C

<

TRAL

PROCESSOR

UNIT

¢

RE

L4

HRENCE

MANUAL

L 4

@ MOTOROLA

CPU32RM/AD

CPU32

Reference Manual

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author-
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ™ are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

"MOTOROLA INC., 1989

PREFACE

This reference manual describes the capabilities, operation, and programming of
the CPU32 instruction processing module found in the M68300 Family of embedded
controllers. This manual is a part of a multivolume set of manuals — each volume
corresponding to a major module in the M68300 Family. Each device in the M68300
Family also has a system integration user’s manual that describes the function and
operation of that particular device with references to the other volumes. The manual
set for each device in the M68300 Family will require two to four volumes. This
manual consists of the following sections and appendix:

Section 1. Introduction

Section 2. Architecture Summary
Section 3. Addressing Modes

Section 4. Instruction Set

Section 5. Processing States

Section 6. Exception Processing
Section 7. Development Support
Section 8. Instruction Execution Timing
Appendix A. M68000 Family Summary

NOTE

In this manual, assertion and negation are used to specify driving a signal
to a particular state. In particular, assertion and assert refer to a signal that
is active or true; negation and negate indicate a signal that is inactive or
false. These terms are used independently of the voltage level (high or
low) that they represent.

The audience of this manual includes systems designers, systems programmers,
and applications programmers. Systems designers need some knowledge of all
sections of this volume, with particular emphasis on Sections 1, 7, Appendix A,
and the electrical specifications and mechanical data from the appropriate system
integration user’s manual. Systems programmers should become familiar with
Sections 1, 2, 3, 4, 5, 6, 8, and Appendix A. Applications programmers can find
most of the information they need in Sections 1, 2, 3, 4, 5, 8, and Appendix A.

From a different viewpoint, the audience for this book consists of users of the
M68000 Family members and those not familiar with the CPU32. Users of the other
M68000 Family members can find references to similarities to and differences from
the other Motorola microprocessors throughout the manual. However, Sections 1,
2, and Appendix A specifically identify the CPU32 within the rest of the M68000
Family and contrast its differences.

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Overview
1.1 FATUIES. . ivt ittt e s e e e e e e e e e e 1-2
1.1.1 Virtual MemoOry ..o e 1-2
1.1.2 Loop Mode Instruction Executionccoceeveiiininiininiininnen. 1-3
1.1.3 Vector Base Register................ e 1-4
1.1.4 Improved Exception Handlingcooivviiiiiiiinnncninn, 1-4
1.1.5 Enhanced Addressing Modes...........c..ccoevviiiniinniininnn, 1-6
1.1.6 INSTrUCHION SeL...uuiiiiiiiiiiiiiii e eeae 1-5
1.1.6.1 Table Lookup and Interpolate Instructions..................... 1-6
1.1.6.2 Low-Power STOP Instruction............ccovvuvinniiniiiiniinninnn, 1-6
1.1.7 Processing Statescocevviiiviiiniiini 1-6
1.1.8 Privilege States........ccoviiviiiiiiniiiiiiiri 1-8
1.2 BlOCK Diagramc.uvvruiiiniiiiiiiie i 1-8
Section 2
Architecture Summary
2.1 Programming Model..........cccoviviiiiiiiiiiiii i, 2-1
2.2 REGISTErS. uuiiniiiiiiiiiei 2-3
2.3 DT 1 T Y o1 - T PR 2-4
2.31 Organization in Registers.........cccvvviiiiiiiniiiniiici e, 24
2.3.1.1 Data REGIiSterS . ccuivuireiiiiiiein i 2-5
2.3.1.2 Address Registers.......ccovvvviiiiiiniieiiiiin e 2-6
2.3.1.3 Control Registerscovivviieeiiiiiiireniereeee e 2-6
2.3.2 Organization in MemMOrYccoivvieiiiiiiiiriiieenr e 2-7
Section 3
Data Organization and Addressing Capabilities
3.1 Program and Data References..........ccoccovvviiviiiiiiiiiiiiinnnn, 3-2
3.2 Notation ConVeNtioNS.......c.viviiiiiiiiii e 3-2
3.3 Implicit Referencecccoviviiieiiiiiii e, 3-3

MOTOROLA CPU32 REFERENCE MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
3.4 Effective Address......cocovvviiiiiiiiie e
3.4.1 Register Direct Mode..........cooiiiiiiiiiiii
3.4.1.1 Data Register Directocoovvviiiiiiiniiiiicieee,
3.4.1.2 Address Register Direct..........cocceviviiviiiiiiiiiinininnn,
3.4.2 Memory Addressing Modes..........coceviviiiniiiiiiiniininns
3.4.21 Address Register Indirect..........cccoovviiiiiniiinin
3.4.2.2 Address Register Indirect with Postincrement.........
3.4.2.3 Address Register Indirect with Predecrement..........
3.4.24 Address Register Indirect with Displacement...........
3.4.25 Address Register Indirect with Index (8-Bit
Displacement)oovviiiiiiiii e
3.4.2.6 Address Register Indirect with Index (Base
Displacement)ccocoeiviiiiiiiiiiiie e
3.4.3 Special Addressing Modes..........covveveiiiiiiiiiniicieeis
3.4.3.1 Program Counter Indirect with Displacement..........
3.4.3.2 Program Counter Indirect with Index (8-Bit
Displacement)cocveiiiiiviiiiniii e
3.4.3.3 Program Counter Indirect with Index (Base
Displacement)c.ovvveiniiiiiiinee e
3.4.3.4 Absolute Short Address.......cocovvevviiiiiiiieneiineiennes
3.4.35 Absolute Long Addresscoveeveiiiiniiniiiniiinnn
3.4.3.6 Immediate Data........ccooveiiiiiii
3.4.4 Effective Address Encoding Summary.........ccoocovveniennns
3.5 Programming View of Addressing Modesc....c.oeevnen
3.5.1 Addressing Capabilities.........ccocoviveeiiiiiiiics
3.5.2 General Addressing Mode Summarycoccevevveeniinnnns
3.6 M68000 Family Addressing Capability............ccoevveviiininnnn,
3.7 Other Data StrUCUIES.ovviinve e
3.7.1 System STack ...vviviii
3.7.2 USer Stacks..........uuumiiimiiiiinii e
3.7.3 QUEBUES .ottt e
Section 4
Instruction Set
4.1 M68000 Family Compatibilityocevveiiiiiiiin,
4.1.1 NeW INStrUCtIONS......iviiiiiii e e
4.1.1.1 Low-Power STOP (LPSTOP) ..c..ceviiiiiiiiieiieeeen,
4.11.2 Table Lookup and Interpolate (TBL)..........ccoeeuvennnes
iv CPU32 REFERENCE MANUAL

Page
Number

MOTOROLA

Paragraph Page

Number Title Number
4.1.2 Unimplemented Instructions............cooeeiiiiiiiiiiiiiccee, 4-2
4.2 Instruction FOrmMato.oviiiiiiiiii 4-3
4.3 INStrUCtioN SUMMAIY.....couiiiii e e e 4-4
4.3.1 Data Movement INStructionscovevveveviiiiiineineiieineeeen, 4-5
4.3.2 Integer Arithmetic Operationsccocoeviivieiiiiineiineinci e, 4-6
4.3.3 Logical INStructionS.......cceiiiiiiiiie e 4-7
4.3.4 Shift and Rotate Instructions.........cc.cccovveviveiiiieiiinreicieeean, 4-8
4.35 Bit Manipulation InsStructionsccccoveiiiiiiiiniie e, 4-9
4.3.6 Binary-Coded Decimal (BCD) Instructions..........cccoeevveueennees 4-9
4.3.7 Program Control InsStructionsccooceviviiiivineiiicni e 4-10
4.3.8 System Control INStructions.........ccocvviiiiiiiiiii i 4-10
4.4 INStruction DetailS........ccuuverieeiiiii e 4-12
441 Notation and FOrmat..........ocouviiiiiiiiiiiiiie e, 4-12
4.4.2 Condition Code RegiSter.........cuveeuiiiiiiiieiiiiiieceiieeineeeeneanes 4-14
4.4.3 Condition TESES ..vvvuiveiieiiiii i e e e e s enaas 4-17
44.4 Instruction Descriptions.......cccoiiiiiiiiiiiii e 4-18
4.5 Instruction Format SUMmMaryccoeeeiviiniiiiiiiice e 4-177
4.6 Using the Table INStruction...........ccoovviiiiiiiiiiin e, 4-192
4.6.1 Table Example 1: Standard Usage.........cccoceiviviiiiceniinneannes 4-193
4.6.2 Table Example 2: Compressed Table.........ccoeeveiiieeiniinninnnes 4-194
4.6.3 Table Example 3: 8-Bit Independent Variable...........c........... 4-196
4.6.4 Table Example 4: Maintaining Precision..............ccoeeevenneennn. 4-198
4.6.5 Table Example 5: Surface Interpolations...........ccc.ccocvennenne. 4-200
4.7 Nested Subroutine Calls..........coveiuiiiiiiiiii e 4-201
4.8 Pipeline Synchronization with the NOP Instruction..................... 4-201

Section 5
Processing States

5.1 Privilege Levelscociiiiiiii e, 5-2
5.1.1 Supervisor Privilege Levelcccoovveiiiiiiiiiiiiniii e 5-2
5.1.2 User Privilege Levelccooveiiiiiiiii i 5-3
5.1.3 Changing Privilege Levelccoovviiiiiiiiiiiiiicein e 5-3
5.2 Address SPace TYPESuuuviiiriiiitiiiieiiieiieirree e eraraeaeennns 5-4
5.2.1 Type 0000 — Breakpoint........covevveniiiieviiiii e 5-5
5.2.2 Type 0001 — MMU ACCESS ...ceunverniiiiieiieiii e e 5-5
5.2.3 Type 0010 — CoprocesSOr ACCESSveuvvreuierienienriieenennennes 5-5
MOTOROLA CPU32 REFERENCE MANUAL v

TABLE OF CONTENTS (Continued)

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
5.2.4 Type 0011 — Internal Register ACCESS........ccovvviiniiiniiinniinnns 5-6
5.2.5 Type 1111 — Interrupt Acknowledge..........covevvivnniinniinnnninnns 5-6
5.3 Exception Processingccccuviiviiiiiiiiniiiiiiniiiiinneinnenssinsainn 5-6
5.3.1 EXCeption VECtOrSvvvviiiiiiiiiiiciintin st 5-7
5.3.2 Exception Stack Framecoovviviiiiiiiiiieiiniineieninnenineannen 5-7
Section 6
Exception Processing
6.1 Exception VECtOrscviiiiiiiiiiiiiiiiini i 6-1
6.1.1 Types Of EXCEPLIONS......cvuviiiriiiriiiiiiiiiieeiieiinerienierieeaneenanes 6-1
6.1.2 Multiple EXCEPIONS......cccveiiiiiiiiiieiciieniier e cen e snanns 6-3
6.1.3 Exception Stack Framecooovvviiiiiiiiiiiiiiincneiceni, 6-4
6.1.4 Exception Processing Sequencecocceevviniiiiiniiniiiniiins 6-5
6.2 Processing of Specific EXCEPLioNS........ccvvvviviiiiiiiiiiiiininiiiniiin 6-5
6.2.1 RESEL .. ittt 6-6
6.2.2 BUS EITOr ccvviiiiiiiiincrn i 6-6
6.2.3 AdAress Error....cccciiiiiiiiiiiiniiiiiiiniess s 6-8
6.2.4 INSErUCLION TrapsS.....cvviiieiiiiiiiiiiiieiin e er e e reaae 6-9
6.2.5 Software Breakpoints.......coocvvviiviiiniiiiiininrcinencen e 6-10
6.2.6 Hardware Breakpoints........ccoovvviviiiiiiiiiiiiniinncin i 6-10
6.2.7 FOrmMat Error ..ucvviiiiiie it e s s e s e 6-11
6.2.8 Illegal or Unimplemented Instructions...........ccooevviieiinninnnnn. 6-11
6.2.9 Privilege Violationscccvviiiiiiiiiniiiinnicii i 6-12
6.2.10 TrACING cevuiii i e 6-13
6.2.11 0] (T4 (V] o] - J P O P PP P PPN 6-15
6.2.12 Return from EXCeptionccoevvviiiiiiiiiiiiiniiinereriineninenieenieennns 6-16
6.3 Fault REBCOVEIY.....ivuiiiiiiiii i ra e 6-18
6.3.1 Types of FAUIS.....cvieviiiiiiinic e e 6-20
6.3.1.1 Type 1: Released Write Faults........c..coovevviviviiiiinnnnnnnnn, 6-20
6.3.1.2 Type Il: Prefetch, Operand, RMW, and MOVEP Faults..... 6-21
6.3.1.3 Type lll: Faults During MOVEM Operand Transfers 6-22
6.3.1.4 Type IV: Faults During Exception Processing................. 6-23
6.3.2 Correcting the Faultcccoeviiiiiiiiiiini e 6-23
6.3.2.1 Completing Released Writes (Type) via Software 6-23
6.3.2.2 Completing Released Writes (Type I) via RTE................. 6-24
6.3.2.3 Correcting Type Il Faults via RTE.........cccovvviviiniiiinninnnnns 6-24

Vi CPU32 REFERENCE MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
6.3.24 Correcting Type Ill Faults via Software....................
6.3.2.5 Correcting Type lll Faults via RTEccocvevvvvenennnns
6.3.2.6 Correcting Type IV Faults via Software....................
6.4 CPU32 Stack Framesc.ocuiiniiiiiiiiiiiecniee e eeeeeans
6.4.1 Normal Four-Word Stack Frame........cc.ccoeeviiiiiiieniennns
6.4.2 Normal Six-Word Stack Frame........ccccovevviiiiiiiininnnnnes
6.4.3 BERR Stack Framecccovviiiiiiiiici e
Section 7
Development Support

7.1 CPU32 Integrated Development Supportcccoevvviniinnns
7.1.1 Background Debug Mode (BDM) Overview....................
7.1.2 Deterministic Opcode Tracking Overview..............c........
7.1.3 On-Chip Hardware Breakpoint Overview
7.2 Background Debug Mode (BDM)ccevveiiiiiiniiieiiiiinicinns
7.2.1 Enabling BDMc.ooiiiiiiii e
7.2.2 BDM SOUICES ...uivuiiiiiiiieieei e et e e e e e e
7.2.2.1 External BKPT Signalc.covviiiiiiiiiiieeeeee,
7.2.2.2 BGND INStruction........c.oeeviienieiniieiieeeicee e
7.2.2.3 Double Bus Faults.......cc.covvieiiiiiiniiiiiiicinenceci e
7.2.2.4 Peripheral Breakpointscocciveieiiiiiiiiiiiiene,
7.2.3 Entering BDM. ...
7.24 Command EXeCUtiON.........viviviiniiiiiiiiei e eeeee
7.25 Returning from BDM........ooooiiiiiiiii e,
7.2.6 Serial Interfaceocooiviiiiiii
7.2.6.1 CPU Serial LOgiC....c.vvvvviiiniiiiiiiiiiiicce e
7.2.6.2 Development System Serial Logic........ccocveivniinnnen.
7.2.7 Command Set.......oeuiiiiiiiiiiii
7.2.7.1 Command Format.......cccovvuvieninniiiienin e,
7.2.7.2 Command Sequence Diagramscc.ccoveenvivnninnnes
7.27.3 Command Set SUMMaAryccoceveuvieniieniiinceeeeieeaees
7.27.4 Read A/D Register (RAREG/RDREG)c.ccccvnevennenn.
7.27.5 Write A/D Register (WAREG/WDREG)...........ccevvneeen.
7.2.7.6 Read System Register (RSREG).......c.eevnienvinnneennnnn.
7.2.7.7 Write System Register (WSREG).........cccevevnieinnnnnnnn.
7.2.7.8 Read Memory Location (READ)cceevveiiiinnennen.
MOTOROLA CPU32 REFERENCE MANUAL

vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.27.9 Write Memory Location (WRITE)c.cooevviiiviiiiiinnnnnn, 7-22
7.27.10 Dump Memory Block (DUMP)cccoviiviiiiiiniiiiciiiniiinns 7-24
7.2.7.11 Fill Memory Block (FILL)ccvuieiiiiiiiiniiiic i 7-26
7.27.12 Resume Execution (GO).......coovvvviiieniniiiinciinniiiniieenis 7-28
7.2.7.13 Call User Code (CALL).....ceviiivriiiiiiniiiceccii e rieane 7-29
7.27.14 Reset Peripherals (RST)ccovvvviiiiiiiiiiiiiinciieineiceeineieens 7-31
7.2.7.15 No Operation (NOP)......ccooviiiiiiiiiiiiccc e 7-32
7.2.7.16 Future Commandsccoovviiiiiiiiiiiii e 7-32
7.3 Deterministic Opcode Tracking.......ccuvvevnviiiiiiniiiniiiienneieena e, 7-33
7.3.1 Instruction Fetch (IFETCH).....ccovviviiiiiiiiiniiis e, 7-33
7.3.2 Instruction Pipe (IPIPE)ccvivviviiiiciir i 7-33
7.3.3 Opcode Tracking during Loop Mode...........cccvvviniiiiniiinnnnnn, 7-35
Section 8
Instruction Execution Timing
8.1 Resource Scheduling........covvviiiiiiiiiiii e, 8-1
8.1.1 MiCrOSEQUENCENuivvieriiiiiiiiiiiierie s s ea s e s e snaas 8-1
8.1.2 Instruction Pipelingccoviviiiiiiiiiiii e, 8-2
8.1.3 Bus Controller RESOUrCEeS........vvvuiviniiiiiiiiiiiiienceiieiisniaenes 8-3
8.1.3.1 Prefetch Controller........ccooiviviviii i 8-3
8.1.3.2 Write-Pending Buffer.........cccoovvviiiiiniiiiiiniinnnnnn, 8-3
8.1.3.3 Microbus Controller.........covvvviiiiiiiniiiis 8-4
8.1.4 Instruction Execution OVerlapccoovveviiiiniiininniniineninnns 8-4
8.1.5 Effects of Wait States........cvvvviiviiiiiiiiiiiiinn e 8-5
8.2 Instruction Stream Timing Examplescccocooviiviviiiiiinninnnnnn, 8-6
8.2.1 Timing Example 1: Execution Overlapccovvvivviiieninnenn, 8-6
8.2.2 Timing Example 2: Branch Instructions.............covevvvvnninnnnn. 8-7
8.2.3 Timing Example 3: Negative Tailscooovivviiiiniiiiiniiniinn 8-8
8.3 Instruction Timing Tablescccovvviiiriiiiiiiiii e, 8-9
8.3.1 Fetch Effective AdAressc.ccvvvvviiiiiiiiiieiniiininnsanans 8-12
8.3.2 Calculate Effective AdAress.........cccceiveiriiiiniiiieniniininnennnennn 8-13
8.3.3 MOVE INStruction......ccccvviiiiiiiiiiiiinire e e e e 8-14
8.3.4 Special-Purpose MOVE Instruction..............ccevviiiiiiniinniinnns, 8-15
8.3.5 Arithmetic/Logical InStructionsc.covvvveiviiiiiniinicnicrnnennen, 8-16
8.3.6 Immediate Arithmetic/Logical Instructions..........cccccevvnvinnnen. 8-17
8.3.7 Binary-Coded Decimal and Extended Instructions................. 8-18

viii CPU32 REFERENCE MANUAL MOTOROLA

Paragraph
Number

8.3.8

8.3.9

8.3.10
8.3.11
8.3.12
8.3.13
8.3.14

MOTOROLA

TABLE OF CONTENTS (Concluded)

Page
Title Number
Single Operand INStrUCtiONS.....c..ovvviiiiiieiiieiiir e eenis 8-19
Shift/Rotate INStrUCtIONScvvvueviiiiiiii e 8-20
Bit Manipulation INStructionsccvevieiiiiineiineiiineneennnn, 8-21
Conditional Branch Instructions.........c.ccovevvveiniiiieiiniiiinennennn. 8-22
Control INStrUCtiONS........uiiiriieiiiiii e 8-23
Exception-Related Instructions and Operations 8-24
Save and Restore Operations..........covvvvvivieiieniriiieeinennnennn. 8-25
Appendix A
M68000 Family Summary
Index
CPU32 REFERENCE MANUAL ix

CPU32 REFERENCE MANUAL MOTOROLA

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 Loop Mode Instruction SeqUenCeceveuienieiiiiniiieiiannes 1-3
1-2 CPU32 Block Diagramc.uvvivieeiiieeiiiiiniciisiis e enninecnne 1-9
2-1 User Programming Modelcooieiviiiiiiiiiiiencieen e 2-2
2-2 Supervisor Programming Model Supplement.........c...ccceeeennnns 2-2
2-3 Status RegiSter....c.uiiiiiiiiiiiiiiieie e 2-4
2-4 Data Organization in Data Registers.........c..cooevvuiiiiiiinrininnnnnns 2-5
2-5 Address Organization in Address Registersccoecevieinnnnns 2-6
2-6 Memory Operand Addressingcccvvvvviinreeniiineeineeieeieineann, 2-8
3-1 Single-Effective-Address Instruction Operation Word............... 3-1
3-2 Effective Address Specification Formats..........cccoeeviiiniiicinnnns 3-12
3-3 Using SIZE in the Index Selection.........coovvvvviiviiiieiniiinciinnennn, 3-14
34 Using Absolute Address with Indexes.........c..cccevviiniiiinininnnnn, 3-15
3-5 Addressing Array [temMS.....ccovviviiiiiiiieiiiiiineiren e eareenas 3-16
3-6 M68000 Family Address Extension Words..........c..ccovevevvinnnnnees 3-17
4-1 Instruction Word General Formatc.oovvevevviiniiininnniiiennnns 4-3
4-2 Instruction Description Format..........cocciniviiiiiiniiinccinnnin, 4-19
4-3 Table EXample T...civiiiiiiiiiiiniinicrss s 4-193
4-4 Table EXample 2......oiviiiiiiiiiiirir e e 4-194
4-5 Table EXample 3. 4-196
5-1 General Exception Stack Frame............ccciiiiiviiiiiiiinnninn, 5-8
6-1 Exception Stack Frameccoccvvviiviiiiiiiniiiniinccceie e, 6-4
6-2 Reset Operation Flowchart............covvviviiiniiiciinecnenee e, 6-7
6-3 Format $0 — Four-Word Stack Framecccoevvvinniniiiinnnns 6-27
6-4 Format $2 — Six-Word Stack Framecccoevvvivienvennriennennn. 6-28
6-5 Format $C — BERR Stack for Prefetches and Operands 6-29
6-6 Internal Transfer Count Register..........ccooevviiniiiniiiiiiiicninnnen, 6-29
6-7 Format $C — BERR Stack During Four- or Six-Word Stack....... 6-30
6-8 Format $C — BERR Stack on MOVEM Operand............cccc....... 6-31

MOTOROLA CPU32 REFERENCE MANUAL Xi

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
7-1 Traditional In-Circuit Emulator Diagramcooceviiininninnanis 7-2
7-2 Bus State Analyzer Configurationccooevvviiiniiiiiiniennnes 7-2
7-3 BDM Block Diagram........couuiiuieiiiiiiiiieeee e e 7-4
7-4 BDM Command Execution Flowchart..............cooooviiiinininnann, 7-7
7-5 Debug Serial 1/0 Block Diagramccocoviiiiviiiiiiniiiinnineeenn 7-9
7-6 Serial Interface Timing Diagramccoovvviiiiiiieiniiicneeenn, 7-10
7-7 BKPT Timing for Single Bus Cycle.........cccceoiiiiiiiiiiinniinn, 7-11
7-8 BKPT Timing for Forcing BDMccouiiiiiiiiiiiiii e 7-12
7-9 BKPT/DSCLK Logic Diagram.......ccccevuvieniiieiniiieeieeen e 7-12
7-10 Command-Sequence-Diagram Examplec.ccoeevveiiniiiiniinnnn 7-15
7-11 Functional Model of Instruction Pipeline.............occooveviiinennne. 7-34
7-12 Instruction Pipeline Timing Diagramcccoviiiviniininieinencnnnes 7-35
8-1 Block Diagram of Independent Resources............c.ocvevveeiennnne. 8-2
8-2 Simultaneous Instruction Execution..........c..ccooveiviiieninieneanen. 8-4
8-3 Attributed InStruction TiMES.......ovvvviviiiiiiiiir e 8-5
8-4 Example 1 — Instruction Streamcc.covivivviiiiiiiineecineeenees 8-6
8-5 Example 2 — Branch Takenccccoviiiiiiiiiiiincece e, 8-7
8-6 Example 2 — Branch Not Takencccoovviiiiiiiiiiiiiiccneen, 8-7
8-7 Example 3 — Branch Negative Tail.........c.ccoveviiiiiiiiinn, 8-8

xii CPU32 REFERENCE MANUAL MOTOROLA

LIST OF TABLES

Table Page
Number Title Number
1-1 Instruction Set SUMMArYcooeviiiiii e 1-7
3-1 Effective Addressing Mode Categories........c.ovvvvvieerineiieeinninnen. 3-13
4-1 Data Movement Operationscccovvuviiiiiieiiiiieic e 4-5
4-2 Integer Arithmetic Operationscovveiiviiiiiii i 4-6
4-3 Logical Operations.......cceuviuriur i e eaes 4-7
4-4 Shift and Rotate Operations..........ocvveiuieiiiiiiiiiin e 4-8
4-5 Bit Manipulation Operationsccovoviiviiiiiiiii s 4-9
4-6 Binary-Coded Decimal Operationscovvveiiiiieieiiiininneennnn. 4-9
4-7 Program Control Operationscoeiiriieieniiiieincie e 4-10
4-8 System Control Operations........c...vvveeuiiiiieeirii e 4-11
4-9 Condition Code Computations.........cocoveviiiiiiiiiiiiee e 4-14
4-10 Conditional TeSTS....vuiiiiiiiiiiiii e e 4-17
4-11 Operation Code Map........oouiiiiiiiiiiiii e 4-177
5-1 Address Space Encodings.......ccccoviiiiiiiiiiiiii 5-4
6-1 Exception Vector AsSignmentsc.vveviviiiiniinniineniieeeeeen, 6-2
6-2 EXCEPHION GrOUPS ..ucuiiiiiiiiiie i 6-3
6-3 Tracing Control.. ..o 6-13
7-1 BDIM SOUICE SUMMAIY....uiiuiiieitiiiieit et eeeie et e s 7-5
7-2 Polling the BDM Entry SOUICE.......oivviiiniiiiiiiiiiicee e 7-6
7-3 CPU-Generated Message Encoding.........ccocooviiiiiiiiiiciininnnn, 7-9

7-4 BDM Command SUMMAIYeeeiiiieneieiiieeenvrie e aieeeneeneeiaens 7-16

MOTOROLA CPU32 REFERENCE MANUAL xiii

xiv CPU32 REFERENCE MANUAL MOTOROLA

SECTION 1
OVERVIEW

The CPU32, the instruction processing module of the M68300 Family, is based
on the industry-standard MC68000 core processor with many features of the
MC68010 and MC68020 as well as unique features suited for high-perform-
ance controller applications. The CPU32 is designed to provide a significant
increase in performance over the MC68HC11 CPU to meet the demand for
higher performance requirements for the 1990’s while maintaining source
code and binary code compatibility with the M68000 Family.

One major goal of the CPU32 is to increase system throughput. This increase
could not be achieved by simply increasing the clock/bus frequency or adding
a few new instructions to an existing 8-bit, MC6800-type CPU. A faster, more
powerful CPU, capable of processing data sizes up to 32 bits, is included on
the chip as a first step in realizing such a performance increase. As controller
applications become more complex and control programs become larger,
high-level languages (HLLs) will become the system designer’s choice in
programming languages. HLLs allow users to develop complex algorithms
faster, with few errors, and provide easier portability. The CPU32 has an
instruction set based on the M68000 Family, which can efficiently support
HLLs.

Ease of programming is an important consideration in using a microcon-
troller. An instruction format implementing a register-memory interaction
philosophy predominates the design, and all data resources are available to
all operations requiring those resources. All eight multifunction data registers
are available as data resources, and all seven general-purpose addressing
registers are available for addressing data. Although the program counter
(PC) and stack pointers (SP) are special-purpose registers, they are also avail-
able for most data addressing activities. The eight general-purpose data reg-
isters readily support 8-bit (byte), 16-bit (word), and 32-bit (long-word) operand
lengths for all operations. Address manipulation is supported by word and
long-word operations. Ease of program checking and diagnosis is further
enhanced by trace and trap capabilities at the instruction level.

MOTOROLA CPU32 REFERENCE MANUAL 1-1

1.1 FEATURES

Features of the CPU32 are as follows:
e Fully Upward Object Code Compatible with M68000 Family
® Virtual Memory Implementation
® Loop Mode of Instruction Execution

Fast Multiply, Divide, and Shift Instructions

Fast Bus Interface with Dynamic Bus Port Sizing

Improved Exception Handling for Controller Applications

Enhanced Addressing Modes
Scaled Index
Address Register Indirect with Base Displacement and Index
Expanded PC Relative Modes
32-Bit Branch Displacements

® |nstruction Set Enhancements
High-Precision Multiply and Divide
Trap-On Condition Codes
Upper and Lower Bounds Checking
Enhanced Breakpoint Instruction

Trace on Change of Flow

Table Lookup and Interpolate Instruction
Low-Power Stop Instruction

Hardware Breakpoint Signal, Background Mode
16.77 MHz Operating Frequency at —40-125°C

Fully Static Implementation

1.1.1 Virtual Memory

1-2

The full addressing range of the CPU32 is 16 Mbytes in each of eight address
spaces. Even though most systems implement a smaller physical memory,
the system can be made to appear to have a full 16 Mbytes of memory
available to each user program by using virtual memory techniques.

A system that supports virtual memory has a limited amount of high-speed

physical memory that can be accessed directly by the processor and main-
tains an image of a much larger “virtual” memory on a secondary storage

CPU32 REFERENCE MANUAL MOTOROLA

device. When the processor attempts to access a location in the virtual mem-
ory map that is not resident in physical memory, a page fault occurs. The
access to that location is temporarily suspended while the necessary data is
fetched from secondary storage and placed in physical memory. The sus-
pended access is then restarted or continued.

The CPU32 uses instruction restart, which requires that only a small portion
of the internal machine state be saved. After correcting the fault, the machine
state is restored, and the instruction is refetched and restarted. This process
is completely transparent to the application program.

1.1.2 Loop Mode Instruction Execution

The CPU32 has several features that provide efficient execution of program
loops. One of these features is the DBcc looping primitive instruction. To
increase the performance of the CPU32, a loop mode has been added to the
processor. The loop mode is used by any single-word instruction that does
not change the program flow. Loop mode is implemented in conjunction
with the DBcc instruction. Figure 1-1 shows the required form of an instruction
loop for the processor to enter loop mode.

The loop mode is entered when the DBcc instruction is executed and the
loop displacement is —4. Once in loop mode, the processor performs only
the data cycles associated with the instruction and suppresses all instruction
fetches. The termination condition and count are checked after each exe-
cution of the data operations of the looped instruction. The CPU32 auto-
matically exits the loop mode on interrupts or other exceptions.

ONE-WORD INSTRUCTION <€

DBCC

DBCC DISPLACEMENT
$FFFC =-4

Figure 1-1. Loop Mode Instruction Sequence

MOTOROLA CPU32 REFERENCE MANUAL 1-3

1.1.3 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte
exception vector table, consisting of 256 exception vectors. Exception vectors
contain the memory addresses of routines that begin execution at the com-
pletion of exception processing. These routines perform a series of opera-
tions appropriate for the corresponding exceptions. Because the exception
vectors contain memory addresses, each consists of one long word, except
for the reset vector. The reset vector consists of two long words: the address
used to initialize the supervisor SP and the address used to initialize the PC.

The address of an interrupt exception vector is derived from an 8-bit vector
number and the VBR. The vector numbers for some exceptions are obtained
from an external device; other numbers are supplied automatically by the
processor. The processor multiplies the vector number by four to calculate
the vector offset, which is added to the VBR. The sum is the memory address
of the vector. All exception vectors are located in supervisor data space,
except the reset vector, which is located in supervisor program space. Only
the initial reset vector is fixed in the processor’'s memory map; once initial-
ization is complete, there are no fixed assignments. Since the VBR provides
the base address of the vector table, the vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that is executed
by an operating system. Details of exception processing are provided in
SECTION 6 EXCEPTION PROCESSING.

31 0

[VECTOR BASE REGISTER (VBR) |

1.1.4 Improved Exception Handling

14

The processing of an exception occurs in four steps, with variations for dif-
ferent exception causes. During the first step, a temporary internal copy of
the status register is made, and the status register is set for exception proc-
essing. During the second step, the exception vector is determined; during
the third step, the current processor context is saved. During the fourth step,
a new context is obtained, and the processor then proceeds with instruction
processing.

Exception processing saves the most volatile portion of the current context
by pushing it on the supervisor stack. This context is organized in a format

CPU32 REFERENCE MANUAL MOTOROLA

called the exception stack frame. This information always includes the status
register and PC context of the processor when the exception occurred. To
support generic handlers, the processor places the vector offset in the ex-
ception stack frame. The processor also marks the frame with a frame format.
The format field allows the return-from-exception (RTE) instruction to identify
what information is on the stack so that it may be properly restored.

1.1.5 Enhanced Addressing Modes

Addressing in the CPU32 is register oriented. Most instructions allow the
results of the specified operation to be placed either in a register or directly
in memory; this flexibility eliminates the need for extra instructions to store
register contents in memory.
The seven basic addressing modes are as follows:

1. Register Direct
Register Indirect
Register Indirect with Index
Program Counter Indirect with Displacement
Program Counter Indirect with Index

Absolute

N o g b

Immediate

Included in the register indirect addressing modes are the capabilities to
postincrement, predecrement, and offset. The PC relative mode also has
index and offset capabilities. In addition to these addressing modes, many
instructions implicitly specify the use of the status register, SP, and/or PC.
Addressing is explained fully in SECTION 3 ADDRESSING MODES. A sum-
mary of the M68000 Family addressing modes is found in APPENDIX A M68000
FAMILY SUMMARY.

1.1.6 Instruction Set

The instruction set of the CPU32 is very similar to that of the MC68020 (see
Table 1-1). Two new instructions have been added to facilitate controller
applications — low-power stop (LPSTOP) and table lookup and interpolate

MOTOROLA CPU32 REFERENCE MANUAL 1-6

(TBL). The following instructions found on the M68020 are not implemented
on the CPU32:
BFxxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)
CALLM, RTM — Call Module, Return Module
CAS, CAS2 — Compare and Set (Read-Modify-Write Instructions)
CPXXX — Coprocessor Instructions (cpBcc, cpDBcc, cpGEN,
cpRESTORE, cpSAVE, cpScc, cpTRAPcc)
PACK, UNPK — Pack, Unpack BCD Instructions

The CPU32 traps on unimplemented instructions or illegal effective address-
ing modes, allowing user-supplied code to emulate unimplemented capa-
bilities or to define special-purpose functions. However, Motorola reserves
the right to use all currently unimplemented instruction operation codes for
future M68000 core enhancements.

1.1.6.1 TABLE LOOKUP AND INTERPOLATE INSTRUCTIONS. To maximize

throughput for real-time applications, reference data is often “precalculated”
and stored in memory for quick access. The storage of each data point would
require an inordinate amount of memory. The table instruction requires only
a sample of data points stored in the array, reducing memory requirements.
Intermediate values are recovered with this instruction via linear interpola-
tion. The results are rounded (optional) with the round-to-nearest algorithm.

1.1.6.2 LOW-POWER STOP INSTRUCTION. In applications where power con-

sumption is a consideration, the CPU32 forces the device into a low-power
standby mode when immediate processing is not required. The low-power
stop mode is entered by executing the LPSTOP instruction. The processor
will remain in this mode until a user-specified (or higher) interrupt level or
reset occurs.

1.1.7 Processing States

1-6

The processor is always in one of four processing states: normal, exception,
halted, or background. The normal processing state is that associated with
instruction execution; the bus is used to fetch instructions and operands and
to store results. The exception processing state is associated with interrupts,
trap instructions, tracing, and other exception conditions. The exception may

CPU32 REFERENCE MANUAL MOTOROLA

Table 1-1. Instruction Set Summary

Mnemonic Description Mnemonic |Description
ABCD Add Decimal with Extend MOVE Move
ADD Add MOVE CCR Move Condition Code Register
ADDA Add Address MOVE SR Move Status Register
ADDI Add Immediate MOVE USP Move User Stack Pointer
ADDQ Add Quick MOVEA Move Address
ADDX Add with Extend MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral
ASL, ASR Arithmetic Shift Left and Right MOVEQ Move Quick
Bec Branch Conditionally MOVES Move Alternate Address Space
BCHG Test Bit and Change MULS, MULS.L | Signed Multiply
BCLR Test Bit and Clear MULU, MULU.L | Unsigned Multiply
BGND Background NBCD Negate Decimal with Extend
BKPT Breakpoint NEG Negate
ggéT Branch NEGX Negate with Extend
Test Bit and Set NOP No Operation
BSR Branch to Subroutine P
BTST Test Bit OR Logical Inclusive OR
CHK Check Register Against Upper and ORI Logical Inclusive OR Immediate
Lower Bounds PEA Push Effective Address
CLR Clear RESET Reset External Devices
cmP Compare ROL, ROR Rotate Left and Right
CMPA Compare Address ROXL, ROXR |Rotate with Extend Left and Right
CMPI Compare Immediate RTD Return and Deallocate
CMPM Compare Memory to Memory RTE Return from Exception
CMP2 Compare Register Against Upper RTR Return and Restore Codes
and Lower Bounds RTS Return from Subroutine
DBec Test Condition, Decrement and SBCD Subtract Decimal with Extend
Branch .
Il
DIVS, DIVSL | Signed Divide e gf;:md"m"a Y
DIVU, DIVUL |Unsigned Divide SUB Subtract
EOR Logical Exclusive OR SUBA Subtract Address
EORI Logical Exclusive OR Immediate SUBI Subtract Immediate
EXG Exchange Registers SuBQ Subtract Quick
EXT, EXTB Sign Extend SUBX Subtract with Extend
ILLEGAL Take lilegal Instruction Trap SWAP Swap Register Words
TBLS,TBLSN | Table Lookup and Interpolate
jSMFIRD j:ﬂp to Subroutine (Signed)
p TBLU, TBLUN |Table Lookup and Interpolate
LEA Load Effective Address (Unsigned)
LINK Link and Allocate TAS Test Operand and Set
LPSTOP Low-Power Stop TRAP Trap
LSL, LSR Logical Shift Left and Right TRAPcc Trap Conditionally
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink
MOTOROLA CPU32 REFERENCE MANUAL 1-7

be internally generated explicitly by an instruction or by an unusual condition
arising during the execution of an instruction. Externally, exception proc-
essing can be forced by an interrupt, a bus error, or a reset. The halted
processing state is an indication of catastrophic hardware failure. For ex-
ample, if during the exception processing of a bus error another bus error
occurs, the processor assumes that the system is unusable and halts. The
background processing state is initiated by breakpoints, execution of special
instructions, or a double bus fault. Background processing allows interactive
debugging of the system via a simple serial interface. Processing states are
explained fully in SECTION 5 PROCESSING STATES.

1.1.8 Privilege States

The processor operates at one of two levels of privilege — user or supervisor.
The supervisor level has higher privileges than the user level. Not all instruc-
tions are permitted to execute in the lower privileged user level, but all
instructions are available at the supervisor level. This scheme allows a sep-
aration of supervisor and user levels so the supervisor can protect system
resources from uncontrolled access. The processor uses the privilege level
indicated by the S bit in the status register to select either the user or super-
visor privilege level and either the user stack pointer (USP) or a supervisor
stack pointer (SSP) for stack operations.

1.2 BLOCK DIAGRAM

1-8

A block diagram of the CPU32 is shown in Figure 1-2. The major blocks
depicted operate in a highly independent fashion that maximizes concurrency
of operation while managing the essential synchronization of instruction
execution and bus operation. The bus controller loads instructions from the
data bus into the decode unit. The sequencer and control unit provide overall
chip control, managing the internal buses, registers, and functions of the
execution unit.

CPU32 REFERENCE MANUAL MOTOROLA

SEQUENCER
CONTROL INSTRUCTION
UNIT PREFETCH
AND
DECODE
PATABES 2 EXECUTION coNTROL BUS CONTROL
UNIT N
ADDRESS ”
BUS

Figure 1-2. CPU32 Block Diagram

"MOTOROLA CPU32 REFERENCE MANUAL 1-9

1-10

CPU32 REFERENCE MANUAL

MOTOROLA

SECTION 2
ARCHITECTURE SUMMARY

The CPU32 architecture includes several important features that provide both
power and versatility to the user. The CPU32 is source and object code
compatible with the MC68000 and MC68010. All user state programs can be

executed unchanged. The major CPU32 features are as follows:

32-Bit Internal Data Path and Arithmetic Hardware
24-Bit Address Bus Supported by 32-Bit Calculations
Rich Instruction Set

Eight 32-Bit General-Purpose Data Registers

Seven 32-Bit General-Purpose Address Registers
Separate User and Supervisor Stack Pointers
Separate User and Supervisor State Address Spaces
Separate Program and Data Address Spaces

Many Data Types

Flexible Addressing Modes

Full Interrupt Processing

Expansion Capability

2.1 PROGRAMMING MODEL

The programming model of the CPU32 consists of two groups of registers:
user model and supervisor model that correspond to the user and supervisor
privilege levels. Executing at the user privilege level, user programs can only
use the registers »f the user model. Executing at the supervisor level, system
software uses the control registers of the supervisor level to perform super-
visor functions.

As shown in the programming models (see Figures 2-1 and 2-2), the CPU32
has 16 32-bit general-purpose registers, a 32-bit program counter, one 32-
bit supervisor stack pointer, a 16-bit status register, two alternate function

MOTOROLA

- CPU32 REFERENCE MANUAL

2-1

31

16 15 8 7 0

Do

D1

D2

D3

D4

D5

D6

D7

31

A0

Al

A2

A3

A4

A5

A6

31

16 15 0

| a7 wsp)

3N

| ec

R
o T Jom

DATA REGISTERS

ADDRESS REGISTERS

USER STACK POINTER

PROGRAM COUNTER

CONDITION CODE REGISTER

SUPERVISOR STACK POINTER

STATUS REGISTER

VECTOR BASE REGISTER

ALTERNATE FUNCTION
CODE REGISTERS

31 16 15 0
l | a7 (ssp)

15 8 7 0
| ccR | SR

31 0
L | ven

N 2 32 0
e SFC
- - - DFC

Figure 2-2. Supervisor Programming Model Supplement
2-2 CPU32 REFERENCE MANUAL

MOTOROLA

code registers, and a 32-bit vector base register. The user programming
model remains unchanged from previous M68000 Family microprocessors.
The supervisor programming model, which supplements the user program-
ming model, is used exclusively by the CPU32 system programmers who
utilize the supervisor privilege level to implement sensitive operating system
functions. The supervisor programming model contains all the controls to
access and enable the special features of the CPU32. All application software,
written to run at the nonprivileged user level, migrates to the CPU32 from
any M68000 platform without modification.

2.2 REGISTERS

Registers D7-D0 are used as data registers for bit (1 to 32 bits), byte (8 bit),
word (16 bit), long-word (32 bit), and quad-word (64 bit) operations. Registers
A6-A0 and the user and supervisor stack pointers are address registers that
may be used as software stack pointers or base address registers. Register
A7 (shown as A7 and A7’ in Figure 2-1) is a register designation that applies
to the user stack pointer in the user privilege level and to the supervisor stack
pointer in the supervisor privilege level. In addition, the address registers
may be used for word and long-word operations. All of the 16 general-
purpose registers (D7-D0, A7-A0) may be used as index registers.

The program counter (PC) contains the address of the next instruction to be
executed by the CPU32 . During instruction execution and exception proc-
essing, the processor automatically increments the contents of the PC or
places a new value in the PC, as appropriate.

The status register (SR) (see Figure 2-3) stores the processor status. It contains
the condition codes that reflect the results of a previous operation and can
be used for conditional instruction execution in a program. The condition
codes are extend (X), negative (N), zero (Z), overflow (V), and carry (C). The
user byte containing the condition codes is the only portion of the SR infor-
mation available in the user privilege level; it is referenced as the condition
code register (CCR) in user programs. In the supervisor privilege level, software
can access the full status register, including the interrupt priority mask (three
bits), as well as additional control bits. These bits put the processor in one
of two trace modes (T1, TO) and in user or supervisor privilege level (S).

The vector base register (VBR) contains the base address of the exception

vector table in memory. The displacement of an exception vector is added
to the value in this register to access the vector table.

MOTOROLA CPU32 REFERENCE MANUAL 2-3

USER BYTE
SYSTEMBYTE (CONDITION CODE REGISTER)

514 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[sToJoJe]JuJwow]oJoJolx]NnTzTVv]ecl]
— S— — —[

TRACE

ENABLE PRIGRITY MASK EXTEND

NEGATIVE
SUPERVISORMUSER ZERO
STATE
OVERFLOW
CARRY

Figure 2-3. Status Register

Alternate function code registers (SFC and DFC) contain 3-bit function codes.
Function codes can be considered extensions of the 24-bit linear address that
optionally provide as many as eight 16-Mbyte address spaces. Function codes
are automatically generated by the processor to select address spaces for
data and program at the user and supervisor privilege levels and to select a
CPU address space used for processor functions (such as breakpoint and
interrupt acknowledge cycles). Registers SFC and DFC are used by the MOVE
instructions to explicitly specify the function codes of the memory address.

2.3 DATA TYPES

Six basic data types are supported:

1. Bits
Binary-Coded Decimal (BCD) Digits
Byte Integers (8 bits)
Word Integers (16 bits)
Long-Word Integers (32 bits)
Quad-Word Integers (64 bits)

o o kM wDd

2.3.1 Organization in Registers

2-4

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits
and addresses of 16 or 32 bits. The seven address registers and the two stack
pointers are used for address operands of 16 or 32 bits. The PC is 32 bits
wide.

CPU32 REFERENCE MANUAL MOTOROLA

2.3.1.1 DATA REGISTERS. Each data register is 32 bits wide. Byte operands oc-
cupy the low-order 8 bits, word operands, the low-order 16 bits, and long-
word operands, the entire 32 bits. When a data register is used as either a
source or destination operand, only the appropriate low-order byte or word
(in byte or word operations, respectively) is used or changed; the remaining
high-order portion is neither used nor changed. The least significant bit (LSB)
of a long-word integer is addressed as bit zero, and the most significant bit
(MSB) is addressed as bit 31. Figure 2-4 shows the organization of various
types of data in the data registers.

BIT (0=<MODULO (OFFSET)<31, OFFSET OF 0=MSB)

33 10
[msB | [Lss |
BYTE

31 % 23 16 15 8 7 0
| HIGH-ORDERBYTE | MIDDLEHIGH BYTE | MIDDLE LOW BYTE LOW-ORDER BYTE |
16-BIT WORD

31 16 15 0
[HIGH-ORDER WORD | LOW-ORDER WORD |
LONG WORD

31 0
[LONG WORD |
QUAD WORD

63 62 32
[msg| ANY Dx |

31 10
| ANY Dx [Lss|

Figure 2-4. Data Organization in Data Registers

Quad-word data consists of two long words: for example, the product of
32-bit multiply or the quotient of 32-bit divide operations (signed and un-
signed). Quad words may be organized in any two data registers without
restrictions on order or pairing. There are no explicit instructions for the
management of this data type; however, the MOVEM instruction can be used
to move a quad word into or out of the registers.

MOTOROLA CPU32 REFERENCE MANUAL 2-5

BCD data represents decimal numbers in binary form. Although many BCD
codes have been devised, the BCD instructions of the M68000 Family support
formats in which the four LSBs consist of a binary number having the numeric
value of the corresponding decimal number. In this BCD format, a byte con-
tains one digit; the four LSBs contain the binary value, and the four MSBs
are undefined. ABCD, SBCD, and NBCD operate on two BCD digits packed
into a single byte.

2.3.1.2 ADDRESS REGISTERS. Each address register and stack pointer is 32 bits

wide and holds a 32-bit address. Address registers cannot be used for byte-
sized operands. Therefore, when an address register is used as a source
operand, either the low-order word or the entire long-word operand is used,
depending upon the operation size. When an address register is used as the
destination operand, the entire register is affected, regardless of the operation
size. If the source operand is a word size, it is first sign extended to 32 bits,
and then used in the operation to an address register destination. Address
registers are used primarily for addresses and to support address compu-
tation. The instruction set includes instructions that add to, subtract from,
compare, and move the contents of address registers. Figure 2-5 shows the
organization of addresses in address registers.

31 16 15 0

SIGN EXTENDED | 16-BIT ADDRESS OPERAND |

31 0

| FULL 32-BIT ADDRESS OPERAND |

Figure 2-5. Address Organization in Address Registers

2.3.1.3 CONTROL REGISTERS. The control registers described in this section con-

2-6

tain control information for supervisor functions and vary in size. With the
exception of the user portion of the SR (CCR), they are accessed only by
instructions at the supervisor privilege level.

The SR shown in Figure 2-3 is 16 bits wide. Only 11 bits of the SR are defined;
all undefined values are reserved by Motorola for future definition. The un-
defined bits are read as zeros and should be written as zeros for future
compatibility. The lower byte of the SR is the CCR. Operations to the CCR

CPU32 REFERENCE MANUAL MOTOROLA

can be performed at the supervisor or user privilege level. All operations to
the SR and CCR are word-size operations, but for all CCR operations, the
upper byte is read as all zeros and is ignored when written, regardless of
privilege level.

The alternate function code registers (SFC and DFC) are 32-bit registers with
only bits 2:0 implemented that contain the address space values (FC2-FC0)
for the read or write operand of the MOVES instruction. The MOVEC instruc-
tion is used to transfer values to and from the alternate function code reg-
isters. These are long-word transfers; the upper 29 bits are read as zeros and
are ignored when written.

2.3.2 Organization in Memory

Memory is organized on a byte-addressable basis in which lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the most significant byte of the highest order
word. The lower order word is located at address N+2, leaving the least
significant byte at address N +3 (see Figure 2-1). The CPU32 requires long-
word and word data as well as instruction words to be aligned on word
boundaries (see Figure 2-6). Data misalignment is not supported.

MOTOROLA CPU32 REFERENCE MANUAL 2-7

2-8

BIT DATA
1 BYTE=8 BITS
6 5 4 3 2

[[1

[1

INTEGER DATA

1 BYTE=8 BITS
15 87 0
[msB BYTE 0 LSB BYTE 1
| BYTE 2 BYTE 3
WORD = 16 BITS
15 0
MSB WORD 0 LSB
WORD 1
WORD 2
LONG WORD =32 BITS
15 0
MS8 _ _ longwompo — — — TMGHORDER - - - =
LOW ORDER LSB
— — — LONGWORDT — — — — — — — S — - - =
— — — LONGWORD2 — — — — — — — - = - - =
ADDRESS
1 ADDRESS =32 BITS
15 0
MSB _ _ aoomesso — — — TIGHORDER - - - - =
LOW ORDER LSB
— — — ADDRESS1 — — — — — — — - - B —
— — — ADDRESS2 — — — — — — — - - S —
MSB = Most Significant Bit
LSB = Least Significant Bit
DECIMAL DATA
BCD DIGITS =1 BYTE
15 2 1 8 7 4 3 0
MSD BCDO BCD1 1SD BCD2 BCD3
BCD4 BCDS BCD6 BCD7
MSD = Most Significant Digit
LSD = Least Significant Digit
Figure 2-6. Memory Operand Addressing
CPU32 REFERENCE MANUAL MOTOROLA

SECTION 3
DATA ORGANIZATION AND
ADDRESSING CAPABILITIES

The addressing mode of an instruction can specify the value of an operand
(with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad-
dressing mode.

Figure 3-1 shows the general format of the single-effective-address instruc-
tion operation word. The effective address field specifies the addressing
mode for an operand that can use one of the numerous defined modes. The
designation is composed of two 3-bit fields: mode field and register field.
The value in the mode field selects one mode or a set of addressing modes.
The register field specifies a register for the mode or a submode for modes
that do not use registers.

15 14 13 12 n 10 9 8 1 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

X X X X X X X X X X

Figure 3-1. Single-Effective-Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The
formats of these instructions include appropriate fields for operands that use
only one addressing mode.

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 3.4.4 Effective Address Encoding Summary for a
description of the extension word formats.

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

MOTOROLA CPU32 REFERENCE MANUAL 3-1

3.1 PROGRAM AND DATA REFERENCES

An M68000 Family processor separates memory references into two classes,
which creates two address spaces, each with a complete logical address
range. The first class is program references, which includes primarily ref-
erences to opcodes and extension words. The other class is data references.
Operand reads are from the data space with two exceptions: 1) immediate
operands embedded in the instruction stream and 2) operands addressed
relative to the current program counter. Operands satisfying either of these
two exceptions are classified as program space references. All operand writes
are to data space.

3.2 NOTATION CONVENTIONS

EA — Effective address

An — Address register n
Example: A3 is address register 3

Dn — Data register n
Example: D5 is data register 5

Rn — Any register, data or address

Xn.SIZE*SCALE — Denotes index register n (data or address), the index size
(W for word, L for long word), and a scale factor (1, 2, 4,
or 8 for no, word, long-word or 8 for quad-word scaling,
respectively).

PC — Program counter
SR — Status register
SP — Stack pointer
CCR — Condition code register
USP — User stack pointer
SSP — Supervisor stack pointer
dn — Displacement value, n bits wide
bd — Base displacement
L — Long-word size
W — Word size
B — Byte size
() — Identify an indirect address in a register

3-2 CPU32 REFERENCE MANUAL MOTOROLA

3.3 IMPLICIT REFERENCE

Some instructions make implicit reference to the program counter, the sys-
tem stack pointer, the user stack pointer, the supervisor stack pointer, or the
status register. The following table enumerates these instructions and the

registers involved:

Instruction Implicit Registers
ANDI to CCR SR
ANDI to SR SR
BRA PC
BSR PC, SP
CHK (exception) SSP, SR
CHK2 (exception) SSP, SR
DBcc PC
DIVS (exception) SSP, SR
DIVU (exception) SSP, SR
EORI to CCR SR
EORI to SR SR
JMP PC
JSR PC, SP
LINK SP
LPSTOP SR
MOVE CCR SR
MOVE SR SR
MOVE USP usp
ORI to CCR SR
ORI to SR SR
PEA SP
RTD PC, SP
RTE PC, SP, SR
RTR PC, SP, SR
RTS PC, SP
STOP SR
TRAP (exception) SSP, SR
TRAPV (exception) SSP, SR
UNLK SP

MOTOROLA

CPU32 REFERENCE MANUAL

3-3

3.4 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by a field in the operation
word called an effective address field or an effective address (EA). The EA
is composed of two 3-bit subfields: mode specification field and register
specification field. Each of the address modes is selected by a particular value
in the mode specification subfield of the EA. The EA field may require further
information to fully specify the operand. This information, called the EA
extension, is in a following word or words and is considered part of the
instruction (see 3.1 PROGRAM AND DATA REFERENCES).

Register Direct Mode

These EA modes specify that the operand is in one of the 16 multifunction
registers.

3.4.1.1 DATA REGISTER DIRECT. In the data register direct mode, the operand is

in the data register specified by the EA register field.

GENERATION: EA=Dn

ASSEMBLER SYNTAX: Dn

MODE: 000

DATARESTER B < 0
8 Dn ——){

NUMBER OF EXTENSION WORDS: 0 OPERAND |

3.4.1.2 ADDRESS REGISTER DIRECT. In the address register direct mode, the

3-4

operand is in the address register specified by the EA register field.

GENERATION: EA=An

ASSEMBLER SYNTAX: An

MODE: 001

DATAREGISTER - Ny :
STER: An

NUMBER OF EXTENSION WORDS: 0 OPERAND

CPU32 REFERENCE MANUAL MOTOROLA

3.4.2 Memory Addressing Modes

These EA modes specify the address of the memory operand.

3.4.2.1 ADDRESS REGISTER INDIRECT. In the address register indirect mode, the
operand is in memory, and the address of the operand is in the address
register specified by the register field.

GENERATION: EA=(An)

ASSEMBLER SYNTAX (An)

MODE* 010 31 0

REGISTER: n

ADDRESS REGISTER. A] MEMORY ADDRESS |

MEMORY ADDRESS: 2 ¢
‘ | OPERAND |

NUMBER OF EXTENSION WORDS: 0

3.4.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. In the address
register indirect with postincrement mode, the operand is in memory, and
the address of the operand is in the address register specified by the register
field. After the operand address is used, it is incremented by one, two, or
four, depending on the size of the operand: byte, word, or long word. If the
address register is the stack pointer and the operand size is byte, the address
is incremented by two rather than one to keep the stack pointer aligned to
a word boundary.

GENERATION: EA = (An)

An=An+SIZE

ASSEMBLER SYNTAX: (An) +
MODE: o1
REGISTER: n 31 0
ADDRESS REGISTER: AM— > MEMORY ADDRESS
OPERAND LENGTH (1, 2, OR 4): (+)

31 0
MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS: 0

MOTOROLA CPU32 REFERENCE MANUAL 3-5

3.4.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. In the address

register indirect with predecrement mode, the operand is in memory, and
the address of the operand is in the address register specified by the register
field. Before the operand address is used, it is decremented by one, two, or
four, depending on the operand size: byte, word, or long word. If the address
register is the stack pointer and the operand size is byte, the address is
decremented by two rather than one to keep the stack pointer aligned to a
word boundary.

GENERATION: An = An-SIZE
EA- ()
ASSEMBLER SYNTAX: i
MODE: 1 o
REGISTER: n 31
ADDRESS REGISTER: M f MEMORY ADDRESS |

OPERAND LENGTH (1, 2, OR 4): >é

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 0 l OPERAND |

3.4.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. Inthe address reg-

ister indirect with displacement mode, the operand is in memory. The address
of the operand is the sum of the address in the address register plus the
sign-extended 16-bit displacement integer in the extension word. Displace-
ments are always sign extended to 32 bits before being used in EA calcu-
lations.

GENERATION: EA=(An) + d1g

ASSEMBLER SYNTAX: (d16, An)

MODE: 101 o 0

REGISTER: n

ADDRESS REGISTER: A 5] MEMORY ADDRESS J
N 0

DISPLACEMENT: I sioNExtenoeD | INTEGER

MEMORY ADDRESS = .

NUMBER OF EXTENSION WORDS: 1 L OPERAND |

3.4.2.5 ADDRESS REGISTER INDIRECT WITH INDEX (8-BIT DISPLACEMENT). This

3-6

addressing mode requires one extension word that contains the index reg-
ister indicator and an 8-bit displacement. The index register indicator includes
size and scale information. In this mode, the operand is in memory. The
address of the operand is the sum of the contents of the address register,
the sign-extended displacement value in the low-order eight bits of the ex-
tension word, and the sign-extended contents of the index register (possibly
scaled). The user must specify the displacement, the address register, and
the index register in this mode.

CPU32 REFERENCE MANUAL MOTOROLA

GENERATION: EA= (Ang &Xn.SCALE) +dg
ASSDEEMBLER SYNTAX: (dg, An. SIZE*SCALE)

REGISTER:
ADDRESS REGISTER:

DISPLACEMENT:

INDEX REGISTER: (

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

This address mode uses two different formats of extension. The brief format
provides fast indexed addressing; the full format provides a number of op-
tions in size of displacements. Both forms use an index operand. Notationally,
this index operand is specified ““Ri.sz*scl”. "’Ri” selects one of the general
data or address registers for the index register. The term sz’ refers to the
index size and may be either:”W" or “L"”. The term “scl” refers to the index
scale selection and may be any of 1, 2, 4, or 8. The index operand is derived
from the index register. The index register is a data register if bit [15]=0 in
the first extension word and is an address register if bit [15] =1. The register
number of the index register is given by bits [14:12] of the extension word.
The index size is given by bit [11] of the extension word; if bit [11]=0, the
index value is the sign-extended low-order word integer of the index register;
if bit [11] =1, the index value is the long integer in the index register. Finally,
the index value is scaled according to the scaling selection in bits [10:9] to
derive the index operand. The scale selections 00, 01, 10, or 11 select scaling
of the index value by 1, 2, 4, or 8, respectively. Brief format indexing requires
one word of extension. The address of the operand is the sum of the address
in the address register, the sign-extended displacement integer in the low-
order eight bits of the extension word, and the index operand. The reference
is classed as a data reference, except for the JMP and JSR instructions.

MOTOROLA CPU32 REFERENCE MANUAL 3-7

3.4.2.6 ADDRESS REGISTER INDIRECT WITH INDEX (BASE DISPLACE-

MENT). This addressing mode requires an index register indicator and an
optional 16- or 32-bit sign-extended base displacement. The index register
indicator includes size and scale information. In this mode, the operand is
in memory. The address of the operand is the sum of the contents of the
address register, the scaled contents of the sign-extended index register, and
the base displacement.

GENERATION: EA = (An) + (Xn*SCALE) + db
ASSEMBLER SYNTAX: bd, An, Xn. SIZE*SCALE)
MODE: 10 31 0
REGISTER: n
PROGRAM COUNTER: M MEMORY ADDRESS |
3 0
BASE DISPLACEMENT: [SIGN-EXTENDED VALUE
3t 0
INDEX REGISTER: [SIGN-EXTENDED VALUE
SCALE:
MEMORY ADDRESS: 0
NUMBER OF EXTENSION WORDS: 1,2,0R3 | OPERAND |

3.4.3 Special Addressing Modes

These special addressing modes do not use the register field to specify a
register number but rather to specify a submode.

3.4.3.1 PROGRAM COUNTER INDIRECT WITH DISPLACEMENT. In this mode, the
operand is in memory. The address of the operand is the sum of the address
in the program counter and the sign-extended 16-bit displacement integer
in the extension word. The value in the program counter is the address of
the extension word. The reference is a program space reference and is only
allowed for read accesses.

GENERATION: H:g’ccpdw
ASSEMBLER SYNTAX: g‘d";,)
MODE: 11 ” 0
REGISTER: 010
PROGRAM COUNTER: —_—s] ADDRESS OF EXTENSION WORD
N 15 0
DISPLACEMENT: E SIGNEXTENDED | INTEGER
31 0
MEMORY ADDRESS: | OPERAND
NUMBER OF EXTENSION WORDS: 1

3-8 CPU32 REFERENCE MANUAL MOTOROLA

|
3.4.3.2 PROGRAM COUNTER INDIRECT WITH INDEX (8-BIT DISPLACE- E
MENT). This mode is similar to the address register indirect with index |
(8-bit displacement) mode described in 3.4.2.5 ADDRESS REGISTER INDI-
RECT WITH INDEX (8-BIT DISPLACEMENT), but the program counter is used
as the base register. The operand is in memory. The address of the operand
is the sum of the address in the program counter, the sign-extended dis-
placement integer in the lower eight bits of the extension word, and the sized,
scaled, and sign-extended index operand. The value in the program counter
is the address of the extension word. This reference is a program space
reference and is only allowed for reads. The user must include the displace-
ment, the program counter, and the index register when specifying this ad-
dressing mode.

GENERATION: EA=(PC) + (Xn) + S‘é
Q%SDEEMBLER SYNTAX: sd1 113 PC, Xn. SIZE'SCALE)

REGISTER: ot 3t 0
PROGRAM COUNTER: _] MEMORY ADDRESS |

DISPLACEMENT: r

INDEX REGISTER: [

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1 [OPERAND |

3.4.3.3 PROGRAM COUNTER INDIRECT WITH INDEX (BASE DISPLACE-
MENT). This mode is similar to the address register indirect with index (base
displacement) mode described in 3.4.2.6 ADDRESS REGISTER INDIRECT WITH
INDEX (BASE DISPLACEMENT), but the program counter is used as the base
register. It requires an index register indicator and an optional 16- or 32-bit
sign-extended base displacement. The operand is in memory. The address
of the operand is the sum of the contents of the program counter, the scaled
contents of the sign-extended index register, and the base displacement. The
value of the program counter is the address of the first extension word. The
reference is a program space reference and is only allowed for read accesses.

In this mode, the program counter, the index register, and the displacement
are all optional. However, the user must supply the assembler notation “ZPC"
(zero value is taken for the program counter) to indicate that the program
counter is not used. This scheme allows the user to access the program space
without using the program counter in calculating the EA. The user can access

MOTOROLA CPU32 REFERENCE MANUAL 3-9

3.4.3.4 ABSOLUTE SHORT ADDRESS.

3.4.3.5 ABSOLUTE LONG ADDRESS.

3-10

the program space with a data register indirect access by placing ZPC in the
instruction and specifying a data register (Dn) as the index register.

GENERATION:
ASSEMBLER SYNTAX:
MODE:

REGISTER:
PROGRAM COUNTER:

31

) p‘é’")’(n* gIZL'SCALE)
31

on

ADDRESS OF EXTENSION WORD I

0

BASE DISPLACEMENT: |

SIGN-EXTENDED VALUE

31

INDEX REGISTER: |

SIGN-EXTENDED VALUE

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

1,2,0R3 |

OPERAND |

In this addressing

mode, the operand is in

memory, and the address of the operand is in the extension word. The 16-
bit address is sign extended to 32 bits before it is used.

-GENERATION:
ASSEMBLER SYNTAX:

REGISTER:
EXTENSION WORD:

MEMORY ADDRESS:

NUMBER OF EXTENSION WORDS:

EAGIVEN

Sxxx).w

o 3t 15 0
B —— —

———>| _ SIGNEXTENDED _ | MEMORY ADDRESS |
31 0

! [OPERAND |

In this mode, the operand is in memory, and

the address of the operand occupies the two extension words following the
instruction word in memory. The first extension word contains the high-order
part of the address; the low-order part of the address is the second extension

word.

GENERATION:
ASSEMBLER SYNTAX:
MODE:

REGISTER:
FIRST EXTENSION WORD:

SECOND EXTENSION WORD:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EAGIVEN
Sxxx).L
o 15 0
——————>| ADDRESSHIGH |
15 0
> ADDREssLow |
3t l 0
| CONCATENATION |
3 0
, { OPERAND |
CPU32 REFERENCE MANUAL MOTOROLA

3.4.3.6 IMMEDIATE DATA. In this addressing mode, the operand is in one or two
extension words:

Byte Operation
The operand is in the low-order byte of the extension word.
Word Operation
The operand is in the extension word.
Long-Word Operation
The high-order 16 bits of the operand are in the first extension word;
the low-order 16 bits are in the second extension word.

GENERATION: OPERAND GIVEN

ASSEMBLER SYNTAX: #XXX

MODE: 11 3
REGISTER: 100

NUMBER OF EXTENSION WORDS: 10R2

3.4.4 Effective Address Encoding Summary

Most of the addressing modes use one of the three formats shown in Figure
3-2. The single EA instruction is in the format of the instruction word. The
encoding of the mode field of this word selects the addressing mode. The
register field contains the general register number or a value that selects the
addressing mode when the mode field contains “111”. Some indexed or
indirect modes use the instruction word followed by the brief format exten-
sion word. Other indexed or indirect modes consist of the instruction word
and the full format of extension words. The longest instruction for the CPU32
contains six extension words. It is a MOVE instruction with full format ex-
tension words for both the source and destination EAs and with 32-bit base
displacements for both addresses.

Grouped according to the use of the mode, EA modes can be classified as

follows:
Data A data addressing EA mode is one that refers to data operands.
Memory A memory addressing EA mode is one that refers to memory

operands.

Alterable An alterable addressing EA mode is one that refers to alterable
(writable) operands.

Control A control addressing EA mode is one that refers to memory
operands without an associated size.

MOTOROLA CPU32 REFERENCE MANUAL 3-11

3-12

Single EA Instruction Format

15 14 13 12 n 10 9 8 7 6 5 0

EFFECTIVE ADDRESS
MODE | ReGisTeR

X X X X X X X X X X

Brief Format Extension Word

5 2oono0 s 8 7 0
[oA | reeisTeR [wi | scae [o | DISPLACEMENT

Full Format Extension Word(s)

15 14 12 n 10 9 8 7 6 5 4 3 2 0

DIA REGISTER | wiL | scae | 1 [es | s | BoszE | o | Ins

BASE DISPLACEMENT (0, 1, OR 2 WORDS)

Field Definition Field Definition
Instruction BS Base Register Suppress
Register General Register Number 0=Base Register Added
Extensions 1=Base Register Suppressed
Register Index Register Number IS Index Suppress
D/A Index Register Type 0=Evaluate and Add Index Operand
0=Dn 1=_Suppress Index Operand
1=Dn BD SIZE Base Displacement Size
WiL Word/Long-Word Index Size 00 = Reserved
0= Sign-Extended Word 01=Null Displacement
1=Long Word 10=Word Displacement
Scale Scale Factor 11=Long-Word Displacement
00=1 11s* Index/Indirect Selection
01=2 Indirect and Indexing Operand
10=4 Determined in Conjunction with
11=8 Bit 6, Index Suppress

*¥Memory indirect causes illegal instruction trap; must be =000 if IS=1.

Figure 3-2. Effective Address Specification Formats

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or
alterable data. The former category refers to those addressing modes that
are both alterable and memory addresses; the latter category refers to ad-
dressing modes that are both alterable and data addresses. Table 3-1 shows
the categories to which each of the EA modes belong.

CPU32 REFERENCE MANUAL MOTOROLA

3.5 PROGRAMMING VIEW OF ADDRESSING MODES

Extensions to the indexed addressing modes, indirection, and full 32-bit dis-
placements provide additional programming capabilities for the CPU32. The
following paragraphs describe addressing techniques that exploit these ca-
pabilities and summarize the addressing modes from a programming point

of view.
Table 3-1. Effective Addressing Mode Categories
Address Modes Mode |Register| Data |Memory| Control |Alterable|Assembler Syntax

Data Register Direct 000 |reg.no.| X — — X Dn
Address Register Direct 001 |reg.no.| — — — X An
Address Register Indirect 010 {reg. no.| X X X X (An)
Address Register Indirect

with Postincrement 011 {reg.no.{ X X — X (An)+
Address Register Indirect

with Predecrement 100 freg. no.| X X — X —(An)
Address Register Indirect

with Displacement 101 [reg. no.| X X X X (d16,An)
Address Register Indirect

with Index (8-Bit Displace-| 110 |reg.no.| X X X X (dg,An,Xn)

ment) -
Address Register Indirect 110 |reg. no.| X X X X (bd,An,Xn)

with Index (Base Displace-|

ment)
Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L
Program Counter Indirect

with Displacement 11 010 X — X X (d16.,PC)
Program Counter Indirect

with Index (8-Bit Displace-| 111 01 X — X X (dg,PC,Xn)

ment)
Program Counter Indirect 111 011 X — X X (bd,PC,Xn)

with Index (Base Displace-|

ment)
Immediate 111 100 X X — — #(data)

MOTOROLA CPU32 REFERENCE MANUAL 3-13

3.5.1 Addressing Capabilities

3-14

In the CPU32, setting the base register suppress (BS) bit in the full format
extension word (see Figure 3-2) suppresses use of the base address register
in calculating the EA, allowing any index register to be used in place of the
base register. Since any of the data registers can be index registers, this
provides a data register indirect form (Dn). Since either a data register or an
address register can be used, the mode could be called register indirect (Rn).
This addressing mode is an extension to the M68000 Family because the
CPU32 can use both the data registers and the address registers to address
memory. The capability of specifying the size and scale of an index register
(Xn.SIZE*SCALE) in these modes provides additional addressing flexibility.
Using the SIZE parameter, either the entire contents of the index register can
be used, or the least significant word can be sign extended to provide a
32-bit index value (refer to Figure 3-3).

o] OO e

USED IN ADDRESS CALCULATION

Figure 3-3. Using SIZE in the Index Selection

For the CPU32, the register indirect modes can be extended further. Since
displacements can be 32 bits wide, they can represent absolute addresses
or the results of expressions that contain absolute addresses. This scheme
allows the general register indirect form to be (bd,Rn) or (bd,An,Rn) when
the base register is not suppressed. Thus, an absolute address can be directly
indexed by one or two registers (refer to Figure 3-4).

The indirect suppressed index register mode (see Figure 3-5) uses the con-
tents of register An as an index to the pointer located at the address specified
by the displacement. The actual data item is at the address in the selected
pointer.

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the EA calculation (the
actual value in the index register remains unchanged). This is equivalent to
multiplying the register by one, two, four, or eight for direct subscripting into
an array of elements of corresponding size using an arithmetic value residing

CPU32 REFERENCE MANUAL MOTOROLA

SYNTAX: (bd,An,Rn)

V. |
An

y
|

Rn

¥
AN

SO

Figure 3-4. Using Absolute Address with Indexes

in any of the 16 general-purpose registers. Scaling does not add to the EA
calculation time. However, when combined with the appropriate derived
modes, scaling produces additional capabilities. Arrayed structures can be
addressed absolutely and then subscripted; for example, (bd,Rn*SCALE).
Optionally, an address register that contains a dynamic displacement can be
included in the address calculation (bd,An,Rn*SCALE). Another variation that
can be derived is (An,Rn*SCALE). In the first case, the array address is the
sum of the contents of a register and a displacement (see Figure 3-5). In the
second example, An contains the address of an array and Rn contains a
subscript.

3.5.2 General Addressing Mode Summary

The addressing modes described in the previous paragraphs are derived from
specific combinations of options in the indexing mode or a selection of two
alternate addressing modes. For example, the addressing mode called reg-
ister indirect (Rn) assembles as the address register indirect if the register is
an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode, using the data register as the indirect
register, and suppresses the address register by setting the base suppress
bit in the EA specification. Assigning an address register as Rn provides
higher performance than using a data register as Rn. Another case is (bd,An),
which selects an addressing mode based on the size of the displacement. If
the displacement is 16 bits or less, the address register indirect with dis-
placement mode (d1g,An) is used. When a 32-bit displacement is required,
the address register indirect with index (bd,An,Xn) is used with the index
register suppressed.

MOTOROLA CPU32 REFERENCE MANUAL 3-15

SYI‘VIVHEXR gOVE.W (A5,A6.L*SCALE),(A7)
AS = ADDRESS OF ARRAY STRUCTURE

A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

SIMPLE ARRAY RECORD OF 1 WORD
(SCALE =1) (SCALE =2)
15

As=;:;%7/////z/\° N, ///////j
S LKL

4 ——>

.]

RECORD OF 2 WORDS RECORD OF 4 WORDS
(SCALE = (SCALE =8)

1 0

O\

[[]

NOTE: Regardless of array structure, software increments indexed by the appropriate
amount to point to next record.

Figure 3-5. Addressing Array ltems

3-16 CPU32 REFERENCE MANUAL MOTOROLA

It is useful to examine the derived addressing modes available to a pro-
grammer (without regard to the CPU32 EA mode actually encoded) because
the programmer need not be concerned about these decisions. The assem-
bler can choose the more efficient addressing mode to encode.

3.6 M68000 FAMILY ADDRESSING CAPABILITY

Programs can be easily transported from one member of the M68000 Family
to another member in an upward compatible fashion. The user object code
of each early member of the family is upward compatible with newer mem-
bers and can be executed on the newer microprocessor without change. The
address extension word(s) are encoded with information that allows the
CPU32 to distinguish the new address extensions to the basic M68000 Family
architecture. The address extension words for the early MC68000, MC68008,
MC68010, and MC68020 microprocessors are shown in Figure 3-6. The en-
coding for SCALE used by the CPU32 and the MC68020 is a compatible
extension of the M68000 architecture. A value of zero for SCALE is the same
encoding for both extension words; thus, software that uses this encoding
is both upward and downward compatible across all processors in the prod-
uct line. However, the other values of SCALE are not found in both extension

MC68000/MC68008/MC68010
ADDRESS EXTENSION WORD

15 14 12 " 10 9 8 7 0
[oa] mesistr Jwe] o [o Jo] DISPLACEMENT INTEGER
D/A: 0 = Data Register Select
1 = Address Register Select
W/L: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation
CPU32/MC68020
EXTENSION WORD
15 14 12 n 10 9 8 7 0
[oa| reeisTeR | wi| scae | o | DISPLACEMENT INTEGER |
D/A: 0 = Data Register Select

1 = Address Register Select

WI/L: 0 = Word-Sized Operation

= Long-Word-Sized Operation

SCALE: Scale Factor 1 (Compatible with MC68000)
Scale Factor 2 (Extension to MC68000)
Scale Factor 4 (Extension to MC68000)
S

cale Factor 8 (Extension to MC68000)

o non

Figure 3-6. M68000 Family Address Extension Words

MOTOROLA CPU32 REFERENCE MANUAL 3-17

formats; therefore, while software can be easily migrated in an upward com-
patible direction, only nonscaled addressing is supported in a downward
fashion. If the MC68000 were to execute an instruction that encoded a scaling
factor, the scaling factor would be ignored and would not access the desired
memory address.

The earlier microprocessors have no knowledge of the extension word for-
mats implemented by newer processors, and, while they do detect illegal
instructions, they do not decode invalid encodings of the extension words
as exceptions.

3.7 OTHER DATA STRUCTURES

3.71

3-18

In addition to supporting the array data structure with the index addressing
mode, M68000 processors also support stack and queue data structures with
the address register indirect postincrement and predecrement addressing
modes. A stack is a last-in-first-out (LIFO); a queue is a first-in-first-out (FIFO)
list. When data is added to a stack or queue, it is pushed onto the structure;
when it is removed, it is ““popped”’ or pulled from the structure. The system
stack is used implicitly by many instructions; user stacks and queues may
be created and maintained through use of addressing modes.

System Stack

Address register 7 (A7) is the system stack pointer (SP). The SP is either the
supervisor stack pointer (SSP) or the user stack pointer (USP), depending on
the state of the S bit in the status register. If the S bit indicates the supervisor
state, the SSP is the SP, and the USP cannot be referenced as an address
register. If the S bit indicates the user state, the USP is the active SP, and
the SSP cannot be referenced. Each system stack fills from high memory to
low memory. The address mode —(SP) creates a new item on the active
system stack, and the address mode (SP)+ deletes an item from the active
system stack.

The program counter is saved on the active system stack on subroutine calls
and is restored from the active system stack on returns. On the other hand,
both the program counter and the status register are saved on the supervisor
stack during the processing of traps and interrupts. Thus, the correct exe-
cution of the supervisor state code is not dependent on the behavior of user
code, and user programs may use the USP arbitrarily.

CPU32 REFERENCE MANUAL MOTOROLA

To keep data on the system stack aligned properly, data entry on the stack
is restricted so that data is always put in the stack on a word boundary. Thus,
byte data is pushed on or pulled from the system stack in the high-order half
of the word; the low-order half is unchanged.

3.7.2 User Stacks

The user can implement stacks with the address register indirect with post-
increment and predecrement addressing modes. With address register An
(n=0-6), the user can implement a stack that is filled either from high to low
memory or from low to high memory. Important considerations are as
follows:

® Use the predecrement mode to decrement the register before its contents
are used as the pointer to the stack.

® Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

® Maintain the SP correctly when byte, word, and long-word items are
mixed in these stacks.

To implement stack growth from high to low memory, use
—(An) to push data on the stack,
(An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This scheme is illustrated as follows:

LOW MEMORY
(FREE)
An—> TOP OF STACK
BOTTOM OF STACK
HIGH MEMORY

MOTOROLA CPU32 REFERENCE MANUAL 3-19

To implement stack growth from low to high memory, use
(An)+ to push data on the stack,
—(An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This scheme is illustrated as follows:

LOW MEMORY
BOTTOM OF STACK
TOP OF STACK
An——> (FREE)
HIGH MEMORY

3.7.3 Queues

The user can implement queues with the address register indirect with post-
increment or predecrement addressing modes. Using a pair of address reg-
isters (two of A0O-A6), the user can implement a queue which is filled either
from high to low memory or from low to high memory. Two registers are
used because queues are pushed from one end and pulled from the other.
One register, An, contains the “put” pointer; the other, Am, the “get’’ pointer.

To implement growth of the queue from low to high memory, use
(An)+ to put data into the queue,
(Am)+ to get data from the queue.

After a “put”’ operation, the “put’ address register points to the next available
space in the queue, and the unchanged ““get” address register points to the
next item to be removed from the queue. After a “‘get” operation, the “‘get”
address register points to the next item to be removed from the queue, and
the unchanged “put” address register points to the next available space in
the queue, which is illustrated as follows:

LOW MEMORY
LAST GET (FREE)
GET (Am) + —> NEXT GET

LAST PUT

PUT (An) + —> (FREE)
HIGH MEMORY

CPU32 REFERENCE MANUAL MOTOROLA

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the “put”
or ““get” operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register contents.

To implement growth of the queue from high to low memory, use
—(An) to put data into the queue,
—(Am) to get data from the queue.

After a “put” operation, the “put” address register points to the last item
placed in the queue, and the unchanged “get” address register points to the
last item removed from the queue. After a “get” operation, the ““get” address
register points to the last item removed from the queue, and the unchanged
“put” address register points to the last item placed in the queue, which is
illustrated as follows:

LOW MEMORY
(FREE)
PUT - (An) ——> LAST PUT
NEXT GET
GET-(Am)——> _ LAST GET (FREF)
HIGH MEMORY

To implement the queue as a circular buffer, the ““get’” or “put’”” operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

MOTOROLA CPU32 REFERENCE MANUAL 3-21

3-22

CPU32 REFERENCE MANUAL

MOTOROLA

SECTION 4
INSTRUCTION SET

This section describes the set of instructions provided in the CPU32 and
demonstrates their use. Descriptions of the instruction format and the
operands used by instructions are also included. After a summary of the
instructions by category, a detailed description of the operation of each
instruction is listed in alphabetical order. Programming information for spe-
cific instructions is included, followed by a description of condition code
computation and an instruction format summary.

The CPU32 instructions form a set of tools which includes all the machine
functions for the following operations:

® Data Movement
® Arithmetic Operations
® logical Operations
e Shifts and Rotates
® Bit Manipulation
e Conditionals and Branches
® System Control
The large instruction set encompasses a complete range of capabilities and,

combined with the enhanced addressing modes, provides a flexible base for
program development.

4.1 M68000 FAMILY COMPATIBILITY

It is the philosophy of the M68000 Family that all user-mode programs can
execute unchanged on a more advanced processor and that supervisor-mode
programs and exception handlers should require only minimal alteration.

The CPU32 can be thought of as an intermediate member of the M68000
Family. Object code from an MC68000 or MC68010 may be executed on the
CPU32, and many of the instruction and addressing mode extensions of the
MC68020 are also supported.

MOTOROLA CPU32 REFERENCE MANUAL 4-1

4.1.1 New Instructions

Two new instructions have been added to the M68000 instruction set for use
in controller applications. They are low-power stop (LPSTOP) and table lookup
and interpolate (TBL).

4.1.1.1 LOW-POWER STOP (LPSTOP). In applications where power consumption

is a consideration, the CPU32 forces the device into a low-power standby
mode when immediate processing is not required. The low-power stop mode
is entered by executing the LPSTOP instruction. The processor remains in
this mode until a user-specified or higher interrupt level or reset occurs.

4.1.1.2 TABLE LOOKUP AND INTERPOLATE (TBL). To maximize throughput for

real-time applications, reference data is often precalculated and stored in
memory for quick access. The storage of each data point would require a
inordinate amount of memory. The TBL instruction, which requires only a
sample of data points stored in the array, reduces memory requirements.
Intermediate values are recovered with this instruction via linear interpolation.

The CPU32 TBL instruction looks up the two table entries bounding the de-
sired result and performs a linear interpolation between them. Byte, word,
and long-word operand sizes are supported. The result is rounded according
to the round-to-nearest algorithm. Optionally, byte and word results are left
unrounded and returned along with the fractional portion of the calculated
result. Software can make use of this extra “precision” to reduce the
cumulative error in complex caiculations. See 4.5 USING THE TABLE
INSTRUCTION for examples.

4.1.2 Unimplemented Instructions

4-2

Trap-on unimplemented instructions allow user-supplied code to emulate
unimplemented capabilities or to define special-purpose functions. However,
Motorola reserves the right to use all currently unimplemented instruction
operation codes for future M68000 enhancements. See 6.2.8 lllegal or
Unimplemented Instructions for more details.

CPU32 REFERENCE MANUAL MOTOROLA

4.2 INSTRUCTION FORMAT

All instructions consist of at least one word; some have as many as seven
words as shown in Figure 4-1. The first word of the instruction, called the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be immediate operands,
extensions to the effective address mode specified in the operation word,
branch displacements, bit number, special register specifications, trap
operands, or argument counts.

15 0

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

Figure 4-1. Instruction Word General Format

Besides the operation code, which specifies the function to be performed,
an instruction defines the location of every operand for the function. Instruc-
tions specify an operand location in one of three ways:

® Register Specification A register field of the instruction contains
the number of the register.

® Effective Address An effective address field of the instruction
contains address mode information.

® Implicit Reference The definition of an instruction implies the
use of specific registers.

The register field within an instruction specifies the register to be used. Other
fields within the instruction specify whether the register selected is an address
or data register and how the register is to be used. SECTION 3 DATA ORGAN-
IZATION AND ADDRESSING CAPABILITIES contains detailed register infor-
mation.

MOTOROLA CPU32 REFERENCE MANUAL 4-3

4.3 INSTRUCTION SUMMARY

The instructions form a set of tools to perform the following operations:

Data Movement Bit Manipulation

Integer Arithmetic Binary-Coded Decimal Arithmetic
Logical Program Control

Shift and Rotate System Control

The complete range of instruction capabilities combined with the addressing
modes described previously provide flexibility for program development.

The following notations are used in this section. In the operand syntax state-
ments of the instruction descriptions, the operand on the right is the desti-
nation operand.
An=any address register, A7-A0
Dn=any data register, D7-D0
Rn=any address or data register
CCR =condition code register {lower byte of status register)
cc=condition codes from CCR
SR =status register
SP =active stack pointer
USP =user stack pointer
SSP = supervisor stack pointer
DFC =destination function code register
SFC =source function code register
Rc=control register (VBR, SFC, DFC)
d=displacement; dqg is a 16-bit displacement
(ea)=effective address
list=list of registers (for example, D3-D0)
#(data)=immediate data; a literal integer
label =assembly program label
[7]=bit 7 of an operand
[31:24] = bits 31-24 of operand (high-order byte of a register)
X=extend (X) bit in CCR
N = negative (N) bit in CCR
V=overflow (V) bit in CCR
C=carry (C) bit in CCR
+ =arithmetic addition or postincrement
— =arithmetic subtraction or predecrement
* = arithmetic multiplication
/ =arithmetic division or conjunction symbol
~ =invert; operand is logically complemented
A =logical AND

4-4 CPU32 REFERENCE MANUAL MOTOROLA

V=logical OR
® =logical exclusive OR
Dc = data register D7-DO0 used during compare
Du=D7-D0 used during update
Dr, Dg =data registers, remainder or quotient of divide
Dh, Di=data registers, high- or low-order 32 bits of product
MSW = most significant word
LSW =least significant word
FC =function code
{R/W}=read or write indicator
[An] =address extensions

4.3.1 Data Movement Instructions

The MOVE instruction with its associated addressing modes is the basic
means of transferring and storing address and data. MOVE instructions trans-
fer byte, word, and long-word operands from memory to memory, memory
to register, register to memory, and register to register. Address movement
instructions (MOVE or MOVEA) transfer word and long-word operands and
ensure that only valid address manipulations are executed. In addition to the
general MOVE instructions, there are several special data movement instruc-
tions: move multiple registers (MOVEM), move peripheral data (MOVEP),
move quick (MOVEQ), exchange registers (EXG), load effective address (LEA),
push effective address (PEA), link stack (LINK), and unlink stack (UNLK). Table
4-1 is a summary of the data movement operations.

Table 4-1. Data Movement Operations

. Operand Operand .
Instruction Syntax Size Operation
EXG Rn, Rn 32 Rn#®Rn
LEA (ea), An 32 (ea) » An
LINK An, #(d) 16, 32 SP —4 9 SP, An» (SP); SP» An, SP+d » SP
MOVE (ea), (ea) 8, 16, 32 source p destination
MOVEA (ea), An 16,329 32
MOVEM list, (ea) 16, 32 listed registers » destination
(ea), list 16, 329 32 | source # listed registers
MOVEP Dn, (dqg.An) 16, 32 Dn[31:24] # (An + d); Dn[23:16] # (An+d+2);
Dn[15:8] » (An+d+4); Dn[7:0] # (An+d+6)
(d16,An), Dn (An+d) » Dn[31:24]; (An+d+2) » Dn[23:16]
(An+d+4) $ Dn[15:8]; (An+d+6) $ Dn[7:0]
MOVEQ #(data), Dn 8932 immediate data » destination
PEA (ea) 32 SP —4 9 SP; (ea) » (SP)
UNLK An 32 An » SP; (SP) % An; SP+4 9 SP

MOTOROLA CPU32 REFERENCE MANUAL 4-5

4.3.2 Integer Arithmetic Operations

4-6

The arithmetic operations include the four basic operations of add (ADD),
subtract (SUB), multiply (MUL), and divide (DIV) as well as arithmetic com-
pare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The instruction
set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes
of data operands.

Table 4-2. Integer Arithmetic Operations

. Operand Operand .
Instruction Syntax Size Operation
ADD Dn, (ea) 8, 16, 32 source + destination » destination
(ea), Dn 8, 16, 32
ADDA (ea), An 16, 32
ADDI #(data), (ea) 8, 16, 32 immediate data + destination » destination
ADDQ #(data), (ea) 8, 16, 32
ADDX Dn, Dn 8, 16, 32 source + destination + X # destination
—(An), —(An)| 8,16, 32
CLR {ea) 8, 16, 32 0 # destination
CMP (ea), Dn 8, 16, 32 destination — source
CMPA (ea), An 16, 32
CMPI #(data), (ea) 8, 16, 32 destination — immediate data
CMPM (An)+, {(An)+| 8, 16, 32 destination — source
CMP2 (ea), Rn 8, 16, 32 lower bound< =Rn< =upper bound
DIVS/DIVU (ea), Dn 32/16 » 16:16 | destination/source # destination (signed or unsigned)
(ea), Dr:Dq |64/32 % 32:32
(ea), Dq 32/32 9 32
DIVSL/DIVUL | (ea), Dr:Dq |32/32 9 32:32
EXT Dn 8916 sign extended destination § destination
Dn 16932
EXTB Dn 8932
MULS/MULU (ea), Dn 16x16 # 32 | source*destination # destination (signed or unsigned)
(ea), DI 32x329 32
(ea), Dh:DI | 32x329 64
NEG (ea) 8, 16, 32 0 — destination § destination
NEGX (ea) 8, 16, 32 0 — destination — X § destination
SUB (ea), Dn 8, 16, 32 destination — source # destination
Dn, (ea) 8, 16, 32
SUBA (ea), An 16, 32
SuBI #(data), (ea) 8, 16, 32 destination — immediate data # destination
SUBQ #(data), (ea) 8, 16, 32
SUBX Dn, Dn 8, 16, 32 destination — source — X # destination
—(An), —(An)] 8,16, 32
TBLS/TBLU (ea), Dx 8, 16, 32 Dyn — Dym #» temp
Dym:Dyn, Dx [temp*Dx (7:0)]/256 » temp
Dym +temp # Dx

CPU32 REFERENCE MANUAL

MOTOROLA

Signed and unsigned MUL and DIV instructions include:
® Word multiply to produce a long-word product
® |Long-word multiply to produce a long-word or quad-word product

® Division of a long-word dividend by a word divisor (word quotient and
word remainder)

® Division of a long-word or quad-word dividend by a long-word divisor
(long-word quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arith-
metic. These instructions are add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEGX). Refer to
Table 4-2 for a summary of the integer arithmetic operations.

4.3.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical
operations with all sizes of integer data operands. A similar set of immediate
instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The TST instruction arithmetically compares the
operand with zero, placing the result in the condition code register.
Table 4-3 summarizes the logical operations

Table 4-3. Logical Operations

Instruction Operand Ope_rand Operation

Syntax Size

AND (ea),Dn 8, 16, 32 |source A destination » destination
Dn,ea) |8, 16, 32

ANDI #(data),(ea) 8, 16, 32 |immediate data A destination # destination
EOR Dn,(ea) 8, 16, 32 |source @ destination » destination
EORI #(data),(ea) 8, 16, 32 |immediate data @ destination #» destination
NOT {ea) 8, 16, 32 |~ destination » destination
OR (ea),Dn 8, 16, 32 |source V destination » destination

Dn(ea) 8, 16, 32
ORI #(data)(ea) | 8, 16, 32 |immediate data V destination » destination
TST (ea) 8, 16, 32 |source —0 to set condition codes

MOTOROLA CPU32 REFERENCE MANUAL 4-7

4.3.4 Shift and Rotate Instructions

The arithmetic shift instructions, ASR and ASL, and logical shift instructions,
LSR and LSL, provide shift operations in both directions. The ROR, ROL,
ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the extend bit. All shift and rotate operations can be performed
on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count
may be specified in the instruction operation word (to shift from 1-8 places)
or in a register (modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit po-
sition only. The SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR
and ROL instructions with a shift count of eight allows fast byte swapping.
Table 4-4 is a summary of the shift and rotate operations.

Table 4-4. Shift and Rotate Operations

. Operand Operand .
Instruction Syntax Size Operation
ASL Dn,Dn 8, 16, 32
#(data),Dn | 8, 16, 32 [Twe e <~————0
(ea) 16
ASR Dn,Dn 8, 16, 32 > 1 xc
#(data),Dn 8, 16, 32 ‘ I] J
(ea) 16
LSL Dn,Dn 8, 16, 32
#(data),Dn | 8, 16, 32 | ¢ Je—A <——|«—0
(ea) 16
LSR Dn,Dn 8, 16, 32
#(data),Dn | 8, 16, 32 0—> ——] xc |
(ea) 16
ROL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 ¢ Rl <—F |<__|
(ea) 16
ROR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 ‘ I | |
(ea) 16
ROXL Dn,Dn 8, 16, 32
#(data),Dn 8,16, 32] [l‘—l
(ea) 16 Lc X
ROXR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 L[1 I I
(ea) 16 X_—> - c_|
SWAP Dn 16]
]

48

CPU32 REFERENCE MANUAL MOTOROLA

4.3.5 Bit Manipulation Instructions

Bit manipulation operations are accomplished using the following instruc-
tions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and
bit test and change (BCHG). All bit manipulation operations can be performed
on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory
operands are 8 bits long. In Table 4-5, the summary of the bit manipulation
operations, Z refers to bit 2, the zero bit of the status register.

Table 4-5. Bit Manipulation Operations

. Operand Operand .
Instruction Syntax Size Operation
BCHG Dn,(ea) 8, 32 ~ ((bit number) of destination) # Z » bit of destination
#(data),(ea) 8, 32
BCLR Dn,(ea) 8, 32 ~ ((bit number) of destination) # Z;
#(data),(ea) 8, 32 0 » bit of destination
BSET Dn,(ea) 8, 32 ~ ((bit number) of destination) » Z;
#(data),(ea) 8, 32 1 » bit of destination
BTST Dn,(ea) 8, 32 ~ ((bit number) of destination) » Z
#(data),(ea) 8, 32

4.3.6 Binary-Coded Decimal (BCD) Instructions

Five instructions support operations on BCD numbers. The arithmetic
operations on packed BCD numbers are add decimal with extend (ABCD),
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD).
Table 4-6 is a summary of the BCD operations.

Table 4-6. Binary-Coded Decimal Operations

. Operand Operand .
Instruction Syntax Size Operation
ABCD Dn,Dn 8 sourceq(+ destination1g + X # destination
—(An),—(An) 8
NBCD (ea) 8 0 — destination1g — X # destination
SBCD Dn,Dn 8 destination1g — source1g — X # destination
—(An), —(An) 8

MOTOROLA

CPU32 REFERENCE MANUAL

4-9

4.3.7 Program Control Instructions

A set of subroutine call and return instructions and conditional and uncon-
ditional branch instructions perform program control operations. Table 4-7
summarizes these instructions. .

Table 4-7. Program Control Operations

Instruction OS‘:/(:-taar;(d OPSei;an Operation
Conditional
Bce (label) 8, 16, 32 |if condition true, then PC+d » PC
DBcc Dn,(label) 16 if condition false, then Dn—1 # Dn
if Dn+ —1, then PC+d # PC+d #» CP
Scc (ea) 8 if condition true, then 1’s » destination;
else 0’s § destination
Unconditional
BRA (label) 8,16,32 |PC+d#PC
BSR (label) 8,16,32 |SP—-4»SP; PC#(SP); PC+d#»PC
JMP (ea) none destination » PC
JSR (ea) none SP—4 9 SP; PC » (SP); destination » PC
NOP none none PC+29»PC
Returns
RTD #(d) 16 (SP)» PC; SP+4+d» SP
RTR none none (SP)» CCR; SP+2# SP; (SP)» PC; SP+4» SP
RTS none none (SP)# PC; SP+4» SP

Letters cc in the instruction mnemonic opcodes specify testing one of the
following condition codes:

CC — Carry clear
CS —Carry set
EQ —Equal

F — Never true*

GE — Greater or equal

GT — Greater than
HI — High
LE — Less or equal

*Not applicable to the Bcc instruction.

4.3.8 System Control Instructions

Privileged instructions, trapping instructions, and instructions that use or
modify the condition code register provide system control operations.
Table 4-8 summarizes these instructions. The preceding list of condition code

4-10

CPU32 REFERENCE MANUAL

LS — Low or same
LT — Less than

Ml — Minus

NE — No equal
PL — Plus

T — Always true

VC — Overflow clear
VS — Overflow set

MOTOROLA

representations applies to the TRAPcc instruction. All of these instructions
cause the processor to flush the instruction pipeline.

Table 4-8. System Control Operations

. Operand Operand .
Instruction Syntax Size Operation
Privileged
ANDI #(data),SR 16 immediate data A SR » SR
EORI #(data),SR 16 immediate data ® SR # SR
MOVE (ea),SR 16 source » SR
SR(ea) 16 SR » destination
MOVE USP,An 32 USP » An
An,USP 32 An » USP
MOVEC Rc,Rn 32 Rc » Rn
Rn,Rc 32 Rn#® Rc
MOVES Rn,(ea) 8, 16, 32 | Rn # destination using DFC
(ea),Rn source using SFC » Rn
ORI #(data),SR 16 immediate data V SR » SR
RESET none none assert RESET line
RTE none none (SP)» SR; SP+2» SP; (SP)» PC; SP+4» SP;
restore stack according to format
STOP #(data) 16 immediate data # SR; STOP
LPSTOP #(data) none immediate data # SR; interrupt mask » EBI; STOP
Trap Generating
BKPT #(data) none if breakpoint cycle acknowledged, then execute re-
turned operation word, else trap as illegal instruction
BGND none none if background mode enabled, then enter background
mode else format/vector offset » —(SSP);
PC®» —(SSP); SR » —(SSP); (vector) » PC
CHK (ea),Dn 16, 32 if Dn <0 or Dn <(ea), then CHK exception
CHK2 (ea),Rn 8, 16, 32 |if Rn <lower bound or Rn> upper bound, then CHK
exception
ILLEGAL none none SSP —2» SSP; vector offset » (SSP);
SSP —4 9 SSP; PC » (SSP);
SSP —2 » SSP; SR » (SSP);
illegal instruction vector address » PC
TRAP #(data) none SSP —2 » SSP; format and vector offset » (SSP)
SSP —4 9 SSP; PC » (SSP); SR » (SSP); vector
address » PC
TRAPcc none none if cc true, then TRAP exception
#(data) 16, 32
TRAPV none none if V then take overflow TRAP exception
Condition Code Register
ANDI #(data),CCR 8 immediate data A CCR » CCR
EORI #(data),CCR 8 immediate data ® CCR » CCR
MOVE (ea),CCR 16 source » CCR
CCR (ea) 16 CCR # destination
ORI #(data),CCR 8 immediate data V CCR » CCR

MOTOROLA CPU32 REFERENCE MANUAL 4-1

4.4 INSTRUCTION DETAILS

The following paragraphs contain detailed information about each instruction
in the CPU32 instruction set. First, the notation and the format of the instruc-
tion description is presented. Then each instruction is described in detail.
The instruction descriptions are arranged alphabetically by instruction mne-
monic.

4.4.1 Notation and Format

The instruction descriptions use notational conventions for the operands, the
subfields and qualifiers, and the operations performed by the instructions.
In the syntax descriptions, the left operand is the source operand, and the
right operand is the destination operand. The notational conventions listed
in 4.3 INSTRUCTION SUMMARY apply. The foliowing lists contain the ad-
ditional notations used in the instruction descriptions.

Notation for operands:
PC — Program counter
SR — Status register
V — Overflow condition code
Immediate Data — Immediate data from the instruction
Source — Source contents
Destination — Destination contents
Vector — Location of exception vector

By convention, the destination operand is the operand on the right.

Notation for subfields and qualifiers:
(bit) of (operand) — Selects a single bit of the operand
((operand)) — The contents of the referenced location

(operand)10 — The operand is binary-coded decimal; operations
are performed in decimal

((address register)) — The register indirect operator, which indicates that
—((address register)) the operand register points to the memory lo-
((address register))+ cation of the instruction operand. The optional

mode qualifiers are —, +, (d), and (d,ix)

#xxx or #(data) — Immediate data that follows the instruction
word(s)

4-12 CPU32 REFERENCE MANUAL MOTOROLA

Notations for operations that have two operands, written (operand) (op) 1
(operand), where (op) is one of the following:

#» — The source operand is moved to the destination
operand

4 — The two operands are exchanged
+ — The operands are added

— — The destination operand is subtracted from the
source operand

* — The operands are multiplied

/— The source operand is divided by the destination
operand

(— Relational test, true if source operand is less than
destination operand

) — Relational test, true if source operand is greater
than destination operand

shifted by — The source operand is shifted or rotated by the
rotated by number of positions specified by the second op-
erand

Notation for single-operand operations:
~(operand) — The operand is logically complemented

(operand)sign-extended — The operand is sign extended; all bits of the upper
portion are made equal to the high-order bit of
the lower portion

(operand)tested — The operand is compared to 0, and the condition
codes are set appropriately

Notation for other operations:

TRAP — Equivalent to Format/Offset Word » (SSP); SSP -2
» SSP; PC » (SSP); SSP—4 » SSP; SR » (SSP);
SSP—2 » SSP; (vector) » PC

STOP — Enter the stopped state; waiting for interrupts

If (condition) then — The condition is tested. If true, the operations
(operations) else after ““then’ are performed. If the condition is
(operations) false and the optional “else” clause is present,
the operations after “else” are performed. If the
condition is false and else is omitted, the instruc-
tion performs no operation. Refer to the descrip-

tion of Bcc instruction as an example.

MOTOROLA CPU32 REFERENCE MANUAL 4-13

4.4.2 Condition Code Register

The condition code register portion of the status register contains five bits:

X — Extend V — Overflow
N — Negative C—Carry
Z—Zero

The last four bits represent a condition of the result of a processor operation.
Table 4-9 lists the effect of each instruction on these bits. The X bit is an
operand for multiprecision computations; when it is used, it is set to the
value of the carry bit. The carry bit and the multiprecision extend bit are
separate in the M68000 Family to simplify programming techniques that use
them. Refer to Table 4-4 as an example.

Program and system control instructions use certain combinations of these
bits to control program and system flow. Table 4-9 lists the combinations of
these bits and their interpretations.

n Table 4-9. Condition Code Computations (Sheet 1 of 2)
Operations X | N z vV]C Special Definition

ABCD ¥t U} ? U ? |C=Decimal Carry
Z=ZARmA...ARO

ADD, ADDI, ADDQ * 1 %)% | 2] 7?]V=SmADmARmMVSmADmARmM
C=SmADmVYRmADmMYVYSmARmM

ADDX * L% 2] 2| 7?2 |v=SmADmARMVYSmADmARm
C=5mADmVRBmADmMYSmARmM
Z=ZARmA...ARO

AND, ANDI, EOR,EORI | — | * | * | 0] 0

MOVEQ, MOVE, OR,
ORI, CLR, EXT, NOT,

TAS, TST

CHK — | *]JuUjJuUuju

CHK2, CMP2 —|luUu|?]Uj?|Z=((R=LBV(=UB)
C=(LB<=UBA(R<LB)VI(R>UB)V

(UB < LB)A(R>UB)A(R<LB)

SUB, SUBI, SUBQ # | % [% | 727 [v=5SmADmARmMYVYSmADmARm
C=SmADmVREmMmADmMYVSmARmM

SUBX # | %[2] 72| ? |v=SmADmARMYVSmADmARm
C=SmADmVRBRmMmADmMYSmARmM
Z=ZARmA...ARO

CMP, CAMPI, CMPM | — | *# | * | 2 | 2 |V =SmADmARmMYSmADmARmM
C=8mADmVRBmADmMYVSmARmM

DIVS, DUVI — | ¥] * | ? 0]V = Division Overflow

MULS, MULU — | * * ? 0 |V = Multiplication Overflow

SBCD, NBCD *{ U 71U ? |C = Decimal Borrow

4-14 CPU32 REFERENCE MANUAL MOTOROLA

Table 4-9. Condition Code Computations (Sheet 2 of 2)

Operations X|N|J]Z}|V]C Special Definition

NEG L I ? ? |V=DmARmM
C = DmVRm

NEGX * | % ? ? ? |V=DmARmM
C = DmVRm _
Z=ZARmA...ARO

ASL * | *) *)1 2] 7 |V=DmADM=1V...VDm-1)VDm A

(DM-1V...+Dm-r)
- C =Dm-r+1

ASL (R=0) — | ¥ | * 0 0

LSL, ROXL * | % | * 0 ? |]C=Dm-r+1

LSR (r=0) — | * | * 0 0

ROXL (r=0) — | * | * 0 ? |IC=X

ROL — | * | * 0 ? |C=Dm-r+1

ROL (r=0) — | * | * 0 0

ASR, LSR, ROXR * | ¥ | ¥ 0 ? |C=Dr-1

ASR, LSR (r=0) — | * | ¥ 0 0

ROXR (r=0) — | * | * 0 ?]C=X

ROR — | ¥ * 0 ? |C=Dr-1

ROR (r=0) — | ¥ * 0 0

NOTE:
— = Not Affected

U = Undefined, Result Meaningless
? = Other — See Special Definition
* = General Case

X=C

N = Rm _

Z=RmA...AR0

MOTOROLA

Sm = Source Operand — Most Significant Bit
Dm = Destination Operand — Most Significant Bit
Rm = Result Operand — Most Significant Bit
R = Register Tested
n = Bit Number
r = Shift Count
LB = Lower Bound
UB = Upper Bound
A = Boolean AND
__V =Boolean OR
Rm = NOT Rm

CPU32 REFERENCE MANUAL

4-15

In the instruction set descriptions, the condition code register is shown as
follows:

X N Z V C
Lrlul=*[uvl]*]
where:
X (extend)
Set to the value of the C bit for many arithmetic operations. Otherwise
not affected or set to a specified result.
N (negative)
Set if the most significant bit of the result is set. Cleared otherwise.
Z (zero)
Set if the result equals zero. Cleared otherwise.
V (overflow)
Set if arithmetic overflow occurs. This implies that the result cannot
be represented in the operand size. Cleared otherwise.
C (carry)
Set if a carry out of the most significant bit of the operands occurs for

an addition. Also set if a borrow occurs in a subtraction. Cleared oth-
erwise.

The following symbols are shown in the square representing each condition
code:
* = Set according to the result of the operation
— = Not affected by the operation
0 = Cleared
= Set
U = Undefined after the operation

CPU32 REFERENCE MANUAL MOTOROLA

4.4.3 Condition Tests

Table 4-10 lists the condition names, encodings, and tests for the condition
branch and set instructions. The test associated with each condition is a
logical formula using the current states of the condition codes. If this formula
evaluates to one, the condition is true. If the formula evaluates to zero, the
condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is currently true.

Table 4-10. Conditional Tests

Mnemonic Condition Encoding Test
T True 0000 1
F* False 0001 0
HI High 0010 CZ
LS Low or Same 0011 C+2Z
CC(HS) Carry Clear 0100 C
CS(LO) Carry Set 0101 C
NE Not Equal 0110 Z
EQ Equal 0111 4
VC Overflow Clear 1000 v
VS Overflow Set 1001 \
PL Plus 1010 N
MI Minus 1011 N
GE Greater or Equal 1100 NeV + NV
LT Less Than 1101 NeV + NV
GT Greater Than 1110 NeVeZ + NeVeZ
LE Less or Equal 111 Z+ NV +NeV

*Not available for the Bcc instruction.

» = Boolean AND
+ = Boolean OR
N = Boolean NOT N

MOTOROLA CPU32 REFERENCE MANUAL 4-17

4.4.4 Instruction Descriptions

Figure 4-2 shows the format of the instruction descriptions. The attributes
line specifies the size of the operands of an instruction. When an instruction
can use operands of more than one size, a suffix is used with the mnemonic
of the instruction:.
.B — Byte operands
W —Word operands
.L—Long-word operands

4-18 CPU32 REFERENCE MANUAL MOTOROLA

INSTRUCTION NAME >
OPERATION DESCRIPTION >
ASSEMBLER SYNTAX FOR THIS INSTRUCTION >

SIZE ATTRIBUTE >

TEXT DESCRIPTION OF INSTRUCTION OPERATION ——————————————>>

CONDITION CODE EFFECTS >

INSTRUCTION FORMAT (THIS SPECIFIES THE BIT PATTERN AND
FIELDS OF THE OPERATION AND COMMAND WORDS, AND ANY
OTHER WORDS THAT ARE ALWAYS PART OF THE
INSTRUCTION. THE EFFECTIVE ADDRESS EXTENSIONS ARE
NOT EXPLICITLY ILLUSTRATED. THE EXTENSION WORDS (IF
ANY) FOLLOW IMMEDIATELY AFTER THE ILLUSTRATED
PORTIONS OF THE INSTRUCTIONS.

MEANINGS AND ALLOWED VALUES (FOR THE VARIOUS ———————— >
FIELDS REQUIRED BY THE INSTRUCTION FORMAT)

Add Decl

ABCD

Operation: Source 10 + Destination +
Syntax: | ABGD layy - (A0
Attributes: Size = (Byte)
Description: Adds the source operation

and stores the result in the destinatiol
decimal arithmetic. The operands,
different ways:

1. Data register to data register:
specified in the instruction.

2. Memory to memory: The oper:
addressing mode using the ad

This operation is a byte operation o

Condition Codes:
X N Z \ C

[eJul Jule-
X Set the same as the carry bit.
N Undefined.
4
Vv
(o]

Cleared if the result is nonzero. Un:
Undefined.
Set if a decimal carry was generat

NOTE

Normally the Z condition code bit i
an operation. This allows success
of multiple-precision operations.

Instruction Format:
15 14 13 12 11 10
[1]1]o]o] ReGSTERRx] 1}
R/MField: 0 =Data Register to Data Register

IfRM =0, Rxand Ry are Data RegFi‘s;ers
IfRM =1, Rxand Ry are Address Registers for th

Instruction Fields:
Re?ister Rx field - Specifies the desti
If RM = 0, specifies a data register
If RM = 1, specifies an address reg

R/M field - Specifies the operand add
0 - the operation is data register to
1 - the operation is memory to me

Re?fister Ry field - Specifies the sour
R/M = 0, specifies a data regis
If R’M = 1, specifies an address

Figure 4-2. Instruction Description Format

MOTOROLA

CPU32 REFERENCE MANUAL

4-19

ABCD Add Decimal with Extend ABCD

Operation: Source1(+ Destination1Q + X # Destination

Assembler ABCD Dy,Dx
Syntax: ABCD —(Ay),—(Ax)

Attributes: Size = (Byte)

Description: Adds the source operand to the destination operand along with the extend
bit, and stores the result in the destination location. The addition is performed using
binary coded decimal arithmetic. The operands, which are packed BCD numbers, can
be addressed in two different ways:

1. Data register to data register: The operands are contained in the data registers

specified in the instruction.
n 2. Memory to memory: The operands are addressed with the predecrement ad-

dressing mode using the address registers specified in the instruction.
This operation is a byte operation only.

Condition Codes:

X N Z Vv C

I I T

Set the same as the carry bit.

Undefined.

Cleared if the result is nonzero. Unchanged otherwise.
Undefined.

Set if a decimal carry was generated. Cleared otherwise.

O<NZX

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 V 1 0
[1 [1 T o] o] mecisttRrx | 1+ [o [o [o] o [mm] recisTERRy |

R/M Field: 0=Data Register to Data Register 1=Memory to Memory

If R/M =0, Rx and Ry are Data Registers
If R"’M =1, Rx and Ry are Address Registers for the Predecrement Addressing Mode

4-20 CPU32 REFERENCE MANUAL MOTOROLA

ABCD Add Decimal with Extend ABCD

Instruction Fields:
Register Rx field — Specifies the destination register:
If R’'M = 0, specifies a data register
If R’/M = 1, specifies an address register for the predecrement addressing mode

R/M field — Specifies the operand addressing mode:
0 — the operation is data register to data register
1 — the operation is memory to memory

Register Ry field — Specifies the source register:
If R'M = 0, specifies a data register
Iif R'M = 1, specifies an address register for the predecrement addressing mode

MOTOROLA CPU32 REFERENCE MANUAL 4-21

ADD Add ADD

Operation: Source + Destination » Destination

Assembler ADD (ea),Dn
Syntax: ADD Dn, (ea)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand using binary addition,
and stores the result in the destination location. The size of the operation may be
specified as byte, word, or long. The mode of the instruction indicates which operand

is the source and which is the destination as well as the operand size.

Condition Codes:

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

O< NZ2ZX

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 1 REGISTER OPMODE

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:
Byte Word Long Operation

000 001 010 (ea)+(Dn) #» (n)
100 101 110 (Dn)+(ea) » (ea)

4-22 CPU32 REFERENCE MANUAL MOTOROLA

ADD ADD

Add

Effective Address Field — Determines addressing mode:
a. If the location specified is a source operand, all addressing modes are allowed

as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 111 000
An* 001 reg. number:An (xxx).L 1M 001
(An) 010 reg. number:An #(data) 111 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) M 01
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m o1

*Word and Long Only

b. If the location specified is a destination operand, only memory alterable address-
ing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W 11 000
An — —_ (xxx).L 1M1 001
(An) 010 reg. number:An #(data) —_— —_
(An) + 01 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —_
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) —_ —_

NOTES:
1. The Dn mode is used when the destination is a data register; the destination (ea)
mode is invalid for a data register.
2. ADDA is used when the destination is an address register. ADDI and ADDQ are
used when the source is immediate data. Most assemblers automatically make
this distinction.

MOTOROLA CPU32 REFERENCE MANUAL 4-23

ADDA Add Address ADDA

Operation: Source + Destination #» Destination
Assembler
Syntax: ADDA (ea), An

Attributes: Size = (Word, Long)

Description: Adds the source operand to the destination address register, and stores
the result in the address register. The size of the operation may be specified as word
or long. The entire destination address register is used regardless of the operation
size. -

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 1 REGISTER OPMODE

Instruction Fields:
Register field — Specifies any of the eight address registers. This is always the des-
tination.
Opmode field — Specifies the size of the operation:
011 — Word operation. The source operand is sign-extended to a long operand and
the operation is performed on the address register using all 32 bits.
111 — Long operation.
Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W 11 000

An 001 reg. number:An (xxx).L m 001

(An) 010 reg. number:An #(data) m 100
(An)+ on reg. number:An
—(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) m 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

4-24 CPU32 REFERENCE MANUAL MOTOROLA

ADDI Add Immediate ADDI

Operation: Immediate Data+ Destination » Destination
Assembler
Syntax: ADDI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Adds the immediate data to the destination operand, and stores the result
in the destination location. The size of the operation may be specified as byte, word,
or long. The size of the immediate data matches the operation size.

Condition Codes:

C T 1] n

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.

O<NZX

Instruction Format:

% W 18 12 m 1 9 8§ 71 6 5 4 3 2 1 0
ool olol ol T T S EFFECTIVE ADDRESS
MODE | ReGISTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-25

ADDI

Add Immediate

Effective Address field — Specifies the destination operand.

Only data alterable addressing modes are allowed as shown:

ADDI

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 111 001
(An) 010 reg. number:An #(data) — —

(An) + [reg. number:An

- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) _ —_

If size
If size
If size

CPU32 REFERENCE MANUAL

Immediate field — (Data immediately following the instruction):
00, the data is the low-order byte of the immediate word.
01, the data is the entire immediate word.

10, the data is the next two immediate words.

MOTOROLA

ADDQ Add Quick ADDQ

Operation: Immediate Data + Destination » Destination
Assembler
Syntax: ADDQ #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Adds an immediate value of one to eight to the operand at the destination
location. The size of the operation may be specified as byte, word, or long. Word and
long operations are also allowed on the address registers. When adding to address
registers, the condition codes are not altered, and the entire destination address reg-
ister is used regardless of the operation size.

Condition Codes:

B
B
B
B
—J

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow occurs. Cleared otherwise.
Set if a carry occurs. Cleared otherwise.

O<NZ2zZX

The condition codes are not affected when the destination is an address register.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 DATA 0 SIZE EFFECTIVE ADDRESS
MODE | ReGISTER

Instruction Fields:
Data field — Three bits of immediate data, 7-0 (with the immediate value 0 representing
a value of 8).
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-27

ADDQ

4-28

Add Quick

Effective Address field — Specifies the destination location.
Only alterable addressing modes are allowed as shown:

ADDQ

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An* 001 reg. number:An (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) —_ -
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) — -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) _ —_

*Word and Long Only

CPU32 REFERENCE MANUAL

MOTOROLA

ADDX Add Extended ADDX

Operation: Source + Destination + X » Destination

Assembler ADDX Dy,Dx
Syntax: ADDX —(Ay), - (Ax)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand along with the extend
bit and stores the result in the destination location. The operands can be addressed
in two different ways:

1. Data register to data register: The data registers specnfled in the instruction con-
tain the operands.
2. Memory to memory: The address registers specified in the instruction address
the operands using the predecrement addressing mode.
The size of the operation can be specified as byte, word, or long.

Condition Codes:

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Cleared if the result is nonzero. Unchanged otherwise.
Set if an overflow occurs. Cleared otherwise.

Set if a carry is generated. Cleared otherwise.

NOTE
Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

O<NZ2ZX

Instruction Format:

5 14 1 12 un 1 9 8 7 6 5 4 3 2 1 0
[+ T v T o[1] measteRRe | 1 | sizE]| o | o | RM]| REGISTER Ry

MOTOROLA CPU32 REFERENCE MANUAL 4-29

ADDX Add Extended AD DX

Instruction Fields:
Register Rx field — Specifies the destination register:
If R'M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing mode.
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
R/M field — Specifies the operand address mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.
Register Ry field — Specifies the source register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing mode.

4-30 CPU32 REFERENCE MANUAL MOTOROLA

AND AND Logical AND

Operation: SourceADestination » Destination

Assembler AND (ea),Dn
Syntax: AND Dn,(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The contents of an address register may not be

used as an operand.

Condition Codes:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 0 0 REGISTER OPMODE

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:
Byte Word Long Operation

000 001 010 ({(ea))A((Dn)) » Dn
100 101 110 ((Dn))A((ea)) » ea

MOTOROLA CPU32 REFERENCE MANUAL 4-31

AN D AND Logical AN D

Effective Address field — Determines addressing mode:
If the location specified is a source operand only data addressing modes are allowed

as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1M1 000
An — —_ (xxx).L 1 001
(An) 010 reg. number:An #(data) 111 100
(An) + 011 reg. number:An

—(An) 100 reg. number:An)
(d16,An) 101 reg. number:An (d16,PC) 1M 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) MM on

If the location specified is a destination operand only memory alterable addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn —_ —_ (xxx).W MM 000
An — — {xxx).L 11 001
(An) 010 reg. number:An #(data) —_ -

(An)+ 011 reg. number:An

—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — -
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —_
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

NOTES:

1. The Dn mode is used when the destination is a data register; the destination
(ea) mode is invalid for a data register.
2. Most assemblers use ANDI when the source is immediate data.

4-32 CPU32 REFERENCE MANUAL MOTOROLA

AND' AND Immediate AND'

Operation: Immediate DataADestination # Destination
Assembler
Syntax: ANDI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The size of the immediate data matches the
operation size.

Condition Codes:

L
X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Instruction Format:

%5 14 13 12 n w0 9§ 8 71 & 5 4 3 2 1 0
EFFECTIVE ADDRESS
oo oo oo o SizE MODE | RecisTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-33

ANDI ANDI

AND Immediate

Effective Address field — Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

4-34

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1M 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

I

If size
If size

CPU32 REFERENCE MANUAL

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
01, the data is the entire immediate word.

10, the data is the next two immediate words.

MOTOROLA

ANDI ANDI
to CCR AND Immediate to Condition Codes to CCR

Operation: SourceACCR » CCR

Assembler
Syntax: ANDI #(data),CCR

Attributes: Size = (Byte)

Description: Performs an AND operation of the immediate operand with the condition
codes and stores the result in the low-order byte of the status register.

Condition Codes:
X z v c
[- [~ [[~]

Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

N
I *

O<NZzZX

Instruction Format:

5 14 13 12 un w § 8 1 6 5 4 3 2 1 0
0o [ol ol ol ol ol it ToTlo ol v T a Tl 1Tolo
0o JoJoJlololoJol o BYTE DATA (8 BITS)

MOTOROLA CPU32 REFERENCE MANUAL 4-35

ANDI ANDI
tO SR AND Immediate to the Status Register tO SR

(Privileged Instruction)

Operation: If supervisor state
then SourceASR » SR
else TRAP
Assembler
Syntax: ANDI #(data),SR
Attributes:
Size = (Word)

Description: Performs an AND operation of the immediate operand with the contents
of the status register and stores the result in the status register. All implemented bits
of the status register are affected.

Condition Codes:
X N z v c

Ll -1-1T-7T"1

Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

O<NZX

Instruction Format:

5 14 18 12 n w0 9 8 1 6 5 4 3 2 1 0
0o JoJ ol ol ool v JTolol v T T vl 1]ToTlo
WORD DATA (16 BITS)

4-36 CPU32 REFERENCE MANUAL MOTOROLA

AS L, ASR Arithmetic Shift AS L, ASR

Operation: Destination Shifted by (count) » Destination

Assembler ASd Dx,Dy
Syntax: ASd #(data),Dy
ASd (ea)
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Arithmetically shifts the bits of the operand in the direction (L or R) spec-
ified. The carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two different ways:

1. Immediate — The shift count is specified in the instruction (shift range, 8-1).

2. Register — The shift count is the value in the data register specified in instruction
modulo 64.

The size of the operation can be specified as byte, word, or long. An operand in memory
can be shifted one bit only, and the operand size is restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros
are shifted into the low-order bit. The overflow bit indicates if any sign changes occur
during the shift.

—— OPERAND f«—— o0 |

ASL:

L

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign-
bit (MSB) is shifted into the high-order bit.

—>{ mse | operanp | —

ASR:

MOTOROLA CPU32 REFERENCE MANUAL 4-37

ASL, ASR Arithmetic Shift ASL, ASR

Condition Codes:

X Set according to the last bit shifted out of the operand. Unaffected for a shift count
of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the resuit is zero. Cleared otherwise.

V Set if the most significant bit is changed at any time during the shift operation.
Cleared otherwise.

C Set according to the last bit shifted out of the operand. Cleared for a shift count

of zero.
u Instruction Format (Register Shifts):
%5 1“4 1B 12 u 1w 98 & 7 6 5 4 3 2 1 0
Lt T v T v [o] countmesisTeR | or | sz [ir [o | o | REGISTER

Instruction Fields (Register Shifts):
Count/Register field — Specifies shift count or register that contains the shift count:
If i’/r = 0, this field contains the shift count. The values one to seven represent counts
of one to seven; value of zero represents a count of eight.
If i/r = 1, this field specifies the data register that contains the shift count (modulo
64).
dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
i/r field:
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.
Register field — Specifies a data register to be shifted.

4-38 CPU32 REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift ASL, ASR

Instruction Format (Memory Shifts):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left
Effective Address field — Specifies the operand to be shifted.
Only memory alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) —_ —
(An) + on reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) —_ —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

MOTOROLA CPU32 REFERENCE MANUAL 4-39

BCC Branch Conditionally BCC

Operation: If (condition true) then PC+d » PC
Assembler
Syntax: Bcc (label)

Attributes: Size = (Byte, Word, Long)

Description: If the specified condition is true, program execution continues at location
(PC) +displacement. The PC contains the address of the instruction word of the Bcc
instruction plus two. The displacement is a twos complement integer that represents
the relative distance in bytes from the current PC to the destination PC. If the 8-bit
displacement field in the instruction word is zero, a 16-bit displacement (the word
immediately following the instruction) is used. If the 8-bit displacement field in the
instruction word is all ones ($FF), the 32-bit displacement (long word immediately
following the instruction) is used. Condition code cc specifies one of the following

conditions:

CC carry clear 0100 C LS low or same 0011 C+Z _

CS carry set 0101 C LT less than 1101 NeV+NeV

EQ equal 0111 Z o Ml minus 1011 N

GE greater orequal 1100 NeV+NeV NE not equal 0110 Z

GT greater than 1110 NeVeZ + NeVeZ PL plus 1010 N

HI high 0010 Cz _ _ VC overflow clear 1000 V

LE less or equal 1111 Z+NeV+ NV VS overflow set 1001 V
Condition Codes:

Not affected.
Instruction Format:

B W13 12 m 10 9 8 7 6 5 4 3 2 1 0

o [1 [v [o] CONDITION 8-BIT DISPLACEMENT
16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00
32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = S$FF

4-40 CPU32 REFERENCE MANUAL MOTOROLA

Bcc Branch Conditionally BCC

Instruction Fields:

Condition field — The binary code for one of the conditions listed in the table.

8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the con-
dition is met.

16-Bit Displacement field — Used for the displacement when the 8-bit displacement
field contains $00.

32-Bit Displacement field — Used for the displacement when the 8-bit displacement
field contains $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MOTOROLA CPU32 REFERENCE MANUAL 4-41

BCHG

Operation:

Assembler

Syntax:

Attributes:

Descript

ion:

~((number) of Destination) » Z;

Test a Bit and Change

BCHG

~((number) of Destination) # (bit number) of Destination

BCHG Dn,(ea)

BCHG #(data),(ea)

Size = (Byte, Long)

Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then inverts the specified bit in the destination. When the destination is
a data register, any of the 32 bits can be specified by the modulo 32-bit number. When
the destination is a memory location, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation may be specified in either of two ways:

1. Immediate — The bit number is specified in a second word of the instruction.

2. Register — The specified data register contains the bit number.

Condition Codes:

N

z

v

C

]

-l - 1-1-]

O<NZX

Not affected.
Not affected.

Not affected.
Not affected.

Set if the bit tested is zero. Cleared otherwise.

Instruction Format (Bit Number Dynamic, specified in a register):

15

14

13

12

il

10

9

8

7

6

5

4 3 2

1 0

0

0

0

0

REGISTER

1

0

1

EFFECTIVE ADDRESS

MODE REGISTER

4-42

CPU32 REFERENCE MANUAL

MOTOROLA

BCHG

Test a Bit and Change

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.
Only data alterable ad-

Effective Address field — Specifies the destination location.

dressing modes are allowed as shown:

BCHG

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —_
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
*Long only; all others are byte only.
Instruction Format (Bit Number Static, specified as immediate data):
15 14 13 12 n 10° 9 8 7 6 5 4 3 1 0
0 0 0 0 1 0 0 0 0 1 EFFECTIVE ADDRESS
MODE REGISTER
0 0 0 0 0 0 0 0 BIT NUMBER
Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 11 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
- (An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

Bit Number field — Specifies the bit number.

*Long only; all others are byte only.

MOTOROLA

CPU32 REFERENCE MANUAL

4-43

BCLR

Operation:

Assembler
Syntax:

Attributes:

Description:

~((bit number) of Destination) » Z;
0 » {bit number) of Destination

BCLR Dn,{ea)

Test a Bit and Clear

BCLR #(data),(ea)

Size = (Byte, Long)

BCLR

Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then clears the specified bit in the destination. When a data register is the
destination, any of the 32 bits can be specified by a modulo 32-bit number. When a
memory location is the destination, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate — The bit number is specified in a second word of the instruction.

2. Register — The specified data register contains the bit number.

Condition Codes:

Not affected.
Not affected.

Set if the bit tested is zero. Cleared otherwise.

Not affected.
Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

4-44

15

14

13

12

"

10

9

8

7

6

5

4 3 2

1 0

0

0

0

0

REGISTER

1

1

0

EFFECTIVE ADDRESS
MODE |

REGISTER

CPU32 REFERENCE MANUAL

MOTOROLA

BCLR

Test a Bit and Clear

Instruction Fields (Bit Number Dynamic):

Register field — Specifies the data register that contains the bit number.

Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

BCLR

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W 111 000
An — — (xxx).L 1M 001
(An) 010 reg. number:An #(data) - —_
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — -
*Long only; all others are byte only.
Instruction Format (Bit Number Static, specified as immediate data):
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 0 EFFECTIVE ADDRESS
MODE | REGISTER
0 0 0 0 0 0 0 0 BIT NUMBER
Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location.
Only data alterable addressing modes are allowed as shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W 1 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
*Long only; all others are byte only.
Bit Number field — Specifies the bit number.
MOTOROLA CPU32 REFERENCE MANUAL 4-45

BG N D Enter Background Mode BG N D

Operation: IF (background mode enabled) THEN
Enter Background Mode
ELSE
Format/Vector offset » —(SSP)
PC » —(SSP)
SR » —(SSP)
(Vector) » PC
Assembler
Syntax: BGND
Atributes: Size =(Unsized)

Description: The processor suspends instruction execution and enters background mode
(if enabled). The freeze output is asserted to acknowledge entrance into background
mode. Upon exiting background mode, instruction execution continues with the in-
struction pointed to by the current program counter.

If background mode is not enabled, the processor initiates illegal instruction exception
processing. The vector number is generated to reference the illegal instruction ex-
ception vector. Background mode is covered in SECTION 7 DEVELOPMENT SUPPORT.

Condition Codes:

e

Not affected
Not affected
Not affected
Not affected
Not affected

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

Lol v JoJolrTol v ol v [T 1] vTol1Tol]

4-46 CPU32 REFERENCE MANUAL MOTOROLA

BKPT Breakpoint B KPT

Operation: Run breakpoint acknowledge cycle
If acknowledged
then execute returned operation word
else TRAP as illegal instruction

Assembler
Syntax: BKPT #(data)
Attributes: Unsized

Description: Executes a breakpoint acknowledge bus cycle with the immediate data
(value 0-7) on bits 2-4 of the address bus and zeros on bits 0 and 1 of the address
bus.

The breakpoint acknowledge cycle accesses the CPU space, addressing type 0, and
provides the breakpoint number specified by the instruction on address lines A4-A2,

If the external hardware terminates the cycle with DSACKxs the data on the bus (an
instruction word) is inserted into the instruction pipe and is executed after the break-
point instruction. The breakpoint instruction requires a word to be transferred so if
the first bus cycle accesses an 8-bit port, a second cycle is required. If the external
logic terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction word
available) the processor takes an illegal instruction exception. Refer to 7.2.5 Software
Breakpoints for details of breakpoint operation.

This instruction supports breakpoints for debug monitors and real-time hardware
emulators. The exact operation performed by the instruction is implementation-
dependent. Typically, this instruction replaces an instruction in a program; that in-
struction is returned by the breakpoint acknowledge cycle.

Condition Codes:
Not affected.
Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

[o [v T ol ol 1 ToJololo[1T ool 1] vecros |

Instruction Fields:
Vector field — Contains the immediate data, a value in the range of 0-7. This is the
breakpoint number.

MOTOROLA CPU32 REFERENCE MANUAL 4-47

BRA Branch Always BRA

Operation: PC+d» PC

Assembler
Syntax: BRA (label)

Attributes: Size = (Byte, Word, Long)

Description: Program execution continues at location (PC) + displacement. The PC con-
tains the address of the instruction word of the BRA instruction plus two. The dis-
placement is a twos complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field in the instruc-
tion word is zero, a 16-bit displacement (the word immediately following the instruc-
tion) is used. If the 8-bit displacement field in the instruction word is all ones ($FF),
the 32-bit displacement (long word immediately following the instruction) is used.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

o [v [1T ol ol ol o] o] 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00
32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Fields:
8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.
16-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $00.
32-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

4-48 CPU32 REFERENCE MANUAL MOTOROLA

BS ET Test a Bit and Set BS ET

Operation: ~((bit number) of Destination) » Z;
1 # (bit number) of Destination

Assembler BSET Dn,({ea)
Syntax: BSET #(data),(ea)

Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. Then sets the specified bit in the destination operand. When a data register
is the destination, any of the 32 bits can be specified by a modulo 32-bit number.
When a memory location is the destination, the operation is a byte operation, and the
bit number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate — The bit number is specified in the second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

Not affected.
Not affected.
Set if the bit tested is zero. Cleared otherwise.
Not affected.
Not affected.

O<NZZX

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

0 0 0 0 REGISTER 1 1 1

MOTOROLA CPU32 REFERENCE MANUAL 4-49

BSET

Test a Bit and Set

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.

Effective Address field — Specifies the destination location. Only data alterable ad-

dressing modes are allowed as shown:

BSET

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An — - (xxx).L 111 001
(An) 010 reg. number:An #(data) — —_
(An)+ 01 reg. number:An
~(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — -
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
*Long only; all others are byte only.
Instruction Format (Bit Number Static, specified as immediate data):
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
0 0 o 0 : 0 0 0 . . EFFECTIVE ADDRESS
MODE | REGISTER
0 0 0 0 0 0 0 BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

4-50

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn* 000 reg. number:Dn {xxx).W M 000
An —_— — (xxx).L m 001
(An) 010 reg. number:An #(data) — —

(An)+ 011 reg. number:An

—-(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) —_ —_
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) — —

*Long only; all others are byte only.
Bit Number field — Specifies the bit number.
CPU32 REFERENCE MANUAL MOTOROLA

BS R Branch to Subroutine BS R

Operation: SP—4 9 SP; PC» (SP); PC+d » PC

Assembler
Syntax: BSR (label)

Attributes: Size = (Byte, Word, Long)

Description: Pushes the long word address of the instruction immediately following the
BSR instruction onto the system stack. The PC contains the address of the instruction
word plus two. Program execution then continues at location (PC) +displacement. The
displacement is a twos complement integer that represents the relative distance in
bytes from the current PC to the destination PC. If the 8-bit displacement field in the
instruction word is zero, a 16-bit displacement (the word immediately following the
instruction) is used. If the 8-bit displacement field in the instruction word is all ones
($FF), the 32-bit displacement {long word immediately following the instruction) is
used.

Condition Codes:
Not affected.

Instruction Format:

5 W4 138 12 1 1 9 8 7 & 5 4 3 2 1 0
o i T v T ol ol olo] 1] 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Fields:
8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.
16-Bit Displacement field -- Used for a larger displacement when the 8-bit displacement
is equal to $00.
32-Bit Displacement field — Used for a larger displacement when the 8-bit displace-
ment is equal to $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MOTOROLA CPU32 REFERENCE MANUAL 4-51

BTST

Operation:

Assembler BTST Dnea)
Syntax: BTST #(data),(ea)
Attributes: Size = (Byte, Long)

Test a Bit

—({bit number) of Destination) » Z;

BTST

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. When a data register is the destination, any of the 32 bits can be specified
by a modulo 32 bit number. When a memory location is the destination, the operation
is a byte operation, and the bit number is modulo 8. In all cases, bit zero refers to the
least significant bit. The bit number for this operation can be specified in either of two

ways:

1. Immediate — The bit number is specified in a second word of the instruction.
2. Register — The specified data register contains the bit number.

Condition Codes:

Not affected.
Not affected.

Not affected.

X
N
Z Set if the bit tested is zero. Cleared otherwise.
\Y
C

Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

5 4 13 12 1 w0 9 8 71 6 5 4 3 2 1 0
ool ol REGISTER 1l T EFFECTIVE ADDRESS
MODE | RecisTER
4-52 CPU32 REFERENCE MIANUAL MOTOROLA

BTST BTST

Test a Bit

Instruction Fields (Bit Number Dynamic):
Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn* 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 1M 001
(An) 010 reg. number:An #(data) mm 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1M1 011

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 " 10 9 8 17 6 5 4 3 2 1

ol o lol ol Toalololols EFFECTIVE ADDRESS
MODE | REGISTER

BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field — Specifies the destination location. Only data addressing
modes are allowed as shown:

Bit Number field — Specifies the bit number.

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
-(An) 100 reg. number:An
(d1g.An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1M1 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

MOTOROLA

CPU32 REFERENCE MANUAL

4-53

CH K Check Register Against Bounds C H K

Operation: If Dn < 0 or Dn > Source then TRAP
Assembler
Syntax: CHK (ea),Dn

Attributes: Size = (Word, Long)

Description: Compares the value in the data register specified in the instruction to zero
and to the upper bound (effective address operand). The upper bound is a twos
complement integer. If the register value is less than zero or greater than the upper
bound, a CHK instruction exception, vector number 6, occurs.

Condition Codes:

|
<IN
(=

Not affected.

Set if Dn < 0; cleared if Dn > effective address operand. Undefined otherwise.
Undefined.

Undefined.

Undefined.

O<NZX

Instruction Format:

15 14 13 12 " 10 9 8 1 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | recisTER

0 1 0 0 REGISTER SIZE 0

Instruction Fields:
Register field — Specifies the data register that contains the value to be checked.
Size field — Specifies the size of the operation.
11 — Word operation.
10 — Long operation.

4-54 CPU32 REFERENCE MANUAL MOTOROLA

CH K Check Register Against Bounds CH K

Effective Address field — Specifies the upper bound operand. Only data addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — {xxx).L 111 001
(An) 010 reg. number:An #(data) mm 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) M o1
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

MOTOROLA CPU32 REFERENCE MANUAL 4-55

CH K2 Check Register Against Bounds CH K2

Operation: If Rn < lower bound or
Rn > upper bound
then TRAP
Assembler
Syntax: CHK2 (ea),Rn

Attributes: Size = (Byte, Word, Long)

Description: Compares the value in Rn to each bound. The effective address contains
the bounds pair: the lower bound followed by the upper bound. For signed compar-
isons, the arithmetically smaller value should be used as the lower bound. For unsigned
comparisons, the logically smaller value should be the lower bound.

The size of the data and the bounds can be specified as byte, word, or long. If Rn is
a data register and the operation size is byte or word, only the appropriate low-order
part of Rn is checked. If Rn is an address register and the operation size is byte or
word, the bounds operands are sign-extended to 32 bits and the resultant operands
are compared to the full 32 bits of An.

If the upper bound equals the lower bound, the valid range is a single value. If the
register value is less than the lower bound or greater than the upper bound, a CHK
instruction exception, vector number 6, occurs.

Condition Codes:

X N z c

-l l-Tul~]

X Not affected.

N Undefined.

Z Set if Rn is equal to either bound. Cleared otherwise.
V Undefined.

C

Set if Rn is out of bounds. Cleared otherwise.

4-56 CPU32 REFERENCE MANUAL MOTOROLA

CHK2 CHK2

Check Register Against Bounds

Instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

o 00| 0|0 SIzZe o | 1 1 EFFECTIVE ADDRESS
MODE REGISTER
D/A REGISTER 1 0] o 0 0 0 " To 0 o]0 |0

Instruction Fields:
Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation
Effective Address field — Specifies the location of the bounds operands. Only control
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W 11 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + — —
—(An) — -
(d1g,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

D/A field — Specifies whether an address register or data register is to be checked.
0 — Data register.
1 — Address register.

Register field — Specifies the address or data register that contains the value to be
checked.

MOTOROLA CPU32 REFERENCE MANUAL 4-57

CLR Clear an Operand CLR

Operation: 0 » Destination
Assembler
Syntax: CLR (ea)

Attributes: Size = (Byte, Word, Long)

Description: Clears the destination operand to zero. The size of the operation may be
specified as byte, word, or long.

Condition Codes:

Not affected.
Always cleared.
Always set.
Always cleared.
Always cleared.

O<NZ2zZX

Instruction Format:

15 14 13 12 " 10 9 8 17 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

0 1 0 0 0 0 1 0 SIZE

Instruction Fields:
Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

4-58 CPU32 REFERENCE MANUAL MOTOROLA

CLR Clear an Operand CLR

Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 111 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + on reg. number:An
-(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

MOTOROLA CPU32 REFERENCE MANUAL 4-59

CMP Compare CMP

Operation: Destination — Source » cc
Assembler
Syntax: CMP (ea), Dn

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination data register and sets
the condition codes according to the result; the data register is not changed. The size
of the operation can be byte, word, or long.

Condition Codes:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow occurs. Cleared otherwise.
Set if a borrow occurs. Cleared otherwise.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 0 1 1 REGISTER O0PMODE

Instruction Fields:
Register field — Specifies the destination data register.
Opmode field:

Byte Word Long Operation
000 001 010 ((Dn))—({ea))

4-60 CPU32 REFERENCE MANUAL MOTOROLA

CMP CMP

Compare

Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An* 001 reg. number:An (xxx).L m 001
(An) 010 reg. number.An #(data) 111 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1M 011

*Word and Long only.

NOTE

CMPA is used when the destination is an address register. CMPI is used when
the source is immediate data. CMPM is used for memory-to-memory com-
pares. Most assemblers automatically make the distinction.

MOTOROLA CPU32 REFERENCE MANUAL 4-61

CM P A Compare Address C M PA

Operation: Destination — Source
Assembler
Syntax: CMPA (ea), An

Attributes: Size = (Word, Long)

Description: Subtracts the source operand from the destination address register and
sets the condition codes according to the result; the address register is not changed.
The size of the operation can be specified as word or long. Word length source op-
erands are sign extended to 32-bits for comparison.

Condition Codes:

X Not affected.

N Set if the result is negative. Cleared otherwise.

Z Set if the result is zero. Cleared otherwise.

V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 n 10 9 8 1 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | RecISTER

1 0 1 1 REGISTER OPMODE

Instruction Fields:
Register field — Specifies the destination address register.
Opmode field — Specifies the size of the operation:
011 — Word operation. The source operand is sign-extended to a long operand and
the operation is performed on the address register using all 32 bits.
111 — Long operation.

4-62 CPU32 REFERENCE MANUAL MOTOROLA

CM P A Compare Address C M PA

Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode | Mode Register Addressing Mode Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An 001 reg. number:An (xxx).L m 001
(An) 010 reg. number:An #(data) 111 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An {d16.PC) 111 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 11 011

MOTOROLA CPU32 REFERENCE MANUAL 4-63

CMPI Compare Immediate CMPI

Operation: Destination — Immediate Data
Assembler
Syntax: CMPI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the immediate data from the destination operand and sets the
condition codes according to the result; the destination location is not changed. The
size of the operation may be specified as byte, word, or long. The size of the immediate
data matches the operation size.

Condition Codes:

I B R I

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow occurs. Cleared otherwise.
Set if a borrow occurs. Cleared otherwise.

O<NZzX

Instruction Format:

15 14 13 12 il 10 9 8 1 6 5 4 3 2 1 0
0 0 0 0 1 1 0 0 SIZE EFFECTIVE ADDRESS
MODE REGISTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

4-64 CPU32 REFERENCE MANUAL MOTOROLA

CMPI

Compare Immediate

CMPI

Effective Address field — Specifies the destination operand. Only data addressing
modes, except immediate are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) —_ —_
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) 11 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1M 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m on
Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.
MOTOROLA CPU32 REFERENCE MANUAL 4-65

CM PM Compare Memory CM PM

Operation: Destination — Source » cc
Assembler
Syntax: CMPM (Ay) + ,(Ax) +

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination operand and sets the
condition codes according to the results; the destination location is not changed. The
operands are always addressed with the postincrement addressing mode, using the
address registers specified in the instruction. The size of the operation may be specified
as byte, word, or long.

Condition Codes:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.

O<NZX

Instruction Format:

5 4 13 12 1 w0 9 8 7 6 5 4 3 2 1 0
Lo [ol + T v wmeeisTeRAx, | 1 | sze [o | o [1 | REGISTERAY]

Instruction Fields:

Register Ax field — (always the destination). Specifies an address register in the
postincrement addressing mode.

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

Register Ay field — (always the source). Specifies an address register in the postin-
crement addressing mode.

4-66 CPU32 REFERENCE MANUAL MOTOROLA

CM P2 Compare Register Against Bounds CM PZ

Operation: Compare Rn < lower-bound or
Rn > upper-bound
and Set Condition Codes

Assembler
Syntax: CMP2 (ea),Rn

Attributes: Size = (Byte, Word, Long)

Description: Compares the value in Rn to each bound. The effective address contains
the bounds pair: the lower bound followed by the upper bound. For signed compar-
isons, the arithmetically smaller value should be used as the lower bound. For unsigned
comparisons, the logically smaller value should be the lower bound.

The size of the data and the bounds can be specified as byte, word, or long. If Rn is
a data register and the operation size is byte or word, only the appropriate low-order
part of Rn is checked. If Rn is an address register and the operation size is byte or
word, the bounds operands are sign-extended to 32 bits and the resultant operands
are compared to the full 32 bits of An.

If the upper bound equals the lower bound, the valid range is a single value.

NOTE

This instruction is identical to CHK2 except that it sets condition codes rather
than taking an exception when the value in Rn is out of bounds.

Condition Codes:

Not affected.

Undefined.

Set if Rn is equal to either bound. Cleared otherwise.
Undefined.

Set if Rn is out of bounds. Cleared otherwise.

O<NZX

MOTOROLA CPU32 REFERENCE MANUAL 4-67

CMP2

Instruction Fields:

4-68

Size field — Specifies the size of the operation.

Compare Register Against Bounds

00 — Byte operation
01 — Word operation
10 — Long operation
Effective Address field — Specifies the location of the bounds pair. Only control ad-
dressing modes are allowed as shown:

CMP2

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + — —
—(An) — —
(d16,An) 101 reg. number:An (d16,PC) MM 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m on
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m oM

D/A field — Specifies whether an address register or data register is compared.

0 — Data register.

1 — Address register.
Register field — Specifies the address or data register that contains the value to be

checked.

CPU32 REFERENCE MANUAL

MOTOROLA

D Bcc Test Condition, Decrement, and Branch D BCC

Operation: If condition false then (Dn —1 » Dn;
If Dn # —1 then PC+d » PC)

Assembler

Syntax: DBcc Dn,{label)

Attributes: Size = (Word)

Description: Controls a loop of instructions. The parameters are: a condition code, a
data register (counter), and a displacement value. The instruction first tests the con-
dition (for termination); if it is true, no operation is performed. If the termination
condition is not true, the low-order 16 bits of the counter data register are decremented
by one. If the result is — 1, execution continues with the next instruction. If the result
is not equal to — 1, execution continues at the location indicated by the current value
of the PC plus the sign-extended 16-bit displacement. The value in the PC is the address
of the instruction word of the DBcc instruction plus two. The displacement is a twos
complement integer that represents the relative distance in bytes from the current PC
to the destination PC.

Condition code cc specifies one of the following conditions:

CC carry clear 0100 C LS low or same 0011 C+Z _
CS carry set 0101 C LT less than 11017 NeV+NeV
EQ equal 0111 2 Ml minus 1011 N
F never equal 0001 0 _ NE not equal 0110 Z
GE greater or equal 1100 NeV+NeV PL plus 1010 N
GT greater than 1110 NeVeZ + NeVeZ T always true 0000 1
HI high 0010 Cz _ _ VC overflow clear 1000 V
LE less or equal 1111 Z+NeV+NV VS overflow set 1001 V
Condition Codes:
Not affected.
Instruction Format:
5 ¥ 13 12 1 1 9 8 7 6 5 4 3 2 1 0
o [1 [o] 1] CONDITION v] vl o[o] 1] recistr

DISPLACEMENT (16 BITS)

MOTOROLA CPU32 REFERENCE MANUAL 4-69

DBCC Test Condition, Decrement, and Branch DBCC

Instruction Fields:
Condition field — The binary code for one of the conditions listed in the table.
Register field — Specifies the data register used as the counter.
Displacement field — Specifies the number of bytes to branch.

NOTES:

1. The terminating condition is similar to the UNTIL loop clauses of high-level languages.
For example: DBMI can be stated as “decrement and branch until minus”.

2. Most assemblers accept DBRA for DBF for use when only a count terminates the loop
(no condition is tested).

3. A program can enter a loop at the beginning or by branching to the trailing DBcc
instruction. Entering the loop at the beginning is useful for indexed addressing modes
and dynamically specified bit operations. In this case, the control index count must
be one less than the desired number of loop executions. However, when entering a
loop by branching directly to the trailing DBcc instruction, the control count should
equal the loop execution count. In this case, if a zero count occurs, the DBcc instruction
does not branch, and the main loop is not executed.

4-70 CPU32 REFERENCE MANUAL MOTOROLA

DIVS DIVS
DlVSL Signed Divide DIVSL

Operation: Destination/Source #» Destination

Assembler DIVS.W (ea),Dn 32/16 » 16r:16q

Syntax: DIVS.L (ea),Dq 32/32 » 32g
DIVS.L (ea),Dr:Dq 64/32 » 32r:32q
DIVSL.L (ea),Dr:Dg 32/32 » 32r:32q

Attributes: Size = (Word, Long)

Description: Divides the signed destination operand by the signed source operand and
stores the signed result in the destination. The instruction uses one of four forms. The
word form of the instruction divides a long word by a word. The result is a quotient
in the lower word (least significant 16 bits) and the remainder is in the upper word
(most significant 16 bits) of the result. The sign of the remainder is the same as the
sign of the dividend.

The first long form divides a long word by a long word. The result is a long quotient;
the remainder is discarded.

The second long form divides a quad word (in any two data registers) by a long word.
The result is a long word quotient and a long word remainder.

The third long form divides a long word by a long word. The result is a long word
quotient and a long word remainder.

Two special conditions may arise during the operation:
1. Division by zero causes a trap.
2. Overflow may be detected and set before the instruction completes. If the in-
struction detects an overflow, it sets the overflow condition code, and the op-
erands are unaffected.

MOTOROLA CPU32 REFERENCE MANUAL 4-71

DIVS DIVS
D IVS L Signed Divide D IVS L

Condition Codes:

X Not affected.

N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide
by zero occurs.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by
Zero occurs.

V Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth-
erwise.

C Always cleared.

Instruction Format (word form):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER 1 1 1 EFFECTIVE ADDRESS
MODE | REGISTER

Instruction Fields:
Register field — Specifies any of the eight data registers. This field always specifies
the destination operand.
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) MM 100
(An)+ 011 reg. number:An
-(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) 1M1 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 11 o
NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer.

4-72 CPU32 REFERENCE MANUAL MOTOROLA

DIVS
DIVSL

DIVS
DIVSL

Signed Divide

Instruction Format (long form):

B 4 13 12 1 1w 9 8 6 5 4 3 2 1
EFFECTIVE ADDRESS
o | v oo | 1| 1] 0| o 1
MODE REGISTER
0 REGISTER Dg 1 [size] o [o o [o[o] o REGISTER Dr

Instruction Fields:

Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 11 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) M 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m on
. (bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

Register Dq field — Specifies a data register for the destination operand. The low-
order 32 bits of the dividend comes from this register, and the 32-bit quotient is
loaded into this register. T

Size field — Selects a 32 or 64 bit division operation.

0 — 32-bit dividend is in Register Dq. -
1 — 64-bit dividend is in Dr:Dq.

Register Dr field — After the division, this register contains the 32-bit remainder. If Dr
and Dq are the same register, only the quotient is returned. If Size is 1, this field
also specifies the data register that contains the high-order 32 bits of the dividend.

NOTE
Overflow occurs if the quotient is larger than a 32-bit signed integer.

MOTOROLA CPU32 REFERENCE MANUAL 4-73

DIVU DIVU
DIVU L Unsigned Divide DIVU L

Operation: Destination/Source # Destination

Assembler DIVU.W (ea),Dn 32/16 » 16r:16q
Syntax: DIVU.L (ea),Dq 32/32 » 329

DIVU.L (ea),Dr:Dq 64/32 » 32r:32q
DIVUL.L (ea),Dr:Dg 32/32 » 32r:32q

Attributes: Size = (Word, Long)

Description: Divides the unsigned destination operand by the unsigned source operand

and stores the unsigned result in the destination. The instruction uses one of four
forms. The word form of the instruction divides a long word by a word. The result is
a quotient in the lower word (least significant 16 bits) and the remainder is in the
upper word (most significant 16 bits) of the result.

The first long form divides a long word by a long word. The result is a long quotient;
the remainder is discarded.

The second long form divides a quad word (in any two data registers) by a long word.
The result is a long word quotient and a long word remainder.

The third long form divides a long word by a long word. The result is a long word
quotient and a long word remainder.

Two special conditions may arise during the operation:
1. Division by zero causes a trap.
2. Overflow may be detected and set before the instruction completes. If the in-
struction detects an overflow, it sets the overflow condition code, and the op-
erands are unaffected.

Condition Codes:

4-74

X Not affected.

N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide
by zero occurs.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by
Zero occurs.

V Set if division overflow occurs; undefined if divide by zero occurs. Cleared other-
wise.

C Always cleared.

CPU32 REFERENCE MANUAL MOTOROLA

DIVU DIVU
DIVU L Unsigned Divide DIVU L

Instruction Format (word form):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

1 0 0 0 REGISTER 0 1 1

Instruction Fields:
Register field — Specifies any of the eight data registers. This field always specifies
the destination operand.
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn {xxx).W M 000
An — — (xxx).L m 001
{An) 010 reg. number:An #(data) M 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) 1 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011
NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer.

MOTOROLA CPU32 REFERENCE MANUAL 4-75

DIVU
DIVUL

Instruction Format (long form):

Unsigned Divide

DIVU
DIVUL

5 ¥ 13 12 n 1 9 8 6 5 4 3 2 1
e lo ol ool 1 EFFECTIVE ADDRESS

MODE REGISTER
0 REGISTER Dg o |sze[o | o 0o | o J o] o REGISTER Dr

Instruction Fields:

Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode | Mode Register Addressing Mode Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L 11 001
(An) 010 reg. number:An #(data) 11 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

Register Dqg field — Specifies a data register for the destination operand. The low-
order 32 bits of the dividend comes from this register, and the 32-bit quotient is
loaded into this register.

Size field — Selects a 32- or 64-bit division operation.

0 — 32-bit dividend is in Register Dg.
1 — 64-bit dividend is in Dr:Dg.

Register Dr field — After the division, this register contains the 32-bit remainder. If Dr
and Dq are the same register, only the quotient is returned. If Size is 1, this field
also specifies the data register that contains the high-order 32 bits of the dividend.

NOTE
Overflow occurs if the quotient is larger than a 32-bit unsigned integer.

4-76 CPU32 REFERENCE MANUAL MOTOROLA

EO R Exclusive OR Logical EO R

Operation: Source @ Destination » Destination
Assembler
Syntax: EOR Dn,(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an exclusive OR operation on the destination operand using the
source operand and stores the result in the destination location. The size of the op-
eration may be specified to be byte, word, or long. The source operand must be a
data register. The destination operand is specified in the effective address field.

Condition Codes:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format (word form):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS
MODE REGISTER

1 0 1 1 REGISTER OPMODE

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:

Byte Word Long Operation
100 101 110 ((ea)) @ ((Dn)) # (ea)

MOTOROLA CPU32 REFERENCE MANUAL 4-77

EOR

Exclusive OR Logical

EOR

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

4-78

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 111 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

NOTE

Memory to data register operations are not allowed. Most assemblers use

EORI when the source is immediate data.

CPU32 REFERENCE MANUAL

MOTOROLA

EORI Exclusive OR Immediate EORI

Operation: Immediate Data @ Destination » Destination
Assembler
Syntax: EORI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an exclusive OR operation on the destination operand using the
immediate data and the destination operand and stores the result in the destination
location. The size of the operation may be specified as byte, word, or long. The size
of the immediate data matches the operation size.

Condition Codes:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

O<NZX

Instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 . 0 SIZE EFFECTIVE ADDRESS
MODE REGISTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-79

EORI

Exclusive OR Immediate

EORI

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W M 000
An — — (xxx).L mm 001
(An) 010 reg. number:An #(data) — —_
(An)+ 011 reg. number:An
—{An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

Immediate field — (Data immediately following the instruction):

If size = 00, the data is the low-order byte of the immediate word.
01, the data is the entire immediate word.
10, the data is next two immediate words.

If size
If size

4-80

I

CPU32 REFERENCE MANUAL

MOTOROLA

EORI EORI
tO CCR Exclusive OR Immediate tO CCR

to Condition Code

Operation: Source @ CCR » CCR

Assembler
Syntax: EORI #(data),CCR

Attributes: Size = (Byte)

Description: Performs an exclusive OR operation on the condition code register using
the immediate operand and stores the result in the condition code register (low-order
byte of the status register). All implemented bits of the condition code register are
affected.

Condition Codes:

X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

5 4 13 12 1 1 9 8 1 6 5 4 3 2 1 0
0o o] oo 1 0 1 o ol ol vl vl vl 1l o] o
o Jol ol ol ol o] oo BYTE DATA (8 BITS)

MOTOROLA CPU32 REFERENCE MANUAL 4-81

EORI EORI
tO SR Exclusive OR Immediate to the Status Register tO SR

(Privileged Instruction)

Operation: If supervisor state
then Source @ SR » SR
else TRAP

Assembler

Syntax: EORI #(data),SR

Attributes: Size = (Word)

Description: Performs an exclusive OR operation on the contents of the status register
using the immediate operand and stores the result in the status register. All imple-
mented bits of the status register are affected.

Condition Codes:

Changed if bit 4 of immediate operand is one. Unchanged otherwise.
Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Changed if bit 2 of immediate operand is one. Unchanged otherwise.
Changed if bit 1 of immediate operand is one. Unchanged otherwise.
Changed if bit 0 of immediate operand is one. Unchanged otherwise.

O<NZX

Instruction Format:

15 14 13 12 10 8 7 6 5 4 3 2 1 0

1" 3
o JoJ ol ol v T ol i JTolol il i1l 1ToT]ou

WORD DATA (16 BITS)

4-82 CPU32 REFERENCE MANUAL MOTOROLA

EXG Exchange Registers EXG

Operation: Rx 49 Ry

Assembler EXG Dx,Dy

Syntax: EXG Ax,Ay
EXG Dx,Ay
EXG Ay, Dx

Attributes: Size = (Long)

Description: Exchanges the contents of two 32-bit registers. The instruction performs
three types of exchanges:
1. Exchange data registers.
2. Exchange address registers.
3. Exchange a data register and an address register.

Condition Codes:
Not affected.
Instruction Format:

5 w4 13 12 n 1 9 8§ 71 6 5 4 3 2 1 0
Lo T v T o] o] recistRrRe | 1] 0PMODE REGISTER Ry

Instruction Fields:

Register Rx field — Specifies either a data register or an address register depending
on the mode. If the exchange is between data and address registers, this field always
specifies the data register.

Opmode field — Specifies the type of exchange:

01000 — Data registers.
01001 — Address registers.
10001 — Data register and address register.

Register Ry field — Specifies either a data register or an address register depending
on the mode. If the exchange is between data and address registers, this field always
specifies the address register.

MOTOROLA CPU32 REFERENCE MANUAL 4-83

EXT EXT
EXTB Sign Extend EXTB

Operation: Destination Sign-extended » Destination

Assembler EXT.W Dn extend byte to word
Syntax: EXT.L Dn extend word to long word
EXTB.L Dn extend byte to long word

Attributes: Size = (Word, Long)

Description: Extends a byte in a data register to a word or a long word, or a word in a
data register to a long word, by replicating the sign bit to the left. If the operation
extends a byte to a word, bit [7] of the designated data register is copied to bits [15:8]
of that data register. If the operation extends a word to a long word, bit [15] of the
designated data register is copied to bits [31:16] of the data register. The EXTB form
copies bit [7] of the designated register to bits [31:8] of the data register.

Condition Codes:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

O<NZ2zZX

Instruction Format:

5 4 13 1 n 1w s 8 1 6 5 4 3 2 1 0
o T v JTol ol 1 To7 o] OPMODE [0 T o] o] reciste

Instruction Fields:
Opmode field — Specifies the size of the sign-extension operation:
010 — Sign-extend low-order byte of data register to word.
011 — Sign-extend low-order word of data register to long.
111 — Sign-extend low-order byte of data register to long.
Register field — Specifies the data register is to be sign-extended.

4-84 CPU32 REFERENCE MANUAL MOTOROLA

"_LEGAL Take lllegal Instruction Trap ILLEGAL

Operation: SSP — 2 » SSP; Vector Offset » (SSP);
SSP — 4 » SSP; PC » (SSP);
SSP — 2 » SSP; SR » (SSP);
lllegal Instruction Vector Address » PC

Assembler

Syntax: ILLEGAL

Attributes: Unsized

Description: Forces an illegal instruction exception, vector number 4. All other illegal

instruction bit patterns are reserved for future extension of the instruction set and
should not be used to force an exception.

Condition Codes:
Not affected

Instruction Format:

MOTOROLA CPU32 REFERENCE MANUAL 4-85

JMP JMP

Jump
Operation: Destination Address » PC
Assembler
Syntax: JMP (ea)
Attributes: Unsized

Description: Program execution continues at the effective address specified by the in-
struction. The addressing mode for the effective address must be a control addressing
mode.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS

1 1 1 1 1
R 0 MODE | REGISTER

Instruction Fields:
Effective Address field — Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W 1M1 000
An — — (xxx).L 1 001
(An) 010 reg. number:An #(data) — —
(An) + — —
~(An) — —
(d16.An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m on
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

4-86 CPU32 REFERENCE MANUAL MOTOROLA

JSR Jump to Subroutine JSR

Operation: SP — 49 Sp; PC » (SP)
Destination Address » PC

Assembler
Syntax: JSR (ea)
Attributes: Unsized

Description: Pushes the long word address of the instruction immediately following the
JSR instruction onto the system stack. Program execution then continues at the ad-
dress specified in the instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

Instruction Fields:
Effective Address field — Specifies the address of the next instruction. Only control
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — —_ {xxx).W 111 000
An — — (xxx).L 11 001
(An) 010 reg. number:An #(data) — —
(An) + —_ —
_(An) — —
(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

MOTOROLA CPU32 REFERENCE MANUAL 4-87

LEA

Load Effective Address

Operation: (ea) » An
Assembler

Syntax: LEA (ea),An
Attributes: Size = (Long)
Description:

of the address register are affected by this instruction.

Condition Codes:

Not affected.

Instruction Format:

3 2

LEA

Loads the effective address into the specified address register. All 32 bits

1 0

REGISTER

EFFECTIVE ADDRESS

MODE | RecisTeR

Instruction Fields:
Register field — Specifies the address register to be updated with the effective address.
Effective Address field — Specifies the address to be loaded into the address register.

Only control addressing modes are allowed as shown:

4-88

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W m 000
An —_ — (xxx).L m 001
(An) 010 reg. number:An #(data) — —_
(An) + — —
—(An) — —

(d16.An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1M 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 on

CPU32 REFERENCE MANUAL MOTOROLA

LI N K Link and Allocate Ll N K

Operation: Sp — 4 » Sp; An » (SP);
SP#» An; SP+d » SP

Assembler
Syntax: LINK An, #(displacement)

Attributes: Size = (Word, Long)

Description: Pushes the contents of the specified address register onto the stack. Then
loads the updated stack pointer into the address register. Finally, adds the displace-
ment value to the stack pointer. For word size operation, the displacement is the sign-
extended word following the operation word. For long size operation, the displacement
is the long word following the operation word. The address register occupies one long
word on the stack. The user should specify a negative displacement in order to allocate
stack area.

Condition Codes:
Not affected.

Instruction Format:

5 14 13 122 1 W 9§ 8 7 & 5 4 3 2 1 0
o [t T o T ol v T v T v T ol ol v T ol + T o] recstr
WORD DISPLACEMENT
5 14 13 12 un 1 9 8 7 6 5 4 3 2 1 0
ol t ol ol v T ol ol ol ol ool o] 1] nreecisTer

HIGH-ORDER DISPLACEMENT
LOW-0ORDER DISPLACEMENT

Instruction Fields:
Register field — Specifies the address register for the link.
Displacement field — Specifies the twos complement integer to be added to the stack
pointer.

NOTE

LINK and UNLK can be used to maintain a linked list of local data and parameter
areas on the stack for nested subroutine calls.

MOTOROLA CPU32 REFERENCE MANUAL 4-89

LPSTOP Low Power Stop LPSTOP

Operation: If supervisor state
Immediate Data » SR
Interrupt Mask » External Bus Interface (EBI)

STOP

else TRAP
Assembler
Syntax: LPSTOP #<data>

Attributes: Size =(Word) Privileged

Description: The immediate operand is moved into the entire status register, the Pro-
gram Counter is advanced to point to the next instruction, and the processor stops
fetching and executing instructions. A CPU LPSTOP broadcast cycle is executed to
CPU space $3 to copy the updated interrupt mask to the external bus interface (EBI).
The internal clocks are stopped.

Execution of instructions resumes when a trace, interrupt, or reset exception occurs.
A trace exception will occur if the trace state is on when the LPSTOP instruction is
executed. If an interrupt request is asserted with a higher priority that the current
priority level set by the new status register value, an interrupt exception occurs;
otherwise the interrupt request is ignored. If the bit of the immediate data correspond-
ing to the S bit is off, execution of the instruction will cause a privilege violation. An
external reset always initiates reset exception processing.

Condition Codes:
Set according to the immediate operand.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
IMMEDIATE DATA

Instruction Fields:

Immediate field:
Specifies the data to be loaded into the status register.

4-90 CPU32 REFERENCE MANUAL MOTOROLA

LS L, LSR Logical Shift LS L, LSR

Operation: Destination Shifted by (count) » Destination

Assembler LSd Dx,Dy
Syntax: LSd #(data),Dy
LSd (ea)
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Shifts the bits of the operand in the direction specified (L or R). The carry
bit receives the last bit shifted out of the operand. The shift count for the shifting of
a register is specified in two different ways:
1. Immediate — The shift count (1-8) is specified in the instruction.

2. Register — The shift count is the value in the data register specified in the in-
struction modulo 64.

The size of the operation for register destinations may be specified as byte, word, or
long. The contents of memory, (ea), can be shifted one bit only, and the operand size
is restricted to a word.

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count. Bits shifted out of the high-order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bit.

r—————{ OPERAND le— 0 |
[x e

LSL:

The LSR instruction shifts the operand to the right the number of positions specified
as the shift count. Bits shifted out of the low-order bit go to both the carry and the
extend bits; zeros are shifted into the high-order bit.

tsR: | 0 }—{ oPERAND }—1
—{ x|

MOTOROLA CPU32 REFERENCE MANUAL 4-91

LSL, LSR Logical Shift LSL, LSR

Condition Codes:

x
*
*
*
o
*

Set according to the last bit shifted out of the operand. Unaffected for a shift count
of zero.

Set if the result is negative. Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit shifted out of the operand. Cleared for a shift count
of zero.

O<NZ

Instruction Format (Register Shifts):

15 14 13 12 " 10 9 8 7 (] 5 4 3 2 1 0
It T v [+ T o] countreister | ar | size] ir] o | 1 | REGISTER

Instruction Field (Register Shifts):
Count/Register field:
If i/r = 0, this field contains the shift count. The values 1-7 represent shifts of 1-7;
value of 0 specifies a shift count of 8.
If i/r = 1, the data register specified in this field contains the shift count (modulo

64).
dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
i/r field:
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.
Register field — Specifies a data register to be shifted.

4-92 CPU32 REFERENCE MANUAL MOTOROLA

LSL,

LSR

Instruction Format (Memory Shifts):

Logical Shift

LSL, LSR

3 2 1

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields (Memory Shifts):

dr field — Specifies the direction of the shift:

0 — Shift right
1 — Shift left

Effective Address field — Specifies the operand to be shifted. Only memory alterable
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W 1M 000
An — — {xxx).L m 001
(An) 010 reg. number:An #(data) . —
(An) + 011 reg. number:An
~(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) _ —
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) _ —

MOTOROLA

CPU32 REFERENCE MANUAL

4-93

MOVE Move Data from Source to Destination MOVE

Operation: Source » Destination
Assembler
Syntax: MOVE (ea),{ea)

Attributes: Size = (Byte, Word, Long)

Description: Moves the data at the source to the destination location, and sets the
condition codes according to the data. The size of the operation may be specified as
byte, word, or long.

Condition Codes:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

O<NZzZX

Instruction Format:

15 14 13 12 1 10 9 8 1 6 5 4 3 2 1 0

DESTINATION SOURCE

0 0 |
SizE REGISTER J MODE MODE REGISTER

Instruction Fields:
Size field — Specifies the size of the operand to be moved:
01 — Byte operation
11 — Word operation
10 — Long operation

4-94 CPU32 REFERENCE MANUAL MOTOROLA

MOVE

Move Data from Source to Destination

MOVE

Destination Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 11 000
An — —_ (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + o reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number.An (d16,PC) —_ —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —_

Source Effective Address field — Specifies the source operand. All addressing modes

are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 111 000
An* 001 reg. number:An {xxx).L m 001
(An) 010 reg. number:An #(data) 111 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16.An) 101 reg. number:An (d16.PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) M 011

*For byte size operation, address register direct is not allowed.

NOTES:

1. Most assemblers use MOVEA when the destination is an address register.
2. MOVEQ can be used to move an immediate 8-bit value to a data register.

MOTOROLA

CPU32 REFERENCE MANUAL

4-95

M OV EA Move Address « M OV EA

Operation: Source » Destination
Assembler
Syntax: MOVEA (ea),An

Attributes: Size = (Word, Long)

Description: Moves the contents of the source to the destination address register. The
size of the operation is specified as word or long. Word-size source operands are sign-
extended to 32-bit quantities.

Condition Codes:
Not affected.

Instruction Format:

B 4 18 12 1M 1w 9 8§ 1 6 5 4 3 2 1 0
0o | o SIZE D';SET(;':‘S‘}TE'SN 0o | o | 1 SOURCE
MODE REGISTER

Instruction Fields:

Size field — Specifies the size of the operand to be moved:

11 — Word operation. The source operand is sign-extended to a long operand and
all 32 bits are loaded into the address register.

10 — Long operation.

Destination Register field — Specifies the destination address register.

Effective Address field — Specifies the location of the source operand. All addressing
modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1 000
An 001 reg. number:An (xxx).L 111 001
(An) 010 reg. number:An #(data) M1 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) MM 010
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m oM

4-96 CPU32 REFERENCE MANUAL MOTOROLA

MOVE
from CCR

MOVE
from CCR

Move from the
Condition Code Register

Operation: CCR » Destination

Assembler

Syntax: MOVE CCR,(ea)

Attributes: Size = (Word)

Description: Moves the condition code bits (zero extended to word size) to the desti-

nation location. The operand size is a word. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

Instruction Fields:
Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — _ (xxx).L 1 001

(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) —_ —_

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) - —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

NOTE
MOVE from CCR is a word operation. ANDI, ORI, and EORI to CCR are byte
operations.
MOTOROLA CPU32 REFERENCE MANUAL 4-97

MOVE MOVE
tO CCR Move to Condition Codes tO CCR

Operation: Source » CCR

Assembler
Syntax: MOVE (ea),CCR

Attributes: Size = (Word)

Description: Moves the low-order byte of the source operand to the condition code
register. The upper byte of the source operand is ignored; the upper byte of the status
register is not altered.

Condition Codes:

I O

Set to the value of bit 4 of the source operand.
Set to the value of bit 3 of the source operand.
Set to the value of bit 2 of the source operand.
Set to the value of bit 1 of the source operand.
Set to the value of bit 0 of the source operand.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

4-98 CPU32 REFERENCE MANUAL MOTOROLA

MOVE
to CCR

Instruction Fields:
Effective Address field — Specifies the location of the source operand. Only data
addressing modes are allowed as shown:

Move to Condition Codes

MOVE
to CCR

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1M1 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) m 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1M 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m on

NOTE

MOVE to CCR is a word operation. ANDI, ORI, and EORI to CCR are byte
operations.

MOTOROLA

CPU32 REFERENCE MANUAL

4-99

MOVE
from SR

MOVE
from SR

Move from the Status Register
(Privileged Instruction)

Operation: If supervisor state
then SR #» Destination
else TRAP
Assembler
Syntax: MOVE SR,(ea)
Attributes: Size = (Word)
Description: Moves the data in the status register to the destination location. The des-

tination is word length. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

ol 1l ol olol ol ol ol | EFFECTIVE ADDRESS
| RecISTER

MODE

Instruction Fields:
Effective Address field — Specifies the destination location. Only data alterable ad-
dressing modes are allowed as shown:

4-100

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —

(An)+ 011 reg. number:An

- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

NOTE

Use the MOVE from CCR instruction to access only the condition codes.

CPU32 REFERENCE MANUAL

MOTOROLA

MOVE MOVE
tO SR Move to the Status Register tO SR

(Priviledged Instruction)

Operation: If supervisor state
then Source » SR
else TRAP

Assembler

Syntax: MOVE (ea),SR

Attributes: Size = (Word)

Description: Moves the data in the source operand to the status register. The source
operand is a word and all implemented bits of the status register are affected.

Condition Codes:
Set according to the source operand.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1
R R Y] MODE | REGISTER

Instruction Fields:
Effective Address field — Specifies the location of the source operand. Only data
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) M1 100
(An) + on reg. number:An
—(An) 100 reg. number:An
(d1g.An) 101 reg. number:An (d16.PC) 1M1 010
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

MOTOROLA CPU32 REFERENCE MANUAL 4-101

MOVE MOVE
U S P Move User Stack Pointer U S P

(Privileged Instruction)

Operation: If supervisor state
then USP » An or An » USP
else TRAP

Assembler MOVE USP,An

Syntax: MOVE An,USP

Attributes: Size = (Long)

Description: Moves the contents of the user stack pointer to or from the specified
address register.

Condition Codes:
Not affected.
Instruction Format:

5 4 18 12 n W 9 8 1 6 5 4 3 2 1 0
o T v T ol ol v T 1T v JToTl ol v o a] recistmn

Instruction Fields:
dr field — S aocifies .he direction of transfer:
0 — Transfer the address register to the USP.
1 — Transfer the USP to the address register.
Register field — Specifies the address register for the operation.

4-102 CPU32 REFERENCE MANUAL MOTOROLA

MOVEC Move Control Register

Operation:

Assembler

Syntax:

Attributes:

Description:

(Privileged Instruction)

If supervisor state
then Rc » Rn or Rn » Rc
else TRAP

MOVEC Rc,Rn
MOVEC Rn,Rc

Size = (Long)

MOVEC

Moves the contents of the specified control register (Rc) to the specified
general register (Rn) or copies the contents of the specified general register to the
specified control register. This is always a 32-bit transfer even though the control
register may be implemented with fewer bits. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

15

14

13 12 " 10 9 8 6 5

0

t o J ol o T i T v T o] o] 1] 1]

AD

REGISTER CONTROL REGISTER

Instruction Fields:
dr field — Specifies the direction of the transfer:
0 — Control register to general register.
1 — General register to control register.
A/D field — Specifies the type of general register:
0 — Data register.
1 — Address register.
Register field — Specifies the register number.
Control Register field — Specifies the control register.

Hex

000
001
800
801

Control Register

Source Function Code (SFC)
Destination Function Code (DFC)
User Stack Pointer (USP)

Vector Base Register (VBR)

Any other code causes an illegal instruction exception.

MOTOROLA

CPU32 REFERENCE MANUAL

4-103

M OVE M Move Multiple Registers M OVEM

Operation: Registers » Destination
Source » Registers

Assembler MOVEM register list,(ea)
Syntax: MOVEM (ea),register list

Attributes: Size = (Word, Long)

Description: Moves the contents of selected registers to or from consecutive memory
locations starting at the location specified by the effective address. A register is selected
if the bit in the mask field corresponding to that register is set. The instruction size
determines whether 16 or 32 bits of each register are transferred. In the case of a
word transfer to either address or data registers, each word is sign-extended to 32
bits, and the resulting long word is loaded into the associated register.

Selecting the addressing mode also selects the mode of operation of the MOVEM
instruction, and only the control modes, the predecrement mode, and the postincre-
ment mode are valid. If the effective address is specified by one of the control modes,
the registers are transferred starting at the specified address, and the address is in-
cremented by the operand length (2 or 4) following each transfer. The order of the
registers is from data register 0 to data register 7, then from address register 0 to
address register 7.

If the effective address is specified by the predecrement mode, only a register-to-
memory operation is allowed. The registers are stored starting at the specified address
minus the operand length (2 or 4), and the address is decremented by the operand
length following each transfer. The order of storing is from address register 7 to
address register 0, then from data register 7 to data register 0. When the instruction
has completed, the decremented address register contains the address of the last
operand stored. In the CPU 32, if the addressing register is also moved to memory,
the value written is the decremented value.

If the effective address is specified by the postincrement mode, only a memory-to-
register operation is allowed. The registers are loaded starting at the specified address;
the address is incremented by the operand length (2 or 4) following each transfer. The
order of loading is the same as that of control mode addressing. When the instruction
has completed, the incremented address register contains the address of the last
operand loaded plus the operand length. In the CPU32, if the addressing register is
also loaded from memory, the value loaded is the value fetched plus the operand
length.

4-104 CPU32 REFERENCE MANUAL MOTOROLA

M OVE M Move Multiple Registers M OVE M

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1

EFFECTIVE ADDRESS

0 1 0 0 1 dr 0 0 1 SIZE MODE REGISTER

REGISTER LIST MASK

Instruction Field:
dr field — Specifies the direction of the transfer:
0 — Register to memory
1 — Memory to register
Size field — Specifies the size of the registers being transferred:
0 — Word transfer
1 — Long transfer

Effective Address field — Specifies the memory address for the operation. For register-
to-memory transfers, only control alterable addressing modes or the predecrement

addressing mode are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — —_— (xxx).W 1 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) —_ —_
(An) + — —

—-(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

MOTOROLA CPU32 REFERENCE MANUAL 4-105

MOVEM MOVEM

Move Multiple Registers

For memory-to-register transfers, only control addressing modes or the postincrement
addressing mode are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn —_ —_ (xxx).W m 000
An —_ —_ (xxx).L m 001
(An) 010 reg. number:An #(data) — —

(An) + o1 reg. number:An

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) m 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1M on

Register List Mask field — Specifies the registers to be transferred. The low-order bit
corresponds to the first register to be transferred; the high-order bit corresponds
to the last register to be transferred. Thus, both for control modes and for the
postincrement mode addresses, the mask correspondence is:

5 14 13 12 1 1 9 8 1 & 5 4 3 2 1 0
[a7 [a6 [a5 [ae [A3 [ma [A [a0 [07 [o6 [0s [pa] D3| D2 01 [Do |

For the predecrement mode addresses, the mask correspondence is reversed:

5 14 138 1 1 w1 9 8 1 & 5 4 3 2 1 0
[oo [o1 [o2 [o3 [s [os [o6 [07 [mo | a [A2 [as [ae | ms [6] a1 |

NOTE

An extra read bus cycle occurs for memory operands. This accesses an op-
erand at one address higher than the last register image required.

4-106 CPU32 REFERENCE MANUAL MOTOROLA

M OV E P Move Peripheral Data M OVE P

Operation: Source » Destination

Assembler MOVEP Dx,(d,Ay)
Syntax: MOVEP (d,Ay),Dx

Attributes: Size = (Word, Long)

Description: Moves data between a data register and alternate bytes within the address
space (typically assigned to a peripheral), starting at the location specified and incre-
menting by two. This ins*-uction is designed for 8-bit periph zrals or a 16-bit data bus.
The high-order byte of the data register is transferred first and the low-order byte is
transferred last. The memory address is specified in the address register indirect plus
16-bit displacement addressing mode. If the address is even, all the transfers are to
or from the high-order half of the data bus; if the address is odd, all the transfers are
to or from the low-order half of the data bus. The instruction also accesses alternate
bytes on an 8- or 32-bit bus.

Example: Long : ansfer {)/from an even address.

Byte Organization in Register
3 u 2 615 87 0
HI-ORDER | MID-UPPER | MID-LOWER | LOW-ORDER

Byte Organization in Memory (Low Address at Top)

15 8 7 0
HI-ORDER
MID-UPPER
MID-LOWER
LOW-ORDER

MOTOROLA CPU32 REFERENCE MANUAL 4-107

M OVE P Move Peripheral Data M OVE P

Example: Word transfer to/from an odd address
Byte Organization in Register

3 % n % 15 8 7 0
I | | HI-ORDER I LOW-ORDER

Byte Organization in Memory (Low Address at Top)

15 8 7 0
HI-ORDER
LOW-ORDER
Condition Codes:
Not affected.
Instruction Format:
5 14 13 12 1 1 9 8 1 & 5 4 3 2 1 0
0 | o | o | o | DATAREGISTER | OPMODE | o | o | 1 | ADDRESS REGISTER

DISPLACEMENT (16 BITS)

Instruction Fields:

Data Register field — Specifies the data register for the instruction.

Opmode field — Specifies the direction and size of the operation:
100 — Transfer word from memory to register.
101 — Transfer long from memory to register.
110 — Transfer word from register to memory.
111 — Transfer long from register to memory.

Address Register field — Specifies the address register which is used in the address
register indirect plus displacement addressing mode.

Displacement field — Specifies the displacement used in the operand address.

4-108 CPU32 REFERENCE MANUAL MOTOROLA

MOVEQ Move Quick MOVEQ

Operation: Immediate Data » Destination
Assembler
Syntax: MOVEQ #(data),Dn

Attributes: Size = (Long)

Description: Moves a byte of immediate data to a 32-bit data register. The data in an
8-bit field within the operation word is sign-extended to a long operand in the data
register as it is transferred.

Condition Codes:

- T Tl

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared.

O<NZX

Instruction Format:

5 4 13 12 u 1 9 8 7 & 5 4 3 2 1 90
[o [+ T+ [1T meistR | 0 | DATA

Instruction Fields:
Register field — Specifies the data register to be loaded.
Data field — Eight bits of data, which are sign-extended to a long operand.

MOTOROLA CPU32 REFERENCE MANUAL 4-109

MOVES Move Address Space M OVES

(Privileged Instruction)

Operation: If supervisor state
then Rn » Destination [DFC] or Source [SFC] » Rn
else TRAP

Assembler MOVES Rn,(ea)
Syntax: MOVES (ea),Rn

Attributes: Size = (Byte, Word, Long)

Description: Moves the byte, word, or long operand from the specified general register
to a location within the address space specified by the destination function code (DFC)
register; or, moves the byte, word, or long operand from a location within the address
space specified by the source function code (SFC) register to the specified general
register.

If the destination is a data register, the source operand replaces the corresponding
low-order bits of that data register, depending on the size of the operation. If the
destination is an address register, the source operand is sign-extended to 32 bits and
then loaded into that address register.

Condition Codes:
Not affected.

Instruction Format:

5 ¥ 13 12 nun 1w 98 8 1 6 5 4 3 2 1 0
EFFECTIVE ADDRESS

vl p oot Pt SIzE MODE REGISTER

AD REGISTER aor [o ol ol ol ol oo of]of]ofou

Instruction Fields:
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

4-110 CPU32 REFERENCE MANUAL MOTOROLA

MOVES MOVES

Move Address Space
(Privileged Instruction)

Effective Address field — Specifies the source or destination location within the al-
ternate address space. Only memory alterable addressing modes are allowed as

shown:
Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn — — {xxx).W m 000
An — - (xxx).L m 001
(An) 010 reg. number:An #(data) —_ —

(An) + 01 reg. number:An

-(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

A/D field — Specifies the type of general register:
0 — Data register
1 — Address register

Register field — Specifies the register number.

dr field — Specifies the direction of the transfer:
0 — From (ea) to general register
1 — From general register to (ea)

NOTE

For either of the two following examples with the same address register as
both source and destination

MOVES.x An,(An) +

MOVES.x An,-(An)
the value stored is undefined. The current implementations of the MC68010,
CPU32, and MC68020 store the incremented or decremented value of An.

MOTOROLA CPU32 REFERENCE MANUAL 4111

M U LS Signed Multiply M U LS

Operation: Source * Destination » Destination
Assembler MULS.W (ea),Dn 16x16 » 32
Syntax: MULS.L (ea),DlI 32x32 » 32

MULS.L (ea),Dh:DI 32x32»64
Attributes: Size = (Word, Long)

Description: Multiplies two signed operands yielding a signed result. This instruction
has a word operand form and a long word operand form.

In the word form, the multiplier and multiplicand are both word operands, and the
result is a long word operand. A register operand is the low-order word; the upper
word of the register is ignored. All 32 bits of the product are saved in the destination
n data register.

In the long form, the multiplier and multiplicand are both long word operands, and
the result is either a long word or a quad word. The long word result is the low-order
32 bits of the quad word result; the high-order 32 bits of the product are discarded.

Condition Codes:

Not affected.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if overflow. Cleared otherwise.

Always cleared.

O<NZX

NOTE

Overflow (V=1) can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if the high-order 32 bits of the quad word
product are not the sign extension of the low-order 32 bits.

Instruction Format (word form):

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

1 1 0 0 REGISTER 1 1 1

4-112 CPU32 REFERENCE MANUAL MOTOROLA

MULS

Instruction Fields:
Register field — Specifies a data register as the destination.
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Signed Multiply

MULS

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An - —_ {xxx).L m 001
(An) 010 reg. number:An #(data) m 100
(An) + on reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) 11 010
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) M 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011
Instruction Format (long form):
15 14 13 12 1" 10 9 8 6 5 4 3 2 1 0
0 ! 0 0 . : 0 0 0 EFFECTIVE ADDRESS
MODE REGISTER
0 REGISTER Dg 1 SIZE| © 0 0 0 | 0 I 0 REGISTER Dr

Instruction Fields:
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W m 000

An — — (xxx).L 11 001

(An) 010 reg. number:An #(data) m 100
(An)+ 011 reg. number:An
~(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) m 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m oM

MOTOROLA CPU32 REFERENCE MANUAL 4-113

M U LS Signed Multiply M U LS

Register DI field — Specifies a data register for the destination operand. The 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register.

Size field — Selects a 32- or 64-bit product.

0 — 32-bit product to be returned to Register DI.
1 — 64-bit product to be returned to Dh:DI.

Register Dh field — If Size is 1, specifies the data register into which the high-order
32 bits of the product are loaded. If Dh = DI and Size is 1, the results of the operation
are undefined. Otherwise, this field is unused.

4-114 CPU32 REFERENCE MANUAL MOTOROLA

M U LU Unsigned Multiply M U LU

Operation: Source * Destination » Destination

Assembler MULU.W (ea),Dn 16x16 » 32
Syntax: MULU.L (ea),DI 32x32 » 32
MULU.L (ea),Dh:Dli 32x32 »64

Attributes: Size = (Word, Long)

Description: ~ Multiplies two unsigned operands yielding an unsigned result. This in-
struction has a word operand form and a long word operand form.

In the word form, the multiplier and multiplicand are both word operands, and the
result is a long word operand. A register operand is the low-order word; the upper
word of the register is ignored. All 32 bits of the product are saved in the destination
data register.

In the long form, the multiplier and multiplicand are both long word operands, and
the result is either a long word or a quad word. The long word result is the low-order
32 bits of the quad word result; the high-order 32 bits of the product are discarded.

Condition Codes:

X Not affected.

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Set if overflow. Cleared otherwise.

C Always cleared.

NOTE

Overflow (V=1) can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if any of the high-order 32 bits of the quad
word product are not equal to zero.

MOTOROLA CPU32 REFERENCE MANUAL 4-115

M U LU Unsigned Multiply M U LU

Instruction Format (word form):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | ResISTER

1 1 0 0 REGISTER 0 1 1

Instruction Fields:
Register field — Specifies a data register as the destination.
Effective Address field — Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W m 000
An — —_ (xxx).L m 001
(An) 010 reg. number:An #(data) m 100

(An) + 011 reg. number:An

- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) 111 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 011
(bd,An,Xn) 110 reg. humber:An (bd,PC,Xn) 1M1 011

Instruction Format (long form):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

ol v ol ol sl alololol o EFFECTIVE ADDRESS
MODE REGISTER
. REGISTER DI o [sze| o [ofofoJololeo REGISTER Dh

4-116 CPU32 REFERENCE MANUAL MOTOROLA

MUL

Instruction

Effective Address field — Specifies the source operand. Only data addressing modes

Uu

Fields:

are allowed as shown:

Unsigned Multiply

MULU

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L M 001
(An) 010 reg. number:An #(data) m 100
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d1g.An) 101 reg. number:An (d16,PC) 11 010
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 01
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - m 011

Register DI field — Specifies a data register for the destination operand. The 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register.

Size field — Selects a 32- or 64-bit product.

0 — 32-bit product to be returned to Register DI.
1 — 64-bit product to be returned to Dh:Dl.

Register Dh field — If Size is 1, specifies the data register into which the high-order
32 bits of the product are loaded. If Dh = DIl and Size is 1, the results of the operation
are undefined. Otherwise, this field is unused.

MOTOROLA CPU32 REFERENCE MANUAL 4-117

N BC D Negate Decimal with Extend N BC D

Operation: 0 — (Destination1g) — X » Destination
Assembler
Syntax: NBCD (ea)

Attributes: Size = (Byte)

Description: Subtracts the destination operand and the extend bit from zero. The op-
eration is performed using binary coded decimal arithmetic. The packed BCD result
is saved in the destination location. This instruction produces the tens complement
of the destination if the extend bit is zero, or the nines complement if the extend bit
is one. This is a byte operation only.

Condition Codes:

X Set the same as the carry bit.

N Undefined.

Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.

C Set if a decimal borrow occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
the operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

4-118 CPU32 REFERENCE MANUAL MOTOROLA

NBCD

Instruction Fields:
Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Negate Decimal with Extend

NBCD

MOTOROLA

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 1 000
An - — (xxx).L m 001
(An) 010 reg. number:An #(data) —_ —
(An) + 01 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —_
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) —_ —
CPU32 REFERENCE MANUAL 4-119

N EG Negate N EG

Operation: 0 — (Destination) » Destination
Assembler
Syntax: NEG (ea)

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the destination operand from zero and stores the result in the
destination location. The size of the operation is specified as byte, word, or long.

Condition Codes:

*
-
*
—
*
1
*

Set the same as the carry bit.

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow occurs. Cleared otherwise.
Cleared if the result is zero. Set otherwise.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE | REGISTER

0 1 0 0 0 1 0 0 SIZE

Instruction Fields:
Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

4-120 CPU32 REFERENCE MANUAL MOTOROLA

N EG Negate N EG

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W 11 000
An —_ — (xxx).L 11 001
(An) 010 reg. number:An #(data) — —_
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) \ — —
(bd,An,Xn) 110 reg. number:An (bd,PCXn) | — —

MOTOROLA CPU32 REFERENCE MANUAL 4121

N EGX Negate with Extend N EGX

Operation: 0 — (Destination) — X » Destination
Assembler
Syntax: NEGX (ea)

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the destination operand and the extend bit from zero. Stores the
result in the destination location. The size of the operation is specified as byte, word,
or long.

Condition Codes:

X Set the same as the carry bit.

N Set if the result is negative. Cleared otherwise.

Z Cleared if the result is nonzero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.

C Set if a borrow occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
the operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format:

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

0 1 0 0 0 0 0 0 SIZE

Instruction Fields:
Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

4-122 CPU32 REFERENCE MANUAL MOTOROLA

NEGX

Negate with Extend

NEGX

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn xxx).W M 000

An - —_ (xxx).L m 001

(An) 010 reg. number:An #(data) —_ —_
(An) + on reg. number:An
—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —_

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — -

MOTOROLA CPU32 REFERENCE MANUAL 4-123

NOP None NOP

Operation: None
Assembler

Syntax: NOP
Attributes: Unsized

Description: Performs no operation. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP instruction.
The NOP instruction does not begin execution until all pending bus cycles are com-
pleted. This synchronizes the pipeline, and prevents instruction overlap.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 " 10 9 8 6 5 4 3 2 1 0

7
Lol v ToJol v [T vTofol v JTr[vTolololn]

4-124 CPU32 REFERENCE MANUAL MOTOROLA

NOT

Operation: ~ Destination »
Assembler
Syntax: NOT (ea)

Logical Complement

Destination

Attributes: Size = (Byte, Word, Long)

NOT

Description: Calculates the ones complement of the destination operand and stores the
result in the destination location. The size of the operation is specified as byte, word,

or long.

"Condition Codes:

Not affected.

Set if the result is zero.
Always cleared.
Always cleared.

O<NZX

Instruction Format:

Set if the result is negative. Cleared otherwise.

Cleared otherwise.

4 3 2 1

1 1 0 SIZE

EFFECTIVE ADDRESS
MODE | RecisTER

Instruction Fields:

Size field — Specifies the size of the operation.

00 — Byte operation
01 — Word operation
10 — Long operation

MOTOROLA

CPU32 REFERENCE MANUAL

4-125

NOT

4-126

Logical Complement

NOT

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressin. Mode ode Register
Dn 000 reg. number:Dn (xxx).W 1 000
An — — {xxx).L 11 001
(An) 010 reg. number:An #(data) — —
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —
CPU32 REFERENCE MANUAL MOTOROLA

OR Inclusive OR Logical O R

Operation: Source V Destination » Destination

Assembler OR (ea),Dn
Syntax: OR Dn,{ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an inclusive OR operation on the source operand and the des-
tination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The contents of an address register may
not be used as an operand.

Condition Codes:

N 4 v c

T [Tl

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
Instruction Format:

15 14 13 12 [l 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 0 0 0 REGISTER OPMODE

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:
Byte Word Long Operation

000 001 010 ((ea)) V ({Dn)) » (Dn)
100 101 110 ((Dn)) V ((ea)) # (ea)

MOTOROLA CPU32 REFERENCE MANUAL 4-127

OR

Inclusive OR Logical

OR

Effective Address field — If the location specified is a source operand, only data

addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn 000 reg. number:Dn (xxx).W 11 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) m 100

(An) + 011 reg. number:An

- (An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16,PC) Lk 010
(dg,An,Xn) 110 reg. number:An (dg.PC,Xn) m on
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) m 011

ing modes are allowed as shown:

If the location specified is a destination operand, only memory alterable address-

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn —_ — (xxx).W 11 000
An — — (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
—{An) 100 reg. number:An
(d1g.An) 101 reg. number:An (d16,PC) - -
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —_

NOTES:

1. If the destination is a data register, it must be specified using the destination Dn

mode, not the destination (ea) mode.

2. Most assemblers use ORI when the source is immediate data.

4-128

CPU32 REFERENCE MANUAL

MOTOROLA

O RI Inclusive OR O RI

Operation: Immediate Data V Destination » Destination
Assembler
Syntax: ORI #(data),(ea)

Attributes: Size = (Byte, Word, Long)

Description: Performs an inclusive OR operation on the immediate data and the des-
tination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes:

X Not affected.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.

V Always cleared.

C Always cleared.

Instruction Format:

5 14 1B 12 1 ww ¢ & 1 6 5 4 3 2 1 0
EFFECTIVE ADDRESS
0o oo oo 0o Size MODE | ReGISTER
WORD DATA (16 BITS) BYTE DATA (8 BITS)
LONG DATA (32 BITS)

Instruction Fields:
Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-129

ORI

Inclusive OR

ORI

Effective Address field — Specifies the destination operand. Only data alterable ad-
dressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn 000 reg. number:Dn (xxx).W m 000
An — — (xxx).L M 001
(An) 010 reg. number:An #(data) — —
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

Immediate field — (Data immediately following the instruction):

If size = 00, the data is the low-order byte of the immediate word.
01, the data is the entire immediate word.
10, the data is the next two immediate words.

If size =
If size

4-130

CPU32 REFERENCE MANUAL

MOTOROLA

ORI
to CCR

Inclusive OR Immediate
to Condition Codes

Operation: Source V CCR » CCR
Assembler

Syntax: ORI #(data),CCR
Attributes: Size = (Byte)

Description:

ORI

to CCR

Performs an inclusive OR operation on the immediate operand and the

condition codes and stores the result in the condition code register (low-order byte
of the status register). All implemented bits of the condition code register are affected.

Condition Codes:

O<NZX

Instruction Format:

Set if bit 4 of immediate operand is one. Unchanged otherwise.
Set if bit 3 of immediate operand is one. Unchanged otherwise.
Set if bit 2 of immediate operand is one. Unchanged otherwise.
Set if bit 1 ¢* immed’~te onerand is one. Unchanged otherwise.
Set if bit 0 of immediate operand is one. Unchanged otherwise.

10 9 8 7 6 5 4 3 2 1

0

o [ol v T 1]]o

0

BYTE DATA (8 BITS)

MOTOROLA

CPU32 REFERENCE MANUAL

4-131

ORI ORI
tO SR Inclusive OR Immediate to the Status Register tO SR

(Privileged Instruction)

Operation: If supervisor state
then Source V SR # SR
else TRAP

Assembler

Syntax: ORI #(data),SR

Attributes: Size = (Word)

Description: Performs an inclusive OR operation of the immediate operand and the
contents of the status register and stores the result in the status register. All imple-
mented bits of the status register are affected.

Condition Codes:

Set if bit 4 of immediate operand is one. Unchanged otherwise.
Set if bit 3 of immediate operand is one. Unchanged otherwise.
Set if bit 2 of immediate operand is one. Unchanged otherwise.
Set if bit 1 of immediate operand is one. Unchanged otherwise.
Set if bit 0 of immediate operand is one. Unchanged otherwise.

O<NZX

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

o o J ol ol ol olololo v v [T 1] 1]oaolo

WORD DATA (16 BITS)

4-132 CPU32 REFERENCE MANUAL MOTOROLA

PEA

Push Effective Address

Operation: Sp — 4 » SP; (ea) » (SP)

Assembler
Syntax: PEA (ea)

Attributes: Size = (Long)

PEA

Description: Computes the effective address and pushes it onto the stack. The effective
address is a long word address.

Condition Codes:
Not affected.

Instruction Format:

3 2

MODE

EFFECTIVE ADDRESS

REGISTER

Instruction Fields:

Effective Address field — Specifies the address to be pushed onto the stack. Only
control addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register

Dn — —_ (xxx).W 111 000

An — - (xxx).L m 001

(An) 010 reg. number:An #(data) — —
(An)+ — —
— (An) — R

(d16,An) 101 reg. number:An (d16,PC) m 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) m 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

MOTOROLA CPU32 REFERENCE MANUAL 4-133

R ES ET Reset External Devices R ES ET

(Privileged Instruction)

Operation: If supervisor state
then Assert RESET Line
else TRAP

Assembler

Syntax: RESET

Attributes: Unsized

Description: Asserts the RESET signal for 512 clock periods, resetting all external de-
vices. The processor state, other than the program counter, is unaffected and execution
continues with the next instruction.

Condition Codes:
Not affected.

Instruction Format:

4-134 CPU32 REFERENCE MANUAL MOTOROLA

RO L, ROR Rotate (Without Extend) RO L, ROR

Operation: Destination Rotated by (count) # Destination

Assembler ROd Dx,Dy
Syntax: ROd #(data),Dy
ROd (ea)
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Rotates the bits of the operand in the direction specified (L or R). The
extend bit is not included in the rotation. The rotate count for the rotation of a register
is specified in either of two ways:

1. Immediate — The rotate count (1-8) is specified in the instruction.
2. Register — The rotate count is the value in the data register specified in the
instruction, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, (ea); can be rotated one bit only, and operand size is restricted
to a word.

The ROL instruction rotates the bits of the operand to the left; the rotate count de-
termines the number of bit positions rotated. Bits rotated out of the high-order bit go
to the carry bit and also back into the low-order bit.

The ROR instruction rotates the bits of the operand to the right; the rotate count
determines the number of bit positions rotated. Bits rotated out of the low-order bit
go to the carry bit and also back into the high-order bit.

ROR:

MOTOROLA CPU32 REFERENCE MANUAL 4-135

ROL, ROR Rotate (Without Extend) ROL, ROR

Condition Codes:

Not affected.

Set if the most significant bit of the result is set. Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit rotated out of the operand. Cleared when the rotate
count is zero.

O< NZX

Instruction Format (Register Rotate):

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
COUNT/
1 1 1 0 REGISTER dr SIZE r 1 1 REGISTER

Instruction Fields (Register Rotate):
Count/Register field:
If i/r = 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8.
If i/r = 1, this field specifies a data register that contains the rotate count (modulo
64).
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
i/r field — Specifies the rotate count location:
If i/r = 0, immediate rotate count.
If i/r = 1, register rotate count.
Register field — Specifies a data register to be rotated.

4-136 CPU32 REFERENCE MANUAL MOTOROLA

RO L, ROR Rotate (Without Extend) RO L, ROR

Instruction Format (Memory Rotate):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

Instruction Fields (Memory Rotate):
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Effective Address field — Specifies the operand to be rotated. Only memory alterable
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W m 000
An —_ - (xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + o reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

MOTOROLA CPU32 REFERENCE MANUAL 4-137

ROXL, ROXR Rotate with Extend ROXL, ROXR

Operation: Destination Rotated with X by (count) » Destination

Assembler ROXd Dx,Dy
Syntax: ROXd #(data),Dy

ROXd (ea)
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Rotates the bits of the operand in the direction specified (L or R). The

extend bit is included in the rotation. The rotate count for the rotation of a register is
specified in either of two ways:
1. Immediate — The rotate count (1-8) is specified in the instruction.
2. Register — The rotate count is the value in the data register specified in the
instruction, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, (ea), can be rotated one bit only, and operand size is restricted
to a word.

The ROXL instruction rotates the bits of the operand to the left; the rotate count
determines the number of bit positions rotated. Bits rotated out of the high-order bit
go to the carry bit and the extend bit; the previous value of the extend bit rotates into
the low-order bit.

T T

The ROXR instruction rotates the bits of the operand to the right; the rotate count
determines the number of bit positions rotated. Bits rotated out of the low-order bit
go to the carry bit and the extend bit; the previous value of the extend bit rotates into
the high-order bit.

CPU32 REFERENCE MANUAL MOTOROLA

ROXL, ROXR Rotate with Extend ROXL, ROXR

Condition Codes:

X N Z \ C

LT[Tof-]

Set to the value of the last bit rotated out of the operand. Unaffected when the
rotate count is zero.

Set if the most significant bit of the result is set. Cleared otherwise.

Set if the result is zero. Cleared otherwise.

Always cleared.

Set according to the last bit rotated out of the operand. When the rotate count is
zero, set to the value of the extend bit.

x

O<NZ

Instruction Format (Register Rotate):

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COUNT/
1 1 1 0 REGISTER dr SIZE lig 1 0 REGISTER

Instruction Fields (Register Rotate):
Count/Register field:
If i/r = 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8.
If i/r = 1, this field specifies a data register that contains the rotate count (modulo
64).
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation
i/r field — Specifies the rotate count location:
If i/r = 0, immediate rotate count.
If i/r = 1, register rotate count.
Register field — Specifies a data register to be rotated.

MOTOROLA CPU32 REFERENCE MANUAL 4-139

ROXL, ROXR Rotate with Extend ROXL, ROXR

Instruction Format (Memory Rotate):

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS
MODE REGISTER

1 1 1 0 0 1 0 dr 1 1

Instruction Fields (Memory Rotate):
dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left
Effective Address field — Specifies the operand to be rotated. Only memory alterable
addressing modes are allowed as shown:

Addressing Mode | Mode Register Addressing Mode | Mode Register
Dn — — (xxx).W m 000
An — — {xxx).L m 001
(An) 010 reg. number:An #(data) — —
(An) + 011 reg. number:An
—(An) 100 reg. number:An
(d1,An) 101 reg. number:An (d16.PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

4-140 CPU32 REFERENCE MANUAL MOTOROLA

RTD Return and Deallocate RTD

Operation: (SP)» PC; SP + 4 + d#» SP

Assembler
Syntax: RTD #(displacement)
Attributes: Unsized

Description: Pulls the program counter value from the stack and adds the sign-extended
16-bit displacement value to the stack pointer. The previous program counter value
is lost.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 1 6 5 4 3 2 1 0

o [v o fo v [vl arJolofvJrJvJolr[ol]o

DISPLACEMENT (16 BITS)

Instruction Field:
Displacement field — Specifies the twos complement integer to be sign extended and
added to the stack pointer.

MOTOROLA CPU32 REFERENCE MANUAL 4-141

RTE Return from Exception RT E

(Privileged Instruction)

Operation: If supervisor state
then (SP) » SR; SP + 2 » SP; (SP) » PC;
SP + 4 SP;
restore state and deallocate stack according to (SP)
else TRAP
Assembler
Syntax: RTE
Attributes: Unsized

Description: Loads the processor state information stored in the exception stack frame
located at the top of the stack into the processor. The instruction examines the stack
format field in the format/offset word to determine how much information must be
restored.

Condition Codes:
Set according to the condition code bits in the status register value restored from the
stack.

Instruction Format:

5 4 13 12 un 1w 9 8§ 7 6 5 4 3 2 1 0
Lol v ToJof v [avJvJoJol v rl i loflol1 1]
Format/Offset word (in stack frame):
% 4 13 12 1 W 9 8 7 & 5 4 3 2 1 0
] FORMAT [o] o] VECTOR OFFSET

4-142 CPU32 REFERENCE MANUAL MOTOROLA

RTE Return from Exception RTE

(Privileged Instruction)

Format Field of Format/Offset Word:
Contains the format code, which implies the stack frame size (including the format/
offset word).

0000 — Short Format, removes four words. Loads the status register and the program
counter from the stack frame.

0001 — Throwaway Format, removes four words. Loads the status register from the
stack frame and switches to the active system stack. Continues the instruc-
tion using the active system stack.

0010 — Instruction Error Format, removes six words. Loads the status register and
the program counter from the stack frame and discards the other words.

1000 — MC68010 Long Format. The MC68020 takes a format error exception.

1001 — Coprocessor Mid-Instruction Format, removes 10 words. Resumes execution
of coprocessor instruction.

1010 — MC68020 Short Format, removes 16 words and resumes instruction exe-
cution.

1011 — MC68020 Long Format, removes 46 words and resumes instruction exe-
cution.

Any other value in this field causes the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>