

MOTOROLA MECL

MECL HIGH-SPEED INTEGRATED CIRCUITS

MECL 10,000 Series

MECL III MC1600 Series

MI0800 PROCESSOR 5 FAMILY

PHASE-LOCKED LOOP COMPONENTS

. • У •

MOTOROLA MECL INTEGRATED CIRCUITS

Prepared by Technical Information Center

This book presents technical data for a broad line of MECL integrated circuits. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent right of any manufacturer.

Series B Third Printing ©MOTOROLA INC., 1978 Previous Edition ©1974 "All Rights Reserved" MECL, MECL I, MECL II, MECL III, MECL 10,000, MTTL, and QUIL are trademarks of Motorola Inc.

.

CONTENTS

Page	
DEVICE INDEX	
CHAPTER 1 – GENERAL INFORMATION	
High-Speed Logics	
MECL Products/General Characteristics	
MECL Applications 1-4	
Basic Considerations for High-Speed Logic Design	
Circuit Description 1-6	
Definitions of Letter Symbols and Abbreviations	
Technical Data	
General Characteristics and Specifications	
Maximum Ratings	
MECL Transfer Characteristics	
DC Test Parameters 1-1	
Noise Margin	
AC/Switching Parameters	
Operational Data	
Power Supply Considerations	
Power Dissipation	
Loading Characteristics 1.1	
Unused MECL Inputs	
System Design Considerations 1-2	
Thermal Management	
Air Flow	1
Thermal Effects on Noise Margin 1-2	2
Mounting and Heat Sink Suggestions	2
Interfacing MECL to Slower Logic Types	3
Circuit Interconnections 1-2	
Clock Distribution	
Logic Shortcuts	
Summary of Recommendations 1-2	
Package Outline Dimensions 1-20 Supplementary Literature and Application Notes 1-3	
CHAPTER 2 – SELECTOR GUIDES 2-1	
MECL 10,000 Series	
MIL-M-38510 JAN Qualified MECL Devices	
MECL III MC1600 Series 2-5	
CHAPTER 3 – MECL 10,000 SERIES DATA SHEETS 3-1	
CHAPTER 4 – MECL III MC1600 SERIES DATA SHEETS	
CHAPTER 5 – MI0800 PROCESSOR FAMILY 5-1	
CHAPTER 6 – PHASE-LOCKED LOOP COMPONENTS	

DEVICE INDEX

Device Number MC1648/MC1648M	Function Voltage-Controlled Oscillator	Page
MC1650/MC1651 MC1654 MC1658 MC1660	Dual A/D Converter	. 4-20 . 4-22
MC1662 MC1664 MC1666 MC1668 MC1670	Quad 2-Input NOR Gate Quad 2-Input OR Gate Dual Clocked R-S Flip-Flop Dual Clocked Latch Master-Slave Flip-Flop	4-28 4-29 4-30
MC1672 MC1674 MC1678 MC1688 MC1690	Triple 2-Input Exclusive-OR Gate Triple 2-Input Exclusive-NOR Gate Bi-Quinary Counter Dual 4-5-Input OR/NOR Gate UHF Prescaler Type D Flip-Flop	4-35 4-36 4-38
MC1692 MC1694 MC1697 MC1699	Quad Line Receiver	4-43 4-44
MC10100/MC10500 MC10101/MC10501 MC10102/MC10502 MC10103/MC10503 MC10104/MC10504	Quad 2-Input NOR Gate with Strobe Quad OR/NOR Gate Quad 2-Input NOR Gate Quad 2-Input OR Gate Quad 2-Input AND Gate	3-3 3-3 3-4
MC10105/MC10505 MC10106/MC10506 MC10107/MC10507 MC10109/MC10509 MC10110	Triple 2-3-2 Input OR/NOR Gate Triple 4-3-3 Input NOR Gate Triple 2-Input Exclusive OR/Exclusive NOR Dual 4-5 Input OR/NOR Gate Dual 3-Input 3-Output OR Gate	3-6 3-7 3-8
MC10111 MC10113/MC10513 MC10114/MC10514 MC10115/MC10515 MC10116/MC10516	Dual 3-Input 3-Output NOR Gate Quad Exclusive OR Gate Triple Line Receiver Quad Line Receiver Triple Line Receiver	3-10 3-11 3-13
MC10117/MC10517 MC10118/MC10518 MC10119/MC10519 MC10121/MC10521 MC10123	Dual 2-Wide 2-3-Input OR-AND/OR-AND-INVERT Gate	3-15 3-16 3-17
MC10124/MC10524 MC10125/MC10525 MC10128 MC10129 MC10130/MC10530	Quad TTL-to-MECL Translator Quad MECL-to-TTL Translator Dual Bus Driver (MECL 10,000 to TTL/IBM) Quad Bus Receiver (TTL/IBM to MECL 10,000) Dual Latch	3-21 3-24 3-30
MC10131/MC10531 MC10132/MC10532 MC10133/MC10533 MC10134/MC10534 MC10135/MC10535	Dual Type D Master-Slave Flip-Flop Dual Multiplexer with Latch and Common Reset Quad Latch Dual Multiplexer with Latch Dual Multiplexer with Latch Dual Multiplexer with Latch Dual J-K Master-Slave Flin-Flop	. 3-37 . 3-39

DEVICE INDEX (continued)

Device Number	Function	Page
MC10136/MC10536 MC10137/MC10537 MC10138/MC10538 MCM10139/	Universal Hexadecimal Counter	. 3-47
MCM10539	32 x 8-Bit Programmable Read-Only Memory	3-133
MC10141/MC10541 MCM10143 MCM10144/	4-Bit Universal Shift Register	. 3-53 3-137
MCM10544 MCM10145/	256 x 1-Bit Random Access Memory	3-142
MCM10545 MCM10146/	16 x 4-Bit Register File (RAM)	3-144
MCM10148/ MCM10546 MCM10147/	1024 x 1-Bit Random Access Memory	3-146
MCM10547	126 x 1-Bit Random Access Memory	3-148
MCM10148/ MCM10548 MCM10149/ MCM10549	64 x 1-Bit Random Access Memory	
MCM10152/ MCM10552 MC10153/MC10553 MC10158/MC10558	256 x 1-Bit Random Access Memory	3-156 . 3-55
MC10159/MC10559 MC10160/MC10560 MC10161/MC10561 MC10162/MC10562 MC10163/MC10563	Quad 2-Input Multiplexer (Inverting) 12-Bit Parity Generator/Checker Binary to 1-8 Line Decoder (Low) Binary to 1-8 Line Decoder (High) Error Detection/Correction Circuit (IBM Pattern)	. 3-57 . 3-58 . 3-59 . 3-61
MC10164/MC10564 MC10165/MC10565 MC10166/MC10566 MC10168/MC10568 MC10170/MC10570	8-Line Multiplexer	. 3-70 . 3-73 . 3-75
MC10171/MC10571 MC10172/MC10572 MC10173 MC10174/MC10574 MC10175/MC10575	Dual 4-Line Decoder (Low)	. 3-78 3-79 . 3-80
MC10176/MC10576 MC10177 MC10178/MC10578 MC10179/MC10579 MC10180/MC10580	Hex D Master-Slave Flip-Flop Triple MECL-to-MOS Translator (N-Channel) Binary Counter Look Ahead Carry Block Dual 2-Bit Adder/Subtractor	. 3-83 . 3-86 . 3-88
MC10181/MC10581 MC10182/MC10582 MC10183 MC10186/MC10586 MC10188	4-Bit Arithmetic Logic Unit and Function Generator 2-Bit Arithmetic Logic Unit and Function Generator 4 x 2 Multiplier Hex D Flip-Flop with Common Reset Hex Buffer with Enable	. 3-95 . 3-98 3-103
MC10189 MC10190/MC10590 MC10191/MC10591 MC10193/MC10593 MC10194/MC10594	Hex Inverter with Enable Quad MST-to-MECL Translator Hex MECL-to-MST Translator Error Detection/Correction Circuit (Motorola Pattern) Dual Simultaneous Bus Transceiver	3-107 3-109 . 3-62

DEVICE INDEX (continued)

Device Number	Function	Page
MC10195/MC10595 MC10197/MC10597 MC10198 MC10210/MC10610 MC10211/MC10611	Hex Inverter/Buffer Hex AND Gate Monostable Multivibrator High-Speed Dual 3-Input/3-Output OR Gate High-Speed Dual 3-Input/3-Output NOR Gate	3-116 3-117 3-123
MC10212/MC10612 MC10216/MC10616 MC10231/MC10631 MC10287/MC10687 MCM10139/	High-Speed Dual 3-Input/3-Output OR/NOR Gate	3-125 3-126
MCM10539	32 x 8-Bit Programmable Read-Only Memory	3-133
MCM10143 MCM10144/	8 x 2 Multiport Register File (RAM)	3-137
MCM10544 MCM10145/	256 x 1-Bit Random Access Memory	3-142
MCM10545 MCM10146/	16 x 4-Bit Register File (RAM).	3-144
MCM10546	1024 x 1-Bit Random Access Memory	3-146
MCM10147/ MCM10547	126 x 1-Bit Random Access Memory	3-148
MCM10148/		
MCM10548 MCM10149/	64 x 1-Bit Random Access Memory	3-150
MCM10549 MCM10152/	256 × 4-Bit Programmable Read-Only Memory	3-152
MCM10552	256 x 1-Bit Bandom Access Memory	3-156

GENERAL INFORMATION

1

GENERAL INFORMATION SECTION I — HIGH-SPEED LOGICS

High speed logic is used whenever improved system performance would increase a product's market value. For a given system design, highspeed logic is the most direct way to improve system performance and emitter-coupled logic (ECL) is today's fastest form of digital logic. Emitter-coupled logic offers both the logic speed and logic features to meet the market demands for higher performance systems.

MECL PRODUCTS

Motorola introduced the original monolithic emitter-coupled logic family with MECL I (1962) and followed this with MECL II (1966). These two families are now obsolete and have given way to the MECL III (MC1600 series), MECL 10,000, MECL 10800, and PLL (MC12000 series) families.

Chronologically the third family introduced, MECL III (1968) is a higher power, higher speed logic. Typical 1 ns edge speeds and propagation delays along with greater than 500 MHz flip-flop toggle rates, make MECL III useful for high-speed test and communications equipment. Also, this family is used in the high-speed sections and critical timing delays of larger systems. For more general purpose applications, however, trends in large high-speed systems showed the need for an easy-to-use logic family with propagation delays on the order of 2 ns. To match this requirement, the MECL 10,000 Series was introduced in 1971. An important feature of MECL 10,000 is its compatibility with MECL III to facilitate using both families in the same system. A second important feature is its significant power economy – MECL 10,000 gates use less than one-half the power of MECL III. Finally, low gate power and advanced circuit design techniques have permitted a new level of complexity for MECL 10,000 circuits. For example, the complexity of the MC10803 Memory Interface Function compares favorably to that of any bipolar integrated circuit on the market.

The basic MECL 10,000 Series has been expanded by a subset of devices with even greater speed. This additional series provides a selection of MECL 10,000 logic functions with flip-flop repetition rates up to 200 MHz min. The MECL 10,200 Series is meant for use in critical timing chains, and for clock distribution circuits. MECL 10,000 parts are otherwise identical to their 10,000 Series counterparts (subtract 100 from the MECL 10,200 part number to obtain the equivalent standard MECL 10,000 part number).

Continuing technical advances led more recently to the development of the M10800 LSI processor family. The M10800 family combines the performance of ECL with the system advantages of LSI density. Architectural features of the M10800 family significantly reduce the component count of a high-performance processor system. The M10800 LSI family is fully compatible with the MECL 10,000 and MECL III logic families for a complete selection of system design components.

		MECL 10,000		
Feature	10,100 Series 10,500 Series	10,200 Series 10,600 Series	10,800 LSI*	MECL III
1. Gate Propagation Delay	2 ns	1.5 ns	1–2.5 ns	1 ns
2. Output Edge Speed	3.5 ns	2.5 ns	3.5 ns	1 ns
3. Flip-Flop Toggle Speed	160 MHz	250 MHz	N.A.	300–500 MHz
4. Gate Power	25 mW	25 mW	2.3 mW	6 0 mW
5. Speed Power Product	50 pJ	37 pJ	4.6 pJ	60 pJ

MECL FAMILY COMPARISONS

*Average for Equivalent LSI Gate.

FIGURE 1a - GENERAL CHARACTERISTICS

Ambient Temperature Range	MECL 10,000	M10800	MECL III	PLL
0 ⁰ to 75 ⁰ C	MCM10100 Series		MC1697P	MC12000 Series
-30 ⁰ C to +85 ⁰ C	MC10100 Series MC10200 Series	MC10800 Series	MC 1600 Series	MC12000 Series
–55 [°] C to 125 [°] C	MC10500 Series MC10600 Series MCM10500 Series	-	MC1648M	MC12500 Series

FIGURE 1b - OPERATING TEMPERATURE RANGE

Package Style 16-Pin Plastic DIP 16-Pin Ceramic DIP	MECL 10,000 MC10100P Series MC10200P Series MC10100L Series MC10200L Series MC10500L Series	M10800 MC10804∟	MECL III MC1658P MC1600L Series	PLL MC12000P Series
	MC10200P Series MC10100L Series MC10200L Series			MC120001 Selles
16-Pin Ceramic DIP	MC10100L Series MC10200L Series		MO1000L Carles	· · · · · ·
16-Fin Ceramic Dir	MC10200L Series			MC12000L Series
			NIC TOUGL Series	MC12500L Series
		MC10807L		WICT2000E Series
	MC10600L Series			
	MCM10100L Series			
·	MCM10500L Series			
16-Pin Flat Package	MC10500F Series		MC1600F Series	MC12513F
	MC10600F Series			
	MCM10500F Series			
20-Pin Ceramic DIP	_	MC10805L	_	-
24-Pin Plastic Package	MC10181P		-	
24-Pin Ceramic DIP	MC10181L,	MC10802L	-	
	MC10581L			
24-Pin Flat Package	MC10581F	- '	-	-
48-Pin Ceramic Quil	-	MC10800L Series	-	-
14-Pin Plastic DIP	' <u>-</u>	-	MC1648P	MC12000P
				MC12002P
				MC12020P
				MC12040P
14-Pin Ceramic DIP	_		MC1648L	MC12000L
				MC12002L
				MC12020L
· ·			·	MC12040L
14-Pin Flat Package	-	-	MC1648F	MC12540F
8-Pin Plastic DIP	_	-	MC1697P	-

For package information see page 1-28.

FIGURE 1c - PACKAGE STYLES

MECL IN PERSPECTIVE

In evaluating any logic line, speed and power requirements are the obvious primary considerations. Figure 1 provides the basic parameters of the MECL 10,000, M10800, and MECL III families. But these provide only the start of any comparative analysis, as there are a number of other important features that make MECL highly desirable for system implementation. Among these: **Complementary Outputs** cause a function and its complement to appear simultaneously at the device outputs, without the use of external inverters. It reduces package count by eliminating the need for associated invert functions and, at the same time, cuts system power requirements and reduces timing differential problems arising from the time delays introduced by inverters. High Input Impedance and Low Output Impedance permit large fan out and versatile drive characteristics.

Insignificant Power Supply Noise Generation, due to differential amplifier design which eliminates current spikes even during signal transition period.

Nearly Constant Power Supply Current Drain simplifies power-supply design and reduces costs.

Low Cross-Talk due to low-current switching in signal path and small (typically 850 mV) voltage swing, and to relatively long rise and fall times.

Wide Variety of Functions, including complex functions facilitated by low power dissipation (particularly in MECL 10,000 series). A basic MECL 10,000 gate consumes less than 8 mW in on-chip power in some complex functions.

Wide Performance Flexibility due to differential amplifier design which permits MECL circuits to be used as linear as well as digital circuits.

Transmission Line Drive Capability is afforded by the open emitter outputs of MECL devices. No "Line Drivers" are listed in MECL families, because every device is a line driver.

Wire-ORing reduces the number of logic devices required in a design by producing additional OR gate functions with only an interconnection.

Twisted Pair Drive Capability permits MECL circuits to drive twisted-pair transmission lines as long as 1000 feet.

Wire-Wrap Capability is possible with MECL 10,000 and the M10800 LSI family because of the slow rise and fall time characteristic of the circuits.

Open Emitter-Follower Outputs are used for MECL outputs to simplify signal line drive. The outputs match any line impedance and the absence of internal pulldown resistors saves power.

Input Pulldown Resistors of approximately $50 \text{ k} \Omega$ permit unused inputs to remain unconnected for easier circuit board layout.

MECL APPLICATIONS

Motorola's MECL product lines are designed for a wide range of systems needs. Within the computer market, MECL 10,000 is used in systems ranging from special purpose peripheral controllers to large mainframe computers. Big growth areas in this market include disk and communication channel controllers for larger systems and high performance minicomputers.

The industrial market primarily uses MECL for high performance test systems such as IC or PC board testers. However, the high bandwidths of MECL 10,000, MECL III, and MC12,000 are required for many frequency synthesizer systems using high speed phase lock loop networks. MECL will continue to grow in the industrial market through complex medical electronic products and high performance process control systems.

MECL 10,000 and MECL III have been accepted within the Federal market for numerous signal processors and navigation systems. Full military temperature range MECL 10,000 is offered in the MC10500 and MC10600 Series, and in the PLL family as the MC12500 Series.

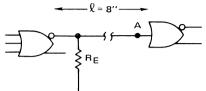
BASIC CONSIDERATIONS FOR HIGH-SPEED LOGIC DESIGN

High-speed operation involves only four considerations that differ significantly from operation at low and medium speeds:

1. Time delays through interconnect wiring, which may have been ignored in medium-speed systems, become highly important at state-of-the-art speeds.

2. The possibility of distorted waveforms due to reflections on signal lines increases with edge speed.

3. The possibility of "crosstalk" between adjacent signal leads is proportionately increased in high-speed systems.


4. Electrical noise generation and pick-up are more detrimental at higher speeds.

In general, these four characteristics are speedand frequency-dependent, and are virtually independent of the type of logic employed. The merit of a particular logic family is measured by how well it compensates for these deleterious effects in system applications.

The interconnect-wiring time delays can be reduced only by reducing the length of the interconnecting lines. At logic speeds of two nanoseconds, an equivalent "gate delay" is introduced by every foot of interconnecting wiring. Obviously, for functions interconnected within a single monolithic chip, the time delays of signals travelling from one function to another are insignificant. But for a great many externally interconnected parts, this can soon add up to an appreciable delay time. Hence, the greater the number of functions per chip, the higher the system speed. *MECL circuits, particularly those of the MECL 10,000 Series are designed with a propensity toward complex functions to enhance overall system speed.*

Waveform distortion due to line reflections also becomes troublesome principally at state-of-the-art speeds. At slow and medium speeds, reflections on interconnecting lines are not usually a serious problem. At higher speeds, however, line lengths can approach the wavelength of the signal and improperly terminated lines can result in reflections that will cause false triggering (see Figure 2). The solution, as in RF technology, is to employ "transmission-line" practices and properly terminate each signal line with its characteristic impedance at the end of its run. The low-impedance, emitterfollower outputs of MECL circuits facilitate transmission-line practices without upsetting the voltage levels of the system. The increased affinity for crosstalk in highspeed circuits is the result of very steep leading and trailing edges (fast rise and fall times) of the highspeed signal. These steep wavefronts are rich in harmonics that couple readily to adjacent circuits. In the design of MECL 10,000, the rise and fall times have been deliberately slowed. This reduces the affinity for crosstalk without compromising other important performance parameters.

From the above, it is evident that the MECL logic line is not simply capable of operating at high speed, but has been specifically designed to reduce the problems that are normally associated with high-speed operation.

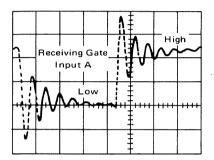
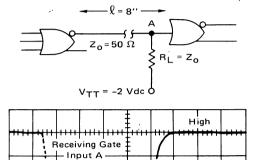
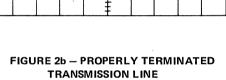




FIGURE 2a – UNTERMINATED TRANSMISSION LINE (No Ground Plane Used)

Low

(Ground Plane Added)

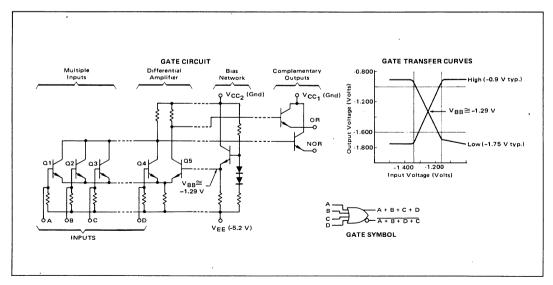


FIGURE 3 – MECL GATE STRUCTURE AND SWITCHING BEHAVIOR

CIRCUIT DESCRIPTION

The typical MECL circuit, Figure 3, consists of a differential-amplifier input circuit, a temperature and voltage compensated bias network, and emitterfollower outputs to restore dc levels and provide buffering for transmission line driving. High fanout operation is possible because of the high input impedance of the differential amplifier input and the low output impedance of the emitter follower outputs. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the OR function and its complement, the NOR function.

Power-Supply Connections – Any of the power supply levels, V_{TT} , V_{CC} , or V_{EE} may be used as ground; however, the use of the V_{CC} node as ground results in best noise immunity. In such a case: $V_{CC} = 0$, $V_{TT} = -2.0$ V, $V_{EE} = -5.2$ V. System Logic Specifications – The output

System Logic Specifications – The output logic swing of 0.85 V, as shown by the typical transfer characteristics curve, varies from a LOW state of V_{OL} = -1.75 V to a HIGH state of V_{OH} = -0.9 V with respect to ground.

Positive logic is used when reference is made to logical "0's" or "1's." Then

"0" = -1.75 V = LOW typical "1" = -0.9 V = HIGH

Circuit Operation -- Beginning with all logic inputs LOW (nominal -1.75 V), assume that Q1 through Q4 are cut off because their P-N base-emitter junctions are not conducting, and the for-

ward-biased Q5 is conducting. Under these conditions, with the base of Q5 held at -1.29 V by the V_{BB} network, its emitter will be one diode drop (0.8 V) more negative than its base, or -2.09 V. (The 0.8 V differential is a characteristic of this P-N junction.) The base-to-emitter differential across Q1 - Q4 is then the difference between the common emitter voltage (-2.09 V) and the LOW logic level (-1.75 V) or 0.34 V. This is less than the threshold voltage of Q1 through Q4 so that these transistors will remain cut off.

When any one (or all) of the logic inputs are shifted upward from the -1.75 V LOW state to the -0.9 V HIGH state, the base voltage of that transistor increases beyond the threshold point and the transistor turns on. When this happens, the voltage at the common-emitter point rises from -2.09 V to -1.7 (one diode drop below the -0.9 V base voltage of the input transistor), and since the base voltage of the fixed-bias transistor (Q5) is held at -1.29 V, the base-emitter voltage Q5 cannot sustain conduction. Hence, this transistor is cut off.

This action is reversible, so that when the input signal(s) return to the LOW state, Q1 - Q4 are again turned off and Q5 again becomes forward biased. The collector voltages resulting from the switching action of Q1 - Q4 and Q5 are transferred through the output emitter-follower to the output terminal. Note that the differential action of the switching transistors (one section being off when the other is on) furnishes simultaneous complementary signals at the output. This action also maintains constant power supply current drain.

DEFINITIONS OF LETTER SYMBOLS AND ABBREVIATIONS

Current:

- ICC Total power supply current drawn from the positive supply by a MECL unit under test.
- ICBO Leakage current from input transistor on MECL devices without pulldown resistors when test voltage is applied.
- ICCH Current drain from VCC power supply with all inputs at logic HIGH level.
- ICCL Current drain from VCC power supply with all inputs at logic LOW level.
- IE Total power supply current drawn from a MECL test unit by the negative power supply.
- IF Forward diode current drawn from an input of a saturated logic-to-MECL translator when that input is at ground , potential.
- I_{in} Current into the input of the test unit when a maximum logic HIGH (V_{IH max}) is applied at that input.

- *IINH HIGH level input current into a node with a specified HIGH level (V_{IH max}) logic voltage applied to that node. (Same as I_{in} for positive logic.)
- *IINL LOW level input current, into a node with a specified LOW level (VIL min) logic voltage applied to that node.
- Load current that is drawn from a MECL circuit output when measuring the output HIGH level voltage.
- *IOH HIGH level output current: the current flowing into the output, at a specified HIGH level output voltage.
- *IOL LOW level output current: the current flowing into the output, at a specified LOW level output voltage.

IOS Output short circuit current.

Iout Output current (from a device or circuit, under such conditions mentioned in context).

Current (cont.) :

- IR Reverse current drawn from a transistor input of a test unit when VEE is applied at that input.
- ISC Short-circuit current drawn from a translator saturating output when that output is at ground potential.

Voltage:

- VBB Reference bias supply voltage.
- VBE Base-to-emitter voltage drop of a transistor at specified collector and base currents.
- VCB Collector to base voltage drop of a transistor at specified collector and base currents.
- VCC General term for the most positive power supply voltage to a MECL device (usually ground, except for translator and interface circuits).
- VCC1 Most positive power supply voltage (output devices). (Usually ground for MECL devices.)
- V_{CC2} Most positive power supply voltage (current switches and bias driver), (Usually ground for MECL devices.)
- VEE Most negative power supply voltage for a circuit (usually -5.2 V for MECL devices).
- VF Input voltage for measuring IF on TTL interface circuits.
- VIH Input logic HIGH voltage level (nominal value).
- *VIH max Maximum HIGH level input voltage: The most positive (least negative) value of high-level input voltage, for which operation of the logic element within specification limits is guaranteed.
- VIHA Input logic HIGH threshold voltage level.
- VIHA min Minimum input logic HIGH level (threshold) voltage for which performance is specified.
- *VIH min Minimum HIGH level input voltage: The least positive (most negative) value of HIGH level input voltage for which operation of the logic element within specification limits is guaranteed.
- VIL Input logic LOW voltage level (nominal value).
- *VIL max Maximum LOW level input voltage: The most positive (least negative) value of LOW level input voltage for which operation of the logic element within specification limits is guaranteed.

- VILA Input logic LOW threshold voltage level.
- VILA max Maximum input logic LOW level (threshold) voltage for which performance is specified.
- *VIL min Minimum LOW level input voltage: The least positive (most negative) value of LOW level input voltage for which operation of the logic element within specification limits is guaranteed.
- Vin Input voltage (to a circuit or device).
- V_{max} Maximum (most positive) supply voltage, permitted under a specified set of conditions.
- *VOH Output logic HIGH voltage level: The voltage level at an output terminal for a specified output current, with the specified conditions applied to establish a HIGH level at the output.
- VOHA Output logic HIGH threshold voltage level.
- VOHA min Minimum output HIGH threshold voltage level for which performance is specified.
- VOH max Maximum output HIGH or high-level voltage for given inputs.
- VOH min Minimum output HIGH or high-level voltage for given inputs.
- *VOL Output logic LOW voltage level: The voltage level at the output terminal for a specified output current, with the specified conditions applied to establish a LOW level at the output.
- VOLA Output logic LOW threshold voltage level.
- VOLA max Maximum output LOW threshold voltage level for which performance is specified.
- VOL max Maximum output LOW level voltage for given inputs.
- VOL min Minimum output LOW level voltage for given inputs.
- VTT Line load-resistor terminating voltage for outputs from a MECL device.
- Vols1 Output logic LOW level on MECL 10,000 line receiver devices with all inputs at VEE voltage level.
- VOLS2 Output logic LOW level on MECL 10,000 line receiver devices with all inputs open.

*JEDEC, EIA, NEMA standard definition

Time Parameters:

t+	Waveform rise time (LOW to HIGH), 10% to 90%, or 20% to 80%, as specified.
t-	Waveform fall time (HIGH to LOW), 90% to 10%, or 80% to 20%, as specified.
tr	Same as t+
t _f t+-	Same as t- Propagation Delay, see Figure 9.
t-+	Propagation Delay, see Figure 9.
^t pd	Propagation delay, input to output from the 50% point of the input waveform at
t _{x±γ±}	pin x (falling edge noted by $-$ or rising edge noted by +) to the 50% point of the output waveform at pin y (falling edge noted by $-$ or rising edge noted by +). (Cf Figure 9.)
t _X +	Output waveform rise time as measured from 10% to 90% or 20% to 80% points on waveform (whichever is specified) at pin x with input conditions as specified.
t _{X-}	Output waveform fall time as measured from 90% to 10% or 80% to 20% points on waveform (whichever is specified) at pin x, with input conditions as specified.
f⊤og	Toggle frequency of a flip-flop or counter device.
f _{shift}	Shift rate for a shift register.

Read Mode (Memories)

^t ACS	Chip Select Access Time
^t RCS	Chip Select Recovery Time
tAA	Address Access Time

Write Mode (Memories)

tw	Write Pulse Width
twsd	Data Setup Time Prior to Write
twhd	Data Hold Time After Write
twsa	Address setup time prior to write

twha	Address hold time after write
tWSCS	Chip select setup time prior to write
tWHCS	Chip select hold time after write
tws	Write disable time
tWR	Write recovery time
Temperatu	re:
⊤ _{stg}	Maximum temperature at which device may be stored without damage or performance degradation.
Тј	Junction (or die) temperature of an inte- grated circuit device.
Τ _Α	Ambient (environment) temperature existing in the immediate vicinity of an integrated circuit device package.
θΊΑ	Thermal resistance of an IC package, junction to ambient.
θJC	Thermal resistance of an IC package, junction to case.
lfnm	Lipear feet per minute

- Ifpm Linear feet per minute.
- θ_{CA} Thermal resistance of an IC package, case to ambient.

Miscellaneous:

eg	Signal generator inputs to a test circuit.	
TPin	Test point at input of unit under test.	
TPout	Test point at output of unit under test.	
D.U.T.	Device under test.	
Cin	Input capacitance.	
Cout	Output capacitance.	
Zout	Output impedance.	
*PD	The total dc power applied to a device, not including any power delivered from the device to a load.	
RL	Load Resistance.	
R _T	Terminating (load) resistor.	
Rp	An input pull-down resistor (i.e., connected to the most negative voltage).	
P.U.T.	Pin under test.	
* IEDEC EIA NEMA standard definition		

*JEDEC, EIA, NEMA standard definition

GENERAL CHARACTERISTICS and SPECIFICATIONS

(See pages 1-6 through 1-8 for definitions of symbols and abbreviations.)

In subsequent sections of this Data Book, the important MECL parameters are identified and characterized, and complete data provided for each of the functions. To make this data as useful as possible, and to avoid a great deal of repetition, the data that is common to all functional blocks in a line is not repeated on each individual sheet. Rather, these common characteristics, as well as the application information that applies to each family, are discussed in this section.

In general, the common characteristics of major importance are:

Maximum Ratings, including both dc and ac characteristics and temperature limits;

Transfer Characteristics, which define logic levels and switching thresholds;

DC Parameters, such as output levels, threshold levels, and forcing functions.

AC Parameters, such as propagation delays, rise and fall times and other time dependent characteristics.

In addition, this section will discuss general layout and design guides that will help the designer in building and testing systems with MECL circuits.

LETTER SYMBOLS AND ABBREVIATIONS

Throughout this section, and in the subsequent data sheets, letter symbols and abbreviations will be used in discussing electrical characteristics and specifications. The symbols used in this book, and their definitions, are listed on the preceding pages.

MAXIMUM RATINGS

The limit parameters beyond which the life of the devices may be impaired are given in Figure 4a. In addition, Table 4b provides certain limits which, if exceeded, will not damage the devices, but could degrade the performance below that of the guaranteed specifications.

MECL TRANSFER CURVES

For MECL logic gates, the dual (complementary) outputs must be represented by two transfer curves: one to describe the OR switching action and one to describe the NOR switching action. A typical transfer curve and associated data for all MECL families is shown in Figure 5.

It is not necessary to measure transfer curves at all points of the curves. To guarantee correct operation it is sufficient merely to measure two sets of min/max logic level parameters.

Characteristic	Symbol	Unit	MECL 10,000	M10800 LSI	MECL III
Characteristic	VEE	Vdc	-8.0 to 0	-8.0 to 0	-8.0 to 0
Supply Voltage ($V_{CC} = 0$)	VTT	Vdc [.]	-	-4.0 to 0	-
Input Voltage (V _{CC} = 0)	Vin	Vdc	0 to V _{EE} (-5.2V)	0toV _{EE} (-5.2V)	0 to V _{EE} (-5.2V)
Input Voltage Bus (V _{CC} = 0)	Vin	Vdc	_	0 to -2.0	_
Output Source Current Continuous	l _{out}	mAdc	50	50	40
Output Source Current Surge	lout	mAdc	100	100	_
Storage Temperature	T _{stg}	°C	-55 to +150	-55 to +150	-55 to +150
Junction Temperature Ceramic Package②	Тј	°C	165	165	1653
Junction Temperature Plastic Package	Τj	°C	150	-	150

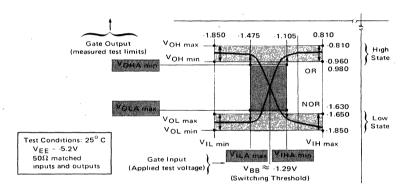
FIGURE 4a - LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED

NOTES: (1) Input voltage limit is V_{CC} to -2 volts when bus is used as an input and the output drivers are disabled.

(2) Maximum T_J may be exceeded (< 250°C) for short periods of time (< 240 hours) without significant reduction in device life.

(3) Except MC1666 – MC1670 which have maximum junction temperatures = 145°C.

FIGURE 4b - LIMITS BEYOND WHICH PERFORMANCE MAY BE DEGRADED


Characteristics	Symbol	Unit	MECL 10,000	M10800 LSI	MECL III
Operating Temperature Range Commercial ①	TA	°C	MC: -30 to +85 MCM: 0 to 75	-30 to +85	-30 to +85
Operating Temperature Range MIL ①	Τ _Α	°C	-55 to +125		-55 to +125 (MC1648M)
Supply Voltage (V _{CC} = 0)②	VEE	Vdc	MC: -4.68 to -5.72 MCM: -4.94 to -5.46	-4.68 to -5.72	-4.68 to -5.72
Supply Voltage (V _{CC} = 0)	VTT	Vdc	· _	-1.9 to -2.2	_
Output Drive Commercial	-	Ω	50 Ω to -2.0 Vdc	50 Ω to -2.0 Vdc	50 Ω to -2.0 Vdc⊕
Output Drive MIL	-	Ω	100 Ω to -2.0 Vdc	100 Ω to -2.0 Vdc	
Maximum Clock Input Rise and Fall Time (20% to 80%)	t _r , t _f	ns	-	10	3

NOTES: (1), With airflow \geq 500 lfpm.

(2) Functionality only. Data sheet limits are specified for $-5.2 \text{ V} \pm 0.010 \text{ V}$.

(3) 10 ns maximum limit for MC1690, MC1697, and MC1699.

(4) Except MC1648 which has an internal output pulldown resistor.

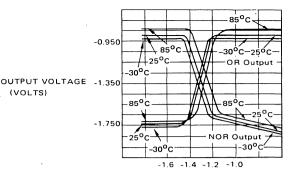
FIGURE 5 – MECL TRANSFER CURVES (MECL 10,000 EXAMPLE) and SPECIFICATION TEST POINTS

The first set is obtained by applying test voltages, V_{IL} min and V_{IH} max (sequentially) to the gate inputs, and measuring the OR and NOR output levels to make sure they are between V_{OL} max and V_{OL} min, and V_{OHmax} and V_{OHmin} specifications.

The second set of logic level parameters relates to the switching thresholds. This set of data is distinguished by an "A" in symbol subscripts. A test voltage, V_{ILA} max, is applied to the gate and the NOR and OR outputs are measured to see that they are above the V_{OHA} min and below the V_{OLA} max levels, respectively. Similar checks are made using the test input voltage V_{IHA} min.

The result of these specifications insures that:

a) The switching threshold ($\approx V_{BB}$) falls within the darkest rectangle; i.e. switching does not begin outside this rectangle;


b) Quiescent logic levels fall in the lightest shaded ranges;

c) Guaranteed noise immunity is met.

Figure 6 shows the guaranteed MECL 10,000 and MECL III logic levels and switching thresholds over specified temperature ranges. As shown in the Figure 6a Typical Transfer Curves, MECL outputs rise with increasing ambient temperature. All circuits in each family have the same worst-case output level specifications regardless of power dissipation or junction temperature differences to reduce loss of noise margin due to thermal differences.

All of these specifications assume -5.2 V power supply operation. Operation at other power-supply voltages is possible, but will result in further transfer curve changes. Transfer characteristic data obtained for a variety of supply voltages are shown in Figure 7. The table accompanying these graphs indicates the change rates of output voltages as a function of power supply voltages.

FIGURE 6a – TYPICAL TRANSFER CHARACTERISTICS AS A FUNCTION OF TEMPERATURE (See tables below for data)

INPUT VOLTAGE (VOLTS)

Forcing Function	Parameter	-55°c①	-30°C2	0°c②	25 ⁰ C2	25°c①	75°c ³	_{85°C} @	125°c①	Unit
		MC10500 MC10600 MCM10500	MC10100 MC10200 MC10800	MCM10100	MC10100 MC10200 MC10800 MCM10100	MC10500 MC10600 MCM10500	MCM10100	MC10100 MC10200 MC10800	MC10500 MC10600 MCM10500	
V _{IHmax} =	V _{OHmax} V _{OHmin}	-0.880 -1.080	-0.890 -1.060	-0.840 -1.000	-0.810 -0.960	-0.780 -0.930	-0.720 -0.900	-0.700 -0.890	-0.630 -0.825	Vdc
VIHAmin	VOHAmin	-1.100 -1.255	-1.080 -1.205	-1.020 -1.145	-0.980 -1.105	-0.950 -1.105	-0.920 -1.045	-0.910 -1.035	-0.845 -1.000	Vdc
ViLAmax	VOLAmax	-1.510 -1.635	-1.500 -1.655	-1.490 -1.645	-1.475 -1.630	-1.475. -1.600	-1.450 -1.605	-1.440 -1.595	-1.400 -1.525	Vdc
V _{ILmin} =	VOLmax VOLmin	-1.655 -1.920	-1.675 -1.890	-1.665 -1.870	-1.650 -1.850	-1.620 -1.850	-1.625 -1.830	-1.615 -1.825	-1.545 -1.820	Vdc
VILmin	INLmin	0.5	0.5	0.5	0.5	0.5	0.3	0.3	0.3	μA

NOTES: (1)MC10500, MC10600, and MCM10500 series specified driving 100 Ω to -2.0 V.

 $(\tilde{2})$ MC10100, MC10200, MC10800 and MCM10100 series specified driving 50 Ω to -2.0 V.

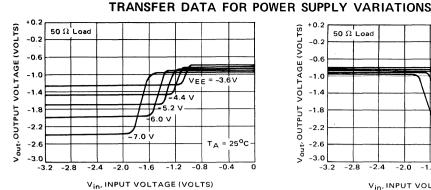
3 Memories (MCM10100) specified 0-75°C for commercial temperature range, 50 Ω to -2.0 V. Military temperature range memories (MCM10500) specified per Note 1.

(4) Special circuits such as MC10123, and MC10800 family bus outputs have lower than normal VOLmin. See individual data sheets for specific values.

Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibirum has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear fpm is maintained. $V_{EE} = -5.2 V \pm 0.010 V$.

FIGURE 6b – MECL	. 10,000 DC TEST PARAMETERS
------------------	-----------------------------

Forcing Function	Parameter	-30 ⁰ C	25 ⁰ C	85 ⁰ C	Unit
V _{IHmax} =	VOHmax	-0.875	-0.810	-0.700	Vdc
	VOHmin	-1.045	-0.960	-0.890	
	VOHAmin	-1.065	-0.980	-0.910	Vdc
VIHAmin		-1.180	-1.095	-1.025	
VILAmax		-1.515	-1.485	-1.440	Vdc
	VOLAmax	-1.630	-1.600	-1.555	
	VOLmax	-1.650	-1.620	-1.575	Vdc
VILmin [±]	VOLmin	-1.890	-1.850	-1.830	
VILmin	INLmin	0.5	0.5	0.3	μA

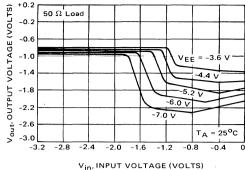

NOTE: All outputs loaded 50 Ω to -2.0 Vdc except MC1648

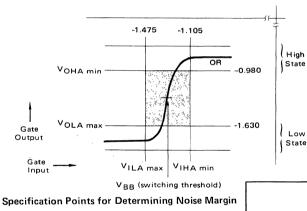
which has an internal output pulldown resistor.

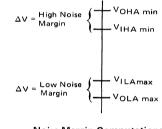
ELECTRICAL CHARACTERISTICS

Each MECL III series device has been designed to meet the dc specification shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear fpm is maintained. $V_{EE} = -5.2 \text{ V} \pm 0.10 \text{ V}.$

FIGURE 6c - MECL III DC TEST PARAMETERS




FIGURE 7a - MECL III/10,000 "OR"


FIGURE 7b - MECL III/10,000 "NOR"

Voltage	MECL 10,000*	MECL III	M10800 LSI
$\Delta V_{OH} / \Delta V_{EE}$	0.016	0.033	0.016
ΔV _{OL} /ΔV _{EE}	0.250	0.270	0.030
$\Delta V_{BB} / \Delta V_{EE}$	0.148	0.140	0.015

*and subsets: 10,200; 10,500; 10,600,

Noise Margin Computations

in	Family	Guaranteed Worst-Case dc Noise Margin	Typical dc Noise Margin
	ÂII MECL 10,000	0.125	0.210
	MECL III	0.115	0.200

NOISE MARGIN

"Noise margin" is a measure of a logic circuit's resistance to undesired switching. MECL noise margin is defined in terms of the specification points surrounding the switching threshold. The critical parameters of interest here are those designated with the "A" subscript (VOHA min, VOLA max, VIHA min, VILA max) in the transfer characteristic curves.

FIGURE 8 – MECL Noise Margin Data

Guaranteed noise margin (NM) is defined as follows:

NMHIGH LEVEL = VOHA min - VIHA min NMLOW LEVEL = VILA max - VOLA max

To see how noise margin is computed, assume a MECL gate drives a similar MECL gate, Figure 8.

At a gate input (point B) equal to VILA max, MECL gate #2 can begin to enter the shaded transition region.

This is a "worst case" condition, since the V_{OLA} max specification point guarantees that no device can enter the transition region before an input equal to V_{ILA} max is reached. Clearly then, V_{ILA} max is one critical point for noise margin computation, since it is the edge of the transition region.

To find the other critical voltage, consider the output from MECL gate #1 (point A). What is the most positive value possible for this voltage (considering worst case specifications)? From Figure 8 it can be observed that the V_{OLA} max specification insures that the LOW state OR output from gate #1 can be no greater than V_{OLA} max.

Note that $V_{OLA\ max}$ is more negative than $V_{ILA\ max}$. Thus, with $V_{OLA\ max}$ at the input to gate #2, the transition region is not yet reached. (The input voltage to gate #2 is still to the left of $V_{ILA\ max}$ on the transfer curve.)

In order to ever run the chance of switching gate #2, we would need an additional voltage, to move the input from VOLA max to VILA max. This constitutes the "safety factor" known as noise margin. It can be calculated as the magnitude of the difference between the two specification voltages, or for the MECL 10,000 levels shown:

$$\begin{array}{ll} \mathsf{NM}_{\mathsf{LOW}} &= \mathsf{V}_{\mathsf{ILA}} \max - \mathsf{V}_{\mathsf{OLA}} \max \\ &= -1.475 \ \mathsf{V} - (-1.630 \ \mathsf{V}) \\ &= 155 \ \mathsf{mV}. \\ \\ \mathsf{Similarly, for the HIGH state:} \\ \mathsf{NM}_{\mathsf{HIGH}} &= \mathsf{V}_{\mathsf{OHA}} \min - \mathsf{V}_{\mathsf{IHA}} \min \\ &= -0.980 \ \mathsf{V} - (-1.105 \ \mathsf{V}) \\ &= 125 \ \mathsf{mV} \end{array}$$

Analogous results are obtained when considering the "NOR" transfer data.

Note that these noise margins are absolute worst case conditions. The lesser of the two noise margins is that for the HIGH state, 125 mV. This then, constitutes the guaranteed margin against signal undershoot, and power or thermal disturbances.

As shown in the table, typical noise margins are usually better than guaranteed — by about 75 $\,mV.$

Noise margin is a dc specification that can be calculated, since it is defined by specification points tabulated on MECL data sheets. However, by itself, this specification does not give a complete picture regarding the noise immunity of a system built with a particular set of circuits. Overall system noise immunity involves not only noisemargin specifications, but also other circuit-related factors that determine how difficult it is to apply a noise signal of sufficient magnitude and duration to cause the circuit to propagate a false logic state. In general, then, noise immunity involves line impedances, circuit output impedances, and propagation delay in addition to noise-margin specifications. This subject is discussed in greater detail in Application Note AN-592.

AC OR SWITCHING PARAMETERS

Time-dependent specifications are those that define the effects of the circuit on a specified input signal, as it travels through the circuit. They include the time delay involved in changing the output level from one logic state to another. In addition, they include the time required for the output of a circuit to respond to the input signal, designated as propagation delay, or access time, in the case of memories. Since this terminology has varied over the years, and because the "conditions" associated with a particular parameter may differ among logic families, the common MECL waveform and propagation delay terminologies are depicted in Figure 9. Specific rise, fall, and propagation delay times are given on the data sheet for each specific functional block, but like the transfer characteristics, ac parameters are temperature and voltage dependent. Typical variations for MECL 10,000 are given in the curves of Figure 10.

SETUP AND HOLD TIMES

Setup and hold times are two ac parameters which can easily be confused unless clearly defined. For MECL logic devices, t_{setup} is the minimum time (50% - 50%) before the positive transition of the clock pulse (C) that information must be pres-

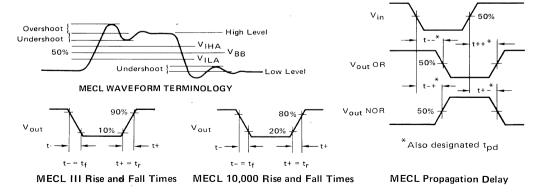


FIGURE 9a - TYPICAL LOGIC WAVEFORMS

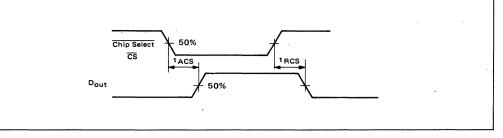
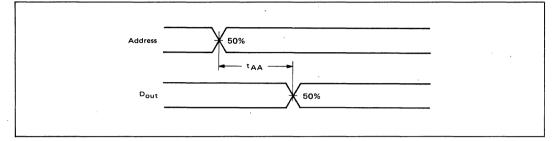



FIGURE 9c -- MEMORY ADDRESS ACCESS TIME WAVEFORM

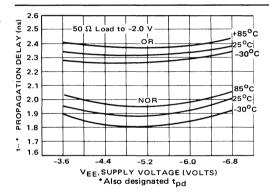


FIGURE 10a – TYPICAL PROPAGATION DELAY t-- versus VFE AND TEMPERATURE (MECL 10,000)

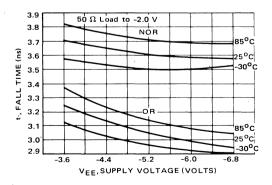


FIGURE 10c – TYPICAL FALL TIME (90% to 10%) versus TEMPERATURE AND SUPPLY VOLTAGE (MECL 10,100)

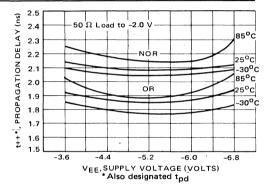


FIGURE 10b – TYPICAL PROPAGATION DELAY t++ versus VEE AND TEMPERATURE (MECL 10,000)

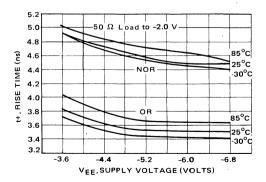
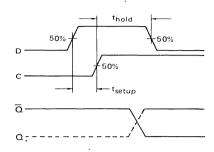



FIGURE 10d — TYPICAL RISE TIME (10% to 90%) versus TEMPERATURE AND SUPPLY VOLTAGE (MECL 10,100)

1

sent at the Data input (D) to insure proper operation of the device. The t_{hold} is defined similarly as the minimum time after the positive transition of the clock pulse (C) that the information must remain unchanged at the Data input (D) to insure proper operation. Setup and hold waveforms for logic devices are shown in Figure 11a.

FIGURE 11a – SETUP AND HOLD WAVEFORMS FOR MECL LOGIC DEVICES

For MECL memory devices, t_{setup} is the minimum time before the negative transition of the write enable pulse (WE) that information must be present at the chip select (CS), Data (D), and address (A) inputs for proper writing of the selected cell. Similarly t_{hold} is the minimum time after the positive transition of the write enable pulse (WE) that the information must remain unchanged

at the inputs to insure proper writing. Memory setup and hold waveforms are shown in Figure 11b.

In specifying devices, Motorola establishes and guarantees values (shown as minimums on the data sheets) for t_{setup} and t_{hold} . For most MECL circuits, proper device operation typically occurs with the inputs present for somewhat less time than that specified for t_{setup} and t_{hold} .

TESTING MECL 10,000 and MECL III

To obtain results correlating with Motorola circuit specifications certain test techniques must be used. A schematic of a typical gate test circuit is shown in Figure 12a, and a typical memory test circuit in Figure 12b.

A solid ground plane is used in the test setup, and capacitors bypass V_{CC1}, V_{CC2}, and V_{EE} pins to ground. All power leads and signal leads are kept as short as possible.

The sampling scope interface runs directly to the 50-ohm inputs of Channel A and B via 50ohm coaxial cable. Equal-length coaxial cables must be used between the test set and the A and B scope inputs. A 50-ohm coax cable such as RG58/U or RG188A/U, is recommended.

Interconnect fittings should be 50 ohm GR, BNC, Sealectro Conhex, or equivalent. Wire length should be < % inch from ${\rm TP}_{in}$ to input pin and ${\rm TP}_{out}$ to output pin.

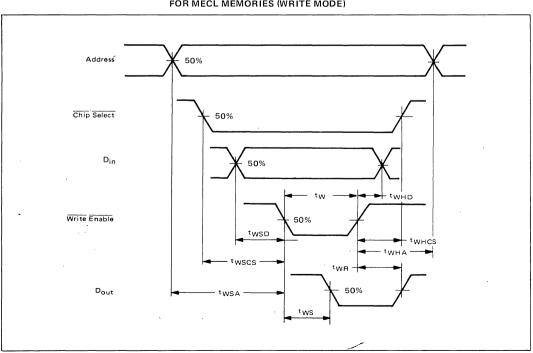
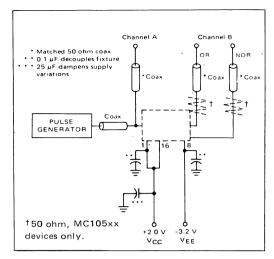
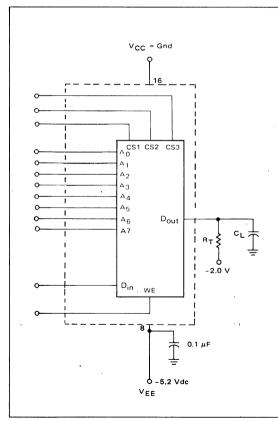
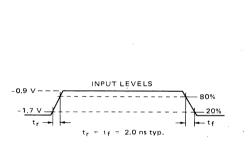



FIGURE 11b – SETUP AND HOLD WAVEFORMS FOR MECL MEMORIES (WRITE MODE)

The pulse generator must be capable of 2.0 ns rise and fall times for MECL 10,000 and 1.5 ns for MECL III. In addition, the generator voltage must have an offset to give MECL signal swings of \approx ±400 mV about a threshold of \approx +0.7 V when V_{CC} = +2.0 V and V_{EE} = -3.2 V for ac testing of logic devices.


The power supplies are shifted +2.0 V, so that the device under test has only one resistor value to load into – the precision 50-ohm input impedance of the sampling oscilloscope. Use of this technique yields a close correlation between Motorola and customer testing. Unused outputs are loaded with a 50-ohm resistor (100-ohm for MIL temp devices) to ground. The positive supply (V_{CC}) should be decoupled from the test board by RF type 25 μ F capacitors to ground. The V_{CC} pins are bypassed to ground with 0.1 μ F, as is the V_{FF} pin.


Additional information on testing MECL 10,000 and understanding data sheets is found in Application Notes AN-579 and AN-701.

NOTE: All power supply levels are shown shifted 2 volts positive.

FIGURE 12a – MECL LOGIC SWITCHING TIME TEST SETUP

All timing measurements referenced to 50% of input levels. R_T = 50 Ω

 $C_{L} \leq 5.0 \text{ pF}$ (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF

FIGURE 12b – MECL MEMORY SWITCHING TIME TEST CIRCUIT

POWER SUPPLY CONSIDERATIONS

MECL circuits are characterized with the V_{CC} point at ground potential and the V_{EE} point at -5.2 V. While this MECL convention is not necessarily mandatory, it does result in maximum noise immunity. This is so because any noise induced on the V_{EE} line is applied to the circuit as a common-mode signal which is rejected by the differential action of the MECL input circuit. Noise induced into the V_{CC} line is not cancelled out in this fashion. Hence, a good system ground at the V_{CC} bus is required for best noise immunity.

Power supply regulation which will achieve 10% regulation or better at the device level is recommended. The -5.2 V power supply potential will result in best circuit speed. Other values for V_{EE} may be used. A more negative voltage will increase noise margins at a cost of increased power dissipation. A less negative voltage will have just the opposite effect.

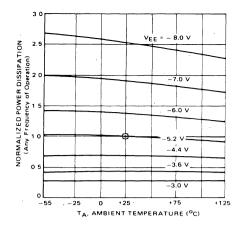
On logic cards, a ground plane or ground bus system should be used. A bus system should be wide enough to prevent significant voltage drops between supply and device and to produce a low source inductance.

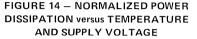
Although little power supply noise is generated by MECL logic, power supply bypass capacitors are recommended to handle switching currents caused by stray capacitance and asymmetric circuit loading. A parallel combination of a 1.0 μ F and a 100 pF capacitor at the power entrance to the board, and a 0.01 μ F low-inductance capacitor between ground and the -5.2 V line every four to six packages, are recommended.

Most MECL 10,000 and MECL III circuits have two V_{CC} leads. V_{CC1} supplies current to the output transistors and V_{CC2} is connected to the circuit logic transistors. The separate V_{CC} pins reduce cross-coupling between individual circuits within a package when the outputs are driving heavy loads. Circuits with large drive capability, similar to the MC10110, have two V_{CC1} pins. All V_{CC} pins should be connected to the ground plane or ground bus as close to the package as possible.

For further discussion of MECL power supply considerations to be made in system designing, see MECL System Design Handbook.

POWER DISSIPATION


The power dissipation of MECL functional blocks is specified on their respective data sheets. This specification does not include power dissipated in the output devices due to output termination. The omission of internal output pulldown resistors permits the use of external terminations designed to yield best system performance. To obtain total operating power dissipation of a particular functional block in a system, the dissipation of the output transistor, under load, must be added to the circuit power dissipation.


The table in Figure 13 lists the power dissipation in the output transistors plus that in the external terminating resistors, for the more commonly used termination values and circuit configurations. To obtain true package power dissipation, one outputtransistor power-dissipation value must be added to the specified package power dissipation for each external termination resistor used in conjunction with that package. To obtain system power dissipation, the stated dissipation in the external terminating resistors must be added as well. Unused outputs draw no power and may be ignored.

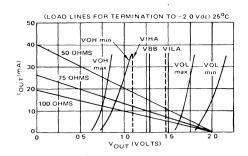
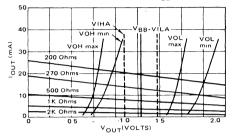

Terminating Resistor Value	Output Transistor Power Dissipation (mW)	Terminating Resistor Power Dissipation (mW)
150 ohms to -2.0 Vdc	5.0	4.3
100 ohms to -2.0 Vdc	7.5	6.5
75 ohms to -2.0 Vdc	10	8.7
50 ohms to -2.0 Vdc	15	13
2.0 k ohms to VEE	2.5	7.7
1.0 k ohm to VEE	4.9	15.4
680 ohms to VEE	7.2	22.6
510 ohms to VEE	9.7	30.2
270 ohms to VEE	18.3	57.2
82 ohms to V _{CC} and 130 ohms to V _{EE}	15	140

FIGURE 13 – AVERAGE POWER DISSIPATION IN OUTPUT CIRCUIT WITH EXTERNAL TERMINATING RESISTORS


The power dissipation of MECL functional blocks varies with both temperature and V_{EE}. Typical variations are shown in Figure 14. The graph is normalized so that it applies to all MECL lines. The reference temperature is 25° C and the reference power is obtained by multiplying the typical J_E value (total power supply drain current specified on the data sheet) by V_{EE} (5.2 V). For those devices where only the maximum value of I_E is specified on the data sheet, typical power dissipation is approximately 80% of that calculated with the I_E (max) specification.

(LOAD LINES FOR TERMINATION TO VEE (-5 2 Vdc) 25°C

LOADING CHARACTERISTICS

The differential input to MECL circuits offers several advantages. Its common-mode-rejection feature offers immunity against power-supply noise injection, and its relatively high input impedance makes it possible for any circuit to drive a relatively large number of inputs without deterioration of the guaranteed noise margin. Hence, dc fanout with MECL circuits does not normally present a design problem.

Graphs showing typical output voltage levels as a function of load current for MECL III and 10,000 are shown in Figure 15. These graphs can be used to determine the actual output voltages for loads exceeding normal operation.

While dc loading causes a change in output voltage levels, thereby tending to affect noise margins, ac loading increases the capacitances associated with the circuit and, therefore, affects circuit speed, primarily rise and fall times.

MECL 10,000 and MECL III circuits typically have a 7 ohm output impedance and are relatively unaffected by capacitive loading on a positivegoing output signal. However, the negative-going edge is dependent on the output pulldown or termination resistor. Loading close to a MECL output pin will cause an additional propagation delay of 0.1 ns per fanout load with a 50 ohm resistor to -2.0 Vdc or 270 ohms to -5.2 Vdc. A 100 ohm resistor to -2.0 Vdc or 510 ohms to -5.2 Vdc results in an additional 0.2 ns propagation delay per fanout load.

FIGURE 15 – OUTPUT VOLTAGE LEVELS versus DC LOADING

Terminated transmission line signal interconnections are used for best MECL 10,000 or MECL III system performance. The propagation delay and rise time of a driving gate are affected very little by capacitance loading along a matched parallel-terminated transmission line. However, the delay and characteristic impedance of the transmission line itself are affected by the distributed capacitance. Signal propagation down the line will be increased by a factor, $\sqrt{1+C_d/C_0}$. Here C_0 is the normal intrinsic line capacitance, and C_d is the distributed capacitance due to loading and stubs off the line.

Maximum allowable stub lengths for loading off of a MECL 10,000 transmission line vary with the line impedance. For example, with $Z_0 = 50$ ohms, maximum stub length would be 4.5 inches (1.8 in. for MECL III). But when $Z_0 = 100$ ohms, the maximum allowable stub length is decreased to 2.8 inches (1.0 in. for MECL III).

The input loading capacitance of a MECL 10,000 gate is about 2.9 pF and 3.3 pF for MECL III. To allow for the IC connector or solder connection and a short stub length, 5 to 7 pF is commonly-used in loading calculations.

UNUSED MECL INPUTS

The input impedance of a differential amplifier, as used in the typical MECL input circuit, is very high when the applied signal level is low. Under low-signal conditions, therefore, any leakage to the input capacitance of the gate could cause a gradual buildup of voltage on the input lead, thereby adversely affecting the switching characteristics at low repetition rates.

All single-ended input MECL logic circuits contain input pulldown resistors between the input transistor bases and V_{EE}. As a result, unused inputs may be left unconnected (the resistor provides a sink for I_{CBO} leakage currents, and inputs are held sufficiently negative that circuits will not trigger due to noise coupled into such inputs).

Input pulldown resistor values are typically 50 $k\,\Omega$ and are not to be used as pulldown resistors for preceding open-emitter outputs.

Several MECL devices do not have input pulldowns. Examples are the differential line receivers. If a single differential receiver within a package is unused, one input of that receiver must be tied to the V_{BB} pin provided, and the other input goes to V_{EE}. Also, several MECL memories do not have input pulldowns on all inputs.

Several MECL circuits do not operate properly when inputs are connected to V_{CC} for a HIGH logic level. Proper design practice is to set a HIGH level as about -0.9 volts below V_{CC} with a resistor divider, a diode drop, or an unused gate output.

SECTION IV — SYSTEM DESIGN CONSIDERATIONS

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the IC junction temperatures low.

Electrical power dissipated in any integrated circuit is a source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature of 25° C in still air. The temperature increase, then, depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point.

The temperature at the junction is a function of the packaging and mounting system's ability to remove heat generated in the circuit—from the junction region to the ambient environment. The basic formula (a) for converting power dissipation to estimated junction temperature is:

$$T_{J} = T_{A} + P_{D} \left(\overline{\theta}_{JC} + \overline{\theta}_{CA} \right)$$
 (1)

or

$$T_{J} = T_{A} + P_{D}(\overline{\theta}_{JA})$$
(2)

where

T_J = maximum junction temperature

 $T_A = maximum$ ambient temperature

P_D = calculated maximum power dissipation including effects of external loads (see Power Dissipation in section III).

- $\overline{\theta}_{JC}$ = average thermal resistance, junction to case
- $\vec{\theta}_{CA}$ = average thermal resistance, case to ambient
- $\overline{\theta}_{JA}$ = average thermal resistance, junction to ambient

This Motorola recommended formula has been approved by RADC and DESC for calculating a "practical" maximum operating junction temperature for MIL-M-38510 (JAN) MECL 10,000 devices.

Only two terms on the right side of equation (1) can be varied by the user—the ambient temperature, and the device case-to-ambient thermal resistance, $\overline{\theta}_{CA}$. (To some extent the device power dissipation can be also controlled, but under recommended use the V_{EE} supply and loading dictate a fixed power dissipation.) Both system air flow and the package mounting technique affect the $\overline{\theta}_{CA}$ thermal resistance term. $\overline{\theta}_{JC}$ is essentially independent of air flow and external mounting method, but is sensitive to package material, die bonding method, and die area.

For applications where the case is held at essentially a fixed temperature by mounting on a large or temperature-controlled heat sink, the estimated junction temperature is calculated by:

$$T_{I} = T_{C} + P_{D}(\overline{\theta}_{IC})$$
(3)

Package Type		CE IN STILL AIR	θ	JC
(All Using Standard* Mounting)	(°C)	Watt)	(°C/	Watt)
(All Gold Eutectic Die Bond)	Average	Maximum	Average	Maximun
14 Lead Dual-In-Line 1/4‴ X·3/4″ Alumina Die Area = 4096 Sq. Mils	100	130	25	40
14 Lead Flat Pack 1/4'' X 1/4'' Alumina Die Area: 4096 Sq. Mils	165	205	40	60
16 Lead Dual-In-Line 1/4'' X 3/4'' Alumina Die Area: 4096 Sq. Mils	100	130	25	40
16 Lead Flat Pack 1/4'' X 3/8'' Beryllia Die Area = 4096 Sq. Mils	88	115	13	20
20 Lead Dual-In-Line 1/4'' X 1'' Alumina Die Area = 11,349 Sq. Mils	73	95	16	25
24 Lead Dual-In-Line 1/2" X 1-1/4" Alumina Die Area = 8192 Sq. Mils	45	55	10	15
24 Lead Flat Pack 3/8'' X 5/8'' Beryllia Die Area = 8192 Sq. Mils	40	52	6	10
48 Lead Quad-In-Line (QUIL) 1/2'' × 1-1/4'' Alumina Die Area = 16,384 Sg. Mils	40	52	8	12

FIGURE 16 – THERMAL RESISTANCE VALUES FOR STANDARD MECL IC CERAMIC PACKAGES

*Standard Mounting Methods:

Dual-In-Line: In socket or on PC Board with no contact between bottom of package and socket or PC Board.

Flat Pack: Bottom of Package in direct contact with non-metallized area of PC Board.

where T_C = maximum case temperature and the other parameters are as previously defined.

The maximum and average thermal resistance values for standard MECL IC packages are given in Figure 16. In Figure 17, this basic data is converted into graphs showing the maximum power dissipation allowable at various ambient temperatures (still air) for circuits mounted in the different packages, taking into account the maximum permissible operating junction temperature for long term life (\geq 100,000 hours).

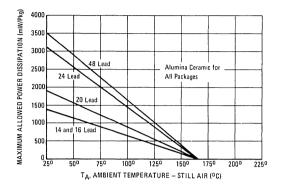


FIGURE 17a – AMBIENT TEMPERATURE DERATING CURVES (CERAMIC DUAL-IN-LINE PKG)

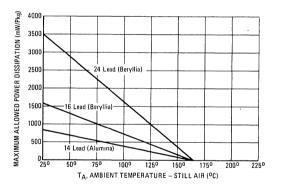


FIGURE 17b – AMBIENT TEMPERATURE DERATING CURVES (CERAMIC FLAT PKG)

AIR FLOW

The effect of air flow over the packages on $\overline{\theta}_{JA}$ (due to a decrease in $\overline{\theta}_{CA}$) is illustrated in the graphs of Figure 18. This air flow reduces the thermal resistance of the package, therefore permitting a corresponding increase in power dissipation without exceeding the maximum permissible operating junction temperature.

As an example of the use of the information above, the maximum junction temperature for a 16 lead ceramic dual-in-line packaged MECL 10,000 quad OR/NOR gate (MC10101L) loaded with four 50 ohm loads can be calculated. Maximum total power dissipation (including 4 output loads) for this quad gate is 195 mW. Assume for this thermal study that air flow is 500 linear feet per minute. From Figure 18, $\overline{\theta}_{JA}$ is 50°C/W. With T_A (air flow temperature at the device) equal to 25°C, the following maximum junction temperature results:

$$T_J = P_D(\overline{\theta}_{JA}) + T_A$$

 $T_{J} = (0.195 W) (50^{\circ}C/W + 25^{\circ}C = 34.8^{\circ}C)$

Under the above operating conditions, the MECL 10,000 quad gate has its junction elevated above ambient temperature by only 9.8° C.

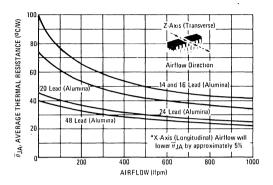


FIGURE 18a – AIRFLOW versus THERMAL RESISTANCE (CERAMIC DUAL-IN-LINE PKG)

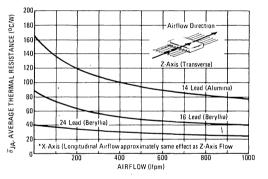


FIGURE 18b – AIRFLOW versus THERMAL RESISTANCE (CERAMIC FLAT PKG)

Even though different device types mounted on a printed circuit board may each have different power dissipations, all will have the same input and output levels provided that each is subject to identical air flow and the same ambient air temperature. This eases design, since the only change in levels between devices is due to the increase in ambient temperatures as the air passes over the devices, or differences in ambient temperature between two devices.

The majority of MECL 10,000, 10800, and MECL III users employ some form of air-flow cooling. As air passes over each device on a printed circuit board, it absorbs heat from each package. This heat gradient from the first package to the last

package is a function of the air flow rate and individual package dissipations. Figure 19 provides gradient data at power levels of 200 mW. 250 mW, 300 mW, and 400 mW with an air flow rate of 500 lfpm. These figures show the proportionate increase in the junction temperature of each dual in-line package as the air passes over each device. For higher rates of air flow the change in junction temperature from package to package down the airstream will be lower due to greater cooling.

Power Dissipation (mW)	Junction Temperature Gradient ([°] C/Package)
200	0.4
250	0.5
300	0.63
400	0.88

Devices mounted on 0.062" PC board with Z axis spacing of 0.5". Air flow is 500 If pm along the Z axis.

FIGURE 19 – THERMAL GRADIENT OF JUNCTION TEMPERATURE (16-Pin MECL Dual In-Line Package)

THERMAL EFFECTS ON NOISE MARGIN

The data sheet dc specifications for standard MECL 10,000, 10800, and MECL III devices are given for an operating temperature range from -30° C to $+85^{\circ}$ C (0° to $+75^{\circ}$ C for memories) in Figure 6b and 6c of Section II, TECHNICAL DATA. These values are based on having an airflow of 500 Ifpm over socket or P/C board mounted packages with no special heat sinking (i.e., dual-inline package mounted on lead seating plane with no contact between bottom of package and socket or P/C board and flat package mounted with bottom in direct contact with non-metallized area of P/C board). Under these conditions, adequate cooling is provided to keep the maximum operating junction temperatures below 145°C for MECL III device types 1666-1670 and below 165°C for all other MECL device types.

The designer may want to use MECL devices under conditions other than those given above. The majority of the low-power device types may be used without air and with higher $\overline{\theta}_{JA}$. However, the designer must bear in mind that junction temperatures will be higher for higher $\overline{\theta}_{JA}$, even though the ambient temperature is the same. Higher junction temperatures will cause logic levels to shift.

As an example, a 300 mW 16 lead dual-in-line ceramic device operated at $\overline{\theta}_{JA} = 100^{\circ}$ C/W (in still air) shows a HIGH logic level shift of about 21 mV above the HIGH logic level when operated with 500 lfpm air flow and a $\overline{\theta}_{JA} = 50^{\circ}$ C/W. (Level shift = $\Delta T_{J} \times 1.4 \text{ mV}/^{\circ}$ C).

If logic levels of individual devices shift by different amounts (depending on P_D and θ_{JA}), noise margins are somewhat reduced. Therefore, the system designer must lay out his system bearing in mind that the mounting procedures to be used should minimize thermal effects on noise margin.

The following sections on package mounting and heat sinking are intended to provide the designer with sufficent information to insure good noise margins and high reliability in MECL system use.

MOUNTING AND HEAT SINK SUGGESTIONS

With large high-speed logic systems, the use of multilayer printed circuit boards is recommended to provide both a better ground plane and a good thermal path for heat dissipation. Also, a multilayer board allows the use of microstrip line techniques to provide transmission line interconnections.

Two-sided printed circuit boards may be used where board dimensions and package count are small. If possible, the V_{CC} ground plane should face the bottom of the package to form the thermal conduction plane. If signal lines must be placed on both sides of the board, the V_{EE} plane may be used as the thermal plane, and at the same time may be used as a pseudo ground plane. The pseudo ground plane becomes the ac ground reference under the signal lines placed on the same side as the V_{CC} ground plane (now on the opposite side of the board from the packages), thus maintaining a microstrip signal line environment.

Two-ounce copper P/C board is recommended for thermal conduction and mechanical strength. Also, mounting holes for low power devices may be countersunk to allow the package bottom to contact the heat plane. This technique used along with thermal paste will provide good thermal conduction.

Printed channeling is a useful technique for conduction of heat away from the packages when the devices are soldered into a printed circuit board. As illustrated in Figure 20, this heat dissipation method could also serve as VEE voltage distribution or as a ground bus. The channels should terminate into channel strips at each side or the rear of a plug-in type printed circuit board. The heat can then be removed from the circuit board, or board slide rack, by means of wipers that come into thermal contact with the edge channels.

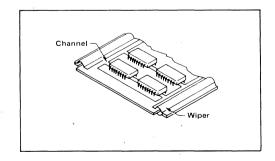
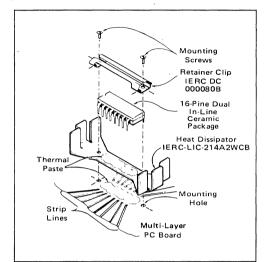



FIGURE 20 – CHANNEL/WIPER HEAT SINKING ON DOUBLE LAYER BOARD

For operating some of the higher power device types* in 16 lead dual-in-line packages in still air, requiring $\overline{\theta}_{JA} < 100^{\circ}$ C/W, a suitable heat sink is the IERC LIC-214A2WCB shown in Figure 21. This sink reduces the still air $\overline{\theta}_{JA}$ to around 55°C/W. By mounting this heat sink directly on a copper ground plane (using silicone paste) and passing 500 lfpm air over the packages, $\overline{\theta}_{JA}$ is reduced to approximately 35°C/W, permitting use at higher ambient temperatures than +85°C (+75°C for memories) or in lowering TJ for improved reliability.

FIGURE 21 – MECL HIGH-POWER DUAL-IN-LINE PACKAGE MOUNTING METHOD

It should be noted that the use of a heat sink on the top surface of the dual-in-line package is not very effective in lowering the $\overline{\theta}_{JA}$. This is due to the location of the die near the bottom surface of the package.

Also, very little (< 10%) of the internal heat is withdrawn through the package leads due to the isolation from the ceramic by the solder glass seals and the limited heat conduction from the die through 1.0 to 1.5 mil aluminum bonding wires.

INTERFACING MECL TO SLOWER LOGIC TYPES

MECL circuits are interfaceable with most other logic forms. For MECL/TTL/DTL interfaces, when MECL is operated at the recommended -5.2 volts and TTL/DTL at +5 V supply, currently available translator circuits, such as the MC10124 and MC10125, may be used.

For systems where a dual supply (-5.2 V and +5 V) is not practical, the MC12000 includes a single supply MECL to TTL and TTL to MECL translator, or a discrete component translator can be designed. For details, see MECL System Design Handbook. Such circuits can easily be made fast enough for any available TTL.

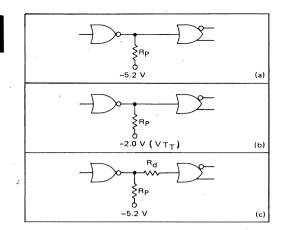
MECL also interfaces readily with MOS. With CMOS operating at +5 V, any of the MECL to TTL translators works very well. On the other hand, CMOS will drive MECL directly when using a common -5.2 V supply.

Specific circuitry for use in interfacing MECL families to other logic types is given in detail in the MECL System Design Handbook.

Complex MECL 10,000 functions are presently available to interface MECL 10,000 with MOS logic, MOS memories, TTL three-state circuits, and IBM bus logic levels. See Application Note AN-720 for additional interfacing information.

CIRCUIT INTERCONNECTIONS

Though not necessarily essential, the use of multilayer printed circuit boards offers a number of advantages in the development of high-speed logic cards. Not only do multilayer boards achieve a much higher package density, interconnecting leads are kept shorter, thus minimizing propagation delay between packages. This is particularly beneficial with MECL III which has relatively fast (1 ns) rise and fall times. Moreover, the unbroken ground planes made possible with multilayer boards permit much more precise control of transmission line impedances when these are used for interconnecting purposes. Thus multilayer boards are recommended for MECL III layouts and are justified when operating MECL 10,000 at top circuit speed, when high-density packaging is a requirement, or when transmision line interconnects are used.


Point-to-point back-plane wiring: without matched line terminations may be employed for MECL interconnections if line runs are kept short. At MECL 10,000 speeds, this applies to line runs up to 6 inches, and for MECL III up to 1 inch (maximum open wire lengths for less than 100 mV undershoot). But, because of the open-emitter outputs of MECL 10,000 and MECL III circuits, pull-down resistors are always required. Several ways of connecting such pull-down resistors are shown in Figure 22.

Resistor values for the connection in Figure 22a may range from 270 ohms to 2 k Ω depending on power and load requirements. (See MECL System Design Handbook.) Power may be saved by connecting pull-down resistors in the range of 50 ohms (100 ohm minimum for MC10,500 and MC10,600 Series parts) to 150 ohms, to -2.0 Vdc, as shown in Figure 22b. Use of a series damping resistor, Figure 22c, will extend permissible lengths of unmatched-impedance interconnections, with some loss of edge speed.

With proper choice of the series damping resistor, line lengths can be extended to any length,** while limiting overshoot and undershoot to a predetermined amount. Damping resistors usually range in value from 10 ohms to 100 ohms, depending on the line length, fanout, and line impedance. The open emitter-follower outputs of MECL III and MECL 10,000 give the system designer all possible line driving options.

MC1654, 1678, 1694, 10128, 10129, 10136, 10137, 10177, 10182, and 10804. Max $\mathrm{P}_{D}\!>$ 800 mW.

^{**} Limited only by line attenuation and bandwidth characteristics.

One major advantage of MECL over saturated logic is its capability for driving matched-impedance transmission lines. Use of transmission lines retains signal integrity over long distances. The MECL III and MECL 10,000 emitter-follower output transistors will drive a 50-ohm transmission line (100 ohms or greater for MECL 10,500 and MC10,600 Series) terminated to -2.0 Vdc. This is the equivalent current load of 22 mA in the HIGH logic state and 6 mA in the LOW state.

Parallel termination of transmission lines can be done in two ways. One, as shown in Figure 23a, uses a single resistor whose value is equal to the impedance (Z_0) of the line. A terminating voltage (V_{TT}) of -2.0 Vdc must be supplied to the terminating resistor.

Another method of parallel termination uses a pair of resistors, R1 and R2. Figure 23b illustrates this method. The following two equations are used to calculate the values of R1 and R2:

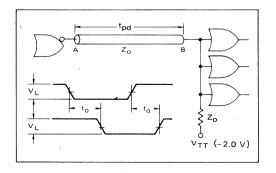
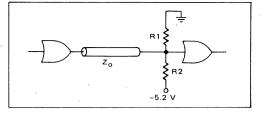
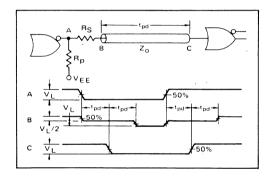
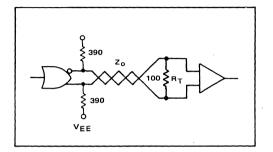




FIGURE 23a – PARALLEL TERMINATED LINE

FIGURE 23b – PARALLEL TERMINATION – THEVENIN EQUIVALENT

Another popular approach is the seriesterminated transmission line (see Figure 24). This differs from parallel termination in that only one-half the logic swing is propagated through the lines. The logic swing doubles at the end of the transmission line due to reflection on an open line, again establishing a full logic swing.


FIGURE 24 – SERIES TERMINATED LINE

To maintain clean wave fronts, the input impedance of the driven gate must be much greater than the characteristic impedance of the transmission line. This condition is satisfied by MECL circuits which have high impedance inputs. Using the appropriate terminating resistor (R_S) at point A (Figure 24), the reflections in the transmission line will be terminated.

The advantages of series termination include ease of driving multiple series-terminated lines, low power consumption, and low cross talk between adjacent lines. The disadvantage of this system is that loads may not be distributed along the transmission line due to the one-half logic swing present at intermediate points.

For board-to-board interconnections, coaxial cable may be used for signal conductors. The termination techniques just discussed also apply when using coax. Coaxial cable has the advantages of good noise immunity and low attenuation at high frequencies. No significant performance degradation occurs for lengths up to 20 feet for MECL 11, and up to 50 feet for MECL 10,000.

Twisted pair lines are one of the most popular methods of interconnecting cards or panels. The complementary outputs of any MECL III or MECL 10,000 function are connected to one end of the twisted pair line, and any MECL differential line receiver to the other as shown in the example, Figure 25. RT is used to terminate the twisted pair line. The 1 to 1.5 V common-mode noise rejection of the line receiver ignores common-mode cross talk, permitting multiple twisted pair lines to be tied into cables. MECL signals may be sent very long distances (> 1000 feet) on twisted pair, although line attenuation will limit bandwidth, degrading edge speeds when long line runs are made.

FIGURE 25 – TWISTED PAIR LINE DRIVER/RECEIVER

If timing is critical, parallel signal paths (shown in Figure 26) should be used when fanout to several cards is required. This will eliminate distortion caused by long stub lengths off a signal path.

Wire-wrapped connections can be used with MECL 10,000. For MECL III, the fast edge speeds (1 ns) create a mismatch at the wire-wrap connections which can cause reflections, thus reducing noise immunity. The mismatch occurs also with MECL 10,000, but the distance between the wire-wrap connection and the end of the line is generally short enough so the reflections cause no problem.

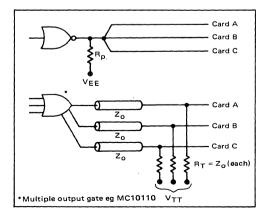


FIGURE 26 – PARALLEL FANOUT TECHNIQUES

Series damping resistors may be used with wirewrapped lines to extend permissible backplane wiring lengths. Twisted pair lines may be used for even longer distances across large wire-wrapped cards. The twisted pair gives a more defined characteristic impedance (than a single wire), and can be connected either single-ended, or differentially using a line receiver.

The recommended wire-wrapped circuit cards have a ground plane on one side and a voltage plane on the other, to insure a good ground and a stable voltage source for the circuits. In addition, the ground plane near the wire-wrapped lines lowers the impedance of those lines and facilitates terminating the line. Finally, the ground plane serves to minimize cross talk between parallel paths in the signal lines. Point-to-point wire routing is recommended because cross talk will be minimized and line lengths will be shortest. Commercial wire-wrap boards designed for MECL 10,000 are available from several vendors.

Microstrip and Stripline

Microstrip and stripline techniques are used with printed circuit boards to form transmission lines. Microstrip consists of a constant-width conductor on one side of a circuit board, with a ground plane on the other side (shown in Figure 27). The characteristic impedance is determined by the width and thickness of the conductor, the thickness of the circuit board, and the dielectric constant of the circuit board material.

Stripline is used with multilayer circuit boards as shown in Figure 27. Stripline consists of a constant-width conductor between two ground planes.

Refer to MECL System Design Handbook for a full discussion of the properties and use of these lines.

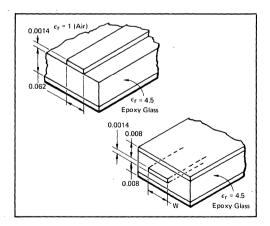
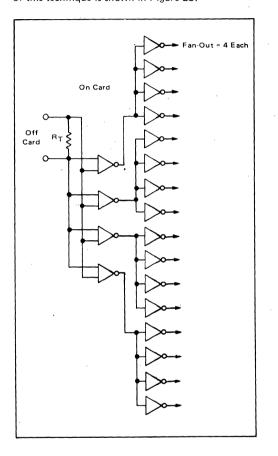



FIGURE 27 – PC INTERCONNECTION LINES FOR USE WITH MECL

ī

CLOCK DISTRIBUTION

Clock distribution can be a system problem. At MECL 10,000 speeds, either coaxial cable or twisted pair line (using the MC10101 and MC10115) can be used to distribute clock signals throughout a system. Clock line lengths should be controlled and matched when timing could be critical. Once the clocking signals arrive on card, a tree distribution should be used for large-fanouts at high frequency. An example of the application of this technique is shown in Figure 28.

FIGURE 28 - 64 FANOUT CLOCK DISTRIBUTION

Because of the very high clock rates encountered in MECL III systems, rules for clocking are more rigorous than in slower systems.

The following guidelines should be followed for best results:

A. On-card Syncrhonous Clock Distribution via Transmission Line

1. Use the NOR output in developing clock chains or trees. Do not mix OR and NOR outputs in the chain.

2. Use balanced fanouts on the clock drivers.

3. Overshoot can be reduced by using two parallel drive lines in place of one drive line with twice the lumped load.

4. To minimize clock skewing problems on synchronous sections of the system, line delays should be matched to within 1 ns.

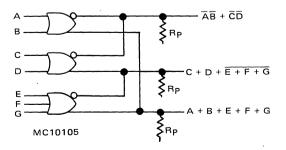
5. Parallel drive gates should be used when clocking repetition rates are high, or when high capacitance loads occur. The bandwidth of a MECL III gate may be extended by paralleling both halves of a dual gate. Approximately 40 or 50 MHz bandwidth can be gained by paralleling two or three clock driver gates.

6. Fanout limits should be applied to clock distribution drivers. Four to six loads should be the maximum load per driver for best high speed performance. Avoid large lumped loads at the end of lines greater than 3 inches. A lumped load, if used, should be four or fewer loads.

7. For wire-OR (emitter dotting), two-way lines (busses) are recommended. To produce such lines, both ends of a transmission line are terminated with 100-ohms impedance. This method should be used when wire-OR connections exceed 1 inch apart on a drive line.

B. Off-Card Clock Distribution

1. The OR/NOR outputs of an MC1660 may be used to drive into twisted pair lines or into flat, fixed-impedance ribbon cable. At the far end of the twisted pair an MC1692 differential line receiver is used. The line should be terminated as shown in Figure 25. This method not only provides high speed, board-to-board clock distribution, but also provides system noise margin advantages. Since the line receiver operates independently of the V_{BB} reference voltage (differential inputs) the noise margin from board to board is also independent of temperature differentials.


LOGIC SHORTCUTS

MECL circuitry offers several logic design conveniences. Among these are:

1. Wire-OR (can be produced by wiring MECL output emitters together outside packages).

2. Complementary Logic Outputs (both OR and NOR are brought out to package pins in most cases).

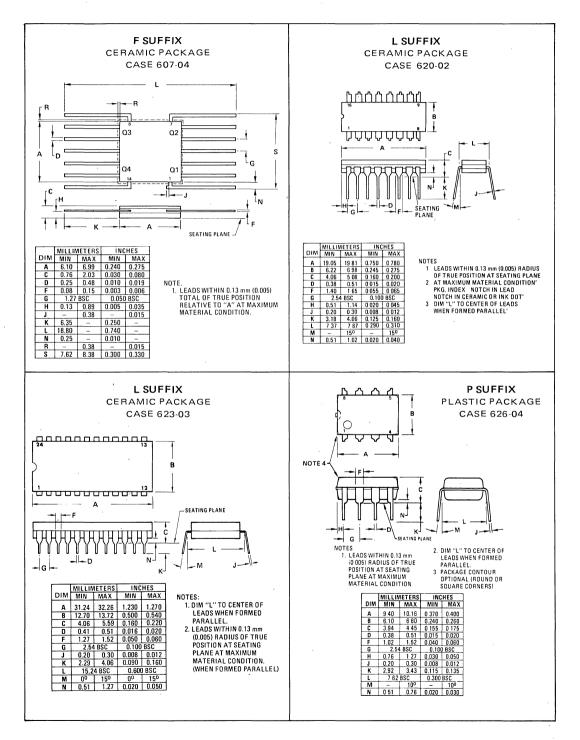
An example of the use of these two features to reduce gate and package count is shown in Figure 29.

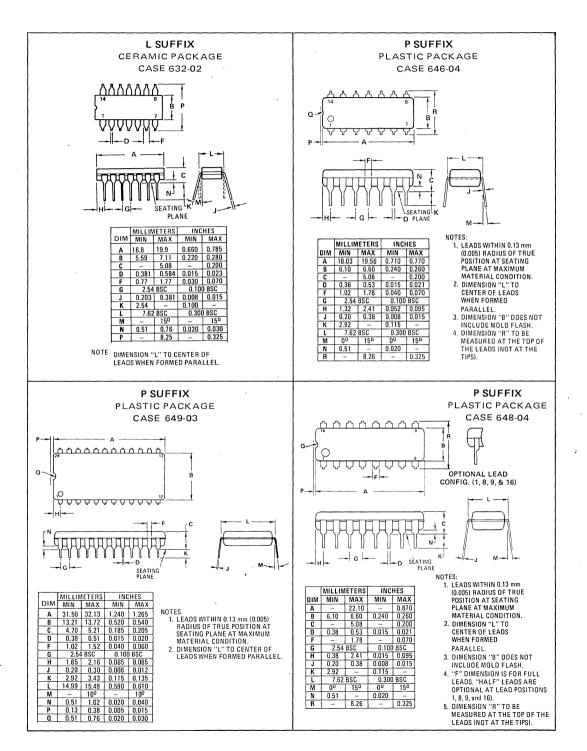
The connection shown saves several gate circuits over performing the same functions with non-ECL type logic. Also, the logic functions in Figure 29 are all accomplished with one gate propagation delay time for best system speed. Wire-ORing permits direct connections of MECL circuits to busses. (MECL System Design Handbook and Application Note AN-726).

Propagation delay is increased approximately 50 ps per wire-OR connection. In general, wire-OR should be limited to 6 MECL outputs to maintain a proper LOW logic level. The MC10123 is an exception to this rule because it has a special V_{OL} level that allows very high fanout on a bus or wire-OR line. The use of a single output pull-down resistor is recommended per wire-OR, to economize on power dissipation. However, two pull-down resistors per wired-OR can improve fall times and be used for double termination of busses.

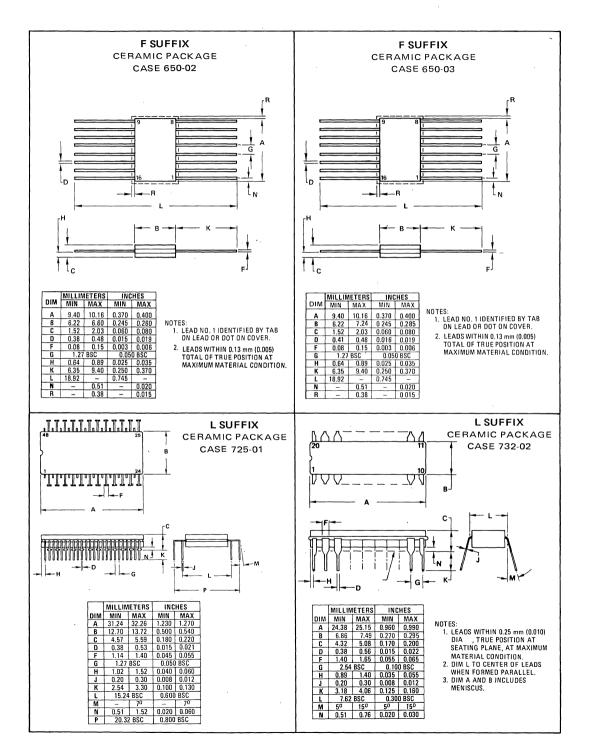
Wire-OR should be done between gates in a package or nearby packages to avoid spikes due to line propagation delay. This does not apply to bus lines which activate only one driver at a time.

	MECL 10,000	MECL III
Power Supply Regulation	10% or better*	10% or better*
On-Card Temperature Gradient	Less Than 25 ⁰ C	Less Than 25 ⁰ C
Maximum Non-Transmission Line Length (No Damping Resistor)	8″	1''
Unused Inputs	Leave Open* *	Leave Open**
PC Board	Standard 2-Sided or Multilayer	Multilayer
Special Cooling Requirements	No	No
Bus Connection Capability	Yes (Wire-OR)	Yes (Wire-OR)
MSI/LSI Parts	Yes	Yes (MSI)
Maximum Twisted Pair Length (Differential Drive)	Limited by Cable Response Only, Usually > 1000'	Limited by Cable Response Only, Usually > 1000'
The Ground Plane to Occupy Percent Area of Card	> 50%	> 75%
Wire Wrap may be used	Yes	Not Recommended
Compatible with MECL 10,000		Yes


SYSTEM CONSIDERATIONS – A SUMMARY OF RECOMMENDATIONS


*At the devices.

**Except special functions without input pull-down resistors.


PACKAGE OUTLINE DIMENSIONS

A letter suffix to the MECL logic function part number is used to specify the package style (see drawings below). See appropriate selector guide for specific packaging available for a given device type.

PACKAGE OUTLINE DIMENSIONS (continued)

- 1. "Improve Fast-Logic Designs," by Bill Blood, Electronic Design, May 10, 1973.
- "Interface TTL Systems with ECL Circuits," by George Adams, EDN, September 5, 1973.
- "Increasing Minicomputer Speed with Emitter-Coupled Logic," by Jon De Laune, Computer Design, February 1974.
- "An Engineering Comparison Study MECL 10,000 and Schottky TTL," Motorola Inc., 1974.
- "ECL Circuits Drive Light-Emitting Diodes," by Bill Blood, EDN, January 20, 1974.
- "Four-Digit BCD Programmability Featured in Variable Modulus 60 MHz Counter," by Tom Balph and Bill Blood, Electronic Design, March 15, 1974.
- 7. "Build a Low Cost ECL Logic Probe," by Tom Balph, Electronic Design, August 16, 1974.

- "A CAD Program for High Speed Logic Element Interconnections," by Thomas Balph, William Blood, and Jerry Prioste, Computer Design, May 1975.
- "Build a Clock Bias Circuit for ECL Flip-Flops," by T. Balph and H. Gnauden, EDN, May 5, 1975.
- "M10800 Microprogrammed Demonstrator" by T. Balph, Electro 77, Session 31.
- "Get the Best Processor Performance by Building It From ECL Bit Slices," by Tom Balph and Bill Blood, Electronic Design, June 7, 1977.
- "M10800, A MECL Microprogrammable On-Line Demonstrator," by Tom Balph, Motorola Inc, 1977.
- 13. "MECL System Design Handbook," by Bill Blood, Motorola Inc.

APPLICATION NOTES

Copies of these Application Notes and Engineering Bulletins can be obtained from your Motorola representative or authorized distributor, or from Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

- AN-270 Nanosecond Pulse Handling Techniques
- AN-417B IC Crystal Controlled Oscillators
- AN-504 The MC1600 Series MECL III Gates
- AN-532A MTTL and MECL Avionics Digital Frequency Synthesizer
- AN-556 Interconnection Techniques for Motorola's MECL 10,000 Series Emitter Coupled Logic
- AN-565 Using Shift Registers as Pulse Delay Networks
- AN-567 MECL Positive and Negative Logic
- AN-579 Testing MECL 10,000 Integrated Logic Circuits
- AN-581 An MSI 500 MHz Freugency Counter Using MECL and MTTL
- AN-583 A MECL 10,000 Main Frame Memory Employing Dynamic MOS RAMs
- AN-584 Programmable Counters Using the MC10136 and MC10137 MECL 10,000 Universal Counters
- AN-586 Measure Frequency and Propagation Delay with High Speed MECL Circuits
- AN-592 AC Noise Immunity of MECL 10,000 Integrated Circuits
- AN-700 Simulate MECL System Interconnections with a Computer Program

- AN-701 Understanding MECL 10,000 DC and AC Data Sheet Specifications
- AN-709 MECL 10,000 Arithmetic Elements, MC10179, MC10180, MC10181
- AN-720 Interfacing with MECL 10,000 Integrated Circuits
- AN-726 Bussing with MECL 10,000 Integrated Circuits
- AN-730 A High-Speed FIFO Memory Using the MECL MCM10143 Register File
- AN-742 A 200 MHz Autroranging MECL-McMOS Frequency Counter
- AN-744 A Phase-Locked Loop Tuning System for Television
- AN-746 A 3-1/2 Digit DVM Using an Integrated Circuit Dual Ramp System
- AN-774 A Simple High Speed Bipolar Microprocessor Illustrates System Design and Microprogram Techniques
- AN-776 The M10800 MECL LSI Processor Family
- EB-47 Event Counter and Storage Latches for High Frequency, High Resolution Counters
- EB-48 A Time Base and Control Logic Subsystem for High Frequency, High Resolution Counters

ί.

SELECTOR GUIDES

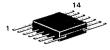
MECL 10,000			n an an an Ash Anna Ash Anna Ash
INTEGRATED CIRCUITS	MC10 MC10	,100/10,200 Seri ,500/10,600 Seri	
n en la companya de la companya de En la companya de la c			
		16	lles
Real Real Provide States	ΥY		
		1	
16 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	P SUFFIX LASTIC PACKAGE CASE 648	1	F SUFFIX CERAMIC PACKAG CASE 650
	×		
antil	AND A STATE OF A STATE		24
	Altr.		
24 UVIII L SUFFIX 24 UVIII CERAMIC PACKAGE P CASE 623 1	P SUFFIX LASTIC PACKAGE CASE 649		F SUFFIX CERAMIC PACKAG CASE 652
	Devic	е Туре	
Function	-30 to +85°C	-55 to +125 ⁰ C	Case
NOR GATES		1	
Quad 2-Input with Strobe	MC10100	MC10500	620, 648, 650
Quad 2-Input	MC10102	MC10502	620,648,650
Triple 4-3-3-Input Dual 3-Input 3-Output	MC10106 MC10111	MC10506	620, 648, 650 620, 648
(High Speed)	MC10211	MC10611	620, 648, 650
OR GATES	a#	I	
Quad 2-Input	+ MC10103	MC10503	620, 648, 650
Dual 3-Input 3-Output	MC10110	-	620, 648
(High Speed)	MC10210	MC10610	620, 648, 650
AND GATES Quad 2-Input	MC10104		620 648 650
Hex	MC10104 MC10197	MC10504 MC10597	620, 648, 650 620, 648, 650
COMPLEX GATES	1		
Quad OR/NOR	MC10101	MC10501	620, 648, 650
Triple 2-3-2 Input OR/NOR	MC10105	MC10505	620, 648, 650
Triple 2-Input Exclusive OR/Exclusive NOR	MC10107	MC10507	620, 648, 650
Dual 4-5-Input OR/NOR	MC10109	MC10509	620, 648, 650
Quad Exclusive OR	MC10113	MC10513	620, 648, 650
Dual 2-Wide 2-3-Input OR-AND/OR-AND-Invert	MC10117	MC10517	620, 648, 650
Dual 2-Wide 3-Input OR-AND	MC10118	MC10518	620, 648, 650
4-Wide 4-3-3-3 Input OR-AND Gate	MC10119	MC10519	620, 648, 650
OR-AND/OR-AND-INVERT Gate Hex Buffer with Enable	MC10121 MC10188	MC10521	620, 648, 650 620, 648
Hex Inverter with Enable	MC10188		620, 648
Hex Inverter/Buffer	MC10195	MC10595	620, 648, 650
High-Speed Dual 3-Input 3-Output OR/NOR	MC10212	MC10612	620, 648, 650
TRANSLATORS			
Quad MTTL to MECL	MC10124	MC10524	620, 648, 650
Quad MECL to MTTL	MC10125	MC10525	620, 648, 650
Triple MECL to NMOS	MC10177		620
RECEIVERS	1	:	1
	MC10114	MC10514	620,648,650
Triple Line			
Quad Line	MC10115	MC10515	620, 648, 650
		MC10515 MC10516 MC10616	620, 648, 650 620, 648, 650 620, 648, 650

MECL 10,000 INTEGRATED CIRCUITS (continued)

Episate -		e Type	
Function	-30 to +85 ⁰ C	-55 to +125 ⁰ C	Case
FLIP-FLOPS			
Dual Type D Master-Slave	MC10131	MC10531	620, 648, 650
(High Speed)	MC10231	MC10631	620, 648, 650
Dual J-K Master-Slave	MC10135	MC10535	620, 648, 650
Hex D Master-Slave	MC10176	MC10576	620, 648, 650
DRIVERS			
Triple 4-3-3 Input Bus Driver	MC10123	-	620, 648
Bus Driver	MC10128	-	620
PARITY CHECKER			
12-Bit Parity Generator-Checker	MC10160	MC10560	620, 648, 650
ENCODER			
8-Input Encoder	MC10165	MC10565	620, 648, 650
DECODERS	MC10161	11010561	620 648 650
Binary to 1-8 (low)	MC10161	MC10561	620,648,650
Binary to 1-8 (high)	MC10162	MC10562	620, 648, 650
Dual Binary to 1-4 (low)	MC10171	MC10571	620, 648, 650
Dual Binary to 1-4 (high)	MC10172	MC10572	620, 648, 650
DATA SELECTORS/MULTIPLEXERS Dual Multiplexer with Latch and Common Reset	MC10132	MC10532	620, 648, 650
			620, 648, 650 620, 648, 650
Dual Multiplexer with Latch	MC10134	MC10534	620, 648, 650
Quad 2-Input Multiplexer (non-inverting)	MC10158	MC10558	620, 648, 650
Quad 2-Input Multiplexer (inverting)	MC10159	MC10559	620, 648, 650
8-Line Multiplexer	MC10164	MC10564	620,648,650
Quad 2-Input Multiplexer/Latch	MC10173	-	620,648
Dual 4 to 1 Multiplexer	MC10174	MC10574	620,648,650
LATCHES			
Quad (common clock)	MC10130	MC10530	620,648,650
Quad (negative transition)	MC10133	MC10533	620, 648, 650
Quad (positive transition)	MC10153	MC10553	620,648,650
Quad	MC10168	MC10568	620,648,650
Quint	MC10175	MC10575	620,648,650
MULTIVIBRATORS		· · · · · ·	
Monostable Multivibrator	MC10198	-	620, 648
SHIFT REGISTERS		1	000 040 050
Four-Bit Universal	MC10141	MC10541	620,648,650
ERROR DETECTION-CORRECTION	N010102	1 1010500	
IBM Code	MC10163	MC10563	620, 648, 650
Motorola Code	MC10193	MC10593	620, 648, 650
COUNTERS	MC10126	MC10536	620, 648, 650
Universal Hexadecimal	MC10136		
Universal Decade	MC10137	MC10537	620, 648, 650
Bi-Quinary	MC10138	MC10538	620, 648, 650
Binary	MC10178	MC10578	620, 648, 650
GENERATOR-CHECKER			000 010 0
9 + 2-Bit Parity	MC10170	MC10570	620, 648, 650
Hex "D" Master-Slave/with Reset	MC10186	MC10586	620, 648, 650
Quad MST-to-MECL 10,000	MC10190	MC10590	620,648,650
Hex MECL 10,000-to-MST	MC10191	MC10591	620,648,650
BUS TRANSCEIVER Dual Simultaneous	MC10194	MC10594	620 649 650
	MC10194	WC 10594	620, 648, 650
ARITHMETIC FUNCTIONS	M010170	MC10570	620 640 650
ARITHMETIC FUNCTIONS Look-Ahead Carry Block	MC10179	MC10579	620, 648, 650
ARITHMETIC FUNCTIONS Look-Ahead Carry Block Dual High Speed Adder/Subtractor	MC10180	MC10580	620, 648, 650
ARITHMETIC FUNCTIONS Look-Ahead Carry Block Dual High Speed Adder/Subtractor 4-Bit Logic Unit/Function Generator	MC10180 MC10181	MC10580 MC10581	620, 648, 650 623, 649, 652
ARITHMETIC FUNCTIONS Look-Ahead Carry Block Dual High Speed Adder/Subtractor 4-Bit Logic Unit/Function Generator 2-Bit Logic Unit/Function Generator	MC10180 MC10181 MC10182	MC10580 MC10581 MC10582	620, 648, 650 623, 649, 652 620, 648, 6 50
ARITHMETIC FUNCTIONS Look-Ahead Carry Block Dual High Speed Adder/Subtractor 4-Bit Logic Unit/Function Generator	MC10180 MC10181	MC10580 MC10581	620, 648, 650 623, 649, 652

MECL 10,000 INTEGRATED CIRCUITS (continued)

이 비행을 보니 지수는 비행을 가지 않는 것이 없는 것을 수 없다.	Device	Device Type						
Function	-30 to +85°C	-55 to +125°C	Case					
COMPARATOR								
5-Bit Magnitude	MC10166	MC10566	620, 648 650					
MEMORIES								
16-Bit Multiport Register File (RAM) (8 x 2)	MCM10143		623					
64-Bit Random Access (64 x 1)	MCM10148	MCM10548	620, 650					
64-Bit Register File (RAM) (16 x 4)	MCM10145	MCM10545	620, 650					
128-Bit Random Access (128 x 1)	MCM10147	MCM10547	620, 650					
256-Bit Random Access (256 x 1)	MCM10144	MCM10544	620, 650					
256-Bit Random Access (256 x 1)	MCM10152	MCM10552	620, 650					
1024-Bit Random Access (1024 x 1)	MCM10146	MCM10546	620, 650					
256-Bit Programmable Read Only (32 x 8)	MCM10139	MCM10539	620,650					
1024-Bit Programmable Read Only (256 x 4)	MCM10149	MCM10549	620, 650					

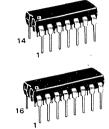

MIL-M-38510 JAN QUALIFIED MECL DEVICES

Function and Standard Equivalent	MIL-M-38510 Device
Quad OR/NOR Gate (MC10501)	JM38510/06001BEB, BFB
Quad 2-Input NOR Gate (MC10502)	JM38510/06002BEB, BFB
Triple 2-3-2 OR/NOR Gate (MC10505)	JM38510/06003BEB, BFB
Triple 4-3-3 NOR Gate (MC10506)	JM38510/06004BEB, BFB
Triple Exclusive OR/NOR Gate (MC10507)	JM39510/06005BEB, BFB
Dual 4-5 Input_OR/NOR Gate (MC10509)	JM38510/06006BEB, BFB
Dual D Flip-Flop (MC10531)	JM38510/06101BEB, BFB
Dual D Flip-Flop (MC10631)	JM38510/06102BEB, BFB
Hex D Flip-Flop (MC10576)	JM38510/06103BEB, BFB
Dual J-K Flip-Flop (MC10535)	JM38510/06104BEB, BFB

MIL-M-38510 PROCESSED MECL CIRCUITS are also available. Contact your Motorola sales representative or authorized distributor for details.

MECLIII INTEGRATED CIRCUITS

MC1600 Series (-30 to +85°C)



F SUFFIX CERAMIC PACKAGE CASE 607

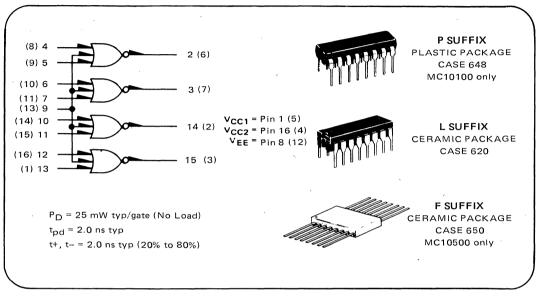
L SUFFIX CERAMIC PACKAGE CASE 632

L SUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX PLASTIC PACKAGE CASE 646

P SUFFIX PLASTIC PACKAGE CASE 648

P SUFFIX PLASTIC PACKAGE CASE 626


F SUFFIX CERAMIC PACKAGE CASE 650

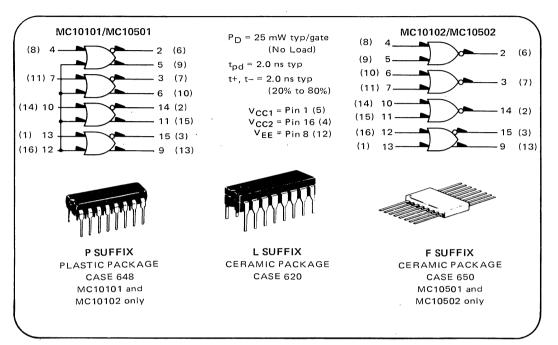
	Device Type	
Function	-30 ⁰ to +85 ⁰ C	Case
GATES		
Dual 4-Input OR/NOR	MC1660	620,650
Dual 4-5-Input OR/NOR	MC1688	650
Quad 2-Input NOR	MC1662	620,650
Triple 2-Input Exclusive NOR	MC1674	620,650
Quad 2-Input OR	MC1664	620,650
Triple 2-Input Exclusive OR	MC1672	620,650
FLIP-FLOPS		
Dual Clocked R-S	MC1666	620,650
Dual Clocked Latch	MC1668	620,650
Master-Slave Type D	MC1670	620,650
UHF Prescaler Type D	MC1690	620,650
COUNTERS		
Binary	MC1654	620
BI-Quinary	MC1678	620
1 GHz Divide-by-Four	MC1699	620, 650
SHIFT REGISTER		
4-Bit Shift	MC1694	620
MULTIVIBRATOR		
Voltage-Controlled	MC1658	620,648,650
OSCILLATOR		
Emitter Coupled	MC1648	607,632,646
COMPARATOR		
Dual A/D	MC1650/MC1651	620, 650
RECEIVER		
Quad Line	MC1692	620,650
PRESCALER		
1 GHz Divide-by-Four	MC1697	626

MECL 10,000 Series

MC10100/MC10500

QUAD 2-INPUT NOR GATE WITH STROBE

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

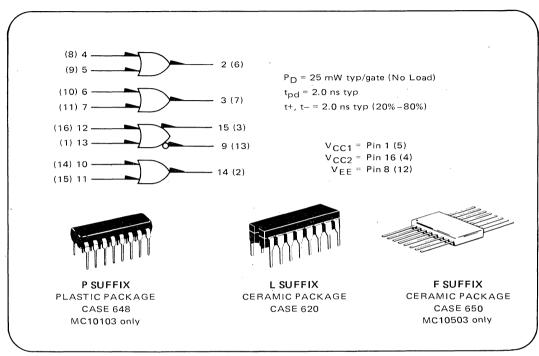

· · · · · · · · · · · · · · · · · · ·		-55 ⁰ C		-30°C		+25 ⁰ C		+85°C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	-	29		29	-	26	-	29	-	29	mAdc
Input Current Independent Inputs Common Input	linH	_	415 800		390 750		245 470	_	245 490	-	245 470	μAdc
Switching Times Propagation Delay	t _{pd}	1.0	3.7	1.0	3.1	1.0	2.9	1.0	3.3	1.0	3.7	ns
Rise Time, Fall Time (20% to 80%)	t+,t	1.0	4.0	1.1	3.6	1.1	3.3	1.1	3.7	1.0	4.0	ns

MC10101/MC10501

QUAD OR/NOR GATE

MC10102/MC10502

QUAD 2-INPUT NOR GATE

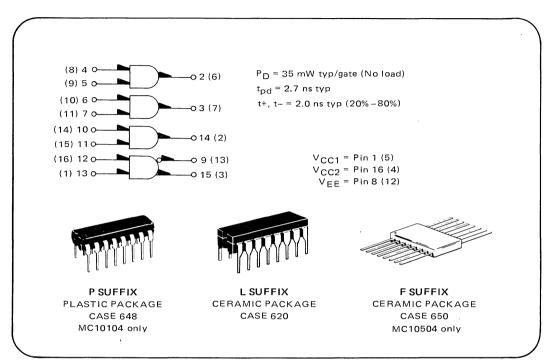


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		–55 ⁰ C		c – 30°C		C +25°C		+85°C		+125°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	29	-	29	<u> </u>	26	-	29	-	29	mAdc
Input Current Independent Inputs Common Input (MC10101/10501)	linH	-	450 910	-	425 850	-	265 535	-	265 535		245 535	μAdc
Switching Times Propagation Delay	t _{pd}	1.0	3.7	1.0	3.1	1.0	2.9	1.0	3.3	1.0	3.7	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	4.0	1.1	3.6	1.1	3.3	1.1	3.7	1.0	4.0	ns

MC10103/MC10503

QUAD 2-INPUT OR GATE


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

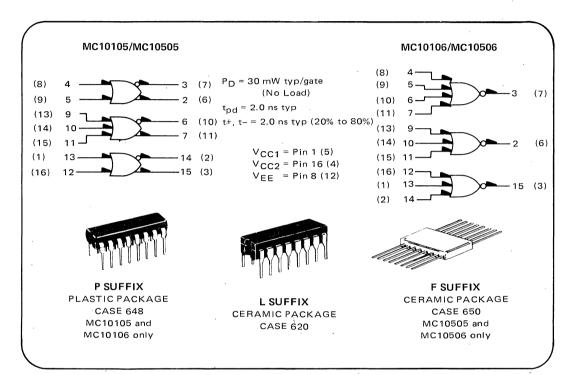
		–55 ⁰ C		-30 ⁰ C		+25 ⁰ C		+85 ⁰ C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ιE	-	29	-	29	_	26	-	29	-	29	mAdc
Input Current	linH	_	415	-	390	_	245		245	_	245	μAdc
Switching Times Propagation Delay	t _{pd}	1.0	3.7	1.0	3.1	1.0	2.9	1.0	3.3	1.0	3.7	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.1	4.0	1.1	3.6	1.1	3.3	1.1	3.7	1.1	4.0	ns

3-4

MC10104/MC10504

QUAD 2-INPUT AND GATE

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

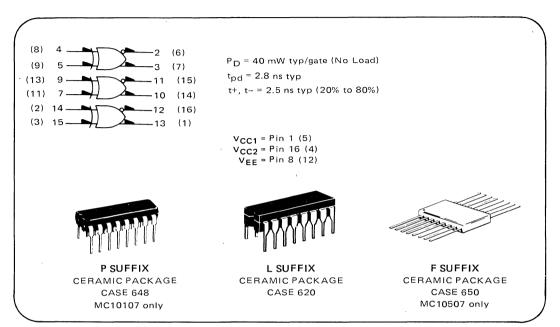

		-55°C		-30°C		+25°C		C +85°C		+ 12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١ _E		39	-	39		35	`	39	-	39	mAdc
Input Current Pins 4, 7, 10, 13 Pins 5, 6, 11, 12	linH	_	450 375	·	425 350	_	265 220	-	265 220	-	265 220	μAdc
Switching Times Propagation Delay	^t pd	1.0	4.3	1.0	4.3	_	4.0	1.0		1.0	4.7	ns
Rise Time, Fall Time (20% to 80%)	t+, t-	1.3	3.8	1.5	3.7	1.5	3.5	1.5	3.6	1.2	4.1	ns

MC10105/MC10505

TRIPLE 2-3-2 INPUT OR/NOR GATE

MC10106/MC10506

TRIPLE 4-3-3 INPUT NOR GATE

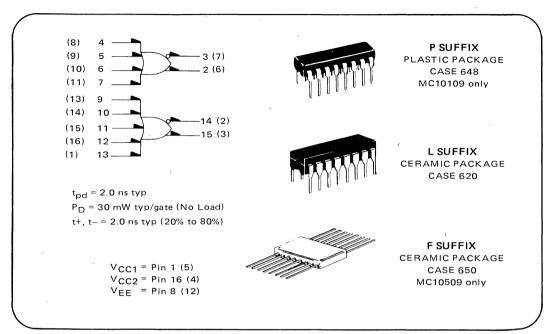

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	–55 ⁰ C		-30°C		5°C	C +85°		^o C +125 ^o C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	24	-	23		21		23	-	24	mAdc
Input Current	linH		450	.	425	-	265	-	265	-	265	μAdc
Switching Times												ns
Propagation Delay	^t pd	1.0	3.7	1.0	3.1	1.0	2.9	1.0	3.3	1.0	3.7	[
Rise Time, Fall Time (20% to 80%)	t+, t-	1.0	4.0	1.1	3.6	1.1	3.3	1.1	3.7	1.0	4.0	ns

1

MC10107/MC10507

TRIPLE 2-INPUT EXCLUSIVE OR/EXCLUSIVE NOR



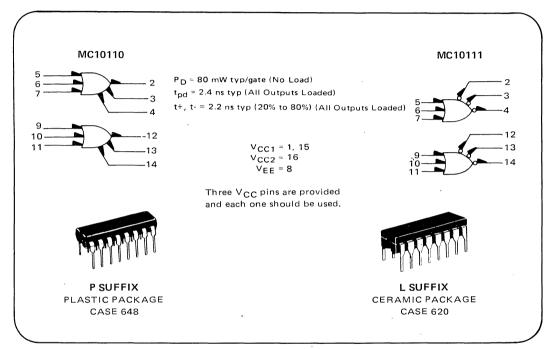
Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55 ⁰ C		-30°C		+25°C		C +85°C		+12	۲	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	31	—	31	_	28	-	31		31	mAdc
Input Current Pins 4, 9, 14 Pins 5, 7, 15	linH		450 375		425 350		265 220		265 220	-	265 220	μAdc
Switching Times Propagation Delay Rise Time, Fall Time (20% to 80%)	tpd t+,t-	1.0 1.0		1.1 1.1	3.8 3.5	1.1	3.7 3.5	1.1	4.0 3.8	1.0 1.0	4.5 4.3	ns ns

MC10109/MC10509

DUAL 4-5 INPUT OR/NOR GATE

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

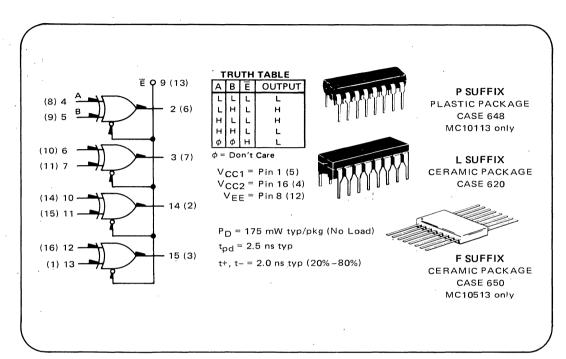

		-55 ⁰ C		-30°C		C +25°C		C +85 ⁰ C		+125°C		•
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		16		15	-	14	—	15		16	mAdc
Input Current	linH	_	450	—	425	-	265	-	265	—	265	μAdc
Switching Times Propagation Delay	^t pd	1.0	3.7	1.0	3.1	1.0	2.9	1.0	3.3	1.0	3.7	ns
Rise Time, Fall Time (20% to 80%)	t+, t-	1.0	4.0	1.1	3.6	1.1	3.3	1.1	3.7	1.0	4.0	ns

MC10110

DUAL 3-INPUT 3-OUTPUT OR GATE

MC10111

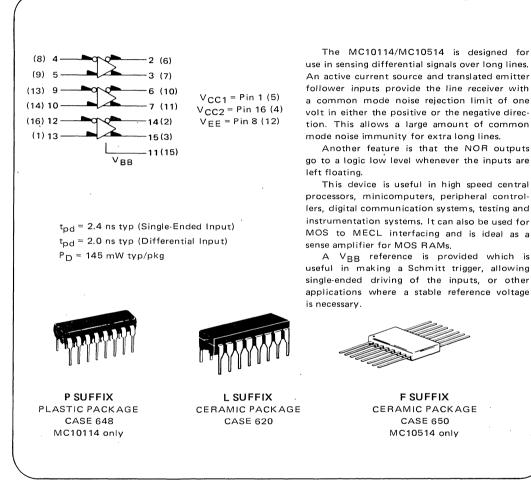
DUAL 3-INPUT 3-OUTPUT NOR GATE



Numbers at ends of terminals denote pin numbers for L and P packages.

		- 30	0°C	+25	5°C	+8	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ιE	_	42	-	38		42	mAdc
Input Current	linH	_	680		425	-	425	μAdc
Switching Times Propagation Delay	^t pd	1.4	3.5	1.4	3.5	1.5	3.8	ns
Rise Time, Fall Time (20% to 80%)	t+, t	1.0 `	3.5	1.1	3.5	1.2	3.8	ns

MC10113/MC10513


QUAD EXCLUSIVE OR GATE

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55 ⁰ C		-30	o°c	+25	5 ⁰ C	+8!	5 ⁰ C	+1:	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		46	-	46	-	42	—	46	-	46	mAdc
Input Current	linH											μAdc
Pins 4, 7, 10, 13		_	450	-	425	- '	265	-	265	-	265	
Pins 5, 6, 11, 12 Pin 9		_	375 925		350 870	_	220 545	_	220 545	_	220 545	
Switching Times Propagation Delay	tpd											ns `
Independent Inputs		1.1	4.9	1.1	4.7	1.3	4.5	1.3	5.0	1.3	5.3	
Enable Input		1.3	5.2	1.3	5.2	1.5	5.0	1.5	5.5	1.5	5.8	
Rise Time, Fall Time (20% to 80%)	t+,t	1.1	4.3	1.1	4.2	1.1	3.9	1.1	4.4	1.1	4.6	ns

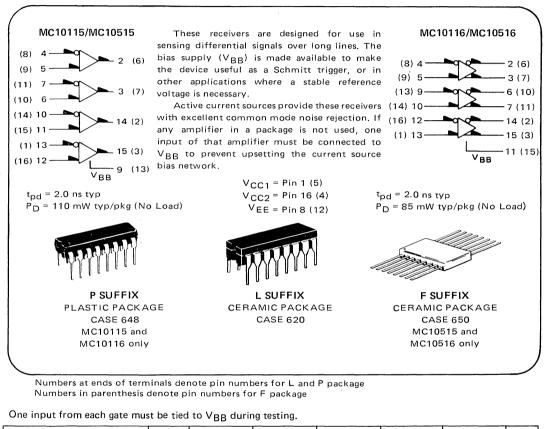
TRIPLE LINE RECEIVER

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

ELECTRICAL CHARACTERISTICS

			•	TEST VOLT	AGE VAL	UES				
@ Test		· · · · · · · · · · · ·			V	olts				
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VBB	VIHH*	VILH*	VIHL*	VILL*	VEE
	MC10114		·		·					•
-30 ⁰ C	-0.890	-1.890	-1.205	-1.500	From	+0.110	-0.890	-1.890	-2.890	-5.2
+25 ⁰ C	-0.810	-1.850	-1.105	-1.475	Pin	+0.190	-0.850	-1.810	-2.850	-5.2
+85 ⁰ C	-0.700	-1.825	-1.035	-1.440	11	+0.300	-0.825	-1.700	-2.825	-5.2
	MC10514									
-55 ⁰ C	0.880	-1.920	-1.255	-1.510	From	+0.120	-0.920	-1.880	-2.920	-5.2
+25 ⁰ C .	-0.780	-1.850	-1.105	-1.475	Pin 11	+0.220	-0.850	-1.780	-2.850	-5.2
+125 ⁰ C	-0.630	-1.820	-1.000	-1.400	(15)	+0.370	-0.820	-1.630	-2.820	-5.2

		-5	5°C	- 30	0°C	+2	5°C	+85	5°C	+12	5 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions
Power Supply Drain Current	ιE	-	39	-	39	-	35	-	39	-	39	mAdc	V _{in} = V _{IH max} (Pins 4, 9, 12), V _{IL min} (Pins 5, 10, 13)
Input Current	linH	-	. 80	-	70	_	45	-	45	_	45	µAdc	Test one input at a time. Vin = VIH max to P.U.T. and VIL min to the other input of that gate.
	ІСВО	-	1.5	-	1.5	-	1.0	-	1.0	-	1.0	μAdc	Test one input at a time, $V_{in} = V_{EE}$
Reference Voltage	VBB	-1.440	-1.320	-1.420	-1.280	-1.350	-1.230	-1.295	-1.150	-1.240	-1.120	Vdc	One input from each gate tied to V_{BB} (Pin 11).
Common Mode Rejection Test* MC10114 MC10514	∨он	 -1.080	_ -0.880	-1.060	~0.890 —		-0.810 -0.780	-0.890 -	-0.700 		-0.630	Vdc	$V_{in} = V_{IHH}$ or V_{IHL} to one input of each gate under test and V_{ILH} or V_{ILL} , respec- tively, to the other input of each gate.
MC10114 MC10514	VOL	 -1.920	 -1.655		-1.675 		-1.650 -1.620	-1.825 -	-1.615 —		 - 1.545	Vdc	
Switching Times Propagation Delay	^t pd	1.0	4.3	1.0	4.4	1.0	4.0	0.9	4.3	1.0	4.7	ns	For single-ended input testing, one input from each gate must be tied to $V_{\mbox{\scriptsize BB}}$ (Pin 11).
Rise Time, Fall Time	t+, t-	1.3	3.8	1.5	3.8	1.5	3.5	1.5	3.7	1.2	4.1	ns	20% to 80%

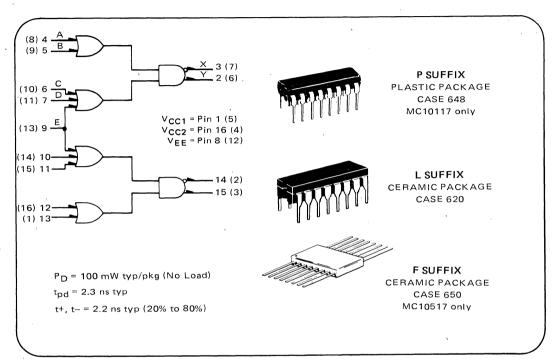

*V_{IHH} = Input logic "1" level shifted positive one volt for common mode rejection tests. V_{ILH} = Input logic "0" level shifted positive one volt for common mode rejection tests. V_{IHL} = Input logic "1" level shifted negative one volt for common mode rejection tests.

VILL = Input logic "O" level shifted negative one volt for common mode rejection tests.

MC10115/MC10515

QUAD LINE RECEIVER

MC10116/MC10516 TRIPLE LINE RECEIVER



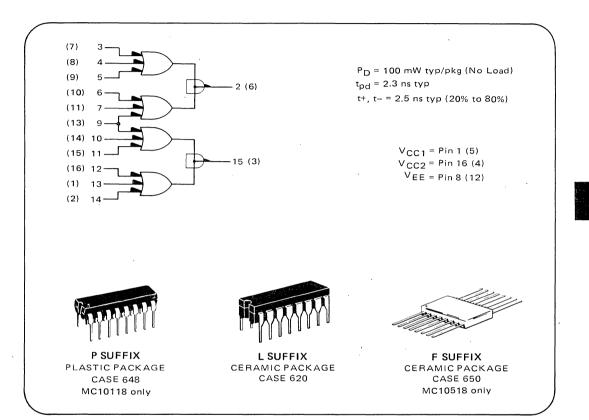
		- 55	5°C	- 30	°C	+25	°C	+85	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current MC10115/10515	١E		29	_	29	_	26	_	29	_	29	mAdc
MC10116/10516			29	_	23	_	20	_	23	_	25	
Input Current	1inH	-	165	-	150	-	95	-	95	-	95	μAdc
``	СВО		1.5	-	1.5	-	1.0	-	1.0	~~	1.0	μAdc
Reference Voltage	VBB	-1.440	-1.320	-1.420	-1.280	-1.350	-1.230	-1.295	-1.150	-1.240	-1.120	Vdc
Switching Times Propagation Delay	t _{pd}	1.0	3.5	1.0	3.1	1.0	2.9	1.0	3.3	1.0	4.0	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.9	1.1	3.6	1.1	3.3	1.1	3.7	1.0	4.4	ns

-55^oC and +125^oC test values apply to MC105xx devices only.

MC10117/MC10517

DUAL 2-WIDE 2-3-INPUT OR-AND/OR-AND-INVERT GATE

Numbers at ends of terminals denote pin numbers for L and P package Numbers in parenthesis denote pin numbers for F package

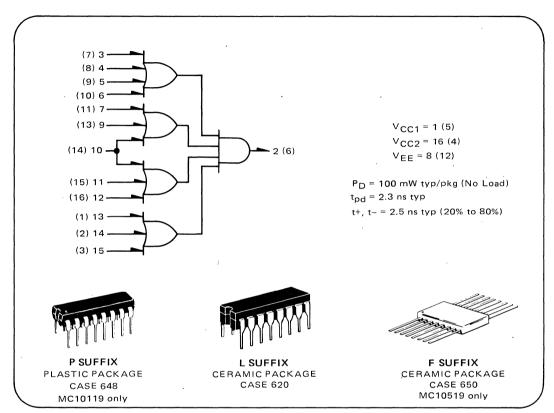

		-55 ⁰ C		-3	0°C	+25	5°C	+8	5 ⁰ C	+ 12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	—	29	-	29	-	26	-	29		29	mAdc
Input Current Pins 4, 5, 12, 13 Pins 6, 7, 10, 11 Pin 9	linH		415 450 595		390 425 560		245 265 350	1 1 1	245 265 350	 	245 265 350	µAdc
Switching Times Propagation Delay	tpd	1.1		1.4	3.9	1.4		1.4	3.8 4.6		3.5	ns ns
Rise Time, Fall Time (20% to 80%)	t+, t	1.0	4.1	0.9	4.1	1.1	4.0	1.1	4.6	0.9	4.1	115

-55[°]C and +125[°]C test values apply to MC105xx devices only.

3-14

MC10118/MC10518

DUAL 2-WIDE 3-INPUT OR-AND GATE

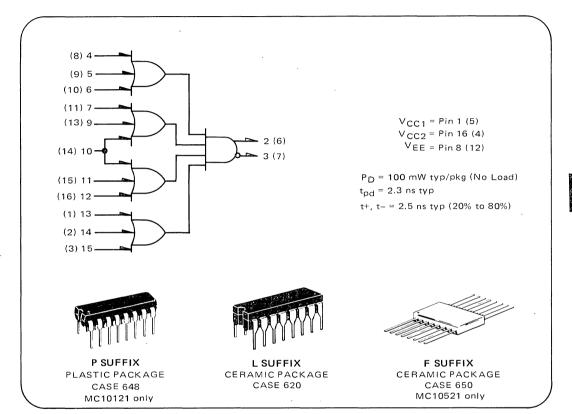


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55 ⁰ C		-30	0°C	+2	5°C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	29		29		26		29	-	29	mAdc
Input Current	linH		445		000			•				μAdc
Pins 3, 4, 5, 12, 13, 14 Pins 6, 7, 10, 11		_	415 450	_	390 425		245 265	_	245 265	-	245 265	
Pin 9		-	595		560	-	350	-	350	—	350	
Switching Times Propagation Delay	^t pd	1.1	3.5	1.4	3.9	1.4	3.4	1.4	3.8	1.2	3.5	ns
Rise Time, Fall Time (20% to 80%)	t ⁺ ,t ⁻	1.3	4.1	0.8	4.1	1.5	4.0	1.5	4.6	1.2	4.0	

MC10119/MC10519

4-WIDE 4-3-3-3-INPUT OR-AND GATE

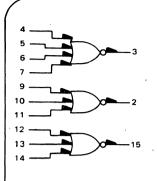


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5 ⁰ C	-3	0°C	+2!	5°C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	29	_	29	-	26	-	29		29	mAdc
Input Current Pins 3, 4, 5, 6, 7,9, 11, 12,	linH											μAdc
13, 14, 15 Pin 10		-	415 525	-	390 495	-	245 310	-	245 310		245 310	
Switching Times Propagation Delay	t _{pd}	1.1	3.5	1.4	3.9	1.4	3.4	1.4	3.8	1.2	3.5	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.3	4.1	0.8	4.1	1.5	4.0	1.5	4.6	1.2	4.3	ns

MC10121/MC10521

4-WIDE OR-AND/OR-AND-INVERT

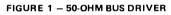


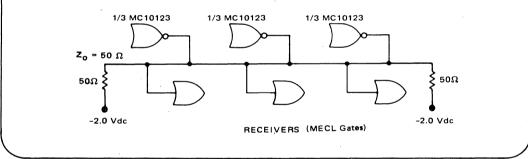
Numbers at ends of terminals denote pin number for L and P package Numbers in parenthesis denote pin numbers for F package

· · ·	•	-55 ⁰ C		-30	0°C	+25	5 ⁰ C	+85	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	-	29	_	29	-	26		29		29	mAdc
Input Current Pins 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15 Pin 10	^f inH	_	415 525		390 495	_	245 310		245 310	1	245 310	μAdc
Switching Times Propagation Delay	tpd	1.2	3.6			1.4	3.4	1.4			3.5	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	4.5	0.9	4.1	1.1	4.0	1.1	4.6	0.9	4.4	ns

MC10123

TRIPLE 4-3-3 INPUT BUS DRIVER

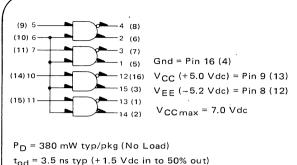



VCC1 = Pin 1 VCC2 = Pin 16 VEE = Pin 8

P_D = 310 mW typ/pkg (No Load) t_{pd} = 3.0 ns typ t+, t- = 2.5 ns typ (20% to 80%) The MC10123 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with $V_{OL} \leq -2.0$ Vdc so that the bus may be terminated to -2.0 Vdc. The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the MC10123 are "turned-off". This eliminates discontinuities in the characteristic impedance of the bus.

The V_{OH} level is specified when driving a 25-ohm load terminated to -2.0 Vdc, the equivalent of a 50-ohm bus terminated at both ends. Although 25 ohms is the lowest characteristic impedance that can be driven by the MC10123, higher impedance values may be used with this part. A typical 50-ohm bus is shown in Figure 1. P SUFFIX PLASTIC PACKAGE CASE 648

L SUFFIX CERAMIC PACKAGE CASE 620



Outputs are terminated through a 25-ohm resistor to -2.1 volts:

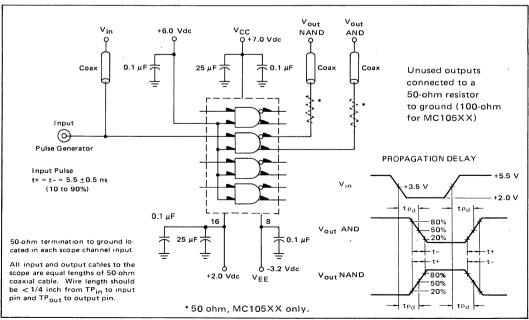
		- 30	0°C	+25	5°C	+85	^o C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		82		75	—	82	mAdc
Input Current	linH	- 、	350	-	220	-	220	μAdc
Logic "0" Output Voltage	VOL	-2.100	-2.030	-2.100	-2.030	-2.100	-2.030	Vdc
Logic "0" Threshold Voltage	VOLA	-	-2.010		-2.010	—	-2.010	Vdc
Switching Times								ns
Propagation Delay	tpd	1.2	4.6	1.2	4.4	1.2	⁻ 4.8	
Rise Time, Fall Time (20% to 80%)	t-, t+	1.0	3.7	1.0	3.5	1.0	3.9	ns

MC10124/MC10524

QUAD TTL-TO-MECL TRANSLATOR

t+, t- = 2.5 ns typ (20% to 80%)

P SUFFIX CERAMIC PACKAGE CASE 648 MC10124 only


L SUFFIX CERAMIC PACKAGE CASE 620 The MC10124/MC10524 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The device has TTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

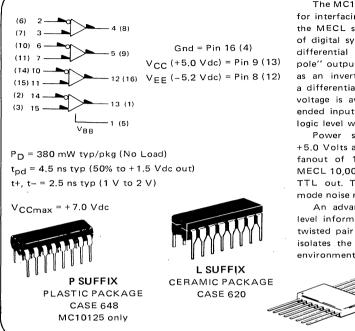
Power supply requirements are ground, ± 5.0 Volts, and -5.2 Volts. The dc levels are standard or Schottky TTL in, MECL 10,000 out.

An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by any of the MECL line receivers or the MC10125 MECL to TTL translator or the MC10177 MECL to MOS translator.

F SUFFIX CERAMIC PACKAGE CASE 650 MC10524 only

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C


NOTE: All power supply and logic levels are shown shifted 2 volts positive.

		TEST VOLTAGE/CURRENT VALUES												
@ Test				Volts				m	A					
Temperature	VIHmin	VILmax	VRH	٧F	VR	Vcc	VEE	111	112					
	MC10124													
-30 ⁰ C	+2.0	+1.1	+4.0	+0.4	+2.4	+5.0	-5.2	-10	-20					
+25 ⁰ C	+1.8	+1.1	+4.0	+0.4	+2.4	+5.0	-5.2	-10	-20					
+85 ⁰ C	+1.8	+0.8	+4.0	+0.4	+2.4	+5.0	-5.2	-10	-20 ·					
	MC10524							-						
–55 ⁰ C	+2.0	+1.1	+4.0	+0.4	+2.4	+5.0	5.2	-10	-20					
+25 ⁰ C	+1.8	+1.1	+4.0	+0.4	+2.4	+5.0	-5.2	-10	-20					
+125 ⁰ C	+1.8	+0.8	+4.0	+0.4	+2.4	+5.0	-5.2	-10	-20					

		-5	5°C	-3	0°C	+2	5°C	+8	5°C	+12	25 ⁰ C		
Characteristic	Symbol	Min	Max	Unit	Conditions								
Negative Power Supply Drain Current	ΓE	1	72	-	72	-	66	-	72		72	mAdc	All inputs and outputs open.
Positive Power	Іссн	-	16	_	16	·	16	-	18	-	18	mAdc	V _{in} = V _{RH} all inputs.
Supply Drain Current	ICCL	-	25	1	25	1	25	-	25	-	25	mAdc	V _{in} (strobe) = V _F
Reverse Current Strobe Input	IR	_	200	-	200	-	200	-	200	_	200	μAdc	V _{in} = V _R (strobe), V _F (single_inputs)
Single Inputs		-	50	-	50	-	50	—	50	-	50		V _{in} = V _F (strobe), V _R (P.U.T.)
Forward Current Strobe Input	١F	_	-12.8	-	-12.8	-	-12.8	-	-12.8	_	-12.8	mAdc	V _{in} = V _F (strobe), V _R (single inputs)
Single Inputs		-	-3.2	_	-3.2	-	-3.2	-	-3.2		-3.2		Vin = VR (strobe), VF (P.U.T.)
Input Breakdown Voltage	BVin	5.5	1	5.5	-	5.5	-	5.5	-	5.5	-	Vdc	At I _{in} = +1.0 mAdc. V _{in} (strobe) = V _F while testing single inputs.
Clamp Input Voltage	٧ı	-	-1.5	-	-1.5	-	-1.5	-	-1.5	-	-1.5	Vdc	Test one input at a time. I _{I1} (single inputs), I _{I2} (strobe).
Switching Times Propagation Delay	^t pd	1.0	8.0	1.0	6.8	1.0	6.0	1.0	6.8	1.0	8.0	ns	+1.5 Vdc in to 50% out
Rise Time, Fall Time	t+, t→	1.0	4.5	1.0	4.2	1.1	3.9	1.1	4.3	1.0	4.5		20% to 80%

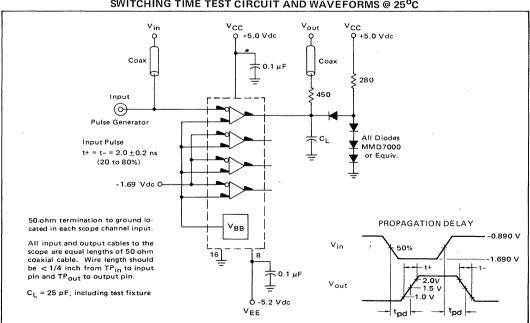
MC10125/MC10525

QUAD MECL-TO-TTL TRANSI ATOR

The MC10125/MC10525 is a guad translator for interfacing data and control signals between the MECL section and saturated logic sections of digital systems. The MC10125 incorporates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as a differential line receiver. The VBB reference voltage is availabe on pin 1 for use in singleended input biasing. The outputs go to a low logic level whenever the inputs are left floating.

Power supply requirements are ground, +5.0 Volts and -5.2 Volts. The MC10125 has a fanout of 10 TTL loads. The dc levels are MECL 10,000 in and Schottky TTL or standard TTL out. This device has an input common mode noise rejection of ± 1.0 Volt.

An advantage of this device is that MECL level information can be received, via balanced twisted pair lines, in the TTL equipment. This isolates the MECL logic from the noisy TTL environment.


F SUFFIX

CERAMIC PACKAGE

CASE 650

MC10525 only

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

ELECTRICAL CHARACTERISTICS

	TEST VOLAGE AND CURRENT VALUES												
@ Test			mA										
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	V _{IHH} *	V _{ILH} *	VIHL*	VILL*	V _{BB}	Vcc	VEE	юн	IOL
	MC10125												
-30 ⁰ C	-0.890	-1.890	-1.205	-1.500	+0.110	-0.890	-1.890	-2.890	From	+5.0	-5.2	-2.0	+20
+25 ⁰ C	-0.810	-1.850	-1.105	-1.475	+0.190	-0.850	-1.810	-2.850	Pin	+5.0	-5.2	-2.0	+20
+85 ⁰ C	-0.700	-1.825	-1.035	-1.440	+0.300	-0.825	-1.700	-2.825	1	+5.0	-5.2	-2.0	+20
	MC10525												
-55 ⁰ C	-0.880	-1.920	-1.255	-1.510	+0.120	-0.920	-1.880	· -2.920	From	+5.0	-5.2	-2.0	+12
+25 ⁰ C	-0.780	-1.850	-1.105	-1.475	+0.220	-0.850	-1.780	-2.850	Pin	+5.0	-5.2	-2.0	+12
+125 ⁰ C	-0.630	-1.820	-1.000	-1.400	+0.370	-0.820	-1.630	-2.820	1	+5.0	-5.2	-2.0	+12

		-5	5°C	-30 ⁰ C		+25 ⁰ C		+85 ⁰ C		+125 ⁰ C			, in the second s	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	
Negative Power Supply Drain Current	ιE	-	44	-	44	-	40	-	44	-	44	mAdc	V _{in} = V _{BB} (Pins 3, 7, 11, 15), V _{EE} (Pins 2, 6, 10, 14)	
Positive Power Supply Drain Current	Іссн	,—	52	_	. 52	_	52	-	52	-	52	mAdc	V _{in} = V _{BB} (Pins 3, 7, 11, 15), VIH max (Pins 2, 6, 10, 14)	
	ICCL	-	39	-	39	-	39	-	39	-	39	mAdc	V _{in} = V _{BB} (Pins 3, 7, 11, 15), V _{EE} (Pins 2, 6, 10, 14)	
Input Current	linH	-	195		180	_	115	_	115	_	115	μAdc	One input from each gate tied to V _{BB} while the other inputs are tested one at a time, V _{in} = V _{IH} max.	
Input Leakage Current	ІСВО	-	1.5		1.5	-	1.0		1.0	-	1.0	μAdc	One input from each gate tied to V_{BB} while the other inputs are tested one at a time, $V_{in} = V_{EE}$.	
Short-Circuit Current	los	40	100	40	100	40	· 100	40	100	40	100	mA	$V_{in} = V_{BB}$ (Pins 3, 7, 11, 15), $V_{IL min}$ (Pins 2, 6, 10, 14). Connect outputs to ground, one at a time.	

 -55° C and $+125^{\circ}$ C test values apply to MC105XX devices only.

(continued on next page)

		-5	5°C	-3	0°C	+2	5°C	+8	5 ⁰ C	+ 12	25°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions
High Output Voltage	∨он	2.5	· _	- 2.5	-	2.5	-	2.5	-	2.5		Vdc	V _{in} = V _{IL min} (Pins 2, 6, 10, 14), V _{IH max} (Pins 3, 7, 11, 15).
Low Output Voltage	VOL	-	0.5	-	0.5		0.5	-	0.5	-	0.5	Vdc	V _{in} = V _{IL min} (Pins 3, 7, 11, 15), V _{IH max} (Pins 2, 6, 10, 14).
High Threshold Voltage	VOHA	' 2.5	-	2.5	-	2.5	_	2.5	_	2.5		Vdc	$V_{in} = V_{BB}$ (Pins 3, 7, 11, 15), $V_{ILA max}$ (Pins 2, 6, 10, 14, one at a time).
Low Threshold Voltage	VOLA	-	0.5	-	0.5	_	0.5	-	0.5	-	0.5	Vdc	$V_{in} = V_{BB}$ (Pins 3, 7, 11, 15), V [HA max (Pins 2, 6, 10, 14, one at a time).
Indeterminate Input Protection Tests	V _{OLS1}	-	0.5	-	0.5	_	0.5	-	0.5	-	0.5	Vdc	V _{in} = V _{EE} to both inputs of each gate, one gate at a time.
	VOLS2	-	0.5		0.5	-	0.5		0.5	-	0.5	Vdc	All inputs open.
Reference Voltage	V _{BB}	-1.440	-1.320	-1.420	-1.280	-1.350	-1.230	-1.295	-1.150	-1.240	-1.120	Vdc	One input from each gate tied to V_{BB} (Pin 1).
Common Mode	Vон	2.5	-	2.5	<u> </u>	2.5	-	2.5	-	2.5	-	Vdc	Vin = VIHH or VIHL to one input
Rejection Tests*	VOL	-	0.5	-	0.5	-	0.5	_	0.5		0.5	Vdc	of each gate under test and VILH or VILL, respectively, to the other input of each gate.
Switching Times Propagation Delay	^t pd	1.0	6.5	1.0	6.0	1.0	6.0	1.0	6.0	1.0	7.0	ns	50% in to +1.5 Vdc out. For single-ended input testing, one input from each gate must be tied to V _{BB} (Pin 1).
Rise Time, Fall Time	t+, t-	-	4.5		3.3	-	3.3	-	3.3	-	5.3	ns	+1.0 Vdc to +2.0 Vdc

*VIHH = Input logic "1" level shifted positive one volt for common mode rejection tests.

VILH = Input logic "0" level shifted positive one volt for common mode rejection tests.

VIHL = Input logic "1" level shifted negative one volt for common mode rejection tests.

VILL = Input logic "0" level shifted negative one volt for common mode rejection tests.

-55°C and +125°C test values apply to MC105XX devices only.

ယ

MC10128

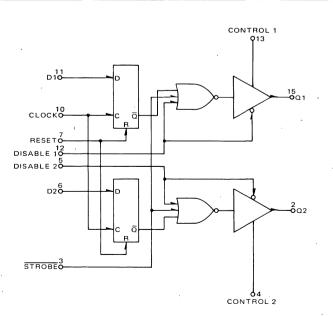
DUAL BUS DRIVER (MECL 10,000 TO TTL/IBM)

The MC10128 is designed to provide outputs which are compatible with IBM-type bus levels; or, if desired, it will drive TTL type loads and/or provide TTL, three-state outputs. The inputs accept MECL 10,000 levels. The MC10128 output levels can be accepted by the MC10129 Bus Receiver.

The operating mode (IBM or TTL) is selected by tying the external control pins to ground or leaving them open. Leaving a control pin open selects the TTL mode, and tying a control pin to ground selects the IBM mode.

The TTL mode will drive a 25-ohm load, terminated to +1.5 Vdc or a 50-ohm load, terminated to ground. The device has totempole type outputs, but it also has a disable input for three-state logic operation when the circuit is used in the TTL mode. When in the high state the disable input causes the output to exhibit a high impedance state when it would normally be a positive logic "1" state. When the strobe is in the high state it inhibits the output data to the low state.

Latches are provided on each data input for temporary storage. When the clock input is in the low logic state, information present at the data inputs D1 and D2 will be fed directly to the latch output. When the clock goes high, the input data is latched. The outputs are gated to allow full bus driving and strobing capability.


The MC10128 is useful in interfacing and bus applications in central processors, minicomputers, and peripheral equipment.

L SUFFIX CERAMIC PACKAGE CASE 620 $V_{CC} = Pin 14$ Gnd 1 = Pin 16 Gnd 2 = Pin 1 Gnd 3 = Pin 9 V_{EE} = Pin 8

 $P_D = 700 \text{ mW pkg/typ}$ (No Load) $t_{pd} = 12 \text{ ns typ}$

V_{CC} Max = +7.0 Vdc

TTL MODE

TEST VOLTAGE/CURRENT VALUES

@ Test Temperature -30°C +25°C +85°C

		TEST	mAdc	μAdc	mAdc				
est									
Ire	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Vcc	юн1	IOH2	IOL
°C	-0.890	-1.890	-1.205	-1.500	-5.2	+5.00	-50	-100	+56
°C	-0.810	-1.850	-1.105	-1.475	-5.2	+5.00	-50	-100	+56
°C	-0.700	-1.825	-1.035	-1.440	-5.2	+5.00	-50	-100	+56

ELECTRICAL CHARACTERISTICS

		-30°C		+25°C		+85	5°C				
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions		
Negative Power Supply Drain Current	ΙE	-	-		91	-	_ ·	mAdc	VIHmax to Data Inputs (Pins 6 and 11)		
Positive Power Supply Drain Current	^I cc	-	-	-	50	-	-	mAdc			
Input Leakage Current Pin 3	l inH	_	_	_	620	_	_	μAdc	Test one input at a time. VIHmax to P.U.T.		
Pin 7		-	-	-	350	-	-				
Pins 6, 10, 11 Pins 5, 12			-	-	265 485	_	-				
Logic "1" Output Voltage	VOH	-	_	2.5 2.7		-		Vdc	V _{IHmax} to Data Inputs, I _{out} = I _{OH1} V _{IHmax} to Data Inputs, I _{out} = I _{OH2}		
Logic "0" Output Voltage	VOL	-	-	-	0.5	-	-	Vdc	VIHmax to Strobe Input, Iout = IOL		
Logic "1" Threshold Voltage	VOHA	-	_	2.5	-	-	-	Vdc	V_{IHmax} to Data Inputs, apply pulse (1) , or V_{IHAmin} to Data Inputs (one at a time.		
Logic "O" Threshold Voltage	VOLA	-	-		0.5	-	-	Vdc	V_{ILAmax} to Data Inputs (one at a time), or V_{IHmax} to Data Inputs and V_{IHAmin} to Strobe.		
Output Short Circuit Current	ISC	-	-	-	260		-	mAdc	VIHmax to Data Inputs, connect outputs to ground (one at a time).		
Switching Times Propagation Delay Data, Strobe Clock, Reset	tpd	_		1.0	18 20	-	_	ns	50% in to +1.5 V out. See switching circuit and waveforms.		
Setup Time	t _{set}			-			_	ns			
Hold Time	thold			<u> </u>				ns			
	511010		L		8.0			···	+1.0 Vdc to +2.0 Vdc.		

IBM MODE

	@	Tes
Tem	pera	atui

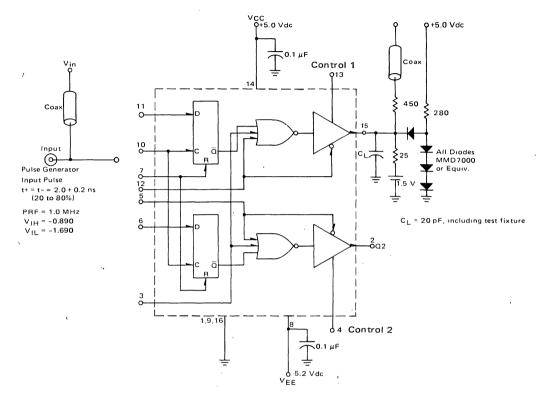
			TEST V	OLTAGE/	CURR	ENT V	ALUES	-	
		TEST	VOLTAGE	VALUES	_		mAdc	μA	dc
@ Test			Volts						
perature	VIHmax	VILmin	V _{!HAmin}	VILAmax	VEE	Vcc	юн1	IOH2	IOL
~30°C	-0.890	-1.890	-1.205	-1.500	-5.2	+6.00	-59.3	-30	-240
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	+6.00	-59.3	-30	-240
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	+6.00	-59.3	-30	-240

ELECTRICAL CHARACTERISTIC

	T	· -30	°C	+29	5°C	+85	5°C		· · · · · · · · · · · · · · · · · · ·
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Negative Power Supply Drain Current	١E	-		-	97	-	-	mAdc	V _{IHmax} to Data Inputs (Pins 6 and 11).
Positive Power Supply Drain Current	'cc		-	-	73	·	_	mAdc	V _{IHmax} to Strobe Input (Pin 3).
Input Leakage Current Pin 3 Pin 7 Pins 6, 10, 11 Pins 5, 12	linH				620 350 265 485			μAdc	Test one input at a time. V _{IHmax} to P.U.T.
Logic "1" Output Voltage	VOH	-	-	3.11	_ 5.85		-	Vdc	V _{IHmax} to Data Inputs, I _{out} = I _{OH1} V _{IHmax} to Data Inputs, I _{out} = I _{OH2}
Logic "0" Output Voltage	VOL	-	_	-0.5	0.15	-	_	Vdc	VIHmax to Strobe Input, Iout = IOL
Logic "1" Threshold Voltage	VOHA	-	-	-	2.9	-	-	Vdc	V_{IHmax} to Data Inputs, apply pulse (1) , or VIHAmin to Data Inputs (one at a time).
Logic "0" Threshold Voltage	VOLA	-	-	-0.5	0.15	-		Vdc	V_{ILAmax} to Data Inputs (one at a time), or V_{IHmax} to Data Inputs and V_{IHAmin} to Strobe.
Output Short Circuit Current	ISC		-	-	320	-		mAdc	V _{IHmax} to Data Inputs, connect outputs ' to ground (one at a time).
Switching Times Propagation Delay Data, Strobe Clock, Reset	tpd			1.0 1.0	23 23	_		ns	50% in to +1.5 V out. See switching circuit and waveforms.
Setup Time	t _{set}		-	_	_			ns	
Hold Time	thold		-		_		-	ns	
Rise Time, Fall Time	t+,t-	·	_	-	8.0	_	—	ns	+1.0 Vdc to +2.0 Vdc

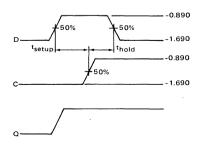
IН

100 nsec min


(1) A pulse is applied to pin 10.

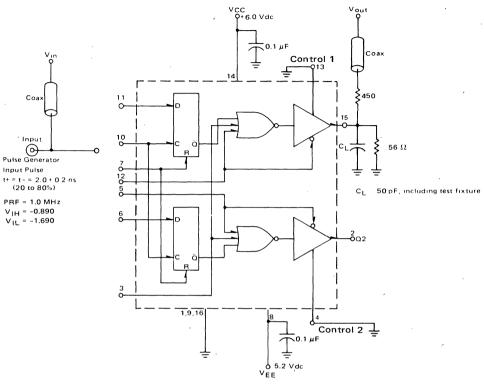
VIH

VILA

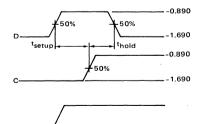

3-26

MC10128

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C - TTL MODE

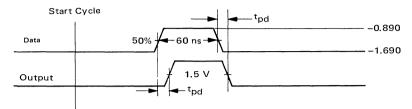


50-ohm termination to ground located in each scope channel input.

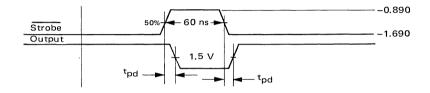

All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TP $_{in}$ to input pin and TP $_{out}$ to output pin.

3-27

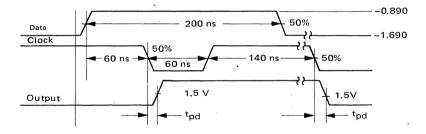
SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C - IBM MODE

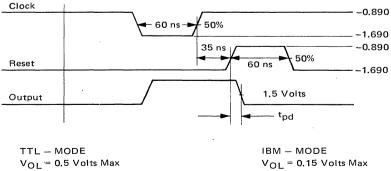


50-ohm termination to ground 'located in each scope channel input.


All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP in to input pin and TP out to output pin.

SWITCHING WAVEFORMS


DATA INPUT


STROBE INPUT

CLOCK INPUT

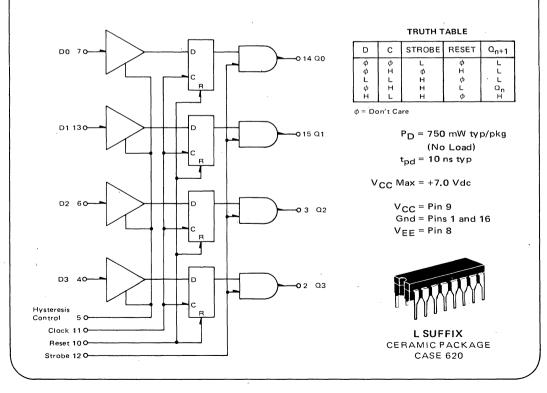
RESET INPUT

V_{OH} = 2.5 Volts Min

V_{OL} = 0.15 Volts Max V_{OH} = 3.11 Volts Min

MC10129 QUAD BUS RECEIVER (TTL/IBM TO MECL 10,000)

The MC10129 bus receiver works in conjunction with the MC10128 to allow interfacing of MECL 10,000 to other forms of logic and logic buses. The data inputs are compatible with, and accept TTL logic levels as well as levels compatible with IBM-type buses. The clock, strobe, and reset inputs accept MECL 10,000 logic levels.

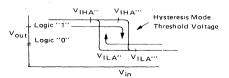

The data inputs include internal latches to provide temporary storage of the information after receiving it from the bus. The outputs can be strobed to allow accurate synchronization of signals and/or connection to MECL 10,000 level buses. When the clock is low, the outputs will follow the D inputs, and the reset input is disabled. The latches will store the data on the rising edge of the clock. The outputs are enabled when the strobe input is high. Unused D inputs must be tied to $V_{\rm CC}$ or Gnd. The clock, strobe, and reset inputs each have 50k ohm

pulldown resistors to V_{EE} . Clock and reset may be left floating, if not used. Strobe should be tied to V_{OH} if unused.

The MC10129 will operate in either of two modes. The first mode is obtained by tying the hysteresis control input to V_{EE} . In this mode, the input threshold points of the D inputs are fixed. The second mode is obtained by tying the hysteresis control input to ground. In this mode, input hysteresis is achieved as shown in the test table. This hysteresis is desirable where extra noise margin is required on the D inputs. The other input pins are unaffected by the mode of operation used.

The outputs are standard MECL 10,000 logic levels regardless of input levels or mode of operation used.

The MC10129 is especially useful in interface applications for central processors, minicomputers, and peripheral equipment.

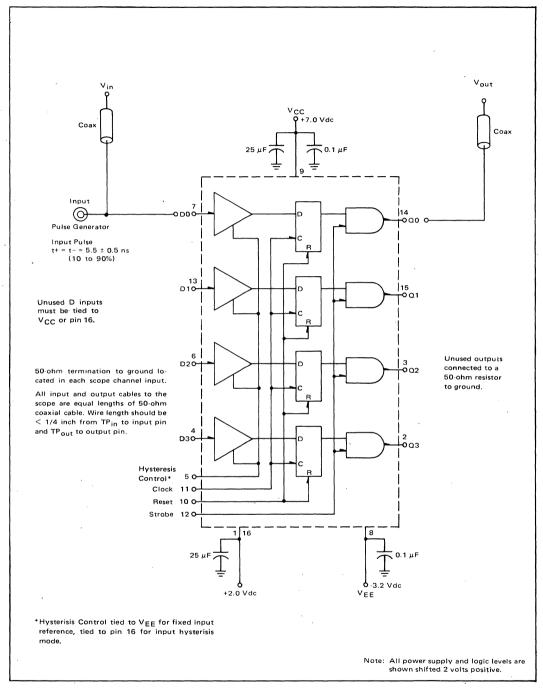

							TE	st vo	LTAG	E VAL	UES.							
									(Volt	s)								
						*MTTL	INPU	г		*1BN	A INPU	ŗ			SIS MO	\sim		
	MECI	_ 10,000 I	NPUT LE	VELS		LEVE	ils (1))	LEVELS(1)					VPUT LI	EVELS (2		
@ Test Temperature	ViHmax	VILmin	VIHAmin	VILAmax	v _{ін}	VIL	VIHA'	VILA	v _{IH}	VIL	VIHA'	VILA'	VIHA"	VILA"	VIHA'''	VILA'''	v _{cc} ③	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	3.000	0.400	2.000	0.800	3,11	0.150	-		2.900	2.000	2.200	1.300	+5.0	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	3.000	0.400	2.000	0.800	3.11	0.150	1.700	1.10	2.600	1.700	1.900	1.000	+5.0	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	3.000	0.400	2.000	0.800	3.11	0.150		-	2.300	1.400	1.600	0.700	+5.0	-5.2

ELECTRICAL CHARACTERISTICS

		-30	oC	+,25	5°C	+85	5°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Negative Power Supply Drain Current	١ _E	1	167	-	152	-	167	mAdc	Pin 5 grounded, V_{IH} to Clock, Reset open, V_{IL} to all other inputs.
			189	-	172	-	189	mAdc	Pin 5 to VEE, VIH to Clock, Reset open, VIL to all other inputs.
Positive Power Supply Drain Current	1cc		8.0	-	8.0	-	8.0	mAdc	Pin 5 to VEE, VIL to Data inputs.
Input Current Data	l _{in} H		150	_	95	-	95	μAdc	Pin 5 to V _{EE} , V _{IH} to P.U.T., one input at a time.
Reset		-	720	-	450		450	(
Clock, Strobe			390		245		245		
Data	СВО	-	1.5	-	1.0	-	1.0	μAdc	Pin 5 to V _{EE} , V _{IL} to Data inputs, one at a time.
Reset, Clock, Strobe	lin∟	0.5	-	0.5		0.3	-	μAdc	Pin 5 to V _{EE} , V _{IL} to P.U.T., V _{IH} to all other inputs.
Switching Times (See Figures 1 thru 5) Propagation Delay	^t pd							ns	
Data t++ t		6.0 3.7	20 15	6.6 3.7	20 15	6.6 3.7	30 40		1.5 Vdc in to 50% out.
Clock		2.7	11	2.7	9.0	2.7	11		
Strobe		1.6	8.0	1.6	7.0	1.6	8.0	1	50% to 50%
Reset		2.0	8.0	2.0	6.5	2.0	8.0	1	
Rise Time, Fall Time	t+,t-	1.5	5.0	1.5	4.3	1.5	5.0	ns	20% to 80%
Setup Time	t _{set}	27		20	-	27	-	ns	50% to 50%
Hold Time	thold	0		-2.0		-2.0	-	ns	
Hysteresis Mode Propagation Delay Data t++	^t pd	6.6	30	6.7	25	6.6	30	ns	1.5 Vdc in to 50% out.
t		3.7	17	3.7	15	3.7	40		
Setup Time	t _{set}	30		25	-	30	-	ns	50% to 50%
Hold Time	thold	0		-2.0	-	-2.0	-	ns	

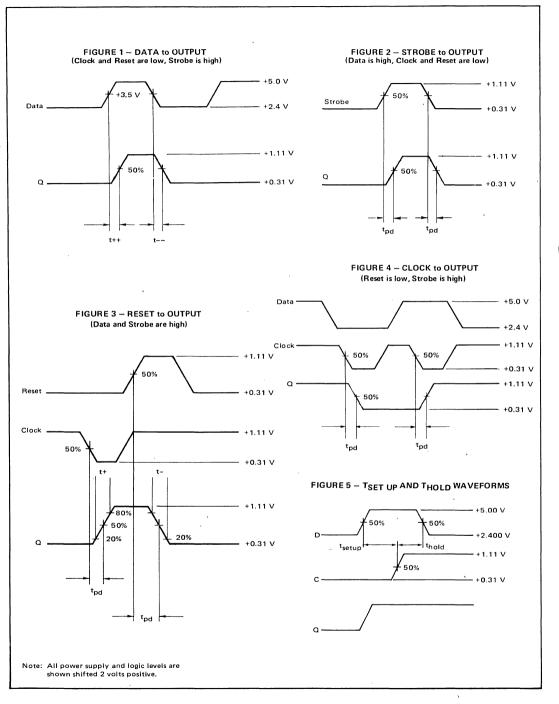
1 When testing choose either MTTL or IBM Input Levels.

(2) V_{IHA}", V_{ILA}", V_{IHA}", and V_{ILA}", are logic "1" and logic "0" threshold voltages in the hysteresis mode as shown in diagram.
 (3) Operation and limits shown also apply for V_{CC} = +6.0 V.



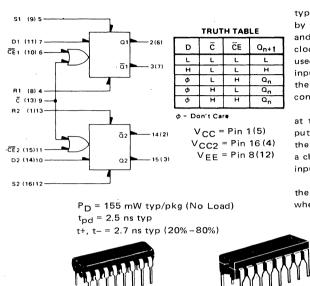
3-31

MC10129


3

SWITCHING TIME TEST CIRCUIT

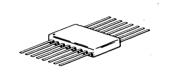
3-32


SWITCHING WAVEFORMS @ 25°C

3

MC10130/MC10530

DUAL LATCH



P SUFFIX PLASTIC PACKAGE CASE 648 MC10130 only

The MC10130/MC10530 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (\overline{CE}) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (\overline{C}) .

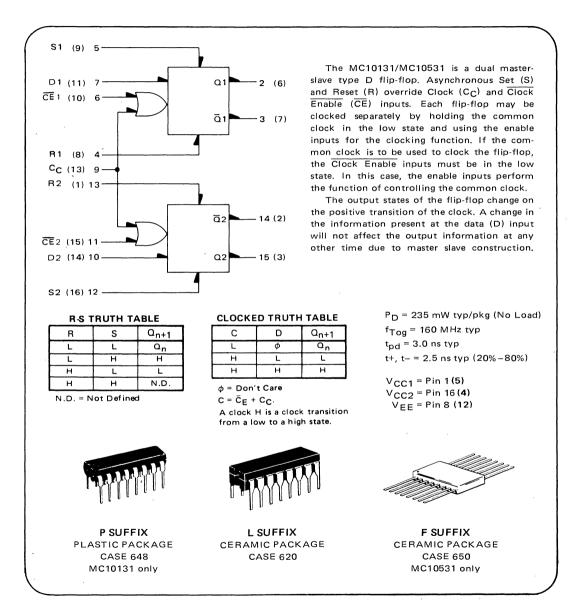
Any change at the D input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

The set and reset inputs do not override the clock and D inputs. They are effective only when either \overline{C} or \overline{CE} or both are high.

F SUFFIX CERAMIC PACKAGE CASE 650 MC10530 only

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-3	o°c	+25	5°C	+8	5°C	+12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	۰IE	-	39	_	38	—	35	-	38	1	39	mAdc
Input Current	linH											μAdc
Pins 6,11		-	375	_	350	-	220		220		220	
Pin 9		-	450	-	425	-	265	-	265	-	265	
Pins 4,5,7,10,12,13		-	485	-	455	-	285	-	285	-	285	
Switching Times												ns
Propagation Delay	tpd											
Data		1.0	3.9	1.0	3.6	1.0	3.5	1.0	3.8	1.0	4.1	
Set, Reset		1.0	3.9	1.0	3.6	1.0	3.5	1.0	3.9	1.0	4.1	
Clock		1.0	4.3	1.0	4.3	1.0	4.0	1.0	4.1	1.0	4.7	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.9	1.0	3.6	1.1	3.5	1.1	3.8	1.0	4.1	ns
Setup Time	t _{set}	2.5	-	2.5		2.5	-	2.5	-	2.5	-	ns
Hold Time	^t hold	1.5		1.5	-	1.5	<u> </u>	1.5	-	1.5	-	ns

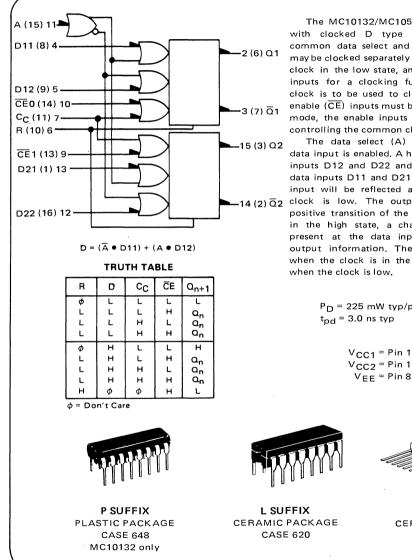

L SUFFIX

CERAMIC PACKAGE

CASE 620

MC10131/MC10531

DUAL TYPE D MASTER-SLAVE FLIP-FLOP



Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

ELECTRICAL CHARACTERISTICS

		-5	5°C	- 30	o°c	+25	5°C	+85	5°C	+ 12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	1	62	1	62	-	56	1	62	1	62	mAdc
Input Current	linH											μAdc
Pins 4, 5, 12, 13		-	565		525		330		330	-	330	
Pins 6, 11			375	-	350	-	220	-	220	—	220	
Pins 7, 10		-	415	-	390	-	245		245		245	
Pin 9		-	450		425	-	265		265	-	2 6 5	
Switching Times												ns
Propagation Delay	^t pd					•						
Clock		1.7	4.6	1.7	4.6	1.8	4.5	1.8	5.0	1.8	5.0	
Set, Reset		1.7	4.5	1.7	4.4	1.8	4.3	1.8	4.8	1.8	4.9	
Rise Time, Fall Time	t+,t-	1.0	4.6	1.0	4.6	1.1	4.5	1.1	4.9	1.1	4.9	
(20% to 80%)												
Setup Time	tset	2.5	-	2.5	-	2.5	-	2.5	-	2.5		ns
Hold Time	^t hold	1.5	-	1.5		1.5	-	1.5	-	1.5	-	ns
Toggle Frequency	fTog	115	-	125	-	125	-	125		125	-	MHz

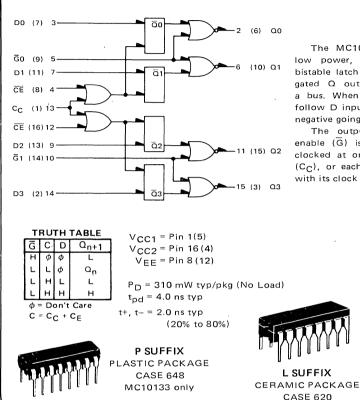
MC10132/MC10532 **DUAL MULTIPLEXER WITH** LATCH AND COMMON RESET

The MC10132/MC10532 is a dual multiplexer with clocked D type latches. It incorporates common data select and reset inputs. Each latch maybe clocked separately by holding the common clock in the low state, and using the clock enable inputs for a clocking function. If the common clock is to be used to clock the latch, the clock enable (\overline{CE}) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (C_{C}) .

The data select (A) input determines which data input is enabled. A high (H) level enables data inputs D12 and D22 and a low (L) level enables data inputs D11 and D21. Any change on the data input will be reflected at the outputs while the -14 (2) \overline{Q}_2 clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled when the clock is in the high state, and disabled

 $P_{D} = 225 \text{ mW typ/pkg}$ (No Load)

V_{CC1} = Pin 1 (5) V_{CC2} = Pin 16 (4) VEE = Pin 8 (12)


F SUFFIX CERAMIC PACKAGE **CASE 650** MC10532 only

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	- 3	o°c	+2	5 ⁰ C	+8	5°C	+ 12	25°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١ _E	-	61	-	60	-	55	-	60	—	61	mAdc
Input Current	linH											μAdc
Pins 4, 5, 7, 12, 13		-	495	-	460		290	-	290	-	290	
Pin 6		-	660	-	620		390	-	390	-	390	
Pins 9, 10, 11			450	-	425	_	265	-	265	_	265	
Switching Times												ns
Propagation Delay	^t pd				l							
Data		1.0		1.0						1.0	3.9	
Reset		1.0	4.1	1.0	4.0	1.0		1.0	1	1.0	4.8	
Clock		1.0	6.2	1.0		1.0		1.0		1.0	6.7	
Select		1.0	5.0	1.0	4.8	1.0	4.6		5.0	1.0	5.8	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.5	3.8	1.5	3.7	1.5	3.5	1.5	3.8	1.5	4.1	ns
Setup Time	t _{set}								İ			ns
Data		2.5	-	2.5	-	2.5		2.5	-	2.5	-	
Select		3.5	-	3.5	-	3.5	-	3.5	-	3.5	—	
Hold Time	thold											ns
Data	`	1.5		1.5		1.5	-	1.5	-	1.5	-	
Select		1.0		1.0	-	1.0	-	1.0	-	1.0		

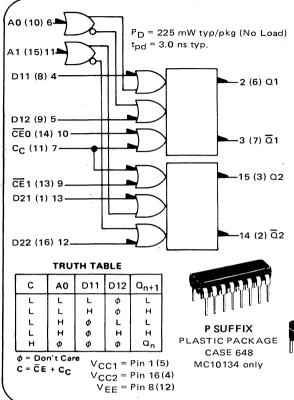
١

MC10133/MC10533 QUAD LATCH

The MC10133/MC10533 is a high speed, low power, quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on the negative going transition of the clock.

The outputs are gated when the output enable (\overline{G}) is low. All four latches may be clocked at one time with the common clock (C_C) , or each half may be clocked separately with its clock enable (\overline{CE}) .

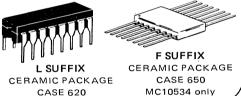
F SUFFIX CERAMIC PACKAGE CASE 650


MC10533 only

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

			-55°C		-3	o°c	+2	5 ⁰ C	+8	5 ⁰ C	+12	25°C	
Characteristic		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Curre	ent	١E	-	83	-	82	-	75	-	82	-	83	mAdc
Input Current		linH											μAdc
Pins 3,7,9,14			-	415	-	390		245	-	245	-	245	
Pins 4,12			-	450	—	425	—	265	-	265		265	
Pins 5,10,13			-	595	—	560	-	350	-	350		350	
Switching Times													ns
Propagation Delay	Data	tpd	1.0	5.8	1.0	5.6	1.0	5.4	1.1	5.9	1.0	6.3	
	Clock		1.0	5.8	1.0	5.4	1.0	5.4	1.2	6.0	1.0	6.3	
	Gate	-	1.0	3.3	1.0	3.2	1.0	3.1	1.0	3.4	1.0	3.6	
Rise Time, Fall Time (20% to 80%)		t+,t-	1.0	3.9	1.0	3.6	1.1	3.5	1.1	3.8	1.0	4.1	ns
Setup Time		t _{set}	2.5		2.5	-	2.5	-	2.5	-	2.5	_	• ns
Hold Time		thold	1.5		1.5	-	1.5	-	1.5		1.5		ns

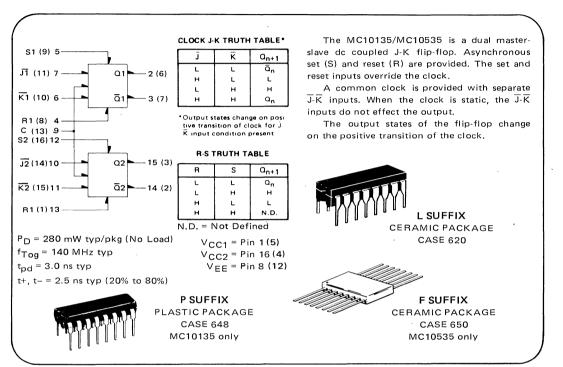
MC10134/MC10534


DUAL MULTIPLEXER WITH LATCH

The MC10134/MC10534 is a dual multiplexer with clocked D type latches. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (\overline{CE}) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (C_C).

The data select inputs determine which data input is enabled. A high (H) level on the AO input enables data input D12 and a low (L) level on the AO input enables data input D11. A high (H) level on the A1 input enables data input D22 and a low (L) level on the A1 input enables data input D21.

Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.



Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	0°C	+2	5°C	+8	5°C	+ 12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	61	-	60	—	55	-	60	-	61	mAdc
Input Current	linH											μAdc
Pins 4,5,7,12,13		-	495	-	460	-	290	-	290	-	290	
Pins 6,9,10,11		-	450	·—	425	_	265		265	-	265	
Switching Times												ns
Propagation Delay	^t pd											
Data		1.0	3.6	1.0	3.5	1.0	3.3	1.0	3.6	1.0	3.9	
Clock		1.0	6.2	1.0	6.0		5.7	1.0	6.3	1.0	6.7	
Select		1.0	5.0	1.0	4.8	1.0	4.6	1.0	5.0	1.0	5.6	
Rise Time, Fall Time (20% to 80%)	t+,t	1.5	3.8	1.5	3.7	1.5	3.5	1.5	3.8	1.5	4.1	ns
Setup Time	t _{set}											ns
Data		2.5	-	2.5	-	2.5	-	2.5	-	2.5		
Select	1 - 1 1	3.5	-	3.5	-	3.5	-	3.5	-	3.5	-	
Hold Time	thold											ns
Data		1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	
Select		1.0		1.0	-	1.0	-	1.0	-	1.0	-	

MC10135/MC10535

DUAL J-K MASTER-SLAVE FLIP-FLOP

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	0°C	+25	5°C	+8	5°C	+ 12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	١E	-	75	1	75	-	68		75	I	75	mAdc
Input Current Pins 6,7,9,10,11 Pins 4,5,12,13	linH		450 660		425 620	-	265 390		265 390	-	265 390	μAdc
Switching Times' Propagation Delay Clock Set, Reset	^t pd	1.7 1.7	4.8 5.4	1.8 1.8	5.0 5.6	1.8 1.8	4.5 5.0	1.8 1.8	4.6 5.2	1.8 1.8	5.3 5.9	ns
Rise Time, Fall Time (20% to 80%)	t+,t	1.0	4.8	1.1	4.8 ,	1.1	4.5	1.1	4.7	1.0	5.3	ns
Setup Time	t _{set}	2.5		2.5	-	2.5	_	2.5	-	2.5		ns
Hold Time	^t hold	1.5		1.5	-	1.5	-	1.5		1.5		ns
Toggle Frequency	fTog	125	-	125	-	125	—	125	-	115		MHz

MC10136/MC10536

UNIVERSAL HEXADECIMAL COUNTER

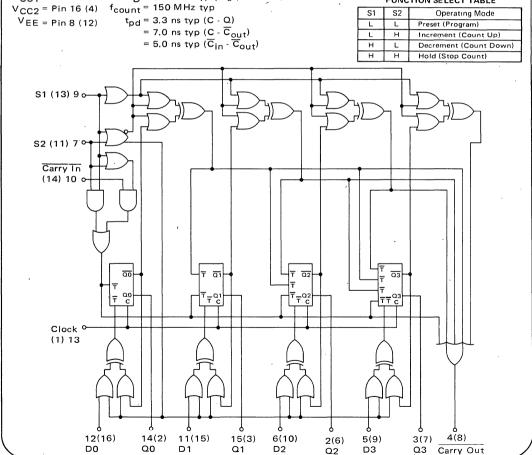
/					SEQ	UEN	TIAL T	RUTH	TAB	LE*	•		
				1	NPU'			0	UTPI	UTS			
	S1	S2	DO	D1	D2	D3	Carry In	Clock	00	Q1	Q2	03	Carry Out
	L L L	L H H H	L Φ Φ	L Φ Φ Φ	Η Φ Φ Φ	Η Φ Φ Φ	φ L L	ннн	гнгн	L L H H	ΤΪΤ	тттт	L H H L
	L L H .L	HHHL	φφφΗ	фффт	φ φ Φ L	φ φ φ ι	нтөө	L H H H	тттт	ннн	HHHL	нннг	ΤΤΤΙ
	ннн	L L L	φ φ φ	\$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$		нннн	L Н Ц	H L H	L L L H	L L H	H H L H

= Don't care.

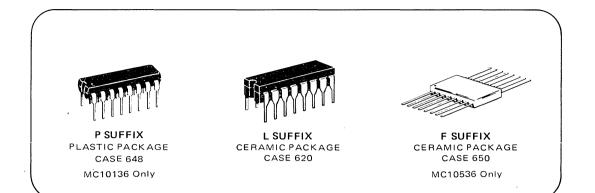
Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.

A clock H is defined as a clock input transition from a low to a high logic level.

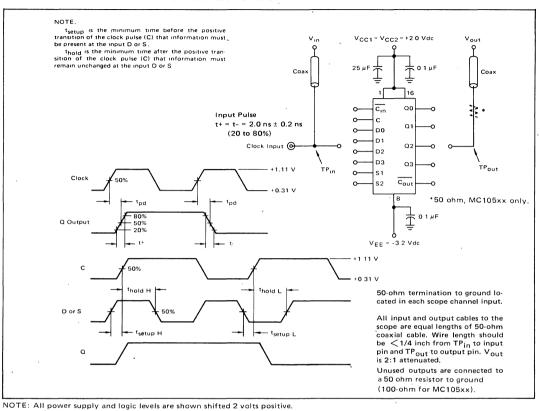
PD = 625 mW typ/pkg (No Load)



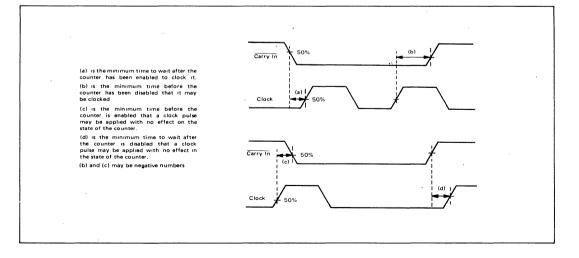
The MC10136/MC10536 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. The flexibility of this device allows the designer to use one basic counter for most applications, and the synchronous count feature makes the MC10136/MC10536 suitable for either computers or instrumentation.


Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations: preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count, or when the counter is being preset.

This device is not designed for use with gated clocks. Control is via S1 and S2.


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

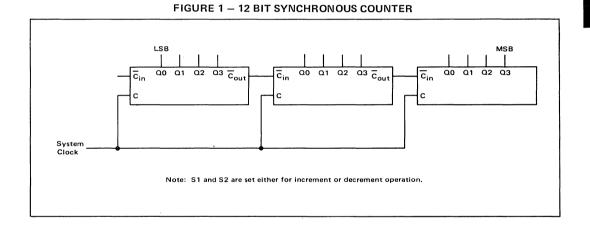
ELECTRICAL CHARACTERISTICS

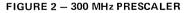

		-55	^o C	-30	oC	+25	5°C	+85	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	165		165	-	150	-	165	-	165	mAdc
Input Current	linH											μAdc
Pins 5, 6, 11, 12		-	375	-	350	-	220	-	220	-	220	
Pins 9, 10		-	415	-	390	-	245		245		245	
Pin 7		-	450	-	425	-	265	—	265	—	265	
Pin 13			495	-	460	—	290	-	290	-	290	
Switching Times												ns
Propagation Delay	^t pd											
Clock to Q		0.8	4.6	0.8	4.8	1.0	4.5	1.4	5.0	1.4	5.2	
Clock to Carry Out		2.0	11.0	2.0	10.9	2.5	10.5	2.4	11.5	2.4	12.6	
Carry In to Carry Out		1.6	7.1	1.6	7.4	1.6	6.9	1.9	7.5	1.9	7.6	
Rise Time, Fall Time (20% to 80%)	t+, t-	0.9	3.3	0.9	3.3	1.1	3.3	1.1	3.5	1.2	3.7	ns
Setup Time	tset											ns
Data (D0 to C)		3.5	-	3.5	-	3.5	-	3.5	-	3.5		
Select (S to C)		7.5	-	7.5		7.5		7.5	-	7.5	- 1	
Carry In (Cin to C)		4.5	—	4.5	—	3.7	-	4.5	-	4.5	—	
(C to $\overline{C_{in}}$)		-1.0		-1.0		-1.0	-	-1.0	—	-1.0	_	
Hold Time	^t hold											ns
Data (C to D0)		0		0	—	0	—	0	-	0	-	
Select (C to S)		-2.5	—	-2.5	-	-2.5		-2.5	-	-2.5	-	
$\overline{\text{Carry In}}$ (C to $\overline{\text{C}_{n}}$)		-1.6	-	-1.6	-	-1.6	—	-1.6	-	-1.6	-	
(Cin to C)		4.0	—	4.0		3.1		4.0	-	4.0	—	
Counting Frequency	fcountup	115	-	125	_	125		125	_	115	-	MHz
	^f countdown	115	-	125	-	125	. —	125	-	115	-	

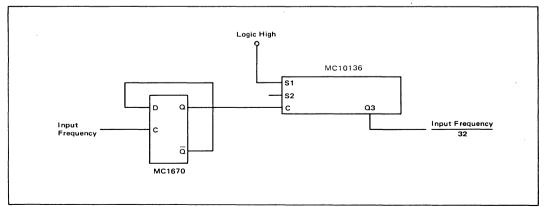
-55^oC and +125^oC test values apply to MC105xx devices only.

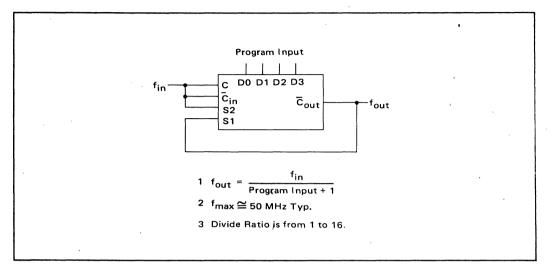
SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

SET UP AND HOLD TIMES

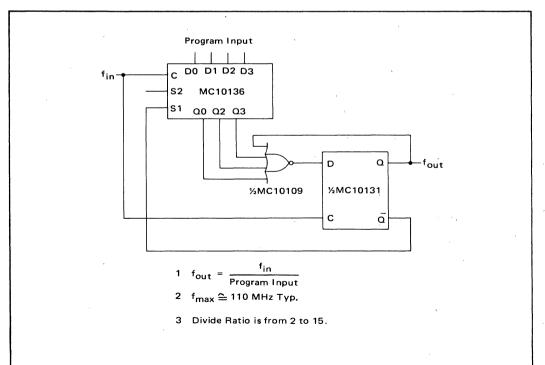



APPLICATIONS INFORMATION


To provide more than four bits of counting capability several MC10136/MC10536 counters may be cascaded. The Carry In input overrides the clock when the counter is either in the increment mode or the decrement mode of operation. This input allows several devices to be cascaded in a fully synchronous multistage counter as illustrated in Figure 1. The carry is advanced between stages as shown with no external gating. The Carry In of the first device may be left open. The system clock is common to all devices.


The various operational modes of the counter make it useful for a wide variety of applications. If used with MECL III devices, prescalers with input toggle frequencies in excess of 300 MHz are possible. Figure 2 shows such a prescaler using the MC10136 and MC1670. Use of the MC10231 in place of the MC1670 permits 200 MHz operation. The MC10136 may also be used as a programmable counter. The configuration of Figure 3 requires no additional gates, although maximum frequency is limited to about 50 MHz. The divider modulus is equal to the program input plus one (M = N + 1), therefore, the counter will divide by a modulus varying from 1 to 16.

A second programmable configuration is also illustrated in Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 MHz typically. The divider modulus for this figure is equal to the program input (M = N). The minimum modulus is 2 because of the pulse swallowing technique, and the modulus may vary from 2 to 15. This programmable configuration requires an additional gate, such as $\Mcline{MC10131}$.



MC10137/MC10537 UNIVERSAL DECADE COUNTER

SEQUENTIAL TRUTH TABLE*

			1	NPU'	тs				Ó	UTP	UTS	
S1	S2	D0	D1	D2	D3	Carry In	Clock	Q0	Q1	Q2	03	Carry Out
L L L	гни	Ηφφφ	ΗΦΦΦ	ΠΦΦΦ	L 0 0 0 0	¢ L L L	нттт	H L H L	H L L L	H L L L	L H H L	ттт
L L H L	H H H H	ΦΦΦΗ	ΦΦΦΦ Η	Φ Φ Φ Φ Φ L	φ φ φ φ L	L Н Ф Ф	н н н н н н	нннн	LLLH			ттттт
нн н	L L L	φ φ φ	000	0 0 0	0 0 0	L L L	ттт	L H L	H L L			ΗΗL

 ϕ = Don't care.

* A clock H is defined as a clock input transition from a low to a high logic level.

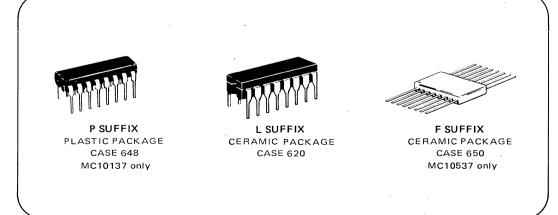
FUNCTION SELECT TABLE

S1	S2	Operating Mode
L	L	Preset (Program)
L	н	Increment (Count Up)
н	L	Decrement (Count Down)
н	н	Hold (Stop Count)

 $P_D = 625 \text{ mW typ/pkg}$ (No Load)

f_{count} = 150 MHz typ

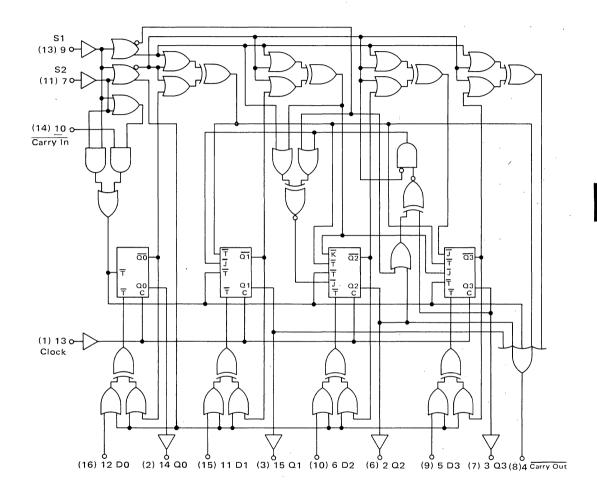
t_{pd} = 3.3 ns typ (C-Q)


= 7.0 ns typ $(C - \overline{C}_{out})$

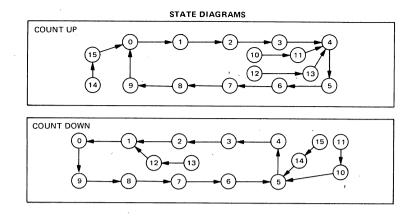
= 5.0 ns typ $(\overline{C}_{in} - \overline{C}_{out})$

The MC10137/MC10537 is a high speed synchronous counter that can count up, down, preset, or stop count at frequencies exceeding 100 MHz. The flexibility of this device allows the designer to use one basic counter for most applications. The snychronous count feature makes the MC10137 suitable for either computers or instrumentation.

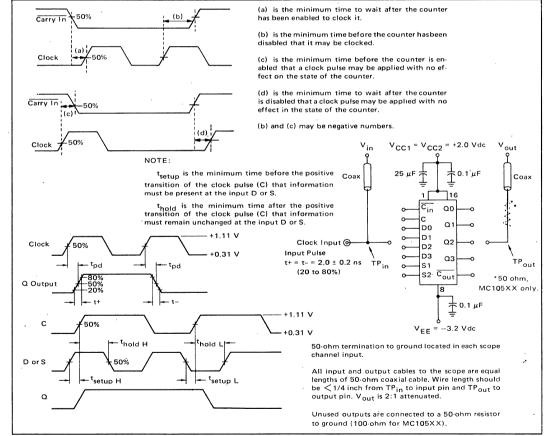
Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count. The Carry Out on the MC10137 is partially decoded from Q1 and Q2 directly, so in the preset mode the condition of the Carry Out after the Clock's positive excursion will depend on the condition of Q1 and/or Q2. The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.



^{*} Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.


ELECTRICAL CHARACTERISTICS

		-54	5°C	-30	0°C	+2	5°C	+85	°C	+12	5°C	
Characteristic	Symbol		Max				-			-		Unit
Power Supply Drain Current	ι _E	_	165	-	165		150		165		165	mAdc
Input Current	linH											μAdc
Pins 5, 6, 11, 12		-	375	_	350	-	220	-	220	_	220	
Pins 9, 10		-	415	_	390	_	245	-	245	_	245	
Pin 7		-	450		425	-	265		265	-	265	
Pin 13		; -	495	—	460	-	290	_	290	-	290	
Switching Times	•											ns
Propagation Delay	^t pd											
Clock to Q		0.8	4.6	0.8		1.0	4.5	1.4			5.2	
Clock to Carry Out		2.0	11		10.9		10.5			2.4	12.6	
Carry In to Carry Out		1.6	7.1	1.6	7.4	1.6	6.9	1.9	7.5	1.9	7.6	
Rise Time, Fall Time	t+,t-	0.9	3.3	0.9	3.3	1.1	3.3	1.1	3.5	1.2	3.7	ns
(20% to 80%)										•		
Setup Time	t _{set}											ns
Data (D0 to C)		3.5	-	3.5	—	3.5	_	3.5	-	3.5	-	
Select (S to C)		7.5	-	7.5	—	7.5		7.5	- 1	7.5	-	
Carry In (Cin to C)		4.5	-	4.5	-	3.7	-	4.5	-	4.5	-	
(C to C _{in})		-1.0	_	-1.0		-1.0		-1.0		-1.0	_	
Hold Time	thold											ns
Data (C to D0)		0	-	0	-	Ó	-	0	-	0		
Select (C to S)		-2.5	-	-2.5		-2.5	-	-2.5		-2.5	-	
Carry In (C to Cin)		-1.6	-	-1.6	-	-1.6	-	-1.6	-	-1.6		
(Cin to C)		4.0		4.0	-	3.1	-	4.0	-	4.0		
Counting Frequency	fcountup	115	-	125	-	125		125	-	115		MHz
	^f countdn	115	-	125	-	125	-	125	-	115	-	



V_{CC1} = Pin 1 (5) V_{CC2} = Pin 16 (4) V_{EE} = Pin 8 (12)

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

NOTE: All power supply and logic levels are shown shifted 2 volts positive.

MC10138/MC10538 BI-QUINARY COUNTER

COUNTER TRUTH TABLES

BI-QUINARY

(Clock connected to C2 and Q3 connected to C1)

COUNT	Q1	02	03	Q0
0 1 2 3	LHLH	レレガオ		
4 5 6 7			HLLL	
8 9	H L	H L	L H	H H

BCD (Clock connected to C1 and Q0 connected to C2)

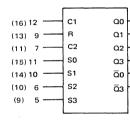
COUNT	00	Q1	Q2	Q3
0 1 2 3	ーエーエ		ب ب ب	
4567		L L H H	тттт	
8 9	L H	L	L	H

The MC10138/MC10538 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set-reset master-slave flip-flops. Clock inputs trigger on the positive going edge of the clock pulse.

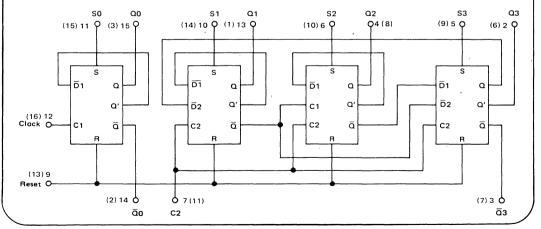
Set or reset inputs override the clock, allowing asynchronous "set" or "clear". Individual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

> $P_D = 370 \text{ mW typ/pkg}$ (No Load) f_{Tog} = 150 MHz typ t_{pd} = 3.5 ns typ t+, t- = 2.5 ns typ (20% to 80%)

> > - 15 (3)


13 (1)

- 4 (8)

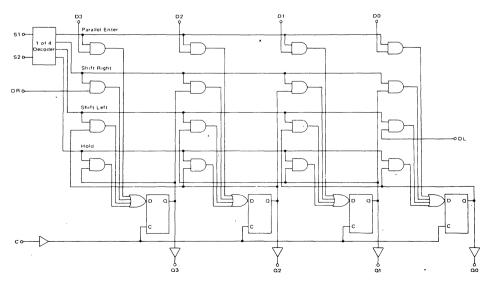

-2 (6)

- 14 (2)


- 3 (7)

V_{CC1} = Pin 1 (5) V_{CC2} = Pin 16 (4) V_{EE} = Pin 8 (12)

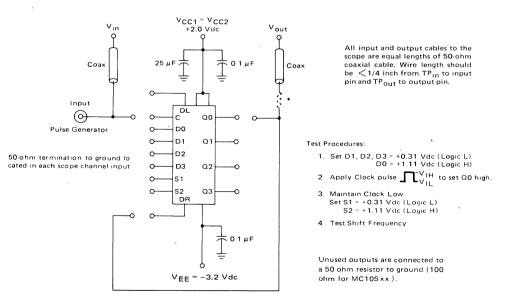
Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.


		-5	5°C	-30	0°C	+25	5°C	+85	5°C	+12	25°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	١ _E	-	97		97	-	88	-	97		97	mAdc
Input Current	linH											μAdc
Pin 12		-	375	· —	350	-	220	—	220	-	220	
Pins 5,6,10,11		—	415	-	390	—	245	-	245	_	245	
Pin 7		-	495	-	460	-	290	-	290	-	290	
Pin 9		-	700	-	650	-	410	-	410	-	410	
Switching Times												ns
Propagation Delay	^t pd											
Clock to Q0, $\overline{Q}0$		1.4	5.5	1.4	5.0	1.5	4.8	1.5	5.3	1.5	5.5	
Clock to Q1, Q2, Q3, Q3		1.4	6.2	1.4	5.2	1.5	5.0	1.5	5.5	1.5	6.2	
Set		1.4	5.2	1.4	5.2	1.5	5.0	1.5	5.5	1.5	6.2	
Reset		1.4	5.5	1.4	5.2	1.5	5.0	1.5	5.5	1.5	6.2	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.1	4.7	1.1	4.7	1.1	4.5	1.1	5.0	1.1	5.0	ns
Counting Frequency	fcount	125	-	125		125	-	125	-	125	-	MHz

MC10141/MC10541

FOUR-BIT UNIVERSAL SHIFT REGISTER

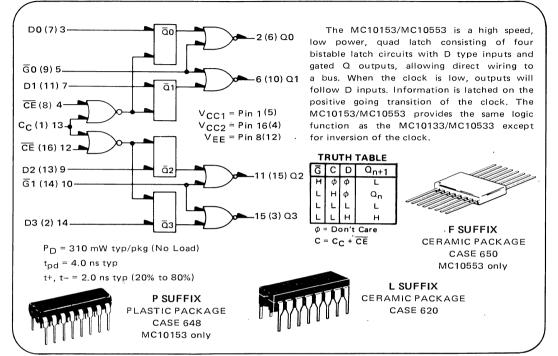
Numbers in parenthesis denote pin numbers for F package.



ELECTRICAL CHARACTERISTICS

		-5	5°C	-3	o°c	+2!	5°C	+ 8!	5°C	+ 12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	١E	-	112	-	112	-	102	-	112	-	,112	mAdc
Input Current Pins 5, 6, 9, 11, 12, 13 Pins 7, 10	linH	_	375 415	-	350 390	_	220 245	_	220 245	+	220 245	μAd c
Pin 4		_	450		425	_	265		265	_	265	
Switching Times Propagation Delay Rise Time, Fall Time (20% to 80%)	tpd t+,t-	1.7 1.0	4.1 3.6	1.7	3.9 3.4	1.8	3.8 3.3	2.0 1.1	4.2 3.6	2.0 1.0		ns ns
Setup Time Data Select	t _{set}	3.0 7.0		2.5 5.5		2.5 5.0		2.5 5.5		3.0 7.0		ns
Hold Time Data, Select	^t hold	1.5	_	1.5	_	1.5	_	1.5	-	1.5	_	ns
Shift Frequency	^f Shift [,]	150		150	-	150	-	150	-	150		MHz

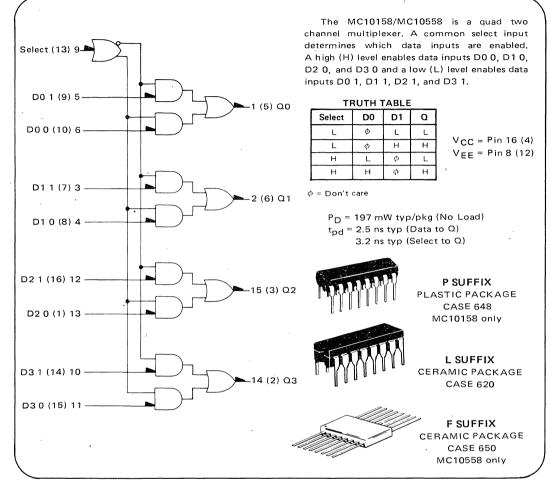
-55°C and +125°C test values apply to MC105xx devices only.


SHIFT FREQUENCY TEST CIRCUIT

*50 ohm, MC105 xx only.

NOTE: All power supply and logic levels are shown shifted 2 volts positive.

MC10153/MC10553 QUAD LATCH

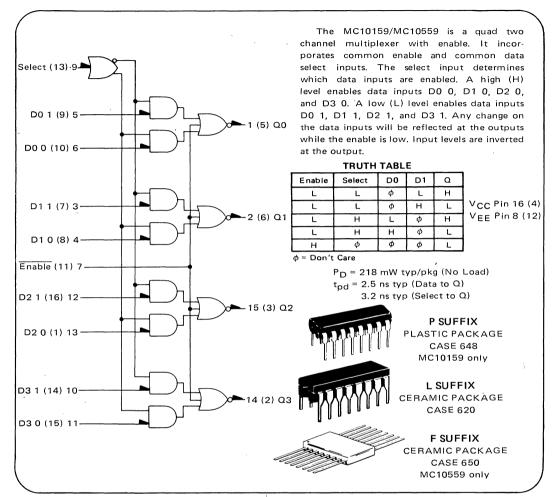


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-58	5°C	-30	o°c	+2	5°C	+85	5 ⁰ C	+ 12	25 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	83	—	83	—	75	-	83	—	83	mAdc
Input Current	linH											μAdc
Pins 3,4,7,9,12,14		-	415		390	-	245		245	-	245	
Pin 13			495	-	460	-	290	-	290	-	290	
Pins 5, 10		-	595	-	560	-	350	-	350		350	
Switching Times												ns
Propagation Delay	tpd											
Data		1.0	5.8	1.0	5.6	1.0	5.4	1.1	5.9	1.0	6.3	
Clock	•	1.0	6.1	1.0	5.6	1.0	5.6	1.2	6.2	1.0	6.6	
Gate		1.0	3.4	1.0	3.2	1.0	3.1	1.0	3.4	1.0	3.6	
Rise Time, Fall Time	t+,t-	1.0	3.9	1.0	3.6	1.1	3.5	1.1	3.8	1.0	4.1	ns
(20% to 80%)				ļ								
Setup Time	t _{set}	2.5	-	2.5	-	2.5	-	2.5		2.5	-	ns
Hold Time	^t hold	1.5	—	1.5	-	1.5	-	1.5	-	1.5	-	ns

MC10158/MC10558

QUAD 2-INPUT MULTIPLEXER (Non-Inverting)

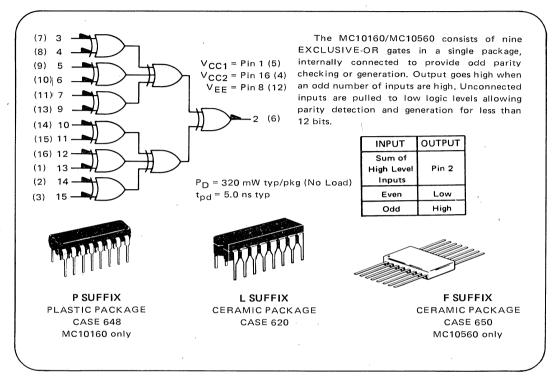

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-3	0°C	+2	5°C	+8	5°C	+12	25°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	۱E	. –	53	-	53	-	48	-	53		53	mAdc
Input Current	linH											μAdc
Pin 9			380	-	360	·	225	—	225		225	
Pins 3,4,5,6,10,11,12,13		_	425	_	400	-	250	-	250	_	250	
Switching Times												ns
Propagation Delay	t _{pd}					1						
Data		1.5	3.5	1.3	3.1	1.2	3.0	1.3	3.2	1.5	3.5	
Select		2.5	5.0	2.5	4.8	2.4	4.5	2.5	4.8	2.5	5.0	
Rise Time, Fall Time (20% to 80%)	t+,t	1.6	3.5	1.6	3.4	1.5	3.3	1.6	3.4	1.6	3.5	ns

-55⁰C and +125⁰C test values apply to MC105xx devices only.

MC10159/MC10559

QUAD 2-INPUT MULTIPLEXER (Inverting)

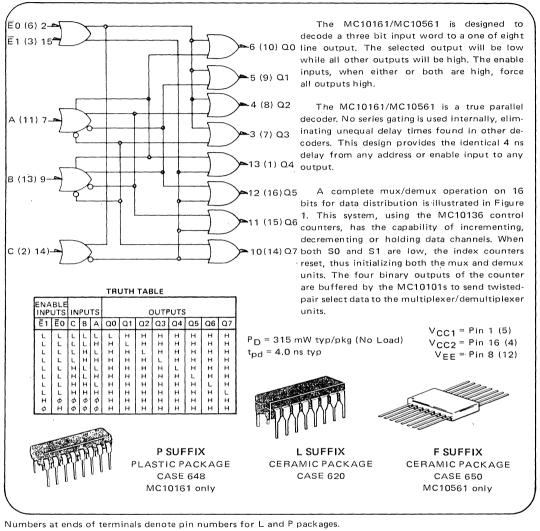

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		5!	5 ⁰ C	-3	0°C	+2!	5 ⁰ C	+8	5 ⁰ C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	58		58	-	53	-	58	-	58	mAdc
Input Current	linH											μAdc
Pin 9		-	380	-	360	-	225	-	225	- 1	225	
Pins 3,4,5,6,7,10,11,12,13		—	425	-	400		250	_	250	-	250	
Switching Times												ns
Propagation Delay	t _{pd}											
, Data	•	1.1	4.0	1.1	3.8	1.2	3.3	1.1	3.8	1.1	4.0	
Select		1.5	5.5	1.5	5.3	1.5	5.0	1.5	5.3	1.5	5.5	
Enable		1.4	5.5	1.4	5.3	1.5	5.0	1.4	5.3	1.4	5.5	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.8	1.0	3.7	1.1	3.5	1.0	3.7	1.0	3.8	ns

-55^oC and +125^oC test values apply to MC105xx devices only.

MC10160/MC10560

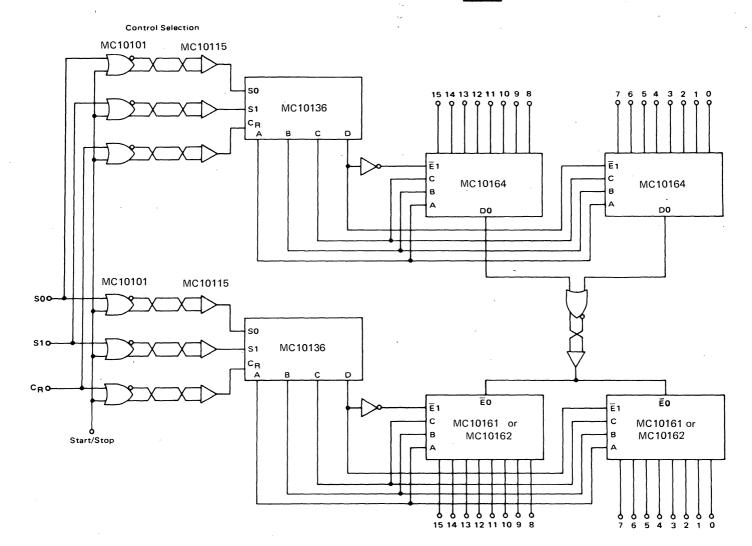
12-BIT PARITY GENERATOR-CHECKER


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55 ⁰ C		-30°C		+25 ⁰ C		+85°C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	_	86	_	86		78		86	-	86	mAdc
Input Current Pins 3,6,7,11,12,15 Pins 4,5,9,10,13,14	linH	_	450 375	-	425 350	-	265 220		265 220	-	265 220	ns
Switching Times Propagation Delay	t _{pd}	1.6	8.1	1.8	8.1	2.0	7.5	2.0	8.0	1.4	7.9	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.4	1.1	3.5	1.1	3.3	1.0	3.5 ·	0.9	3.4	ns

ŧ

MC10161/MC10561


BINARY TO 1-8 DECODER (LOW)

Numbers in parenthesis denote pin numbers for F package.

· ·		-55 ⁰ C		-30°C		+25 ⁰ C		+85 ⁰ C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE		84	-	84	-	76	<u> </u>	84	-	84	mAdc
Input Current	linH		375		350	-	220		220	-	220	μAdc
Switching Times												nś
Propagation Delay	tpd	1.2	6.5	1.5	6.2	1.5	6.0	1.5	6.4	1.3	7.0	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.6	1.0	3.3	1.1	3.3	1.1	3.5	1.0	3.9	ns

-55⁰C and +125⁰C test values apply to MC105xx devices only.

ω

FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER

3-60

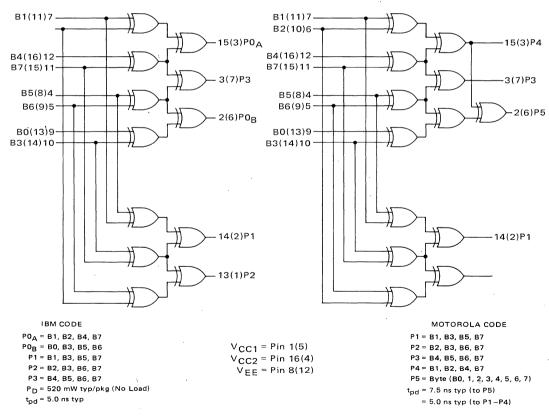
MC10161/MC10561

MC10162/MC10562

BINARY TO 1-8 DECODER (HIGH)

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55 ⁰ C		-30 ⁰ C		+25 ⁰ C		+85 ⁰ C		+125 ⁰ C [•]		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE		84	_	84		76	-	84	-	84	mAdc
Input Current	linH		375	_	350	-	220	-	220		220	μAdc
Switching Times												ns
Propagation Delay	tpd	1.2	6.5	1.5	6.2	1.5	6.0	1.5	6.4	1.3	7.0	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.6	1.0	3.3	1.1	3.3	1.1	3.5	1.0	3.9	ns

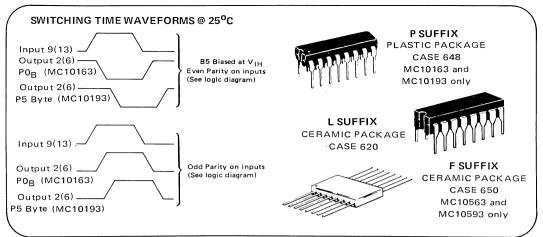

-55^oC and +125^oC test values apply to MC105xx devices only.

MC10163/MC10563 MC10193/MC10593

ERROR DETECTION -CORRECTION CIRCUITS

The MC10163/MC10563 and the MC10193/ MC10593 are error detection and correction circuits. They are building blocks designed for use with memory systems. They offer economy in the design of error detection/correction subsystems for main-frame and add-on memory systems. For example, using eight MC10163's together with eight 12-bit parity checkers (MC10160), single-bit error detection/correction and double-bit error detection can be done on a word of 64-bit length. Only eight check bits (B0-B7) need be added to the word. A useful feature of this building block is that the MC10193/MC10593 option generates the parity of all inputs to the block. Thus, if the MC10193 is applied in a byte sequence, individual byte parity is automatically available.

MC10163/MC10563 LOGIC DIAGRAM MC10193/MC10593 LOGIC DIAGRAM



Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

3

3-62

MC10163/MC10563, MC10193/MC10593

		-5	5°C	- 30	0°C	+2!	5 ⁰ C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	137	-	137	-	125	_	137		137	mAdc
Input Current	linH											μ́Adc
Pins 4,6,10		-	375		350		220	-	220	-	220	
Pins 5,7,9,11,12		-	450	-	425	—	265	—	265	_	265	
Switching Times												ns
Propagation Delay	t _{pd}											
MC10163/MC10563		1.3	7.0	1.3	6.8	1.5	6.5	1.5	7.1	1.5	7.5	
MC10193/MC10593 B to P1-P4		1.3	7.1	1.3	6.8	1.5	6.5	1.5	7.1	1.5	11	
B to P5		1.8	9.1	1.8	8.9	2.0	8.5	2.0	9.2	2.0	10	
Rise Time, Fall Time	t+,t-											ns
(20% to 80%)												
MC10163/MC10563		1.1	4.4	1.1	4.2	1.1	3.9	1.1	4.4	1.1	4.5	
MC10193/MC10593		1.1	4.3	1.1	4.2	1.1	3.9	1.1	4.4	1.1	4.6	

-55°C and +125°C test values apply to MC105xx devices only.

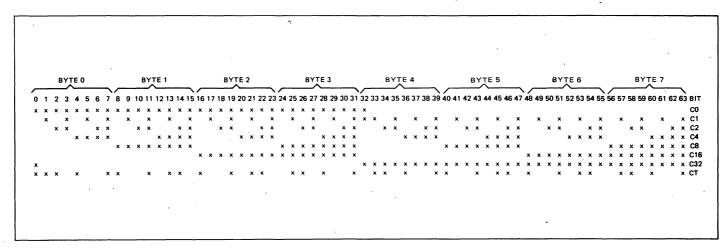
MC10163/MC10563 APPLICATIONS INFORMATION

The MC10163/MC10563 is a building block for generating the modified Hamming singleerror-correction, double-error-detection (SEC-DED) code used in the IBM370/145 memory. While the MC10163 can also be used for generating other patterns, it is optimized for generating the pattern shown in the H matrix of Figure 1.

When writing into a memory, the MC10163 is used to generate the eight check bits (CO-C32, CT) which are stored with the 64 data bits (B0-B63). These check bits are generated by taking the parity of all data bits marked with an X in the appropriate row of the H matrix. (C0, C1, C32, CT, are even parity; C2, C4, C8, C17, are odd parity.) To generate these check bits with the building blocks, eight MC10163's and eight MC10160 parity checkers are used. One MC10163 is connected to each byte of data and the outputs of these building blocks are connected to the eight MC10160 parity checkers, one for each check bit. Figure 2 shows which connections are required (i.e., CO is the even parity of output PO_{Δ} of the MC10163 on the "zero" byte of data, output $\rm P0_B$ of the ''zero'' byte, $\rm P0_A$ of the ''one'' byte, ---, $\rm P0_B$ of the ''three byte and data bit 32.)

During the memory read operation, the fetched check bits previously generated (as described) are exclusive-ORed with newly generated CO-C32 to generate syndrome bits SO-S32. Syndrome ST is a special case where ST is the even parity of all eight fetched check bits and all 64 fetched data bits. For determining the type and location of an error:

1. If all syndromes (S0-S32 and ST) are false, there is no error.

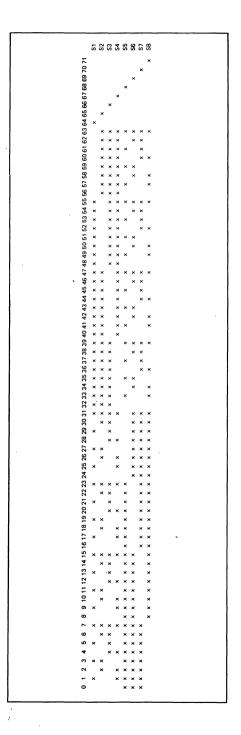

2. If ST is true and SO-S32 are false, the CT is in error.

3. If ST is false and one or more of S0-S32 is true, an uncorrectable error has occurred.

4. If ST is true and one or more of S0-S32 is true, simply add the S1-S32 bits to get the binary location of the error (S1 has weight 1, S2 weight 2, S4 weight 4, etc.)

Data bits B0 and B32 are special cases of this location technique: B0 is in error if ST, S0, and S32 are true; B32 is in error if ST, S0, S1, and S32 are true.

FIGURE 1 – 370/145 PATTERN


						<u></u>		
						`		
C0 = P0 _{A0}	P0 _{B0}	P0A1	P0 _{B1}	P0A2	P0 _{B2}	P0 _{A3}	P0 _{B3}	B(32)
C1 = P10	P11	P12	P13	P14	P15	P16	P17	B(32)
C2 = P20	P21	P22	P23	P24	P25	P26	P27	
C4 = P30	P31	P32	P33	P34	P35	P36	P37	
C8 = P0A1	P0 _{B1}	P0 _{A3}	P0B3	P0A5	PO _{B5}	POA7	P0 ₈₇	
C16 = P0 _{A2}	POA2	P0 _{A3}	P0 _{B3}	P0A6	P086	POA7	POB7	
C32 = P0 _{A4}	P084	P0A5	P0 _{B5}	P0A6	P086	P0A7	POB7	B(0)
$CT = PO_{AO}$	P0 _B 1	POB2	P0 _{A3}	P0 _{A4}	POB5	P086	P0 _{A7}	B(0)
Where for PNM	: N = MC	10163 Out	tput					

M = Byte Number

3-64

FIGURE 2 - 370/145 PATTERN GENERATION

ω

MOTOROLA PATTERN EXAMPLE

I

FIGURE 3

The MC10193/MC10593 is a building block for generating modified Hamming SEC-DED codes. It can be used for any length data word and for a variety of codes. The MC10193 is optimized for codes organized on a byte repetitive basis and has the advantage of automatically supplying whole byte parity (P5 output). While it is possible to use a number of criteria for choosing a pattern, the pattern of Figure 3 was chosen on the basis of speed and ease of error location decode. As can be seen in the H matrix of Figure 3, the pattern is repetitive by byte with the various rows generated by only five combinations of bit parities within the bytes. For the 64 bit data word in the example of Figure 3, the eight check bits (B64 to B71) are generated by the odd parity of all data bits indicated by an X in the appropriate row. The syndromes S1 to S8 are generated by including the fetched check bits in the same generator that originally generated the check bits.

The pattern of Figure 3 is easily generated by using eight MC10193 devices, one for each data byte and eight MC10160 parity checkers, one for each syndrome/check bit. The connections of building blocks and parity checkers are shown in tabular form in Figure 4 and in schematic form in Figure 6.

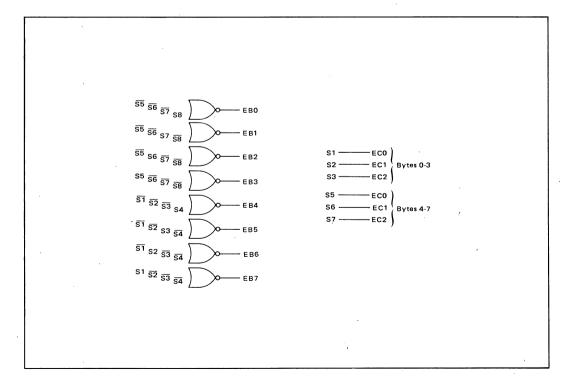
Once the syndrome bits (S1 to S8) have been formed from fetched data (B0 to B63) and fetched check bits (B64 to B71), the determination of type and location of error is simply done:

1. If all syndromes are false, there is no error.

2. If one syndrome is true, the corresponding check bit is in error.

3. If more than one syndrome is true, and the parity of all syndromes is even, a multiple (uncorrectable) error has occurred.

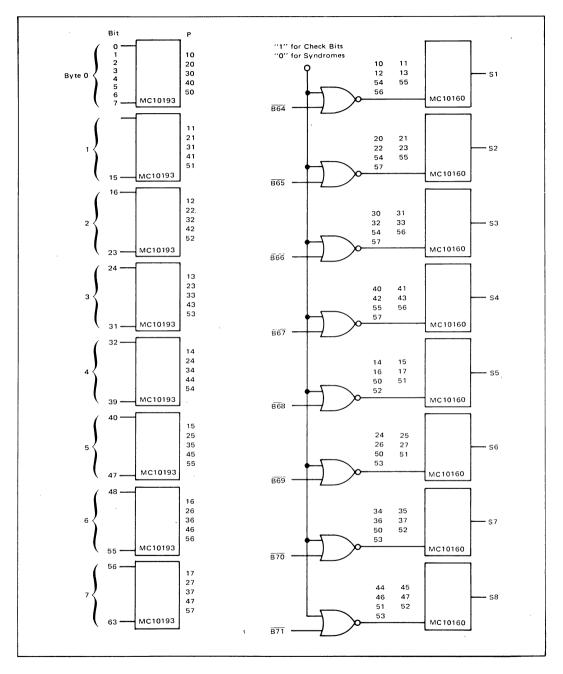
4. If more than one syndrome is true, and the parity of all syndromes is odd, a single error has occurred and is easily located by the circuit of Figure 5.


Figure 5 gives the error location circuit for the example pattern. The outputs EBO to EB6 are a one-of-eight-high code giving the byte in error. Outputs EC0 to EC3 give the binary location of the bit in error within the located byte. Since this location process can occur simultaneously with the determination of error type described, the entire error correction sequence (using a toggling fetched data latch) takes less than 20 ns. This is because an error occurrence detector is a simple ORing of S1 to S8. The error locator has simultaneously located the error which is then corrected as through the error was a single (and therefore correctable) error. The parity of syndromes then determines if the error was indeed single, and interrupts the CPU if the error was an uncorrectable (multiple) error. Since uncorrectable data is unusable without special handling, the CPU would be interrupted anyway; therefore this automatic correction of any error as if it were single does not create any problems. This fast error correction technique allows single erorr correction on a non-interrupt basis with only a 20 ns memory system access time penalty.

These techniques can, of course, be extended to large or smaller data words.

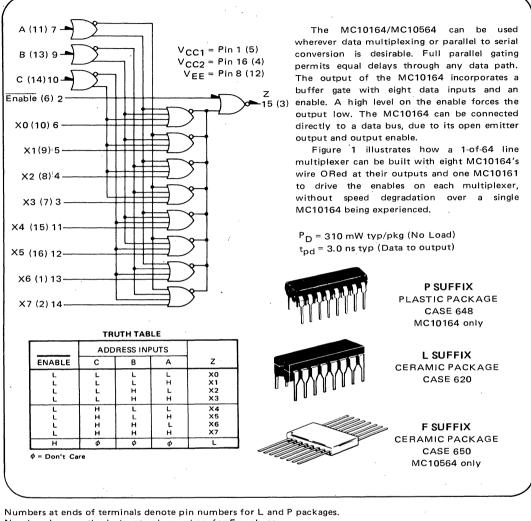
S1 =	P10	P11	P12	P13	P54	P55	P56	B(64)
52 =	P20	P21	P22	P23	P54	P55	P57	B(65)
53 =	P30	P31	P32	P33	P54	P56	P57	B(66)
S4 =	P40	P41	P42	P43	P55	P56	P57	B(67)
S5 =	P14	P15	P16	P17	P50	P51	P52	B(68)
56 =	P24	P25	P26	P27	P50	P51	P53	B(69)
S7 =	P34	P35	P36	P37	P50	P52	P53	B(70)
58 =	P44	P45	P46	P47	P51	P52	P53	B(71)
Nher	e for P		= MC1 = Byte		Dutput er			

FIGURE 4 – M2 PATTERN BUILDING BLOCK


FIGURE 5 – M2 PATTERN CORRECTION MATRIX

3

MC10163/MC10563, MC10193/MC10593


FIGURE 6 - SYNDROME AND CHECK BIT GENERATOR, M2 PATTERN

3-67

MC10164/MC10564

8-LINE MULTIPLEXER

Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	0°C	+25	5°C	+85	5°C	+ 12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١ _E	-	83	-	83	-	75	—	83	1	83	mAdc
Input Current	l _{inH}	-	450	-	425	-	265	—	265	—	265	μAdc
Switching Times Propagation Delay X0-X7 A, B, C Enable	^t pd	1.3 1.8 0.9	4.6 6.1 3.0	1.9	4.7 6.3 3.3	1.5 2.0 1.0	l		4.8 6.5 3.1			ns
Rise Time, Fall Time (20% to 80%)	t+,t	0.9	3.3	0.9	3.3	1.1	3.3	1.2	3.6	0.9	3.4	ns

-55^oC and +125^oC test values apply to MC105xx devices only.

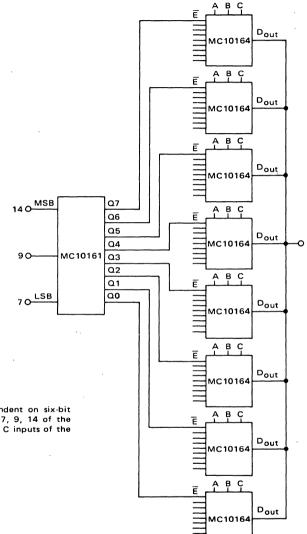


FIGURE 1 – 1-OF-64 LINE MULTIPLEXER

The Bit chosen is dependent on six-bit code present on inputs 7, 9, 14 of the MC10161 and the A, B, C inputs of the MC10164.

MC10165/MC10565

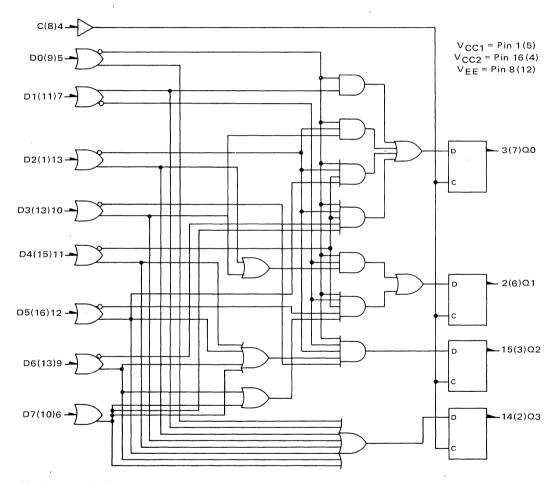
8-INPUT PRIORITY ENCODER

		C	ΑΤΑ Ι	NPUT	S				OUT	PUTS	
D0	D1	D2	D3	D4	D5	D6	D7	Q3	Q2	Q1	,00
н	φ	φ	φ	φ	φ	φ	φ	н	L	L	L
L	н	φ	φ	φ	φ	φ	φ	н	L	L	н
L	L	н	φ	φ	φ	φ	φ	н	L	н	L
L	L	L	н	φ	φ	φ	φ	н	L	н	н
L	L	L	L	н	φ	φ	φ	н	н	L	L
L	L	L	L	L	н	φ	φ	н	н	L	н
L	L	L	L	L,	L	н	φ	н	н	н	L
L	L	L	L	Ĺ	Ļ	L	н	н	н	н	н
L	L	L	L	L	L	L	L	L	L	L	L

 $P_D = 545 \text{ mW typ/pkg}$ (No Load) $t_{pd} = 4.5 \text{ ns typ}$ (Data to Output) The MC10165/MC10565 is a device designed to encode eight inputs to a binary coded output. The output code is that of the highest order input. Any input of lower priority is ignored. Each output incorporates a latch allowing synchronous operation. When the clock is low the outputs follow the inputs and latch when the clock goes high.

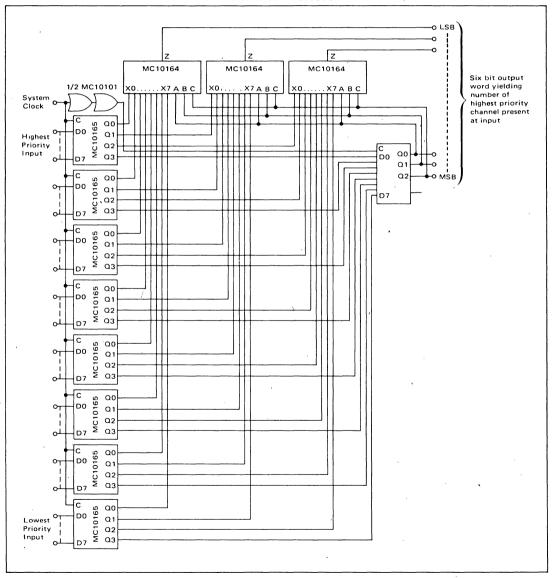
The input is active when high (e.g., the three binary outputs are low when input D0 is high). The Q3 output is high when any input is high. This allows direct extension into another priority encoder when more than eight inputs are necessary.

P SUFFIX PLASTIC PACKAGE CASE 648 MC10165 only

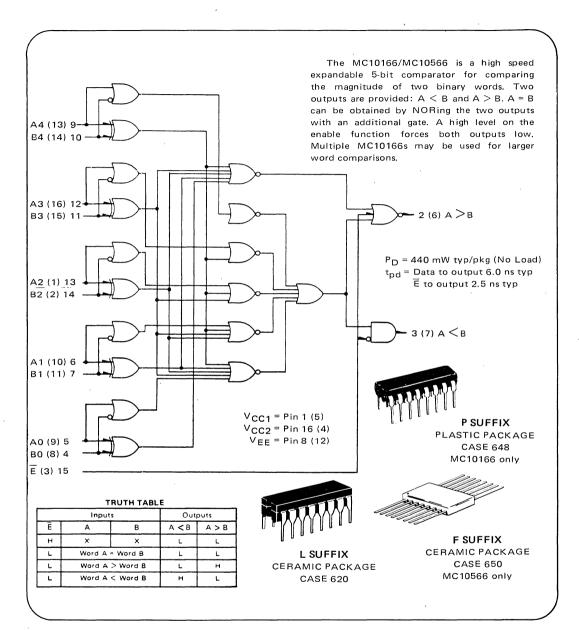


L SUFFIX CERAMIC PACKAGE CASE 620

F SUFFIX CERAMIC PACKAGE CASE 650 MC10565 only


		-5	5 ⁰ C	-3	0°C	+2	5 ⁰ C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	-	144	-	144	-	131	-	144		144	mAdc
Input Current Pin 4 Pin 5,6,7,9,10,11,12,13	linH		415 375		390 350		245 220	-	245 220	1 1	245 220	µAdc
Switching Times Propagation Delay Data Clock	tpd	2.0 1.5	7.5 5.0	2.0 1.5			l	2.0 1.5		2.0 1.5		ns
Rise Time, Fall Time (20% to 80%)	t+,t	1.1	3.8	1.1	3.5	1.1	3.3	1.1	3.5	1.1	4.5	ns
Setup Time	t _{set}	6.0	-	6.0	-	6.0	-	6.0	-	6.0	-	ns
Hold Time	thold	1.0	-	1.0	-	1.0	-	1.0	-	1.0	-	ns

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.


3-71

A typical application of the MC10165/ MC10565 is the decoding of system status on a priority basis. A 64 line priority encoder is shown in the figure below. System status lines are connected to this encoder such that, when a given condition exists, the respective input will be at a logic high level. This scheme will select the one of 64 different system conditions, as represented at the encoder inputs, which has priority in determining the next system operation to be performed. The binary code showing the address of the highest priority input present will appear at the encoder outputs to control other system logic functions.

64-LINE PRIORITY ENCODER

MC10166/MC10566 5-BIT MAGNITUDE COMPARATOR

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

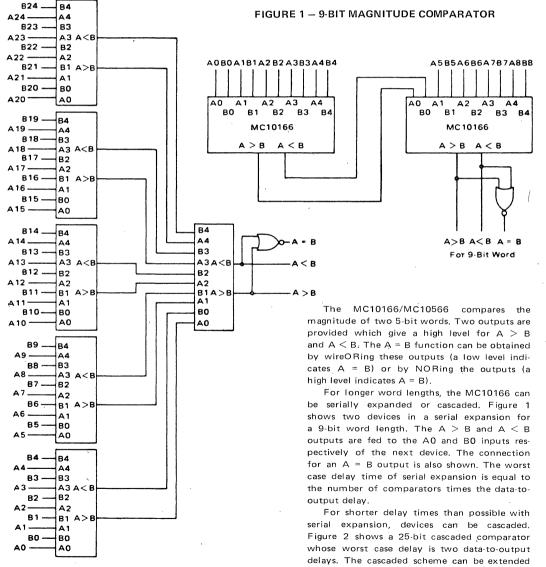
3-73

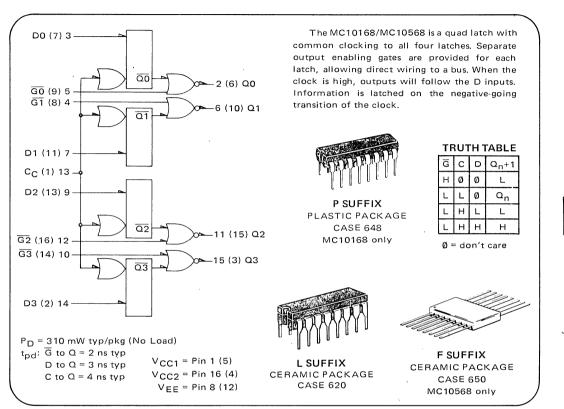
3

MC10166/MC10566

		-5	5°C	- 30	0°C	+25	5°C	+85	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		117	1	117	-	106	_	117	-	117	mAdc
Input Current	linH	-	375	_	350	-	220	'	220	-	220	μAdc
Switching Times Propagation Delay Data	^t pd	1.0	8.2	1.0	8.0	1.0	7.6	1.0	8.4	1.0	8.9	ns
Enable		1.0		1.0	3.8		3.6	1.0	4.0	1.0	4.2	
Rise Time, Fall Time (20% to 80%)	t+,t	1.1	3.8	1.0	3.6	1.1	3.5	1.1	3.8	1.1	4.1	ns

-55°C and +125°C test values apply to MC105xx devices only.




FIGURE 2 – 25-BIT MAGNITUDE COMPARATOR

3

3-74

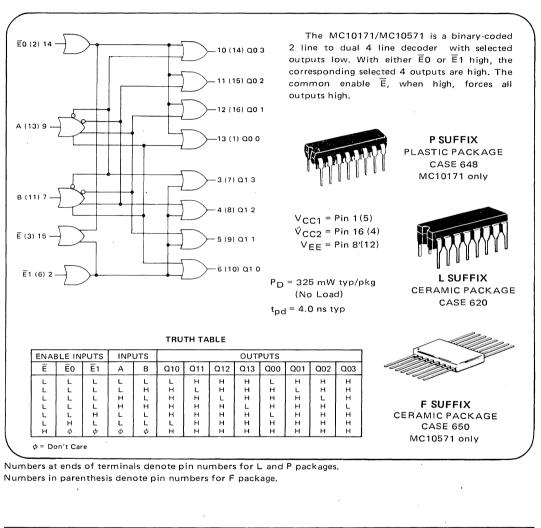
to longer word lengths.

MC10168/MC10568 QUAD LATCH

Numbers at ends of terminals denote pin numbers for L and P package Numbers in parenthesis denote pin numbers for F package

		-55	5°C	-30	0°C	+2	5 ⁰ C	+8	5°C	+ 12	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	—	83	-	82	-	75		82		83	mAdc
Input Current	linH											μAdc
Pins 3,7,9,14		-	415		390	-	245	—	245	-	245	
Pins 4, 5, 10, 12		_	450	-	425	-	265		265		265	
Pin 13		—	495	—	460	-	290	-	290		290	
Switching Times												ns
Propagation Delay	^t pd		1									
Data	•	1.0	5.8	1.0	5.6	1.0	5.4	1.1	5.9	1.0	6.3	
Gate		1.0	3.4	1.0	3.2	1.0	3.1	1.0	3.4	1.0	3.6	
Clock		1.0	6.1	1.0	5.8	1.0	5.6	1.2	6.2	1.0	6.6	
Rise Time, Fall Time	t+,t-	1.0	3.9	1.0	3.6	1.1	3.5	1.1	3.8	1.0	4.0	ns
(20% to 80%)												
Setup Time	t _{set}	2.5	-	2.5	-	2.5		2.5		2.5	-	ns
Hold Time	^t hold	1.0	-	1.0	′-	1.0	-	1.0		1.0	-	ns

MC10170/MC10570

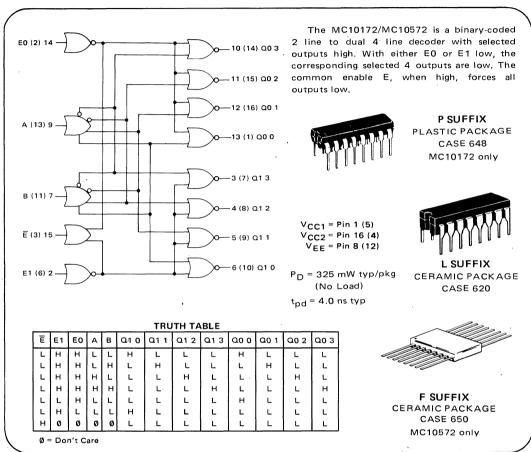

9 + 2-BIT PARITY GENERATOR-CHECKER

The MC10170/MC10570 is an 11-bit parity Control (1) 13 High circuit, which is segmented into 9 data bits Inputs (2) 14 Low 15 (3) B and 2 control bits. Even Output A generates odd parity on 9 bits; Parity D0 (7) 3. that is, Output A goes high for an odd number D1 (8) 4of high logic levels on the bit inputs in only D2 (9) 5-2 gate delays. The Control Inputs can be used to expand D3 (10) 6parity to larger numbers of bits with minimal D4 (11) 7delay or can be used to generate even parity. 2 (6) A D5 (13) 9 To expand parity to larger words, the MC10170 Odd can be used with the MC10160 or other Parity D6 (14) 10-MC10170's. D8 (16) 12 D7 (15) 11-P SUFFIX INPUTS OUTPUTS PLASTIC PACKAGE **CASE 648** Sums of Odd Parity Even Parity D Inputs MC10170 only at High Level Output A Output B Even Low High Odd High Low V_{CC1} = Pin 1(5) V_{CC2} = Pin 16 (4) VEE = Pin 8 (12) F SUFFIX L SUFFIX $P_D = 300 \text{ mW typ/pkg}$ (No Load) CERAMIC PACKAGE CERAMIC PACKAGE t_{pd} = 2.5 ns typ (Control to B) CASE 650 **CASE 620** 4.0 ns typ (Data to A) MC10570 only 6.0 ns typ (Data to B) Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55	5°C	-30	o°c	+2!	5°C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١ _E	-	78	-	78	-	71		78	-	78	mAdc
Input Current	linH	_	375	-	350	-	220	-	220	-	220	μAdc
Switching Times Propagation Delay Control Data to A	^t pd ·	1.5 2.0	4.6 7.5	1.5 2.0	6.6	2.0	6.0	2.0	4.4 6.6	2.0	8.0	ns
Data to B Rise Time, Fall Time	t+,t-	4.0	10	4.0 1.5		4.0	8.8 3.9	4.0 1.5	9.5 4.3	4.0		ns
(20% to 80%)												

-55⁰C and +125⁰C test values apply to MC105xx devices only.

MC10171/MC10571 DUAL BINARY TO 1-4 DECODER (LOW)

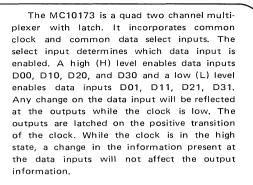


		-5	5 ⁰ C	-3(o°c	+2	5 ⁰ C	+8	5 ⁰ C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	_	85	-	85	_	77		85	-	85	mAdc
Input Current	linH	_	375	-	350	·	220		220		220	μAdc
Switching Times Propagation Delay	^t pd	1.3	6.5	1.5	6.2	1.5	6.0	1.5	6.4	1.2	7.0	ns
Rise Time, Fall Time	t+,t	1.0	3.6	1.0	3.3	1.1	3.3	1.1	3.4	1.0	3.9	ns

-55^oC and +125^oC test values apply to MC105xx devices only.

MC10172/MC10572

DUAL BINARY TO 1-4 DECODER (HIGH)


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	0°C	+2	5°C	+8	5°C	+12	5°C	-
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	۱E	-	85	-	85	-	77		85	-	85	mAdc
Input Current	linH	_	375	-	350	-	220		220	-	220	μAdc
Switching Times Propagation Delay	^t pd	1.3	6.5	1.5	6.2	1.5	6.0	1.5	6.4	1.2	7.0	ns
Rise Time, Fall Time	t+,t	1.0	3.6	1.0	3.3	1.1	3.3	1.1	3.4	1.0	3.9	ns

-55°C and +125°C test values apply to MC105xx devices only.

3

QUAD 2-INPUT MULTIPLEXER/LATCH

TRUTH TABLE

SELECT	CLOCK	00 _{n+1}
н	L	D00
L·	L	D01
φ	н	00n

V_{CC} = Pin 16 V_{EE} = Pin 8

 ϕ = Don't Care

1 00

2 0 1

15 Q2

14 Q3

P SUFFIX PLASTIC PACKAGE CASE 648

Rannull

L SUFFIX CERAMIC PACKAGE CASE 620

		-3	o°c	+2!	5°C	+8!	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	73	—	66	-	73	mAd
Input Current Pins 3,4,5,6,10,11,12,13 Pins 7,9	linH	_	470 400	-	295 250	-	295 250	μAd
Switching Times Propagation Delay Data Clock Select	^t pd	0.8 1.6 1.1	3.7 7.2 6.2	1.0 1.6 1.3	3.5 6.8 5.7	1.1 1.4 1.2	5.3 6.8 6.7	nş
Rise Time, Fall Time (20% to 80%)	t+,t-	1.2	4.0	1.5	3.5	1.4	4.0	ns
Setup Time Data Select	tset	2.0 3.0		2.0 3.0	· 	2.0 3.0		ns
Hold Time Data Select	^t hold	2.5 1.5		2.5 1.5		2.5 1.5	-	ns

3

 $P_D = 275 \text{ mW typ/pkg}$ (No Load)

t_{pd} = 2.5 ns typ

 $\overline{}$

Select 9

D00 6

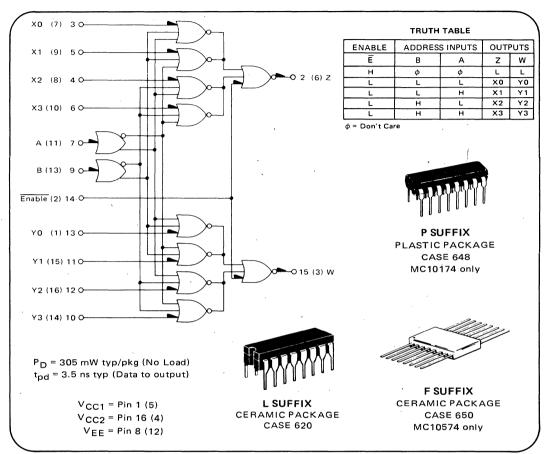
D01 5

D10 4

D11 3 -

D20 13 -

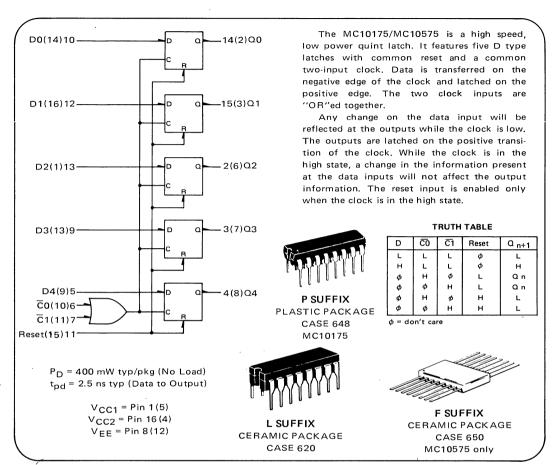
D21 12


D30 11

D31 10

MC10174/MC10574

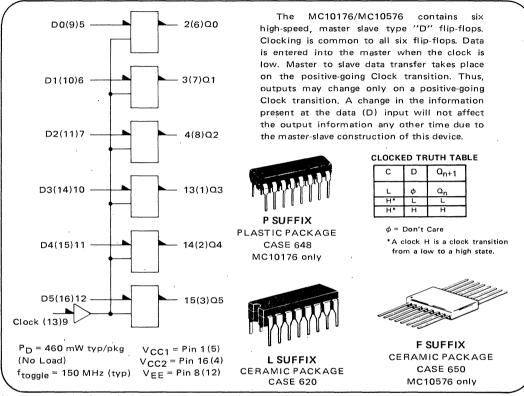
DUAL 4-TO-1 MULTIPLEXER


3

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	0°C	+2	5°C	÷8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	IE -	-	.80		80		73		80	-	80	mAdc
Input Current	linH											μAdc
Pins 3,4,5,6,7,9,10,11,12,13		-	375	-	350	-	220	-	220	-	220	
Pin 14		_	565	-	525	—	330		330	-	330	
Switching Times												ns
Propagation Delay	t _{pd}											
Data		1.3	4.6	1.4	4.8	1.5	4.5	1.4	4.8	1.2	4.5	
Select (A,B)		1.8	6.1	1.9	6.4	2.0	6.0	2.1	6.4	1.9	6.0	
Enable		0.9	3.0	1.0	3.1	1.0	2.9	0.9	3.2	0.9	2.9	
Rise Time, Fall Time	t+,t-	0.9	3.3	1.0	3.4	1.1	3.3	1.1	3.6	0.9	3.4	ns
(20% to 80%)												

MC10175/MC10575 QUINT LATCH

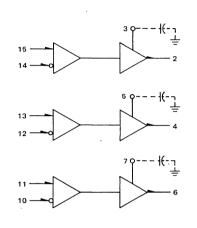


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-3	0°C	+2	5°C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	ΙE	-	107	-	107	-	97	-	107	-	107	mAdc
Input Current Pins 5,6,7,9,10,12,13 Pin 11	linH		495 1100	-	460 1000	-	290 650		290 650		290 650	μAdc
Switching Times Propagation Delay Data Clock Reset	^t pd	1.0 1.0 1.0	3.8 4.6 4.2	1.0 1.0 1.0	3.6 4.7 4.0	1.0 1.0 1.0	3.5 4.3 3.9	1.0 1.0 1.0	3.6 4.4 4.2	1.0 1.0 1.0	4.1 5.0 4.6	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	3.8	1.0	3.6	1.1	3.5	1.1	3.7	1.0	4.1	ns ,
Setup Time Hold Time	t _{set} thold	2.5 1.5		.2.5 1.5	-	2.5 1.5	-	2.5 1.5		2.5 1.5		ns ns

MC10176/MC10576

HEX D MASTER-SLAVE FLIP-FLOP


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5 ⁰ C	-30	0°C	+2!	5°C	+8	5 ⁰ C	+12	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	121		121	-	110	_	121	-	121	mAdc
Input Current Pins 5,6,7,10,11,12 Pin 9	linH	-	375 525		350 495		220 310		220 310	-	220 310	μAdc
Switching Times Propagation Delay	^t pd	1.6	4.9	1.6	4.6	1.6	4.5	1.6	5.0	1.6	5.3	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	4.3	1.0	4.1	1.1	4.0	1.1	4.4	1.0	4.7	ns
Setup Time	t _{set}	2.5	-	2.5	-	2.5		2.5	-	2.5	-	ns
Hold Time	^t hold	1.5	-	1.5	-	1.5	-	1.5		1.5		ns
Toggle Frequency	fTog	125	-	125	-	125	-	125	-	125	-	MHz

-55°C and +125°C test values apply to MC105xx devices only.

Ŧ

MC10177 TRIPLE MECL-TO-NMOS TRANSLATOR

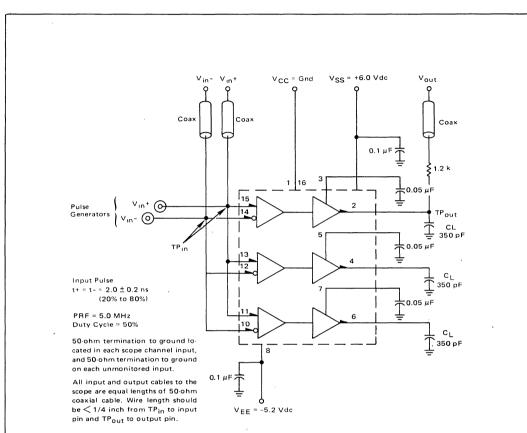
The MC10177 consists of three MECL to MOS translators which convert MECL 10,000 logic levels to NMOS levels. It is designed for use in N-channel memory systems as a Read/ Write, Data/Address driver. It may also be used as a high fanout (30) MECL to TTL translator, or in other applications requiring the capability to drive high capacitive loads. A separate lead from each of the three translators is brought out of the package. These leads may be connected to V_{SS}, or to an external capacitor (0.01 to 0.05 μ F to ground), for waveform improvement, and short circuit protection. When connection is made to an external capacitor, V_{SS} line fluctuations due to transient currents are also reduced.

 V_{CC} = Gnd = Pins 1, 16 V_{EE} = Pin 8 = -5.2 Vdc ± 5% V_{SS} = Pin 9 (+5.0 Vdc or +6.0 Vdc ± 10%)

L SUFFIX CERAMIC PACKAGE CASE 620

Max Load: 350 pF PD = 1.0 W typ/pkg @ 5.0 MHz Operating Rate: 5.0 MHz typ (all 3 translators in use simultaneously Input: MECL 10,000 (differential) Output: NMOS + 0.5 V V_{OLmax} + 3.0 V V_{OHmin}*

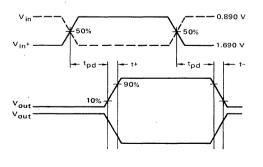
^{*}May be raised by increasing V_{SS}.


ELECTRICAL CHARACTERISTICS

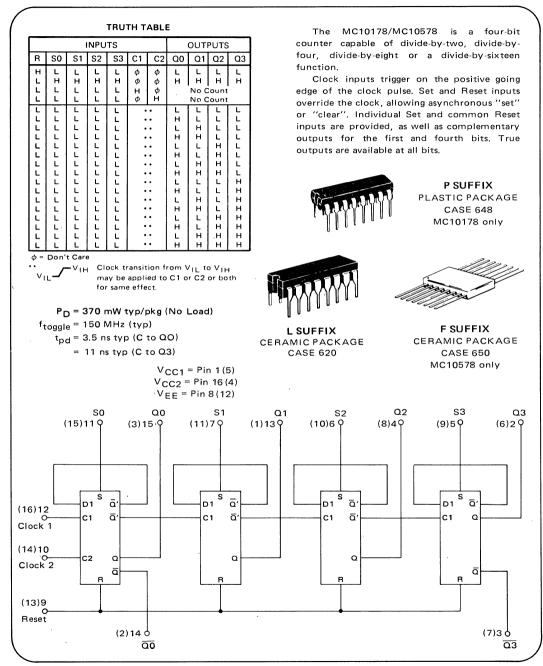
		TEST VOLTAGE/CURRENT VALUES												
@ Test			Volts				mAdc ± 1%							
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE	IOL1	IOL2	юн						
–30 ⁰ C	-0.890	-1.890	-1.205	-1.500	-5.2	+1.0	+20	-15						
+25 ⁰ C	-0.810	-1.850	-1.105	-1.475	-5.2	+1.0	+20	-15						
+85 ⁰ C	-0.700	-1.825	-1.035	-1.440	-5.2	+1.0	+20	-15						

NOTE: V_{SS} (Pin 9) = +5.0 Vdc unless otherwise specified.

		-3	0°C	+2	5°C	+8	5°C			
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions	
Power Supply Drain Current	۱E	-	106	_	96	-	106	mAdc	Pin 9 and all inputs and outputs open.	
Negative	Isso	-	88	-	88	_	88	mAdc	All inputs and outputs open.	
Positive Output Low	ISSL	-	88		88	-	88	1	Vin = VIH max (Pins 10, 12, 14), VIL min (Pins 11, 13 15).	
Output High	ISSH	-	44	-	44	-	44	1	Vin = VILmin (Pins 10, 12, 14), VIHmax (Pins 11, 13, 15).	
Input Current	linH		1.6	-	1.0	-	1.0	mA	$V_{in} = V_{IHmax}$ to P.U.T., V_{ILmin} to the other input of that gates to rest one input at a time.	ite.
Input Leakage Current	ICBO	-	1.5	-	1.0	-	1.0	µAdc	$V_{in} = V_{EE}$ to P.U.T., $V_{IH max}$ to the other input of that gate. Test one input at a time.	
Logic "1" Output Voltage	∨он	3.0	-	3.0	-	3.0	-	Vdc	$V_{SS} = +5.0 Vdc$ $V_{in} = V_{IH max}$ (Pins 11, 13 15),	
		4.0	-	4.0		4.0	-	1	V _{SS} = +6.0 Vdc V _{IL min} (Pins 10, 12, 14). I _{OH} = -15 m	nAd
Logic "0" Output Voltage	VOL	-	0.5		0.5		0.5	Vdc	I _{OL1} = +1.0 mAdc V _{in} = V _{IH max} (Pins 10, 12 14),	
		-	0.6	-	0.6		0.6	1	I _{OL2} = +20 mAdc V _{IL} min (Pins 11, 13 15).	
Logic "1" Threshold Voltage	Vона	3.0	-	3.0	-	3.0	-	Vdc	V _{SS} = +5.0 Vdc V _{in} = V _{IHA min} (Pins 11, 13, 15, one at a ti	me)
· · · · ·		4.0	-	4.0		4.0	-		$V_{SS} = +6.0 \text{ Vdc}$ $V_{IL \min}$ (Pins 10, 12, 14). $I_{OH} = -15 \text{ m}$	
Logic "0" Threshold Voltage	VOLA	-	0.5	-	0.5		0.5	Vdc	IOL1 = +1.0 mAdc V _{in} = V _{IH max} (Pins 10, 12, 14),	
, ,			0.6	-	0.6	-	0.6		$I_{OL2} = +20 \text{ mAdc}$ $V_{ILA \max}$ (Pins 11, 13, 15, one at a time)	
Output Short-Circuit Current	Isc	-50	-90	-50	-90	-50	-90	mAdc	V _{in} = V _{ILmin} (Pins 10, 12, 14), V _{IHmax} (Pins 11, 13 15). Ground outputs, one at a time.	
Switching Times								ns	50% in to 10% or 90% out. See switching time test circuit	
Propagation Delay	^t pd	2.0	12.5	2.0	12.5	2.0	12.5			
Rise Time, Fall Time	t+, t-	3.0	12	3.0	11	3.0	11	ns	10% to 90%	
Supply Source Current	ISS	-	110		110	-	110	mA	@ 5.0 MHz, 350 pF load, V _{SS} = +6.0 Vdc	


MC10177

SWITCHING TIME TEST CIRCUIT

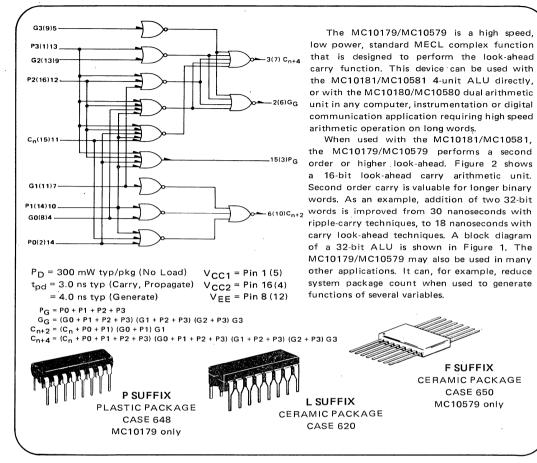

SWITCHING WAVEFORMS @ 25°C

Switching times are measured after the device under test reaches a stabilized temperature (air flow \ge 500 lfpm)

3

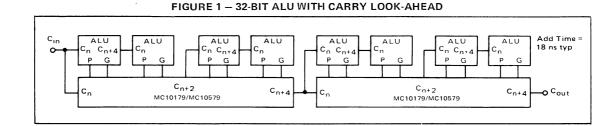
MC10178/MC10578 BINARY COUNTER

Numbers at ends of terminals denote pin numbers for L and P package. Numbers in parenthesis denote pin numbers for F package.


3

ELECTRICAL CHARACTERISTICS

		-5	5°C	- 30	0°C	+2	5°C	+8	5°C	+12	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	—	97		97	—	88	-	97	-	97	mAdc
Input Current	linH											μAdc
Pins 10,12		-	415		390	-	245	-	245	—	245	
Pins 5,6,7,11		—	375	—	350	-	220	-	220	-	220	
Pin 9			700	-	650	-	410	-	410	-	410	
Switching Times												ns
Propagation Delay	tpd											
Clock to Q0		1.4	5.0	1.4	5.0	1.5	4.8	1.5	5.3	1.5	5.6	
Clock to Q1		1.9	9.9	1.9	9.4	2.0	9.2	2.0	9.8	2.0	10.8	
Clock to Q2		2.9	13	2.9	12.3	3.0	12	3.0	12.8	3.0	14	
Clock to Q3		3.9	16	3.9	14.9	4.0	14.5	4.0	15.5	4.0	17	
Set, Reset		1.4	5.6	1.4	5.2	1.5	5.0	1.5	5.5	1.5	6.1	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.1	4.9	1.1	4.7	1.1	4.5	1.1	5.0	1.1	5.3	ns
Counting Frequency	fcount	125	-	125	-	125		125	-	125	_	MHz


MC10179/MC10579

LOOK-AHEAD CARRY BLOCK

Numbers at ends of terminals denote pin numbers for L and P packages.
Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	- 3	0°C	+25	5°C	+8!	5 ⁰ C	+12	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	<u> </u>	79	-	79	·	72	ł	79	1	79	mAdc
Input Current	linH											μAdc
Pins 5,9		-	380	-	360	-	225	—	225	-	225	
Pins 4,7,11		-	460	-	430	-	270	-	270	-	270	
Pin 14		-	600	-	565	-	355	-	355	-	355	
Pin 12		-	670	-	630	-	395	-	395	-	395	
Pins 10,13		-	750	—	700	-	440	-	440	-	440	
Switching Times												ns
Propagation Delay	^t pd		1									
G or C _n to Carry; G or P to G _G	•	1.0	5.9	1.0	5.8	1.0	5.5	1.0	6.1	1.0	6.4	
P to PG		1.0	3.9	1.0	3.7	1.0	3.5	1.0	3.9	1.0	4.1	
Rise Time, Fall Time	t+,t-	1.0	3.9	1.1	3.7	1.1	3.5	1.1	3.9	1′.0	4.1	ns
(20% to 80%)												

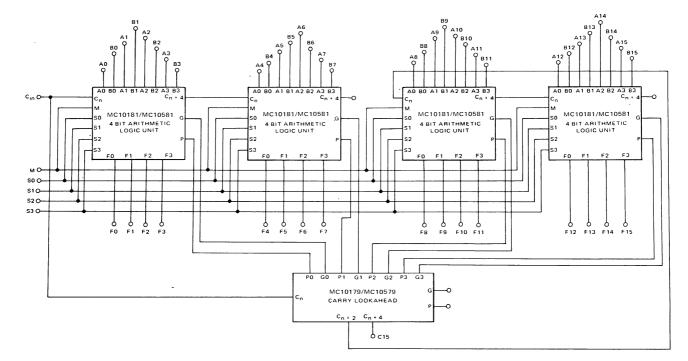
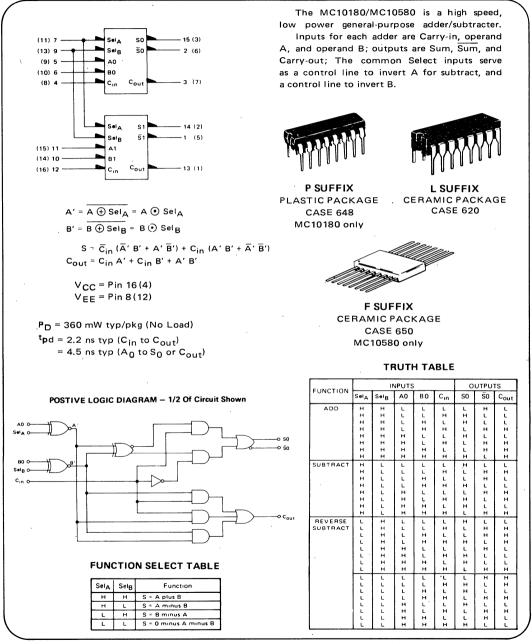



FIGURE 2 - 16-BIT FULL LOOK-AHEAD CARRY ARITHMETIC LOGIC UNIT

ω

MC10180/MC10580

DUAL 2-BIT ADDER/SUBTRACTOR

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

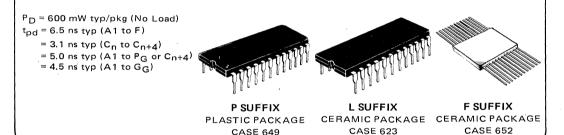
3-90

2

ELECTRICAL CHARACTERISTICS

		-5	5°C	-30	o°c	+2	5°C	+8	5 ⁰ C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	95	-	95	-	86	-	95	-	95	mAdc
Input Current	linH		075		050		200		220		220	μAdc
Pins 5,6,10,11 Pins 7,9		_	375 495	- 1	350 460	-	220 290	_	220 290	_	220 290	
Pins 4, 12		-	630	-	590	—	370	-	370	-	370	
Switching Times							·					ns
Propagation Delay	^t pd											
Operand, Select	í.	1.0	5.8	1.3	5.8	1.3	5.4		5.8	1.0	6.3	
Carry-in		1.0	3.6	1.0	3.4	1.0	3.3	0.9	3.6	1.0	3.9	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	4.0	1.0	3.8	1.1	3.7	1.1	3.9	1.0	4.3	ns

MC10181/MC10581 4-BIT ARITHMETIC LOGIC UNIT and FUNCTION GENERATOR


				POSITIVE	LOGIC
Fu S3	nctio S2	n Sel S1	ect SO	Logic Functions M is High C = D.C. F	Arithmetic Operation M is Low C _n is low F
L	L	L	L	F = Ā	F = A plus 0
L	L	L	н	F = Ā + B	F = A plus (A • B)
L	L	н	L	F = Ā + B	$F = A plus (A \bullet B)$
L	L	н	н	F = Logical "1"	F = A times 2
L	н	L	L	$F = \overline{A} \bullet \overline{B}$	F = (A + B) plus 0
L	н	L	н	F = B	$F = (A + B) plus (A \bullet B)$
L	н	н	L	F=А 🖲 В	F = A plus B
L	н	н	н	F ≈ A + B	F = A plus (A + B)
н	L	L	L	F≖Ā●B	$F = (A + \overline{B}) plus 0$
н	L	L	н	F = A (+) B	F = A minus B minus 1
н	L	н	L	F≕B	$F = (A + \overline{B}) plus (A \bullet B)$
н	L	н	н	F = A + B	$F = A plus (A + \overline{B})$
н	н	L	L	F ≈ Logical "0"	F = minus 1 (two's complement)
н	н	L	н	F = A ● B	$F = (A \bullet B) minus 1$
н	н	н	L	F = A ● B	F = (A • B) minus 1
н	н	н	н	F=A	F= A minus 1

The MC10181/MC10581 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S1 through S3) as indicated in the table of arithmetic/logic functions. Group carry propagate (P_G) and carry generate (G_G) are provided to allow fast operations on very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

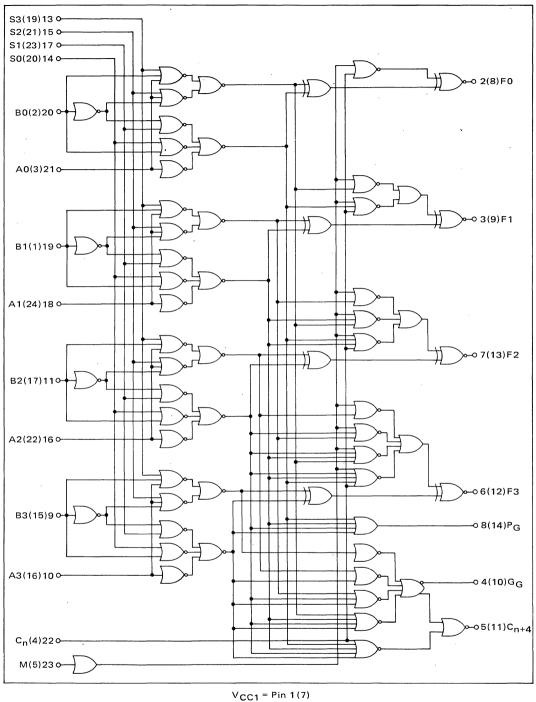
When used with the MC10179, full-carry look-ahead, as a second order look ahead block, the MC10181 provides high speed arithmetic operations on very long words.

MC10581 only

MC10181 only

		-5	-55°C		-30°C		+25 ⁰ C		5°C	+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	160		159		145	-	159	-	160	mAdc
Input Current	linH											μAdc
Pins 9,11,19,20		- 1	415	-	390	-	245	-	245	-	245	l
Pins 10, 16, 18, 21		-	375	-	350	-	220	-	220	-	220	
Pins 13,23		-	340	-	320	-	200	-	200	-	220	
Pins 14,15,17		-	450	-	425	_	265	-	265	-	265	
Pin 22		-	495	-	460		290	-	290	-	290	1

See following page for Switching Times.


SWITCHING TIMES

		-55 ^o C -30 ^o C		+25 ⁰ C		+85 ⁰ C		+125 ⁰ C				
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Propagation Delay	tpd											ns
C _n to C _{n+4}		1.0	5.1	1.0	5.1	1.1	5.0	1.1	5.4	0.9	5.1	
C _n to F		1.9	7.1	1.7	7.2	2.0	7.0	2.0	7.5	2.0	7.1	
A to F		2.9	10.1	2.6	10.4	3.0	10	3.0	10.8	2.8	10.2	
A to PG		1.8	6.6	1.6	7.0	2.0	6.5	2.0	7.0	1.8	6.5	
A to GG		1.9	7.1	1.1	7.4	2.0	7.0	1.3	7.7	2.0	7.1	
A to C _{n+4}		2.0	7.1	1.7	7.3	2.0	7.0	2.0	7.8	1.9	7.1	
B to F	1	2.9	11.1	2.7	11.3	3.0	11	3.0	11.9	2.7	11.2	
B to PG	}	1.8	7.6	1.6	7.7	2.0	7.5	2.0	8.0	1.6	7.6	
B to GG		1.9	8.1	1.7	8.2	2.0	8.0	2.0	8.6	2.0	8.1	
B to C _{n+4}		1.9	8.1	1.8	8.2	2.0	8.0	2.0	8.7	1.9	8.1	
M to F	-	2.8	10.3	2.4	10.3	3.0	10	3.0	10.8	2.8	10.2	
S to F		2.7	10.2	2.5	10.7	3.0	10	3.0	10.8	2.6	10.2	
S to PG		1.9	8.1	1.7	8.3	2.0	8.0	2.0	8.4	1.8	8.1	
S to GG		1.7	9.2	1.5	9.6	2.0	9.0	1.9	9.7	1.7	9.1	
S to C _{n+4}		1.9	9.1	1.6	9.3	2.0	9.0	2.0	9.9	1.8	9.1	
Rise Time, Fall Time (20% to 80%)	t+,t-											ns
C _n to C _{n+4}		0.9	3.1	1.0	3.2	1.0	3.0	1.0	3.2	0.8	3.1	
C _n to F		1.3	5.2	1.3	5.3	1.5	5.0	1.5	5.3	1.3	5.3	
A to F		1.3	5.2	1.3	5.4	1.5	5.0	1.5	5.3	1.3	5.2	
A to PG		0.9	3.5	0.8	3.7	1.1	3.5	1.1	3.8	1.0	3.6	
A to GG		1.3	5.2	1.2	5.1	1.5	5.0	1.2	5.3	1.3	5.2	
A to C _{n+4}		0.9	3.0	1.0	3.1	1.0	3.0	1.0	3.2	0.9	3.1	
B to F		1.3	5.2	1.2	5.3	1.5	5.0	1.5	5.3	1.3	5.2	
B to PG		1.0	3.5	1.0	3.6	1.1	3.5	1.1	3.9	0.9	3.5	
B to GG		1.3	5.0	1.4	5.2	1.5	5.0	1.2	5.4	1.3	5.0	
B to C _{n+4}		0.9	3.0	0.9	3.1	1.0	3.0	1.0	3.2	0.9	3.0	
M to F		1.3	5.2	1.1	5.1	1.5	5.0	1.5	5.3	1.3	5.2	
S to F		1.3	5.2	1.0	5.4	1.5	5.0	1.5	5.4	1.3	5.2	
S to PG		1.0	5.1	0.8	5.1	1.1	5.0	1.1	5.2	1.0	5.1	
S to GG		0.8	6.2	0.8	6.2	0.8	6.0	0.8	6.5	0.8	6.2	
S to C _{n+4}		1.0	5.1	0.9	5.3	1.1	5.0	1.0	5.2	1.0	5.1	

1

MC10181/MC10581

 $V_{CC2} = Pin 24(6)$ $V_{EE} = Pin 12(18)$

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

3

2-BIT ARITHMETIC LOGIC UNIT and FUNCTION GENERATOR

		POSITIVE LOGIC						
Functio	on Select	Logic Function M is High	Arithmetic Operation M is Low					
S1	S0	F	F					
L L H H	L H L H	$F = A \odot B$ $F = A \oplus B$ $F = A \bullet B$ $F = A + B$	F = A plus B plus Carry F = Ā plus B plus Carry F = A plus B plus Carry F = A times 2					

 $P_D = 575 \text{ mW typ/pkg}$ (No Load) $t_{pd} = 7.5 \text{ ns typ}$ (A or B to F or C_{n+2})

= 2.7 ns typ (C_n to C_{n+2} or F) = 6.5 ns typ (A to P_G or G_G)

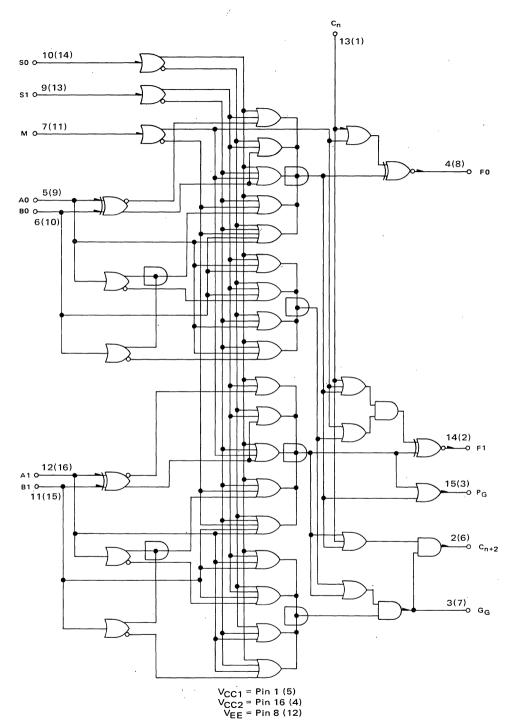
P SUFFIX PLASTIC PACKAGE CASE 648 MC10182 only

L SUFFIX CERAMIC PACKAGE CASE 620

and the second sec

The MC10182/MC10582 is a high-speed arithmetic logic unit capable of performing 4 logic operations and 4 arithmetic operations on two 2-bit words. Full internal carry is incorporated for arithmetic operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 and S1) as indicated in the tables of arithmetic/logic functions. Group carry propagate (P_G) and carry generate (G_G) are provided for a second order look ahead carry using the MC10179. The internal carry is enabled by applying a low level voltage to the mode control input (M).


The MC10182 provides an alternate to the MC10181 four-bit ALU for applications not requiring the extended functions of the MC10181 or for applications requiring a 16-pin package. The MC10182 also differs from the MC10181 in that Word A and Word B are treated equally for addition and subtraction (A plus B, A minus B, B minus A).

F SUFFIX CERAMIC PACKAGE CASE 650 MC10582 only

	-5		-55 ⁰ C		- 30°C		+25 ⁰ C		+85 ⁰ C		5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	152	—	152		138	-	152		152	mAdc
Input Current	· IinH											μAdc
Pins 7,9,10		-	375	—	350	-	220	-	220	-	220	
Pins 5,12		_	660	_	620	-	390	-	390		390	
Pins 6,11		_	495	-	460	-	290	-	290	-	290	
Pin 13		-	595	—	560		350		350	-	350	
Switching Times												ns
Propagation Delay	^t pd											
C_n to C_{n+2} or F		1.5	6.1	1.5	5.9	1.5	5.6	1.6	6.2	1.6	6.6	
M or S to F; A or B to P _G or G _G		2.3	10.8	2.3	10.5	2.3	10	2.4	11	2.4	11.7	
A0 or B0 to F; A1 or B1 to F1		2.3	10.8	2.3	10.5	2.3	10	2.4	11	2.4	11.7	
A0, B0, or A1 to C _{n+2}		2.3	10.8	2.3	10.5	2.3	10	2.4	11	2.4	11.7	
B1 to C _{n+2}		2.8	13	2.8	12.6	2.8	12	2.9	13.2	2.9	14	
Rise Time, Fall Time	t+,t-	1.5	4.9	1.5	4.7	1.5	4.5	1.6	5.0	1.6	5.3	ns
(20% to 80%)												

3

1

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

	м	L	- L	L	L	н	н	н	н
Input	S1	L	L	н	н	L	L	н	н
	SO	L	н	L	н	L	н	L	н
A1 B1 .	ao bo c _n	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 P _G G _G C _{n+2}	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 P _G G _G C _{n+2}	F1 F0 PG GG C _{n+2}
		LLHLL	нньнь	ннцн ц	LLHLL	нннг г			LLLL
		LННL L	сссн н ссн н		сннс с	нннс с	ссся н снан н	L L L Н Н L L L L L	L L L L L L H H L L
LL	ь н н	ньнь ь	сн.нн н	нннь с	сннс с	нснс с	сннн н	LLLL L	сннс с
		L Н Н L L	н L Н L L Н Н Н L L	сснн н	нснс с	нснс с	сннс с сннс с		СННС С СННС С
	ннг		ннсн с	ннсн с	ньнь ь	нннц ц		стении	LHHLL
		нннц ц	ссси и	сссн н	нннь с	нннц ц	LLLH H	сннн н	LHHLL
		нснс с	сннн н нснн н		L L H L L L H H L L		нснн н	L L L L L	н L Н L L Н L Н L L
1			нснн н				нсни и	L L L L L L	нини и
1		цццн н	нннн н	сннс с	сннс с	ссси и	нннн н	L L L L L	нннь с
	нцц		сснн н	нснс с	нснс с		нннн н	L L L L L L L L L	нннц ц нннц ц
с н	ннг	сснн н	сннн н	сннс с	нснс с	сннн н	нснн н	LHHLL	нннц ц
		сннн н	нснн н	ньнь ь	нннц ц	сннн н	нснн н	L Н Н L L	нннц ц
		нснс с	L H H L L H L H L L	сннн н	сснн н		H L H L L H L H L L	L L L Н L L L L Н Н	нснн н
		ннсн с	ньнь ь	ссни н	сснн н		нннь с		нннн н
	ь н н		нннь с сснс с	сннн н	L H H H H	ссси и	нннц ц	L L L L L L L L H L	нннн н
			L L H L L L H H L L	нснн н	нснн н		НННЦ Ц НННЦ Ц		нннн н
		сснн н	LННL L	сннн н	нснн н	сннн н	нснс с	сннн н	нннн н
L		сннн н	ніні і	нснн н	нннн н	сннн н	нснс с	сннн н	нннн н
		сснн н	нн L н L L L L н н		стини н	нннн н	L L L H L L L L H H	нснн н нснн н	нснн н
нн	ιнι	сннн н	сснн н	ньнь ь	сснн н	нснн н	стении	нснн н	нннн
	L H H H L L		LННН Н НСНС С	нннь с	сннн н	нснн н	сннн н сннс с	нснн н нснн н	нннн н
		нснн н	нснс с нннс с		нннн н	нсяя я	СННС С СННС С	нсни и	нннн н
		нснн н	ннсн с	ннцн ц	нснн н	нннн н	L L L H L	нннн н	нннн н
нн	ннн	нннн н	ссси н	сссн н	нннн н	нннн н	сссн н	нннн н	нннн

TRUTH TABLE

These outputs are not normally used during logic operation.

ω

MC10183

4 X 2 MULTIPLIER

TRUTH TABLE

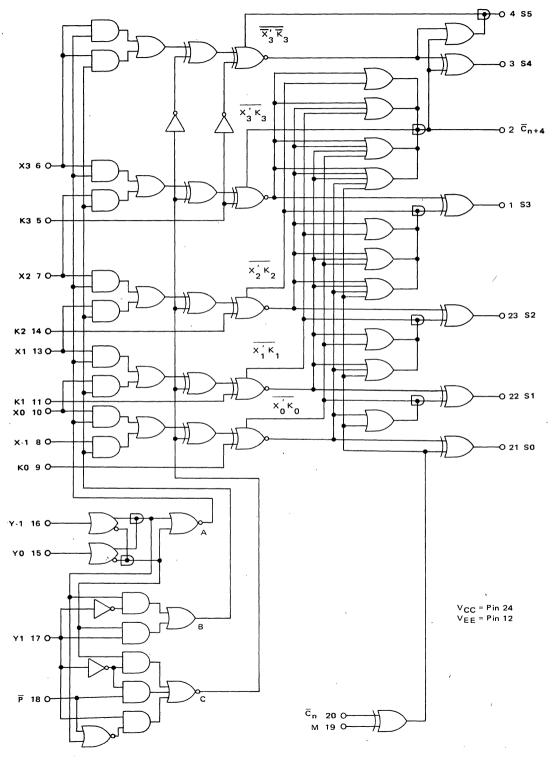
	•								
Y-1	Y0	Y1	P	A	В	С	Operation	Complementor	
L	L,	L	н	L	L	L	Add Zero	Direct	
н	L	L	н	н	L	L	Add 1X	Direct	
L .	н	L	н	н	L	L	Add 1X	Direct	1
н	н	L	н	L	н	L	Add 2X	Direct	
L	L	н	н	L	н	н	Sub 2X	Invert	
н	L	н	н	н	. L	н	Sub 1X	Invert	
L	н	⊡H _	н	н	L	н	Sub 1X	Invert	
н	н	н	н	L	L	н	Sub Zero	Invert	
L	L	L	L	L	L	L	Sub Zero	Direct	
н	L	L	L	н	ĺι.	н	Sub 1X	Invert	
L	н	L	Ľ	н	L	н	Sub 1X	Invert	
н	н	L	L	L	н	н	Sub 2X	Invert	
L	L	н	L	L	н	L	Add 2X	Direct	
н	L	н	L	н	L	L	Add 1X	Direct	Ľ
L	н	н	L	н	L	L	Add 1X	Direct	
н	н	н	L	L	L	н	Add Zero	Invert	

 $\begin{array}{c} X-1, \ X0, \ X1, \ X2, \ X3\\ Y-1, \ Y0, \ Y1\\ K0, \ K1, \ K2, \ K3\\ \hline C_n\\ \hline P\\ M\\ S0, \ S1, \ S2, \ S3, \ S4, \ S5\\ \hline C_{n+4} \end{array}$

Multiplicand Inputs Multiplier Inputs Constant Inputs Carry Input ' Polarity Control Mode Control Product Output Carry Output

L SUFFIX CERAMIC PACKAGE CASE 623 The MC10183 is a 4 \times 2 bit multiplier that can multiply 2's complement numbers producing a 2's complement product without correction. The device can be used as a 4 \times 2 bit multiplier cell to build larger iterative arrays.

The part performs the function defined as F = XY + K, where K is an input field used to add partial products in an array or to add a constant to the least significant part of the array product. The algorithm used is a modified Booth's algorithm or multiplier coding technique. The device consists of a shift network and an adder/subtracter in which 0, 1 times X, or 2 times X is either added or subtracted to input constant K. The Y inputs control multiplication as shown in the Truth Table.


The most significant digit in a word carries a negative weight allowing 2's complement numbers of various lengths to be multiplied. An M-bit by N-bit multiplication produces an M + N bit product.

The \overline{P} polarity input allows multiplication in either positive logic (\overline{P} = high) or negative logic (\overline{P} =low) representation. Also, mode control M inverts \overline{C}_n when high and passes \overline{C}_n directly when left low.

$$\begin{split} P_D &= 760 \text{ mW typ/pkg (No Load)} \\ t_{pd} &= 50 \text{ ns typ } (8 \times 8 \text{ bit product)} \\ t_{+, t_{-}} &= 3.5 \text{ ns typ } (20\% - 80\%) \end{split}$$

,		- 30	o°c	+2!	5 ⁰ C	+8	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		201	-	183	-	201	mAdc
Input Current	l inH							μAdc
Pins 8,9,11,14,15,16,20		-	350	-	220	-	220	
Pins 17,18,19		-	320	-	200	-	220	
Pins 5,6,7,10,13		-	390	-	245	-	245	
Switching Times								ns
Propagation Delay	tpd							
\overline{C}_n to \overline{C}_{n+4}	-	1.0	5.3	1.0	5.0	1.0	5.5	
\overline{C}_{n} to S; X to \overline{C}_{n+4}		1.8	8.4	1.8	8.0	1.8	8.8	
K or X to S; C _n to S4,S5		2.5	11	2.5	10.5	2.5	11.5	
K to C _{n+4}		1.6	7.3	1.6	7.0	1.6	7.7	
Y to S or \overline{C}_{n+4}		3.2	14.1	3.2	13.5	3.2	14.8	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	6.3	1.0	6.0	1.0	6.6	ns

POSITIVE LOGIC DIAGRAM

The MC10183 is a 4 \times 2 bit multiplier that uses a modified Booth's algorithm or multiplier coding technique. The device generates the function: S = X \cdot Y + K

where

- X = 4-bit multiplicand Y = 2-bit multiplier
- K = 4-bit constant

The addition of the constant allows the device to be used in an iterative array of parts for larger words. The algorithm for multiplication is:

Yi-1	Yi	Yi+1	Operation
0	0	0	add zero
1	0	0	add multiplicand
0	1	0	add multiplicand
1	1	0	add 2 times multi-
			plicand
0	0	1	sub 2 times multi-
			plicand
1	0	1	′ sub multiplicand
0	1	1	sub multiplicand
1	1	1	sub zero

DEVICE OPERATION

The device consists of three main sections; a decoder, a shifter, and a high speed lookahead carry adder/subtractor.

1. The decoder uses the Y inputs to generate the control signals for the shifter and the adder/subtractor. Also, the polarity control \overline{P} is used to allow operation in either positive or negative logic. Referring to the logic diagram, the control signals are:

$$A = Y_{-1} (\stackrel{+}{+}) Y_0 (1 \text{ times multiplicand})$$
$$B = Y_{-1}Y_0\overline{Y}_1 + \overline{Y}_{-1}\overline{Y}_0Y_1$$

(2 times multiplicand)

 $\overline{C} = \overline{PY}_{1} + \overline{Y}_{-1}\overline{Y}_{0}\overline{Y}_{1} + PY_{1}(\overline{Y}_{-1} + \overline{Y}_{0})$ (add/subtract)

The \overline{P} input is tied to a high logic level or ground for positive logic operation.

2. The shift network is a multiplexer that ripples through number X (1 times multiplicand), shifts number X by one bit (2 times multiplicand), or sets the output to zero. The network is controlled by decoder functions A and B which are generated in accordance with the multiply algorithm.

3. The adder/subtractor follows the shift network which performs the actual multiplication. The adder/subtractor produces the sum or difference of the newly formed partial product and the accumulated partial product (constant K). Subtraction is accomplished by inverting the shifted product and doing a two's complement addition. The carry in of the least significant bit must be a logic one during subtraction. The two most significant bits of the product are used for sign detection and overflow for a two's complement multiply. These outputs are used only as the two most significant bits of the accumulated product at each addition level within a multiplier array.

Overflow can occur either as the result of 2 times the multiplicand, and/or of an addition or subtraction. To show all possible conditions (including overflow), the most significant bit (S5) must carry a negative binary weight. To show this for a 4 \times 2 bit multiply plus constant, consider the following addition:

$x'_4 \cdot x'_3 x'_2 x'_1 x'_0$	shifter outputs
+ K3 • K3 K2 K1 K0	constant
S5 S4 · S3 S2 S1 S0	sum

The shift network produces 5 product bits (maximum value of 2 times multiplicand) and a 4-bit constant is added to the least significant end of the product. The K3 bit is repeated to hold the proper binary weight. Because S5 has a negative weight all possible combinations are represented properly.

If no overflow occurs S4 = S5, and S4 can be used as a sign bit. Under overflow conditions S4 \neq S5, and overflow can be detected by EXCLUSIVE-ORing S4 and S5.

USAGE RULES

The MC10183 can be used in larger arrays to produce a two's complement product of 2 two's complement numbers. The following rules apply:

1. For an M-bit by N-bit multiplier, an (M+N)-bit product is formed. The number of MC10183's equals (M * N)/8. As an example, an 8 X 8 bit (Figure 1) array requires $(8 \times 8)/8 = 8$ packages.

2. The MC10183 can be used directly for both positive logic and negative logic representations. The \overline{P} input can be tied to ground or to a high logic level for positive logic operation, or left at a low logic level for negative logic operation.

3. The M mode control input is used to invert \overline{C}_n when placed at a high logic level or ground, or passes \overline{C}_n directly when left as a low logic level. When \overline{C}_n is driven from \overline{C}_{n+4} of a preceding device, M control is left in a low logic state. When \overline{C}_n is the least significant input carry bit for a level of addition within an array, \overline{C}_n is tied to Y_1 of the same device, and the M input is placed at a high logic level. Y_1 controls when subtraction occurs, and carry in must be equal to a logic one during subtraction.

MC10183 Multiplicand X0 X1 X2 X3 X4 X5 X6 X7 MSB X-1 X0 X1X2 X3K0 K1K2 K Y-1 X-1 X0 X1X2 X3 K0 K1K2 K3 Y-1 Y0 Y٥ Y1 Y1 MC10183 MC10183 ¯c_{n+4} Ċn+4 ī, č, м. м Ĩ P so s1 s2 s3 s4 s5 S0 S1 S2 S3 S4 S5 Y0-Y1-X-1X0 X1 X2X3 K0K1 K2 K3 Y-1 X-1 X₀ X₁X₂ X₃K₀ K₁K₂ K₃ Y-1 Y٥ Y٥ Y1 Y1 MC10183 MC10183 ¯c_{n+4} Cn M ₽ ¯C_{n+4} č'n M Ĩ s₀ s₁ s₂ s₃ s₄ s₅ So S1 S2 S3 S4 S5 ÷ Y2-¥3-X-1 X0 X1X2 X3 K0 K1K2 K3 Y-1 Multiplier X-1 x₀ X₁X₂ X₃K₀ K₁K₂ K₃ Y-1 YO Y₀ Y1 Y₁ Շր MC10183 MC10183 Ē₁+4 Cn M ₽ €n+4 м P So S1 S2 S3 S4 S5 so s1 s2 s3 s4 s5 늪 ÷ ¥4-Y5-X-1 X0X1 X2X3 K0 K1K2 K3 Y-1 X0 X1 X2 X3 K0 K1 K2 K3 X-1 Y-1 Y٥ Y٥ Y1 Y₁ MC10183 MC10183 ¯c_{n+4} \overline{c}_{n+4} \overline{c}_n č м м P ī so s1 s2 s3 s4 s5 so s1 s2 s3 s4 s5 1 Y6 Y7 1 1 zio | zi2 | zi4 Z0 Z1 Z2 Z3 Z4 Z5 z6 z7 z8 z9 Product Z11 Z13 Z15

FIGURE 1 – 8-BIT × 8-BIT 2's COMPLEMENT MULTIPLIER

MC10183

8×4 BIT EXAMPLE

Figure 2 shows 4 MC10183's in an 8 X 4 bit array. A 12-bit two's complement product is produced from a 4-bit multiplier and an 8-bit multiplicand. The array is used for positive logic representation, and all \overline{P} inputs are tied to ground. At the first level of multiplication, the X_{-1} and Y_{-1} inputs are left open (logic "0") because the initial condition is treated as an add operation. The K inputs are used to add the accumulated partial product at each level of the array. If the initial partial product is zero, the least significant K inputs are left at a zero logic state (CONSTANT inputs in the figure). However, these inputs can also be used to add a constant to the least significant end of the product.

When the MC10183 is expanded to longer numbers, the carry out (\overline{C}_{n+4}) of a device must be rippled to the carry in (\overline{C}_n) of the next most significant device at the same level of multiplication. The least significant device must have the carry input equal to zero for an add and equal to one for a subtraction. In observing the multiplication algorithm y_{i+1} is always equal to 1 for a subtraction, and the carry input car be tied to Y_1 . However, the M mode input must be tied to ground for this device to invert the carry input (\overline{C}_n) because the input requires a complemented signal.

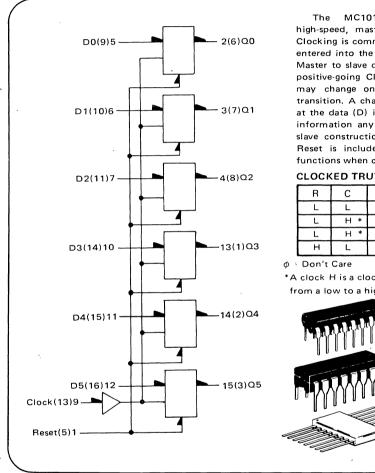
The S4 and S5 outputs are used only at the most significant part of the array. These two sum outputs only have meaning as the two most significant bits of a two's complement number.

OTHER ARRAYS

The normal parallelogram structure consists of several stages, each multiplying two bits of multiplier times the multiplicand and adds the partial product. In larger arrays, faster configurations can be made by moving some multiplier blocks while maintaining the relative weight of each partial product. The typical times possible for various N-bit X N-bit arrays are:

Number of Bits	Total Multiply Time (ns)	Package Count
8	43	8
12	67	18
16	90	32

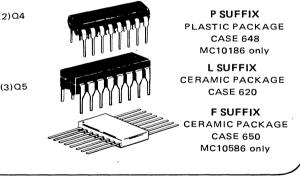
The times do not include wiring delays.


Because of the versatility of the MC10183, many other types of arrays can also be built. Faster arrays using additional adders, pipeline techniques, one's complement and magnitude multipliers, and truncated product multipliers can all be built.

Multiplicand

FIGURE 2 - 8-BIT BY 4-BIT 2's COMPLEMENT MULTIPLIER

MC10186/MC10586 **HEX D MASTER-SLAVE FLIP-FLOP WITH RESET**


The MC10186/MC10586 contains six high-speed, master slave type "D" flip-flops, Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the masterslave construction of this device. A common Reset is included in this circuit. Reset only functions when clock is low.

CLOCKED TRUTH TABLE

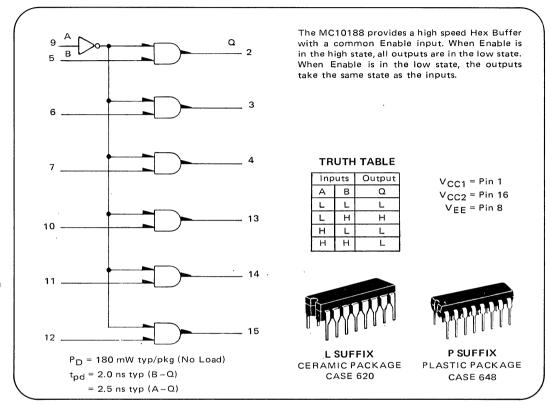
R	С	Q		V _{CC} = Pin 16 (4)
L	L	φ	Qn	V _{EE} = Pin 8 (12)
L	н*	L	L	P _D = 460 mW typ
L	н*	н	н	(No Load)
н	L	φ	L	t _{pd} = 3.5 ns typ
Don't	Care			f _{Tog} = 150 MHz

E = Pin 8 (12) = 460 mW typ/pkg (No Load) d = 3.5 ns typ og = 150 MHz typ

*A clock H is a clock transition from a low to a high state.

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

ELECTRICAL CHARACTERISTICS

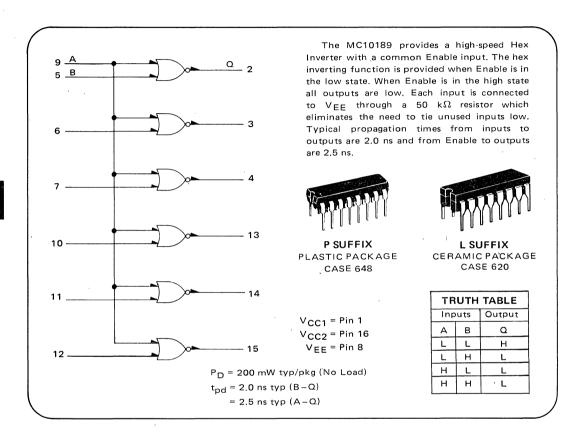

		-55°C		-30	0°C	+25	5°C	+8	5°C	+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	121	-	121	-	110	-	121	1	121	mAdc
Input Current Pins 5, 6, 7, 10, 11, 12	linH	_	375		350	_	220	_	220	_	220	μAdc
Pin 9 Pin 1			525 975	-	495 920		310 575		310 575	-	310 575	
Switching Times Propagation Delay	^t pd	1.6	4.9	1.6	4.6	1.6	4.5	1.6	5.0	1.6	5.3	ns
Rise Time, Fall Time (20% to 80%)	t+, t-	1.0	4.3	1.0	4.1	1.1	4.0	1.1	4.4	1.0	4.7	ns
Setup Time	t _{set}	2.5	-	2.5	-	2.5	-	2.5		2.5	-	ns
Hold Time	^t hold	1.5		1.5		1.5	-	1.5	-	1.5	-	ns
Toggle Frequency	^f Tog	125	—	125		125	-	125	-	125	—	MHz

-55°C and +125°C test values apply to MC105xx devices only.

3-104

MC10188 HEX BUFFER WITH ENABLE

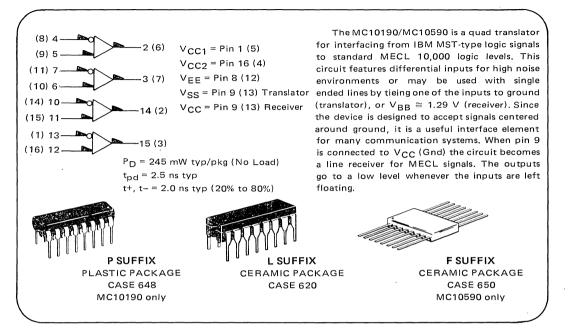
ADVANCE INFORMATION

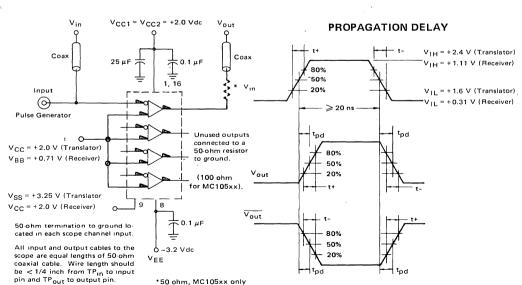

		-3	0°C		+25°C	;	+8	5°C	
Characteristic	Symbol	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	١E	_	46	-	34	42		46	mAdc
Input Current	l inH								μAdc
Pins 5, 6, 7, 10, 11, 12			425			265		265	
Pin 9		-	460		-	290		290	
Switching Times									ns
Propagation Delay	t _{pd}								
Data (B)		_	-		2.0	-	—	-	
Enable (A)		_	-	-	2.5	-	-		
Rise Time, Fall Time (20% to 80%)	t ⁺ ,t ⁻		—	_	2.0	-		-	ns

This is advance information and specifications are subject to change without notice.

3-105

MC10189


HEX INVERTER WITH ENABLE


		-3	0°C	+25	oc	+8	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	44	-	40	-	44	mAdc
Input Current	linH							
Pins 5, 6, 7, 10, 11, 12		_	425	_	265		265	
Pin 9		-	890	•	555	-	555	
Switching Times								ns
Propagation Delay	^t pd							
Data (B)		1.0	3.3	1.0	2.9	1.0	3.3	
Enable (A)		1.1	3.9	1.1	3.5	1.1	3.9	
Rise Time, Fall Time (20% to 80%)	t ⁺ ,t [−]	1.1	3.7	1.1	3.3	1.1	3.7	ns

MC10190/MC10590

QUAD MST-TO-MECL10,000 TRANSLATOR

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

NOTE: All power supply and logic levels are shown shifted 2 volts positive.

ELECTRICAL CHARACTERISTICS

					<u> </u>	EST VOLTA	GE VALUE	S							
@ Test						(Vo	olts)								
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	∨інм*	VILM*	VIHH*	VILH*	VIHL*	VILL*	V _{SS} *	VEE			
	MC10190	C10190													
-30 ⁰ C	-0.890	-1.890	-1.205	-1.500	+0.374	-0.523	+0.186	-0.850	-1.486	-2.53	+1.25	-5.2			
+25 ⁰ C	-0.810	-1.850	-1.105	-1.475	+0.440	-0.490	+0.186	-0.850	-1.486	-2.53	+1.25	-5.2			
+85 ⁰ C	-0.700	-1.825	-1.035	-1.440	+0.548	-0.454	+0.186	-0.850	-1.486	-2.53	+1.25	~5.2			
	MC10590														
~55 ⁰ C	-0.880	-1.920	-1.255	-1.510	+0.344	-0.538	+0.186	-0.850	-1.486	-2.53	+1.25	-5.2			
+25 ⁰ C	-0.780	-1.850	-1.105	-1.475	+0.440	-0.490	+0.186	-0.850	-1.486	-2.53	+1.25	-5.2			
+125 ⁰ C	-0.630	-1.820	-1.000	-1.400	+0.620	-0.430	+0.186	-0.850	-1.486	-2.53	+1.25	-52.			
			e			·	· · · · ·					••••••			

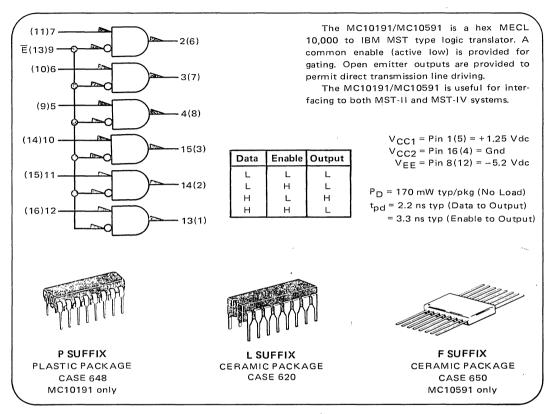
		-5	5°C	- 30	0°C	+2!	5°C	+8	5 ⁰ C	+12	5°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions
Power Supply Drain	١E	-	57	-	57	-	52		57	-	57	mAdc	Vin = VIH max (Pins 4, 6, 10, 12),
Current	^I CC	-	27	-	27	-	27	-	27	-	27	mAdc	V _{IL} min (Pins 5, 7, 11, 13).
Input Current	linH	-	80	-	70	-	45	-	45	-	45	µAdc	$V_{in} = V_{IH} \max to P.U.T., V_{IL} \min to the other input of that gate.Test one input at a time.$
Reverse Leakage Current	Ісво	-	1.5	-	1.5	-	1.0	-	1.0	-	1.0	µAdc	V _{in} = V _{EE} to P.U.T., one input at a time.
Output Logic Levels (Translator)													Translator (Pin 9 = V_{SS} = +1.25 Vdc): V_{in} = V_{ILM} to one input of
Common Mode Rejection Test	∨он											Vdc	the gate under test and $V_{\mbox{IHM}}$ to the other input of that gate.
(Receiver) MC10190 MC10590		_ -1.080	_ -0.880	1.060 	-0.890 -		-0.810 -0.780	-0.890	-0.700 -		_ -0.630		Receiver (Pin 9 = V_{CC} = Ground): Vin = VIHH or VIHL to one input of each gate under test and VII H
MC10190 MC10590	VOL	-1.920	-1.655		-1.675 -		-1.650 -1.620	-1.825 -	-1.615 -		 -1.545	Vdc	or VILL, respectively, to the other input of that gate.
Switching Times Propagation Delay	^t pd	1.0	4.0	1.0	3.9	1.0	3.7	1.0	4.1	1.0	4.3	ns	See switching times test circuit and waveforms.
Rise Time, Fall Time	t+, t-	1.1	4.6	1.1	4.5	1.5	4.3	1.1	4.7	1.1	5.0	ns	20% to 80%

 $V_{SS} = IBM Supply Voltage. Unless otherwise specified, Pin 9 = V_{SS} = +1.25 Vdc.$

VIHM = Input logic "1" for IBM levels.

VILM = Input logic "0" for IBM levels.

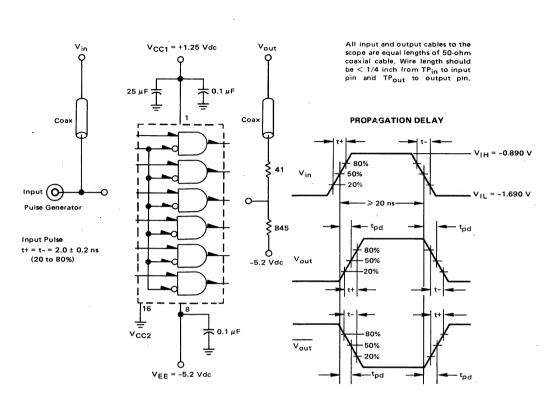
VIHH = Input logic "1" level shifted positive for common mode rejection tests.


V_{ILH} = Input logic "0" level shifted positive for common mode rejection tests.

VIHL = Input logic "1" level shifted negative for common mode rejection tests.

VILL = Input logic "0" level shifted negative for common mode rejection tests.

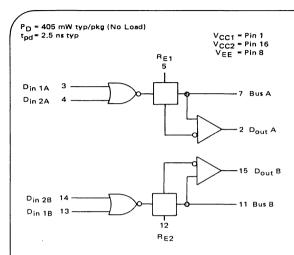
-55°C and +125°C test values apply to MC105xx devices only.


MC10191/MC10591 HEX MECL 10,000 TO MST TRANSLATOR

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	o°c	+ 25	5°C	+85	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	ΙE	-	39	-	39	-	35	-	39	-•	39	mAdc
	ICC	-	23	-	23	-	23	· _	23	-	23	mAdc
Input Current Pins 5,6,7,10,11,12	. ^I inH	_	415	_	390	_	245	_	245		245	μAdc
Pin 9		-	450	-	425	-	265	_	265	- 1	265	
	linL	0.5	-	0.5	-	0.5	-	0.3	-	0.3		μAdc
Logic "1" Output Voltage	∨он	+0.111	+0.344	+0.156	+0.374	+0.255	+0.440	+0.327	+0.548	+0.375	+0.620	Vdc
Logic "0" Output Voltage	VOL	-0.538	-0.338	-0.523	-0.323	-0.490	-0.290	-0.454	-0.254	-0.430	-0.230	Vdc
Logic "1" Threshold Voltage	VOHA	+0.091		+0.136	-	+0.235	-	+0.307		+0.355	-	Vdc
Logic "0" Threshold Voltage	VOLA	-	-0.318	-	-0.303	-	-0.270	-	-0.234	-	-0.210	Vdc
Switching Times Propagation Delay Data	^t pd	1.0	3.7	1.0	3.6	1.0	3.4	1.0	3.7	1.0	4.0	ns
Enable		1.0	4.9	1.0	4.7	1.0	4.5	1.0	5.0	1.0	5.3	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.1	4.6	1.1	4.5	1.1	4.3	1.1	4.7	1.1	5.0	ns

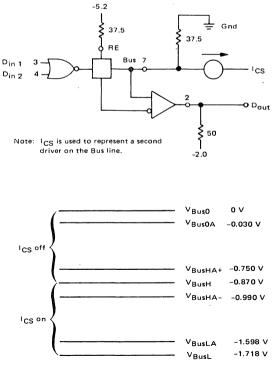
-55°C and +125°C test values apply to MC105xx devices only.



SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

50-ohm termination to ground located in each scope channel input.

3-110


MC10194/MC10594 DUAL SIMULTANEOUS BUS TRANSCEIVER

The MC10194/MC10594 is a dual line driver/receiver which is capable of transmitting and receiving full duplex digital signals on a high speed bus line. Because of the current source line driver, two independent messages may be transmitted on one line at the same time.

The MC10194/MC10594 is designed to work with a wide range of line impedances by connecting a resistor equal to one half the line impedance between the $\rm R_{E1}$ and $\rm R_{E2}$ inputs and $\rm V_{EE}.$ Each driver in the circuit will drive lines down to 75 ohms or the two drivers may be operated in parallel for lines down to 37 ohms. The data inputs and data outputs are standard MECL 10,000 logic levels.

н н L V_{BusH} L н н V_{BusH} н н VBusH н L L VBusH L н L VBusL Ł. L н VBust L н н V BusL L

TRUTH TABLE

Outputs

Dout

н

Bus

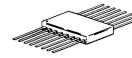
V_{Bus}0

Inputs

L

Din 1 Din 2

1.


DC LOGIC LEVEL DESCRIPTION

The bus terminal (pin 7 or 11) can be at any one of three possible levels V_{BusO} , V_{BusH} , or VBusL depending upon the combination of inputs applied. The MECL inputs (pins 3 and 4 or 13 and 14) cause the bus terminal to switch between two levels, $V_{\mbox{BusO}}$ and $V_{\mbox{BusH}}$ when the external current source (I_{CS}) is off, and V_{BusH} and V_{BusL} when the external current source is on. The bus output threshold voltage levels caused by applying an input threshold voltage VILA or VIHA at a data input are also translated depending upon the state of ICS. These threshold levels are V_{BusOA} and VBusHA+ respectively when ICS is off, and VBusHA- and VBusLA respectively when ICS is on. These relative voltage levels are shown in the figure on the right.

P SUFFIX PLASTIC PACKAGE CASE 648 MC10194 Only

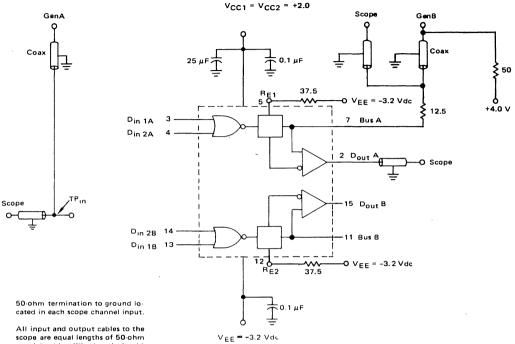
F SUFFIX CERAMIC RACKAGE CASE 650 MC10594 Only

L SUFFIX CERAMIC PACKAGE CASE 620

		TES	T VOLTA	GE/CURF	RENT VAI	UES
	@ Test		(mAdc)		(Vol	ts)
Tem	perature	ICS1	ICS0A	ICS1A	VCL	VCH
	-30°C	-21.1	6.35	14.50	-1.508	0
MC10194	+25°C	-22.6	6.80	15.27	-1.618	0
	+85°C	-24.2	7.27	16.35	-1.738	0
	-55	-21.1	6.35	14.50	-1.458	0
MC10594	±25	-22.6	6.80	15.27	-1.618	0
	+125	-24.2	7.27	16.35	-1.818	0

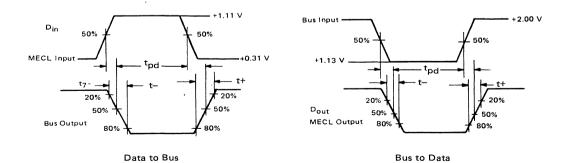
ELECTRICAL CHARACTERISTICS

		-5	5°C	-30	0°C	+25	5°C	+8	5°C	+12	5°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions
Power Supply Drain Current	۱E ۲		107	-	107	-	97	-	107	-	107	mAdc	Inputs open. See DC Test Configuration and Logic Level Description
Input Current Data Inputs Bus Terminals	linH		565 45	-	525 40	-	330 25	-	330 25		330 25	μAdc	VIHMAX to Data Inputs. VCH to Bus terminals, Data inputs open.
Input Leakage Current Bus Terminals	l inL	-	35	-	32	-	20		20	-	20	μAdc	V _{CL} to Bus terminals, Data inputs open.
Bus Driver Zero Voltage Level	V _{Bus0}	-10	+10	-10	+10	-10	+10	-10	+10	-10	+10	mVdc	ICS off, Data inputs open or VIL*
Bus Driver High Voltage Level	V _{Bus} H	-0.890	-0.690	-0.915	-0.715	-0.970	-0.770	-1.030	-0.830	-1.070	-0.870	Vdc	I _{CS} off, V _{IHMAX} to Data Inputs. Or ICS on, Data inputs open or V _{IL} .
Bus Driver Low Voltage Level	VBusL	-1.658	-1.458	-1.708	-1.508	-1.818	-1.618	-1.938	-1.738	-2.018	-1.818	Vdc	ICS on, VIHMAX to Data Inputs.
Bus Driver Zero Threshold Voltage Level	V _{Bus} 0A	-30	-	-30	-	-30	1 -	-30	· -	-30	-	mVdc	ICS off, VILAMAX to Data inputs (one at a time).
Bus Driver High Threshold Voltage Level	V _{BusHA+} ①	-0.910	-0.670	-0.935	-0.695	-0.990	-0.750	-1.050	-0.810	-1.090	-0.850	Vdc	I _{CS} off, V _{IHAMIN} to Data inputs (one at a time).
	V _{BusHA} Q	-0.910	-0.670	-0.935	-0.695	-0.990	-0.750	-1.050	-0.810	-1.090	-0.850	Vdc	ICS on, VILAMAX to Data inputs (one at a time).
Bus Driver Low Threshold Voltage Level	V _{BusL} A	-	-1.438	-	-1.488	-	-1.598	-	-1.718	-	-1.798	Vdc	I _{CS} on, V _{IHA MIN} to Data inputs (one at a time).
Switching Times Propagation Delay Data to Bus Bus to Data Out	^t pd	1.0 1.0	3.2 4.6	1.0 1.0	3.1 4.5	1.0 1.0	2.9 4.3	1.0 1.0	3.2 4.7	1.0 1.0	3.4 5.0	ns	50% to 50%. See Switching Time Test Circuit and Waveforms.
Rise Time, Fall Time Data Outputs Bus Outputs	t+, t-	1.0 1.0	4.5 . 3.6	1.1 1.1	4.4 3.5	1.1 1.1	4.2 3.3	1.1 1.1	4.6 3.6	1.0 1.0	4.9 3.9	ns	20% to 80%


 \bigcirc V_{BusHA+} denotes the upper output threshold level with V_{IHAmin} applied and the external current source, I_{CS} off.

2 VBusHA- denotes the lower output threshold level with VILAmax applied and the external current source, ICS on.

Definitions


VCL = Low bias voltage for testing bus driver input loading

V_{CH} = High bias voltage for testing bus driver input loading I_{CS1} = External current source input to the bus driver

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP_{in} to input pin and TP_{out} to output pin.

NOTE: All power supply and logic levels are shown shifted 2 volts positive.

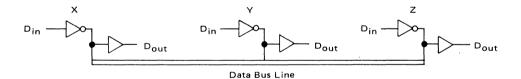
MC10194/MC10594

The MC10194/MC10594 Dual Simultaneous Bus Driver/Receiver is designed for high speed data transfer over multi-port bus lines. Full duplex data transmission can improve system performance by increasing message density and overcoming the requirement to wait two line propagation delay times between messages.

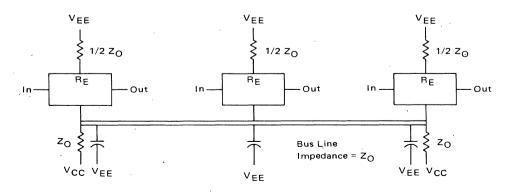
Figure 1 illustrates two types of system operation. One mode of operation is with two drivers on the bus line at locations X and Z. Any input to D_{in} X is seen at D_{out} Z one line propagation delay later. Similarly, any input to D_{in} Z is transmitted to D_{out} X. Each driver inhibits the data being sent on the bus from appearing at its receiver output, so full duplex signal transmission is possible. In addition, current source drivers allow two messages to pass on the same line so there are no timing restrictions between sending messages.

A second type of system operation is with a multi-terminal bus as illustrated in Figure 1 by points X, Y, and Z. In this mode, any one terminal can transmit data and all other points will receive the message. Alternately, any two terminals can simultaneously exchange data, but the other receivers will not see valid data.

The MC10194 uses current source line driving and is designed to operate with a load to V_{CC} (normally ground). This load is usually the line termination resistors at each end of the line as shown in Figure 2. In addition, to match the driver to a given impedance line, an external resistor equal to one-half the line termination resistor value is connected between the R_F out-


put and V_{EE} . When the circuit is used with a multi-terminal bus, each driver must have the resistor between R_E and V_{EE} , but the termination resistors are required only at each end of the bus line.

Each MC10194 driver in a package is capable of driving 75-ohm lines. Higher impedance lines may be used with no loss of performance if the line is properly matched with R_E . If it is desirable to drive 50-ohm lines, both drivers in a package should be operated in parallel with each having 50-ohm resistors at R_E and the driver outputs both connected to the 50-ohm bus line.


To allow very high data rates, the rise and fall times on the bus line are quite fast (typically 1.0 ns). With full duplex operation, it is possible to get a crosstalk pulse of several hundred mV at a receiver output. A 10-20 pF capacitor connected between each driver output and V_{EE} will slow down the rise and fall times, greatly reduce any crosswalk pulse, and still give good system performance.

The adjustable current source drive feature of the MC10194 makes this circuit a useful output driver for many applications. For example, it is possible to drive the 50-ohm to ground load required by many interface systems. This driver will sink the 14 to 18 mA required to meet the AEC Committee specification for Nuclear Instrument Modules. The MC10114 MECL Line Receiver makes a good interface receiver for the MC10194 driver in these applications.

FIGURE 1 - MC10194/MC10594 SYSTEM OPERATION

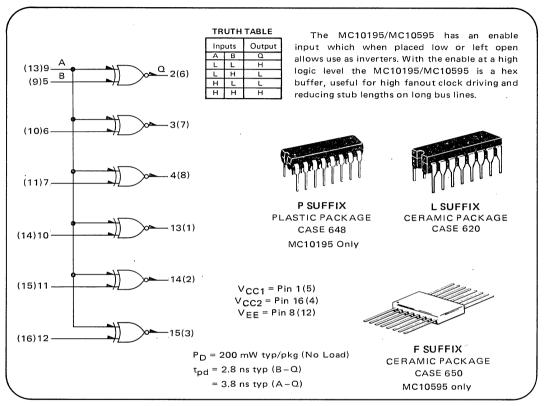
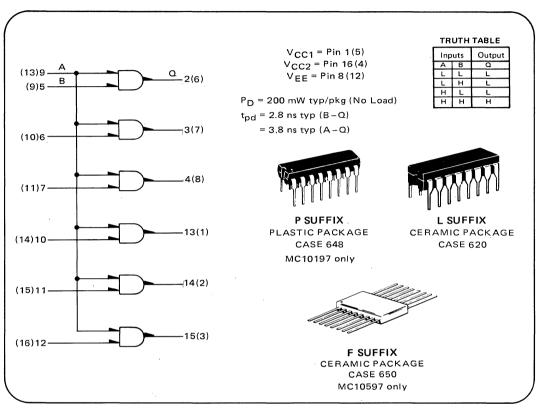


FIGURE 2 – BUS LINE INTERFACE

MC10195/MC10595 HEX INVERTER/BUFFER

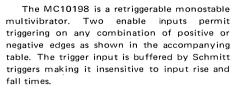

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-30	o°c	+2	5°C	+8	5 ⁰ C	+12	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	—	54	-	54	—	49	-	54		54	mAdc
Input Current	linH											μAdc
Pins 5,6,7,10,11,12 Pin 9		_	450 495	_	425 460	- -	265 290	-	265 290		265 290	
Switching Times Propagation Delay	, t _{pd}			•								ns
Data (B) Enable (A)	•	1.0 1.0	4.3 5.4	1.1 1.1	4.2 5.2	1.1 1.1	4.0 5.0	1.1 1.1	4.4 5.4	1.0 1.0	4.7 5.9	
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	4.9	1.1	4.7	1.1	4.5	1.1	5.0	1.0	5.3	ns

-55°C and +125°C test values apply to MC105xx devices only.

MC10197/MC10597

HEX AND GATE



Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	-3	o°c	+2	5 ⁰ C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		54	-	54		49	-	54		54	mAdc
Input Current	linH											μAdc
Pins 5,6,7,10,11,12		·	450		425	-	265	-	265	_	265	
Pin 9		-	495	-	460	-	290		290	-	290	
Switching Times												ns
Propagation Delay	tpd											
Data (B)		1.0	4.3	1.1	4.2	1.1	4.0	1.1	4.4	1.0	4.7	
Enable (A)		1.0	5.4	1.1	5.3	1.1	5.0	1.1	5.5	1.0	5.9	
Rise Time, Fall Time (20% to 80%)	• t+,t-	1.0	4.9	1.1	4.7	1.1	4.5	1.1	5.0	1.0	5.3	ns

-55°C and +125°C test values apply to MC105xx devices only.

MC10198 MONOSTABLE MULTIVIBRATOR

The pulse width is controlled by an external capacitor and resistor. The resistor sets a current which is the linear discharge rate of the capacitor. Also, the pulse width can be controlled by an external current source or voltage (see applications information).

For high-speed response with minimum delay, a hi-speed input is also provided. This input bypasses the internal Schmitt triggers and the output responds within 2 nanoseconds typically.

Output logic and threshold levels are standard MECL 10,000. Test conditions are per Table 2. Each "Precondition" referred to in Table 2 is per the sequence of Table 1.

TRUTH TABLE

IN	PUT	OUTPUT
Ē _{Pos}	Ē _{Neg}	
L	L	Triggers on both positive & negative input slopes
L	н	Triggers on positive input slope
н	L	Triggers on negative input slope
н	н	Trigger is disabled

V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

Vcc

CExt

Q

ā

- 3

- 2

VEE

6

Ē Pos

ENeg

Trigger

Input

Input

Hi-Speed

5

7

10-

13-

15-

RExt

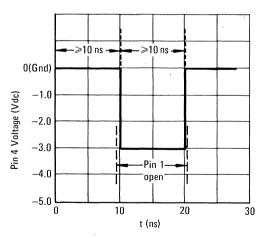
External Pulse

Width Control

CERAMIC PACKAGE , CASE 620

P SUFFIX PLASTIC PACKAGE CASE 648 $P_D = 415 \text{ mW typ/pkg}$ (No Load) $t_{pd} = 4.0 \text{ ns typ Trigger Input to Q}$ 2.0 ns typ Hi-Speed Input to Q

Min Timing Pulse Width	PWQmin	10 ns typ1
Max Timing Pulse Width	PWQmax	>10 ns typ2
Min Trigger Pulse Width	PWT	2.0 ns typ
Min Hi-Speed Trigger Pulse Width	PWHS	3.0 ns typ
Enable Setup Time	tset	1.0 ns typ
Enable Hold Time	^t hold	1.0 ns typ
-		

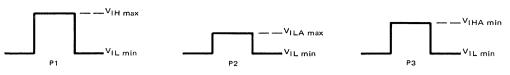

(1) $C_{Ext} = 0$ (Pin 4 open), $R_{Ext} = 0$ (Pin 6 to V_{EE})

(2) $C_{Ext} = 10 \,\mu F$, $R_{Ext} = 2.7 \,\kappa \Omega$

ELECTRICAL CHARACTERISTICS

		-3	0°C	+ 2!	5°C	+8	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	1	110	-	100		110	mAdc
Input Current	linH							μAdc
Pin 5, 10		_	415	-	260	-	260	
Pin 13		-	350	-	220	-	220	
Pin 15		-	560		350	-	350	
Switching Times								ns
Propagation Delay	^t pd							
Trigger	•	2.5	6.5	2.5	5.5	2.5	6.5	
Hi-Speed		1.5	3.2	1.5	2.8	1.5	3.2	
Rise Time, Fall Time (20% to 80%)	t+,t	1.5	4.0	1.5	3.5	1.5	4.0	ns

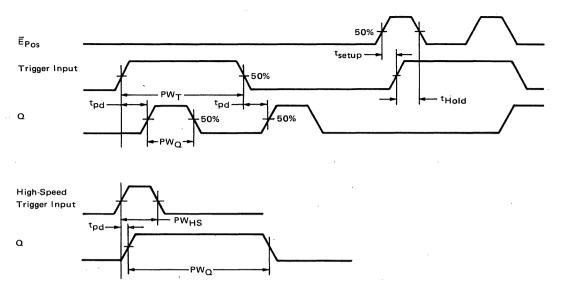
TABLE 1 - PRECONDITION SEQUENCE


1. At t = 0 a.) Apply V_{IHmax} to Pin 5 and 10.

b.) Apply V_{ILmin} to Pin 15. c.) Ground Pin 4.

- 2. At t ≥ 10 ns a.) Open Pin 1.
- . Att 2 To hs a.) Open Philip
 - b.) Apply -3.0 Vdc to Pin 4. Hold these conditions for ≥ 10 ns.
- 3. Return Pin 4 to Ground and perform test as indicated in Table 2.

MC10198


TABLE 2 – CONDITIONS FOR TESTING OUTPUT LEVELS (See Table 1 for Precondition Sequence)

Pins 1, 16 = V_{CC} = Ground Pins 6, 8 = V_{EE} = -5.2 Vdc Outputs loaded 50 Ω to -2.0 Vdc

			Pin Con	ditions	
Test P.L	J.T.	5	10	13	15
Precondition					
v _{oн} :	2			VILimin	
V _{OH} :	3			P1	
Precondition					
V _{OL} :	3			VIL min	
V _{OL} :	2			P1	
Precondition					
V _{OHA} :	2				V _{ILA max}
V _{OHA}	3				VIHA min
Precondition					
VOHA :	2			VIL min	
V _{OHA} :	3		,	P3	
Precondition					
V _{OHA}	2			P2	
VOHA	3			P3	
Precondition					
V _{OHA} :	2		V _{IH max}	P2	
V _{OHA}	3		V _{IH max}	P3	
Precondition					
OnA,	2		V _{IH max}	P1	
V _{OHA} :	3		V _{IH max}	P1	
Precondition					
V _{OHA} :	2		VIHA min	P1	
V _{OHA} :	3		V _{ILA max}	P1	
Precondition					
ULA	3				VILA max
ULA	2				VIHA min
Precondition					
ULA	2			VILmin	
OLA	3			VILmin	
Precondition					
02/1	3			, P2	
-OLA	2			P3	
Precondition	_				
0LA	3		VIH max	P2	
ULA	2		V _{IH max}	P3	
Precondition					
0 LA	3	VIHA min		P1	
OLA	2	VILA max	VIH max	P1	
Precondition					
00.	3		VIHA min	P1	
V _{OLA} :	2	VIH max	VILA max	P1	

SWITCHING TIME WAVEFORMS

CIRCUIT OPERATION

1. PULSE WIDTH TIMING-The pulse width is determined by the external resistor and capacitor. The MC10198 also has an internal resistor (nominally 284 ohms) that can be used in series with R_{Ext} . Pin 7, the external pulse width control, is a constant voltage node (-3.60 V nominally). A resistance connected in series from this node to V_{EE} sets a constant timing current I_T. This current determines the discharge rate of the capacitor:

$$I_T = C_{Ext} \frac{\Delta V}{\Delta T}$$

where

 $\Delta T = pulse width$

 $\Delta V = 1.9 V$ change in capacitor voltage Then:

$$\Delta T = C_{Ext} \frac{1.9 \text{ V}}{I_T}$$

If RExt + RInt are in series to VEE:

$$I_T = [(-3.60 \text{ V}) - (-5.2 \text{ V})] \div [R_{F_{XT}} + 284 \Omega]$$

 $I_T = 1.6 V/(R_{Ext} + 284)$

The timing equation becomes:

$$\Delta T = [(C_{Ext})(1.9 V)] \div [1.6 V/(R_{Ext} + 284)]$$

 $\Delta T = C_{Ext}(R_{Ext} + 284) 1.19$

where $\Delta T = Sec$ $R_{Ext} = Ohms$ $C_{Ext} = Farads$

Figure 2, shows typical curves for pulse width versus C_{Ext} and R_{Ext} (total resistance

includes R_{Int}). Any low leakage capacitor can be used and R_{Ext} can vary from 0 to 16 k ohms. Note that for capacitance less than 20 to 30 pF, actual pulse width tends to be longer than values calculated by the timing equation.

2. TRIGGERING-The \overline{E}_{Pos} and \overline{E}_{Neg} inputs control the trigger input. The MC10198 can be programmed to trigger on the positive edge, negative edge, or both. Also, the trigger input can be totally disabled. The truth table is shown on the first page of the data sheet.

The device is totally retriggerable. However, as duty cycle approaches 100%, pulse width jitter can occur due to the recovery time of the circuit. Recovery time is basically dependent on capacitance C_{Ext} . Figure 3 shows typical recovery time versus capacitance at $I_T = 5$ mA.

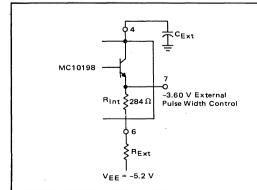
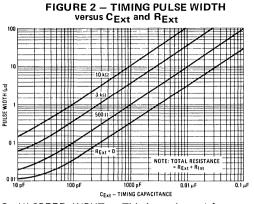



FIGURE 1 –

3. HI-SPEED INPUT — This input is used for stretching very narrow pulses with minimum delay between the output pulse and the trigger pulse. The trigger input should be disabled when using the high-speed input. The MC10198 triggers on the rising edge using this input, and input pulse width should be narrow, typically less than 10 nanoseconds.

USAGE RULES

 Capacitor lead lengths should be kept very short to minimize ringing due to fast recovery rise times.

2. The \overline{E} inputs should *not* be tied to ground to establish a high logic level. A resistor divider or diode can be used to establish a -0.7 to -0.9 voltage level.

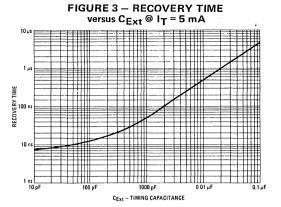
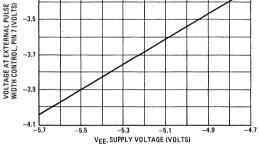
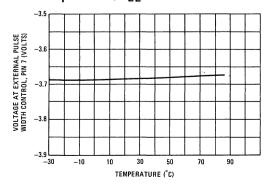
3. For optimum pulse width stability versus temperature and power supply variation, a nominal timing current of approximately 0.5 mA is used. Figures 4 and 5 show typical voltage change at Pin 7 for power supply and temperature variation. Figure 6 shows typical pulse width versus temperature and power supply variation.

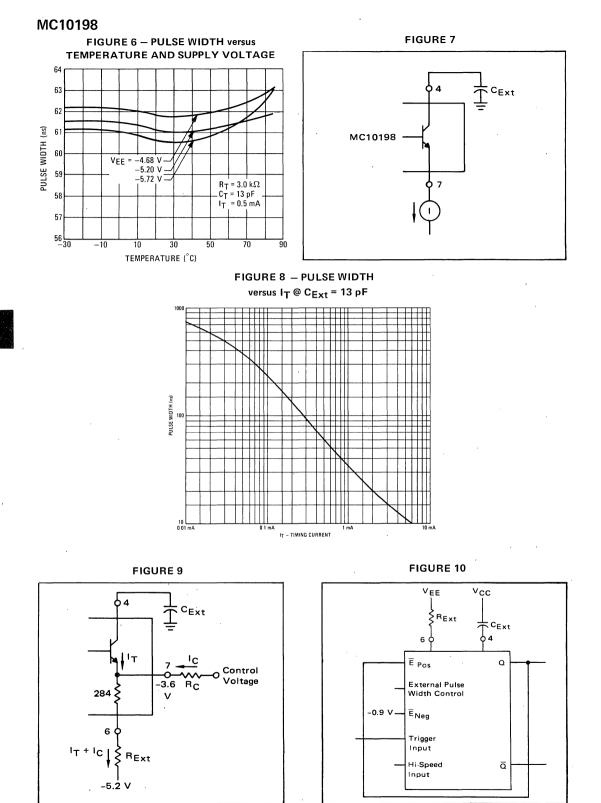
4. Pulse Width modulation can be attained with the EXTERNAL PULSE WIDTH CON-TROL. The timing current can be altered to vary the pulse width. Two schemes are:

(a) The internal resistor is not used. A dependent current source is used to set the timing current as shown in Figure 7. A graph of pulse width versus timing current ($C_{Ext} = 13 \text{ pF}$) is shown in Figure 8.

(b) A control voltage can also be used to vary the pulse width using an additional resistor (Figure 9). The current ($I_T + I_C$) is set by the voltage drop across $R_{Int} + R_{Ext}$. The control current I_C modifies I_T and alters the pulse width. Current I_C should never force I_T to zero. R_C typically 1 k Ω .

5. The MC10198 can be made non-retriggerable. The Q output is fed back to disable the trigger input during the triggered state (Figure 10). The example shows a positive triggered configuration, a similar configuration can be made for negative triggering.


FIGURE 4 – TYPICAL VOLTAGE AT PIN 7 (EXTERNAL PULSE WIDTH CONTROL) versus SUPPLY VOLTAGE V_{EE} @ I_T = 0.5 mA, TEMPERATURE = 25°C

IT = 0.5 mA, VEE = -5.20 VOLTS

3-122

MC10210/MC10610

HIGH-SPEED DUAL 3-INPUT 3-OUTPUT OR GATE

MC10211/MC10611

HIGH-SPEED DUAL 3-INPUT 3-OUTPUT NOR GATE

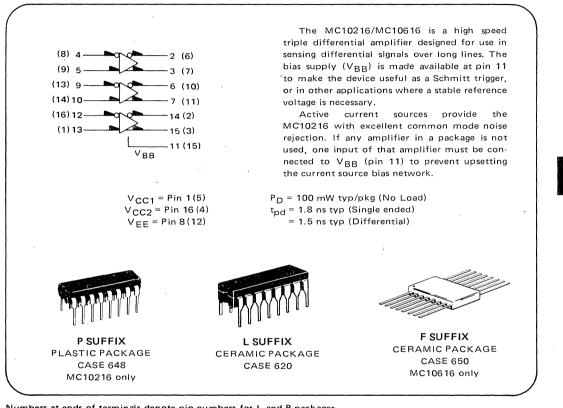

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-55°C		–30 ⁰ C		+25 ⁰ C		+85 ⁰ C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	42	-	42	—	38	_	42		42	mAdc
Input Current	linH	—	700	—	650	-	410	-	410	-	410	μAdc
Switching Times Propagation Delay	^t pd	1.0	2.9	1.0	2.6	1.0	2.5	1.0	2.8	1.0	3.0	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	2.9	1.0	2.6	1.0	2.5	1.0	2.8	1.0	3.0	ns

-55^oC and +125^oC test values apply to MC106×× devices only.

MC10212/MC10612

HIGH-SPEED DUAL 3-INPUT 3-OUTPUT OR/NOR GATE


Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

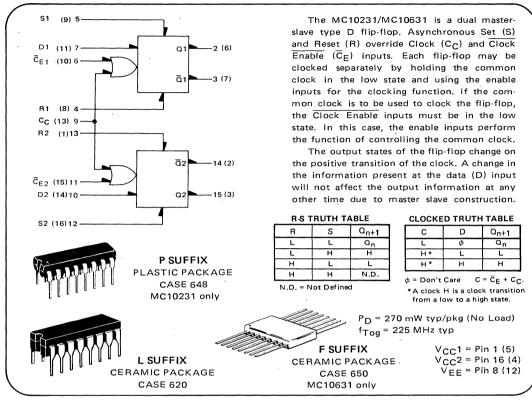
		–55 ⁰ C		-30°C		+25 ⁰ C		+85°C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	-	42		42	-	38		42	-	42	mAdc
Input Current	linH	-	700	-	650	-	410	—	410	-	410	μAdc
Switching Times Propagation Delay	tpd	1.0	2.9	1.0	2.6	1.0	2.5	1.0	2.8	1.0	3.0	ns
Rise Time, Fall Time (20% to 80%)	t+,t-	1.0	2.9	1.0	2.6	1.0	2.5	1.0	2.8	1.0	3.0	ns

-55°C and +125°C test values apply to MC106×× devices only.

MC10216/MC10616

HIGH-SPEED TRIPLE LINE RECEIVER

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.


One input from each gate must be tied to VBB during testing.

		-5	5°C	-3	0°C	+25°C		+85°C		+125°C		
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	١ _E	-	28	-	27		25		27		28	mAdc
Input Current	linH	-	195		180	-	115		115		115	μAdc
	ІСВО	-	1.5		1.5	-	1.0		1.0		1.0	μAdc
Reference Voltage	VBB	-1.440	-1.320	-1.420	-1.280	-1.350	-1.230	-1.295	-1.150	-1.240	-1.120	Vdc
Switching Times												ns
Propagation Delay	t _{pd}	1.0	2.7	1.0	2.6	1.0	2.5	1.0	2.8	1.0	2.9	
Rise Time, Fall Time (20% to 80%)	t+,t—	1.0	2.7	1.0	2.6	1.0	2.5	1.0	2.8	1.0	2.9	ns

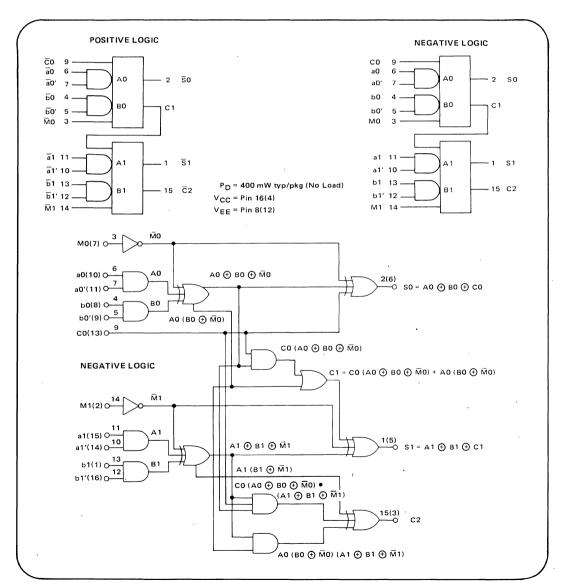
-55°C and +125°C test values apply to MC106xx devices only.

MC10231/MC10631

HIGH-SPEED DUAL TYPE D MASTER-SLAVE FLIP-FLOP

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

		-5	5°C	- 30	0°C	+25	5°C	+85	5°C	+12	5oC	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	72		72	—	65	-	72	-	72	mAdc
Input Current	linH											μAdc
Pins 6,7,10,11		-	375	-	350	-	220	-	220	-	220	
Pin 9		-	495	-	460	-	290	-	290	-	290	
Pins 4,5,12,13		-	700		650	-	410	_	410	—	410	
Switching Times												ns
Propagation Delay	^t pd											
Clock ,		1.3	3.7	1.5	3.4	1.5	3.3	1.6	3.7	1.2	3.9	
Set, Reset		1.0	3.7	1.1	3.4	1.1	3.3	1.2	3.7	1.0	3.9	
Rise Time, Fall Time	t+,t-	1.0	3.4	0.9	3.3	1.0	3.1	1.0	3.6	1.0	3.6	ns
(20% to 80%)												
Setup Time	t _{set}	1.5	-	1.5	-	1.0	-	1.5	-	1.5	-	ns
Hold Time	^t hold	0.9	-	0.9	—	0.75	-	0.9	-	0.9	-	ns
Toggle Frequency	^f Tog	200	-	200	-	200		200	-	200	-	MHz

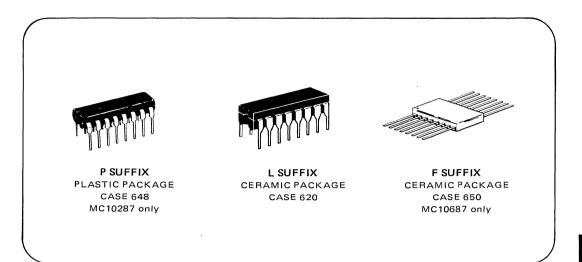

-55°C and +125°C test values apply to MC106×× devices only.

MC10287/MC10687

HIGH-SPEED 2 x 1 BIT ARRAY MULTIPLIER BLOCK

The MC10287/MC10687 is a dual high speed iterative multiplier. It is designed for use as an array multiplier block. Each device is a modified full adder/subtractor that forms a single-bit binary product at each operand input of the adder. Internal carry lookahead is employed for high speed operation.

An addition or subtraction is selected by mode controls (M0, M1). The mode controls are buffered such that they can be grounded or taken to a standard high logic level to accomplish subtraction. When left open or taken to a low logic level, M0 and M1 cause addition.



Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

M1 M0 b1 b1' a1 a1' b0 b0' a0 a0' C0 S0 S1 C2 14 3 13 12 11 10 4 56 7 9 2 1 15 Word нн н н н н н н н н н н нн 0 н н нн н н н н н н L L LIL 1 н н н н нннн н L L L LL 2 нннн L н н н L L з н нсь н н н н н н L L н н н L н н 4 н н нннн L L н н L н н н 5 нннн н н L L L L н ннн 6 н н н ннн L L L L L L L L 7 н н н н L L н н н н н н 8 L L н н н н L н н н н L н ۲Ļ 9 L L н н н н L L н н L L н L н L 10 н н н нL L н нL L L н н L 11 н н L L н н н 12 н н L L L L L н L н н н н ні L н 13 L L . . н н н н н L L L L L L н L I. 14 н H н н L L L L L L L L нι 15 н н н н н L L н н н н н L. н 16 н н L L. нн н ннн L с н н 17 н н L L нн н нι L н L нн 18 н н н н н L L L н н 19 н L н н н L L н н L L н н н L L н 20 н н L . нн L L н н L н LH 21 н н L L нн L L L L н н L н 22 н н L L н н L L L L L L н Ĥ 23 н н н н н н 24 н н ı. t. L н н L н н L н Ĥ. н н L L 25 t. L L L L н н L L L L н н L L н L L L 26 н н L L L L н н L L L н L L 27 L н н ı. 1 L L L н н н 1 н н 28 н н L L н н L н н 29 L Ł н н н L L L L L L L н н нн 30 L L н н 1 L L 'L L L L L. L 1. L 31 н L. н н н н н н н н н н нн 32 нн н L н н . н н н н нн L L 33 н н н н н L н нн 34 н ı. н 1 ı. нн н н н н н L 35 ı. L L н L L н н н н L L н н н 36 н L L н н н L нннн L L н н н LL 37 L. н нннн L 38 L L L L н н L L н L н н н н L L L L L L. Ĺ. L 39 н L н н L L н н н н н н L L 40 ннн н L ннг L I H L L L. L 11 н L ннL L н н L L н L L 42 L н L н н L L н н L L н н L 43 L н н н L L L L н н н L 44 L L 1 45 н н н L н н н L L L L L н L нн L L L н н н 46 н L L L L L н н L L н L L L L L L L н L 47 н L н н н нн н н 48 L L н LH н L н н н н н н L L н 49 L L н нι н L н 50 н L L L н н L L н L L L нн ннι L L ннн 51 н L L L н н L L н н н L L н 52 L. L н н L L н н L н н н 53 L н н н Τ. 1 н н н н 54 ŧ. Τ. ŧ н н L н н н L L L L L L L L 55 L L L н н н н н 56 н L L н н н ннн L L L L L н 57 н L LHH н н L L н L L н нн 58 L. L Ł. L Ŀ L L н н L L L н 59 ы L L L L 60 н 1 L L L L н н н L н н н н L 1 L L L L L н L н L L 61 н L L L L L L L L L н н L L 62 н L L L L L L L L L L L L 63 L н H н н н н н н н н н н н 64 L ннннннн L н L L с н 65 L н ннннньс н L н L 66 нннннц н L L нсн 67

FUNCTIONAL TRUTH TABLE

		MO	ь1	ь1'	a1	a1′	ь0	b0′	a0	a0′	C 0		S1	C2	ł
	14	3	13	12	11	10	4	5	6	7	9	2	1	15	Word
	L	н	н	н	н	н	L	L	н	н	н	L	н	н	68
	L L	н н	н н	н н	н Н	н н	L	L L	H L	н L	L H	H H	н Н	н н	69 70
	L	н	н	н	н	н	L	L	L	L	Ľ	Ľ.	Ľ	н	71
	L	н	н	н	L	L	н	н	н	н	н	н	L	н	72
	L	н	н	.Η	L	L	н	н	н	н	L	L	н	L	73
	L	н	н	н	L	L	н	н	L	L	н	L	н	L	74
	L	н	н	н	L	L	н	н	Ľ	L	L	н	н	L	75
	L	н н	н	н н	L	L L	L	Ľ	н н	н н	H L	L H	L	н	76
														н	78
	L	H H	н н	н н	L L	L	L	L	L L	L	H L	H L	L H	H L	79
	L	н	L	L	н	н	н	н	н	н	н	н	L	н	80
	L	н	L	L	н	н	н	н	н	н	L	L	н	L	81
	L	н	L	L	н	н	н	н	L	L	н	L	н	L	82
	L	н	L	L	н	н	н	н	L	L	L	н	н	L	83
	L	н н	L	L.	н Н	н н	L	L	H H	н Н	н	L H	L	н н	84 85
	L L	н	L L	L L	н	н	L	L	L	L	L H	н	L	н	86
	L	н	L	L	н	н	L	L	L	L	L	L	н	L	87
	L	н	L	L	L	L	н	н	н	н	н	н	н	L	88
	L	н	L	L	L	L	н	н	н	н	L	L	L.		89
	L	н	L	L	L	L	н	н	L	L	н	L	L	L	90
	L	н	L	L	L	Ł	н	н	L	L	L	н	L	L	91
	L	н	L	L	L	L	L	L	н	н	н	L	н	L	92
	L	н	L	L	L	L L	L	L	н	н	L H	н Н	н н	L	93 94
	L	н	L	L -	L	L	L	L	L	L	L	L	Ľ	L L	94
	L	L	н	H.	н	н	H.	н	H	н	н	н	н	н	96
	L	L	н	н	н	н	н	н	н	н	L	L	н	н	97
-	L	L	н	н	н	н	н	н	L	L	н	L	н	н	98
	L	L	н	н	н	Ĥ	н	н	L	L	L	н	L	н	99
	L	L	н	н	н	н	L	L	н	н	н	L	н.	н	100
	L	L L	н Н	н н	н н	н Н	L	L L	H L	H L	L H	н Н	L L	н н	101 102
	L	L	н	н	н	н	с. L	 L	L	L	L	L	L	н	103
	L	L	н	н	L	L	н	н	н	н	н	н	L	н	103
	Ĺ.	L	н	н	L	L	н	н	н	н	L	L	Ľ	н	105
	i.	L	н	н	L	L	н	н	L	L	н	L	L	н	106
	L	L	н	н	L	L	н	н	L	L	L	н	н	L	107
	L	L	н	н	L	L	L	L	н	н	н	L	L	н	108
	L	L	н	н н	L	Ŀ	L	L	н	н	L	н	н	L.	109
	L	L	н	н	L	L	L	L	L	L	H L	H L	н	L	110 111
	L	L	L	L	н	н	н	н	н	н	н	н	Ľ	н	112
	L	L	L	L	н	н	н	н	н	н	L	L	L	н	113
	L	L	L	L	н	н	н	н	L	L	н	Ē	Ŀ	н	114
	L	L	L	L	н	н	н	н	L	L	L	н	н	L	115
	L L	L	L L	L L	н Н	н Н	L	L L	н Н	н . н	H L	L H	L H	H L	116 117
		-													
	ե	L L	L	L L	н Н	н н	L	L	L L	L	H L	H	н Н	L	118 119
	L	L	Ŀ	L	L	Ľ	н	н	н	н	н	н	н	L	120
	L	L	L	L	L	L	н	н	н	н	ι	L	н	L	121
	L	L	L	L	L	L	н	н	L	L	н	L	н	L	122
	L	L	L	L	L	L	н	н	L	L	L	н	L	L	123
	L	L	L	L	L	L	L	L.	н	н	н	L	н	L	124
	L	L L	L L	L L.	L	L	L	L	H L	H L	L H	н	L	L L	125 126
	L	L	L	L.	L	L	L	L	L	L	L	L	L	L	120
		L	H	L	L	L	L	L	L	L	L	L	н Н	L	128
	L	L	L	н	L	L	L	L	L	L	L	L	н	L	120
	L	L	L	L	н	L	L	L	L	Ē	L	L	н	Ľ	130
	L	L	L	L	L	н	L	L	۲Ļ	L	L	L	н	L	· 131
	L	L	L	L	L	L	н	L	L	L	L	н	L	L	132
	L.	L	L	L	L	L	L L	н	L	L	L L	н	L	L	133 134
	L	L	L	L	L	Ł		L	н	L		н	L	L	

Numbers at ends of terminals denote pin numbers for L and P packages. Numbers in parenthesis denote pin numbers for F package.

ELECTRICAL CHARACTERISTICS

		-5	5°C	-3	o°c	+25	5°C	+8	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	106		106	-	96		106		106	mAdc
Input Current	linH											μAdc
Pins 3,14		-	340		320	-	200	-	200	-	200	
Pins 4,5,12,13		_	375	-	350	-	220	-	220	-	220	
Pins 6, 7, 10, 11		-	450	-	425		265	-	265	—	265	
Pin 9		-	700		650	-	410	-	410	-	410	
Switching Times												ns
Propagation Delay	^t pd				r							
C0 to S0,C2		1.1	4.0	1.1	3.6	1.1	3.4	1.1	3.7	1.1	4.2	
C0 to S1		1.1	4.9	1.1	4.7	1.1	4.5	1.1	4.7	1.1	4.9	
a0,a0',b0,b0' to S0,C2		1.1	5.0	1.1	4.9	1.1	4.7	1.1	5.2	1.1	7.0	
a0,a0',b0,b0' to S1		2.0	6.2	1.4	6.1	1.4	5.8	1.4	6.4	2.0	6.6	
a1,a1',b1,b1' to S1,C2		1.1	4.7	1.1	4.7	1.1	4.5	1.1	4.8	1.5	5.2	
M0 to S1; M1 to C2		3.0	14	3.0	13	3.0	12.5	3.0	13.5	3.0	14.5	
M0 to C2	-	2.5	14	2.5	13	3.0	12.5	2.5	13.5	2.5	14.5	
Rise Time, Fall Time (20% to 80%)	t+,t~	1.1	3.4	1.1	3.3	1.1	3.1	1.1	3.4	1.1	3.6	ns

 -55° C and $+125^{\circ}$ C test values apply to MC106 xx devices only.

APPLICATION INFORMATION

Z7 Z6

The MC10287/687 is a stand alone fully iterative dual multiplier cell. It is intended for use in parallel multiplier arrays where maximum speed is desired. Each cell is a modified gated adder/subtractor individually controlled by a mode select line. Internal carry lookahead (also called anticipated carry) is used to minimize sum and carry out delay times.

The mode controls are specifically buffered such that they can be grounded. Normally, MECL 10,000 device inputs should not be placed at ground to establish a high logic level. However, MO and M1 can be used at ground potential for ease of layout in large arrays.

An array multiplier is defined as a multi-input, multioutput combinational logic circuit that forms the product of two binary numbers. Binary multiplication can be treated in two categories, that is, simple magnitude multiplication and 4-quadrant multiplication (requiring both positive and negative numbers).

MAGNITUDE BINARY MULTIPLICATION

Magnitude multiplication consists of the product of two binary numbers in which all digits are number bits (no sign bit). Magnitude representation then includes only positive numbers.

Thus, for a 4-bit number X the representation is:

 $X = x_3 x_2 x_1 x_0$

A 4-bit by 4-bit product becomes:

 $Z = X \bullet Y = (x_3 x_2 x_1 x_0) \bullet (y_3 y_2 y_1 y_0)$

The product consists of the sum of the single-bit products formed by this expression. The standard "parallelo-

TABLE 1 – TYPICAL MULTIPLY TIME FOR AN n-BIT BY n-BIT BINARY MAGNITUDE ARRAY MULTIPLIER

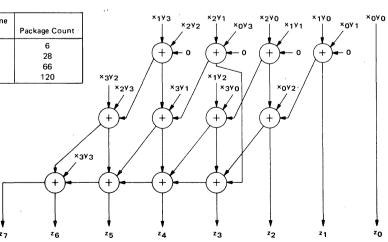
Number of Bits	Total Multiply Time (ns)	Package Count
4	14	6
8	25	28
12	39	66
16	44	120

gram" matrix of the single-bit products (or summands) can be written:

	-	×3A0	×270	×1Y0 ×0Y0)
	×391	×291	×171	×091	
×3¥2	×2Y2	×192	×072		
×3y3 ×2y3	×193	×073			

zη

The MC10287 is used in an array summing the singlebit products to form the final result. It is observed that the arithmetic product of binary digits x_j and y_i is also the logical product (x_j times $y_i = x_j$ AND y_i . The AND function on the operand inputs of the MC10287 forms the single-bit products of the matrix directly and sums them internally. For magnitude binary multiplication, the MC10287 functions as a dual full adder (MO, M1 are both low).


25 Z4 Z3 Z2 Z1

The partial product array can be summed using a number of different techniques. The fastest technique is some form of matrix reduction scheme that prevents carry propagation until the final level of summation. Several of these schemes are discussed in detail in Reference 1.

As an example, if the matrix is rearranged and written in a different form:

4				×0λ3				
			×173	×370	×2Y0	×1Y0	×040	
		×293	×371	×291	×191	×071		
	×373	×372	×292	×172	×0У2			
Z7	ZG	ZS	z۵	ZR	Z2	Z 1	ZΟ	

FIGURE 1 – 4-BIT BY 4-BIT MAGNITUDE ARRAY MULTIPLIER

The summation of the partial products for this configuration is shown in Figure 1. The number of MC10287's for an n-bit by n-bit array is n(n-1)/2. Note also that the least significant product bit ($z_0 = x_{0}y_0$) is formed by an individual AND gate (negative logic).

Table 1 gives package count and typical multiplication times for n-bit by n-bit magnitude multiplier arrays. The multiply times do not include wiring delays, and the package count does not include the gate for the least significant product bit.

FOUR-QUADRANT MULTIPLICATION

Sign-magnitude and 2's complement representations are commonly used for 4-quadrant multiplication. For sign-magnitude representation, the binary word consists of a sign bit and magnitude bits which indicate the absolute value of the number. For a 4-bit example:

For X • Y = Z

 $Z = X \bullet Y = (x_s x_2 x_1 x_0) \bullet (y_s y_2 y_1 y_0)$

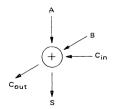
 $X = x_s \times x_2 \times 1 \times 0$

An array multiplier for this representation consists of an (n-1)-bit by (n-1)-bit magnitude multiplier that produces the product of the magnitude bits of X and Y and of logic that produces the proper product sign bit $(z_{s} = x_{s} \oplus y_{s})$.

2's complement representation also includes a sign bit which is a negative bit. That is:

 $X = -x_3 x_2 x_1 x_0$

where x3 is the sign bit. The product of two 4-bit 2's complement numbers becomes:


 $Z = X \bullet Y = (-x_3 x_2 x_1 x_0) \bullet (-y_3 y_2 y_1 y_0)$

The matrix for this expression is:

				-x3A0	×2Y0	×170	×070	
			-×3Y1	×2Y1	×171	×071		
		-×3Y2	×2¥2	×1Y2	×072			
	×373	-×2Y3	-×1Y3	-x0X3				
-z7	^z 6	z5	z4	z3	^z 2	z1	z0	_

The product is the sum of this array of single-bit products. However, notice that several summands are negative quantities. Therefore, they can not be simply added as is the magnitude binary multiplier. The subtraction capability of the MC10287 is utilized when considering these negative quantities.

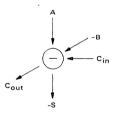
A standard full adder is symbolized as:

in which all inputs are positive quantities. If one input is negative (such as B), the outputs C_{out} and S must be coded such that they can represent the 4 possible output conditions. If B can be a negative one or zero, the net output can then be:

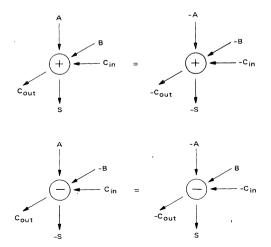
het output =
$$\begin{cases} -1 \\ 0 \\ +1 \\ +2 \end{cases}$$

r

If C_{out} , whose weight is twice that of S, is assigned a positive value and S is a negative value, the above values can be represented:


net output = $2 \bullet C_{out} - S$

where:


$$-1 = 0 - 1$$

 $0 = 0 - 0$
 $+1 = 2 - 1$
 $+2 = 2 - 0$

3

If the truth table is written and logic equations generated, the result is a subtractor. That is, a subtractor used in place of a full adder produces the proper outputs. The symbol for the subtractor is:

Also, if the input variables are multiplied by -1, the outputs also are multiplied by -1. Thus, the following devices are equivalent:

A basic adder/subtractor can then handle all the varying situations that appear in the multiplication matrix. If the 2's complement matrix is rearranged:

			-x0x3			
		-×1У3	-×370	×2Y0	×1Y0	×0Y0
	-×2Y3	~×3¥1	×291	×191	×071	
×393	3 -×3¥2	×2¥2	×192	×072		
-z7 z6	z5	Z4	z3	z2	Z1	z0

The adder/subtractor array for this configuration is shown in Figure 2. Care must be taken to insure that the proper mode of operation (add or subtract) appears at each summing node as a function of the positive and negative weighted inputs.

The summand matrix can be altered different ways to speed up the multiplier array. Reference 2 discusses the algorithm used with the MC10287 in detail. Also, the techniques of Reference 1 also apply to 2's complement arrays using the MC10287.

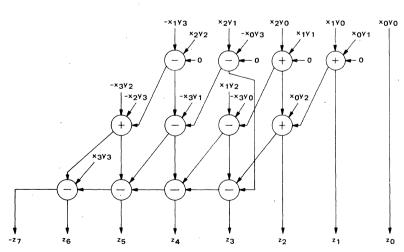
Table 2 gives typical multiply times for 2's complement arrays for n-bit by n-bit multipliers.

TABLE 2 – TYPICAL MULTIPLY TIME FOR AN n-BIT BY n-BIT 2's COMPLEMENT ARRAY MULTIPLIER

Number of Bits	Total Multiply Time (ns)	Package Count
4	14	6
8	25	28
12	39	66
16	44	120

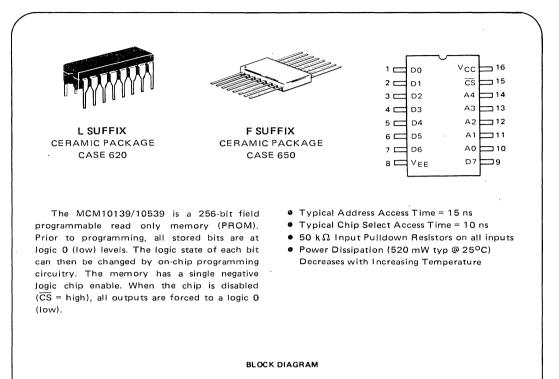
IMPROVED SWITCHING DELAYS

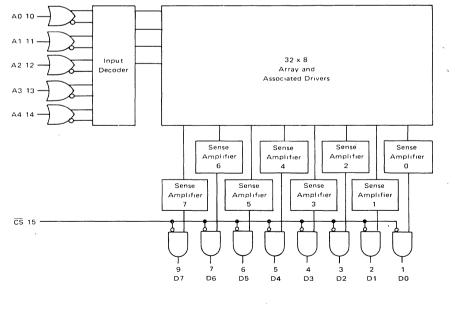
The specified ac switching delays are given for output loading of 50 Ω to -2 volts. With lower output current, propagation delays will be improved and decreased multiply times can result. For output loading of 1 k Ω to V_{EE}, the following delays are typical.


Input	Output	Delay (ns)
CO	C2	1.7
a0	C2	2.8
a0	S0	2.7
b 0	S0	3.1
a0	S1	3.9
b 0	S1	4.4
MO	S1	8.5

REFERENCE AND ACKNOWLEDGEMENT

The techniques for implementing the MC10287 in multiplier arrays resulted from work done originally at M.I.T. Lincoln Laboratories. Also, applications information presented here developed in part from personal correspondence with P. Blankenship of Lincoln Labs. The following references are useful in developing multipliers using the MC10287:


- A. Habibi and P.A. Wintz, "Fast Multipliers," *IEEE Trans. Computers* (Short Notes), Vol. C-19, Feb. 1970, pp. 153-157.
- S.D. Pezaris, "A 40-ns 17-Bit by 17-Bit Array Multiplier", IEEE Trans. Computers, Vol. C-20, Number 4, April, 1971, pp. 442-447.


FIGURE 2 - 4-BIT BY 4-BIT 2's COMPLEMENT ARRAY MULTIPLIER

MCM10139/MCM10539

32 x 8-BIT PROGRAMMABLE READ-ONLY MEMORY

3-133

		-5	-55°C		°C	+25	5°C	+75	5°C	+ 125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	1EE	-	160	-	150	-	145	-	140	-	160	mAdc
Input Current High	linH	-	450		265	-	265	-	265		265	μAdc
Logic "0" Output Voltage MCM10139 MCM10539	VOL	 -2.060	-1.655		-1.665 —		-1.650 -1.620	-1.970 —	-1.625	- 1.960	_ -1.545	Vdc

SWITCHING CHARACTERISTICS (Note 1)

		MCM10139	MCM10539	
Characteristic	Symbol	$(V_{EE} = -5.2 \text{ Vdc } \pm 5\%;)$ $T_A = 0^{\circ}\text{C to } +75^{\circ}\text{C})$	$(V_{EE} = -5.2 \text{ Vdc} \pm 5\%;)$ $T_A = -55^{\circ}\text{C to} \pm 125^{\circ}\text{C})$	Conditions
Chip Select Access Time Chip Select Recovery Time Address Access Time	tACS tRCS tAA	15 ns Max 15 ns Max 20 ns Max	* * *	Measured from 50% of input to 50% of output. See Note 2
Rise and Fall Time	t _r , t _f	3.0 ns Typ	*	Measured between 20% and 80% points.
Input Capacitance Output Capacitance	C _{in} C _{out}	5.0 pF Max 8.0 pF Max	*	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10139; 100 Ω , MCM10539. $C_L \leq 5.0 pF$ including jig and stray capacitance. For Capacitance Loading $\leq 50 pF$, delay should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.

RECOMMENDED PROGRAMMING PROCEDURE*

The MCM10139 is shipped with all bits at logical "0" (low). To write logical "1s", proceed as follows.

MANUAL (See Figure 1)

Step 1Connect VEE (Pin 8) to -5.2 V and VCC (Pin 16) to
0.0 V. Address the word to be programmed by applying
-1.2 to -0.6 volts for a logic "1" and -5.2 to -4.2 volts for a logic
"0" to the appropriate address inputs.

Step 2 Raise V_{CC} (Pin 16) to +6.8 volts.

Step 4 Return V_{CC} to 0.0 Volts.

CAUTION

To prevent excessive chip temperature rise, V_{CC} should not be allowed to remain at +6.8 volts for more than 1 second.

Step 6 If verification is positive, proceed to the next bit to be programmed.

AUTOMATIC (See Figure 2)

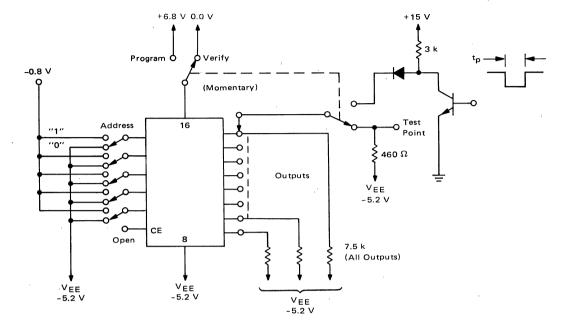
Step 1 Connect V_{EE} (Pin 8) to -5.2 volts and V_{CC} (Pin 16) to 0.0 volts. Apply the proper address data and raise V_{CC} (Pin 16) to +6.8 volts.

Step 2 After a minimum delay of $100 \ \mu s$ and a maximum delay of 1.0 ms, apply a 2.5 mA current pulse to the first bit to be programmed ($0.1 \le PW \le 1 \ ms$).

Step 3 Repeat Step 2 for each bit of the selected word specified as a logic "1". (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms.)

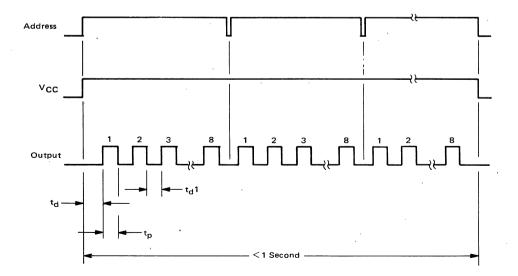
 Step 4
 After all the desired bits of the selected word have been programmed, change address data and repeat

 Steps 2 and 3.
 Steps 2 and 3.


NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for V_{CC} to remain at +6.8 volts during the entire programming time.

*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

	,		Limits		V dc V dc V dc	
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Power Supply Voltage	VEE	-5.46	-5.2	-4.94	Vdc	
To Program	VCCP	+6.04	+6.8	+ 7.56	Vdc	
To Verify	Vccv	0	0	0	Vdc	
Programming Supply Current	ICCP		200	600	mA	V _{CC} = +6.8 Vdc
Address Voltage	V _{IH} Program	-1.2	-	-0.6	Vdc	
Logical "1"	VIH Verify	- 1.0	-	-0.6	Vdc	
Logical "O"	VIL	-5.2	-	-4.2	Vdc	
Maximum Time at V _{CC} = V _{CCP}	-	-	-	1.0	sec	
Output Programming Current	IOP	2.0	2.5	3.0	mAdc	
Output Program Pulse Width	tp	0.5	-	1.0	ms	
Output Pulse Rise Time	-	_	-	10	μs	
Programming Pulse Delay (1)						
Following V _{CC} change	t _d	0.1	-	1.0	ms	
Between Output Pulses	t _d 1	0.01	-	1.0	ms	


PROGRAMMING SPECIFICATIONS

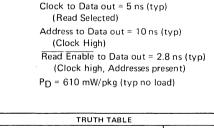
NOTE 1. Maximum is specified to minimize the amount of time V_{CC} is at +6.8 volts.

FIGURE 1 - MANUAL PROGRAMMING CIRCUIT

3-136

8 X 2 MULTIPORT REGISTER FILE (RAM)

8 × 2 MULTIPORT REGISTER FILE (RAM)


The MCM10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

WRITE

The word to be written is selected by addresses A_0-A_2 . Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by A_0-A_2 .

READ

When the clock is high any two words may be read out simultaneously, as selected by addresses B_0-B_2 and C_0-C_2 , including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates (B_0-B_1), (C_0-C_1).

				TRU	тн та	BLE					
*MODE			1N		OUT	PUT					
	**Clock	WE0	WE 1	QB0	QB1	QC0	QC1				
Write	L→H	L	L	н	н	н	н	L	L	L	L
Read	н	¢	¢	¢	¢	L	L	н	н	н	н
Read	H→L	φ	0	¢	0	L	L	н	н	н	н
Read	L→H→L	н	н	¢	¢.	L	L	н	н	н	н
Write	L→н	L	L	L	н	н	н	L	L	L	L
Read	н	φ	φ	¢	¢	L	L	L	н	L	н

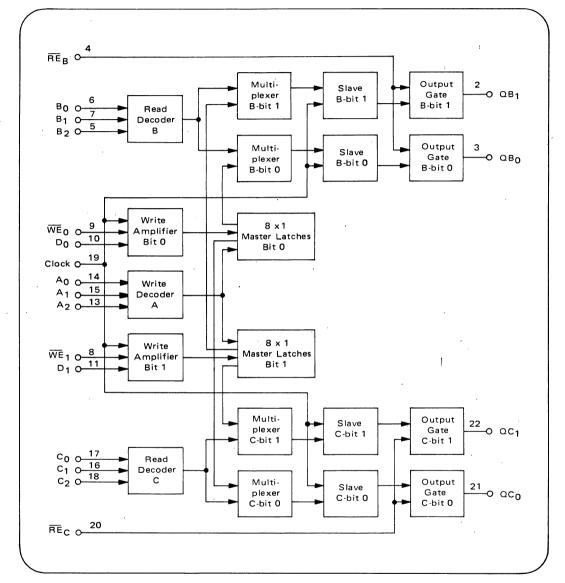
**Note Clock occurs sequentially through Truth Table

t_{nd}:

*Note A0-A2, B0-B2, and C0 C2 are all set to same address location

throughout Table

φ - Don't Care

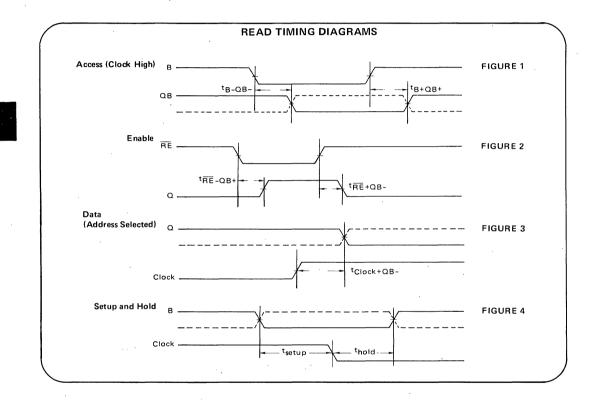


L SUFFIX CERAMIC PACKAGE CASE 623

PIN ASSIGNMENT

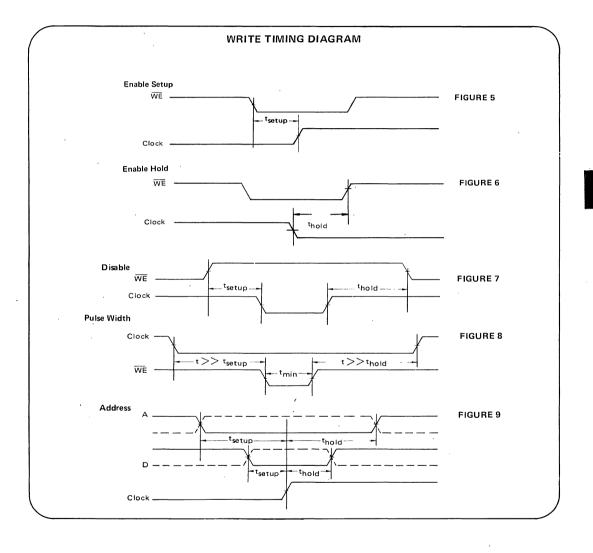
			,
1	Vcco U	vcc	24
2	QB1	V _{CC1}	23
3 🖂	QВ <mark>0</mark>	QC1	22
4 🖂	REB	QC0	21
5 🖂	в ₂	REC	20
6 🖂	^B 0	Clock	19
7 🗖	B ₁	c2	18
8 🖂	WE ₁	¢0	17
9 🖂	WEO	с ₁	16
10 🖂	D ₀	A1	15
11 ㄷ	D1	A ₀	14
12 🖂	VEE	A2	13

3

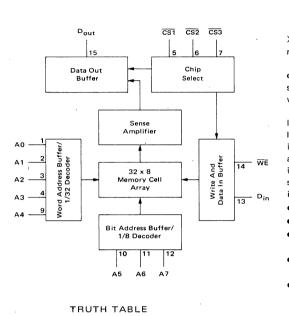


BLOCK DIAGRAM

		0	°C		+25 ⁰ C	:	+7	5°C	
Characteristics	Symbol	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	150	-	118	150	-	150	mAdc
Input Current	linH								μAdc
Pins 10, 11, 19		-	245	-	-	245	-	245	
All other pins		-	200	-	-	200	-	200	
Switching Times ①									ns
Read Mode									
Address Input	^t B ± QB ±	4.0	15.3	4.5	10	14.5	4.5	15.5	
Read Enable	tRE-QB+	1.1	5.3	1.2	3.5	5.0	1.2	5.5	
Data	^t Clock+QB-	1.7	7.3	2.0	5.0	7.0	2.0	7.6	
Setup									
Address	^t setup(B-Clock-)	-	-	8.5	5.5			-	
Hold	······································								
Address	^t hold (Clock – B+)	_	_	-1.5	-4.5	—	-		
Write Mode									
Setup									
Write Enable	tsetup(WE-Clock+)	-	-	7.0	4.0	—	-	-	
	tsetup(WE+Clock-)	_	-	1.0	-2.0		-	-	
Address	^t setup(A – Clock +)		-	8.0	5.0	-	-	-	
Data	tsetup(D-Clock+)	-		5.0	2.0	_	-	_	
Hold									
Write Enable	^t hold(Clock-WE+)	-	-	5.5	2.5	-	-	-	
· · · · ·	^t hold(Clock+WE-)	—	-	1.0	-2.0		-	-	
Address	^t hold(Clock+A+)	-	—	1.0	-3.0	-	-	-	
Data	^t hold(Clock+D+)	-	—	1.0	-2.0		-		
Write Pulse Width	PWWE	-	—	8.0	5.0		-	-	
Rise Time, Fall Time (20% to 80%)	t _r , t _f	1.1	4.2	1.1	2.5	4.0	1.1	4.5	


()AC timing figures do not show all the necessary presetting conditions.

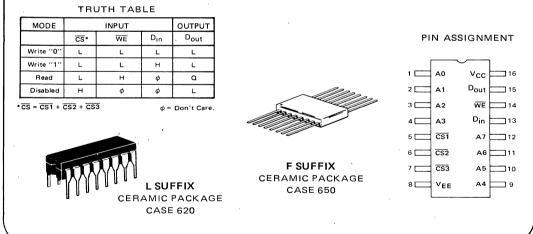
MCM10143


3

ł

MCM10144/MCM10544

256 X 1-BIT RANDOM ACCESS MEMORY



The MCM10144/10544 is a 256 word X 1-bit RAM. Bit selection is achieved by means of an 8-bit address A0 through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\overline{CS} inputs low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode-the output is low and the data present at D_{in} is stored at the selected address. With \overline{WE} high the chip is in the read mode-the data state at the selected memory location is presented noninverted at D_{OUT}.

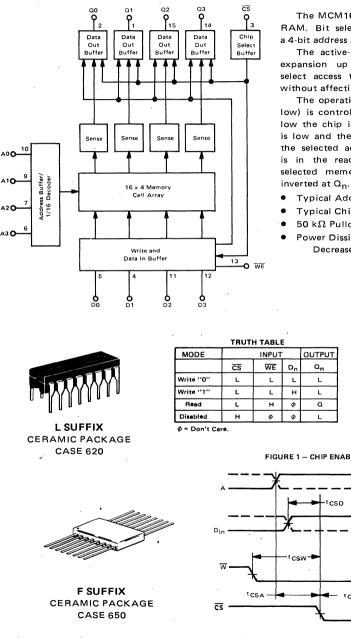
- Typical Address Access Time = 17 ns
- Typical Chip Select Access Time = 4.0 ns
- 50 kΩ Input Pulldown Resistors on Chip Select
- Power Dissipation (470 mW typ @ 25^oC)
 Decreases with Increasing Temperature
- Pin-for-Pin Replacement for F10410

		-5	–55°C		°C	+25 ⁰ C		C +75 ⁰ C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	l _{in} H	-	375	-	220	-	220	—	220	-	220	μAdc

-55⁰C and +125⁰C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		мсм	10144	мсм	10544		
			= 0 to 5 ⁰ C,		–55 to 5 ⁰ C,		
		-5.2	E = Vdc	-5.2	V _{EE} = -5.2 Vdc ± 5%		
		± 5%					o
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	^t ACS	2.0	10	2.0	10		input to 50% of output.
Chip Select Recovery Time	tRCS	2.0	10	2.0	10		See Note 2.
Address Access Time	^t AA	7.0	26	7.0	26		
Write Mode						ns	t _{WSA} = 8.0 ns
Write Pulse Width	tw	25	-	25	-		Measured at 50% of
Data Setup Time Prior to Write	twsd	2.0		2.0	-		input to 50% of output.
Data Hold Time After Write	twhd	2.0	-	2.0	-		t _W = 25 ns.
Address Setup Time Prior to Write	twsa	.8.0		8.0	—		
Address Hold Time After Write	twha	2.0	-	2.0	-		
Chip Select Setup Time Prior to Write	twscs	2.0	-	2.0	-		
Chip Select Hold Time After Write	twhcs	2.0		2.0	_		
Write Disable Time	tws	2.5	10	2.5	10		
Write Recovery Time	tWR	2.5	10	2.5	10		
Rise and Fall Time	t _r , t _f					ns	Measured between 20% and 80% points.
Address to Output		1.5	7.0	1.5	7.0		
CS or WE to Output		1.5	5.0	1.5	5.0		
Capacitance						рF	Measured with a pulse
Input Capacitance	Cin	_	5.0	-	5.0		technique.
Output Capacitance	Cout		8.0	-	8.0		

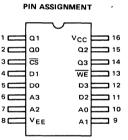

NOTES: 1. Test circuit characteristics: $R_T = 50 \ \Omega$, MCM10144; 100 Ω , MCM10544. $C_L \le 5.0 \ pF$ (including jig and stray capacitance). Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

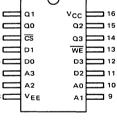
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10145/MCM10545

16 X 4-BIT REGISTER FILE (RAM)




The MCM10145/10545 is a 16 word X 4-bit RAM. Bit selection is achieved by means of a 4-bit address A0 through A3.

The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\overline{CS} input low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode-the output is low and the data present at D_n is stored at the selected address. With \overline{WE} high the chip is in the read mode-the data state at the selected memory location is presented non-

- Typical Address Access Time = 10 ns
- Typical Chip Select Access Time = 4.5 ns
- 50 kΩ Pulldown Resistors on All Inputs
- Power Dissipation (470 mW typ @ 25⁰C) Decreases with Increasing Temperature

сни

t CHW

tснр

MCM10145/MCM10545

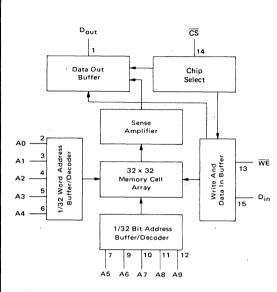
ELECTRICAL CHARACTERISTICS

		-55 ⁰		0	°c	+25 ⁰ C		+75 ⁰ C		+ 125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	1EE		135	-	130	-	125	-	120	-	120	mAdc
Input Current High	linH	-	375	—	220		220		220	-	220	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

	l	мсм	10145	MCM	10545		
				L			
			= 0 to 5 ⁰ C,		–55 to 5 ⁰ C,		
			E =		ыс, Е=		
			:E ^{−−} !Vdc		E ¯ Vdc		
	· ·		5%	1	5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	tACS	2.0	8.0	2.0	10		input to 50% of output.
Chip Select Recovery Time	tRCS	2.0	8.0	2.0	10		See Note 2.
Address Access Time	t _{AA}	4.0	15	4.0	18		
Write Mode						ns	tWSA = 5 ns
Write Pulse Width	tw	8.0	-	8.0	_		Measured at 50% of
Data Setup Time Prior to Write	twsp	0		0	_		input to 50% of output.
Data Hold Time After Write	twhD	3.0	_	4.0	_		t _W = 8 ns.
Address Setup Time Prior to Write	tWSA	5.0	_	5.0	_	,	
Address Hold Time After Write	tWHA	1.0	_	3.0	_		
Chip Select Setup Time Prior to	twscs	0	_	5.0	_		
Write							
Chip Select Hold Time After Write	twhcs	0	-	0	_		
Write Disable Time	tws	2.0	8.0	2.0	10		
Write Recovery Time	tWR	2.0	8.0	2.0	10		
Chip Enable Strobe Mode	i					ns	Guaranteed but not
Data Setup Prior to Chip Select	tCSD	0	-	- 1	_		tested on standard
Write Enable Setup Prior to	tCSW	0		-	_		product. See Figure 1.
Chip Select							
Address Setup Prior to Chip Select	tCSA	0	-	-	_		
Data Hold Time After Chip Select	^t CHD	2.0	-	-	-		
Write Enable Hold Time After	^t CHW	0	-	- 1	-		
Chip Select							
Address Hold Time After Chip	^t CHA	4.0		-	-		
Select				,			
Chip Select Minimum Pulse Width	tCS	18	-	-	-		
Rise and Fall Time	t _r , t _f					ns	Measured between 20%
Address to Output		1.5	7.0	1.5	7.0		and 80% points.
CS to Output		1.5	5.0	1.5	5.0		
Capacitance		[рF	Measured with a pulse
Input Capacitance	Cin	-	6.0	-	6.0		technique.
Output Capacitance	Cout	-	8.0	-	8.0		

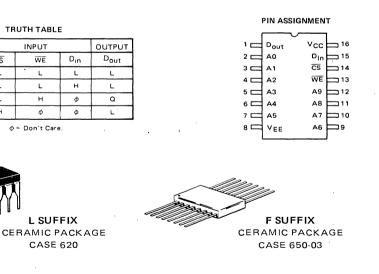

NOTES: 1. Test circuit characteristics: $R_T = 50 \ \Omega$, MCM10145; 100 Ω , MCM10545. $C_L \le 5.0 \ pF$ (including jig and Stray Capacitance). Delay should be derated 30 ps/pF for capacitive loads up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10146/MCM10546

1024 X 1-BIT RANDOM ACCESS MEMORY



The MCM10146/10546 is a 1024 X 1-bit RAM. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM (\overline{CS} input low) is controlled by the \overline{WE} input. With \overline{WE} low, the chip is in the write mode, the output, Dout, is low and the data state present at D_{in} is stored at the selected address. With \overline{WE} high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at Dout. (See Truth Table.)

- Pin-for-Pin Compatible with the 10415 .
- Power Dissipation (520 mW typ @ 25°C) Decreases with Increasing Temperature
- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns
- 50 kΩ Pulldown Resistor on Chip Select Input

TRUTH TABLE

MODE		INPUT		OUTPUT
	CS	WE	Din	Dout
Write ''0''	L	` L	L	L
Write ''1''	L	L	н	L
Read	L	н	φ	٩
Disabled	н	φ	φ	L.

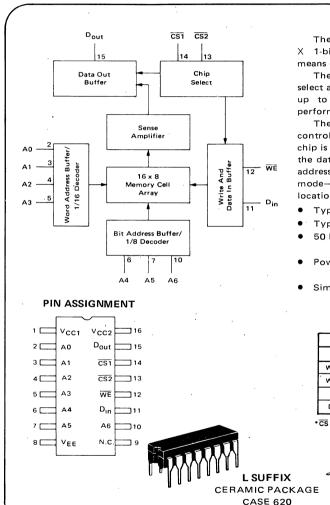
φ = Don't Care.

		- 59	5°C	0°C		+25	5°C	+75	+75 ^o C +		5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE		155	-	150		145		125	-	125	mAdc
Input Current High	linH		375	-	220	-	220		220	-	220	μAdc
Logic "0" Output Voltage	VOL	-1.970	-1.655	-1.920	-1.665	-1.900	-1.650	-1.880	-1.625	-1.870	-1.545	Vdc

NOTE: -55°C and +125°C test values apply to MCM105XX only.

SWITCHING CHARACTERISTICS (Note 1)

		мсм	10146	МСМ	10546		
			= 0 to		-55 to		
			5 ⁰ C,		5 ⁰ C,		
		VEE = -	-5.2 Vdc	V _{EE} = -	5.2 Vdc		
		±	5%	±	5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured at 50% of input
Chip Select Access Time	t _{ACS}	2.0	7.0	2.0	8.0		to 50% of output.
Chip Select Recovery Time	^t RCS	2.0	7.0	2.0	8.0		See Note 2.
Address Access Time	^t AA	8.0	29	8.0	40		
Write Mode						ns	t _{WSA} = 8.0 ns.
Write Pulse Width	tw	25	-	25			Measured at 50% of input
(To guarantee writing)							to 50% of output.
Data Setup Time Prior to Write	twsp	5.0	-	5.0			tw = 25 ns
Data Hold Time After Write	twhd	5.0	-	5.0	-		
Address Setup Time Prior to Write	tWSA	8.0	-	10	-		
Address Hold Time After Write	twha	2.0	-	8.0	-		
Chip Select Setup Time Prior to Write	twscs	5.0	-	5.0	-		
Chip Select Hold Time After Write	twhcs	5.0	_	5.0	_		
Write Disable Time	tws	2.8	7.0	2.8	12		
Write Recovery Time	tWR	2.8	7.0	2.8	12		
Rise and Fall Time	t _r , t _f					ns	Measured between 20% and
CS or WE to Output		1.5	4.0	1.5	4.0		80% points.
Address to Output		1.5	8.0	1.5	8.0		
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0		5.0		technique.
Output Capacitance	Cout	-	8.0	-	8.0		

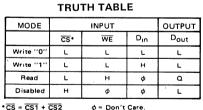

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10146; 100 Ω , MCM10546. $C_L \le 5.0$ pf including jig and stray capacitance. For Capacitance Loading ≤ 50 pF, delay should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10147/MCM10547

128 X 1-BIT RANDOM ACCESS MEMORY



The MCM1047/10547 is a fast 128-word X 1-bit RAM. Bit selection is achieved by means of a 7-bit address, A0 through A6.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system performance.

The operating mode (\overline{CS} inputs low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode—the output is low and the data present at D_{in} is stored at the selected address. With \overline{WE} high the chip is in the read mode—the data state at the selected memory location is presented non-inverted at D_{out}.

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (420 mW typ @ 25^oC) Decreases with Increasing Temperature
- Similar to F10405

3

		-5	5°C	0	°c	+2	5°C	+7!	5°C	+ 12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	115		105	-	100	-	95	-	95	mAdc
Input Current High	linH	-	375	-	220	-	220	-	220	-	220	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

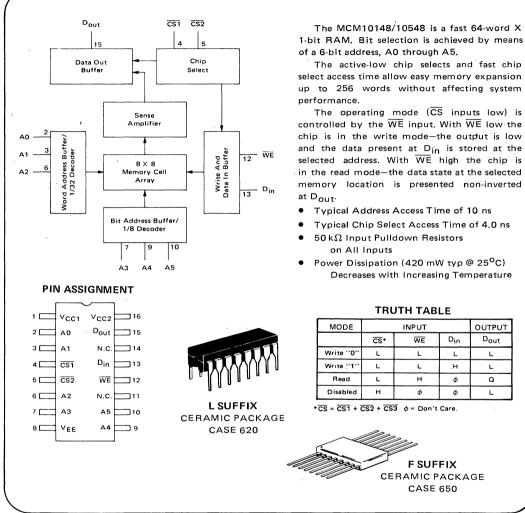
		MCM	10147	MCM1	10547		
			o +75 ⁰ C,	T _A = -55 t			
		$V_{EE} = -5.$	2 Vdc ± 5%	VEE = -5.	2 Vdc ±5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	tACS	2.0	8.0	*	*		input to 50% of output.
Chip Select Recovery Time	tRCS	2.0	8.0	*	*		See Note 2.
Address Access Time	tAA	5.0	15	•	*		
Write Mode	tt					ns	twsa = 4.0 ns
Write Pulse Width	tw	8.0	-	•	-		Measured at 50% of input
Data Setup Time Prior to Write	twsp	1.0	-	•	-		to 50% of output.
Data Hold Time After Write	tWHD	3.0	-	•	-		t _W = 8.0 ns.
Address Setup Time Prior to Write	tWSA	4.0	-	+	- 1		
Address Hold Time After Write	tWHA	3.0	-	•	-		
Chip Select Setup Time Prior to Write	twscs	1.0	-	•			
Chip Select Hold Time After Write	tWHCS	1.0	-	•	-		
Write Disable Time	tws	2.0	8.0	*	*		
Write Recovery Time	tWR	2.0	8.0	•	•		
Rise and Fall Time	t _r , t _f	1.5	· 5.0	*	*	ns	Measured between 20% and
	17.1						80% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0 '	-	*		technique.
Output Capacitance	Cout	-	8.0	-	*		

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10147; 100 Ω , MCM10547.

 $C_L \leq 5.0 \text{ pF}$ (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.

MCM10148/MCM10548

64 X 1-BIT

RANDOM ACCESS MEMORY

The active-low chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system.

The operating mode (\overline{CS} inputs low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode-the output is low and the data present at D_{in} is stored at the selected address. With WE high the chip is in the read mode-the data state at the selected memory location is presented non-inverted

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 k Ω Input Pulldown Resistors
- Power Dissipation (420 mW typ @ 25^oC) Decreases with Increasing Temperature

TRUTH TABLE

		INPUT		
MODE		OUTPUT		
	CS•	WE	Din	D _{out}
Write ''0''	L	L	L	L
Write (111	L	L	.н	L
Read	L	н	φ	٩
Disabled	н	φ	φ	L

 $*\overline{CS} = \overline{CS1} + \overline{CS2} + \overline{CS3} \phi = \text{Don't Care.}$

F SUFFIX CERAMIC PACKAGE **CASE 650**

		-5	5°C	0	°c	+2	5°C	+7!	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	IEE	-	115	-	105	-	100		95	-	95	mAdc
Input Current High	linH	-	375	-	220	-	220	-	220	-	220	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

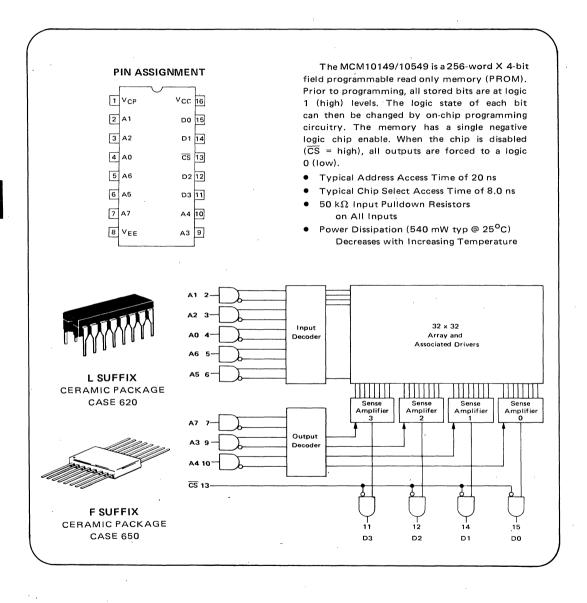
SWITCHING CHARACTERISTICS (Note 1)

		MCM	10148	МСМ	10548		
			o +75 ⁰ C, 2 Vdc ±5%		to + 125 ⁰ C, .2 Vdc ± 5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	tACS	-	7.5	-	•		input to 50% of output.
Chip Select Recovery Time	tRCS	_	7.5	-	•		See Note 2.
Address Access Time	tAA		15	- 1	ł •		
Write Mode						ns	twsa = 5.0 ns
Write Pulse Width	tw	8.0		•			Measured at 50% of input
Data Setup Time Prior to Write	twsD	3.0	-	•	- 1		to 50% of output.
Data Hold Time After Write	tWHD	2.0	-	•	- 1		tw = 8.0 ns.
Address Setup Time Prior to Write	twsA	5.0	- 1	•	- 1		
Address Hold Time After Write	tWHA	3.0	-	•	-		
Chip Select Setup Time Prior to Write	twscs	3.0	-	•			
Chip Select Hold Time After Write	tWHCS	0	-	•	-		
Write Disable Time	tws	2.0	7.5	*	*		
Write Recovery Time	tWR	2.0	7.5	*	*		
Rise and Fall Time	t _r , t _f	1.5	5.0	*	•	ns	Measured between 20% and 80% points.
Capacitance					1	pF	Measured with a pulse
Input Capacitance	Cin	· _	5.0	-	*		technique.
Output Capacitance	Cout	_	8.0	-	*		

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10148; 100 Ω , MCM10548.

 $C_{L} \leq 5.0 \text{ pF}$ (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.


2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.

MCM10149/MCM10549

256 X 4-BIT PROGRAMMABLE READ-ONLY MEMORY

MCM10149/MCM10549

ELECTRICAL CHARACTERISTICS

		~5	5°C	0	°C	+2	5°C	+7!	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Unit								
Power Supply Drain Current	IEE		140	-	135	-	130	-	125	-	125	mAdc
Input Current High	linH	-	450	-	265		265	-	265	-	265	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		MCN	110149	мсм	10549		
			to +75 ⁰ C,	$T_A = -55 \text{ to } + 125^{\circ}\text{C},$			
		$V_{EE} = -5$.2 Vdc ± 5%	VEE = -5	.2 Vdc ± 5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	^t ACS	2.0	10	*	•		input to 50% of output.
Chip Select Recovery Time	TRCS	2.0	10	•	•		See Note 1.
Address Access Time	tAA	7.0	25	• •	•		
Rise and Fall Time	t _r , t _f	1.5	7.0	*	*	ns	Measured between 20% and 80% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0		5.0		technique.
Output Capacítance	Cout	-	8.0	_	8.0		

NOTES: 1. Test circuit characteristics: R_T = 50 Ω, MCM10149; 100 Ω, MCM10549.

 $C_L \leqslant$ 5.0 pF (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

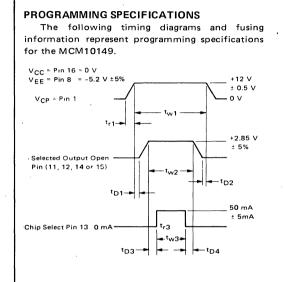
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

4. $V_{CP} = V_{CC} = Gnd$ for normal operation.

*To be determined; contact your Motorola representative for up-to-date information.

PROGRAMMING THE MCM10149

During programming of the MCM10149, input pins 7, 9, and 10 are addressed `with standard MECL 10K logic levels. However, during programming input pins 2, 3, 4, 5, and 6 are addressed with 0 V \leq V_{IH} \leq + 0.25 V and V_{EE} \leq V_{IL} \leq -3.0 V. It should be stressed that this deviation from standard input levels is required <u>only</u> during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

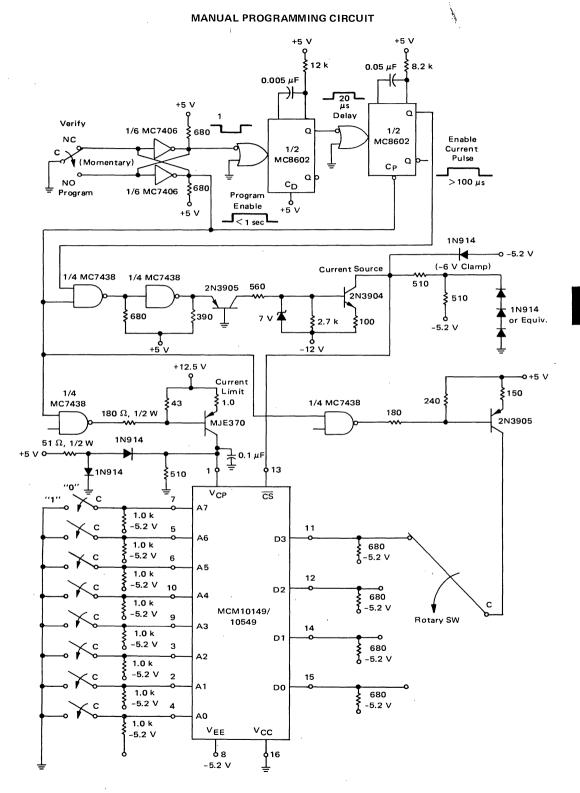

With these requirements met, and with V_{CP} = $V_{CC} = 0$ V and $V_{EE} = -5.2$ V ± 5%, the address is set up. After a minimum of 100 ns delay, VCP (pin 1) is ramped up to +12 V \pm 0.5 V (total voltage V_{CP} to V_{EE} is now 17.2 V, +12 V -[-5.2 V]). The rise time of this V_{CP} voltage pulse should be in the 1-10 μ s range, while its pulse width (t_{w1}) should be greater than 100 μ s but less than 1 ms. The VCP supply current at +12 V will be approximately 525 mA while current drain from V_{CC} will be approximately 175 mA. A current limit should therefore be set on both of these supplies. The current limit on the VCP supply should be set at 700 mA while the V_{CC} supply should be limited to 250 mA. It should be noted that the VEE supply must be capable of sinking the combined current of the V_{CC} and V_{CP} supplies while maintaining a voltage of -5.2 V ± 5%.

Coincident with, or at some delay after the V_{CP} pulse has reached its 100% level, the desired bit to be fused can be selected. This is done by taking the corresonding output pin to a voltage of $\pm 2.85 \ \pm 5\%$. It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor (100 ohm for MCM10549) to $-2.0 \ V$. Current into the selected output is 5 mA maximum.

After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13. The 0% to 100% rise time of this current pulse should be 250 ns max. Its pulse width should be greater than 100 μ s. Pulse magnitude is 50 mA ±5.0 mA. The voltage clamp on this current source is to be -6.0 V.

After the fusing current source has returned 0 mA, the bit select pulse is returned to it initial level, i.e., the output is returned through its load to -2.0 V. Thereafter, V_{CP} is returned to 0 V. Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V_{CP} has returned to 0 V. The remaining bits are programmed in a similar fashion.

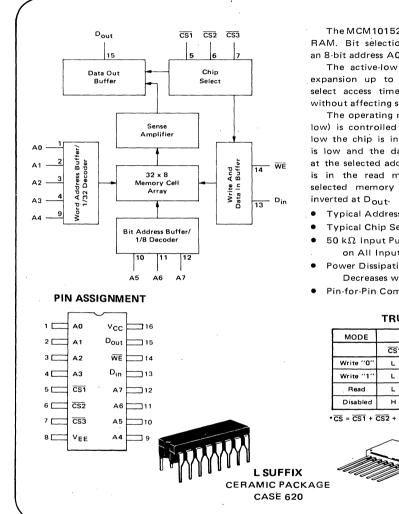
† NOTE: For devices that program incorrectly, return serialized units with individual truth tables. Non compliance voids warranty.


The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the V_{CP} pulse, i.e., V_{CP} = 0 V. Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V_{CP} returns to 0 V.

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of \leq 15% is to be observed.

Definitions and values of timing symbols are as follows.

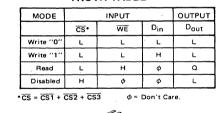
Symbol	Definition	Value
t _{r1}	Rise Time, Programming Voltage	≥ 1 μs
^t w1	Pulse Width, Programming Voltage	≥ 100 µs < 1 ms
^t D1	Delay Time, Programming Voltage Pulse to Bit Select Pulse	≥ 0
^t w2	Pulse Width, Bit Select	≥ 100 μs
tD2	Delay Time, Bit Select Pulse to Programming Voltage Pulse	≥ 0
t _{D3}	Delay Time, Bit Select Pulse to Programming Current Pulse	≥ 1 μs
^t r3	Rise Time, Programming Current Pulse	250 ns max
^t w3	Pulse Width, Programming Current Pulse	≥ 100 μs
^t D4	Delay Time, Programming Current Pulse to Bit Select Pulse	≥ 1 μs


3-154

MCM10152/MCM10552

256 X 1-BIT

RANDOM ACCESS MEMORY



The MCM10152/10552 is a 256-word X 1-bit RAM. Bit selection is achieved by means of an 8-bit address A0 through A7,

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\overline{CS} inputs low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode-the output is low and the data present at D_{in} is stored at the selected address. With \overline{WE} high the chip is in the read mode-the data state at the selected memory location is presented non-

- Typical Address Access Time = 11 ns
- Typical Chip Select Access Time = 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (570 mW typ @ 25°C) Decreases with Increasing Temperature
- Pin-for-Pin Compatible with F10410/10414

TRUTH TABLE

F SUFFIX CERAMIC PACKAGE CASE 650

		-5	5 ⁰ C	0	°c	+2	5°C	+7	5°C	+12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	linH	-	375	-	220	-	220		220	-	220	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		MCM	10152	MCM	10552		
		T _A = 0 t	o +75 ⁰ C,	T _A = -55	to +125 ⁰ C,		
		$V_{EE} = -5$.2 Vdc ± 5%	V _{EE} = -5	.2 Vdc ±5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode							Measured from 50% of
Chip Select Access Time	tACS	2.0	7.5	*	*		input to 50% of output.
Chip Select Recovery Time	tRCS	2.0	7.5	•	*		See Note 2.
Address Access Time	^t AA	7.0	15	*	•		
Write Mode						ns	t _{WSA} = 5.0 ns
Write Pulse Width	tw	10		*	-		Measured at 50% of input
Data Setup Time Prior to Write	tWSD	2.0	-	•			to 50% of output.
Data Hold Time After Write	twhd	2.0	-	*			t _W = 10 ns.
Address Setup Time Prior to Write	twsa	5.0	-	•	-		1
Address Hold Time After Write	twha	3.0	-	•	- 1		
Chip Select Setup Time Prior to Write	twscs	2.0	-	•	- 1		
Chip Select Hold Time After Write	tWHCS	2.0	-	*	-		
Write Disable Time	tws	2.5	7.5	•	*		
Write Recovery Time	twr	2.5	7.5	•	*		
Rise and Fall Time	t _r , t _f	1.5	5.0	*	*	ns	Measured between 20% and
							80% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0	-	•		technique.
Output Capacitance	Cout	-	8.0	-	+		

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10152; 100 Ω , MCM10552.

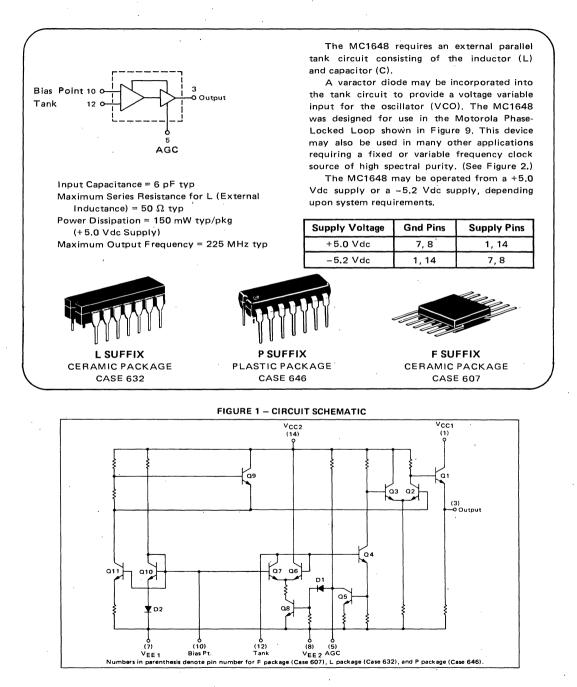
 $C_L \leqslant 5.0 \ \text{pF}$ (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

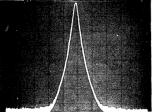
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.


3

3-158


MECL III MC1600 Series

MC1648/MC1648M

VOLTAGE-CONTROLLED OSCILLATOR

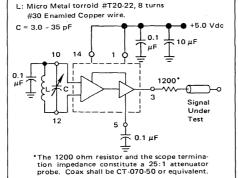


FIGURE 2 - SPECTRAL PURITY OF SIGNAL AT OUTPUT

-

B.W. = 10 kHz Center Frequency = 100 MHz Scan Width = 50 kHz/div Vertical Scale = 10 dB/div

1	TEST VOLTAGE/CURRENT VALUES										
@ Test			mAdc								
Temperature	VIHmax	VILmin	Vcc	١L							
	MC1648										
-30 ⁰ C	+2.00	+1.50	5.0	-5.0							
+25 ⁰ C	+1.85	+1.35	5.0	-5.0							
+85 ⁰ C	+1.70	+1.20	5.0	-5.0							
	MC1648M										
–55 ⁰ C	+2.07	+1.57	5.0	-5.0							
+25 ⁰ C	+1.85	+1.35	5.0	-5.0							
+125 ⁰ C	+1.60	+1.10	5.0	-5.0							

ELECTRICAL CHARACTERISTICS

Supply Voltage = +5.0 Volts

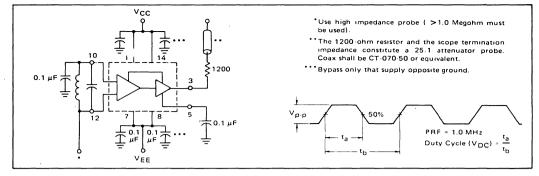
4-3

			-55°0	2		-30°C	;		+25°C	;		+85°	2	+ 125 ⁰ C						
Characteristic	Symbol	Min		Max ⁻	Min		Max	Min		Max	Mir	۱ I	Max	Min		Max	Unit	Conditions		
Power Supply Drain Current	ΙE	-		-	-		_	-		41	_		-	-			mAdc	Inputs and outputs open.		
Logic "1" Output Voltage	∨он	3.92	2	4.13	3.95	5 4	4.185	4.04	1	4.25	4.1	1	4.36	4.16		4.40	Vdc	VILmin to Pin 12, IL @ Pin 3.		
Logic "0" Output Voltage	VOL	3.13	3	3.38	3.16	3	3.40	3.20	5	3.43	3.2	2	3.475	3.23		3.51	Vdc	VIHmax to Pin 12, IL @ Pin 3.		
Bias Voltage	V _{Bias} *	1.67	7	1.97	1.60)	1.90	1.4	5	1.75	1.3	0	1.60	1.20		1.50	Vdc	V _{ILmin} to Pin 12.		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	<u> </u>			
Peak-to-Peak Tank Voltage	V _{P-P}		—	-	_	-	-	-	400	-		-	-	- 1	-	-	mV			
Output Duty Cycle	VDC	-	_	- 1	-	-	-	·	50	-	-	- -				-	%	See Figure 3.		
Oscillation Frequency	f _{max**}	-	225	-	-	225	-	200	225	-		- 225		- 225 -		_	MHz]		

*This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor turning diode at this point.

**Frequency variation over temperature is a direct function of the $\Delta C/\Delta$ Temperature and $\Delta L/\Delta$ Temperature.

	TEST VOLTAGE/CURRENT VALUES											
@ Test		mAdc										
Temperature	V _{IHmax}	VILmin	V _{CC}	۱ _L								
	MC1648											
-30 ⁰ C	-3.20	-3.70	-5.2	-5.0								
+25 ⁰ C	-3.35	-3.85	-5.2	-5.0								
+85 ⁰ C	-3.50	4.00	-5.2	-5.0								
	MC1648M											
-55 ⁰ C	-3.13	-3.63	-5.2	-5.0								
+25 ⁰ C	-3.35	-3.85	-5.2	-5.0								
+125 ⁰ C	-3.60	-4.10	-5.2	-5.0								


Supply Voltage = -5.2 Volts

4-4

	· · · ·	-	-55°C	c		-30 ⁰	'c		+25 ⁰	ʻC		+850	С		+125 ⁰ C			
Characteristic	Symbol	Min		Max	Min		Max	Min		Max	Min	Min Max		Min		Max	Unit	Conditions
Power Supply Drain Current	١E	<u> </u>		_	-		-	-		41 –							mAdc	Inputs and outputs open.
Logic "1" Output Voltage	V _{OH}	-1.080	.0 -	-0.870	-1.04	1 5	-0.815	-0.96	30	-0.750	-0.89	390 -0.640		-0.84	-0.840 -0.60		Vdc	VILmin to Pin 12, IL @ Pin 3.
Logic "0" Output Voltage	VOL	-1:920	0 -	-1.670	-1.89	10	-1.650	-1.85	50	-1.620	-1.83	30 ·	-1.575	-1.82	20 -	-1.540	Vdc	VIHmax to Pin 12, IL @ Pin 3.
Bias Voltage	V _{Bias} *	-3.53	3	-3.23	-3.60	0	-3.30	-3.75	5	-3.45	-3.90	,0	-3.60	-4.00	1.00 -3.70		Vdc	V _{ILmin} to Pin 12.
	t'	Min	Тур	Max	Min	Тур	p Max	Min	Тур	p Max	Min	Тур	o Max	Min	Тур	Max	⊢ −−′	
Peak-to-Peak Tank Voltage	V _{P-P}	$\left[- \right]$	-	- 1	-]	<u> </u>			400	,		<u> </u>				-	mV	
Output Duty Cycle	VDC	$\overline{ - }$	-			-	<u> </u>	$\int - \int$	50	-				_ !			%	See Figure 3.
Oscillation Frequency	f _{max**}	<u> </u>	225	/	-]	225	5	200	225	, !	-	- 225 -		-	225	-	MHz	

*This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor turning diode at this point.

**Frequency variation over temperature is a direct function of the $\Delta C/\Delta$ Temperature and $\Delta L/\Delta$ Temperature.

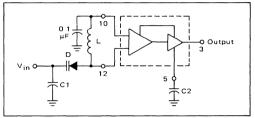

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit schematic for the MC1648. The oscillator incorporates positive feedback by coupling the base of transistor Q7 to the collector of Q8. An automatic gain control (AGC) is incorporated to limit the current through the emitter-coupled pair of transistors (Q7 and Q8) and allow optimum frequency response of the oscillator.

In order to maintain the high Q of the oscillator, and provide high spectral purity at the output, transistor Q4 is used to translate the oscillator signal to the output differential pair Q2 and Q3. Q2 and Q3, in conjunction with output transistor Q1, provides a highly buffered output which produces a square wave. Transistors Q9 and Q11 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3).

When operating the oscillator in the voltage controlled mode (Figure 4), it should be noted that

the cathode of the varactor diode (D) should be biased at least 2 V_{BE} above V_{EE} (\approx 1.4 V for positive supply operation).

When the MC1648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5.

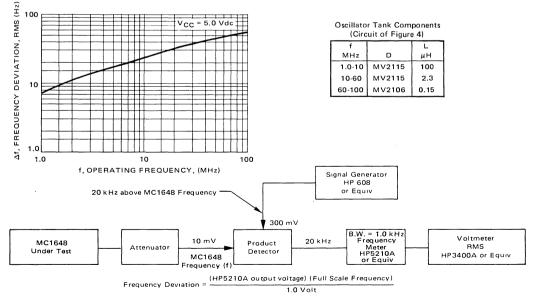
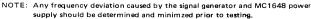
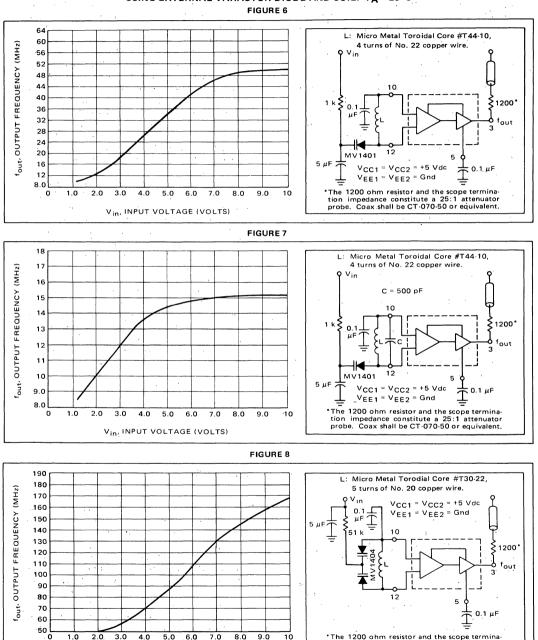




FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM

TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. TA = 25° C

4-6

Vin, INPUT VOLTAGE (VOLTS)

tion impedance constitute a 25:1 attenuator probe. Coax shall be CT-070-50 or equivalent.

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7, and 8. Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (plus the input capacitance of the oscillator, 6 pF typical). Figure 7 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The 1 k Ω resistor in Figures 6 and 7 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor (51 k Ω) in Figure 8 is required to provide isolation for the high-impedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:

$$\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_D(max) + C_S}}{\sqrt{C_D(min) + C_S}}$$

where $f_{min} = \frac{1}{2\pi\sqrt{L(C_D(max) + C_S)}}$

- C_S = shunt capacitance (input plus external capacitance).
- C_D = varactor capacitance as a function of bias voltage.

Good RF and low-frequency bypassing is necessary on the power supply pins. (See Figure 2.) Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a 0.1 μ F capacitor is sufficient for C1 and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At high frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the MC1648, a series resistor is tied from the AGC point to the most negative power potential (ground if ± 5.0 volt supply is used, -5.2volts if a negative supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be desirable to increase the tank circuit peakto-peak voltage in order to shape the signal at the output of the MC1648. This is accomplished by tying a series resistor (1 k Ω minimum) from the AGC to the most positive power potential (+5.0 volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle.

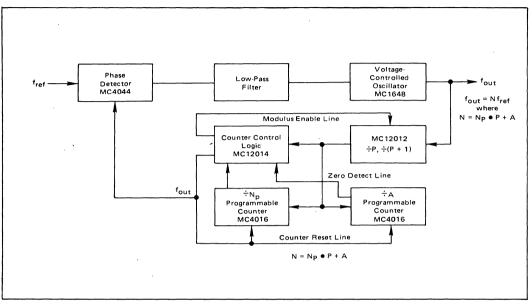
APPLICATIONS INFORMATION

The phase locked loop shown in Figure 9 illustrates the use of the MC1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and landmobile communications, amateur and CB receivers. The system operates from a single ± 5.0 Vdc supply, and requires no internal translations, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lockup. Additional features include dc digital switching (preferable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz, the range being set by the varactor diode).

The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; $f_{out} = Nf_{ref}$. The channel spacing is equal to frequency (f_{ref}).

For additional information on applications and designs for phase locked-loops and digital frequency synthesizers. see Motorola Application Notes AN-532A, AN-535, AN-553, AN-564 or AN594.



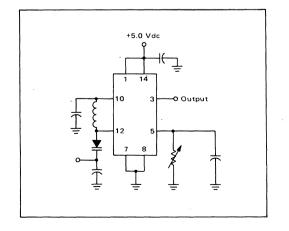

FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Figure 10 shows the MC1648 in the variable frequency mode operating from a ± 5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE.

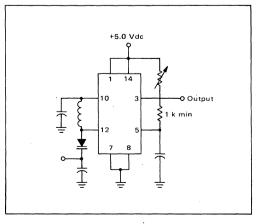

Figure 11 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1 k-ohm minimum).

FIGURE 10 - METHOD OF OBTAINING A SINE-WAVE OUTPUT

Figure 12 shows the MC1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of L1 and C1 at resonance. The optimum value for R at 100 MHz is approximately 850 ohms.

FIGURE 11 – METHOD OF EXTENDING THE USEFUL RANGE OF THE MC1648 (SQUARE WAVE OUTPUT)

FIGURE 12 – CIRCUIT USED FOR COLLECTOR OUTPUT OPERATION

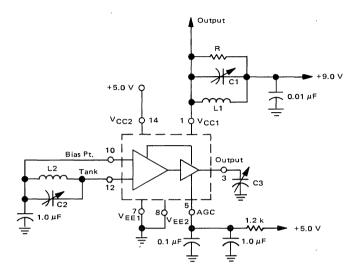
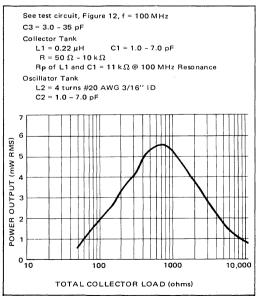
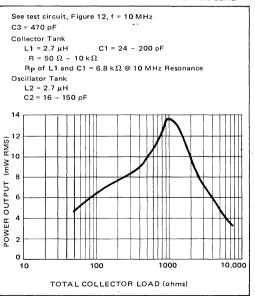




FIGURE 13 – POWER OUTPUT versus COLLECTOR LOAD

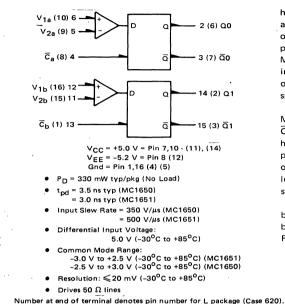

.....

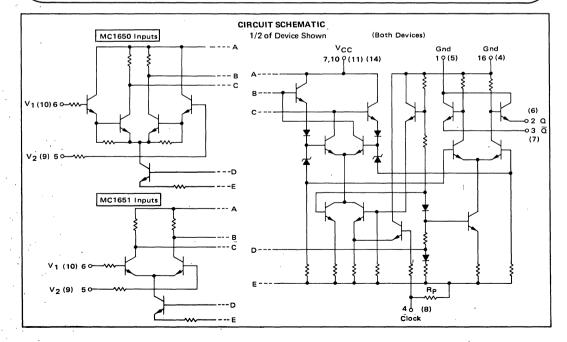
FIGURE 14 – POWER OUTPUT versus COLLECTOR LOAD

MC1650/MC1651

DUAL A/D CONVERTER

Number in parenthesis denotes pin number for F package (Case 650).

The MC1650 and the MC1651 are very high speed comparators utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The MC1650 provides high impedance Darlington inputs, while the MC1651 is a lower impedance option, with higher input slew rate and higher speed capability.


The clock inputs (\overline{C}_a and \overline{C}_b) operate from MECL III or MECL 10,000 digital levels. When \overline{C}_a is at a logic high level, Q0 will be at a logic high level provided that $V_1 > V_2$ (V_1 is more positive than V_2). $\overline{Q}0$ is the logic complement of Q0. When the clock input goes to a low logic level, the outputs are latched in their present state.

Assessment of the performance differences between the MC1650 and the MC1651 may be based upon the relative behaviors shown in Figures 4 and 7.

TRUTH TABLE

ē	V ₁ , V ₂	Q0 _{n+1}	00 _{n+1}
· H	V1>V2	н	L
н	V1 <v2< td=""><td>L</td><td>н</td></v2<>	L	н
· L	φφ	00 _n	āon

 ϕ = Don't Care

L SUFFIX CERAMIC PACKAGE CASE 620

F SUFFIX CERAMIC PACKAGE CASE 650

				1	FEST VO	LTAGE VA	LUES		_	_		
@ Test						(Volts)	_				(0
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	V _{A1}	V _{A2}	V _{A3}	V _{A4}	V _{A5}	V _{A6}	v _{cc} ③	v _{EE} (3)
-30°C	-0.875	-1.890	-1.180	-1.515	+0.020	-0.020		See Note (4) +5.0 -5				-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	+0.020	-0.020						-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	+0.020	-0.020						-5.2

ELECTRICAL CHARACTERISTICS

		-3	0°C	+2	5°C	+8	5°C		TEST VOLTAGE APPLIED TO PINS LISTED BELOW										
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	V _{IHmax}	VILmin	VIHAmin	VILAmax	V _{A1}	V _{A2}	V _{A3}	V _{A4}	V _{A5}	V _{A6}	Gnd
Power Supply Drain Current								mAdc											
Positive	1cc	-	_	-	25*	-	-			4,13	-	-	6,12	_	-	-	-	-	1,5,11,16
Negative	ΙE				55*				4,13		-	-	6,12	-	-	-	-	-	1,5,11,16
Input Current	l _{in}			<u> </u>				μAdc											
MC1650	· ·	-	-		10	-	-		4	13		-	12	-	6	-	-	-	1,5,11,16
MC1651		-	-	-	40	-	-												
Input Leakage Current	R							μAdc											
MC1650		-	-	-	7.0	-	-		4	13	-	-	12	-	-	-	6	-	1,5,11,16
MC1651		-	-	-	10	-	-												
Clock Input Current	linH		-	-	350	-	-	μAdc	4	13	-	-	6,12	-	-	-	-	-	1,5,11,16
Logic "1" Output Voltage	Voн	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	4,13	-	-	. –	6,12	-	-	-	-	-	1,5,11,16
										-	-	-	-	5,11	-	-	-		1,6,12,16
										-	-	-	-	-	6,12	5,11	-	-	1,16
										-	-	-	-	_	-	-	5.11	6.12	1,16
											-	-	-	6,12	-	-	-	-	1,5,11,16
										-	_	_	5,11	-	_ 5,11	6,12	_	_	1,6,12,16
									+	_	_	_	_	_	5,11	0,12	6.12	5,11	1,16
Logic "0" Output Voltage	VOL	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	4,13		-			6,12		_	-	-	1,5,11,16
Logic C Catpat Fondge	1.05	1.000	1.000	1.000	1.020	1.000	1.070	• 40	1	_	_	_	5,11	_	-	-	_	_	1,6,12,16
										_	_	-	·	_	5,11	6,12	-	_	1,16
										-	-	-				-	6,12	5,11	1,16
										-	· -	-	6,12	-		-	-	-	1,5,11,16
						· ·				-	-	-	-	5,11	-	-	-	-	1,6,12,16
									↓	-	-	-	-	~	6,12	5,11	-	-	1,16
									<u> </u>			-	_	-		-	5,11	6,12	1,16
Logic "1" Threshold	VOHA	-1.065	-	-0.980	-	-0.910	-	Vdc	-	13	4	-	6	-		-	-	-	1,5,16
Voltage 2											-	4	-	6	-	-	-	-	
									-		4	- 4	- 6	6	_	_	-	_	↓
Logic "0" Threshold	VOLA	_	-1.630	-	-1.600	_	-1.555	Vdc		13	4	-	6	_	_	_	_		1,5,16
Voltage (2)	VOLA	_	-1.030	-	-1.000	_	-1.555	vac	_		4	4	-	6	_	_	_		1,5,16
									_		4	-		6	_			_	
									_	+		4	6	_		-	_	_	†

NOTES (1) All data is for 1/2 MC1650 or MC1651, except data marked (*) which refers to the entire package.

(2) These tests done in order indicated. See Figure 5.

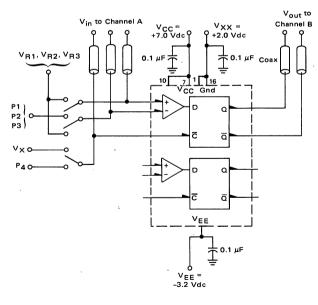
 $\overbrace{3}^{O} Maximum Power Supply Voltages (beyond which device life may be impaired): |V_{EE}| + |V_{CC}| \ge 12 \, Vdc.$

(4)	All Temperatures	V _{A3}	V _{A4}	V _{A5}	V _{A6}		
-	MC1650	+3.000	+2.980	-2.500	-2.480		
	MC1651	+2.500	+2.480	-3.000	-2.980		

MC1650/MC1651

		SWITCHING	TEST V	OLTAGE	VALUES										
@ Test		(Volts)													
Temperature	V _{R1}	V _{R2} V _{R3}	vx	v _{xx}	v _{cc} ①	v _{EE} ①									
-30°C	+2.000		+1.040	+2.00	+7.00	-3.20									
+25°C	+2.000	See Note (4)	+1.110	+2.00	+7.00	-3.20									
+85°C	+2.000		+1.190	+2.00	+7.00	-3.20									

		-30	0°C	+25	5°C	+8	5°C		Conditions
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	(See Figures 1-3)
Switching Times Propagation Delay (50% to 50%) V-Input	tpd	2.0	5.0	2.0	5.0	2.0	5.7	ns	V _{R1} to V ₂ , V _X to Clock, P ₁ to V ₁ , or, V _{R2} to V ₂ , V _X to Clock, P ₂ to V ₁ , or, V _{R3} to V ₂ , V _X to Clock, P ₃ to V ₁ .
Clock 2		2.0	4.7	2.0	4.7	2.0	5.2		V_{R1} to V_2 , P_1 to V_1 and P_4 to Clock, or, V_R1 to V_1 , P_1 to V_2 and P_4 to Clock.
Clock Enable	tsetup	-	-	2.5	-	-	-	ns	
Clock Aperture ③	tap	-		1.5	-	-		ns	V_{R1} to V_2 , P_1 to V_1 , P_4 to Clock
Rise Time (10% to 90%)	t+	1.0	3.5	1.0	3.5	1.0	3.8	ns	
Fall Time (10% to 90%)	t-	1.0	3.0	1.0	3.0	1.0	3.3	ns	V_{R1} to V_2 , V_X to Clock, P_1 to V_1 .


NOTES: (1) Maximum Power Supply Voltages (beyond which device life may be impaired: $|V_{CC}| + |V_{EE}| \ge 12 V dc.$

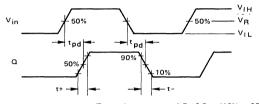
4	All Temperatures	V _{R2}	V _{R3}
-	MC1650	+4.900	-0.400
	MC1651	+4.400	-0.900

(2) Unused clock inputs may be tied to ground.

(3) See Figure 3.

FIGURE 1 – SWITCHING TIME TEST CIRCUIT @ 25°C

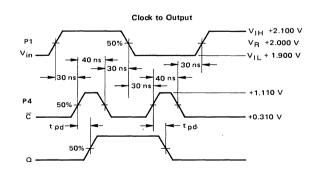
Note: All power supply and logic levels are shown shifted 2 volts positive.

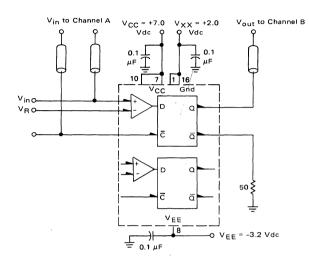

50-ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50-ohm coaxial cable.

FIGURE 2 - SWITCHING AND PROPAGATION WAVEFORMS @ 25°C

The pulse levels shown are used to check ac parameters over the full common-mode range.


V - Input to Output


Test pulses: t₊, t₋ = 1.5 ±0.2 ns (10% to 90%) f = 5.0 MHz 50% Duty Cycle

TEST	PUL	SE L	EV	ELS
------	-----	------	----	-----

		F	°1	P	2	P 3		
ſ		MC1650	MC1651	MC1650	MC1651	MC1650	MC1651	
.[VIH	+2.100 V	+2.100 V	+5.000 V	+4.500 V	-0.300 V	-0.800 V	
ſ	VR	+2.000 V	+2.000 V	+4.900 V	+4.400 V	-0.400 V	-0.900 V	
	VIL	+1.900 V	+1.900 V	+4.800 V	+4.300 V	-0.500 V	-1.000 V	

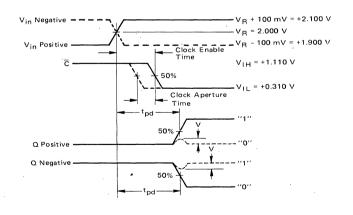
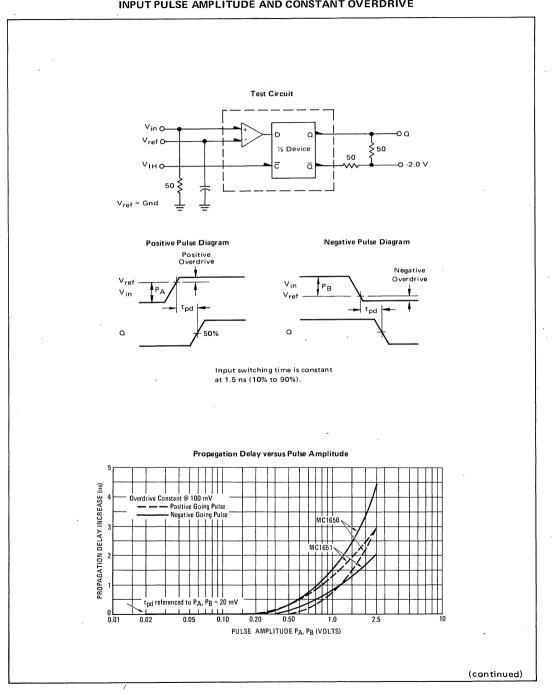

P4: t₊, t₋ = 1.5 ± 0.2 ns.

FIGURE 3 – CLOCK ENABLE AND APERTURE TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable.


Analog Signal Positive and Negative Slew Case

 Clock enable time = minimum time between analog and clock signal such that output switches, and t_{pd} (analog to Q) is not degraded by more than 200 ps.

---- Clock aperture time = time difference between clock enable time and time that output does not switch and V is less than 150 mV.

Note: All power supply and logic levels are shown shifted 2 volts positive.

FIGURE 4 – PROPAGATION DELAY (t_{pd}) versus INPUT PULSE AMPLITUDE AND CONSTANT OVERDRIVE

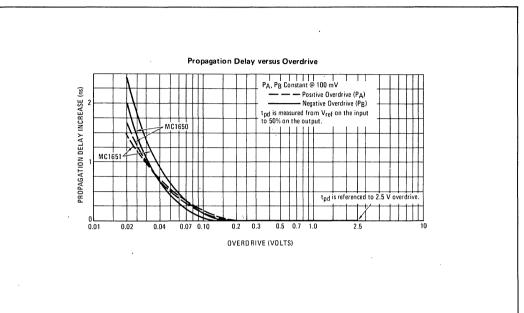
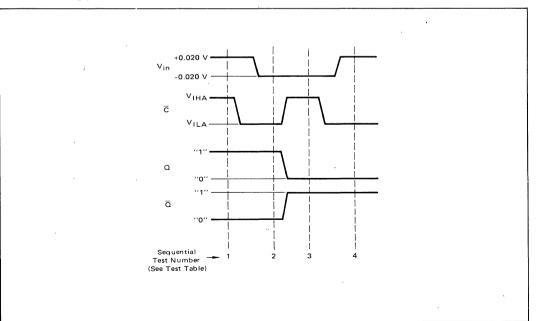
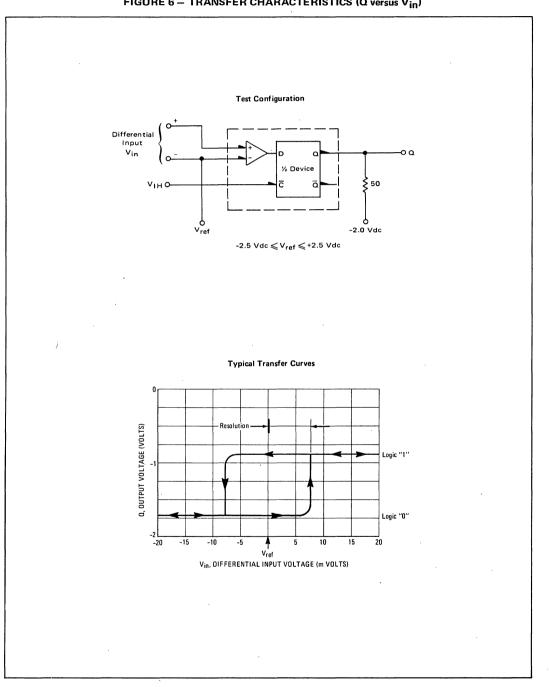
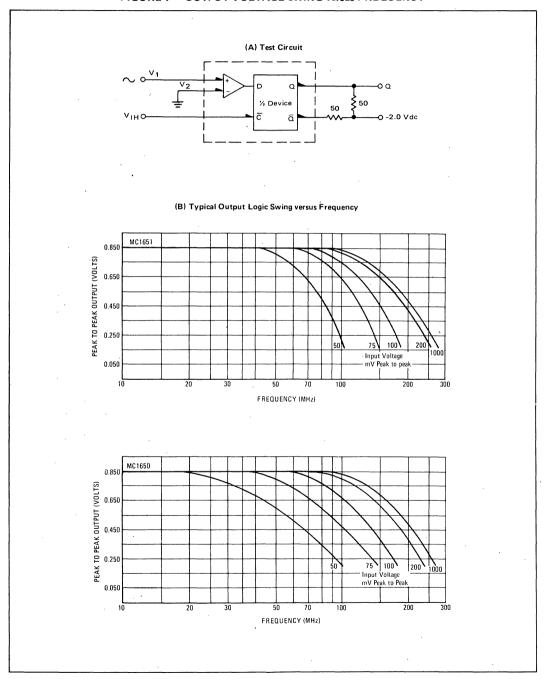




FIGURE 4 (continued)

FIGURE 5 - LOGIC THRESHOLD TESTS (WAVEFORM SEQUENCE DIAGRAM)


MC1650/MC1651

4

FIGURE 6 - TRANSFER CHARACTERISTICS (Q versus Vin)

4

FIGURE 7 – OUTPUT VOLTAGE SWING versus FREQUENCY

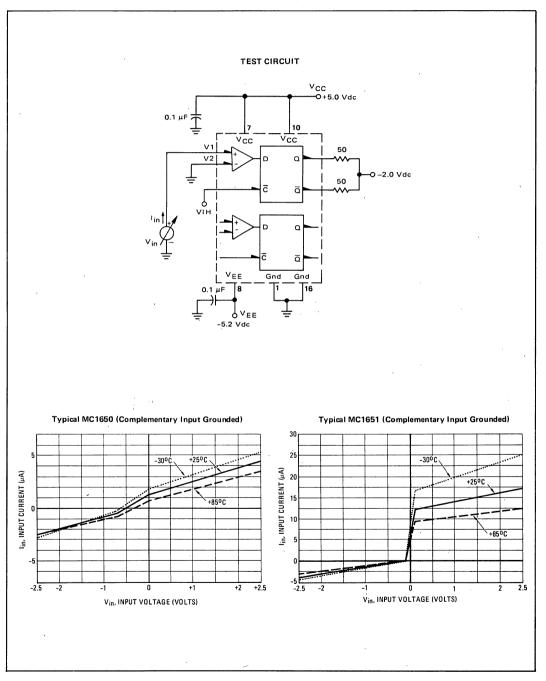
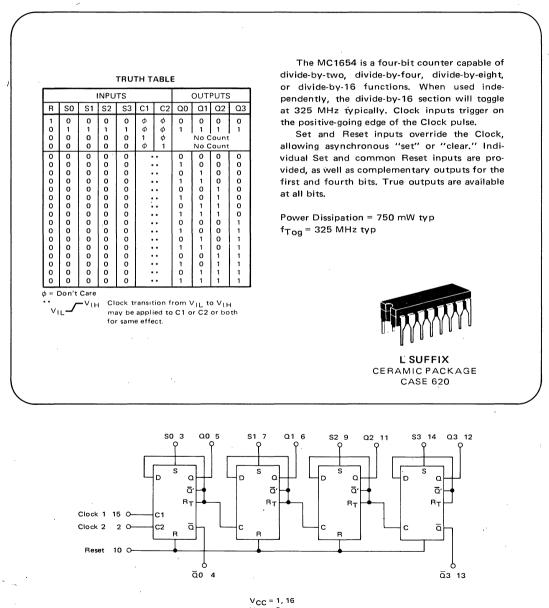
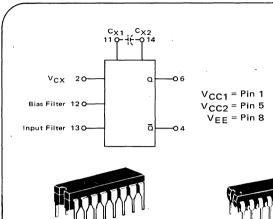



FIGURE 8 – INPUT CURRENT versus INPUT VOLTAGE

MC1654 BINARY COUNTER

V_{EE} = 8

		-30	0°C	+2!	5 ^o C	+8	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-	-	200	-	-	mAdc
Input Current	l inH							mAdc
Reset		—	-	-	1.00	-	-	
Set, Clock		-	-	-	0.60	-	-	
Switching Times								ns
Propagation Delay	t _{pd}			[
Clock		1.0	2.9	1.0	2.7	1.0	3.1	
Set, Reset		2.0	3.9	2.0	3.7	2.0	4.1	
Rise Time (10% to 90%)	t+	1.0	2.9	1.0	2.7	1.0	3.1	ns
Fall Time (10% to 90%)	t-	1.0	2.8	1.0	2.6	1.0	3.0	ns
Maximum Toggle Frequency	f _{tog}	260	-	300		260	-	MHz


ELECTRICAL CHARACTERISTICS

For V_{OH}/V_{OL} testing reset all four flip-flops by applying R_{A1} to Reset and apply V_{ILmin} to Set inputs, or set all four flip-flops by applying R_{A1} simultaneously to all Set inputs and apply V_{ILmin} to Reset. For V_{OHA}/V_{OLA} testing follow the same procedure using P_{A2} and V_{ILAmax}.

PA1 _____VIH PA2 ____VIHA

MC1658 VOLTAGE-CONTROLLED MULTIVIBRATOR

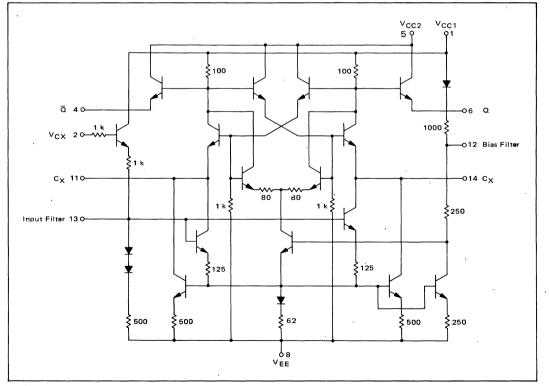
L SUFFIX

CERAMIC PACKAGE


CASE 620

The MC1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with MECL III and MECL 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.



P SUFFIX PLASTIC PACKAGE **CASE 648**

F SUFFIX CERAMIC PACKAGE CASE 650

FIGURE 1 - CIRCUIT SCHEMATIC

	т	TEST VOLTAGE VALUES										
@ Test		Vdc ±1%										
Temperature	VIH	VIH VIL V3 VIHA VEE										
-30 ⁰ C	0.0	-2.0	-1.0	+2.0	-5.2							
+25 ⁰ C	0.0	-2.0	-1.0	+2.0	-5.2							
+85 ⁰ C	0.0	0.0 -2.0 -1.0 +2.0 -5.2										
	· · · · · · · · · · · · · · · · · · ·				-							

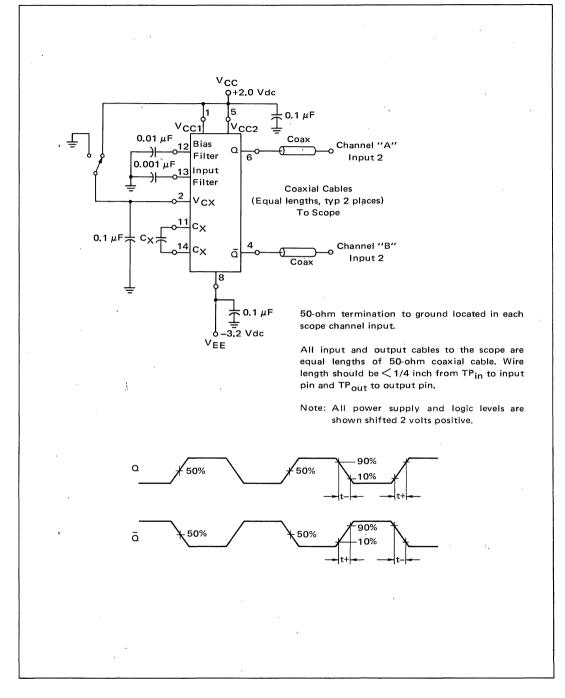
ELECTRICAL CHARACTERISTICS

		-30	-30°C		+25 ⁰ C		+85 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Power Supply Drain Current	ΙE		_	-	32	-	-	mAdc	V_{IH} to V_{CX} Limit applies for 1 or 2
Input Current	linH	-	-	-	350		-	μAdc	V_{IH} to V_{CX} (1).
"Q" High Output Voltage	V _{OH}	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	V ₃ to V _{CX} . Limits apply for (1) or (2)
"Q" Low Output Voltage	VOL	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	

AC CHARACTERISTICS

	Symbol	Min	Max	Min	Тур	Max	Min	Max	Unit	Conditions See Figure 2.
Rise Time (10% to 90%)	t+	_	2.7	-	1.6	2.7	-	3.0	ns	
Fall Time (10% to 90%)	t-	_	2.7	-	1.4	2.7	-	3.0	ns	V_{1HA} to V_{CX} , CX2 $^{(5)}$ from pin 11 to pin 14.
Oscillator Frequency	fosc1	130	-	130	155	175	110	-	MHz	
	f _{osc2}	_	—	78	90	100	—	—	MHz	VIHA to VCX, CX1 ④ from pin 11 to pin 14.
Tuning Ration Test	TR ③	_	-	3.1	4.5	-	-	_	_	CX1 ④ from pin 11 to pin 14.

Germanium diode (0.4 drop) forward biased from 11 to 14 (11 — 14). (1)


(2)

 $\frac{\text{Output frequency at V}_{CX} = \text{Gnd}}{\text{Output frequency at V}_{CX} = -2.0 \text{ V}}$ (3) TR =

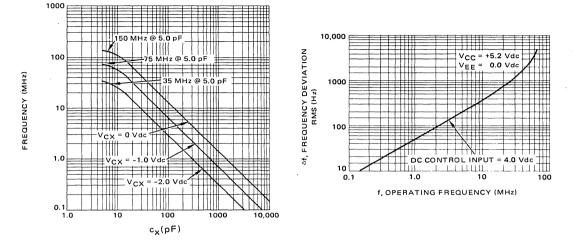

(4) $C_{X1} = 10 \text{ pF}$ connected from pin 11 to pin 14. (5) $C_{X2} = 5 \text{ pF}$ connected from pin 11 to pin 14.

FIGURE 2 - AC TEST CIRCUIT AND WAVEFORMS

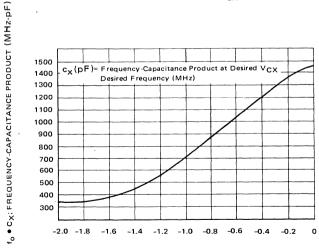
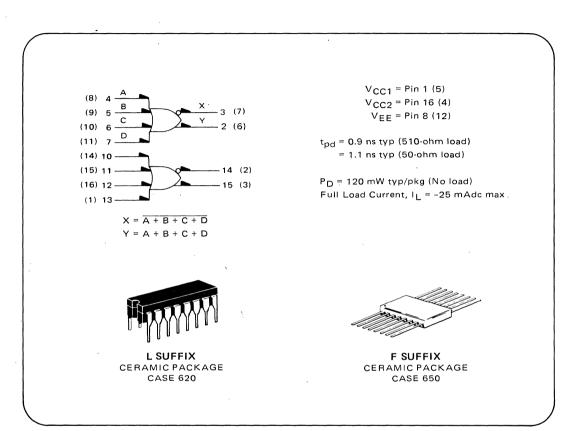

4

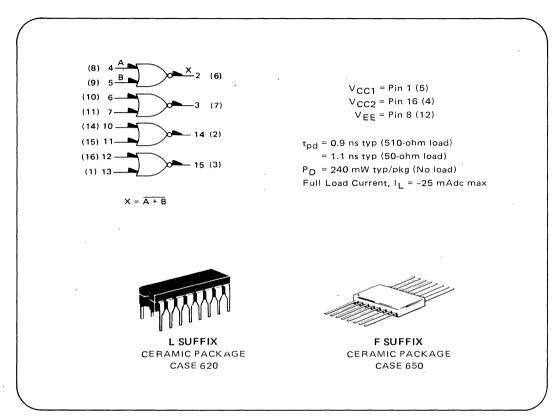
FIGURE 3 – OUTPUT FREQUENCY versus CAPACITANCE FOR VARIOUS VALUES OF INPUT VOLTAGE

FIGURE 4 – RMS NOISE DEVIATION versus OPERATING FREQUENCY


FIGURE 5 – FREQUENCY-CAPACITANCE PRODUCT versus CONTROL VOLTAGE (V_{CX})

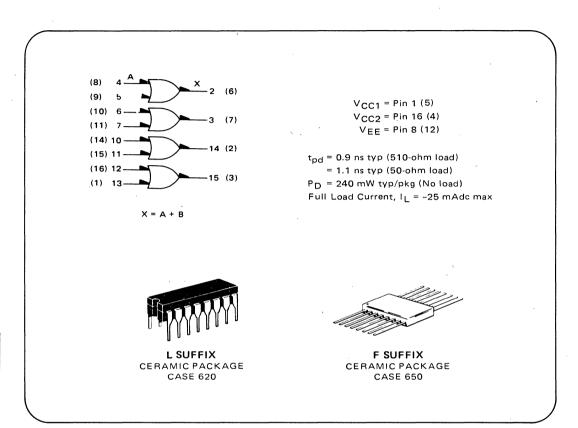
VCX, INPUT VOLTAGE (Vdc)

4


DUAL 4-INPUT GATE

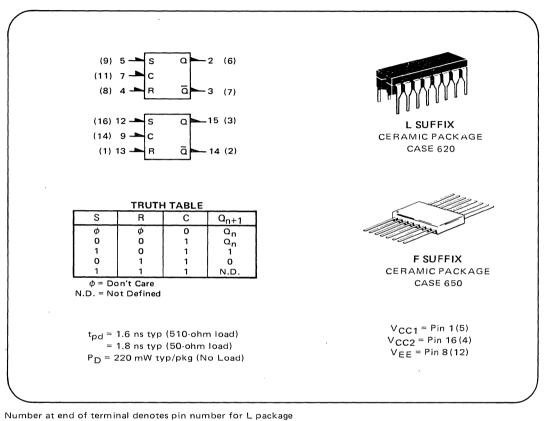
Numbers at ends of terminals denote pin numbers for L package Numbers in parenthesis denote pin numbers for F package $% \left({{{\rm{P}}_{{\rm{s}}}} \right)$

		-30	0 ⁰ C	+2	5 ⁰ C	+8!	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E		-	-	28	-	_	mAdc
Input Current	l inH	-	-		350		-	μAdc
Switching Times								ns
Propagation Delay	t+-	0.6	1.8	0.6	1.7	0.6	1.9	
	t-+	0.6	1.6	0.6	1.5	0.6	1.7	
Rise Time, Fall Time (10% to 90%)	t+,t-	0.6	2.2	0.6	2.1	0.6	2.3	ns


MC1662 QUAD 2-INPUT NOR GATE

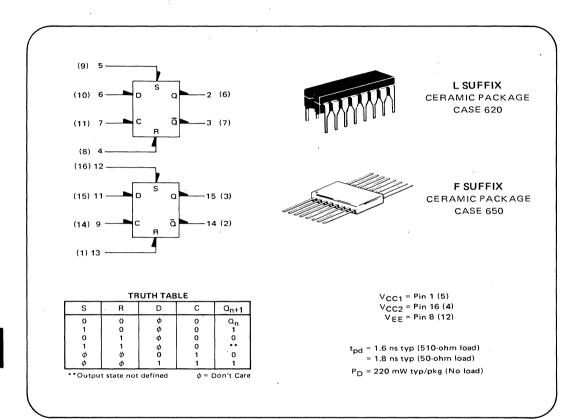
Number at end of terminals denotes pin number of L package. Number in parenthesis denotes pin number for F package.

		-30 ⁰ C		+2	5 ^o C	+8		
Characteristic	Symbol	Min	Max	Max	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-		56	-		mAdc
Input Current	l inH	-			350	-		μAdc
Switching Times								ns
Propagation Delay	t+_	0.6	1.6	0.6	1.5	0.6	1.7	
	t-+	0.6	1.8	0.6	1.7	0.6	1.9	
Rise Time, Fall Time (10% to 90%)	t+,t-	0.6	2.2	0.6	2.1	0.6	2.3	ns


QUAD 2-INPUT OR GATE

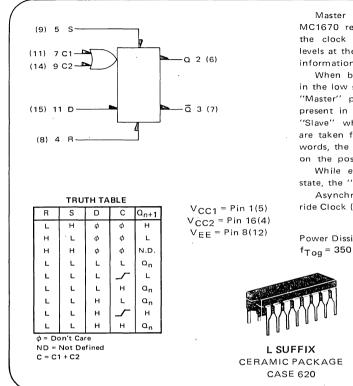
Number at end of terminals denotes pin number of L package. Number in parenthesis denotes pin number for F package.

Characteristic		-30 ^o C		+2	5°C	+85	5°C	
	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ΙE	-	-	-	56	-		mAdo
Input Current	linH		-		350	-	_	μAdc
Switching Times								ns
Propagation Delay	t++	0.6	1.6	0.6	1.5	0.6	1.7	
	t	0.6	1.8	0.6	1.7	0.6	1.9	
Rise Time, Fall Time (10% to 90%)	t+,t-	0.6	2.2	0.6	2.1	0.6	2.3	ns


DUAL CLOCKED R-S FLIP-FLOP

Number at end of terminal denotes pin number for L packag Number in parenthesis denotes pin number for F package

		-3	0°C	+2	5 ⁰ C	+8	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	JE	-		-	55	-	-	mAdc
Input Current	linH							μAdc
Set, Reset		-	-	-	370	-	-	
Clock		-	-	-	225	_	-	
Switching Times								ns
Propagation Delay	^t pd		}					
Clock		1.0	2.7	1.0	2.5	1.1	2.8	
Set, Reset		1.0	2.5	1.1	2.3	1.1	2.7	
Rise Time (10% to 90%)	t+	0.8	2.8	0.8	2.5	0.9	2.9	ns
Fall Time (10% to 90%)	t-	0.5	2.4	0.5	2.2	0.5	2.6	ns


DUAL CLOCKED LATCH

Number at end of terminal denotes pin number for L package Number in parenthesis denotes pin number for F package

·		-3	0°C	+2	5 ⁰ C	+8	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-	-	55	_		mAdc
Input Current	linH							μAdc
Data, Set, Reset			-	—	370	-	-	
Clock		-	- 1	- 1	225	-	-	
Switching Times								ns
Propagation Delay	^t pd				1			
Clock		1.0	2.7	1.0	2.5	1.1	2.8	
Set, Reset		1.0	2.5	1.0	2.3	1.1	2.7	
Rise Time (10% to 90%)	t+	0.8	2.8	0.9	2.5	0.9	2.9	ns
Fall Time (10% to 90%)	t-	0.5	2.4	0.5	2.2	0.5	2.6	ns

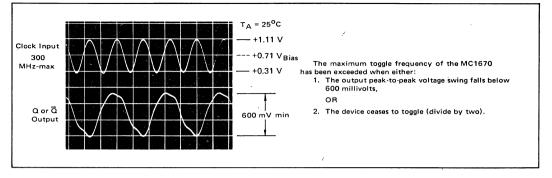
MC1670 MASTER-SLAVE FLIP-FLOP

Master slave construction renders the MC1670 relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output.

When both clock inputs (C1 and C2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when clock inputs (C1 "OR" C2) are taken from a low to a high level. In other words, the output state of the flip-flop changes on the positive transition of the clock pulse. While either C1 "OR" C2 is in the high

state, the "Master" (and data input) is disabled. Asynchronous Set (S) and Reset (R) override Clock (C) and Data (D) inputs.

Power Dissipation = 220 mW typical (No Load) $\rm f_{T\,og}$ = 350 MHz typ


and the second s

F SUFFIX CERAMIC PACKAGE CASE 650

Number at end of terminal denotes pin number for L package Number in parenthesis denotes pin number for F package

		-3	0°C	+2	5 ⁰ C	+ 85	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-	-	48	_	-	mAdc
Input Current	linH							μAdc
Set, Reset			-	-	550	—		
Clock		-			250			
Data		-	-	-	270	_	·	
Switching Times								ns
Propagation Delay	^t pd	1.0	2.7	1.1	2.5	1.1	2.9	
Rise Time (10% to 90%)	t+	0.9	2.7	1.0	2.5	1.0	2.9	ns
Fall Time (10% to 90%)	t	0.5	2.1	0.6	1.9	0.6	2.3	ns
, Setup Time	^t S"1"	-	-	0.4	-	-		ns
	^t S"0"	-	-	0.5	-		-	
Hold Time	^t H"1"	-	-	0.3	-		-	ns
	^t H"0"		-	0.5	-		-	
Toggle Frequency	fTog	270	-	300	-	270	-	MHz

FIGURE 1 – TOGGLE FREQUENCY WAVEFORMS

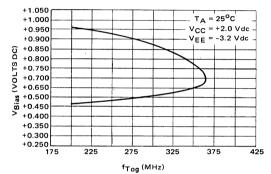


Figure 2 illustrates the variation in toggle frequency with the dc offset voltage (V $_{\mbox{Bias}})$ of the input clock signal.

Figures 4 and 5 illustrate minimum clock pulse width recommended for reliable operation of the MC1670.

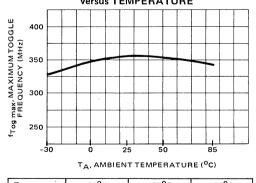
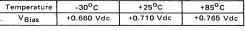
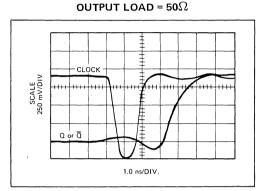
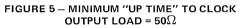
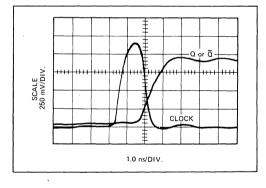
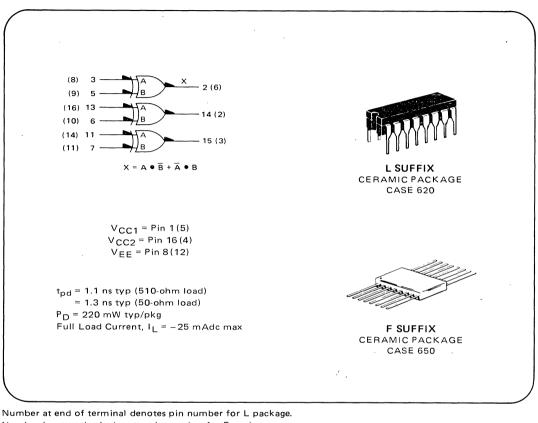



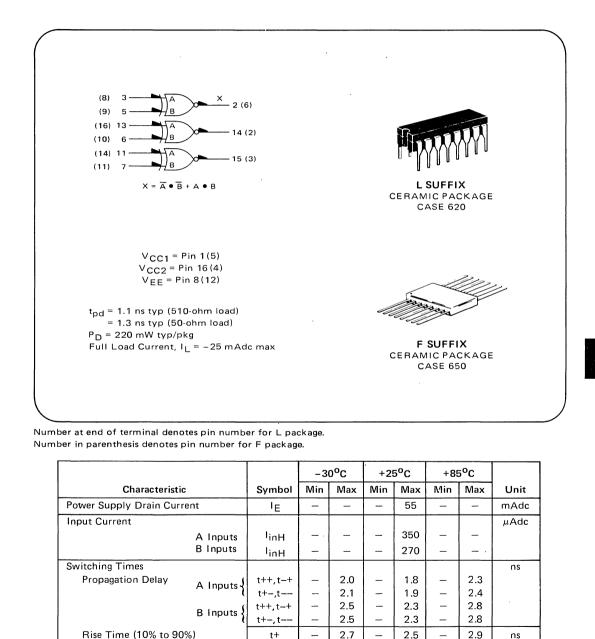
FIGURE 3 – TYPICAL MAXIMUM TOGGLE FREQUENCY versus TEMPERATURE

Note: All power supply and logic levels are shown shifted 2 volts positive.


FIGURE 4 – MINIMUM "DOWN TIME" TO CLOCK OUTPUT LOAD = 50 Ω

4


TRIPLE 2-INPUT EXCLUSIVE-OR GATE

			-3	DoC	+2	5 ⁰ C	+8	5°C	
Characteristi	c	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Cur	rent	١ _E	1	-	-	55		-	mAdc
Input Current									μAdc
	A Inputs	linH			-	350	-		
	B Inputs	linH			-	270	-	-	
Switching Times							I.		ns
Propagation Delay	A Looute (t++,t-+	-	2.0	_	1.8	-	2.3	
	A inputs {	t+-,t	-	2.1	-	1.9	-	2.4	
	A Inputs { B Inputs {	t++,t-+	-	2.5	—	2.3	-	2.8	
	D mputa }	t+-,t	-	2.5	-	2.3	-	2.8	
Rise Time (10% to 90	0%)	t+		2.7	-	2.5	_	2.9	ns
Fall Time (10% to 90	1%)	t	-	2.4	_	2.2		2.6	ns

Number in parenthesis denotes pin number for F package.

MC1674 TRIPLE 2-INPUT EXCLUSIVE-NOR GATE

t-

2.4

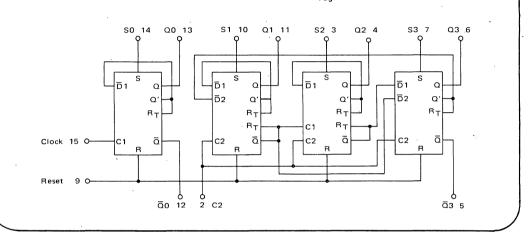
_

2.2

2.6

ns

Fall Time (10% to 90%)


MC1678 BI-QUINARY COUNTER

The MC1678 is a four-bit counter capable of divide-by-two, divide-by-five, or divide-by-10 functions. When used independently, the divideby-two section will toggle at 350 MHz typically, while the divide-by-five section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the clock pulse.

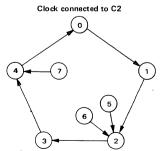
Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

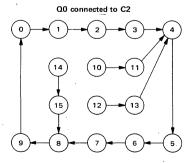
> DC Input Loading Factor R = 2.40 C1 = 0.77 C2 = 1.23

> S = 1.00 DC Output Loading Factor = 70 Power Dissipation = 750 mW typ f_{Tog} = 350 MHz typ

COUNTER TRUTH TABLES

BCD (Clock connected to C1 and $\overline{\Omega}0$ connected to C2)

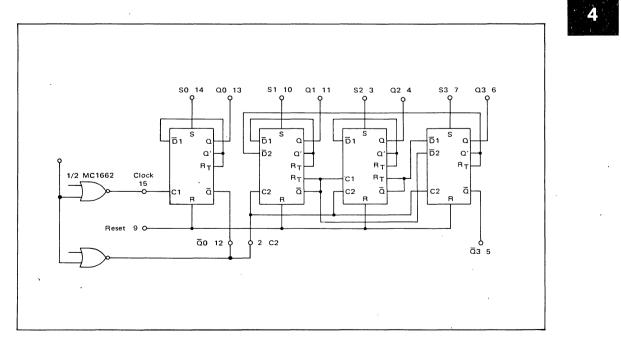

COUNT	00	Q1	Q2	Q3
0 1 2 3	LHLH			
4 5 6 7		LLTT	TTTT	
8 9	LH	L L	- L	нн


(Clock connected to C2 and Q3 connected to C1)										
COUNT	Q1	Q2	Q3	00						
0 1 2 3		LLHH								
4 5 6 7		LLH	L L L	ттт						
8 9										
-										

BI-QUINARY

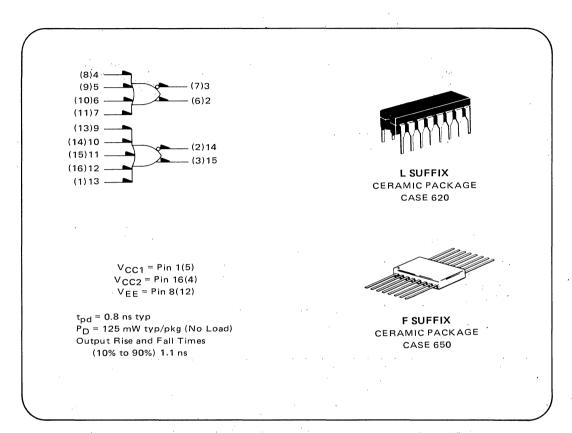
		R	S ·	
	с	R	s	Q _{n+1}
	φ	L	Ŀ	Qn
	φ φ φ	н	L	L
	φ	L	н	н
	φ	н	н	ND
Ν		on't Car ot Defin		

COUNTER STATE DIAGRAM - POSITIVE LOGIC



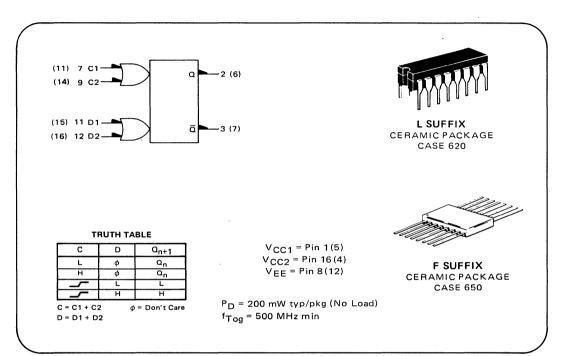
ELECTRICAL CHARACTERISTICS

		-30	o°c	+2	5 ⁰ C	+8	5°C	
Characteristic	Symbol	Min	Мах	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-	-	200	-	-	mAdc
Input Current	linH							mAdc
Reset		-	—	-	1.00	-	-	
C2			-	-	0.70			
Set, Clock		-	—	-	0.45	-	-	
Switching Times								ns
Propagation Delay	^t pd							
Clock to Q0, Q0		1.0	2.9	1.0	2.7	1.0	3.1	
C2 to Q1, Q2, Q3, Q3		1.0	3.2	1.0	3.0	1.0	3.4	
Set, Reset		2.0	3.9	2.0	3.7	2.0	4.1	
Rise Time (10% to 90%)	t+	1.0	2.9	1.0	2.7	1.0	3.1	ns
Fall Time (10% to 90%)	t-	1.0	2.8	1.0	2.6	1.0	3.0	ns
Toggle Frequency	f _{Tog}							MHz
QO	-	260	-	300	-	260	-	
Q3		250		275		250	-	


APPLICATIONS INFORMATION

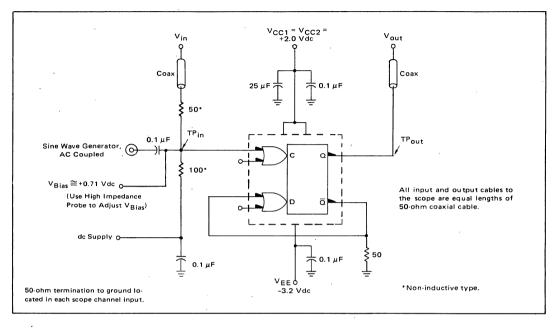
With the addition of a single gate package, the MC1678 will count in a fully synchronous mode, as shown below.

DUAL 4-5-INPUT OR/NOR GATE

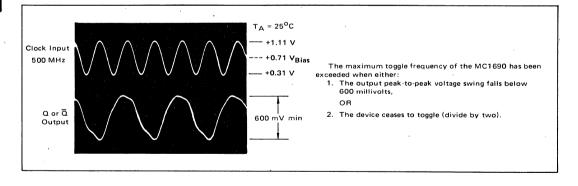

MC1688

Number at end of terminal denotes pin number for L package Number in parenthesis denotes pin number for F package

· · · · ·		-3	o°c	+2	5 ⁰ C	+8	5°Ç :	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	, ¹ E	<u>`</u>	-	-	30	-		mAdc
Input Current	linH	-			350			µAdc
Switching Times Propagation Delay	tpd	0.5	1.5	0.5	1.3	0.5	1.5	ns
Rise Time, Fall Time (10% to 90%)	t+, t-	0.5	1.6	0.5	1.4	0.5	1.6	ns

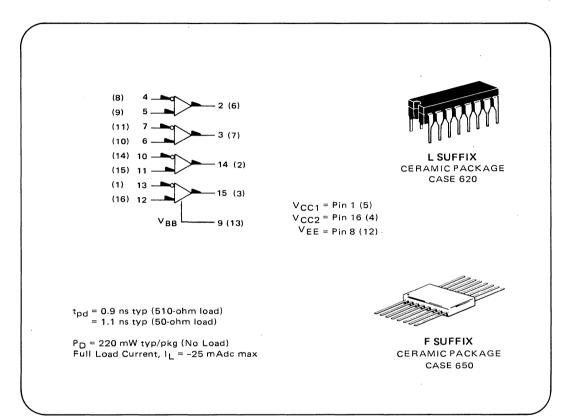

MC1690 UHF PRESCALER TYPE D FLIP-FLOP

Number at end of terminal denotes pin number for L package Number in parenthesis denotes pin number for F package


		-3	0°C		+25 ⁰	C	+8	5 ⁰ C	
Characteristic	Symbol	Min	Max	Mir	n	Max	Min	Max	Unit
Power Supply Drain Current	IE IE	-	-	-		59	-	-	mAdc
Input Current	linH								μAdc
Pins 7,9		-	-	-		250	-	-	
Pins 11,12		-	-	- 1		270	_	_	
Switching Times				Min	Тур	Max			ns
Propagation Delay	^t pd	-	-	-	1.5	-	-		
Rise Time, Fall Time (10% to 90%)	t+,t	—		-	1.3	-		-	ns
Setup Time	t _{setup}	-	-		0.3	-	_		ns
Hold Time	thold	-	-	-	0.3		_	-	
Toggle Frequency	fTog	500	-	500	540	-	500	-	MHz

.

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT

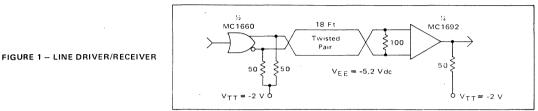

FIGURE 2 – TOGGLE FREQUENCY WAVEFORMS

Note: All power supply and logic levels are shown shifted 2 volts positive.

4

MC1692 QUAD LINE RECEIVER

Numbers at ends of terminals denote pin numbers for L package Numbers in parenthesis denote pin numbers for F package


		-3	0°C	+2!	5°C	+85	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-	-	50	_		mAdc
Input Current	l _{in}	-	_	-	250		-	μAdc
Input Leakage Current	^I R	-	-	-	100		-	μAdc
Reference Voltage	V _{BB}	- 1.375	-1.275	-1.35	-1.25	-1.30	-1.20	Vdc
Switching Times								ns
Propagation Delay	t-+	0.6	1.6	0.6	1.5	0.6	1.7	
	t+-	0.6	1.8	0.6	1.7	0.6	[·] 1.9	
Rise Time, Fall Time (10% to 90%)	t+,t-	0.6	2.2	0.6	2.1	0.6	2.3	ns

APPLICATION INFORMATION

The MC1692 guad line receiver is used primarily to receive data from balanced twisted pair lines, as indicated in Figure 1. The line is driven with a MC1660 OR/NOR gate. The MC1660 is terminated with 50 ohm resistors to -2.0 volts. At the end of the twisted pair a 100 ohm termination resistor is placed across

the differential line receiver inputs of the MC1692. Illustrated in Figure 2 is the sending and receiving waveforms at a data rate of 400 megabits per second over an 18 foot twisted pair cable. The waveform picture of Figure 3 shows a 5 nanosecond pulse being propagated down the 18 foot line. The delay time for the line is 1.68 ns/foot.

The MC1692 may also be applied as a high frequency schmitt trigger as illustrated in Figure 4. This circuit has been used in excess of 200 MHz. The MC1692 when loaded into 50 ohms will produce an output rising edge of about 1.5 nanoseconds.

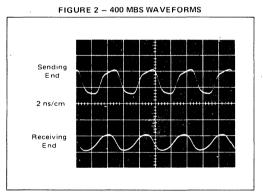
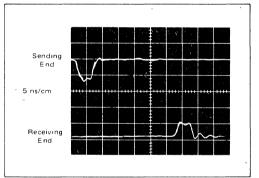



FIGURE 3 – PULSE PROPAGATION WAVEFORMS

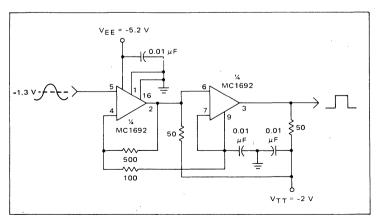
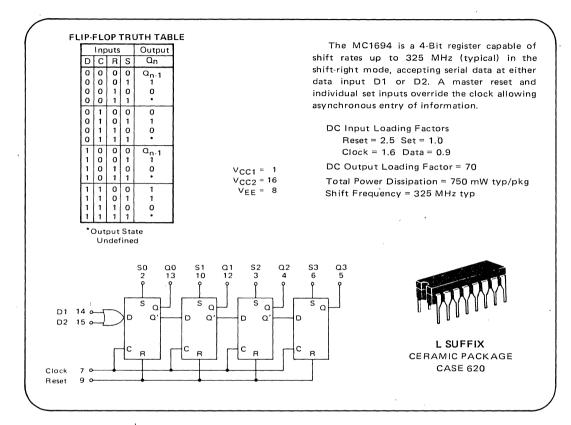
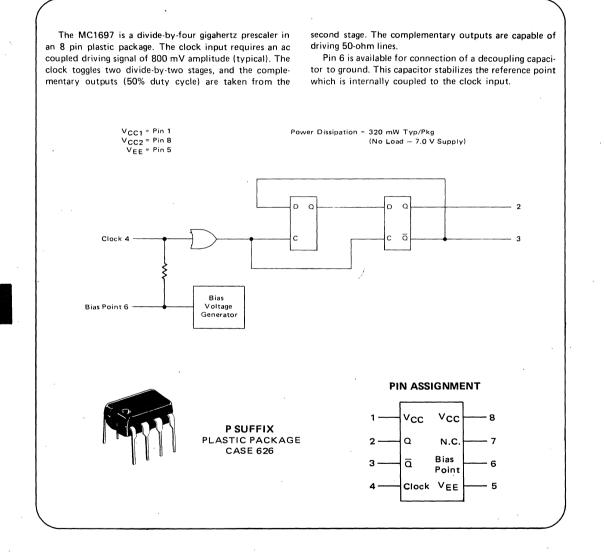
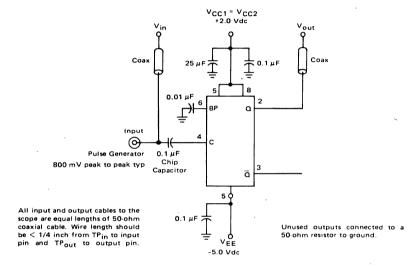



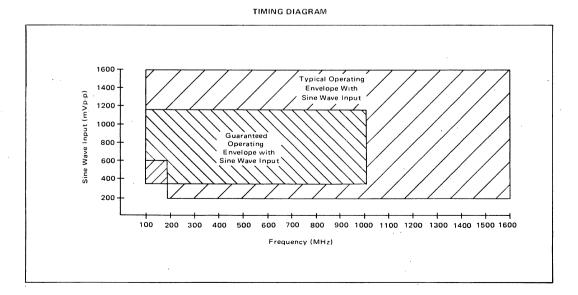
FIGURE 4 - 200 MHz SCHMITT TRIGGER


MC1694 4-BIT SHIFT REGISTER

		-30	o°c	+2	5 ⁰ C	+85	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-	-	200	-	-	mAdc
Input Current	linH							mAdc
Pin 9			-	-	1.0	-		
Pin 7		-		-	0.75	-	-	
Pins 2,3,6,10		—	-	-	0.6	-	-	
Pins 14,15	5	-	-	-	0.5	-		
Switching Times								ns
Propagation Delay	t _{pd}							
Clock		1.0	3.2	1.0	3.0	1.0	3.4	
Set, Reset		2.0	3.9	2.0	3.7	2.0	4.1	
Rise Time (10% to 90%)	t+	1.0	2.9	1.0	2.7	1.0	3.1	ns
Fall Time (10% to 90%)	t-	1.0	2.8	1.0	2.6	1.0	3.0	ns
Shift Rate		240		275	-	250	-	MHz

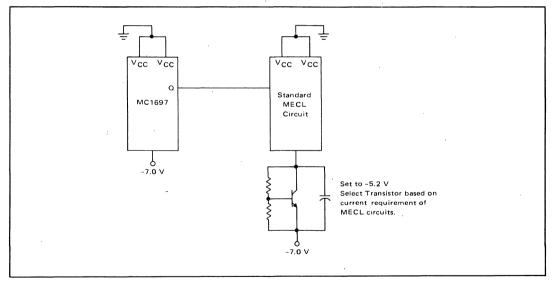
4


MC1697 1-GHz DIVIDE-BY-FOUR PRESCALER


ELECTRICAL CHARACTERISTICS

		MC1697P Test Limits						
		0°C		+25 ⁰ C		+75 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	١E	-	-		57		-	mAdc
Toggle Frequency (high frequency operation)	f _{Tog}	1.0	-	1.0	-	1.0	-	GHz
Toggle Frequency (low frequency sine wave input)	fTog	-		-	100		_	MHz

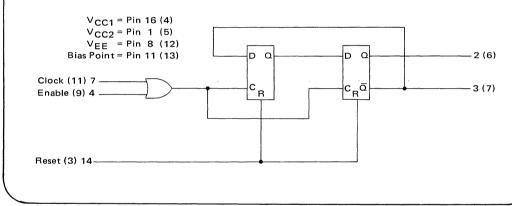
COUNT FREQUENCY TEST CIRCUIT


Note: All power supply and logic levels are shown shifted 2 volts positive.

APPLICATION INFORMATION

The MC1697 is a very high speed divide-by-four prescaler designed to operate on a nominal supply voltage of -7.0 volt. In some applications it may be necessary to interface the output of the MC1697 with other MECL circuits requiring a supply voltage of -5.2 volts. One method of interfacing the circuits is shown below. This configuration is adequate for frequencies up to 1 GHz over the temperature range of 0° to +75°C. For best performance it is recommended that separate regulated supplies be used.

METHOD OF INTERFACING MC1697 WITH STANDARD MECL CIRCUITS



MC1699 DIVIDE-BY-FOUR GIGAHERTZ COUNTER

The MC1699 is a divide-by-four gigahertz counter. The clock input requires an ac coupled driving signal of 800 mV amplitude (typical). The clock toggles two divide-by-two stages, and the complementary outputs (50% duty cycle) are taken from the second stage.

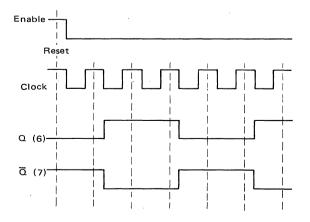
The MC1699 includes clock enable and reset. The reset is compatible with MECL III voltage levels. The enable input requires a V_{1L} of -2.0 V max. Reset operates only when either the clock or the enable is high.

Pin 11 (13) is available for connection of a decoupling capacitor to ground. This capacitor stabilizes the reference point which is internally coupled to the clock input.

Number at end of terminal denotes pin number for L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650).

L SUFFIX

CERAMIC PACKAGE

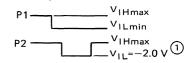

CASE 620

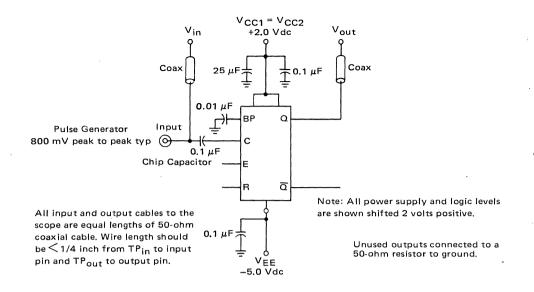
F SUFFIX

CERAMIC PACKAGE

CASE 650

TIMING DIAGRAM




+85°C -30°C +25°C Characteristic Symbol Min Max Min Max Min Max Unit Conditions All inputs and outputs open except Clock = VIHC ≅ Power Supply Drain Current 57 mAdc ١E _ ____ ____ _ _ -4.0 Vdc Input Current μAdc ¹inH VIHmax to Reset, VIL to Enable, VEE to Clock. Reset 500 _ ____ _ _ ___ VILmin to reset, VIHmax to Enable, VEE to Clock. Enable 265 _ Logic "1" Output Voltage See Note (2) . Or, apply P1 to Reset and VIHmax ∨он -1.085 -0.875 -1.000 -0.810 -0.930 -0.700 Vdc Logic "0" Output Voltage -1.600 -1.555 to Enable VOL -1.630 Vdc _ _ Toggle Frequency fTog 1.0 1.0 1.0 GHz _ -___ VII 1 to Enable. (high frequency operation) See Test Circuit and Application Information on next Toggle Frequency fTog ----____ 100 ____ ___ MHz ____ page. (low frequency sine wave input)

ELECTRICAL CHARACTERISTICS

1 Enable input requires $V_{1L} = -2.0 V \text{ max}$.

(2) Reset counter by applying pulse P1 to pin 14, then toggle outputs by applying pulse P2 to pin 4 for 2 cycles. Hold power during pulse sequence. Hold clock input @ VEE.



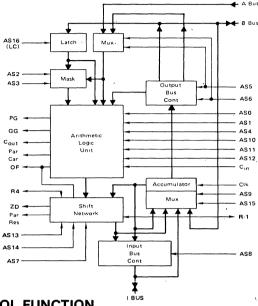
APPLICATION INFORMATION

The MC1699 is a very high speed divide-byfour counter intended for prescaler applications. The reset provides increased flexibility for counter and time measuring requirements. The clock input is designed to accept a capacitor-coupled sine wave signal for frequencies above 100 MHz. Below 100 MHz waveshaping is recommended to obtain good MECL III or MECL 10,000 edge speeds.

With a continuous input signal the clock can be capacitor-coupled with no problems. How-

ever, if the clock is interrupted and the clock input floats to the bias point reference voltage, the counter may oscillate. To prevent this oscillation, an external resistor can be added as shown in Figure 1. This resistor is recommended only when the clock is interrupted and serves no useful function with a continuous signal. Also, this external resistor is not required when the enable input is used to gate the clock signal.

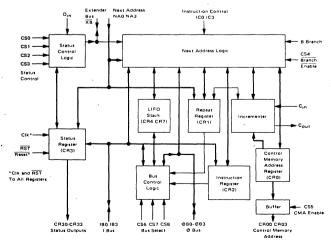
MI0800 PROCESSOR FAMILY



MC10800

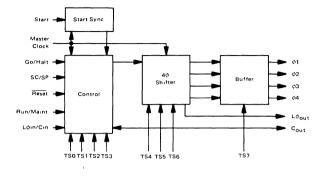
4-BIT SLICE

The MC10800 4-Bit ALU Slice is an LSI building block for digital processors. This circuit performs the necessary logic and arithmetic functions required to execute the various machine instructions. Each part is 4 bits wide and is "sliced" parallel to data flow. The MC10800 is fully expandable to larger word lengths by connecting circuits in parallel and features three input/output data ports for maximum system flexibility.


The 4-Bit ALU Slice as shown in the block diagram contains latch/mask logic, ALU, shift network, accumulator, and bus control logic in a single bipolar circuit. Seventeen select lines are used to control all operations within the part.

MC10801 MICROPROGRAM CONTROL FUNCTION

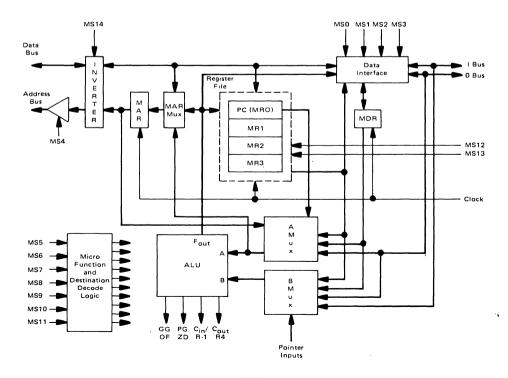
The MC10801 Microprogram Control Function is an LSI building block for digital processor systems. This circuit controls machine operations by generating the addresses and sequencing pattern for microprogram control storage. The MC10801 is compatible with a wide range of control memory sizes and organizations. Each part is 4 bits wide and can be connected in parallel for larger memory addresses. Maximum system flexibility is maintained with 5 separate data ports.


The Microprogarm Control Function as shown in the block diagram contains a control memory address register CR0, multipurpose registers CR1-CR3, an incrementer, a subroutine LIFO, and the associated next address, status, and bus control logic in a single MECL Bipolar LSI circuit. Nine select (CS) lines and four instruction inputs (IC) control all operations within the part.

MC10802 TIMING FUNCTION

The MC10802 Timing Function is an LSI building block for digital processor systems. This circuit contains the logic and control lines to generate system clock phases and provides for start, stop, and diagnostic operations. Each part is 4-bits wide and can be connected in series for greater than four phase clock systems.

The Timing Function as shown in the block diagram is composed of a four phase shifter circuit with buffered outputs. Fifteen input lines combine with Control and Start Sync logic to control all operations within the part.

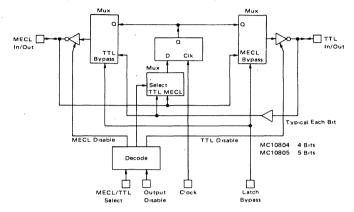


MC10803 MEMORY INTERFACE FUNCTION

The MC10803 Memory Interface Function is an LSI building block for interfacing a high-speed processor system to main memory or peripheral equipment. The circuit contains the logic and storage registers for generating memory address and routing incoming or outgoing data. Each part is 4-bits wide and can be connected in parallel to meet wider system I/O word requirements. An internal ALU allows the MC10803 to also assume processor ALU responsibility for many

controller applications. Maximum system flexibility is maintained with 5 separate data ports.

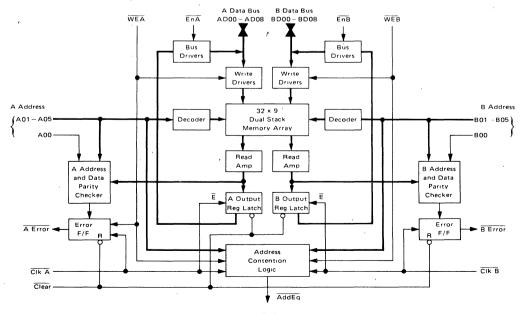
The Memory Interface Function as shown in the block diagram contains six 4-bit registers, an ALU with encoded function/operand select logic, and data transfer circuitry on a single MECL bipolar LSI circuit. Fifteen select (MS) lines control register selection, 13 basic ALU functions, and 17 data transfer operations.


MC10804/5 MECL/TTL BIDIRECTIONAL TRANSLATORS WITH LATCH

The MC10804 and MC10805 are bidirectional transceivers that interface MECL logic levels with TTL logic levels. Data can be transferred directly in either direction (MECL \rightarrow TTL or TTL \rightarrow MECL), and an optional gated latch is also provided. Logic levels are inverted during transfers. The MC10804 is a 4-bit version in the 16-pin package, and the MC10805 is a 5-bit version in the 20-pin package.

The MC10804 and MC10805 are members of the high performance M10800 MECL/LSI processor family. They make it possible to easily interface to MOS

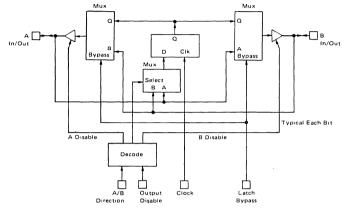
memories, TTL compatible peripherals, or existing TTL subsystems.


- Bidirectional Translation
- Power Supplies: +5.0 Volts and -5.2 Volts
- TTL Three-State Outputs Sink 50 mA
 Source 5 mA
- Standard MECL 50 Ohm Drive Outputs
- Latch May Be Bypassed for High Speed
- High Capacitive MOS Drive Capability on MC10805

MC10806 DUAL ACCESS STACK

The MC10806 Dual Access Stack is an LSI building block for digital processor systems. This circuit consists of 32 words by 9 bits of memory with two independent address and data ports. The circuit is easily expandable in both the word and bit directions making it ideal in register file, scratch pad, and highspeed buffer application. diagram, contains a 32 x 9 memory array, two address ports, two 9-bit data input/output ports, two 9-bit output registers, address and data parity checking logic, and two error flip-flops in a single MECL Bipolar LSI circuit. Separate read, write, and output enables exist for each port to control all operations within the part.

The Dual Access Stack, as shown in the block

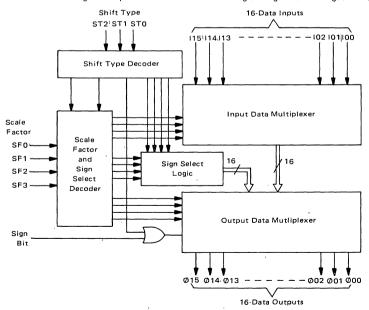


MC10807 5-BIT TRANSCEIVER WITH LATCH

The MC10807 is a 5-bit bidirectional MECL transceiver bus. Data can be transferred directly in either direction (A port \rightarrow B port or B port \rightarrow A port), and an optional gated latch is also provided. The MC10807 is in a 16-pin ceramic package.

The MC10807 is a member of the high performance M10800 MECL/LSI processor family. It is designed to provide bidirectional exchange of MECL level signals in multiprocessor installations, or multiplexing of buses to a single processor.

- MECL 10,000 Levels
- Bidirectional Data Transfer
- Standard MECL 50 Ohm Drive Outputs
- Latch May Be Bypassed for High Speed
- Temperature Range -30^o to +85^oC
- 16-Pin CERDIP Package



MC10808 PROGRAMMABLE MULTI-BIT SHIFTER

The MC10808 Programmable Multi-Bit Shifter is 16 bits wide and is fully expandable in a shifter array to handle any number of bits.

There are .16 data inputs and 16 data outputs for shifting the data under the control of 4 scale factor inputs that specify the number of positions the input data should be shifted or rotated. A sign bit input is used for arithmetic shift right or left and sign extend operations. There are 3 shift select inputs that are used to select the appropriate shifting function.

The data outputs of the MC10808 can be disabled for wire-ANDing (negative logic) other device outputs by selecting the sign bit at all the outputs (SBO function) and forcing the sign bit to a negative logic "1".

5

5-6

PHASE-LOCKED LOOP COMPONENTS

COMPONENTS FOR PHASE-LOCKED LOOP APPLICATIONS

Motorola offers the designer a choice of specially designed integrated circuits for performing phase-locked loop functions: phase detection, frequency division, filtering, and voltage-controlled signal generation. New MECL functions for phase-locked loop applications are now being characterized. In addition, supplementary circuits in TTL, CMOS, and linear technologies are available.

For convenience, the MECL functions characterized by data sheets included in this book are indicated by •. For detailed specifications of all other devices, please request a separate data sheet from your Motorola sales representative or authorized distributor.

			Frequency	Power Dissipation mW	Туре		Û			
	Function	Family	MHz typ	typ/pkg	-55 to +125 ^o C	0 to +75 ⁰ C	Case			
•	COMBINATION FUNCTIONS									
Ī	Digital Mixer Translator	MECL	250	470	-	MC12000	632, 646			
	Analog Loop	MECL	50	170	MC12530	MC12030	620, 648			
	Frequency Synthesizer	CMOS	10.24	3mA*	-	MC145104§	. 648			
	Frequency Synthesizer	CMOS	10.24	3mA*	-	MC145106§ MC145107§				
	Frequency Synthesizer	CMOS	10.24	3mA*	-					
	Frequency Synthesizer	CMOS	10.24	3mA*	-	MC145109§	648			
	Frequency Synthesizer	CMOS	10.24	3mA*	-	MC145112§	. 707			
	Phase Comparator/Programmable Counters	CMOS	10	10 nA [†]	MC14568B‡	MC14568B‡	620,648			
	Phase Comparators/VCO	CMOS	1.4	10 nA [†]	MC14046B‡	MC14046B‡	620, 648			
	Phase-Locked Loop	LINEAR	0.5	825	-	LM565C	646			
	OSCILLATORS				-					
	Crystal Oscillator	MECL	2.0 to 20	210	MC12561	MC12061	620,648			
	Crystal Oscillator	MECL	0.1 to 2.0	175	MC12560	MC12060	620,648			
•	Voltage-Controlled Oscillator	MECL	225	150	MC1648M	MC1648#	607,632,646			
•	Voltage-Controlled Multivibrator Dual Voltage-Controlled Multivibrator	MECL MTTL	150 30	150 150		MC1658# MC4024	620, 648, 650			
		WITE		150	1/104324	WIC4024	607,632,646			
	PHASE DETECTORS		r							
	Digital			500						
	Phase-Frequency Detector Phase-Frequency Detector	MECL MTTL	70 8.0	520	MC12540 MC4344	MC12040 MC4044	607,632,646 607,632,646			
	the second s	WITTE	6.0	85	10104344	10104044	007,032,040			
	Analog Analog Mixer — Double Balanced	MECL	100	60	MC12502	MC12002#	632,646			
	Modulator/Demodulator	LINEAR	10	575	MC12502 MC1596	MC12002#	603,632,646			
	CONTROL FUNCTIONS	2,		0.0			000,002,010			
1	Counter Control Logic	MECL	25	150	MC12514	MC12014	620,648			
	Offset Control	MECL	25	35	MC12514 MC12520	MC12014 MC12020#	632,646			
	Offset Programmer	MECL	-	35	MC12521	MC12020#	620,648			
1	PRESCALERS	L		J		L				
•	÷4 Counter	MECL	1100	322	_	MC1697	626			
	÷4 Counter	MECL	1100	322	-	MC1699#	620,650			
	Two-Modulus Prescaler (+5/+6)	MECL	500	350	- 1	MC12009	620, 648			
	Two-Modulus Prescaler (÷8/÷9)	MECL	550	350	-	MC12011	620, 648			
	Two-Modulus Prescaler (÷10/11)	MECL	600	350	MC12513	MC12013#	620, 648, 650			
	UHF Type D Prescaler (÷2)	MECL	500	0000	_	MC1690#	620,650			
	Two-Modulus Prescaler (÷2, ÷5/6,				1	1				
	÷10/11, ÷10/12)	MECL	200	500	- 1	MC12012	620, 648			
	Dual Type D	LS TTL	45	20	SN54LS74	SN74LS74	717,632,646			

The following functions are given in order of decreasing frequency within each category.

 $\textcircled{O}_{\textsc{Plastic}}$ package available for commercial-temperature devices only.

* Operating Supply Current @ 10.24 MHz

†Quiescent Current @ VDD = 10 V

+ For CMOS devices, add suffix for temperature range: A for -55 to +125°C

 $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$

C for -40 to $+85^{\circ}C$

followed by package suffix.

6-2

PLL FUNCTIONS (continued)

(In order of decreasing frequency within each category.)

		Frequency	Power Dissipation mW	Ту	Case			
Function	Family	MHz typ	typ/pkg	-55 to +125°C 0 to +75°C				
COUNTERS								
Binary	MECL	325	750	-	MC1654#	620		
Bi-Quinary (÷2, ÷5, ÷10)	MECL	325	750	· -	MC1678#	620		
Universal Hexadecimal (÷0-15)	MECL	150	625	MC10536	MC10136#	620, 648, 650		
Universal Decade	MECL	150	625	MC10537	MC10137#	620, 648, 65		
Bi-Quinary	MECL	150	370	MC10538	MC10138#	620, 648, 65		
Binary	MECL	150	370	.MC10578	MC10178#	620, 648, 65		
Presettable Binary (÷2, ÷8)	LS TTL	60	60	SN54LS197	SN74LS197	717, 632, 640		
Presettable Decade (÷2, ÷5)	LS TTL	60	60	SN54LS196	SN74LS196	717, 632, 64		
Presettable Up/Down Decade	LS TTL	40	95	SN54LS192	SN74LS192	620, 648, 65		
Presettable Up/Down Binary	LS TTL	40	95	SN54LS193	SN74LS193	620, 648, 65		
Presettable Decade	LS TTL	35	-95	SN54LS160	SN74LS160	620, 648, 65		
Presettable Binary	LS TTL	35	95	SN54LS161	SN74LS161	620, 648, 65		
Presettable Decade	LS TTL	35	95	SN54LS162	SN74LS162	620, 648, 65		
Presettable Binary	LS TTL	35	95	SN54LS163	SN74LS163	620, 648, 65		
Presettable Up/Down Decade	LS TTL	35	95	SN54LS190	SN74LS190	620, 648, 65		
Presettable Up/Down Binary	LS TTL	35	95	SN54LS191	SN74LS191	620, 648, 65		
Decade (÷2, ÷5)	LS TTL	32**	45	SN54LS90	SN74LS90	717,632,640		
Binary (÷2, ÷8)	LS TTL	32**	45	SN54LS93	SN74LS93	717, 632, 64		
Universal (+2-12 except 7 and 11)	MTTL	30	200	MC4323	MC4023	607, 632, 64		
Decade (÷2, ÷5, ÷10)	MTTL	20	160	MC5490A	MC7490A	607, 632, 640		
Decade (÷10)	смоз	12 ##	10 nA t	MC14017B ‡	MC14017B ‡			
Programmable +N Decade (+0-9)	MTTL	10	250	MC4316	MC4016	620, 648, 65		
Two Programmable ÷N (÷0-1, ÷0-4)	MTTL	10	250	MC4317	MC4017	620, 648, 65		
Programmable ÷N Hexadecimal (÷0-15)	MTTL	10	250	MC4318	MC4018	620, 648, 65		
Two Programmable ÷N (÷0-3, ÷0-3)	MTTL	10	250	MC4319	MC4019	620, 648, 65		
Binary (÷2 ¹⁴)	CMOS	9 ##	10 nA †	MC14020B ‡	MC14020B ‡			
Binary (÷212)	CMOS	9 ##	10 nA †	MC14040B ‡	MC14040B ‡	620,648		
Dual Programmable BCD/Binary Down	CMOS	8 ##	10 nA t	MC14569B ‡	MC14569B ‡	620,648		
BCD Up/Down	CMOS	6 ##	10 nA †		MC14510B ‡			
Binary Up/Down	CMOS	6 ##	• 10 nA † •		MC14516B ‡	620,648		
Dual BCD Up	смоѕ	. 6 ##	10 nA t	MC14518B ‡	MC14518B ‡	620,648		
Dual Binary Up	CMOS	6 ##	10 nA t	MC14520B ‡	MC14520B ‡			
Programmable ÷N BCD (÷0-9)	CMOS	5 ##	10 nA †	MC14522B ‡	MC14522B ‡	620, 648		
Programmable ÷ Binary (÷0-15)	CMOS	5 ##	10 nA t		MC14526B ‡	620, 648		

C for -40 to +85°C, followed by package suffix

Package Styles

				16 				16 000000000 00000000000000000000000000		00000000	
CASE		603	607	620	626	632	646	648	650	707	717
MATERIAL		Metal	Ceramic	Ceramic	Plastic	Ceramic	Plastic	Plastic	Ceramic	Plastic	Ceramic
SUFFIX	LS TTL	-	-	J	-	J	N	N	w	. —	w
after type number	Others	G	F	L	Р	L	Р	P	F	Р	F

2 SELECTOR GUIDES

MECL III MC1600 Series

5 MI0800 PROCESSOR FAMILY

PHASE-LOCKED LOOP COMPONENTS

6

BOX 20912 . PHOENIX, ARIZONA 85036 . A SUBSIDIARY OF MOTOROLA INC.