Parts Not Suitable for New Designs

For Additional Information

End-Of-Life Product Change Notice

http://www.mot.com/SPS/HPESD/prod/eol/68349_eol.html

MOTOROLA

MC68349

Dragon I™"—
High Performance
Integrated Microprocessor
User’'s Manual

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated wit| h
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and re
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA, 1993

PREFACE

The complete documentation package for the MC68349 consists of the
MC68349UM/AD, MC68349 Dragon I|—High Performance Integrated
Microprocessor User's Manual, M68000PM/AD, MC68000 Family Programmer’s
Reference Manual, and the MCG68349P/D, MC68349 Dragon |I—High
Performance Integrated Microprocessor Product Brief.

The MC68349 Dragon I—High Performance Integrated Microprocessor User's
Manual describes the programming, capabilities, registers, and operation of the
MC68349; the MC68000 Family Programmer’s Reference Manual provides
instruction details for the MC68349; and the MC68349 Dragon |I—High
Performance Integrated Microprocessor Product Brief provides a brief description
of the MC68349 capabilities.

This user’s manual is organized as follows:
Section 1 Overview
Section 2 Signal Descriptions
Section 3 Bus Operation
Section 4 System Integration Module
Section 5 CPUO030
Section 6 Quad Data Memory Module
Section 7 DMA Controller Module
Section 8 Serial Module
Section 9 IEEE 1149.1 Test Access Port
Section 10 Applications
Section 11 Electrical Characteristics
Section 12 Ordering Information and Mechanical Data

MOTOROLA MC68349 USER'S MANUAL ii

MOTOROLA

MC68349 ACRONYM LIST

ACR — Auxiliary Control Register
ADDR — Address Column
AVR — Autovector Register
BDM — Background Debug Mode
BSA — Bus State Analyzer
BTC — Byte Transfer Count Register
CCR — Channel Control Register
CCR — Condition Code Register
CIC — Configurable Instruction Cache
CR — Command Register
CSR — Channel Status Register
CSR — Clock Select Register
DAR — Destination Address Register
DDRA — Port A Data Direction Register
DDRB — Port B Data Direction Register
DFC — Destination Fuction Code Register
DHR — Data Holding Register
DMA — Direct Memory Access
DRAM — Dynamic Random Access Memory
DUART — Dual Universal Asynchronous Receiver/Transmitter
EA — Effective Address
FAR — Fault Address Register
EBI — External Bus Interface
FC — Function Code
FCR — Function Control Register
FIFO — First-in/First-out
HCMOS — High-Density Complimentary Metal Oxide Semiconductor
HLL — High Level Language
IDR — Identification Register

IEEE — Institute of Electrical and Electronic Engineers
IER — Interrupt Status Register

ILR — Interrupt Level Register

IMB — Intermodule Bus

I/O — Input/Output
IP — Input Port Register
IPCR — Input Port Change Register
IRA — 16-Bit Instruction Register A
IRB — 16-Bit Instruction Register B
IRC — 16-Bit Instruction Register C

MC68349 USER’S MANUAL

MC68349 ACRONYM LIST (Continued)

IRL
ISR
ISR
IVR

JTAG
LPSTOP
MBAR
MCR
MR
MSB
OP
OPCR
PC
PCC
PDA
PICR
PITR
PLL
POR
PORTA
PORTB
PPARA
PPARB
QDMM
RAM
RAREG/RDREG
ROM
RPC
RSR
RSREG
S0, S1
SAR
SFC
SIM49
SP
SPI
SR
SRA
SRAM

Vi

16-Bit Instruction Register L
Interrupt Service Routine
Interrupt Status Register

Interrupt Vector Register

Joint Test Action Group

Low Power Stop

Module Base Address Register
Module Configuration Register
Mode Register

Most Significant Bit

Output Port Data Register

Output Port Control Register
Program Counter

Current Instruction Program Counter
Personal Digital Assistants
Periodic Interrupt Control Register
Periodic Interrupt Timing Register
Phase Lock Loop

Power On Reset

Port A Data Register

Port B Data Register

Port A Pin Assignment Register
Port B Pin Assignment Register
Quad Data Memory Module
Random Access Memory

Read A/D Register

Read Only Memory

Return Program Counter

Reset Status Register

Read System Register

State Zero, State One

Source Address Register

Source Funtion Code Register
MC68349 System Integration Module
Stack Pointer

Serial Peripheral Interface
Channel Status Register
Channel A Status Register

Static Random Access Memory

MC68349 USER’S MANUAL MOTOROLA

MC68349 ACRONYM LIST (Concluded)

SSP
SSW
SWSR
SYNCR
SYPCR
TAP

B
USART
VBR
VCCGND
VCO
WAREG/WDREG
WSREG

MOTOROLA

— Supervisor Stack Pointer

— Software Status Word

— Software Service Register

— Clock Synthesizer Control Register
— System Protection Control Register
— Test Access Port

— Transmitter Buffer

— Universal Synchronous/Asynchronous Receiver/Transmitter
— Vector Base Register

— System Power Supply and Ground
— Voltage Controlled Oscillator

— Write A/D Register

— Write System Register

MC68349 USER’S MANUAL

vii

11/3/95

Paragraph

Number

11

12
121
122
13
131
1.3.2
133
14
141
1.4.2
143
1431
1432
1.4.3.3
1434
1.4.3.5
1.4.3.6
1.4.3.7
15

16
16.1
1.6.2
17

21
2.2
221
2.2.2
2.3
24
25

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1
TABLE OF CONTENTS
Page
Title Number

Section 1

Overview
FRATUIES ... e 1-2
MB8300 FamMIlYcceeeiiiiiiiieeieee s e 1-3
OrganiZAtIONeeiiiiiiiii e e 1-3
AQVANTAGES ... i ittt ettt ————— 1-4
CPUO30 Central Processor UNit.........ccooeeiiieniiieeeiiiiie e 1-4
(O U PSSP PERRPR 1-4
Configurable Instruction Cache (CIC) ..., 1-5
Quad Data Memory Module (QDMM)cooooiiiiiiiiiiiiee e 1-5
ON-Chip Peripherals ..o e 1-5
Direct Memory ACCeSS MOAUIEuuuuuieieiiicece e e 1-6
Serial MOAUIE ... 1-7
System Integration MOAUIEoooiiiiiiiiiiiiee e 1-7
External Bus INterface...........ooooiiiiiiiiiiiiies e 1-7
System Configuration and Protection..............ccccvvviiieeeeies veniinnnne 1-7
CloCk SYNTNESIZET ... e 1-8
Chip Select and Wait State Generationcccoeeeeeeevveveeenceneee, 1-8
Interrupt Handlingouvviiiie e e 1-8
DISCrete 1/O PINS ...ooiiiiiiiieeeet e 1-8
IEEE 1149.1 TeSt ACCESS POIt.......uiiiieiiiiiiiiie e e 1-8
Power Management ..o e 1-8
Y o] o] (1= i o S A - T 1-9
Personal Intelligent Communicationsc.cieiiiieiiiiiiiinciiee e, 1-9
Additional Application Ar€ascccuuuieiiiiiiiiiiee e 1-9

MOre INFOIMALION ...uvviiiiiiiiee e e 1-10
Section 2
Signal Descriptions
SIGNAI INAEX . e 2-2
AQArESS BUS ...eiiiiiiiie ittt ettt e e e e e e e e e 2-4
Address BUS (A23—A0) ... e 2-4
Address BUS (A31—A24)oooiiiiiiiiieieete s e 2-4
Data Bus (D31-DO0) ..o e 2-5
Function Codes (FC3—FCO0).......ccuuiiiiiiiiiiiiiiiies i 2-5
Exception Control Signalsoooiiiiiiiiiiis e 2-6
MC68349 USER'S MANUAL ii

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
251 RESEt (RESET) ..ooiiiiiiiiii e e 2-6
2.5.2 IO g o g (=] = T 2-6
2.6 Chip Selects (CS3—CS0) ...ccveivieeiirieeieetiecte e e et eee e eee e eaeas 2-6
2.7 Interrupt Request Level (IRQ7, IRQ6, IRQ5, IRQ3)ccoocevviiiiiiiiinnns 2-7
2.8 Bus Control SignalS..........cooooiiiiiii e 2-7
2.8.1 AdAress StrobE (AS)coeecveeeeeeeeee e e, 2-7
2.8.2 Data StroDE (DS)vvcveeeieeeieeiecte ettt ettt 2-7
2.8.3 LYo LA YT (R YATET) 2-7
28.4 Transfer Size (SIZ1, SIZ0) ..o e 2-7
2.8.5 Data and Size Acknowledge (DSACK1, DSACKO)covvvveeeeeiiiiiiinnnns 2-8
2.9 Bus Arbitration SIGNaAlS............euveviveiiiiiiiis i 2-8
2.9.1 BUS REQUESE (BR) ...ttt ettt eae e, 2-8
2.9.2 BUS Grant (BG) ...cuveuveeeieeiveeeeeteeeeeie ettt eeeete et eve e eaeeaeenas 2-8
2.9.3 Bus Grant Acknowledge (BGACK)cooovviiiiiiiiiiiiiiiiees e 2-8
2.9.4 Read-Modify-Write Cycle (RMC)ccceeeurireireireirees ceeieieeieeieeie s 2-9
2.10 ClOCK SIGNQAIS ... e 2-9
2.10.1 System ClIOCK (CLKOUT) ...uuuiiiiiiiiiiiirse s s 2-9
2.10.2 Crystal OsCillator (EXTAL) ..ovvvieiiiiiieeeee e et 2-9
2.10.3 External Filter Capacitor (XFC)uiiiiiiiiieiiiieeee s e 2-9
2.10.4 Clock Mode Select (MODCK)cciviiiiiiiiieeieeeeiii e 2-9
2.11 TESE SIGNAIS e e 2-10
2.11.1 TSt COCK (TCK) euiiiiiiiieieieeeitie e e 2-10
2.11.2 Test Mode SeleCt (TMS) ..o e 2-10
2.11.3 TesSt DAta IN (TDI) .ot e 2-10
2.11.4 Test Data OUL (TDO) ..uuuiiiiiiiiiiiiee et et 2-10
2.12 Debug and Emulation Support Signalsccoooeeeviiiiiiiiie e, 2-10
2.12.1 Breakpoint (BKPT) .o e 2-10
2.12.2 Freeze (FREEZE) ... 2-10
2.12.3 Instruction Pipe (IPIPEO, IPIPET) ... 2-11
2.13 DMA MOdUIE SIGNAISeveiiiiiieieiiiiiiiieee e 2-11
2.13.1 DMA Request (DREQ2, DREQT) ..ooovieiiiiiiiiiiiiiiieeeee e e 2-11
2.13.2 DMA Acknowledge (DACK2, DACKT) ...ooiiiiiiiiiiiiiiiiii e 2-11
2.13.3 DMA Done (DONE2, DONET) ...coviiiiiieiii e e 2-12
2.14 SERIAL Module SignalS.......ccccooveiiiiiiiii e, 2-12
2141 Serial External Clock Input (SCLK)coovvviiiiiiiiiiiiiiiiiiie e 2-12
2.14.2 Serial Crystal Oscillator (X1, X2)ccccuviiiiiieeeeiiriiiie e 2-12
2.14.3 Receive Data (RXDA, RXDB)uuuiiiiiiiiieie e et 2-12
2.14.4 Transmit Data (TXDA, TXDB)cccooiiiiiiiiiiiiiiieies e 2-12
2.14.5 Receiver Ready (RXRDYA) ...oooviviiiiiiiiieiiiiiiiiiiien e 2-12
2.14.6 Transmitter Ready (TXRDYA) ... et 2-13
2.14.7 Request to Send (RTSA, RTSB)ccccuviiiiiiiiieieeeeeeei e 2-13
2.14.8 Clear to Send (CTSA, CTSB)uuuuuuuiruiiiiiiiiiiiins s s s e e e s e 2-13

iv MC68349 USER’S MANUAL MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.15 Synthesizer Power (WVCCSYN) ..ooiiiiiiiiiiiiiieiiierees s 2-13
2.16 System Power and Ground (VCC)cooovvviiiiiiiiiiiiiiiiiees s 2-14
2.17 SIGNAI SUMMANY ..ot e 2-14
Section 3
Bus Operation

3.1 Bus Transfer SignalScoooviiiiiiiiiieeeee e 3-1
3.1.1 BUs Control SigNalSccoooiiiiiiiiec e e 3-2
3.1.2 Function Code SigNalSoooiiiiiiiiiiiee e 3-3
3.1.3 Address BUS (A3L—AD) ...uuiiiiiiie ettt et 3-3
3.14 AAAress SroDE (AS)ciueeieeee e e 3-3
3.15 Data BUS (D31-D0)uuviiiiiiieeeeiiiiiiiiieees ceeeerieee e e e e e e e e e e 3-4
3.1.6 Data StrobE (DS)ccveeveeiveeieeeieete et ettt 3-4
3.1.7 Bus Cycle Termination SignalS............ccccooiiiiiiiionns e 3-4
3.1.7.1 Data Transfer and Size Acknowledge Signals

(DSACKT and DSACKD) ...eveeeiiiieeeiiiiiiiiiiiiiies seeeessiinnrieeeeeeaeeeeananns 3-4
3.1.7.2 BUS Error (BERR) ... e 3-4
3.1.7.3 AULOVECTOr (AVEC) .ciiiiiiiiiiieeet e 3-5
3.2 Data Transfer MechanisSmcccuuviiiiiiieiii e 3-5
3.21 DYNamIC BUS SIZING ... e 3-5
3.2.2 Misaligned OpPerands...............uuevuueriuiiiiins e 3-13
3.23 Effects of Dynamic Bus Sizing and Operand Misalignment............... 3-20
3.24 BUS OPEIALIONeeeiiiiiiieeeeeeeeiiiee et 3-20
3.25 Synchronous Operation With DSACKXccovvvvviiiiiiiiiiiiiii e 3-21
3.2.6 Fast Termination CYCIEScoovviiiiiiiiiecs e 3-22
3.3 Data Transfer CYCIEScooi it 3-23
3.3.1 Y= [0 O3 oX = PSRRI 3-23
3.3.2 WIHEE CYCIE e e 3-28
3.3.3 Read-Modify-Write CyCle...........uumiiiiiiiiiiiiii e 3-30
34 CPU SPACE CYCIES....coeieieeeeeeeeeeeeeetittie et 3-32
3.4.1 Breakpoint Acknowledge CYCIeeuueiiiiiiiiiii e, 3-33
3.4.2 LPSTOP Broadcast CYCIeccuuiiiiiiiiiieeeiei e 3-34
3.4.3 Module Base Address RegiSter ACCESS.........cuuvvvvrverrrrrrrennnnsvrnnnnnnnnns 3-38
3.4.4 Interrupt Acknowledge BUS CYCIESuuiiiiiiiiiiiiie e e 3-38
344.1 Interrupt Acknowledge Cycle—Terminated Normally 3-38
3.4.4.2 Autovector Interrupt Acknowledge CyCleoovvviiiiviiivinininennnnnns 3-41
3.44.3 Spurious INtErruPt CYCIEoeiviiiiiiiiiie e 3-41
35 Bus Exception Control CyCIesccccuiiiiiiiiiiiiiiie e 3-43
3.5.1 BUS EITOIS .. e 3-45
3.5.2 RErY OPEIrAtIONceeiiiiiiieiiiieiiitie e e 3-47
3.5.3 [P2 1L @ 01T - 11 [3-50
3.54 Double BUS Fault............oooiiiiiiiiii e 3-52

MOTOROLA MC68349 USER'S MANUAL v

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.6 BUS AIDITratioNcoovieiiiiiiiiiiiiiiiiit s 3-52
3.6.1 BUS REOQUEST ... e eeaas 3-55
3.6.2 BUS Grant ... e e 3-56
3.6.3 Bus Grant ACKNOWIEAQEccooiiiiiiiiiiiie e 3-56
3.6.4 Bus Arbitration CONLIolcccuiiiiiiiiiiieeeee s i 3-56
3.6.5 SNOW CYCIES e 3-57
3.7 RESEE OPEIALION ...ttt e e 3-59
Section 4
System Integration Module
4.1 MOAUIE OVEIVIEW ...t e 4-1
4.2 MoOdUle OPEIALION.......cciiiiiiiiiiiee ettt e 4-2
4.2.1 Module Base Address Register Operationccceeeeeeeeeeeeeeen e, 4-2
4.2.2 System Configuration and Protection Operationccceeveeeeeeee. 4-3
4221 System ConfiguIationoooiiuiiiiiiiiiie e e 4-5
4222 INternal BUS MONITOTuuiiiiiiiiieiei it e 4-6
4223 Double Bus Fault MONITOrcoooviiiiiiiiiiii e 4-6
4224 Spurious INLErruPt MONITOLeviviiiieiiiiiiiiiiiie e 4-6
4.2.2.5 Software WatChdogeuviieiiiiiiiiis e 4-7
4.2.2.6 PeriodiC INterrupt TIMETcoooii i e 4-7
4.2.26.1 Periodic Timer Period Calculationcoccciiiiiiiiens i, 4-8
4.2.2.6.2 Using the Periodic Timer as a Real-Time ClocK..............ccc........ 4-9
4.2.2.7 Simultaneous Interrupts by Sources inthe SIM49cc.eee. 4-9
4.2.3 Clock Synthesizer Operationccccceeeeeeeeeiiiiiee e 4-9
4231 Phase Comparator and Filter..........cccooveiviiiiiiiiies e, 4-13
4.2.3.2 Frequency DIVIAEN.oo e e 4-13
4.2.3.3 ClOCK CONMIOL ittt e 4-16
4.2.4 Chip Select Operationcooiieeiiiieiiiiees e 4-16
4241 Programmable FEatUrescccuvviiiiiiiiiiii e 4-17
4.2.4.2 Global Chip Select Operationccccceeeeeeeeeiiiiiee e, 4-18
4.2.5 External Bus Interface Operationoovvvviiiiiiiiiiinncivieiineenee e 4-18
4.25.1 P OIt A e e aaaaa e e 4-18
4.25.2 POIE B ..ttt ettt a e e e e e e e 4-19
4.2.6 LOW-POWET SEOP ...uieeeieeeiiiie et ettt e e e e e e e e e e eeeees 4-20
4.2.7 FIEEZE ..o 4-21
4.3 Programming Model ... 4-21
4.3.1 Module Base Address Register (MBAR)cccoooiiiiiiiiiniiieieeeee e, 4-23
4.3.2 System Configuration and Protection Registers..........ccccvvvvvvvvvvvnnnns 4-24
4.3.2.1 Module Configuration Register (MCR)cccooeiiiiiiiiiiiiiiciee s 4-24
4.3.2.2 Identification Register (IDR)ccuviiiiiiiiiiiiiiit e 4-26
4.3.2.3 Autovector RegiSter (AVR)uvveveiuueiiiieiiiiiiiies erennnnnnnnnnnnneee s 4-26
4324 Reset Status Register (RSR)oviiiiiiiiiiiic e 4-27

vi MC68349 USER’S MANUAL MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4.3.2.5 Software Interrupt Vector Register (SWIV) ..., 4-28
4.3.2.6 System Protection Control Register (SYPCR)ccovvvvvvvvvvviiinnnnn. 4-28
4.3.2.7 Periodic Interrupt Control Register (PICR).......ccccoovviviviiiiiiiiieeen e, 4-30
4.3.2.8 Periodic Interrupt Timer Register (PITR) ..o 4-31
4.3.2.9 Software Service Register (SWSR) ..., 4-31
4.3.3 Clock Synthesizer Control Register (SYNCR)cccoviivieeiiiiiiiiieeeeee 4-32
4.3.4 Chip SeleCt REQISIEIS ..ot e 4-33
4.3.4.1 Base Address REQISIErSccceviiiiiiiiiee e e 4-33
4.3.4.2 Address Mask REQISIEISccovuiiiiuiiiiiiiiiies e 4-35
4.3.4.3 Chip Select Registers Programming Example.............cccccvvvveeeenn. 4-36
4.3.5 External Bus Interface Control............cceeevvvviiiiiiiiin i, 4-37
4351 Port A Pin Assignment Register 1 (PPARAL)ooooiiiiiiiiiiiiiinnnes 4-37
4.3.5.2 Port A Pin Assignment Register 2 (PPARA2)cccccviiiiiiveiiinnenn. 4-37
4.3.5.3 Port A Data Direction Register (DDRA)ccooeviiiiiiiiiiiieiieeeeee e, 4-38
4354 Port A Data Register (PORTA)uuuuiiiiiiiiiiiiisnnees e 4-38
4.3.5.5 Port B Pin Assignment Register (PPARB)ccoooviiiiiiiiiiiien e 4-38
4.3.5.6 Port B Data Direction Register (DDRB)ccccooeviiiiiiiiiiiiiieeeee e, 4-39
4.3.5.7 Por t B Data Register (PORTB, PORTBL)ccccoeeiiiiiiiiiiiiiiiinee e 4-39
4.4 MC68349 Initialization SEQUENCE..........ccevvveieeeeieeeeeeeis eeeeeeeeeeeeeeseeenannnns 4-39
44.1 1 = 1 L1] o PP 4-39
4.4.2 SIM49 Module Configurationccccuuviiiiiiiiiiiis e 4-40
4.4.3 SIM49 Example Configuration Codeccceovviiiiiiiiiieee e 4-42
SECTION 5
CPUO030

51 CPUS24 OVEIVIEW.....ueiiiiiiiiiieieas e ee s e e seeesaeaaaaea e e e e e eaeaeaaaaaaaaeeeeeeeeeeeeeeeees 5-1

5.1.1 CPUSB2+ FEATUINES ...ttt et e e e e e eeenes 5-3

5.1.2 Virtual MEMOIY ... e 5-3

5.13 Loop Mode INStruction EXECULIONcooviiiiiiiiiiiiiiiees e 5-4

5.14 Vector Base ReQISter.........coooiviiiiiiiieee e 5-5

5.1.5 Exception HandliNg ... e 5-5

5.1.6 AdAresSiNg MOUEScooiiiiiiiiiiiiii et e 5-6

5.2 Configurable Instruction Cache OVEIrVIEWcccccevveeiiiieeeiiiiiie e, 5-6

521 (O [@1V, oo [T 5-7

5.21.1 Instruction Cache MOdecccoooiiiiiiiiiiiiiiie e 5-7

5.2.1.2 SRAM MOAE.....co ottt et e e e e e e e 5-10
5.2.2 Programmer’'s MOdel ... e 5-10
5221 Module Configuration Register (MCR)coooicviiiiiiiiiiiiini e, 5-11
5.2.2.2 SRAM Base Address Registers 3—0 (BADDR3-0)ccccceeeeeennn... 5-12
5.3 AIChItECTUIE SUMMANY ...eiiiiiiiiiiiiiiie et et 5-13
5.3.1 Programming MOEIcovvviiiiiiiiiiiiiiiies e 5-13
5.3.2 T 0 |] (=] £ SPPTR 5-15

MOTOROLA MC68349 USER'S MANUAL vii

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
54 TS0 T 1o ST =] 5-16
54.1 M68000 Family Compatibilityeeveemmmmiiiiii s 5-18
54.1.1 NEW INSITUCTIONS ..ottt e e e e 5-18
54111 Low-Power Stop (LPSTOP) ..cccoiiiiiiiiiiieeeeeeeee e 5-18
54.1.1.2 Table Lookup and Interpolate (TBL)........cevvvveeeeeieiieiiieiiee e 5-18
54.1.2 Unimplemented INSrUCtioNScoovviiiieiiiiic e 5-18
54.2 Using the TBL INSTIUCLIONScoooiiiiiiiiiiiiieeeeees e 5-18
5.4.2.1 Table Example 1 Standard USagecovvvvvvveiiiiiiiiiesceeneeeeenn. 5-19
5422 Table Example 2 Compressed Tableevvviiiiiiiiiiiiniinnnns 5-20
54.2.3 Table Example 3 8-Bit Independent Variable.............ccccccccee. 5-21
5.4.2.4 Table Example 4 Maintaining Precisioncccccevvvvvvvvvvninnn e, 5-23
5.4.25 Table Example 5 Surface Interpolationsccccceeeeiiiieeneneeee e, 5-25
5.4.3 Nested Subrouting CallS............eiiiiiiiiiiiie e e 5-25
5.4.4 Pipeline Synchronization with the NOP Instructioncccccceeun.. 5-25
5.5 ProCesSING SEALESccuuiiiiiiiiiii e e 5-26
55.1 State TranSItIONSccevveeeeiiiiiiii s eeeeeeraeernanne 5-26
5.5.2 PrIVIIEgE LEVEIS ...t e 5-26
5521 Supervisor Privilege Level ... e 5-27
5.5.2.2 User Privilege Level ... 5-27
5.5.2.3 Changing Privilege Level ..o i, 5-27
5.6 EXCEPLION PrOCESSINGuuuuiiiiiiiiiieeeee et ettt e e 5-28
5.6.1 [et=T o 1 T0] gAY =Tox (o] £ 5-28
5.6.1.1 Types Of EXCEPLIONS ... e 5-30
5.6.1.2 Exception Processing SEQUENCEccoveeeiriiiiiiiiiiiie ceeeee e 5-30
5.6.1.3 Exception Stack Frame. ... 5-30
5.6.1.4 MuUltiple EXCEPLIONS ... e 5-31
5.6.2 Processing of Specific EXCEPLIONScooovviiiiiiiiiiiiiie e 5-32
5.6.2.1 RSB i 5-32
5.6.2.2 BUS EITON ... e 5-34
5.6.2.3 AAAreSS EITON ... e 5-35
5.6.2.4 INSLIUCLION TraPS ...ccoeiiieieeeeeeeee et ettt 5-35
5.6.2.5 Software Breakpoints..........ooooiiiiiiiii e 5-36
5.6.2.6 Hardware Breakpointscccccoiiiiiiiiiiiiiee e 5-36
5.6.2.7 FOrmat BrrOr ... e 5-36
5.6.2.8 lllegal or Unimplemented INStruCtions............cccccuvviiiiiiieiies eeeeeens 5-37
5.6.2.9 Privilege ViolatioNS.........ccooiiiiiiiiiiii e 5-38
5.6.2.10 I = (o o PP PSUPPPTR 5-38
5.6.2.11 INTEITUPES .. e 5-40
5.6.2.12 Return from EXCEPLIONuuvuiieiiiiiiiiiese s e e e e e e e e e 5-41
5.6.3 FAUIt RECOVEIY ..o e 5-42
5.6.3.1 TYPES Of FAUILS ..o e 5-44
5.6.3.1.1 Type |—Released Write Faults ... 5-44

viii MC68349 USER’S MANUAL MOTOROLA

11/3/95

Paragraph
Number

5.6.3.1.2
5.6.3.1.3
5.6.3.1.4
5.6.3.2
5.6.3.2.1
5.6.3.2.2
5.6.3.2.3
5.6.3.2.4
5.6.3.2.5
5.6.3.2.6
5.6.3.2.7
5.6.4
5.6.4.1
5.6.4.2
5.6.4.3
5.7

5.7.1
5.7.11
5.7.1.2
5.7.1.3
5.7.2
5.7.2.1
5.7.2.2
57221
5.7.2.2.2
5.7.2.2.3
5.7.2.3
5.7.2.4
5.7.2.5
5.7.25.1
5.7.2.5.2
5.7.2.5.3
5.7.2.6
5.7.2.7
5.7.2.7.1
5.7.2.7.2
5.7.2.8
5.7.2.8.1
5.7.2.8.2
5.7.2.8.3
5.7.2.84
5.7.2.8.5

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Page

Title Number
Type Il—Prefetch, Operand, RMW, and MOVEP Faults............. 5-45
Type lll—Faults During MOVEM Operand Transfer 5-46
Type IV—Faults During Exception Processing...........cccccevvvunnnn.. 5-46
Correcting @ FauUlt..........oooiiiiiee e 5-47
Type I—Completing Released Writes via Software 5-47
Type |—Completing Released Writes via RTE.............c.ccvvvunne.n. 5-47
Type II—Correcting Faults VIa RTE ..., 5-48
Type lll—Correcting Faults via Software.................................... 5-48
Type lll—Correcting Faults by Conversion and Restart............. 5-48
Type lll—Correcting Faults via RTE...........cccccciiiiiiii e, 5-49
Type IV—Correcting Faults via Softwareccceeeeeeeeee . 5-49
CPU32+ Stack Framesoooovviiiiiiiiiiiiiiiiit e 5-50
Four-Word Stack Frame ... e, 5-50
SIX-Word Stack Frame ... e 5-50
BUS ERROR Stack Frameuuvueiiiiiii s 5-50
DevelopmeENnt SUPPOIT ...cooiieiiiee e e 5-53
CPU32+ Integrated Development SUPPOItceevvvvvvvevvvievennsvvnnnns 5-53
Background Debug Mode (BDM) OVEIVIEWeeeeeeieiiieeeennnnnnans 5-54
Deterministic Opcode Tracking OVEIVIEWccceeiveiiieeneeeeeee vennn. 5-54
On-Chip Hardware Breakpoint OVerviewccccceeeveeeveeiiiines e, 5-55
Background Debug Mode ... 5-55
LT o] 1o T = PP 5-56
BDM SOUICES ...t et e e 5-56
External BKPT Signal.coooooiiiiiiis e 5-56
BGIND ..ottt e 5-56
Double BUS FaUIL. ... 5-56
ENLEring BDMouiiiiiiiiiiie et e 5-57
CommAaNd EXECULION.cceeiiiiiiiiiiiiiiie e e it 5-57
BDM REQISIEIS ..ttt e 5-57
Fault Address Register (FAR)ccuvuiiiiiiiiiieeeei e 5-57
Return Program Counter (RPC) ..., 5-57
Current Instruction Program Counter (PCC).cceoeeeieeeeennenn. 5-58
Returning from BDMcoooiiiiiiiiiiiiiiiiies e 5-59
Serial INErfaceooviiiiie e 5-59
CPU Serial LOGIC ...evvveieiiiiiiiiiiieeiee e et 5-60
Development System Serial LOQICccvvvvivieiiieeiiiiii e 5-62
COMMANT S ..evviiiiiiiei e e 5-63
Command FOrmMaLtcoooeeeeeieieeee e 5-63
Command Sequence Diagramccccceeeieeeiieeeeeeeee e 5-64
Command Set SUMMANYoouvuiiiiieieieiecies e eeenns 5-66
Read A/D REQISIEN ... e 5-67
WIrite€ A/D REQISIENcieeeieeeeeeeeeeeeeeeet et 5-67

MC68349 USER'S MANUAL iX

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
5.7.2.8.6 Read System Register (RSREG)ccccuuviiiiiiiiiiiiii e 5-68
5.7.2.8.7 Write System Register (WSREG)ccoooveeiiiiiiieieieeeeeees s 5-69
5.7.2.8.8 Read Memory Location (READ)coovvviiiiiiiiiiiieee e 5-70
5.7.2.8.9 Write Memory Location (WRITE)ccccuiiiiiiiiiieeeei e 5-71
5.7.2.8.10 Dump Memory BIOCK (DUMP).uuvuiiiiiiiiiiiieeees e 5-72
5.7.2.8.11 Fill Memory BIOCK (FILL) ovvvvveiiieeeeeeceeee e e 5-73
5.7.2.8.12 Resume EXecution (GO)covviiiiiiiiiiiiiiiieeee e 5-74
5.7.2.8.13 Call User Code (CALL) ..oouviieiiiiiiiiiiiieeeeee s e 5-75
5.7.2.8.14 Reset Peripherals (RST) ...uuueuuiiiiiieieeeees e 5-77
5.7.2.8.15 NO Operation (NOP) ...t e 5-77
5.7.2.8.16 Future ComMmMANASuuieiiiiieeeeiiiiiiit e 5-78
5.7.3 Deterministic Opcode Trackingccoovvviiiiiiiiiiiiiiiin e 5-78
5.7.3.1 Instruction Fetch (IFETCH)cuviiiiiiii e 5-78
5.7.3.2 Instruction Pipe (IPIPE) ..., 5-78
5.7.3.3 Opcode Tracking During LOOP MOcoeveieiiiiiiiiiiiiiie e 5-80
5.8 Instruction EXecution TimMIiNgcoocuiiiiiiiiiiieeeeeee e 5-80
5.8.1 Resource SChedulinguuuuieiiiiicie e 5-80
5.8.1.1 IMICTOSEQUENCET ...ttt ettt e e e e e e e r e e e e e e e e e 5-81
5.8.1.2 INStruction Pipeline.........cooiiiiiiiiieeeeeeeeee e 5-81
5.8.1.3 Bus Controller RESOUICESuuvuuiiuiiiiiiiiiees e 5-82
5.8.1.3.1 Prefetch Controller ... 5-82
5.8.1.3.2 Write-Pending BUFFEr. ... s 5-82
5.8.1.3.3 Microbus Controller ...t i 5-82
58.14 Instruction Execution OVErlapceviiiiiiiiiiiiiii e 5-83
5.8.1.5 Effects of Walt Stateseeveiiiiiiiiiiii e 5-84
5.8.1.6 Instruction Execution Time Calculation............cccoeeeeeiiiiii e, 5-84
5.8.1.7 Effects of Negative Tails ..., 5-85
5.8.2 Instruction Stream Timing EXamplescccooevviiiiiiiiiiiee e, 5-87
5.8.2.1 Timing Example 1—Execution Overlapcccovvvviiiiiiiiiinvvinnens 5-87
5.8.2.2 Timing Example 2—Branch INStructionsccccccovviiiiiiieee ceeenns 5-88
5.8.2.3 Timing Example 3—Negative TailS..........ccooevviviiiiiiiiiiis i 5-89
5.8.3 Instruction TiIMiNg TabIesuiii 5-90
5.8.3.1 Fetch Effective AdAresscccocoiiiiiiiiiiiii s 5-92
5.8.3.2 Calculate Effective AdAresscoooviviiiiiiiiiiiiiie e 5-93
5.8.3.3 MOVE INSTIUCTION ...ttt s e e e e e e e e e e e 5-94
5.8.3.4 Special Purpose MOVE INSTrUCHIONcevviiieriiiiiiiiiiiie ceeeeeee e 5-94
5.8.3.5 Arithmetic/LogiC INStIUCIONSvvvviiiiiiiieee e e, 5-96
5.8.3.6 Immediate Arithmetic/Logic INStructionsccccvvvveeeeeeeeens e, 5-97
5.8.3.7 Binary-Coded Decimal and Extended Instructions 5-98
5.8.3.8 Single Operand INSrUCLIONScoovvviiiiiiiieiiiies e 5-99
5.8.3.9 Shift/Rotate INStruCtioNS...........cooviviiiiieieieeeeee e 5-100
5.8.3.10 Bit Manipulation INStrUCtioNScevvvvvviiiiiiiiiiis e 5-101

X MC68349 USER’S MANUAL MOTOROLA

11/3/95

Paragraph
Number

5.8.3.11
5.8.3.12
5.8.3.13
5.8.3.14

6.1
6.2
6.3
6.3.1
6.3.2

7.1

7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.11
7.3.1.2
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.4
74.1
74.1.1
7.4.1.2
7.4.2
7421
71.4.2.2
7.5

7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.6.3

MOTOROLA

SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Page
Title Number
Conditional Branch INStructionseeeeiiiiiiiiiieeee e 5-102
Control INSTIUCLIONScooeiiiiiiiieeeeee e e 5-103
Exception-Related Instructions and Operations.............c.cceevvevnnnnn. 5-104
Save and Restore OPErationS...........cueiiieeeeeiiiiiiii e e e e e e e e e 5-105
Section 6
Quad Data Memory Module
Functional DeSCHPLIONcoiiiiiiiiiiie e e e e e e eeaanns 6-1
APPLICALION AFBAS ...ttt e e e e e 6-2
Programming MOAElcccooiiiiiiiiiii 6-2
Module Configuration Register (MCR)ccooooiiiiiiiiiii e 6-3
QDMM Base Address Registers (QBAR3—-QBARDO)cevvvvvvvveeennn. 6-4
Section 7
DMA Controller Module
DMA MOAUIE OVEIVIEWcceiiiiiiiiiiiiieieiieeiiie ettt 7-2
DMA Module Signal DefiNitioNS...........ooviiiiiiiiiiiiiies e 7-4
DMA Request (DREQ1, DREQ2)cccoevviiiiiiiiiiiiiiiicees e 7-4
DMA Acknowledge (DACK1, DACK2)coouvveuivemmmniiiiinnesieieeeeaeeeenn 7-4
DMA Done (DONET, DONE2)ccccoiiiiiiiiiiiiieeie e 7-4
Transfer Request Generation............cccceeeeeeeeeeeieeei e, 7-4
Internal Request GeNerationeeeeiiieeeiiiiiii e 7-4
Internal Request, Maximum Rate...........cccceevvvvvvvvvvivnns evenveennnnennnnns 7-5
Internal Request, Limited Rateccoovvviiiiiiiiiee e, 7-5
External Request GENErationccccooiiiiiiiiiiiiee e 7-5
External BUrSt MOOEoeiiiiiiiiiiiiiiiiie e 7-5
External Cycle Steal Mode..........ccooooeiiiiiiiiiiie e, 7-5
External Request with Other Modules ..o 7-6
Data Transfer MOUESoccuuiiiiiiiiiiee e e 7-7
SiNGIe-Address MOAEuviiiiiiiiiieeee s e 7-7
Single-Address ReaAdoooiiiiiiiiiiiiiiie s e 7-7
SINGle-AdAreSS WILEcovvveieiiiieiieeeeeeeeeeee e 7-10
DUal-AdAreSS MOUEcceviiiiiiiiiiiiiiiiiiiiit et s 7-12
Dual-Address Readccooveiiiiiiiiieee e 7-12
DUAI-AAAIESS WL ..eeeiiieeeiieciiiiieiee e sttt e e e 7-15
BUS AIDITIALION ... e 7-18
DMA Channel Operationooocuuviiiiiiiieies e 7-18
Channel Initialization and Startupcceeeieiiiiiiieee e, 7-18
Data TranSIeIScoiiiiiiieeieeeeeeeeeeeit e 7-19
Internal Request TranSTers ... e 7-19
External Request Transfers ... e 7-19
Channel Terminationeeeeeeueeeieiin e 7-20
MC68349 USER'S MANUAL Xi

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.6.3.1 Channel Termination.........cccoooevieeiiiieeeeeee e 7-20
7.6.3.2 INtErruUPt OPEIAtiONevvviiiiiiiiiiiin e e e e e e e e e e e 7-20
7.6.3.3 Fast Termination OPtioNueiiiiiiiiiiiiies e, 7-21
7.7 ReQIStEr DESCIPLION ...cciiiiiiiiiiiiiie et e 7-22
7.7.1 Byte Transfer Counter Register (BTC)uuuuuiiiiiiiiiiiiiiieeeee ceeeeeeeeennn 7-24
7.7.2 Channel Control Register (CCR)oovuviiiiiieieeeeeis e 7-24
7.7.3 Channel Status Register (CSR)cccuuviiiiiiiiiiiiieeeees e 7-28
7.7.4 Destination Address Register (DAR)coovvvvivivieeiieeiiiiis eveeevieaninnnns 7-29
7.7.5 Function Code Register (FCR)ooooveeiiiii e 7-30
7.7.6 Interrupt Register (INTR) ...ooviiiiiiiee e 7-31
7.7.7 Module Configuration Register (MCR)cccooeeviiiiiiiiii e, 7-32
7.7.8 Source Address Register (SAR)uu i e 7-34
7.8 DaAta PACKINGuveeiiiiiiieeieiiiiiis et 7-35
7.9 DMA Channel Initialization SEqQUENCE.............coevvvvivviviiiin e 7-35
7.9.1 DMA Channel Configuration...............oooiviiiiiiiiiiin e 7-36
79.11 DMA Channel Operation in Single-Address Mode......................... 7-37
7.9.1.2 DMA Channel Operation in Dual-Address Modeccccceeeeennn... 7-38
7.9.2 DMA Channel Example Configuration Codecccvvvvvviivvviennnnnennn. 7-39
Section 8
Serial Module
8.1 MOAUIE OVEIVIEW ...ttt et 8-2
8.1.1 Serial Communication Channels Aand Bcccevvviiiiiiiiiiinevnnnnns 8-3
8.1.2 Baud Rate Generator LOQIC..........ccoeevviiiiiiiiiiiiiis e 8-3
8.1.3 Internal Channel Control LOQICccovvviiiiiiiiiicccceee e 8-3
8.14 INterrupt CONLIOl LOGIC ...vvveveeieeeieiiiiiiieeeee e 8-3
8.1.5 Comparison of the Serial Module to the MC68681............................ 8-4
8.2 Serial Module Signal Definitionsccooviiiiiiiiiiii e 8-4
8.2.1 Crystal Input or External Clock (X1)ccooviiiiiiiiiiiiiiiiiiiee e 8-5
8.2.2 (1Y r= L @ U1 011 0, 2 L 8-5
8.2.3 External INput (SCLK) ... 8-6
8.2.4 Channel A Transmitter Serial Data Output (TXDA)ccccccvvvvvireenen. 8-6
8.2.5 Channel A Receiver Serial Data Input (RXDA)ccovvvvvevvvviviniiiieenn 8-6
8.2.6 Channel B Transmitter Serial Data Output (TXDB)cccccceceeiennnn. 8-6
8.2.7 Channel B Receiver Serial Data Input (RXDB)coooviiiivvvviiinnnee. 8-6
8.2.8 Channel A Request-To-Send (RTSA) ..coovvveeieeiiiiiiiiiiiiee e 8-6
8.2.9 Channel B Request-To-Send (RTSB)ooooveeeiiiiiiiiiieeeeee e 8-7
8.2.10 Channel A Clear-To-Send (CTSA) .. e 8-7
8.2.11 Channel B Clear-To-Send (CTSB)ccvvviiieiiiiiiiiiiiiiiee ceee e 8-7
8.2.12 Channel A Transmitter Ready (TXRDYA) ...cooiviiiiiiiiiiiiiiiieeeee e 8-7
8.2.13 Channel A Receiver Ready (RXRDYA)covvviviiiiiiiiiiieiiiiiiee eeeeeeaeeaen 8-7
8.3 (@ 01T = 1 (o] o ISP 8-8

Xii MC68349 USER’S MANUAL MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

8.3.1 Baud Rate GENEIALOreuuvuiiiiiiiiiiiiiin e e es 8-8

8.3.2 Transmitter and Receiver Operating Modes...........ccceeeeeeeevvvvveveee e, 8-8

8.3.2.1 TrANSIMIEEET e 8-10
8.3.2.2 oS Y 8-11
8.3.2.3 FIFO STACK ...t e 8-13
8.3.3 LOOPING MOAESceiiiieccie e e e 8-14
8.3.3.1 Automatic ECNO MOAEuvviiiiiiiiiiiiii e 8-14
8.3.3.2 Local Loopback MOdEcccoeviiiiiiiiiiieee e e 8-14
8.3.3.3 Remote Loopback Mode ... 8-14
8.3.4 MUIEAIOP MOAE ... e 8-15
8.3.5 BUS OPEIAtiONcoeeviiieieeeeeeeeeeeeiit et e e e e e e e e eeas 8-17
8.3.5.1 Read CYCIES.....ooo 8-17
8.3.5.2 WIEE CYCIES ... e 8-17
8.3.5.3 Interrupt Acknowledge CycClesccoooeeeiieiiiiii e, 8-17
8.4 Register Description and Programmingcccceeeeeoniniiiins eeeeeennnnnnns 8-18
8.4.1 Register DESCIPLIONooiiiiiiiieiiit e e 8-18
8.4.1.1 Auxiliary Control Register (ACR)uuuuuiiiiiiiiieieeeee e e 8-20
8.4.1.2 Clock-Select Register (CSR)oooviiiiiiiiiiiiiieieeees e 8-20
8.4.1.3 Command Register (CR)ccooviiiiiiiiieeieeeeeeeeee e 8-22
8.4.1.4 Input Port Change Register (IPCR)......coooeviiiiiiiiiiiiiciee e 8-25
8.4.15 Input Port Register (IP) ... e 8-26
8.4.1.6 Interrupt Enable Register (IER)uuvvviviiiiiiiiiie v 8-27
8.4.1.7 Interrupt Level Register (ILR)ooovvviiiiiieieieieee e 8-28
8.4.1.8 Interrupt Status Register (ISR)oovviiiiiiiiii e 8-28
8.4.1.9 Interrupt Vector Register (IVR)coovvvviiiiieeee e 8-30
8.4.1.10 Module Configuration Register (MCR)uvviiiiiiiiiiiiiiiies e, 8-31
8.4.1.11 Mode Register 1 (MRL)uuiiiiiiiiieiiiiiiee e e 8-33
8.4.1.12 Mode Register 2 (MR2) ..., 8-35
8.4.1.13 Output Port Data RegiSter (OP)uuueeiiiiiiiiiiiieeeiees e 8-37
8.4.1.14 Output Port Control Register (OPCR)cccuvviiiieiiiieeeeeei e 8-38
8.4.1.15 Receiver Buffer (RB)ccoooeeiiiiiiiie e e, 8-39
8.4.1.16 Status RegiSter (SR) ...cevveiiiiiiiiiiiiiiiiiiiiiiin et 8-39
8.4.1.17 Transmitter BUffer (TB)oooooo i 8-41
8.4.2 Programmlingcoooeiiiiiiiieeeeeeeee e e e e e e e e e e 8-41
8.4.2.1 Serial Module INtialization.cccccooiiiiiiiis e, 8-42
8.4.2.2 [/O Driver EXamPIE.....coooiiiiiiiiiieeeeeee et 8-42
8.4.2.3 Interrupt Handlingccooooeeeeiioiiii 8-42
8.5 Serial Module Initialization SEQUENCEcccuvviiiiiiiiieeeee e 8-48
8.5.1 Serial Module Configurationoovvvveeiiiiiii e 8-48
8.5.2 Serial Module Example Configuration Code..........ccccceevveevvviiiinne e, 8-50

MOTOROLA MC68349 USER'S MANUAL Xiii

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
Section 9
IEEE 1149.1 Test Access Port
9.1 OVEIVIEW ...ttt ettt e e e e e e e e e e e s e e e bbb e e
9.2 TAP Controller ...
9.3 Boundary Scan REQISIENuuviiiiiiiiiiiiiiii e
94 INSLrUCtion REQISTEN ... e
94.1 EXTEST (000) ..vtiiiiieieeeeeeiiiiiiiieeees ceeesssiiineeeeeeeaeeeeeessnnnneeeees
9.4.2 SAMPLE/PRELOAD (001) ..uvtviiiiiieeeeeee e ceee e e e
9.4.3 BYPASS (XIX, 101) ceeiiiiieeiiiiiiiiiiiiieeeee s seeiiiiineeee e e e e e e
9.4.4 HI-Z (100) ...t et e e e e e e e e
9.5 MCB8349 RESIICHONS......cevvvveeeeieiieeiiiiiiiies ceeeeeeeeeeeeeeeeeeaaeeennennnnes
9.6 NON-IEEE 1149.1 OPerationcccuveiieeeeeeeeeiiiiceviieeeeeeeeeaennnnnes
Section 10
Applications
10.1 Minimum System Configurationccccuvveiiiiiiiees i
10.1.1 Processor Clock CirCUItrycoooeeeiiiiiii e,
10.1.2 RESEL CIICUILIY .o e
10.1.3 SRAM INterface ...
10.1.4 ROM INterface ... e
10.1.5 Serial INTEIfACEvvvuieieiiiii e
10.2 Memory Interface Informationcccoeveivieii e,
10.2.1 Access Time CalCulationseveveeriiiii s
10.2.2 Calculating Frequency-Adjusted OUutput..........cc.eeveeeeeeeeninnnnnn.
10.2.3 Interfacing an 8-Bit Device to 16-Bit Memory
Using Single-Address DMA MOdeccoovvviviiiiiieceeeiin i,
10.3 Power Consumption Considerations..............ccccveeeeennninnscvvieene.
Section 11
Electrical Characteristics
11.1 MaxXimum RaAtINGScoovuiiiiiieiieiiiiie s e
11.2 Thermal CharacteriStiCsuuveriiriiiiiiiiieiis e
11.3 Power CONSIAEratioNSc.uueeiiiiiiiiiiiiiee cee e e e
114 AC Electrical Specification Definitionsccoevvviiiiiivnnnvnnnnns
115 DC Electrical SpecifiCationscooviiiviiiiiiiies e
11.6 AC Electrical Specifications Control Timingc..ccevvvvvvveeeeene.
11.7 AC Timing SPecCifiCationScoooeeiieiiieie e
11.8 DMA Module AC Electrical Specificationsccccvvvvveeeennnen s
11.9 Serial Module Electrical Specificationscccccvvvvvvvvevnn e,
11.10 IEEE 1149.1 Electrical Specificationscccceveeeeeeeeiiiiiseneee

Xiv MC68349 USER’S MANUAL

Page
Number

MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
SECTION 12
Ordering Information and Mechanical Data
12.1 Standard MC68349 Ordering Informationccccoeeeviiiiieeeiiis ceneeeeeenn, 12-1
12.2 Pin Assignment—160-Lead Plastic Quad Flat Packcccc........ 12-2
12.3 Package DImensionS—FT SUFIXoooviiiiiiiiiiiee e 12-4

MOTOROLA MC68349 USER'S MANUAL XV

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MC68349 BIOCK DIAQIaImMeeeeiiieiiiiiiiiiiiiiie e 1-1
2-1 Functional Signal GrOoUPSooviiiiiiii e e e e enens 2-1
3-1 INput Sample WINAOWcoooeiiiieeeeee e e 3-2
3-2 Internal Operand Representationc.uuuiiiieieiieiiis v ee e eeeeaaaes 3-6
3-3 MC68349 Interface to Various POrIt SIZESccovviiiiiiiiiiiiiiiiie e 3-7
3-4 Long-Word Operand Write to Word Port Example..........ccccovvvvvvvvvvviiien e, 3-10
3-5 Long-Word Operand Write to Word Port Timingccoeeevvveiiiiiiiivceeii e, 3-11
3-6 Word Operand Write to Byte Port EXample ... e 3-12
3-7 Word Operand Write to Byte Port Timingcccooeeeeeiiiiii e, 3-13
3-8 Misaligned Long-Word Operand Write to Word Port Example 3-14
3-9 Misaligned Long-Word Operand Write to Word Port Timingcccccevveee. 3-15
3-10 Misaligned Word Operand Write to Word Port Example..........cccccceeeieienennn. 3-16
3-11 Misaligned Word Operand Write to Word Port Timingccooovvvieiiiennneee. 3-17
3-12 Misaligned Long-Word Operandccuuvuiiiiiiiiieeies i 3-18
3-13 Misaligned Long-Word Operandooooviiiiiiiiiiiis e 3-19
3-14 Fast Termination TIMINGcoooiiiiiiiiiiiiiiiiiiiies e eeeee e b 3-22
3-15 Long-Word Read Cycle FIOWChAIT ..ot e 3-24
3-16 Byte Read Cycle FlIowchartccccooeiiiiiiiiii 3-24
3-17 Byte and Word Read Cycles—32-Bit Port Timingcccccoevvviiiiieeeeeiiinn e, 3-25
3-18 Long-Word Read—16-Bit and 32-Bit Port Timingccccccceeeeriiiiiiiin e 3-26
3-19 Long Word Write Cycle FIOWChArtuiiiiiiiiiiieiees i 3-28
3-20 Read-Write-Read Cycles—32-Bit POrt TIMiNgccooveeeeiiiiiiiiiiin e 3-29
3-21 Read-Modify-Write Cycle TiMINGccovviiiiiiiiieiiieeeeeeeis ceeeeeeeeeeeeeeeeeeeeeeeaeennnnes 3-30
3-22 CPU Space Address ENCOAINGcoovvviiiiiiiiiiiiiiei s 3-33
3-23 Breakpoint Operation FIowChartccccoooiiiiiiiiii e 3-35
3-24 Breakpoint Acknowledge Cycle Timing (Opcode Returned)ccccccceveeeee 3-36
3-25 Breakpoint Acknowledge Cycle Timing (Exception Signaled) 3-37
3-26 Interrupt Acknowledge Cycle FIOWChAIT...........ccooooiiiiiiiiiiit e 3-39
3-27 Interrupt Acknowledge Cycle TiMINGcoovvevviiiiiiiiiiiiiiies e e e e e 3-40
3-28 Autovector Operation TIMINGcoovuiiiieiiiiiiiiie e e 3-42
3-29 Bus Error without DSACKX TiMiNGcuvviiiiiiiieieeeiiiiiit e 3-46
3-30 Late Bus Error with DSACKX TimMING ..cccvvviiiiiiiiiieeeeeiiiit e 3-47
3-31 Retry SequeNCe TIMINGoooeiiiiiiiiiiiiiiiiiiiriies ererreeeeninenee s 3-48
3-32 Late Retry SEqUENCE TIMINGuuveriiiiieiiiiiiiiiiiiiie ceee e s e e e e e e e e 3-49
3-33 HALT TIMING cetttiiiiiiiieeeeee et e e e e e s ettt e e e e e e e e s s s s bbb eeeeeeeaeeeeasannnns 3-51

Xvi MC68349 USER’S MANUAL MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
3-34 Bus Arbitration Flowchart for Single Request ... 3-54
3-35 Bus Arbitration Timing—Idle BUS CaSEccoovvviviiiiieiiiiiiin e 3-54
3-36 Bus Arbitration TIming—ACtive BUS CaSEuceeviiiiiiiiiiiiiiiiee e 3-55
3-37 Bus Arbitration State DIagramcccuuuviriiiiieeeeeeee it e e 3-58
3-38 ShoW Cycle TIMING coooeeieiei e e 3-59
3-39 Timing for External Devices Driving RESET ... i 3-60
3-40 Power-Up Reset Timing Power-Up RESet.........ccoooviiiiiiiiiiiiiiie e 3-61
4-1 SIM49 Module Register BIOCKuiiiiiiiiiiiiiieees e 4-3
4-2 System Configuration and Protection FUNCHONcvvviiiiniiiiiiii e 4-5
4-3 Software Watchdog BIOCK Diagramuuveiueiiiiiiiiis ieiiieeeeeeeeeeeeeeeeaeeee 4-7
4-4 Clock Block Diagram for Crystal Operation...............uuueeeeeeiiiiinscennnnnneeeeeeenns 4-11
4-5 MC68349 Crystal OSCIlatOrccoiieiiiiiiiiiiiiiiie e 4-11
4-6 Clock Block Diagram for External Oscillator Operation.................cccceeeeeen.. 4-12
4-7 Full Interrupt Request MUItIpIEXEr ... e 4-19
4-8 SIM49 Programming MOdelcooooiiiiiiiiiiiiit e 4-22
5-1 CPUS32+ BIOCK DIAQIam ..o e 5-4
5-2 Loop Mode INSrUCtiON SEQUENCEuviiiiiiiiiiiiieeeeeeee s ittt e e e e e e e e e 5-4
5-3 System BIOCK DIiagramuuuiiiiieiiiiie e ceeeeee e 5-7
5-4 INSLrUCLION CACNE ... 5-8
5-5 Instruction Cache Word State Diagram............cooccuvviiiiiiiiees e 5-9
5-6 CIC SRAM Block Diagramccccooiiiiiiiiii 5-10
5-7 CIC Programming MOdelooooiiiiiiiiies e 5-11
5-8 User Programming Model ... e 5-14
5-9 Supervisor Programming Model Supplementcccoooeeiiiiiiiiiiee e, 5-14
5-10 StAUS REGISIEI ...t e a e 5-15
5-11 Table EXAMPIE 1 ..oooeeeiieeeeeeieeiiieeittiis ettt e e e 5-19
5-12 Table EXamMPIE 2 e e 5-20
5-13 Table EXample 3 ... s 5-22
5-14 EXCeption Stack Framecoovviiiiiiiiiiiiiiiiis e e e 5-31
5-15 Reset Operation FIOWCNAItoiiiiiiiiiiiiiiicees e 5-33
5-16 Format $0—Four-Word Stack Frameccccccccvveeeiiiiiiiiii e 5-50
5-17 Format $2—Six-Word Stack Framecccccvveiiiiiiiiees e 5-50
5-18 Internal Transfer Count REgISter ...t e 5-51
5-19 Format $C—BUS Error Stackcovviieiiiiiiiiii e 5-52
5-20 Format $C—Bus Error Stack on MOVEM Operand............cccccvvvvvieeeeeeees e 5-52
5-21 Format $C—Four- and Six-Word Bus Error Stackccccceeveeeiiiiiiiin e, 5-53
5-22 In-Circuit Emulator Configurationcceeeeeeioiiiiiis e 5-54
5-23 Bus State Analyzer Configurationccccceieeeiiii 5-54
5-24 BDM BIOCK DIGQIam ...t ettt e e 5-55
5-25 BDM Command Execution Flowchartccccooeeiiiiiii e, 5-58

MOTOROLA MC68349 USER'S MANUAL Xvii

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
5-26 Debug Serial I/0O BIOCK DIiagramcocuuuiiimiiiiieeeees it 5-60
5-27 Serial Interface TimMING DIiagramuuvuuiiiuiimminin e 5-61
5-28 BKPT Timing for Single BUS CYCIEcooiiiiiiiiiiiccee e 5-62
5-29 BKPT Timing for FOrcing BDMuuiiiiiiiiiiiin e 5-62
5-30 BKPT/DSCLK LOQIC Diagram......cccceeeeiiiieiiieieeeeeeee e 5-63
5-31 Command Sequence DIiagramooouuiiiiiieiiiiiii e 5-65
5-32 Functional Model of Instruction Pipelingcccoiiiiiiiin e 5-79
5-33 Instruction Pipeline Timing Diagramcccccceeeeeiiiiiiiiiee e 5-80
5-34 Block Diagram of Independent RESOUICEScoevueiirvimimimnniiisciiieaneeeee e 5-81
5-35 Simultaneous INStruCtion EXECULIONevviiiieiiiiiiiiiiiie e 5-83
5-36 Attributed INStrUCtION TIMES ...ccooiiiiiiiiiiieieeeee e 5-83
5-37 Example 1—INStruCtion Sreameeeioaiieeeeeeee e e 5-87
5-38 Example 2—Branch Takeniiii e 5-88
5-39 Example 2—Branch Not Taken............ccccooiiiiiiiiiiie s 5-88
5-40 Example 3—Branch Negative Tail ...t e 5-89
6-1 Programming Model for the QDMMuuuiiuiiiiiiiiiiiiis s 6-2
7-1 DMA BIOCK DIBGIAM ...ciiiiiiiiiiiiiiiieie et et e et e e e e e e e e e 7-1
7-2 SiNgle-AddreSs TranNSTEIS..........uviiiiiii e 7-3
7-3 Dual-Address TranSfer ... e 7-3
7-4 DMA External Connections to Serial Modulecccoovvvvveiiiiineiiviiiiinnns 7-6
7-5 Single-Address Read Timing (External BUrst)coevvvviiviiiiiiiiiscvviviinnnnns 7-8
7-6 Single-Address Read Timing (Cycle Steal) ... 7-9
7-7 Single-Address Write Timing (External BUrst)ccccoeeeiiiiiiiiiiiiiies e, 7-10
7-8 Single-Address Write Timing (Cycle Steal)cccoovviviiiiiiiii e, 7-11
7-9 Dual Address Read Timing (External Burst—Source Requesting).............. 7-13
7-10 Dual-Address Read Timing (Cycle Steal-Source Requesting) 7-14
7-11 Dual Address Write Timing (External Burst—Destination Requesting)........ 7-16
7-12 Dual Address Write Timing (Cycle Steal—Destination Requesting) 7-17
7-13 Fast Termination Option Timing (Cycle Steal)cccceeeeviiiii e 7-21
7-14 Fast Termination Option Timing (External Burst—Source Requesting) 7-22
7-15 DMA Module Programming Model ... e 7-23
7-16 Packing and Unpacking of Operands.............cccceeeiiiiiiiiiies i 7-35
8-1 Simplified BIOCK DIAQIamc..uuiiiiiiiiiieeiii e 8-1
8-2 External and Internal Interface Signalscccccoeiieiiiiiiiie e 8-5
8-3 Baud Rate Generator BIOCK Diagram..........coooeeiiiiiiiiiiiiiiie e 8-8
8-4 Transmitter and Receiver Functional Diagramcccccccivniiiiiiiineeeeeeeenn. 8-9
8-5 Transmitter TimiNg DIiagramooieiiiiiiieeiie s e e 8-10
8-6 Receiver TIming DIagramcooviiiiiiiiiiiiiiieie ceeeeeeeeeeeeeeeeeeeeeeeeeeneeeeaennnnnnnnnns 8-12
8-7 Looping Modes Functional Diagramccueueeiieiiiiieeees o 8-15

XViii MC68349 USER’S MANUAL MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
8-8 Multidrop Mode Timing DIagramceeeeeeiiiiiiiiis e 8-16
8-9 Serial Module Programming Modelouvviiiiiiiiiis i 8-19
8-10 Serial Module Programming FIOWChartcoooviiiiiiiiiii e 8-43
9-1 Test Access Port Block Diagram.........ccoooeeeeeiiiieiiiieee e, 9-2
9-2 TAP Controller State Machinecccoooiiiiiiii 9-3
9-3 Output Latch Cell (O.LAtCh)oovviiiiiiiiiiiiit e 9-7
9-4 T o1 Lo T IO =T (18 T) P 9-7
9-5 Active-High Output Control Cell (IO0.Ct1).......coiiieiieiiieieeeeeee e, 9-8
9-6 Active-Low Output Control Cell (I0.Ctl0)ooeveeeiiiiiiiiii e 9-8
9-7 Bidirectional Data Cell (I0.Cell)coooviiiiiiiieeeeeeee s 9-9
9-8 General Arrangement for Bidirectional PinSccccoooiii 9-9
9-9 BYPASS REGISIEN ...t e 9-11
10-1 Minimum System Configuration Block Diagramcccccciiiiiiiiiie e, 10-1
10-2 Sample Crystal CirCUIT.........oiiiiiiiiiiiiiii e e 10-2
10-3 Statek Corporation Crystal CirCUItcccoeviiiiiiiiiiiiie e, 10-2
10-4 XFC and VCCSYN Capacitor CONNECLONS...........uuvuummmiiiiaaaiaees aeeeeeaeeeaeeeen 10-3
10-5 SRAM INEITACE ..ceivviiieiieeeeeeieieetiiet et n e e e e e e e e e e eeas 10-4
10-6 ROM INEEITACE ...uveiiiiiieeee e e 10-4
O YTy = I [0] (T o = Lo = PP 10-5
10-8 Access Time Computation DIagramceeeeeiiiiiiiiiies ceee e 10-6
10-9 Signal Relationships t0 CLKOUTcciviiiiiiiiiiiiiiiiies evesesesssnnssnennnnnnnns 10-7
10-10 Signal Width SPeCIfiCatIONScceeiiiiiiiiiiiiiiiiie e 10-7
10-11 Skew between TWO OULPULS........uururireiiiiisieeseees ceeeeeeeeeeeeeeereeeeeeeeeeeeneannnnnnne 10-8
10-12 Circuitry for Interfacing 8-Bit Device to

16-Bit Memory in Single-Address DMA MOcooviveiiiiiiiiiiiiiie e 10-10
11-1 Drive Levels and Test Points for AC Specificationsccccceeevveeivivninnn e, 11-4
11-2 Read Cycle Timing DIAgramccoooooiiiiiiiiiiiees e 11-11
11-3 Write Cycle Timing DIagramuuuuuuiuueiiiiiies sieeeaseeeeeeeeeeeeseeesseeeeseresnnnnne 11-12
11-4 Fast Termination Read Cycle Timing Diagramccccccvviiiieeeieeiinciiieeeen, 11-13
11-5 Fast Termination Write Cycle Timing Diagramccccccceeeeeeeeinnnnncivinnnenen. 11-14
11-6 Bus Arbitration Timing—ACtive BUS CaSEeviiiiiiiiiiiiieeee e, 11-15
11-7 Bus Arbitration Timing—Idle Bus CaSecccovuiiiiiiiiiiiiiiis e, 11-16
11-8 Show Cycle Timing DIiagramcoooiiiiiiiiiiiiiiiies e 11-16
11-9 TACK Cycle Timing DIagramuuuuuiiuumiiiiiiiies ciieeaeeeeeeeeeaeeeseeesseesesssssnnnnnn 11-17
11-10 Background Debug Mode Serial Port TiMiNgcceeiiiiiiiiiiiieeeee e, 11-18
11-11 Background Debug Mode FREEZE Timingcccccciiiiiiiiiiieiies e, 11-18
11-12 DMA Signal Timing Diagramccccoeeeeiiieiiiieeeeeee e e 11-19
11-13 Serial Module General Timing Diagramoeeeeiiiiveirueeennvereeeereeeeeenennnnnn. 11-20
11-14 Serial Module Asynchronous Mode Timing (X1)ccceveeeerriiiiiiiiiiieiee ceeenennne 11-21

MOTOROLA MC68349 USER'S MANUAL XiX

11/3/95 SECTION 1: OVERVIEW UM Rev.1.0

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number
11-15 Serial Module Asynchronous Mode Timing (SCLK—16X)ccceevviiiiiinnnee 11-21
11-16 Serial Module Synchronous Mode Timing Diagram............cccccevvvvvvvvvvvnnn e 11-21
11-17 Test Clock Input TIMINg Diagramccoevuiiiiiiiieiiiiiiit e e e e e eeennns 11-22
11-18 Boundary Scan Timing DIiagramooocuuriiiiiiiiieeeees it 11-23
11-19 Test Access Port TImiNg Diagrameuuvvueiireriimiinns cernnnnnnnnnenes 11-23

XX MC68349 USER’S MANUAL MOTOROLA

11/3/95 SECTION 1: OVERVIEW UM Rev 1

LIST OF TABLES
Table Page

Number Title Number
1-1 MC68349-Related DocumMeNntationccooviiiiiiiiiiiiiit e 1-10
2-1 Y [0 = LN [T = PP PRRPPPRR . 2-2
2-2 Address Space ENCOAINGuuuiiiiiiiiaiiiiiiit e 2-5
2-3 5] 74 Q1[0 [= LI =1 o To o [T I 2-8
2-4 DSACKX ENCOOING ...ooiiiiiiiiiiiiiiiiiiiiiitiiit ettt e e 2-8
2-5 SIGNAI SUMIMATY ... et e e e e e e e e e e 2-14
3-1 Address Space ENCOAINGoiiiiiiiiiiiiiii et e 3-3
3-2 DSACKX ENCOAING ...vttiiiiiiiieeeiiiiiieii e et e e e e e e 3-5
3-3] 7 Q) =1 g ToXo o [T TSRS 3-7
3-4 Address OffSet ENCOAINGuoviiiiiiiiiiiie et e 3-8
3-5 Data Bus Requirements for Read CYCIESceeeiiiiiiiiiiiiii e 3-9
3-6 MC68349 Internal to External Data Bus Multiplexer—Write Cycle 3-10
3-7 Memory Alignment and POrt SIZe.........cooovviiiiiiiiiiiiiiiit e 3-20
3-8 DSACKx, BERR, and HALT Assertion REeSUItSccoovviiiiiiviiiiiiee e, 3-44
4-1 Clock Operating MOUESccoeviiiiiiiiiiiiiiiiiis ceeeeiieirrreeennee s 4-9
4-2 System Frequencies from 32.768-kHz Referenceccccovvviiiivviinn e, 4-14
4-3 Clock CoNntrol SIGNAISvueeeiiicc e e e e e e e e e e e e 4-16
4-4 D31, D30 Encoding for Global Chip Select Sizeooevviiiiiiiiiiiiinn i 4-18
4-5 Port A Pin ASSIGNMENT REQISTEN ...ttt 4-18
4-6 Port B Pin AsSignment REQISLENccooeeeiiiiiiiieeeeeeee e 4-19
4-7 SHENX CONLIOI BItS ..euiiiiiieiiie e e 4-25
4-8 Deriving Software Watchdog TiIMeEOULeeeviiiiiiiiiiiii e, 4-29
4-9 =] I = o Yo [T o 4-29
4-10 PIRQL ENCOOING .. .cciiiiiiiiiieee ettt ettt e e 4-30
72 I =1 D ISRV To I 1) Q= To'o o [o I 4-36
4-12 PSX ENCOAING .. .ottt et e e e e e e e e e e e e eanae 4-36
5-1 INSTFUCTION SEL ... e 5-17
5-2 Standard Usage ENLFESccooviiiiiiiii e st 5-19
5-3 Compressed Table ENriesS. ... e 5-21
5-4 S = 11 0 [T 01T o [T o | 5-22
5-5 Exception Vector ASSIGNMENTSoiiiiiiiiiiiiiie e et e et e e e eeaaans 5-29
5-6 EXCeption Priority GrOUPScooiiiiiiiiiiitiieeiieee cee e et e e e e e e e e 5-32
5-7 Tracing Control ... 5-38

MOTOROLA MC68349 USER'S MANUAL XXi

11/3/95 SECTION 1: OVERVIEW

LIST OF TABLES (Continued)

Table

Number Title

5-8 BDM SOUICE SUMMAIYcoiviiiiiiiiiiiiiieieiiieias e
5-9 Polling the BDM ENtry SOUICEccoooeveeiiiieeeeeeeeeeeeee e
5-10 CPU Generated Message Encodingcccuveiiiieiiiiiiiiis iinie e,
5-11 Size Field ENCOAING ...coooiiiiiiiiiiiiieee e et
5-12 BDM Command SUMMAIYcceueieeeemmmieeeeeeeeees eeeeeeeeeeeeeeeseesseesseeeen
5-13 Register Field for RSREG and WSREGcoovvviiiiiiiieciii i,
7-1 3] 74 =g = g o7 To |1 o [
7-2 DSIZEX ENCOAING ... st e e e e e
7-3 REQX ENCOUING ...cciiiiiiiiiite ettt
7-4 BBx Encoding and Bus Bandwidth ...,
7-5 Address Space ENCOAINGcoevviiiiiiiiiiiiiiiiiiit ceeeieieeiiieeineeennnennennnns
7-6 FRZX CONrOl BItS ...ccooee e ettt
8-1 RCSX CONLIOl BItS ... e,
8-2 TCSX CONIOl BitS.....evvviviiiiiiiiiiiiiiiiiiis s e e e e e e e e e eeeaeas
8-3 MISCX CONIOl BItS....cciiieeiiiiiiiiiiiiiiieies e
8-4 TCX CONIOl BitS ..ot e
8-5 O3 O 11 o I = 1 £
8-6 FRZX CONIOl BItS ..ociiieiiiiiiiiiiiiiiieeee s sttt e e
8-7 PMx and PT CONtrol BitS...........uuuuuiueiiiii v
8-8 = 7L @ 0] o1 i £] 1 =71 £
8-9 (@417 D @0 11 70] I =] £ PSP U TP
8-10 SBX CONIOl BilScciiiiiiiieiiiiiiiiiiiiies s e e e e e e e e e e e e e eeeeeeeeeeeeeennnnes
9-1 Boundary Scan Control BitScceevviiiiiiiiiiiis i
9-2 Boundary Scan Bit Definitionsccuvviiiiiiiiiiii e
9-3 INSTFUCTIONS ...ttt ettt e
10-1 Memory Access Times at 16.78 MHZcccccciiiiiiiiiiiiii e
10-2 Memory Access Times at 25.16 MHZccccceieiiiiiiiiiiieeeee e,

XXii MC68349 USER’S MANUAL

UM Rev.1.0

Page
Number

MOTOROLA

SECTION 1
OVERVIEW

The MC68349 Dragon I™ is the highest performance member of the Motorola M68300
family of integrated processors. The MC68349 is designed to serve as the central
processor of personal intelligent communicators and similar products requiring an optimal
balance of performance, integration, cost, and power consumption. The MC68349 is the
first in a series of M68300 family integrated processors designed specifically to support
rigorous requirements of consumer-oriented intelligent personal electronics.

The MC68349 (shown in Figure 1-1) is based on the powerful CPUQO30 processor which
combines a full 32-bit central processor with a configurable instruction cache and
dedicated data memory structures. The MC68349 also incorporates a high-speed 32-bit
dual direct memory access (DMA) controller, a two-channel serial communications
interface, and clock synthesis, power management functions, system protection features,
and a glueless memory interface.

The MC68349 is fully compatible with previous members of the M68000 family and offers
a long-term future migration path to successors based on MC68040 and MC68060
processors. The modular nature of the MC68349 also provides for cost-effective migration
paths to higher levels of integration in future products.

SYSTEM
CPU030 PROCESSOR INTEGRATION MODULE
(SIM49)
SYSTEM
QUAD DATA TWO-CHANNEL PROTECTION 32-BIT ADDRESS BUS >
MEMORY MODULE DMA CONTROLLER
(QDMM) CHIP SELECTS AND
WAIT STATES
CPU32+ ﬁ ﬁ cLOCK
M68000 FAMILY < 32-BIT INTERMODULE BUS SYNTHESIZER
PROCESSOR
EXTERNAL
BUS INTERFACE
CONFIGURABLE
INSTRUCTION TWO-CHANNEL ”&ENRT%PLT
CACHE SERIAL /0 32-BIT DATABUS »
(CIo)
IEEE 1149.1 TEST

Figure 1-1. MC68349 Block Diagram

Dragon | is a trademark of Motorola.

MOTOROLA MC68349 USER'S MANUAL 1-1

1.1 FEATURES

The primary features of the MC68349 include:

» High-Performance CPUQ030 Processor

—CPU32+ 32-Bit Execution Unit
M68000 Upward User Code Compatible
32-Bit Bus Interface
Two-Clock Basic Instruction Execution Rate

—Configurable Instruction Cache (CIC)
Four Independent Blocks, Each Configurable as Cache or SRAM
1-Kbyte Instruction Cache or 2-Kbyte SRAM Total Storage
Four-Way Set Associative (All Blocks Configured as Cache)
Each Block Independently Lockable
Supports Simultaneous CPU and DMA Bus Activity

—Quad Data Memory Module (QDMM)
Four Independent 1-Kbyte SRAM Blocks
Useful for Variable Storage, Stacks, and Interrupt Handlers
Each Block Independently Mapped and Protected

» High-Speed 32-Bit Dual DMA Controllers for Low-Latency Data Transfers
—Full 32-Bit Data Transfers for Highest Performance

—b50-Mbyte/Sec Sustained Transfer Rate @ 25 MHz
—Dual or Single Address Transfers
—8-, 16-, or 32-Bit Transfers

» Dual Serial Communication Ports
—Synchronous or Asynchronous Operation

—3-Mbit/Sec Sustained Transfer Rate @ 25 MHz
—Modem Control

—Baud Rate Generation

—MC68681/MC2681 Compatible

» System Integration Module for Flexible and Cost-Effective System Interface
—32-Bit Address Bus

—32-Bit Data Bus with Dynamic Bus Sizing

—System Protection, Reset, and Configuration Control
—Chip-Select, Wait State Generation, Bus Watchdog
—Periodic Interrupt/System Timer

—Interrupt Controller

—Dual 8-Bit Parallel Ports

—IEEE 1149.1 Boundary Scan (JTAG)

1-2 MC68349 USER'S MANUAL MOTOROLA

* Power Management
—5V or 3.3 V Operation

—Fully Static HCMOS Technology
—Programmable Clock Synthesizer for Full Frequency Control
—Power-Down/Low Power Stop Capabilities
—Idle Modules Can Be Individually Powered Down
» 32-Bit Data Paths for On-Chip and Off-Chip Access
* 0-16- or 25-MHz Operation
e 160-Pin Plastic QFP

NOTE

As a low voltage part, the MC68349V can operate with a 3.3-V
power supply. MC68349 is used throughout this manual to
refer to both the low voltage and standard 5-V parts since both
are functionally equivalent.

1.2 M68300 FAMILY
The MC68349 is one of a series of components in the M68300 family.

1.2.1 Organization

The M68300 family of integrated processors and controllers is built on an M68000 core
processor, an on-chip bus, and a selection of intelligent peripherals appropriate for a set of
applications. The CPUOQ30 blends the powerful CPU32+ with on-chip instruction caches
and data memory to deliver MC68030 performance with minimal degradation due to slow
external memory systems. A system integration module incorporates the external bus
interface and many of the smaller circuits that typically surround a microprocessor for
address decoding, wait-state insertion, interrupt prioritization, clock generation, arbitration,
watchdog timing, and power-on reset timing.

Each member of the M68300 family is distinguished by its selection of peripherals.
Peripherals are chosen to address specific applications but are often useful in a wide
variety of applications. The peripherals may be highly sophisticated timing or protocol
engines that have their own processors, or they may be more traditional peripheral
functions, such as universal asynchronous receivers/transmitters (UARTS) and timers.
Since each major function is designed in a standalone module, each module might be
found in many different M68300 family parts. Driver software written for a module on one
M68300 part can be used to run the same module that appears on another part.

MOTOROLA MC68349 USER'S MANUAL 1-3

1.2.2 Advantages

By incorporating so many major features into a single M68300 family chip, a system
designer can realize significant savings in design time, power consumption, cost, board
space, pin count, and programming. The equivalent functionality can easily require 20
separate components. Each component might have 16-64 pins, totaling over 350
connections. Most of these connections require interconnects or are duplications. Each
connection is a candidate for a bad solder joint or misrouted trace. Each component is
another part to qualify, purchase, inventory, and maintain. Each component requires a
share of the printed circuit board. Each component draws power—often to drive large
buffers to get the signal to another chip. The cumulative power consumption of all the
components must be available from the power supply. The signhals between the cental
processing unit (CPU) and a peripheral might not be compatible nor run from the same
clock, requiring time delays or other special design considerations.

In an M68300 family component, the major functions and glue logic are all properly
connected internally, timed with the same clock, fully tested, and uniformly documented.
Power consumption stays well under a watt, and a special standby mode drops current
well under a milliamp during idle periods. Only essential signals are brought out to pins.
The primary package is the surface-mount quad flat pack for the smallest possible
footprint.

1.3 CPUO30 CENTRAL PROCESSOR UNIT

Processing power for the MC68349 is provided by the CPUQO30 central processing unit.
The CPUO30 delivers 32-bit performance in a modular form factor that is highly optimized
for the needs of portable intelligent personal electronics applications.

The CPUO030 employed in the MC68349 is composed of three principle modular elements:
the CPU32+ 32-bit processor, a configurable instruction cache, and a quad data memory
module. Memory management is an option not supported in the MC68349.

1.3.1 CPU32+

The CPU32+ processor is the full 32-bit extension of the CPU32 processor found on many
M68300 family of integrated processors and provides the execution units for the CPU030.
The CPU32+ is a 32-bit execution unit with 32-bit data paths (internal and external), and
has a two-clock basic instruction execution rate for a 32-bit operation. The CPU32+ is
completely upward software compatible with the MC68000 and CPU32.

In addition to performing basic instruction execution, the CPU32+ also supervises power
management capabilities of the MC68349 as well as providing a sophisticated background
debug port for software development and debug environments.

1-4 MC68349 USER'S MANUAL MOTOROLA

1.3.2 Configurable Instruction Cache (CIC)

The configurable instruction cache is a highly configurable memory resource designed to
optimize the supply of instructions to the CPU32+. The CIC is closely coupled with the
CPU32+, yet isolated from the IMB, allowing the processor to continue instruction
execution while a DMA controller or other bus master occupies the external bus. The CIC
also moderates power consumption by reducing off-chip accesses.

The CIC is composed of four identical blocks each of which can be independently
configured as a 256-byte instruction cache or as a 512-byte static random access memory
(SRAM). Either instructions or operands can be stored in the SRAM. When configured as
SRAM, a block is independently relocatable in the system's address space. When
configured as a cache, a block operates as a direct-mapped cache of sixty-four 32-bit
entries. When multiple blocks are configured as caches, set-associativity is supported up
to a maximum of four sets. Each cache block can be independently locked to freeze its
internal contents.

Using CIC flexibility, it is feasible to place high-priority interrupt or operating system
routines in protected SRAM, which is always instantly available, while allowing remaining
blocks to operate as caches to increase the performance of general system and user
tasks. The CIC configuration can be established at system initialization or on a task-by-
task basis, yielding maximum flexibility.

1.3.3 Quad Data Memory Module (QDMM)

The QDMM provides dedicated data storage resources for the CPUO030 in the form of four
independent 1-Kbyte SRAM blocks. Each of these blocks can be independently relocated
anywhere in the system address space, and each is independently protected
(supervisor/user, read/write).

The QDMM can be used as scratchpad memory, stack caches for independent tasks,
buffers for I/O operations, or parameter storage. The QDMM provides significant
performance and power-management benefits to MC68349-based systems. As general
SRAM, this space can also contain instructions for fast access to additional interrupt
handlers, operating system code, algorithms, or other frequently accessed routines. A
total of 4096 bytes of SRAM is provided in the QDMM.

1.4 ON-CHIP PERIPHERALS

To improve total system throughput and reduce part count, board size, and cost of system
implementation, the M68300 family integrates on-chip, intelligent peripheral modules and
typical glue logic. These functions on the MC68349 include the SIM49, a DMA controller,
and a serial module.

The processor communicates with these modules over the on-chip intermodule bus (IMB).
This backbone of the chip is similar to traditional external buses with address, data, clock,
interrupt, arbitration, and handshake signals. Because bus masters (like the CPU32+ and
DMA), peripherals, and the SIM49 are all on the chip, the IMB ensures that

MOTOROLA MC68349 USER'S MANUAL 1-5

communication between these modules is fully synchronized and that arbitration and
interrupts can be handled in parallel with data transfers, greatly improving system
performance. The IMB on the MC68349 is 32 bits wide, allowing transfers of 32 bits of
data in a single bus cycle. Internal accesses across the IMB may be monitored from
outside the chip, if desired.

Each module operates independently. Modules and their registers are accessed in the
memory map of the CPU32+ (and DMA) for easy access by general M68000 instructions.
Each module may be assigned its own interrupt level, response vector, and arbitration
priority. Since each module is a self-contained design and adheres to the IMB interface
specifications, the modules may appear on other M68300 family products, retaining the
investment in the software drivers for the module.

1.4.1 Direct Memory Access Module

The MC68349 contains a high-speed 32-bit DMA controller, used to quickly move large
blocks of data between internal peripherals, external peripherals, or memory without
processor intervention. With the MC68349's 32-bit wide external bus, this is an excellent
high performance DMA controller to work in many 32-bit microprocessor systems. The
DMA module consists of two independent programmable channels. Each channel has
separate request, acknowledge, and done signals. Each channel can operate in either
single-address (flyby) or dual-address mode and supports 32 bits of address and 8-, 16-,
or 32-bit data transfers.

In single-address mode, only one address (the source or the destination) is provided, and
a peripheral device such as a serial communications controller receives or supplies the
data. An external request must start a single-address transfer.

In dual-address mode, two bus transfers occur, one from a source device and the other to
a destination device. Dual-address transfers can be started by either an internal or
external request. The source and destination port size can be selected independently.

Byte, word, and long-word counts up to 32 bits can be transferred. All addresses and
transfer counters are 32 bits. The DMA channels support both burst and cycle steal
external request modes. Internal requests can be programmed to occupy form 25 to 100
percent of the data bus bandwidth. The DMA controller can be configured in all modes to
release the bus back to the CPU when a high-priority interrupt occurs.

The DMA module can sustain a transfer rate of 25 Mbytes/sec in dual-address mode and
50 Mbytes/sec in single-address mode @ 25.16 MHz (8.4 and 33.3 Mbytes/sec @ 16.78
MHz). The DMA controller and CPU32+ arbitrate for the bus in parallel with existing bus
cycles, typically eliminating all bus arbitration overhead and allowing DMA and CPU bus
cycles to occur back-to-back without intervening idle clocks. Three-clock and slower DMA
transfers have no arbitration overhead; some fast termination DMA transfers incur a single
idle clock before the next CPU access.

1-6 MC68349 USER'S MANUAL MOTOROLA

1.4.2 Serial Module

Most digital systems use serial 1/0 to communicate with host computers, operator
terminals, or remote devices. The MC68349 contains a two-channel, full-duplex universal
synchronous/asynchronous receiver/transmitter (USART). An on-chip baud rate generator
provides standard baud rates up to 76.8k baud independently to each channel's receiver
and transmitter. The module is functionally equivalent to the MC68681/MC2681 DUART.

Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8
bits with even, odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive
buffers and two-byte transmit buffers minimize CPU service calls. A wide variety of error
detection and maskable interrupt capability is provided on each channel. Full-duplex,
autoecho loopback, local loopback, and remote loopback modes can be selected.
Multidrop applications are supported.

A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel
can be programmed for a different baud rate, or an external 1 x and 16x clock input can be
selected. Full modem support is provided with separate request-to-send (RTS) and clear-
to-send (CTS) signals for each channel. Channel A also provides service request signals.
The two serial ports can sustain rates of 3 Mbps with a 25-MHz system clock in 1x mode,
612 kbps in 16x mode (6.5 Mbps and 410 kbps @ 16.78 MHz).

1.4.3 System Integration Module

The MC68349 SIM49 provides the external bus interface for both the CPU32+ and the
DMA. It also eliminates much of the glue logic that typically supports the microprocessor
and its interface with the peripheral and memory system. The SIM49 provides
programmable circuits to perform address decoding and chip selects, wait-state insertion,
interrupt handling, clock generation, bus arbitration, watchdog timing, discrete 1/O, and
power-on reset timing. A boundary scan test capability is also provided.

1.4.3.1 EXTERNAL BUS INTERFACE. The external bus interface handles the transfer of
information between the internal CPU32+ or DMA controller and memory, peripherals, or
other processing elements in the external address space. Based on the MC68030 bus, the
external bus provides up to 32 address lines and 32 data lines. Address extensions
identify each bus cycle as CPU32+ or DMA initiated, supervisor or user privilege level,
and instruction or data access. The data bus allows dynamic bus sizing for 8-, 16-, or 32-
bit memory devices. Synchronous transfers from the CPU32+ or the DMA can be made in
as little as two clock cycles. Asynchronous transfers allow the memory system to signal
the CPU32+ or DMA when the transfer is complete and to signal the transfer size. An
external master can arbitrate for the bus using a three-wire handshaking interface.

1.4.3.2 SYSTEM CONFIGURATION AND PROTECTION. To achieve maximum system
protection, the MC68349 provides system configuration and various monitors and timers
as part of the SIM49. The SIM49 contains basic power-on reset circuitry as well as a bus
monitor which ensures that the system does not lock up when there is no response to a
memory access. When a catastrophic bus failure occurs, the SIM49 bus

MOTOROLA MC68349 USER'S MANUAL 1-7

fault monitor can reset the processor. The software watchdog timer can pull the processor
out of an infinite loop. A periodic interrupt timer can be sent to the CPU32+ for dynamic
random access memory (DRAM) refresh, time-of-day clock, task switching, etc.

1.4.3.3 CLOCK SYNTHESIZER. The clock synthesizer generates the clock signals used
by all internal operations as well as a clock output used by external devices. The clock
synthesizer can operate with an inexpensive 32.768-kHz watch crystal or an external
oscillator for reference, using an internal phase-locked loop and voltage-controlled
oscillator. At any time, software can select clock frequencies from 131 kHz to the
maximum frequency rate, favoring either low power consumption or high performance.
Alternately, an external clock can drive the clock signal directly at the operating frequency.
With its fully static high-density complimentary metal oxide semiconductor (HCMOS)
design, it is possible to completely stop the system clock without losing the contents of the
internal registers.

1.4.3.4 CHIP SELECT AND WAIT STATE GENERATION. Four programmable chip
selects provide signals to enable external memory and peripheral circuits. Address space
and write protection can be selected for each. The block size can be selected from 256
bytes up to 4 Ghytes in increments of 2". Accesses can be preselected for either 8-, 16-,
or 32-bit transfers. Fast synchronous termination or up to six wait states can be
programmed. External handshakes can also signal the end of a bus transfer. A system
can boot from reset out of 8-, 16- , or 32-bit-wide memory.

1.4.3.5 INTERRUPT HANDLING. Up to seven discrete interrupt inputs are available for
external interrupt sources. Each interrupt can be configured to either autovector to an
interrupt handler or generate an external interrupt acknowledge to allow the external
device to provide the handler vector. Decoded interrupt acknowledge signals are also
available for each interrupt input.

1.4.3.6 DISCRETE /O PINS. When not used for other functions, 16 pins can be
programmed as discrete input or output signals. Additionally, in other peripheral modules,
pins for otherwise unused functions can often be used for general input/output.

1.4.3.7 IEEE 1149.1 TEST ACCESS PORT. To aid in system diagnostics, the MC68349
includes dedicated user-accessible test logic that is fully compliant with the IEEE 1149.1
standard for boundary scan testability, often referred to as JTAG (Joint Test Action
Group).

1.5 POWER MANAGEMENT

Power consumption on the M68300 family parts is low overall because more of a system's
circuitry is on a single piece of silicon, minimizing capacitances and buffering. The
MC68349V operates from a 3.3-V power source, saving over 50% of the power required
to operate the 5-V MC68349. The MC68349 is implemented in a low-power HCMOS
process, assuring high performance with low power consumption. All circuits on the
MC68349 are implemented using static circuits, maintaining stable operation for clocking
frequencies down to zero.

1-8 MC68349 USER'S MANUAL MOTOROLA

The programmer can further control power consumption dynamically, as the demand on
the processor fluctuates with system requirements and program execution. The on-chip
lock circuitry can be varied under software control from 131 kHz to the full rated speed of
the chip. Individual peripheral circuits can be turned off when they are not needed. A
special low power stop (LPSTOP) instruction drops power consumptions three orders of
magnitude as it halts all operation of the chip except for logic needed to reawaken the
processor.

1.6 APPLICATIONS AREAS

The following paragraphs discuss some of the applications for which the MC68349 is
ideal.

1.6.1 Personal Intelligent Communications

Representing a new class of consumer electronics, the personal intelligent communicator
is oriented towards providing maximum personal productivity to its user in a form-factor
emphasizing low cost, minimal physical size, extended operation on batteries, seamless
communications in a complex wireless/wireline environment, and extreme ease-of-use.

The solution to the needs of the personal intelligent communicator applications requires a
carefully selected balance of performance and integration to satisfy the system's
functional requirements while also meeting rigorous cost, weight, and power consumption.
The MC68349 was developed to the specifications of General Magic and its Alliance
Founders and, coupled with the proprietary Astro™ circuit, provides the complete digital
core of a personal intelligent communicator.

The MC68349 represents a carefully selected balance of capabilities oriented towards
enabling the personal intelligent communicator vision:

» Advanced Motorola CMOS Process for Proven Reliability and Low Cost

 Static Design and Extensive Power Management for Long Battery Life

e Highly Integrated for Low Power, Low System Cost and High Reliability

e CPUO030 Provides 8 to 10 Sustained MIPS for Support of Advanced User Interfaces
* Integration of Key System Functions for Performance/Power Optimizations

* M68000 Architecture Provides Strong Software Base and Upward Migration Paths

1.6.2 Additional Application Areas

While specifically optimized for the needs of personal intelligent communications, the
MC68349 was partitioned to provide the general-purpose elements of the personal
intelligent communicator application while highly specialized features were placed in a
proprietary companion circuit. Thus, the MC68349 can provide substantial benefit to other
application areas as well.

Astro is a trademark of Motorola.

MOTOROLA MC68349 USER'S MANUAL 1-9

In general, applications requiring moderate performance, low power consumption, high-
bandwidth DMA, and cost-effectiveness can be well-serviced by the MC68349. In addition,
since the MC68349 is a member of the M68000 family, its users have access to a broad
range of superior support tools and services to facilitate rapid system development and
deployment.

Application areas suited to the MC68349 include:
» Personal Digital Assistants (PDAS)
« /O Processors for High-Performance Systems

* Real-Time Control Processors
» Sophisticated 32-Bit DMA Controllers

1.7 MORE INFORMATION

The following table lists documentation (available through the Literature Distribution
Center) related to the MC68349:

Table 1-1. MC68349-Related Documentation

Document Title Order Number
M68300 Integrated Processor Family BR1114/D
MC68349 Product Brief MC68349/D
M68000 Family Programmer's Reference Manual M68000PM/AD
DRAM Controller for the MC68340 AN1063/D
Software Implementation of SPI on the MC68340 AN453
The 68K Source BR729/D
3.3 Volt Logic and Interface Circuits BR1407/D

1-10 MC68349 USER'S MANUAL MOTOROLA

SECTION 2
SIGNAL DESCRIPTIONS

This section contains brief descriptions of the MC68349 input and output signals in their
functional groups as shown in Figure 2-1.

A31/PORT A7/IACK7 <—>
A30/PORT A6/IACK6 <€—>
A29/PORT A5/IACK5 <€—>
A28/PORT A4/IACK4 <—>
A27/PORT A3/IACK3 <—>
A26/PORT A2/IACK2 <—>
A25/PORT AL/IACK1 <—>

A24/PORT AQ ~<—>

[<—— BKPT/DSCLK
—> IPIPE0/DSO

[—> FREEZE
[<—> |[FETCH/DSI

—> IPIPE1

1-KBYTE
INSTRUCTION RO o 4-KBYTE
CACHE SRAM

l«<—— TCK
l«<———— TMS
l<—— TDI

——— TDO

PORT A
IEEE 1149.1

i?

D31-D0 <:> CPU030 CORE

FC3-FCO
RESET <—>| EXTERNAL
BERR —> BUS

HALT =<<—> INTERFACE SYSTEM <

INTEGRATION
MODULE

INTERMODULE BUS

<<—— RxDA

BG <— BUS —> TxDA
ARBITRATION —>RxRDYA/FFULLA/OP4

RMC <—— CLOCK ——>TXRDYA/OP6
IRQ5/PORT B5 <—>

TWO-CHANNEL TWO-CHANNEL > RTSA/OPO
@ DMA CONTROLLER SERIAL 1/0 <«—— CTSA

~ IRQ3/PORT B3 <—>

CS3/IRQ4/PORT B4<—>{ PORTB

CS2/IRQ2/PORT B2 <«—>1
CSL/IRQL/PORT Bl <—>1
CSO/AVEC <—>
MODCK/PORT B0 <<—>1

< RxDB
—> TxDB

[— > RTSB/OP1
< CTSB

IRQ7/PORT B7 <—>
IRQ6/PORT B <-—>1

XTAL <—

CLKOUT <-—
XFC

EXTAL —>

SCLK ——>
X1 —>
X2 «—]

DREQ2 —>
DACK2 <——
DONE2 <—>

DONE1 <—>

DACK1 <«—

DREQL —>

Figure 2-1. Functional Signal Groups

MOTOROLA MC68349 USER'S MANUAL 2-1

2.1 SIGNAL INDEX

The input and output signals for the MC68349 are listed in Table 2-1. The name,
mnemonic, and brief functional description are presented. For more detail on each signal,
refer to the signal paragraph. Guaranteed timing specifications for the signals listed in
Table 2-1 can be found in Section 11 Electrical Characteristics.

Table 2-1. Signal Index

Input/
Signal Name Mnemonic Function Output
Address Bus Bits 23-0 A23-A0 Lower 24 bits of the address bus Out
Address Bits 31-24/PortA7-0/ A31-A24 Upper eight bits of the address bus, parallel I/0, | Out/l/O/
Interrupt Acknowledge 7-1 or interrupt acknowledge lines Out
Data Bus D31-D0O 32-bit data bus used to transfer byte, word, 110
three-byte, or long-word data
Function Codes FC3-FCO Identify the processor state and the address Out
space of the current bus cycle
Reset RESET System reset I/10
Bus Error BERR Indicates an invalid bus operation is being In
attempted
Halt HALT Suspends external bus activity I/O
Address Strobe AS Indicates that a valid address is on the address Out
bus
Data Strobe DS During a read cycle, DS indicates that an Out
external device should place valid data on the
data bus. During a write cycle, DS indicates that
valid data is on the data bus.
Read/Write R'W Indicates the direction of data transfer on the bus Out
Size SiZ1, SIz0 Indicates the number of bytes remaining to be Out
transferred for this cycle
Data and Size Acknowledge DSACK1, DSACKO Provides asynchronous data transfers and In
dynamic bus sizing
Bus Request BR Indicates that an external device requires bus In
mastership
Bus Grant BG Indicates that current bus cycle is complete and Out
the MC68349 has relinquished the bus
Bus Grant Acknowledge BGACK Indicates that an external device has assumed In
bus mastership
Read-Modify-Write Cycle RMC Identifies the bus cycle as part of an indivisible Out
read-modify-write operation
Interrupt Request Levels 7, 6, 5, IRQ7, IRQS6, IRQ5, Provides an interrupt priority level to the CPU32+ In/l/O
3/ PortB7, 6, 5, 3 IRQ3 or becomes a parallel I/O port
Chip Select 3-1/Interrupt S3-CS1 Enables peripherals at programmed addresses, Out/In/
Request Levels 4, 2, 1/PortB4, interrupt priority level to the CPU32+, or parallel I/0
2,1 I/O port
Chip Select 0/Autovector CSo Enables peripherals at programmed addresses Out/In
or requests an automatic vector
2-2 MC68349 USER'S MANUAL MOTOROLA

Table 2-1. Signal Index (Continued)

Input/
Signal Name Mnemonic Function Output
Clock Mode Select/Port BO MODCK/PORTBO Selects the source of the internal system clock In/I/O
upon reset or becomes a parallel 1/0 port
Crystal Oscillator EXTAL, XTAL Connections for an external crystal or oscillator In, Out
to the internal oscillator circuit
System Clock CLKOUT System clock out Out
External Filter Capacitor XFC Connection pin for an external capacitor to filter In
the circuit of the phase-locked loop
Test Clock TCK Provides a clock for IEEE 1149.1 test logic In
Test Mode Select T™MS Controls test mode operations In
Test Data In TDI Shifts in instructions and test data In
Test Data Out TDO Shifts out instructions and test data Out
Breakpoint/Development Serial BKPT Signals a hardware breakpoint to the CPU32+ or In/—
Clock provides background debug mode serial clock
Freeze FREEZE Indicates that the CPU32+ has entered Out
background debug mode
Instruction Pipe 0/Development IPIPEO Used to track movement of words through the Out/Out
Serial Out instruction pipeline or provides background
debug mode serial out
Instruction Pipe 1 IPIPE1 Used to track movement of words through the Out
instruction pipeline
Instruction Fetch/ IFETCH Indicates when the CPU32+ is performing an Out/In
Development Serial In instruction word prefetch and when the
instruction pipeline has been flushed or provides
background debug mode serial in
DMA Request DREQ2, DREQ1 Input for requesting a DMA transfer In
DMA Acknowledge DACK2, DACK1 Output that signals an access during DMA Out
DMA Done DONE2 , DONE1 Bi-directional signal that indicates the last 110
transfer
Serial Clock SCLK External serial clock input In
Serial Crystal Oscillator X1, X2 Connections for an external crystal to the serial —
module internal oscillator circuit
Receive Data RxDA, RxDB Receiver serial data input In
Transmit Data TxDA, TxDB Transmitter serial data output Out
Receiver Ready/ RxRDYA Indicates receive buffer has a character, the Out/Out/
FIFO Full/Output 4 receiver FIFO buffer is full or becomes a parallel Out
output
Transmitter Ready/Output 6 TxRDYA Indicates transmit buffer has a character or Out/Out
becomes a parallel output
MOTOROLA MC68349 USER'S MANUAL 2-3

Table 2-1. Signal Index (Concluded)

Input/

Signal Name Mnemonic Function Output
Request-to-Send A/OPO, RTSA, RTSB/ Channel request-to-send outputs or discrete Out/Out
Request-to-Send B/OP1 outputs
Clear-to-Send CTSA, CTSB Serial module clear-to-send inputs In
Synchronizer Power VCCSYN Quiet power supply to VCO; also used to control —

synthesizer mode after reset.
System Power Supply and Vce, GND Power supply and ground to the MC68349 —
Ground
NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

2.2 ADDRESS BUS

The address bus signals are outputs that define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The MC68349 places the address on
the bus at the beginning of a bus cycle. The address is valid while AS is asserted.

The address bus consists of the following two groups. Refer to Section 3 Bus Operation
for information on the address bus and its relationship to bus operation.

2.2.1 Address Bus (A23-A0)

These three-state outputs (along with A31-A24) provide the address for the current bus
cycle, except in the CPU address space.

2.2.2 Address Bus (A31-A24)

These pins can be programmed as the most significant eight address bits, port A parallel
I/0, or interrupt acknowledge signals. These pins can be used for more than one of their
multiplexed functions as long as the external demultiplexing circuit properly resolves
interaction between the different functions.

A31-A24
These pins can function as the most significant eight address bits.

Port A7-A0

These eight pins can serve as a dedicated parallel I/O port. See Section 4 System
Integration Module for more information on programming these pins.

2-4 MC68349 USER'S MANUAL MOTOROLA

IACK7—-IACK1

The MC68349 asserts one of these pins to indicate the level of an external interrupt
during an interrupt acknowledge cycle. Peripherals can use the IACKx signals instead of
monitoring the address bus and function codes to determine that an interrupt
acknowledge cycle is in progress and to obtain the current interrupt level.

2.3 DATA BUS (D31-D0)

This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68349. A read or write operation may transfer 8, 16, 24, or 32 bits of data in
one bus cycle. During a read cycle, the data is latched by the MC68349 on the last falling
edge of the clock for that bus cycle. For a write cycle, all 32 bits of the data bus are driven,
regardless of the port width or operand size. The MC68349 places the data on the data
bus approximately one-half clock cycle after AS is asserted in a write cycle.

2.4 FUNCTION CODES (FC3-FCO0)

These signals are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32+ to acquire specific control information not
normally associated with read or write bus cycles. The function code signals are valid
while AS is asserted. See Table 2-2 for more information.

Table 2-2. Address Space Encoding

Function Code Bits
3 2 1 0 Address Spaces
0 0 0 0 Reserved (Motorola)
0 0 0 1 User Data Space
0 0 1 0 User Program Space
0 0 1 1 Reserved (User)
0 1 0 0 Reserved (Motorola)
0 1 0 1 Supervisor Data Space
0 1 1 0 Supervisor Program Space
0 1 1 1 CPU Space
1 X X X DMA Space

MOTOROLA MC68349 USER'S MANUAL 2-5

2.5 EXCEPTION CONTROL SIGNALS

These signals are used by the MC68349 to recover from an exception.

2.5.1 Reset (RESET)

This active-low, open-drain, bidirectional signal is used to initiate a system reset. An
external reset signal (as well as a reset from the SIM49) resets the MC68349 and all
external devices. A reset signal from the CPU32+ (asserted as part of the RESET
instruction) resets external devices; the internal state of the CPU32+ is not affected. The
on-chip modules are reset, except for the SIM49. However, the module configuration
register for each on-chip module is not altered. When asserted by the MC68349, this
signal is guaranteed to be asserted for a minimum of 512 clock cycles. Refer to Section 3
Bus Operation for a description of reset operation and Section 5 CPU030 for information
about the reset exception.

2.5.2 Bus Error (BERR)

This active-low input signal indicates that an invalid bus operation is being attempted or,
when used with HALT, that the processor should retry the current cycle. Refer to Section
3 Bus Operation for a description of the effects of BERR on bus operation.

2.5.3 Halt (HALT)

This active-low, open-drain, bidirectional signal is asserted to suspend external bus
activity, to request a retry when used with BERR, or to perform a single-step operation. As
an output, HALT indicates the processor has halted due to a double bus fault. Refer to
Section 3 Bus Operation for a description of the effects of HALT on bus operation.

2.6 CHIP SELECTS (CS3—-CS0)

These pins can be programmed to be chip select output signals, port B parallel 1/0O and
autovector input, or additional interrupt request lines. Refer to Section 4 System
Integration Module for more information on these signals.

CS3-CS0
The chip select output signals enable peripherals at programmed addresses. These
signals are inactive high (not high impedance) after reset. CSO is the chip select for a

boot ROM containing the reset vector and initialization program and functions as the
boot chip select immediately after reset.

IRQ4, IRQ2, IRQ1

Interrupt request lines are external interrupt lines to the CPU32+. These additional
interrupt request lines are selected by the FIRQ bit in the module configuration register.

Port B4, B2, B1, AVEC

This signal group functions as three bits of parallel I/O and the autovector input. AVEC
requests an automatic vector during an interrupt acknowledge cycle.

2-6 MC68349 USER'S MANUAL MOTOROLA

2.7 INTERRUPT REQUEST LEVEL (IRQ7, IRQ6, IRQ5, IRQ3)

These pins can be programmed to be either prioritized interrupt request lines or port B
parallel I/0.

IRQ7, IRQ6, IRQ5, IRQ3

IRQ7, the highest priority, is nonmaskable. IRQ6-IRQ1 are internally maskable
interrupts. Refer to Section 5 CPUO30 for more information on interrupt request lines.

Port B7, B6, B5, B3

These pins can be used as port B parallel 1/0. Refer to Section 4 System Integration
Module for more information on parallel 1/O signals.

2.8 BUS CONTROL SIGNALS

These signals control the bus transfer operations of the MC68349. Refer to Section 3
Bus Operation for more information on these signals.

2.8.1 Address Strobe (AS)

AS is an output timing signal that indicates the validity of both an address on the address
bus and many control signals. AS is asserted approximately one-half clock cycle after the
beginning of a bus cycle.

2.8.2 Data Strobe (DS)

DS is an output timing signal that applies to the data bus. For a read cycle, the MC68349
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
MC68349 asserts DS approximately one clock cycle after the assertion of AS during a
write cycle.

2.8.3 Read/Write (R/W)

This active-high output signal is driven by the bus master to indicate the direction of a data
transfer on the bus. A logic one indicates a read from a slave device; a logic zero indicates
a write to a slave device.

2.8.4 Transfer Size (SIZ1, SIZ0)

These output signals are driven by the bus master to indicate the number of operand
bytes remaining to be transferred in the current bus cycle as noted in Table 2-3.

MOTOROLA MC68349 USER'S MANUAL 2-7

Table 2-3. SIZx Signal Encoding

Siz1 SIZ0 Transfer Size
0 0 Long Word
0 1 Byte
1 0 Word
1 1 Three Byte

2.8.5 Data and Size Acknowledge (DSACK1, DSACKO)

These two active-low input signals allow asynchronous data transfers and dynamic data
bus sizing between the MC68349 and external devices as listed in Table 2-4. During bus
cycles, external devices assert DSACK1 and/or DSACKO as part of the bus protocol.
During a read cycle, this assertion signals the MC68349 to terminate the bus cycle and to
latch the data. During a write cycle, this assertion indicates that the external device has
successfully stored the data and that the cycle may terminate.

Table 2-4. DSACKx Encoding

DSACK1 | DSACKO Result
1

Insert Wait States in Current Bus Cycle
Complete Cycle—Data Bus Port Size Is 8 Bits
Complete Cycle—Data Bus Port Size Is 16 Bits
Complete Cycle—Data Bus Port Size Is 32 Bits

O|FR|O|F

1
0
0

2.9 BUS ARBITRATION SIGNALS

The following signals are the bus arbitration control signals used to determine the bus
master. Refer to Section 3 Bus Operation for more information on these signals.

2.9.1 Bus Request (BR)

This active-low input signal indicates that an external device needs to become the bus
master.

2.9.2 Bus Grant (BG)

Assertion of this active-low output signal indicates that the MC68349 has relinquished the
bus.

2.9.3 Bus Grant Acknowledge (BGACK)

Assertion of this active-low input indicates that an external device has become the bus
master.

2-8 MC68349 USER'S MANUAL MOTOROLA

2.9.4 Read-Modify-Write Cycle (RMC)

This output signal identifies the bus cycle as part of an indivisible read-modify-write
operation. It remains asserted during all bus cycles of the read-modify-write operation to
indicate that bus ownership cannot be transferred.

2.10 CLOCK SIGNALS

These signals are used by the MC68349 for controlling or generating the system clocks.
See Section 4 System Integration Module for more information on the various clocking
methods and frequencies.

2.10.1 System Clock (CLKOUT)

This output signal is the system clock output and is used as the bus timing reference by
external devices. CLKOUT can be varied in frequency or slowed in low power stop mode
to conserve power.

2.10.2 Crystal Oscillator (EXTAL, XTAL)

These two pins are the connections for an external crystal to the internal oscillator circuit.
If an external oscillator is used, it should be connected to EXTAL, with XTAL left open.

2.10.3 External Filter Capacitor (XFC)

This pin is used to add an external capacitor to the filter circuit of the phase-locked loop.
The capacitor should be connected between XFC and VCCSYN.

2.10.4 Clock Mode Select (MODCK)

This pin selects the source of the internal system clock during reset. After reset, it can be
programmed to be port B parallel 1/O.

MODCK

The state of this active-high input signal during reset selects the source of the internal
system clock. If MODCK is high during reset, the internal voltage-controlled oscillator
(VCO) furnishes the system clock in crystal mode. If MODCK is low during reset, an
external clock source at the EXTAL pin furnishes the system clock output in external
clock mode.

PORTBO
This pin can be used as a port B parallel I/O.

MOTOROLA MC68349 USER'S MANUAL 2-9

2.11 TEST SIGNALS

The following signals are used with the on-board test logic defined by the IEEE 1149.1
standard. See Section 9 IEEE 1149.1 Test Access Port for more information on the use
of these signals.

2.11.1 Test Clock (TCK)

This input provides a clock for on-board test logic.

2.11.2 Test Mode Select (TMS)

This input controls test mode operations for on-board test logic.

2.11.3 Test Data In (TDI)

This input is used for serial test instructions and test data for on-board test logic.

2.11.4 Test Data Out (TDO)

This output is used for serial test instructions and test data for on-board test logic.

2.12 DEBUG AND EMULATION SUPPORT SIGNALS

These signals are used for test or software debugging. See Section 5 CPU030 for more
information on these signals and background debug mode.

2.12.1 Breakpoint (BKPT)

This pin functions as BKPT in normal operation and as DSCLK in background debug
mode.

BKPT
This active-low input signal is used to signal a hardware breakpoint to the CPU32+.

DSCLK

This development serial clock input helps to provide serial communications for
background debug mode.

2.12.2 Freeze (FREEZE)

Assertion of this active-high output signal indicates that the CPU32+ has acknowledged a
breakpoint and has initiated background mode operation.

2-10 MC68349 USER'S MANUAL MOTOROLA

2.12.3 Instruction Pipe (IPIPEO, IPIPE1)

The IPIPEO pin functions as IPIPEO in normal operation and as DSO in background debug
mode. The IPIPE1 pin functions as IPIPE1 at all times.

IPIPEO, IPIPE1

These active-low output signals are used to track movement of words through the
instruction pipeline.

DSO

This development serial output signal helps to provide serial communications for
background debug mode.

2.12.4 Instruction Fetch (IFETCH)

This pin functions as IFETCH in normal operation and as DSI in background debug mode.

TFETCH

This active-low output signal indicates when the CPU32+ is performing an instruction
word prefetch and when the instruction pipeline has been flushed.

DSI

This development serial input signal helps to provide serial communications for
background debug mode.

2.13 DMA MODULE SIGNALS

The following signals are used by the direct memory access (DMA) controller module to
provide external device handshaking. See Section 7 DMA Module for additional
information on these signals.

2.13.1 DMA Request (DREQ2, DREQ1)

This active-low input is asserted by a peripheral device to request an operand transfer
between that peripheral and memory. The assertion of DREQx starts the DMA process.
The assertion level in external burst mode is level sensitive; in external cycle steal mode,
it is falling-edge sensitive.

2.13.2 DMA Acknowledge (DACK2, DACK1)

This active-low output is asserted by the DMA to signal to a peripheral that an operand is
being transferred in response to a previous transfer request.

MOTOROLA MC68349 USER'S MANUAL 2-11

2.13.3 DMA Done (DONE2, DONE1)

This active-low bidirectional signal is asserted by the DMA or a peripheral device during
any DMA bus cycle to indicate that the last data transfer is being performed. DONEXx is an
active input in any mode. As an output, it is only active in external request mode. An
external pullup resistor is required even during operation in the internal request mode.

2.14 SERIAL MODULE SIGNALS

The following signals are used by the serial module for data and clock signals. See
Section 8 Serial Module for more information on these signals.

2.14.1 Serial External Clock Input (SCLK)

This input can be used as the external clock input for channel A or channel B, bypassing
the baud rate generator.

2.14.2 Serial Crystal Oscillator (X1, X2)

These pins furnish the connection to a crystal or external clock, which must be supplied
when using the baud rate generator. An external clock should be connected to the X1 pin
with X2 left floating.

2.14.3 Receive Data (RxDA, RxDB)

These signals are the receiver serial data input for each channel. Data received on this
signal is sampled on the rising edge of the clock source, with the least significant bit
received first.

2.14.4 Transmit Data (TxDA, TxDB)

These signals are the transmitter serial data output for each channel. The output is held
high (‘mark’' condition) when the transmitter is disabled, idle, or operating in the local
loopback mode. Data is shifted out on this signal at the falling edge of the clock source,
with the least significant bit transmitted first.

2.14.5 Receiver Ready (RxRDYA)

This active-low output signal can be programmed as the channel A receiver ready,
channel A first-in-first-out (FIFO) full indicator, or a dedicated parallel output.

RxRDYA

When used for this function, this signal reflects the complement of the status of bit 1 of
the serial interrupt status register. This signal can be used to control parallel data flow
by acting as an interrupt to indicate when the receiver contains a character.

2-12 MC68349 USER'S MANUAL MOTOROLA

FFULLA

When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver FIFO is full.

OP4

When used for this function, this output is controlled by bit 4 in the output port data
registers.

2.14.6 Transmitter Ready (TxRDYA)

This active-low output can be programmed as the channel A transmitter ready status
indicator or used as a discrete output.

TxRDYA

When used for this function, this signal reflects the complement of the status of bit 2 of
the channel A status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the transmitter contains a character.

OP6

When used for this function, this output is controlled by bit 6 in the output port data
registers.

2.14.7 Request to Send (RTSA, RTSB)

These active-low signals can be programmed as request-to-send outputs or used as
discrete outputs.

RTSB, RTSA
When used for this function, these signals function as the request-to-send outputs.

OP1, OPO

When used for this function, these outputs are controlled by the value of bit 1 and bit O,
respectively, in the output port data registers.

2.14.8 Clear to Send (CTSA, CTSB)

These active-low signals can be programmed as the clear-to-send inputs for each
channel.

2.15 SYNTHESIZER POWER (VCCSYN)

This pin supplies a quiet power source to the voltage controlled oscillator (VCO) to provide
greater frequency stability. It is also used to control the synthesizer mode after reset. See
Section 4 System Integration Module for more information.

MOTOROLA MC68349 USER'S MANUAL 2-13

2.16 SYSTEM POWER AND GROUND (Vcc AND GND)

These pins provide system power and ground to the MC68349. Multiple pins are provided
for adequate current capability. All power supply pins must have adequate bypass
capacitance for high-frequency noise suppression.

2.17 SIGNAL SUMMARY

Table 2-5 presents a summary of all the signals discussed in the preceding paragraphs.

2-14

Table 2-5. Signal Summary

Signal Name Mnemonic Input/Output | Active State | Three-State
Address Bus A23-A0 Out — Yes
Address Bus/Port A7—-A0/ A31-A24 Out/l/O/Out —/—I/Low Yes
Interrupt Acknowledge 7-1
Data Bus D31-D0 /0 — Yes
Function Codes FC3-FCO Out — Yes
Reset RESET 110 Low No
Bus Error BERR In Low —
Halt HALT 1’0 Low No
Address Strobe AS Oout Low Yes
Data Strobe DS Out Low Yes
Read/Write R'W Out High/Low Yes
Size SIZ1, SI1Z0 Out — Yes
Data and Size Acknowledge DSACK1, DSACKO In Low —
Bus Request BR In Low —
Bus Grant BG Oout Low No
Bus Grant Acknowledge BGACK In Low —
Read-Modify-Write Cycle RMC Out Low Yes
Interrupt Request Level/ IRQ7, IRQG, IRQ5, In/l/O Low/— —
Port B7, B6, B5, B3 IRQ3
Chip Select 3/Interrupt Request CS3-CS1 out/In/l/O Low/Low/— No
Level 4, 2, 1/Port B4, B2, B1
Chip Select 0/Autovector CS0/AVEC Out/In Low/Low No
Clock Mode Select/Port BO MODCK In/1/O —— —
Crystal Oscillator EXTAL, XTAL In, Out — —
System Clock CLKOUT Out — No
External Filter Capacitor XFC — — —
Test Clock TCK In — —
Test Mode Select T™MS In High —
Test Data In TDI In High —
Test Data Out TDO Out High —

MC68349 USER'S MANUAL MOTOROLA

Table 2-5. Signal Summary (Continued)

Signal Name Mnemonic (Pinout) | Input/Output | Active State | Three-State
Breakpoint/ BKPT/DSCLK In/In Low/— ——
Development Serial Clock
Freeze FREEZE Out High No
Instruction Pipe 0/ IPIPEO/DSO Out/Out Low/— No/—
Development Serial Out
Instruction Pipe 1 IPIPE1 Out Low No
Instruction Fetch/ IFETCH /DSI Out/In Low/— No/—
Development Serial In
DMA Request DREQ2, DREQ1 In Low —
DMA Acknowledge DACK2, DACK1 Out Low No
DMA Done DONEZ2, DONET1 I/O Low No
Serial Clock SCLK In — —
Serial Crystal Oscillator X1, X2 Out/In — —
Receive Data RxDA, RxDB In — —
Transmit Data TxDA, TxDB Out — No
Receiver Ready/ RxRDYA Out/Out/Out Low/Low/— No
FIFO Full/OP4
Transmitter Ready/OP6 TxRDYA Out/Out Low/— No
Request-to-Send/ RTSB, RTSA Out/Out Low/— No
OP1, OPO
Clear-to-Send CTSA, CTSB In Low —
Synthesizer Power VCCSYN — — —
System Power and Ground Vce, GND — — —

MOTOROLA

MC68349 USER'S MANUAL

2-15

SECTION 3
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and reset operation. Operation of the external bus is the same
whether the MC68349 or an external device is the bus master; the names and
descriptions of bus cycles are from the viewpoint of the bus master. For exact timing
specifications, refer to Section 11 Electrical Characteristics.

The MC68349 architecture supports byte, word, and long-word operands allowing access
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by the
S1Z1/S1Z0 outputs and DSACK1/DSACKO inputs. The MC68349 also supports misaligned
word and long word operands (i.e., word and long word operands not located on word
boundaries in memory).

3.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68349 and external memory or a peripheral
device. External devices can accept or provide 8, 16, or 32 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted
or provided during a bus transfer is defined as the port width. The MC68349 contains an
address bus that specifies the address for the transfer and a data bus that transfers the
data. Control signals indicate the beginning and type of the cycle as well as the address
space and size of the transfer. The selected device then controls the length of the cycle
with the signal(s) used to terminate the cycle. Strobe signals, one for the address bus and
another for the data bus, indicate the validity of the address and provide timing information
for the data. Both asynchronous and synchronous operation is possible for any port width.
In asynchronous operation, the bus and control input signals are internally synchronized to
the MC68349 clock, introducing a delay. This delay is the time required for the MC68349
to sample an input signal, synchronize the input to the internal clocks, and determine
whether it is high or low. In synchronous mode, the bus and control input signals must be
timed to setup and hold times. Since no synchronization is needed, bus cycles can be
completed in three clock cycles in this mode. Additionally, using the fast-termination option
of the chip select signals, two-clock operation is possible.

Furthermore, for all inputs, the MC68349 latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 3-1,
where tgy and th are the input setup and hold times, respectively. To ensure that an input
signal is recognized on a specific falling edge of the clock, that input must be stable during
the sample window. If an input makes a transition during the window time period, the level
recognized by the MC68349 is not predictable; however, the MC68349 always resolves

MOTOROLA MC68349 USER'S MANUAL 31

the latched level to either a logic high or low before using it. In addition to meeting input
setup and hold times for deterministic operation, all input signals must obey the protocols
described in this section.

tsua -

<—1p

CLKOUT N\

I_'_l

SAMPLE WINDOW

Figure 3-1. Input Sample Window

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

3.1.1 Bus Control Signals

The MC68349 initiates a bus cycle by driving the A31-A0, SIZx, FCx, and R/W outputs. At
the beginning of a bus cycle, SIZ1 and SIZ0 are driven with FC3-FCO0. SI1Z1 and SIZ0
indicate the number of bytes remaining to be transferred during an operand cycle
(consisting of one or more bus cycles). Table 3-3 lists the encoding of the SIZx signals.
The SIZx signals are valid while AS is asserted. The R/W signal determines the direction
of the transfer during a bus cycle. Driven at the beginning of a bus cycle, R/W is valid
while AS is asserted. R/W only transitions when a write cycle is preceded by a read cycle
or vice versa. The signal may remain low for consecutive write cycles. The RMC signal is
asserted at the beginning of the first bus cycle of a read-modify-write operation and
remains asserted until completion of the final bus cycle of the operation.

32 MC68349 USER'S MANUAL MOTOROLA

3.1.2 Function Code Signals

FC3-FCO are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32+ to acquire specific control information not
normally associated with read or write bus cycles. FC3—-FCO are valid while AS is
asserted.

Function codes (see Table 3-1) can be considered as extensions of the 32-bit address that
can provide up to 16 different 4-Gbyte address spaces. Function codes are automatically
generated by the CPU32+ to select address spaces for data and program at both user and
supervisor privilege levels, a CPU address space for processor functions, and an alternate
master address space. User programs access only their own program and data areas to
increase protection of system integrity and can be restricted from accessing other
information. The S-bit in the CPU32+ status register is set for supervisor accesses and
cleared for user accesses to provide differentiation. Refer to 3.4 CPU Space Cycles for
more information.

Table 3-1. Address Space Encoding

Function Code Bits
3 2 1 0 Address Spaces
0 0 0 0 Reserved (Motorola)
0 0 0 1 User Data Space
0 0 1 0 User Program Space
0 0 1 1 Reserved (User)
0 1 0 0 Reserved (Motorola)
0 1 0 1 Supervisor Data Space
0 1 1 0 Supervisor Program Space
0 1 1 1 CPU Space
1 X X X DMA Space

3.1.3 Address Bus (A31-A0)

These signals are outputs that define the address of the byte (or the most significant byte)
to be transferred during a bus cycle. The MC68349 places the address on the bus at the
beginning of a bus cycle. The address is valid while AS is asserted.

3.1.4 Address Strobe (AS)

This output timing signal indicates the validity of many control signals and the address on
the address bus. AS is asserted approximately one-half clock cycle after the beginning of
a bus cycle.

MOTOROLA MC68349 USER'S MANUAL 33

3.1.5 Data Bus (D31-D0)

This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68349. A read or write operation may transfer 8, 16, or 32 bits of data in one
bus cycle. During a read cycle, the data is latched by the MC68349 on the last falling edge
of the clock for that bus cycle. For a write cycle, all 32 bits of the data bus are driven,
regardless of the port width or operand size. The MC68349 places the data on the data
bus approximately one-half clock cycle after AS is asserted in a write cycle.

3.1.6 Data Strobe (DS)

DS is an output timing signal that applies to the data bus. For a read cycle, the MC68349
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
MC68349 asserts DS approximately one clock cycle after the assertion of AS during a
write cycle.

3.1.7 Bus Cycle Termination Signals

The following signals can terminate a bus cycle.

3.1.7.1 DATA TRANSFER AND SIZE ACKNOWLEDGE SIGNALS (DSACK1 AND
DSACKO). During bus cycles, external devices assert DSACK1 and/or DSACKO as part of
the bus protocol. During a read cycle, this signals the MC68349 to terminate the bus cycle
and to latch the data. During a write cycle, this indicates that the external device has
successfully stored the data and that the cycle may terminate. These signals also indicate
to the MC68349 the size of the port for the bus cycle just completed (see Table 3-3). Refer
to 3.3.1 Read Cycle for timing relationships of DSACK1 and DSACKO.

Additionally, the system integration module (SIM49) chip select address mask register can
be programmed to internally generate DSACK1 and DSACKO for external accesses,
eliminating logic required to generate these signals. However, if external DSACKXx signals
are returned earlier than indicated by the DD bits in the chip select address mask register,
the cycle will terminate sooner than programmed. Refer to Section 4 System Integration
Module for additional information. The SIM49 can alternatively be programmed to
generate a fast termination cycle, providing a two-cycle external access. Refer to 3.2.6
Fast Termination Cycles for additional information on these cycles.

3.1.7.2 BUS ERROR (BERR). This signal is a bus cycle termination indicator and can be
used in the absence of DSACKXx to indicate a bus error condition. BERR can also be
asserted in conjunction with DSACKX to indicate a bus error condition, provided it meets
the appropriate timing described in this section and in Section 11 Electrical
Characteristics. Additionally, BERR and HALT can be asserted together to indicate a
retry termination. Refer to 3.5 Bus Exception Control Cycles for additional information
on the use of these signals.

34 MC68349 USER'S MANUAL MOTOROLA

The internal bus monitor can be used to generate an internal bus error signal for internal
and internal-to-external transfers. If the bus cycles of an external bus master are to be
monitored, external BERR generation must be provided since the internal bus error
monitor has no information about transfers initiated by an external bus master.

3.1.7.3 AUTOVECTOR (AVEC). This signal can be used to terminate interrupt
acknowledge cycles, indicating that the MC68349 should internally generate a vector
(autovector) number to locate an interrupt handler routine. AVEC can be generated either
externally or internally by the SIM49 (see Section 4 System Integration Module for
additional information). AVEC is ignored during all other bus cycles.

3.2 DATA TRANSFER MECHANISM

The MC68349 supports byte, word, and long-word operands, allowing access to 8-,16-,
and 32-bit data ports through the use of asynchronous cycles controlled by DSACK1 and
DSACKO. The MC68349 also supports byte, word, and long-word operands, allowing
access to 8-, 16, and 32-bit data ports through the use of synchronous cycles controlled
by the fast-termination capability of the SIM49.

3.2.1 Dynamic Bus Sizing

The MC68349 dynamically interprets the port size of the addressed device during each
bus cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an
operand transfer cycle, the slave device signals its port size (byte, word, or long word) and
indicates completion of the bus cycle to the MC68349 through the use of the DSACKXx
inputs. Refer to Table 3-2 for DSACKx encoding.

Table 3-2. DSACKx Encoding

DSACK1 DSACKO Result
1 1 Insert Wait States in Current Bus Cycle
1 0 Complete Cycle—Data Bus Port Size is 8 Bits
0 1 Complete Cycle—Data Bus Port Size is 16 Bits
0 0 Complete Cycle—Data Bus Port Size is 32 Bits

For example, if the MC68349 is executing an instruction that reads a long-word operand
from a long-word aligned address, it attempts to read 32 bits during the first bus cycle.
(Refer to 3.2.2 Misaligned Operands for the case of a word or byte address.) If the port
responds that it is 32 bits wide, the MC68349 latches all 32 bits of data and continues with
the next operation. If the port responds that it is 16 bits wide, the MC68349 latches the 16
bits of valid data and runs another bus cycle to obtain the other 16 bits. The operation for
an 8-bit port is similar, but requires four read cycles. The addressed device uses the
DSACKXx signals to indicate the port width. For instance, a 32-bit device always returns
DSACKXx for a 32-bit port (regardless of whether the bus cycle is a byte, word, or long-
word operation).

MOTOROLA MC68349 USER'S MANUAL 35

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 32-bit port must reside on data bus bits 31-0, a 16-bit port
must reside on data bus bits 31-16, and an 8-bit port must reside on data bus bits 31-24.
This requirement minimizes the number of bus cycles needed to transfer data to 8- and
16-bit ports and ensures that the MC68349 correctly transfers valid data. The MC68349
always attempts to transfer the maximum amount of data on all bus cycles; for a long-word
operation, it always assumes that the port is 32 bits wide when beginning the bus cycle.

The bytes of operands are designated as shown in Figure 3-2. The most significant byte of
a long-word operand is OPO, and OP3 is the least significant byte. The two bytes of a
word-length operand are OP2 (most significant) and OP3. The single byte of a byte-length
operand is OP3. These designations are used in the figures and descriptions that follow.

31 0

LONG-WORD OPERAND OP0 OP1 0oP2 OP3
15 0
WORD OPERAND 0oP2 ‘ OP3 |
7 0
BYTE OPERAND | OP3 |

Figure 3-2. Internal Operand Representation

Figure 3-3 shows the required organization of data ports on the MC68349 bus for 8, 16,
and 32-bit devices. The four bytes shown are connected through the internal data bus and
data multiplexer to the external data bus. This path is the means through which the
MC68349 supports dynamic bus sizing and operand misalignment. Refer to 3.2.2
Misaligned Operands for the definition of misaligned operand. The data multiplexer
establishes the necessary connections for different combinations of address and data
sizes.

36 MC68349 USER'S MANUAL MOTOROLA

OPO OP1 0oP2 OP3

REGISTER | 0 | 1 2 | 3 |
MULTIPLEXER | ROUTING AND DUPLICATION | i
INTERNAL TO
EXTERNAL | | | |_ THE MC68349
————————————— - D23-D16 D15-D8 D7-DO o —T S
DATA BUS D31-D24 EXTERNAL BUS
Y Y Y Y
QEX?(E)E(% BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | 32-BIT PORT
INCREASING
MEMORY Y Y
ADDRESSES
XXXXXXXX0 BYTEO BYTE 1
16-BIT PORT
2 BYTE 2 BYTE 3
XXXXXXXXO BYTE O
1 BYTE 1
8-BIT PORT
2 BYTE 2
3 BYTE 3

Figure 3-3. MC68349 Interface to Various Port Sizes

The multiplexer takes the four bytes of the 32-bit bus and routes them to their required
positions. For example, OPO can be routed to D24-D31, as would be the normal case, or
it can be routed to any other byte position to support a misaligned transfer. The same is

true for any of the operand bytes. The positioning of bytes is determined by the size and
address outputs.

The SI1Z0 and SIZ1 outputs indicate the remaining number of bytes to be transferred
during the current bus cycle (see Table 3-3).

Table 3-3. SIZx Encoding

SIZ1 SIZ0 Size
0 1 Byte
1 0 Word
1 1 3 Bytes
0 0 Long Word

The number of bytes transferred during a write or read bus cycle is equal to or less than
the size indicated by the SIZx outputs, depending on port width and operand alignment.
For example, during the first bus cycle of a long-word transfer to a word port, the SIZx
outputs indicate that four bytes are to be transferred, although only two bytes are moved
on that bus cycle.

MOTOROLA MC68349 USER'S MANUAL 37

Al and AO also affect operation of the data multiplexer. During an operand transfer, A31—
A2 indicate the long-word base address of that portion of the operand to be accessed; Al
and AO indicate the byte offset from the base. Table 3-4 lists the encoding of A1 and AO
and the corresponding byte offset from the long-word base.

Table 3-4. Address Offset Encoding

Al AO Offset
0 0 +0 Byte
0 1 +1 Byte
1 0 +2 Bytes
1 1 +3 Bytes

Table 3-5 lists the bytes required on the data bus for read cycles. The entries shown as
OPx are portions of the requested operand that are read during that bus cycle and are
defined by SIZ1, S1Z0, Al, and AO for the bus cycle. Bytes labeled x are “don’t cares” and
are not required during that read cycle.

When the MC68349 executes code from 32-bit memory with one or more blocks of the
configurable instruction cache (CIC) used as instruction cache, the memory subsystem
must respond to word-sized code fetches with valid data on both words of the data bus.
Although only the instruction word specifically requested is routed to the CPU32+
instruction pipeline, both words on the bus are assumed valid and are cached in the CIC.

Table 3-6 lists the combinations of SIZ1, SIZ0, Al, and AO and the corresponding pattern
of the data transfer for write cycles from the internal multiplexer of the MC68349 to the
external data bus. Bytes labeled x are “don't cares.”

Figure 3-4 shows the transfer of a long-word operand to a word port. In the first bus cycle,
the MC68349 places the four operand bytes on the external bus. Since the address is
long-word aligned in this example, the multiplexer follows the pattern in the entry of Table
4-6 corresponding to SIZ0, SIZ1, A0, A1 = 0000. The port latches the data on bits D16—
D31 of the data bus, asserts DSACK1 (DSACKO remains negated), and the MC68349
terminates the bus cycle. It then starts a new bus cycle with S1Z0, S1Z1, A0, A1 = 1010 to
transfer the remaining 16 bits. SIZ0 and SIZ1 indicate that a word remains to be
transferred; AO and Al indicate that the word corresponds to an offset of two from the
base address. The multiplexer follows the pattern corresponding to this configuration of
the size and address signals and places the two least significant bytes of the long word on
the word portion of the bus (D16-D31). The bus cycle transfers the remaining bytes to the
word-size port. Figure 3-5 shows the timing of the bus transfer signals for this operation.

38 MC68349 USER'S MANUAL MOTOROLA

Table 3-5. Data Bus Requirements for Read Cycles*

External Data Bytes Required
Transfer
Size Size Address Long-Word Port Word Port Byte Port
SIZ1| SI1Zz0| Al | A0 | D31:D24 | D23:D16 | D15:D8 | D7:D0O | D31:D24 | D23:D16 D31:D24
Byte 0 1 0 0 OP3 X X X OP3 X OP3
0 1 0 1 X OP3 X X X OP3 OP3
0 1 1 0 X X OP3 X OP3 X OP3
0 1 1 1 X X X OP3 X OP3 OP3
Word 1 0 0 0 OP2 OP3 X X OP2 OP3 OP2
1 0 0 1 X OoP2 OP3 X X OP2 OP2
1 0 1 0 X X OoP2 OP3 OoP2 OP3 OoP2
1 0 1 1 X X X OoP2 X OoP2 OP2
3 Bytes 1 1 0 0 OP1 OoP2 OP3 X OP1 OoP2 OP1
1 1 0 1 X OP1 OP2 OP3 X OP1 OP1
1 1 1 0 X X OP1 OoP2 OP1 OP2 OP1
1 1 1 1 X X X OP1 X OP1 OP1
Long 0 0 0 0 OPO OP1 OP2 OP3 OPO OP1 OPO
Word
0 0 0 1 X OPO OP1 OoP2 X OPO OPO
0 0 1 0 X X OPO OP1 OPO OP1 OPO
0 0 1 1 X X X OPO X OPO OPO

* 32-bit memory must supply valid data for the entire 32-bit port width when responding to a word-sized code access

MOTOROLA

MC68349 USER'S MANUAL

3-9

3-10

Table 3-6. MC68349 Internal to External Data Bus Multiplexer—Write Cycle

Transfer Size Size Address External Data Bus Connection
SIz1 SIz0 Al A0 D31:D24 | D23:.D16 D15:D8 D7:DO
Byte 0 1 0 0 OP3 X X X
0 1 0 1 OP3 OP3 X X
0 1 1 0 OP3 X OP3 X
0 1 1 1 OP3 OP3 X OP3
Word 1 0 0 0 OoP2 OP3 X X
1 0 0 1 OP2 OP2 OP3 X
1 0 1 0 OP2 OP3 OP2 OP3
1 0 1 1 OoP2 OoP2 X OoP2
3 Bytes 1 1 0 0 OP1 OoP2 OP3 X
1 1 0 1 OP1 OP1 OP2 OP3
1 1 1 0 OP1 OP2 OP1 OoP2
1 1 1 1 OP1 X OoP2 OP1
Long Word 0 0 0 0 OPO OP1 OoP2 OP3
0 0 0 1 OPO OPO OP1 OP2
0 0 1 0 OPO OP1 OPO OP1
0 0 1 1 OPO OPO X OPO
31 LONG-WORD OPERAND
OPO OP1 OoP2 OP3
Y
D31 DATA BUS D16
WORD &EMORY MC68349 MEMORY CONTROL
MSB LSB Slz1 slzo Al A0 DSACKI ~ DSACKO
0PO oP1 0 0 0 L
0oP2 OP3 1 1 0 L

Figure 3-4. Long-Word Operand Write to Word Port Example

MC68349 USER'S MANUAL

MOTOROLA

SO S2 S4 SO S2 S4

acor | LI LI LI LI LT L
- X X
M\ /
P\

Fesrco X X
sz \ /
s\

R\
s N/ N\ /
bs n___/ ___/

ooz y——_ ow y— i
oo y—— oy om

<—WORD WRITE—"(—WORD WRITE—>

<<— LONG-WORD OPERAND WRITE TO 16-BIT PORT——>

Figure 3-5. Long-Word Operand Write to Word Port Timing

MOTOROLA MC68349 USER'S MANUAL 311

Figure 3-6 shows a word transfer to an 8-bit port. Like the preceding example, this
example requires two bus cycles. Each bus cycle transfers a single byte. The size signals
for the first cycle specify two bytes; for the second cycle, they specify one byte. Figure 3-7
shows the associated bus transfer signal timing.

15

WORD OPERAND

OP2

OP3

D31 _DATABUS D24

Y

l

BYTE MEMORY MC68349 MEMORY CONTROL
Sizt sz AL AD DSACKL ~ DSACKO

OP2 1 0 0 0 H L

OP3 0 1 0 1 H L

Figure 3-6. Word Operand Write to Byte Port Example

3-12

MC68349 USER'S MANUAL MOTOROLA

acour | L L [[L [
A31—A2>< ><

SIZ1 /
SIz0 \

RAW_\
s\ /N[

/
rearen X X
\
/

DSACK1 /
DSACKO _/—\ / ~__
D31-D24 :>—< oP2
D23-D16 :>—< OP3
D15-D8 :>—< OP2
D7-D0 D—(OP3

~<— BYTEWRITE r“ BYTEWRITE ——>

OP3

OP3

OP3

[T1]

OP3

< WORD OPERAND WRITE >

Figure 3-7. Word Operand Write to Byte Port Timing

3.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd
address; a long word is misaligned at an address that is not evenly divisible by four. The
MC68302, MC68000/MC68008, MC68010, and MC68340 implementations allow long-
word transfers on odd-word boundaries but force exceptions if word or long-word operand
transfers are attempted at odd-byte addresses. Although the MC68349 does not enforce
any alignment restrictions for data operands (including program counter (PC) relative data
addresses), some performance degradation occurs when additional bus cycles are

MOTOROLA MC68349 USER'S MANUAL 313

required for long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction words and
extension words must reside on word boundaries. Attempting to prefetch an instruction
word at an odd address causes an address error exception.

Figure 3-8 shows the transfer of a long-word operand to an odd address in word-
organized memory, which requires three bus cycles. For the first cycle, the SIZx signals
specify a long-word transfer, and the address offset (A2—A0) is 001. Since the port width is
16 bits, only the first byte of the long word is transferred. The slave device latches the byte
and acknowledges the data transfer, indicating that the port is 16 bits wide. When the
processor starts the second cycle, the SIZx signals specify that three bytes remain to be
transferred with an address offset (A2—A0) of 010. The next two bytes are transferred
during this cycle. The processor then initiates the third cycle, with the SIZx signals
indicating one byte remaining to be transferred. The address offset (A2—A0) is now 100;
the port latches the final byte, and the operation is complete. Figure 3-9 shows the
associated bus transfer signal timing.

31 LONG-WORD OPERAND 0
OPO OP1 OoP2 OP3
Y
D31 DATA BUS D16
WORD MEMORY MC68349 MEMORY CONTROL
MSB LSB SIZ1 SIz0 A2 Al A0 DSACK1 DSACKO
XXX OPO 0 0 0 0 1 L H
OP1 OP2 1 1 0 1 0 L H
OP3 XXX 0 1 1 0 0 L H

Figure 3-8. Misaligned Long-Word Operand Write to Word Port Example

314 MC68349 USER'S MANUAL MOTOROLA

eworr | L L L0 L L1 L L L1 |

pr X X X
M\ / \
w__/ \

o X X X
sz \ / \
0 T\ /

W\

o8 P n/
psAci: \ / /S /S

DSACKO
D31-D24 OPO OP1 OP3
D23-D16 OPO OP2 OP3
D15-D8 OP1 OP1 OP3
D7-D0 0oP2 OP2 OP3
<— BYTEWRITE > } < WORD WRITE—"(—BYTE WRITE ——>
< LONG-WORD OPERAND WRITE >

Figure 3-9. Misaligned Long-Word Operand Write to Word Port Timing

MOTOROLA MC68349 USER'S MANUAL 315

Figures 3-10 and 3-11 show a word transfer to an odd address in word-organized
memory. This example is similar to the one shown in Figures 3-8 and 3-9 except that the
operand is word sized and the transfer requires only two bus cycles.

15 WORD OPERAND 0
OoP2 OP3
Y
D31 DATA BUS D16
WORD MEMORY MC68349 MEMORY CONTROL
MSB LSB SIz1 SIZz0 A2 Al A0 DSACK1 DSACKO
XXX OP2 1 0 0 O 1 L H
OP3 XXX 0 1 0 1 0 L H

Figure 3-10. Misaligned Word Operand Write to Word Port Example

316 MC68349 USER'S MANUAL MOTOROLA

CLKOUT [[| [| |

A31-A2

FC3-FCO

X
=
7

X

o/
=
—

DSACK1 \—/—_/_

DSACKO
D31-D24 OP2 0OP3
D23-D16 0oP2 OP3
D15-D8 OP3 OP3
D7-DO 0oP2 OP3

<— WORD WRITE >“ BYTE WRITE—>

<——— WORD OPERAND WRITE TO AL/A0 = 01 ——— >

Figure 3-11. Misaligned Word Operand Write to Word Port Timing

MOTOROLA MC68349 USER'S MANUAL

317

Figures 3-12 and 3-13 show an example of a long-word transfer to an odd address in long-
word-organized memory. In this example, a long-word access is attempted beginning at
the least significant byte of a long-word-organized memory. Only one byte can be
transferred in the first bus cycle. The second bus cycle then consists of a three-byte
access to a long-word boundary. Since the memory is long-word organized, no further bus

cycles are necessary.

15

LONG-WORD OPERAND

OPO

OP1

0oP2

OP3

D31

Y
DATA BUS

DO

3-18

l

LONG-WORD MEMORY MC68349 MEMORY CONTROL
MSB UmB LMB LSB SIZL SIZ0 A2 Al A0 DSACKL DSACKO
XXX XXX OPO OPO 0 0 0 1 1 L L
OP1 OoP2 OP3 XXX 1 1 1 0 0 L L
Figure 3-12. Misaligned Long-Word Operand
Write to Long-Word Port Example
MC68349 USER'S MANUAL MOTOROLA

MOTOROLA

cour [[I L L LI |
A31-A2 X
AL /

A0

FC2-FCO

SIZ1

SIz0

~N N X o X

JPPUL

RIW

DSACKL / \ / \
DSACKO / \ / \
p31-024 (o) opL
D23-D16 (o0) OP2

D15-D8 OP1 OP3
<— BYTEWRITE > < 3-BYTE WRITE ——>

<— LONG-WORD OPERAND WRITE ——™ >

Figure 3-13. Misaligned Long-Word Operand
Write to Long-Word Port Timing

MC68349 USER'S MANUAL

3-19

3.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size determines the
number of bus cycles required to perform a particular memory access. Table 3-7 lists the
number of bus cycles required for different operand sizes to different port sizes with all
possible alignment conditions for write cycles and read cycles.

Table 3-7. Memory Alignment and Port Size
Influence on Read/Write Bus Cycles

Number of Bus Cycles
(Data Port Size = 32 Bits:16 Bits:8 Bits)
Al, AO
Operand Size 00 01 10 11
Long-Word Instruction™® 1:2:4 N/A N/A N/A
Word Instruction 1:1:2 N/A 1:1:2 N/A
Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1:2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:14

This table verifies that bus cycle throughput is significantly affected by port size and
alignment. The MC68349 system designer and programmer should be aware of and
account for these effects, particularly in time-critical applications.

The MC68349 uses a simple adaptive prefetch algorithm to minimize unused prefetches
resulting from change-of-flow instructions. Instruction fetches are either aligned long-word
or aligned word accesses, with the size of the access determined by the memory port size
signaled for the previous fetch. When a byte or word port size termination is returned for
an instruction fetch (regardless of whether that fetch is long-word or word), the next fetch
is forced to be a word access. Likewise, if a long-word termination is returned, the next
instruction fetch is a long-word access. Note that the prefetch size algorithm is not affected
by the termination size for any intervening data accesses.

3.2.4 Bus Operation

The MC68349 bus is asynchronous, allowing external devices connected to the bus to
operate at clock frequencies different from the clock for the MC68349. Bus operation uses
the handshake lines (AS, DS, DSACK1/DSACKO, BERR, and HALT) to control data
transfers. AS signals a valid address on the address bus, and DS is used as a condition
for valid data on a write cycle. Decoding the SIZx outputs and lower address line AO
provides strobes that select the active portion of the data bus. The slave device (memory
or peripheral) responds by placing the requested data on the correct portion of the data
bus for a read cycle or by latching the data on a write cycle; the slave asserts the
DSACK1/DSACKO combination that corresponds to the port size to terminate the cycle.
Alternatively, the SIM49 can be programmed to assert the DSACK1/DSACKO combination

320 MC68349 USER'S MANUAL MOTOROLA

internally and respond for the slave. If no slave responds or the access is invalid, external
control logic may assert BERR to abort the bus cycle or BERR with HALT to retry the bus
cycle.

DSACKXx can be asserted before the data from a slave device is valid on a read cycle. The
length of time that DSACKx may precede data must not exceed a specified value in any
asynchronous system to ensure that valid data is latched into the MC68349. (See Section
11 Electrical Characteristics for timing parameters.) Note that no maximum time is
specified from the assertion of AS to the assertion of DSACKx . Although the MC68349 can
transfer data in a minimum of three clock cycles when the cycle is terminated with
DSACKXx, the MC68349 inserts wait cycles in clock-period increments until DSACKXx is
recognized. BERR and/or HALT can be asserted after DSACKXx is asserted. BERR and or
HALT must be asserted within the time specified after DSACKXx is asserted in any
asynchronous system. If this maximum delay time is violated, the MC68349 may exhibit
erratic behavior.

3.2.5 Synchronous Operation with DSACKXx

terminated with DSACKx can also operate synchronously in that signals are interpreted
relative to clock edges. The devices that use these cycles must synchronize the response
to the MC68349 clock (CLKOUT) to be synchronous. Since the devices terminate bus
cycles with DSACKXx, the dynamic bus sizing capabilities of the MC68349 are available.
The minimum cycle time for these cycles is also three clocks. To support systems that use
the system clock to generate DSACKx and other asynchronous inputs, the asynchronous
input setup time and the asynchronous input hold time are given. If the setup and hold
times are met for the assertion or negation of a signal such as DSACKXx, the MC68349 is
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACKX is recognized on a particular falling edge of the clock, valid
data is latched into the MC68349 (for a read cycle) on the next falling clock edge if the
data meets the data setup time. In this case, the parameter for asynchronous operation
can be ignored. The timing parameters are described in Section 11 Electrical
Characteristics.

If a system asserts DSACKXx for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACKx (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACKXx (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACKx is recognized. This setup time is
critical, and the MC68349 may exhibit erratic behavior if it is violated. When operating
synchronously, the data-in setup and hold times for synchronous cycles may be used
instead of the timing requirements for data relative to DS.

MOTOROLA MC68349 USER'S MANUAL 321

3.2.6 Fast Termination Cycles

With an external device that has a fast access time, a fast termination cycle can provide a
two-clock external bus transfer. Fast termination is enabled when the EDS bit in the base
address register as well as the DD bits in the corresponding address mask register are set
(EDS =1, DDx = 11). Since the chip select circuits are driven from the system clock, the
bus cycle termination is inherently synchronized with the system clock. Refer to Section 4
System Integration Module for more information on chip selects.

To use the fast termination option, an external device should be fast enough to have data
ready, within the specified setup time, by the falling edge of S4. Figure 3-14 shows the
DSACKXx timing for a read with two wait states, followed by a fast termination read and
write. When using the fast termination option, DS is asserted only in a read cycle, not in a

write cycle.

SO S1 S2 S3 SW SW*SW SW*S4 S5 SO S1 S4 S5 SO S1 S4 S5 SO

CLKOUTJ|||||||||

1

L L
/T
N/

—
-\ /|

di¢E

RIW
DSACKx \ /
D31-D0 { >—<
<€——— TWO WAIT STATES IN READ ——>>1<¢—— FAST —»=——FAST —>
TERMINATION ~ TERMINATION

READ

* DSACKXx only internally asserted for fast termination cycles.

Figure 3-14. Fast Termination Timi

322 MC68349 USER'S MANUAL

WRITE

ng

MOTOROLA

3.3 DATA TRANSFER CYCLES

The transfer of data between the MC68349 and other devices involves the following
signals:

+ Address Bus A31-A0
 Data Bus D31-D0O
» Control Signals

The address bus and data bus are parallel, nonmultiplexed buses. The bus master moves
data on the bus by issuing control signals, and the bus uses a handshake protocol to
ensure correct movement of the data. In all bus cycles, the bus master is responsible for
de-skewing all signals it issues at both the start and end of the cycle. In addition, the bus
master is responsible for de-skewing the acknowledge and data signals from the slave
devices. The following paragraphs define read, write, and read-modify-write cycle
operations. Each bus cycle is defined as a succession of states that apply to the bus
operation. These states are different from the MC68349 states described for the CPU32+.
The clock cycles used in the descriptions and timing diagrams of data transfer cycles are
independent of the clock frequency. Bus operations are described in terms of external bus
states.

3.3.1 Read Cycle

During a read cycle, the MC68349 receives data from a memory or peripheral device. If
the instruction specifies a long-word, the MC68349 attempts to read four bytes at once.
For a word operation, the MC68349 attempts to read two bytes at once. For a byte
operation, the MC68349 reads one byte. The section of the data bus from which each byte
is read depends on the operand size, address signals (Al, A0), and the port size. Refer to
3.2.1 Dynamic Bus Sizing and 3.2.2 Misaligned Operands for more information.

Figure 3-15 shows a long-word read cycle flowchart and Figure 3-16 illustrates a byte read
cycle flowchart. Figures 3-17 and 3-18 show functional read cycles timing diagrams
specified in terms of clock periods.

MOTOROLA MC68349 USER'S MANUAL 323

BUS MASTER SLAVE

ADDRESS DEVICE

1) SET R/W TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE FUNCTION CODE ON FC3-FCO0
4) DRIVE SIZx PINS FOR FOUR BTYES
5) ASSERT AS AND DS

Y

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) DRIVE DSACKx SIGNALS

ACQUIRE DATA

A

1) LATCHDATA
2) NEGATE AS AND DS

Y

TERMINATE CYCLE

Y 1) REMOVE DATA FROM D31-D0
2) NEGATE DSACKx

START NEXT CYCLE

Figure 3-15. Long-Word Read Cycle Flowchart

BUS MASTER EXTERNAL DEVICE
ADDRESS DEVICE

1) SET R/W TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE FUNCTION CODE ON FC3-FCO
)
)

Y

PRESENT DATA

4) DRIVE SIZE (S1Z1-SIZ0) (ONE BYTE)

5) ASSERT AS AND DS 1) DECODE ADDRESS

2) PLACE DATA ON D31-D24, OR D23-16, OR
D15-D8, OR D7-DO.

3) ASSERT DSACKx

TERMINATE OUTPUT TRANSFER

1)LATCHDATA
2) NEGATE AS AND DS

Y

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACKx

START NEXT CYCLE

Figure 3-16. Byte Read Cycle Flowchart

324 MC68349 USER'S MANUAL MOTOROLA

CLKOUT

A31-A2

ls
X

m_ N\ /

_\

A0

FC3-FCO >< >< ><
siz1 / \
WORD BYTE
SIZ0 \ /
RIW J
AS \ / \ / \ /
CSx \ / \ / \ /
DS \ / \ / \ /
DSACK1 —\—/—\—/—\—
DSACKO —\—/—\—/—\—
D31-D24 { OP2)
D23-D16 { or3)
D15-D8 { opP3)
D7-D0 { op3

~—— WORD READ———>|<<——— BYTEREAD ————>|<<——— BYTEREAD———>

Figure 3-17. Byte and Word Read Cycles—32-Bit Port Timing

MOTOROLA MC68349 USER'S MANUAL 325

S2 S4 S0 S2 S4 SO S2 S4

CLKOUT

A31-A2

A0

FC3-FCO

N
~

LONG WORD WORD LONG WORD
SIz0

| 0
X
—
—
X
s\
—
_/

JJ]

D31-D24 } ‘\/W\ / /—\\OPZ) 4/—\OPO
D15-D8 D /—\OPZ
D7-D0 3 /—\OPS

<——WORD READ — > < WORD READ——> << LONG-WORD READ— >
FROM 32-BIT PORT
~<—— LONG-WORD OPERAND READ FROM 16-BIT PORT——>

Figure 3-18. Long-Word Read—16-Bit and 32-Bit Port Timing

3-26 MC68349 USER'S MANUAL MOTOROLA

State 0—The read cycle starts in state 0 (S0). During SO, the MC68349 places a valid
address on A31-A0 and valid function codes on FC3—-FCO. The function codes select the
address space for the cycle. The MC68349 drives R/W high for a read cycle. S1Z1/SI1Z0
become valid, indicating the number of bytes requested for transfer.

State 1—One-half clock later, in state 1 (S1), the MC68349 asserts AS indicating a valid
address on the address bus. The MC68349 also asserts DS during S1. The selected
device uses R/W, SIZ1 or SIZ0, A0, and DS to place its information on the data bus. One
or both of the bytes (D15-D8 and D7-D0) are selected by SIZ1/SIZ0 and AO.

State 2—As long as at least one of the DSACKXx signals is recognized on the falling edge
of S2 (meeting the asynchronous input setup time requirement), data is latched on the
falling edge of S4, and the cycle terminates.

State 3—If DSACKX is not recognized by the start of state 3 (S3), the MC68349 inserts
wait states instead of proceeding to states 4 and 5. To ensure that wait states are
inserted, both DSACK1 and DSACKO must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added, the MC68349
continues to sample DSACKx on the falling edges of the clock until one is recognized.

State 4—At the falling edge of state 4 (S4), the MC68349 latches the incoming data and
samples DSACKXx to get the port size.

State 5—The MC68349 negates AS and DS during state 5 (S5). It holds the address valid
during S5 to provide address hold time for memory systems. R/W, SIZ1 and SIZ0, and
FC3-FCO also remain valid throughout S5. The external device keeps its data and
DSACKXx signals asserted until it detects the negation of AS or DS (whichever it detects
first). The device must remove its data and negate DSACKx within approximately one
clock period after sensing the negation of AS or DS. DSACKx signals that remain asserted
beyond this limit may be prematurely detected for the next bus cycle.

MOTOROLA MC68349 USER'S MANUAL 3-27

3.3.2 Write Cycle

During a write cycle, the MC68349 transfers data to memory or a peripheral device. Figure
3-19 is a flowchart of a write cycle operation for a long-word transfer. Figure 3-20 shows
the functional write cycle timing diagram specified in clock periods for two write cycles
(between two read cycles with no idle time) for a 32-bit port.

PROCESSOR EXTERNAL DEVICE
ADDRESS DEVICE

1) SET RIW TO WRITE

2) DRIVE ADDRESS ON A31-A0

3) DRIVE FUNCTION CODE ON FC3-FCO
4) DRIVE SIZE (SIZ1-S120)

5) ASSERT ADDRESS STROBE (AS)

6) DRIVE DATA LINES D31-D0

7) ASSERT DATA STROBE (DS) > PRESENT DATA

1) DECODE ADDRESS

2) PLACE DATA ON D31-D0

3) ASSERT DATA TRANSFER AND SIZE
ACKNOWLEDGE (DSACKX)

A

ACQUIRE DATA

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-D0

> TERMINATE CYCLE

1) NEGATE DSACKXx

Y
START NEXT CYCLE

Figure 3-19. Long Word Write Cycle Flowchart

State 0—The write cycle starts in SO. During SO, the MC68349 places a valid address on
A31-A0 and valid function codes on FC3-FCO0. The function codes select the address
space for the cycle. The MC68349 drives R/W low for a write cycle. SIZ1/S1Z0 become
valid, indicating the number of bytes to be transferred.

State 1—One-half clock later during S1, the MC68349 asserts AS, indicating a valid
address on the address bus.

State 2—During S2, the MC68349 places the data to be written onto D15-DO0, and
samples DSACKXx at the end of S2.

3-28 MC68349 USER'S MANUAL MOTOROLA

SO S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw Sw S4
CLKOUT

A3L-A2 :>< >< >< ><
AL _\

LONG WORD

DSACK1L —\—/—_/____/ _ /
DSACKO —\—/—___/—__/ \ /

w00 ————___——<__ ——~__ ’\

}‘ READ ‘}4 WRITE > }‘ WRITE > }‘ READ WITH WAIT STATES —>‘

Figure 3-20. Read-Write-Read Cycles—32-Bit Port Timing

State 3—The MC68349 asserts DS during S3, indicating that data is stable on the data
bus. As long as at least one of the DSACKXx signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), the cycle terminates one clock
later. If DSACKXx is not recognized by the start of S3, the MC68349 inserts wait states
instead of proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1
and DSACKO must remain negated throughout the asynchronous input setup and hold
times around the end of S2. If wait states are added, the MC68349 continues to sample
DSACKXx on the falling edges of the clock until one is recognized. The selected device
uses R/W, S1Z1/S1Z0, and AO to latch data from the appropriate byte(s) of D15-D8 and
D7-D0. SIZ1/S1Z0 and AO select the bytes of the data bus. If it has not already done so,
the device asserts DSACKXx to signal that it has successfully stored the data.

State 4—The MC68349 issues no new control signals during S4.

MOTOROLA MC68349 USER'S MANUAL 329

State 5—The MC68349 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/W, SI1Z1/S1Z0, and FC3—
FCO also remain valid throughout S5. The external device must keep DSACKx asserted
until it detects the negation of AS or DS (whichever it detects first). The device must
negate DSACKx within approximately one clock period after sensing the negation of AS or
DS. DSACKXx signals that remain asserted beyond this limit may be prematurely detected
for the next bus cycle.

3.3.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68349, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems.
During the entire read-modify-write sequence, the MC68349 asserts RMC to indicate that
an indivisible operation is occurring. The MC68349 does not issue a BG signal in response
to a BR signal during this operation. Figure 3-21 is an example of a functional timing
diagram of a read-modify-write instruction specified in terms of clock periods.

SO S2 S4 SO S2 S4

pipigigipipiginl

CLKOUT J

A31-A0

FC3-FCO

SIZ1-SIZ0

RIW

\X%XE

RMC

DSACKx

D31-DO

N)
C
T1 0

READ WRITE

INDIVISIBLE >
CYCLE

Figure 3-21. Read-Modify-Write Cycle Timing

3-30 MC68349 USER'S MANUAL MOTOROLA

State 0—The MC68349 asserts RMC in SO to identify a read-modify-write cycle. The
MC68349 places a valid address on A31-A0 and valid function codes on FC3—FCO. The
function codes select the address space for the operation. SIZ1/SIZ0 become valid in SO
to indicate the operand size. The MC68349 drives R/W high for the read cycle.

State 1—One-half clock later during S1, the MC68349 asserts AS indicating a valid
address on the address bus. The MC68349 also asserts DS during S1.

State 2—The selected device uses R/W, SI1Z1/SIZ0, A0, and DS to place information on
the data bus. Any of the bytes (D31-D24, D23-D16, D15-D8, and D7-D0) are selected
by Si1Z1, SIZ0, A1, and AO. Concurrently, the selected device may assert DSACKXx.

State 3—As long as at least one of the DSACKXx signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), data is latched on the next
falling edge of the clock, and the cycle terminates. If DSACKXx is not recognized by the
start of S3, the MC68349 inserts wait states instead of proceeding to S4 and S5. To
ensure that wait states are inserted, both DSACK1 and DSACKO must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the MC68349 continues to sample the DSACKXx signals on the falling
edges of the clock until one is recognized.

State 4—At the end of S4, the MC68349 latches the incoming data.

State 5—The MC68349 negates AS and DS during S5. If more than one read cycle is
required to read in the operand(s), SO-S5 are repeated for each read cycle. When finished
reading, the MC68349 holds the address, R/W, and FC3—FCO0 valid in preparation for the
write portion of the cycle. The external device keeps its data and DSACKXx signals
asserted until it detects the negation of AS or DS (whichever it detects first). The device
must remove the data and negate DSACKx within approximately one clock period after
sensing the negation of AS or DS. DSACKXx signals that remain asserted beyond this limit
may be prematurely detected for the next portion of the operation.

Idle States—The MC68349 does not assert any new control signals during the idle states,
but it may internally begin the modify portion of the cycle at this time. SO—S5 are omitted if
no write cycle is required. If a write cycle is required, R/W remains in the read mode until
SO0 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S2.

State 0—The MC68349 drives R/W low for a write cycle. Depending on the write operation
to be performed, the address lines may change during SO.

State 1—In S1, the MC68349 asserts AS, indicating a valid address on the address bus.
State 2—During S2, the MC68349 places the data to be written onto D31-DO.

State 3—The MC68349 asserts DS during S3, indicating stable data on the data bus. As
long as at least one of the DSACKX signals is recognized by the end of S2 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKXx is not recognized by the start of S3, the MC68349 inserts wait states instead of

MOTOROLA MC68349 USER'S MANUAL 331

proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and
DSACKO must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the MC68349 continues to sample
DSACKXx on the falling edges of the clock until one is recognized. The selected device
uses R/W, DS, SIZ1/SIZ0, Al, and AO to latch data from the appropriate section(s) of the
data bus (D31-D24, D23-D16, D15-D8, and D7-DO0). SI1Z1/SIZ0, A1, and AO select the
data bus sections. If it has not already done so, the device asserts DSACKx when it has
successfully stored the data.

State 4—The MC68349 issues no new control signals during S4.

State 5—The MC68349 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/W and FC3-FCO also
remain valid throughout S5. If more than one write cycle is required, states SO-S5 are
repeated for each write cycle. The external device keeps DSACKXx asserted until it detects
the negation of AS or DS (whichever it detects first). The device must remove its data and
negate DSACKx within approximately one clock period after sensing the negation of AS or
DS.

3.4 CPU SPACE CYCLES

FC3-FCO0 select user and supervisor program and data areas. The area selected by FC3—
FCO = $7 is classified as the CPU space. The breakpoint acknowledge, LPSTOP
broadcast, module base address register access, and interrupt acknowledge cycles
described in the following paragraphs use CPU space. The CPU space type, which is
encoded on A19-A16 during a CPU space operation, indicates the function that the
MC68349 is performing. On the MC68349, four of the encodings are implemented as
shown in Figure 3-22. All unused values are reserved by Motorola for additional CPU
space types.

332 MC68349 USER'S MANUAL MOTOROLA

CPU SPACE CYCLES

FUNCTION ADDRESS BUS
CODE

BREAKPONT [|19 16|
AckNowlenee 01 11] [000000000000f0000f00000000000fskeT#[T 0]

owpower A0 3L 19 16 0
sTopRrRoApCAs 0111] [000000000000f0011[1111111111111110]

MODULEBASE 3 0 3l 19 16 0
ADDRESS | 011 1] [000000000000/00112[1111111100000000]
REGISTER ACCESS

3 0 3 19 16 0
loz11] [t1111111 112121211 1[1112121121111 1]EVEL[L]

I_'_l

CPU SPACE
TYPE FIELD

INTERRUPT
ACKNOWLEDGE

Figure 3-22. CPU Space Address Encoding

3.4.1 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle allows external hardware to insert an instruction
directly into the instruction pipeline as the program executes. The breakpoint acknowledge
cycle is generated by the execution of a breakpoint instruction (BKPT) or the assertion of
the BKPT pin. The T-bit state (shown in Figure 3-10) differentiates a software breakpoint
cycle (T = 0) from a hardware breakpoint cycle (T = 1).

When a BKPT instruction is executed (software breakpoint), the MC68349 performs a
word read from CPU space, type 0, at an address corresponding to the breakpoint number
(bits [2—-0] of the BKPT opcode) on A4—A2, and the T-bit (Al) is cleared. If this bus cycle is
terminated with BERR (i.e., no instruction word is available), the MC68349 then performs
illegal instruction exception processing. If the bus cycle is terminated by DSACKXx, the
MC68349 uses the data on D31-D16 (for 32-bit or 16-bit ports) or two reads from D31-
D24 (for 8-bit ports) to replace the BKPT instruction in the internal instruction pipeline and
then begins execution of that instruction.

When the CPU32+ acknowledges a BKPT pin assertion (hardware breakpoint) with
background mode disabled, the CPU32+ performs a word read from CPU space, type O,
at an address corresponding to all ones on A4-A2 (BKPT#7), and the T-bit (Al) is set. If
this bus cycle is terminated by BERR, the MC68349 performs hardware breakpoint
exception processing. If this bus cycle is terminated by DSACKXx, the MC68349 ignores
data on the data bus and continues execution of the next instruction.

MOTOROLA MC68349 USER'S MANUAL 333

NOTE

The BKPT pin is sampled on the same clock phase as data
and is latched with data as it enters the CPU32+ pipeline. If
BKPT is asserted for only one bus cycle and a pipeline flush
occurs before BKPT is detected by the CPU32+, BKPT is
ignored. To ensure detection of BKPT by the CPU32+, BKPT
can be asserted until a breakpoint acknowledge cycle is
recognized.

When the MC68349 is configured for a 32-bit bus, the CPU32+
can fetch two instructions simultaneously. Since there is only
one BKPT pin, the external user cannot break individually on
those instructions, but rather must break on both, causing the
BKPT exception to be taken after the first instruction and
before the second instruction.

The breakpoint operation flowchart is shown in Figure 3-23. Figures 3-24 and 3-25 show
the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes
supplied on the cycle and with an exception signaled, respectively.

3.4.2 LPSTOP Broadcast Cycle

The low power stop (LPSTOP) broadcast cycle is generated by the CPU32+ executing the
LPSTOP instruction. Since the external bus interface must get a copy of the interrupt
mask level from the CPU32+, the CPU32+ performs a CPU space type 3 write with the
mask level encoded on the data bus, as shown in the following figure. The CPU space
type 3 cycle waits for the bus to be available, and is shown externally to indicate to
external devices that the MC68349 is going into LPSTOP mode. If an external device
requires additional time to prepare for entry into LPSTOP mode, entry can be delayed by
asserting HALT. The SIM49 provides internal DSACKx response to this cycle. For more
information on how the SIM49 responds to LPSTOP mode, see Section 4 System
Integration Module.

31 19 18 17 16
| — | 12 | 11 | 10 |
15 3 2 1 0
| — | 12 | 11 | 10 |

[2—I0—Interrupt Mask Level

The interrupt mask level is encoded on bits 2—-0 of the data bus during an LPSTOP
broadcast. For convenience when decoding, the interrupt mask level is replicated on
data bus bits 18—-16 during an LPSTOP broadcast.

334 MC68349 USER'S MANUAL MOTOROLA

BREAKPOINT OPERATION FLOW

PROCESSOR

ACKNOWLEDGE BREAKPOINT

IF BREAKPOINT INSTRUCTION EXECUTED:
1. SET R/W TO READ
. SET FUNCTION CODE TO CPU SPACE
. PLACE CPU SPACE TYPE 0 ON A19-A16
. PLACE BREAKPOINT NUMBER ON A4-A2
. CLEAR T-BIT (A1)
. SET SIZE TO WORD
7. ASSERT AS AND DS
IF BKPT PIN ASSERTED:
1. SET R/W TO READ
. SET FUNCTION CODE TO CPU SPACE
. PLACE CPU SPACE TYPE 0 ON A19-A16
. PLACE ALL ONE'S ON A4-A2
. SET T-BIT (A1) TO ONE
. SET SIZE TO WORD
. ASSERT AS AND DS

o OB W

~No o wWwN

EXTERNAL DEVICE

IF BREAKPOINT INSTRUCTION EXECUTED AND

DSACKX IS ASSERTED:
1 LATCHDATA
2. NEGATE AS AND DS
3.GOTO(A)

IF BKPT PIN ASSERTED AND DSACKX IS ASSERTED:
1. NEGATE AS AND DS
2.GOTO(A)

IF BERR ASSERTED:
1. NEGATE AS AND DS
2. GOTO (B)

A) (B)

A

IF BREAKPOINT INSTRUCTION EXECUTED:
1. PLACE REPLACEMENT OPCODE ON DATA BUS
2. ASSERT DSACKx
___OR-
1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING
IF BKPT PIN ASSERTED:
1. ASSERT DSACKx
. OR
1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING

IF BREAKPOINT INSTRUCTION EXECUTED:
1. PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2. CONTINUE PROCESSING

IF BKPT PIN ASSERTED:

1. CONTINUE PROCESSING

IF BREAKPOINT INSTRUCTION EXECUTED:
1. INITIATE ILLEGAL INSTRUCTION PROCESSING
IF BKPT PIN ASSERTED:
1. INITIATE HARDWARE BREAKPOINT PROCESSING

Y

1. NEGATE DSACKx or BERR

A

MOTOROLA

Figure 3-23. Breakpoint Operation Flowchart

MC68349 USER'S MANUAL

3-35

SO S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5

[%2]
o

CLKOUT

N\

N

A31-A20 x N \ N /
N\ N

A19-A16 X BREAKPOINT ENCODING (0930) \ N /

N
BREAKPOINT NUMBER/T-B{T

A4-Al

s

A15-A5,A0

HLJ

7

FC3-FCO CPU SPACE

-4 ‘7 ‘7 ‘7
j;g

L JHHH UL

SIZ0 N \ N ,
N N
N N
N N
SIZ1 N , \
AS / \ / \ / \
DS /'N_\—/'N_\ / \
- k‘ k‘ k‘
RIW
N N N
DSACKX \ / \ / \ /
N Y [\—
D31-D16 \ N —__ /Y \ /
— N N N
BERR /
N\ N\ N
- N N V
HALT j
— _h N N
BKPT /
FETCHED

L
N
—
INSTRUCTION
BREAKPOINT READ BREAKPOINT EXECUTION
OCCURS ACKNOWLEDGE
INSTRUCTION WORD FETCH

Figure 3-24. Breakpoint Acknowledge Cycle Timing (Opcode Returned)

-

3-36 MC68349 USER'S MANUAL MOTOROLA

SO S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 SO
CLKOUT

N

o\ Wi
—

A31-A20

N N

I\
ND
N x BREAKPOINT ENCODING (({000) N
N N
— N\
N

A19-A16

N

BREAKPOINT NUMBER/T-BLT x
\N—

A4-Al

_A
_\
T
w0\
X
X
X

FC3-FCO

SIZ0

SIZ1

DSACKx \ W \ [\

D31-D16 { }
D15-D0 (N
N N
N N
BERR j
N N
—_— N N
HALT j
N k‘
BKPT \ \ /
N— EXCEPTION
BREAKPOINT STACKING
< BREAKPOINT —— > READ—— > ACKNOWLEDGE — <>
OCCURS BUS ERROR ASSERTED

Figure 3-25. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

MOTOROLA MC68349 USER'S MANUAL 3-37

3.4.3 Module Base Address Register Access

All internal module registers, including the SIM49, occupy a single 4-Kbyte block that is
relocatable along 4-Kbyte boundaries. The location is fixed by writing the desired base
address of the SIM49 block to the module base address register using the MOVES
instruction. The module base address register is only accessible in CPU space at address
$0003FF00. The source function code (SFC) or destination function code (DFC) register
must indicate CPU space (FC3-FCO = $7), using the MOVEC instruction, before
accessing the module base address register. Refer to Section 4 System Integration
Module for additional information on the module base address register.

3.4.4 Interrupt Acknowledge Bus Cycles

The CPU32+ makes an interrupt pending in three cases. The first case occurs when a
peripheral device signals the CPU32+ (with IRQ7-IRQ1) that the device requires service
and the internally synchronized value on these signals indicates a higher priority than the
interrupt mask in the status register. The second case occurs when a transition has
occurred in the case of a level 7 interrupt. A recognized level 7 interrupt must be removed
for one clock cycle before a second level 7 can be recognized. The third case occurs if,
upon returning from servicing a level 7 interrupt, the request level stays at 7 and the
processor mask level changes from 7 to a lower level, a second level 7 is recognized. The
CPU32+ takes an interrupt exception for a pending interrupt within one instruction
boundary (after processing any other pending exception with a higher priority). The
following paragraphs describe the types of interrupt acknowledge bus cycles that can be
executed as part of interrupt exception processing.

3.4.4.1 INTERRUPT ACKNOWLEDGE CYCLE—TERMINATED NORMALLY. When the
CPU32+ processes an interrupt exception, it performs an interrupt acknowledge cycle to
obtain the number of the vector that contains the starting location of the interrupt service
routine. Some interrupting devices have programmable vector registers that contain the
interrupt vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices that cannot
supply a vector number will use the autovector cycle described in 3.4.4.2 Autovector
Interrupt Acknowledge Cycle.

3-38 MC68349 USER'S MANUAL MOTOROLA

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
3.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are as follows:

1. FC3-FCO are set to $7 (FC3/FC2/FC1/FC0 = 0111) for CPU address space.

2. A3, A2, and Al are set to the interrupt request level, and the IACKXx strobe
corresponding to the current interrupt level is asserted. (Either the function codes
and address signals or the IACKx strobes can be monitored to determine that an
interrupt acknowledge cycle is in progress and the current interrupt level.)

3. The CPU32+ space type field (A19-A16) is set to $F (interrupt acknowledge).
4. Other address signals (A31-A20, A15—-A4, and AQ) are set to one.

5. The SIZ0/SI1Z1 and R/W signals are driven to indicate a single-byte read cycle. The
responding device places the vector number on the least significant byte of its data
port (for an 8-bit port, the vector number must be on D31-D24; for a 16-bit port, the
vector must be on D23-D16; for a 32-bit port, the vector number must be on D7-D0)
during the interrupt acknowledge cycle. The cycle is then terminated normally with
DSACKXx.

Figure 3-26 is a flowchart of the interrupt acknowledge cycle; Figure 3-27 shows the timing
for an interrupt acknowledge cycle terminated with DSACKXx.

INTERRUPTING DEVICE MC68349

Y

REQUEST INTERRUPT GRANT INTERRUPT

1. SYNCHRONIZE IRQ7-IRQ1

2. COMPARE IRQ7-IRQ1 TO MASK LEVEL AND
WAIT FOR INSTRUCTION TO COMPLETE

3. PLACE INTERRUPT LEVEL ON A3-AL;
TYPE FIELD (A19-A16) = $F

4. SET RIW TO READ

5. SET FC3-FC0 TO 0111

6. DRIVE SIZE PINS TO INDICATE A ONE-BYTE
TRANSFER

7. ASSERT AS AND DS

8. ASSERT THE CORRESPONDING IACKx STROBE.

PROVIDE VECTOR NUMBER <

1. PLACE VECTOR NUMBER ON LEAST
SIGNIFICANT BYTE OF DATA BUS

2. ASSERT DSACKx (OR AVEC IF NO VECTOR
NUMBER)

> ACQUIRE VECTOR NUMBER

1. LATCH VECTOR NUMBER
RELEASE < 2. NEGATE DS AND AS

1. NEGATE DSACKx

Y

START NEXT CYCLE

Figure 3-26. Interrupt Acknowledge Cycle Flowchart

MOTOROLA MC68349 USER'S MANUAL 339

[92]
o

S2 S4 SO | 0-2CLOCKS* |S1 s2 S4 SO S2

awor [L 1] L L L
A31-Ad >< N
- k‘
A3-AL >< INTERRUPT LEVEL N
I \|
—_ N
oo X AN
- k‘
FC3-FCO X CPU SPACE
- N
\
SIZ0 >< 1BYTE
Siz1 ><
— N
N
_ '\,
RIW / \

—] N
s T\ /
N
DSACKx / \ / \ /
VECTOR FROM 32-BIT PORT
D7-D0 { N
D15-D8

VECTOR FROM 16-BIT PORT
D23-D16 < > N

VECTOR FROM 8-BIT PORT
D31-D24 { N

'\
N
IRQ7-IRQL \ / / \r/ //
o N
IACK7-IACKIT |« READ — > \ /
< INTERNAL - < WRITE

CYCLE
ARBITRATION STACK

ANl

€< IACKCYCLE ——— >

*Internal Arbitration may take between 0-2 clock cycles.

Figure 3-27. Interrupt Acknowledge Cycle Timing

3-40 MC68349 USER'S MANUAL MOTOROLA

3.4.4.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting DSACKX,
the device asserts AVEC to terminate the cycle. If the DSACKXx signals are asserted during
an interrupt acknowledge cycle terminated by AVEC, the DSACKXx signals and data will be
ignored if AVEC is asserted before or at the same time as the DSACKXx signals. The vector
number supplied in an autovector operation is derived from the interrupt level of the
current interrupt. When AVEC is asserted instead of DSACKx during an interrupt
acknowledge cycle, the MC68349 ignores the state of the data bus and internally
generates the vector number (the sum of the interrupt level plus 24 ($18)).

AVEC is multiplexed with CS0. The FIRQ bit in the SIM49 module configuration register
controls whether the AVEC/CSO pin is used as an autovector input or as CSO0 (refer to
Section 4 System Integration Module for additional information). AVEC is only sampled
during an interrupt acknowledge cycle. During all other cycles, AVEC is ignored.
Additionally, AVEC can be internally generated for external devices by programming the
autovector register. Seven distinct autovectors can be used, corresponding to the seven
levels of interrupt available with signals IRQ7—IRQ1 . Figure 3-28 shows the timing for an
autovector operation.

3.4.4.3 SPURIOUS INTERRUPT CYCLE. Requested interrupts, whether internal or
external, are arbitrated internally. When no internal module (including the SIM49, which
responds for external requests) responds during an interrupt acknowledge cycle by
arbitrating for the interrupt acknowledge cycle internally, the spurious interrupt monitor
generates an internal bus error signal to terminate the vector acquisition. The MC68349
automatically generates the spurious interrupt vector number (24) instead of the interrupt
vector number in this case. When an external device does not respond to an interrupt
acknowledge cycle with AVEC or DSACKXx, a bus monitor must assert BERR, which
results in the CPU32+ taking the spurious interrupt vector. If HALT is also asserted, the
MC68349 retries the interrupt acknowledge cycle instead of using the spurious interrupt
vector.

MOTOROLA MC68349 USER'S MANUAL 341

CLKOUT

A31-A4

A3-Al

A0

FC3-FCO

SIZ0

SIz1

RIW

DSACKx

D31-DO

AVEC

IRQ7-IRQL

IACK7-IACK1

\)J\IXIXXXXXH

[72)
o

S2

S4

L L

0-2 CLOCKS*

S1 82 S4

SO S2

INT

FRRUPT LEVEL

CPU SPACE

BYTE

Z <

|

=

=

A1

CYCLE
READ

r<—INTERNAL—>

n/

ARBITRATION

IACK

g Z L g

* Internal Arbitration may take between 0-2 clocks.

3-42

CYCLE

Figure 3-28. Autovector Operation Timing

MC68349 USER'S MANUAL

WRITE
STACK

MOTOROLA

3.5 BUS EXCEPTION CONTROL CYCLES

The bus architecture requires assertion of DSACKx from an external device to signal that
a bus cycle is complete. Neither DSACKx nor AVEC is asserted in the following cases:

» DSACKXx/AVEC is programmed to respond internally.
» The external device does not respond.
 Various other application-dependent errors occur.

The MC68349 provides BERR when no device responds by asserting DSACKx/AVEC
within an appropriate period of time after the MC68349 asserts AS. This mechanism
allows the cycle to terminate and the MC68349 to enter exception processing for the error
condition. HALT is also used for bus exception control. This signal can be asserted by an
external device for debugging purposes to cause single bus cycle operation, or, in
combination with BERR, a retry of a bus cycle in error. To properly control termination of a
bus cycle for a retry or a bus error condition, DSACKx, BERR, and HALT can be asserted
and negated with the rising edge of the MC68349 clock. This assures that when two
signals are asserted simultaneously, the required setup and hold time for both is met for
the same falling edge of the MC68349 clock. This or an equivalent precaution should be
designed into the external circuitry to provide these signals. Alternatively, the internal bus
monitor could be used. The acceptable bus cycle terminations for asynchronous cycles
are summarized in relation to DSACKXx assertion as follows (case numbers refer to Table
3-7):

* Normal Termination: DSACKXx is asserted; BERR and HALT remain negated (case 1).

* Halt Termination: HALT is asserted at the same time as or before DSACKXx, and
BERR remains negated (case 2).

» Bus Error Termination: BERR is asserted in lieu of, at the same time as, or before
DSACKXx (case 3) or after DSACKXx (case 4), and HALT remains negated; BERR is
negated at the same time as or after DSACKXx.

» Retry Termination: HALT and BERR are asserted in lieu of, at the same time as, or
before DSACKXx (case 5) or after DSACKx (case 6); BERR is negated at the same
time as or after DSACKx, and HALT may be negated at the same time as or after
BERR.

Table 3-8 lists various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications given in Section 11 Electrical Characteristics. DSACKX,
BERR, and HALT may be negated after AS. If DSACKx or BERR remain asserted into S2
of the next bus cycle, that cycle may be terminated prematurely.

EXAMPLE A: A system uses a bus monitor timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).

MOTOROLA MC68349 USER'S MANUAL 343

EXAMPLE B: A system uses error detection and correction on random access memory
(RAM) contents. The designer may:

1.

344

Delay DSACKXx until data is verified and assert BERR and HALT simultaneously to
indicate to the MC68349 to automatically retry the error cycle (case 5), or if data is
valid, assert DSACKXx (case 1).

Delay DSACKXx until data is verified and assert BERR with or without DSACKXx if data
is in error (case 3). This initiates exception processing for software handling of the
condition.

Return DSACKXx prior to data verification; if data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.

Return DSACKXx prior to data verification; if data is invalid, assert BERR and HALT
on the next clock cycle (case 6). The memory controller can then correct the RAM
prior to or during the automatic retry.

Table 3-8. DSACKx, BERR, and HALT Assertion Results

Asserted on Rising
Edge of State
Case Control
Num Signal N N+2 Result

1 DSACKXx A S Normal cycle terminate and continue.
BERR NA NA
HALT NA

2 DSACKx A S Normal cycle terminate and halt; continue
BERR NA NA when HALT negated.
HALT AIS S

3 DSACKXx NA/A X Terminate and take bus error exception,
BERR A S possibly deferred.
HALT NA X

4 DSACKx A X Terminate and take bus error exception,
BERR NA A possibly deferred.
HALT NA NA

5 DSACKXx NA/A X Terminate and retry when HALT negated.
BERR A S
HALT AIS S

6 DSACKXx A X Terminate and retry when HALT negated.
BERR NA A
HALT NA A

NOTES:

N — Number of the current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

MC68349 USER'S MANUAL MOTOROLA

3.5.1 Bus Errors

BERR can be used to abort the bus cycle and the instruction being executed. BERR takes
precedence over DSACKXx provided it meets the timing constraints described in Section
11 Electrical Characteristics. If BERR does not meet these constraints, it may cause
unpredictable operation of the MC68349. If BERR remains asserted into the next bus
cycle, it may cause incorrect operation of that cycle. When BERR is issued to terminate a
bus cycle, the MC68349 can enter exception processing immediately following the bus
cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the bus controller
before it is ready to execute them. If a bus error occurs on an instruction fetch, the
MC68349 does not take the exception until it attempts to use that instruction word. Should
an intervening instruction cause a branch or should a task switch occur, the bus error
exception does not occur. The bus error condition is recognized during a bus cycle in any
of the following cases:

 DSACKx and HALT are negated, and BERR is asserted.

 HALT and BERR are negated, and DSACKX is asserted. BERR is then asserted within
one clock cycle (HALT remains negated).

« BERR and HALT are asserted simultaneously, indicating a retry.

When the MC68349 recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 3-29 shows the timing of a bus error for the case in which DSACKXx
is not asserted. Figure 3-30 shows the timing for a bus error that is asserted after
DSACKXx. Exceptions are taken in both cases. Refer to Section 5 CPU030 for details of
bus error exception processing.

In the second case, in which BERR is asserted after DSACKXx is asserted, BERR must be
asserted within the time specified for purely asynchronous operation, or it must be
asserted and remain stable during the sample window around the next falling edge of the
clock after DSACKXx is recognized. If BERR is not stable at this time, the MC68349 may
exhibit erratic behavior. BERR has priority over DSACKx. In this case, data may be
present on the bus, but it may not be valid. This sequence can be used by systems that
have memory error detection and correction logic and by external cache memories.

MOTOROLA MC68349 USER'S MANUAL 3-45

e FUFLALALPLN UL

A31-A0

FC3-FCO

\))'\X%E

RIW
s ST TN
bs | / N \ /T
DSACKK N \ /
D31-DO { (
\ \

BERR __/"\

r<——READ CYCLE WITH BUS ————><<—INTERNAL —»1<——— STACK ———>
ERROR PROCESSING WRITE

Figure 3-29. Bus Error without DSACKx Timing

3-46 MC68349 USER'S MANUAL MOTOROLA

S2 S4 SO S2 S4

CLKOUT

A31-A0

FC3-FCO

)/X%;g

e NIV NIVl
DSACKx \ \ /
D31-D0 < { : —
= A
CYCLE > < BROCESSNG ™| WRIE >

Figure 3-30. Late Bus Error with DSACKXx T iming

3.5.2 Retry Operation

When both BERR and HALT are asserted by an external device during a bus cycle, the
MC68349 enters the retry sequence shown in Figure 3-31. A delayed retry, which is
similar to the delayed BERR signal described previously, can also occur (see Figure 3-32).
The MC68349 terminates the bus cycle, places the control signals in their inactive state,
and does not begin another bus cycle until the BERR and HALT signals are negated by
external logic. After a synchronization delay, the MC68349 retries the previous cycle using
the same access information (address, function code, size, etc.). BERR should be negated
before S2 of the retried cycle to ensure correct operation of the retried cycle.

The MC68349 retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence. Asserting BR along with BERR
and HALT provides a relinquish and retry operation. The MC68349 does not relinquish the
bus during a read-modify-write operation. Any device that requires the MC68349 to give
up the bus and retry a bus cycle during a read-modify-write cycle must assert only BERR
and BR (HALT must not be included). The bus error handler software should examine the
read-modify-write bit in the special status word (see Section 5 CPU030) and take the
appropriate action to resolve this type of fault when it occurs.

MOTOROLA MC68349 USER'S MANUAL 3-47

[92)
o

S2 SW SW S4 SO S2 S4

CLKOUT J

—

A31-A0

—

>

<
S

FC3-FCO

DSACKx

&l
N NN
N
~
|

DATA |\
GNORED | /

e — N
BERR \
N
N
HALT \ N

«— READ CYCLE WITH HALT: READ RERUN —>|
RETRY

Ve
D31-D0 aaatr

N1
N1
AV
N
N

Figure 3-31. Retry Sequence Timing

3-48 MC68349 USER'S MANUAL MOTOROLA

SO S2

s4

SO

S2

s4

wor [[
oo X
e X

RW T\

s T\ /

DSACKx \

N
SisaRiii:

-
-

WRITE

D31-D0
BERR
HALT
WRITE
CYCLE

HALT

RERUN

Figure 3-32. Late Retry Sequence Timing

MOTOROLA

MC68349 USER'S MANUAL

3-49

3.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68349 halts external bus
activity at the next bus cycle boundary (see Figure 3-33). HALT by itself does not
terminate a bus cycle. Negating and reasserting HALT in accordance with the correct
timing requirements provides a single-step (bus cycle to bus cycle) operation. Since HALT
affects external bus cycles only, a program that does not require use of the external bus
may continue executing. The single-cycle mode allows the user to proceed through (and
debug) external MC68349 operations, one bus cycle at a time. Since the occurrence of a
bus error while HALT is asserted causes a retry operation, the user must anticipate retry
cycles while debugging in the single-cycle mode. The single-step operation and the
software trace capability allow the system debugger to trace single bus cycles, single
instructions, or changes in program flow.

When the MC68349 completes a bus cycle with HALT asserted, D31-DO0 is placed in the
high-impedance state, and bus control signals are negated (not high-impedance state);
the A31-A0, FCx, SIZx, and R/W signals remain in the same state. The halt operation has
no effect on bus arbitration (see 3.6 Bus Arbitration). When bus arbitration occurs while
the MC68349 is halted, the address and control signals are also placed in the high-
impedance state. Once bus mastership is returned to the MC68349, if HALT is still
asserted, the A31-A0, FCx, SIZx, and R/W signals are again driven to their previous
states. The MC68349 does not service interrupt requests while it is halted.

3-50 MC68349 USER'S MANUAL MOTOROLA

MOTOROLA

SO S2 S4 SO S2 S4

cworr [L LU LI LT
a0 X
oo X
RIW _ /
SHEEEN / \ il
m T\ ST N\ /T
oo /TN AR \
D31-D0 :_< N /

TN/

BGACK \N—/

€——— READ—— > HALT— > |<€——— READ ——>
(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS
HALTED)

Figure 3-33. HALT Timing

MC68349 USER'S MANUAL

351

3.5.4 Double Bus Fault

A double bus fault results when a bus error or an address error occurs during the
exception processing sequence for any of the following:

* A previous bus error
* A previous address error
* Areset

For example, the MC68349 attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus error exception
occurs during the stacking operation, the second error is considered a double bus fault.
When a double bus fault occurs, the MC68349 halts and asserts HALT. Only a reset
operation can restart a halted MC68349. However, bus arbitration can still occur (see 3.6
Bus Arbitration). A second bus error or address error that occurs after exception
processing has completed (during the execution of the exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not constitute a bus
error or contribute to a double bus fault. The MC68349 continues to retry the same bus
cycle as long as the external hardware requests it.

Reset can also be generated internally by the halt monitor (see Section 5 CPU030).

3.6 BUS ARBITRATION

The bus design of the MC68349 provides for a single bus master at any one time, either
the MC68349 or an external device. One or more of the external devices on the bus can
have the capability of becoming bus master for the external bus, but not the MC68349
internal bus. Bus arbitration is the protocol by which an external device becomes bus
master; the bus controller in the MC68349 manages the bus arbitration signals so that the
MC68349 has the lowest priority. External devices that need to obtain the bus must assert
the bus arbitration signals in the sequences described in the following paragraphs.
Systems having several devices that can become bus master require external circuitry to
assign priorities to the devices so that, when two or more external devices attempt to
become bus master at the same time, the one having the highest priority becomes bus
master first. The sequence of the protocol is as follows:

1. An external device asserts BR.
2. The MC68349 asserts BG to indicate that the bus is available.
3. The external device asserts BGACK to indicate that it has assumed bus mastership.

NOTE

The MC68349 does not place CS3—-CS0 in a high-impedance
state after reset or when the bus is granted to an external
master.

352 MC68349 USER'S MANUAL MOTOROLA

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR. To guarantee operand coherency, BG is only asserted at the end of an
operand transfer. Additionally, BG is not asserted until the end of a read-modify-write
operation (when RMC is negated) in response to a BR signal. When the requesting device
receives BG and more than one external device can be bus master, the requesting device
should begin whatever arbitration is required. When the external device assumes bus
mastership, it asserts BGACK and maintains BGACK during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external
device to assume mastership of the bus through the normal bus arbitration procedure: 1) it
must have received BG through the arbitration process, and 2) BGACK must be inactive,
indicating that no other bus master has claimed ownership of the bus.

Figure 3-34 is a flowchart showing bus arbitration for a single device. This technique
allows processing of bus requests during data transfer cycles. Refer to Figures 3-35 and
3-36 for bus arbitration timing diagrams.

BR is negated at the time that BGACK is asserted. This type of operation applies to a
system consisting of the MC68349 and one device capable of bus mastership. In a system
having a number of devices capable of bus mastership, BR from each device can be wire -
ORed to the MC68349. In such a system, more than one bus request could be asserted
simultaneously. BG is negated a few clock cycles after the transition of BGACK. However,
if bus requests are still pending after the negation of BG, the MC68349 asserts another
BG within a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current bus master
has finished using the bus. The following paragraphs provide additional information about
the three steps in the arbitration process. Bus arbitration requests are recognized during
normal processing, HALT assertion, and a CPU32+ halt caused by a double bus fault.

MOTOROLA MC68349 USER'S MANUAL 353

354

CLKOUT

A31-A0

D31-DO

BGACK

PROCESSOR REQUESTING DEVICE
REQUEST THE BUS
GRANT BUS ARBITRATION < 1. ASSERT BR
1. ASSERT BG

Y

ACKNOWLEDGE BUS MASTERSHIP

1. EXTERNAL ARBITRATION DETERMINES
NEXT BUS MASTER

2. NEXT BUS MASTER WAITS FOR BGACK
TO BE NEGATED

3. NEXT BUS MASTER ASSERTS BGACK

TERMINATE ARBITRATION

TO BECOME NEW MASTER

A

1. NEGATE BG (AND WAIT FOR
BGACK TO BE NEGATED)

4. BUS MASTER NEGATES BR

OPERATE AS BUS MASTER

Y

1. PERFORM DATA TRANSFERS (READ AND
WRITE CYCLES) ACCORDING TO THE
SAME RULES THE PROCESSOR USES

Y
RELEASE BUS MASTERSHIP

RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

. NEGATE BGACK

/

Figure 3-34. Bus Arbitration Flowchart for Single Request

N
><

\ /

Figure 3-35. Bus Arbitration Timing—Idle Bus Case

MC68349 USER'S MANUAL MOTOROLA

S0 st) s3 sS4 S5
awar SN/ N\ S S S S
A31-A0 ><
D31-D0 :>—<
AS \
O\

|
NN
> ~- ~

. \ =
BGACK \

Figure 3-36. Bus Arbitration Timing—Active Bus Case

3.6.1 Bus Request

External devices capable of becoming bus masters request the bus by asserting BR. This
signal can be wire-ORed to indicate to the MC68349 that some external device requires
control of the bus. The MC68349 is effectively at a lower bus priority level than the
external device and relinquishes the bus after it has completed the current bus cycle (if
one has started). If no BGACK is received while the BR is active, the MC68349 remains
bus master once BR is negated. This prevents unnecessary interference with ordinary
processing if the arbitration circuitry inadvertently responds to noise or if an external
device determines that it no longer requires use of the bus before it has been granted
mastership.

MOTOROLA MC68349 USER'S MANUAL 355

3.6.2 Bus Grant

The MC68349 supports operand coherency; thus, if an operand transfer requires multiple
bus cycles, the MC68349 does not release the bus until the entire transfer is complete.
Therefore, assertion of BG is subject to the following constraints:

+ The minimum time for BG assertion after BR is asserted depends on internal
synchronization (see Section 11 Electrical Characteristics).

« During an external operand transfer, the MC68349 does not assert BG until after
the last cycle of the transfer (determined by SIZx and DSACKX).

« During an external operand transfer, the MC68349 does not assert BG as long as
RMC is asserted.

« If the show cycle bits SHEN1-SHENO = 01, the MC68349 does not assert BG to
an external master.

Externally, the BG signal can be routed through a daisy-chained network or a priority-
encoded network. The MC68349 is not affected by the method of arbitration as long as the
protocol is obeyed.

3.6.3 Bus Grant Acknowledge

An external device cannot request and be granted the external bus while another device is
the active bus master. A device that asserts BGACK remains the bus master until it
negates BGACK. BGACK should not be negated until all required bus cycles are
completed. Bus mastership is terminated at the negation of BGACK.

Once an external device receives the bus and asserts BGACK, it should negate BR . If BR
remains asserted after BGACK is asserted, the MC68349 assumes that another device is
requesting the bus and prepares to issue another BG.

3.6.4 Bus Arbitration Control

The bus arbitration control unit in the MC68349 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68349 are internally
synchronized in a maximum of two cycles of the clock. As shown in Figure 3-37 input
respectively. The BG output is labeled G, and the internal high-impedance control signal is
labeled T. If T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and RMC. All
signals are shown in positive logic (active high) regardless of their true active voltage
level. The state machine shown in Figure 3-37 does not have a state 1 or state 4.

3-56 MC68349 USER'S MANUAL MOTOROLA

State changes occur on the next rising edge of the clock after the internal signal is valid.
The BG signal transitions on the falling edge of the clock after a state is reached during
which G changes. The bus control signals (controlled by T) are driven by the MC68349
immediately following a state change, when bus mastership is returned to the MC68349.
State 0, in which G and T are both negated, is the state of the bus arbiter while the
MC68349 is bus master. R and A keep the arbiter in state 0 as long as they are both
negated.

The MC68349 does not allow arbitration of the external bus during the RMC sequence.
For the duration of this sequence, the MC68349 ignores the BR input. If mastership of the
bus is required during an RMC operation, BERR must be used to abort the RMC
sequence.

3.6.5 Show Cycles

The MC68349 can perform data transfers with its internal modules without using the
external bus, but, when debugging, it is desirable to have address and data information
appear on the external bus. These external bus cycles, called show cycles, are
distinguished by the fact that AS is not asserted externally. DS is used to signal address
strobe timing in show cycles.

After reset, show cycles are disabled and must be enabled by writing to the SHENX bits in
the module configuration register (see Section 4 System Integration Module). When
show cycles are disabled, the A31-A0, FCx, SIZx, and R/W signals continue to reflect
internal bus activity. However, AS and DS are not asserted externally, and the external
data bus remains in a high-impedance state. When show cycles are enabled, DS indicates
address strobe timing and the external data bus contains data. The following paragraphs
are a state-by-state description of show cycles, and Figure 3-38 illustrates a show cycle
timing diagram. Refer to Section 11 Electrical Characteristics for specific timing
information.

MOTOROLA MC68349 USER'S MANUAL 3-57

R - BUS REQUEST G - BUS GRANT
A - BUS GRANT ACKNOWLEDGE T - THREE-STATE SIGNAL TO BUS CONTROL
B - BUS CYCLE IN PROGRESS V - BUS AVAILABLE TO BUS CONTROL

Figure 3-37. Bus Arbitration State Diagram

State 0—During state 0, the A31-A0 and FCx become valid, R/W is driven to indicate a
show read or write cycle, and the SIZx pins indicate the number of bytes to transfer.
During a read, the addressed peripheral is driving the data bus, and the user must take
care to avoid bus conflicts.

State 41—One-half clock cycle later, DS (rather than AS) is asserted to indicate that
address information is valid.

3-58 MC68349 USER'S MANUAL MOTOROLA

State 42—No action occurs in state 42. The bus controller remains in state 42 (wait states
will be inserted) until the internal read cycle is complete.

State 43—When DS is negated, show data is valid on the next falling edge of the system
clock. The external data bus drivers are enabled so that data becomes valid on the
external bus as soon as it is available on the internal bus.

State 0—The A31-A0, FCx, R/W, and SIZx pins change to begin the next cycle. Data from
the preceding cycle is valid through state O.

SO S41 S42 S43 SO S1 S2

A31-A0,
FC2-FCO, >< ><

SIZ1-S120

RIW >< X

D31-D0

BKPT \ /
}<—SHOW CYCLE —>‘<— START OF EXTERNAL CYCLE —>‘

Figure 3-38. Show Cycle Timing

:

3.7 RESET OPERATION

The MC68349 has reset control logic to determine the cause of reset, synchronize it if
necessary, and assert the appropriate reset lines. The reset control logic can
independently drive three different lines:

1. EXTRST (external reset) drives the external RESET pin.

2. CLKRST (clock reset) resets the clock module.

3. INTRST (internal reset) goes to all other internal circuits.

Synchronous reset sources are not asserted until the end of the current bus cycle,
whether or not RMC is asserted. The internal bus monitor is automatically enabled for
synchronous resets; therefore, if the current bus cycle does not terminate normally, the
bus monitor terminates it. Only single-byte or word transfers are guaranteed valid for
synchronous resets. An external or clock reset is a synchronous reset source.

MOTOROLA MC68349 USER'S MANUAL 359

Asynchronous reset sources indicate a catastrophic failure, and the reset controller logic
immediately resets the system. Resetting the MC68349 causes any bus cycle in progress
to terminate as if DSACKx or BERR had been asserted. In addition, the MC68349
appropriately initializes registers for a reset exception. Asynchronous reset sources
include power-up, software watchdog, double bus fault resets, and execution of the
RESET instruction.

If an external device drives RESET low, RESET should be asserted for at least 590 clock
periods to ensure that the MC68349 resets. The reset control logic holds reset asserted
internally until the external RESET is released. When the reset control logic detects that
external RESET is no longer being driven, it drives both internal and external reset low for
an additional 512 cycles to guarantee this length of reset to the entire system. Figure 3-39
shows the RESET timing.

lfl(?LOCK

RESET
«—— 590 CLOCK————>»| | <«——512 CLOCK———>

<€—— PULLED EXTERNAL —> [<<——DRIVEN BY MC68349 —>|
Figure 3-39. Timing for External Devices Driving RESET

If reset is asserted from any other source, the reset control logic asserts RESET for 328
input clock periods plus 512 output clock periods, and until the source of reset is negated.

After any internal reset occurs, a 14-cycle rise time is allowed before testing for the
presence of an external reset. If no external reset is detected, the CPU32+ begins its
vector fetch.

3-60 MC68349 USER'S MANUAL MOTOROLA

Figure 3-40 is a timing diagram of the power-up reset operation, showing the relationships
between RESET, V cc, and bus signals. During the reset period, the entire bus three-
states except for non-three-statable signals, which are driven to their inactive state. Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for RESET exception
processing begins.

cworr AR

VCO
LOCK

_/

Vee
328 x 512 x ~<—< 14 CLOCKS—>
TCLKIN TCLKOUT -

RESET /

BUS ‘
YEE | aussmare ADDRESS AND
" UNKNOWN CONTROL SIGNALS 1) 3
THREE-STATED

NOTES:

Internal start-up time.

SSP read here.

PC read here.

First instruction fetched here.

PnNE

Figure 3-40. Power-Up Reset Timing

When a RESET instruction is executed, the MC68349 drives the RESET signal for 512
clock cycles. The SIM49 registers and the module control registers in each internal
peripheral module (DMA, timers, and serial modules) are not affected. All other peripheral
module registers are reset the same as for a hardware reset. The external devices
connected to the RESET signal are reset at the completion of the RESET instruction.

MOTOROLA MC68349 USER'S MANUAL 3-61

SECTION 4
SYSTEM INTEGRATION MODULE

The MC68349 system integration module (SIM49) consists of several functions that
control the system start-up, initialization, configuration, and the external bus with a
minimum of external devices. It also provides the IEEE 1149.1 boundary scan capabilities.
The SIM49 includes the following functions:

« System Configuration and Protection
e Clock Synthesizer

* Chip Selects and Wait States

» External Bus Interface

» Bus Arbitration

* Dynamic Bus Sizing

e |[EEE 1149.1 Test Access Port

4.1 MODULE OVERVIEW

The SIM49 has similar features to the SIM in the MC68330, MC68331, MC68332,
MC68333, and MC68340. The periodic interrupt timer, double bus fault monitor, software
watchdog, internal bus monitor, and spurious interrupt monitor are identical. However,
many of the other features in the SIM's differ in their use and details.

The system configuration and protection function controls system configuration and
provides various monitors and timers, including the internal bus monitor, double bus fault
monitor, spurious interrupt monitor, software watchdog timer, and the periodic interrupt
timer.

The clock synthesizer generates the clock signals used by the SIM49 and the other on-
chip modules, as well as CLKOUT used by external devices.

The programmable chip select function provides four chip select signals that can enable
external memory and peripheral circuits, providing all handshaking and timing signals.
Each chip select signal has an associated base address register and an address mask
register that contain the programmable characteristics of that chip select. Up to six wait
states can be programmed by setting bits in the base address and address mask
registers.

MOTOROLA MC68349 USER'S MANUAL 4-1

The external bus interface (EBI) handles the transfer of information between the internal
CPU32+ and memory, peripherals, or other processing elements in the external address
space. See Section 3 Bus Operation for further information.

The MC68349 dynamically interprets the port size of an addressed device during each bus
cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. The device signals its
port size and indicates completion of the bus cycle through the use of the DSACKx inputs.
Dynamic bus sizing allows a programmer to write code that is not bus-width specific. For a
discussion on dynamic bus sizing, see Section 3 Bus Operation.

The MC68349 includes dedicated user-accessible test logic that is fully compliant with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the sponsorship of the IEEE Test Technology Committee and Joint Test
Action Group (JTAG). The MC68349 implementation supports circuit-board test strategies
based on this standard. Refer to Section 9 IEEE 1149.1 Test Access Port for additional
information.

4.2 MODULE OPERATION

The following paragraphs describe the operation of the module base address register,
system configuration and protection, clock synthesizer, chip select functions, and the
external bus interface.

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

4.2.1 Module Base Address Register Operation

The module base address register (MBAR) controls the location of all internal module
registers (see 4.3.1 Module Base Address Register (MBAR)). The address stored in this
register is the base address (starting location) for all internal registers. All internal module
registers are contained in a single 4-Kbyte block (see Figure 4-1) that is relocatable along
4-Kbyte boundaries.

The location of the internal registers is fixed by writing the desired base address of the
4-Kbyte block to the MBAR using the MOVES instruction to address $0003FF00 in CPU
space. The source function code (SFC) and destination function code (DFC) registers
contain the address space values (FC3-FCO) for the read or write operand of the MOVES
instruction (see Section 5 CPU030 or M68000PM/AD, Programmer’s Reference Manual).
Therefore, the SFC or DFC register must indicate CPU space (FC3—FCO0 = $7), using the
MOVEC instruction, before accessing MBAR. The offset from the base address is shown
above each register diagram.

4-2 MC68349 USER'S MANUAL MOTOROLA

$FFFFFFFF

SXXXXXFFF $FFF
MC68349 $FBC
RELOCATABLE cIc
MODULE $FAC
BLOCK
$XXXXX000 $ci1c
QDMM
$C00
$7BF
DMA
$780
$721
SERIAL PORTS
$700
$07F
SIM49
MBAR $000

($0003FF00 —>
FC=0111)

RAM
(TYPICAL)

$00000000

NOTE: $XXXXX is the value contained in the MBAR bits BA31-BA12.

Figure 4-1. SIM49 Module Register Block

4.2.2 System Configuration and Protection Operation

The SIM49 allows the user to control certain features of system configuration by writing
bits in the module configuration register (MCR). This register also contains read-only
status bits that show the state of the SIM49.

All M68000 family members are designed to provide maximum system safeguards. As an
extension of this family, the MC68349 promotes the same basic concepts of safeguarded
design present in all M68000 members. In addition, many functions that normally must be
provided by external circuits are incorporated in this device. The following features are
provided in the system configuration and protection function:

SIM49 Module Configuration

The SIM49 allows the user to configure the system to the particular requirements. The
functions include control of FREEZE and show cycle operation, the function of the CSx
signals, the access privilege of the supervisor/user registers, the level of interrupt
arbitration, and automatic vectoring for external interrupts.

Reset Status

The reset status register provides the user with information on the cause of the most
recent reset. The possible causes of reset include: external, power-up, software
watchdog, double bus fault, loss of clock, and RESET instruction.

MOTOROLA MC68349 USER'S MANUAL 4-3

Internal Bus Monitor

The SIM49 provides an internal bus monitor to monitor the DSACKx response time for
all internal bus accesses. An option allows the monitoring of external bus accesses. For
external bus accesses, four selectable response times are provided to allow for
variations in response speed of memory and peripherals used in the system. A bus error
signal is asserted internally if the DSACKx response limit is exceeded. BERR is not
asserted externally. This monitor can be disabled for external bus cycles only.

Double Bus Fault Monitor

The double bus fault monitor causes a reset to occur if the internal HALT is asserted by
the CPU32+, indicating a double bus fault. A double bus fault results when a bus or
address error occurs during the exception processing sequence for a previous bus or
address error, a reset, or while the CPU32+ is loading information from a bus error stack
frame during an RTE instruction. This function can be disabled. See Section 3 Bus
Operation for more information.

Spurious Interrupt Monitor

If no interrupt arbitration occurs during an interrupt acknowledge (IACK) cycle, the bus
error signal is asserted internally. This function cannot be disabled.

Software Watchdog

The software watchdog asserts RESET or a level 7 interrupt (as selected by the system
protection and control register) if the software fails to service the software watchdog for
a designated period of time (i.e., because it is trapped in a loop or lost). There are eight
selectable timeout periods. This function can be disabled.

Periodic Interrupt Timer

The SIM49 provides a timer to generate periodic interrupts. The periodic interrupt time
period can vary from 122 us to 15.94 s (with a 32.768-kHz crystal used to generate the
system clock). This function can be disabled.

Figure 4-2 shows a block diagram of the system configuration and protection function.

4-4 MC68349 USER'S MANUAL MOTOROLA

MODULE
CONFIGURATION

RESET
STATUS

DOUBLE BUS %STET
FAULT MONITOR >

REQUEST

BUS

MONITOR > BERR

SPURIOUS
INTERRUPT MONITOR

SOFTWARE

SOFTWARE

WATCHDOG > RESET

. REQUEST or
2 IRQ7

PRESCALER

CLOCK —>

PERIODIC

e Aot
INTERRUPT TIMER IRQ7-IRQL

Figure 4-2. System Configuration and Protection Function

4.2.2.1 SYSTEM CONFIGURATION. Aspects of the system configuration are controlled
by the MCR and the autovector register (AVR).

The configuration of port B is controlled by the combination of the FIRQ bit in the MCR
and the port B pin assignment register (PPARB). Port B pins can function as dedicated 1/0
lines, chip selects, interrupts, or autovector input.

For debug purposes, internal bus accesses can be shown on the external bus. This
function is called show cycles. The SHEN1, SHENO bits in the MCR control show cycles.
Bus arbitration can be either enabled or disabled during show cycles.

Arbitration for servicing interrupts is controlled by the value programmed into the interrupt
arbitration (IARB) field of the MCR. Each module that generates interrupts, including the
SIM49, has an IARB field. The value of the IARB field allows arbitration during an IACK
cycle among modules that simultaneously generate the same interrupt level. No two
modules should share the same IARB value. The IARB must contain a value other than $0
for all modules that can generate interrupts; interrupts with IARB = 0 are discarded as
extraneous. The SIM49 arbitrates for both its own interrupts and externally generated
interrupts.

MOTOROLA MC68349 USER'S MANUAL 4-5

There are eight arbitration levels for access to the intermodule bus (IMB). The SIM49 is
fixed at the highest level (above the programmable level 7), and the CPU32+ is fixed at
the lowest level (below level 0). The direct memory access (DMA) module is the only other
module that can become bus master and arbitrate for the bus. It must be initialized with a
level other than O or 7.

The AVR contains bits that correspond to external interrupt levels that require an
autovector response. The SIM49 supports up to seven discrete external interrupt requests.
If the bit corresponding to an interrupt level is set in the AVR, the SIM49 returns an
autovector in response to the IACK cycle servicing that external interrupt request.
Otherwise, external circuitry must either return an interrupt vector or assert the external
AVEC signal.

4.2.2.2 INTERNAL BUS MONITOR. The internal bus monitor continually checks for the
bus cycle termination response time by checking the DSACKx, BERR, and HALT status or
the AVEC status during an IACK cycle. The monitor initiates a bus error if the response
time is excessive. The bus monitor feature cannot be disabled for internal accesses to an
internal module. The internal bus monitor cannot check the DSACKXx response on the
external bus unless the MC68349 is the bus master. The BME bit in the system protection
control register (SYPCR) enables the internal bus monitor for internal-to-external bus
cycles. If the system contains external bus masters whose bus cycles must be monitored,
an external bus monitor must be implemented. In this case, the internal-to-external bus
monitor option must be disabled.

The bus cycle termination response time is measured in clock cycles, and the maximum-
allowable response time is programmable. The bus monitor response time period ranges
from 64 to 512 system clocks (see Table 4-9). These options are provided to allow for
different response times of peripherals that might be used in the system.

4.2.2.3 DOUBLE BUS FAULT MONITOR. A double bus fault is caused by a bus error or
address error during the exception processing sequence. The double bus fault monitor
responds to an assertion of HALT on the internal bus. Refer to Section 3 Bus Operation
for more information. The DBF bit in the reset status register (RSR) indicates that the last
reset was caused by the double bus fault monitor. The double bus fault monitor reset can
be enabled by the DBFE bit in the SYPCR.

4.2.2.4 SPURIOUS INTERRUPT MONITOR. The spurious interrupt monitor issues BERR
if no interrupt arbitration occurs during an IACK cycle. Normally, during an IACK cycle, one
or more internal modules recognize that the CPU32+ is responding to interrupt request(s)
and arbitrate for the privilege of returning a vector or asserting AVEC. (The SIM49 reports
and arbitrates for externally generated interrupts.) This feature cannot be disabled.

4-6 MC68349 USER'S MANUAL MOTOROLA

4.2.2.5 SOFTWARE WATCHDOG. The SIM49 provides a software watchdog option to
prevent system lock-up in case the software becomes trapped in loops with no controlled
exit. Once enabled by the SWE bit in the SYPCR, the software watchdog requires a
special service sequence to be executed on a periodic basis. If this periodic servicing
action does not occur, the software watchdog times out and issues a reset or a level 7
interrupt (as programmed by the SWRI bit in the SYPCR). The address of the interrupt
service routine for the software watchdog interrupt is stored in the software interrupt vector
register (SWIV). Figure 4-3 shows a block diagram of the software watchdog as well as
the clock control circuits for the periodic interrupt timer.

The watchdog clock rate is determined by the SWP bit in the periodic interrupt timing
register (PITR) and the SWT bits in the SYPCR. See Table 4-7 for a list of watchdog
timeout periods.

The software watchdog service sequence consists of the following steps: 1) write $55 to
the software service register (SWSR) and 2) write $AA to the SWSR. Both writes must
occur in the order listed prior to the watchdog timeout, but any number of instructions or
accesses to the SWSR can be executed between the two writes.

PITR
SWP

PTP
FREEZE Y
Y PITCLK PIT
CLOCK m MODULUS COUNTER _>INTERRUPT

CLOCK > 9 5| MUX
—> > >
EXTAL DISABLE PRESCALER (27) PRECLK

|—> RESET

15 STAGE DIVIDER CHAIN (219)

YooY oYy

29 oIl 913 915

SWCLK
LPSTOP

Y

Figure 4-3. Software Watchdog Block Diagram

4.2.2.6 PERIODIC INTERRUPT TIMER. The periodic interrupt timer consists of an 8-bit
modulus counter that is loaded with the value contained in the periodic interrupt timing
register (see Figure 4-3). The modulus counter is clocked by a signal derived from the
EXTAL input pin unless an external frequency source is used. When an external
frequency source is used (MODCK low during reset), the default state of the prescaler
control bits (SWP and PTP) in the PITR is changed to enable both prescalers.

Either clock source (EXTAL or EXTAL + 512) is divided by 4 before driving the modulus
counter (PITCLK). When the modulus counter value reaches zero, an interrupt is
generated. The level of the generated interrupt is programmed into the PIRQL bits in the
periodic interrupt control register (PICR). During the IACK cycle, the SIM49 places the
periodic interrupt vector, programmed into the PIV bits in the PICR, onto the internal bus.
The value of bits 7-0 in the PITR is then loaded again into the modulus counter, and the

MOTOROLA MC68349 USER'S MANUAL 4-7

counting process starts over. If a new value is written to the PITR, this value is loaded into
the modulus counter when the current count is completed.

4.2.2.6.1 Periodic Timer Period Calculation. The period of the periodic timer can be
calculated using the following equation:

PITR count value

periodic interrupt timer period = EXTAL frequency/prescaler value
22

Solving the equation using a crystal frequency of 32.768-kHz with the prescaler disabled
gives:

PITR count value

32768/1
22

periodic interrupt timer period

PITR count value
8192

periodic interrupt timer period

This gives a range from 122 ps, with a PITR value of $01 (00000001 binary), to 31.128
ms, with a PITR value of $FF (11111111 binary).

Solving the equation with the prescaler enabled (PTP=1 in the PITR) gives the following
values:

PITR count value

32768/512
22

periodic interrupt timer period

PITR count value
16

periodic interrupt timer period

This gives a range from 62.5 ms, with a PITR value of $01, to 15.94 s, with a PITR value
of $FF.

For fast calculation of periodic timer period using a 32.768-kHz crystal, the following
equations can be used:

With prescaler disabled:

programmable interrupt timer period PITR (122 pus)

With prescaler enabled:

programmable interrupt timer period PITR (62.5 ms)

4-8 MC68349 USER'S MANUAL MOTOROLA

4.2.2.6.2 Using the Periodic Timer as a Real-Time Clock. The periodic interrupt timer
can be used as a real-time clock interrupt by setting it up to generate an interrupt with a
one-second period. Rearranging the periodic timer period equation to solve for the desired
count value:

(PIT period) (EXTAL frequency)
(Prescaler value) (22)

PITR count value

PITR count value (1) (32768)

(512) (22)

PITR count value 16 (decimal)
Therefore, when using a 32.768-kHz crystal, the PITR should be loaded with a value of
$10 with the prescaler enabled to generate interrupts at a one-second rate.

4.2.2.7 SIMULTANEOUS INTERRUPTS BY SOURCES IN THE SIM49. If multiple
interrupt sources at the same interrupt level are simultaneously asserted in the SIM49, it
will prioritize and service the interrupts in the following order: 1) software watchdog, 2)
periodic interrupt timer, and 3) external interrupts.

4.2.3 Clock Synthesizer Operation

The clock synthesizer can operate with either an external crystal or an external oscillator
for reference, using the internal phase-locked loop (PLL) and voltage-controlled oscillator
(VCO), or an external clock can directly drive the clock signal at the operating frequency.
The four modes of clock operation are listed in Table 4-1.

Table 4-1. Clock Operating Modes

MODCK VcesyN
Mode Description Reset Value | Operating Value
(Logic Level) (Voltage Level)
External crystal or oscillator used with the on-chip PLL and
Crystal Mode VCO to generate a system clock and CLKOUT of 1 Vce
programmable rates.
External Clock The desired operating frequency is driven into EXTAL
Mode without PLL | resulting in a system clock and CLKOUT of the same 0 ov
frequency, not tightly coupled.
The desired operating frequency is driven into EXTAL,
External Clock resulting in a system clock and CLKOUT of the same
Mode with PLL frequency, with a tight skew between input and output 0 Vce
signals.
Upon input signal loss for either clock mode using the PLL,
operation continues at approximately one-half operating X Vce
Limp Mode speed (affected by the value of the X-bit in the SYNCR).

MOTOROLA

MC68349 USER'S MANUAL

4-9

In crystal mode (see Figure 4-4), the clock synthesizer can operate from the on-chip PLL
and VCO, using a parallel resonant crystal connected between the EXTAL and XTAL pins,
or an external oscillator connected to EXTAL as a reference frequency source. The
oscillator circuit is shown in Figure 4-5. A 32.768-kHz watch crystal provides an
inexpensive reference, but the reference crystal or external oscillator frequency can be
any frequency in the range specified in Section 11 Electrical Characteristics. When
using crystal mode, the system clock frequency is programmable (using the W, X, Y, and
Z bits in the clock synthesizer control register (SYNCR)) over the range specified in
Section 11 Electrical Characteristics (see Table 4-2.).

A separate power pin (Vccsyn) is used to provide increased noise immunity for the clock
circuits. The source for Vccsyn should be a quiet power supply with adequate external
bypass capacitors placed as close as possible to the Vccsyn pin to ensure a stable
operating frequency. Figure 4-4 shows typical values for the bypass and PLL external
capacitors. The crystal manufacturer's documentation should be consulted for specific
recommendations for external components.

4-10 MC68349 USER'S MANUAL MOTOROLA

EXTAL XTAL

i T 33.554 MHz

2 mux
osc | 32T68KHz =1 8.389 MHz
Phase Low Pass B +2f—>|o1 System
> Comparator | Filter Vco 2 > .t o > Clock
+16—>[00
sel
. - 2
64 mux *8
1 +32 01
Modulus
Divider :
0 -8 16.777 MHz Xz
sel
6
$3F 0
feedback divider
Y W

Note: Default bit values after reset (and resulting frequencies) are shown in italics for VCO operation with a 32.768KHz crystal.

Figure 4-4. Clock Block Diagram for Crystal Operation

60 kQ

EXTAL XTAL

60 kQ

Figure 4-5. MC68349 Crystal Oscillator

MOTOROLA MC68349 USER'S MANUAL 4-11

To use an external clock source (see Figure 4-6), the operating clock frequency can be
driven directly into the EXTAL pin (the XTAL pin must be left floating for this case). This
approach results in a system clock and CLKOUT that are the same as the input signal
frequency, but not tightly coupled to it. To enable this mode, MODCK must be held low
during reset, and Vccsyn held at 0 V while the chip is in operation.

DIVIDER

Vcesyn
xFcl 0.1pF
EXTERNAL —| —| |—
CLOCK
11
v 11 =
EXTAL XTAL XFC PIN CCSYN 01 pF
r=—=1_ I—-|A|- —————————————— I e B e
|
I
CRYSTAL I
> PHASE LOW-PASS _—
OSCILLATOR - [|
| COMPARATOR FILTER veo :
I
I
I
B I
< I
I
I
I
I

= CLOCK CONTROL 4["]—> CLKOUT
> > SYSTEM

CLOCK |

I
I
I
I
I
I
I
I
: 5 FEEDBACK
I
I
I
I
I
I
I

'NOTES:
1. Must be low-leakage capacitor.
2. External mode uses this path only.

Figure 4-6. Clock Block Diagram for External Oscillator Operation

Alternatively, an external clock signal can be directly driven into EXTAL (with XTAL left
floating) using the on-chip PLL. This configuration results in an internal clock and CLKOUT
signal of the same frequency as the input signal, with a tight skew between the external
clock and the internal clock and CLKOUT signals. To enable this mode, MODCK must be
held low during reset, and Vccsyn should be connected to a quiet 5-V source (or 3.3-V
source for MC68349V).

If an input signal loss for either of the clock modes utilizing the PLL occurs, chip operation
can continue in limp mode with the VCO running at approximately one-half the operating
speed (affected by the values of the X- and Z-bits in the SYNCR), using an internal
voltage reference. The SLIMP bit in the SYNCR indicates that a loss of input signal
reference has been detected. The RSTEN bit in the SYNCR controls whether an input
signal loss causes a system reset or causes the device to operate in limp mode. The
SLOCK bit in the SYNCR indicates when the VCO has locked onto the desired frequency
or if an external clock is being used.

4-12 MC68349 USER'S MANUAL MOTOROLA

4.2.3.1 PHASE COMPARATOR AND FILTER. The phase comparator takes the output of
the frequency divider and compares it to an external input signal reference. The result of
this compare is low-pass filtered and used to control the VCO. The comparator also
detects when the external crystal or oscillator stops running to initiate the limp mode for
the system clock.

The PLL requires an external low-leakage filter capacitor, typically in the range from 0.01
to 0.1 uF, connected between the XFC and Vccsyn pins. The XFC capacitor should
provide 50-MQ insulation but should not be electrolytic. Smaller values of the external filter
capacitor provide a faster response time for the PLL, and larger values provide greater
frequency stability. For external clock mode without PLL, the XFC pin can be left open.

4.2.3.2 FREQUENCY DIVIDER. The frequency divider circuits divide the VCO frequency
down to the reference frequency for the phase comparator. The frequency divider consists
of 1) a 2-bit prescaler controlled by the W-bit in the SYNCR and 2) a 6-bit modulo
downcounter controlled by the Y-bits in the SYNCR.

Several factors are important to the design of the system clock. The resulting system clock

frequency must be within the limits specified for the device. The frequency of the system

clock is given by the following equation:
Fsystem = Forystal [REWHH3Z71] x (v+1)

The maximum VCO frequency limit must also be observed. The VCO frequency is given
by the following equations:

Fvco = FcrysTal [24+2W)] x (Y+1)

= Fgystem [207%732)]

Since setting the X-bit causes the VCO to run at twice the system frequency, the VCO
upper frequency limit must be considered when programming the SYNCR. Both the
system clock and VCO frequency limits are given in Section 11 Electrical
Characteristics. Table 4-2 lists frequencies available from various combinations of
SYNCR bits with a reference frequency of 32.768-KHz.

MOTOROLA MC68349 USER'S MANUAL 4-13

Table 4-2. System Frequencies from 32.768-kHz Reference

VCO VCO
CLKOUT (kHz)1 (kHz)1 CLKOUT (kHz)1 (kHz)1
W =02 W =02 W=12 W=12

Z=0 z=1 Z=x Z=0 z=1 Z=x

Y2 X=0 | X=1 | Xx=0 | X=1 [X=x X=0 X=1 | X=0 | X=1 | X=x

0 16 33 131 262 524 66 1049 524 1049 | 2097

1 33 66 262 524 1049 131 2097 1049 | 2097 | 4194

2 49 98 393 786 1573 197 3146 1573 | 3146 | 6291

3 66 131 524 1049 | 2097 262 4194 | 2097 | 4194 | 8389
4 82 164 655 1311 | 2621 328 5243 | 2621 | 5243 | 10486
5 98 197 786 1573 | 3146 393 6291 | 3146 | 6201 | 12583
6 115 229 918 1835 | 3670 459 7340 | 3670 | 7340 | 14680
7 131 262 1049 | 2097 | 4194 524 8389 | 4194 | 8389 | 16777
8 147 295 1180 | 2359 | 4719 590 9437 | 4719 | 9437 | 18874
9 164 328 1311 | 2621 | 5243 655 10486 | 5243 | 10486 | 20972
10 180 360 1442 | 2884 | 5767 721 11534 | 5767 | 11534 | 23069
11 197 393 1573 | 3146 | 6291 786 12583 | 6291 | 12583 | 25166
12 213 426 1704 | 3408 | 6816 852 13631 | 6816 | 13631 | 27263
13 229 459 1835 | 3670 | 7340 918 14680 | 7340 | 14680 | 29360
14 246 492 1966 | 3932 | 7864 983 15729 | 7864 | 15729 | 31457
15 262 524 2097 | 4194 | 8389 1049 16777 | 8389 | 16777 | 33554
16 279 557 2228 | 4456 | 8913 1114 17826 | 8913 | 17826 | 35652
17 295 590 2359 | 4719 | 9437 1180 18874 | 9437 | 18874 | 37749
18 311 623 2490 | 4981 | 9961 1245 19923 | 9961 | 19923 | 39846
19 328 655 2621 | 5243 | 10486 | 1311 20972 | 10486 | 20972 | 41943
20 344 688 2753 | 5505 | 11010 | 1376 22020 | 11010 | 22020 | 44040
21 360 721 2884 | 5767 | 11534 | 1442 23069 | 11534 | 23069 | 46137
22 377 754 3015 | 6029 | 12059 | 1507 24117 | 12059 | 24117 | 48234
23 393 786 3146 | 6291 | 12583 | 1573 25166 | 12583 | 25166 | 50332
24 410 819 3277 | 6554 | 13107 | 1638 26214 | 13107 | 26214 | 52429
25 426 852 3408 | 6816 | 13631 | 1704 27263 | 13631 | 27263 | 54526
26 442 885 3539 | 7078 | 14156 | 1769 28312 | 14156 | 28312 | 56623
27 459 918 3670 | 7340 | 14680 | 1835 29360 | 14680 | 29360 | 58720
28 475 950 3801 | 7602 | 15204 | 1901 30409 | 15204 | 30409 | 60817
29 492 983 3932 | 7864 | 15729 | 1966 31457 | 15729 | 31457 | 62915
30 508 1016 | 4063 | 8126 | 16253 | 2032 32506 | 16253 | 32506 | 65012
31 524 1049 | 4194 | 8389 | 16777 | 2097 33554 | 16777 | 33554 | 67109

414 MC68349 USER'S MANUAL MOTOROLA

Table 4-2. System Frequencies from 32.768-kHz Reference (Continued)

VCO VCO (kHz)
CLKOUT (kHz) (kHz) CLKOUT (kHz)

W=0 w=0 w=1 w=1

z=0 z=1 Z=x z=0 z=1 Z=x

Y Xx=0 | x=1 | x=0 | x=1 | Xx=x | Xx=0 | x=1 | x=0 | x=1 | X=x
32 541 1081 | 4325 | 8651 | 17302 | 2163 | 34603 | 17302 | 34603 | 69206
33 557 1114 | 4456 | 8913 | 17826 | 2228 | 35652 | 17826 | 35652 | 71303
34 573 1147 | 4588 | 9175 | 18350 | 2294 | 36700 | 18350 | 36700 | 73400
35 590 1180 | 4719 | 9437 | 18874 | 2359 | 37749 | 18874 | 37749 | 75497
36 606 1212 | 4850 | 9699 | 19399 | 2425 | 38797 | 19399 | 38797 | 77595
37 623 1245 | 4981 | 9961 | 19923 | 2490 | 39846 | 19923 | 39846 | 79692
38 639 1278 | 5112 | 10224 | 20447 | 2556 | 40894 | 20447 | 40894 | 81789
39 655 1311 | 5243 | 10486 | 20972 | 2621 | 41943 | 20972 | 41943 | 83886
40 672 1343 | 5374 | 10748 | 21496 | 2687 | 42992 | 21496 | 42992 | 85983
41 688 1376 | 5505 | 11010 | 22020 | 2753 | 44040 | 22020 | 44040 | 88080
42 705 1409 | 5636 | 11272 | 22544 | 2818 | 45089 | 22544 | 45089 | 90178
43 721 1442 | 5767 | 11534 | 23069 | 2884 | 46137 | 23069 | 46137 | 92275
44 737 1475 | 5898 | 11796 | 23593 | 2949 | 47186 | 23593 | 47186 | 94372
45 754 | 1507 | 6029 | 12059 | 24117 | 3015 | 48234 | 24117 | 48234 | 96469
46 770 1540 | 6160 | 12321 | 24642 | 3080 | 49283 | 24642 | 49283 | 98566
47 786 1573 | 6291 | 12583 | 25166 | 3146 | 50332 | 25166 | 50332 | 100663
48 803 1606 | 6423 | 12845 | 25690 | 3211 | 51380 [25690 | 51380 | 102760
49 819 1638 | 6554 | 13107 | 26214 | 3277 | 52429 | 26214 | 52429 | 104858
50 836 1671 | 6685 | 13369 | 26739 | 3342 | 53477 | 26739 | 53477 | 106955
51 852 1704 | 6816 | 13631 | 27263 | 3408 | 54526 | 27263 | 54526 | 109052
52 868 1737 | 6947 | 13894 | 27787 | 3473 | 55575 | 27787 | 55575 | 111149
53 885 1769 | 7078 | 14156 | 28312 | 3539 | 56623 | 28312 | 56623 | 113246
54 901 1802 | 7209 | 14418 | 28836 | 3604 | 57672 | 28836 | 57672 | 115343
55 018 1835 | 7340 | 14680 | 29360 | 3670 | 58720 | 29360 | 58720 | 117441
56 934 | 1868 | 7471 | 14942 | 29884 | 3736 | 59769 | 29884 | 59769 | 119538
57 950 1901 | 7602 | 15204 | 30409 | 3801 | 60817 | 30409 | 60817 | 121635
58 967 1933 | 7733 | 15466 | 30933 | 3867 | 61866 | 30933 | 61866 | 123732
59 983 1966 | 7864 | 15729 | 31457 | 3932 | 62915 | 31457 | 62915 | 125829
60 999 1999 | 7995 | 15991 | 31982 | 3998 | 63963 | 31982 | 63963 | 127926
61 1016 | 2032 | 8126 | 16253 | 32506 | 4063 | 65012 | 32506 | 65012 | 130023
62 1032 | 2064 | 8258 | 16515 | 33030 | 4129 | 66060 | 33030 | 66060 | 132121
63 1049 | 2097 | 8389 | 16777 | 33554 | 4194 | 67109 | 33554 | 67109 | 134218

NOTES:

1. Some W/X/Y bit combinations shown may select a CLKOUT or VCO frequency higher than spec. Refer to

Section 11 Electrical Characteristics for CLKOUT and VCO frequency limits.

2. Any change to W or Y results in a change in the VCO frequency - the VCO should be allowed to relock if
necessary

MOTOROLA

MC68349 USER'S MANUAL

4-15

4.2.3.3 CLOCK CONTROL. The clock control circuits determine the source used for both
internal and external clocks during special circumstances, such as low-power stop
(LPSTOP) execution.

Table 4-3 summarizes the clock activity during LPSTOP in crystal mode operation. Any

clock in the off state is held low. The STEXT and STSIM bits in the SYNCR control clock
activity during LPSTOP. Refer to 4.2.6 Low-Power Stop for additional information.

Table 4-3. Clock Control Signals

Control Bits Clock Outputs
STSIM STEXT SIMCLK CLKOUT
0 0 EXTAL Off
0 1 EXTAL EXTAL

1 0 VCO Off
1 1 VCO VCO

NOTE: SIMCLK runs the periodic interrupt RESET and
IRQx pin synchronizers in LPSTOP mode.

4.2.4 Chip Select Operation

Typical microprocessor systems require external hardware to provide select signals to
external memory and peripherals. The MC68349 integrates these functions on chip to
provide the cost, speed, and reliability benefits of a higher level of integration. The chip
select function contains register pairs for each external chip select signal. The pair
consists of a base address register and an address mask register that define the
characteristics of a single chip select. The register pair provides flexibility for a wide variety
of chip select functions.

4-16 MC68349 USER'S MANUAL MOTOROLA

4.2.4.1 PROGRAMMABLE FEATURES. The chip select function supports the following
programmable features:

Four Programmable Chip Select Circuits

All four chip select circuits are independently programmable from the same list of
selectable features. Each chip select circuit has an individual base address register and
address mask register that contain the programmed characteristics of that chip select.
The base address register selects the starting address for the address block in 256-byte
increments. The address mask register specifies the size of the address block range.
The base address register V-bit indicates that the register information for that chip select
is valid. A global chip select allows address decode for a boot ROM before system
initialization occurs (see 4.2.4.2 Global Chip Select Operation).

Variable Block Sizes

The block size, starting from the specified base address, can vary in size from 256 bytes
up to 4 Gbytes in 2N increments. The specified base address must be on a multiple of
the block size. The block size is specified in the address mask register.

8-, 16-. and 32-Bit Ports Supported

The 8-bit ports are accessible on both odd and even addresses when connected to
D31-D24. The 16-bit ports can be accessed as odd bytes, even bytes, or even words
when connected to D31-D16. The 32-bit ports can be accessed as odd or even bytes,
odd or even words, or odd or even longwords. The port size is specified by the PS bits
in the address mask register.

Write Protect Capability

The WP bit in each base address register can restrict write access to its range of
addresses.

Fast Termination Option

Programming the EDS bit (base address register) and the DD1 and DD2 bits (address
mask register) to a value of 111 selects the fast termination option. The fast termination
option causes the chip select to terminate the cycle by asserting the internal DSACKXx
early, providing a two-cycle external access.

Internal DSACKx Generation for External Accesses with Programmable Wait States

DSACKXx can be generated internally with up to six wait states for a particular device
using the EDS bit in the base address register along with the DDx bits in the address
mask register.

Full 32-Bit Address Decode with Address Space Checking

The FC bits in the base address register and FCM bits in the address mask register are
used to select address spaces for which the chip selects will be asserted.

MOTOROLA MC68349 USER'S MANUAL 4-17

4.2.4.2 GLOBAL CHIP SELECT OPERATION. Global chip select operation allows
address decode for a boot ROM before system initialization occurs. The size of the global
chip select is programmable and is determined by the state of data bus signals D31 and
D30 at reset (see Table 4-4).

Table 4-4. D31, D30 Encoding for Global Chip Select Size

D31

D30

Global Chip Select Size

P |k]|]O|O

0
1
0
1

External DSACKx Response

4.2.5 External Bus Interface Operation

This section describes port A and port B functions. Refer to Section 3 Bus Operation for
more information about the EBI.

4.2.5.1 PORT A. Port A pins can be independently programmed to function as either
addresses A31-A24, discrete 1/0O pins, or IACKx pins. The port A pin assignment registers
(PPARAL and PPARAZ2) control the function of the port A pins as listed in Table 4-5. Upon
reset, the port A pins are initialized as either input pins or address outputs, dependent on
the state of the D29 pin at reset. If D29 = 1 at reset, the port A pins are initialized as

address outputs; if D29 = 0 at reset, the port A pins are initialized as inputs.

Table 4-5. Port A Pin Assignment Register

Pin Function
Signal PPARA1=0 PPARA1=1 PPARA1=0
PPARA2=0 PPARA2 = X PPARA2 =1
(D29 =1 At Reset) (D29 = 0 At Reset)
A3l A3l PORT A7 1ACK7
A30 A30 PORT A6 TACK6
A29 A29 PORT A5 1ACK5
A28 A28 PORT A4 TACK4
A27 A27 PORT A3 IACK3
A26 A26 PORT A2 TACK2
A25 A25 PORT Al TACKT
A24 A24 PORT AO —

4-18

MC68349 USER'S MANUAL

MOTOROLA

4.2.5.2 PORT B. Port B pins can be independently programmed to function as chip
selects, IRQx and MODCK pins, or discrete I/O pins. These pins are multiplexed as shown
in Figure 4-7. Selection of a pin function is accomplished by a combination of the PPARB
and the FIRQ bit of the MCR. See Table 4-6 for port B combinations. By changing the
value of the FIRQ bit and the corresponding bits in the PPARB for a particular signal, the
port B pins can be configured for different pin functions. The MODCK signal is used only
during reset. After reset, port B is configured as PORTB7, PORTB6, PORTB5, PORTBS3,
and CS3-CS0, and PORTBO.

MODCK/PORT BO
IRQ7/PORT BY
IRQ6/PORT B6
INTERRUPT IRQ5/PORT B5
PORT IRQ3/PORT B3
LoGIC IRQ4/PORT B4
IRQ2/PORT B2
IRQ1/PORT B1
CS3/IRQ4/PORT B4
AVEC CS2IRQ2IPORT B2
FULL IRQ —
MUX CS1/IRQL/PORT B1
cs3 CSO/AVEC
CHIP- CS2
SELECT cs1
MODULE cs0
FIRQ

Figure 4-7. Full Interrupt Request Multiplexer

Table 4-6. Port B Pin Assignment Register

Pin Function
Signal FIRQ=0 FIRQ=0 FIRQ=1 FIRQ=1
PPARB =0 PPARB =1 PPARB =0 PPARB =1
RQ7 PORTB7 RQ7 PORTB7 IRQ7
RQ6 PORTB6 TRQ6 PORTB6 TRQ6
RQ5 PORTB5 TRQ5 PORTB5 TRQ5
RQ3 PORTB3 IRQ3 PORTB3 IRQ3
[ok] CS3 CS3 PORTB4 IRQ4
Tso CcSs2 Cs2 PORTB2 RQ2
Cs1 Cs1 Cs1 PORTB1 RQT
TS0 CSo CSo AVEC AVEC
MODCK PORTBO — PORTBO —

NOTE: MODCK is used only during reset.

MOTOROLA MC68349 USER'S MANUAL 4-19

The number of wait states programmed into the internal wait state generation logic by a
chip select can be used even though the pin is not used as a CSx signal. The programmed
number of wait states in the CSx signal applies to the port B pins configured as IRQx or
I/O pins. This is done by programming the chip select with the number of wait states to be
added, as though it were to be used. The EDS bit in the base address register along with
the DD1/DDO0 and PS1/PSO0 bits in the chip select address mask register must be set to
add the desired number of wait states (the V-bit in the module base address register must
also be set).

4.2.6 Low-Power Stop

Executing the LPSTOP instruction provides reduced power consumption when the
MC68349 is idle; only the SIM49 remains active. Operation of the SIM49 clock and
CLKOUT during LPSTOP is controlled by the STSIM and STEXT bits in the SYNCR (see
Table 4-3). LPSTOP disables the clock to the software watchdog in the low state. The
software watchdog remains stopped until the LPSTOP mode ends; it begins to run again
on the next rising clock edge.

NOTE

When the CPU32+ executes the STOP instruction (as opposed
to LPSTOP), the software watchdog continues to run. If the
software watchdog is enabled, it issues a reset or interrupt
when timeout occurs.

The periodic interrupt timer does not respond to an LPSTOP instruction; thus, it can be
used to exit LPSTOP as long as the interrupt request level is higher than the CPU32+
interrupt mask level. To stop the periodic interrupt timer while in LPSTOP, the PITR must
be loaded with a zero value before LPSTOP is executed. The bus monitor, double bus
fault monitor, and spurious interrupt monitor are all inactive during LPSTOP.

The STP bit in the MCR of each on-chip module (DMA, quad data memory, and serial
modules) should be set prior to executing the LPSTOP instruction. Setting the STP bit
stops all clocks within each of the modules, except for the clock from the IMB. The clock
from the IMB remains active to allow the CPU32+ access to the MCR of each module. The
system clock stops on the low phase of the clock and remains stopped until the STP bit is
cleared by the CPU32+ or until reset. For more information, see the description of the
MCR STP bit for each module.

If an external device requires additional time to prepare for entry into LPSTOP mode, entry
can be delayed by asserting HALT (see Section 3 Bus Operation).

4-20 MC68349 USER'S MANUAL MOTOROLA

4.2.7 Freeze

The FREEZE signal is asserted by the CPU32+ if a breakpoint is encountered with
background mode enabled. Refer to Section 5 CPUOQO30 for more information on the
background mode. When FREEZE is asserted, the double bus fault monitor and spurious
interrupt monitor continue to operate normally. However, the software watchdog, the
periodic interrupt timer and the internal bus monitor will be affected. When FREEZE is
asserted, setting the FRZ1 bit in the MCR disables the software watchdog and periodic
interrupt timer and setting the FRZO bit in the MCR disables the bus monitor.

4.3 PROGRAMMING MODEL

Figure 4-8 is a programming model (register map) of all the registers in the SIM49. For
more information about a particular register, refer to the description of the module or
function indicated in the right column. The ADDR (address) column indicates the offset of
the register from the address stored in the MBAR. The FC (function code) column
indicates whether a register is restricted to supervisor access (S) or programmable to exist
in either supervisor or user space (S/U).

The SIM49 registers are discussed in the following pages In the register diagrams, the
number in the upper right-hand corner indicates the offset of the register from the address
stored in the MBAR. The numbers on the top line of the register represent the bit position
in the register. The second line contains the mnemonic for the bit. The numbers below the
register represent the bit values after a hardware reset. The access privilege is indicated
in the lower right-hand corner.

NOTE:
A CPU32+ RESET instruction will not affect any of the SIM49
registers.

The IMB data port to the SIM49 registers is 16 bits wide. Long-
word accesses to registers are allowed, but are dynamically
sized to two 16-bit accesses.

MOTOROLA MC68349 USER'S MANUAL 4-21

ADDR

g 8 8

010
012
014
016
018
01A
01C
O1E
020

022
024

026

042

046

04A

04C
04E

050
052

054
056

058
05A

05C
05E

4-22

w

w n 2

» o @l goov g

w

num O Om ;L ;L Lo o nuw

15

8 7

MODULE CONFIGURATION REGISTER (MCR)

IDENTIFICATION REGISTER (IDR)

CLOCK SYNTHESIZER CONTROL REGISTER (SYNCR)

AUTOVECTOR REGISTER (AVR) RESET STATUS REGISTER (RSR)
RESERVED PORT A DATA (PORTA)
RESERVED PORT A DATA DIRECTION (DDRA)
RESERVED PORT A PIN ASSIGNMENT 1 (PPRA1)
RESERVED PORT A PIN ASSIGNMENT 2 (PPRA2)
RESERVED PORT B DATA (PORTB)
RESERVED PORT B DATA (PORTB1)
RESERVED PORT B DATA DIRECTION (DDRB)
RESERVED PORT B PIN ASSIGNMENT (PPARB)

SW INTERRUPT VECTOR (SWIV) SYSTEM PROTECTION CONTROL (SYPCR)

PERIODIC INTERRUPT CONTROL REGISTER (PICR)

PERIODIC INTERRUPT TIMING REGISTER (PITR)

RESERVED SOFTWARE SERVICE (SWSR)

CS0 ADDRESS MASK REGISTER

CS0 BASE ADDRESS REGISTER

CS1 ADDRESS MASK REGISTER

CS1 BASE ADDRESS REGISTER

CS2 ADDRESS MASK REGISTER

CS2 BASE ADDRESS REGISTER

CS3 ADDRESS MASK REGISTER

CS3 BASE ADDRESS REGISTER

Figure 4-8. SIM49 Programming Model

MC68349 USER'S MANUAL

SYSTEM
PROTECTION

IDENTIFICATION
CLOCK

SYSTEM
PROTECTION

EBI
EBI
EBI
EBI
EBI
EBI
EBI
EBI

SYSTEM
PROTECTION

SYSTEM PROTECTION

SYSTEM
PROTECTION

SYSTEM
PROTECTION

CHIP SELECT

CHIP SELECT

CHIP SELECT

CHIP SELECT

CHIP SELECT

CHIP SELECT

CHIP SELECT

CHIP SELECT

MOTOROLA

4.3.1 Module Base Address Register (MBAR)
MBAR 1 $0003FF00

31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16

| BA31 | BA30 | BA29 | BA28 | BA27 | BA26 | BA25 | BA24 | BA23 | BA22 | BA21 | BA20 | BA19 | IBA18 | BA17 | BA16 |

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| BA15 | BA14 | BA13 | BA12 | 0 | 0 | AS8 | AS7 | AS6 | AS5 | AS4 | AS3 | AS2 | AS1 | ASO | \% |
RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CPU Space Only

BA31-BAl12—Base Address Bits 31-12

The base address field is the upper 20 bits of the MBAR and provides for block starting
addresses in increments of 4-Kbytes.

Bits 11, 10—Reserved by Motorola

AS8-ASO0—Address Space Bits 8—-0

The address space field allows particular address spaces to be masked, placing the 4-
Kbyte module block into a particular address space(s). If an address space is masked,
an access to the register block location in that address space becomes an external
access. The module block is not accessed. The address space bits are as follows:

AS8—mask DMA Space address space (FC3—FCO0 = 1xxx)
AS7—mask CPU Space address space (FC3—-FCO0 = 0111)
AS6—mask Supervisor Program address space (FC3—-FC0 = 0110)
AS5—mask Supervisor Data address space (FC3—FCO0 = 0101)
AS4—mask Reserved [Motorola] address space (FC3—-FCO0 = 0100)
AS3—mask Reserved [User] address space (FC3—-FC0 = 0011)
AS2—mask User Program address space (FC3—FCO0 = 0010)
AS1—mask User Data address space (FC3—FCO0 = 0001)
ASO—mask Reserved [Motorola] address space (FC3—-FCO0 = 0000)

For each address space bit:

1 = Mask this address space from the internal module selection. The bus cycle goes
external.
0 = Decode for the internal module block.

V—Valid Bit
This bit indicates when the contents of the MBAR are valid. The base address value is
not used; therefore, all internal module registers are not accessible until the V-bit is set.

1 = Contents are valid.
0 = Contents are not valid.

MOTOROLA MC68349 USER'S MANUAL 4-23

NOTE

An access to this register does not affect external space since
the cycle is not run externally.

Example code to read the MBAR value into CPU register DO:

MOVE.L #7,D0 load DO with the CPU space function code
MOVEC.L DO,SFC load SFC to indicate CPU space

LEA.L $0003FF00,A0 load AO with the address of MBAR
MOVES.L (A0),DO load DO with the contents of MBAR

Example code for initializing the MBAR register:

MOVE.L #7,D0 load DO with the CPU space function code
MOVEC.L DO,DFC load DFC to indicate CPU space

LEA.L $0003FF00,A0 load AO with the address of MBAR
MOVE.L #$FFFFF101,D0 MBAR value: base = FFFFF000, AS7, valid
MOVES.L DO,(A0) write the value contained in DO into MBAR

4.3.2 System Configuration and Protection Registers

The following paragraphs provide descriptions of the system configuration and protection
registers.

4.3.2.1 MODULE CONFIGURATION REGISTER (MCR). The MCR, which controls the
SIM49 configuration, can be read or written at any time.

MCR $000
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
| 0 | FRZ1 | FRZ0 | FIRQ | 0 | 0 |SHEN1 | SHENOl SUPV | 0 | 0 | 0 | IARB3 | IARB2 | IARB1 | IARBO |
RESET:
0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1

Supervisor Only

Bits 15, 11, 10, 6-4—Reserved by Motorola

FRZ1—Freeze Software Enable

1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters are disabled, preventing interrupts from occurring during software
debug.

0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters continue to run. See 4.2.7 Freeze for more information.

4-24 MC68349 USER'S MANUAL MOTOROLA

FRZ0O—Freeze Bus Monitor Enable

1 = When FREEZE is asserted, the bus monitor is disabled.
0 = When FREEZE is asserted, the bus monitor continues to operate as
programmed.

FIRQ—TFull Interrupt Request Mode

1 = Configures port B for seven interrupt request lines, autovector, and no external
chip selects.

0 = Configures port B for four interrupt request lines and four external chip selects.
See Table 4-5 for pin function selection.

SHEN1, SHENO—Show Cycle Enable

These two control bits determine what the EBI does with the external bus during internal
transfer operations (see Table 4-7). A show cycle allows internal transfers to be
externally monitored. The address, data, and control signals (except for AS) are driven
externally. DS is used to signal address strobe timing for show cycles. Data is valid on
the next falling clock edge after DS is negated. However, data is not driven externally,
and AS and DS are not asserted externally for internal accesses unless show cycles are
enabled.

If external bus arbitration is disabled, the EBI will not recognize an external bus request
until arbitration is enabled again. To prevent bus conflicts, external peripherals must not
attempt to initiate cycles during show cycles with arbitration disabled.

Table 4-7. SHENx Control Bits

SHEN1 | SHENO ACTION
0 0 Show cycles disabled, external arbitration enabled
0 1 Show cycles enabled, external arbitration disabled
1 X Show cycles enabled, external arbitration enabled

SUPV—Supervisor/User Data Space

The SUPV bit defines the SIM49 registers as either supervisor data space or user
(unrestricted) data space.

1 = The SIM49 registers defined as supervisor/user are restricted to supervisor data
access (FC3—-FCO0 = $5). An attempted user-space write is ignored and returns
BERR.

0 = The SIMA49 registers defined as supervisor/user data are unrestricted (FC2 is a
don't care).

MOTOROLA MC68349 USER'S MANUAL 4-25

IARB3-IARBO—Interrupt Arbitration Bits 3-0

These bits are used to arbitrate for the bus in the case that two or more modules
simultaneously generate an interrupt at the same priority level. No two modules can
share the same IARB value. The reset value of IARB is $F, allowing the SIM49 to
arbitrate during an IACK cycle immediately after reset. The system software should
initialize the IARB field to a value from $F (highest priority) to $1 (lowest priority). A
value of $0 prevents arbitration and causes all SIM49 interrupts, including external
interrupts, to be discarded as extraneous.

4.3.2.2 IDENTIFICATION REGISTER (IDR). The IDR differentiates the M68300 family
parts. When read, a unique value is returned for the MC68340 and MC68349. The IDR in
the MC68349 returns $31; the IDR in the MC68340 (also located at $002 offset from the
MBAR) returns all zeroes.

IDR $002
7 6 5 4 3 2 1 o0
Lo lol v v Jofofol]s|
RESET:
o o 1 1 o o o 1

Supervisor Only

4.3.2.3 AUTOVECTOR REGISTER (AVR). The AVR contains bits that correspond to
external interrupt levels that require an autovector response. Setting a bit allows the
SIM49 to assert an internal AVEC during the IACK cycle in response to the specified
interrupt request level. This register can be read and written at any time.

AVR $006
7 6 5 4 3 2 1 0
|Av7|AV6|AV5|AV4|AV3|Av2|Av1|o|

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

NOTE:

The IARB field in the MCR must contain a value other than $0
for the SIM49 to autovector for external interrupts.

4-26 MC68349 USER'S MANUAL MOTOROLA

4.3.2.4 RESET STATUS REGISTER (RSR). The RSR contains a bit for each reset source
to the SIM49. A set bit indicates the last type of reset that occurred, and only one bit can
be set in the register. The RSR is updated by the reset control logic when the SIM49
comes out of reset. This register can be read at any time; a write has no effect. For more
information, see Section 3 Bus Operation.

RSR $007
7 6 5 4 3 2 1 0
| EXT | POW | sw | DBF | 0 | Loc | sys | 0 |

Supervisor Only

EXT—External Reset

1 = The last reset was caused by an external signal driving RESET.
0 = The last reset was not caused by an external signal driving RESET.

POW—Power-Up Reset

1 = The last reset was caused by the power-up reset circuit.
0 = The last reset was not caused by the power-up reset circuit.

SW—Software Watchdog Reset

1 = The last reset was caused by the software watchdog circuit.
0 = The last reset was not caused by the software watchdog circuit.

DBF—Double Bus Fault Monitor Reset

1 = The last reset was caused by the double bus fault monitor.
0 = The last reset was not caused by the double bus fault monitor.

Bits 3, 0—Reserved by Motorola

LOC—Loss of Clock Reset

1 = The last reset was caused by a loss of frequency reference to the clock
synthesizer. This reset can only occur if the RSTEN bit in the SYNCR is set and
the VCO is enabled.

0 = The last reset was not caused by a loss of frequency reference to the clock
synthesizer.

SYS—System Reset

1 = The last reset was caused by the CPU32+ executing a RESET instruction. The
system reset does not load a reset vector or affect any internal CPU32+
registers, SIM49 configuration registers, or the MCR in each internal peripheral
module (DMA, quad data memory, and serial modules). It will, however, reset
external devices and all other registers in the peripheral modules.

0 = The last reset was not caused by the CPU32+ executing a RESET instruction.

MOTOROLA MC68349 USER'S MANUAL 4-27

4.3.2.5 SOFTWARE INTERRUPT VECTOR REGISTER (SWIV). The SWIV contains the
8-bit vector that is returned by the SIM49 during an IACK cycle in response to an interrupt
generated by the software watchdog. This register can be read or written at any time. This
register is set to the uninitialized vector, $0F, at reset.

SWIV $020

7 6 5 4 3 2 1 0

| SWIv7 | SWIV6 | SWIV5 | SWiv4 | SWIV3 | SWiv2 | SwWivi | SWIVO |

RESET:
0 0 0 0 1 1 1 1

Supervisor Only

4.3.2.6 SYSTEM PROTECTION CONTROL REGISTER (SYPCR). The SYPCR controls
the system monitors, the prescaler for the software watchdog, and the bus monitor timing.
This register can be read at any time, but can be written only once after reset.

SYPCR $021
7 6 5 4 3 2 1 0
[swe | swri [swri | swro | oere | eve [Bumi | Bumo |

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

SWE—Software Watchdog Enable

1 = Software watchdog is enabled.
0 = Software watchdog is disabled.
See 4.2.2.5 Software Watchdog for more information.

SWRI—Software Watchdog Reset/Interrupt Select

1 = Software watchdog causes a system reset.
0 = Software watchdog causes a level 7 interrupt to the CPU32+.

SWT1, SWT0—Software Watchdog Timing

These bits, along with the SWP bit in the PITR, control the divide ratio used to establish
the timeout period for the software watchdog. The software watchdog timeout period is
given by the following formula:

divide count
EXTAL frequency

The software watchdog timeout period, listed in Table 4-8, gives the formula to derive the
software watchdog timeout for any clock frequency. The timeout periods are listed for a
32.768-kHz crystal used with the VCO and for a 16.777-MHz external oscillator.

4-28 MC68349 USER'S MANUAL MOTOROLA

Table 4-8. Deriving Software Watchdog Timeout

32.768-kHz 16.777-MHz External
SWP | SWT1 | SWTO Software Timeout Period Crystal Period Clock Period

0 0 0 29/EXTAL Input Frequency 15.6 ms 30 s

0 0 1 211 /EXTAL Input Frequency 62.5 ms 122 ps

0 1 0 213/EXTAL Input Frequency 250 ms 488 ps

0 1 1 215/EXTAL Input Frequency 1s 1.95ms

1 0 0 218/EXTAL Input Frequency 8s 15.6 ms

1 0 1 220 /EXTAL Input Frequency 32s 62.5 ms

1 1 0 222 |EXTAL Input Frequency 128's 250 ms

1 1 1 224 |[EXTAL Input Frequency 512's 1s
NOTE: When the SWP and SWT bits are modified to select a software timeout other than the default, the

software service sequence ($55 followed by $AA written to the software service register) must be
performed before the new timeout period takes effect. Refer to 4.2.2.5 Software Watchdog for

more information.

DBFE—Double Bus Fault Monitor Enable

1 = Enable double bus fault monitor function.
0 = Disable double bus fault monitor function.
For more information, see 4.2.2.3 Double Bus Fault Monitor and Section 5 CPUOQ30.

BME—Bus Monitor External Enable

1 = Enable bus monitor function for an internal-to-external bus cycle.
0 = Disable bus monitor function for an internal-to-external bus cycle.
For more information see 4.2.2.2 Internal Bus Monitor.

BMT1, BMTO—Bus Monitor Timing

These bits select the timeout period for the bus monitor (see Table 4-9). Upon reset, the
bus monitor is set to 512 system clocks.

MOTOROLA

Table 4-9. BMTx Encoding

BMT1 BMTO Bus Monitor Timeout Period
0 0 512 system clocks (CLKOUT)
0 1 256 system clocks
1 0 128 system clocks
1 1 64 system clocks

MC68349 USER'S MANUAL

4-29

4.3.2.7 PERIODIC INTERRUPT CONTROL REGISTER (PICR). The PICR contains the
interrupt level and the vector number for the periodic interrupt request. This register can

be read or written at any time.

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 |PIRQL2 |PIRQL1 |PIRQLO | PIV7 | PIV6 | PIV5 | PIV4 | PIV3 | PIV2 | PIV1 | PIVO |
RESET:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Bits 15-11—Reserved by Motorola

PIRQL2-PIRQLO—Periodic Interrupt Request Level

These bits contain the periodic interrupt request level. Table 4-10 lists which interrupt
request level is asserted during an IACK cycle when a periodic interrupt is generated.
The periodic timer continues to run when the interrupt is disabled.

Table 4-10. PIRQL Encoding

PIRQL2

PIRQL1

PIRQLO

Interrupt Request Level

0

0

0

Periodic Interrupt Disabled

Interrupt Request Level 1

Interrupt Request Level 2

Interrupt Request Level 3

Interrupt Request Level 4

Interrupt Request Level 5

Interrupt Request Level 6

Rrlr|lrRr|r|lo]lo]o

Rlr|lo|lolr]-]o

Rrlo|lr|lolr|olr

Interrupt Request Level 7

Interrupts by Sources in the SIM49 for the servicing order.

NOTE

Use caution with a level 7 interrupt encoding due to the
SIM49's interrupt servicing order. See 4.2.2.7 Simultaneous

PIV7—PIVO—Periodic Interrupt Vector Bits 7-0

These bits contain the value of the vector generated during an IACK cycle in response
to an interrupt from the periodic timer. When the SIM49 responds to the IACK cycle, the
periodic interrupt vector from the PICR is placed on the bus. This vector number is
multiplied by four to form the vector offset, which is added to the vector base register to
obtain the address of the vector.

4-30

MC68349 USER'S MANUAL

Supervisor Only

MOTOROLA

4.3.2.8 PERIODIC INTERRUPT TIMER REGISTER (PITR). The PITR contains control for
prescaling the software watchdog and periodic timer as well as the count value for the
periodic timer. This register can be read or written at any time.

PITR $024
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 | 0 | SWP | PTP | PITR7 | PITR6 | PITR5 | PITR4 | PITR3 | PITR2 | PITR1 | PITRO |
RESET:
0 0 0 0 0 0 MODCK MODCK 0 0 0 0 0 0 0 0

Supervisor Only

Bits 15-10—Reserved by Motorola

SWP—Software Watchdog Prescale

This bit controls the software watchdog clock source as shown in 4.3.2.6 System
Protection Control Register (SYPCR).

1 = Software watchdog clock is prescaled by a value of 512.
0 = Software watchdog clock is not prescaled.

The SWP reset value is the inverse of the MODCK signal state on the rising edge of
reset.

PTP—Periodic Timer Prescaler Control
This bit contains the prescaler control for the periodic timer.

1 = Periodic timer clock is prescaled by a value of 512.
0 = Periodic timer clock is not prescaled.

The PTP reset value is the inverse of the MODCK signal state on the rising edge of
reset.

PITR7-PITRO—Periodic Interrupt Timer Register Bits 7-0

The remaining bits of the PITR contain the count value for the periodic timer. A zero
value turns off the periodic timer.

4.3.2.9 SOFTWARE SERVICE REGISTER (SWSR). The SWSR is the location to which
the software watchdog servicing sequence is written. The software watchdog can be
enabled or disabled by the SWE bit in the SYPCR. The SWSR can be written at any time,
but returns all zeros when read.

SWSR $027

7 6 5 4 3 2 1 0

|SWSR7 |SWSR6 |SWSR5 |SWSR4 |SWSR3 |SWSR2 |SWSR1 |SWSRO |

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

MOTOROLA MC68349 USER'S MANUAL 4-31

4.3.3 Clock Synthesizer Control Register (SYNCR)

The SYNCR can be read or written only in supervisor mode. The reset state of SYNCR
produces an operating frequency of 8.39 MHz when the PLL is referenced to a 32.768-
kHz reference signal. The system frequency is controlled by the frequency control bits in
the upper byte of the SYNCR as follows:

FsysTem = FerysTaL [2GWHXH32-1)] x (Y+1)

SYNCR $004
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
| W | X | Y5 | Y4 | Y3 | Y2 | Yl | YO | z | 0 | 0 | SLIMP |SLOCK |RSTEN | STSIM |STEXT |
RESET:
0 0 1 1 1 1 1 1 1 0 0 U U 0 0 0
U = Unaffected by reset Supervisor Only

W—Frequency Control Bit

This bit controls the prescaler tap in the synthesizer feedback loop. Setting the bit
increases the VCO speed by a factor of 4, requiring a time delay for the VCO to relock
(see equation for determining system frequency).

X—Frequency Control Bit

This bit controls a divide-by-two prescaler, which is outside the synthesizer feedback
loop. Setting the bit doubles the system clock speed without changing the VCO speed,
as specified in the equation for determining system frequency; therefore, no delay is
incurred to relock the VCO.

Y5-YO—Frequency Control Bits

The Y-bits, with a value from 0-63, control the modulus downcounter in the synthesizer
feedback loop, causing it to divide by the value of Y+1 (see the equation for determining
system frequency). Changing these bits requires a time delay for the VCO to relock.

Z—Frequency Control Bit

This bit controls a divide-by-eight prescaler, which is outside the synthesizer feedback
loop. Clearing the bit decreases the system clock speed by a factor of eight without
changing the VCO speed, as specified in the equation for determining system
frequency; therefore, no delay is incurred to relock the VCO.

Bits 6-5—Reserved by Motorola

SLIMP—Limp Mode

1 = Aloss of input signal reference has been detected, and the VCO is running at
approximately one-half the maximum speed (affected by the X-bit), determined
from an internal voltage reference.

0 = External input signal frequency is at VCO reference.

4-32 MC68349 USER'S MANUAL MOTOROLA

SLOCK—Synthesizer Lock

1 = VCO has locked onto the desired frequency (or system clock is driven externally).
0 = VCO is enabled, but has not yet locked.

RSTEN—Reset Enable

1 = Loss of input signal causes a system reset.

0 = Loss of input signal causes the VCO to operate at a nominal speed without
external reference (limp mode), and the device continues to operate at that
speed.

STSIM—Stop Mode System Integration Clock

1 = When LPSTOP is executed, the SIM49 clock is driven from the VCO.
0 = When LPSTORP is executed, the SIM49 clock is driven from an external crystal or
oscillator, and the VCO is turned off to conserve power.

STEXT—Stop Mode External Clock

1 = When the LPSTOP instruction is executed, the external clock pin (CLKOUT) is
driven from the SIM49 clock as determined by the STSIM bit.

0 = When the LPSTOP instruction is executed, the external clock (CLKOUT) is held
low to conserve power. No external clock will be driven in LPSTOP mode.

4.3.4 Chip Select Registers

The following paragraphs provide descriptions of the registers in the chip select function,
and an example of how to program the registers. The chip select registers cannot be
accessed until the register is initialized.

4.3.4.1 BASE ADDRESS REGISTERS. There are four 32-bit base address registers in
the chip select function, one for each chip select signal.

Base Address $044 (CS0), $04C (CS1), $054 (CS2), $05C (CS3)

31 30 29 28 27 2 25 24 PA] 2 21 2 19 18 17 16

| BA31 | BA30 | BA29 | BA28 | BA27 | BA26 | BA25 | BA24 | BA23 | BA22 | BA21 | BA20 | BA19 | BA18 | BA17 | BA16 |

RESET:

U U U U U U U U U U U U U U] U

31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
| BA15 | BA14 | BA13 | BA12 | BAl1l | BA10 | BA9 | BA8 | BFC3 | BFC2 | BFC1 | BFCO | WP | EDS | NCS | \% |
RESET:

] U] U] U U U U U U U U U 0 0
U = Unaffected by reset Supervisor Only

BA31-BA8—Base Address Bits 31-8

The base address field, the upper 24 bits of each base address register, selects the
starting address for the chip select. The specified base address must be on a multiple of
the selected block size. The corresponding bits, AM31-AMS, in the address mask

MOTOROLA MC68349 USER'S MANUAL 4-33

register define the size of the block for the chip select. The base address field (and the
base function code field) is compared to the address on the address bus to determine if
a chip select should be generated.

BFC3-BFC0—Base Function Code Bits 3-0

The value programmed into this field causes a chip select to be asserted for a certain
address space type. There are nine function code address spaces (see Section 3 Bus
Operation) specified as either user or supervisor, program or data, CPU, and DMA.
These bits should be used to allow access to one type of address space. If access to
more than one type of address space is desired, the FCMx bits should be used in
addition to the BFCx bits. To prevent access to CPU space, set the NCS bit.

WP—Write Protect

This bit can restrict write accesses to the address range in a base address register. An
attempt to write to the range of addresses specified in a base address register that has
this bit set returns BERR.

1 = Only read accesses are allowed.
0 = Either read or write accesses are allowed.

EDS—Extended Delay Select

This bit is used along with the DDx bits of the corresponding address mask register to
specify the number (zero to six) of wait sates or a fast termination (two-clock external
access). See table 4-11 for the encodings of the EDS bit and DDx bits.

NCS—No CPU Space

This bit specifies whether or not a chip select will assert on a CPU space access cycle
(FC3—-FCO = $7 or $F). If both supervisor data and program accesses are desired, while
ignoring CPU space accesses, then this bit should be set.

1 = Suppress the chip select on a CPU space access.
0 = Assert the chip select on a CPU space access.

V—Valid Bit
This bit indicates that the contents of its base address register and address mask
register pair are valid. The programmed chip selects do not assert until the V-bit is set.
A reset clears the V-bit in each base address register, but does not change any other
bits in the base address and address mask registers.

1 = Contents are valid.
0 = Contents are not valid.

4-34 MC68349 USER'S MANUAL MOTOROLA

4.3.4.2 ADDRESS MASK REGISTERS. There are four 32-bit address mask registers in
the chip select function, one for each chip select signal.

Address Mask $040 (CS0), $048 (CS1), $050 (CS2), $058 (CS3)
31 0 29 28 27 26 25 24 23 2 21 2 19 18 17 16
| AM31 | AM30 | AM29 | AM28 | AM27 | AM26 | AM25 | AM24 | AM23 | AM22 | AM21 | AM20 | AM19 | AM18 | AM17 | AM16 |

RESET:
]]] U U U U U U U U U U U U U

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| AM15 | AM14 | AM13 | AM12 | AM11 | AM10 | AM9 | AM8 | FCM3 | FCM2 | FCM1 | FCMO | DD1 | DDO | PS1 | PSO |

RESET:
u u u u u u u U u u u u u u U U

U = Unaffected by reset Supervisor Only

AM31-AM8—Address Mask Bits 31-8

The address mask field, the upper 24 bits of each address mask register, defines the
chip select block size. The block size is equal to 2", where n = (humber of bits set in the
address mask field) + 8.

Any set bit masks the corresponding base address register bit (the base address
register bit becomes a don’t care). By masking the address bits independently, external
devices of different size address ranges can be used. Address mask bits can be set or
cleared in any order in the field, allowing a resource to reside in more than one area of
the address map. This field can be read or written at any time.

FCM3-FCMO—Function Code Mask Bits 3-0
This field can be used to mask certain function code bits, allowing more than one
address space type to be assigned to a chip select. Any set bit masks the
corresponding function code bit.

DD1, DDO—DSACK Delay Bits 1 and 0
This field, along with the EDS bit of the corresponding base address register,
determines the number of wait states added before an internal DSACKXx is returned for
that entry. Table 4-11 lists the encoding for the EDS and DDx bits.

NOTE

The port size field must be programmed for an internal
DSACKx response and the EDS and DDx bits to have
significance. If external DSACKXx signals are returned earlier
than indicated by the EDS and DDx bits, the cycle will
terminate sooner than programmed. See 4.2.5.2 PORT B for a
discussion on using the internal DSACKx generation without
using the CSx signal.

MOTOROLA MC68349 USER'S MANUAL 4-35

Table 4-11. EDS and DDx Encoding

m
O
wn

DD1

DDO

Response

Zero Wait State

One Wait State

Two Wait States

Three Wait States

Four Wait States

Five Wait States

Six Wait States

Rl PFP|IPFRP|]O]lO| O] O

Rl O] ORI PFL|]|O]| O

Pl O|lRFrRP|O|lRFR]O|]| O

Fast Termination

PS1, PSO—Port Size Bits 1 and 0
This field determines whether a given chip select responds with DSACKXx and, if so,

what port size is returned. Table 4-12 lists the encoding for the PSx bits.

Table 4-12. PSx Encoding

PS1 PSO Mode
0 0 32-Bit Port
0 1 16-Bit Port
1 0 8-Bit Port
1 1 External DSACKx Response

To use the external DSACKx response, PS1-PS0 = 11 should be selected to suppress
internal DSACKXx generation . The EDS bit in the corresponding base address register

and the DDx bits then have no significance.

4.3.4.3 CHIP SELECT REGISTERS PROGRAMMING EXAMPLE. The following listing is
an example of programming a chip select at starting address $00040000, for a block size
of 256 Kbytes, accessing supervisor and user data spaces with a 16-bit port requiring two
wait states. There will be no write protection, no fast termination, and no CPU space

accesses.

base address = $00040013
address mask = $0003FF49

If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CSO
and CS2 "overlap" for a certain range, CS0 will assert when
accessing the "overlapped" address range, and CS2 will not.

4-36

NOTE

MC68349 USER'S MANUAL

MOTOROLA

4.3.5 External Bus Interface Control

The following paragraphs describe the registers that control the I/O pins used with the EBI.
Refer to Section 3 Bus Operation for more information about the EBI. For a list of pin
numbers used with port A and port B, see the pinout diagram in Section 12 Ordering
Information and Mechanical Data. Section 2 Signhal Descriptions shows a block
diagram of the port control circuits.

4.3.5.1 PORT A PIN ASSIGNMENT REGISTER 1 (PPARA1). PPARAL selects between
an address and discrete I/O function for the port A pins. Any set bit defines the
corresponding pin to be an 1/O pin, controlled by the port A data and data direction
registers. Any cleared bit defines the corresponding pin to be an address bit as defined in
Table 4-5. The reset value of the PPARAL bits is the inverse of the state of D29 at reset.
Bits set in this register override the configuration setting of PPARAZ2. This register can be
read or written at any time.

PPARA1 $015

7 6 5 4 3 2 1 0

PRTA7/ | PRTA6/ | PRTA5/ | PRTA4/| PRTA3/| PRTA2/ | PRTAL/| PRTAO/
A3l A30 A29 A28 A27 A26 A25 A24

RESET:
D29 D29 D29 D29 D29 D29 D29 D29

Supervisor Only

4.3.5.2 PORT A PIN ASSIGNMENT REGISTER 2 (PPARA2). PPARAZ2 selects between
an address and IACKXx function for the port A pins. Any set bit defines the corresponding
pin to be an IACKx output pin (as long as the corresponding PPARAL bit is cleared). Any
cleared bit defines the corresponding pin to be an address bit (as long as the
corresponding PPARAL bit is cleared) as defined in Table 4-5. Any set bits in PPARAL
override the configuration set in PPARA2. Since there is no level 0 interrupt, bit 0 has no
function in this register and is reserved by Motorola. This register can be read or written at
any time.

PPARA2 $017
7 6 5 4 3 2 1 0
IACK7/ | IACK8/ | 1ACKS/ | 1ACKa/ | 1ACK3/ [1ACK2/ | 1ACK1 | 0O

A3l A30 A29 A28 A27 A26 A25

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

The IACKx signals are asserted if a bit in PPARAZ2 is set and the CPU32+ services an
external interrupt at the corresponding level. IACKx signals have the same timing as
address strobes.

MOTOROLA MC68349 USER'S MANUAL 4-37

4.3.5.3 PORT A DATA DIRECTION REGISTER (DDRA). DDRA controls the direction of
the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output. Any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.

DDRA $013

7 6 5 4 3 2 1 0

I DD7 I DD6 I DD5 I DD4 I DD3 I DD2 I DD1 I DDO |

RESET:
0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.4 PORT A DATA REGISTER (PORTA). PORTA affects only pins configured as
discrete 1/0. A write to PORTA is stored in the internal data latch, and if any port A pin is
configured as an output, the value stored for that bit is driven on the pin. A read of PORTA
returns the value at the pin only if the pin is configured as discrete input. Otherwise, the
value read is the value stored in the internal data latch. This register can be read or written
at any time.

PORTA $011
7 6 5 4 3 2 1 0
| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |
RESET:
U U U U U U U U
U = Unaffected by reset Supervisor/User

4.3.5.5 PORT B PIN ASSIGNMENT REGISTER (PPARB). PPARB controls the function
of each port B pin. Any set bit defines the corresponding pin to be an IRQx input or CSx as
defined in Table 4-6. Any cleared bit defines the corresponding pin to be a discrete 1/0 pin
(or CSx if the FIRQ bit of the MCR is zero) controlled by the port B data and data direction
registers. The MODCK signal has no function after reset. PPARB is configured to all zeros
at reset (along with the FIRQ bit of the MCR) to provide for MODCK, PPARB7, PPARBSG,
PPARB5, PPARB3, and CS3-CS0. This register can be read or written at any time.

7 6 5 4 3 2 1 0
PPARB7/ | PPARB6/ | PPARB5/ | PPARB4/ | PPARB3/ | PPARB2/ | PPARBL/ | PPARBO
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1
RESET:
0 0 0 0 0 0 0 0

Supervisor Only

4-38 MC68349 USER'S MANUAL MOTOROLA

4.3.5.6 PORT B DATA DIRECTION REGISTER (DDRB). DDRB controls the direction of
the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output; any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.

DDRB $01D

7 6 5 4 3 2 1 0

| DD7 | DD6 | DD5 | DD4 | DD3 | DD2 | DD1 | DDO |

RESET:
0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.7 PORT B DATA REGISTER (PORTB, PORTB1). This is a single register that can
be accessed at two different addresses. This register affects only those pins configured as
discrete 1/0. A write is stored in the internal data latch, and if any port B pin is configured
as an output, the value stored for that bit is driven on the pin. A read of this register returns
the value stored in the register only if the pin is configured as a discrete output. Otherwise,
the value read is the value of the pin. This register can be read or written at any time.

PORTB, PORTB1 $019, 01B
7 6 5 4 3 2 1 0
|P7|P6|P5|P4|P3|P2|P1|PO|

RESET:
U U U U U U U U
Supervisor/User

4.4 MC68349 INITIALIZATION SEQUENCE

The following paragraphs discuss a suggested method for initializing the MC68349 after
power-up.

4.4.1 Startup

RESET is asserted by the MC68349 during the time in which V¢c is ramping up, the VCO
is locking onto the frequency, and the MC68349 is going through the reset operation. After
RESET is negated, four bus cycles are run, with global CS0 being asserted to fetch the
32-bit supervisor stack pointer (SSP) and the 32-bit program counter (PC) from the boot
read-only memory (ROM). Until programmed differently, CSO0 is a global, six-wait-state
chip select. Port termination size is determined at reset by the state of D31 and D30 (see
Table 4-4). CSO can be programmed to continue decode for a range of addresses after the
V-bit is set, provided the desired address range is first loaded into the CS0 base address
register. After the V-bit is set for CS0, global chip select can only be restarted with a
system reset.

After the SSP and the PC are fetched, the MBAR should be initialized, and the MBAR V-
bit should be set (CPU space address $0003FF00) with the desired base address for the
internal modules.

MOTOROLA MC68349 USER'S MANUAL 4-39

4.4.2 SIM49 Module Configuration

The order of the following SIM49 register initializations is not important; however, time can
be saved by initializing the SYNCR first to quickly increase to the desired processor
operating frequency. The MBAR must be initialized prior to any of the following steps.

Hardware Configuration
» D31 and D30 select 8-/16-/32-bit or external termination for CS0 global chip select
» D29 configures port A as either address outputs or an input port

Clock Synthesizer Control Register (SYNCR):
» Set frequency control bits (W, X, Y, Z) to specify frequency.

» Select action taken during loss of crystal (RSTEN bit): activate a system reset or
operate in limp mode.

» Select system clock and CLKOUT during LPSTOP (STSIM and STEXT bits).

Module Configuration Register (MCR)

« If using the software watchdog, periodic interrupt timer, and/or the bus monitor, select
action taken when FREEZE is asserted (FRZx bits).

» Select port B configuration (FIRQ bit). Note that this bit is used in combination with
the bits in the PPARB to program the function of the port B pins.

» Select the access privilege for the supervisor/user registers (SUPV bit).
» Select the interrupt arbitration level for the SIM49 (IARBX bits).

Autovector Register (AVR)
» Select the desired external interrupt levels for internal autovectoring.

System Protection Control Register (SYPCR) (Note that this register can only be written
once after reset.)

» Enable the software watchdog, if desired (SWE bit).

« |If the watchdog is enabled, select whether a system reset or a level 7 interrupt is
desired at timeout (SWRI bit).

« If the watchdog is enabled, select the timeout period (SWTx bits).
* Enable the double bus fault monitor, if desired (DBFE bit).

» Enable the external bus monitor, if desired (BME bit).

e Select timeout period for bus monitor (BMTx bits).

Software Watchdog Interrupt Vector Register (SWIV)

* If using the software watchdog, program the vector number for a software watchdog
interrupt.

4-40 MC68349 USER'S MANUAL MOTOROLA

Periodic Interrupt Timer Register (PITR)
« If using the software watchdog, select whether or not to prescale (SWP bit).
« If using the periodic interrupt timer, select whether or not to prescale (PTP bit).

* Program the count value for the periodic timer, or program a zero value to turn off the
periodic timer (PITRx bits).

Periodic Interrupt Control Register (PICR)

* If using the periodic timer, program the desired interrupt level for the periodic interrupt
timer (PIRQLX bits).

« If using the periodic timer, program the vector number for a periodic timer interrupt.

Chip Select Base Address and Address Mask Registers
* Initialize and set the V-bits in the necessary chip select base address and address
mask registers. Following this step, other system resources requiring the CSx signals
can be accessed. Care must be exercised when changing the address for CSO.
Port A and B Registers
* Program the desired function of the port A signals (PPARAL and PPARA2 registers).
* Program the desired function of the port B signals (PPARB register).

MOTOROLA MC68349 USER'S MANUAL 4-41

4.4.3 SIM49 Example Configuration Code

The following code is an example configuration sequence for the SIM49 module.

*% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *%

* MC68349 basic SIM49 register initialization example code:

* This code is used to initialize the MC68349's internal SIM49 registers,

* providing basic functions for operation.

* |t includes chip select programming for external devices.

* This code would be programmed beginning at offset $0 into ROM which is
* relocated to address $60000 by the initialization code.

* The SSP_VEC and RST_VEC vectors used to initialize the system stack
* pointer and initial PC, respectively, are located at offset $0 after

* reset.

*% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *%

* equates

SSP_INIT EQU $10000 Stack pointer initial value - top of RAM
MBAR EQU $0003FF00 Address of Module Base Address Reg.
MODBASE EQU $FFFFF000 Default Module Base address value

*%% *kkk *kkk *kkk *kkk *

* SIMA49 register offsets from MBAR base address

MCR EQU $00
SYNCR EQU $04
SYPCR EQU $21
CSAMO EQU $40
CSBARO EQU $44
CSAM1 EQU $48
CSBAR1 EQU $4c
CSAM2 EQU $50
CSBAR2 EQU $54
CSAM3 EQU $58
CSBAR3 EQU $5c

*% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *%

* Reset vectors
* These two vectors should be located at addresses $0 and $4 after a processor
* hardware reset.

*% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *%

ORG $60000
SSP_VEC DC.L SSP_INIT Supervisor stack pointer - initial value
RST_VEC DC.L INIT340 Reset vector pointing to initialization code

*% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *%

* |nitialization code

*% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *%

* Start Chip Select Initialization:
INIT340 MOVE.W #$2700,SR Init SR - interrupts masked

* AS7 is set to prevent module blocked (mapped at $FFFFFxxx) from responding to

* an interrupt acknowledge access ($FFFFFFFx)—these accesses ate handled by
* dedicated IACK logic in the SIM49

4-42 MC68349 USER'S MANUAL MOTOROLA

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* Set up default module base address value

MOVEQ.L #7,D0 MBAR is in CPU space

MOVEC.L DO,DFC load DFC to indicate CPU space
MOVE.L #MODBASE+$101,D0 Set address, AS7, and valid bit
MOVES.L D0,MBAR write to MBAR

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* Set up system protection register:
* Software watchdog disabled, double bus fault monitor disabled, bus
* monitor BERR after 64 clocks.

MOVE.B #7,SYPCR+MODBASE

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* Clock synthesizer control register:
* Switch from 8.3 to 16.7 MHZ
MOVE.W #$7F80,SYNCR+MODBASE X>1 doubles the default speed

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* Module configuration register:
* When FREEZE is asserted, software watchdog and periodic interrupt timer
* are disabled, bus monitor is enabled. Port B = 4 IRQs, 4 chip selects.
* Show Cycles enabled, external arbitration enabled. Supervisor/user
* SIM registers unrestricted, Interrupt Arbitration at priority $F
MOVE.W #$420F, MCR+MODBASE

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* Now, set up Address masks and base addresses for the chip selects:

LEA CSAMO+MODBASE,A0 Point to CS0 addr. mask location.

MOVEQ #7,D Set up a loop counter.

LEA CSAMO0$,A1 Point to addr mask memory location.
LOOP MOVE.L (AD)+,(A0)+ Init. addr mask and base addr reg

DBRA DO,LOOP

JMP.L USER_INIT

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* Data table for chip select initialization

* *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *% *kkkkkkkkkk *% *%

* CS0 - EPROM - 00060000-0007ffff, 3-wait states, 16-bit, NCS, write protect
CSAMO0$ DC.L $0001FFFD

CSBARO0$ DC.L $00060008

* CS1 - RAM - 00000000-0000ffff, 32-bit fast termination, NCS

CSAM1$ DC.L $0000FFFC

CSBAR1$ DC.L $00000007

* CS2 - external device - OOFFE8xx, external termination, NCS

CSAM2% DC.L $000000F3

CSBAR2$ DC.L $00FFE803

* CS3 - secondary memory - 00000000-0003ffff, 1-wait states, 8-bit term, NCS
CSAM3$ DC.L $0003FFF6

CSBAR3% DC.L $00000003

END

MOTOROLA MC68349 USER'S MANUAL

4-43

SECTION 5
CPUO030

The MC68349 is based on the CPU030 processor, which combines a full 32-bit central
processor (CPU32+) with a configurable instruction cache (CIC) and a quad data memory
module (QDMM). This section discusses the CPU32+ and the CIC. The QDMM is
discussed in Section 6 Quad Data Memory Module.

The CPU32+, the second instruction processing module of the M68300 family, is based
on the industry-standard MC68000 core processor. Like the original CPU32, it has many
features of the MC68010 and MC68020 as well as unique features suited for high-
performance processor applications. The CPU32+ provides a significant performance
increase over the MC68000 CPU, yet maintains source-code and binary-code
compatibility with the M68000 family. The CPU32+ differs from the original CPU32 in two
ways: it allows an option of a 32-bit data bus interface and allows byte-misaligned
accesses to data operands.

The CIC improves system performance by reducing average memory access times for all
instruction accesses (cache mode) and by providing fast static random access memory
(SRAM) storage for critical data structures or code sequences (SRAM mode). The
CPU32+ is connected directly to the CIC instead of through the intermodule bus (IMB);
this direct connection reduces the impact of direct memory access (DMA) operations on
system performance by allowing CPU32+ accesses to the CIC and DMA transfers on the
IMB to occur simultaneously.

5.1 CPU32+ OVERVIEW

The CPU32+ is designed to interface to the intermodule bus, allowing interaction with
other IMB submodules. In this manner, integrated processors can be developed that
contain useful peripherals on chip. This integration provides high-speed accesses among
the IMB submodules, increasing system performance.

The CPU32+ core is a CPU32 core with its bus interface unit modified to connect directly
to the 32-bit IMB and take advantage of the larger bus width. Although the original CPU32
core already had a 32-bit internal data path and 32-bit arithmetic hardware, its external
interface (i.e., to the internal IMB) was 16 bits. The CPU32+ core, however, can operate
on 32-bit external operands with one bus cycle. This capability allows the CPU32+ core to
fetch a long-word instruction or two word-length instructions in one bus cycle, allowing the
internal instruction queue to be filled more quickly. The CPU32+ core can also read and
write 32-bits of data in one bus cycle. The CPU32+ has an additional word in its

MOTOROLA MC68349 USER’S MANUAL 51

instruction pipeline when fetching from a 32-bit port. When fetching from a 16-bit port, this
additional word is disabled. The performance of the CPU32+ on a 16-bit bus is the same
as the CPU32 performance.

The CPU32+ supports byte-misaligned operands. Since operands can reside at any byte
boundary, they may occasionally become misaligned. A byte operand is properly aligned
at any address; a word operand is misaligned at a odd address; a long-word operand is
misaligned at an address that is not evenly divisible by four. Devices such as the
MC68302, MC68000/8, MC68010, and CPU32-based M68300 family processors allow
long-word operand transfers at odd-word addresses, but force exceptions if word or long-
word operand transfers are attempted at odd-byte addresses. Although the CPU32+ does
not enforce any alignment restrictions for data operands (including program counter (PC)
relative data addresses), some performance degradation occurs when additional bus
cycles are required for long-word or word operands that are misaligned. For maximum
performance, data items should be aligned on their natural boundaries. All instruction
words and extension words must reside on word boundaries. Attempting to prefetch an
instruction word at an odd address causes an address error exception.

The CPU32+ has four bits (SIZ1,S1Z0 and SZC1,SZCO0) in the software status word
(SSW) that are new or have changed definitions due to the 32-bit bus width and
elimination of alignment restrictions.

The CPU32+ offers low power consumption. The CPU32+ is implemented in high-density
complementary metal-oxide semiconductor (HCMOS) technology, providing low power
use during normal operation. During periods of inactivity, the low-power stop (LPSTOP)
instruction can be executed, shutting down the CPU32+ and other IMB modules, greatly
reducing power consumption.

Ease of programming is an important consideration when using an integrated processor.
The CPU32+ instruction format reflects a predominant register-memory interaction
philosophy. All data resources are available to operations that require them. The
programming model includes eight multifunction data registers and seven general-purpose
addressing registers. The data registers support 8-bit (byte), 16-bit (word), and 32-bit
(long-word) operand lengths for all operations. Address manipulation is supported by word
and long-word operations. Although the PC and stack pointers (SP) are special-purpose
registers, they are also available for most data addressing activities. Ease of program
checking and diagnosis is enhanced by trace and trap capabilities at the instruction level.

As processor applications become more complex and programs become larger, high-level
languages (HLLs) become the system designer's choice in programming languages. HLLs
aid in the rapid development of complex algorithms with less error and are readily
portable. The CPU32+ instruction set efficiently supports HLLSs.

52 MC68349 USER’S MANUAL MOTOROLA

5.1.1 CPU32+ Features

Features of the CPU32+ are as follows:
» Fully Upward Object-Code Compatible with M68000 Family
* Virtual Memory Implementation
* Loop Mode of Instruction Execution
» Fast Multiply, Divide, and Shift Instructions
» Fast Bus Interface with Dynamic Bus Port Sizing
» Improved Exception Handling
» Additional Addressing Modes
— Scaled Index
— Address Register Indirect with Base Displacement and Index
— Expanded PC Relative Modes
— 32-Bit Branch Displacements
* Instruction Set Additions
— High-Precision Multiply and Divide
— Trap on Condition Codes
— Upper and Lower Bounds Checking
« Enhanced Breakpoint Instruction
e Trace on Change of Flow
» Table Lookup and Interpolate (TBL) Instruction
* LPSTORP Instruction
« Hardware BKPT Signal, Background Mode
* Fully Static Implementation

A block diagram of the CPU32+ is shown in Figure 5-1. The major blocks depicted
operate in a highly independent fashion that maximizes concurrences of operation while
managing the essential synchronization of instruction execution and bus operation. The
bus controller loads instructions from the data bus into the decode unit. The sequencer
and control unit provide overall chip control by managing the internal buses, registers, and
functions of the execution unit.

5.1.2 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger virtual memory on a secondary storage device. When the processor attempts
to access a location in the virtual memory map that is not resident in physical memory, a
page fault occurs. The access to that location is temporarily suspended while the
necessary data is fetched from secondary storage and placed in physical memory. The
CPU32+ uses instruction restart, which requires that only a small portion of the internal

MOTOROLA MC68349 USER’S MANUAL 53

machine state be saved. After correcting the page fault, the machine state is restored, and
the instruction is refetched and restarted. This process is completely transparent to the
application program.

SEQUENCER

CONTROL

UNIT INSTRUCTION

PREFETCH
AND
DECODE

DATA BUS <7 32) > s
EXECUTION CONTROL BUS CONTROL
ADDRESS UNIT

BUS |32

Figure 5-1. CPU32+ Block Diagram

5.1.3 Loop Mode Instruction Execution

The CPU32+ has several features that provide efficient execution of program loops. One
of these features is the DBcc looping primitive instruction. To increase the performance of
the CPU32+, a loop mode has been added to the processor. The loop mode is used by
any single-word instruction that does not change the program flow. Loop mode is
implemented in conjunction with the DBcc instruction. Figure 5-2 shows the required form
of an instruction loop for the processor to enter loop mode.

A

ONE-WORD INSTRUCTION

DBcc

DBcc DISPLACEMENT
$FFFC=-4

Figure 5-2. Loop Mode Instruction Sequence

The loop mode is entered when the DBcc instruction is executed and the loop
displacement is —4. Once in loop mode, the processor performs only the data cycles
associated with the instruction and suppresses all instruction fetches. The termination

54 MC68349 USER’S MANUAL MOTOROLA

condition and count are checked after each execution of the data operations of the looped
instruction. The CPU32+ automatically exits the loop mode during interrupts or other
exceptions.

5.1.4 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte exception
vector table, which consists of 256 exception vectors. Exception vectors contain the
memory addresses of routines that begin execution at the completion of exception
processing. These routines perform a series of operations appropriate for the
corresponding exceptions. Because the exception vectors contain memory addresses,
each vector consists of one long word, except the reset vector. The reset vector consists
of two long words: the address used to initialize the supervisor stack pointer (SSP) and
the address used to initialize the PC.

The address of an interrupt exception vector is derived from an 8-bit vector number and
the VBR. The vector numbers for some exceptions are obtained from an external device;
other numbers are supplied automatically by the processor. The processor multiplies the
vector number by 4 to calculate the vector offset, which is added to the VBR. The sum is
the memory address of the vector. All exception vectors are located in supervisor data
space, except the reset vector, which is located in supervisor program space. Only the
initial reset vector is fixed in the processor's memory map; once initialization is complete,
there are no fixed assignments. Since the VBR provides the base address of the vector
table, the vector table can be located anywhere in memory; it can even be dynamically
relocated for each task that is executed by an operating system. Refer to 5.5 Exception
Processing for additional details.

31 0
| VECTOR BASE REGISTER (VBR) |

5.1.5 Exception Handling

The processing of an exception occurs in four steps, with variations for different exception
causes. During the first step, a temporary internal copy of the status register (SR) is made,
and the SR is set for exception processing. During the second step, the exception vector
is determined. During the third step, the current processor context is saved. During the
fourth step, a new context is obtained, and the processor then proceeds with instruction
processing.

Exception processing saves the most volatile portion of the current context by pushing it
on the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes the SR and PC context of the processor when the
exception occurred. To support generic handlers, the processor places the vector offset in
the exception stack frame. The processor also marks the frame with a frame format. The
format field allows the return-from-exception (RTE) instruction to identify what information
is on the stack so that it may be properly restored.

MOTOROLA MC68349 USER’S MANUAL 55

5.1.6 Addressing Modes

Addressing in the CPU32+ is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory; this flexibility
eliminates the need for extra instructions to store register contents in memory.

The seven basic addressing modes are as follows:
* Register Direct
* Register Indirect
* Register Indirect with Index
* Program Counter Indirect with Displacement
* Program Counter Indirect with Index
* Absolute
* Immediate

Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, and offset. The PC relative mode also has index and offset capabilities. In
addition to these addressing modes, many instructions implicitly specify the use of the SR,
SP and/or PC. Addressing is explained fully in the M68000PM/AD, M68000 Family
Programmer’s Reference Manual.

5.2 CONFIGURABLE INSTRUCTION CACHE OVERVIEW

The CIC contains four dual-purpose memory blocks which can be independently
configured as either instruction cache or SRAM. When configured as cache, each block
provides 256 bytes of instruction cache, for a maximum 1-kbyte cache. The instruction
cache improves system performance by providing cached instructions to the CPU32+ with
very low latency. Alternatively, each element can be used as 512 bytes of SRAM, for a
maximum of 2-kbytes SRAM. When configured as SRAM, the CIC provides a fast memory
for general storage of data and/or instructions. The functionality of the blocks is
independently programmable to allow a mix of instruction cache and SRAM for different
applications. A high-level system diagram is shown in Figure 5-3.

A key feature of the CIC is its direct data path to the CPU32+. CPU accesses to the CIC
do not require use of the IMB, resulting in increased IMB bandwidth available to other bus
masters such as the DMA controller. This direct connection helps minimize the impact of
DMA activity on CPU performance. The direct data path prevents accesses to the CIC by
other modules on the IMB; hence, the CIC cannot be accessed from the IMB by the DMA
controller.

56 MC68349 USER’S MANUAL MOTOROLA

CPU32+

CIC

I

SIM49

MC68349

il

EXTERNAL
MEMORY

Figure 5-3. System Block Diagram

5.2.1 CIC Modes

The CIC blocks may be configured to operate in instruction cache mode or SRAM mode
by programming the appropriate bits in the module configuration register (MCR). The
following paragraphs describe these modes of operation.

5.2.1.1 INSTRUCTION CACHE MODE. When configured as cache, each CIC block
functions as one of four possible sets of a set-associative instruction cache. Each set
consists of 64 lines, which contain an address tag, status information, and four bytes of
instruction information as shown in Figure 5-4. The address tag contains the upper 24 bits
of the physical address. The status information consists of a valid bit for each of the two
words in the cache line.

When the CPU32+ fetches an instruction, the CIC uses address bits A7—A2 as an offset to
index into the cache and select one of the 64 lines in each set. The tags from the selected
lines are compared against the physical address bits A31-A8. If one of the tags matches
and the words corresponding to the access are valid, then the access hits in the cache
and the requested instruction is transferred from the instruction cache to the CPU32+ in
two clocks. Note that a hit on a cache line occurs only if all words referenced by the
access are valid—if a long-word instruction fetch hits only on the second word of a cache
line, the entire access is considered a miss.

MOTOROLA MC68349 USER’S MANUAL 57

ADDRESS

TAG OFFSET | | C

131 87 2 UPPER|LOWER
T T 0] TAG |M[M|wWorD| WORD

3| SET/BANK

63

YYY

MUX | INSTRUCTION
é

T ~ 3 A
- HIT

OR p—m—mm>

YYYY

Y

=
COMPARATOR 0

Figure 5-4. Instruction Cache

When a cache miss occurs, the instruction must be fetched from external memory across
the IMB. A cache miss requires at least two clocks and is dependent on the speed of the
external memory as well as IMB mastership at the time the cache miss occurs. If the
CPU32+ has mastership of the IMB when a miss occurs, the instruction is fetched from
external memory in (2+n) clocks, where n equals the number of wait states. If the CPU32+
does not have mastership of the IMB when a miss occurs, the instruction is fetched from
external memory in (2+n+m) clocks, where m equals the number of clock cycles until the
CPU32+ obtains mastership of the IMB. If the alternate bus master (DMA controller) is
idle, then access times to the cache, QDMM, and 2-clock external memory are all 2
clocks. The performance benefits of the cache are more evident for slower external
memory and/or high utilization of the IMB bandwidth by DMA activity.

For long-word instruction fetches, both words in the cache line are loaded and the two
valid bits are set to flag the entire line as valid. Word accesses to 16-bit memory are
stored into the word selected by address bit Al of the fetch address; the other word in the
line is invalidated unless the tag is not being changed (i.e., the cache line is being filled
out). When a word fetch to a 32-bit memory port occurs, the cache controller uses the
entire 32 bits from the IMB data bus to update both words in the cache line, requiring 32-
bit external memory to always respond to a word instruction access with valid data for the
full 32-bit port width (when at least one block of the CIC is configured as cache and
enabled). Data accesses only require valid data for the bytes specifically requested.

Following a cache miss, the cache controller updates the cache with the new information
in parallel with the bus access to fetch the required instruction(s) from main memory. Note
that the cache does not allocate on instruction fetches from the QDMM, since accesses to
the QDMM and the cache both take two clocks. For QDMM accesses, the instructions are

58 MC68349 USER’S MANUAL MOTOROLA

passed to the CPU32+ for execution, and the cache maintenance logic ignores the
access. Only fetches from the external memory subsystem are cached, making maximum
use of the internal memory elements of the processor.

If available, an invalid line is updated with the tag address and data from memory, and the
line transitions from the INVALID state to the VALID state by setting the valid bit for each
instruction word loaded. An invalid line is one in which one or both words are invalid—the
replacement algorithm does not distinguish between lines which are completely invalid
(neither valid bit set) and lines which are partially valid (one valid bit set). If all lines are
already valid, a pseudo-random replacement technique is used to select one of the
available lines and replace the tag and data contents of the line with the new line
information. A cache block can be locked to prevent lines within it from being changed,;
however, the same function can be achieved for some applications by configuring the
block as SRAM and preloading with instructions. Using a CIC block as SRAM also
doubles the storage size from 256 bytes to 512 bytes (see 5.2.1.2 SRAM Mode).

The replacement algorithm uses a 2-bit counter which is incremented on every access to
the cache. When a miss occurs and all available lines in the cache are valid, the line in the
block pointed to by the current counter value is replaced (provided that the block is not
locked or in SRAM mode), after which the counter is incremented. If the block is locked or
is in SRAM mode, the line in the next available block is replaced, where 0 is the lowest
block and 3 is the highest block.

One or more cache sets can be selectively invalidated by setting the corresponding INV
bit in the CIC module configuration register. All lines within a cache set are also
invalidated when the block is switched from SRAM mode into instruction cache mode. The
state diagram in Figure 5-5 shows the instruction cache word state transitions.

UNLOCK

VALID VALID

>
HIT LOCKED)4 LOCK (UNLOCKED
N

INVALIDATE INVALIDATE

MISS

UNLOCK

INVALID > INVALID
LOCKED /] LOCK UNLOCKED

Figure 5-5. Instruction Cache Word State Diagram

The cache controller does not monitor data accesses by the CPU32+ or by alternate bus
masters to maintain cache coherency. Any change in context that modifies memory
previously fetched as instructions (such as changing code flow from a debugger or
downloading new code) requires that the instruction cache be invalidated before executing
the modified code.

MOTOROLA MC68349 USER’S MANUAL 59

5.2.1.2 SRAM MODE. Each of the four blocks in the CIC can be used as a 512-byte
SRAM bank accessible only by the CPU32+, as shown in Figure 5-6. Each SRAM bank is
relocatable on any 512-byte boundary. The memory contents can be write-protected on a
bank basis by setting the corresponding write-protect (LWP) bit in the module
configuration register (refer to 5.2.2 Programmer's Model for more information).

MEMORY SPACE
32BITS

A
Y

BANK LWP BIT
512-BYTES]:l

RAM

Figure 5-6. CIC SRAM Block Diagram

CIC SRAM banks are allowed to overlap external memory blocks defined by the SIM49
integrated chip selects and external address decode. An access which hits in the SRAM
bank preempts an external bus cycle. However, all SRAM banks internal to the MC68349,
whether in the CIC or the QDMM, should be mapped to unique memory locations relative
to each other; data values returned for overlapping ranges are undefined. For more
information about the QDMM, see Section 6 Quad Data Memory Module.

5.2.2 Programmer's Model

Figure 5-7 is a programmer's model (register map) of all registers in the CIC. The ADDR
(address) column indicates the offset of the register from the address stored in the SIM49
module base address register (MBAR). The FC (function code) column indicates whether
a register is restricted to supervisor access (S) or available to either supervisor or user
space (S/U) accesses. All registers within the CIC are supervisor-only.

In the registers discussed in the following pages, the number in the upper right hand
corner indicates the offset of the register from the address stored in the module base
address register (MBAR). The numbers on the top line of the register represent the bit
position in the register. The second line contains the mnemonic for the bit. The numbers
below the register represent the bit values after reset. The access privilege is indicated in
the lower right-hand corner.

5-10 MC68349 USER’S MANUAL MOTOROLA

ADDR FC 3 0

FCO S Module Configuration Register (MCR)

FC4 S SRAM Base Address Register 0 (BADDRO)

FC8 S SRAM Base Address Register 1 (BADDR1)

FCC S SRAM Base Address Register 2 (BADDR2)
S

FDO SRAM Base Address Register 3 (BADDR3)

Figure 5-7. CIC Programming Model

5.2.2.1 MODULE CONFIGURATION REGISTER (MCR). The MCR controls the CIC
configuration. The register can be either read or written in supervisor state.

MCR $FCO
31 16
Reserved |
RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 B3 1 1 10 9 8 7 6 5 4 3 2 1 0
Reserved [Lwes | Lwe2 {Lwer [Lweo | nva | inv2 [inve [iwvo | o3 | mp2 | mpr | mpo |Enas
RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor Only

Bits 31-13—Reserved by Motorola

LWP3—-0—Lock/write-protect corresponding CIC block

In blocks configured as instruction cache, the LWP bits indicate the lock status of the
cache set.

1 =The set is locked. No lines will be replaced.
0 = The set is not locked. Lines may be replaced during misses or loads.

In blocks configured as SRAM, the LWP bits indicate the write-protect status of the
SRAM banks.

1 = The SRAM bank is write-protected. An attempt to write to the bank returns BERR.
0 = The SRAM bank is read/write.

INV3-0—Invalidate bits for corresponding instruction cache sets

The INV bits provide a way to invalidate the entire contents of sets in the instruction
cache. These bits are write-only and any read attempts will return 0 (i.e., one-shot
function for invalidating sets). Each set used for cache should be explicitly invalidated
when first enabling the CIC.

1 = All lines in the set will be invalidated.
0 = Set line validity is not affected.

MOTOROLA MC68349 USER’S MANUAL 511

MD3-0—CIC block mode bits
The MD bits are used to specify the mode of the corresponding blocks.

1 = The corresponding block is configured as an SRAM bank
0 = The corresponding block is configured as an instruction cache set

ENAB = CIC Module Enable Bit

1 = The CIC module is enabled.
0 = The CIC module is disabled.

5.2.2.2 SRAM BASE ADDRESS REGISTERS 3-0 (BADDR3-0). There are four SRAM
base address registers, one corresponding to each of the CIC blocks.

BADDRX $FC4, $FC8, $FCC, $FDO
31 16
| BADDRXx |
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 9 8 7 6 5 4 3 2 1 0
BADDRXx Reserved | S/IU |
RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor Only

BADDR3-0—Base Address of corresponding SRAM bank

The BADDR field defines the upper 23 bits of the base address of SRAM banks. This
field is only used when the corresponding CIC block is configured as SRAM.

Bits 8—1—Reserved by Motorola

S/U—Supervisor/User Space Bit

This bit identifies the SRAM bank as supervisor access only or supervisor/user space
access. If a user space access is made to supervisor space, the SRAM returns BERR.

1 = The bank is supervisor/user accessible.
0 = The bank allows supervisor access only.

512 MC68349 USER’S MANUAL MOTOROLA

5.3 ARCHITECTURE SUMMARY

The CPU32+ is upward source- and object-code compatible with the MC68000 and
MC68010. It is downward source- and object-code compatible with the MC68020. Within
the M68000 family, architectural differences are limited to the supervisory operating state.
User programs can be executed unchanged on upward-compatible devices.

The major CPU32+ features are as follows:
» 32-Bit Internal Data Path and Arithmetic Hardware
» 32-Bit Address Bus Supported by 32-Bit Calculations
* Rich Instruction Set
» Eight 32-Bit General-Purpose Data Registers
» Seven 32-Bit General-Purpose Address Registers
« Separate User and Supervisor Stack Pointers (USP and SSP)
« Separate User and Supervisor Address Spaces
» Separate Program and Data Address Spaces
* Many Data Types
* Flexible Addressing Modes
* Full Interrupt Processing
» Expansion Capability

5.3.1 Programming Model

The CPU32+ programming model consists of two groups of registers that correspond to
the user and supervisor privilege levels. User programs can only use the registers of the
user model. The supervisor programming model, which supplements the user
programming model, is used by CPU32+ system programmers who wish to protect
sensitive operating system functions. The supervisor model is identical to that of MC68010
and later processors.

The CPU32+ has eight 32-bit data registers, seven 32-bit address registers, a 32-bit PC,
separate 32-bit SSP and USP, a 16-bit status register (SR), two alternate function code
registers, and a 32-bit VBR (see Figures 5-8 and 5-9).

MOTOROLA MC68349 USER’S MANUAL 513

514

31

16 15 8 7 0

DO

D1

D2

D3

DATA REGISTER
D4 GISTERS

D5

D6

D7

31

16 15 0

A0

Al

A2

A3 ADDRESS REGISTERS

A4

A5

A6

31

16 15 0

| A7(USP) USER STACK POINTER

31

| PC PROGRAM COUNTER

r-- -7 I:I CCR CONDITION CODE
L — = REGISTER

Figure 5-8. User Programming Model

31 16 15 0
| i SsoRsTK
87 0
| | R | R STATUS REGISTER
31 0
| | VIR RecisteR
R 320 ALTERNATE
i____________________ SFC FUNCTION CODE
L DFC REGISTERS

Figure 5-9. Supervisor Programming Model Supplement

MC68349 USER’S MANUAL

MOTOROLA

5.3.2 Registers

Registers D7-DO0 are used as data registers for bit, byte (8-bit), word (16-bit), long-word
(32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the USP and SSP are
address registers that may be used as software SPs or base address registers. Register
A7 (shown as A7 and A7' in Figures 5-8 and 5-9) is a register designation that applies to
the USP in the user privilege level and to the SSP in the supervisor privilege level. In
addition, address registers may be used for word and long-word operations. All 16
general-purpose registers (D7-D0, A7—A0) may be used as index registers.

The PC contains the address of the next instruction to be executed by the CPU32+.
During instruction execution and exception processing, the processor automatically
increments the contents of the PC or places a new value in the PC, as appropriate.

The SR (see Figure 5-10) contains condition codes, an interrupt priority mask (three bits),
and three control bits. Condition codes reflect the results of a previous operation. The
codes are contained in the low byte (condition code register (CCR)) of the SR. The
interrupt priority mask determines the level of priority an interrupt must have to be
acknowledged. The control bits determine trace mode and privilege level. At user privilege
level, only the CCR is available. At supervisor privilege level, software can access the full
SR.

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.

Alternate source and destination function code registers (SFC and DFC) contain 3-bit
function codes. The CPU32+ generates a function code each time it accesses an address.
Specific codes are assigned to each type of access. The codes can be used to select
eight dedicated 4-Gbyte address spaces. The MOVEC instruction can use registers SFC
and DFC to specify the function code of a memory address.

USER BYTE

SYSTEM BYTE (CONDITION CODE REGISTER)
|
"5 14 13 1 u w0 9 s'"7 6 5 4 3 2 1 o
|| s ol ol e[l uf[w|[oo of x| ~n|] z] v] c]
| | | |
TRACE INTERRUPT EXTEND
ENABLE PRIORITY MASK
NEGATIVE
SUPERVISOR/USER ZERO
STATE
OVERFLOW

CARRY

Figure 5-10. Status Register

MOTOROLA MC68349 USER’S MANUAL 515

5.4 INSTRUCTION SET

The following paragraphs describe the CPU32+ instruction set. A description of the
instruction format, the operands used by the instructions, and a summary of the
instructions by category are included. Complete programming information is provided in
the M68000PM/AD, M68000 Family Programmer’s Reference Manual.
The CPU32+ instructions include machine functions for all the following operations:

» Data Movement

* Arithmetic Operations

* Logical Operations

» Shifts and Rotates

 Bit Manipulation

» Conditionals and Branches

e System Control

The large instruction set encompasses a complete range of capabilities and, combined
with the enhanced addressing modes, provides a flexible base for program development.

The instruction set of the CPU32+ is very similar to that of the MC68020. The following
M68020 instructions are not implemented on the CPU32+:

BFxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)

CALLM, RTM — Call Module, Return Module
CAS, CAS2 — Compare and Set (Read-Modify-Write Instructions)

CPXXX — Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cpRESTORE,
CPSAVE, cpScc, cpTRAPCcc)

PACK, UNPK — Pack, Unpack BCD Instructions

The CPU32+ traps on unimplemented instructions or illegal effective addressing modes,
allowing user-supplied code to emulate unimplemented capabilities or to define special-
purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 core enhancements.

Table 5-1 lists the instruction set of the MC68349.

516 MC68349 USER’S MANUAL MOTOROLA

Table 5-1. Instruction Set

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MOVEA Move Address
ADD Add MOVE CCR Move Condition Code Register
ADDA Add Address MOVE SR Move to/from Status Register
ADDI Add Immediate MOVE USP Move User Stack Pointer
ADDQ Add Quick MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral Data
ASL Arithmetic Shift Left MOVEQ Move Quick
ASR Arithmetic Shift Right MOVES Move Alternate Address Space
Bcc Branch Conditionally (16 Tests) MULS Signed Multiply
BCHG Bit Test and Change MULU Unsigned Multiply
BCLR Bit Test and Clear NBCD Negate Decimal with Extend
BGND Enter Background Mode NEG Negate
BKPT Breakpoint NEGX Negate with Extend
BRA Branch Always NOP No Operation
BSET Bit Test and Set NOT Ones Complement
BSR Branch to Subroutine OR Logical Inclusive OR
BTST Bit Test ORI Logical Inclusive OR Immediate
CHK Check Register against Bounds PEA Push Effective Address
CHK2 Check Register against Upper and RESET Reset External Devices
Lower Bounds ROL, ROR Rotate Left and Right
CLR Clear Operand ROXL, ROXR | Rotate with Extend Left and Right
CMP Compare RTD Return and Deallocate
CMPA Compare Address RTE Return from Exception
CMPI Compare Immediate RTR Return and Restore
CMPM Compare Memory RTS Return from Subroutine
CMP2 Compare Register against Upper SBCD Subtract Decimal with Extend
and Lower Bounds Scc Set Conditionally
DBcc Test Condition, Decrement and STOP Stop
Branch (16 Tests) SUB Subtract
DIVS, DIVSL Signed Divide SUBA Subtract Address
DIVU, DIVUL Unsigned Divide SUBI Subtract Immediate
EOR Logical Exclusive OR SUBQ Subtract Quick
EORI Logical Exclusive OR Immediate SUBX Subtract with Extend
EXG Exchange Registers SWAP Swap Data Register Halves
EXT, EXTB Sign Extend TAS Test and Set Operand
ILLEGAL Take lllegal Instruction Trap TBLS, TBLSN | Table Lookup and Interpolate,
JMP Jump Signed
JSR Jump to Subroutine TBLU, TBLUN | Table Lookup and Interpolate,
LEA Load Effective Address Unsigned
LINK Link and Allocate TRAPcc Trap Conditionally (16 Tests)
LPSTOP Low-Power Stop TRAPV Trap on Overflow
LSL, LSR Logical Shift Left and Right TST Test
MOVE Move UNLK Unlink

MOTOROLA

MC68349 USER’S MANUAL

517

5.4.1 M68000 Family Compatibility

It is the philosophy of the M68000 Family that all user-mode programs should execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.

The CPU32+ can be thought of as an intermediate member of the M68000 family. Object
code from an MC68000 or MC68010 may be executed on the CPU32+, and many of the
instruction and addressing mode extensions of the MC68020 are also supported.

54.1.1 NEW INSTRUCTIONS. Two instructions have been added to the M68000
instruction set: LPSTOP and TBL.

5.4.1.1.1 Low-Power Stop (LPSTOP). In applications where power consumption is a
consideration, the CPU32+ can force the device into a low-power standby mode when
immediate processing is not required. The low-power mode is entered by executing the
LPSTOP instruction. The processor remains in this mode until a user-specified or higher
level interrupt or a reset occurs.

5.4.1.1.2 Table Lookup and Interpolate (TBL). To maximize throughput for real-time
applications, reference data is often precalculated and stored in memory for quick access.
The storage of sufficient data points can require an inordinate amount of memory. The
TBL instruction uses linear interpolation to recover intermediate values from a sample of
data points, thus conserving memory.

When the TBL instruction is executed, the CPU32+ looks up two table entries bounding
the desired result and performs a linear interpolation between them. Byte, word, and long-
word operand sizes are supported. The result can be rounded according to a round-to-
nearest algorithm or returned unrounded along with the fractional portion of the calculated
result (byte and word results only). This extra precision can be used to reduce cumulative
error in complex calculations. See 5.4.2 Using the TBL Instructions for examples.

5.4.1.2 UNIMPLEMENTED INSTRUCTIONS. The ability to trap on unimplemented
instructions allows user-supplied code to emulate unimplemented capabilities or to define
special-purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 enhancements. See 5.6.2.8
lllegal or Unimplemented Instructions for more details.

5.4.2 Using the TBL Instructions

There are four TBL instructions. TBLS returns a signed, rounded byte, word, or long-word
result. TBLSN returns a signed, unrounded byte, word, or long-word result. TBLU returns
an unsigned, rounded byte, word, or long-word result. TBLUN returns an unsigned,
unrounded byte, word, or long-word result. All four instructions support two types of
interpolation data: an n-element table stored in memory and a two-element range stored in
a pair of data registers. The latter form provides a means of performing surface (3D)
interpolation between two previously calculated linear interpolations.

5-18 MC68349 USER’S MANUAL MOTOROLA

The following examples show how to compress tables and use fewer interpolation levels
between table entries. Example 1 (see Figure 5-7) demonstrates TBL for a 257-entry
table, allowing up to 256 interpolation levels between entries. Example 2 (see Figure 5-8)
reduces table length for the same data to four entries. Example 3 (see Figure 5-9)
demonstrates use of an 8-bit independent variable with an instruction.

Two additional examples show how TBLSN can reduce cumulative error when multiple
table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates use
of TBLSN in surface interpolation.

5.4.2.1 TABLE EXAMPLE 1: STANDARD USAGE. The table consists of 257 word
entries. As shown in Figure 5-11, the function is linear within the range 32768 < X <
49152. Table entries within this range are as given in Table 5-2 .

Table 5-2. Standard Usage Entries

Entry Number X-Value Y-Value
128* 32768 1311
162 41472 1659
163 41728 1669
164 41984 1679
165 42240 1690
192* 49152 1966

*These values are the end points of the range.
All entries between these points fall on the line.

DEPENDENT VARIABLE

|
16384 32768 | 49152 65536
X

INDEPENDENT VARIABLE

Figure 5-11. Table Example 1

MOTOROLA MC68349 USER’S MANUAL 519

The table instruction is executed with the following bit pattern in Dx:

31

16 15 0

NOT USED |1010001110000000

Table Entry Offset [Dx [8:15] = $A3 = 163
Interpolation Fraction O Dx [0:7] = $80 = 128

Using this information, the table instruction calculates dependent variable Y:

Y = 1669 + (128 (1679 — 1669)) / 256 = 1674

5.4.2.2 TABLE EXAMPLE 2: COMPRESSED TABLE. In Example 2 (see Figure 5-12),
the data from Example 1 has been compressed by limiting the maximum value of the
independent variable. Instead of the range 0 < X = 65535, X is limited to 0 < X < 1023.
The table has been compressed to only five entries, but up to 256 levels of interpolation
are allowed between entries.

5-20

DEPENDENT VARIABLE

I I : T | >
256 512 | 786 1024
X

INDEPENDENT VARIABLE
Figure 5-12. Table Example 2

NOTE

Extreme table compression with many levels of interpolation is
possible only with highly linear functions. The table entries
within the range of interest are listed in Table 5-3.

MC68349 USER’S MANUAL MOTOROLA

Table 5-3. Compressed Table Entries

Entry Number X-Value Y-Value
2 512 1311
3 786 1966

Since the table is reduced from 257 to 5 entries, independent variable X must be scaled
appropriately. In this case the scaling factor is 64, and the scaling is done by a single
instruction:

LSR.W #6,Dx

Thus, Dx now contains the following bit pattern:

31 6 15 0
| NOT USED |0000001010001110

Table Entry Offset [Dx [8:15] = $02 = 2
Interpolation Fraction O Dx [0:7] = $8E = 142
Using this information, the table instruction calculates dependent variable Y:

Y = 1331 + (142 (1966 — 1311)) / 256 = 1674

The function chosen for Examples 1 and 2 is linear between data points. If another
function had been used, interpolated values might not have been identical.

5.4.2.3 TABLE EXAMPLE 3: 8-BIT INDEPENDENT VARIABLE. This example shows
how to use a table instruction within an interpolation subroutine. Independent variable X is
calculated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry table. X is
passed to the subroutine, which returns an 8-bit result. The subroutine uses the data listed
in Table 5-4, based on the function shown in Figure 5-13.

MOTOROLA MC68349 USER’S MANUAL 521

INDEPENDENT VARIABLE

1024

[
2048

|
|
|
|
|
|
|
|
|
|
Il
|
I 3072

X
INDEPENDENT VARIABLE

Figure 5-13. Table Example 3

Table 5-4. 8-Bit Independent

Variable Entries

4096

X X
(Subroutine) (Instruction) Y

0 0 0

1 256 16
2 512 32
3 768 48
4 1024 64
5 1280 80
6 1536 96
7 1792 112
8 2048 128
9 2304 112
10 2560 96
11 2816 80
12 3072 64
13 3328 48
14 3584 32
15 3840 16
16 4096 0

The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the

subroutine.

5-22

MC68349 USER’S MANUAL

MOTOROLA

The following value has been calculated for independent variable X:

3L 6 15 0
| NOT USED lo 0o o 0o 0 00010111 10 1

Since X is an 8-bit value, the upper four bits are used as a table offset, and the lower four
bits are used as an interpolation fraction. The following results are obtained from the
subroutine:
Table Entry Offset 0 Dx [4:7] = $B =11
Interpolation Fraction O Dx [0:3] = $D =13
Thus, Y is calculated as follows:

Y =80 + (13 (64 — 80)) / 16 = 67

If the 8-bit value for X were used directly by the table instruction, interpolation would be
incorrectly performed between entries 0 and 1. Data must be shifted to the left four places
before use:

LSL.W #4, Dx

The new range for X is 0 £ X £ 4096; however, since a left shift fills the least significant
digits of the word with zeros, the interpolation fraction can only have one of 16 values.

After the shift operation, Dx contains the following value:

31 16 15 0

| NOT USED |0000101111010000

Execution of the table instruction using the new value in Dx yields:
Table Entry Offset 0 Dx [8:15] = $0B = 11

Interpolation Fraction O Dx [0:7] = $D0 = 208

Thus, Y is calculated as follows:
Y =80 + (208 (64 — 80)) / 256 = 67

5.4.2.4 TABLE EXAMPLE 4: MAINTAINING PRECISION. In this example, three TBL
operations are performed and the results are summed. The calculation is done once with
the result of each TBL rounded before addition and once with only the final result rounded.

Assume that the result of the three interpolations are as follows (a "." indicates the binary
radix point).

TBL#1 0010 0000 . 0111 0000
TBL# 2 0011 1111.0111 0000
TBL#3 0000 0001 .0111 0000

MOTOROLA MC68349 USER’S MANUAL 523

First, the results of each TBL are rounded with the TBLS round-to-nearest-even algorithm.

The following values would be returned by TBLS:

TBL#1 0010 0000 .
TBL#2 0011 1111.
TBL#3 0000 0001 .

Summing, the following result is obtained:

0010 0000 .
0011 1111.
0000 0001 .
0110 0000 .

Now, using the same TBL results, the sum is first calculated and then rounded according

to the same algorithm:

0010 0000 .
0011 1111.
0000 0001 .

0111 0000
0111 0000
0111 0000

0110 0001 .

0101 0000

Rounding yields:

0110 0001.

The second result is preferred. The following code sequence illustrates how addition of a
series of table interpolations can be performed without loss of precision in the intermediate

results:

LO:
TBLSN.B [eal,] Dx
TBLSN.B (éal] Dx
TBLSN.B (eal,] DI
ADD.L Dx, Dm Long addition avoids problems with carry
ADD.L Dm, DI
ASR.L #8, DI Move radix point
BCC.B L1 Fraction MSB in carry
ADDQ.B #1, DI

L1:...

524 MC68349 USER’S MANUAL

MOTOROLA

5.4.2.5 TABLE EXAMPLE 5: SURFACE INTERPOLATIONS. The various forms of table
can be used to perform surface (3D) TBLs. However, since the calculation must be split
into a series of 2D TBLs, it is possible to lose precision in the intermediate results. The
following code sequence, incorporating both TBLS and TBLSN, eliminates this possibility.

LO:

MOVE.W Dx, DI Copy entry number and fraction number
TBLSN.B [eal] Dx
TBLSN.B [@éal] DI
TBLS.W Dx:DIl, Dm Surface interpolation, with round
ASR.L #8, Dm Read just the result
BCC.B L1 No round necessary
ADDQ.B #1, DI Half round up
L1:..

Before execution of this code sequence, Dx must contain fraction and entry numbers for
the two TBL, and Dm must contain the fraction for surface interpolation. The [ealfields in
the TBLSN instructions point to consecutive columns in a 3D table. The TBLS size
parameter must be word if the TBLSN size parameter is byte, and must be long word if
TBLSN is word. Increased size is necessary because a larger number of significant digits
Is needed to accommodate the scaled fractional results of the 2D TBL.

5.4.3 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack for use. Using this instruction in a
series of subroutine calls will generate a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an
address into the SP and pulling the value at that address from the stack. When the
instruction operand is the address of the link address at the bottom of a stack frame, the
effect is to remove the stack frame from both the stack and the linked list.

5.4.4 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation, it does force
synchronization of the instruction pipeline, since all previous instructions must complete
execution before the NOP begins.

MOTOROLA MC68349 USER’S MANUAL 525

5.5 PROCESSING STATES

This section describes the processing states of the CPU32+. It includes a functional
description of the bits in the supervisor portion of the SR and an overview of actions taken
by the processor in response to exception conditions.

5.5.1 State Transitions

The processor is always in one of four processing states: normal, background, exception,
or halted.

When the processor fetches instructions and operands or executes instructions, it is in the
normal processing state. The stopped condition, which the processor enters when a
STOP or LPSTOP instruction is executed, is a variation of the normal state in which no
further bus cycles are generated.

Background state is an alternate operational mode used for system debugging. Refer to
5.7 Development Support for more information.

Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other exception
handlers. Exception processing includes the stack operations, the exception vector fetch,
and the filling of the instruction pipeline caused by an exception. Exception processing
ends when execution of an exception handler routine begins. Refer to 5.6 Exception
Processing for comprehensive information.

A catastrophic system failure occurs if the processor detects a bus error or generates an
address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by
another bus error, the CPU32+ assumes that the system is not operational and halts.

The halted condition should not be confused with the stopped condition. After the
processor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.

5.5.2 Privilege Levels

To protect system resources, the processor can operate with either of two levels of
access—user or supervisor. Supervisor level is more privileged than user level. All
instructions are available at the supervisor level, but execution of some instructions is not
permitted at the user level. There are separate SPs for each level. The S-bit in the SR
indicates privilege level and determines which SP is used for stack operations. The
processor identifies each bus access (supervisor or user mode) via function codes to
enforce supervisor and user access levels.

5-26 MC68349 USER’S MANUAL MOTOROLA

In a typical system, most programs execute at the user level. User programs can access
only their own code and data areas and are restricted from accessing other information.
The operating system executes at the supervisor privilege level, has access to all
resources, performs the overhead tasks for the user level programs, and coordinates their
activities.

5.5.2.1 SUPERVISOR PRIVILEGE LEVEL. If the S-bit in the SR is set, supervisor
privilege level applies, and all instructions are executable. The bus cycles generated for
instructions executed in supervisor level are normally classified as supervisor references,
and the values of the function codes on FC2—-FCO refer to supervisor address spaces.

All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references, and all stack accesses use the
SSP.

Instructions that have important system effects can only be executed at supervisor level.
For instance, user programs are not permitted to execute STOP, LPSTOP, or RESET
instructions. To prevent a user program from gaining privileged access, except in a
controlled manner, instructions that can alter the S-bit in the SR are privileged. The TRAP
#n instruction provides controlled user access to operating system services.

5.5.2.2 USER PRIVILEGE LEVEL. If the S-bit in the SR is cleared, the processor
executes instructions at the user privilege level. The bus cycles for an instruction executed
at the user privilege level are classified as user references, and the values of the function
codes on FC2-FCO0 specify user address spaces. While the processor is at the user level,
implicit references to the system SP and explicit references to address register seven (A7)
refer to the USP.

5.5.2.3 CHANGING PRIVILEGE LEVEL. To change from user privilege level to
supervisor privilege level, a condition that causes exception processing must occur. When
exception processing begins, the current values in the SR, including the S-bit, are saved
on the supervisor stack, and then the S-bit is set to enable supervisor access. Execution
continues at supervisor privilege level until exception processing is complete.

To return to user access level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute only at supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed, then refilled from the
appropriate address space.

The RTE instruction causes a return to a program that was executing when an exception
occurred. When RTE is executed, the exception stack frame saved on the supervisor
stack can be restored in either of two ways.

MOTOROLA MC68349 USER’S MANUAL 5-27

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the
SR and PC are restored to the values saved on the supervisor stack, and execution
resumes at the restored PC address, with access level determined by the S-bit of the
restored SR.

If the frame was generated by a bus error or an address error exception, the entire
processor state is restored from the stack.

5.6 EXCEPTION PROCESSING

An exception is a special condition that pre-empts normal processing. Exception
processing is the transition from normal mode program execution to execution of a routine
that deals with an exception. The following paragraphs discuss system resources related
to exception handling, exception processing sequence, and specific features of individual
exception processing routines.

5.6.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. The VBR
contains the base address of a 1024-byte exception vector table, which consists of 256
exception vectors. Sixty-four vectors are defined by the processor, and 192 vectors are
reserved for user definition as interrupt vectors. Except for the reset vector, which is two
long words, each vector in the table is one long word. Refer to Table 5-5 for information on
vector assignment.

CAUTION

Because there is no protection on the 64 processor-defined
vectors, external devices can access vectors reserved for
internal purposes. This practice is strongly discouraged.

All exception vectors, except the reset vector, are located in supervisor data space. The
reset vector is located in supervisor program space. Only the initial reset vector is fixed in
the processor memory map. When initialization is complete, there are no fixed
assignments. Since the VBR stores the vector table base address, the table can be
located anywhere in memory. It can also be dynamically relocated for each task executed
by an operating system.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are
obtained from an external device; others are supplied by the processor. The processor
multiplies the vector number by 4 to calculate vector offset, then adds the offset to the
contents of the VBR. The sum is the memory address of the vector.

5-28 MC68349 USER’S MANUAL MOTOROLA

Table 5-5. Exception Vector Assignments

Vector Offset
Vector Number Dec Hex Space Assignment
0 000 SP Reset: Initial Stack Pointer
1 004 SP Reset: Initial Program Counter
2 8 008 SD Bus Error
3 12 oocC SD Address Error
4 16 010 SD lllegal Instruction
5 20 014 SD Zero Division
6 24 018 SD CHK, CHK2 Instructions
7 28 01C SD TRAPcc, TRAPV Instructions
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12 48 030 SD Hardware Breakpoint
13 52 034 SD (Reserved for Coprocessor Protocol Violation)
14 56 038 SD Format Error
15 60 03C SD Uninitialized Interrupt
16-23 64 040 SD (Unassigned, Reserved)
92 05C —
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
32-47 128 080 SD Trap Instruction Vectors (0-15)
188 0BC —
48-58 192 0Co SD (Reserved for Coprocessor)
232 OES8 —
59-63 236 OEC SD (Unassigned, Reserved)
252 OFC _
64—-255 256 100 SD User-Defined Vectors (192)
1020 3FC

MOTOROLA

MC68349 USER’S MANUAL

5-29

5.6.1.1 TYPES OF EXCEPTIONS. An exception can be caused by internal or external
events.

An internal exception can be generated by an instruction or by an error. The TRAP,
TRAPcc, TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause exceptions
during normal execution. lllegal instructions, instruction fetches from odd addresses, word
or long-word operand accesses from odd addresses, and privilege violations also cause
internal exceptions.

Sources of external exception include interrupts, breakpoints, bus errors, and reset
requests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access control
and processor restart.

5.6.1.2 EXCEPTION PROCESSING SEQUENCE. For all exceptions other than a reset
exception, exception processing occurs in the following sequence. Refer to 5.6.2.1 Reset
for details of reset processing.

As exception processing begins, the processor makes an internal copy of the SR. After
the copy is made, the processor state bits in the SR are changed—the S-bit is set,
establishing supervisor access level, and bits T1 and TO are cleared, disabling tracing. For
reset and interrupt exceptions, the interrupt priority mask is also updated.

Next, the exception number is obtained. For interrupts, the number is fetched from CPU
space $F (the bus cycle is an interrupt acknowledge). For all other exceptions, internal
logic provides a vector number.

Next, current processor status is saved. An exception stack frame is created and placed
on the supervisor stack. All stack frames contain copies of the SR and the PC for use by
RTE. The type of exception and the context in which the exception occurs determine what
other information is stored in the stack frame.

Finally, the processor prepares to resume normal execution of instructions. The exception
vector offset is determined by multiplying the vector number by 4, and the offset is added
to the contents of the VBR to determine displacement into the exception vector table. The
exception vector is loaded into the PC. If no other exception is pending, the processor will
resume normal execution at the new address in the PC.

5.6.1.3 EXCEPTION STACK FRAME. During exception processing, the most volatile
portion of the current context is saved on the top of the supervisor stack. This context is
organized in a format called the exception stack frame.

The exception stack frame always includes the contents of SR and PC at the time the
exception occurred. To support generic handlers, the processor also places the vector
offset in the exception stack frame and marks the frame with a format code. The format
field allows an RTE instruction to identify stack information so that it can be properly
restored.

5-30 MC68349 USER’S MANUAL MOTOROLA

The general form of the exception stack frame is illustrated in Figure 5-14. Although some
formats are peculiar to a particular M68000 family processor, format 0000 is always legal
and always indicates that only the first four words of a frame are present. See 5.6.4
CPU32+ Stack Frames for a complete discussion of exception stack frames.

T

STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

FORMAT VECTOR OFFSET

OTHER PROCESSOR STATE INFORMATION,
DEPENDING ON EXCEPTION
(0, 2, OR 8 WORDS)

HIGHER ADDRESSES
STACKING ORDER

-<

Figure 5-14. Exception Stack Frame

5.6.1.4 MULTIPLE EXCEPTIONS. Each exception has been assigned a priority based on
its relative importance to system operation. Priority assignments are shown in Table 5-6.
Group O exceptions have the highest priorities; group 4 exceptions have the lowest
priorities. Exception processing for exceptions that occur simultaneously is done by
priority, from highest to lowest.

It is important to be aware of the difference between exception processing mode and
execution of an exception handler. Each exception has an assigned vector that points to
an associated handler routine. Exception processing includes steps described in 5.6.1.2
Exception Processing Sequence, but does not include execution of handler routines,
which is done in normal mode.

When the CPU32+ completes exception processing, it is ready to begin either exception
processing for a pending exception or execution of a handler routine. Priority assignment
governs the order in which exception processing occurs, not the order in which exception
handlers are executed.

As a general rule, when simultaneous exceptions occur, the handler routines for lower
priority exceptions are executed before the handler routines for higher priority exceptions.
For example, consider the arrival of an interrupt during execution of a TRAP instruction
while tracing is enabled. Trap exception processing (2) is done first, followed immediately
by exception processing for the trace (4.1), and then by exception processing for the
interrupt (4.3). Each exception places a new context on the stack. When the processor
resumes normal instruction execution, it is vectored to the interrupt handler, which returns
to the trace handler that returns to the trap handler.

MOTOROLA MC68349 USER’S MANUAL 531

Table 5-6. Exception Priority Groups

Exception and

Group .Priority Relative Priority Characteristics
0 Reset Aborts all processing (instruction or
exception); does not save old context.
11 Address Error Suspends processing (instruction or
1.2 Bus Error exception); saves internal context.
2 BKPT#n, CHK, CHK2, Exception processing is a part of
Division by Zero, RTE, instruction execution.
TRAP#n, TRAPcc, TRAPV
3 lllegal Instruction, Line A, Exception processing begins before
Unimplemented Line F, instruction execution.
Privilege Violation
41 Trace Exception processing begins when current
4.2 Hardware Breakpoint instruction or previous exception
43 Interrupt processing is complete.

There are special cases to which the general rule does not apply. The reset exception will
always be the first exception handled since reset clears all other exceptions. It is also
possible for high-priority exception processing to begin before low-priority exception
processing is complete. For example, if a bus error occurs during trace exception
processing, the bus error will be processed and handled before trace exception
processing has completed.

5.6.2 Processing of Specific Exceptions

The following paragraphs provide details concerning sources of specific exceptions, how
each arises, and how each is processed.

5.6.2.1 RESET. Assertion of RESET by external hardware or assertion of the internal
RESET signal by an internal module causes a reset exception. The reset exception has
the highest priority of any exception. Reset is used for system initialization and for
recovery from catastrophic failure. When the reset exception is recognized, it aborts any
processing in progress, and that processing cannot be recovered. Reset performs the
following operations:

1. Clears TO and T1 in the SR to disable tracing

Sets the S-bit in the SR to establish supervisor privilege

Sets the interrupt priority mask to the highest priority level ($7)
Initializes the VBR to zero ($00000000)

Generates a vector number to reference the reset exception vector
Loads the first long word of the vector into the interrupt SP

Loads the second long word of the vector into the PC

Fetches and initiates decode of the first instruction to be executed

© N Ok WD

Figure 5-15 is a flowchart of the reset exception

532 MC68349 USER’S MANUAL MOTOROLA

ENTRY

1S

0QJTo,T1
$7 [J12:10
$0 [JVBR

FETCH VECTOR #0

OTHERWISE BUS ERROR
SP [J(VECTOR #0)

FETCH VECTOR # 1

OTHERWISE BUS ERROR
PC J(VECTOR #1)

PREFETCH 3 WORDS

BUS ERROR/

OTHERWISE BEGIN Agggggs
INSTRUCTION

EXECUTION (DOUBLE BUS FAULT)

ASSERT HALT
< EXIT)
‘ EXIT ’

Figure 5-15. Reset Operation Flowchart

MOTOROLA MC68349 USER’S MANUAL 5-33

After initial instruction prefetches, normal program execution begins at the address in the
PC. The reset exception does not save the value of either the PC or the SR.

If a bus error or address error occurs during reset exception processing, a double bus fault
occurs, the processor halts, and the HALT signal is asserted to indicate the halted
condition.

Execution of the RESET instruction does not cause a reset exception nor does it affect
any internal CPU register. The SIM49 registers and the module control register in each
internal peripheral module (DMA, quad data memory module (QDMM), and serial
modules) are not affected. All other internal peripheral module registers are reset the
same as for a hardware reset. The external devices connected to the RESET signal are
reset at the completion of the RESET instruction.

5.6.2.2 BUS ERROR. A bus error exception occurs when an assertion of the BERR signal
is acknowledged. The BERR signal can be asserted by one of three sources:

1. External logic by assertion of the BERR input pin
2. Direct assertion of the internal BERR signal by an internal module

3. Direct assertion of the internal BERR signal by the on-chip hardware watchdog
after detecting a no-response condition

Bus error exception processing begins when the processor attempts to use information
from an aborted bus cycle.

When the aborted bus cycle is an instruction prefetch, the processor will not initiate
exception processing unless the prefetched information is used. For example, if a branch
instruction flushes an aborted prefetch, that word is not accessed, and no exception
occurs.

When the aborted bus cycle is a data access, the processor initiates exception processing
immediately, except in the case of released operand writes. Released write bus errors are
delayed until the next instruction boundary or until another operand access is attempted.

Exception processing for bus error exceptions follows the regular sequence, but context
preservation is more involved than for other exceptions because a bus exception can be
initiated while an instruction is executing. Several bus error stack format organizations are
utilized to provide additional information regarding the nature of the fault.

First, any register altered by a faulted-instruction EA calculation is restored to its initial
value. Then an SSW is placed on the stack. The SSW contains specific information about
the aborted access—size, type of access (read or write), bus cycle type, and function
code. Finally, fault address, bus error exception vector number, PC value, and a copy of
the SR are saved.

534 MC68349 USER’S MANUAL MOTOROLA

If a bus error occurs during exception processing for a bus error, an address error, a reset,
or while the processor is loading stack information during RTE execution, the processor
halts. This simplifies isolation of catastrophic system failure by preventing processor
interaction with stacks and memory. Only assertion of RESET can restart a halted
processor.

5.6.2.3 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access an instruction at an odd address. The effect is much the same as an internally
generated bus error. The exception processing sequence is the same as that for bus
error, except that the vector number refers to the address error exception vector.

Address error exception processing begins when the processor attempts to use
information from the aborted bus cycle.

An address exception on a branch to an odd address is delayed until the PC is changed.
No exception occurs if the branch is not taken. In this case, the fault address and return
PC value placed in the exception stack frame are the odd address, and the current
instruction PC points to the instruction that caused the exception.

If an address error occurs during exception processing for a bus error, another address
error, or a reset, the processor halts.

5.6.2.4 INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
from either processor recognition of abnormal conditions during instruction execution or
from use of specific trapping instructions. Traps are generally used to handle abnormal
conditions that arise in control routines.

The TRAP instruction, which always forces an exception, is useful for implementing
system calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions force
exceptions when a program detects a run-time error. The DIVS and DIVU instructions
force an exception if a division operation is attempted with a divisor of zero.

Exception processing for traps follows the regular sequence. If tracing is enabled when an
instruction that causes a trap begins execution, a trace exception will be generated by the
instruction, but the trap handler routine will not be traced. (The trap exception will be
processed first, then the trace exception.)

The vector number for the TRAP instruction is internally generated—part of the number
comes from the instruction itself. The trap vector number, PC value, and a copy of the SR
are saved on the supervisor stack. The saved PC value is the address of the instruction
that follows the instruction that generated the trap. For all instruction traps other than
TRAP, a pointer to the instruction causing the trap is also saved in the fifth and sixth
words of the exception stack frame.

MOTOROLA MC68349 USER’S MANUAL 5-35

5.6.2.5 SOFTWARE BREAKPOINTS. To support hardware emulation, the CPU32+ must
provide a means of inserting breakpoints into target code and of announcing when a
breakpoint is reached.

The MC68000 and MC68008 can detect an illegal instruction inserted at a breakpoint
when the processor fetches from the illegal instruction exception vector location. Since the
VBR on the CPU32+ allows relocation of exception vectors, the exception vector address
is not a reliable indication of a breakpoint. CPU32+ breakpoint support is provided by
extending the function of a set of illegal instructions ($4848-$484F).

When a breakpoint instruction is executed, the CPU32+ performs a read from CPU space
$0, at a location corresponding to the breakpoint number. If this bus cycle is terminated by
BERR, the processor performs illegal instruction exception processing. If the bus cycle is
terminated by DSACKYX, the processor uses the data returned to replace the breakpoint in
the instruction pipeline and begins execution of that instruction. See Section 3 Bus
Operation for a description of CPU space operations.

5.6.2.6 HARDWARE BREAKPOINTS. The CPU32+ recognizes hardware breakpoint
requests. Hardware breakpoint requests do not force immediate exception processing, but
are left pending. An instruction breakpoint is not made pending until the instruction
corresponding to the request is executed.

A pending breakpoint can be acknowledged between instructions or at the end of
exception processing. To acknowledge a breakpoint, the CPU performs a read from CPU
space 30 at location $1E (see Section 3 Bus Operation).

If the bus cycle terminates normally, instruction execution continues with the next
instruction as if no breakpoint request occurred. If the bus cycle is terminated by BERR,
the CPU begins exception processing. Data returned during this bus cycle is ignored.

Exception processing follows the regular sequence. Vector number 12 (offset $30) is
internally generated. The PC of the executing instruction, the PC of the next instruction to
be executed, and a copy of the SR are saved on the supervisor stack.

5.6.2.7 FORMAT ERROR. The processor checks certain data values for control
operations. The validity of the stack format code and, in the case of a bus cycle fault
format, the version number of the processor that generated the frame are checked during
execution of the RTE instruction. This check ensures that the program does not make
erroneous assumptions about information in the stack frame.

If the format of the control data is improper, the processor generates a format error
exception. This exception saves a four-word format exception frame and then vectors
through vector table entry number 14. The stacked PC is the address of the RTE
instruction that discovered the format error.

5-36 MC68349 USER’S MANUAL MOTOROLA

5.6.2.8 ILLEGAL OR UNIMPLEMENTED INSTRUCTIONS. An instruction is illegal if it
contains a word bit pattern that does not correspond to the bit pattern of the first word of a
legal CPU32+ instruction, if it is a MOVEC instruction that contains an undefined register
specification field in the first extension word, or if it contains an indexed addressing mode
extension word with bits 5—4 = 00 or bits 3—0 # 0000.

If an illegal instruction is fetched during instruction execution, an illegal instruction
exception occurs. This facility allows the operating system to detect program errors or to
emulate instructions in software.

Word patterns with bits 15-12 = 1010 (referred to as A-line opcodes) are unimplemented
instructions. A separate exception vector (vector 10, offset $28) is given to unimplemented
instructions to permit efficient emulation.

Word patterns with bits 15-12 = 1111 (referred to as F-line opcodes) are used for M68000
family instruction set extensions. They can generate an unimplemented instruction
exception caused by the first extension word of the instruction or by the addressing mode
extension word. A separate F-line emulation vector (vector 11, offset $2C) is used for the
exception vector.

All unimplemented instructions are reserved for use by Motorola for enhancements and
extensions to the basic M68000 architecture. Opcode pattern $4AFC is defined to be
illegal on all M68000 family members. Those customers requiring the use of an
unimplemented opcode for synthesis of "custom instructions," operating system calls, etc.,
should use this opcode.

Exception processing for illegal and unimplemented instructions is similar to that for traps.
The instruction is fetched and decoding is attempted. When the processor determines that
execution of an illegal instruction is being attempted, exception processing begins. No
registers are altered.

Exception processing follows the regular sequence. The vector number is generated to
refer to the illegal instruction vector or in the case of an unimplemented instruction, to the
corresponding emulation vector. The illegal instruction vector number, current PC, and a
copy of the SR are saved on the supervisor stack, with the saved value of the PC being
the address of the illegal or unimplemented instruction.

MOTOROLA MC68349 USER’S MANUAL 5-37

5.6.2.9 PRIVILEGE VIOLATIONS. To provide system security, certain instructions can be
executed only at the supervisor access level. An attempt to execute one of these
instructions at the user level will cause an exception. The privileged instructions are as
follows:

* AND Immediate to SR
 EOR Immediate to SR
e LPSTOP

« MOVE from SR

« MOVE to SR

« MOVE USP

« MOVEC

« MOVES

¢ OR Immediate to SR
e RESET

 RTE

e STOP

Exception processing for privilege violations is nearly identical to that for illegal
instructions. The instruction is fetched and decoded. If the processor determines that a
privilege violation has occurred, exception processing begins before instruction execution.

Exception processing follows the regular sequence. The vector number (8) is generated to
reference the privilege violation vector. Privilege violation vector offset, current PC, and
SR are saved on the supervisor stack. The saved PC value is the address of the first word
of the instruction causing the privilege violation.

5.6.2.10 TRACING. To aid in program development, M68000 processors include a facility
to allow tracing of instruction execution. CPU32+ tracing also has the ability to trap on
changes in program flow. In trace mode, a trace exception is generated after each
instruction executes, allowing a debugging program to monitor the execution of a program
under test. The T1 and TO bits in the supervisor portion of the SR are used to control
tracing (see Table 5-7).

Table 5-7. Tracing Control

T1 TO Tracing Function

0 0 No tracing

0 1 Trace on change of flow

1 0 | Trace on instruction execution
1 1 Undefined; reserved

5-38 MC68349 USER’S MANUAL MOTOROLA

When T1, TO = 00, tracing is disabled, and instruction execution proceeds normally.

When T1, TO = 01 at the beginning of instruction execution, a trace exception will be
generated if the PC changes sequence during execution. All branches, jumps, subroutine
calls, returns, and SR manipulations can be traced in this way. No exception occurs if a
branch is not taken.

When T1, TO = 10 at the beginning of instruction execution, a trace exception will be
generated when execution is complete. If the instruction is not executed, either because
an interrupt is taken or because the instruction is illegal, unimplemented, or privileged, an
exception is not generated.

At the present time, T1, TO = 11 is an undefined condition. It is reserved by Motorola for
future use.

Exception processing for trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. Exception processing follows the
regular sequence; tracing is disabled so that the trace exception itself is not traced. A
vector number is generated to reference the trace exception vector. The address of the
instruction that caused the trace exception, the trace exception vector offset, the current
PC, and a copy of the SR are saved on the supervisor stack. The saved value of the PC is
the address of the next instruction to be executed.

A trace exception can be viewed as an extension to the function of any instruction. If a
trace exception is generated by an instruction, the execution of that instruction is not
complete until the trace exception processing associated with it is also complete.

If an instruction is aborted by a bus error or address error exception, trace exception
processing is deferred until the suspended instruction is restarted and completed
normally. An RTE from a bus error or address error will not be traced because of the
possibility of continuing the instruction from the fault.

If an instruction is executed and an interrupt is pending on completion, the trace exception
is processed before the interrupt exception.

If an instruction forces an exception, the forced exception is processed before the trace
exception.

If an instruction is executed and a breakpoint is pending upon completion of the
instruction, the trace exception is processed before the breakpoint.

If an attempt is made to execute an illegal, unimplemented, or privileged instruction while
tracing is enabled, no trace exception will occur because the instruction is not executed.
This is particularly important to an emulation routine that performs an instruction function,
adjusts the stacked PC to beyond the unimplemented instruction, and then returns. The
SR on the stack must be checked to determine if tracing is on before the return is
executed. If tracing is on, trace exception processing must be emulated so that the trace
exception handler can account for the emulated instruction.

MOTOROLA MC68349 USER’S MANUAL 5-39

Tracing also affects normal operation of the STOP and LPSTOP instructions. If either
instruction begins execution with T1 set, a trace exception will be taken after the
instruction loads the SR. Upon return from the trace handler routine, execution will
continue with the instruction following STOP (LPSTOP), and the processor will not enter
the stopped condition.

5.6.2.11 INTERRUPTS. There are seven levels of interrupt priority and 192 assignable
interrupt vectors within each exception vector table. Careful use of multiple vector tables
and hardware chaining will permit a virtually unlimited number of peripherals to interrupt
the processor.

Interrupt recognition and subsequent processing are based on internal interrupt request
signals (IRQ7—-1RQ1) and the current priority set in SR priority mask 12—10. Interrupt
request level 0 (IRQ7-1RQ1 negated) indicates that no service is requested. When an
interrupt of level 1 through 6 is requested via IRQ6-IRQ1, the processor compares the
request level with the interrupt mask to determine whether the interrupt should be
processed. Interrupt requests are inhibited for all priority levels less than or equal to the
current priority. Level 7 interrupts are nonmaskable.

IRQ7—-IRQ1 are synchronized and debounced by input circuitry on consecutive rising
edges of the processor clock. To be valid, an interrupt request must be held constant for
at least two consecutive clock periods.

Interrupt requests do not force immediate exception processing, but are left pending. A
pending interrupt is detected between instructions or at the end of exception processing—
all interrupt requests must be held asserted until they are acknowledged by the CPU. If
the priority of the interrupt is greater than the current priority level, exception processing
begins.

Exception processing occurs as follows. First, the processor makes an internal copy of the
SR. After the copy is made, the processor state bits in the SR are changed—the S-bit is
set, establishing supervisor access level, and bits T1 and TO are cleared, disabling
tracing. Priority level is then set to the level of the interrupt, and the processor fetches a
vector number from the interrupting device (CPU space $F). The fetch bus cycle is
classified as an interrupt acknowledge, and the encoded level number of the interrupt is
placed on the address bus.

If an interrupting device requests automatic vectoring, the processor generates a vector
number (25 to 31) determined by the interrupt level number.

If the response to the interrupt acknowledge bus cycle is a bus error, the interrupt is taken
to be spurious, and the spurious interrupt vector number (24) is generated.

The exception vector number, PC, and SR are saved on the supervisor stack. The saved
value of the PC is the address of the instruction that would have executed if the interrupt
had not occurred.

5-40 MC68349 USER’S MANUAL MOTOROLA

Priority level 7 interrupt is a special case. Level 7 interrupts are nonmaskable interrupts
(NMI). Level 7 requests are transition sensitive to eliminate redundant servicing and
resultant stack overflow. Transition sensitive means that the level 7 input must change
state before the CPU will detect an interrupt.

An NMI is generated each time the interrupt request level changes to level 7 (regardless
of priority mask value), and each time the priority mask changes from 7 to a lower number
while the request level remains at 7.

Many M68000 peripherals provide for programmable interrupt vector numbers to be used
in the system interrupt request/acknowledge mechanism. If the vector number is not
initialized after reset and if the peripheral must acknowledge an interrupt request, the
peripheral should return the uninitialized interrupt vector number (15).

See Section 3 Bus Operation for detailed information on interrupt acknowledge cycles.

5.6.2.12 RETURN FROM EXCEPTION. When exception stacking operations for all
pending exceptions are complete, the processor begins execution of the handler for the
last exception processed. After the exception handler has executed, the processor must
restore the system context in existence prior to the exception. The RTE instruction is
designed to accomplish this task.

When RTE is executed, the processor examines the stack frame on top of the supervisor
stack to determine if it is valid and determines what type of context restoration must be
performed. See 5.6.4 CPU32+ Stack Frames for a description of stack frames.

For a normal four-word frame, the processor updates the SR and PC with data pulled from
the stack, increments the SSP by 8, and resumes normal instruction execution. For a six-
word frame, the SR and PC are updated from the stack, the active SSP is incremented by
12, and normal instruction execution resumes.

For a bus fault frame, the format value on the stack is first checked for validity. In addition,
the version number on the stack must match the version number of the processor that is
attempting to read the stack frame. The version number is located in the most significant
byte (bits 15-8) of the internal register word at location SP + $14 in the stack frame. The
validity check ensures that stack frame data will be properly interpreted in multiprocessor
systems.

If a frame is invalid, a format error exception is taken. If it is inaccessible, a bus error
exception is taken. Otherwise, the processor reads the entire frame into the proper
internal registers, de-allocates the stack (12 words), and resumes normal processing. Bus
error frames for faults during exception processing require the RTE instruction to rewrite
the faulted stack frame. If an error occurs during any of the bus cycles required by rewrite,
the processor halts.

If a format error occurs during RTE execution, the processor creates a normal four-word
fault stack frame below the frame that it was attempting to use. If a bus error occurs, a
bus-error stack frame will be created. The fault stack frame remains intact, so that it may

MOTOROLA MC68349 USER’S MANUAL 541

be examined and repaired by an exception handler or used by a different type of
processor (e.g., MC68010, MC68020, or future M68000 processor) in a multiprocessor
system.

5.6.3 Fault Recovery

There are four phases of recovery from a fault: recognizing the fault, saving the processor
state, repairing the fault (if possible), and restoring the processor state. Saving and
restoring the processor state are described in the following paragraphs.

The stack contents are identified by the special status word (SSW). In addition to
identifying the fault type represented by the stack frame, the SSW contains the internal
processor state corresponding to the fault.

5 14 13 1m0 9 8 7 6 5 4 3 2 1 0
| ® | wv [szci| m | e [B [rRR| M| N [RW [szco] sz | FUNC

TP—BERR Frame Type

The TP field defines the class of the faulted bus operation. Two bus error exception
frame types are defined. One is for faults on prefetch and operand accesses, and the
other is for faults during exception frame stacking.

0 = Operand or prefetch bus fault
1 = Exception processing bus fault

MV—MOVEM in Progress
MV is set when the operand transfer portion of the MOVEM instruction is in progress at
the time of a bus fault. If a prefetch bus fault occurs while prefetching the MOVEM
opcode and extension word, both the MV and IN bits will be set.

0 = MOVEM was not in progress when fault occurred
1 = MOVEM was in progress when fault occurred

SZC1,SZC0—Original Operand Size

The SZC1,SZCO0 field specifies the size of the original bus cycle (i.e., the size bits of the
first cycle, when a transaction is divided into two or three cycles due to bus size or
operand address).

00 = Original operand size was long word

01 = Original operand size was byte

10 = Original operand size was word

11 = Unused, reserved

542 MC68349 USER’S MANUAL MOTOROLA

TR—Trace Pending

TR indicates that a trace exception was pending when a bus error exception was
processed. The instruction that generated the trace will not be restarted upon return
from the exception handler. This includes MOVEM and released write bus errors
indicated by the assertion of either MV or RR in the SSW.

0 = Trace not pending
1 = Trace pending

B1—Breakpoint Channel 1 Pending

B1 indicates that a breakpoint exception was pending on channel 1 (external breakpoint
source) when a bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

BO—Breakpoint Channel 0 Pending

BO indicates that a breakpoint exception was pending on channel O (internal breakpoint
source) when the bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

RR—Rerun Write Cycle after RTE

RR will be set if the faulted bus cycle was a released write. A released write is one that
is overlapped. If the write is completed (rerun) in the exception handler, the RR bit
should be cleared before executing RTE. The bus cycle will be rerun if the RR bit is set
upon return from the exception handler.

0 = Faulted cycle was read, RMW, or unreleased write
1 = Faulted cycle was a released write

RM—Faulted Cycle Was Read-Modify-Write
Faulted RMW bus cycles set the RM bit. RM is ignored during unstacking.
0 = Faulted cycle was non-RMW cycle
1 = Faulted cycle was either the read or write of an RMW cycle
IN—Instruction/Other

Instruction prefetch faults are distinguished from operand (both read and write) faults by
the IN bit. If IN is cleared, the error was on an operand cycle; if IN is set, the error was
on an instruction prefetch. IN is ignored during unstacking.

0 = Operand

1 = Prefetch

MOTOROLA MC68349 USER’S MANUAL 5-43

RW—Read/Write of Faulted Bus Cycle

Read and write bus cycles are distinguished by the RW bit. Read bus cycles will set this
bit, and write bus cycles will clear it. RW is reloaded into the bus controller if the RR bit
is set during unstacking.

0 = Faulted cycle was an operand write
1 = Faulted cycle was a prefetch or operand read

SIZ—Remaining Size of Faulted Bus Cycle

The SIZ field shows operand size remaining when a fault was detected. This field does
not indicate the initial size of the operand, nor does it necessarily indicate the proper
status of a dynamically sized bus cycle. Dynamic sizing occurs on the external bus and
is transparent to the CPU. Byte size is shown only when the original operand was a
byte. The field is reloaded into the bus controller if the RR bit is set during unstacking.
The SIZ field is encoded as follows:

00 = Long word
01 = Byte
10 = Word
11 = Three byte

FUNC—Function Code of Faulted Bus Cycle

The function code for the faulted cycle is stacked in the FUNC field of the SSW, which is
a copy of FC2-FCO for the faulted bus cycle. This field is reloaded into the bus
controller if the RR bit is set during unstacking. All unused bits are stacked as zeros and
are ignored during unstacking. Further discussion of the SSW is included in 5.6.3.1
Types of Faults.

5.6.3.1 TYPES OF FAULTS. An efficient implementation of instruction restart dictates that
faults on some bus cycles be treated differently than faults on other bus cycles. The
CPU32+ defines four fault types: released write faults, faults during exception processing,
faults during MOVEM operand transfer, and faults on any other bus cycle.

5.6.3.1.1 Type I—Released Write Faults. CPU32+ instruction pipelining can cause a final
instruction write to overlap the execution of a following instruction. A write that is
overlapped is called a released write. A released write fault occurs when a bus error or
some other fault occurs on the released write.

Released write faults are taken at the next instruction boundary. The stacked PC is that of
the next unexecuted instruction. If a subsequent instruction attempts an operand access
while a released write fault is pending, the instruction is aborted and the write fault is
acknowledged. This action prevents the instruction from using stale data.

544 MC68349 USER’S MANUAL MOTOROLA

The SSW for a released write fault contains the following bit pattern:

5 #1383 12 1 10 9 8 7 6 5 4 3 2 0
[o | o [szcifm | [B[1| o] of o sz Siz | FUNC |

TR , B1, and BO are set if the corresponding exception is pending when the bus error
exception is taken. Status regarding the faulted bus cycle is reflected in the SZCx, SIZ,
and FUNC fields.

The remainder of the stack contains the PC of the next unexecuted instruction, the current
SR, the address of the faulted memory location, and the contents of the data buffer that
was to be written to memory. This data is written on the stack in the format depicted in
Figure 5-15. When a released write fault exception handler executes, the machine will
complete the faulted write and then continue executing instructions wherever the PC
indicates.

5.6.3.1.2 Type lI—Prefetch, Operand, RMW, and MOVEP Faults. The majority of bus
error exceptions are included in this category—all instruction prefetches, all operand
reads, all RMW cycles, and all operand accesses resulting from execution of MOVEP
(except the last write of a MOVEP Rn,[&¢alor the last write of MOVEM, which are type |
faults). The TAS, MOVEP, and MOVEM instructions account for all operand writes not
considered released write faults.

All type Il faults cause an immediate exception that aborts the current instruction. Any
registers that were altered as the result of an EA calculation (i.e., postincrement or
predecrement) are restored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

| o | o [szci| o | 8 [B [o [ru]| N | rw [szco siz | FUNC

The trace pending bit is always cleared since the instruction will be restarted upon return
from the handler. Saving a pending exception on the stack causes a trace exception to be
taken prior to restarting the instruction. If the exception handler does not alter the stacked
SR trace bits, the trace is requeued when the instruction is started.

The breakpoint pending bits are stacked in the SSW, even though the instruction is
restarted upon return from the handler. This avoids problems with bus state analyzer
equipment that has been programmed to breakpoint only the first access to a specific
location or to count accesses to that location. If this response is not desired, the exception
handler can clear the bits before return. The RM, IN, RW, SZCx, FUNC, and SIZ fields
reflect the type of bus cycle that caused the fault. If the bus cycle was an RMW, the RM bit
will be set, and the RW bit will show whether the fault was on a read or write.

MOTOROLA MC68349 USER’S MANUAL 5-45

5.6.3.1.3 Type lll—Faults During MOVEM Operand Transfer. Bus faults that occur as a
result of MOVEM operand transfer are classified as type Il faults. MOVEM instruction
prefetch faults are type Il faults.

Type Il faults cause an immediate exception that aborts the current instruction. Registers
altered during execution of the faulted instruction are not restored prior to execution of the
fault handler. This includes any register predecremented as a result of the effective
address calculation or any register overwritten during instruction execution. Since
postincremented registers are not updated until the end of an instruction, the register
retains its pre-instruction value unless overwritten by operand movement.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 0

| o | 1 [szci| m | [B [rR| o] N |rw/[szo] siz | FUNC

MV is set, indicating that MOVEM should be continued from the point where the fault
occurred upon return from the exception handler. TR, B1, and BO are set if a
corresponding exception is pending when the bus error exception is taken. IN is set if a
bus fault occurs while prefetching an opcode or an extension word during instruction
restart. RW, SZCx, SIZ, and FUNC all reflect the type of bus cycle that caused the fault.
All write faults have the RR bit set to indicate that the write should be rerun upon return
from the exception handler.

The remainder of the stack frame contains sufficient information to continue MOVEM with
operand transfer following a faulted transfer. The address of the next operand to be
transferred, incremented or decremented by operand size, is stored in the faulted address
location ($08). The stacked transfer counter is set to 16 minus the number of transfers
attempted (including the faulted cycle). Refer to Figure 5-12 for the stacking format.

5.6.3.1.4 Type IV—Faults During Exception Processing. The fourth type of fault occurs
during exception processing. If this exception is a second address or bus error, the
machine halts in the double bus fault condition. However, if the exception is one that
causes a four- or six-word stack frame to be written, a bus cycle fault frame is written
below the faulted exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

5 #1383 12 1 10 9 8 7 6 5 4 3 2 0
[1| o [szcif m | [B[of of of 1 [szco Siz | FUNC

TR, B1, and BO are set if a corresponding exception is pending when the bus error
exception is taken.

The contents of the faulted exception stack frame are included in the bus fault stack
frame. The pre-exception SR and the format/vector word of the faulted frame are stacked.
The type of exception can be determined from the format/vector word. If the faulted

5-46 MC68349 USER’S MANUAL MOTOROLA

exception stack frame contains six words, the PC of the instruction that caused the initial
exception is also stacked. This data is placed on the stack in the format shown in Figure
5-13. The return address from the initial exception is stacked for RTE .

5.6.3.2 CORRECTING A FAULT. There are two ways to complete a faulted released write
bus cycle. The first is to use a software handler. The second is to rerun the bus cycle via
RTE.

Type |l fault handlers must terminate with RTE, but specific requirements must also be
met before an instruction is restarted.

There are three varieties of type Ill operand fault recovery. The first is completion of an
instruction in software. The second is conversion to type Il with restart via RTE. The third
Is continuation from the fault via RTE.

5.6.3.2.1 Type [—Completing Released Writes via Software. To complete a bus cycle
in software, a handler must first read the SSW function code field to determine the
appropriate address space, access the fault address pointer on the stack, and then
transfer data from the stacked image of the output buffer to the fault address.

If the CPU32+ is configured to 16-bit operation, rather than 32-bit operation, on the
internal data bus, long operands require two bus accesses. A fault during the second
access of a long operand causes the SZCx bits in the SSW to be set to long word. The
SlIZ field indicates remaining operand size. If operand coherency is important, the
complete operand must be rewritten. After a long operand is rewritten, the RR bit must be
cleared. Failure to clear the RR bit can cause the RTE instruction to rerun the bus cycle.
Following rewrite, it is not necessary to adjust the PC (or other stack contents) before
executing RTE.

5.6.3.2.2 Type —Completing Released Writes via RTE. An exception handler can use
the RTE instruction to complete a faulted bus cycle. When RTE executes, the fault
address, data output buffer, PC, and SR are restored from the stack. Any pending
breakpoint or trace exceptions, as indicated by TR, B1, and BO in the stacked SSW, are
requeued during SSW restoration. The RR bit in the SSW is checked during the
unstacking operation; if it is set, the RW, FUNC, and SIZ fields are restored and the
released write cycle is rerun.

To maintain long-word operand coherence, stack contents must be adjusted prior to the
RTE execution. The fault address must be decremented by 2 if the SZCx bits are set to
long word and SIZ indicates a remaining byte or word. SIZ must be set to long. All other
fields should be left unchanged. The bus controller uses the modified fault address and
SIZ field to rerun the complete released write cycle.

Manipulating the stacked SSW can cause unpredictable results because RTE checks only
the RR bit to determine if a bus cycle must be rerun. Inadvertent alteration of the control
bits could cause the bus cycle to be a read instead of a write or could cause access to a
different address space than the original bus cycle. If the rerun bus cycle is a read,
returned data will be ignored.

MOTOROLA MC68349 USER’S MANUAL 5-47

5.6.3.2.3 Type IlI—Correcting Faults via RTE. Instructions aborted because of a type Il
fault are restarted upon return from the exception handler. A fault handler must establish
safe restart conditions. If a fault is caused by a nonresident page in a demand-paged
virtual memory configuration, the fault address must be read from the stack, and the
appropriate page retrieved. An RTE instruction terminates the exception handler. After
unstacking the machine state, the instruction is refetched and restarted.

5.6.3.2.4 Type lll—Correcting Faults via Software. Sufficient information is contained in
the stack frame to complete MOVEM in software. After the cause of the fault is corrected,
the faulted bus cycle must be rerun. Perform the following procedures to complete an
instruction through software:

A. Set Up for Rerun
1. Read the MOVEM opcode and extension from locations pointed to by stack frame

PC and PC + 2. The EA need not be recalculated since the next operand address
is saved in the stack frame. However, the opcode EA field must be examined to
determine how to update the address register and PC when the instruction is
complete.

2. Adjust the mask to account for operands already transferred. Subtract the stacked
operand transfer count from 16 to obtain the number of operands transferred. Scan
the mask using this count value. Each time a set bit is found, clear it and decrement
the counter. When the count is zero, the mask is ready for use.

3. Adjust the operand address. If the predecrement addressing mode is in effect,
subtract the operand size from the stacked value; otherwise, add the operand size to
the stacked value.

B. Rerun Instruction

1. Scan the mask for set bits. Read/write the selected register from/to the operand
address as each bit is found.

2. As each operand is transferred, clear the mask bit and increment (decrement) the
operand address. When all bits in the mask are cleared, all operands have been
transferred.

3. If the addressing mode is predecrement or postincrement, update the register to
complete the execution of the instruction.

4. If TR is set in the stacked SSW, create a six-word stack frame and execute the trace
handler. If either B1 or BO is set in the SSW, create another six-word stack frame
and execute the hardware breakpoint handler.

5. De-allocate the stack and return control to the faulted program.

5.6.3.2.5 Type lll—Correcting Faults by Conversion and Restart. In some situations it
may be necessary to rerun all the operand transfers for a faulted instruction rather than
continue from a faulted operand. Clearing the MV bit in the stacked SSW converts a type
[l fault into a type Il fault. Consequently, MOVEM, like all other type Il exceptions, will be
restarted upon return from the exception handler. When a fault occurs after an operand
has transferred, that transfer is not "undone”. However, these memory locations are

5-48 MC68349 USER’S MANUAL MOTOROLA

accessed a second time when the instruction is restarted. If a register used in an EA
calculation is overwritten before a fault occurs, an incorrect EA is calculated upon
instruction restart.

5.6.3.2.6 Type lll—Correcting Faults via RTE. The preferred method of MOVEM bus
fault recovery is to correct the cause of the fault and then execute an RTE instruction
without altering the stack contents.

The RTE recognizes that MOVEM was in progress when a fault occurred, restores the
appropriate machine state, refetches the instruction, repeats the faulted transfer, and
continues the instruction.

MOVEM is the only instruction continued upon return from an exception handler. Although
the instruction is refetched, the EA is not recalculated, and the mask is rescanned the
same number of times as before the fault. Modifying the code prior to RTE can cause
unexpected results.

5.6.3.2.7 Type IV—Correcting Faults via Software. Bus error exceptions can occur
during exception processing while the processor is fetching an exception vector or while it
Is stacking. The same stack frame and SSW are used in both cases, but each has a
distinct fault address. The stacked faulted exception format/vector word identifies the type
of faulted exception and the contents of the remainder of the frame. A fault address
corresponding to the vector specified in the stacked format/vector word indicates that the
processor could not obtain the address of the exception handler.

A bus error exception handler should execute RTE after correcting a fault. RTE restores
the internal machine state, fetches the address of the original exception handler, recreates
the original exception stack frame, and resumes execution at the exception handler
address.

If the fault is intractable, the exception handler should rewrite the faulted exception stack
frame at SP + $14 + $06 and then jump directly to the original exception handler. The
stack frame can be generated from the information in the bus error frame: the pre-
exception SR (SP + $0C), the format/vector word (SP + $0E), and, if the frame being
written is a six-word frame, the PC of the instruction causing the exception (SP + $10).
The return PC value is available at SP + $02.

A stacked fault address equal to the current SP may indicate that, although the first
exception received a bus error while stacking, the bus error exception stacking
successfully completed. This occurrence is extremely improbable, but the CPU32+
supports recovery from it. Once the exception handler determines that the fault has been
corrected, recovery can proceed as described previously. If the fault cannot be corrected,
move the supervisor stack to another area of memory, copy all valid stack frames to the
new stack, create a faulted exception frame on top of the stack, and resume execution at
the exception handler address.

MOTOROLA MC68349 USER’S MANUAL 5-49

5.6.4 CPU32+ Stack Frames

The CPU32+ generates three different stack frames: four-word frames, six-word frames,
and twelve-word bus error frames.

5.6.4.1 FOUR-WORD STACK FRAME. This stack frame is created by interrupt, format
error, TRAP #n, illegal instruction, A-line and F-line emulator trap, and privilege violation
exceptions. Depending on the exception type, the PC value is either the address of the
next instruction to be executed or the address of the instruction that caused the exception
(see Figure 5-16).

15 0
SP O STATUS REGISTER
+$02 PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW
+$06 0 ‘ 0 ‘ 0 ‘ 0 ‘ VECTOR OFFSET

Figure 5-16. Format $0—Four-Word Stack Frame

5.6.4.2 SIX-WORD STACK FRAME. This stack frame (see Figure 5-17) is created by
instruction-related traps, which include CHK, CHK2, TRAPcc, TRAPYV, and divide-by-zero,
and by trace exceptions. The faulted instruction PC value is the address of the instruction
that caused the exception. The next PC value (the address to which RTE returns) is the
address of the next instruction to be executed.

15 0
SP O STATUS REGISTER
+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
+$06 0 ‘ 0 ‘ 1 ‘ 0 ‘ VECTOR OFFSET
+$08 FAULTED INSTRUCTION PROGRAM COUNTER HIGH
FAULTED INSTRUCTION PROGRAM COUNTER LOW

Figure 5-17. Format $2—Six-Word Stack Frame

Hardware breakpoints also utilize this format. The faulted instruction PC value is the
address of the instruction executing when the breakpoint was sensed. Usually this is the
address of the instruction that caused the breakpoint, but, because released writes can
overlap following instructions, the faulted instruction PC may point to an instruction
following the instruction that caused the breakpoint. The address to which RTE returns is
the address of the next instruction to be executed.

5.6.4.3 BUS ERROR STACK FRAME. This stack frame is created when a bus cycle fault
is detected. The CPU32+ bus error stack frame differs significantly from the equivalent
stack frames of other M68000 family members. The only internal machine state required
in the CPU32+ stack frame is the bus controller state at the time of the error and a single
register.

5-50 MC68349 USER’S MANUAL MOTOROLA

Bus operation in progress at the time of a fault is conveyed by the SSW.

5 ¥ 1B 12 u 10 9 8 7 6 5 4 3 2 1 0
| ™ | mv [szei| wm [e [B [rRR | RM | N | RW [szco | siz | FUNC

The bus error stack frame is 12 words in length. There are three variations of the frame,
each distinguished by different values in the SSW TP and MV fields.

An internal transfer count register appears at location SP + $14 in all bus error stack
frames. The register contains an 8-bit microcode revision number and, for type Ill faults,
an 8-bit transfer count. Register format is shown in Figure 5-18.

15 8 7 0
| MICROCODE REVISION NUMBER | TRANSFER COUNT |

Figure 5-18. Internal Transfer Count Register

The microcode revision number is checked before a bus error stack frame is restored via
RTE. In a multiprocessor system, this check ensures that a processor using stacked
information is at the same revision level as the processor that created it.

The transfer count is ignored unless the MV bit in the stacked SSW is set. If the MV bit is
set, the least significant byte of the internal register is reloaded into the MOVEM transfer
counter during RTE execution.

For faults occurring during normal instruction execution (both prefetches and non-MOVEM
operand accesses), SSW TP,MV = 00. The stack frame format is shown in Figure 5-19.

Faults that occur during the operand portion of the MOVEM instruction are identified by
SSW TP,MV = 01. The stack frame format is shown in Figure 5-20.

When a bus error occurs during exception processing, SSW TP,MV = 10. The frame
shown in Figure 5-21 is written below the faulting frame. Stacking begins at the address
pointed to by SP — 6 (SP value is the value before initial stacking on the faulted frame).

The frame can have either four or six words, depending on the type of error. Four-word
stack frames do not include the faulted instruction PC. (The internal transfer count register
is located at SP + $10 and the SSW is located at SP + $12.)

The fault address of a dynamically sized bus cycle is the address of the upper byte,
regardless of the byte that caused the error.

MOTOROLA MC68349 USER’S MANUAL 551

552

SP O
+$02

+$06
+$08

+$0C

+$10

+$14
+$16

SP O
+$02

+$06
+$08

+$0C

+$10

+$14
+$16

STATUS REGISTER

RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

1 ’ 1 ‘ 0 ’ 0 ‘ VECTOR OFFSET

FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

DBUF HIGH

DBUF LOW

CURRENT INSTRUCTION PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROGRAM COUNTER LOW

INTERNAL TRANSFER COUNT REGISTER

0 ’ 0 ‘ SPECIAL STATUS WORD

Figure 5-19. Format $C—Bus Error Stack
for Prefetches and Operands

STATUS REGISTER

RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

1 ’ 1 ‘ 0 ’ 0 ‘ VECTOR OFFSET

FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

DBUF HIGH

DBUF LOW

CURRENT INSTRUCTION PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROGRAM COUNTER LOW

INTERNAL TRANSFER COUNT REGISTER

0 ’ 1 ‘ SPECIAL STATUS WORD

Figure 5-20. Format $C—Bus Error Stack on MOVEM Operand

MC68349 USER’S MANUAL

MOTOROLA

SP O STATUS REGISTER
+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
+$06 1 ’ 1 ‘ 0 ’ 0 ‘ VECTOR OFFSET
+$08 FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C PRE-EXCEPTION STATUS REGISTER
FAULTED EXCEPTION FORMAT/VECTOR WORD
+$10 FAULTED INSTRUCTION PROGRAM COUNTER HIGH (SIX WORD FRAME ONLY)
FAULTED INSTRUCTION PROGRAM COUNTER LOW (SIX WORD FRAME ONLY)
+$14 INTERNAL TRANSFER COUNT REGISTER
+$16 1 ’ 0 ‘ SPECIAL STATUS WORD

Figure 5-21. Format $C—Four- and Six-Word Bus Error Stack

5.7 DEVELOPMENT SUPPORT

All M68000 family members have the following special features that facilitate applications
development.

Trace on Instruction Execution—All M68000 processors include an instruction-by-
instruction tracing facility to aid in program development. The MC68020, MC68030, and
CPU32+ can also trace those instructions that change program flow. In trace mode, an
exception is generated after each instruction is executed, allowing a debugger program to
monitor execution of a program under test. See 5.6.2.10 Tracing for more information.

Breakpoint Instruction—An emulator can insert software breakpoints into target code to
indicate when a breakpoint occurs. On the MC68010, MC68020, MC68030, and CPU32+,
this function is provided via illegal instructions ($4848-$484F) that serve as breakpoint
instructions. See 5.6.2.5 Software Breakpoints for more information.

Unimplemented Instruction Emulation—When an attempt is made to execute an illegal
instruction, an illegal instruction exception occurs. Unimplemented instructions (F-line, A-
line) utilize separate exception vectors to permit efficient emulation of unimplemented
instructions in software. See 5.6.2.8 lllegal or Unimplemented Instructions for more
information.

5.7.1 CPU32+ Integrated Development Support

In addition to standard MC68000 family capabilities, the CPU32+ has features to support
advanced integrated system development. These features include background debug
mode, deterministic opcode tracking, hardware breakpoints, and internal visibility in a
single-chip environment.

MOTOROLA MC68349 USER’S MANUAL 5-53

5.7.1.1 BACKGROUND DEBUG MODE (BDM) OVERVIEW. Microprocessor systems
generally provide a debugger, implemented in software, for system analysis at the lowest
level. The BDM on the CPU32+ is unique because the debugger is implemented in CPU
microcode.

BDM incorporates a full set of debug options—registers can be viewed and/or altered,
memory can be read or written, and test features can be invoked.

A resident debugger simplifies implementation of an in-circuit emulator. In a common
setup (see Figure 5-22), emulator hardware replaces the target system processor. A
complex, expensive pod-and-cable interface provides a communication path between
target system and emulator.

IN-CIRCUIT
EMULATOR

TARGET

SYSTEM TARGET [«
CPU

Figure 5-22. In-Circuit Emulator Configuration

Y

By contrast, an integrated debugger supports use of a bus state analyzer (BSA) for in-
circuit emulation. The processor remains in the target system (see Figure 5-23), and the
interface is simplified. The BSA monitors target processor operation and the on-chip
debugger controls the operating environment. Emulation is much closer to target
hardware; thus, many interfacing problems (i.e., limitations on high-frequency operation,
AC and DC parametric mismatches, and restrictions on cable length) are minimized.

TARGET
SYSTEM

TARGET BUS STATE

PU > ANALYZER

Figure 5-23. Bus State Analyzer Configuration

5.7.1.2 DETERMINISTIC OPCODE TRACKING OVERVIEW. CPU32+ function code
outputs are augmented by three supplementary signals that monitor the instruction
pipeline. The IFETCH output signal identifies bus cycles in which data is loaded into the
pipeline and signals pipeline flushes. The IPIPE1, IPIPEO output signals indicate when
each mid-instruction pipeline advance occurs and when instruction execution begins.
These signals allow a BSA to synchronize with instruction stream activity. Refer to 5.7.3
Deterministic Opcode Tracking for complete information.

5-54 MC68349 USER’S MANUAL MOTOROLA

5.7.1.3 ON-CHIP HARDWARE BREAKPOINT OVERVIEW. An external breakpoint input
and an on-chip hardware breakpoint capability permit breakpoint trap on any memory
access. Off-chip address comparators will not detect breakpoints on internal accesses
unless show cycles are enabled. Breakpoints on prefetched instructions, which are
flushed from the pipeline before execution, are not acknowledged, but operand
breakpoints are always acknowledged. Acknowledged breakpoints can initiate either
exception processing or BDM. See 5.6.2.6 Hardware Breakpoints for more information.

5.7.2 Background Debug Mode

BDM is an alternate CPU32+ operating mode. During BDM, normal instruction execution
is suspended, and special microcode performs debugging functions under external
control. Figure 5-24 is a BDM block diagram.

BDM can be initiated in several ways—by externally generated breakpoints, by internal
peripheral breakpoints, by the background instruction (BGND), or by catastrophic
exception conditions. While in BDM, the CPU32+ ceases to fetch instructions via the
parallel bus and communicates with the development system via a dedicated, high-speed,
SPI-type serial command interface.

A

SERIAL
INTERFACE

A

A

> |PIPEO/DSO

A

MICROCODE

SEQUENCER L
> IFETCHIDSI

IRC |=<— IRB

A
T
A
Y

3 BKPT/DSCLK

BERR

— BERR BERR

A

A

BUS
BKPT | CONTROL

t 1

BKPT BKPT

A
A

/

[<<—> DATA BUS

Y < BERR

——-> FREEZE

A

EXECUTION
UNIT [—> ADDRESS BUS

Y

Figure 5-24. BDM Block Diagram

MOTOROLA MC68349 USER’S MANUAL 5-55

5.7.2.1 ENABLING BDM. Accidentally entering BDM in a nondevelopment environment
could lock up the CPU32+ since the serial command interface would probably not be
available. For this reason, BDM is enabled during reset via the BKPT signal.

BDM operation is enabled when BKPT is asserted (low) at the rising edge of RESET.
BDM remains enabled until the next system reset. A high BKPT on the trailing edge of
RESET disables BDM. BKPT is relatched on each rising transition of RESET. BKPT is
synchronized internally and must be held low for at least two clock cycles prior to negation
of RESET.

BDM enable logic must be designed with special care. If hold time on BKPT (after the
trailing edge of RESET) extends into the first bus cycle following reset, this bus cycle
could be tagged with a breakpoint. Refer to Section 3 Bus Operation for timing
information.

5.7.2.2 BDM SOURCES. When BDM is enabled, any of several sources can cause the
transition from normal mode to BDM. These sources include external BKPT hardware, the
BGND instruction, a double bus fault, and internal peripheral breakpoints. If BDM is not
enabled when an exception condition occurs, the exception is processed normally. Table
5-8 summarizes the processing of each source for both enabled and disabled cases. Note
that the BKPT instruction never causes a transition into BDM.

Table 5-8. BDM Source Summary

Source BDM Enabled BDM Disabled
BKPT Background Breakpoint Exception
Double Bus Fault Background Halted
BGND Instruction Background lllegal Instruction
BKPT Instruction Opcode Substitution/ Opcode Substitution/
lllegal Instruction lllegal Instruction

5.7.2.2.1 External BKPT Signal. Once enabled, BDM is initiated whenever assertion of
BKPT is acknowledged. If BDM is disabled, a breakpoint exception (vector $0C) is
acknowledged. The BKPT input has the same timing relationship to the data strobe trailing
edge as read cycle data. There is no breakpoint acknowledge bus cycle when BDM is
entered.

5.7.2.2.2 BGND Instruction. An illegal instruction, $4AFA, is reserved for use by
development tools. The CPU32+ defines $4AFA (BGND) to be a BDM entry point when
BDM is enabled. If BDM is disabled, an illegal instruction trap is acknowledged. lllegal
instruction traps are discussed in 5.6.2.8 Illegal or Unimplemented Instructions.

5.7.2.2.3 Double Bus Fault. The CPU32+ normally treats a double bus fault (two bus
faults in succession) as a catastrophic system error and halts. When this condition occurs
during initial system debug (a fault in the reset logic), further debugging is impossible until
the problem is corrected. In BDM, the fault can be temporarily bypassed so that its origin
can be isolated and eliminated.

5-56 MC68349 USER’S MANUAL MOTOROLA

5.7.2.3 ENTERING BDM. When the processor detects a BKPT or a double bus fault or
decodes a BGND instruction, it suspends instruction execution and asserts the FREEZE
output. FREEZE assertion is the first indication that the processor has entered BDM. Once
FREEZE has been asserted, the CPU enables the serial communication hardware and
awaits a command.

The CPU writes a unique value indicating the source of BDM transition into temporary
register A (ATEMP) as part of the process of entering BDM. A user can poll ATEMP and
determine the source (see Table 5-9) by issuing a read system register command
(RSREG). ATEMP is used in most debugger commands for temporary storage—it is
imperative that the RSREG command be the first command issued after transition into
BDM.

Table 5-9. Polling the BDM Entry Source

Source ATEMP 31-16 ATEMP 15-0
Double Bus Fault SSwW* $FFFF
BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000

*SSW is described in detail in 5.5.3 Fault Recovery.

A double bus fault during initial SP/PC fetch sequence is distinguished by a value of
$FFFFFFFF in the current instruction PC. At no other time will the processor write an odd
value into this register.

5.7.2.4 COMMAND EXECUTION. Figure 5-25 summarizes BDM command execution.
Commands consist of one 16-bit operation word and can include one or more 16-bit
extension words. Each incoming word is read as it is assembled by the serial interface.
The microcode routine corresponding to a command is executed as soon as the command
is complete. Result operands are loaded into the output shift register to be shifted out as
the next command is read. This process is repeated for each command until the CPU
returns to normal operating mode.

5.7.2.5 BDM REGISTERS. BDM processing uses three special-purpose registers to track
program context during development. A description of each register follows.

5.7.2.5.1 Fault Address Register (FAR). The FAR contains the address of the faulting
bus cycle immediately following a bus or address error. This address remains available
until overwritten by a subsequent bus cycle. Following a double bus fault, the FAR
contains the address of the last bus cycle. The address of the first fault (if one occurred) is
not visible to the user.

5.7.2.5.2 Return Program Counter (RPC). The RPC points to the location where fetching
will commence after transition from BDM to normal mode. This register should be
accessed to change the flow of a program under development. Changing the RPC to an
odd value will cause an address error when normal mode prefetching begins.

MOTOROLA MC68349 USER’S MANUAL 5-57

5.7.2.5.3 Current Instruction Program Counter (PCC). The PCC holds a pointer to the
first word of the last instruction executed prior to transition into BDM. Due to instruction
pipelining, the instruction pointed to may not be the instruction that caused the transition.
An example is a breakpoint on a released write. The bus cycle may overlap as many as
two subsequent instructions before stalling the instruction sequencer. A BKPT asserted
during this cycle will not be acknowledged until the end of the instruction executing at
completion of the bus cycle. PCC will contain $00000001 if BDM is entered via a double
bus fault immediately out of reset.

CPU32+ ACTIVITY DEVELOPMENT SYSTEM ACTIVITY
ENTER (BDM)
« ASSERT FREEZE SIGNAL
* WAIT FOR COMMAND SEND INITIAL COMMAND
+ LOAD COMMAND REGISTER

Y

* ENABLE SHIFT CLOCK
* SHIFT OUT 17 BITS
+ DISABLE SHIFT CLOCK

EXECUTE COMMAND

+ LOAD: NOT READY/ RESPONSE [<€
* PERFORM COMMAND
* STORE RESULTS

READ RESULTS/NEW COMMAND

* LOAD COMMAND REGISTER
* ENABLE SHIFT CLOCK

+ SHIFT IN/OUT 17 BITS

* DISABLE SHIFT CLOCK

* READ RESULT REGISTER

\

Y

IF RESULTS = YES
"NOT READY"

NO
CONTINUE

Figure 5-25. BDM Command Execution Flowchart

5-58 MC68349 USER’S MANUAL MOTOROLA

5.7.2.6 RETURNING FROM BDM. BDM is terminated when a resume execution (GO) or
call user code (CALL) command is received. Both GO and CALL flush the instruction
pipeline and prefetch instructions from the location pointed to by the RPC.

The return PC and the memory space referred to by the SR SUPV bit reflect any changes
made during BDM. FREEZE is negated prior to initiating the first prefetch. Upon negation
of FREEZE, the serial subsystem is disabled, and the signals revert to IPIPE and IFETCH
functionality.

5.7.2.7 SERIAL INTERFACE. Communication with the CPU32+ during BDM occurs via a
dedicated serial interface, which shares pins with other development features. The BKPT
signal becomes the DSCLK; DSl is received on IFETCH, and DSO is transmitted on
IPIPEO.

The serial interface uses a full-duplex synchronous protocol similar to the serial peripheral
interface (SPI) protocol. The development system serves as the master of the serial link
since it is responsible for the generation of DSCLK. If DSCLK is derived from the CPU32+
system clock, development system serial logic is unhindered by the operating frequency of
the target processor. Operable frequency range of the serial clock is from DC to one-half
the processor system clock frequency.

The serial interface operates in full-duplex mode—i.e., data is transmitted and received
simultaneously by both master and slave devices. In general, data transitions occur on the
falling edge of DSCLK and are stable by the following rising edge of DSCLK. Data is
transmitted most significant bit (MSB) first and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide—16 data bits and a status/control (S/C) bit.

16 15 0

| S/IC | DATA FIELD

Bit 16 indicates the status of CPU-generated messages as listed in Table 5-10.

Table 5-10. CPU Generated Message Encoding

Encoding Data Message Type
0 XXXX Valid Data Transfer
0 FFFF Command Complete; Status OK
1 0000 Not Ready with Response; Come Again
1 0001 BERR Terminated Bus Cycle; Data Invalid
1 FFFF lllegal Command

Command and data transfers initiated by the development system should clear bit 16. The
current implementation ignores this bit; however, Motorola reserves the right to use this bit
for future enhancements.

MOTOROLA MC68349 USER’S MANUAL 5-59

5.7.2.7.1 CPU Serial Logic. CPU32+ serial logic, shown in the left-hand portion of Figure
5-26, consists of transmit and receive shift registers and of control logic that includes
synchronization, serial clock generation circuitry, and a received bit counter.

Both DSCLK and DSI are synchronized to on-chip clocks, thereby minimizing the chance
of propagating metastable states into the serial state machine. Data is sampled during the
high phase of CLKOUT. At the falling edge of CLKOUT, the sampled value is made
available to internal logic. If there is no synchronization between CPU32+ and
development system hardware, the minimum hold time on DSI with respect to DSCLK is
one full period of CLKOUT.

cPU DEVELOPMENT SYSTEM
INSTRUCTION
REGISTER BUS DATA
A %
16
0
RCV DATA LATCH COMMAND LATCH
A
Y
SERIAL IN < DSt PARALLEL IN
PARALLEL OUT < > SERIAL OUT
DSO
L PARALLEL IN SERIAL IN J
SERIAL OUT < . PARALLEL OUT
A A
16 Y Y
STATUS < RESULT LATCH
EXECUTION _ Y 5
UNIT
SYNCHRONIZE _ STATUS DATA
MICROSEQUENCER T T
CONTROL |« +DSCLK CONTROL «_ SERIAL
LOGIC LOGIC CLOCK

Figure 5-26. Debug Serial I1/0 Block Diagram

The serial state machine begins a sequence of events based on the rising edge of the
synchronized DSCLK (see Figure 5-27). Synchronized serial data is transferred to the
input shift register, and the received bit counter is decremented. One-half clock period
later, the output shift register is updated, bringing the next output bit to the DSO signal.
DSO changes relative to the rising edge of DSCLK and does not necessarily remain
stable until the falling edge of DSCLK.

5-60 MC68349 USER’S MANUAL MOTOROLA

CLKOUT J |_

FREEZE

DSCLK |_

DSI

SAMPLE
WINDOW

INTERNAL
SYNCHRONIZED
DSCLK

INTERNAL
SYNCHRONIZED
DSI

DSO

CLKOUT J |_

Figure 5-27. Serial Interface Timing Diagram

One clock period after the synchronized DSCLK has been seen internally, the updated
counter value is checked. If the counter has reached zero, the receive data latch is
updated from the input shift register. At this same time, the output shift register is reloaded
with the “not ready/come again” response. Once the receive data latch has been loaded,
the CPU is released to act on the new data. Response data overwrites the “not ready”
response when the CPU has completed the current operation.

Data written into the output shift register appears immediately on the DSO signal. In
general, this action changes the state of the signal from a high (“not ready” response
status bit) to a low (valid data status bit) logic level. However, this level change only
occurs if the command completes successfully. Error conditions overwrite the “not ready”
response with the appropriate response that also has the status bit set.

A user can use the state change on DSO to signal hardware that the next serial transfer
may begin. A timeout of sufficient length to trap error conditions that do not change the
state of DSO should also be incorporated into the design. Hardware interlocks in the CPU
prevent result data from corrupting serial transfers in progress.

MOTOROLA MC68349 USER’S MANUAL 561

5.7.2.7.2 Development System Serial Logic. The development system, as the master of
the serial data link, must supply the serial clock. However, normal and BDM operations
could interact if the clock generator is not properly designed.

Breakpoint requests are made by asserting BKPT to the low state in either of two ways.
The primary method is to assert BKPT during a single bus cycle for which an exception is
desired. Another method is to assert BKPT, then continue to assert it until the CPU32+
responds by asserting FREEZE. This method is useful for forcing a transition into BDM
when the bus is not being monitored. Each method requires a slightly different serial logic
design to avoid spurious serial clocks.

Figure 5-28 represents the timing required for asserting BKPT during a single bus cycle.

FORCE_BGND

BKPT_TAG _I_I
seer - L[DT

FREEZE [|

Figure 5-28. BKPT Timing for Single Bus Cycle

Figure 5-29 depicts the timing of the BKPT/FREEZE method. In both cases, the serial
clock is left high after the final shift of each transfer. This technique eliminates the
possibility of accidentally tagging the prefetch initiated at the conclusion of a BDM session.
As mentioned previously, all timing within the CPU is derived from the rising edge of the
clock; the falling edge is effectively ignored.

FORCE_BGND IIIIIIIII”

BKPT_TAG

st L—— T e

FREEZE | L

Figure 5-29. BKPT Timing for Forcing BDM

Figure 5-30 represents a sample circuit providing for both BKPT assertion methods. As
the name implies, FORCE_BGND is used to force a transition into BDM by the assertion
of BKPT. FORCE_BGND can be a short pulse or can remain asserted until FREEZE is
asserted. Once asserted, the set-reset latch holds BKPT low until the first SHIFT_CLK is
applied.

562 MC68349 USER’S MANUAL MOTOROLA

BKPT_TAG 4Do—>

SHIFT_CLK >
z» S1 Q

RESET4D0—> s2

FORCE_BGND — > R Q

J_> BKPT/DSCLK

Y

Figure 5-30. BKPT/DSCLK Logic Diagram

BKPT_TAG should be timed to the bus cycles since it is not latched. If extended past the
assertion of FREEZE, the negation of BKPT_TAG appears to the CPU32+ as the first
DSCLK.

DSCLK, the gated serial clock, is normally high, but it pulses low for each bit to be
transferred. At the end of the seventeenth clock period, it remains high until the start of the
next transmission. Clock frequency is implementation dependent and may range from DC
to the maximum specified frequency. Although performance considerations might dictate a
hardware implementation, software solutions can be used provided serial bus timing is
maintained.

5.7.2.8 COMMAND SET. The following paragraphs describe the command set available in
BDM.

5.7.2.8.1 Command Format. The following standard bit format is utilized by all BDM
commands.

15 10 9 8 7 6 5 4 3 2 0
OPERATION | o [rw | opsze | o | o | ap | REGISTER
EXTENSION WORD(S)

Bits 15-10—Operation Field

The operation field specifies the commands. This 6-bit field provides for a maximum of
64 unique commands.

R/W Field

The R/W field specifies the direction of operand transfer. When the bit is set, the
transfer is from the CPU to the development system. When the bit is cleared, data is
written to the CPU or to memory from the development system.

Operand Size

For sized operations, this field specifies the operand data size. All addresses are
expressed as 32-bit absolute values. The size field is encoded as listed in Table 5-11.

MOTOROLA MC68349 USER’S MANUAL 5-63

Table 5-11. Size Field Encoding

Encoding Operand Size
00 Byte
01 Word
10 Long
11 Reserved

Address/Data (A/D) Field

The A/D field is used by commands that operate on address and data registers. It
determines whether the register field specifies a data or address register. One indicates
an address register; zero indicates a data register. For other commands, this field may
be interpreted differently.

Register Field:

In most commands, this field specifies the register number for operations performed on
an address or data register.

Extension Word(s) (as required):

At this time, no command requires an extension word to specify fully the operation to be
performed, but some commands require extension words for addresses or immediate
data. Addresses require two extension words because only absolute long addressing is
permitted. Immediate data can be either one or two words in length—byte and word
data each require a single extension word; long-word data requires two words. Both
operands and addresses are transferred most significant word first.

5.7.2.8.2 Command Sequence Diagram. A command sequence diagram (see Figure 5-
31) illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each diagram
corresponds to the data transmitted by the development system to the CPU; the bottom
half corresponds to the data returned by the CPU in response to the development system
commands. Command and result transactions are overlapped to minimize latency.

The cycle in which the command is issued contains the development system command
mnemonic (in this example, "read memory location"). During the same cycle, the CPU
responds with either the lowest order results of the previous command or with a command
complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of the
memory address. The CPU returns a "not ready" response unless the received command
was decoded as unimplemented, in which case the response data is the illegal command
encoding. If an illegal command response occurs, the development system should
retransmit the command.

5-64 MC68349 USER’S MANUAL MOTOROLA

NOTE

The “not ready” response can be ignored unless a memory bus
cycle is in progress. Otherwise, the CPU can accept a new
serial transfer with eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The CPU always returns the “not ready” response in this cycle. At the completion
of the third cycle, the CPU initiates a memory read operation. Any serial transfers that
begin while the memory access is in progress return the “not ready” response.

Results are returned in the two serial transfer cycles following the completion of memory
access. The data transmitted to the CPU during the final transfer is the opcode for the
following command. Should a memory access generate either a bus or address error, an
error status is returned in place of the result data.

— COMMANDS TRANSMITTED TO THE CPU32+

— COMMAND CODE TRANSMITTED DURING THIS CYCLE

— HIGH-ORDER 16 BITS OF MEMORY ADDRESS
— LOW-ORDER 16 BITS OF MEMORY ADDRESS
NONSERIAL-RELATED ACTIVITY
SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED
NEXT
Y Y Y ERD (I COMMAND
READ (LONG MS ADDR LS ADDR MEMORY o XX J CODE
7‘7\9 "NOT READY,, "NOT READY, LOGATION \UNOT READYY/
l\\ XXX N/ NEXT CMDY yd N o (NEXTCMD
\UILLEGAL/ [\OT READY/ MS RESULT LSRESULT
XXX\ /" NEXTCMD
BERR/AERR "NOT READY.
DATA UNUSED FROM
THIS TRANSFER
SEQUENCE TAKEN IF BUS ERROR
L SEQUENCE TAKEN IF OR ADDRESS ERROR OCCURS ON
ILLEGAL COMMAND MEMORY ACCESS
IS RECEIVED BY CPU32+
— HIGH- AND LOW-ORDER
— RESULTS FROM PREVIOUS COMMAND 16 BITS OF RESULT

— RESPONSES FROM THE CPU

Figure 5-31. Command Sequence Diagram

MOTOROLA MC68349 USER’S MANUAL 5-65

5.7.2.8.3 Command Set Summary. The BDM command set is summarized in Table 5-12.
Subsequent paragraphs contain detailed descriptions of each command.

Table 5-12. BDM Command Summary

Command

Mnemonic

Description

Read A/D Register

RAREG/RDREG

Read the selected address or data register and return the results
via the serial interface.

Write A/D Register

WAREG/WDREG

The data operand is written to the specified address or data
register.

Read System Register

RSREG

The specified system control register is read. All registers that can
be read in supervisor mode can be read in BDM.

Write System Register

WSREG

The operand data is written into the specified system control
register.

Read Memory Location

READ

Read the sized data at the memory location specified by the long-
word address. The SFC register determines the address space
accessed.

Write Memory Location

WRITE

Write the operand data to the memory location specified by the
long-word address. The DFC register determines the address
space accessed.

Dump Memory Block

DUMP

Used in conjunction with the READ command to dump large blocks
of memory. An initial READ is executed to set up the starting
address of the block and to retrieve the first result. Subsequent
operands are retrieved with the DUMP command.

Fill Memory Block

FILL

Used in conjunction with the WRITE command to fill large blocks of
memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent
operands are written with the FILL command.

Resume Execution

GO

The pipeline is flushed and refilled before resuming instruction
execution at the return PC.

Call User Code

CALL

Current PC is stacked at the location of the current SP. Instruction
execution begins at user patch code.

Reset Peripherals

RST

Asserts RESET for 512 clock cycles. The CPU is not reset by this
command. Synonymous with the CPU RESET instruction.

No Operation

NOP

NOP performs no operation and may be used as a null command.

5-66

MC68349 USER’S MANUAL

MOTOROLA

5.7.2.8.4 Read A/D Register (RAREG/RDREG). Read the selected address or data
register and return the results via the serial interface.

Command Format:

15 14 13 12 u 10 9 8 7 6 5 4 3 2 1 0

|O|O|1|O|O|O|O|1|1|O|O|O|A/D| REGISTER

Command Sequence:

/ RDREGIRAREG Y\ ./ XXX\ . /NEXTCMDY
\ 77) \WsSResuLT / ~ \LSRESULT J

XXX\ (CNEXTCMD
\UILLEGAL" J ~ \UNOT READY"/

Operand Data:
None

Result Data:
The contents of the selected register are returned as a long-word value. The data is
returned most significant word first.

5.7.2.8.5 Write A/D Register (WAREG/WDREG). The operand (long-word) data is written
to the specified address or data register. All 32 bits of the register are altered by the write.

Command Format:

5 2w 1B 2 1 10 9 8 7 6 5 4 3 2 0
o | o 2| o] o of of of 1| o o] o ap]| ReEcsTER

Command Sequence:

WDREG/\NAREG ‘/ MS DATA ‘/ LSDATA ‘/ NEXTCMD "\
“\UNoTReADY") " \UNOTREADY" /) ™ \"cMD cOMPLETE" /

XXX NEXT CMD

"ILLEGAL" "NOT READY"

Operand Data:

Long-word data is written into the specified address or data register. The data is
supplied most significant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

MOTOROLA MC68349 USER’S MANUAL 5-67

5.7.2.8.6 Read System Register (RSREG). The specified system control register is read.
All registers that can be read in supervisor mode can be read in BDM. Several internal
temporary registers are also accessible.

Command Format:

[o o[1 | o] o 1 [o] o] 1] ofof of REGISTER

Command Sequence:

/~ RSREG ,/ XXX > (NEXT CMD
77 \MSRESULT J LSRESULT

NEXT CMD
"ILLEGAL" "NOT READY"

Operand Data:
None
Result Data:

Always returns 32 bits of data, regardless of the size of the register being read. If the
register is less than 32 bits, the result is returned zero extended.

Register Field:
The system control register is specified by the register field (see Table 5-13).

Table 5-13. Register Field for RSREG and WSREG

System Register Select Code
Return Program Counter (RPC) 0000
Current Instruction Program Counter (PCC) 0001
Status Register (SR) 1011
User Stack Pointer (USP) 1100
Supervisor Stack Pointer (SSP) 1101
Source Function Code Register (SFC) 1110
Destination Function Code Register (DFC) 1111
Temporary Register A (ATEMP) 1000
Fault Address Register (FAR) 1001
Vector Base Register (VBR) 1010

5-68 MC68349 USER’S MANUAL MOTOROLA

5.7.2.8.7 Write System Register (WSREG). Operand data is written into the specified
system control register. All registers that can be written in supervisor mode can be written
in BDM. Several internal temporary registers are also accessible.

Command Format:

o T ol i T ol ol] ol ol o] o] o] ——

Command Sequence:

WSREG (MSDATA \ / LSDATA ©\ ./ NEXTCMD

X’ 'NOT READY" UNOT READY"/ \"CMD COMPLETE" }

XXX NEXT CMD
"ILLEGAL" “NOT READY"

Operand Data:

The data to be written into the register is always supplied as a 32-bit long word. If the
register is less than 32 bits, the least significant word is used.

Result Data:
“Command complete” status is returned when register write is complete.

Register Field:

The system control register is specified by the register field (see Table 5-24). The FAR
is a read-only register—any write to it is ignored.

MOTOROLA MC68349 USER’S MANUAL 5-69

5.7.2.8.8 Read Memory Location (READ). Read the sized data at the memory location
specified by the long-word address. Only absolute addressing is supported. The SFC
register determines the address space accessed. Valid data sizes include byte, word, or
long word.

Command Format:

5 14 13 1= 1 1 9 8 7 6 5 4 3 2 1
[o] o[o 2| 2| of of 2] opsize [o[o |

o

Command Sequence:

READ (B/W) > (MSADDR Y /LSADDR) ME%%Y
U =) \ \NOTREADY"/ ~ UNOTREADY"/ LOCATION NOT READY!
XXX NEXT CMD NEXT CMD
"ILLEGAL" "NOT READY" RESULT
XXX\ [NEXTCMD \
_BERR/IAERR J = \NoT READY"/
READ (LONG) __(_MSADDR \ ./ ISADDR MEI\%)%Y (
U = /\ > (NOT READY" /> UNOT READY"/ LOCATION NOT READY'

_> XXX) NEXT CMD oxxx N\ (_NEXT CMD "\
"ILLEGAL" NOT READY" \Ms RESULT j “ \LSRESULT J

XXX > (NEXT CMD

\BERR/AERR j "NOT READY"

Operand Data:
The single operand is the long-word address of the requested memory location.

Result Data:

The requested data is returned as either a word or long word. Byte data is returned in
the least significant byte of a word result, with the upper byte cleared. Word results
return 16 bits of significant data; long-word results return 32 bits.

A successful read operation returns data bit 16 cleared. If a bus or address error is
encountered, the returned data is $10001.

570 MC68349 USER’S MANUAL MOTOROLA

5.7.2.8.9 Write Memory Location (WRITE). Write the operand data to the memory
location specified by the long-word address. The DFC register determines the address
space accessed. Only absolute addressing is supported. Valid data sizes include byte,
word, and long word.

Command Format:

5 14 13 12 u1n 10 9 8 7 6 5
[o] o[o 2| 2| of of of opsize [o[o of of o] o]

Command Sequence:

(WRITE@MW) _ (MSADDR) , (" TSADDR Y\ /~ DATA N\ | ,ME
 J ~\oTReADY"/ ~ \WOTREADY"J ~ \NOT READY") ™[| ocaTioN NOT READY"

> NEXTCMD 1\
\CMD COMPLETE" }

;/ XXX\ >/NEXT CMD
\UILLEGAL" J 7 UNOT READY"

BERR/AERR >
__» ((NEXT CMD
“NOT READY"
WRITE (LONG) > MSADDR \ _/ LSADDR Y _ /" MSDATA
™ / \NOT READY" J NOT READY"]~ \NOT READYJ\
o XXX Y\ /NEXTCMD \
_'ILLEGAL" J ~ \'NOT READY" /
LSDATA M‘é’ﬁg@ XXX
'NOT READY" LOCATION NOT READY" /
«f NEXTCMD
"CVD COMPLETE" }

BERR/AERR

NEXT CMD
"NOT READY"

Operand Data:
Two operands are required for this instruction. The first operand is a long-word absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least
significant byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:

Successful write operations return a status of $0FFFF. Bus or address errors on the
write cycle are indicated by the assertion of bit 16 in the status message and by a data
pattern of $0001.

MOTOROLA MC68349 USER’S MANUAL 571

5.7.2.8.10 Dump Memory Block (DUMP). DUMP is used in conjunction with the READ
command to dump large blocks of memory. An initial READ is executed to set up the
starting address of the block and to retrieve the first result. Subsequent operands are
retrieved with the DUMP command. The initial address is incremented by the operand size
(1, 2, or 4) and saved in a temporary register. Subsequent DUMP commands use this
address, increment it by the current operand size, and store the updated address back in
the temporary register.

NOTE

The DUMP command does not check for a valid address in the
temporary register—DUMP is a valid command only when
preceded by another DUMP or by a READ command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is given, allowing the operand
size to be altered dynamically.

Command Format:

5 14 13 12 1 1 9 8 7 6 5
[o] o[o o | 2| 1 [of 2] opsize [o[of of of of o]

Command Sequence:

(DUMP (LONG)\ ME,%%Y (o f XXX \)
U ™) LOCATION \'NOT READY"/

NEXT CMD
RESULT

[OxxX_ O\ _/ NEXTCMD

“\BERRIAERR/ = \UNOT READYY/

o XXX\ /" NEXTCMD)
_'ILLEGAL J T \UNoT READY/

oo | P] w0
N, G)
222 LOCATION Lol

NEXTCMD \ ./~ NEXT CMR
_MSRESULT/ ~ _LSRESULT /

XXX\ _/ NEXTCMD
“\BERR/AERR / = \UNOT READY"/

[xxx_ O\ _/ NEXTCMD \
_ILLEGAL" J ~ \UNOT READYY/

572 MC68349 USER’S MANUAL MOTOROLA

Operand Data:
None

Result Data:

Requested data is returned as either a word or long word. Byte data is returned in the
least significant byte of a word result. Word results return 16 bits of significant data;
long-word results return 32 bits. Status of the read operation is returned as in the READ
command: $0xxxx for success, $10001 for bus or address errors.

5.7.2.8.11 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE
command to fill large blocks of memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent operands are written
with the FILL command. The initial address is incremented by the operand size (1, 2, or 4)
and is saved in a temporary register. Subsequent FILL commands use this address,
increment it by the current operand size, and store the updated address back in the
temporary register.

NOTE

The FILL command does not check for a valid address in the
temporary register—FILL is a valid command only when
preceded by another FILL or by a WRITE command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a FILL command is given, allowing the operand size
to be altered dynamically.

Command Format:

5 14 13 12 11 100 9 8 7 6 5
|0|0|0|1|1|1|0|0|OPSIZE|0|0|0|O|O|O|

MOTOROLA MC68349 USER’S MANUAL 573

Command Sequence:

WRITE (>
[FILLEW) (" MSDATA Y (" LSDATA N\ _| ,Eviory XXX\
o) \ ot READY/ ~ \WNOTREADYY/ | LocaTioN "NOT READY"

XXX\ (" NEXT CMD)
\ ILLEGAL" J ~ \UNOT READY"/ \CMD COMPLETE.,

([XXX \ (NEXTCMD \
_BERR/AERR / \NOT READY"/

FILL (LONG) S oara N\ | AR ([Xxx \>
o) \ NoTREADYY | LocaTion UNOT READY"/

[XxX___\ ./ NEXTCMD > NEXTCMD
_ILLEGAL" J~ \UNOT READY"/ \:CMD COMPLETEY/

XXX\ [NEXTCMD \

\BERR/AERR/ ~ \UNOT READY"/

Operand Data:

A single operand is data to be written to the memory location. Byte data is transmitted
as a 16-bit word, justified in the least significant byte; 16- and 32-bit operands are
transmitted as 16 and 32 bits, respectively.

Result Data:

Status is returned as in the WRITE command: $0FFFF for a successful operation and
$10001 for a bus or address error during write.

5.7.2.8.12 Resume Execution (GO). The pipeline is flushed and refilled before normal
instruction execution is resumed. Prefetching begins at the return PC and current privilege
level. If either the PC or SR is altered during BDM, the updated value of these registers is
used when prefetching commences.

NOTE

The processor exits BDM when a bus error or address error
occurs on the first instruction prefetch from the new PC—the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.

574 MC68349 USER’S MANUAL MOTOROLA

Command Format:

(GO NORMAL
_? J \ MODE

o XXX N /" NEXTCMD
\UILLEGAL" J ~ \UNOT READY"/

Operand Data:
None

Result Data:
None

5.7.2.8.13 Call User Code (CALL). This instruction provides a convenient way to patch
user code. The return PC is stacked at the location pointed to by the current SP. The
stacked PC serves as a return address to be restored by the RTS command that
terminates the patch routine. After stacking is complete, the 32-bit operand data is loaded
into the PC. The pipeline is flushed and refilled from the location pointed to by the new
PC, BDM is exited, and normal mode instruction execution begins.

NOTE

If a bus error or address error occurs during return address
stacking, the CPU returns an error status via the serial
interface and remains in BDM.

If a bus error or address error occurs on the first instruction
prefetch from the new PC, the processor exits BDM and the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.

Command Format:

MOTOROLA MC68349 USER’S MANUAL 575

Command Sequence:

(_CALL) / MSADDR \ _/ LSADDR STACK

\ 27?2 \NOT READY"/ \QNOTREADYL/ RETURN PC
(XXX \ (NEXTCMD \ ¢
_"ILLEGAL" / \NOT READY"/ FREEZE

Operand Data:

NEGATED

!

PREFETCH

NORMAL

STARTED

MODE

\ XXX\ _/ NEXTCMD \

"\ BERR/AERR/ ~ \U'NOT READY"/

The 32-bit operand data is the starting location of the patch routine, which is the initial

PC upon exiting BDM.

Result Data:
None

As an example, consider the following code segment. It outputs a character from the
MC68340 serial module channel A.

CHKSTAT: MOVE.B SRA,DO
BNE.B CHKSTAT Loop unt
MOVE.B TBA,OUTPUT Transmit
MISSING: ANDL.B #3,D0 Check fo
RTS

Move serial status to DO

il condition true
character

r TXEMP flag

BDM and the CALL command can be used to patch the code as follows:
1. Breakpoint user program at CHKSTAT

Enter BDM

Exit BDM
Execute MISSING code
Return to user program

ook wnN

576

Execute CALL command to MISSING

MC68349 USER’S MANUAL

MOTOROLA

5.7.2.8.14 Reset Peripherals (RST). RST asserts RESET for 512 clock cycles. The CPU
IS not reset by this command. This command is synonymous with the CPU RESET
instruction.

Command Format:

14 13 12 n 10

15 9 8 7 6 5 4 3 2 1 0
Lol of of of of 2] of of of of of of of of of o

Command Sequence:

([RESET ASSERT ‘ (XXX \ >

__??? J RESET \NOT READY"/
\ [NEXTCMD '\
CMD COMPLETE]

/ XXX \ NEXT CMD
ILLEGAL "NOT READY",

Operand Data:
None

Result Data:

The “command complete” response ($0FFFF) is loaded into the serial shifter after
negation of RESET.

5.7.2.8.15 No Operation (NOP). NOP performs no operation and may be used as a null
command where required.

Command Format:

14 13 12 n 10

15 o 8 7 6 5 4 3 2 1 0
L of of of of of of of of of of of of of of of o]

Command Sequence:

[/ _NOP > NEXTCMD
U) \'CMD COMPLETE"/

> XXX } 5 { NEXTCMD_\
\UILLEGAL"] UNOT READY" /

MOTOROLA MC68349 USER’S MANUAL 577

Operand Data:
None

Result Data:

The “command complete” response ($O0FFFF) is returned during the next shift
operation.

5.7.2.8.16 Future Commands. Unassigned command opcodes are reserved by Motorola
for future expansion. All unused formats within any revision level will perform a NOP and
return the ILLEGAL command response.

5.7.3 Deterministic Opcode Tracking

The CPU32+ utilizes deterministic opcode tracking to trace program execution. Three

instruction pipeline operation.

5.7.3.1 INSTRUCTION FETCH (IFETCH). IFETCH indicates which bus cycles are
accessing data to fill the instruction pipeline. IFETCH is pulse-width modulated to multiplex
two indications on a single pin. Asserted for a single clock cycle, IFETCH indicates that
the data from the current bus cycle is to be routed to the instruction pipeline. IFETCH held
low for two clock cycles indicates that the instruction pipeline has been flushed. The data
from the bus cycle is used to begin filling the empty pipeline. Both user and supervisor
mode fetches are signaled by IFETCH .

Proper tracking of bus cycles via IFETCH on a fast bus requires a simple state machine.
On a two-clock bus, IFETCH may signal a pipeline flush with associated prefetch followed
immediately by a second prefetch. That is, IFETCH remains asserted for three clocks, two
clocks indicating the flush/fetch and a third clock signaling the second fetch. These two
operations are easily discerned if the tracking logic samples IFETCH on the two rising
edges of CLKOUT, which follow the AS (DS during show cycles) falling edge. Three-clock
and slower bus cycles allow time for negation of the signal between consecutive
indications and do not experience this operation.

5.7.3.2 INSTRUCTION PIPE (IPIPE1, IPIPEO). The internal instruction pipeline can be
modeled as a three-stage FIFO (see Figure 5-32). Stage A is an input buffer—data can be
used out of stages B and C. The IPIPE1, IPIPEO signals indicate the advance of
instructions in the pipeline.

The 16-bit instruction register A (IRA) and 16-bit instruction register L (IRL) hold incoming
words as they are prefetched. No decoding occurs in IRA or IRL. Instruction register B
(IRB) provides initial decoding of the opcode and decoding of extension words; it is a
source of immediate data. Instruction register C (IRC) supplies residual opcode decoding
during instruction execution.

578 MC68349 USER’S MANUAL MOTOROLA

DATA
BUS —>| R [—>| R —>| R

(31-16) —>
A B c
| EXTENSION OPCODES
WORDS RESIDUAL
DATA

Y
|

BUS
(15-0)

Figure 5-32. Functional Model of Instruction Pipeline

When the CPU32+ is performing 32-bit instruction fetches, IRA and IRL are loaded in
parallel from the IMB or the CIC—the most significant word is loaded into IRA. As the
microcode sequencing generates requests from pipeline stage A, instruction words are
loaded into IRB first from IRA, followed by IRL. Once IRL is transferred, IRA and IRL are
refilled during the next instruction fetch bus cycle. For 16-bit instruction fetches, IRL is not
used, and IRB is always loaded from IRA.

When IPIPEO is low during a clock cycle, it indicates the start of a new instruction and
subsequent replacement of data in IRC. This action causes a full advance of the pipeline
(IRB O IRC and IRA/IRL O IRB).

When IPIPE1 is low during a clock cycle, it indicates the use of an extension word from
IRB on that clock cycle. Regardless of the presence of valid data in IRA or IRL, the
contents of IRB are invalidated when IPIPE1 is asserted. If IRA or IRL contain valid data,
the data is copied into IRB (IRA/IRL [0 IRB), and the IRB stage is revalidated.

Data loaded into IRA and IRL propagates automatically through subsequent empty
pipeline stages. Signals that show the progress of instructions through IRB and IRC are
necessary to accurately monitor pipeline operation. These signals are provided by IRA,
IRL and IRB validity bits. When a pipeline advance occurs, the validity bit of the stage
being loaded is set, and the validity bit of the stage supplying the data is negated.

Because instruction execution is not timed to bus activity, IPIPE1 and IPIPEO are
synchronized with the system clock and not the bus. Figure 5-33 illustrates the timing in
relation to the system clock.

MOTOROLA MC68349 USER’S MANUAL 579

IRB=>IRC IRB—=IRC

‘IRAIIRL IRA/IRL | IRA/IRL IRA/IRL
— |RB ‘—>IRB —> |RB \ —|RB

cour [[[LT LT LT L L L 1 L
wrEc _/ ./ /

INSTRUCTION INSTRUCTION INSTRUCTION

START EXTENSION START START

LONG WORD
IPIPE1 \ USED /

Figure 5-33. Instruction Pipeline Timing Diagram

IPIPE1 and IPIPEO should be sampled on the falling edge of the clock. In BDM mode,
IPIPE1 is undefined and IPIPEO functions as DSO.

5.7.3.3 OPCODE TRACKING DURING LOOP MODE. IPIPEx and IFETCH continue to
work normally during loop mode. IFETCH indicates all instruction fetches up through the
point that data begins recirculating within the instruction pipeline. IPIPEx continues to
signal the start of instructions and the use of extension words even though data is being
recirculated internally. IFETCH returns to normal operation with the first fetch after exiting
loop mode.

5.8 INSTRUCTION EXECUTION TIMING

This section describes the instruction execution timing of the CPU32+. External clock
cycles are used to provide accurate execution and operation timing guidelines, but not
exact timing for every possible circumstance. This approach is used because exact
execution time for an instruction or operation depends on concurrence of independently
scheduled resources, on memory speeds, and on other variables.

An assembly language programmer or compiler writer can use the information in this
section to predict the performance of the CPU32+. Additionally, timing for exception
processing is included so that designers of multitasking or real-time systems can predict
task-switch overhead, maximum interrupt latency, and similar timing parameters.
Instruction timing is given in clock cycles to eliminate clock frequency dependency.

Most instruction timing information in the following subsections is taken from the CPU32
documentation. It applies to the CPU32+ when it is executing in 16-bit mode.

5.8.1 Resource Scheduling

The CPU32+ contains several independently scheduled resources. The organization of
these resources within the CPU32+ is shown in Figure 5-34. Some variation in instruction
execution timing results from concurrent resource utilization. Because resource
scheduling is not directly related to instruction boundaries, it is impossible to make an
accurate prediction of the time required to complete an instruction without knowing the
entire context within which the instruction is executing.

5-80 MC68349 USER’S MANUAL MOTOROLA

MICROSEQUENCER AND CONTROL

CONTROL STORE

INSTRUCTION PIPELINE

K

WV

STAGE STAGE
C B

STAGE

CONTROL LOGIC

EXECUTION UNIT

PROGRAM
COUNTER
SECTION

DATA
SECTION

ﬁ

ADDRESS
BUS

WRITE-PENDING
BUFFER

PREFETCH
CONTROLLER

-

MICROBUS

i

DATA
BUS

CONTROLLER

<

BUS CONTROL
SIGNALS

Figure 5-34. Block Diagram of Independent Resources

5.8.1.1 MICROSEQUENCER. The microsequencer either executes microinstructions or
awaits completion of accesses necessary to continue microcode execution. The
microsequencer supervises the bus controller, instruction execution, and internal
processor operations such as calculation of EA and setting of condition codes. It also
initiates instruction word prefetches after a change of flow and controls validation of
instruction words in the instruction pipeline.

5.8.1.2 INSTRUCTION PIPELINE. The CPU32+ contains a two-word instruction pipeline
where instruction opcodes are decoded. Each stage of the pipeline is initially filled under
microsequencer control and subsequently refilled by the prefetch controller as it empties.

Stage A of the instruction pipeline is a buffer. Prefetches completed on the bus before
stage B empties are temporarily stored in this buffer. Instruction words (instruction
operation words and all extension words) are decoded at stage B. Residual decoding and
execution occur in stage C.

Each pipeline stage has an associated status bit that shows whether the word in that
stage was loaded with data from a bus cycle that terminated abnormally.

MOTOROLA MC68349 USER’S MANUAL 581

5.8.1.3 BUS CONTROLLER RESOURCES. The bus controller consists of the instruction
prefetch controller, the write pending buffer, and the microbus controller. These three
resources transact all reads, writes, and instruction prefetches required for instruction
execution.

The bus controller and microsequencer operate concurrently. The bus controller can
perform a read or write or schedule a prefetch while the microsequencer controls EA
calculation or sets condition codes.

The microsequencer can also request a bus cycle that the bus controller cannot perform
immediately. When this happens, the bus cycle is queued, and the bus controller runs the
cycle when the current cycle has completed.

5.8.1.3.1 Prefetch Controller. The instruction prefetch controller receives an initial
request from the microsequencer to initiate prefetching at a given address. Subsequent
prefetches are initiated by the prefetch controller whenever a pipeline stage is invalidated,
either through instruction completion or through use of extension words. Prefetch occurs
as soon as the bus is free of operand accesses previously requested by the
microsequencer. Additional state information permits the controller to inhibit prefetch
requests when a change in instruction flow (e.g., a jump or branch instruction) is
anticipated.

In a typical program, 10 to 25 percent of the instructions cause a change of flow. Each
time a change occurs, the instruction pipeline must be flushed and refilled from the new
instruction stream. If instruction prefetches, rather than operand accesses, were given
priority, many instruction words would be flushed unused, and necessary operand cycles
would be delayed. To maximize available bus bandwidth, the CPU32+ will schedule a
prefetch only when the next instruction is not a change-of-flow instruction and when there
IS room in the pipeline for the prefetch.

5.8.1.3.2 Write-Pending Buffer. The CPU32+ incorporates a single-operand write-
pending buffer. The buffer permits the microsequencer to continue execution after a
request for a write cycle is queued in the bus controller. The time needed for a write at the
end of an instruction can overlap the head cycle time for the following instruction, thus
reducing overall execution time. Interlocks prevent the microsequencer from overwriting
the buffer.

5.8.1.3.3 Microbus Controller. The microbus controller performs bus cycles issued by
the microsequencer. Operand accesses always have priority over instruction prefetches.
Word and byte operands are accessed in a single CPU-initiated bus cycle, although the
external bus interface may be required to initiate a second cycle when a word operand is
sent to a byte-sized external port. If long operands are accessed from a 16-bit port, they
are accessed in two bus cycles, most significant word first.

The instruction pipeline is capable of recognizing instructions that cause a change of flow.
It informs the bus controller when a change of flow is imminent, and the bus controller
refrains from starting prefetches that would be discarded due to the change of flow.

5-82 MC68349 USER’S MANUAL MOTOROLA

5.8.1.4 INSTRUCTION EXECUTION OVERLAP. Overlap is the time, measured in clock
cycles, that an instruction executes concurrently with the previous instruction. As shown in
Figure 5-35, portions of instructions A and B execute simultaneously, reducing total
execution time. Because portions of instructions B and C also overlap, overall execution
time for all three instructions is also reduced.

Each instruction contributes to the total overlap time. The portion of execution time at the
end of instruction A that can overlap the beginning of instruction B is called the tail of
instruction A. The portion of execution time at the beginning of instruction B that can
overlap the end of instruction A is called the head of instruction B. The total overlap time
between instructions A and B is the smaller tail of A and the head of B.

li INSTRUCTION A —|
li INSTRUCTION B 4'

li INSTRUCTION C 4'

e

OVERLAP OVERLAP

Figure 5-35. Simultaneou