
MOTOROLA MEMORY DATA MANUAL

MOTOROLA MEMORY DATA MANUAL

QUALITYRELIABILITYTECHNOLOGY

MOS Memories RAM, EPROM, EEPROM, ROM

CMOS Memories RAM, ROM

2

5

6

Bipolar Memories TTL, MECL-RAM, PROM

Memory Boards

Mechanical Data

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

Prepared by Technical Information Center

Motorola has developed a very broad range of reliable MOS and bipolar memories for virtually any digital data processing system application. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

New Motorola memories are being introduced continually. For the latest releases, and additional technical information or pricing, contact your nearest authorized Motorola distributor or Motorola sales office.

The information in this book has been carefully checked; no responsibility, however, is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of the manufacturer.

> Series B ©MOTOROLA INC., 1980 Previous Edition ©1979 "All Rights Reserved"

Printed in U.S.A.

i

MECL, EXORciser are trademarks of Motorola Inc.

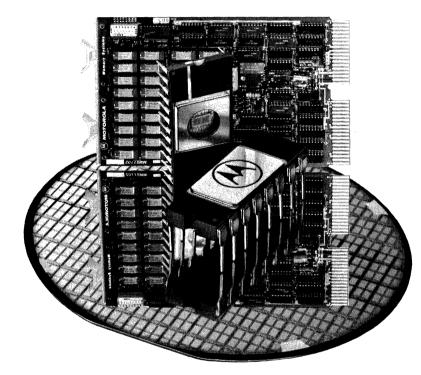
Table of Contents

Page

Organization

Alphanumeric Index	v
CHAPTER 1	
Memories Selection Guide	
Memory Systems Board Selector	Guide and Cross Reference
MOS Memory Cross-Reference	
	-
CHAPTER 2 – MOS	
Dynamic RAMs	461
MCM4027A MCM4116B	4K × 1
MCM4110B MCM4117	16K × 1
MCM4177 MCM4132	32K × 1
MCM4516	16K × 1
MCM4517	16K × 1
MCM6632	32K × 1
MCM6633	32K × 1
MCM6664	64K × 1
MCM6665	64K × 1
MCM6665L25	64K × 1
Static RAMs	
MCM2114, 21L14	1K × 4
	1K × 1
MCM2115H, 2125H	1K × 1
MCM2147	4K × 12-91
MCM2147H	4K × 12-96
MCM2148	1K × 4
MCM2148H	1K × 4
MCM2149	1K × 4
MCM2167	16K × 12-103
MCM4016	2K × 8
MCM6641, 66L41	4K × 12-105
MCM6810, 68A10, 68B10	128 × 8
EPROMs	
MCM2532, 25L32	4K × 82-113
MCM2708, 27A08	1K × 82-119
MCM2716, 27L16	2K × 82-125
TMS2716, TMS27A16	2K × 8
MCM68708, 68A708	1K × 8
MCM68732, 68L732	4K × 8
MCM68764, 68L764	8K × 8
MCM68766	8K × 82-153
EEPROMs	
MCM2801	16 × 16
MCM2816	2K × 8
ROMs	
MCM6670, 6674	128 × (7 × 5)2-164
MCM66700, 710, 714, 720, 730, 734,	
740, 750, 751, 760, 770, 780, 790	128 × (7 × 9)2-171
MCM68A30A, 68B30A	1K × 8
MCM68A308, 68B308	1K × 82-190
MCM68A316A	2K × 8
MCM68A316E	2K × 8

Table of Contents (Continued)


(Drganization P	age
MCM68A332	4K × 82	-203
MCM68A364, 68B364	8K × 8	
MCM68365	8K × 8	
MCM68366	8K × 8	
CHAPTER 3 — CMOS M	emories	
Static RAMs		
MCM14505	64 × 1	3-3
MCM14537	256 × 1	3-12
MCM14552	64 × 4	3-20
MCM5101, 51L01	256 × 4	3-27
MCM6508, 6518	1K × 1	3-31
MCM65114	1K × 4	3-35
MCM65116	2K × 8	3-36
MCM65147	4K × 1	
MCM65148	1K × 4	3-38
ROMs		
MCM14524	256 × 4	3-39
MCM65516	2K × 8	3-45
CHAPTER 4 — Bipolar M	emories	
TTL RAMs	CITOTICS	
	1004 - 1	4.0
MCM93415	1024 × 1	
MCM93425	1024 × 1	4-7
TTL PROMs		
MCM7680, 7681	1024 × 8	
MCM7684, 7685	2K × 4	4-15
MECL Memories		
General Information		4-19
MECL RAMs		
MCM10143	8×2	4-22
MCM10144, 10544	256 × 1	4-27
MCM10145, 10545	16×4	4-29
MCM10146, 10546	1024 × 1	
MCM10147, 10547	128 × 1	
MCM10148, 10548	64×1	
MCM10152, 10552	256 × 1	4-37
MECL PROMs		
MCM10139, 10539	32×8	
MCM10149, 10549	256 × 4	4-43
CHAPTER 5 — Memory S	Subsystems	
Board Level	-	
MMS1102	LSI-11 Compatible Add-In Memory (32K × 18)	
MMS1122	LSI-11, LSI-11/23 Comp. Add-In Memory (32K × 16)	
MMS1132	LSI-11, LSI-11/23 Comp. Add-In Memory (128K × 16)	
MMS1117	PDP-11 Compatible (HEX SPC) Add-In Memory (64K × 18)	
MMS1119	PDP-11 (Modified or Extended Unibus) Comp. Memory (128K × 18)	
MMS1128	PDP-11 (Modified Unibus) Memory Comp. (32K, 48K × 18)	
MMS1170	PDP-11/70 Compatible Add-In Memory	
MMS780	VAX-11/780 Compatible Add-In Memory	
MMS8064	Intel Multibus Compatible Memory	
CHAPTER 6 - Mechanica	al Data	6 1
		0-1

Alphanumeric Index

Device	Page
MCM10139	4-39
MCM10143	
MCM10144	
MCM10145	
MCM10146	
MCM10147	
MCM10148	
MCM10149	
MCM10152	
MCM10539	
MCM10544	
MCM10545 MCM10546	
MCM10548	
MCM10547	
MCM10549	
MCM10552	
MCM14505	
MCM14524	
MCM14537	
MCM14552	
MCM21L14	2-79
MCM21L15A	
MCM21L25A	
MCM2114	
MCM2115A	
MCM2115H	
MCM2125A MCM2125H	
MCM2123H	
MCM2147	
MCM2149	
MCM2148H	
MCM2149	
MCM2167	
MCM25L32	2-113
MCM2532	2-113
MCM27A08	
MCM27L16	2-125
MCM2708	
MCM2716	
MCM2801	
MCM2816	
MCM4016	
MCM2047 A	
MCM4117	
MCM4132	
MCM4516	2-32
MCM4517	2-36
MCM51L01	
MCM5101	
MCM6508	
MCM65114 MCM65116	
MCM65147	
MCM65148	
MCM6518	
MCM65516	
MCM66L41	2-105

Device	Page
MCM6632	2-42
MCM6633	
MCM6641	
MCM6664	
МСМ6665	
MCM6665L25	
MCM6670	
MCM66700	
MCM66710	
MCM66714	
MCM66720 MCM66730	
MCM66734	
MCM6674	
MCM66740	
MCM66750	
MCM66751	
MCM66760	
MCM66770	
MCM66780	2-171
MCM66790	2-171
MCM68A10	
MCM68A30A	
MCM68A308	
MCM68A316A	
MCM68A316E	
MCM68A332	
MCM68A364	
MCM68A708 MCM68B10	
MCM68B30A	
MCM68B308	
MCM68B364	
MCM68L732	
MCM68L764	
MCM6810	2-109
MCM68365	
MCM68366	
MCM68708	
MCM68732	
MCM68764	
MCM68766	
MCM7680	
MCM7681	
MCM7685	
MCM93415	
MCM93425	
MMS1102	
MMS1117	
MMS1119	5-11
MMS1122	
MMS1128	
MMS1132	
MMS1170	
MMS780	
MMS8064 TMS27L16	
TMS27L10 TMS2716	

SELECTOR GUIDES CROSS-REFERENCE

MEMORIES SELECTION GUIDE

NOTES

Not all package options are listed.

Operating temperature ranges: MOS – 0°C to 70°C CMOS – 0°C to 70°C ECL – Consult individual data sheets TTL – Military – 55°C to + 125°C, Commercial 0°C to 70°C

FOOTNOTES

¹Motorola's innovative pin #1 refresh

²All MOS memory outputs are three-state except the open collector MCM2115A series.

³Character generators include shifted and unshifted characters, ASCII, alphanumeric control, math, Japanese, British, German, European and French symbols.

*To be introduced.

RAMs MOS DYNAMIC RAMs

Organization	Part Number	Access Time (ns max)	Power Supplies	No. of Pins
4096 × 1	MCM4027AC-2	150	+ 12, ±5 V	16
4096 × 1	MCM4027AC-3	200	+ 12, ±5 V	16
4096 × 1	MCM4027AC-4	250	+ 12, ±5 V	16
16384×1	MCM4116BC15	150	+ 12, ±5 V	16
16384 × 1	MCM4116BC20	200	+ 12, ±5 V	16
16384 × 1	MCM4116BC25	250	+ 12, ±5 V	16
16384 × 1	MCM4116BC30	300	+ 12, ±5 V	16
16384 × 1	MCM4516C12*1	120	+5 V	16
16384 × 1	MCM4516C15*1	150	+5 V	16
16384 × 1	MCM4516C20*1	200	+5 V	16
16384 × 1	MCM4517C12	120	+5 V	16
16384 × 1	MCM4517C15	150	+5 V	16
16384 × 1	MCM4517C20	200	+ 5 V	16
32768 × 1	MCM4132L15	150	+ 12, ±5 V	18
32768 × 1	MCM4132L20	200	+ 12, ±5 V	18
32768 × 1	MCM4132L25	250	+ 12, ±5 V	18
32768 × 1	MCM4132L30	300	+ 12, ±5 V	18
32768 × 1	MCM6632L15	150	+5 V	16
32768 × 1	MCM6632L20 ¹	200	+5 V	16
32768 × 1	MCM6632L25 ¹	250	+5 V	16
32768×1	MCM6633L15	150	+5 V	16
32768 × 1	MCM6633L20	200	+5 V	16
32768 × 1	MCM6633L25	250	+ 5 V	16
65536 × 1	MCM6664L15 ¹	150	+5 V	16
65536×1	MCM6664L20 ¹	200	+5 V	16
65536×1	MCM6664L25 ¹	250	+5 V	16
65536×1	MCM6665L15	150	+5V	16
65536×1	MCM6665L20	200	+5 V	16
65536×1	MCM6665L25	250	+5 V	16

TTL BIPOLAR RAMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
256×4	MCM93412	45	Open Collector	22
256 × 4	MCM93422	45	3-State	22
1024 × 1	MCM93415	45	Open Collector	16
1024 × 1	MCM93425	45	3-State	16

See Notes on Page 1-2.

MOS STATIC RAMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
128×8	MCM6810	450	24
128×8	MCM68A10	360	24
128×8	MCM68B10	250	24
1024×4	MCM2114P20	200	18
1024 × 4	MCM2114P25	250	18
1024 × 4	MCM2114P30	300	18
1024×4	MCM2114P45	450	18
1024×4	MCM21L14P20	200	18
1024×4	MCM21L14P25	250	18
1024 × 4	MCM21L14P30	300	18
1024×4	MCM21L14P45	450	18
1024 × 1	MCM2115AC45 ²	45	16
1024 × 1	MCM2115AC55 ²	55	16
1024 × 1	MCM2115AC70 ²	70	16
1024 × 1	MCM21L15AC45 ¹	45	16
1024 × 1	MCM21L15AC70 ²	70	16
1024 × 1	MCM2125AC45	45	16
1024 × 1	MCM2125AC55	55	16
1024 × 1	MCM2125AC70	70	16
1024 × 1	MCM21L25AC45	45	16
1024 × 1	MCM21L25AC70	70	16
4096 × 1	MCM2147C55	55	18
4096 × 1	MCM2147C70	70	18
4096 × 1	MCM2147C85	85	18
1024×4	MCM2148C55*	55	18
1024×4	MCM2148C70*	70	18
1024 × 4	MCM2148C85*	85	18
1024×4	MCM2149C55*	55	18
1024×4	MCM2149C70*	70	18
1024 × 4	MCM2149C85*	85	18

CMOS STATIC RAMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
256×4	MCM5101P65	650	22
256×4	MCM5101P80	800	22
256×4	MCM51L01P45	450	22
256 × 4	MCM51L01P65	650	22
1024 × 1	MCM6508C30	300	16
1024 × 1	MCM6508C46	460	16
1024 × 1	MCM6518C30	300	18
1024 × 1	MCM6518C46	460	18

ECL BIPOLAR RAMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
8×2	MCM10143	15	ECL output	24
256×1	MCM10144	26	ECL output	16
16×4	MCM10145	15	ECL output	16
1024 × 1	MCM10146	29	ECL output	16
128×1	MCM10147	15	ECL output	16
256×1	MCM10152	15	ECL output	16
256 × 4	MCM10422*	10	ECL output	24

See notes on page 1-2

MEMORIES SELECTION GUIDE (continued)

EPROMs MOS EPROMs

Organization	Part Number	Access Time (ns max)	Power Supplies	No. of Pins
1,024×8	MCM2708C	450	+ 12, ±5 V	24
1024×8	MCM27A08C	300	+ 12, ±5 V	24
1024×8	MCM68708C	450	+ 12, ±5 V	24
1024 × 8	MCM68A708C	300	+ 12, ±5 V	24
2048×8	TMS2716C	450	+ 12, ±5 V	24
2048×8	TMS27A16C	300	+ 12, ±5 V	24
2048×8	MCM2716C	450	+5 V	24
2048×8	MCM2716C35	350	+5 V	24
2048×8	MCM27L16C	450	+5 V	24
2048×8	MCM27L16C35	350	+ 5 V	24
4096×8	MCM2532C	450	+ 5 V	24
4096×8	MCM2532C35	350	+5 V	24
4096×8	MCM25L32C	450	+5 V	24
4096 × 8	MCM25L32C35	350	+ 5 V	24
8192×8	MCM68764C	450	+5 V	24
8192×8	MCM68764C35	350	+5 V	24
8192×8	MCM68L764C	450	+5 V	24
8192×8	MCM68L764C35	350	+5 V	24
8192×8	MCM68766C35	350	+ 5 V	24

EEPROM MOS EEPROM

Org	anization	Part Number	Access Time (ns max)	Power Supplies	No. of Pins
1	16×16	MCM2801C*	10 μs	+ 5 V	14

See notes on page 1-2

.

ROMs MOS STATIC ROMs (+5 Volts)

Character Generators³

Organization	Part Number	Access Time (ns max)	No. of Pins
128×(7×5)	MCM6670P	350	18
128 × (7 × 5)	MCM6674P	350	18
128×(9×7)	MCM66700P	350	24
128×(9×7)	MCM66710P	350	24
128 × (9 × 7)	MCM66714P	350	24
128×(9×7)	MCM66720P	350	24
128×(9×7)	MCM66730P	350	24
128×(9×7)	MCM66734P	350	24
128×(9×7)	MCM66740P	350	24
128×(9×7)	MCM66750P	350	24
128 × (9 × 7)	MCM66760P	350	24
128×(9×7)	MCM66770P	350	24
128×(9×7)	MCM66780P	350	24
128 × (9 × 7)	MCM66790P	350	24

Binary ROMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
1,024×8	MCM68A308P	350	24
1024×8	MCM68A308P7	350	24
1024×8	MCM68B308P	250	24
2048×8	MCM68A316AP	350	24
2048×8	MCM68A316EP	350	24
2048×8	MCM68A316P91	350	24
4096×8	MCM68A332P	350	24
4096 × 8	MCM68A332P2	350	24
8192×8	MCM68A364P	350	24
8192×8	MCM68A364P3	350	24
8192×8	MCM68B364P	250	24
8192×8	MCM68365P25	250	24
8192×8	MCM68365P35	350	24
8192×8	MCM68366P25	250	24
8192×8	MCM68366P35	350	24
8192×8	MCM68766C45	450	24

CMOS ROMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
256×4	MCM14524	1200	16
2048×8	MCM65516C43	430	18
2048×8	MCM65516C55	550	18

See notes on page 1-2

PROMs ECL PROMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
32 × 8	MCM10139	25	ECL output	16
256 × 4	MCM10149	30	ECL output	16

TTL PROMs

.

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
64×8	MCM5003/5303	125	Open Collector	24
64×8	MCM5004/5304	125	2K Pull-Up	24
512×4	MCM7620	70	Open Collector	16
512×4	MCM7621	70	3-State	16
512×8	MCM7640	70	Open Collector	24
512×8	MCM7641	70	3-State	24
1024×4	MCM7642	70	Open Collector	18
1024 × 4	MCM7643	70	3-State	18
1024×8	MCM7680	70	Open Collector	24
1024 × 8	MCM7681	70	3-State	24
2048 × 4	MCM7684*	70	Open Collector	18
2048 × 4	MCM7685*	70	3-State	18
2048 × 4	MCM7686*	70	Open Collector with Latches	20
2048×4	MCM7687*	70	3-State with Latches	20
2048 × 4	MCM7688*	-	Open Collector with Registers	20
2048 × 4	MCM7689*	-	3-State with Registers	20
1K×8	MCM76LS81*	175	3-State	24
1K × 8	MCM82708*	70	3-State	24

See notes on page 1-2

Ì

Memory Systems Board Selector Guide and Cross Reference

DEC COMPUTERS	MEMORY SIZE	MOTOROLA PART NUMBER	DEC PART NUMBER	INTEL PART NUMBER	MOSTEK PART NUMBER	NATIONAL PART NUMBER	MONOLITHIC SYSTEMS PART NUMBER	DATARAM PART NUMBER	PLESSEY PART NUMBER	CDC PART NUMBER	STANDARD MEMORIES PART NUMBER
+LSI 11 LSI 11/02 LSI 11/23 PDP 11/03 - (Q Bus Plus	8K × 16 16K × 16 32K × 16 64K × 16 128K × 16	MMS1102-31 MMS1122N3032 MMS1122N3064 MMS1132 MMS1132	MSV11-BG MSV11-DC MSV11-DD	CM-5004-616 CM-5004-632	MK 8005-03 MK 8005-02 MK 8005-00	NS23P	MSC4601 16K × 16 MSC4601 32K × 16	DR-115S DR-115S DR-115S DR-115S DR-113S DR-113S	PM-SV32A/103 PM-SV32A/102 PM-SV32A/100	94123-16 94123-32	
slot)	8K × 18 16K × 18 32K × 18 64K × 18 128K × 18	MMS1102-31PC MMS1102-32PC MMS1102-34PC MMS1132 MMS1132	MSV11-EC MSV11-EB MSV11-ED	CM-5004-816 CM-5004-832	MK 8005-14 MK 8005-12 MK 8005-10	NS23P	MSC4604 16K × 18 MSC4604 32K × 18 -	DR-115S DR-115S DR-115S DR-113S DR-113S DR-113S	PM-SV32AP/103 PM-SV32AP/102 PM-SV32AP/100 -		-
+ PDP 11/04 05, 10, 34, 35, 40, 45, 50, 55, 60 (MUDBUS SPC slot)	16K × 16 32K × 16 48K × 16 64K × 16 16K × 18 32K × 18 48K × 18 64K × 18	MMS1117-×2 MMS1117-×4 MMS1117-×6 MMS1117-×8 MMS1117-×2PC MMS1117-×4PC MMS1117-×6PC MMS1117-×8PC		CM-5034-832 CM-5034-848 CM-5034-864	MK 8001-02 MK 8001-01 MK 8001-00 MK 8011-02 MK 8011-01 MK 8011-00	NS11/34-16 NS11/34-32 - NS11/34P-16 NS11/34P-32 -	MSC3503 16K × 16 MSC3503 32K × 16 MSC3503 48K × 16 MSC3503 64K × 16 MSC3605 16K × 18 MSC3605 16K × 18 MSC3605 22K × 18 MSC3605 48K × 18	DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S	PM-S1164/102 PM-S1164/101 PM-S1164/100 PM-S1164A/102 PM-S1164A/101 PM-S1164A/100	94234-16 94234-32	+ PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS
+ PDP-11/04 PDP-11/34 PDP-11/60 (Mudbus slot)	16K × 18 32K × 18 48K × 18 64K × 18 96K × 18	MMS1128P×016 MMS1128P×032 MMS1128P×048 •MMS1128P×064 †MMS1128P×096	MS11-LA MS11-LB MS11-LC	CM-5034-832 CM-5034-848	MK 8011-02 MK 8011-01 MK 8012-00	NS11/34P-16 NS11/34P-32 - -	MSC3606 16K × 18 MSC3606 32K × 18 MSC3606 48K × 18 MSC3606 128K × 18 -	DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S	PM-S11L/100 PM-S11L/100	94234-16 94234-32	+ PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS
+ PDP-11/04 PDP-11/34 PDP-11/60 - (Mudbus slot)	32K × 18 64K × 18 96K × 18 128K × 18 256K × 18 512K × 18	MMS1119P×032 MMS1119P×064 MMS1119P×096 MMS1119P×128 *MMS1119P×256 *MMS1119P×512	MS11-LA MS11-LB MS11-LC MS11-LD	CM-5034-832 CM-5034-864 	MK 8012-03 MK 8012-02 MK 8012-01 MK 8012-00	NS11/34Q NS11/34Q NS11/34Q 	MSC3606 32K × 18 MSC3606 64K × 18 MSC3606 96K × 18 MSC3606 128K × 18	DR-114S DR-114S DR-114S DR-114S	PM-S11L/100 PM-S11L/100 PM-S11L/100 PM-S11L/100	94134-32 94134-64 94134-128	+ PINCOMM PS PINCOMM PS - - - -
+ PDP-11/70 (Add-1n)	32K×39	MMS1170E1064	-	-	-	-	-	-	-	-	+ PINCOMM 70S
+ VAX 11/780 (Memory SUB- SYSTEM slot)	32K × 72	MMS780AE1032	MS780-DA (M8210)	-	MK 8016-01	NS 780	MSC 3610	DR-178S	-	-	+ PINCOMM 780S

† Populated with 32K RAMS

· Populated with 64K RAMS

 $\times = 3$ for fast speed

- $\times = 4$ for standard speed P/PC- Parity + Controller eliminates the need for DEC's 7850 controller.
- + DEC, LSI-11, PDP-11, and VAX-11/780 are trademarks of Digital Equipment Corp. PINCOMM is a registered trademark of Trendata Standard Memories.

INTEL MICROCOMPUTERS	MEMORY SIZE	MOTOROLA PART NUMBER	INTEL PARI NUMBER	NATIONAL PART NUMBER	CHRISLIN Part Number
+ iSBC 80/10, 80/20, 86/12 + (MULTIBUS) MDS Development System SYSTEM 80	16K × 8 32K × 8 48K × 8 64K × 8 16K × 9 32K × 9 48K × 9 64K × 9	MMS8016 MMS8032 MMS8048 MMS8064 MMS8016P MMS8032P MMS8048P MMS8048P	SBC 016 SBC 032 SBC 048 SBC 064	+ BLC 016 BLC 032 BLC 048 BLC 064	Ci 8080 Ci 8080 Ci 8080 Ci 8080
+ iSBC 80/10, 80/20 † MDS Development System SYSTEM 80	16K × 8 32K × 8	MMS80810-1 MMS80810	SBC 016 SBC 032	BLC 016 BLC 032	Ci 8080 Ci 8080

+ MULTIBUS and iSBC are trademarks of INTEL Corp.

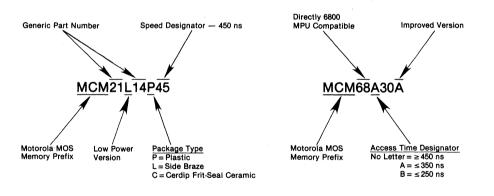
BLC is a trademark of NATIONAL Semi-conductor Corp.

† Compatible with limitations

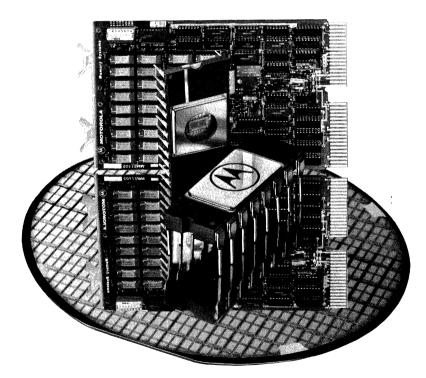
NOTE: THIS DOCUMENT IS INTENDED AS AN AID TO OUR CUSTOMERS IN SELECTING THE PROPER ADD-IN MEMORY BOARD. WE RECOMMEND THAT THE DATA SHEET & TECHNICAL MANUALS FOR THE PARTICULAR BOARD IN QUESTION BE USED BEFORE INSTALLATION.

THE OFFICIAL MOS MEMORY CROSS-REFERENCE From Motorola

NOVEMBER 1980


Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
AMD	1	<u>, (id indi)</u>		1	
Am2708	1024 × 8 EPROM	300-450	24	+ 12. ± 5 V	MCM2708
Am2716	2048 × 8 EPROM	450	24	+5 V	MCM2716
Am4044	4096 × 1 SRAM	200-450	18	+5 V	MCM66L41
Am9016	16.384 × 1 DRAM	150-300	16	+ 12, ±5 V	MCM4116
Am9114	1024 × 4 SRAM	200-450	18	+5 V	MCM2114
Am91L14	1024 × 4 SRAM	200-450	18	+5 V	MCM21L14
Am9147	4096 × 1 SRAM	55-85	18	+5 V	MCM2147
Am9208B	1024 × 8 SROM	350	24	+5V	MCM68A308
Am9217	2048 × 8 SROM	350	24	+5V	MCM68A316A
Am9218	2048 × 8 SROM	350	24	+5V	MCM68A316E
Am9232	4096 x 8 SROM	350	24	+5V	MCM68A332
AMI S2114	1024 × 4 SRAM	200-450	40	LEV	MONOTAL
			18	+5 V	MCM2114
S2114L	1024 × 4 SRAM	200-450	18	+5 V	MCM21L14
S2147	4096 × 1 SRAM	70-100	18	+5 V	MCM2147
S4264	8192 × 8 SROM	350	24	+5 V	MCM68A364
S5101	256 × 4 SRAM	450-800	22	+5 V	MCM5101
S6508	1024 × 1 SRAM	300-460	16	+5 V	MCM6508
S6518	1024 × 1 SRAM	300-460	18	+5 V	MCM6518
S6810	128 × 8 SRAM	250-450	24	+5 V	MCM6810
S6830	1024 × 8 SROM	350	24	+5 V	MCM68A30A
S6831A	2048 × 8 SROM	350	24	+5 V	MCM68A316A
S6831B	2048 × 8 SROM	350	24	+5 V	MCM68A316E
S68332	4096 × 8 ROM	350	24	+5 V	MCM68A332
FAIRCHILD					
F16K	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116
2114	1024 × 4 SRAM	200-450	18	+5 V	MCM2114
F2708	1024 × 8 EPROM	450	24	+ 12, ± 5 V	MCM2708
F2708I	1024 × 8 EPROM	300	24	+ 12, ±5 V	MCM27A08
2716	2048 × 8 EPROM	450	24	+5 Ý	MCM2716
3508	1024 × 8 SROM	350	24	+5 V	MCM68A308
F3516E	2048 × 8 SROM	350	24	+5 V	MCM68A316E
FM4027	4096 × 1 DRAM	120-250	16	+ 12, ± 5 V	MCM4027A
F68B10	128 × 8 SRAM	250-450	24	+5 V	MCM68B10
F68B308	1024 × 8 SROM	250-350	24	+5 V	MCM68B308
F68708	1024 × 8 EPROM	450	24	+ 12, ± 5 V	MCM68708
FUJITSU					
MB2147	4096 × 1 SRAM	70-100	18	+5 V	MCM2147
MBM2716	2048 × 8 EPROM	450	24	+5V	MCM2716
MB4044	4096 x 1 SRAM	200-450	18	+5V	MCM6641
MB8114	1024 × 4 SRAM	200-450	18	+5V	MCM2114
MB8116	16.384 × 1 DRAM	150-300	16	+12, ±5 V	MCM4116
MB8227	4096 x 1 DRAM	120-250	16	$+12, \pm 5V$ + 12, ± 5V	MCM4027A
MB8308	1024 × 8 SROM	350	24	+ 12, ± 5 V	MCM68A308
MB8518H	1024 × 8 SHOM	450	24 24	+ 5 V + 12, ± 5 V	MCM2708
GENERAL INSTRUME	NT				
RO3-8316B	2048 × 8 SROM	350	24	+5 V	MCM68A316A
RO3-9316B	2048 × 8 SROM	350	24	+5V +5V	MCM68A316A MCM68A316E
RO3-9332C	4096 x 8 SROM	350	24	+5V +5V	MCM68A332
RO3-9364B			24		
nU3-9304D	8092 × 8 SROM	350	24	1+5V	MCM68365-35

Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
HARRIS					
6501	256 × 4 SRAM	450-800	22	+5 V	MONETOI
					MCM5101
6508	1024 × 1 SRAM	300-460	16	+5 V	MCM6508
6514	1024 × 1 SRAM	200-450	18	+ 5 V	MCM65114
6518	1024 × 1 SRAM	300-460	18	+ 5 V	MCM6518
нітасні		·			
HM4334P	1024 × 4 SRAM	300-450	18	+5 V	MONOFILL
HM435101					MCM65114
	256 × 4 CMOS SRAM	450-800	22	+5 V	MCM5101
HM462316EP	2048 × 8 SROM	350	24	+5 V	MCM68A316E
HM462532	4096 × 8 EPROM	450	24	+5 V	MCM2532
HM462708	1024 × 8 EPROM	450	24	+ 5 V	MCM2708
HM462716	2048 × 8	450	24	+5 V	MCM2716
HM46332	4096 × 8 SROM	350	24	+5 V	MCM68A332
HM46364	8192 × 8 SROM	350	24	+5V	
					MCM68A364
HM468A10	128 × 8 SRAM	350	24	+5 V	MCM68A10
HM46830	1024 × 8 SROM	350	24	+5 V	MCM68A30A
HM4716	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116
HM472114A	1024 × 1 SRAM	200-450	18	+5 V	MCM2114
HM48016	2048 × 8 EEPROM	350	24	+5 V	MCM2816
HM4816	16,384 × 1 DRAM	100-200	16	+5 V	MCM4517
HM4847	4096 × 1 SRAM	55-85	18	+5 V	MCM2147
HM4864	65,536 × 1 DRAM	150-200	16	+5 V	MCM6665
HM6116P	2048×8 CMOS SRAM	120-200	18	+5 V	MCM65116
HM6147P	4096×1 CMOS SRAM	55-70	18	+5 V	MCM65147
HM6148P	1024×4 CMOS SRAM	55-85	18	+5 V	MCM65148
NTEL					
2114	1024 × 4 SRAM	200-450	18	+5 V	MCMOINA
2114L	1024 × 4 SRAM				MCM2114
	1024 X 4 SHAW	200-450	18	+5 V	MCM21L14
2115A	1024 × 1 SRAM	45-70	16	+5 V	MCM2115A
2115AL	1024 × 1 SRAM	45-70	16	+5 V	MCM21L15A
2115H	1024 × 1 SRAM	20-35	16	+5 V	MCM2115H
2117	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116
2118	16,384 × 1 DRAM	100-200	16	+5 V	MCM4517
2125A	1024 × 1 SRAM	45-70	16	+5V	
					MCM2125A
2125AL	1024 × 1 SRAM	45-70	16	+5 V	MCM21L25A
2125H	1024 × 1 SRAM	20-35	16	+5 V	MCM2125H
2147	4096 × 1 SRAM	55-100	18	+5 V	MCM2147
2147H	4096 × 1 SRAM	35-55	18	+5V	MCM2147H
2148	1024 × 4 SRAM	70-85	18	+5 V	MCM2148
2148H	1024 × 4 SRAM	45-55	18	+5 V	MCM2148H
2149H	1024 × 4 SRAM				
		45-55	18	+5 V	MCM2149H
2308	1024 × 8 SROM	350	24	+5 V	MCM68A308
2316A	2048 × 8 SROM	350	24	+5 V	MCM68A316A
2316E	2048 × 8 SROM	350	24	+5 V	MCM68A316E
2332	4096 × 8 SROM	350	24	+5 V	MCM68A332
2708	1024 × 8 EPROM	450	24	+ 12, ± 5 V	MCM2708
2708-1	1024 × 8 EPROM	350	24	$+12, \pm 5V$ + 12, ± 5V	MCM27A08
2716	2048 × 8 EPROM	450	24	+12, ±5 V	
			24		MCM2716
2716-1 2816	2048 × 8 EPROM 2048 × 8 EEPROM	350 350	24	+5V +5V	MCM27A16 MCM2816
				+	
NTERSIL			1	1	
2114 (IM2114)	1024 × 4 SRAM	200-450	18	+5 V	MCM2114
IM2147	4096 × 1 SRAM	55-85	18	+5 V	MCM2147
MK4027	4096 × 1 DRAM	150-250	16	+ 12, ± 5 V	MCM2147 MCM4027A
IM6508	1024 × 1 SRAM	300-460	16	+5 V	MCM6508
IM6518	1024 × 1 SRAM	300-460	18	+5V	MCM6518
IM7027	4096 × 1 DRAM	120-250	6	+ 12, ± 5 V	MCM4027A
IM2114L	1024 × 4 SRAM	200-450	18	+5 V	MCM21L14
IM4116	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116
IM7141					
IM7141 IM7141L	4096 × 1 SRAM 4096 × 1 SRAM	200-450 200-450	18 18	+ 5 V + 5 V	MCM6641
11417 141L	HIND X I OTAM	200-400	18	+5 V	MCM66L41
π			- ·		
ITT4027	4096 × 1 DRAM	120-250	16	+ 12, ± 5 V	MCM4027A
ITT4116	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116


Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
MIC		1			
MIC2316E	2048 × 8 SROM	350	24	+5 V	MCM68A316E
MIC2332	4096 × 8 SROM	350	24	+5V	MCM68A332
MOSTEK	1000	70.400		. =	
MK2147	4096 × 1 SRAM	70-100	18	+5 V	MCM2147
MK2716	2048 × 8 EPROM	450	24	+5V	MCM2716
MK4027	4096 × 1 DRAM	150-250	16	+ 12, ±5 V	MCM4027A
MK4116	16,384 × 1 DRAM	150-300 120-200	16	+ 12, ±5 V +5 V	MCM4116
MK4516 MK4164	16,384 × 1 DRAM 65,536 × 1 DRAM	150-250	16 16	+5V +5V	MCM4516 MCM6664
MK30000	1024 x 8 SROM	350	24	+5V +5V	MCM68A308
MK31000	2048 × 8 SROM	350	24	+5V	MCM68A316A
MK32000	4096 x 8 SROM	350	24	+5V	MCM68A332
MK34000	2048 × 8 SROM	350	24	+5V	MCM68A316E
MK36000	8192 x 8 SROM	350	24	+5V	MCM68A364
MK36000-4	8192 × 8 SROM	250	24	+5 V	MCM68B364
NATIONAL					
MM2114	1024 × 4 SRAM	200-450	18	+5 V	MCM2114
MM2147	4096 × 1 SRAM	55-85	18	+5V	MCM2147
MM2708	1024 × 8 EPROM	450	24	+ 12, ± 5 V	MCM2708
MM2716	2048 × 8 EPROM	450	24	+5 V	MCM2716
MM5235	8192 × 8 SROM	350	24	+5 V	MCM68A364
MM5257	4096 × 1 SRAM	200-450	18	+5 V	MCM6641
MM5257L	4096 × 1 SRAM	200-450	18	+5 V	MCM66L41
MM5290	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116
NEC/EA					
μPD414A	4096 × 1 DRAM	150-250	16	+ 12, ± 5 V	MCM4027A
μPD416	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116A
μPD2114L	1024 × 4 SRAM	200-450	18	+5 V	MCM21L14
μPD2147	4096 × 1 SRAM	55-85	18	+5 V	MCM2147
μPD2332	4096 × 8 ROM	350	24	+5 V	MCM68A332
μPD2716	2048 × 8 EPROM	450	24	+5 V	MCM2716
μPD4104	4096 × 1 SRAM	200-450	18	+5 V	MCM66L41
μPD5101	256 × 4 SRAM	450-800	22	+5 V	MCM5101
μPD6508	1024 × 1 SRAM	300-460	16	+5 V	MCM6508
EA2114 EA2308/8308	1024 × 4 SRAM 1024 × 8 SROM	200-450 350	18 24	+5V +5V	MCM2114 MCM68A308
μPD or			24		
EA2316A/8316A µPD or	2048 × 8 SROM	350	24	+5 V	MCM68A316A
EA2316E/8316E	2048 × 8 SROM	350	24	+5 V	MCM68A316E
EA2708	1024 × 8 EPROM	450	24	+ 12, ±5 V	MCM2708
µPD or EA2716	2048 × 8 EPROM	450	24	+5V	MCM2716
EA8332	4096 × 8 SROM	350	24	+ 5 V	MCM68A332
NITRON					
NC6570	128 × (7 × 9) SROM	350	24	+5 V	MCM66700
NC6571	128 × (7 × 9) SROM	350	24	+5 V	MCM66710
NC6572	128 × (7 × 9) SROM	350	24	+5 V	MCM66720
NC6573	128 × (7 × 9) SROM	350	24	+5 V	MCM66730
NC6574 NC6575	128 × (7 × 9) SROM 128 × (7 × 9) SROM	350 350	24 24	+5V +5V	MCM66740 MCM66750
			27	, , , , ,	
SIGNETICS 2607	1024 × 8 SROM	350	24	+5 V	MCM68A308
2608	1024 × 8 SROM	350	24	+5 V	MCM68A30A
2609	128 × (7 × 9) SROM	350	24	+5 V	MCM66700
2660	4096 × 1 DRAM	120-250	16	+12, ±5 V	MCM4027A
2614	1024 × 4 SRAM	200-450	18	+5 V	MCM21L14
2616	2048 × 8 SROM	350	24	+5 V	MCM68A316E
2633	4096 × 8 SROM	350	24	+5 V	MCM68A332
2664	8192 × 8 SROM	350	24	+5 V	MCM68A364
2690	16,384 × 1 DRAM	250-350	16	+ 12, ± 5 V	MCM4116
2708	1024 × 8 EPROM	450	24	+ 12, ± 5 V	MCM2708
2716 4027	2048 × 8 EPROM	450 150-250	24 16	+5V	MCM2716 MCM4027A
4021	4096 × 1 DRAM 256 × 4 SRAM	450-800	16	+ 12, ± 5 V + 5 V	MCM4027A MCM5101

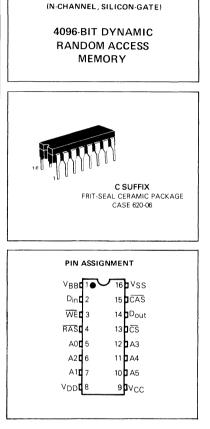
Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
SYNERTEK					
SY2114	1024 × 4 SRAM	200-450	18	+5 V	MCM21L14
SY2147	4096 × 1 SRAM	55-85	18	+5 V	MCM2147
SY2316A	2048 × 8 SROM	350	24	+5 V	MCM68A316A
SY2316B	2048 × 8 SROM	350	24	+5 V	MCM68A316E
SY2332	4096 × 8 ROM	350	24	+5 V	MCM68A332
SY2716	2048 × 8 EPROM	450	24	+5 V	MCM2716
SY5101	256 × 4 SRAM	450-800	22	+5 V	MCM5101
TEXAS INSTRUMENT	S				
TMS2114	1024 × 4 SRAM	200-450	18	+5 V	MCM2114
TMS2147	4096 × 1 SRAM	55-85	18	+5 V	MCM2147
TMS2516	2048 × 8 EPROM	450	24	+5 V	MCM2716
TMS2532	4096 × 8 EPROM	350-450	24	+5V	MCM2532
TMS2708	1024 × 8 EPROM	450	24	+ 12, ± 5 V	MCM2708
TMS2716	2048 × 8 EPROM	450	24	+ 12, ± 5 V	TMS2716
TMS4016	2048 x 8 SRAM	200	24	+5 V	MCM4016
TMS4044	4096 × 1 SRAM	200-450	18	+5 V	MCM6641
TMS4116	16,384 × 1 DRAM	150-300	16	+ 12, ± 5 V	MCM4116
TMS4164	65,536 × 1 DRAM	150-250	16	+5 V	MCM6665
TMS4732	4096 × 8 SROM	350	24	+5 V	MCM68A332
TMS4764	8192 × 8 SROM	350	24	+5 V	MCM68365
TOSHIBA	ŕ				
TMM314	1024 × 4 SRAM	200-450	18	+5 V	MCM2114
TMM2147	4096 x 1 SRAM	55-85	18	+5 V	MCM2147
TC5516P	2048 × 8 SRAM	200	24	+5 V	MCM4016

Part Number Guide.

MOS Memories RAM, EPROM, EEPROM, ROM

MCM4027A

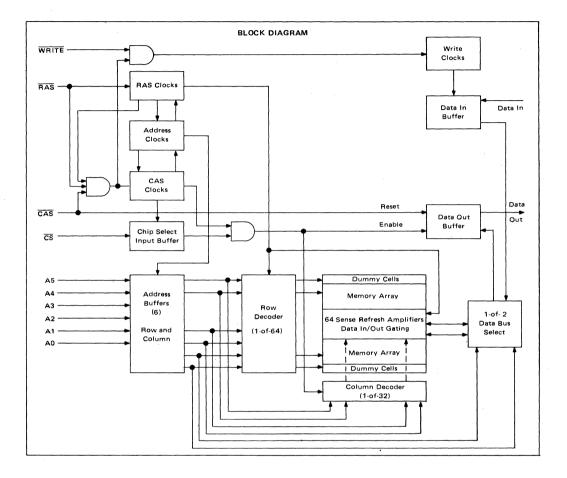
MOS


4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4027A is a 4096 x 1 bit high-speed dynamic Random Access Memory. It has smaller die size than the MCM4027 providing improved speed selections. The MCM4027A is fabricated using Motorola's highly reliable N-channel silicon-gate technology.

By multiplexing row and column address inputs, the MCM4027A requires only six address lines and permits packaging in Motorola's standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The MCM4027A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.


- Maximum Access Time = 120 ns MCM4027AC1 150 ns - MCM4027AC2 200 ns - MCM4027AC3 250 ns - MCM4027AC4
- Maximum Read and Write Cycle Time = 320 ns - MCM4027AC1, C2 375 ns - MCM4027AC3, C4
- Low Power Dissipation 470 mW Max (Active) 27 mW Max (Standby)
- 3-State Output for OR-Ties
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Industry Standard 16-Pin Package
- Page-Mode Capability
- Compatible with the Popular 2104/MK4096/MCM6604
- Second Source for MK4027

TRUTH TABLE

	Inputs				Data Out		Cvcle Power	Ref	Function
RAS	CAS	<u>CS</u>	WE	Previous	Interim	Present	Cycle Power	nei	Function
L	L	L	L	Valid data	High Imp.	Input data	Full-operating	Yes	Write cycle
L	L	L	н	Valid data	High Imp.	Valid data (cell)	Full-operating	Yes	Read cycle
L	L	н	x	Valid data	High Imp.	High Imp.	Full-operating	Yes	Deselected-refresh
L	н	х	×	Valid data	Valid data	Valid data	Reduced operating	Yes	RAS only-refresh
н	L	х	х	Valid data	High Imp.	High Imp.	Standby	No	Standby-output disabled
н	н	х	х	Valid data	Valid data	Valid data	Standby	No	Standby-output valid

H = High, L = Low, X = Don't Care

OPERATING CHARACTERISTICS

ADDRESSING

The MCM4027A has six address inputs (A0–A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe (CAS). At the beginning of a memory cycle, the six low order address bits A0 through A5 are strobed into the chip with RAS to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6–A11) are placed on the address pins. This address is then strobed into the chip with CAS. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by A0 to complete the data selection. The Chip Select (\overline{CS}) is latched into the port along with the column addresses.

DATA OUTPUT

In order to simplify the memory system designed and reduce the total package count, the MCM4027A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

- A chip will be unselected during a memory cycle if:
 - (1) The chip receives both RAS and CAS signals, but no Chip Select signal.
 - (2) The chip receives a CAS signal but no RAS signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.
- If, during a read, write, or read-modify-write cycle,

MCM4027A

the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: \overrightarrow{RAS} , \overrightarrow{CAS} , and \overrightarrow{Chip} Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:

- (1) Read Cycle On the negative edge of CAS, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next CAS signal.
- (2) Write Cycle If the WE input is switched to a logic 0 before the CAS transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next CAS signal.
- (3) Read-Modify-Write Same as read cycle.

DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the \overline{WE} and \overline{CAS} signals. The last of these signals to make a negative transition will strobe the data into the latch. If the \overline{WE} input is switching to a logic 0 in the beginning of a write cycle, the falling edge of \overline{CAS} strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of \overline{CAS} .

If a read-modify-write cycle is being performed, the \overline{WE} input would not make its negative transistion until after the \overline{CAS} signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of \overline{WE} . The data setup and hold times would now be referenced to the negative edge of the \overline{WE} signal. The only other timing constraints for a write-type-cycle is that both the \overline{CAS} and \overline{WE} signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

INPUT/OUTPUT LEVELS

All of the inputs to the MCM4027A are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability (3.2 mA) to drive two TTL loads. The output buffer also has a separate V_{CC} pin so that it can be powered from the same supply as the logic being employed.

REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCM4027A must be refreshed once every 2 ms. Any cycle in which a RAS signal occurs accomplishes a refresh operation. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the RAS cycle. This refresh mode will not shorten the refresh cycle time; however, the system standby power can be reduced by approximately 30%.

If the RAS only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Applying CAS to the chip will restore activity of the output buffer.

POWER DISSIPATION

Since the MCM4027A is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027A is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycle.

In a memory system, the \overline{CAS} signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a \overline{RAS} signal will not dissipate any power on the \overline{CAS} edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the \overline{RAS} signal should be decoded so that only the chips to be selected receive a \overline{RAS} signal. If the \overline{RAS} signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable, Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser any license under the patent rights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product(s) to which the information applies and to discontinue manufacture of the product(s) at any time.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS (Referenced to V_{SS} = Ground.)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	·V _{DD}	10.8	12.0	13.2	Vdc	2
	Vcc	VSS	5.0	VDD	Vdc	3
	V _{SS}	0	0	0	Vdc	2
	VBB	-4.5	-5.0	-5.5	Vdc	2
Logic 1 Voltage, RAS, CAS, WRITE	VIHC	2.4	5.0	7.0	Vdc	2, 4
Logic 1 Voltage, all inputs except RAS, CAS, WRITE	VIH	2.2	5.0	7.0	Vdc	2, 4
Logic 0 Voltage, all inputs	VIL	-1.0	0	0.8	Vdc	2, 4
DC CHARACTERISTICS (V _{DD} = 12 V ± 10%, V _{CC} =	5.0 V ± 10%, VB	B = -5.0 V ±	10%, V _{SS} = 0	V, TA = 0 to	70 ^o C.) Notes	1, 5
Characteristic	Symbol	Min	Тур	Max	Units	Notes
Average VDD Power Supply Current	IDD1			35	mA	6
V _{CC} Power Supply Current	Icc				mA	7
Average VBB Power Supply Current	IBB			250	μA	
Standby V _{DD} Power Supply Current	IDD2			2	mA	9
Average VDD Power Supply Current during	IDD3			25	mA	6
"RAS only" cycles						
Input Leakage Current (any input)	1(L)			10	μA	8
Output Leakage Current	¹ O(L)			10	μA	9,10
Output Logic 1 Voltage @ Iout = -5 mA	∨он	2.4			Vdc	
Output Logic 0 Voltage @ Iout ≈ 3.2 mA	VOL			0.4	Vdc	1

NOTES 1 through 11:

1. T_A is specified for operation at frequencies to $t_R c \geq t_R c$ (min). Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible provided that all ac parameters are met.

2. All voltages referenced to VSS.

3. Output voltage will swing from V_{SS} to V_{CC} when enabled, with no output load. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH}(min) specification is not guaranteed in this mode.

4. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 v).

5. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose. 6. Current is proportional to cycle rate. $I_{DD1}(max)$ is measured at the cycle rate specified by $t_{RC}(min)$.

7. I_{CC} depends on output loading. During readout of high level data V_{CC} is connected through a low impedance (135 Ω typ) to Data Out. At all other times I_{CC} consists of leakage currents only. 8. All device pins at 0 volts except V_{BB} which is at -5 volts and the pin under test which is at +10 volts.

9. Output is disabled (high-impedance) and $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are both at a logic 1. Transient stabilization is required prior to measurement of this parameter.

10.0 V \leq V_{Out} \leq +10 V.

11. Effective capacitance is calculated from the equation:

$$C = \frac{\Delta Q}{\Delta V}$$
 with $\Delta V = 3$ volts.

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested) Note 11

	Characteristic	Symbol	Max	Unit
Input Capacitance	(A0-A5), D _{in} , CS	Cin(EFF)	5.0	pF
	RAS, CAS, WRITE		10.0	
Output Capacitance		C _{out} (EFF)	7.0	pF

ABSOLUTE MAXIMUM RATINGS (See Notes 1 and 2)

Rating	Symbol	Value	Unit					
Voltage on Any Pin Relative to VBB*	V _{in} , V _{out}	-0.5 to +20	Vdc					
Operating Temperature Range	TA	0 to +70	°C					
Storage Temperature Range	T _{stg}	-65 to +150	°C					
Output Current (Short Circuit) Iout 50 mAdc								
* (V _{SS} - V _{BB} > 4.5 V)								
NOTE: Permanent device damage may ARE EXCEEDED. Functional of OPERATING CONDITIONS. E for extended periods of time co prior to V _{CC} and V _{DD} . V _{RR} mu	peration should xposure to hig uld affect device	be restricted to RE her than recomm e reliability. V _{BB} n	COMMENDED ended voltages nust be applied					

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

RECOMMENDED AC OPERATING CONDITIONS ($V_{DD} = 12 V + 10\%$, $V_{CC} = 5.0 V + 10\%$, $V_{BB} = -5.0 V + 10\%$, $V_{SS} = 0 V$, $T_A = 0 \text{ to } 70^{\circ}\text{C}$.) Notes 1, 5, 12, 18

		MCM4	027AC1	MCM4027AC2		MCM4	027AC3	MCM4	027AC4			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes	
Random Read or Write Cycle Time	'RC	320		320		375		375		ns	13	
Read Write Cycle Time	'RWC	320		320		375		375		ns	13	
Page Mode Cycle Time	'PC	160		170		225		285		ns	13	
Access Time From Row Address Strobe	'RAC		120		150		200		250	ns	14, 16	
Access Time From Column Address Strobe	'CAC		80		100		135		165	ns	15.16	
Output Buffer and Turn-Off Delay	'OFF		35		40		50		60	ns		
Row Address Strobe Precharge Time	'RP	100		100		120		120		ns		
Row Address Strobe Pulse Width	'RAS	120	10,000	150	10,000	200	10,000	250	10,000	ns		
Row Address Strobe Hold Time	'RSH	80		100		135		165		ns		
Column Address Strobe Pulse Width	'CAS	80		100		135	1	165		ns		
Column Address Strobe Hold Time	'CSH	120		150		200		250		ns		
Row to Column Strobe Lead Time	'RCD	15	40	20	50	25	65	35	85	ns	17	
Row Address Setup Time	'ASR	0		0		0		0		ns		
Row Address Hold Time	'RAH	15		20		25		35		ns		
Column Address Setup Time	'ASC	-5		-10		-10		-10		ns		
Column Address Hold Time	'CAH	40		45		55		75		ns		
Column Address Hold Time Referenced to RAS	'AR	80		95		120		160		ns		
Chip Select Setup Time	'CSC	0	T	-10		-10	1	-10		ns		
Chip Select Hold Time	'СН	40		45		55	[75		ns		
Chip Select Hold Time Referenced to RAS	'CHR	80		95		120		160		ns		
Transition Time Rise and Fall	'Τ	3	35	3	35	3	50	3	50	ns	18	
Read Command Setup Time	'RCS	0		0		0		0		ns		
Read Command Hold Time	'RCH	0		0		0		0		ns		
Write Command Hold Time	WCH	40		45		55		75		ns		
Write Command Hold Time Referenced to RAS	'WCR	80		95		120		160		ns		
Write Command Pulse Width	'WP	40		45		55	1	75		ns		
Write Command to Row Strobe Lead Time	'RWL	50		50		70		85		ns		
Write Command to Column Strobe Lead Time	'CWL	50		50		70		85		ns		
Data in Setup Time	'DS	0		0		0		0		ns	19	
Data in Hold Time	'DH	40		45		55	1	75		ns	19	
Data in Hold Time Referenced to RAS	¹ DHR	80		95		120		160		ns		
Column to Row Strobe Precharge Time	'CRP	0		0		0		0		ns		
Column Precharge Time	'CP	60		60		80		110		ns		
Refresh Period	'RFSH		2		2		2		2	ms		
Write Command Setup Time	'WCS	0		0		0		0		ns	[
CAS to WRITE Delay	'CWD	60		60		80		90		ns	20	
RAS to WRITE Delay	'RWD	100		110		145	1	175		ns	20	
Data Out Hold Time	'DOH	10		10		10	1	10	1	μs		

NOTES 12 through 20:

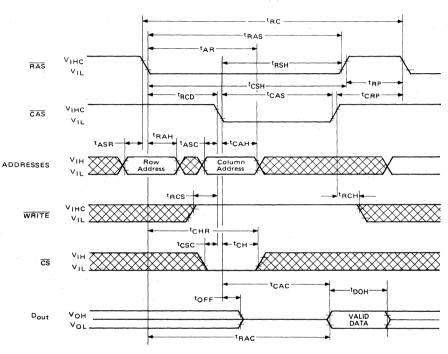
12. AC measurements assume $t_T = 5$ ns.

13. The specifications for $t_{RC}({\sf min})$ and $t_{RWC}({\sf min})$ are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq T_A \leq 70°C) is assured.

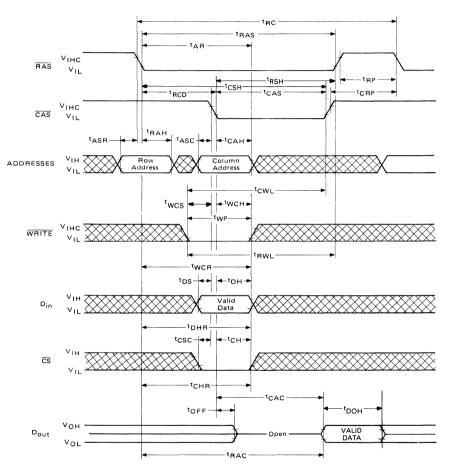
14. Assumes that $t_{RCD} \leq t_{RCD}(max)$.

15. Assumes that $t_{RCD} \ge t_{RCD}$ (max).

16. Measured with a load circuit equivalent to 2 TTL loads and 100 $\ensuremath{\text{pF}}$.


17.Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only; if t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .

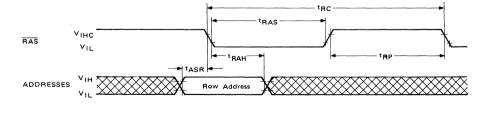
 $18.V_{IHC}(\text{min}) \text{ or } V_{IH}(\text{min}) \text{ and } V_{IL}(\text{max}) \text{ are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} \text{ and } V_{IL}.$


19. These parameters are referenced to \overline{CAS} leading edge in random write cycles and to \overline{WRITE} leading edge in delayed write or read-modify write cycles.

20. twCS, t_{CWD}, and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characterisitcs only: If twCS \geq twCS(min), the cycle is an early write cycle and Data Out will contain the data written into the selected cell. If t_{CWD} \geq t_{CWD}(min) and t_{RWD} \geq t_{RWD}(min), the cycle is a read-write cycle and Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of Data Out (at access time) is indeterminate.

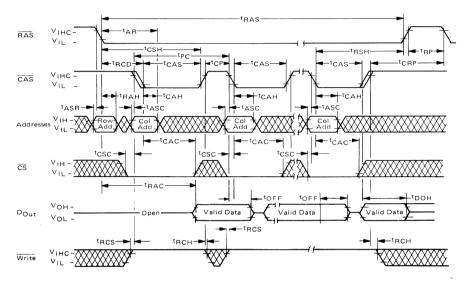
READ CYCLE TIMING

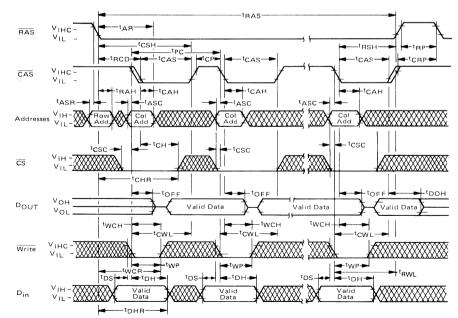
WRITE CYCLE TIMING

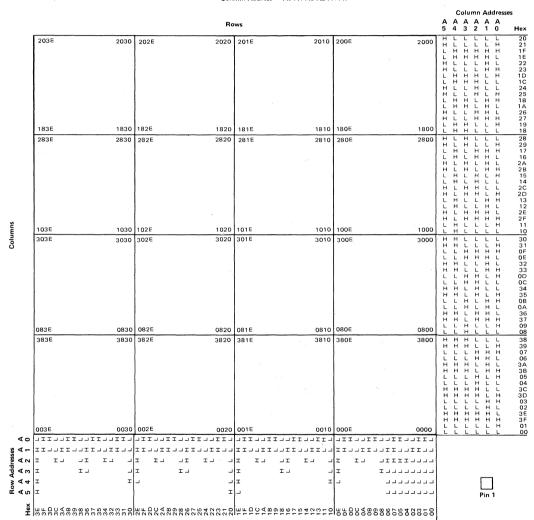

2

2-9

- tRWC --tRAS-TAR ∨інс RAS VIL tRP t_{RCD} tCAS ^tC RP VIHC CAS VIL ^tRAH ^tASR tASC-^tCAH vін vil <u>X</u> Row Address Column Address ADDRESSES TRWD tCWLtRCS-- tcwp TRWL WRITE twp ^tCHR tcsc CS XX ^tCAC tboн toff-۷он VALID DATA Dout Open Vol -tRAC t_{DS} ^tDH [∨]ін ∨і∟ Valid Data Din


READ-MODIFY-WRITE TIMING


RAS ONLY REFRESH TIMING



PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

Row Address A5 A4 A3 A2 A1 A0 Column Address A5 A4 A3 A2 A1 A0

MCM4027A BIT ADDRESS MAP

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4116B is a 16,384-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly reliable N-channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM4116B requires only seven address lines and permits packaging in Motorola's standard 16-pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The data output of the MCM4116B is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.

The MCM4116B incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- Industry Standard 16-Pin Package
- 16,384 X 1 Organization

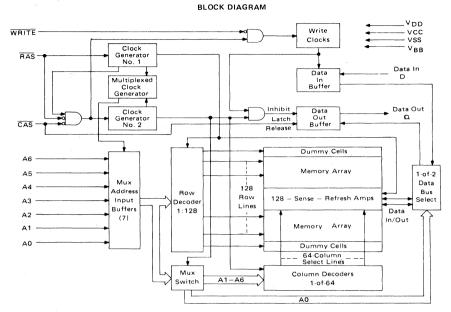
Fast Acce

- ±10% Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation 463 mW Active, 20 mW Standby (Max)

ess Time Options:150	ns	MCM41	16BP-15,	BC-15
200	ns —	MCM41	16BP-20,	BC-20
250	ns —	MCM41	16BP-25,	BC-25
300	ns —	MCM41	16BP-30,	BC-30

Easy Upgrade from 16-Pin 4K RAMs

ABSOLUTE MAXIMUM RATINGS (See Note)


		-	
Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VBB	V _{in} , V _{out}	-0.5 to +20	v
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	w
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS							
(N-CHANNEL)							
16,384-BIT DYNAMIC RANDOM ACCESS							
MEMORY							
P SUFFIX PLASTIC PACKAGE							
CASE 648							
C SUFFIX							
FRIT-SEAL CERAMIC PACKAGE CASE 620							
PIN ASSIGNMENT							
wd 3 14 po							
RAS U 4 13 D A6							
A2 0 6 11 0 A4 A1 0 7 10 0 A5							
PIN NAMES							
A0-A6Column Address Strobe							
DData In							
QData Out RASRow Address Strobe							
WRead/Write Input VBBPower (-5 V)							
V _{CC} Power (+5 V)							
V _{DD} Power (+ 12 V) V _{SS} Ground							

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MCM4116B

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	VDD	10.8	12.0	13.2	V	1
	Vcc	4.5	5.0	5.5	V	1,2
	VSS	0	0	0	V	1
	VBB	-4.5	~5.0	-5.5	V	1
Logic 1 Voltage, RAS, CAS, WRITE	⊻інс	2.4		7.0	v	1
Logic 1 Voltage, all inputs except RAS, CAS, WRITE	VIH	2.4	-	7.0	V	1
Logic 0 Voltage, all inputs	VIL	-1.0		0.8	V	1
DC CHARACTERISTICS (V _{DD} = 12 V · 10%, V _{CC} - 5.0 V · 10%, V	BB -5.0 V 10	%, V _{SS} - 0	V, T _A - C) to 70 ⁰ C.)	
Characteristic	Symbol	Min	Ma	x Units		Notes
Average VDD Power Supply Current	^I DD1	-	35	35 m		4
V _{CC} Power Supply Current	Icc	-	-		mA	5
Average VBB Power Supply Current	^I BB1,3	-	20	о —	μA	
Standby VBB Power Supply Current	I _{BB2}		10	C	μA	
Standby VDD Power Supply Current	IDD2	-	1.5	5	mA	6
Average VDD Power Supply Current during "RAS only" cycles	IDD3	-	27		mA	4
Input Leakage Current (any input)	11(L)	-	10		μA	
Output Leakage Current	10(L)	-	10		μA	6,7
Output Logic 1 Voltage @ Iout = -5 mA	∨он	2.4	-		V	2
Output Logic 0 Voltage @ Iout = 4.2 mA	VOL		0.4	1	V	

NOTES: 1. All voltages referenced to V_{SS}. V_{BB} must be applied before and removed after other supply voltages.

2. Output voltage will swing from VSS to VCC under open circuit conditions. For purposes of maintaining data in power-down mode, VCC may be reduced to VSS without affecting refresh operations. VOH(min) specification is not guaranteed in this mode.

3. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate

4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.

5. ICC depends upon output loading. The VCC supply is connected to the output buffer only.

6. Output is disabled (open-circuit) when CAS is at a logic 1

7. $0 V \leq V_{out} \leq +5.5 V$.

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V, periodically sampled rather than 100% tested) (See Note 8)

Parameter	Symbol	Тур	Max	Unit	Notes
Input Capacitance (A0-A5), Din	C _{I1}	4.0	5.0	рF	9
Input Capacitance RAS, CAS, WRITE	C _{I2}	8.0	10	рF	9
Output Capacitance (D _{OUt})	Co	5.0	7.0	рF	7, 9

AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9, 14)

2

READ, WRITE, AND READ-MODIFY-WRITE CYCLES

 $(V_{DD} = 12 \text{ V} \pm 10\%, V_{CC} = 5.0 \text{ V} \pm 10\%, V_{BB} = -5.0 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_A = 0 \text{ to } 70^{\circ}\text{C.})$

		MCM4	116B-15	MCM4	116B-20	MCM4	16B-25	MCM4	116B-30		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Note
Random Read or Write Cycle Time	^t RC	375	-	375		410	-	480	-	ns	
Read Write Cycle Time	TRWC	375	-	375	-	515		660	-	ns	
Access Time from Row Address Strobe	^t RAC		150		200	-	250	-	300	ns	10, 1
Access Time from Column Address Strobe	^t CAC	-	100	-	135	-	165	-	200	ns	11, 1
Output Buffer and Turn-off Delay	tOFF	0	50	0	50	0	60	0	60	ns	17
Row Address Strobe Precharge Time	tRP	100	-	120	-	150		180	-	ns	
Row Address Strobe Pulse Width	^t RAS	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	^t CAS	100	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	^t RCD	20	50	25	65	35	85	60	100	ns	13
Row Address Setup Time	^t ASR	0	-	0	-	0		0	-	ns	
Row Address Hold Time	^t RAH	20	-	25	-	35		60	-	ns	
Column Address Setup Time	^t ASC	-10	-	-10	-	-10		-10	-	ns	-
Column Address Hold Time	^t CAH	45	-	55	-	75		100	-	ns	
Column Address Hold Time Referenced to RAS	tAR	95	-	120	-	160	-	200	-	ns	
Transition Time (Rise and Fall)	tT	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	RCS	0		0	-	0	-	0	-	ns	
Read Command Hold Time	^t RCH	0	-	0	-	0		0		ns	
Write Command Hold Time	tWCH	45	-	55		75	-	100	-	ns	
Write Command Hold Time Referenced to RAS	tWCR	95	-	120		160	-	200	-	ns	
Write Command Pulse Width	twp	45		55	-	75		100	-	ns	
Write Command to Row Strobe Lead Time	tRWL	60	-	80	-	100		180	-	ns	t
Write Command to Column Strobe Lead Time	tCWL	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	tDS	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	^t DH	45	-	55	-	75	-	100	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	95	-	120		160		200	-	ns	
Column to Row Strobe Precharge Time	^t CRP	-20	-	-20	-	-20		-20	-	ns	
RAS Hold Time	^t RSH	100	-	135	-	165		200		ns	
Refresh Period	^t RFSH	-	2.0	-	2.0	-	2.0	-	2.0	ms	1
WRITE Command Setup Time	tWCS	-20		-20	-	-20	-	-20	-	ns	
CAS to WRITE Delay	[†] CWD	70	-	95	-	125		180	-	ns	16
RAS to WRITE Delay	tRWD	120		160	-	210		280	-	ns	16
CAS Precharge Time (Page mode cycle only)	tCP	60		80	-	100		100	-	ns	
Page Mode Cycle Time	tPC	170		225	-	275	-	325	-	ns	<u> </u>
CAS Hold Time	tCSH	150	-	200	-	250	-	300	- 1	ns	

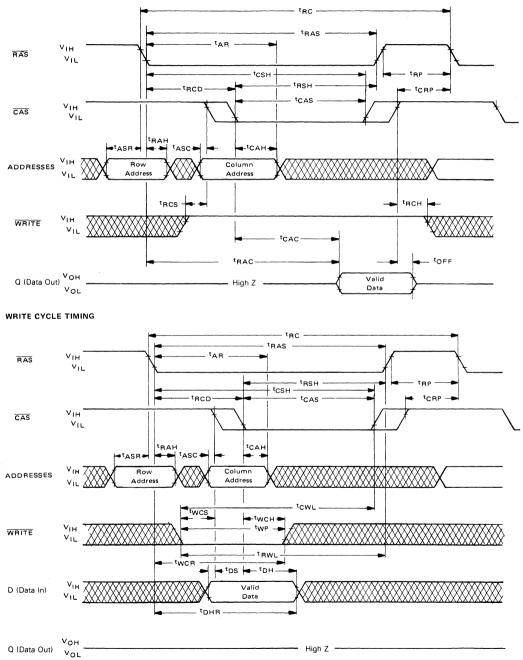
NOTES: (continued)

8. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{I\Delta_t}{\Delta W}$

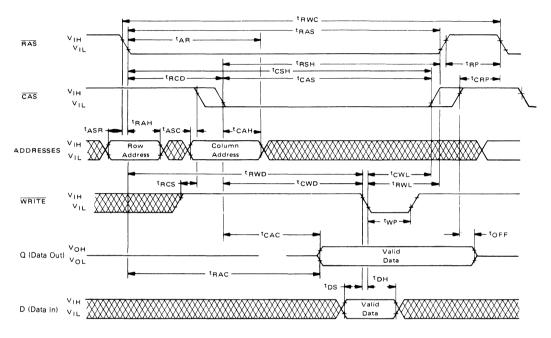
9. AC measurements assume $t_T = 5.0$ ns.

10. Assumes that $t_{RCD} + t_T \leq t_{RCD}$ (max).

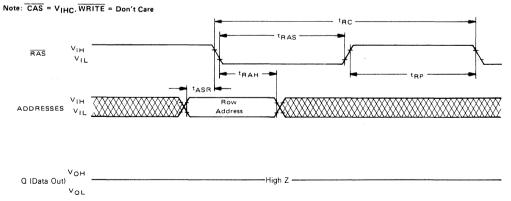
11. Assumes that $t_{RCD} + t_T \ge t_{RCD}$ (max).


12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.

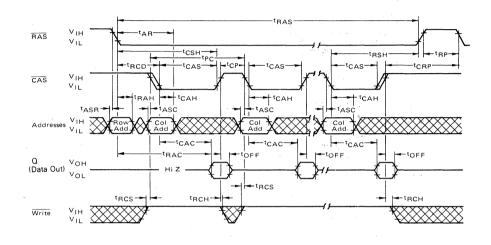
- 13. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. V_{IHC} (min) or V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transistion times are measured between V_{IHC} or V_{IH} and V_{IL}.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.
- 16. t_{WCS} , t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.


17. Assumes that tCRP > 50 ns.

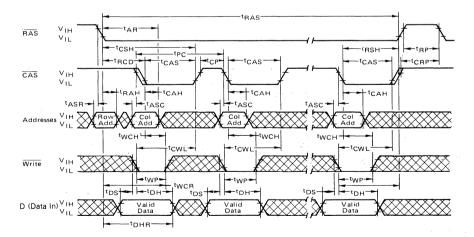
READ CYCLE TIMING


2

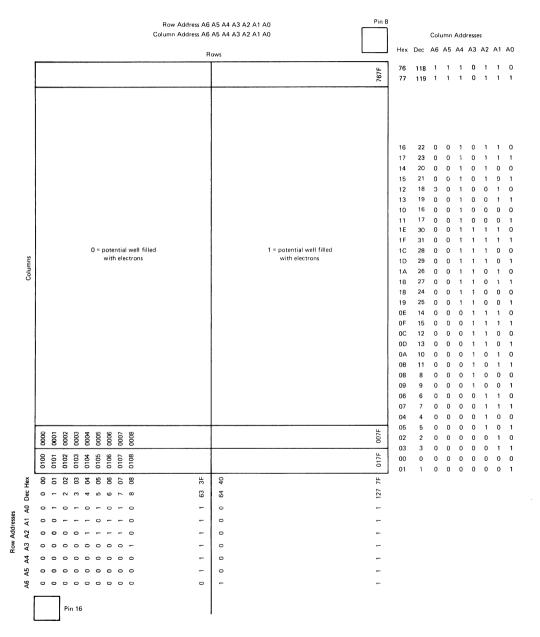
READ-WRITE/READ-MODIFY-WRITE CYCLE



RAS ONLY REFRESH TIMING



2


PAGE MODE READ CYCLE

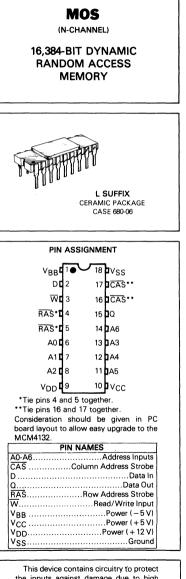
PAGE MODE WRITE CYCLE

MCM4116B BIT ADDRESS MAP

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4117 is a 16,384-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly reliable N-channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM4117 requires only seven address lines and permits packaging in Motorola's standard 18-pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.


All inputs are TTL compatible, and the output is 3-state TTL compatible. The data output of the MCM4117 is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.

The MCM4117 incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- Industry Standard 18-Pin Package
- 16,384 × 1 Organization
- ± 10% Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation 463 mW Active, 20 mW Standby (Max)
- Fast Access Time Options:
 - 150 ns MCM4117L-15
 - 200 ns MCM4117L-20
 - 250 ns MCM4117L-25 300 ns - MCM4117L-30
- Easy Upgrade from 16-Pin 4K RAMs

Symbol	Value	Unit
Vin, Vout	-0.5 to +20	Vdd
TA	0 to + 70	°C
Tstg	-65 to +150	°C
PD	1.0	W
lout	50	mA
	V _{in} , V _{out} T _A T _{stg} PD	$\begin{array}{c c} V_{in}, V_{out} & -0.5 \ to \ +20 \\ \hline T_A & 0 \ to \ +70 \\ \hline T_{stg} & -65 \ to \ +150 \\ \hline P_D & 1.0 \\ \hline \end{array}$

IOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Ranges Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	V _{DD} V _{CC}	10.8 4.5	12.0 5.0	13.2 5.5	v	1 1, 2
	V _{SS} V _{BB}	0 - 4.5	0 - 5.0	0 - 5.5	v	1 1
Logic 1 Voltage, All Inputs	VIH	2.4	-	7.0	V	1
Logic 0 Voltage, All Inputs	VIL	- 1.0	-	0.8	V	1

2

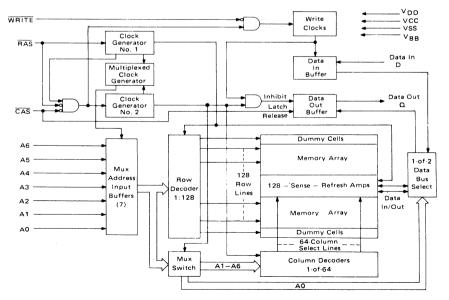
DC CHARACTERISTICS ($V_{DD} = 12 V \pm 10\%$, $V_{CC} = 5.0 V \pm 10\%$, $V_{BB} = -5.0 V \pm 10\%$, $V_{SS} = 0 V$, $T_A = 0$ to 70°C)

Characteristic	Symbol	Min	Max	Unit	Notes
Average VDD Power Supply Current	IDD1	-	35	mA	4
V _{CC} Power Supply Current	ICC	-	. –	mA	5
Average VBB Power Supply Current	^I BB1, 3	-	200	μA	
Standby VBB Power Supply Current	BB2	-	100	μA	
Standby VDD Power Supply Current	DD2	-	1.5	mA	6
Average VDD Power Supply Current During "RAS Only" Cycles	IDD3	-	27	mΑ	4
Input Leakage Current (Any Input)	Ч(L)		10	μA	
Output Leakage Current	lO(L)	-	10	μA	6, 7
Output Logic 1 Voltage @ I _{out} = -5 mA	Voh	2.4		V	2
Output Logic 0 Voltage @ Iout = 4.2 mA	VOL	-	0.4	V	

NOTES: 1. All voltages referenced to V_{SS}, V_{BB} must be applied before and removed after other supply voltages. The second s

1. All voltages referenced to V_{SS}, V_{BB} intervention before and interventional and voltage stream intervention in the stream of the voltage will swing from V_{SS} to V_{CC} under open circuit conditions. For purposes of maintaining data in power down mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations, V_{OH}(min) specification is not guaranteed in this mode.

3. Several cycles are required after power up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate.


Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.

I_{CC} depends upon output loading. The V_{CC} supply is connected to the output buffer only.
 Output is disabled (open-circuit) when CAS is at a logic 1.

7. $0 V \le V_{out} \le +5.5 V$

8. Capacitance, measured with a Boonton meter or effective capacitance calculated from the equation: $C = I\Delta t / \Delta V$.

BLOCK DIAGRAM

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 3, 9, 14)

(Read, Write, and Read-Modify-Write Cycles)

 $(V_{DD} = 12 \text{ V} \pm 10\%, \text{ V}_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{BB} = -5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = 0 \text{ to } 70^{\circ}\text{C})$

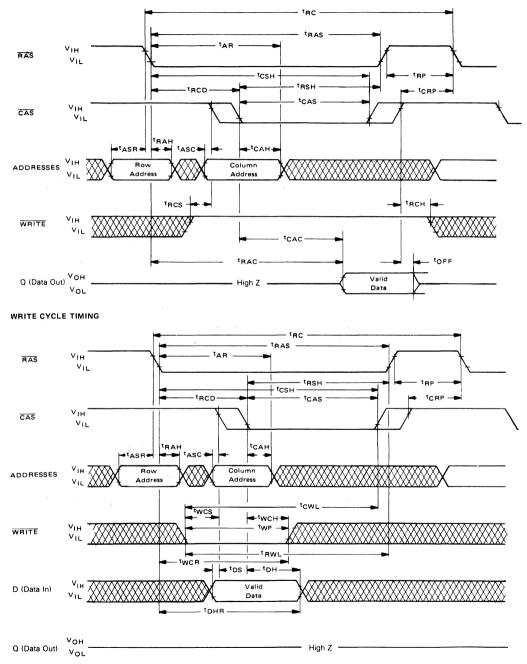
Parameter	Symbol		117-15		117-20		117-25		117-30	Unit	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	^t RC	375	-	375	-	410	-	480	-	ns	Í
Read Write Cycle Time	^t RWC	375	-	375	<u> </u>	515	-	660		ns	
Access Time from Row Address Strobe	tRAC	-	150		200	-	250	-	300	ns	10, 12
Access Time from Column Address Strobe	tCAC		100		135	-	165	-	200	ns	11, 12
Output Buffer and Turn-off Delay	tOFF	0	50	0	50	0	60	0	60	ns	17
Row Address Strobe Precharge Time	tRP	100	-	120	-	150	-	180	-	ns	
Row Address Strobe Pulse Width	tRAS	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	tCAS	100	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	tRCD	20	50	25	65	35	85	60	100	ns	13
Row Address Setup Time	tASR	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	tRAH	20	-	25	-	35		60	-	ns	
Column Address Setup Time	tASC	- 10	-	- 10	-	- 10		- 10	-	ns	
Column Address Hold Time	^t CAH	45	-	55	-	75	-	100		ns	
Column Address Hold Time Referenced to RAS	tAR	95	-	120	-	160	-	200		ns	
Transition Time (Rise and Fall)	tŢ	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	tRCS	0		0	-	0	-	0		ns	
Read Command Hold Time	^t RCH	0	-	0	-	0	-	0	-	ns	
Write Command Hold Time	tWCH	45	-	55	-	75	-	100	-	ns	
Write Command Hold Time Referenced to RAS	tWCR	95	-	120	-	160	-	200	-	ns	
Write Command Pulse Width	tWP	45	-	55	-	75	-	100	-	ns	
Write Command to Row Strobe Lead Time	tRWL	60	-	80	-	100	-	180	-	ns	
Write Command to Column Strobe Lead Time	tCWL	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	tDS	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	^t DH	45	-	55	-	75		100	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	95	-	120	-	160	-	200	-	ns	
Column to Row Strobe Precharge Time	tCRP	- 20	-	- 20	-	- 20	-	- 20	-	ns	
RAS Hold Time	tRSH	100	-	135	-	165	-	200	-	ns	
Refresh Period	tRFSH	-	2.0		2.0	-	2.0	-	2.0	ms	
WRITE Command Setup Time	twcs	- 20	-	- 20	-	- 20	-	- 20	-	ns	
CAS to WRITE Delay	tCWD	70	-	95	-	125	-	180	-	ns	16
RAS to WRITE Delay	tRWD	120	-	160	-	210	-	280	-	ns	16
CAS Precharge Time (Page Mode Cycle Only)	tCP	60	-	80	-	100	-	100	-	ns	
Page Mode Cycle Time	tPC	170	-	225	-	275	-	325	-	ns	
CAS Hold time	tCSH	150	-	200	-	250	-	300	-	ns	

NOTES: (continued)

NOTES: (continued)	Parameter	Symbol	Тур	Max	Unit	Notes
9. AC measurements assume $t_T = 5.0$ ns.	Input Capacitance (A0-A5), D	C ₁₁ .	4.0	5.0	рF	8
10. Assumes that $t_{RCD} \leq t_{RCD}$ (max).	Input Capacitance RAS, CAS, W	C12	8.0	10	рF	8
11. Assumes that $t_{RCD} \ge t_{RCD}$ (max).	Output Capacitance (Q)	Co	5.0	7.0	рF	8

12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.

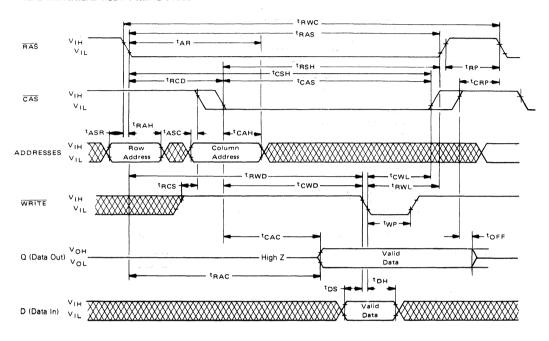
13. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.

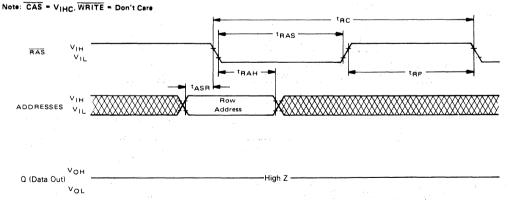

14. VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transistion times are measured between VIHC or VIH and VIL.

15. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.

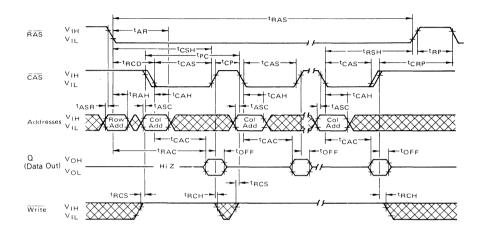
16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS > tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min), the cycle is a read-write cycle and the data out will contain bata read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.

17. Assumes that tCRP > 50 ns.

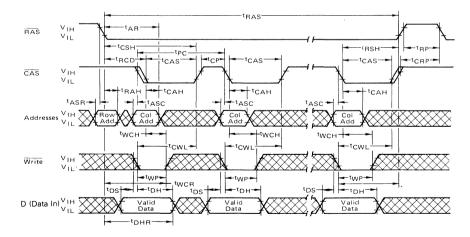

READ CYCLE TIMING


2

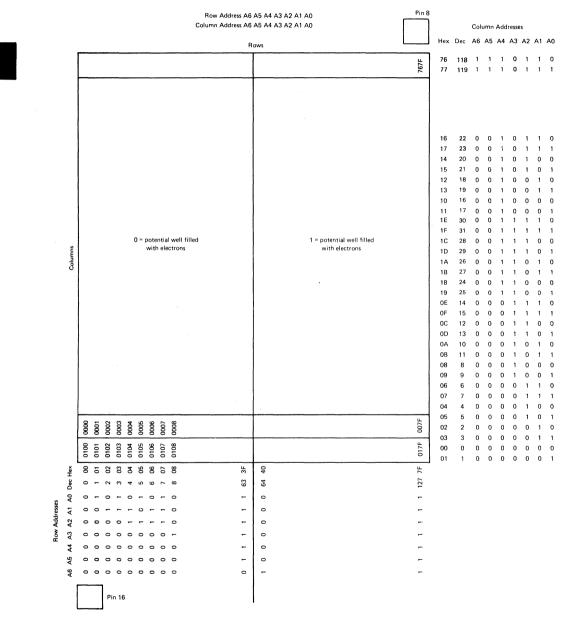
지수는 것을 가지?


RAS ONLY REFRESH TIMING

2


2-24

PAGE MODE READ CYCLE



2

PAGE MODE WRITE CYCLE

MOS

(N-CHANNEL, SILICON-GATE)

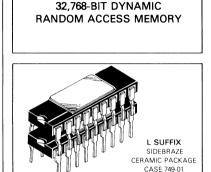
32,768×1 BIT DYNAMIC RAM

The MCM4132 is a 32,768-bit high-speed Dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 32,768 one-bit words and fabricated using Motorola's highly reliable N-channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

The MCM4132 consists of two MCM4116 16,384-bit high-speed MOS dynamic Random Access Memories, each in its own package permanently connected, pin-for-pin, one on top of the other. The lower package is referenced as Module 1, the upper as Module 2, thereby resulting in an 18-pin memory device, organized as 32,768 words of one bit each, with essentially the same characteristics of the MCM4116.

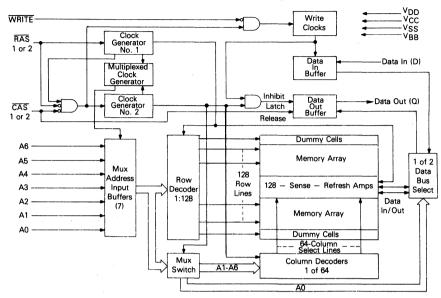
- 32,768 × 1 Organization
- ± 10% Tolerance on All Power Supplies
- All Inputs Are Fully TTL Compatible
- Three-State Fully TTL Compatible Output
- Common I/O Capability when using "Early-Write" Mode
- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- On-Chip Latches for Addresses and Data In
- Fast Access Time Options:
 - 150 ns MCM4132L15
 - 200 ns MCM4132L20
 - 250 ns MCM4132L25
 - 300 ns MCM4132L30

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to V _{BB}	V _{in} , V _{out}	-0.5 to +20	V
Operating Temperture Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	W
Data Out Current	lout	50	mA


Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

CAPACITANCE

(f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V, periodically sampled rather than 100% tested.)


Parameter	Symbol	Тур	Max	Unit	Notes
input Capacitance (A0-A5), D	C ₁₁	4.0	10	pF	8
Input Capacitance RAS, CAS, WRITE	CI2	8.0	13	pF	8
Output Capacitance (Q)	Co	5.0	14	pF	8

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any lisence under its patent rights nor the rights of others.

	PIN A	SSIGNM	ENT
	VBB 1	18	Þvss
	D C 2	17	CAS1
	₩1 3	16	CAS2
Ē	AS1 C 4	15	ρ α
R	AS2 1 5	14	P A6
	A0 0 6	13	рАЗ
	A1 0 7	12	P A4
	A2 🛛 8	11	1 A5
	vdd d a	10	∮v _{cc}
NOTE: RAS	and CA	S ₁ indic	ate bottom device.
	PIN	NAMES	
A0-A6	Address	Inputs	
CAS ₁	Column	Address	Strobe, Module 1
CAS ₂	Column	Address	Strobe, Module 2
D	Data In		
Q	Data Ou	ut	
RAS ₁	Row Ad	dress St	robe, Module 1
RAS ₂	Row Ad	dress St	robe, Module 2
W	Read/V	Vrite Inpu	it i
VBB	Power (-5V)	
Vcc	Power (
VDD	Power	+ 12 V)	
VSS	Ground		

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avod application of any voltage higher than maximum rated voltages to this high impedance circuit. BLOCK DIAGRAM

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted) RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	V _{DD} Vcc V _{SS} V _{BB}	10.8 4.5 0 4.5	12.0 5.0 0 - 5.0	13.2 5.5 0 -5.5	v	1 1, 2 1 1
Logic 1 Voltage, All Inputs	VIH	2.4	-	7.0	v	1
Logic 0 Voltage, All Inputs	VIL	- 1.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
1 Chip Selected					
Average VDD Power Supply Current	IDD1	-	36.5	mA	4
V _{CC} Power Supply Current	Icc	-	-	mA	5
Average VBB Power Supply Current	^I BB1, 3	-	300	μA	
Standby VBB Power Supply Current	IBB2	-	200	μA	
Standby VDD Power Supply Current	IDD2	-	3	mA	6
Average VDD Power Supply Current During "RAS Only" Cycles	IDD3	-	28.5	mA	4
Input Leakage Current (Any Input)	4(L)	-	10	μA	
Output Leakage Current	IO(L)	-	10	μA	6, 7
Output Logic 1 Voltage @ Iout = -5 mA	Voн	2.4	-	V	2
Output Logic 0 Voltage @ Iout = 4.2 mA	VOL	-	0.4	V	
2 Chip Selected (17)				
Average VDD Power Supply Current	IDD1	-	70	mA	4
V _{CC} Power Supply Current	ICC	-	-	mA	5
Average VBB Power Supply Current	^I BB1, 3	-	400	μA	
Standby VBB Power Supply Current	BB2	-	200	μA	
Standby VDD Power Supply Current	IDD2	-	3	mA	6
Average VDD Power Supply Current During "RAS Only" Cycles	IDD3	-	54	mA	4
Input Leakage Current (Any Input)	Ч(L)	-	10	μA	
Output Leakage Current	IO(L)	- 1	10	μA	6,7
Output Logic 1 Voltage @ Iout = -5 mA	Voн	2.4	-	V	2
Output Logic Voltage @ Iout = 4.2 mA	VOL	- 1	0.4	V	1

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 3, 9, 14)

 $(V_{DD} = 12 \text{ V} \pm 10\%, V_{CC} = 5.0 \text{ V} \pm 10\%, V_{BB} = -5.0 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_A = 0 \text{ to } 70^{\circ}\text{C})$ READ, WRITE, AND READ-MODIFY-WRITE CYCLES

Parameter	Symbol		132-15		132-20		132-25		132-30	Unit	Notes
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	NOLES
Random Read or Write Cycle Time	tRC	375	-	375	-	410	-	480	-	ns	
Read Write Cycle Time	^t RWC	375	-	375	-	515	-	660	-	ns	
Access Time from Row Address Strobe	^t RAC	-	150		200	-	250	-	300	ns	10, 12
Access Time from Column Address Strobe	^t CAC	-	100	-	135	-	165	-	200	ns	11, 1:
Output Buffer and Turn-off Delay	tOFF	0	50	0	50	0	60	0	60	ns	
Row Address Strobe Precharge Time	tRP	100	-	120	-	150	-	180	-	ns	
Row Address Strobe Pulse Width	^t RAS	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	tCAS	100	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	tRCD	20	50	25	65	. 35	85	60	100	ns	13
Row Address Setup Time	tASR	0	_	0	-	0	-	0	-	ns	
Row Address Hold Time	tRAH	20	-	25	-	35	-	60	-	ns	
Column Address Setup Time	tASC	- 10	-	- 10		- 10	-	- 10	-	ns	
Column Address Hold Time	^t CAH	45	-	55	-	75	-	100	-	ns	
Column Address Hold Time Referenced to RAS	tAR	95	-	120	-	160	-	200	-	ns	
Transition Time (Rise and Fall)	tŢ	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	tRCS	0	-	0		0	-	0	-	ns	
Read Command Hold time	tRCH	0	-	0	-	0	-	0		ns	
Write Command Hold Time	tWCH	45	-	55	_	75	-	100	-	ns	
Write Command Hold Time Referenced to RAS	tWCR	95	-	120	-	160	-	200	-	ns	
Write Command Pulse Width	twp	45	_	55	_	75	-	100	-	ns	
Write Command to Row Strobe Lead Time	tRWL	60	-	80	-	100	-	180	_	ns	
Write Command to Column Strobe Lead Time	tCWL	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	tDS	0	-	0	-	0		0	-	ns	15
Data in Hold Time	^t DH	45		55	-	75	-	100	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	95	_	120	-	160	-	200	-	ns	
Column to Row Strobe Precharge Time	tCRP	- 20		- 20	-	- 20		- 20		ns	
RAS Hold Time	tRSH	100	-	135	-	165		200	-	ns	
Refresh Period	tRFSH	-	2.0	_	2.0	-	2.0	-	2.0	ms	
WRITE Command Setup Time	twcs	- 20	-	- 20	-	- 20		- 20	-	ns	
CAS to WRITE Delay	tCWD	70	_	95	-	125	_	180	-	ns	16
RAS to WRITE Delay	tRWD	120	-	160	-	210		280		ns	16
CAS Precharge Time (Page Mode Cycle Only)	tCP	60		80	_	100	-	100	-	ns	
Page Mode Cycle Time	^t PC	170	-	225	-	275	-	325	-	ns	
CAS Hold Time	tCSH	150		200	-	250	-	300	-	ns	

NOTES:

 All voltages referenced to V_{SS}, V_{BB} must be applied before and removed after other supply voltages.
 Output voltage will swing from V_{SS} to V_{CC} under open circuit conditions. For purposes of maintaining data in power-down mode, V_{CC} may be reduced to VSS without affecting refresh operations. VOH (min) specification is not guaranteed in this mode.

3. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate.

4. Current is proportional to cycle rate, maximum current is measured at the fastest cycle rate.

I_{CC} depends upon output loading. The V_{CC} supply is connected to the output buffer only.
 Output is disabled (open-circuit) when CAS is at a logic 1.

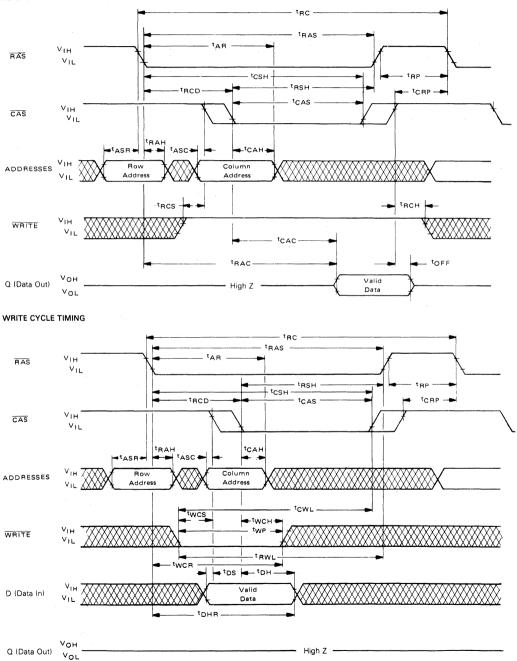
7. $0 V \le V_{out} \le +5.5 V$.

8. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C=IΔT/ΔV.

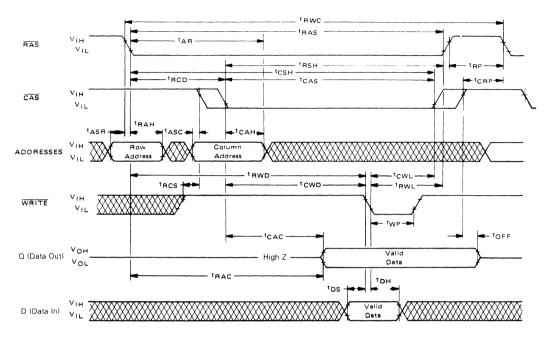
9. AC measurements assume t_T = 5.0 ns

10. Assumes that tRCD ≤ tRCD (max).

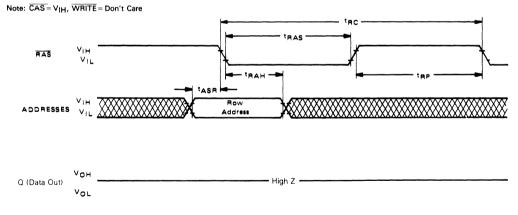
11. Assumes that tRCD ≥ tRCD (max).


12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.

13. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified t_{RCD} (Max) limit, then access time is controlled exclusively by t_{CAC}. 14. V_{II} (min) or V_IH (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_IH or V_IH and V_{IL}.


15. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify-write cycles. 16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS > tWCS (min),

the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD} > t_{CWD} (min) and tRWD = tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate. 17. Two chips selected is only applicable for RAS only refresh on the 32K module.


READ CYCLE TIMING

READ-WRITE/READ-MODIFY-WRITE CYCLE

RAS ONLY REFRESH TIMING

*During a read or write cycle, one 16K segment is selected. Depending on segment being addressed, $\overline{\text{RAS}}_1/\overline{\text{CAS}}_1$ or $\overline{\text{RAS}}_2/\overline{\text{CAS}}_2$ is deselected.

Product Preview

16,384-BIT DYNAMIC RAM

The MCM4516 is a 16,384-bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, N-channel, silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM4516 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by \overline{CAS} allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM4516 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 16,384 Words of 1 Bit
- Single +5 Volt Operation
- Fast 120 ns Operation
- Low Power Dissipation: 200 mW Maximum (Active) 20 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 64K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- RAS-only Refresh Mode
- CAS Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatibility from the 16K RAM (MCM4116) to the 64K RAM (MCM6664)

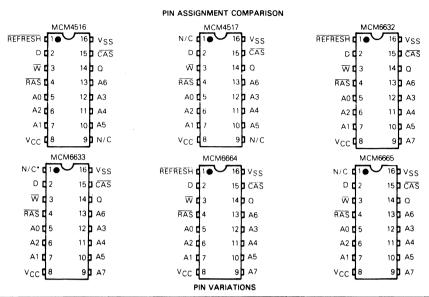
OUTPUT BUFFER TRUTH TABLE

Internal Early Write	CAS	Refresh Contr	ol (CAS Internal)	Output Buffer
н	X	×	(X)	High Z
X	н	×	(X)	High Z
L	L	L	(H)	Maintains Previous Data
L	L	н	(L)	Active

(N-CHANNEL, SILICON-GATE) 16,384-BIT DYNAMIC RAM	
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
C SUFFIX	

FRIT-SEAL

CERAMIC PACKAGE


CASE 620-06

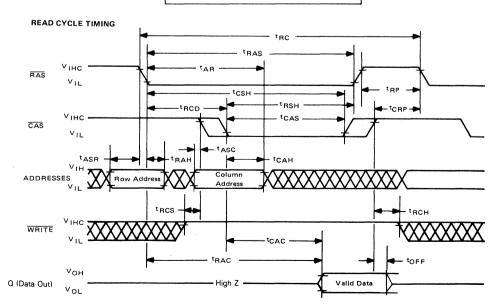
MOS

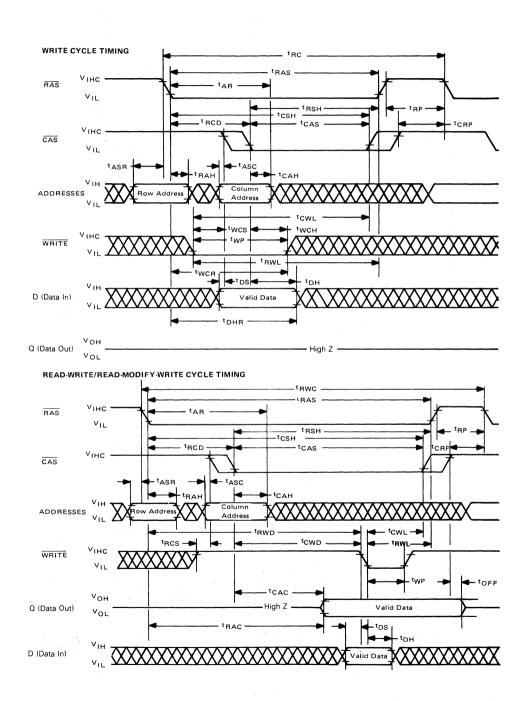
PIN	ASSIGN	IME	NT
REFRESH	10	16	Vss
DC	2	15	CAS
\overline{W} c	3	14	μ α
RAS	4	13	1 A6
A0 C	5	12	A3
A2 🕻	6	11	1 A4
A1 🛙	7	10	A 5
v _{cc} c	8	9	N/C

PIN NA	MES
REFRESH	Refresh
A0-A6	Address Input
D	
Q	Data Out
W	Read/Write Input
RASF	low Address Strobe
CASColu	Imn Address Strobe
V _{CC}	Power (+5V)
V _{SS}	Ground

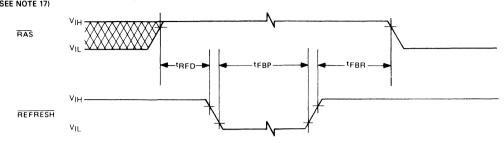
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	VBB(-5V)	REFRESH	N/C	REFRESH	N/C	REFRESH	N/C
8	V _{DD} (+12 V)	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc
9	V _{CC} (+5 V)	N/C	N/C	A7	A7	A7	A7

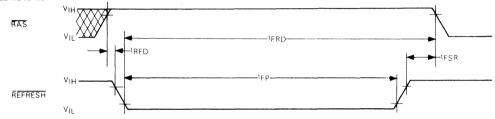

ON-CHIP REFRESH FEATURES/BENEFITS

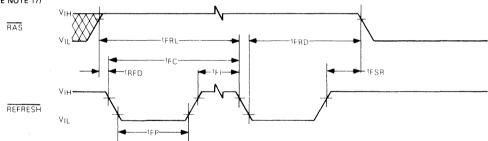

Reduce System Refresh Controller Design Problem

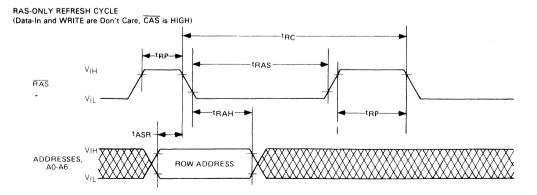
Reduce System Parts Count


Reduce System Noise Increasing System Reliability

Reduce System Power During Refresh




SELF REFRESH MODE (Battery Backup) (SEE NOTE 17)

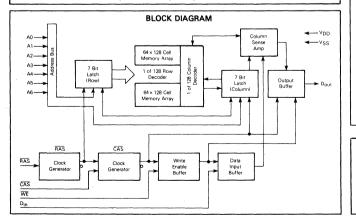


AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE (SEE NOTE 17)

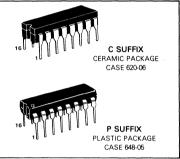
AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE (SEE NOTE 17)

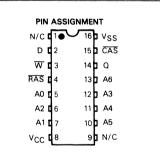
2

Advance Information

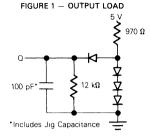

16,384-BIT DYNAMIC RAM

The MCM4517 is a 16,384-bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, N-channel, silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.


By multiplexing row- and column-address inputs, the MCM4517 requires only seven address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.


All inputs and outputs, including clocks, are fully TTL compatible. The MCM4517 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 16,384 Words of 1 Bit
- Single + 5 Volt Operation
- Fast 100 ns Operation
- Low Power Dissipation: 150 mW Maximum (Active) 14 mW Maximum (Standby)
- Maximum Access Time MCM4517-10 - 100 ns MCM4517-12 - 120 ns MCM4517-15 - 150 ns
 - MCM4517-20 200 ns
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Output Capability
- 64K Compatible 128-cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatibility from the 16K RAM (MCM4116) to the 64K RAM (MCM6664)
- Allows Negative Overshoot VIL Min = -2 V
- Hidden RAS Only Refresh Capability


	PIN NAMES
A0-A6	Address Input
D	Data In
	Data Out
Ŵ	Read/Write Input
RAS	Row Address Strobe
	Column Address Strobe
	Power (+5 V)
V _{SS}	Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS	Vin, Vout	-2 to +7	Vdc
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	W
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	Vcc	4.5	5.0	5.5	V	1
Supply Voltage	VSS	0	0	0	V I	1 '
Logic 1 Voltage, All Inputs	VIH	2.4	-	V _{CC} +1	V	1
Logic 0 Voltage, All Inputs	VIL	- 2.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Units	Notes
V _{CC} Supply Current (Standby)	ICC1	-	1.2	2.5	mA	5
V _{CC} Supply Current (Operating)						
4517-10, t _{RC} = 225		-	22	27		
4517-12, t _{RC} = 250	1CC2	-	20	25	mA	4
4517-15, t _{RC} = 300		-	18	23		
4517-20, t _{RC} = 350		-	16	21		
VCC Supply Current (RAS-Only Cycle)						
4517-10, t _{RC} = 225		- 1	14	18		
4517-12, t _{RC} = 250	ICC3	-	12	16	mA	4
4517-15, t _{RC} =300		-	11	14		
4517-20, t _{RC} = 350		-	10	12		
V _{CC} Standby Current (Standby, Output Enable) (CAS at VIL, RAS at VIH)	ICC4	-	2.5	5	mA	
Input Leakage Current (Any Input)	4(L)	-	-	10	μA	
Output Leakage Current (0≤V _{out} ≤5.5) (CAS at Logic 1)	10(L)	-		10	μA	
Output Logic 1 Voltage@lout = -4 mA	Voн	2.4		-	V	
Output Logic 0 Voltage@I _{out} =4 mA	VOL	-	-	0.4	V	

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 9, 14 and Figure 1) (Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

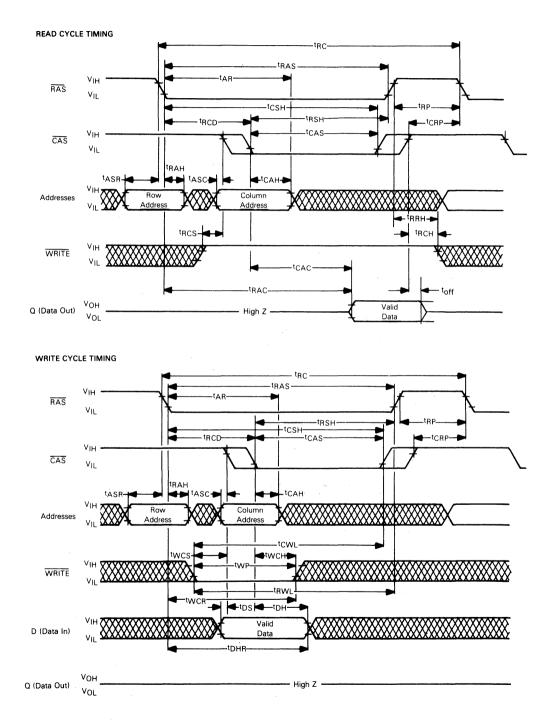
RECOMMENDED AC OPERATING CONDITIONS

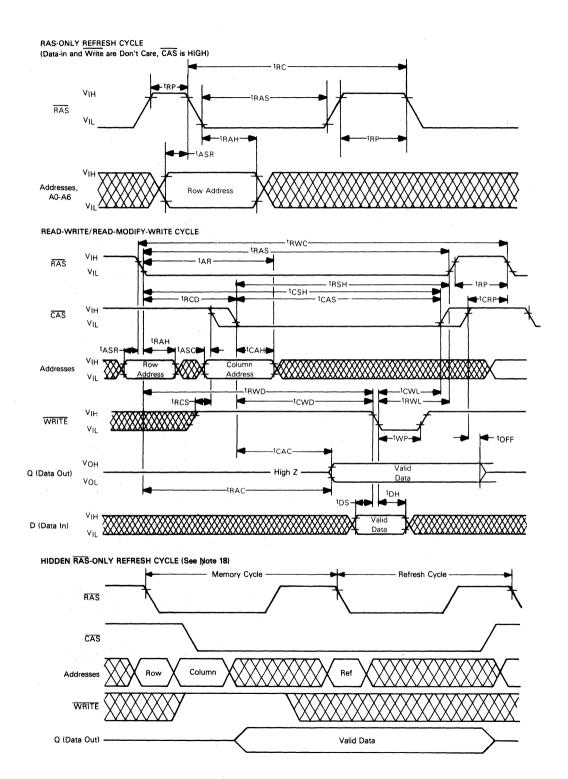
Parameter	Symbol	MCM	4517-10	MCM	4517-12	MCM4	1516-15	MCM4	1517-20	Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	onit	140103
Random Read or Write Cycle Time	tRC	225	-	250	-	300	-	350	-	ns	8, 9
Read-Modify-Write Cycle Time	^t RWC	235	-	270	-	320	-	365	-	ns	8, 9
Access Time from Row Address Strobe	^t RAC	-	100	-	120	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	^t CAC	-	60	-	75	_	95		120	ns	11, 12
Output Buffer and Turn-Off Delay	tOFF	0	30	0	35	0	40	0	50	ns	18
Row Address Strobe Precharge Time	tRP	100	. –	110	-	125	-	150	-	ns	
Row Address Strobe Pulse Width	^t RAS	100	10000	120	10000	150	10000	200	10000	ns	
Column Address Strobe Pulse Width	tCAS	60	10000	75	10000	95	10000	120	10000	ns	
Row to Column Strobe Lead Time	^t RCD	25	40	25	45	25	55	30	80	ns	13
Row Address Setup Time	tASR	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	tRAH	15	-	15	-	20	-	25	-	ns	
Column Address Setup Time	tASC	0		0	-	0	-	0		ns	
Column Address Hold Time	^t CAH	40	-	45	-	55	-	60	-	ns	
Column Address Hold Time Referenced to RAS	tAR	80		90		110		140	-	. nš	
Transition Time (Rise and Fall)	tŢ	3	50	3	50	3	50	3	50	ns	6

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 9, 14 and Figure 1) (Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)


Parameter	Symbol	MCM4	517-10	MCM4	517-12	MCM4	517-15	MCM4	517-20	Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Onit	NOLOS
Read Command Setup Time	^t RCS	0	-	0	-	0	-	0	~	ns	
Read Command Hold Time	^t RCH	0	-	0	-	0	-	0	+	ns	14
Read Command Hold Time Referenced to RAS	^t RRH	20	-	25	-	35	-	40	-		14
Write Command Hold Time	tWCH	40		45	-	55	-	60	-	ns	
Write Command Hold Time Referenced to RAS	tWCR	90	-	100	-	12Q	-	140	-	ns	
Write Command Pulse Width	tWP	30	-	35	-	40	-	45	1	ns	
Write Command to Row Strobe Lead Time	tRWL	40		45	-	50	-	55	-	ns	
Write Command to Column Strobe Lead Time	tCWL	40		45	-	50	-	55	-	ns	
Data in Setup Time	tDS	0		0		0	-	0		ns	15
Data in Hold Time	^t DH	40		45	-	55	-	60		ns	15
Data in Hold Time Referenced to RAS	^t DHR	80	-	90	-	110	-	140	-	ns	
Column to Row Strobe Precharge Time	tCRP	0		0		0	-	0	-	ns	
RAS Hold Time	tRSH	60	-	75		95	-	120	-	ns	
Refresh Period	^t RFSH	-	2.0		2.0	-	2.0	-	2.0	ms	
Write Command Setup Time	twcs	0	-	0	-	0	-	0	-	ns	16
CAS to WRITE Delay	tCWD	50	-	60	-	75	-	80	-	ns	16
RAS to WRITE Delay	^t RWD	90	-	110	-	140		160	-	ns	16
CAS Hold Time	tCSH	100	- '	120	-	150	-	200		ns	
CAS Precharge, Non Page Mode	^t CPN	30	-	35	-	40	-	50	~	ns .	


CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = +5 V. Periodically sampled rather than 100% tested.)

Parameter	Symbol	Тур	Max	Units	Notes
Input Capacitance (A0-A6), D _{in}	C11	4.0	5.0	рF	7
Input Capacitance RAS, CAS, WRITE	C _{I2}	5.0	7.0	рF	7

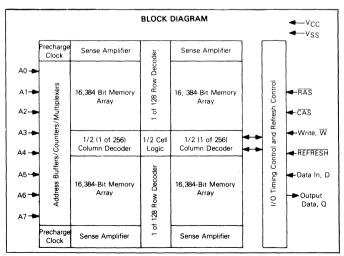
NOTES: 1. All voltages referenced to VSS.

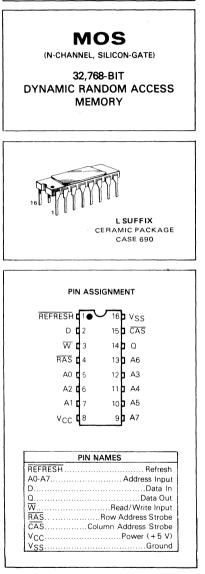
- V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
- Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V_{IL} and V_{IL} (or between V_{IL} and V_{IL}) in a monotonic manner.
- 7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_t|}{\Delta V}$
- The specifications for t_{RC} (min), and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 9. AC measurements assume $t_T = 5.0$ ns.
- 10. Assumes that tRCD≤tRCD (Max)
- 11. Assumes that tRCD≥tRCD (Max)
- 12. Measured with a current load equivalent to 2 TTL loads (+200 μ A, -4 mA) and 100 pF (V_{OH}=2.0 V, V_{OL}=0.8 V).
- 13. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, t_{CWD}, and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if t_{WCS}≥ t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD}≥ t_{CWD} (min) and t_{RWD}≥ t_{RWD} (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17. Addresses, data-in and WRITE are don't care. Data-out depends on the state of CAS. If CAS remains low, the previous output will remain valid. CAS is allowed to make an active to inactive transition during the RAS-only refresh cycle. When CAS is brought high, the output will assume a high-impedance state.
- 18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

PIN ASSIGNMENT COMPARISON MCM4516 MCM4517 MCM6632									
		MCM		P					
REFRESH 1	16 0 V _{SS}	N/C d 1 • 🗸	16 4 VSS		16 0 VSS				
D. C 2	15 CAS	D C 2	15 CAS	D C 2	15 1 CAS				
<u></u> т з	14 9 Q	₩ с з	14 2 Q	₩ с з	14 þ Q				
RAS C 4	13 0 A6	RAS C 4	13 0 A6	RAS L 4	13 1 A6				
A0 0 5	12 1 A3	A0 0 5	12 1 A3	A0 C 5	12 1 A3				
A2 C 6	11 0 A4	A2 C 6	11 P A4	A2 C 6	11 1 A4				
A1 E 7	10 0 A5	A1 D 7	10 0 A5	A1 E 7	10 1 A5				
∨ _{CC} [8	9 9 N/C	V _{CC} C 8	9 9 N/C	V _{CC} C 8	9 1 A7				
MCN	6633	MCM6	6664	MCM6	6665				
N/C 10	16 2 VSS	REFRESH	16 VSS	N/C 1	16 VSS				
D q 2	15 1 CAS	D C 2	15 CAS	D D 2	15 1 CAS				
🐺 🖬 з	14 p Q	W C 3	14 2 Q	ѿ с з	14 p Q				
RAS C 4	13 1 A6	RAS C 4	13 1 A6	RAS C 4	13 3 A6				
A0 t 5	12 1 A3	A0 5	12 1 A3	A0 t 5	12 🖬 A3				
A2 0 6	11 p A4	A2 C 6	11 1 A4	A2 C 6	11 2 A4				
A1 1 7	10 0 A5	A1 🛙 7	10 1 A5	A1 I 7	10 0 A5				
V _{CC} [8	9 1 A7	V _{CC} E 8	9 1 A7	V _{CC} E 8	9 1 A7				
		PIN VARIA	TIONS						

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	VBB(-5V)	REFRESH	N/C	REFRESH	N/C*	REFRESH	N/C*
8	V _{DD} (+12 V)	Vcc	VCC	VCC	Vcc	Vcc	Vcc
9	V _{CC} (+5 V)	N/C	N/C	A7	A7	A7	A7

*Internal pullup resistor should be left open or tied to V_{CC}.

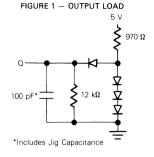

32,768-BIT DYNAMIC RAM


The MCM6632 is a 32,768 bit, high-speed, dynamic Random-Access Memory. Organized as 32,768 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6632 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6632 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 32,768 Words of 1 Bit
- Single + 5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation 275 mW Maximum (Active) 30 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116)
- One Half of the 64K RAM MCM6664
- The Operating Half of the MCM6632 is Indicated by Device Marking: MCM66320 Tie A7 CAS (A15) Low "0" MCM66321 Tie A7 CAS (A15) High "1"



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS (except VCC)	V _{in} , V _{out}	-2 to +7	٠V
Voltage on V _{CC} Supply Relative to V _{SS}	Vin, Vout	- 1 to + 7	V
Operating Temperature Range	Τ _Α	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	W
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage MCM6664-15, -20	Vcc	4.5	5.0	5.5	V.	1
	VSS	0	0	0	V	1
Logic 1 Voltage, All Inputs	VIH	2.4	-	V _{CC} +1	V	1
Logic 0 Voltage, All Inputs	VIL	- 2.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Units	Notes
V _{CC} Power Supply Current (t _{RC} min.)	ICC1	-	50	mΑ	4
Standby V _{CC} Power Supply Current	ICC2	-	5	mΑ	5
V _{CC} Power Supply Current During RAS Only Refresh Cycles	ICC3		40	mΑ	_
Input Leakage Current (any input) (except $\overline{\text{REFRESH}}$) (VSS \leq Vin \leq VCC)	4(L)	-	10	μΑ	-
REFRESH Input Current (VF = VSS)	١Ę		125	μA	
Output Leakage Current (\overline{CAS} at logic 1, $0 \le V_{OUT} \le 5.5$)	lO(L)	-	10	μA	-
Output Logic 1 Voltage @ Iout = -4 mA	∨он	2.4	-	V	-
Output Logic 0 Voltage @ I _{Out} =4 mA	VOL	-	0.4	V	-

CAPACITANCE (f = 1.0 MHz, TA = 25 °C, VCC = 5 V. Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Units	Notes
Input Capacitance (A0-A7), D _{in}	C _{I1}	4	5	рF	7
Input Capacitance RAS, CAS, WRITE	CI2	8	10	рF	7
Output Capacitance (D_{out}) ($\overline{CAS} = V_{IH}$ to disable output)	Co	5	7	рF	7

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)

(Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6632-15		MCM6632-20		Units	Notes
	Oymbol	Min	Max	Min	Max	Office	140100
Random Read or Write Cycle Time	tRC	300	-	350		ns	8, 9
Read Write Cycle Time	^t RWC	300	-	350	-	ns	8, 9
Access Time from Row Address Strobe	^t RAC	_	150	-	200	ns	10, 12
Access Time from Column Address Strobe	^t CAC	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	tOFF	0	30	0	40	ns	18
Row Address Strobe Precharge Time	tRP	120		140		ns	
Row Address Strobe Pulse Width	^t RAS	150	10000	200	10000	ns	-
Column Address Strobe Pulse Width	tCAS	75	10000	110	10000	ns	-
Row to Column Strobe Lead Time	tRCD	30	75	35	90	ns	13
Row Address Setup Time	tASR	0		0	-	ns	-
Row Address Hold Time	^t RAH	25	-	30	-	ns	-
Column Address Setup Time	tASC	0	-	0	-	ns	-
Column Address Hold Time	^t CAH	45	-	55	-	ns	-
Column Address Hold Time Referenced to RAS	tAR	120	-	155	-	ns	-
Transition Time (Rise and Fall)	tT	3	50	3	50	ns	6

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6 and Figure 1)

(Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

		MCM	6632-15	MCM	6632-20		
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Read Command Setup Time	tRCS	0	-	0	-	ns	-
Read Command Hold Time	^t RCH	10	-	10		ns	14
Read Command Hold Time Referenced to RAS	tRRH	30	-	35	-	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	
Write Command Hold Time Referenced to RAS	tWCR	120	-	155	-	ns	
Write Command Pulse Width	tWP	45	_	55		ns	-
Write Command to Row Strobe Lead Time	^t RWL	45	-	55	-	ns	· _
Write Command to Column Strobe Lead Time	tCWL	45		55	-	ns	-
Data in Setup Time	tDS	0	-	0	-	ns	15
Data in Hold Time	tDH	45	-	55	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	tCRP	- 10	-	- 10	-	ns	-
RAS Hold Time	trsh	75	-	110		ns	-
Refresh Period	tRFSH	-	2.0		2.0	ms	
WRITE Command Setup Time	twcs	- 10	-	- 10	-	ns	16
CAS to WRITE Delay	tcwD	45		55	-	ns	16
RAS to WRITE Delay	^t RWD	125	-	160	-	ns	16
CAS Hold Time	tCSH	150	-	200	-	ns	
RAS to REFRESH Delay	tRFD	0	-	0	-	ns	-
REFRESH Period (Battery Backup Mode)	tFBP	2000	-	2000	_	ns	
REFRESH to RAS Precharge Time (Battery Backup Mode)	tFBR	390	-	460		ns	-
REFRESH Cycle Time (Auto Pulse Mode)	tFC	330		380	-	ns	-
REFRESH Pulse Period (Auto Period Mode)	tFP	60	2000	60	2000	ns	
REFRESH to RAS Setup Time (Auto Pulse Mode)	tFSR	30	-	30	-	ns	
REFRESH to RAS Delay Time (Auto Pulse Mode)	^t FRD	390	-	460	-	ns	-
REFRESH Inactive Time	tFI	30		30 -		ns	-
RAS to REFRESH Lead Time	tFRL	390	-	460	-	ns	-

NOTES: 1. All voltages referenced to VSS.

V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.

3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.

Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.

The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V_{IL} and V_{IL} (or between V_{IL} and V_{IL}) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_1|}{\Delta V}$

 The specifications for t_{RC} (min), and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.

9. AC measurements assume t_T = 5.0 ns.

10. Assumes that tRCD≤tRCD (Max)

11. Assumes that tRCD≥tRCD (Max)

12. Measured with a current load equivalent to 2 TTL loads (+200 μ A, -4 mA) and 100 pF (V_{OH}=2.0 V, V_{OL}=-0.8 V).

13. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.

14. Either tRRH or tRCH must be satisfied for a read cycle.

 These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.

16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥ tCWD (min) and tRWD≥ tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

17. Addresses, data-in and WRITE are don't care. Data-out depends on the state of CAS. If CAS remains low, the previous output will remain valid. CAS is allowed to make an active to inactive transition during the pin #1 refresh cycle. When CAS is brought high, the output will assume a high-impedance state.

18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

PIN ASSIGNMENT COMPARISON

мсм	4516	MCM4	4517	MC	M6632
REFRESH	16 VSS		16 V _{SS}	REFRESH	16 VSS
D D 2	15 CAS	D C 2	15 CAS	D C 2	15 2 CAS
<u></u> т з	14 p Q	₩ 1 3	14 p Q	ѿ с з	14 p Q
RAS 4	13 A6	RAS 4	13 0 A6	RAS C 4	13 1 A6
A0 0 5	12 1 A3	A0 0 5	12 1 A3	A0 C 5	12 🖬 A3
A2 D 6	11 D A4	A2 C 6	11 p A4	A2 C 6	11 1 A4
A1 D 7	10 0 A5	A1 1 7	10 1 A5	A1 C 7	10 0 A5
V _{CC} [8	9 9 N/C	V _{CC} 8	9 N/C	V _{CC} C 8	9 9 A7
MCM	6633	MCM6	6664	MC	M6665
N/C 1	16 VSS		16 VSS	N/C	16 VSS
D C 2 .	15 1 CAS	D D 2	15 CAS	D C 2	15 CAS

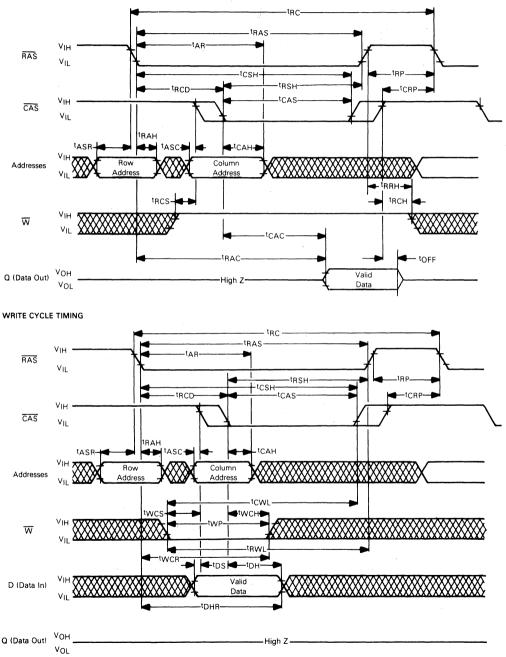
wd3 14 D Q RAS 13 A6 4 12 A3 A0 🕻 5 A2 🛛 6 11 **1** A4 A1 07 10 A5 9 A7 Vcc 8

1	MCM66	64		
ſ		16	þ	Vs
92	2	15	þ	ĊĀ
d	3			
ď	1			
d	5			
qe	5	11	þ	A4
d :	7	10	þ	A5
ď	3	9	þ	Α7
		MCM66 2 2 3 4 5 6 6 7 8	C 2 15 C 3 14 C 4 13 C 5 12 C 6 11 C 7 10	1 16 2 15 3 14 4 13 5 12 6 11 7 10

	мсм66	65		
N/C		16	þ	٧s
D	2	15	h	ĈĀ
w c	3	14		
RAS	4	13	þ	A6
A0 5	5	12	5	A3
A2 🕻	6	11		Α4
A1 E	7	10	þ	A5
V _{CC}	8	9	þ	Α7
		_		

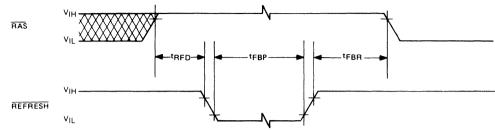
PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	VBB(-5V)	REFRESH	N/C	REFRESH	N/C	REFRESH	N/C
8	V _{DD} (+12 V)	Vcc	Vcc	Vcc	Vcc	VCC	VCC
9	V _{CC} (+5 V)	N/C	N/C	A7	A7	A7	A7

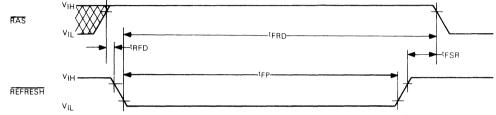

On-Chip Refresh Features/Benefits

Reduce System Refresh Controller Design Problem Reduce System Parts Count Reduce System Noise Increasing System Reliability Reduce System Power During Refresh

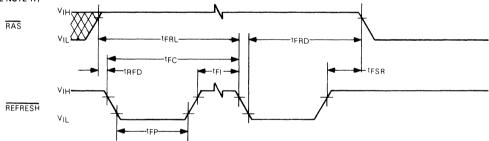
		(DRDERING INFORMATION
Part Number	Description	Speed	Marking*
MCM6632L15	32K Dynamic	150	MCM66320L15/MCM66321L15
MCM66320L15	Random Access	150	MCM66320L15
MCM66321L15	Memory	150	MCM66321L15
MCM6632L20	Sidebraze	200	MCM66320L20/MCM66321L20
MCM66320L20	Package "'L"	200	MCM66320L20
MCM66321L20	7	200	MCM66321L20

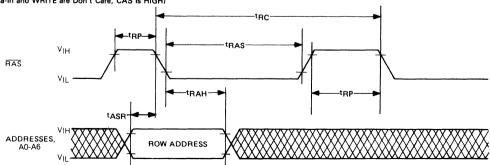

*MCM66320 = Tie A7 CAS (A15) Low "0" MCM66321 = Tie A7 CAS (A15) High "1"

READ CYCLE TIMING

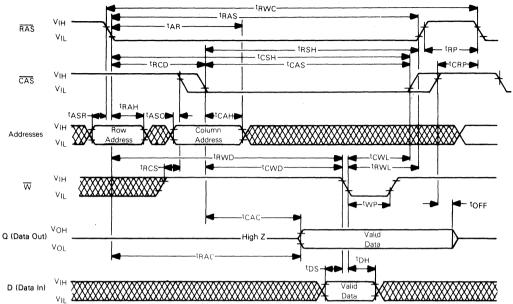


SELF REFRESH MODE (Battery Backup) (SEE NOTE 17)




AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE (SEE NOTE 17)

AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE (SEE NOTE 17)



RAS-ONLY REFRESH CYCLE (Data-In and WRITE are Don't Care, CAS is HIGH)

READ-WRITE/READ-MODIFY-WRITE CYCLE

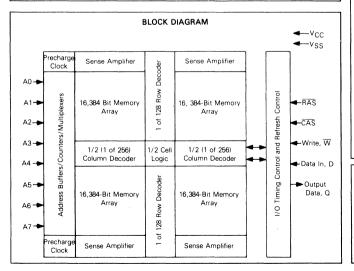
MCM6664 BIT ADDRESS MAP

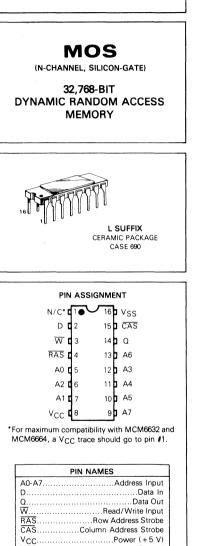
	Row Address A7 A6 A Column Address A7 A6		Pin 8										
			L				Colur						
	F			Hex FE FC FD FA FB	Dec 254 255 252 253 250 251 240	A7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A6 1 1 1 1 1	A3 1 1 1 1	A4 1 1 1 1	A5 1 1 1 1	A2 1 1 1 0 0	A0 1 0 1 1	A1 0 1 0 1 0
				F8 F9	248 249 • • •	1	1	1	1 1	1 1	0 0	00	0 1
ddresses				82 83 8D 81	130 131 128 129	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	1 0 1
Column Addresses				7F 7E 7D	127 126 125	0 0 0	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 0	1 0 1
					•								
	910 916		0110 0101 0101 0101	04	• • •	0	0	0	0	0	1	0	0
	06FF 9FF		010 0110 0000 11000	03 02 01 00	3 2 1 0	0 0 0	00000	00000	0 0 0	0 0 0 0	0 0 0 0	1 1 0 0	1 0 1 0
Hex	ц ц П ц	7E 7F	88668686	8									
Dec	255	126	∞ ∞ ∩ ∩ ∩ ∩ ∩ ∩ ∩ 0 0 − 0	0									
Row Addresses A2 A0 Dec	0 -	0 -	00000	0									
			00000	0									
			00000										
			-00000000										
			000000000										
			0000000000										
e س		00	000000000										

Data Stored = Din A0X A1Y

Column Address A1	Row Address A0	Data Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted
	I	

2


32,768-BIT DYNAMIC RAM


The MCM6633 is a 32,768 bit, high-speed, dynamic Random-Access Memory. Organized as 32,768 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6633 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6633 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 32,768 Words of 1 Bit
- Single +5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation 275 mW Maximum (Active) 30 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4516, MCM4517)
- One Half of the 64K RAM MCM6665
- The Operating Half of the MCM6633 is Indicated by Device Marking: MCM66330 Tie A7 CAS (A15) Low "0" MCM66331 Tie A7 CAS (A15) High "1"

V_{SS}.....Ground

This device contains circuitry to protect

the inputs against damage due to high

static voltages or electric fields; however,

it is advised that normal precautions be taken to avoid application of any voltage

higher than maximum rated voltages to

this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS (Except VCC)	Vin, Vout	-2 to +7	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vin, Vout	-1 to +7	V
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Power Dissipation	PD	1	W
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 1 - OUTPUT LOAD

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	MCM6633L15/MCM6633L20	Vcc	4.5	5.0	5.5		
	MCM6633L15-5/MCM6633L20-5	Vcc	4.75	5.0	5.25	Vdc	1
		VSS	0	0	0		
Logic 1 Voltage, All Inputs		VIH	2.4	-	7.0	Vdc	1
Logic 0 Voltage		VIL	2.0	-	0.8	Vdc	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Units	Notes
V _{CC} Power Supply Current (t _{RC} min.)	ICC1	-	50	mA	4
Standby V _{CC} Power Supply Current	ICC2	-	5	mA	5
VCC Power Supply Current During RAS Only Refresh Cycles	1CC3	-	40	mA	-
Input Leakage Current (any input) (0 ≤ V _{in} ≤ 5.5) (Except Pin 1)	Ч(L)	-	10	μΑ	-
Output Leakage Current (0≤V _{out} ≤5.5) (CAS at Logic 1)	^I O(L)	-	10	μA	-
Output Logic 1 Voltage @ Iout = -4 mA	Vон	2.4	-	V	-
Output Logic 0 Voltage @ Iout = 4 mA	VOL	-	0.4	V	-

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)

(Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6633-15		MCM6633-20		Units	Notes
Falameter	Symbol	Min	Max	Min	Max	Onits	140105
Random Read or Write Cycle Time	tRC	300	-	350	-	ns	8, 9
Read Write Cycle Time	tRWC	300	-	350	-	ns	8, 9
Access Time from Row Address Strobe	^t RAC	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	tCAC	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	tOFF	0	30	0	40	ns	17
Row Address Strobe Precharge Time	tRP	120	-	140	-	ns	
Row Address Strobe Pulse Width	tras	150	10000	200	10000	ns	-
Column Address Strobe Pulse Width	tCAS	75	10000	110	10000	ns	
Row to Column Strobe Lead Time	tRCD	30	75	35	90	ns	13
Row Address Setup Time	tASR	0	-	0	-	ns	-
Row Address Hold Time	^t RAH	25	-	30	-	ns	
Column Address Setup Time	tASC	0	-	0	-	ns	-
Column Address Hold Time	^t CAH	45	-	55	-	ns	-
Column Address Hold Time Referenced to RAS	tAR	120	-	155		ns	-
Transition Time (Rise and Fall)	tT	3	50	3	50	ns	6

2-51

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1) (Read, Write, and Read-Modify-Write Cycles) (Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6	633-15	MCM6633-20		Linite	Notes
F al al lie (el	Symbol	Min	Max	Min	Max	Units	NOIOS
Read Command Setup Time	^t RCS	0	-	0	-	ns	-
Read Command Hold time	^t RCH	10		10	-	ns	14
Read Command Hold Time Referenced to RAS	tRRH	30	-	35	_	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	-
Write Command Hold Time Referenced to RAS	tWCR	120	-	155	-	ns	-
Write Command Pulse Width	tWP	45		55	-	ns	-
Write Command to Row Strobe Lead Time	^t RWL	45	-	55	-	ns	-
Write Command to Column Strobe Lead Time	tCWL	45		55		ns	-
Data in Setup Time	tDS	0		0	-	ns	15
Data in Hold Time	^t DH	45	-	55	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	^t CRP	- 10	-	- 10	-	ns	-
RAS Hold Time	trsh	75	-	110	-	ns	-
Refresh Period	^t RFSH	-	2.0	-	2.0	ms	-
WRITE Command Setup Time	twcs	- 10	-	- 10	-	ns	16
CAS to WRITE Delay	tCWD	45		55	-	ns	16
RAS to WRITE Delay	tRWD	125	-	160	-	ns	16
CAS Hold Time	^t CSH	150	-	200		ns	

CAPACITANCE (f = 1.0 MHz, T_A = 25 °C, V_{CC} = 5 V. Periodically Sampled Rather Than 100% Tested)

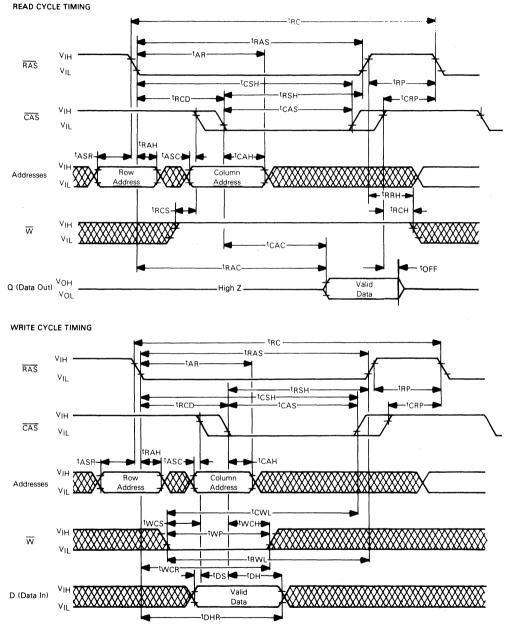
Parameter	Symbol	Тур	Max	Units	Notes
Input Capacitance (A0-A7), D	C11	4	5	рF	7
Input Capacitance RAS, CAS, WRITE	C _{I2}	8	10	pF	7
Output Capacitance (Q) (CAS = VIH to disable output)	Co	5	7	рF	7

NOTES:

- 1. All voltages referenced to VSS.
- V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
- 4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.
- 6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V_{IL} and V_{IL} (or between V_{IL} and V_{IL}) in a monotonic manner.
- 7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_t|}{\Delta V}$
- The specifications for t_{RC} (min), and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 9. AC measurements assume $t_T = 5.0$ ns.
- 10. Assumes that tRCD≤tRCD (max).
- 11. Assumes that tRCD≥tRCD (max).
- 12. Measured with a current load equivalent to 2 TTL loads (+ 200 μ A, -4 mA) and 100 pF (V_{OH} = 2.0 V, V_{OL} = -0.8 V)
- Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥ tCWD (min) and tRWD≥ tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

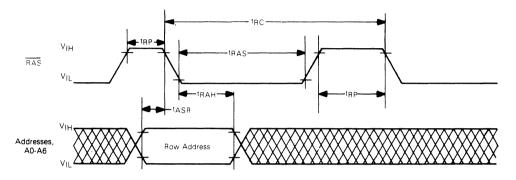
PIN ASSIGNMENT COMPARISON

MCN	/4516	MCM4	517	мсме	632
REFRESH		N/C 1	16 VSS		16 VSS
D D 2	15 CAS	D C 2	15 CAS	D C 2	15 CAS
W 🖬 3	14 0 0	₩ 🖬 з	14 0 0	₩ 1 3	14 9 Q
RAS C 4	13 🛛 🗚 6	RAS C 4	13 0 A6	RAS C 4	13 1 A6
A0 5	12 1 A3	A0 t 5	12 0 A3	A0 1 5	12 🖬 A3
A2 C 6	11 1 A4	A2 0 6	11 0 A4	A2 C 6	11 🗖 🗛
A1 E 7	10 9 A5	A1 C 7	10 0 A5	A1 1 7	10 1 A5
∨cc [8	91 N/C	∨cc ¤ 8	9 1 N/C	∨ _{CC} 1 8	9 0 A7
MCN	46633	MCM6	664	MCM	665
N/C 1			16 V SS	N/C	16 VSS
D C 2	15 1 CAS	D D 2	15 1 CAS	D E 2	15 1 CAS
₩ f 3	14 D Q	👿 🖬 з	14 1 Q	🕁 🖬 з	14 1 Q
RAS L 4	13 1 A6	RAS 1 4	13 A6	RAS 4	13 A6
A0 t 5	12 1 A3	A0 C 5	12 1 A3	A0 🗖 5	12 🖬 A3
A2 C 6	11 1 A4	A2 C 6	11 1 A4	A2 🕻 6	11 1 A4
A1 1 7	10 1 A5	A1 0 7	10 9 A5	A1 🛙 7	10 1 A5
∨ _{CC} C 8	9 9 A7	V _{CC} C 8	9 1 A7	V _{CC} 8	9 1 A7

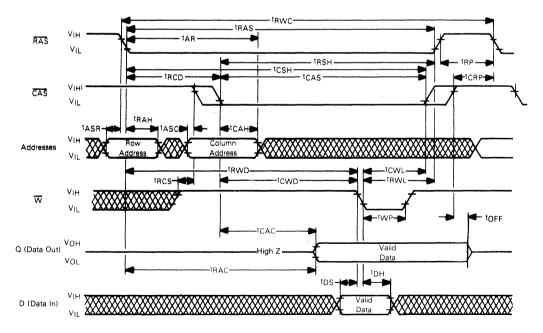

PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	V _{BB} (-5 V)	REFRESH	N/C	REFRESH	N/C	REFRESH	N/C
8	V _{DD} (+12 V)	Vcc	VCC	Vcc	Vcc	Vcc	Vcc
9	V _{CC} (+5 V)	N/C	N/C	A7	A7	A7	A7

ORDERING INSTRUCTIONS


PART NUMBER	DESCRIPTION	SPEED	MARKING*
MCM6633L15		150	66330L15/66331L15
MCM66330L15	32K BAM	150	66330L15
MCM66331L15	Sidebraze	150	66331L15
MCM6633L20	Package	200	66330L20/66331L20
MCM66330L20	"L"	200	66330L20
MCM66331L20		200	66331L20

*MCM66330L20 = Tie A7 CAS (A15) Low "0" MCM66331L20 = Tie A7 CAS (A15) High "1"



RAS-ONLY REFRESH CYCLE (Data-in and Write are Don't Care, CAS is HIGH)

READ-WRITE/READ-MODIFY-WRITE CYCLE

2

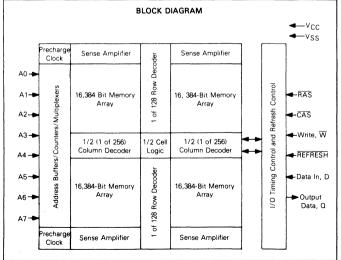
MCM6665 BIT ADDRESS MAP

	Row Address A7 A6 A5 Column Address A7 A6		Pin 8				Colur	nn Ar	drae				
	В	ow	<u> </u>	Hex	Dec		A6				A2	A0	A1
				FE FF FC FD FA	254 255 252 253 250	7 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 0	1 1 0 0 1	0 1 0 1 0
				FB F8 F9	251 248 249	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	0 0 0	1 0 0	1 0 1
8				82 83 8D	• • 130 131 128	1 1 1	0 0	0 0	0000	0 0 0	000	1 1 0	0 1 0
Column Addresses				81 7F 7E 7D	129 127 126 125	1 0 0 0	0 1 1 1	0 1 1 1	0 1 1 1	0 1 1	0 1 1 1	0 1 1 0	1 1 0 1
0					•								
	01F 01F		0110 01110 0100		•						_		
	00FF 00FF		0010 0011 0000 0000	04 03 02 01 00	4 3 2 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	00000	1 0 0 0	0 1 1 0 0	0 1 0 1 0
1		۲ ۲	8858888858	3									
-	255	126	8679406-0	5									
v Ade	{ o -	0 -	00000	c									
	2		00000	0									
	(- -		00000	0									
	} -		-00000000										
	{	1	000000000										
	{												
Pin 16	2												

Data Stored = Din @ A0X @ A1Y

Column Address A1	Row Address A0	Data Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted
	I	1

MOS


65,536-BIT DYNAMIC RAM

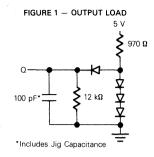
The MCM6664 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6664 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6664 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 65,536 Words of 1 Bit
- Single + 5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation 275 mW Maximum (Active) 30 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116)

(N-CHANNEL, SILICON-GATE) 65,536-BIT DYNAMIC RANDOM ACCESS MEMORY L SUFFIX CERAMIC PACKAGE CASE 690 PIN ASSIGNMENT REFRESH 0 1 16 V V SS DD 15 CAS W d 3 14**b** Q RAS 04 13 A6 12 A3 A0 1 5 11 b A4 A2 6 A1 0 7 10 A5 V_{CC} **[**8 9**b** A7 PIN NAMES REFRESH Refresh A0-A7..... Address Input D.....Data In Q.....Data Out RASRow Address Strobe CAS.....Column Address Strobe V_{CC}.....Power (+5 V) VSS.....Ground This device contains circuitry to protect the in-


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DS9822/9-80

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS (except V _{CC})	V _{in} , V _{out}	-2 to +7	V
Voltage on V _{CC} Supply Relative to V _{SS}	V _{in} , V _{out}	-1 to +7	V
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	W
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	MCM6664-15, -20	Vcc	4.5	5.0	5.5	V	1.
		VSS	0	0	0	V	1
Logic 1 Voltage, All Inputs		ViH	2.4	-	V _{CC} +1	V	1
Logic 0 Voltage, All Inputs		VIL	- 2.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Units	Notes
V _{CC} Power Supply Current (t _{RC} min.)	ICC1	-	50	mA	4
Standby V _{CC} Power Supply Current	ICC2	-	5	mA	5
V _{CC} Power Supply Current During RAS Only Refresh Cycles	ICC3	-	40	mA	-
Input Leakage Current (any input except REFRESH) (VSS < Vin < VCC)	4(L)		10	μΑ	
REFRESH Input Current (VF = V _{SS})	١F	-	125	μΑ	-
Output Leakage Current (\overline{CAS} at logic 1, $0 \le V_{OUt} \le 5.5$)	O(L)	-	10	μΑ	-
Output Logic 1 Voltage @ Iout = -4 mA	Voн	2.4		V	-
Output Logic 0 Voltage @ Iout = 4 mA	VOL	-	0.4	V	-

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V. Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Units	Notes
Input Capacitance (A0-A7), D	C11	4	5	pF	7
Input Capacitance RAS, CAS, WRITE	C ₁₂	8	10	рF	7
Output Capacitance (Q) ($\overline{CAS} = V_{IH}$ to disable output)	Co	5	7	рF	7

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6 and Figure 1)

(Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM	6664-15	MCM	6664-20	Units	Notes
	O y I I DOI	Min	Max	Min	Max	Onito	110100
Random Read or Write Cycle Time	tRC	. 300	-	350		ns	8, 9
Read Write Cycle Time	tRWC	300	-	350	-	ns	8, 9
Access Time from Row Address Strobe	^t RAC	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	^t CAC		75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	tOFF	0	30	0	40	ns	18 .
Row Address Strobe Precharge Time	tRP	120	-	140	-	ns	-
Row Address Strobe Pulse Width	^t RAS	150	10000	200	10000	ns	
Column Address Strobe Pulse Width	^t CAS	75	10000	110	10000	ns	
Row to Column Strobe Lead Time	^t RCD	30	75	35	90	ns	13
Row Address Setup Time	^t ASR	0	-	0		ns	-
Row Address Hold Time	^t RAH	25	-	30		ns	-
Column Address Setup Time	tASC	0	-	0	-	ns	-
Column Address Hold Time	^t CAH	45	-	55		ns	
Column Address Hold Time Referenced to RAS	^t AR	120	-	155	-	ns	
Transition Time (Rise and Fall)	tŢ	3	50	3	50	ns	6

2

AC OPERATING CONDITIONS AND CHARACTERISTICS

2

(See Notes 2, 3, 6, and Figure 1) (Read, Write, and Read-Modify-Write Cycles) (Full Operating Voltage and Temperature Range Unless Otherwise Noted)

		MCM	6664-15	MCM	6664-20	<u> </u>	
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Read Command Setup Time	^t RCS	0		0	-	ns	-
Read Command Hold Time	tRCH	10		10	-	ns	14
Read Command Hold Time Referenced to RAS	tRRH	30	-	35	-	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	-
Write Command Hold Time Referenced to RAS	tWCR	120	-	155	-	ns	-
Write Command Pulse Width	twp	45	-	55	-	ns	-
Write Command to Row Strobe Lead Time	^t RWL	45	-	55	_	ns	-
Write Command to Column Strobe Lead Time	tCWL	45	-	55	-	ns	-
Data in Setup Time	tDS	0	-	0	-	ns	15
Data in Hold Time	t DH	45		55	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	tCRP	- 10	-	- 10	-	ns	
RAS Hold Time	^t RSH	75	-	110	-	ns	-
Refresh Period	^t RFSH	-	2.0	-	2.0	ms	-
WRITE Command Setup Time	twcs	- 10	-	- 10	-	ns	16
CAS to WRITE Delay	tCWD	45	-	55	-	ns	16
RAS to WRITE Delay	trwd	125	-	160	-	ns	16
CAS Hold Time	tCSH	150	. –	200		ns	-
RAS to REFRESH Delay	^t RFD	0	-	0		ns	-
REFRESH Period (Battery Backup Mode)	tFBP	2000	-	2000	-	ns	-
REFRESH to RAS Precharge Time (Battery Backup Mode)	tFBR	390	-	460	-	ns	-
REFRESH Cycle Time (Auto Pulse Mode)	tFC	330	-	380	-	ns	-
REFRESH Pulse Period (Auto Period Mode)	tFP	60	2000	60	2000	ns	-
REFRESH to RAS Setup Time (Auto Pulse Mode)	tFSR	30		30	-	ns	_
REFRESH to RAS Delay Time (Auto Pulse Mode)	tFRD	390	1	460	-	ns	-
REFRESH Inactive Time	tFI	30	-	30	-	ns	
RAS to REFRESH Lead Time	tFRL	390	_	460		ns	

NOTES: 1. All voltages referenced to VSS.

V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.

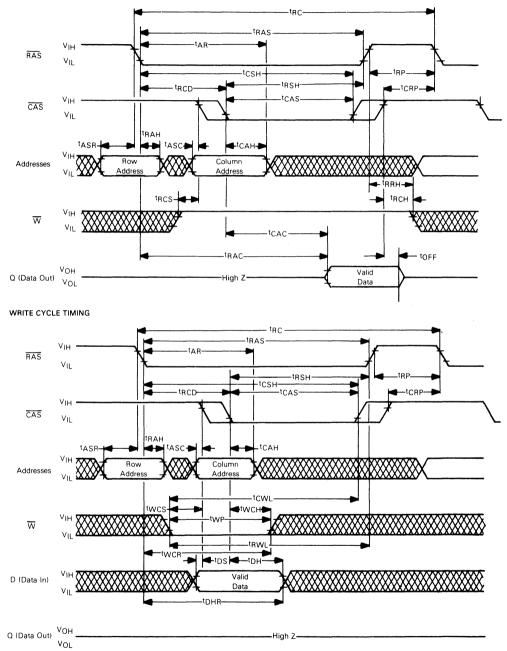
- 3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
- 4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V_{IL} and V_{IL} (or between V_{IL} and V_{IL}) in a monotonic manner.
- 7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_t|}{\Delta V}$
- The specifications for t_{RC} (min), and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 9. AC measurements assume $t_T = 5.0$ ns.
- 10. Assumes that tRCD ≤ tRCD (Max)
- 11. Assumes that tRCD≥tRCD (Max)
- 12. Measured with a current load equivalent to 2 TTL (+200 μ A, -4 mA) loads and 100 pF (V_{OH}=2.0 V, V_{OL}=-0.8 V).
- Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥ tCWD (min) and tRWD≥ tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17. Addresses, data-in and WRITE are don't care. Data-out depends on the state of CAS. If CAS remains low, the previous output will remain valid. CAS is allowed to make an active to inactive transition during the pin #1 refresh cycle. When CAS is brought high, the output will assume a high-impedance state.
- 18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

2-59

PIN ASSIGNMENT COMPARISON

MCM			CM4517	MCM6	
REFRESH 1	16 4 VSS	N/C D 1	16 V _{SS}		16 9 VSS
D D 2	15 CAS	D C 2	15 CAS	D D 2	15 1 CAS
ѿ б з	14 1 Q	₩ с з	14 p Q	₩1 3	14 1 Q
RAS 1 4	13 1 A6	RAS C 4	13 2 A6	RAS C 4	13 0 A6
A0 0 5	12 A3	A0 🛚 5	12 🖬 A3	A0 0 5	12 A3
A2 0 6	11 1 A4	A2 C 6	11 1 A4	A2 C 6	11 A4
A1 D 7	10 A5	A1 1 7	10 9 A5	A1 D 7	10 0 A5
V _{CC} [8	9 1 N/C	∨ _{CC} [8	9 9 N/C	v _{CC} E 8	9 1 A7
MCM	6633	м	CM6664	MCM6	665
N/C 1	16 1 VSS	REFRESH 1			16 9 VSS
D C 2	15 🖬 CAS	D D 2	15 CAS	D C 2	15 1 CAS
₩ с 3	14 1 Q	₩ с 3	14 D Q	W 🛙 3	14 g a
RAS C 4	13 A6	RAS 4	13 D A6	RAS 0 4	13 A6
A0 C 5	12 A3	A0 C 5	12 A3	A0 1 5	12 A3
A2 C 6	11 1 A4	A2 C 6	11 D A4	A2 6	11 1 A4
A1 0 7	10 1 A5	A1 D 7	10 0 A5	A1 0 7	10 A5
∨ _{CC} C 8	9 1 A7	V _{CC} € 8	9 1 A7	V _{CC} [8	9 1 A7

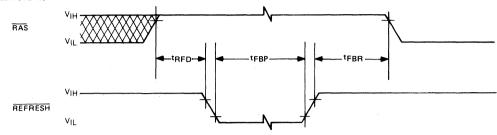
PIN VARIATIONS

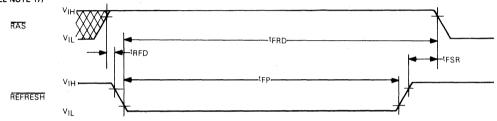

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	V _{BB} (-5 V)	REFRESH	N/C	REFRESH	N/C	REFRESH	N/C
8	V _{DD} (+12 V)	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc
9	V _{CC} (+5V)	N/C	N/C	A7	A7	A7	A7

On-Chip Refresh Features/Benefits

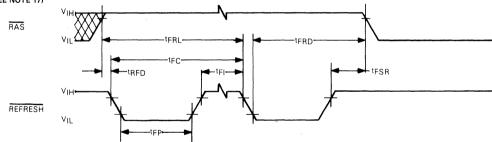
Reduce System Refresh Controller Design Problem Reduce System Parts Count Reduce System Noise Increasing System Reliability Reduce System Power During Refresh

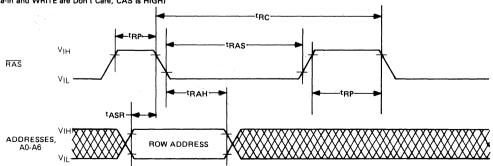
2

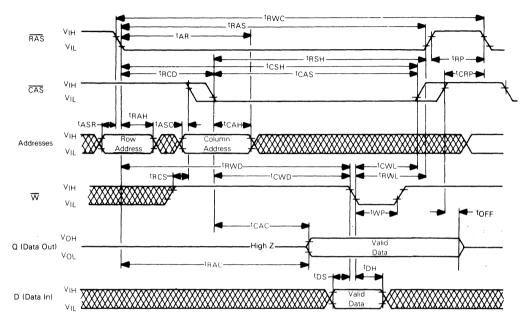

READ CYCLE TIMING


2

SELF REFRESH MODE (Battery Backup) (SEE NOTE 17)




AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE (SEE NOTE 17)



AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE (SEE NOTE 17)

RAS-ONLY REFRESH CYCLE (Data-In and WRITE are Don't Care, CAS is HIGH)

READ-WRITE/READ-MODIFY-WRITE CYCLE

MCM6664 BIT ADDRESS MAP

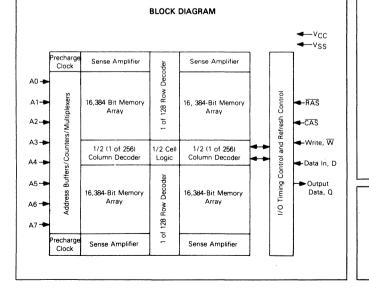
.

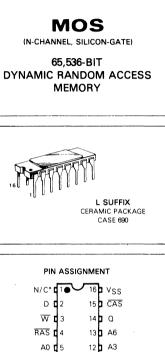
	Row Address A7 A6 A5 Column Address A7 A6		Pin 8				Colur	mn Ai	ddrae				
		ow		Hex	Dec			A3		A5	A2	A0	Å1
				FE FF FC FD FA	254 255 252 253 250	1 1 1 1	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 0	1 1 0 0	0 1 0 1 0
				FB F8 F9	251 248 249	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	0 0 0	1 0 0	1 0 1
	6 75			82 83 8D 81	130 131 128 129	1 1 7 3	0000	00000	0 0 0	0 0 0	0 0 0 0	1 1 0 0	0 1 0 1
				7F 7E 7D	127 126 125	0 0 0	1 1 1	1	1 1 1	1 1 1	1 1 1	1 1 0	1 0 1
	115 115		0110 0101 0100 0100		• • • • •								
	90 44.90 84.		0100 11000 0000	04 03 02 01 00	• 3 2 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 1 1 0	0 1 0 1 0
	ў нь	7E 7F	9 8 6 6 6 8 8 6 6 8 8 6 6 6 8 6 6 6 6 6	8									
<u> </u>	254 255 255	126	- 20 / 10 / 10 / 10 / 10 · 10	0									
/ Adc	90	0 -	0000	0									
Row			0000	0									
	A		0000	0									
	2		-0000000	0									
	A4		000000000	0									
	33		000000000	0									
o – – – ۱	A6		00000000	0									
Pin 16	A	00	000000000	0									

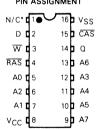
Data Stored = Din @ A0X @ A1Y

Column Address A1	Row Address A0	Data Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted
	l	

2


65,536-BIT DYNAMIC RAM

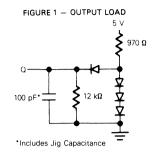

The MCM6665 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.


By multiplexing row- and column-address inputs, the MCM6665 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6665 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 65,536 Words of 1 Bit
- Single + 5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation 275 mW Maximum (Active) 30 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4517)

*For maximum compatibility with MCM6632 and MCM6664 a V_{CC} trace should go to pin #1.


	PIN NAMES
A0-A7	Address Input
D	Data In
Q	Data Out
₩	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5 V)
Vss	Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS (Except VCC)	V _{in} , V _{out}	-2 to +7	V
Voltage on V _{CC} Supply Relative to V _{SS}	V _{in} , V _{out}	-1 to +7	V
Storage Temperature Range	T _{stg}	- 65 to + 150	°C
Power Dissipation	PD	1	W
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Pa	rameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage	MCM6665L15/MCM6665L20 MCM6665L15-5/MCM6665L20-5	00	4.5 4.75 0	5.0 5.0 0	5.5 5.25 0	v	1 1
Logic 1 Voltage, All Inputs		VIH	2.4	-	V _{CC} +1	V	1
Logic 0 Voltage, All Inputs		VIL	- 2.0	-	0.8	V	1

DC CHARACTERISTICS (Full Operating Voltage and Temperature Ranges Unless Otherwise Noted)

Characteristic	Symbol	Min	Max	Units	Notes
V _{CC} Power Supply Current (t _{RC} min.)	ICC1	-	50	mA	4
Standby V _{CC} Power Supply Current	ICC2	-	5	mΑ	5
VCC Power Supply Current During RAS Only Refresh Cycles	ICC3	-	40	mA	-
Input Leakage Current (any input) (0 ≤ V _{in} ≤ 5.5) (Except Pin 1)	Ц(L)		10	μA	
Output Leakage Current (0≤V _{out} ≤5.5) (CAS at Logic 1)	10(L)	-	10	μA	-
Output Logic 1 Voltage @ I _{out} = -4 mA	Voн	2.4	-	V	-
Output Logic 0 Voltage @ I _{out} =4 mA	VOL	-	0.4	V	-

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1) (Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM	6665-15	MCM	6665-20	Units	Notes
Falaneter	Symbol	Min	Max	Min	Max	Onits	Notes
Random Read or Write Cycle Time	tRC	300	-	350	-	ns	8, 9
Read Write Cycle Time	tRWC	300	-	350		ns	8, 9
Access Time from Row Address Strobe	^t RAC	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	tCAC	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	tOFF	0	30	0	40	ns	17
Row Address Strobe Precharge Time	tRP	120	-	140	-	ns	-
Row Address Strobe Pulse Width	tRAS	150	10000	200	10000	ns	
Column Address Strobe Pulse Width	tCAS	75	10000	110	10000	ns	-
Row to Column Strobe Lead Time	tRCD	30	75	35	90	ns	13
Row Address Setup Time	tASR	0		0	-	ns	-
Row Address Hold Time	^t RAH	25	-	30	-	ns	-
Column Address Setup Time	tASC	0	-	0	-	ns	-
Column Address Hold Time	^t CAH	45	-	55	-	ns	-
Column Address Hold Time Referenced to RAS	tAR	120	-	155	-	ns	
Transition Time (Rise and Fall)	tT	3	50	3	50	ns	- 6

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1) (Read, Write, and Read-Modify-Write Cycles)

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

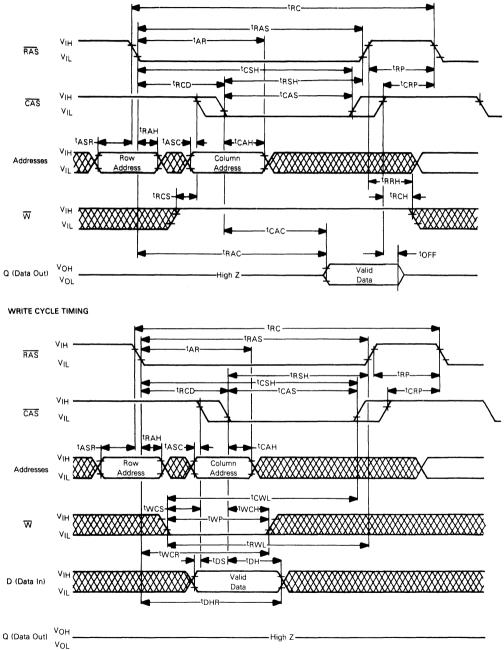
Parameter	Symbol	MCM66	65-15	MCM66	65-20	Linita	Notes
Farameter	Зушьог	Min	Max	Min	Max	Units	Notes
Read Command Setup Time	^t RCS	0	-	0	-	ns	-
Read Command Hold time	^t RCH	10		10	-	ns	14
Read Command Hold Time Referenced to RAS	tRRH	30	-	35	-	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	-
Write Command Hold Time Referenced to RAS	tWCR	120	-	155	-	ns	-
Write Command Pulse Width	twp	45	-	55	-	ns	-
Write Command to Row Strobe Lead Time	tRWL	45		55	-	ns	-
Write Command to Column Strobe Lead Time	tCWL	45		55		ns	-
Data in Setup Time	tDS	0	_	0	-	ns	15
Data in Hold Time	tDH	45	-	55	-	ns	15
Data in Hold Time Referenced to RAS	^t DHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	^t CRP	- 10	-	- 10	-	ns	-
RAS Hold Time	tRSH	75		110	-	ns	
Refresh Period	^t RFSH	-	2.0	-	2.0	ms	-
WRITE Command Setup Time	twcs	- 10	-	- 10	-	ns	16
CAS to WRITE Delay	tCWD	45		55	-	ns	16
RAS to WRITE Delay	tRWD	125	-	160	-	ns	16
CAS Hold Time	tCSH	150	-	200	-	ns	-

 $\label{eq:capacity} \textbf{CAPACITANCE} ~~(f=1.0~\text{MHz},~\text{T}_{A}=25\,^{\circ}\text{C},~\text{V}_{CC}=5~\text{V}.~\text{Periodically Sampled Rather Than 100\%~Tested)} ~~$

Parameter	Symbol	Тур	Max	Units	Notes
Input Capacitance (A0-A7), D	CI1	4	5	pΕ	7
Input Capacitance RAS, CAS, WRITE	C12	8	10	рF	7
Output Capacitance (Q) $\overline{(CAS)} = V_{IH}$ to disable output)	Co	5	7	рF	7

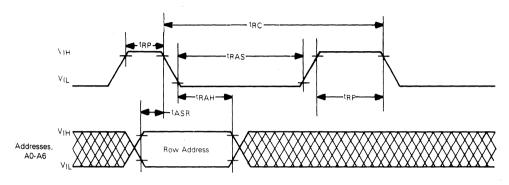
NOTES:

- 1. All voltages referenced to VSS.
- VI_IH min and VI_L max are reference levels for measuring timing of input signals. Transition times are measured between VI_IH and VI_L.
- An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V_{IL} and V_{IL} (or between V_{IL} and V_{IL}) in a monotonic manner.
- 7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_1|}{\Delta V}$
- The specifications for t_{RC} (min), and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 9. AC measurements assume $t_T = 5.0$ ns.
- 10. Assumes that $t_{RCD} \leq t_{RCD}$ (max).
- 11. Assumes that tRCD≥tRCD (max).
- 12. Measured with a current load equivalent to 2 TTL loads (+ 200 μ A, -4 mA) and 100 pF (V_{OH} = 2.0 V, V_{OL} = -0.8 V).
- Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥ tCWD (min) and tRWD≥ tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

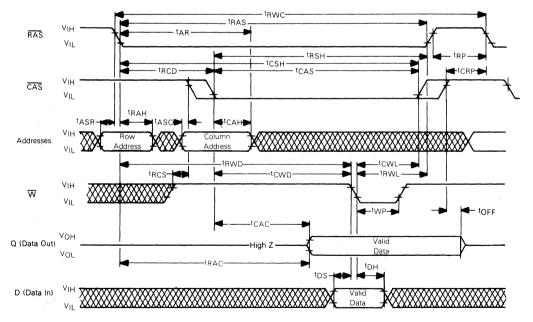

PIN ASSIGNMENT COMPARISON

MCN	/14516	MCM	4517	MCM6	632
REFRESH	16 VSS	N/C 1	16 VSS		16 9 VSS
D C 2	15 CAS	D D 2	15 D CAS	D C 2	15 1 CAS
W 🖬 3	14 D Q	₩ 0 3	14 0 0	. 👿 🖬 з	14 0 Q
RAS C4	13 0 A6	RAS 4	13 0 A6	RAS I 4	13 🛛 A6
A0 t 5	12 A3	A0 1 5	12 1 A3	A0 0 5	12 🖬 A3
A2 C 6	11 1 A4	A2 D .6	11 1 A4	A2 C 6	11 D A4
A1 0 7	10 0 A5	A1 1 7	10 0 A5	A1 0 7	10 A5
V _{CC} [8	91 N/C	V _{CC} [8	9 1 N/C	v _{CC} 0 8	9 1 A7
MCN	//6633	MCM	5664	MCM6	665
N/C 1	16 VSS	REFRESH	16 VSS	N/C 1	16 VSS
D D 2	15 D CAS	D D 2	15 2 CAS	D 🛛 2	15 1 CAS
₩ C 3	14 p Q	W 🖬 3	14 9 Q	₩ 1 3	14 D Q
RAS C 4	13 1 A6	RAS C 4	13 A6	RAS 4	13 A6
A0 C 5	12 1 A3	A0 0 5	12 1 A3	A0 0 5	12 A3
A2 0 6	11 p A4	A2 C 6	11 1 A4	A2 C 6	11 A4
A1 0 7	10 A5	A1 E 7	10 0 A5	A1 🖬 7	10 1 A5
V _{CC} C 8	9 1 A7	Vcc 6 8	9 1 A7	∨ _{CC} [8	9 1 A7

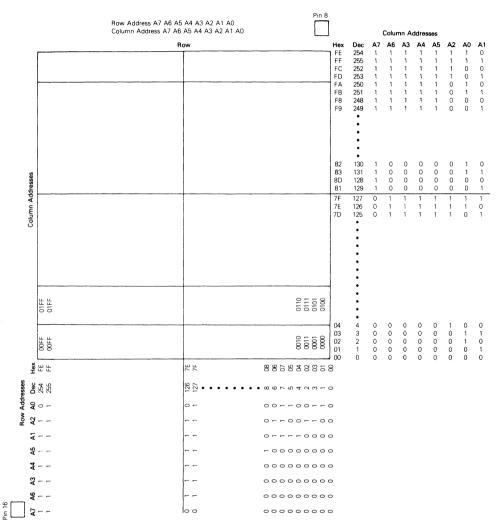
PIN VARIATIONS


Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	V _{BB} (-5V)	REFRESH	N/C	REFRESH	N/C	REFRESH	N/C
8	V _{DD} (+12 V)	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc
9	V _{CC} (+5 V)	N/C	N/C	A7	A7	A7	A7

READ CYCLE TIMING



2


RAS-ONLY REFRESH CYCLE (Data-in and Write are Don't Care, CAS is HIGH)

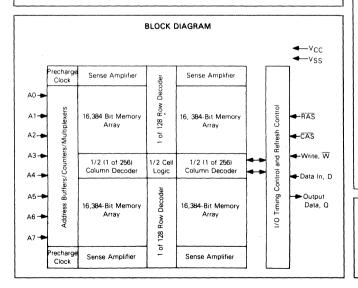
READ-WRITE/READ-MODIFY-WRITE CYCLE

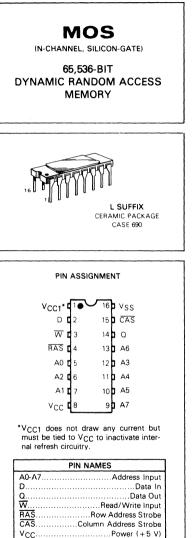
MCM6665 BIT ADDRESS MAP

Data Stored = Din @ A0X @ A1Y

Column Address A1	Row Address A0	Data Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted

MCM6665L25


65,536-BIT DYNAMIC RAM

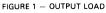

The MCM6665 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

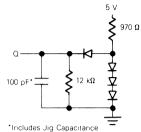
By multiplexing row- and column-address inputs, the MCM6665 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6665 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 65,536 Words of 1 Bit
- Single +5 V Operation
- 250 ns Operation
- Low Power Dissipation 275 mW Maximum (Active) 30 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4516, MCM4517)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.


V_{SS}.....Ground


MCM6665L25

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS (Except VCC)	Vin, Vout	- 2 to + 7	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vin, Vout	-1 to +7	V
Operating Temperature Range	TA	0 to +50	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	W
Data Out Current	lout	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage MCM6665L25	VCC	4.5	5.0	5.5	N	1
	VSS	0	0	0	v	
Logic 1 Voltage, All Inputs	VIH	2.4	-	VCC+1.0	V	- 1
Logic 0 Voltage, All Inputs	VIL	- 2.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
VCC Power Supply Current (tRC min.)	ICC	-	50	mA	4
Standby V _{CC} Power Supply Current	ICC2	-	5	mA	5
VCC Power Supply Current During RAS Only Refresh Cycles	ICC3	-	40	mΑ	-
Input Leakage Current (any input) (0≤V _{in} ≤5.5) (Except Pin 1)	Ц(L)	-	10	μA	-
Input Leakage Current (Pin 1) (Vin = VCC)	11(L)	-	10	μA	-
Output Leakage Current (0≤V _{out} ≤5.5) (Except Pin 1)	10(L)	-	10	μA	5, 6
Output Logic 1 Voltage @ Iout = -4 mA	∨он	2.4	-	٧	-
Output Logic 0 Voltage @ I _{out} = 4 mA	VOL	-	0.4	V	-

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted) (See Notes 2, 3, 9, 14)

(Read, Write, and Read-Modify-Write Cycles)

Parameter	Symbol	Min	Max	Unit	Notes
Random Read or Write Cycle Time	tRC	450	-	ns	8, 9
Read Write Cycle Time	tRWC	450	-	ns	8, 9
Access Time from Row Address Strobe	^t RAC	-	250	ns	10, 12
Access Time from Column Address Strobe	^t CAC	-	145	ns	11, 12
Output Buffer and Turn-Off Delay	tOFF	0	50	ns	17
Row Address Strobe Precharge Time	tRP	190	-	ns	-
Row Address Strobe Pulse Width	tRAS	250	10000	ns	-
Column Address Strobe Pulse Width	tCAS	145	10000	ns	-
Row to Column Strobe Lead Time	tRCD	55	105	ns	13
Row Address Setup Time	tASR	0		ns	-
Row Address Hold Time	^t RAH	45	-	ns	-
Column Address Setup Time	tASC	0	-	ns	-
Column Address Hold Time	^t CAH	75	-	ns	-
Column Address Hold Time Referenced to RAS	tAR	200	-	ns	-
Transition Time (Rise and Fall)	tT	3.0	50	ns	6

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

(See Notes 2, 3, 9, 14)

(Read, Write, and Read-Modify-Write Cycles)

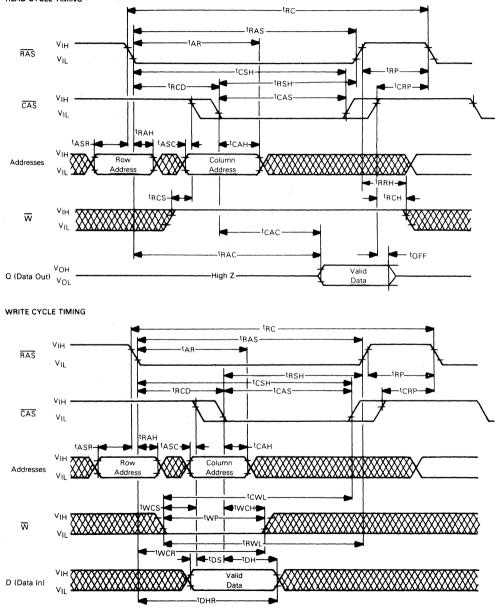
Parameter	Symbol	Min	Max	Units	Notes
Read Command Setup Time	^t RCS	0	-	ns	-
Read Command Hold Time	^t RCH	10		ns	14
Read Command Hold Time Referenced to RAS	^t RRH	40		ns	14
Write Command Hold Time	tWCH	75	-	ns	-
Write Command Hold Time Referenced to RAS	tWCR	200		ns	
Write Command Pulse Width	tWP	70		ns	-
Write Command to Row Strobe Lead Time	tRWL	70	-	ns	
Write Command to Column Strobe Lead Time	tCWL	70	-	ns	
Data in Setup Time	tDS	0	-	ns	15
Data in Hold Time	^t DH	75		ns	15
Data in Hold Time Referenced to RAS	^t DHR	200	-	ns	-
Column to Row Strobe Precharge Time	tCRP	- 10	-	ns	-
RAS Hold Time	^t RSH	145		ns	-
Refresh Period	^t RFSH		2.0	ms	-
WRITE Command Setup Time	twcs	- 10	-	ns	16
CAS to WRITE Delay	tCWD	70	-	ns	16
RAS to WRITE Delay	^t RWD	195	-	ns	16
CAS Hold Time	^t CSH	250	-	ns	-

CAPACITANCE (f = 1.0 MHz, TA = 25°C, VCC = 5 V. Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Units	Notes
Input Capacitance (A0-A7), D	C 1	4.0	5.0	pF	7
Input Capacitance RAS, CAS, WRITE	C ₁₂	8.0	10.0	pF	7
Output Capacitance (Q)	Co	5.0	7.0	pF	7

NOTES

- 1. All voltages referenced to VSS.
- V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}
- 3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
- Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V_{II} and V_{II} (or between V_{II} and V_{II}) in a monotonic manner.
- 7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_1|}{\Delta V}$
- The specifications for t_{RC} (min), and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- AC measurements assume t_T = 5.0 ns.
- 10. Assumes that tRCD≤tRCD (max).
- 11. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 12. Measured with a current load equivalent to 2 TTL loads (+ 200 μ A, -4 mA) and 100 pF (V_{OH} = 2.0 V, V_{OL} = -0.8 V).
- 13. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥ tCWD (min) and tRWD≥ tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

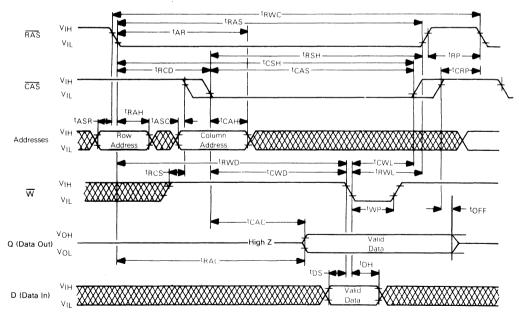

PIN ASSIGNMENT	COMPARISON
----------------	------------

MCN	/4516	МСМ	4517	MCM	6632
REFRESH		N/C	16 VSS		16 VSS
D D 2	15 CAS	D C 2	15 CAS	D C 2	15 2 CAS
V 🖬 🛛 🗸	14 0	ѿ 🖬 з	14 p Q	₩ 3	14 p Q
RAS C 4	13 A6	RAS C 4	13 1 A6	RAS I 4	13 🖬 🗚 6
A0 t 5	12 1 A3	A0 t 5	12 1 A3	A0 0 5	12 1 A3
A2 C 6	11 1 A4	A2 C 6	11 1 A4	A2 C 6	11 1 A4
A1 C 7	10 1 A5	A1 🛙 7	10 1 A5	A1 1 7	10 A5
∨ _{CC} [8	9 1 N/C	∨ _{CC} 0 8	9 1 N/C	v _{cc} t 8	9 9 A7
MCM	/6633	MCM	6664	МСМ	6665
	16 VSS		6664 ✓ 16 V _{SS}		6665
N/C T	16 VSS		16 V _{SS}	N/C 1	16 VSS
	16 V _{SS} 15 CAS		16 V _{SS} 15 CAS		160 V _{SS} 150 CAS
N/C 1 D 2 W 3	16 V _{SS} 15 CAS 14 Q		16 V _{SS} 15 CAS 14 Q	N/C ∎1 D ⊑ 2 ₩ ⊑ 3	16 V _{SS} 15 CAS 14 Q
N/C D C 2 W C 3 RAS 4	16 V _{SS} 15 CAS 14 Q 13 A6	REFRESH C 1 • • D C 2 W C 3 RAS C 4	16 V _{SS} 15 D CAS 14 D Q 13 D A6	N/C 10 D 02 ₩ 03 RAS 04	16 V _{SS} 15 CAS 14 CAS 14 A 13 A6
N/C 1 1 D 2 W 1 3 RAS 1 4 A0 1 5	16 V _{SS} 15 CAS 14 Q 13 A6 12 A3	REFRESH C 1 D C 2 W C 3 RAS C 4 A0 C 5	16 V _{SS} 15 0 CAS 14 0 Q 13 0 A6 12 0 A3	N/C t 1 D t 2 W t 3 RAS t 4 A0 t 5	16 V _{SS} 15 CAS 14 Q 13 A6 12 A3
N/C 1 1 D 2 W 1 3 RAS 1 4 A0 1 5 A2 1 6	16 V _{SS} 15 CAS 14 Q 13 A6 12 A3 11 A4	REFRESH D C C T RAS C A C C C C C C C C C C C C C	 16 V_{SS} 15 CAS 14 Q 13 A6 12 A3 11 A4 	N/C 1 D 2 W 3 RAS 4 A0 5 A2 6	16 V _{SS} 15 CAS 14 Q 13 A6 12 A3 11 A4

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	VBB(-5V)	REFRESH	N/C	REFRESH	N/C	REFRESH	N/C
8	V _{DD} (+12 V)	Vcc	Vcc	Vcc	Vcc	Vcc	VCC
9	V _{CC} (+5 V)	N/C	N/C	A7	A7	A7	A7

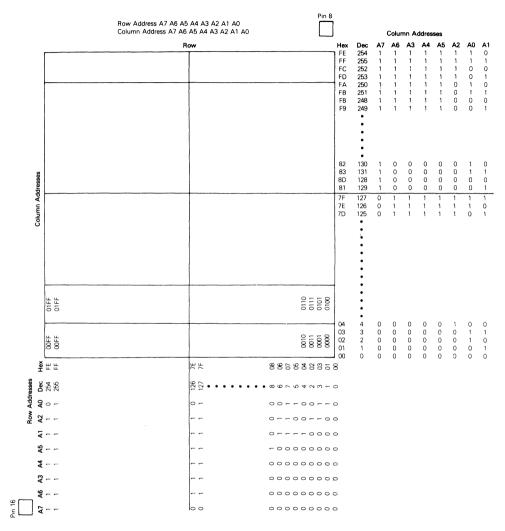
PIN VARIATIONS

READ CYCLE TIMING



Q (Data Out) VOH High Z

RAS-ONLY REFRESH CYCLE


(Data-in and Write are Don't Care, CAS is HIGH)

RAS VIL IRAS

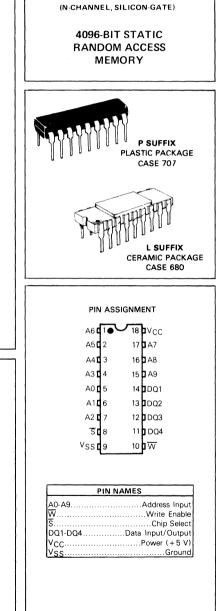
READ-WRITE/READ-MODIFY-WRITE CYCLE

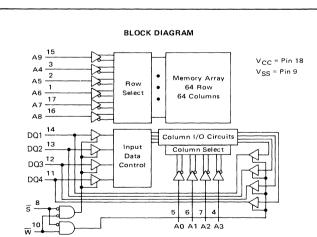
MCM6665 BIT ADDRESS MAP

Data Stored = Din @ A0X @ A1Y

Column Address A1	Row Address A0	Data Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted
	1	

MCM2114 MCM21L14


4096-BIT STATIC RANDOM ACCESS MEMORY


The MCM2114 is a 4096-bit random access memory fabricated with high density, high reliability N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM2114 is designed for memory applications where simple interfacing is the design objective. The MCM2114 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select (S) lead allows easy selection of an individual package when the three-state outputs are OR-tied.

The MCM2114 series has a maximum current of 100 mA. Low power versions (i.e., MCM21L14 series) are available with a maximum current of only 70 mA.

- 1024 Words by 4-Bit Organization
- Industry Standard 18-Pin Configuration
- Single + 5 Volt Supply
- No Clock or Timing Strobe Required
- Fully Static: Cycle Time = Access Time
- Maximum Access Time MCM2114-20/MCM21L14-20 200 ns MCM2114-25/MCM21L14-25 250 ns MCM2114-30/MCM21L14-30 300 ns MCM2114-45/MCM21L14-45 450 ns
- Fully TTL Compatible
- Common Data Input and Output •
- Three-State Outputs for OR-Ties
- Low Power Version Available

MOS

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Voltage on Any Pin With Respect to VSS	-0.5 to +7.0	V
DC Output Current	5.0	mA
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to + 70	°C
Storage Temperature Range	-65 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage		4.75	5.0	5.25	
		0	0	0	1 °
Logic 1 Voltage, All Inputs	ViH	2.0	-	6.0	V
Logic 0 Voltage, All Inputs	VIL	-0.5		0.8	V

DC CHARACTERISTICS

Parameter	Symbol	MCM2114			MCM21L14			
rarameter		Min	Тур	Max	Min	Тур	Max	Unit
Input Load Current (All Input Pins, V _{in} =0 to 5.5 V)	LI		·	10	1	-	10	μA
I/O Leakage Current ($\overline{S} = 2.4 \text{ V}$, $V_{DQ} = 0.4 \text{ V}$ to V_{CC})	I'LOI	1		10	-	-	10	μA
Power Supply Current (V _{in} =5.5 V, I _{DQ} =0 mA, T _A =25°C)	ICC1	-	80	95	-		65	mΑ
Power Supply Current (Vin=5.5 V, IDQ=0 mA, TA=0°C)	ICC2	-	-	100	-	-	70	mΑ
Output Low Current VOL=0.4 V	IOL	2.1	6.0	-	2.1	6.0		mΑ
Output High Current VOH = 2.4 V	ЮН	-	- 1.4	- 1.0	-	- 1.4	- 1.0	mΑ

NOTE: Duration not to exceed 30 seconds.

CAPACITANCE (f = 1.0 MHz, $T_A = 25^{\circ}$ C, periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Input Capacitance (V _{in} =0 V)	Cin	5.0	pF
Input/Output Capacitance (V _{DQ} =0 V)	C1/0	5.0	pF

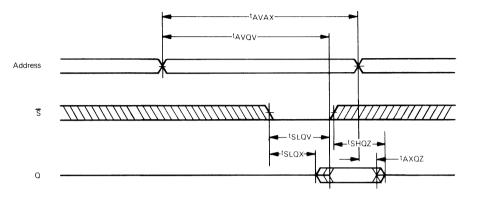
Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_{t}/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

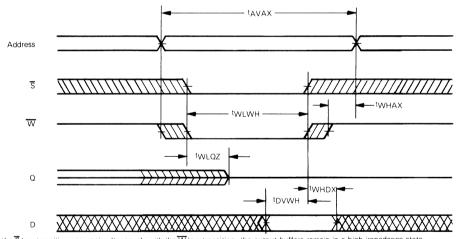
(Full operating voltage and temperature unless otherwise noted.)

Input Pulse Levels	0.8 Volt to 2.4 Volts
Input Rise and Fall Times	

READ (NOTE 1), WRITE (NOTE 2) CYCLES

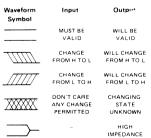

		MCM2	114-20	MCM2	2114-25	MCM2	114-30	MCM2	114-45	
Parameter	Symbol	Symbol MCM21L14-20		MCM21L14-25		MCM21L14-30		MCM21L14-45		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Address Valid to Address Don't Care	^t AVAX	200	-	250	-	300	-	450	-	ns
Address Valid to Output Valid	^t AVQV	-	200	-	250		300		450	ns
Chip Select Low to Data Valid	tSLQV	-	70	-	85		100	-	120	ns
Chip Select Low to Output Don't Care	^t SLQX	20	-	20	-	20	-	20	-	ns
Chip Select High to Output High Z	t SHQZ	-	60	-	70	-	80	-	100	ns
Address Don't Care to Output High Z	t AXQZ	50		50	-	50		50	-	ns
Write Low to Write High	^t WLWH	120		135	-	150	-	200	-	ns
Write High to Address Don't Care	^t WHAX	20	-	20	-	20		20	-	ns
Write Low to Output High Z	twloz	-	60	-	70		80	-	100	ns
Data Valid to Write High	^t DVWH	120	-	135		150	-	200	-	ns
Write High to Data Don't	^t WHDX	0	-	0	-	0	-	0	-	ns

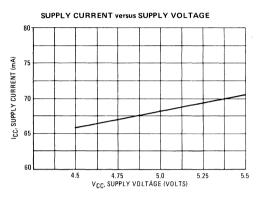
NOTES: 1. A Read occurs during the overlap of a low S and a high W.


2. A Write occurs during the overlap of a low \overline{S} and a low \overline{W} .

MCM2114•MCM21L14

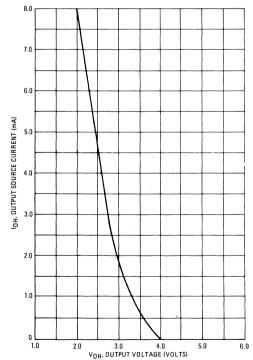
READ CYCLE TIMING (W HELD HIGH)

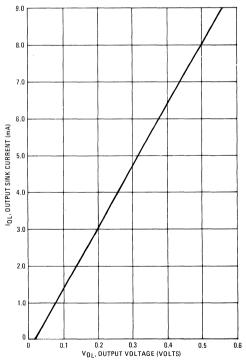

2


WRITE CYCLE TIMING (NOTE 3)

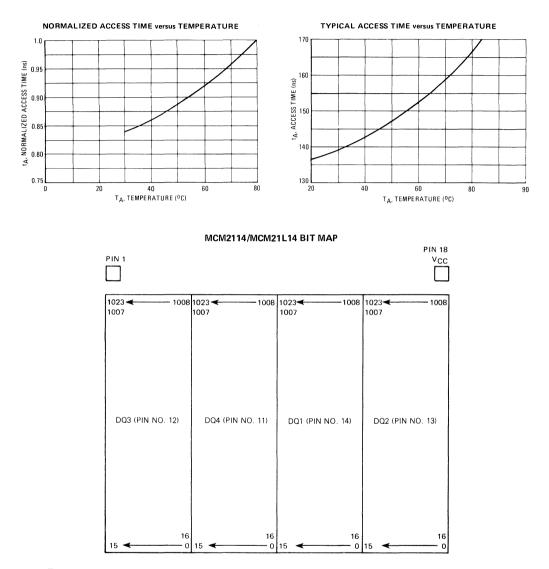
3. If the S low transition occurs simultaneously with the W low transition, the output buffers remain in a high-impedance state.

WAVEFORMS


2-81


TYPICAL CHARACTERISTICS

SUPPLY CURRENT versus AMBIENT TEMPERATURE


OUTPUT SOURCE CURRENT versus OUTPUT VOLTAGE

OUTPUT SINK CURRENT versus OUTPUT VOLTAGE

MCM2114•MCM21L14

2

To determine the precise location on the die of a word in memory, reassign address numbers to the address pins as in the table below. The bit locations can then be determined directly from the bit map.

	REASSIGNED		REASSIGNED
PIN NUMBER	ADDRESS NUMBER	PIN NUMBER	ADDRESS NUMBER
1	A6	6	A1
2	A5	7	A2
3	A4	15	Ā9
4	A3	16	A8
5	A0	17	Ā7

1024×1 STATIC RAM

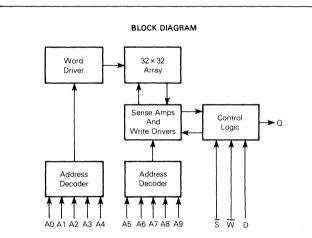
The MCM2115A and MCM2125A families are high-speed, 1024 words by one-bit, random-access memories fabricated using HMOS, highperformance N-channel silicon-gate technology. Both open collector (MCM2115A) and three-state output (MCM2125A) are available. The devices use fully static circuitry throughout and require no clocks or timing strobes. Data out has the same polarity as the input data.

Access times are fully compatible with the industry-produced 1K Bipolar RAMs, yet offer up to 50% reduction in power over their Bipolar equivalents.

All inputs and output are directly TTL compatible. The chip select allows easy selection of an individual device when outputs are OR-tied.

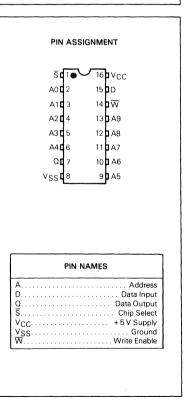
- Organized as 1024 Words of 1 Bit
- Single +5 V Operation
- Maximum Access Time of 45 ns, 55 ns, and 70 ns available
- Low Operating Power Dissipation
- Pin Compatible to 93415A (2115A) and 93425A (2125A)
- TTL Inputs and Outputs
- Uncommitted Collector (2115A) and Three-State (2125A) Output

MCM2115A MCM21L15A MCM2125A MCM21L25A


MOS

(N-CHANNEL, SILICON-GATE)

1024-BIT STATIC RANDOM ACCESS MEMORY



FRIT-SEAL CERAMIC PACKAGE CASE 620-06

TRUTH TABLE

	Inputs		Output 2115A Family	Output 2125A Family	Mode
S	W	D	Q	Q	
н	Х	Х	Н	High Z	Not Selected
L	L	L	н	High Z	Write "0"
L	L	н	Н	High Z	Write"1"
L	н	Х	Data Out	Data Out	Read

MCM2115A•MCM21L15A•MCM2125A•MCM21L25A

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Voltage on Any Pin With Respect to VSS	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	
Operating Temperature Range	0 to + 70	°C
Storage Temperature Range	-65 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

2

NOTE: Permanent damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOM-MENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC} V _{SS}	4.75 0	5.0 0	5.25 0	v
Logic 1 Voltage, All Inputs	VIH	2.1		6	V
Logic 0 Voltage, All Inputs	VIL	-0.3		0.8	V

DC OPERATING CHARACTERISTICS

Parameter		MCM2115A		MCM21L15A		MCM2125A		MCM21L25A		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Unit
Input Low Current (All Input Pins, Vin=0 to 5.5 V)	hL	-	- 40		- 40	-	- 40	-	- 40	μA
Input High Current	ЧΗ	_	40	-	40	-	40	-	40	μA
Output Leakage Current (Vout=0.5/2.4 V)	IOL	-	-	-	1		50	-	50	μA
Output Leakage Current (Vout = 4.5 V)	ICEX	-	100	-	100	-	-	-	-	μΑ
Power Supply Current (S = V _{IL} , Outputs Open $T_A = 25$ °C)	ICC		125		75	-	125	-	75	mΑ
Output Low Voltage (IOL = 7.0 mA, 2125A, 16 mA 2115A)	VOL	-	0.45	-	0.45	-	0.45	-	0.45	V
Output High Voltage (I _{OH} = -4.0 mA)	Voн		-	-	-	2.4		2.4		V
Current Short Circuit to Ground	IOS	-	-	-	-	-	- 100	-	- 100	mΑ

MCM2115A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$

Parameter	Sumbal	MCM2115A-45		MCM2115A-55		MCM2115A-70		Units
	Symbol	Min	Max	Min	Max	Min	Max	Onits
Chip Select Low Output Valid	tSLQV	5	30	5	35	5	40	ns
Chip Select High to Output Invalid	tSHQZ	-	30		35	-	40	ns
Address Valid to Output Valid	tavqv	-	45	-	55	-	70	ns
Address Valid to Output Invalid	tavox.	10	-	10	-	10	-	ns
Write Low to Output Disable	tWLQZ	-	30	-	35	-	40	ns
Write High to Output Valid	tWHQV	0	30	0	35	0	45	ns
Write Low to Write High (Write Pulse Width)	tWLWH	30	-	40	-	50	-	ns
Data Valid to Write Low	tDVWL -	5		5	-	5	-	ns
Write High to Data Don't Care (Data Hold)	twhdx.	5	-	5	-	5	-	ns
Address Valid to Write Low (Address Setup)	tAVWL	5	-	5	-	15		ns
Write High to Address Don't Care	tWHAX	5		5	-	5	-	ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5		5	-	ns
Address Valid to Address Don't Care	tavax	-	45	-	55	-	70	ns
Chip Select Low to Chip Select High	tSLSH	-	45	-	55	-	70	ns

MCM21L15A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES (T_A=0 to 70°C, V_{CC}=5.0 V \pm 5%)

Parameter	Symbol	MCM21L15A-45 MCM21L15A-70				Units
Farameter	Symbol	Min	Max	Min	Min Max	Onits
Chip Select Low to Output Valid	tSLQV	5	30	5	30	ns
Chip Select High to Output Invalid	tSHQZ	- 1	30	-	30	ns
Address Valid to Output Valid	^t AVQV	-	45	-	70	ns
Address Valid to Output Invalid	tAVQX	10	-	10	-	ns
Write Low to Output Disable	tWLQZ	-	25	-	25	ns
Write High to Output Valid	tWHQV	0	25	0	25	ns
Write Low to Write High (Write Pulse Width)	twlwh	30	-	30	-	ns
Data Valid to Write Low	tDVWL	0	-	0	-	ns
Write High to Data Don't Care	tWHDX	5	-	5		ns
Address Valid to Write Low (Address Setup)	tAVWL	5	-	5	-	ns
Write High to Address Don't Care	tWHAX	5	-	5		ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5	-	ns
Address Valid to Address Don't Care	tAVAX	-	45	-	70	ns
Chip Select Low to Chip Select High	tSLSH	- '	45	-	70	ns

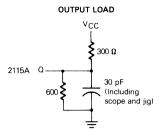
MCM2125A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

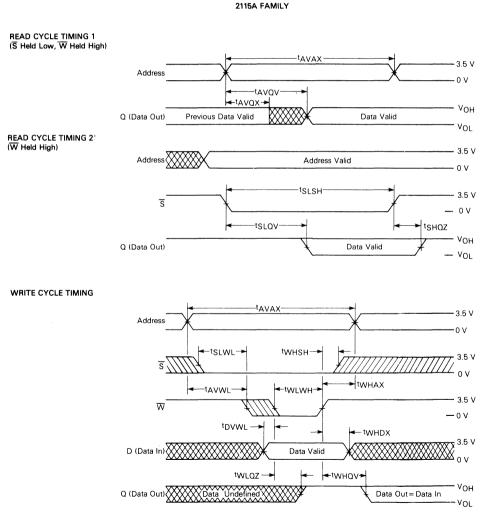
 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$

Parameter	Symbol	MCM2	125A-45	MCM2	125A-55	MCM2125A-70		Units
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Onita
Chip Select Low to Output Valid	^t SLQV	5	30	5	35	5	40	ns
Chip Select High to Output High Z	^t SHQZ	-	30	-	35	-	40	ns
Address Valid to Output Valid	^t AVQV	-	45	-	55	-	70	ns
Address Valid to Output Invalid	tAVQX	10	-	10	-	10	-	ns
Write Low to Output High Z	tWLQZ	-	30	-	35	-	40	ns
Write High to Output Valid	tWHQV	0	30	0	35	0	45	ns
Write Low to Write High (Write Pulse Width)	tWLWH	30	-	40	-	50	-	ns
Data Valid to Write Low	^t DVWL	5	-	5	-	5	-	ns
Write High to Data Don't Care	tWHDX	5	-	5	-	5	-	ns
Address Valid to Write Low (Address Setup)	tAVWL	5	-	5	-	15	-	ns
Write High to Address Don't Care	tWHAX	5	-	5	-	5		ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5	-	5	-	ns
Address Valid to Address Don't Care	^t AVAX	-	45	-	55	-	70	ns
Chip Select Low to Chip Select High	^t SLSH	-	45	-	55	_	70	ns

MCM21L25A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

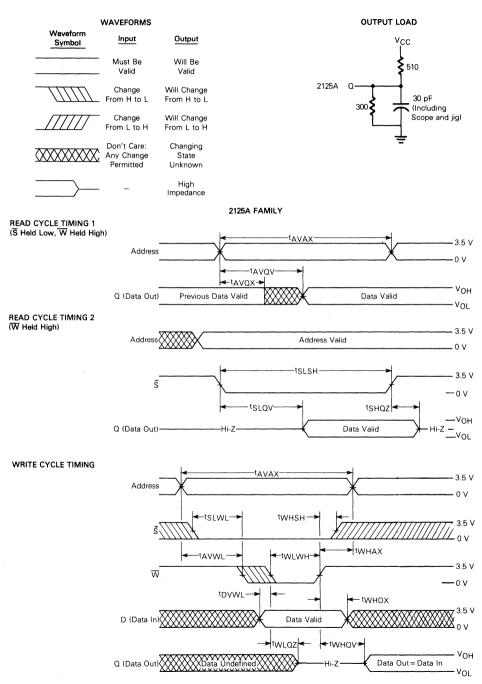
 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$


Parameter	Symbol	MCM2	L25A-45	A-45 MCM21L25A-70		
Farameter	Symbol	Min	Max	Min		
Chip Select Low to Output Valid	tSLQV	5	30	5	30	ns
Chip Select High to Output High Z	tSHQZ	-	30	-	30	ns
Address Valid to Output Valid	tAVQV	-	45		70	ns
Address Valid to Output Invalid	tAVQX	10	-	10	-	ns
Write Low to Output High Z	twloz	-	25	-	25	ns
Write High to Output Valid	tWHQV	0	25	0	25	ns
Write Low to Write High (Write Pulse Width)	twlwh	30	-	30	-	ns
Data Valid to Write Low	tDVWL	0	-	0	-	ns
Write High to Data Don't Care	tWHDX	5	-	5		ns
Address Valid to Write Low (Address Setup)	^t AVWL	5	-	5	1	ns
Write High to Address Don't Care	twhax	5	-	5	-	ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	ns
Write High to Chip Select High	twhsh	5		5	-	ns
Address Valid to Address Don't Care	tAVAX		45	-	70	ns
Chip Select Low to Chip Select High	tSLSH	-	45	-	70	ns

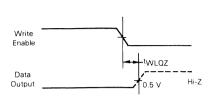

MCM2115A•MCM21L15A•MCM2125A•MCM21L25A

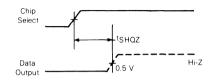
CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance (Vin=0 V)	Cin	5	рF
Output Capacitance (Vout=0 V)	Cout	8	рF


Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=l\Delta_t/\Delta V.$

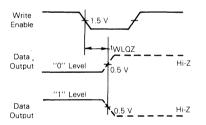
(All Time Measurements Referenced to 1.5 V)


MCM2115A•MCM21L15A•MCM2125A•MCM21L25A


(All time measurements referenced to 1.5 V)

MCM2115A•MCM21L15A•MCM2125A•MCM21L25A

2115A FAMILY



WRITE ENABLE TO HIGH-Z DELAY

2125A FAMILY

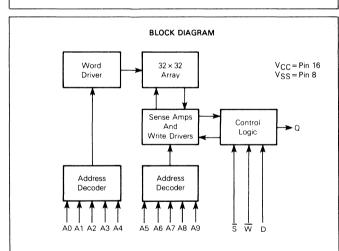
WRITE ENABLE TO HIGH-Z DELAY

Chip Select Data Output <u>"0" Level</u> 0.5 V <u>"1" Level</u> 0.5 V <u>Utput</u>

PROPAGATION DELAY FROM CHIP SELECT TO HIGH-Z

PROPAGATION DELAY FROM CHIP SELECT TO HIGH-Z

Product Preview


1024 × 1 STATIC RAM

The MCM2115H and MCM2125H families are high-speed, 1024 words by one-bit, random-access memories fabricated using HMOS, highperformance N-channel silicon-gate technology. Both open collector (MCM2115H) and three-state output (MCM2125H) are available. The devices use fully static circuitry throughout and require no clocks or refreshing to operate. Data out has the same polarity as the input data.

Access times are fully compatible with the industry-produced 1K Bipolar RAMs, yet offer up to 50% reduction in power.over their Bipolar equivalents.

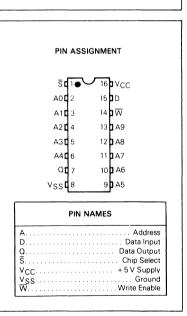
All inputs and outputs are directly TTL compatible. A separate chip select allows easy selection of an individual device when outputs are OR-tied.

- Organized as 1024 Words of 1 Bit
- Single + 5 V Operation
- Maximum Access Time of 20 ns, 25 ns, 30 ns, and 35 ns Available
- Low Operating Power Dissipation
- Pin Compatible to 93415A (2115H) and 93425A (2125H)
- TTL Inputs and Outputs
- Uncommitted Collector (2115H) and Three-State (2125H) Output

TRUTH TABLE

	Inputs		Output 2115H Family	Output 2125H Family	Mode
s	W	D	Q	٩	
н	X	Х	н	High Z	Not Selected
L	L	L	н	High Z	Write "0"
L	L	н	Н	High Z	Write "1"
L	н	X	Data Out	Data Out	Read

MCM2115H MCM2125H


MOS

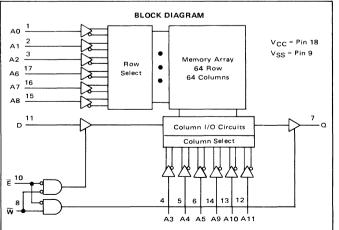
(N-CHANNEL,	SILICON-GATE)
-------------	---------------

1024-BIT STATIC RANDOM ACCESS MEMORY

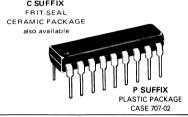
C SUFFIX FRIT-SEAL CERAMIC PACKAGE CASE 620-06

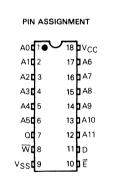
Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

MCM2147


4096-BIT STATIC BANDOM ACCESS MEMORY

The MCM2147 is a 4096-bit static random access memory organized as 4096 words by 1-bit using Motorola's N-channel silicongate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times


E controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after \overline{E} goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high. This feature results in system power savings as great as 85% in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.


The MCM2147 is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory No Clock or Timing Strobe Required
- Single +5 V Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible-All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time MCM2147-55 = 55 ns max MCM2147-70 = 70 ns max MCM2147-85 = 85 ns maxMCM2147-100 = 100 ns max

PIN NAMES					
A0- A11	Address Input				
₩	Write Enable				
Ē	Chip Enable				
	Data Input				
Q	Data Output				
Vcc	Power (+5 V)				
V _{SS}	Ground				

TRUTH TABLE								
Ē	w	Mode	Output	Power				
н	х	Not Selected	High Z	Standby				
L	L	Write	High Z	Active				
L	н	Read	Data Out	Active				

MCM2147

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +85	°C
Voltage on Any Pin With Respect to V _{CC}	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

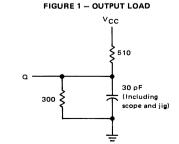
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC} V _{SS}	4.5 0	5.0 0	5.5 0	v
Logic 1 Voltage, All Inputs	VIH	2.0	_	Vcc	V
Logic 0 Voltage, All Inputs	VIL	-0.3		0.8	V

DC CHARACTERISTICS

		MC	M2147	-55	MCM 2147-70			MCM2147-85			MCM2147-100			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Load Current (All Input Pins, V _{in} = 0 to 5.5 V)	ΊL	-	0.01	10	-	0.01	10	-	0.01	10	-	0.01	10	μA
Output Leakage Current (E = 2.0 V, V _{OUt} = 0 to 5.5 V)	ΙΟL	-	0.1	50		0.1	50	-	0.1	50		0.1	50	μA
Power Supply Current ($\overline{E} = V_{1L}$, Outputs Open, $T_A = 25^{\circ}C$)	ICC1	-	120	170	-	100	150	-	95	130	-	90	110	mA
Power Supply Current $(\overline{E} = V_{ L}, Outputs Open, T_A = 0^{\circ}C)$	ICC2	-	-	180	-	-	160	-		140	-	-	120	mA
Standby Current (Ē = V _{IH})	ISB	-	15	30		10	20		15	25	-	10	20	mA
Input Low Voltage	VIL	-0.3	-	0.8	-0.3		0.8	-0.3	-	0.8	-0.3	-	0.8	V
Input High Voltage	VIH	2.0	-	6.0	2.0	-	6.0	2.0	-	6.0	2.0	-	6.0	V
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	-	-	0.4	-		0.4	-	-	0.4	-	-	0.4	V
Output High Voltage (I _{OH} = -4.0 mA)	VOH	2.4	-	-	2.4	-	-	2.4	-		2.4			V

Typical values are for $T_A = 25^{\circ}C$ and $V_{CC} = +5.0$ V.


CAPACITANCE

(f = 1.0 MHz, $T_A = 25^{\circ}$ C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance (V _{in} = 0 V)	C _{in}	5.0	pF
Output Capacitance (Vout = 0 V)	Cout	10	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated

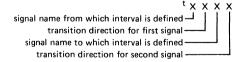
from the equation: $C = \frac{I\Delta_t}{\Delta V}$.

2

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

Input Pulse Levels	.0 Volt to 3.5 Volts
Input Rise and Fall Times	10 ns

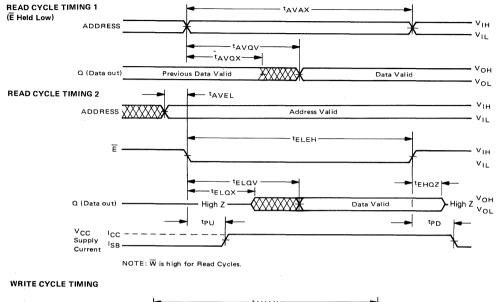

Input and Output Timing Levels	1.5 Volts
Output Load	See Figure 1

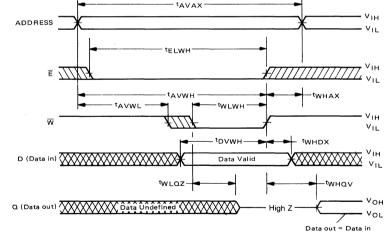
READ, WRITE CYCLES

Parameter	Symbol MCM2147-55		MCM2	MCM2147-70		147-85	MCM2147-100		Unit	
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Address Valid to Address Don't Care (Cycle Time When Chip Enable is Held Active)	^t AVAX	55		70		85		100	-	ns
Chip Enable Low to Chip Enable High	TELEH	55	-	70	-	85		100	-	ns
Address Valid to Output Valid (Access)	tAVQV	-	55	-	70	-	85	-	100	ns
Chip Enable Low to Output Valid (Access)	tELQV1	-	55	-	70	-	85		100	ns
	tELQV2		65	-	80	-	95		110	ns
Address Valid to Output Invalid	tAVQX	10	-	10	-	10		10	-	ns
Chip Enable Low to Output Invalid	^t ELQX	10	-	10		10	-	10	-	ns
Chip Enable High to Output High Z	^t EHQZ	0	40	0	40	0	40	0	40	ns
Chip Selection to Power-Up Time	tPU	0	-	0		0		0	-	ns
Chip Deselection to Power-Down Time	tPD	0	30	0	30	0	30	0	30	ns
Address Valid to Chip Enable Low (Address Setup)	tAVEL	0	-	0	-	0		0	-	ns
Chip Enable Low to Write High	telwh	45	-	55		70		80		ns
Address Valid to Write High	tAVWH	45		55	-	70	-	80	-	ns
Address Valid to Write Low (Address Setup)	^t AVWL	0	-	0	-	0	-	0	-	ns
Write Low to Write High (Write Pulse Width)	tWLWH	35	·	40		55	-	65	-	ns
Write High to Address Don't Care	tWHAX	10	-	15	-	15		15	-	ns
Data Valid to Write High	^t DVWH	25	-	30	-	45	_	55	-	ns
Write High to Data Don't Care (Data Hold)	tWHDX	10	-	10		10	-	10	-	ns
Write Low to Output High Z	tWLQZ	0	30	0	35	0	45	0	50	ns
Write High to Output Valid	tWHQV	0	-	0	-	0		0	-	ns

* t_{ELQV1} is access from chip enable when the 2147 is deselected for at least 55 ns prior to this cycle. t_{ELQV2} is access from chip enable for 0 ns < deselect time < 55 ns. If deselect time = 0 ns, then t_{ELQV} = t_{AVQV} .

TIMING PARAMETER ABBREVIATIONS


The transition definitions used in this data sheet are: H = transition to high


- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

MCM2147

WAVEFORMS

Waveform Symbol	Input	Output				
	MUST BE VALID	WILL BE VALID				
	CHANGE FROM H TO L	WILL CHANGE FROM H TO L				
	CHANGE FROM L TO H	WILL CHANGE FROM L TO H				
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN				
\rightarrow	-	HIGH				

DEVICE DESCRIPTION

The MCM2147 is produced with a high-performance MOS technology which combines on-chip substrate bias generation with device scaling to achieve high speed. The speed-power product of this process is about four times better than earlier MOS processes.

This gives the MCM2147 its high speed, low power and ease-of-use. The low-power standby feature is controlled with the \vec{E} input. \vec{E} is not a clock and does not have to be cycled. This allows the user to tie \vec{E} directly to system addresses and use the line as part of the normal decoding logic. Whenever the MCM2147 is deselected, it automatically reduces its power requirements.

SYSTEM POWER SAVINGS

The automatic power-down feature adds up to significant system power savings. Unselected devices draw low standby power and only the active devices draw active power. Thus the average power consumed by a device declines as the system size increases, asymptotically approaching the standby power level as shown in Figure 2.

The automatic power-down feature is obtained without any performance degradation, since access time from chip enable is \leq access time from address valid. Also the fully static design gives access time equal cycle time so multiple read or write operations are possible during a single select period. The resultant data rates are 14.3 MHz and 18 MHz for the MCM2147-70 and MCM2147-55 respectively.

DECOUPLING AND BOARD LAYOUT CONSIDERATIONS

The power switching characteristic of the MCM2147 requires careful decoupling. It is recommended that a 0.1 μ F to 0.3 μ F ceramic capacitor be used on every other device, with a 22 μ F to 47 μ F bulk electrolytic decoupler every 16 devices. The actual values to be used will depend on board layout, trace widths and duty cycle.

Power supply gridding is recommended for PC board layout. A very satisfactory grid can be developed on a two-layer board with vertical traces on one side and horizontal traces on the other, as shown in Figure 3. If fast drivers are used, terminations are recommended on input signal lines to the MCM2147 because significant reflections are possible when driving their high impedance inputs. Terminations may be required to match the impedance of the line to the driver.

FIGURE 2 – AVERAGE DEVICE DISSIPATION versus MEMORY SIZE

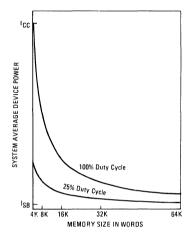
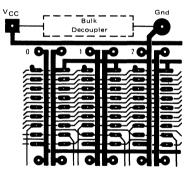
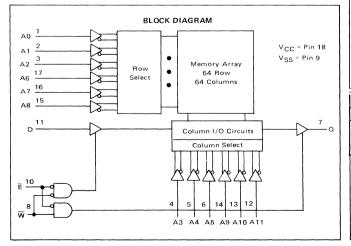



FIGURE 3 - PC LAYOUT

Product Preview

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2147H is a 4096-bit static random access memory organized as 4096 words by 1-bit using Motorola's high-performance N-channel silicon-gate MOS technology (HMOS). It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

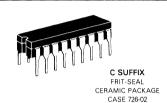

 \overline{E} controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after \overline{E} goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high. This feature results in system power savings as great as 85% in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2147H is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory No Clock or Timing Strobe Required
- HMOS Technology
- Single + 5 V Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output

Access Time

MCM2147H-35 = 35 ns Max MCM2147H-45 = 45 ns Max MCM2147H-55 = 55 ns Max



MCM2147H

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY

PIN	ASSIG	NMENT				
AO	1.	18 VCC				
A1 0	2	17 D A6				
A2 1	3	16 A7				
A3	4	15 A8				
A4 1	5	14 A9				
A5 1	6	13 A10				
្ត	7	12 A11				
Ŵ	8	11 1 0				
V _{SS}	9	10 1 Ē				
	PIN NA	MES				
A0- A11 Address Input W. Write Enable E Chip Enable D Data Input Q Data Output VCC Power (+5 V) VSS Ground						
TRUTH TABLE						

	TRUTH TABLE						
Ē	W	Mode	Output	Power			
н	Х	Not Selected	High Z	Standby			
L	L	Write	High Z	Active			
L	н	Read	Data Out	Active			

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

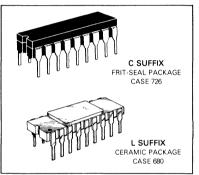
Advance Information

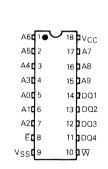
4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2148 is a 4096-bit random access memory fabricated using HMOS, high performance MOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM2148 is designed for memory applications where simple interfacing is the design objective. The MCM2148 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select (Ē) lead allows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- HMOS Technology
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Maximum Access Time 70 ns MCM2148-70 85 ns MCM2148-85
- Power Dissipation 140 mA Maximum (Active) 30 mA Maximum (Standby)
- Fully TTL/DTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Automatic Power Down




MCM2148

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY

PIN ASSIGNMENT

A0-A9Address Input WWrite Enable EChip Select	PIN NAMES			
DQ1-DQ4Data Input/Output VCCPower (+5 VI VSS	₩ Ē DQ1-DQ4 V _{CC}	Write Enable Chip Select Data Input/Output Power (+5 V)		

2

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Voltage on Any Pin With Respect to VSS	-3.5 to +7.0	ν.
DC Output Current	20	mA
Power Dissipation	1.2	Watt
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	- 65 to + 150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

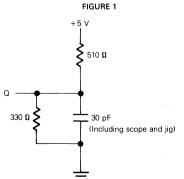
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

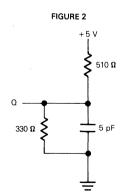
DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature ranges unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC} V _{SS}	4.5 0	5.0 0	5.5 0	v
Logic 1 Voltage, All Inputs	ViH	2.0	-	6.0	٧
Logic 0 Voltage, All Inputs	VIL	- 3.0	-	0.8	V

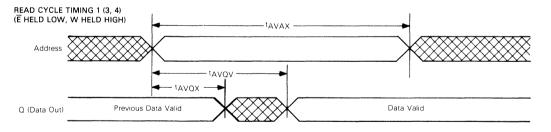

DC CHARACTERISTICS


Parameter	Symbol	Min	Тур	Max	Unit
Input Load Current (All Input Pins, Vin=0 to 5.5 V, VCC=Max)	ILI	-	0.01	10	μA
Output Leakage Current (E = VIH, VCC = Max, Vout = 0 to 4.5 V)	ILO	-	0.1	50	μΑ
Output Low Voltage (IOL = 8 mA)	VOL	-		0.4	mΑ
Output High Voltage (I _{OH} = -2.0 mA)	∨он	2.4	-	-	mΑ
Power Supply Current ($V_{in} = 5.5$, $IDQ = 0$ mA, $T_A = 25^{\circ}C$, $\overline{E} = V_{IL}$)	ICC1	-	100	135	mΑ
Power Supply Current (V _{in} =5.5 V, IDQ=0 mA, TA=0°C, E=VIL)	ICC2	-		140	mA
Standby Current (V_{CC} = Min to Max, $\vec{E} = V_{IH}$)	ICC3	-	12	30	mΑ
Peak Power on Current (V _{CC} =0 to V _{CC} Min, E=V _{IH} min)*	IPO	-	25	50	∙mA
Output Short Circuit Current (Vout = GND to VCC)	los	- 150	-	+ 150	mΑ

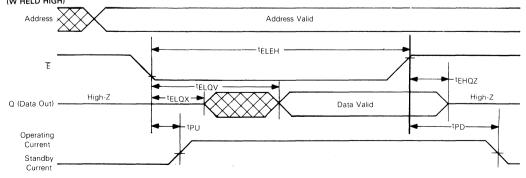
*A pullup resistor to VCC on the E input is required to keep the device deselected, otherwise, power-on current approaches ICC.

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance (V _{in} =0 V)	C _{in}	5	рF
Output Capacitance (V _{OUt} =0 V)	Cout	7	pF

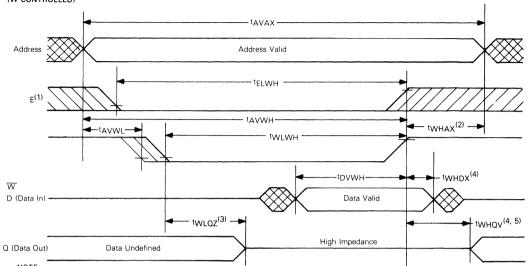

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

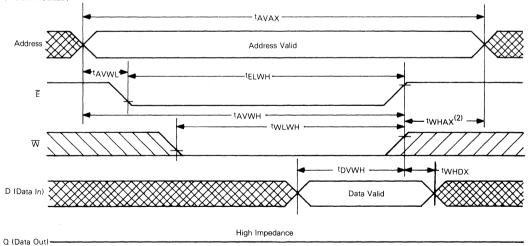

Parameter	S	Symbol	MCM2148-70 MCM2148-85					Notes
Farameter	Sym	001	Min	Max	Min	Max		Notes
Address Valid to Address Don't Care (Cycle Time if $\overline{E} = V_{ L}$)	tAV	٩X	70	-	85		ns	
Address Valid to Output Valid (Address Access Time)	tav	ΩV	-	70	-	85	ns	
Address Valid to Output Undefined	t AV	ЭΧ	5		5	-	ns	
Chip Enable Low to Chip Enable High (Cycle Time)	tEL	Н	70	-	85	-	ns	
Chip Enable Low to Output Undefined	tele	λ	25	-	25	-	ns	6
Chip Enable Low to Output Valid (Chip Select Access Time)	telo telo		-	70 80		85 95	ns ns	1 2
Chip Selection to Powerup Time	tP	J	0		0	-	ns	
Chip Deselection to Powerdown Time	tp)	-	30	-	30	ns	
Chip Enable High to Output High Z	teh	ΩZ	0	20	0	20	ns	6
Chip Enable Low to Write High	^t ELV	VH	65	-	80		ns	
Address Valid to Write Low (Address Setup)	tav'	NL	0	-	0		ns	
Write High to Address Don't Care	twh	AX	5	-	5	-	ns	
Write Low to Write High (Write Pulse Width)	twl.	F	50		60	-	ns	
Data Valid to Write High	^t DV	VН	25	-	30	***	ns	
Write High to Data Don't Care	tWH	DX	5		5		ns	
Write Low to Output High Z	twl	QZ	0	25	0	30	ns	6
Write High to Output Active	tWH	QV	.0	-	0	-	ns	6

NOTES:

- 1. Chip deselected for greater than 55 ns prior to E transition low.
- 2. Chip deselected for a finite time that is less than 55 ns prior to \overline{E} transition low. (If the deselect time is 0 ns, the chip is by definition selected and access occurs according to Read Cycle 1.)
- 3. W is high for read cycles.
- 4. Device is continuously selected, $\overline{E} = V_{1L}$.
- 5. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ transition low.
- 6. Transition is measured ±500 mV from high impedance with the load in Figure 2. This parameter is sampled and not 100% tested.



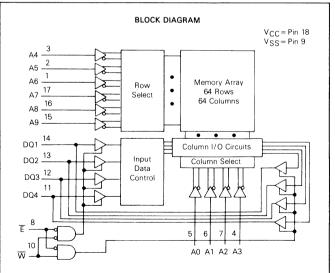
READ CYCLE TIMING 2 (3, 5) (W HELD HIGH)


MCM2148

WRITE CYCLE 1 (W CONTROLLED)

- NOTE:
 - 1. If \overline{E} goes high simultaneously with \overline{W} high, the output remains in a high-impedance state.
 - 2. twhat is measured from the earlier of \overline{S} or \overline{W} going high to the end of the write cycle.
 - 3. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
 - 4. If S is low during this period, the DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
 - 5. Q is the same phase of write data of this write cycle.

WRITE CYCLE 2 (E CONTROLLED)

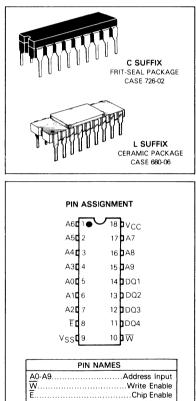

Product Preview

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2148H is a 4096-bit random access memory fabricated using HMOS, high performance MOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM2148H is designed for memory applications where simple interfacing is the design objective. The MCM2148H is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip enable (\overline{E}) lead allows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- HMOS Technology
- Industry Standard 18-Pin Configuration
- Single + 5 Volt Supply
- No Clock or Timing Strobe Required
- Maximum Access Time MCM2148H-45 = 45 ns MCM2148H-55 = 55 ns
- Power Dissipation 180 mA Maximum (Active) 30 mA Maximum (Standby)
- Fully TTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Automatic Power Down

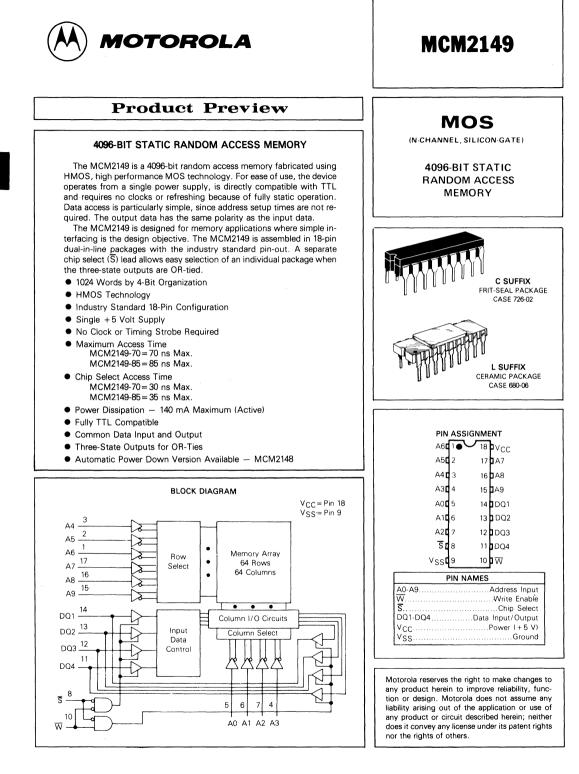


MCM2148H

MOS (N-CHANNEL, SILICON-GATE)

> 4096-BIT STATIC RANDOM ACCESS MEMORY

2


Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

DQ1-DQ4.....Data Input/Output

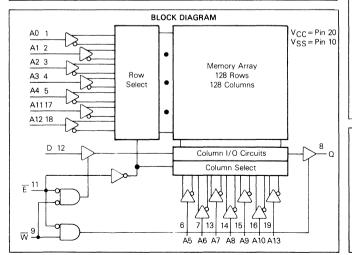
V_{CC}.....Power (+5 V)

V_{SS}.....Ground

2-101

Product Preview

16,384-BIT STATIC RANDOM ACCESS MEMORY

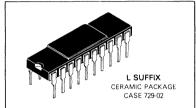

The MCM2167 is a 16,384-bit static random access memory organized as 16,384 words by 1-bit using Motorola's N-channel silicon-gate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

 \overline{E} controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after \overline{E} goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high. This feature results in sytem power savings as great as 85% in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2167 is in a 20 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory No Clock or Timing Strobe Required
- Single + 5 V Supply
- High Density 20 Pin Package
- Automatic Power-Down
- Directly TTL Compatible All Inputs and Three-State Output
- Separate Data Input and Output
- Access Time

MCM2167-55 - 55 ns max MCM2167-70 - 70 ns max MCM2167-85 - 85 ns max MCM2167-100 - 100 ns max



MCM2167

MOS (N-CHANNEL, SILICON-GATE)

(N-CHANNEL, SILICON-GATE)

16,384-BIT STATIC RANDOM ACCESS MEMORY

PI	N ASSIGN	MEN	т
A0 6		20	⊅ v _{cc}
A1 C	2	19	A 13
A2	3	18	A12
A3	4	17	A11
A4 🕻	5	16	A 10
A5 🕻	6	15	A 9
A6 🕻	7	14	1 A8
0 C	8	13	D A7
₩ C	9	12	D
v _{ss} q	10	11	ĪĒ

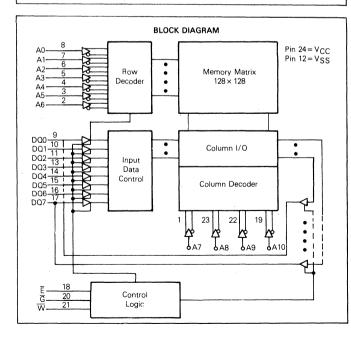
PIN NAMES				
A0-A13	Address Input			
	Write Enable			
Ē	Chip Enable			
	Data Input			
Q	Data Output			
Vcc	Power (+5 V)			
V _{SS}	Ground			

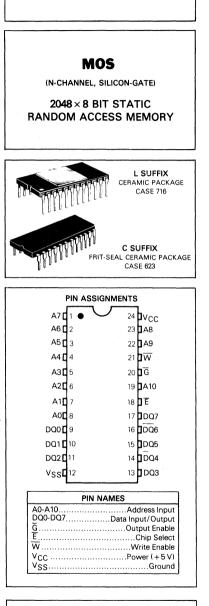
TRUTH TABLE

Ē	Ŵ	Mode	Output	Power
н	X	Not Selected	High Z	Standby
L	L	Write	High Z	Active
L	Н	Read	Data Out	Active

MCM4016

Product Preview


2048 × 8-BIT STATIC RANDOM ACCESS MEMORY


The MCM4016 is a 16,384-bit static Random Access Memory organized as 2048 words by 8-bits, fabricated using Motorola's highperformance silicon-gate metal oxide semiconductor (HMOS) technology. Its static design means that no refresh clocking circuitry is needed and timing requirements are simplified. Access time is equal to cycle time.

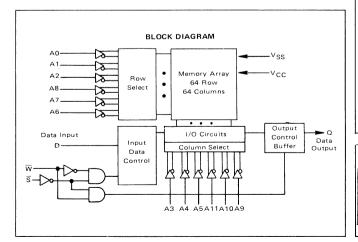
A chip select control is provided for controlling the flow of data in and data out, and an output enable function is provided which eliminates the need for external bus buffers.

The MCM4016 is in a 24-pin dual-in-line package with the industry standard pinout and is pinout compatible with the industry standard 16K EPROM and 16K mask programmable ROM.

- 2048 Words by 8-Bits Organization
- HMOS Technology
- Single + 5 V Supply
- Fully Static: No Clock or Timing Strobe Required
- Low Power Dissipation 35 mW Typical (Standby) 400 mW Typical (Active)
- Maximum Access Time: MCM4016-20 200 ns
- Fully TTL Compatible
- Pinout Compatible with Industry Standard 2716 16K EPROM and Mask Programmable ROM
- Output Enable (G) Eliminates Need for External Bus Buffers

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

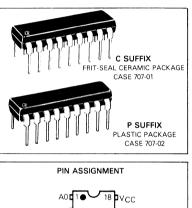
Advance Information

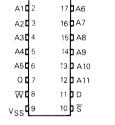

4096-BIT STATIC RANDOM ACCESS MEMORIES

The MCM6641 series 4096×1 -bit Random Access Memory is fabricated with high density, high reliability N-channel silicon-gate technology. For ease of use, the device operates from a single 5-volt power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. The fully static operation allows chip selects to be tied low, further simplifying system timing. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the data input.

The MCM6641 is designed for memory applications where simple interfacing is the design objective, and is assembled in 18-pin dual-in-line packages with the industry standard pin-outs.

- Single ± 10% + 5 V Supply
- Fully Static Operation No Clock, Timing Strobe, Pre-Charge, or Refresh Required
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible
- Common Data Input and Output Capability
- Three-State Outputs for OR-Tie Capability
- Power Dissipation MCM6641 Less Than 550 mW (Maximum) MCM66L41 Less Than 385 mW (Maximum)
- Standby Power Dissipation Less Than 125 mW (Typical)
- Plug-In Replacement For TMS4044




MCM6641 MCM66L41

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORIES

PIN NAMES					
A0-A11	Address Input				
	Data Input				
	Data Output				
<u>s</u>	Chip Select				
V _{CC}	.Power Supply (+5V)				
V _{SS}	Ground				
W	Write Enable				

TRUTH TABLE							
ŝ	w	D	۵	Mode			
н	×	х	High Z	Not Selected			
L	L	L	High Z	Write "O"			
L	L	н	High Z	Write ''1''			
L	н	Х	Output data	Read			

MCM6641•MCM66L41

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	°C
Voltage on Any Pin With Respect to VSS	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
	VSS	0	0	0	
Logic 1 Voltage, All Inputs	VIH	2.0		6.0	V
Logic 0 Voltage, All Inputs	VIL	-0.5		0.8	V

DC CHARACTERISTICS

Parameter		MCM6641			MCM66L41			Unit
		Min	Тур	Max	Min	Тур	Max	Onn
Input Load Current (All Input Pins, Vin=0 to 5.5 V)	LI	-	-	10	-	-	10	μA
Output Leakage Current (CS = 2.4 V, V _{in} = 0.4 to V _{CC})	IIL0	-	-	10	-	-	10	μA
Power Supply Current (V_{CC} = 5.5 V, I_{out} = 0 mA, T_A = 0°C)	ICC	-	80	100	1	55	70	mA
Output Low Voltage, IOL = 2.1 mA	VOL		0.15	0.4	-	0.15	0.4	V
Output High Voltage, IOH = 1.0 mA	Vон	2.4			2.4	-	-	V
Output Short Circuit Current	los*		-	40	-	-	40	mA

*Duration not to exceed 30 seconds.

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5.0$ V, periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Input Capacitance (Vin=0 V)	Cin	5.0	рF
Output Capacitance (V _{out} =0 V)	Cout	10	рF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_t/\Delta V$.

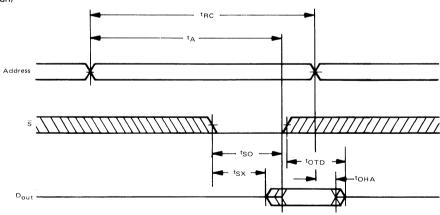
STANDBY OPERATION

(Typical Supply Values)

Device	Supply	Operating	Standby	Max Standby Power
MCM6641	Vcc	+5 V	+2.4 V	225 mW
. MCM66L41	Vcc	+5 V	+2.4 V	150 mW

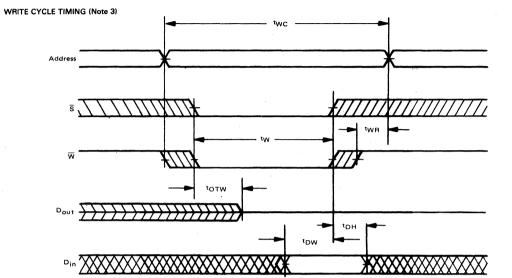
AC OPERATING CONDITIONS AND CHARACTERISTICS

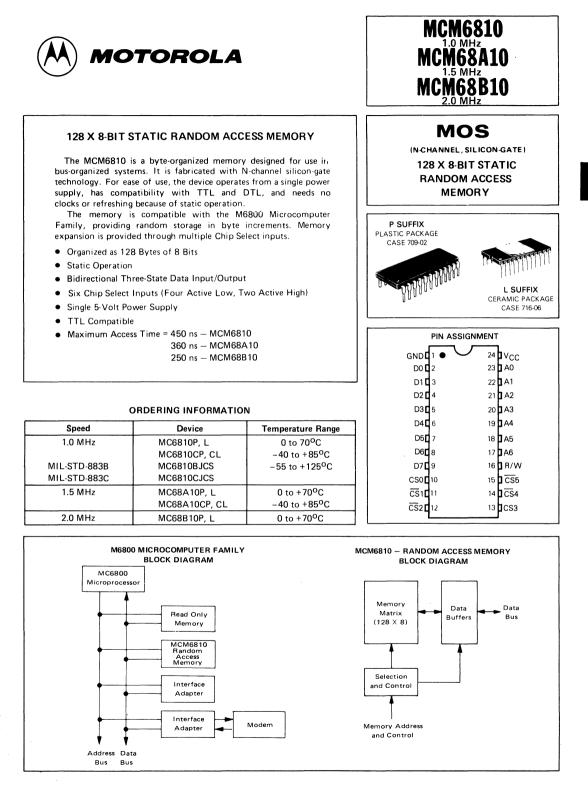
(Full operating voltage and temperature range unless otherwise noted)


Input Pulse Levels	0.8 Volt to 2.0 Volts	Input and Output Timing
Input Rise and Fall Times	10 ns	Output Load

ing Levels......1.5 Volts $1 \text{ TTL Gate and } C_L = 100 \text{ pF}$

READ (NOTE 1), WRITE (NOTE 2) CYCLES


		MCM6641-20 MCM66L41-20		MCM6641-25 MCM66L41-25		MCM6641-30 MCM66L41-30		MCM6641-45 MCM66L41-45		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Read Cycle Time	tRC	200	-	250	-	300		450		ns
Access Time	tA	-	200	-	250	-	300	-	450	ns
Chip Selection to Output Valid	tso	-	70	-	85	-	100		120	ns
Chip Selection to Output Active	tSX	10		10		10	-	10	-	ns
Output 3-State From Deselection	^t OTD		40	-	60	-	80	-	100	ns
Output Hold From Address Change	^t OHA	50	-	50	-	50	-	50		ns
Write Cycle Time	tWC	200	-	250		300		450	-	ns
Write Time	tw	100	-	125	-	150	-	200	-	ns
Write Release Time	tWR	0	-	0		0		0		ns
Output 3-State From Write	totw		·40	nu **	60	-	80	-	100	ns
Data to Write Time Overlap	tDW	100	-	125	-	150	-	200	-	ns
Data Hold From Write Time	^t DH	0	-	0	-	0		0	-	ns


READ CYCLE TIMING (W HELD HIGH)

NOTES:

A Read occurs during the overlap of a low S and a high W.
 A Read occurs during the overlap of a low S and a low W.
 If the S low transition occurs simultaneously with the W low transition, the output buffers remain in a high-impedance state.

2

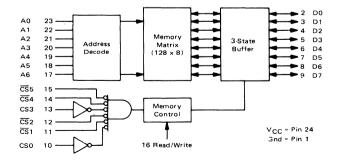
MCM6810•MCM68A10•MCM68B10

MAXIMUM RATINGS

.

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	ТА	T _L to T _H 0 to 70 -40 to 85 -55 to 125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Thermal Resistance	θJA	82.5	^o C/W

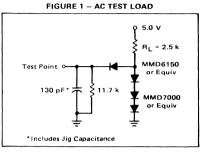
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = T_L to T_H unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current (A _n , R/W, CS _n , \overline{CS}_n) (V _{in} = 0 to 5.25 V)	lin	-	-	2.5	μAdc
Output High Voltage (I _{OH} = -205 μA)	∨он	2.4	-	_	Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL	-	-	0.4	Vdc
Output Leakage Current (Three-State) (CS = 0.8 V or CS = 2.0 V, V _{OUt} = 0.4 V to 2.4 V)	ITSI	-	-	10	μAdc
Supply Current 1.0 MHz (V _{CC} = 5.25 V, all other pins grounded) 1.5, 2.0 MHz	00	-	-	80 100	mAdc
Input Capacitance (A _n , $R\overline{W}$, CS _n , \overline{CS}_n) (V _{in} = 0, T _A = 25 ^o C, f = 1.0 MHz)	C _{in}	-	-	7.5	pF
Output Capacitance (D _n) (V _{out} = 0, T _A = 25 ^o C, f = 1.0 MHz, CSØ = 0)	C _{out}	-	-	12.5	pF

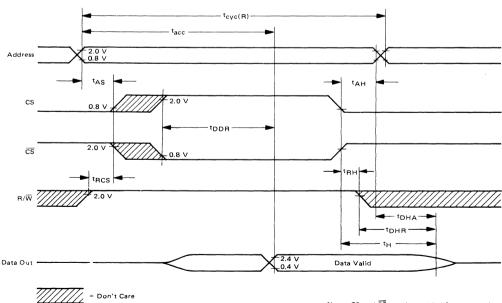
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Input High Voltage	⊻ін	2.0	-	5.25	Vdc
Input Low Voltage	VIL	-0.3		0.8	Vdc


BLOCK DIAGRAM

MCM6810•MCM68A10•MCM68B10

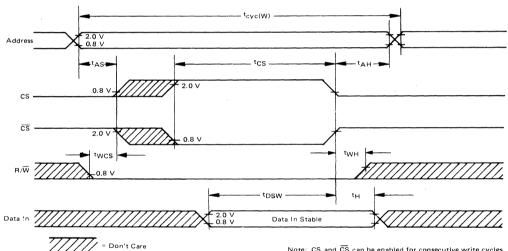
AC TEST CONDITIONS


Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	See Figure 1

AC OPERATING CONDITIONS AND CHARACTERISTICS

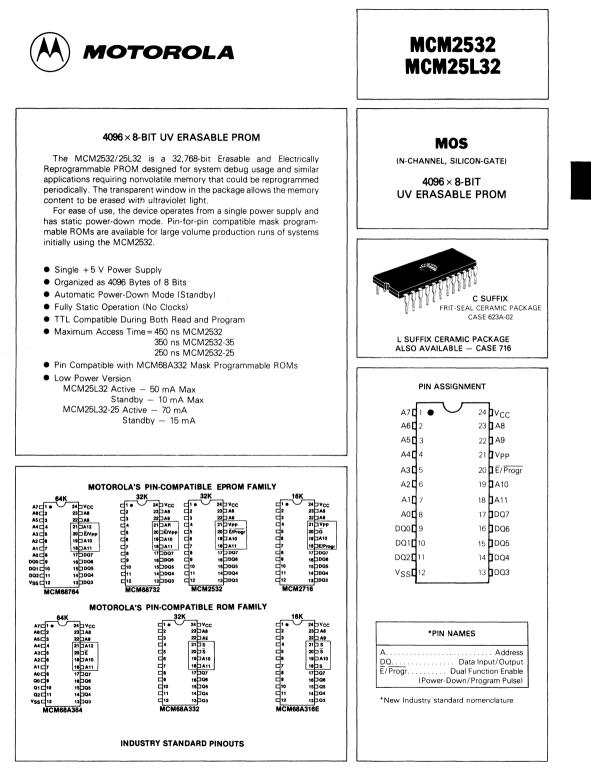
READ CYCLE (V_{CC} = 5.0 V \pm 5%, V_{SS} = 0, T_A = T_L to T_H unless otherwise noted.)

		MCN	/6810	мсм	68A10	MCM	68B10	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{cyc} (R)	450	-	360	-	250	-	ns
Access Time	tacc	-	450	-	360		250	ns
Address Setup Time	tAŚ	20	-	20	-	20	-	ns
Address Hold Time	^t AH	0	-	0	-	0	-	ns
Data Delay Time (Read)	tDDR		230	8486	220		180	ns
Read to Select Delay Time	^t RCS	0	-	0		0	-	ns
Data Hold from Address	^t DHA	10	-	10	-	10	-	ns
Output Hold Time	tH	10	-	10	-	10	-	ns
Data Hold from Read	^t DHR	10	80	10	60	10	60	ns
Read Hold from Chip Select	tRH	0	-	0	-	0	-	ns



READ CYCLE TIMING

Note: CS and \overline{CS} can be enabled for consecutive read cycles provided R/W remains at V IH.

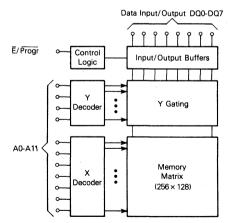

WRITE CYCLE (V_CC = 5.0 V \pm 5%, V_SS = 0, T_A = T_L to T_H unless otherwise noted.)

		MCM6810		MCM6810 MCM68A10		MCM68B10		1	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Write Cycle Time	t _{cyc} (W)	450		360		250	-	ns	
Address Setup Time	tAS	20		20	-	20	-	ns	
Address Hold Time	^t AH	0		0		0	-	ns	
Chip Select Pulse Width	tCS	300	-	250	-	210	-	ns	
Write to Chip Select Delay Time	twcs	0	-	0		0		ns	
Data Setup Time (Write)	^t DSW	190	-	80	-	60		ns	
Input Hold Time	tH	10	-	10	-	10	-	ns	
Write Hold Time from Chip Select	twh	0	-						

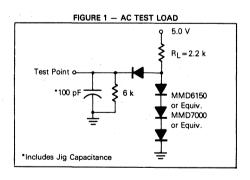
WRITE CYCLE TIMING

Note: CS and \overrightarrow{CS} can be enabled for consecutive write cycles provided R/W is strobed to V_{IH} before or coincident with the Address change, and remains high for time t_{AS}.

ABSOLUTE MAXIMUM RATINGS


Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Operating Temperature Range	0 to + 70	°C
Storage Temperature	-65 to +125	°C
All Input/Output Voltages with Respect to V _{SS}	+6 to -0.3	Vdc
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.


NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

		Pin Number								
Mode	9-11, 13-17 DQ	12 VSS	20 E/Progr	21 Vpp	24 V _{CC}					
Read	Data Out	Vss	VIL	5 V	Vcc					
Output Disable	High Z	Vss	⊻ін	5 to 25 V	Vcc					
Standby	High Z	VSS	VIH	5 V	Vcc					
Program	Data In	VSS	Pulsed VIH to VIL	VPPH	Vcc					
Program Verify	Data Out	Vss	VIL	5 V	Vcc					
Program Inhibit	High Z	VSS	ViĤ	VPPH	Vcc					

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (V _{in} = 0 V)	Cin	4.0	6.0	рF
Output Capacitance (V _{out} =0 V)	Cout	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_t/\Delta V$.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Fully operating voltage and temperature range unless otherwise noted)

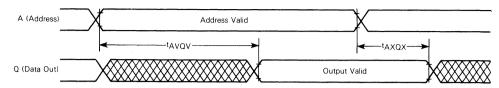
RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage*	MCM25L32/MCM2532 MCM2532-35/MCM2532-25	Vcc	4.75 4.5	5.0 5.0	5.25 5.5	Vdc
	MCM25L32-35/MCM25L32-25	VPP	VCC-0.6	5.0	V _{CC} +0.6	l
Input High Voltage		ViH	2.2	-	V _{CC} +1.0	Vdc
Input Low Voltage		VIL	- 0.1	-	0.65	Vdc

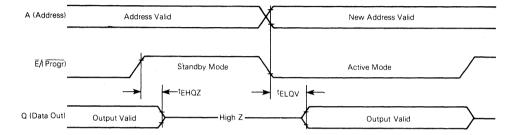
RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic		A		MCM2532		MCM25L32		
Characteristic		Condition	Symbol	Min	Max	Min	Max	Unit
Address and E Input Sink Current		V _{in} = 5.25 V	lin	I	10	-	10	μA
Output Leakage Current		V _{out} =5.25 V	^I LO	-	10	-	10	μA
V _{CC} Supply Current [•] (Standby)	MCM2532 MCM2532-35		ICC1	-	25	-	10	mA
V _{CC} Standby Current [•] (Standby)	MCM2532-25	E=VIH	ICC1	-	25	-	15	mA
V _{CC} Supply Current* (Active)	MCM2532 MCM2532-35	$F = V_{11}$	ICC2	-	100	-	50	mA
V _{CC} Supply Current* (Active)	MCM2532-25	E=VIL	ICC2	-	120	-	70	mA
Vpp Supply Current*		Vpp=5.85 V	IPP1	-	5.0	1	5.0	'nΑ
Output Low Voltage		$l_{OL} = 2.1 \text{ mA}$	VOL	-	0.45	-	0.45	V
Output High Voltage		$I_{OH} = -400 \ \mu A$	∨он	2.4	-	2.4	-	V

*V_{CC} must be applied simultaneously or prior to Vpp. V_{CC} must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V_{CC} during the read operation, the supply current would be the sum of lpp1 and I_{CC}. The additional 0.6 V tolerance on Vpp makes it possible to use a driver circuit for switching Vpp supply from V_{CC} in Read mode to +25 V for programming. Typical values are for T_A=25°C and nominal supply voltages.


AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Input Pulse Levels Input Rise and Fall Times	Input and Output Timing Levels					
Char	Symbol	MCM2532-25	MCM2532-35	MCM2532	Unit	


	tic Symbol = = V _{IL}) tAVQV tELQV tEHQZ	MCMZ	MCM2532-25		032-30	INICIAI2002		Unit	1
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Onin	
Address Valid to Output Valid ($\overline{E}/\overline{Progr} = V_{1L}$)	tAVQV	-	250	-	350	-	450	ns	
E to Output Valid	^t ELQV	-	250	-	350	1	450	ns	
E to High Z Output		0	100	0	100	0	100	ns	
Data Hold from Address (E = VII)	tAXDX	0	-	0	-	0	-	ns	

2

MCM2532•MCM25L32

STANDBY MODE

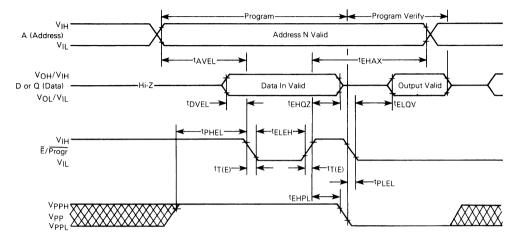
DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

 $(T_A = 25^{\circ}C \pm 5^{\circ}C)$

RECOMMENDED PROGRAMMING OPERATION CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC} , V _{PPL} V _{PPH}	4.75 24	5.0 25	5.25 26	Vdc
Input High Voltage for Data	VIH	2.2	-	V _{CC} +1	Vdc
Input Low Voltage for Data	VIL	-0.1	-	0.65	Vdc

*V_{CC} must be applied simultaneously or prior to Vpp. V_{CC} must also be switched off simultaneously with or after Vpp. The device must not be inserted into or removed from a board with Vpp at +25 V. Vpp must not exceed the +26 V maximum specifications.


PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address and E/Progr Input Sink Current	V _{in} = 5.25 V/0.45 V	ILI	-	-	10	μAdc
Vpp Supply Current (Vpp=25 V ±1 V)	E/Progr = VIH	IPP1	-	-	10	mAdc
Vpp Programming Pulse Supply Current (Vpp = $25 V \pm 1 V$)	E/Progr = VIL	IPP2	-		30	mAdc
V _{CC} Supply Current – MCM2532	-	ICC	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	^t AVEL	2.0	-	μs
Vpp Setup Time	tPHEL	0	-	ns
Data Setup Time	^t DVEL	2.0	-	μs
Address Hold Time	^t EHAX	2.0	-	μs
Vpp to Enable Low Time	tPLEL	0	-	ns
Data Hold Time	^t EHQZ	2.0	-	μs
Vpp Hold Time	TEHPL	0	-	ns
Enable (Program) Active Time	^t ELEH	1*	55	ms
Enable (E/Progr) Pulse Transition Time	tT(PE)	5	-	ns
Vpp Rise and Fall Time from 5 to 25 V	tR, tF	0.5	2	μs

*If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified.

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the VPP input (pin 21) should be raised to +25 V. The V_{CC} supply voltage is the same as for the READ operation. Programming data is entered in 8-bit words through the data out (DQ) terminals while E/Progr is high. Only "0's" will be programmed when "0's" and "1's" are entered in the data word.

After address and data setup, a 50 ms program pulse (V_{IH} to V_{IL}) is applied to the $\overline{E}/\overline{Progr}$ input. A program pulse is applied to each address location to be programmed. To minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the $\overline{E}/\overline{Progr}$ input.

Multiple MCM2532s may be programmed in parallel with the same data by connecting together like inputs and applying the program pulse to the $\overline{E}/\overline{Progr}$ inputs. Different data may be programmed into multiple MCM2532s connected in parallel by using the PROGRAM INHIBIT mode. Except for the $\overline{E}/\overline{Progr}$ pin, all like inputs may be common. 2

PROGRAM VERIFY for the MCM2532 is the read operation.

READ OPERATION

After access time, data is valid at the outputs in the READ mode.

ERASING INSTRUCTIONS

The MCM2532/25L32 can be erased by exposure to high intensity shortwave ultraviolet light, with a wave-length of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV-Eraser Turner Designs, Mountain View, CA94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2532/25L32 should be positioned about one inch away from the UV-tubes.

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Waveform Symbol	WAVEFORMS	Output
	Must Be Valid	Will Be Valid
	Change From H to L	Will Change · From H to L
	Change From L to H	Will Change From L to H
	Don't Care: Any Change Permitted	Changing: State Unknown
		High Impedance

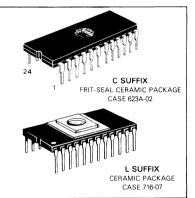
1024 X 8 ERASABLE PROM

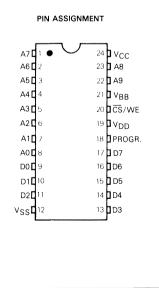
The MCM2708/27A08 is an 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM2708/27A08.

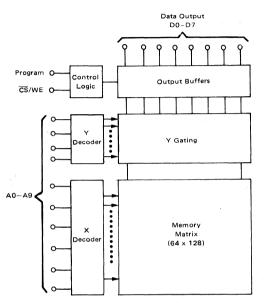
- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Standard Power Supplies of +12 V, +5 V and -5 V
- Maximum Access Time = 300 ns MCM27A08 450 ns - MCM2708
- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs

PIN CONNECTION DURING READ OR PROGRAM

Mode	Pin Number								
wode	9-11, 13-17	12	18	19	20	21	24		
Read	Dout	V _{SS}	V _{SS}	VDD	VIL	∨ _{BB}	Vcc		
Program	Din	V _{SS}	Pulsed VIHP	V _{DD}	VIHW	VBB	Vcc		


ABSOLUTE MAXIMU	M RATINGS (1)		
	Rating	Value	Unit
Operating Temperature	ature 0 to +70		
Storage Temperature		-65 to +125	°C
VDD with Respect to VBB	+20 to -0.3	Vdc	
V _{CC} and V _{SS} with Respect to V _{BB}		+15 to -0.3	Vdc
All Input or Output Voltag	ges with Respect to VBB during Read	+15 to -0.3	Vdc
CS/WE Input with Respect to VBB during Programming		+20 to -0.3	Vdc
Program Input with Respect to VBB		+35 to -0.3	Vdc
Power Dissipation		1.8	Watts
	Note 1: Permanent device damage may occur ABSOLUTE MAXIMUM RATINGS a exceeded. Functional operation shot be restricted to RECOMMENDED C ERATING CONDITIONS. Exposure higher than recommended voltages t extended periods of time could affe device reliability.	are IId DP- to for	


MCM2708 MCM27A08


MOS

(N-CHANNEL, SILICON-GATE)

1024 X 8-BIT UV ERASABLE PROM

DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

Symbol	Min	Nom	Max	Unit
Vcc	4.75	5.0	5.25	Vdc
VDD	11.4	12	12.6	Vdc
VBB	-5.25	-5.0	-4.75	Vdc
. ViH	3.0	-	V _{CC} + 1.0	Vdc
VIL	VSS	· · · · ·	0.65	Vdc
	Vcc Vdd VBB VIH	V _{CC} 4.75 V _{DD} 11.4 V _{BB} -5.25 V _{IH} 3.0	V _{CC} 4.75 5.0 V _{DD} 11.4 12 V _{BB} -5.25 -5.0 V _{IH} 3.0 -	V _{CC} 4.75 5.0 5.25 V _{DD} 11.4 12 12.6 V _{BB} -5.25 -5.0 -4.75 V _{IH} 3.0 - V _{CC} + 1.0

READ OPERATION DC CHARACTERISTICS

Characteris	stic	Condition	Symbol	Min	Тур	Max	Unit
Address and CS Input Sir	nk Current	V _{in} = 5.25 V or V _{in} = V _{IL}	lin		1	10	μA
Output Leakage Current		V _{out} = 5.25 V, CS/WE = 5 V	LO		1	10	μA
V _{DD} Supply Current		Worst-Case Supply Currents	IDD		50	65	mA
V _{CC} Supply Current	(Note 2)	All Inputs High	lcc	— ·	6	10	mA
VBB Supply Current		<u>CS</u> /WE = 5.0 V, T _A = 0 ^o C	IBB	-	30	45	mA
Output Low Voltage	-	1 _{OL} = 1.6 mA	VOL	-	-	0.45	V
Output High Voltage		1 _{OH} = -100 μA	VOH1	3.7	-		v
Output High Voltage		I _{OH} = -1.0 mA	V _{OH} 2	2.4	 (, ,	-	v
Power Dissipation	(Note 2)	T _A = 70 ^o C	PD	-		800	mW

Note 2:

The total power dissipation is specified at 800 mW. It is not calculable by summing the various current $(I_{DD}, I_{CC}, and I_{BB})$ multiplied by their respective voltages, since current paths exist between the various power supplies and V_{SS}. The I_{DD}, I_{CC}, and I_{BB} currents should be used to determine power supply capacity only.

VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off.

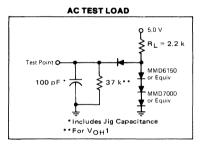
2-120

AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) (All timing with $t_r = t_f = 20$ ns, Load per Note 3)

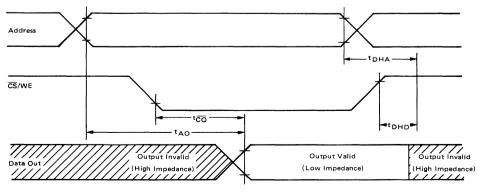
			MCM27A	08		MCM270	8	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Address to Output Delay	tA0	-	220	300	-	280	450	ns
Chip Select to Output Delay	tCO	-	60	120		60	120	ns
Data Hold from Address	tDHA	0	-	-	0	-	-	ns
Data Hold from Deselection	tDHD	0	-	120	0	-	120	ns

CAPACITANCE (periodically sampled rather than 100% tested.)

Characteristic	Condition	Symbol	Тур	Max	Unit
Input Capacitance (f = 1.0 MHz)	V _{in} = 0 V, T _A = 25 ^o C	C _{in}	4.0	6.0	pF
Output Capacitance (f = 1.0 MHz)	V _{out} = 0 V, T _A = 25 ^o C	C _{out}	8.0	12	ρF


Note 3:

 Output Load = 1 TTL Gate and CL = 100 pF (Includes Jig Capacitance)


 Timing Measurement Reference Levels:

 Inputs:
 0.8 V and 2.8 V

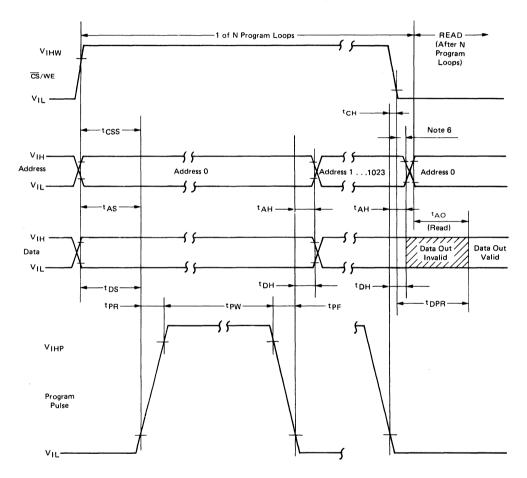
Outputs: 0.8 V and 2.4 V

READ OPERATION TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	Vdc
	V _{DD}	11.4	12	12.6	Vdc
	VBB	-5.25	-5.0	-4.75	Vdc
Input High Voltage for All Addresses and Data	VIH '	3.0		V _{CC} + 1.0	Vdc
Input Low Voltage (except Program)	VIL	VSS	-	0.65	Vdc
CS/WE Input High Voltage (Note 4)	VIHW	11.4	12	12.6	Vdc
Program Pulse Input High Voltage (Note 4)	VIHP	25	_	27	Vdc
Program Pulse Input Low Voltage (Note 5)	VILP	VSS	_	1.0	Vdc


Note 4: Referenced to V_{SS} . Note 5: $V_{IHP} - V_{ILP} = 25 V min$.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address and CS/WE Input Sink Current	V _{in} = 5.25 V	1LI ·	-		10	μAdc
Program Pulse Source Current		IIPL	-		3.0	mAdc
Program Pulse Sink Current		¹ IPH	-		20	mAdc
VDD Supply Current	Worst-Case Supply Currents	[†] DD		50	65	mAdc
V _{CC} Supply Current	All Inputs High	lcc	-	6	10	mAdc
VBB Supply current	$\overline{CS}/WE = 5 V, T_A = 0^{O}C$	IBB	-	30	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	tAS	10		μs
CS/WE Setup Time	tCSS	10		μs
Data Setup Time	^t DS	10	-	μs
Address Hold Time	t AH	1.0	-	μs
CS/WE Hold Time	tCH	0.5	-	μs
Data Hold Time	tDH	1.0	-	μs
Chip Deselect to Output Float Delay	tDF	0	120	ns
Program to Read Delay	t DPR	-	10	μs
Program Pulse Width	tPW	0.1	1.0	ms
Program Pulse Rise Time	tPR	0.5	2.0	μs
Program Pulse Fall Time	tpF	0.5	2.0	μs

PROGRAMMING OPERATION TIMING DIAGRAM

Note 6: The CS/WE transition must occur after the Program Pulse transition and before the Address Transition.

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the \overline{CS} /WE input (Pin 20) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages (V_{CC} , V_{DD} , V_{BB}) are the same as for the READ operation.

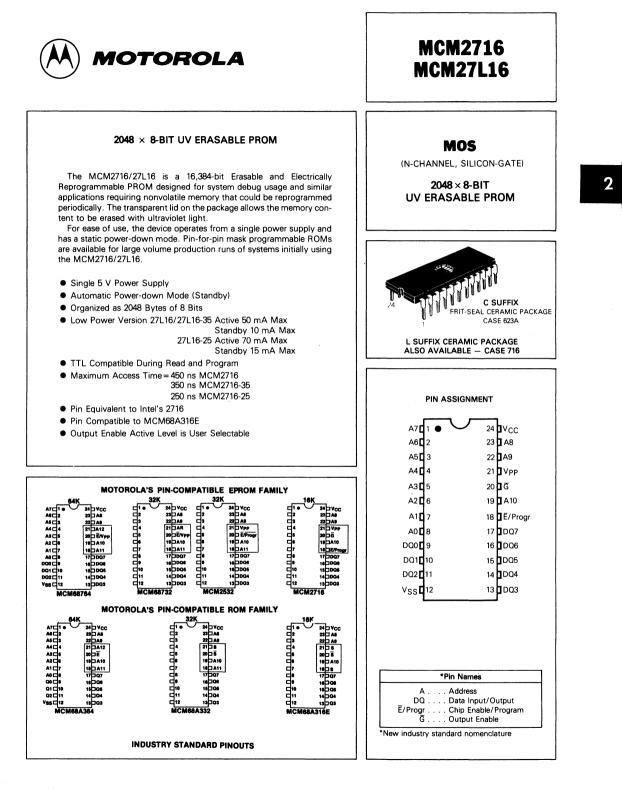
After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, $T_{Ptotal} = N \times t_{PW} \ge 100 \text{ ms}$. The required number of program loops (N) is a function of the program pulse width (tp_W), where: 0.1 ms \leq tp_W \leq 1.0 ms; correspondingly N is: $100 \le N \le 1000$. There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the \overline{CS}/WE falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to $V_{11 P}$ with an active device, because this pin sources a small amount of current (IIPL) when CS/WE is at VIHW (12 V) and the program pulse is at V_{IIP} .

EXAMPLES FOR PROGRAMMING

Always use the $T_{Ptotal} = N \times t_{PW} \ge 100$ ms relationship.

1. All 8192 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:


$$N = \frac{TPtotal}{tPW} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500 \text{ . One program loop}$$

consists of words 0 to 1023.

- 2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N = $\frac{100}{0.5}$ = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s.
- 3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

ERASING INSTRUCTIONS

The MCM2708/27A08 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity x exposure time) is 12.5 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM2708/27A08 should be positioned about one inch away from the UV-tubes.

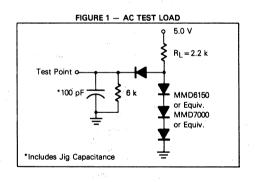
2-125

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Operating Temperature Range	0 to + 70	°C
Storage Temperature	-65 to +125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.


MODE SELECTION

		Pin Number							
Mode	9-11, 13-17 DQ	12 V _{SS}	18 E/Progr	20 G*	21 Vpp	24 VCC			
Read	Data Out	Vss	VIL	VIL	Vcc*	Vcc			
Output Disable	High Z	VSS	Don't Care	VIH	Vcc•	Vcc			
Standby	High Z	VSS	VIH	Don't Care	Vcc*	Vcc			
Program	Data In	VSS	Pulsed VIL to VIH	VIH	VIHP	Vcc			
Program Verify	Data Out	VSS	VIL	VIL	VIHP	Vcc			
Program Inhibit	High Z	Vss	VIL	∨ін	VIHP	Vcc			

•In the Read Mode if $V_{PP} \ge V_{IH}$, then \overline{G} (active low) $V_{PP} \le V_{IL}$, then G (active high)

የ የ Ŷ የየ የ የ የ Ē/Progr Control 0 Input/Output Buffers G Logic c Y : Y Gating Decoder A0-A10 o 0 Memory х : Matrix 0 Decoder (128 × 128) a

BLOCK DIAGRAM

Data Input/Output DQ0-DQ7

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (V _{in} = 0 V)	Cin	4.0	6.0	pF
Output Capacitance (V _{out} =0 V)	Cout	8.0	12	рF
14.				

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{|\Delta_L|}{|\Delta_L|}$

۸V.

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

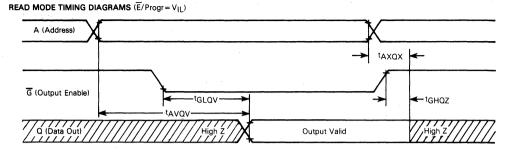
Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage* MCM27L16/MCM2716 MCM27L16-35/MCM27L16-25/MCM2716-35/MCM2716-25	V _{CC}	4.75 4.5	5.0 5.0	5.25 5.5	Vdc
	VPP	VCC-0.6	5.0	VCC+0.6	
Input High Voltage	VIH	2.0	-	VCC+1.0	Vdc
Input Low Voltage	VIL	-0.1	-	0.8	Vdc

RECOMMENDED DC OPERATING CHARACTERISTICS

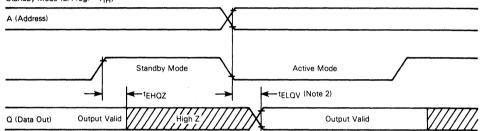
Characteristic		Condition	Symbol	N	ICM27	16	M	CM27L	.16	Units
		Condition	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Address, G and E/Progr Input Sink Current		V _{in} = 5.25 V	lin	-	-	10	-	-	10	μA
Output Leakage Current		$V_{out} = 5.25 V$ $\overline{G} = 5.0 V$	^I LO	-	-	10	-	-	10	μA
V _{CC} Supply Current (Standby) 2716/2716-35		\overline{E} /Progr = VIH $\overline{G} = V_{ L}$	ICC1	-	-	25	-	-	10	mA
V _{CC} Supply Current (Standby) 2716-25		Ē/Progr = VIH G/VIL	ICC1	-	-	25	-	-	15	mA
V _{CC} Supply Current (Active) 2716/2716-35	(Outputs Open)	$\overline{G} = \overline{E} / Progr = V_{ L}$	ICC2	-	-	100	-	-	50	mA
V _{CC} Supply Current (Active) 2716-25	(Outputs Open)	$\overline{G} = \overline{E} / Progr = V_{IL}$	ICC2	-	-	120	-	-	70	mA
Vpp Supply Current*		VPP=5.85 V	IPP1	-	-	5.0	-	-	5.0	mA
Output Low Voltage	,	$I_{OL} = 2.1 \text{ mA}$	VOL	-	-	0.45	-	-	0.45	V
Output High Voltage		$I_{OH} = -400 \ \mu A$	Vон	2.4	-	-	2.4	-		V

*V_{CC} must be applied simultaneously or prior to Vpp. V_{CC} must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V_{CC} during the read operation, the supply current would then be the sum of Ipp1 and I_{CC}. The additional 0.6 V tolerance on Vpp makes it possible to use a driver circuit for switching the Vpp supply pin from V_{CC} in Read mode to ±25 V for programming. Typical values are for $T_A = 25$ °C and nominal supply voltages.

AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels	. 0.8 Volt and 2.2 Volts	Input and Output Timing Levels	2.0 and 0.8 Volts
Input Rise and Fall Times		Output Load	See Figure 1


Characteristic	Condition	Symbol	MCM2716-25 MCM2716-35			MCN	12716	Units	
	Condition	Symbol	Min	Max	Min	Max	Min	Max	Units
Address Valid to Output Valid	$\overline{E}/Progr = G = V_{IL}$	tAVQV	-	250	-	350	-	450	
E/Progr to Output Valid	(Note 2)	^t ELQV	-	250	-	350	-	450	
Output Enable to Output Valid	$\overline{E}/Progr = V_{IL}$	tGLQV	-	150	-	150	-	150	Ins
E/Progr to Hi-Z Output	-	tehoz	0	100	0	100	0	100	j ''s
Output Disable to Hi-Z Output	$\overline{E}/Progr = V_{IL}$	tGHQZ	0	100	0	100	0	100]
Data Hold from Address	$\overline{E}/Progr = G = V_{IL}$	tAXDX	0	-	0	-	0		

2

MCM2716•MCM27L16

STANDBY MODE (Output Enable = $V_{|L}$) Standby Mode (\overline{E} /Progr = $V_{|H}$)

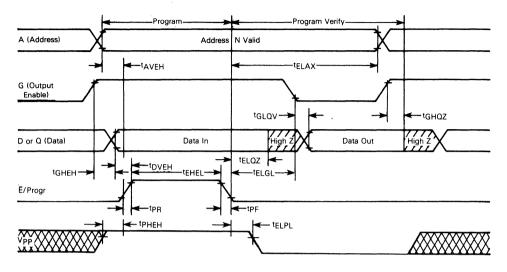
NOTE 2: t_{ELQV} is referenced to $\overline{E}/Progr$ or stable address, whichever occurs last.

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (T_A = 25°C $\pm 5°$ C)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	VCC VPP	4.75 24	5.0 25	5.25 26	Vdc
Input High Voltage for Data	VIH	2.2	-	V _{CC} + 1	Vdc
Input Low Voltage for Data	VIL	-0.1	-	0.8	Vdc

PROGRAMMING OPERATION DC CHARACTERISTICS


Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address, G and E/Progr Input Sink Current	Vin = 5.25 V/0.45 V	1LI	_	-	10	μAdc
Vpp Supply Current (Vpp = $25 V \pm 1 V$)	$\overline{E}/Progr = VIL$	IPP1	-	-	10	mAdc
Vpp Programming Pulse Supply Current (Vpp = 25 V ± 1 V)	$\overline{E}/Progr = VIH$	IPP2	-	-	30	mAdc
VCC Supply Current (Outputs Open)	-	ICC	-	-	160	mAdc ·

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	^t AVEH	2.0		μs
Output Enable High to Program Pulse	tGHEH	2.0	-	μs
Data Setup Time	^t DVEH	2.0	-	μs
Address Hold Time	^t ELAX	2.0	-	μs
Output Enable Hold Time	tELGL	2.0		μs
Data Hold Time	^t ELQZ	2.0		μs
Vpp Setup Time	^t PHEH	0	-	ns
Vpp to Enable Low Time	tELPL	0	-	ns
Output Disable to High Z Output	tGHQZ	0	150	ns
Output Enable to Valid Data (E/Progr = VIL)	tGLQV		150	ns
Program Pulse Width	^t EHEL	1*	55	ms
Program Pulse Rise Time	tPR	5	-	ns
Program Pulse Fall Time	tPF	5	-	ns

*If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified.

MCM2716•MCM27L16

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the Vpp input (Pin 21) should be raised to +25 V. The V_{CC} supply voltage is the same as for the Read operation and G is at V_{IH}. Programming data is entered in 8-bit words through the data out (DQ) terminals. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, a program pulse (V_{IL} to V_{IH}) is applied to the $\overline{E}/Progr$ input. A program pulse is applied to each address location to be programmed. To minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the $\overline{E}/Progr$ input.

Multiple MCM2716s may be programmed in parallel by connecting together like inputs and applying the program pulse to the $\overline{E}/Progr$ inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using the PROGRAM INHIBIT mode. Except for the $\overline{E}/Progr$ pin, all like inputs (including Output Enable) may be common.

The PROGRAM VERIFY mode with Vpp at 25 V is used to determine that all programmed bits were correctly programmed.

2

READ OPERATION

After access time, data is valid at the outputs in the READ mode. With stable system addresses, effectively faster access time can be obtained by gating the data onto the bus with Output Enable.

The Standby mode is available to reduce active power dissipation. The outputs are in the high impedance state when the $\overline{E}/Progr$ input pin is high (VIH) independent of the Output Enable input.

ERASING INSTRUCTIONS

The MCM2716/27L16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2716/MCM27L16 should be positioned about one inch away from the UV-tubes.

MCM2716•MCM27L16

TIMING PARAMETER ABBREVIATIONS

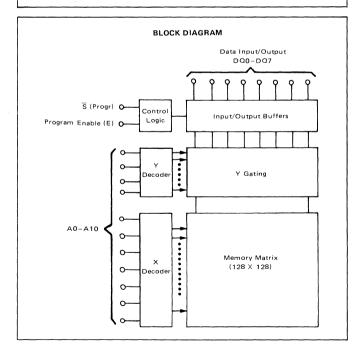
The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

Х

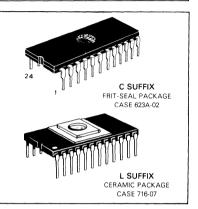
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

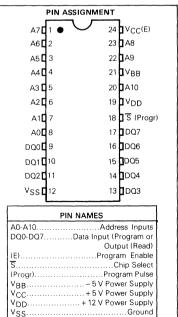

	WAVEFORMS	
Waveform Symbol	Input	Output
	Must Be Valid	Will Be Valid
	Change From H to L	Will Change From H to L
[]]]]	Change From L to H	Will Change From L to H
	Don't Care: Any Change Permitted	Changing: State Unknown
		High Impedance
	Permitted	High

$\mathbf{2048}\times\mathbf{8}\ \mathbf{ERASABLE}\ \mathbf{PROM}$

The TMS2716 and TMS27A16 are 16,384-bit Erasable and Electrically Reprogrammable PROMs designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. The TMS2716 is pin compatible with 2708 EPROMs, allowing easy memory size doubling.

- Organized as 2048 Bytes of 8 Bits
- Fully Static Operation (No Clocks, No Refresh)
- Standard Power Supplies of +12 V, +5 V, and -5 V
- Maximum Access Time = 300 ns TMS27A16 450 ns - TMS2716
- Chip-Select Input for Memory Expansion
- TTL Compatible No Pull-up Resistors Required
- Three-State Outputs for OR-Tie Capability
- The TMS2716 is Pin Compatible to MCM2708 and MCM68708 EPROMs




TMS2716 TMS27A16

MOS

(N-CHANNEL, SILICON-GATE)

 2048×8 -BIT UV ERASABLE PROM

DS9518 R1/1-79

TMS2716•TMS27A16

ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Operating Temperature	0 to +70	°C
Storage Temperature	-65 to +125	°C
V _{DD} with Respect to V _{BB}	+20 to -0.3	V
V _{CC} and V _{SS} with Respect to V _{BB}	+15 to -0.3	V
All Input or Output Voltage with Respect to VBB During Read	+15 to -0.3	V
(E) Input with Respect to V _{BB} During Programming	+20 to -0.3	V
Program Input with Respect to V _{BB}	+35 to -0.3	V
Power Dissipation	1.8	Watts

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

PIN CONNECTION DURING READ OR PROGRAM

	Pin Number					
Mode	9–11, 13–17	18	24			
Read	Dout	V _{IL} or VIH	Vcc			
Program	D _{in}	Pulsed VIHP	⊻інw			

DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter		Min	Nom	Max	Unit
TMS2716	Vcc	4.75	5.0	5.25	V
	VDD	11.4	12	12.6	v
	VBB	-5.25	-5.0	-4.75	v
TMS27A16	Vcc	4.5	5.0	5.5	v
		10.8	12	13.2	V
	VBB	-5.5	-5.0	-4.5	v
	VIH	2.2	-	V _{CC} + 1.0	V
	VIL	V _{SS}	-	0.65	v
		TMS27A16 VD VBB VCC VD VBB VBB VIH	TMS2716 V _{CC} 4.75 V _{DD} 11.4 -5.25 TMS27A16 V _{CC} 4.5 V _{DD} 10.8 -5.5 V _{IH} 2.2	TMS2716 V _{CC} 4.75 5.0 V _{DD} 11.4 12 V _{BB} -5.25 -5.0 TMS27A16 V _{CC} 4.5 5.0 V _{DD} 10.8 12 V _{BB} -5.5 -5.0 V _{BB} -5.5 -5.0 V _{BB} -5.2 -5.0	TMS2716 V _{CC} 4.75 5.0 5.25 V _{DD} 11.4 12 12.6 V _{BB} -5.25 -5.0 -4.75 TMS27A16 V _{CC} 4.5 5.0 5.5 V _{DD} 10.8 12 13.2 V _{BB} -5.5 -5.0 -4.5 V _{IH} 2.2 V _{CC} +1.0

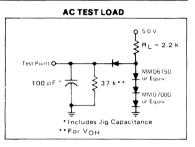
READ OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	V _{in} = V _{CC} max or V _{in} = V _{IL}	lin	-	1	10	μA
Output Leakage Current	$V_{out} = V_{CC} max and \overline{S} = 5 V$	LO	-	1	10	μA
V _{DD} Supply Current	Worst-Case Supply Currents	¹ DD	-	-	65	mA
V _{CC} Supply Current	All Inputs High	^I CC	-		12	mA
VBB Supply Current	$(E) = 5.0 V, T_A = 0^{\circ}C$	IBB	-	-	45	mA
Output Low Voltage	I _{OL} = 1.6 mA	VOL		-	0.45	V
Output High Voltage	I _{OH} = -100 μA	Vон1	3.7	-	-	V
Output High Voltage	I _{OH} = -1.0 mA	V _{OH2}	2.4	-	-	V

 v_{BB} must be applied prior to v_{CC} and v_{DD}, v_{BB} must also be the last power supply switched off.

CAPACITANCE (periodically sampled rather than 100% tested)

Characteristic	Condition	Symbol	Тур	Max	Unit
Input Capacitance (f = 1.0 MHz)	V _{in} = 0 V, T _A = 25 ^o C	C _{in}	4.0	6.0	рF
Output Capacitance (f = 1.0 MHz)	$V_{out} = 0 V, T_A = 25^{\circ}C$	Cout	8.0	12	pF


AC READ OPERATING CONDITIONS AND CHARACTERISTICS

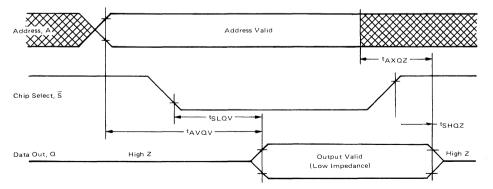
(Full operating voltage and temperature range unless otherwise noted) (All timing with $t_r = t_f = 20$ ns, Load per Note 2)

		TMS2716		TMS27A16		
Characteristic	Symbol	Min	Max	Min	Max	Unit
Address to Output Delay	^t AVQV	-	450	-	300	ns
Chip Select to Output Delay	[†] SLQV		120		120	ns
Data Hold from Address	^t AXQZ	10	-	10		ns
Data Hold from Deselection	^t SHQZ	10	120	10	120	ns

NOTE 2: Output Load = 1 TTL Gate and C_L = 100 pF (Includes Jig Capacitance) Timing Measurement Reference Levels – Inputs: 0.8 V and 2.8 V

Outputs: 0.8 V and 2.4 V

TIMING PARAMETER ABBREVIATIONS


t X X X X signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are: H = transition to high

- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ OPERATION TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

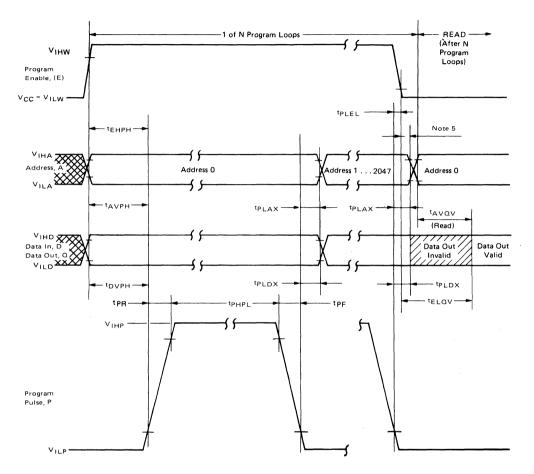
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage - TMS2716 and TMS27A16	Vcc	4.75	5.0	5.25	Vdc
	VDD	11.4	12	12.6	Vdc
	V _{BB}	-5.25	-5.0	-4.75	Vdc
Input High Voltage for Data	VIHD	3.8		V _{CC} + 1	Vdc
Input Low Voltage for Data	VILD	V _{SS}		0.65	Vdc
Input High Voltage for Addresses	VIHA	3.8		V _{CC} + 1	Vdc
Input Low Voltage for Addresses	VILA	V _{SS}		0.4	Vdc
Program Enable (E) Input High Voltage (Note 3)	ViHW	11.4	12	12.6	Vdc
Program Enable (E) Input Low Voltage (Note 3)	VILW=VCC	4.75	5.0	5.25	Vdc
Program Pulse Input High Voltage (Note 3)	VIHP	25		27	Vdc
Program Pulse Input Low Voltage (Note 4)	VILP	V _{SS}		1.0	Vdc

NOTE 3: Referenced to V_{SS}.

NOTE 4: $V_{IHP} \sim V_{ILP} = 25 V min.$


PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	V _{in} = 5.25 V	1LI	-		10	μAdc
Program Pulse Source Current		1 IPL		_	3.0	mAdc
Program Pulse Sink Current		ЧРН	-	-	20	mAdc
VDD Supply Current	Worst-Case Supply Currents	10D		-	65	mAdc
VCC Supply Current	All Inputs High	Icc	-		15	mAdc
V _{BB} Supply current	(E) = 5 V, $T_A = 0^{\circ}C$	I _{BB}	-	-	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	^t AVPH	10	-	μs
(E) Setup Time	^t EHPH	10	_	μs
Data Setup Time	^t DVPH	10	-	μs
Address Hold Time	^t PLAX	1.0	-	μs
(E) Hold Time	^t PLEL	0.5		μs
Data Hold Time	^t PLDX	1.0	_	μs
Program to Read Delay	^t ELQV	-	10	μs
Program Pulse Width	tPHPL	0.1	1.0	ms
Program Pulse Rise Time	^t PR	0.5	2.0	μs
Program Pulse Fall Time	tpF	0.5	2.0	μs

PROGRAMMING OPERATION TIMING DIAGRAM

NOTE 5: This Program Enable tranistion must occur after the Program Pulse transition and before the Address Transition.

		WAVEFORM DE	FINITIONS		
Waveform Symbol	input	Output	Waveform Symbol	Input	Output
	MUST BE VALID	WILL BE VALID		DON'T CARE. ANY CHANGE PERMITTED	CHANGING STATE UNKNOWN
	CHANGE FROM H TO L	WILL CHANGE FROM H TO L	\rightarrow		HIGH
//////	CHANGE FROM L TO H	WILL CHANGE FROM L TO H			

TMS2716•TMS27A16

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the $V_{CC}(E)$ input (Pin 24) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (DQ0 to DQ7).

. The V_{DD} and V_{BB} supply voltages are the same as for the READ operation.

After address and data setup, one program pulse per address is applied to the program input. A program loop is a full pass through all addresses. Total programming time/ address, TPtotal = N \times tPHPL \geq 100 ms. The required number of program loops (N) is a function of the program pulse width (tPHPL) where: 0.1 ms \leq tPHPL \leq 1.0 ms; correspondingly, N is: $100 \le N \le 1000$. There must be N successive loops through all 2048 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the Program Enable (E) falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin should be pulled down to VII p with an active device, because this pin sources a small amount of current (IIPL) when (E) is at VIHW (12 V) and the program pulse is at VIIP.

EXAMPLE FOR PROGRAMMING

Always use the TP_{total} = N \times tPHPL \ge 100 ms relationship.

1. All 16,384 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{TPtotal}{tPHPL} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500.$$

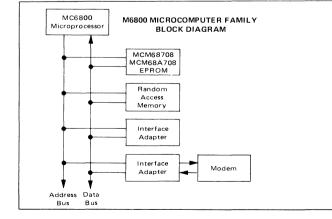
One program loop consists of words 0 to 2047.

2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N = 100/0.5 = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s.

3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

ERASING INSTRUCTIONS

The TMS2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity X exposure time) is 12.5 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the TMS2716/27A16 should be positioned about one inch away from the UV-tubes.

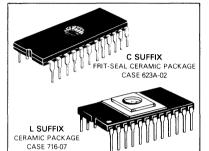

1024 X 8 ERASABLE PROM

The MCM68708/68A708 is a 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM68708/68A708.

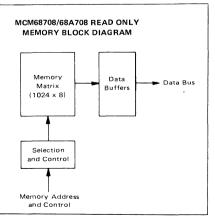
- Organized as 1024 Bytes of 8 Bits
- Fully Static Operation
- Standard Power Supplies of +12 V, +5 V and -5 V
- Maximum Access Time = 300 ns MCM68A708 450 ns - MCM68708
- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs
- Bus Compatible to the M6800 Family

PIN CONNECTION DURING READ OR PROGRAM

Maria	Pin Number						
Mode	9-11, 13-17	12	18	19	20	21	24
Read	D _{out}	V _{SS}	V _{SS}	VDD	VIL	VBB	Vcc
Program	D _{in}	V _{SS}	Pulsed VIHP	VDD	⊻інw	VBB	Vcc

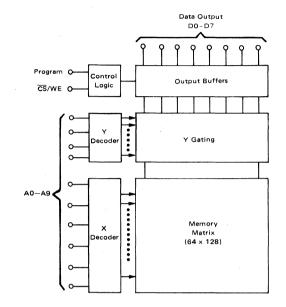


MCM68708 MCM68A708


MOS

(N-CHANNEL, SILICON-GATE)

1024 X 8-BIT UV ERASABLE PROM



	PIN ASSIGNM	ENT	
A7 E		24	lvcc
A6 C	2	23	1 A8
A5 🕻	3	22	1 A9
A4	4	21	IV _{BB}
АЗ Г	5	20	CS/WE
A2 C	6	19	∎v _{dd}
A1 C	7	18	PROGR.
AO	8	17	D 7
DO	9	16	D6
D1 [10	15	D5
D2 D	11	14	D4
∨ _{ss} t	12	13	D3

2-137

2

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS¹

Rating	Value	Unit
Operating Temperature	0 to +70	°C
Storage Temperature	-65 to +125	°C
V _{DD} with Respect to V _{BB}	+20 to -0.3	Vdc
V _{CC} and V _{SS} with Respect to V _{BB}	+15 to -0.3	Vdc
All Input or Output Voltages with Respect to V _{BB} during Read	+15 to -0.3	Vdc
CS/WE Input with Respect to V _{BB} during Programming	+20 to -0.3	Vdc
Program Input with Respect to VBB	+35 to -0.3	Vdc
Power Dissipation	1.8	Watts

Note 1:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	Vdc
	V _{DD}	11.4	12	12.6	Vdc
	VBB	-5.25	-5.0	-4.75	Vdc
Input High Voltage	VIH	V _{SS} +2.0	_	Vcc	Vdc
Input Low Voltage	VIL	V _{SS} -0.3		V _{SS} +0.8	Vdc

Characteris	itic	Condition	Symbol	Min	Тур	Max	Unit
Address and CS Input Sin	ik Current	V _{in} = 5.25 V or V _{in} = V _{IL}	lin	-	1	10	μA
Output Leakage Current		V _{out} = 5.25 V, CS/WE = 5 V	LO		1	10	μA
V _{DD} Supply Current		Worst-Case Supply Currents	1DD	-	50	65	mA
V _{CC} Supply Current	(Note 2)	All Inputs High	ICC	-	6	10	mA
VBB Supply Current		$\overline{CS}/WE \approx 5.0 \text{ V}, \text{ T}_{\text{A}} = 0^{\text{O}}\text{C}$	IBB	-	30	45	mA
Output Low Voltage	-	I _{OL} = 1.6 mA	VOL	-		V _{SS} +0.4	v
Output High Voltage		I _{OH} = −100 µA	∨он	V _{SS} +2.4	-	-	V
Power Dissipation	(Note 2)	T _A = 70 ^o C	PD			800	mW

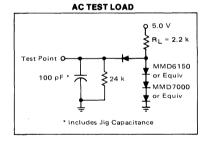
Note 2:

The total power dissipation is specified at 800 mW. It is not calculable by summing the various currents (I_{DD} , I_{CC} , and I_{BB}) multiplied by their respective voltages, since current paths exist between the various power supplies and V_{SS}. The I_{DD} , I_{CC} , and I_{BB} currents should be used to determine power supply capacity only.

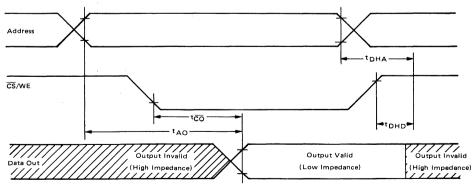
 v_{BB} must be applied prior to v_{CC} and v_{DD}, v_{BB} must also be the last power supply switched off.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) (All timing with $t_r = t_f = 20 \text{ ns}$, Load per Note 3)

		M	CM68A7	08	M	CM687	08	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Address to Output Delay	tAO		220	300	-	280	450	ns
Chip Select to Output Delay	tCO	-	60	120	—	60	120	ns
Data Hold from Address	^t DHA	10	-	-	10	-	1	ns
Data Hold from Deselection	tDHD	10		120	10	-	120	ns


CAPACITANCE (periodically sampled rather than 100% tested.)

Characteristic	Condition	Symbol	Тур	Max	Unit
Input Capacitance (f = 1.0 MHz)	V. _{in} = 0 V, T _A = 25 ^o C	C _{in}	4.0	6.0	pF
Output Capacitance (f = 1.0 MHz)	V _{out} = 0 V, T _A = 25 ^o C	Cout	8.0	12	pF


Note 3:

Output Load = 1 TTL Gate and $C_L = 100 \text{ pF}$ (Includes Jig Capacitance) Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V

Outputs: 0.8 V and 2.4 V

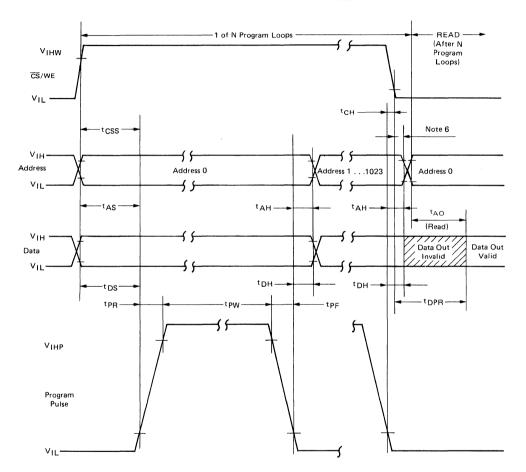
READ OPERATION TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	Vdc
	V _{DD}	11.4	12	12.6	Vdc
	VBB	-5.25	-5.0	-4.75	Vdc
Input High Voltage for All Addresses and Data	VIH	3.0	-	V _{CC} + 1.0	Vdc
Input Low Voltage (except Program)	VIL	VSS		0.65	Vdc
CS/WE Input High Voltage (Note 4)	VIHW	11.4	12	12.6	Vdc
Program Pulse Input High Voltage (Note 4)	VIHP	25	-	27	Vdc
Program Pulse Input Low Voltage (Note 5)	VILP	VSS	-	1.0	Vdc

Note 4: Referenced to VSS.


Note 5: VIHP - VILP = 25 V min.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address and CS/WE Input Sink Current	V _{in} = 5.25 V	141	-	-	10	μAdc
Program Pulse Source Current		IIPL			3.0	mAdc
Program Pulse Sink Current		Тірн	-		20	mAdc
VDD Supply Current	Worst-Case Supply Currents	10D	-	50	65	mAdc
V _{CC} Supply Current	All Inputs High	ICC	-	6	10	mAdc
V _{BB} Supply current	$\overline{CS}/WE = 5 V, T_A = 0^{O}C$	IBB	-	30	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	tAS	10		μs
CS/WE Setup Time	tCSS	10		μs
Data Setup Time	tDS	10		μs
Address Hold Time	t AH	1.0	-	μs
CS/WE Hold Time	tCH	0.5		μs
Data Hold Time	t DH	1.0	-	μs
Chip Deselect to Ouptut Float Delay	tDF	0	120	ns
Program to Read Delay	t DPR		10	μs
Program Pulse Width	tPW	0.1	1.0	ms
Program Pulse Rise Time	tPR	0.5	2.0	μs
Program Pulse Fall Time	tpF	0.5	2.0	μs

PROGRAMMING OPERATION TIMING DIAGRAM

Note 6: The CS/WE transistion must occur after the Program Pulse transition and before the Address Transistion.

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the \overline{CS} /WE input (Pin 20) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages (V_{CC}, V_{DD}, V_{BB}) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, $T_{Ptotal} = N \times t_{PW} \ge 100 \text{ ms}$. The required number of program loops (N) is a function of the program pulse width (t_{PW}), where: 0.1 ms \leq t_{PW} \leq 1.0 ms; correspondingly N is: $100 \le N \le 1000$. There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the \overline{CS}/WE falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to V_{IIP} with an active device, because this pin sources a small amount of current (IIPI) when CS/WE is at VIHW (12 V) and the program pulse is at V_{ILP} .

EXAMPLES FOR PROGRAMMING

Always use the $T_{Ptotal} = N \times t_{PW} \ge 100$ ms relationship.

1. All 8092 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{TPtotal}{tp_W} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500 \text{ . One program loop}$$

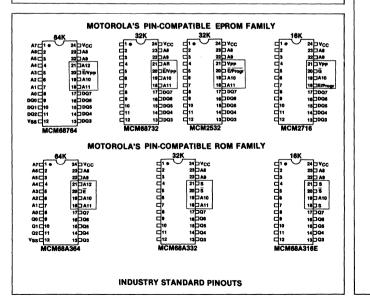
consists of words 0 to 1023.

- 2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N = $\frac{100}{0.5}$ = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s.
- 3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

ERASING INSTRUCTIONS

The MCM68708/68A708 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity x exposure time) is 12.5 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM68708/68A708 should be positioned about one inch away from the UV-tubes.

MCM68732 MCM68L732

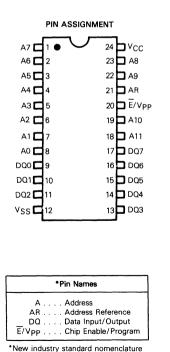

4096 × 8-BIT UV ERASABLE PROM

The MCM68732/68L732 is a 32,768-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 32K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems initially using the MCM68732/68L732.

- Single + 5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 4096 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68732
 - 350 ns MCM68732-35
- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A332 Mask Programmable ROM
- AR Selects the Operational 32K Portion of the Die MCM68732-1 AR = 1 = HIGH MCM68732-0 AR = 0 = LOW
- Pin Compatible With the MCM2532 32K EPROM in the Read Mode
- Low Power Version MCM68L732 Active 60 mA Maximum Standby 15 mA Maximum MCM68L732-35 Active 100 mA Maximum

Standby 25 mA Maximum


MOS

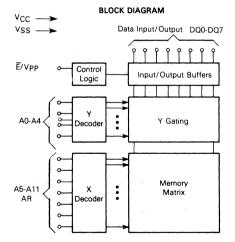
(N-CHANNEL, SILICON-GATE)

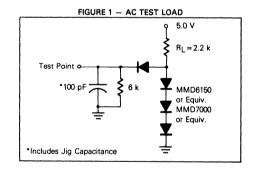
4096 × 8-BIT UV ERASABLE PROGRAMMABLE READ ONLY MEMORY

L SUFFIX SIDEBRAZE CERAMIC PACKAGE ALSO AVAILABLE - CASE 716

2

ABSOLUTE MAXIMUM RATINGS (1)


Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Operating Temperature Range	0 to +70	°C
Storage Temperature	-65 to +125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc ¹
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

		Pin	Number	
Mode	9-11, 13-17, DQ	12 V _{SS}	20 Ē/Vpp	24 VCC
Read	Data out	٧ _{SS}	VIL	Vcc
Output Disable	High Z	VSS	⊻н	Vcc
Standby	High Z	VSS	VIH	Vcc
Program	Data in	V _{SS}	Pulsed VILP to VIHP	Vcc

CAPACITANCE (f = 1.0 MHz, TA = 25°C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (Vin=0 V) Except E/Vpp	Cin	4.0	6.0	pF
Input Capacitance E/Vpp	Cin	60	100	pF
Output Capacitance (V _{out} = 0 V)	Cout	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_T/\Delta V$.

DC OPERATING CONDITIONS AND CHARACTERISTICS

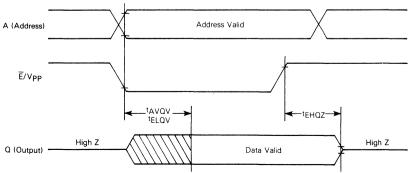
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68L732/MCM68732 MCM68L732-35/MCM68732-35	VCC	4.75 4.5	5.0 5.0	5.25 5.5	v
Input High Voltage		⊻ін	2.0	-	V _{CC} + 1.0	V
Input Low Voltage		VIL	- 0.1	-	0.8	V

RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	M	CM687	32	M	CM68L	732	Units
Characteristic	Condition	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Address Input Sink Current	V _{in} = 5.25 V	lin			10	-	-	10	μA
Output Leakage Current	V _{out} =5.25 V	LO	-		10		-	10	μA
E/Vpp Input Sink Current	$\overline{E}/V_{PP} = 0.4$	IEL	_		100	-	-	100	μΑ
	Ē/Vpp=2.4	IEH = IPL	-	-	400	-	-	400	μΑ
V _{CC} Supply Current (Standby) MCM68732	Ē/VPP = VIH	ICC1			25	-	-	15	mΑ
V _{CC} Supply Current (Standby) MCM68732-35	Ē/Vpp=VIH	ICC1	-	-	25	-	-	25	mA
V _{CC} Supply Current (Active) MCM68732 (Outputs Open)	Ē/Vpp=VIL	ICC2	-	-	120		-	60	mA
V _{CC} Supply Current (Active) MCM68732-35 (Outputs Open)	Ē/Vpp=Vil	ICC2	-		160	-		100	mΑ
Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$	VOL	-	-	0.45	-	-	0.45	V
Output High Voltage	$I_{OH} = -400 \ \mu A$	Vон	2.4		-	2.4	-	-	V


AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels	0.8 Volt and 2.2 Volts
Input Rise and Fall Times	20 ns
Input Timing Levels	1.0 Volt and 2 Volts

0 martin	Condition		MCM68732- 35		MCM68732		
Characteristic		Symbol	Min	Max	Min	Max	Units
Address Valid to Output Valid	Ē=V _{IL}	^t AVQV	-	350	-	450	ns
Ē to Output Valid		^t ELQV	-	350	-	450	ns
Ē to Hi-Z Output	-	^t EHQZ	0	100	0	100	ns
Data Hold from Address	$\overline{E} = V_{IL}$	^t AXDX	0	-	0		ns

READ MODE TIMING DIAGRAM

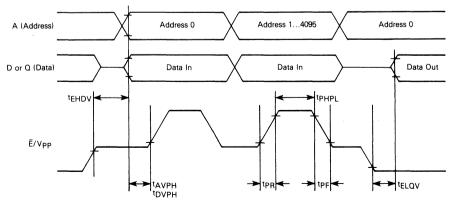
DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

 $(T_A = 25 \pm 5^{\circ}C)$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	٧
Input High Voltage for All Addresses and Data	VIH	2.2	-	$V_{CC} + 1$	V
Input Low Voltage for All Addresses and Data	VIL	-0.1	-	0.8	٧
Program Pulse Input High Voltage	VIHP	24	25	26	٧
Program Pulse Input Low Voltage	VILP	2.0	Vcc	6.0	V

PROGRAMMING OPERATION DC CHARACTERISTICS


Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	$V_{in} = 5.25 V$	ILI	-	-	10	μΑ
Vpp Program Pulse Supply Current (Vpp = $25 V \pm 1 V$)	-	IPH		-	30	mA
Vpp Supply Current (Vpp = 2.4 V)	-	IPL = IEH		-	400	μA
V _{CC} Supply Current (V _{PP} =5.0 V)	-	ICC	-		160	mA

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	^t AVPH	2.0	-	μs
Data Setup Time	^t DVPH	2.0	-	μs
Chip Enable to Valid Data	^t ELQV	450	-	ns
Chip Disable to Data In	^t EHDV	2.0	-	μs
Program Pulse Width	^t PHPL	1.9	2.1	ms
Program Pulse Rise Time	^t PR	0.5	2.0	μs
Program Pulse Fall Time	tPF	0.5	2.0	μs
Cumulative Programming Time Per Word*	tCP	12	50	ms

*Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 4096 address locations in sequence. Multiple blocks are used to accumulate programming time (t_{CP}).

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

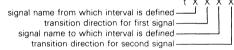
After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the \overline{E}/Vpp input (Pin 20) should be between +2.0 and +6.0 V, which will three-state the outputs and allow data to be setup on the DQ terminals. The V_{CC} voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse (V|_H to V|_HP) is applied to the E/Vpp input. A program pulse is applied to each address location to be programmed. The maximum program pulse address width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68732s may be programmed in parallel by connecting like inputs and applying the program pulse to the \overline{E}/Vpp inputs. Different data may be programmed into multiple MCM68732s connected in parallel by selectively applying the programming pulse only to the MCM68732s to be programmed.

READ OPERATION


After access time, data is valid at the outputs in the Read mode. A single input (\overline{E}/Vpp) enables the outputs and puts the chip in active or standby mode. With $\overline{E}/Vpp = "0"$ the outputs are enabled and the chip is in active mode; with $\overline{E}/Vpp = "1"$ the outputs are three-stated and the chip is in standby mode. During standby mode, the power dissipation is reduced.

Multiple MCM68732s may share a common data bus with like outputs OR-tied together. In this configuration the E/Vpp input should be high on all unselected MCM68732s to prevent data contention.

ERASING INSTRUCTIONS

The MCM68732 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2637 angstroms. The recommended integrated dose (i.e., UVintensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68732 should be positioned about one inch away from the UV-tubes.

TIMING PARAMETER ABBREVIATIONS

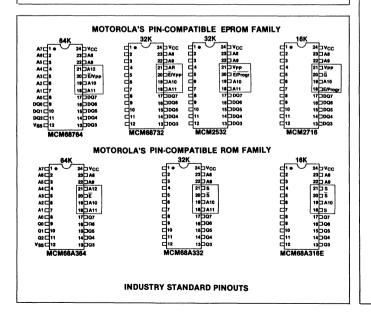
The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

	WAVEFORMS	
Waveform Symbol	Input	Output
	Must Be Valid	Will Be Valid
	् Change From H to L	Will Change From H to L
	Change From L to H	Will Change From L to H
	Don't Care: Any Change Permitted	Changing: State Unknown
		High Impedance


MCM68764 MCM68L764

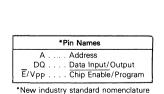
8192 \times 8-BIT UV ERASABLE PROM

The MCM68764/68L764 is a 65,536-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 64K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM68764/68L764.

- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 8192 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68764
- 350 ns MCM68764-35 Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A364 Mask Programmable ROM
- Low Power Version MCM68L764 Active 60 mA Maximum Standby 15 mA Maximum MCM68L764-35 Active 100 mA Maximum Standby 25 mA Maximum

MOS


(N-CHANNEL, SILICON-GATE) 8192 × 8-BIT UV ERASABLE PROGRAMMABLE READ ONLY MEMORY

L SUFFIX CERAMIC PACKAGE ALSO AVAILABLE - CASE 716-07

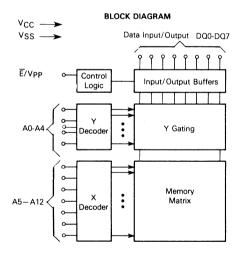
PIN ASSIGNMENT

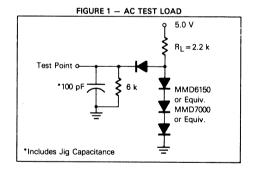
			_
A7 C		24	∎vcc
A6 🕻	2	23	1 A8
A5 🕻	3	22	D A9
A4 🖸	4	21	1 A12
АЗ С	5	20	E/Vpp
A2 [6	19	1 A10
A1 C	7	18	1 A11
A0 C	8	17	007
DOOD	9	16	D DQ6
DQ1 C	10	15	D 05
DQ2	11	14	D Q4
v _{ss} ⊄	12	13	DQ3
I			1

2

MCM68764•MCM68L764

ABSOLUTE MAXIMUM RATINGS (See Note)


Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Operating Temperature Range	0 to + 70	°C
Storage Temperature	-65 to +125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

	Pin Number						
Mode	9-11, 13-17, DQ	12 V _{SS}	20 Ē/Vpp	24 V _{CC}			
Read	Data out	VSS	VIL	Vcc			
Output Disable	High-Z	VSS	ViH	Vcc			
Standby	High-Z	VSS	VIH	Vcc			
Program	Data in	V _{SS}	Pulsed VILP to VIHP	Vcc			

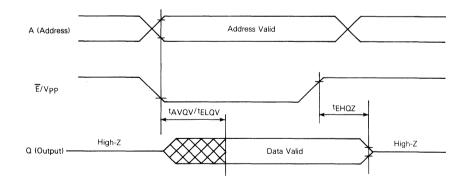
DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68L764/MCM68764 MCM68764-35/MCM68L764-35		4.75 4.5	5.0 5.0	5.25 5.5	Vdc
Input High Voltage		VIH	2.0	-	VCC + 1.0	Vdc
Input Low Voltage		VIL	-0.1	-	- 0.8	Vdc

RECOMMENDED DC OPERATING CHARACTERISTICS


Characteristic	Condition	Symbol	MCM68764			M	764	Units	
Characteristic	Condition	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Address Input Sink Current	V _{in} = 5.25 V	lin	-	-	10	-	-	10	μA
Output Leakage Current	V _{out} =5.25 V	1LO	-	-	10	-	-	10	μA
E/Vpp Input Sink Current	$\overline{E}/V_{PP} = 0.4$	IEL	-	-	100	-	-	100	μA
	$\tilde{E}/V_{PP} = 2.4$	IEH = IPL	-	-	400	-	-	400	μA
V _{CC} Supply Current (Standby) MCM68764	Ē/Vpp=Vih	ICC1	-	-	25	-	-	15	mA
V _{CC} Supply Current (Standby) MCM68764-35	Ē/VPP=VIH	ICC1	-	-	25	-	-	25	mA
V _{CC} Supply Current (Active) MCM68764 (Outputs Open)	Ê/Vpp=VIL	ICC2	-	-	120	-	-	60	mA
V _{CC} Supply Current (Active) MCM68764-35 (Outputs Open)	$\overline{E}/VPP = VIL$	ICC2	-	-	160	-	-	100	mA
Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$	VOL	-	-	0.45	-	-	0.45	۷
Output High Voltage	$I_{OH} = -400 \ \mu A$	Vон	2.4	-	-	2.4	-	-	V

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (Vin = 0 V) Except E/VPP	Cin	4.0	6.0	pF
Input Capacitance E/VPP	Cin	60	100	pF
Output Capacitance (V _{out} =0 V)	Cout	8.0	12	pF
Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{I\Delta_1}{I}$				

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{\Delta V}{\Delta V}$

READ MODE TIMING DIAGRAM

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels	0.8 Volt and 2.2 Volts
Input Rise and Fall Times	
Input Timing Levels	1.0 and 2 Volts

Output Timing Levels0.8 Volt and 2 Volts Output LoadSee Figure 1

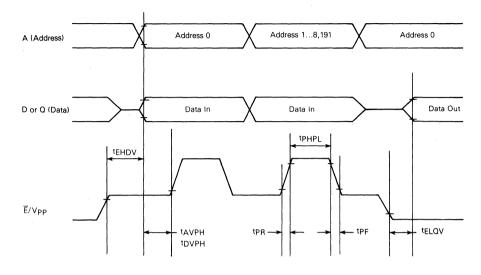
Characteristic			MCM68764- 35 MCM6876			68764	Units
Characteristic	Condition	Symbol	Min	Max	Min	Max	Units
Address Valid to Output Valid	$\overline{E} = V_{IL}$	tAVQV	-	350	-	450	ns
E to Output Valid	-	^t ELQV	-	350	-	450	ns
E to Hi-Z Output	-	^t EHQZ	0	100	0	100	ns
Data Hold from Address	$\overline{E} = V_{ L}$	^t AXDX	0	-	0	-	ns

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

 $(T_A = 25 \pm 5^{\circ}C)$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	VCC	4.75	5.0	5.25	V
Input High Voltage for All Addresses and Data	VIH	2.2	-	Vcc + 1	V
Input Low Voltage for All Addresses and Data	VIL	- 0.1	-	0.8	V
Program Pulse Input High Voltage	VIHP	24	25	26	V
Program Pulse Input Low Voltage	VILP	2.0	Vcc	6.0	V


PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	V _{in} = 5.25 V	ίLι	-	-	10	μA
Vpp Program Pulse Supply Current (Vpp = $25 \vee \pm 1 \vee$)	-	İPH	-	-	30	mA
Vpp Supply Current (Vpp = 2.4 V)	-	IPL = IEH	-	-	400	μA
V _{CC} Supply Current (Vpp = 5.0 V)	-	lcc	-		160	mA

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	^t AVPH	2.0	-	μs
Data Setup Time	^t DVPH	2.0	-	μs
Chip Enable to Valid Data	telov	450	-	ns
Chip Disable to Data In	^t EHDV	2.0	-	μs
Program Pulse Width	^t PHPL	1.9	2.1	ms
Program Pulse Rise Time	tPR	0.5	2.0	μs
Program Pulse Fall Time	tPF	0.5	2.0	μs
Cumulative Programming Time Per Word*	tCP	12	50	ms

*Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 8,192 address locations in sequence. Multiple blocks are used to accumulate programming time (tcp).

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the \overline{E}/Vpp input (Pin 20) should be between +2.0 and +6.0 V, which will three-state the outputs and allow data to be setup on the DQ terminals. The V_{CC} voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse (V| μ to V| μ P) is applied to the E/Vpp input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68764s may be programmed in parallel by connecting like inputs and applying the program pulse to the E/Vpp inputs. Different data may be programmed into multiple MCM68764s connected in parallel by selectively applying the programming pulse only to the MCM68764s to be programmed.

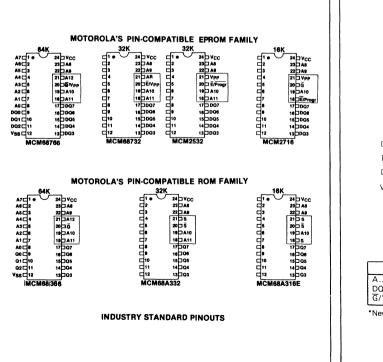
READ OPERATION

After access time, data is valid at the outputs in the Read mode. A single input (\overline{E}/Vpp) enables the outputs and puts the chip in active or standby mode. With $\overline{E}/Vpp = "0"$ the outputs are enabled and the chip is in active mode; with $\overline{E}/Vpp = "1"$ the outputs are three-stated and the chip is in standby mode. During standby mode, the power dissipation is reduced.

Multiple MCM68764s may share a common data bus with like outputs OR-tied together. In this configuration, only one \overline{E}/Vpp input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

ERASING INSTRUCTIONS

The MCM68764 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UVintensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68764 should be positioned about one inch away from the UV-tubes.

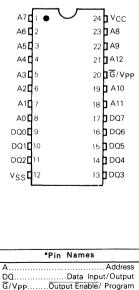

Advance Information

8192×8-BIT UV ERASABLE PROM

The MC68766 is a 65,536-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 64K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply that has an output enable control and is pin-for-pin compatible with the MCM68366 mask programmable ROMs, which are available for large volume production runs of systems initially using the MCM68766.

- Single +5 V Power Supply
- Organized as 8192 Bytes of 8 Bits
- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68766 350 ns MCM68766-35
- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68366 Mask Programmable ROM
- Power Dissipation 160 mA Maximum


MCM68766

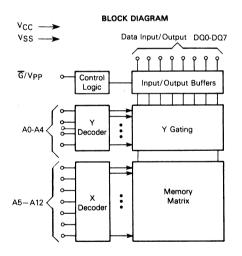
(N-CHANNEL, SILICON-GATE)

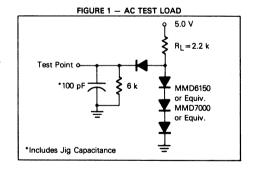
8192 × 8-BIT UV ERASABLE PROGRAMMABLE READ ONLY MEMORY

PIN ASSIGNMENT

*New industry standard nomenclature

ABSOLUTE MAXIMUM RATINGS


Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Operating Temperature Range	0 to + 70	°C
Storage Temperature	-65 to +125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc
VPP Supply Voltage with Respect to VSS	+28 to -0.3	Vdc


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

		Pin I	Number	
Mode	9-11, 13-17, DQ	12 V _{SS}	20 G/V _{PP}	24 V _{CC}
Read	Data Out	Vss	VIL	Vcc
Output Disable	High-Z	Vss	ViH	Vcc
Program	Data In	V _{SS}	Pulsed VILP to VIHP	Vcc

MCM68766

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (Vin = 0 V) Except G/Vpp	C _{in}	4.0	6.0	pF
Input Capacitance (G/Vpp)	C _{in}	60	100	pF
Output Capacitance (Vout=0 V)	Cout	8.0	12	рF

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V periodically sampled rather than 100% tested)

Capacitance measured with a Boonton Meter or effective capacitance calculated from the Lequation: $C = I\Delta_t/\Delta V$.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

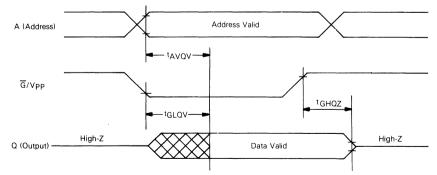
RECOMMENDED DC OPERATING CONDITIONS

Paramet	er	Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68766 MCM68766-35	V _{CC}	4.75 4.5	5.0 5.0	5.25 5.5	Vdc
Input High Voltage		VIH	2.0	-	V _{CC} +1.0	Vdc
Input Low Voltage		VIL	- 0.1	-	0.8	Vdc

DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Units
Address Input Sink Current	V _{in} = 5.25 V	lin	-	-	10	μA
Output Leakage Current	V _{out} = 5.25 V	LO	-	-	10	μA
G/Vpp Input Sink Current	G/Vpp=0.4 V	^I GL	1	-	100	μA
	$\overline{G}/VPP = 2.4 V$	IGH = IPL	-	-	400	μA
V _{CC} Supply Current (Outputs Open)	$\overline{G}/V_{PP} = V_{IL}$	ICC	-	-	160	mΑ
Output Low Voltage	I _{OL} =2.1 mA	VOL	-	-	0.45	٧
Output High Voltage	$I_{OH} = -400 \ \mu A$	Voн	2.4	-	-	V

AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels.	0.8 Volt and 2.2 Volts	
Input Rise and Fall	Times	

Input Timing Levels	1.0 Volt and 2 Volts
Output Timing Levels	0.8 Volt and 2 Volts
Output Load	See Figure 1

			35		MCM68766		
Characteristic	Condition	Symbol	Min	Max	Min	Max	Units
Address Valid to Output Valid	$\overline{G} = V_{1L}$	^t AVQV	_	350	-	450	ns
G to Output Valid	-	¹ GLQV	-	150	-	150	ns
G to Hi-Z Output		tGHQZ	0	100	0	100	ns
Data Hold from Address	$\overline{G} = V_{IL}$	tAXDX	0	-	0	-	ns

READ MODE TIMING DIAGRAM

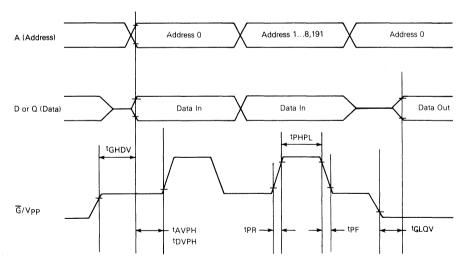
DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

 $(T_A = 25 \pm 5^{\circ}C)$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	Vdc
Input High Voltage for All Addresses and Data	VIH	2.2	-	$V_{CC} + 1$	Vdc
Input Low Voltage for All Addresses and Data	VIL	- 0.1	-	0.8	Vdc
Program Pulse Input High Voltage	VIHP	24	25	26	Vdc
Program Pulse Input Low Voltage	VILP	2.0	Vcc	6.0	Vdc

PROGRAMMING OPERATION DC CHARACTERISTICS


Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	V _{in} = 5.25 V	ILI	-	-	10	μAdc
Vpp Program Pulse Supply Current (Vpp = $25 V \pm 1 V$)	-	Ірн		-	30	mAdc
Vpp Supply Current (Vpp=2.4 V)	-	IPL = IGH	-	-	400	μA
V _{CC} Supply Current (V _{PP} =5 V)	-	ICC		-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	^t AVPH	2.0	-	μs
Data Setup Time	^t DVPH	2.0	-	μs
Output Enable to Valid Data	tGLQV	150	-	ns
Output Disable to Data In	tGHDV	2.0		μs
Program Pulse Width	^t PHPL	1.9	2.1	ms
Program Pulse Rise Time	tPR	0.5	2.0	μs
Program Pulse Fall Time	tpf	0.5	2.0	μs
Cumulative Programming Time Per Word*	tCP	12	50	ms

Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 8,192 address locations in sequence. Multiple blocks are used to accumulate programming time (tcp).

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the \overline{G}/Vpp input (Pin 20) should be between + 2.0 and + 6.0 V, which will three-state the outputs and allow data to be set up on the DQ terminals. The V_{CC} voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse $(V|_H to V|_H p)$ is applied to the G/Vpp input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68766s may be programmed in parallel by connecting like inputs and applying the program pulse to the G/Vpp inputs. Different data may be programmed into multiple MCM68766s connected in parallel by selectively applying the programming pulse only to the MCM68766s to be programmed.

READ OPERATION

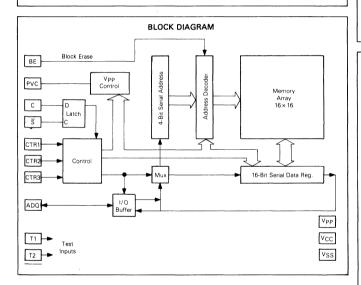
After access time, data is valid at the outputs in the Read mode. With $\overline{G}/Vpp = "0"$ the outputs are enabled; with $\overline{G}/Vpp = "1"$ the outputs are three-stated.

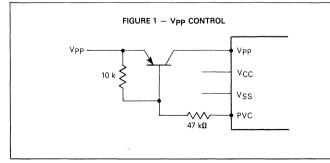
Multiple MCM68766s may share a common data bus with like outputs OR-tied together. In this configuration only one \overline{G}/Vpp input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

ERASING INSRUCTIONS

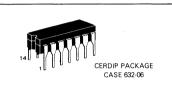
The MCM68766 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68766 should be positioned about one inch away from the UV-tubes.

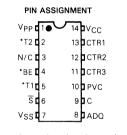
MCM2801


Advance Information


$16 \times 16\text{-BIT}$ SERIAL ELECTRICALLY ERASABLE PROM

The MCM2801 is a 256-bit serial Electrically Erasable PROM designed for handling small amounts of data in applications requiring both non-volatile memory and in-system information updates.


The MCM2801 saves time and money because of the in-system erase and reprogram capability. It has external control of timing functions and serial format for data and address. The MCM2801 is fabricated in floating gate technology for high reliability and producibility.


- Single +5 V Power Supply
- Organized as 16 Words of 16 Bits
- Fully TTL Compatible
- Single + 25 V Power Supply for Erase and Program
- In-System Program/Erase Capability

*For normal operation, these inputs should be hardwired to $\mathsf{V}_{SS}.$

PIN NAMES

ADQ	Multiplexed Address/
_	Data-In/Data-Out
С	Clock
PVC	Program Voltage Control
CTR1, 2, 3	Control
BE	Block Erase
<u>s</u>	Chip Select
T1, T2	Test Pins

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

MODE SELECTION

			Pin	Number			
Mode	1 Vpp	6 S	7 VSS	11 CTR3	12 CTR2	13 CTR1	14 VCC
Standby	VSS or VCC	VIH	VSS	ViH	ViH	⊻н	Vcc
Word Erase	VPP	VIL	VSS	Vін	VIL	VIL	Vcc
Write	Vpp	VIL	VSS	ViL	Vін	VIL	Vcc
Serial Data Out	VSS or VCC	VIL	VSS	Vін	ViH	VIL	Vcc
Serial Address In	VSS or VCC	VIL	VSS	VIL	VIL	ViH	VCC
Serial Data In	V _{SS} or V _{CC}	VIL	VSS	Vін	VIL	Vін	VCC
Read	V _{SS} or V _{CC}	VIL	VSS	VIL	ViH	ViH	Vcc
Standby	V _{SS} or V _{CC}	VIH	VSS	VIL	VIL	VIL	Vcc

ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	- 40 to + 85	°C
Operating Temperature Range	0 to +70	°C
Storage Temperature	- 55 to + 150	°C
All Input or Output Voltages with Respect to VSS	+8 to -0.5	Vdc
VPP Supply Voltage with Respect to VSS	+ 30 to -0.5	Vdc

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

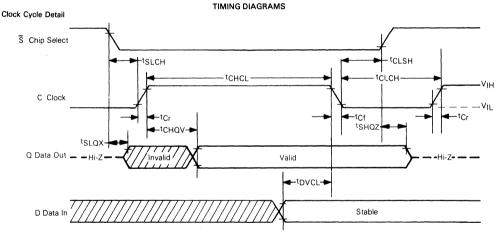
RECOMMENDED DC OPERATING CONDITIONS(Full operating voltage and temperature range unless otherwise noted.)

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC} V _{PP}	4.5 24.0	5.0 25.0	5.5 26.0	Vdc
Input High Voltage	VIH	4.0	-	V _{CC} +1.0	Vdc
Input Low Voltage	VIL	- 0.1	-	0.8	Vdc

OPERATING DC CHARACTERISTICS

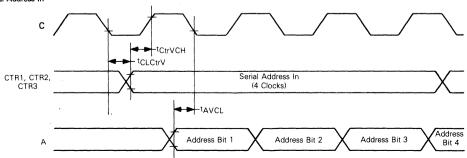
Characteristic	Condition	Symbol	Min	Тур	Max	Units
Input Sink Current	0 <vin<vcc< td=""><td>lin</td><td>-</td><td>-</td><td>10</td><td>μΑ</td></vin<vcc<>	lin	-	-	10	μΑ
V _{CC} Supply Current	S = VIL	1CC	-		30	mA
Vpp Supply Current	Vpp=26.0 V	IPP	-	-	4.0	mA
Output Low Voltage	I _{OL} = 1.0 mA	VOL	-	-	0.5	V
Output High Voltage	$I_{OH} = -0.1 \text{ mA}$	∨он	2.4		-	V

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = +5 V, periodically sampled rather than 100% tested.)

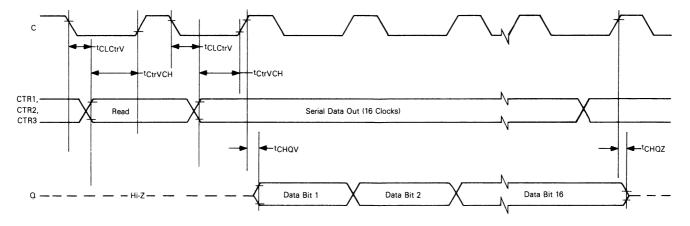

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (V _{in} =0 V)	Cin	-	6.0	pF
Output Capacitance (V _{out} =0 V)	Cout	-	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_t/\Delta V$.

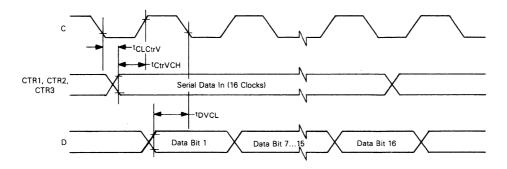
AC OPERATING CONDITIONS AND CHARACTERISTICS

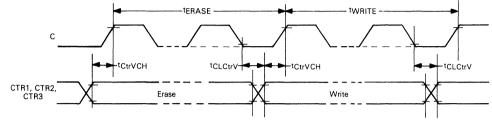

(Full operating voltage and temperature range unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
Clock High Level Hold Time	^t CHCL	4	10	μs
Clock Low Level Hold Time	^t CLCH	4		μs
Clock Rise Time	tCr	5	1000	ns
Clock Fall Time	^t Cf	5	1000	ns
Chip Select Lead Time	tSLCH	1		μs
Chip Select Lag Time	tCLSH	1	-	μs
Erase Time	terase	100	-	ms
Write Time	tWRITE	10	-	ms
Data Out Delay	^t CHQV	0	3.0	μs
Address In Setup	tAVCL	2	. —	μs
Data In Setup	^t DVCL	2	~~	μs
Control Setup Lead	^t CtrVCH	2	-	μs
Control Setup Lag	^t CLCtrV	50		ns
Data-Off Time (from the Clock)	^t CHQZ	0	3.0	μs
Chip Select Low to Output Active Time	^t SLQX	0	3.0	μs
Data-Off Time (from Chip Select)	^t SHQZ	0	3.0	μs



All times defined at 10% or 90% points.





READ AND SERIAL DATA OUT

SERIAL DATA IN

NOTE : One clock pulse is sufficient to load a new op code.

FUNCTIONAL DESCRIPTION

The memory stores sixteen words each of sixteen bits. All functions are controlled by a 3-bit parallel instruction bus and an applied clock.

Read-Out

- The (3-bit parallel) serial address instruction code is presented while the 4-bit serial address is shifted in on the I/O bus through the ADQ pin.
- The READ instruction is presented for one clock time. This reads the word from the new address in the memory array and parallel loads it into the shift register.
- 3) The SERIAL DATA-OUT instruction is presented for 16-clock pulses, causing the data to be shifted out on the I/O bus through the ADQ pin. During the serial data-out instruction, data is recirculated to allow further readout of the original data without access to the memory array.

Writing

- 1) The address is changed, if necessary, in the same manner as in the readout.
- 2) Data is serially loaded onto the chip by presenting the SERIAL DATA-IN instruction for 16-clock pulses.
- The WORD ERASE instruction is presented for the specified Erase Time. This erases only the addressed word.
- The WRITE instruction is presented for the specified Write Time. This transfers the data to the selected address in the MCM2801.

Standby

The STANDBY INSTRUCTION when strobed in by the clock puts the memory in a quiescent state where the output is in the high-impedance state, and the clock presence or absence will not affect the chip.

Clock

The active high clock signal is used for loading instruction codes, for introducing serial addresses and data, and for shifting serial data out. The clock has no influence on any other function.

Data Protection

When Vpp is turned off, data stored in the array is always protected. A Vpp control output is provided for switching the Vpp supply. It consists of a pull-down device to VSS. This device is turned on only when: VCC is present and a WRITE or WORD ERASE code has been loaded with a clock pulse.

A schematic for this external Vpp control is proposed in Figure 1.

When this feature is not used for data protection, Vpp must not be present if V_{CC} is not supplied. The TEST1, TEST2, and BLOCK ERASE pins are provided for testing purpose only and should be hard-wired to V_{SS} in any application.

Power Up/Power Down Sequence

Using an external Vpp control as given in Figure 1, Vpp and V_{CC} may be turned on or off in any sequence, without disturbing data in the non-volatile memory array, providing that neither a WORD ERASE nor a WRITE is present on the control inputs, or that \widehat{S} = low, or that C = high.

Instruction Sequences

The clock signal has no effect during WRITE or ERASE. READ should be presented for one clock cycle only since frequent unnecessary use may disturb data.

WRITE (for any address) must be preceded by the WORD ERASE instruction at the same address.

All instructions except SERIAL DATA-OUT cause the data output driver to be high impedance.

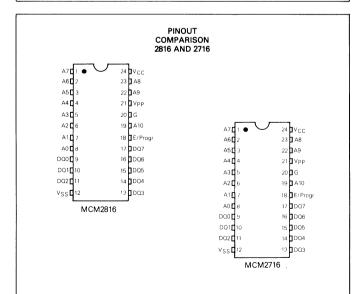
Vpp is necessary for WRITE, WORD ERASE and in conjunction with the BLOCK ERASE pin. In all other cases, it can be switched to high impedance, V_{CC} or V_{SS} .

BLOCK ERASE can be used for testing purposes. For clearing the whole array, Vpp should be applied and BE pin kept at V_{CC} for the normal erase time.

When the chip is deselected $(\overline{S} = 1)$, the output buffer is in the OFF state.

The TEST1 and TEST2 pins are for manufacturing use only and are not available to the user.

Product Preview

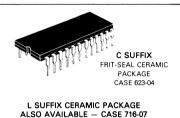

2048 × 8-BIT ELECTRICALLY ERASABLE PROM

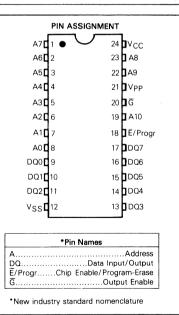
The MCM2816 is a 16,384-bit Electrically Erasable Programmable Read Only Memory designed for handling data in applications requiring both nonvolatile memory and in-system reprogramming. The industry standard pinout in a 24-pin dual-in-line package makes the MCM2816 EEPROM compatible with the popular MCM2716 EPROM.

The MCM2816 saves time and money because of the in-system erase and reprogram capability. While Vpp is at 25 V and \overline{G} is at V_{IL}, a 100 ms active high TTL erase pulse applied to the \overline{E} /Progr pin allows the entire memory to be erased to the "1" state. In addition to in-system programmability, this new-generation PROM is programmable on the standard EPROM programmer.

For ease of use, the device operates in the read mode from a single power supply and has a static power-down mode. The MCM2816 is fabricated in floating gate technology for high reliability and producibilitv.

- Single + 5 V Power Supply
- Automatic Power-Down Mode (Standby)
- Single + 25 V Power Supply for Erase and Program
- Organized as 2048 Bytes of 8 Bits
- TTL Compatible During Read and Program (No High Voltage Pulses)
- Maximum Access Time = 450 ns MCM2816
 - 350 ns MCM2816-35
- Pin Compatible to MCM68316E and MCM2716
- In-System Program/Erase Capability



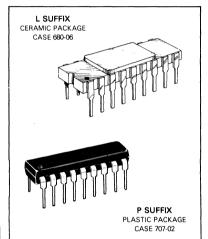

MCM2816

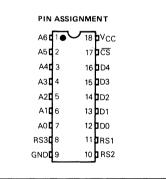
MOS

(N-CHANNEL, SILICON GATE)

2048 × 8-BIT ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.




MCM6670 MCM6674

MOS

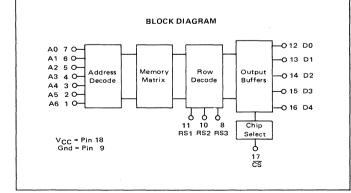
(N-CHANNEL, SILICON GATE)

128c x 7 x 5 HORIZONTAL-SCAN CHARACTER GENERATOR

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

128c X 7 X 5 CHARACTER GENERATOR

The MCM6670 is a mask-programmable horizontal-scan (row select) character generator containing 128 characters in a 5 X 7 matrix. A 7-bit address code is used to select one of the 128 available characters, and a 3-bit row select code chooses the appropriate row to appear at the outputs. The rows are sequentially displayed, providing a 7-word sequence of 5 parallel bits per word for each character selected by the address inputs.


The MCM6674 is a preprogrammed version of the MCM6670. The complete pattern of this device is contained in this data sheet.

- Fully Static Operation
- TTL Compatibility
- Single ±10% +5 Volt Power Supply
- 18-Pin Package
- Diagonal Corner Power Supply Pins
- Fast Access Time, 350 ns (max)

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISITCS

(Full operating voltage and temperature range unless otherwise noted.)

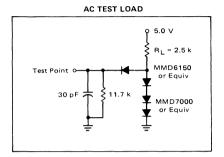
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC}	4.5	5.0	5.5	Vdc
Input High Voltage	ViH	2.0	-	5.5	Vdc
Input Low Voltage	VIL	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit	
Input Current (V _{in} = 0 to 5.5 V)	l _{in}	anar		2.5	μAdc	
Output High Voltage (I _{OH} = -205 μA)	V _{OH}	2.4	-	Vcc	Vdc	
Output Low Voltage (I _{OL} = 1.6 mA)	VOL	Tana		0.4	Vdc	
Output Leakage Current (Three-State) (CS = 2.0 V or CS = 0.8 V, V _{out} = 0.4 V to 2.4 V)	LO	-	-	10	μAdc	
Supply Current ($V_{CC} = 5.5 V, T_A = 0^{\circ}C$)	'cc		-	130	mAdc	

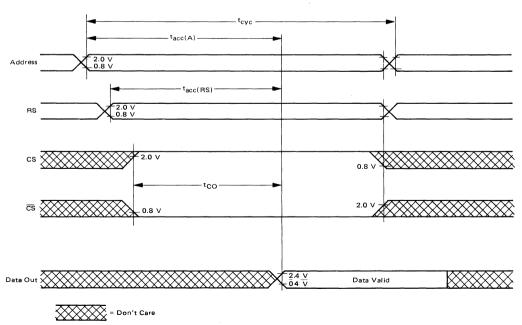
CAPACITANCE ($T_A = 25^{O}C$, f = 1.0 MHz)


Characteristic	Symbol	Тур	Unit
Input Capacitance	C _{in}	5.0	рF
Output Capacitance	Cout	5.0	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

AC TEST CONDITIONS


Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	1 TTL Gate and CL = 30 pF

AC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Cycle Time	^t cyc	350		ns
Address Access Time	t _{acc} (A)	~~	350	ns
Row Select Access Time	t _{acc} (RS)		350	ns
Chip Select to Output Delay	tCO	_	150	ns

CUSTOM PROGRAMMING FOR MCM6670

By the programming of a single photomask, the customer may specify the content of the MCM6670. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:

- 1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4).
- 2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5).

Programming of the MCM6670 can be achieved by using the following sequence:

1. Create the 128 characters in a 5 \times 7 font using the format shown in Figure 1. Note that information at output D4 appears in column one, D3 in column two, thru D0 information in column five. The dots filled in and programmed as a logic "1" will appear at the outputs as V_{OH} ; the dots left blank will be at V_{OL} . RO is always programmed to be blank (V_{OL}). (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)

2. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. The information for D4 must be a hex one or zero, and is entered in the left block. The information for D3 thru D0 is entered in the right block, with D3 the most significant bit for the hex coding, and D0 the least significant.

3. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).

4. Transmit this data to Motorola, along with the customer name, customer part number and revision, and an indication that the source device is the MCM6670.

5. Information should be submitted on an organizational data form such as that shown in Figure 2.

FIGURE 1 - CHARACTER FORMAT

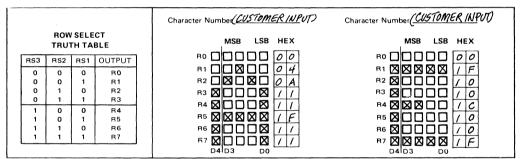


FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

	ORGANIZATIONAL MCM6670 MOS READ ONL			
Customer:				
Company		M	lotorola Use Only:	
		Quote:		
Part No		Part No.:		
Phone No		Specif. No.:		
Chip-Select Options:	Active High	Active Low	No-Connect	
CS				

FIGURE 3 - CARD PUNCH FORMAT

Colum	ns
1-9	Blank
10-25	Hex coding for first character
26	Slash (/)
27-42	Hex coding for second character
43	Slash (/)
44-59	Hex coding for third character
60	Slash (/)
61-76	Hex coding for fourth character
77-78	Blank
79-80	Card number (starting 01; thru 32)

Column 10 on the first card contains either a zero or a one to program D4 of row R0 for the first character. Column 11 contains the hex character for D3 thru D0. Columns 12 and 13 contain the information to program R1. The entire first character is coded in columns 10 thru 25. Each card contains the coding for four characters; 32 cards are required to program the entire 128 characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. Figure 3 provides an illustration of the correct format.

FIGURE 4 – EXAMPLE OF CARD PUNCH FORMAT (First 12 Characters of MCM6670P4)

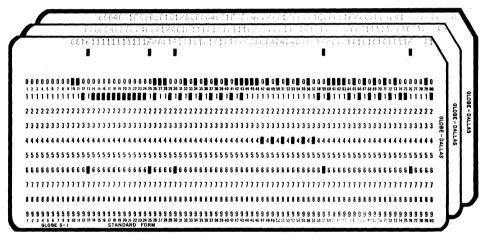
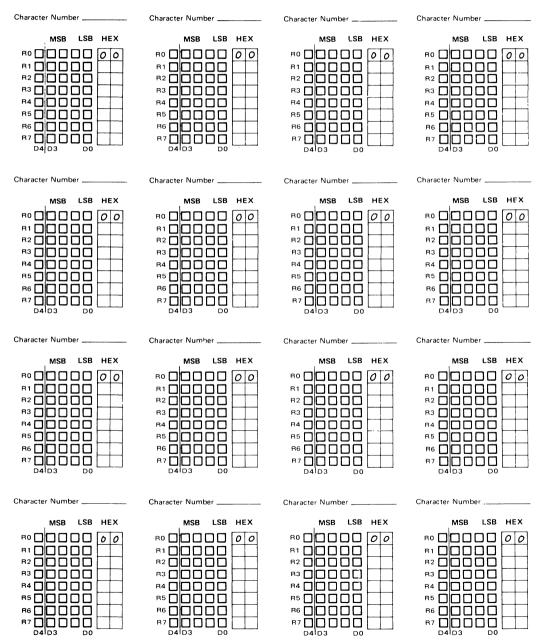


FIGURE 5 - PAPER TAPE FORMAT

Frames


Leader	Blank Tape
1 to M	Allowed for customer use (M \leq 64)
M + 1, M + 2	CR; LF (Carriage Return; Line Feed)
M + 3 to M + 66	First line of pattern information
	(64 hex figures per line)
M + 67, M + 68	CR; LF
M + 69 to	Remaining 31 lines of hex figures,
M + 2114	each line followed by a Carriage Re-
	turn and Line Feed
Blank Tane	

Blank Tape

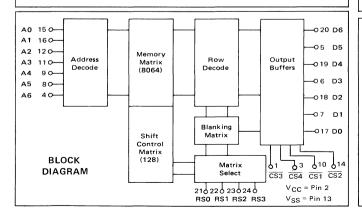
Frames 1 to M are left to the customer for internal identification, where $M \leq 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the

start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains a zero or a one to program D4 of row R0 for the first character. Frame M + 4 contains the hex character for D3 thru D0, completing the programming information for R0. Frames M + 5 and M + 6 contain the information to program R1. The entire first character is coded in Frames M + 3 thru M + 18. Four complete characters are programmed with each line. A total of 32 lines program all 128 characters (32 x 4). The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. The formats below are given for your convenience in preparing character information for MCM6670 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

	A3	. A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
A6 .	A4	/	D4 D0	D4D0	D4 D0													
	000	R0																
	001	R0																
	010	R0 : R7																
	011	R0																
	100	R0 : R7																
	101	R0 : : : : : :																
	110	R0																
	111	R0 : R7																

FIGURE 6 - MCM6674 PATTERN

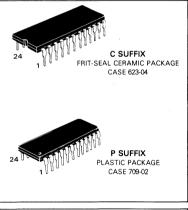

8192-BIT READ ONLY MEMORIES ROW SELECT CHARACTER GENERATORS

The MCM66700 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 characters in a 7 X 9 matrix, and has the capability of shifting certain characters that normally extend below the baseline such as j, y, g, p, and q. Circuitry is supplied internally to effectively lower the whole matrix for this type of character—a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic 1s and 0s stored in a 7 X 9 matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the 7 X 9 character in one of two preprogrammed positions on the 16-row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The devices listed are preprogrammed versions of the MCM66700. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Fully Static Operation
- Fully TTL Compatible with Three-State Outputs
- CMOS and MPU Compatible, Single ± 10% 5 Volt Supply
- Shifted Character Capability (Except MCM66720, MCM66730, and MCM66734)
- Maximum Access Time = 350 ns
- 4 Programmable Chip Selects (0, 1, or X)
- Pin-for-Pin Replacement for the MCM6570, Including All Standard Patterns


MCM66700 MCM66710 MCM66714 MCM66720 MCM66730 MCM66734 MCM66740 MCM66750 MCM66751 MCM66760 MCM66770 MCM66780 MCM66790

MOS

(N-CHANNEL, SILICON-GATE)

8K READ ONLY MEMORIES

HORIZONTAL-SCAN CHARACTER GENERATORS WITH SHIFTED CHARACTERS

PIN ASSIGNMENT							
CS3		4 J RS3					
∨ _{CC} C	2 2	3] RS2					
CS4	3 2	2 D RS1					
A6 🕻	4 2	1 1 RSO					
D5 🕻	5 2	20 D D6					
D3	6 1	9 1 D4					
D1 [7 1	8 D D2					
A5 C	8 1	7 D 0					
A4 C	9 1	6 þ A 1					
CS1	10 1	5] A0					
A3	11 1	4 1 CS2					
A2 C	12 1	₃∎vss					

ABSOLUTE MAXIMUM RATINGS (See Note 1, Voltages Referenced to VSS)

Rating	Symbol	Value	Unit
Supply Voltages	Vcc	-0.3 to 7.0	Vdc
Input Voltage	Vin	-0.3 to 7.0	Vdc
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher-than-recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

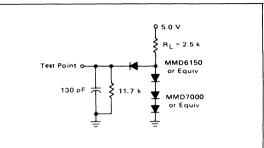
RECOMMENDED DC OPERATING CONDITIONS (Referenced to V_{SS})

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
Input Logic "1" Voltage	ViH	2.0	. –	V _{CC}	Vdc
Input Logic "0" Voltage	VIL	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit	
Input Leakage Current (V _{IH} ≈ 5.5 Vdc, V _{CC} = 4.5 Vdc)	Чн		-	2.5	μAdc	
Output Low Voltage (Blank) (I _{OL} = 1.6 mAdc)	VOL	0	-	0.4	Vdc Vdc	
Output High Voltage (Dot) (I _{OH} ≈ -205 µAdc)	∨он	2.4	-	-		
Power Supply Current	ICC		-	80	mAdc	
Power Dissipation	PD		200	440	Wm	

CAPACITANCE (Periodically sampled rather than 100% tested)

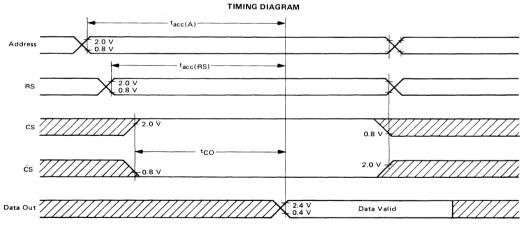

Input Capacitance (f = 1.0 MHz)	C _{in}	-	4.0	7.0	pF
Output Capacitance (f = 1.0 MHz)	C _{out}	-	4.0	7.0	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

AC TEST LOAD



AC TEST CONDITIONS

Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	1 TTL Gate and C_L = 130 pF

AC CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Address Access Time	tacc(A)	250	350	ns
Row Select Access Time	tacc(RS)	250	350	ns
Chip Select to Output Delay	tCO	100	150	ns

= Don't Care

2

MEMORY OPERATION (Using Positive Logic)

Most positive level = 1, most negative level = 0.

Address

To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 through A6).

Row Select

To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RS0 through RS3).

Shifted Characters

These devices have the capability of displaying characters that descend below the bottom line (such as lowercase letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character

Figure 1 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM66700 allows the user to locate the basic 7 X 9 font anywhere in the 7 X 16 array. In addition, a shifted font can be placed anywhere in the same 7 X 16 array. For example, the basic MCM66710 font is established in rows R14 through R6. All other rows are automatically blanked. The shifted font is established in rows R11 through R3, with all other rows blanked. Thus, while any one character is contained in a 7 X 9 array, the MCM66710 requires a 7 X 12 array on the CRT screen to contain both normal and descending characters. Other

can be programmed to occupy either of the two positions in a 7 X 16 matrix. (Shifted characters are not available on MCM66720, MCM66730, or MCM66734.)

Output

For these devices, an output dot is defined as a logic 1 level, and an output blank is defined as a logic 0 level.

Programmable Chip Select

The MCM66700 has four Chip Select inputs that can be programmed with a 1, 0, or don't care (not connected). A don't care must always be the highest chip select pin or pins. All standard patterns have Don't Care Chip Selectexcept MCM66751.

DISPLAY FORMAT

uses of the shift option may require as much as the full 7 X 16 array, or as little as the basic 7 X 9 array (when no shifting occurs, as in the MCM66720).

The MCM66700 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM66710 from bottom to top, whereas an up counter will scan the MCM66714 from top to bottom (see Figures 7 and 8 for row designation).

FIGURE 1 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM66710 AND MCM66720

ROW SE	TABLE	MCM66710	MCM66720
RS3 RS2 RS1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1	RS0 OUTPUT 0 R0 1 R1 0 R2 1 R3 0 R4 1 R5 0 R6 1 R7 0 R8 1 R10 1 R11 0 R12 1 R13 0 R14 1 R15	ROW NO. N	ROW NO.

CUSTOM PROGRAMMING FOR MCM66700

By the programming of a single photomask, the customer may specify the content of the MCM66700. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

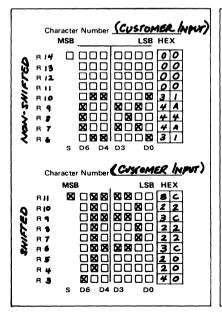
Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:*

- 1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4)
- 2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5)

Programming of the MCM66700 can be achieved by using the follow sequence:

1. Create the 128 characters in a 7 X 9 font using the format shown in Figure 2. Note that information at output D6 appears in column one, D5 in column two, through D0 information in column seven. The dots filled in and programmed as a logic 1 will appear at the outputs as VO_H ; the dots left blank will be at VO_L . (Blank formats appear at the end of this data sheet for your convenience;

they are not to be submitted to Motorola, however.) 2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S).


3. Convert the characters to hexadecimal coding treating dots as 1s and blanks as 0s, and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns S and D3. For the bottom eight rows, the bit in Column S must be 0, so these locations have been omitted. For the top row, the bit in Column S will be 0 for an unshifted character, and 1 for a shifted character.

4. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).

5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 through 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.

6. Provide, in writing, the information indicated in Figure 6 (a copy of Figure 10 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

FIGURE 2 - CHARACTER FORMAT

FIGURE 3 - CARD PUNCH FORMAT

Columns	
1 – 10	Blank
11	Asterisk (*)
12 – 29	Hex coding for first character
30	Slash (/)
31 – 48	Hex coding for second character
49	Slash (/)
50 - 67	Hex coding for third character
68	Slash (/)
69 – 76	Blank
77 – 78	Card number (starting 01; through 43)
79 – 80	Blank
equivalent	Column 12 on the first card contains the hexadecimal of column S and D6 through D4 for the top row of the

Column 12 on the first card contains the hexadecimal equivalent of column S and D6 through D4 for the top row of the first character. Column 13 contains D3 through D0. Columns 14 and 15 contain the information for the next row. The entire first character is coded in columns 12 through 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM66710 are correctly coded and punched in Figure 4.

*NOTE: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

2

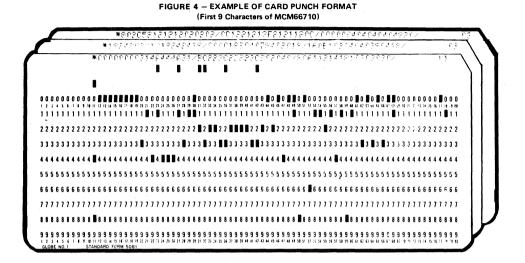


FIGURE 5 – PAPER TAPE FORMAT

Frames

Leader	Blank Tape
1 to M	Allowed for customer use ($M \le 64$)
M + 1, M + 2	CR; LF (Carriage Return; Line Feed)
M + 3 to M + 66	First line of pattern information
	(64 hex figures per line)
M + 67, M + 68	CR; LF
M + 69 to M + 2378	Remaining 35 lines of hex figures, each line followed by a Carriage
	Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M\leqslant 64.$ Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the

start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame M + 4 contains D3 thru D0. Frames M + 5 and M + 6 program the second row of the first character. Frames M + 3 to M + 66 comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain 36 x 64 or 2304 hex figures. Since 18 hex figures are required to program each 7 x 9 character, the full 128 (2304 \div 18) characters are programmed.

FIGURE 6 - FORMAT FOR ORGANIZATIONAL DATA

ORGANIZATIONAL DATA MCM66700 MOS READ ONLY MEMORY	
Customer	_
Customer Part No Rev	
Row Number for top row of non-shifted font	
Row Number for bottom row of non-shifted font	
Row Number for top row of shifted font	
Programmable Chip Select information: 1 = Active High 0 = Active Low X = Don't Care (Not Connected	;d)
CS1 CS2 CS3 CS4	

A3 .	. A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	<	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	06 00	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	06 00	D6 D0	D6 D
000	R14																
001	R14																
010	R14																
011	R14 : R6																
100	R14				00000000										63666		
101	R14									8000008							
110	R14								000000								
111	R14																

FIGURE 8 - MCM66714 PATTERN

A3.	. A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
A4	>	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	06 00	D6 D0	D6 D0	06 00	D6 D0	06 00	D6 D0	06 00	D6 D0	D6 D0
000	R0 : 88									1000000							
001	R0 : R8																000000
010	80 : : :																
011	R0 : : R8																000000
100	80 	88888888															
101	R0 : :						000000										0000000
110	R0 : : :																
111	R0 : :																

2

FIGURE 9 - MCM66734 PATTERN*

A3.	. A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
A4	\geq	D6 . D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 C7	D6 D0	06 00	D6 D0	D6 D0	D6 D0					
600	R0 																
001	z z																
010	R0 R8																
011	R0																
100	R0 : :																
101	R0 	0000000		0000000											0000000		
110	R0 : : 88						. LudGebig										
111	R0 : : R8													••••			

FIGURE 10 - MCM66720 PATTERN**

A3.	A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
6A4	~	D6 D0	D6 D0	D6 D0	D6. D0	D6 . D0	D6. D0	D6 D0	06 00	D6 D0	D6 D0	D6 D0	D6 D0				
000	R0 : 88				000000000000000000000000000000000000000												
001	R0 : :																
010	R0 : R8																
011	RB																
100	R0 : :																
101	R0 :	0000000															
110	80 : 																
111	R0 :: R8																
** Shift	nd ch	eractors are n	otused.					4	L	1				1			

2

FIGURE 11 - MCM66730 PATTERN**

A3.	. A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
. 44	\geq	D6 . D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	06 D0	D6 D0	06 0
000	R0 : : R8																
101	R0					0000000											
010																	
011	R0															2020000	
100	R0 																
101	R0 : : : .																
110	R0 																
111	R0 																

FIGURE 12 - MCM66740 PATTERN

	06										1010	1011	1100	1101	1110	1111
	0800	D6 . D0	D6 D0	D6 D0	D6 D0	D6 . D0	D6 . D0	D6 . D0	D6 D0	D6 D0	D6 D0	D6 D0	D6. D0	D6 . D0	D6 D0	D6. D0
R0 : 																
яо : 																
я0 : : :																BOODDDC
А0 : 		888 888	0000000													
R0																
R0 : 																
R0 																
R0 : :																
	R8 R0 R8 R0 R8 R0 R8 R0 R8 R0 R8 R0 R8 R0 		no no<	No No<	No No<	No No<	No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									

FIGURE 13 - MCM66750 PATTERN

A3	A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	\geq	D6 D0	D6D0	D6 D0	D6 D0	D6D0	D6 D0	D6. D0	D6 D0	D6 D0	D8 D0	D6D0	D6	D6 D0	D6 D0	D6 D0	D6 D
000	R0 : :																
001	R0 :: R8																
010	R0																
011	R0 ::						000000										
100	яо : Яв																
101	90 : 88																
110	90																
111	R0																

MCM66751 - Same as MCM66750 except CS1 = 0, CS2 = 0, CS3 = X, and CS4 = X.

FIGURE 14 - MCM66760 PATTERN

A3	. A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
6A4	1	D6 . D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	0600
000	R0 					000000											
001	R0 																
010	R0 R8																
011	R0 R8												101000-0010				
100	R0 AB																
101	R0 : :																
110	R0 : :																
911	RO																

A3.	. A0	0000	0001	0010	0011	0100 .	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
. 44	\geq	D6 D0	D6 D0	D6 D0	D6 D0	06 00	D6 D0	06 D0	D6 D0	D6 D0	06 00	D6					
000	RO : RB														÷		
001	90 																
010	R0 : 88													."			
011	80 : 98											:: ::	.# .#				
100	P0 : : :																
101																	
110	R0																
111	:																

FIGURE 15 - MCM66770 PATTERN

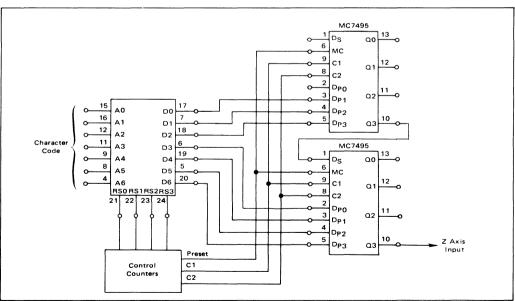
FIGURE 16 - MCM66780 PATTERN

A3	A0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		06 00	06 00	D6 100	06 00	06 00	D6 D0	06 00	06 00	06 00	D6 D0	06 D0	D6 D0	D6 D0	D6 D0	D6 00	D6 D0
000	Р0 88									•••••		•••••	•		÷		
001	P0																
010	Р0 : 													.#			
011	R0																
100	80 : 88																
101	R0 : :																
110	R0																
111	R0 ;																

2

FIGURE 17 - MCM66790 PATTERN

A3.	. 40	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
A4	\geq	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D0	D6 D
000	R8												000000				
001	P0 : :																
010	90 : : :																
011	R0 : :															2200000	
100	Р0 : : :																
101	80 : 88																
110	P10			1 25-1611													
111	P0 : :																


MCM66700 Series

				CM667					70 Ser ignmei	
MCM6570 Series	MCM66700 Equivalent	Description	1 🖂	CS3	RS3	24	1	VBB	RS3	24
MCM6571	MCM66710	ASCII, shifted	2	Vcc	RS2	23	2 🗖	Vcc	RS2	23
MCM6571A	MCM66714	ASCII, shifted	3	CS4	RS1	22	з 🗖	VDD	RS1	22
MCM6572	MCM66720	ASCII	4	A6	RS0	21	4 🗔	A6	RS0	21
MCM6573	MCM66730	Japanese	5 🗖	D5	D6	20	5 🗖	D5	D6	20
MCM6573A	MCM66734	Japanese	e 🗂	D3	D4	19	6 🗖	03	D4	19
MCM6574	MCM66740	Math Symbols	7	D1	D2	18	1	01	D2	18
MCM6575	MCM66750	Alphanumeric Control	8	A5	DO	17	8 🗔	A5	D0	D 17
MCM6576	MCM66760	British, shifted	9 🗖	A4	A1	16	9 🖂	A4	A1	16
MCM6577	MCM66770	German, shifted	10	CS1	A0	15	10	NC	A0	15
MCM6578	MCM66780	French, shifted	11 🗖	A3	CS2	14	11 🗖	A3	NC	14
MCM6579	MCM66790	European, shifted	12	A2	VSS	13	12	A2	Vss	13

APPLICATIONS INFORMATION

One important application for the MCM66700 series is in CRT display systems (Figure 18). A set of buffer shift registers or random access memories applies a 7-bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked serially out to the Z-axis where it modulates the raster to form the character.

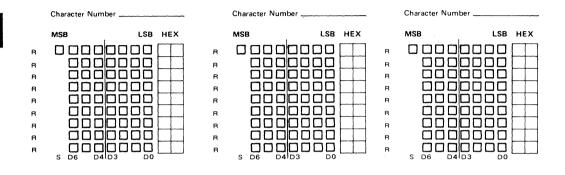

The MCM66700 series require one power supply of +5.0 volts. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit spikes or glitches on their outputs when the ac power is switched on and off.

FIGURE 18 - CRT DISPLAY APPLICATION USING MCM66710

2

The formats below are given for your convenience in preparing character information for MCM66700 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

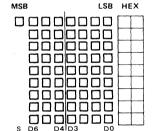
R

в

R

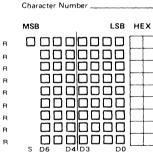
R

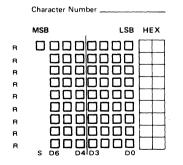
R

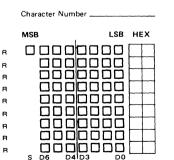

R

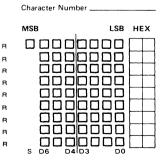
R

R


R


Character Number

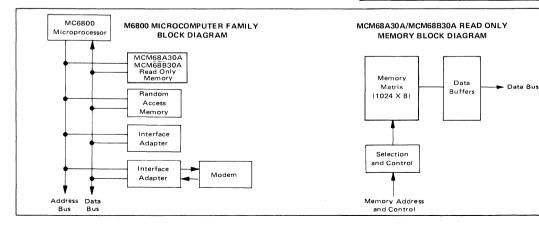



	MSB		HEX
R		1000	
R			
в			
R			
R			
R			
R			
R		1000	
R			

Character Number

1024 X 8-BIT READ ONLY MEMORY

The MCM68A30A/MCM68B30A are mask-programmable byteorganized memories designed for use in bus-organized systems. They are fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

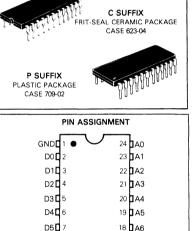

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Four Chip Select Inputs (Programmable)
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns MCM68A30A
 250 ns MCM68B30A

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.


MCM68A30A MCM68B30A

MOS

(N-CHANNEL, SILICON-GATE)

1024 X 8-BIT

READ ONLY MEMORY

17 DA7

16 DA8

15 A9

14 DCS4

13 **D**CS3

D6**D**8

D7**D**9

CS1010

CS2

Vcc

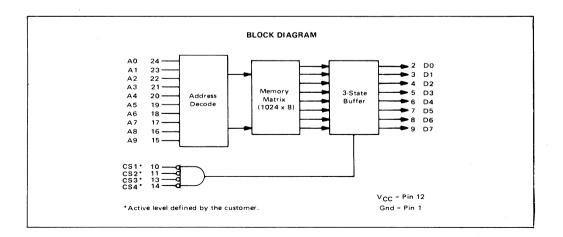
DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	v _{cc}	4.5	5.0	5.5	Vdc
Input High Voltage	VIH	2.0	-	5.5	Vdc
Input Low Voltage	VIL	-0.3	-	0.8	Vdc

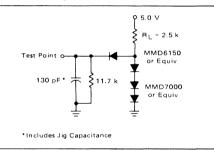
DC CHARACTERISTICS


Characteristic	Symbol	Min	Тур	Max	Unit
Input Current (V _{in} = 0 to 5.5 V)	lin	-	-	2.5	µAdc
Output High Voltage (I _{OH} = -205µA)	∨он	2.4	-	-	Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL	-		0.4	Vdc
Output Leakage Current (Three State) (CS = 0.8 V or $\overline{\rm CS}$ = 2.0 V, V _{out} = 0.4 V to 2.4 V)	¹ LO		-	10	μAdc
Supply Current (V_{CC} = 5.5 V, T _A = 0 ^o C)	'cc		-	130	mAdc

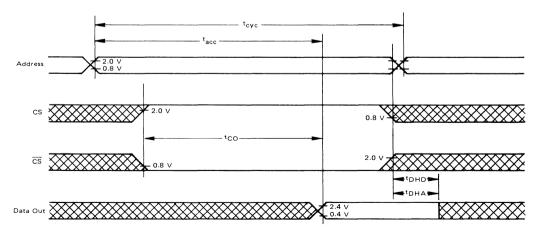
CAPACITANCE (f = 1.0 MHz, $T_A = 25^{\circ}C$, periodically sampled

rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	C _{in}	7.5	pF
Output Capacitance	Cout	12.5	pF


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature unless otherwise noted.) (All timing with t_f = t_f = 20 ns, Load of Figure 1)

		MCM68A30AL		MCM68B30AL			
Characteristic	Symbol	Min	Max	Min	Max	Unit	
Cycle Time	t _{cyc}	350		250		ns	
Access Time	tacc		350		250	ns	
Chip Select to Output Delay	tCO	-	150		125	ns	
Data Hold from Address	^t DHA	10	-	10		ns	
Data Hold from Deselection	^t DHD	10	150	10	125	ns	

FIGURE 1 - AC TEST LOAD

TIMING DIAGRAM

CUSTOM PROGRAMMING

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

By the programming of a single photomask for the MCM68A30A/MCM68B30A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A30A/MCM68B30A should be submitted on an Organizational Data form such as that shown in Figure 3. ("No Connect" must always be the highest order Chip Select pin(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.

2. Hexadecimal coding using IBM Punch Cards.

- 3. EPROM (MCM2708, MCM27A08, or MCM68708).
- 4. Hand-punched paper tape (Figure 3).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

		ary ata		Hexadecimal Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	в
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

1	12	Byte "0" Hexadecimal equivalent for outputs D7 thru D4 (D7 = M.S.B.)
2	13	Byte "0" Hexadecimal equivalent for outputs D3 thru D0 (D3 = M.S.B.)
3	14.75	Alternate steps 1 and 2 for consecutive bytes.
4	77-80	Card number (starting 0001)

77-80 Card number (starting 0001)

FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

Frames	
Leader	Blank Tape
1 to M	Allowed for customer use ($M \le 64$)
M + 1, M + 2	CR; LF (Carriage Return; Line Feed)
M + 3 to M + 66	First line of pattern information (64 hex figures per line)
M + 67, M + 68	CR; LF
M + 69 to M + 2112	Remaining 31 lines of hex figures, each line followed by a Carriage Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M \leq 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Option A (1024 x 8)

Frame M + 3 contains the hexadecimal equivalent of

bits D7 thru D4 of byte 0. Frame M + 4 contains bits D3 thru D0. These two hex figures together program byte 0. Likewise, frames M + 5 and M + 6 program byte 1, while M + 7 and M + 8 program byte 2. Frames M + 3 to M + 66 comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

Option B (2048 x 4)

Frame M + 3 contains the hexadecimal equivalent of byte 0, bits D3 thru D0. Frame M + 4 contains byte 1, frame M + 5 byte 2, and so on. Frames M + 3 to M + 66 sequentially program bytes 0 to 31 (the first 32 bytes). The line is terminated with a CR and LF.

Both Options

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32×64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

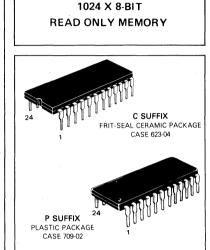
As an example, a printout of the punched tape for Figure 13 would read as shown in Figure 10 (a CR and LF is implicit at the end of each line).

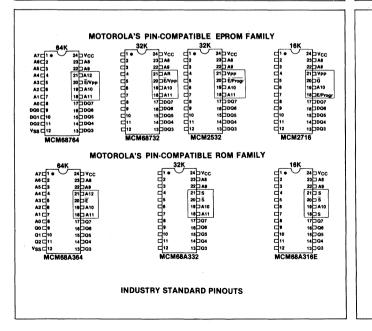
FIGUE	RE 4 - FORMAT	FOR PROGRAMMIN	IG GENERAL OPT	IONS	
		GANIZATIONAL DA B30A MOS READ O			
Customer:			M	lotorola Use Only:	
Company			Quote:		
Part No			Part No.:		
Originator			Specif. No.:		
Phone No					
Chip Select Options:	CS1 CS2 CS3 CS4	Active High	Active Low	No Connect "Don't Care"	

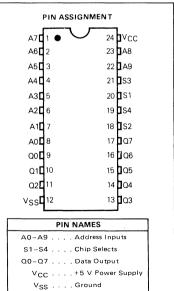
2

MCM68A308 MCM68B308

MOS


(N-CHANNEL, SILICON-GATE)


The MCM68A308/MCM68B308 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.


1024 X 8-BIT READ ONLY MEMORY

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

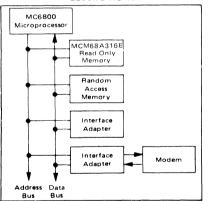
- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- ٠ Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns MCM68A308 250 ns - MCM68B308
- 350 mW Typical Power Dissipation

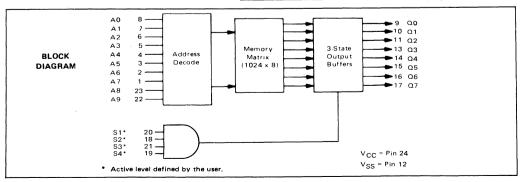
DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
Input High Voltage	VIH	2.0	-	5.5	Vdc
Input Low Voltage	VIL	-0.3		0.8	Vdc
C CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
Input Current	li-			2.5	uAdc


(V _{in} = 0 to 5.5 V)	lin	-	2.5	μAdc
Output High Voltage (I _{OH} = -205 μA)	V _{ОН}	2.4	-	Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL		0.4	Vdc
Output Leakage Current (Three-State) (S = 0.8 V or \tilde{S} = 2.0 V, V _{out} = 0.4 V to 2.4 V)	1LO		10	μAdc
Supply Current (V_{CC} = 5.5 V, T_A = 0 ^o C)	ICC		130	mAdc


ABSOLUTE MAXIMUM RATINGS (See Note 1)

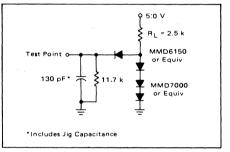
Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

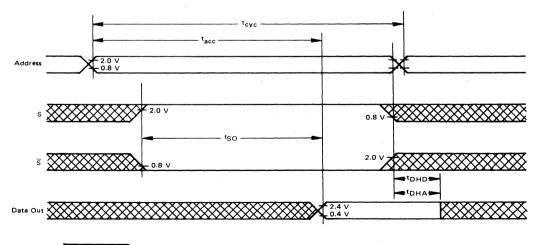
AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with $t_r = t_f \approx 20$ ns, Load of Figure 1)

Characteristic		MCM68A308		MCM68B308			
	Symbol	Min	Max	Min	Max	Unit	
Cycle Time	t _{cyc}	350	-	250	-	ns	
Access Time	tacc		350		250	ns	
Chip Select to Output Delay	tso	-	150	-	150	ns	
Data Hold from Address	^t DHA	10	-	10	-	ns	
Data Hold from Deselection	^t DHD	10	150	10	150	ns	


CAPACITANCE

(f = 2.0 MHz, $T_A = 25^{\circ}$ C, periodically sampled rather than 100% tested)


Characterístic	Symbol	Max	Unit
Input Capacitance	C _{in}	7.5	pF
Output Capacitance	Cout	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

FIGURE 1 - AC TEST LOAD

TIMING DIAGRAM

= Don't care

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A308/MCM68B308, the customer may specify the content of the memory and the method of enabling the outputs. (A "no-connect" must always be the highest order chip-select(s).)

Information on the general options of the MCM68A308/MCM68B308 should be submitted on an Organizational Data form such as that shown in Figure 4.

Information for customer memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM one MCM68A708 or equivalent.
- 4. Hand punched paper tape (Figure 3).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

Binary Data				Hexadecimal Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	А
1	0	1	1	в
1	1	0	0	с
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

1	12	Byte " 0 " Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)
2	13	Byte "0" Hexadecimal equivalent for
3	14-75	outputs Q3 thru Q0 (Q3 = M.S.B.) Alternate steps 1 and 2 for consecutive
Ŭ	14 /0	bytes.

77–80 Card number (starting 0001)

FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

Frames	
Leader	Blank Tape
1 to M	Allowed for customer use (M \leq 64)
M + 1, M + 2	CR; LF (Carriage Return; Line Feed)
M + 3 to M + 66	First line of pattern information (64 hex figures per line)
M + 67, M + 68	CR; LF
M + 69 to M + 2112	Remaining 31 lines of hex figures, each line followed by a Carriage Return and Line Feed

Blank Tape

Frames 1 to M are left to the customer for internal identification, where $M \leq 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains the hexadecimal equivalent of bits Q7 thru Q4 of byte 0. Frame M + 4 contains bits Q3 thru Q0. These two hex figures together program byte 0. Likewise, frames M + 5 and M + 6 program byte 1, while M + 7 and M + 8 program byte 2. Frames M + 3 to M + 66 comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32×64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed. 2

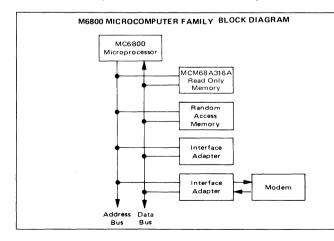
ORGANIZATIONAL DATA MCM68308 MOS READ ONLY MEMORY					
Customer:				otorola Use Only:	
Company			Quote:		
Part No.			Part No.:		
Originator			Specif. No.: _		
F	Phone No				
Chip Select:		Active High	Active Low	No Connect	
	S1				
	S2				
	S3				
	S4				

FIGURE 4 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

MCM68A316A

2048 X 8-BIT READ ONLY MEMORY

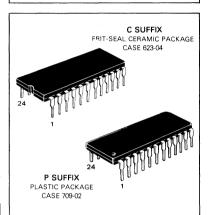
The MCM68A316A is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of fully static operation.

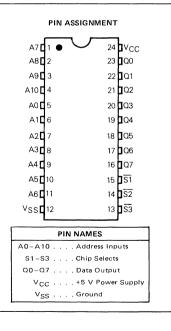

The memory is compatible with the M6800 Microcomputer Family, providing read-only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns
- Plug-in Compatible with 2316A

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	ТА	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



MOS

(N-CHANNEL, SILICON-GATE)

2048 X 8-BIT READ ONLY MEMORY

DS9502/6-78

DC OPERATING CONDITIONS AND CHARACTERISTICS

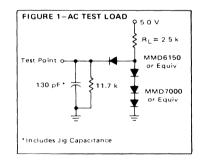
(Full operating voltage and temperature range unless otherwise noted)

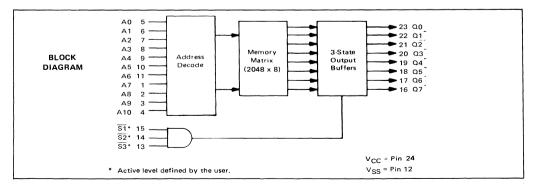
RECOMMENDED DC OPERATING CONDITIONS

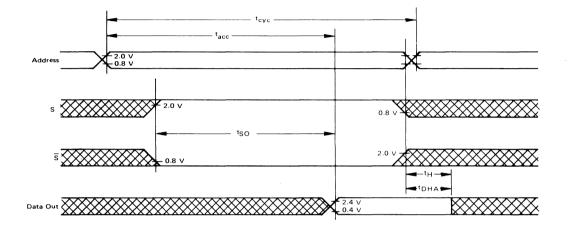
Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
Input High Voltage	VIH	2.0		5.5	Vdc
Input Low Voltage	VIL	-0.3		0.8	Vdc
DC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
Input Current (V _{in} = 0 to 5.5 V)	lin	-		2.5	µAdc
Output High Voltage (I _{OH} = -205 μA)	VOH	2.4			Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL	-		0.4	Vdc
Output Leakage Current (Three-State) (S = 0.8 V or \overline{S} = 2.0 V, V _{out} = 0.4 V to 2.4 V)	LO	-		10	μAdc
Supply Current ($V_{CC} = 5.5 \text{ V}, T_A = 0^{\circ}\text{C}$)	'cc	-		130	mAdc

CAPACITANCE

(f = 2.0 MHz, $T_A = 25^{\circ}$ C, periodically sampled rather than 100% tested)


Characteristic	Symbol	Max	Unit
Input Capacitance	C _{in}	7.5	рF
Output Capacitance	Cout	12.5	pF


AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature unless otherwise noted. All timing with t_r = t_f = 20 ns, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	tcyc	350		ns
Access Time	tacc	-	350	ns
Chip Select to Output Delay	tso	—	150	ns
Data Hold from Address	^t DHA	10	-	ns
Data Hold from Deselection	tн	10	150	ns

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

TIMING DIAGRAM

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68316A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316A should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM (TMS2716 or MCM2716).
- 4. Hand-punched paper tape.

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for control-ling the assembly process. The paper tape must specify the full 2048 bytes.

		hary ata		Hexadecimal Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	А
1	0	1	1	в
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

1	12	Byte "0" Hexadecimal equivalent for
		outputs Q7 thru Q4 (Q7 = M.S.B.)
2	13	Byte "0" Hexadecimal equivalent for
		outputs Q3 thru Q0 (Q3 = M.S.B.)
3	14–75	Alternate steps 1 and 2 for consecutive
		bytes.
4	77-80	Card number (starting 0001)

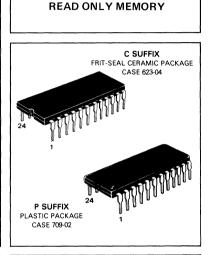
Total number of cards (64)

	мсме	ORGANIZATIONAL E 88A316A MOS READ ON			
Customer:					ı
Company			N	lotorola Use Only:	
Part No			Quote:		
			Part No.:		
Originator			Specif No :		ĺ
Phone No					l
Chip Select:				*Don't Care	
		. Active High	Active Low	(No Connect)	
	<u>S1</u>				
	S2				
	S 3				
		*A don't care must a	always be the highes	st order Chip Select(s).	

MCM68A316E

MOS

(N-CHANNEL, SILICON-GATE)


2048 × 8 BIT

$\textbf{2048} \times \textbf{8} \text{ BIT READ ONLY MEMORY}$

The MCM68A316E is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refeshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns
- Plug-in Compatible with 2316E
- Pin Compatible with 2708 and TMS2716 EPROMs

	мото	OROLA'S	PIN-COMPATI	BLE EPROM FA	MILY	
64	ĸ	32	K	32K	16	<u>к</u>
A7010	24 VCC		24 0 VCC 01 0	24 p VCC		24 DVCC
A8C2	23 0 48	C 22	23 40 22	23 A8	G 2	23
A5 🗗 3	22	9		22 A0		22 A9
A4 C 4	21 A12	5		20 D E/Progr		2000
A3 [5	20 2 E/Vpp	2	19 410 06	19 A10		19DA10
A2 C4	10 A10	3,		180411	3	18 DE/Progr
A1 C7	16 A11	Ξ.	170007 08	170.007	3.	170007
	160006	3	16 006 0	160006	3	160006
DQ1 C19	15006	3.	150095 010	15005	310	15006
DO2 111	14 1994	31	14 004 011	14 DQ4	d 11	14004
Vas C12	13 1003	d12	130003 012	13 003	d12	13003
MCM		MCM	8732 MC	M2532	MCM	2716
mome	0704					
	MOT	OROLA'S	PIN-COMPATI	BLE ROM FAMI	LY	
64			32K		- 18	ĸ
ATCIO	24 0 VCC		d1 0 24	Vcc	die V	240 VCC
A6 C2	23 A8		C2 23		d 2	210 48
A5 C 3	22				ರು	22 A 8
MC4	21 JA12					21 🗅 S
A3C46	20 DE		5 20		4 5	20 5
A2C[6	19 A10			IA10	 •	18 A 10
A1 [7	180A11		<u> </u>		G 7	1805
M 🗗 🕯	17207					17207
Q0 - 19 Q1 - 10	16⊐G6 15⊡G5		C10 16		3.	16205
02 011	14004				3"	15 Q5 14 Q4
V55 12	13003		C12 13		312	1303
MCM6			MCM68A332			
MCMO	6A304		MCM08A332		MCM68	A316E
		INDUS	TRY STANDAR	D PINOUTS		

PIN ASSIGNMENT						
	A7 [] ●					
	A60 2	23 D A8				
	A5 🖸 3	22 1 A9				
	A4 [] 4	21 <mark>]</mark> 53				
	A3 C 5	20 1 S1				
	A2 C 6	19 D A10				
	A1 0 7	18 D S2				
	A0 0 8	17 07				
	00 D 9	16 D Q6				
	Q1 [10	15 D Q5				
	02[11	14 🗖 🕰 4				
	Vss E 12	13 🛛 🔾 3				
	PIN	NAMES				
	A0-A10	. Address Inputs				
1	S1- S 3	. Chip Selects				
	Q0-Q7	, Data Output				
i	v _{cc}	. +5 V Power Supply				
ł	V _{SS}	. Ground				

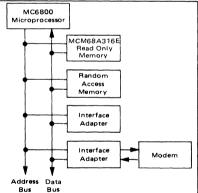
DC OPERATING CONDITIONS AND CHARACTERISTICS

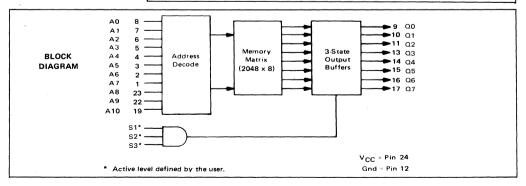
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
Input High Voltage	VIH	2.0		5,5	Vdc
Input Low Voltage	VIL	-0.3	-	0.8	Vdc
OC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
Input Current (V _{in} = 0 to 5.5 V)	lin	·		2.5	μAdc
Output High Voltage (I _{OH} = -205 μA)	VOH	2.4		-	Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL	-		0.4	Vdc
Output Leakage Current (Three-State) (S = 0.8 V or \vec{S} = 2.0 V, V _{OUT} = 0.4 V to 2.4 V)	LO	-		10	μAdc
Supply Current ($V_{CC} = 5.5 V, T_A = 0^{\circ}C$)	ICC	-		130	mAdc

ABSOLUTE MAXIMUM RATINGS (See Note 1)

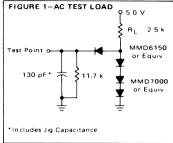

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

CAPACITANCE

(f = 2.0 MHz, $T_A = 25^{\circ}C$, periodically sampled rather than 100% tested)

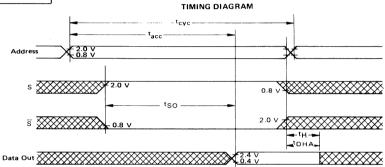
Characteristic	Symbol	Max	Unit
Input Capacitance	C _{in}	7.5	pF
Output Capacitance	Cout	12.5	pF



M6800 MICROCOMPUTER FAMILY

BLOCK DIAGRAM

MCM68A316E



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with t_r = t_f = 20 ns, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	tcyc	350	-	ns
Access Time	tacc		350	ns
Chip Select to Output Delay	tso	-	150	ns
Data Hold from Address	^t DHA	10	-	ns
Data Hold from Deselection	tн	10	150	ns

By the programming of a single photomask for the MCM68A316E, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316E should be submitted on an Organizational Data form such as that shown in Figure 3. ("No-Connect" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of three forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM (TMS2716 or MCM2716).

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for control-ling the assembly process. The paper tape must specify the full 2048 bytes.

FIGURE 2 – BINARY TO HEXADECIMA	L CONVERSION

	Binary Data					
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	2		
0	0	1	1	3		
0	1	0	0	4		
0	1	0	1	5		
0	1	1	0	6		
0	1	1	1	7		
1	0	0	0	8		
1	0	0	1	9		
1	0	1	0	A		
1	0	1	1	в		
1	1	0	0	С		
1	1	0	1	D		
1	1	1	0	E		
1	1	1	1	F		

IBM PUNCH CARDS

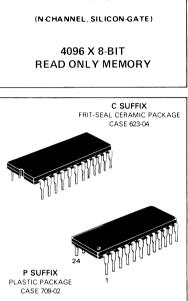
The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

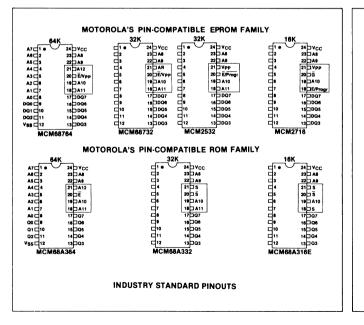
otop	ooranni	
1	12	Byte "0" Hexadecimal equivalent for
		outputs Q7 thru Q4 (Q7 = M.S.B.)
2	13	Byte "0" Hexadecimal equivalent for
		outputs Q3 thru Q0 (Q3 = M.S.B.)
3	1475	Alternate steps 1 and 2 for consecutive
		bytes.
4	77–80	Card number (starting 0001)
		Total number of cards (64)

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

			GANIZATIONAL I SE MOS READ ON			
Customer:				M	otorola Use Only:	
				Quote:		
Originator _						
	Phone No			Specif. No.:		
Chip Select:		S1	Active High	Active Low	No Connect	
		S2 S3				

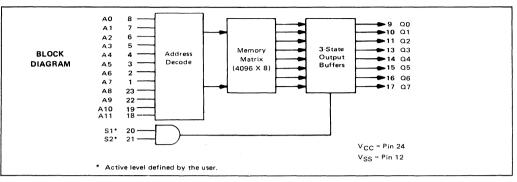
MCM68A332


MOS


4096 X 8-BIT READ ONLY MEMORY

The MCM68A332 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.


- Fully Static Operation
- Three-State Data Output for OR-Ties
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- Fully TTL Compatible
- Maximum Access Time = 350 ns
- Directly Compatible with 4732
- Pin Compatible with 2708 and 2716 EPROMs
- Preprogrammed MCM68A332-2 Available

PIN AS	SIGNMENT
	24 VCC 23 A8
A5 C 3	22 A9
A4 0 4 A3 0 5	21 1 82 20 1 51
A2 0 6	19 1 A10
А1 0 7 А0 0 8	18 🛛 A11 17 🗖 Q7
Q0 2 9 Q1 0 10	16 🛛 Q6 15 🗖 Q5
02	14 04
Vss ū 12	13 03
PIN	IAMES
S F	Address Inputs Programmable Chip Selects
	Data Output 5 V Power Supply Ground
vss · · · · ·	sround

2

DC OPERATING CONDITIONS AND CHARACTERISTICS

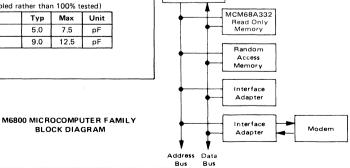
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (V _{CC} must be applied at least 100 µs before proper device operation is achieved.)	Vcc	4.5	5.0	5.5	Vdc
Input High Voltage	VIH	2.0		5.5	Vdc
Input Low Voltage	VIL	-0.3		0.8	Vdc
OC CHARACTERISTICS	<u></u>				
Characteristic	Symbol	Min		Max	Unit
Input Current (V _{in} = 0 to 5.5 V)	lin			2.5	μAdc
Output High Voltage (I _{OH} = −205 μA)	VOH	2.4			Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL	-		0.4	Vdc
Output Leakage Current (Three-State) (S = 0.8 V or \overline{S} = 2.0 V, V _{out} = 0.4 V to 2.4 V)	LO	-		10	μAdc
Supply Current (V _{CC} = 5.5 V, T _A = 0 ^o C)	lcc	-		80	mAdc

ABSOLUTE MAXIMUM RATINGS (See Note 1)

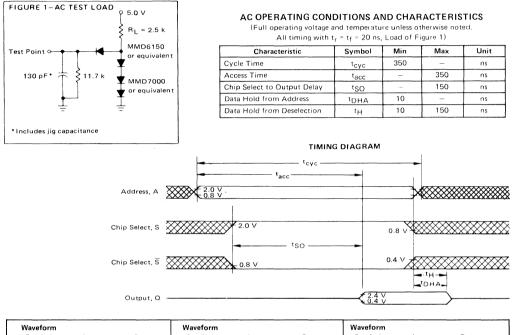
0500


Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

CAPACITANCE

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	5.0	7.5	pF
Output Capacitance	Cout	9.0	12.5	pF


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

MC6800

Microprocessor

2-204

Waveform Symbol	Input	Output	Waveform Symbol	Input	Output	Waveform Symbol	Input	Output
	MUST BE VALID	WILL BE VALID	****	DON'T CARE ANY CHANGE PERMITTED		\rightarrow		HIGH

MCM68A332 CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A332, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A332 should be submitted on an Organizational Data form such as that shown in Figure 3. (A "No-Connect" or "Don't Care" must always be the highest order Chip Select(5).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. IBM Punch Cards: A. Hexadecimal Format
 - B. Intel Format
 - C. Binary Negative-Postive Format
- 2. EPROMs-two 16K (MCM2716 or TMS2716) or four 8K (MCM2708)
- 3. Paper tape output of the Motorola M6800 software
- 4. Hand punched paper tape

PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 4096 bytes.

IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

Step Column

1	12	Byte "0" Hexadecimal equivalent for outputs
		Q7 through Q4 (Q7 = M.S.B.)
2	13	Byte "0" Hexadecimal equivalent for outputs
		Q3 through Q0 (Q3 = M.S.B.)
3	14-75	Alternate steps 1 and 2 for consecutive bytes.
4	77 - 79	Card number (starting 001).
5		Total number of cards must equal 128.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

	Binary	/ Data		Hexadecimal Character
0	0	0	0	0
0	0	0	1	1
0	Ο.	1 '	0	2
0	0	1	1	3
0	1	· . O	0	4
0	1	0	1	5
0	1	1	0	6
0	1 .	1	1	7
1	0	0	0	. 8
1	0	0	1	9
1	0	1	0	A
1	0	1	. 1 .	В
1	1	0	.0.	С
1	1	0	1	D
1	1	່ 1	0	E
1	1	1	1	F

PRE-PROGRAMMED MCM68A332P2, MCM68A332C2

The -2 standard ROM pattern contains sine-lookup and arctanlookup tables.

Locations 0000 through 2001 contain the sine values. The sine's first quadrant is divided into 1000 parts with sine values corresponding to these angles stored in the ROM. Sin $\pi/2$ is included and is rounded to 0.9999.

The arctan values contain angles in radians corresponding to the arc tangents of 0 through 1 in steps of 0.001 and are contained in locations 2048 through 4049.

Locations 2002 through 2047 and 4050 through 4095 are zero filled.

All values are represented in absolute decimal format with four digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the two least significant digits in the upper byte. The decimal point is assumed to be to the left of the most significant digit.

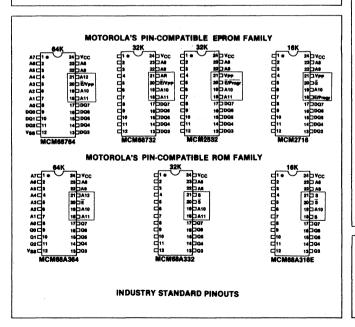
Example: Sin $(\frac{1}{1000} \frac{\pi}{2}) = 0.0016$ decimal				
Address	Con	tents		
0002	0000	0000		
0003	0001	0110		

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA MCM68A332 MOS READ ONLY MEMORY

			Motorola Use Only
Company			
			Quote
Part No		<u></u>	
Originator			Part No
			Specif. No
Phone No.			
Chip Select Options:		Active High	Active Low No-Connect
i ·	S1		
	S2	Ē	

2-206

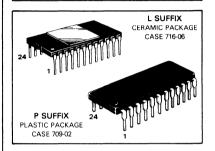


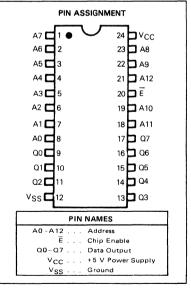
8192 X 8-BIT READ ONLY MEMORY

The MCM68A364/MCM68B364 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, and has compatibility with TTL. The addresses are latched with the Chip Enable input – no external latches required.

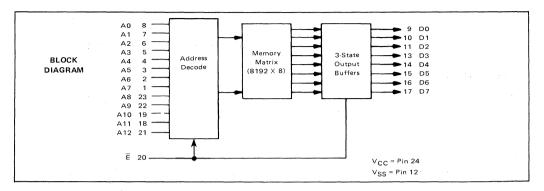
The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Automatic Power Down
- Low Power Dissipation 150 mW active (typical) 35 mW standby (typical)
- Single ±10% 5-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- TTL Compatible
- Maximum Access Time 250 ns MCM68B364 350 ns — MCM68A364
- Pin Compatible with 8K MCM68A308, 16K MCM68A316E, and 32K — MCM68A332 Mask-Programmable ROMs
- Pin Compatible with 24-pin 64K EPROM MCM68764




MCM68A364 MCM68B364

MOS


(N-CHANNEL, SILICON-GATE)

8192 X 8-BIT READ ONLY MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See note)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to $+7.0$	Vdc
Input Voltage	Vin	-0.5 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	· °C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage (VCC must be applied at least 100 μ s before proper device operation is achieved)	Vcc	4.5	5.0	5.5	Vdc
Input High Voltage	ViH	2.0		5.5	Vdc
Input Low Voltage	VIL	-0.5	_	0.8	Vdc

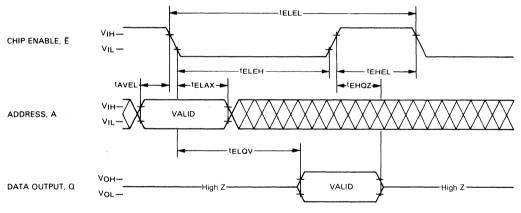
RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current (V _{in} = 0 to 5.5 V)		-10		10	<i>µ</i> Adc
Output High Voltage (IOH = -220 μ A)	∨он	2.4	-		Vdc
Output Low Voltage (IOL = 3.2 mA)	Vol	-		0.4	Vdc
Output Leakage Current (Three-State) (E = 2.0 V, Vout = 0 V to 5.5 V)	ILO.	-10		10	μAdc
Supply Current — Active* (Minimum Cycle Rate)	Icc	-	25	40	mAdc
Supply Current — Standby (E = VIH)	ISB		7	10	mAdc

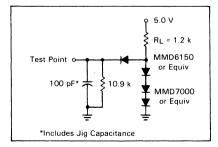
*Current is proportional to cycle rate.

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	C _{in}	8	pF
Output Capacitance	Cout	15	pF


AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

RECOMMENDED OPERATING CONDITIONS


(TA = 0 to 70°C, VCC = 5.0 V \pm 10%. All timing with tr = tr = 20 ns, load of Figure 1).

		MCM6	M68B364 MCM68A364		58A364	
Parameter	Symbol	Min	Max	Min	Max	Unit
Chip Enable Low to Chip Enable Low of Next Cycle (Cycle Time)	TELEL	375	-	450	-	ns
Chip Enable Low to Chip Enable High	^t ELEH	250	— .	300	Water 10	ns
Chip Enable Low to Output Valid (Access)	[†] ELQV	-	250		300	ns
Chip Enable High to Output High Z (Off Time)	^t EHQZ		60	-	75	ns.
Chip Enable Low to Address Don't Care (Hold)	^t ELAX	60		75		ns
Address Valid to Chip Enable Low (Address Setup)	tAVEL	0	-	0		ns
Chip Enable Precharge Time	^t EHEL	125	_	150	-	ns

TIMING DIAGRAM

FIGURE 1 - AC TEST LOAD

	WAVEFORMS							
Waveform Symbol	Input	Output						
	MUST BE VALID	WILL BE VALID						
7000	CHANGE FROM H TO L	WILL CHANGE FROM H TO L						
	CHANGE FROM L TO H	WILL CHANGE FROM L TO H						
	DON'T CARE ANY CHANGE PERMITTED	CHANGING. STATE UNKNOWN						
\rightarrow		HIGH						

t X X X X signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

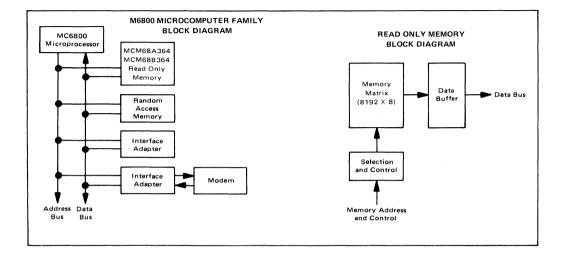
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A364/MCM68B364, the customer may specify the contents of the memory.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

- Magnetic Tape 9 Track, 800 bpi, odd parity written in EBCDIC character code. Motorola's R.O.M.S. format.
- 3. IBM Punch Cards
 - A. Hexadecimal Format
 - B. INTEL Hexadecimal Format


IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

	1	12	Byte "0" Hexadecimal equivalent for out- puts Q7 through Q4 (Q7 = M.S.B.)
	2	13	Byte "0" Hexadecimal equivalent for outputs Q3 through Q0 (Q3 = $M.S.B.$)
	3	14-75	Alternate steps 1 and 2 for consecutive bytes
	4	77-79	Card number (starting 001)
1.	5		Total number of cards must equal 256

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

	Binary Data				
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	A	
1	0	1	1	в	
1	1	0	0	с	
1	1	0	1	D	
1 1	1	1	0	E	
1	1	1	1	F	

PRE-PROGRAMMED MCM68A364P3/L3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight-digit decimal number with decimal pc int assumed to be to the left of the most-significant digit.

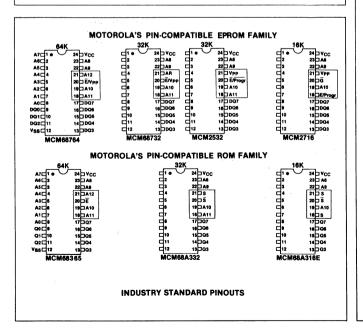
Antilog (base 10) are stored in locations 4096 through 8095. The \neq ,uments range from .000 through .999 incrementing in steps of 1/1000. Each antilog value is

represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: log10 (1.01) =	.004321	37 decimal
Address	Con	tents
4	0000	0000
5	0100	0011
6	0010	0001
7	0011	0111

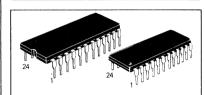

Advance Information

8192 × 8-BIT READ ONLY MEMORY

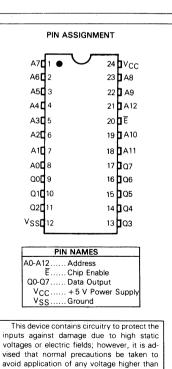
The MCM68365 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Chip Enable input and the memory content is defined by the user. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Fully Static Operation
- Automatic Power Down
- Low Power Dissipation 225 mW Active (Typical) 30 mW Standby (Typical)
- Single ± 10% 5-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Chip Enable
- TTL Compatible
- Maximum Access Time 250 ns MCM68365-25 350 ns — MCM68365-35
- Pin Compatible with 8K MCM68A308, 16K MCM68A316E, and 32K — MCM68A332 Mask-Programmable ROMs

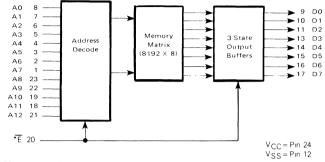


MCM68365


MOS

(N-CHANNEL, SILICON-GATE)

8192×8-BIT READ ONLY MEMORY


C SUFFIX FRIT-SEAL CERAMIC PACKAGE CASE 623 P SUFFIX PLASTIC PACKAGE CASE 709

maximum rated voltages to this high im-

pedance circuit.

*Active level defined by the user.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	V
Input Voltage	Vin	-0.3 to +7.0	V
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS

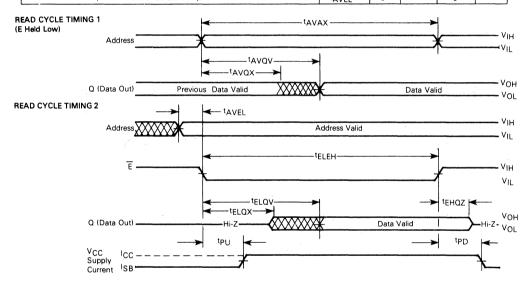
Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage (V _{CC} must be applied at least 100 μ s before proper device operation is achieved)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.0	_	5.5	V
Input Low Voltage	VIL	-0.3	-	0.8	v

RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current (V _{in} =0 to 5.5 V)	lin			10	μA
Output High Voltage ($I_{OH} = -205 \mu A$)	Voн	2.4	-	-	V
Output Low Voltage (IOL = 3.2 mA)	VOL	-	-	0.4	V
Output Leakage Current (Three-State) (E = 2.0 V, Vout = 0.4 V to 2.4 V)	LO	—	-	10	μA
Supply Current - Active (V _{CC} =5.5 V, T _A =0°C)	1CC		45	80	mA
Supply Current – Standby (V_{CC} =5.5 V, T_A =0°C, \overline{E} =V _{IH})	^I SB	-	6.0	15	mA

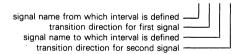
CAPACITANCE

(f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested)


Characteristic	Symbol	Max	Unit	l
Input Capacitance	C _{in}	7.5	pF	
Output Capacitance	Cout	12.5	рF	

AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

RECOMMENDED OPERATING CONDITIONS


(T_A = 0 to 70°C, V_{CC} = 5.0 V \pm 10%. All timing with t_f = t_f = 10 ns, load of Figure 1)

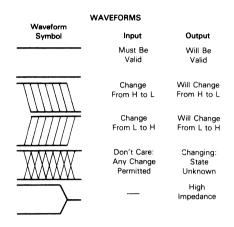
Parameter		MCM68365-25		MCM68365-35	
		Min	Max	Min	Max
Address Valid to Address Don't Care (Cycle Time when Chip Enable is held Active)	^t AVAX	250		350	-
Chip Enable Low to Chip Enable High	^t ELEH	250	-	350	
Address Valid to Output Valid (Access)	tAVQV	- 1	250		350
Chip Enable Low to Output Valid (Access)	^t ELQV	-	250	·	350
Address Valid to Output Invalid	^t AVQX	10	-	10	-
Chip Enable Low to Output Invalid	^t ELQX	10	-	10	-
Chip Enable High to Output High-Z	tEHQZ	0	70	0	80
Chip Selection to Power Up Time	tPU	0		0	-
Chip Deselection to Power Down Time	tPD	-	100	-	120
Address Valid to Chip Enable Low (Address Setup)	tavei	0		0	_

txxxx

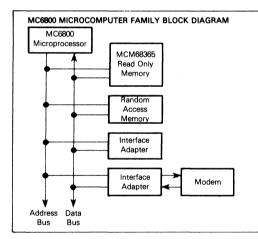
TIMING PARAMETER ABBREVIATIONS

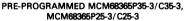
The transition definitions used in this data sheet are:

H = transition to high


L = transition to low

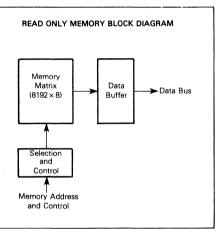
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)


TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must subply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device hever provides data later than time.

MCM68365

FIGURE 1 – AC TEST LOAD 5.0 V RL = 1.2 k MMD6150 or Equiv. 130 pF* 11.7 k * Includes Jig Capacitance



The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from .000 through .999 incrementing in steps of 1/1000. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: log10(1.01) = 0.00432137 decimal

Address	Contents				
4	0000	0000			
5	0100	0011			
6	0010	0001			
7	0011	0111			

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68365, the customer may specify the content of the memory and the method of enabling the outputs.

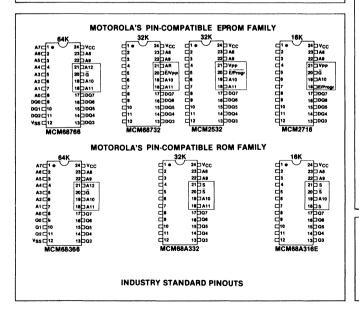
Information on the general options of the MCM68365 should be submitted on an Organizational Data form such as that shown in Figure 2. Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

- Magnetic Tape 9 track, 800 bpi, odd parity written in EBCDIC character code. Motorola R.O.M.S. format.
- 2. EPROMs four 16K (MCM2716, or TMS2716, or eight 8K (MCM2708), one 64K or two 32K)

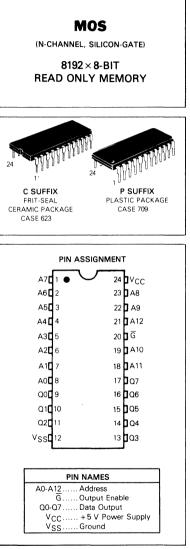
FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

	ORGANIZATIONAL DATA MCM68365 MOS READ ONLY MEMORY
Customer:	
Company	Motorola Use Only:
Part No	Quote:
Originator	Part No:
	Specif. No:
Enable Options:	
	Active High Active Low Chip Enable

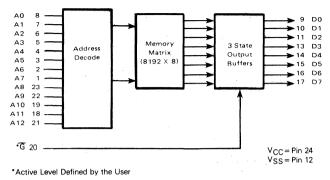
Advance Information


8192 × 8-BIT READ ONLY MEMORY

The MCM68366 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.


The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Output Enable input and the memory content is defined by the user. The Output Enable input deselects the output.

- Fully Static Operation
- Fast Data Valid Time for High Speed Microprocessors
- Low Power Dissipation 225 mW Active (Typical)
- Single + 10% 5-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Output Enable
- TTL Compatible
- Maximum Access Time 120 ns from Output Enable 250 ns from Address – MCM68366-25 350 ns from Address – MCM68366-35
- Pin Compatible with 8K and 32K Mask-Programmable ROMs
- Pin Compatible with MCM68766 64K EPROM



MCM68366

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	VCC	-0.3 to +7.0	Vdc
Input Voltage	V _{in}	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS

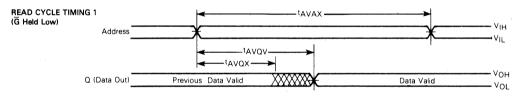
Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage (V _{CC} must be applied at least 100 μs before proper device operation is achieved)	Vcc	4.5	5.0	5.5	Vdc
Input High Voltage	Ýн	. 2.0	-	5.5	Vdc
Input Low Voltage	VIL	-0.3	-	0.8	Vuc

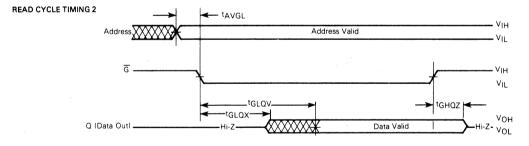
RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current (V _{in} =0 to 5.5 V)	lin	-		10	μAdc
Output High Voltage (I _{OH} = - 205µA)	Voн	2.4	-	-	Vdc
Output Low Voltage (IOL = 3.2 mA)	VOL	-		0.4	Vdc
Output Leakage Current (Three-State) ($\overline{G} = 2.0 \text{ V}$, $V_{out} = 0.4 \text{ V}$ to 2.4 V)	ILO.	-		10	μAdc
Supply Current (V _{CC} =5.5 V, T _A =0°C)	lcc	-	45	80 ·	mAdc

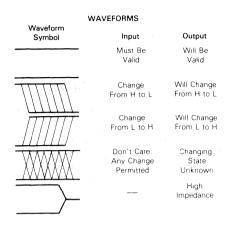
CAPACITANCE

(f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested)

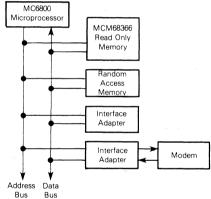

	Characteristic		 Symbol	Max	Unit
Input Capacitance			 C _{in}	7.5	pF
Output Capacitance		·	Cout	12.5	pF


AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

RECOMMENDED OPERATING CONDITIONS

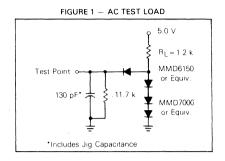

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 10\%$. All timing with $t_f = t_f = 10 \text{ ns}$, load of Figure 1)

Parameter	Symbol	MCM68366-25		MCM68366-35		Unit
	oymbol	Min	Max	Min	Max	
Address Valid to Address Don't Care (Cycle Time when Output Enable is Held Active)	[†] AVAX	250	-	350		ns
Address Valid to Output Valid (Access)	^t AVQV	-	250		350	ns
Output Enable Low to Output Valid (Access)	tGLQV	-	120		120	ns
Address Valid to Output Invalid	tavox	10	-	10	-	ns
Output Enable Low to Output Invalid	tGLOX	10		10	-	ns
Output Enable High to Output High-Z	tGHZQ	0	70	0	80	ns
Address Valid to Output Enable Low (Address Setup)	^t AVQL	0	-	0	-	ns

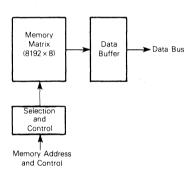


MCM68366

MC6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM



PRE-PROGRAMMED MCM68366P35-3/C35-3, MCM68366P25-3/C25-3


The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from 0.000 through 0.999 incrementing in steps of 1/1000. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

READ ONLY MEMORY BLOCK DIAGRAM

Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: log10 (1.01) = .00432137 decimal

Address	Contents				
4	0000	0000			
5	0100	0011			
6	0010	0001			
7	0011	0111			

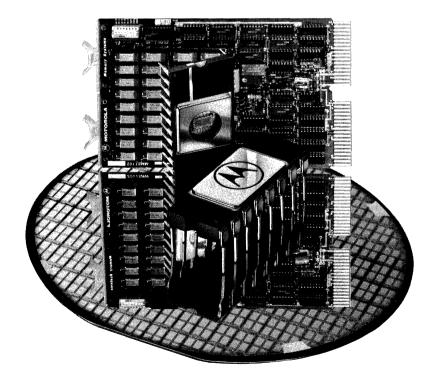
MCM68366

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68366, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68366 should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):


1. Magnetic Tape

- 9 track, 800 bpi, odd parity written in EBCDIC character Code. Motorola's R.O.M.S. format.
- EPROMs one 64K (MCM68764, MCM68766), two 32K (MCM2532), four 16K (MCM2716, or TMS2716), or eight 8K (MCM2708).

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA MCM68366 MOS READ ONLY MEMORY					
Customer:					
Company	Motorola Use Only:				
Part No	Quote:				
Originator	Part No:				
Phone No.	Specif. No:				
Enable Options:					
	Active High Active Low Output Enable				

CMOS Memories RAM, ROM

an an an an Albert a Albert an A Albert an A

3-2

MCM14505

64-BIT STATIC RANDOM ACCESS MEMORY

The MCM14505 64-bit random access memory is fully decoded on the chip and organized as 64 one-bit words (64 X 1). Medium speed operation and micropower supply requirements make this device useful for scratch pad or buffer memory applications where power must be conserved or where battery operation is required.

When used with a battery backup, the MCM14505 can be utilized as an alterable read-only memory, allowing the battery to retain information in the memory when the system is powered down, and allowing the battery to charge when power is applied. The micropower requirements of this memory allow quiescent battery operation for great lengths of time without significant discharging.

- Quiescent Current = 50 nA/package typical @ 5 Vdc
- Noise Immunity = 45% of VDD typical
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Single Read/Write Control Line
- Wired-OR Output Capability (3-State Output) for Memory Expansion
- Access Time = 180 ns typical at VDD = 10 Vdc
- Write Cycle Time = 275 ns typical at VDD = 10 Vdc
- Fully Buffered Low Capacitance Inputs
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

Rating	Symbol	Value	Unit	
DC Supply Voltage	VDD	-0.5 to +18	Vdc	
Input Voltage, All Inputs	Vin	-0.5 to V _{DD} + 0.5	Vdc	
DC Current Drain per Pin	1	10	mAdc	
Operating Temperature Range – AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

MAXIMUM RATINGS (Voltages referenced to Vss

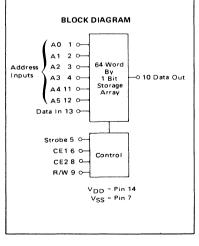
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_SS or V_DD).

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

64-BIT (64 x 1) STATIC RANDOM ACCESS MEMORY



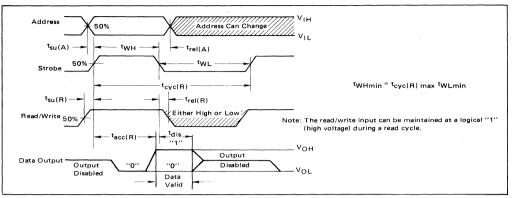
L SUFFIX CERAMIC PACKAGE CASE 632 P SUFFIX PLASTIC PACKAGE CASE 646

ORDERING INFORMATION

MC14XXXB ____ Suffix Denotes

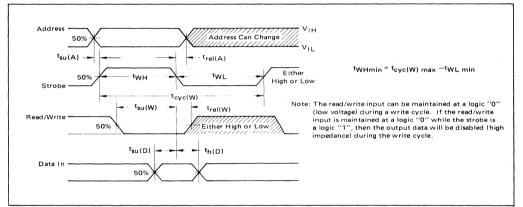
L Ceramic Package P Plastic Package A Extended Operating Temperature Range C Limited Operating Temperature Range

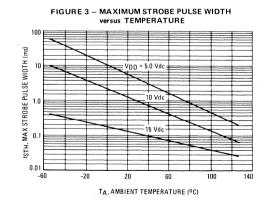
ELECTRICAL CHARACTERISTICS

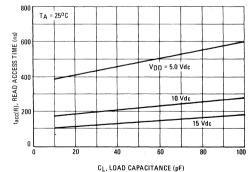

		VDD	Tlow*		25°C			T _{high} *		1
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05		0.05	Vdc
V _{in} V _{DD} or 0		10		0.05		0	0.05	-	0.05	
		15	-	0.05		0	0.05	-	0.05	
"1" Level	VOH	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
V _{in} 0 of V _{DD}		10	9.95	-	9.95	10	-	9.95	-	
		15	14.95	-	14.95	15	-	14.95		
Noise Immunity #	V _{N-L}		1							Vdc
(V _{out} * 0.8 Vdc)		5.0	1.5	-	1.5	2.25	-	1.4		
(∵V _{out} ≤ 1.0 Vdc)		10	3.0	-	3.0	4.50	-	2.9	manu	1
(∧V _{out} ≤ 1.5 Vdc)		15	4.5		4.5	6.75		4.4		
(∴V _{out} ≤ 0.8 Vdc)	V _{NH}	5.0	1.4	- 1	1.5	2.25	-	1.5	-	Vdc
(⊡V _{out} ≤ 1.0 Vdc)		10	2.9	-	3.0	4.50	-	3.0	-	
(⊴V _{out} ≤ 1.5 Vdc)		15	4.4		4.5	6.75	· · ·	4.5	-	ļ
Dutput Drive Current (AL Device)	юн									mAdc
(V _{OH} = 2.5 Vdc) Source		5.0	-1.2	-	-1.0	-1.7	-	-0.7	-	
(V _{OH} = 4.6 Vdc)	ľ	5.0	-0.25	-	-0.2	-0.36		-0.14	-	1
$(V_{OH} = 9.5 Vdc)$		10	-0.62		-0.5	-0.9		-0.35	_	1
(V _{OH} = 13.5 Vdc)		15	-1.8		-1.5	-3.5		-1.1	-	+
$(V_{OL} = 0.4 Vdc)$ Sink	¹ OL	5.0	0.3	-	0.25	0.35	-	0.18	-	mAdc
$(V_{OL} = 0.5 Vdc)$		10	0.9	-	0.75	1.2 4.5	-	0.50	-	
(V _{OL} = 1.5 Vdc)		15	2.2	-	1.7	4.5	-	1.2	-	
Dutput Drive Current (CL/CP Device)	юн									mAdc
$(V_{OH} = 2.5 \text{ Vdc})$ Source		5.0	-1.0	-	-0.8	-1.7		-0.6	-	
$(V_{OH} = 4.6 \text{ Vdc})$		5.0 10	-0.2 -0.5	-	-0.16 -0.4	-0.36 -0.9	-	-0.12 -0.3	_	
(V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)		15	-1.4		-0.4	-0.9	-	-0.3	_	
	<u> </u>	5.0		_	·····				_	mAdc
(V _{OL} = 0.4 Vdc) Sink (V _{OL} = 0.5 Vdc)	^I OL	5.0	0.2	_	0.15	0.35	_	0.1	_	mAdc
$(V_{OL} = 1.5 Vdc)$		15	3.9	_	0.5	4.5		0.4 0.6	_	1
Input Current (AL Device)	1.	15		±0.1		±0.00001	±0.1	0.0	± 1.0	μAdc
Input Current (CL/CP Device)	lin	15		± 0.1		±0.00001			± 14	µAdc µAdc
	lin				ł		±1.0			
nput Capacitance	Cin	-			-	5.0	7.5		-	pF
(V _{in} = 0)										
Quiescent Current (AL Device)	DD	5.0	-	5.0		0.050	5.0	-	150	μAdc
(Per Package)	N .	10 15	-	10 20	-	0.100	10 20	-	300	
	 					+			600	
Quiescent Current (CL/CP Device)	¹ DD	5.0	-	50	-	0.050	50	-	375	μAdc
(Per Package)		10	-	100		0.100	100	-	750	
	+	15		200	l	0.150	200		1500	+
Total Supply Current**†	ГΤ	5.0	$I_T = (1.28 \ \mu A/kHz) f + I_{DD}$ $I_T = (2.56 \ \mu A/kHz) f + I_{DD}$						μAdc	
(Dynamic plus Quiescent,		10								
Per Package) (CL = 50 pF on all outputs, all		15			iτ = (3	. 85 µA/kHz	ססי דדו			
buffers switching)			1							
Three-State Leakage Current	1-1-1	15		±0,1	1	+0.00001	± 0.1	1	. 2.0	1
(AL Device)	TL	15		±0.1	-	0.00001	± 0.1	-	±3.0	μAdc
Three-State Leakage Current		15	+	110	1	1.0.00001	110		+75	1
	I TL	1 1 5		±1.0		+0.00001	±1.0		± 7.5	µAdc

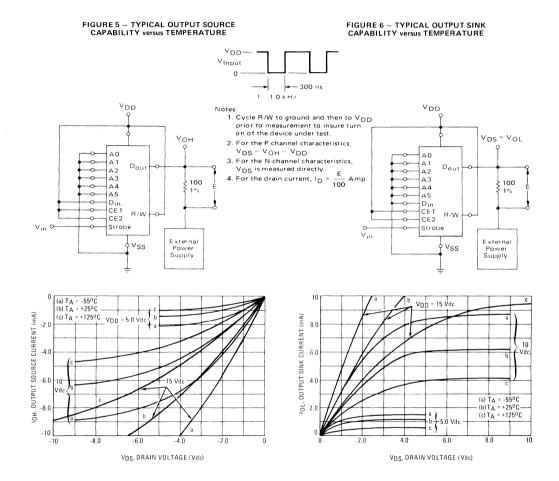
MCM14505

SWITCHING CHARACTERISTICS* (C)	$= 50 \text{ pF}$, $T_{\Lambda} = 25^{\circ}\text{C}$)
--------------------------------	--


Characteristic	Symbol	VDD	Min	Тур	Max	Unit
Dutput Rise Time	^t TLH		1			ns
$t_{TLH} = (2.43 \text{ ns/pF}) \text{ CL} + 58.5 \text{ ns}$		5.0	-	180	360	
$t_{TLH} = (1.08 \text{ ns/pF}) C_{L} + 36 \text{ ns}$		10		90	180	
tTLH = (0.72 ns/pF) CL + 39 ns		15	-	75	150	
Dutput Fall Time	^t THL					ns
$t_{THL} = (2.16 \text{ ns/pF}) C_{L} + 52 \text{ ns}$		5.0	-	160	320	
$t_{THL} = (0.96 \text{ ns/pF}) C_{L} + 32 \text{ ns}$		10	-	80	160	
tTHL = (0.69 ns/pF) CL + 33 ns		15		65	130	
Propagation Delay Time	^t acc(R)					ns
Read Access Time t _{acc(R)} = (1.4 ns/pF) C _L + 385 ns		5.0		455	750	
		10		210	400	
t _{acc(R)} = (10.7 ns/pF) C _L + 175 ns t _{acc(R)} = (0.5 ns/pF) C _L + 105 ns		15		130	300	
Strobe Down Time		15		130	300	
Strobe Down Time	tWL	5.0	500	100		ns
		10	125	50		
		15	95	75	_	
Address Satur Time		15	30	75	+	
Address Setup Time	t _{su}	5.0	300	-100		ns
		10	120	-100	1	
		15	90	-40		
		10	90	-23		
Data Setup Time	t _{su} (D)	5.0	200	70	_	ns
		5.0	75	25	_	
		15	55	25	_	
		15		20		
Read Setup Time	t _{su} (R)	5.0	070	90		ns
		5.0	270		_	
		10 15	60 45	20 15	_	
		15	45	15		
Write Setup Time	t _{su} (W)	5.0	400			ns
	i i	5.0		80	-	
		10 15	100 75	25 11	_	
Address Release Time		15	/3			
Address Release Time	t _{rel} (R)	5.0	75	15	_	ns
		10	25	10		
		15	20	5.0		
Data Hold Time		15	20	5.0		
	^t h(D)	5.0	50	0		ns
		10	15	0	-	
		15	10	0	_	
Read Release Time		10				
	^t rel(R)	5.0	0	-90	_	ns
		5.0 10	0	-25	_	
		15	0	-10	_	
Write Release Time	+ -1/14/1		+	+	+	ns
	^t rel(W)	5.0	0	5.0	_	115
		10	0	10	_	
		15	0	30	-	
Read Cycle Time	t(n)		t	+		ns
	^t cyc(R)	5.0	_	500	750	113
		10		200	400	
		15	_	150	300	
Nrite Cycle Time	t			+	+	nş
WITE CYCIE I IIIE	^t cyc(W)	5.0	-	440	700	113
		5.0 10	_	275	550	
		15	_	275	415	
Distant Dischla Dalau				200	415	+
Output Disable Delay	^t dis	5.0	1	200	600	ns
(10% Output Change into 1.0 kΩ Load)		5.0 10	_	200 80	600 200	


*The formula is for the typical characteristics only.





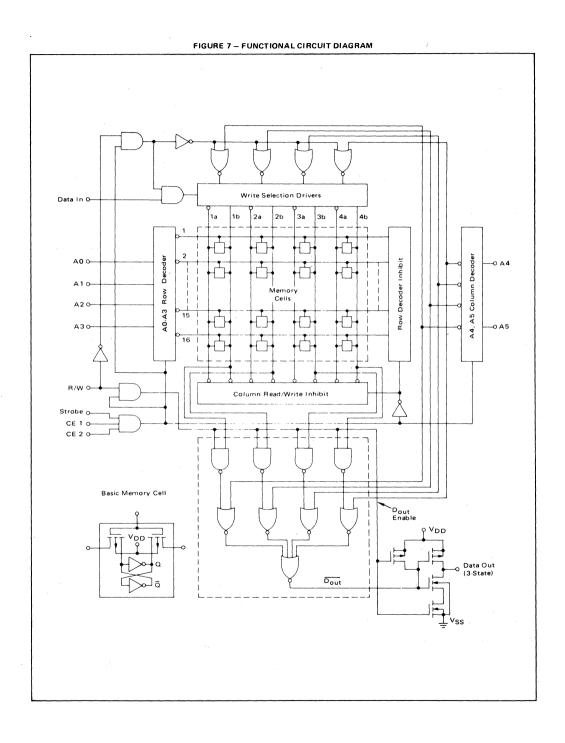


FIGURE 4 – TYPICAL READ ACCESS TIME versus LOAD CAPACITANCE

MCM14505

OPERATING CHARACTERISTICS

In considering the operation of the MCM14505 CMOS memory, refer to the functional circuit diagram of Figure 7 and timing diagrams shown in Figures 1 and 2. The basic memory cell is a cross-coupled flip-flop consisting of two inverter gates and two P-channel devices for read/write control. The push-pull cell provides high speed as well as low power.

During a read cycle, when the strobe line is high the write selection drivers are disabled and the data from the selected row is available on columns 1b, 2b, 3b, and 4b. The A4 and A5 address bits are decoded to select output data from one of the four columns. The output data is available on the data output pin only when the strobe and read/write lines are high simultaneously and after the read access time, tacc(R), has occurred (see Figure 1). Note that the output is initially disabled and always goes to the logic "O" state (low voltage) before data is valid. The output is in the highimpedance state (disabled) when the strobe line or the R/W line is in the low state. The memory is strobed for reading or writing only when the strobe, CE1, and CE2 are high simultaneously. The R/W line can be a dc voltage during a read or write cycle and need not be pulsed, as shown in the timing diagrams. For this case the R/W line should be a logic "1" (high) for reading and a logic "0" for writing

When the strobe line is high, the column read/write inhibit gates and the row decoder inhibit gates are disabled, the selected

row is in the low state, and the unselected 15 rows retain their logic "1" level due to the row capacitance that exists when the row decoder inhibit gates are disabled. This capacitive storage mechanism requires a maximum strobe width (see Figure 3) equal to the junction reverse bias RC time constant. When the strobe is returned to a logic "0" the rows are forced to V_{DD} by the row decoder inhibit gates (pullop devices). Similarly the column read/write inhibit gates (pullown devices) force the column lines to a logic "0" state.

Two column lines are associated with each memory cell in order to write into the cell. The write selection drivers are enabled when the R/W line is a logic "0" and the strobe line is a logic "1". The input data is written into the column selected by the column decoder. For instance, if a "1" is to be written in the memory cell associated with row 1 and column 1, then row 1 would be enabled (logic "0") while column 1b is forced high and column 1a is forced low by the write selection drivers. If a logic "0" is to be written into the cell, then column 1a is forced high and 1b is forced low. The data that is retained in the memory cell is the data that was present on the data input pin at the moment the strobe goes low when R/W goes high when the strobe is high.

APPLICATIONS INFORMATION

Figure 8 shows a 256-word by n-bit static RAM memory system The outputs of four MCM14505 devices are tied together to form 256 words by 1 bit. Additional bits are attained by paralleling the inputs in groups of four. Memories of larger words can be attained by decoding the most significant bits of the address and ANDing them with the strobe input.

Fan-in and fan-out of the memory is limited only by speed requirements. The extremely low input and output leakage current (100 nA maximum) keep the output voltage levels from changing significantly as more outputs are tied together. With the output levels independent of fan-out, most of the power supply range is available as logic swing, regardless of the number of units wired together. As a result, high noise immunity is maintained under all conditions.

Power dissipation is 0.1 μ W per bit at a 1.0-kHz rate for a 5.0-volt power supply, while the static power dissipation is 2.0 nW per bit. This low power allows non-volatile information storage when the memory is powered by a small standby battery.

Figure 9 shows an optional standby power supply circuit for making a CMOS memory "non-volatile". When the usual power fails, a battery is used to sustain operation or maintain stored information. While normal power supply voltage is present, the battery is trickle-charged through a resistor which sets the charging rate. Vg is the sustaining voltage, and V⁺ is the ordinary voltage from a power supply. V_{DD} connects to the power pin on the memory. Low-leakage diodes are recommended to conserve battery power.

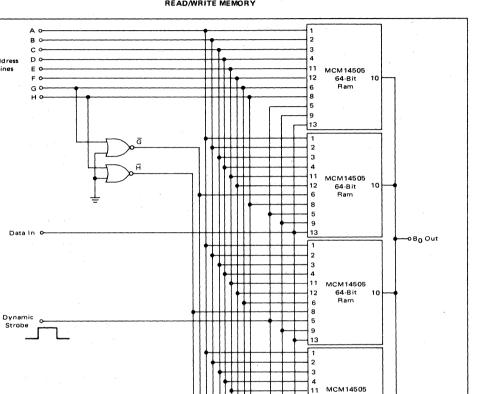
The memory system shown in Figure 8 can be interfaced directly with the other devices in the McMOS family. No external components are required.

At the inputs to the CMOS memory, TTL devices can interface directly if an open-collector logic gate such as the MC7407 is used as shown in Figure 10. Driver circuits are not required since the input capacitance is low (4.0 to 6.0 pF). The address, data, and read/write inputs do not need to be fast since they can be changed for the duration when the strobe pulse is low, t_{STL} (see Figures 1 and 2). For high-speed operation, a push-pull driver should be used if more than five strobe inputs must be driven at one time. One circuit of the type shown in Figure 10 can be used for every ten strobe.

Figures 11, 12, and 13 show methods of interfacing the memory output to TTL logic at various memory voltages. If a VDD of 5.0 volts is used for slow-speed, low-power applications, one transistor and one resistor must be used (Figure 11). The MCM14505AL will drive one low-power TTL gate directly.

If a V_{DD} of 10 volts is used, the output of the memory device can fan out to two low-power TTL gates (Figure 12a) or to a discrete transistor (Figure 12b). The discrete transistor circuit provides higher speed and/or high fan-out. A pulldown resistor at the base of the transistor is not needed for fast turn-off because of the push-pull output of the memory. Turn-on time of the transistor is much faster in Figure 12b since the voltage rise is only 0.75 volt. The low output capacitance of the MCM14505 means that several outputs can be wire-ORed without significantly degrading performance. The read access time is increased by only 20 ns typically for 16 outputs tied together when Figure 12b is used.

Five low-power TTL gates can be driven from the memory output if a V_{DD} of 15 volts is used (Figure 13a). Figure 13b shows the interface if a discrete transistor is used. The 1.0 kilohm resistor in the base is required to insure that not more than 10 mA flows through the output as listed in the maximum ratings. If a 2.0 kilohm collector resistor is used (fan-out = 3), the turn-on time of the transistor is only slightly faster than in the circuit shown in Figure 12b due to the lower output impedance when V_{DD} = 15 volts. The voltage at the memory data output has to rise to only 1.3 volts to insure driving a fan-out of three TTL devices.


If a 510-ohm collector resistor is used, 20 TTL loads may be driven. The read access time is increased about 20 ns when four memory outputs are tied together since the output voltage must rise to 3.7 volts before the transistor can sink the full $|O_L$ for a fan-out of 20 TTL devices. Almost any NPN transistor with a minimum beta of 15 can be used for the interface shown in Figures 11, 12 and 13.

The high source current from the push-pull output stage of the MCM14505 makes for a simpler interface circuit since a low source current memory requires a differential comparator to achieve highspeed operation. Address

Lines

Strobe

Read/Write o-

FIGURE 8 - CMOS 256-WORD BY n-BIT STATIC READ/WRITE MEMORY

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and

is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

64-Bit

10 Ram

12

6 8 5

9 13

TUTUT

111111111

Expand Vertically For n-Bits

1 1

1 1 ۱

Ì Ì

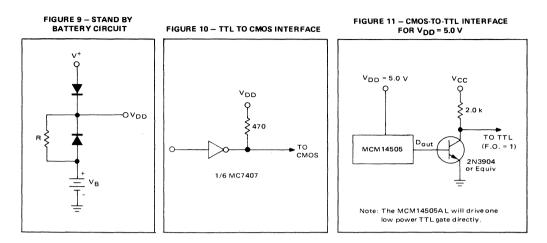
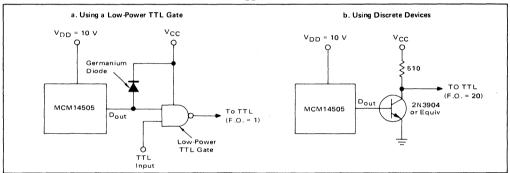
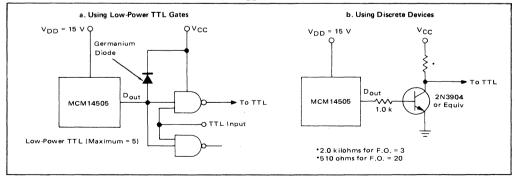




FIGURE 12 – CMOS-TO-TTL INTERFACE FOR V_{DD} = 10 V

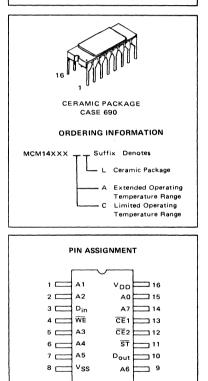
FIGURE 13 – CMOS TO TTL INTERFACE FOR V_{DD} = 15 V

256-BIT STATIC RANDOM ACCESS MEMORY

The MCM14537 is a static random access memory (RAM) organized in a 256 x 1-bit pattern and constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The circuit consists of eight address inputs (A_n), one data input (D_{in}), one write enable input (WE), one strobe input (ST), two chip enable inputs (CE_n), and one data output (D_{out}).

Using both chip enable inputs as extensions of the address inputs, a 10-bit address scheme may be employed. Four MCM14537 devices may be used to comprise a 1024-bit memory without additional address decoding. The CE and ST inputs are dissimilary designed to enable usage of the memory in a variety of applications. An output latch is provided on the chip for storing the data read or written into memory, making a data-out storage register unnecessary. The CE inputs control the data output for third-state (high output impedance) or active operation which makes the memory very useful in a bus oriented system. When CE2 is high the chip is fully disabled. When CE1 is high the output is in the third state but data can be written into the output latch during a read cycle. This enables the use of the memory for fast reading by using the CE1 input to enable the latch. The memory is also designed so that dc signals can operate the memory with no maximum pulse width required on the CE and ST lines.

Medium speed operation and micropower operation make the device useful in scratch pad and buffer applications where micropower or battery operation and high noise immunity are required.


- Quiescent Current = 0.5 μA/package typical @ 5 Vdc
- Noise Immunity = 45% of V_{DD} typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time = 700 ns typical @ VDD = 10 Vdc
- Fully Decoded and Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0.5 to +18	Vdc
Input Voltage, All Inputs	Vin	-0.5 to V _{DD} + 0.5	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range – AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	Tstg	-65 to +150	°c

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

256-BIT (256 x 1) STATIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{Out} be constrained to the range $V_{SS} \leqslant (V_{in} \mbox{ or } V_{Out}) \leqslant V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{SS} \mbox{ or } V_{DD}).$

3-12

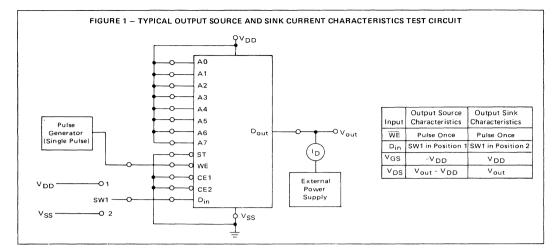
ELECTRICAL CHARACTERISTICS

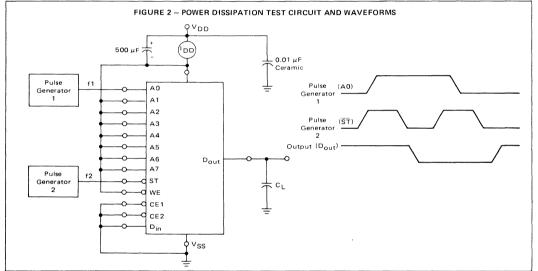
		VDD		w*		25 ⁰ C		т _h		
	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
O'' Level	VOL	5.0	-	0.05		0	0.05	-	0.05	Vdc
		10	-	0.05	-	0	0.05	-	0.05	
		15	-	0.05	-	0	0.05	-	0.05	
1'' Level	VOH	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc)
		10	9.95	~	9.95	10	-	9.95	-	
		15	14.95	-	14.95	15		14.95	-	
	VNL									Vdc
		5.0	1.5		1.5	2.25	-	1.4	-	
		10	3.0	-	3.0	4.50	-	2.9		
		15	4.5	-	4.5	6.75	-	4.4		
	VNH	5.0	1.4		1.5	2.25		1.5	-	Vdc
		10	2.9	-	3.0	4.50		3.0		
		15	4.4		4.5	6.75		4.5	-	
evice)	IOH									mAdc
ource	0,1	5.0	-1.2		1.0	-1.7		-0.7	-	
		5.0	-0.25		-0.2	-0.36	-	-0.14	-	
		10	-0.62		-0.5	-0.9		-0.35		
		15	-1.8	-	-1.5	-3.5		-1.1	-	
ink	101	5.0	0.64		0.51	0.88	-	0.36		mAdc
	.02		1							in in the
		15	1						-	
P Device)	1011									mAdc
	'OH	5.0	-1.0		0.0	17		0.6		mAdd
ource					1	1	1			
										[
		-	1	1_		1	1			
ink	10.									<u> </u>
IIIK	'OL			1						mAdc
				1						
	<u> </u>									+
					·					μAdc
:) 	lin	15		±1.0		±0.00001	±1.0		±14	μAdc
	Cin					5.0	7.5	-	-	pF
			1							1
e)		5.0	-	100		0.5	100	-	1800	μAdc
		10	-	200	-	1.0	200	~	3600	
		15		400	-	1.5	400	~	7200	1
evice)	מסי	5.0	-	100	-	0.5	100	-	1800	μAdc
		10	- 1	200	-	1.0	200	-	3600	1
		15	~	400		1.5	400	-	7200	
	Iт	5.0	1	•	lπ - (1	46 µA/kHz) f + 100	•		μAdc
	1 . 1	10			lπ = (2	91 µA/kHz) f + 100			1
		15								
ts, all										
		15		+01		1.0.00001	+ 0.1		+3.0	μAdc
			1		1				10.0	
	'ть	15		110		+0.00001	± 1.0		± 7.5	1
		15		±1.0		1 10.00001	1 1.0	-	1 1 / D	µAdc
		0" Level VOL 1" Level VOH VNL VNL VNH evice) IOH ource IOH ource IOH ource IOH evice) IOH ource IOH IDD ource IOH IDD IT ts, all ITL	Symbol Vdc 0" Level VOL 5.0 10 15 VUL 5.0 10 15 VVH 5.0 10 15 VNL 5.0 10 15 VNL 5.0 10 15 VNH 5.0 10 15 VNH 5.0 10 15 VNH 5.0 10 15 evice) IQH ource IQH INA IOL P Device) IQH ource IQH INA IOL INA IS INA IDD INA INA INA INA INA INA INA INA INA INA INA INA INA INA		Symbol Vde Min Max 0" Level V _{OL} 5.0 - 0.05 1" Level V _{OH} 5.0 4.95 - 1" Level V _{OH} 5.0 4.95 - 1" Level V _{OH} 5.0 4.95 - 1" Level V _{OH} 5.0 1.5 - VNL 5.0 1.5 - - VNH 5.0 1.4 - - ink 10L 5.0 -1.2 - ink 10L 5.0 -1.2 - ink 10L 5.0 -1.2 - ink 10L 5.0 -1.0 - ink 10L 5.0		Symbol Vdc Min Max Min Typ 0" Level V_{OL} 5.0 - 0.05 - 0 1" Level V_{OH} 5.0 4.95 - 0.05 - 0 1" Level V_{OH} 5.0 4.95 - 4.95 5.0 VNL 5.0 1.9.95 - 4.95 10 1.5 1.5 - 1.5 2.25 10 3.0 4.50 1.5 - 1.5 2.25 10 3.0 4.50 1.5 - 1.5 2.25 10 3.0 4.50 1.5 - 4.5 6.75 2.25 10 1.5 4.4 - 4.5 6.75 2.25 10 1.5 4.4 - 4.5 6.75 evice) IOH 5.0 -1.2 - -0.10 - 1.7 5.0 0.50 - 0.5 0.9 1.5 4.4 - 1.7 <t< td=""><td>Symbol Wite Min Was Min Typ Max 0'' Level VOL 5.0 0.05 0 0.05 1'' Level VOH 5.0 4.95 0.05 0 0.05 1'' Level VOH 5.0 4.95 4.95 5.0 VOH 5.0 4.95 4.95 5.0 VNL 5.0 1.5 14.95 10 VNL 5.0 1.5 1.5 2.25 VNL 5.0 1.4 4.5 6.75 VNH 5.0 1.4 4.5 6.75 vice) 10 2.9 - 3.0 4.50 ource IOH 5.0 -0.2 -0.2 -0.36 ink IOL 5.0 -1.0 </td><td>Symbol Vyde Min Max Min Typ Max Min 0" Level V_{OL} 5.0 - 0.05 - 0 0.05 - 1" Level V_{OH} 5.0 4.95 - 4.95 5.0 - 4.95 1" Level V_{OH} 5.0 4.95 - 4.95 5.0 - 4.95 1" Level V_{OH} 5.0 1.5 - 1.5 2.25 - 1.4 10 3.0 - 3.0 4.50 - 2.9 115 4.4 - 4.5 6.75 - 4.4 VNL 5.0 1.1.4 - 1.5 2.25 - 1.5 evice) 010 2.9 - 3.0 4.50 - -0.7 ource 10H 5.0 -1.2 - - -1.0 - - -0.7 ource 10D 5</td><td>Symbol VOD Nov Max Min Typ Max Min Max Max</td></t<>	Symbol Wite Min Was Min Typ Max 0'' Level VOL 5.0 0.05 0 0.05 1'' Level VOH 5.0 4.95 0.05 0 0.05 1'' Level VOH 5.0 4.95 4.95 5.0 VOH 5.0 4.95 4.95 5.0 VNL 5.0 1.5 14.95 10 VNL 5.0 1.5 1.5 2.25 VNL 5.0 1.4 4.5 6.75 VNH 5.0 1.4 4.5 6.75 vice) 10 2.9 - 3.0 4.50 ource IOH 5.0 -0.2 -0.2 -0.36 ink IOL 5.0 -1.0	Symbol Vyde Min Max Min Typ Max Min 0" Level V_{OL} 5.0 - 0.05 - 0 0.05 - 1" Level V_{OH} 5.0 4.95 - 4.95 5.0 - 4.95 1" Level V_{OH} 5.0 4.95 - 4.95 5.0 - 4.95 1" Level V_{OH} 5.0 1.5 - 1.5 2.25 - 1.4 10 3.0 - 3.0 4.50 - 2.9 115 4.4 - 4.5 6.75 - 4.4 VNL 5.0 1.1.4 - 1.5 2.25 - 1.5 evice) 010 2.9 - 3.0 4.50 - -0.7 ource 10H 5.0 -1.2 - - -1.0 - - -0.7 ource 10D 5	Symbol VOD Nov Max Min Typ Max Min Max Max

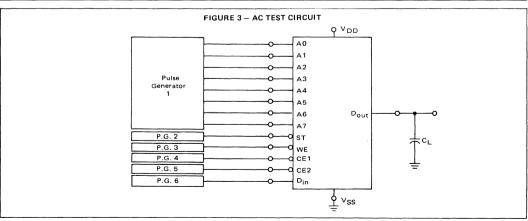
 $\label{eq:total_low} \begin{array}{l} {}^{\bullet} T_{low} = -55^o C \mbox{ for AL Device, } -40^o C \mbox{ for CL/CP Device, } \\ T_{high} = +125^o C \mbox{ for AL Device, } +85^o C \mbox{ for CL/CP Device, } \\ {}^{=} Noise \mbox{ immunity specified for worst-case input combination.} \end{array}$ Noise Margin for both "1" and "0" level = 1.0 Vdc min @ VDD = 5.0 Vdc 2.0 Vdc min @ VDD \rightarrow 10 Vdc

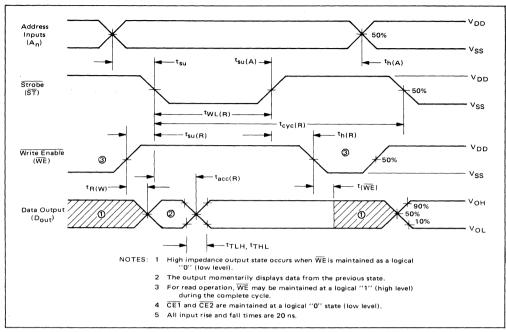
2.5 Vdc min @ V_{DD} = 15 Vdc

To calculate total supply current at loads other than 50 pF: $I_T(C_L) = I_T(50 \text{ pF}) + 1 \times 10^{-3} (C_L - 50) \text{ VD} Df$ where: I_T is in μA (per package), C_L in pF, V_DD in Vdc, and f in kHz is input frequency. "The formulas given are for the typical characteristics only at 25°C.


A.

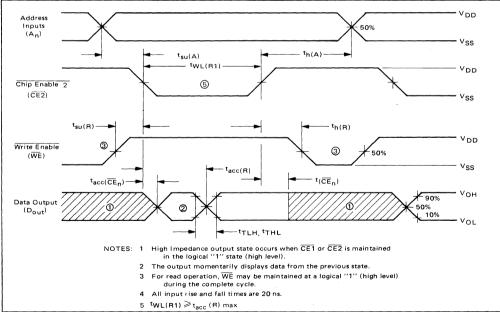

SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

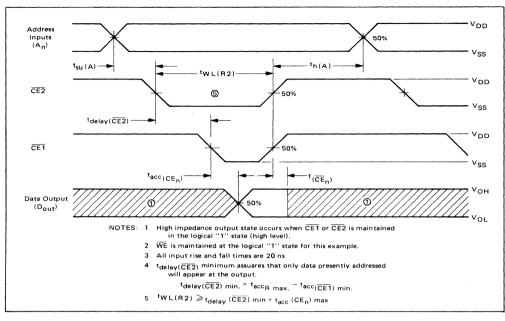

Characteristic	Figure	Symbol	VDD	Min	Тур	Max	Unit
Output Rise Time	3	TLH					ns
$t_{TLH} = (3.0 \text{ ns/pF}) C_{L} + 30 \text{ ns}$			5.0	-	180	360	
$t_{TLH} = (1.5 \text{ ns/pF}) C_{L} + 15 \text{ ns}$			10	-	90	180	
t _{TLH} = (1.1 ns/pF) C _L + 10 ns			15	-	65	130	
Output Fall Time	3	t THL					ns
t _{THL} = (1.5 ns/pF) C _L + 25 ns		}	5.0	-	100	200	
tTHL = (0.75 ns/pF) CL + 12.5 ns			10	-	50	100	1
tтнL = (0.55 ns/pF) CL + 9.5 ns			15	-	40	80	
Read Access Time from ST or CE2	4,5	tacc(R)					ns
t _{acc} = (1.4 ns/pF) C _L + 2480 ns		400(11)	5.0	400	2500	6000	
t _{acc} = (0.7 ns/pF) CL + 690 ns			10	150	700	2000	
t _{acc} = (0.5 ns/pF) CL + 393 ns		1	15	115	400	1500	
Output Enable Delay from CE1 or CE2	5,6	tacc(CEn)	5.0	70	300	900	ns
	0,0	"accicen/	10	25	100	300	115
т. — — — — — — — — — — — — — — — — — — —			15	20	70	225	
Come Time (and A to OT OTO				+			
Setup Time from An to ST or CE2	4, 5, 6, 7	t _{su} (A)	5.0	1800	600	-	ns
		1	10	600	200	-	
and all all all all all all all all all al			15	450	140	-	l
Hold Time from A _n to ST or CE2	4, 5, 6, 7	^t h(A)	5.0	600	200	-	ns
			10	240	80	-	
			15	180	55	-	ł
Data Hold Time	7	t _h (D)	5.0	1400	480	-	ns
		1	10	500	160	-	
			15	375	110	-	
Data Setup Time	7	t- (D)	5.0	3600	1200	-	ns
		^t su(D)	10	1800	600	_	113
			15	1350	420	_	
							+
Write Enable Hold Time	7	th(WE)	5.0	150	50	-	ns
			10	60	20	-	
			15	45	15	-	
Write Enable Setup Time	7	t _{su} (WE)	5.0	720	240	-	ns
			10	240	80	-	
			15	180	55	- 1	
Write Enable to Dout Disable**	4	tWE	5.0	720	240	-	ns
			10	240	80	- 1	
			15	180	55	-	
Strobe or CE2 Pulse Width When Reading	4, 5, 6	tWL(R)	5.0	1350	450	_	ns
a obe of O22 . also mail mich fredaing	4, 5, 6	WL(R)	10	450	150	_	115
			15	340	100	_	
	7			+			
Strobe, CE1 or CE2 Pulse Width When Writing	· /	tw∟(w)	5.0	2400	1200	-	ns
•			10	1260	600	-	
		+	15	945	420	-	1
Write Recovery Time	4	^t R(W)					ns
$t_W = (1.4 \text{ ns/pF}) C_L + 219 \text{ ns}$			5.0	70	240	720	1
$t_W = (0.7 \text{ ns/pF}) C_L + 70 \text{ ns}$			10	25	80	240	1
t _W = (0.5 ns/pF) C _L + 47.5 ns			15	20	55	180	
CE1 or CE2 to Dout Disable Delay**	6	tCEn	5.0	70	300	900	ns
			10	25	100	300	1
			15	20	70	225	
Read Setup Time	4,5	t _{su} (R)	5.0	0	-100	-	ns
	.,-	30(17)	10	ŏ	-40	- 1	
			15	o	-30	_	
Read Hold Time	A E		5.0	540	180	1	
	4,5	^t h(R)	1	240	1	-	ns
			10		60	-	
			15	180	45		
Read Cycle Time	4, 5	tcyc(R)	5.0	-	2500	6000	ns
		1	10	- ,	700	2100	1
			15	-	500	1575	1
Write Cycle Time	7	tcyc(W)	5.0	_	1400	4800	ns
•		Cyclin	10		700	2100	
	1	1	15		500	1575	1

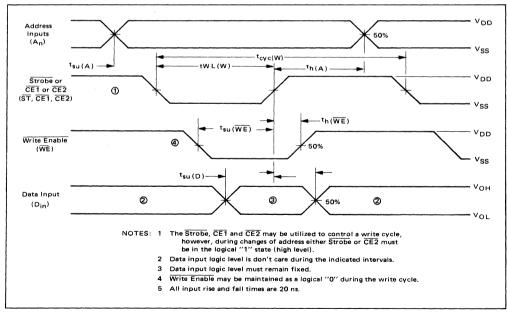

÷

* The formula given is for the typical characteristics only. **10% output change into a 1.0 kΩ load.









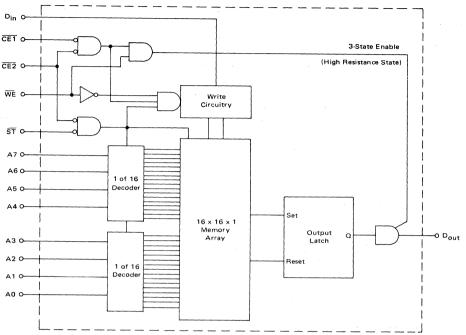
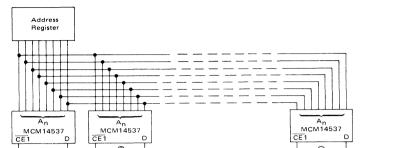

3

FIGURE 7 - WRITE CYCLE WAVEFORMS



FUNCTION	CE1	CE2	ST	WE	Din	Dout	COMMENTS
Address changing	×	x	1	x	x	R/A	D_{OUT} will be active if $\overline{CE1}$ and $\overline{CE2} = "0"$ and $\overline{WE} = "1"$.
valid	×	1	×	х	×	R	CE2 = "1", fully disables internal logic and output.
Address changing not valid	×	0	0	x	×	R/A	Changing address in this mode may result in altered data.
D _{out} disabled in	1	×	х	х	×	R	CE1 = "1" disables write cycle and D _{out} .
high resistance state	Х	1	х	×	X	R	The chip is fully disabled.
	x	x	×	0	×	R	\overline{WE} = "0" enables writing into memory if $\overline{CE1}$, $\overline{CE2}$, and \overline{ST} = "0".
D _{out} enabled in active state	0	0	x	1	×	A	If $\widetilde{ST} \approx "1"$, the output stores and reads the previous data from or written into memory.
	0	0	0	1	x	A	The output reads the present contents that are addressed.
Read addressed memory location into output latch.	1	0	0	1	×	R	The addressed location is read into output latch with output in the "R" state.
Disable reading	X	1	х	x	X	R	Address changing can take
from memory	X	×	1	×	X	R/A	place in this condition.
Write into memory	0	0	0	0	А	R	D _{in} is written into memory and into the output latch
Write disabled	1 X X X	X 1 X X	X X 1 X	X X X 1	X X X X	R R R/A R/A	$\frac{\overline{WE}}{WE} = "0" \text{ is a read enable.}$ $\overline{WE} = "0" \text{ is a write enable.}$

LOGIC/BLOCK DIAGRAM

R = High resistance state at Dout

 $\begin{array}{l} \mathsf{R} = \mathsf{High resistance state at D_{out} \\ \mathsf{A} = \mathsf{A} n active level of either V_{SS} or V_{DD} \\ \hline \mathsf{R}/\mathsf{A} = \mathsf{A} n \ \mathsf{R} \text{ or } \mathsf{A} \text{ condition depending on the don't care condition $X = \mathsf{Don't care condition (must be in the ``1'' or ``0'' state)$ \\ 1 = \mathsf{A} high level at V_{DD} \\ \hline \mathsf{0} = \mathsf{A} \text{ low level at V_{SS} \\ \end{array}$

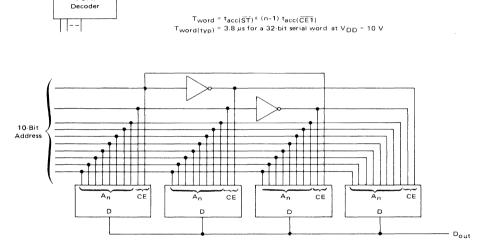
D

Output Bus

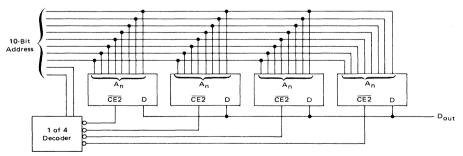
0

An MCM14537 CE1

D 2


An MCM14537

1


1 of n

D

TYPICAL APPLICATION FOR SERIAL WORDS UTILIZING BUS TECHNIQUES

Typical 1024 x 1 RAM Utilizing Four MCM14537's.

Typical Low Power 1024 x 1 RAM Utilizing Four MCM14537's.

256-BIT STATIC RANDOM ACCESS MEMORY

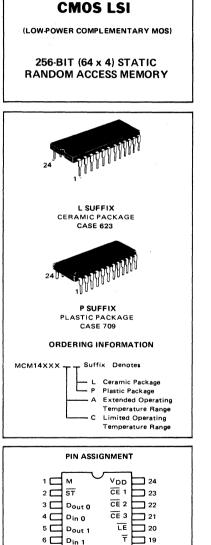
The MCM14552 is a static random access memory (RAM) organized in a 64 x 4 bit pattern. The three chip enable inputs can be used as extensions of the six address inputs, creating 9-bit address scheme. Eight MCM14552 devices may be used to comprise a 2048-bit memory (512 x 4) without additional address decoding.

The mode control (M) is used to change the control logic characteristic of the circuit. For example, with M high, the 3-state input (T) fully controls the 3-state characteristic of the output. With M low, the output 3-state characteristic is controlled by chip enable inputs (CE), write enable input (WE) and T.

The memory is designed so that dc signals may operate the memory, with no maximum pulse width restrictions.

Medium speed, micropower operation, and control flexibility make the device useful in scratch pad or buffer applications where battery operation or high noise immunity are required.

- Quiescent Current = 50 μA/package typical @ 5 Vdc
- Noise Immunity = 45% of VDD typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time = 700 ns typical @ VDD = 10 Vdc
- Fully Decoded and Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range


NOTE: Pin 20(LE)) must be connected to VSS

MAXIMUM RATINGS (Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0.5 to +18	Vdc
Input Voltage, All Inputs	Vin	-0.5 to V _{DD} + 0.5	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range – AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{turn} and V_{out} be constrained to the range $VSS \leq (V_{\text{in}} \text{ or } V_{\text{out}}) \leq V_{\text{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD.

A5 18

A4 -

A3 -

A2 |

A1 F

A0 13

17

] 16

] 15

14

7

8 🗖 Din 2

9

10

11 🗖 WE

12 C VSS

Dout 2

Dout 3

D_{in 3}

ELECTRICAL CHARACTERISTICS

Symbol	V _{DD} Vdc						T _{high} *		
	vuc	Min	Max	Min	Тур	Max	Min	Max	Unit
VOL	5.0		0.05	-	0	0.05	-	0.05	Vdc
	10	-	0.05	-	0	0.05		0.05	
	15	-	0.05	-	0	0.05	-	0.05	
VOH	5.0	4.95		4.95	5.0		4.95	-	Vdc
	10	9.95	-	9.95	10		9.95	-	
	15	14.95	-	14.95	15	-	14.95	-	
VIL									Vdc
	5.0	-	1.5	-	2.25		-	1.5	1
		-		-					
	15		4.0		6.75	4.0	-	4.0	
VIH									
		1		3.5		-			Vdc
		1	-	7.0	1			-	
	15	11.0	-	11.0	8.25		11.0	-	
юн			I						mAdc
		-1.2	-	-1.0				-	
		1	-				1	-	
		1	-						
			-			-			
^I OL			-		1	-		-	mAdc
		1	-	•				-	
	15	4.2	-	3.4	8.8		2.4	-	
юн									mAdc
		-1.0		-0.8	-1.7			-	
		~0.2	-	-0.16	-0.36	-			ļ
		-0.5	-	1		-		-	
	15	-1.4	-	-1.2	-3.5		-1.0	-	
^I OL	5.0	0.52	-	0.44	0.88		0.36	-	mAdc
	10	1.3		1.1	2.25	-	0.9	-	
	15	3.6	-	3.0	8.8	-	2.4	-	
lin	15	-	± 0.1		±0.00001	± 0.1	-	± 1.0	μAdc
lin	15		±1.0		±0.00001	±1.0	-	±14.0	μAdc
			_		5.0	7.5	-		pF
- 111									
	5.0	_	5.0	-	0.050	5.0		150	μAdc
- טטי		_	10	_		10	-		
	15		20	-	0.150	20	-		
100	5.0		E0		0.050	50			μAdc
יטטי									µAuc
			1						
1		<u> </u>	200						μAdc
''									^{µAdc}
									1
	15			·] - (5.	00 MM/NH2				
171	15		+0.1		1.0.00001	+01		+2.0	μAdc
i 'rt	15	-	± 0.1	-	0.0001	± 0.1	-	±3.0	Auc Auc
<u> </u>	15		.10		0.00001	.10		175	+
TL	15	-	±1.0	-	1+0.00001	±1.0	-	±/.5	μAdc
	V _I н ^I он ^I оL	15 VOH 5.0 10 VIL 5.0 10 VIL 5.0 10 VIH 5.0 10 IOH 5.0 5.0 10 IOH 5.0 5.0 10 IOL 5.0 5.0 10 IOL 5.0 5.0 10 IOH 5.0 5.0 10 IOH 5.0 5.0 10 IOL 5.0 10 IOL 5.0 10 IOL 5.0 10 IDD 5.0 10 IDD 5.0 10 IDD 5.0 10 IS 15 IDD 5.0 10 IT 5.0 IT 5.0	15 - V _{OH} 5.0 4.95 10 9.95 15 14.95 V _{IL} 5.0 - 10 - - 15 - - V _{IL} 5.0 - 10 - - V _{IH} 5.0 - ¹ OH 5.0 - ¹ OL 5.0 - ¹ OH 5.0 - ¹ OH 5.0 - ¹ OH 5.0 - ¹ OH 5.0 - ¹ OL 5.0 0.52 ¹ O - 1.3 ¹ S - - ¹ In 15 - ¹ DD 5.0 - ¹ DD 5.0 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c } 15 & - & 0.05 & - \\ \hline V_{OH} & 5.0 & 4.95 & - & 4.95 \\ 10 & 9.95 & - & 9.95 \\ 15 & 14.95 & - & 14.95 \\ \hline V_{IL} & 5.0 & - & 1.5 & - \\ 10 & - & 3.0 & - \\ 15 & - & 4.0 & - \\ 15 & - & 4.0 & - \\ \hline V_{IH} & 5.0 & 3.5 & - & 3.5 \\ 10 & 7.0 & - & 7.0 \\ 15 & 11.0 & - & 11.0 \\ \hline V_{IH} & 5.0 & -0.25 & - & -0.2 \\ 5.0 & -0.25 & - & -0.2 \\ 10 & -0.62 & - & -0.5 \\ 15 & -1.8 & - & -1.5 \\ \hline I_{OL} & 5.0 & 0.64 & - & 0.51 \\ 10 & 1.6 & - & 1.3 \\ 15 & 4.2 & - & 3.4 \\ \hline I_{OH} & 5.0 & -1.0 & - & -0.8 \\ 5.0 & -0.2 & - & -0.16 \\ 10 & -0.5 & - & -0.4 \\ 15 & -1.4 & - & -1.2 \\ \hline I_{OL} & 5.0 & 0.52 & - & 0.44 \\ 15 & -1.4 & - & -1.2 \\ \hline I_{OL} & 5.0 & 0.52 & - & 0.44 \\ 15 & -1.4 & - & -1.2 \\ \hline I_{OL} & 5.0 & 0.52 & - & 0.44 \\ 15 & -1.4 & - & -1.2 \\ \hline I_{OL} & 15 & - & \pm 0.1 & - \\ \hline I_{DD} & 5.0 & - & 5.0 & - \\ 10 & - & 10 & - \\ 15 & - & 20 & - \\ \hline I_{DD} & 5.0 & - & 5.0 & - \\ 10 & - & 100 & - \\ 15 & - & 200 & - \\ \hline I_{T} & 15 & - & \pm 0.1 & - \\ \hline I_{T} & 15 & - & \pm 0.1 & - \\ \hline I_{T} & 15 & - & \pm 0.1 & - \\ \hline I_{T} & 15 & - & \pm 0.1 & - \\ \hline I_{T} & 5.0 & - & 5.0 & - \\ \hline I_{T} & 5.0 & - & 5.0 & - \\ 10 & - & 100 & - \\ 15 & - & 200 & - \\ \hline I_{T} & 5.0 & - & 5.0 & - \\ \hline $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $\label{eq:total_total_total} \begin{array}{l} {}^{\bullet}T_{1ow} = -55^{o}C \mbox{ for AL Device, } -40^{o}C \mbox{ for CL/CP Device, } \\ T_{high} = +125^{o}C \mbox{ for AL Device, } +85^{o}C \mbox{ for CL/CP Device, } \\ {}^{\#}Noise \mbox{ immunity specified for worst-case input combination.} \end{array}$

Noise Margin for both "1" and "0" level = 1.0 Vdc min @ V_{DD} = 5.0 Vdc 2.0 Vdc min @ V_{DD} = 10 Vdc 2.5 Vdc min @ V_{DD} = 15 Vdc

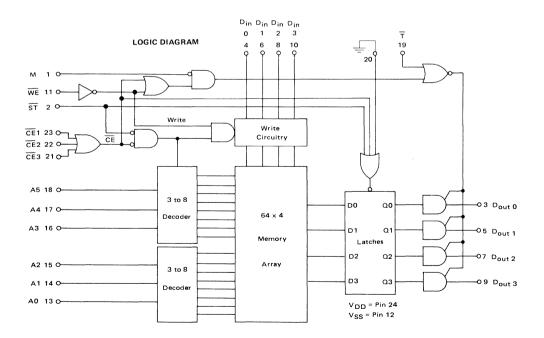
⁺To calculate total supply current at loads other than 50 pF: $I_T(C_L) = I_T(50 \text{ pF}) + 4 \times 10^{-3} (C_L - 50) \text{ V}_{DD}f$

where: |T| is in μA (per package), C_L in pF, V_{DD} in Vdc, and f in kHz is input frequency. **The formulas given are for the typical characteristics only at 25^oC.

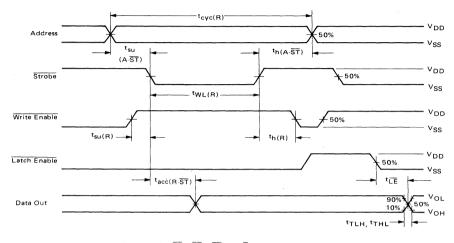
3

SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Figure	Symbol	VDD	Min	Тур	Max	Unit
Output Rise Time	1	t tlh					ns
tтцн = (3.0 ns/pF) Сц + 30 ns			5.0	-	180	360	
tTLH = (1.5 ns/pF) CL + 25 ns			10	-	90	180	
$t_{TLH} = (1.1 \text{ ns/pF}) C_{L} + 10 \text{ ns}$			15	-	65	130	
Output Fall Time	1	^t THL					ns
tTHL = (1.5 ns/pF) CL + 25 ns		1	5.0	-	100	200	
tTHL = (0.75 ns/pF) CL + 12.5 ns			10	-	50	100	
tтнц = (0.55 ns/pF) CL + 9.5 ns			15	-	40	80	
Read Cycle Time	1, 2	tcvc(R)	5.0	-	2000	6000	ns
			10		750	2200	
			15	-	500	1650	
Write Cycle Time	3,4	t _{cyc} (W)	5.0	-	1200	3600	ns
		-,	10	_	750	2200	
			15	- 1	500	1650	
Address to Strobe Setup Time	1,3	t _{su} (A-ST)	5.0	1500	500	_	ns
,		30(74-017	10	450	150	-	
			15	350	120	_	
Strobe to Address Hold Time	1,3	th(ST-A)	5.0	150	50	_	ns
	.,-	11(31-A)	10	100	0	_	
			15	75	0	_	
Address to Chip Enable Serup Time	2,4	t _{su} (A-ĈĒ)	5.0	1800	600	_	ns
		SU(A-CE)	10	600	200	_	
			15	450	150		
Chip Enable to Address Hold Time	2,4	th(CE-A)	5.0	450	150	_	ns
		HIGE-AI	10	300	100	_	
			15	225	75		
Strobe or Chip Enable Pulse Width When Reading	1,2	tWL(R)	5.0	1800	450	-	ns
errobe of only Enable False Water When Heading	., -	WL(R)	10	450	150	_	115
			15	350	100	_	
Strobe or Chip Enable Pulse Width When Writing	3,4	twL(w)	5.0	3600	1200	_	ns
on obe of only enable faile that then then g	0, 1	-VVL(VV)	10	1800	600	_	113
			15	1350	400	_	
Read Setup Time	1	t _{su} (R)	5.0	0	-100		ns
		su(R)	10	o	-40	_	113
			15	0	-30	_	
Read Hold Time	1	th(B)	5.0	540	180	_	ns
		(H)	10	240	60		113
			15	180	45	-	
Data Setup Time	3,4	+ 101	5.0	1800	600		ns
	5,4	^t su(D)	10	600	200	_	115
			15	450	150	_	
Data Uald Time		-					
Data Hold Time	3,4	^t h(D)	5.0	600	200	-	ns
	1	1	10	150	50	-	
	1	1	15	120	30	-	

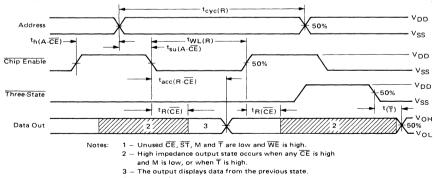

*The formula given is for the typical characteristics only.

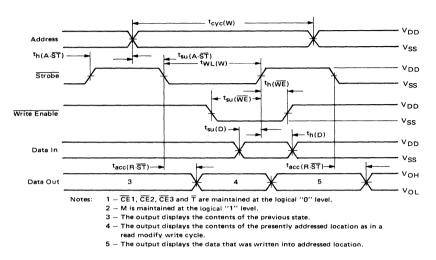
(continued)


Characteristic	Figure	Symbol	VDD	Min	Тур	Max	Unit
Write Enable Setup Time	3,4	t _{su} (WE)	5.0	720	240		ns
			10	240	80	_	
			15	180	55	-	
Write Enable Hold Time	3,4	th(WE)	5.0	150	50	-	ns
			10	60	20	-	
			15	45	15		
Read Access Time from Strobe	1,3	tacc(R-ST)	5.0	-	2000	6000	ns
			10		700	2100	
			15	_	350	1600	
Read Access Time from Chip Enable	2	tacc(R-CE)	5.0	-	2100	6300	ns
			10	-	750	2250	
			15	_	400	1700	
Output Enable/Disable Delay from Chip Enable or	2,4	tR(CE),	5.0		400	1200	ns
Write Enable		tR(WE)	10	_	200	600	
			15	-	150	450	
Three-State Enable/Disable Output Delay	2	t(T)	5.0		400	1200	ns
		,	10	-	160	480	
			15	-	120	360	
Latch to Output Propagation Delay	1	tLE	5.0	-	500	1500	ns
			10	-	200	600	
			15	-	150	450	

SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}$, $T_A = 25^{\circ}C$) (continued)

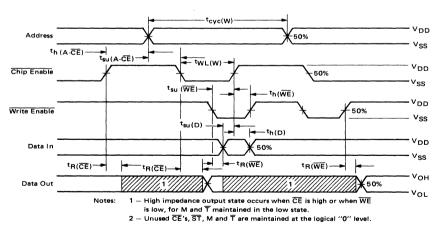
*The formula given is for the typical characteristics only.


3

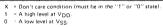

FIGURE 1 - READ CYCLE WAVEFORMS UTILIZING STROBE TO ACCESS MEMORY

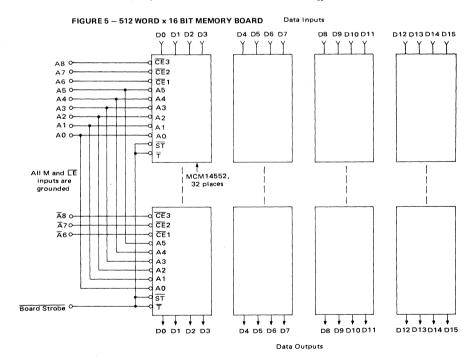
Notes: $1 - \overline{CE}1, \overline{CE}2, \overline{CE}3$ and \overline{T} are low, M is high. $2 - \overline{WE}$ may be held high during the complete read cycle.

FIGURE 2 - READ CYCLE WAVEFORMS UTILIZING CHIP ENABLE TO ACCESS MEMORY



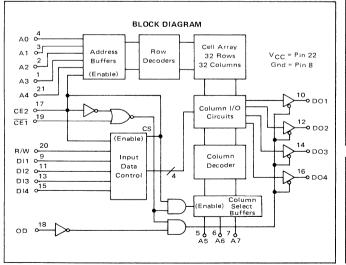
4 - t_{WL(R)} ≥ t_{acc(R-CE)max}.


FIGURE 3 - WRITE CYCLE WAVEFORMS UTILIZING STROBE



TRUTH TABLE

Function	CE 1	CE 2	CE 3	Ŧ	LĒ	м	ST	WE	Din	Dout	Comments
Address	x	X	х	×	×	×	1	x	×	R/A	Dout will be active if all
Changing	х	×	1	х	X	X	X	X	х	R/A	CE = 0, T = 0 and WE = 1
Valid	х	1	x	×	x	×	X	X	х	R/A	orif M = 1 and T = 0
	1	X	х	x	х	×	x	x	х	R/A	
Address Changing Not Valid	0	0	0	×	×	×	0	×	×	R/A	D _{out} will be active if T = 0 and WE = 1 or if M = 1 and T = 0
Dout Disabled											
(in high resistance state)	х	X	1	х	X	0	x	×	×	R	Disables write circuitry
	х	1	x	x	×	0	x	X	X	R	
	1	×	х	x	x	0	×	×	х	R	
	x	X	х	1	X	×	×,	×	х	R	T = 1 always disables Dout
	×	×	×	×	×	0	×	0	×	R	M = 0 and write operation disables Dout
Dout Enabled	0	0	0	0	×	×	×	1	х	A	Read operation, Dout activ
(in active state)	×	×	х	0	×	1	×	×	х	A	Read or write, Dout active
Read Addressed Memory Location Into Output Latch	0	0	0	×	0	×	0	×	×	R/A	If WE = 0, D _{in} = D _{out}
Disable Reading	×	×	1	х	×	×	х	×	х	R/A	
From Memory	х	1	х	х	x	×	×	×	x	R/A	
	1	×	х	х	×	×	x	×	х	R/A	
	х	×	х	х	×	×	1	×	х	R/A	
	X	×	х	Х	X	×	X	0	х	R/A	
Write Into Memory	0	0	0	х	х	×	0	0	A	R/A	
Write Disabled	X	×	1	х	X	x	X	×	х	R/A	
	х	1	х	х	×	×	×	×	×	R/A	
	1	×	х	х	×	×	x	×	х	R/A	
)	х	×	х	х	X	×	1	×	х	R/A	
	X	X	х	X	X	×	х	1	x	R/A	
Output Latch Enabled	0	0	0	×	0	×	0	х	х	R/A	
Output Latch Disabled	х	×	1	x	×	×	×	×	х	R/A	
	х	1	х	х	×	×	×	×	×	R/A	
	1	×	х	х	×	×	×	·×	×	R/A	}
	×	х	х	х	1	×	×	×	х	R/A	
	X	х	х	х	X	×	1	×	X	R/A	
R = High resistance A = An active level i R/A = An R or A conc	of either \	VDD or Ve		are condi	tion.	1	= Don't ca = A high I = A low le	evel at V _D	D-	be in the	"1" or "0" state).


256 × 4 BIT STATIC RAM

The MCM5101 family of CMOS RAMs offers ultra low power and fully static operation with a single 5-volt supply. The CMOS 1024-bit devices are organized in 256 words by 4 bits. Separate data inputs and data outputs permit maximum flexibility in bus-oriented systems. Data retention at a power supply as low as 2.0 volts over temperature readily allows design into applications using battery backup for nonvolatility. The MCM5101 is fully static and does not require clocking in standby mode.

The MCM5101 is fabricated using the Motorola advanced ionimplanted, silicon-gate technology for high performance and high reliability.

- Low Standby Power
- Fast Access Time
- Single +5.0 Volt Supply
- Fully TTL Compatible All Inputs and Outputs
- Three-State Output
- Fully Static Operation
- Data Retention to 2.0 Volts
- Direct Replacement for: Intel 5101 Series
 AMI S5101 Series
 Hitachi HM435101 Series
- Pin Replacement for Harris HM6501 Series

Type Number	Typical Current @2 V (μA)	Typical Current @ 5 V (μA)	Max Access (ns)
MCM51L01C45, P45	0.14	0.2	450
MCM51L01C65, P65	0.14	0.2	650
MCM5101C65, P65	0.70	1.0	650
MCM5101C80, P80	_	10	800

A2 🕻	2	21	DA4
A1 [3	20	D R/W
A0 [4	19	
A5 🕻	5	18	DOD
A6 🕻	6	17	CE2
A7 C	7	16	DO4
GND	8	15	D D14
DI1	9	14	DO3
D01 [10	13	DI3
D12	11	12	DO2

TRUTH TABLE												
CE1	CE2	OD	R/W	Din	Output	Mode						
н	Х	Х	Х	Х	High-Z	Not Selected						
х	L	Х	х	Х	High-Z	Not Selected						
х	х	н	н	х	High-Z	Output Disabled						
L	н	н	L	X	High-Z	Write						
L	н	L	L	X	Din	Write						
L	н	L	н	X	Dout	Read						

DS9828/9-80

MCM5101 MCM51L01

CMOS

(COMPLEMENTARY MOS)

1024-BIT STATIC RANDOM ACCESS MEMORY

MAXIMUM RATINGS (Voltages referenced to VSS Pin 8)

Rating	Symbol	Value	Unit
DC Supply Voltage	Vcc	-0.5 to +7.0	V
Voltage on Any Pin	Vin	-0.3 to V _{CC} +0.3	V
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	v
	Vss	0	0	0	
Logic 1 Voltage, All Inputs	VIH	2.2		V _{CC} +0.3	V
Logic 0 Voltage, All Inputs	VIL	-0.3		0.65	V

DC CHRACTERISTICS

Characteristic	Symbol		1CM511	.01-65		ACM51		P	Unit		
		Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	
Input Current	lin ⁽²⁾	-	5.0	-		5.0	-	-	5.0	. –	nA
Input High Voltage	VIH	2.2		V _{CC} +0.3	2.2	-	V _{CC} +0.3	2.2		V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.3	-	0.65	-0.3		0.65	-0.3		0.65	V
Output High Voltage ($I_{OH} = -1.0 \text{ mA}$)	∨он	2.4	-	-	2.4	-	-	2.4		-	V
Output Low Voltage (IOL = 2.0 mA)	VOL	-	-	0.4			0.4	-	·	0.4	٧
Output Leakage Current (CE1=2.2 V, VOL=0 V to VCC)	1 _{LO} (2)		-	± 1.0		·	± 1.0	-	-	± 2.0	μΑ
Operating Current ($V_{in} = V_{CC}$, except CE1 \leq 0.65 V, outputs open)	ICC1	_	9.0	22		9.0	22	-	11	25	mA
Operating Current (V _{in} =2.2 V, Except CE1≤0.65 V, outputs open)	ICC2	_	13	27	-	13	27	-	15	30	mA
Standby Current (CE2≤0.2 V, V _{in} =0 V or V _{CC})	^I CCL ⁽²⁾⁽⁴⁾	-	-	10	-	-	200	-	-	500	μΑ

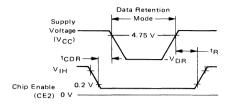
CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V periodically sampled rather than 100% tested)

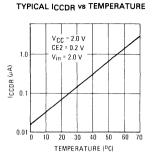
Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (Vin=0 V)	Cin	4.0	8.0	pF
Output Capacitance (V _{out} =0 V)	Cout	8.0	12.0	рF

LOW VCC DATA RETENTION CHARACTERISTICS (Excluding MCM5101-80)

Parameter	Test Co	Symbol	Min	Typ ⁽¹⁾	Max	Unit	
V _{CC} for Data Retention			VDR	2.0	-	— .	V
MCM51L01-45, -65 Data Retention Current	CE2≤0.2 V	V _{DR} = 2.0 V	ICCDR1	-	0.14	10	μA
MCM5101-65 Data Retention Current		$V_{DR} = 2.0 V$	ICCDR2		0.70	200	μA
Chip Deselect to Data Retention Time			^t CDR	0	-		ns
Operation Recover Time			tR	^t RC ⁽³⁾	-	-	ns

Notes:


1. Typical values are $T_A = 25$ °C and nominal supply voltage


2. Current through all inputs and outputs included in ICCL measurement

3. t_{RC} = Read Cycle Time 4. Low current state is for CE2=0 only

MCM5101•MCM51L01

LOW VCC DATA RETENTION WAVEFORM

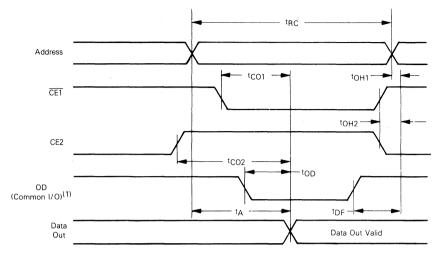
AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

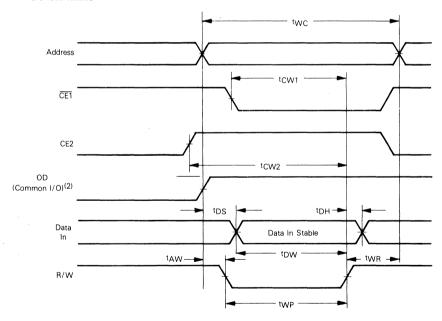
Input Pulse Levels+0.65 V to 2.2 V	
Input Rise and Fall Times	

Output Load	1 TTL	Gate and $C_L = 100 \mu$	ъF
Timing Measurement Reference Level.		1.5	V

READ CYCLE


Parameter	Symbol	мсм5	1L01-45		1L01-65 5101-65	мсмя	5101-80	Unit
•		Min	Max	Min	Max	Min	Max	1
Read Cycle	tRC	450	-	650	-	800	-	ns
Access Time	tд	-	450	-	650	-	800	ns
Chip Enable (CE1) to Output	tCO1	-	400	-	600	-	800	ns
Chip Enable (CE2) to Output	tCO2		500	-	700	-	850	ns
Output Disable to Output	top		250	-	350	-	450	ns
Data Output to High-Z State	tDF	0	130	0	150	0	200	ns
Previous Read Data Valid with Respect to Address Change	tOH1	0	-	0	-	0	_	ns
Previous Read Data Valid with Respect to Chip Enable	tOH2	0	-	0	-	0	-	ns

WRITE CYCLE


Parameter	Symbol	мсм5	1L01-45		1L01-65 5101-65	мсме	MCM5101-80			
		Min	Max	Min	Max	Min	Max			
Write Cycle	tWC	450	-	650	-	800	-	ns		
Write Delay	tAW	130	-	150	-	200	-	ns		
Chip Enable (CE1) to Write	tCW1	350	-	550	-	650	-	ns		
Chip Enable (CE2) to Write	tCW2	350	-	550		650	-	ns		
Data Setup	tDW	250	-	400		450	-	ns		
Data Hold	tDH	50		100		100	-	ns		
Write Pulse	tWP	250		400	-	450	-	ns		
Write Recovery	twr	50	-	50	-	100	-	ns		
Output Disable Setup	tDS	130	-	150	-	200	-	ns		

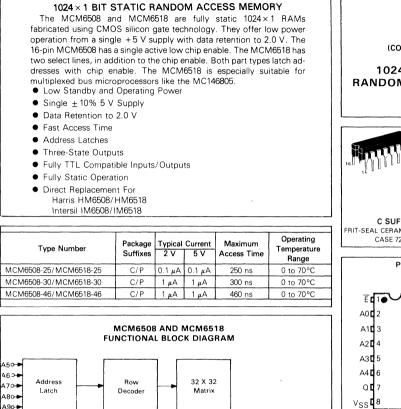
MCM5101•MCM51L01

READ CYCLE TIMING

Notes: 1. OD may be tied low for separate I/O operation 2. During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation

D

w٥-


Ē

518-528-

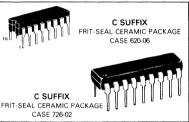
*For MCM6508

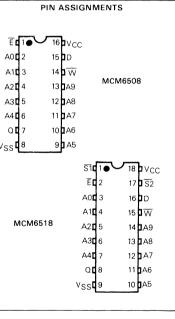
E, S1 S2 are connected

MCM6508 MCM6518

Column Decoder And Data I/O

Address


Latch


A0 A1 A2 A3 A4

CMOS

(COMPLEMENTARY MOS)

1024 X 1 BIT STATIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit.

DS9829/10-80

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
DC Supply Voltage	VCC	-0.5 to 7.0	V
Voltage on Any Pin	Vin	-0.3 to VCC+0.3	V
Operating Temperature Range	ТA	0 to 70	°C
Storage Temperature Range	T _{stg}	-65 to 150	°C

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
	Vss	0	0	0	v
Logic 1 Voltage, All Inputs	VIН	V _{CC} -2.0		Vcc	V
Logic 0 Voltage, All Inputs	VIL	-0.3	-	0.8	V

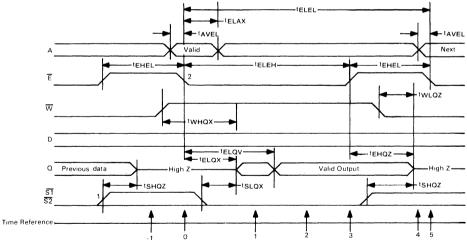
DC CHARACTERISTICS

Characteristic	Symbol		ACM6508-2 ACM6518-2	-	MCM6508-30, -46 MCM6518-30, -46				
		Min	Typ ¹	Max	Min	Typ ¹	Max	Unit	
Input Current	lin		5.0	-		5.0	-	nA	
Output High Voltage (IOH = - 1.0 mA)	Vон	2.4	-	-	2.4	-	-	V	
Output Low Voltage (IOL = 2.0 mA)	VOL		-	0.4	-	-	0.4	V	
Output Leakage Current (See Note 1) Vo=0 V to VCC)	IOL			±1.0	-	-	± 1.0	μΑ	
Standby Current ($V_{IH} = \overline{E} = \overline{S_1} = \overline{S_2} = V_{CC}$)	DDSB		0.1	10.0		1.0	100	μA	
Data Retention Current ($V_{DD} = 2.0 V = V_{IH} = \overline{E} = \overline{S_1} = \overline{S_2}$)	IDDDR	. –	0.1	10.0	-	1.0	100	μA	
Operating Current ($t_{ELEH} = 1 \mu s$)	IDDOP	-	1.5	-		1.5	-	mA	

Note:

1. Typical values are $T_A = 25$ °C and nominal supply voltage.

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = +5 V, periodically sampled rather than 100% tested)


Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (V _{in} =0 V)	C _{in}	4.0	8.0	рF
Output Capacitance (V _{out} =0 V)	Cout	8.0	12.0	рF

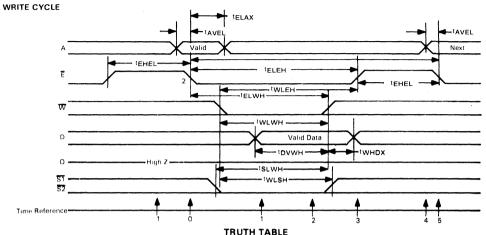
AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Parameter	Symbol	MCM6508-25 Symbol MCM6518-25			508-30 518-30	MCM6508-46 MCM6518-46		Units
		Min	Max	Min	Max	Min	Max	
Read or Write Cycle Time	^t ELEL	350	-	450	-	730	-	ns
Enable Pulse Width, Low	^t ELEH	250	-	300	-	460	-	ns
Enable Pulse Width, High	^t EHEL	100	-	150		270	-	ns
Enable Access Time	^t ELQV	-	250		300	-	460	ns
Address Setup	^t AVEL	0		7		15	-	ns
Address Hold	^t ELAX	50	-	70		130	-	ns
Data Setup	tDVWH	110	-	130	-	270	-	ns
Data Hold	tWHDX	0	-	0	-	0	-	ns
Write Pulse Width	tWLWH	130	-	160	-	270	-	ns
Write Enable to Output Disable	tWLQZ	-	160	-	180	-	285	ns
Output Disable (6508 Only)	^t EHQZ	-	160	-	180	-	285	ns
Output Disable (6518 Only)	t SHQZ	-	160	-	180		285	ns
Write Disable to Output Enable	tWHQX	-	160		180	-	285	ns
Output Enable (6508 Only)	telox	-	160		180	-	285	ns
Output Enable (6518 Only)	^t SLQX	-	160	-	180	-	285	ns
Select to Write Pulse Setup	tWLSH	130	-	160	-	270	-	ns
Select to Write Pulse Hold	^t SLWH	130		160	-	270	-	ns
Enable to Write Pulse Setup	tWLEH	130	-	160	-	270	-	ns
Enable to Write Pulse Hold	^t ELWH	130	-	160	-	270		ns

READ CYCLE

TRUTH TABLE


Time	Inputs					Output	
Reference	Ē	S	W	Α	D	۵	Function
-1	н	н	х	х	Х	Z	Disabled
0	2	х	н	V	X	Z	Address Latched
1	L	L	н	х	X	X	Output Enabled
2	L_	L	н	х	X	V	Output Valid
3	\mathcal{S}	L	н	х	×	V	Output Latched
4	н	н	х	X	X	Z	Disabled (Same As -1)
5	\sim	х	н	V	х	Z	Next Cycle (Same As 0)

Notes:

1. MCM6518 selected only if both $\overline{S1}$ and $\overline{S2}$ are low and deselected if either $\overline{S1}$ or $\overline{S2}$ is high. $\overline{S1}$ and $\overline{S2}$ are connected to \overline{E} on MCM6508

2. The address within the memory will change only on falling E

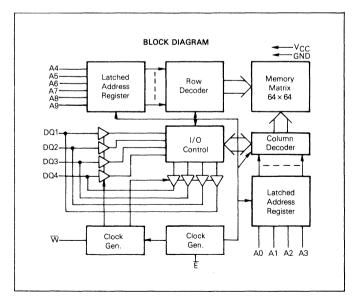
MCM6508•MCM6518

INUTHIABLE										
Time	Inputs					Output				
Reference	Ē	S	$\overline{\mathbf{w}}$	Α	D	Q	Function			
-1	н	Х	X	х	Х	Z	Disabled			
0		X	х	V	х	Z	Address Latched			
1	L	L_	L	х	V	Z	Write Mode			
2	L	5	L	X	V	Z	Data Written			
3	5	X	х	х	X	Z	Write Completed			
4	н	X	х	х	X	Z	Disabled (Same As -1)			
5	1	X	х	V	X	Z	Next Cycle (Same As 0)			

Notes:

votes: 1. MCM 6518 selected only if both ST and S2 are low and deselected if either ST or S2 is high, ST and S2 are connected to E on MCM 6508 _____

2. The address within the memory will change only on falling $\overline{\mathsf{E}}$


Product Preview

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM65114 is a 4096-bit Random Access Memory organized as 1024 × 4 bit, fabricated using silicon gate CMOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM65114 is designed for memory applications where simple interfacing and low power is the design objective. The MCM65114 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A chip enable (\overline{E}) allows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- Single +5 Volt Supply
- Fully Static Memory No Clock or Timing Strobe Required
- Directly TTL Compatible All Inputs and Outputs
- Common Data Input and Output
- Low Standby and Operating Power Τγpical Standby – 10 μW Τγpical Operation – 20 mW
- Access Time: 300 ns MCM65114-30
- Industry Standard 18-Pin Configuration

RANDOM ACC	CESS MEMORY					
REAL	L SUFFIX CERAMIC PACKAGE CASE 680					
FRI FRI	C SUFFIX IT-SEAL CERAMIC PACKAGE CASE 726					
PIN ASSI	GNMENTS					
A6 1						
A5 c 2	17 A7					
A4 E 3	16 D A8					
A3 0 4	15 D A9					
A0 0 5	14 0 001					
A1 C 6	13 DQ2					
A2 🛙 7	12 D DQ3					
Ē [8	11 0 DQ4					
∨ss ¤ 9	10 D W					
	NAMES Address					
A0-A9. Address DQ1-DQ4. Data Input/Output E. Chip Enable W Write Enable V _{CC} Power (+ 5 V) V _{SS} Ground						

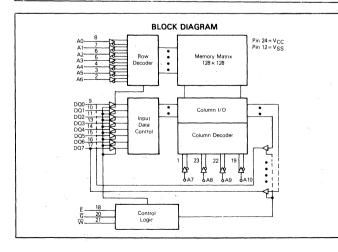
MCM65114

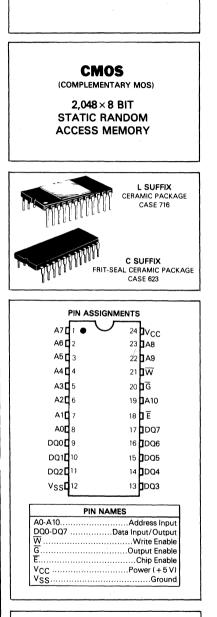
CMOS (COMPLEMENTARY MOS

4096 BIT STATIC

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Product Preview


2048 × 8-BIT STATIC RANDOM ACCESS MEMORY


The MCM65116 is a 16,384-bit Static Random Access Memory organized as 2048 words by 8-bits, fabricated using Motorola's high-performance silicon-gate complementary metal oxide semiconductor (HCMOS) technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced power associated with CMOS memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access time.

Chip Enable (E) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. In less than a cycle time after chip enable (E) goes high, the part automatically reduces its power requirements and remains in this low-power standby as long as the chip enable (E) remains high. The automatic power-down feature causes no performance degradation.

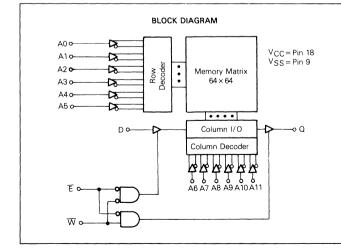
The MCM65116 is in a 24-pin dual-in-line package with the industry standard pinout and is pinout compatible with the industry standard 16K EPROM/ROM.

- 2048 Words by 8-Bit Organization
- HCMOS Technology
- Single + 5 V Supply
- Fully Static: No Clock or Timing Strobe Required
- Industry Standard 24-Pin Package
- Maximum Access Time
 - MCM65116-12 120 ns MCM65116-15 - 150 ns MCM65116-20 - 200 ns
- Power Dissipation
 80 mA Maximum (Active)
 - 15 mA Maximum (Standby)
- Fully TTL Compatible
- Automatic Power-Down
- Pinout Compatible with Industry Standard 2716 16K EPROM and Mask Programmable ROM

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

3-36

Product Preview

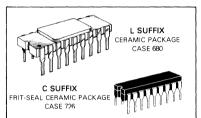

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM65147 is a 4096-bit static Random Access Memory organized as 4096 words by 1-bit, fabricated using Motorola's high performance CMOS silicon gate technology (HCMOS). It uses a design approach which provides the simple timing features associated with fully static memories and the reduced power associated with CMOS memories. This means low power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

Chip enable (\overline{E}) controls the power-down feature. It is not a clock, but rather a chip control that affects power consumption. After \overline{E} goes high, initiating deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high.

The MCM65147 is in an 18-pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

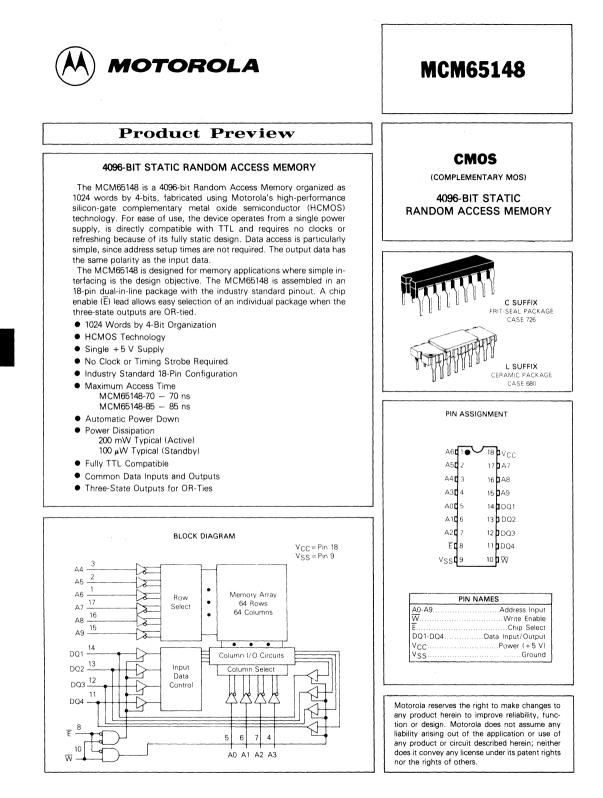
- Single + 5 V Supply
- Fully Static Memory No Clock or Timing Strobe Required
- Automatic Power Down
- Low Power Dissipation
 75 mW Typical (Active)
 - 500 μW Typical (Standby)
- Directly TTL Compatible All Inputs and Output
- Separate Data Input and Three-State Output
- Equal Access and Cycle Time
- Maximum Access Time
 - MCM65147-55 = 55 ns MCM65147-70 = 70 ns
- High Density 18-Pin Package



MCM65147

CMOS

(COMPLIMENTARY MOS)


4,096 × 1 BIT STATIC RANDOM ACCESS MEMORY

PIN ASSIGNMENTS								
A0 🛙		18	D ∨cc					
A1 C	2	17	1 A6					
A2 [3	16] A7					
A3	4	15	A 8					
A4 C	5	14	1 A9					
A5 🕻	6	13]A10					
٥Ľ	7	12]A11					
wd	8	10	D					
vssd	9	11	Ē					

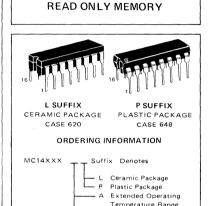
PIN NAMES						
A0-A11	Address					
Ē	Chip Enable					
D	Data In					
Q	Data Out					
₩						
V _{CC}	Power (+5V)					
V _{SS}	Ground					

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

CMOS LSI

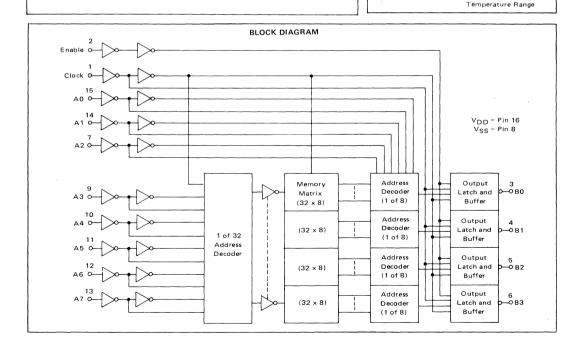
(LOW-POWER COMPLEMENTARY MOS)

1024-BIT


 (256×4)

1024-BIT READ ONLY MEMORY

The MCM14524 is a complementary MOS mask programmable Read Only Memory (ROM). This device is ordered as a factory special with its unique pattern specified by the user.


This ROM is organized in a 256 x 4-bit pattern. The contents of a specified address (< A0, A1, A2, A3, A4, A5, A6, A7 >) will appear at the four data outputs (B0, B1, B2, B3) following the negative going edge of the clock. When the clock goes high, the data present at the output will be latched. The memory Enable may be taken low asynchronously, forcing the data outputs low and resetting the output latches. This device finds application wherever low power or high noise immunity is a design consideration.

- Diode Protection on All Inputs
- Noise Immunity = 45% of VDD typical
- Quiescent Current 10 nA/package typical @ 5 Vdc
- Single Supply Operation Either Positive or Negative
- Memory Enable Allows Expansion
- Output Latches Provide a Useful Storage Register
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load to Two HTL Loads Over the Rated Temperature Range

С

Limited Operating

MAXIMUM RATINGS (Voltages referenced to VSS)

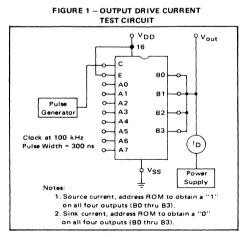
Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0 5 to +18	Vdc
Input Voltage, All Inputs	V _{ID}	-0.5 to V _{DD} + 0.5	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range AL Device CL/CP Device	TA	-55 to +125 -40 to +85	ос
Storage Temperature Range	Tstg	65 to +150	°C

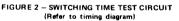
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.

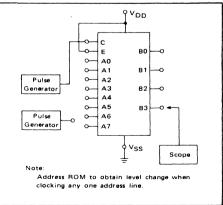
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or VDD).

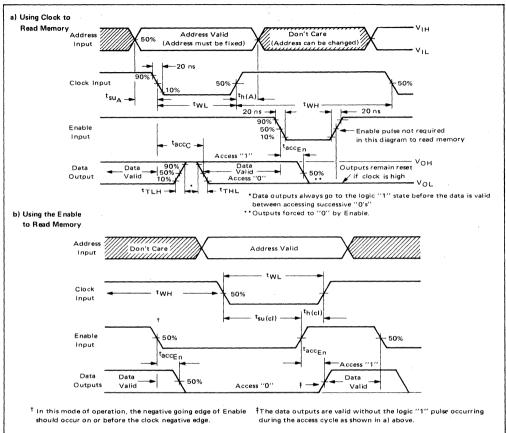
ELECTRICAL CHARACTERISTICS

			VDD	Tic	w*		25°C		т _h	igh*	}
Characteristic		Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage	'0'' Level	VOL	5.0		0.01	-	0	0.01	-	0.05	Vdc
			10	-	0.01	-	0	0.01	~	0.05	
		1 1	15		0.01	-	0	0.01	-	0.05	
	'1'' Level	VOH	5.0	4.99	-	4.99	5.0	_	4.95	-	Vdc
			10	9.99	-	9.99	10	-	9.95	-	
			15	14.99	-	14.99	15	-	14.95	-	
Noise Immunity #		VNL									Vdc
(V _{OUL} · 0.8 Vdc)			5.0	1.5		1.5	2.25	-	1.4	-	1
(Vout 1.0 Vdc)			10	3.0	-	3.0	4.50	-	2.9	-	J
(Vout · 1.5 Vdc)			15	3.75	-	3.75	6.75	-	3.75	-	
(Vout · 0.8 Vdc)		VNH	5.0	1.4	-	1.5	2.25	-	1.5	-	Vdc
(Vout - 1.0 Vdc)			10	2.9	- 1	3.0	4.50	-	3.0	-	
(V _{out} · 1.5 Vdc)			15	3.65	- 1	3.75	6.75	-	3.75	-	1
Output Drive Current (AL E	Device)	'он									mAdd
	Source		5.0	-1.2	-	-1.0	-1.7	_	-0.7	-	
(VOH 4.6 Vdc)			5.0	-0.25	-	-0.2	-0.36	_	-0.14	-	
(VOH 9.5 Vdc)			10	~0.62	-	-0.5	-0.9	_	-0.35	_	
(VOH 13.5 Vdc)			15	~1.8	-	-1.5	-3.5	-	-1.1	-	
(Vot = 0.4 Vdc) 5	Sink	10L	5.0	0.64		0.51	0.88	-	0.36	-	mAdo
(V _{OL} - 0.5 Vdc)		1 .01	10	1.6	-	1.3	2.25	-	0,9	-	
(VOL 1.5 Vdc)			15	4.2	-	3.4	8.8	_	2,4		
Output Drive Current (CL/C	P Device)	ЮН									mAdd
	Source	-UH	5.0	-1.0	_	-0.8	-1.7	_	-0.6	_	
(V _{OH} - 4.6 Vdc)		1 1	5.0	-0.2	-	-0.16	-0.36	_	-0.12	_	
(V _{OH} = 9.5 Vdc)		1 1	10	-0.5	-	-0.4	-0.9	-	-0.3	_	
(V _{OH} = 13.5 Vdc)			15	-1.4	- 1	-1.2	-3.5	-	-1.0	_	1
	Sink	1OL	5.0	0.52	-	0.44	0.88	_	0.36	-	mAdd
(V _{OL} = 0.5 Vdc)	JIIIK	-OL	10	1.3	-	1,1	2.25	_	0.9	_	
(V _{OL} = 1.5 Vdc)			15	3.6	_	3.0	8.8	-	2.4	_	
Input Current (AL Device)		lin	15	-	• 0.1	-	+0.00001	· 0.1		+1.0	μAdc
Input Current (CL/CP Devic			15		±1.0	-	0.00001	±1.0		+1.0	
	.e/	lin			21.0					• 1.0	μAdd
Input Capacitance (Vin · 0)		C _{in}	-	-	-	-	5.0	-	-	-	pF
Quiescent Current (AL Devi	ice)	IDD	5.0		5.0	-	0.010	5.0	-	150	μAdd
(Per Package)			10	-	10	-	0.020	10		300	1
			15		20	-	0.030	20	-	600	
Quiescent Current (CL/CP [Device)	DD	5.0	-	50	~	0.010	50	-	375	μAdd
(Per Package)			10	-	100	- 1	0.020	100	-	750	
		1	15	-	200		0.030	200	-	1500	
Total Supply Current**†		Γ	5.0			IT = (1	.6 µA/kHz)	f + Ipp			μAdo
(Dynamic plus Quiescen	t,		10				3.2 μA/kHz)				
Per Package)			15				.8 µA/kHz)				
(CL = 50 pF on all outp	uts, all							50			1
buffers switching)											ļ


*T_{IOW} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device. #Noise immunity specified for worst-case input combination. 1To calculate total supply current at loads other than 50 pF: IT(C_L) = IT(50 pF) + 1 × 10⁻³ (C_L -50) VDpf where: IT is in μ A (per package). C_L in pF, VDp in Vdc, and f in kHz is input frequency. **The formulas given are for the typical characteristics only at 25°C.


Characteristic	Symbol	VDD	Min	Тур	Max	Unit
Output Rise Time	ttlh .					ns
tтцн, tтнц = (3.0 ns/pF) CL + 30 ns		5.0	- 1	180	360	
tтլн, tтнլ = (1.5 ns/pF) Сլ + 15 ns		10	- 1	90	180	
t_{TLH} , $t_{THL} = (1.1 \text{ ns/pF}) \text{ C}_{L} + 10 \text{ ns}$		15	1 -	65	130	
Output Fall Time	tTHL		1	1		ns
tтцн, tтнц = (1.5 ns/pF) Сц + 25 ns		5.0	-	100	200	
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns		10	-	50	100	
tтцн, tтнц = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Clock Read Access Delay Time	taccc					ns
t _{accc} = (1.7 ns/pF) C _L + 1265 ns		5.0	-	1350	4000	
$t_{acc_{C}} = (0.66 \text{ ns/pF}) C_{L} + 517 \text{ ns}$		10	-	550	1600	
$t_{acc_c} = (0.5 \text{ ns/pF}) C_L + 325 \text{ ns}$		15	-	350	1200	
Enable Access Delay Time	taccEn		+	1	1	ns
$t_{accr}}}}}}$	-accEn	5.0	-	245	615	1
$t_{accr}}}}}$		10	-	110	265	1
t _{accEn} = (0.66 ns/pF) C _L + 77 ns t _{accEn} = (0.5 ns/pF) C _L + 50 ns		15	_	75	190	
Clock Pulse Width*	twH	5.0	450	150		ns
	-144-	10	165	55	_	
		15	125	35	-	
	twL	5.0	3600	1200		ns
		10	1425	475	-	113
		15	1070	300	_	
Maximum Low Clock Pulse Width #	+	5.0	2.0	10	-	ms
	tWL	10	0.9	3.0	-	ins
		15	0.1	0.3	_	
Address Setup-Time	•	5.0	0	0.0		
Address betup-Time	^t su(A)	10	0	0	-	ns
		15	0	0	_	
Address Hold Time	+ / *	5.0	0	0		
	^t h(A)	5.0 10	0	0	-	ns
		15	0	0	_	
Clock to Enable Setup Time					+	
Clock to chable setup rime	^t su (cl)	5.0	4275	1425	-	ns
		10 15	1725 1295	575 400	-	
Clock to Enable Hold Time				+		
CIOCK TO ENADIE HOID I IME	^t h(cl)	5.0	150	0	-	ns
		10	75	0	-	
		15	55	0	-	


SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)


*The clock can remain high indefinitely with the data remaining latched.

#If clock stays low too long, the dynamically stored data will leak off and will have to be recalled.

MEMORY READ CYCLE TIMING DIAGRAMS

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM14524, the customer may specify the content of the memory. Address Inputs: Words are numbered 0 through 255 and are addressed using sequential addressing of Address leads A0 through A7 with A0 as the least significant digit. Logic "0" is defined as a "low" Address input (V_{1L}). Logic "1" is defined as a "high" Address input (V_{1H}). ADDRESS WORD Α6 A3 A2 A 1 A0 Α7 Α5 A4 Word 0 0 0 0 0 0 0 0 0 Word 1 0 0 0 0 0 0 0 1 Word 2 0 0 0 0 0 0 0 1 з ο 0 0 0 Word 0 0 1 1 Word 255 1

_		TRUTH TABLE									
Γ		CLOCK	ENABLE	B0	B1	B2	В3				
	v _{DD} ·	∼_ v _{ss}	1	<address></address>	• 〈Address〉	<pre> Address </pre>	∙ ∢Address>				
	v _{ss} _		1	OUTPUT DATA LATCHES							
Ľ		x	0	0	0	0	0				

X = Don't Care

*Indicates contents of specified Address will appear at outputs as stated above.

Two methods may be used to transmit the custom memory pattern to Motorola.

METHOD A: PUNCHED COMPUTER CARDS

A binary coded decimal equivalent of each desired output may be punched in standard computer cards (four cards are required for all 256 words) in numerical (word number) order. 64 words per card are punched in columns 12 thru 75 using the Binary to Hexadecimal conversion table. Columns 77 and 78 are used to number the cards, which must be in numerical order. Please use characters as shown in the table when punching computer cards.

BINARY TO HEXA- DECIMAL CON- VERSION TABLE BINARY WORD CARD							
DESIRED	CHARACTER						
$\begin{array}{ccccccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array}$	0 1 2 3						
0 1 0 0	4						
0 1 0 1	5						
0 1 1 0	6						
0 1 1 1	7						
1 0 0 0	8						
1 0 0 1	9						
1 0 1 0	A						
1 0 1 1	8						
1 1 0 0	C						
1 1 0 1	D						
1 1 1 0	E						
1 1 1 1	F						

Card

ROM SAMPLE WORD PROGRAMMING FOR PUNCHED CARD	ROM SAMPI	WORD PROGRA	AMMING FOR PI	UNCHED CARD
--	-----------	-------------	---------------	-------------

			AD	DRESS	S INPU	тѕ			S4	OUTF		0		
WORD NUMBER	A7	A6	A5	A4	A3	A2	A1	AO	в3	В2	в1	в0	CARD CHARACTER	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	0	0	1	1	3	Shown in columns
2	0	0	0	0	0	0	1	0	0	0	1	1	3	> 12 – 15 on card
3	0	0	0	0	0	0	1	1	0	0	0	0	0	below
	•	•	•	•	•	•	•		•	•	•	•	•	,
	•	•	•	•	•		.	•	1.	•	•	•	•	
•	•	•	•		•		•	•	1 .	•	•	•	· ·	
255	1	1	1	1	1	1	1	1	1	0	1	0	А	

WORD NUMBER No. ~ 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 61 62 6 12 13 14 12 33 34 3

METHOD B: TRUTH TABLE

For customers who do not have access to punch cards, Motorola will accept Truth Tables. When filling out the table, use the 0 to F hexidecimal character in column "C".

CUSTOM r the MCM14524 Read Only Memory

WORD	С	
0		
1		
2		Ĺ
3		
4		ľ.
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35	┣	ľ
36		
37	-	
38		
39		
40	-	
41	-	
42	_	
43		l
44	┣	
45		1
46	+	1
47 48	┣	ł
48	+	ł
	1	ł
50		L

r the MCN	
WORD	С
102	
103	
104	_
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	-
120	
121	
122	
123	
124	<u> </u>
125	-
126	
127	
128	
129	
130	
131	
132	
133	<u> </u>
134	
135	-
136	⊢
137	
138	
139	-
140	-
141	-
142	-
143	-
144	-
145	
146	
148	
149	
150	
151	
152	

WORD C

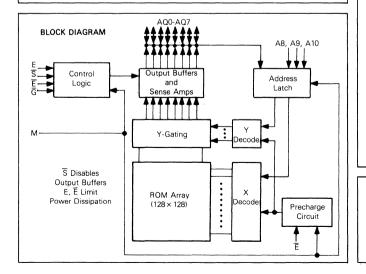
.51

.

_

reau	Unity	Wentor	y
	ſ	WORD	С
	Г	153	
	Г	154	Т
	F	155	T
	F	156	T
	Γ	157	
	Γ	158	
	L L	159	
	- [160	
	- 1	161	
	Γ	162	T
	1	163	
	Γ	164	
	Г	165	Γ
	Γ	166	T
	Γ	167	
	[168	
	- [169	
	ſ	170	
	- [171	
	Γ	172	
	- [173	
	[174	
	[175	
	- [176	
	- [177	
	[178	
	- [179	
	_ [180	
		181	
	- [182	
	- [183	
	- [184	
		185	
		186	
		187	
	- [188	
		189	
	[190	
		191	
		192	
		193	
		194	
	[195	
	[196	
		197	
		198	
	[199	
	1	200	
	_ [201	
	- 1	202	
	1	203	+
	- 1		1

WORD	С
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	
225	
226	_
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	—
242	1
243	
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	

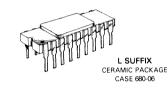

Advance Information

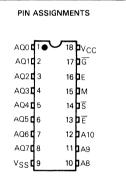
2048 × 8 BIT READ ONLY MEMORY

The MCM65516 is a complementary MOS mask programmable byte organized read only memory (ROM). The MCM65516 is organized as 2048 bytes of 8 bits, designed for use in multiplex bus systems. It is fabricated using Motorola's silicon gate CMOS technology, which offers low-power operation from a single 5.0 volt supply.

The memory is compatible with CMOS microprocessors that share address and data lines. Compatibility is enhanced by pins 13, 14, 16, and 17 which give the user the versatility of selecting the active levels of each. Pin 17 allows the user to choose active high, active low or a third option of programming which is termed the "MOTEL" mode. If this mode is selected by the user, it provides direct compatibility with either the Motorola MC146805E2 or Intel 8085 type microprocessor series. In the MOTEL operation the ROM can accept either polarity signal on the data strobe input as long as the signal toggles during the cycle. This unique operational feature makes the ROM an extremely versatile part.

- 2K×8 CMOS ROM
- 3 to 6 Volt Supply
- Access Time
 - 430 ns (5 V) MCM65516-43 550 ns (5 V) MCM65516-55
- Low Power Dissipation 30 mA Maximum (Active) 50 μA Maximum (Standby)
- Multiplex Bus Directly Compatible With All CMOS Microprocessors (MC146805E2, NSC800)
- Pins 13, 14, 16, and 17 are Mask Programmable
- MOTEL Mask Option Also Insures Direct Compatibility with NMOS Microprocessors Like MC6803, MC6801, 8085, and 8086
- Standard 18 Pin Package




MCM65516

CMOS

(COMPLEMENTARY MOS)

2048 × 8 BIT MULTIPLEXED BUS READ ONLY MEMORY

PIN NAMES		
AQ0-AQ7	Address/Data Output	
A8-A10	Address	
M	Multiplex Address Strobe	
E	Chip Enable	
S	Chip Select	
	Data Strobe (Output Enable)	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to +7.0	V
Input Voltage	Vin	-0.3 to +7.0	V
Operating Temperature Range	Τ _Α	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

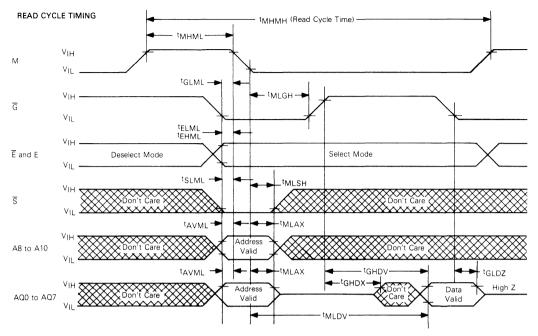
Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage (VCC must be applied at least 100 μs before proper device operation is achieved)	V _{CC}	4.5	5.0	5.5	V
Input High Voltage	VIH	VCC-2.0	-	5.5	V
Input Low Voltage	VIL	- 0.3	-	0.8	V

RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	MCM6551	6-43	MCM65516-55		Unit	Test Condition
Characteristic	Symbol	Min	Max	Min	Max	Onic	
Output High Voltage	∨он	Vcc-0.4 V	-	Vcc~0.4 V		v	
Source Current - 1.6 mA							
Output Low Voltage	VOL	-	0.4	-	0.4	v	
Sink Current +1.6 mA	- OL						
Supply Current (Operating)	ICC1	~	30	-	30	mA	$C_L = 130 \text{ pF}, V_{in} = V_{IH} \text{ to } V_{IL}$ $t_{CYC} = 1.0 \mu \text{s}$
Supply Current (DC Active)	ICC2	-	100	-	100	μA	Vin = VCC to GND
Standby Current	ISB	-	50	-	75	μA	$V_{in} = V_{CC}$ to GND
Input Leakage	lin	- 10	+ 10	- 10	+ 10	μA	
Output Leakage	10L	- 10	+ 10	- 10	+ 10	μA	

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	C _{in}	5	рF
Output Capacitance	Cout	12.5	PF


AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.) READ CYCLE

 $C_L = 130 \text{ pF}$

Parameter		MCM6	5516-43	MCM6	Unit	
	Symbol	Min	Max	Min	Max	Onic
Address Strobe Access Time	^t MLDV	-	430	-	550	ns
Read Cycle Time	^t мнмн	580	-	725	-	ns
Multiplex Address Strobe High to Multiplex Address Strobe Low (Pulse Width)	^t MHML	150	-	175	-	ns
Data Strobe Low to Multiplex Address Strobe Low	tGLML	50	-	50	-	ns
Multiplex Address Strobe Low to Data Strobe High	^t MLGH	100	-	160		ns
Address Valid to Multiplex Address Strobe Low	^t AVML	50		50	-	ns
Chip Select Low to Multiplex Address Strobe Low	^t SLML	50		50		ns
Multiplex Address Strobe Low to Chip Select High	^t MLSH	50		80		ns
Chip Enable Low/High to Multiplex Address Strobe Low	^t ELML ^t EHML	50 50		50 50	-	ns
Multiplex Address Strobe Low to Address Don't Care	^t MLAX	50	~	80	rates	• ns
Data Strobe High to Data Valid	tGHDV	175	- ·	200		ns
Data Strobe Low to High-Z	tGLDZ		160	-	160	ns
Data Strobe High to Address Don't Care	^t GHDX	20	-	20	-	ns

MCM65516

FUNCTIONAL DESCRIPTION

The 2K × 8 bit CMOS ROM (MCM65516) shares address and data lines and, therefore, is compatible with the majority of CMOS microprocessors in the industry. The package size is reduced from 24 pins for standard NMOS ROMs to 18 pins because of the multiplexed bus approach. The savings in package size and external bus lines adds up to tighter board packing density which is handy for battery powered hand carried CMOS systems. This ROM is designed with the intention of having very low active as well as standby currents. The active power dissipation of 150 mW (at V_{CC} = 5 V) req = 1 MHz) and standby power of 250 μ W (at V_{CC} = 5 V) add up to low power for battery operation. The typical access time of the ROM is 280 ns making it acceptable for operation with today's existing CMOS microprocessors.

An example of this operation is shown in Figure 1. Shown is a typical connection with either the Motorola MC146806E2 CMOS microprocessor (M6800 series) or the National NSC800 which is an 8085 or Z80 based system. The main difference between the systems is that the data strobe (DS) on the MC14680EE2 and the read bar (\overline{RD}) on the 8085 bot model. The work of the output of data from the ROM but are of opposite polarity. The Motorola 2K × 8 ROM can accept either polarity signal on the data strobe input as long as the signal toggles during the cycle. This is termed the MOTEL mode of operation. This unique operational feature makes the ROM an extremely versatile part. Further operational features are explained in the following section.

Operational Features

In order to operate in a multiplexed bus sytem the ROM latches, for one cycle, the address and chip select input information on the trailing edge of address strobe (M) so the address signals can be taken off the bus.

Since they are latched, the address and chip select signals have a setup and hold time referenced to the negative edge

of address strobe. Address strobe has a minimum pulse width requirement since the circuit is internally precharged during this time and is setup for the next cycle on the trailing edge of address strobe. Access time is measured from the negative edge of address strobe.

The part is equipped with a data strobe input (G) which controls the output of data onto the bus lines after the addresses are off the bus. The data strobe has three potential modes of operation which are programmable with the ROM array. The first mode is termed the MOTEL mode of operation. In this mode, the circuit can work with either the Motorola or Intel type microprocessor series. The difference between the two series for a ROM peripheral is only the polarity of the data strobe signal. Therefore, in the MOTEL mode the ROM recognizes the state of the data strobe signal at the trailing edge of address strobe (requires a setup and hold time), latches the state into the circuit after address strobe, and turns on the data outputs when an opposite polarity signal appears on the data strobe input. In this manner the data strobe input can work with either polarity signal but that signal must toggle during a cycle to output data on the bus lines. If the data strobe remains at a d.c. level the outputs will remain off. The data strobe input has two other programmable modes of operation and those are the standard static select modes (high or low) where a d.c. input not synchronous with the address strobe will turn the outputs on or off.

The chip enable and chip select inputs are all programmable with the ROM array to either a high or low select. The chip select acts as an additional address and is latched on the address strobe trailing edge. On deselect the chip select merely turns off the output drivers acting as an output disable. It does not power down the chip. The chip enable inputs, however, do put the chip in a power down standby mode but they are not latched with address strobe and must be maintained in a d.c. state for a full cycle.

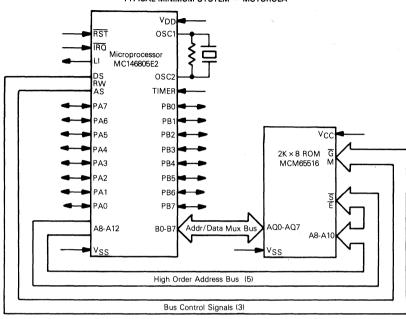
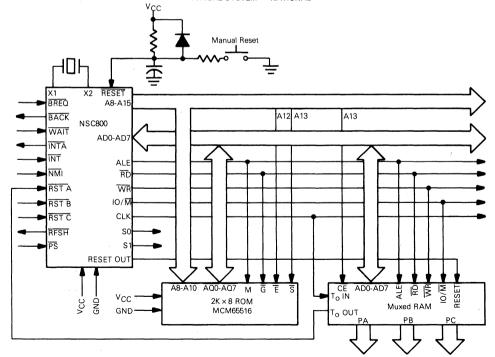



FIGURE 1 TYPICAL MINIMUM SYSTEM — MOTOROLA

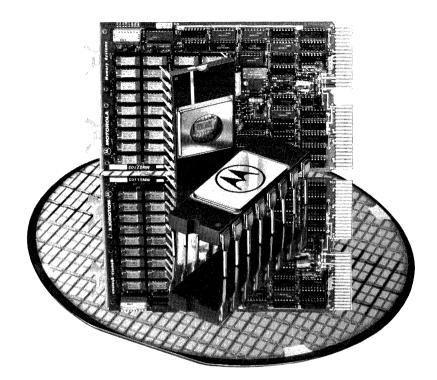
MCM65516

CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM65516 the customer may specify the content of the memory and the method of enabling the outputs, or selection of the "MOTEL" option (Pin 17).

Information on the general options of the MCM65516 should be submitted on an Organizational Data form such as that shown in the below figure.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):


 Magnetic Tape 9 track, 800 bpi, odd parity written in EBCDIC character code. Motorola's R.O.M.S. format.

- 2. EPROMs
- One 16K (MCM2716, or TMS2716).

FORMAT FOR PROGRAMMING GENERAL OPTIONS

	ORGA	NIZATIONAL D	ATA MOS R	EAD ONLY MEMORY	
Customer:					
Company	11.000			N	Aotorola Use Only
Part No.				Quote:	
Originator					
Phone No					
Programmable Pin Options:					
	13	14	16	17	
Active High					
Active Low					
				MOTEL	

Bipolar Memories TTL, MECL-RAM, PROM

4

4-2

2

ĀŪ

3 4

5

6 9

A1 A2 A3 A4 A5 A6 A7 A8

10 11 12

13

A9

MCM93415

1024-BIT BANDOM ACCESS MEMORY TTL 1024 X 1 BIT The MCM93415 is a 1024-bit Read/Write RAM organized 1024 RANDOM ACCESS MEMORY words by 1 bit. The MCM93415 is designed for buffer control storage and high performance main memory applications, and has a typical access time of 35 ns. The MCM93415 has full decoding on-chip, separate data input and data output lines, and an active low chip select. The F SUFFIX device is fully compatible with standard DTL and TTL logic CERAMIC PACKAGE families and features an uncommitted collector output for ease CASE 650 of memory expansion. Uncommitted Collector Output TTL Inputs and Output Non-Inverting Data Output High Speed – Access Time - 35 ns Typical Chip Select - 15 ns Typical Power Dissipation Decreases with Increasing Temperature D SUFFIX Power Dissipation 0.5 mW/Bit Typical CERAMIC PACKAGE CASE 620 Organized 1024 Words X 1 Bit BLOCK DIAGRAM P SUFFIX PLASTIC PACKAGE CASE 648 Sense Amp - Dout and Write Drivers PIN ASSIGNMENT cs 1 [Vcc **___** 16 2 🗖 A0 Din 15 Word 32 X 32 3 m WE Δ1 □ 14 Drivers Array WE 4 🗆 A2 Α9 13 5 🗂 43 12 Δ8 A4 - 11 CS. 6 5 Δ7 7 Dout A6 10 Gnd Α5 ⊐ 9 o Din 1 of 32 1 of 32 Pin Designation Decoder Decoder cs Chip Select A0-A9 Address Inputs

V_{CC} = Pin 16

Gnd = Pin 8

WE

Din

Dout

Write Enable

Data Output

Data Input

MCM93415

FUNCTIONAL DESCRIPTION

The MCM93415 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of Chip Select $\overline{\text{CS}}$ from the address without affecting system performance.

The read and write operations are controlled by the state of the active low Write Enable (WE, Pin 14). With \overline{WE} held low and the chip selected, the data at D_{in} is written into the addressed location. To read, \overline{WE} is held high and the chip selected. Data in the specified location is presented at D_{out} and is non-inverted.

Uncommitted collector outputs are provided to allow wired-OR applications. In any application an external pull-up resistor of R_L value must be used to provide a high at the output when it is off. Any R₁ value within the range specified below may be used.

$$\frac{V_{CC}(Min)}{I_{OL} - FO(1.6)} \leq \mathsf{R}_{L} \leq \frac{V_{CC}(Min) - V_{OH}}{n(I_{CEX}) + FO(0.04)}$$

 R_L is in $k\Omega$

 $\label{eq:response} \begin{array}{l} \mathsf{N} = \mathsf{number} \ \text{of wired-OR} \ \mathsf{outputs} \ \mathsf{tied} \ \mathsf{together} \\ \mathsf{FO} = \mathsf{number} \ \text{of TTL} \ \mathsf{Unit} \ \mathsf{Loads} \ (\mathsf{UL}) \ \mathsf{driven} \\ \mathsf{I}_{\mathsf{CEX}} = \mathsf{Memory} \ \mathsf{Output} \ \mathsf{Leakage} \ \mathsf{Current} \\ \mathsf{V}_{\mathsf{OH}} = \mathsf{Required} \ \mathsf{Output} \ \mathsf{High} \ \mathsf{Level} \ \mathsf{at} \ \mathsf{Output} \ \mathsf{Node} \\ \mathsf{I}_{\mathsf{OL}} = \mathsf{Output} \ \mathsf{Low} \ \mathsf{Current} \end{array}$

The minimum R_L value is limited by output current sinking ability. The maximum R_L value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} . One Unit Load = 40 μ A High/1.6 mA Low.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature Ceramic Package (D and F Suffix) Plastic Package (P Suffix)	-55 ⁰ C to +165 ⁰ C -55 ⁰ C to +125 ⁰ C
Operating Junction Temperature, TJ Ceramic Package (D and F Suffix) Plastic Package (P Suffix)	< 165 ⁰ C < 125 ⁰ C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (dc)	-0.5 V to +5.5 V
Voltage Applied to Outputs (Output High)	-0.5 V to +5.5 V
Output Current (dc) (Output Low)	+20 mA
Input Current (dc)	-12 mA to +5.0 mA

TRUTH TABLE

	Inputs		Output	
CS	WE	D _{in}	Open Collector	Mode
н	х	x	н	Not Selected
L	L	L	н	Write "O"
L	L	н	н	Write "1"
L	н	х	Dout	Read

H = High Voltage Level

L = Low Voltage Level

X = Don't Care (High or Low)

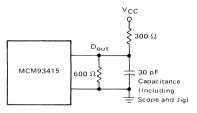
NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

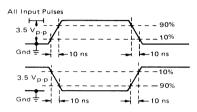
GUARANTEED OPERATING RANGES (Note 2)

	Suppl	y Voltage	(Vcc)	
Part Number	Min	Nom	Max	Ambient Temperature (T _A)
MCM93415DC, PC	4.75 V	5.0 V	5.25 V	0°C to +75°C
MCM93415FM, DM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)


		Lir	nits			
Symbol	Characteristic	Min	Max	Unit	Conditions	
VOL	Output Low Voltage		0.45	Vdc	V _{CC} = Min, I _{OL} = 16 mA	
VIH	Input High Voltage	2.1		Vdc	Guaranteed Input High Voltage for All Inputs	
VIL	Input Low Voltage		0.8	Vdc	Guaranteed Input Low Voltage for All Inputs	
μL	Input Low Current		-400	μAdc	$V_{CC} = Max, V_{in} = 0.4 V$	
Чн	Input High Current		40	μAdc	V _{CC} = Max, V _{in} = 4.5 V	
			1.0	mAdc	V _{CC} = Max, V _{in} = 5.25 V	
ICEX	Output Leakage Current		100	μAdc	$V_{CC} = Max, V_{out} = 4.5 V$	
V _{CD}	Input Diode Clamp Voltage		-1.5	Vdc	V _{CC} = Max, I _{in} = -10 mA	
^I CC	Power Supply Current		130	mAdc	T _A = Max	
			155	mAdc	$T_A = 0^{\circ}C$ $V_{CC} = Max,$ All Inputs Grounded	
			170	mAdc	T _A = Min	


AC OPERATING CONDITIONS AND CHARACTERISTICS

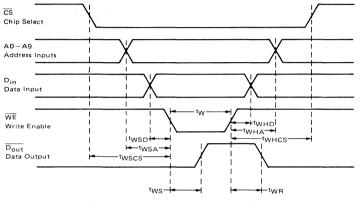
(Full operating voltage and temperature unless otherwise noted)

AC TEST LOAD AND WAVEFORM

Loading Condition

Input Pulses

		MCM934	15DC,PC	MCM934	15DM, FM		
Symbol	Characteristic (Notes 2, 3)	Min	Max	Min	Max	Unit	Conditions
READ MODE	DELAY TIMES					ns	
^t ACS	Chip Select Time		35		45		See Test Circuit
^t RCS	Chip Select Recovery Time		35		50		and Waveforms
^t AA	Address Access Time		45		60		
WRITE MODE	DELAY TIMES					ns	
tws	Write Disable Time	1	35		45		See Test Circuit
twr	Write Recovery Time		40		50		and Waveforms
	INPUT TIMING REQUIREMENTS					ns	
tw	Write Pulse Width (to guarantee write)	30		40			See Test Circuit
twsd	Data Setup Time Prior to Write	5		5			and Waveforms
^t WHD	Data Hold Time After Write	5		5			
^t WSA	Address Setup Time (at t _W = Min)	10		15			
^t WHA	Address Hold Time	10		10			
twscs	Chip Select Setup Time	5		5			
twhcs	Chip Select Hold Time	5		5			


READ OPERATION TIMING DIAGRAM

(All Time Measurements Referenced to 1.5 V)

Propagation Delay from Address Inputs

WRITE CYCLE TIMING

(All Time Measurements Referenced to 1.5 V)

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

	θ_{JA} (Junction	n to Ambient)	
Package	Blown	Still	θ_{JC} (Junction to Case)
D Suffix	50°C/W	85 ⁰ C/W	15 ⁰ C/W
F Suffix	55 ⁰ C/W	90 ⁰ C/W	15 ⁰ C/W
P Suffix	65 ⁰ C/W	100 ⁰ C/W	25 ⁰ C/W

NOTE 3: The AC limits are guaranteed to be the worst case bit in the memory.

MCM93425

1024-BIT RANDOM ACCESS MEMORY The MCM93425 is a 1024-bit Read/Write RAM, organized 1024 TTL words by 1 bit. 1024 X 1 BIT The MCM93425 is designed for high performance main memory **RANDOM ACCESS MEMORY** and control storage applications and has a typical address time of 35 ns. The MCM93425 has full decoding on-chip, separate data input and data output lines, and an active low-chip select and write enable. The device is fully compatible with standard DTL and TTL logic F SUFFIX families. A three-state output is provided to drive bus-organized CERAMIC PACKAGE systems and/or highly capacitive loads. CASE 650 Three-State Output TTL Inputs and Output Non-Inverting Data Output High Speed — Access Time - 35 ns Typical Chip Select - 15 ns Typical Power Dissipation – 0.5 mW/Bit Typical D SUFFIX Power Dissipation Decreases With Increasing Temperature CERAMIC PACKAGE CASE 620 BLOCK DIAGRAM P SUFFIX ASTIC PACKAGE ΡI Sense Amp CASE 648 Dout and Write Drivers PIN ASSIGNMENT Word 32 X 32 16 ב 10 CS Vcc Drivers Arrav WE **⊐** 15 2 0 A0 Din **□**14 3 17 A1 WE A2 Α9 **___ 13** 4 🗆 AЗ ⊒12 5 🗂 Α8 6 🗆 Α4 Α7 Dir 7 -Dout A6 1 of 32 1 of 32 8 🗆 Gnd Α5 79 Decoder Decoder Pin Description τī Chip Select $V_{CC} = Pin 16$ 3 4 5 6 9 10 11 12 12 113 Gnd = Pin 8 Address Inputs A0-A9 ĀŌ A1 A2 A3 A4 A5 A6 A7 A8 A9 WE Write Enable Din Data Input NOTE: Logic driving sense amp/write drivers depicts Dout Data Output negative-only write used on C4m.

MCM93425

FUNCTIONAL DESCRIPTION

The MCM93425 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Word selection is achieved by means of a 10-bit address, AO-A9.

The Chip Select $\overline{(CS)}$ input provides for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active low Write Enable (\overline{WE} , Pin 14). With \overline{WE} and \overline{CS} held

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature	
Ceramic Package (D and F Suffix)	-55 ⁰ C to +165 ⁰ C
Plastic Package (P Suffix)	-55°C to +125°C
Operating Junction Temperature, TJ	
Ceramic Package (D and F Suffix)	< 165 ⁰ C
Plastic Package (P Suffix)	<125 ⁰ C
V _{CC} Pin Potential to Ground Pin	~0.5 V to +7.0 V
Input Voltage (dc)	-0.5 V to +5.5 V
Voltage Applied to Outputs (Output High)	-0.5 V to +5.5 V
Output Current (dc) (Output Low)	+20 mA
Input Current (dc)	-12 mA to +5.0 mA

low, the data at D_{in} is written into the addressed location. To read, \overline{WE} is held high and \overline{CS} held low. Data in the specified location is presented at D_{out} and is non-inverted.

The three-state output provides drive capability for higher speeds with capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high-impedance state.

TRUTH TABLE

	Inputs		Output	
CS	WE	D _{in}	Dout	Mode
н	х	х	High Z	Not Selected
L	L	L	High Z	Write "O"
L	L	н	High Z	Write "1"
L	н	x	Dout	Read

H = High Voltage Level

L = Low Voltage Level

X = Don't Care (High or Low)

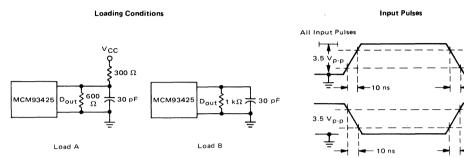
NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

GUARANTEED OPERATING RANGES (Notes 2 and 3)

	Suppl	y Voltage	(V _{CC})	
Part Number	Min	Nom	Max	Ambient Temperature (T _A)
MCM93425DC, PC	4.75 V	5.0 V	5.25 V	0 ⁰ C to +75 ⁰ C
MCM93425FM, DM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)


			Lim	Limits		
Symbol	Charact	eristic	Min	Max	Units	Conditions
VOL	Output Low Voltage			0.45	Vdc	V _{CC} = Min, I _{OL} = 16 mA
VIH	Input High Voltage		2.1		Vdc	Guaranteed Input High Voltage for all Inputs
VIL	Input Low Voltage			0.8	Vdc	Guaranteed Input Low Voltage for all Inputs
ηL	Input Low Current		1	-400	μAdc	V _{CC} = Max, V _{in} = 0.4 V
ЧΗ	Input High Current		1	40	μAdc	V _{CC} = Max, V _{in} = 4.5 V
				1.0	mAdc	V _{CC} = Max, V _{in} = 5.25 V
loff	Output Current (High)	Z)		50	μAdc	V_{CC} = Max, V_{out} = 2.4 V
				- 50		V _{CC} = Max, V _{out} = 0.5 V
los	Output Current Short	Circuit to Ground		- 100	mAdc	V _{CC} = Max
Vон	Output High Voltage	MCM93425DC, PC	2.4		Vdc	I _{OH} = -10.3 mA, V _{CC} = 5.0 V ± 5%
		MCM93425FM, DM	2.4		Vdc	I _{OH} = -5.2 mA
VCD	Input Diode Clamp Vo	Itage		-1.5	Vdc	V _{CC} = Max, I _{in} = -10 mA
^I CC	Power Supply Current			130	mAdc	$T_A = Max$
•				155	mAdc	$T_A = 0^{\circ}C$ $V_{CC} = Wax,$
				170	mAdc	T _A = Min All Inputs Grounded

4

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

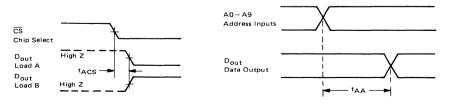
AC TEST LOAD AND WAVEFORMS

		MCM93425DC, PC MCM93425DM, FM						
Symbol	Characteristic (Notes 2, 4)	Min	Max	Min	Max	Units	Conditions	
READ MODE	DELAY TIMES					ns		
^t ACS	Chip Select Time		35		45		See Test Circuit	
^t ZRCS	Chip Select to High Z		35		50		and Waveforms	
t _{AA}	Address Access Time		45		60			
WRITE MODE	DELAY TIMES					ns		
tzws	Write Disable to High Z		35		45		See Test Circuit	
^t W R	Write Recovery Time		40		50		and Waveforms	
	INPUT TIMING REQUIREMENTS					ns		
tw	Write Pulse Width (to guarantee write)	30		40			See Test Circuit	
twsp	Data Setup Time Prior to Write	5	1	5			and Waveforms	
twhd	Data Hold Time After Write	5		5				
twsa	Address Setup Time (at t _W = Min)	10		15				
^t WHA	Address Hold Time	10		10				
twscs	Chip Select Setup Time	5		5				
tWHCS	Chip Select Hold Time	5		5				

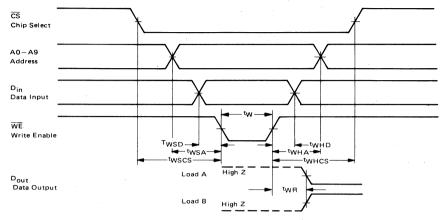
READ OPERATION TIMING DIAGRAM

Propagation Delay from Address Inut

- 90%

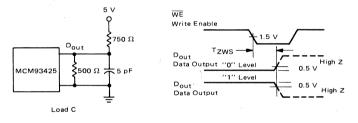

-10% -10 ns

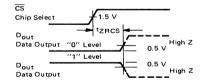
- 10%


- 90%

-10 ns

4


(All time measurements referenced to 1.5 V)


WRITE CYCLE TIMING

(All above measurements reference to 1.5 V)

WRITE ENABLE TO HIGH Z DELAY

Propagation Delay from Chip Select to High Z

(All t_{ZXXX} parameters are measured at a delta of 0.5 V from the logic level and using Load C)

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

	θ_{JA} (Junctio	n to Ambient)	
Package	Blown	Still	θ_{JC} (Junction to Case)
D Suffix	50 ⁰ C/W	85 ⁰ C/W	15 ^o C/W
F Suffix	55 ⁰ C/W	90°C/W	15 ^o C/W
P Suffix	65 ⁰ C/W	100 ⁰ C/W	25 ⁰ C/W

NOTE 3: Output short circuit conditions must not exceed 1 second duration.

NOTE 4: The maximum address access time is guaranteed to be the worst case bit in the memory.

MCM7680 MCM7681

8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7680/81 together with the MCM7620/21, MCM7640/43 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7680 and 81 are pin compatible replacement for the 512 \times 8 with pin 2 connected as A9 on the 1024 \times 8.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 μA Logic "0", 40 μA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N² Sequencing, Over Commercial and Military Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)


Rating	Symbol	Value	Unit
Supply Voltage (operating)	Vcc	+7.0	Vdc
Input Voltage	Vin	+5.5	Vdc
Output Voltage (operating)	∨он	+7.0	Vdc
Supply Current	1cc	650	mAdc
Input Current	lin	-20	mAdc
Output Sink Current	Ι _ο	100	mAdc
Operating Temperature Range MCM76x×DM MCM76××DC	ТА	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Maximum Junction Temperature	Tj	+175	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

MTTL

8192-BIT PROGRAMMABLE READ ONLY MEMORIES

 $\begin{array}{l} \text{MCM7680} - 1024 \times 8 - \text{Open-Collector} \\ \text{MCM7681} - 1024 \times 8 - \text{Three-State} \end{array}$

CASE 623

PIN ASSIGNMENT

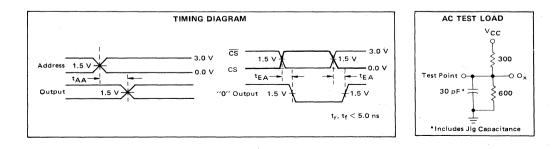
1	0 A7	Vcc	24
2	A6	A8	23
3	A5	A9	22
4	A4	CS1	21
5	A3	CS2	20
6	A2	CS3	19
7	A1	CS4	18
8	A0	08	17
9	01	07	16
10	02	06	15
11	03	05	14
12	Gnd	04	13
			1

DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage MCM76x×DM MCM76x×DC	Vcc	4.50 4.75	5.0 5.0	5.50 5.25	Vdc
Input High Voltage	VIH	2.0		-	Vdc
Input Low Voltage	VIL	,	-	0.8	Vdc

DC CHARACTERISTICS


			Open-Collector Output			Т]		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
IRA, IRE	Address/Enable ''1'' Input Current ''0''	V _{IH} ≂ V _{CC} Ma× V _{IL} = 0.45 V	-	 -0.1	40 -0.25	-	- -0.1	40 -0.25	µAdc mAdc
V _{OH} V _{OL}	Output Voltage "1" "0"	$I_{OH} = -2.0 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$ $I_{OL} = +16 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$	N/A 	- 0.35	 0.45	2.4	3.4 0.35	0.45	Vdc Vdc
IOHE IOLE	Output Disabled "1" Current "0"	V_{OH} , $V_{CC} = V_{CC}$ Max $V_{OL} = +0.3$ V, $V_{CC} = V_{CC}$ Max	_	-	100 N/A	-	-	100 <u>-</u> 100	μAdc μAdc
юн	Output Leakage "1"	VOH, VCC = VCC Max	-	-	100	-	-	N/A	μAdc
VCL	Input Clamp Voltage	l _{in} = ~10 mA	-	-	-1.5		-	-1.5	Vdc
los	Output Short Circuit Current	$V_{CC} = V_{CC} Max$, $V_{out} = 0.0 V$ One Output Only for 1 s Max	N/A	-	N/A	15	-	70	mAdc
ICC	Power Supply Current MCM7680/MCM7681DC MCM7680/MCM7681DM	V _{CC} = V _{CC} Max All Inputs Grounded	-	110 110	150 170	_	110 110	150 170	mAdc mAdc

CAPACITANCE (f = 1.0 MHz, $T_A = 25^{\circ}C$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Тур	Unit
Input Capacitance	C _{in}	8.0	pF
Output Capacitance	Cout	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)		0 to +70 ⁰ C		-55 to +125 ^o C		
Characteristic	Symbol	Тур	Max	Тур	Max	Unit
Address to Output Access Time	^t AA	45	70	45	85	ns
Chip Enable Access Time	tEA					ns
MCM7680/81		30	40	30	50	

PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying inputs highs (V_{IH}) to the $\overline{\text{CS}}$ inputs. CS inputs must remain at V_{IH} for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- 3. Disable the programming circuitry by applying an Output Voltage Disable of less than V_{OPD} to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise V_{CC} to V_{PH} with rise time equal to t_r .
- 5. After a delay equal to or greater than t_d , apply a pulse with amplitude of V_{OPE} and duration of t_p to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the V_{CC} input is raised to V_{PH} by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of t_{cl} .

- 7. Lower V_{CC} to 4.5 Volts following a delay of t_d from the last programming enable pulse applied to an output.
- Enable the PROM for verification by applying a logic "0" (VIL) to the CS inputs.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

Symbol	Parameter	Min	Тур	Max	Unit
VIH	Address Input	2.4	5.0	5.0	v
VIL	Voltage(1)	0.0	0.4	0.8	v
VPH	Programming/Verify	11.75	12.0	12.25	v
VPL	Voltage to V _{CC}	4.5	4.5	5.5	v
ICCP	Programming Voltage Current Limit	600	600	650	mA
	Programming (V _{CC})				
t _r	Voltage Rise and	1	1	10	μs
tf	Fall Time	1	1	10	μs
td	Programming Delay	10	10	100	μs
tp	Programming Pulse Width	100		1000	μs
DC	Programming Duty Cycle	-	50	90	%
	Output Voltage				
VOPE	Enable	10.0	10.5	11.0	v
VOPD	Disable(2)	4.5	5.0	5.5	v
OPE	Output Voltage Enable Current	2	4	10	mA
Τ _C	Case Temperature	-	25	75	°C

TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for V_{IH} .

(2) Disable condition will be met with output open circuit.

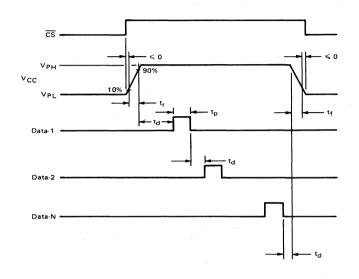


FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS

Advance Information

8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7684/85 together with the MCM7620/21/40/41/42/43/ 80/81 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both opencollector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7684 and 85 are pin compatible replacement for the 1024×4 with pin 8 connected as A10 on the 2048×4 .

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Input
- Inputs and Outputs TTL-Compatible Low Input Current – 250 µA Logic "0", 40 µA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N² Sequencing, Over Commercial and Military Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	Vcc	+7.0	Vdc
Input Voltage	Vin	+5.5	Vdc
Output Voltage (operating)	∨он	+7.0	Vdc
Supply Current	Icc	650	mAdc
Input Current	lin	- 20	mAdc
Output Sink Current	10	100	mAdc
Operating Temperature Range MCM76xxDM MCM76xxDC	TA	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Maximum Junction Temperature	Тј	+175	°C

exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

This is advance information and specifications are subject to change without notice.

MCM7684 MCM7685

MTTL

8192-BIT PROGRAMMABLE READ ONLY MEMORIES

 $\begin{array}{l} \text{MCM7684}-2048 \times \ \text{4}-\text{Open-Collector} \\ \text{MCM7685}-2048 \times \ \text{4}-\text{Three-State} \end{array}$

CERAMIC PACKAGE CASE 726

PIN ASSIGNMENT A6 1 0 Vcc 18 2 A5 Α7 117 3 0 1 4 4 Δ8 116 4 🗆 A3 A9E 115 AO 01 14 5 🗖 A1 02 13 6 🗆 A2 03 112 7 04 11 A10 8 🗖 Gnd CS 9 L □10

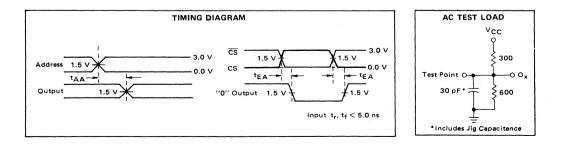
DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc				Vdc
MCM76××DM		4.50	5.0	5.50	1
MCM76××DC		4.75	5.0	5.25	
Input High Voltage	VIH	2.0	-		Vdc
Input Low Voltage	VIL	-	-	0.8	Vdc

DC CHARACTERISTICS

(Over Recommended Operating Temperature Range)


(Over Recommended Operating Temperature Range)		Hange)	Ор	en-Collec Output	ctor	ר	hree-Sta Output		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
IRA, IRE	Address/Enable "1"	VIH = V _{CC} Max	-	-	40	-	-	40	μAdc
IFA, IFE	Input Current ''0''	V _{IL} = 0.45 V	-	-0.1	-0.25	-	-0.1	-0.25	mAdc
Voн	Output Voltage "1"	1 _{OH} = -2.0 mA, V _{CC} Min	N/A		-	2.4	3.4	-	Vdc
VOL	"0"	$I_{OL} = +16 \text{ mA}, \text{ V}_{CC} \text{ Min}$	-	0.35	0.45	-	0.35	0.45	Vdc
IOHZ	Output Disabled "1"	VOH, VCC Max	-	- 1	100	-	-	100	μAdc
IOLZ	Current "O"	$V_{OL} = +0.3 V, V_{CC} Max$	-	-	N/A	-	-	-100	μAdc
юн	Output Leakage "1"	VOH, VCC Max		-	100	-	-	N/A	μAdc
VIC	Input Clamp Voltage	ł _{in} = – 10 mA	-		-1.5			-1.5	Vdc
los	Output Short Circuit Current	V _{CC} Max, V _{out} = 0.0 V One Output Only for 1 s Max	N/A	-	N/A	15	-	70	mAdc
Icc	Power Supply Current	V _{CC} Max							
	MCM7684/MCM7685 DC	All Inputs Grounded	-	80	120	-	80	120	mAdc
	MCM7684/MCM7685 DM		-	80	140	-	80	140	mAdc

CAPACITANCE (f = 1.0 MHz, $T_A = 25^{\circ}C$, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Тур	Unit
Input Capacitance	Cin	8.0	pF
Output Capacitance	Cout	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)		0 to	o +70 ⁰ C	-55 to	+125 ⁰ C	
Characteristic	Symbol	Тур	Max	Тур	Max	Unit
Address to Output Access Time	tAA	45	70	45	85	ns
Chip Enable Access Time	^t EA	15	25	15	30	ns

PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying an input high (V_{IH}) to the \overline{CS} input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- 3. Disable the programming circuitry by applying an Output Voltage Disable of less than V_{OPD} to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise V_{CC} to V_{PH} with rise time equal to t_r .
- 5. After a delay equal to or greater than t_d , apply a pulse with amplitude of V_{OPE} and duration of t_p to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the V_{CC} input is raised to V_{PH} by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of t_{cl} .

- 7. Lower V_{CC} to 4.5 Volts following a delay of t_d from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (VIL) to the CS inputs.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- 11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

Symbol	Parameter	Min	Тур	Max	Unit
VIH	Address Input	2.4	5.0	5.0	v
VIL	Voltage(1)	0.0	0.4	0.8	v
VPH	Programming/Verify	11.75	12.0	12.25	v
VPL	Voltage to V _{CC}	4.5	4.5	5.5	v
ICCP	Programming Voltage Current Limit	600	600	650	mA
	Programming (V _{CC})				
t _r	Voltage Rise and	1	1	10	μs
tf	Fall Time	1	1	10	μs
td	Programming Delay	10	10	100	μs
tp	Programming Pulse Width	100	-	1000	μs
DC	Programming Duty Cycle	-	50	90	%
	Output Voltage				
VOPE	Enable	10.0	10.5	11.0	v
VOPD	Disable(2)	4.5	5.0	5.5	v
OPE	Output Voltage Enable Current	2	4	10	mA
TC	Case Temperature	-	25	75	°C

TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

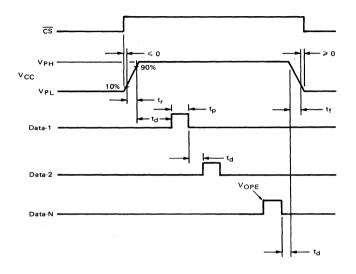


FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS

MECL MEMORIES GENERAL INFORMATION

Complete information is available in the MECL Data Book, Contact your sales representative or authorized distributor for information.

TABLE 1 - LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED

Characteristic	Symbol	Rating	Unit
Supply Voltage	V _{EE}	8.0 to 0	V
Input Voltage ($V_{CC} = 0$)	V _{in}	0 to V _{EE}	V
Output Source Current — Continuous Surge	lout	50 100	mA
Junction Temperature – Ceramic Package① Plastic Package	Тј	165 150	°C
Storage Temperature	T _{stg}	-55 to +150	°C

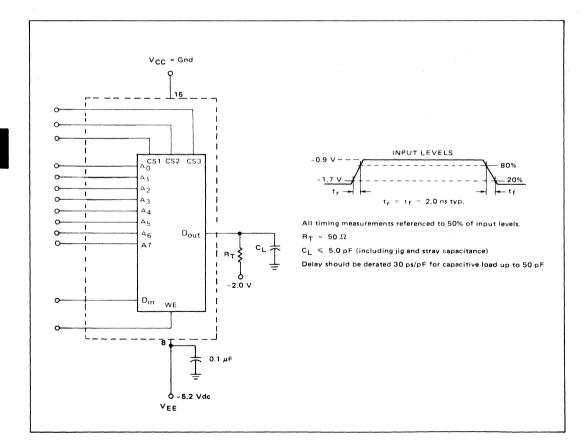
(1) Maximum T_J may be exceeded ($\leq 250^{\circ}$ C) for short periods of time (≤ 240 hours) without significant reduction in device life.

TABLE 2 - LIMITS BEYOND WHICH PERFORMANCE MAY BE DEGRADED

Characteristic	Symbol	Rating	Unit
Supply Voltage ($V_{CC} = 0$)	VEE	-4.94 to -5.46	V
Output Drive — MCM10100 Series MCM10500 Series	_	50 Ω to -2.0 V 100 Ω to -2.0 V	Ω
Operating Temperature Range③ MCM10100 Series MCM10500 Series	тд	0 to 75 -55 to +125	°C

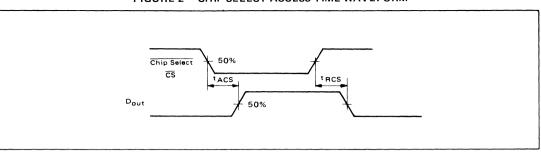
(2) Functionality only. Data sheet limits are specified for -5.19 to -5.21 V. (3) With airflow ≥ 500 lfpm.

MECL MEMORIES (continued)

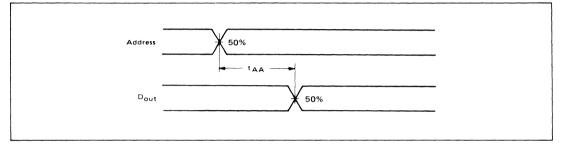

TABLE 3 – DC TEST PARAMETERS

Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear feet per minute is maintained. $V_{EE} = -5.2 \text{ V} \pm 0.010 \text{ V}$.

Forcing		–55 ⁰ C	0°C	25 ⁰ C		75 ⁰ C	125 ⁰ C
Function	Parameter	MCM10500*	MCM10100**	MCM10100**	MCM10500*	MCM10100**	MCM10500*
V _{IHmax}	V _{OHmax}	-0.880	-0.840	-0.810	-0.780	0.720	-0.630
	VOHmin	-1.080	-1.000	-0.960	-0.930	-0.900	-0.825
	VOHAmin	- 1.100	- 1.020	-0.980	-0.950	-0.920	-0.845
VIHAmin		- 1.255	-1.145	-1.105	-1.105	- 1.045	- 1.000
VILAmin		-1.510	- 1.490	-1.475	-1.475	-1.450	- 1.400
	VOLAmin	-1.635	-1.645	1.63 0	-1.600	-1.605	-1.525
	VOLAmax	-1.655	-1.665	-1.650	-1.620	-1.625	-1.545
VILmin 5	VOLmin	-1.920	-1.870	-1.850	-1.850	1.830	- 1.820
V _{ILmin}	IN Lmin	0.5	0.5	0.5	0.5	0.3	0.3


* Driving 100 Ω to –2.0 V.

**Driving 50 Ω to –2.0 V.


FIGURE 1 – SWITCHING TIME TEST CIRCUIT

MECL MEMORIES (continued)

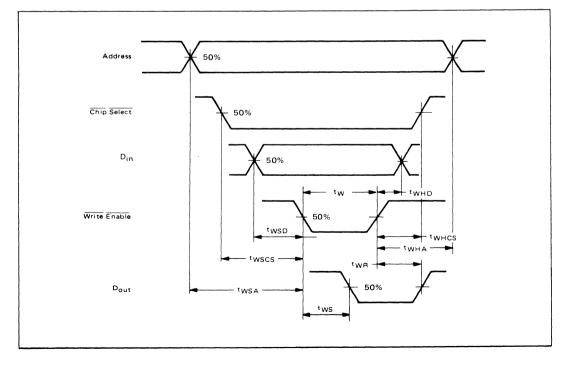


FIGURE 2 - CHIP SELECT ACCESS TIME WAVEFORM

FIGURE 3 – ADDRESS ACCESS TIME WAVEFORM

FIGURE 4 - SETUP AND HOLD WAVEFORMS (WRITE MODE)

8 X 2 MULTIPORT REGISTER

FILE (RAM)

8 x 2 MULTIPORT REGISTER FILE (RAM)

The MCM10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

WRITE

The word to be written is selected by addresses A_0-A_2 . Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by A_0-A_2 .

When the clock is high any two words may be read out simultaneously, as selected by addresses B_0-B_2 and C_0-C_2 , including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates (B_0-B_1), (C_0-C_1).

t_{pd}:

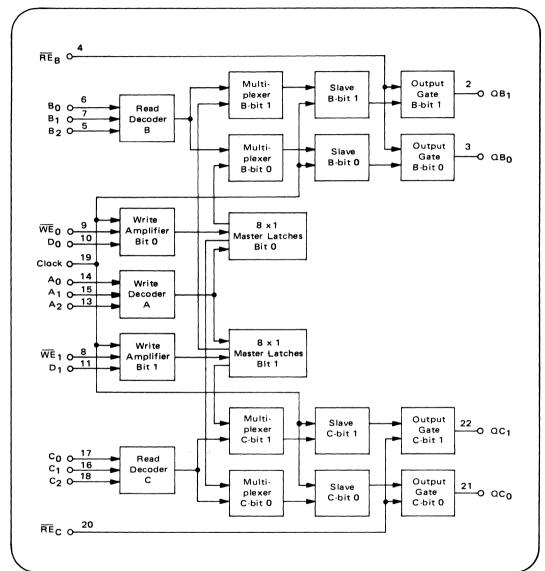
Clock to Data out = 5 ns (typ) (Read Selected) Address to Data out = 10 ns (typ) (Clock High) Read Enable to Data out = 2.8 ns (typ) (Clock high, Addresses present)

 $P_D = 610 \text{ mW/pkg} \text{ (typ no load)}$

	TRUTH TABLE										
*MODE			IN	IPUT					OUT	PUT	
	**Clock WE0 WE1 D0 D1 REB REC						QB0	QB1	QC0	QC1	
Write	L-H	·L	L	н	н	H.	н	L	L	L	L
Read	н	¢	¢	ø	\$	- L	L	н	н	н	н
Read	H→L	¢	¢	φ	0	L	L	н	н	н	н
Read	L→H→L	н	н	¢	¢	L	L	н	н	н	н
Write	L→H	L	L	L	н	н	н	L	L	L	L
Read	н	φ	φ	¢	¢	L	L	L	н	L	н

**Note: Clock occurs sequentially through Truth Table
*Note: A0-A2, B0-B2, and C0-C2 are all set to same address location

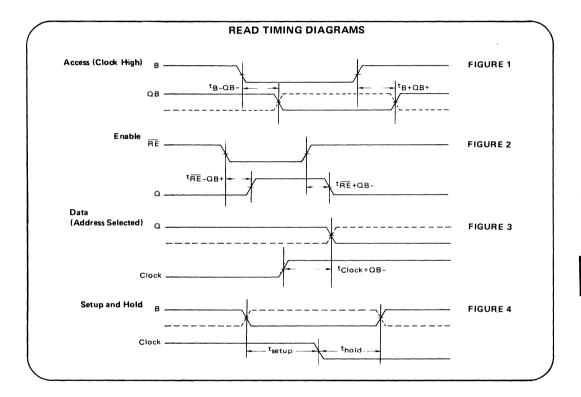
throughout Table.

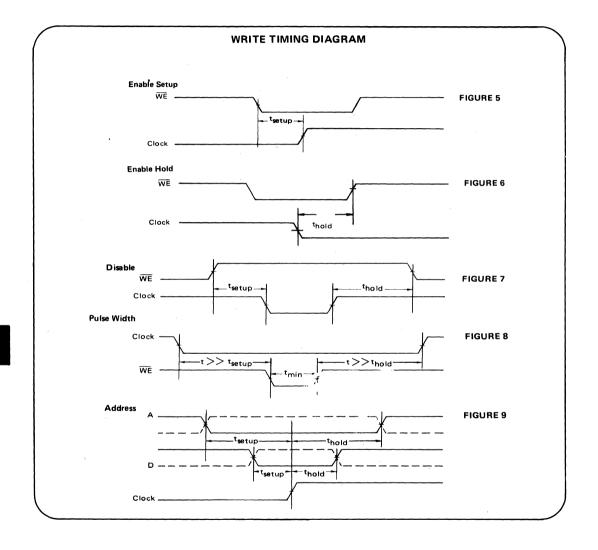

φ = Don't Care

L SUFFIX CERAMIC PACKAGE CASE 623

PIN ASSIGNMENT

1	Vcc0	vcc	24
2	QB1	V _{CC1}	23
3 🖂	QB0	QC1	22
4 🖂	REB	oc _o	21
5 🗖	^B 2	REC	20
6 🖂	BO	Clock	19
7 [B ₁	C2	18
8 🖂	WE ₁	C ₀	17
9 🗖	WE0	c ₁	16
10 🖂	D 0	A1	15
11 🖂	D ₁	A0	14
12 🗖	VEE	A2	13

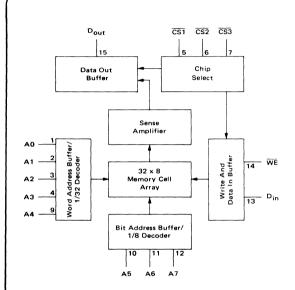



BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

		0	°c	+25 ⁰ C			+7	5°C	
Characteristics	Symbol	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	١E	_	150		118	150	-	150	mAdc
Input Current	linH								μAdc
Pins 10, 11, 19		-	245		-	245	-	2,45	
All other pins		-	200	-		200	-	200	
Switching Times $oldsymbol{1}$									ns
Read Mode		ļ							
Address Input	tB ± QB ±	4.0	15.3	4.5	10	14.5	4.5	15.5	
Read Enable	tRE-QB+	1.1	5.3	1.2	3.5	5.0	1.2	5.5	
Data	^t Clock+QB-	1.7	7.3	2.0	5.0	7.0	2.0	7.6	
Setup								·	
Address	^t setup(B-Clock-)	-	-	8.5	5.5	-	-	-	
Hold									1
Address	^t hold(Clock-B+)	-		-1.5	-4.5		-	_	
Write Mode		1	1						
Setup									
Write Enable	tsetup(WE-Clock+)	-	-	7.0	4.0	-	-	-	
	tsetup(WE+Clock-)	-	-	1.0	-2.0		-	-	
Address	^t setup(A – Clock +)	-	-	8.0	5.0	-	-	-	
Data	tsetup(D-Clock+)	-		5.0	2.0	-	-	-	
Hold									
Write Enable	^t hold(Clock+WE+)	-	-	5.5	2.5	-	-	-	
	^t hold(Clock+WE-)	-	-	1.0	-2.0	-	-	-	
Address	^t hold(Clock+A+)	-	-	1.0	-3.0	-	-	-	
Data	^t hold(Clock+D+)			1.0	-2.0		-		
Write Pulse Width	PWWE	-	-	8.0	5.0	—	-	_	
Rise Time, Fall Time (20% to 80%)	t _r , t _f	1.1	4.2	1.1	2.5	4.0	1.1	4.5	

(1)AC timing figures do not show all the necessary presetting conditions.



MCM10144/MCM10544

256 X 1-BIT RANDOM ACCESS MEMORY

TRUTH TABLE

MODE		INPUT		OUTPUT
	CS.	WE	D _{in}	D _{out}
Write "O"	L	L	L	L
Write "1"	L	L	н	L
Read	L	н	φ	٩
Disabled	н	φ	φ	L
CS = CS1 + C	S2 + CS	φ=	Don't Care.	

L SUFFIX CERAMIC PACKAGE CASE 620 The MCM10144/10544 is a 256 word X 1-bit RAM. Bit selection is achieved by means of an 8-bit address A0 through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\overline{CS} inputs low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode-the output is low and the data present at D_{in} is stored at the selected address. With \overline{WE} high the chip is in the read mode-the data state at the selected memory location is presented noninverted at D_{out}.

- Typical Address Access Time = 17 ns
- Typical Chip Select Access Time = 4.0 ns
- 50 kΩ Input Pulldown Resistors on Chip Select
- Power Dissipation (470 mW typ @ 25^oC) Decreases with Increasing Temperature
- Pin-for-Pin Replacement for F10410

A0 16 Vcc A1 Dout 115 2 Г WE зг A2 714 Din A3]13 4 CS1 Α7]12 5 F CS2 6 🗆 A6 711

CS3

VEE

Α5

Α4

]10

٦ ٩

7 [

8 F

PIN ASSIGNMENT

F SUFFIX

CERAMIC PACKAGE

CASE 650

ELECTRICAL CHARACTERISTICS

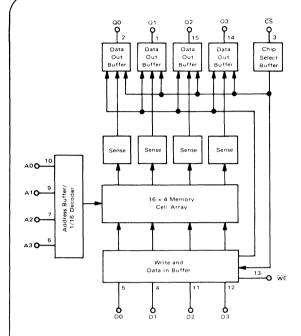
		- 5!	5°C	0	°C	+2	5°C	+ 75	5°C	+12	5 ⁰ C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	l _{inH}	1	375	-	220	-	220	-	220	-	220	μAdc

-55⁰C and +125⁰C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		MCM	10144	мсм	10544		
			0 to 5 ⁰ C,		-55 to 5 ⁰ C,		
			E ⁼ Vdc		E = Vdc		
		±	5%	±	5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	tACS	2.0	10	2.0	10		input to 50% of output.
Chip Select Recovery Time	^t RCS	2.0	10	2.0	10		See Note 2.
Address Access Time	^t AA	7.0	26	7.0	26		х.
Write Mode						ns	t _{WSA} = 8.0 ns
Write Pulse Width	tw	25	-	25	-		Measured at 50% of
Data Setup Time Prior to Write	twsd	2.0	-	2.0	-		input to 50% of output.
Data Hold Time After Write	twhd	2.0	-	2.0	-		tw = 25 ns.
Address Setup Time Prior to Write	twsa	8.0	-	8.0	-		
Address Hold Time After Write	tWHA	2.0	-	0.0	-		
Chip Select Setup Time Prior to Write	twscs	2.0	-	2.0	-		
Chip Select Hold Time After Write	twhcs	2.0	-	2.0	-		
Write Disable Time	tws	2.5	10	2.5	10		
Write Recovery Time	tWR	2.5	10	2.5	10		
Rise and Fall Time	t _r , t _f					ns	Measured between 20% and 80% points.
Address to Output		1.5	7.0	1.5	7.0		
CS or WE to Output		1.5	5.0	1.5	5.0		
Capacitance				1		pF	Measured with a pulse
Input Capacitance	Cin	-	5.0		5.0		technique.
Output Capacitance	Cout	-	8.0	-	8.0		

NOTES: 1. Test circuit characteristics: $R_T = 50 \ \Omega$, MCM10144; 100 Ω , MCM10544. $C_L \le 5.0 \ pF$ (including jig and stray capacitance). Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

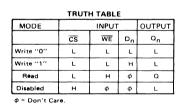

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

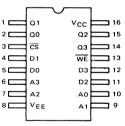
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10145/MCM10545

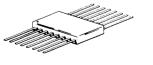
16 X 4-BIT REGISTER FILE (RAM)

The MCM10145/10545 is a 16 word X 4-bit RAM. Bit selection is achieved by means of a 4-bit address A0 through A3.


The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance.


The operating mode of the RAM (\overline{CS} input low) is controlled by the \overline{WE} input. With \overline{WE} low the chip is in the write mode-the output is low and the data present at D_n is stored at the selected address. With \overline{WE} high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Q_n.

- Typical Address Access Time = 10 ns
- Typical Chip Select Access Time = 4.5 ns
- 50 kΩ Pulldown Resistors on All Inputs
- Power Dissipation (470 mW typ @ 25^oC)
 Decreases with Increasing Temperature



L SUFFIX CERAMIC PACKAGE CASE 620

A Din TCHA
PIN ASSIGNMENT

F SUFFIX CERAMIC PACKAGE CASE 650

FIGURE	1 _	снір	ENABLE	STROBE	MODE

MCM10145/MCM10545

ELECTRICAL CHARACTERISTICS

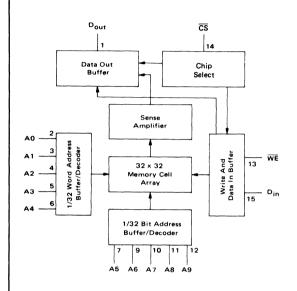
		-5	5°C	0	°c	+25	5°C	+7!	5°C	+ 12	5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	135	-	130	-	125	1	120	1	120	mAdc
Input Current High	linH	-	375	-	220	-	220	-	220		220	μAdc

-55⁰C and +125⁰C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		мсм	10145	мсм	10545						
		+75 ⁰ C,		T _A = -55 to +125 ⁰ C,							
		-5.2	E = Vdc 5%	V _{EE} = -5.2 Vdc + 5%				-5.2 Vdc			
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions				
Read Mode	[ns	Measured from 50% of				
Chip Select Access Time	tACS	2.0	8.0	2.0	10		input to 50% of output.				
Chip Select Recovery Time	tRCS	2.0	8.0	2.0	10		See Note 2.				
Address Access Time	tAA	4.0	15	4.0	18						
Write Mode						ns	tWSA = 5 ns				
Write Pulse Width	tw	8.0	_	8.0	_		Measured at 50% of				
Data Setup Time Prior to Write	twsp	0		0	_		input to 50% of output.				
Data Hold Time After Write	twhD	3.0		4.0	_		tw = 8 ns.				
Address Setup Time Prior to Write	tWSA	5.0	-	5.0	_						
Address Hold Time After Write	tWHA	1.0		3.0	-						
Chip Select Setup Time Prior to Write	twscs	· 0	-	5.0	-						
Chip Select Hold Time After Write	twhcs	0		0							
Write Disable Time	tws	2.0	8.0	2.0	10						
Write Recovery Time	twn	2.0	8.0	2.0	10						
Chip Enable Strobe Mode						ns	Guaranteed but not				
Data Setup Prior to Chip Select	tCSD	0		-	-		tested on standard				
Write Enable Setup Prior to	tCSW	0		-	_		product. See Figure 1.				
Chip Select											
Address Setup Prior to Chip Select	tCSA	0	-		-						
Data Hold Time After Chip Select	^t CHD	2.0	-	-	-						
Write Enable Hold Time After Chip Select	^t CHW	0		-	-						
Address Hold Time After Chip Select	^t CHA	4.0	-	-	-						
Chip Select Minimum Pulse Width	tcs	18	_	-	_						
Rise and Fall Time	t _r , t _f	<u> </u>		<u> </u>		ns	Measured between 20%				
Address to Output		1.5	7.0	1.5	7.0		and 80% points.				
CS to Output		1.5	5.0	1.5	5.0						
Capacitance						рF	Measured with a pulse				
Input Capacitance	Cin	-	6.0		6.0		technique.				
Output Capacitance	Cout	-	8.0	-	8.0						

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10145; 100 Ω , MCM10545. $C_L \le 5.0 pF$ (including jig and Stray Capacitance). Delay should be derated 30 ps/pF for capacitive loads up to 50 pF.


2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10146/MCM10546

1024 X 1-BIT RANDOM ACCESS MEMORY

The MCM10146/10546 is a 1024 \times 1-bit RAM. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM (\overline{CS} input low) is controlled by the \overline{WE} input. With \overline{WE} low, the chip is in the write mode, the output, D_{out}, is low and the data state present at D_{in} is stored at the selected address. With \overline{WE} high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at D_{out}. (See Truth Table.)

- Pin-for-Pin Compatible with the 10415
- Power Dissipation (520 mW typ @ 25⁰C)
 Decreases with Increasing Temperature
- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns
- 50 kΩ Pulldown Resistor on Chip Select Input

TRUTH TA

MODE		INPUT		OUTPUT
	CS	WE	Din	Dout
Write ''0''	L.	L	L	L
Write "1"	L	L	н	L
Read	L	н	Φ	٩
Disabled	н	φ	Φ	L

φ = Don't Care.

	<u> </u>	/	
10	Dout	Vcc	16
2 🖂	A0	Din	15
3 🖂	A1	ĈŜ	14
4 🖂	A2	WE	13
5 🖂	ĄЗ	A9	12
6 🖂	A 4	A8	
7 🖂	A5	A7	10
8 🖂	VEE	A6	

ELECTRICAL CHARACTERISTICS

		–55°C 0°C		°C	+25°C		+75°C		+ 125 ⁰ C			
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE		155	~	150	·	145		125	-	125	mAdc
Input Current High	linH		375	-	220	-	220	-	220	-	220	μAdc
Logic "0" Output Voltage	VOL	-1.970	-1.655	-1.920	-1.665	-1.900	-1.650	-1.880	-1.625	-1.870	-1.545	Vdc

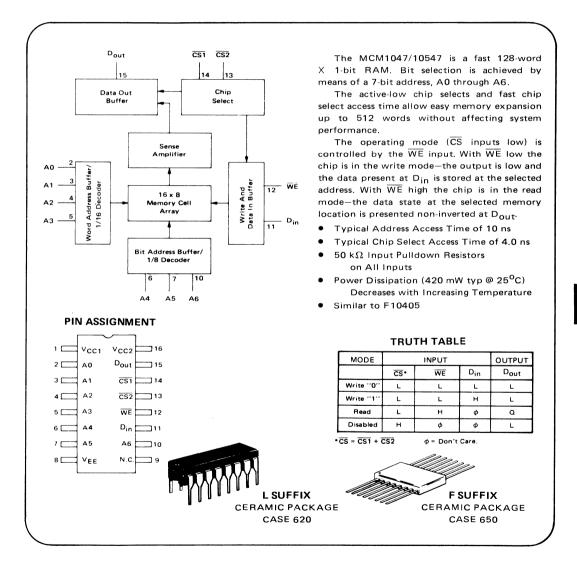
NOTE: -55°C and +125°C test values apply to MCM105XX only.

SWITCHING CHARACTERISTICS (Note 1)

		мсм	10146	мсм	10546		
			= 0 to 5 ⁰ C,		– 55 to 5 ⁰ C,		
			-5.2 Vdc 5%		-5.2 Vdc 5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured at 50% of input
Chip Select Access Time	tACS	2.0	7.0	2.0	8.0		to 50% of output.
Chip Select Recovery Time	TRCS	2.0	7.0	2.0	8.0		See Note 2.
Address Access Time	^t AA	8.0	29	8.0	40		
Write Mode	1					ns	tWSA = 8.0 ns.
Write Pulse Width	tw	25	_	25			Measured at 50% of input
(To guarantee writing)							to 50% of output.
Data Setup Time Prior to Write	twsp	5.0		5.0	- 1		tw = 25 ns
Data Hold Time After Write	twhd	5.0	-	5.0	-		
Address Setup Time Prior to Write	tWSA	8.0	-	10	-		
Address Hold Time After Write	twha	2.0	-	8.0			
Chip Select Setup Time Prior to Write	twscs	5.0	-	5.0	-		,
Chip Select Hold Time After Write	twhcs	5.0		5.0	-		
Write Disable Time	tws	2.8	7.0	2.8	12		
Write Recovery Time	twr	2.8	7.0	2.8	12	ļ	
Rise and Fall Time	t _r , t _f					ns	Measured between 20% and
CS or WE to Output		1.5	4.0	1.5	4.0		80% points.
Address to Output		1.5	8.0	1.5	8.0		
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0	-	5.0		technique.
Output Capacitance	Cout	- 1	8.0	- 1	8.0		I

NOTES: 1. Test circuit characteristics: $R_T \approx 50 \Omega$, MCM10146; 100 Ω , MCM10546. $C_L \leq 5.0$ pf including jig and stray capacitance. For Capacitance Loading ≤ 50 pF, delay should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10147/MCM10547

128 X 1-BIT RANDOM ACCESS MEMORY

4

ELECTRICAL CHARACTERISTICS

		-5	-55 ⁰ C		0°C		+25 ⁰ C		+75 ⁰ C		5°C	
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	115	-	105	-	100	-	95	-	95	mAdc
Input Current High	linH	-	375	-	220	-	220	-	220	-	220	μAdc

-55^oC and +125^oC test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

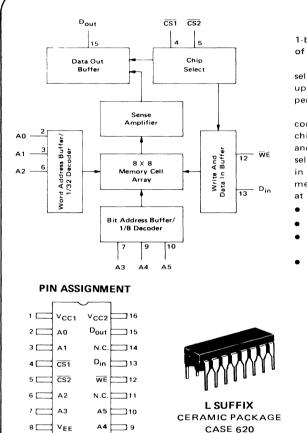
		MCM	10147	MCM	10547		
			o +75 ⁰ C, 2 Vdc ±5%	T _A = -55 V _{EE} = -5.			
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	^t ACS	2.0	8.0	*	*		input to 50% of output.
Chip Select Recovery Time	^t RCS	2.0	8.0	*	*		See Note 2.
Address Access Time	t _{AA}	5.0	15	•	*		
Write Mode						ns	twsa = 4.0 ns
Write Pulse Width	tw	8.0	- 1	*	-		Measured at 50% of input
Data Setup Time Prior to Write	twsD	1.0	-	*	-		to 50% of output.
Data Hold Time After Write	tWHD	3.0	-	•	-		tw = 8.0 ns.
Address Setup Time Prior to Write	tWSA	4.0	-	•	-		
Address Hold Time After Write	twha	3.0	- 1	*			
Chip Select Setup Time Prior to Write	twscs	1.0	-	+	-		
Chip Select Hold Time After Write	twhcs	1.0	-	+	-		
Write Disable Time	tws	2.0	8.0	•	•		
Write Recovery Time	twr	2.0	8.0	*	•		
Rise and Fall Time	t _r , t _f	1.5	5.0	*		ns	Measured between 20% and 80% points.
Capacitance		1	1			pF	Measured with a pulse
Input Capacitance	Cin	-	5.0	-	•		technique.
Output Capacitance	Cout	-	8.0	-	+		

NOTES: 1. Test circuit characteristics: R_T ≈ 50 Ω, MCM10147; 100 Ω, MCM10547.

 $C_L \leq 5.0 \text{ pF}$ (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

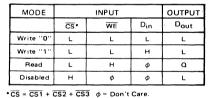
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.

MCM10148/MCM10548

64 X 1-BIT RANDOM ACCESS MEMORY



The MCM10148/10548 is a fast 64-word X 1-bit RAM. Bit selection is achieved by means of a 6-bit address, A0 through A5.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system performance.

The operating mode (\overline{CS} inputs low) is controlled by the WE input. With WE low the chip is in the write mode-the output is low and the data present at Din is stored at the selected address. With WE high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at D_{out}.

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 k Ω Input Pulldown Resistors on All Inputs
- Power Dissipation (420 mW typ @ 25°C) Decreases with Increasing Temperature

TRUTH TABLE

F SUFFIX CERAMIC PACKAGE CASE 650

ELECTRICAL CHARACTERISTICS

		-5	-55 ⁰ C		0°C		+25 ⁰ C		5°C	+125°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE		115		105	-	100		95		95	mAdc
Input Current High	- ^I inH	-	375		220		220		220	-	220	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

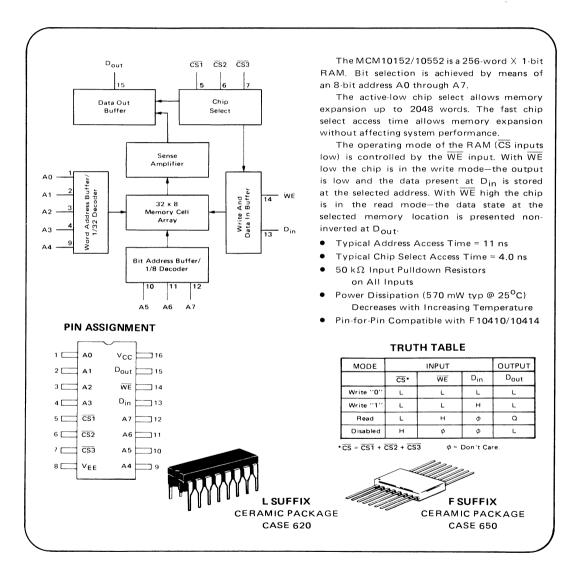
		МСМ	10148	мсм	10548		
			o +75 ⁰ C, 2 Vdc ±5%		to +125 ⁰ C, .2 Vdc ±5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	^t ACS	-	7.5	-	*		input to 50% of output.
Chip Select Recovery Time	tRCS	-	7.5		•		See Note 2.
Address Access Time	^t AA	_	15	-	•		
Write Mode						ns	twsa = 5.0 ns
Write Pulse Width	tw	8.0	-	*	-		Measured at 50% of input
Data Setup Time Prior to Write	twsd	3.0	-	*	-		to 50% of output.
Data Hold Time After Write	tWHD	2.0	-	+	-		tw = 8.0 ns.
Address Setup Time Prior to Write	tWSA	5.0	-	+	-		
Address Hold Time After Write	twha	3.0	- 1	•	_		
Chip Select Setup Time Prior to Write	twscs	3.0	-	•	-		
Chip Select Hold Time After Write	tWHCS	0	- 1	*	-	1	
Write Disable Time	tws	2.0	7.5	•	*		
Write Recovery Time	tWR	2.0	7.5	*	*	1	
Rise and Fall Time	t _r , t _f	1.5	5.0	*	*	ns	Measured between 20% and 80% points.
Capacitance			1		1	pF	Measured with a pulse
Input Capacitance	Cin	-	5.0	-	*		technique.
Output Capacitance	Cout	-	8.0	-			1

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10148; 100 Ω , MCM10548.

 $C_L \leqslant 5.0~\text{pF}$ (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF,

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.

MCM10152/MCM10552

256 X 1-BIT RANDOM ACCESS MEMORY

ELECTRICAL CHARACTERISTICS

		-55 ⁰ C		0°C		+25 ⁰ C		+75 ⁰ C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	^I EE		140	-	135		130	-	125		125	mAdc
Input Current High	linH	-	375		220	-	220	-	220		220	μAdc

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		MCM	10152	МСМ	10552		
		T _A = 0 t	o +75 ⁰ C,	T _A = -55	to +125 ⁰ C,		
		V _{EE} = -5	.2 Vdc ±5%	VEE = -5	.2 Vdc ±5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode							Measured from 50% of
Chip Select Access Time	tACS	2.0	7.5	*	*		input to 50% of output.
Chip Select Recovery Time	tRCS	2.0	7.5	*	*		See Note 2.
Address Access Time	^t AA	7.0	15	*	•		
Write Mode						ns	tWSA = 5.0 ns
Write Pulse Width	tw	10	-	•	-		Measured at 50% of input
Data Setup Time Prior to Write	twsp	2.0	_	*	-		to 50% of output.
Data Hold Time After Write	twhd	2.0	-	*	-	1	t _W = 10 ns.
Address Setup Time Prior to Write	tWSA	5.0	_	•	-	ļ	
Address Hold Time After Write	^t WHA	3.0	_	•	-		
Chip Select Setup Time Prior to Write	twscs	2.0	-	*	-		
Chip Select Hold Time After Write	tWHCS	2.0	-	*			
Write Disable Time	tws'	2.5	7.5	*	*		
Write Recovery Time	tWR	2.5	7.5	•	*		
Rise and Fall Time	t _r , t _f	1.5	5.0	*	*	ns	Measured between 20% and
				{			80% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0	-	*		technique.
Output Capacitance	Cout	-	8.0	-	*		

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10152; 100 Ω , MCM10552.

 $C_L \leqslant 5.0 \ \text{pF}$ (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

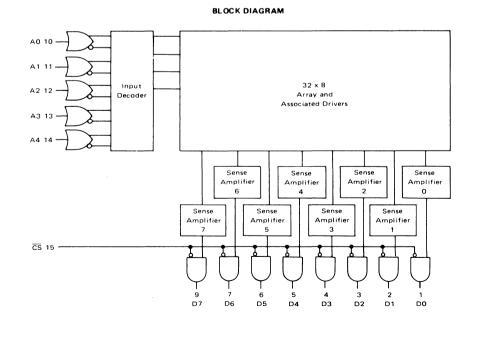
*To be determined; contact your Motorola representative for up-to-date information.



MCM10139/MCM10539

32 x 8-BIT PROGRAMMABLE READ-ONLY MEMORY

L SUFFÌX CERAMIC PACKAGE CASE 620



F SUFFIX CERAMIC PACKAGE CASE 650

1			1
1 🖂	D0	Vcc	16
2 🖂	D1	CS	15
3 🖂	D2	A4	14
4 🖂	D3	A3	13
5 🖂	D4	A2	12
6 🖂	D5	A1	-11
7 🖂	D6	A0	10
8 🖂	VEE	D7	9

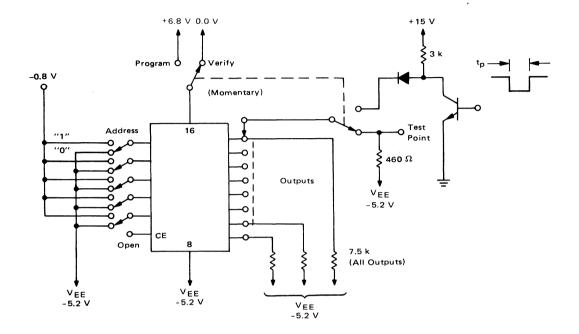
The MCM10139/10539 is a 256-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 0 (low) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled $(\overline{CS} = \text{high})$, all outputs are forced to a logic 0 (low).

- Typical Address Access Time = 15 ns
- Typical Chip Select Access Time = 10 ns
- 50 kΩ Input Pulldown Resistors on all inputs
- Power Dissipation (520 mW typ @ 25°C)
 Decreases with Increasing Temperature

ELECTRICAL CHARACTERISTICS

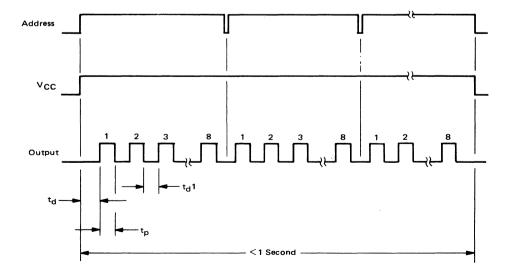
		-55 ⁰ C		-0 ⁰ C		+25 ⁰ C		+75 ⁰ C		+ 125°C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IEE	-	160	-	150	-	145	-	140	-	160	mAdc
Input Current High	linH		450		265	-	265	-	265		265	μAdc
Logic "0" Output Voltage MCM10139 MCM10539	VOL	 -2.060	_ -1 <i>.</i> 655	-2.010	-1.665		-1.650 -1.620		-1.625 		_ -1.545	Vdc

SWITCHING CHARACTERISTICS (Note 1)


		MCM10139	MCM10539	
Characteristic	Symbol	$(V_{EE} = -5.2 \text{ Vdc } \pm 5\%;)$ $T_{A'} = 0^{\circ}\text{C to } +75^{\circ}\text{C})$	(V _{EE} = -5.2 Vdc ± 5 %; T _A = -55 ^o C to +125 ^o C)	
Chip Select Access Time	tACS	15 ns Max	*	
Chip Select Recovery Time	^t RCS	15 ns Max	(*	Measured from 50% of input to 50%
Address Access Time	^t AA	20 ns Max	*	of output. See Note 2
Rise and Fall Time	t _r , t _f	3.0 ns Typ	*	Measured between 20% and 80% points.
Input Capacitance	Cin	5.0 pF Max	*	
Output Capacitance	Cout	8.0 pF Max	*	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10139; 100 Ω , MCM10539. $C_L \leq 5.0 pF$ including jig and stray capacitance. For Capacitance Loading $\leq 50 pF$, delay should be derated by 30,ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

*To be determined; contact your Motorola representative for up-to-date information.

FIGURE 1 - MANUAL PROGRAMMING CIRCUIT

FIGURE 2 – AUTOMATIC PROGRAMMING CIRCUIT

RECOMMENDED PROGRAMMING PROCEDURE*

The MCM10139 is shipped with all bits at logical "0" (low). To write logical "1s", proceed as follows.

MANUAL (See Figure 1)

 Step 1
 Connect V_{EE} (Pin 8) to -5.2 V and V_{CC} (Pin 16) to 0.0 V. Address the word to be programmed by applying -1.2 to -0.6 volts for å logic "1" and -5.2 to -4.2 volts for a logic "0" to the appropriate address inputs.

Step 2 Raise V_{CC} (Pin 16) to +6.8 volts.

Step 4 Return V_{CC} to 0.0 Volts.

CAUTION

To prevent excessive chip temperature rise, V_{CC} should not be allowed to remain at +6.8 volts for more than 1 second.

Step 5Verify that the selected bit has programmed by con-
necting a 460 Ω resistor to -5.2 volts and measuring
the voltage at the output pin. If a logic "1" is not detected at the
output, the procedure should be repeated once. During verification
 V_{IH} should be -1.0 to -0.6 volts.

Step 6 If verification is positive, proceed to the next bit to be programmed.

AUTOMATIC (See Figure 2)

Step 1 Connect V_{EE} (Pin 8) to -5.2 volts and V_{CC} (Pin 16) to 0.0 volts. Apply the proper address data and raise V_{CC} (Pin 16) to +6.8 volts.

Step 2 After a minimum delay of 100 μ s and a maximum delay of 1.0 ms, apply a 2.5 mA current pulse to the first bit to be programmed (0.1 \leq PW \leq 1 ms).

 Step 3
 Repeat Step 2 for each bit of the selected word specified as a logic "1". (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms.)

 Step 4
 After all the desired bits of the selected word have been programmed, change address data and repeat

 Steps 2 and 3.
 Steps 2 and 3.

NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for V_{CC} to remain at +6.8 volts during the entire programming time.

 Step 5
 After stepping through all address words, return V_{CC} to 0.0 volts and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once. During verification V_{IH} should be -1.0 to -0.6 volts.

*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

PROGRAMMING SPECIFICATIONS

			Limits			
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Power Supply Voltage	VEE	-5.46	-5.2	-4.94	Vdc	
To Program	VCCP	+6.04	+6.8	+ 7.56	Vdc	
To Verify	VCCV	0	0	0	Vdc	
Programming Supply Current	ICCP	. –	200	600	mA	V _{CC} = +6.8 Vdc
Address Voltage	VIH Program	-1.2	-	-0.6	Vdc	
Logical "1"	VIH Verify	- 1.0	-	-0.6	Vdc	
Logical "O"	VIL	- 5.2	-	-4.2	Vdc	
Maximum Time at V _{CC} = V _{CCP}	-	-	-	1.0	sec	
Output Programming Current	IOP	2.0	2.5	3.0	mAdc	
Output Program Pulse Width	tp	0.5	-	1.0	ms	
Output Pulse Rise Time	-	-	-	10	μs	
Programming Pulse Delay (1)						
Following V _{CC} change	t _d	0.1	-	1.0	ms	
Between Output Pulses	t _d 1	0.01	-	1.0	ms	

NOTE 1. Maximum is specified to minimize the amount of time V_{CC} is at +6.8 volts.

MCM10149/MCM10549

256 X 4-BIT PROGRAMMABLE READ-ONLY MEMORY

PIN ASSIGN	MENT	The MCM10149/10549 is a 256-word X 4-bit
[field programmable read only memory (PROM). Prior to programming, all stored bits are at logic
1 V _{CP} V	/cc 16	1 (high) levels. The logic state of each bit
2 A1	D0 15	can then be changed by on-chip programming
L		circuitry. The memory has a single negative
3 A2	D1 14	logic chip enable. When the chip is disabled $(\overline{\text{CS}}$ = high), all outputs are forced to a logic
4 A0	CS 13	0 (low).
5 A6	D2 12	• Typical Address Access Time of 20 ns
6 A5	D3 11	 Typical Chip Select Access Time of 8.0 ns
7 A7	A4 10	 50 kΩ Input Pulldown Resistors
		on All Inputs • Power Dissipation (540 mW typ @ 25 ⁰ C)
8 VEE	A3 9	 Power Dissipation (540 mW typ @ 25 C) Decreases with Increasing Temperature
	A0 4- A6 5- A5 6-	Decoder Array and Associated Drivers
CERAMIC PACKAGE	·	
CASE 620		Sense Sense Sense Sense Sense Amplifier Amplifier Amplifier
	A7 7-	
Inno	A3 9-	Decoder
1100000	A4 10	
	CS 13	<u></u>
F SUFFIX		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CERAMIC PACKAGE		11 12 14 15

MCM10149/MCM10549

ELECTRICAL CHARACTERISTICS

		-55 ⁰ C		–55 ⁰ C		-55°C 0°C		+25 ⁰ C		+75 ⁰ C		+125 ⁰ C		
Characteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
Power Supply Drain Current	IEE		140		135		130		125		125	mAdc		
Input Current High	linH	-	450	-	265		265	-	265	-	265	μAdc		

-55°C and +125°C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

		MCM10149		мсм	MCM10549		
		T _A = 0	to +75 ⁰ C,	T _A = -55 to +125 ⁰ C,			
		VEE = -5	.2 Vdc ± 5%	VEE = -5.	2 Vdc ± 5%		
Characteristics	Symbol	Min	Max	Min	Max	Unit	Conditions
Read Mode						ns	Measured from 50% of
Chip Select Access Time	tACS	2.0	10	*	*		input to 50% of output.
Chip Select Recovery Time	tRCS	2.0	10	*	*		See Note 1.
Address Access Time	tAA	7.0	25	*	*		
Rise and Fall Time	t _r , t _f	1.5	7.0	*	*	ns	Measured between 20% and 80% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	Cin	-	5.0		5.0		technique,
Output Capacitance	Cout	-	8.0		8.0		

NOTES: 1. Test circuit characteristics: $R_T = 50 \Omega$, MCM10149; 100 Ω , MCM10549.

 $C_{L} \leqslant 5.0 \ \text{pF}$ (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

4. $V_{CP} = V_{CC} = Gnd$ for normal operation.

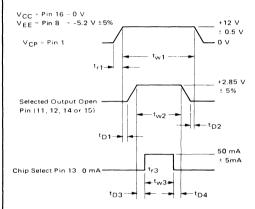
*To be determined; contact your Motorola representative for up-to-date information.

PROGRAMMING THE MCM10149

During programming of the MCM10149, input pins 7, 9, and 10 are addressed with standard MECL 10K logic levels. However, during programming input pins 2, 3, 4, 5, and 6 are addressed with 0 V \leq V_{IH} \leq + 0.25 V and V_{EE} \leq V_{IL} \leq -3.0 V. It should be stressed that this deviation from standard input levels is required only during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

With these requirements met, and with V_{CP} = V_{CC} = 0 V and V_{EE} = - 5.2 V ± 5%, the address is set up. After a minimum of 100 ns delay, VCP (pin 1) is ramped up to ± 12 V ± 0.5 V (total voltage VCP to VEE is now 17.2 V, +12 V -[-5.2 V]). The rise time of this V_{CP} voltage pulse should be in the 1-10 μ s range, while its pulse width (t_{w1}) should be greater than 100 μ s but less than 1 ms. The V_{CP} supply current at +12 V will be approximately 525 mA while current drain from V_{CC} will be approximately 175 mA. A current limit should therefore be set on both of these supplies. The current limit on the VCP supply should be set at 700 mA while the V_{CC} supply should be limited to 250 mA. It should be noted that the VEE supply must be capable of sinking the combined current of the VCC and V_{CP} supplies while maintaining a voltage of -5.2 V ± 5%.

Coincident with, or at some delay after the V_{CP} pulse has reached its 100% level, the desired bit to be fused can be selected. This is done by taking the corresonding output pin to a voltage of $\pm 2.85 \text{ V} \pm 5\%$. It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor (100 ohm for MCM10549) to -2.0 V. Current into the selected output is 5 mA maximum.

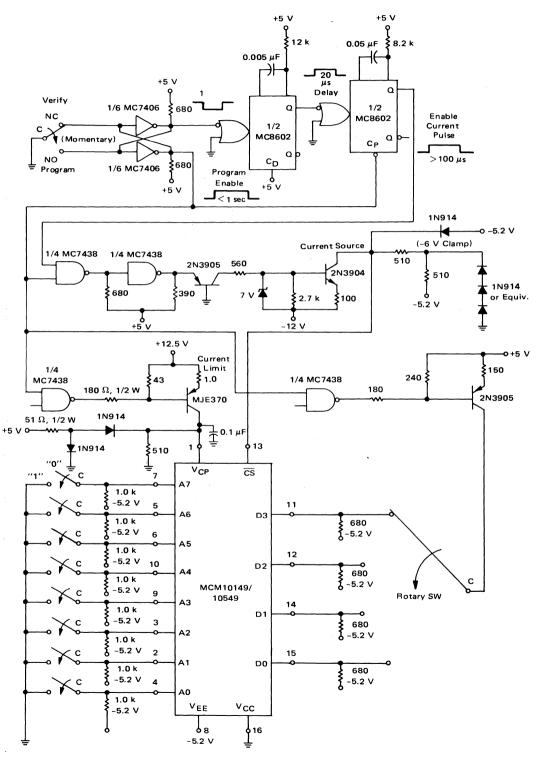

After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13. The 0% to 100% rise time of this current pulse should be 250 ns max. Its pulse width should be greater than 100 μ s. Pulse magnitude is 50 mA ± 5.0 mA. The voltage clamp on this current source is to be -6.0 V.

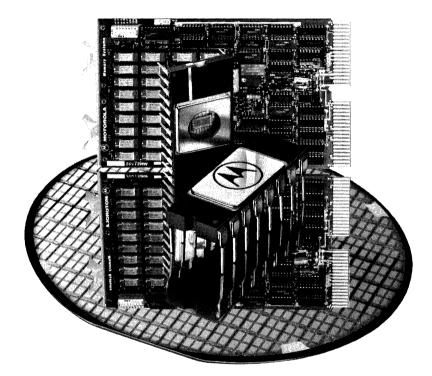
After the fusing current source has returned 0 mA, the bit select pulse is returned to it initial level, i.e., the output is returned through its load to -2.0 V. Thereafter, V_{CP} is returned to 0 V. Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V_{CP} has returned to 0 V. The remaining bits are programmed in a similar fashion.

⁺ NOTE: For devices that program incorrectly, return serialized units with individual truth tables. Non compliance voids warranty.

PROGRAMMING SPECIFICATIONS

The following timing diagrams and fusing information represent programming specifications for the MCM10149.


The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the V_{CP} pulse, i.e., V_{CP} = 0 V. Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V_{CP} returns to 0 V.

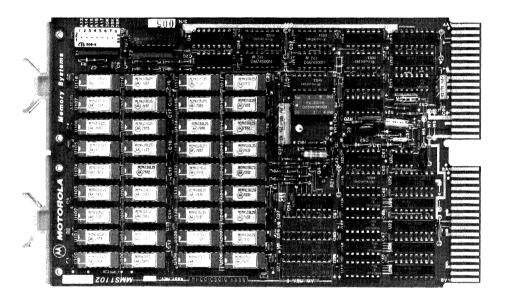

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of \leq 15% is to be observed.

Definitions and values of timing symbols are as follows.

Symbol	Definition	Value
^t r1	Rise Time, Programming Voltage	\geqslant 1 μ s
^t w1	Pulse Width, Programming Voltage	≥ 100 µs < 1 ms
^t D1	Delay Time, Programming Voltage Pulse to Bit Select Pulse	≥ 0
^t w2	Pulse Width, Bit Select	≥ 100 μs
^t D2	Delay Time, Bit Select Pulse to Programming Voltage Pulse	≥ 0
^t D3	Delay Time, Bit Select Pulse to Programming Current Pulse	≥ 1 μs
^t r3	Rise Time, Programming Current Pulse	250 ns max
t _{w3}	Pulse Width, Programming Current Pulse	≥ 100 μs
^t D4	Delay Time, Programming Current Pulse to Bit Select Pulse	≥ 1 μs

MANUAL PROGRAMMING CIRCUIT

Memory Boards


5

Advance Information

ADD-ON MEMORY CARD FOR THE LSI-11 FAMILY

The MMS1102 is a dual height ($5.187'' \times 8.94''$) add-on memory card for the LSI-11 family of computers. It is compatible with the LSI-11/2 and LSI-11 processors as well as the PDP 11V03 computer systems. It incorporates byte parity storage as well as generation and detection logic.

Specification Highlights

INTERFACE	LSI-11, "Q" Bus-Plus.
CAPACITY	8K words × 16 bits, 16K words × 16 bits, 32K words × 16 bits.
PARITY	Optional on-board storage, generation and detection logic for both upper and lower byte. Parity option does not degrade access times.
SPEED	The MMS1102-3X has a read access time under 300 ns. Read access time is defined here as the time from receipt of SYNC H to the transmission of RPLY H, assuming that the SYNC H to DIN H time is no greater than 160 ns.
ADDRESSING	Switch-selectable, to start on any 4K word boundary between 0 and 128K.
I/O PAGE USE	Three switches allow any one of the lowest three kilowords of the I/O page to be used as Read/Write memory.
BATTERY BACKUP	Jumper selectable; allows the MMS1102 to be operated from a separate uninterrupted power source (+5 BBU and +12 BBU).
REFRESH	Implemented internal to the MMS1102 and totally transparent to the system.

MMS1102-XX ORDERING INFORMATION

Storage Capacity	Part Number (With Parity and Controller)	Part Number (No Parity)
16 Kilobytes	MMS1102-31PC	MMS1102-31
32 Kilobytes	MMS1102-32PC	MMS1102-32
64 Kilobytes	MMS1102-34PC	MMS1102-34

MMS1102-3X - AC OPERATING CHARACTERISTICS

	Read A	ccess (ns)	Write Access (ns)		
	Typical	Worst Case	Typical	Worst Case	
Access Time*	250	300	125	175	
Cycle Time**	470	500	350	400	
Refresh Latency***	175	400	175	400	

*As measured from receipt of RSYNC H to transmission of TRPLY H.

**This is the reciprocal of the maximum continuous transfer rate, assuming no refresh interference.

***Occurs approximately once every 16 microseconds.

MMS1102 POWER REQUIREMENTS

			Standby		Standby Active		Standby Active		by Active		
Nominal Voltage	Min	Max	Typical	Worst Case	Typical	Worst Case	Input Pins				
+5 VDC (Total)	4.75	5.25	725 925*	800 1000*	775 1000*	850 1100*	AA2, BA2				
+12 VDC	11.40	12.60	100	150	250	400	AD2, BD2				
+5 VDC (BBU)	4.75	5.25	400	500	450	550	AV1**				
+12 VDC (BBU)	11.40	12.60	100	150	250	400	AS1***				

*Parity version only.

**In systems without battery backup this voltage is obtained from the regular +5 V rail via an on-board jumper.

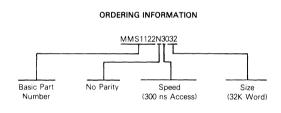
***The +12 V supply requirement can be met via an on-board jumper from the regular +12 V rail.

MMS1102 BACKPLANE CONNECTOR PIN ASSIGNMENT

Row	A			3
Side	1	2	1	2
Pin				
A		+5 V	BDCOK H	+5 V
В	_		-	
С	BAD16 L**	GND	-	GND
	BAD17 L	+12 V	_	+12 V
D E F	_	BDOUT L	-	BDAL 2 L
F	-	BRPLY L		BDAL 3 L
н		BDIN L		BDAL 4 L
J	GND	BSYNC L	GND	BDAL 5 L
ĸ		BWTBT L	1).	BDAL 6 L
L	∫	- ,		BDAL 7 L
м	GND	BIAKI L	GND GND	BDAL 8 L
N	_	BIAKO L 🕽		BDAL 9 L
Р		BBS7L		BDAL 10 L
R	BREF L	BDMGIL		BDAL 11 L
S	+12 V BBU	BDMGO L		BDAL 12 L
Т	GND	_	GND	BDAL 13 L
U	-	BDAL 0 L		BDAL 14 L
v	+5 V BBU	BDAL 1 L	+5 V	BDAL 15 L

*Must be hardwired on backplane or damage to MOS devices may result. **Or PRTYER or PRTYCK.

***Hardwired on MMS1102.


Product Preview

ADD-IN MEMORY CARD FOR THE LSI-11 FAMILY

The MMS1122 is a dual height (5.19" × 8.94") add-on memory card for the LSI-11 family of computers. It is compatible with LSI-11, LSI-11/2, and LSI-11/23 processors as well as PDP-11V03[•] computer systems. It utilizes MCM4132L 32K RAM modules.

FEATURES

- Capacity of 32K Words, Each 16-Bits Long
- Effective Capacity is Switch Selectable at any 1K Word Increment
- Addressing is Switch Selectable to Start on Any 1K Word Boundary From 0 to 127K
- Read Access Time of 300 ns (max.)
- Cycle Time 500 ns (max.)
- Refresh Implemented Internal to the Card (Transparent to the System). On-Board Jumpers Permit Synchronization of Refresh if Desired.
- Jumper Selectable Battery Backup Provisions Allow Use of Separate Power Source
- LSI-11 (Q-Bus and Q-Bus Plus) Interface Compatible

SIMILAR PRODUCTS

Other Add-In memory cards for the LSI-11 family include the MMS1102 and MMS1132.

Refresh and A0-A6 Address Memory Array Multiplexer wrt MA1-MA14 RAS. User Option DAT Memory Control Switches/ ģ Jumpers LAD BREFL (Optional) ection 12 V+5 V-5 V BD BREFL BDOUTL BRPLYL BDINL Control/ BSYNCL Status BWTBL Buffers BDS7L Buffers BDS7L - 5 Volt Multiplexed Generator and Address/Data Battery Backup Buffers Circuitry Buffers BDCOKH

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	TA	0 to +50	°C
Storage Temperature	Tstg	- 40 to + 80	°C
Relative Humidity (Without Condensation)	RH	5 to 90	%

*PDP is a trademark of Digital Equipment Corporation.

PHYSICAL DIMENSIONS

Dimension	Millimeters	Inches
Width	227.08	8.94
Height	131.75	5.19
PC Board Thickness	1.575	0.062
Clearance Required (Component Side)*	0.826	0.325
Clearance Required (Solder Side)*	1.524	0.060

*Measured from surface of PC Board.

POWER REQUIREMENTS (+5 Volts)

Mode	Pin	Curren	Units	
INICUS		Typical		Worst-Case
Active	•••	0.775	0.850	Adc
Standby	••	0.725	0.800	Adc
Battery Backup	AV1	0.400	0.500	Adc

POWER REQUIREMENTS (+ 12 Volts)

Mode	Pin	Curren	t Required	Units
INOUG		Typical	Worst-Case	Office
Active	•••	0.250	0.400	Adc
Standby	•••	0.100	0.150	Adc
Battery Backup	AS1	0.100	0.150	Adc

**AA2, BA2, BV1, AV1 (Jumper option allows all +5 V current to be supplied by AA2, BA2, and BV1 if battery backup operation is not required).

***AD2, BD2, AS1 (Jumper option allows all +12 V current to be supplied by AD2 and BD2 if battery backup operation is not required).

AC OPERATING CHARACTERISTICS

Characteristic	Typical	Worst-Case	Unit
Cycle Time - Read or Write	500	525	ns
Access Time – Read	250	300	
Write	125	175	ns

BACKPLANE CONNECTOR PIN ASSIGNMENT

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
AA2	+5 V	AL1	(Note 1)	AU2	BDAL (0)	BF1	BDAL (21)	BN2	BDAL (9)
AC1	BDAL (16)	AK2	BWTBT L	AV1	+5 V BBU ²	BF2	BDAL (3)	BP2	BDAL (10)
AC2	GND	AM1	GND	AV2	BDAL (1)	BH2	BDAL (4)	BR2	BDAL (11)
AD1	BDAL (17)	AM2	BIAKI L	BA1	BDCOK H	BJ1	GND	BS2	BDAL (12)
AD2	+ 12 V	AN2	BIAKO L	BA2	+5 V	BJ2	BDAL (5)	BT1	GND
AE2	BDOUT L	AP2	BBS7 L	BC1	BDAL (18)	BK1	(Note 3)	BT2	BDAL (3)
AF2	BRPLY L	AR1	BREF L	BC2	GND	BL1	(Note 3)	BU2	BDAL (14)
AH2	BDIN L	AR2	BDMGI L	BD1	BDAL (19)	BK2	BDAL (6)	BV1	+5 V
AJ1	GND	AS2	BDMGO L	BD2	+ 12 V	BL2	BDAL (7)	BV2	BDAL (15)
AJ2	BSYNC L	AS1	+ 12 V BBU ²	BE1	BDAL (20)	BM1	GND		
AK1	(Note 1)	AT1	GND	BE2	BDAL (2)	BM2	BDAL (8)	BV2	BDAL (15)

Notes: (1) AK1 and AL1 normally connected together at backplane. User jumper option allows negative 5 V supply to be connected through AL1 if desired.

(2) + 12 V BBU and + 5 V BBU may be driven by normal + 5 V and + 12 V if desired.

(3) User jumper options allow BK1 and BL1 to be used for synchronous refresh.

Product Preview

ADD-IN MEMORY CARD FOR THE LSI-11 FAMILY The MMS1132 is a dual height (5.19" × 8.94") add-on memory card for the LSI-11 family of computers. It is compatible with LSI-11, LSI-11/2, and LSI-11/23 processors as well as PDP-11V03* computer systems. It utilizes MCM6633L 32K RAM or MCM6665L 64K RAM chips. FEATURES Capacity of up to128K Words, Each 16-Bits Long Without Parity, 18-Bits with Parity • Effective Capacity is Switch Selectable at any 1K Word Increment Addressing is Switch Selectable to Start on Any 1K Word Boundary Refresh and A0-A7 From 0 to 127K Address Memory Array Multiplexer Optional Parity and On-Board Parity Controller Read Access Time of 300 ns (max.) Cycle Time 500 ns (max.) Refresh Implemented Internal to the Card (Transparent to the CAS, **MA1-MA16** System). On-Board Jumpers Permit Synchronization of Refresh if RAS, C/ WRT Desired. Single +5 V Power Supply 15 Jumper Selectable Battery Backup Provisions Allow Use of Separate DAT0-DAT User Option Power Source Memory Control Switches/ LSI-11 (Q-Bus and Q-Bus Plus) Interface Compatible Jumpers BREFL (Optional) ecti ORDERING INFORMATION 8DAL < 0:21; MMS1132 X 3 Z₂Z₁Z₀ BREFL BDOUTL BRPLYL Multiplexed BDINL Address/Data Control/ BSYNCL Buffers BWTBL Status Basic Part Х Option Z2 **Z**1 Z0 Capacity Buffers BBS7L Number Ρ Parity 0 3 32K Words BDCOKH 2 Ν No Parity 0 6 4 64K Words 8 128K Words Speed (300 ns Access) Note: K = 1024, Word = 16 Bits W/O, 18 Bits With Parity SIMILAR PRODUCTS Other Add-In memory cards for the LSI-11 family include the MMS1102 and MMS1122.

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	TA	0 to +50	°C
Storage Temperature	T _{stg}	-40 to +80	°C
Relative Humidity (Without Condensation)	RH	5 to 90	%

*PDP is a trademark of Digital Equipment Corporation.

5

PHYSICAL DIMENSIONS

Dimension	Millimeters	Inches
Width	227.08	8.94
Height	131.75	5.19
PC Board Thickness	1.575	0.062
Clearance Required (Component Side)*	0.826	0.325
Clearance Required (Solder Side)*	1.524	0.060

*Measured from surface of PC Board.

POWER REQUIREMENTS (+5 V Only Required)

			Total Requ	ired Current		
Mode	Pins	32K Wor	d Capacity	64 or 128K	Nord Capacity	Units
		Typical	Worst-Case			
Active	AA2, BA2, BV1, AV1**	1.375	1.80	1.50	1.95	Adc
Standby	AA2, BA2, BV1, AV1**	0.965	1.15	1.05	1.25	Adc
Battery Backup	AV1	0.640	0.86	0.70	0.93	Adc

**Jumper option allows all current to be supplied by AA2, BA2, and BV1 if battery backup operation is not required.

AC OPERATING CHARACTERISTICS

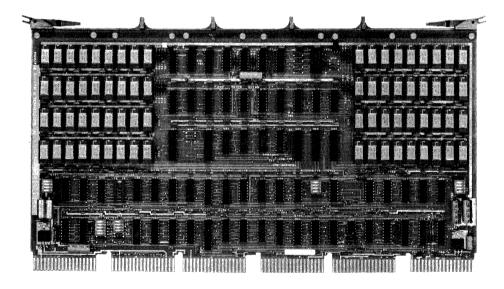
Characteristic	Typical	Worst-Case	Units
Cycle Time – Read	470	500	
Write	350	400	ns
Access Time - Read	250	300	
Write	125	175	ns

BACKPLANE CONNECTOR PIN ASSIGNMENT

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
AA2	+5 V	AL1	(Note 1)	AU2	BDAL (0)	BF1	BDAL (21)	BN2	BDAL (9)
AC1	BDAL (16)	AK2	BWTBT L	AV1	+5 V BBU ²	BF2	BDAL (3)	BP2	BDAL (10)
AC2	GND	AM1	GND	AV2	BDAL (1)	BH2	BDAL (4)	BR2	BDAL (11)
AD1	BDAL (17)	AM2	BIAKI L	BA1	BDCOK H	BJ1	GND	BS2	BDAL (12)
AD2	+ 12 V	AN2	BIAKO L	BA2	+5 V	BJ2	BDAL (5)	BT1	GND
AE2	BDOUT L	AP2	BBS7 L	BC1	BDAL (18)	BK1	(Note 3)	BT2	BDAL (3)
AF2	BRPLY L	AR1	BREF L	BC2	GND	BL1	(Note 3)	BU2	BDAL (14)
AH2	BDIN L	AR2	BDMGI L	BD1	BDAL (19)	BK2	BDAL (6)	BV1	+5 V
AJ1	GND	AS2	BDMGO L	BD2	+ 12 V	BL2	BDAL (7)	BV2	BDAL (15)
AJ2	BSYNC L	AS1	+ 12 V BBU ²	BE1	BDAL (20)	BM1	GND		
AK1	(Note 1)	AT1	GND	BE2	BDAL (2)	BM2	. BDAL (8)	BV2	BDAL (15)

Notes: (1) +5 V BBU may be driven by normal +5 V if desired.

(2) User jumper options allow BK1 and BL1 to be used for synchronous refresh.



Advance Information

PDP-11* UNIBUS* COMPATIBLE RANDOM ACCESS MEMORIES, UP TO 128 KILOBYTES OF STORAGE CAPACITY PLUS OPTIONAL PARITY CONTROLLER ON A SINGLE CARD

The MMS1117 family of memory systems offers owners of PCP-11* computers an opportunity to easily add storage capacity and parity features to their system. Each member of the family is contained on a single plugin circuit card that interfaces mechanically and electrically with the following models of UNIBUS* PDP-11* processors: 11/04, 11/05, 11/10, 11/34, 11/35, 11/40, 11/45, 11/50, 11/55, and 11/60. It plugs into a single hex SPC slot in any of the following backplanes: DD11-B, DD11-C, DD11-D and DD11-P.

The MMS1117 can provide up to 128K 8-bit bytes of main memory on a single module. Quick address select changes are possible via onboard switches. In addition, 1 or 2 kilowords of I/O page can selectively be made available for random access storage. Optional parity as well as full parity generation, detection, and exception control circuits can be provided on the same card with the memory. No additional bus loading is imposed on the system by the addition of the fully compatible parity controller option.

MMS1117 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- Low Power

*Trademark of Digital Equipment Corporation

- Fully UNIBUS Compatible
- High Reliability
- One UNIBUS Load

MMS1117 OPTION DESIGNATOR SUFFIX

Typical Read		Total Storage Capacity (in Kilobytes)						
Access Time	Parity Options	32K	64K	96K	128K			
290 ns	Parity + Controller	-32-PC	-34-PC	-36-PC	-38-PC			
	Parity Data Only	-32-P	-34-P	-36-P	-38-P			
	No Parity	-32	-34	-36	-38			
360 ns	Parity + Controller	-42-PC	-44-PC	-46-PC	-48-PC			
	Parity Data Only	-42-P	-44-P	-46-P	-48-P			
	No Parity	-42	-44	-46	-48			
390 ns	Parity + Controller	-52-PC	-54-PC	-56-PC	-58-PC			
	Parity Data Only	-52-P	-54-P	-56-P	-58-P			
	No Parity	-52	-54	-56	-58			

ACCESS AND CYCLE TIMES

Option Designator	N	Irite	R	ead	Су	rcle
Suffix	Typical	Worst Case	Typical	Worst Case	Typical	Worst Case
-3X	105	125	290	315	375	390
-4X	115	135	360	390	480	500
-5X	115	135	390	420	560	585

MMS1117 POWER REQUIREMENTS

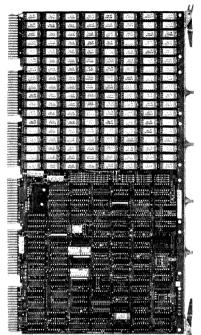
			Current Re	quirements	
	Voltage Tolerance		Standby-Typ/WC	Active-Typ/WC	
Nominal Voltage	Min	Max	(Amps)	(Amps)	Input Pins
+5 Vdc	4.75	5.25	2.0/2.5	2.0/2.5	DA2, EA2, FA2
+15 Vdc	15	20	0.15/0.20	0.35/0.70	AV1, AR1, CE1, CU1
~15 Vdc	-7.0	-20	0.015/0.030	0.015/0.030	FB2

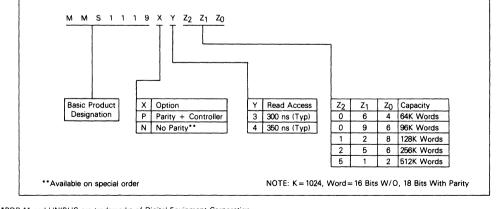
MMS1117 BACK PLANE CONNECTOR PIN ASSIGNMENT

Row	Δ			B	C	:	1	D		E		F
Side	1	2	1	2	1	2	1	2	1	2	1	2
Pin A					٢**			+5 V		+5 V		+5 V
Pin B					L * *							-15V
Pin C		Gnd		Gnd	PA	Gnd		Gnd	A12	Gnd		Gnd
Pin D			+5BB			D15			A17	A15		
Pin E			*SSyn	*PA DE	***VDD	D14			MSyn	A16		
Pin F						D13			A02	C1		
Pin H					D11	D12			A01	A00		
Pin J						D10			SSyn	CO		
Pin K						D09		[**	A14	A13		
Pin L						D08	Init	L **	A11			
Pin M						D07		٢ **				
Pin N	*P1				DCLO	D04		L **		A08		
Pin P	*P0					D05		Γ**	A10	A07		
Pin R	***VDD					D01		L **	A09			
Pin S					PB	D00		٢**				
Pin T	Gnd		Gnd		Gnd	D03	Gnd	L **	Gnd		Gnd	
Pin U					***VDD	D02			A06	A04	1	
Pin V	***V _{DD}					D06			A05	A03		

*Options for use with External Parity Controller.

**Grant Continuity Jumpers


***VDD is any voltage between +15 Vdc and +20 Vdc on any one of the four listed pins.


Advance Information

PDP-11* MODIFIED UNIBUS*/EXTENDED UNIBUS COMPATIBLE MEMORY SYSTEM

- Uses 16K or 64K Dynamic RAM Chips
- Available in 64K, 96K, 128K, 256K, and 512K Word Capacities
- Read Access Time Typically 300 ns (Measured Inside Buffers)
- Cycle Times as Low as 390 ns Typical
- Two Speed Options Available
- Worst-Case AC Limits Specified at Card Edge
- On-Board Parity and Parity Controller Standard
- Also Available Without Parity
- Starting Address Configurable at Any 4K Boundary
- Optional Selection of I/O Page Size; 2K, 4K, or 8K Words
- Automatic Internal Refresh
- Provisions for External Refresh Control
- Battery Backup Capability Standard
- Single 5-Volt Power Supply Required for 256K and 512K Word Versions

ORDERING INFORMATION

*PDP-11 and UNIBUS are trademarks of Digital Equipment Corporation

ABSOLUTE MAXIMUM RATINGS

Basin a		Limit	Units	
Rating	Symbol	Min	Max	Offica
	VDD	-0.3	20.0	
Supply Voltage (Relative to Ground)	Vcc	- 0.3	7.0	Vdc
	VBB	- 20.0	+ 0.3	
Input Voltage (Any input relative to Ground)	Vin	-0.7	+ 5.5	Vdc

NOTES: 1. Permanent damage may occur if Absolute Maximum Ratings are exceeded. Functional operation shall be restricted to Recommended Operating Conditions.

 Permanent damage may also occur if V_{DD} is applied for more than one second while V_{BB} is outside its Recommended Operating Range.

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	Tstg	-40 to +85	°C
Relative Humidity (Without Condensation)	RH	0 to 90	%

RECOMMENDED DC OPERATION CONDITIONS

Parameter		Symbol	Li	mit	Units	Note
		Symbol	Min	Max	Units	NOLO
Supply Voltage	-Nominal +15 V or nominal +12 V, pin AR1	VDD	14.50	16.50	Vdc	1, 3
			11.40	12.60	1	
	– Nominal +5 V, pins AA2, BA2, CA2	Vcc	4.75	5.25		2
	– Nominal +5 V BBU, pin BD1	V _{CC} /BBU	4.75	5.25		3
	-Nominal - 15 V or nominal - 12 V, pin AS1	VBB	- 7.00	- 20.00		3, 4

NOTES: 1. + 15 V or + 12 V is jumper selectable on all modules populated with 16K RAMs.

2. Pins AA2, BA2, and CA2 are connected together on the MMS1119.

3. These voltages must be present on cards populated with 16K RAMs if Battery Backup is required. Only V_{CC}/BBU need be present for cards populated with 32K or 64K RAMs.

4. VDD and VBB not required for cards populated with 32K or 64K RAMs.

DC OPERATING CHARACTERISTICS (0°C<TA<70°C)

Characteristic	Capacity	Mode	Symbol		Limit		Units	Notes
Characteristic	(K Words)	Widde	Symbol	Min	Тур	Max	Units	Notes
Supply Current - Nominal + 15 V or + 12 V Supply	64, 96, 128	Active	IDD	-	0.25	0.50	Adc	1, 2
	64, 96, 128	Standby	IDD	-	0.16	0.30	Adc	1, 2
Supply Current - Nominal +5 V Supply and +5 V BBU	64, 96, 128	Active/Standby	IDD	-	3.30	3.90	Adc	1, 2
Supply Current - Nominal +5 V BBU	64, 96, 128	BBU	ICC	-	1.10	1.30	Adc	1
Supply Current - Nominal +5 V Supply and +5 V BBU	256	Active/Standby	ICC	- 1	3.30	4.60	Adc	1
Supply Current - Nominal +5 V BBU	256	BBU	ICC	-	1.00	1.50	Adc	1
Supply Current - Nominal +5 V Supply and +5 V BBU	512	Active/Standby	ICC	-	3.80	5.1	Adc	1
Supply Current - Nominal + 15 V BBU	512	BBU	ICC	-	1.50	2.00	Adc	1
Supply Current - Nominal - 15 V or - 12 V Supply	64, 96, 128	All	IBB	-	12	20	mAdc	1, 2
Logic "1" Input Current - Any Input, VIH=2.4 Vdc	Any	All	ЧΗ	-	15	50	µAdc	3
Logic "0" Input Current - Any Input, VIL=0.4 Vdc	Any	All	hι	-	- 1.0	- 50	µAdc	3
Logic "1" Leakage Current — Any Output, V Bus=4.0 Vdc	Any	All	∨он	-	20	100	μAdc	3
Logic "0" Output Voltage - Any Output, IOL=50 mAdc	Any	All	VOL	-	0.40	0.70	Vdc	3
Input Threshold Voltage – Any Input – High Logic State			VILH	1.80	2.25	2.50	Vdc	
Input Threshold Voltage – Any Input – Low Logic State			VIHL	1.05	1.30	1.55	Vdc	

NOTES: 1. Active Mode = Memory accesses at maximum continuous rates; Standby Mode = Internal Refresh Cycles only; Battery Backup (BBU) = Standby Mode with + 5 V applied only through Pin BD1.

2. + 15/ + 12 V and - 15/ - 12 V supplies not required for products populated with 64K RAMs.

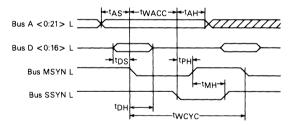
3. Negative sign = Current out of pin. Min/Max Limits refer to absolute values of current.

AC OPERATING CONDITIONS

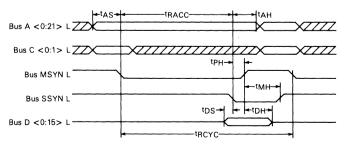
Parameter		Limit		Unit	Note	
		Min	Max		NULB	
Address Hold Time - MSYN↓ to A <0:21> Invalid	tAH	25	-	ns	1	
Address Setup Time – A <0:21> Valid to MSYN↓	tAS	75	-	ns	1	
Processor Handshake Time - SSYN to MSYN t	tPH	-	0	ns	1, 2	
Data Hold Time (Write Cycle/DATO) - MSYN↓ to D <0:15> Invalid		40	-	ns	1	
Data Setup Time (Write Cycle/DATO) - D <0:15> Valid to MSYN↓	tDSW	15		ns	1	

NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.

2. Assumes handshaking occurs immediately.


AC OPERATING CHARACTERISTICS (0°C≤TA≤70°C)

Characteristics	Sumbal	MMS1119X3XXX			MMS1119X4XXX			Unit	Note
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Onit	NOLE
Cycle Time – Read (DATI) Cycle	^t RCYC	390	360	-	440	425	1	ns	1
Read Access Time – MSYN↓ to SSYN↓	^t RACC		330	360	-	380	430	ns	1
Data Hold Time – Read (DATI) Cycle MSYN1 to Data Invalid	tDH	70	-	-	70	-	-	ns	1
Data Setup Time – Read (DATI) Cycle D<0:15> Valid to SSYN↓	tDS	0	-	-	0	-	-	ns	1
Memory Handshake Time – Read (DATI) or Write (DATO) Cycle – MSYN 1 to SSYN↓	tмн	_	-	75	-	_	75	ns	1
Write Access Time - MSYNI to SSYNI	tWACC	-	125	165	-	125	165	ns	1
Cycle Time – Write (DATO) Cycle	tWCYC	340	-	-	440	-	-	ns	1


NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.

2. Assumes handshaking occurs immediately.

WRITE CYCLE TIMING

READ CYCLE TIMING

5

TIMING

The MMS1119 is fully compatible with the PDP-11 Modified and Extended UNIBUS protocol and timing. Limits are specified in the AC Conditions/Characteristics Tables in conjunction with the DATI/DATO waveforms.

REFRESH

The storage cells in the MMS1119 are implemented with dynamic MOS RAM's. The charge stored in the cells must be refreshed every 2 milliseconds, requiring a single refresh cycle to be initiated approximately once every 16 M Seconds. The latency induced to bus cycles concurrent with refresh cycles is no greater than the specified minimum cycle time for the MMS1119 version chosen.

The MMS1119 contains circuitry to automatically refresh the memory cells. An option is also provided to allow the User to control the refresh externally. In this case, the Refresh Latency will be no greater than the refresh cycle time defined by the external circuitry. Note that any external refresh circuitry must conform to the requirements previously mentioned, i.e., each cell refreshed at a 2 millisecond rate and a refresh cycle time not less than the minimum Read Cycle time.

AVAILABLE OPTIONS

The MMS1119 features a variety of options, allowing its configuration into a wide range of applications. Several of these options are installed at the factory, with most of these specified by the part number as shown in the "Ordering Information" on Page 1. Others are chosen by the User prior to installation of the product.

MEMORY CAPACITY

The MMS1119 utilizes either 16K or 64K RAM components to allow optional storage capacities of 64K, 96K, 128K, 256K, or 512K Words. As noted on Page 1 (Ordering Information), the last three digits of the full part number identifies the total memory capacity in K Words.

BUS INTERFACE

The MMS1119 is provided with a switch to select the type of Bus to be used. With this switch closed, the interface is to an Extended UNIBUS backplane (22 bit address). The memory operates with a Modified UNIBUS system (18 bit address) with this switch open.

STARTING ADDRESS

The MMS1119 utilizes a set of switches to allow the starting address to be selected at any 4K boundary. This feature is available regardless of the Bus Interface or Memory Capacity option chosen. In cases where the sum of the starting address and the memory capacity exceeds the host machine addressing capability, the capability is automatically reduced. (No wraparound to starting address locations occurs.)

I/O PAGE SIZE

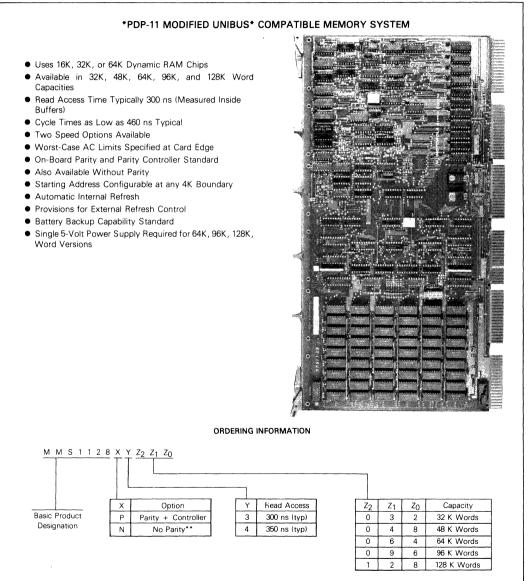
When the MMS1119 is located in high memory, the User may select part of the I/O page as Read/Write memory. This is implemented via three switches, resulting in optional I/O page sizes of 2K, 4K, or 8K words.

PARITY OPTIONS

The MMS1119PXXXX contains parity control circuitry which is fully compatible with the DEC parity module. This circuitry does not degrade access or cycle times, and the Parity Control Status Register (CSR) address can be switch selected to any standard pre-assigned bus address. (772100g thru 772136g for Modified UNIBUS, 1772100g thru 1772136g for Extended UNIBUS. In any case, the CSR occupies a single two-byte address space). The on-board parity circuitry does not impose any additional bus loading on the system.

The MMS1119PXXXX can also be used in systems which utilize the DEC Parity Module. The User selects this mode of operation by opening a switch (provided on the MMS1119P) prior to installation of the memory. The parity generation and detection circuitry of the MMS1119P is fully compatible with the DEC Parity Module.

The MMS1119NXXXX version is available for those systems not requiring parity. This product is supplied as a 16-bit word memory with the Internal/External Parity Control switch open (External).


Signal	Туре	Description
A<0:21>	Input	Address lines to select memory locations. A0 selects byte in DATOB
D<0:15>	Bidir.	Data lines used to communicate with Master
C<0:1>	Input	Control lines to specify type of cycle
MSYN	Input	Timing control from Master. Used to start cycle
SSYN	Output	Timing control used to notify Master that cycle is complete
INIT	Input	System Reset
DCLO	Input	Power monitoring
PB	Output	Signal to Master that parity error has occurred
P<0:1>	Bidir.	Data Parity Bits
PAR DET	Input	Indicates external parity module is in use
INT SSYN	Output	Slave Sync used with external parity module only

I/O SIGNAL DESCRIPTION

NOTE: All signals are low assertion level.

Advance Information

5

**Available on special order

NOTE: K = 1024, Word = 16 Bits W/O, 18 Bits With Parity

I/O SIGNAL DESCRIPTION

Signal	Туре	Description
A <0:17>	Input	Address lines to select memory locations. A0 selects byte in DATOB.
D <0:15>	Bidirectional	Data lines used to communicate with Master.
C <0:1>	Input	Control lines to specify type of cycle.
MSYN	Input	Timing control from Master. Used to start cycle.
SSYN	Output	Timing control used to notify Master that cycle is complete.
INIT	Input	System Reset.
DCLO	Input	Power monitoring.
PB	Output	Signal to Master that parity error has occurred.
P <0:1>	Bidirectional	Data Parity Bits.
PAR DET	Input	Indicates extend parity module in use.
INT SSYN	Output	Slave Sync used with external parity module only.

NOTE: All signals are low assertion level.

ABSOLUTE MAXIMUM RATINGS

Rating		Lin	Units	
		Min	Max	Units
	VDD	-0.3	20.0	
Supply Voltage (Relative to Ground)	Vcc	- 0.3	7.0	Vdc
		- 20.0	0.3	
Input Voltage (Any input relative to GND)	V _{in}	- 0.7	5.5	Vdc

NOTES: 1. Permanent damage may occur if Absolute Maximum Ratings are exceeded. Functional operation shall be restricted to Recommended Operating Conditions.

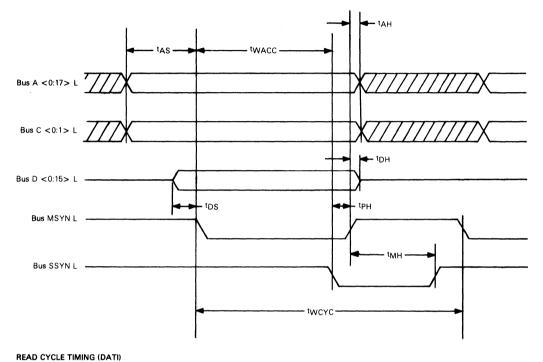
2. Permanent damage may also occur if V_{DD} is applied for more than one second while V_{BB} is outside its Recommended Operating Range.

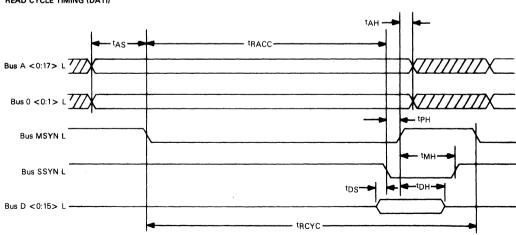
ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	TA	0 to 55	°C
Storage Temperature	T _{stg}	-40 to +85	°C
Relative Humidity (Without Condensation)	RH	0 to 90	%

RECOMMENDED DC OPERATION CONDITIONS

Parameter	Symbol	Lir	nit	Units	Note
	Symbol	Min	Max	Units	NOLE
Supply Voltage					
 Nominal + 15 V or nominal + 12 V, pin AR1 	VDD	14.50	16.50		1, 3
		11.40	12.60		
 Nominal +5 V, pins AA2, BA2, CA2 	Vcc	4.75	5.25	Vdc	2
 Nominal +5 V BBU, pin BD1 	V _{CC} /BBU	4.75	5.25		3
 Nominal – 15 V or nominal – 12 V, pin AS1 	V _{BB}	- 7.00	- 20.00		3, 4


NOTES: 1. + 15 V or + 12 V is jumper selectable on all modules populated with 16K RAMs.


2. Pins AA2, BA2, and CA2 are connected together on the MMS1128.

 These voltages must be present on cards populated with 16K RAMs if Battery Back Up is required. Only V_{CC}/BBU need be present for cards populated with 32K or 64K RAMs.

4. VDD and VBB not required for cards populated with 32K or 64K RAMs.

WRITE CYCLE TIMING (DATO)

Characteristic	Capacity	Mode	Symbol		Limit		Units	Notes
Characteristic	(K Words)	Wode	Symbol	Min	Тур	Max	Unita	140183
Supply Current								
- Nominal + 15 V or + 12 V Supply BBU	32, 48	Active	IDD		0.25	0.50	Adc	1, 2
	32, 48	Standby	DD		0.16	0.30		., =
 Nominal +5 V Supply 	32, 48	Act/Stby	lcc		1.20	1.50	Adc	1
 Nominal +5 V BBU 	32, 48	BBU	¹ cc		0.55	0.80	Adc	1
- Nominal +5 V Supply	64, 96, 128	Act/Stby	^I cc		1.60	2.25	Adc	1
 Nominal +5 V BBU 	64, 96, 128	BBU	¹ CC		0.80	1.15	Adc	1
 Nominal – 15 V or – 12 V Supply BBU 	32, 48	All	IBB		12	20	rnAdc	1, 2
Logic "1" Input Current - Any Input, VIH=4.0 Vdc			Чн		15	50	μAdc	3
Logic "0" Input Current - Any Input, VIL=0.4 Vdc			41			- 1.6	mAdc	3
Logic "1" Output Current – Any Output, V Bus=4.0 Vdc			∨он		20	100	μAdc	3
Logic "0" Output Voltage – Any Output, IOL = 50 mAdc			VOL		0.4	0.70	Vdc	3
Input Threshold Voltage – Any Input – High Logic State			VILH	1.80	2.25	2.50	Vdc	
Input Threshold Voltage — Any Input — Low Logic State			VIHE	1.05	1.30	1.55	Vdc	

DC OPERATING CHARACTERISTICS ($0^{\circ} < T_{A} < 55^{\circ}$ C)

NOTES: 1. Active Mode = Memory accesses at maximum continuous rates; Standby Mode = Internal Refresh Cycles only; Battery Back Up (BBU) = Standby Mode with +5 V applied only through Pin BD1.

2. + 15 V/ + 12 V and - 15 V/ - 12 V supplies not required for products populated with 64K RAMs.

3. Negative Sign = Current out of pin. Min/Max Limits refer to absolute values of current.

AC OPERATING CONDITIONS

Parameter	Symbol	Limit		Unit	Note	
r arailieler		Min	Max	Unit	Note	
Address Hold Time – MSYN to A<0:17> Invalid	^t AH	50		ns	1	
Address Setup Time – A <0:17> Valid to MSYN	tAS	75		ns	1	
Processor Handshake Time – SSYN to MSYN	^t PH		0	ns	1, 2	
Data Hold Time (Write Cycle/DATO) - MSYN to D <0:15> Invalid	^t DHW	40		ns	1	
Data Setup Time (Write Cycle/DATO) $-$ <0:15> Valid to MSYN	tDSW	15		ns	1	

NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.

2. Assumes handshaking occurs immediately.

AC OPERATING CHARACTERISTICS $(0^{\circ}C < T_{A} < 70^{\circ}C)$

Characteristics	Symbol	MMS1128X3XXX		MMS1128X4XXX			Unit	Note	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Οηπ	NOLE
Cycle Time – Read (DATI) Cycle	^t RCYC		460	515		510	565	ns	1
Read Access Time - MSYN to SSYN	^t RACC		330	380		380	430	ns	1
Data Hold Time - Read (DATI) Cycle MSYN to Data Invalid	tDH			70			70	ns	1
Data Setup Time – Read (DATI) Cycle D <0:15> Valid to SSYN	tDS	0			0			ns	2
Memory Handshake Time – Read (DATI) or Write (DATO) Cycle – MSYN to SSYN	tмн	25		75	25		75	ns	1
Write Access Time - MSYN to SSYN	tWACC		125	165		125	165	ns	1
Cycle Time – Write (DATO) Cycle	tWCYC		325	340		425	440	ns	1

NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.

2. Timing is referenced inside Bus Drivers.

TIMING

The MMS1128 is fully compatible with the PDP-11 Modified UNIBUS protocol and timing. Limits are specified in the A.C. Conditions/Characteristics Tables in conjunction with the DATI/DATO waveforms.

REFRESH

The storage cells in the MMS1128 are implemented with dynamic MOS RAM's. The charge stored in the cells must be refreshed every 2 milliseconds, requiring a single refresh cycle to be initiated approximately once every 16 milliseconds. The latency induced to bus cycles concurred with refresh cycles is no greater than the specified minimum cycle time for the MMS1128 version chosen.

The MMS1128 contains circuitry to automatically refresh the memory cells. An option is also provided to allow the User to control the refresh externally. In this case, the Refresh Latency will be no greater than the refresh cycle time defined by the external circuitry. Note that any external refresh circuitry must conform to the requirements previously mentioned, i.e., each cell refreshed at a 2 millisecond rate and a refresh cycle time not less than the minimum Read Cycle time.

AVAILABLE OPTIONS

The MMS1128 features a variety of options, allowing its configuration into a wide range of applications. Several of these options are installed at the factory, with most of these specified by the part number as shown in the "Ordering Information" on Page 1. Others are chosen by the User prior to installation of the product.

MEMORY CAPACITY

The MMS1128 utilizes 16K, 32K, or 64K RAM components to allow optional storage capacities of 32K, 48K, 64K, 96K, or 128K Words. As noted on Page 1 (Ordering Information), the last three digits of the full part number identifies the total memory capacity in K Words.

STARTING ADDRESS

The MMS1128 utilizes a set of switches to allow the starting address to be selected at any 4K boundary. This feature is available regardless of the Memory Capacity option chosen. In cases where the sum of the starting address and the memory capacity exceeds the host machine addressing capability, the capability is automatically reduced. (No wraparound to starting address location occurs.)

I/O PAGE SIZE

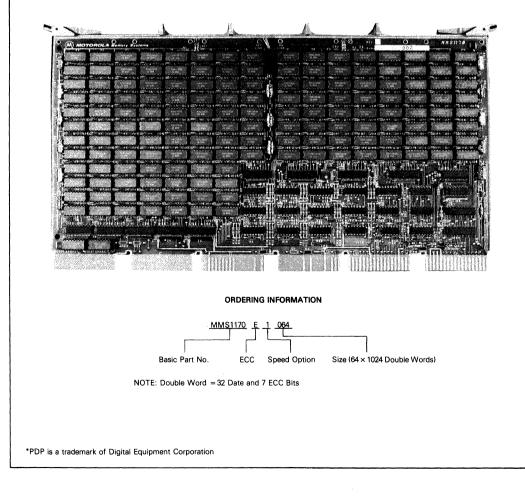
When the MMS2118 is located in high memory, the User may select part of the I/O page as Read/Write memory. This is implemented via three switches, resulting in optional I/O page sizes of 2K, 4K, or 8K words.

PARITY OPTIONS

The MMS2118PXXXX contains parity control circuitry which is fully compatible with the DEC parity module. This circuitry does not degrade access or cycle times, and the Parity Control Status Register (CSR) address can be switch selected to any standard pre-assigned bus address. (772100g through 772136g.) In any case, the CSR occupies a single two-byte address space. The on-board parity circuitry does not impose any additional bus loading on the system.

The MMS1128PXXXX can also be used in systems which utilize the DEC Parity Module. The User selects this mode of operation by inserting a jumper prior to installation of the memory. The parity generation and detection circuitry of the MMS1128P is fully compatible with the DEC Parity Module.

The MMS1128PXXXX version is available for those systems not requiring parity. This product is supplied as a 16-bit word memory with the Internal/External Parity Control switch open (External).


Product Preview

MEMORY ARRAY CARD FOR PDP*-11/70

The MMS1170 is a dynamic memory array system specifically designed for use in PDP-11/70 minicomputers from Digital Equipment Corporation. The array has a capacity of 64K double words (256K bytes) using 16K RAM chips. It is hardware and software compatible with the PDP-11/70 memory controller module and DEC diagnostics.

The MMS1170 is designed to occupy a single hex slot of the DEC MK-11 Memory System chassis. It features an On Line/Off Line switch (with an LED indicator) to facilitate trouble-shooting. A separate LED indicates when battery backup voltage is available via the backplane connector.

All RAMs used on the MMS1170 are socketed. Two spare 16K x 1 RAMs are provided on the board. The product is fully burned-in and covered by the Motorola Memory System One-Year Limited Warranty.

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	TA	0 to +50	°C
Storage Temperature	Tstg	-40 to +80	°C
Relative Humidity (Without Condensation)	RH	0 to 90	%

PHYSICAL DIMENSIONS

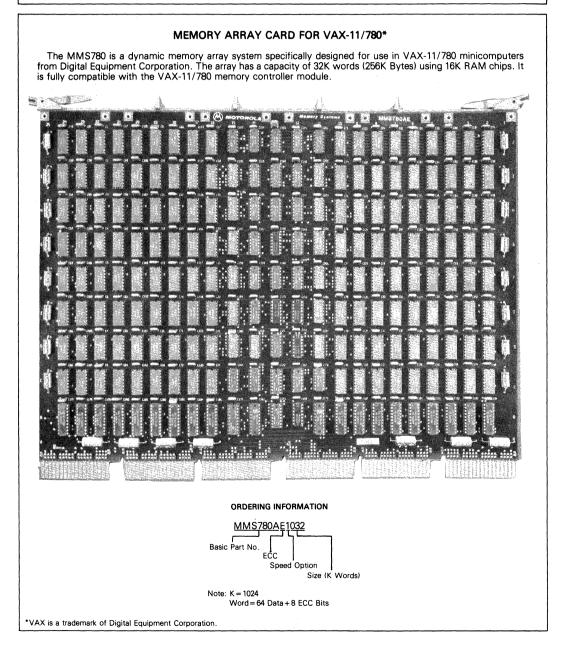
Dimension	Millimeters	Inches
Width	39.85	15.688
Height	22.225	8.75
PC Board Thickness	0.142	0.056
Clearance Required (Component Side)*	0.952	0.375
Clearance Required (Solder Side)*	0.254	0.10

*Measured from surface of PC Board.

POWER REQUIREMENTS

Input Voltage	Maximur	Maximum Current Requirements			
	Operating	Standby	Battery Backup	Units	
+ 12 B	1.5	0.25	0.25	Adc	
+5 V	0.4	0.35	0	Adc	
- 12 B	0.04	0.02	0.02	Adc	
+5 V B	0.9	0.8	0.8	Adc	

AC OPERATING CHARACTERISTICS


Characteristic	Nominal**	Units
Cycle Time – Read	650	ns
Write	680	113
Access Time – Read	320	
Write	70	ns

**The actual response times are determined by DEC MK-11 Memory System Controller design. Nominal values shown are for reference only.

MMS780

Advance Information

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	TA	0 to +55	°C
Storage Temperature	T _{stg}	- 40 to + 80	°C
Relative Humidity (Without Condensation)	RH	0 to 90	%

PHYSICAL DIMENSIONS

Dimension	Millimeters	Inches
Width	39.85	15.688
Height	30.48	12.0
PC Board Thickness	0.142	0.056
Clearance Required (Component Side)*	0.952	0.375
Clearance Required (Solder Side)*	0.254	0.10

*Measured from surface of PC Board.

POWER REQUIREMENTS

Input Voltage	Maximum Current Requ	Maximum Current Requirements					
input voltage	Operating Standby Ba	ttery Backup	Units				
+ 12 V	1.5 0.25	0.25	Adc				
+5 V	0.7 0.6	0	Adc				
-5 V	0.04 0.02	0.02	Adc				
+5 V Battery	0.9 0.8	0.8	Adc				

AC OPERATING CHARACTERISTICS

Characteristic	Nominal**	Units
Cycle Time – Read, Refresh, or Init. – Read/Modify/Write	530 1100	ns
Access Time - Read	250	
– Write	750	ns

**The actual response times are determined by VAX-11/780 Memory Subsystem Controller design. Nominal values shown are for reference only.

OPERATING PRINCIPLES

The MSM780 is based on 16K × 1 dynamic RAMs arranged in two banks, each containing 72 chips. The 72-bit word thus formed is subdivided into two 32-bit long words (Upper and Lower) and eight ECC bits. All memory array accesses correspond to a Read from, or write to, the selected 72-bit word. (All 8, 16, and 32 bit memory operations are transformed into 72 bit accesses by the memory controller.)

The memory array selection is accomplished via address lines (ADR19:ADR16) and four select signals at the Memory Subsystem Backplane. This Backplane has 16 slots dedicated for memory array cards, with the select signals uniquely specified for each slot. This arrangement eliminates the need for special jumpers and address switches. The MMS780 is merely inserted in the next available backplane slot. A total of 4 Megabytes of memory can be accomodated by one Memory Subsystem.

USAGE RECOMMENDATIONS

The MMS780 is recommended for use with any VAX-11/780 memory subsystem set up for operation with the DEC M8210 array card. It is hardware and software compatible with the VAX-11/780, including DEC diagnostics which allow failure isolation at the chip level. The MMS780 is also compatible with DEC battery backup provisions.

INTERFACE

The VAX-11/780 computer system is normally configured with either one or two memory subsystems, as shown in Figure 1. The normal interface signals utilized within each subsystem are depicted in Figure 2. The MMS780 Array Module functions in any slot of either subsystem, with no modifications required.

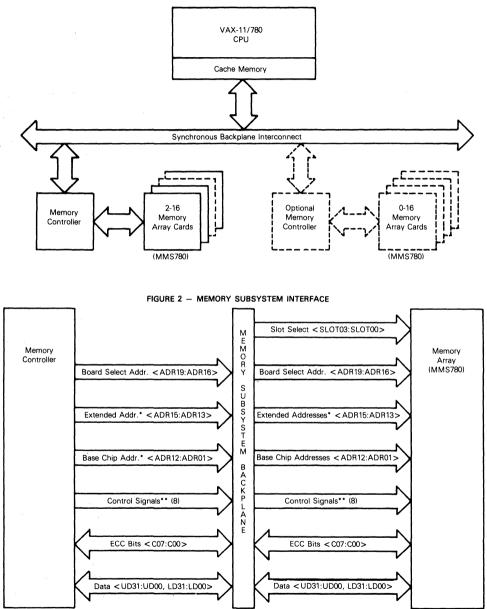
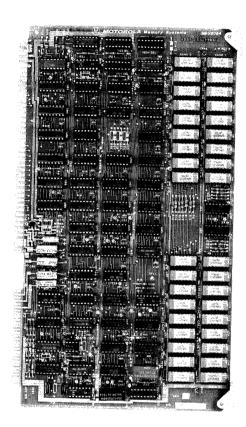


FIGURE 1 - NORMAL VAX-11/780 MEMORY CONFIGURATION

*Extended Addresses are labeled ADR13, ADRCS, and ADREXT. During normal operation, they correspond to > ADR15: ADR13<.

**Control signals are: Read, Column Address Strobe (CAS), Row Address Strobe (RAS), Multiplexer Control, Refresh Cycle, Bus Select, Bus Output Enable, and Initiate.


MMS8064(P) MMS8048(P) MMS8032(P) MMS8016(P)

Advance Information

SBC-COMPATIBLE MEMORY SYSTEMS

The MMS80XX family of memory systems is designed for use with the Intel SBC 80 Series computers, System 80 microcomputers, MDS systems, and the 16-bit SBC 86/12. The modules employ 16K dynamic RAM's mounted on a single 6 3/4" X 12" PC board along with timing, control, and bus interface logic. Eight models are available, all having the same access and cycle times. All electrical connections are made via two edge connectors.

- Pin, Function, and Form-Factor Compatible with MULTIBUS* Systems
- Even/Odd Bank Address Allows 16-Bit or 8-Bit Operation
- Addresses Selectable in Independent 8K Blocks
- 20 Address Lines Operates in 1M Byte System
- Handles Early or Late Inhibits
- Operates in Delayed Write, Advance Write, and Read Modes
- Battery Backup Capability through use of Memory Protect Signal on P2 Connector
- On-Board Refresh Control Circuitry
- Programmable Advanced Acknowledge (AACK/) Signal
- On-board V_{BB} Generation (-5 V) Allows Operation from 12 V, +5 V, and -12 V, -10 V, or -5 V Supplies
- Cycle Times of 700 ns (Read, Delayed, Write) and 1240 ns (Advanced Write)
- Available in 16K, 32K, 48K, and 64K Byte Configurations

ORDERING INFORMATION

No Parity	Parity	Capacity
MMS8064	MMS8064P	64K Bytes
MMS8048	MMS8048P	48K Bytes
MMS8032	MMS8032P	32K Bytes
MMS8016	MMS8016P	16K Bytes

PHYSICAL CHARACTERISTICS

Characteristic	Limit
Width	30.48 cm (12.00 inches)
Depth	17.15 cm (6.75 inches)
Thickness	1.27 cm (0.50 inches)
Weight	397 grams (14.0 ounces)

*Trademark of Intel, Inc.

MMS8064(P)•MMS8048(P)•MMS8032(P)•MMS8016(P)

AC OPERATING CONDITIONS

			Liı	nit		
Parameter		Symbol	Min	Max	Units	Notes
Cycle Time	Read or Delayed Write Cycle	tCYC	700		ns	1, 2
	Advanced Write Cycle	tCYC(A)	1240			1, 2, 3
Address Setup Time	Address Valid to MRDC/4 or MWRC/4	tAS	50		ns	
Address Hold Time	MRDC/1 or MWRC/1 to Address Invalid	tAH	0		ns	
Write Data Setup Time (Delayed Write)	Data Valid to MWRC/4	tDSW	-100		ns	
Write Data Delay Time						
(Advanced Write)	MWRC/1 to Data Invalid	tDDAW		500	ns	3
Write Data Hold Time		tDHW	0		ns	
Inhibit Setup Time	Early Inhibit	tiS1	10		ns	
INHI/ Valid to MRDC/1 or MWRC/1	Late Inhibit Option Installed	tiS2	-50			
Inhibit Hold Time	MRDC/1 or MWRC/1 to INH1 Invalid	τιн	100		ns	
Byte High Enable Setup Time	BHEN/ Valid to MRDC/1 or MWRC/1	tBS	50		ns	
Byte High Enable Hold Time	MRDC/1 or MWRC/1 to BHEN/ Invalid	tвн	0		ns	
Memory Protect Setup Time	MPRO/1 to VCC < 4.75 Vdc	tMPS	15		μs	
Memory Protect Hold Time	$V_{CC} \ge 4.75$ Vdc to MPRO/1	tMPH	0		ns	
Refresh Interval		tRI	12.7	15.6	ms	

NOTES: 1) Add Refresh Delay Time (TRD) to these parameters when Asynchronous Refresh occurs.

2) Add 40 ns (Typ), 50 ns (Max) to these parameters if Late Inhibit Option is installed.

3) Applicable only if Advanced Write Cycle option is installed.

AC OPERATING CHARACTERISTICS ($0^{\circ}C \le T_A \le 55^{\circ}C$)

			Limit				
Parameter		Symbol	Min	Тур	Max	Units	Notes
Read Access Time	MRDC/1 to Data Valid	TACC		400	450	ns	1, 3
Read Data Setup Time	Read Data Valid to XACK/4	t DSR	0			ns	
Read Data Hold Time	XACK/1 to Data Invalid	^t DHR	0		65	ns	
Advance Acknowledge Delay Time	MRDC/↓ or MWTC/↓ to AACK/↓	taak	_		_	ns	1, 4, 5
Transfer Acknowledge Delay Time	MRDC/1 or MWTC/1 to XACK/1	tACK			50	ns	1, 2
Acknowledge Turn-Off Time	MRDC/1 or MWTC/1 to AACK/1 or XACK/1	tTO	15		55	ns	
Parity Error Setup Time	PAR ERR/ Valid to XACK/4	tPS	0			ns	
Parity Error Hold Time	XACK/1 to PAR ERR/ Invalid	^t PH	50			ns	
Refresh Delay Time		tDR			550	ns	

NOTES: 1) Add 40 ns (Typ), 50 ns (Max) to these parameters if Late Inhibit option is installed.

2) Add 450 ns (Typ), 500 ns (Max) to these parameters for Advanced Write Cycle operations.

3) Add Refresh Delay Time (tRD) to these parameters when Asynchronous Refresh occurs.

4) See Advance Acknowledge options table for Delay Time.

5) Advance Acknowledge is delayed until Transfer Acknowledge Time if Asynchronous Refresh occurs.

ADVANCE ACKNOWLEDGE OPTIONS

The MMS8060 Series can be programmed to provide an ADV ACK Delay (tAAK) of 100 to					Option	Selected	1			
450 ns. Available options are as noted in table	Limit	8-9	1-16	7-10	2-15	3-14	5-12	4-13	6-11	Units
at right. Selection is made via installation of a single jumper between two terminals of a 16-	Min	70	120	165	215	260	310	360	400	ns
pin DIP socket. (Jumper between pins 8 & 9 \rightarrow	Тур	100	150	200	250	300	350	400	450	ns
100 ns Typ, between 1 & 16 → 150 ns, etc.).	Max	125	175	230	285	335	400	450	500	ns

MMS8064(P)•MMS8048(P)•MMS8032(P)•MMS8016(P)

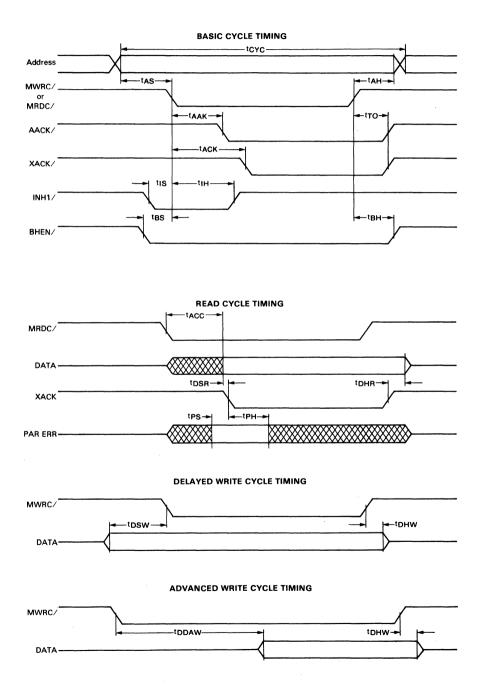
ABSOLUTE MAXIMUM RATINGS

		Limit					
Rating		Symbol	Min	Max	Units		
Power Supply Voltage (Measured at Connector	Nominal +5 Vdc	Vcc	-0.3	+7.0	Vdc		
	Nominal +12 Vdc	VDD	-0.3	+15.0	Vdc		
Nominal -5 Vdc (Negative voltage r Nominal -10 Vdc or -12 Vdc (Negative voltage r		VBB	+0.3 +0.3	-7.0 -15.0	Vdc Vdc		
Input Voltage, Any Input. (Measured at P1 or P2 Conn. With Respect to	GND).	VIN	-0.3	+5.5	Vdc		

NOTES: 1) Permanent damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to Recommended Operating Conditions.

2) Permanent damage may also occur if V_{DD} is applied for more than one second while V_{BB} is outside its Recommended Operating Range.

ENVIRONMENTAL RATINGS


		Limit					
Rating	Symbo	Min	Max	Unit			
Operating Temperature	TA	0	+55	°C			
Storage Temperature	Tstg	-40	+85	°C			
Relative Humidity (Without Condensation)	R.H.	0	90	%			

RECOMMENDED DC OPERATING CONDITIONS

	Limit					
Condition	Symbol	Min	Max	Units		
Supply Voltage Nominal +5 Vdc	Vcc	4.75	5.25	Vdc		
Nominal +12 Vdc	VDD	11.4	12.6	Vdc		
Nominal -5 Vdc (Negative voltage regulator disabled) Nominal -10 Vdc or -12 Vdc (Negative voltage regulator enabled)	VBB	-4.75 -9.5	-5.25 -12.6	Vdc		
Logic Zero Input Voltage, Any Input	VIL	-0.3	+0.8	Vdc		
Logic One, Input Voltage, Any Input	∨ін	+2.0	+5.25	Vdc		

DC OPERATING CHARACTERISTICS ($0^{\circ}C \le T_A \le 55^{\circ}C$)

				Limit		
Parameter		Symbol	Min	Тур	Max	Units
Supply Current	Nominal +5 Vdc	Icc			3.0	Adc
(Normal Mode)	Nominal +12 Vdc	ססי			260	mAdc
Nominal -5 Vdc (Negative	voltage regulator disabled)	BB			14	mAdc
Nominal -10 Vdc or -12 Vdc (Negative	voltage regulator enabled)				30	mAdc
Supply Current	Nominal +5 Vdc	Icc			1.1	Adc
(Battery Backup Mode)	Nominal +12 Vdc	DD			90	mAdc
Nominal -5 Vdc (Negative	voltage regulator disabled)	IBB			7.2	mAdc
Nominal -10 Vdc or -12 Vdc (Negative	voltage regulator enabled)				14	mAdc
Logic One Input Current	DAT0/-DATF/	ЧΗ			250	μAdc
(VCC = 4.75 Vdc, VIH = 2.4 Vdc	All Other Inputs				40	μAdc
Logic Zero Input Current	DAT0/-DATF/	hι			-600	μAdc
(VCC = 5.25 Vdc, VIL = 0.4 Vdc)	All Other Inputs				-400	μAdc
Logic One Output Voltage	All Outputs	Vон	2.4			Vdc
(VCC = 4.75 Vdc, IOH = -5 mAdc)						
Logic Zero Output Voltage	All Outputs	VOL		1	0.5	Vdc
(VCC = 4.75 Vdc, IOL = 48 mAdc)						

Signal Name	Symbol	Pin No.	Signal Name	Symbol	Pin No.	Signal Name	Symbol	Pin No.
Ground	Vss	1, 2	Address Line 0	ADR0/	57	Memory Read		
Ground	Vss	11, 12	Address Line 1	ADR1/	58	Command	MRDC/	19
Ground	Vss	75, 76	Address Line 2	ADR2/	55	Memory Write	MWTC/	20
Ground	Vss	85, 86	Address Line 3	ADR3/	56	Command	}	
+12 V Supply	VDD	7, 8	Address Line 4	ADR4/	53	Data Line 0	DAT0/	73
+5 V Supply	Vcc	3, 4	Address Line 5	ADR5/	54	Data Line 1	DAT1/	74
+5 V Supply	Vcc	5, 6,	Address Line 6	ADR6/	51	Data Line 2	DAT2/	71
+5 V Supply	Vcc	81, 82	Address Line 7	ADR7/	52	Data Line 3	DAT3/	72
+5 V Supply	Vcc	83, 84	Address Line 8	ADR8/	49	Data Line 4	DAT4/	69
-5 V Supply	VBB	9, 10	Address Line 9	ADR9/	50	Data Line 5	DAT5/	70
-10 V Supply	VBB1	77, 78	Address Line A	ADRA/	47	Data Line 6	DAT6/	67
-12 V Supply	VBB2	79, 80	Address Line B	ADRB/	48	Data Line 7	DAT7/	68
Transfer	XACK/	23	Address Line C	ADRC/	45	Data Line 8	DAT8/	65
Acknowledge			Address Line D	ADRD/	46	Data Line 9	DAT9/	66
Advance	AACK/	25	Address Line E	ADRE/	43	Data Line A	DATA/	63
Acknowledge			Address Line F	ADRF/	44	Data Line B	DATB/	64
Command	INH1/	24	Address Line 10	ADR10/	28	Data Line C	DATC/	61
Inhibit			Address Line 11	ADR11/	30	Data Line D	DATD/	62
Byte High	BHEN/	27	Address Line 12	ADR12/	32	Data Line E	DATE/	59
Enable			Address Line 13	ADR13/	34	Data Line F	DATF/	60

P1 CONNECTOR PIN ASSIGNMENTS

NOTE: Pins not listed are not connected to Memory System circuitry.

P2 CONNECTOR PIN ASSIGNMENTS

Signal Name	Symbol	Pin No.	Signal Name	Symbol	Pin No.
Memory Protect	MPR0/	20	Test Point — Parity 2 & 3	TP-PART 2 & 3	44
Parity Error	PAR ERR/	29	Ground	Vss	1, 2
Test Point — Advanced Write	TP-ADVW	38	+5 V (Battery)	VCC (BATT)	3, 4
Test Point — Refresh Clock	TP-REFCLK	40	+12 V (Battery)	VDD (BATT)	
Test Point — Parity 0 & 1	TP-PART 0 & 1	42	-5 V (Battery)	VBB (BATT)	9, 10

NOTE: Pins not listed are not connected to Memory System circuitry.

MMS80XX SYSTEM

wer Order Address used to select 1 location out of 64K* block gh Order Addresss used to select one 64K block out of 1024K ata signals for 8-bit mode or lower byte of data signals for 16-bit mode gh order byte data signals for 16-bit mode
ata signals for 8-bit mode or lower byte of data signals for 16-bit mode
gh order byte data signals for 16-bit mode
rogrammable — 8 timing selections) Advanced Acknowledgement Signal from Memory Card in response to WTC/ or MRDC
knowledgement Signal from Memory Card indicating that Data Transfer has occurred
gnal to Memory Card requesting to read RAM memory
gnal to Memory Card requesting to write data into RAM memory
gnal disabling response of the Memory card to MWTC/ and MRDC/
gnal used to enable the 16-bit mode of operation
Description
gnal used to enable the transfer from normal voltages to battery back-up voltages by disabling all circuits except fresh. Can also be used separately from battery back-up to do same thing
gnal used to indicate a Parity Error
st Point Signal used to select Advanced Write Mode
st Point Signal used to clock refresh flip-flop externally (used only for evaluation purposes)
st Point Signal used to force a Parity Error on Reading Banks 0 or 1
st Point Signal used to force a Parity Error on Reading Banks 2 or 3

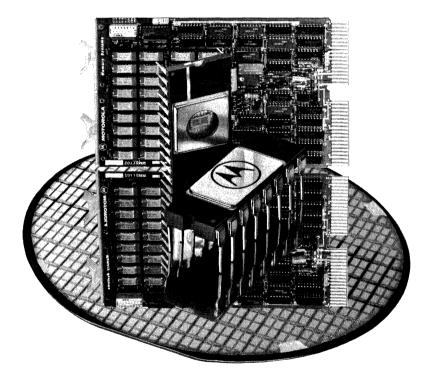
*K = 1024 Bytes

GENERAL DESCRIPTION

The MSM80XX series is designed for operation with SBC/BLC 80 Series Single-Board Computers (including the SBC 86/12 16-bit computer), System 80 Series Microcomputers, and Intel MDS Systems. The four configurations are plug-in replacements for Intel/National SBC/BLC 016, 032, 048, 064 memory cards.

OPTIONS

The MMS80XX series is available in four population options. Each of these configurations can be obtained with or without parity. (See Ordering Information on Page 1.) In addition to the population and parity options, provisions are made to allow the user to configure the memory card to meet system requirements. The primary user options are Address Selection, Advance-Acknowledge Response time, Early/Late Inhibit options, Advanced/Delayed Write selection, and -5 Vdc derivation.

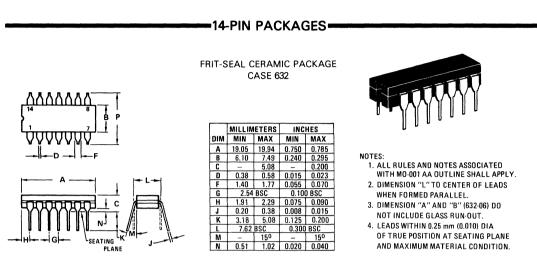

Address Selection options allow the user to locate the memory card in any one of sixteen memory segments with each of these segments defined as a 64K memory space. If the MMS8064 is chosen, the memory system responds to all addresses within the selected memory segment. When depopulated modules (8016/8032/ 8048) are used, address selection for independent 8K Byte blocks is provided. The MMS8048, for example, can be configured to respond to 6 of the eight 8K blocks in the chosen segment.

Advance Acknowledge is utilized to prevent initiation of unnecessary processor "Wait" states. (In effect, the signal indicates that the memory transfer will be completed during the current cycle). The MMS80XX series allows the user to select an Advance-Acknowledge Delay Time of 100 to 450 ns (in 50 ns increments). This facilitates tailoring of the memory response time to the system speed.

An Inhibit input is provided with the MMS80XX series to allow the Bus Master to turn off the memory for certain operations. In general, the system activates this signal prior to a Memory Read (MRDC/) or Write (MWRC/) command. In certain types of systems, however, the Inhibit signal arrives after the Read/Write command. A jumper option is provided with the MMS80XX Series, allowing the Inhibit input to respond to a "Late Inhibit" signal. This option should be installed only if the system requires it, since it slows the Memory System response by approximately 50 ns.

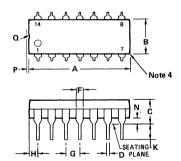
Most SBC systems utilize a "Delayed Write" command wherein the Data is available coincident with activation of MWRC/. Some systems, however, utilize an "Advanced Write" technique, with the data becoming valid some 500 ns after the Write Command. A jumper option is provided with the MMS80XX series to allow operation in the Write Cycle. Transfer Acknowledge (XACK/) is inhibited during the dummy cycle, but Advance Acknowledge (AACK/) occurs if programmed to do so. XACK/ then occurs during the actual Write Cycle unless the system has responded to the AACK/ signal. (In this case, system response to the AACK/ signal is defined as a deactivation of the MWRC/ input). Selection of the "Advanced Write" option does not affect Read Cycle operations.

In general, SBC backplanes provide –5 volts at pins 9 and 10 of connector P1. Some systems, however, provide only –10 volts at pins 77 and 78 and/or –12 volts of pins 79 and 80. The MMS80XX Series contain an on-board negative 5 volt regulator to allow operation with such systems.


Mechanical Data

6

6


MECHANICAL DATA

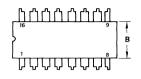
The packaging availability for each device is indicated on the individual data sheets. Dimensions for the packages are given in this section.

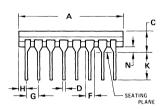
CASE 632-06

PLASTIC PACKAGE CASE 646

	MILLIM	ETERS	INC	IES	
DIM	MIN	MAX	MIN	MAX	
Α	18.16	19.56	0.715	0.770	
B	6.10	6.60	0.240	0.260	
C	4.06	5.08	0.160	0.200	
D	0.38	0.53	0.015	0.021	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.32	2.41	0.052	0.095	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300 BSC		
М	00	100	00	100	
N	0.51	1.02	0.020	0.040	

NOTES:

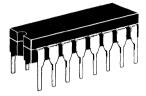

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION "B" DOES NOT
- INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.


6

CASE 646-05

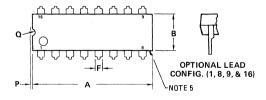
= 16-PIN PACKAGES =

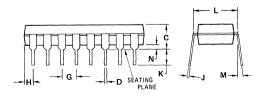
FRIT-SEAL CERAMIC PACKAGE CASE 620

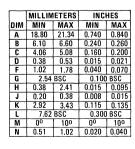

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. PACKAGE INDEX: NOTCH IN LEAD

NOTCH IN CERAMIC OR INK DOT. 3. DIM "L" TO CENTER OF LEADS WHEN

FORMED PARALLEL.


- DIM "A" AND "B" DO NOT INCLUDE GLASS RUN-OUT.
 DIM "F" MAY NARROW TO 0.76 mm
- (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

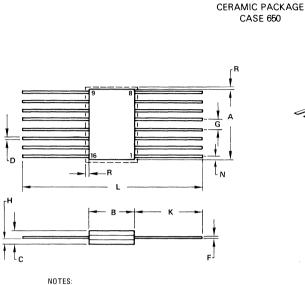



	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	19.05	19.94	0.750	0.785
В	6.10	7.49	0.240	0.295
С	-	5.08	-	0.200
D	0.38	0.53	0.015	0.021
F	1.40	1.78	0.055	0.070
G	2.54	BSC	0.100 BSC	
Н	0.51	1.14	0.020	0.045
J	0.20	0.30	0.008	0.012
к	3.18	5.08	0.125	0.200
L	7.62 BSC		0.300 BSC	
М	-	150		15 ⁰
N	0.51	1.02	0.020	0.040

CASE 620-06

PLASTIC PACKAGE CASE 648

CASE 648-05


NOTES:

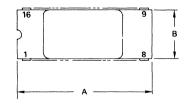
- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

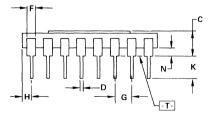
3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.

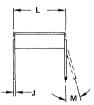
- "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1, 8, 9, and 16).
- 5. ROUNDED CORNERS OPTIONAL.

=16-PIN PACKAGES (Continued) =

 LEAD NO. 1 IDENTIFIED BY TAB ON LEAD OR DOT ON COVER.
 LEADS WITHIN 0.13 mm (0.005)

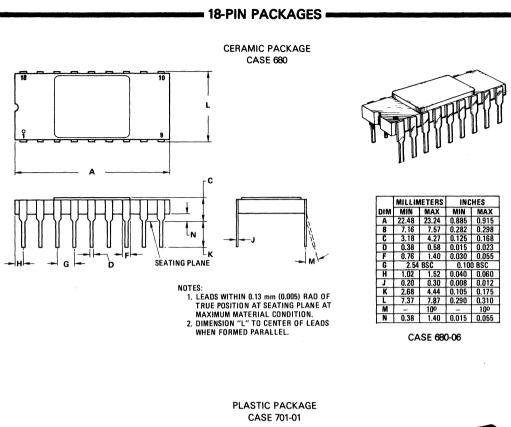

TOTAL OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION.

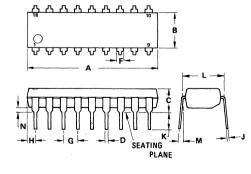



	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
B	6.22	7.24	0.245	0.285
C	1.52	2.03	0.060	0.080
D	0.41	0.48	0.016	0.019
F	0.08	0.15	0.003	0.006
G	1.27	BSC	0.050 BSC	
Н	0.64	0.89	0.025	0.035
K	6.35	9.40	0.250	0.370
L	18.92	-	0.745	-
N		0.51	-	0.020
R		0.38	-	0.015

CASE 650-03

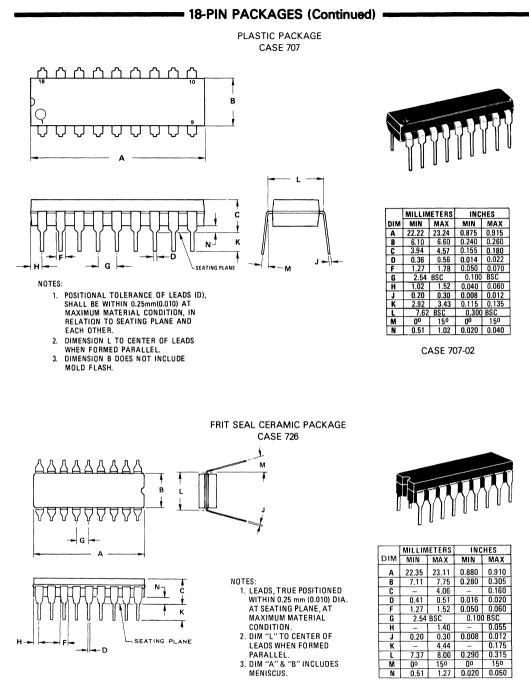
CERAMIC PACKAGE CASE 690


	MILLIM	ETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	20.07	20.57	0.790	0.810
В	7.11	7.62	0.280	0.300
C	2.67	4.19	0.105	0.165
D	0.38	0.53	0.015	0.021
F	0.76	1.52	0.030	0.060
G	2.54	BSC	0.100 BSC	
Н	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
к	3.18	5.08	0.125	0.200
L	7.62 BSC		0.300 BSC	
M		100		100
N	0.38	1.52	0.015	0.060

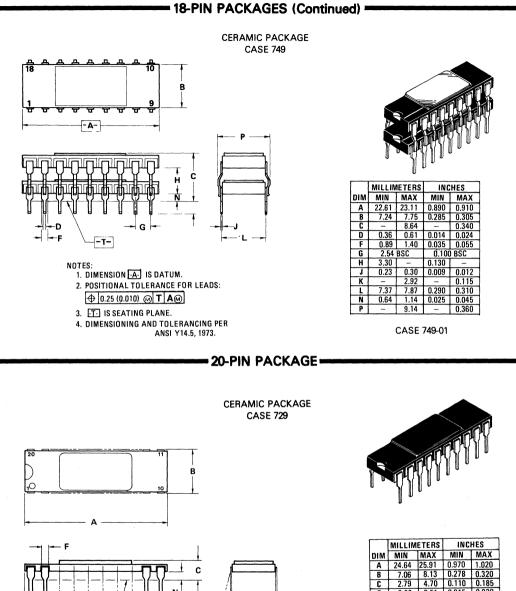

NOTES:

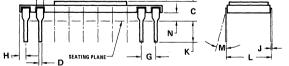
- 1. A- AND -B- ARE DATUMS.
- 2. T. IS SEATING PLANE
- 3. POSITIONAL TOLERANCE FOR LEADS (D).
- **♥** Ø 0.25 (0.010) (0) T A (0) B (0)
- 4. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.
 - 6. 690-11 AND 690-12 OBSOLETE. NEW STANDARD 690-13.

CASE 690-13


NOTES: 1. LEADS WITHIN 0.13 mm (0.005) RADIUM OF TRUE

- POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (DIM "G").
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.


	MILLIMETERS		MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX		
Α	23.11	23.88	0.910	0.940		
B	6.10	6.60	0.240	0.260		
C	4.06	4.57	0.160	0.180		
D	0.38	0.51	0.015	0.020		
F	1.02	1.52	0.040	0.060		
G	2.54	BSC	0.100 BSC			
н	1.32	1.83	0.052	0.072		
J	0.20	0.30	0.008	0.012		
K	2.92	3.43	0.115	0.135		
L	7.37	7.87	0.290	0.310		
M	00	100	00.	100		
N	0.51	1.02	0.020	0.040		


CASE 701-01

MECHANICAL DATA (Continued)

CASE 726-02

NOTE: 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.

2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

0.51 1.52 0.020 CASE 729-02

0.51 0.015

BSC

1.14 1.40 0.045 0.055

1.52 0.035

4.57 0.125

0.20 0.30 0.008 0.012

0.100

0.300

00

0.020

BSC

0.060

0.180

BSC

100

0.060

B C

D

F

G 2.54

Η 0.89

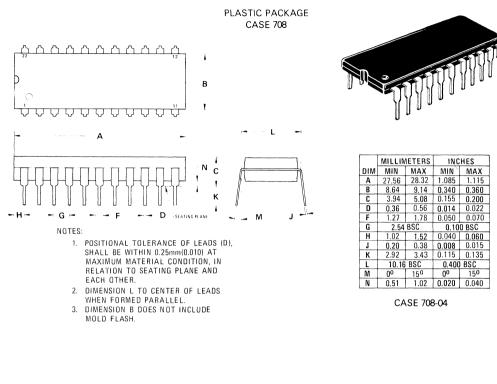
J

K

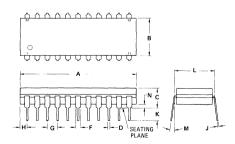
L

M

N


0.38

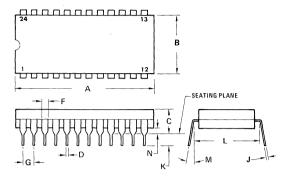
3.18


7.62 BSC

00 100

FRIT-SEAL CERAMIC PACKAGE CASE 736

NOTES: 1. LEADS TRUE POSITIONED WITHIN 0.25 mm (0.010) DIA AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (DIM "D"). 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

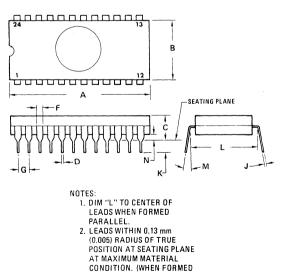


	MILLIN	METERS	INCHES	
DIM	MIN	MAX	MIN	MAX
A	26.80	27.81	1.055	1.095
В	9.14	9.91	0.360	0.390
C	3.81	5.46	0.150	0.215
D	0.38	0.53	0.015	0.021
F	1.27	1.65	0.050	0.065
G	2.54	BSC	0.100 BSC	
н	0.51	1.27	0.020	0.050
J	0.20	0.30	0.008	0.012
ĸ	2.54	4.32	0.100	0.170
L	9.91	10.41	0.390	0.410
M	-	150	-	150
N	0.25	0.89	0.010	0.035

CASE 736-01

24-PIN PACKAGES -

FRIT-SEAL CERAMIC PACKAGE CASE 623

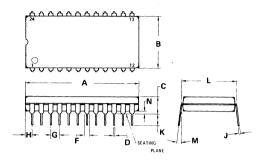

NOTES: 1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL)

	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	31.24	32.77	1.230	1.290
В	12.70	15.49	0.500	0.610
C	4.06	5.59	0.160	0.220
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54	BSC	0.100 BSC	
J	0.20	0.30	0.008	0.012
K	2.29	4.06	0.090	0.160
L	15.24 BSC		0.600 BSC	
M	00	15 ⁰	00	150
N	0.51	1.27	0.020	0.050

CASE 623-04

FRIT-SEAL CERAMIC PACKAGE CASE 623A

PARALLEL).



	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	31.24	32.77	1.230	1.290
В	12.70	15.49	0.500	0.610
C	4.06	5.84	0.160	0.230
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54	BSC	0.100 BSC	
J	0.20	0.30	0.008	0.012
K	2.29	4.06	0.090	0.160
L	15.24	BSC	0.600 BSC	
M	00	15 ⁰	00	15 ⁰
N	0.51	1.27	0.020	0.050

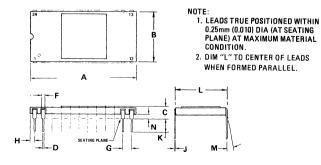
CASE 623A-02

24-PIN PACKAGES (Continued)

PLASTIC PACKAGE CASE 709

NOTES:

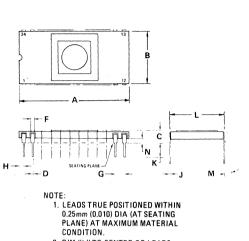
- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS
- WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.



	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	31.37	32.13	1.235	1.265
B	13.72	14.22	0.540	0.560
C	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54 BSC		0.100 BSC	
H	1.65	2.03	0.065	0.080
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	15.24 BSC		0.600 BSC	
M	00	150	00	15 ⁰
N	0.51	1.02	0.020	0.040

CASE 709-02

CERAMIC PACKAGE CASE 716



	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	27.64	30.99	1.088	1.220
B	14.94	15.34	0.588	0.604
C	2.67	4.32	0.105	0.170
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54 BSC		0,100 BSC	
Н	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	2.54	4.19	0.100	0.165
L	14.99	15.49	0.590	0.610
М	-	100		100
N	1.02	1.52	0.040	0.060

CASE 716-06

24-PIN PACKAGES (Continued)

CERAMIC PACKAGE CASE 716

2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	27.64	30.99	1.088	1.220
В	14.73	15.34	0.580	0.604
C	3.18	5.08	0.125	0.200
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54 BSC		0.100 BSC	
н	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
к	2.54	4.57	0.100	0.180
L	14.99	15.49	0.590	0.610
M		100	-	100
N	1.02	1.52	0.040	0.060

CASE 716-07

SELECTOR GUIDES CROSS-REFERENCE

² MOS Memories RAM, EPROM, EEPROM, ROM

³ CMOS Memories RAM, ROM

Bipolar Memories TTL, MECL-RAM, PROM

⁵ Memory Boards

⁶ Mechanical Data

