
MOSTEK PROCESS BASIC
Version O.A

Reference Manual
Ccpyright 1980 BY MOSTEK CORPORATION

...

ALL RIGHTS RESERVED

Published by MOSTEK Corporation with the permission of MICROSOFT.

1

Mostek reserves the right to make changes in specifications at any time.
and without notice: The information furnished by Mostek in this
publication is believed to be accurate.and reliable. However, no
responsibility is assumed by Mostek for its use, nor for any
infringements of patents or other rights of third parties resulting
from its use. No license is granted under any patents or patent rights
of Mostek.

Publication No. MK79874

PARAGRAPH
NUMBER

l
l.l
1.2
1.3
1.3.1
1.4
1.4.1
1.5
1.5.l
1.6
1.6.l
l.6.2
1.7
1.8
1.8.1
1.8.1.1
1.8.1.2
1.8.2
1.8.3
1.8.4
1.8.5
1.8.6
1.9
1.10

2
2.1
2.2
2.3
2.4
2.s
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26

TABLE OF CONTENTS

TITLE

GENERAL INFORMATION ABOUT PBASIC
INITIALIZATION

MODES OF OPERATION
LINE FORMAT

LINE NUMBERS
CHARACTER SET

Control Characters
CONSTANTS

SINGLE AND DOUBLE. PRECISION NUMERIC CONSTANTS
VARIABLES

VARIABLE NAMES AND DECLARATION CHARACTERS
ARRAY VARIABLES

TYPE CONVERSION
EXPRESSIONS AND OPERATORS

Arithmetic Operators
Integer Division And Modulus Arithmetic
Overflow And Division By %ero

Relational Operators
Logical Operators
Functional Operators
String Operations

OPERATOR PRECEDENCE
INPUT EDITING
ERROR MESSAG~

PBASIC COMMANDS AND STATEMENTS
AUTO
CALL
CLEAR
CONT
DATA
DEF F.N
DEFINT/SNG/DBL/STR
DEF USR
DELETE
DIM
EDIT
END
ERASE
ERR AND ERL VARIABLES
ERROR
FOR ••• NEXT
GETCLK
GOSUB ••• RETURN
GOTO
IF ••• THEN[••• ELSEl
IF ••• GOTO
INPUT
LET
LINE INPUT
LIST
LLIST

i

PAGE
NUMBER

1-1
1-2
1-2
1-2
1-2
1.-3
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-9
1-10

. 1-10
1-11
1-13
1-13
1-14
1-15
1-15

2-2
2-3
2-4.
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-16
2-17
2-18
2-19
2-21
2-23
2-24
2-25
2-26
2-26
2-28
2-30
2-31
2-32
2-34

ii

PARAGRAPH
NUMBER
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

TABLE OF CONTENTS

TITLE
LPRINT AND LPRINT USING
MID$
NEW
NULL
ON ERROR GOTO
ON ••• GOSUB
ON ••• GOTO
OPTION BASE
OUT
POKE
PP ROM
PRINT
PRINT USING
RANDOMIZE
READ
REM
RENUM
RESTORE
RESUME
RP ROM
RUN
SETCLK
STOP
SWAP
TRON/TROFF
WAIT
WHILE ••• WEND
WIDTH
WRITE

PBASIC FUNCTIONS
ABS
ASC
ATN
BCD
BIN
CDBL
CHR$
CINT
cos
CSNG
DATE$
EXP
FIX
FRE
HEX$
INP
INPUT$
INSTR
INT
LEFT$
LEN
LOG

PAGE
NUMBER

2-35
2-36
2-37
2-38
2-39
2-40
2-40
2-41
2-42
2-43
2-44
2-47
2-49
2-53
2-54
2-56
2-57
2-58
2-59
2-60
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71

3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23

PARAGRAPH
NUMBER
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44

A
A.l
A.l.l
A.1.2
A.2
A.3

! B
B.l

' B.1.1
J B.1.2

B.1.3
' B.1.4

B.l.S

i c
C.l

' C.2

D
J D.l

D.1.1
n D.1.2
u D.2

TITLE
LPOS
MID$
OCT$
PEEK
POS
RIGHT$
RND
ROTATE
SGN
SHIFT
SIN
SPACE$
SPC
SQR
STR$
STRING$
TAB
TAN
TIME$
USR

TABLE OF CONTENTS

;
VAL
VARPTR

l
SYSTEM CONFIGU~TION

MEMORY LAYOUT
PBASIC INTERPRETER
PBASIC APPLICATION PROGRAM

HARDWARE CONFIGURATION
BOARD LEVEL DOCUMENTATION

SYSTEMS GENERATION
PBASIC INTERPRETER

INITIAL PROGRAM DEVELOPMENT
PROMMING APPLICATION PROGRAM
RONNING PROM APPLICATION IN DEVELOPMENT
READING PROMMED APPLICATION INTO RAM
AUTOMATIC RUNTIME MODE

INTEGRITY TEST
INTEGRITY TEST PURPOSE
INTEGRITY TEST SCHEME

MATHEMATICAL FUNCTIONS

iii

PAGE
NUMBER

3-24
3-25
3-26
3-27
3-28
3-29
3-30
3.-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44

. 3-45

A-1
A-1
A-1
A-3
A-l

B-I
B-1
B-1

CONFIGURATION B-1
B-1
B-2

C-1
C-1

D-1 PBASIC MATH VERSIONS
PBASIC SOFTWARE C S/W)
PBASIC HARDWARE CH/W)

DERIVED FUNCTIONS

MATH VERSION CPBASIC) 0-1
9511 MATH VERSION CPBASIC/9511) D-1

D-1

Converting Programs to PBASIC
STRING DIMENSIONS
MULTIPLE ASSIGNMENTS
MULTIPLE STATEMENTS
MAT FUNCTIONS

E-1
E-1
E-2
E-2

iv
TABLE OF CONTENTS

PARAGRAPH
NUMBER TITLE

F

G
G.l
G.2
G.3
G.4

H

Summary of Error Codes and Error Messages

Assembly language Subroutines
MEMORY ALLOCATION
USR FUNCTION CALLS
CALL STATEMENT
INTERRUPTS

ASCII Character Codes

....

PAGE
NUMBER

G•l
G-1
G-2
G.-4

I-1

INTRODUCTION

MOSTEK PROCESS BASIC, or PBASIC, is the most extensive implementation
of a Process Control BASIC available for the Z80 microprocessor.
PBASIC provides the process control user with a non-volatile, ROMable,
monitor which in turn has the added capability of placing the
application program into PROM. This provides for a completely
non-volatile system that can be executed by simply turning on the
power. PBASIC is a stand-alone executive and requires no operating
system interface to execute.

MOSTEK PBASIC is an extended implementation of Microsoft BASIC-80
version s.o for the zao microprocessor, and is among the fastest
microprocessor BASICs available.. PBASIC is implemented as an .
interpreter and is highly suitable for user interactive processing.
Programs and data are stored in a compressed internal format to
maximize memory utilization. In a 64k system, up to 28k bytes of
memory are available for the user's program and data. ...

This manual is divided into three chapters plus a number of appendices.
Chapter 1 covers the representation of information utilized by PBASIC.
Chapter 2 contains the syntax and. semantics of every command and
statement in PBASIC, ordered alphabetically. Chapter 3 describes all
of PBASIC's intrinsic functions" also ordered alphabetically. The
appendices contain information on system configuration, system
generation, math functions, and integrity test; plus lists of error
messages, ASCII codes, and helpful information on assembly language
subroutines.

I-2

MOST EK

ZSO MICROCOMPUTER SYSTEMS

PROCESS BASIC SOFTWARE INTERPRETER

FEATURES

• Extensive Process Control Features

• Occupies 24k bytes and can execute out of PROMs

• Program and Read Application in/out of PROMs.

• Optional. High-Speed Math Version util.izing MDX-Math card

• Stand-alone operation,. i.e. requires no operating system
. ..,

• Insures program integrity

• Debug or Runtime execution on power-up

• Direct access to CPU I/O Ports

• Ability to read or write any memory location CPEEK, POKEl

• Arrays with up to 255 dimensions

• Dynamic allocation and de-allocation of arrays

• IF ••• THEN ••• ELSE and IF ••• GOTO (both if's may be nested)

• WHILE ••• WEND structured construct

• Direct (immediate) execution of statements

• Error trapping, with error messages in English

• Four variable types: Integer, string,. single and double precision real

• Long variable names significant up to 40 characters

• Full PRINT USING capabilities for formatted output

• Extensive program editimg facilities

• Trace facilities

• Ability to call any number of assembly language subroutines

• Supports console and line pri~ter I/O

I-3

LANGUAGE COMMANDS SUMMARY

Commands:

AUTO CLEAR CONT DELETE EDIT
LIST LL I ST NEW NULL PP ROM
RENUM RP ROM RUN TROFF TRON
WIDTH

Program Statements:

CALL DEFDBL DEF FN DEF INT DEFSNG
DEFSTR DEFUSR DIM END ERASE
ERROR FOR ••• NEXT' GETCLK GOSUB ••• RETURN . GOTO
IF ••• THEN(ELSE) IF ••• GOTO LET ON ERROR GOTO ON ••• GOSUB
ON ••• GOTO OPTION BASE POKE RANDOMIZE REM
RESUME SETCLK STOP SWAP WAIT
WHILE END

Input/Output Statements:

DATA INPUT. LINE INPUT LP RI NT LPRINT USING
OUT' PRINT PRINT USING READ RESTORE
WRITE

I Operators:

= + * I
\ > < <=

>= <> MOD NOT AND
OR XOR IMP EQU

Arithmetic Functions:

ABS ATN BCD BIN CDBL
CINT cos CSNG · ERL. ERR
EXP FIX FRE INT LOG
PEEK RND ROTATE SGN SHIFT
SIN SQR TAN USR VARPTR

String Functions:

ASC CHR$ DATE$ HEX$ INSTR
l LEFT$ LEN MID$ OCT$ RIGHT$
J SPACE$ STR$ STRING$ TIME$ VAL

: Input/Output Functions:

INP INPUT$ LPOS POS SPC
l TAB

1-1

CHAPTER l

GENERAL INFORMATION ABOUT PBASIC

1.1 INITIALIZATION

At system power-up, PBASIC checks to see if application source RAM or. a
valid PROM application is present. If neither of these are resident,
then the following unrecoverable error message is printed:

***** NO RAM MEMORY OR - BAD FIRST CHIP *****

The user must supply RAM or a valid PROMed application for PBASIC to
execute.

PBASIC can start execution in either a Debug or Runtime configuration.
In the Debug configuration the system initializes for operator~
interface. In the Runtime configuration the system initializes to
start executing the application program that currently resides in the
system. The selection of Debug/Runtime configuration is determined by
hardware CH/W) strapping OOOOH/EOOOH (HEX) execution address
respectively.

On Debug system power-up, PBASIC prints the appropriate sign-on message
to the console for either the software Math version as follows:

PBASIC REV 1.0
MOSTEK PROCESS CONTROL BASIC
COPYRIGHT 1980 CC) BY MOSTEK CORP.

or for the hardware 9511 Math version:

PBASIC/9511 REV 1.0
MOSTEK PROCESS CONTROL BASIC W/9511
COPYRIGHT 1980 CC) BY MOSTEK CORP.

The difference in the two versions is the software Math version
simulates all math functions via software routines and the hardware
Math version requires an AM9511 math processor board (MDX-MATH) • If
the AM9511 is not present, when executing the hardware Math version,
the error message

<><><> AM9511 H/W NOT PRESENT <><><>

is output to the terminal and all math operations will result in an
"Overflow)f' error condition. The MDX-MATH must be present for the
PBASIC/9511 version to operate properly.

The sign-on message is followed by the number of free bytes which
represent the amount of RAM space available for PBASIC program and/or
string variable storage. The user may now enter PBASIC commands or
statements.

1-2

On Runtime power-up, PBASIC does not print the sign-on message and·
starts immediate execution of the application program currently
residing in non-volatile memory.

1.2 MODES OF OPEBATION

When PBASIC is initialized,. it type~ the prompt "Ok"~ This means
PBASIC is at command level, that is, it is ready to accept commands.
At this point, PBASIC may be used in either of two modes: the
direct mode· or the indirect mode.

In the direct mode,. PBASIC statements and commands are not preceded
by line numbers, and are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and
stored for later use. The last entered instruction may be retrieved by
typing Control-A, but. previously entered lines are not saved. . This
mode is useful f o:r: debugging and. for using PBASIC as a
"calculator" for quick computations· that do not require a complete
program.

. ...
The indirect mode is the mode used for entering programs. Program
lines are preceded by line numbers and· are stored in memory. The
program stored in. memory is executed by entering the RON command.

1.3 LINE FOBMAT

Program. lines in a PBASIC program have the following format (square
brackets [J indicate optional user specified data):

nnnnn PBASIC statement?.-C:PBASIC statement ••• l <carriage return>

At the programmer•s option, more than one PBASIC statement may be
placed on a line, but each statement on a line must be separated from
the last by a colon.

A PBASIC program. line always begins with a line number, ends with a
carriage return, and may contain a maximum of 255 characters.

In PBAS'IC, it is possible to extend a logical line over more than one
physical line by use of the terminar•-s. <line feed> key. <Line feed>
lets you continue typing a logic-al line on the next physical
line without entering a <carriage return>.

!.3 1 1 LIQ NUffBERS

Every PBASIC program line begins with a l.ine number. Line numbers
indicate the order in which the program lines are stored in memory
and are also used as references when branching and editing.
Line numbers must be in the rang.e a to 65529. A period C .J may be used
in EDI'!',. LIS'!', LLIS'!', AUTO and DELETE commands to refer to the current
line.

1.4 CHARAc:TEB SET

The PBASIC character set is comprised of alphabetic characters,
numeric characters and special characters.

1-3

The alphabetic characters in PBASIC are the upper case and lower case
letters of the alphabet. All lower case characters are converted to
upper case, except those within a string constant or a remark.

The numeric characters in PBASIC are the digits 0 through 9.

The following special characters and terminal keys are recognized
by PBASIC:

Character Name

+

*
I ...
(
)

%
i
$
1
[
]
,
•
I . , . .
&
?
<
>
\
@

<rubout>
<escape>

<tab>

<line feed>

<carriage
return>

Blank
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number or pound sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point

....

Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-s.ign
Underscore
Deletes last character typed.
Escapes Edit Mode subcommands.
See Section 2.11
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line without
terminating current line·.

Terminates input of a line.

1 I.4.1 Control Charac;ters

1 The following control characters are recognized by PBASIC:·

Control-A

Control-C

Enters. Edit Mode on the line typed or being typed.

Interrupts program execu·tion and returns to
PBASIC command level. The direct command CONT

1-4

Control-G

Control-H

Control-I

Control-0

Control-R

Control-S

Control-U

1.5 CONSTANTS

resumes execution if the program has not been modified.

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program output while execution continues.
A second Control-0 restarts output to the_ terminal ..

Retypes the line that is currently being
typed.

suspends program execution. Any subsequent character
resumes execution.

Deletes the line that is currently being
typed.

Constants are the actual. values PBASIC uses during execution. There
are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. Double quotation characters can
only be placed into a string expression with the CHR$ and STRING$
functions, see Sections 3.7 or 3.38 respectively. Examples of string
constants:

"HELLO"
"$25,000.00"
"Number of. Employees•
"STRING"

Numeric constants are positive or negative numbers. Numeric constants
in PBASIC cannot contain commas. There are five· types of numeric
constants:·

1. Integer Constants

Whole numbers between -32768 and +32767 •. Integer constants do not have
decimal points.

2. Fixed Point Constants

Positive or negative real numbers, i.e., numbers that contain decimal
points.

3. Floating Point Constants

Positive or negative numbers represented in exponential form (similar
to scientific notation). A floating point constant consists of an
optional signed inte9er or fixed point number Cthe mantissa) followed
by the letter E and an optionally signed integer (the exponent) .. For

the range of single and double precision values, see Appendix D.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

1-5

(Double precision floating point constants use the letter D instead of
E. See Section 1.5.1)

4. Hex Constants

Hexadecimal numbers with the pref ix &H.

Examples:

&H76
&H32F

s. Octal Constants

Octal numbers with the pref ix &O or &.

Examples:

&0347
&1234

1.5.1 SINGLE AND DQOBLE PRECISION NQMERIC CONSTANTS

Numeric constants may be either. single precision or double precision
numbers. With double precision, the numbers are stored with 16 digits
of precision, and printed with up to 16 digits.

A single precision constant is any numeric constant that has:

1. seven or fewer digits, or

2. exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant that has:

1. eight or more digits, or

2. exponential form using o, or

3. a trailing number sign (#)

Examples:

Single Precision Constants Double Precision Constants

1-6

46.8
-l.09E-06

3489.0
. 22 .51

1.6 VARIABLES

345692811
-l.094320-06

3489.0t
7654321.1234

Variables are names used to represent values that are used in a _
PBASIC program. The value of a variable may be assigned explicitly by
the programmer, or it may be assigned as the result of calculations
in the program. Before a variable is assigned a value, its value is
assumed to be zero.

1.6.1 VARIABLE NAMES AND PECLABATION CBABACTERS

PBASIC variable names may be up to 40 characters in length.
characters allowed in a. variable name are letters, numbers
decimal point. The first character must "'be a letter.
type declaration characters are also allowed -- see below.

The
and the
~special

A variable name may not be a reserved word, however embedded reserved
words are allowed. If a variable begins with FN, it is assumed to be
a call to a user-defined function. Reserved words include 1 all PBASIC
commands, statements, function names and operator names. I

j

Varia~les may represent either a numeric value or a string, String
variable names are written with a dollar sign ($) as the last
character. For example: A$ = •sALES REPORT"'. The dollar sign is a
variable type declaration character, that is, it •declares" that the
variable will represent a string.

Numeric variable names ma.y declare integer, single or double precision
values. The type declaration characters for these variable names are
as follows:

% Integer variable

! Single precision variable

t Double precision variable

The default type for a numeric variable name is single
precision.

Examples of PBASIC variable names follow.

PI#
MINIMUM!
LIMIT%
N$
ABC

declares a double precision value
declares a single precision value
declares an integer value
declares a string value
represents a single precision value

There is a second
statements DEFINT,

method
DEFSTR,

to declare variable types. PBASIC
DEFSNG and DEFDBL may be included in the

program to declare the types for certain variable names. These
statements are described in detail in Section 2.7.

1.6.2 ARRAY VABIAaLES

l-7

An array is a group or table of values referenced by the same
variable name. Each element in an array is referenced by an array
variable that is subscripted with integers or integer expressions.
An array variable name has as many subscripts as there are
dimensions in the array. For example VC10) would reference a value
in a one-dimensional array, TCl,4) would reference a value in a
two-dimensional array, and so on.

1.7 TXPE COIDTERSION

When necessary, PBASIC will convert a numeric constant from one type
to another. The fallowing rules and e·xamples should be kept in
mind.

1. If a
variable
declared
equal to
occurs.>

numeric constant of one type is set equal to a numeric
of a different type, the number will be stored as the type

in the variable name. Cif a string variable is set
a numeric value or vice versa, a "Type mismatch" error.

Example:

10 A%= 23 •. 42
20 PRINT A%
RUN

23

, 2. During expression evaluation,_ all of the operands in an
arithmetic or relational operation are converted to the same degree
of precision, i.e., that of the most precise operand. Also, the
result of an arithmetic operation is returned to this degree of
precision.

Examples:

10 Dt = 6t/7
20 PRINT Di
RUN

.8571428571428571

10 D = 6#11
20 PRINT D
RUN

.857143

The arithmetic was performed
in double precision and the
result was returned to Dt
as a double precision value.

The arithmetic was performed
in double precision and the
result was returned to D (single
precision variable), rounded and
printed as a single precision
value.

1 3. Logical operators (see Section 1.8.3) convert their operands to
integers and return an integer result. Operands must be in the range

1-8

-32768 to 32767 or an "Overflow• error occurs.

4. When a floating point value is converted to an integer, the
fractional portion is rounded.

Example:

10 C%= 55.88
20 PRIN'l' C%
RUN

56

5. If a double precision variable is assigned a single pre.cision
value, only . the first seven digits, rounded, of the converted
number will be valid. This is because only seven digits of
accuracy were supplied with the single precision value. The
absolute value of the difference between the printed double
precision number and the original single precision value will be
less than 5.97E-8 times the original single precision value.

Example:

10 A• 2.04
20 Bt • A
34 PRINT AJBi
RON

2.01 2.039999961853027

1.8 EXPRESSIONS AND OPEBATQRS

~ ~

An expression may be simply a string or numeric constant, or a
variable, or it may combine constants and variables with operators to
produce a. single value.

Operators perform mathematical or logical operations on values.
The operators provided by PBASIC are divided into four categories:

l. Arithmetic

2. Relational

3. Logical

4. Functional

1.8.l Arithmetic Operators

The arithmetic operators in order of precedence are:

Operator Operation Sample Expression

*,I

\

MOD

+,-

Exponentiation

Negation

Multiplication, Floating
Point Division

Integer Division

Modulus Arithmetic

Addition, subtraction

X"Y

-x
X*Y
X/Y

X\Y

X MOD Y

X+Y

To change the order in which the operations are performed, use

1-9

parentheses. Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is maintained.
Here are some sample algebraic expressions and their PBASIC
counterparts.

Algebraic Expression

X+2Y

x- y

XY

X+Y

z
2 y

ex >

z
y

x
XC-Y)

....
PBASIC Expression

X+Y*2.

x~Y/Z

X*Y/Z

(X+Y)/Z

CX"2J "'y

X*C-Y) Two consecutive
operators must
be separated by
parentheses.

1.8.1.1 Integer Division And Modulus Arithmetic

" Two additional operators are available: integer division and modulus

1-10

arithmetic.

Integer division is denoted by
are rounded to integers (must
before the division is performed,
integer. For example:

the backslash (\}. The operands
be in the range -32768 to 32767)
and the quotient is truncated to an

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is
multiplication and floating point division.

just after

Modulus arithmetic is denoted by the operator MOD. It gives the
integer value that is the remainder of an integer division. For
example:

10.4 MOD 4 = 2 Cl0/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

l.S.1.2 Overflow And Division By Zero

If, during the evaluation of an expression, a division by zero is
encountered, the •Division by zero• error message is displayed, machine
infinity with the sign of the numerator is supplied as the result
of the division, and execution continues. If the evaluation of an
exponentiation results in zero being raised to a negative power, the
•Division by zero• error message is displayed, positive machine
infinity is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the •overflow• error message.. is displayed,
machine infinity with the algebraically correct sign is supplied as
the result, and execution continues.

1.8.2 Relational Operators

Relational operators are
the comparison is either
may then be used to
(See IF, Section 2.20.)

used to compare two values. The result of
•true• C-1) or •false• CO>. This result
make a decision regarding program flow.

Operator Relation Tested Expression

= Equality X=Y

<> Inequality X<>Y

n

l;

1-11

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

{The equal sign is also used to assign a- value to a variable.
See LET, Section 2..23) When arithmetic and relational operators are -
combined in one expression,. the arithmetic is always performed first.
For example, the expression

X+Y < ('l'-1)/Z

is true if the· value of X plus Y is less than the value of T-1
divided by z. More examples:

IF SINCX)<O GOTO 1000
IF I MOD J <> 0 THEN K=K+l ...

1.8.3 Logiqal Qperators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator returns a
bitwise result which is either •true• Cnot zero) or •false• <zero).
In an expression, logical operations are performed after arithmetic and
relational operat.ions. The outcome of a logical operation is
determined as shown in the· following. table. The operators are
listed in order of precedence~

NO'l'
x NO'l' .X
l 0
0 I

AND
x y X ANDY
1 1 1
l 0 0
0 l o·
0 0 0

OR
x y X OR Y
l 1 1
l 0 1
a 1 l
a 0 0

XOR
x y X XOR Y
l l 0
1 0 l

1-12

0 1 1
0 0 0

IMP
x y x IMP Y
1 1 1
l 0 0
0 1 1
0 0 I

EQV
x y x Eov· Y
1 1 1
1 0 0
0 l 0
0 0 1

can be used. to make decisions
operators can connect two or more

false valile to be used. in i

Just as the relational operators
regarding program flow, logical
relations and return a true or
decision Csee IF, Section 2.20). For example:

IF 0<200 AND F<4 THEN 80
IF I>lO OR K<O THEN 50

IF FOPEN THEN 200
IF NOT p THEN 100 Ii

Logical operators work by converting their operands to sixteen
bit, signed, two's complement integers in the range -32768 to +32767.
Cif the operands are not in this range, an error results.> If both
operands are supplied as O or -1, logical operators return O or -1.
The given operation is performed on these integers in bitwise
fashion, i.e., each bit of the result is determined by the
corresponding bits in the two·operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be
used to "mask" all but one of the bits of a status byte at a machine
I/O port. The OR operator may be used to "merge" two bytes to create
a particular binary value. The following examples will help
demonstrate how the logical operators work.

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14. (binary 1110)

-1 = binary llllllllllllllll and
8 = binary 1000, so -1 AND 8 = 8

4 =binary 100 and 2 =binary 10,
so 4 OR 2 • 6 Cbinary 110)

10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 OR -2=-l

NOT X=-CX+l)

-1 = binary 1111111111111111 and
-2 =binary 1111111111111110,
so -1 OR -2 = -1. The bit
c6mplement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.

The two's complement of any integer
is the bit complement plus one.

1.8.4 Functional Operators

1-13

A function is used in an expression to call a predetermined operation
that is to be performed on an operand.. PBASIC has •intrinsic".
functions that reside in the system, such as SQR (square root) or
SIN Csine). All of PBASIC's intrinsic functions are described in
Chapter 3. PBASIC also allows •user def ined0 functions that are
written by the programmer. See DEF FN, Sect.ton 2.6.

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 A$="FILE• : B$="NAME 0

20 PRINT A$ + B$:
30 PRIN'l' "NEW " + A$ + B$
RUN
FILENAME
NEW FILENAME

Strings 111ay be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

J String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are

1 the same, the strings are equal. If the ASCII codes differ, the
lower code number precedes the higher. If, during string comparison,
the end of one string is reached, the shorter string is said to
be smaller. Leading and trailing blanks are significant. Examples:

"AA" < •AB•
"FILENAME• = "FILENAME•
•xs.• > •xt •
"CL • > "cL•
"kg• > "KG•
"SMYTH• < •sMYTHE"
B$ < "9/12/78" where B$ = "8/!2/78"

r Thus, string comparisons can be used to test string values or
· alphabetize strings. All string constants used in comparison

to

1-14

expressions must be enclosed in quotation marks.

1.8.6 OPE2ATQR PRECEPSNCE

The numeric operators in order of precedence are:

Operator Operation Sample Expression

*,/

\

MOD

+,-

=,<>,>,<,
<=,>=

NOT

AND

OR

XOR

IMP

EQV

intrinsic £.unction

exponentiation

negation

Multiplication, floating
point division

integer division ...

modulus

addition, subtraction

equal, not equal,
greater,less,less than or
equal, greater than or
equal

ones complement

logical conjunctive

inclusive or

exclusive or

implication

equivalence

SQR(X)

X"Y

-x
X*Y

X\Y

X MOD Y

X+Y

X>Y

NOT X

X AND Y

X OR Y

X XOR Y

X IMP Y

X EQV Y

The string operators in order of precedence are:

Operator

+

=,<>,<,>,
<=,>=

Operation

intrinsic function

concatenation

equal, not equal,
less, greater, less than
or equal, greater than
or equal

Sample expression

LEFT$ C"ABC",2)

"ABC" + "DEF"

1-15

1.9 INPUT EPITING

If an incorrect character is entered as a line is being typed, it
can be deleted with the RUBOUT key or with Control-H. Rubout
surrounds the deleted characterCs> with backslashes, and Control-a
has the effect of backspacing over a character and erasing it.. Once
a characterCs> has been deleted, simply continue typing the line as
desired.

-To delete a line that is in the process of being typed, type Control-U.
A carriage return is executed automatically after the line is
deleted.

To correct program lines for a program that is cur.rently in memory,.
simply retype the line using the same line number. PBASIC will
automatically replace the old line with the new line.

More sophisticated editing capabilities are provided in the EDIT
command, see Section 2.11. ...

To delete the entire program that is.currently residing in memory,
enter the NEW command. (See Section 2.29) 'NEW is usually used to
clear memory prior to ente·ring a new program.

1.10 ERRQR MES$AGES

If PBASIC detects an error that causes program execution to terminate,.
an error. message is printed... For a complete list of PBASIC error
codes and error messages see Appendix F.

CHAPTER 2

PBASIC COMMANDS AND STATEMENTS

All of the PBASIC commands and statements are described in this
chapter. Each description is formatted as follows:

FORMAT;

2-1

Shows the correct format for the instruction. See below for format
notation.

PURPOSE:

Tells what the instruction is used for.

REMARKS:
Describes in detail how the instruction is used.

EXMPLE:

Shows sample programs or program segments that demonstrate the !use of
the instruction. i

NOTE:

Any additional information pertinent to that instruction.

Format Notation

Wherever the format for a statement or command is given, the following
rules apply:

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets << >> are to be supplied by the user.

3. Items in square brackets < [l> are optional..

4. The slash (/) character indicates alternation:
a choice between two or more items.

S. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

6. Items followed by an ellipsis C ••• > may be repeated
any number of times Cup to the length of the line).

2-2

2.1 AUTO

FORMAT:

AUTO [<line number>C,<increment>ll

PURPOSE:

To generate a line number automatically after every carriage return.

REMARKS;

AUTO begins numbering at <line number> and increments each subsequent
line number by <increment>. The default for both values is 10. If
<line number> is followed by a comma but <increment> is not specified,
the last increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk
is printed after the number to warn the user that any input will
replace the existing line. However, typing a carriage return
immediately after the asterisk will save the line and generate the next

-line number.

AUTO is terminated by typing Control-C. The line in which Control-C is
typed is not saved. After Control-C is typed, PBASIC returns to
command 1 evel .•

NOTE:

This command is not allowed within the source program when executing
PPROM Csee Section 2.37).

EXAMPLE:

AUTO
10 • •·.
20 •••
30
40 •••

•

AUTO 100,50
100 .. ·-.
150
200 •••
250 . ·-.

•
•

Generates the following:

Generates the following:

'1

J

2-3

2.2 CALL

FORMT:

CALL <variable name> [«argument list» l

PURPOSE:

To call an assembly language subroutine.

REMARKS:

The CALL statement is one way to transfer program flow to an assembly
language subroutine. (Also see the USR function, Section 3.42)
<variable name> is a numeric variable that contains an address that is
the starting point in memory of the subroutine. <variable name> may
not be an array variable name. <argument list> contains the arguments
that are passed to the assembly language subroutine. See Appendix G.
for a discussion of the linkage between PBASIC and assembly language
routines.

EXMPLE:

110 MYROOT=&HDOOO
120 CALL MYROO'r(I,J,K)
• ..
,,

2-4

2.3 CLEAR

FORMAT:

CLEAR

PURPOSE:

To set all numeric variables to zero and all string variables to null.

EXAMPLE:

10 A$="STRING":B=10
20 PRINT A$,B
30 CLEAR
40 PRINT A$,B
RUN
STRING 10

0
Ok

2-s

2.4 CONT

FORHAT:

CONT

PURPOSE:

To continue program execution after a Control-C has been typed, or a
STOP or END statement has been executed.

REMARKS;

Execution resumes at the point where the break occurred. If the break
occurred after a prompt from an INPUT statement, execution continues
with the reprintinq of the prompt C? or prompt string).

~-

CONT is usually used in conjunction with STOP for debugging. When
execution is stopped, intermediate values may be examined and changed
using direct mode statements. Execution may be resumed with CONT or a
direct mode GOTO, which resumes execution at a specified line number.

NOTE:

CONT is invalid if the program has been modified during the break.

J EXAffPLE:

1 See example Section 2.49, STOP.

LJ

[

(

[

2-6

2.5 DA'l'A

FORl@.T:

DATA <list of constants>

PURPOSE:

To store the numeric and string constants that are accessed by the
program's READ statementCs>. (See READ, Section 2.41)

REMARKS:

DATA statements are nonexecutable and may be placed anywhere in the
program. A DATA statement may contain as many constants as will fit
on a line {separated by commas>, and any number of DATA statements may
be used in a program. The READ statements access the DATA statements
in order Cby line number) and the data contained therein may be
thought of as one continuous list of items, regardless of how many
items are on a line or where the lines are placed in the program.

<list of constants> may contain numeric constants in any format, i.e.,
fixed point, floating point or integer. (No numeric expressions a~e
allowed in the list.J String· constants in DATA statements must be I
surrounded by double quotation marks only if they contain· commas,
colons or significant leading or trail.ing. spaces. Otherwise,
quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning or starting at a
specified line number by use of the RESTORE statement (Section 2.44).

EXAMPLE:

See examples in Section 2.41, READ.

2.6 DEF FN

FOBMAT:

DEF FN<name>CC<parameter list>ll•<function definition>

PURPOSE;

To define and name a. function that is written by the user.

BEffARKS:

2-7

<name> must be a legal numeric or string variable name. This ·name,
prefixed with FN, becomes the name of the function. <parameter list>
is comprised of those variable names in· the. function def ini ti.on that
are to be replaced when the function is called. The items in the list
are separated by commas.. <function definition> is an. express!on that
performs the operation of the function. It is limited to one line.
Variable names that appear in this expression serve only to define
the function7. they do not affect program variables that have the same
name. A variable name used in a function definition may or may not
appear in the parametec list. If it does, the value of the parameter
is supplied when the function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,. on a one-to-one basis,
, the argument variables or values that will be given in the function
· call. User-defined functions may be numeric or strinq. If a type is

1 specified in the function name, the value of the expression is forced
to that type before it is returned to the calling statement. If a
type is specified in the function name and the argument type does not
match, a •irype mismatch• erro·r occurs. If an error is made in the
function definition, a •syntax Error• condition will occur upon the
first execution of the statement referring to that function.

A DEF FN statement must be executed before the function it defines may
J be called.. If a function is called before it has been defined, an

•undefined. user function• error occurs. DEF FN is illegal in the
direct mode.

EXAMPLE:

[

... ..
410 DEF FNABCX, Yl •X"'3/Y 2
420 T=FNAB(I,J)f

•·
•

[Line 410 defines the function FNAB. The function is called in line
420.

r

2-8

2.7 QEFINT/SNG/DBL/STR

FOBMAT:

DEF<type> <range of letters>

where:

PQRPOSE:

<type> is INT, SNG, DBL or STR and
<range of letters> is a list of one or more items.

Each item is either a single letter or is two
letters separated by a dash. If the latter is
specified, the alphabetic ordering of the second
letter must not come before that of the first
letter.

...
To declare variable types as integer, single precision, double
precision, or string.

REMARKS:

A DEFtype statement declares that any subsequent untyped variable name
beginning with one of the letter Cs) specified will be a variable of
type <type>. The effect of this statement is to temporarily place the
corresponding type declaration character after eac.h untyped variable
which has its first letter in <range of letters>. Variables which
specify a type declaration character maintain that type. Conflicts are
resolved as follows:: the type of the untyped variables in the range of
letters which confl.ict will be the type specified in the last executed
DEFtype statement that specified that letter.

If-no type declaration statements are encountered, PBASIC assumes
DEFSNG A-Z.

EXAMPLES:

10 DEFDBL L-P

10 DEFSTR A

10 DEFSTR A-Y
20 DEFDBL Z
30 DEE'INT I-N

All untyped variables beginning with the
letters L,. M, N, O or P will be double
precision variables.

Al.l untyped variables beginning with the
letter A will be string variables ..

All untyped variables beginning with letters
from A to H or O to Y will be string variables.
Those untyped variables beginning with letters
from I to N will be integer variables. All
remaining untyped variables (i.e. those starting
with a Z} will be double precision variables.

r
;

r

r

2-9

2.8 DEF USR

FORMAT:

DEF USRC<digit>J=<integer expression>

PURPOSE:

To specify the starting address of an assembly language subroutine.

REMABKS:

<digit> may be any digit from 0 to 9. The digit corresponds to the
number of the OSR routine whose address is being specified. If
<digit> is omitted,.DEF OSRO is assumed. The value of <integer

-expression> is the starting address of the USR routine. For a
discussion of the linkage between PBASIC and ""'assembly language ...
routines, see Appendix G.,

Any number of DEF OSR statements may appear in a program to redefine
subroutine starting addresses, thus allowing access to as many
subroutines as necessary.

I
EXAMPLE: I

I

•
•

200 DEF USR0=24000
210 X=USRO{Y"'2/2.89)

•
•
•

2-10

2 1 9 DELETE

FORMAT:

DELETEC<line number>1£-<line number>]

PURPOSE;

To delete program lines.

REMABKS;

PBASIC always returns to command level after a DELETE is executed. If
<line number> does not exist, an "Illegal function call11 error occurs.

NOTE;
·This command is not allowed within the source program when executing
PPROM Csee Section 2.37).

EXAMPLES:

DELETE 40

DELETE 40-100

DELETE-40

·--Deletes line 40

Deletes lines 40 through
100, inclusive

Deletes all lines up to
and including line 40

f1 .,

l1

r:

[

[

2.10 DIM

FORMAT:

DIM <list of subscript.ed variables>

PURPOSE;

To specify the maximum values for· array variable subscripts and
allocate storage accordingly.

REMABKS:

2-11

If an array variable name is used without a DIM statement, the maximum
value of its subscriptCs> is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a "S.ubscript out of range"
error occurs. The minimum value for a subscript is always O, unless
otherwise specified with the OPTION BASE statement Csee Section 2.34).

The DIM statement sets all the elements of the specified arrays to an
initial value of zero.

EXAffPLE:

10 DIM AC20)
20 FOR I=O TO 20
30 READ A(I)
40 NEXT I

•
•
•

2-12

2.11 EDIT

FQRMAT:

EDIT <line number>

PURPOSE:

To enter Edit Mode at the specified line.

REHARKS:

In Edit Mode, it is. possible to edit portions of a line without
retyping the entire line. Upon entering the EDIT command for an
indirect mode statement, PBASlC types the number of the line to be
edited, then it types a space and waits for an EDIT mode subcommand.
For a direct mode statement, PBASIC types an· exclamation point (1),
then a space and waits for an Edit subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the cursor or to insert,
display, delete, replace, or search for text.within a line. The
subcommands are not echoed. Most of the Edit Mode subcommands may be
preceded by an integer which causes the conµnand to be executed that
number of times. When a. preceding integer is not specified, it is
assullied to be 1.

Edit Mode subcommands are categorized· according to the following
functions:

1. Moving the cursor

2. Inserting text

3. Deleting text

4. Finding text

5. Replacing text

6. Ending and restar.ting: Edit Mode

NOD:

This command is not allowed within the source program when executing
PPROM (see Section 2.37).

In the descriptions that follow, <ch> repres·ents any character, <text>
represents a string of characters of arbitrary length, and Cil
represents an optional integer (the default is 1).

1. Moving the Cursor

Space

Rubout

Use the space bar to move the cursor to the
right. CiJSpace moves the cursor i spaces to
the right. Characters are printed as you space
over them.

In Edit: Mode, CiJRubout moves the cursor i
spaces to the left (backspaces>. Characters are
printed. in reverse order as you backspace over them.

2. Inserting Text

I

x

I<text> inserts <text> at current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout or Delete key on the
terminal may be used· to delete characters to the
left ofi the cursor. If an attempt is made to
i.nse·rt a character that w·ill make the line
longer than 255 characters, a bell CControl-G)
is· typed. and the character is not printed.

The X subcommand is used to extend the line. X
moves the cursor to· the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Car.riage Return •.

1 3. Deleting Text

D

Ii

CiJD deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, the remainder
of the line is deleted.

H deletes all characters t.o the right of the
cursor and then automatically enters insert
mode. H is useful for replacing statements at
the end of a line.

[4. Finding Text

s

r
The subcommand CiJS<ch> searches for the ith
occurrence of <ch> and positions the cursor
before it. The character at the current cursor

2-13

2-14

K

position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

The subcommand tilK<ch> is similar to [ilS<ch>,
except all. the characters passed. over in the
search are del.eted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes ..

s. Replacing Text

c The subcommand C<ch> changes the next character
to <ch>. If you. wish to change the next i
characters, use the subcommand iC, followed by i
characters .. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Edit Mode

<er> Typing Carriage Return prints the remainder of
the line, saves the changes you made, and exits
the Edit Mode.

E - - The E subcommand has the same ef feet as Carriage
Return, except the remainder of the line is not
printed.

Q The Q subcommand returns to PBASIC command
level, without saving any of the changes that
were made to the line during Edit Mode.

L The L.subcommand lists the remainder of the line
Csa.ving any changes made so far) and repositions
the cur.sor at the beginning of the line, remaining
in the Edit Mode .. L i.s usually used to list the
line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

<ESCAPE> The Escape, or Altmode, key cancels a prefix
command, thus aborting a muiticharacter command.

NOTE:

If PBASIC receives an unrecognizable command or illegal character
while in Edit Mode, it prints a bell CControl-G) and the command or
character is ignored~

Syntax Errors

When a Syntax Error is encountered during execution of a program,
PBASIC automatically enters Edit Mode at the line that caused the
error. For example:

10 K = 2 (4)
RUN
Syntax error in 10
10

2-15

When you finish editing the line and type <CR> or the E subcommand,
PBASIC reinserts the line, which causes all variable values to be
lost. To preserve the variable values for examination, exit the Edit
Mode with the. Q subcommand. PBASIC will return to command level, and
all variable values will be preserved •.

Control-A

To enter Edit Mode on the last line you typed or listed or are·
currently typing, type Control-A. PBASIC responds with a carriage
return, an exclamation. point (!) and a space. The cursor will be
positioned at the first character in the line. Proceed by typing an
Edit Mode subcommand.

.. -·--·

Control-A can be used to •move• entire lines by:

1.> LIST line to be moved.
2.) Type Control-A.
3.) Type •r• to enter insert mode.
4.) Type new line number and any corrections.
5. > Type carriage return •.

NOTE:

Remember, if you have just entered a line and wish to go back and edit
it, the command •EDIT .•will enter Edit Mode at the current line.

, CThe line number symbol •.• always refers to. the current line.>

2-16

2.12 ENP

FORMAT:

END

PQRPOSE:

To terminate program execution and return to command level.

BEHARKS;

END statements may be placed anywhere in the program to terminate
execution. Unlike the STOP statement, END does not cause a BREAK
message to be printed. An END statement at the end of a program is
optional. PBASIC always returns to command level after an END is'
executed.

NOTE:

CONT may be used. to re-start execution after an END has been reached,
provided the program has not b.een altered.

EXAMPLE:

520 IF R>lOOO THEN END ELSE GOTO 20

u

r
l

[

r

2.13 ERASE

FORMAT:

ERASE <variable> [,<variable>] •••

PURPOSE:

2-17

To deallocate memory space previously allocated for one or more arrays.

REMAiKS:

Arrays may be redimensioned after they are ERASEd, or the previously
allocated array space in memory may be used for other purposes. If an
attempt is made to redimension an array without first ERASEing it, a
"Duplicate Definition• error occurs.

EXAMPLE:

•
• ..

450 ERASE A,B
460 DIM BC99)

•·
•
•

2-18

2,14 ERR AND ERL VARIABLES

When an error handling subroutine is entered, the variable ERR contains
the error code for the error, and the variable ERL contains the line
number of the line in which the error was detected. The ERR and ERL
variables are usually used in IF ••• THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was' a direct mode statement, ERL
will contain 65535. To test if an error occurred in a direct
statement, use IF 65535 •ERL THEN ••• Otherwise, use

IF ERR= error code THEN •••

IF ERL= line number THEN •••

If the line number is not on the right side of the relational~
operator, it cannot be renumbered by RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign
in a LET (assignment> statement. PBASIC error codes are listed in
Appendix F.

2.15 ERROR

FORMAT:

ERROR <integer expression>

PURPOSE:

1) To simulate the occurrence of a PBASIC error

OR

2) To allow error codes to be defined by the user.
defined by the user.

REMARKS:

2-19

The value of <integer expression> must be greater than or equal to 1
and less than or equal to 255. If the value of <integer expression>
equals an error code already in use by PBASIC Csee Appendix Fl the
ERROR statement will simulate the occurrence of that error, and the
corresponding error· message will be printed. (See Example 1.)

To define your own error code, use a value that is greaterthan any
, used by PBASIC's error codes. Cit is preferable to use the highest

available values, so compatibility may be maintained when more error
codes are added to PBASIC.) This user-defined error code,may then be
conveniently handled in an error trap routine. (See Example 2.)

['

[

r

If an ERROR statement specifies a code for which no error message has
been defined, PBASIC responds with the message Unprintable error.
Execution of an ERROR statement for which there is no error trap
routine causes an error message to be printed and execution to halt.

EXMPLE 1;

10 s = 10
20 T = 5
30 ERROR S + T
40 END
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

Cyou type this line)
(PBASIC types this linel

2-20

EXAMPLE 2:

•
•
•

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 ·IF a· > 5000. THEN ERROR 210

•
•
•

400 IF ERR == 210 THEN PRINT "HOOSE LIMIT IS $5000•
410 !F ERL • 130 THEN RESUME 120

•
•
•

.

2.16 FOR ••• NEXT

FORMAT;

For <variable>=x TO y [STEP zJ
•
•
•

NEXT C<variable>J
or

NEXT <variable>C,<variable>J •••

where x, y and z are numeric expressions.

PURPOSE:

2-21

To allow a series of instructions to be performed in a loop a given
number of times.

REMABKS;

<variable> is used as a counter. The first numeric expression Cx) is
the initial value of the counter. The second numeric expression Cy> is
the final value of the counter. The program lines following the FOR
statement are executed until the NEXT statement is encountered. The
counter is then incremented by the amount specified by STEP. If the
increment is positive, a check is performed to see if the value of the
counter is now greater than the final value Cy>. If it is not greater,
PBASIC branches back to the statement after the FOR statement and the
process is repeated. If it is greater, execution continues with the
statement following the NEXT statement. This is a FOR ••• NEXT loop. If
STEP is not specified, the increment is assumed to be one. If STEP is
negative, the final value of the counter is set to be less than the
initial value. The counter is decremented each time through the loop,
and the loop is executed until the counter is less than the final
value. If the increment is zero, the loop executes indefinitely with
<variable> se~ to be initial value.

The body of the loop is skipped if the initial value of the loop times
the sign of the step exceeds the final value times the sign of the
step.

Nested Loops

[FOR ••• NEXT loops may be nested, that is, a FOR ••• NEXT loop may be
placed within the context of another FOR ••• NEXT loop. When loops are

r··.. nested, each loop must have a unique variable name as its counter, The
NEXT statement for the inside loop must appear before that for the
outside loop. If nested loops have the same end point, a single NEXT

2-22

statement may be used for all of them.

The variable in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding FOR statement, a
0 NEXT without FOR" error message is issued and execution is terminated.

EXAMPLE l:

10 K=lO
20 FOR I=l TO K·STEP 2
30 PRINT I;

,40 K=K+lO
50 PRINT K
60 NEXT
RUN
l 20
3 30
5 40
7 50
9 60
Ok

EXAMPLE 2;

10 J=O
20 FOR I=l TO J
30 PRINT I
40 NEXT I

...

In this example, the loop does not execute because the initial value of
the loop exceeds the final value.

EXAHPLE 3:

10 I=S
20 FOR I=l TO I+S
30 PRINT I;
40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
OK

In this example, the loop executes ten times. The final value for the
loop variable is always set before the initial value is set.

r

l

2-23

2.17 GETCLK

FORMAT;

GETCLK [<seconds>] C, C-<minutes>l C, t<hours>l C, C<days>l C, C<months>l l l 11

Each item is optional and trailing commas need not be specified.

PURPOSE:

To read the current time units from the MDX-BCLK clock hardware.

REMABIS:

All variables in the list are optional. For those that are specified,
the numeric value of the correspo.nding time component is placed into
them. Leading and embedded commas are significant since they serve as
placeholders.

EXAffPLE:

10 GETCLK A,B,C
20 GETCLK ,,,DATE Cl), DATE (2)
30 PRINT "TIME•• ;c; ... :.•;a;.: If ;A
40 PRINT •nAY=•; DATE (1); ", MONTH="·;
RUN
TIME= 18 : 33 : 57
DAY= 30 , MONTH• 11

DATE' (2)

2-24

2.18 GOsuB ••• RETURN

FORHAT:

GOSUB <line number>
•
•
•

RETURN

PURPOSE:

To branch to and return from a subroutine.

REMARKS:

<line number> is the first line of the subroutine.
\

A subroutine may be called any number of times in a program, and a
subroutine may be called from within another subroutine. Such nesting
of subroutines is limited only by available memory.

I
The RETURN statementCs> in a subroutine cause PBASIC to branch back to
the statement following the most recent GOSUB statement. A subroutine
may contain more than one RETURN statement, should logic dictate a
return at different points in the subroutine. Subroutines may appear
anywhere in the program, but it is recommended that the subroutine be
readily dist.inguishable from the main program. To prevent inadvertent
entry into the subroutine, it may be preceded by a STOP, END, or GOTO
statement that directs program control around the subroutine.

EXAMPLE:

10 GOSUB 40
20 PRINT •BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

2.19 GOTO

FORMAT:

GOTO <line number>

PURPOSE:

To branch unconditionally out of the normal program sequence to a
specified line number.

REMAiKS:

2-25

If <line number> is an executable statement, that statement and those
following are executed. If it is a nonexecutable statement, execution
proceeds at the first executable statement encountered after <line
number>. ~

' EXAHPLE:

[

[

LIST
10 READ R
20 PRINT •R =•;R,
30 A =- 3 .I4*R"'2
40 PRINT 9 AREA.=•;A
50 GOTO 10
60 DATA 5,7,12
OK
RUN
R = 5 AREA =
R= 7 AREA =
R = 12 AREA =·
Out of DATA in 10
Ok

78.5
153.86
452.16

2-26

2.20 IF ••• THEN[••• ELSEJ
2.21 IF ••• GOTO

FORHAT:

IF <expression> [,}THEN <statementCs>> I <line number>
ELSE C<statementCs>> I <line number>)

FORMAT:

IF <expression> GOTO <line number>
ELSE C<statementCs>> I <line number>)

PURPOSE;

To make a decision regarding program flow based on the result returned
by an expression.

REMABKS:

If the result of <expression> is not zero (logically true), the THEN or
GOTO clause is executed. THEN.may be followed by either a line number
for branching or one or more statements to be executed. GOTO is always
followed by a line number. If the result of <expression> is zero
(logically false), the THEN or GOTO clause is ignored and the ELSE
clause, if present, is executed. Execution continues with the next
executable statement.

Nesting of IF Statements

IF ••• THEN ••• ELSE statements may be nested. Nesting is limited only by
the length of the line. For example

IF X>Y THEN PRINT "GREATER"' ELSE IP Y>X THEN PRINT "LESS THAN" ELSE
PRINT "EQUAL"

is a legal statement. If the statement does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF ••• THEN statement is followed by a line number in the direct
mode, an "Undefined line number• error results unless a statement with
the specified line number had previously been entered in the indirect
mode.

NOTE:

[

[

2-27

When using IF to test equality for a value that is the result of a.
floating point computation, remember that the internal representation
of the value may not be exact. Therefore, the test should be against
the range over which the accuracy of the value may vary. For example,
to test a computed variable A against the value 1.0, use:

IF ABS CA-l.Ol<l.OE-6 THEN •••

This test returns true if the value of A is 1.0 with a relative error
of less than l.OE-6.

EXAMPLE 1:

100 IFCI<20)*CI>l0) THEN DB•l979-l:GOTO 300
110 PRINT •ouT OF RANGE· .

•
•
•

In this example, a test determines if I is greater than 10 and less
than 20. If I is in this range, DB is calculated and execution
branches to line 300. If I is not in this range, execution continues
with line 110.

EXAMPLE 2:

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or
the line printer, depending on the value of a variable CIOFLAG). If
IOFLAG is zero, output goes to the line printer, otherwise output goes
to the terminal •.

2-28

2.22 IN?UT

FORMAT:

INPUT[;J[<•prompt strinq•>;l<list of variables>

PURPOSE:

To allow input from the terminal durinq program execution.

REMARKS:

When an INPUT statement is encountered, program execution pauses and a
question mark is printed to indicate the program is waiting for data.
If <"prompt string"> is included, the string is printed before the
question mark. The requI:red data is then ,entered at the terminal.

If INPUT is immediately followed by a semicolon, then the carriage
return typed by the user to terminate data'input does not echo a
carriage return/line feed sequence at the terminal.

The data that is entered is assigned to the variableCs> given in
<variable list>. The number of data items supplied by the user must be
the same as the number of variables in the list. Data items are
separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that is
input must agree with the type specified by the variable name.
(Strings input to an INPUT statement need not be surrounded by
quotation marks.)

Responding to INPUT.with too many
type of value <numeric instead of
"?Redo from start" to be printed.
made until an acceptable response

or too few items, or with the wrong
string, etc.> causes the messsaqe

No assignment of input values is
is given.

If there is only one variable in the INPUT list then responding with
only a carriage return causes the variable to be assigned the value of
zero if its type is numeric, or a null string if its type is string.

EXAHPLE 1:

10 INPUT X
20 PRINT X;"SQUARED IS";X""2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25

Ok

EXAMPLE 2:

10 PI=3.14
20 INPUT nwHAT IS THE RADIOSn:R
30 A=PI*R"'2
40 PRINT nTHE AREA OF THE CIRCLE Isn:A
50 PRINT
60 GOTO 20
Ok
RON
WHAT IS THE RADIOS? 7.4 (Oser types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIOS?
etc.

2-29

2-30

2.23 LET

FORMAT:

[LET] <variable>=<expression>

PURPOSE:

To assign the value of an expression to a variable.

REMARKS:

Notice the word LET is optional, i.e., the equal sign is sufficient
when assigning an expression to a variable name.

EXAMPLE; ...
110 LET 0=12
120 LET E=l2 .. 2
130 LET F=l2 .. 4
140 LET SUM=D+E+F
•
•

or

110 0=12
120 E=l2"'2
130 F=l2""4
140 SUM=D+E+F
•
•
•

2.24 LINE INPUT

FORMT;

LINE INPUT[;JC<"prompt string">;l<string variable>

PURPOSE:

2-31

To input an entire line (up to 254 characters) to a string variable,
without the use of delimiters.

REMABKS:

The prompt string is a string literal that is printed at the terminal
before input is accepted. A question mark is not printed unless it is
part of the prompt string. All input from the end of the prompt to the
carriage return is assigned to <string varial5le>.

If LINE INPUT is immediately followed by a semicolon, then the carriage
return typed by the user to end the input line does not echo a carriage
return/line feed sequence at the terminal.

A LINE INPUT may be aborted by typing Control-C. PBASIC will return to
command level and type o~.. Typing CONT resumes execution at the LINE
INPUT.

' EXAMPLE:

r

l

20 LINE INPUT "CUSTOMER INFORMATION? " ; C$
30 PRINT C$
40 GOTO 20

RUN
CUSTOMER INFORMATION? LINDA JONES
LINDA JONES 234,4 MEMPHIS

234,4 MEMPHIS

2-32

2.25 LIST

FORHAT l;

LIST C<line number>]

FORMAT 2;

LIST C<line number>C-C<line number>lll

PURPOSE;

To list to the terminal all or part of the program currently in memory.

REMARKS:

PBASIC always returns to command level after"'a LIST is executed".

FORMAT 1:

If <line number> is omitted, the program is listed beginning at the
lowest line number. (Listing is terminated either by the end of the
program, by typing Control-C, or Control-a, and interrupted by
Control-S.) If line number is included then only the specified line
will be listed.

FORMAT 2:

This format allows the following options:

1. If only the first number is specified, that line and all
higher-numbered lines are listed.

2. If only the second number is specified, all lines from the
beginning of the program through that line are listed.

3. If both numbers are specified, the entire range is listed.

NOTE;;

See the WIDTH command, Section 2.54,. for information on adjusting
printed output width.

This command i.s not allowed within the source program when executing
PPROM (see Section 2.37).

EXAMPLES:

Format l;

LIST

LIST 500

Lists the entire program currently
in memory.
Lists line 500.

Format 2:

LIST 150-

LIST -1000·

LIST 150-1000

u

List all lines from 150
to the end.

Lists all lines from the
lowest number through 1000.

Lists lines 150 through
1000, inclusive.

2-33

2-34

2.26 LLIST

FORMAT:

LLIST £<line number>C-£<line number>lll

PURPOSE:

To list to the line printer all or part of the program currently in
memory.

REMARKS:

PBASIC always returns to command level after an LLIST is executed. The
options for LLIST are the same as for LIST.

NOTE:

See the notes for LIST.

EXAMPLE:

See the examples for LIST.

r,
L

2-35

2.27 LPRINT AND LPRINT USING

FORMAT:

LPRINT C<list of expressions>!
LPRINT USING <"format strin9">1<list of expressions>

PURPOSE:

To print data at the line printer.

REMAR1{S:

Same as PRINT and PRINT USING, except output goes to the line printer.
See Section 2.38 and Section 2.39.

See the WIDTH command, Section 2.54 for information on adjusting
printed output width.

2-36

2.28 MID$

FORHAT:

MID$C<string expl>,n[,ml>=<strinq exp2>

where n and m are integer expressions and <string expl> and <string -
exp2> are string expressions.

PURPOSE:

To replace a portion of one string with another string.

REMABKS:

The characters in <string expl>, beginning at position n, are replaced
by the characters in <string exp2>. The optional m refers to the
number of characters from <string exp2> that will be used in the
replacement. If m is omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included, the replacement of
characters never goes beyond the original length of <string expI>.

EXAMPLE:

10 A$=•KANSAS CITY, MO" .
20 MID$(A$,l4l=11 KS 11

30 PRINT A$
RUN
KANSAS CITY~ KS

MID$ may also be used as a function that returns a substring of a
given string. See Section 3.24.

l·_;.

L

2.29 NEW

FOBMAT:

NEW

PURPOSE:

To delete the program currently in memory and clear all variables.

REMARKS:

2-37

NEW is entered at command level to clear memory before entering a new
program. PBASIC always returns to command level after a NEW is
executed.

NOTE:

This command is not allowed within the source program when executing
PPROM (see Section 2.37).

If an application program exists in PROM, when this command is executed
an unsuccessful attempt to delete the program will be made and then the
program will RUN.

2-38

2.30 NQLL

£'0RMAT:

NULL <integer expression>

PURPOSE:

To set the number of nulls to be printed at the end of each line.

REMARKS:

For 10-character-per-second tape punches, <integer expression> should
be >=3. When tapes are not being punched, <integer expression>
should be O or 1 for Teletypes and Teletype-compatible CRTs·. <integer
expression> should be 2 or 3 for 30 cps hard copy printers. The
default value is 0; the maximum is 255.

EXAMPLE:

Ok
NULL 2
Ok
100 INPUT X
200 IF X<SO GOTO 800
•
•
•

Two null characters will be pr:inted after each line •

•

2.31 ON ERBOR GOTO

FOEMAT;

ON ERROR GOTO <line number>

PURPOSE:

To enable error trapping and specify the first line of the error
handling subroutine.

REMARKS:

2-39

Once error trapping has been enabled all errors detected, including
direct mode errors (e.g., Syntax errors), will cause a jump to the
specified error handling subroutine. If <line number> does not exist,
an ftUndef ined line" error results. To disable error trapping,
execute an ON ERROR GOTO O. Subsequent errors will print an error
message and halt execution. An ON ERROR GOTO 0 statement that appears
in an error trapping subroutine causes PBASIC to stop and print the
error message for the error that caused the trap. It is recommended
that all error trapping subroutines execute an ON ERROR GOTO O ~f an
error is encountered for which there is no recovery action. 1

NOTE;

If an error occurs during execution of an error handling subroutine,
the PBASIC error message is printed and execution terminates·. Error
trapping does not occur within the error handling subroutine.

See the RESUME instruction, Section 2.45 for information on. how to
return control to the user program from an error trapping routine ..

EXAMPLE;

10 ON ERROR GOTO 1000

2-40

2.32 ON ••• GOSOB
2.33 ON ••• GOTQ

FOBMAT:

ON <expression> GOTO <list of. line numbers>

ON <expression> GOSUB <list of line numbers>

PURPOSE:

To branch to ·one of several specified line numbers, depending on the
value returned when an expression is evaluated.

REMMKS:

The value of <expression> determines which l!ne number
will be used for branching. For example, if the value
third line number in the list will be the destination
Cif the value is a non-integer, the fractional portion

in the "1.ist
is three, the
of the branch.
is rounded.)

In the ON ••• GOSUB statement, each line number in the list must be the
first line number of a subroutine ..

EXMPLE;

100 ON L-1 GOTO 150,300,32<l,390

l
l

2.34 OPTION BASE

FORMAT;

OPTION BASE n
where n is 1 or 0

PURPOSE;

To declare the minimum value for array subscripts.

REMABKS:

The default base is 0, If the statement

OPTION BASE l ...
is executed, the lowest value an array subscript
may have is one.

2-41

2-42

2.35 OUT

FOBMAT:

OUT I,J
where I and J are integer expressions in the range O to 255.

PURPOSE:

To send a byte to a machine output port.

REMARKS:

The integer expression I is the port number, and the integer
expression J is the data to be transmitted. I and J must evaluate to
integers <=255 CHEX FF).

NOTE:

Port addresses ES-EB BEX are "Illegal function call"s when using
PBASIC/9511 version, because they are dedicated to the 9511 'board.
These ports should not be used in the non-9511 version to assure
compatability between the two versions.

EXAMPLE:

100 OUT 32 ,100.

2-43

2.36 POKE

FORMAT:

POKE I,J
where I and J are integer expressions

PURPOSE:

To write a byte into a memory location.

REMABKS:

The integer expression I ·is the address of the memory location to be
POKEd. The integer expression J is, the data to be POKEd. J must be
in the range 0 to 255. I must be in the range of 0 to 65535.

-~-

The complementary function to POKE is PEEK. The argument to PEEK is
an address from which a byte is to be read. See Section 3.26~

POKE and PEEK are useful for efficient data storage, loading assembly
· -1anguage subroutines, and passing argumeaj:s and results to and f.rom

assembly language subroutines.

I NOTE:

l
r:

POKE can cause fatal d~age either to PBASIC, user program, or the
other RAM Areas in memory if indiscriminately used.

EXAMPLE:

10 POKE &HS.AOO,.&BFF

2-44

2.37 PPRQM

FORMAT;

PPROM [<type>]

PURPOSE:

This command will initiate the programming of a user's PBASIC
application program into EPROMs placed in the PPG hardware device. The
entire PBASIC program will be segmented and burned into the required
number of EPROMs. The user will be prompted when it is time to insert
and remove each EPROM. The only optional argument is the type ·of PROM
(2708, 2716, and 2758) being programmed with a default of 2716. The
user is able to abort the operation at any time via Control-C.

REMARKS;

<type>

The user may choose the type of EPROM chip to use with the type option.
Choices; are 2708, 2716, or 2758. The default is 2716. To specify a
type the user must enter the last two digits of the type number.

j

To use 2708s enter:
To use 2758s enter:
To use 2716s enter:

PPROM 08
PPROM 58
PPROM 16 or PPROM

Any deviation from this will produ.ce a Syntax error.

TO USE:

-1> Enter PPROM program command, optional type
and CCR).

2) The user will be prompted with an astrick sign (*) in
the next line, left most cursor position. This is
followed by the sequence number of the chip and the
number of chips required for the entire program.

3) Insert blank EPROM chip and enter CCR).

4) A bell CControl-Gl is sounded at the completion of programming
each chip.

5) A p~ompt will appear again if more chips are needed.

6) Control-C will abort this command at any point.

EXAMPLE:

If the user has a 7K program and wishes to burn the application
into 27l6s, the following would be done:

PP ROM
*l I 4
*2 I 4
*3 I 4
*4 I 4
Ok

ERROR CONDITIONS:

Cuser enters to program 2716)
4 chips are needed, user performs step 3
user performs step 3
user performs step 3
user performs step 3
finished

1) When the user places an EPROM in the PPG device, the
chip must be blank. If it is not, an error condition
will occur:

'*****ERROR - CHIP NOT BLANK*****

2) After each program segment is burned into the chip, the
data is verified. If. the verification reveals bad data
an error condition wil.l occur:

'****** ERROR - CHIP DATA DOES NOT VERIFY ******

OSER OPTIONS:

Al Replace chip with. an- erased chip and enter
CCR). This will cause PBASIC to
continue the command, not start over •.

CORl

B) Enter control c. This· wil-1 abort the command.

CORl

C) Anything· else will cause a syntax error.. CHo.wever,
the command will not abort. The user will
be reprompted for the same chip number.)

3) The error:

2-45

*****ERROR-DEBUG COMMAND WITHIN SOURCE AT LINE NUMBER XX ******

will. occur when any of the following commands· reside in source
when PPROM is executed.. '

AUTO.
DELETE
EDIT
LIST
LLIST

NEW
RENUM
RON
PPR OM
RP ROM

PBASIC then returns to the direct mode for source
alteration.

4) Other error conditions may occur but can not be

2-46

NOTE:

detected by the intex:preter, such as: .

A} The user inserts ~ type chip other than
specified.. Cie. 2708 specified and 2716
is inserted.]

COR)

B} The· user inserts the chip backward.

The PPROM command is not allowed within the source program when executing l

CAUTION:

In order to prevent possible destruction of PROMs, the user should not
insert PROMs in the ZIP DIP socket until prompted. Also,. the user
should insure that PROM TYPE SWITCH is in the correct position. for type
of PROM being used. The switch should be in the 2708 position for 2708
PROMS and in the 2716 position for 2716 and 2758 PROMS. If a PROM is
inserted in the lIP DIP socket with the PROM TYPE SWITCH in the wrong.
position, the PROM may be subj~cted. to voltages which could destroy it.

2.38 PRINT

FORMAT:

PRINT C<list of expressions>J

PURPOSE:

To output data at the terminal.

REMARKS:

2-47

If <list of expressions> is omitted, a blank line is printed. ·· If
<list of expressions> is included, the values of the expressions are
printed at the terminal. ~he expressions in the list may be numeric
and/or string expressions. (Strings must be enclosed in quotation
marks.) ·

Print Positions

The position of each printed item is determined by the punctuation
used to separate the items in . the list. PBASIC divides the line into
print zones of 14 spaces each. In the list of expressions, a comma
causes the next value to be printed at the beginning of the next zone.
A semicolon causes the next value to be printed immediately after the
last value. Typing one or more spaces between expressions has the
same effect as typing a semicolon. ·

If a comma or a semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing accordingly.

If the list of expressions terminates without a comma or.a semicolon,,
a carriage return, line feed is generated at the end of the line. If
the printed line is longer than the terminal width, PBASIC inserts a
carriage return and line feed and continues printing.

This rule applies no matter where the cursor is positioned by direct
cursor addressing. Therefore, ensure that a PRINT command is placed in
the logic to periodically reset this width counter to prevent PBASIC
from inserting extra CR, LFs into screen text or use WIDTH 255, see
Section 2.54.

Printed numbers are always followed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented with 6 or fewer
digits in the unscaled format no less accurately than they can be
represented in the scaled format,. are output using the unscaled
format. For example.- 10"'C-7l is output as .0000001 and 10 ... (-8) is
output as lE-08. Double precision numbers that can be represented
with 16 or fewer digits in the unscaled format no less accurately
than they can be represented in the scaled format,. are output using

' the unscaled format. For example, lD-15 is output as
.000000000000001 and lD-16 is output as lD-16.

2-48

EXAKPLE 1:

10 X=S
20 PRIN'l' x+s, x-s, X*{-5), x."'5
30 END
RUN

10.. Q·: -25
Ok

3125

In this example, the commas in the PRINT statement cause each val.ue· -.to
be printed at the beginning· of the, next print zone.

EXAMPLE 2;

LIS'!'
10 INPU'l' X
20 PRINT x;•sQUARED 1s•;x""2;•ANn•;
30 PRINT x;•CtJBED ts•;x""3
40 PRIN'l'
50 GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED:·. IS 441 AND 21 CUBED IS 9261

?

·,

In this example, the sel'(licolon a.t tha end of line 20 causes both PRIN'r
statements to be printed on the same line, and line 40 causes a blank
line to be printed before the next, prompt.

A question mark may. be used in place of the word PRINT' in. a PRINT
statement. ·

EXAMPLE 3r

10 FOR X • 1 'l'O 5·
20 J•J+S
30 K=K+lO
40 ?J;K;
SQ NEXT X.
Ok
RON

5 10 10 20 15 30 20' 40 25 50·
Ok

In· this example:, the semicolons in the PRIN'l' statement cause each
value to. be printed immediately after the preceding. value. (Don't
forget, a number is always followed' by a space and pos·itive numbers~
are preceded by a spa.ce.) In line 40 ,. a question. mark is· used instead
of the word PRIN'l'.

2-49

2.39 PRINT USING

FORMAT:

PRINT USING <"format string">;<list of expressions>

PURPOSE:

To print strings or numbers using a specified format.

REMARKS and EXAMPLES:

<list of expressions> is comprised of the string and expressions or
numeric expressions that are to be printed, separated by semicolons.
<"format string"> is a string expression comprised of special
formatting characters. These formatting characters (see below> ·
determine the field and the format of the printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of thr~e formatting
characters may be used to format the string field:

i

• ! •. !
Specifies that only the first character in the given string is to be
printed.

"\n spaces\"
Specifies that 2+n characters from the string are to be printed. If
the backslashes are typed with no spaces, two characters will be
printed; with one space, three characters will be printed, and so on.
If the string is longer than the f.ield, the extra characters are
ignored. If the field is longer'than the string, the string will be
left-justified in the field and padded with spaces on the right.

10 A$="LOOK":B$=wOUT":C$="\ \"
20 PRINT USING "!";A$;B$
30 PRINT USING "\ \";A$;B$
40 PRINT USING C$;A$;B$; 11 11"
Ok
RUN
LO
LOOOUT
LOOK OUT l!

['
,'·. ., ..

Specifies a variable length string field. When
with "&", the string is output exactly as input.

the field is specified

r

[

10 A$="LOOK":B$="OUT 11

20 PRINT USING •1•;A$;
30 PRINT USING "&";B$

. RUN

2-50

LOUT

Numeric Fields

When PRINT USING is used to print numbers, the following special
characters may be used to format the numeric field:

"I"
A number sign is used to represent each digit position. Digit
positions are always fill ed. If the number to be printed has fewer -
digits than positions specified, the number will be right-justified
(preceded by spaces> in the field.

" . •
A decimal point may be inserted at any position in the field. If the
format string specifies that a digit is to precede the decimal point,
the digit will always be printed Ca~ O if necessary>. Numbers are
rounded as necessary.

PRINT USING "ll.tl";.78
0.78

PRINT USING "tlt.11";987.654
987.65

....

PRINT USING "tt.tt ";10.2.,5 .. 3,66.789,.234
10.20 5.30 6l.79_ 0.23

In .the last example, one spa.ce· was inserted at the end of the format
string to separate the printed values on the line.

"+"
A plus sign at the beginning or end of the format string will cause·
the sign of the number (plus or minusl to be printed before or after
the number •.

·-· A minus sign at the end of the format field will cause negative
numbers to be printed with a trailing minus sign.

PRINT USING "+tJ.tt •;-68.91,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "ti.ti- ";-68.95,22.449,-7.0l
68.95- 22.45 7.01-

A double asterisk at the beginning of the format string causes leading
spaces in the numeric field to be filled with asterisks. The ** also
specifies positions for two more digits.

• $$"

PRINT USING' n**i.t •:12.39,-0.9,765.l
*12.4 *.-0.9 765.1

A double dollar sign causes a dollar sign to be printed to the

2-51

immediate left of the formatted number. The $$ specifies two more
digit positions, one of which is the dollar sign. The exponential
format cannot be used with $$. Negative numbers cannot be used unless
the minus sign trails to the right.

"**$"

PRINT USING "$$iii. ti"; 456 •. 7 8
$456.78

The ** $ at the beginning of a format string ·combines the effects of -
the above two symbols. Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number. **$ specifies three
more digit positions, one of which is the dollar sign.

" " '

PRINT USING."**$11.11";2.34
***$2.34

A comma that is to the left of the decimal point in a formatting
string causes a comma to be printed to the !eft of every third digit
to the left of the decimal point. A comma that is at the end of the
format string is printed as part of the string. A comma specifies
another digit position. The comma has no effect if used with the
exponential ~) format.

" "

PRINT USING "liit,.11";1234.5
l,234 .. 50

PRINT USING "iltt.tt,•;1234.5
1234.SOr

Four carats Cor up-arrows) may be. placed after the digit position
characters to specify exponential format. The four carats allow space
for E+xx to be printed. Any decimal point position may be specified.
The significant digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or - is specified, one
digit position will be used to the left of the decimal point to print
a space or a minus sign.

PRINT OS ING 11 it. i I "'"; 23:4. 56
2 •. 35E+02

PRINT USING " •. ittt"""" ... ""-";888888
.8889E+06

[" "

PRINT USING "+. ti ""•;: 123
+.12E+03

An underscore in the format string causes the
[output as a literal character.

r
PRINT USING 11_! it. #i_! "; 12 .34
!12.34!

next character ~o be

2-52

The literal character itself may be an underscore by placing " • in
the format string.

NOTE;

If the number to be printed is larger than the specified numeric
field, a percent sign (%) is printed in front of the number. If
rounding causes the number to exceed the field, a percent sign will
be printed in front of~ the rounded number.

PRINT USING "tt.tt";lll.22
%111.22

PRINT USING ".it";.999
%1.00

If the number of digits specified exceeds 24, an "Illegal function
call" error will result.

2.40 RANDOMIZE

FORMAT:

RANDOMIZE C:<expression>l

PURPOSE:

To reseed the random number generator.

REMABKS:

. 2-53

If <expression> is omitted, PBASIC suspends program execution and asks
for a value by printing

Random Number Seed C0-65535)?

before executing RANDOMIZE.

If the random number generator is not reseeded, the RND function
returns the same sequence of random numbers each time the program is
RUN. To change the sequence of random numbers every time the program
is RUN, place a RANDOMIZE statement at the beginning of the program
and change the argument with each RON.

I EXAMPLE:

[

[

[

[

(

10 RANDOMIZE
20 FOR I=l TO S
30 PRINT RND;
40 NEXT I
Ok
RUN
Random Number Seed (0-65535)? 3 (user types 3)

.88598 .484668 .. 586328 .119426 .709225
Ok
RON

. Random Number Seed C0-65535)? 4 (user types 4 for new sequence}
.803506 .162462 .929364 ~292443 .. 322921

Ok
RON
Random Number Seed (0-65535)? 3 Csame sequence as first RUN)

.88598 . • 484668 .586328 .119426 .709225
Ok

2-54

2.41 READ

FORMAT:

READ <list of variables>

PURPOSE:

To read values from. a DATA statement and assign them to variables.
CSee. DATA, Section 2.5)

REMABKS:

A READ statement must always be used in conjunction with a. DATA
statement.· READ statements assign DATA statement values to variables
on a one-to-one basis. READ statement variables may be numeric or
string, and the values read must agree with· the var.iable types
specified. If they do not agree, a "Syntax error" will result,
pointing to the DATA statement which did not correspond with the format
specified in the READ.

A single READ statement may access one or more DATA statements (they
will(be accessed in order>, or several READ statements may access the
samer DATA statment. If the number of vari~bles in <list of variables>
exceeds the number of elements in the DATA, statementCs>, ··an Out of
DATA message is printed. If the number of variables specified is
fewer than the number of elements in the DATA statement Csl, subsequ.ent
READ statements will begin reading data at the first unread element.
If there are·no subsequent READ statements, the extra data is
ignored.

To reread DATA statements from the start or beginning at any designated
DATA statement, use the RESTORE statement (see RESTORE, Section ~ .. 44)

EXAMPLE 1:

•
•·
•
80 FOR I=l TO 10
90 READ A(I)
100 NEXit I
110 DATA 3.08,5.19,3.12,3.98,4 .. 24
120 DATA s •. os,s .. ss,4.00,3.16,3.37
•
•
•

This program segment READs the values from the DATA statements into
the array A. Af.ter execution,. the value of A(l) will be 3.08,. and so
on.

EXMPLE 2;

I
l

[

[

[

LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C $, S $, Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

2-55

This program READs string and numeric data from the DATA statement in
line 30.

2-56

2.42 REM

FORMAT:

REM <remark>
or

' <remark>

PURPOSE:

To allow explanatory remarks to be inse·rted in a program.

REMABKS:

REM statements are not executed but are output exactly as entered when
the program is listed.

.

REM statements may be branched into {from a GOTO or GOSUB statement) ,
and execution will continue with the first executable statement after
the REM statement.

In PBASIC, remarks may be added to the end of a line by preceding the
remark with a single quotation mark (1) instead of :REM.

EXAffPLE:

•
•·
•
•

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=l TO 20 :REM BEGIN LOOP
140 SUM=SUM + VCI)

•
•·

or
•
•
•

120 FOR I=l TO 20
130 SUM=SUM+V(Il
.140 NEXT I

•
•
•

'CALCULATE AVERAGE VELOCITY
'BEGIN LOOP

2.43 RSNUM

FOBMAT:.

RENUM [C<new number>! C, C<old number>J.[,<increment>] 1 l

PURPOSE;

To renumber program lines.

REMARKS:·

2-57

<new number> is the first' line number to be used in the new sequence.
The default is 10. <old number> is the line in the current program
where renumbering is to. begin. The default is the first line of the
program. <increment> is the increment to .be used in the new sequence.
The default is 10.

RENUM also changes all line number references following GOTO, GOSUB,
THEN, ON.~ .GOTO, ON •.• ,GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number appears after one of these
statements, the error message •undefined line xxxxx in yyyyy•' is
printed. The incorrect line: number reference Cxxxxxl is not changed /
by RENUM, but line number yyyyy may be changed.

I NOft:

This command is not allowed within the source program when executing
PPROM Csee Section 2 .. 37) •.

RENUM cannot be used. to· change the order of program lines (for
example, RENUM 15,J.O when the program has three lines numbered 10, 20
and 30) or to create line numbers greater than 65529. An •r11egal
function ca11• error will result.

, . EXAHPLES:

[

[

[

r

REN UM

RENOM 300,,50

RENUM 1000,-900,20

Renumbers the entire program.
The first new line number
will be 10'. Lines will
increment by 10 •.

Renumbers the entire pro­
gram. The first new line
number will be 300. Lines
will increment by 50.

Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

2-58

2.44 RESTORE

FOBMAT:

RESTORE [<line number>]

PURPOSE:

To allow DATA statements to be reread from a specified point.

REMARKS:

After a RESTORE statement is executed, the next READ statement
accesses the first item in the first DATA statement in the program.
If <line number> is . specified, the next READ statement accesses the
first item in the specified DATA statement.

10 READ A
20 READ B
30 RESTORE
40 READ C
50 DATA 57,68,79
60. PRINT A,B,C
70 END
RUN

57 68
Ok

""'·

57

L

[

[

[

[

[

2.45 RESUME

FORMATS:

RESUME
RESUME 0
RE~UME NEX'l'
RESUM~ <line number>

PURPOSE:

2-59

To continue· program execution after an error recovery procedure has
been performed via •ON ERROR'.

REMARKS:

Any one of ~he four formats shown above may "De used, ~epending upon
where execution is to resume:

RESUME
or

RESUME Q

RESUME NEXT

Execution resumes at the
statement which caused the
error. I
~xecutiort resumes at the
statement immediately fol-
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement -that is not in an error trap routine causes a
•RESUME without error• message to be printed.

EXAMPLE: . ,

10 ON ERROR GOTO 900

•
•
•·

900 IF fERR=230)ANDCERL=90} THEN PRINT 9 'l'RY
AGAIN•:RESUME SQ

•

2-60

2.46 RPROM

FOBMAT:

RPROM [<type>]

PURPOSE:

This command will initiate the reading of a user's PROMed application,
placed in the PPG hardware, device, into RAM memory. The entire
segmented PROMed program is read into memory in sequence and terminated
after the last EPROM has been read. The user will be prompted when to
extract and insert each EPROM. The only optional argument is the. type
of EPROM (2708, 2716, and 2758) being programmed with a default of
2716. The user is able to abort the operation at any time via a
Control-C.

REMARKS;

· <type>

The user may choose the type of EPROM chip to use with the type. option.
Choices are 2708, 2716, or 2758. The default is 2716.. To specify a
type the user must enter th~ last two digits of the type number.

TO USE:

-1>

To use 21ogs enter;;
To use 2758s enter:
To use 2716s enter:

Enter RPROM commandr
is 2716) , and CCR>.

RP ROM 08
RP ROM 58
RP ROM 16, or RPROM

'

nnt' i nn:io l
-s: ---·~ •·

2) The user will be prompted for the first chip to
be inserted with a number sign Ct> £.ollowed by
the number one Cl).

3) The chip is read into RAM~ Since the first chip
contains a checksum table as well as the total
number of chips in the program it is essential
it be entered first. From this point on the
user will be prompted for the next chip number
and the total number of chips.

4} Control-C will abort the command at any point.

5) If the command is aborted before all the chips
have been read, the data previously read will
not remain in memory ..

6) A maximum limit of XX PROMS per program will

[

[

[

be allowed. When this limit is exceeded the
PBASIC error message 'Out of memory' will
appear on the terminal and the command will abort.
The source previously read (PROMs 1 thru (XX-1))
will not remain in RAM.

XX = FRE(O) I PROM chip size

EXAHPLE:

If the user has a program on 3, 2.716 EPROMs and wishes to read the
program int.o· RAM, the following would be done:

2-61

RP ROM ; user enters command (defaults to 2716 type)

I l ; system prompts

; user inserts first chip and enters CCR)

I 2 / 3 ; when the chip has oeen read the system prompts

; user inserts second chip and enters CCR)

I 3 I 3. ; when the chip has been read the system prompts

Ok

1 user inse·rts third and final chip and enters CCRl

; command. is finished

ERROR CONDI'?IONS:

1) Reading too many PROMs causes the ERROR condition:

'Out of memory·•

Source read from previously read PROMS will not remain
in RAM. The RPROM command; will be aborted.

USER OP'rIONS:

A) Re-execute the command ..

2) Chips are inserted out of sequence. This will
result in a

"OU~ OF SEQUENCE --- Chip t X.

OSER OPTIONS:

A) Insert chip x. No previously
read data is lost ..

3) Other error conditions that might occur, that are
not detectable by PBASIC.

2-62

NOTE:

··A) The user inserts a type chip other than
specified. Ci.e. 2708 specified and 2716
is inserted)

This command is not allowed within the source program when executin9-
PPROM Csee Section 2.37l.,

CAO'l'IQN;

In order to prevent possible destruction of PROMs, the user should not
insert PROMS in the ZIP DIP socket until prompt.ed. Also, the user
should insure that PROM TYPE SWITCH is in the correct position for type
of PROM being used. The switch: should be in the 2708 position for 2708
PROMS and in the 2716 position for 2716 and 2758 PROMS. If a PROM is
inserted in the ZIP DIP socket with the PROM TYPE SWITCH in the wrong
position,. the PROM may be s.ubjected to voltages which could destroy it •

... ...

"I

r

[

[

[

2-63·

2.47 RUN

FORHAT:

RUN [<line number>]

PURPOSE:

To- execute the program currently in memory.

REMABKS:

If <line number> is specified, execution begins on that line.
Otherwise, execution begins at the lowest line number. PBASIC always
returns to command level after the program has finished executing.

NOTE:

RUN may be specified as either a direct. or indirect statement in a RAM
system but this command is not allowed within the source program when
executing PPROM (see Section 2.37),

EXAMPLE:

RUN 20 'STARTS EXECUTION AT STATEMENT' 20

2-64

2.48 SETCLK

FORMAT:

SETCLK [<seconds>lC,C<minutes>lC,C<hours>l C,C<days>JC,C<months>l1111

Each item is optional and trailing commas need not be specified.

PURPOSE:

· To set specified time components of the MDX-BCLK clock hardware to
specific values.

REMABKS:

Each item in the
item is omitted,
unchanged. Each
consistency with

list must evaluate to an integer expression. If an
then its corresponding time component remains
item is checked for the proper range as well as
other items. The.ranges are:

seconds:
minutes:
hours:
days:
months:

0-59
0-59
0-23
1-31
1-12

The day of the month is compared with the maximum number of days in
that month and will result in an Error 15 if exceeded.

EXAMPLE:

10 PRINT ."CURRENT DATE IS •·;DATE$
20 LINE INPU'r "CH1l.NGE DATE (Y/N) ?" ;AMSWER$
30 IF ANSWER$ <> "Y 11 THEN 70
40 INPUT "NEW DAY NUMBER";DAY
50 INPUT "NEW MONTH NUMBER";MONTH
60 SETCLK ,,,DAY,MONTH
70 REM ENDIF
80 PRINT "CURRENT TIME IS ";TIME.$
90 LINE INPUT "CHANGE TIME (Y/N)?";ANSWER$
100 IF ANSWER$ <> "Y" THEN 160
110 INPUT "NEW BOUR IS";HOUR
120 INPUT "NEW MINUTE IS";MINUTE
130 INPUT "NEW SECOND IS" ;.SECOND
140 LINE INPUT "HIT <CR> WHEN NEW TIME IS REACHED 8 ;REPLY$
150 SETCLK SECOND,MINUTE,HOUR
160 REM ENDIF

L

[

2.49 STOP

FORffAT:

STOP

PURPOSE:

To terminate program execution and return to the command level.

REMARKS;

STOP statements. may be used anywhere in a. program. to terminate
execution. When, a STOP is encountered, the. following message is
printed:

Break in nnn whe_re nnn is STOP statement line number.

PBASIC always returns to command level after a STOP is executed.
Execution is resumed by issuing a CON'r command (see Section 2 ,_4) •

EXAMPLE:

IO: INPUT A,a,c
20 K•A"2*5.3:L•B"'3/,26
30 STOP
40 M•C*K+lQO·:PRINT M
RON
? 1,2.,3
Break in 30
Ok
PRINT L

30.7692
Ok
CONT
115.9

Ok

2-65

2-66

2.50 SWAP

POBMAT:

SWAP <variable>,<variable>

PORPOS§:

To exchange the values of two variables.

RQARKS:

Any type variable may be SWAPped C integer, single precision, -double
precision, str.ing> , but the two variables must be of. the same type or
a "Type mismatch• error results.

EXAMPLE:

LIS'l'

10 A$=• ONE 11 : B$•• ALL • : C$="FOR11

20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRIN'l' A$ C$ B$
RUN
Ok
ONE. FOR ALL
ALL FOR ONE
Ok·

' "

2.51 TRON/TROFF

FOBMAT:

TRON
TROFF

PQRPOSE:

To trace the execution of program statements.

REMMKS:

2-67

As an aid in debugging, the TRON statement (executed in either the
direct or indirect mode> enables a trace flag that prints each line
number of .the program as it is executed. The numbers appear enclosed
in square brackets, The trace flag is disab!ed with the TROFF~
statement Cor when a NEW command is executed).

EXAMPLE:

TRON

Ok
LIST'
10 K=lO
20 FOR J=l TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+lO
60 NEXT
70 END
Ok
RUN
[101[201£301£401 1 10 20
[501 [601 [301 [401 2 20 30
[50][601£701
Ok
TROFF
Ok

2-68

2.52 WAI'l'

FOBMAT:

WAIT <port number>,. I [,Jl
where I and J are integer expressions

PURPOSE:

To suspend program execution while monitoring the status of a machine
input port.

REMABKS:

The WAIT statement causes execution to be suspended until a
specified machine input port develops' a specified bit pattern. The
data read at the port is exclusiveOR'ed wieh the integer expression
J, and then AND'ed with I. If the result is zero, PBASIC loops _
back and reads the data at the port again. If the result is nonzero,
execution continues with the next statement. If J is omitted, it is
assumed to be zero.

CAU'l'IQN:

It is possible to enter an infinite loop with the WAIT statement,
in which case. it will be necessary to manually restart the machine.
Control-C will not abort this command whil.e in a port wait l.oop.

Port addresses &RE8-&REB are "Illegal function call"s when using the
PBASIC/9511 version, because they are dedicated for the MDX-Math(95ll)
board operations.

EXAMPLE:

100' WAIT 32,.2

r

2.53 WHILE ••• WEND

FOBMAT:

WHILE <expression>
•
•

[<loop statements>]
•
•

WEND

PURPOSE:

To execute a series of statements in a loop as long as a given
condition is true.

. ...
REMARKS:

2-69

If <expression> is not zero Ci.e., true), <loop statements> are
executed until the WEND statement is encountered. PBASIC then
returns to the WHILE statement and checks <expression>. If it is still
true, the process is repeated. If it is not true, execution
resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match
the most recent WHILE., An unmatched WHILE statement causes a
"WHILE without WE?~D" error, and an unmatched WEND statement causes
a "WEND without WHILE" error.

EXAMPLE:

90 'BUBBLE SORT ARRAY A$
100 FLIPS=! 'FORCE ONE PASS THRO LOOP
110 WHILE FLIPS
115 FLIPS=O
120 FOR I=l TO J-1 :REM J=number of A$ elements
130 IF A$ (I) >A$ (I+l} THEN

SWAP A${I) ,A$(I+l) :FLIPS=!
140 NEXT I
150 WEND

2-10

2.54 WIDTH

FORMAT:

WIDTH [LPRIN'l'l <integer expression>

PURPOSE:

To set the printed line width in number of characters for the
terminal or line printer.

REMARKS:

If the LPRINT option is omitted, the line width of the terminal is
set. If LPRINT is included, the.line width of the line printer is set.
The default width for the terminal is 80 characters, and the default
width for the line printer is 132 characters: ~

)

<integer expression> must have a value in the range 0 to 255. If
<integer expression> is 255, the line width is "infinite," that is,
PBASIC never inserts a carriage return. However, the position of the
cursor or the pr int head,. as given. by the POS or LPOS function, returns
to zero after position 255. If zero COl width is used, a blank line
w~ll be generated befor~ the line is output.

EXAMPLE:

10 PRINT "ABCDEFGHIJKLMNOPQRSTOVWXYZ"

RON
ABCDEFGHIJKLMNOPQRSTUVWXYl
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

2.55 WRITE

FORMAT:

WRITEC<list of expressions>]

PURPOSE:

To output data at the terminal.

REMARKS:

2-71

If <list of expressions> is omitted, a blank line is output, If
<list of expressions> is included, the values of the expressions
are output to the- terminal.. The expressi.ons in the list may be numeric
and/or string expressions, and they must be separated by commas.

. ' -
When the printed items are output, each item will be separated from
the last by a comma. Printed strings will be delimited by quotation
marks. After the last item in the list is printed, PBASIC inserts
a carriage return/line feed.

WRITE outputs numeric values using the same format as· the PRIN'J!
s~atement, Section 2.38.

EXAHPLE:

10 A=80:Ba90:C$="TBAT'S ALL"
20 WRITE A,B.,C$
RUN
80,90,"TBAT'S ALL"
Ok

CHAPTER 3

PBASIC FUNCTIONS

3-l

The intrinsic functions provided by PBASIC are presented in this
chapter. 'l'hf.!! functions may be· called from any program without further
definition ..

Arguments to functions are always enclosed in parentheses. In the
_formats given for the functions in this chapter, the arguments have

been abbreviated as follows:

X and Y Represent any numeric expressions

I and J Represent integer expi::ess·ions

X$ and Y$ Represent string: expressions

If a floating· point value· is supplied where an integer is required,
PBASIC will round the fractional portion and use the resulting integer.

[

r

3-2

3.1 ABS

FORMAT:

ABS(X)

ACTION;

Returns the absolute· value of the expression x:.
EXAMPLE:

PRINT ABSC7*(-5))
35

Ok

3-3

3.2 ASC

FORMAT:

ASCCX$)

ACTION:

Returns a numerical value that is the ASCI.I.code of the first character
of the string X$. CSee Appendix H for ASCII codes.) If X$ is null, an
"Illegal function ca11• error is returned.

EXAHPLE:

10 X$ = "TEST"·
20 PRINT ASC(X$)
RUN

84

See the CHR$ function for ASCII-to-string conversion.

3-4

3.3 ATH

FOBMAT:

ATN(X)

ACTION:.

Returns the arct·angent of X in radians. Result is in the range -pi/2
to pi/2. The expression X may be any numeric type,, but the evaluation

, of ATN is always performed in single precision.

EXAMPLE:

10 INPUT X
20 PRINT' ATN(X)
RON
? 3
1.24905

Ok

·-~.

'

3-5

3.4 BCD

FORHAT:

BCD(X)

• ACTION:

This function will convert a 16-bit binary number to its BCD equivalent
representation. The argument may be a constant or the result of an
arithmetic expression.

EXAMPLE:

PRINT BCDClO)
16

The value 10 COOOO 0000 0000 10!0) is converted to the value 10 in BCD
· format C 0000 0000 0001 0000, or &H0010).

,

3-6

3.5 BIN

FOBMAT:

BIN(X)

ACTION:

·.This function converts a number represented in BCD to its 16-bit binary
equivalence. The argument may be a constant or the result of an
arithmetic exptession. The maximum BCD value is &H9999.

EXAHPLE:

PRINT BINC16):
10

The BCD number 16 C 0000 0000 0001 0000 or &HOOlO) is converted to the
binary equivalent 10 C·OOOO 0000 0000 1010).

. 3-7

3.6 CDBL

FORMT;

CDBLCX)

ACTION:

Converts X to a double precision number.

NOTE;

Conversion from single percision to double percision only allows 7
digits of accuracy to be. transferred to the double percision variable.

EXMSPLE;

10 A = 454.67
20 PRINT A;CDBL(A)
RON

454.67 454.6700134277344
Ok

I ,

r
l

3-8

3.7 CHR$

.FORMAT;

CHR$ CI)

ACTION:

Returns a string whose one element has ASCII code I. (ASCII codes are
listed· in Appendix H.) CHR$ is commonly used to send a special
character to the. t.erminal. For instance, the BEL character could be
sent CCHR$C7)) as a preface to an error· message, or a form feed could
be sent CCHR$Cl2)) to clear a CRT· screen and return the cursor to the
home position or to force top-of-form on the printer.

EXAMPLE:

PRINT CHR$C66l
B
Ok

See the ASC function for ASCII-to-numeric conversion.

3-9

3,8 CINT

FOBMAT:

CINTCX)

AC?ION:

Converts X to an integer by rounding the fractional portion. If X is
not in the range -32768 to 32767, an •overflow" error occurs.

EXAffPLE:

PRINT CINT(45.67)
46

Ok ...
See the CDBL and CSNG functions for converting numbers to the double
precision and single precision data type. See also the FIX and INT
functions, both of which return integers.

L

[

[

3-10

3.9 cos

FORMAT:

COS(X)

ACTION:

Returns the cosine of X expressed in radians. The calculation of
COSCX) is performed in single precision.

EXAHPLE:

10 X = 2*COSC .4)
20 PRINT X
RUN

1.84212
Ok

3.10 CSNG

FORMT:

CSNG(X)

ACTION:

Converts X to a single precision number.

EXAHPLE:

10 At = 975.34211
20 PRINT At; CSNGCAI)
RUN

975.3421 975.342
Ok

3-11

See the CINT and CDBL functions for converting numbers to the integer.
and double precision data types.

'

3-12

3.11 DATE$

FORMAT:

DATE$

ACTION:

Returns the current day and month in string form. These values are
obtained from the MDX-BCLK clock hardware.

EXAMPLE:

PRINT DATE$
30-NOV

3-13

3.12 EXP

FORMT:

EXPCX)

ACTION:

Returns e to the power of x. If EXP overflows, the "Overflow" error
message is displayed, machine infinity with the appropriate sign is
supplied as the result, and execution continues.

EXAMPLE;

10 x = 5
20 PRINT EXP CX-1)
RUN

54.5982
Ok

3-14

3.13 FIX

FORMAT;

FIXCX)

ACTION;

Returns the truncated inte947r part of x. FIXCX) is equivalent to
SGNCX)*INTCABS(X)). The InaJOr difference between FIX and INT is that
FIX does not return the next lower number for negative X.

EXAffPLES;

PRINT FIX (58.75)
58

Ok
PRINT FIXC-58.75)
-58
Ok

....

3.14 FRE

FORMAT:

FRE CO)

FRE(X$)

ACTION:

3-15

Arguments to FRE are dummy arguments. If the argument is O <numeric),
FRE returns to the terminal the number of bytes in memory not being

'used by PBASIC. If the argument is a string, FRE returns the·· number
of free bytes in the string.

EXAMPLE:

10 PRINT
20 DIM
30 PRINT
40 CLEAR
50 PRINT
60 END
RUN

24473
21461
24473

Ok

FRE CO)
A$(1000)
FRE(O}

FRECO)

3-16

3.15 HEX$

FORMAT:

HEX$ (X)

ACTION:

Returns a string which represents the hexadecimal value of the decimal
argument. X is rounded to an integer before HEX$(X) is evaluated. X
must be < = 65535.

EXAMPLE:

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X;:"DECIMAL IS ";A$;" HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

Ok

See the OCT$ function for octal conversion.
'

3-17

3.16 INP

FOBMAT:

INP(I)

ACTION:

Retur.ns the byte read from port I. I must be in the range O to 255.
INP is the complementary function to the OUT statement, Section 2.35.

NOTE:

Port addresses ES-EB HEX are "Illegal function call"s when using
PBASIC/9511 version, because they are dedicated to the MDX-Math board
operations.

. ...
EXAMPLE:

100 A=INPC255) 'Set A to value of Port 255

3-18

3.17 INPUT$

FORHAT:

INPUT$(X)

ACTION:

Returns a string of X characters, read from the terminal. No
characters will be echoed and all control characters are passed through
except Control-C, which is used to interrupt the execution of the
INPUT$ function.-

EXAMPLE:

•
•
•

100 PRINT "'l'YPE P TO PROCEED OR S TO STOP"
110 X$=INPU'l'$(l)
120 IF X$="P" THEN 500
130 IF X$= 11 s• THEN 700 ELSE 100

•
• ..

3.18 INS,TR

FORMAT:

INSTR([I,]X$,Y$)

ACTION:

3-19

Searches for the first occurrence of string Y$ in X$ and returns the
position at which the match is found. Optional offset I sets the
position for starting the search. I must be in the range l to 255.
If I>LENCX$) ·or if X$ is null or if Y$ cannot be found, INSTR returns
o. If Y$ is null, INSTR returns I or l. X$ and Y$ may be string
variables, string expressions or string· literals.

EXAHPLE:

10 X$ = "ABCDEB"
20 Y$·= "B"
30 PRINT INSTR(X$,Y$); INSTR(4 ,X$, Y$)
RUN

2 6
Ok

..

3-20

3.19 INT

FORMAT;

INT(X)

ACTION:

Returns the largest integer <=X.

EXAHPLES:

PRINT INTC99.89)
99

Ok
PRINT INTC-12.11)
-13
Ok

......

See the FIX and CINT functions which also return integer values.

3.20 LEFT$

FOftMAT:

LEFTCX,IJ

ACTION:

3-21.

Returns a str·ing comprised of the .. leftmost I characters of X$. I must
be in the range 0 to 255. If I is greater than LENCX$), the entire
string CX$) will be returned. If I=O, the null string (length zero>
_is returned.

EXAMPLE:

10 A$ = ·PROCESS BASIC·
20 B$ = LEFT$(A$,7)
30 PRINT B$
PROCESS
Ok

Also see the MID$ and RIGHT$ functions.

3-22

3.21 LEN

FORMAT;

LEN CX$)

'ACTION;

Returns the number of characters in XS.
blanks are counted.

EXAMPLE;

10 X$ = "CARROLLTON, TEXAS"
20 PRINT LEN CX$)
RUN

17
Ok

Non-printing characters and

3.22 LQG

FORMAT;

LOGCX)

ACTION:

Returns the natural logarithm of x. X: must be greater than zero.

EXAMPLE:

PRINT LOG(45/7)
1.86075

Ok

3-23

3-24

3.23 LPOS

FOBMAT:

LPOS(X)

ACTION:

Returns the current position of the line printer print head within the
line printer buffer. Does not necessarily give the physical position.
of the print head. X is a dummy argument.

EXAMPLE:

100 IF LPOS(X)>60 THEN LPRINT' CHR$(13)

3-25

3.24 MID$

FORMAT:

MID$ (X$,I[,JJ)

ACTION:

Returns a string of length J characters from X$ beginning with the Ith
character. I must be in the ran.ge 1 to 255 and J must be in the range
0 to 255. If Jis ommitted or if there are fewer than J characters to
the right of the I.th character,, all rightmost characters beginning
with the Ith character are returned. If I>LENCX$), MID$ returns a
null string. ·

EXAMPLE:

LIST
10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)'
RON '
GOOD EVENING
Ok

Also see the LEFT$ and RIGHT$ functions.

3-26

3.25 OCT$

FORMT:

OCT$ {X)

ACTION:.

Returns a string which represents the octal value of the decimal
argument. X is rounded to an integer before OCT$(X) is evaluated. X
must be in th.e range 0 to 65535.

EXUPLE;

PRINT OCT$ (24)
30
Ok

See the HEX$ function f.or hexadecimal conversion.

I

3-27

3.26 PEEK

FORMAT:

PEEK CI).

ACTION:

Returns the byte (decimal integer in the range O to 255) read from
memory location I, I must be in the range 0 to 65535. PEEK is the
complementary function to the POKE statement, Section 2.36.

EXAMPLE:

PRINT PEEK (&H6023)
0

Ok ""·

i

I

3-28

3.27 POS

FORHAT:

POS (I)

ACTION:

Returns the column number of the cui:sor position in the current pi:int
line. The leftmost position is 1. I is a dummy argument.

EXAMPLE:

IF POS(I) >60 THEN PRINT CHR$ (13)

Also see the LPOS function.
. ... _

3.28 RIGHT$

FORHAT:

RIGHT$ ex$, I)

ACTION;

Returns the rightmost I characters of string X$. If I>=LENCX$),
returns X$. If I=O, the null string (length zero) is returned.

EXAMPLE:

10 A$=-PROCESS BAsrc•
20 PRINT RIGHTCA,S)
RUN
BASIC
Ok

Also see the MID$ and LEFT$ functions.

.....

3-29

r:

,,

[

[

[

3-30

3.29 RNP

FORMAT;

RND[(X)]

ACTION:

Returns a random number between 0 and 1. The same sequence of random
numbers is generated each time the program is RUN unless the random
number generator is reseeded Csee RANDOMIZE, Section 2.40). However, . \

X<O always restarts the same seqµence for any given x.
X>O or X. omitted generates the next random
X=O repeats the last number generated.

EXAMPLE:

10 FOR I=l TO 5
20 PRINT INT(RND*l00);
30 NEXT
RUN

24 30· 31. 51 5
Ok I

number in the sequence.

...

3.30 ROTATE

FORMAT:

ROTATE -ex, Y)

ACTION:

3-31

\

This function will rotate a 16-bit argument in a circular manner with
the direction and number of binary places specified by a second 8-bit
argument. The direction of rotation is determined by the sign of the
second argument with a positive argument signifying a right rotate and
a negative argument signifying a left rotate. The absolute value of
the second argument determines the number of bit positions to rotate.
Either argument could be a constant or the result of an arithmetic
expression•

EXAMPLE:

PRINT ROTATE Cl,2)
16384

The value 1 C 0000 0000 0000 0001) was rotated. 2 places to the right
thus producing the result 16384 COlOO 0000 0000 0000).

l

r

[

3-32

3.31 SGN

FORMAT:

SGN(X)

ACTION;

Returns a value 1, O, or -1 based on the sign of x.
If X>O, SGN(X) returns 1.
If X=O, SGN(X) returns O.
If X<O, SGN(X) returns -1.

EXAMPLE;

10 ON SGN(X)+2 GOTO 100,200,300
• ..
•

100

.,

•
-- 200

•
•
•

300

"X is negative

'X is 0

'X is positive

3-33

3.32 SHIFT

PORffAT:.

SHIFT CX,Yl

ACTION:

This function will shift a 16.-bit argument horizontally, the direction
and number of binary places specified by a second 8-bit argument. The·
direction of shifts is determined by the sign of the second argument
with a positive. argument signfying: a right shift and a negative
argument signi.fying a left shift. The absolute value of the second
argument determines the number of bit positions to shift. All vacated
bits on a shift operation are zero (0} filled. Either argument could
be a constant or the res~lt. of an arithmetic expression.

EXAMPLE:

PRIN'l' SHIFT (84,-3)
672

The bi ts of the value 84 co·ooa 0000 0101 0100) were shifted left 3
times resulting in the value'. 672 (0000 0010 1010 0000).

L

[

[

3-34

3.33 SIN

FORMAT:

SIN(X)

ACTION:

- Returns the sine of X expressed in radians. SIN(X) is calculated in
single precision. COS{X)=SINCX+3.14159/2J.

EXAMPLE:

PRINT SIN(l.5)
.997495

Ok

3-35

3.34 SPACE$

FORffAT:

SPACE$CX)

ACTION:

Returns a string of spaces of. length x. The expressi.on X is rounded
to an integer and must be in the range 0 to 255.

EXAMPLE:

10 FOR I = 1 'l'O 5
20 X$ = SPACE$ CI)
30 PRINT X$;I
40 NEXT I
RON

1

Ok

2
3

4-
5

Also see the SPC function.

r

3-36

3.35 SPC

FORHAT:

SPC(I)

ACTION:

Prints ICMOD 80) blanks on the terminal., SPC may only be used with
PRINT and LPRINT statements. I must be in the range O to 255.

EXAMPLE:

PRINT "OVER";SPCC15l;"THERE"
OVER. THERE
Ok

Also see the SPACE$ function.

3.36 SOR

FOftMAT;

SQRCX)

ACTION:

Returns the square root of X. X must be >•O.

EXAMPLE:

10 FOR X •· l<l TO 25 S'l'EP 5
20 PRINT X, SQRCXJ
30 NEXT
RON

10
15
20
25

Ok

l.16228
3.87298
4.47214
5;

.....

3-37

3-38

3.37 STR$

FORMAT:

STR$ (X)

ACTION:

Returns a string representation of the value of X.

EXAMPLE:

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500
•
•
•

Also see the VAL function.

3.38 STRINGS

FORHATS;

STRING$CI,J)

STRING$ (I,X$)

ACTION;

3-39

Returns a string of length I whose characters all have ASCII code J or
the first character of X$. O<=I<255, O<=J<256. Val.ues of J>=128 are
printed as if the Most Significant Bit CMSB) were dropped.

EXAMPLE:

10 X$ = STRING$C10,45)
20 PRINT X$;"MONTHLY REPORT•;xs
RON
----------MONTHLY REPORT----------
Ok -

....

[

[

r

3-40

3.39 TAB

FORMAT:

TAB(I)

ACTION;

Spaces to position I on the terminal. If the current print position
is already beyond space I, then printing resumes in Column I on the
next line. Space 1 is the leftmo;:1t position, and the rightmost
position is the width of the device, For PRINT, I is MOD 80: for
LPRINT, I is MOD 132. I must be in the range 0 to 255, TAB may only
be used in PRINT and LPRINT statements.

EXAMPLE;

10 PRINT •NAME":TABC25):"AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$:TABC25)7B$
40 DATA "G. T. JONES",•$25,00"
RUN
NAME AMOUNT

G, T. JONES
Ok

$25.00

3-41

3.40 TAN

FORMA'?:

TAN(X)

ACTION:

Returns the tangent of X expressed in radians. TAN(X) is calculated
in single precision. If TAN overflows, the "Overflow" error message
is displayed, machine infinity with the appropriate sign is supplied
as the result, and execution continues.

EX!MPLE;

10 Y = Q*TAN(X)/2

3-42

3.41 TIME$

FORMAT:

TIME$

ACTION:

Returns the current time CHH:MM:SS) in string form. These values are
obtained from the MDX-BCLK clock hardware •

. EXAMPLE:

PRINT TIME$
18:33:57

3-43

3.42 USR

FORHAT:

USRC<digit>l(X)

ACTION:

Calls the use.r's assembly language subroutine with the argument X.
<digit> is in the range of 0-9 and corresponds to the digit supplied
with the DEF OSR statement for that routine. If <digit> is omitted,
USRO is assumed. See Appendix G for a dicussion of the linkage between
PBASIC and assembly language routines.

EXAHPLE:

10 DEF USRl= &HCOOO
20 DEF USR2= &HDOOO
30 A = T*SIN (Y)
40 B = USRl (A)
50 C = OSR2 (A)

•
•
•

'Compute using user Function l
•compute using user Function 2

3-44

3.43 YAL

FORMAT;

VALCX$)

ACTION;

Returns the numerical value of string X$. If the first character of
X$ is not +, -, &, or a digit, VALCX$)=0.

EXAMPLE:

10 READ NAME$,CITY$,STAT~$,ZIP$
20 IF VALCZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TABC25l "OUT OF STATE"
30 IF VALCZIP$)>=90801 AND VALCZIP$)<'=90815 THEN
PRINT NAME$ TAB(25) "LONG BEACH ..
•
•
•

See the STR$ function for numeric to string conversion.

3-45

3.44 YABPTR

FOBMAT:

VARPTR (<variable name>)

ACTION:

Returns the address of the first byte of data identified with <variable
name>. A value must be assigned to <variable name> prior to execution
of VARPTR. Otherwise an "Illegal function call" error results. Any
type variable name may be used (numeric, string, array), and the
address returned will be an integer in the range 32767 to -32768. If a
negative address is returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address""of a variable or array so
it may be passed to an assembly language subroutine. A function call
of the form VARPTR (ACO)) is usually specified when pas·sing an array,
so that the lowest-addressed element of the array is returned.

Non;:

All simple variables should be assigned before calling VARPTR for an
array, because the addresses of the: arrays change whenever a new simple
variable is assigned.

EXAffPLE:

100 X=USR CVARPTR(Y))

l

[

[

A.l MEMORY LAYOUT

A.1,1 QASIC IN'l'QPRETQ

APPENDIX A

SYSTEM CONFIGURATION

A-1

The.PBASIC Interpreter can execute· from either RAM or ROM and resides
at 0000 up to 8000 HEX, as shown in Figure A-1,_ PBASIC requires RAM
memory in locations FOOO to FPPF BEX for interpreter variables and
stack space. This comprises the main. configuration of the PBASIC
interpreter with execution starting. at 0000 BEX.

An automatic Runtime system can be configured. by placinq the AUTO RUN
PROM at EOOO BEX and starting execution at EOOO HEX by power-on or
reset. This will automatically start to RON the application program
that currently resides in the source area at· 80.00 BEX.

A,1,2 PDA$IC UPLICATIO?f PROGRAM

The PBASIC application program resides in RAM or PROM starting at
location 8000 BEX and can. extend upward to location EFFP BEX~ or DFFP
for automatic Runtime·, as shown in Piqure A-l. This area is dedicated
for both a program's source statements, in RAM or ROM, and program
variables, always RAH, qivinq the user a maximum limit of-28k bytes of
application memory space.

A-2

FIGURE A-1

PBASIC SYSTEM CONFIGURATION

ADDRESSCHEX) MEMORY TYPE _.,.. ________ _

FFFP f, --.-~--~--------------------1
l l
! RAM MEMORY l
1 1

POOO 1-----------.------------1
! 1
t 1
1 (JUMP RON'rIME) r RAM/ROM

EOOO 1----....----------------------1
! 1
1' 1
r r
1 APPLICATION 1
1 1 RAM
t VARIABL.ES 1
1 l
t •••••••••••••••••••••• 1
1 1
£ f
t APPLICATION l .
1 1 RAM/ROK
t SOtJRCB t .
l 1
1 1
I r

8000 !---------------------..._._-f r !.
! ' . t !.
1 PBASIC l
1 I RAM/ROM
1: ImmlPRE'?ER 1
t f
1 1
t !
1 ' .,

0000 !..--------------------........ ----1·

A-3

A.2 HARDWARE CONFIGUBATION

The minimum hardware and associated- PORT assignments required to operate
PBASIC is as follows:

MD BOARD

MDX-CPU I OR II
MDX-EPROM/UART
MDX-EPROM/ROM
MDX-DRAM 8/16/32
MDX-PIO

MDX-BCLK

For PBASIC/9511 version only:

MDX-MATH

PBASIC
DEDICATED PORT (HEX)'

7C-7F (CTC)
DC-OF (UART)

OO-D3 CLP)
04-07 (PPG)

70-71 CCLK)

ES-EB (PIO)

WARNING- user is blocked from using port I/O at the MATH board ports due
to contention problems.

A.3 BQARD LEVEL DOCJJMEN'l'ATION

If MDX boards are used,. then the appropr.iate Operations Manual for that
board must be referenced for functional. operation.

B-1

APPENDIX B

SYSTEMS GENERATION

B.1 PBASIC INTERPRETER

B.1.1 INITIAL PROGRAM DEVELOPQNT

The user starts execution of the interpreter, at location &HOOOO, in
the Development configuration. In this configuration, RAM memory is
required from &HSOOO up to &HEFFF as needed. RAM memory is initialized
upon power-up of PBASIC in this configuration. PBASIC statements are
entered via the terminal, utilizing the full capabilities of the PBASIC
interpreter. This allows program statements to be placed into the
source program area.

Once the program has been input,. the user can then RUN the application
program that resides in RAM~ The application program can be debugged
thoroughly and any edits or. modification can be made until program
testing is completed.

B.1.2 PROMMING APPLICATION PROGBAM

. Once the program has been tested, the program can be burned into PROMS
, via the PPROM command (See Section 2.37). The PROM application is then

placed in the same memory space as the RAM version. The only
adjustment the user must make in running the PROM version is that RAM
variable storage will begin at the next even IOOQ HEX boundary from
where the application program ended.

EXAMPLE:

If Application Program Memory is &HSOOO to &H9700
then variable storage RAM starts at &HAOOO

B.!.3 RUNNING PROM APPLICATION IN DEVELOPMENT CONFIGUBATION

The user can then power-up PBASIC and type in RUN to run the PROMed
L application program. The application program is now in a non-volatile

state and power can be removed from the system without destroying the
[application program.

l B.1.4 READING PROMMED APPLICATION UJTO RAM

[
The user places RAM memory in the application program space &HSOOO to
&HEFFF as required.. The RPROM command (See Section 2.46) is used to
read the PROMed application program, in sequence, back into RAM memory.
The user is back to the initial program development step with the

r current application program residing in RAM memory.

B-2

B.1.5 AQ'.l'OMATIC RJUfrIME MODE

To use the Automatic Runtime Mode, the user straps the CPU to start
executing code at location &HEOOO, where the Runtime PROM resides.
With the PBASIC interpreter and application program in non-volatile
memory, when power is applied, PBASIC will automatically start running
the application program. that resides in the system.

Note that an application system requiring more than 24k bytes of memory
can only be run in the development mode because of memory requirementa.

y

....

C.1 INTEGRITY TEST PQRPOSE

APPENDIX C

INTEGRITY TEST

C-1

The purpose of the Integrity Test is to assure continuity and integrity
of the PROMed program sequence. The PROM application is checked when
the RUN command is invoked and. the error message

***** CHECKSUM ERROR IN CHIP txx *****

is output to the terminal to notify the user that chip t XX is bad, out
of order, or missing. No PROM program will execute until the entire
application program passes the Integrity Test.

C.2 INTEGRITY TEST SCHEME

Every PBASIC application program contains a Checksum Table which
preceeds the program source, This 38 byte table, as shown in Figure
C-1, is dedicated to a checksum byte for each PROM image, plus
additional information. ·when the application program is placed into
PROM, a checksum byte for. each. lK or!2K bytes, according to which type
of PROM(s) is used, is placed into the checksum table according to its

. appropriate chip number. Also contained within the table is the
address of where. variable RAM storage is expected to start and the
number and t.ype of PROM chips required to contain an application
program.

Also contained within this table is a user configurable jump address to
a user defined non-maskable interrupt CNMI) service routine. The
address of this routine must be POKED into the address portion of the
jump instruction. When NMI causes a jump to location &H66 , a jump to
the user defined NMI routine will be correspondingly executed.. A
service routine must be provided at that address to handle user
required operations.

This Checksum Table furnishes PBASIC with the information. necessary ·to
assure that the PROMed application program is equivalent to the RAM
version that was generated initially. When the PROM application is
RUN, the checksum test is performed and an appropriate message is
displayed on checksum failure.

c-2

ORGANIZATION OF CHECKSUM TABLE
FIGURE c-1

HEX ADDRESS TABLE CONTENTS
--..---------~ ---------~----

80-00 CHECKSUM FOR CHIP l
8001

., • II 2
8002 " • • 3
8003 • ... II 4
8004 • " It' 5
8005 If It It 6
8006 II • If 7
8007 II• II II 8
8008 • • . . 9
8009 II " II 10
800A II • n 11
800B • • If 12
800C "

II ,,_ II 13
800D " II If 14
800E • II " 15
800F II II II 16-
8010 • II II 17
8011 II If If 18
8012 • " • 19
8013 • If .. 20
8014 • • If 21
8015 .. II ... 22
8017 .. II " 23
8018 • • • 24
8019 • 25
801A II 26
801B • "' .• 27
801C " II II 28
801D • • .. 29

801E VARIABLE STORAGE (LOWER BYTE)
801F START ADDRESS (UPPER BYTE)

8020 NUMBER OF CHIPS Cl-29)

8021 TYPE OF CHIP

8022 JUMP
8023 mu Service (LOWER BYTE)
8024 Routine (UPPER BYTE)

8025 RESERVED

8026 START OF SOURCE

APPENDIX D

MATHEMATICAL FUNCTIONS

D.1 PBASIC MATH VERSIONS

D.1.1 PBASIC SOFTQRE CS/W) MATB VERSION CPBASIC)

D-1

This version of PBASIC provides. all mathematical operations through
software simulation routines.. These are efficient software routines to
calculate values as follows:

TYPE

INTEGER

SINGLE PRECISION

DOUBLE PRECISION

PRECISION

s
7.DIGITS

16 DIGITS

RANGE

-32768 to 32767

2.9387 *10**-39 to I.7014*10**38

(SAME AS SINGLE)

D.1.2 PBASIC HARDWABE CB/Wl 9511 MATH VERSION CPBASIC/95112

This version of PBASIC provides the user with a high speed 9511 math
processor to increase computational speed. The 9511 prov.ides hardware
math functions for the following:.

TYPE

INTEGER

SINGLE PRECISION

DOUBLE PRECISION.

PRECISION -----------

1 DIGITS

16 DIGITS

RANGE

-32768 to 32767

5,4210*10**-20 to 9.2234*10**18

2,9387*10**-39 to 1,7014*10**38

Double precision operations (+,. ...,, *,. /l are simulated with software
due to hardware limitations of the 9511. math chip. It is important to
note that all double precision transcendental functions are converted
to single precision f.ormat and: then processed by the MDX-Math board.
Refer to MDX-MATH Operati.ons Manual CMK79741l for detail information· of
the. AM95Il,

D.2 DQ!VED FUNCTIONS

Functions that are· not intrinsic to PBASIC may be calculated as
follows.

[Function -------- PBASIC Equivalent

[SECANT SECCX)=l/COS(X)

D-2

COSECANT CSCCX) =l/SIN(X)

COTANGENT COTCX)=l/TAN(X)

INVERSE SINE ARCSIN(X)=ATNCX/SQRC-X*X+l))

INVERSE COSINE. ARCCOS(Xl-ATN CX/SQRC-X.*X+l})+l.5708

INVERSE SECANT ARCSEC(Xl=ATN(X/SQR(X*X-1))
+SGNCSGN(X)-ll*l.5708

INVERSE COSECANT ARCCSCCX)=ATNCX/SQR(X*X-1)}
+CSGNCX)-l)*l.5708

INVERSE COTANGENT ARCCOTCXl=ATN(X)+l.5708

HYPERBOLIC SINE SINH(X)=(EXP(X)-EXPC-X))/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT 'l'ANH(Xl=(EXP(X)-EXP{-X))/(EXP(X)+EXPC-X))

HYPERBOLIC SECANT SECHCX)=2/CEXPCXl+EXPC-X))

HYPERBOLIC COSECANT CSCB(X)~2/CEXP(X)-EXP(-X))

HYPERBOLIC COTANGENT COTBCXl=CEXPCXl+EXPC-Xll/CEXPCXl-EXPC-Xl)
INVERSE HYPERBOLIC
SINE ARCSINHCXl=LOGCX+SQR(X*X+l))
INVERSE HYPERBOLIC
COSINE ARCCOSHCX)=LOGCX+SQRCX*X-1)
INVERSE HYPERBOLIC
TANGENT ARCTANH (X) =LOGt. Cl+Xl I Cl-Xl) /2
INVERSE HYPERBOLIC
SECANT ARCSEClHX) =LOGCl/X+SQRCl/X ... 2-1))
INVERSE HYPERBOLIC
COSECANT ARCCSCHCXl=LOGCl/X+SQRCl/X ... 2+1)).
INVERSE HYPERBOLIC
COTANGENT ARCCOTBCXl•LOGC CX+ll I (X-1)) /2

E-1

APPENDIX E

Converting Prag.rams to PBASIC

If you have programs written in a BASIC other than PBASIC, some minor
adjustments may be necessary before running them with PBASIC. Here are
some specific items to look for when converting BASIC programs.

E.l STRING DIMENSIONS

Correct all statements that are used to declare the length of strings.
A statement such as DIM A$ CI,J), which dimensions a string a.rray for J
elements of length I, should be converted to the PBASIC statement DIM
A$ (J) •

Some BASICs use a comma or ampersand for string concatenation. Each of
these must be changed to ·a plus sign, which is the operator for PBASIC
string concatenation.

In PBASIC, the MID$, RIGHT$, and LEFT$ functions are used to take
substrings of strings. Forms such as A$(!) to access the: Ith character
in A$, or A$CI,Jl to take a substring of A$ from position! I thru
position J, must be changed as follows: 1

Other BASICS

X$=A$(I)
X$=A$ CI,J)

PBASIC

I

X$=MID$(A$,I,l)
X$=MID$ CA$,-I,J-I+l)

If the substring reference· is on the left side of an assignment and X$
is used to replace characters in A$, convert as follows:

Other BASICS

A$(I)=X$
A$CI,J)=X$

PBASIC

MID$ (A$,I, 1) =X$
MID$(A$,I,J-I+ll=X$

E.2 MOLT!PLE ASSIGNMENTS

Some BASICS allow statements of the for1n:

10 LET B=C=O

[.
·. to set B and C equal to zero. PBASIC would interpret the second

equal sign as a logical operator and set B equal to -1 if C equaled o.

r
Instead, convert this statement to two assignment statements:

10 C=O:B=O

E-2

~.3 MULTIPLE STATEMENTS

Some BASICS use a backslash (\) to separate multiple statements on a
line. With PBASIC, be sure all statements on a line are separated by a
colon (:).

E.4 MAT FUNC%IONS

Programs using the MAT functions available in some PBASICs must be
rewritten using FOR ••• NEXT loops to execute properly.

[

[

F-1

APPENDIX F

Summary of Error Codes and Error Messages

Error Code

1

2

3

4

5

7

Message

NEXT without FOR
A variable in a NEXT
correspond to any
unmatched FOR statement

statement
previously
variable.

does not­
executed,

Syntax Error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, . incorrect punctuation, no space
f~llowing operand, e~c •.).

Return without GOSUB
A RETURN statement is encountered for
there is no previous, unmatched
statement.

out of .DATA

which
GO SUB

A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Illegal function. call
A parameter that is out of range is passed to
a math or string function. This error may
also, occur as the result of:
a. a negative or unreasonably large

subscript
b. ·a negative or. zero argument with LOG
c. a negative argument to SQR
d. a negative mantissa with a non-integer

exponent
e. a call to a USR function for which the

starting address has not yet been given
f.. an improper argument to MID$, LEFT$,

RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRING$, SPACE$, INSTR, or
ON ••• GOTO.

Overflow
The result of a calculatio·n is too large to
be represented in PBASIC'S number format.
If underflow occurs, the result is zero and
execution continues without an error.

Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables, or

F-2

8

9

. 10

11

12

13

14

15

16

17

expressions that are too complicated.

Ondef ined line
A line reference in a GOTO, GOSUB,
IF ••• THEN ••• ELSE or DELETE is to a
nonexistent line.

Subscript out of range
An array element is referenced either with a
subscript that is outside the dimensions of­
the array, or with the wrong number of
subscripts. "

Duplicate Definition
Two DIM statements are given for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array •.

Division by zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

Illegal direct ·
A statement that is. illegal in direct mode is
entered as a direct mode command.

Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

Out of st.i:ing space
String variables exceed the allocated amount
of string space. Decrease the size and number
of strings, labels, or arrays.

String too long
The string was longer than 255 characters.

String formula too complex
A string expression is too long or too
complex. The expression should be. broken
into smaller expressions.

Can't continue
An attempt is made to continue a program
that:
a. has halted due to an error,

l
[

r

18

19

20

21

22

23

26

29

30

F-3

b. has been modified during a break in
execution, or

c. does not exist.

Undefined user function
A USR function is called before the function
definition CDEF statement) is executed.

No RESUME
An error trapping routine is entered but­
contains no RESUME statement ..

RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error
An error message is
error condition

not available
which exists.

an ERROR with an ·usually caused by
error code.

Missing operand

for the
This is
undefined

An expression contains an operator with no
operand following it.

Line buffer overflow
An attempt is made to input a line that has
too· many characters.

FOR without NEXT
A FOR was encountered without a matching
NEXT.

WHILE without WEND
A WHILE statement does not have a matching
WEND ..

WEND without WHILE.
A WEND was encountered without a matching
WHILE.

<><><><><> AM9511 hardware is expected but
is not present <><><><><><>
No AM9511 in system and math. overflow is
generated on all math functions.

***** ERROR 07 I/0 TIME OUT CPO:
Line Printer is off line. Type Control-C to
abort.

*****NO RAM MEMORY-OR-BAD FIRST CHIP*****
The memory is incorrectly configured. PBASIC
stops execution when this error occurs.

G-1

APPENDIX G

Assembly language Subroutines

PBASIC has provisions for interfacing with assembly language
subroutines. The USR function allows assembly language subroutines to
be called in the same way BASIC's intrinsic functions are called.

G.l MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine
before it can be loaded. During initialization, enter the highest
memory location minus the amount of memory needed for the assembly
languCJ.ge subroutine(s). PBASIC uses all memory available from its
starting location up, so only the topmost locations in memory
should be set aside for user subroutines. The assembly language
subroutine must be loaded into memory by PBASIC by means of the POKE
statement.

When an assembly language subroutine is called, the stack pointer
is set. up for 8 levels (16 bytes) of stack~ storage. If more stack
space is needed, PBASIC's stack can be saved and a new stack set :
up for use by the assembly· language subroutine. PBASIC' s stack must be I .
restored, however·,, before returning from the subroutine. I·<

. GI 2 OSR FONCTIOH CALLS

In PBASIC, the format of the OSR function is

OSRC<digit>l (a . .r;gument)

where <digit> is from O to 9 and the argument is any numeric or
string expression.. The parameter <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in the DEF
USR statement for that routine. If <digit> is omitted, USRO is
assumed. The address given in the DEF OSR statement defines the
starting address of the subroutine.

When the OSR function· call is made, register A contains a value
that specifies the type· of argument that was. given. The value in A
may be one of the following::

Value in A

2

3

4

Type o.f Argument
-----------~-----

Two-byte integer (two's complement)

String

Single precision floating point number

G-2

8 Double precision floating point number

If the argument is a. number, the [H,Ll register pair points to the
Floating Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If. the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and
FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (O=positive,, !=negative>.
FAC is the exponent minus 128, and the binary
point is to the left of the_ most significant
bit of the mantissa. ·· -

If the argument is a double precision floating point number:

FAC-7 through FAC-4- contain . four more bytes
of mantissa CFAC-7 contains:. the lowest 8 bits).

If the argument is. a string, the: [D,El register pair points to 3
. bytes called the •string descriptor.• Byte O of 1the string descriptor
contains the length of the string (Q to 255). Bytes i and 2,
respectively, are the lower and upper 8 . bi ts of the string s-tarting
address in string space.

CAUTION: If the argument is a string literal in the program,
the string descriptor will point to program text. Be careful not to
alter or destroy your program this way... T<> avoid unpredictable
results, add +•• to the string literal in the program. Example:

This will copy the string literal into string space and will prevent
alteration of program. text during a subroutine call.

GI 3 CALL STATEMENT

PBASIC user function calls may also be made with t~e CALL statement. A
CALL statement with no arguments generates a simple "CALL"' instruction.
The corresponding subroutine should return, via a simple "RET." (CALL
and RET are ZSO instructions, see a Z80 programming manual for
details.)

A subroutine CALL with arguments results in a somewhat more complex
calling sequence. For each argument in the CALL argument. list, a
parameter is passed to the subroutine.

That parameter is the address of the low byte of the argument.

l
[

[

[

G-3

Therefore, parameters always occupy two bytes each, regardless of
type.

The method of passing the parameters depends upon the number of
parameters to pass:

1. If the number .of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in BL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is gre.ater than 3, they
are passed as follows:
1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block {i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how many
parameters to expect in order to find them. Conversely, the
calling program is responsible. for passing the correct number of
parameters. There are no checks: for the correct number or type of
parameters.

If the subroutine expects more than 3 parameters, and needs to
transfer them to a local data area, there is a system subroutine
which will perform this transfer. This argument transfer routine is
named $AT, and is called with HL pointing to the local data area,
BC pointing to the third parameter, and A containing the number of
arguments to transfer - Ci.e., the total number of arguments minus
2) • The subroutine is responsible for saving the first two
parameters before calling $AT. For example, if a subroutine
expects 5 parameters, it should look like:

SUBR:

Pl:
PZ:
P3:

LD
EX
LD
LD
LD
CALL
•
•
•

CPl),BL
DE,HL
(P2),HL
A,3
HL,P3
$AT

;SAVE PARAMETER 1

;SAVE PARAMETER 2
;NO. OF PARAMETERS LEFT
;POINTER TO LOCAL AREA
;TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]
•
•
•
RET
DEFS
DEFS
DEFS

2
2
6

;RETURN TO CALLER
;SPACE FOR PARAMETER 1
;SPACE FOR PARAMETER 2
;SPACE FOR PARAMETERS 3-5

G-4

A listing of the argument transfer routine AT follows •.

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

.
I

;[B,Cl
; [H, Ll
; [A]

$AT:

ATl:

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE FOR PARAM 3
CONTAINS THE i OF PARAMS TO XFER CTOTAL-2)

ENTRY
EX
LD
LD
LD
INC
LD
INC
EX
LD
INC
LD
INC
EX
DEC
JR
RET

$AT
DE,HL
H,B
L,C
C, CHL)
HL
B, (BL)
HL
DE,HL
CHLl,C
BL
CHL) , B
HL
DE,HL
A
NZ,ATl

;SAVE [H,Ll IN CD,El

; [H, L] = PTR TO PARAMS

;[B,Cl = PARAM ADR
;CH,Ll POINTS TO LOCAL STORAGE

;STORE PARAM IN LOCAL AREA
;SINCE GOING BACK TO ATl
;TRANSFERRED ALL PARAMS?
;NO, COPY MORE,
;YES, RETURN

When accessing parameters in a subroutine, don't forget that they
are pointers to the actual arguments passed.·

NOTE:

It is entirely up to the programmer to see to it that the arguments in
the calling program match in number, type, and length with the
parameters expected by the subroutine. This applies to PBASIC
subroutines, as well as those written.in assembly language.

G.4 INTERRQETS

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the stack,
registers A-L, IX, IY, and the PSW. Interrupts should always be
re-enabled before returning from the subroutine, since an interrupt
automatically disables all further interrupts once it is received.
The user should be aware of which interrupt vectors are free.

H-1

APPENDIX H

ASCII Character Codes

ASCII ASCII ASCII
Code Character Code Character Code Character

000 NUL 043 + 086 v
001 SOH 044 ,. 087 w
002 STX 045 088 x
003 ETX 046 .. 089 y
004 EOT 047 I 090 z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093 l
008 BS 051 3 094 A

009 HT 052 4 095
' 010 LF 053 5 096

011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 so 057 9 100 d
015 SI 058 • 101 e •
016 OLE 059 . 102 f I

017 DCl 060 < 103 g
018 DC2 061 = 104 h
019 OC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 1.09 m
024 CAN 067 c 110 n
025 EM 068 D 111 0
026 SOB 069 E 112 p

'0.27 ESCAPE 070 F 113 q
028 FS 071 G 114: r
029 GS 072 H 115 s

.030 RS 073 I 116 t
031 us 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 II 077 M 120 x
035 t 078 N 121 y
036 $ 079 0 122 z

·037· % 080 p 123 {
038 & 081 Q 124 I
039 I 082 R 125 }

·040 { 083 s 126
041) 084 T 127 DEL

1 042 ~ 085 u

ASCII codes are in decimal.
r
lLF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL= Rubout

H-2

