
Z80 MICROCOMPUTER SYSTEMS

Reference Manual

PROCESS BASIC
VERSION 1.0

MOSTEK PROCESS BASIC

Version 1.0

Reference Manual

Copyright 1980 BY IDSTEK CORPORATION

ALL RIGHTS RESERVED

Published by M)STEK Corporation with the permission of MICROSOFT.

Publication No. MK79874

SECTION PARAGRAPH

NUMBER

1

2

TITLE

1.1

1.2

1.3

1.3.1

1.4

1.4.1

1.5

1.5.1

1.6

1.6.1

1.6.2

1.7

1.8

1.8.1

1.8.1.1

1.8.1.2

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.9

1.10

2.1

2.2

2.3

2.4

TABLE OF CONTENTS

TITLE

GENERAL INFORMATION ABOUT PBASIC

INITIALIZATION

MODES OF OPERATION

LINE FORMAT

LINE NUMBERS

CHARACTER SET

Control Characters

CONSTANTS

SINGLE AND DOUBLE PRECISION NUMERIC CONSTANTS

VARIABLES

VARIABLE NAMES AND DECLARATION CHARACTERS

ARRAY VARIABLES

TYPE CONVERSION

EXPRESSIONS AND OPERATORS

Arithmetic Operators

Integer Division And Modulus Arithmetic

overflow And Division By Zero

Relational Operators

Logical Operators

Functional Operators

String Operations

OPERATOR PRECEDENCE

INPUT EDITING

ERROR MESSAGES

PBASIC Ca.1MANDS AND STATEMENTS

AUTO

CALL

CLEAR

CONT

i

PAGE

NUMBER

1-1

1-2

1-3

1-3

1-3

1-5

1-6

1-7

1-8

1-8

1-10

1-10

1-12

1-12

1-14

1-14

1-15

1-16

1-19

1-19

1-20

1-21

1-22

2-3

2-5

2-6

2-7

ii

TABLE OF CONTENTS

SECTION PARAGRAPH TITLE PAGE

NUMBER NUMBER NUMBER

2.5 DATA 2-8

2.6 DEF FN 2-10

2.7 DEFINT/SNG/DBL/STR 2-11

2.8 DEF USR 2-13

2.9 DELETE 2-14

2.10 DIM 2-15

2.11 EDIT 2-16

2.12 END 2-22

2.13 ERASE 2-23

2.14 ERR AND ERL VARIABLES 2-24

2.15 ERROR 2-25

2.16 FOR ••• NEXT 2-27

2.17 GETCLK 2-30

2.18 GOSUB ••• RETURN 2-31

2.19 GOTO 2-33

2.20 IF ••• THEN [••• ELSE] 2-34

2.21 IF ••• GOTO 2-34

2.22 INPUT 2-37

2.23 LET 2-39

2.24 LINE INPUT 2-40

2.25 LIST 2-41

2.26 LLIST 2-43

2.27 LPRINT AND LPRINT USING 2-44

2.28 MID$ 2-45

2.29 NEW 2-46

2.30 NULL 2-47

2.31 CN ERROR GOTO 2-48

2.32 ON ••• GOSUB 2-49

2.33 ON ••• GOTO 2-49

2.34 OPTIOO BASE 2-50

iii

TABLE OF CONTENTS

SECTION PARAGRAPH TITLE PAGE

NUMBER TITLE NUMBER

2.35 OUT 2-51

2.36 POKE 2-52

2.37 PPRCM 2-53

2.38 PRINT 2-57

2.39 PRINT USING 2-61

2.40 AANDOVIIZE 2-66

2.41 READ 2-68

2.42 RE:-'! 2-70

2.43 RENUM 2-72

2.44 RESTORE 2-74

2.45 RESUME 2-75

2.46 RPRCM 2-77

2.47 RUN 2-81

2.48 SETCLK 2-82

2.49 SIDP 2-84

2.50 EWAP 2-85

2.51 TROO/TROFF 2-86

2.52 WAIT 2-88

2.53 WHILE ••• WEND 2-89

2.54 WIDTH 2-90

2.55 WRITE 2-91

3 PBASIC FUNCTIONS

3.1 ABS 3-2

3.2 ASC 3-3

3.3 ATN 3-4

3.4 BCD 3-5

3.5 BIN 3-6

3.6 CDBL 3-7

3.7 CHR$ 3-8

iv

TABLE OF CONTENTS

SECTION PARAGRAPH '11ITLE PAGE

NUMBER NUMBER NUMBER

3.8 CINT 3-9

3.9 cos 3-10

3.10 CSNG 3-11

3.11 DATE$ 3-12

3.12 EXP 3-13

3.13 FIX 3-14

3.14 FRE 3-15

3.15 HEX$ 3-16

3.16 INKEY$ 3-17

3.17 INP 3-19

3.18 INPUT$ 3-20

3.19 INSTR 3-21

3.20 INT 3-22

3.21 LEFT$ 3-23

3.22 LEN 3-24

3.23 LOG 3-25

3.24 LPOS 3-26

3.25 MID~ 3-27

3.26 OCT$ 3-28

3.27 PEEK 3-29

3.28 POS 3-30

3.29 RIGHT$ 3-31

3.30 RND 3-32

3.31 ROI'ATE 3-33

3.32 SGN 3-34

3.33 SHIFT 3-35

3.34 SIN 3-36

3.35 SPACE$ 3-37

3.36 SPC 3-38

3.37 SQR 3-39
~-"=18 STRS 3-40

v

TABLE OF CONTENTS

SECTION PARAGRAPH TITLE PAGE

NUMBER NUMBER NUMBER

3.39 STRING$ 3-41

3.40 TAB 3-42

3.41 TAN 3-43

3.42 TIME$ 3-44

3.43 USR 3-45

3.44 VAL 3-46

3.45 VARPI'R 3-47

APPENDIX A SYSTEM CONFIGURATION

A.l MEMORY LAYOUT A-1

A.1.1 PBASIC INTERPRETER A-1

A.1.2 PBASIC APPLICATION PROGRAM A-1

A.2 HAROOARE CONFIGURATION A-4

A.3 BOARD LEVEL DOCUMENTATION A-4

APPENDIX B SYSTEMS GENERATION

B.l PBASIC INTERPRETER B-1

B.1.1 INITIAL PROGRAM DEVEIDPMENT B-1

B.1.2 PRCXvlMING APPLICATION PROGRAM . B-1

B.1.3 RUNNING PRGi APPLICATION IN DEVEIDPMENT B-2

CONFIGURATION

B.1.4 READING PR~D APPLICATION IN'IO RAM B-2

B.1.5 AUTCW.TIC RUNTIME MODE B-2

APPENDIX c INTEGRITY TEST

C.l INTEGRITY TEST PURPOSE C-1

C.2 INTEGRITY TEST SCHEME C-1

APPENDIX D MATHEMATICAL FUNCTIONS

D.l PBASIC MATH VERSIONS D-1

D.1.1 PBASIC SOF'IWARE (S/W) MATH VERSION (PBASIC) D-1

vi

TABLE OF CONTENTS

SECTION PARAGRAPH TITLE PAGE

NUMBER NUMBER NUMBER

D.1.2 PBASIC HARJ:WARE (H/W) 9511 MATH VERSIGJ D-1

(PBASIC/9511)

D.2 DERIVED FUNCTIONS D-2

APPENDIX E Converting Programs to PBASIC

E.l STRING DIMENSIONS E-1

E.2 MULTIPLE ASSIGNMENTS E-2

E.3 MULTIPLE STATEMENTS E-2

E.4 MAT FUNCTIONS E-2

APPENDIX F Surmnary of Error Codes and Error Messages

APPENDIX G Assembly language Subroutines

G.l MEMORY ALLOCATION G-1

G.2 USR FUNCTION CALLS G-1

G.3 CALL STATEMENT G-3

G.4 INTERRUPI'S G-6

APPENDIX H ASCII Character Codes

I-1

INTRODUCTION

MCBTEK PRCX::ESS BASIC, or PBASIC, is the most extensive implementation of a Process

Control BASIC available for the 280 microprocessor. PBASIC provides the process

control user with a non-volatile, RCMable, monitor which in turn has the added

capability of placing the application program into PRCM. This provides for a com­

pletely non-volatile system that can be executed by simply turning on the {X)wer.

PBASIC is a stand-alone executive and requires no operating system interface to

execute.

MCBTEK PBASIC is an extended implementation of Microsoft BASIC-80 version 5.0 for

the 280 microprocessor, and is among the fastest microprocessor BASICs available.

PBASIC is implemented as an interpreter and is highly suitable for user interac­

tive processing. Programs and data are stored in a compressed internal format to

maximize memory utilization. In a 64k system, up to 28k bytes of memory are

available for the user's program and data.

This manual is divided into three chapters plus a nunber of appendices. Chapter 1

covers the representation of information utilized by PBASIC. Chapter 2 contains

the syntax and semantics of every command and statement in PBASIC, ordered alpha­

betically. Chapter 3 describes all of PBASIC's intrinsic functions, also ordered

alphabetically. The appendices contain information on systen configuration, sys­

tem generation, math functions, and integrity test; plus lists of error messages,

ASCII codes, and helpful information on assembly language subroutines.

I-2

MOST EK

280 MICRCCOMPUTER SYSTEMS

PRCCESS BASIC SOF'IWARE INTERPRETER

FEATURES

• Extensive Process Control Features

• Occupies 24k bytes and can execute out of PRa.1s

• Program and Read Application in/out of PRCJ.1s

• Optional High-Speed Math Version utilizing MDX-Math card

• Stand-alone operation, i.e. requires no operating system

• Insures program integrity

• Debug or Runtime execution on pc>\ver-up

• Direct access to CPU I/O Ports

• Ability to read or write any memory location (PEEK, POKE)

• Arrays with up to 255 dimensions

• Dynamic allocation and de-allocation of arrays

• IF ••• THEN ••• EI.SE and IF ••• Garo (both if's may be nested)

• WHILE ••• WEND structured construct

• Direct (immediate) execution of statements

• Error trapping, with error messages in English

• Four variable types: Integer, string, single and double precision real

• Long variable names significant up to 40 characters

• Full PRINT USING capabilities for formatted output

• Extensive program editing facilities

• Trace facilities

• Ability to call any number of assembly language subroutines

• Suppc>rts console and line printer I/O

I-3

LANGUAGE CCMv!ANDS SUMMARY

Commands:

AU'IO CLEAR CONT DELETE EDIT
LIST LL I ST Nh-W NULL PP ROM
RENUM RPRCM RUN TROFF TRON
WIDTH

Prograiu Statements:

CALL DEFDBL DEF FN DEFINT DEFSNG
DEFSTR DEFUSR DIM END ERASE
ERROR FOR ••• NEXT GETCLK GOSUB ••• RETURN GO'IO
IF ••• THEN.(ELSE) IF ••• GO'IO LET ON ERROR GO'IO ON ••• GOSUB
ON ••• GO'IO OPTION BASE POKE RANIX:1'1IZE REM
RESUME SETCLK S'IOP SWAP WAIT
WHILE ••• END

Input/Output Statements:

DATA INPUT LINE INPUT LP RI NT LPRINT USING
OUT PRINT PRINT USING READ RES'IORE
WRITE

Operators:

= + * I
\ > < <=

>= <> MOD NOT AND
OR XOR IMP EQU

Arithmetic Functions:

ABS ATN BCD BIN CDBL
CINT cos CSNG ERL ERR
EXP FIX FRE INT u:x:;
PEEK RND ROTATE SGN SHIFT
SIN SQR TAN USR VARPTR

String Functions:

ASC CHR$ DATE$ HEX$ INKEY$
INSTR LEFT$ LEN MID$ OCT$
RIGHT$ SPACE$ STR$ STRING$ TIME$
VAL

Input/Output Functions:

INP INPUT$ LPOS POS SPC
TAB

1-1

CHAPl'ER 1

GENERAL INFORMATION ABOUT PBASIC

1.1 INITIALIZATION

At system power-up, PBASIC checks to see if application source RAM or a valid PROM

application is present. If neither of these are resident, then the following

unrecoverable error message is printed:

***** NO RAM MEMORY - OR - BAD FIRST CHIP *****

The user must supply RAM or a valid PROMed application for PBASIC to execute.

PBASIC can start execution in either a Runtilre or Debug configuration. In the

Debug configuration the system initializes for operator interface. In the Runtime

configuration the system initializes to start executing the application program

that currently resides in the system. 'I.he selection of Runtime/Debug conf igura­

tion is determined by hardware strapping 00121121H/E12100H (HEX) execution address

respectively.

On Debug system power-up, PBASIC prints the appropriate sign-on iressage to the

console for either the software Math version as follows:

PBASIC REV 1.121

MOSTEK PROCESS CONTROL BASIC

COPYRIGHT 198121 (C) BY MOSTEK CORP.

or for the hardware 9511 Math version:

PBASIC/9511 REV 1.121

MOSTEK PROCESS CONTROL BASIC W/9511

COPYRIGHT 198121 (C) BY MOSTEK CORP.

1-2

The difference in the two versions is the software Math version simulates all math

functions via software routines and the hardware M:ith version requires an AM95ll

math processor board (MDX-MATH). If the AM9511 is not present, when executing the

hardware Math version, the error message

<><><> AM9511 H/W Nar PRESENT <><><>

is output to the terminal and all math operations will result in an "overflow"

error condition. The MDX-MATH must be present for the PBASIC/9511 version to

operate properly.

The sign-on message is followed by the number of free bytes which represent the

amount of RAM space available for PBASIC program and/or string variable storage.

The user may now enter PBASIC commands or statements.

On Runtime power-up, PBASIC does not print the sign-on message and starts imme­

diate execution of the application program currently residing in non-volatile

memory.

1.2 MODES OF OPERATION

When PBASIC is initialized, it types the prompt "Ok". This means PBASIC is at

corrunand level, that is, it is ready to accept commands. At this point, PBASIC may

be used in either of two modes: the direct mode or the indirect mode.

In the direct mode, PBASIC statements and commands are not preceded by line num­

bers, and are executed as they are entered. Results of arithmetic and logical

operations may be displayed immediately and stored for later use. The last en­

tered instruction may be retrieved by typing Control-A, but previously entered

lines are not saved. This mode is useful for debugging and for using PBASIC as a

"calculator" for quick computations that do not require a complete program.

The indirect mode is the mode used for entering programs. Program lines are

preceded by line numbers and are stored in memory. The program stored in memory

is executed by entering the RUN command.

1-3

1.3 LINE FORMAT

Program lines in a PBASIC program have the following format (square brackets []

indicate optional user specified data):

nnnnn PBASIC statement[:PBASIC statement •••] <carriage return>

At the programmer's option, more than one PBASIC statement may be placed on a

line, but each statement on a line must be separated from the last by a colon.

A PBASIC program line always begins with a line number, ends with a carriage

return, and may contain a maximum of 255 characters.

In PBASIC, it is ix>ssible to extend a logical line over more than one physical

1 ine by use of the terminal's <line feed> key. <Line feed> lets you continue

typing a logical line on the next physical line without entering a <carriage

return>.

1.3.1 LINE NUMBERS

Every PBASIC program line begins with a line nunber. Line nunbers indicate the

order in ~ich the program lines are stored in memory and are also used as

references when branching and editing. Line numbers must be in the range 0 to

65529. A period (.) may be used in EDIT, LIST, LLIST, AUTO and DELETE corrunands to

refer to the current line.

1.4 CHARACTER SET

The PBASIC character set is comprised of alphabetic characters, numeric characters

and special characters.

The alphabetic characters in PBASIC are the upper case and lower case letters of

the alphabet. All lower case characters are converted to upper case, except those

within a string constant or a remark.

1-4

The numeric characters in PBASIC are the digits 0 through 9.

The following special characters and terminal keys are recognized by PBASIC:

Character Name

+

*
I
"
(
)
%

$

[
]

&
?
<
>
\
@

<rubout>
<escape>

<tab>

<line feed>

<carriage
return>

Blank
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number or pound sign
Ibllar sign
Exclamation point
Left bracket
Right bracket
Corruna
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed.
Escapes F.dit Mode subcommands.
See Section 2.11
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line without
terminating current line.

Terminates input of a line.

1.4.1 Control Characters

The followinJ control characters are recognized by PBASIC:

Control-A

Control-C

Control-G

Control-H

Control-I

Control-a

Control-R

Control-S

Control-U

1.5 CONSTANTS

Enters .Edit Mode on the line typed or beinJ typed.

Interrupts program execution and returns to

PBASIC command level. The direct command CONT

resumes execution if the program has not been modified.

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program output while execution continues.

A second Control-0 restarts output to the terminal.

Retypes the line that is currently being typed.

Suspends program execution. !my subsequent character

resumes execution.

Deletes the line that is currently beinJ typed.

1-5

Constants are the actual values PBASIC uses during execution. There are tWJ types

of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters enclosed in

double quotation marks. Couble quotation characters can only be' placed into a

1-6

stri~ expression with the CHR$ and STRING$ functions, see Sections 3. 7 or 3.38

respectively. Examples of string constants:

"HELLO"

"$25,000.00"

"Number of Employees"

"STRING"

Nurneric constants are positive or negative numbers. Numeric constants in PBASIC

cannot contain conunas. There are five types of nurneric constants:

1. Integer Constants

VVhole numbers between -32768 and +32767. Integer constants do not have decimal

points.

2. Fixed Point Constants

Positive or negative real numbers, i.e., numbers that contain decimal points.

3. Floating Point Constants

Positive or negative numbers represented in exponential fonn (similar to scienti­

fic notation) • A floating point constant consists of an optional signed integer

or fixed point number (the mantissa) followed by the letter E and an optionally

signed integer (the exponent). For the range of single and double precision

values, see Appendix D.

Examples:

235.988E-7 = .0000235988

2359E6 = 2359000000

1-7

(Double precision floating p:>int constants use the letter D instead of E. See

Section 1. 5 .1)

4. Hex Constants

Hexadecimal numbers with the prefix &H.

Examples:

&H76

&H32F

5. Octal Constants

Octal numbers with the prefix &Oor &.

Examples:

&0347

&1234

1.5.l SINGLE AND DOUBLE PRECISION NUMERIC CONSTANTS

Numeric constants may be either single precision or double precision nunbers. With

double precision, the numbers are stored with 16 digits of precision, and printed

with up to 16 digits.

A single precision constant is any numeric constant that has:

1. seven or fewer digits, or

2. exp:>nential form using E, or

3. a trailing exclamation p:>int (!)

1-8

A double precision constant is any nl..lm:!ric constant that has:

1. eight or I1Dre digits, or

2. exponential form using D, or

3. a trailing number sign (#)

Examples:

Single Precision Constants

46.8

-l.09E-06

3489.0

22.S!

1.6 VARIABLES

Double Precision Constants

345692811

-1.094320-06

3489.0#

7654321.1234

Variables are names used to represent values that are used in a PBASIC program.

The value of a variable may be assigned explicitly by the programmer, or it may be

assigned as the result of calculations in the program.

assigned a value, its value is asswned to be zero.

1.6.l VARIABLE NAMES AND DECLARATION CHARACTERS

Before a variable is

PBASIC variable names may be up to 40 characters in length. 'Ihe characters

allowed in a variable name are letters, numbers and the decimal point. The first

character must be a letter. Special type declaration characters are also allowed

-- see examples.

A variable name may not be a reserved word, however embedded reserved words are

allowed. If a variable begins with FN, it is assumed to be a call to a user-de­

fined function. Reserved words include all PBASIC commands, statements, function

names and operator names.

1-9

variables may represent either a mnneric value or a string. String variable

names are written with a dollar sign ($) as the last character. For example: A$

= "SALES REPORT". The dollar sign is a variable type declaration character, that

is, it "declares" that the variable will represent a string.

Numeric variable names may declare integer, single or double precision values.

The type declaration characters for these variable names are as follows:

% Integer variable

Single precision variable

Double precision variable

The default type for a numeric variable name is single precision.

Examples of PBASIC variable names follow.

PI#

MINIMUM!

LIMIT%

N$

ABC

declares a double precision value

declares a single precision value

declares an integer value

declares a string value

represents a single precision value

There is a second method to declare variable types. PBASIC statements DEFINT,

DEFSTR, DEFSNG and DEFDBL may be included in the program to declare the types for

certain variable names. These statements are described in detail in Section 2.7.

1.6.2 ARRAY VARIABLES

An array is a group or table of values referenced by the same variable name. Each

element in an array is referenced by an array variable that is subscripted with

integers or integer expressions. An array variable name has as many subscripts as

there are dimensions in the array. For example V(l0) would reference a value in a

one-dimensional array, T(l,4) would reference a value in a two-dimensional array,

and so on.

1-10

1.7 TYPE CONVERSION

when necessary, PBAS IC will convert a numeric constant from one tyre to another.

The following rules and examples should be kept in mind.

1. If a numeric constant of one type is set equal to a numeric variable of a

different type, the number will be stored as the type declared in the variable

name. (If a string variable is set equal to a numeric value or vice versa, a

"Type mismatch" error occurs.)

Example:

10 A%= 23.42

20 PRINT A%

RUN

23

2. r::uring expression evaluation, all of the operands in an arithmetic or rela­

tional operation are converted to the same degree of precision, i.e., that of the

most precise operand. Also, the result of an arithmetic operation is returned to

this degree of precision.

Examples:

HJ D# = 6#/7 The arithmetic was performed

20 PRINT D# in double precision and the

RUN result was returned to D#

.8571428571428571 as a double precision value.

10 D = 6#/7

20 PRINI' D

RUN

.857143

The arithmetic was perfonned

in double precision and the

result was returned to D (single

precision variable), rounded and

printed as a single precision

value.

1-11

3. Logical operators (see Section 1.8.3) convert their operands to integers and

return an integer result. Operands must be in the range -32768 to 32767 or an

"overflow" error occurs.

4. When a floatir~ µ:>int value is converted to an integer, the fractional µ:>rt.ion

is rounded.

Example:

10 C%= 55.88

20 PRINT C%

RUN

56

5. If a double prec1s1on variable is assigned a single precision value, only the

first seven digits, rounded, of the converted number will be valid. 'Ibis is be­

cause only seven digits of accuracy were supplied with the single precision value.

The absolute value of the difference between the printed double precision number

and the original single precision value will be less than 5.97E-8 times the ori­

ginal single precision value.

Example:

10 A = 2.04

20 B# = A

30 PRINT A;B#

RUN

2.04 2.039999961853027

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may

combine constants and variables with operators to produce a single value.

1-12

Operators perfonn mathematical or logical, operations on values. The operators

provided by PBASIC are divided into four categories:

1. Aritllnetic

2. Relational

3. logical

4. Functional

1.8.1 Arithmetic Operators

'!he arithmetic operators in order of precedence are:

Operator Operation

* ,/

\

MOD

+,-

Ex~nentiation

Negation

Multiplication, Floating

Point Division

Integer Division

Modulus Arithmetic

.Addition, Subtraction

Sample Expression

X""Y

-x

X*Y

X/Y

X MODY

X+Y

To change the order in which the operations are perfonned, use parentheses.

Operations within parentheses are perfonned first. Inside parentheses, the

usual order of operations is maintained. Here are some sample algebraic

1-13

expressions arrl their PBASIC col.U'lterparts.

Algebraic Expression PBASIC Expression

X+2Y X+Y*2

x- y X-Y/Z

z

XY X*Y/Z

z

X+Y (X+Y)/Z

z

2 y

(X) (X"'2) "'y

z

y

x X"' (Y"'Z)

X(-Y) X*(-Y) Tv.u consecutive

operators must

be separated by

parentheses.

1-14

1.8.1.1 Integer Division And Modulus Arithmetic

Two additional operators are available: integer division and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded to

integers (must be in the range -32768 to 32767) before the division is performed,

and the quotient is truncated to an integer. For example:

10\4 = 2

25.68\6.99 = 3

The precedence of integer division is just after multiplication and floating i:oint

division •

.Modulus arithmetic is denoted by the operator MOD. It gives the integer value

that is the remainder of an integer division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)

25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

1.8.1.2 overflow And Division By Zero

If, during the evaluation of an expression, a division by zero is encountered, the

"Division by zero" error message is displayed, machine infinity with the sign of

the numerator is supplied as the result of the division, and execution continues.

If the evaluation of an exponentiation results in zero being raised to a negative

power, the "Division by zero" error message is displayed, i:ositive machine infini­

ty is supplied as the result of the exponentiation, and execution continues.

If overflow occurs, the "CNerflow" error message is displayed, machine infinity

with the algebraically correct sign is supplied as the result, and execution con­

tinues.

1-15

1.8.2 Relational Operators

Relational operators are used to compare two values. The result of the comparison

is either "true" (-1) or "false" (0). This result may then be used to make a de­

cision regardin:;J progrcm flow. (See IF, Section 2.20.)

Operator Relation Tested Expression

= Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See LET, Section

2.23) When arithmetic and relational operators are combined in one expression,

the arithmetic is always performed first. For example, the expression

X+Y < (T-1)/Z

is true if the value of X plus Y is less than the value of T-1 divided by z. More

examples:

IF SIN(X)<0 Garo 1000

IF I MOD J <> 0 THEN K=K+l

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or

Boolean o~rations. The logical operator returns a bitwise result which is either
'

1-16

"true" (not zero) or "false" (zero). In an expression, logical operations are

performed after arithnetic and relational operations. 'Ihe outcome of a logical

operation is determined as shoW'l in the following table. The operators are

listed in order of precedence.

NOT

x NOT X

1 0

0 1

AND

x y X ANDY

1 1 1

1 0 0

0 1 0

0 0 0

OR

x y XOR Y

1 1 1

1 0 1

0 1 1

0 0 0

XOR

x y X XCR Y

1 1 0

1 0 1

0 1 1

0 0 0

IMP

x y X IMP Y

1 1 1

1 0 0

0 1 1

0 0 1

1-17

EQV

x y X EQV Y

1 1 1

1 0 0

0 1 0

0 0 1

Just as the relational operators can be used to make decisions regarding program

flow, logical operators can connect t'MJ or more relations and return a true or

false value to be used in a decision (see IF, Section 2.20). For example:

IF D<200 AND F<4 THEN 80

IF I>l0 CR K<0 THEN 50

IF NOT P THEN 100

IF FOPEN THEN 200

Logical operators 'M:>rk by convertin:J their operands to sixteen bit, signed, t'M:>'s

complement integers in the range -32768 to +32767. (If the operands are not in

this ran:Je, an error results.) If both operands are supplied as 0 or -1, logical

operators return - or -1. 'Ihe given operation is performed on these integers in

bitwise fashion, i.e., each bit of the result is determined by the corresponding

bits in the t'MJ operands.

'Ihus, it is possible to use logical operators to test bytes for a particular bit

pattern. For instance, the AND operator may be used to "mask" all but one of the

bits of a status byte at a machine I/O port. 'Ihe OR operator may be used to

"merge" two bytes to create a particular binary value. The followin:J examples

will help demonstrate how the logical operators 'M:>rk.

63 AND 16=16

15 AND 14=14

63 = BINARY 111111 and 16 = binary

10000, so 63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110,

so 15 AND 14 = 14 (binary 1110)

1-18

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR -2=-l

Nor X=-(X+l)

-1 = binary 1111111111111111,and

8 = binary 1000, so -1 AND 8 = 8

4 = binary 100 and 2 = binary 10,

so 4 OR 2 = 6 (binary 110)

10 = binary 1010, so 1010 OR 1010 =

1010 (10)

-1 = binary 1111111111111111 and

-2 = binary 1111111111111110,

so -1 OR -2 = -1. The bit

complement of sixteen zeros is

sixteen ones, which is the

two's complement representation of -1.

The two's complement of any integer

is the bit complement plus one.

1.8.4 Functional Operators

A function is used in an expression to call a predetermined operation that is to

be performed on an operand. P8ASIC has "intrinsic" functions that reside in the

system, such as SQR (square root) or SIN (sine). All of P8ASIC's intrinsic func­

tions are described in Chapter 3. PBASIC also allows "user defined" functions

that are written by the programmer. See DEF FN, Section 2.6.

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 A$= 11 FILE11 : B$=11NAME11

20 PRINT A$ + 8$

30 PRINT "NEW II + A$ + 8$

RUN

FILENAME

NEW FILENAME

1-19

Strings may be compared using the same relational operators that are used with

numbers:

= <> < > <= >=

String comparisons are made by taking one character at a time from each string and

comparin:J the ASCII codes. If all the ASCII codes are the same, the strings are

equal. If the ASCII codes differ, the lower code number precedes the higher. If,

durin:J strin:J comparison, the end of one strin:J is reached, the shorter strin:J is

said to be snaller. Leading and trailing blanks are significant. Examples:

II AA" < "AB"

"FILENAME" = "FILENAME"

"X&" > "X#"
"CL II > "CL"

"kg" > "KG"

II SMYTH" < II SMYTHE"

8$ < "9/12/78" \tklere 8$ = 118/12/78 11

Thus, string comparisons can be used to test string values or to alphabetize

strings. All strin:J constants used in comparison expressions must be enclosed in

quotation marks.

1.8.6 OPERATOR PRECEDENCE

'!he numeric operators in order of precedence are:

Operator

*,/

Cperation

intrinsic function

exp:mentiation

negation

Multiplication, floating

p:>int division

Sample Expression

SQR(X)

X"Y

-x

X*Y

1-20

\

MOD

+,-

=,<>,>,<,
<=,>=

AND

OR

XOR

IMP

EQV

integer division

modulus

addition, subtraction

equal, not equal,

greater,less,less than or

equal, greater than or

equal

ones complement

logical conjunctive

inclusive or

exclusive or

irnpl ication

equivalence

X\Y

X MOD Y

X+Y

X>Y

Nor X

X ANDY

X OR Y

X XOR Y

X IMP Y

X EQV Y

The string operators in order of precedence are:

Operator

+

=,<>,<,>,
<=,>=

~ration Sample expression

intrinsic function

concatenation

equal, not equal,

less, greater, less than

or equal, greater than

or equal

LEFT$ (II ABC" , 2)

"ABC" + "DEF"

X$ > "AB"

1-21

1.9 INPUT EDITING

If an incorrect character is entered as a line is beirJ3 typed, it can be deleted

with the RUBOur key or with Control-H. Rubout surrounds the deleted character(s)

with backslashes, and Control-H has the effect of backspacirJ3 over a character and

erasing it. 01ce a character(s) has been deleted, simply continue typing the line

as desired.

To delete a line that is in the process of beirJ3 typed, type Control-U. A carri­

age return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory, simply retype

the line usinJ the same line nunber. PBASIC will automatically replace the old

1 ine with the new 1 ine.

More sophisticated editing capabilities are provided in the EDIT command, see

Section 2.11.

To delete the entire program that is currently residirJ3 in memory, enter the NEW

command. (See Section 2.29) NEW is usually used to clear memory prior to enter­

inJ a new program.

1.10 ERROR MESSAGES

If PBASIC detects an error that causes program execution to terminate, an error

message is printed. For a complete list of PBASIC error codes and error messages

see Appendix F.

2-1

CHAPTER 2

PBASIC CQt.t•Wms AND STATEMENTS

All of the PBASIC commands and statements are described in this chapter. Each

description is formatted as follows:

FORMAT:

Shows the correct format for the instruction. See below for format notation.

PURPOSE:

Tells what the instruction is used for.

REMARKS:

Describes in detail how the instruction is used.

EXAMPLE:

Shows sample programs or program segments that demonstrate the use of the

instruction.

NGrE:

Any additional information pertinent to that instruction.

Format Notation

W"lerever the format for a statement or corrunand is given, the following rules

apply:

1. Items in capital letters must be input as shown.

2-2

2. Items in lower case letters enclosed in angle

brackets (< >) are to be supplied by the user.

3. Items in square brackets ([]) are optional.

4. 'Ihe slash (/) character indicates alternation:

a choice between tw::> or more items.

5. All punctuation except angle brackets and square

brackets (i.e., commas, parentheses, semicolons,

hyphens, equal signs) must be inclt..rled where shown.

6. Items followed by an ellipsis (•••) may be repeated

any nLUTiber of times (up to the length of the line) •

2-3

2.1 AUTO

FORMAT:

AUTO [<line nurnber>[,<increment>J]

PURPOSE:

To generate a line number automatically after every carriage return.

REMARKS:

AUTO begins numbering at <line number> and increments each subsequent line number

by <increment>. '!he default for both values is 10. If <line number> is followed

by a comma but <increment> is not specified, the last increment specified in an

AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed

after the number to warn the user that any input will replace the existing line.

However, typing a carriage return inunediately after the asterisk will save the

line and generate the next line nlDnber.

AUTO is terminated by typing Control-C. The line in which Control-C is typed is

not saved. After Control-C is typed, PBASIC returns to command level.

l\IOTE:

'!his command is not allowed within the source program when executing PPROM (see

Section 2.37).

2-4

EXAMPLE:

AU'IO

10 ...
20

30 ...
40 ...

•

AU'IO 100,50

100 •••

150 •••

200 ...
250 ...

•

Generates the following:

Generates the following:

2-5

2.2 CALL

FORMAT:

CALL <variable name>[(<argument list>)]

PURPOSE:

To call an assembly language subroutine.

REMARKS:

'!he CALL statement is one way to transfer program flow to an assembly language

subroutine. (Also see the USR function, Section 3.42) <variable name> is a

numeric variable that contains an address that is the starting p:iint in memory of

the subroutine. <variable name> may not be an array variable name. <argument

1 ist> contains the arguments that are passed to the assembly language subroutine.

See Appendix G for a discussion of the linkage bet'Vleen PBASIC and assembly

language routines.

EXAMPLE:

110 MYROUT=&HD000

120 CALL MYROUT(I,J,K)

2-6

2.3 CLEAR

FORMAT:

CLEAR

PURPOSE:

'Ib set all nuneric variables to zero and all string variables to null.

EXAMPLE:

10 A$="STRING":B=l0

20 PRINT A$, B

30 CLEAR

40 PRINT A$,B

RUN

STRING

Ok

10

2-7

2.4 CONT

FORMAT:

CONT

PURPOSE:

'lb continue program execution after a Control-C has been typed, or a STOP or END

statement has been executed.

REMARKS:

Execution resunes at the p:>int where the break occurred. If the break occurred

after a prompt from an INPUT statement, execution continues with the reprinting of

the prompt (? or prompt string) •

CONT is usually used in conjunction with STOP for debugging. When execution is

stopped, intermediate values may be examined and changed using direct mode state­

ments. Execution may be resumed with CONT or a direct mode GO'I'O, which resumes

execution at a specified line number.

NO'I'E:

CONT is invalid if the program has been modified during the break.

EXAMPLE:

See example Section 2.49, STOP.

2-8

2.5 DATA

FORMAT:

DATA <list of constants>

PURPOSE:

To store the numeric and string constants that are accessed by the program's READ

statement(s). (See READ, Section 2.41)

REMARKS:

DATA statements are nonexecutable and may be placed anywhere in the program. A

DATA statement may contain as many constants as will fit on a line (separated by

corrunas), and any number of DATA statements may be used in a program. The READ

statements access the DATA statements in order (by line number) and the data con­

tained therein may be thought of as one continuous list of items, regardless of

how many items are on a line or W1ere the lines are placed in the program.

<list of constants> may contain numeric constants in any format, i.e., fixed

p:>int, floati1'l3 p:>int or integer. (l\b numeric expressions are allowed in the

list.) String constants in DATA statements must be surrounded by double quotation

marks only if they contain corrunas, colons or significant leadi1'l3 or trailing

spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must agree with

the corresp:>ndiJl:3 constant in the DATA statement.

DATA statements may be reread fran the beginniJl:3 or startil'l3 at a specified line

number by use of the RESTORE statement (Section 2.44).

EXAMPLE:

See examples in Section 2.41, READ.

2-9

2.6 DEF FN

FO~T:

DEF FN<name>[(<parameter list>)]=<function definition>

PURPOSE:

To define and name a function that is written by the user.

REMARKS:

<name> must be a legal numeric or string variable name. '!his name, prefixed with

FN, becomes the name of the function. <parameter list> is comprised of those

variable names in the function definition that are to be replaced when the func­

tion is called. The items in the list are separated by commas. <function defini­

tion> is an expression that performs the operation of the function. It is limited

to one line. variable names that appear in this expression serve only to define

the function; they do not affect program variables that have the same name. A

variable name used in a function definition may or may not appear in the parameter

list. If it does, the value of the parameter is supplied when the function is

called. Otherwise, the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the argument

variables or values that will be given in the function call. User-defined func­

tions may be numeric or string. If a type is specified in the function name, the

value of the expression is forced to that type before it is returned to the call­

in:J statement. If a type is specified in the function name and the argument type

does not match, a "Type mismatch" error occurs. If an error is made in the func­

tion definition, a "Syntax Error" condition will occur uµm the first execution of

the statement referring to that function.

A DEF FN statement must be executed before the function it defines may be called.

If a function is called before it has been defined, an "Undefined user function"

2-10

error occurs. DEF FN is illegal in the direct mode.

EXAMPLE:

410 DEF FNAB(X,Y)=X~3/Y~2

420 T=FNAB(I,J)

•

Line 410 defines the function FNAB. The function is called in line 420.

2.7 DEFINT/S1'X3/DBL/STR

FORMAT:

DEF<type> <range of letters>

where:

PURPOSE:

<type> is INT, SNG, DBL or STR and

<range of letters> is a list of one or more items.

Each item is either a single letter or is tw:>

letters separated by a dash. If the latter is

specified, the alphabetic ordering of the second

letter must not come before that of the first

letter.

2-11

To declare variable types as integer, single precision, double precision, or

string.

REMARKS:

A DEFtype statement declares that any subsequent untyped variable name beginning

with one of the letter(s) specified will be a variable of type <type>. The effect

of this statement is to temporarily place the corresponding type declaration char­

acter after each untyped variable which has its first letter in <range of let­

ters>. variables \\hich specify a type declaration character maintain that type.

Conflicts are resolved as follows: the type of the untyped variables in the range

of letters \\hich conflict will be the type specified in the last executed DEFtype

statement that specified that letter.

If no type declaration statements are encountered, PBASIC assumes DEFSNG A-Z.

2-12

EXAMPLES:

10 DEFDBL L-P All untyped variables beginning with the

letters L, M, N, O or P will be double

precision variables.

10 DEFSTR A

10 DEFSTR A-Y

20 DEFDBL Z

All untyped variables beginning with the

letter A will be string variables.

30 DEFINT I-N All untyped variables beginning with letters

from A to H or o to Y will be string variables.

'!hose untyped variables beginning with letters

from I to N will be integer variables. All

remaining untyped variables (i.e. those starting

with a Z} will be double precision variables.

2-13

2.8 DEF USR

FORMAT:

DEF USR[<digit>]=<integer expression>

PURPOSE:

To specify the starting address of an assembly language subroutine.

REMARKS:

<digit> may be any digit from 0 to 9. The digit corresponds to the number of the

USR routine whose address is beifl3 specified. If <digit> is omitted, DEF USR0 is

assumed. The value of <integer expression> is the starting address of the USR

routine. For a discussion of the linkage bet¥.een PBASIC and assembly language

routines, see Appendix G.

'Any number of DEF USR statements may appear in a program to redefine subroutine

startirB addresses, thus allowifl3 access to as many subroutines as necessary.

EXAMPLE:

200 DEF USR0=24000

210 X=USR0(YA2/2.89)

2-14

2.9 DELETE

FORMAT:

DELETE[<line number>] [-<line number>]

PURPOSE:

To delete program lines.

REMARKS:

PBASIC always returns to command level after a DELETE is executed.

number> does not exist, an "Illegal function call" error occurs.

NOTE:

If <line

This corrunand is not allowed within the source program when executing PPROM (see

Section 2.37).

EXAMPLES:

DELETE 40

DELETE 40-100

DELETE-40

Deletes line 40

Deletes lines 40 through

100, inclusive

Deletes all lines up to

and including line 40

2-15

2.10 DIM

FORMAT:

DIM <list of subscripted variables>

PURPOSE:

To specify the maximun values for array variable subscripts and allocate storage

accordingly.

REMARKS:

If an array variable name is used without a DIM statement, the maximun value of

its subscript(s) is assuned to be 10. If a subscript is used that is greater than

the maximun specified, a "Subscript out of range" error occurs. The minimun value

for a subscript is always 0, unless otherwise specified with the OPTION BASE

statement (see Section 2.34).

The DIM statement sets all the elements of the specified arrays to an initial

value of zero.

EXAMPLE:

10 DIM A(20)

20 FOR I=0 TO 20

30 RF.AD A(I)

40 NEXT I

2-16

2.11 EDIT

FORMAT:

EDIT <line number>

PURPOSE:

To enter Edit t-bde at the specified line.

REMARKS:

In Edit t-bde, it is fOSSible to edit fOrtions of a line without retyping the en­

tire line. Up:m enterin:; the EDIT command for an indirect mode statement, PBASIC

types the number of the line to be edited, then it types a space and waits for an

EDIT mode subcommand. For a direct mode statement, PBASIC types an exclamation

point (!) , then a space and waits for an Edit subcommand •

Edit Mode Subcommands

Edit t-bde subcommands are used to move the cursor or to insert, display, delete,

replace, or search for text within a line. The subcommands are not echoed. t-bst

of the Edit t-bde subcommands may be preceded by an integer which causes the

command to be executed that number of times. When a precedin:; integer is not

specified, it is assuned to be 1.

Edit fvbde subcommands are categorized according to the following functions:

1. t-bving the cursor

2. Inserting text

3. Deleting text

2-17

4. Finding text

5. Replacing text

6. Ending and restarting Edit Mode

NarE:

'!his command is not allowed within the source program when executing PPROM. {see

Section 2.37).

In the descriptions that follow, <ch> represents any character, <text> represents
a string of characters of arbitrary length, and [i] represents an optional integer

(the default is 1).

1. Moving the Cursor

Space

Rubout

Use the space bar to move the cursor to the

right. [i]Space moves the cursor i spaces to

the right. Characters are printed as you space
over them.

In Edit Mode, [i]Rubout moves the cursor i

spaces to the left (backspaces). Characters are

printed in reverse order as you backspace over them.

2-18

2. Inserting Text

I

x

I<text> inserts <text> at current cursor

position. The inserted characters are printed

on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an

Insert carunand, the effect is the same as typing

Escape and then Carriage Return. During an

Insert corruna.nd, the Rubout or Delete key on the
terminal may be used to delete characters to the

left of the cursor. If an attenpt is made to
insert a character that will make the line

longer than 255 characters, a bell (Control-G)

is typed and the character is not printed.

The X subconunand is used to extend the line. X
moves the cursor to the end of the line, goes

into insert mode, and allows insertion of text

as if an Insert carunand had been given. When

you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D

H

[i]D deletes i characters to the right of the

cursor. The deleted characters are echoed
between backslashes, and the cursor is

positioned to the right of the last character

deleted. If there are fewer than i characters

to the right of the cursor, the remainder

of the line is deleted.

H deletes all characters to the right of the
cursor and then automatically enters insert

mode. H is useful for replacing statements at

the end of a line.

4. Finding Text

s

K

The subcommand [i] S<ch> searches for the ith

occurrence of <ch> and positions the cursor

before it. '!he character at the current cursor

position is not included in the search. If <ch>

is not found, the cursor will stop at the end of

the line. All characters passed over during the

search are printed.

'!he subconunand li]K<ch> is similar to [i]S<ch>,

except all the characters passed over in the

search are deleted. The cursor is positioned

before <ch>, and the deleted characters are

enclosed in backslashes.

s. Replacing Text

c The subcommand C<ch> changes the next character

to <ch>. If you wish to change the next i

characters, use the subcommand iC, followed by i

characters. After the ith new character is

typed, change IIK)de is exited and you will return

to Edit Mode.

6. Ending and Restarting Edit Mode

<er> Typing carriage Return prints the remainder of

the line, saves the changes you made, and exits

the Edit Mode.

E The E subcommand has the sane effect as Carriage

Return, except the remainder of the line is not

printed.

2-19

2-20

Q

L

A

The Q subcornmand returns to PBASIC coounand

level, without saving any of the changes that

were made to the line during Edit Mode.

The L subcornmand lists the remainder of the line

(saving any changes made so far) and repositions

the cursor at the beginning of the line, remaining

in the Edit Mode. L is usually used to list the

line when you first enter Edit Mode.

The A subcorrunand lets you begin editing a line

over again. It restores the original line and

repositions the cursor at the beginning.

<ESCAPE> The Escape, or Altmode, key cancels a prefix

command, thus aborting a multicharacter command.

NOI'E:

If P8ASIC receives an unrecognizable command or illegal character while in Edit

Mode, it prints a beil (Control-G) and the command or character is ignored.

Syntax Errors

When a Syntax Error is encountered during execution of a program, PBASIC automa­

tically enters Edit Mode at the line that caused the error. For example:

10 K = 2(4)

RUN

Syntax error in 10

10

When you finish editing the line and type <CR> or the E subcommand, PBASIC rein­

serts the line, which causes all variable values to be lost. To preserve the

variable values for examination, exit the Edit Mode with the Q subcommand. PBASIC

will return to cormnand level, and all variable values will be preserved.

2-21

Control-A

To enter Edit Mode on the last line you typed or listed or are currently typing,
type Control-A. PBASIC responds with a carriage return, an exclamation point (!)

and a space. 'lhe cursor will be positioned at the first character in the line.
Proceed by typing an Edit Mode subcommand.

Control-A can be used to "move" entire lines by:

NOl'E:

1.) LIST line to be moved.

2.) Type Control-A.

3.) Type "I" to enter insert mode.

4.) Type new line number and any corrections.

5.) Type carriage return.

Remember, if you have just entered a line and wish to go back and edit it, the

cormnand "EDIT • " will enter Edit Mode at the current line. (The line number
symbol II II

• always refers to the current line.)

2-22

2.12 END

FORMAT:

END

PURPOSE:

'lb terminate program execution and return to command level.

REMARKS:

END statements may be placed anywhere in the program to terminate execution.

Unlike the STOP statement, END does not cause a BREAK message to be printed. An

END statement at the end of a program is optional. PBASIC always returns to

command level after an END is executed.

NOI'E;

CONT may be used to re-start execution after an END has been reached, provided the

program has not been altered.

EXAMPLE:

520 IF K>1000 THEN END ELSE GOTO 20

2-23

2.13 ERASE

FORMAT:

ERASE <variable> [,<variable>] •••

PURPOSE:

To deallocate memory space previously allocated for one or more arrays.

REMARKS:

Arrays may be redimensioned after they are ERASE.d, or the previously allocated

array space in memory may be used for other purposes. If an attempt is made to

redimension an array without first ERA..SEifl3 it, a "Duplicate Definition" error

occurs.

EXAMPLE:

•

450 ERASE A,B

460 DIM 8(99)

2-24

2.14 ERR AND ERL VARIABLES

When an error handling subroutine is entered, the variable ERR contains the error

code for the error, and the variable ERL contains the line nunber of the line in

which the error was detected. '!he ERR and ERL variables are usually used in

IF ••• THEN statements to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode statement, ERL will

contain 65535. To test if an error occurred in a direct statement, use IF 65535 =
ERL THEN • • • Otherwise, use

IF ERR = error code THEN •••

IF ERL = line number THEN •••

If the line number is not on the right side of the relational operator, it cannot

be renumbered by RENUM. Because ERL and ERR are reserved variables, neither may

appear to the left of the equal sign in a LET (assignment) statement. PB.ASIC

error codes are listed in Appendix F.

2.15 ERROR

FORMAT:

ERROR <integer expression>

PURPOSE:

1) To simulate the occurrence of a PBASIC error

OR

2) To allow error codes to be defined by the user.

defined by the user.

REMARKS:

2-25

The value of <integer expression> must be greater than or equal to 1 and less than

or equal to 255. If the value of <integer expression> equals an error code al­

ready in use by PBASIC (see Appendix F) the ERROR statement will simulate the

occurrence of that error, and the corresµ:mding error message will be printed.

(See Example 1.)

To define your own error code, use a value that is greater than any used by

PBASIC's error codes. (It is preferable to use the highest available values, so

compatibility may be maintained when more error codes are added to PBASIC.) This

user-defined error code may then be conveniently handled in ap error trap routine.

(See Example 2 .)

If an ERROR statement specifies a code for which no error message has been defin­

ed, PBASIC resfX)nds with the message Unprintable error. Execution of an ERROR

statement for which there is no error trap routine causes an error message to be

printed and execution to halt.

2-26

EXAMPLE 1:

10 s = 10

20 T = 5

30 ERROR S + T

40 END

RUN

String too long in line 30

Or, in direct mode:

Ok

ERROR 15

String too long

Ok

EXAMPLE 2:

(you type this line)

(PBASIC types this line)

110 ON ERROR GOTO 400

120 INPUT "WHAT IS YOUR BET" ;B

130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"

410 IF ERL = 130 THEN RESUME 120

2-27

2.16 FOR ••• NEXT

FORMAT:

For <variable>=x TO y [STEP z]

NEXT [<variable>]

or

NEXT <variable>[,<variable>] •••

where x, y and z are nL111eric expressions.

PURPOSE:

'lb allow a series of instructions to be perfonned in a loop a given number of

times.

REMARKS:

<variable> is used as a counter. The first nlll1eric expression (x) is the initial

value of the counter. '!he second nL111eric expression (y) is the final value of the

counter. The program lines following the FOR statement are executed until the

NEXT statement is encountered. The counter is then incremented by the amount spe­

cified by STEP. If the increment is positive, a check is perfonned to see if the

value of the counter is now greater than the final value (y). If it is not great­

er, PBASIC branches back to the statement after the FOR statement and the process

is repeated. If it is greater, execution continues with the statement following

the NEXT statement. This is a FOR ••• NEXT loop. If STEP is not specified, the

increment is assL111ed to be one. If STEP is negative, the final value of the

counter is set to be less than the initial value. The counter is decremented each

time throtgh the loop, and the loop is executed until the counter is less than the

final value. If the increment is zero, the loop executes indefinitely with

<variable> set to be initial value.

2-28

The body of the loop is skipped if the initial value of the loop times the sign of

the step exceeds the final value times the sign of the step.

Nested Loops

FOR ••• NEXT loops may be nested, that is, a FOR ••• NEXT loop may be placed within

the context of another FOR ••• NEXT loop. When loops are nested, each loop must

have a unique variable name as its counter. The NEXT statement for the inside

loop must appear before that for the outside loop. If nested loops have the same

end point, a single NEXT statement may be used for all of than.

The variable in the NEXT statement may be omitted, in \\hich case the NEXT state­

ment will match the most recent FOR statement. If a NEXT statement is encountered

before its corresp:mding FOR statement, a "NEXT without FOR" error message is

issued and execution is terminated.

EXAMPLE 1:

10 K=l0

20 FOR I=l TO K STEP 2

30 PRINI' I;

40 K=K+10

50 PRINI' K

60 NEXT

RUN

1 20

3 30

5 40

7 50

9 60

Ok

EXAMPLE 2:

10 J=0

20 FOR I=l TO J

30 PRINI' I

40 NEXT I

2-29

In this example, the loop does not execute because the initial value of the loop

exceeds the final value.

EXAMPLE 3:

10 I=5

20 FCR I=l TO I+5

30 PRINT I;

40 NEXT

RUN

1 2 3 4 5 6 7 8 9 10

OK

In this example, the loop executes ten times. The final value for the loop

variable is always set before the initial value is set.

2-30

2.17 GETCLK

FORMAT:

GETCLK [<seconds>] [,[<minutes>][,[<hours>] [,[<days>] [,[<months>]]]]]

Each item is optional ancl trailing corrunas need not be specified.

PURPOSE:

To read the current time units from the MDX-BCLK clock hardware.

REMARKS:

All variables in the list are optional. For those that are specified, the nuneric

value of the corres1xmding time comtxment is placed into them. Leading and embed­

ded commas are significant since they serve as placeholders.

EXAMPLE:

10 GETCLK A,B,C

20 GETCLK ,,,DATE (1), DATE (2)

30 PRINT "TIME=";C;":";B;":";A

40 PRINT "DAY="; DATE (!};",MONTH="; DATE (2)

RUN

TIME= 18 : 33 : 57

DAY= 30 , MONTH= 11

2-31

2.18 GOSUB ••• RETURN

FORMAT:

GOSUB <line number>

•

•

RETURN

PURPOSE:

To branch to and return from a subroutine.

REMARKS:

<line number> is the first line of the subroutine.

A subroutine may be called any number of times in a program, and a subroutine may

be called from within another subroutine. Such nesting of subroutines is limited

only by available memory.

The RETURN statement(s) in a subroutine cause PBASIC to branch back to the state­

ment following the most recent GOSUB statement. A subroutine may contain more

than one RETURN statement, should logic dictate a return at different points in
the subroutine. Subroutines may appear anywhere in the program, but it is recom­

mended that the subroutine be readily distinguishable from the main program. To

prevent inadvertent entry into the subroutine, it may be preceded by a S'!OP, END,

or GCYIO statement that directs program control around the subroutine.

2-32

EXAMPLE:

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"

30 END

40 PRINT "SUBROUTINE";

50 PRINT II IN";

60 PRINT II PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS

BACK Fto.1 SUBROUTINE

Ok

2-33

2.19 GOTO

FORMAT:

GOTO <line m.unber>

PURPOSE:

To branch unconditionally out of the nonnal program sequence to a specified line

number.

REMARKS:

If <line number> is an executable statement, that statement and those following

are executed. If it is a nonexecutable statement, execution proceeds at the first

executable statement encountered after <line nunber>.

EXAMPLE:

LIST

10 READ R

20 PRINT "R =" ;R,

30 A = 3.14*R"2

40 PRINT "AREA =";A

50 GOTO 10

60 mTA 5,7,12

OK

RUN

R = 5 AREA = 78.5

R= 7 AREA = 153.86

R = 12 AREA = 452.16

Out of mTA in 10

Ok

2-34

2.20 IF ••• THEN[••• ELSE]

2. 21 IF ••• Garo

FORMAT:

IF <expression> [,]THEN <statement(s)> I <line number>

ELSE [<statement(s)> I <line nunber>]

FORMAT:

IF <expression> Garo <line nunber>

ELSE [<statement(s)> I <line nunber>]

PURPOSE:

'lb make a decision regardin; progran flow based on the result returned by an

expression.

REMARKS:

If the result of <expression> is not zero (logically true), the THEN or Garo

clause is executed. THEN may be followed by either a line number for branchin; or

one or more statements to be executed. Garo is always fol lo-wed by a line mmber.

If the result of <expression> is zero (logically false), the THEN or Garo clause

is ignored and the ELSE clause, if present, is executed. Execution continues with

the next executable statement.

Nesting of IF Statements

IF ••• THEN ••• ELSE statements may be nested. Nesting is limited only by the length

of the line. For example

2-35

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the same number of ELSE

and THEN clauses, each EL..SE is matched with the closest unmatched THEN. For

example

IF A=B THEN IF B=C THEN PRINT "A=C"

ELSE PRINT II A<>C"

will not print "A<>C" when A<>B.

If an IF ••• THEN statement is followed by a line number in the direct mode, an

"Undefined line nunber" error results unless a statement with the specified line

number had previously been entered in the indirect mode.

NarE:

When using IF to test equality for a value that is the result of a floating }:X)int

computation, remember that the internal representation of the value may not be

exact. 'Iherefore, the test should be against the range over v.hich the accuracy of

the value may vary. For example, to test a computed variable A against the value

1.0, use:

IF ABS (A-l.0)<1.0E-6 THEN

'Ihis test returns true if the value of A is 1.0 with a relative error of less than

1. 0E-6.

EXAMPLE 1:

100 IF(I<20)*(I>l0) THEN DB=l979-l:Goro 300

110 PRINT "Our OF RANGE"

2-36

In this example, a test determines if I is greater than 10 and less than 20. If I

is in this range, IB is calculated and execution branches to line 300. If I is

not in this range, execution continues with line 110.

EXAMPLE 2:

210 IF IOFIAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or the line

printer, depending on the value of a variable (IOFI.AG). If IOFI.AG is zero, output

goes to the line printer, otherwise output goes to the terminal.

2-37

2.22 INPUT

FORMAT:

INPUT[;] [<"prompt string">;]<list of variables>

PURPOSE:

'Ib allow input from the terminal during program execution.

REMARKS:

When an INPUT statement is encountered, program execution pauses and a question

mark is printed to indicate the program is wai tin:J for data. If <"prompt string">

is included, the string is printed before the question mark. '!he required data is

then entered at the terminal.

If INPUT is immediately followed by a semicolon, then the carriage return typed by

the user to terminate data input does not echo a carriage return/line feed

sequence at the terminal.

The data that is entered is assigned to the variable(s) given in <variable list>.

The nunber of data items supplied by the user must be the same as the nunber of

variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names (including

subscripted variables). The type of each data item that is input must agree with

the type specified by the variable name. (Strings input to an INPUT statement

need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few i terns, or with the wron:J type of

value (mnneric instead of string, etc.) causes the messsage "?Redo from start" to

be printed. :t'.Jo assignment of input values is made until an acceptable response is

given.

2"""38

If there is only one variable in the INPUT list then responding with only a carri­

age return causes the variable to be assigned the value of zero if its type is

numeric, or a null string if its type is string.

EXAMPLE 1:

10 INPur X

20 PRINT X; "SQUARED IS"; X"2

30 END

RUN

? 5

5 SQUARED IS 25

Ok

EXAMPLE 2:

10 PI=3.14

(The 5 was typed in by the user

in response to the question mark.)

20 INPUT "WHAT IS THE RADIUS" ;R

30 A=PI*R"2

40 PRINT "THE AREA OP THE CIRCLE IS" ;A

50 PRINT

60 Garo 20

Ok

RUN

WHAT IS THE RADIUS? 7. 4 (User types 7. 4)

THE AREA OF THE CIRCLE IS 171.946

WHA'f IS THE RADIUS?

etc.

2-39

2.23 LET

FORMAT:

[LET] <variable>=<expression>

PURPOSE:

To assign the value of an expression to a variable.

REMARKS:

Notice the 'M:>rd LET is optional, i.e., the equal sign is sufficient \\hen assigning

an expression to a variable name.

EXAMPLE:

110 LET D=l2

120 LET E=l2"2

130 LET F=l2"4

140 LET SUM=D+E+F

or

110 D=l2

120 E=l2"'2

130 F=l2"'4

140 SUM=D+E+F

2-40

2.24 LINE INPUT

FORMAT:

LINE INPUT[;] [<"prompt string">;]<string variable>

PURPOSE:

'Ib input an entire line (up to 254 characters) to a string variable, without the

use of delimiters.

REMARKS:

The prompt string is a string literal that is printed at the terminal before input

is accepted. A question mark is not printed unless it is part of the prompt

string. All input from the end of the prompt to the carriage return is assigned

to <string variable>.

If LINE INPUT is irrunediately followed by a semicolon, then the carriage return

typed by the user to end the input line does not echo a carriage return/line feed

sequence at the tenninal.

A LINE INPUT may be aborted by typing Control-C. PBASIC will return to command

level and type Ok. Typing CONT resumes execution at the LINE INPUT.

EXAMPLE:

20 LINE INPUT "CUS'I'a.1ER INFORMATION? " ; C$

30 PRINT C$

40 GO'ID 20

RUN

CUSTCMER INFORMATION? LINDA JONES 234,4 MEMPHIS

LINDA JONES 234,4 MEMPHIS

2-41

2.25 LIST

FORMAT 1:

LIST [<line number>]

FORMAT 2:

LIST [<line number>[-[<line number>]]]

PURPOSE:

To list to the terminal all or part of the program currently in memory.

REMARKS:

PBASIC always returns to command level after a LIST is executed.

FORMAT 1:

If <line number> is omitted, the program is listed beginning at the lowest line

number. (Listing is terminated either by the end of the program, by typing

Control-C, or Control-a, and interrupted by Control-S.) If line number is included

then only the specified line will be listed.

FORMAT 2:

This format allows the following options:

1. If only the first number is specified, that line and all higher-numbered lines

are listed.

2. If only the second number is specified, all lines from the beginning of the

program through that line are listed.

2-42

3. If both numbers are specified, the entire range is listed.

NarE:

See the WIDTH command, Section 2.54, for information on adjusting printed output

width.

This command is not allowed within the source program when executing PPRCM (see

Section 2.37).

EXAMPLES:

Format 1:

LIST

LIST 500

Format 2:

usr 150-

LIST -1000

Lists the entire program currently

in memory.

Lists line 500.

List all lines from 150

to the end.

Lists all lines from the

lowest number through 1000.

Lisr 150-1000 Lists lines 150 through

1000, inclusive.

2-43

2.26 LLIST

FORMAT:

LLIST [<line number>[-[<line number>]]]

PURPOSE:

To list to the line printer all or part of the program currently in memory.

REMARKS:

PBASIC always returns to command level after an LLIST is executed. '!he options

for LLIST are the same as for LIST.

NOTE:

See the notes for LIST.

EXAMPLE:

See the examples for LIST.

2-44

2.27 LPRINT AND LPRINT USI:NG

FORMAT:

LPRINT [<list of expressions>]

LPRINT USING <"format string">;<list of expressions>

PURPOSE:

To print data at the line printer.

REMARKS:

Sarne as PRINT and PRINT USING, except output goes to the line printer. See

Section 2.38 and Section 2.39.

See the WIDI'H command, Section 2.54 for information on adjusting printed output

width.

2-45

2.28 MID$

FORMAT:

MID$(<string expl>,n[,m])=<string exp2>

where n and m are integer expressions and <string expl> and <string exp2> are

string expressions.

PURPOSE:

'lb replace a portion of one string with another string.

REMARKS:

'!he characters in <string expl>, beginning at position n, are replaced by the

characters in <string exp2>. '!he optional m refers to the number of characters

fran <string exp2> that will be used in the replacement. If m is omitted, all of

<string exp2> is used. However, regardless of whether m is omitted or included,

the replacement of characters never goes beyond the original length of <string

expl>.

EXAMPLE:

10 A$="KANSAS CITY, MO"

20 MID$ (A!?,14)="KS"

30 PRINT A$

RUN

KANSAS CITY, KS

MID$ may also be used as a function that returns a substring of a given string.

See Section 3.25.

2-46

2.29 NEW

FORMAT:

NEW

PURPOSE:

To delete the program currently in memory and clear all variables.

REMARKS:

NEW is entered at command level to clear memory before entering a new program.

PBASIC always returns to command level after a NEW is executed.

NOTE:

This command is not allowed within the source program when executing PPROM (see

Section 2.37).

If an application program exists in PRCM, when this command is executed an

unsuccessful attempt to delete the program will be made and then the program will

RUN.

2-47

2.30 NULL

FORMAT:

NULL <integer expression>

PURPOSE:

To set the nLnnber of nulls to be printed at the end of each line.

REMARKS:

For 10-character-per-second tape punches, <integer expression> should be >=3.

When tapes are not being punched, <integer expression> should be 0 or 1 for

Teletypes and Teletype-compatible CRTs. <integer expression> should be 2 or 3 for

30 cps hard copy printers. The default value is 0; the maximLnTI is 255.

EXAMPLE:

Ok

NULL 2

Ok

Hrn INPUT X

200 IF X<50 GOTO 800

'IWo null characters will be printed after each line.

2-48

2.31 ON ERROR Garo

FORMAT:

ON ERROR GOTO <line nunber>

PURPOSE:

To enable error trapping and specify the first line of the error handling

subroutine.

REMARKS:

Once error trapping has been enabled all errors detected, including direct mode

errors (e.g., Syntax errors) , will cause a jump to the specified error handling

subroutine. If <line number> does not exist, an "Undefined line" error results.

To disable error trapping, execute an ON ERROR GOTO 0. Subsequent errors will

print an error message and halt execution. An ON ERROR GOTO 0 statement that

appears in an error trapping subroutine causes PB.ASIC to stop and print the error

message for the error that caused the trap. It is recommended that all error

trapping subroutines execute an ON ERROR Garo 0 if an error is encountered for

which there is no recovery action.

NOTE:

If an error occurs during execution of an error handling subroutine, the PBASIC

error message is printed and execution terminates. Error trapping does not occur

within the error handling subroutine.

See the RESUME instruction, Section 2.45 for information on how to return control

to the user program from an error trapping routine.

EXAMPLE:

10 ON ERROR GOTO 1000

2.32 ON ••• GOSUB

2.33 ON ••• GOTO

FORMAT:

ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

PURPOSE:

2-49

To branch to one of several specified line numbers, depending on the value

returned when an expression is evaluated.

REMARKS:

'!he value of <expression> determines which line m.mber in the list will be used

for branching. For example, if the value is three, the third line number in the

list will be the destination of the branch. (If the value is a non-integer, the

fractional portion is rounded.)

In the ON ••• GOSUB statement, each line number in the list must be the first line

number of a subroutine.

EXAMPLE:

100 ON L-1 GOTO 150,300,320,390

2-50

2.34 OPI'ION BASE

FORMAT:

OPI'ION BASE n

where n is 1 or 0

PURPOSE:

To declare the minimum value for array subscripts.

REMARKS:

'Ihe default base is 0. If the statement

OPI'ION BASE 1

is executed, the lowest value an array subscript may have is one.

2-51

2.35 OUT

FORMAT:

OUT I,J

where I and J are integer expressions in the range 0 to 255.

PURPOSE:

To send a byte to a machine output port.

REMARKS:

The integer expression I is the port nl.llllber, and the integer expression J is the

data to be transmitted. I and J must evaluate to integers <=255 (HEX FF).

NOTE:

Port addresses E8-EB HEX are "Illegal function call"s when using PBASIC/9511

version, because they are dedicated to the 9511 board. These ports should not be

used in the non-9511 version to assure compatability between the twu versions.

EXAMPLE:

100 OUT 32,100

2-52

2.36 POKE

FORMAT:

POKE I,J

where I and J are integer expressions

PURPOSE:

To write a byte into a memory location.

REMARKS:

'Ihe integer expression I is the address of the

integer expression J is the data to be POKEd.

must be in the range of 0 to 65535.

memory location to be POKEd. 'Ihe

J must be in the range 0 to 255. I

'Ihe complementary function to POKE is PEEK. 'Ihe argt.nnent to PEEK is an address

from which a byte is to be read. See Section 3.26.

POKE and PEEK are useful for efficient data storage, loading assembly language

subroutines, and passing argt.nnents and results to and from assembly language sub­

routines.

NOTE:

POKE can cause fatal damage either to PBASIC, user program, or the other RAM Areas

in memory if indiscriminately used.

EXAMPLE:

10 POKE &H5A00,&HFF

2-53

2.37 PPROM

FORMAT:

PPROM [<type>]

PURPOSE:

This command will initiate the programming of a user's PBASIC application program

into EPROMs placed in the PPG hardware device. The entire PBASIC program will be

segmented and burned into the required number of EPRCMs. 'Ihe user will be prompt­

ed when it is time to insert and remove each EPRCM. The only optional argument is

the type of PRCJYI (2708, 2716, and 2758) being programmed with a default of 2716.

The user is able to abort the operation at any time via Control-C.

REMARKS:

<type>

The user may choose the type of EPRCJYI chip to use with the type option. Choices

are 2708, 2716, or 2758. 'Ihe default is 2716. To specify a type the user must

enter the last two digits of the type number.

To use 2708s enter:

To use 2758s enter:

To use 2716s enter:

PPROM 08

PPRCM 58

PPRCM 16 or PPROM

Any deviation from this will produce a Syntax error.

TO USE:

1) Enter PPRCM program command, optional type

and (CR).

2-54

2) '!he user will be prompted with an astrick sign (*) in

the next line, left most cursor position. '!his is

followed by the sequence number of the chip and the

number of chips required for the entire program.

3) Insert blank EPRCJ.1 chip and enter (CR).

4) A bell (Control-C) is sounded at the completion of programming

each chip.

5) A prompt will appear again if more chips are needed.

6) Control-C will abort this command at any point.

EXAMPLE:

If the user has a 7K program and wishes to burn the application into 2716s, the

following would be done:

PPROO (user enters to program 2716)

*l I 4 4 chips are needed, user performs step 3

*2 I 4 user performs step 3

*3 I 4 user performs step 3

*4 I 4 user performs step 3

Ok finished

ERROR CONDITIONS:

1) When the user places an EPRQ'JI in the PPG device, the

chip must be blank. If it is not, an error condition

will occur:

'***** ERROR - CHIP NOT BLANK *****

2) After each program segment is burned into the chip, the

data is verified. If the verification reveals bad data

an error condition will occur:

'****** ERROR - CHIP DATA DOES NOT VERIFY ******

USER OPTIONS:

A) Replace chip with an erased chip and enter

(CR). 'Ihis will cause PBASIC to

continue the command, not start over.

(OR)

B) Enter control C. This will abort the command.

(OR)

C) Anything else will cause a syntax error. (However,

the command will not abort. 'Ihe user will

be reprompted for the same chip number.)

3) 'Ihe error:

*****ERROR-DEBlXl COMMAND WITHIN SOURCE AT LINE NUMBER XX ******

will occur when any of the following commands reside in source

when PPRQ\1 is executed.

AUTO

DELETE

EDIT

LIST

LL I ST

NEW

REN UM

RUN

PPROM

RPRCM

2-55

2-56

PBASIC then returns to the direct mode for source

alteration.

4) Other error conditions may occur but can not be

detected by the interpreter, such as:

NarE:

A) 'Ihe user inserts a type chip other than

specified. [ie. 2708 specified and 2716

is inserted.]

(OR)

B) The user inserts the chip backward.

The PPROM cormnand is not allowed within the source program when executing PPROM.

CAUTION:

In order to prevent possible destruction of PROMs, the user should not insert

PROMs in the ZIP DIP socket until prompted. Also, the user should insure that

PROM TYPE SWITCH is in the correct position for type of PR(]v'I being used. The

switch should be in the 2708 position for 2708 PR(]v'Is and in the 2716 position for

2716 and 2758 PROMs. If a PR(]v'I is inserted in the ZIP DIP socket with the PROM

'IYPE SNITCH in the wrong position, the PR(]v'I may be subjected to voltages v.hich

could destroy it.

2-57

2.38 PRINT

FORMAT:

PRINT [<list of expressions>]

PURPOSE:

'lb output data at the tenninal.

REMARKS:

If <list of expressions> is cxnitted, a blank line is printed. If <list of

expressions> is included, the values of the expressions are printed at the

tenninal. 'lhe expressions in the list may be numeric and/or string expressions.

(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is detennined by the punctuation used to

separate the items in the list. PBASIC divides the line into print zones of 14

spaces each. In the list of expressions, a comma causes the next value to be

printed at the beginning of the next z.one. A semicolon causes the next value to

be printed inmediately after the last value. Typing one or more spaces between

expressions has the same effect as typing a semicolon.

If a comma or a semicolon tenninates the list of expressions, the next PRINT

statement begins printing on the same line, spacing accordingly.

If the list of expressions tenninates without a comma or a semicolon, a carriage

return, line feed is generated at the end of the line. If the printed line is

longer than the tenninal width, PBASIC inserts a carriage return and line feed and

continues printing.

2-58

'!his rule applies no matter where the cursor is positioned by direct cursor

addressing. 'Iherefore, ensure that a PRINT command is placed in the logic to

periodically reset this width counter to prevent PBASIC from inserting extra CR,

LFs into screen text or us~ WIDTH 255, see Section 2.54.

Printed numbers are always followed by a space. Positive numbers are preceded by

a space. Negative numbers are preceded by a minus sign. Single precision numbers

that can be represented wi. th 6 or fewer digits in the unscaled format no less

accurately than they can be represented in the scaled format, are output using the

unscaled format. For example, 10A(-7} is output as .0000001 and 10A(-8} is output

as lE-08. Th>uble precision numbers that can be represented with 16 or fewer

digits in the unscaled format no less accurately than they can be represented in

the scaled format, are output using the unscaled format. For example, lD-15 is

output as .000000000000001 and lD-16 is output as lD-16.

EXAMPLE 1:

10 X=5

20 PRINT X+5, X-5, X*(-5), XA5

30 END

RUN

10 -25

Ok

2-59

3125

In this example, the commas in the PRINT statement cause each value to be printed

at the beginning of the next print zone.

EXAMPLE 2:

LIST

10 INPUT X

20 PRINT X;"SQUARED IS";XA2;"AND";

30 PRINT X; "CUBED IS" i XA3

40 PRINT

50 GOTO 10

Ok

RUN

? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line 20 causes both PRINT statements

to be printed on the same line, and line 40 causes a blank line to be printed

before the next prompt.

A question mark may be used in place of the word PRINT in a PRINT statement.

2-60

EXAMPLE 3:

10 FOR X = 1 'ID 5

20 J=J+5

30 K=K+l0

40 ?J;K;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50

Ok

In this example, the semicolons in the PRINT statement cause each value to be

printed immediately after the preceding value. (Don't forget, a number is always

followed by a space and positive numbers are preceded by a space.) In line 40, a

question mark is used instead of the word PRINT.

2-61

2.39 PRINT USING

FORMAT:

PRINT USING <"format string">; <list of expressions>

PURPOSE:

To print strings or numbers using a specified format.

REMARKS and EXAMPLES:

<list of expressions> is comprised of the string and expressions or numeric ex­

pressions that are to be printed, separated by semicolons. <"format string"> is a

string expression comprised of special formatting characters. 'Ihese formatting

characters (see below) determine the field and the format of the printed strings

or numbers.

String Fields

When PRINT USING is used to print strings, one of three formatting characters may

be used to format the string field:

II ! II

Specifies that only the first character in the given string is to be printed.

"\n spaces\ 11

Specifies that 2+n characters from the string are to be printed. If the back­

slashes are typed with no spaces, ~ characters will be printed; with one space,

three characters will be printed, and so on. If the string is longer than the

field, the extra characters are ignored. If the field is longer than the string,

the string will be left-justified in the field and padded with spaces on the

right.

2-62

II & II

10 A$= 11 LOOK 11 :8$=11 0UT11 :C$=11\ \ 11

20 PRINT USING

30 PRINT USING

40 PRINT USING

Ok

RUN

LO

LOOOUT

LOOK OUT ! !

11 ! 11 ;A$;B$
11\ \" ;A$;B$

C$;A$;B$;"!!"

Specifies a variable length string field. When the field is specified with 11 & 11 ,

the string is output exactly as input.

10 A$= 11 LOOK 11 :8$=11 0UT11

20 PRINT USING II! II i A$ i

30 PRINT USING 11 &11 ;8$

RUN

LOUT

Numeric Fields

When PRINT USING is used to print numbers, the following special characters may be

used to format the numeric field:

II# II

A number sign is used to represent each digit position. Digit positions are

always filled. If the number to be printed has fewer digits than positions

specified, the number will be right-justified (preceded by spaces) in the field.

II ti .
A decimal point may be inserted at any position in the field. If the format

string specifies that a digit is to precede the decimal point, the digit will

always be printed (as 0 if necessary). Numbers are rounded as necessary.

PRINT USING "#:It.## II;. 78

0.78

PRINT USING 11###.##";987.654

987.65

PRINT USING 11 ##.## 11 ;10.2,5.3,66.789,.234

10.20 5.30 66.79 0.23

2-63

In the last example, one space was inserted at the end of the format string to

separate the printed values on the line.

11+11

A plus sign at the beginning or end of the format string will cause the sign of

the number {plus or minus) to be printed before or after the number.

11_11

A minus sign at the end of the format field will cause negative m.nnbers to be

printed with a trailing minus sign.

II** II

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9

-68.95 +2.40 +55.60 -0.90

PRINT USING 11 ##.##- 11 ;-68.95,22.449,-7.01

68.95- 22.45 7.01-

A double asterisk at the beginning of the format string causes leading spaces in

the numeric field to be filled with asterisks. The ** also specifies positions

for two rrore digits.

"$$"

PRINT USING"**#.# ";12.39,-0.9,765.1

*12.4 *-0.9 765.1

A double dollar sign causes a dollar sign to be printed to the immediate left of

2-64

the formatted number. The $$ specifies two more digit positions, one of which is

the dollar sign. 'Ihe exponential format cannot be used with $$. Negative numbers

cannot be used unless the minus sign trails to the right.

11**$11

PRINT USING II $$#H. H II; 456. 78

$456.78

The **$ at the beginning of a format string combines the effects of the above two

symbols. Leading spaces will be asterisk-filled and a dollar sign will be printed

before the number. **$ specifies three more digit positions, one of which is the

dollar sign.

II II ,

PRINT USING 11**$H.H 11 ;2.34

***$2.34

A comma that is to the left of the decimal point in a formatting string causes a

comma to be printed to the left of every third digit to the left of the decimal

point. A comma that is at the end of the format string is printed as part of the

string. A corrma specifies another digit position. The comma has no effect if

used with the exponential (AAAA) format.

""'"""'"

PRINT USING 11#H#,.H 11 ;1234.5

1,234.50

PRINT USING 11HH.##, 11 ;1234.5

1234.50,

Four carats (or up-arrows) may be placed after the digit position characters to

specify exponential format. The four carats allow space for E+xx to be printed.

Any decimal point position may be specified. The significant digits are left­

justified, and the exponent is adjusted. Unless a leading + or trailing + or -

is specified, one digit position will be used to the left of the decimal point to

print a space or a minus sign.

II II

PRINT USING 11 ##.#:lf""""' 11 ;234.56

2.35E+02

PRINT USING II .#H#"'""'"'-11 ;888888

.8889E+06

PRINT USING 11 +.##""'""" 11 ; 123

+.12E+03

2-65

An underscore in the format string causes the next character to be output as a

literal character.

PRINT USING 11_!##.##_! 11 ;12.34

!12. 34!

The literal character itself may be an underscore by placing " 11 in the format

string.

NOTE:

If the number to be printed is larger than the specified numeric field, a percent

sign (%) is printed in front of the number. If rounding causes the number to

exceed the field, a percent sign will be printed in front of the rounded number.

PRINT USING 11##.## 11 ;111.22

%111.22

PRINT USING II.##"; .999

%1.00

If the number of digits specified exceeds 24, an "Illegal function call" error

will result.

2-66

2.40 RANDOMIZE

FORMAT:

RANDOMIZE [<expression>]

PURPOSE:

'lb reseed the random number generator.

REMARKS:

If <expression> is anitted, PBASIC suspends program execution and asks for a value

by printing

Random Number Seed (0-65535)?

before executing RANDCMIZE.

If the random number generator is not reseeded, the RND function returns the same

sequence of random numbers each time the program is RUN. 'lb change the sequence

of random numbers every time the program is RUN, place a RANDG1IZE statement at

the beginning of the program and change the argument with each RUN.

EXAMPLE:

10 RANDG'lIZE

20 FOR I=l 'ID 5

30 PRINT RND;

40 NEXT I

Ok

RUN

Random Number Seed (0-65535)? 3 (user types 3)

.88598 .484668 .586328 .119426 .709225

Ok

RUN

Random Number Seed (0-65535)? 4 (user types 4 for new sequence)

.803506 .162462 .929364 .292443 .322921

Ok

RUN

Random Number Seed (0-65535)? 3 (same sequence as first RUN)

.88598 .484668 .586328 .119426 .709225

Ok

2-67

2-68

2.41 READ

FORMAT:

READ <list of variables>

PURPOSE:

To read values from a DATA statement and assign them to variables.

Section 2.5)

REMARKS:

(See DATA,

A READ statement must always be used in conjunction with a DATA statement. READ

statements assign DATA statement values to variables on a one-to-one basis. READ

statement variables may be nurneric or string, and the values read must agree with

the variable types specified. If they do not agree, a "Syntax error" will result,

pointing to the DATA statement which did not correspond with the format specified

in the READ.

A single READ statement may access one or nnre DATA statements (they will be

accessed in order), or several READ statements may access the same DATA statrnent.

If the number of variables in <list of variables> exceeds the nLnnber of elements

in the DATA statement(s), an Out of DATA message is printed. If the number of

variables specified is fewer than the number of elements in the DATA staternent(s),

subsequent READ statements will begin reading data at the first unread element.

If there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start or beginning at any designated DATA

statement, use the RESTORE statement (see RESTORE, Section 2.44).

EXAMPLE 1:

80 FOR I=l TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24

120 DATA 5.08,5.55,4.00,3.16,3.37

2-69

This program segment READs the values from the DATA statements into the array A.

After execution, the value of A(l) will be 3.08, and so on.

EXAMPLE 2:

LIST

10 PRINT "CITY", "STATE", II ZIP"

20 READ C$,S$,Z

30 DATA "DENVER,", COLORADO, 80211

40 PRINT C$,S$,Z

Ok

RUN

CITY

DENVER,

Ok

STATE

COLORADO

ZIP

80211

This program READs string and numeric data from the DATA statement in line 30.

2-70

2.42 REM

FORMAT:

RE:-1 <remark>

or

<remark>

PURPOSE:

'lb allow explanatory remarks to be inserted in a program.

REMARKS:

RE:-1 statements are not executed but are output exactly as entered when the program

is listed.

REM statements may be branched into (from a GOTO or GOSUB statement), and execu­

tion will continue with the first executable statement after the REM statement.

In PBASIC, remarks may be added to the end of a line by preceding the remark with

a single quotation mark (') instead of :REM.

EXAMPLE:

120 REM CALCULATE AVERAGE VELOCITY

130 FOR I=l TO 20

140 SUM=SUM + V(I)

:RE:-1 BEGIN LOOP

or

120 FOR I=l TO 20

130 SUM=SUM+V(I)

140 NEXT I

'CALCULATE AVERl>GE VELOCITY

'BEGIN LOOP

2-71

2-72

2.43 RENUM

FORMAT:

RENUM [[<new number>] [,[<old number>] [,<increment>]]]

PURPOSE:

To renumber program lines.

REMARKS:

<new number> is the first line number to be used in the new sequence. 'Ihe default

is 10. <old number> is the line in the current program where renumbering is to

begin. 'Ihe default is the first line of the program. <increment> is the incre­

ment to be used in the new sequence. The default is 10.

RENUM also changes all line number references following GOTO, GOSUB, THEN,

ON ••• GOTO, ON ••• GOSUB and ERL statements to reflect the new line numbers. If a

nonexistent line number appears after one of these statements, the error message

"Undefined line xxxxx in yyyyy" is printed. The incorrect line number reference

(xxxxx) is not changed by RENUM, but line number yyyyy may be changed.

NOTE:

'This corrunand is not allowed within the source program when executing PPROM (see

Section 2.37).

RENUM cannot be used to change the order of program lines (for example, RENUM

15,30 when the program has three lines numbered 10, 20 and 30) or to create line

numbers greater than 65529. M "Illegal function call" error will result.

EXAMPLES:

RENUM

RENUM 300,,50

RENUM 1000,900,20

Renumbers the entire program.

'Ihe first new line nl.lllber

will be 10. Lines will

increment by 10.

Renl.lllbers the entire pro­

gram. The first new line

nt.mber will be 300. Lines

will increment by 50.

Renumbers the lines from

900 up so they start with

line nunber 1000 and

increment by 20.

2-73

2-74

2.44 RESTORE

FORMAT:

RESTORE [<line mmber>]

PURPOSE:

'lb allow DATA statements to be reread from a specified point.

REMARKS:

After a RESTORE statement is executed, the next READ statement accesses the first

item in the first DATA statement in the program. If <line number> is specified,

the next READ statement accesses the first item in the specified DATA statement.

EXAMPLE:

10 READ A

20 READ B

30 RESTORE

40 READ C

50 DATA 57,68,79

60 PRINT A,B,C

70 END

RUN

57

Ok

68 57

2.45 RESUME

FORMATS:

RESUME

RESUME 0

RESUME NEXT

RESUME <line number>

PURPOSE:

2-75

To continue program execution after an error recovery procedure has been performed

via 'ON ERROR'.

REMARKS:

kly one of the four formats shown above may be used, depending upon where execu­

tion is to resll!le:

RESUME

or

RESUME 0

RESUME NEXT

Execution resll!les at the

statement which caused the

error.

Execution resll!les at the

statement immediately fol­

lowing the one which

caused the error.

RESUME <line nll!lber> Execution resll!les at

<line nunber>.

A RESUME statement that is not in an error trap routine causes a "RESUME without

error" message to be printed.

2-76

EXAMPLE:

10 CN ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY

AGAIN":RESUME 80

2-77

2.46 RPROM

FORMAT:

RPR(lvl [<type>]

PURPOSE:

This command will initiate the reading of a user's PRCMed application, placed in

the PPG hardware device, into RAM memory. The entire segmented PROMed program is

read into memory in sequence and terminated after the last EPRCM has been read.

The user will be prompted when to extract and insert each EPRCM. The only option­

al argLnnent is the type of EPRCM (2708, 2716, and 2758) being programmed with a

default of 2716. The user is able to abort the operation at any time via a

Control-C.

REMARKS:

<type>

'Ihe user may choose the type of EPRCM chip to use with the type option. Choices

are 2708, 2716, or 2758. The default is 2716. 'Ib specify a type the user must

enter the last two digits of the type nLnnber.

TO USE:

To use 2708s enter:

To use 2758s enter:

'Ib use 2716s enter:

RPRCJv1 08

RPRa-1 58

RPRCJv1 16, or RPRCJv1

1) Enter RPRa-1 command, optional type (default

is 2716), and (CR).

2-78

2) '!he user will be prompted for the first chip to

be inserted with a number sign (:ff:) followed by

the number one (1).

3) '!he chip is read into RAM. Since the first chip

contains a checksum table as well as the total

number of chips in the program it is essential

it be entered first. From this :p:>int on the

user will be prompted for the next chip number

and the total number of chips.

4) Control-C will abort the command at any :p:>int.

5) If the command is aborted before all the chips

have been read, the data previously read will

not remain in memory.

6) A maximLDn limit of XX PRCl1s per program will

be allowed. When this limit is exceeded the

PBASIC error message 'Out of memory' will

appear on the terminal and the command will abort.

'!he source previously read (PRCl15 1 thru (XX-1))

will not remain in RAM.

XX = FRE(0) I PRCl1 chip size

EXAMPLE:

If the user has a program on 3, 2716 EPROMs and wishes to read the program into

RAM, the following would be done:

RPRCl1 ; user enters command (defaults to 2716 type)

:ff: 1 ; system prompts

; user inserts first chip and enters (CR)

i 2 I 3 when the chip has been read the system prompts

user inserts second chip and enters (CR)

i 3 I 3 when the chip has been read the system prompts

user inserts third and final chip and enters (CR)

Ok command is finished

ERROR CONDITIONS:

1) Reading too many PRCMs causes the ERROR condition:

'Out of memory'

Source read from previously read PRCMs will not remain

in RAM. The RPROM command will be aborted.

USER OPTIONS:

A) Re-execute the command.

2) Chips are inserted out of sequence. This will

result in a

'OUT OF SEQUENCE - Chip i X.

USER OPTIONS:

A) Insert chip x. No previously

read data is lost.

3) Other error conditions that might occur, that are

not detectable by PBASIC.

2-79

2-80

NOTE:

A) The user inserts a type chip other than

specified. (i.e. 2708 specified and 2716

is inserted)

This command is not allowed within the source program when executing PPROM (see

Section 2. 37) •

CAUTION:

In order to prevent possible destruction of PRCMs, the user should not insert

PROMs in the ZIP DIP socket until prompted. Also, the user should insure that

PRCJt1 1YPE 91/I~H is in the correct position for type of PRCJt1 being used. The

switch should be in the 2708 position for 2708 PROMs and in the 2716 position for

2716 and 2758 PRCJt1s. If a PRCJv1 is inserted in the ZIP DIP socket with the PRCM

TYPE SWI~H in the wrong position, the PROM may be subjected to voltages which

could destroy it.

2-81

2.47 RUN

FORMAT:

RUN [<line number>]

PURPOSE:

To execute the program currently in memory.

REMARKS:

If <line number> is specified, execution begins on that line. Otherwise, execu­

tion begins at the lowest line number. PBASIC always returns to corrmand level

after the program has finished executing.

NOTE:

RUN may be specified as either a direct or indirect statement in a RJ1M system but

this command is not allowed within the source program when executing PPROM (see

Section 2.37).

EXAMPLE:

RUN 20 'STARTS EXECUTION AT STATEMENT 20

2-82

2.48 SETCLK

FORMAT:

SETCLK [<seconds>] [,[<minutes>] [,[<hours>] [,[<days>] [,[<months>]]]]]

Each item is optional and trailing collllllas need not be specified.

PURPOSE:

To set specified time components of the MDX-BCLK clock hardware to specific

values.

REMARKS:

Each item in the list must evaluate to an integer expression. If an item is

omitted, then its corresponding time component remains unchanged. Each item is

checked for the proper range as well as consistency with other items. The ranges

are:

seconds: 0-59

minutes: 0-59

hours: 0-23

days: 1-31

months: 1-12

The day of the ronth is compared with the maximum number of days in that ronth and

will result in an Error #5 if exceeded.

EXAMPLE:

10 PRINT "CURRENT DATE IS II ;DATE$

20 LINE INPUT "CHANGE DATE (Y/N)? 11 ;ANSWER$

30 IF ANSWER$ <> "Y" THEN 70

40 INPUT "NEW DAY NUMBER";DAY

50 INPUT "NEW J.\iJNTH NUMBER" ;IDNTH

60 SETCLK ,,,DAY,MONTH

70 REM ENDIF

80 PRINT "CURRENT TIME IS ";TIME$

90 LINE INPUT "CHANGE TIME (Y/N)?";ANSWER$

100 IF ANSWER$ <> 11 Y" THEN 160

110 INPUT "NE.W HOUR IS" ; HOUR

120 INPUT "NEW MINUTE IS";MINUTE

130 INPUT "NEW SECOND IS";SECOND

140 LINE INPUT "HIT <CR> WHEN NE.W TIME IS REACHED";REPLY$

150 SETCLK SECOND,MINUTE,HOUR

160 REM E.NTIIF

2-83

2-84

2.49 STOP

FORMAT:

STOP

PURPOSE:

'lb terminate program execution and return to the command level.

REMARKS:

STOP statements may be used anywhere in a program to terminate execution. When a

STOP is encountered, the following message is printed:

Break in nnn where nnn is S'IDP statement line number.

PBASIC always returns to command level after a S'IDP is executed. Execution is

resumed by issuing a CONT command (see Section 2.4).

EXAMPLE:

10 INPUT A,B,C

20 K=AA2*5.3:L=BA3/.26

30 STOP

40 M=C*K+l00:PRINT M

RUN

? 1,2,3
Break· in 30

Ok

PRINT L

30.7692

Ok

CONT

llS.9

Ok

2-85

2.50 SWAP

FORMAT:

SWAP <variable>,<variable>

PURPOSE:

To exchange the values of two variables.

REMARKS:

AA.y type variable may be $A/APped (integer, single prec1s1on, double precision,

string), but the two variables must be of the same type or a "Type mismatch" error

results.

EXAMPLE:

LIST

10 A$=" ONE II : 8$=" ALL II C$="FOR"

20 PRINT A$ C$ 8$

30 SWAP A$, 8$

40 PRINT A$ C$ 8$

RUN

Ok

ONE FOR ALL

ALL FOR ONE

Ok

2-86

2.51 TRON/TROFF

FORMAT:

TRON

TROFF

PURPOSE:

To trace the execution of program statements.

REMARKS:

As an aid in debugging, the TRON statement (executed in either the direct or

indirect mode) enables a trace flag that prints each line number of the program as

it is executed. The numbers appear enclosed in square brackets. The trace flag

is disabled with the TROFF statement (or when a NEW command is executed).

EXAMPLE:

TRON

Ok

LIST

10 K=l0

20 FOR J=l TO 2

30 L=K + 10

40 PRINT J;K;L

50 K=K+l0

60 NEXT

70 END

Ok

RUN

[10] [20] [30] [40] 1 10 20

[50] [60] [30] [40] 2 20 30

[50] [60] [70]

Ok

TROFF

Ok

2-87

2-88

2.52 WAIT

FORMAT:

WAIT <port nl.lllber>, I[,J]

where I and J are integer expressions

PURPOSE:

To suspend program execution while monitoring the status of a machine input port.

REMARKS:

'Ihe WAIT statement causes execution to be suspended until a specified machine in­

put port develops a specified bit pattern. 'Ihe data read at the port is exclusive

OR' ed with the integer expression J, and then AND' ed with I. If the result is

zero, PBASIC loops back and reads the data at the port again. If the result is

nonzero, execution continues with the next statement.

assumed to be zero.

CAUTION:

If J is omitted, it is

It is possible to enter an infinite loop with the Wl\IT statement, in \\hich case it

will be necessary to manually restart the machine. Control-C will not abort this

command \\hile in a port wait loop.

Port addresses &HE8-&HEB are "Illegal function call"s when using the PBASIC/9511

version, because they are dedicated for the MDX-Math(9511) board operations.

EXAMPLE:

100 WAIT 32, 2

2-89

2. 53 WHILE ••• WEND

FORMAT:

WHILE <expression>

[<loop statements>]

WEND

PURPOSE:

To execute a series of statements in a loop as long as a given condition is true.

REMARKS:

If <expression> is not zero (i.e., true), <loop statements> are executed until the

WEND statement is encountered. PBASIC then returns to the WHILE statement and

checks <expression>. If it is still true, the process is repeated. If it is not

true, execution resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the most recent

WHILE. An unmatched WHILE statement causes a "WHILE without WEND" error, and an

unmatched WEND statement causes a "WEND without WHILE" error.

EXAMPLE:

90 'BUBBLE SORT ARRAY A$

100 FLIPS=l 'FORCE ONE PASS THRU LOOP

110 WHILE FLIPS

115 FLIPS=0

120 FOR I=l TO J-1 :REM J=number of A$ elements

130 IF A$(I)>A$(I+l) THEN

SNAP A$(I),A$(I+l):FLIPS=l

140 NEXT I

150 WEND

2-90

2.54 WIDTH

FORMAT:

WIDI'H [LPRINT] <int03er expression>

PURPOSE:

To set the printed line width in number of characters for the terminal or line

printer.

REMARKS:

If the LPRINT option is omitted, the line width of the terminal is set. If LPRINT

is incltrled, the line width of the line printer is set. 'Ihe default width for the

terminal is 80 characters, and the default width for the line printer is 132

characters.

<integer expression> must have a value in the range 0 to 255. If <int03er

expression> is 255, the line width is "infinite," that is, PBASIC never inserts a

carriage return. However, the position of the cursor or the print head, as given

by the POS or LPOS function, returns to zero after position 255. If zero (0)

width is used, a blank line will be generated before the line is output.

EXAMPLE:

10 PRINT "ABCDEFGHIJKI..MNOPQRSTUVWXYZ"

RUN

ABCDEFGHIJKLMNOPQRS'IUVWXYZ

Ok

WID'IH 18

Ok

RUN

ABCDEFGHIJKI..MNOPQR

S'IUVWXYZ

Ok

2-91

2.55 WRITE

FORMAT:

WRITE[<list of expressions>]

PURPOSE:

To output data at the tenninal.

REMARKS:

If <list of expressions> is omitted, a blank line is output. If <list of ex­

pressions> is included, the values of the expressions are output to the terminal.

'Ihe expressions in the list may be numeric and/or string expressions, and they

must be separated by commas.

When the printed items are output, each item will be separated from the last by a

comma. Printed strings will be delimited by quotation marks. After the last item

in the list is printed, PBASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same fonnat as the PRINT statement, Section

2.38.

EXAMPLE:

10 A=80:B=90:C$="THAT'S ALL"

20 WRITE A,B,C$

RUN

80,90,"THAT'S ALL"

Ok

3-1

CHAPTER 3

PBASIC FUNCTIONS

The intrinsic functions provided by PBASIC are presented in this chapter. '!he

functions may be called fran any program without further definition.

Argt.JT1ents to functions are always enclosed in parentheses. In the formats given

for the functions in this chapter, the argt.JT1ents have been abbreviated as follows:

X and Y Represent any nt.JT1eric expressions

I and J Represent integer expressions

X$ and Y$ Represent string expressions

If a floating point value is supplied where an integer is required, PBASIC will

rourrl the fractional portion arrl use the resultin:J integer.

3-2

3.1 ABS

FORMAT:

ABS(X)

ACTION:

Returns the absolute value of the expression X.

EXAMPLE:

PRINT ABS(7*(-5))

35

Ok

3-3

3.2 ASC

FORMAT:

ASC(X$)

ACTION:

Returns a m1nerical value that is the ASCII code of the first character of the

string X$. (See Appendix H for ASCII codes.) If X$ is null, an "Illegal function

call" error is returned.

EXAMPLE:

10 X$ = "TEST"

20 PRINT ASC (X$)

RUN

84

See the CHR$ function for ASCII-to-strirg conversion.

3-4

3.3 ATN

FORMAT:

ATN(X)

ACTION:

Returns the arctangent of X in radians. Result is in the range -pi/2 to pi/2.

The expression X may be any m.nneric type, but the evaluation of ATN is always

performed in single precision.

EXAMPLE:

10 INPUT X

20 PRINT ATN (X)

RUN

? 3

1. 24905

Ok

3-5

3.4 BCD

FORMAT:

BCD(X)

ACTION:

'!his function will convert a 16-bit binary number to its BCD equivalent represen­

tation. The argument may be a constant or the result of an arithmetic expression.

EXAMPLE:

PRINT BCD(l0)

16

The value 10 (0000 0000 0000 1010) is converted to the value 10 in BCD format

(0000 0000 0001 0000, or &H0010).

3-6

3.5 BIN

FORMAT:

BIN (X)

ACTION:

'!his function converts a number represented in BCD to its 16-bit binary equiva­

lence. The argument may be a constant or the result of an arithmetic expression.

The maximum BCD value is &H9999.

EXAMPLE:

PRINT BIN(l6)

10

The BCD number 16 (0000 0000 0001 0000 or &H0010) is converted to the binary

equivalent 10 (0000 0000 0000 1010).

3-7

3.6 CDBL

FORMAT:

CDBL(X)

ACTION:

Converts X to a double precision nunber.

NOTE:

Conversion from single p:rc1s1on to double p:rc1s1on only allows 7 digits of

accuracy to be transferred to the double percision variable.

EXAMPLE:

10 A = 454.67

20 PRINT A;CDBL (A)

RUN

454.67 454.6700134277344

Ok

3-8

3.7 CHR$

FORMAT:

CHR$(I)

ACTION:

Returns a string \\hose one element has ASCII code I. (ASCII codes are listed in

Appendix H.) CHR$ is commonly used to send a special character to the terminal.

For instance, the BEL character could be sent (CHR$(7)) as a preface to an error

message, or a fonn feed could be sent (CHR$ (12)) to clear a CRT screen and return

the cursor to the home p.:>sition or to force top-of-form on the printer.

EXAMPLE:

PRINT CHR$(66)

B

Ok

See the ASC function for ASCII-to-nl.111eric conversion.

3-9

3.8 CINT

FORMAT:

CINT(X}

ACTION:

Converts X to an integer by rounding the fractional portion. If X is not in the

range -32768 to 32767, an "overflow'' error occurs.

EXAMPLE:

PRINT CINT(45.67}

46

Ok

See the CDBL and CSNG functions for converting nunbers to the double precision and

single precision data type. See also the FIX and INT functions, both of v.hich

return integers.

3-10

3.9 cos

FORMAT:

COS(X)

ACTION:

Returns the cosine of X expressed in radians. 'Ihe calculation of COS (X) is

performed in sinJle precision.

EXAMPLE:

10 X::;:: 2*COS(.4)

20 PRINT X

RUN

1.84212

Ok

3.10 CSN3

FORMAT:

CSOO(X)

ACTION:

Converts X to a single precision number.

EXAMPLE:

10 A# = 975.3421#

20 PRINT A#; CSNG(A#)

RUN

975.3421 975.342

Ok

3-11

See the CINT and CDBL f l.D1ctions for converting mmbers to the integer and double

precision data types.

3-12

3.11 DATE$

FORMAT:

DJ.\TE$

ACTION:

Returns the current day and month in string form. 'These values are obtained from

the MDX-BCLK clock hardware.

EXAMPLE:

PRIJ:..1T D.Z\TE$

30-NOV

3-13

3.12 EXP

FORMAT:

EXP(X)

ACTION:

Returns e to the [X)wer of x. If EXP overflows, the "overflow" error message is

displayed, machine infinity with the appropriate sign is supplied as the result,

and execution continues.

EXAMPLE:

10 x = 5

20 PRINT EXP (X-1)

RUN

54.5982

Ok

3-14

3.13 FIX

FORMAT:

FIX(X)

ACTION:

Returns the truncated integer part of x. FIX(X) is equivalent to

SGN(X)*INT(ABS(X)). The major difference between FIX and INT is that FIX does not

return the next lower number for negative x.

EXAMPLES:

PRINT FIX (58.75)

58

Ok

PRINT FIX(-58.75)

-58

Ok

3-15

3.14 FRE

FORMAT:

FRE(0}

FRE(X$}

ACTION:

Arguments to FRE are dummy arguments. If the argument is 0 (nuneric}, FRE re­

turns to the tenninal the mmber of bytes in memory not beirg used by PBASIC. If

the argument is a string, FRE returns the number of free bytes in the string.

EXAMPLE:

10 PRINT FRE(0}

20 DIM A$(1000}

30 PRINT FRE(0}

40 CLEAR

50 PRINT FRE(0}

60 END

RUN

24473

21461

24473

Ok

3-16

3.15 HEX$

FORMAT:

HEX$(X)

ACTION:

Returns a string which represents the hexadecimal value of the decimal argument.

X is rounded to an integer before HEX$ (X) is evaluated. X must be < = 65535.

EXAMPLE:

10 INPlJI' X

20 A$ = HEX$(X)

30 PRINI' X; "DECIMAL IS II ;A$; II HEXADECIMAL"

RUN

? 32

32 DECIMAL IS 20 HEXADECIMAL

Ok

See the ~T$ function for octal conversion.

3-17

3.16 INKEY$

FORMAT:

INKEY$

ACTION:

Returns a one-character string determined by an instantaneous keyboard strobe.

The last key pressed before the strobe is returned. If no key is pressed during

the strobe, a null string (length zero) is returned. This is a very powerful

function because it lets you input values while the interpreter is executing -

without using the <CR> key.

Characters typed to an INKEY$ are not automatically displayed on the screen.

Because of the short duration of the strobe cycle INKEY$ should be placed inside

some sort of loop, so that the Keyboard is scanned repeatedly.

EXAMPLE 1:

WHILE KEY$ < > "Q"

KEY$ = INKEY$

WEND

INKEY$ may be used in sequences of loops to allow the user to build up a longer

string.

3-18

EXAMPLE 2:

90 PRINT "ENTER THREE CHARACTERS"

100 A$=INKEY$ IF A$=""THEN 100 ELSE PRINT A$;

110 A$=INKEY$: IF B$=""THEN 110 ELSE PRINT B$;

120 C$=INKEY$: IF C$=""THEN 120 ELSE PRINT C$;

130 D$=~+B$+c$

A three-character string D$ can now be entered via the keyboard without using the

<CR> key.

NOTE:

The statement IF A$="" compares A$ to the null string.

3-19

3.17 !NP

FORMAT:

INP(I)

ACTION:

Returns the byte read from port I. I must be in the range 0 to 255. !NP is the

corrplernentary function to the OUT statement, Section 2.35.

NOI'E:

Port addresses E8-EB HEX are "Illegal function call "s when using PBASIC/9511

version, because they are dedicated to the MDX-Math board operations.

EXAMPLE:

100 A=INP(255) 'Set A to value of Port 255

3-20

3.18 INPUT$

FORMAT:

INPUT$(X}

ACTION:

Returns a string of X characters, read from the terminal. No characters will be

echoed and all control characters are passed through except Control-C, which is

used to interrupt the execution of the INPUT$ function.

EXAMPLE:

•

100 PRINT "TYPE P 'IO PROCEED OR S 'IO S'IDP 11

110 X$=INPUT$(1}

120 IF X$= 11P11 THEN 500

130 IF X$= 11S11 THEN 700 ELSE 100

3-21

3.19 INSTR

FORMAT:

INSTR([I,]X$,Y$)

ACTION:

Searches for the first occurrence of string Y$ in X$ and returns the position at

which the match is found. Optional offset I sets the position for starting the

search. I must be in the range 1 to 255. If I>LEN(X$) or if X$ is null or if Y$

cannot be found, INSTR returns 0. If Y$ is null, INSTR returns I or 1. X$ and Y$

may be string variables, string expressions or string literals.

EXAMPLE:

10 X$ = "ABCDEB"

20 Y$ = "B"

30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)

RUN

2 6

Ok

3-22

3.20 INT

FORMAT:

INT(X)

ACTION:

Returns the largest integer <=X.

EXAMPLES:

PRINT INT(99.89)

99

Ok

PRINT INT(-12.11)

-13

Ok

See the FIX and CINT functions which also return integer values.

3-23

3.21 LEFT$

FORMAT:

LEFT$(X$,I)

ACTION:

Returns a string comprised of the leftmost I characters of X$. I must be in the

range 0 to 255. If I is greater than LEN (X$), the entire string (X$) will be

returned. If I=0, the null string (length zero) is returned.

EXAl"vlPLE :

10 A$ = "PROCESS BASIC"

20 B$ = LEFT$(A$,7)

3 0 PRIN'11 B$

PROCESS

Ok

Also see the MID$ and RIGHT$ functions.

3-24.

3.22 LEN

FORMAT:

LEN(X$)

ACTION:

Returns the number of characters in X$. Non-printing characters and blanks are

counted.

EXAMPLE:

10 X$ = "CARROLL'ION, TEXAS"

20 PRINT LEN (X$)

RUN

17

Ok

3.23 LOG

FORMAT:

LOG(X)

ACTION:

Returns the natural logarithm of x. X must be greater than zero.

EXAMPLE:

PRINT LOG(45/7)

1.86075

Ok

3-25

3-26

3.24 LPOS

FORMAT:

LPOS(X)

ACTION:

Returns the current position of the line printer print head within the line

printer buffer. Does not necessarily give the physical position of the print

head. X is a dwnmy argument.

EXAMPLE:

100 IF LPOS (X)>60 YrlEN LPRINT CHR$ (13)

3-27

3.25 MID$

FORMAT:

MID$(X$,I[,J])

ACTION:

.Returns a string of length J characters from X$ beginning with the Ith character.

I must be in the range 1 to 255 and J must be in the range 0 to 255. If J is

ommitted or if there are fewer than J characters to the right of the Ith charac­

ter, all rightmost characters beginning with the Ith character are returned. If

I>LEN(X$), MID$ returns a null string.

EXAMPLE:

LIST
10 A$="G(X)D II

20 B$="MORNING EVENING AFI'ERNOON"

30 PRINT A$;MID$(B$,9,7)

RUN

GCX)D EVENING

Ok

Also see the LEFT$ and RIGHT$ functions.

3-28

3.26 OCT$

FORMAT:

OCT$ (X)

ACTION:

Returns a string which represents the octal value of the decimal argument. X is

rounded to an integer before OCT$ (X) is evaluated. X must be in the range 0 to

65535.

EXAMPLE:

PRINT OCT$ (24)

30

Ok

See the HEX$ function for hexadecimal conversion.

3-29

3.27 PEEK

FORMAT:

PEEK(!)

ACTION:

Returns the byte (decimal integer in the range 0 to 255) read from memory location

I. I must be in the range 0 to 65535. PEEK is the complementary function to the

POKE statement, Section 2.36.

EXAMPLE:

PRINT PEEK (&H6023)

0

Ok

3-30

3.28 POS

FORMAT:

POS(I)

ACTION:

Returns the column number of the cursor position in the current print line. The

leftmost position is 1. I is a dummy argument.

EXAMPLE:

IF POS(I)>60 THEN PRINT CHR$(13)

Also see the LPOS function.

3-31

3.29 RIGHT$

FORMAT:

RIGHT${X$,I)

ACTION:

Returns the rightmost I characters of string X$. If I>=LEN{X$), returns X$. If

I=0, the null string {length zero) is returned.

EXAMPLE:

10 A$=11 PROCESS BASIC"

20 PRINT RIGHT${A$,5)

RUN

BASIC

Ok

Also see the MID$ and LEFT$ functions.

3-32

3.30 RND

FORMAT:

RND [(X)]

ACTION:

Returns a random number between 0 and 1. 'lhe same sequence of random numbers is

generated each tine the program is RUN unless the random number generator is re­

seeded (see RAN.DQYIIZE, Section 2.40). However, X<0 always restarts the same se­

quence for any given x.

X>0 or X omitted generates the next random number in the sequence. X=0 repeats

the last number generated.

EXAMPLE:

10 FOR I=l 'IO 5

20 PRINT INT(RND*l00);

30 NEXT

RUN

24 30 31 51 5

Ok

3-33

3.31 ROI'ATE

FORMAT:

ROrATE (X,Y)

ACTION:

This function will rotate a 16-bit argument in a circular manner with the direc­

tion ana number of binary places specified by a second 8-bit argument. The direc­

tion of rotation is determined by the sign of the second argument with a p:>sitive

argument signifying a left rotate and a negative argument signifying a right ro­

tate. The absolute value of the second argument determines the number of bit

p:>sitions to rotate. Either argument could be a constant or the result of an

arithmetic expression.

EXAMPLE:

PRINT ROTATE (l,-2)

16384

The value 1 (0000 0000 0000 0001) was rotated 2 places to the right thus producing

the result 16384 (0100 0000 0000 0000).

3-34

3.32 SGN

FORMAT:

SGN(X)

ACTION:

Returns a value 1, 0, or -1 based on the sign of x.

If X>0, SGN(X) returns 1.

If X=0, SGN(X) returns 0.

If X<0, SGN(X) returns -1.

EXAMPLE:

10 ON SGN(X)+2 GO'IO 100,200,300

•

100

•

200

300

'X is negative

'X is 0

_ 'X is :POSitive

3-35

3.33 SHIFT

FORMAT:

SHIFT (X,Y)

ACTION:

This function will shift a 16-bit argument horizontally, the direction and number

of binary places specified by a second 8-bit argument. The direction of shifts is

determined by the sign of the second argument with a positive argument signfying a

left shift and a negative argument signifying a right shift. The absolute value

of the second argument determines the number of bit positions to shift. All

vacated bits on a shift operation are zero (0) filled. Either argument could be a

constant or the result of an arithmetic expression.

EXAMPLE:

PRINT SHIFT (84,3)

672

The bits of the value 84 (0000 0000 0101 0100) were shifted left 3 times resulting

in the value 6?2 (0000 0010 1010 0000}.

3-36

3.34 SIN

FORMAT:

SIN(X)

ACTION:

Returns the sine of X expressed in radians. SIN (X) is calculated in single

precision. COS(X)=SIN(X+3.14159/2).

EXAMPLE:

PRIN'r SIN (1.5)

.997495

Ok

3-37

3.35 SPACE$

FORMAT:

SPACE$(X}

ACTION:

Returns a string of spaces of length x. '!he expression X is rounded to an integer

and must be in the range 0 to 255.

EXAMPLE:

10 FOR I = 1 'IO 5

20 X$ =SPACE$(!}

30 PRINT X$~I

40 NEXT I

RUN

1

Ok

2

3

4

5

Also see the SPC function.

3-38

3.36 SPC

FORMAT:

SPC(I)

ACTION:

Prints I (MOD 80) blanks on the terminal. SPC may only be used with PRINT and

I.PRINT staterrents. I must be in the range 0 to 255.

EXAMPLE:

PRINT "OVER" ;SPC (15) ; "'IHERE"

OVER THERE

Ok

Also see the SPACE$ function.

3.37 SQR

FORMAT:

SQR(X)

ACTION:

Returns the square root of x. X must be >=0.

EXAMPLE:

10 FOR X = 10 'IO 25 STEP 5

20 PRINT X, SQR(X)

30 NEXT

RUN

10 3.16228

15 3.87298

20 4.47214

25 5

Ok

3-39

3-40

3.38 STR$

FORMAT:

STR$ (X)

ACTION:

Returns a string representation of the value of x.

EXAMPLE:

5 REM ARITHMETIC FOR KIDS

10 INPU'i' "TYPE A NUMBER" ;N

20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Also see the V"AL function.

3-41

3.39 STRING$

FORMATS:

STRING$(I,J)

STRING$ (I, X$)

ACTION:

Returns a string of length I whose characters all have ASCII code J or the first

character of X$. 0<=I<255, 0<:::J<256. Values of J>=l28 are printed as if the Most

Significant Bit (MSB) were dropped.

EXAMPLE:

10 X$ = STRING$(10,45)

20 PRINT X$; "MONTHLY REPORT"; X$

RUN

----------IvDNTHLY REPORI'---------­

Ok

3-42

3.40 TAB

FORMAT:

TAB(I)

ACTION:

Spaces to position I on the terminal. If the current print position is already

beyond space I, then printing resumes in Column I on the next line. Space 1 is

the leftmost position, and the rightmost position is the width of the device.

For PRINT, I is MOD 80; for LPRINT, I is l\DD 132. I must be in the range 0 to

255. TAB may only be used in PRINT and LPRINT statements.

EXAMPLE:

10 PRINT "NAME" ;TAB (25); "AMOUNT" PRINT

20 READ A$,B$

30 PRINT A$;TAB(25);B$

40 DATA "G. T. JONES","$25.00"

RUN

NAME

G. T. JONES

Ok

AMOUNT

$25.00

3-43

3.41 TAN

FORMAT:

TAN(X)

ACTION:

Returns the tangent of X expressed in radians. TAN(X) is calculated in single

precision. If TAN overflows, the "overflow" error message is displayed, machine

infinity with the appropriate sign is supplied as the result, and execution

continues.

EXAMPLE:

10 Y = Q*TAN(X)/2

3-44

3.42 TIME$

FORMAT:

TIME$

ACTION:

Returns the current time (HH:MM:SS) in string form. 'Ihese values are obtained

from the MDX-BCLK clock hardware.

EXAMPLE:

PRINT TIME$

18:33:57

3-45

3.43 USR

FORMAT:

USR [<digit>] (X)

ACTION:

Calls the use~'s assembly language subroutine with the argument x. <digit> is in

the range of 0-9 and corresponds to the digit supplied with the DEF USR statement

for that routine. If <digit> is omitted, US.RO is assumed. See Appendix G for a

dicussion of the linkage between P.BASIC and assembly language routines.

EXAMPLE:

10 DEF USRl= &HC000

20 DEF USR2= &HD000

30 A = T*SIN (Y)

40 B = USRl (A)

50 C = USR2 (A)

•

•

'Conpute using User Function 1

'Conpute using User Function 2

3-46

3.44 VAL

FORMAT:

VAL(X$)

ACTION:

Returns the numerical value of string X$. If the first character of X$ is not +,

-, &, or a digit, VAL(X$)=0.

EXAMPLE:

10 READ NAME$,CITY$,STATE$,ZIP$

20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN

PRINT NAME$ TAB(25) "OtJI' OF STATE"

30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815 THEN

PRINT NAME$ TAB(25) "LONG BEACH"

•

•

•

See the STR$ function for numeric to string conversion.

3-47

3.45 VARPTR

FORMAT:

VARPTR (<variable name>)

ACTION:

Returns the address of the first byte of data identified with <variable name>. A

value must be assigned to <variable name> prior to execution of VARPTR. Otherwise

an "Illegal function call" error results. Any type variable name may be used

(nwneric, string, array), and the address returned will be an integer in the range

32767 to -32768. If a negative address is returned, add it to 65536 to obtain the

actual address.

VARPI'R is usually used to obtain the address of a variable or array so it may be

passed to an assembly language subroutine. A function call of the form VARPTR

(A(0)) is usually specified when passing an array, so that the lowest-addressed

element of the array is returned.

NOI'E:

All simple variables should be assigned before calling VARPTR for an array,

because the addresses of the arrays change whenever a new simple variable is

assigned.

EXAMPLE:

100 X=USR (VARPTR (Y))

A-1

APPENDIX A

SYSTEM CONFIGURATION

A.l ME.r-K)RY LAYOUT

A.1.1 PBASIC INTERPRETER

The PBASIC Interpreter can execute from either RAM or ROM and resides at 0000 up

to 8000 HEX, as shown in Figure A-1. PBASIC requires RAM memory in locations F000

to FFFF HEX for interpreter variables and stack space. This comprises the Runtime

configuration of the PBASIC interpreter with execution starting at 0000 HEX. This

will automatically start to RUN the application program that currently resides in

the source area at 8000 HEX.

A Debug system can be configured by placing the DEBUG PRCXvl at E000 HEX and start-

ing execution at E000 HEX by f)Ower-on or reset.

displayed, and operator input will be accepted.

A.1.2 PBASIC APPLICATION P~RAM

A system log-on message will be

The PBASIC application program resides in RAM or PRClwt starting at location 8000

HEX and can extend upward to location EFFF HEX, or DFFF for DEBUG, as shown in

Figure A-1. This area is dedicated for both a program's source statements, in RAM

or ROM, and program variables, always RAM, giving the user a maximum limit of 28k

bytes of application memory space.

A-2

FIGURE A-1

PBASIC SYSTEM CONFIGURATION

ADDRESS (HEX) MEMORY TYPE

FFFF !------·----------!
!

! RAM MEIDRY RAM

F000
, __________________ ,
. .

(JUMP DEBUG)
E000 ---------------

APPLICATION
RAM

VARIABLES

APPLICATION
RAM/ROM

SOURCE

8000 ------·----------

PBASIC
RAM/ROM

INTERPRETER

0011.10 !---------------!

A-3

A.2 HARDWARE CONFIGURATION

The minimum hardware and associated PORT assignments required to operate PBASIC is

as follows:

MD BOARD

MDX-CPU I OR II

MDX-EPRCT>1/UART

MDX-EPRCJtl/RCM

MDX-DRAM 8/16/32

MDX-PIO

.MDX-BCLK

For PBASIC/9511 version only:

MDX-MATH

PBASIC

DEDICATED PORT (HEX)

7C-7F (CTC)

OC-DF (UART)

DO-D3 (LP)

D4-D7 (PFC)

70-71 (CU<)

E8-EB (PIO)

WARNING - user is blocked from using port I/O at the MATH board ports due

to contention problems.

A.3 BOARD LEVEL DOCUMENTATION

If MDX boards are used, then the appropriate Operations Manual for that board must

be referenced for functional operation.

B-1

APPENDIX B

SYSTEMS GENERATION

B.l PBASIC INTERPRETER

B.1.1 INITIAL PROGRAM DEVELOPMEN"'T

The user starts execution of the interpreter, at location &HE000, in the Deve­

lopment configuration. In this configuration, RAM memory is required from &H8000

up to &HEFFF as needed. RAM memory is initialized upon power-up of PBASIC in this

configuration. PBASIC statements are entered via the terminal, utilizing the full

capabilities of the PBASIC interpreter. This allows program statements to be

placed into the source program area.

Once the program has been input, the user can then RUN the application program

that resides in RAM. The application program can be debugged thoroughly and any

edits or modification can be made until program testing is completed.

B.1.2 P.ROMMING APPLICATION PROGRAM

Once the program has been tested, the program can be burned into PROMs via the

PPROM corrunand (See Section 2.37). The PRCM application is then placed in the same

memory space as the .RAl\'l version. The only adjustment the user must make in run­

ning the PROM version is that RAM variable storage will begin at the next even

1000 HEX boundary from where the application progran ended.

EXAMPLE:

If Application Program Memory is &H8000 to &H9700

then variable storage RAM starts at &HA000

B-2

B.1.3 RUNNING PROM APPLICATION IN DEVELOPMENT CONFIGURATION

'!he user can then power-up PBASIC and type in RUN to run the PROMed application

program. '!he application program is now in a non-volatile state and power can be

removed from the system without destroying the application program.

B.1.4 READING PROMMED APPLICATION IN'IO RAM -------·----------
'!he user places RAM memory in the application program space &H8000 to &HEFFF as

required. '!he RPRG'.1 corrunand (See Section 2.46) is used to read the PRCMed

application program, in sequence, back into RAM memory. '!he user is back to the

initial program develoµnent step with the current application program residing in

RAM memory.

B.1.5 AU'IOMATIC RUNTIME MODE

To use the Automatic Runtime .Mode, the user straps the CPU to start executing code
at location &H0000, where the Runtime PRCM resides. With the PBASIC interpreter

and application program in non-volatile memory, when power is applied, PBASIC will

automatically start running the application program that resides in the system.

C-1

APPENDIX C

INTEGRITY' TEST

C.l INTEGRITY TEST PURPOSE

'Ihe purpose of the Integrity Test is to assure continuity and integrity of the

PROMed program sequence. The PRQ'Jl application is checked when the RUN command is

invoked and the error message

***** CHECKSUM ERROR IN CHIP #XX *****

is output to the terminal to notify the user that chip # XX is bad, out of order,

or missing. No PRQ'Jl program will execute until the entire application program

passes the Integrity Test.

C.2 INTEGRITY TEST SCHEME

Every PBASIC application program contains a dlecksum Table which preceeds the pro­

gram source. 'Ihis 38 byte table, as shown in Figure C-1, is dedicated to a check­

sum byte for each PRQ'Jl image, plus additional information. W'len the application

program is placed into PRCl'l, a checksum byte for each lK or 2K bytes, according to

which type of PRQ'Jl(s) is used, is placed into the checksum table according to its

appropriate chip number. Also contained within the table is the address of where

variable RAM storage is expected to start and the number and type of PRCJ.1 chips

required to contain an application program.

Also contained within this table is a user configurable jump address to a user de­

fined non-rnaskable interrupt (NMI} service routine. 'Ihe address of this routine

must be POKED into the address portion of the jump instruction. When NMI causes a

jump to location &H66 , a jump to the user defined NMI routine will be correspond­

ingly executed. A service routine must be provided at that address to handle user

required operations.

C-2

This Checksum Table furnishes PBASIC with the information necessary to assure that

the PRC1vled application program is equivalent to the RAM version that was generated

initially. When the PRC1vl application is RUN, the checksum test is performed and

an appropriate message is displayed on checksum failure.

C-3

ORGANIZATION OF CHECKSUM TABLE

FIGURE C-1

HEX ADDRESS TABLE CONTENTS

8000 CHECKSUM FOR CHIP 1
8001 II 2
8002 II 3
8003 II 4
8004 5
8005 6
8006 7
8007 8
8008 9
8009 10
800A 11
800B 12
800C 13
8000 II 14
800E II 15
800F II 16
8010 17
8011 18
8012 19
8013 20
8014 21
8015 22
8017 23
8018 24
8019 II 25
801A II 26
801B II 27
801C II 28
8010 II 29
801E VARIABLE STORl\GE (LCWER BYTE)
801F START ADDRESS (UPPER BYTE)

8020 NUMBER OF CHI PS (1-29)

8021 TYPE OF CHIP

8022 JUMP
8023 NMI Service (LG'JER BYTE)
8024 Routine (UPPER BYTE)

8025 RESERVED

8026 START OF SOURCE

D-1

APPENDIX D

MATHEMATICAL FUNCTIONS

D.l PBASIC MATH VERSIONS

D.1.1 PBASIC SOFTWARE (S/W) MATH VERSION (PBASIC)

This version of PBASIC provides all mathematical operations through software simu­

lation routines. These are efficient software routines to calculate values as

follows:

TYPE PRECISION RANGE

INTEGER 5 -32768 to 32767

SINGLE PRECISION 7 DIGITS 2.9387 *10**-39 to 1.7014*10**38

DOUBLE PRECISION 16 DIGITS (SAME AS SINGLE)

D.1.2 PBASIC HARDWARE (H/W) 9511 MATH VERSION (PBASIC/9511)

This version of PBASIC provides the user with a high speed 9511 math processor to

increase computational speed. The 9511 provides hardware math functions for the

following:

TYPE PRECISION RANGE

INTffiER 5 -32768 to 32767

SIN::;LE PRECISION 7 DIGITS 5.4210*10**-20 to 9.2234*10**18

DOUBLE PRECISION 16 DIGITS 2.9387*10**-39 to 1.7014*10**38

D-2

IX>uble precision operations (+, -, *, /) are simulated with software due to hard­

ware limitations of the 9511 math chip. It is important to note that all double

precision transcendental functions are converted to single precision format and

then processed by the MDX-Math board. Refer to MDX-MATH Operations Manual

(MK79741) for detail information of the AM9511.

D.2 DERIVED FUNCTIONS

Functions that are not intrinsic to PBASIC may be calculated as follows.

Function

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

PBASIC F..quivalent

SEC(X)=l/COS(X)

CSC(X)=l/SIN(X)

COT(X)=l/TAN(X)

ARCSIN(X}=ATN(X/SQR(-X*X+l))

ARCCOS(X)=-ATN (X/SQR(-X*X+l))+l.5708

ARCSEC(X)=ATN(X/SQR(X*X-1))

+SGN(OCN(X)-l)*l.5708

ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1)*1.5708

ARCCOT(X)=ATN(X)+l.5708

SINH(X)=(EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT TANH(X)=(EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)-EXP(-X))

HYPERBOLIC COTANGENT COTH(X)=(EXP(X)+EXP(-X))/(EXP(X)-EXP(-X))

INVERSE HYPERBOLIC

SINE ARCSINH(X)=LOG(X+SQR(X*X+l))

INVERSE HYPERBOLIC

COSINE

INVERSE HYPERBOLIC

TANGENT

INVERSE HYPERBOLIC

SECANT

INVERSE HYPERBOLIC

COSECANT

INVERSE HYPERBOLIC

COTANGENT

ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH (X) =LCG ((1 +X) / (1-X)) /2

ARCSECH(X)=LOG(l/X+SQR(l/XA2-l))

ARCCSCH(X)=LOG(l/X+SQR(l/XA2+1))

ARCCOTH(X)=L(X;((X+l)/(X-1))/2

D-3

E-1

APPENDIX E

Converting Programs to PBASIC

If you have programs written in a BASIC other than PBASIC, some minor adjustments

may be necessary before running them with PBASIC. Here are some specific items to

look for when converting BASIC programs.

E.l STRING DIMENSIONS

Correct all statements that are used to declare the length of strings. A state­

ment such as DIM A$(I,J), which dimensions a string array for J elements of length

I, should be converted to the PBASIC statement DIM A$(J).

Some BASICS use a comma or ampersand for string concatenation. Each of these must

be changed to a plus sign, which is the operator for PBASIC string concatenation.

In PBASIC, the MID$, RIGHT$, and LEFT$ functions are used to take substrings of

strings. Forms such as A$ (I) to access the Ith character in A$, or A$ (I,J) to

take a substring of A$ from position I thru position J, must be changed as

follows:

Other BASICS

X$=A$ (I)

X$=A$(I,J)

PBASIC

X$=MID$(A$,I,l)

X$=MID$(A$,I,J-I+l)

If the substring reference is on the left side of an assignment and X$ is used to

replace characters in A$, convert as follows:

Other BASICS

A$(I)=X$

A$ (I,J)=X$

PBASIC

MID$(A$,I,l)=X$

MID$(A$,I,J-I+l)=X$

E-2

E.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B=C=0

to set B and C equal to zero. PBASIC would interpret the second equal sign as

a logical operator and set B equal to -1 if C equaled 0.

Instead, convert this statement to two assignment statements:

10 C=0:B=0

E.3 MULTIPLE STATEMENTS

Some BASICs use a backslash (\) to separate multiple statements on a line. With

PBASIC, be sure all statements on a line are separated by a colon(:).

E.4 MAT FUNCTIONS

Programs using the MAT functions available in some PBASICs must be rewritten using

FOR ••• NEXT loops to execute properly.

Error Code

1

2

3

4

5

APPENDIX F

Surrunary of Error Codes and Error Messages

Message

NEXT without FOR

A variable in a NEXT statement does not

correspond to any previously executed,

unmatched FOR statement variable.

Syntax Error

A line is encountered that contains some

incorrect sequence of characters (such as

unmatched parenthesis, misspelled command or

statement, incorrect punctuation, no space

following operand, etc.).

Return without GOSUB

A RETURN statement is encountered for which

there is no previous, unmatched GOSUB

statement.

out of DATA

A READ statement is executed when there are

no DATA statements with unread data remaining

in the program.

Illegal function call

A parameter that is out of range is passed to

a math or string function. This error may

also occur as the result of:

a. a negative or unreasonably large

subscript

F-1

F-2

6

7

8

9

10

b. a negative or zero argument with LCG

c. a negative argument to SQR

d. a negative mantissa with a non-integer

exponent

e. a call to a USR function for i,Jhich the

starting address has not yet been given

f. an improper argument to MID$, LEFT$,

RIGHT$, INP, OUT, WAIT, PEEK, POKE,

TAB, SPC, STRING$, SPACE$, INSTR, or

ON ••• GOTO.

overflow

The result of a calculation is too large to

be represented in PBASIC'S number format.

If underflow occurs, the result is zero and

execution continues without an error.

out of memory

A program is too large, has too many FOR

loops or GOSUBs, too many variables, or

expressions that are too complicated.

Undefined line

A line reference in a GOTO, GOSUB ,

IF ••• THEf..T ••• ELSE or DELETE is to a

nonexistent line.

Subscript out of range

An array element is referenced either with a

subscript that is outside the dimensions of

the array, or with the wrong number of

subscripts.

CUplicate Definition

Two DIM statements are given for the same

array, or a DIM statement is given for an

11

12

13

14

15

16

array after the default dimension of 10 has

been established for that array.

Division by zero

A division by zero is encountered in an

expression, or the operation of involution

results in zero being raised to a negative

power. Machine infinity with the sign of the

numerator is supplied as the result of the

division, or J_:X)sitive machine infinity is

supplied as the result of the involution, and

execution continues.

Illegal direct

A statement that is illegal in direct mode is

entered as a direct mode command.

'fype miS'natch

A string variable name is assigned a numeric

value or vice versa; a function that expects

a numeric argur.1ent is given a string argt.nnent

or vice versa.

Out of string space

String variables exceed the allocated amount

of string space. Decrease the size and number

of strings, labels, or arrays.

String too long

'!he string was longer than 255 characters.

String formula too complex

A string expression is too long or too

complex. 'Ihe expression should be broken

into smaller expressions.

F-3

F-4

17

18

19

20

21

22

23

26

Can't continue

An attempt is made to continue a program

that:

a. has halted due to an error,

b. has been modified during a break in

execution, or

c. does not exist.

Undefined user function

A USR function is called before the function

definition (DEF statement) is executed.

No RESUME

An error trapping routine is entered but

contains no RESUME statement.

RESUME without error

A RESUME statement is encountered before an

error trapping routine is entered.

Unprintable error

An error message is not available for the

error condition which exists. '!his is

usually caused by an ERROR with an undefined

error code.

Missing operand

An expression contains an operator with no

operand following it.

Line buffer overflow

An attempt is made to input a line that has

too many characters.

FOR without NEXT

A FOR was encountered without a matching

29

30

NEXT.

WHILE without WEND

A WHILE statement does not have a matching

WEND.

WEND without WHILE

A WEND was encountered without a matching

WHILE.

<><><><><> AM9511 hardware is expected but

is not present <><><><><><>
No AM9511 in system and math overflow is

generated on all math functions.

***** ERROR 07 I/O TIME OUT CP0:

Line Printer is off line. Type Control-C to

abort.

*****NO RAM MEMORY-OR-BAD FIRST CHIP*****

The memory is incorrectly configured. PBASIC

stops execution ¥.hen this error occurs.

F-5

G-1

APPENDIX G

Assembly Language Subroutines

PB.ASIC has provisions for interfacing with assembly language subroutines. 'Ihe USR

function allows assembly language subroutines to be called in the same way BASIC's

intrinsic functions are called.

G.l MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine before it can

be loaded. During initialization, enter the highest memory location minus the

amount of memory needed for the assembly language subroutine(s). PB.ASIC uses all

memory available from its starting location up, so only the topnost locations in

memory should be set aside for user subroutines. 'Ihe assembly language subroutine

must be loaded into memory by PBASIC by means of the POKE statement.

When an assembly language subroutine is called, the stack pointer is set up for 8

levels (16 bytes) of stack storage. If more stack space is needed, PBASIC's stack

can be saved and a new stack set up for use by the assembly language subroutine.

PBASIC's stack must be restored, however, before returning from the subroutine.

G.2 USR FUNCTION CALLS

In PB.ASIC, the format of the USR function is

USR[<digit>] (argument)

If.here <digit> is from 0 to 9 and the argument is any numeric or string expression.

'Ihe parameter <digit> specifies which US.... routine is being called, and corre­

sponds with the digit supplied in the DEF USR statement for that routine. If

<digit> is omitted, USR0 is assumed. The address given in the DEF USR statement

defines the starting address of the subroutine.

G-2

When the USR function call is made, register A contains a value that specifies the

type of argument that was given. '!he value in A may be one of the following:

Value in A Type of Argument

2 Two-byte integer (two's complement)

3 String

4 Single precision floating point number

8 J::X>uble precision floating point number

If the argument is a number, the [H,L] register pair points to the Floating Point

Accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and

FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

FAC-2 contains the middle 8 bits of mantissa and

FAC-1 contains the highest 7 bits of mantissa

with leading 1 suppressed (implied). Bit 7 is

the sign of the number (0=positive, l=negative).

FAC is the exponent minus 128, and the binary

point is to the left of the most significant

bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes

of mantissa (FAC-7 contains the lowest 8 bits).

G-3

If the argument is a string, the [D,E] register pair points to 3 bytes called the

"string descriptor." Byte 0 of the string descriptor contains the length of the

string (0 to 255). Bytes 1 and 2, respectively, are the lower and upper 8 bits of

the string starting address in string space.

CAUTION: If the argument is a string literal in the program, the string descrip­

tor will point to program text. Be careful not to alter or destroy your program

this way. 'Ib avoid unpredictable results, add +"" to the string 1i teral in the

program. Example:

A$ = "PBASIC"+""

'!his will copy the string literal into string space and will prevent alteration of

program text during a subroutine call.

G.3 CALL STATEMENT

PBASIC user function calls may also be made with the CALL statement. A CALL

statement with no arguments generates a simple "CALL" instruction. '!he corre­

sponding subroutine should return via a simple "RET." (CALL and RET are Z80

instructions, see a Z80 programming manual for details.)

A subroutine CALL with arguments results in a somewhat more complex calling

sequence. For each argument in the CALL argument list, a parameter is passed to

the subroutine.

G-4

That parameter is the address of the low byte of the argument.

parameters always occupy t'i\Q bytes each, regardless of type.

Therefore,

The method of passing the parameters depends upon the number of parameters to

pass:

1. If the number of parameters is less than or equal

to 3, they are passed in the registers. Parameter

1 will be in HL, 2 in DE (if present), and 3 in BC

(if present).

2. If the number of parameters is greater than 3, they

are passed as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data

block. BC will point to the low byte of this

data block (i.e., to the low byte of parameter

3) •

Note that, with this scheme, the subroutine must know how many parameters to ex­

pect in order to find them. Conversely, the calling program is responsible for

passing the correct number of parameters. There are no checks for the correct

number or type of parameters.

If the subroutine expects more than 3 parameters, and needs to transfer them to a

local data area, there is a system subroutine which will perform this transfer.

'Ihis argument transfer routine is named $AT, and is called with HL pointing to the

local data area, BC pointing to the third parameter, and A containing the number

of arguments to transfer (i.e., the total number of arguments minus 2). 'Ihe sub­

routine is responsible for saving the first t'i\Q parameters before calling $AT.

For example, if a subroutine expects 5 parameters, it should look like:

G-5

SUBR: LD (Pl) ,HL ;SAVE PARAMETER 1

EX DE,HL

LD (P2),HL ;SAVE PARAMETER 2

LD A,3 ;NO. OF PARAMETERS LEFT

LD HL,P3 ;POINTER TO LOCAL AREA

CALL $AT ;TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

RET ;RETURN TO CALLER

Pl: DEFS 2 ;SPACE FOR PARAMETER 1

P2: DEFS 2 ;SPACE FOR PARAMETER 2

P3: DEFS 6 ;SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine AT follows.

00100 ; AffiUMENT TRANSFER

00200 ; [B ,C] POINTS TO 3RD PARAM.

00300 ; [H,L] POINTS TO LOCAL STORAGE FOR PARAM 3

00400 ; [A] CONTAINS THE #: OF PARAMS TO XFER (TOTAL-2)

00500

00600

00700 ENTRY $AT

00800 $AT: EX DE,HL ;SAVE [H,L] IN [D,E]

00900 LD H,B

01000 LD L,C ; [H,L] = PTR TO PARAMS

01100 AT!: LD C, (HL)

01200 INC HL

01300 LD B, (HL)

01400 INC HL ; [B,C] = PARAM ADR

01500 EX DE,HL ; [H,L] POINTS TO LOCAL STORAGE

01600 LD (HL) ,C

G-6

01700 INC HL

01800 LD (HL} ,B

01900 IOC HL ; STORE P.l\RAM. IN LOCAL AREA

02000 EX DE,HL ;SINCE GOING BACK TO AT!

02100 DEC A ;TRANSFERRED ALL PAR.AMS?

02200 JR NZ,ATl ;NO, COPY MORE

02300 RET ; YES, RETURN

When accessing parameters in a subroutine, don't forget that they are pointers to

the actual arguments passed.

NOTE:

It is entirely up to the programmer to see to it that the arguments in the calling

program match in number, type, and length with the parameters expected by the sub­

routine. 'This applies to PBASIC subroutines, as well as those written in assembly

language.

G.4 INTERRUPTS

Assembly language subroutines can be written to handle interrupts. All interrupt

handling routines should save the stack, registers A-L, IX, IY, and the PSW.

Interrupts should always be re-enabled before returning from the subroutine, since

an interrupt automatically disables all further interrupts once it is received.

'!he user should be aware of which interrupt vectors are free.

H-1

APPENDIX H

ASCII Character Codes

ASCII ASCII ASCII

Code Character Code Character Code Cllaracter

000 NUL 043 + 086 v
001 SOH 044 I 087 w
002 STX 045 088 x
003 ETX 046 089 y
004 EQT 047 I 090 z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094
009 HT 052 4 095 -
010 LF 053 5 096 0

011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 so 057 9 100 d
015 SI 058 101 e
016 DLE 059 ; 102 f
017 DCl 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 E'IB 066 B 109 m
024 CAN 067 c 110 n
025 EM 068 D 111 0

026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 F'S 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 us 074 J 117 u
032 SPACE 075 K 118 v
033 076 L 119 w
034 II 077 M 120 x
035 # 078 N 121 y
036 $ 079 0 122 z
037 % 080 p 123 {
038 & 081 Q 124 I
039 082 R 125 }
040 (083 s 126
041 } 084 T 127 DEL
042 * 085 u

ASCII codes are in decimal.

LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

MOSTEI<®
1215 W. Crosby Rd.• Carrollton, Texas 75006 • 214/323-6000

In Europe, Contact: MOSTEK Brussels
150 Chaussee de la Hulpe, 81170, Belgium;

Telephone: 660.69.24

. -

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed
to be accurate and reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties
resulting from its use. No license is granted under any patents or patent rights of Mostek.

PRINTED IN USA January 1981
Publication No. MK79874

Copyright 1981 by Mostek Corporation
All rights Reserved

