx960 5.0 - Programmer's Gulde 

9.3.5 Comments .................................................................................................................... 282 

9.3.6 Strings ........................................................................................................................... 283 

9.3.7 Ambiguity of Arrays and Pointers ........................................................................... 283 

9.3.8 Pointer Arithmetic ...................................................................................................... 284 

9.4 Redirection ................................................................................................................................. 285 

9.4.1 Ambiguity Between Redirection and Operators ................................................... 285 

9.4.2 The Nature of Redirection ......................................................................................... 286 

9.4.3 Scripts ........................................................................................................................... 286 
9.4.3.1 Redirecting Shell 1/0 286 
9.4.3.2 System Startup S<:ripts 287 

9.5 Shell Line Editing ...................................................................................................................... 288 

9.6 Aborting the Shell ..................................................................................................................... 290 

9.7 The User Library ....................................................................................................................... 291 

9.7.1 Help Routines ............................................................................................................. 292 

9.8 Remote Login ............................................................................................................................. 292 

9.8.1 Remote Login from UNIX: rlogin and telnet ........................................................ 292 

9.8.2 Remote Login Security ............................................................................................... 293 

9.8.3 Remote Login from Vx960: rlogiii() ....................................................................... 294 

9.9 The Shell Task ............................................................................................................................. 294 

270 Intel Vx960 



9 

Shell 

9 .1 Introduction 

Much of Vx960's power comes from the uniformity of the environment it offers the 
application developer. A key element of this environment is the interactive access to 
system and application facilities provided by the Vx960 shell. 

Most systems are supplied with some kind of command interpreter program which 
provides the user with a limited and fixed set of commands that can be invoked 
interactively. The Vx960 shell, however, provides a much simpler and more power
ful mechanism: the shell allows you to interactively invoke any subroutine that has 
been loaded into memory, including both those supplied in Vx960 modules and 
those in application modules. 

In fact, the shell can interactively interpret almost any C language expression, 
including execution of most C operators and resolution of symbolic data references 
and subroutine invocations. 

The shell is not required in a Vx960 system. It can be omitted, in a production system· 
for example, by suppressing its spawning in the root task. 

Intel Vx960 271 



Vx960 5.0 - Programmer's Gulde 
',.;. 

9.2 General Use··./:~~~-· · 

9 .2.1 Accessing the Shell 

The shell can be accessed in one of two ways: via direct serial connection, or via the 
network. When Vx960 is first booted, the shell's terminal is the system console. The 
UNIX tools rlogin or telnet are used to access the shell via the network. Network 
·access is discussed in 9.8 Remote Login. 

9.2.2 Terminal Control Characters 

The table below lists special terminal characters frequently used for shell control: 

Table 9-1. Vx960 Shell Special Chorocters 

Command Description 

"H Delete a character (backspace). 
"U Delete an entire line. 
"C Abort and restart the shell. 
"X Reboot (fault to the ROM monitor). 
"S Temporarily suspend output. 
"Q Resume output. 

ESC Toggle between input mode and edit mode. 

The first four of these are defaults that can be mapped to different keys using rou
tines in tyLib(l); see also 4.6.2.3 Tty Special Characters. 

For more information on the use of these characters, see 9 .5 Shell Line Editing and 
9.6 Aborting the Shell. 

272 Intel Vx960 



9. Shell 

9.2.3 Shell Examples 

The Vx960 shell reads lines of input from an input stream, parses and evaluates each 
line, and writes the result of the evaluation to an output stream. The shell accepts the 
same expression syntax as the C compiler with a few variations. 

This simple mechanism can be used in many different ways. The following exam
ples illustrate some typical uses of the shell. Note that the shell prompt for interac
tive input is "->". User input is shown in bold face and shell responses are shown 
in regular face. 

• Data Conversion: 

-> 68 
value • 68 - Ox44 • 'D' 

-> OxfSde 
value • 62942 = Oxf5de • _init + Ox52 

-> '&' 
value • 115 • Ox73 • 's' 

The shell prints all integers and characters in both decimal and hexadecimal, 
and if possible, as a character constant or a symbolic address and offset 

• Oata Calculation: 

-> (14 * 9) I 3 
value • 42 • Ox2a • '*' 

-> (Oxl355 << 3) & OxOfOf 
value • 2568 • Oxa08 

-> 4.3 * 5 
value • 21.5 

Almost all C operators can be used. 

• Calculations With Variables: 

-> (j + k) * 3 
value• ••• 

-> * (j + 8 * k) 
( ••• address (j + 8 * k) ••• ): value• 

-> x • (vall - val2) I val3 
new symbol ,"x" added to symbol table 

Intel Vx960 273 



Vx960 5.0 - Programmer,_s Gulde ,.. 

9.2.4 

address• ••• 
value • 

-> f • !.U * 2 
new symbol "f" added to symbol table 
f • ( ••• address off ••• ): value• 2.82 

Variable f will get an 8-byte floating point value. 

• Invocations of Vx960 Subroutines: 

-> errnoGet ( ) 
value= ( ... value returned ••. ) 

-> taskSpawn ("tmyTask", 10, O, 1000, myTask, fdl, 300) 
value 

-> fd •open ("file", 0) 
new symbol "fd" added to symbol table 
fd = ( ... address of fd ••. ): value= ••. 

-> fprintf (fd, "status • \d.", status) 
value= ••. 

• Invocations of Appllcatlon Functions: 

-> testFunc (123) 
value = ••• 

-> myValue • myFunc (1, &val, testFunc (123)) 
myvalue = ( •.• address of myValue ..• ) .: value = 

-> myFloat • (float ()) myFuncWhichReturnsAFloat (x) 
myFloat =( ••• address of myFloat ... ): value= ••• 

For cases in which a routine does not return a 4-byte integer, see the section 
9.3.3.4 Function Calls below. 

The Nature of the Shell: A Caveat 

The Vx960 shell serves a dual role. First, it acts as a command interpreter that pro
vides access to all Vx960 facilities, by allowing the user to call any Vx960 subroutine. 

Second, as can be seen from the examples above, the shell can be used as a powerful 
debugging tool for the application developer. Application modules can be tested 
and debugged interactively by calling any application routine. 

274 Intel Vx960 



9.-Shell 

However, the power of the shell makes it a potentially dangerous facility.You must 
know the consequences of calling a particular routine, and you must specify cor
rectly the arguments to be passed to it. By invoking routines incorrectly, it is possible 
to cause system failures that require rebooting the system. 

Thus the shell is not an appropriate interface for naive end-users. But it is an excel
lent interface for application developers. 

9 .3 Shell Language 

9.3. l Data Types 

The most significant difference between the Vx960 shell and the C compiler lies in 
the way that they handle data types. The shell does not accept any C declaration 
statements, and no data-type information is available in the system symbol table. 
Instead, an expression's type is determined by the types of its terms. 

Unless explicit type-casting is done, the shell makes the following assumptions 
about data types: 

• In an assignment statement, the type of the left hand side is determined by the 
type of the right hand side. 

• If floating-point numbers and integers both appear in an arithmetic expression, 
the resulting type is a floating-point number. 

• Data types are assigned to various elements as shown in Table 9-2. 

A constant, variable, or return value of a routine can be treated as a different type 
than what the shell assumes it to be by specifying the type in a fashion similar to 
standard C type-casting. Table 9-3 shows the various data types available in Vx960, 
along with examples of how they can be set and referenced. 

Intel Vx960 275 



Vx960 5.0 - Programmer's Gulde 

Table 9-2. Vx960 Shell Data-Type Assumptions 

Eiement Data Type 

variable int 

variable used as floating-point double 

return value of subroutine int 

constant with no decimal point int/long 

constant with decimal point double 

-

Table 9-3. Vx960 Data Types 

Type Bytes Set Variable Display Variable 

int 4 x - 99 x 
(int) x 

long 4 x - 33 x 

x - (long)33 (long) x 

short 2 x - (short)20 (short) x 

char 1 x -
I A' (char) x 

x - (char)65 

x - (char)Ox41 

double 8 x - 11.2 (double) x 

x - (double)ll.2 printf ("\g", (double)x) 
printf ("\f", (double)x) 
printf ("\e", (double)x) 

float 4 x - (float)S.42 (float) x 

printf ("\g", (float)x) 
printf ("\f", (float)x) 
printf ("\e", (float)x) 

276 Intel Vx960 



9.3.2 

9.3.3 

9. Shell 

Strings, or character arrays, are not actual data types in the Vx960 shell. To declare a 
string, set a variable to a string value. For example: 

-> ss • "shoe bee doo" 

The variable ss is a pointer to the string "shoe bee <loo". To display ss, type: 

->print£ ("\s", ss) 

or: 

-> d SS 

The d() command displays memory where ss is pointing. The shell places no type 
restrictions on the application of operators. For example, the shell expression: 

*(1000 + 3 * 16) 

evaluates to the 4-byte integer value contained in memory location 1048. 

Lines and Statements 

The shell parses and evaluates its input a line at a time. A line may consist of a single 
shell statement or several shell statements separated by semicolons. A semicolon is 
not required on a line containing a single statement. A statement cannot continue on 
more than one line. 

Shell statements are either C expressions or assignment statements. 

Expressions 

Shell expressions consist of literals, symbolic data references, function calls, and the 
usual C operators. 

Intel Vx960 277 



Vx960 5.0 ~ Programmer•s-Golde 

9 .3.3.1 Literals 

9.3.3.2 

The shell interprets the literals in the table below in the same way as the C compiler, 
with one addition: the shell also allows hex numbers to be preceded by $ instead of 
Ox. 

Table 9-4. Vx960 Shell Uterals 

Uteral Example 

decimal numbers 143967 

octal numbers 017734 

hex numbers Oxflba or $f3ba 

floating point numbers 666.666 

character constants 'x' and '$' 

string constants "hello worldlll" 

Data Variable References 

Shell expressions may contain references to data variables whose names have been 
entered in the system symbol table. Unless a. particular type has been specified for 
a data variable, the variable's value in an expression is the 4-byte value at the mem
ory address obtained from the symbol table. It is an error if an identifier in an 
expression is not found in the symbol table, except in the case of assignment state
ments discussed below. 

The C compiler prefixes all .user-defined identifiers with an underline, so that the 
identifier my Var is in the symbol table as _my Var. The identifier can be entered either 
way to the shell- the shell searches the symbol table for a match either with or with
out a prefixed underline. 

Shell expressions can also access data in memory that does not have a symbolic 
name in the symbol table but whose address is known to the user. This can be done 
with the C indirection operator * applied to a constant. For example, •oxtOOO refers 
to the 4-byte integer value at memory address 1000 hex. 

278 Intel Vx960 



9.3.3.3 

9.3.3.4 

9. Shell 

Operators 

The shell interprets the following operators in the same way as the C compiler: 

Table 9-5. Vx960 Shell Operators 

Operator Type Operators 

arithmetic + - * I unary-

relational -- ,_ 
< > <= >= -- .-

shift << >> 

logical I I && ! 

bitwise I & " -
address and indirection & * 

The shell assigns the same precedence to the operators as the C compiler. However, 
unlike the C compiler, the shell always evaluates both sub-expressions of the logical 
binary operators 11 and&&. 

Function Calls 

Shell expressions may contain calls to C functions (or C compatible functions) whose 
names have been entered in the system symbol table. 

The shell executes such function calls as though the function had been called, with 
the specified arguments, from the body of the shell itself, in the context of the shell 
task. The value of a function call is the 4-byte integer value returned by the function. 

The shell allows up to ten arguments to be passed to a function. In fact, the shell 
always passes ten arguments to every function called, passing values of zero for 
those arguments not specified. This is harmless since the UNIX C function-call pro
tocol handles passing of variable numbers of arguments. However, it allows trailing 
arguments of value zero to be omitted from function calls in shell expressions. 

Intel Vx960 279 



Vx960 5.0 ~ Programmer's Gulde 

9.3.3.5 

Function calls can be nested. That is, a function call can be an argument to another 
function call. 

Shell expressions can also contain references to function addresses instead of func
tion invocations. As in C, this is indicated by the absence of parentheses after the 
function name. Thus the expression: 

myFunc ( ) + 4 

evaluates to the result returned by the function myFunc( ), added to 4, while the 
expression: 

myFunc + 4 

evaluates to the address of myFunc() added to 4. However, an important exception 
to this occurs when the function name is the very first item encountered in a state
ment. This is discussed in the section below . 

. , 

Shell expressions can also contain calls to functions that do not have a symbolic 
name in the symbol table, but whose addresses are known to the user. This can be 
done by supplying the address in place of the function name. Thus the expression: 

OxlOOO () 

would call a parameterless function whose entry point is at address 1000 hex. 

Omitting Parentheses 

In practice, most statements input to the shell are function calls, often to invoke 
Vx960 facilities. To simplify this use of the shell, an important exception is allowed 
to the standard expression syntax required by C. When a function name is the very 
first item encountered in a she'll statement, the parentheses surrounding the func
tion's arguments can be omitted. Thus the following shell statements are synony
mous: 

->rename ("oldname", "newname") 

->rename "oldname", "newname" 

as are: 

-> errnoGet ( ) 

-> errnoGet 

280 Intel Vx960 



9.3.3.6 

9. Shell 

Task References 

Most Vx960 routines that take a task parameter require a task ID. However, when 
invoking routines interactively, specifying a task ID can be cumbersome since the ID 
is an arbitrary and possibly lengthy number. 

To accommodate interactive use, Vx960 shell expressions can reference a task by 
either task ID or task name. The Vx960 shell attempts to resolve a task argument to 
a task ID; if no match is found in the system symbol table, it searches for the argu
ment in the list of active tasks. When it finds a match, it substitutes the task name 
with its matching task ID. In symbol lookup, symbol names take precedence over 
task names. 

By convention, task names are prefixed with a "t". This avoids name conflicts with 
entries in the system symbol table. The names of system tasks and the default task 
names assigned when tasks are spawned use this convention. For example, tasks 
spawned by sp( ) are given names such as t1, t2, and t3. Users are encouraged to 
adopt this convention. 

9.3.4 Assignments 

The Vx960 shell interprets assignment statements in the form: 

addressExpression • expression 

The left side of an expression must evaluate to an addressable entity, i.e., a legal C 
value. The data type of the left side is determined by the type of the right side. If 
the right side does not contain any floating point constants or non-integer type-casts, 
then the type of the left side will be an integer. The value of the right side of the 
assignment is put at the address indicated by the left side. For example, the assign
ment: 

-> x • OxlOOO 

sets the 4-byte integer variable x to OxlOOO. The assignment: 

-> *OxlOOO • x 

sets the 4-byte integer value at memory address OxlOOO to the current value of x. 

The compound assignment: 

-> x +- 300 

Intel Vx960 281 



Vx960 5.0 - Programmer's Gulde 

9.3.4.1 

adds 300 to the 4-byte integer variable x. The assignment: 

-> *OxlOOO +• 300 

adds 300 to the 4-byte integer value at memory address OxlOOO. The compound 
assignment operator -=, as well as the auto-increment and auto-decrement opera
tors + + and -, are also available. 

Automatic Creation of New Variables 

New variables can be created automatically by assigning a value to an unknown 
identifier (one not found in the system symbol table) with an assignment statement. 

When the shell encounters such an assignment, it allocates space for the variable and 
enters the new identifier in the system symbol table along with the address of the 
allocated variable. The new variable is set to the value and type of the right-side 
expression of the assignment statement. The shell prints a message indicating that a 
new variable has been allocated and assigned the specified value. 

For example, if the identifier fd does not exist in the system symbol table, the state
ment: 

-> fd •open ("file", 0) 

creates a new variable named fd and assign to it the result of the function call. 

9.3.5 Comments 

The shell allows two kinds of comments. First, comments of the form/* ... *I can be 
included anywhere on a shell input line. These comments are discarded, and the rest 
of the input line evaluated as usual. Second, any line whose first non-blank character 
is # is ignored. Comments are useful for Vx960 shell scripts. See the section 
9.4.3 Scripts below. 

282 Intel Vx960 



9.3.6 

9.3.7 

9. Shell 

Strings 

When the shell encounters a string literal (" ... ") in an expression, it allocates space 
for the string including the null byte string terminator. The value of the literal is the 
address of the string in the allocated storage. For instance, the expression: 

-> x • "hello there" 

allocates 12 bytes from the memory pool, enters the string in those 12 bytes (includ
ing the null terminator), and assigns the address of the string to x. The expression: 

-> free (x) 

can be used to put those 12 bytes back into the memory pool. See memLib(l) for 
information on memory management. 

Furthermore, even when a string literal is not assigned to a symbol, memory is still 
allocated for it, e.g.: 

-> printf ("hello there") 

uses 12 bytes of memory that are never freed. This is because if strings were tempo
rarily allocated, and a string literal were passed to a routine being spawned as a task, 
then by the time the task executes and accesses the string, the shell would have 
released, and possibly even reused, the temporary storage where the string was 
held. 

Ambiguity of Arrays and Pointers 

In a C expression, a non-subscripted reference to an array has a special meaning, 
namely the address of the first element of the array. The shell, to be compatible, 
should use the address obtained from the symbol table as the value of such a refer
ence, rather than the contents of memory at that address. Unfortunately, the infor
mation that the identifier is an array as all data type information, is not available 
after compilation. For example, if a module contains the following: 

char string [ ) • "hello"; 

one might be tempted to enter a shell expression like: 

-> printf (string) 0 

Intel Vx960 283 



-
Vx960 5.0 - Programmer's Gulde 

While this would be correct in C, the Vx960 shell passes the first 4 bytes of the string 
itself to print/( ), instead of the address of the string. To correct this, the shell expres
sion must take the address of the identifier: 

-> printf (&string) 

To make matters worse, if the identifier had been declared a character pointer 
instead of a character array: 

char *string• "hello"; 

. then 0 would be correct and a would be wrong! This is confusing since C allows 
pointers to be subscripted like arrays, such that the value of string[O] would be "h" 
in either of the above declarations. 

The moral of the story is that in shell expressions, unlike in C itself, array references 
and pointer references are different. In particular, array references require an 
explicit application of the address operator &~ 

9.3.8 Pointer Arithmetic 

While C language treats pointer arithmetic specially, Vx960 does not, since it treats 
all non-type-cast variables as 4-byte integers_ 

In the Vx960 shell, pointer arithmetic is no different than integer arithmetic. It is 
valid, but it does not take into account the size of the variable pointed to. Consider 
this example: 

-> *(myPtr + 4) • 5 

Assume that the value of myPtr is OxlOOO. In C, if myPtr is a pointer to a type char, 
this would put the value 5 in the byte at address at Ox1004. If myPtr is a pointer to a 
4-byte integer, the 4-byte value OxOOOOOOOS would go into bytes Ox1010-0x1013. The 
Vx960 shell, on the other hand, treats variables as integers, and therefore would put 
the 4-byte value OxOOOOOOOS in bytes Ox1004-0x1007. 

284 Intel Vx960 



9. Shell 

9 .4 Redirection 

The shdl and many other facilities in Vx960 direct II 0 to three known streams, 
known as standard input, standard output, and standard error. These streams are set 
and accessed through the subroutine library fioLib. See 4. 1/0 System and the manual 
entry for fioLib(l). 

The shell provides a redirection mechanism for momentarily reassigning the stan
dard input and standard output streams for the duration of the parse and evaluation 
of an input line. The redirection streams are indicated by < and > symbols followed 
by stream names, at the very end of an input line. No other syntactic elements can 
follow the redirection specifications. The redirections are in effect during the evalu
ation of all statements on the line. 

For example, the input line: 

-> copy < input > output 

would cause the standard input stream of fioLib to be set to the stream named input 
and the standard output to the stream named output during the execution of copy(). 

If the file to which standard output is redirected does not exist, it is created on the 
default device. 

9.4. l Ambiguity Between Redirection and Operators 

Ambiguity exists between redirection specifications and the relational operators less 
than and greater than. The shell always assumes that an ambiguous use of < or > 
specifies a redirection rather than a relational operation. Thus the ambiguous input 
line: 

-> x > y 

Intel Vx960 285 



Vx960 5.0 - Programmer's Gulde 

9.4.2 

9.4.3 

9.4.3.1 

would cause the printout of the value of the variable x to be written to the stream 
named y, rather than comparing the value of variable x to the value of variable y. 
However, a semicolon can always be used to remove the ambiguity, since the shell 
requires that the redirection specification be the last element on a line. Thus the input 
lines: 

-> x; > y 

-> x > y; 

are unambiguous. The first line prints the value of the variable x to the output 
stream y. The second line prints on standard output the value of the expression "x 
greater than y." 

The Nature of Redirection 

The redirection mechanism of the Vx960 shell is different from that of the UNIX 
shell, although the syntax and terminology are similar. 

Vx960 has standard input and output streams for each task. In Vx960, standard 
input and standard output are a single pair of available open streams, commonly 
used by system and application modules for debugging and diagnostic I/ 0. 

For example, you might be tempted to specify redirection streams when spawning 
a routine as a task, intending to send the output of print/( ) calls in the new task to 
an output stream, while leaving the shell's II 0 directed at the current terminal. This 
is not possible. For example, the shell input line: 

-> taskSpawn ( ••• myFunc •.• ) >output 

momentarily redirects the global standard output during the brief execution of the 
spawn routine, but does not affect the!/ 0 of the resulting task. 

Scripts 

Redirecting Shell 1/0 

A special case of II 0 redirection concerns the II 0 of the shell itself; that is, redirec
tion of the streams the shell's input is read from, and its output is written to. The syn-

286 Intel Vx960 



9.4.3.2 

9. Shell 

tax for this is the usual redirection specification on a line containing no other 
expressior LS. This ca uses the shell to call itself, recursively, after redirecting the I/ 0. 

Thus the new invocation of the shell does I/ 0 to and from the redirected streams. 
New invocations of the shell return to the original shell after reaching an end-of-file 
on their input streams. This returns the standard input and output to their previous 
streams, and resumes the processing of those streams by the original shell. 

The typical use of this mechanism is to have the shell to read and execute lines from 
a file on a disk or across the network. For example, the input lines: 

-> <startup 

-> <mars:/usr/fred/startup 

0 

a 
would cause the shell to read and execute the commands in the file startup, either 
on the default device as in 0 or explicitly on the networked machine mars as in a. 
If one had already changed to mars:/usr/fred using cd( ), commands 0 and a would 
be equivalent. 

Such command files are called scripts. Scripts are processed like input from an inter
active terminal. After reaching the end of the script file, the shell returns to process
ing I/ 0 from the original streams. 

An easy way to create a shell script is from a list of commands you have executed in 
the shell. The history routine It() prints a list of the last 20 commands typed to the 
shell. Thus, typing: 

-> h > host:/tmp/newscript 

creates a file host:/tmp/newscript which contains the current shell history. 

Scripts can also be nested. That is, scripts can contain shell input redirections that 
cause additional invocations of the shell to process other scripts. 

System Startup Scripts 

Vx960 shell scripts can be useful for setting up your environment at system startup. 
After Vx960 is booted, and before the shell task is spawned, a user-specified startup 
script is executed if its file name is supplied with the "s=" boot parameter (see 
2.5 Booting Vx960). If the parameter is missing, no startup script is executed. This fea
ture is enabled by defining INCLUDE_STARTUP _SCRIPT in configAll.h. 

Intel Vx960 287 



Vx960-5.0 - Programmer's Gulde 

Like the .login file of the UNIX C-shell, startup scripts can be used for setting system 
parameters to personal preferences, e.g., defining variables, resetting backspace or 
abort keys, and so forth. They can also be useful for tailoring the configuration of 
your system without having to rebuild Vx960, e.g.: 

• Creating additional devices 

• Loading and starting up application modules 

• Adding a complete set of network host names and routes 

• Setting NFS parameters and mounting NFS partitions. 

9 .5 Shell Line Editing 

The shell provides a history mechanism similar to the UNIX K-shell history facility 
with a built-in line editor that allows you to edit previously typed commands. 

The ESC key switches the shell from normal input mode to edit mode. The vi-like com
mands shown in the table Vx960 Shell Line-Editing Commands are used in edit mode. 
Note that some line-editing commands switch the editor to insert mode until an ESC 
is typed (as in vi) or a RETURN gives the line to the shell. RETURN always gives the 
line to the shell from either input or edit mode. 

As mentioned earlier, the shell history command h() (in input mode) displays up to 
20 of the previous commands typed to the shell; old commands fall off the top as 
new ones are entered. To edit a command, type ESC followed by one of the search 
and editing commands listed in the table. 

See the manual section on the line-editing library ledLib(l) for more information. 

Note: Since the shell toggles between raw mode and line mode, type-ahead can be 
IOst. See 4.6.2.2 Raw Mode and line Mode for more information. 

288 Intel Vx960 



5'" 
~ 

~ 
~ 

...., 
00 

"° 

Command 

ESC 

RETURN 
... u 
"'L 

"'D 

nG 
lsor?s 

n 

nk or n-
nj or n+ 
nhor "B 

nlorSPACE 

nwornW 

ne or nE 

nb or nB 

$ 

0 or" 

fc or Fe 

Vx960 Shell Line-Editing Commands 

Action Command Action 

Basic Control Insert and Change 

-SWitch to line-editing mode from regular aorA ... ESC - Append, or append at end of line. 
input mode. i or I . .. ESC - Insert, or insert at beginning of line. 

- Give line to shell and leave edit mode. c SPACE ... ESC - Change character. 
- Delete line and leave edit mode . cl ... ESC - Change character. 
- Redraw line. cw ... ESC - Change word. 
• Complete symbol name. ccorS ... ESC - Change entire line. 

Movement and Search c$ orC ... ESC - Change from cursor to end of line. 

• Go to command number n. co ... ESC • Change from cursor to beginning of line. 

• Search for strings backward in history, or 
R ... ESC - fype over characters. 

forward. nrc - Replace the following n characters With c. 

- Repeat last search. - - Toggle case, lower to upper or vice versa. 

• Get nth previous shell command. Delete 
- Get nth next shell command. 

• Go left n characters. 
nx - Delete n characters starting at cursoi: 

- Go right n characters. 
nx • Delete n character to left of cursoi: 

- Go n words forward, or n blank-separated 
dSPACEordl - Delete character. 

words. dw - Delete word. 

- Go to end of the nth next word, or blank- dd - Delete entire line. 
separated word. d$ orD - Delete from cursor to end of line. 

- Go back n words, or n blank-separated 
words. 

dO - Delete from cursor to beginning of line. 

• Go to end of line. Put and Undo 

- Go to beginning of line, or first non-blank p orP - Put last deletion after cursor, or before 
character. cursor. 

• Find character c, searching forward, or 
backward: 

u - Undo last command. 

Note: The default value for n is 1. 
The ESC which terminates insertion commands is 

unnecessary if the line is given to the shell with RETURN. 

:0 
(I) 
::r 
<D = 



Vx960 5.0 - Programmer's Gulde 

9 .6 Aborting the Shell 

You might want to abort the shell's evaluation of a statement. For example, an 
invoked routine may loop excessively, suspend, or wait on a semaphore. This can 
happen as the result of errors in arguments specified in the invocation, errors in the 
implementation of the routine itself, or oversight as to the consequences of calling 
the routine at all. 

In such cases it is possible to abort and restart the shell task. This is done by pressing 
the special abort character on the keyboard, by default "C. This causes the shell task 
to restart execution at its original entry point. 

When restarted, the shell reassigns the system standard input and output streams to 
the original assignments they had when the shell was first spawned. Thus any shell 
redirections are canceled, and any executing shell scripts are aborted. 

The abort facility works if: 

• dbglnit() has been called (see 10. Debugging). 

• excTask( ) is running. 

• The driver for the particular keyboard device supports it (all Vx960 supplied 
drivers do). 

• The device's abort option is enabled. This is done with an ioctl() call, usually 
in the root task in usrConfig.c. For information on enabling the shell abort char
acter, see 4.6.2.1 Tty Options. 

The abort key can be changed to a character other than "C by calling tyAbortSet( ). 

Also, you can enter an expression which causes the shell to incur a fatal error such 
as a bus error. Such an error results in the suspension of the offending task, which 
allows further debugging. 

However, when such an error is incurred by the shell task, Vx960 restarts the shell, 
since further debugging would be impossible without access to it. Note that for this 
reason, as well as to allow the use of breakpoints and single-stepping, when debug
ging a routine it is often useful to spawn it as a task instead of calling it from the shell 
(see 10. Debugging for more information). 

290 Intel Vx960 

... ... 



9.' Shell 

When the shell is aborted for any reason, either because of a fatal error or because it 
is aborted from the terminal, a task trace is displayed. This trace shows where the 
shell was executing when it died. 

An offending routine can have left things in a state which cannot be cleared when 
the shell is aborted. For instance, it may have taken a semaphore, which cannot be 
given as part of the abort. 

9.7 The User Library 

Although all Vx960 routines are available whenever needed, Vx960 includes some 
libraries of routines that are geared towards simple interactive use. 

The library usrLib includes routines for: 

• reporting system and task information 
• loading object modules from files 
• spawning, deleting, holding, and resuming tasks 
• displaying and modifying memory 
• examining the system symbol table 
• listing system devices and disk directories 
• copying and renaming files @·;,) 

• other higher-level facilities. 

The usrLib library also includes the routine help() that prints a list of commonly 
used routines and their arguments. See th£ manual entry usrLib(l) for details. 

Other Vx960 modules have sets of routines designed to be called from the shell, 
including dbgLib, rlogLib, timexLib, and spyLib. Many other modules have status 
display routines that are intended for interactive use. 

Application developers are encouraged to add their own interactive routines, either 
to usrLib or to separate modules. Note that the interactive use of routines is 
enhanced when they do additional parameter verification, error checking, error 
reporting, and so forth. 

Intel Vx960 291 



Vx960 5.0 ~ Programmer's Gulde-

9.7.1 Help Routines 

Several libraries include their own help routines. To find them all, type: 

-> lkup "Belp" 

For more information, see the manual eptry for lkup() in usrLib(l). 

9 .8 Remote Login 

9.8.1 Remote Log:n from UNIX: rlogin and telnet 

When Vx960 is first booted, the shell's terminal is normally the system console. To 
access the shell from a UNIX host via the network, type (on UNIX): 

\ rlogin targetname 

where targetname is the name of the target Vx960 system in the UNIX file /etc/hosts. 
If rlogin is not available on your host system, use telnet. 

A message is printed on the Vx960 system console indicating that the shell is being 
accessed via rlogin or telnet, and that it is no longer available from its console. 

If the shell is being accessed remotely, typing at the console terminal has no effect. 
Vx960 is a single-user system - it allows access to the shell only from the console or 
from a single remote login session. To prevent someone from remotely logging in 
while you are at the console, use the routine shellLock() by typing: 

-> shellLock 1 

To make the shell available again, type: 

-> shellLock 0 

Since remote login can be accessed via a UNIX window on a workstation-type envi
ronment, it is possible to access more than one target system via rlogin at a time from 
the same UNIX workstation. 

292 Intel Vx960 



9.8.2 

9. Shell 

To end a remote-login shell session, type: 

-> logout. 

or, if you are using rlogin: 

-> -. 

(TILDE, DOT) as the only characters on a line. 

Remote Login Security 

You can be prompted to enter a login user name and password when accessing 
Vx960 remotely: 

Vx960 login: user_name 

Password: password 

The remote-login security feature is enabled by defining INCLUDE_SECURITY in the 
configuration file configAll.h and rebuilding Vx960. The default login user name 
and password provided with the supplied system image is "target" and "pass
word". You can change the user name and password by using the routine 
loginUserAdd() from the shell. For example: 

loginUserAdd "fred", "encrypte.d_password" 

To obtain encrypted_password, use the t.ool vxencrypt on the UNIX host. It prompts you 
to enter your password, and then display the encrypted version. 

To define a group of login names, a list of loginUserAdd( ) commands can be 
included in a startup script and executed after the system has been booted. For more 
information on the use of startup scripts, see 9.4.3 Scripts. 

A group of login names can be defined as part of the Vx960 system configuration by 
adding a list of loginUserAdd( ) commands to the file usrConfig.c and rebuilding 
Vx960. 

The remote-login security feature can be disabled at boot time by specifying the flag 
bit Ox20 (SYSFLAG_NO_SECURITY) in the flags parameter on the boot line. This fea
ture can also be disabled by undefining INCLUDE_SECURITY in the configuration file 
configAll.h and rebuilding Vx960. 

Intel Vx960 293 



Vx960 5.0 - Programmer's Gulde 

9.8.3 Remote Login from Vx960: rlogin() 

Using rlogin( ), you can access the UNIX host or another Vx960 system on the net
work from Vx960. From the Vx960 shell, type: 

-> rlogin " sysname " 

You then have access to the Vx960 or UNIX shell on the machine called sysname. 
When finished, use logout or logout() to return to the original Vx960 shell. 

9.9 The Shell Task 

The Vx960 shell is spawned as a task by the root task in the module usrConfig. There 
are other tasks associated with the shell including rlogin and telnet tasks, if those 
facilities are included in Vx960. 

The shell and other tasks associated with it are all created with the 
VX_UNBREAKABLE option; therefore breakpoints cannot be set in those tasks. This 
is necessary, since a breakpoint in the shell (or in one of the rlogin tasks during an 
rlogin) would make it impossible for the user to interact with the system. See the 
manual entry dbgLib(l) for information on "unbreakable" tasks. 

Only one shell can run on a Vx960 system at a time; the shell's parser is not currently 
reentrant since it is implemented usingthe UNIX tool yacc. 

294 Intel Vx960 



10 

Debugging 

Contents 

10.1 Introduction ............................................................................................................................... 297 

10.1.1 On-Line Help ............................................................................................................... 298 

10.1.2 Source-Language Debugging .................................................................................... 298 

10.2 The Shell ..................................................................................................................................... 298 

10.2.1 Subroutines as "Commands" .................................................................................... 299 

10.2.2 Arguments to Commands ......................................................................................... 300 

10.2.3 Aborting the Shell ....................................................................................................... 302 

10.3 Task Names and IDs, and the "Current" Task and Address .............................................. 302 

10.4 Task and System Information .................................................................................................. 303. 

10.4.1 Task Trace: tt() .......................................................................................................... 304 

10.5 Breakpoints and Single-Stepping ............................................................................................ 305 

10.5.1 Unbreakable Tasks ...................................................................................................... 306 

10.5.2 Spawning to Break ...................................................................................................... 306 

· 10.6 Disassembler .............................................................................................................................. 308 

Intel Vx960 295 



Vx960 5.0 - Programmer's Gulde 

10.7 Exception Faul.ts ........................................................................................................................ 309 

10.8 Miscellaneous Useful Utilities ................................................................................................ 309 

10.8.1 Task Control ................................................................................................................ 309 

10.&.2 Task Error Status Values ........................................................................................... 310 

· 10.8.3 Memory Information ................................................................. : ............................... 311 

10.8.4 Display and Modify Memory ................................................................................... 311 

10.8.5 Display and Modify Registers .................................................................................. 311 

10.8.6 Symbol Look-up ......................................................................................................... 312 

10.8.7 Repeat and Period ...................................................................................................... 313 

10.9 Tips ........................................................................................................................ ; ..................... 313 

10.9.1 Task Information: i() ................................................................................................ 313 

10.9.2 Wht... •p to Set Breakpoints ............................. ~ ............................................................ 314 

10.9.3 Stack Cra:>:1es ............................................................................................................... 315 

10.9.4 System Crashes, or "Power Corrupts" .................................................................... 315 

296 Intel Vx960 



10 

Debugging 

10.1 Introduction 

Vx960 provides numerous facilities for debugging application code. This chapter 
describes these debugging facilities and discusses general techniques for debugging 
under Vx960. 

When debugging, you will be interacting with the Vx960 shell and with several 
libraries available through it. Therefore, the first step is to understand the shell. This 
chapter includes a short synopsis of how the shell fits into the debugging environ
ment; however, for more detail see 9. Shell. 

The shell utilities for debugging are simply C subroutines designed to be called as if 
they were commands, although they can also be called from any other program. 
Vx960 debugging tools provide the following facilities: 

• task-specific breakpoints 
• task-specific single-stepping 
• symbolic disassembler 
• task and system information utilities 
• symbolic task trace-back utility 
• ability to call user routines 
• ability to create and examine variables symbolically 
• ability to examine and modify memory 
• fa ult handling. 

Intel Vx960 297 



Vx960 5.0 - Programmer's Gulde 

Manual entries for most of the utilities described in this chapter will be found in usr
Lib(l), excLib(l), or dbgLib(l). 

10.1.1 On-Line Help 

An on-line help facility is available as a "memory jogger." Two commands to get 
help are: 

help 

dbgHelp 

Display help for user utilities. 

Display help for debugging utilities. 

You can get a list of all the help routines available by typing: 

-> lkup "Help" 

10.1.2 Source-Language Debugging 

10.2 

Vx960 target processes can also be debugged using the gdb-based debugger, a C 
source-language debugger running on the UNIX host.This debugger is an extended 
version of the GNU Source-Level Debugger (GDB) that allows full source-level 
debugging of remote Vx960 applications from a variety of host UNIX systems. 

The Shell 

Since the Vx960 shell is an integral part of Vx960' s debugging facilities, this section 
reviews the basics of shell usage. 

The Vx960 shell provides a powerful facility: the ability to evaluate almost any C 
expression interactively. This includes the ability to use data variables and functions 
that are contained in the system symbol table. Any command you type is interpreted 
as a C expression. The shell evaluates that expression and, optionally, assigns the 
result to a data variable. 

298 Intel Vx960 



10.2.1 

1 O. Debugging 

Some examples: 

-> 68 0 
value • 68 • Ox44 • 'D' 

-> (25 • 3) ~ Ox48 
value c 72 a Ox48 = 'H' 

-> myVar 
value = 115 = Ox73 = 's' 

-> myVar • func (12) 0 
value= •.. 

-> newVar • 100 
new symbol newvar added to symbol table 
address= ••• 
value = 100 = Ox64 = 'd' 

These examples perform the following: 

Of) These simply cause expressions to be evaluated and the results displayed. 

€) looks up the value of my Var (which must be found in the system symbol table) 
and displays the value contained there. 

0 calls the routine June() with a single parameter (12), assigns the value returned 
to myVar, and displays the value. 

0 creates a new variable new Var, since it did not already exist, and assigns it the 
value 100. 

Subroutines as "Commands" 

One way of using the shell's expression handling capability is with simple expres
sions such as the following: 

-> func (x, y) 

-> func x,y 

These two lines are equivalent; the parentheses are optional. In either case, ftmc( ) is 
called with two parameters, and the resulting value is displayed on the console. 

Intel Vx960 299 



Vx960 5.0 - Programmer's Gulde 

In fact, Vx960 provides many routines which are meant to be called from the shell 
interactively. These routines can be thought of as commands, rather than as subrou
tines, even though they are, in fact, normal C subroutines. All the commands dis~ 
cussed in this chapter fall in this category. When you see the word command, you can 
read subroutine, or vice versa, since their meaning here is identical. 

10.2.2 Arguments to Commands 

Many of the commands described here accept one or more arguments. These argu
ments, once again, can be arbitrary C expressions. Some examples: 

-> d (1000) 0 

-> d 1000 E) 

-> d OxlOOO €) 

-> d dog 0 

-> d &dog €) 

-> d dog + 100 0 

-> d func (dog) fj 

-> d func @ 

The command d( ) will display a block of memory starting at the address which is 
passed to it as a parameter. The examples perform the following: 

oa display starting at address 1000 decimal. 

€) displays starting at 1000 hex. 

0 displays starting at the address contained in the variable dog. 

0 displays starting at the address of dog. (For example, if dog is a data variable at 
location Ox1234, and that memory location contains the value 10000, d( ) would 
display starting at 10000 in example 0 and at Ox1234 in ©.) 

0 displays starting at 10100. 

0 calls the routine June( ) with the parameter 10000 and then calls d( ), passing it 
the value returned by June( ). 

@ will display the code of June() as a simple hex memory dump. 

300 Intel Vx960 



1 O. Debugging 

Notice that, just as in C, symbols that refer to code (text in UNIX jargon) evaluate to 
their address if no parentheses are given, unlike data and bss variables, which eval
uate to their contents. 

Many of the commands described here take optional arguments. The shell always 
passes exactly 10 arguments to any function it calls. If there are not that many typed 
on the command line, any arguments not typed are passed as 0. If none are typed, 
all 10 arguments are 0. When commands have optional arguments, some default is 
used when the command receives 0 as an argument, which normally means that you 
did not type an argument to the shell. For example: 

-> 1 func, 20 

-> 1 f unc 

-> 1 

0 

a 
@ 

The I( ) command disassembles memory. (The I( ) command is described later in 
detail- see 10.6 Disassembler.) In the examples: 

0 will disassemble 20 instructions in memory starting at the beginning of the rou
tine June( ). 

a uses a default count, and will disassemble however many instructions were 
specified on the previous I() command (the default begins at a reasonable 
value, if you never give a count). 

@ uses a default address as well. In this case, it will disassemble starting at the 
instruction following the previous I( ) command, or starting at the next instruc
tion to be executed by a task doing single-stepping, or starting at the last break
point or exception fault that was hit. It will use whichever of these is most 
recent. 

For example: 

breakpoint in task·t30 at Oxl234 • myFunc + Ox30 

-> 1 

-> 1 

-> 1 f unc 

Task t30 has hit a breakpoint. In the above: 

0 will disassemble starting at Oxl234 until (let's say) Ox1250. 

0 

a 
@ 

Intel Vx960 301 



Vx960 5.0 - Programmer's Gulde 

6 will begin at the following instruction (perhaps Ox1254). 

€> will disassemble starting at the beginning of June( ). 

10.2.3 Aborting the Shell 

10.3 

Occasionally you may find it necessary to abort the shell. For example, if you call a 
routine that is not fully debugged, or with the wrong parameters, or that waits on a 
semaphore that is not forthcoming, you may hang forever. In this case, abort the 
shell using "C (since the called routine is operating in the shell's task context). 

When you abort the shell, a task trace (described in detail below) is displayed so that 
you can determine where you were when the abort key was pressed. 

Task Names and IDs, and the .. Current" Task and Address 

When a task is spawned, the user specifies a task name which is an ASCII string of 
arbitrary length. The system returns a task ID which is an efficient 4-byte pointer to _ 
the task's data structures. Task IDs are displayed with the i() command. 

Most Vx960 low-level task functions that take a task parameter require a task ID. 
However, when invoking routines interactively, specifying a task ID can be cumber
some since the ID is an arbitrary and possibly lengthy number. 

To accommodate interactive use, Vx960 shell expressions can reference a task by 
either task ID or task name. The Vx960 shell attempts to resolve a task argument to 
a task ID; if no match is found in the system symbol table, it searches for the argu
ment in the list of active tasks. When it finds a match, it substitutes the task name 
with its matching task ID. In symbol lookup, symbol names take precedence over 
task names. 

By convention, task names are prefixed with a "t". This avoids name conflicts with 
entries in the system symbol table. The names of system tasks ~nd the default task 
names assigned when tasks are spawned use this convention. For example, tasks 
spawned by sp( ) will be given names such as t1, t2, and t3. 

302 Intel Vx.960 



10.4 

1 O. Debugging 

Many commands (c( ), cret( ), s( ), so(), ti(), tt()) have a task parameter which may 
be omitted If omitted, the current task is used. There is also a current address that 
l( ) and d( ) use if no address is specified. The current task and address are set when: 

• A task hits a breakpoint or an exception fault. The current address is the address 
of the instruction that caused the break or exception. 

• A task is single-stepped. The current address is the address of the next instruc
tion to be executed. 

• Any of the commands that use the current task or address are executed with a 
specific task parameter. The current address will be the address of the byte fol
lowing the last byte that was displayed or disassembled. 

Task and System Information 

The following commands are available to get information about the state of the sys
tem and individual tasks: 

i 

ti [task] 

tt [task] 

checkStack [task] 

Information. This command gives a snapshot of what tasks are 
in the system, and some information about each of them, such 
as state, PC, SP, and TCB address. 

Task information. This command gives all the information con
tained in a task's TCB. This includes everything shown for that 
task by an i( ) command, plus all the task's registers, and the 
links in the TCB chain. If task is 0 (or nothing), the current task 
is reported on. 

Task trace. This command traces a task's stack, shows what 
routine the task is currently executing, and how it got there. 

Check stack usage. This command displays a summary of a 
task's stack usage, or of all tasks if task is omitted. The sum
mary includes the total stack size (SIZE), the current number of 
stack bytes used (CUR), the maximum number of stack bytes 
used (HIGH), and the number of bytes never used at the top of 
the stack (MARGIN = SIZE - HIGH). This routine is useful for 

Intel Vx960 303 



Vx960 5.0 .;... Programmer's Gulde 

10.4.1 

determining how much stack space to allocate, and for detect
ing stack overflow. 

Task Trace: tt() 

Task trace shows the calling sequence that brought a task to its current state. For 
example: 

_> tt t'relnetd 
65fb0 _vxTaskEntry +10 
2e5d0 _telnetd +co 
29684 _accept +a4 
4e89c _ksleep +3c 

value ... 0 • OxO 

_telnetd () 
_accept () 
_ksleep () 
_semTake (0, O, lce750, 344d8, 0, ) 

The telnet daemon is in the routine semTake which was called from the kernel routine 
ksleep, which was called from the accept call in telnetd. 

Task trace does have some limitations. It can only give routine names if they are in 
the system symbol table. It expects all routines to be C-compatible. 

Routine parameters are only displayed for the first and last routines on the stack. 
The parameters of the first routine are saved in a known location on the stack at task 
creation so that a task may be restarted with taskRestart( ). The i960 calling 
sequence passes the parameters of a routine in the global registers. This routine may 
save these parameters in local registers, on the stack, or may modify them without 
saving at all. As a result, none of the parameters of the rest of the routines on the 
stack are in known locations at the time the task trace is done. For the last routine on 
the stack, tt( ) reports the contents of the first several global registers as they are at 
the time of the tt( ) call. This report may or may not accurately reflect the parameters 
to the routine. The parameters are only guaranteed to be accurate if the task in ques
tion is stopped at the beginning of the last routine on the stack. (For more informa
tion on calling sequences, see your tool-set documentation.) 

The tt() command can also sometimes display the wrong number of arguments. It 
determines the number of arguments assuming the C compiler's standard protocol, 
but the compiler occasionally does things slightly differently for optimization pur
poses. Such cases are rare. Also, if the stack gets messed up, tt() can become con
fused. If you suspect a stack crash, you can check for a reasonable stack pointer with 
ti( ) before doing a tt( ). 

304 Intel Vx960 



10.5 

l 0. Debugging 

Breakpoints and Single-Stepping 

The most versatile way to monitor and debug program execution is to use break
points and single-:-stepping. 

A breakpoint can be set at any instruction. When that instruction is executed by an 
eligible task (as specified with the b( ) command), Vx960 suspends the task that was 
executing and displays a message on the console. At this point, you can examine the 
task's registers, do a task trace, etc. The task can then be deleted, continued, or sin
gle-stepped. 

If you single-step a tas~ the task executes one instruction, then Vx960 suspends the 
task again, and displays all the task's registers and the next instruction to be exe
cuted by the task. 

The following commands are available for this purpose: 

b adr [, task [, nJJ Set a breakpoint for task at adr. If task is 01nitted, the breakpoint 
is set for all tasks. If n is specified, the break will not occur until 
the nth time the breakpoint is hit by an eligible task. b( ) with 
no arguments displays a list of currently active breakpoints. 

c [task] Continue from a breakpoint or single-step. The task continues 
execution, starting with the instruction where the breakpoint 
was located. If task is not specified, the current task is contin
ued. If the task is not at a breakpoint, nothing happens. 

cret [task] 

bd adr [task] 

Continue until return. This routine places a breakpoint at the 
return address of the current subroutine of the given task, then 
continues execution of that task. When the breakpoint is hit, 
information about the task will be displayed in the same for
mat as in single-stepping. The breakpoint will be removed 
automatically when the breakpoint is hit, or if the task first hits 
some other breakpoint. If the task is missing or 0, the current 
task is assumed. This is useful for examining return values. 

Delete a specific breakpoint. If task is missing, the breakpoint 
will be removed for all tasks. If the breakpoint applies to all 
tasks, removing it for just a single task will have no effect. It 

Intel Vx960 305 

I 
' I 
II 



Vx960 5.0 - Programmer's Gulde 

10.5.1 

bdall [task] 

db [task] 

s [task] 

so [task] 

must be removed for all tasks, then set for just those tasks 
desired. 

Delete all breakpoints for a task. If task is missing, all break
points for all tasks are removed. 

Sets a data breakpoint. If the architecture allows it, this routine 
adds the breakpoint to the list of breakpoints and sets the hard
ware data breakpoint register(s). 

Single-step a task that is suspended (at a breakpoint for 
instance). The specified (or current) task will execute one 
instruction, then display the task's registers and the next 
instruction to be executed. 

Single-step, but step over a subroutine. This command single
steps a task that is suspended, but, if the next instruction is a 
call, calls, callx, bal, or balx, it breaks at the instruction follow
ing the subroutine call instead. This routine is useful to step 
over a subroutine, rather than single-step all the way through 
it. 

Unbreakable Tasks 

A task can be set unbreakable, in which· case breakpoints that otherwise would apply 
to that task are ignored. Tasks are set breakable or unbreakable when they are 
spawned, or with the routines taskOptionsSet( ) and taskOptio1tsGet( ). Several 
Vx960 tasks set themselves unbreakable, including the shell, the exception support 
task excTask( ) and several network related tasks. 

10.5.2 Spawning to Break 

There is an important distinction between routines that are executed directly from 
the shell (by just typing their name) and routines that are spawned as separate tasks 
(using sp( ) or taskSpawn( )). When executed directly from the shell, the routine 
operates in the shell's task context, using the shell's stack, etc. When a routine is 
spawned, it gets its own task context, its own stack, and its own TCB. 

306 Intel Vx960 



l O. Debugging 

It is not possible to place breakpoints or to single-step in the shell, because, if you 
could, all control of the system would be lost once the shell was suspended - the 
shell is the tool that you use to execute commands. This is important because when 
you execute a routine directly from the shell, that routine executes in the shell's con
text. Vx960 always ignores breakpoints in the shell, or in routines invoked directly 
from the shell. 

To use breakpoints on a routine, that routine must be spawned with its own context. 
The easiest way to do this is with the sp( ) command, which spawns it with default 
parameters. 

For example, if you have a routine called hello which consists solely of a call to 
printf( ) to display "hi there", you might enter the following sequence: 

-> b printf 

-> hello 
hi there 

-> sp hello 
Break at Oxl234: _printf 

-> tt 

Task: OxJabcd (t25) 

1234 hello+ le: printf (1500) 

In the above sequence: 

0 sets a breakpoint at the beginning of the routine printf( ). 

0 

a 

0 

a executes hello( ) directly from the shell and the breakpoint is not encountered, 
since the routine is executing in the shell's task context and the shell cannot be 
"broken." 

© spawns hello as a separate task with its own context, and it does therefore hit the 
breakpoint. 

0 shows that the task is at the beginning of printf( ), called from the main routine 
of hello(). 

Notice that sp( ) spawns the task with an arbitrary task ID (in this case Ox3abcd) and 
assigns a default task name (in this case t25). 

Intel Vx960 307 



Vx960 5.0 - Programmer's Gulde 

10.6 Disassembler 

Vx960 contains a symbolic disassembler. The command to disassemble is: 

1 [adr[, n]] List n disassembled instructions, starting at adr. If n is 0 or not 
given, the n from a previous l( ) is used. If adr is 0, l( ) starts 
from where the previous l( ) stopped, or from where an excep
tion occurred, if there has been an exception fault or a break
point since the last l( ) command. 

The disassembler will use any symbols that are in the system symbol table. If an 
instruction whose address corresponds to a symbol is disassembled (the beginning 
of a routine, for instance), the symbol is shown as a label in the address field. Sym
bols are also used in the operand field. The following is an example of disassembled 
code. · 

1: -
1230 Sc281611 mov gl, rs 
1234 Ob0004a4 bal dbginstrPtrAlign.lf 
1238 3a04200e cmpibe 0, gO, Ox001244 
l23c 92803000 st gO, _dbgNextToDsm 
1244 3a01600e cmpibe O, rS, Ox001250 
1248 92283000 st rs, _dbgDfltCnt 
1250 90803000 ld _dbgNextToDsm, 90 
1258 90883000 ld _dbgDfltCnt, gl 
1260 09000030 call _dbgList 
1264 92803000 st gO,_dbgNextToDsm 

This example shows the beginning of the routine that implements the l shell com
mand itself. The routine moves the second argument to l (passed in register g1), into 
a local register, does a "branch-and-link" leaf procedure subroutine call to align the 
debug pointer, it conditionally stores the optional arguments, calls the routine that 
actually lists the code, and finally updates the next address to disassemble for sub
sequent invocations. Notice that any symbols defined in C (routine and variable 
names) have an"_" prepended by the compiler. If the routine has an alternate "leaf 
procedure" entry point added as an optimization by the compiler, the symbol name 
will have a ".If" appended by the compiler. (The loader resolves calls to such rou
tines into "bal" instructions.) 

308 Intel Vx960 



l 0.7 

10.8 

1 O. Debugging 

Exception Faults 

Vx960 traps all exceptions which can be generated by the i960 CPU family. These 
exceptfons include bus errors, illegal instruction types, divide by zero, integer over
flow, etc. When one of these is encountered, Vx960 displays a message on the console 
terminal and simply suspends the task that was executing when the exception 
occurred. The rest of the system, including other application tasks and the shell, goes 
on running as usual. 

To find out where the task was when it bombed, do a task trace. Often, you'll find 
enough information there to pinpoint the problem quickly (a routine called with 
insufficient arguments, or illegal arguments, for instance). 

Once a task has died in this fashion, it is usually not practical to continue the task. 
When you are through examining the task's data, registers, stack, etc., you can either 
delete the task (using td( )) or restart it (using taskRestart( )). If you delete it, it can 
be restarted later by spawning. 

If the shell, or any routine which you call directly from the shell, generates an excep
tion, it is treated specially. This is because you will lose control of the system if the 
shell is suspended. If this happens, a task trace of the shell is displayed automati
cally and the shell is restarted. At this point, the best course of action may be to 
spawn the offending routine as a separate task, and debug it in a context of its own. 

Miscellaneous Useful Utilities 

In the course of debugging, there are many utilities which can be useful, even 
though they may not be functions that are normally considered part of a debugger. 

l 0.8. l Task Control 

You can find the current state of a task with the i( ) or ti( ) commands. In order to 
change that state, you can use one of the following: 

Intel Vx960 309 



Vx960 5.0 - Programmer's Gulde 

ts task 

tr task 

td task 

Suspend a task. 

Resume a suspended task. 

Delete a task. 

The normal way of starting tasks is with the following commands. See taskLib(l) 
for details. 

taskSpawn name, priority, options, stackSize, entryAdrs [, arg1, .. .arg10] 

Spawn a C routine as a task. Normally, entryAdrs will be sym
bolic. For example: 

id• taskSpawn "tMyFunc", 50, O, 10000, myFunc, 123 

This would spawn the C routine myFunc() as a task. and pass 
it the parameter 123. 

sp entryAdrs [, arg1, ... arg9] 

Spawn a C routine as a task, with default parameters 
(name = tn, priority = 100, stackSize = 20000). For example: 

-> sp myFunc, 123 

10.8.2 Task Error Status Values 

Each task has an error status value, which is an integer value that reflects any system 
errors that may have occurred during task execution. To see a task's status, type i() 
(for "info") from the shell and look in the ERRNO column for the hexadecimal status 
value. 

The following command is useful for translating status values to more human-read
able error messages: 

printErrno errno Display the message for the status value errno. 

See the manual entry ermoLib(l) for more details. 

310 Intel Vx960 



1 o. Debugging 

10.8.3 Memory Information 

The following command gives information about the current state of memory usage: 

memShow (1) This routine prints to standard output the total amount of free 
and allocated space in the memory pool, the number of free 
and allocated fragments, the average free and allocated frag
ment sizes, and the maximum free fragment size. Current as 
well as cumulative values are given. An argument of 1 also dis
plays the free list of the system partition. 

10.8.4 Display and Modify Memory 

10.8.5 

Two commands are available to examine and modify the contents of memory: 

d [adr[, nwords]J 

m adr 

Display nwords of memory in hexadecimal and in ASCII for
mat. The d() command displays a block starting from adr, 
which can be a number, variable, routine, etc. For example: 

-> d &myStructure 

would display memory starting with myStructure (which must 
be in the system symbol table). The command d( ), with no 
arguments, displays the next memory bloc~ starting from 
where the last d( ) completed. 

Modify memory starting at adr. The m() command displays 
successive words in memory on the terminal; you can change 
each word by typing a new hex value, leave the word 
unchanged and continue by typing RETURN, or return to the 
shell by typing a dot (. ). 

Display and Modify Registers 

Several commands are available to examine and modify register contents. If no task 
ID is passed to these subroutines, then the current task ID is used. 

rn [tasklD} return the contents of local register number n. The commands 
r3 through rlS are available. 

Intel Vx960 311 



Vx960 5.0 - Programmer's Gulde 

gn [tasklDJ 

acw [ taskID J 

pew [ tasklD J 

pfp [tasklDJ 

rip [ tasklD] 

fp [task ID] 

tcw [taskIDJ 

tsp [ tasklD] 

mRegs [taskIDJ 

10.8.6 Symbol Look-up 

lkup string 

312 Intel Vx960 

return the contents of global register number n. The commands 
gO through g14 are available. 

return the contents of the task's arithmetic control word regis
ter. 

return the contents of the task's process control word register. 

return the contents of the task's previous frame pointer regis
ter. 

return the contents of the task's previous return instruction 
pointer register. 

return the contents of the task's frame pointer register. 

return the contents of the task's trace control word register. 

return the contents of the task's task stack pointer register. 

modify registers. The mRegs command sequentially prompts 
you for new values for a task's registers starting with pfp. All 
numbers are entered and displayed in hex. 

Display a list of all symbols in the system symbol table whose 
names contain string. For example, the command: 

-> lkup "dsm" 

would display a list containing routines and declared variables 
containing the string u dsm" as in the following: 

_dsmData 
_dsmNbytes 
_dsminst 
mydsm 

Ox00049d08 text 
Ox00049d76 text 
Ox00049d28 text 
Ox003c6510 bss 

Case is significant, but position is not (mydsm would be shown 
but myDsm would not). 



10. Debugging 

10.8.7 Repeat and Period 

Someti.T.es it is useful to set up a routine to run repetitively. Two commands are 
available to do this: 

repeat n, June, [argl, ... argB) 

Spawn a task that calls June( ) n times, with the specified argu
ments. There will be no delay between calls. 

period secs, June, [argl, ... arg8) 

Spawn a task that calls June( ) every secs seconds with the spec
ified arguments. 

These commands spawn tasks whose entry points are _repeatRun and _periodRun, 
which you can see with the i( ) command. The tasks may be controlled or stopped 
as described previously under 10.8.1 Task ControL 

l 0.9 Tips 

10.9.1 

Debugging with an environment as rich as Vx960 is difficult to describe in a cut-and
dried fashion. Inevitably, each user will come up with an individual way of doing 
things. The following are some useful tips, for starters. 

Task Information: i() 

The i( ) command is perhaps the most commonly used command to get a quick idea 
of what's going on. By spawning it as a task that runs periodically (using period()), 
you can set up the shell's terminal to show status every few seconds. If nothing 
seems to be happening, i() is usually the best place to start. 

Intel Vx960 313 



Vx960 5.0 - Programmer's Gulde 

10.9.2 Where to Set Breakpoints 

Although breakpoints can be set anywhere, the most common place to start is gen
erally at the beginning of a subroutine. For example, if you want to check quickly 
whether a particular routine, square( ), is working properly, you might execute the 
following sequence of commands: 

-> b square 
value • 0 
break at Ox1234: _square Task: Ox3abcd (t252) 

-> tt 
1010: spnTsta + OxlO 
2468: myTask + Ox3f0 
value .. O 

-> cret 
pfp: 3acea0 
r4 . eeeeeeee . 
r8 . eeeeeeee . 
r12: 3c0fc0 
gO 90 
g4 . a . 
g8 . 0 . 
g12: 0 
pew: d86088ff 

-> Ox90 
value = 144 

-> c 
value "' 0 

= 

sp 
rs 
r9 
r13: 
gl 
gS . . 
g9 . . 
g13: 
acw: 

Ox90 

myTask () 
square (Oc) 

3acf70 rip: 
eeeeeeee r6 : 
eeeeeeee rlO: 
eeeeeeee r14: 

1£0000 g2 . . 
a g6 . . 
0 glO: 

3fa985 g14: 
9102 tcw: 

3c0fe0 
eeeeeeee 
eeeeeeee 
eeeeeeee 

623bc 
3faae0 

0 
0 

£001££81 

break at Ox1234: _square Task: Ox3abcd (t252) 

-> bdall 
value = 0 

-> c 
value = 0 

In the above sequence: 

0 

~ 
r3 . eeeeeeee . 
r7 . eeeeeeee . 
rll: 3accf O 
rlS: eeeeeeee 
g3 : 1 
g7 . 3c0fbb . 
gll: 0 
fp : 3acf20 

e 

0 sets a breakpoint at the beginning of routine square(). If there is some task run
ning that will call square( ), the breakpoint will be hit. 

a is a task trace showing how square() was called, with a parameter of 12 (OxOc). 

314 Intel Vx960 



1 O. Debugging 

~ is a return of square( ) which hits a breakpoint, and displays the registers exactly 
as if it had been a single-stepped task. Since the C calling convention on the 
80960CA series is to return a function value in gO, you can see that square( ) 
returned a value of Ox90. 

0 uses the shell to convert Ox90 to the decimal value we really prefer, and since 
12"'"'2 = 144, square( ) seems to work properly. 

0 continues the task, calling square( ) and causing a breakpoint. 

© deletes the breakpoint since presumably you're now satisfied that square() is 
working properly. 

6 continues again. 

10.9.3 Stack Crashes 

Vx960 provides no protection against stack crashes. Such crashes occur when a task 
uses more stack than has been allocated for it, thus running into and writing over 
some other task or data. It generally manifests itself as a crash of some task other 
than the offending one, or other inexplicable behavior. 

Before Vx960 starts a task (via sp{ ) or taskSpawn( )), it writes Oxeeee over the entire 
stack allocated to that task. You can tell whether a task has ever overrun its stack (or 
how much stack the task has ever used) by calling clzeckStack( ). If the stack has 
overflowed or come close to it, spawn the task again with a bigger stack size. 

10.9.4 System Crashes, or "Power Corrupts" 

The Vx960 system does little to restrain tasks from global damage to the system or 
other tasks. This offers the advantage of speed, simplicity, and ability to run on low
level hardware. However, any task can crash the entire system, quickly and totally. 
A few of the possible ways to do this are: 

• Overwriting the code, data, or stack of some other task (or even of the system 
or shell). 

• Overwriting interrupt vectors. 

Intel Vx960 315 

I 
~I ~-

I 



Vx960 5.0 ~ Programmer's Gulde 

• Taking an important semaphore and never returning it. 

• Operating at a high priority (or with interrupts locked out) and never relin-
quishing the CPU. 

If the system is crashing in such a way that you are losing control of it (no response 
from the shell, I/ 0 messed up, etc.), the best plan of attack is to reboot the system 
and work Hforwards," setting some breakpoints and trying to localize the problem 
that way. 

Alternatively, even after Vx960 dies, you may still be able to get to the ROM monitor 
(depending on your hardware system) by typing "X. Debugging from there is prim
itive, but possible. If this doesn't work, it means either that interrupts are locked out, 
the console' s interrupt vector has been overwritten, or the serial driver's code has 
been overwritten. 

316 Intel Vx960 



Appendix A 

Directories and Files 

The following is a summary and description of the various Vx960 directories and 
files. Figure A-1 shows a schematic diagram of the Vx960 directory structure. 

bin Directory containing the executable binaries of the Vx960 tools that run on 
the host. This directory contains host-architecture-specific subdirectories, 
such as sun3 and sun4. You may want to add the appropriate subdirectory 
to your shell-environment search path to facilitate the use of these tools. 

con fig 
Directory containing all the files used to configure and build particular 
Vx960 systems. It includes source to all Vx960 I/0 drivers, system-depen
dent modules, and some user-alterable modules. These files are organized 
into several subdirectories: the subdirectory all, which contains modules 
common to all implementations of Vx960 (system-independent modules), and 
a subdirectory for each port of Vx960 to specific target hardware (system
dependent modules). 

configlall 
Subdirectory containing all system-independent Vx960 I/0 drivers 
and system configuration modules. The object modules from the 
sources in this directory are collected in the gar960 format library 
/usr/vx/lib/arch/config.a, where arch is the architecture type for your 
target CPU. The directory includes the following files: 

Makefile 
Makefile for compiling Vx960 system-independent I/ 0 
drivers and system configuration modules. 

Intel Vx960 317 



Vx960 5.0 - Programmer's Gulde 

bin 

con fig 

target 

demo 

vx 

Deskpro 386/33 

Makefile usrConfig.c stat1bl.c 
booUnit.c bootConfig.c •orv.c 

configAll.h usrlib.c 

akefile config.h 
sysLib.c target.h 

sysALib.s romlnit.s 
tyCoDrv.c pic_cpu.c 

bootrom 
bootrom.hex 
vxWorks.sym 

vxWorks 

rpc 

arch 

arch 

pub 

manx 

man.x 

rpc4.0 

unsupported 

rpc.a 
wind.a 
.arch.a 

rdb.a 

rdb 

Figure A-1. Vx960 Directory Tree 

318 Intel Vx960 



Appendix A. Directories and Flies 

configAll.h 
Generic header file used in the target directories. 

usrConfig.c and bootConfig.c 
Source of the configuration module for a Vx960 develop
ment system (usrConfig.c), and a configuration module for 
the Vx960 boot ROM (bootConfig.c). Configuration files can 
be tailored as described in 8. Configuration. 

usrLib.c 
Library of routines designed for interactive invocation, 
which can be modified or extended if desired. 

bootlnit.c 
System-independent boot ROM facilities. 

stat Tb Le 
Source of the error status table. It contains a symbol table of 
the names and values of all error status codes in Vx960. This 
table is used by the routine printError() for translating error 
status codes into meaningful messages. 

memDrv.c 
Driver for accessing memory as a pseudo l/O device. 

ramDrv.c 
Driver for emulating a disk in memory. 

config!target 
The other subdirectories of the config directory contain the system
dependent modules for each port of Vx960 to a particular target 
CPU. Each of these directories includes the following files: 

Makefile 
Makefile for creating boot ROMs and the Vx960 system 
image for that target. 

sysLib.c and sysALib.s 
Two source modules of system-dependent routines. 

tyCoDrv.c 
A driver for on-board serial ports. 

Intel Vx.960 319 



Vx960 5.0 - Programmer's Gulde 

demo 

config.h 
Header file of hardware configuration parameters. 

target.h 
Header file for the target board. 

romlnit.s 
Assembly language source for initialization code that is the 
entry point for the Vx960 boot ROMs and ROM-based ver
sions of Vx960. 

pic_cpu.c 
"Picture" of the target used by the jump program to display 
jumper setup. 

bootrom 
Object module containing the Vx960 boot ROM code. 

bootrom.hex 
ASCII file containing the Vx960 boot ROM code in Intel Hex 
format, suitable for downloading over a serial connection to 
a PROM programmer. 

vxWorks and vxWorks.sym 
Complete, linked Vx960 system binary (vxWorks), and its 
symbol table (vxWorks.sym) created with the supplied con
figuration files. 

This directory contains sample application modules for demonstration pur
poses, including both the source and the compiled object modules ready to 
be loaded into vxWorks. 

demo/1 
Directory containing a simple introductory demo program as well as 
a server I client socket demonstration. 

demo/dg 
Directory containing a simple datagram facility, useful for demon
strating and testing datagrams on Vx960 and/ or other TCP I IP sys
tems. 

320 Intel Vx960 



Appendix A. Directories and Flies 

demo/xsprites 
Directory containing a SUN RPC demonstration. These programs 
use the X Window System. 

h Directory containing all the header (include) files supplied by Vx960. Your 
. application modules need to include several of them to access Vx960 facili
ties. The h directory also contains the following subdirectories: 

h/drv Directory containing hardware-specific headers for drivers, etc. 

h/net Directory containing all the internal header (include) files used by 
the Vx960 network. Network drivers need to include several of these 
headers, but no application modules should need them. 

h/rpc Directory containing header files which must be included by appli
cations using the Remote Procedure Call library. 

h/arch Directory containing architecture-dependent header files. 

lib Directory containing all the machine-independent object libraries and mod
ules provided by Vx960. The directory contains architecture-specific subdi
rectories and the subdirectory lint: 

lib/arch 

all.a A gar960 format library containing the object modules that 
make up the basic Vx960 operating system. 

con fig.a 
A gar960 format library containing the object modules 
whose sources are in the con.fig/all directory. These are the 
Vx960 drivers and several user-configurable modules. 

drv.a A gar960 format library containing the object modules for 
supported controller board drivers. 

nela A gar960 format library containing the object modules for 
the Vx960 network subsystem. 

netif.a 
A gar960 format library containing the object modules for 
the V~960 network interface drivers. 

rpc.a A gar960 format library containing the object modules for 
the Remote Procedure Call (RPC) library. 

Intel Vx960 321 

:. 



Vx960 5.0 - Programmer's Gulde 

mansrc 

wind.a 
A gar960 format library containing the object modules for 
the Vx960 kernel. 

arch.a A gar960 format library containing all Vx960 object modules 
that are architecture-specific. 

Directory containing the nroff/troff sources for all entries from the Vx960 
Reference Manual. This directory is divided into subdirectories for libraries, 
drivers, routines, tools, and target-specific documentation. 

man Directory containing nroff-formatted text from the sources in the mansrc 
directory. Subdirectories mirror those of the mansrc directory. These directo
ries are initially empty, but entries are added as needed whenever vxman is 
invoked. 

pub/rpc4.0 
Directory containing public domain SUN source code for the RPC version 
4.0. 

misc Directory containing miscellaneous support files including makefile tem
plates and documentation macros. 

src Directory containing all source files for Vx960. The following additional 
directories are included. 

src/all Directory containing the source files for the basic Vx960 operating 
system modules. The object modules of these modules are collected 
in the archive library lib/arch/all.a. 

src/drv 

src/nct 

Directory containing the source code for supported controller board 
drivers. 

Directory containing the source files for the Vx960 network sub
system modules. The object files of these modules are collected in 
lib/arch/net.a. 

src/netif 

322 Intel Vx960 

Directory containing the source files for the Vx960 network interface 
drivers. The object files of these modules are collected in lib/arch/
net.a. 

.. •· 



src/rpc 

src/rdb 

src/bin 

Appendix A. Directories and Flies 

Directory containing the source code for RPC which has been modi
fied to run under Vx960. The object files of these modules are col
lected in lib/arch/rpc.a. 

Directory containing the remote debugger source for 
lib/ arch/ rdb.a. 

Directory containing the source files for the tools in the bin directory. 
All of the source in src/bin is included in every product to allow dif
ferent UNIX host to be supported by the customer. 

src/wind 

src/arch 

unsupported 

Directory containing the source code for the Vx960 kernel. The object 
files of these modules are in lib/arch/wind.a. 

Directory containing Vx960 source code for architecture-specific 
modules. The object files of these modules are in lib/arch/arch.a. 

This directory contains source code that Intel makes available but does not 
support. This includes user-submitted code, as well as obsolete board sup
port packages and other discontinued material. 

Intel Vx960 323 



Vx960 5.0 - Programmer's Gulde 

324 Intel Vx960 



Appendix B 

Memory Layout 

Figure B-1 shows a typical layout of a Vx960 system in memory on a 80960 target 
CPU. The actual layout depends on the specific board, processor architecture, and 
Vx960 configuration. For the details of the Vx960 memory layout, you should con
sult the files, config.h and sysALib.s, for your target. 

80960CA processors have lK (1024) bytes of on-chip SRAM that you can configure 
to use as appropriate for your application. When the processor is configured for 
more than five cached register sets, the additional sets are stored in some of this on
chip memory. The on-chip memory may also optionally contain interrupt vectors, 
the NMI vector, and OMA registers. The default Vx960 configuration doesn't use 
any of this space so it is available for application use. 

The Initialization Boot Record (IBR 80960CA) or the Initial Memory Image (IMI, 
80960KA/KB, and 80960SA/SB) are also defined by the architecture to reside at 
fixed addresses within the Vx960 memory space. These areas are used for processor 
initialization at a cold start or system reset. These are defined in rominit.s for boot 
RO Ms and ROM resident versions of Vx960. 

Refer to your 80960CA User's Manual, 80960KB Programmer's Reference Manual, and 
the 80960SNSB Reference Manual for more complete information on the processor 
defined memory map. 

The other areas of the memory used by Vx960 are defined relative to the local (on
board) memory base address, LOCAL_MEM_LOCAL_ADRS, as defined in the file 
config.h. If this base is 0, the first lK addresses on the 80960CA references the on
chip SRAM. If this base starts in some other region, it does not overlap the on-chip 
address ranges. These other areas in Figure B-1 are labeled as follows: 

Intel Vx960 325 



Vx960 5.0 - Programmer's Gulde 

BP Anchor 

Boot Line 

Exception Message 

System Image 

326 Intel Vx960 

Anchor for the backplane network if there is shared memory 
on the board (does not apply to embedded designs). 

ASCII string of boot parameters. 

ASCII string of the fatal exception message. 

Entry point _sysinit is board dependent, but is typically 
LOCAL_MEM_LOCAL_ADRS+OxlOOO. 

The System Image also includes these architecture dependent 
data structures (these are shown as part of the text segment but 
may actually be part of the data segment on some systems; 
developers may reorganize sysALib.s to suit their needs) the 
sizes are defined below, but their locations depend on System 
Image size and alignment. 

• prcb - i960 processor control block contains pointers to 
other architecture defined data structures and initializa
tion data, 40 bytes on 80960CA, 176 bytes on 
80960KA/KS and 80960SA/SB. 

• 

• 

• 

• 

• 

• 

_ctrlTable -80960CA control table contains values for on
chip control registers, 112 bytes. 

_systemAddressTable - 80960KA/KB or 80960SA/SB
system address table (SAT only) points to the system 
procedure table and the fault table with much unused 
(preserved) space, 176 bytes. 

intTable - i960 interrupt vector table; 248 vectors x 4 
bytes each plus 8-byte pending, interrupt section, plus a 
1-byte pending priorities section. 

_faultTable - i960 fault table, 16 entries x 8 bytes each . 

_sysProcTable - system-procedure-call table, and/ or 
fault-procedure table, 12 bytes reserved, a 4-byte pointer 
to the supervisor stack, 24 preserved bytes and up to 260 
entries x 4 bytes each. 

_intStack - i960 interrupt stack, size defined in config.h 
and/ or sysALib.s. 



Appendix B. Memory Layout 

• _supervisorStack - initial stack used by usrlnit() until 
usrRoot() is allocated a stack; also used for the fault and 
trace stack; can be used as the system call stack, but no 
processor system calls are defined in Vx960; size defined 
in config.h and/ or sysALib.s. 

System Memory Pool 
The pool of free memory from which dynamic memory 
resources can be allocated, including stacks, semaphores, com
munication buffers, etc. The end of the free memory pool for a 
given board is returned by sysMemTop(). 

Intel Vx960 327 



Vx960 5.0 - Programmer's Gulde 

Address 

OxOOOO 
0100 
0200 
0300 
0400 

LOCAL_MEM_LOCAL_ADRS+0600 
0700 
0800 
0900 

1000 

KEY 

~ =Reserved 

aysMemTop () 

BP Anchor 

Boot Un• 

Exception Message 

System Image 

text 

_syslnlt 

prcb 

_ ctrlTa ble/ _ systemAddressTable 

(other sysALlb routines) 

_lntTable 

_faultTabte 

_sysProcTable 

_supervlsorStack 

(all other Vx.960 routines) 

data 

bu 

Figure B-1. Vx960 System Memory Layout (Intel 80960 Microprocessors) 

328 Intel Vx960 



Appendix C 

Coding Conventions 

C.1 Introduction 

The conventions specified define the Intel standard for all C code and accompanying 
documentation included in the Vx960 source. The conventions are intended to 
encourage higher quality code: every source module is required to have certain 
essential documentation, and the code and documentation is required to be in a for
mat that has been found to be readable and accessible. 

The conventions are also intended to provide a level of uniformity in the code pro
duced by different programmers. Besides making the code look more professional, 
uniformity allows programmers to work on code written by others with less over
head in adjusting to stylistic differences. Also it allows automated processing of the 
source: tools can be written to generate manual entries, module summaries, change 
reports, etc. 

These conventions are divided into the following categories: 

• Module Layout 
• Subroutine Layout 
• Code Layout 
• Naming Conventions 
• Style 

Intel Vx960 329 



Vx960 5.0 - Programmer's Gulde 

C.2 Module Layout 

A module is any unit of code that resides in a single source file. Thus a module may 
be a UNIX tool, a library of routines, or an applications task. The conventions in this 
section define the standard for the header which must come at the beginning of 
every source module. 

The module header consists of the blocks described below. The blocks are separated 
by one or more blank lines and should contain no blank lines within the block. This 
facilitates automated processing of the header. 

• Title: The title consists of one line containing the module name followed by a 
short description. The module name must be the same as the module file name. 
This line becomes the title of automatically generated manual entries and 
indexes. 

• Modification History: Each entry consists of the version number, date of mod
ification, initials of the programmer who made the change, and a complete 
description of the change. The version number is a two-digit number and a let
ter (e.g., "03c"). The letter is incremented on small changes, and the number is 
incremented on major changes, especially those that materially affect the mod
ule's external interface. 

• General Module Documentation: This consists of a complete description of 
overall module purpose and functioning, and especially the external interface. 

• Includes: This consists of the includes required by the module. 

The exact format of these blocks is elaborated in the following example of a standard 
module header: 

/* fooLib.c - foo subroutine library */ 

/* 
modification history 

Olb,1Sfeb86,dnw added routines fooGet and fooPut; 
added check for invalid index in 

fooFind. 
Ola,10feb86,dnw written. 
*/ 

330 Intel Vx960 



C.3 

!. 

/* 
DESCRIP'rION 
'rhis module is an example of the Intel 
C coding conventions. 

*/ 

tin.cl ude <vxWorks • h> 
tinclude "fooLib.h" 

Subroutine Layout 

Appendix C. Coding Conventions 

The following conventions define the standard layout for every subroutine in a 
module. 

Each subroutine is preceded by a header of documentation that consists of the fol
lowing blocks. There should be no blank lines in the header but each block should 
be separated with a line containing a single asterisk(*) in the first column. 

• Banner: This is a slash character followed by asterisks across the page. 

• Title: One line containing the routine name followed by a short description. 
The routine name in the title must match the declared routine name. This line 
becomes the title of automatically generated manual entries and indexes. 

• Description: Complete description of what the routine does and how to use it. 

• Returns: The word "RETURNS:" followed by a description of the possible 
result values of the subroutine. 

Immediately following the subroutine header should be the subroutine declaration 
itself. Each argument to the routine must be described with a comment. This decla
ration becomes the synopsis in automatically generated manual entries. 

Intel Vx960 331 



Vx960 5.0 - Programmer's Gulde 

The exact format of the subroutine header and declaration is shown in the following 
example of a standard subroutine layout: 

/********************************************* 

* 
* fooGet - get an element from a f oo 

* 
* This routine finds the element of the specified 
* index in the specified foo. The value of the element 
* found is copied to <pValue>. 

* 
* RETURNS: 
* OK if element found, otherwise ERROR. 
*/ 

STATUS fooGet (foo, index, pValue) 
FOO foo; /* foo in which to find element */ 
int index; /* element to be found in foo •/ 
int *pValue; /* where to put value */ 
{ 

} 

C.4 Code Layout 

C.4.1 

The following conventions define the standard for the graphic layout of C code. 

Vertical Spacing 

(1) Use blank lines to make code more readable and to group logically related sec
tions of code together. Put a blank line before and after comment lines. 

(2) Do not put more than one statement on a line. The only exception is the for 
statement where the initial, conditional, and loop statements may be written on 
a single line: 

for (i • O; i < count; i++) 

332 Intel Vx960 

;. . ... 



C.4.2 

C.4.3 

·.~ ··: ... · ·, .... 
Appendix C. Coding Conventions 

The if statement is not an exception: the executed statement always goes on a 
separate line from the conditional expression: 

if (i > count) 
i • count7 

(3) Section braces, { and}, and case labels always get their own line. 

Horizontal Spacing 

(1) Put spaces around binary operators, after commas, and before open parenthe
sis. Do not put spaces around structure member and pointer operators. Put 
spaces before open brackets of array subscripts, although if a subscript is only 
one or two characters long, the space may be omitted. 

For example: 

status• fooGet (foo, i + 3, &value); 
foe.index 
pFoo->index 
fooArray ((max+ min) I 2] 
string(O) 

(2) Continuation lines should line up with the part of the preceding line they con
tinue: 

a • (b + c) * 
(d + e); 

status • fooList (foo, a, b, c, 
d, e); 

if ((a •• b) && 
(c •• d)) 

Indentation 

(1) Tab stops are every four characters (i.e., 1, 5, 9, ... ). 

(2) The module and subroutine headers and the subroutine declarations start in 
column 1. 

Intel Vx960 333 



Vx960 5.0 - Programmer's Gulde 

(3) Indent one tab stop after: 

• subroutine declarations 
• conditionals (see below) 
• looping constructs 
• switch statements 
• case labels 
• structure definitions in a typedef. 

(4) The else of a conditional has the same indentation as the if. Thus the form of the 
conditional is: 

if ( condition ) 
{ 
statements 
} 

else 
{ 
statements 
} 

(5) The general form of the switch statement is: 

334 Intel Vx960 

switch ( input ) 
{ 
case 'a': 

break; 

case 'b': 

break; 

default: 

break; 
} 



Appendix C. Coding Conventions 

If the actions are very short and nearly identical in all cases, an alternate form 
of the switch statement is acceptable: 

aw itch (input ) 
{ 
case , a, : x - aVar; break; 
case , b,: x - bVar; break; 
case , c,: x - cVar; break; 
} 

(6) Comments have the same indentation as the section of code to which they refer. 

(7) Section braces, {and}, have the same indentation as the code they enclose. 

C.5 Naming Conventions 

The following conventions define the standards for naming modules, routines, vari
ables, constants, macros, types, and structure and union members. The purpose of 
these conventions is uniformity and readability of code. 

(1) When making up names, keep the following in mind: the code is written once 
but read many times. Make names meaningful and readable. Avoid obscure 
abbreviations. 

(2) Names of routines, variables, and structure and union members are written 
with upper and lower case and no underlines. Each "word" except the first is 
capitalized: 

aVariableName 

(3) Names of defined types (via typedefs), and constants and macros (via #defines), 
are all upper case with underlines separating the words in the name: 

A_CONSTANT_VALUE 

(4) Every module has a short prefix (2-5 characters). The prefix is attached to the 
module name and all externally available routines, variables, constants, mac
ros, and typedefs. (Names not available externally do not following this conven
tion.) 

Intel Vx960 335 



Vx960 5.0 - Programmer's Gulde 

fooLib.c 
fooFind 
fooCount 
FOO_MAX_COUNT 
FOO_NODE 

- module name 
- subroutine name 
- variable name 
-constant 
-type 

(5) Pointer variable names have the prefix up" for each level of indirection: 

C.6 Style 

FOO_NODE *pFooNode; 
FOO_NODE **ppFooNode; 

The following conventions define additional standards of programming style: 

• Comments: Insufficiently commented code is unacceptable code. Serious or 
repeated violations are grounds for public derision of the perpetrator. 

• Lint: The lint tool is run with every installation to check for possible errors that 
would not be caught by the compiler. All modules must be coded so as to elim
inate all avoidable lint complaints. This frequently involves explicit type coer
cions and use of lint directives (VARARGS, ARGSUSED, etc.). 

• Mangen: The mangen tool is used to generate manual entries for every module 
automatically. All modules must generate valid manual entries by mangen. The 
layout requirements for mangen options are documented in the previous 
pages. 

• Numeric Constants: Use #define to define meaningful names for all constants. 
Never use numeric constants in code or declarations (except for obvious uses of 
0, 1, etc.). 

• Structure Definitions: Always define structures and unions by a typedef decla
ration. Never use a structure or union definition to declare a variable directly. 

• Passing and Returning Structures: Always pass and return pointers to struc
tures. Never pass or return structures directly. 

• Return Status Values: Routines that return status values should return either 
OK or ERROR (defined in vxWorks.h). The specific type of error is identified by 
setting the task status value with the routine errnoSet( ). 

336 Intel Vx960 



. ·.: :-"• . .. ..; 
·> . . ·'.· ·. 

Appendix c. Coding Conventions 

• Use Defined Names: Use the names defined in vxWorks.h wherever possible. 
In particular, note the following definitions: 

"' Use TRUE and FALSE for boolean compares. 

• Use EOS for end-of-string tests. 

• Use NULL for zero pointer tests. 

• Use FAST for register variables. 

• Use IMPORT for extern variables. 

• Use LOCAL for static variables. 

• Use VOID for routines that return no value. 

• Use FUNCPTR for pointer-to-function types. 

I., . . 
' 
. 

& 
!i 

Intel Vx960 337 



Vx960 5.0 - Programmer's Gulde 

338 Intel Vx960 



Appendix D 

Bibliography 

D.1 Introduction 

This bibliography is a representative collection of resources that will help you 
become familiar with the concepts of internetworking, operating systems in general, 
and UNIX in particular. It is only a starting place for further research. If you want 
more in-depth information on the issues and complexities of these topics, refer to the 
bibliographies that exist in many of the resources cited here. 

Note: Some of the information included in this appendix can be found in the RFC 
1175, FYI on Where to Start-A Bibliography of Internetworking Information. 

D.2 Networking Bibliography 

We have divided the networking bibliography into primary and secondary sources. 
A primary source is a book that is directly applicable to TCP /IP programming. A 
secondary source is a book that relates to more general networking topics. 

Intel Vx960 339 



Vx960 5.0 ..... Programmer's Gulde 

0.3 Request for Comment (RFC) of Interest to Beginners 

RFC refers to a large number of documents kept on-line at various Internet sites that 
constitute discussions1 general information1 and specifications for various aspects of 
the overall Internet networking and TCP /IP protocol world. In contents they range 
from a poem to Sun's specification for NFS as Remote Procedure Call routines. Doug 
Comer talks about how to obtain RFC' s on pp. 443-446 of his book lnternetworking 
with TCP/IP, Volume 1. 

For further exploration, see Comer or the RFC' s themselves. Under Primary Sources 
below, the set of DON protocol handbooks presents a number of the most important 
RFC's for TCP /IP in a 3-volume handbook format. You can either purchase these 
from SRI or get them one at a time over the Internet via anonymous ftp. See Comer 
for details on how to do that. 

0.4 Books We Recommend 

• Doug Comer's books on TCP/IP. Good introduction. 

• W. Richard Steven's book on UNIX Networking programming. 

• The Berkeley Kernel book. It provides internals information on the 4.3 BSD 
Tahoe TCP I IP implementation. 

D.4.1 Primary Sources 

The following primary sources are arranged in the order of their priority. 

• Comer, Douglas E., lnternetworking With TCP/IP: Principles, Protocols, and Architec
ture, 382 pp., Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. Second Edi
tion. 

340 Intel Vx960 



Appendix D. Bibliography 

Note: A second volume on internals is available as implemented in XINU, 
Comer's academic UNIX clone. The ISBN for the first volume, second 
edition is: 0-13-468505-9. 

This book provides an overview and introduction to TCP /IP. It contains 
an overview of the Internet; reviews underlying network technologies; 
examines the internetworking concept and architectural model; covers 
the basics of the Internet addressing gateway system and protocol gate
ways used to exchange routing information; and discusses application 
level services available in the Internet. It also contains several useful 
appendices including RFCs, and how to get them, a glossary of Internet 
terms, and the official DARPA Internet protocols. 

• Richard Stevens. UNIX Network Programming. Prentice Hall. 1990. ISBN 0-13-
949876-1. 

This book is excellent on the ins/ outs of application network program
ming including socket programming, TU, library routines, security, and 
other topics like rlogin. 

• Leffler, McKusick, Karels, Quarterman. The Design and Implementation of the 
4.3BSD UNIX Operating System. Addison-Wesley. 1989. ISBN 0-201-
06196-1. 

This book discusses internals for the 4.3 BSD operating system. Included 
is a comprehensive discussion of the networking protocols including the 
TCP I IP stack and how·sockets work. 

• Tanenbaum, Andrew S., Computer Networks, Second Edition, Prentice Hall, Engle
wood Cliffs, NJ, 1988. 

This book is a reference for computer communications and networking 
on the academic side. In addition to OSI, some aspects of TCP /IP are dis
cussed. 

• Nemeth, Snyder, Seebass. UNIX System Administration Handbook. Prentice Hall. 
1989. ISBN 0-13-933441-6. 

This book discusses networking system administration on a Berkeley I -
Sun system. 

Intel Vx960 341 

1 .. 



Vx960 5.0 - Programmer's Gulde 

• John Corbin. The Art Of Distributed Applications. Springer-Verlag. Sun Technical 
Reference Books. 1991. 

This book discusses how Sun's remote procedure call (RPC} mechanism 
works. RPC is used by NFS. 

• Marshall Rose. The Simple Book, An Introduction to Management of TCP/IP - based 
Systems. Prentice Hall. 1991. ISBN 0-13-812611-9. 

This book focuses on how SNMP works. 

• Feinler, Elizabeth J., Ole J. Jacobsen, Mary K. Stahl, and Carol A. Ward, DDN Pro
tocol Handbook, 2749 pp. [3 volumes], SRI International, DDN Network 
Information Center, Menlo Par~ CA, December 1985. 

This is a three volume collection of documents (basic TCP/IP RFCs} 
addressing how to attach computers to the Defense Data Network 
(DDN} using the Department of Defense (DoD) suite of protocols. The 
first volume contains official military standard protocols, such as the 
Transmission Control Protocol/Internet Protocol (TCP /IP), and the File 
Transfer Protocol (FfP). Volume two includes all of the official Defense 
Advanced Research Projects Agency (DARPA) protocols. The final vol
ume contains supplementary material of interest to protocol implemen
tors. In addition, the handbook presents general information about the 
protocol standardization process itself, the agencies involved and their 
roles, and the means for obtaining further information. Available from 
SRI International, DDN Network Information Center,. 333 Ravenswood 
Ave., Room EJ291, Menlo Park, CA 94025. 

• Stallings, William, Handbook of Computer-Communications Standards Volume 1: The 
Open System (OSI) Model and OSI-Related Standards, Macmillan, New 
York, NY, 1990. 

• Stallings, William, Handbook of Computer;.Communications Standards Volume 2: Local 
Area Network Standards, Macmillan, New York, NY, 1990. 

342 Intel Vx960 



Appendix D. Bibliography 

• Stallings, William, Handbook of Computer-Communications Standards Volume 3: The 
TCP/IP Protocol Suite, Macmillan, New York, NY, 1990. 

This series systematically covers the major standards topics, providing 
the introductory and tutorial material not found in the actual standards 
documents. The books function as a primary reference for those who 
need an understanding of the technology, implementation, design, and 
application issues that relate to the standards. 

D.4.2 . Secondary Sources 

The following secondary sources are listed in alphabetical order. 

• Anderson, Costales, Henderson, and The Waite Group, UNIX Communications, 
542 pp., Howard W. Sams & Company, Indianapolis, IN, 1987. 

UNIX Communications provides a good overview and comprehensive 
introduction on UNIX mail, the USENET News and UUCP with clear 
examples. 

• Arms, Caroline, Campus Networking Strategies, 321 pp., Digital Press, Bedford, MA, 
1988. 

This book contains a survey of ten colleges and universities that have 
made or implemented grand plans for networking. The case studies 
cover the planning process, technical issues, and financing and manage
ment of an ongoing service organization. Chapters on protocols and 
standards, wiring, and national networks provide valuable technical 
background. A glossary defines frequently used networking terms. This 
book is a project of the EDU COM Networking and Telecommunications 
Task Force (NTTF), a group of research universities engaged in joint pro
grams to support the development of computer networking technology. 

• Arms, Caroline ed., Campus Strategies for Libraries and Electronic Information, Vol. 3, 
404 pp., Digital Press, Bedford, MA, 1989. 

This book offers a comprehensive look at planning and implementation 
of libraries and information systems in higher education. This is volume 
3 in the EDUCOM Strategies Series on Information Technology. Order 
source for EDUCOM members is: pubs@educom.edu. Order source for 
non-members is: 1-800-343-8321. Order number: ey-c185e.dp. 

Intel Vx960 343 



Vx960 5.0 - Programmer's Gulde 

• Batt, Fred, Online Searching for End Users: An Information Sourcebook, 116 pp., Oryx 
Press, Phoenix, AZ, 1988. 

This is a source book for computer and information science which 
includes bibliographies and indexes. 

• Connors, Martin, Computers and Computing Information Resources, 1271 pp., Gale 
Research Co., Detroit, MI, 1987. 

This is a guide to approximately 6,000 print, electronic, and live sources 
of information on general and specific computer-related topics in all dis
ciplines. 

• Frey, Donnalyn and Rick Adams,!%@:: A Directory of Electronic Mail Addressing 
and Networks, Second Edition, 284 pp., O'Reilly and Associates, Sebas
topol, CA 1990. 

This handbook of electronic mail addressing and networks contains an 
electronic mail tutorial, short descriptions of networks, and helpful indi
ces of domain names and ISO codes. It also has several useful appendi
ces: second-level domains sorted by organization name, second-level 
domains sorted by domain name, ISO country codes sorted by country, 
same sorted by code, and UUCP mail handling. 

• Garcia-Luna-Aceves, Jose J., Mary K Stahl, and Carol A. Ward, Internet Protocol 
Handbook: The Domain Name System (DNS) Handbook, 219 pp., SRI Inter
national, Network Information Systems Center, Menlo Park, CA, 
August 1989. 

344 Intel Vx960 

This handbook explains the Domain Name System (DNS) and the Inter
net Host Table. This is volume four of the DON Protocol Handbook (see 
Feinler, E., et. al., DON Protocol Handbook). This volume is divided into 
two sections. The first section covers the concepts and philosophy of the 
DNS as discussed in various articles and Requests for Comments 
(RFCs). The second section focuses on the transition from the Internet 
Host Table to the DNS. Detailed information on DNS protocol stan
dards and implementations are provided as are guidelines for the estab
lishment and operation of domain name servers. The handbook 
concludes with a glossary of DNS acronyms. Available from SRI Interna
tional, Network Information Systems Center, 333 Ravenswood Ave., 
Room EJ291, Menlo Par~ CA 94025. 



Appendix D. Bibliography 

• Karrenberg, Daniel and Anke Goos, European R&D E-mail Directory, 210 pp., Euro
pean UNIX Systems Users' Group, Owles Hall, Owles Lane, Bunting
ford, Herts, England, December 1988. 

This book contains a reference of all organizations reachable by EARN 
and EUNet, the two major European electronic mail networks serving 
the research and development community. It contains an electronic mail 
tutorial and organization indexes. For more information, send electronic 
mail to euug@inset.uucp, or call +44 763 73039. 

• LaQuey, Tracy L., User's Directory of Computer Networks, 653 pp., Digital Press, Bed
ford, MA, May, 1990. 

This directory contains detailed lists of hosts, site contacts, and adminis
trative domains, and general information on over 40 major networks. 
Included are tutorials on the Domain Name System, X.500, and Elec
tronic Mail. An Organization List, which includes universities, colleges, 
research institutions, government agencies and companies, cross refer
ences much of the network and host information presented throughout 
the directory. Most of the lists and articles are provided or written by 
Network Information Centers and network contacts. For more informa
tion, send electronic mail to netbook@nic.the.net. 

• McConnell, John, Internetworking Computer Systems: Interconnecting Networks and 
Systems, 318 pp., Prentice Hall, Englewood Cliffs, NJ, 1988. 

An advanced reference series on Intemetworking computer systems 
and computer networks. Includes bibliographical references and index. 

• Quarterman, John S., The Matrix: Computer Networks and Conferencing Systems 
Worldwide, 746 pp., Digital Press, Bedford, MA, 1990. 

A successor to the article "Notable Computer Networks" published by 
the CACM, October 1986, this book contains background material intro
ducing important topics for readers unfamiliar with networks and con
ferencing systems. It provides descriptions of specific systems, 
organized geographically, to facilitate discussion of regional history. 
Maps are included. Syntaxes and gateways are provided for sending 
mail from one system to another. Access information is given for those 
wishing to join or research a system. Extensive reference sections are at 
the end of each chapter including a sixty-page index of programs and 
protocols, networks and gateways, places and people. For more infor
mation, send electronic mail to matrix@longway.tic.com. 

Intel Vx960 345 



Vx960 5.0 - Programmer's Gulde 

D.4.3 

• Rose, Marshall T., The Open Book: A Practical Perspective on OSL 651 pp., Prentice 
Hall, Englewood Cliffs, NJ, 1989. 

This is a comprehensive book about Open Systems Interconnection 
(OSI). In particular, this book focuses on the pragmatic aspects of OSI: 
what OSI is, how OSI is implemented, and how OSI is integrated with 
existing networks. To provide this pragmatic look at OSI, the book 
makes consistent comparisons and analogies of the OSI pieces with the 
TCP /IP suite of networking protocols. 

• Stoll, Clifford, The Cuckoo's Egg: Tracking a Spy through the Maze of Computer Espio
nage, Doubleday, New Yor~ NY, 1989. 

Clifford Stoll, an astronomer turned UNIX System Administrator, 
recounts an exciting, true story of how he tracked a computer intruder 
through the maze of American military and research networks. This 
book is easy to understand and can serve as an interesting introduction 
to the world of networking. Jon Postel says in a book review, this book 
" ... is absolutely essential reading for anyone that uses or operates any 
computer connected to the Internet or any other computer network." 

• Todinao, Grace, Using UUCP and USENET: A Nutshell Handbook, 199 pp., O'Reilly 
and Associates, Newton, MA, 1986. 

This handbook outlines how to communicate with both UNIX and non
UNIX systems using UUCP and cu. By example it shows how to read 
news and post your own articles to.other USENET members. 

Important RFCs 

The following list contains RFCs that a new user will find most informative. 

• RFC index. This can be obtained from the NIC by sending a message to SERVI
CE@NIC.DDN.MIL with a subject line of "RFC index". In general, any RFC can 
be obtained by this method via email. Substitute the RFC number for the X's as 
follows in the subject line: "RFC XXXX". See Comer for details. 

• RFC 1175 - FYI on Where to Start. A Bibliography of Internetworking Informa
tion. 

• RFC 1177 - FYI on Questions and Answers. Answers to commonly asked new user 
questions. 

346 Intel Vx960 



Appendix D~ Blbllography 

• RFC 1180 - A TCP/IP Tutorial. This RFC presents a brief tutorial on TCP /IP 
basics. 

• RFC 1000 - Request Jo; Comnunts P..eference Guide. This RFC is a reference guide 
for earlier RFCs. It presents a list of all RFCs numbered less than 1000 and dis
cusses each in tum. 

D.5 Operating System Bibliography 

The following is a bibliography for UNIX in particular and operating systems in 
general. 

D.5.1 Books on UNIX Internals 

• Bach, Maurice J., The Design of the UNIX Operating System. Prentice Hall Inc., 1986. 
ISBN 0-13-201799-7. 

This manual describes internals of UNIX with emphasis on system V, 
some information on BSD systems. Good introduction to file system and 
process concepts. Networking coverage is poor. 

• Leffler, McKusic~ Karels, Quarterman. The Design and Implementation of the 
4.3BSD UNIX Operating System. Addison-Wesley. 1989. ISBN 0-201-
06196-1. 

Details of 4.3 BSD system (VAX); i.e., UNIX system internals. Good ref
erence book for practitioners. Good discussion of architectural trade
offs. Fair amount of information on sockets and network internals; espe
cially TCP. 

• BSD UNIX Programmer's Manual - UPM, USENIX 

This manual provides the system manual pages (man pages) plus what
ever extra documentation is bundled in (traditional UNIX documents 
like Shell Introduction by Bourne). Per system; e.g., Sun version from 
Sun. System V versions, from A.T.T. As available from Usenix Associa
tion/ 4.3BSD version, Nov. 1986. 

Intel Vx960 347 



Vx960 5.0 - Programmer's Gulde 

BSD Description follows: 

• URM - User's Reference Manual 
1 - commands, cc(l), ls(l), 
6 - games, rogue(6) 
7 - misc. 

• PRM - Programmer's Reference Manual 
2 - kernel, read(2), fork(2) 
3 - libraries, fread(3), strcpy(3) 
4 - devices, rk(4), rflop(4) 
5 - files, termcap(S), dbx(S), passwd(S), a.out(S) 

• SMM - System Manager's Manual - system administration how-to 
8 - system administration, fsck(8) 

• USO - User Supplementary Documents 
various UNIX documents/ guides/ tutorials 

• PSl - Programmer Supplementary Docs, Part 1. 
papers focused on programming, e.g., 
Introduction to 4.3BSD IPC 
Advanced 4.3BSD IPC 
Debugging with DBX 

• PS2 - Programmer Supplementary Docs, Part 2. 
some papers on historical aspects of UNIX, critical 
papers by Thompson, Ritchie, and Kernighan, e.g., UNIX 
I/ 0 System - device driver basics. 

• Master Index 
Note the IPC papers in PS1. These talk about socket 
level programming issues on a BSD system. 

• Nemeth, et. al., UNIX System Administration Handbook. Prentice Hall., 1989. ISBN 
0-13-933441-6. 

348 Intel Vx960 

This handbook provides good coverage of UNIX System Administration 
topics. More BSD oriented than System V. Topics include uucp, 
mail/ sendmail, network administration, news, kernel configuration, 
and other system administration chores. 



0.5.2 

Appendix D. Blbllogrophy 

• Egan and Teixeria. Writing a UNIX Device Driver. Wiley and Sons. 1988. ISBN 0-
471-62811-5. 

This manual provides discussion and examples concerning writing 
device drivers on UNIX systems. 

• AT&T and Sun manuals should be consulted. Both have information at this point 
on how to do things like con.figure kernels and program device drivers. 
The AT&T books are for sale at technical bookstores. 

Operating Systems In General 

• Tanenbaum, Andrew S., Operating Systems - Design and Implementation. Prentice 
Hall. ISBN 0-13-637406-9. 1986. 

This is the "Minix" book. Minix is intended as a version 7 UNIX system 
call compatible o.s. running on the IBM-pc. Provides basic operating sys
tem principles and illustrates them via architectural discussion and 
source from Tanenbaum's Minix system, v7 UNIX as redesigned from 
the ground up by Andrew T and friends at the Free University in 
Amsterdam. Source is included in the book; code and binaries available 
for IBM-pc' s. Good introductory o.s. text and much more. Especially 
good at the moment due to the fact that Minix is designed as a distrib
uted operating system; i.e., according to the client-server model as a set 
of processes. Minix, unlike UNIX, is architectured according to modem 
O.S. design architecture precepts. 

• Comer, Doug. Operating System's Design. The XINU Approach. 1984. ISBN 0-13-
637539-1. Prentice Hall. 

• Comer, Doug. Operating System's Design. Volume II In.ternetworking with XINU. 
1987. ISBN 0-13-637414-X. Prentice Hall. 

Book I introduces Xinu, another pedagogical UNIX-alike operating sys
tem. Good introductory text for operating system study. Book II intro
duces internet networking basics as implemented in Xinu. Presentation 
of material in both books is through code examples which makes them 
valuable. Book II lacks information on TCP but provides a good grasp of 
the lower networking layers. Comer's presentation of networking con
cepts is excellent. 

Intel Vx960 349 

.1 

• .·~ 
:~ 



Vx960 5.0 - Programmer's Gulde 

• Peterson and Silbershatz. Operating System Concepts. ISBN 0-201-06198-8. Addi
son-Wesley. 2nd. Edition. 1985. 

TI1is manual is a standard, introductory college text for operating sys
tems. 

D.5.3 UNIX O.S. and O.S. Related books/standards/magazines 

• Harbison, Samuel P., Steele Guy L, C: A Reference Manual. Second Edition. Prentice 
Hall, Inc., Englewood Cliffs, New Jersey. 1987. 

This manual includes a complete description of the full C language, the 
Draft Proposed ANSI C language, and over 180 standard run-time 
library functions. 

• Kernighan and Ritchie, The C Programming Language. Second Edition. Prentice 
Hall. ISBN 0-13-110163-3. 1988. 

This book is the new edition of a UNIX classic. It covers the C program
ming language and includes material from the Draft-proposed ANSI C 
standard. The grammar in back is (and has been) the last word in C syn
tax. The grammar is now Yacc compatible. This book is an important ref
erence work. 

• Kernighan/Pike. The UNIX Programming Environment. Prentice Hall. ISBN 0-13-
937681-X. 1984. 

This manual tries to explain all at the command level, file system basics, 
shell usage, filters, grep, awk, sed, shell programming, stdio, system 
calls, nroff I ms. General introduction to UNIX and still quite valuable. 
Good reference work. 

• Posix Standard 1003. l 

~50 Intel Vx960 

ANSI/IEEE Standard Portable Operating System Interface On Com
puter Environments. 1988. ISBN 1-55937-003-3. 

IEEE 
345 East 47th Street 
New York, New York 10017 

Important. Operating system interface standard. Basically UNIX but 



Appendix D. Bibliography 

leaves out networking/ graphics devices. Started out as version 7 and 
then added various things from BSD, System V realms (e.g, job control, 
vs. fcntl(2)). Library interface is basically left to ANSI C standard. Has 
essential UNIX bibliography in back. 

• System V Interface Description. (SVID) 

A.T.T. 1986. 3 Volumes. ISBN 0-932764-10-X. A.T.T. spec for System V. 

A.T.T Customer Info Center 
Attn. Customer Service Rep. 
P.O. Box 19901 
Indianapolis, Indiana 46219 

1-800-432-6600. 

• Usenix Association Conference Proceedings 

UNIX-related papers presented at various Usenix conferences held in 
the last ten years. Often new developments in UNIX are presented at 
these conferences. In recent years a fair number of papers have been pre
sented that touch on issues of distributed operating systems (like 
MACH) and distributed programming. 

Usenix Association 
2560 Ninth Street, Suite 215 
Berkeley, CA 94710 
Manual Order Dept: 
415/528-8649 

$40 for ;login: subscription 
7 volume-set, UNIX reference manual@ $68 

• UNIX Review 

Magazine issued monthly. Covers various topics of interest in the UNIX 
world. Miller Freeman Publications, 500 Howard ST., San Francisco, Cal
ifornia 94105. (415)-397-1881. 

Intel Vx960 351 

I . 

• 
. 

I 
I 
I 



Vx960 5.0 - Programmer's Gulde 

• Embedded Systems. Miller Freeman Publications, 500 Howard ST., San Francisco, 
California 94105. (415)-397-1881. 

Magazine devoted to programming and architectural issues for embed
ded system design. 

There are various other magazines and journals that touch on operating system 
issues, Sun Expert, Sun World, UNIX World, and various IEEE and ACM journals. 

D.6 GNU/960 Documentation 

The following is a list of the GNU/960 documentation currently available. You 
received copies of this documentation with your Vx960. 

• The GNW960 Manual contains the following documentation: 

• GNU/960 Tools Release Notice 

This manual provides an overview of the highlights of this release. It covers 
the differences between this release and previous releases, and it includes 
information on fixes to known bugs. 

• Installing the GNU/960 Tools 

This manual gives detailed step-by-step installation information for the 
GNU I 960 tools (source, binaries, and documentation) 

• Using the GNU/960 Tools 

This entry-point document describes the history and usage of the tools, gives 
a summary overview of each command in the tool set, and explains the con
cepts and process of developing an application using the GNU /960 tools. 

• GNU/960 Tool Development 

This manual describes how to customize the GNU I 960 tools for a variety of 
purposes, including porting to other hosts. 

• GNU/960 Reference Manual 

This manual contains the man pages which provide detailed information on 
each GNU/960 command. Many man pages also provide feature examples. 

352 Intel Vx960 



Appendix o. Bibliography 

The intro(1GNU) man page gives an overview of all the GNU/960 tools. 

• Using Intel i960 GNU CC 

This manual provides in-depth information on gcc960, the GNU/960 C com
piler, including detailed descriptions of all command-line options. This is 
the source for complete reference information on gcc960. 

• Using GDB/960 

This manual provides in-depth information on gdb960, the GNU I 960 
debugger, including detailed descriptions of all command-line options. This 
is the source for complete reference information on gdb960. A gdb960 quick 
reference is also included. 

• Using GAS/960 

This manual provides in-depth information on gas960, the GNU I 960 assem
bler, including detailed descriptions of all command-line options. This is the 
source for complete reference information on gas960. 

• Using GLD/960 

This manual provides in-depth information on gld960, the GNU/960 linker 
including detailed descriptions of all command-line options. This is the 
source for complete reference information on gld960. 

• Harbison, Samuel P., Steele Guy L, C: A Reference Manual. Second Edition. Pren
tice Hall, Inc., Englewood Cliffs, New Jersey. 1987. 

This manual includes a complete description of the full C language, the Draft 
Proposed ANSI C language, and over 180 standard run-time library functions. 

D. 7 Processor Documentation 

The following is a list of the Intel processor documentation currently available. 

• 80960CA User's Manual 

This manual provides detailed programming and hardware design information 
for the 80960CA. It is written for programmers and hardware designers who 

Intel Vx960 353 



Vx960 5.0 - Programmer's Gulde 

understand the basic operating principles of integrated processors and their sys
tems. Order Number: 270710-001. 

• 80960KB Programmer's Reference ivfanual 

This manual provides detailed programming information for the Intel 80960KB 
processor. Order Number: 270567-002. 

• 80960KB Hardware Designers Reference Manual 

This manual is the definitive hardware reference guide for system designs using 
the 80960KB processor. It is written for hardware designers as a guideline for 
developing microprocessors systems. These hardware designers should be famil
iar with the operating principles of microprocessors and with the 80960KB data 
sheet. Order Number: 270564-002. 

• 80960SNSB Reference Manual 

This manual provides reference information applicable to the 80960SA/SB 
embedded processor. It is written for both software and hardware designers 
familiar with the principles of microprocessors and with the 80960SA/SB archi
tecture. Order Number: 270929-002. 

You might also find the following Intel data sheets useful: 

• 80960CA-40, -33,-25, -16 32-Bit High Performance Embedded Processor 
Order Number: 270727-003. 

• 80960KB Embedded 32-Bit Processor with Integrated Floating-Point Unit 
Order Number: 270565-004. 

• 80960KA Embedded 32-Bit Processor 
Order Number: 270775-002. 

• 80960SN80960SB Embedded 32-Bit Processors with 16-bit Burst Data Bus 
Order Number: 270917-003. 

To obtain Intel manuals and data sheets write to: 

Intel Literature Sales 
P.O. Box 7641 
Mt. Prospect, IL 60056-7641 

For phone orders in the U.S. and Canada call toll free: (800) 548-4725. 

354 Intel Vx960 



Appendix D. Bibliography 

The following book is also a useful reference: 

• Myers, Glenford J., David L. Budde, 80960 Microprocessor Ardzitecture. John Wiley 
& Sons. 1988. 

This book represents the most authoritative description of the 80960 processors 
and architecture. The authors explain why the designers choose a particular direc
tion or added or omitted a particular function so that the user can understand and 
use the product better. 

Intel Vx960 355 



Vx960 5.0 - Programmer's Gulde 

356 Intel Vx960 



A 
accept() ... 197 
ANSI C function prototypes ... 238 
application modules ... 237-243 

adding bootable ... 265 
compiling ... 237 
linking ... 242 
loading ... 243 

architecture, Vx960 ... 55-95 
ARP .•. 193 
arptabSTtow( ) ... 213 

B 
b() ... 305 
backplane 

anchor ... 221 
driver ... 219 
heartbeat ... 222 
installing boards in ... 28 
as an Internet network ... 219 
master processor ... 220 
networks ... 192, 218-230 

example of configuring UNIX host .;. 225-
229 

processors 

Index 

determining when to examine input 
queues ... 224 

and interrupt types ... 224 
numbers ... 220 

running alternative protocols ... 219 
shared memory pool ... 220-224 

determining if initialized ... 222 
determining size of ... 222 
locating ... 221, 222 
obtaining exclusive use of ... 223 
on/ off board options ... 223 

bd() ... 305 
bdall() ... 306 
bibliography ... 339 
bind( ) ... 197 
block devices ... 121-124 

and file systems ... 122 
RAM device ... 123 

bootROMs 
see also bootLib(l) 
commands ... 30 
configuring of backplane network ... 219 
installing ... 27 
setting up Vx960 network ... 216 

booting ... 29-38 
see also bootLib(l) 
alternative procedures ... 36 
backplane master processor ... 220 
parameters for ... 30-34 

Intel Vx960 357 



Vx960 5.0 - Programmer's Gulde 

rebooting ... 37 
see also rebootLib(l) 

specifying backplane network as boot device ... 
221 

bootlnit() ... 267 
breakpoints ... 305-307 

and the shell ... 307 
and unbreakable tasks ... 306 
where to set ... 314 

broadcast addresses ... 211 
buffer manipulations ... 18 

see also bLib(l); mglib(l) 

c 
c() ... 305 
character arrays, see strings 
characters 

see also tyLib(l) 
for shell control ... 272 

checkStack() ... 303, 315 
close() ... 107, 136 
closedir( ) •.. 165 
code 

conventions ... 329-337 
layout ... 332-335 
shared ... 69 

compiling application modules ... 237 
compress ... 268 
compression, boot ROMs ... 268 
config.h ... 249 

configuring backplane networks ... 219, 221, 222, 
223, 224 

configAll.h ... 248 
configuration ... 247-268 

alternatives ... 263-268 
host ... 24-26 
include files for ... 248 
library, usrConfig ... 248 
minimum ... 22 
network ... 201-212 

at start-up ... 216 
optional modules ... 249 
reconfiguring ... 38 

358 Intel Vx960 

target hardware ... 26-29 
connect() ... 197 
console devices ... 255 
contiguous file 

DOS file system ... 171-172 
RT-11 file system ... 174, 177 

conventions 
coding ... 329-337 
layout of C code ... 332-335 
module headers ... 330 
naming ... 335 
programming style ... 336-337 
subroutines ... 331 

CPU, see target CPU 
crashes 

stack ... 315 
system ... 315 

crea t( ) ... 107 
cret() ... 305 
cross-development ... 233-243 

D 
d( ) ... 277, 311 
daemons 

network tnetTask ... 72 
remote login trlogind ... 72 
remote shell rshd ... 200, 201, 204 
routing routed ... 209 
RPC tportmapd ... 73 

data types ... 275-277 
data variables ... 278, 282 
db() ... 306 
dbgHelp( ) ... 298 
dbglnit() ... 256 
debugging ... 297-316 

see also dbgLib(l) 
disassembling instructions ... 308 
error status values ... 310 
exception trap ... 309 
facilities ... 12, 297 

see also dbgLib(l); excLib(l); usrLib(l) 
initializing ... 255 

getting periodic status reports ... 313 



help facility ... 298 
from the shell .•. 298-302 
source-language ••. 298 
stack crashes ... 315 
and symbol table ... 236 
system crashes ... 315 
tracing tasks .•. 304 
using breakpoints and single-stepping ..• 305-

307, 314 
delete character ("H) ... 115 
delete() ... 108 
delete-line character ("U) ... 115 
demo program ... 41-46 
development environment ... 6-7, 234, 263-268 
device list ... 131 
devices ... 102-103, 112-124 

see also specific device types 
adding ... 131 
and default filenames ... 102 
and I/ 0 system ... 129 
naming conventions ... 103 

dirLib ... 165 
disassembler ... 308 

see also dsmLib(l) 
disk changes 

DOS file system ..• 168-171 
raw disk file system ... 182-184 
RT-11 file system ... 177-178 

disk organization 
DOS file system ... 152-156 
raw disk file system ... 180 
RT-11 file system ... 174 

disk volume 
DOS file system ... 158-163 
raw disk file system ... 181 
RT-11 file system ... 176 

DOS 
see also dosFsLib(l) 
contiguous file ... 171-172 
directory structure ... 164-168 
disk changes ... 168-171 
disk organization ... 152-156 
disk volume ... 158-163 
file system ... 15 
initialization ... 156-158 
initializing file system ... 256 

and ioctl( ) requests ... 172 
raw disk ••• 164 

dosFsConfiglnit() .•• 158 
dosFsDateSet( ) ..• 167 
dosFsDatenmelnstall() ... 167 
dosFsDevlnit( ) ... 154, 157 
dosFsDrvNum( ) .•. 157 
dosFslnit( ) .•. 156, 157, 256 
dosFsLib ... 156 
dosFsReadyChange( ) ... 169 
dosFs1imeSet( ) ... 167 
dosFsVolUnmount( ) ..• 162, 168 
drivers ... 102-103, 113 

E 

see also specific driver types 
implementing 1/0 functions ... 128-129 
installing ... 129, 256 

end-of-file character ("D) ... 115 
entry point ... 252 
EOF character ("D) ... 115 
errors 

see also e:rrnoLib(l) 
status values ... 310 

etc/hosts •.. 25 
Ethernet ... 190 

see also etherLib(l) 
ARP ... 193 
cable connects ... 29 
setting board jumpers ... 27 

exception handling ... 68 
exception handling facilities 

see also excLib(l) 
initializing ... 255 

exception traps ... 309 
exclnit( ) ... 255 
excTask( ) ... 255 
excVeclnit( ) ... 253 
exit() ... 63 
expressions 

arrays and pointers ... 284 
shell ... 277-281 

Index 

Intel Vx960 359 



Vx960 5.0 - Programmer's Gulde 

F 
fd table ... 133 
fdopen() ... 110 
fdprintf( ) ... 112 
fds ... 104-111 

see also files; ioLib(l) 
standard ... 105 

redirecting global assignments of ... 105 
redirecting task assignments of ... 106 

with stdio ... 111 
file descriptors, see fds 
file systems 

alternative ... 16 
DOS, see DOS 
multiple ... 16 
raw disk, see raw disk 
RT-11, see RT-11 

files ... 102-103 
closing ... 107, 136 
creating ... 107 
deleting ... 108 
and II 0 system ... 133-136 
opening ... 106, 133 
reading ... 108, 136 
writing to ... 108 

fioLib ... 111 
floating point support 

see also fppALib(l); fppLib(l) 
initializing ... 256 
setting as task option ... 64 

floatlnit() ... 256 
flow control characters ("'Q and "S) ... 115 
/open( ) ... 110 
/read( ) ... 110 
/stat( ) ... 165 
ftp 

creating network devices for ... 205 
setting user IDs ... 205 

ftpdlnit( ) ... 204 
ftpLib ... 204 
function calls ... 279 
fwrite( ) ... 110 

360 Intel Vx960 

G 
gateway processors ... 219 
gateways 

see also routeLib(l) 
adding on UNIX ... 209 
adding on Yx960 ... 210 

getc() .•. 110 
getpeemame( ) ... 197 
getsockname( ) ... 197 
GNU/960 

linker 
GLD/960 ... 242 

H 
It() ... 288 
hardware 

initializing ... 253 
interrupt handling ... 89-92 

see also intLlb(l) 
and signals ... 88 

header files, see include files 
help coil'lll!ands ... 40, 292, 298 
help() ... 29i 
history facility ... 288 

line-editing commands ... 289 
see also ledLib(l) 

hooks ... 68 
hop count ... 209 
host 

configuring ... 24-26 
Yx960 access to ... 26 

ltostAdd( ) ... 203 
hosts 

supported ... 24 
ltostS/iow( ) ... 203 

i() ... 302, 303, 313 
1/0 system ... 14, 101-147 



see also ioLib(l); iosLib(l) 
buffered ... 109-111 
communicating between tasks, see pipes 
and devices ... 129 
differences with UNIX ... 125 
and drivers ... 128-129 
and files ... 133-136 
formatted ... 111 

see also fioLib(l) 
initializing ... 125 
serial devices ... 113 

iam() ... 205 
ICMP ... 193 
icmpstatS/tow() ... 213 
icmpstatSltow(> ... 212 
if AddrSet( ) ... 202 
ifBroadcastSet( ) ... 211 
ifMaskSet( ) ... 212 
i/Slww( ) ... 213 
include files ... 238-241 

accessing ... 239 
configuration headers ... 248 
nested ... 240 
network ... 240 
restrictions of ... 241 
RPC ... 241 
using UNIX header files ,.. 239 

inet, see Internet addresses 
inetstatS/Jow() ... 213 
initialization 

see also usrConfig(l) 
DOS file system ... 156 
hardware ... 253 
II 0 system ... 255 
kernel ... 253 
memory pool ... 254 
network ... 216, 257 
RT-11 file system ... 174 
sysbtit ... 252 
system ... 252 
timer facilities ... 254 
and usrlllit ... 252-253 
and usrRoot ... 254-259 

intComzect() ... 89, 90, 91, 234 
intCou11t() ... 90 
Internet 

broadcast addresses ... 211 
file transfer protocol, see ftp 
packet routing, see packet routing 
protocols ... 192 

see also TCP; UDP 
ICMP ... 193 
IP ... 192 
and sockets ... 196 

Internet addresses ... 193 
see also inetLib(l) 
associating with host names ... 202 
classes of ... 194 
configuring network interfaces ... 202 

see also ifLib(l) 
and subnets ... 212 

internet protocol, see lP 
interrupt handling ... 89-92 

see also intALib(l); intLib(l) 
and C functions ... 89 
limitations of code ... 90 
stack ... 90 

interrupt level ... 92, 118 
interrupt lock ... 74 
interrupt service routine ... 89 
interrupt stack ... 90 
intertask communications ... 8, 73-88 

see also taskLib(l) 
intLevelSet( ) ... 90 
in tLock( ) ... 90 
intU11lock() ... 90 
intVecBaseGet() ... 90 
intVecGet() ... 90 
intVecSet( ) ... 90 
ioctl 

and DOS file system ... 172 
and raw file system ... 184 
and RT-11 file system ... 178 

ioctl( ) ... 109 
ioGlobalStdSet() ... 105, 255 
iosDevAdd() ... 131 
iosDevAdd() ... 175 
iosDrvlnstall( ) ... 129, 157 
ioslnit() ... 125, 255 
ioTaskStdSet{ ) ... 106 
IP ... 192 
ipstatShow( ) ... 213 

Index 

Intel Vx960 361 



Vx960 5.0 - Programmer's Gulde 

J 
jump ... 27 

K 
kernel 

executing ... 252 
initializing ... 253 

kernellnit() ... 253, 254 
kernelTimeSlice() ... 59 
kernelTimeslice( ) ... 57 
kill() ... 88 

L 
I() ... 308 
Id( ) (Vx960) ... 243 
libraries 

driver support ... 146 
interactive use ... 291 
sharing ... 235 
utility ... 16-18 

linked lists 
see also lstLib(l) 

linking 
application modules ... 242 
run-time ... 235 
system modules ... 260-262 

lint ... 336 
listen( ) ... 197 
literals ... 278 
lkup( ) ... 292, 312 
loading ... 11, 235 

see also loadlib(l) 
application modules ... 243 
and symbol table ... 235 

loadSymTbl( ) ... 258 
location monitors ... 224 
logging facilities 

see also loglib(l) 
initializing ... 255 

362 Intel Vx960 

loglnit( ) ... 256 
loginUserAdd( ) .•. 293 
loglib ... 112 
• - ""ast-() ... ~,, tog .u "' ... "'JO 

loopback interface ... 201 

M 
m() ... 311 
mailbox interrupts ... 224 
malloc( ) ... 223, 253 
mbu/Sliow() ... 213 
memAddToPool( ) ... 254 
memLib ... 253 
memory 

adding to pool ... 254 
allocation facility ... 253 

see also memLib(l) 
and backplane networks ... 220-224 

see also backplane 
determining availability of ... 254 
displaying ... 311 
initializing memory pool ... 253 
modifying contents of ... 311 
shared ... 219 
usage state ... 311 

memory layout ... 325-327 
memSlzow() ... 311 
message queues ... 83-85 
messages ... 112 

see also logLib(l) 
module loader, see loading 
modules ... 330-331 

application, see application modules 
headers ... 330 
optional ... 249 
system, see system modules 

msgQCreate( ) ... 84 
msgQDelete( ) ... 84 
msgQReceive( ) ... 84 
msgQSend( ) ... 84 
multitasking ... 8, 56, 69 

see also taskLib(l) 
mutual exclusion ... 74-82 



N 
net masks •.. 212 
netDevCreate( ) ... 205 
netDrv 

andftp ... 204 
and rsh ••• 204 

netLiblnit( ) .•. 257 
network devices 

see also NFS 
creating for NFS ... 207 
creating for rsh and ftp .•. 205 
ioctl requests ... 121 
non-NFS ... 120-121 

network drivers 
see also netDrv(l) 
include files for ... 240 

network file system, see NFS 
Network Information Service (NFS) ... 26 
network interfaces 

see also ifLib(l) 
specifying Internet addresses ... 202 

network management 
arptabShow( ) ... 213 
ianpstatSliow() ... 213 
i/Sliow() ... 213 
inetstatSliow( ) ... 213 
ipstatShow( ) ... 213 
mbufSliow( ) ... 213 
tcpstatSliow() ... 213 

network managementudpstatSlzow() ... 213 
networks ... 9-10, 189-230 

NFS 

see also hostLib(l); netLib(l) 
adding gateways ... 209-211 
backplane, see backplane 
configuring ... 201-212 
hierarchy of ... 190 
initialization at start-up ... 216 
initializing ... 257 
Internet, see Internet 
and sockets ... 196 

see also nfsDrv(l); nfsLib(l) 
devices ... 118-120 

creating ... 207 

ioctl requests ... 119 
enabling ... 206 
setting user IDs ... 208 
and UNIX •.. 206 
user authentication ... 208 

nfsAutliUnixPrompt() ... 208 
nfsAuthUnixSet() ... 208 

0 
objcopy ... 42 
open( ) ... 106, 133 
opendir( ) ... 165 
operators ... 279 

p 

packet routing ... 195 
performance monitoring ... 13 

see also spyLib(l); timexLib(l) 
installing tools for ... 257 

period( ) ... 313 
pipeDrv ... 117 
pipes ... 86, 117-118 

see also pipeDrv(l) 
and ioctl requests ... 118 

pointer arithmetic ... 284 
preemptive lock ... 75 
printErr( ) ... 112 
printErrno( ) ... 310 
print/() ... 111 
priority inheritance ... 79 
priority inversion ... 79 
processor number ... 216, 220 
pty devices ... 113-117 

see also ptyDr\r(l) 
and ioctl requests ... 116 
options ... 114 

putc() ... 110 

Index 

Intel Vx960 363 



Vx960 5.0 - Programmer's Gulde 

R 
RAM devices ... 123 

see also ramDrv(l) 
ramDevCreate( ) ... 123 
raw disk file system 

see also rawLib(l) 
disk changes ... 182-184 
disk organization ... 180 
disk volume ... 181 
and DOS ... 164 
initialization ... 180-181 
and ioctl( ) requests ... 184 
and RT-11 ... 176 

rawFsDevlnit() ... 181 
rawFslnit() ... 180, 256 
rawFsLib ... 179 
rawFsReadyCltange( ) ... 183 
rawFsVolUnmount() ... 182 
read( ) ... 108, 136 
readdir() ... 165 
reboot( ) ... 37 
recv() ... 197 
recvfrom( ) ... 197 
recvmsg( ) ... 197 
registers 

modifying contents of ... 311 
remote command execution, see rsh 
remote file access ... 10, 203 

file permissions ... 206 
NFS ... 206 
rslt and ftp ... 204 

remote login 
see also rlogin; telnet; rlogLib(l) 
accessing Vx960 shell ... 40, 208, 292 . 
and rsh ... 204 
daemons ... 72 

remote procedure caHs, see RPC 
remote shell, see rsh 
repeat( ) ... 313 
rewinddir() ... 165 
.rhosts file ... 204 
ring buffers ... 92 
rlogin (UNIX) ... 40, 208, 292 

see also remote login 

364 Intel Vx960 

.. .... 

rlogin() (Vx960) ... 199, 209, 294 
rloglnit( ) ... 208 
ROM 

applications in ... 267 
boot, see boot ROMs 
monitor trap ("X) ... 114, 115 

romlnit( ) ... 267 
route command ... 209 
routeAdd( ) ... 210 
routed routing daemon ... 209 
routes 

see also routelib(l) 
adding on UNIX ... 209 
adding on Vx960 ... 210 

routines 
and reentrancy ... 69-71 
repeating ... 313 

RPC ... 87, 199 

rsh 

include files for ... 241 
tportmapd ... 73 

see also remLib(l) 
creating network devices for ... 205 
rshd ... 200, 201, 204 
setting user IDs ... 205 
and UNIX ... 204 

RT-11 
see also rtlllib(l) 
contiguous file ... 174, 177 
disk changes ... 177-178 
disk organization ... 174 
disk volume ... 176 
file system ... 15 
initialization ... 174-176 
initializing file system ... 256 
and ioctl() requests ... 178 
raw disk ... 176 

rt11FsDevlnit() ... 175 
rt11Fslnit() ... 174, 256 
rtllFsLib ... 174 
rt11FsReadyC/iange( ) ... 177 
rtllFsSqueeze() ... 177 
run-time linking ... 235 



s 
s() ... 306 
scan/() ... 111 
scripts 

shell ... 286-288 
startup ... 34, 258, 287 

SCSI 
see also scsiLib(l) ... 122 
configuration ... 122 

scsiBlkDevCreate() ... 122 
scsiDebug ... 123 
scsiintsDebug ... 123 
scsiLib ... 122 
scsiPltysDevCreate() ... 122 
semaphores ... 75-83 

see also semLib(l) 
binary ... 77 
counting ... 82 
and interrupt service code ... 92 
mutual exclusion ... 79 

semBCreate( ) ... 76 
semBinit() ... 76 
semCCreate( ) ... 76 
semDelete() ... 76 
semFluslt( ) ... 76 
semGive( ) ... 76, 77 
semLib ... 128 
semMCreate( ) ... 76 
semTake( ) ... 76 
send() ... 197 
sendmsg() ... 197 
sendto() ... 197 
serial II 0 devices ... 113 
serial line interface protocol, see SLIP 
serial ports ... 29 
setsockopt( ) ... 197 
shared code ... 69 
shell ... 12, 38-40, 271-294 

abort character ("C) ... 116 
aborting ("C) ... 114, 290 

changing default character ... 290 
accessing ... 272 

from UNIX host ... 40, 292 
from Vx960 ... 294 

arrays and pointers ... 283 
assignment statements ... 281 
and breakpoints ... 307 
and C declaration statements ... 275 
comments ... 282 
and data types ... 275-277 
data variable references ... 278, 282 
as a debugging tool ... 274 
and exceptions ... 309 
expressions ... 277-281 
function calls ... 279 

omitting parentheses ... 280 
interpreting literals ... 278 
interpreting operators ... 279, 285 
line-editing commands ... 289 

see also ledlib(l) 
omitting ... 271 
pointer arithmetic ... 284 
power of ... 275 

Index 

redirecting input/ output streams ... 285-287 
restarting ... 290 
routines for interactive use ... 291 
spawning ... 258 
statements ... 277-282 
strings ... 283 
task ... 294 

slrelllnit() ... 258 
sltel!Lock( ) ... 292 
shutdown( ) ... 197 
sigblock( ) ... 88 
siglnit( ) ... 256 
signals ... 88 

see also sigLib(l) 
and interrupt service code ... 92 

sigsetmask( ) ... 88 
sigvec() ... 88 
single-stepping ... 305, 307 
SLIP ... 218 
slip/nit() ... 218 
small computer system interface, see SCSI 
so() ... 306 
socket( ) ... 124 
sockets ... 9, 86, 196-199 

see also sockLib(l) 
accessing as an I/O device ... 124 
establishing communications with TCP ... 198 

Intel Vx960 365 



Vx960 5.0 - Programmer's Gulde 

and Internet protocols ••• 196 
sp() ... 307, 310 
spawning ... 57 
sprint/() ... 111 
sscanf() ... 111 
stacks 

crashes ... 315 
interrupt ... 90 

stand-alone system 
creating ... 266 

standard 1/0 ... 109 
see also stdio; stdioUb(l) 
initializing ... 256 

standard input/output/error ... 105, 111, 255 
stat() ... 165 
stdio ... 109-111 

omitting ... 111 
setting as task option ... 64 

stdioUb ... 109 
strings ... 283 

declaring ... 277 
formatting ... 18 

see also .fioLib(l); stdioLib(l) 
and memory allocation ... 283 

subnets ... 212 
subroutines 

and reentrancy ... 69-71 
standard layout for ... 331-332 

symbol table ... 11, 235 
see als0 symLib(l) 
creating ... 257 
and debugging ... 236 
displaying symbols of ... 312 
and run-time linking ... 235 

.symTblCreate( ) ... 258 
sysAuxClkConnect( ) ... 234 
sysBusTas() ... 224 
sysClkConnect( ) ... 254 
sysClkRateSet( ) ... 254 
syslnit() ... 252, 253 
sysLib ... 224 
sysMemTop( ) ... 254 
sysScsilnit() ... 122 
system clock ... 259 
system image 

adding bootable application modules ... 265 

366 Intel Vx960 

excluding facilities ... 263 
linking modules ... 260 
loading of ... 252 
rebuilding ... 259-263 
reconfiguring ... 38 

system tasks ... 71 

T 
target CPU 

see also sysALib(l); syslib(l} 
configuration header for ... 249 
serial ports ... 29 
setting board jumpers ... 27 

task scheduling ... 57-60 
preemption locks ... 60 
preemptive ... 57 
round-robin ... 59 

task variables ... 70 
see also taskVarLib(l) 
and context switching ... 71 

taskActivate() ... 61 
taskCreateHookAdd( ) ... 69 
taskCreateHook.Delete( ) ... 69 
task.Delay( ) ... 65 
task.Delete( ) ... 63 
task.DeleteHookAdd( ) ... 69 
task.DeleteHookDelete( ) ... 69 
taskldListGet( ) ... 66 
taskldSelf( ) ... 62 
taskldVerify( ) ... 62 
tasklttfoGet() ... 66 
task/nit() ... 61 
tasklsReady( ) ... 66 
tasklsSuspended( ) ... 66 
taskLock( ) ... 57 
taskName() ... 62 
taskNameTold( ) ... 62 
taskOptionsGet( ) ... 65, 306 
taskOptionsSet( ) ... 65, 306 
taskPriorityGet( ) ... 66 
taskPrioritySet( ) ... 57, 65 
taskRegsGet( ) ... 66 
taskRegsSet( ) ... 66 



taskRestart( ) ... 65, 309 
taskResume( ) •.. 65 
tasks ... 56-73 

see also intertask communications; multitasking; 
taskLib(l) 

adding routines to .•. 68 
see also taskHookLib(l) 

altering ... 65 
blocked •.. 60 
calling routines simultaneously ... 69 
communicating at interrupt level ... 92, 118 
crashing the system ... 315 
creating ... 61 
deleting ... 62 
error status values ... 66, 310 

see also ermo Lib(l) 
executing ... 65 
IDs ... 61, 302 
names ... 61, 302 
option parameters ... 64 
repeating ... 313 
setting current ... 303 
and signals ... 88 
single-stepping ... 305 
and stack crashes ... 315 
starting ... 310 
status 

changing of ... 309 
getting information on ... 66, 303-304 

suspending ... 305 
synchronizing ... 75-83 
system ... 71 
tracing ... 304 
unbreakable ... 306 

taskSafe( ) ... 63 
taskSpawn() ... 61, 234, 310 
taskStatusString() ... 66 
taskSuspend( ) ... 65 
taskSwitchHookAdd( ) ... 69 
taskSwitchHookDelete( ) ... 69 
taskTcb( ) ... 66 
taskTerminate( ) ... 63 
taskUnlock( ) ... 57 
taskUnsafe( ) ... 63 
taskVarAdd() ... 70 
taskVarDelete( ) ... 70 

taskVarGet( ) ... 70 
taskVarSet( ) ... 70 
TCP ... 86, 193, 196 
tcpstatShow( ) ... 213 
td() ... 310 
telnet ... 200, 208, 292 

see also telnetlib(l) 
telnetd ... 73 

telnetlnit( ) ... 208 
terminal characters 

see also tyLib(l) 
for shell control ... 272 

ti() ... 303 
time slicing ... 59 
timers 

execution 
see also timexlib(l) 

facilities for ... 13 
initializing ... 254 

watchdog ... 95 
see also wdlib(l) 

tr() ... 310 
transmission control protocol, see TCP 
troubleshooting ... 46-50 

booting problems ... 48 
configuring a backplane network ... 229 
hardware configuration ... 47 

tt() ... 303, 304 
tty devices ... 113-117 

see also tylib(l) 
and ioctl requests ... 116 
options ... 114 
raw mode and line mode ... 114 
X-on/X-off ... 114 

tyAbortSet() ... 116, 290 
tyBackspaceSet() ... 116 
tyCoDevCreate( ) ... 255 
tyCoDrv ... 255 
tyDeleteLineSet( ) ... 116 
tyEOFSet() ... 116 
tyMouitorTrapSet() ... 116 

Index 

Intel Vx960 367 



Vx960 5.0 - Programmer's Gulde 

u 
UDP ... 87, 193, 196 
udpstatShow( ) ... 213 
UNIX 

adding gateways .•. 209 
configuring for a backplane network ... 225-229 
1/0 system differences ... 125 
remote login from Vx960 ••. 209 
remote login to Vx960 .•• 208 
and Vx960 •.. 3, 5 

see also cross-development 
user datagram protocol, see UDP 
user IDs 

setting for NFS ... 208 
setting for rsh and ftp ... 205 

usrClock( ) ... 259 · 
usrConfig ... 220, 248, 251 
usrlnit( ) ... 252-253 
usrLib ... 291 
usrNetlnit( ) 

and NFS ... 207 
and remote login ... 208, 257 
adding a gateway ... 211 
adding host name ... 203 
creating a network device ... 205 
initializing network ... 216 
setting Internet address ... 202 
setting user ID ... 206 

usrRoot( ) ... 254-259 
usrScsiConfig( ) ... 122 

v 
Vx960 

excluding facilities ... 263 
installation ... 23 
overview of ... 4 
rebuilding ... 259-263 
and UNIX •.. 3, 5 

see also cross-development 
. vxencrypt ... 293 
vxWorks.h ... 238 

368 Intel Vx960 

w 
watchdog timers ... 95 

see also wdLib(l) 
wdCancel( ) ... 95 
wdCreate( ) ... 95 
wdDelete( ) ... 95 
wdStart( ) ... 95, 234 
write( ) ... 108, 118 




