MOTOROLA MEMORY data mavual

- QUALITY
- RELIABILITY
- TECHNOLOGY

SELECTOR

 GUIDES
CROSS-REFERENCE

MOS Memories
RAM, EPROM, EEPROM, ROM

CMOS Memories
 RAM, ROM

Bipolar Memories TTL, MECL-RAM, PROM

$凶$ MOTOROLA MEMORIES

Motorola has developed a very broad range of reliable MOS and bipolar memories for virtually any digital data processing system application. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

New Motorola memories are being introduced continually. For the latest releases, and additional technical information or pricing, contact your nearest authorized Motorola distributor or Motorola sales office.

The information in this book has been carefully checked; no responsibility, however, is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of the manufacturer.

MECL, EXORciser are trademarks of Motorola Inc.

Table of Contents

Organization Page
Alphanumeric Index v
CHAPTER 1
Memories Selection Guide. 1-2
Memory Systems Board Selector Guide and Cross Reference 1-8
MOS Memory Cross-Reference 1-9
CHAPTER 2 - MOS
Dynamic RAMs
MCM4027A $4 \mathrm{~K} \times 1$ 2-3
MCM4116B $16 \mathrm{~K} \times 1$ 2-13
MCM4117 $16 \mathrm{~K} \times 1$ 2-20
MCM4132 $32 \mathrm{~K} \times 1$ 2-27
MCM4516 $16 \mathrm{~K} \times 1$ 2-32
MCM4517 $16 \mathrm{~K} \times 1$ 2-36
MCM6632 $32 \mathrm{~K} \times 1$ 2-42
MCM6633 $32 \mathrm{~K} \times 1$ 2-50
MCM6664 $64 \mathrm{~K} \times 1$ 2-57
MCM6665 $64 \mathrm{~K} \times 1$ 2-65
MCM6665L25 2-72
Static RAMs
MCM2114, 21L14 $1 \mathrm{~K} \times 4$ 2-79
MCM2115A, 21L15A, 2125A, 21L25A 1K $\times 1$ 2-84
MCM2115H, 2125H $1 \mathrm{~K} \times 1$ 2-90
MCM2147 2-91
MCM2147H 2-96
$4 \mathrm{~K} \times 1$
MCM2148 2-97
$1 \mathrm{~K} \times 4$
MCM2148H 2-101
$1 \mathrm{~K} \times 4$
MCM2149 2-102
$1 \mathrm{~K} \times 4$.
MCM2167 2-103
$16 \mathrm{~K} \times 1$
MCM4016 2-104
MCM6641, 66L41 2-105
MCM6810, 68A10, 68B10 2-109
128×8
EPROMs
MCM2532, 25L32 2-113
MCM2708, 27A08 $1 \mathrm{~K} \times 8$ 2-119
MCM2716, 27L16 2-125
TMS2716, TMS27A16 2-131
MCM68708, 68A708 2-137
MCM68732, 68L732 2-143
MCM68764, 68L764 2-148
MCM687662-153
EEPROMs
MCM2801 2-158
MCM2816 2-163ROMs
MCM6670, 6674
MCM66700, 710, 714, 720, 730, 734,2-164
740, 750, 751, 760, 770, 780, $790 \quad 128 \times(7 \times 9)$ 2-171
MCM68а30А 68 B 30 A
$1 \mathrm{~K} \times 8$ MCM68A30A, 68B30A 2-185
$1 \mathrm{~K} \times 8$ MCM68A308, 68B308 2-190
MCM68A316A $2 \mathrm{~K} \times 8$ 2-195
MCM68A316E $2 \mathrm{~K} \times 8$ 2-199

Table of Contents (Continued)

Organization Page
MCM68A332 $4 \mathrm{~K} \times 8$ 2-203
MCM68A364, 68B364 $8 \mathrm{~K} \times 8$ 2-207
MCM68365 $8 \mathrm{~K} \times 8$ 2-212
MCM68366 $8 \mathrm{~K} \times 8$ 2-217
CHAPTER 3 - CMOS Memories
Static RAMs
MCM14505 64×1 3-3
MCM14537 256×1 3-12
MCM14552 64×4 3-20
MCM5101, 51L01 256×4 3-27
MCM6508, 6518 $1 \mathrm{~K} \times 1$ 3-31
MCM65114 $1 K \times 4$. 3-35
MCM65116 $2 \mathrm{~K} \times 8$. 3-36
MCM65147 $4 \mathrm{~K} \times 1$ 3-37
MCM65148 $1 \mathrm{~K} \times 4$ 3-38
ROMs
MCM14524 256×4. 3-39
MCM65516 $2 \mathrm{~K} \times 8$ 3-45
CHAPTER 4 - Bipolar Memories
TTL RAMs
MCM93415 1024×1 4-3
MCM93425 1024×1 4-7
TTL PROMsMCM7680, 7681
1024×8 4-11
MCM7684, 7685 $2 \mathrm{~K} \times 4$ 4-15
MECL Memories
General Information 4-19
MECL RAMs
MCM10143
MCM10144, 10544 8 2 ... 4.
256×1 4-27
MCM10145, 10545 16×4 4-29
MCM10146, 10546 1024×1 4-31
MCM10147, 10547 128×1 4-33
MCM10148, 10548 64×1 4-35
MCM10152, 10552 256×1 4-37
MECL PROMs
MCM10139, 10539
32×8 4-39
MCM10149, 10549 256×4 4-43
CHAPTER 5 - Memory Subsystems
Board LevelMMS1102
LSI-11 Compatible Add-In Memory ($32 \mathrm{~K} \times 18$) 5-3
MMS1122 LSI-11, LSI-11/23 Comp. Add-In Memory ($32 \mathrm{~K} \times 16$) 5-5
MMS1132 LSI-11, LSI-11/23 Comp. Add-In Memory ($128 \mathrm{~K} \times 16$) 5-7
MMS1117 PDP-11 Compatible (HEX SPC) Add-In Memory ($64 \mathrm{~K} \times 18$) 5-9
MMS1119 PDP-11 (Modified or Extended Unibus) Comp. Memory ($128 \mathrm{~K} \times 18$ 5-11MMS1128
PDP-11 (Modified Unibus) Memory Comp. (32K, 48K $\times 18$) 5-15
MMS1170 PDP-11/70 Compatible Add-In Memory 5-20
MMS780 VAX-11/780 Compatible Add-In Memory 5-22MMS8064
Intel Multibus Compatible Memory 5-25
CHAPTER 6 - Mechanical Data 6-1

Alphanumeric Index

Device Page
MCM10139 4-39
MCM10143 4-22
MCM10144 4-27
MCM10145 4-29
MCM10146 4-31
MCM10147 4-33
MCM10148 4-35
MCM10149 4-43
MCM10152 4-37
MCM10539 4-39
MCM10544 4-27
MCM10545 4-29
MCM10546 4-31
MCM10547 4-33
MCM10548 4-35
MCM10549 4-43
MCM10552 4-37
MCM14505 3-3
MCM14524 3-39
MCM14537 3-12
MCM14552 3-20
MCM21L14 2-79
MCM21L15A 2-84
MCM21L25A 2-84
MCM2114 2-79
MCM2115A 2-84
MCM2115H 2-90
MCM2125A 2-84
MCM2125H 2-90
MCM2147 2-91
MCM2147H 2-96
MCM2148 2-97
MCM2148H 2-101
MCM2149 2-102
MCM2167 2-103
MCM25L32 2-113
MCM2532 2-113
MCM27A08 2-119
MCM27L16 2-125
MCM2708 2-119
MCM2716 2-125
MCM2801 2-158
MCM2816 2-163
MCM4016 2-104
MCM2047A 2-3
MCM4116B 2-13
MCM4117 2-20
MCM4132 2-27
MCM4516 2-32
MCM4517 2-36
MCM51L01 3-27
MCM5101 3-27
MCM6508 3-31
MCM65114 3-35
MCM65116 3-36
MCM65147 3-37
MCM65148 3-38
MCM6518 3-31
MCM65516 3-45
MCM66L41 2-105Device PageMCM66322-42
MCM6633 2-50
MCM6641 2-105
MCM6664 2-57
MCM6665 2-65
MCM6665L25 2-72
MCM6670 2-164
MCM66700 2-171
MCM66710 2-171
MCM66714 2-171
MCM66720 2-171
MCM66730 2-171
MCM66734 2-171
MCM6674 2-164
MCM66740 2-171
MCM66750 2-171
MCM66751 2-171
MCM66760 2-171
MCM66770 2-171
MCM66780 2-171
MCM66790 2-171
MCM68A10 2-109
MCM68A30A 2-185
MCM68A308 2-190
MCM68A316A 2-195
MCM68A316E 2-199
MCM68A332 2-203
MCM68A364 2-207
MCM68A708 2-137
MCM68B10 2-109
MCM68B30A 2-185
MCM68B308 2-190
MCM68B364 2-207
MCM68L732 2-143
MCM68L764 2-148
MCM6810 2-109
MCM68365 2-212
MCM68366 2-217
MCM68708 2-137
MCM68732 2-143
MCM68764 2-148
MCM68766 2-153
MCM7680 4-11
MCM7681 4-11
MCM7684 4-15
MCM7685 4-15
MCM93415 4-3
MCM93425 4-7
MMS1102 5-3
MMS1117 5-9
MMS1119 5-11
MMS1122 5-5
MMS1128 5-15
MMS1132 5-7
MMS1170 5-20
MMS780 5-22
MMS8064 5-25
TMS27L16 2-131
TMS2716 2-131

MEMORIES SELECTION GUIDE

NOTES

Not all package options are listed.

Operating temperature ranges:
MOS $-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CMOS $-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ECL - Consult individual data sheets
TTL - Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

FOOTNOTES

${ }^{1}$ Motorola's innovative pin \#1 refresh
${ }^{2}$ All MOS memory outputs are three-state except the open collector MCM2115A series.
${ }^{3}$ Character generators include shifted and unshifted characters, ASCII, alphanumeric control, math, Japanese, British, German, European and French symbols.
*To be introduced.

RAMs

MOS DYNAMIC RAMs

Organization	Part Number	Access Time (ns max)	Power Supplies	No. of Pins
4096×1	MCM4027AC-2	150	+12, $\pm 5 \mathrm{~V}$	16
4096×1	MCM4027AC-3	200	+12, $\pm 5 \mathrm{~V}$	16
4096×1	MCM4027AC-4	250	+12, $\pm 5 \mathrm{~V}$	16
16384×1	MCM4116BC15	150	+12, $\pm 5 \mathrm{~V}$	16
16384×1	MCM4116BC20	200	+12, $\pm 5 \mathrm{~V}$	16
16384×1	MCM4116BC25	250	+12, $\pm 5 \mathrm{~V}$	16
16384×1	MCM4116BC30	300	+12, $\pm 5 \mathrm{~V}$	16
16384×1	MCM4516C12*1	120	+5V	16
16384×1	MCM4516C15*1	150	+5V	16
16384×1	MCM4516C20*1	200	+5V	16
16384×1	MCM4517C12	120	+5V	16
16384×1	MCM4517C15	150	+5V	16
16384×1	MCM4517C20	200	+5V	16
32768×1	MCM4132L15	150	+12, $\pm 5 \mathrm{~V}$	18
32768×1	MCM4132L20	200	+12, $\pm 5 \mathrm{~V}$	18
32768×1	MCM4132L25	250	+12, $\pm 5 \mathrm{~V}$	18
32768×1		300	+12, $\pm 5 \mathrm{~V}$	18
32768×1	MCM6632L15 ${ }^{1}$	150	+5V	16
32768×1	MCM6632L20 ${ }^{1}$	200	$+5 \mathrm{~V}$	16
32768×1	MCM6632L25 ${ }^{1}$	250	+5V	16
32768×1	MCM6633L15	150	$+5 \mathrm{~V}$	16
32768×1	MCM6633L20	200	$+5 \mathrm{~V}$	16
32768×1	MCM6633L25	250	$+5 \mathrm{~V}$	16
65536×1	MCM6664L15 ${ }^{1}$	150	+5V	16
65536×1	MCM6664L201	200	+5V	16
65536×1	MCM6664L25 ${ }^{1}$	250	+5V	16
65536×1	MCM6665L15	150	+5V	16
65536×1	MCM6665L20	200	$+5 \mathrm{~V}$	16
65536×1	MCM6665L25	250	$+5 \mathrm{~V}$	16

TTL BIPOLAR RAMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
256×4	MCM93412	45	Open Collector 3-State	22
256×4	MCM93422	45	22	
1024×1	MCM93415	45	Open Collector	16
1024×1	MCM93425	45	3-State	16

[^0]MOS STATIC RAMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
128×8	MCM6810	450	24
128×8	MCM68A10	360	24
128×8	MCM68B10	250	24
1024×4	MCM2114P20	200	18
1024×4	MCM2114P25	250	18
1024×4	MCM2114P30	300	18
1024×4	MCM2114P45	450	18
1024×4	MCM21L14P20	200	18
1024×4	MCM21L14P25	250	18
1024×4	MCM21L14P30	300	18
1024×4	MCM21L14P45	450	18
1024×1	MCM2115AC45 ${ }^{2}$	45	16
1024×1	MCM2115AC55 ${ }^{2}$	55	16
1024×1	MCM2115AC70 ${ }^{2}$	70	16
1024×1	MCM21L15AC45 ${ }^{1}$	45	16
1024×1	MCM21L15AC70 ${ }^{2}$	70	16
1024×1	MCM2125AC45	45	16
1024×1	MCM2125AC55	55	16
1024×1	MCM2125AC70	70	16
1024×1	MCM21L25AC45	45	16
1024×1	MCM21L25AC70	70	16
4096×1	MCM2147C55	55	18
4096×1	MCM2147C70	70	18
4096×1	MCM2147C85	85	18
1024×4	MCM2148C55*	55	18
1024×4	MCM2148C70*	70	18
1024×4	MCM2148C85*	85	18
1024×4	MCM2149C55*	55	18
1024×4	MCM2149C70*	70	18
1024×4	MCM2149C85*	85	18

CMOS STATIC RAMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
256×4	MCM5101P65	650	22
256×4	MCM5101P80	800	22
256×4	MCM51L01P45	450	22
256×4	MCM51L01P65	650	22
			16
1024×1	MCM6508C30	300	16
1024×1	MCM6508C46	460	18
1024×1	MCM6518C30	300	18
1024×1	MCM6518C46	460	

ECL BIPOLAR RAMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
8×2	MCM10143	15	ECL output	24
256×1	MCM10144	26	ECL output	16
16×4	MCM10145	15	ECL output	16
1024×1	MCM10146	29	ECL output	16
128×1	MCM10147	15	ECL output	16
256×1	MCM10152	15	ECL output	16
256×4	MCM10422*	10	ECL output	24

See notes on page 1-2

EPROMs

MOS EPROMs

Organization	Part Number	Access Time (ns max)	Power Supplies	No. of Pins
1,024×8	MCM2708C	450	+12, $\pm 5 \mathrm{~V}$	24
1024×8	MCM27A08C	300	+12, $\pm 5 \mathrm{~V}$	24
1024×8	MCM68708C	450	+12, $\pm 5 \mathrm{~V}$	24
1024×8	MCM68A708C	300	+12, $\pm 5 \mathrm{~V}$	24
2048×8	TMS2716C	450	+12, $\pm 5 \mathrm{~V}$	24
2048×8	TMS27A16C	300	+12, $\pm 5 \mathrm{~V}$	24
2048×8	MCM2716C	450	+ 5 V	24
2048×8	MCM2716C35	350	$+5 \mathrm{~V}$	24
2048×8	MCM27L16C	450	+5V	24
2048×8	MCM27L16C35	350	$+5 \mathrm{~V}$	24
4096×8	MCM2532C	450	$+5 \mathrm{~V}$	24
4096×8	MCM2532C35	350	$+5 \mathrm{~V}$	24
4096×8	MCM25L32C	450	$+5 \mathrm{~V}$	24
4096×8	MCM25L32C35	350	$+5 \mathrm{~V}$	24
8192×8	MCM68764C	450	+5V	24
8192×8	MCM68764C35	350	+5V	24
8192×8	MCM68L764C	450	$+5 \mathrm{~V}$	24
8192×8	MCM68L764C35	350	+5V	24
8192×8	MCM68766C35	350	$+5 \mathrm{~V}$	24

EEPROM

MOS EEPROM

Organization	Part Number	Access Time (ns max)	Power Supplies	No. of Pins
16×16	MCM2801C*	$10 \mu \mathrm{~s}$	+5 V	14

See notes on page 1-2

ROMs

MOS STATIC ROMs (+5 Volts)
Character Generators ${ }^{3}$

Organization	Part Number	Access Time (ns max)	No. of Pins
$128 \times(7 \times 5)$	MCM6670P	350	18
$128 \times(7 \times 5)$	MCM6674P	350	18
$128 \times(9 \times 7)$	MCM66700P		
$128 \times(9 \times 7)$	MCM66710P	350	24
$128 \times(9 \times 7)$	MCM66714P	350	24
$128 \times(9 \times 7)$	MCM66720P	350	24
$128 \times(9 \times 7)$	MCM66730P	350	24
$128 \times(9 \times 7)$	MCM66734P	350	24
$128 \times(9 \times 7)$	MCM66740P	350	24
$128 \times(9 \times 7)$	MCM66750P	350	24
$128 \times(9 \times 7)$	MCM66760P	350	24
$128 \times(9 \times 7)$	MCM66770P	350	24
$128 \times(9 \times 7)$	MCM66780P	350	24
$128 \times(9 \times 7)$	MCM66790P	350	24

Binary ROMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
$1,024 \times 8$	MCM68A308P	350	24
1024×8	MCM68A308P7	350	24
1024×8	MCM68B308P	250	24
2048×8	MCM68A316AP	350	24
2048×8	MCM68A316EP	350	24
2048×8	MCM68A316P91	350	24
4096×8	MCM68A332P		
4096×8	MCM68A332P2	350	24
8192×8	$M C M 68 A 364 P$	350	24
8192×8	MCM68A364P3	350	
8192×8	MCM68B364P	350	24
8192×8	MCM68365P25	250	24
8192×8	MCM68365P35	250	24
8192×8	MCM68366P25	350	24
8192×8	MCM68366P35	250	24
8192×8	MCM68766C45	350	24

CMOS ROMs (+5 Volts)

Organization	Part Number	Access Time (ns max)	No. of Pins
256×4	MCM14524	1200	16
2048×8	MCM65516C43	430	18
2048×8	MCM65516C55	550	18

[^1]
PROMs

ECL PROMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
32×8	MCM10139	25	ECL output	16
256×4	MCM10149	30	ECL output	16

TTL PROMs

Organization	Part Number	Access Time (ns max)	Output	No. of Pins
64×8	MCM5003/5303	125	Open Collector	24
64×8	MCM5004/5304	125	2K Pull-Up	24
512×4	MCM7620	70	Open Collector	16
512×4	MCM7621	70	3-State	16
512×8	MCM7640		Open Collector	3-State

See notes on page 1-2

Memory Systems Board Selector Guide and Cross Reference

DEC COMPUTERS	MEMORY SIZE	mOTOROLA PART NUMBER	$\begin{aligned} & \text { DEC } \\ & \text { PART NUMBER } \end{aligned}$	INTEL PART NUMBER	MOSTEK PART NUMBER	national PART NUMBER	MONOLITHIC SYSTEMS PART NUMBER	DATARAM PART NUMBER	PLESSEY PART NUMBER	CDC part number	STANDARD MEMORIES part number
$\begin{array}{\|c} \hline+ \text { LSI } 11 \\ \text { LSS } 11 / 02 \\ \text { LSI } 111 / 23 \\ \text { PD } 11 / 1 / 3 \\ \text { (Q Bus Plus } \\ \text { slot) } \end{array}$			MSV11-BG MSV11-DC MSV11-DD MSV11-EC MSV1-EB MSV11-ED	CM-5004-616 CM-5004-632 CM-5004-816 CM-5004-832	MK 8005-03 MK 8005-02 MK 8005-00 MK 8005-14 MK $8005-12$ MK $8005-10$ MK 8005-10	NS23P NS23P			PM-SV32A/103 PM-SV32A/102 PM-SV32A/100 PM-SV32AP/ 103 PM-SV32AP/ 102 PM-SV32AP 100 PM-SV32AP/ 100	$\begin{aligned} & 94123-16 \\ & 94123-32 \end{aligned}$	
$\begin{array}{\|} \hline \text { +PDP } 11 / 04 \\ 05,10,34, \\ 35,40,45 \\ \text { 50, } 55,60 \\ \text { (MUDBUS } \\ \text { SPC slot) } \end{array}$	$\begin{aligned} & 16 \mathrm{~K} \times 16 \\ & 32 \mathrm{~K} \times 16 \\ & 48 \mathrm{~K} \times 16 \\ & 64 \mathrm{~K} \times 16 \\ & 16 \mathrm{~K} \times 18 \\ & 32 \mathrm{~K} \times 18 \\ & 48 \mathrm{~K} \times 18 \\ & 64 \mathrm{~K} \times 18 \end{aligned}$	$\begin{aligned} & \text { MMS1117-×2 } \\ & \text { MMS117-x4 } \\ & \text { MMS } 1117-\times 6 \\ & - \text { MMS1177-x8 } \\ & \text { MMS117-×2PC } \\ & \text { MMS } 1117-\times 4 P C \\ & \text { MMS1177-6PC } \\ & \text { MMS } 1117 \times 8 P C \end{aligned}$	$:$	$\begin{aligned} & \text { CM-5034-832 } \\ & \text { CM-5034-848 } \\ & C M-5034-864 \end{aligned}$	MK 8001-02 MK 8001-01 MK 8001-00 MK 8011-02. MK 8011-01 MK 8011-00	NS11/34-16 NS 11/34-32 NS $11 / 34$ P- 16 NS11/34P-32		DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S DR-114S	PM-S1164/102 PM-S1164/101 PM-S1164/100 PM-S1164A/102 PM-S1164A/101 PM-S $1164 \mathrm{~A} / 100$	$\begin{aligned} & 94234-16 \\ & 94234-32 \end{aligned}$	+ PINCOMM PS
+ PDP-11/04 PDP-11/34 PDP-11/60 (Mudbus slot)	$\begin{aligned} & 16 \mathrm{~K} \times 18 \\ & 32 \mathrm{~K} \times 18 \\ & 48 \mathrm{~K} \times 18 \\ & 64 \mathrm{~K} \times 18 \\ & 96 \mathrm{~K} \times 18 \end{aligned}$		MS11-LA MS11-LB MS11-LC	CM-5034-832 CM-5034-848	MK 8011-02 MK 8011-01 MK 8012-00	NS 11/34P-16 NS 11/34P-32		$\begin{aligned} & \text { DR-114S } \\ & \text { DR-14S } \\ & \text { DR-114S } \\ & \text { DR-114S } \\ & \text { DR-114S } \end{aligned}$	PM-S11L/100 PM-S11L/100	$\begin{aligned} & 94234-16 \\ & 94234-32 \end{aligned}$	+PINCOMM PS PINCOMM PS PINCOMM PS PINCOMM PS
+PDP-11/1/4 PDP-11/34 PDP-11/60 (Mudbus slot)	$\begin{array}{r} 32 K \times 18 \\ 64 K \times 18 \\ 96 K \times 18 \\ 128 K \times 18 \\ 256 K \times 18 \\ 512 K \times 18 \end{array}$	MMS1119P $\times 032$ MMS119P $\times 064$ MMS1119P $\times 096$ MMS1119P $\times 128$ MMS1119P $\times 256$ MMS $1119 P \times 512$	MS11-LA MS11-LB MS11-LC MS11-LD	$\begin{aligned} & \text { CM-5034-832 } \\ & \text { CM-5034-864 } \end{aligned}$	MK 8012-03 MK 8012-02 MK 8012-01 MK 8012-00	NS11/34Q NS $11 / 340$ NS $11 / 340$		$\begin{aligned} & \text { DR-114S } \\ & \text { DR-114S } \\ & \text { DR-114S } \\ & \text { DR-114S } \end{aligned}$	PM-S11L/100 PM-S11L/100 PM-S11L/100 PM-S11L/100	94134-32 94134-64 94134-128	+PINCOMM PS PINCOMM PS
$+\begin{aligned} & \text { PDP-11/70 } \\ & \text { (Add-In) } \end{aligned}$	$32 \mathrm{~K} \times 39$	MMS 1170 E 1064	-	-	-	-	-	-	-	-	$\begin{gathered} + \text { PINCOMM } \\ 70 \mathrm{~S} \end{gathered}$
+VAX 11/780 (Memory SUB- SYSTEM slot)	$32 \mathrm{~K} \times 72$	MMS780AE1032	$\underset{(M 8210)}{\substack{\text { MS780-DA }}}$	\cdot	MK 8016-01	NS 780	MSC 3610	DR-178S	-	\cdot	$\begin{gathered} \text { +PINCOMM } \\ 780 \mathrm{~S} \end{gathered}$

\dagger Populated with 32K RAMS
Populated with 64 K RAMS
$x=3$ for fast speed
$x=4$ for standard spe
$x=4$ for standard speed
P/PC - - arity + Controllerer eliminates the need for DEC's 7850 controller.

+ DEC, LSI-11, PDP-11, and VAX-11/780 are trademarks of Digital Equipment Corp. trademarks of Digital Equipment Corp.
PINCMMM is registered trademark of Trendata
Standard Memories.

INTEL MICROCOMPUTERS	$\underset{\text { SIZE }}{\substack{\text { MEMORY }}}$	$\begin{aligned} & \text { MOTOROLA } \\ & \text { PART } \\ & \text { NUMBER } \end{aligned}$	$\begin{gathered} \text { INTEL } \\ \text { PARL } \\ \text { NUMBER } \end{gathered}$	$\begin{aligned} & \text { NATOONAL } \\ & \text { PUART } \end{aligned}$	$\begin{aligned} & \text { CHRISLIN } \\ & \text { NUARTER } \end{aligned}$
$\begin{gathered} \text { +iSBC 80/10, } \\ 80 / 20, \\ 86 / 12 \\ + \text { (MULTIBUS) } \\ \text { MDS Development } \\ \text { System } \\ \text { SYSEM } 80 \end{gathered}$	$\begin{aligned} & 16 K \times 8 \\ & 32 \mathrm{~K} \times 8 \\ & 48 \mathrm{~K} \times 8 \\ & 64 \mathrm{~K} \times 8 \\ & 16 \mathrm{~K} \times 9 \\ & 32 \mathrm{~K} \times 9 \\ & 48 \mathrm{~K} \times 9 \\ & 64 \mathrm{~K} \times 9 \end{aligned}$	MMS8016 MMS8032 MMS8048 MMS8064 MMS8016P MMS8048P MMS8064P	SBC 016 SBC 032 SBC 048	$\begin{gathered} \text { + BLC } 016 \\ \text { BLC } \\ \text { BLC } 032 \\ \text { BLC } 064 \end{gathered}$	$\begin{aligned} & \text { C1 8080 } \\ & \text { C1 } 8080 \\ & \text { C1 } 8080 \end{aligned}$
$\begin{aligned} & \text { +iSBC 80/10, } \\ & \text { tMDS Dovevelopment } \\ & \text { SYystem } \\ & \text { SYSEM } 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 K \times 8 \\ & 32 K \times 8 \end{aligned}$	MMS80810-1 MMS80810	$\begin{aligned} & \text { SBC } 016 \\ & \text { SBC } 032 \end{aligned}$	$\begin{aligned} & \text { BLC } 016 \\ & \text { BLC } 032 \end{aligned}$	Cl 8080 Cl 8080

+ MULTIBUS and iSBC are trademarks of INTEL Corp.
BLC is a trademark of NATIONAL Semi-conductor Corp.

NOTE: THIS DOCUMENT IS INTENDED AS AN AID TO OUR CUSTOMERS IN SELECTING THE PROPER ADD-IN MEMORY BOARD. WE RECOMMEND THAT THE DATA SHEET EECHNICAL MANUALS FOR THE USED BEFORE INSTALLATION.

THE OFFICIAL MOS MEMORY CROSS-REFERENCE From Motorola

NOVEMBER 1980

Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplles	Motorola Pin-to-Pin Replacement
AMD					
Am2708	1024×8 EPROM	300-450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
Am2716	2048×8 EPROM	450	24	$+5 \mathrm{~V}$	MCM2716
Am4044	4096×1 SRAM	200-450	18	+5V	MCM66L41
Am9016	$16,384 \times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116
Am9114	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM2114
Am91L14	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM21L14
Am9147	4096×1 SRAM	55-85	18	$+5 \mathrm{~V}$	MCM2147
Am9208B	1024×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A308
Am9217	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316A
Am9218	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316E
Am9232	4096×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A332
AMI					
S2114	1024×4 SRAM	200-450	18	+5V	MCM2114
S2114L	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM21L14
S2147	4096×1 SRAM	70-100	18	$+5 \mathrm{~V}$	MCM2147
S4264	8192×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A364
S5101	256×4 SRAM	450-800	22	$+5 \mathrm{~V}$	MCM5101
S6508	1024×1 SRAM	300-460	16	$+5 \mathrm{~V}$	MCM6508
S6518	1024×1 SRAM	300-460	18	$+5 \mathrm{~V}$	MCM6518
S6810	128×8 SRAM	250-450	24	$+5 \mathrm{~V}$	MCM6810
S6830	1024×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A30A
S6831A	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316A
S6831B	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316E
S68332	4096×8 ROM	350	24	$+5 \mathrm{~V}$	MCM68A332
FAIRCHILD					
F16K	16,384 $\times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116
2114	1024×4 SRAM	200-450	18	+5V	MCM2114
F2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
F27081	1024×8 EPROM	300	24	+12, $\pm 5 \mathrm{~V}$	MCM27A08
2716	2048×8 EPROM	450	24	$+5 \mathrm{~V}$	MCM2716
3508	1024×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A308
F3516E	2048×8 SROM	350	24	+5V	MCM68A316E
FM4027	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
F68B10	128×8 SRAM	250-450	24	$+5 \mathrm{~V}$	MCM68B10
F68B308 F68708	1024×8 SROM 1024×8 EPROM	$250-350$ 450	24 24	$+5 V$ $+12+5 V$	MCM68B308 MCM68708
F68708	1024×8 EPROM	450	24	$+12, \pm 5 \mathrm{~V}$	MCM68708
FUJITSU					
MB2147	4096×1 SRAM	70-100	18	+5V	MCM2147
MBM2716	2048×8 EPROM	450	24	$+5 \mathrm{~V}$	MCM2716
MB4044	4096×1 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM6641
MB8114	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM2114
MB8116	16,384 $\times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116
MB8227	4096×1 DRAM	120-250	16	+12, $\pm 5 \mathrm{~V}$	MCM4027A
MB8308	1024×8 SROM	350	24	+5V	MCM68A308
MB8518H	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
GENERAL INSTRUMENT					
RO3-8316B	2048×8 SROM	350	24	+5V	MCM68A316A
RO3-9316B	2048×8 SROM	350	24	+5V	MCM68A316E
RO3-9332C	4096×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A332
RO3-9364B	8092×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68365-35

Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
HARRIS 6501 6508 6514 6518	256×4 SRAM 1024×1 SRAM 1024×1 SRAM 1024×1 SRAM	$\begin{aligned} & 450-800 \\ & 300-460 \\ & 200-450 \\ & 300-460 \end{aligned}$	$\begin{array}{r} 22 \\ 16 \\ 18 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & +5 V \\ & +5 V \\ & +5 V \\ & +5 V \end{aligned}$	MCM5101 MCM6508 MCM65114 MCM6518
HITACHI HM4334P HM435101 HM462316EP HM462532 HM462708 HM462716 HM46332 HM46364 HM468A10 HM46830 HM4716 HM472114A HM48016 HM4816 HM4847 HM4864 HM6116P HM6147P HM6148P	1024×4 SRAM 256×4 CMOS SRAM 2048×8 SROM 4096×8 EPROM 1024×8 EPROM 2048×8 4096×8 SROM 8192×8 SROM 128×8 SRAM 1024×8 SROM $16,384 \times 1$ DRAM 1024×1 SRAM 2048×8 EEPROM $16,384 \times 1$ DRAM 4096×1 SRAM $65,536 \times 1$ DRAM 2048×8 CMOS SRAM 4096×1 CMOS SRAM 1024×4 CMOS SRAM	$\begin{aligned} & 300-450 \\ & 450-800 \\ & 350 \\ & 450 \\ & 450 \\ & 450 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 150-300 \\ & 200-450 \\ & 350 \\ & 100-200 \\ & 55-85 \\ & 150-200 \\ & 120-200 \\ & 55-70 \\ & 55-85 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 22 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 16 \\ & 18 \\ & 24 \\ & 16 \\ & 18 \\ & 16 \\ & 18 \\ & 18 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	MCM65114 MCM5101 MCM68A316E MCM2532 MCM2708 MCM2716 MCM68A332 MCM68A364 MCM68A10 MCM68A30A MCM4116 MCM2114 MCM2816 MCM4517 MCM2147 MCM6665 MCM65116 MCM65147 MCM65148
INTEL 2114 2114L 2115A 2115AL 2115H 2117 2118 2125A 2125AL 2125H 2147 2147H 2148 2148 H 2149H 2308 2316A 2316E 2332 2708 2708-1 2716 2716-1 2816	1024×4 SRAM 1024×4 SRAM 1024×1 SRAM 1024×1 SRAM 1024×1 SRAM $16,384 \times 1$ DRAM $16,384 \times 1$ DRAM 1024×1 SRAM 1024×1 SRAM 1024×1 SRAM 4096×1 SRAM 4096×1 SRAM 1024×4 SRAM 1024×4 SRAM 1024×4 SRAM 1024×8 SROM 2048×8 SROM 2048×8 SROM 4096×8 SROM 1024×8 EPROM 1024×8 EPROM 2048×8 EPROM 2048×8 EPROM 2048×8 EEPROM	$\begin{aligned} & 200-450 \\ & 200-450 \\ & 45-70 \\ & 45-70 \\ & 20-35 \\ & 150-300 \\ & 100-200 \\ & 45-70 \\ & 45-70 \\ & 20-35 \\ & 55-100 \\ & 35-55 \\ & 70-85 \\ & 45-55 \\ & 45-55 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 450 \\ & 350 \\ & 450 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \\ & +5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \\ & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	MCM2114 MCM21L14 MCM2115A MCM21L15A MCM2115H MCM4116 MCM4517 MCM2125A MCM21L25A MCM2125H MCM2147 MCM2147H MCM2148 MCM2148H MCM2149H MCM68A308 MCM68A316A MCM68A316E MCM68A332 MCM2708 MCM27A08 MCM2716 MCM27A16 MCM2816
INTERSIL 2114 (IM2114) IM2147 MK4027 IM6508 IM6518 IM7027 IM2114L IM4116 IM7141 IM7141L	1024×4 SRAM 4096×1 SRAM 4096×1 DRAM 1024×1 SRAM 1024×1 SRAM 4096×1 DRAM 1024×4 SRAM $16,384 \times 1$ DRAM 4096×1 SRAM 4096×1 SRAM	$\begin{aligned} & 200-450 \\ & 55-85 \\ & 150-250 \\ & 300-460 \\ & 300-460 \\ & 120-250 \\ & 200-450 \\ & 150-300 \\ & 200-450 \\ & 200-450 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 16 \\ & 16 \\ & 18 \\ & 6 \\ & 18 \\ & 16 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & +5 V \\ & +5 V \\ & +12, \pm 5 \cdot V \\ & +5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +5 V \\ & +5 V \end{aligned}$	MCM2114 MCM2147 MCM4027A MCM6508 MCM6518 MCM4027A MCM21L14 MCM4116 MCM6641 MCM66L41
$\begin{aligned} & \text { ITT } \\ & \text { ITT4027 } \\ & \text { ITT4116 } \end{aligned}$	4096×1 DRAM $16,384 \times 1$ DRAM	$\begin{aligned} & 120-250 \\ & 150-300 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & +12, \pm 5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \end{aligned}$	MCM4027A MCM4116

Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
MIC MIC2316E MIC2332	2048×8 SROM 4096×8 SROM	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & +5 V \\ & +5 V \end{aligned}$	MCM68A316E MCM68A332
MOSTEK MK2147 MK2716 MK4027 MK4116 MK4516 MK4164 MK30000 MK31000 MK32000 MK34000 MK36000 MK36000-4	4096×1 SRAM 2048×8 EPROM 4096×1 DRAM $16,384 \times 1$ DRAM $16,384 \times 1$ DRAM $65,536 \times 1$ DRAM 1024×8 SROM 2048×8 SROM 4096×8 SROM 2048×8 SROM 8192×8 SROM 8192×8 SROM	$70-100$ 450 $150-250$ $150-300$ $120-200$ $150-250$ 350 350 350 350 350 250	$\begin{aligned} & 18 \\ & 24 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +12, \pm 5 V \\ & +5 V \end{aligned}$	MCM2147 MCM2716 MCM4027A MCM4116 MCM4516 MCM6664 MCM68A308 MCM68A316A MCM68A332 MCM68A316E MCM68A364 MCM68B364
NATIONAL MM2114 MM2147 MM2708 MM2716 MM5235 MM5257 MM5257L MM5290	1024×4 SRAM 4096×1 SRAM 1024×8 EPROM 2048×8 EPROM 8192×8 SROM 4096×1 SRAM 4096×1 SRAM $16,384 \times 1$ DRAM	$\begin{aligned} & 200-450 \\ & 55-85 \\ & 450 \\ & 450 \\ & 350 \\ & 200-450 \\ & 200-450 \\ & 150-300 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 24 \\ & 24 \\ & 24 \\ & 18 \\ & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & +5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +5 V \\ & +5 V \\ & +5 V \\ & +5 V \\ & +12, \pm 5 V \end{aligned}$	MCM2114 MCM2147 MCM2708 MCM2716 MCM68A364 MCM6641 MCM66L41 MCM4116
NEC/EA μ PD414A μ PD416 μ PD2114L μ PD2147 μ PD2332 μ PD2716 μ PD4104 μ PD5101 μ PD6508 EA2114 EA2308/8308 $\mu \mathrm{PD}$ or EA2316A8316A μ PD or EA2316E/8316E EA2708 μ PD or EA2716 EA8332	4096×1 DRAM $16,384 \times 1$ DRAM 1024×4 SRAM 4096×1 SRAM 4096×8 ROM 2048×8 EPROM 4096×1 SRAM 256×4 SRAM 1024×1 SRAM 1024×4 SRAM 1024×8 SROM 2048×8 SROM 2048×8 SROM 1024×8 EPROM 2048×8 EPROM 4096×8 SROM	$\begin{aligned} & 150-250 \\ & 150-300 \\ & 200-450 \\ & 55-85 \\ & 350 \\ & 450 \\ & 200-450 \\ & 450-800 \\ & 300-460 \\ & 200-450 \\ & 350 \\ & \\ & 350 \\ & 350 \\ & 450 \\ & 450 \\ & 350 \end{aligned}$	16 16 18 18 24 24 18 22 16 18 24 24 24 24 24 24	$\begin{aligned} & +12, \pm 5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \\ & +5 \mathrm{~V} \\ & +12, \pm 5 \mathrm{~V} \\ & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	MCM4027A MCM4116A MCM21L14 MCM2147 MCM68A332 MCM2716 MCM66L41 MCM5101 MCM6508 MCM2114 MCM68A308 MCM68A316A MCM68A316E MCM2708 MCM2716 MCM68A332
NITRON NC6570 NC6571 NC6572 NC6573 NC6574 NC6575	$128 \times(7 \times 9)$ SROM	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	MCM66700 MCM66710 MCM66720 MCM66730 MCM66740 MCM66750
SIGNETICS 2607 2608 2609 2660 2614 2616 2633 2664 2690 2708 2716 4027 5101	1024×8 SROM 1024×8 SROM $128 \times(7 \times 9)$ SROM 4096×1 DRAM 1024×4 SRAM 2048×8 SROM 4096×8 SROM 8192×8 SROM $16,384 \times 1$ DRAM 1024×8 EPROM 2048×8 EPROM 4096×1 DRAM 256×4 SRAM	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 120-250 \\ & 200-450 \\ & 350 \\ & 350 \\ & 350 \\ & 250-350 \\ & 450 \\ & 450 \\ & 150-250 \\ & 450-800 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 16 \\ & 18 \\ & 24 \\ & 24 \\ & 24 \\ & 16 \\ & 24 \\ & 24 \\ & 16 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & +5 V \\ & +5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +5 V \\ & +5 V \\ & +5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +12, \pm 5 V \\ & +5 V \\ & +12, \pm 5 V \\ & +5 V \end{aligned}$	MCM68A308 MCM68A30A MCM66700 MCM4027A MCM21L14 MCM68A316E MCM68A332 MCM68A364 MCM4116 MCM2708 MCM2716 MCM4027A MCM5101

Part Number	Organization Description	Motorola's Access Time (ns Max)	Number of Pins	Power Supplies	Motorola Pin-to-Pin Replacement
SYNERTEK					
SY2114	1024×4 SRAM	200-450	18	$+5 \mathrm{~V}$	MCM21L14
SY2147	4096×1 SRAM	55-85	18	$+5 \mathrm{~V}$	MCM2147
SY2316A	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316A
SY2316B	2048×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68A316E
SY2332	4096×8 ROM	350	24	$+5 \mathrm{~V}$	MCM68A332
SY2716	2048×8 EPROM	450	24	$+5 \mathrm{~V}$	MCM2716
SY5101	256×4 SRAM	450-800	22	$+5 \mathrm{~V}$	MCM5101
TEXAS INSTRUMENTS					
TMS2114	1024×4 SRAM	200-450	18	+5V	MCM2114
TMS2147	4096×1 SRAM	$55-85$	18	$+5 \mathrm{~V}$	MCM2147
TMS2516	2048×8 EPROM	450	24	+5V	MCM2716
TMS2532	4096×8 EPROM	350.450	24	$+5 \mathrm{~V}$	MCM2532
TMS2708	1024×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	MCM2708
TMS2716	2048×8 EPROM	450	24	+12, $\pm 5 \mathrm{~V}$	TMS2716
TMS4016	2048×8 SRAM	200	24	$+5 \mathrm{~V}$	MCM4016
TMS4044	4096×1 SRAM	200-450	18	+ 5 V	MCM6641
TMS4116	$16,384 \times 1$ DRAM	150-300	16	+12, $\pm 5 \mathrm{~V}$	MCM4116
TMS4164	65,536 $\times 1$ DRAM	150-250	16	$+5 V$	MCM6665
TMS4732	4096×8 SROM	350	24	$+5 V$	MCM68A332
TMS4764	8192×8 SROM	350	24	$+5 \mathrm{~V}$	MCM68365
TOSHIBA					
TMM314	1024×4 SRAM	200-450	18	+ 5 V	MCM2114
TMM2147	4096×1 SRAM	55-85	18	$+5 \mathrm{~V}$	MCM2147
TC5516P	2048×8 SRAM	200	24	$+5 \mathrm{~V}$	MCM4016

Part Number Guide

MOS Memories RAM, EPROM, EEPROM, ROM

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4027A is a 4096×1 bit high-speed dynamic Random Access Memory. It has smaller die size than the MCM4027 providing improved speed selections. The MCM4027A is fabricated using Motorola's highly reliable N -channel silicon-gate technology.

By multiplexing row and column address inputs, the MCM4027A requires only six address lines and permits packaging in Motorola's standard 16 -pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The MCM4027A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.

- Maximum Access Time $=120 \mathrm{~ns}-$ MCM4027AC1

$$
\begin{aligned}
& 150 \mathrm{~ns}-\mathrm{MCM} 4027 \mathrm{AC} 2 \\
& 200 \mathrm{~ns}-\mathrm{MCM} 4027 \mathrm{AC} \\
& 250 \mathrm{~ns}-\mathrm{MCM} 4027 A C 4
\end{aligned}
$$

- Maximum Read and Write Cycle Time =

$$
\begin{aligned}
& 320 \mathrm{~ns}-\mathrm{MCM} 4027 \mathrm{AC} 1, \mathrm{C} 2 \\
& 375 \mathrm{~ns}-\mathrm{MCM} 4027 \mathrm{AC} 3, \mathrm{C} 4
\end{aligned}
$$

- Low Power Dissipation - 470 mW Max (Active)

$$
27 \mathrm{~mW} \operatorname{Max}(\text { Standby })
$$

- 3-State Output for OR-Ties
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Industry Standard 16-Pin Package
- Page-Mode Capability
- Compatible with the Popular 2104/MK4096/MCM6604
- Second Source for MK4027

MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

TRUTH TABLE

Inputs				Data Out			Cycle Power	Ref	Function
RAS	$\overline{\text { CAS }}$	$\overline{\text { CS }}$	WE	Previous	Interim	Present			
L	L	L	L	Valid data	High Imp.	Input data	Full-operating	Yes	Write cycle
L	L	L	H	Valid data	High Imp.	Valid data (cell)	Full-operating	Yes	Read cycle
L	L	H	X	Valid data	High Imp.	High Imp.	Full-operating	Yes	Deselected-refresh
L	H	X	X	Valid data	Valid data	Valid data	Reduced operating	Yes	$\overline{\mathrm{RAS}}$ only-refresh
H	L	X	X	Valid data	High Imp.	High Imp.	Standby	No	Standby-output disabled
H	H	X	X	Valid data	Valid data	Valid data	Standby	No	Standby-output valid

[^2]

OPERATING CHARACTERISTICS

ADDRESSING

The MCM4027A has six address inputs (AO-A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe ($\overline{\mathrm{CAS}}$). At the beginning of a memory cycle, the six low order address bits AO through A5 are strobed into the chip with $\overline{R A S}$ to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6-A11) are placed on the address pins. This address is then strobed into the chip with $\overline{\mathrm{CAS}}$. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by $A 0$ to complete the data selection. The Chip Select ($\overline{\mathrm{CS}}$) is latched into the port along with the column addresses.

DATA OUTPUT

In order to simplify the memory system designed and reduce the total package count, the MCM4027A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

A chip will be unselected during a memory cycle if:
(1) The chip receives both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals, but no Chip Select signal.
(2) The chip receives a $\overline{\text { CAS }}$ signal but no $\overline{\text { RAS }}$ signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.
If, during a read, write, or read-modify-write cycle,
the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{Chip}}$ Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:
(1) Read Cycle - On the negative edge of $\overline{\mathrm{CAS}}$, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(2) Write Cycle - If the $\overline{W E}$ input is switched to a logic 0 before the $\overline{\mathrm{CAS}}$ transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next $\overline{\mathrm{CAS}}$ signal.
(3) Read-Modify-Write - Same as read cycle.

DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the $\overline{\mathrm{WE}}$ and $\overline{\mathrm{CAS}}$ signals. The last of these signals to make a negative transition will strobe the data into the latch. If the $\overline{W E}$ input is switching to a logic 0 in the beginning of a write cycle, the falling edge of CAS strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of $\overline{\mathrm{CAS}}$.

If a read-modify-write cycle is being performed, the $\overline{W E}$ input would not make its negative transistion until after the $\overline{\mathrm{CAS}}$ signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of $\overline{W E}$. The data setup and hold times would now be referenced to the negative edge of the $\overline{W E}$ signal. The only other timing constraints for a write-type-cycle is that both the $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{WE}}$ signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

INPUT/OUTPUT LEVELS

All of the inputs to the MCM4027A are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability (3.2 mA) to drive two TTL loads. The output buffer also has a separate $V_{C C}$ pin so that it can be powered from the same supply as the logic being employed.

REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCMi4027A must be refreshed once every 2 ms . Any cycle in which a $\overline{R A S}$ signal occurs accomplishes a refresh operation. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the $\overline{\mathrm{RAS}}$ cycle. This refresh mode will not shorten the refresh cycle time; however, the system standby power can be reduced by approximately 30%.

If the $\overline{\text { RAS }}$ only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Applying $\overline{\mathrm{CAS}}$ to the chip will restore activity of the output buffer.

POWER DISSIPATION

Since the MCNi4027A is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027A is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycle.

In a memory system, the $\overline{\mathrm{CAS}}$ signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a $\overline{\mathrm{RAS}}$ signal will not dissipate any power on the CAS edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the $\overline{\text { RAS }}$ signal should be decoded so that only the chips to be selected receive a $\overline{R A S}$ signal. If the $\overline{\text { RAS }}$ signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

[^3]
DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS (Referenced to $\mathrm{V}_{\mathrm{SS}}=$ Ground.)

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	V_{DD}	10.8	12.0	13.2	Vdc	2
	$\mathrm{~V}_{\mathrm{CC}}$	V_{SS}	5.0	$\mathrm{~V}_{\mathrm{DD}}$	Vdc	3
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0	Vdc	2
	$\mathrm{~V}_{\mathrm{BB}}$	-4.5	-5.0	-5.5	Vdc	2
Logic 1 Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{V}_{\text {IHC }}$	2.4	5.0	7.0	Vdc	2,4
Logic 1 Voltage, all inputs except $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	V_{IH}	2.2	5.0	7.0	Vdc	2,4
Logic 0 Voltage, all inputs	$\mathrm{V}_{\text {IL }}$	-1.0	0	0.8	Vdc	2,4

DC CHARACTERISTICS $\left(V_{D D}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $70^{\circ} \mathrm{C}$.) Notes 1,5

Characteristic	Symbol	Min	Typ	Max	Units	Notes
Average VDD Power Supply Current	IDD1			35	mA	6
$\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC				mA	7
Average $\mathrm{V}_{\text {BB }}$ Power Supply Current	${ }^{1} \mathrm{BB}$			250	$\mu \mathrm{A}$	
Standby $\mathrm{V}_{\text {DD }}$ Power Supply Current	IDD2			2	mA	9
Average $V_{D D}$ Power Supply Current during "RAS only" cycles	'DD3			25	mA	6
Input Leakage Current (any input)	II(L)			10	$\mu \mathrm{A}$	8
Output Leakage Current	$\mathrm{I} \mathrm{O}(\mathrm{L})$			10	$\mu \mathrm{A}$	9,10
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	V OH	2.4			Vdc	
Output Logic 0 Voltage @ $\mathrm{I}_{\text {out }}=3.2 \mathrm{~mA}$	VOL			0.4	Vdc	

NOTES 1 through 11:

1. T_{A} is specified for operation at frequencies to $t_{R C} \geqslant t_{R C}(\mathrm{~min})$. Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible provided that all ac parameters are met.
2. All voltages referenced to V_{SS}.
3. Output voltage will swing from V_{SS} to V_{CC} when enabled, with no output load. For purposes of maintaining data in standby mode, $V_{\text {CC }}$ may be reduced to $V_{S S}$ without affecting refresh operations or data retention. However, the $\mathrm{V}_{\mathrm{OH}}(\min)$ specification is not guaranteed in this mode.
4. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 v).
5. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
6. Current is proportional to cycle rate. IDD1 (max) is measured at the cycle rate specified by $\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$.
7. I CC depends on output loading. During readout of high level data $V_{\text {CC }}$ is connected through a low impedance (135Ω typ) to Data Out. At all other times I CC consists of leakage currents only.
8. All device pins at 0 volts except $V_{B B}$ which is at -5 volts and the pin under test which is at +10 volts.
9. Output is disabled (high-impedance) and $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ are both at a logic 1. Transient stabilization is required prior to measurement of this parameter.
$10.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {Out }} \leqslant+10 \mathrm{~V}$.
10. Effective capacitance is calculated from the equation:

$$
C=\frac{\Delta Q}{\Delta V} \text { with } \Delta V=3 \text { volts. }
$$

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested) Note 11

	Characteristic	Symbol	Max	Unit
Input Capacitance	$(\mathrm{AO}-\mathrm{A} 5), \mathrm{D}_{\mathrm{in}, \overline{\mathrm{CS}}}$	$\mathrm{C}_{\text {in }}(\mathrm{EFF})$	5.0	pF
	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WRITE}}$		10.0	
Output Capacitance		$\mathrm{C}_{\text {out }}(\mathrm{EFF})$	7.0	pF

ABSOLUTE MAXIMUM RATINGS (See Notes 1 and 2)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\mathrm{BB}}{ }^{*}$	$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to +20	Vdc
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Output Current (Short Circuit)	$\mathrm{I}_{\text {out }}$	50	mAdc

${ }^{*}\left(\mathrm{~V}_{\mathrm{ss}}-\mathrm{V}_{\mathrm{BB}}>4.5 \mathrm{~V}\right)$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS ARE EXCEEDED. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

Parameter	Symbol	MCM4027AC1		MCM4027AC2		MCM4027AC3		MCM4027AC4		Units	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	'RC	320		320		375		375		ns	13
Read Write Cycle Time	'RWC	320		320		375		375		ns	13
Page Mode Cycle Time	'PC	160		170		225		285		ns	13
Access Time From Row Address Strobe	'RAC		120		150		200		250	ns	14, 16
Access Time From Column Address Sirobe	${ }^{\text {'CAC }}$		80		100		135		165	ns	15, 16
Output Buffer and Turn-Off Delay	'OFF		35		40		50		60	ns	
Row Address Strobe Precharge Time	${ }^{\text {'RP }}$	100		100		120		120		ns	
Row Address Strobe Pulse Width	'RAS	120	10,000	150	10,000	200	10,000	250	10.000	ns	
Row Address Strobe Hold Time	'RSH	80		100		135		165		ns	
Column Address Strobe Pulse Width	'CAS	80		100		135		165		ns	
Column Address Strobe Hold Time	${ }^{1} \mathrm{CSH}$	120		150		200		250		ns	
Row to Column Strobe Lead Time	'RCD	15	40	20	50	25	65	35	85	ns	17
Row Address Setup Time	'ASR	0		0		0		0		ns	
Row Address Hold Time	'RAH	15		20		25		35		ns	
Column Address Setup Time	'ASC	- 5		-10		. 10		-10		ns	
Column Address Hold Time	${ }^{1} \mathrm{CAH}$	40		45		55		75		ns	
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {'AR }}$	80		95		120		160		ns	
Chip Select Setup Time	${ }^{1} \mathrm{CSC}$	0		-10		-10		-10		ns	
Chip Select Hold Time	${ }^{\text {' }} \mathrm{CH}$	40		45		55		75		ns	
Chip Select Hold Time Referenced to RAS	'CHR	80		95		120		160		ns	
Transition Time Rise and Fall	'T	3	35	3	35	3	50	3	50	ns	18
Read Command Setup Time	'RCS	0		0		0		0		ns	
Read Command Hold Time	${ }^{\text {'RCH }}$	0		0		0		0		ns	
Write Command Hold Time	${ }^{\text {W }} \mathrm{WCH}$	40		45		55		75		ns	
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	'WCR	80		95		120		160		ns	
Write Command Pulse Width	'WP	40		45		55		75		ns	
Write Command to Row Strobe Lead Time	'RWL	50		50		70		85		ns	
Write Command to Column Strobe Lead Time	'CWL	50		50		70		85		ns	
Data in Setup Time	${ }^{\text {'DS }}$	0		0		0		0		ns	19
Data in Hold Time	${ }^{\text {'DH }}$	40		45		55		75		ns	19
Data in Hold Time Referenced to RAS	${ }^{\text {'DHR }}$	80		95		120		160		ns	
Column to Row Strobe Precharge Time	${ }^{\text {'CRP }}$	0		0		0		0		ns	
Column Precharge Time	${ }^{1} \mathrm{CP}$	60		60		80		110		ns	
Refresh Period	'RFSH		2		2		2		2	ms	
Write Command Setup Time	${ }^{\text {t }}$ WCS	0		0		0		0		ns.	
CAS to WRITE Delay	${ }^{\text {'CWD }}$	60		60		80		90		ns	20
$\overline{\text { RAS }}$ to WRITE Delay	'RWD	100		110		145		175		ns	20
Data Out Hold Time	${ }^{1} \mathrm{DOH}$	10		10		10		10		$\mu \mathrm{s}$	

NOTES 12 through 20 :

12. $A C$ measurements assume $t_{T}=5 \mathrm{~ns}$.
13. The specifications for $t_{R C}(\min)$ and $t_{R W C}(\min)$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\right)$ is assured.
14. Assumes that $\mathrm{t}_{\mathrm{RCD}} \leqslant \mathrm{t}_{\mathrm{RCD}}(\max)$.
15. Assumes that $t_{R C D} \geqslant t_{R C D}$ (max).
16. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
17. Operation within the $t_{R C D}(\max)$ limit insures that $\mathrm{t}_{\mathrm{RAC}}$ (max) can be met. $\mathrm{t}_{\mathrm{RCD}}{ }^{(\max)}$ is specified as a reference point only; if ${ }^{t_{R C D}}$ is greater than the specified $t_{R C D}(\max)$ limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. $\mathrm{V}_{\mathrm{IHC}}(\min)$ or $\mathrm{V}_{\mathrm{IH}}(\min)$ and $\mathrm{V}_{\mathrm{IL}}(\max)$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{\text {IHC }}$ or $V_{\text {IH }}$ and $V_{\text {IL }}$.
19. These parameters are referenced to $\overline{C A S}$ leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify write cycles.
20. tWCS, ${ }^{\text {t CWD }}$, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characterisitcs only: If tWCS $\geqslant \mathrm{t}_{\mathrm{WCS}}(\mathrm{min})$, the cycle is an early write cycle and Data Out will contain the data written into the selected cell. If $t_{C W D} \geqslant t_{C W D}(\mathrm{~min})$ and $t_{R W D} \geqslant t_{R W D}(\mathrm{~min})$, the cycle is a read-write cycle and Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of Data Out (at access time) is indeterminate.

READ CYCLE TIMING

WRITE CYCLE TIMING

READ-MODIFY-WRITE TIMING

$\overline{R A S}$ ONLY REFRESH TIMING

Dout

$$
\begin{aligned}
& \mathrm{VOH}_{\mathrm{OH}} \longrightarrow \\
& \mathrm{~V}_{\mathrm{OL}} \longrightarrow
\end{aligned}
$$

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4116B is a 16,384-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly reliable N -channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM4116B requires only seven address lines and permits packaging in Motorola's standard 16-pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The data output of the MCM4116B is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.

The MCM4116B incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- Industry Standard 16-Pin Package
- 16,384 X 1 Organization
- $\pm 10 \%$ Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation - 463 mW Active, 20 mW Standby (Max)
- Fast Access Time Options:150 ns - MCM4116BP-15, BC-15

200 ns - MCM4116BP-20, BC-20
250 ns - MCM4116BP-25, BC-25
300 ns - MCM4116BP-30, BC-30
Easy Upgrade from 16-Pin 4K RAMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to V_{BB}	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to +20	V
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	1.0	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MOS

(N-CHANNEL)

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

PIN ASSIGNMENT

PIN NAMES	
A0-A6	Address Inputs
$\overline{\mathrm{CAS}}$	lumn Address Strobe
Data In
Q.	Data Out
RAS	Row Address Strobe
\bar{W}	.Read/Write Input
$V_{\text {BB }}$	Power (-5 V)
$V_{\text {CC }}$	Power (+5 V)
$\mathrm{V}_{\text {DD }}$. $\operatorname{Power~(+12~V)~}$
$\mathrm{V}_{\text {SS }}$.	Ground

[^4]

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	V_{DD}	10.8	12.0		V	1
	$V_{\text {CC }}$	4.5	5.0	5.5	v	1, 2
	$\mathrm{V}_{\text {SS }}$	0	0	0	V	1
	$V_{B B}$	-4.5	-5.0	-5.5	V	1
Logic 1 Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$V_{\text {IHC }}$	2.4	-	7.0	V	1
Logic 1 Voltage, all inputs except $\overline{\text { RAS }}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{V}_{1 \mathrm{H}}$	2.4	-	7.0	V	1
Logic 0 Voltage, all inputs	$\mathrm{V}_{\text {IL }}$	-1.0	--	0.8	V	1
DC CHARACTERISTICS ($\mathrm{V}_{\text {DD }}-12 \mathrm{~V} \cdot 10 \%, \mathrm{~V}_{\text {CC }}-5.0 \mathrm{~V} \cdot 10 \%, \mathrm{~V}_{\text {B }}-5.0 \mathrm{~V} \cdot 10 \%, \mathrm{~V}_{\text {SS }}-0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}-0$ to $70^{\circ} \mathrm{C}$.)						
Characteristic	Symbol	Min	Max	U Units		Notes
Average $\mathrm{V}_{\text {DD }}$ Power Supply Current	'DD1	-	35	mA		4
$\mathrm{V}_{\text {CC }}$ Power Supply Current	${ }^{1} \mathrm{CC}$	-	-	mA		5
Average V_{BB} Power Supply Current	${ }^{1} \mathrm{BB1,3}$	-	200	$\mu \mathrm{A}$		
Standby $\mathrm{V}_{\text {BB }}$ Power Supply Current	${ }^{\text {B }}$ B2	-	100	$\mu \mathrm{A}$		
Standby $V_{\text {DD }}$ Power Supply Current	'DD2	-	1.5	mA		6
Average $V_{\text {DD }}$ Power Supply Current during "RAS only" cycles	'003	-	27	mA		4
Input Leakage Current (any input)	l/(L)	-	10	$\mu \mathrm{A}$		
Output Leakage Current	IO(L)	-	10	$\mu \mathrm{A}$		6, 7
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	VOH	2.4	-	V		2
Output Logic 0 Voltage @ $\mathrm{l}_{\text {out }}=4.2 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	0.4	V		

NOTES

. All voltages referenced to $V_{S S}$. $V_{B B}$ must be applied before and removed after other supply voltages
2. Output voltage will swing from $V_{S S}$ to $V_{C C}$ under open circuit conditions. For purposes of maintaining data in power down mode, $V_{C C}$ may be reduced to $V_{\text {SS }}$ without affecting refresh operations. $V_{\mathrm{OH}_{H}}(\mathrm{~min})$ specification is not guaranteed in this mode.
3. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate.
4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.
5. 'CC depends upon output loading. The $V_{C C}$ supply is connected to the output buffer only.
6. Output is disabled (open-circuit) when CAS is at a logic 1.
7. $0 \vee \leqslant V_{\text {out }} \leqslant+5.5 \mathrm{~V}$.

CAPACITANCE ($f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, periodically sampled rather than 100% tested) (See Note 8)

	Symbol	Typ	Max	Unit	Notes
Input Capacitance (AO-A5), $\mathrm{D}_{\text {in }}$	C_{11}	4.0	5.0	pF	9
Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	C_{12}	8.0	10	pF	9
Output Capacitance ($\mathrm{D}_{\text {Out }}$)	C_{0}	5.0	7.0	pF	7,9

AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9, 14)
READ, WRITE, AND READ-MODIFY-WRITE CYCLES
$\left(V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0\right.$ to $\left.70^{\circ} \mathrm{C}.\right)$

Parameter	Symbol	MCM4116B-15		MCM4116B-20		MCM4116B-25		MCM4116B-30		Units	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	${ }_{\text {t }}^{\text {RC }}$	375	-	375	-	410	-	480	-	ns	
Read Write Cycle Time	trwC	375	-	375	-	515	-	660	-	ns	
Access Time from Row Address Strobe	${ }^{\text {traC }}$	-	150	-	200	-	250	-	300	ns	10,12
Access Time from Column Address Strobe	${ }^{\text {t }} \mathrm{CAC}$	-	100	-	135	-	165	-	200	ns	11, 12
Output Buffer and Turn-off Delay	toff	0	50	0	50	0	60	0	60	ns	17
Row Address Strobe Precharge Time	$\mathrm{t}_{\mathrm{R} P}$	100	-	120	-	150	--	180	-	ns	
Row Address Strobe Pulse Width	${ }^{\text {t RAS }}$	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	${ }^{\text {t }}$ CAS	100	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	${ }_{\text {tred }}$	20	50	25	65	35	85	60	100	ns	13
Row Address Setup Time	${ }^{t}$ ASR	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	${ }^{\text {t RAH }}$	20	-	25	-	35	-	60	-	ns	
Column Address Setup Time	${ }^{\text {t }} \mathrm{ASC}$	-10	-	-10	-	-10	-	-10	-	ns	
Column Address Hold Time	${ }^{\text {t }} \mathrm{CAH}$	45	-	55	-	75	-	100	-	ns	
Column Address Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{\text {t }}$ AR	95	-	120	-	160	-	200	-	ns	
Transition Time (Rise and Fall)	${ }^{\text {t }}$	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	iRCS	0	-	0	-	0	-	0	-	ns	
Read Command Hold Time	${ }^{\text {t } R C H}$	0	-	0	-	0	-	0	--	ns	
Write Command Hold Time	${ }^{\text {t }} \mathrm{WCH}$	45	-	55	-	75	-	100	-	ns	
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {t }}$ WCR	95	-	120	--	160	-	200	-	ns	
Write Command Pulse Width	twp	45	--	55	-	75	-	100	-	ns	
Write Command to Row Strobe Lead Time	${ }^{\text {t R W }}$ L	60	-	80	-	100	-	180	-	ns	
Write Command to Column Strobe Lead Time	${ }^{\text {t }} \mathrm{CWL}$	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	${ }^{\text {t }}$ DS	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	${ }^{\text {t }}$ DH	45	-	55	-	75	-	100	-	ns	15
Data in Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{\text {t }}$ DHR	95	-	120	-	160	-	200	-	ns	
Column to Row Strobe Precharge Time	terp	-20	-	-20	-	-20	-	-20	-	ns	
$\overline{\text { RAS Hold Time }}$	${ }^{\text {t }}$ RSH	100	-	135	-	165	-	200	-	ns	
Refresh Period	trfin	-	2.0	-	2.0	-	2.0	-	2.0	ms	
$\overline{\text { WRITE }}$ Command Setup Time	${ }^{\text {tWCS }}$	-20	-	-20	-	-20	-	-20	-	ns	
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	70	-	95	-	125	-	180	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	trwD	120	-	160	-	210	-	280	-	ns	16
$\overline{\mathrm{CAS}}$ Precharge Time (Page mode cycle only)	${ }^{t} \mathrm{CP}$	60	-	80	-	100	-	100	-	ns	
Page Mode Cycle Time	tPC	170	-	225	-	275	-	325	-	ns	
$\overline{\text { CAS }}$ Hold Time	${ }^{\text {t }} \mathrm{CSH}$	150	-	200	-	250	-	300	-	ns	

NOTES: (continued)
8. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=\frac{1 \Delta_{t}}{\Delta V}$
9. $A C$ measurements assume $t_{T}=5.0 \mathrm{~ns}$.
10. Assumes that $t_{R C D}+t_{T} \leqslant t_{R C D}$ (max)
11. Assumes that $\mathrm{t}_{\mathrm{RCD}}+\mathrm{t} \mathrm{T} \geqslant \mathrm{t} R C D$ (max).
12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
13. Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D}(\max)$ limit, then access time is controlled exclusively by ${ }^{t} C A C$.
14. $V_{I H C}(\min)$ or $V_{I H}(\min)$ and $V_{I L}(\max)$ are reference levels for measuring timing of input signals. Also, transistion times are measured between $V_{\text {IHC }}$ or $V_{\text {IH }}$ and $V_{\text {IL }}$.
15. These parameters are referenced to $\overline{C A S}$ leading edge in random write cycles and to $\overline{\text { WRITE leading edge in delayed write or read-modify- }}$ write cycles.
16. tWCS, ${ }^{t}$ CWD and ${ }^{t}$ RWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If ${ }^{t} W C S \geqslant{ }^{t}$ WCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If $t_{C W D} \geqslant t_{C W D}(\min)$ and $t_{R W D} \geqslant t_{\text {RWD }}(\mathrm{min})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
17. Assumes that $\mathrm{t}_{\mathrm{C}} \mathrm{CRP}>50 \mathrm{~ns}$.

MCM4116B

READ CYCLE TIMING

WRITE CYCLE TIMING

READ-WRITE/READ-MODIFY-WRITE CYCLE

$\overline{\text { RAS }}$ ONLY REFRESH TIMING
Note: $\overline{\text { CAS }}=V_{\text {IHC }}, \overline{\text { WRITE }}=$ Don't Care

Q (Data Out) ${ }^{\mathrm{VOH}}$

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

MCM4116B BIT ADDRESS MAP

16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4117 is a 16,384 -bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly reliable N -channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.
By multiplexing row and column address inputs, the MCM4117 requires only seven address lines and permits packaging in Motorola's standard 18 -pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.
All inputs are TTL compatible, and the output is 3 -state TTL compatible. The data output of the MCM4117 is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.
The MCM4117 incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, $\overline{\text { RAS }}$-Only Refresh, and Page-Mode Capability
- Industry Standard 18-Pin Package
- $16,384 \times 1$ Organization
- $\pm 10 \%$ Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation - 463 mW Active, 20 mW Standby (Max)
- Fast Access Time Options:

> 150 ns - MCM4117L-15
> 200 ns - MCM4117L-20
> $250 \mathrm{~ns}-$ MCM4117L-25
> $300 \mathrm{~ns}-$ MCM4117L-30

- Easy Upgrade from 16 -Pin 4K RAMs

Rating	Symbol	Value	Unit		
ABSOLUTE MAXIMUM RATINGS (See Note)					
 Voltage on Any Pin Relative to V_{BB} $\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$ -0.5 to +20 Vdc Operating Temperature Range T_{A} 0 to +70 ${ }^{\circ} \mathrm{C}$ Storage Temperature Range $\mathrm{T}_{\text {stg }}$ -65 to +150 ${ }^{\circ} \mathrm{C}$ Power Dissipation P_{D} 1.0 Data Out Current $\mathrm{I}_{\text {out }}$ 50					mA
:---					

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

*Tie pins 4 and 5 together.
**Tie pins 16 and 17 together.
Consideration should be given in PC board layout to allow easy upgrade to the MCM4132.

PIN NAMES	
A0-A6	Address Inputs
$\overline{C A S}$	Column Address Strobe
	Data In
Q.	Data Out
RAS	Row Address Strobe
	Read/Write Input
$V_{\text {BB }}$.Power (-5 V)
$V_{\text {CC }}$	Power (+5 V)
$V_{\text {D }}$	Power (+ 12 V)
$\mathrm{V}_{\text {SS }}$..Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full Operating Voltage and Temperature Ranges Unless Otherwise Noted)
RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	$V_{D D}$	10.8	12.0	13.2		1	
	$V_{\text {CC }}$	4.5	5.0	5.5	V	1,2	
	V_{SS}	0	0	0	V	1	
Logic 1 Voltage, All Inputs	V_{BB}	-4.5	-5.0	-5.5		1	
Logic 0 Voltage, All Inputs	V_{IH}	2.4	-	7.0	V	1	

DC CHARACTERISTICS $\left(V_{D D}=12 V_{ \pm 10 \%}, V_{C C}=5.0 V_{ \pm} 10 \%, V_{B B}=-5.0 \vee \pm 10 \%, V_{S S}=0 \mathrm{~V}, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Min	Max	Unit	Notes
Average $\mathrm{V}_{\text {DD }}$ Power Supply Current	'DD1	-	35	mA	4
$\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC	-	-	mA	5
Average $\mathrm{V}_{\text {BB }}$ Power Supply Current	IBB1, 3	-	200	$\mu \mathrm{A}$	
Standby $\mathrm{V}_{\text {BB }}$ Power Supply Current	IBB2	-	100	$\mu \mathrm{A}$	
Standby V ${ }_{\text {DD }}$ Power Supply Current	IDD2	-	1.5	mA	6
Average $\mathrm{V}_{\text {DD }}$ Power Supply Current During "很AS Only" Cycles	IDD3	-	27	mA	4
Input Leakage Current (Any Input)	IILL	-	10	$\mu \mathrm{A}$	
Output Leakage Current	${ }^{\text {I O (L) }}$	-	10	$\mu \mathrm{A}$	6,7
Output Logic 1 Voltage @ lout $=-5 \mathrm{~mA}$	VOH	2.4	-	V	2
Output Logic 0 Voltage @ ${ }_{\text {out }}=4.2 \mathrm{~mA}$	VOL	-	0.4	V	

NOTES:

1. All voltages referenced to $V_{S S} . V_{B B}$ must be applied before and removed after other supply voltages.
2. Output voltage will swing from $V_{S S}$ to $V_{C C}$ under open circuit conditions. For purposes of maintaining data in power down mode, $V_{C C}$ may be reduced to $V_{S S}$ without affecting refresh operations. $V_{O H}(\min)$ specification is not guaranteed in this mode.
3. Several cycles are required after power up before proper device operation is achieved. Any 8 cycles which pe: form refresh are adequate.
4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.
5. ICC depends upon output loading. The $V_{C C}$ supply is connected to the output buffer only.
. Output is disabled (open-circuit) when $\overline{C A S}$ is at a logic 1
6. $0 \vee \leqslant V_{\text {out }} \leqslant+5.5 \mathrm{~V}$.
7. Capacitance, measured with a Boonton meter or effective capacitance calculated from the equation: $C=\mid \Delta t / \Delta V$.

BLOCK DIAGRAM

AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 3, 9, 14)
(Read, Write, and Read-Modify-Write Cycles)
RECOMMENDED AC OPERATING CONDITIONS
$V_{D D}=12 \mathrm{~V}_{ \pm} 10 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{ \pm} 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}_{ \pm} 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	MCM4117-15		MCM4117-20		MCM4117-25		MCM4117-30		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	${ }_{\text {tr }}$	375	-	375	-	410	-	480	-	ns	
Read Write Cycle Time	${ }^{\text {tr }}$ WC	375	-	375	-	515	-	660	--	ns	
Access Time from Row Address Strobe	trac	-	150	-	200	-	250	-	300	ns	10, 12
Access Time from Column Address Strobe	${ }^{\text {t }}$ CAC	-	100	-	135	-	165	-	200	ns	11,12
Output Buffer and Turn-off Delay	toff	0	50	0	50	0	60	0	60	ns	17
Row Address Strobe Precharge Time	trp	100	-	120	-	150	-	180	-	ns	
Row Address Strobe Pulse Width	tras	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	t CAS	100	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	trcD	20	50	25	65	35	85	60	100	ns	13
Row Address Setup Time	${ }^{\text {t }} \mathrm{ASR}$	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	traH	20	-	25	-	35	-	60	-	ns	
Column Address Setup Time	${ }^{\text {t }}$ ASC	-10	-	-10	-	-10	-	-10	-	ns	
Column Address Hold Time	${ }^{t} \mathrm{CAH}$	45	-	55	-	75	-	100	-	ns	
Column Address Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{t} A R$	95	-	120	-	160	-	200	-	ns	
Transition Time (Rise and Fall)	${ }_{T}$	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	trcs	0	-	0	-	0	-	0	-	ns	
Read Command Hold Time	$\mathrm{t}_{\mathrm{RCH}}$	0	-	0	-	0	-	0	-	ns	
Write Command Hold Time	tWCH	45	-	55	-	75	-	100	-	ns	
```Write Command Hold Time Referenced to \overline{RAS}```	tWCR	95	-	120	-	160	-	200	-	ns	
Write Command Pulse Width	tWP	45	-	55	-	75	-	100	-	ns	
Write Command to Row Strobe Lead Time	trWL	60	-	80	-	100	-	180	-	ns	
Write Command to Column Strobe Lead Time	${ }^{\text {t }} \mathrm{CWL}$	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	tDS	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	${ }^{\text {t }} \mathrm{DH}$	45	-	55	-	75	-	100	-	ns	15
Data in Hold Time Referenced to $\overline{\text { RAS }}$	tDHR	95	-	120	-	160	-	200	-	ns	
Column to Row Strobe Precharge Time	${ }^{\text {t }}$ CRP	-20	-	-20	-	-20	-	-20	-	ns	
$\overline{\overline{R A S}}$ Hold Time	trsh	100	-	135	-	165	-	200	-	ns	
Refresh Period	trFSH	-	2.0	-	2.0	-	2.0	-	2.0	ms	
WRITE Command Setup Time	tWCS	-20	-	-20	-	-20	-	-20	-	ns	
$\overline{\text { CAS }}$ to WRITE Delay	tCWD	70	-	95	-	125	-	180	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	tRWD	120	-	160	-	210	-	280	-	ns	16
$\overline{\text { CAS Precharge Time }}$ (Page Mode Cycle Only)	${ }^{t} \mathrm{CP}$	60	-	80	-	100	-	100	-	ns	
Page Mode Cycle Time	${ }_{\text {tPC }}$	170	-	225	-	275	-	325	-	ns	
CAS Hold time	${ }^{\text {t }}$ CSH	150	-	200	-	250	-	300	-	ns	

NOTES: (continued)
9. $A C$ measurements assume $t_{T}=5.0 \mathrm{~ns}$.
10. Assumes that $t_{R C D} \leqslant t_{R C D}$ (max).
11. Assumes that $t_{R C D} \geqslant{ }^{\mathrm{t} R C D}$ (max).

Parameter	Symbol	Typ	Max	Unit	Notes
Input Capacitance (A0-A5), D	$\mathrm{C}_{11}$	4.0	5.0	pF	8
Input Capacitance $\overline{\text { RAS }}, \overline{\mathrm{CAS}}, \overline{\mathrm{W}}$	$\mathrm{C}_{12}$	8.0	10	pF	8
Output Capacitance (Q)	$\mathrm{C}_{0}$	5.0	7.0	pF	8

12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
13. Operation within the $t_{R C D}(\max )$ limit ensures that $t_{R A C}(\max )$ can be met. $t_{R C D}(\max )$ is specified as a reference point only; if $t_{R C D}$ is greater than the specified $\mathrm{t}_{\mathrm{RCD}}(\max )$ limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
14. $V_{I H C}(\min )$ or $V_{I H}(\min )$ and $V_{I L}(\max )$ are reference levels for measuring timing of input signals. Also, transistion times are measured between $V_{\text {IHC }}$ or $V_{\text {IH }}$ and $V_{\text {IL }}$.
15. These parameters are referenced to $\overline{C A S}$ leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.
16. tWCS, ${ }^{t}$ CWD and $t_{\text {RWD }}$ are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If ${ }^{t}$ WCS $\geqslant{ }^{t}$ WCS ( min ), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If $t_{C W D} \geqslant \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWD}} \geqslant \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data out will contain lata read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
17. Assumes that t CRP $>50 \mathrm{~ns}$.

READ CYCLE TIMING


WRITE CYCLE TIMING


Q (Data Out)

READ-WRITE/READ-MODIFY-WRITE CYCLE


RAS ONLY REFRESH TIMING
Note: $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IHC }}, \overline{\text { WRITE }}=$ Don't Care


PAGE MODE READ CYCLE


PAGE MODE WRITE CYCLE



## $32,768 \times 1$ BIT DYNAMIC RAM

The MCM4132 is a 32,768 -bit high-speed Dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 32,768 one-bit words and fabricated using Motorola's highly reliable N -channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.
The MCM4132 consists of two MCM4116 16,384-bit high-speed MOS dynamic Random Access Memories, each in its own package permanently connected, pin-for-pin, one on top of the other. The lower package is referenced as Module 1, the upper as Module 2, thereby resulting in an 18 -pin memory device, organized as 32,768 words of one bit each, with essentially the same characteristics of the MCM4116.

- $32,768 \times 1$ Organization
- $\pm 10 \%$ Tolerance on All Power Supplies
- All Inputs Are Fully TTL Compatible
- Three-State Fully TTL Compatible Output
- Common I/O Capability when using "Early-Write" Mode
- Flexible Timing with Read-Modify-Write, $\overline{\text { RAS }}$-Only Refresh, and Page-Mode Capability
- On-Chip Latches for Addresses and Data In
- Fast Access Time Options:

> 150 ns - MCM4132L15
> 200 ns - MCM4132L20
> 250 ns - MCM4132L25

300 ns - MCM4132L30

## ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\mathrm{BB}}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to +20	V
Operating Temperture Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{PD}_{\mathrm{D}}$	1.0	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## CAPACITANCE

(f $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, periodically sampled rather than $100 \%$ tested.)

Parameter	Symbol	Typ	Max	Unit	Notes
input Capacitance (A0-A5), D	$\mathrm{C}_{11}$	4.0	10	pF	8
Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WRITE}}$	$\mathrm{C}_{12}$	8.0	13	pF	8
Output Capacitance (Q)	$\mathrm{C}_{0}$	5.0	14	pF	8

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liabilty arising out of the application or use of any product or circuit described herein; neither does it convey any lisence under its patent rights nor the rights of others.

## MOS

(N-CHANNEL, SILICON-GATE)

## 32,768-BIT DYNAMIC RANDOM ACCESS MEMORY


PIN ASSIGNMENT

NOTE: $\overline{\operatorname{RAS}}_{1}$ and $\overline{\mathrm{CAS}}_{1}$ indicate bottom device.

PIN NAMES	
A0-A6	Address Inputs
$\overline{C A S}_{1}$	Column Address Strobe, Module 1
$\overline{\mathrm{CAS}}_{2}$	Column Address Strobe, Module 2
D	Data In
0	Data Out
RAS ${ }_{1}$	Row Address Strobe, Module 1
$\overline{\mathrm{RAS}} 2$	Row Address Strobe, Module 2
$\bar{W}$	Read/Write Input
$V_{B B}$	Power (-5 V)
$V_{C C}$	Power ( +5 V )
$V_{\text {D }}$	Power (+12 V)
$\mathrm{V}_{\text {SS }}$	Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avod application of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DIAGRAM


DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

## RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{D D}$	10.8	12.0	13.2		1
	$V_{C C}$	4.5	5.0	5.5	V	1,2
	$V_{S S}$	0	0	0		
Logic 1 Voltage, All Inputs	$V_{\mathrm{BB}}$	-4.5	-5.0	-5.5	1	
Logic O Voltage, All Inputs	$\mathrm{V}_{\mathrm{IH}}$	2.4	-	7.0	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
1 Chip Selected					
Average VDD Power Supply Current	IDD1	-	36.5	mA	4
$V_{\text {CC }}$ Power Supply Current	ICC	-	-	mA	5
Average V ${ }_{\text {BB }}$ Power Supply Current	IBB1, 3	-	300	$\mu \mathrm{A}$	
Standby $\mathrm{V}_{\text {BB }}$ Power Supply Current	IBB2	-	200	$\mu \mathrm{A}$	
Standby VDD Power Supply Current	IDD2	-	3	mA	6
Average VDD Power Supply Current During "有AS Only" Cycles	IDD3	-	28.5	mA	4
Input Leakage Current (Any Input)	II(L)	-	10	$\mu \mathrm{A}$	
Output Leakage Current	IO(L)	-	10	$\mu \mathrm{A}$	6,7
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	V OH	2.4	-	V	2
Output Logic 0 Voltage @ ${ }_{\text {out }}=4.2 \mathrm{~mA}$	VOL	-	0.4	V	
2 Chip Selected (17)					
Average VDD Power Supply Current	IDD1	-	70	mA	4
$\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC	-	-	mA	5
Average VBB Power Supply Current	IBB1, 3	-	400	$\mu \mathrm{A}$	
Standby VBB Power Supply Current	IBB2	-	200	$\mu \mathrm{A}$	
Standby VDD Power Supply Current	IDD2	-	3	mA	6
	IDD3	-	54	mA	4
Input Leakage Current (Any Input)	IIL)	-	10	$\mu \mathrm{A}$	
Output Leakage Current	IO(L)	-	10	$\mu \mathrm{A}$	6,7
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	V	2
Output Logic Voltage @ I ${ }_{\text {out }}=4.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	0.4	V	

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 3, 9, 14)
$\left(V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, T_{A}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
READ, WRITE, AND READ-MODIFY-WRITE CYCLES

Parameter	Symbol	MCM4132-15		MCM4132-20		MCM4132-25		MCM4132-30		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	${ }_{\text {t } R C}$	375	-	375	-	410	-	480	-	ns	
Read Write Cycle Time	trwe	375	-	375	-	515	-	660	-	ns	
Access Time from Row Address Strobe	trac	-	150	-	200	-	250	-	300	ns	10, 12
Access Time from Column Address Strobe	${ }^{\text {t CAC }}$	-	100	-	135	-	165	-	200	ns	11, 12
Output Buffer and Turn-off Delay	tofF	0	50	0	50	0	60	0	60	ns	
Row Address Strobe Precharge Time	trp	100	-	120	-	150	-	180	-	ns	
Row Address Strobe Pulse Width	tras	150	10,000	200	10,000	250	10,000	300	10,000	ns	
Column Address Strobe Pulse Width	tcas	100	10,000	135	10,000	165	10,000	200	10,000	ns	
Row to Column Strobe Lead Time	trcD	20	50	25	65	35	85	60	100	ns	13
Row Address Setup Time	tASR	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	trah	20	-	25	-	35	-	60	-	ns	
Column Address Setup Time	${ }^{\text {t }}$ ASC	-10	-	-10	-	-10	-	-10	-	ns	
Column Address Hold Time	${ }^{t} \mathrm{CAH}$	45	-	55	-	75	-	100	-	ns	
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{t} A R$	95	-	120	-	160	-	200	-	ns	
Transition Time (Rise and Fall)	TT	3.0	35	3.0	50	3.0	50	3.0	50	ns	14
Read Command Setup Time	tres	0	-	0	-	0	-	0	-	ns	
Read Command Hold time	${ }^{\text {t }} \mathrm{CH} \mathrm{CH}$	0	-	0	-	0	-	0	-	ns	
Write Command Hold Time	tWCH	45	-	55	-	75	-	100	-	ns	
Write Command Hold Time Referenced to $\overline{\text { RAS }}$	tWCR	95	-	120	-	160	-	200	-	ns	
Write Command Pulse Width	tWP	45	-	55	-	75	-	100	-	ns	
Write Command to Row Strobe Lead Time	${ }^{\text {tr }}$ WL	60	-	80	-	100	-	180	-	ns	
Write Command to Column Strobe Lead Time	${ }^{\text {t }} \mathrm{CWL}$	60	-	80	-	100	-	180	-	ns	
Data in Setup Time	${ }^{\text {t }}$ S	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	tDH	45	-	55	-	75	-	100	-	ns	15
Data in Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {t }}$ DHR	95	-	120	-	160	-	200	-	ns	
Column to Row Strobe Precharge Time	tCRP	-20	-	-20	-	-20	-	-20	-	ns	
RAS Hold Time	trsh	100	-	135	-	165	-	200	-	ns	
Refresh Period	trFSH	-	2.0	-	2.0	-	2.0	-	2.0	ms	
$\overline{\text { WRITE }}$ Command Setup Time	twCs	-20	-	-20	-	-20	-	-20	-	ns	
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	70	-	95	-	125	-	180	-	ns	16
$\overrightarrow{\text { RAS }}$ to WRITE Delay	tRWD	120	-	160	-	210	-	280	-	ns	16
CAS Precharge Time (Page Mode Cycle Only)	${ }^{t} \mathrm{CP}$	60	-	80	-	100	-	100	-	ns	
Page Mode Cycle Time	tpC	170	-	225	-	275	-	325	-	ns	
CAS Hold Time	${ }^{\text {t }}$ CSH	150	-	200	-	250	-	300	-	ns	

## NOTES:

1. All voltages referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}$ must be applied before and removed after other supply voltages.
2. Output voltage will swing from $V_{S S}$ to $V_{C C}$ under open circuit conditions. For purposes of maintaining data in power-down mode, $V_{C C}$ may be reduced to $\mathrm{V}_{\mathrm{SS}}$ without affecting refresh operations. $\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this mode.
3. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate.
4. Current is proportional to cycle rate, maximum current is measured at the fastest cycle rate,
5. ICC depends upon output loading. The $\mathrm{V}_{\mathrm{CC}}$ supply is connected to the output buffer only.
6. Output is disabled (open-circuit) when CAS is at a logic 1.
7. $0 V \leq V_{\text {out }} \leq+5.5 \mathrm{~V}$.

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=I \Delta T / \Delta V$.
$A C$ measurements assume $\mathrm{t}_{\mathrm{T}}=5.0 \mathrm{~ns}$
Assumes that $t_{\text {RCD }} \leq \operatorname{tRCD}^{(m a x)}$ ).

1. Assumes that trCD $\geq \operatorname{tRCD}^{\text {(max) }}$.
2. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .
3. Operation within the $t_{R C D}$ (max) limit ensures that tRAC (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if tRCD is greater than the specified trCD (Max) limit, then access time is controlled exclusively by tCAC.
4. $\mathrm{V}_{I H}(\min )$ or $\mathrm{V}_{\mathrm{IH}}(\min )$ and $\mathrm{V}_{\mathrm{IL}}(\max )$ are reference levels for measuring timing of input signals. Also, transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
5. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
6. tWCS, $\mathrm{I}^{2}$ CWD and $\mathrm{tRWD}^{\text {are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS } \geq \text { tWCS (min), }}$ the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $t_{\text {RWD }} \geq \mathrm{t}_{\text {RWD }}$ ( min ), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
7. Two chips selected is only applicable for $\overline{\mathrm{RAS}}$ only refresh on the 32 K module.

READ CYCLE TIMING


WRITE CYCLE TIMING


0 (Data Out) ${ }^{\mathrm{VOH}}$
High Z

READ-WRITE/READ-MODIFY-WRITE CYCLE


RAS ONLY REFRESH TIMING
Note: $\overline{\mathrm{CAS}}=\mathrm{V}_{1 \mathrm{H}}, \overline{\text { WRITE }}=$ Don't Care


[^5]
## Product Preview

## 16,384-BIT DYNAMIC RAM

The MCM4516 is a 16,384-bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, $N$-channel, silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM4516 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM4516 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the $\overline{\mathrm{RAS}}$-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 16,384 Words of 1 Bit
- Single +5 Volt Operation
- Fast 120 ns Operation
- Low Power Dissipation: 200 mW Maximum (Active)
20 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 64K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- $\overline{\text { RAS-only Refresh Mode }}$
- $\overline{\text { CAS }}$ Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatibility from the 16K RAM (MCM/4116) to the 64 K RAM (MCM6664)

OUTPUT BUFFER TRUTH TABLE

Internal   Early Write	$\overline{\text { CAS }}$	Refresh Control (CAS Internal)	Output Buffer
H	X	X	(X)
X	H	X	(X)
L	L	L	High Z
L	L	H	Maintains Previous   Data

## MOS

(N.CHANNEL, SILICON-GATE)

## 16,384-BIT

 DYNAMIC RAM

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


PIN ASSIGNMENT COMPARISON


MCM6665


Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	$V_{B B}(-5 \mathrm{~V})$	$\overline{\text { REFRESH }}$	$\mathrm{N} / \mathrm{C}$	$\overline{\text { REFRESH }}$	$\mathrm{N} / \mathrm{C}$	$\overline{\text { REFRESH }}$	$\mathrm{N} / \mathrm{C}$
8	$\left.V_{D D^{\prime}}+12 \mathrm{~V}\right)$	$V_{C C}$					
9	$\left.V_{C C l}+5 \mathrm{~V}\right)$	$\mathrm{N} / \mathrm{C}$	$\mathrm{N} / \mathrm{C}$	A 7	A 7	A	

ON-CHIP REFRESH FEATURES/BENEFITS
Reduce System Refresh Controller Design Problem
Reduce System Parts Count
Reduce System Noise Increasing System Reliability
Reduce System Power During Refresh



## MCM4516

SELF REFRESH MODE (Battery Backup)
(SEE NOTE 17)


AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE (SEE NOTE 17)


AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE (SEE NOTE 17)


RAS-ONLY REFRESH CYCLE
(Data-In and WRITE are Don't Care, $\overline{\mathrm{CAS}}$ is HIGH)


## Advance Information

## 16,384-BIT DYNAMIC RAM

The MCM4517 is a 16,384 -bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, N-channel, silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.
By multiplexing row- and column-address inputs, the MCM4517 requires only seven address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.
All inputs and outputs, including clocks, are fully TTL compatible. The MCM4517 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 16,384 Words of 1 Bit
- Single +5 Volt Operation
- Fast 100 ns Operation
- Low Power Dissipation:

150 mW Maximum (Active)
14 mW Maximum (Standby)

- Maximum Access Time

MCM4517-10 - 100 ns
MCM4517-12 - 120 ns
MCM4517-15 - 150 ns
MCM4517-20 - 200 ns

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Output Capability
- 64 K Compatible 128 -cycle, 2 ms Refresh
- $\overline{\text { RAS }}$-only Refresh Mode
- $\overline{\mathrm{CAS}}$ Controlled Output
- Upward Pin Compatibility from the 16K RAM (MCM4116) to the 64 K RAM (MCM6664)
- Allows Negative Overshoot $\mathrm{V}_{\mathrm{IL}} \mathrm{Min}=-2 \mathrm{~V}$
- Hidden RAS Only Refresh Capability



## MOS

(N-CHANNEL, SILICON-GATE)
16,384-BIT DYNAMIC RAM


PIN ASSIGNMENT


PIN NAMES	
A0-A	Address input
D.	Data In
Q.	. Data Out
$\bar{W}$.	..Read/Write Input
$\overline{\text { RAS }}$	..Row Address Strobe
CAS	. Column Address Strobe
$V_{\text {CC }}$	..........Power ( +5 V )
$\mathrm{V}_{\text {SS }}$.	.........Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-2 to +7	$\mathrm{Vdc}^{\prime}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voitages for extended periods of time could affect device reliability.


DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full Operating Voltage and Temperature Range Unless Otherwise Noted.)
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	$\begin{gathered} 4.5 \\ 0 \end{gathered}$	$\begin{gathered} 5.0 \\ 0 \end{gathered}$	$\begin{gathered} 5.5 \\ 0 \end{gathered}$	V	1
Logic 1 Voltage, All Inputs	$\mathrm{V}_{\text {IH }}$	2.4	-	$\mathrm{V}_{\mathrm{CC}}+1$	V	1
Logic 0 Voltage, All Inputs	$\mathrm{V}_{\text {IL }}$	-2.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristics	Symbol	Min	Typ	Max	Units	Notes
$\mathrm{V}_{\text {CC }}$ Supply Current (Standby)	ICC1	-	1.2	2.5	mA	5
$V_{\text {CC }}$ Supply Current (Operating) 4517-10, $\mathrm{t}_{\mathrm{RC}}=225$ 4517-12, $\mathrm{t}_{\mathrm{RC}}=250$ 4517-15, $\mathrm{t}_{\mathrm{RC}}=300$ 4517-20, $\mathrm{t}_{\mathrm{RC}}=350$	${ }^{1} \mathrm{CC} 2$	-	$\begin{aligned} & 22 \\ & 20 \\ & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \\ & 23 \\ & 21 \\ & \hline \end{aligned}$	mA	4
$V_{C C}$ Supply Current (RAS-Only Cycle) $\begin{aligned} & 4517-10, t_{\mathrm{R}}=225 \\ & 4517-12, \mathrm{t}_{\mathrm{R}}=250 \\ & 4517-15, \mathrm{t}_{\mathrm{R}}=300 \\ & 4517-20, t_{\mathrm{R}}=350 \end{aligned}$	${ }^{1} \mathrm{CC} 3$	- - - -	$\begin{aligned} & 14 \\ & 12 \\ & 11 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \\ & 14 \\ & 12 \\ & \hline \end{aligned}$	mA	4
$\mathrm{V}_{\text {CC }}$ Standby Current (Standby, Output Enable) ( $\overline{\mathrm{CAS}}$ at $\mathrm{V}_{\text {IL }}, \overline{\mathrm{RAS}}$ at $\mathrm{V}_{\text {IH }}$ )	ICC4	-	2.5	5	mA	
Input Leakage Current (Any Input)	IIL)	-	-	10	$\mu \mathrm{A}$	
Output Leakage Current ( $0 \leq \mathrm{V}_{\text {out }} \leq 5.5$ ) ( $\overline{\mathrm{CAS}}$ at Logic 1)	IO(L)	-	-	10	$\mu \mathrm{A}$	
Output Logic 1 Voltage@ $\mathrm{l}_{\text {out }}=-4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	V	
Output Logic 0 Voltage@ ${ }_{\text {out }}=4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	V	

AC OPERATING CONDITIONS AND CHARACTERISTICS
(See Notes 2, 3, 9, 14 and Figure 1) (Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)
RECOMMENDED AC OPERATING CONDITIONS

Parameter	Symbol	MCM4517-10		MCM4517-12		MCM4516-15		MCM4517-20		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	tr ${ }^{\text {c }}$	225	-	250	-	300	-	350	-	ns	8,9
Read-Modify-Write Cycle Time	trwC	235	-	270	-	320	-	365	-	ns	8,9
Access Time from Row Address Strobe	trac	-	100	-	120	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	${ }^{\text {t CAC }}$	-	60	-	75	-	95	-	120	ns	11, 12
Output Buffer and Turn-Off Delay	toff	0	30	0	35	0	40	0	50	ns	18
Row Address Strobe Precharge Time	trp	100	-	110	-	125	-	150	-	ns	
Row Address Strobe Pulse Width	tras	100	10000	120	10000	150	10000	200	10000	ns	
Column Address Strobe Pulse Width	${ }^{\text {t CAS }}$	60	10000	75	10000	95	10000	120	10000	ns	
Row to Column Strobe Lead Time	${ }^{\text {t RCD }}$	25	40	25	45	25	55	30	80	ns	13
Row Address Setup Time	tasR	0	-	0	-	0	-	0	-	ns	
Row Address Hold Time	traH	15	-	15	-	20	-	25	-	ns	
Column Address Setup Time	${ }^{\text {t } A S C}$	0	-	0	-	0	-	0	-	ns	
Column Address Hold Time	${ }^{\text {t }} \mathrm{CAH}$	40	-	45	-	55	-	60	-	ns	
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {t }}$ AR	80	-	90	-	110	-	140	-	ns	
Transition Time (Rise and Fall)	${ }_{T}$	3	50	3	50	3	50	3	50	ns	6

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 9, 14 and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM4517-10/ MCM4517-12				MCM4517-15		MCM4517-20		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Read Command Setup Time	tres	0	-	0	-	0	-	0	-	ns	
Read Command Hold Time	trich	0	-	0	-	0	-	0	-	ns	14
Read Command Hold Time Referenced to $\overline{\text { RAS }}$	trRH	20	-	25	-	35	-	40	-		14
Write Command Hold Time	tWCH	40	-	45	-	55	-	60	-	ns	
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	tWCR	90	-	100	-	120	-	140	-	ns	
Write Command Pulse Width	twp	30	-	35	-	40	-	45	-	ns	
Write Command to Row Strobe Lead Time	trwL	40	-	45	-	50	-	55	-	ns	
Write Command to Column Strobe Lead Time	${ }^{\text {t CWL }}$	40	-	45	-	50	-	55	-	ns	
Data in Setup Time	tDS	0	-	0	-	0	-	0	-	ns	15
Data in Hold Time	tD	40	-	45	-	55	-	60	-	ns	15
Data in Hold Time Referenced to $\overline{\mathrm{RAS}}$	tDHR	80	-	90	-	110	-	140	-	ns	
Column to Row Strobe Precharge Time	tCRP	0	-	0	-	0	-	0	-	ns	
$\overline{\text { RAS }}$ Hold Time	trsh	60	-	75	-	95	-	120	-	ns	
Refresh Period	tresh	-	2.0	-	2.0	-	2.0	-	2.0	ms	
Write Command Setup Time	twCs	0	-	0	-	0	-	0	-	ns	16
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	50	-	60	-	75	-	80	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	trwD	90	-	110	-	140	-	160	-	ns	16
CAS Hold Time	${ }^{\text {t }}$ CSH	100	-	120	-	150	-	200	-	ns	
$\overline{\text { CAS }}$ Precharge, Non Page Mode	${ }^{\text {t }}$ CPN	30	-	35	-	40	-	50	-	ns	

CAPACITANCE ( $f=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$. Periodically sampled rather than $100 \%$ tested.)

	Parameter	Symbol	Typ	Max	Units
Notes					
Input Capacitance $(\mathrm{A0}-\mathrm{A} 6), \mathrm{D}_{\text {in }}$	$\mathrm{C}_{11}$	4.0	5.0	pF	7

NOTES: 1. All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$.
2. $V_{I H}$ min and $V_{\text {IL }}$ max are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\mathrm{IL}}$.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation guaranteed.
4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
5. Output is disabled (open-circuit) and $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at a logic 1 .
6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between $V_{I H}$ and $V_{I L}$ (or between $V_{I L}$ and $V_{I H}$ ) in a monotonic manner.
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\frac{\mathrm{I} \Delta_{\mathrm{t}}}{\Delta \mathrm{V}}$
8. The specifications for $t_{R C}(\mathrm{~min})$, and $\mathrm{t}_{\mathrm{RWC}}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
9. $A C$ measurements assume $t T=5.0 \mathrm{~ns}$.
10. Assumes that $\mathrm{t}_{\mathrm{RCD}} \leq \mathrm{t}_{\mathrm{RCD}}(\mathrm{Max})$
11. Assumes that $\operatorname{tRCD} \geq \operatorname{trCD}$ (Max)
12. Measured with a current load equivalent to 2 TTL loads $(+200 \mu \mathrm{~A},-4 \mathrm{~mA})$ and $100 \mathrm{pF}(\mathrm{VOH}=2.0 \mathrm{~V}, \mathrm{VOL}=0.8 \mathrm{~V})$.
13. Operation within the tRCD (max) limit ensures that $\operatorname{tRAC}$ (max) can be met. tRCD (max) is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled exclusively by ICAC.
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to $\overline{C A S}$ leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
16. TWCS, tCWD, and TRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS $\geq$ tWCS $(\min )$, the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{C W D} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\text {RWD }} \geq \mathrm{tRWD}(\mathrm{min})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out lat access time) is indeterminate.
17. Addresses, data-in and $\overline{\text { WRITE }}$ are don't care. Data-out depends on the state of $\overline{\mathrm{CAS}}$. If $\overline{\mathrm{CAS}}$ remains low, the previous output will remain valid. $\overline{\text { CAS }}$ is allowed to make an active to inactive transition during the $\overline{\mathrm{RAS}}$-only refresh cycle. When $\overline{\mathrm{CAS}}$ is brought high, the output will assume a high-impedance state.
18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.


WRITE CYCLE TIMING


Q (Data Out) $\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \mathrm{V}_{\mathrm{OL}}\end{aligned}$

## MCM4517

RAS-ONLY REFRESH CYCLE


READ-WRITE/READ-MODIFY-WRITE CYCLE


HIDDEN $\overline{R A S}-O N L Y$ REFRESH CYCLE (See Note 18)



PIN ASSIGNMENT COMPARISON




PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	$V_{B B}(-5 \mathrm{~V})$	REFRESH	$\mathrm{N} / \mathrm{C}$	REFRESH	N/C*	$\overline{\text { REFRESH }}$	N/C*
8	$V_{D D}(+12 \mathrm{~V})$	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\mathrm{CC}}$	$V_{C C}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\text {CC }}$
9	$\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$	N/C	N/C	A7	A7	A7	A7

[^6]
## 32,768-BIT DYNAMIC RAM

The MCM6632 is a 32,768 bit, high-speed, dynamic Random-Access Memory. Organized as 32,768 one-bit words and fabricated using HMOS high-performance N -channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6632 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6632 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the $\overline{\mathrm{RAS}}$-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 32,768 Words of 1 Bit
- Single +5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation

275 mW Maximum (Active)
30 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- $\overline{\text { RAS }}$-only Refresh Mode
- $\overline{\text { CAS }}$ Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116)
- One Half of the 64K RAM MCM6664
- The Operating Half of the MCM6632 is Indicated by Device Marking: MCM66320 Tie A7 CAS (A15) Low " 0 "
MCM66321 Tie A7 CAS (A15) High " 1 "



## MOS

(N-CHANNEL, SILICON-GATE)
32,768-BIT
DYNAMIC RANDOM ACCESS MEMORY


LSUFFIX CERAMIC PACKAGE CASE 690


ABSOLUTE MAXIMUMM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {SS }}$ lexcept $\mathrm{V}_{\mathrm{CC}}$ )	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-2 to +7	V
Voltage on $\mathrm{V}_{\text {CC }}$ Supply Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-1 to +7	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Data Out Current	$\mathrm{I}_{\text {Out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 1 - OUTPUT LOAD


- Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	MCM6664-15,-20	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V .	1
		$\mathrm{V}_{\text {SS }}$	0	0	0	V	1
Logic 1 Voltage, All Inputs		$\mathrm{V}_{\text {IH }}$	2.4	-	$\mathrm{V}_{\mathrm{CC}}+1$	V	1
Logic 0 Voltage, All Inputs		$\mathrm{V}_{\text {IL }}$	-2.0	-	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Units	Notes
$\mathrm{V}_{\text {CC }}$ Power Supply Current (tRC min.)	${ }^{1} \mathrm{CCl}$	-	50	mA	4
Standby $\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC2	-	5	mA	5
$\mathrm{V}_{\text {CC }}$ Power Supply Current During $\overline{\mathrm{RAS}}$ Only Refresh Cycles	I'C3	--	40	mA	-
Input Leakage Current (any input) (except $\overline{\text { REFRESH }}$ ) ( $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\text {CC }}$ )	II(L)	-	10	$\mu \mathrm{A}$	-
$\overline{\text { REFRESH }}$ Input Current (VF $=$ VSS )	IF	-	125	$\mu \mathrm{A}$	-
Output Leakage Current ( $\overline{\mathrm{CAS}}$ at logic $1,0 \leq \mathrm{V}_{\text {out }} \leq 5.5$ )	IO(L)	-	10	$\mu \mathrm{A}$	-
Output Logic 1 Voltage @ !out $=-4 \mathrm{~mA}$	VOH	2.4	-	V	-
Output Logic 0 Voltage @ ${ }_{\text {out }}=4 \mathrm{~mA}$	VOL	-	0.4	V	-

CAPACITANCE ( $f=i .0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Periodically Sampled Rather Than $100 \%$ Tested)

Input Capacitance $(\mathrm{AO}-\mathrm{A} 7), \mathrm{D}_{\text {in }}$ Parameter	Symbol	Typ	Max	Units
Notes				
Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WRITE}}$	$\mathrm{C}_{11}$	4	5	pF
7	7			
Output Capacitance $\left(\mathrm{D}_{\text {out }}\right)\left(\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IH }}\right.$ to disable output)	$\mathrm{C}_{12}$	8	10	pF
	$\mathrm{C}_{0}$	5	7	pF

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6632-15		MCM6632-20		Units	Notes
		Min	Max	Min	Max		
Random Read or Write Cycle Time	${ }^{\text {tRC }}$	300	-	350	-	ns	8,9
Read Write Cycle Time	${ }^{\text {t }}$ RWC	300	-	350	-	ns	8,9
Access Time from Row Address Strobe	trac	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	${ }^{\text {t CAC }}$	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	toff	0	30	0	40	ns	18
Row Address Strobe Precharge Time	trp	120	-	140	---	ns	-
Row Address Strobe Pulse Width	tras	150	10000	200	10000	ns	-
Column Address Strobe Pulse Width	${ }^{\text {t CAS }}$	75	10000	110	10000	ns	-
Row to Column Strobe Lead Time	${ }^{\text {tr CRD }}$	30	75	35	90	ns	13
Row Address Setup Time	${ }^{\text {t ASR }}$	0	-	0	-	ns	-
Row Address Hold Time	traH	25	-	30	-	ns	-
Column Address Setup Time	${ }^{\text {t }}$ ASC	0	-	0	-	ns	-
Column Address Hold Time	${ }^{\mathrm{t}} \mathrm{CAH}$	45	-	55	-	ns	-
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }_{\text {t } A R}$	120	-	155	-	ns	-
Transition Time (Rise and Fall)	${ }_{\text {t }}$	3	50	3	50	ns	6

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6 and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6632-15		MCM6632-20		Units	Notes
		Min	Max	Min	Max		
Read Command Setup Time	trcs	0	-	0	-	ns	-
Read Command Hold Time	trch	10	-	10	--	ns	14
Read Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	trRH	30	-	35	-	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	-
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	twCR	120	-	155	-	ns	-
Write Command Pulse Width	twp	45	-	55	-	ns	-
Write Command to Row Strobe Lead Time	trWL	45	-	55	-	ns	-
Write Command to Column Strobe Lead Time	${ }^{\text {t CWL }}$	45	-	55	-	ns	-
Data in Setup Time	tDS	0	-	0	-	ns	15
Data in Hold Time	${ }^{\text {to }}$	45	-	55	-	ns	15
Data in Hold Time Referenced to $\overline{\text { RAS }}$	tDHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	${ }^{\text {t CRP }}$	-10	-	-10	-	ns	-
$\overline{\text { RAS Hold Time }}$	trSH	75	-	110	-	ns	-
Refresh Period	trish	-	2.0	-	2.0	ms	-
WRITE Command Setup Time	tWCS	$-10$	-	- 10	-	ns	16
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	45	-	55	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	tRWD	125	-	160	-	ns	16
$\overline{\text { CAS }}$ Hold Time	${ }_{\text {t }}$ CSH	150	-	200	-	ns	-
$\overline{\mathrm{RAS}}$ to $\overline{\text { REFRESH Delay }}$	tRFD	0	-	0	-	ns	-
$\overline{\text { REFRESH }}$ Period (Battery Backup Mode)	tFBP	2000	-	2000	-	ns	-
$\overline{\text { REFRESH }}$ to $\overline{\mathrm{RAS}}$ Precharge Time (Battery Backup Mode)	tFBR	390	-	460	-	ns	-
$\overline{\text { REFRESH }}$ Cycle Time (Auto Pulse Mode)	${ }_{\text {tF }}$	330	-	380	-	ns	-
$\overline{\text { REFRESH }}$ Pulse Period (Auto Period Mode)	tFP	60	2000	60	2000	ns	-
$\overline{\text { REFRESH }}$ to $\overline{\text { RAS }}$ Setup Time (Auto Pulse Mode)	${ }^{\text {t }}$ FSR	3.	-	30	-	ns	-
$\overline{\mathrm{REFR}} \mathrm{FESH}$ to $\overline{\mathrm{RAS}}$ Delay Time (Auto Pulse Mode)	tFRD	390	-	460	-	ns	-
REFRESH Inactive Time	${ }_{\text {tFI }}$	30	-	30	-	ns	-
$\overline{\mathrm{RAS}}$ to $\overline{\text { REFRESH Lead Time }}$	tFRL	390	-	460	-	ns	-

NOTES: 1. All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$.
2. $V_{I H}$ min and $V_{\text {IL }}$ max are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\text {IL }}$.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation guaranteed.
4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
5. Output is disabled (open-circuit) and $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at a logic 1.
6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between $V_{I H}$ and $V_{I L}$ (or between $V_{I L}$ and $V_{I H}$ ) in a monotonic manner.
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=\frac{\mid \Delta_{t}}{\Delta V}$
8. The specifications for $\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$, and $\mathrm{t}_{\text {RWC }}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}\right.$ ) is assured.
9. $A C$ measurements assume $t \mathrm{~T}=5.0 \mathrm{~ns}$.
10. Assumes that $t_{R C D} \leq \operatorname{trRCD}^{(M a x)}$
11. Assumes that $\mathrm{t}_{\mathrm{R} C D} \geq \mathrm{t}_{\mathrm{RCD}}$ (Max)
12. Measured with a current load equivalent to 2 TTL loads $(+200 \mu \mathrm{~A},-4 \mathrm{~mA})$ and $100 \mathrm{pF}\left(\mathrm{VOH}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-0.8 \mathrm{~V}\right)$.
13. Operation within the $t_{R C D}(\max )$ limit ensures that tRAC ( $\max$ ) can be met. tRCD ( $\max$ ) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified tRCD (max) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in random write cycles and to $\overline{\text { WRITE }}$ leading edge in delayed write or read-modify-write cycles.
16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS $\geq$ tWCS $(\mathrm{min})$, the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $\mathrm{t}_{\mathrm{CW}} \geq \mathrm{t}_{\mathrm{CW}}(\mathrm{min})$ and $\mathrm{t}_{\text {RWD }} \geq \mathrm{t}_{\text {RWD }}(\mathrm{min})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate
17. Addresses, data-in and $\overline{\text { WRITE }}$ are don't care. Data-out depends on the state of $\overline{\mathrm{CAS}}$. If $\overline{\mathrm{CAS}}$ remains low, the previous output will remain valid. $\overline{\mathrm{CAS}}$ is allowed to make an active to inactive transition during the pin \#1 refresh cycle. When $\overline{\mathrm{CAS}}$ is brought high, the output will assume a high-impedance state.
18. $t_{\text {off }}$ (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

PIN ASSIGNMENT COMPARISON



PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	$\mathrm{V}_{\mathrm{BB}}(-5 \mathrm{~V})$	$\overline{\text { REFRESH }}$	N/C	REFRESH	N/C	$\overline{\text { REFRESH }}$	N/C
8	$\mathrm{V}_{\mathrm{DD}}(+12 \mathrm{~V})$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$V_{\text {CC }}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\mathrm{CC}}$
9	$\left.\mathrm{V}_{\mathrm{CC}}{ }^{(+5} \mathrm{V}\right)$	N/C	N/C	A7	A7	A7	A7

## On-Chip Refresh Features/Benefits

Reduce System Refresh Controller Design Problem Reduce System Parts Count
Reduce System Noise Increasing System Reliability
Reduce System Power During Refresh

	ORDERING INFORMATION		
Part Number	Description	Speed	Marking*
MCM6632L15	32K Dynamic	150	MCM66320L15/MCM66321L15
MCM66320L15	Random Access	150	MCM66320L15
MCM66321L15	Memory	150	MCM66321L15
MCM6632L20	Sidebraze	200	MCM66320L20/MCM66321L20
MCM66320L20	Package "L"	200	MCM66320L20
MCM66321L20		200	MCM66321L20

"MCM66320 = Tie A7 CAS (A15) Low "0"
MCM66321 = Tie A7 CAS (A15) High " 1 "

READ CYCLE TIMING


WRITE CYCLE TIMING


Q (Data Out) $\qquad$
$\mathrm{V}_{\mathrm{OL}}$

## MCM6632

SELF REFRESH MODE (Battery Backup)
(SEE NOTE 17)


AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE
(SEE NOTE 17)


AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE
(SEE NOTE 17)


RAS-ONLY REFRESH CYCLE
(Data-In and WRITE are Don't Care, $\overline{\text { CAS }}$ is HIGH)


READ-WRITE/READ-MODIFY-WRITE CYCLE


MCM6664 BIT ADDRESS MAP

$\overline{\text { Data Stored }}=D_{i n} \oplus A_{0 X} \oplus A_{1 Y}$

Column   Address   A1	Row   Address   A0	Data   Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted

MOTOROLA

## MOS

The MCM6633 is a 32,768 bit, high-speed, dynamic Random-Access Memory. Organized as 32,768 one-bit words and fabricated using HMOS high-performance N -channel silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6633 requires only eight address lines and permits packaging in standard 16 -pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6633 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 32,768 Words of 1 Bit
- Single +5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation

275 mW Maximum (Active)
30 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- $\overline{\text { RAS }}$-only Refresh Mode
- $\overline{\mathrm{CAS}}$ Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4516, MCM4517)
- One Half of the 64K RAM MCM6665
- The Operating Half of the MCM6633 is Indicated by Device Marking: MCM66330 Tie A7 CAS (A15) Low " 0 "
MCM66331 Tie A7 CAS (A15) High " 1 "

*For maximum compatibility with MCM6632 and MCM6664, a V $C C$ trace should go to pin \#1.

PIN NAMES	
A0-A7	............Address Input
D.	Data In
Q.	. Data Out
$\bar{W}$	......Read/Write Input
$\overline{\text { RAS }}$	. Row Address Strobe
$\overline{\mathrm{CAS}}$	..Column Address Strobe
$V_{\text {CC }}$	$\ldots . . . . .$. Power ( +5 V )
$\mathrm{V}_{\text {SS }}$	.....Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {SS }}$ (Except $\mathrm{V}_{\text {CC }}$ )	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-2 to +7	V
Voltage on $\mathrm{V}_{\text {CC }}$ Supply Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-1 to +7	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 1 - OUTPUT LOAD

*Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS

	Parameter		Symbol	Min	Typ	Max	Unit
	Notes						
Supply Voltage	MCM6633L15/MCM6633L20	$V_{\text {CC }}$	4.5	5.0	5.5		
	MCM6633L15-5/MCM6633L20-5	$V_{\text {CC }}$	4.75	5.0	5.25	$V_{d c}$	1
		$V_{\text {SS }}$	0	0	0		
Logic 1 Voltage, All Inputs		$V_{\text {IH }}$	2.4	-	7.0	$V_{d c}$	1
Logic 0 Voltage	$V_{\text {IL }}$	-2.0	-	0.8	$V_{\text {dc }}$	1	

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Units	Notes
$\mathrm{V}_{\text {CC }}$ Power Supply Current (t $\mathrm{R}^{\text {C min.) }}$	ICC1	-	50	mA	4
Standby $\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC2	-	5	mA	5
$\mathrm{V}_{\text {CC }}$ Power Supply Current During $\overline{\mathrm{RAS}}$ Only Refresh Cycles	ICC3	-	40	mA	-
Input Leakage Current (any input) ( $0 \leq \mathrm{V}_{\text {in }} \leq 5.5$ ) (Except Pin 1 )	II(L)	-	10	$\mu \mathrm{A}$	-
Output Leakage Current ( $0 \leq \mathrm{V}_{\text {out }} \leq 5.5$ ) ( $\overline{\mathrm{CAS}}$ at Logic 1)	IO(L)	-	10	$\mu \mathrm{A}$	-
Output Logic 1 Voltage @ $\mathrm{I}_{\text {Out }}=-4 \mathrm{~mA}$	V OH	2.4	-	V	-
Output Logic 0 Voltage @ $\mathrm{I}_{\text {out }}=4 \mathrm{~mA}$	VOL	-	0.4	V	-

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6633-15		MCM6633-20		Units	Notes
		Min	Max	Min	Max		
Random Read or Write Cycle Time	trc	300	-	350	-	ns	8,9
Read Write Cycle Time	trwC	300	-	350	-	ns	8,9
Access Time from Row Address Strobe	trac	-	150	-	200	ns	10,12
Access Time from Column Address Strobe	${ }^{\text {t }}$ (AC	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	tofF	0	30	0	40	ns	17
Row Address Strobe Precharge Time	tRP	120	-	140	-	ns	-
Row Address Strobe Pulse Width	tras	150	10000	200	10000	ns	-
Column Address Strobe Pulse Width	${ }^{\text {t }}$ CAS	75	10000	110	10000	ns	-
Row to Column Strobe Lead Time	${ }_{\text {tr }}$ RCD	30	75	35	90	ns	13
Row Address Setup Time	${ }^{\text {t }}$ ASR	0	-	0	-	ns	-
Row Address Hold Time	traH	25	-	30	-	ns	-
Column Address Setup Time	${ }^{\text {t }}$ ASC	0	-	0	-	ns	-
Column Address Hold Time	${ }^{t} \mathrm{CAH}$	45	-	55	-	ns	-
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	tAR	120	-	155	-	ns	-
Transition Time (Rise and Fall)	tT	3	50	3	50	ns	6

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6633-15		MCM6633-20		Units	Notes
		Min	Max	Min	Max		
Read Command Setup Time	trics	0	-	0	-	ns	-
Read Command Hoid time	$\mathrm{t}_{\mathrm{RCH}}$	10	-	10	-	ns	14
Read Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	trRH	30	-	35	-	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	-
Write Command Hold Time Referenced to $\overline{\text { RAS }}$	tWCR	120	-	155	-	ns	-
Write Command Pulse Width	tWP	45	-	55	-	ns	-
Write Command to Row Strobe Lead Time	trwL	45	-	55	-	ns	-
Write Command to Column Strobe Lead Time	${ }^{\text {t }}$ CWL	45	-	55	-	ns	-
Data in Setup Time	${ }^{\text {t }}$ D	0	-	0	-	ns	15
Data in Hold Time	${ }^{\text {I DH }}$	45	-	55	-	ns	15
Data in Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }^{\text {t }}$ DHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	${ }^{\text {t CRP }}$	-10	-	-10	-	ns	-
$\overline{\text { RAS Hold Time }}$	trsh	75	-	110	-	ns	-
Refresh Period	trFSH	-	2.0	-	2.0	ms	-
$\overline{\text { WRITE }}$ Command Setup Time	tWCS	-10	-	-10	-	ns	16
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	45	-	55	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	trwd	125	-	160	-	ns	16
$\overline{\text { CAS }}$ Hold Time	${ }^{\text {t }} \mathrm{CSH}$	150	-	200	-	ns	-

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Periodically Sampled Rather Than $100 \%$ Tested)

Input Capacitance (AO-A7), D	Sarameter	$\mathrm{C}_{11}$	4	5	pF
Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	Typ	Max	Units	Notes	
Output Capacitance (Q) $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ to disable output)	$\mathrm{C}_{12}$	8	10	pF	7

NOTES:

1. All voltages referenced to $V_{S S}$
2. $V_{I H}$ min and $V_{I L}$ max are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\text {IL }}$
3. An initial pause of $100 \mu \mathrm{~S}$ is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation guaranteed.
4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
5. Output is disabled (open-circuit) and $\overline{\mathrm{RA}} \overline{\mathrm{S}}$ and $\overline{\mathrm{CAS}}$ are both at a logic 1 .
6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between $\mathrm{V}_{I H}$ and $\mathrm{V}_{I L}$ (or between $\mathrm{V}_{I L}$ and $\mathrm{V}_{I H}$ ) in a monotonic manner.
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=\frac{\mid \Delta_{t}}{\Delta V}$
8. The specifications for $\mathrm{t}_{\mathrm{R}} \mathrm{C}(\mathrm{min})$, and $\mathrm{tRWC}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temperature range $10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
9. AC measurements assume $\mathrm{t} T=5.0 \mathrm{~ns}$.
10. Assumes that tRCD $\leq$ trCD (max).
11. Assumes that $\operatorname{tRCD} \geq \operatorname{tRCD}$ (max).
12. Measured with a current load equivalent to 2 TTL loads $(+200 \mu \mathrm{~A},-4 \mathrm{~mA})$ and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-0.8 \mathrm{~V}\right)$
13. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point.only; if $t_{R C D}$ is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to $\overline{C A S}$ leading edge in random write cycles and to $\overline{W R I T E}$ leading edge in delayed write or read-modify-write cycles.
16. tWCS, ${ }^{t}$ CWD, and TRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS $\geq$ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{C W D} \geq t_{C W D}(\mathrm{~min})$ and $t_{R W D} \geq t_{R W D}(\mathrm{~min})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
17. $t_{o f f}(\max )$ defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

## PIN ASSIGNMENT COMPARISON



PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	$\mathrm{V}_{\mathrm{BB}}(-5 \mathrm{~V})$	$\overline{\text { REFRESH }}$	N/C	REFRESH	N/C	REFRESH	N/C
8	$\mathrm{V}_{\text {DD }}(+12 \mathrm{~V})$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$
9	$\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$	N/C	N/C	A7	A7	A7	A7

ORDERING INSTRUCTIONS

PART NUMBER	DESCRIPTION	SPEED	MARKING*
MCM6633L15	32K RAM   Sidebraze   Package   "L"	150	66330L15/66331L15
MCM66330L15		150	66330L15
MCM66331L15		150	66331 L 15
MCM6633L20		200	66330L20/66331L20
MCM66330L20		200	66330 L 20
MCM66331L20		200	66331 L 20

"MCM66330L20 $=$ Tie A7 $\overline{\text { CAS }}$ (A15) Low "0"
MCM66331L20 $=$ Tie A7 $\overline{\text { CAS }}(A 15)$ High " 1 "

## MCM6633



WRITE CYCLE TIMING


Q (Data Out) $\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \mathrm{VOL}_{\mathrm{OL}}\end{aligned}$
High Z

## MCM6633

RAS-ONLY REFRESH CYCLE
(Data-in and Write are Don't Care, $\overline{\text { CAS }}$ is HIGH)


READ-WRITE/READ-MODIFY-WRITE CYCLE


$\overline{\text { Data Stored }}=D_{i n} \oplus A_{O X} \oplus A_{1 Y}$

Column   Address   A1	Row   Address   A0	Data   Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted

## 65,536-BIT DYNAMIC RAM

The MCM6664 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N -channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6664 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\text { CAS }}$ allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6664 incorporates a one-transistor cell design and dynamic storage techniques. In addition to the $\overline{\mathrm{RAS}}$-only refresh mode, refresh control function available on pin 1 provides automatic and self-refresh modes.

- Organized as 65,536 Words of 1 Bit
- Single +5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation

275 mW Maximum (Active)
30 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- Control on Pin 1 for Automatic and Self Refresh
- $\overline{\text { RAS }}$-only Refresh Mode
- $\overline{\text { CAS }}$ Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116)


ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {SS }}$ (except $\mathrm{V}_{\text {CC }}$ )	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-2 to +7	V
Voltage on $\mathrm{V}_{\text {CC }}$ Supply Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-1 to +7	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 1 - OUTPUT LOAD

*Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	MCM6664-15,-20	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V	1
		$\mathrm{V}_{\text {SS }}$	0	0	0	V	1
Logic 1 Voltage, All Inputs		$\mathrm{V}_{\mathrm{IH}}$	2.4	-	$\mathrm{V}_{\mathrm{CC}}+1$	V	1
Logic 0 Voltage, All inputs		$\mathrm{V}_{\text {IL }}$	-2.0	-	0.8	V	1

## DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Units	Notes
$V_{\text {CC }}$ Power Supply Current (t $\mathrm{t}_{\text {C }} \mathrm{min}$.)	ICCl	-	50	mA	4
Standby $\mathrm{V}_{\text {CC }}$ Power Supply Current	I'C2	-	5	mA	5
$\mathrm{V}_{\text {CC }}$ Power Supply Current During $\overline{\mathrm{RAS}}$ Only Refresh Cycles	${ }^{\text {ICC3 }}$	-	40	mA	-
Input Leakage Current (any input except $\overline{\text { REFRESH}}$ ) (V $\mathrm{VSS} \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\text {CC }}$ )	IIL)	-	10	$\mu \mathrm{A}$	-
$\overline{\text { REFRESH }}$ Input Current (VF $=\mathrm{V}_{\text {SS }}$ )	IF	-	125	$\mu \mathrm{A}$	-
Output Leakage Current ( $\overline{\mathrm{CAS}}$ at logic $1,0 \leq \mathrm{V}_{\text {out }} \leq 5.5$ )	IO(L)	-	10	$\mu \mathrm{A}$	-
Output Logic 1 Voltage @ $\mathrm{I}_{\text {out }}=-4 \mathrm{~mA}$	V OH	2.4	-	V	-
Output Logic 0 Voltage @ Iout $=4 \mathrm{~mA}$	VOL	-	0.4	V	-

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Periodicaily Sampled Rather Than $100 \%$ Tested)

Parameter	Symbol	Typ	Max	Units	Notes
Input Capacitance (A0-A7), D $\overline{C_{11}}$	$\mathrm{C}_{11}$	4	5	pF	7
Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{C}_{12}$	8	10	pF	7
Output Capacitance (Q) $\overline{\mathrm{CAS}}=\mathrm{V}_{1 H}$ to disable output)	$\mathrm{C}_{0}$	5	7	pF	7

AC OPERATING CONDITIONS AND CHARACTERISTICS
(See Notes 2, 3, 6 and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6664-15		MCM6664-20		Units	Notes
		Min	Max	Min	Max		
Random Read or Write Cycle Time	trc	300	-	350	-	ns	8, 9
Read Write Cycle Time	trwC	300	-	350	-	ns	8, 9
Access Time from Row Address Strobe	trac	-	150	-	200	ns	10,12
Access Time from Column Address Strobe	${ }^{\text {t CAC }}$	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	toff	0	30	0	40	ns	18
Row Address Strobe Precharge Time	trP	120	-	140	-	ns	-
Row Address Strobe Pulse Width	tras	150	10000	200	10000	ns	-
Column Address Strobe Pulse Width	${ }^{\text {t CAS }}$	75	10000	110	10000	ns	-
Row to Column Strobe Lead Time	tred	30	75	35	90	ns	13
Row Address Setup Time	${ }^{\text {t }}$ ASR	0	-	0	-	ns	-
Row Address Hold Time	trah	25	-	30	-	ns	-
Column Address Setup Time	${ }^{\text {t }}$ ASC	0	-	0	-	ns	-
Column Address Hold Time	${ }^{t} \mathrm{CAH}$	45	-	55	-	ns	-
Column Address Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{t} A R$	120	-	155	-	ns	-
Transition Time (Rise and Fall)	${ }_{T}$	3	50	3	50	ns	6

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter	Symbol	MCM6664-15		MCM6664-20		Units	Notes
		Min	Max	Min	Max		
Read Command Setup Time	tres	0	-	0	-	ns	-
Read Command Hold Time	trch	10	-	10	-	ns	14
Read Command Hold Time Referenced to $\overline{\text { RAS }}$	trRH	30	-	35	-	ns	14
Write Command Hold Time	tWCH	45	-	55	-	ns	-
Write Command Hold Time Referenced to $\overline{\text { RAS }}$	tWCR	120	-	155	-	ns	-
Write Command Pulse Width	twp	45	-	55	-	ns	-
Write Command to Row Strobe Lead Time	trwL	45	-	55	-	ns	-
Write Command to Column Strobe Lead Time	${ }^{\text {t CWL }}$	45	-	55	-	ns	-
Data in Setup Time	tDS	0	-	0	-	ns	15
Data in Hold Time	tDH	45	-	55	-	ns	15
Data in Hold Time Referenced to $\overline{\text { RAS }}$	tDHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	${ }^{\text {t CRP }}$	-10	-	-10	-	ns	-
$\overline{\text { RAS }}$ Hold Time	trsh	75	-	110	-	ns	-
Refresh Period	tRFSH	-	2.0	-	2.0	ms	-
$\overline{\text { WRITE }}$ Command Setup Time	tWCS	-10	-	-10	-	ns	16
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	45	-	55	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	trWD	125	-	160	-	ns	16
$\overline{\text { CAS }}$ Hold Time	${ }^{\mathrm{t}} \mathrm{CSH}$	150	-	200	-	ns	-
$\overline{\mathrm{RAS}}$ to REFRESH Delay	trFD	0	-	0	-	ns	-
$\overline{\text { REFRESH Period (Battery Backup Mode) }}$	${ }^{\text {t F B P }}$	2000	-	2000	-	ns	-
$\overline{\text { REFRESH }}$ to $\overline{\text { RAS Precharge Time (Battery Backup Mode) }}$	${ }^{\text {t }}$ FBR	390	-	460	-	ns	-
$\overline{\text { REFRESH }}$ Cycle Time (Auto Pulse Mode)	${ }_{\text {t }} \mathrm{C}$	330	-	380	-	ns	-
$\overline{\text { REFRESH }}$ Pulse Period (Auto Period Mode)	${ }_{\text {tFP }}$	60	2000	60	2000	ns	-
$\overline{\text { REFRESH }}$ to $\overline{\mathrm{RAS}}$ Setup Time (Auto Pulse Mode)	tFSR	30	-	30	-	ns	-
$\overline{\text { REFRESH }}$ to $\overline{\text { RAS }}$ Delay Time (Auto Pulse Mode)	tFRD	390	-	460	-	ns	-
$\overline{\text { REFRESH }}$ Inactive Time	${ }_{\text {t F I }}$	30	-	30	-	ns	-
$\overline{\mathrm{RAS}}$ to $\overline{\text { REFRESH }}$ Lead Time	tFRL	390	-	460	-	ns	-

NOTES: 1. All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$.
2. $\mathrm{V}_{\text {IH }} \min$ and $\mathrm{V}_{\text {IL }}$ max are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\text {IH }}$ and $V_{I L}$.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation guaranteed
4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
5. Output is disabled (open-circuit) and $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at a logic 1 .
6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between $\mathrm{V}_{I H}$ and $\mathrm{V}_{I L}$ (or between $\mathrm{V}_{I L}$ and $\mathrm{V}_{I H}$ ) in a monotonic manner.
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\frac{\mid \Delta_{t}}{\Delta \mathrm{~V}}$
8. The specifications for $\operatorname{tRC}^{(\mathrm{min})}$, and $\mathrm{tRWC}^{(\mathrm{min})}$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$ ) is assured.
9. $A C$ measurements assume $t T=5.0 \mathrm{~ns}$.
10. Assumes that tRCD $\leq \operatorname{trRCD}^{(M a x)}$
11. Assumes that $t_{R C D} \geq \operatorname{tRCD}^{(M a x)}$
12. Measured with a current load equivalent to $2 \mathrm{TTL}(+200 \mu \mathrm{~A},-4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V} \mathrm{OL}=-0.8 \mathrm{~V}\right)$.
13. Operation within the $t_{R C D}$ (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if ${ }^{\text {tRCD }}$ is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in random write cycles and to $\overline{W R I T E}$ leading edge in delayed write or read-modify-write cycles.
16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS $\geq$ tWCS $(\mathrm{min})$, the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $\mathrm{t}_{\mathrm{t}} \mathrm{CWD} \geq \mathrm{t}^{\mathrm{C}} \mathrm{CWD}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out lat access time) is indeterminate.
17. Addresses, data-in and $\overline{\text { WRITE }}$ are don't care. Data-out depends on the state of $\overline{\text { CAS }}$. If $\overline{\text { CAS }}$ remains low, the previous output will remain valid. $\overline{\mathrm{CAS}}$ is allowed to make an active to inactive transition during the pin \#1 refresh cycle. When $\overline{\mathrm{CAS}}$ is brought high, the output will assume a high-impedance state.
18. $t_{o f f}(\max )$ defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

## PIN ASSIGNMENT COMPARISON



MCM6633
N/C
RAS



PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6665
1	$\mathrm{V}_{\mathrm{BB}}(-5 \mathrm{~V})$	$\overline{\text { REFRESH }}$	N/C	$\overline{\text { REFRESH }}$	N/C	$\overline{\text { REFRESH }}$	N/C
8	$\mathrm{V}_{\text {DD }}(+12 \mathrm{~V})$	$\mathrm{V}_{\mathrm{CC}}$	$V_{C C}$	$V_{C C}$	$V_{C C}$	$V_{\text {CC }}$	$\mathrm{V}_{\mathrm{CC}}$
9	$\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$	N/C	N/C	A7	A7	A7	A7

On-Chip Refresh Features/Benefits
Reduce System Refresh Controller Design Problem Reduce System Parts Count
Reduce System Noise Increasing System Reliability Reduce System Power During Refresh

## MCM6664

read cycle timing


WRITE CYCLE TIMING


Q (Data Out) $\begin{aligned} & \mathrm{VOH} \\ & \mathrm{VOL}_{\mathrm{OL}}\end{aligned}$


SELF REFRESH MODE (Battery Backup)
(SEE NOTE 17)


AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE (SEE NOTE 17)


AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE (SEE NOTE 17)


RAS-ONLY REFRESH CYCLE
(Data-In and WRITE are Don't Care, $\overline{\text { CAS }}$ is HIGH)


READ-WRITE/READ-MODIFY-WRITE CYCLE

MCM6664 BIT ADDRESS MAP

$\overline{\text { Data Stored }}=D_{\text {in }} \oplus A_{0} X \oplus A_{1} Y$

Column   Address   A1	Row   Address   A0	Data   Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted

## MCM6665

## 65,536-BIT DYNAMIC RAM

The MCM6665 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N -channel silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.
By multiplexing row- and column-address inputs, the MCM6665 requires only eight address lines and permits packaging in standard 16 -pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.
All inputs and outputs, including clocks, are fully TTL compatible. The MCM6665 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 65,536 Words of 1 Bit
- Single +5 V Operation
- Fast 150 ns Operation
- Low Power Dissipation

275 mW Maximum (Active)
30 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- $\overline{\text { RAS }}$-only Refresh Mode
- $\overline{\text { CAS }}$ Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4517)



## MOS

(N-CHANNEL, SILICON-GATE)
65,536-BIT
DYNAMIC RANDOM ACCESS MEMORY

*For maximum compatibility with MCM6632 and MCM6664 a $V_{\text {CC }}$ trace should go to pin \#1.

PIN NAMES	
A0-A7.	.............Address Input
D.	Data In
Q.	...................Data Out
W.	.........Read/Write Input
$\overline{\text { RAS }}$	........Row Address Strobe
$\overline{\text { CAS }}$	...Column Address Strobe
$V_{\text {CC }}$	.........Power ( +5 V )
$\mathrm{V}_{\text {SS }}$.	.................Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {SS }}$ (Except $\mathrm{V}_{\text {CC }}$ )	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-2 to +7	V
Voltage on $\mathrm{V}_{\text {CC }}$ Supply Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-1 to +7	V
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 1 - OUTPUT LOAD


- Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	MCM6665L15/MCM6665L20 MCM6665L15-5/MCM6665L20-5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 4.75 \\ 0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.0 \\ 5.0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} \hline 5.5 \\ 5.25 \\ 0 \\ \hline \end{gathered}$	V	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Logic 1 Voltage, All Inputs		$\mathrm{V}_{\text {IH }}$	2.4	-	$\mathrm{V}_{\mathrm{CC}}+1$	V	1
Logic 0 Voltage, All Inputs		$\mathrm{V}_{\text {IL }}$	-2.0	-	0.8	V	1

DC CHARACTERISTICS (Full Operating Voltage and Temperature Ranges Unless Otherwise Noted)

Characteristic	Symbol	Min	Max	Units	Notes
$V_{\text {CC }}$ Power Supply Current (trc min.)	${ }^{1} \mathrm{CC} 1$	-	50	mA	4
Standby V ${ }_{\text {CC }}$ Power Supply Current	ICC2	-	5	mA	5
$\mathrm{V}_{\text {CC }}$ Power Supply Current During $\overline{\mathrm{RAS}}$ Only Refresh Cycles	I'C3	-	40	mA	-
Input Leakage Current (any input) $\left.0 \leq \mathrm{V}_{\text {in }} \leq 5.5\right)$ (Except Pin 1)	II(L)	-	10	$\mu \mathrm{A}$	-
Output Leakage Current ( $0 \leq \mathrm{V}_{\text {out }} \leq 5.5$ ) ( $\overline{\mathrm{CAS}}$ at Logic 1)	IO(L)	-	10	$\mu \mathrm{A}$	-
Output Logic 1 Voltage @ ${ }_{\text {Out }}=-4 \mathrm{~mA}$	V OH	2.4	-	V	-
Output Logic 0 Voltage @ ${ }_{\text {Out }}=4 \mathrm{~mA}$	VOL	-	0.4	V	-

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Uniess Otherwise Noted)

Parameter	Symbol	MCM6665-15		MCM6665-20		Units	Notes
		Min	Max	Min	Max		
Random Read or Write Cycle Time	tra	300	-	350	-	ns	8, 9
Read Write Cycle Time	trwC	300	-	350	--	ns	8,9
Access Time from Row Address Strobe	trac	-	150	-	200	ns	10, 12
Access Time from Column Address Strobe	${ }^{\text {t }}$ CAC	-	75	-	110	ns	11, 12
Output Buffer and Turn-Off Delay	tofF	0	30	0	40	ns	17
Row Address Strobe Precharge Time	tr $P$	120	-	140	-	ns	-
Row Address Strobe Pulse Width	tras	150	10000	200	10000	ns	-
Column Address Strobe Pulse Width	${ }^{\text {t }}$ CAS	75	10000	110	10000	ns	-
Row to Column Strobe Lead Time	trCD	30	75	35	90	ns	13
Row Address Setup Time	${ }^{\text {t } A S R}$	0	-	0	-	ns	-
Row Address Hold Time	traH	25	-	30	-	ns	-
Column Address Setup Time	${ }^{\text {taSC }}$	0	-	0	-	ns	-
Column Address Hold Time	${ }^{t} \mathrm{CAH}$	45	-	55	-	ns	-
Column Address Hold Time Referenced to $\overline{\text { RAS }}$	${ }_{\text {t }}$ AR	120	-	155	-	ns	-
Transition Time (Rise and Fall)	tT	3	50	3	50	ns	6

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Uriless Otherwise Noted)

Parameter	Symbol	MCM6665-15		MCM6665-20		Units	Notes
		Min	Max	Min	Max		
Read Command Setup Time	tres	0	-	0	-	ns	-
Read Command Hold time	${ }_{\text {trCH }}$	10	-	10	-	ns	14
Read Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	trRH	30	-	35	-	ns	14
Write Command Hold Time	${ }^{\text {t WCH }}$	45	-	55	-	ns	-
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	tWCR	120	-	155	-	ns	-
Write Command Pulse Width	tWP	45	-	55	-	ns	-
Write Command to Row Strobe Lead Time	trwL	45	-	55	-	ns	-
Write Command to Column Strobe Lead Time	${ }^{\text {t CWL }}$	45	-	55	-	ns	-
Data in Setup Time	${ }^{\text {t DS }}$	0	-	0	-	ns	15
Data in Hold Time	${ }^{\text {t }}$ D ${ }^{\text {d }}$	45	-	55	-	ns	15
Data in Hold Time Referenced to $\overline{\text { RAS }}$	${ }^{\text {t }}$ DHR	120	-	155	-	ns	-
Column to Row Strobe Precharge Time	${ }^{\text {t CRP }}$	-10	-	-10	-	ns	-
$\overline{\text { RAS }}$ Hold Time	trSH	75	-	110	-	ns	-
Refresh Period	trFSH	-	2.0	-	2.0	ms	-
WRITE Command Setup Time	tWCS	- 10	-	- 10	-	ns	16
$\overline{\text { CAS }}$ to WRITE Delay	${ }^{\text {t }}$ CWD	45	-	55	-	ns	16
$\overline{\text { RAS }}$ to WRITE Delay	trwD	125	-	160	-	ns	16
$\overline{\text { CAS }}$ Hold Time	${ }^{\text {t }} \mathrm{CSH}$	150	-	200	-	ns	-

CAPACITANCE ( $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Periodically Sampled Rather Than $100 \%$ Tested)

Parameter	Symbol	Typ	Max	Units	Notes
Input Capacitance (AO-A7), D	$\mathrm{C}_{11}$	4	5	pF	7
Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\text { WRITE }}$	$\mathrm{C}_{12}$	8	10	pF	7
Output Capacitance (Q) $\overline{\text { CAS }}=\mathrm{V}_{\mathrm{IH}}$ to disable output)	$\mathrm{C}_{\mathrm{O}}$	5	7	pF	7

NOTES:

1. All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$
2. $V_{I H}$ min and $V_{I L}$ max are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\text {IL }}$.
3. An initial pause of $100 \mu$ s is required after power-up followed by any $8 \overrightarrow{R A S}$ cycles before proper device operation guaranteed.
4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
5. Output is disabled (open-circuit) and $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at a logic 1.
6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ (or between $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ ) in a monotonic manner
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\frac{\Delta_{t}}{\Delta \mathrm{~V}}$
8. The specifications for $\operatorname{tRC}^{(\mathrm{min})}$, and $\mathrm{tRWC}^{(\mathrm{min})}$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured
9. AC measurements assume $\mathrm{t} T=5.0 \mathrm{~ns}$.
10. Assumes that $t_{R C D} \leq \operatorname{tRCD}$ (max).
11. Assumes that $\operatorname{tRCD} \geq \operatorname{tRCD}$ (max).
12. 'Measured with a current load equivalent to 2 TTL loads ( $+200 \mu \mathrm{~A},-4 \mathrm{~mA}$ ) and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-0.8 \mathrm{~V}\right)$.
13. Operation within the $t_{R C D}$ (max) limit ensures that $t_{R A C}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled exclusively by tCAC
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in random write cycles and to $\overline{\mathrm{WRITE}}$ leading edge in delayed write or read-modify-write cycles.
16. tWCS, ${ }^{\text {t CWD }}$, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS $\geq$ tWCS ( min ), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $\mathrm{t}_{\mathrm{CW}} \geq \mathrm{t}_{\mathrm{C} W D}(\mathrm{~min})$ and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWW}}$ ( min ), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
17. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.



CAS
REFRESH
N/C

PIN VARIATIONS

Pin Number	MCM4116	MCM4516	MCM4517	MCM6632	MCM6663	MCM6664	MCM6865
1	$\mathrm{V}_{\mathrm{BB}}(-5 \mathrm{~V})$	$\overline{\text { REFRESH }}$	N/C	REFRESH	N/C	REFRESH	N/C
8	$\mathrm{V}_{\mathrm{DD}}(+12 \mathrm{~V})$	$V_{\text {CC }}$	V CC	$V_{C C}$	$V_{C C}$	$V_{\text {CC }}$	VCC
9	$\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$	N/C	N/C	A7	A7	A7	A7

## MCM6665



WRITE CYCLE TIMING


Q (Data Out) $\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \mathrm{VOL}_{\mathrm{OL}}\end{aligned}$ $\qquad$

## MCM6665

RAS-ONLY REFRESH CYCLE
(Data-in and Write are Don't Care, $\overline{\text { CAS }}$ is HIGH).


READ-WRITE/READ-MODIFY-WRITE CYCLE


MCM6665 BIT ADDRESS MAP

$\overline{\text { Data Stored }}=D_{\text {in }} \oplus A_{O X} \oplus A_{1} Y$

Column   Address   A1	Row   Address   A0	Data   Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted

## 65,536-BIT DYNAMIC RAM

The MCM6665 is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N -channel silicon-gate technology. This new breed of 5 -volt only dynamic RAM combines high performance with low cost and improved reliability.
By multiplexing row- and column-address inputs, the MCM6665 requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by $\overline{\mathrm{CAS}}$ allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6665 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 65,536 Words of 1 Bit
- Single +5 V Operation
- 250 ns Operation
- Low Power Dissipation

275 mW Maximum (Active)
30 mW Maximum (Standby)

- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Output Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- $\overline{\mathrm{RAS}}$-only Refresh Mode
- $\overline{\mathrm{CAS}}$ Controlled Output Providing Latched or Unlatched Data
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4516, MCM4517)



## MOS

(N-CHANNEL, SILICON-GATE)
65,536-BIT
DYNAMIC RANDOM ACCESS MEMORY


L SUFFIX
CERAMIC PACKAGE
CASE 690
${ }^{*} \mathrm{~V}_{\mathrm{CC}}$ does not draw any current but must be tied to $V_{C C}$ to inactivate internal refresh circuitry.

PIN NAMES	
A0-A	Address Input
D.	Data In
Q.	Data Out
W.	Read/Write Input
$\overline{\text { RAS }}$	Row Address Strobe
CAS	Column Address Strobe
$V_{\text {CC }}$	$\ldots . . . . . .$. Power ( +5 V )
$\mathrm{V}_{\text {SS }}$	....Ground

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on Any Pin Relative to $\mathrm{V}_{\text {SS }}$ (Except $\mathrm{V}_{\mathrm{CC}}$ )	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-2 to +7	V
Voltage on $\mathrm{V}_{\text {CC }}$ Supply Relative to $\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-1 to +7	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +50	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Data Out Current	$\mathrm{I}_{\text {out }}$	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 1 - OUTPUT LOAD


- Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max	Unit	Notes
Supply Voltage	MCM6665L25	$V_{C C}$	4.5	5.0	5.5	V	1
		$V_{S S}$	0	0	0		
Logic 1 Voltage, All Inputs	$V_{I H}$	2.4	-	$V_{C C}+1.0$	V	1	
Logic O Voltage, All Inputs	$V_{I L}$	-2.0	-	0.8	V	1	

## DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
$\mathrm{V}_{\text {CC }}$ Power Supply Current (tRC min.)	ICC	-	50	mA	4
Standby $\mathrm{V}_{\text {CC }}$ Power Supply Current	ICC2	-	5	mA	5
$\mathrm{V}_{\text {CC }}$ Power Supply Current During $\overline{\mathrm{RAS}}$ Only Refresh Cycles	ICC3	-	40	mA	-
Input Leakage Current fany input) (0 $\left.0 \mathrm{~V}_{\text {in }} \leq 5.5\right)$ (Except Pin 1)	$11(\mathrm{~L})$	-	10	$\mu \mathrm{A}$	-
Input Leakage Current ( $\operatorname{Pin} 1)\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}\right)$	I/(L)	-	10	$\mu \mathrm{A}$	-
Output Leakage Current ( $0 \leq \mathrm{V}_{\text {out }} \leq 5.5$ ) (Except Pin 1)	IO(L)	-	10	$\mu \mathrm{A}$	5,6
Output Logic 1 Voltage @ ${ }_{\text {out }}=-4 \mathrm{~mA}$	VOH	2.4	-	$V$	-
Output Logic 0 Voltage @ $\mathrm{I}_{\text {out }}=4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	0.4	V	-

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)
(See Notes 2, 3, 9, 14)
(Read, Write, and Read-Modify-Write Cycles)

Parameter	Symbol	Min	Max	Unit	Notes
Random Read or Write Cycle Time	tr ${ }^{\text {c }}$	450	-	ns	8,9
Read Write Cycle Time	trwC	450	-	ns	8,9
Access Time from Row Address Strobe	trac	-	250	ns	10, 12
Access Time from Column Address Strobe	${ }^{\text {t }}$ CAC	-	145	ns	11, 12
Output Buffer and Turn-Off Delay	tofF	0	50	ns	17
Row Address Strobe Precharge Time	trp	190	-	ns	-
Row Address Strobe Pulse Width	tras	250	10000	ns	-
Column Address Strobe Pulse Width	${ }^{\text {t }}$ CAS	145	10000	ns	-
Row to Column Strobe Lead Tirne	tracd	55	105	ns	13
Row Address Setup Time	${ }^{t} \mathrm{ASR}$	0	-	ns	-
Row Address Hold Time	trah	45	-	ns	-
Column Address Setup Time	${ }^{\text {t } A S C}$	0	-	ns	-
Column Address Hold Time	${ }^{\text {t }}$ CAH	75	-	ns	-
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	${ }_{\text {t }}$ AR	200	-	ns	-
Transition Time (Rise and Fall)	t ${ }^{\text {r }}$	3.0	50	ns	6

## AC OPERATING CONDITIONS AND CHARACTERISTICS

## (Full Operating Voltage and Temperature Range Unless Otherwise Noted)

(See Notes 2, 3, 9, 14)
(Read, Write, and Read-Modify-Write Cycles)

Parameter	Symbol	Min	Max	Units	Notes
Read Command Setup Time	trics	0	-	ns	-
Read Command Hold Time	trch	10	-	ns	14
Read Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	trRH	40	-	ns	14
Write Command Hold Time	${ }^{\text {t }} \mathrm{WCH}$	75	-	ns	-
Write Command Hold Time Referenced to $\overline{\text { RAS }}$	tWCR	200	-	ns	-
Write Command Pulse Width	tWP	70	-	ns	-
Write Command to Row Strobe Lead Time	trwL	70	-	ns	--
Write Command to Column Strobe Lead Time	${ }^{\text {t CWL }}$	70	-	ns	-
Data in Setup Time	tos	0	-	ns	15
Data in Hold Time	tDH	75	-	ns	15
Data in Hold Time Referenced to RAS	tDHR	200	-	ns	-
Column to Row Strobe Precharge Time	tCRP	-10	-	ns	-
RAS Hold Time	trsh	145	-	ns	-
Refresh Period	trfsh	--	2.0	ms	-
WRITE Command Setup Time	tWCS	- 10	-	ns	16
$\overline{\text { CAS }}$ to WRITE Delay	tCWD	70	-	ns	16
$\overline{\text { RAS to WRITE Delay }}$	trwD	195	-	ns	16
CAS Hold Time	${ }^{\text {t }}$ CSH	250	-	ns	-

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}$. Periodically Sampled Rather Than $100 \%$ Tested)

Parameter	Symbol	Typ	Max	Units	Notes
Input Capacitance (AO-A7), D	$\mathrm{C}_{11}$	4.0	5.0	pF	7
Input Capacitance $\overline{\text { RAS }}$, $\overline{\text { CAS }}$, $\overline{\text { WRITE }}$	$\mathrm{C}_{12}$	8.0	10.0	pF	7
Output Capacitance (0)	$\mathrm{C}_{0}$	5.0	7.0	pF	7

## NOTES

1. All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$
2. $\mathrm{V}_{\text {IH }}$ min and $\mathrm{V}_{\text {IL }}$ max are reference levels for , neasuring timing of input signals Transition times are measured between $\mathrm{V}_{\text {IH }}$ and $V_{\text {IL }}$
3. An initial pause of $100 \mu \mathrm{~S}$ is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation guaranteed
4. Current is a function of cycie rate and output loading; maximum current is measured at the fastest cycle rate with the output open
5. Output is disabled (open-circuit) and $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at a togic 1
6. The transition time specification applies for all input signals. In addition to meeting the tiansition rate specification, all input signals must transmit between $\mathrm{V}_{I H}$ and $\mathrm{V}_{\mathrm{IL}}$ (or between $\mathrm{V}_{I \mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ ) in a monotonic manner
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=\frac{\mid \Delta_{t}}{\Delta V}$
8. The specifications for $\operatorname{tRC}(\mathrm{min})$, and $\operatorname{tRWC}(\mathrm{min})$ are used oniy to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
9. $A C$ measurements assume $T T=5.0 \mathrm{~ns}$.
10. Assumes that trCD $\leq \operatorname{trCD}$ (max).
11. Assumes that $\operatorname{tRCD} \geq \operatorname{trCD}$ (max).
12. Measured with a current load equivalent to 2 TTL loads $(+200 \mu \mathrm{~A},-4 \mathrm{~mA})$ and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-0.8 \mathrm{~V}\right)$.
13. Operation within the tRCD (max) limit ensures that tRAC (max) can be met tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in random write cycles and to WRITE leading edge iri delayed write or read-modify-write cycles.
16. TWCS, tCWD, and TRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only if tWCS $\geq$ tWCS ( min ), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $\mathrm{t}_{\mathrm{CW}} \geq \mathrm{t}_{\mathrm{CW}} \mathrm{CD}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access timel is indeterminate.
17. $t_{\text {off }}$ (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

## PIN ASSIGNMENT COMPARISON




WRITE CYCLE TIMING


[^7]RAS-ONLY REFRESH CYCLE
(Data-in and Write are Don't Care, $\overline{\text { CAS }}$ is HIGH)


READ-WRITE/READ-MODIFY-WRITE CYCLE


## MCM6665 BIT ADDRESS MAP



$\overline{\text { Data Stored }}=D_{\text {in }} \oplus A_{0 X} \oplus A_{1 Y}$		
Column   Address   A1	Row   Address   A0	Data   Stored
0	0	Inverted
0	1	True
1	0	True
1	1	Inverted

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2114 is a 4096 -bit random access memory fabricated with high density, high reliability N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.
The MCM2114 is designed for memory applications where simple interfacing is the design objective. The MCM2114 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select $(\bar{S}$ ) lead allows easy selection of an individual package when the three-state outputs are OR-tied.
The MCM2114 series has a maximum current of 100 mA . Low power versions (i.e., MCM21L14 series) are available with a maximum current of only 70 mA .

- 1024 Words by 4-Bit Organization
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Fully Static: Cycle Time = Access Time
- Maximum Access Time

MCM2114-20/MCM21L14-20 200 ns
MCM2114-25/MCM21L14-25 250 ns
MCM2114-30/MCM21L14-30 300 ns
MCM2114-45/MCM21L14-45 450 ns

- Fully TTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Low Power Version Available


ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to VSS	-0.5 to +7.0	V
DC Output Current	5.0	mA
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ
Supply Voltage	$V_{C C}$	4.75	5.0	5.25
	$V_{S S}$	0	0	0
Vogic 1 Voltage, All Inputs	$\mathrm{V}_{\text {IH }}$	2.0	-	6.0
Logic 0 Voltage, All Inputs	$\mathrm{V}_{\text {IL }}$	-0.5	-	0.8

## DC CHARACTERISTICS

Parameter	Symbol	MCM2114			MCM21L14			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Load Current (All input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	llı	-	-	10	-	-	10	$\mu \mathrm{A}$
1/O Leakage Current ( $\overline{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DQ}}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	1 LOO	-	-	10	-	-	10	$\mu \mathrm{A}$
Power Supply Current ( $\left.\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}, 1 \mathrm{DQ}=0 \mathrm{~mA}, \mathrm{~T} A=25^{\circ} \mathrm{C}\right)$	ICC1	-	80	95	-	-	65	mA
Power Supply Current ( $\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}, \mathrm{I} \mathrm{DQ}^{\prime}=0 \mathrm{~mA}, \top^{\top}=0^{\circ} \mathrm{C}$ )	ICC2	-	-	100	-	-	70	mA
Output Low Current $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1 OL	2.1	6.0	-	2.1	6.0	-	mA
Output High Current $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	IOH	-	-1.4	-1.0	-	-1.4	-1.0	mA

NOTE: Duration not to exceed 30 seconds.

CAPACITANCE ( $f=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5.0	pF
Input/Output Capacitance $\left(\mathrm{V}_{\mathrm{DQ}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / 0}$	5.0	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\mid \Delta_{\mathrm{t}} / \Delta \mathrm{V}$.
AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)
Input Pulse Levels....................................... 0.8 Volt to 2.4 Volts Input and Output Timing Levels.................................... 1.5 Volts Input Rise and Fall Times.............................................. 10 ns
READ (NOTE 1), WRITE (NOTE 2) CYCLES

Parameter	Symbol	$\begin{array}{\|c\|} \hline \text { MCM2114-20 } \\ \text { MCM21L14-20 } \\ \hline \end{array}$		$\begin{array}{c\|} \hline \text { MCM2114-25 } \\ \text { MCM21L14-25 } \\ \hline \end{array}$		MCM2114-30MCM21L14-30		$\begin{aligned} & \text { MCM2114-45 } \\ & \text { MCM21L14-45 } \\ & \hline \end{aligned}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Address Valid to Address Don't Care	tavax	200	-	250	-	300	-	450	-	ns
Address Valid to Output Valid	tavov	-	200	-	250	-	300	-	450	ns
Chip Select Low to Data Valid	tsLQV	-	70	-	85	-	100	-	120	ns
Chip Select Low to Output Don't Care	tsLQX	20	-	20	-	20	-	20	-	ns
Chip Select High to Output High Z	${ }^{\text {tS }}$ HOZ	-	60	-	70	-	80	-	100	ns
Address Don't Care to Output High Z	${ }_{\text {taxaz }}$	50	-	50	-	50	-	50	-	ns
Write Low to Write High	tWLWH	120	-	135	-	150	-	200	-	ns
Write High to Address Don't Care	tWHAX	20	-	20	-	20	-	20	-	ns
Write Low to Output High Z	t WLOZ	-	60	-	70	-	80	-	100	ns
Data Valid to Write High	tDVWH	120	-	135	-	150	-	200	-	ns
Write High to Data Don't	tWHDX	0	-	0	-	0	-	0	-	ns

NOTES: 1. A Read occurs during the overlap of a low $\overline{\mathrm{S}}$ and a high $\bar{W}$.
2. A Write occurs during the overlap of a low $\overline{\mathrm{S}}$ and a low $\overline{\mathrm{W}}$.

READ CYCLE TIMING ( $\bar{W}$ HELD HIGH)


WRITE CYCLE TIMING (NOTE 3)

3. If the $\overrightarrow{\mathrm{S}}$ low transition occurs simultaneously with the $\overline{\mathrm{W}}$ low transition, the output buffers remain in a high-impedance state.

Waveform Symbol	WAVEFORMS	
	Input	Outpr*
	must be	WILL be
	VALID	VAlid
	change	will change
11	FROMHTOL	FROMHTOL
777	CHANGE	will change
12.	Froml toh	FROMLTOH
	dont care	changing
88888	ANY Change	State
	Permitted	unknown
-	-	HIGH

TYPICAL CHARACTERISTICS


OUTPUT SOURCE CURRENT versus OUTPUT VOLTAGE


SUPPLY CURRENT versus AMBIENT TEMPERATURE


OUTPUT SINK CURRENT versus OUTPUT VOLTAGE


NORMALIZED ACCESS TIME versus TEMPERATURE


TYPICAL ACCESS TIME versus TEMPERATURE


MCM2114/MCM21L14 BIT MAP



To determine the precise location on the die of a word in memory, reassign address numbers to the address pins as in the table below. The bit locations can then be determined directly from the bit map.

PIN NUMBER	REASSIGNED ADDRESS NUMBER	PIN NUMBER	REASSIGNED ADDRESS NUMBER
1	A6	6	A1
2	A5	7	A2
3	A4	15	$\stackrel{\rightharpoonup}{\text { A9 }}$
4	A3	16	$\overline{\text { A8 }}$
5	AO	17	$\overline{\text { A7 }}$

## $1024 \times 1$ STATIC RAM

The MCM2115A and MCM2125A families are high-speed, 1024 words by one-bit, random-access memories fabricated using HMOS, highperformance N -channel silicon-gate technology. Both open collector (MCM2115A) and three-state output (MCM2125A) are available. The devices use fully static circuitry throughout and require no clocks or timing strobes. Data out has the same polarity as the input data.
Access times are fully compatible with the industry-produced 1 K Bipolar RAMs, yet offer up to $50 \%$ reduction in power over their Bipolar equivalents.
All inputs and output are directly TTL compatible. The chip select allows easy selection of an individual device when outputs are OR-tied.

- Organized as 1024 Words of 1 Bit
- Single +5 V Operation
- Maximum Access Time of $45 \mathrm{~ns}, 55 \mathrm{~ns}$, and 70 ns available
- Low Operating Power Dissipation
- Pin Compatible to 93415A (2115A) and 93425A (2125A)
- TTL Inputs and Outputs
- Uncommitted Collector (2115A) and Three-State (2125A) Output
BLOCK DIAGRAM

TRUTH TABLE

Inputs		Output   2115A Family	Output   2125A Family	Mode	
S	W	D	Q		
H	X	X	H	High Z	Not Selected
L	L	L	H	High Z	Write " 0 "
L	L	H	H	High Z	Write" 1 "
L	H	X	Data Out	Data Out	Read

MOS
(N-CHANNEL, SILICON-GATE)
1024-BIT STATIC RANDOM ACCESS MEMORY

## (16)

C SUFFIX
FRIT-SEAL
CERAMIC PACKAGE CASE 620-06


## ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to $\mathrm{V}_{\mathrm{SS}}$	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	Watt Opperating Temperature Range
Storage Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$

NOTE: Permanent damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max
Unit					
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.0	5.25	V
Logic 1 Voltage, All Inputs	$\mathrm{V}_{\mathrm{SS}}$	0	0	0	
Logic 0 Voltage, All Inputs	$\mathrm{V}_{\text {IH }}$	2.1	-	6	V

DC OPERATING CHARACTERISTICS

Parameter	Symbol	MCM2115A		MCM21L15A		MCM2125A		MCM21L25A		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Input Low Current (All input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	1 IL	-	-40	-	-40	-	-40	-	-40	$\mu \mathrm{A}$
Input High Current	${ }_{1 / \mathrm{H}}$	-	40	-	40	-	40	-	40	$\mu \mathrm{A}$
Output Leakage Current ( $\mathrm{V}_{\text {out }}=0.5 / 2.4 \mathrm{~V}$ )	IOL	-	-	-	-	-	50	-	50	$\mu \mathrm{A}$
Output Leakage Current ( $\mathrm{V}_{\text {Out }}=4.5 \mathrm{~V}$ )	ICEX	-	100	-	100	-	-	-	-	$\mu \mathrm{A}$
Power Supply Current ( $\mathrm{S}=\mathrm{V}_{\text {IL }}$, Outputs Open $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ )	ICC	-	125	-	75	-	125	-	75	mA
Output Low Voltage ( $\left.{ }^{\text {OL }}=7.0 \mathrm{~mA}, 2125 \mathrm{~A}, 16 \mathrm{~mA} \mathrm{2115A}\right)$	VOL	-	0.45	-	0.45	-	0.45	-	0.45	V
Output High Voltage ( $1 \mathrm{OH}=-4.0 \mathrm{~mA}$ )	VOH	-	-	-	-	2.4	-	2.4	-	V
Current Short Circuit to Ground	IOS	-	-	-	-	-	-100	-	-100	mA

MCM2115A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

Parameter	Symbol	MCM2115A-45		MCM2115A-55		MCM2115A-70		Units
		Min	Max	Min	Max	Min	Max	
Chip Select Low Output Valid	tSLQV	5	30	5	35	5	40	ns
Chip Select High to Output Invalid	${ }^{\text {t }}$ SHOZ	-	30	-	35	-	40	ns
Address Valid to Output Valid	tavav	-	45	-	55	-	70	ns
Address Valid to Output Invalid	tavox	10	-	10	-	10	-	ns
Write Low to Output Disable	tWLQZ	-	30	-	35	-	40	ns
Write High to Output Valid	tWHOV	0	30	0	35	0	45	ns
Write Low to Write High (Write Pulse Width)	tWLWH	30	-	40	-	50	-	ns
Data Valid to Write Low	tDVWL	5	-	5	-	5	-	ns
Write High to Data Don't Care (Data Hold)	tWHDX.	5	-	5	-	5	-	ns
Address Valid to Write Low (Address Setup)	taVWL	5	-	5	-	15	-	ns
Write High to Address Don't Care	tWHAX	5	-	5	-	5	-	ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5	-	5	-	ns
Address Valid to Address Don't Care	tavax	-	45	-	55	-	70	ns
Chip Select Low to Chip Select High	tSLSH	-	45	-	55	-	70	ns

MCM21L15A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES ( ${ }^{\prime} A=0$ to $70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 5 \%$ )

Parameter	Symbol	MCM21L15A-45		MCM21L15A-70		Units
		Min	Max	Min	Max	
Chip Select Low to Output Valid	tsLQV	5	30	5	30	ns
Chip Select High to Output Invalid	${ }^{\text {t }}$ SHQZ	-	30	-	30	ns
Address Valid to Output Valid	tavov	-	45	-	70	ns
Address Valid to Output Invalid	${ }^{\text {t }}$ AVQX	10	-	10	-	ns
Write Low to Output Disable	tWLQZ	-	25	-	25	ns
Write High to Output Valid	tWHQV	0	25	0	25	ns
Write Low to Write High (Write Pulse Width)	tWLWH	30	-	30	-	ns
Data Valid to Write Low	tDVWL	0	-	0	-	ns
Write High to Data Don't Care	tWHDX	5	-	5	-	ns
Address Valid to Write Low (Address Setup)	tAVWL	5	-	5	-	ns
Write High to Address Don't Care	tWHAX	5	-	5	-	ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5	-	ns
Address Valid to Address Don't Care	taVAX	-	45	-	70	ns
Chip Select Low to Chip Select High	${ }^{\text {t }}$ SLSH	-	45	-	70	ns

MCM2125A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES
$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ )

Parameter	Symbol	MCM2125A-45		MCM2125A-55		MCM2125A-70		Units
		Min	Max	Min	Max	Min	Max	
Chip Select Low to Output Valid	tSLQV	5	30	5	35	5	40	ns
Chip Select High to Output High Z	tshaz	-	30	-	35	-	40	ns
Address Valid to Output Valid	tavov	-	45	-	55	-	70	ns
Address Valid to Output Invalid	tavox	10	-	10	-	10	-	ns
Write Low to Output High Z	tWLOZ	-	30	-	35	-	40	ns
Write High to Output Valid	tWHOV	0	30	0	35	0	45	ns
Write Low to Write High (Write Pulse Width)	tWLWH	30	-	40	-	50	-	ns
Data Valid to Write Low	tDVWL	5	-	5	-	5	-	ns
Write High to Data Don't Care	tWHDX	5	-	5	-	5	-	ns
Address Valid to Write Low (Address Setup)	taVWL	5	-	5	-	15	-	ns
Write High to Address Don't Care	tWHAX	5	-	5	-	5	-	ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5	-	5	-	ns
Address Valid to Address Don't Care	tavax	-	45	-	55	-	70	ns
Chip Select Low to Chip Select High	tSLSH	-	45	-	55	-	70	ns

MCM21L25A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES
${ }^{(T}{ }_{A}=0$ to $70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}_{ \pm 5 \%}$ )

Parameter	Symbol	MCM21L25A-45		MCM21L25A-70		Units
		Min	Max	Min	Max	
Chip Select Low to Output Valid	tSLQV	5	30	5	30	ns
Chip Select High to Output High Z	tshoz	-	30	-	30	ns
Address Valid to Output Valid	tavov	-	45	-	70	ns
Address Valid to Output Invalid	tavox	10	-	10	-	ns
Write Low to Output High Z	tWLQZ	-	25	-	25	ns
Write High to Output Valid	tWHOV	0	25	0	25	ns
Write Low to Write High (Write Pulse Width)	tWLWH	30	-	30	-	ns
Data Valid to Write Low	tDVWL	0	-	0	-	ns
Write High to Data Don't Care	tWHDX	5	-	5	-	ns
Address Valid to Write Low (Address Setup)	taVWL	5	-	5	-	ns
Write High to Address Don't Care	tWHAX	5	-	5	-	ns
Chip Select Low to Write Low	tSLWL	5	-	5	-	ns
Write High to Chip Select High	tWHSH	5	-	5	-	ns
Address Valid to Address Don't Care	taVAX	-	45	-	70	ns
Chip Select Low to Chip Select High	${ }^{\text {t SLSH }}$	-	45	-	70	ns

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than 100\% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=1 \Delta_{t} / \Delta V$.

2115A FAMILY

READ CYCLE TIMING 1 ( $\overline{\mathbf{S}}$ Held Low, $\bar{W}$ Held High)


READ CYCLE TIMING 2 ( $\bar{W}$ Held High)


WRITE CYCLE TIMING

(All Time Measurements Referenced to 1.5 V )


2125A FAMILY
READ CYCLE TIMING 1
( $\overline{\mathrm{S}}$ Held Low, $\overline{\mathrm{W}}$ Held High)

READ CYCLE TIMING 2 (W Held High)


WRITE CYCLE TIMING

(All time measurements referenced to 1.5 V )

## 2115A FAMILY

WRITE ENABLE TO HIGH-Z DELAY


PROPAGATION DELAY FROM CHIP SELECT TO HIGH-Z


WRITE ENABLE TO HIGH-Z DELAY


PROPAGATION DELAY FROM CHIP SELECT TO HIGH-Z


MOTOROLA

## Product Preview

## $1024 \times 1$ STATIC RAM

The MCM2115H and MCM2125H families are high-speed, 1024 words by one-bit, random-access memories fabricated using HMOS, highperformance N -channel silicon-gate technology. Both open collector (MCM2115H) and three-state output (MCM2125H) are available. The devices use fully static circuitry throughout and require no clocks or refreshing to operate. Data out has the same polarity as the input data.

Access times are fully compatible wih the industry-produced 1 K Bipolar RAMs, yet offer up to $50 \%$ reduction in power.over their Bipolar equivalents.

All inputs and outputs are directly TTL compatible. A separate chip select allows easy selection of an individual dievice when outputs are OR-tied.

- Organized as 1024 Words of 1 Bit
- Single +5 V Operation
- Maximum Access Time of $20 \mathrm{~ns}, 25 \mathrm{~ns}, 30 \mathrm{~ns}$, and 35 ns Available
- Low Operating Power Dissipation
- Pin Compatible to 93415A (2115H) and 93425A (2125H)
- TTL Inputs and Outputs
- Uncommitted Collector $(2115 \mathrm{H})$ and Three-State $(2125 \mathrm{H})$ Output



## MOS

(N-CHANNEL, SILICON-GATE)
1024-BIT STATIC RANDOM ACCESS MEMORY


Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2147 is a 4096-bit static random access memory organized as 4096 words by 1 -bit using Motorola's N -channel silicongate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.
$\bar{E}$ controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after $\overline{\mathrm{E}}$ goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as $\overline{\mathrm{E}}$ remains high. This feature results in system power savings as great as $85 \%$ in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2147 is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory - No Clock or Timing Strobe Required
- Single +5 V Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible-All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time - MCM2147-55 = 55 ns max

MCM2147-70 $=70 \mathrm{~ns}$ max
MCM2147-85 = 85 ns max
MCM2147-100 $=100$ ns max


## MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY


ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +85	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to $\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	Watt $^{\circ}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ
Max	Unit			
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5
	V			
Logic 1 Voltage, All Inputs	$\mathrm{VS}_{\text {S }}$	0	0	0
Logic 0 Voltage, All Inputs	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{VCC}_{\mathrm{CC}}$

## DC CHARACTERISTICS

Parameter	Symbol	MCM2147-55			MCM 2147-70			MCM2147-85			MCM2147-100			Unit
		Min	Typ	Max										
Input Load Current   (All Input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	1 IL	-	0.01	10	-	0.01	10	-	0.01	10	-	0.01	10	$\mu \mathrm{A}$
Output Leakage Current ( $\mathrm{E}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0$ to 5.5 V )	${ }^{\text {I OL }}$	-	0.1	50	--	0.1	50	-	0.1	50	--	0.1	50	$\mu \mathrm{A}$
Power Supply Current ( $\bar{E}=V_{\text {IL }}$, Outputs Open, $T_{A}=25^{\circ} \mathrm{C}$ )	${ }^{\text {C CC1 }}$	-	120	170	-	100	150	-	95	130	-	90	110	mA
Power Supply Current $\left(\bar{E}=V_{I L}\right.$, Outputs Open, $\left.T_{A}=0^{\circ} \mathrm{C}\right)$	'CC2	-	-	180	-	-	160	-	-	140	-	-	120	mA
Standby Current $\left(\bar{E}=V_{I H}\right)$	${ }^{\text {I SB }}$	-	15	30	-	10	20	-	15	25	-	10	20	mA
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	-0.3	-	0.8	-0.3	-	0.8	-0.3	-	0.8	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	6.0	2.0	-	6.0	2.0	-	6.0	2.0	-	6.0	V
Output Low Voltage $\left(I_{\mathrm{OL}}=8.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	-	-	0.4	-	-	0.4	-	-	0.4	V
Output High Voltage $(1 \mathrm{OH}=-4.0 \mathrm{~mA})$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	2.4	-	-	2.4	-	-	2.4	-	-	V

Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$.

## CAPACITANCE

FIGURE 1 - OUTPUT LOAD
( $f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	10	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=\frac{I \Delta_{t}}{\Delta V}$.


Input Pulse Levels..................................... 0 Volt to 3.5 Volts Input and Output Timing Levels.................................... 1.5 Volts
Input Rise and Fall Times................................................ 10 ns

## READ, WRITE CYCLES

Parameter	Symbol	MCM2147-55		MCM2147-70		MCM2147-85		MCM2147-100		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Address Valid to Address Don't Care (Cycle Time When Chip Enable is Held Active)	tavax	55	-	70	-	85	-	100	-	ns
Chip Enable Low to Chip Enable High	${ }^{\text {t ELEH }}$	55	-	70	-	85	-	100	-	ns
Address Valid to Output Valid (Access)	tavQV	-	55	-	70	-	85	-	100	ns
Chip Enable Low to Output Valid (Access)	telovi ${ }^{\text {c }}$	-	55	-	70	-	85	-	100	ns
	telov2*	-	65	-	80	-	95	-	110	ns
Address Valid to Output Invalid	t AVQX	10	-	10	-	10	-	10	-	ns
Chip Enable Low to Output Invalid	tELQX	10	-	10	-	10	-	10	-	ns
Chip Enable High to Output High Z	tehoz	0	40	0	40	0	40	0	40	ns
Chip Selection to Power-Up Time	tpu	0	-	0	-	0	-	0	-	ns
Chip Deselection to Power-Down Time	tPD	0	30	0	30	0	30	0	30	ns
Address Valid to Chip Enable Low (Address Setup)	tavel	0	-	0	-	0	-	0	-	ns
Chip Enable Low to Write High	${ }^{\text {t ELWH }}$	45	-	55	-	70	-	80	-	ns
Address Valid to Write High	taVWH	45	-	55	-	70	-	80	-	ns
Address Valid to Write Low (Address Setup)	tAVWL	0	-	0	-	0	-	0	-	ns
Write Low to Write High (Write Pulse Width)	tWLWH	35	-	40	-	55	-	65	-	ns
Write High to Address Don't Care	tWHAX	10	-	15	-	15	-	15	-	ns
Data Valid to Write High	tDVWH	25	-	30	-	45	-	55	-	ns
Write High to Data Don't Care (Data Hold)	tWHDX	10	-	10	-	10	-	10	-	ns
Write Low to Output High Z	tWLQZ	0	30	0	35	0	45	0	50	ns
Write High to Output Valid	tWHOV	0	-	0	-	0	-	0	-	ns

${ }^{*}$ ELLQV1 is access from chip enable when the 2147 is deselected for at least 55 ns prior to this cycle. tELQV2 is access from chip enable for $0 \mathrm{~ns}<$ deselect time $<55 \mathrm{~ns}$. If deselect time $=0 \mathrm{~ns}$, then t ELQV $=\mathrm{t}$ AVQV .

## TIMING PARAMETER ABBREVIATIONS


The transition definitions used in this data sheet are:
$\mathrm{H}=$ transition to high
$L=$ transition to low
$\mathrm{V}=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.


WRITE CYCLE TIMING


WAVEFORMS


## DEVICE DESCRIPTION

The MCM2147 is produced with a high-performance MOS technology which combines on-chip substrate bias generation with device scaling to achieve high speed. The speed-power product of this process is about four times better than earlier MOS processes.

This gives the MCM2147 its high speed, low power and ease-of-use. The low-power standby feature is controlled with the $\overline{\mathrm{E}}$ input. $\bar{E}$ is not a clock and does not have to be cycled. This allows the user to tie $\overline{\mathrm{E}}$ directly to system addresses and use the line as part of the normal decoding logic. Whenever the MCM2147 is deselected, it automatically reduces its power requirements.

## SYSTEM POWER SAVINGS

The automatic power-down feature adds up to significant system power savings. Unselected devices draw low standby power and only the active devices draw active power. Thus the average power consumed by a device declines as the system size increases, asymptotically approaching the standby power level as shown in Figure 2.

The automatic power-down feature is obtained without any performance degradation, since access time from chip enable is $\leqslant$ access time from address valid. Also the fully static design gives access time equal cycle time so multiple read or write operations are possible during a single select period. The resultant data rates are 14.3 MHz and 18 MHz for the MCM2147-70 and MCM2147-55 respectively.

## DECOUPLING AND BOARD LAYOUT CONSIDERATIONS

The power switching characteristic of the MCM2147 requires careful decoupling. It is recommended that a $0.1 \mu \mathrm{~F}$ to $0.3 \mu \mathrm{~F}$ ceramic capacitor be used on every other device, with a $22 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ bulk electrolytic decoupler every 16 devices. The actual values to be used will depend on board layout, trace widths and duty cycle.

Power supply gridding is recommended for PC board layout. A very satisfactory grid can be deveioped on a two-layer board with vertical traces on one side and horizontal traces on the other, as showr in Figure 3. If fast drivers are used, terminations are recommended on input signal lines to the MCM2147 because significant reflections are possible when driving their high impedance inputs. Terminations may be required to match the impedance of the line to the driver.

FIGURE 2 - AVERAGE DEVICE DISSIPATION versus MEMORY SIZE


FIGURE 3 - PC LAYOUT


## Product Preview

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2147H is a 4096-bit static random access memory organized as 4096 words by 1 -bit using Motorola's high-performance N -channel silicon-gate MOS technology (HMOS). It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.
$\bar{E}$ controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after $\bar{E}$ goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as $\bar{E}$ remains high. This feature results in system power savings as great as $85 \%$ in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2147H is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate threestate output provide flexibility and allow easy OR-ties.

- Fully Static Memory - No Clock or Timing Strobe Required
- HMOS Technology
- Single $+5 V$ Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible - All inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time

MCM2147H-35 = 35 ns Max
MCM2147H-45 $=45 \mathrm{~ns}$ Max
MCM2147H-55=55ns Max


## MOS

(N-CHANNEL, SILICON-GATE)

## 4096-BIT STATIC RANDOM ACCESS MEMORY



TRUTH TABLE				
$\bar{E}$	$\overline{\text { W }}$	Mode	Output	Power
H	X	Not Selected	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	Data Out	Active

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## Advance Information

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM 2148 is a 4096 -bit random access memory fabricated using HMOS, high performance MOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.
The MCM2148 is designed for memory applications where simple interfacing is the design objective. The MCM2148 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select ( $\overline{\mathrm{E}}$ ) lead allows easy selection of an individual package when the three-state outputs are OR-tied

- 1024 Words by 4-Bit Organization
- HMOS Technology
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Maximum Access Time

70 ns MCM2148-70
85 ns MCM2148-85

- Power Dissipation

140 mA Maximum (Active)
30 mA Maximum (Standby)

- Fully TTL/DTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Automatic Power Down



## MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY


## PIN ASSIGNMENT



PIN NAMES	
A0-A9....	.....Address Input
$\bar{W}$.	.......Write Enable
$\overline{\mathrm{E}}$.	..Chip Select
DQ1-DQ4..	. Data Input/Output
$V_{\text {CC }}$	.......Power ( + 5 V)
$\mathrm{V}_{\text {SS }}$	.........Ground

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to $\mathrm{V}_{\mathrm{SS}}$	-3.5 to +7.0	V
DC Output Current	20	mA
Power Dissipation	1.2	Watt
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature ranges unless otherwise noted.)
RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max
Supply Voltage	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	V
		$\mathrm{~V}_{\mathrm{SS}}$	0	0	0
Logic 1 Voltage, All Inputs	$\mathrm{V}_{\text {IH }}$	2.0	-	6.0	V
Logic 0 Voltage, All Inputs	$\mathrm{V}_{\text {IL }}$	-3.0	-	0.8	V

DC CHARACTERISTICS

Parameter	Symbol	Min	Typ	Max	Unit
Input Load Current (All Input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V, $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ )	ILI	-	0.01	10	$\mu \mathrm{A}$
Output Leakage Current ( $\bar{E}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {out }}=0$ to 4.5 V )	\|lol	-	0.1	50	$\mu \mathrm{A}$
Output Low Voltage ( $1 \mathrm{OL}=8 \mathrm{~mA}$ )	VOL	-	-	0.4	mA
Output High Voltage ( $1 \mathrm{OH}=-2.0 \mathrm{~mA}$ )	V OH	2.4	-	-	mA
Power Supply Current ( $\mathrm{V}_{\text {in }}=5.5, \mathrm{IDQ}=0 \mathrm{~mA}, \mathrm{~T}^{\prime}=25^{\circ} \mathrm{C}, \mathrm{E}=\mathrm{V}_{\text {IL }}$ )	ICC1	-	100	135	mA
Power Supply Current ( $\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}, \mathrm{IDQ}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \overrightarrow{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}$ )	${ }^{1} \mathrm{CC} 2$	-	-	140	mA
Standby Current ( $\mathrm{V}_{\mathrm{CC}}=$ Min to Max, $\overline{\mathrm{E}}=\mathrm{V}_{(H)}$ )	${ }^{1} \mathrm{CC3}$	-	12	30	mA
Peak Power on Current ( $\mathrm{V}_{\mathrm{CC}}=0$ to $\mathrm{V}_{\mathrm{CC}} \mathrm{Min}, \mathrm{E}=\mathrm{V}_{1 H} \mathrm{~min}$ )*	IPO	-	25	50	mA
Output Short Circuit Current ( $\mathrm{V}_{\text {out }}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$ )	IOS	-150	-	+150	mA

*A pullup resistor to $V_{C C}$ on the $\bar{E}$ input is required to keep the device deselected, otherwise, power-on current approaches ICC.

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Max
Unit		
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	pF	

FIGURE 1


FIGURE 2


## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

Input Pulse Levels $\qquad$ 0 Volt to 3.0 Volts Input Rise and Fall Times 10 ns	Input and Output Timing Levels.   1.5 Volts   Output Load   See Figure 1						
Parameter	Symbol	MCM2148-70		MCM2148-85		Unit	Notes
		Min	Max	Min	Max		
Address Valid to Address Don't Care (Cycle Time if $\bar{E}=\mathrm{V}_{\text {IL }}$ )	tavax	70	-	85	-	ns	
Address Valid to Output Valid (Address Access Time)	tavov	-	70	-	85	ns	
Address Valid to Output Undefined	${ }^{\text {t }}$ AVOX	5	--	5	-	ns	
Chip Enable Low to Chip Enable High (Cycle Time)	tELEH	70	-	85	-	ns	
Chip Enable Low to Output Undefined	telox	25	-	25	-	ns	6
Chip Enable Low to Output Valid (Chip Select Access Time)	telQV1 telav2	-	$\begin{aligned} & 70 \\ & 80 \end{aligned}$	-	$\begin{aligned} & 85 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Chip Selection to Powerup Time	tpu	0	-	0	-	ns	
Chip Deselection to Powerdown Time	tPD	-	30	-	30	ns	
Chip Enable High to Output High Z	tehQZ	0	20	0	20	ns	6
Chip Enable Low to Write High	telwh	65	-	80	--	ns	
Address Valid to Write Low (Address Setup)	${ }^{\text {t }}$ AVWL	0	-	0	-	ns	
Write High to Address Don't Care	tWHAX	5	-	5	-	ns	
Write Low to Write High (Write Pulse Width)	TWLWH	50	-	60	-	ns	
Data Valid to Write High	toVWH	25	-	30	-	ns	
Write High to Data Don't Care	TWHDX	5	-	5	--	ns	
Write Low to Output High Z	tWLOZ	0	25	0	30	ns	6
Write High to Output Active	tWHOV	0	-	0	-	ns	6

NOTES:

1. Chip deselected for greater than 55 ns prior to $\overline{\mathrm{E}}$ transition low.
2. Chip deselected for a finite time that is less than 55 ns prior to $\overline{\mathrm{E}}$ transition low. If the deselect time is 0 ns , the chip is by definition selected and access occurs according to Read Cycle 1.)
3. $\bar{W}$ is high for read cycles.
4. Device is continuously selected, $\bar{E}=V_{I L}$.
5. Addresses valid prior to or coincident with $\bar{E}$ transition low.
6. Transition is measured $\pm 500 \mathrm{mV}$ from high impedance with the load in Figure 2. This parameter is sampled and not $100 \%$ tested.

READ CYCLE TIMING $1(3,4)$ (E HELD LOW, W HELD HIGH)

READ CYCLE TIMING $2(3,5)$
(W HELD HIGH)



MCM2148H

## Product Preview

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2148H is a 4096-bit random access memory fabricated using HMOS, high performance MOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.

The MCM2148H is designed for memory applications where simple interfacing is the design objective. The MCM2148H is assembled in 18 -pin dual-in-line packages with the industry standard pin-out. A separate chip enable ( $\bar{E}$ ) lead aliows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- HMOS Technology
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Maximum Access Time

MCM $2148 \mathrm{H}-45=45 \mathrm{~ns}$
MCM $2148 \mathrm{H}-55=55 \mathrm{~ns}$

- Power Dissipation

180 mA Maximum (Active)
30 mA Maximum (Standby)

- Fully TTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Automatic Power Down



## MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY


Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## Product Preview

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2149 is a 4096 -bit random access memory fabricated using HMOS, high performance MOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.
The MCM2149 is designed for memory applications where simple interfacing is the design objective. The MCM2149 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select ( $\overline{\mathrm{S}}$ ) lead allows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- HMOS Technology
- Industry Standard 18-Pin Configuration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Maximum Access Time

MCM2149-70 $=70 \mathrm{~ns}$ Max
MCM2149-85=85 ns Max.

- Chip Select Access Time

MCM2149-70 $=30$ ns Max.
MCM2149-85=35 ns Max.

- Power Dissipation - 140 mA Maximum (Active)
- Fully TTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Automatic Power Down Version Available - MCM2148



## MOS

(N.CHANNEL, SILICON-GATE)

## 4096-BIT STATIC RANDOM ACCESS MEMORY



Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## Product Preview

## 16,384-BIT STATIC RANDOM ACCESS MEMORY

The MCM2167 is a 16,384 -bit static random access memory organized as 16,384 words by 1-bit using Motorola's $N$-channel silicon-gate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.
$\overline{\mathrm{E}}$ controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after $\bar{E}$ goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as $\bar{E}$ remains high. This feature results in sytem power savings as great as $85 \%$ in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.
The MCM2167 is in a 20 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate threestate output provide flexibility and allow easy OR-ties.

- Fully Static Memory - No Clock or Timing Strobe Required
- Single $+5 \vee$ Supply
- High Density 20 Pin Package
- Automatic Power-Down
- Directly TTL Compatible - All Inputs and Three-State Output
- Separate Data Input and Output
- Access Time

> MCM2167-55-55 ns max
> MCM2167-70-70 ns max
> MCM2167-85-85 ns max
> MCM2167-100 - $100 \mathrm{~ns} \max$


## MOS

(N-CHANNEL, SILICON-GATE)

> 16,384-BIT STATIC RANDOM ACCESS MEMORY


	PIN NAMES
A0-A13.	Address Input
W.	........Write Enable
E.	Chip Enable
D.	Data Input
O	Data Output
$V_{\text {CC }}$	...Power (+5 V)
$V_{S S}$	........Ground



MCM4016

## Product Preview

## $2048 \times 8$-BIT STATIC RANDOM ACCESS MEMORY

The MCM4016 is a 16,384 -bit static Random Access Memory organized as 2048 words by 8 -bits, fabricated using Motorola's highperformance silicon-gate metal oxide semiconductor (HMOS) technology. Its static design means that no refresh clocking circuitry is needed and timing requirements are simplified. Access time is equal to cycle time.

A chip select control is provided for controlling the flow of data in and data out, and an output enable function is provided which eliminates the need for external bus buffers.
The MCM4016 is in a 24 -pin dual-in-line package with the industry standard pinout and is pinout compatible with the industry standard 16 K EPROM and 16 K mask programmable ROM.

- 2048 Words by 8 -Bits Organization
- HMOS Technology
- Single +5 V Supply
- Fully Static: No Clock or Timing Strobe Required
- Low Power Dissipation -

$$
35 \mathrm{~mW} \text { Typical (Standby) }
$$

$$
400 \mathrm{~mW} \text { Typical (Active) }
$$

- Maximum Access Time: MCM4016-20 - 200 ns
- Fully TTL Compatible
- Pinout Compatible with Industry Standard 2716 16K EPROM and Mask Programmable ROM
- Output Enable ( $\overline{\mathrm{G}})$ Eliminates Need for External Bus Buffers



## MOS

( N -CHANNEL, SILICON-GATE)

## $2048 \times 8$ BIT STATIC RANDOM ACCESS MEMORY



[^8]
## MCM6641 <br> MCM66L41

## Advance Information

## 4096-BIT STATIC RANDOM ACCESS MEMORIES

The MCM6641 series $4096 \times 1$-bit Random Access Memory is fabricated with high density, high reliability N -channel silicon-gate technology. For ease of use, the device operates from a single 5 -volt power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. The fully static operation allows chip selects to be tied low, further simplifying system timing. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the data input.
The MCM6641 is designed for memory applications where simple interfacing is the design objective, and is assembled in 18-pin dual-in-line packages with the industry standard pin-outs.

- Single $\pm 10 \%+5 \mathrm{~V}$ Supply
- Fully Static Operation - No Clock, Timing Strobe, Pre-Charge, or Refresh Required
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible
- Common Data Input and Output Capability
- Three-State Outputs for OR-Tie Capability
- Power Dissipation MCM6641 Less Than 550 mW (Maximum) MCM66L41 Less Than 385 mW (Maximum)
- Standby Power Dissipation Less Than 125 mW (Typical)
- Plug-In Replacement For TMS4044
MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME

MCM6641-20   MCM66L41-20	200 ns	MCM6641-30   MCM66L41-30	300 ns
MCM6641-25   MCM66L41-25	250 ns	MCM6641-45   MCM66L41-45	450 ns



## MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORIES


TRUTH TABLE						
$\overline{\text { S }}$	$\overline{\text { W }}$	D	Q	Mode		
H	$\times$	$\times$	High Z	Not Selected		
L	L	L	High Z	Write "0'		
L	L	H	High Z	Write "1"		
L	H	X	Output data	Read		

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to $\mathrm{V}_{\text {SS }}$	-0.5 to +7.0	Vdc
DC Output Current	20	mA
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max
Unit					
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Logic 1 Voltage, All Inputs	$\mathrm{V}_{\mathrm{SS}}$	0	0	0	
Logic O Voltage, All Inputs	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	6.0	V

## DC CHARACTERISTICS

Parameter	Symbol	MCM6641			MCM66L41			Unit	
		Min	Typ	Max	Min	Typ	Max		
Input Load Current (All Input Pins, $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	ILI	-	-	10	-	-	10	$\mu \mathrm{A}$	
Output Leakage Current ( $\mathrm{CS}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4$ to VCC )	\|lıO		-	-	10	-	-	10	$\mu \mathrm{A}$
Power Supply Current ( $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, lout $=0 \mathrm{~mA}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}$ )	ICC	-	80	100	-	55	70	mA	
Output Low Voltage, $\mathrm{I}^{\text {OL }}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	0.15	0.4	-	0.15	0.4	V	
Output High Voltage, $1 \mathrm{OH}=1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	2.4	-	-	V	
Output Short Circuit Current	'OS*	-	-	40	-	-	40	mA	

*Duration not to exceed 30 seconds.

CAPACITANCE ( $f=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, periodically sampled rather than $100 \%$ tested)

	Characteristic	Symbol
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	5.0
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	pF	

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=1 \Delta_{\mathrm{t}} / \Delta \mathrm{V}$.

STANDBY OPERATION
(Typical Supply Values)

Device	Supply	Operating	Standby	Max Standby Power
MCM6641	$V_{C C}$	+5 V	+2.4 V	225 mW
MCM66L41	$\mathrm{V}_{\mathrm{CC}}$	+5 V	+2.4 V	150 mW

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels.............................. 0.8 V olt to 2.0 Volts	Input and Output Timing Levels............................... 1.5 Volts
Input Rise and Fall Times................................. 10 ns	Output Load.......................... 1 TTL Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

READ (NOTE 1), WRITE (NOTE 2) CYCLES

Parameter	Symbol	MCM6641-20 MCM66L41-20		MCM6641-25 MCM66L41-25		MCM6641-30   MCM66L41-30		MCM6641-45 MCM66L41-45		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\mathrm{RC}}$	200	-	250	-	300	-	450	-	ns
Access Time	${ }^{\text {t }}$ A	-	200	-	250	-	300	-	450	ns
Chip Selection to Output Valid	${ }^{\text {t }}$ SO	-	70	-	85	-	100	-	120	ns
Chip Selection to Output Active	${ }^{\text {t }}$ S X	10	-	10	-	10	-	10	-	ns
Output 3-State From Deselection	${ }^{\text {t OTD }}$	-	40	-	60	-	80	-	100	ns
Output Hold From Address Change		50	-	50	-	50	-	50	-	ns
Write Cycle Time	${ }^{\text {tw }}$ W	200	-	250	-	300	-	450	-	ns
Write Time	${ }^{\text {t }} \mathrm{W}$	100	-	125	-	150	-	200	-	ns
Write Release Time	${ }^{\text {t }}$ WR	0	-	0	-	0	-	0	-	ns
Output 3-State From Write	totw	-	40	-	60	-	80	-	100	ns
Data to Write Time Overlap	${ }^{\text {t }}$ DW	100	-	125	-	150.	-	200	-	ns
Data Hold From Write Time	${ }^{t} \mathrm{DH}$	0	-	0	-	0	-	0	-	ns

## READ CYCLE TIMING <br> (W HELD HIGH)



NOTES:

1. A Read occurs during the overlap of a low $\bar{S}$ and a high $\bar{W}$.
2. A Write occurs during the overlap of a low $\bar{S}$ and a low $\bar{W}$.
3. If the $\bar{S}$ low transition occurs simultaneously with the $\bar{W}$ low transition, the output buffers remain in a high-impedance state.

## MCM6641•MCM66L41

WRITE CYCLE TIMING (Note 3)


## $128 \times 8$-BIT STATIC RANDOM ACCESS MEMORY

The MCM6810 is a byte-organized memory designed for use it, bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in byte increments. Memory expansion is provided through multiple Chip Select inputs.

- Organized as 128 Bytes of 8 Bits
- Static Operation
- Bidirectional Three-State Data Input/Output
- Six Chip Select Inputs (Four Active Low, Two Active High)
- Single 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=450$ ns - MCM6810

360 ns - MCM68A10
250 ns - MCM68B 10

ORDERING INFORMATION

Speed	Device	Temperature Range
1.0 MHz	MC6810P, L	0 to $70^{\circ} \mathrm{C}$
	MC6810CP, CL	-40 to $+85^{\circ} \mathrm{C}$
MIL-STD-883B	MC6810BJCS	-55 to $+125^{\circ} \mathrm{C}$
MIL-STD-883C	MC6810CJCS	
1.5 MHz	MC68A10P, L	0 to $+70^{\circ} \mathrm{C}$
	MC68A10CP, CL	-40 to $+85^{\circ} \mathrm{C}$
2.0 MHz	MC68B10P, L	0 to $+70^{\circ} \mathrm{C}$

## MOS

(NCHANNEL, SILICON-GATE)
$128 \times 8$-BIT STATIC RANDOM ACCESS MEMORY


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\mathrm{in}}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	$\mathrm{T}_{\mathrm{L}}$ to $\mathrm{T}_{\mathrm{H}}$   0 to 70   -40 to 85   -55 to 125	${ }^{\circ} \mathrm{C}$
		-65 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	82.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance	${ }^{\circ} \mathrm{JA}$	8	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, T_{A}=T_{L}\right.$ to $T_{H}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Current }\left(A_{n}, R / W, C S_{n}, \overline{C S}_{n}\right) \\ & \quad\left(V_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}\right) \end{aligned}$	$\mathrm{I}_{\text {in }}$	-	-	2.5	$\mu$ Adc
Output High Voltage $\left(1_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	Vdc
$\begin{aligned} & \text { Output Low Voltage } \\ & \text { (I } \mathrm{OL}=1.6 \mathrm{~mA}) \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	Vdc
Output Leakage Current (Three-State) $\left(\mathrm{CS}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	ITSI	-	-	10	$\mu \mathrm{Adc}$
Supply Current 1.0 MHz   $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right.$, all other pins grounded) $1.5,2.0 \mathrm{MHz}$	${ }^{\text {I CC }}$	-	-	$\begin{gathered} \hline 80 \\ 100 \\ \hline \end{gathered}$	mAdc
$\begin{aligned} & \text { Input Capacitance }\left(A_{n}, R / \bar{W}, C S_{n}, \overline{\mathrm{CS}}_{n}\right) \\ & \left(V_{\text {in }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{Cin}_{\text {in }}$	-	-	7.5	pF
Output Capacitance ( $\mathrm{D}_{\mathrm{n}}$ ) $\left(V_{\text {out }}=0, T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}, \operatorname{cs} \varnothing=0\right)$	$\mathrm{C}_{\text {out }}$	-	-	12.5	pF

RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	5.25	$\mathrm{Vdc}^{\prime}$
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3	-	0.8	Vdc

BLOCK DIAGRAM


FIGURE 1 - AC TEST LOAD

## AC TEST CONDITIONS

Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	See Figure 1

## AC OPERATING CONDITIONS AND CHARACTERISTICS



READ CYCLE ( $\mathrm{V}_{\mathrm{CC}}=5.0 \vee \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to $\mathrm{T}_{\mathrm{H}}$ unless otherwise noted.)

Characteristic	Symbol	MCM6810		MCM68A10		MCM68B10		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\mathrm{c}} \mathrm{yc}$ (R)	450	-	360	-	250	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	450	-	360	-	250	ns
Address Setup Time	${ }^{\text {t }}$ AS	20	-	20	-	20	-	ns
Address Hold Time	${ }^{t} \mathrm{AH}$	0	-	0	-	0	-	ns
Data Delay Time (Read)	${ }^{\text {t D DR }}$	-	230	-	220	-	180	as
Read to Select Delay Time	${ }^{\text {t RCS }}$	0	-	0	-	0	-	ns
Data Hold from Address	${ }^{\text {t }}$ D ${ }^{\text {d }}$	10	-	10	-	10	-	ns
Output Hold Time	${ }^{\text {t }} \mathrm{H}$	10	-	10	-	10	-	ns
Data Hold from Read	${ }^{\text {t }}$ DHR	10	80	10	60	10	60	ns
Read Hold from Chip Select	${ }^{\text {t }} \mathrm{RH}$	0	-	0	-	0	-	ns



Note: $C S$ and $\overline{C S}$ can be enabled for consecutive read cycles provided R/W remains at $V_{1 H}$.

## MCM6810•MCM68A10•MCM68B10

WRITE CYCLE ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0, T_{A}=T_{L}$ to $T_{H}$ unless otherwise noted.)

Characteristic	Symbol	MCM6810		MCM68A10		MCM68B10		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	${ }^{\text {cheyc }}$ (W)	450	-	360	-	250	-	ns
Address Setup Time	${ }^{\text {t } A S}$	20	-	20	-	20	-	ns
Address Hold Time	${ }^{t} \mathrm{AH}$	0	-	0	-	0	-	ns
Chip Select Pulse Width	${ }^{\text {t }} \mathrm{CS}$	300	-	250	-	210	-	ns
Write to Chip Select Delay Time	${ }^{\text {t W }}$ ( ${ }^{\text {d }}$	0	-	0	-	0	-	ns
Data Setup Time (Write)	${ }^{\text {t }}$ DSW	190	-	80	-	60	-	ns
Input Hold Time	${ }^{\text {t }} \mathrm{H}$	10	-	10	-	10	-	ns
Write Hold Time from Chip Select	${ }^{\text {tW }} \mathrm{H}$	0	-					

WRITE CYCLE TIMING


Note: CS and $\overline{\mathrm{CS}}$ can be enabled for consecutive write cycles provided $R / W$ is strobed to $V_{1 H}$ before or coincident with the Address change, and remains high for time $t_{A S}$.

## MCM2532 <br> MCM25L32

## $4096 \times 8$-BIT UV ERASABLE PROM

The MCM2532/25L32 is a 32,768-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window in the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems initially using the MCM2532.

- Single +5 V Power Supply
- Organized as 4096 Bytes of 8 Bits
- Automatic Power-Down Mode (Standby)
- Fully Static Operation (No Clocks)
- TTL Compatible During Both Read and Program
- Maximum Access Time $=450$ ns MCM2532

350 ns MCM2532-35
250 ns MCM2532-25

- Pin Compatible with MCM68A332 Mask Programmable ROMs
- Low Power Version

> MCM25L32 Active -50 mA Max
> Standby -10 mA Max
> MCM25L32-25 Active -70 mA

Standby - 15 mA


PIN ASSIGNMENT


*New Industry standard nomenclature

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input/Output Voltages with   Respect to $V_{S S}$	+6 to -0.3	$\mathrm{Vdc}^{2}$
Vpp Supply Voltage with Respect to $\mathrm{V}_{\text {SS }}$	+28 to -0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

Mode	Pin Number				
	$\begin{gathered} \hline 9-11, \\ 13-17 \\ \text { DQ } \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$	$\frac{20}{\mathrm{E} / \text { Progr }}$	$\begin{gathered} 21 \\ V_{P P} \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{~V}_{\mathrm{CC}} \end{gathered}$
Read	Data Out	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IL }}$	5 V	$\mathrm{V}_{\mathrm{CC}}$
Output Disable	High Z	$V_{\text {SS }}$	$V_{\text {IH }}$	5 to 25 V	$\mathrm{V}_{\mathrm{CC}}$
Standby	High Z	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{1} \mathrm{H}$	5 V	VCC
Program	Data In	VSS	$\begin{gathered} \text { Pulsed } \\ V_{I H} \text { to } V_{I L} \end{gathered}$	VPPH	$V_{C C}$
Program Verify	Data Out	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IL }}$	5 V	$\mathrm{V}_{\mathrm{CC}}$
Program Inhibit	High Z	$V_{S S}$	$\mathrm{V}_{\text {IH }}$	VPPH	$\mathrm{V}_{\mathrm{CC}}$

## BLOCK DIAGRAM



CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\mid \Delta_{\dagger} / \Delta \mathrm{V}$.
DC OPERATING CONDITIONS AND CHARACTERISTICS
(Fully operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

	Parameter		Symbol	Min	Typ	Max
Supply Voltage*	MCM25L32/MCM2532	$V_{C C}$	4.75	5.0	5.25	
	MCM2532-35/MCM2532-25		4.5	5.0	5.5	$V_{d c}$
	MCM25L32-35/MCM25L32-25	$V_{P P}$	$V_{C C}-0.6$	5.0	$V_{C C}+0.6$	
Input High Voltage		$V_{\text {IH }}$	2.2	-	$V_{C C}+1.0$	$V_{d c}$
Input Low Voltage		$V_{\text {IL }}$	-0.1	-	0.65	$V_{d c}$

RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic		Condition	Symbol	MCM2532		MCM25L32		Unit
				Min	Max	Min	Max	
Address and $\overline{\mathrm{E}}$ Input Sink Current		$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	1 in	-	10	-	10	$\mu \mathrm{A}$
Output Leakage Current		$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}$	ILO	-	10	-	10	$\mu \mathrm{A}$
$V_{\text {CC }}$ Supply Current* (Standby)	$\begin{array}{r} \text { MCM2532 } \\ \text { MCM2532-35 } \\ \hline \end{array}$	$E=V_{1 H}$	ICC1	-	25	-	10	mA
$\mathrm{V}_{\text {CC }}$ Standby Current* (Standby)	MCM2532-25	$E=V_{\text {IH }}$	ICC1	-	25	-	15	mA
$\mathrm{V}_{\text {CC }}$ Supply Current** (Active)	$\begin{array}{r} \text { MCM2532 } \\ \text { MCM2532-35 } \end{array}$	$E=V_{\text {IL }}$	ICC2	-	100	-	50	mA
$\mathrm{V}_{\text {CC }}$ Supply Current** (Active)	MCM $2532-25$	$E=V_{\text {IL }}$	ICC2	-	120	-	70	mA
VPP Supply Current*		$\mathrm{VPP}=5.85 \mathrm{~V}$	IPP1	-	5.0	-	5.0	mA
Output Low Voltage		$1 \mathrm{OL}=2.1 \mathrm{~mA}$	V OL	-	0.45	-	0.45	V
Output High Voltage		$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	V OH	2.4	-	2.4	-	V

${ }^{*} V_{\text {CC }}$ must be applied simultaneously or prior to VPP. VCC must also be switched off simultaneously with or after VPP. With VPP connected directly to $V_{C C}$ during the read operation, the supply current would be the sum of IPP1 and ICC. The additional 0.6 V tolerance on VPP makes it possible to use a driver circuit for switching VPp supply from $V_{C C}$ in Read mode to +25 V for programming. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Input Pulse Levels.	0.65 Volt and 2.2 Volts	Input and Output Timing Levels. . . . . . . . . . . . . . . . 0.8 and 2.0 Volts
Input Rise and Fall Times.	... 20 ns	Output Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1


Characteristic	Symbol	MCM2532-25		MCM2532-35		MCM2532		Unit
		Min	Max	Min	Max	Min	Max	
Address Valid to Output Valid ( $\overline{\mathrm{E}} / \overline{\text { Progr }}=\mathrm{V}_{\mathrm{ll}}$ )	tavov	-	250	-	350	-	450	ns
$\overline{\mathrm{E}}$ to Output Valid	telov	-	250	-	350	-	450	ns
$\bar{E}$ to High Z Output	tehoz	0	100	0	100	0	100	ns
Data Hold from Address ( $\overline{\mathrm{E}}=\mathrm{V}_{1 \mathrm{~L}}$ )	tAXDX	0	-	0	-	0	-	ns

READ MODE TIMING DIAGRAMS ( $\bar{E}=V_{I L}$ )


STANDBY MODE


DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
( ${ }^{\prime} A=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ )
RECOMMENDED PROGRAMMING OPERATION CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	VCC, VPPL VPPH	$\begin{gathered} 4.75 \\ 24 \\ \hline \end{gathered}$	$\begin{aligned} & 5.0 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 5.25 \\ 26 \\ \hline \end{gathered}$	Vdc
Input High Voltage for Data	$\mathrm{V}_{\text {IH }}$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+1$	Vdc
Input Low Voltage for Data	$\mathrm{V}_{\text {IL }}$	-0.1	-	0.65	Vdc

*VCC must be applied simultaneously or prior to VPP. VCC must also be switched off simultaneously with or after VPP. The device must not be inserted into or removed from a board with $V p p$ at +25 V . Vpp must not exceed the +26 V maximum specifications.
PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and $\bar{E} / \overline{\text { Progr }}$ Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V} / 0.45 \mathrm{~V}$	ILI	-	-	10	$\mu \mathrm{Adc}$
VPP Supply Current (VPP $=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	$\overline{\mathrm{E}} / \overline{\mathrm{Progr}}=\mathrm{V}_{\mathrm{IH}}$	IPP1	-	-	10	mAdc
VPP Programming Pulse Supply Current ( V PP $=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	$\overline{\mathrm{E}} / \overline{\text { Progr }}=\mathrm{V}_{\text {IL }}$	IPP2	-	-	30	mAdc
$\mathrm{V}_{\text {CC }}$ Supply Current - MCM2532	-	ICC	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	tavel	2.0	-	$\mu \mathrm{S}$
Vpp Setup Time	tPHEL	0	-	ns
Data Setup Time	t DVEL	2.0	-	$\mu \mathrm{S}$
Address Hold Time	tehax	2.0	-	$\mu \mathrm{S}$
Vpp to Enable Low Time	tPLEL	0	-	ns
Data Hold Time	tehoz	2.0	-	$\mu \mathrm{S}$
Vpp Hold Time	tEHPL	0	-	ns
Enable (Program) Active Time	${ }^{\text {t ELEH }}$	$1 *$	55	ms
Enable (E/Progr) Pulse Transition Time	TT(PE)	5	-	ns
VPP Rise and Fall Time from 5 to 25 V	tr, tF	0.5	2	$\mu \mathrm{S}$

[^9]PROGRAMMING OPERATION TIMING DIAGRAM


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the VPP input (pin 21) should be raised to +25 V . The $\mathrm{V}_{\mathrm{CC}}$ supply voltage is the same as for the READ operation. Programming data is entered in 8-bit words through the data out (DQ) terminals while $\bar{E} / \overline{\text { Progr }}$ is high. Only " 0 's' will be programmed when " 0 's" and " 1 ' $s$ " are entered in the data word.

After address and data setup, a 50 ms program pulse $\left(\mathrm{V}_{\mathrm{IH}}\right.$ to $V_{I L}$ ) is applied to the $\bar{E} / \overline{\text { Progr }}$ input. A program pulse is applied to each address location to be programmed. To minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms ; therefore, programming must not be attempted with a dc signal applied to the $\bar{E} / \overline{\text { Progr }}$ input.

Multiple MCM2532s may be programmed in parallel with the same data by connecting together like inputs and apply-
ing the program pulse to the $\bar{E} / \overline{\operatorname{Progr}}$ inputs. Different data may be programmed into multiple MCM2532s connected in parallel by using the PROGRAM INHIBIT mode. Except for the $\bar{E} / \overline{\text { Progr }}$ pin, all like inputs may be common.

PROGRAM VERIFY for the MCM2532 is the read operation.

## READ OPERATION

After access time, data is valid at the outputs in the READ mode.

## ERASING INSTRUCTIONS

The MCM2532/25L32 can be erased by exposure to high intensity shortwave ultraviolet light, with a wave-length of 2537 angstroms. The recommended integrated dose (i.e., $U V$-intensity $X$ exposure timel is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser Turner Designs, Mountain View, CA94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2532/25L32 should be positioned about one inch away from the UV-tubes.

## TIMING PARAMETER ABBREVIATIONS

## 2

signal name from which interval is defined transition direction for first signal
signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:
$H=$ transition to high
$\mathrm{L}=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WAVEFORMS		
Waveform	Input	Output
	Must Be Valid	Will Be Valid
$M \square$	Change From H to L	Will Change From H to L
	Change From L to H	Will Change From L to
$8 \times \times \times \times x$	Don't Care:   Any Change Permitted	Changing: State Unknown
		High Impedance

## MCM2708 <br> MCM27A08

## 1024 X 8 ERASABLE PROM

The MCM2708/27A08 is an 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM2708/27A08.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V
- Maximum Access Time $=300$ ns - MCM27A08

450 ns - MCM2708

- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs


## mos

(N-CHANNEL, SILICON-GATE)

PIN CONNECTION DURING READ OR PROGRAM

Mode	Pin Number							
	$\mathbf{9 - 1 1 , 1 3 - 1 7}$	$\mathbf{1 2}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 4}$	
Read	$\mathrm{D}_{\text {out }}$	$V_{\text {SS }}$	$V_{\text {SS }}$	$V_{\text {DD }}$	$V_{\text {IL }}$	$V_{\text {BB }}$	$V_{C C}$	
Program	Din	$V_{\text {SS }}$	Pulsed   $V_{\text {IHP }}$	$V_{D D}$	$V_{\text {IHW }}$	$V_{\text {BB }}$	$V_{\text {CC }}$	


ABSOLUTE MAXIMUM RATINGS (1)		
Rating	Value	Unit
Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$V_{\text {DD }}$ with Respect to $V_{\text {BB }}$	+20 to -0.3	Vdc
$\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {SS }}$ with Respect to $\mathrm{V}_{\text {BB }}$	+15 to -0.3	Vdc
All Input or Output Voltages with Respect to $\mathrm{V}_{\text {BB }}$ during Read	+15 to -0.3	Vdc
$\overline{C S} / W E$ Input with Respect to $V^{\text {B }}$ during Programming	+20 to -0.3	Vdc
Program Input with Respect to $\mathrm{V}_{\mathrm{BB}}$	+35 to -0.3	Vdc
Power Dissipation	1.8	Watts

Note 1:
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

PIN ASSIGNMENT



DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.75	5.0	5.25	Vdc
	$V_{\text {DD }}$	11.4	12	12.6	Vdc
	$V_{B B}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	3.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	-	0.65	Vdc

READ OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and CS Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$ or $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\text {in }}$	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$	ILO	-	1	10	$\mu \mathrm{A}$
VDD Supply Current	Worst-Case Supply Currents All Inputs High $\overline{\mathrm{CS}} / W E=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{1} \mathrm{DD}$	-	50	65	mA
$\mathrm{V}_{\text {CC }}$ Supply Current ${ }^{\text {d }}$ (Note 2)		ICC	-	6	10	mA
$\mathrm{V}_{\text {BB }}$ Supply Current		$\mathrm{I}_{\mathrm{BB}}$	-	30	45	mA
Output Low Voltage	$1 \mathrm{OL}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output High Voltage	${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	3.7	-	-	V
Output High Voltage	$\mathrm{I}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{VOH}^{2}$	2.4	-	-	V
Power Dissipation (Note 2)	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$P_{\text {D }}$	-	-	800	mW

Note 2:
The total power dissipation is specified at 800 mW . It is not calculable by summing the various current (IDD, ICC, and IBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{S S}$. The $I_{D D} I_{\text {I }}$, and $I_{B B}$ currents should be used to determine power supply capacity only.
$V_{B B}$ must be applied prior to $V_{C C}$ and $V_{D D} . V_{B B}$ must also be the last power supply switched off.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
(All timing with $\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}=\mathbf{2 0} \mathrm{ns}$, Load per Note 3 )

Characteristic	Symbol	MCM27A08			MCM2708			Unit
		Min	Typ	Max	Min	Typ	Max	
Address to Output Delay	${ }^{\text {t }}$ AO	-	220	300	-	280	450	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	60	120	-	60	120	ns
Data Hold from Address	tDHA	0	-	-	0	-	-	ns
Data Hold from Deselection	tDHD	0	-	120	0	-	120	ns

CAPACITANCE (periodically sampled rather than $100 \%$ tested.)

Characteristic	Condition	Symbol	Typ	Max	Unit
Input Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

Note 3:
Output Load $=1 \mathrm{TTL}$ Gate and $C_{L}=100 \mathrm{pF}$ (Includes Jig Capacitance)
Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V
Outputs: 0.8 V and 2.4 V

AC TESt LOAD


READ OPERATION TIMING DIAGRAM


RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.75	5.0	5.25	Vdc
	VDD	11.4	12	12.6	Vdc
	$V_{B B}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage for All Addresses and Data	$\mathrm{V}_{\text {IH }}$	3.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc
Input Low Voltage (except Program)	$V_{\text {IL }}$	VSS	-	0.65	Vdc
$\overline{\text { CS/WE Input High Voltage ( }}$ (Note 4)	$\mathrm{V}_{\text {IHW }}$	11.4	12	12.6	Vdc
Program Pulse Input High Voltage (Note 4)	VIHP	25	-	27	Vdc
Program Pulse Input Low Voltage (Note 5)	VILP	$\mathrm{V}_{\text {SS }}$	-	1.0	Vdc

Note 4: Referenced to $V_{\text {SS }}$.
Note 5: $V_{\text {IHP }}-V_{\text {ILP }}=25 \mathrm{~V}$ min.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and $\overline{C S} /$ WE Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	ILI	-	-	10	$\mu \mathrm{Adc}$
Program Pulse Source Current		IIPL	-	-	3.0	mAdc
Program Pulse Sink Current		IIPH	-	-	20	mAdc
$\mathrm{V}_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$\overline{C S} / W E=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{1} \mathrm{DD}$	-	50	65	mAdc
$\mathrm{V}_{\text {CC }}$ Supply Current		ICC	-	6	10	mAdc
$\mathrm{V}_{\text {BB }}$ Supply current		${ }^{1} \mathrm{BB}$	-	30	45	mAdc

## AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

 (Full operating voltage and temperature unless otherwise noted.)| Characteristic | Symbol | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Address Setup Time | ${ }^{t}$ AS | 10 | - | $\mu \mathrm{s}$ |
| $\overline{\text { CS/WE Setup Time }}$ | ${ }^{t} \mathrm{CSS}$ | 10 | - | $\mu \mathrm{s}$ |
| Data Setup Time | ${ }^{\text {t }}$ DS | 10 | - | $\mu \mathrm{s}$ |
| Address Hold Time | ${ }^{\text {t }}$ A H | 1.0 | - | $\mu \mathrm{s}$ |
| $\overline{\text { CS} / W E ~ H o l d ~ T i m e ~}$ | ${ }^{t} \mathrm{CH}$ | 0.5 | - | $\mu \mathrm{s}$ |
| Data Hold Time | ${ }^{t} \mathrm{DH}$ | 1.0 | - | $\mu \mathrm{s}$ |
| Chip Deselect to Output Float Delay | ${ }^{\text {t }}$ DF | 0 | 120 | ns |
| Program to Read Delay | ${ }^{\text {t }}$ DPR | - | 10 | $\mu \mathrm{s}$ |
| Program Pulse Width | tPW | 0.1 | 1.0 | ms |
| Program Pulse Rise Time | tPR | 0.5 | 2.0 | $\mu \mathrm{s}$ |
| Program Pulse Fall Time | ${ }^{t} \mathrm{PF}$ | 0.5 | 2.0 | $\mu \mathrm{s}$ |



Nute 6: The $\overline{\mathrm{C}}$ S/WE transition must occur after the Program Pulse transition and before the Address Transition.

## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for programming mode, the $\overline{\mathrm{CS}} / \mathrm{WE}$ input (Pin 20) should be raised to +12 V . Programming data is entered in 8-bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages ( $V_{C C}, V_{D D}, V_{B B}$ ) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input ( P in 18). A program loop is a full pass through all addresses. Total programming time, $T_{\text {Ptotal }}=N \times t_{\text {PW }} \geqslant 100 \mathrm{~ms}$. The required number of program loops $(N)$ is a function of the program pulse width (tPW), where: $0.1 \mathrm{~ms} \leqslant \mathrm{t}_{\mathrm{PW}} \leqslant$ 1.0 ms ; correspondingly N is: $100 \leqslant \mathrm{~N} \leqslant 1000$. There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the $\overline{\mathrm{CS}} / \mathrm{WE}$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to $V_{\text {ILP }}$ with an active device, because this pin sources a small amount of current ( $I_{\text {IPL }}$ ) when $\overline{\mathrm{CS}} / W E$ is at $V_{\text {IHW }}$ $(12 \mathrm{~V})$ and the program pulse is at $V_{\text {ILP. }}$

## EXAMPLES FOR PROGRAMMING

Always use the $T_{\text {Ptotal }}=N \times t_{P W} \geqslant 100 \mathrm{~ms}$ relationship.

1. All 8192 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$
N=\frac{T_{\text {Ptotal }}}{t_{P W}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 . \text { One program loop }
$$ consists of words 0 to 1023.

2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms . The minimum number of program loops, $N=\frac{100}{0.5}=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s .
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 . The minimum number of program loops is the same as in the previous example, $N=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s . Addresses 0 to 200 and 300 to $\% 00$ must be reprogrammed with their original data pattern.

## ERASING INSTRUCTIONS

The MCM2708/27A08 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV-intensity $x$ exposure time) is $12.5 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM2708/27A08 should be positioned about one inch away from the UV-tubes.

$2048 \times 8$-BIT UV ERASABLE PROM

The MCM2716/27L16 is a 16,384 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent lid on the package allows the memory content to be erased with ultraviolet light.
For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM2716/27L16.

- Single 5 V Power Supply
- Automatic Power-down Mode (Standby)
- Organized as 2048 Bytes of 8 Bits
- Low Power Version 27L16/27L16-35 Active 50 mA Max Standby 10 mA Max
27L16-25 Active 70 mA Max Standby 15 mA Max
- TTL Compatible During Read and Program
- Maximum Access Time $=450$ ns MCM2716

350 ns MCM2716-35
250 ns MCM2716-25

- Pin Equivalent to Intel's 2716
- Pin Compatible to MCM68A316E
- Output Enable Active Level is User Selectable


MOS
(N-CHANNEL, SILICON-GATE)
$2048 \times 8$-BIT UV ERASABLE PROM


PIN ASSIGNMENT

*New industry standard nomenclature

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to + 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $\mathrm{V}_{\text {SS }}$	+6 to -0.3	Vdc
VPP Supply Voltage with Respect to VSS	+28 to -0.3	Vdc

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

MODE SELECTION

Mode	Pin Number					
	$\begin{gathered} 9-11, \\ 13-17 \\ \text { DO } \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$	$\begin{gathered} 18 \\ \text { E/Progr } \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{G}^{*} \end{aligned}$	$\begin{gathered} 21 \\ \text { VPP } \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{~V}_{\mathrm{CC}} \end{gathered}$
Read	Data Out	$V_{\text {SS }}$	VIL	$V_{\text {IL }}$	$V_{C C}{ }^{*}$	VCC
Output Disable	High Z	$V_{\text {SS }}$	Don't Care	$\mathrm{V}_{\text {IH }}$	$V_{C C}{ }^{*}$	$V_{\text {CC }}$
Standby	High Z	VSS	$\mathrm{V}_{\mathrm{IH}}$	Don't Care	$V_{\text {CC }}{ }^{*}$	VCC
Program	Data In	VSS	Pulsed $V_{I L} \text { to } V_{I H}$	VIH	VIHP	VCC
Program Verify	Data Out	$\mathrm{V}_{\text {SS }}$	VIL	VIL	VIHP	VCC
Program Inhibit	High Z	$\mathrm{V}_{\text {SS }}$	VIL	VIH	VIHP	$\mathrm{V}_{\mathrm{CC}}$

-In the Read Mode if $V_{P P} \geq V_{I H}$, then $\bar{G}$ (active low)
$V_{P P} \leq V_{I L}$, then $G$ (active high)

BLOCK DIAGRAM


FIGURE 1 - AC TEST LOAD


CAPACITANCE $\left(f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right.$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Typ	Max
Unput Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	6.0
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\frac{1 \Delta_{t}}{\Delta \mathrm{~V}}$.
DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
recommended dc operating conditions

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage*					
MCM27L16-35/MCM27L16-25/MCM2716-35/MCM2716-25	$V_{C C}$	4.75	5.0	5.25	$V_{d c}$
	$V_{P P}$	4.5	5.0	5.5	$V_{C C}-0.6$
	5.0	$V_{C C}+0.6$			
Input High Voltage	$V_{\text {IH }}$	2.0	-	$V_{C C}+1.0$	$V_{d c}$
Input Low Voltage	$V_{\text {IL }}$	-0.1	-	0.8	$V_{d c}$

RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	MCM2716			MCM27L16			Units
			Min	Typ	Max	Min	Typ	Max	
Address, $\overline{\mathrm{G}}$ and $\overline{\mathrm{E}} /$ Progr Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	in	-	-	10	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$\begin{gathered} \mathrm{V}_{\text {out }}=5.25 \mathrm{~V} \\ \mathrm{G}=5.0 \mathrm{~V} \end{gathered}$	ILO	-	-	10	-	-	10	$\mu \mathrm{A}$
VCC Supply Current (Standby) 2716/2716-35	$\begin{gathered} \overline{\mathrm{E}} / \text { Progr }=\mathrm{V}_{\mathrm{IH}} \\ \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}} \end{gathered}$	ICC1	-	-	25	-	-	10	mA
V CC Supply Current (Standby) 2716-25	$\begin{gathered} \overline{\mathrm{E}} / \text { Progr }=\mathrm{V}_{\mathrm{IH}} \\ \overline{\mathrm{G}} / \mathrm{V}_{\mathrm{IL}} \end{gathered}$	${ }^{1} \mathrm{CC} 1$	-	-	25	-	-	15	mA
VCC Supply Current (Active) 2716/2716-35 (Outputs Open)	$\begin{gathered} \overline{\mathrm{G}}=\overline{\mathrm{E}} / \text { Progr }= \\ V_{\text {IL }} \end{gathered}$	${ }^{1} \mathrm{CC} 2$	-	-	100	-	-	50	mA
VCC Supply Current (Active) 2716-25 (Outputs Open)	$\begin{gathered} \overline{\mathrm{G}}=\overline{\mathrm{E}} / \text { Progr }= \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	ICC2	-	-	120	-	-	70	mA
Vpp Supply Current*	$\mathrm{V}_{\mathrm{PP}}=5.85 \mathrm{~V}$	IPP1	-	-	5.0	-	-	5.0	mA
Output Low Voltage	$\mathrm{l}^{\mathrm{OL}}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	-	-	0.45	V
Output High Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	VOH	2.4	-	-	2.4	-	-	V

${ }^{*} V_{C C}$ must be applied simultaneously or prior to $V_{P P}$. $V_{C C}$ must also be switched off simultaneously with or after VPP. With VPP connected directly to $\mathrm{V}_{\mathrm{CC}}$ during the read operation, the supply current would then be the sum of IPP1 and ICC. The additional 0.6 V tolerance on VPP makes it possible to use a driver circuit for switching the $V_{P P}$ supply pin from $V_{C C}$ in Read mode to $\pm 25 \mathrm{~V}$ for programming. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
Input Pulse Levels . . . . . . . . . . . . . . . 0.8 Volt and 2.2 Volts Input and Output Timing Levels . . . . . . . . . 2.0 and 0.8 Volts

Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ns
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1

Characteristic	Condition	Symbol	MCM2716-25		MCM2716-35		MCM2716		Units
			Min	Max	Min	Max	Min	Max	
Address Valid to Output Valid	$\overline{\mathrm{E}} /$ Progr $=\mathrm{G}=\mathrm{V}_{\text {IL }}$	tavav	-	250	-	350	-	450	ns
$\bar{E} /$ Progr to Output Valid	(Note 2)	telav	-	250	-	350	-	450	
Output Enable to Output Valid	$\overline{\mathrm{E}} / \mathrm{Progr}=\mathrm{V}_{\text {IL }}$	tGLQV	-	150	-	150	-	150	
$\overline{\mathrm{E}} /$ Progr to Hi-Z Output	-	tehaz	0	100	0	100	0	100	
Output Disable to Hi-Z Output	$\overline{\mathrm{E}} /$ Progr $=\mathrm{V}_{\text {IL }}$	tGHOZ	0	100	0	100	0	100	
Data Hold from Address	$\overline{\mathrm{E}} /$ Progr $=\mathrm{G}=\mathrm{V}_{\text {IL }}$	t AXDX	0	-	0	-	0	-	

READ MODE TIMING DIAGRAMS ( $\bar{E} /$ Progr $=V_{I L}$ )


STANDBY MODE (Output Enable $=\mathrm{V}_{\mathrm{IL}}$ )
Standby Mode $\left(\bar{E} /\right.$ Progr $\left.=V_{I H}\right)$


NOTE 2: tELQV is referenced to $\bar{E} /$ Progr or stable address, whichever occurs last.

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
( $T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ )
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max
Unit					
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	Vdc
Input High Voltage for Data	$V_{P P}$	24	25	26	
Input Low Voltage for Data	$V_{I H}$	2.2	-	$V_{C C}+1$	$V_{d c}$

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address, $\overline{\mathrm{G}}$ and $\overline{\mathrm{E}} /$ Progr Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V} / 0.45 \mathrm{~V}$	ILI	-	-	10	$\mu$ Adc
VPP Supply Current (VPP $=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	$\overline{\mathrm{E}} / \mathrm{Progr}=\mathrm{V}_{\mathrm{IL}}$	IPP1	-	-	10	mAdc
VPP Programming Pulse Supply Current ( $\mathrm{VPP}=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	$\overline{\mathrm{E}} /$ Progr $=\mathrm{V}_{1} \mathrm{H}$	IPP2	-	-	30	mAdc
$\mathrm{V}_{\text {CC }}$ Supply Current (Outputs Open)	-	ICC	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	taVEH	2.0	-	$\mu \mathrm{S}$
Output Enable High to Program Pulse	tGHEH	2.0	-	$\mu \mathrm{S}$
Data Setup Time	tDVEH	2.0	-	$\mu \mathrm{s}$
Address Hold Time	telax	2.0	-	$\mu \mathrm{S}$
Output Enable Hold Time	tELGL	2.0	-	$\mu \mathrm{S}$
Data Hold Time	teloz	2.0	-	$\mu \mathrm{S}$
VPP Setup Time	tPHEH	0	-	ns
VPP to Enable Low Time	tELPL	0	-	ns
Output Disable to High Z Output	${ }^{\text {tGHOZ }}$	0	150	ns
Output Enable to Valid Data ( $\overline{\mathrm{E}} /$ Progr $=\mathrm{V}_{\text {IL }}$ )	tGLQV	-	150	ns
Program Pulse Width	tehEL	$1 *$	55	ms
Program Pulse Rise Time	tPR	5	-	ns
Program Pulse Fall Time	tPF	5	-	ns

*If shorter than $45 \mathrm{~ms}(\mathrm{~min})$ pulses are used, the same number of pulses should be applied after the specific data has been verified.

PROGRAMMING OPERATION TIMING DIAGRAM


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for Program Mode, the Vpp input (Pin 21) should be raised to +25 V . The $\mathrm{V}_{\mathrm{CC}}$ supply voltage is the same as for the Read operation and G is at $\mathrm{V}_{\mathrm{IH}}$. Programming data is entered in 8 -bit words through the data out (DQ) terminals. Only " 0 ' $s$ " will be programmed when " 0 ' $s$ " and " 1 's" are entered in the 8 -bit data word.

After address and data setup, a program pulse ( $\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{(\mathrm{H}}$ ) is applied to the $\mathrm{E} /$ Progr input. A program pulse is applied to each address location to be programmed. To minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms ; therefore, programming must not be attempted with a dc signal applied to the E/Progr input.

Multiple MCM2716s may be programmed in parallel by connecting together like inputs and applying the program pulse to the $\bar{E} /$ Progr inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using the PROGRAM INHIBIT mode. Except for the $\bar{E} /$ Progr pin, all like inputs (including Output Enable) may be common.

The PROGRAM VERIFY mode with VPP at 25 V is used to determine that all programmed bits were correctly programmed.

## READ OPERATION

After access time, data is valid at the outputs in the READ mode. With stable system addresses, effectively faster access time can be obtained by gating the data onto the bus with Output Enable.

The Standby mode is available to reduce active power dissipation. The outputs are in the high impedance state when the $\bar{E} /$ Progr input pin is high $\left(V_{I H}\right)$ independent of the Output Enable input.

## ERASING INSTRUCTIONS

The MCM2716/27L16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity $X$ exposure time) is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2716/MCM27L16 should be positioned about one inch away from the UV-tubes.

## TIMING PARAMETER ABBREVIATIONS



The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Waveform   Symbol	WhVEFORMS   Input	Output   Valid
Change   From H to L	Will Be   Valid	
Will Change		
From H to L		

## $2048 \times 8$ ERASABLE PROM

The TMS2716 and TMS27A16 are 16,384-bit Erasable and Electrically Reprogrammable PROMs designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. The TMS2716 is pin compatible with 2708 EPROMs, allowing easy memory size doubling.

- Organized as 2048 Bytes of 8 Bits
- Fully Static Operation (No Clocks, No Refresh)
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$, and -5 V
- Maximum Access Time $=300 \mathrm{~ns}-$ TMS27A16

450 ns - TMS2716

- Chip-Select Input for Memory Expansion
- TTL Compatible - No Pull-up Resistors Required
- Three-State Outputs for OR-Tie Capability
- The TMS2716 is Pin Compatible to MCM2708 and MCM68708 EPROMs


TMS2716
TMS27A16

## MOS <br> (N-CHANNEL, SILICON-GATE) <br> $2048 \times 8$-BIT UV ERASABLE PROM



ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {DD }}$ with Respect to $\mathrm{V}_{\text {BB }}$	+20 to -0.3	V
$\mathrm{~V}_{\text {CC }}$ and $\mathrm{V}_{\text {SS }}$ with Respect to $\mathrm{V}_{\mathrm{BB}}$	+15 to -0.3	V
All Input or Output Voltage with Respect to $\mathrm{V}_{\text {BB }}$ During Read	+15 to -0.3	V
(E) Input with Respect to $\mathrm{V}_{\text {BB }}$ During Programming	+20 to -0.3	V
Program Input with Respect to $\mathrm{V}_{\mathrm{BB}}$	+35 to -0.3	V
Power Dissipation	1.8	Watts

PIN CONNECTION DURING READ OR PROGRAM

Mode	Pin Number		
	$9-11$,   $13-17$	18	24
	$D_{\text {out }}$	$V_{\text {IL }}$ or   $V_{\text {IH }}$	$V_{\text {CC }}$
Program	$\mathrm{D}_{\text {in }}$	Pulsed   $V_{\text {IHP }}$	$\mathrm{V}_{\text {IHW }}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter		Symbol	Min	Nom	Max	Unit
Supply Voltage	TMS2716	$V_{\text {CC }}$	4.75	5.0	5.25	V
		$V_{\text {DD }}$	11.4	12	12.6	V
		$V_{\text {BB }}$	-5.25	-5.0	-4.75	V
	TMS27A16	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
		$V_{\text {DD }}$	10.8	12	13.2	V
		$V_{B B}$	-5.5	-5.0	-4.5	V
Input High Voltage		$\mathrm{V}_{1} \mathrm{H}$	2.2	-	$\mathrm{v}_{\mathrm{CC}}+1.0$	V
Input Low Voltage		$V_{\text {IL }}$	$\mathrm{V}_{\mathrm{SS}}$	-	0.65	V

READ OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$V_{\text {in }}=V_{\text {CC }}$ max or $\mathrm{V}_{\text {in }}=V_{\text {IL }}$	$\mathrm{I}_{\text {in }}$	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {CC }}$ max and $\overline{\mathrm{S}}=5 \mathrm{~V}$	ILO	-	1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DD }}$ Supply Current	Worst-Case Supply Currents	${ }^{1}$ DD	-	-	65	mA
$\mathrm{V}_{\mathrm{CC}}$ Supply Current	All Inputs High	${ }^{\text {I CC }}$	-	-	12	mA
$\mathrm{V}_{\text {BB }}$ Supply Current	$(\mathrm{E})=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{\text {IBB }}$	-	-	45	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output High Voltage	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH} 1}$	3.7	-	-	V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH} 2}$	2.4	-	-	V

$\mathrm{V}_{\mathrm{BB}}$ must be applied prior to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{DD}} . \mathrm{V}_{\mathrm{BB}}$ must also be the last power supply switched off.

CAPACITANCE (periodically sampled rather than 100\% tested)

Characteristic	Condition	Symbol	Typ	Max	Unit
Input Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
(All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load per Note 2)

Characteristic	Symbol	TMS2716		TMS27A16		Unit
		Min	Max	Min	Max	
Address to Output Delay	tAVQV	-	450	-	300	ns
Chip Select to Output Delay	tsLov	-	120	-	120	ns
Data Hold from Address	taxaz	10	-	10	--	ns
Data Hold from Deselection	${ }^{\text {t }}$ SHOZ	10	120	10	120	ns

NOTE 2: Output Load $=1 \mathrm{TTL}$ Gate and $C_{L}=100 \mathrm{pF}$ (Includes Jig Capacitance)
Timing Measurement Reference Levels - Inputs: 0.8 V and 2.8 V Outputs: 0.8 V and 2.4 V

AC TEST LOAD


## TIMING PARAMETER ABBREVIATIONS



The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.


## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage - TMS2716 and TMS27A16	$V_{C C}$   $V_{D D}$   $V_{B B}$	$\begin{gathered} 4.75 \\ 11.4 \\ -5.25 \end{gathered}$	$\begin{gathered} 5.0 \\ 12 \\ -5.0 \\ \hline \end{gathered}$	$\begin{array}{r} 5.25 \\ 12.6 \\ -4.75 \end{array}$	Vdc   Vdc   $V \mathrm{dc}$
Input High Voltage for Data	$V_{\text {IHD }}$	3.8	-	$\mathrm{V}_{\mathrm{CC}}+1$	Vdc
Input Low Voltage for Data	$V_{\text {ILD }}$	$\mathrm{V}_{\text {SS }}$	--	0.65	Vdc
Input High Voltage for Addresses	$V_{\text {IHA }}$	3.8	-	$\mathrm{V}_{\mathrm{CC}}+1$	Vdc
Input Low Voltage for Addresses	VILA	$\mathrm{V}_{\text {SS }}$	-	0.4	Vdc
Program Enable (E) Input High Voltage (Note 3)	VIHW	11.4	12	12.6	Vdc
Program Enable (E) Input Low Voltage (Note 3)	$\mathrm{V}_{\text {ILW }}=\mathrm{V}_{\text {CC }}$	4.75	5.0	5.25	Vdc
Program Pulse Input High Voltage (Note 3)	$V_{\text {IHP }}$	25	-	27	Vdc
Program Pulse Input Low Voltage (Note 4)	VILP	$\mathrm{V}_{\text {SS }}$	-	1.0	Vdc

NOTE 3: Referenced to $V_{S S}$.
NOTE 4: $V_{\text {IHP }}-V_{\text {ILP }}=25 \mathrm{~V}$ min.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic,	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	ILI	-	-	10	$\mu \mathrm{Adc}$
Program Pulse Source Current		IIPL	-	-	3.0	mAdc
Program Pulse Sink Current		IPPH	-	-	20	mAdc
$\mathrm{V}_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$(E)=5 \vee, T_{A}=0^{\circ} \mathrm{C}$	IDD	-	-	65	mAdc
$\mathrm{V}_{\text {CC }}$ Supply Current		${ }^{\text {ICC }}$	-	-	15	mAdc
$V_{\text {BB }}$ Supply current		'BB	-	-	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	${ }^{t}$ AVPH	10	-	$\mu \mathrm{s}$
(E) Setup Time	${ }^{\text {t }}$ EHPH	10	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t DVPH }}$	10	-	$\mu \mathrm{s}$
Address Hold Time	tPLAX	1.0	-	$\mu \mathrm{s}$
(E) Hold Time	tPLEL	0.5	-	$\mu \mathrm{s}$
Data Hold Time	tPLDX	1.0	-	$\mu \mathrm{s}$
Program to Read Delay	telov	-	10	$\mu \mathrm{s}$
Program Pulse Width	tPHPL	0.1	1.0	ms
Program Pulse Rise Time	${ }^{1} \mathrm{PR}$	0.5	2.0	$\mu \mathrm{s}$
Program Pulse Fall Time	${ }_{\text {t PF }}$	0.5	2.0	$\mu \mathrm{s}$



NOTE 5: This Program Enable tranistion must occur after the Program Pulse transition and before the Address Transition.

WAVEFORM DEFINITIONS

Waveform Symbol	input	Output	Waveform Symbol	Input	Output
	must be VALID	WILL BE VALID	$8 \times \times \times \times 8$	DON'T CARE. ANY CHANGE PERMITTED	CHANGING STATE UNKNOWN
$011$	CHANGE   FROMHTOL	WILL CHANGE FROM HTOL			HIGH   IMPEDANCE
$\sqrt{7 / 7}$	CHANGE FROMLTOH	WILL CHANGE FROM LTOH			

## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for programming mode, the $V_{C C}(E)$ input ( $\operatorname{Pin} 24$ ) should be raised to +12 V . Programming data is entered in 8-bit words through the data output terminals (DQ0 to DQ7).

The $V_{D D}$ and $V_{B B}$ supply voltages are the same as for the READ operation.

After address and data setup, one program pulse per address is applied to the program input. A program loop is a full pass through all addresses. Total programming time/ address, $T_{P \text { total }}=N \times$ tPHPL $\geqslant 100 \mathrm{~ms}$. The required number of program loops ( N ) is a function of the program pulse width (tPHPL) where: $0.1 \mathrm{~ms} \leqslant \mathrm{tPHPL} \leqslant 1.0 \mathrm{~ms}$; correspondingly, N is: $100 \leqslant \mathrm{~N} \leqslant 1000$. There must be $N$ successive loops through all 2048 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., $N$ program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the Program Enable (E) falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin should be pulled down to VILP with an active device, because this pin sources a small amount of current (l/PL) when $(E)$ is at $V_{\text {IHW }}(12 \mathrm{~V})$ and the program pulse is at VILP.

## EXAMPLE FOR PROGRAMMING

Always use the TPtotal $=\mathrm{N} \times$ tPHPL $\geqslant 100 \mathrm{~ms}$ relationship.

1. All 16,384 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$
\mathrm{N}=\frac{\text { TPtotal }}{\mathrm{tPHPL}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 .
$$

One program loop consists of words 0 to 2047.
2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms . The minimum number of program loops, $N=100 / 0.5=200$. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1 s .
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 . The minimum number of program loops is the same as in the previous example, $\mathbf{N}=\mathbf{2 0 0}$. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

## ERASING INSTRUCTIONS

The TMS2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV-intensity $X$ exposure time) is $12.5 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the TMS2716/27A16 should be positioned about one inch away from the UV-tubes.

## $1024 \times 8$ ERASABLE PROM

The MCM68708/68A708 is a 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM68708/68A708.

- Organized as 1024 Bytes of 8 Bits
- Fully Static Operation
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V
- Maximum Access Time $=300 \mathrm{~ns}-$ MCM68A708

$$
450 \mathrm{~ns}-\text { MCM68708 }
$$

- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs
- Bus Compatible to the M6800 Family

PIN CONNECTION DURING READ OR PROGRAM

Mode	Pin Number							
	$\mathbf{9 - 1 1 , 1 3 - 1 7}$	$\mathbf{1 2}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 4}$	
Read	$\mathrm{D}_{\text {out }}$	$\mathrm{V}_{\mathrm{SS}}$	$\mathrm{V}_{\mathrm{SS}}$	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{BB}}$	$\mathrm{V}_{\mathrm{CC}}$	
Program	$\mathrm{D}_{\text {in }}$	$\mathrm{V}_{\mathrm{SS}}$	Pulsed   $V_{I H P}$	$\mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{1 H W}$	$\mathrm{~V}_{\mathrm{BB}}$	$\mathrm{V}_{\mathrm{CC}}$	



PIN ASSIGNMENT	
A70 1	$24 \bigcirc \vee \mathrm{CC}$
A6[ 2	23 A8
A5 3	22 J A9
A4 4	$21 . \vee^{\text {B }}$
A3 55	20 CSS/WE
A2 6	$19 \mathrm{P} \vee_{\text {DD }}$
A10 7	18 Progr.
A0L8	17 DD7
DOL9	16 D6
D1C10	15 PD5
D2 ${ }^{11}$	14 DD4
vSS 12	13 JD 3

MCM68708/68A708 READ ONLY MEMORY BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Rating	Value	Unit
Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {DD }}$ with Respect to $\mathrm{V}_{\text {BB }}$	+20 to -0.3	Vdc
$\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {SS }}$ with Respect to $\mathrm{V}_{\mathrm{BB}}$	+15 to -0.3	Vdc
All Input or Output Voltages with Respect to $V_{B B}$ during Read	+15 to -0.3	Vdc
$\overline{\overline{C S}} / W E$ Input with Respect to $V_{B B}$ during Programming	+20 to -0.3	Vdc
Program Input with Respect to $\mathrm{V}_{\mathrm{BB}}$	+35 to -0.3	Vdc
Power Dissipation	1.8	Watts

Note 1:
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.0	5.25	Vdc
	$\mathrm{V}_{\mathrm{DD}}$	11.4	12	12.6	Vdc
	$\mathrm{V}_{\mathrm{BB}}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	$\mathrm{V}_{\mathrm{CC}}$	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc

READ OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and CS Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$ or $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$	$1{ }_{\text {in }}$	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$	ILO	-	1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$\overline{C S} / W E=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	${ }^{1} \mathrm{DD}$	-	50	65	mA
$\mathrm{V}_{\text {CC }}$ Supply Current ${ }^{\text {( }}$ (Note 2)		ICC	-	6	10	mA
$\mathrm{V}_{\text {BB }}$ Supply Current		$I_{\text {BB }}$	-	30	45	mA
Output Low Voltage	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$	VOL	-	-	$\mathrm{V}_{\text {SS }}+0.4$	V
Output High Voltage	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\text {SS }}+2.4$	-	-	V
Power Dissipation (Note 2)	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$P_{\text {D }}$	-	-	800	mW

Note 2:
The total power dissipation is specified at 800 mW . It is not calculable by summing the various currents (IDD, ICC, and IBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{S S}$. The $I_{D D}$, ICC, and $I_{B B}$ currents should be used to determine power supply capacity only.
$V_{B B}$ must be applied prior to $V_{C C}$ and $V_{D D} . V_{B B}$ must aiso be the last power supply switched off.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
(All timing with $\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\boldsymbol{f}}=\mathbf{2 0} \mathrm{ns}$, Load per Note 3)

Characteristic	Symbol	MCM68A708			MCM68708			Unit
		Min	Typ	Max	Min	Typ	Max	
Address to Output Delay	${ }^{\text {t }} \mathrm{AO}$	-	220	300	-	280	450	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	60	120	-	60	120	ns
Data Hold from Address	${ }^{\text {t }}$ DHA	10	-	-	10	-	-	ns
Data Hold from Deselection	tDHD	10	-	120	10	-	120	ns

CAPACITANCE (periodically sampled rather than 100\% tested.)

Characteristic	Condition	Symbol	Typ	Max	Unit
Input Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {in }}$	4.0	6.0	pF
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {out }}$	8.0	12	pF

## Note 3:

Output Load $=1$ TTL Gate and $C_{L}=100$ pF (Includes Jig Capacitance)
Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V Outputs: 0.8 V and 2.4 V


READ OPERATION TIMING DIAGRAM


DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	Vdc
	$V_{D D}$	11.4	12	12.6	Vdc
	$V_{B B}$	-5.25	-5.0	-4.75	Vdc
Input High Voltage for All Addresses and Data	$\mathrm{V}_{\text {IH }}$	3.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc
Input Low Voltage (except Program)	VIL	$\mathrm{V}_{\text {SS }}$	-	0.65	Vdc
$\overline{\text { CS/WE }}$ Input High Voltage (Note 4)	VIHW	11.4	12	12.6	Vdc
Program Pulse Input High Voltage (Note 4)	$V_{\text {IHP }}$	25	-	27	Vdc
Program Pulse Input Low Voltage (Note 5)	VILP	$\mathrm{V}_{\text {SS }}$	-	1.0	Vdc

Note 4: Referenced to $\mathrm{V}_{\mathrm{SS}}$.
Note 5: $V_{\text {IHP }}-V_{\text {ILP }}=25 \mathrm{~V}$ min.

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address and $\overline{\mathrm{CS}} / \mathrm{WE}$ Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	'LI'	-	-	10	$\mu \mathrm{Adc}$
Program Pulse Source Current		IIPL	-	-	3.0	mAdc
Program Pulse Sink Current		IIPH	-	-	20	mAdc
$V_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$\overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	IDD	-	50	65	mAdc
$\mathrm{V}_{\text {CC }}$ Supply Current		ICC	-	6	10	mAdc
$\mathrm{V}_{\text {BB }}$ Supply current		'BB	-	30	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)

Characteristic	Symboi	Min	Max	Unit
Address Setup Time	${ }^{\text {t }}$ AS	10	-	$\mu \mathrm{s}$
$\overline{\mathrm{CS}} / \mathrm{WE}$ Setup Time	${ }^{t} \mathrm{CSS}$	10	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t }}$ DS	10	-	$\mu \mathrm{S}$
Address Hold Time	${ }^{t} \mathrm{AH}$	1.0	-	$\mu \mathrm{s}$
$\overline{C S} / W E$ Hold Time	${ }^{t} \mathrm{CH}$	0.5	-	$\mu \mathrm{s}$
Data Hold Time	${ }^{t} \mathrm{DH}$	1.0	-	$\mu \mathrm{s}$
Chip Deselect to Ouptut Float Delay	${ }^{\text {t }}$ DF	0	120	ns
Program to Read Delay	${ }^{\text {t }}$ DPR	-	10	$\mu \mathrm{s}$
Program Pulse Width	tPW	0.1	1.0	ms
Program Pulse Rise Time	tPR	0.5	2.0	$\mu \mathrm{s}$
Program Pulse Fall Time	tPF	0.5	2.0	$\mu \mathrm{s}$

PROGRAMMING OPERATION TIMING DIAGRAM


Note 6: The $\bar{C} S / W E$ transistion must occur after the Program Pulse transition and before the Address Transistion.

## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for programming mode, the $\overline{\mathrm{CS}} / \mathrm{WE}$ input ( $\operatorname{Pin} 20$ ) should be raised to +12 V . Programming data is entered in 8 -bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages ( $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BB}}$ ) are the same as for the READ operation.

After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, $T_{\text {Ptotal }}=\mathrm{N} \times \mathrm{t}_{\mathrm{PW}} \geqslant 100 \mathrm{~ms}$. The required number of program loops ( N ) is a function of the program pulse width (tpW), where: $0.1 \mathrm{~ms} \leqslant$ tpW $^{\leqslant}$ 1.0 ms; correspondingly N is: $100 \leqslant \mathrm{~N} \leqslant 1000$. There must be $N$ successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the $\overline{C S} / W E$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to $V_{\text {ILP }}$ with an active device, because this pin sources a small amount of current ( $\|_{\mathrm{IPL}}$ ) when $\overline{\mathrm{CS}} / W E$ is at $V_{\text {IHW }}$ ( 12 V ) and the program pulse is at $\mathrm{V}_{\text {ILP }}$.

## EXAMPLES FOR PROGRAMMING

Always use the $T_{\text {Ptotal }}=N \times t_{\text {PW }} \geqslant 100 \mathrm{~ms}$ relationship.

1. All 8092 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$
N=\frac{T_{\text {Ptotal }}}{t_{\text {PW }}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 . \text { One program loop }
$$ consists of words 0 to 1023.

2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms . The minimum number of program loops, $N=\frac{100}{0.5}=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s .
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 . The minimum number of program loops is the same as in the previous example, $N=200$. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1 s . Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

## ERASING INSTRUCTIONS

The MCM68708/68A708 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV-intensity $x$ exposure time) is $12.5 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM68708/68A708 should be positioned about one inch away from the UV-tubes.

## $4096 \times 8$-BIT UV ERASABLE PROM

The MCM68732/68L732 is a 32,768-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 32 K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems initially using the MCM68732/68L732.

- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 4096 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time $=450$ ns MCM68732

350 ns MCM68732-35

- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A332 Mask Programmable ROM
- AR Selects the Operational 32 K Portion of the Die

MCM68732-1 AR $=1=$ HIGH
MCM68732-0 AR = $=$ =LOW

- Pin Compatible With the MCM2532 32K EPROM in the Read Mode
- Low Power Version

MCM68L732 Active 60 mA Maximum
Standby 15 mA Maximum
MCM68L732-35 Active 100 mA Maximum Standby 25 mA Maximum


MCM68732 MCM68L732

## MOS

(N-CHANNEL, SILICON-GATE)
$4096 \times 8$-BIT
UV ERASABLE PROGRAMMABLE READ ONLY MEMORY


L SUFFIX SIDEBRAZE CERAMIC PACKAGE ALSO AVAILABLE - CASE 716


ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to V SS	+6 to -0.3	Vdc
VPp Supply Voltage with Respect to VSS	+28 to -0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

	Pin Number			
Mode	$\begin{gathered} 9-11, \\ \text { 13-17, } \\ \text { DQ } \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$	$\begin{gathered} 20 \\ \bar{E} / V_{P P} \end{gathered}$	$\begin{gathered} 24 \\ v_{C C} \end{gathered}$
Read	Data out	$V_{\text {SS }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}$
Output Disable	High Z	$V_{S S}$	$\mathrm{V}_{\text {IH }}$	$V_{C C}$
Standby	High Z	$V_{\text {SS }}$	VIH	$V_{C C}$
Program	Data in	VSS	$\begin{aligned} & \text { Pulsed } \\ & V_{\text {ILP }} \text { to } V_{\text {IHP }} \end{aligned}$	$V_{C C}$



FIGURE 1 - AC TEST LOAD


CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance ( $V_{\text {in }}=0 \mathrm{~V}$ ) Except $\overline{\mathrm{E}} / \mathrm{V}$ PP	$\mathrm{Cin}_{\text {in }}$	4.0	6.0	pF
Input Capacitance E/VPP	$\mathrm{Cin}_{\text {in }}$	60	100	pF
Output Capacitance ( $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ )	Cout	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\mid \Delta_{\mathrm{t}} / \Delta \mathrm{V}$.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68L732/MCM68732		$V_{C C}$	4.75	5.0	5.25
	MCM68L732-35/MCM68732-35		4.5	5.0	5.5	$V$
Input High Voltage	$V_{\text {IH }}$	2.0	-	$V_{C C}+1.0$	$V$	
Input Low Voltage	$V_{\text {IL }}$	-0.1	-	0.8	$V$	

RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	MCM68732			MCM68L732			Units
			Min	Typ	Max	Min	Typ	Max	
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	lin	-	-	10	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}$	ILO	-	-	10	-	-	10	$\mu \mathrm{A}$
$\overline{\mathrm{E}} / \mathrm{V}_{\text {PP }}$ Input Sink Current	$\overline{\mathrm{E}} / \mathrm{VPP}^{\text {e }}=0.4$	IEL	-	-	100	-	-	100	$\mu \mathrm{A}$
	$\overline{\mathrm{E}} / \mathrm{VPP}=2.4$	${ }^{\prime} \mathrm{EH}=\mathrm{IPL}$	-	-	400	-	-	400	$\mu \mathrm{A}$
$V_{\text {CC }}$ Supply Current (Standby) MCM68732	$\overline{\mathrm{E}} / \mathrm{VPPP}=\mathrm{V}_{1} \mathrm{H}$	ICC1	-	-	25	-	-	15	mA
$\mathrm{V}_{\text {CC }}$ Supply Current (Standby) MCM68732-35	$\bar{E} / V_{P P}=V_{1 H}$	ICC1	-	-	25	-	-	25	mA
$\mathrm{V}_{\text {CC }}$ Supply Current (Active) MCM68732 (Outputs Open)	$\bar{E} / V_{P P}=V_{\text {IL }}$	ICC2	-	-	120	-	-	60	mA
$\mathrm{V}_{\text {CC }}$ Supply Current (Active) MCM68732-35 (Outputs Open)	$\bar{E} / V_{P P}=V_{\text {IL }}$	ICC2	-	-	160	-	-	100	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	VOL	-	-	0.45	-	-	0.45	V
Output High Voltage	$\mathrm{l} \mathrm{OH}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	2.4	-	-	V

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels $\qquad$ 0.8 Volt and 2.2 Volts Input Rise and Fall Times	Output Timing Levels .0.8 Volt and 2 Volts Output Load See Figure 1						
Characteristic	Condition	Symbol	$\begin{gathered} \text { MCM68732- } \\ 35 \end{gathered}$		MCM68732		Units
			Min	Max	Min	Max	
Address Valid to Output Valid	$E=V_{\text {IL }}$	tavav	-	350	-	450	ns
$\overline{\mathrm{E}}$ to Output Valid	-	teLQV	-	350	-	450	ns
$\overline{\mathrm{E}}$ to Hi-Z Output	-	${ }^{\text {tehaz }}$	0	100	0	100	ns
Data Hold from Address	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}$	${ }^{\text {t }}$ AXDX	0	-	0	-	ns

READ MODE TIMING DIAGRAM


DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
( $\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}$ )
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	4.75	5.0	5.25	V
Input High Voltage for All Addresses and Data	$\mathrm{V}_{\text {IH }}$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+1$	V
Input Low Voltage for All Addresses and Data	$\mathrm{V}_{\text {IL }}$	-0.1	-	0.8	V
Program Pulse Input High Voltage	$\mathrm{V}_{\text {IHP }}$	24	25	26	V
Program Puise Input Low Voltage	$\mathrm{V}_{\text {ILP }}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	6.0	V

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	ILI	-	-	10	$\mu \mathrm{A}$
Vpp Program Pulse Supply Current (VPP $=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	-	IPH	-	-	30	mA
VPP Supply Current (VPP $=2.4 \mathrm{~V}$ )	-	$I_{P L}=I_{E H}$	-	-	400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current ( $\mathrm{V} P \mathrm{PP}=5.0 \mathrm{~V}$ )	-	ICC	-	-	160	mA

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	taVPH	2.0	-	$\mu \mathrm{S}$
Data Setup Time	tDVPH	2.0	-	$\mu \mathrm{S}$
Chip Enable to Valid Data	telev	450	-	ns
Chip Disable to Data In	tehDV	2.0	-	$\mu \mathrm{S}$
Program Pulse Width	tPHPL	1.9	2.1	ms
Program Pulse Rise Time	tpR	0.5	2.0	$\mu \mathrm{S}$
Program Pulse Fall Time	tpF	0.5	2.0	$\mu \mathrm{S}$
Cumulative Programming Time Per Word*	${ }_{\text {t }} \mathrm{CP}$	12	50	ms

*Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 4096 address locations in sequence. Multiple blocks are used to accumulate programming time ( t CP ).

PROGRAMMING OPERATION TIMING DIAGRAM


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.
To set the memory up for Program Mode, the $\bar{E} / V_{\text {Pp }}$ input (Pin 20) should be between +2.0 and +6.0 V , which will three-state the outputs and allow data to be setup on the DO terminals. The VCC voltage is the same as for the Read operation. Only " 0 ' $s$ " will be programmed when " 0 ' $s$ " and " 1 's" are entered in the 8 -bit data word.
After address and data setup, 25 -volt programming pulse ( $\mathrm{V}_{\mathrm{IH}}$ to $\mathrm{V}_{\mathrm{IHP}}$ ) is applied to the E/VPP input. A program pulse is applied to each address location to be programmed. The maximum program pulse width is 2 ms and the maximum program pulse amplitude is 26 V .
Multiple MCM68732s may be programmed in parallel by connecting like inputs and applying the program pulse to the $\bar{E} / V_{\text {PP }}$ inputs. Different data may be programmed into multiple MCM68732s connected in parallel by selectively applying the programming pulse only to the MCM68732s to be programmed.

## READ OPERATION

After access time, data is valid at the outputs in the Read mode. A single input ( $\bar{E} / \mathrm{V} P \mathrm{P}$ ) enables the outputs and puts the chip in active or standby mode. With E/Vpp = " 0 " the outputs are enabled and the chip is in active mode; with $\bar{E} / V_{P P}=$ " 1 " the outputs are three-stated and the chip is in standby mode. During standby mode, the power dissipation is reduced.
Multiple MCM68732s may share a common data bus with like outputs OR-tied together. In this configuration the E/VPP input should be high on all unselected MCM68732s to prevent data contention.

## ERASING INSTRUCTIONS

The MCM68732 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UVintensity $X$ exposure time) is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68732 should be positioned about one inch away from the UV-tubes.

## TIMING PARAMETER ABBREVIATIONS <br> TIMING PARAMETER ABBREVIATIONS



The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)
signal name from which interval is defined -_
transition direction for first signal
signal name to which interval is defined -
transition direction for second signal

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WAVEFORMS

| Waveform <br> Symbol | WAVEFORMS <br> Input | Output <br> Must Be <br> Valid |
| :---: | :---: | :---: | | Will Be |
| :---: |
| Valid |

MCM68764 MCM68L764

## $8192 \times 8$-BIT UV ERASABLE PROM

The MCM68764/68L764 is a 65,536 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 64 K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM68764/68L764.

- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 8192 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time $=450$ ns MCM68764

350 ns MCM68764-35

- Standard 24 -Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A364 Mask Programmable ROM
- Low Power Version

MCM68L764 Active 60 mA Maximum
Standby 15 mA Maximum
MCM68L764-35 Active 100 mA Maximum Standby 25 mA Maximum


## MOS

(N-CHANNEL, SILICON-GATE)
$8192 \times 8$-BIT
UV ERASABLE
PROGRAMMABLE READ ONLY MEMORY

PIN ASSIGNMENT

*New industry standard nomenclature

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $\mathrm{V}_{\text {SS }}$	+6 to -0.3	$\mathrm{Vdc}^{\prime 2}$
VPp Supply Voltage with Respect to V SS	+28 to -0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

Mode	Pin Number			
	$\begin{gathered} \hline 9-11, \\ 13-17, \\ \text { DQ } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$	$\begin{gathered} 20 \\ \overline{\mathrm{E}} / \mathrm{V}_{\mathrm{PP}} \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{~V}_{\mathrm{CC}} \end{gathered}$
Read	Data out	$V_{\text {SS }}$	$V_{\text {IL }}$	$\mathrm{V}_{\text {CC }}$
Output Disable	High-Z	$V_{S S}$	$\mathrm{V}_{\text {IH }}$	VCC
Standby	High-Z	$V_{S S}$	$\mathrm{V}_{\text {IH }}$	$V_{\text {CC }}$
Program	Data in	VSS	$\begin{gathered} \text { Pulsed } \\ V_{\text {ILP }} \text { to } V_{I H P} \end{gathered}$	$V_{C C}$



FIGURE 1 - AC TEST LOAD


## MCM68764•MCM68L764

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage MCM68L764/MCM68764   MCM68764-35/MCM68L764-35	$\mathrm{V}_{\mathrm{CC}}$	$\begin{gathered} 4.75 \\ 4.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 5.25 \\ 5.5 \end{gathered}$	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	$V_{C C}+1.0$	Vdc
Input Low Voltage	$V_{\text {IL }}$	-0.1	-	- 0.8	Vdc

RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	MCM68764			MCM68L764			Units
			Min	Typ	Max	Min	Typ	Max	
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	lin	-	-	10	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}$	ILO	-	-	10	-	-	10	$\mu \mathrm{A}$
$\overline{\mathrm{E}} / \mathrm{V}_{\text {PP }}$ Input Sink Current	$\overline{\mathrm{E}} / \mathrm{V}_{\mathrm{PP}}=0.4$	IEL	-	-	100	-	-	100	$\mu \mathrm{A}$
	$\overline{\mathrm{E}} / \mathrm{V}_{\mathrm{PP}}=2.4$	${ }^{\prime} \mathrm{EH}=1 \mathrm{PL}$	-	-	400	-	-	400	$\mu \mathrm{A}$
VCC Supply Current (Standby) MCM68764	$\overline{\mathrm{E}} / \mathrm{V}_{P P}=\mathrm{V}_{1} \mathrm{H}$	ICC1	-	-	25	-	-	15	mA
$\mathrm{V}_{\text {CC }}$ Supply Current (Standby) MCM68764-35	$\overline{\mathrm{E}} / \mathrm{V}_{P P}=\mathrm{V}_{\text {IH }}$	I'C1	-	-	25	-	-	25	mA
$\mathrm{V}_{\text {CC }}$ Supply Current (Active) MCM68764 (Outputs Open)	$\bar{E} / V_{P P}=V_{\text {IL }}$	${ }^{\text {CCC2 }}$	-	-	120	-	-	60	mA
VCC Supply Current (Active) MCM68764-35 (Outputs Open)	$\overline{\mathrm{E}} / \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {IL }}$	ICC2	-	-	160	-	-	100	mA
Output Low Voltage	$\mathrm{I} \mathrm{OL}=2.1 \mathrm{~mA}$	V OL	-	-	0.45	-	-	0.45	V
Output High Voltage	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	2.4	-	-	V

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

	Characteristic	Symbol	Typ
Max	Unit		
Input Capacitance $\left(V_{\text {in }}=0 \mathrm{~V}\right)$ Except $\overline{\mathrm{E}} / \mathrm{VPP}$	$\mathrm{C}_{\text {in }}$	4.0	6.0
Input Capacitance $\overline{\mathrm{E}} / \mathrm{V}_{\mathrm{PP}}$	$\mathrm{C}_{\text {in }}$	60	100
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right.$ )	$\mathrm{C}_{\text {out }}$	8.0	12

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=\frac{1 \Delta_{\mathrm{t}}}{\Delta \mathrm{V}}$.

READ MODE TIMING DIAGRAM


AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)


Characteristic	Condition	Symbol	$\begin{gathered} \text { MCM68764 } \\ 35 \end{gathered}$		MCM68764		Units
			Min	Max	Min	Max	
Address Valid to Output Valid	$\overline{\mathrm{E}}=\mathrm{V}_{\text {IL }}$	tavov	-	350	-	450	ns
$\overline{\mathrm{E}}$ to Output Valid	-	telovv	-	350	-	450	ns
$\overline{\mathrm{E}}$ to Hi-Z Output	-	tehaz	0	100	0	100	ns
Data Hold from Address	$\mathrm{E}=\mathrm{V}_{\mathrm{IL}}$	tAXDX	0	-	0	-	ns

## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

( $T_{A}=25 \pm 5^{\circ} \mathrm{C}$ )
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.0	5.25	V
Input High Voltage for All Addresses and Data	$\mathrm{V}_{\text {IH }}$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+1$	V
Input Low Voltage for All Addresses and Data	$\mathrm{V}_{\text {IL }}$	-0.1	-	0.8	V
Program Pulse Input High Voltage	$\mathrm{V}_{\text {IHP }}$	24	25	26	V
Program Pulse Input Low Voltage	$\mathrm{V}_{\text {ILP }}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	6.0	V

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	ILI	-	-	10	$\mu \mathrm{A}$
VPP Program Pulse Supply Current (VPP $=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	-	IPH	-	-	30	mA
VPP Supply Current (VPP $=2.4 \mathrm{~V}$ )	-	$\mathrm{IPL}=\mathrm{IEH}$	-	-	400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current (VPP $=5.0 \mathrm{~V}$ )	-	ICC	-	-	160	mA

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	taVPH	2.0	-	$\mu \mathrm{S}$
Data Setup Time	t DVPH	2.0	-	$\mu \mathrm{S}$
Chip Enable to Valid Data	tELQV	450	-	ns
Chip Disable to Data In	tehDV	2.0	-	$\mu \mathrm{S}$
Program Pulse Width	tPHPL	1.9	2.1	ms
Program Pulse Rise Time	tPR	0.5	2.0	$\mu \mathrm{S}$
Program Pulse Fall Time	tpF	0.5	2.0	$\mu \mathrm{S}$
Cumulative Programming Time Per Word*	${ }_{\text {t }} \mathrm{CP}$	12	50	ms

*Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 8,192 address locations in sequence. Multiple blocks are used to accumulate programming time ( t CP ).


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for Program Mode, the $\bar{E} /$ VPp input $^{\prime}$ (Pin 20) should be between +2.0 and +6.0 V , which will three-state the outputs and allow data to be setup on the DO terminals. The $V_{C C}$ voltage is the same as for the Read operation. Only " 0 ' $s$ " will be programmed when " 0 ' $s$ " and " 1 's" are entered in the 8 -bit data word.
After address and data setup, 25 -volt programming pulse ( $V_{I H}$ to $V_{I H P}$ ) is applied to the $\bar{E} / V_{P P}$ input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V .

Multiple MCM68764s may be programmed in parallel by connecting like inputs and applying the program pulse to the $\bar{E} / V_{\text {PP }}$ inputs. Different data may be programmed into multiple MCM68764s connected in parallel by selectively applying the programming pulse only to the MCM68764s to be programmed.

## READ OPERATION

After access time, data is valid at the outputs in the Read mode. A single input ( $\bar{E} / \mathrm{V} P \mathrm{P}$ ) enables the outputs and puts the chip in active or standby mode. With $\bar{E} / V_{P P}=$ " 0 " the outputs are enabled and the chip is in active mode; with $\bar{E} / V_{P P}=" 1$ " the outputs are three-stated and the chip is in standby mode. During standby mode, the power dissipation is reduced.
Multiple MCM68764s may share a common data bus with like outputs OR-tied together. In this configuration, only one $\bar{E} /$ VPP input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

## ERASING INSTRUCTIONS

The MCM68764 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UVintensity $X$ exposure time) is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68764 should be positioned about one inch away from the UV-tubes.

## Advance Information

## $8192 \times 8$-BIT UV ERASABLE PROM

The MC68766 is a 65,536 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 64 K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply that has an output enable control and is pin-for-pin compatible with the MCM68366 mask programmable ROMs, which are available for large volume production runs of systems initially using the MCM68766.

- Single +5 V Power Supply
- Organized as 8192 Bytes of 8 Bits
- Fully TTL Compatible
- Maximum Access Time $=450$ ns MCM68766

350 ns MCM68766-35

- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68366 Mask Programmable ROM
- Power Dissipation - 160 mA Maximum


INDUSTRY STANDARD PINOUTS

## MOS

(N-CHANNEL, SILICON-GATE)
$8192 \times 8$-BIT
UV ERASABLE PROGRAMMABLE READ ONLY MEMORY


PIN ASSIGNMENT


*New industry standard nomenclature

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Temperature Under Bias	-10 to +80	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $\mathrm{V}_{\text {SS }}$	+6 to -0.3	${ }^{\text {Vdc }}$
VPP Supply Voltage with Respect to VSS	+28 to -0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

	Pin Number			
Mode	$\begin{gathered} \hline 9-11, \\ 13-17, \\ \text { DO } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$	$\stackrel{20}{\mathbf{G} / \mathrm{V}_{\mathrm{PP}}}$	$\begin{gathered} 24 \\ \mathrm{~V}_{\mathrm{CC}} \end{gathered}$
Read	Data Out	$V_{\text {SS }}$	VIL	VCC
Output Disable	High-Z	$\mathrm{V}_{\text {SS }}$	VIH	VCC
Program	Data In	VSS	$\begin{gathered} \text { Pulsed } \\ V_{\text {ILP }} \text { to } V_{\text {IHP }} \end{gathered}$	VCC



CAPACITANCE (f $=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Typ	Max
Unit			
Input Capacitance $\left(V_{\text {in }}=0 \mathrm{~V}\right.$ ) Except $\overline{\mathrm{G}} / \mathrm{VpP}$	$\mathrm{C}_{\text {in }}$	4.0	6.0
Input Capacitance $\left(\overline{\mathrm{G}} / \mathrm{V}_{\mathrm{pp}}\right)$	pF		
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right.$ )	$\mathrm{C}_{\text {in }}$	60	100
pF			

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C=I \Delta_{t} / \Delta V$
DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter		Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68766 MCM68766-35	$V_{C C}$	$\begin{gathered} 4.75 \\ 4.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 5.25 \\ 5.5 \end{gathered}$	Vdc
Input High Voltage		$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\text {CC }}+1.0$	Vdc
Input Low Voltage		$\mathrm{V}_{\text {IL }}$	-0.1	-	0.8	Vdc

DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Units
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	lin	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {out }}=5.25 \mathrm{~V}$	ILO	-	-	10	$\mu \mathrm{A}$
$\overline{\text { G/V PP Input Sink Current }}$	$\overline{\mathrm{G}} / \mathrm{VPP}=0.4 \mathrm{~V}$	IGL	-	-	100	$\mu \mathrm{A}$
	$\overline{\mathrm{G}} / \mathrm{V}_{\mathrm{PP}}=2.4 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GH}}=1 \mathrm{PL}$	-	-	400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current (Outputs Open)	$\overline{\mathrm{G}} / \mathrm{VPP}=\mathrm{V}_{\text {IL }}$	ICC	-	-	160	mA
Output Low Voltage	$1 \mathrm{OL}=2.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.45	V
Output High Voltage	${ }^{\mathrm{I} O H}=-400 \mu \mathrm{~A}$	VOH	2.4	-	-	V

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels.....................................0.8 Volt and 2.2 Volts Input Rise and Fall Times................................................. 20 ns	Input Timing Levels..............................1.0 Volt and 2 VoltsOutput Timing Levels.......................... 8 V olt and 2 VoltsOutput Load...........................................See Figure 1						
Characteristic	Condition	Symbol	MCM6876635		MCM68766		Units
			Min	Max	Min	Max	
Address Valid to Output Valid	$\overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	${ }^{\text {t }}$ AVQV	-	350	-	450	ns
$\overline{\mathrm{G}}$ to Output Valid	-	IGLQV	-	150	-	150	ns
$\overline{\mathrm{G}}$ to Hi-Z Output	-	tGHQZ	0	100	0	100	ns
Data Hold from Address	$\overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	${ }^{\text {t } A X D X}$	0	-	0	-	ns

## READ MODE TIMING DIAGRAM



## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS <br> ( $T_{A}=25 \pm 5^{\circ} \mathrm{C}$ )

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.75	5.0	5.25	$V_{d c}$
Input High Voltage for All Addresses and Data	$V_{\text {IH }}$	2.2	-	$V_{C C}+1$	$V_{d c}$
Input Low Voltage for All Addresses and Data	$V_{\text {IL }}$	-0.1	-	0.8	$V_{d c}$
Program Pulse Input High Voltage	$V_{\text {IHP }}$	24	25	26	$V_{d c}$
Program Pulse Input Low Voltage	$V_{\text {ILP }}$	2.0	$V_{\text {CC }}$	6.0	$V_{d c}$

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Address Input Sink Current	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	ILI	-	-	10	$\mu$ Adc
VPP Program Pulse Supply Current (VPP $=25 \mathrm{~V} \pm 1 \mathrm{~V}$ )	-	IPH	-	-	30	mAdc
VPP Supply Current (VPP = 2.4 V)	-	$\mathrm{IPL}^{\text {a }} \mathrm{I}_{\mathrm{GH}}$	-	-	400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current ( V PP $=5 \mathrm{~V}$ )	-	ICC	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max
Address Setup Time	Unit		
Data Setup Time	tAVPH	2.0	-
Output Enable to Valid Data	$\mu \mathrm{s}$		
Output Disable to Data In	tDVPH	2.0	-
Program Pulse Width	$\mu \mathrm{s}$		
Program Pulse Rise Time	tGHDV	150	-
Program Pulse Fall Time	2.0	-	$\mu \mathrm{s}$
Cumulative Programming Time Per Word*	tPHPL	1.9	2.1

*Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 8,192 address locations in sequence. Multiple blocks are used to accumulate programming time ( $\mathrm{t}_{\mathrm{CP}}$ )


## PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed " 0 ' can only be changed to a " 1 " by ultraviolet light erasure.

To set the memory up for Program Mode, the $\bar{G} / V p p$ input ( Pin 20 ) should be between +2.0 and +6.0 V , which will three-state the outputs and allow data to be set up on the DO terminals. The $\mathrm{V}_{\mathrm{CC}}$ voltage is the same as for the Read operation. Only " 0 ' $s$ " will be programmed when " 0 ' $s$ " and " 1 's" are entered in the 8 -bit data word.

After address and data setup, 25-volt programming pulse ( $\mathrm{V}_{\text {IH }}$ to $\mathrm{V}_{\text {IHP }}$ ) is applied to the G/VPP input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V .

Multiple MCM68766s may be programmed in parallel by connecting like inputs and applying the program pulse to the $\bar{G} /$ VPP inputs. Different data may be programmed into multiple MCM68766s connected in parallel by selectively applying the programming pulse only to the MCM68766s to be programmed.

## READ OPERATION

After access time, data is valid at the outputs in the Read mode. With $\bar{G} / V P P=$ " 0 " the outputs are enabled; with $\bar{G} / \mathrm{VPP}=$ " 1 " the outputs are three-stated.

Multiple MCM68766s may share a common data bus with like outputs OR-tied together. In this configuration only one $\overline{\mathrm{G}} /$ VPP input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

## ERASING INSRUCTIONS

The MCM68766 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UVintensity $X$ exposure timel is $15 \mathrm{Ws} / \mathrm{cm}^{2}$. As an example, using the "Model 30-000" UV Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68766 should be positioned about one inch away from the UV-tubes.

## Advance Information

## $16 \times 16-$ BIT SERIAL ELECTRICALLY ERASABLE PROM

The MCM2801 is a 256-bit serial Electrically Erasable PROM designed for handling small amounts of data in applications requiring both nonvolatile memory and in-system information updates.

The MCM2801 saves time and money because of the in-system erase and reprogram capability. It has external control of timing functions and serial format for data and address. The MCM2801 is fabricated in floating gate technology for high reliability and producibility.

- Single +5 V Power Supply
- Organized as 16 Words of 16 Bits
- Fully TTL Compatible
- Single +25 V Power Supply for Erase and Program
- In-System Program/Erase Capability


MOS
(N-CHANNEL, SILICON GATE)
$16 \times 16$ BIT
ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

MODE SELECTION

Mode	Pin Number						
	$\begin{gathered} 1 \\ V_{P P}^{1} \end{gathered}$	$\frac{6}{5}$	$\begin{gathered} 7 \\ V_{S S} \end{gathered}$	$\begin{gathered} 11 \\ \text { CTR3 } \end{gathered}$	$\begin{gathered} 12 \\ \text { CTR2 } \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ \text { CTR1 } \end{gathered}$	$\begin{gathered} 14 \\ V_{c C} \end{gathered}$
Standby	$\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\text {CC }}$
Word Erase	VPP	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	$V_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}$
Write	VPP	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}$
Serial Data Out	$V_{\text {SS }}$ or $V_{\text {CC }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{1 \mathrm{H}}$	VIL	$\mathrm{V}_{\text {CC }}$
Serial Address In	$\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\mathrm{IL}}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{V}_{\mathrm{CC}}$
Serial Data In	$V_{\text {SS }}$ or $V_{\text {CC }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\mathrm{CC}}$
Read	$V_{\text {SS }}$ or $V_{\text {CC }}$	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{CC}}$
Standby	$\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{\text {SS }}$	VIL	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {CC }}$

## ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Temperature Under Bias	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to VSS	+8 to -0.5	$\mathrm{Vdc}^{\prime}$
VPP Supply Voltage with Respect to VSS	+30 to -0.5	Vdc

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS(Full operating voltage and temperature range unless otherwise noted.)

	Parameter	Symbol	Min	Nom	Max
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	$\mathrm{Vdc}^{2}$
Input High Voltage	$\mathrm{V}_{\mathrm{PP}}$	24.0	25.0	26.0	
Input Low Voltage	$\mathrm{V}_{\text {IH }}$	4.0	-	$\mathrm{V}_{\mathrm{CC}}+1.0$	Vdc

OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Typ	Max	Units
Input Sink Current	$0<V_{\text {in }}<V_{\text {CC }}$	$\mathrm{lin}_{\text {in }}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current	$\overline{\mathrm{S}}=\mathrm{V}_{\text {IL }}$	${ }^{\text {I C C }}$	-	-	30	mA
VPP Supply Current	$\mathrm{V}_{\mathrm{PP}}=26.0 \mathrm{~V}$	IPP	-	-	4.0	mA
Output Low Voltage	$1 \mathrm{OL}=1.0 \mathrm{~mA}$	VOL	-	-	0.5	V
Output High Voltage	$\mathrm{I}^{\mathrm{OH}}=-0.1 \mathrm{~mA}$	VOH	2.4	-	-	V

CAPACITANCE ( $f=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, periodically sampled rather than $100 \%$ tested.)

	Characteristic	Symbol	Typ	Max
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	-	6.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	-	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $\mathrm{C}=1 \Delta_{\mathrm{t}} / \Delta \mathrm{V}$.

## MCM2801

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

Input Puls	d 4.0 Volts	Input and Output Timing Levels................. 0.8 Volts and 4.0 Volts
Input Rise and Fall Times	20 ns	Output Load...............................................See Figure 2


Characteristic	Symbol	Min	Max	Unit
Clock High Level Hold Time	${ }^{\text {t }} \mathrm{CHCL}$	4	10	$\mu \mathrm{S}$
Clock Low Level Hold Time	${ }^{\text {t }} \mathrm{CLCH}$	4	-	$\mu \mathrm{S}$
Clock Rise Time	${ }^{\text {t }} \mathrm{Cr}$	5	1000	ns
Clock Fall Time	${ }^{\text {t }} \mathrm{Cf}$	5	1000	ns
Chip Select Lead Time	${ }^{\text {t SLCH }}$	1	-	$\mu \mathrm{S}$
Chip Select Lag Time	${ }^{\text {t CLSH }}$	1	-	$\mu \mathrm{S}$
Erase Time	terase	100	-	ms
Write Time	tWRITE	10	-	ms
Data Out Delay	${ }^{\text {t }} \mathrm{CHOV}$	0	3.0	$\mu \mathrm{S}$
Address In Setup	${ }^{\text {t }}$ AVCL	2	-	$\mu \mathrm{S}$
Data In Setup	${ }^{\text {t }}$ DVCL	2	-	$\mu \mathrm{S}$
Control Setup Lead	${ }^{\mathrm{t}} \mathrm{CtrVCH}$	2	-	$\mu \mathrm{S}$
Control Setup Lag	${ }^{\text {t }} \mathrm{CLCtrV}$	50	-	ns
Data-Off Time (from the Clock)	${ }^{\text {t }} \mathrm{CHOZ}$	0	3.0	$\mu \mathrm{S}$
Chip Select Low to Output Active Time	${ }^{\text {t SLQX }}$	0	3.0	$\mu \mathrm{S}$
Data-Off Time (from Chip Select)	${ }^{\text {t }}$ SHOZ	0	3.0	$\mu \mathrm{S}$

TIMING DIAGRAMS
Clock Cycle Detail


All times defined at $10 \%$ or $90 \%$ points.

## Serial Address In



## read and serial data out



SERIAL DATA IN


## ERASE-WRITE SEQUENCE



NOTE : One clock pulse is sufficient to load a new op code.

## FUNCTIONAL DESCRIPTION

The memory stores sixteen words each of sixteen bits. All functions are controlled by a 3-bit parallel instruction bus and an applied clock.

## Read-Out

1) The (3-bit parallel) serial address instruction code is presented while the 4-bit serial address is shifted in on the I/O bus through the ADQ pin.
2) The READ instruction is presented for one clock time. This reads the word from the new address in the memory array and parallel loads it into the shift register.
3) The SERIAL DATA-OUT instruction is presented for 16 -clock pulses, causing the data to be shifted out on the $1 / O$ bus through the ADO pin. During the serial data-out instruction, data is recirculated to allow further readout of the original data without access to the memory array.

## Writing

1) The address is changed, if necessary, in the same manner as in the readout.
2) Data is serially loaded onto the chip by presenting the SERIAL DATA-IN instruction for 16-clock pulses.
3) The WORD ERASE instruction is presented for the specified Erase Time. This erases only the addressed word.
4) The WRITE instruction is presented for the specified Write Time. This transfers the data to the selected address in the MCM2801.

## Standby

The STANDBY INSTRUCTION when strobed in by the clock puts the memory in a quiescent state where the output is in the high-impedance state, and the clock presence or absence will not affect the chip.

## Clock

The active high clock signal is used for loading instruction codes, for introducing serial addresses and data, and for shifting serial data out. The clock has no influence on any other function.

## Data Protection

When VPP is turned off, data stored in the array is always protected. A VPP control output is provided for switching the VPP supply. It consists of a pull-down device to VSS. This device is turned on only when: $\mathrm{V}_{\mathrm{CC}}$ is present and a WRITE or WORD ERASE code has been loaded with a clock pulse.

A schematic for this external VPP control is proposed in Figure 1.

When this feature is not used for data protection, VPP must not be present if $V_{C C}$ is not supplied. The TEST1, TEST2, and BLOCK ERASE pins are provided for testing purpose only and should be hard-wired to $\mathrm{V}_{\mathrm{SS}}$ in any application.

## Power Up/Power Down Sequence

Using an external VPP control as given in Figure 1, VPP and $V_{C C}$ may be turned on or off in any sequence, without disturbing data in the non-volatile memory array, providing that neither a WORD ERASE nor a WRITE is present on the control inputs, or that $\bar{S}=$ low, or that $C=$ high.

## Instruction Sequences

The clock signal has no effect during WRITE or ERASE.
READ should be presented for one clock cycle only since frequent unnecessary use may disturb data.
WRITE (for any address) must be preceded by the WORD ERASE instruction at the same address.
All instructions except SERIAL DATA-OUT cause the data output driver to be high impedance.

VPP is necessary for WRITE, WORD ERASE and in conjunction with the BLOCK ERASE pin. In all other cases, it can be switched to high impedance, $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SS}}$.

BLOCK ERASE can be used for testing purposes. For clearing the whole array, VPP should be applied and BE pin kept at $\mathrm{V}_{\mathrm{CC}}$ for the normal erase time.

When the chip is deselected $(\bar{S}=1)$, the output buffer is in the OFF state.

The TEST1 and TEST2 pins are for manufacturing use only and are not available to the user.

MCM2816

## Product Preview

## $2048 \times 8$-BIT ELECTRICALLY ERASABLE PROM

The MCM2816 is a 16,384 -bit Electrically Erasable Programmable Read Only Memory designed for handling data in applications requiring both nonvolatile memory and in-system reprogramming. The industry standard pinout in a 24-pin dual-in-line package makes the MCM2816 EEPROM compatible with the popular MCM2716 EPROM.
The MCM2816 saves time and money because of the in-system erase and reprogram capability. While $\mathrm{V}_{P P}$ is at 25 V and $\overline{\mathrm{G}}$ is at $\mathrm{V}_{\mathrm{IL}}$, a 100 ms active high TTL erase pulse applied to the $\bar{E} /$ Progr pin allows the entire memory to be erased to the " 1 " state. In addition to in-system programmability, this new-generation PROM is programmable on the standard EPROM programmer.
For ease of use, the device operates in the read mode from a single power supply and has a static power-down mode. The MCM2816 is fabricated in floating gate technology for high reliability and producibility.

- Single +5 V Power Supply
- Automatic Power-Down Mode (Standby)
- Single +25 V Power Supply for Erase and Program
- Organized as 2048 Bytes of 8 Bits
- TTL Compatible During Read and Program (No High Voltage Pulses)
- Maximum Access Time $=450$ ns MCM2816

350 ns MCM2816-35

- Pin Compatible to MCM68316E and MCM2716
- In-System Program/Erase Capability


MOS
(N-CHANNEL, SILICON GATE)

## $2048 \times 8$-BIT

 ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY


Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## 128c X $7 \times 5$ CHARACTER GENERATOR

The MCM6670 is a mask-programmable horizontal-scan (row select) character generator containing 128 characters in a $5 \times 7$ matrix. A 7 -bit address code is used to select one of the 128 available characters, and a 3 -bit row select code chooses the appropriate row to appear at the outputs. The rows are sequentially displayed, providing a 7 -word sequence of 5 parallel bits per word for each character selected by the address inputs.

The MCM6674 is a preprogrammed version of the MCM6670. The complete pattern of this device is contained in this data sheet.

- Fully Static Operation
- TTL Compatibility
- Single $\pm 10 \%+5$ Volt Power Supply
- 18-Pin Package
- Diagonal Corner Power Supply Pins
- Fast Access Time, 350 ns (max)

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.


## MOS

(N-CHANNEL, SILICON GATE)

## $128 \mathrm{c} \times 7 \times 5$ HORIZONTAL-SCAN CHARACTER GENERATOR



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISITCS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(\mathrm{V}_{\mathrm{in}}=0 \text { to } 5.5 \mathrm{~V}\right)$	$\mathrm{I}_{\text {in }}$	-	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	$\mathrm{V}_{\mathrm{CC}}$	Vdc
$\begin{aligned} & \text { Output Low Voltage } \\ & (1 \mathrm{OL}=1.6 \mathrm{~mA}) \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	Vdc
Output Leakage Current (Three-State) $\left(\mathrm{CS}=2.0 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	${ }^{\text {L }}$ O	-	-	10	$\mu \mathrm{Adc}$
Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{\prime} \mathrm{CC}$	-	-	130	mAdc

CAPACITANCE ( $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Characteristic	Symbol	Typ	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	5.0	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	5.0	pF

# AC OPERATING CONDITIONS AND CHARACTERISTICS 

(Full operating voltage and temperature range unless otherwise noted.)

AC TEST CONDITIONS

Condition	Value
Input Pulse Levels	0.8 V to 2.0 V
Input Rise and Fall Times	20 ns
Output Load	1 TTL Gate and $C_{L}=30 \mathrm{pF}$



AC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\mathrm{cyc}}$	350	-	ns
Address Access Time	$\mathrm{t}_{\mathrm{acc}}(\mathrm{A})$	-	350	ns
Row Select Access Time	$\mathrm{t}_{\mathrm{acc}}(\mathrm{RS})$	-	350	ns
Chip Select to Outnut Delay	$\mathrm{t}_{\mathrm{CO}}$	-	150	ns

TIMING DIAGRAM


## CUSTOM PROGRAMMING FOR MCM6670

By the programming of a single photomask, the customer may specify the content of the MCM6670. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:

1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4).
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5).
Programming of the MCM6670 can be achieved by using the following sequence:
3. Create the 128 characters in a $5 \times 7$ font using the format shown in Figure 1. Note that information at output D4 appears in column one, D3 in column two, thru DO information in column five. The dots filled in and programmed as a logic " 1 " will appear at the outputs
as $\mathrm{VOH}_{\mathrm{OH}}$; the dots left blank will be at $\mathrm{VOL}_{\mathrm{OL}}$. RO is always programmed to be blank ( $\mathrm{V}_{\mathrm{OL}}$ ). (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)
4. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. The information for D4 must be a hex one or zero, and is entered in the left block. The information for D3 thru D0 is entered in the right block, with D3 the most significant bit for the hex coding, and DO the least significant.
5. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).
6. Transmit this data to Motorola, along with the customer name, customer part number and revision, and an indication that the source device is the MCM6670.
7. Information should be submitted on an organizational data form such as that shown in Figure 2.

FIGURE 1 - CHARACTER FORMAT


FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

## ORGANIZATIONAL DATA MCM6670 MOS READ ONLY MEMORY

Customer:


## Columns

1.9 Blank

10-25 Hex coding for first character
26 Slash (/)
27-42 Hex coding for second character
43 Slash (/)
44.59 Hex coding for third character

60 Slash (/)
61-76 Hex coding for fourth character
77.78 Blank
79.80 Card number (starting 01; thru 32)

Column 10 on the first card contains either a zero or a one to program D4 of row RO for the first character. Column 11 contains the hex character for D3 thru DO. Columns 12 and 13 contain the information to program R1. The entire first character is coded in columns 10 thru 25. Each card contains the coding for four characters; 32 cards are required to program the entire 128 characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. Figure 3 provides an illustration of the correct format.

## FIGURE 4 - EXAMPLE OF CARD PUNCH FORMAT

(First 12 Characters of MCM6670P4)


FIGURE 5 - PAPER TAPE FORMAT

Frames	
Leader	Blank Tape
1 to M	Allowed for customer use ( $\mathrm{M} \leqslant 64$ )
$M+1, M+2$	CR; LF (Carriage Return; Line Feed)
$M+3$ to $M+66$	First line of pattern information (64 hex figures per line)
$M+67, M+68$	CR ; LF
$\begin{aligned} & M+69 \text { to } \\ & M+2114 \end{aligned}$	Remaining 31 lines of hex figures, each line followed by a Carriage Return and Line Feed
Blank Tape	
Frames 1	are left to the customer for internal
identification, w numerics may b	here $M \leqslant 64$. Any combination of alphaused. This information is terminated

## Leader

1 to M
$M+1, M+2$
$M+3$ to $M+66$
First line of pattern information
(64 hex figures per line)
$M+67, M+68$
$M+69$ to
$M+2114$
Blank Tape
Frames 1 to $M$ are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the
start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $M+3$ contains a zero or a one to program D4 of row RO for the first character. Frame $M+4$ contains the hex character for D3 thru D0, completing the programming information for RO. Frames $M+5$ and $M+6$ contain the information to program R1. The entire first character is coded in Frames $M+3$ thru $M+18$. Four complete characters are programmed with each line. A total of 32 lines program all 128 characters ( $32 \times 4$ ). The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part.

## MCM6670•MCM6674

The formats below are given for your convenience in preparing character information for MCM6670 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

Character Number


Character Number $\qquad$


Character Number


Character Number $\qquad$


Character Number


Character Number $\qquad$


Character Number


Character Number


Character Number $\qquad$


Character Number


Character Number $\qquad$

Character Number $\qquad$


Character Number $\qquad$


FIGURE 6 －MCM6674 PATTERN

		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		D4 $\ldots \mathrm{DO}$	D4	D4 ．．D 0	D4	O	D4 ．．．D0	0	D4 ．．D 0	D4 ．．．D0	D4 ．．D 0	0	D $4 \ldots$ ．D0	44	D4 ．．D 0	D	D4 ．．． 00
000	$\begin{array}{\|c\|} \hline R 0 \\ \vdots \\ \mathrm{R}^{2} \\ \hline \end{array}$	單品						㗊㗊					枵㗊品				
001	R0		跂勀				㗊㗊			呺路	㗊品					踢路	
010	RO   R7	煰煰	$\begin{array}{\|l\|} \hline \text { 㗊㗊 } \\ \text { 㗊品 } \\ \text { 㗊品 } \\ \hline \end{array}$	梙㗊						㗊踄			吅煰品	吅㗊品		㗊品	
011	R0 $\vdots$ 87									枵㗊	馥㗊		㗊品	吅㗊			
100	R0				喡趷		鲾品									凅品	
101	R0								踄㗊					讍	\| 吠别品		煰品品
110	R0											㗊㗊	踄品			吅吅品	
111	Ro			㗊品										㗊品	㗊品	㗊品	

## 8192-BIT READ ONLY MEMORIES ROW SELECT CHARACTER GENERATORS

The MCM66700 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 characters in a $7 \times 9$ matrix, and has the capability of shifting certain characters that normally extend below the baseline such as $\mathrm{j}, \mathrm{y}, \mathrm{g}, \mathrm{p}$, and q. Circuitry is supplied internally to effectively lower the whole matrix for this type of character-a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic 1s and 0 s stored in a $7 \times 9$ matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the $7 \times 9$ character in one of two preprogrammed positions on the 16 -row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The devices listed are preprogrammed versions of the MCM66700. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Fully Static Operation
- Fully TTL Compatible with Three-State Outputs
- CMOS and MPU Compatible, Single $\pm 10 \% 5$ Volt Supply
- Shifted Character Capability
(Except MCM66720, MCM66730, and MCM66734)
- Maximum Access Time $=350$ ns
- 4 Programmable Chip Selects (0, 1, or X)
- Pin-for-Pin Replacement for the MCM6570, Including All Standard Patterns


MCM66700 MCM66710 MCM66714 MCM66720 MCM66730 MCM66734 MCM66740 MCM66750 MCM66751 MCM66760 MCM66770 MCM66780 MCM66790

## MOS

(N-CHANNEL, SILICON-GATE)
8K READ ONLY MEMORIES
HORIZONTAL-SCAN CHARACTER GENERATORS WITH SHIFTED CHARACTERS


ABSOLUTE MAXIMUM RATINGS (See Note 1 , Voltages Referenced to $V_{S S}$ )

Rating	Symbol	Value	Unit
Supply Voltages	$\mathrm{V}_{\mathbf{C C}}$	-0.3 to 7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to 7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher-than-recommended voltages for extended periods of time could affect device reliability.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS (Referenced to $V_{S S}$ )

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	Vdc
Input Logic "1" Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	$\mathrm{V}_{\text {CC }}$	Vdc
Input Logic "0" Voltage	$V_{\text {IL }}$	-0.3	-	0.8	Vdc

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Leakage Current $\left(V_{I H}=5.5 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{Vdc}\right)$	$\mathrm{I}_{\mathrm{IH}}$	-	-	2.5	$\mu$ Adc
Output Low Voltage (Blank) $\left(I_{\mathrm{OL}}=1.6 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{OL}}$	0	-	0.4	Vdc
Output High Voltage (Dot) ( $I_{\mathrm{OH}}=-205 \mu \mathrm{Adc}$ )	V OH	2.4	-	-	Vdc
Power Supply Current	${ }^{1} \mathrm{CC}$	-	-	80	mAdc
Power Dissipation	$P_{\text {D }}$	-	200	440	mW

CAPACITANCE (Periodically sampled rather than $100 \%$ tested)

Input Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {in }}$	-	4.0	7.0
Output Capacitance   $(\mathrm{f}=1.0 \mathrm{MHz})$	$\mathrm{C}_{\text {out }}$	-	pF	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)


## AC CHARACTERISTICS

Characteristic	Symbol	Typ	Max	Unit
Address Access Time	$\mathrm{t}_{\mathrm{acc}}(\mathrm{A})$	250	350	ns
Row Select Access Time	$\mathrm{tacc}_{\mathrm{ach}}(\mathrm{RS})$	250	350	ns
Chip Select to Output Delay	$\mathrm{t}^{\mathrm{CO}}$	100	150	ns



17/ = Don't Care

## Address

To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 through A6).

## Row Select

To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RSO through RS3).

## Shifted Characters

These devices have the capability of displaying characters that descend below the bottom line (such as lowercase letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character
can be programmed to occupy either of the two positions in a $7 \times 16$ matrix. (Shifted characters are not available on MCM66720, MCM66730, or MCM66734.)

## Output

For these devices, an output dot is defined as a logic 1 level, and an output blank is defined as a logic 0 level.

## Programmable Chip Select

The MCM66700 has four Chip Select inputs that can be programmed with a 1,0, or don't care (not connected). A don't care must always be the highest chip select pin or pins. All standard patterns have Don't Care Chip Selectexcept MCM66751.

## DISPLAY FORMAT

Figure 1 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM66700 allows the user to locate the basic $7 \times 9$ font anywhere in the $7 \times 16$ array. In addition, a shifted font can be placed anywhere in the same $7 \times 16$ array. For example, the basic MCM66710 font is established in rows R14 through R6. All other rows are automatically blanked. The shifted font is established in rows R11 through R3, with all other rows blanked. Thus, while any one character is contained in a $7 \times 9$ array, the MCM66710 requires a $7 \times 12$ array on the CRT screen to contain both normal and descending characters. Other
uses of the shift option may require as much as the full $7 \times 16$ array, or as little as the basic $7 \times 9$ array (when no shifting occurs, as in the MCM66720).

The MCM66700 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM66710 from bottom to top, whereas an up counter will scan the MCM66714 from top to bottom (see Figures 7 and 8 for row designation).

FIGURE 1 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM66710 AND MCM66720


## CUSTOM PROGRAMMING FOR MCM66700

By the programming of a single photomask, the customer may specify the content of the MCM66700. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:*

1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4)
2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5)

Programming of the MCM66700 can be achieved by using the follow sequence:

1. Create the 128 characters in a $7 \times 9$ font using the format shown in Figure 2. Note that information at output D6 appears in column one, D5 in column two, through DO information in column seven. The dots filled in and programmed as a logic 1 will appear at the outputs as $\mathrm{V}_{\mathrm{OH}}$; the dots left blank will be at $\mathrm{V}_{\mathrm{OL}}$. (Blank formats appear at the end of this data sheet for your convenience;
they are not to be submitted to Motorola, however.)
2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S).
3. Convert the characters to hexadecimal coding treating dots as 1 s and blanks as 0 s , and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns $S$ and D3. For the bottom eight rows, the bit in Column $S$ must be 0 , so these locations have been omitted. For the top row, the bit in Column $S$ will be 0 for an unshifted character, and 1 for a shifted character.
4. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).
5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 through 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.
6. Provide, in writing, the information indicated in Figure 6 la copy of Figure 10 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

FIGURE 2 - CHARACTER FORMAT
FIGURE 3 - CARD PUNCH FORMAT

## Columns

1-10 Blank
11 Asterisk (*)
12-29 Hex coding for first character
30 Slash (/)
31-48 Hex coding for second character
49 Slash (/)
50-67 Hex coding for third character
68 Slash (/)
69-76 Blank
77-78 Card number (starting 01; through 43)
79-80 Blank
Column 12 on the first card contains the hexadecimal equivalent of column S and D6 through D4 for the top row of the first character. Column 13 contains D3 through DO. Columns 14 and 15 contain the information for the next row. The entire first character is coded in columns 12 through 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM66710 are correctly coded and punched in Figure 4.

[^10]

FIGURE 5 - PAPER TAPE FORMAT

Frames	
Leader	Blank Tape
1 to M	Allowed for customer use ( $M \leqslant 64$ )
$M+1, M+2$	CR; LF (Carriage Return; Line Feed)
$M+3$ to $M+66$	First line of pattern information ( 64 hex figures per line)
$M+67, M+68$	CR; LF
$M+69$ to $M+2378$	Remaining 35 lines of hex figures, each line followed by a Carriage Return and Line Feed

## Blank Tape

Frames 1 to $M$ are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the
start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $M+3$ contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame $M+4$ contains D3 thru D0. Frames $M+5$ and $M+6$ program the second row of the first character. Frames $M+3$ to $M+66$ comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain $36 \times 64$ or 2304 hex figures. Since 18 hex figures are required to program each $7 \times 9$ character, the full 128 (2304 $\div 18$ ) characters are programmed.

FIGURE 6 - FORMAT FOR ORGANIZATIONAL DATA

## ORGANIZATIONAL DATA <br> MCM66700 MOS READ ONLY MEMORY

Customer

Customer Part No. $\qquad$ Rev. $\qquad$

Row Number for top row of non-shifted font

Row Number for bottom row of non-shifted font $\qquad$

Row Number for top row of shifted font $\qquad$

Programmable Chip Select information: $1=$ Active High $0=$ Active Low $X=$ Don't Care (Not Connected)
CS1 $\qquad$ CS2 $\qquad$ CS3 $\qquad$ CS4 $\qquad$

FIGURE 7 －MCM66710 PATTERN

$A 6 \ldots A 4$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		0600	06 D0	06 Do	06.00	06 D0	D6－ 0	06 D0	$06 \quad 00$	$06 \quad 00$	$06 \quad 00$	06 00	0600	0600	06 00	$\bigcirc 60$	$06 \quad 00$
000	$\begin{array}{\|c} \mathbf{R}_{14} \\ \vdots \\ \mathbf{R 6} \\ \hline \end{array}$																
001	$\begin{array}{\|c} \hline R 14 \\ \vdots \\ \hline \end{array}$																
010	$\begin{gathered} \text { R14 } \\ \vdots \\ \text { R6 } \\ \hline \end{gathered}$								｜路品品品								
011	R14																
100	$\begin{array}{\|c} \text { R14 } \\ \vdots \\ \mathbf{R 6} \end{array}$																
101																	
110	$\left.\right\|_{\text {R6 }} ^{\text {R14 }}$																
111																	

FIGURE 8 －MCM66714 PATTERN

$A 3 \ldots A 0$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		06 00	06 00	06 Do	${ }^{06} \quad 00$	0600	06 00	06 do	${ }^{06} \quad 00$	${ }^{\text {D6 }} \quad 00$	${ }^{06} \quad 00$	$06 \quad 00$	${ }^{06} \quad 00$	$06 \quad 00$	$06 \quad 00$	$06 \quad 00$	06 Do
000	R8																
001	R8																
010	$\begin{array}{\|c} \text { Ro } \\ \vdots \\ \text { RB } \end{array}$																
011	$\begin{gathered} \mathrm{RO} \\ \vdots \\ \mathrm{RB} \end{gathered}$																
100	$\int_{\mathrm{RB}}^{\mathrm{RO}}$																
101	$\begin{gathered} \text { RO } \\ \vdots \\ \text { ค8 } \end{gathered}$																
110	$\begin{gathered} \text { RO } \\ : \\ \text { R8 } \end{gathered}$	㗊㗊部															
111	$\begin{array}{\|c} \hline \text { RO } \\ \vdots \\ \text { คв } \end{array}$	Mo															

FIGURE 9 －MCM66734 PATTERN＊

$A 3 . A_{4}$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	010	1011	1100	1101	1110	111
		06	$\infty$－ 0	$\infty$	080	06． 00	¢	D6．Do	－ 00	06 00	000	06	06	06 00	$06 \quad 00$	06 00	06 00
000	$n ⿱$																
001	${ }^{\infty}$							8080品品品品							器路㗊品		
010	/no	聐品㗊㗊		路路哭品				嘲然㗊品		哭品㗊品	路踄㗊品					㗊品㗊㗊	
011	$\begin{array}{\|c} \mathrm{no}_{0} \\ \vdots \\ \mathrm{ng} \end{array}$												讍品品品				
100	\|																
101	$T_{\text {no }}$																
110	$\left\|\begin{array}{c} \text { Ro } \\ \vdots \\ \text { R8 } \end{array}\right\|$												－			哭㗊㗊㗊品品	
111	$a_{0}^{\infty}$																
－Shitted characters are not used．																	

FIGURE 10 －MCM66720 PATTERN＊＊

$A_{A B . A 4}^{A B C A 0}$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		－6 oo	o6	06	${ }^{6} 6$.	${ }^{\circ} 6$	06.	06	06	06	${ }^{0} 6$	${ }^{0} 6$	06	${ }^{06}$	06 00	${ }^{\circ} 6$	06 00
000	$\mathrm{na}$												$\mid$				
001		踄㗊照㗊品															
010																	
011																	
100																	
101				＂	路路路												
110		啚品品品品｜	｜品品品㗊品		喆㗊品品品												
111	$\begin{gathered} \hline \kappa 0 \\ \vdots \\ n 0 \\ \hline \end{gathered}$		｜嵒路品		詔品品品品	踄㗊品品		煰㗊噩品	｜㗊品品品品品								央弗

FIGURE 11 －MCM66730 PATTERN＊＊

$A 6 A^{A} \ldots A^{2}$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		06 00	06 Do	06 00	0600	00	0600	06	06 00	0600	$08 \quad 00$	06	06 00	06	06 Do	0000	08
000	Ro																
$\infty_{1}$																	
010																	
011																	
100	no												－0謁				
101																	
110	R0				$\qquad$												
111	${ }^{\text {Ro }}$																

FIGURE 12 －MCM66740 PATTERN

$A B \cdot A 4 \cdot A 0$		0000	0001	0010	0011	0100	0101	0110	111	1000	1001	1010	1011	100	1101	1110	111
		06	0	06	06	06	06	${ }^{0}$	06	${ }^{2}$	06	06	${ }^{2}$	0600	06 － 0	$06 \ldots 00$	08
000																	
901									器品品品：								＂
010		$\square$	踄蹑品品							㗊㗊哭							
011																	
100																	
101													揖暐品品				
110										＂			＂				
111								｜㗊㗊㗊㗊品			TM						
V＝Shifted cheracter．The character is shifted three rows to R3 at the top of the font and R11 at the bottom．																	

## MCM66700 Series

FIGURE 13 －MCM66750 PATTERN

$A_{A 6, A_{4}}^{A_{1} \cdot A_{0}}$		0000	0001	0010		100	0101	，	orr	100	1001	1010	11	100	1101		
		00	or	0.	Do	06.00	06	0.	00	00.00	00	00	00.00	0	$0 \cdot 0$	${ }^{\circ}$	
00																	
01																	
010	no	$\mid$															
011																	
100	no																
101	no						－										
10	no																
11					路												

MCM66751－Same as MCM66750 except CS1 $=0, \operatorname{CS} 2=0, C S 3=X$ ，and CS4 $=X$ ．
FIGURE 14 －MCM66760 PATTERN

$A 6 \ldots A^{A}$		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		$06 \quad 00$	$\bigcirc 600$	0600	0600	De 00	06 Do	0600	06 Do	D6 00	0600	D6 D0	0600	0600	$06 \quad 00$	06.00	06． 00
000	R8																
001	$\begin{gathered} \text { RO } \\ \vdots \\ \text { RB } \end{gathered}$																
010	R8	coguog别品路品品品品品    D000cioc															
011	$\begin{gathered} \text { A0 } \\ \vdots \\ \text { A8 } \end{gathered}$																
100	RO   A8																
101	RO																
110	คо   ре																
111	no																

FIGURE 15 －MCM66770 PATTERN

		0000	0001	010	011	00	101	110	111	000	001	010	11	100	101	1110	1111
		0600	000	0 00	08	06	08	06	0600	0600	0600	06	06 00	06	06 00	06 00	06 00
000	ne											－＂بuen      venemen					
001	$\begin{gathered} \text { Ro } \\ \vdots \\ \text { no } \end{gathered}$																
010	$\begin{gathered} n_{0} \\ \vdots \\ n_{0} \end{gathered}$												$\mathrm{C}$		－0．060\％	I	
011	A0							$\square$							－6		
100	$\begin{gathered} \text { R0 } \\ \vdots \\ \text { нв } \end{gathered}$									：					宽		
101							\％										
110	Ro		ano:		＂ane：		品								:		\％
111	$\begin{gathered} \mathrm{Ro} \\ \vdots \\ \mathrm{~ns} \end{gathered}$					是											

F Shifted character The character is shifted three rows to R3 at the top of the tont and R11 at the bottom

FIGURE 16 －MCM66780 PATTERN

		0000	0001	010	0011	100	101	0110	0111	1000	1001	1010	1011	1100	101	1110	111
		06	0680	06.6	06	06 Do	D6 Do	D6 00	$0{ }^{0} 0$	06 Do	06	06 00	0600	06 00	06 00	06 00	0
000	${ }^{\text {a } 0}$						：－										
001																	
010	${ }^{2} 0$												Co.	：	－90－9	$\pm$	
011						另							：				
100	RO $\mathrm{PB}$																
101	ao   as																
110																	
11	$\begin{gathered} \mathrm{no} \\ \vdots \\ \mathrm{nc} \end{gathered}$												哠品茄品品				

FIGURE 17 －MCM66790 PATTERN

$A$							01			000	1001						，
		06	06	0	${ }^{06}$	06	06	$\bigcirc$	06	08	08	$0{ }^{\circ}$	06	$0 \%$	06	0600	0 \％
000																	
001																	
010			Eep											$\$$			
011												Ent	H:				
100																	
101									䁍								品品品品
10					Non												
＂												Hin					


MCM6570 Series	MCM66700 Equivalent	Description
MCM6571	MCM66710	ASCII, shifted
MCM6571A	MCM66714	ASCII, shifted
MCM6572	MCM66720	ASCII
MCM6573	MCM66730	Japanese
MCM6573A	MCM66734	Japanese
MCM6574	MCM66740	Math Symbols
MCM6575	MCM66750	Alphanumeric Control
MCM6576	MCM66760	British, shifted
MCM6577	MCM66770	German, shifted
MCM6578	MCM66780	French, shifted
MCM6579	MCM66790	European, shifted


MCM66700 Series Pin Assignment		MCM6570 Series Pin Assignment		
$9 \operatorname{cs3}$	$\text { RS3 } ص 24$	$1 \underbrace{v_{B}}$	RS3	24
$2 \mathrm{~V}^{2}$	RS2 $\mathrm{R}^{23}$	$2 \square \mathrm{v}_{\mathrm{cc}}$	RS2	23
3 cs4	RS $1 ص 22$	$3 V_{O D}$	RS 1	22
$4 \square{ }^{46}$	RSO $\mathrm{P}^{21}$	$4 \square{ }^{4}$	RSO	21
$\square 05$	D6 $ص 20$	$50^{5}$	D6	20
$6{ }^{6}$	$04 \bigcirc 19$	$6 \square 03$	D4	19
$\square 01$	02ص18	$1 \square 01$	02	D18
8 A5	00ص 17	8 A5	Do	17
9 A4	-16	$9 \square A^{4}$	A 1	16
10 CS1	AOص 15	$10 \square N C$	40	215
$11 . \mathrm{A}$	c52 $ص 14$	11.43	NC	ص 14
12 A2	$\mathrm{vSS}^{\text {p }} 13$	12 AL	$\mathrm{v}_{\text {SS }}$	$\square 13$

## APPLICATIONS INFORMATION

One important application for the MCM66700 series is in CRT display systems (Figure 18). A set of buffer shift registers or random access memories applies a 7 -bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked
serially out to the Z -axis where it modulates the raster to form the character.

The MCM66700 series require one power supply of +5.0 volts. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Sorne power supplies exhibit spikes or glitches on their outputs when the ac power is switched on and off.

FIGURE 18 - CRT DISPLAY APPLICATION USING MCM66710


The formats below are given for your convenience in preparing character information for MCM66700 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.

Character Number ________


Character Number


Character Number


Character Number $\qquad$


Character Number


Character Number $\qquad$


Character Number


## 1024 X 8-BIT READ ONLY MEMORY

The MCM68A30A/MCM68B30A are mask-programmable byteorganized memories designed for use in bus-organized systems. They are fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Four Chip Select Inputs (Programmable)
- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350 \mathrm{~ns}-$ MCM68A30A 250 ns - MCM68B30A

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT. ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability


## MOS

(N.CHANNEL, SILICON-GATE)

## $1024 \times 8$-BIT <br> READ ONLY MEMORY



DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	Unit
Input High Voltage	$V_{1 H}$	2.0		-	5.5
Input Low Voltage	$V_{1 L}$	-0.3	-	Vdc	

DC CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current $\left(\mathrm{V}_{\mathrm{in}}=0 \text { to } 5.5 \mathrm{~V}\right)$	$I_{\text {in }}$	-	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	VOH	2.4	-	-	Vdc
Output Low Voltage $(1 \mathrm{OL}=1.6 \mathrm{~mA})$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	Vdc
Output Leakage Current (Three State) $\left(\mathrm{CS}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	${ }^{\text {L LO }}$	-	-	10	$\mu \mathrm{Adc}$
Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-	-	130	mAdc

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.


AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)
(All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	MCM68A30AL		MCM68B30AL		Unit
		Min	Max	Min	Max	
Cycle Time	$\mathrm{t}_{\mathrm{cyc}}$	350	-	250	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	350	-	250	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	150	-	125	ns
Data Hold from Address	${ }^{\text {t }}$ DHA	10	-	10	-	ns
Data Hold from Deselection	${ }^{\text {t }}$ DHD	10	150	10	125	ns

FIGURE 1 - AC TEST LOAD


TIMING DIAGRAM


## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A30A/MCM68B30A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A30A/MCM68B30A should be submitted on an Organizational Data form such as that shown in Figure 3. ("No Connect" must always be the highest order Chip Select pin(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (MCM2708, MCM27A08, or MCM68708).
4. Hand-punched paper tape (Figure 3).

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary   Data				
0	0	0	0	Hexadecimal   Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	0
1	1	1	1	E

## IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:
Step Column

112 Byte " 0 " Hexadecimal equivalent for outputs D7 thru D4 (D7 = M.S.B.)
213 Byte "0" Hexadecimal equivalent for outputs D3 thru D0 (D3 = M.S.B.)

3
14.75 Alternate steps 1 and 2 for consecutive bytes.
$4 \quad 77.80$ Card number (starting 0001)

## Frames

Leader	Blank Tape
1 to $M$	Allowed for customer use $(M \leqslant 64)$
$M+1, M+2$	CR; LF (Carriage Return; Line
$M+3$ to $M+66$	Feed)   First line of pattern information
$M+67, M+68$	(64 hex figures per line)
CR; LF	
$M+69$ to $M+2112$	Remaining 31 lines of hex figures,   each line followed by a Carriage
Rlank Tape	Return and Line Feed

Frames 1 to $M$ are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

## Option A (1024 x 8)

Frame $M+3$ contains the hexadecimal equivalent of
bits D7 thru D4 of byte 0 . Frame $M+4$ contains bits D3 thru DO. These two hex figures together program byte
0 . Likewise, frames $M+5$ and $M+6$ program byte 1 , while $M+7$ and $M+8$ program byte 2 . Frames $M+3$ to $M+66$ comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.
Option B (2048×4)
Frame $M+3$ contains the hexadecimal equivalent of byte 0, bits D3 thru D0. Frame M +4 contains byte 1 , frame $M+5$ byte 2 , and so on. Frames $M+3$ to $M+66$ sequentially program bytes 0 to 31 (the first 32 bytes). The line is terminated with a CR and LF.

## Both Options

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain $32 \times 64$ or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

As an example, a printout of the punched tape for Figure 13 would read as shown in Figure 10 (a CR and LF is implicit at the end of each line).

FIGURE 4 - FORMAT FOR PROGRAMMING GENERAL OPTIONS


## MCM68A308 <br> MCM68B308

## 1024 X 8-BIT READ ONLY MEMORY

The MCM68A308/MCM68B308 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350 \mathrm{~ns}-$ MCM68A308

250 ns - MCM68B308

- 350 mW Typical Power Dissipation


DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{\text {CC }}$	4.5	5.0	5.5	$V_{d c}$
Input High Voltage	$V_{\text {IH }}$	2.0	-	5.5	$V_{d c}$
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	Vdc


Characteristic	Symbol	Min	Max	Unit
Input Current $\left(V_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right)$	$\mathrm{I}_{\text {in }}$	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(I_{\mathrm{OH}}=-205 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	Vdc
Output Low Voltage $\left(I_{\mathrm{OL}}=1.6 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OL}}$	-	0.4	V dc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \quad\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \widehat{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right) \end{aligned}$	${ }^{\prime}$ LO	,	10	$\mu \mathrm{Adc}$
Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	"	130	mAdic

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are M6800 MICROCOMPUTERFAMILY exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



## MCM68A308•MCM68B308

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted. All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	MCM68A308		MCM68B308		Unit
		Min	Max	Min	Max	
Cycle Time	${ }^{\text {t }}$ cyc	350	-	250	-	ns
Access Time	tacc	-	350	-	250	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{SO}$	-	150	-	150	ns
Data Hold from Address	${ }^{\text {D }}$ DHA	10	-	10	-	ns
Data Hold from Deselection	${ }^{\text {t }}$ DHD	10	150	10	150	ns

## CAPACITANCE

(f $=2.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

FIGURE 1 - AC TEST LOAD


TIMING DIAGRAM


## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A308/MCM68B308, the customer may specify the content of the memory and the method of enabling the outputs. (A "no-connect" must always be the highest order chip-select(s).)

Information on the general options of the MCM68A308/MCM68B308 should be submitted on an Organizational Data form such as that shown in Figure 4.

Information for customer memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using $1 B M$ Punch Cards.
3. EPROM one MCM68A708 or equivalent.
4. Hand punched paper tape (Figure 3).

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary   Data				
0	0	0	0	Hexadecimal   Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	$C$
1	1	1	0	$D$
1	1	1	1	E

IBM PUNCH CARDS
The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

12 Byte " 0 " Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs Q 3 thru $\mathrm{Q} 0(\mathrm{Q} 3=$ M.S.B.)
$3 \quad 14-75 \quad$ Alternate steps 1 and 2 for consecutive bytes.
4 77-80 Card number (starting 0001)

FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

Frames

Leader	Blank Tape
1 to $M$	Allowed for customer use (M $\leqslant 64)$
$M+1, M+2$	CR; LF (Carriage Return; Line
	Feed)
$M+3$ to $M+66$	First line of pattern information
	$(64$ hex figures per line)
$M+67, M+68$	CR; LF
$M+69$ to $M+2112$	Remaining 31 lines of hex figures,                        each line followed by a Carriage

## Blank Tape

Frames 1 to $M$ are left to the customer for internal identification, where $M \leqslant 64$. Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin
with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame $M+3$ contains the hexadecimal equivalent of bits Q 7 thru Q 4 of byte 0 . Frame $\mathrm{M}+4$ contains bits Q3 thru Q0. These two hex figures together program byte 0 . Likewise, frames $M+5$ and $M+6$ program byte 1 , while $M+7$ and $M+8$ program byte 2 . Frames $M+3$ to $M+66$ comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain $32 \times 64$ or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.


## 2048 X 8-BIT READ ONLY MEMORY

The MCM68A316A is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of fully static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read-only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for

Simplified Memory Expansion

- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350 \mathrm{~ns}$
- Plug-in Compatible with 2316A

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recornmended voltages for extended periods of time could affect device reliability.


## mos

(N-CHANNEL, SILICON-GATE)
$2048 \times 8$-BIT READ ONLY MEMORY

PIN ASSIGNMENT



DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	Vdc
DC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
$\begin{aligned} & \text { Input Current } \\ & \qquad\left(\mathrm{v}_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right) \end{aligned}$	$\mathrm{I}_{\text {in }}$	-		2.5	$\mu \mathrm{Adc}$
Output High Voltage ( ${ }^{\circ} \mathrm{OH}=-205 \mu \mathrm{~A}$ )	$\mathrm{V}_{\mathrm{OH}}$	2.4		-	Vdc
$\begin{gathered} \text { Output Low Voltage } \\ \left(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}\right) \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{OL}}$	-		0.4	Vdc
Output Leakage Current (Three-State) $\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	'LO	-		10	$\mu \mathrm{Adc}$
Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)$	${ }^{\prime} \mathrm{CC}$	-		130	mAdc

## CAPACITANCE

( $\mathrm{f}=2.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\text {cyc }}$	350	-	ns
Access Time	$\mathrm{t}_{\mathrm{acc}}$	-	350	ns
Chip Select to Output Delay	$\mathrm{t}_{\mathrm{SO}}$	-	150	ns
Data Hold from Address	${ }^{\mathrm{t}} \mathrm{DHA}$	10	-	ns
Data Hold from Deselection	$\mathrm{t}_{\mathrm{H}}$	10	150	ns

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


- Includes Jig Capacitance

TIMING DIAGRAM


## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68316A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316A should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (TMS2716 or MCM2716).
4. Hand-punched paper tape.

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 2048 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary   Data				
0	0	0	0	Hexadecimal   Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	0
1	1	1	1	E

## IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column
12 Byte " 0 " Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs Q3 thru $\mathrm{O} 0(\mathrm{O} 3=$ M.S.B.)
3 14-75 Alternate steps 1 and 2 for consecutive bytes.
4 77-80 Card number (starting 0001)
Total number of cards (64)

## FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA   MCM68A316A MOS READ ONLY MEMORY				
Customer:				
			Motorola Use Only	
Company		-		
Part No.			Quote:	
		-	Part No.:	-
Originator			Specif. No	
Chip Select:				*Don't Care
		Active High	Active Low	(No Connect)
	S1	$\square$	$\square$	
	$\overline{\mathrm{S} 2}$			
	S3			
		*A don't care must always be the highest order Chip Select (s)		

## MCM68A316E

## 2048 X 8 BIT READ ONLY MEMORY

The MCM68A316E is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refeshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single $\pm 10 \% 5$-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=350$ ns
- Plug-in Compatible with 2316E
- Pin Compatible with 2708 and TMS2716 EPROMs


## MOS

(NCHANNEL, SILICON-GATE)

## $2048 \times 8$ BIT READ ONLY MEMORY




## MCM68A316E

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	5.5	Vdc
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3	-	0.8	Vdc


Characteristic	Symbol	Min	Max	Unit
Input Current $\left(\mathrm{V}_{\mathrm{in}}=0 \text { to } 5.5 \mathrm{~V}\right)$	I in	-	2.5	$\mu \mathrm{Adc}$
Output High Voltage $\left(1 \mathrm{OH}^{2}=-205 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	Vdc
$\begin{gathered} \text { Output Low Voltage } \\ (1 \mathrm{OL}=1.6 \mathrm{~mA}) \\ \hline \end{gathered}$	$\mathrm{v}_{\mathrm{OL}}$	-	0.4	Vdc
$\begin{aligned} & \text { Output Leakage Current (Three-State) } \\ & \qquad\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right) \end{aligned}$	${ }_{1} \mathrm{LO}$	-	10	$\mu \mathrm{Adc}$
Supply Current $\left(V_{C C}=5.5 \mathrm{~V}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-	130	mAdc

## ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1 : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## CAPACITANCE

(f $=2.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM




- Includes Jig Capacitance

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted. All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load of Figure 1)

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\text {cyc }}$	350	-	ns
Access Time	$\mathrm{t}_{\text {acc }}$	-	350	ns
Chip Select to Output Delay	$\mathrm{t}_{\mathrm{SO}}$	-	150	ns
Data Hold from Address	$\mathrm{t}_{\mathrm{DHA}}$	10	-	ns
Data Hold from Deselection	$\mathrm{t}_{\mathrm{H}}$	10	150	ns

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
timing diagram


## CUSTOM PROGRAMMING

Information on the general options of the MCM68A316E should be submitted on an Organizational Data form such as that shown in Figure 3. ("No-Connect" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of three forms (shown in order of preference):

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (TMS2716 or MCM2716).

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 2048 bytes.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary   Data				
0	0	0	0	Hexadecimal   Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	B
1	1	0	1	C
1	1	1	0	0
1	1	1	1	E

## IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column. IBM punch cards as follows:
Step Column
12 Byte "0" Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)
213 Byte " 0 " Hexadecimal equivalent for outputs Q 3 thru $\mathrm{Q} 0(\mathrm{Q} 3=\mathrm{M} . \mathrm{S} . \mathrm{B}$.)
3 14-75 Alternate steps 1 and 2 for consecutive bytes.
4 77-80 Card number (starting 0001)
Total number of cards (64)

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS


## 4096 X 8-BIT READ ONLY MEMORY

The MCM68A332 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output for OR-Ties
- Mask-Progiammable Chip Selects for Simplified Memory Expansion
- Single $\pm 10 \% 5$-Volt Power Supply
- Fully TTL Compatible
- Maximum Access Time $=350 \mathrm{~ns}$
- Directly Compatible with 4732
- Pin Compatible with 2708 and 2716 EPROMs
- Preprogrammed MCM68A332-2 Available



PIN ASSIGNMENT
240

PIN NAMES	
$\begin{aligned} & \text { AO-A11 } \ldots \text { Address Inputs } \\ & \text { S } \ldots \text { Programmable } \\ & \text { Chip Selects } \end{aligned}$	
Q0-Q7 . . . Data Output	
$V_{\text {CC }}$. . . . +5 V Power Supply	

## MCM68A332



DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage (VCC must be applied at least $100 \mu \mathrm{~s}$ betore proper device operation is acheved.)	$V_{\text {CC }}$	4.5	5.0	5.5	$V \mathrm{dc}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	$V_{\text {IL }}$	-0.3	--	0.8	Vdc
DC CHARACTERISTICS					
Characteristic	Symbol	Min		Max	Unit
Input Current $\left(\mathrm{V}_{\text {in }}=0 \text { to } 5.5 \mathrm{~V}\right)$	$\mathrm{I}_{\text {in }}$	-		2.5	$\mu$ Adc
Output High Voltage $(1 \mathrm{OH}=-205 \mu \mathrm{~A})$	$\mathrm{V}_{\mathrm{OH}}$	2.4		-	Vdc
$\begin{gathered} \text { Output Low Voltage } \\ \left(I_{\mathrm{OL}}=1.6 \mathrm{~mA}\right) \end{gathered}$	$\mathrm{V}_{\mathrm{OL}}$	-		0.4	Vdc
Output Leakage Current (Three-State) $\left(\mathrm{S}=0.8 \mathrm{~V} \text { or } \overline{\mathrm{S}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V}\right)$	'LO	-		10	$\mu \mathrm{Adc}$
Supply Current $\left(V_{C C}=5.5 \mathrm{~V}, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{CC}$	-		80	mAdc

ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## CAPACITANCE

( $f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	5.0	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	9.0	12.5	pF

M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.



AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.

Characteristic	Symbol	Min	Max	Unit
Cycle Time	$\mathrm{t}_{\mathrm{cyc}}$	350	-	ns
Access Time	$\mathrm{t}_{\mathrm{acc}}$	-	350	ns
Chip Select to Output Delay	$\mathrm{t}_{\mathrm{SO}}$	$\cdots$	150	ns
Data Hold from Address	$\mathrm{t}_{\mathrm{DHA}}$	10	-	ns
Data Hold from Deselection	$\mathrm{t}_{\mathrm{H}}$	10	150	ns

TIMING DIAGRAM


Waveform Symbol	Input	Output	Waveform Symbol	Input	Output	Waveform Symbol	Input	Output
	MUST BE VALID	WILL BE VALID		DON'T CARE   ANY CHANGE PERMITTED	$\begin{aligned} & \text { CHANGING: } \\ & \text { STATE } \\ & \text { UNKNOWN } \end{aligned}$		-	HIGH   IMPEDANCE

## MCM68A332 CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A332, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A332 should be submitted on an Organizational Data form such as that shown in Figure 3. (A "No-Connect" or "Don't Care" must always be the highest order Chip Select(s).)
information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

1. IBM Punch Cards:
A. Hexadecimal Format
B. Intel Format
C. Binary Negative-Postive Format
2. EPROMs-two 16 K (MCM2716 or TMS2716) or four 8K (MCM2708)
3. Paper tape output of the Motorola M6800 software
4. Hand punched paper tape

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 4096 bytes.

## IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

Step	Column	
1	12	Byte "O" Hexadecimal equivalent for outputs   Q7 through Q4 (Q7 = M.S.B.)
2	13	Byte "0" Hexadecimal equivalent for outputs   Q3 through Q0 (Q3 = M.S.B.)
3	$14-75$	Alternate steps 1 and 2 for consecutive bytes.
4	$77-79$	Card number (starting 001).
5		Total number of cards must equal 128.

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary Data				
0	0	0	0	Hexadecimal   Character
0	0	0	1	0
0	0	1	0	1
0	0	1	1	2
0	1	0	0	3
0	1	0	1	4
0	1	1	0	5
0	1	1	1	6
1	0	0	0	7
1	0	0	1	8
1	0	1	0	9
1	0	1	1	A
1	1	0	0	$B$
1	1	0	1	$C$
1	1	1	0	0
1	1	1	1	$E$

## PRE-PROGRAMMED MCM68A332P2, MCM68A332C2

The -2 standard ROM pattern contains sine-lookup and arctanlookup tables.

Locations 0000 through 2001 contain the sine values. The sine's first quadrant is divided into 1000 parts with sine values corresponding to these angles stored in the ROM. $\operatorname{Sin} \pi / 2$ is included and is rounded to 0.9999 .

The arctan values contain angles in radians corresponding to the arc tangents of 0 through 1 in steps of 0.001 and are contained in locations 2048 through 4049.

Locations 2002 through 2047 and 4050 through 4095 are zero filled.

All values are represented in absolute decimal format with four digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the two least significant digits in the upper byte. The decimal point is assumed to be to the left of the most significant digit.

Example: $\operatorname{Sin}\left(\frac{1}{1000} \frac{\pi}{2}\right)=0.0016$ decimal	
Address	Contents
0002	0000
0003	0001

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS


MCM68A364 MCM68B364


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.



ABSOLUTE MAXIMUM RATINGS (See note)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	$\mathrm{Vdc}^{\prime}$
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.5 to +7.0	$\mathrm{Vdc}^{\prime}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. EXposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage   (VCC must be applied at least $100 \mu$ s before proper device   operation is achieved)	VCC	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	5.5	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5	-	0.8	Vdc

RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current ( $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	in	-10	-	10	$\mu$ Adc
Output High Voltage ( $1 \mathrm{OH}=-220 \mu \mathrm{~A}$ )	VOH	2.4	-	-	Vdc
Output Low Voltage ( $1 \mathrm{OL}=3.2 \mathrm{~mA}$ )	VOL	-	-	0.4	Vdc
Output Leakage Current (Three-State) $\left(\bar{E}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}\right)$	ILO	-10	-	10	$\mu \mathrm{Adc}$
Supply Current - Active* (Minimum Cycle Rate)	ICC	-	25	40	mAdc
$\begin{aligned} & \text { Supply Current - Standby } \\ & \left(E=V_{I H}\right) \end{aligned}$	ISB	-	7	10	mAdc

*Current is proportional to cycle rate.

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	8	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	15	pF

## AC OPERATING CONDITIONS AND CHARACTERISTICS <br> Read Cycle

RECOMMENDED OPERATING CONDITIONS
$\left(T_{A}=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+10 \%$. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, load of Figure 1).

Parameter	Symbol	MCM68B364		MCM68A364		Unit
		Min	Max	Min	Max	
Chip Enable Low to Chip Enable Low of Next Cycle (Cycle Time)	tELEL	375	-	450	-	ns
Chip Enable Low to Chip Enable High	teleh	250	-	300	--	ns
Chip Enable Low to Output Valid (Access)	telQv	-	250	-	300	ns
Chip Enable High to Output High Z (Off Time)	tehaz	-	60	-	75	ris
Chip Enable Low to Address Don't Care (Hold)	telax	60	-	75	-	ns
Address Valid to Chip Enable Low (Address Setup)	tavel	0	-	0	-	ns
Chip Enable Precharge Time	tEHEL	125	-	150	-	ns

TIMING DIAGRAM

CHIP ENABLE, $\overline{\mathrm{E}}$


FIGURE 1 - AC TEST LOAD


Waveform Symbol	WAVEFORMS	
	Input	Output
	must be	WILL BE
	VALID	valid
	Change	WILL CHANGE
11	FROMHTOL	FROMHTOL
	change	WILL CHANGE
11.1	FROMLTOH	FROMLTOH
$\overline{x \times 8 \times 8}$	don't care	changing.
	ANY CHANGE	StATE
	PERMITTED	UNKNOWN
		HIGH   IMPEDANCE

## TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined
transition direction for first signal
signal name to which interval is defined
transition direction for second signal

The transition definitions used in this data sheet are:
$H=$ transition to high
$L=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A364/MCM68B364, the customer may specify the contents of the memory.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Magnetic Tape - 9 Track, 800 bpi, odd parity written in EBCDIC character code. Motorola's R.O.M.S. format.
2. EPROMs - one 64 K (MCM68764), two 32 K (MCM2532), four 16K (MCM2716 or TMS2716), or eight 8K (MCM2708).
3. IBM Punch Cards
A. Hexadecimal Format
B. INTEL Hexadecimal Format

## IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

Step	$\frac{\text { Column }}{1}$	$\frac{12}{}$Byte " 0 " Hexadecimal equivalent for out-   puts Q7 through Q4 (Q7 M. S.B.)		
2	13	Byte " 0 " Hexadecimal equivalent for out-   puts Q3 through Q0 (Q3=M.S.B.)		
3	$14-75$	Alternate steps 1 and 2 for consecutive   bytes		
4	$77-79$	Card number (starting 001)   5		Total number of cards must equal 256
:---				

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

Binary   Data				Hexadecimal   Character
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	$A$
1	0	1	1	$B$
1	1	0	0	$C$
1	1	0	1	$D$
1	1	1	0	$E$
1	1	1	1	$F$



## PRE-PROGRAMMED MCM68A364P3/L3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64 K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of $1 / 100$. Each log value is tepitsented thy an eight-digit decimal number with decimal pr ris assumed to be to the left of the mostsignificant digit.

Ar.tilog (base 10) are stored in locations 4096 through 80n5. The : ,uments range from 000 through .999 incrementing in steps of 1,1000 . Each antilog value is
represented by an eight-digit decimal number with decimal point assumed to be to the right of the mostsignificant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.


## Advance Information

## $8192 \times 8$-BIT READ ONLY MEMORY

The MCM68365 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL, and needs no clocks or refreshing because of static operation.
The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Chip Enable input and the memory content is defined by the user. The Chip Enable input deselects the output and puts the chip in a powerdown mode.

- Fully Static Operation
- Automatic Power Down
- Low Power Dissipation - 225 mW Active (Typical)

30 mW Standby (Typical)

- Single $\pm 10 \% 5$-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Chip Enable
- TTL Compatible
- Maximum Access Time - 250 ns - MCM68365-25

350 ns - MCM68365-35

- Pin Compatible with 8 K - MCM68A308, 16K - MCM68A316E, and 32 K - MCM68A332 Mask-Programmable ROMs



## MCM68365



PIN ASSIGNMENT


PIN NAMES
A0-A12.... Address
$\bar{E} \ldots .$. Chip Enable
Q0-Q7.... Data Output
$\vee_{\text {CC }} \ldots \ldots .+5 \mathrm{~V}$ Power Supply
$\mathrm{V}_{\text {SS }} \ldots \ldots$. Ground

[^11]

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage   ( $\mathrm{V}_{\mathrm{CC}}$ must be applied at least $100 \mu \mathrm{~s}$ before proper device operation is achieved)	$V_{C C}$	4.5	5.0	5.5	$\checkmark$
Input High Voltage	$\mathrm{V}_{\mathrm{H}}$	2.0	-	5.5	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	

RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current ( $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	lin	-	-	10	$\mu \mathrm{A}$
Output High Voltage ( $1 \mathrm{OH}=-205 \mu \mathrm{~A}$ )	VOH	2.4	-	-	V
Output Low Voltage ( ${ }_{\text {OL }}=3.2 \mathrm{~mA}$ )	V OL	-	-	0.4	V
Output Leakage Current (Three-State) ( $\overline{\mathrm{E}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V}$ to 2.4 V )	ILO	-	-	10	$\mu \mathrm{A}$
Supply Current - Active ( $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ )	ICC	-	45	80	mA
Supply Current - Standby ( $\left.\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}^{\prime}=0^{\circ} \mathrm{C}, \overline{\mathrm{E}}=\mathrm{V}_{1 \mathrm{H}}\right)$	ISB	-	6.0	15	mA

## CAPACITANCE

( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Input Capacitance	Characteristic	Symbol	Max
Unit			
Output Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF

## AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

RECOMMENDED OPERATING CONDITIONS
( $T_{A}=0$ to $70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 10 \%$. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, load of Figure 1)

Parameter	Symbol	MCM68365-25		MCM68365-35	
		Min	Max	Min	Max
Address Valid to Address Don't Care (Cycle Time when Chip Enable is held Active)	tavax	250	-	350	-
Chip Enable Low to Chip Enable High	teLEH	250	-	350	-
Address Valid to Output Valid (Access)	tavaV	-	250	-	350
Chip Enable Low to Output Valid (Access)	telov	-	250	-	350
Address Valid to Output Invalid	${ }^{\text {taVax }}$	10	-	10	-
Chip Enable Low to Output Invalid	telox	10	-	10	-
Chip Enable High to Output High-Z	tEHQZ	0	70	0	80
Chip Selection to Power Up Time	tPU	0	-	0	-
Chip Deselection to Power Down Time	tPD	-	100	-	120
Address Valid to Chip Enable Low (Address Setup)	taVEL	0	-	0	-



TIMING PARAMETER ABBREVIATIONS
signal name from which interval is defined
transition direction for first signal
signal name to which interval is defined
transition direction for second signal

The transition definitions used in this data sheet are:
$H=$ transition to high
$\mathrm{L}=$ transition to low
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.



PRE-PROGRAMMED MCM68365P35-3/C35-3, MCM68365P25-3/C25-3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64 K ROM.

Locations 0000 through 3599 contain log base 10 values.
The arguments for the log table range from 1.00 through 9.99 incrementing in steps of $1 / 100$. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most-significant digit. Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from .000 through .999 in8095. The arguments range from . 000 through .999 in-
crementing in steps of $1 / 1000$. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.
All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: $\log _{10}(1.01)=0.00432137$ decimal

Address	Contents	
4	0000	0000
5	0100	0011
6	0010	0001
7	0011	0111

## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68365, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68365 should be submitted on an Organizational Data form such as that shown in Figure 2.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Magnetic Tape

9 track, 800 bpi, odd parity written in EBCDIC character code. Motorola R.O.M.S. format.
2. EPROMs - four 16 K (MCM2716, or TMS2716, or eight 8K (MCM2708), one 64 K or two 32 K )

## FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

## ORGANIZATIONAL DATA

 MCM68365 MOS READ ONLY MEMORYCustomer:

Company	Motorola Use Only:
Part No.	Quote:
Originator	Part No:
	Specif. No:

Enable Options:



## Advance Information

## $8192 \times 8$-BIT READ ONLY MEMORY

The MCM68366 is a mask-programmable byte-organized memory designed tor use in bus-organized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibiiity with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Output Enable input and the memory content is defined by the user. The Output Enable input deselects the output.

- Fully Static Operation
- Fast Data Valid Time for High Speed Microprocessors
- Low Power Dissipation - 225 mW Active (Typical)
- Single $\pm 10 \% 5$-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Output Enable
- TTL Compatible
- Maximum Access Time - 120 ns from Output Enable

250 ns from Address - MCM68366-25 350 ns from Address - MCM68366-35

- Pin Compatible with 8 K and 32K - Mask-Programmable ROMs
- Pin Compatible with MCM68766 64K EPROM
MOTOROLA'S PIN.COMPATIBLE EPROM FAMILY

MOTOROLA'S PIN.COMPATIBLE ROM FAMILY


INDUSTRY STANDARD PINOUTS

MOS
(N-CHANNEL, SILICON-GATE)
$8192 \times 8$-BIT READ ONLY MEMORY


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

## MCM68366



ABSOLUTE MAXIMUM RATINGS (See Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	$\mathrm{Vdc}^{\prime}$
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage   ( $\mathrm{V}_{\mathrm{CC}}$ must be applied at least $100 \mu \mathrm{~s}$ before proper device operation is achieved)	$V_{C C}$	4.5	5.0	5.5	Vdc
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	5.5	Vdc
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.8	

RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Input Current ( $\mathrm{V}_{\text {in }}=0$ to 5.5 V )	lin	-	-	10	$\mu \mathrm{Adc}$
Output High Voltage ( $\mathrm{O}_{\mathrm{OH}}=-205 \mu \mathrm{~A}$ )	VOH	2.4	-	-	Vdc
Output Low Voltage ( $1 \mathrm{OL}=3.2 \mathrm{~mA}$ )	VOL	-	-	0.4	Vdc
Output Leakage Current (Three-State) ( $\overline{\mathrm{G}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V}$ to 2.4 V )	1.0	-	-	10	$\mu$ Adc
Supply Current ( $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ )	ICC	-	45	80	mAdc

## CAPACITANCE

( $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Max	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	7.5	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	12.5	pF

## AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

## RECOMMENDED OPERATING CONDITIONS

( $T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$. All timing with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, load of Figure 1)

Parameter	Symbol	MCM68366-25		MCM68366-35		Unit
		Min	Max	Min	Max	
Address Valid to Address Don't Care (Cycle Time when Output Enable is Held Active)	tavax	250	-	350	-	nis
Address Valid to Output Valid (Access)	tavov	-	250	-	350	ns
Output Enable Low to Output Valid (Access)	tGLQV	-	120	-	120	ns
Address Valid to Output Invalid	tavax	10	-	10	-	ns
Output Enable Low to Output Invalid	$\operatorname{trin} x$	10	-	10	-	ns
Output Enable High to Output High-Z	${ }_{\text {t }} \mathrm{GHZQ}$	0	70	0	80	ns
Address Valid to Output Enable Low (Address Setup)	tavol	0	-	0	-	ns

READ CYCLE TIMING 1 ( $\bar{G}$ Held Low)


READ CYCLE TIMING 2



MC6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM


PRE-PROGRAMMED MCM68366P35-3/C35-3,

## MCM68366P25-3/C25-3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64 K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of $1 / 100$. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from 0.000 through 0.999 incrementing in steps of $1 / 1000$. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

FIGURE 1 - AC TEST LOAD


READ ONLY MEMORY BLOCK DIAGRAM


Locations 3600 through 4095 and 8096 through 8191 are zero filled.
All values are represented ir, absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: $\log _{10}(1.01)=.00432137$ decimal

Address	Contents	
4	0000	0000
5	0100	0011
6	0010	0001
7	0011	0111

## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68366, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68366 should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Magnetıc Tape 9 track, 800 bpi, odd parity written in EBCDIC charac ter Code. Motorola's R.O.M.S. format.
2. EPROMs - one 64 K (MCM68764, MCM68766), two 32K (MCM2532), four 16K (MCM2716, or TMS2716), or eight 8K (MCM2708).

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS


## 2

# CMOS Memories RAM, ROM 



## 64-BIT STATIC RANDOM ACCESS MEMORY

The MCM14505 64-bit random access memory is fully decoded on the chip and organized as 64 one-bit words ( $64 \times 1$ ). Medium speed operation and micropower supply requirements make this device useful for scratch pad or buffer memory applications where power must be conserved or where battery operation is required.

Vhen used with a battery backup, the MCM14505 can be utilized as an alterable read-only memory, allowing the battery to retain information in the memory when the system is powered down, and allowing the battery to charge when power is applied. The micropower requirements of this memory allow quiescent battery operation for great lengths of time without significant discharging.

- Quiescent Current $=50 \mathrm{nA} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Single Read/Write Control Line
- Wired-OR Output Capability (3-State Output) for Memory Expansion
- Access Time $=180 \mathrm{~ns}$ typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$
- Write Cycle Time $=275$ ns typical at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$
- Fully Buffered Low Capacitance Inputs
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

MAXIMUM RATINGS (Voltages referenced to $V_{\text {SS }}$ )

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	-0.5 to +18	Vdc
Input Voltage, All Inputs	$v_{\text {in }}$	-0.5 to $V_{D D}+0.5$	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range - AL Device CL/CP Device	$\mathrm{T}_{\text {A }}$	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leqslant\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leqslant V_{D D}$.
Unused inputs must always be tied to an appropriate logic voltage level le.g., either $V_{S S}$ or $V_{D D}$ ).

## CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

## 64-BIT ( $64 \times 1$ ) STATIC RANDOM ACCESS MEMORY



ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{D D}$   Vdc	Tlow*					Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage   $V_{\text {in }}$   $V_{D D}$ or 0 $" 0 "$ Level       $V_{\text {in }} 0$ or $V_{D D}$ $" 1$ " Level	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	- - -	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	-	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		Vdc
$\begin{gathered} \text { Noise Immunity } \neq \square \\ \left(\because V_{\text {out }} \approx 0.8 \mathrm{Vdc}\right) \\ \left(\because V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\therefore V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \\ \left(\therefore V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right) \\ \left(\because V_{\text {out }} \leqslant 1.0 \mathrm{Vdc}\right) \\ \left(\therefore V_{\text {out }} \leqslant 1.5 \mathrm{Vdc}\right) \end{gathered}$	$V_{\text {NL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.25 \\ 4.50 \\ 6.75 \\ \hline \end{array}$	-	$\begin{aligned} & 1.4 \\ & 2.9 \\ & 4.4 \end{aligned}$	-	Vdc
	$\mathrm{V}_{\mathrm{NH}}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 2.9 \\ & 4.4 \end{aligned}$	--	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	-	Vdc
$\begin{aligned} & \hline \text { Output Drive Current }(\mathrm{AL} \text { Device) } \\ &\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) \text { Source } \\ &\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \text { Sink } \\ &\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \\ & \hline \end{aligned}$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \\ \hline \end{gathered}$	-	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.5 \\ & \hline \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	mAdc
	'OL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 2.2 \end{aligned}$	-	$\begin{gathered} 0.25 \\ 0.75 \\ 1.7 \end{gathered}$	$\begin{gathered} \hline 0.35 \\ 1.2 \\ 4.5 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.18 \\ 0.50 \\ 1.2 \\ \hline \end{gathered}$	-	mAdc
$\left\{\begin{aligned} & \hline \text { Output Drive Current }(C L / C P ~ D e v ~ \\ &\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) \text { Source } \\ &\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \text { Sink } \\ &\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \\ & \hline \end{aligned}\right.$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.4 \end{aligned}$	-	$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \\ \hline \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	-	$\begin{gathered} -0.6 \\ -0.12 \\ -0.3 \\ -1.0 \\ \hline \end{gathered}$	-	mAdc
	${ }^{\prime} \mathrm{OL}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.2 \\ & 0.6 \\ & 3.9 \\ & \hline \end{aligned}$	-	$\begin{gathered} 0.15 \\ 0.5 \\ 0.75 \end{gathered}$	$\begin{array}{r} \hline 0.35 \\ 1.2 \\ 4.5 \\ \hline \end{array}$	-	$\begin{aligned} & \hline 0.1 \\ & 0.4 \\ & 0.6 \\ & \hline \end{aligned}$	-	mAdc
Input Current (AL Device)	1 in	15	-	$\pm 0.1$	--	$\pm 0.00001$	$\pm 0.1$	-	$\pm 1.0$	$\mu \mathrm{Adc}$
Input Current (CL/CP Device)	1 in	15	-	$\pm 1.0$	-	$\pm 0.00001$	$\pm 1.0$	-	$\pm 14$	$\mu \mathrm{Adc}$
Input Capacitance $\left(v_{i n}=0\right)$	$\mathrm{C}_{\text {in }}$	-		-	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package)	$1 \mathrm{DD}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current (CL/CP Device) (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} \hline 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	-   -	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 375 \\ 750 \\ 1500 \\ \hline \end{gathered}$	$\mu \mathrm{Adc}$
Total Supply Current * * $\dagger$   (Dynamic plus Quiescent,   Per Package)   ( $C_{L}-50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} T$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & I_{T}-(1.28 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & I_{T}=(2.56 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.85 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$
Three-State Leakage Current (AL Device)	${ }^{\prime} \mathrm{TL}$	15	--	$\pm 0.1$	-	+0.00001	$\pm 0.1$	--	$\pm 3.0$	$\mu \mathrm{Adc}$
Three-State Leakage Current (CL/CP Device)	ITL	15	-	$\pm 1.0$	-	+0.00001	$\pm 1.0$	-	$\pm 7.5$	$\mu \mathrm{Adc}$

${ }^{*} \mathrm{~T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for CL/CP Device.
Thigh $=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
\#Noise immunity specified for worst-case input combination
†To calculate total supply current at loads other than 50 pF : $I_{T}\left(C_{L}\right)=I_{T}(50 p F)+1 \times 10^{-3}\left(C_{L}-50\right) V_{D D^{f}}$
where: $I_{T}$ is in $\mu \mathrm{A}$ (per package), $\mathrm{C}_{\mathrm{L}}$ in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in Vdc , and f in kHz is input frequency.
**The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* (C $\left.{ }_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	VDD	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{T} L H}=(2.43 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+58.5 \mathrm{~ns} \\ & \mathrm{t} T \mathrm{LH}=(1.08 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+36 \mathrm{~ns} \\ & \mathrm{t} \mathrm{TLH}=(0.72 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+39 \mathrm{~ns} \end{aligned}$	${ }^{\text {t }}$ LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 180 \\ 90 \\ 75 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 150 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t} T H \mathrm{~L}=(2.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+52 \mathrm{~ns} \\ & \mathrm{t} T H L=(0.96 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+32 \mathrm{~ns} \\ & \mathrm{t} T H L=(0.69 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \end{aligned}$	${ }^{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \\ & 65 \end{aligned}$	$\begin{aligned} & 320 \\ & 160 \\ & 130 \end{aligned}$	ns
Propagation Delay Time   Read Access Time $\begin{aligned} & \mathrm{t}_{\mathrm{acc}}(\mathrm{R})=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+385 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}(\mathrm{R})=(10.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+175 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}(\mathrm{R})=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+105 \mathrm{~ns} \end{aligned}$	${ }^{\text {tacc }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 455 \\ & 210 \\ & 130 \end{aligned}$	$\begin{aligned} & 750 \\ & 400 \\ & 300 \end{aligned}$	ns
Strobe Down Time	${ }^{\text {t }}$ L $L$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ 125 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Address Setup Time	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \\ & 90 \end{aligned}$	$\begin{aligned} & -100 \\ & -40 \\ & -25 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
Data Setup Time	$\mathrm{t}_{\text {su }}$ (D)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 200 \\ 75 \\ 55 \end{gathered}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Setup Time	$\mathrm{t}_{\text {su }}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 270 \\ 60 \\ 45 \end{gathered}$	$\begin{aligned} & 90 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Setup Time	$\mathrm{t}_{\text {su }}(\mathrm{W})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 400 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & 80 \\ & 25 \\ & 11 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Address Release Time	$t_{\text {rel }}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 75 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 5.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Hold Time	$t_{\text {h }}(\mathrm{D})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Release Time	$\mathrm{t}_{\mathrm{re}}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -90 \\ & -25 \\ & -10 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Release Time	${ }^{\text {trel }}$ (W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Cycle Time	${ }^{\text {c }} \mathrm{cyc}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 400 \\ & 300 \\ & \hline \end{aligned}$	ns
Write Cycle Time	${ }^{\text {t cyc }}$ (W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 440 \\ & 275 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 700 \\ & 550 \\ & 415 \\ & \hline \end{aligned}$	ns
Output Disable Delay (10\% Output Change into $1.0 \mathrm{k} \Omega$ Load)	${ }^{\text {d }}$ dis	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ 60 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	ns

[^12]FIGURE 1 - READ CYCLE TIMING DIAGRAM


FIGURE 2 - WRITE CYCLE TIMING DIAGRAM


FIGURE 3 - MAXIMUM STROBE PULSE WIDTH versus TEMPERATURE


FIGURE 4 - TYPICAL READ ACCESS TIME versus LOAD CAPACITANCE


FIGURE 5 - TYPICAL OUTPUT SOURCE CAPABILITY versus TEMPERATURE

FIGURE 6 - TYPICAL OUTPUT SINK CAPABILITY versus TEMPERATURE


Notes:

1. Cycle R/W to ground and then to $V_{D D}$ prior to measurement to insure turn on of the device under test.
2. For the $P$ channel characteristics, $V_{D S}=V_{O H}-V_{D D}$.
3. For the N -channel characteristics,
$V_{D S}$ is measured directly.
4. For the drain current, $I_{D}=\frac{E}{100}$ Amp





## OPERATING CHARACTERISTICS

In considering the operation of the MCM 14505 CMOS memory refer to the functional circuit diagram of Figure 7 and timing diagrams shown in Figures 1 and 2. The basic memory cell is a cross-coupled flip-flop consisting of two inverter gates and two P-channel devices for read/write control. The push-pull cell provides high speed as well as low power.

During a read cycle, when the strobe line is high the write selection drivers are disabled and the data from the selected row is available on columns $1 \mathrm{~b}, 2 \mathrm{~b}, 3 \mathrm{~b}$, and 4 b . The A4 and A5 address bits are decoded to select output data from one of the four columns. The output data is available on the data output pin only when the strobe and read/write lines are high simultaneously and after the read access time, $\mathrm{t}_{\mathrm{acc}}(\mathrm{R})$, has occurred (see Figure 1). Note that the output is initially disabled and always goes to the logic " 0 " state (low voltage) before data is valid. The output is in the highimpedance state (disabled) when the strobe line or the RNW line is in the low state. The memory is strobed for reading or writing only when the strobe, CE1, and CE2 are high simultaneously. The R/W line can be a dc voltage during a read or write cycle and need not be pulsed, as shown in the timing diagrams. For this case the R/W line should be a logic " 1 " (high) for reading and a logic " 0 " for writing.

When the strobe line is high, the column read/write inhibit gates and the row decoder inhibit gates are disabled, the selected
row is in the low state, and the unselected 15 rows retain their logic " 1 " level due to the row capacitance that exists when the row decoder inhibit gates are disabled. This capacitive storage mechanism requires a maximum strobe width (see Figure 3) equal to the junction reverse bias RC time constant. When the strobe is returned to a logic " 0 " the rows are forced to $V_{D D}$ by the row decoder inhibit gates (pullup devices). Similarly the column read/write inhibit gates (pulldown devices) force the column lines to a logic " 0 " state.

Two column lines are associated with each memory cell in order to write into the cell. The write selection drivers are enabled when the R/W line is a logic " 0 " and the strobe line is a logic " 1 ". The input data is written into the column selected by the column decoder. For instance, if a " 1 " is to be written in the memory cell associated with row 1 and column 1 , then row 1 would be enabled (logic " 0 ") while column 1b is forced high and column $1 a$ is forced low by the write selection drivers. If a logic " 0 " is to be written into the cell, then column 1 a is forced high and 1 b is forced low. The data that is retained in the memory cell is the data that was present on the data input pin at the moment the strobe goes low when R/W is low, or when R/W goes high when the strobe is high.

## APPLICATIONS INFORMATION

Figure 8 shows a $\mathbf{2 5 6}$-word by n -bit static RAM memory sy stem The outputs of four MCM14505 devices are tied together to form 256 words by 1 bit. Additional bits are attained by paralleling the inputs in groups of four. Memories of larger words can be attained by decoding the most significant bits of the address and ANDing them with the strobe input.

Fan-in and fan-out of the memory is limited only by speed requirements. The extremely low input and output leakage current ( 100 nA maximum) keep the output voltage levels from changing significantly as more outputs are tied together. With the output levels independent of fan-out, most of the power supply range is available as logic swing, regardless of the number of units wired together. As a result, high noise immunity is maintained under all conditions.

Power dissipation is $0.1 \mu \mathrm{~W}$ per bit at a $1.0-\mathrm{kHz}$ rate for a 5.0 -volt power supply, while the static power dissipation is 2.0 nW per bit. This low power allows non-volatile information storage when the memory is powered by a small standby battery.

Figure 9 shows an optional standby power supply circuit for making a CMOS memory "non-volatile". When the usual power fails, a battery is used to sustain operation or maintain stored information. While normal power supply voltage is present, the battery is trickle-charged through a resistor which sets the charging rate. $\mathrm{V}_{\mathrm{B}}$ is the sustaining voltage, and $\mathrm{V}^{+}$is the ordinary voltage from a power supply. $V_{D D}$ connects to the power pin on the memory. Low-leakage diodes are recommended to conserve battery power.

The memory system shown in Figure 8 can be interfaced directly with the other devices in the McMOS family. No external components are required.

At the inputs to the CMOS memory, TTL devices can interface directly if an open-collector logic gate such as the MC7407 is used as shown in Figure 10. Driver circuits are not required since the input capacitance is low ( 4.0 to 6.0 pF ). The address, data, and read/write inputs do not need to be fast since they can be changed for the duration when the strobe pulse is low, tSTL (see Figures 1 and 2). For high-speed operation, a push-pull driver should be used if more than five strobe inputs must be driven at one time. One circuit of the type shown in Figure 10 can be used for every ten strobe inputs.

Figures 11, 12, and 13 show methods of interfacing the memory output to TTL logic at various memory voltages. If a $V_{D D}$ of 5.0 volts is used for slow-speed, low-power applications, one transistor and one resistor must be used (Figure 11). The MCM14505AL will drive one low-power TTL gate directly

If a $V_{D D}$ of 10 volts is used, the output of the memory device can fan out to two low-power TTL gates (Figure 12a) or to a discrete transistor (Figure 12b). The discrete transistor circuit provides higher speed and/or high fan-out. A pulldown resistor at the base of the transistor is not needed for fast turn-off because of the push-pull output of the memory. Turn-on time of the transistor is much faster in Figure 12b since the voltage rise is only 0.75 volt. The low output capacitance of the MCM 14505 means that several outputs can be wire-ORed without significantly degrading performance. The read access time is increased by only 20 ns typically for 16 outputs tied together when Figure 12 b is used

Five low-power TTL gates can be driven from the memory output if a $V_{D D}$ of 15 volts is used (Figure 13a). Figure 13b shows the interface if a discrete transistor is used. The 1.0 kilohm resistor in the base is required to insure that not more than 10 mA flows through the output as listed in the maximum ratings. If a 2.0 kilohm collector resistor is used (fan-out $=3$ ), the turn-on time of the transistor is only slightly faster than in the circuit shown in Figure 12b due to the lower output impedance when $V_{D D}=15$ volts. The voltage at the memory data output has to rise to only 1.3 volts to insure driving a fan-out of three TTL devices.

If a 510 -ohm collector resistor is used, 20 TTL loads may be driven. The read access time is increased about 20 ns when four memory outputs are tied together since the output voltage must rise to 3.7 volts before the transistor can sink the full $\mathrm{IOL}_{\mathrm{OL}}$ for a fan-out of 20 TTL devices. Almost any NPN transistor with a minimum beta of 15 can be used for the interface shown in Figures 11, 12 and 13.

The high source current from the push-pull output stage of the MCM14505 makes for a simpler interface circuit since a low source current memory requires a differential comparator to achieve highspeed operation.

FIGURE 8 - CMOS 256-WORD BY n-BIT STATIC READ/WRITE MEMORY


[^13]FIGURE 11 - CMOS-TO-TTL INTERFACE


FOR $V_{D D}=5.0 \mathrm{~V}$

FIGURE 12 - CMOS-TO-TTL INTERFACE

$$
\text { FOR } V_{D D}=10 \mathrm{~V}
$$



FIGURE 13 - CMOS-TO-TTL INTERFACE
FOR $V_{D D}=15 \mathrm{~V}$


## 256-BIT STATIC RANDOM ACCESS MEMORY

The MCM 14537 is a static random access memory (RAM) organized in a $256 \times 1$-bit pattern and constructed with MOS P-channel and N -channel enhancement mode devices in a single monolithic structure. The circuit consists of eight address inputs ( $A_{n}$ ), one data input ( $\mathrm{D}_{\text {in }}$ ), one write enable input (WE), one strobe input (ST), two chip enable inputs ( $C E_{n}$ ), and one data output ( $\mathrm{D}_{\text {out }}$ ).

Using both chip enable inputs as extensions of the address inputs, a 10 -bit address scheme may be employed. Four MCM14537 devices may be used to comprise a 1024 -bit memory without additional address decoding. The CE and ST inputs are dissimilary designed to enable usage of the memory in a variety of applications. An output latch is provided on the chip for storing the data read or written into memory, making a data-out storage register unnecessary. The CE inputs control the data output for third-state (high output impedance) or active operation which makes the memory very useful in a bus oriented system. When CE2 is high the chip is fully disabled. When CE 1 is high the output is in the third state but data can be written into the output latch during a read cycle. This enables the use of the memory for fast reading by using the CE1 input to enable the latch. The memory is also designed so that dc signals can operate the memory with no maximum pulse width required on the CE and ST lines.

Medium speed operation and micropower operation make the device useful in scratch pad and buffer applications where micropower or battery operation and high noise immunity are required.

- Quiescent Current $=0.5 \mu \mathrm{~A} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- 3-state Output Capability for Memory Expansion
- Output Data Latch Eliminates Need for Storage Buffer
- Access Time $=700$ ns typical @ $V_{D D}=10 \mathrm{Vdc}$
- Fully Decoded and Buffered
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

MAXIMUM RATINGS (Voltages referenced to $\mathrm{V}_{\text {SS }}$ )			
Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {DD }}$	-0.5 to +18	Vdc
Input Voltage, All Inputs	$\mathrm{V}_{\text {in }}$	-0.5 to $V_{D D}+0.5$	Vdc
DC Current Drain per Pin	1	10	mAdc
Operating Temperature Range - AL Device CL/CP Device	$\mathrm{T}_{\mathrm{A}}$	$\begin{aligned} & -55 \text { to }+125 \\ & -40 \text { to }+85 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

256-BIT (256 x 1) STATIC RANDOM ACCESS MEMORY


[^14]ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	VOD Vdc	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage '0" Level	$\mathrm{V}_{\text {OL }}$	5.0	-	0.05	--	0	0.05	-	0.05	Vdc
		10	-	0.05	-	0	0.05	-	0.05	
		15	-	0.05	-	0	0.05	-	0.05	
or $\mathrm{V}_{\text {DD }} \quad$ "1" Level	$\mathrm{V}_{\mathrm{OH}}$	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc)
		10	9.95	-	9.95	10	-	9.95	-	
		15	14.95	-	14.95	15	-	14.95	-	
										Vdc
		5.0	1.5	-	1.5	2.25	-	1.4	-	
		10	3.0	-	3.0	4.50	-	2.9	-	
		15	4.5	-	4.5	6.75	-	4.4	-	
( $\left.V_{\text {out }} \leqslant 0.8 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{NH}}$	5.0	1.4	-	1.5	2.25	-.	1.5	-	Vdc
$\left(\mathrm{V}_{\text {out }}=1.0 \mathrm{Vdc}\right)$		10	2.9	-	3.0	4.50	-	3.0	-	
$\left(\mathrm{V}_{\text {out }}: 1.5 \mathrm{Vdc}\right)$		15	4.4	--	4.5	6.75	-	4.5	-	
Output Drive Current (AL Device)	${ }^{1} \mathrm{OH}$									mAdc
$(\mathrm{VOH}=2.5 \mathrm{Vdc}) \quad$ Source		5.0	-1.2	$\ldots$	- 1.0	-1.7	-	-0.7	-	
$\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$		5.0	-0.25	...	-0.2	-0.36	-	-0.14	-	
$\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$		10	-0.62	.-.	-0.5	-0.9	--	-0.35	-	
$(\mathrm{VOH}=13.5 \mathrm{Vdc})$		15	-1.8	-	-1.5	-3.5	--	-1.1	-	
$\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \quad$ Sink	${ }^{1} \mathrm{OL}$	5.0	0.64		0.51	0.88	-	0.36	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	1.6	-	1.3	2.25	-	0.9	-	
$\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$		15	4.2	--	3.4	8.8	-	2.4	-	
Output Drive Current (CL/CP Device)	${ }^{1} \mathrm{OH}$									mAdc
$\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) \quad$ Source		5.0	-1.0	-	-0.8	-1.7	-	-0.6	-	
$(\mathrm{V} \mathrm{OH}=4.6 \mathrm{Vdc})$		5.0	-0.2	-	-0.16	-0.36	-	-0.12	-	
$\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$		10	-0.5	-	-0.4	-0.9	-	-0.3	-	
$\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$		15	-1.4	-	-1.2	-3.5	-	-1.0	-	
( $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$ ) Sink	${ }^{\prime} \mathrm{OL}$	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
$\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$		10	1.3	-	1.1	2.25	-	0.9	-	
$(\mathrm{V}$ OL $=1.5 \mathrm{Vdc})$		15	3.6	-	3.0	8.8	-	2.4	-	
Input Current (AL Device)	$\mathrm{I}_{\text {in }}$	15	-	$\pm 0.1$	..	$\pm 0.00001$	$\pm 0.1$	-	$\pm 1.0$	$\mu \mathrm{Adc}$
Input Current (CL/CP Device)		15		$\pm 1.0$	-	$\pm 0.00001$	$\pm 1.0$	-	$\pm 14$	$\mu \mathrm{Adc}$
input Capacitance $\left(v_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-		-	-	5.0	7.5	-	-	pF
$\begin{aligned} & \text { Quiescent Current (AL Device) } \\ & \text { (Per Package) } \end{aligned}$	100	5.0	-	100	-	0.5	100	-	1800	$\mu \mathrm{Adc}$
		10	-	200	-	1.0	200	-	3600	
		15		400	-	1.5	400	-	7200	
Quiescent Current (CL/CP Device)   (Per Package)	${ }^{1} \mathrm{DO}$	5.0	-	100	-	0.5	100	-	1800	$\mu \mathrm{Adc}$
		10	-	200	-	1.0	200	-	3600	
		15	-	400	--	1.5	400	-	7200	
Total Supply Current" "   (Dynamic plus Quiescent,   Per Package)   ( $\mathrm{C}_{\mathrm{L}}-50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$		$\begin{aligned} & I_{T}-(1.46 \mu \mathrm{~A} / \mathrm{kHz}) f+I_{D D} \\ & I_{T}=(2.91 \mu \mathrm{~A} / \mathrm{kHz}) f+I_{D D} \\ & I_{T}=(4.37 \mu \mathrm{~A} / \mathrm{kHz}) f+I_{D D} \end{aligned}$							$\mu \mathrm{Adc}$
		10								
		15								
Three-State Leakage Current (AL Device)	'TL	15	-	$\pm 0.1$	-	. 0.00001	$\pm 0.1$	-	$\pm 3.0$	$\mu \mathrm{Adc}$
Three-State Leakage Current (CL/CP Device)	${ }^{1} \mathrm{TL}$	15	-	$\pm 1.0$	-	+0.00001	$\pm 1.0$	-	$\pm 7.5$	$\mu$ Adc

- Tlow ${ }^{-55^{\circ}} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device.

Thigh $=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device.
${ }^{2}$ Noise immunity specified for worst-case input combination
Noise Margin for both " 1 " and " 0 " level $=1.0 \mathrm{Vdc} \min @ V_{D D}=5.0 \mathrm{Vdc}$

$$
\begin{aligned}
& 2.0 \mathrm{Vdc} \min @ \mathrm{~V}_{\mathrm{DD}}-10 \mathrm{Vdc} \\
& 2.5 \mathrm{Vdc} \min @ \mathrm{VDD}=15 \mathrm{Vdc}
\end{aligned}
$$

$\dagger$ To calculate total supply current at loads other than 50 pF
$I_{T}\left(C_{L}\right)=I_{T}(50 \rho F)+1 \times 10^{-3}\left(C_{L}-50\right) V_{D D^{f}}$
where: $I_{T}$ is in $\mu \mathrm{A}$ (per package), $\mathrm{C}_{\mathrm{L}}$ in $\mathrm{PF}, \mathrm{V}_{\mathrm{DD}}$ in Vdc , and f in kHz is input frequency.
$\cdots$ The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Characteristic	Figure	Symbol	VDD	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{TLH}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	3	${ }^{\text {t TLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 180 \\ & 90 \\ & 65 \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{T} H \mathrm{~L}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	3	${ }^{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Read Access Time from } \overline{\mathrm{ST}} \text { or } \overline{\mathrm{CE}} 2 \\ & \mathrm{t}_{\mathrm{acc}}=(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2480 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+690 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+393 \mathrm{~ns} \end{aligned}$	4,5	tacc (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \\ & 115 \end{aligned}$	$\begin{gathered} 2500 \\ 700 \\ 400 \end{gathered}$	$\begin{aligned} & 6000 \\ & 2000 \\ & 1500 \end{aligned}$	ns
Output Enable Delay from CE1 or CE2	5,6	$\mathrm{tacc}\left(\overline{C E}_{\mathrm{n}}\right)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \end{aligned}$	ns
Setup Time from $A_{n}$ to $\overline{S T}$ or $\overline{C E} 2$	4, 5, 6, 7	$\mathrm{t}_{\text {su }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 1800 \\ 600 \\ 450 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Hold Time from $\mathrm{A}_{\mathrm{n}}$ to $\overline{S T}$ or $\overline{\mathrm{CE}} 2$	4, 5, 6, 7	$t^{\text {t }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 600 \\ & 240 \\ & 180 \end{aligned}$	$\begin{gathered} 200 \\ 80 \\ 55 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Data Hold Time	7	$t_{\text {L }}$ (D)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1400 \\ 500 \\ 375 \end{gathered}$	$\begin{aligned} & 480 \\ & 160 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Setup Time	7	$\mathrm{t}_{\text {su }}(\mathrm{D})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3600 \\ & 1800 \\ & 1350 \end{aligned}$	$\begin{aligned} & 1200 \\ & 600 \\ & 420 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Write Enable Hold Time	7	th( $\overline{W E}$ )	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Write Enable Setup Time	7	$\mathrm{t}_{\text {su }}(\overline{W E})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Write Enable to Dout Disable**	4	${ }^{\text {t }}$ WE	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
$\overline{\text { Strobe or } \overline{C E} 2 \text { Pulse Width When Reading }}$	4, 5, 6	${ }^{t} W L(R)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1350 \\ 450 \\ 340 \\ \hline \end{gathered}$	$\begin{aligned} & 450 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
Strobe, CE1 or CE2 Pulse Width When Writing	7	tWL(W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 2400 \\ 1260 \\ 945 \\ \hline \end{gathered}$	$\begin{gathered} 1200 \\ 600 \\ 420 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Write Recovery Time $\begin{aligned} \mathrm{t}_{\mathrm{W}} & =(1.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+219 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{W}} & =(0.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+70 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{W}} & =(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47.5 \mathrm{~ns} \end{aligned}$	4	$t_{R}(W)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \end{gathered}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \end{aligned}$	ns
$\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ to Dout Disable Delay**	6	${ }^{t} \overline{C E}_{n}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	ns
Read Setup Time	4,5	$t_{s u}(R)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -100 \\ & -40 \\ & -30 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Hold Time	4,5	$t h(R)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 180 \\ 60 \\ 45 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Cycle Time	4, 5	${ }^{\text {t cyc }}$ (R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 2500 \\ 700 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & 6000 \\ & 2100 \\ & 1575 \\ & \hline \end{aligned}$	ns
Write Cycle Time	7	${ }^{\text {cheyc }}$ (W)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 1400 \\ 700 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & 4800 \\ & 2100 \\ & 1575 \\ & \hline \end{aligned}$	ns

The formula given is for the typical characteristics only.
** $10 \%$ output change into a $1.0 \mathrm{k} \Omega$ load.



FIGURE 4 - READ CYCLE WAVEFORMS UTILIZING STROBE-TO-ACCESS MEMORY


FIGURE 5 - READ CYCLE WAVEFORMS UTILIZING CE2 FOR ACCESS MEMORY


FIGURE 6 - READ CYCLE WAVEFORMS UTILIZING CE1 AND CE2 TO ACCESS MEMORY


FIGURE 7 - WRITE CYCLE WAVEFORMS


LOGIC/BLOCK DIAGRAM


FUNCTION	$\overline{\text { CE1 }}$	$\overline{C E 2}$	$\overline{S T}$	WE	$\mathrm{D}_{\text {in }}$	Dout	COMMENTS
Address changing valid	$\times$	x	1	$\times$	$\times$	R/A	Dout will be active if $\overline{C E 1}$ and $\overline{C E 2}=$ " 0 " and $\bar{W} \bar{E}=$ " 1 ".
	$\times$	1	$\times$	$\times$	$\times$	R	$\overline{\mathrm{CE} 2}=" 1$ ", fully disables internal logic and output.
Address changing not valid	$\times$	0	0	$\times$	$\times$	R/A	Changing address in this mode may result in altered data.
Dout disabled in high resistance state	1	$\times$	$\times$	$\times$	$\times$	R	$\overline{C E 1}=" 1 "$ disables write cycle and Dout.
	X	1	X	X	$\times$	R	The chip is fully disabled.
	$\times$	X	$\times$	0	$\times$	R	$\overline{W E}=$ " 0 " enables writing into memory if CE1, CE2, and $\overline{S T}={ }^{\prime} 0$ ".
Dout enabled in active state	0	0	$\times$	1	$\times$	A	If $\overline{\text { ST }}=" 1$ ", the output stores and reads the previous data from or written into memory.
Read addressed memory location into output latch.	0	0	0	1	$\times$	A	The output reads the present contents that are addressed.
	1	0	0	1	$\times$	R	The addressed location is read into output latch with output in the " $R$ " state.
Disable reading from memory	$\times$	1	$\times$	x	$\times$	R	Address changing can take place in this condition.
	$\times$	$\times$	1	x	$\times$	R/A	
Write into memory	0	0	0	0	A	R	$D_{\text {in }}$ is written into memory and into the output latch
Write disabled	1   $\times$   $\times$   $\times$   $\times$	$\times$   $\times 1$   $\times$   $\times$   $\times$	$\times$   $\times$   $\times$   1   $\times$	  $\times$   $\times$   $\times$   $\times$   1	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{array}{c\|} \hline R \\ R \\ R / A \\ R / A \\ \hline \end{array}$	$\begin{aligned} & \overline{W E}=" 1 " \text { is a read enable. } \\ & \overline{W E}={ }^{\prime \prime} 0 \text { " is a write enable. } \end{aligned}$

$R=$ High resistance state at $D_{\text {out }}$
$A=A n$ active level of either $V_{S S}$ or $V_{D D}$
$R / A=A n R$ or $A$ condition depending on the don't care condition
$X=$ Don't care condition (must be in the " 1 " or " 0 " state)
$1=A$ high level at $V_{D D}$
$0=A$ low level at $V_{S S}$

TYPICAL APPLICATION FOR SERIAL WORDS UTILIZING BUS TECHNIQUES



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leqslant\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leqslant \mathrm{V}_{\mathrm{DD}}$
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$V_{D D}$   Vdc	Tlow*		$25^{\circ} \mathrm{C}$			Thigh*		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output $V_{0}$ tage " 0 " Level   $V_{\text {in }} V_{D D}$ or 0	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	0 0 0	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	Vdc
$v_{\text {in }} 0$ or $V_{\text {DD }}$ " 1 "' Level	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \end{array}$	-	$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$	-	Vdc
Input Voltage ${ }^{\#}$ " 0 " Level   $\left(\mathrm{V}_{\mathrm{O}} 4.5\right.$ or 0.5 Vdc$)$    $\left(\mathrm{V}_{\mathrm{O}} 9.0\right.$ or 1.0 Vdc$)$    $\left(\mathrm{V}_{\mathrm{O}}-13.5\right.$ or 1.5 Vdc$)$        $\left(\mathrm{V}_{\mathrm{O}}-0.5\right.$ or 4.5 Vdc$)$    $\left(\mathrm{V}_{\mathrm{O}}=1.0\right.$ or 9.0 Vdc$)$    $\left(\mathrm{V}_{\mathrm{O}}=1.5\right.$ or 13.5 Vdc$)$   	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	--	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-   -   -   -	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	- - -	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	Vdc
	VIH	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	- - - -	3.5 7.0 11.0	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$	-	Vdc
Output Drive Current (AL. Device)   $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source   $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$    $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$    $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$    $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink   $\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$    $\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	- - - -	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.5 \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \\ \hline \end{gathered}$	-	mAdc
	${ }^{\prime} \mathrm{OL}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
$\begin{array}{\|cc\|} \hline \text { Output Drive Current } & (\mathrm{CL} / \mathrm{CP} \text { Device) } \\ \left(\mathrm{V}_{\mathrm{OH}} 2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \\ \hline \end{array}$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.4 \end{aligned}$	- - - -	$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \\ \hline \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	- - - -	$\begin{gathered} -0.6 \\ -0.12 \\ -0.3 \\ -1.0 \\ \hline \end{gathered}$	-	mAdc
	${ }^{\text {IOL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	mAdc
Input Current (AL Device)	$\mathrm{I}_{\text {in }}$	15	-	$\pm 0.1$	-	$\pm 0.00001$	$\pm 0.1$	-	$\pm 1.0$	$\mu$ Adc
Input Current (CL/CP Device)	$\mathrm{I}_{\text {in }}$	15	-	$\pm 1.0$	-	$\pm 0.00001$	$\pm 1.0$	-	$\pm 14.0$	$\mu$ Adc
Input Capacitance $\left(V_{i n}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package)	${ }^{1} \mathrm{DD}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current (CL/CP Device) (Per Package)	100	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} \hline 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.050 \\ & 0.100 \\ & 0.150 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	-	$\begin{gathered} 375 \\ 750 \\ 1500 \\ \hline \end{gathered}$	$\mu \mathrm{Adc}$
Total Supply Current* * $\dagger$ (Dynamic plus Quiescent. Per Package) ( $C_{L}-50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & I_{T}=1 \\ & I_{T}=1 \\ & I_{T}=1 \end{aligned}$	$\begin{aligned} & 98 \mu \mathrm{~A} / \mathrm{kHz} \\ & 96 \mu \mathrm{~A} / \mathrm{kHz} \\ & 86 \mu \mathrm{~A} / \mathrm{kHz} \end{aligned}$	$\begin{aligned} & f+I D \\ & f+I D \\ & f+I D \end{aligned}$			$\mu \mathrm{Adc}$
Three-State Leakage Current (AL Device)	${ }^{\text {ITL }}$	15	-	$\pm 0.1$	-	+0.00001	$\pm 0.1$	-	$\pm 3.0$	$\mu \mathrm{Adc}$
Three-State Leakage Current (CL/CP Device)	${ }^{1} \mathrm{TL}$	15	--	$\pm 1.0$	-	+0.00001	$\pm 1.0$	-	$\pm 7.5$	$\mu$ Adc

*Tow $=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device.
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for CL/CP Device.
${ }^{2}$ Noise immunity specified for worst-case input combination.
Noise Margin for both " 1 " and " 0 " level $=1.0 \mathrm{Vdc} \mathrm{min} @ V_{D D}=5.0 \mathrm{Vdc}$

$$
\begin{aligned}
& 2.0 \mathrm{Vdc} \min @ V_{D D}=10 \mathrm{Vdc} \\
& 2.5 \mathrm{Vdc} \min @ V_{D D}=15 \mathrm{Vdc}
\end{aligned}
$$

$\dagger$ To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+4 \times 10^{-3}\left(C_{L}-50\right) V_{D D^{f}}
$$

where: $I_{T}$ is in $\mu A$ (per package), $C_{L}$ in $p F, V_{D D}$ in $V d c$, and $f$ in kHz is input frequency.
**The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	VDD	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	1	${ }^{\text {T }}$ LH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 180 \\ & 90 \\ & 65 \end{aligned}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	1	${ }^{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Read Cycle Time	1,2	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 2000 \\ 750 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & 6000 \\ & 2200 \\ & 1650 \\ & \hline \end{aligned}$	ns
Write Cycle Time	3,4	$\mathrm{t}_{\mathrm{cyc}}(\mathrm{W})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 1200 \\ 750 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & 3600 \\ & 2200 \\ & 1650 \\ & \hline \end{aligned}$	ns
Address to Strobe Setup Time	1.3	$t_{s u}(\mathrm{~A}-\overline{S T})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1500 \\ 450 \\ 350 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 500 \\ & 150 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Strobe to Address Hold Time	1,3	$\mathrm{th}_{\mathrm{h}}(\overline{\mathrm{ST}}-\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Address to Chip Enable Serup Time	2,4	$t_{s u}(A-\overline{C E})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 1800 \\ 600 \\ 450 \\ \hline \end{gathered}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Chip Enable to Address Hold Time	2, 4	$t_{h}(\overline{C E}-A)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 450 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
$\overline{\text { Strobe or }} \overline{\text { Chip Enable Pulse Width When Reading }}$	1,2	twL(R)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 1800 \\ 450 \\ 350 \\ \hline \end{gathered}$	$\begin{aligned} & 450 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
	3,4	${ }^{t} W \mathrm{~L}(\mathrm{~W})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3600 \\ & 1800 \\ & 1350 \end{aligned}$	$\begin{gathered} 1200 \\ 600 \\ 400 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Setup Time	1	$\mathrm{t}_{\text {su }}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -100 \\ & -40 \\ & -30 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Hold Time	1	$t_{h}(\mathrm{R})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 240 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Setup Time	3,4	$\mathrm{t}_{\text {su }}(\mathrm{D})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 600 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Data Hold Time	3,4	$t_{\text {L }}(\mathrm{D})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 150 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 50 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (continued)

Characteristic	Figure	Symbol	VDD	Min	Typ	Max	Unit
$\overline{\text { Write Enable Setup Time }}$	3,4	${ }^{\text {t }}$ su ( $\bar{W} \bar{E}$ )	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 720 \\ & 240 \\ & 180 \end{aligned}$	$\begin{gathered} 240 \\ 80 \\ 55 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
$\overline{\text { Write Enable }}$ Hold Time	3.4	$t_{\text {h }}(\overline{W E})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 150 \\ & 60 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Read Access Time from S̄Trobe	1.3	$\left.\mathrm{tacc}_{\text {a }} \mathrm{R}-\overline{\mathrm{ST}}\right)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 2000 \\ 700 \\ 350 \\ \hline \end{gathered}$	$\begin{aligned} & 6000 \\ & 2100 \\ & 1600 \end{aligned}$	ns
Read Access Time from Chip Enable	2	$\mathrm{t}_{\mathrm{acc}}(\mathrm{R}-\overline{\mathrm{CE}})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 2100 \\ 750 \\ 400 \\ \hline \end{gathered}$	$\begin{aligned} & 6300 \\ & 2250 \\ & 1700 \end{aligned}$	ns
Output Enable/Disable Delay from Chip Enable or Write Enable	2,4	${ }^{t} R(\overline{C E}),$ $\operatorname{tr}_{\mathrm{R}}(\overline{W E})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	ns
Three-State Enable/Disable Output Delay	2	${ }_{\text {t }}(\mathrm{T})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \end{aligned}$	$\begin{gathered} 1200 \\ 480 \\ 360 \\ \hline \end{gathered}$	ns
Latch to Output Propagation Delay	1	${ }^{\text {t }} \overline{\text { LE }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 600 \\ & 450 \\ & \hline \end{aligned}$	ns

*The formula given is for the typical characteristics only.


FIGURE 1 - READ CYCLE WAVEFORMS UTILIZING STROBE TO ACCESS MEMORY


Notes: $\quad 1-\overline{C E} 1, \overline{C E} 2, \overline{C E} 3$ and $\bar{T}$ are low, $M$ is high
2 .- $\overline{W E}$ may be held high during the complete read cycle.

FIGURE 2 - READ CYCLE WAVEFORMS UTILIZING CHIP ENABLE TO ACCESS MEMORY


FIGURE 3 - WRITE CYCLE WAVEFORMS UTILIZING STROBE


FIGURE 4 - WRITE CYCLE WAVEFORM UTILIZING CHIP ENABLE


TRUTH TABLE


FIGURE 5 - 512 WORD $\times 16$ BIT MEMORY BOARD Data Inputs



## $256 \times 4$ BIT STATIC RAM

The MCM5101 family of CMOS RAMs offers ultra low power and fully static operation with a single 5 -volt supply. The CMOS 1024-bit devices are organized in 256 words by 4 bits. Separate data inputs and data outputs permit maximum flexibility in bus-oriented systems. Data retention at a power supply as low as 2.0 volts over temperature readily allows design into applications using battery backup for nonvolatility. The MCM5101 is fully static and does not require clocking in standby mode.
The MCM5101 is fabricated using the Motorola advanced ionimplanted, silicon-gate technology for high performance and high reliability.

- Low Standby Power
- Fast Access Time
- Single +5.0 Volt Supply
- Fully TTL Compatible - All Inputs and Outputs
- Three-State Output
- Fully Static Operation
- Data Retention to 2.0 Volts
- Direct Replacement for:

Intel 5101 Series
AMI S5101 Series
Hitachi HM435101 Series

- Pin Replacement for Harris HM6501 Series

Type Number	Typical Current   @2 V $(\mu \mathrm{A})$	Typical Current   $@ 5 \vee(\mu \mathrm{~A})$	Max Access   $(\mathrm{ns})$
MCM51L01C45, P45	0.14	0.2	450
MCM51L01C65, P65	0.14	0.2	650
MCM5101C65, P65	0.70	1.0	650
MCM5101C80, P80	-	10	800


PIN ASSIGNMENT
R22

TRUTH TABLE						
CE1	CE2	OD	R/W	Din	Output	Mode
H	X	X	X	X	High-Z	Not Selected
X	L	X	X	X	High-Z	Not Selected
X	X	H	H	X	High-Z	Output Disabled
L	H	H	L	X	High-Z	Write
L	H	L	L	X	Din	Write
L	H	L	H	X	Dout	Read

## CMOS

(COMPLEMENTARY MOS)
1024-BIT STATIC RANDOM ACCESS MEMORY


MAXIMUM RATINGS (Voltages referenced to $V_{S S}$ Pin 8)

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Voltage on Any Pin	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{C C}$	4.75	5.0	5.25	V	
Logic 1 Voltage, All Inputs	$V_{\text {SS }}$	0	0	0		
Logic 0 Voltage, All Inputs	$\mathrm{V}_{\text {IH }}$	2.2	--	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	

## DC CHRACTERISTICS

Characteristic	Symbol	MCM51L01-45 MCM51L01-65			MCM5101-65			MCM5101-80			Unit
		Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	Min	Typ ${ }^{(1)}$	Max	
Input Current	$1 i^{(2)}$	-	5.0	-	-	5.0	-	-	5.0	-	nA
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2	-	$\mathrm{V}_{\text {CC }}+0.3$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.3	-	0.65	-0.3	-	0.65	-0.3	-	0.65	V
Output High Voltage ( $1 \mathrm{OH}=-1.0 \mathrm{~mA}$ )	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	2.4	-	-	2.4	-	-	V
Output Low Voltage ( $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ )	VOL	-	-	0.4	-	-	0.4	-	-	0.4	V
Output Leakage Current $\{\mathrm{CE}\}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0 \mathrm{~V} \text { to } \mathrm{VCC}$	$\mathrm{LLO}^{(2)}$	-	-	$\pm 1.0$	-	-	$\pm 1.0$	-	-	$\pm 2.0$	$\mu \mathrm{A}$
Operating Current ( $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$, except $C E 1 \leq 0.65 \mathrm{~V}$, outputs open)	ICC1	-	9.0	22	-	9.0	22	-	11	25	mA
Operating Current $\left(\mathrm{V}_{\text {in }}=2.2 \mathrm{~V}\right.$, Except $\mathrm{CE} 1 \leq 0.65 \mathrm{~V}$, outputs open)	ICC2	-	13	27	-	13	27	-	15	30	mA
$\begin{aligned} & \text { Standby Current } \\ & \text { (CE2 } \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \text { ) } \end{aligned}$	${ }^{1} \mathrm{CCL}{ }^{(2)(4)}$	-	-	10	-	-	200	-	-	500	$\mu \mathrm{A}$

CAPACITANCE ( $\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ periodically sampled rather than $100 \%$ tested)

Characteristic	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	8.0	pF
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {out }}$	8.0	12.0	pF

LOW VCC DATA RETENTION CHARACTERISTICS (Excluding MCM5101-80)

Parameter	Test Conditions		Symbol	Min	Typ ${ }^{(1)}$	Max	Unit
$\mathrm{V}_{\text {CC }}$ for Data Retention	$\mathrm{CE} 2 \leq 0.2 \mathrm{~V}$		VDR	2.0	-	-	V
MCM51L01-45, -65 Data Retention Current		$\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}$	ICCDR1	-	0.14	10	$\mu \mathrm{A}$
MCM5101-65 Data Retention Current		$\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}$	ICCDR2	-	0.70	200	$\mu \mathrm{A}$
Chip Deselect to Data Retention Time			${ }^{t} \mathrm{CDR}$	0	-	-	ns
Operation Recover Time			tR	trc ${ }^{(3)}$	-	-	ns

## Notes:

1. Typical values are $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage
2. Current through all inputs and outputs included in ${ }^{\mathrm{I}} \mathrm{CCL}$ measurement
3. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time
4. Low current state is for CE2 $=0$ only

LOW VCC DATA RETENTION WAVEFORM


TYPICAL ICCDR vs TEMPERATURE


AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)


READ CYCLE

Parameter	Symbol	MCM51L01-45		MCM51L01-65 MCM5101-65		MCM5101-80		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle	${ }_{\text {tr }} \mathrm{C}$	450	-	650	-	800	-	ns
Access Time	${ }^{\text {t }}$ A	-	450	-	650	-	800	ns
Chip Enable ( $\overline{\mathrm{CE}}$ ) to Output	${ }^{\text {t }} \mathrm{CO} 1$	-	400	-	600	-	800	ns
Chip Enable (CE2) to Output	${ }^{\text {t }} \mathrm{CO} 2$	-	500	-	700	-	850	ns
Output Disable to Output	${ }^{\text {tod }}$	-	250	-	350	-	450	ns
Data Output to High-Z State	${ }^{\text {t }}$ DF	0	130	0	150	0	200	ns
Previous Read Data Valid with Respect to Address Change	${ }^{1} \mathrm{OH} 1$	0	-	0	-	0	-	ns
Previous Read Data Valid with Respect to Chip Enable	${ }^{\text {toh2 }}$	0	-	0	-	0	-	ns

## WRITE CYCLE

Parameter	Symbol	MCM51L01-45		MCM51L01-65 MCM5101-65		MCM5101-80		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle	twC	450	-	650	-	800	-	ns
Write Delay	taw	130	-	150	-	200	-	ns
Chip Enable ( $\overline{\mathrm{CE} 1}$ ) to Write	${ }^{\text {t }}$ CW1	350	-	550	-	650	-	ns
Chip Enable (CE2) to Write	${ }^{\text {t }}$ CW2	350	-	550	-	650	-	ns
Data Setup	tow	250	-	400	-	450	-	ns
Data Hold	${ }^{\text {t }} \mathrm{DH}$	50	-	100	-	100	-	ns
Write Pulse	tWP	250	-	400	-	450	-	ns
Write Recovery	tWR	50	-	50	-	100	-	ns
Output Disable Setup	${ }^{\text {t DS }}$	130	-	150	-	200	-	ns

READ CYCLE TIMING


WRITE CYCLE TIMING


Notes:

1. OD may be tied low for separate I/O operation
2. During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation
$1024 \times 1$ BIT STATIC RANDOM ACCESS MEMORY
The MCM6508 and MCM6518 are fully static $1024 \times 1$ RAMs fabricated using CMOS silicon gate technology. They offer low power operation from a single +5 V supply with data retention to 2.0 V . The 16 -pin MCM6508 has a single active low chip enable. The MCM6518 has two select lines, in addition to the chip enable. Both part types latch addresses with chip enable. The MCM6518 is especially suitable for multiplexed bus microprocessors like the MC146805.

- Low Standby and Operating Power
- Single $\pm 10 \% 5 \mathrm{~V}$ Supply
- Data Retention to 2.0 V
- Fast Access Time
- Address Latches
- Three-State Outputs
- Fully TTL Compatible Inputs/Outputs
- Fully Static Operation
- Direct Replacement For

Harris HM6508/HM6518
Intersil IM6508/IM6518

Type Number	Package Suffixes	Typical Current		Maximum Access Time	Operating Temperature Range
		2 V	5 V		
MCM6508-25/ MCM6518-25	C/P	$0.1 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	250 ns	0 to $70^{\circ} \mathrm{C}$
MCM6508-30/MCM6518-30	C/P	$1 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	300 ns	0 to $70^{\circ} \mathrm{C}$
MCM6508-46/MCM6518-46	C/P	$1 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	460 ns	0 to $70^{\circ} \mathrm{C}$



## CMOS

(COMPLEMENTARY MOS)

1024 X 1 BIT STATIC RANDOM ACCESS MEMORY


MCM6518


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit

ABSOLUTE MAXIMUM RATINGS (See Note)

	Rating	Symbol	Value
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to 7.0	V 年
Voltage on Any Pin	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC OPERATING CONDITIONS

|  | Parameter | Symbol | Min | Typ | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | Unit 

## DC CHARACTERISTICS

Characteristic	Symbol	MCM6508-25 MCM6518-25			MCM6508-30, -46 MCM6518-30, -46			Unit
		Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
Input Current	1 in	二	5.0	-	-	5.0	-	nA
Output High Voltage ( $1 \mathrm{OH}=-1.0 \mathrm{~mA}$ )	VOH	2.4	-	-	2.4	-	-	V
Output Low Voltage ( $1 \mathrm{OL}=2.0 \mathrm{~mA}$ )	VOL	-	-	0.4	-	-	0.4	V
Output Leakage Current (See Note 1) $\mathrm{V}_{0}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$ )	IOL	-	-	$\pm 1.0$	-	-	$\pm 1.0$	$\mu \mathrm{A}$
Standby Current ( $\mathrm{V}_{1 \mathrm{H}}=\overline{\mathrm{E}}=\overline{\mathrm{S}_{1}}=\overline{\mathrm{S}_{2}}=\mathrm{V}_{\mathrm{CC}}$ )	IDDSB	-	0.1	10.0	-	1.0	100	$\mu \mathrm{A}$
Data Retention Current ( $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}=\mathrm{V}_{1 \mathrm{H}}=\overline{\mathrm{E}}=\overline{\mathrm{S}_{1}}=\overline{\mathrm{S}_{2}}$ )	I DDDR	-	0.1	10.0	-	1.0	100	$\mu \mathrm{A}$
Operating Current ( t ELEH $=1 \mu \mathrm{~S}$ )	IDDOP	-	1.5	-	-	1.5	-	mA

Note:

1. Typical values are ${ }^{\top} A=25^{\circ} \mathrm{C}$ and nominal supply voltage.

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, periodically sampled rather than $100 \%$ tested)

Input Capacitance $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	Characteristic	Symbol	Typ	Max
Unit				
Output Capacitance $\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {in }}$	4.0	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)


Parameter	Symbol	MCM6508-25 MCM6518-25		MCM6508-30 MCM6518-30		MCM6508-46 MCM6518-46		Units
		Min	Max	Min	Max	Min	Max	
Read or Write Cycle Time	${ }^{\text {t ELEL }}$	350	-	450	-	730	-	ns
Enable Pulse Width, Low	${ }^{\text {t ELEH }}$	250	-	300	-	460	-	ns
Enable Pulse Width, High	tehEl	100	-	150	-	270	-	ns
Enable Access Time	telov	-	250	-	300	-	460	ns
Address Setup	${ }^{\text {t }}$ AVEL	0	-	7	-	15	-	ns
Address Hold	${ }^{\text {t ELAX }}$	50	-	70	-	130	-	ns
Data Setup	${ }^{\text {t DVWH }}$	110	-	130	-	270	-	ns
Data Hold	tWHDX	0	-	0	-	0	-	ns
Write Pulse Width	TWLWH	130	-	160	-	270	-	ns
Write Enable to Output Disable	tWLOZ	-	160	-	180	-	285	ns
Output Disable (6508 Only)	${ }^{\text {t EHOZ }}$	-	160	-	180	-	285	ns
Output Disable (6518 Only)	${ }^{\text {t }}$ SHOZ	-	160	-	180	-	285	ns
Write Disable to Output Enable	twhox	-	160	-	180	-	285	ns
Output Enable (6508 Only)	tELQX	-	160	-	180	-	285	ns
Output Enable (6518 Only)	${ }^{\text {t SLOX }}$	-	160	-	180	-	285	ns
Select to Write Pulse Setup	tWLSH	130	-	160	-	270	-	ns
Select to Write Pulse Hold	${ }^{\text {I SLWH }}$	130	-	160	-	270	-	ns
Enable to Write Pulse Setup	tWLEH	130	-	160	-	270	-	ns
Enable to Write Pulse Hold	tELWH	130	-	160	-	270	--	ns

## READ CYCLE




## Product Preview

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM65114 is a 4096-bit Random Access Memory organized as $1024 \times 4$ bit, fabricated using silicon gate CMOS technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.
The MCM65114 is designed for memory applications where simple interfacing and low power is the design objective. The MCM65114 is assembled in 18 -pin dual-in-line packages with the industry standard pin-out. A chip enable (E) allows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- Single +5 Volt Supply
- Fully Static Memory - No Clock or Timing Strobe Required
- Directly TTL Compatible - All Inputs and Outputs
- Common Data Input and Output
- Low Standby and Operating Power

Typical Standby - $10 \mu \mathrm{~W}$
Typical Operation - 20 mW

- Access Time: 300 ns - MCM65114-30
- Industry Standard 18-Pin Configuration

$\square$


[^15]
## Product Preview

## $2048 \times 8$-BIT STATIC RANDOM ACCESS MEMORY

The MCM65116 is a 16,384 -bit Static Random Access Memory organized as 2048 words by 8 -bits, fabricated using Motorola's highperformance silicon-gate complementary metal oxide semiconductor (HCMOS) technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced power associated with CMOS memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access time.

Chip Enable (E) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. In less than a cycle time after chip enable (E) goes high, the part automatically reduces its power requirements and remains in this low-power standby as long as the chip enable ( $\bar{E}$ ) remains high. The automatic power-down feature causes no performance degradation.
The MCM65116 is in a 24 -pin dual-in-line package with the industry standard pinout and is pinout compatible with the industry standard 16K EPROM/ROM.

- 2048 Words by 8-Bit Organization
- HCMOS Technology
- Single +5 V Supply
- Fully Static: No Clock or Timing Strobe Required
- Industry Standard 24-Pin Package
- Maximum Access Time

> MCM65116-12 - 120 ns
> MCM65116-15 - 150 ns
> MCM65116-20 - 200 ns

- Power Dissipation

80 mA Maximum (Active)
15 mA Maximum (Standby)

- Fully TTL Compatible
- Automatic Power-Down
- Pinout Compatible with Industry Standard 2716 16K EPROM and Mask Programmable ROM



PIN NAMES	
A0-A10.	Address Input
DQ0-DO7	Data Input/Output
W	.......Write Enable
$\overline{\mathrm{G}}$	...Output Enable
E.	....Chip Enable
$V_{\text {CC }}$	$\ldots .$. Power ( + 5 V)
$\mathrm{V}_{\text {SS }}$.	..........Ground

Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## Product Preview

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM65147 is a 4096-bit static Random Access Memory organized as 4096 words by 1-bit, fabricated using Motorola's high performance CMOS silicon gate technology (HCMOS). It uses a design approach which provides the simple timing features associated with fully static memories and the reduced power associated with CMOS memories. This means low power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

Chip enable ( $\bar{E}$ ) controls the power-down feature. It is not a clock, but rather a chip control that affects power consumption. After $\bar{E}$ goes high, initiating deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as $\bar{E}$ remains high.

The MCM65147 is in an 18-pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate threestate output provide flexibility and allow easy OR-ties.

- Single +5 V Supply
- Fully Static Memory - No Clock or Timing Strobe Required
- Automatic Power Down
- Low Power Dissipation

75 mW Typical (Active)
$500 \mu \mathrm{~W}$ Typical (Standby)

- Directly TTL Compatible - All Inputs and Output
- Separate Data Input and Three-State Output
- Equal Access and Cycle Time
- Maximum Access Time

MCM65147-55 = 55 ns
MCM65147-70 = 70 ns

- High Density 18-Pin Package



## CMOS

(COMPLIMENTARY MOS)
$4,096 \times 1$ BIT STATIC RANDOM ACCESS MEMORY



## Product Preview

## 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM65148 is a 4096-bit Random Access Memory organized as 1024 words by 4 -bits, fabricated using Motorola's high-performance silicon-gate complementary metal oxide semiconductor (HCMOS) technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and requires no clocks or refreshing because of its fully static design. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.
The MCM65148 is designed for memory applications where simple interfacing is the design objective. The MCM65148 is assembled in an 18 -pin dual-in-line package with the industry standard pinout. A chip enable ( $\bar{E}$ ) lead allows easy selection of an individual package when the three-state outputs are OR-tied.

- 1024 Words by 4-Bit Organization
- HCMOS Technology
- Single +5 V Supply
- No Clock or Timing Strobe Required
- Industry Standard 18-Pin Configuration
- Maximum Access Time

MCM65148-70 - 70 ns
MCM65148-85-85ns

- Automatic Power Down
- Power Dissipation

200 mW Typical (Active)
$100 \mu \mathrm{~W}$ Typical (Standby)

- Fully TTL Compatible
- Common Data Inputs and Outputs
- Three-State Outputs for OR-Ties



## CMOS

(COMPLEMENTARY MOS)

## 4096-BIT STATIC RANDOM ACCESS MEMORY



Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

## 1024-BIT (256 x 4) READ ONLY MEMORY



L SUFFIX
CERAMIC PACKAGE CASE 620

PSUFFIX PLASTIC PACKAGE CASE 648

MC14XXX



MAXIMUM RATINGS (Voltages eferenced to $\mathrm{V}_{\text {SS }}$ )

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {DD }}$	-05 to +18	Vdc
Input Voltage, All inputs	$V_{\text {In }}$	$-0.5 w V_{D D}+05$	Vdc
DC Current Dram per Pin	1	10	mAdc
Operating Temperature Range AL Device CL CP Device	${ }^{T}$ A	$\begin{aligned} & -55(0)+125 \\ & -40 t(0)+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	65 (1) +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{S S}$ or $V_{D D}$ ).

ELECTRICAL CHARACTERISTICS

Characteristic		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	Tlow*					$\mathrm{T}_{\text {high }}{ }^{*}$		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage $\quad$ "0" Level	$\mathrm{v}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.99 \\ 9.99 \\ 14.99 \\ \hline \end{gathered}$		$\begin{gathered} 4.99 \\ 9.99 \\ 14.99 \\ \hline \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{array}{r} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	Vdc
Noise Immunity :   $\left(\mathrm{V}_{\text {out }} 0.8 \mathrm{~V} \mathrm{dc}\right)$   $\left(\mathrm{V}_{\text {out }} 1.0 \mathrm{~V} \mathrm{dc}\right)$   $\left(\mathrm{V}_{\text {out }} 1.5 \mathrm{Vdc}\right)$   $\left(\mathrm{V}_{\text {out }} \cdot 0.8 \mathrm{~V} \mathrm{dc}\right)$   $\left(\mathrm{V}_{\text {out }} \cdot 1.0 \mathrm{~V}_{\mathrm{dc}}\right)$   $\left(\mathrm{V}_{\text {out }} \cdot 1.5 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{NL}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \\ 3.0 \\ 3.75 \\ \hline \end{gathered}$		$\begin{gathered} 1.5 \\ 3.0 \\ 3.75 \\ \hline \end{gathered}$	$\begin{array}{r} 2.25 \\ 4.50 \\ 6.75 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 1.4 \\ 2.9 \\ 3.75 \\ \hline \end{gathered}$	-	V dc
	$\mathrm{V}_{\mathrm{NH}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1.4 \\ 2.9 \\ 3.65 \end{gathered}$	-	$\begin{gathered} 1.5 \\ 3.0 \\ 3.75 \end{gathered}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	-	$\begin{gathered} 1.5 \\ 3.0 \\ 3.75 \end{gathered}$	-	V dc
Output Drive Current (AL Device)    $\left(\mathrm{V}_{\mathrm{OH}}\right.$ $2.5 \mathrm{Vdc})$ Source   $\left(\mathrm{V}_{\mathrm{OH}}\right.$ $4.6 \mathrm{Vdc})$    $\left(\mathrm{V}_{\mathrm{OH}}\right.$ $9.5 \mathrm{Vdc})$    $\left(\mathrm{V}_{\mathrm{OH}}\right.$ $13.5 \mathrm{Vdc})$    $\left(\mathrm{V}_{\mathrm{OL}}\right.$ $0.4 \mathrm{Vdc})$ Sink   $\left(\mathrm{V}_{\mathrm{OL}}\right.$ $0.5 \mathrm{Vdc})$    $\left(\mathrm{V}_{\mathrm{OL}}\right.$ $1.5 \mathrm{Vdc})$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.2 \\ & -0.25 \\ & -0.62 \\ & -1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} -1.0 \\ -0.2 \\ -0.5 \\ -1.5 \\ \hline \end{array}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$	- - -	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \\ \hline \end{gathered}$	-	mAdc
	${ }^{\text {IOL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	mAdc
Output Drive Current (CL/CP Device)    $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source   $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$    $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$    $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.4 \end{aligned}$		$\begin{gathered} -0.8 \\ -0.16 \\ -0.4 \\ -1.2 \\ \hline \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \\ \hline \end{gathered}$		$\begin{aligned} & -0.6 \\ & -0.12 \\ & -0.3 \\ & -1.0 \\ & \hline \end{aligned}$	-   -   -   -	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \quad \text { Sink } \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \\ & \hline \end{aligned}$	${ }^{\text {I OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	- - -	mAdc
Input Current (AL Device)	1 in	15	-	. 0.1	-	- 0.00001	. 0.1	-	$\cdot 1.0$	$\mu$ Adc
Input Current (CL/CP Device)	1 in	15	-	$\pm 1.0$	-	$\cdot 0.00001$	$\pm 1.0$	-	$\cdot 1.0$	$\mu \mathrm{Adc}$
Input Capacitance $\left(v_{\text {in }} \cdot 0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	-	-	-	pF
Quiescent Current (AL Device) (Per Package)	${ }^{\prime}$ DD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.010 \\ & 0.020 \\ & 0.030 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current (CL/CP Device) (Per Package)	${ }^{\prime}$ DD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{gathered} 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.010 \\ & 0.020 \\ & 0.030 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \\ \hline \end{gathered}$	-	$\begin{array}{r} 375 \\ 750 \\ 1500 \\ \hline \end{array}$	$\mu \mathrm{Adc}$
Total Supply Current** $\dagger$   (Dynamic plus Quiescent, Per Package) ( $C_{L}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{1} \mathrm{~T}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=1 \\ & \mathrm{I}_{\mathrm{T}}=0 \\ & \mathrm{I}_{\mathrm{T}}=0 \end{aligned}$		$\begin{aligned} & +1 D D \\ & +1 D D \\ & +1 D D \end{aligned}$			$\mu \mathrm{Adc}$

*Tlow $=-55^{\circ} \mathrm{C}$ for AL Device, $-40^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device.
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for AL Device, $+85^{\circ} \mathrm{C}$ for $\mathrm{CL} / \mathrm{CP}$ Device
\#Noise immunity specified for worst case input combination
$\dagger$ To calculate total supply current at loads other than 50 pF
$I_{T}\left(C_{L}\right)=I T(50 \mathrm{pF})+1 \times 10^{-3}\left(C_{L}-50\right) V_{D D f}$
where: $I_{T}$ is in $\mu \mathrm{A}$ (per package), $\mathrm{C}_{\mathrm{L}}$ in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in Vdc , and f in kHz is input frequency.
**The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS* $\left(C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	VDD	Min	Typ	Max	Unit
Output Rise Time $\begin{aligned} & \mathrm{t} \text { TLH, } \mathrm{t} T H L=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t} T L H, \mathrm{t}^{\mathrm{T} H L}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t} \text { TLH, } \mathrm{t} \text { THL }=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	tTLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 180 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \text { t } \mathrm{TLH}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}} \mathrm{t}_{\mathrm{TH}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}+\mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	tTHL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
Clock Read Access Delay Time $\begin{aligned} & \mathrm{t}_{\mathrm{acc}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1265 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+517 \mathrm{~ns} \\ & \mathrm{tacc}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+325 \mathrm{~ns} \end{aligned}$	${ }^{\text {acce }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 1350 \\ 550 \\ 350 \end{gathered}$	$\begin{aligned} & 4000 \\ & 1600 \\ & 1200 \end{aligned}$	ns
$\begin{aligned} & \text { Enable Access Delay Time } \\ & t_{\text {acc }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+160 \mathrm{~ns} \\ & \mathrm{t}_{\text {acc }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+77 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{acc}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+50 \mathrm{~ns} \end{aligned}$	${ }^{\text {taccen }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} 245 \\ 110 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & 615 \\ & 265 \\ & 190 \\ & \hline \end{aligned}$	ns
Clock Pulse Width ${ }^{\text {* }}$	tw	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 450 \\ & 165 \\ & 125 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 55 \\ 35 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
	${ }^{\text {tw }}$ L	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3600 \\ & 1425 \\ & 1070 \end{aligned}$	$\begin{aligned} & 1200 \\ & 475 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	ns
Maximum Low Clock Pulse Width \#	${ }^{\text {tW }}$ L	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.9 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 3.0 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ms
Address Setup-Time	$\mathrm{t}_{\text {su }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$-$	ns
Address Hold Time	$t_{\text {th }}(\mathrm{A})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns
Clock to Enable Setup Time	$\mathrm{t}_{\mathrm{su}}(\mathrm{cl})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 4275 \\ & 1725 \\ & 1295 \end{aligned}$	$\begin{gathered} 1425 \\ 575 \\ 400 \\ \hline \end{gathered}$	-	ns
Clock to Enable Hold Time	$t_{\text {the }}(\mathrm{cl})$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 75 \\ 55 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	ns

*The clock can remain high indefinitely with the data remaining latched.
\# If clock stays low too long, the dynamically stored data will leak off and will have to be recalled.


MEMORY READ CYCLE TIMING DIAGRAMS


CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM14524, the customer may specify the content of the memory.

## Address Inputs:

Words are numbered 0 through 255 and are addressed using sequential addressing of Address leads AO through A7 with AO as the least significant digit.
Logic " 0 " is defined as a "low" Address input ( $V_{\text {IL }}$ ).
Logic " 1 " is defined as a "high" Address input ( $V_{1 H}$ ).


TRUTH TABLE

CLOCK	ENABLE	B0	B1	B2	B3
$v_{\text {DD }}$ - $v_{\text {SS }}$	1	〈Address>	<Address>	<Address>	<Address)
$\mathrm{v}_{\mathrm{SS}} \sim \mathrm{v}_{\mathrm{DD}}$	1	OUTPUT DATA LATCHES			
$\times$	0	0	0	0	0

X = Don't Care
*Indicates contents of specified Address will appear at outputs as stated above.

> Two methods may be used to transmit the custom memory pattern to Motorola.

METHOD A: PUNCHED COMPUTER CARDS

A binary coded decimal equivalent of each desired output may be punched in standard computer cards (four cards are required for all 256 words) in numerical (word number) order. 64 words per card are punched in columns 12 thru 75 using the Binary to Hexadecimal conversion table. Columns 77 and 78 are used to number the cards, which must be in numerical order. Please use characters as shown in the table when punching computer cards.

ROM SAMPLE WORD PROGRAMMING FOR PUNCHED CARD

WORD   NUMBER	ADDRESS INPUTS								SAMPLE WORD OUTPUTS				CARD   CHARACTER	)
	A7	A6	A5	A4	A3	A2	A1	A0	B3	B2	B1	B0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	0	0	1	1	3	Shown in columns
2	0	0	0	0	0	0	1	0	0	0	1	1	3	12-15 on card
3	0	0	0	0	0	0	1	1	0	0	0	0	0	) below
-	-	-	-	-	-	-	-	-	-	-	-	.	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
255	1	1	1	1	1	1	1	1	1	0	1	0	A	

Card
WORD NUMBER
No.


 111111111111111111111111111111111111111111111111111111111111111111111111|11

 4444444444444444444444444444444444444444444444444444444444444444444444444444444 5555555555555555555555555555555555555555555555555555555555555555555555555555



## METHOD B: TRUTH TABLE

For customers who do not have access to punch cards, Motorola will accept Truth Tables. When filling out the table, use the 0 to $F$ hexidecimal character in column " C ".

CUSTOM PROGRAM for the MCM14524 Read Only Memory

WORD	C
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	


WORD	C
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	


WORD	C
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	
149	
150	
151	
152	


WORD	C
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	


WORD	C
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	
225	
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	

## Advance Information

## $2048 \times 8$ BIT READ ONLY MEMORY

The MCM65516 is a complementary MOS mask programmable byte organized read only memory (ROM). The MCM65516 is organized as 2048 bytes of 8 bits, designed for use in multiplex bus systems. It is fabricated using Motorola's silicon gate CMOS technology, which offers low-power operation from a single 5.0 volt supply.

The memory is compatible with CMOS microprocessors that share address and data lines. Compatibility is enhanced by pins $13,14,16$, and 17 which give the user the versatility of selecting the active levels of each. Pin 17 allows the user to choose active high, active low or a third option of programming which is termed the "MOTEL" mode. If this mode is selected by the user, it provides direct compatibility with either the Motorola MC146805E2 or Intel 8085 type microprocessor series. In the MOTEL operation the ROM can accept either polarity signal on the data strobe input as long as the signal toggles during the cycle. This unique operational feature makes the ROM an extremely versatile part.

- $2 \mathrm{~K} \times 8$ CMOS ROM
- 3 to 6 Volt Supply
- Access Time

$$
430 \mathrm{~ns}(5 \mathrm{~V}) \text { MCM65516-43 }
$$

550 ns (5 V) MCM65516-55

- Low Power Dissipation

> 30 mA Maximum (Active)
> $50 \mu \mathrm{~A}$ Maximum (Standby)

- Multiplex Bus Directly Compatible With All CMOS Microprocessors (MC146805E2, NSC800)
- Pins $13,14,16$, and 17 are Mask Programmable
- MOTEL Mask Option Also Insures Direct Compatibility with NMOS Microprocessors Like MC6803, MC6801, 8085, and 8086
- Standard 18 Pin Package



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

## MCM65516

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage   ( $\mathrm{V}_{\mathrm{CC}}$ must be applied at least $100 \mu \mathrm{~s}$ before proper device operation is achieved)	$V_{C C}$	4.5	5.0	5.5	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$V_{C C}-2.0$	-	5.5	V
Input Low Voltage	$V_{\text {IL }}$	-0.3	-	0.8	V

RECOMMENDED OPERATING CHARACTERISTICS

Characteristic	Symbol	MCM65516-43		MCM65516-55		Unit	Test Condition
		Min	Max	Min	Max		
Output High Voltage   Source Current - 1.6 mA	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$	-	$\mathrm{V}_{\text {CC }}-0.4 \mathrm{~V}$	-	V	
Output Low Voltage   Sink Current +1.6 mA	$\mathrm{V}_{\mathrm{OL}}$	-	0.4	-	0.4	V	
Supply Current (Operating)	ICC1	-	30	-	30	mA	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=130 \mathrm{pF}, \mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { to } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{t}_{\mathrm{cyc}}=1.0 \mu \mathrm{~s} \end{gathered}$
Supply Current (DC Active)	${ }^{1} \mathrm{CC} 2$	-	100	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ to GND
Standby Current	IISB	-	50	-	75	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ to GND
Input Leakage	lin	-10	+10	-10	+10	$\mu \mathrm{A}$	
Output Leakage	IOL	-10	+ 10	-10	+10	$\mu \mathrm{A}$	

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

	Characteristic	Symbol
Input Capacitance	Max $^{\text {Cin }}$	Unit
Output Capacitance	pF	

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
READ CYCLE
$C_{L}=130 \mathrm{pF}$

Parameter	Symbol	MCM65516-43		MCM65516-55		Unit
		Min	Max	Min	Max	
Address Strobe Access Time	${ }^{\text {tMLDV }}$	-	430	-	550	ns
Read Cycle Time	${ }^{\text {t MHMH }}$	580	-	725	-	ns
Multiplex Address Strobe High to Multiplex Address Strobe Low (Pulse Width)	${ }^{\text {t M HML }}$	150	-	175	-	ns
Data Strobe Low to Multiplex Address Strobe Low	tGLML	50	-	50	-	ns
Multiplex Address Strobe Low to Data Strobe High	${ }^{\text {t MLGH }}$	100	-	160	-	ns
Address Valid to Multiplex Address Strobe Low	${ }^{\text {t }}$ AVML	50	-	50	-	ns
Chip Select Low to Multiplex Address Strobe Low	tSLML	50	-	50	-	ns
Multiplex Address Strobe Low to Chip Select High	${ }^{\text {t MLSH }}$	50	-	80	-	ns
Chip Enable Low/High to Multiplex Address Strobe Low	tELML tEHML	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	-	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	-	ns
Multiplex Address Strobe Low to Address Don't Care	${ }_{\text {t MLAX }}$	50	-	80	-	ns
Data Strobe High to Data Valid	tGHDV	175	- -	200	-	ns
Data Strobe Low to High-Z	tGLDZ	-	160	-	160	ns
Data Strobe High to Address Don't Care	tGHDX	20	-	20	-	ns



## FUNCTIONAL DESCRIPTION

The $2 \mathrm{~K} \times 8$ bit CMOS ROM (MCM65516) shares address and data lines and, therefore, is compatible with the majority of CMOS microprocessors in the industry. The package size is reduced from 24 pins for standard NMOS ROMs to 18 pins because of the multiplexed bus approach. The savings in package size and external bus lines adds up to tighter board packing density which is handy for battery powered hand carried CMOS systems. This ROM is designed with the intention of having very low active as well as standby currents. The active power dissipation of 150 mW lat $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ freq $=1 \mathrm{MHz}$ ) and standby power of $250 \mu \mathrm{~W}$ (at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ) add up to low power for battery operation. The typical access time of the ROM is 280 ns making it acceptable for operation with today's existing CMOS microprocessors.

An example of this operation is shown in Figure 1. Shown is a typical connection with either the Motorola MC146805E2 CMOS microprocessor (M6800 series) or the National NSC800 which is an 8085 or $\mathbf{Z 8 0}$ based system. The main difference between the systems is that the data strobe (DS) on the MC146805E2 and the read bar ( $\overline{\mathrm{RD}}$ ) on the 8085 both control the output of data from the ROM but are of opposite polarity. The Motorola $2 \mathrm{~K} \times 8$ ROM can accept either polarity signal on the data strobe input as long as the signal toggles during the cycle. This is termed the MOTEL mode of operation. This unique operational feature makes the ROM an extremely versatile part. Further operational features are explained in the following section.

## Operational Features

In order to operate in a multiplexed bus sytem the ROM latches, for one cycle, the address and chip select input information on the trailing edge of address strobe (M) so the address signals can be taken off the bus.

Since they are latched, the address and chip select signals have a setup and hold time referenced to the negative edge
of address strobe. Address strobe has a minimum pulse width requirement since the circuit is internally precharged during this time and is setup for the next cycle on the trailing edge of address strobe. Access time is measured from the negative edge of address strobe.

The part is equipped with a data strobe input (G) which controls the output of data onto the bus lines after the addresses are off the bus. The data strobe has three potential modes of operation which are programmable with the ROM array. The first mode is termed the MOTEL mode of operation. In this mode, the circuit can work with either the Motorola or Intel type microprocessor series. The difference between the two series for a ROM peripheral is only the polarity of the data strobe signal. Therefore, in the MOTEL mode the ROM recognizes the state of the data strobe signal at the trailing edge of address strobe (requires a setup and hold time), latches the state into the circuit after address strobe, and turns on the data outputs when an opposite polarity signal appears on the data strobe input. In this manner the data strobe input can work with either polarity signal but that signal must toggle during a cycle to output data on the bus lines. If the data strobe remains at a d.c. level the outputs will remain off. The data strobe input has two other programmable modes of operation and those are the standard static select modes (high or low) where a d.c. input not synchronous with the address strobe will turn the outputs on or off.

The chip enable and chip select inputs are all programmable with the ROM array to either a high or low select. The chip select acts as an additional address and is latched on the address strobe trailing edge. On deselect the chip select merely turns off the output drivers acting as an output disable. It does not power down the chip. The chip enable inputs, however, do put the chip in a power down standby mode but they are not latched with address strobe and must be maintained in a d.c. state for a full cycle.

FIGURE 1
TYPICAL MINIMUM SYSTEM - MOTOROLA


TYPICAL SYSTEM - NATIONAL


## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM65516 the customer may specify the content of the memory and the method of enabling the outputs, or selection of the "MOTEL" option (Pin 17)

Information on the general options of the MCM65516 should be submitted on an Organizational Data form such as that shown in the below figure.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Magnetic Tape

9 track, 800 bpi, odd parity written in EBCDIC character code. Motorola's R.O.M.S. format.
2. EPROMs

One 16K (MCM2716, or TMS2716).

FORMAT FOR PROGRAMMING GENERAL OPTIONS



Bipolar Memories TTL, MECL-RAM, PROM

4

## 1024-BIT RANDOM ACCESS MEMORY

The MCM93415 is a 1024-bit Read/Write RAM organized 1024 words by 1 bit.

The MCM93415 is designed for buffer control storage and high performance main memory applications, and has a typical access time of 35 ns .

The MCM93415 has full decoding on-chip, separate data input and data output lines, and an active low chip select. The device is fully compatible with standard DTL and TTL logic families and features an uncommitted collector output for ease of memory expansion.

- Uncommitted Collector Output
- TTL Inputs and Output
- Non-Inverting Data Output
- High Speed -

Access Time - 35 ns Typical
Chip Select - 15 ns Typical

- Power Dissipation Decreases with Increasing Temperature
- Power Dissipation $0.5 \mathrm{~mW} /$ Bit Typical
- Organized 1024 Words X 1 Bit



## FUNCTIONAL DESCRIPTION

The MCM93415 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A0 to A9.

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of Chip Select ( $\overline{\mathrm{CS}}$ ) from the address without affecting system performance.

The read and write operations are controlled by the state of the active low Write Enable ( $\overline{W E}$, Pin 14). With $\overline{W E}$ held low and the chip selected, the data at $\mathrm{D}_{\text {in }}$ is written into the addressed location. To read, $\overline{W E}$ is held high and the chip selected. Data in the specified location is presented at $\mathrm{D}_{\text {out }}$ and is non-inverted.

Uncommitted collector outputs are provided to allow wiredOR applications. In any application an external pull-up resistor of $R_{L}$ value must be used to provide a high at the output when it is off. Any $R_{L}$ value within the range specified below may be used.

$$
\frac{V_{C C}(\operatorname{Min})}{I_{O L}-F O(1.6)} \leqslant R_{L} \leqslant \frac{V_{C C}(M i n)-V_{O H}}{n\left(I_{C E X}\right)+F O(0.04)}
$$

$R_{L}$ is in $k \Omega$
$n=$ number of wired-OR outputs tied together
FO = number of TTL Unit Loads (UL) driven
ICEX $=$ Memory Output Leakage Current
$\mathrm{V}_{\mathrm{OH}}=$ Required Output High Level at Output Node
$\mathrm{I}_{\mathrm{OL}}=$ Output Low Current
The minimum $R_{L}$ value is limited by output current sinking ability. The maximum $R_{L}$ value is determined by the output and input leakage current which must be supplied to hold the output at $\mathrm{V}_{\mathrm{OH}}$. One Unit Load $=40 \mu \mathrm{~A}$ High $/ 1.6 \mathrm{~mA}$ Low.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature   Ceramic Package (D and F Suffix)	$-55^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Plastic Package (P Suffix)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Junction Temperature, $\mathrm{T} J$	
Ceramic Package (D and F Suffix)	$<165^{\circ} \mathrm{C}$
Plastic Package (P Suffix)	$<125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (dc)	-0.5 V to +5.5 V
Voltage Applied to Outputs (Output High)	-0.5 V to +5.5 V
Output Current (dc) (Output Low)	+20 mA
Input Current (dc)	-12 mA to +5.0 mA

TRUTH TABLE

Inputs			Output	
$\bar{C}$	$\overline{W E}$	$\mathrm{D}_{\text {in }}$	Open   Collector	
H	$X$	$X$	$H$	Not Selected
L	L	L	$H$	Write " 0 "'
L	L	$H$	$H$	Write " 1 "
L	$H$	$X$	$D_{\text {out }}$	Read

$H=$ High Voltage Level
$L=$ Low Voltage Level
$X=$ Don't Care (High or Low)

GUARANTEED OPERATING RANGES (Note 2)

Part Number	Supply Voltage $\left(\mathrm{V}_{\mathbf{C C}}\right)$			.
	Min	Nom	Max	
MCM93415DC, PC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
MCM93415FM, DM	4.50 V	5.0 V	5.50 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

Symbol	Characteristic	Limits		Unit	Conditions	
		Min	Max			
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		0.45	Vdc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.1		Vdc	Guaranteed Input High Voltage for All Inputs	
$V_{\text {IL }}$	Input Low Voltage		0.8	Vdc	Guaranteed Input Low Voltage for All Inputs	
IIL	Input Low Current		-400	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{IH}}$	Input High Current		40	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	
			1.0	mAdc	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$	
ICEX	Output Leakage Current		100	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {out }}=4.5 \mathrm{~V}$	
$\mathrm{V}_{\text {CD }}$	Input Diode Clamp Voltage		-1.5	Vdc	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{I}_{\text {in }}=-10 \mathrm{~mA}$	
${ }^{\prime} \mathrm{CC}$	Power Supply Current		130	mAdc	$\mathrm{T}_{\text {A }}=\mathrm{Max}$	$V_{C C}=\operatorname{Max}$   All Inputs Grounded
			155	mAdc	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
			170	mAdc	$\mathrm{T}_{A}=\operatorname{Min}$	

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

## AC TEST LOAD AND WAVEFORM

## Loading Condition



Input Pulses


Symbol	Characteristic (Notes 2, 3)	MCM93415DC, PC		MCM93415DM, FM		Unit	Conditions
		Min	Max	Min	Max		
READ MODE   ${ }^{t} A C S$   $t_{\text {RCS }}$   ${ }^{t} A A$	DELAY TIMES   Chip Select Time   Chip Select Recovery Time   Address Access Time		$\begin{aligned} & 35 \\ & 35 \\ & 45 \end{aligned}$		$\begin{aligned} & 45 \\ & 50 \\ & 60 \end{aligned}$	ns	See Test Circuit and Waveforms
WRITE MODE   ${ }^{t}$ WS   ${ }^{t} W R$	DELAY TIMES   Write Disable Time Write Recovery Time		$\begin{aligned} & 35 \\ & 40 \end{aligned}$		$\begin{aligned} & 45 \\ & 50 \\ & \hline \end{aligned}$	ns	See Test Circuit and Waveforms
${ }^{t}$ w   ${ }^{t}$ WSD   tWHD   ${ }^{t}$ WSA   tWHA   ${ }^{t}$ wses   ${ }^{t}$ WHCS	INPUT TIMING REQUIREMENTS   Write Pulse Width (to guarantee write)   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time (at $\mathrm{t}_{\mathrm{W}}=\mathrm{Min}$ )   Address Hold Time   Chip Select Setup Time   Chip Select Hold Time	$\begin{gathered} 30 \\ 5 \\ 5 \\ 10 \\ 10 \\ 5 \\ 5 \end{gathered}$		$\begin{gathered} 40 \\ 5 \\ 5 \\ 15 \\ 10 \\ 5 \\ 5 \end{gathered}$		ns	See Test Circuit and Waveforms


(All Time Measurements Referenced to 1.5 V )

## WRITE CYCLE TIMING


(All Time Measurements Referenced to 1.5 V )

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

Package	$\theta_{\text {JA (Junction to Ambient) }}$		
	Still		
F Suffix	$50^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
P Suffix	$55^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
	$65^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$

NOTE 3: The AC limits are guaranteed to be the worst case bit in the memory.

## (4) motorola

## 1024-BIT RANDOM ACCESS MEMORY

The MCM93425 is a 1024-bit Read/Write RAM, organized 1024 words by 1 bit.

The MCM93425 is designed for high performance main memory and control storage applications and has a typical address time of 35 ns .

The MCM93425 has full decoding on-chip, separate data input and data output lines, and an active low-chip select and write enable. The device is fully compatible with standard DTL and TTL logic families. A three-state output is provided to drive bus-organized systems and/or highly capacitive loads.

- Three-State Output
- TTL Inputs and Output
- Non-Inverting Data Output
- High Speed -

Access Time - 35 ns Typical
Chip Select - 15 ns Typical

- Power Dissipation - $0.5 \mathrm{~mW} /$ Bit Typical
- Power Dissipation Decreases With Increasing Temperature


MCM93425


PIN ASSIGNMENT


Pin Description
$\overline{\mathbf{C}} \quad$ Chip Select

AO-A9
$\overline{W E}$
Address Inputs

Dout Data Output

## FUNCTIONAL DESCRIPTION

The MCM93425 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Word selection is achieved by means of a 10 -bit address, A0-A9.

The Chip Select ( $\overline{C S}$ ) input provides for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active low Write Enable ( $\overline{W E}$, Pin 14). With $\overline{W E}$ and $\overline{C S}$ held
low, the data at $D_{\text {in }}$ is written into the addressed location. To read, $\overline{W E}$ is held high and $\overline{C S}$ held low. Data in the specified location is presented at $D_{\text {out }}$ and is non-inverted.

The three-state output provides drive capability for higher speeds with. capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high-impedance state.

## ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature   Ceramic Package (D and F Suffix)   Plastic Package (P Suffix)	$-55^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Operating Junction Temperature, $\mathrm{T} J$   Ceramic Package (D and F Suffix)   Plastic Package (P Suffix)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin	$<165^{\circ} \mathrm{C}$
Input Voltage (dc)	$<125^{\circ} \mathrm{C}$
Voltage Applied to Outputs (Output High)	-0.5 V to +7.0 V
Output Current (dc) (Output Low)	$-0.5 \mathrm{~V} \mathrm{to}+5.5 \mathrm{~V}$ to +5.5 V
Input Current (dc)	+20 mA

TRUTH TABLE

Inputs			Output	Mode
$\overline{\mathrm{CS}}$	$\overline{W E}$	$\mathrm{D}_{\text {in }}$	Dout	
H	$\times$	$\times$	High Z	Not Selected
L	L	L	High Z	Write " 0 "
L	L	H	High Z	Write "1"
L	H	$\times$	Dout	Read

$H=$ High Voltage Level
L $=$ Low Voltage Level
X = Don't Care (High or Low)

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

GUARANTEED OPERATING RANGES (Notes 2 and 3)

Part Number	Supply Voltage ( $\mathrm{V}_{\text {CC }}$ )			(
	Min	Nom	Max	
MCM93425DC, PC	4.75 V	5.0 V	5.25 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
MCM93425FM, DM	4.50 V	5.0 V	5.50 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

Symbol	Characteristic		Limits		Units	Conditions	
			Min	Max			
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage			0.45	Vdc	$V_{C C}=\mathrm{Min}$	$\mathrm{OL}=16 \mathrm{~mA}$
$\mathrm{V}_{1} \mathrm{H}$	Input High Voltage		2.1		Vdc	Guaranteed	Input High Voltage for all Inputs
VIL	Input Low Voltage			0.8	$V \mathrm{dc}$	Guaranteed	nput Low Voltage for all Inputs
IIL	Input Low Current			-400	$\mu \mathrm{Adc}$	$V_{C C}=M a x$	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$
I/H	Input High Current			40	$\mu \mathrm{Adc}$	$V_{C C}=M a x$	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$
				1.0	mAdc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}$
Ioff	Output Current (High Z)			50	$\mu \mathrm{Adc}$	$V_{C C}=M a x$	$\mathrm{V}_{\text {out }}=2.4 \mathrm{~V}$
				-50		$\mathrm{V}_{\text {CC }}=\mathrm{Max}$	$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$
Ios	Output Current Short Circuit to Ground			-100	mAdc	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	MCM93425DC, PC	2.4		Vdc	$1 \mathrm{OH}=-10$	$\mathrm{mA}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$
		MCM93425FM, DM	2.4		Vdc	${ }^{1} \mathrm{OH}=-5.2 \mathrm{~mA}$	
$\mathrm{V}_{C D}$	Input Diode Clamp Voltage			-1.5	$V \mathrm{dc}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{I}_{\text {in }}=-10 \mathrm{~mA}$
${ }^{\prime} \mathrm{C}$ C	Power Supply Current			130	mAdc	$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$	$V_{C C}=M a x,$   All Inputs Grounded
				155	mAdc	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
				170	mAdc	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

## AC TEST LOAD AND WAVEFORMS

Loading Conditions
Input Pulses
All Input Pulses



READ OPERATION TIMING DIAGRAM

Propagation Delay from Chip Select
Propagation Delay from Address Inut

(All time measurements referenced to 1.5 V )

## WRITE CYCLE TIMING


(All above measurements reference to 1.5 V )

WRITE ENABLE TO HIGH Z DELAY


Propagation Delay from Chip Select to High Z

(All t ZXXX parameters are measured at a delta of 0.5 V from the logic level and using Load C )

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

Package	$\theta$ JA (Junction to Ambient)		$\theta$ JC (Junction to Case)
	Blown	Still	
D Suffix	$50^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
F Suffix	$55^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
P Suffix	$65^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$

NOTE 3: Output short circuit conditions must not exceed 1 second duration. NOTE 4: The maximum address access time is guaranteed to be the worst case bit in the memory.

## 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7680/81 together with the MCM7620/21, MCM7640/43 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical " 1 " (outputs high), and can be selectively programmed for logical " 0 " (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7680 and 81 are pin compatible replacement for the $512 \times 8$ with pin 2 connected as A9 on the $1024 \times 8$.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and

Programming Procedure

- Simple, High-Speed Programming Procedure
( 0.1 second per 1024 Bits, Typical)
- Expandable - Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible

Low Input Current - $250 \mu \mathrm{~A}$ Logic " 0 ", $40 \mu \mathrm{~A}$ Logic " 1 "
Full Output Drive - 16 mA Sink, 2.0 mA Source

- Fast Access Time - Guaranteed for Worst-Case
$\mathrm{N}^{2}$ Sequencing, Over Commercial and Military Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs


## ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	$\mathrm{V}_{\mathrm{CC}}$	+7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	+5.5	Vdc
Output Voltage (operating)	$\mathrm{V}_{\mathrm{OH}}$	+7.0	Vdc
Supply Current	$\mathrm{I}_{\mathrm{CC}}$	650	mAdc
Input Current	$\mathrm{I}_{\text {in }}$	-20	mAdc
Output Sink Current	$\mathrm{I}_{\mathrm{O}}$	100	mAdc
Operating Temperature Range   MCM76xxDM   MCM76x×DC	$\mathrm{T}_{\mathrm{A}}$		${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-55 to +125	0 to +70
Maximum Junction Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

[^16] exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

## MTTL <br> 8192-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7680-1024 $\times 8$ - Open-Collector MCM7681-1024×8-Three-State


## DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage MCM $76 \times \times$ DM MCM $76 \times \times$ DC	$\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & 4.50 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 5.25 \end{aligned}$	Vdc
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	-	Vdc
Input Low Voltage	$V_{\text {IL }}$	-	-	0.8	Vdc

DC CHARACTERISTICS


CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Typ	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	8.0	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

ull operating voltage and temperature unless	(ed)		0 to $+70^{\circ} \mathrm{C}$		-55 to $+125^{\circ} \mathrm{C}$		Unit
Characteristic		Symbol	Typ	Max	Typ	Max	
Address to Output Access Time		${ }^{t}$ AA	45	70	45	85	ns
Chip Enable Access Time	MCM7680/81	${ }^{\text {t }}$ EA	30	40	30	50	ns




## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical " 1 " (Output High). Any desired bit/output can be programmed to a Logical " 0 " (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
2. Disable the chip by applying inputs highs $\left(\mathrm{V}_{\mathrm{H}}\right)$ to the $\overline{\mathrm{CS}}$ inputs. CS inputs must remain at $\mathrm{V}_{1} \mathrm{H}$ for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
3. Disable the proyramming circuitry by applying an Output Voltage Disable of less than $V_{\text {OPD }}$ to the output of the PROM. The output may be left open to achieve the disable.
4. Raise $V_{C C}$ to $V_{P H}$ with rise time equal to $t_{r}$.
5. After a delay equal to or greater than $t_{d}$, apply a pulse with amplitude of $V_{\text {OPE }}$ and duration of $t_{p}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
6. Other bits in the same word may be programmed
his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.
while the $V_{C C}$ input is raised to $V_{P H}$ by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of $t_{d}$.
7. Lower $V_{C C}$ to 4.5 Volts following a delay of $t_{d}$ from the last programming enable pulse applied to an output.
8. Enable the PROM for verification by applying a logic " 0 " $\left(V_{I L}\right)$ to the $\overline{\mathrm{CS}}$ inputs.
9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

TABLE 1
PROGRAMMING SPECIFICATIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IH }}$	Address Input	2.4	5.0	5.0	V
$V_{\text {IL }}$	Voltage (1)	0.0	0.4	0.8	V
VPH	Programming/Verify	11.75	12.0	12.25	V
VPL	Voltage to $\mathrm{V}_{\mathrm{CC}}$	4.5	4.5	5.5	$\checkmark$
ICCP	Programming Voltage Current Limit	600	600	650	mA
	Programming ( $\mathrm{V}_{\mathrm{CC}}$ )				
$\mathrm{t}_{\mathrm{r}}$	Voltage Rise and	1	1	10	$\mu \mathrm{s}$
$t_{f}$	Fall Time	1	1	10	$\mu \mathrm{s}$
$t_{d}$	Programming Delay	10	10	100	$\mu \mathrm{s}$
${ }^{\text {t }}$ p	Programming Pulse Width	100	-	1000	$\mu \mathrm{s}$
DC	Programming Duty Cycle	-	50	90	\%
	Output Voltage				
V OPE	Enable	10.0	10.5	11.0	V
$V_{\text {OPD }}$	Disable ${ }^{\text {(2) }}$	4.5	5.0	5.5	V
IOPE	Output Voltage Enable Current	2	4	10	mA
$\mathrm{T}_{\mathrm{C}}$	Case Temperature	-	25	75	${ }^{\circ} \mathrm{C}$

[^17]FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS


## Advance Information

## 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7684/85 together with the MCM7620/21/40/41/42/43/ 80/81 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both opencollector and three-state outputs. All bits are manufactured storing a logical " 1 " (outputs high), and can be selectively programmed for logical " 0 " (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7684 and 85 are pin compatible replacement for the $1024 \times 4$ with pin 8 connected as A10 on the $2048 \times 4$.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common de Electrical Characteristics and

Programming Procedure

- Simple, High-Speed Programming Procedure
( 0.1 second per 1024 Bits, Typical)
- Expandable - Open-Collector or Three-State

Outputs and Chip Enable Input

- Inputs and Outputs TTL-Compatible

Low Input Current - $250 \mu \mathrm{~A}$ Logic " 0 ", $40 \mu \mathrm{~A}$ Logic " 1 "
Full Output Drive - 16 mA Sink, 2.0 mA Source

- Fast Access Time - Guaranteed for Worst-Case
$N^{2}$ Sequencing, Over Commercial and Military
Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage (operating)	$V_{C C}$	+7.0	Vdc
Input Voltage	$V_{\text {in }}$	+5.5	Vd c
Output Voltage (operating)	$\mathrm{V}_{\mathrm{OH}}$	+7.0	$V \mathrm{dc}$
Supply Current	${ }^{\text {ICC }}$	650	mAdc
Input Current	1 in	-20	mAdc
Output Sink Current	$\mathrm{I}_{0}$	100	mAdc
Operating Temperature Range MCM $76 \times x$ DM   MCM76xxDC	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJ	+175	${ }^{\circ} \mathrm{C}$
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)			

[^18]
## DC OPERATING CONDITIONS AND CHARACTERISTICS

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{C C}$				Vdc
MCM $76 \times \times$ DM		4.50	5.0	5.50	
MCM $76 \times \times$ C		4.75	5.0	5.25	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	-	-	Vdc
Input Low Voltage	$V_{\text {IL }}$	-	-	0.8	Vdc

DC CHARACTERISTICS

(Over Recommended Operating Temperature Range)			Open-Collector Output			Three-State Output			
Symbal	Parameter	Test Conditions	Min	Typ	Max	Min	Typ	Max	Unit
$I_{\text {RA }}$ IRE $I^{\prime} F A, I^{\prime} F E$	Address/Enable " 1 "    Input Current 0 "	$\begin{aligned} & V_{I H}=V_{C C} M a x \\ & V_{I L}=0.45 \mathrm{~V} \end{aligned}$	-	$\begin{gathered} - \\ -0.1 \end{gathered}$	$\begin{gathered} 40 \\ -0.25 \end{gathered}$	-	$-0.1$	$\begin{gathered} 40 \\ -0.25 \end{gathered}$	$\mu \mathrm{Adc}$   mAdc
$\begin{aligned} & \mathrm{VOH} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	Output Voltage $\quad$ " 1 "	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Min}$ $\mathrm{I}_{\mathrm{OL}}=+16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Min}$	$\mathrm{N} / \mathrm{A}$	$0.35$	$\overline{0.45}$	$2.4$	$\begin{gathered} \hline 3.4 \\ 0.35 \end{gathered}$	$\frac{-}{0.45}$	Vdc   Vdc
$\begin{aligned} & \mathrm{I}_{\mathrm{OHZ}} \\ & \mathrm{I}_{\mathrm{OLZ}} \\ & \hline \end{aligned}$	Output Disabled " $1 "$   Current " 0 "	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Max} \\ & \mathrm{~V}_{\mathrm{OL}}=+0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \operatorname{Max} \end{aligned}$	-	-	$\begin{aligned} & 100 \\ & \text { N/A } \\ & \hline \end{aligned}$	-	-	$\begin{gathered} 100 \\ -100 \\ \hline \end{gathered}$	$\mu \mathrm{Adc}$   $\mu \mathrm{Adc}$
${ }^{1} \mathrm{OH}$	Output Leakage "1"	$\mathrm{V}_{\mathrm{OH},} \mathrm{V}_{\text {CC }}$ Max	-	-	100	-	-	N/A	$\mu \mathrm{Adc}$
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\text {in }}=-10 \mathrm{~mA}$	-	-	-1.5	-	-	-1.5	Vdc
'os	Output Short Circuit Current	$V_{\text {CC }}$ Max, $V_{\text {out }}=0.0 \mathrm{~V}$ One Output Only for 1 s Max	N/A	-	N/A	15	-	70	mAdc
${ }^{\text {I CC }}$	Power Supply Current   MCM7684/MCM7685 DC MCM7684/MCM7685 DM	$V_{\text {CC }} \text { Max }$   All Inputs Grounded	-	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	mAdc   mAdc

CAPACITANCE ( $f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$, periodically sampled rather than $100 \%$ tested.)

Characteristic	Symbol	Typ	Unit
Input Capacitance	$\mathrm{C}_{\text {in }}$	8.0	pF
Output Capacitance	$\mathrm{C}_{\text {out }}$	8.0	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

(Full operating voltage		0 to $+70^{\circ} \mathrm{C}$		-55 to $+125^{\circ} \mathrm{C}$		
Characteristic	Symbol	Typ	Max	Typ	Max	Unit
Address to Output Access Time	${ }^{t} A A$	45	70	45	85	ns
Chip Enable Access Time	${ }^{\text {t }}$ A	15	25	15	30	ns




## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical " 1 " (Output High). Any desired bit/output can be programmed to a Logical " 0 " (Output Low) by follow. ing the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
2. Disable the chip by applying an input high $\left(V_{\mid H}\right)$ to the $\overline{\mathrm{CS}}$ input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
3. Disable the programming circuitry by applying an Output Voltage Disable of less than V OPD to the output of the PROM. The output may be left open to achieve the disable.
4. Raise $V_{C C}$ to $V_{P H}$ with rise time equal to $t_{r}$.
5. After a delay equal to or greater than $t_{d}$, apply a pulse with amplitude of $\mathrm{V}_{\text {OPE }}$ and duration of $t_{p}$ to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
6. Other bits in the same word may be programmed
his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.
while the $V_{C C}$ input is raised to $V_{P H}$ by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of $\mathrm{t}_{\mathrm{d}}$.
7. Lower $V_{C C}$ to 4.5 Volts following a delay of $t_{d}$ from the last programming enable pulse applied to an output.
8. Enable the PROM for verification by applying a logic " 0 " (V/L) to the $\overline{\mathrm{CS}}$ inputs.
9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

TABLE 1

Symbol	Parameter	Min	Typ	Max	Unit
VIH	Address Input	2.4	5.0	5.0	V
VIL	Voltage (1)	0.0	0.4	0.8	V
$V_{\text {PH }}$	Programming/Verify	11.75	12.0	12.25	$\checkmark$
$V_{P L}$	Voltage to $\mathrm{V}_{\mathrm{CC}}$	4.5	4.5	5.5	$\checkmark$
${ }^{\prime} \mathrm{CCP}$	Programming Voltage Current Limit	600	600	650	mA
	Programming ( $\mathrm{V}_{\mathrm{CC}}$ )				
$\mathrm{t}_{\mathrm{r}}$	Voltage Rise and	1	1	10	$\mu \mathrm{s}$
$t_{f}$	Fall Time	1	1	10	$\mu \mathrm{s}$
$t_{d}$	Programming Delay	10	10	100	$\mu \mathrm{s}$
${ }^{\text {tp }}$	Programming Pulse Width	100	-	1000	$\mu \mathrm{s}$
DC	Programming Duty Cycle	-	50	90	\%
	Output Voltage				
V OPE	Enable	10.0	10.5	11.0	$\checkmark$
$V_{\text {OPD }}$	Disable(2)	4.5	5.0	5.5	$\checkmark$
IOPE	Output Voltage Enable Current	2	4	10	mA
$\mathrm{T}_{\mathrm{C}}$	Case Temperature	-	25	75	${ }^{\circ} \mathrm{C}$

(1) Address and chip select should not be left open for $\mathrm{V}_{1 \mathrm{H}}$.
(2) Disable condition will be met with output open circuit.

FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS


## MECL MEMORIES GENERAL INFORMATION

Complete information is available in the MECL Data Book. Contact your sales representative or authorized distributor for information.

TABLE 1 - LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED

Characteristic	Symbol	Rating	Unit
Supply Voltage	$V_{\text {EE }}$	-8.0 to 0	V
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{\text {in }}$	0 to $V_{\text {EE }}$	$\checkmark$
Output Source Current - Continuous Surge	lout	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	mA
$\begin{aligned} \hline \text { Junction Temperature }- \text { Ceramic Package }(1) \\ \text { Plastic Package } \end{aligned}$	$T_{J}$	$\begin{aligned} & 165 \\ & 150 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

(1) Maximum $T_{J}$ may be exceeded $\left(\leqslant 250^{\circ} \mathrm{C}\right)$ for short periods of time ( $\leqslant 240$ hours) without significant reduction in device life.

TABLE 2 - LIMITS BEYOND WHICH PERFORMANCE MAY BE DEGRADED

Characteristic	Symbol	Rating	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)(2)$	$\mathrm{V}_{\text {EE }}$	-4.94 to -5.46	V
Output Drive $-\mathrm{MCM10100} \mathrm{Series}^{\text {MCM10500 Series }}$	-	$50 \Omega$ to -2.0 V	$\Omega$
Operating Temperature Range(3)			
MCM10100 Series	$100 \Omega$ to -2.0 V		
MCM10500 Series	$\mathrm{T}_{\mathrm{A}}$	0 to 75	${ }^{\circ} \mathrm{C}$

(2.) Functionality only. Data sheet limits are specified for -5.19 to -5.21 V .
(3.) With airflow $\geqslant 500$ Ifpm.

## MECL MEMORIES (continued)

TABLE 3 - DC TEST PARAMETERS
Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear feet per minute is maintained. $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 0.010 \mathrm{~V}$.

Forcing Function	Parameter	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
		MCM10500*	MCM10100**	MCM10100**	MCM10500*	MCM10100**	MCM10500*
$\mathrm{V}_{\text {IHmax }}=$	$\mathrm{V}_{\text {OHmax }}$	-0.880	-0.840	-0.810	-0.780	-0.720	-0.630
	$\checkmark^{\text {OHmin }}$	-1.080	-1.000	-0.960	-0.930	-0.900	-0.825
	Vohamin	-1.100	-1.020	-0.980	-0.950	-0.920	-0.845
$V_{\text {IHAmin }}$		-1.255	-1.145	-1.105	-1.105	-1.045	-1.000
$V_{\text {ILAmin }}$		-1.510	-1.490	-1.475	-1.475	-1.450	-1.400
	Volamin	-1.635	-1.645	-1.630	-1.600	-1.605	-1.525
	Volamax	-1.655	-1.665	-1.650	-1.620	-1.625	-1.545
$V_{\text {ILmin }}$	$\checkmark$ OLmin	-1.920	-1.870	-1.850	-1.850	-1.830	-1.820
$V_{\text {ILImin }}$	IINLmin	0.5	0.5	0.5	0.5	0.3	0.3

*Driving $100 \Omega$ to -2.0 V .
** Driving $50 \Omega$ to -2.0 V .



All timing measurements referenced to $50 \%$ of input levels.
$R_{T}=50 \Omega$
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance)
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF

MECL MEMORIES (continued)
FIGURE 2-CHIP SELECT ACCESS TIME WAVEFORM


FIGURE 3 - ADDRESS ACCESS TIME WAVEFORM


FIGURE 4 - SETUP AND HOLD WAVEFORMS (WRITE MODE)


MOTOROLA

## $8 \times 2$ MULTIPORT REGISTER FILE (RAM)

The MCM10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

## WRITE

The word to be written is selected by addresses $A_{0}-A_{2}$. Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by $\mathrm{A}_{0}-\mathrm{A}_{2}$.

## READ

When the clock is high any two words may be read out simultaneously, as selected by addresses $B_{0}-B_{2}$ and $C_{0}-C_{2}$, including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates $\left(B_{0}-B_{1}\right),\left(C_{0}-C_{1}\right)$.
$t_{p d}$ :
Clock to Data out $=5 \mathrm{~ns}($ typ $)$
(Read Selected)
Address to Data out $=10 \mathrm{~ns}$ (typ)
(Clock High)
$\overline{\text { Read Enable to Data out }=2.8 \mathrm{~ns}(\text { typ }) ~}$
(Clock high, Addresses present)
$P_{D}=610 \mathrm{~mW} / \mathrm{pkg}$ (typ no load)

TRUTH TABLE											
*MODE	INPUT							OUTPUT			
	* * Clock	$\overline{W E}_{0}$	$\overline{W E}_{1}$	$\mathrm{D}_{0}$	$\mathrm{D}_{1}$	$\overline{R E}_{B}$	$\overline{R E E}_{C}$	$\mathrm{QB}_{0}$	QB1	$\mathrm{QC}_{0}$	$\mathrm{QC}_{1}$
Write	$\mathrm{L} \rightarrow \mathrm{H}$	L	L	H	H	$\mathrm{H}^{+}$	H	L	L	L	L
Read	H	$\phi$	0	¢	$\bigcirc$	L	L	H	H	H	H
Read	$\mathrm{H} \rightarrow \mathrm{L}$	¢	$\bigcirc$	$\phi$	$\bigcirc$	L	L	H	H	H	H
Read	$\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$	H	H	$\phi$	$\bigcirc$	L	L	H	H	H	H
Write	$\mathrm{L} \rightarrow \mathrm{H}$	L	$L$	L	H	H	H	L	L	L	L
Read	H	$\phi$	$\phi$	$\bigcirc$	$\bigcirc$	L	L	L	H	L	H

*Note: Clock occurs sequentially through Truth Table

- Note: AO.A2, BO.B2, and CO.C2 are all set to same address location throughout Table
$\phi=$ Don't Care


ELECTRICAL CHARACTERISTICS


[^19]Access (Clock High)


Enable


Data
(Address Selected)


Setup and Hold


## Enable Setup



Enable Hold


FIGURE 6


Address


FIGURE 9

MOTOROLA


The MCM10144/10544 is a 256 word $\times 1$-bit RAM. Bit selection is achieved by means of an 8-bit address AO through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM ( $\overline{C S}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{\text {in }}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Dout.

- Typical Address Access Time $=17 \mathrm{~ns}$
- Typical Chip Select Access Time $=4.0 \mathrm{~ns}$
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on Chip Select
- Power Dissipation ( 470 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

- Pin-for-Pin Replacement for F10410

MODE	INPUT			OUTPUT
	$\overline{C S}{ }^{*}$	$\overline{\text { WE }}$	$\mathrm{D}_{\text {in }}$	$\mathrm{D}_{\text {out }}$
Write "0"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	Q
Disabled	H	$\phi$	$\phi$	L

- $\overline{\mathrm{CS}}=\overline{\mathrm{Cs} 1}+\overline{\mathrm{CS} 2}+\overline{\mathrm{Cs} 3}$


L SUFFIX
CERAMIC PACKAGE
CASE 620


F SUFFIX
CERAMIC PACKAGE CASE 650

PIN ASSIGNMENT


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	'EE	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10144		MCM10544		Unit	Conditions
		$\begin{gathered} \mathrm{T}_{A}=0 \text { to } \\ +75^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{EE}}= \\ -5.2 \mathrm{Vdc} \\ \pm 5 \% \end{gathered}$		$\left\lvert\, \begin{gathered} T_{A}=-55 \mathrm{to} \\ +125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{EE}}= \\ -5.2 \mathrm{Vdc} \\ \pm 5 \% \end{gathered}\right.$			
		Min	Max	Min	Max		
Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{A}} \mathrm{ACS} \\ & \mathrm{t}_{\mathrm{R} C S} \\ & { }^{\mathrm{t} A A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 26 \\ & \hline \end{aligned}$	ns	Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write Address Hold Time After Write Chip Select Setup Time Prior to Write   Chip Select Hold Time After Write Write Disable Time Write Recovery Time	tw   ${ }^{t}$ WSD   tWHD   ${ }^{t}$ WSA   tWHA   twSCS   twhes   tws   tWR	$\begin{aligned} & 25 \\ & 2.0 \\ & 2.0 \\ & 8.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	- - - - - - - 10 10	$\begin{aligned} & 25 \\ & 2.0 \\ & 2.0 \\ & 8.0 \\ & 0.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & 10 \\ & 10 \end{aligned}$	ns	${ }^{t} W S A=8.0 \mathrm{~ns}$ Measured at $50 \%$ of input to $50 \%$ of output. ${ }^{t} W=25 \mathrm{~ns}$.
Rise and Fall Time   Address to Output $\overline{\mathrm{CS}}$ or $\overline{W E}$ to Output	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}_{f}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns	Measured between 20\% and 80\% points.
Capacitance Input Capacitance Output Capacitance	$C_{\text {in }}$ Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega$, MCM10144; $100 \Omega, \mathrm{MCM} 10544 . \mathrm{C}_{\mathrm{L}} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance). Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.


The MCM10145/10545 is a 16 word $\times 4$-bit RAM. Bit selection is achieved by means of a 4-bit address AO through A3.

The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM ( $\overline{\mathrm{CS}}$ input low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{n}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented noninverted at $Q_{n}$.

- Typical Address Access Time $=10 \mathrm{~ns}$
- Typical Chip Select Access Time $=4.5 \mathrm{~ns}$
- $50 \mathrm{k} \Omega$ Pulldown Resistors on All Inputs
- Power Dissipation ( 470 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

## PIN ASSIGNMENT



LSUFFIX
CERAMICPACKAGE
CASE 620
TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{\text { CS }}$	$\overline{\text { WE }}$	$\mathrm{D}_{n}$	$\mathrm{Q}_{\mathrm{n}}$
Write " $0^{\prime \prime}$	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	O
Disabled	H	$\phi$	$\phi$	L

$\phi=$ Don't Care



F SUFFIX
CERAMIC PACKAGE
CASE 650

FIGURE 1 - CHIP ENABLE STROBE MODE


## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	$I_{\text {EE }}$			-	130	-	125		120	-	120	mAdc
Input Current High	1 inH			-	220		220		220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	$\begin{array}{\|c} \hline \text { MCM10145 } \\ \hline \mathrm{T}_{\mathrm{A}}=0 \text { to } \\ +75^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{EE}}= \\ -5.2 \mathrm{Vdc} \\ \pm 5 \% \end{array}$		MCM 10545$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{to} \\ +125^{\circ} \mathrm{C} \\ \mathrm{VEE}= \\ -5.2 \mathrm{Vdc} \\ \pm 5 \% \end{gathered}$		Unit	Conditions
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time   Chip Select Recovery Time   Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}^{\mathrm{AAA}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 8.0 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 18 \\ & \hline \end{aligned}$	ns	Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write   Address Hold Time After Write   Chip Select Setup Time Prior to Write   Chip Select Hold Time After Write Write Disable Time   Write Recovery Time	tWSD   tWHD   tWSA   tWHA   twSCS   tWHCS   tws   twR	8.0 0 3.0 5.0 1.0 0 0 2.0 2.0	$\begin{gathered} - \\ - \\ - \\ - \\ - \\ 8.0 \\ 8.0 \end{gathered}$	$\begin{gathered} 8.0 \\ 0 \\ 4.0 \\ 5.0 \\ 3.0 \\ 5.0 \\ \\ 0 \\ 2.0 \\ 2.0 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ 10 \\ 10 \end{gathered}$	ns	${ }^{\text {twSA }}=5 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. $\mathrm{t}_{\mathrm{W}}=8 \mathrm{~ns} .$
Chip Enable Strobe Mode   Data Setup Prior to Chip Select   Write Enable Setup Prior to   Chip Select   Address Setup Prior to Chip Select   Data Hold Time After Chip Select   Write Enable Hold Time After   Chip Select   Address Hold Time After Chip Select   Chip Select Minimum Pulse Width	${ }^{t} \mathrm{CSD}$   tcsw   ${ }^{t}$ CSA   ${ }^{\text {t }} \mathrm{CHD}$   ${ }^{t} \mathrm{CHW}$   ${ }^{t} \mathrm{CHA}$   ${ }^{\mathrm{t}} \mathrm{CS}$	0 0   0   2.0   0   4.0   18			$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	ns	Guaranteed but not tested on standard product. See Figure 1.
Rise and Fall Time Address to Output $\overline{\mathrm{CS}}$ to Output	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns	Measured between 20\% and 80\% points.
Capacitance Input Capacitance Output Capacitance	$C_{i n}$ Cout	-	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, M C M 10145 ; 100 \Omega, M C M 10545 . C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and Stray Capacitance). Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive loads up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.


The MCM10146/10546 is a $1024 \times 1$-bit RAM. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The activelow chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM ( $\overline{C S}$ input low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low, the chip is in the write mode, the output, Dout, is low and the data state present at $D_{i n}$ is stored at the selected address. With WE high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at Dout. (See Truth Table.)

- Pin-for-Pin Compatible with the 10415
- Power Dissipation ( 520 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns
- $50 \mathrm{k} \Omega$ Pulldown Resistor on Chip Select Input


## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	IEE	-	155	-	150	-	145	-	125	-	125	mAdc
Input Current Higk	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$
Logic ' $0^{\prime \prime}$ Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.970	-1.655	-1.920	-1.665	-1.900	-1.650	-1.880	-1.625	-1.870	-1.545	Vdc

NOTE: $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MCM $105 \times \mathrm{X}$ only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10146$\mathrm{T}_{\mathrm{A}}=0$ to$+75^{\circ} \mathrm{C}$,$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$$\pm 5 \%$		MC	546	Unit	Conditions
				$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-55 \mathrm{to} \\ & +125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{EE}} & =-5.2 \mathrm{Vdc} \\ & \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time Chip Select Recovery Time Address Access Time	t ACS $\mathrm{t}_{\mathrm{R} C S}$ $\mathrm{t}_{\text {A }}$	2.0 2.0 8.0	7.0 7.0 29	2.0   2.0   8.0	$\begin{aligned} & 8.0 \\ & 8.0 \\ & 40 \end{aligned}$	ns	Measured at $50 \%$ of input to $50 \%$ of output.   See Note 2.
Write Mode						ns	$t_{W S A}=8.0 \mathrm{~ns} .$   Measured at $50 \%$ of input to $50 \%$ of output. $\mathrm{t}_{\mathrm{W}}=25 \mathrm{~ns}$
Write Pulse Width (To guarantee writing)	tw	25	-	25	-		
Data Setup Time Prior to Write	${ }^{\text {t WSD }}$	5.0	-	5.0	-		
Data Hold Time After Write	tWHD	5.0	-	5.0	-		
Address Setup Time Prior to Write	twSA	8.0	-	10	-		
Address Hold Time After Write	${ }^{\text {tWHA }}$	2.0	-	8.0	-		
Chip Select Setup Time Prior to Write	twscs	5.0	-	5.0	-		
Chip Select Hold Time After Write	twhes	5.0	-	5.0	-		
Write Disable Time	tws	2.8	7.0	2.8	12		
Write Recovery Time	twa	2.8	7.0	2.8	12		
Rise and Fall Time $\overline{\mathrm{CS}}$ or $\overline{W E}$ to Output	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	4.0	1.5	4.0	ns	Measured between $20 \%$ and $80 \%$ points.
Address to Output		1.5	8.0	1.5	8.0		
Capacitance						pF	Measured with a pulse
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	5.0	-	5.0		technique.
Output Capacitance	Cout	-	8.0	-	8.0		

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{MCM10146;100} \mathrm{\Omega}$, MCM10546. $\mathrm{C}_{\mathrm{L}} \leqslant 5.0$ pf including jig and stray capacitance. For Capacitance Loading $\leqslant 50 \mathrm{pF}$, delay should be derated by $30 \mathrm{ps} / \mathrm{pF}$.
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MOTOROLA


The MCM1047/10547 is a fast 128 -word $X$ 1-bit RAM. Bit selection is achieved by means of a 7 -bit address, A0 through A6.

The activelow chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system performance.

The operating mode ( $\overline{\mathrm{CS}}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{i n}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at $D_{\text {out }}$.

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on All Inputs
- Power Dissipation ( 420 mW typ @ $25^{\circ} \mathrm{C}$ ) Decreases with Increasing Temperature
- Similar to F10405

PIN ASSIGNMENT


## LSUFFIX

 CERAMIC PACKAGECASE 620

TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	$\mathrm{D}_{\text {in }}$	$\mathrm{D}_{\text {out }}$
Write "0"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	Q
Disabled	H	$\phi$	$\phi$	L

[^20]CERAMIC PACKAGE
CASE 650

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	IEE	-	115	-	105	-	100	-	95	-	95	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105×x devices only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10147		MCM10547		Unit	Conditions
		$\begin{gathered} T_{A}=0 \text { to }+75^{\circ} \mathrm{C} \\ V_{E E}=-5.2 \vee \mathrm{dc} \pm 5 \% \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{A}} \mathrm{f} C \mathrm{~S} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}^{\mathrm{AA}} \end{aligned}$	2.0   2.0   5.0	$\begin{gathered} 8.0 \\ 8.0 \\ 15 \end{gathered}$	*	*	ns	Measured from 50\% of input to 50\% of output. See Note 2.
Write Mode						ns	${ }^{\text {t }}$ WSA $=4.0 \mathrm{~ns}$
Write Pulse Width	tw	8.0	-	*	-		Measured at 50\% of input
Data Setup Time Prior to Write	${ }^{t}$ WSD	1.0	-	*	-		to $50 \%$ of output.
Data Hold Time After Write	tWHD	3.0	-	*	-		${ }^{\text {tw }}=8.0 \mathrm{~ns}$.
Address Setup Time Prior to Write	${ }^{\text {t WSA }}$	4.0	-	*	-		
Address Hold Time After Write	tWHA	3.0	-	*	-		
Chip Select Setup Time Prior to Write	twSCS	1.0	-	*	-		
Chip Select Hold Time After Write	${ }^{\text {tWHCS }}$	1.0	-	*	-		
Write Disable Time	tws	2.0	8.0	*	*		
Write Recovery Time	tWR	2.0	8.0	*	*		
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	5.0	*	*	ns	Measured between 20\% and 80\% points.
Capacitance						pF	Measured with a pulse
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	5.0	-	*		technique.
Output Capacitance	Cout	-	8.0	-	*		

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega$, MCM10147; $100 \Omega$, MCM10547.
$\mathrm{C}_{\mathrm{L}} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance).
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
*To be determined; contact your Motorola representative for up-to-date information.


PIN ASSIGNMENT



LSUFFIX
CERAMIC PACKAGE
CASE 620

The MCM10148/10548 is a fast 64-word $X$ 1 -bit RAM. Bit selection is achieved by means of a 6-bit address, AO through A5.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system performance.

The operating mode ( $\overline{\mathrm{CS}}$ inputs low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode-the output is low and the data present at $D_{i n}$ is stored at the selected address. With $\overline{W E}$ high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at Dout.

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on All Inputs
- Power Dissipation ( 420 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

TRUTH TABLE

MODE	INPUT			OUTPUT
	$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	$\mathrm{D}_{\text {in }}$	$\mathrm{D}_{\text {out }}$
Write "0"	L	L	L	L
Write "1"	L	L	H	L
Read	L	H	$\phi$	Q
Disabled	H	$\phi$	$\phi$	L

$\cdot \overline{\mathrm{CS}}=\overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2}+\overline{\mathrm{CS} 3} \quad \phi=$ Don't Care.

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	$I_{\text {EE }}$	-	115	-	105	-	100	-	95	-	95	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105xx devices only.

## SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10148		MCM10548		Unit	Conditions
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+75^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{EE}} & =-5.2 \mathrm{Vdc}+5 \% \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time   Chip Select Recovery Time   Address Access Time	$\begin{aligned} & { }^{\text {t} A C S} \\ & { }^{\text {t}} \mathrm{RCS} \\ & { }^{\mathrm{t} A A} \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 15 \\ & \hline \end{aligned}$	$-$		ns	Measured from 50\% of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write   Address Hold Time After Write   Chip Select Setup Time Prior to Write   Chip Select Hold Time After Write   Write Disable Time   Write Recovery Time	${ }^{t} w$   ${ }^{t}$ WSD   tWHD   tWSA   ${ }^{t}$ WHA   twSCS   ${ }^{t}$ WHCS   ${ }^{\text {th}}$ WS   twR	$\begin{gathered} 8.0 \\ 3.0 \\ 2.0 \\ 5.0 \\ 3.0 \\ 3.0 \\ 0 \\ 2.0 \\ 2.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & 7.5 \\ & 7 . \end{aligned}$			ns	${ }^{t}$ WSA $=5.0 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output.   ${ }^{\mathrm{t}} \mathrm{W}=8.0 \mathrm{~ns}$.
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	5.0	*	*	ns	Measured between 20\% and $80 \%$ points.
Capacitance Input Capacitance Output Capacitance	$\mathrm{C}_{\text {in }}$   Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	*	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{MCM} 10148 ; 100 \Omega, \mathrm{MCM} 10548$.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance)
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
*To be determined; contact your Motorola representative for up-to-date information.


## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75{ }^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	${ }^{\prime} \mathrm{EE}$	-	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	1 inH	-	375	-	220	-	220	-	220	-	220	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105×x devices only.

SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10152		MCM10552		Unit	Conditions
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+75^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{EE}} & =-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$		$\begin{aligned} & T_{A}=-55 \mathrm{to}_{\mathrm{o}}+125^{\circ} \mathrm{C}, \\ & V_{E E}=-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & \mathrm{t}_{\mathrm{A}} \mathrm{ACS} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{A}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 15 \end{aligned}$	* ${ }_{*}^{*}$			Measured from $50 \%$ of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width   Data Setup Time Prior to Write   Data Hold Time After Write   Address Setup Time Prior to Write   Address Hold Time After Write   Chip Select Setup Time Prior to Write   Chip Select Hold Time After Write   Write Disable Time   Write Recovery Time	tW tWSD   tWHD   ${ }^{t}$ WSA   ${ }^{t}$ WHA   tWSCS   twhes   tws.   tWR	$\begin{aligned} & 10 \\ & 2.0 \\ & 2.0 \\ & 5.0 \\ & 3.0 \\ & 2.0 \\ & 2.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} - \\ - \\ - \\ - \\ - \\ - \\ - \\ 7.5 \\ 7.5 \end{gathered}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \text { * } \end{aligned}$	ns	${ }^{t} W S A=5.0 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. ${ }^{t} \mathrm{~W}=10 \mathrm{~ns} .$
Rise and Fall Time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	5.0	*	*	ns	Measured between 20\% and 80\% points.
Capacitance Input Capacitance Output Capacitance	$\mathrm{C}_{\text {in }}$ Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	*	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, \mathrm{MCM} 10152 ; 100 \Omega 2, \mathrm{MCM} 10552$.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance).
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF .
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
*To be determined; contact your Motorola representative for up-to-date information.


L SUFFIX
CERAMIC PACKAGE
CASE 620


F SUFFIX
CERAMIC PACKAGE
CASE 650


The MCM10139/10539 is a 256-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 0 (low) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled ( $\overline{\mathrm{CS}}=$ high ), all outputs are forced to a logic 0 (low).

- Typical Address Access Time $=15 \mathrm{~ns}$
- Typical Chip Select Access Time $=10 \mathrm{~ns}$
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on all inputs
- Power Dissipation ( 520 mW typ @ $25^{\circ} \mathrm{C}$ ) Decreases with Increasing Temperature
block diagram



## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$-0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	'EE	-	160	-	150	-	145	-	140	-	160	mAdc
Input Current High	$\mathrm{I}_{\mathrm{inH}}$	-	450	-	265	-	265	-	265	-	265	$\mu \mathrm{Adc}$
Logic "0" Output Voltage MCM10139   МСМ10539	$\mathrm{V}_{\mathrm{OL}}$	$\left.-\frac{-}{-2.060} \right\rvert\,$	$\left\lvert\, \begin{gathered} - \\ -1.655 \end{gathered}\right.$	-2.010	$-1.665$	$\begin{array}{r} -1.990 \\ -1.990 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{\|r\|} -1.650 \\ -1.620 \end{array}\right.$	-1.970	-1.625	$-\overline{-}$	$\underset{-1.545}{-}$	Vdc

## SWITCHING CHARACTERISTICS (Note 1)

Characteristic	Symbol	MCM10139	MCM10539	Conditions
		$\begin{gathered} \left(V_{E E}=-5.2 \mathrm{Vdc} \pm 5 \% ;\right. \\ \left.T_{A}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\right) \end{gathered}$	$\left(V_{E E}=-5.2 \mathrm{Vdc} \pm 5 \%\right.$; $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ )	
Chip Select Access Time	${ }^{t}$ ACS	15 ns Max	*	Measured from 50\% of input to 50\% of output. See Note 2
Chip Select Recovery Time	${ }^{\text {t }}$ RCS	15 ns Max	*	
Address Access Time	${ }^{t}$ AA	20 ns Max	*	
Rise and Fall Time	$t_{r}, t_{f}$	3.0 ns Typ	*	Measured between $20 \%$ and $80 \%$ points.
Input Capacitance	in	5.0 pF Max	*	Measured with a pulse technique.
Output Capacitance	Cout	8.0 pF Max	*	

NOTES: 1. Test circuit characteristics: $R_{T}=50 \Omega, M C M 10139 ; 100 \Omega, M C M 10539 . C_{L} \leqslant 5.0$ pFincluding jig and stray capacitance. For Capacitance Loading $\leqslant 50 \mathrm{pF}$, delay should be derated by $30 \mathrm{ps} / \mathrm{pF}$.
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
*To be determined; contact your Motorola representative for up-to-date information.

FIGURE 1 - MANUAL PROGRAMMING CIRCUIT


FIGURE 2 - AUTOMATIC PROGRAMMING CIRCUIT


## RECOMMENDED PROGRAMMING PROCEDURE*

The MCM10139 is shipped with all bits at logical " 0 " (low). To write logical " 1 s ", proceed as follows.

## MANUAL (See Figure 1)

Step 1 Connect $\mathrm{V}_{\mathrm{EE}}$ (Pin 8) to -5.2 V and $\mathrm{V}_{\mathrm{CC}}$ (Pin 16) to 0.0 V . Address the word to be programmed by applying -1.2 to -0.6 volts for a logic " 1 " and -5.2 to -4.2 volts for a logic " 0 " to the appropriate address inputs.

Step 2 Raise $V_{C C}(\operatorname{Pin} 16)$ to +6.8 volts.
Step 3 After $V_{C C}$ has stabilized at +6.8 volts (including any ringing which may be present on the $V_{\mathrm{CC}}$ line), apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic " 1 ".

Step 4 Return $V_{C C}$ to 0.0 Volts.

## CAUTION

To prevent excessive chip temperature rise, $V_{C C}$ should not be allowed to remain at +6.8 volts for more than 1 second.

Step 5 Verify that the selected bit has programmed by connecting a $460 \Omega$ resistor to -5.2 volts and measuring the voltage at the output pin. If a logic " 1 " is not detected at the output, the procedure should be repeated once. During verification $V_{1 H}$ should be -1.0 to -0.6 volts.

Step 6 If verification is positive, proceed to the next bit to be programmed.

## AUTOMATIC (See Figure 2)

Step 1 Connect $V_{E E}(\operatorname{Pin} 8)$ to -5.2 volts and $V_{C C}(P i n 16)$ to 0.0 volts. Apply the proper address data and raise $V_{C C}$ ( $\operatorname{Pin} 16$ ) to +6.8 volts.

Step 2 After a minimum delay of $100 \mu \mathrm{~s}$ and a maximum delay of 1.0 ms , apply a 2.5 mA current pulse to the first bit to be programmed ( $0.1 \leqslant \mathrm{PW} \leqslant 1 \mathrm{~ms}$ ).

Step 3 Repeat Step 2 for each bit of the selected word specified as a logic " 1 ". (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms .)

Step 4 After all the desired bits of the selected word have been programmed, change address data and repeat Steps 2 and 3

NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for $V_{C C}$ to remain at +6.8 volts during the entire programming time.

## Step 5 After stepping through all address words, return $\mathrm{V}_{\mathrm{CC}}$ to

 0.0 volts and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once. During verification $\mathrm{V}_{\mathrm{IH}}$ should be -1.0 to -0.6 volts.*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

PROGRAMMING SPECIFICATIONS

Characteristic	Symbol	Limits			Units	Conditions
		Min	Typ	Max		
Power Supply Voltage	$V_{\text {EE }}$	-5.46	-5.2	-4.94	V dc	
To Program	$V_{\text {CCP }}$	+6.04	+6.8	+7.56	$V \mathrm{dc}$	
To Verify	$V_{\text {cci }}$	0	0	0	Vdc	
Programming Supply Current	I'CP	-	200	600	mA	$\mathrm{V}_{\mathrm{CC}}=+6.8 \mathrm{Vdc}$
Address Voltage	$\mathrm{V}_{\text {IH }}$ Program	-1.2	-	-0.6	Vdc	
Logical "1"	$V_{\text {IH }}$ Verify	-1.0	-	-0.6	Vdc	
Logical "0'	$V_{\text {IL }}$	-5.2	-	-4.2	$V \mathrm{dc}$	
Maximum Time at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCP}}$	-	-	-	1.0	sec	
Output Programming Current	$\mathrm{I}_{\mathrm{OP}}$	2.0	2.5	3.0	mAdc	
Output Program Pulse Width	${ }^{\text {tp }}$	0.5	-	1.0	ms	
Output Pulse Rise Time	-	-	-	10	$\mu \mathrm{s}$	
Programming Pulse Delay (1)						
Following $\mathrm{V}_{\text {CC }}$ change	$\mathrm{t}_{\mathrm{d}}$	0.1	-	1.0	ms	
Between Output Pulses	$t_{d} 1$	0.01	-	1.0	ms	

NOTE 1. Maximum is specified to minimize the amount of time $V_{C C}$ is at +6.8 volts.

PIN ASSIGNMENT


The MCM10149/10549 is a 256 -word $\times 4$-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 1 (high) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled $(\overline{\mathrm{CS}}=$ high $)$, all outputs are forced to a logic 0 (low).

- Typical Address Access Time of 20 ns
- Typical Chip Select Access Time of 8.0 ns
- $50 \mathrm{k} \Omega$ Input Pulldown Resistors on All Inputs
- Power Dissipation ( 540 mW typ @ $25^{\circ} \mathrm{C}$ )

Decreases with Increasing Temperature

L SUFFIX CERAMIC PACKAGE CASE 620


F SUFFIX
CERAMIC PACKAGE
CASE 650


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		Unit
		Min	Max									
Power Supply Drain Current	$l_{\text {I E }}$	--	140	-	135	-	130	-	125	-	125	mAdc
Input Current High	$\mathrm{I}_{\mathrm{inH}}$	-	450	-	265	--	265	-	265	-	265	$\mu \mathrm{Adc}$

$-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ test values apply to MC105×x devices only.
SWITCHING CHARACTERISTICS (Note 1)

Characteristics	Symbol	MCM10149		MCM10549		Unit	Conditions
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+75^{\circ} \mathrm{C} \\ \mathrm{VEE}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C}, \\ & V_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \end{aligned}$			
		Min	Max	Min	Max		
Read Mode   Chip Select Access Time Chip Select Recovery Time Address Access Time	${ }^{t}$ ACS   ${ }^{t}$ RCS   ${ }^{t} \mathrm{AA}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 25 \\ & \hline \end{aligned}$	*	*	ns	Measured from 50\% of input to $50 \%$ of output. See Note 1.
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.5	7.0	*	*	ns	Measured between 20\% and $80 \%$ points.
Capacitance   Input Capacitance   Output Capacitance	$\mathrm{C}_{\text {in }}$   Cout	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\top}=50 \Omega, \mathrm{MCM10149;100} \mathrm{\Omega}$, MCM10549.
$C_{L} \leqslant 5.0 \mathrm{pF}$ (including jig and stray capacitance〉
Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive load up to 50 pF
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
4. $V_{C P}=V_{C C}=G$ nd for normal operation.
*To be determined; contact your Motorola representative for up-to-date information.

## PROGRAMMING THE MCM10149 $\dagger$

During programming of the MCM10149, input pins 7, 9, and 10 are addressed with standard MECL 10K logic levels. However, during programming input pins 2, 3, 4, 5, and 6 are addressed with $0 \vee \leqslant V_{I H} \leqslant+0.25 \mathrm{~V}$ and $V_{E E} \leqslant V_{I L} \leqslant$ -3.0 V . It should be stressed that this deviation from standard input levels is required only during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

With these requirements met, and with $V_{C P}=$ $V_{C C}=0 \mathrm{~V}$ and $V_{E E}=-5.2 \mathrm{~V} \pm 5 \%$, the address is set up. After a minimum of 100 ns delay, $V_{C P}$ (pin 1) is ramped up to $+12 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (total voltage $V_{C P}$ to $V_{E E}$ is now $17.2 \mathrm{~V},+12 \mathrm{~V}$ -$\left[\begin{array}{ll}-5.2 & \mathrm{~V}\end{array}\right]$ ). The rise time of this $V_{C P}$ voltage pulse should be in the $1-10 \mu$ s range, while its pulse width ( $t_{w} 1$ ) should be greater than $100 \mu \mathrm{~s}$ but less than 1 ms . The $\mathrm{V}_{\mathrm{CP}}$ supply current at +12 $\checkmark$ will be approximately 525 mA while current drain from $V_{C C}$ will be approximately 175 mA . A current limit should therefore be set on both of these supplies. The current limit on the $V_{C P}$ supply should be set at 700 mA while the $\mathrm{V}_{\mathrm{CC}}$ supply should be limited to 250 mA . It should be noted that the $V_{E E}$ supply must be capable of sinking the combined current of the $V_{C C}$ and $V_{\text {CP }}$ supplies while maintaining a voltage of $-5.2 \vee \pm 5 \%$.

Coincident with, or at some delay after the $V_{\text {CP }}$ pulse has reached its $100 \%$ level, the desired bit to be fused can be selected. This is done by taking the corresonding output pin to a voltage of $+2.85 \mathrm{~V} \pm 5 \%$. It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor ( 100 ohm for MCM10549) to -2.0 V . Current into the selected output is 5 mA maximum.

After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13. The $0 \%$ to $100 \%$ rise time of this current pulse should be 250 ns max. Its pulse width should be greater than $100 \mu \mathrm{~s}$. Pulse magnitude is $50 \mathrm{~mA} \pm 5.0 \mathrm{~mA}$. The voltage clamp on this current source is to be -6.0 V .

After the fusing current source has returned 0 mA , the bit select pulse is returned to it initial level, i.e., the output is returned through its load to -2.0 V . Thereafter, $\mathrm{V}_{\mathrm{CP}}$ is returned to 0 V . Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after $V_{C P}$ has returned to 0 V . The remaining bits are programmed in a similar fashion.

[^21]
## PROGRAMMING SPECIFICATIONS

The following timing diagrams and fusing information represent programming specifications for the MCM10149.


The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the $V_{C P}$ pulse, i.e., $V_{C P}=0 \mathrm{~V}$. Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after $V_{C P}$ returns to 0 V .

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of $\leqslant 15 \%$ is to be observed.

Definitions and values of timing symbols are as follows.

Symbol	Definition	Value
${ }^{\text {tr }} 1$	Rise Time, Programming Voltage	$\geqslant 1 \mu \mathrm{~s}$
${ }_{\text {t }}$ 1 1	Pulse Width, Programming Voltage	$\geqslant 100 \mu \mathrm{~s}<1 \mathrm{~ms}$
${ }^{t} \mathrm{D} 1$	Delay Time, Programming Voltage Pulse to Bit Select Pulse	$\geqslant 0$
${ }^{\text {w }}$ w 2	Pulse Width, Bit Select	$\geqslant 100 \mu \mathrm{~s}$
${ }^{t} \mathrm{D} 2$	Delay Time, Bit Select   Pulse to Programming   Voltage Pulse	$\geqslant 0$
${ }^{t}$ D3	Delay Time, Bit Select Pulse to Programming Current Pulse	$\geqslant 1 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{r}} 3$	Rise Time, Frogramming Current Pulse	250 ns max
${ }^{\text {tw }}$ 3	Pulse Width, Programming Current Pulse	$\geqslant 100 \mu \mathrm{~s}$
${ }^{t}$ D4	Delay Time,   Programming Current   Pulse to Bit   Select Pulse	$\geqslant 1 \mu \mathrm{~s}$

MANUAL PROGRAMMING CIRCUIT



Memory Boards

5

## Advance Information

## ADD-ON MEMORY CARD FOR THE LSI-11 FAMILY

The MMS1102 is a dual height (5.187" $\times 8.94^{\prime \prime}$ ) add-on memory card for the LSI-11 family of computers. It is compatible with the LSI-11/2 and LSI-11 processors as well as the PDP 11 V 03 computer systems. It incorporates byte parity storage as well as generation and detection logic.


## Specification Highlights

INTERFACE	LSI-11, ' Q ' ${ }^{\text {' Bus-Plus. }}$
CAPACITY	8 K words $\times 16$ bits, 16 K words $\times 16$ bits, 32 K words $\times 16$ bits.
PARITY	Optional on-board storage, generation and detection logic for both upper and lower byte. Parity option does not degrade access times.
SPEED	The MMS1102-3X has a read access time under 300 ns . Read access time is defined here as the time from receipt of SYNC H to the transmission of RPLY H, assuming that the SYNC H to DIN H time is no greater than 160 ns .
ADDRESSING	Switch-selectable, to start on any 4 K word boundary between 0 and 128 K .
I/O PAGE USE	Three switches allow any one of the lowest three kilowords of the $1 / O$ page to be used as Read/Write memory.
BATTERY BACKUP	Jumper selectable; allows the MMS1102 to be operated from a separate uninterrupted power source ( +5 BBU and +12 BBU ).
REFRESH	Implemented internal to the MMS1102 and totally transparent to the system.

MMS1102-XX ORDERING INFORMATION

Storage Capacity	Part Number   (With Parity and Controlier)	Part Number   (No Parity)
16 Kilobytes	MMS1102-31PC	MMS1102-31
32 Kilobytes	MMS1102-32PC	MMS1102-32
64 Kilobytes	MMS1102-34PC	MMS1102-34

MMS1102-3X - AC OPERATING CHARACTERISTICS

	Read Access (ns)		Write Access (ns)	
	Typical	Worst Case	Typical	Worst Case
Access Time*	250	300	125	175
Cycle Time**	470	500	350	400
Refresh Latency***	175	400	175	400

*As measured from receipt of RSYNC H to transmission of TRPLY H.
**This is the reciprocal of the maximum continuous transfer rate, assuming no refresh interference.
***Occurs approximately once every 16 microseconds.

MMS1102 POWER REQUIREMENTS

Nominal Voltage	Min	Max	Current Requirements (mA)				Input Pins
			Standby		Active		
			Typical	Worst Case	Typical	Worst Case	
+5 VDC (Total)	4.75	5.25	$\begin{aligned} & \hline 725 \\ & 925 * \end{aligned}$	$\begin{aligned} & 800 \\ & 1000^{*} \end{aligned}$	$\begin{gathered} 775 \\ 1000^{*} \end{gathered}$	$\begin{gathered} 850 \\ 1100^{*} \end{gathered}$	AA2, BA2
+12 VDC	11.40	12.60	100	150	250	400	AD2, BD2
+5 VDC (BBU)	4.75	5.25	400	500	450	550	AV1**
+12 VDC (BBU)	11.40	12.60	100	150	250	400	AS1***

*Parity version only.
${ }^{* *}$ In systems without battery backup this voltage is obtained from the regular +5 V rail via an on-board jumper.
${ }^{* * *}$ The +12 V supply requirement can be met via an on-board jumper from the regular +12 V rail.

MMS1102 BACKPLANE CONNECTOR PIN ASSIGNMENT

Row	A		B	
Side	1	2	1	2
Pin				
A	-	+5V	BDCOK H	+5V
B	-	-	-	-
C	BAD16 L**	GND	-	GND
D	BAD17 L	+12V	-	+12V
E	-	BDOUT L	-	BDAL 2 L
F	-	BRPLY L	-	BDAL 3 L
H	-	BDIN L	-	BDAL 4 L
J	GND	BSYNC L	GND	BDAL 5 L
K	$\} *$	BWTBT L	$\} *$	BDAL 6 L
L		-		BDAL 7 L
M	GND	BIAKIL $\}^{* * *}$	GND	BDAL 8 L
N	-	BIAKO L ${ }^{* * *}$	-	BDAL 9 L
P	-	BBS7 L	-	BDAL 10 L
R	BREF L	BDMGIL $\}_{* * *}$	-	BDAL 11 L
S	+12 V BBU	BDMGO L $\}^{* *}$	-	BDAL 12 L
T	GND	-	GND	BDAL 13 L
U	-	BDAL OL	-	BDAL 14 L
V	+5 V BBU	BDAL 1 L	+5 V	BDAL 15 L

*Must be hardwired on backplane or damage to MOS devices may result.
**Or PRTYER or PRTYCK.
***Hardwired on MMS1102.

## Product Preview

## ADD-IN MEMORY CARD FOR THE LSI-11 FAMILY

The MMS 1122 is a dual height ( $5.19^{\prime \prime} \times 8.94^{\prime \prime}$ ) add-on memory card for the LSI- 11 family of computers. It is compatible with LSI-11, LSI-11/2, and LSI-11/23 processors as well as PDP-11V03* computer systems. It utilizes MCM4132L 32K RAM modules.

## FEATURES

- Capacity of 32 K Words, Each 16 -Bits Long
- Effective Capacity is Switch Selectable at any 1 K Word Increment
- Addressing is Switch Selectable to Start on Any 1K Word Boundary From 0 to 127 K
- Read Access Time of 300 ns (max.)
- Cycle Time 500 ns (max.)
- Refresh Implemented Internal to the Card (Transparent to the System). On-Board Jumpers Permit Synchronization of Refresh if Desired.
- Jumper Selectable Battery Backup Provisions Allow Use of Separate Power Source
- LSI-11 (Q-Bus and Q-Bus Plus) Interface Compatible


## ORDERING INFORMATION



SIMILAR PRODUCTS
Other Add-In memory cards for the LSI-11 family include the MMS1102 and MMS1132.


ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	$\mathrm{TA}_{\mathrm{A}}$	0 to +50	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{Tstg}^{\circ}$	-40 to +80	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	RH	5 to 90	$\%$

*PDP is a trademark of Digital Equipment Corporation.

PHYSICAL DIMENSIONS

	Dimension	Millimeters
Width	227.08	8.94
Height	131.75	5.19
PC Board Thickness	1.575	0.062
Clearance Required (Component Side)*	0.826	0.325
Clearance Required (Solder Side)*	1.524	0.060

*Measured from surface of PC Board.

POWER REQUIREMENTS ( +5 Volts)

| Mode | Pin | Current Required |  | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Worst-Case |  |  |
| Active | $* *$ | 0.775 | 0.850 | Adc |
| Standby | $* *$ | 0.725 | 0.800 | Adc |
| Battery Backup | AV1 | 0.400 | 0.500 | Adc |

POWER REQUIREMENTS ( +12 Volts)

Mode	Pin	Current Required	Units	
		Worst-Case		
Active	$* * *$	0.250	0.400	Adc
Standby	$* * *$	0.100	0.150	Adc
Battery Backup	AS1	0.100	0.150	Adc

**AA2, BA2, BV1, AV1 (Jumper option allows all +5 V current to be supplied by AA2, BA2, and BV1 if battery backup operation is not required).
**AD2, BD2, AS1 (Jumper option allows all +12 V current to be supplied by AD2 and BD2 if battery backup operation is not required).
AC OPERATING CHARACTERISTICS

	Characteristic	Typical	Worst-Case
Cycle Time - Read or Write	500	525	ns
Access Time - Read	250	300	2
	Write	125	175

BACKPLANE CONNECTOR PIN ASSIGNMENT

Pin	Symbol								
AA2	$+5 \mathrm{~V}$	AL1	(Note 1)	AU2	BDAL (0)	BF1	BDAL (21)	BN2	BDAL (9)
AC1	BDAL (16)	AK2	BWTBT L	AV1	$+5 \vee B B U^{2}$	BF2	BDAL (3)	BP2	BDAL (10)
AC2	GND	AM1	GND	AV2	BDAL (1)	BH2	BDAL (4)	BR2	BDAL (11)
AD1	BDAL (17)	AM2	BIAKIL	BA1	BDCOK H	BJ1	GND	BS2	BDAL (12)
AD2	+ 12 V	AN2	BIAKO L	BA2	+ 5 V	BJ2	BDAL (5)	BT1	GND
AE2	BDOUT L	AP2	BBS7 L	BC1	BDAL (18)	BK1	(Note 3)	BT2	BDAL (3)
AF2	BRPLY L	AR1	BREF L	BC2	GND	BL1	(Note 3)	BU2	BDAL (14)
AH2	BDIN L	AR2	BDMGI L	BD1	BDAL (19)	BK2	BDAL (6)	BV1	+5V
AJ1	GND	AS2	BDMGO L	BD2	+ 12 V	BL2	BDAL (7)	BV2	BDAL (15)
AJ2	BSYNC L	AS1	$+12 \vee \mathrm{BBU}^{2}$	BE1	BDAL (20)	BM1	GND	BV2	BDAL (15)
AK1	(Note 1)	AT1	GND	BE2	BDAL (2)	BM2	BDAL (8)	BV2	BDAL (15)

Notes: (1) AK1 and AL1 normally connected together at backplane. User jumper option allows negative 5 V supply to be connected through AL1 if desired.
(2) $+12 \vee$ BBU and $+5 \vee$ BBU may be driven by normal +5 V and +12 V if desired.
(3) User jumper options allow BK1 and BL1 to be used for synchronous refresh.

MMS1132

## Product Preview

## ADD-IN MEMORY CARD FOR THE LSI-11 FAMILY

The MMS1132 is a dual height ( $5.19^{\prime \prime} \times 8.94^{\prime \prime}$ ) add-on memory card for the LSI- 11 family of computers. It is compatible with LSI-11, LSI-11/2, and LSI-11/23 processors as well as PDP-11V03* computer systems. It utilizes MCM6633L 32K RAM or MCM6665L 64K RAM chips.

## FEATURES

- Capacity of up to128K Words, Each 16-Bits Long Without Parity, 18-Bits with Parity
- Effective Capacity is Switch Selectable at any 1K Word Increment
- Addressing is Switch Selectable to Start on Any 1K Word Boundary From 0 to 127 K
- Optional Parity and On-Board Parity Controller
- Read Access Time of 300 ns (max.)
- Cycle Time 500 ns (max.)
- Refresh Implemented Internal to the Card (Transparent to the System). On-Board Jumpers Permit Synchronization of Refresh if Desired.
- Single +5V Power Supply
- Jumper Selectable Battery Backup Provisions Allow Use of Separate Power Source
- LSI-11 (Q-Bus and Q-Bus Plus) Interface Compatible

ORDERING INFORMATION


Note: $\mathrm{K}=1024$, Word $=16$ Bits W/O, 18 Bits With Parity

SIMILAR PRODUCTS
Other Add-In memory cards for the LSI-11 family include the MMS1102 and MMS1122.

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0 to +50	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +80	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	RH	5 to 90	$\%$

*PDP is a trademark of Digital Equipment Corporation.

PHYSICAL DIMENSIONS

	Dimension	Millimeters
Inches		
Width	227.08	8.94
Height	131.75	5.19
Clearance Required (Component Side)* Thickness	1.575	0.062
Clearance Required (Solder Side)*	0.826	0.325

*Measured from surface of PC Board

POWER REQUIREMENTS ( +5 V Only Required)

Mode	Pins	Total Required Current				Units
		32K Word Capacity		64 or 128K Word Capacity		
		Typical	Worst-Case	Typical	Worst-Case	
Active	AA2, BA2, BV1, AV1**	1.375	1.80	1.50	1.95	Adc
Standby	AA2, BA2, BV1, AV1**	0.965	1.15	1.05	1.25	Adc
Battery Backup	AV1	0.640	0.86	0.70	0.93	Adc

**Jumper option allows all current to be supplied by AA2, BA2, and BV1 if battery backup operation is not required.

AC OPERATING CHARACTERISTICS

	Characteristic	Typical	Worst-Case
Units			
Cycle Time - Read	470	500	ns
Write	350	400	
Access Time - Read	250	300	n
Write	125	175	

BACKPLANE CONNECTOR PIN ASSIGNMENT

Pin	Symbol								
AA2	$+5 \mathrm{~V}$	AL1	(Note 1)	AU2	BDAL (0)	BF1	BDAL (21)	BN2	BDAL (9)
AC1	BDAL (16)	AK2	BWTBT L	AV1	$+5 \vee B B U^{2}$	BF2	BDAL (3)	BP2	BDAL (10)
AC2	GND	AM1	GND	AV2	BDAL (1)	BH2	BDAL (4)	BR2	BDAL (11)
AD1	BDAL (17)	AM2	BIAKI L	BA1	BDCOK H	BJ1	GND	BS2	BDAL (12)
AD2	+ 12 V	AN2	BIAKO L	BA2	+ 5 V	BJ2	BDAL (5)	BT1	GND
AE2	BDOUT L	AP2	BBS7 L	BC1	BDAL (18)	BK1	(Note 3)	BT2	BDAL (3)
AF2	BRPLY L	AR1	BREF L	BC2	GND	BL1	(Note 3)	BU2	BDAL (14)
AH2	BDIN L	AR2	BDMGI L	BD1	BDAL (19)	BK2	BDAL (6)	BV1	$+5 \mathrm{~V}$
AJ1	GND	AS2	BDMGOL	BD2	+ 12 V	BL2	BDAL (7)	BV2	BDAL (15)
AJ2	BSYNCL	AS1	$+12 \mathrm{VBBU}{ }^{2}$	BE1	BDAL (20)	BM1	GND		
AK1	(Note 1)	AT1	GND	BE2	BDAL (2)	BM2	BDAL (8)	BV2	BDAL (15)

Notes: (1) +5 V BBU may be driven by normal +5 V if desired.
(2) User jumper options allow BK1 and BL1 to be used for synchronous refresh.

## MMS1117

## Advance Information

## PDP-11* UNIBUS* COMPATIBLE RANDOM ACCESS MEMORIES, UP TO 128 KILOBYTES OF STORAGE CAPACITY PLUS OPTIONAL PARITY CONTROLLER ON A SINGLE CARD

The MMS1117 family of memory systems offers owners of PCP-11* computers an opportunity to easily add storage capacity and parity features to their system. Each member of the family is contained on a single plugin circuit card that interfaces mechanically and electrically with the following models of UNIBUS* PDP-11* processors: $11 / 04,11 / 05,11 / 10,11 / 34,11 / 35,11 / 40,11 / 45,11 / 50,11 / 55$, and $11 / 60$. It plugs into a single hex SPC slot in any of the following backplanes: DD11-B, DD11-C, DD11-D and DD11-P.

The MMS1117 can provide up to 128K 8-bit bytes of main memory on a single module. Quick address select changes are possible via onboard switches. In addition, 1 or 2 kilowords of I/O page can selectively be made available for random access storage. Optional parity as well as full parity generation, detection, and exception control circuits can be provided on the same card with the memory. No additional bus loading is imposed on the system by the addition of the fully compatible parity controller option.


## MMS1117 FEATURES

- High Density
- Low Cost
- Fast Access and Cycle Times
- Low Power
*Trademark of Digital Equipment Corporation
- Fully UNIBUS Compatible
- High Reliability
- One UNIBUS Load

MMS1117 OPTION DESIGNATOR SUFFIX

Typical Read Access Time	Parity Options	Total Storage Capacity (in Kilobytes)			
		32K	64K	96 K	128 K
290 ns	Parity + Controller Parity Data Only No Parity	$\begin{gathered} -32-\mathrm{PC} \\ -32-\mathrm{P} \\ -.32 \\ \hline \end{gathered}$	$\begin{gathered} \hline-34-P C \\ -34-\mathrm{P} \\ -34 \\ \hline \end{gathered}$	$\begin{gathered} -36-P C \\ -36-\mathrm{P} \\ -36 \\ \hline \end{gathered}$	$\begin{gathered} -38-P C \\ -38-\mathrm{P} \\ -38 \\ \hline \end{gathered}$
360 ns	Parity + Controller Parity Data Only No Parity	$\begin{gathered} -42 \cdot P C \\ -42 \cdot P \\ -42 \end{gathered}$	$\begin{gathered} -44-\mathrm{PC} \\ -44-\mathrm{P} \\ -44 \end{gathered}$	$\begin{gathered} -46-\mathrm{PC} \\ -46-\mathrm{P} \\ -46 \end{gathered}$	$\begin{gathered} -48-P C \\ -48-P \\ -48 \end{gathered}$
390 ns	$\begin{gathered} \text { Parity + Controller } \\ \text { Parity Data Only } \\ \text { No Parity } \\ \hline \end{gathered}$	$\begin{gathered} \hline-52-\mathrm{PC} \\ -52-\mathrm{P} \\ -52 \\ \hline \end{gathered}$	$\begin{gathered} -54-P C \\ -54-P \\ -54 \end{gathered}$	$\begin{gathered} -56-\mathrm{PC} \\ -56-\mathrm{P} \\ -56 \end{gathered}$	$\begin{gathered} -58-P C \\ -58-P \\ -58 \\ \hline \end{gathered}$

ACCESS AND CYCLE TIMES

Option Designator   Suffix	Write		Read		Cycle	
	Typical	Worst Case	Typical	Worst Case	Typical	Worst Case
$-3 \times$	105	125	290	315	375	
$-4 \times$	115	135	360	390	480	
$-5 \times$	115	135	390	420	500	5

MMS1117 POWER REQUIREMENTS

Nominal Voltage	Voltage Tolerance		Current Requirements		Input Pins
			Standby-Typ/WC   (Amps)	Active-Typ/WC (Amps)	
	Min	Max			
$+5 \mathrm{Vdc}$	4.75	5.25	2.0/2.5	2.0/2.5	DA2, EA2, FA2
$+15 \mathrm{Vdc}$	15	20	0.15/0.20	0.35/0.70	AV1, AR1, CE1, CU1
-15 Vdc	-7.0	-20	0.015/0.030	0.015/0.030	FB2

MMS1117 BACK PLANE CONNECTOR PIN ASSIGNMENT

Row   Side	A		$B$		C		D		E		F	
	1	2	1	2	1	2	1	2	1	2	1	2
Pin A					[**			$+5 \mathrm{~V}$		$+5 \mathrm{~V}$		$+5 \mathrm{~V}$
Pin B					[**							-15V
Pin C		Gnd		Gnd	PA	Gnd		Gnd	A12	Gnd		Gnd
Pin D			+5BB			D15			A17	A15		
$\operatorname{Pin} \mathrm{E}$			*SSyn	*PA DE	*** $V_{\text {DD }}$	D14			MSyn	A16		
Pin F						D13			A02	C1		
Pin H					D11	D12			A01	A00		
Pin J						D10			SSyn	C0		
Pin K						D09		${ }^{* *}$	A14	A13		
Pin L						D08	Init	[ **	A11			
Pin M						D07		[**				
Pin N	*P1				DCLO	D04		[**		A08		
Pin $P$	* P0					D05		${ }^{* *}$	A10	A07		
Pin R	${ }^{* * *} V_{\text {DD }}$					D01		[***	A09			
Pin S					PB	D00		${ }^{* *}$				
Pin T	Gnd		Gnd		Gnd	D03	Gnd	[**	Gnd		Gnd	
Pin U					${ }^{* * *} V_{\text {DD }}$	D02			A06	A04		
Pin V	${ }^{* * *} \mathrm{~V}_{\text {DD }}$					D06			A05	A03		

*Options for use with External Parity Controller.
** Grant Continuity Jumpers
*** $V_{\text {DD }}$ is any voltage between +15 Vdc and +20 Vdc on any one of the four listed pins.

## Advance Information

## PDP-11* MODIFIED UNIBUS*/EXTENDED UNIBUS COMPATIBLE MEMORY SYSTEM

- Uses 16 K or 64 K Dynamic RAM Chips
- Available in $64 \mathrm{~K}, 96 \mathrm{~K}, 128 \mathrm{~K}, 256 \mathrm{~K}$, and 512 K Word Capacities
- Read Access Time Typically 300 ns (Measured Inside Buffers)
- Cycle Times as Low as 390 ns Typical
- Two Speed Options Available
- Worst-Case AC Limits Specified at Card Edge
- On-Board Parity and Parity Controller Standard
- Also Available Without Parity
- Starting Address Configurable at Any 4 K Boundary
- Optional Selection of I/O Page Size; $2 \mathrm{~K}, 4 \mathrm{~K}$, or 8 K Words
- Automatic Internal Refresh
- Provisions for External Refresh Control
- Battery Backup Capability Standard
- Single 5 -Volt Power Supply Required for 256 K and 512 K Word Versions


ORDERING INFORMATION


- "Available on special order

NOTE: $K=1024$, Word=16 Bits W/O, 18 Bits With Parity
-PDP-11 and UNIBUS are trademarks of Digital Equipment Corporation

## MMS1119

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Limit		Units
		Min	Max	
Supply Voltage (Relative to Ground)	VDD	-0.3	20.0	Vdc
	$V_{C C}$	-0.3	7.0	
	$\mathrm{V}_{\text {BB }}$	-20.0	+0.3	
Input Voltage (Any input relative to Ground)	$\mathrm{V}_{\text {in }}$	-0.7	+5.5	Vdc

NOTES: 1. Permanent damage may occur if Absolute Maximum Ratings are exceeded. Functional operation shall be restricted to Recommended Operating Conditions.
2. Permanent damage may also occur if $V_{D D}$ is applied for more than one second while $V_{B B}$ is outside its Recommended Operating Range.

## ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	RH	0 to 90	$\%$

RECOMMENDED DC OPERATION CONDITIONS

Parameter	Symbol	Limit		Units	Note
		Min	Max		
Supply Voltage $\quad-$ Nominal +15 V or nominal +12 V , pin AR1	$\mathrm{V}_{\mathrm{DD}}$	14.50	16.50	Vdc	1, 3
		11.40	12.60		
- Nominal +5 V , pins AA2, BA2, CA2	VCC	4.75	5.25		2
- Nominal +5 V BBU, pin BD1	$\mathrm{V}_{\text {CC/BBU }}$	4.75	5.25		3
- Nominal -15 V or nominal -12 V , pin AS1	$\mathrm{V}_{\text {BB }}$	-7.00	-20.00		3, 4

NOTES: $1 .+15 \mathrm{~V}$ or +12 V is jumper selectable on all modules populated with 16 K RAMs.
2. Pins AA2, BA2, and CA2 are connected together on the MMS1119.
3. These voltages must be present on cards populated with 16 K RAMs if Battery Backup is required. Only $\mathrm{V}_{\mathrm{CC}} / \mathrm{BBU}$ need be present for cards populated with 32 K or 64 K RAMs.
4. $V_{D D}$ and $V_{B B}$ not required for cards populated with 32 K or 64 K RAMs.

DC OPERATING CHARACTERISTICS $\left.10^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C}\right)$

Characteristic	Capacity (K Words)	Mode	Symbol	Limit			Units	Notes
				Min	Typ	Max		
Supply Current - Nominal +15 V or +12 V Supply	64, 96, 128	Active	IDD	-	0.25	0.50	Adc	1,2
	64, 96, 128	Standby	IDD	-	0.16	0.30	Adc	1,2
Supply Current - Nominal +5V Supply and +5V BBU	64, 96, 128	Active/Standby	IDD	-	3.30	3.90	Adc	1,2
Supply Current - Nominal +5 V BBU	64, 96, 128	BBU	ICC	-	1.10	1.30	Adc	1
Supply Current - Nominal +5V Supply and +5V BBU	256	Active/Standby	ICC	-	3.30	4.60	Adc	1
Supply Current - Nominal +5V BBU	256	BBU	ICC	-	1.00	1.50	Adc	1
Supply Current - Nominal +5V Supply and +5V BBU	512	Active/Standby	ICC	-	3.80	5.1	Adc	1
Supply Current - Nominal + 15 V BBU	512	BBU	ICC	-	1.50	2.00	Adc	1
Supply Current - Nominal -15 V or -12 V Supply	64, 96, 128	All	IBB	-	12	20	mAdc	1,2
Logic " 1 " Input Current - Any Input, $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{Vdc}$	Any	All	IIH	-	15	50	$\mu$ Adc	3
Logic "0" Input Current - Any Input, $\mathrm{V}_{\text {IL }}=0.4 \mathrm{Vdc}$	Any	All	IIL	-	-1.0	$-50$	$\mu$ Adc	3
$\begin{aligned} & \text { Logic " } 1 \text { " Leakage Current - Any Output, } \\ & \text { V Bus }=4.0 \mathrm{Vdc} \end{aligned}$	Any	All	$\mathrm{V}_{\mathrm{OH}}$	-	20	100	$\mu$ Adc	3
Logic " 0 " Output Voltage - Any Output, IOL $=50 \mathrm{mAdc}$	Any	All	V OL	-	0.40	0.70	Vdc	3
Input Threshold Voltage - Any Input High Logic State			$\mathrm{V}_{\text {ILH }}$	1.80	2.25	2.50	Vdc	
Input Threshold Voltage - Any Input Low Logic State			$\mathrm{V}_{\mathrm{IHL}}$	1.05	1.30	1.55	Vdc	

NOTES: 1. Active Mode = Memory accesses at maximum continuous rates; Standby Mode=Internal Refresh Cycles only; Battery Backup $(\mathrm{BBU})=$ Standby Mode with +5 V applied only through Pin BD1.
2. $+15 /+12 \mathrm{~V}$ and $-15 /-12 \mathrm{~V}$ supplies not required for products populated with 64 K RAMs.
3. Negative sign $=$ Current out of pin. Min/Max Limits refer to absolute values of current.

AC OPERATING CONDITIONS

Parameter	Symbol	Limit		Unit	Note
		Min	Max		
Address Hold Time - MSYN $\dagger$ to A <0:21> Invalid	${ }^{\text {t }} \mathrm{AH}$	25	-	ns	1
Address Setup Time - A <0:21> Valid to MSYN $\downarrow$	tAS	75	-	ns	1
Processor Handshake Time - SSYN + to MSYN 4	tph	-	0	ns	1,2
Data Hold Time (Write Cycle/DATO) - MSYN d to D $\langle 0: 15\rangle$ Invalid	tDHW	40	-	ns	1
Data Setup Time (Write Cycle/DATO) - D <0:15> Valid to MSYN $\downarrow$	tDSW	15	-	ns	1

NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.
2. Assumes handshaking occurs immediately.

AC OPERATING CHARACTERISTICS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}^{\mathrm{A}} \mathrm{A} \leq 70^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	MMS1119X3XXX			MMS1119X4XXX			Unit	Note
		Min	Typ	Max	Min	Typ	Max		
Cycle Time - Read (DATI) Cycle	treyc	390	360	-	440	425	-	ns	1
Read Access Time - MSYN $\downarrow$ to SSYN $\downarrow$	tracc	-	330	360	-	380	430	ns	1
Data Hold Time - Read (DATI) Cycle MSYN $£$ to Data Invalid	tDH	70	-	-	70	-	-	ns	1
Data Setup Time - Read (DATI) Cycle D<0:15> Valid to SSYN $\downarrow$	${ }^{\text {t }} \mathrm{DS}$	0	-	-	0	-	-	ns	1
```Memory Handshake Time - Read (DATI) or Write (DATO) Cycle - MSYNt to SSYN \(\downarrow\)```	${ }^{\text {tMH }}$	-	-	75	-	-	75	ns	1
Write Access Time - MSYN \downarrow to SSYN \downarrow	tWACC	-	125	165	-	125	165	ns	1
Cycle Time - Write (DATO) Cycle	tWCYC	340	-	-	440	-	-	ns	1

NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.
2. Assumes handshaking occurs immediately.

WRITE CYCLE TIMING

READ CYCLE TIMING

TIMING

The MMS1119 is fully compatible with the PDP-11 Modified and Extended UNIBUS protocol and timing. Limits are specified in the AC Conditions/Characteristics Tables in conjunction with the DATI/DATO waveforms.

REFRESH

The storage cells in the MMS1119 are implemented with dynamic MOS RAM's. The charge stored in the cells must be refreshed every 2 milliseconds, requiring a single refresh cycle to be initiated approximately once every 16 M Seconds. The latency induced to bus cycles concurrent with refresh cycles is no greater than the specified minimum cycle time for the MMS1119 version chosen.

The MMS1119 contains circuitry to automatically refresh the memory cells. An option is also provided to allow the User to control the refresh externally, In this case, the Refresh Latency will be no greater than the refresh cycle time defined by the external circuitry. Note that any external refresh circuitry must conform to the requirements previously mentioned, i.e., each cell refreshed at a 2 millisecond rate and a refresh cycle time not less than the minimum Read Cycle time.

AVAILABLE OPTIONS

The MMS1119 features a variety of options, allowing its configuration into a wide range of applications. Several of these options are installed at the factory, with most of these specified by the part number as shown in the "Ordering Information" on Page 1. Others are chosen by the User prior to installation of the product.

MEMORY CAPACITY

The MMS1119 utilizes either 16K or 64K RAM components to allow optional storage capacities of $64 \mathrm{~K}, 96 \mathrm{~K}$, $128 \mathrm{~K}, 256 \mathrm{~K}$, or 512 K Words. As noted on Page 1 (Ordering Information), the last three digits of the full part number identifies the total memory capacity in K Words.

BUS INTERFACE

The.MMS1119 is provided with a switch to select the type of Bus to be used. With this switch closed, the interface is to an Extended UNIBUS backplane (22 bit address). The memory operates with a Modified UNIBUS system (18 bit address) with this switch open.

STARTING ADDRESS

The MMS1119 utilizes a set of switches to allow the starting address to be selected at any 4 K boundary. This feature is available regardless of the Bus Interface or Memory Capacity option chosen. In cases where the sum of the starting address and the memory capacity exceeds the host machine addressing capability, the capability is automatically reduced. (No wraparound to starting address locations occurs.)

I/O PAGE SIZE

When the MMS1119 is located in high memory, the User may select part of the I/O page as Read/Write memory. This is implemented via three switches, resulting in optional I/O page sizes of $2 \mathrm{~K}, 4 \mathrm{~K}$, or 8 K words.

PARITY OPTIONS

The MMS1119PXXXX contains parity control circuitry which is fully compatible with the DEC parity module. This circuitry does not degrade access or cycle times, and the Parity Control Status Register (CSR) address can be switch selected to any standard pre-assigned bus address. (7721008 thru 7721368 for Modified UNIBUS, 17721008 thru 17721368 for Extended UNIBUS. In any case, the CSR occupies a single two-byte address space). The on-board parity circuitry does not impose any additional bus loading on the system.

The MMS1119PXXXX can also be used in systems which utilize the DEC Parity Module. The User selects this mode of operation by opening a switch (provided on the MMS1119P) prior to installation of the memory. The parity generation and detection circuitry of the MMS1119P is fully compatible with the DEC Parity Module.

The MMS1119NXXXX version is available for those systems not requiring parity. This product is supplied as a 16-bit word memory with the Internal/External Parity Control switch open (External).

I/O SIGNAL DESCRIPTION

Signal	Type	Description
A $\langle 0: 21>$	Input	Address lines to select memory locations. A0 selects byte in DATOB
D $\langle 0: 15>$	Bidir.	Data lines used to communicate with Master
C $\langle 0: 1>$	Input	Control lines to specify type of cycle
MSYN	Input	Timing control from Master. Used to start cycle
SSYN	Output	Timing control used to notify Master that cycle is complete
INIT	Input	System Reset
DCLO	Input	Power monitoring
PB	Output	Signal to Master that parity error has occurred
P<0:1>	Bidir.	Data Parity Bits
PAR DET	Input	Indicates external parity module is in use
INT SSYN	Output	Slave Sync used with external parity module only

NOTE: All signals are low assertion level.

Advance Information

PDP-11 MODIFIED UNIBUS COMPATIBLE MEMORY SYSTEM

- Uses $16 \mathrm{~K}, 32 \mathrm{~K}$, or 64 K Dynamic RAM Chips
- Available in $32 \mathrm{~K}, 48 \mathrm{~K}, 64 \mathrm{~K}, 96 \mathrm{~K}$, and 128 K Word Capacities
- Read Access Time Typically 300 ns Measured Inside Buffers)
- Cycle Times as Low as 460 ns Typical
- Two Speed Options Available
- Worst-Case AC Limits Specified at Card Edge
- On-Board Parity and Parity Controller Standard
- Also Available Without Parity
- Starting Address Configurable at any 4 K Boundary
- Automatic Internal Refresh
- Provisions for External Refresh Control
- Battery Backup Capability Standard
- Single 5-Volt Power Supply Required for $64 \mathrm{~K}, 96 \mathrm{~K}, 128 \mathrm{~K}$, Word Versions

ORDERING INFORMATION

* *Available on special order

NOTE: $K=1024$, Word $=16$ Bits W/O, 18 Bits With Parity

I/O SIGNAL DESCRIPTION

Signal	Type	
A $<0: 17>$	Input	Address lines to select memory locations. A0 selects byte in DATOB.
D $<0: 15>$	Bidirectional	Data lines used to communicate with Master.
C $<0: 1>$	Input	Control lines to specify type of cycle.
MSYN	Input	Timing control from Master. Used to start cycle.
SSYN	Output	Timing control used to notify Master that cycle is complete.
INIT	Input	System Reset.
DCLO	Input	Power monitoring.
PB	Output	Signal to Master that parity error has occurred.
P <0:1>	Bidirectional	Data Parity Bits.
PAR DET	Input	Indicates extend parity module in use.
INT SSYN	Output	Slave Sync used with external parity module only.

NOTE: All signals are low assertion level.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Limit		Units
		Min	Max	
Supply Voltage (Relative to Ground)	$V_{\text {DD }}$	-0.3	20.0	Vdc
	$\mathrm{V}_{\text {CC }}$	-0.3	7.0	
	$V_{\text {BB }}$	-20.0	0.3	
Input Voltage (Any input relative to GND)	$\mathrm{V}_{\text {in }}$	-0.7	5.5	Vdc

NOTES: 1. Permanent damage may occur if Absolute Maximum Ratings are exceeded. Functional operation shall be restricted to Recommended Operating Conditions.
2. Permanent damage may also occur if $V_{D D}$ is applied for more than one second while $V_{B B}$ is outside its Recommended Operating Range.

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	T_{A}	0 to 55	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	RH	0 to 90	$\%$

RECOMMENDED DC OPERATION CONDITIONS

Parameter	Symbol	Limit		Units	Note
		Min	Max		
Supply Voltage - Nominal +15 V or nominal +12 V , pin AR1	$V_{D D}$	$\begin{aligned} & 14.50 \\ & 11.40 \end{aligned}$	$\begin{aligned} & 16.50 \\ & 12.60 \end{aligned}$	Vdc	1,3
- Nominal +5V, pins AA2, BA2, CA2	V_{CC}	4.75	5.25		2
- Nominal +5V BBU, pin BD1	$\mathrm{V}_{\text {CC }} / \mathrm{BBU}$	4.75	5.25		3
- Nominal -15 V or nominal -12 V , pin AS1	$\mathrm{V}_{\text {BB }}$	-7.00	-20.00		3,4

NOTES: $1 .+15 \mathrm{~V}$ or +12 V is jumper selectable on all modules populated with 16 K RAMs.
2. Pins AA2, BA2, and CA2 are connected together on the MMS 1128 .
3. These voltages must be present on cards populated with 16 K RAMs if Battery Back Up is required. Only $V_{C C} / B B U$ need be present for cards populated with 32 K or 64 K RAMs.
4. $V_{D D}$ and $V_{B B}$ not required for cards populated with 32 K or 64 K RAMs.

WRITE CYCLE TIMING (DATO)

READ CYCLE TIMING (DATI)

DC OPERATING CHARACTERISTICS $\left.10^{\circ}<T A<55^{\circ} \mathrm{C}\right)$

Characteristic	Capacity (K Words)	Mode	Symbol	Limit			Units	Notes
				Min	Typ	Max		
Supply Current								
	32,48	Standby	IDD		0.16	0.30	Adc	1, 2
- Nominal +5V Supply	32,48	Act/Stby	ICC		1.20	1.50	Adc	1
- Nominal +5V BBU	32,48	BBU	${ }^{\text {I CC }}$		0.55	0.80	Adc	1
- Nominal +5V Supply	64, 96, 128	Act/Stby	${ }^{\text {I CC }}$		1.60	2.25	Adc	1
- Nominal +5V BBU	64, 96, 128	BBU	ICC		0.80	1.15	Adc	1
- Nominal -15V or -12 V Supply BBU	32,48	All	IBB		12	20	mAdc	1,2
Logic "1" Input Current - Any Input, $\mathrm{V}_{\text {IH }}=4.0 \mathrm{Vdc}$			${ }_{1 / \mathrm{H}}$		15	50	μ Adc	3
Logic " 0 " Input Current - Any Input, $\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}$			IIL			-1.6	mAdc	3
$\begin{aligned} & \text { Logic " } 1 \text { " Output Current - Any Output, } \\ & \text { V Bus }=4.0 \mathrm{Vdc} \end{aligned}$			VOH		20	100	$\mu \mathrm{Adc}$	3
Logic ' 0 ' Output Voltage - Any Output, $\mathrm{I}_{\mathrm{OL}}=50 \mathrm{mAdc}$			VOL		0.4	0.70	Vdc	3
Input Threshold Voltage - Any Input High Logic State			VILH	1.80	2.25	2.50	Vdc	
Input Threshold Voltage - Any Input Low Logic State			$\mathrm{V}_{\text {IHL }}$	1.05	1.30	1.55	Vdc	

NOTES: 1. Active Mode = Memory accesses at maximum continuous rates; Standby Mode = Internal Refresh Cycles only; Battery Back Up $(\mathrm{BBU})=$ Standby Mode with +5 V applied only through Pin BD1
2. $+15 \mathrm{~V} /+12 \mathrm{~V}$ and $-15 \mathrm{~V} /-12 \mathrm{~V}$ supplies not required for products populated with 64 K RAMs.
3. Negative Sign = Current out of pin. Min/Max Limits refer to absolute values of current.

AC OPERATING CONDITIONS

Parameter	Symbol	Limit		Unit	Note
		Min	Max		
Address Hold Time - MSYN to A $<0: 17>$ Invalid	${ }^{\text {t }} \mathrm{AH}$	50		ns	1
Address Setup Time - A <0:17> Valid to MSYN	${ }^{\text {tas }}$	75		ns	1
Processor Handshake Time - SSYN to MSYN	tph		0	ns	1,2
Data Hold Time (Write Cycle/DATO) - MSYN to D <0:15> Invalid	tDHW	40		ns	1
Data Setup Time (Write Cycle/DATO) - <0:15> Valid to MSYN	tDSW	15		ns	1

NOTES: 1. All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.
2. Assumes handshaking occurs immediately.

AC OPERATING CHARACTERISTICS $\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	MMS1128X3XXX			MMS1128X4XXX			Unit	Note
		Min	Typ	Max	Min	Typ	Max		
Cycle Time - Read (DATI) Cycle	tracyc		460	515		510	565	ns	1
Read Access Time - MSYN to SSYN	tracc		330	380		380	430	ns	1
Data Hold Time - Read (DATI) Cycle MSYN to Data Invalid	${ }^{\text {t }}$ H			70			70	ns	1
$\begin{aligned} & \text { Data Setup Time - Read (DATI) } \\ & \text { Cycle D }<0: 15>\text { Valid to SSYN } \end{aligned}$	tos	0			0			ns	2
Memory Handshake Time - Read (DATI) or Write (DATO) Cycle - MSYN to SSYN	${ }^{\text {t MH }}$	25		75	25		75	ns	1
Write Access Time - MSYN to SSYN	tWACC		125	165		125	165	ns	1
Cycle Time - Write (DATO) Cycle	twCyc		325	340		425	440	ns	1

NOTES: 1 . All timing is referenced at card edge. Operation is assumed to be in a properly terminated backplane, with memory not busy and no refresh arbitration.
2. Timing is referenced inside Bus Drivers.

TIMING

The MMS1128 is fully compatible with the PDP-11 Modified UNIBUS protocol and timing. Limits are specified in the A.C. Conditions/Characteristics Tables in conjunction with the DATI/DATO waveforms.

REFRESH

The storage cells in the MMS1128 are implemented with dynamic MOS RAM's. The charge stored in the cells must be refreshed every 2 milliseconds, requiring a single refresh cycle to be initiated approximately once every 16 milliseconds. The latency induced to bus cycles concurred with refresh cycles is no greater than the specified minimum cycle time for the MMS1128 version chosen.
The MMS1128 contains circuitry to automatically refresh the memory cells. An option is also provided to allow the User to control the refresh externally. In this case, the Refresh Latency will be no greater than the refresh cycle time defined by the external circuitry. Note that any external refresh circuitry must conform to the requirements previously mentioned, i.e., each cell refreshed at a 2 millisecond rate and a refresh cycle time not less than the minimum Read Cy cle time.

AVAILABLE OPTIONS

The MMS1128 features a variety of options, allowing its configuration into a wide range of applications. Several of these options are installed at the factory, with most of these specified by the part number as shown in the "Ordering Information" on Page 1. Others are chosen by the User prior to installation of the product.

MEMORY CAPACITY

The MMS1128 utilizes $16 \mathrm{~K}, 32 \mathrm{~K}$, or 64 K RAM components to allow optional storage capacities of $32 \mathrm{~K}, 48 \mathrm{~K}, 64 \mathrm{~K}, 96 \mathrm{~K}$, or 128 K Words. As noted on Page 1 (Ordering Information),
the last three digits of the full part number identifies the total memory capacity in K Words.

STARTING ADDRESS

The MMS1128 utilizes a set of switches to allow the starting address to be selected at any 4 K boundary. This feature is available regardless of the Memory Capacity option chosen. In cases where the sum of the starting address and the memory capacity exceeds the host machine addressing capability, the capability is automatically reduced. (No wraparound to starting address location occurs.)

I/O PAGE SIZE

When the MMS2118 is located in high memory, the User may select part of the I/O page as Read/Write memory. This is implemented via three switches, resulting in optional 1/O page sizes of $2 \mathrm{~K}, 4 \mathrm{~K}$, or 8 K words.

PARITY OPTIONS

The MMS2118PXXXX contains parity control circuitry which is fully compatible with the DEC parity module. This circuitry does not degrade access or cycle times, and the Parity Control Status Register (CSR) address can be switch selected to any standard pre-assigned bus address. (7721008 through 7721368 .) In any case, the CSR occupies a single two-byte address space. The on-board parity circuitry does not impose any additional bus loading on the system.

The MMS1128PXXXX can also be used in systems which utilize the DEC Parity Module. The User selects this mode of operation by inserting a jumper prior to installation of the memory. The parity generation and detection circuitry of the MMS1128P is fully compatible with the DEC Parity Module.

The MMS1128PXXXX version is available for those systems not requiring parity. This product is supplied as a 16-bit word memory with the Internal/External Parity Control switch open (External).

Product Preview

MEMORY ARRAY CARD FOR PDP*-11/70

The MMS1170 is a dynamic memory array system specifically designed for use in PDP-11/70 minicomputers from Digital Equipment Corporation. The array has a capacity of 64 K double words (256K bytes) using 16K RAM chips. It is hardware and software compatible with the PDP-11/70 memory controller module and DEC diagnostics.
The MMS1170 is designed to occupy a single hex slot of the DEC MK-11 Memory System chassis. It features an On

Line/Off Line switch (with an LED indicator) to facilitate trouble-shooting. A separate LED indicates when battery backup voltage is available via the backplane connector.

All RAMs used on the MMS1170 are socketed. Two spare $16 \mathrm{~K} \times 1$ RAMs are provided on the board. The product is fully burned-in and covered by the Motorola Memory System One-Year Limited Warranty.

ORDERING INFORMATION

NOTE: Double Word $=32$ Date and 7 ECC Bits

ENVIRONMENTAL RATINGS

Rating	Symbol	Limit	Units
Operating Temperature	T_{A}	0 to +50	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +80	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	RH	0 to 90	$\%$

PHYSICAL DIMENSIONS

| | Dimension | Millimeters |
| :--- | :---: | :---: | Inches | Width | 39.85 |
| :---: | :---: |
| Height | 22.225 |
| PC Board Thickness | 8.75 |
| Clearance Required (Component Side)* | 0.142 |
| Clearance Required (Solder Side)* | 0.056 |

*Measured from surface of PC Board.

POWER REQUIREMENTS

Input Voltage	Maximum Current Requirements			Units
	Operating	Standby	Battery Backup	
+ 12 B	1.5	0.25	0.25	Adc
+5V	0.4	0.35	0	Adc
-12 B	0.04	0.02	0.02	Adc
$+5 \mathrm{VB}$	0.9	0.8	0.8	Adc

AC OPERATING CHARACTERISTICS

Characteristic	Nominal**	Units
Cycle Time - Read	650	ns
Write	680	
Access Time -Read Write	320	

" The actual response times are determined by DEC MK-11 Memory System Controller design. Nominal values shown are for reference only.

MMS780

Advance Information

MEMORY ARRAY CARD FOR VAX-11/780*

The MMS780 is a dynamic memory array system specitically designed for use in VAX-11/780 minicomputers from Digital Equipment Corporation. The array has a capacity of 32 K words (256 K Bytes) using 16 K RAM chips. It is fully compatible with the VAX-11/780 memory controller module.

ORDERING INFORMATION

Size (K Words)
Note: $K=1024$
Word $=64$ Data +8 ECC Bits

[^22]ENVIRONMENTAL RATINGS

	Rating	Symbol	Limit
Operating Temperature	Units $^{\prime}$	0 to +55	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +80	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	RH	0 to 90	$\%$

PHYSICAL DIMENSIONS

Dimension	Millimeters	Inches
Width	39.85	15.688
Height	30.48	12.0
PC Board Thickness	0.142	0.056
Clearance Required (Component Side)*	0.952	0.375
Clearance Required (Solder Side)*	0.254	0.10

"Measured from surface of PC Board.

POWER REQUIREMENTS

Input Voltage	Maximum Current Requirements			Units
	Operating	Standby	Battery Backup	
+ 12 V	1.5	0.25	0.25	Adc
$+5 \mathrm{~V}$	0.7	0.6	0	Adc
$-5 \mathrm{~V}$	0.04	0.02	0.02	Adc
+5V Battery	0.9	0.8	0.8	Adc

AC OPERATING CHARACTERISTICS

| | Characteristic | Nominal** |
| :--- | :---: | :---: | Units

**The actual response times are determined by VAX-11/780 Memory Subsystem Controller design. Nominal values shown are for reference only.

OPERATING PRINCIPLES

The MSM780 is based on $16 \mathrm{~K} \times 1$ dynamic RAMs arranged in two banks, each containing 72 chips. The 72 -bit word thus formed is subdivided into two 32-bit long words (Upper and Lower) and eight ECC bits. All memory array accesses correspond to a Read from, or write to, the selected 72-bit word. (All 8, 16, and 32 bit memory operations are transformed into 72 bit accesses by the memory controller.)

The memory array selection is accomplished via address lines (ADR19:ADR16) and four select signals at the Memory Subsystem Backplane. This Backplane has 16 slots dedicated for memory array cards, with the select signals uniquely specified for each slot. This arrangement eliminates the need for special jumpers and address switches. The MMS780 is merely inserted in the next available backplane slot. A total of 4 Megabytes of memory can be accomodated by one Memory Subsystem.

USAGE RECOMMENDATIONS

The MMS780 is recommended for use with any VAX-11/780 memory subsystem set up for operation with the DEC M8210 array card. It is hardware and software compatible with the VAX-11/780, including DEC diagnostics which allow failure isolation at the chip level. The MMS780 is also compatible with DEC battery backup provisions.

INTERFACE

The VAX-11/780 computer system is normally configured with either one or two memory subsystems, as shown in Figure 1. The normal interface signals utilized within each subsystem are depicted in Figure 2. The MMS780 Array Module functions in any slot of either subsystem, with no modifications required.

FIGURE 1 - NORMAL VAX-11/780 MEMORY CONFIGURATION

FIGURE 2 - MEMORY SUBSYSTEM INTERFACE

*Extended Addresses are labeled ADR13, ADRCS, and ADREXT. During normal operation, they correspond to $>$ ADR15:ADR13<.
**Control signals are: Read, Column Address Strobe (CAS), Row Address Strobe (RAS), Multiplexer Control, Refresh Cycle, Bus Select, Bus Output Enable, and Initiate.

Advance Information

SBC-COMPATIBLE MEMORY SYSTEMS

The MMS80XX family of memory systems is designed for use with the Intel SBC 80 Series computers, System 80 microcomputers, MDS systems, and the 16 -bit SBC $86 / 12$. The modules employ 16 K dynamic RAM's mounted on a single $63 / 4^{\prime \prime} \times 12^{\prime \prime}$ PC board along with timing, control, and bus interface logic. Eight models are avaitable, all having the same access and cycle times. All electrical connections are made via two edge connectors.

- Pin, Function, and Form-Factor Compatible with MULTIBUS* Systems
- Even/Odd Bank Address Allows 16-Bit or 8-Bit Operation
- Addresses Selectable in Independent 8K Blocks
- 20 Address Lines - Operates in 1M Byte System
- Handles Early or Late Inhibits
- Operates in Delayed Write, Advance Write, and Read Modes
- Battery Backup Capability through use of Memory Protect Signal on P2 Connector
- On-Board Refresh Control Circuitry
- Programmable Advanced Acknowledge (AACK/) Signal
- On-board V_{BB} Generation (-5 V) Allows Operation from $12 \mathrm{~V},+5 \mathrm{~V}$, and $-12 \mathrm{~V},-10 \mathrm{~V}$, or -5 V Supplies
- Cycle Times of 700 ns (Read, Delayed, Write) and 1240 ns (Advanced Write)
- Available in $16 \mathrm{~K}, 32 \mathrm{~K}, 48 \mathrm{~K}$, and 64 K Byte Configurations

No Parity	Parity	Capacity
MMS8064	MMS8064P	64 K Bytes
MMS8048	MMS8048P	48 K Bytes
MMS8032	MMS8032P	32 K Bytes
MMS8016	MMS8016P	16 K Bytes

PHYSICAL CHARACTERISTICS

Characteristic	Limit
Width	$30.48 \mathrm{~cm}(12.00$ inches $)$
Depth	$17.15 \mathrm{~cm}(6.75$ inches $)$
Thickness	$1.27 \mathrm{~cm} \mathrm{(0.50}$ inches)
Weight	397 grams (14.0 ounces)

[^23]AC OPERATING CONDITIONS

Parameter		Symbol	Limit		Units	Notes
			Min	Max		
Cycle Time	Read or Delayed Write Cycle Advanced Write Cycle	tCYC tCYC(A)	$\begin{gathered} 700 \\ 1240 \end{gathered}$		ns	$\begin{gathered} 1,2 \\ 1,2,3 \end{gathered}$
Address Setup Time	Address Valid to MRDC// or MWRC/!	tas	50		ns	
Address Hold Time	MRDC/ \dagger or MWRC/ \dagger to Address Invalid	${ }^{\text {ta }}$ A	0		ns	
Write Data Setup Time (Delayed Write)	Data Valid to MWRC/t	tosw	-100		ns	
Write Data Delay Time (Advanced Write)	MWRC/ 1 to Data Invalid	tDDAW		500	ns	3
Write Data Hold Time		tDHW	0		ns	
Inhibit Setup Time INHI/ Valid to MRDC/! or MWRC/।	Early Inhibit Late Inhibit Option Installed	$\begin{aligned} & \hline \text { tis1 } \\ & \text { tis2 } \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ -50 \\ \hline \end{array}$		ns	
Inhibit Hold Time	MRDC// or MWRC/ to INH1 Invalid	tin	100		ns	
Byte High Enable Setup Time	BHEN/ Valid to MRDC/t or MWRC/t	tBS	50		ns	
Byte High Enable Hold Time	MRDC/ 1 or MWRC/ 1 to BHEN/ Invalid	${ }^{\text {tBH }}$	0		ns	
Memory Protect Setup Time	MPRO/I to VCC $<4.75 \mathrm{Vdc}$	tMPS	15		$\mu \mathrm{s}$	
Memory Protect Hold Time	$\mathrm{VCC} \geq 4.75 \mathrm{Vdc}$ to MPRO/ 1	tMPH	0		ns	
Refresh Interval		tRI	12.7	15.6	ms	

NOTES: 1) Add Refresh Delay Time (TRD) to these parameters when Asynchronous Refresh occurs.
2) Add 40 ns (Typ), 50 ns (Max) to these parameters if Late Inhibit Option is installed.
3) Applicable only if Advanced Write Cycle option is installed.

AC OPERATING CHARACTERISTICS $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 55^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Limit			Units	Notes
			Min	Typ	Max		
Read Access Time	MRDC/ 1 to Data Valid	tacc		400	450	ns	1, 3
Read Data Setup Time	Read Data Valid to XACK/.	tDSR	0			ns	
Read Data Hold Time	XACK/ \dagger to Data Invalid	tDHR	0		65	ns	
Advance Acknowledge Delay Time	MRDC/! or MWTC/ 1 to AACK/!	taAK	-	-	-	ns	1, 4, 5
Transfer Acknowledge Delay Time	MRDC/t or MWTC/ 1 to XACK/ 1	tack			50	ns	1, 2
Acknowledge Turn-Off Time	MRDC / \uparrow or $\mathrm{MWTC} / 1$ to AACK / \uparrow or XACK/ 1	t'O	15		55	ns	
Parity Error Setup Time	PAR ERR/ Valid to XACK/।	tps	0			ns	
Parity Error Hold Time	XACK/! to PAR ERR/Invalid	tPH	50			ns	
Refresh Delay Time		tDR			550	ns	

NOTES: 1) Add 40 ns (Typ), 50 ns (Max) to these parameters if Late Inhibit option is installed.
2) Add 450 ns (Typ), 500 ns (Max) to these parameters for Advanced Write Cycle operations.
3) Add Refresh Delay Time (tRD) to these parameters when Asynchronous Refresh occurs.
4) See Advance Acknowledge options table for Delay Time.
5) Advance Acknowledge is delayed until Transfer Acknowledge Time if Asynchronous Refresh occurs.

ADVANCE ACKNOWLEDGE OPTIONS

The MMS8060 Series can be programmed to provide an ADV ACK Delay (tAAK) of 100 to 450 ns . Available options are as noted in table at right. Selection is made via installation of a single jumper between two terminals of a 16pin DIP socket. (Jumper between pins 8\& $9 \rightarrow$ 100 ns Typ, between $1 \& 16-150 \mathrm{~ns}$, etc.).

	Option Selected							
	Limit	$8-9$	$1-16$	$7-10$	$2-15$	$3-14$	$5-12$	$4-13$
	$6-11$	Units						
Min	70	120	165	215	260	310	360	400
Typ	100	150	200	250	300	350	400	450
Max	125	175	230	285	335	400	450	500

ABSOLUTE MAXIMUM RATINGS

Rating	Limit			
	Symbol	Min	Max	Units
Power Supply Voltage Nominal +5 Vdc	VCC	-0.3	+7.0	Vdc
P1 or P2 With Respect Nominal +12 Vdc	VDD	-0.3	+15.0	Vdc
Nominal - 5 Vdc (Negative voltage regulator disabled)	VBB	+0.3	-7.0	Vdc
Nominal -10 Vdc or -12 Vdc (Negative voltage regulator enabled)		+0.3	-15.0	Vdc
Input Voltage, Any Input. (Measured at P1 or P2 Conn. With Respect to GND).	VIN	-0.3	+5.5	Vdc

NOTES: 1) Permanent damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to Recommended Operating Conditions.
2) Permanent damage may also occur if $V_{D D}$ is applied for more than one second while $V_{B B}$ is outside its Recommended Operating Range.

ENVIRONMENTAL RATINGS

Rating	Limit			
	Symbol $^{\prime}$	Min $^{\prime \prime}$	Max	Unit
Operating Temperature	$\mathrm{T}_{\mathbf{A}}$	0	+55	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathbf{s t g}}$	-40	+85	${ }^{\circ} \mathrm{C}$
Relative Humidity (Without Condensation)	R.H.	0	90	$\%$

recommended dc operating conditions

Condition	Limit			
	Symbol	Min	Max	Units
Supply Voltage Nominal +5 Vdc	VCC	4.75	5.25	Vdc
Nominal +12 Vdc	VDD	11.4	12.6	Vdc
Nominal - 5 Vdc (Negative voltage regulator disabled) Nominal - 10 Vdc or -12 Vdc (Negative voltage regulator enabled)	$V_{B B}$	$\begin{gathered} -4.75 \\ -9.5 \end{gathered}$	$\begin{aligned} & \hline-5.25 \\ & -12.6 \end{aligned}$	Vdc
Logic Zero Input Voltage, Any Input	VIL	-0.3	+0.8	Vdc
Logic One, Input Voltage, Any Input	VIH	+2.0	+5.25	Vdc

DC OPERATING CHARACTERISTICS $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 55^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limit			Units
		Min	Typ	Max	
Supply Current Nominal +5 Vdc	ICC			3.0	Adc
(Normal Mode) Nominal +12 Vdc	IDD			260	mAdc
Nominal -5 Vdc (Negative voltage regulator disabled) Nominal -10 Vdc or -12 Vdc (Negative voltage regulator enabled)	IBB			$\begin{aligned} & 14 \\ & 30 \end{aligned}$	mAdc mAdc
Supply Current Nominal +5 Vdc	ICC			1.1	Adc
(Battery Backup Mode) Nominal +12 Vdc	IDD			90	mAdc
Nominal - 5 Vdc (Negative voltage regulator disabled) Nominal -10 Vdc or -12 Vdc (Negative voltage regulator enabled)	IBB			$\begin{aligned} & 7.2 \\ & 14 \end{aligned}$	mAdc mAdc
Logic One Input Current $\left(\mathrm{VCC}=4.75 \mathrm{Vdc}, \mathrm{V}_{\text {IH }}=2.4 \mathrm{Vdc}\right.$ DATO/-DATF/ All Other Inputs	IIH			$\begin{gathered} 250 \\ 40 \\ \hline \end{gathered}$	$\mu \mathrm{Adc}$ $\mu \mathrm{Adc}$
Logic Zero Input Current ($\mathrm{VCC}=5.25 \mathrm{Vdc}, \mathrm{V}_{\text {IL }}=0.4 \mathrm{Vdc}$) DATO/-DATF/ All Other Inputs	IIL			$\begin{aligned} & -600 \\ & -400 \end{aligned}$	$\mu \mathrm{Adc}$ $\mu \mathrm{Adc}$
Logic One Output Voltage All Outputs (VCC $=4.75 \mathrm{Vdc}, 1 \mathrm{OH}=-5 \mathrm{mAdc})$	VOH	2.4			Vdc
Logic Zero Output Voltage All Outputs (VCC $=4.75 \mathrm{Vdc}, \mathrm{IOL}=48 \mathrm{mAdc})$	VOL			0.5	Vdc

DELAYED WRITE CYCLE TIMING

ADVANCED WRITE CYCLE TIMING

P1 CONNECTOR PIN ASSIGNMENTS

Signal Name	Symbol	Pin No.	Signal Name	Symbol	Pin No.	Signal Name	Symbol	Pin No.
Ground	VSS	1, 2	Address Line 0	ADRO/	57	Memory Read		
Ground	VSS	11, 12	Address Line 1	ADR1/	58	Command	MRDC /	19
Ground	VSS	75, 76	Address Line 2	ADR2/	55	Memory Write	MWTC/	20
Ground	VSS	85, 86	Address Line 3	ADR3/	56	Command		
+12 V Supply	VDD	7, 8	Address Line 4	ADR4/	53	Data Line 0	DATO/	73
+5 V Supply	VCC	3, 4	Address LIne 5	ADR5/	54	Data Line 1	DAT1/	74
+5V Supply	$V \mathrm{Cc}$	5, 6,	Address Line 6	ADR6/	51	Data Line 2	DAT2/	71
+5V Supply	V CC	81, 82	Address Line 7	ADR7/	52	Data Line 3	DAT3/	72
+5 V Supply	VCC	83, 84	Address Line 8	ADR8/	49	Data Line 4	DAT4/	69
-5V Supply	$V_{\text {BB }}$	9, 10	Address Line 9	ADR9/	50	Data Line 5	DAT5/	70
-10 V Supply	VBB1	77, 78	Address Line A	ADRA/	47	Data Line 6	DAT6/	67
-12 V Supply	$V_{\text {BB2 }}$	79,80	Address Line B	ADRB/	48	Data Line 7	DAT7/	68
Transfer	XACK/	23	Address Line C	ADRC/	45	Data Line 8	DAT8/	65
Acknowledge			Address Line D	ADRD/	46	Data Line 9	DAT9/	66
Advance	AACK/	25	Address Line E	ADRE/	43	Data Line A	DATA/	63
Acknowledge			Address Line F	ADRF/	44	Data Line B	DATB/	64
Command	INH1/	24	Address Line 10	ADR10/	28	Data Line C	DATC/	61
Inhibit			Address Line 11	ADR11/	30	Data Line D	DATD/	62
Byte High	BHEN/	27	Address Line 12	ADR12/	32	Data Line E	DATE/	59
Enable			Address Line 13	ADR13/	34	Data Line F	DATF/	60

NOTE: Pins not listed are not connected to Memory System circuitry.

P2 CONNECTOR PIN ASSIGNMENTS

Signal Name	Symbol	Pin No.	Signal Name	Symbol	Pin No.
Memory Protect	MPRO/	20	Test Point - Parity 2 \& 3	TP-PART 2 \& 3	44
Parity Error	PAR ERR/	29	Ground	VSS	1, 2
Test Point - Advanced Write	TP-ADVW	38	+5 V (Battery)	VCC (BATT)	3, 4
Test Point - Refresh Clock	TP-REFCLK	40	+12 V (Battery)	VDD (BATT)	
Test Point - Parity 0 \& 1	TP-PART 0 \& 1	42	-5 V (Battery)	$V_{B B}$ (BATT)	9, 10

NOTE: Pins not listed are not connected to Memory System circuitry.

MMS80XX SYSTEM

Signal (P1)	Description
ADRO/-ADRF/ ADR10-ADR-13/ DATO/-DAT7/ DAT8/-DATF/ AACK/ XACK / MRDC/ MWTC/ INH1/ BHEN/	Lower Order Address used to select 1 location out of 64 K * block High Order Addresss used to select one 64 K block out of 1024 K Data signals for 8 -bit mode or lower byte of data signals for 16 -bit mode High order byte data signals for 16 -bit mode (Programmable - 8 timing selections) Advanced Acknowledgement Signal from Memory Card in response to MWTC/ or MRDC Acknowledgement Signal from Memory Card indicating that Data Transfer has occurred Signal to Memory Card requesting to read RAM memory Signal to Memory Card requesting to write data into RAM memory Signal disabling response of the Memory card to MWTC/ and MRDC/ Signal used to enable the 16 -bit mode of operation
Signal (P2)	Description
MPRO/ PAR ERR/ TP-ADVW TP-REF C/K TP-PART 0 AND 1 TP-PART 2 AND 3	Signal used to enable the transfer from normal voltages to battery back-up voltages by disabling all circuits except refresh. Can also be used separately from battery back-up to do same thing Signal used to indicate a Parity Error Test Point Signal used to select Advanced Write Mode Test Point Signal used to clock refresh flip-flop externally (used only for evaluation purposes) Test Point Signal used to force a Parity Error on Reading Banks 0 or 1 Test Point Signal used to force a Parity Error on Reading Banks 2 or 3

[^24]
GENERAL DESCRIPTION

The MSM80XX series is designed for operation with SBC/BLC 80 Series Single-Board Computers (including the SBC 86/12 16-bit computer), System 80 Series Microcomputers, and Intel MDS Systems. The four configurations are plug-in replacements for Intel/National SBC/BLC 016, 032, 048, 064 memory cards.

OPTIONS

The MMS80XX series is available in four population options. Each of these configurations can be obtained with or without parity. (See Ordering Information on Page 1.) In addition to the population and parity options, provisions are made to allow the user to configure the memory card to meet system requirements. The primary user options are Address Selection, AdvanceAcknowledge Response time, Early/Late Inhibit options, Advanced/Delayed Write selection, and -5 Vdc derivation.
Address Selection options allow the user to locate the memory card in any one of sixteen memory segments with each of these segments defined as a 64 K memory space. If the MMS8064 is chosen, the memory system responds to all addresses within the selected memory segment. When depopulated modules (8016/8032/ 8048) are used, address selection for independent 8 K Byte blocks is provided. The MMS8048, for example, can be configured to respond to 6 of the eight 8 K blocks in the chosen segment.

Advance Acknowledge is utilized to prevent initiation of unnecessary processor "Wait" states. (In effect, the signal indicates that the memory transfer will be completed during the current cycle). The MMS80XX
series allows the user to select an Advance-Acknowledge Delay Time of 100 to 450 ns (in 50 ns increments). This facilitates tailoring of the memory response time to the system speed.

An Inhibit input is provided with the MMS80XX series to allow the Bus Master to turn off the memory for certain operations. In general, the system activates this signal prior to a Memory Read (MRDC/) or Write (MWRC/) command. In certain types of systems, however, the Inhibit signal arrives after the Read/Write command. A jumper option is provided with the MMS80XX Series; allowing the Inhibit input to respond to a "Late Inhibit" signal. This option should be installed only if the system requires it, since it slows the Memory System response by approximately 50 ns .

Most SBC systems utilize a "Delayed Write:' command wherein the Data is available coincident with activation of MWRC/. Some systems, however, utilize an "Advanced Write" technique, with the data becoming valid some 500 ns after the Write Command. A jumper option is provided with the MMS80XX series to allow operation in the Write Cycle. Transfer Acknowledge (XACK/) is inhibited during the dummy cycle, but Advance Acknowledge (AACK/) occurs if programmed to do so. XACK/ then occurs during the actual Write Cycle unless the system has responded to the AACK/ signal. (In this case, system response to the AACK/ signal is defined as a deactivation of the MWRC/ input). Selection of the "Advanced Write" option does not affect Read Cycle operations.

In general, SBC backplanes provide -5 volts at pins 9 and 10 of connector P1. Some systems, however, provide only -10 volts at pins 77 and 78 and/or -12 volts of pins 79 and 80. The MMS80XX Series contain an on-board negative 5 volt regulator to allow operation with such systems.

MECHANICAL DATA

The packaging availability for each device is indicated on the individual data sheets. Dimensions for the packages are given in this section.

14-PIN PACKAGES

FRIT-SEAL CERAMIC PACKAGE CASE 632

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	19.05	19.94	0.750	0.785
B	6.10	7.49	0.240	0.295
C	-	5.08	-	0.200
D	0.38	0.58	0.015	0.023
F	1.40	1.77	0.055	0.070
G	2.54 BSC	0.100 BSC		
H	1.91	2.29	0.075	0.090
J	0.20	0.38	0.008	0.015
K	3.18	5.08	0.125	0.200
L	7.62 BSC	0.300 BSC		
M	-	150	-	150
N	0.51	1.02	0.020	0.040

NOTES:

1. ALL RULES AND NOTES ASSOCIATED WITH MO-001 AA OUTLINE SHALL APPLY.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION "A" AND "B" (632-06) DO NOT INCLUDE GLASS RUN-OUT.
4. LEADS WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA OF TRUE POSITION AT SEATING PLANE AND MAXIMUM MATERIAL CONDITION.

CASE 632-06

PLASTIC PACKAGE CASE 646

DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
A	18.16	19.56	0.715	0.770	
B	6.10	6.60	0.240	0.260	
C	4.06	5.08	0.160	0.200	
D	0.38	0.53	0.015	0.021	
F	1.02	1.78	0.040		0.070
G	2.54		BSC	0.100	BSC
H	1.32	2.41	0.052	0.095	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115		0.135
L	7.62 BSC		0.300		BSC
M	0°		100	0^{0}	100
N	0.51	1.02	0.020	0.040	

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L"TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.

16-PIN PACKAGES

FRIT-SEAL CERAMIC PACKAGE CASE 620

1. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. PACKAGE INDEX: NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT.
3. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

| | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 19.05 | 19.94 | 0.750 | 0.785 |
| B | 6.10 | 7.49 | 0.240 | 0.295 |
| C | - | 5.08 | - | 0.200 |
| D | 0.38 | 0.53 | 0.015 | 0.021 |
| F | 1.40 | 1.78 | 0.055 | 0.070 |
| G | 2.54 BSC | 0.100 | | BSC |
| H | 0.51 | 1.14 | 0.020 | 0.045 |
| J | 0.20 | 0.30 | 0.008 | 0.012 |
| K | 3.18 | 5.08 | 0.125 | 0.200 |
| L | 7.62 BSC | | 0.300 BSC | |
| M | - | 15^{0} | - | 15^{0} |
| N | 0.51 | 1.02 | 0.020 | 0.040 |

CASE 620-06

PLASTIC PACKAGE
CASE 648
4. DIM "A" AND "B" DO NOT INCLUDE GLASS RUN-OUT.
5. DIM "F" MAY NARROW TO 0.76 mm (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	18.80	21.34	0.740	0.840
B	6.10	6.60	0.240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
H	0.38	2.41	0.015	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
M	$0{ }^{0}$	10^{0}	00	10^{0}
N	0.51	1.02	0.020	0.040

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
4. "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1,8,9, and 16).
5. ROUNDED CORNERS OPTIONAL.

16-PIN PACKAGES (Continued)

CERAMIC PACKAGE
CASE 650

DIM	MILLIMETERS		INCHES	
	MIN		MAX	MIN
A	9.40	10.16	0.370	0.400
B	6.22	7.24	0.245	0.285
C	1.52	2.03	0.060	0.080
D	0.41	0.48	0.016	0.019
F	0.08	0.15	0.003	0.006
G	1.27	BSC	0.050 BSC	
H	0.64	0.89	0.025	0.035
K	6.35	9.40	0.250	0.370
L	18.92	-	0.745	-
N	-	0.51	-	0.020
R	-	0.38	-	0.015

CASE 650-03

CERAMIC PACKAGE

CASE 690

NOTES:

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	20.07	20.57	0.790	0.810
B	7.11	7.62	0.280	0.300
C	2.67	4.19	0.105	0.165
D	0.38	0.53	0.015	0.021
F	0.76	1.52	0.030	0.060
G	2.54 BSC		0.100 BSC	
H	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	3.18	5.08	0.125	0.200
L	7.62 BSC		0.300 BSC	
M	-	100	-	100
N	0.38	1.52	0.015	0.060

1. A. AND -B ARE DATUMS.
2. -T IS SEATING PLANE
3. POSITIONAL TOLERANCE FOR LEADS (D). | $母$ | $\varnothing 0.25(0.010)(M)$ | T | $A(M)$ | $B(M)$ |
| :--- | :--- | :--- | :--- | :--- |
4. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL.
5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.
6. 690-11 AND 690-12 OBSOLETE. NEW STANDARD 690-13.

CASE 690-13

CERAMIC PACKAGE

CASE 680

NOTES:

1. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RAD OF true position at seating plane at MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	22.48	23.24	0.885	0.915
B	7.16	7.57	0.282	0.298
C	3.18	4.27	0.125	0.168
D	0.38	0.58	0.015	0.023
F	0.76	1.40	0.030	0.055
G	2.54	BSC	0.100 BSC	
H	1.02	1.52	0.040	0.060
J	0.20	0.30	0.008	0.012
K	2.68	4.44	0.105	0.175
L	7.37	7.87	0.290	0.310
M	-	100	-	100
N	0.38	1.40	0.015	0.055

CASE 680-06

PLASTIC PACKAGE CASE 701-01

NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUM OF TRUE POSITION AT SEATING PLANE AT MAXIMUM material condition (DIM "G").
2. Dimension "L" to Center OF LEADS WHEN FORMED parallel.

	MILLIMETERS			INCHES	
DIM	MIN	MAX	MIN	MAX	
A	23.11	23.88	0.910	0.940	
B	6.10	6.60	0.240	0.260	
C	4.06	4.57	0.160	0.180	
D	0.38	0.51	0.015	0.020	
F	1.02	1.52	0.040	0.060	
G	2.54 BSC	0.100		BSC	
H	1.32	1.83	0.052	0.072	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.37	7.87	0.290	0.310	
M	0^{0}	10°	0^{0}	10^{0}	
N	0.51	1.02	0.020	0.040	

CASE 701-01

18-PIN PACKAGES (Continued)

PLASTIC PACKAGE
CASE 707

NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN $0.25 \mathrm{~mm}(0.010)$ AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

FRIT SEAL CERAMIC PACKAGE CASE 726

NOTES:

1. LeAdS, True positioned WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA at Seating plane, at maximum material CONDITION.
2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL
3. DIM "A" \& "B" INCLUDES MENISCUS.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	22.35	23.11	0.880	0.910
B	7.11	7.75	0.280	0.305
C	-	4.06	-	0.160
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54	BSC	0.100 BSC	
H	-	1.40	-	0.055
J	0.20	0.30	0.008	0.012
K	-	4.44	-	0.175
L	7.37	8.00	0.290	0.315
M	00	150	00	150
N	0.51	1.27	0.020	0.050

CASE 726-02

18-PIN PACKAGES (Continued)

CERAMIC PACKAGE
CASE 749

NOTES:

1. DIMENSION A.-A. IS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS: | \oplus | $0.25(0.010)$ | \mathbf{T} | $\mathbf{A}(4)$ |
| :--- | :--- | :--- | :--- |
3. T- IS SEATING PLANE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	22.61	23.11	0.890	0.910
B	7.24	7.75	0.285	0.305
C	-	8.64	-	0.340
D	0.36	0.61	0.014	0.024
F	0.89	1.40	0.035	0.055
G	2.54	BSC	0.100 BSC	
H	3.30	-	0.130	-
J	0.23	0.30	0.009	0.012
K	-	2.92	-	0.115
L	7.37	7.87	0.290	0.310
N	0.64	1.14	0.025	0.045
P	-	9.14	-	0.360

CASE 749-01

CERAMIC PACKAGE
CASE 729

NOTE:

1. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	24.64	25.91	0.970	1.020
B	7.06	8.13	0.278	0.320
C	2.79	4.70	0.110	0.185
D	0.38	0.51	0.015	0.020
F	1.14	1.40	0.045	0.055
G	2.54	BSC	0.100	BSC
H	0.89	1.52	0.035	0.060
J	0.20	0.30	0.008	0.012
K	3.18	4.57	0.125	0.180
L	7.62	BSC	0.300	BSC
M	0^{0}	10^{0}	0	0^{0}
N	0.51	1.52	10^{0}	

CASE 729-02

FRIT-SEAL CERAMIC PACKAGE

NOTES:

1. LeAdS true positioned

WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA AT
WITHIN 0.25 mm (0.010) DIA AT
SEATING PLANE AT MAXIMUM
MATERIAL CONDITION (DIM "D")
2. DIM "L" TO CENTER OF LEADS
2. DIM "L" TO CENTER OF LEADS
WHEN FORMED PARALLEL.

CASE 736-01

24-PIN PACKAGES

FRIT-SEAL CERAMIC PACKAGE CASE 623

NOTES:

1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (WHEN FORMED PARALLEL)

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	31.24	32.77	1.230	1.290		
B	12.70	15.49	0.500	0.610		
C	4.06	5.59	0.160	0.220		
D	0.41	0.51	0.016	0.020		
F	1.27	1.52	0.050	0.060		
G	2.54		BSC	0.100 BSC		
J	0.20	0.30	0.008	0.012		
K	2.29	4.06	0.090	0.160		
L	15.24 BSC		0.600 BSC			
M	0°		15^{0}	0°		15^{0}
N	0.51		1.27	0.020		

CASE 623-04

FRIT-SEAL CERAMIC PACKAGE
CASE 623A

NOTES:

1. DIM "L" TO CENTER OF

LEADS WHEN FORMED
PARALLEL.
2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
	31.24	32.77	1.230	1.290		
B	12.70	15.49	0.500	0.610		
C	4.06	5.84	0.160	0.230		
D	0.41	0.51	0.016	0.020		
F	1.27	1.52	0.050		0.060	
G	2.54		BSC	0.100		
BSC						
K	0.20		0.30	0.008	0.012	
L	2.29	4.06	0.090		0.160	
M	0^{0}		15	15^{0}	0.600 BSC	
N	0.51	1.27	150			

CASE 623A-02

24-PIN PACKAGES (Continued)

PLASTIC PACKAGE

CASE 709

NOTE:

1. LEADS TRUE POSITIONED WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA (AT SEATING PLANE) AT MAXIMUM MATERIAL CONDITION.
2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	27.64	30.99	1.088	1.220
B	14.94	15.34	0.588	0.604
C	2.67	4.32	0.105	0.170
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54	BSC	0.100	
BSC	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	2.54	4.19	0.100	0.165
L	14.99	15.49	0.590	0.610
M	-	100	-	10^{0}
N	1.02	1.52	0.040	0.060

CASE 716-06

24-PIN PACKAGES (Continued)

SELECTOR
GUIDES
CROSS-REFERENCE

MOS Memories
RAM, EPROM, EEPROM, ROM

CMOS Memories
RAM, ROM

Bipolar Memories
TTL, MECL-RAM, PROM

Memory Boards

[^0]: See Notes on Page 1-2.

[^1]: See notes on page 1-2

[^2]: $\mathrm{H}=$ High, $\mathrm{L}=$ Low, $\mathrm{X}=$ Don't Care

[^3]: Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable, Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser any license under the patent rights of Motorola or others.

 The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product (s) to which the information applies and to discontinue manufacture of the product(s) at any time.

[^4]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^5]: - During a read or write cycle, one 16 K segment is selected. Depending on segment being addressed, $\overline{\operatorname{RAS}}_{1} / \overline{\mathrm{CAS}}_{1}$ or $\overline{\mathrm{RAS}}_{2} / \overline{\mathrm{CAS}}_{2}$ is deselected.

[^6]: *Internal pullup resistor should be left open or tied to $V_{C C}$.

[^7]: VOH
 VOL \qquad High Z

[^8]: Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

[^9]: *If shorter than $45 \mathrm{~ms}(\mathrm{~min})$ pulses are used, the same number of pulses should be applied after the specific data has been verified.

[^10]: *NOTE: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.

[^11]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit

[^12]: *The formula is for the typical characteristics only.

[^13]: Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not

[^14]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leqslant \mathcal{V}$ in or $\left.V_{\text {out }}\right) \leqslant V_{D D}$
 Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}.

[^15]: Motorola reserves the right to make changes to any product herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

[^16]: NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are

[^17]: (1) Address and chip select should not be left open for $\mathrm{V}_{1 \mathrm{H}}$.
 (2) Disable condition will be met with output open circuit.

[^18]: This is advance information and specifications are subject to change without notice

[^19]: (1)AC timing figures do not show all the necessary presetting conditions.

[^20]: $\cdot \overline{\mathrm{CS}}=\overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2} \quad \phi=$ Don't Care.

[^21]: \dagger NOTE: For devices that program incorrectly, return serialized units with individual truth tables. Non compliance voids warranty.

[^22]: - VAX is a trademark of Digital Equipment Corporation.

[^23]: *Trademark of Intel, Inc.

[^24]: *K = 1024 Bytes

