




SCHWEBER ELECTRONICS 904 CAMBRIDGE DRIVE ELK GROVE VILLAGE, ILLINOIS 60007 312-364-3750

# MOTOROLA MEMORY DATA MANUAL



- QUALITY
- **RELIABILITY**
- TECHNOLOGY



Guides



SRA













:

Selector

TTL RAM

**TTL PROM** 



**MECL Memory** General Information



**MOS Static RAM** 

**MOS Dynamic RAM** 

**MECL RAM** 

ECL PRO

ECL RA

**MECL PROM** 

**Mechanical** Data



**MOS ROM** 



Prepared by Technical Information Center

Motorola has developed a very broad range of reliable MOS and bipolar memories for virtually any digital data processing system application. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

New Motorola memories are being introduced continually. For the latest releases, and additional technical information or pricing, contact your nearest authorized Motorola distributor or Motorola sales office.

The information in this book has been carefully checked; no responsibility, however, is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent rights of the manufacturer.

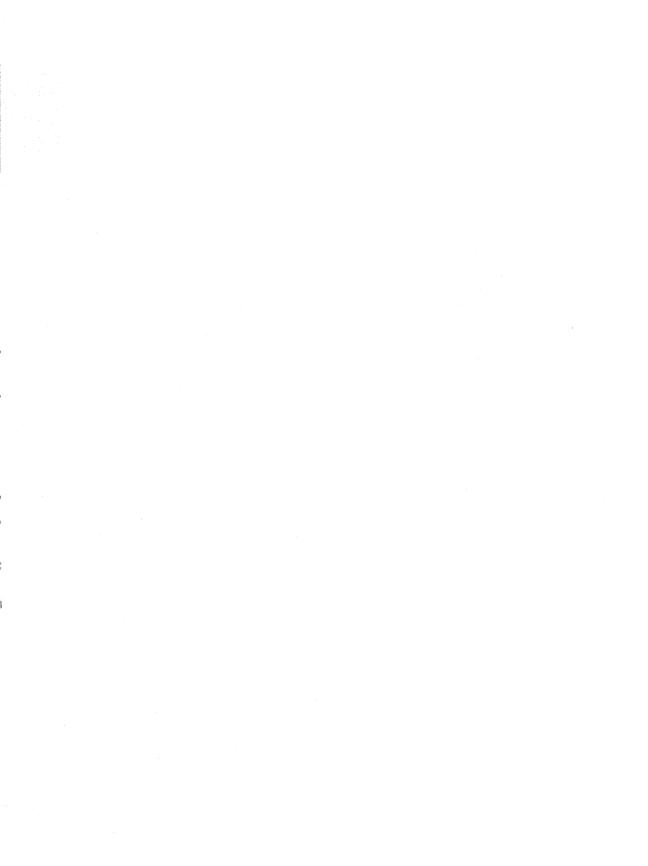
> Series C ©MOTOROLA INC., 1982 Previous Edition ©1980 "All Rights Reserved"

MECL, EXORmacs, and VERSAmodule are trademarks of Motorola Inc.

# Table of Contents

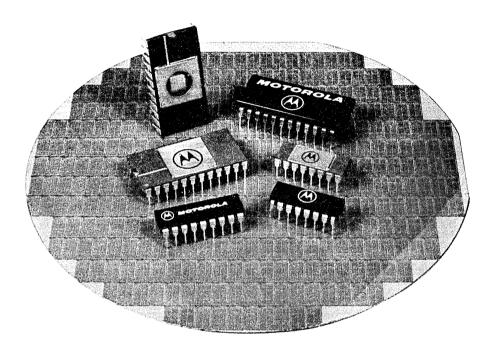
|                                                                                                                                                                                                                                                                           | Organization                                                                                                                                   | Page |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Alphanumeric Index                                                                                                                                                                                                                                                        |                                                                                                                                                | v    |
|                                                                                                                                                                                                                                                                           | r Guide and Custom Memory Systems                                                                                                              |      |
| CHAPTER 2 — MOS Dynamic I<br>MCM4027A<br>MCM4116B<br>MCM4517<br>MCM6632A<br>MCM6633A<br>MCM6664A<br>MCM6665A                                                                                                                                                              | RAMs<br>4K × 1<br>16K × 1<br>16K × 1<br>32K × 1<br>32K × 1<br>64K × 1<br>64K × 1                                                               |      |
| MCM6256<br>CHAPTER 3 — MOS Static RA<br>MCM2115A/25A<br>MCM5101, 51L01<br>MCM6810, 68A10, 68B10<br>MCM2114, 21L14<br>MCM2147<br>MCM65147<br>MCM66147, 66L41<br>MCM65116                                                                                                   | 256K × 1<br>Ms<br>1K × 1<br>256 × 4<br>128 × 8<br>1K × 4<br>4K × 1<br>4K × 1<br>4K × 1<br>2K × 8<br>                                           |      |
| CHAPTER 4 — MOS EPROMs<br>MCM2708, 27A08<br>TMS2716, 27A16<br>MCM2716<br>MCM2532<br>MCM68764<br>MCM68766<br>CHAPTER 5 — MOS EEPROMs<br>MCM2801<br>MCM2802                                                                                                                 | 1K × 8<br>2K × 8<br>2K × 8<br>4K × 8<br>8K × 8<br>8K × 8<br>16K × 16<br>32K × 32                                                               |      |
| MCM2816<br>CHAPTER 6 — MOS ROMs<br>MCM6670, 6674<br>MCM66700, 710, 714, 720, 730, 734<br>740, 750, 751, 760, 770, 780, 790<br>MCM68A30A, 68B30A<br>MCM68A308, 68B308<br>MCM68A3316E<br>MCM68A332<br>MCM68A332<br>MCM68365<br>MCM68366<br>MCM68366<br>MCM63256<br>MCM65256 | 2K × 8<br>128 × (7 × 5)<br>128 × (7 × 9)<br>1K × 8<br>1K × 8<br>2K × 8<br>2K × 8<br>4K × 8<br>8K × 8<br>8K × 8<br>8K × 8<br>32K × 8<br>32K × 8 |      |

1


## Table of Contents (Continued)

|                                                                                                         | Organization                                         | Page               |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
| CHAPTER 7 — TTL RAMs<br>MCM93412, 93422<br>MCM93415<br>MCM93425                                         | 256 × 4<br>1024 × 1<br>1024 × 1                      | 7-8                |
| CHAPTER 8 — TTL PROMs<br>MCM7620, 7621<br>MCM7640, 7641<br>7642, 7643<br>MCM7680, 7681<br>MCM7684, 7685 | 512 × 4<br>512 × 8<br>1024 × 4<br>1024 × 8<br>2K × 4 | 8-7<br>8-7<br>8-11 |
| CHAPTER 9 — MECL Memories<br>General Information                                                        | 5                                                    | 9-2                |
| CHAPTER 10 - MECL RAMs                                                                                  |                                                      |                    |
| MCM10143                                                                                                | 8×2                                                  |                    |
| MCM10144, 10544                                                                                         | 256 × 1                                              |                    |
| MCM10145, 10545                                                                                         | 16 × 4                                               | 10-10              |
| MCM10146, 10546                                                                                         | 1024 × 1                                             | 10-12              |
| MCM10147, 10547                                                                                         | 128 × 1                                              | 10-14              |
| MCM10148, 10548                                                                                         | 64 × 1                                               | 10-16              |
| MCM10152, 10552                                                                                         | 256 × 1                                              |                    |
| MCM10422                                                                                                | 256 × 4                                              |                    |
| MCM10470                                                                                                | 4096 × 1                                             | 10-24              |
| CHAPTER 11 — MECL PROMs<br>MCM10139, 10539                                                              | 32 × 8                                               |                    |
| MCM10149, 10549                                                                                         | 256 × 4                                              |                    |
| CHAPTER 12 — Mechanical Data                                                                            | a                                                    | 12-1               |

#### ALPHANUMERIC INDEX


| Device     | Page | Device     | Page  |
|------------|------|------------|-------|
| MCM21L14   | 3-18 | МСМ7684    | 8-15  |
| MCM21L15A  | 3-3  | MCM7685    | 8-15  |
| MCM21L25A  | 3-3  | MCM10139   | 11-3  |
| MCM27A08   | 4-3  | MCM10143   |       |
| MCM51L01   | 3-9  | MCM10144   |       |
| MCM66L41   | 3-32 | MCM10145   | 10-10 |
| MCM68A10   | 3-13 | MCM10146   | 10-12 |
| MCM68A30A  | 6-24 | MCM10147   | 10-14 |
| MCM68A308  | 6-29 | MCM10148   | 10-16 |
| MCM68A316E | 6-34 | MCM10149   | 11-7  |
| MCM68A332  | 6-44 | MCM10152   | 10-18 |
| MCM68B10   | 3-13 | MCM10422   | 10-20 |
| MCM68B30A  | 6-24 | MCM10470   | 10-24 |
| MCM68B308  | 6-29 | MCM10539   | 11-3  |
| MCM2114    | 3-18 | MCM10544   |       |
| MCM21L14   | 3-18 | MCM10545   | 10-10 |
| MCM2115A   | 3-3  | MCM10546   | 10-12 |
| MCM21L15A  | 3-3  | MCM10547   | 10-14 |
| MCM2125A   | 3-3  | MCM10548   | 10-16 |
| MCM21L25A  | 3-3  | MCM10549   | 11-7  |
| MCM2147    | 3-23 | MCM10552   | 10-18 |
| MCM2532    | 4-21 | MCM63256   | 6-62  |
| MCM2708    | 4-3  | MCM65116   | 3-36  |
| MCM27A08   | 4-3  | MCM65147   | 3-28  |
| MCM2716    | 4-15 | MCM65256   | 6-63  |
| MCM2801    | 5-3  | MCM65516   | 6-38  |
| MCM2802    | 5-8  | MCM66700   | 6-10  |
| MCM2816    | 5-9  | MCM66710   | 6-10  |
| MCM4027A   | 2-3  | MCM66714   | 6-10  |
| MCM4116B   | 2-13 | MCM66720   | 6-10  |
| MCM4517    | 2-20 | MCM66730   | 6-10  |
| MCM5101    | 3-9  | MCM66734   | 6-10  |
| MCM51L01   | 3-9  | MCM66740   |       |
| MCM6256    | 2-89 | MCM66750   |       |
| MCM6632A   |      | MCM66751   |       |
| MCM6633A   | 2-43 | MCM66760   |       |
| MCM6641    |      | MCM66770   |       |
| MCM66L41   |      | MCM66780   |       |
| MCM6664A   |      | MCM66790   |       |
| MCM6665A   |      | MCM68A308  |       |
| MCM6670    |      | MCM68B308  |       |
| MCM6674    |      | MCM68A316E |       |
| MCM6810    |      | MCM68A332  |       |
| MCM68A10   |      | MCM68364   |       |
| MCM68B10   |      | MCM68365   |       |
| MCM68A30A  |      | MCM68366   |       |
| MCM68B30A  |      | MCM68764   |       |
| MCM7620    |      | MCM68766   |       |
| MCM7621    |      | MCM93412   |       |
| MCM7640    |      | MCM93415   |       |
| MCM7641    |      | MCM93422   |       |
| MCM7642    |      | MCM93425   |       |
| MCM7643    |      | TMS2716    |       |
| MCM7680    |      | TMS27A16   | 4-9   |
| MCM7681    | ð-11 |            |       |

ł



# Selector Guides





#### MEMORIES SELECTOR GUIDE

#### NOTES

Not all package options are listed.

Operating temperature ranges:

 $MOS - 0^{\circ}C$  to  $70^{\circ}C$ 

ECL - Consult individual data sheets

TTL - Military - 55°C to + 125°C, Commercial 0°C to 70°C

#### FOOTNOTES

<sup>1</sup>Motorola's innovative pin #1 refresh

<sup>2</sup>All MOS memory outputs are three-state except the open collector MCM2115A series.

<sup>3</sup>Character generators include shifted and unshifted characters, ASCII, alphanumeric control, math, Japanese, British, German, European and French symbols.

<sup>4</sup>Standard Patterns for MOS ROMs:

MCM68A308P7 – MC6800 MIKbug/MINIbug ROM MCM68A316EP91 – Universal Code Converter and Character Generator MCM68A332P2 – Sine/Cosine Look-Up Table MCM68364P35-3 – Log/Antilog Look-Up Table MCM65516P43M – MC146805 Monitor Program

\*To be introduced. (Not all speed selections shown)

# RAMS MOS DYNAMIC RAMS

| Organization | Part Number              | Access Time<br>(ns_max) | Power<br>Supplies | No. of<br>Pins |
|--------------|--------------------------|-------------------------|-------------------|----------------|
| 4096 × 1     | MCM4027AC-2              | 150                     | + 12, ±5 V        | 16             |
| 4096 × 1     | MCM4027AC-3              | 200                     | + 12, ±5 V        | 16             |
| 4096 × 1     | MCM4027AC-4              | 250                     | + 12, ±5 V        | 16             |
| 16384 × 1    | MCM4116BP15              | 150                     | + 12, ±5 V        | 16             |
| 16384 × 1    | MCM4116BP20              | 200                     | + 12, ±5 V        | 16             |
| 16384 × 1    | MCM4116BP25              | 250                     | + 12, ±5 V        | 16             |
| 16384 × 1    | MCM4517P10               | 100                     | + 5 V             | 16             |
| 16384 × 1    | MCM4517P12               | 120                     | +5 V              | 16             |
| 16384 × 1    | MCM4517P15               | 150                     | + 5 V             | 16             |
| 16384 × 1    | MCM4517P20               | 200                     | +5 V              | 16             |
| 32768×1      | MCM6632AP15 <sup>1</sup> | 150                     | +5 V              | 16             |
| 32768 × 1    | MCM6632AP20 <sup>1</sup> | 200                     | +5 V              | 16             |
| 32768 × 1    | MCM6633AP15              | 150                     | +5 V              | 16             |
| 32768 × 1    | MCM6633AP20              | 200                     | +5 V              | 16             |
| 65536 × 1    | MCM6664AP121             | 120                     | +5 V              | 16             |
| 65536 × 1    | MCM6664AP15 <sup>1</sup> | 150                     | +5 V              | 16             |
| 65536×1      | MCM6664AP20 <sup>1</sup> | 200                     | +5 V              | 16             |
| 65536×1      | MCM6665AP12              | 120                     | +5 V              | 16             |
| 65536×1      | MCM6665AP15              | 150                     | +5 V              | 16             |
| 65336 × 1    | MCM6665AP20              | 200                     | +5 V              | 16             |

Selector

ł

## TTL BIPOLAR RAMs

| Organization | Part Number | Access Time<br>(ns max) | Output         | No. of<br>Pins |
|--------------|-------------|-------------------------|----------------|----------------|
| 256×4        | MCM93412    | 45                      | Open Collector | 22             |
| 256 × 4      | MCM93422*   | 45                      | 3-State        | 22             |
| 256 × 4      | MCM93L422*  | 60                      | 3-State        | 22             |
| 1024 × 1     | MCM93415    | 45                      | Open Collector | 16             |
| 1024 × 1     | MCM93425    | 45                      | 3-State        | 16             |

1-3

### **MEMORIES SELECTOR GUIDE (Continued)**

## MOS STATIC RAMs (+5 Volts)

| 2         (in max)         (Prins)           128 × 8         MCM6810         450         24           128 × 8         MCM68810         360         24           128 × 8         MCM68810         250         24           1024 × 4         MCM2114P20         200         18           1024 × 4         MCM2114P25         250         18           1024 × 4         MCM2114P25         250         18           1024 × 4         MCM2114P25         250         18           1024 × 4         MCM2114P30         300         18           1024 × 4         MCM21L14P20         200         18           1024 × 4         MCM21L14P25         250         18           1024 × 4         MCM21L14P25         250         18           1024 × 4         MCM21L14P25         250         18           1024 × 1         MCM2115AC45 <sup>2</sup> 45         16           1024 × 1         MCM2115AC45 <sup>2</sup> 45         16           1024 × 1         MCM2115AC45 <sup>2</sup> 45         16           1024 × 1         MCM2125AC45         45         16           1024 × 1         MCM2125AC45         45         16                                                                                         | Organization | Organization Part Number Access Time |          |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------|----------|------|
| 128 × 8         MCM68A10         360         24           128 × 8         MCM68B10         250         24           1024 × 4         MCM2114P20         200         18           1024 × 4         MCM2114P25         250         18           1024 × 4         MCM2114P30         300         18           1024 × 4         MCM2114P45         450         18           1024 × 4         MCM21L14P20         200         18           1024 × 4         MCM21L14P25         250         18           1024 × 4         MCM21L14P25         250         18           1024 × 4         MCM21L14P25         250         18           1024 × 4         MCM21L14P30         300         18           1024 × 4         MCM21L14P35         450         18           1024 × 1         MCM21L5AC45 <sup>2</sup> 45         16           1024 × 1         MCM2115AC55 <sup>2</sup> 55         16           1024 × 1         MCM21L16AC45 <sup>2</sup> 45         16           1024 × 1         MCM21L5AC45         45         16           1024 × 1         MCM2125AC45         45         16           1024 × 1         MCM2125AC45         45                                                                             | Organization | Fait Number                          | (ns max) | Pins |
| 128×8         MCM68810         250         24           1024×4         MCM2114P20         200         18           1024×4         MCM2114P25         250         18           1024×4         MCM2114P30         300         18           1024×4         MCM2114P35         250         18           1024×4         MCM2114P45         450         18           1024×4         MCM21L14P20         200         18           1024×4         MCM21L14P25         250         18           1024×4         MCM21L14P25         250         18           1024×4         MCM21L14P30         300         18           1024×4         MCM21L14P45         450         18           1024×1         MCM2115AC452         45         16           1024×1         MCM2115AC452         45         16           1024×1         MCM2115AC452         45         16           1024×1         MCM2125AC45         45         16           1024×1         MCM2125AC45         45         16           1024×1         MCM2125AC45         45         16           1024×1         MCM2125AC70         70         16           10                                                                                                    | 128×8        | MCM6810                              | 450      | 24   |
| $1024 \times 4$ MCM2114P20 $200$ 18 $1024 \times 4$ MCM2114P25 $250$ 18 $1024 \times 4$ MCM2114P25 $250$ 18 $1024 \times 4$ MCM2114P25 $300$ 18 $1024 \times 4$ MCM2114P25 $250$ 18 $1024 \times 4$ MCM21L14P25 $250$ 18 $1024 \times 4$ MCM21L14P25 $250$ 18 $1024 \times 4$ MCM21L14P25 $250$ 18 $1024 \times 4$ MCM21L14P30 $300$ 18 $1024 \times 4$ MCM21L16AC45 <sup>2</sup> $450$ 18 $1024 \times 4$ MCM2115AC45 <sup>2</sup> $455$ 16 $1024 \times 1$ MCM2115AC45 <sup>2</sup> $455$ 16 $1024 \times 1$ MCM2115AC70 <sup>2</sup> 7016 $1024 \times 1$ MCM21L5AC45 <sup>2</sup> $455$ 16 $1024 \times 1$ MCM21L5AC45 <sup>2</sup> $455$ 16 $1024 \times 1$ MCM2125AC55 $555$ 16 $1024 \times 1$ MCM2125AC45 $455$ 16 $1024 \times 1$ MCM6641P20 $200$ 18 $4096 \times 1$ MCM6641P25 $250$ 18 $4096 \times 1$ MCM6641P30 $300$ 18 $4096 \times 1$ MCM66L41P25 $250$ 18 $4096 \times 1$ MCM66L41P36 $450$ 18 $4096 \times 1$ MCM66L41P36 $55$ 18 $4096 \times 1$ MCM66L41P30 $300$ 18 $4096 \times 1$ MCM66L41P30 $300$ <t< td=""><td>128×8</td><td>MCM68A10</td><td>360</td><td>24</td></t<> | 128×8        | MCM68A10                             | 360      | 24   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128×8        | MCM68B10                             | 250      | 24   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                      |          |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                      |          |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | MCM2114P25                           |          |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | MCM2114P30                           |          |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | MCM2114P45                           |          |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1024 × 4     | MCM21L14P20                          | 200      |      |
| $1024 \times 4$ MCM21L14P4545018 $1024 \times 1$ MCM2115AC4524516 $1024 \times 1$ MCM2115AC7025516 $1024 \times 1$ MCM2115AC7027016 $1024 \times 1$ MCM21L15AC7027016 $1024 \times 1$ MCM21L15AC7027016 $1024 \times 1$ MCM21L15AC7027016 $1024 \times 1$ MCM2125AC454516 $1024 \times 1$ MCM2125AC455516 $1024 \times 1$ MCM2125AC454516 $1024 \times 1$ MCM2125AC707016 $1024 \times 1$ MCM2125AC707016 $1024 \times 1$ MCM6641P2020018 $4096 \times 1$ MCM6641P3030018 $4096 \times 1$ MCM6641P3030018 $4096 \times 1$ MCM6641P4545018 $4096 \times 1$ MCM6641P4525018 $4096 \times 1$ MCM6641P4545018 $4096 \times 1$ MCM66141P3030018 $4096 \times 1$ MCM66141P3030018 $4096 \times 1$ MCM66141P4545018 $4096 \times 1$ MCM66141P4545018 $4096 \times 1$ MCM66141P4545018 $4096 \times 1$ MCM2147C555518 $4096 \times 1$ MCM2147C707018                                                                                                                                                                                                                                                                                                                                                                     | 1024 × 4     | MCM21L14P25                          | 250      | 18   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1024 × 4     | MCM21L14P30                          | 300      | 18   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1024 × 4     | MCM21L14P45                          | 450      | 18   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                      |          |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1024 × 1     |                                      | 45       | 16   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1024 × 1     |                                      | 55       | 16   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1024 × 1     |                                      | 70       | 16   |
| 1024 × 1         MCM2125AC45         45         16           1024 × 1         MCM2125AC55         55         16           1024 × 1         MCM2125AC70         70         16           1024 × 1         MCM2125AC45         45         16           1024 × 1         MCM21125AC45         45         16           1024 × 1         MCM21125AC70         70         16           1024 × 1         MCM21125AC70         70         16           1024 × 1         MCM21125AC70         70         16           4096 × 1         MCM6641P20         200         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18 </td <td>1024 × 1</td> <td></td> <td>45</td> <td>16</td>                   | 1024 × 1     |                                      | 45       | 16   |
| 1024 × 1         MCM2125AC55         55         16           1024 × 1         MCM2125AC70         70         16           1024 × 1         MCM21125AC70         70         16           1024 × 1         MCM21L25AC45         45         16           1024 × 1         MCM21L25AC70         70         16           4096 × 1         MCM6641P20         200         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM6641P45         200         18           4096 × 1         MCM6641P45         200         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66141P20         200         18           4096 × 1         MCM66141P25         250         18           4096 × 1         MCM66141P30         300         18           4096 × 1         MCM66141P45         450         18           4096 × 1         MCM66141P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18 <td>1024 × 1</td> <td>MCM21L15AC70<sup>2</sup></td> <td>70</td> <td>16</td> | 1024 × 1     | MCM21L15AC70 <sup>2</sup>            | 70       | 16   |
| 1024 × 1         MCM2125AC70         70         16           1024 × 1         MCM21L25AC45         45         16           1024 × 1         MCM21L25AC70         70         16           4096 × 1         MCM6641P20         200         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                        | 1024 × 1     | MCM2125AC45                          | 45       | 16   |
| 1024 × 1         MCM21L25AC45         45         16           1024 × 1         MCM21L25AC70         70         16           4096 × 1         MCM6641P20         200         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66141P20         200         18           4096 × 1         MCM66141P20         200         18           4096 × 1         MCM66141P25         250         18           4096 × 1         MCM66141P25         250         18           4096 × 1         MCM66141P25         250         18           4096 × 1         MCM66141P30         300         18           4096 × 1         MCM66141P30         300         18           4096 × 1         MCM66141P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                    | 1024 × 1     | MCM2125AC55                          | 55       | 16   |
| 1024 × 1         MCM21L25AC70         70         16           4096 × 1         MCM6641P20         200         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                 | 1024 × 1     | MCM2125AC70                          | 70       | 16   |
| 4096 × 1         MCM6641P20         200         18           4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1024 × 1     | MCM21L25AC45                         | 45       | 16   |
| 4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1024 × 1     | MCM21L25AC70                         | 70       | 16   |
| 4096 × 1         MCM6641P25         250         18           4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4096 × 1     | MCM6641P20                           | 200      | 18   |
| 4096 × 1         MCM6641P30         300         18           4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                      |          |      |
| 4096 × 1         MCM6641P45         450         18           4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM66L41P45         55         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                      |          |      |
| 4096 × 1         MCM66L41P20         200         18           4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                      |          |      |
| 4096 × 1         MCM66L41P25         250         18           4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                      |          |      |
| 4096 × 1         MCM66L41P30         300         18           4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                      |          |      |
| 4096 × 1         MCM66L41P45         450         18           4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                      |          |      |
| 4096 × 1         MCM2147C55         55         18           4096 × 1         MCM2147C70         70         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                      |          |      |
| 4096 × 1 MCM2147C70 70 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                      |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                      |          |      |
| 440470XI I WUW7/4/U85 I 18 I 18 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4096 × 1     | MCM2147C85                           | 85       | 18   |

# CMOS STATIC RAMs (+5 Volts)

| Organization | Part Number  | Access Time<br>(ns max) | No. of<br>Pins |
|--------------|--------------|-------------------------|----------------|
| 256×4        | MCM5101P65   | 650                     | 22             |
| 256×4        | MCM5101P80   | 800                     | 22             |
| 256×4        | MCM51L01P45  | 450                     | 22             |
| 256×4        | MCM51L01P65  | 650                     | 22             |
| 2048×8       | MCM65116P15* | 150                     | 24             |
| 4096×1       | MCM65147P55  | 55                      | 18             |
| 4096 × 1     | MCM65147P70  | 70                      | 18             |

# Selector

l

## ECL BIPOLAR RAMs

| Organization | Part Number | Access Time<br>(ns max) | No. of<br>Pins |
|--------------|-------------|-------------------------|----------------|
| 8×2          | MCM10143    | 15                      | 24             |
| 256 × 1      | MCM10144    | 26                      | 16             |
| 16×4         | MCM10145    | 15                      | 16             |
| 1024 × 1     | MCM10146    | 29                      | 16             |
| 1024 × 1     | MCM10146A*  | 15                      | 16             |
| 128×1        | MCM10147    | 15                      | 16             |
| 64×1         | MCM10148    | 15                      | 16             |
| 256×1        | MCM10152    | 15                      | 16             |
| 4096×1       | MCM10470    | 35                      | 18             |
| 4096 × 1     | MCM10470A*  | 20                      | 18             |
| 1024 × 4     | MCM10474*   | 25                      | 24             |

# EPROMS MOS EPROMS

| Organization | . Part Number | Access Time<br>(ns max) | Power<br>Supplies | No. of<br>Pins |
|--------------|---------------|-------------------------|-------------------|----------------|
| 1024×8       | MCM2708C      | 450                     | + 12, ±5 V        | 24             |
| 1024×8       | MCM27A08C     | 300                     | +12, ±5 V         | 24             |
| 2048 × 8     | TMS2716C      | 450                     | + 12, ±5 V        | 24             |
| 2048×8       | MCM2716C      | 450                     | +5 V              | 24             |
| 4096 × 8     | MCM2532C      | 450                     | +5 V              | 24             |
| 8192×8       | MCM68764C     | 450                     | +5 V              | 24             |
| 8192×8       | MCM68766C     | 450                     | +5 V              | 24             |
| 8192×8       | MCM68766C35   | 350                     | +5 V              | 24             |

# EEPROMS MOS ÉEPROM

| Organization | Part Number | Access Time<br>(ns max) | Power<br>Supplies | No. of<br>Pins |
|--------------|-------------|-------------------------|-------------------|----------------|
| 16×16        | MCM2801P    | 10 μs                   | +5 V              | 14             |
| 32 × 32      | MCM2802P*   | 15 µs                   | +5 V              | 14             |
| 2048×8       | MCM2816P*   | 450 ns                  | +5 V              | 24             |
| 2048×8       | MCM2817P*   | 150 ns                  | +5 V              | 28             |
| 4096 × 8     | MCM2832P*   | 150 ns                  | +5 V              | 28             |

# ROMS MOS STATIC ROMS (+5 Volts)

### Character Generators<sup>3</sup>

| Organization Part Number |           | Access Time<br>(ns max) | No. of<br>Pins |  |
|--------------------------|-----------|-------------------------|----------------|--|
| 128 × (7 × 5)            | MCM6670P  | 350                     | 18             |  |
| 128 × (7 × 5)            | MCM6674P  | 350                     | 18             |  |
| 128×(9×7)                | MCM66700P | 350                     | -24            |  |
| 128 × (9 × 7)            | MCM66710P | 350                     | 24             |  |
| 128 × (9 × 7)            | MCM66714P | 350                     | 24             |  |
| 128 × (9 × 7)            | MCM66720P | 350                     | 24             |  |
| 128×(9×7)                | MCM66730P | 350                     | 24             |  |
| 128×(9×7)                | MCM66734P | 350                     | 24             |  |
| 128 × (9 × 7)            | MCM66740P | 350                     | 24             |  |
| 128×(9×7)                | MCM66750P | 350                     | 24             |  |
| 128×(9×7)                | MCM66760P | 350                     | 24             |  |
| 128×(9×7)                | MCM66770P | 350                     | 24             |  |
| 128×(9×7)                | MCM66780P | 350                     | 24             |  |
| 128×(9×7)                | MCM66790P | 350                     | 24             |  |

#### Binary ROMs (+5 Volts)

| Organization | Part Number                | Access Time<br>(ns max) | No. of<br>Pins |
|--------------|----------------------------|-------------------------|----------------|
| 1024×8       | MCM68A308P                 | 350                     | 24             |
| 1024 × 8     | MCM68A308P74               | 350                     | 24             |
| 1024×8       | MCM68B308P                 | 250                     | 24             |
| 2048×8       | MCM68A316EP                | 350                     | 24             |
| 2048 × 8     | MCM68A316EP914             | 350                     | 24             |
| 4096×8       | MCM68A332P                 | 350                     | 24             |
| 4096 × 8     | MCM68A332P2 <sup>4</sup>   | 350                     | 24             |
| 8192×8       | MCM68364P35                | 350                     | 24             |
| 8192×8       | MCM68364P35-3 <sup>4</sup> | 350                     | 24             |
| 8192×8       | MCM68364P20                | 250                     | 24             |
| 8192×8       | MCM68364P25                | 200                     | 24             |
| 8192×8       | MCM68365P25                | 250                     | 24             |
| 8192×8       | MCM68365P35                | 350                     | 24             |
| 8192×8       | MCM68366P25                | 250                     | 24             |
| 8192×8       | MCM68366P35                | 350                     | 24             |

## CMOS ROMs (+5 Volts)

| Organization | Part Number               | Access Time<br>(ns max) | No. of<br>Pins |
|--------------|---------------------------|-------------------------|----------------|
| 256×4        | MCM14524                  | 1200                    | 16             |
| 2048×8       | MCM65516P43               | 430                     | 18             |
| 2048×8       | MCM65516P43M <sup>4</sup> | 430                     | 18             |
| 2048×8       | MCM65516P55               | 550                     | 18             |

# **PROMs**

| Organization | Part Number | Access Time<br>(ns max) | No. of<br>Pins |
|--------------|-------------|-------------------------|----------------|
| 32×8         | MCM10139    | 20                      | 16             |
| 256 × 4      | MCM10149    | 25                      | 16             |

### **TTL PROMs**

| Organization | Part Number | Access Time<br>(ns max) | Output  | No. of<br>Pins |
|--------------|-------------|-------------------------|---------|----------------|
| 512×4        | MCM7621*    | 70                      | 3-State | 16             |
| 512×8        | MCM7641*    | 70                      | 3-State | 24             |
| 1024×4       | MCM7643     | 70                      | 3-State | 18             |
| 1024×8       | MCM7681     | 70                      | 3-State | 24             |
| 2048×4       | MCM7685     | 70                      | 3-State | 18             |
| 2048 × 8     | MCM76161*   | -70                     | 3-State | 24             |

#### MEMORY SYSTEMS SELECTOR GUIDE

#### STANDARD MEMORY SYSTEMS

Motorola Memory Systems offers a variety of standard add-in memory modules to support LSI, PDP, VAX, UNIBUS, and MULTIBUS architectures. Many of these systems offer parity options and depopulated configurations. Some systems have EDAC for detecting and correcting erroneous data. Fast read access times are featured in all systems for compatibility with the most popular and latest computer systems.

#### **Board Selector Guide**

| Host Computer                                          | Motorola Device | Organization*                                         | Access Time<br>Typ (ns) | Parity |
|--------------------------------------------------------|-----------------|-------------------------------------------------------|-------------------------|--------|
| LS-11/23, PDP-11/03                                    | MMS1132N3128    | 128K × 16                                             | 300                     | No     |
|                                                        | MMS1132P3128    | 128K × 18                                             | 300                     | Yes    |
|                                                        | MMS1142N0016    | 16K × 16 CMOS RAMs                                    | 150                     | No     |
| PDP-11/04 through                                      | MMS1117-38PC    | 64K × 18                                              | 300                     | Yes    |
| PDP-11/60 (Uses HEX SPC Slot)                          | MMS1117-48PC    | 64K × 18                                              | 350                     | Yes    |
| PDP-11/04, PDP-11/34                                   | MMS1128P3064    | 64K × 18                                              | 300                     | Yes    |
| (Modified UNIBUS Compatible)                           | MMS1128P3096    | 96K × 18                                              | 300                     | Yes    |
| PDP-11/04, PDP-11/24                                   | MMS1119P3128    | 128K × 18                                             | 300                     | Yes    |
| PDP-11/34 (Modified and Extended<br>UNIBUS Compatible) | MMS1119P4128    | 128K × 18                                             | 350                     | Yes    |
| PDP-11/44                                              | MMS1129E4512    | 1 Mbyte with EDAC (Error<br>Detection and Correction) | 350                     | No     |
| PDP-11/70                                              | MMS1170E1064    | 256 Kbyte***                                          | ••                      | No     |
| VAX-11/750                                             | MMS750AE1064    | 256 Kbyte***                                          | ••                      | No     |
|                                                        | MMS750BE1256    | 1 Mbyte***                                            | ••                      | No     |
| VAX-11/780                                             | MMS780AE1032    | 256 Kbyte***                                          |                         | No     |
| SBC 80/-, SBC 86/-                                     | MMS8512E        | 512 Kbyte (with EDAC)                                 | 350                     | No     |
| (MULTIBUS Compatible)                                  | MM \$8256E      | 256 Kbyte (with EDAC)                                 | 350                     | No     |
| EXORmacs, VERSAmodule                                  | MMS68KE4512     | 512 Kbyte (with EDAC)                                 | 350                     | No     |

LSI, PDP, VAX, and UNIBUS are trademarks of Digital Equipment Corp.

MULTIBUS is a trademark of Intel.

\*Only the most popular versions are listed. Depopulated models are also available in most series.

\*\*Access Time is a function of DEC controller as well as listed array card.

\*\*\*These cards support EDAC. Actual circuitry is on DEC controller board.

#### CUSTOM MEMORY SYSTEMS

Motorola Memory Systems has the engineering expertise necessary to support numerous applications, ranging from industrial machine control to geophysical exploration. Designs are made to customer specifications. User-defined evaluations are performed in addition to Memory Systems' standard testing procedures.

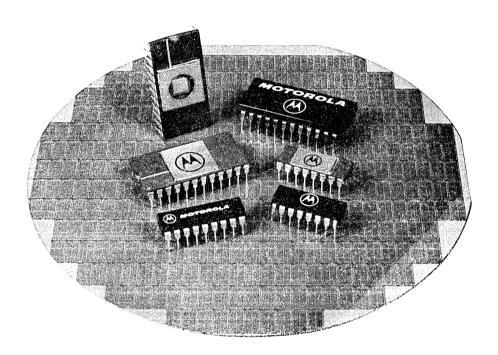
The design engineering group has over 100 man years of experience, including the thorough knowledge of semiconductor technology that is a must when designing complete systems. State-of-the-art techniques are implemented when a system is being constructed. Interleaving and block transferring are used to enhance overall system performance. Memory Systems designers are specialists at incorporating Error Detection and Correction (EDAC) to improve reliability and increase Mean Time Between Failure (MTBF). Sophisticated computer aided design equipment enhances layout of the printed circuit boards and dense memory arrays.

The circuit boards are partially assembled using automatic insertion equipment, lowering the burden on the assembly line.

Quality Assurance is intense at every stage of production.

Every product is thoroughly tested and evaluated by computer-controlled test equipment, and must meet customer specifications or be rejected.

The customer's satisfaction is the number one priority of Motorola Memory Systems. On-time customer delivery is stressed. A computerized inventory control system provides constant data on product availability. Highly trained field service personnel and the product engineering staff are always available for customer assistance. Motorola Representatives and Systems Engineers are located nationwide to assist our customers.


For more information on custom memory systems...

CALL TOLL FREE 1-800-531-5118 (512-928-6776 in Texas)

OR WRITE Motorola Memory Systems Marketing Dept. V1230 3501 Ed Bluestein Blvd. Austin, Texas 78721

# MOS Dynamic RAM

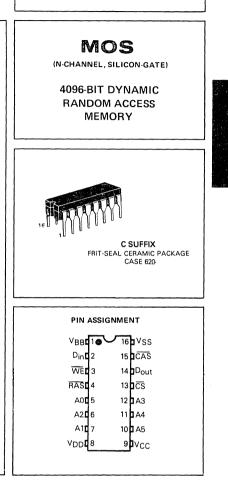




DRAM



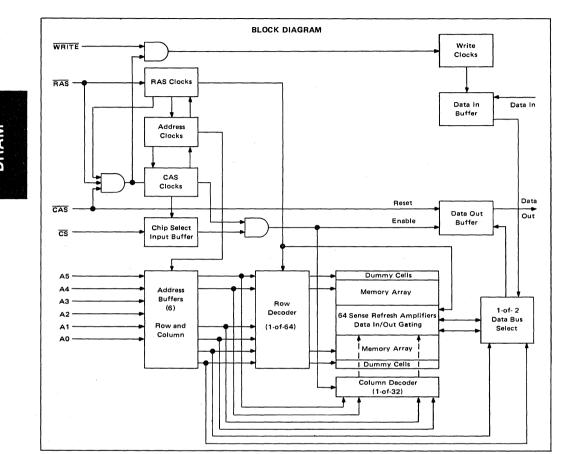
# **MCM4027A**


#### 4096-BIT DYNAMIC RANDOM ACCESS MEMORY

The MCM4027A is a 4096 x 1 bit high-speed dynamic Random Access Memory. It has smaller die size than the MCM4027 providing improved speed selections. The MCM4027A is fabricated using Motorola's highly reliable N-channel silicon-gate technology.

By multiplexing row and column address inputs, the MCM4027A requires only six address lines and permits packaging in Motorola's standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The MCM4027A incorporates a one-transistor cell design and dynamic storage techniques, with each of the 64 row addresses requiring a refresh cycle every 2.0 milliseconds.


- Maximum Access Time = 120 ns MCM4027AC1 150 ns - MCM4027AC2 200 ns - MCM4027AC3 250 ns - MCM4027AC4
- Maximum Read and Write Cycle Time = 320 ns - MCM4027AC1, C2 375 ns - MCM4027AC3, C4
- Low Power Dissipation 470 mW Max (Active) 27 mW Max (Standby)
- 3-State Output for OR-Ties
- On-Chip Latches for Address, Chip Select, and Data In
- Power Supply Pins on Package Corners for Optimum Layout
- Industry Standard 16-Pin Package
- Page-Mode Capability
- Compatible with the Popular 2104/MK4096/MCM6604
- Second Source for MK4027



#### TRUTH TABLE

|     | Inpu | its       |    |            | Data Out   |                   | Cvcle Power       | Ref | Function                |
|-----|------|-----------|----|------------|------------|-------------------|-------------------|-----|-------------------------|
| RAS | CAS  | <u>CS</u> | WE | Previous   | Interim    | Present           | Cycle Power       | nei | Function                |
| L   | L    | L         | L  | Valid data | High Imp.  | Input data        | Full-operating    | Yes | Write cycle             |
| L   | L    | L         | н  | Valid data | High Imp.  | Valid data (cell) | Full-operating    | Yes | Read cycle              |
| L   | L    | н         | x  | Valid data | High Imp.  | High Imp.         | Full-operating    | Yes | Deselected-refresh      |
| L   | н    | х         | х  | Valid data | Valid data | Valid data        | Reduced operating | Yes | RAS only-refresh        |
| н   | L    | х         | х  | Valid data | High Imp.  | High Imp.         | Standby           | No  | Standby-output disabled |
| н   | н    | х         | x  | Valid data | Valid data | Valid data        | Standby           | No  | Standby-output valid    |

H = High, L = Low, X = Don't Care



#### **OPERATING CHARACTERISTICS**

#### ADDRESSING

The MCM4027A has six address inputs (A0–A5) and two clock signals designated Row Address Strobe (RAS) and Column Address Strobe (CAS). At the beginning of a memory cycle, the six low order address bits A0 through A5 are strobed into the chip with RAS to select one of the 64 rows. The row address strobe also initiates the timing that will enable the 64 column sense amplifiers. After a specified hold time, the row address is removed and the six high order address bits (A6–A11) are placed on the address pins. This address is then strobed into the chip with CAS. Two of the 64 column sense amplifiers are selected by A1 through A5. A one of two data bus select is accomplished by A0 to complete the data selection. The Chip Select (CS) is latched into the port along with the column addresses.

#### DATA OUTPUT

In order to simplify the memory system designed and reduce the total package count, the MCM4027A contains an input data latch and a buffered output data latch. The state of the output latch and buffer at the end of a memory cycle will depend on the type of memory cycle performed and whether the chip is selected or unselected for that memory cycle.

- A chip will be unselected during a memory cycle if:
  - (1) The chip receives both RAS and CAS signals, but no Chip Select signal.
  - (2) The chip receives a CAS signal but no RAS signal. With this condition, the chip will be unselected regardless of the state of Chip Select input.
- If, during a read, write, or read-modify-write cycle,

#### MCM4027A

the chip is unselected, the output buffer will be in the high impedance state at the end of the memory cycle. The output buffer will remain in the high impedance state until the chip is selected for a memory cycle.

For a chip to be selected during a memory cycle, it must receive the following signals: RAS, CAS, and Chip Select. The state of the output latch and buffer of a selected chip during the following type of memory cycles would be:

- (1) Read Cycle On the negative edge of CAS, the output buffer will unconditionally go to a high impedance state. It will remain in this state until access time. At this time, the output latch and buffer will assume the logic state of the data read from the selected cell. This output state will be maintained until the chip receives the next CAS signal.
- (2) Write Cycle If the WE input is switched to a logic 0 before the CAS transition, the output latch and buffer will be switched to the state of the data input at the end of the access time. This logic state will be maintained until the chip receives the next CAS signal.
- (3) Read-Modify-Write Same as read cycle.

#### DATA INPUT

Data to be written into a selected storage cell of the memory chip is first stored in the on-chip data latch. The gating of this latch is performed with a combination of the  $\overline{WE}$  and  $\overline{CAS}$  signals. The last of these signals to make a negative transition will strobe the data into the latch. If the  $\overline{WE}$  input is switching to a logic 0 in the beginning of a write cycle, the falling edge of  $\overline{CAS}$  strobes the data into the latch. The data setup and hold times are then referenced to the negative edge of  $\overline{CAS}$ .

If a read-modify-write cycle is being performed, the  $\overline{WE}$  input would not make its negative transistion until after the  $\overline{CAS}$  signal was enabled. Thus, the data would not be strobed into the latch until the negative transistion of  $\overline{WE}$ . The data setup and hold times would now be referenced to the negative edge of the  $\overline{WE}$  signal. The only other timing constraints for a write-type-cycle is that both the  $\overline{CAS}$  and  $\overline{WE}$  signals remain in the logic 0 state for a sufficient time to accomplish the permanent storage of the data into the selected cell.

#### INPUT/OUTPUT LEVELS

All of the inputs to the MCM4027A are TTL-compatible, featuring high impedance and low capacitance (5 to 7 pF). The three-state data output buffer is TTL-compatible and has sufficient current sink capability (3.2 mA) to drive two TTL loads. The output buffer also has a separate V<sub>CC</sub> pin so that it can be powered from the same supply as the logic being employed.

#### REFRESH

In order to maintain valid data, each of the 64 internal rows of the MCM4027A must be refreshed once every 2 ms. Any cycle in which a RAS signal occurs accomplishes a refresh operation. Any read, write, or read-modify-write cycle will refresh an entire internally selected row. However, if a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to preform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can also be refreshed by employing only the RAS cycle. This refresh mode will not shorten the refresh cycle time; however, the system standby power can be reduced by approximately 30%.

If the RAS only refresh cycles are employed for an extended length of time, the output buffer may eventually lose data and assume the high impedance state. Applying CAS to the chip will restore activity of the output buffer.

#### POWER DISSIPATION

Since the MCM4027A is a dynamic RAM, its power drain will be extremely small during the time the chip is unselected.

The power increases when the chip is selected and most of this increase is encountered on the address strobe edge. The circuitry of the MCM4027A is largely dynamic so power is not drawn during the whole time the strobe is active. Thus the dynamic power is a function of the operating frequency rather than the active duty cycle.

In a memory system, the  $\overline{CAS}$  signal must be supplied to all the memory chips to ensure that the outputs of the unselected chips are switched to the high impedance state. Those chips that do not receive a  $\overline{RAS}$  signal will not dissipate any power on the  $\overline{CAS}$  edge except for that required to turn off the chip outputs. Thus, in order to ensure minimum system power, the  $\overline{RAS}$  signal should be decoded so that only the chips to be selected receive a  $\overline{RAS}$  signal. If the  $\overline{RAS}$  signal is decoded, then the chip select input of all the chips can be set to a logic 0 state.

Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable, Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser any license under the patent rights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product(s) to which the information applies and to discontinue manufacture of the product(s) at any time.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

#### RECOMMENDED OPERATING CONDITIONS (Referenced to V<sub>SS</sub> = Ground.)

| Parameter                                                           | Symbol          | Min          | Тур                      | Max             | Unit                      | Notes |
|---------------------------------------------------------------------|-----------------|--------------|--------------------------|-----------------|---------------------------|-------|
| Supply Voltage                                                      | VDD             | 10.8         | 12.0                     | 13.2            | Vdc                       | 2     |
|                                                                     | Vcc             | VSS          | 5.0                      | VDD             | Vdc                       | 3     |
|                                                                     | VSS             | 0            | 0                        | 0               | Vdc                       | 2     |
|                                                                     | VBB             | -4.5         | -5.0                     | -5.5            | Vdc                       | 2     |
| Logic 1 Voltage, RAS, CAS, WRITE                                    | VIHC            | 2.4          | 5.0                      | 7.0             | Vdc                       | 2, 4  |
| Logic 1 Voltage, all inputs except RAS, CAS, WRITE                  | VIH             | 2.2          | 5.0                      | 7.0             | Vdc                       | 2, 4  |
| Logic 0 Voltage, all inputs                                         | VIL             | -1.0         | 0                        | 0.8             | Vdc                       | 2, 4  |
| DC CHARACTERISTICS (V <sub>DD</sub> = 12 V ± 10%, V <sub>CC</sub> = | 5.0 V ± 10%, VB | B = -5.0 V ± | 10%, V <sub>SS</sub> = 0 | $V, T_A = 0$ to | 70 <sup>o</sup> C.) Notes | 1, 5  |
| Characteristic                                                      | Symbol          | Min          | Тур                      | Max             | Units                     | Notes |
| Average VDD Power Supply Current                                    | IDD1            |              |                          | 35              | mA                        | 6     |
| V <sub>CC</sub> Power Supply Current                                | Icc             |              |                          |                 | mA                        | 7     |
| Average VBB Power Supply Current                                    | IBB             |              |                          | 250             | μA                        |       |
| Standby V <sub>DD</sub> Power Supply Current                        | IDD2            |              |                          | 2               | mA                        | 9     |
| Average VDD Power Supply Current during                             | IDD3            |              |                          | 25              | mA                        | 6     |
| "RAS only" cycles                                                   |                 |              |                          |                 |                           |       |
| Input Leakage Current (any input)                                   | 1(L)            |              |                          | 10              | μA                        | 8     |
| Output Leakage Current                                              | IO(L)           |              |                          | 10              | μΑ                        | 9,10  |
| Output Logic 1 Voltage @ Iout = -5 mA                               | VOH             | 2.4          |                          |                 | Vdc                       |       |
| Output Logic 0 Voltage @ Iout = 3.2 mA                              | VOL             |              |                          | 0.4             | Vdc                       | 1     |

NOTES 1 through 11:

1.  $T_A$  is specified for operation at frequencies to  $t_BC \geq t_BC(\mathsf{min})$ . Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible provided that all ac parameters are met.

2. All voltages referenced to VSS.

3. Output voltage will swing from V<sub>SS</sub> to V<sub>CC</sub> when enabled, with no output load. For purposes of maintaining data in standby mode, V<sub>CC</sub> may be reduced to V<sub>SS</sub> without affecting refresh operations or data retention. However, the V<sub>OH</sub>(min) specification is not guaranteed in this mode.

4. Device speed is not guaranteed at input voltages greater than TTL levels (0 to 5 v).

5. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose. 6. Current is proportional to cycle rate.  $I_{DD1}(max)$  is measured at the cycle rate specified by  $t_{RC}(min)$ .

7. I<sub>CC</sub> depends on output loading. During readout of high level data V<sub>CC</sub> is connected through a low impedance (135  $\Omega$  typ) to Data Out. At all other times I<sub>CC</sub> consists of leakage currents only. 8. All device pins at 0 volts except V<sub>BB</sub> which is at -5 volts and the pin under test which is at +10 volts.

9. Output is disabled (high-impedance) and  $\overline{RAS}$  and  $\overline{CAS}$  are both at a logic 1. Transient stabilization is required prior to measurement of this parameter.

 $10.0 V \le V_{Out} \le +10 V.$ 

11. Effective capacitance is calculated from the equation:

 $C = \frac{\Delta Q}{\Delta V}$  with  $\Delta V = 3$  volts.

EFFECTIVE CAPACITANCE (Full operating voltage and temperature range, periodically sampled rather than 100% tested) Note 11

|                    | Characteristic                | Symbol                 | Max  | Unit |
|--------------------|-------------------------------|------------------------|------|------|
| Input Capacitance  | (A0-A5), D <sub>in</sub> , CS | Cin(EFF)               | 5.0  | pF   |
|                    | RAS, CAS, WRITE               |                        | 10.0 |      |
| Output Capacitance | ·                             | C <sub>out</sub> (EFF) | 7.0  | pF   |

#### **ABSOLUTE MAXIMUM RATINGS (See Notes 1 and 2)**

| Rating                              | Symbol                             | Value       | Unit |
|-------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to VBB* | V <sub>in</sub> , V <sub>out</sub> | -0.5 to +20 | Vdc  |
| Operating Temperature Range         | TA                                 | 0 to +70    | °C   |
| Storage Temperature Range           | T <sub>stg</sub>                   | -65 to +150 | °C   |
| Output Current (Short Circuit)      | lout                               | 50          | mAdc |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS ARE EXCEEDED. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. VBB must be applied prior to V<sub>CC</sub> and V<sub>DD</sub>. V<sub>BB</sub> must also be the last power supply switched off. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles)

# RECOMMENDED AC OPERATING CONDITIONS ( $v_{DD}$ = 12 V + 10%, $v_{CC}$ = 5.0 V ± 10%, $v_{BB}$ = -5.0 V ± 10%, $v_{SS}$ = 0 V, $T_A$ = 0 to 70°C.) Notes 1, 5, 12, 18

|                                            |                 | MCM4 | 027AC1 | MCM4 | 027AC2 | MCM4 | 027AC3 | MCM4 | 027AC4 |       |        |
|--------------------------------------------|-----------------|------|--------|------|--------|------|--------|------|--------|-------|--------|
| Parameter                                  | Symbol          | Min  | Max    | Min  | Max    | Min  | Max    | Min  | Max    | Units | Notes  |
| Random Read or Write Cycle Time            | 'RC             | 320  |        | 320  |        | 375  |        | 375  |        | ns    | 13     |
| Read Write Cycle Time                      | 'RWC            | 320  |        | 320  |        | 375  |        | 375  |        | ns    | 13     |
| Page Mode Cycle Time                       | 'PC             | 160  |        | 170  |        | 225  |        | 285  |        | ns    | 13     |
| Access Time From Row Address Strobe        | 'RAC            |      | 120    |      | 150    |      | 200    |      | 250    | ns'   | 14, 16 |
| Access Time From Column Address Strobe     | 'CAC            |      | 80     |      | 100    |      | 135    |      | 165    | ns    | 15, 16 |
| Output Buffer and Turn-Off Delay           | 'OFF            |      | 35     |      | 40     |      | 50     |      | 60     | ns    |        |
| Row Address Strobe Precharge Time          | <sup>t</sup> RP | 100  |        | 100  |        | 120  |        | 120  |        | ns    |        |
| Row Address Strobe Pulse Width             | 'RAS            | 120  | 10,000 | 150  | 10,000 | 200  | 10,000 | 250  | 10,000 | ns    |        |
| Row Address Strobe Hold Time               | 'RSH            | 80   |        | 100  |        | 135  |        | 165  |        | ns    |        |
| Column Address Strobe Pulse Width          | 'CAS            | 80   |        | 100  |        | 135  |        | 165  |        | ns    |        |
| Column Address Strobe Hold Time            | 'CSH            | 120  |        | 150  |        | 200  |        | 250  |        | ns    |        |
| Row to Column Strobe Lead Time             | 'RCD            | 15   | 40     | 20   | 50     | 25   | 65     | 35   | 85     | ns    | 17     |
| Row Address Setup Time                     | 'ASR            | 0    |        | 0    |        | 0    |        | 0    |        | ns    |        |
| Row Address Hold Time                      | 'RAH            | 15   |        | 20   |        | 25   |        | 35   |        | ns    |        |
| Column Address Setup Time                  | 'ASC            | -5   |        | -10  |        | -10  |        | -10  |        | ns    |        |
| Column Address Hold Time                   | 'CAH            | 40   |        | 45   |        | 55   |        | 75   |        | ns    |        |
| Column Address Hold Time Referenced to RAS | 'AR             | 80   |        | 95   |        | 120  |        | 160  |        | ns    |        |
| Chip Select Setup Time                     | 'CSC            | 0    |        | -10  |        | -10  |        | -10  |        | ns    |        |
| Chip Select Hold Time                      | 'СН             | 40   |        | 45   |        | 55   |        | 75   |        | ns    |        |
| Chip Select Hold Time Referenced to RAS    | 'CHR            | 80   |        | 95   |        | 120  |        | 160  |        | ns    |        |
| Transition Time Rise and Fall              | 'T              | 3    | 35     | 3    | 35     | 3    | 50     | 3    | 50     | ns    | 18     |
| Read Command Setup Time                    | 'RCS            | 0    |        | 0    |        | 0    |        | 0    |        | ns    |        |
| Read Command Hold Time                     | 'RCH            | 0    |        | 0    |        | .0   |        | 0    |        | ns    |        |
| Write Command Hold Time                    | WCH             | 40   |        | 45   |        | 55   |        | 75   |        | ns    |        |
| Write Command Hold Time Referenced to RAS  | 'WCR            | 80   |        | 95   |        | 120  |        | 160  |        | ns    |        |
| Write Command Pulse Width                  | 'WP             | 40   |        | 45   |        | 55   |        | 75   |        | ns    |        |
| Write Command to Row Strobe Lead Time      | 'RWL            | 50   |        | 50   |        | 70   |        | 85   |        | ns    |        |
| Write Command to Column Strobe Lead Time   | 'CWL            | 50   |        | 50   |        | 70   |        | 85   |        | ns    |        |
| Data in Setup Time                         | 'DS             | 0    |        | 0    |        | 0    |        | 0    |        | ns    | 19     |
| Data in Hold Time                          | 'DH             | 40   |        | 45   |        | 55   |        | 75   |        | ns    | 19     |
| Data in Hold Time Referenced to RAS        | 'DHR            | 80   |        | 95   |        | 120  |        | 160  |        | ns    |        |
| Column to Row Strobe Precharge Time        | 'CRP            | 0    |        | 0    |        | 0    |        | 0    |        | ns    | 1      |
| Column Precharge Time                      | 'CP             | 60   |        | 60   |        | 80   |        | 110  |        | ns    |        |
| Refresh Period                             | 'RFSH           |      | 2      |      | 2      |      | 2      |      | 2      | ms    |        |
| Write Command Setup Time                   | 'WCS            | 0    |        | 0    |        | 0    |        | 0    |        | ns    |        |
| CAS to WRITE Delay                         | 'CWD            | 60   |        | 60   |        | 80   |        | 90   |        | ns    | 20     |
| RAS to WRITE Delay                         | 'RWD            | 100  |        | 110  |        | 145  |        | 175  |        | ns    | 20     |
| Data Out Hold Time                         | 'ООН            | 10   |        | 10   | •      | 10   |        | 10   |        | μs    |        |

#### NOTES 12 through 20:

12. AC measurements assume  $t_T = 5$  ns.

13. The specifications for t<sub>RC</sub>(min) and t<sub>RWC</sub>(min) are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ}C \le T_A \le 70^{\circ}C$ ) is assured.

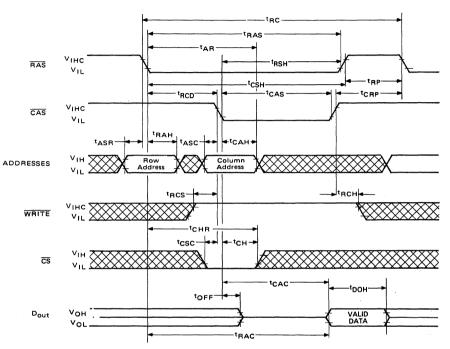
14. Assumes that  $t_{RCD} \leq t_{RCD}(max)$ .

15. Assumes that  $t_{RCD} \ge t_{RCD}$  (max).

16. Measured with a load circuit equivalent to 2 TTL loads and 100  $\ensuremath{\text{pF}}$  .

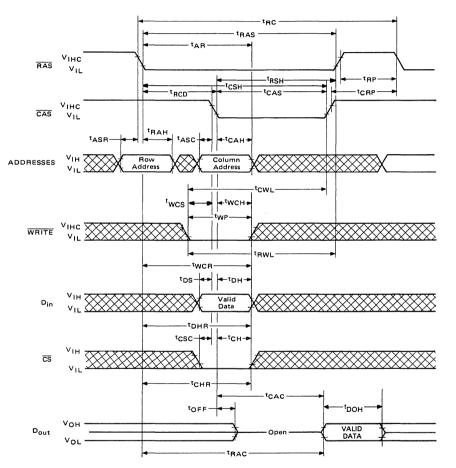
17. Operation within the  $t_{RCD}(max)$  limit insures that  $t_{RAC}(max)$  can be met.  $t_{RCD}(max)$  is specified as a reference point only; if  $t_{RCD}$  is greater than the specified  $t_{RCD}(max)$  limit, then access time is controlled exclusively by  $t_{CAC}$ .

 $18.V_{IHC}({\sf min}) \text{ or } V_{IH}({\sf min}) \text{ and } V_{IL}({\sf max}) \text{ are reference levels for measuring timing of input signals. Also, transition times are measured between } V_{IHC} \text{ or } V_{IH} \text{ and } V_{IL}.$ 


19. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify write cycles.

20. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characterisitcs only: If tWCS  $\geq$  tWCS(min), the cycle is an early write cycle and Data Out will contain the data written into the selected cell. If tCWD  $\geq$  tCWD(min) and tRWD  $\geq$  tRWD(min), the cycle is a read-write cycle and Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of Data Out (at access time) is indeterminate.

4


READ CYCLE TIMING

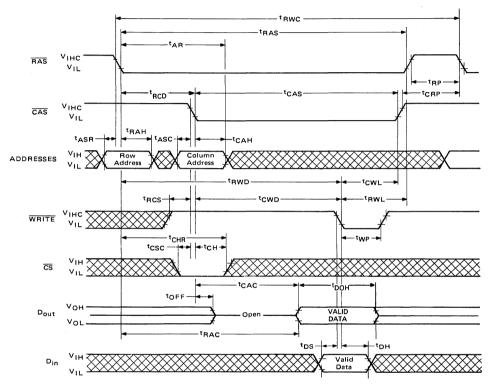
l



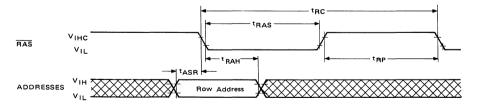
2-8

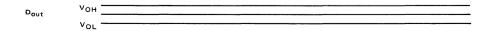
WRITE CYCLE TIMING



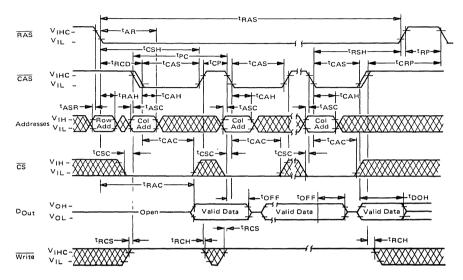

ŧ

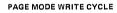
1

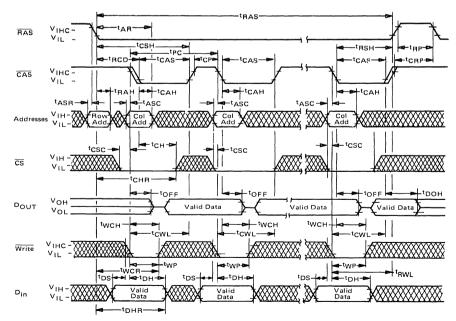

4


#### READ-MODIFY-WRITE TIMING

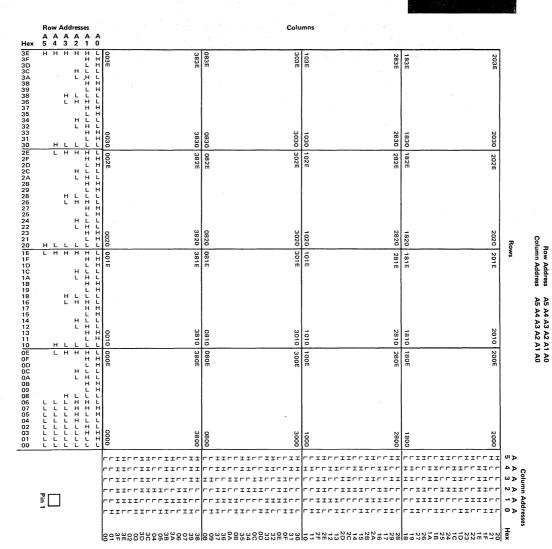
DRAM





RAS ONLY REFRESH TIMING







PAGE MODE READ CYCLE







DRAM



MCM4027A BIT ADDRESS MAP

•

2-12





## **MCM4116B**

MOS

(N-CHANNEL)

#### **16,384-BIT DYNAMIC RANDOM ACCESS MEMORY**

The MCM4116B is a 16,384-bit, high-speed dynamic Random Access Memory designed for high-performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one-bit words and fabricated using Motorola's highly reliable N-channel double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM4116B requires only seven address lines and permits packaging in Motorola's standard 16-pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3-state TTL compatible. The data output of the MCM4116B is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and two dimensional memory selection by decoding both row address and column address strobes.

The MCM4116B incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cycle every 2 milliseconds.

- Flexible Timing with Read-Modify-Write, RAS-Only Refresh, and Page-Mode Capability
- Industry Standard 16-Pin Package
- 16,384 X 1 Organization

0

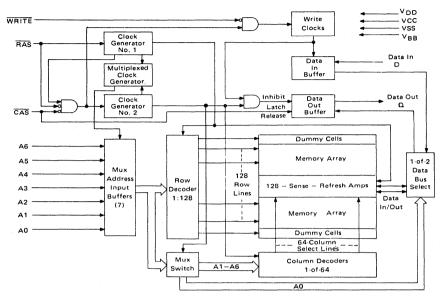
- ±10% Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- O Common I/O Capability When Using "Early Write" Mode
- On-Chip Latches for Addresses and Data In
- Low Power Dissipation 463 mW Active, 20 mW Standby (Max)

| ) | Fast Access Time Options:150 ns — MCM4116BP-15, BC-15 |  |
|---|-------------------------------------------------------|--|
|   | 200 ns — MCM4116BP-20, BC-20                          |  |
|   | 250 ns — MCM4116BP-25, BC-25                          |  |
|   | 300 ns — MCM4116BP-30, BC-30                          |  |

Easy Upgrade from 16-Pin 4K RAMs

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                             | Symbol                             | Value       | Unit |
|------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to VBB | V <sub>in</sub> , V <sub>out</sub> | -0.5 to +20 | v    |
| Operating Temperature Range        | TA                                 | 0 to +70    | °C   |
| Storage Temperature Range          | T <sub>stg</sub>                   | -65 to +150 | °C   |
| Power Dissipation                  | PD                                 | 1.0         | w    |
| Data Out Current                   | lout                               | 50          | mA   |


NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

| BIT DYI<br>DOM AC<br>IEMORY                              | CESS                                                              |
|----------------------------------------------------------|-------------------------------------------------------------------|
|                                                          |                                                                   |
|                                                          | RAMIC PACKAGE<br>SE 620                                           |
| CA                                                       | RAMIC PACKAGE<br>SE 620                                           |
| ASSIGNME                                                 | RAMIC PACKAGE<br>SE 620                                           |
|                                                          | RAMIC PACKAGE<br>SE 620<br>ENT                                    |
| CA<br>ASSIGNMI<br>1 16<br>2 15                           | RAMIC PACKAGE<br>SE 620<br>ENT<br>DV <sub>SS</sub><br>JCAS        |
|                                                          | RAMIC PACKAGE<br>SE 620<br>ENT<br>DV <sub>SS</sub><br>JCAS        |
| CA<br>ASSIGNME<br>1 16<br>2 15<br>3 14                   | RAMIC PACKAGE<br>SE 620<br>ENT<br>DV <sub>SS</sub><br>JCAS        |
| CA<br>ASSIGNME<br>1 16<br>2 15<br>3 14<br>4 13           | RAMIC PACKAGE<br>SE 620<br>ENT<br>DVSS<br>J CAS<br>JQ             |
| CA<br>ASSIGNME<br>1 • 16<br>2 15<br>3 14<br>4 13<br>5 12 | RAMIC PACKAGE<br>SE 620<br>ENT<br>DVSS<br>JCAS<br>JQ<br>JQ<br>JA6 |
|                                                          |                                                                   |

| PIN NAMES                                      |                                                                                                              |  |  |  |  |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CAS<br>D<br>Q<br>RAS<br>W<br>VBB<br>VCC<br>VDD | Address Inputs<br>Column Address Strobe<br>Data In<br>Data Out<br>Row Address Strobe<br>Read/Write Input<br> |  |  |  |  |  |  |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. DRAM

BLOCK DIAGRAM



DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) **RECOMMENDED OPERATING CONDITIONS** 

| Parameter                                          | Symbol                        | Min                    | Тур        | Max                    | Unit  | Notes |
|----------------------------------------------------|-------------------------------|------------------------|------------|------------------------|-------|-------|
| Supply Voltage                                     | V <sub>DD</sub>               | 10.8                   | 12.0       | 13.2                   | V     | 1     |
|                                                    | Vcc                           | 4.5                    | 5.0        | 5.5                    | v     | 1,2   |
|                                                    | V <sub>SS</sub>               | 0                      | 0          | 0                      | V     | 1     |
|                                                    | VBB                           | -4.5                   | -5.0       | -5.5                   | v     | 1     |
| Logic 1 Voltage, RAS, CAS, WRITE                   | VIHC                          | 2.4                    | -          | 7.0                    | V     | 1     |
| Logic 1 Voltage, all inputs except RAS, CAS, WRITE | VIH                           | 2.4                    | -          | 7.0                    | v     | 1.    |
| Logic 0 Voltage, all inputs                        | VIL                           | -1.0                   |            | 0.8                    | V     | 1     |
| C CHARACTERISTICS (VDD = 12 V 10%, VCC - 5.0 V 10% | , V <sub>BB</sub> -5.0 V · 10 | %, V <sub>SS</sub> = 0 | V, T A - C | to 70 <sup>0</sup> C.) |       |       |
| Characteristic                                     | Symbol                        | Min                    | Max        | < 1                    | Jnits | Notes |
| Average VDD Power Supply Current                   | <sup>I</sup> DD1              | -                      | 35         |                        | mA    | 4     |
| V <sub>CC</sub> Power Supply Current               | 1cc                           | -                      | -          | - n                    |       | 5     |
| Average VBB Power Supply Current                   | <sup>I</sup> BB1,3            | -                      | 200        | 2                      | μA    |       |
| Standby VBB Power Supply Current                   | IBB2                          |                        | 100        | 0 μA                   |       |       |

| 55                                                        | 001               |     |     |    |     |
|-----------------------------------------------------------|-------------------|-----|-----|----|-----|
| Standby VDD Power Supply Current                          | IDD2              | -   | 1.5 | mA | 6   |
| Average VDD Power Supply Current during "RAS only" cycles | DD3               | -   | 27  | mA | 4   |
| Input Leakage Current (any input)                         | Ч(L)              | -   | 10  | μA |     |
| Output Leakage Current                                    | <sup>1</sup> O(L) | -   | 10  | μA | 6,7 |
| Output Logic 1 Voltage @ Iout = -5 mA                     | ∨он               | 2.4 | -   | V  | 2   |
| Output Logic 0 Voltage @ Iout = 4.2 mA                    | VOL               | -   | 0.4 | V  |     |

NOTES: 1. All voltages referenced to V<sub>SS</sub>, V<sub>BB</sub> must be applied before and removed after other supply voltages.

Output voltage will swing from Vgs to V<sub>CC</sub> under open circuit conditions. For purposes of maintaining data in power-down mode, V<sub>CC</sub> may be reduced to V<sub>SS</sub> without affecting refresh operations. V<sub>OH</sub>(min) specification is not guaranteed in this mode.

3. Several cycles are required after power up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate.

4. Current is proportional to cycle rate; maximum current is measured at the fastest cycle rate.

5. I<sub>CC</sub> depends upon output loading. The  $V_{CC}$  supply is connected to the output buffer only. 6. Output is disabled (open-circuit) when  $\overrightarrow{CAS}$  is at a logic 1.

7.  $0 V \leq V_{out} \leq +5.5 V.$ 

CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25°C, V<sub>CC</sub> = 5 V, periodically sampled rather than 100% tested) (See Note 8)

| Parameter                                  | Symbol          | Тур | Max | Unit | Notes |
|--------------------------------------------|-----------------|-----|-----|------|-------|
| Input Capacitance (A0-A5), D <sub>in</sub> | C <sub>I1</sub> | 4.0 | 5.0 | рF   | 9     |
| Input Capacitance RAS, CAS, WRITE          | C <sub>I2</sub> | 8.0 | 10  | рF   | 9     |
| Output Capacitance (Dout)                  | Co              | 5.0 | 7.0 | рF   | 7, 9  |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9, 14)

READ, WRITE, AND READ-MODIFY-WRITE CYCLES

 $(V_{DD} = 12 \text{ V} \pm 10\%, V_{CC} = 5.0 \text{ V} \pm 10\%, V_{BB} = -5.0 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, T_A = 0 \text{ to } 70^{\circ}\text{C.})$ 

|                                               |                   | MCM4 | 116B-15 | MCM4 | M4116B-20 MCM4116B-25 |     |        |     | 16B-30 |       | Ì      |
|-----------------------------------------------|-------------------|------|---------|------|-----------------------|-----|--------|-----|--------|-------|--------|
| Parameter                                     | Symbol            | Min  | Max     | Min  | Max                   | Min | Max    | Min | Max    | Units | Notes  |
| Random Read or Write Cycle Time               | tRC               | 375  |         | 375  | -                     | 410 | -      | 480 | -      | ns    |        |
| Read Write Cycle Time                         | tRWC              | 375  | -       | 375  | -                     | 515 | -      | 660 | -      | ns    |        |
| Access Time from Row Address Strobe           | <sup>t</sup> RAC  | -    | 150     | -    | 200                   | -   | 250    | -   | 300    | ns    | 10, 12 |
| Access Time from Column Address Strobe        | <sup>t</sup> CAC  | -    | 100     | -    | 135                   |     | 165    | -   | 200    | ns    | 11, 12 |
| Output Buffer and Turn-off Delay              | tOFF              | 0    | 50      | 0    | 50                    | 0   | 60     | 0   | 60     | ns    | 17     |
| Row Address Strobe Precharge Time             | tRP               | 100  | -       | 120  | -                     | 150 |        | 180 | -      | ns    |        |
| Row Address Strobe Pulse Width                | <sup>t</sup> RAS  | 150  | 10,000  | 200  | 10,000                | 250 | 10,000 | 300 | 10,000 | ns    |        |
| Column Address Strobe Pulse Width             | tCAS              | 100  | 10,000  | 135  | 10,000                | 165 | 10,000 | 200 | 10,000 | ns    |        |
| Row to Column Strobe Lead Time                | tRCD              | 20   | 50      | 25   | 65                    | 35  | 85     | 60  | 100    | ns    | 13     |
| Row Address Setup Time                        | <sup>t</sup> ASR  | 0    | -       | 0    | -                     | 0   | -      | 0   | -      | ns    |        |
| Row Address Hold Time                         | <sup>t</sup> RAH  | 20   | -       | 25   | -                     | 35  | -      | 60  | -      | ns    |        |
| Column Address Setup Time                     | <sup>t</sup> ASC  | -10  | -       | -10  | -                     | -10 | -      | -10 | -      | ns    |        |
| Column Address Hold Time                      | <sup>t</sup> CAH  | 45   | -       | 55   | -                     | 75  |        | 100 | -      | ns    |        |
| Column Address Hold Time<br>Referenced to RAS | <sup>t</sup> AR   | 95   | -       | 120  | -                     | 160 | -      | 200 | -      | ns    |        |
| Transition Time (Rise and Fall)               | tŢ                | 3.0  | 35      | 3.0  | 50                    | 3.0 | 50     | 3.0 | 50     | ns    | 14     |
| Read Command Setup Time                       | tRCS              | 0    |         | 0    | -                     | 0   | -      | 0   | -      | ns    |        |
| Read Command Hold Time                        | <sup>t</sup> RCH  | 0    | -       | 0    | -                     | 0   | -      | 0   | -      | ns    |        |
| Write Command Hold Time                       | tWCH              | 45   | -       | 55   | -                     | 75  | -      | 100 |        | ns    |        |
| Write Command Hold Time<br>Referenced to RAS  | tWCR              | 95   | -       | 120  | -                     | 160 | -      | 200 | -      | ns    |        |
| Write Command Pulse Width                     | tWP               | 45   | -       | 55   | -                     | 75  | -      | 100 | -      | ns    |        |
| Write Command to Row Strobe Lead Time         | <sup>t</sup> RWL  | 60   | -       | 80   | -                     | 100 | -      | 180 | -      | ns    |        |
| Write Command to Column Strobe<br>Lead Time   | tCWL              | 60   | -       | 80   | -                     | 100 | -      | 180 | -      | ns    |        |
| Data in Setup Time                            | tDS               | 0    | -       | 0    | -                     | 0   | -      | 0   | -      | ns    | 15     |
| Data in Hold Time                             | <sup>t</sup> DH   | 45   | -       | 55   | -                     | 75  | -      | 100 | -      | ns    | 15     |
| Data in Hold Time Referenced to RAS           | <sup>t</sup> DHR  | 95   | -       | 120  | -                     | 160 | -      | 200 | -      | ns    |        |
| Column to Row Strobe Precharge Time           | tCRP              | -20  | -       | -20  | -                     | -20 | -      | -20 | -      | ns    |        |
| RAS Hold Time                                 | trsh              | 100  | -       | 135  | -                     | 165 | -      | 200 | -      | ns    |        |
| Refresh Period                                | <sup>t</sup> RFSH |      | 2.0     | -    | 2.0                   | -   | 2.0    |     | 2.0    | ms    |        |
| WRITE Command Setup Time                      | twcs              | -20  | -       | -20  | -                     | -20 | -      | -20 | -      | ns    |        |
| CAS to WRITE Delay                            | <sup>t</sup> CWD  | 70   |         | 95   | -                     | 125 | -      | 180 |        | ns    | 16     |
| RAS to WRITE Delay                            | tRWD              | 120  | -       | 160  |                       | 210 | -      | 280 | -      | ns    | 16     |
| CAS Precharge Time (Page mode cycle only)     | tCP               | 60   | -       | 80   | -                     | 100 | -      | 100 | -      | ns    |        |
| Page Mode Cycle Time                          | tPC               | 170  | -       | 225  | -                     | 275 | -      | 325 | -      | ns    |        |
| CAS Hold Time                                 | <sup>t</sup> CSH  | 150  | -       | 200  | _                     | 250 | -      | 300 | -      | ns    |        |

NOTES: (continued)

8. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = \frac{i\Delta_T}{\Delta V}$ 

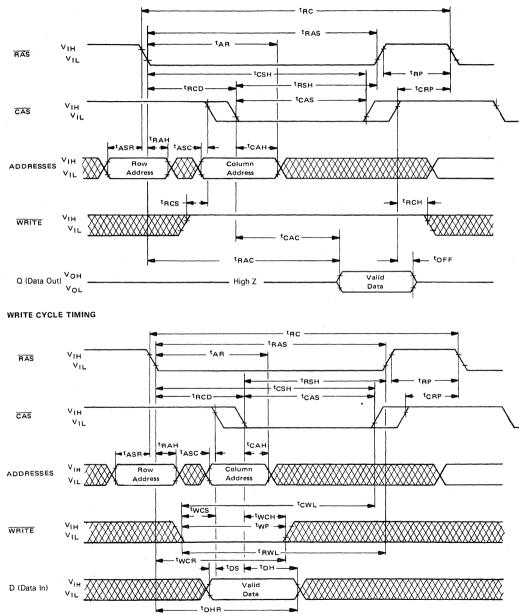
9. AC measurements assume t<sub>T</sub> = 5.0 ns.

10. Assumes that  $t_{RCD} + t_T \leq t_{RCD}$  (max).

11. Assumes that  $t_{RCD} + t_T \ge t_{RCD}$  (max).

12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.

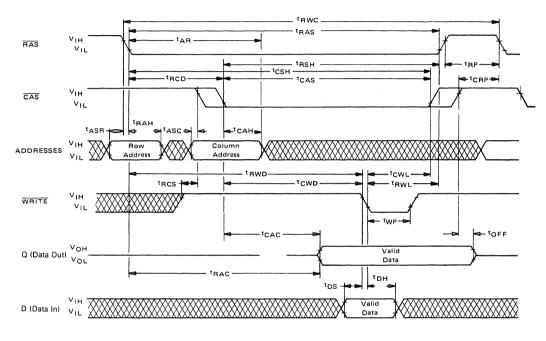
- Operation within the t<sub>RCD</sub> (max) limit ensures that t<sub>RAC</sub> (max) can be met. t<sub>RCD</sub> (max) is specified as a reference point only; if t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub> (max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.
- 14. VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transistion times are measured between VIHC or VIH and VIL.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.
- 16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS > tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If tCWD > tCWD (min) and tRWD > tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (a access time) is indeterminate.


2 - 15

17. Assumes that  $t_{CRP} > 50$  ns.

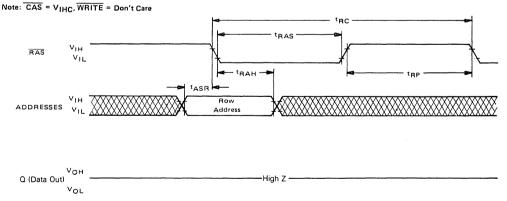
.

DRAM

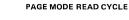

READ CYCLE TIMING



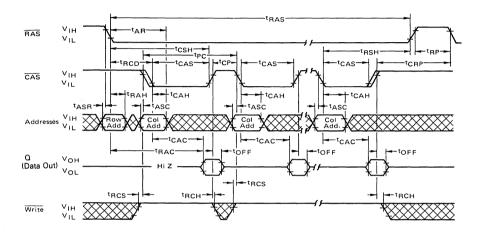
V<sub>OH</sub> Q (Data Out) V<sub>OL</sub>


– High Z –

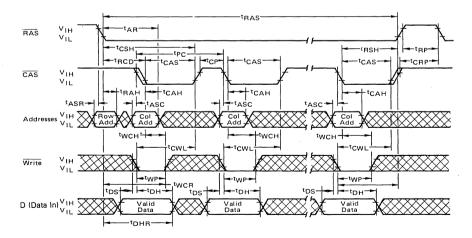
#### READ-WRITE/READ-MODIFY-WRITE CYCLE




DRAM


RAS ONLY REFRESH TIMING




2-17



DRAM



PAGE MODE WRITE CYCLE



2-18

#### MCM4116B

#### MCM4116B BIT ADDRESS MAP



4

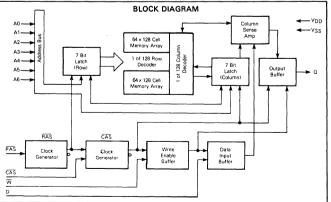
ł

á



### MCM4517

### **Advance Information**


### 16,384-BIT DYNAMIC RAM

The MCM4517 is a 16,384-bit, high-speed, dynamic Random-Access Memory. Organized as 16,384 one-bit words and fabricated using HMOS high-performance, N-channel, silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM4517 requires only seven address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by  $\overline{CAS}$  allowing for greater system flexibility.

All inputs and outputs, including.clocks, are fully TTL compatible. The MCM4517 incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 16,384 Words of 1 Bit
- Single +5 Volt Operation
- Fast 100 ns Operation
- Low Power Dissipation: 170 mW Maximum (Active) 14 mW Maximum (Standby)
- Maximum Access Time
  - MCM4517-10 100 ns
  - MCM4517-12 120 ns
  - MCM4517-15 150 ns
  - MCM4517-20 200 ns
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Output Capability
- 64K Compatible 128-cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatibility from the 16K RAM (MCM4116) to the 64K RAM (MCM6664)
- Allows Undershoot VIL min = -2 V
- Hidden RAS Only Refresh Capability



This document contains information on a new product. Specifications and information herein are subject to change without notice.

|                  | 6,384-BIT<br>AMIC RAM                |    |
|------------------|--------------------------------------|----|
|                  |                                      |    |
| 16               |                                      |    |
| PLAS             | P SUFFIX<br>STIC PACKAGE<br>CASE 648 |    |
|                  |                                      |    |
| PIN A            | SSIGNMENT                            |    |
| N/C <b>D</b> 1   | - 00                                 |    |
|                  |                                      |    |
|                  | E E                                  |    |
| A0 0 5           | Г                                    |    |
| A0 L 5<br>A2 L 6 |                                      |    |
| A1 1 7           |                                      |    |
| Vcc <b>[</b> 8   |                                      |    |
|                  | N NAMES                              |    |
|                  | Address Inpu<br>Data I               |    |
| Q                | Data Ou                              | ut |
|                  | Read/Write Inpu<br>Row Address Strob |    |
| CAS              | .Column Address Strob                | be |
|                  | Groun                                |    |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                             | Symbol           | Value       | Unit |
|------------------------------------|------------------|-------------|------|
| Voltage on Any Pin Relative to VSS | Vin, Vout        | -2 to +7    | Vdc  |
| Operating Temperature Range        | TA               | 0 to + 70   | °C   |
| Storage Temperature Range          | T <sub>stg</sub> | -65 to +150 | °C   |
| Power Dissipation                  | PD               | 1.0         | W    |
| Data Out Current                   | lout             | 50          | mA   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

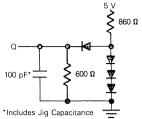



FIGURE 1 - OUTPUT LOAD

### Includes Jig Capa

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted.)

### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                   | Symbol     | Min      | Тур      | Max      | Unit | Notes |
|-----------------------------|------------|----------|----------|----------|------|-------|
| Supply Voltage              | VCC<br>VSS | 4.5<br>0 | 5.0<br>0 | 5.5<br>0 | V    | 1     |
| Logic 1 Voltage, All Inputs | ViH        | 2.4      | -        | 7.0      | V    | 1     |
| Logic 0 Voltage, All Inputs | VIL        | - 2.0    | -        | 0.8      | V    | . 1   |
| DC CHARACTERISTICS          |            |          |          |          |      |       |

| Characteristics                                                                                                                                                                               | Symbol | Min         | Тур                  | Max                  | Units | Notes |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|----------------------|----------------------|-------|-------|
| VCC Supply Current (Standby)                                                                                                                                                                  | ICC1   | -           | 1.8                  | .2.5                 | mA    | 5     |
| V <sub>CC</sub> Supply Current (Operating)<br>4517-10, t <sub>RC</sub> = 235<br>4517-12, t <sub>RC</sub> = 270<br>4517-15, t <sub>RC</sub> = 320<br>4517-20, t <sub>RC</sub> = 350            | ICC2   |             | 22<br>20<br>18<br>16 | 31<br>28<br>25<br>23 | mA    | 4     |
| V <sub>CC</sub> Supply Current (RAS-Only Cycle)<br>4517-10, t <sub>RC</sub> = 235<br>4517-12, t <sub>RC</sub> = 270<br>4517-15, t <sub>RC</sub> = 320<br>4517-20, t <sub>RC</sub> = 350       | ICC3   | -<br>-<br>- | 14<br>12<br>11<br>10 | 23<br>21<br>19<br>18 | mA    | 4     |
| V <sub>CC</sub> Standby Current (Standby, Output Enable) (CAS at VIL, RAS at VIH)                                                                                                             | ICC4   | -           | 2                    | 5                    | mA    |       |
| V <sub>CC</sub> Supply Current (Page Mode Cycle Only)<br>4517-10, t <sub>RC</sub> = 235<br>4517-12, t <sub>RC</sub> = 270<br>4517-15, t <sub>RC</sub> = 320<br>4517-20, t <sub>RC</sub> = 350 | ICC5   |             | 17<br>15<br>13<br>10 | 23<br>21<br>18<br>15 | mA    |       |
| Input Leakage Current (Any Input)                                                                                                                                                             | 1(L)   | -           | _                    | 10                   | μA    |       |
| Output Leakage Current ( $0 \le V_{out} \le 5.5$ ) (CAS at Logic 1)                                                                                                                           | IO(L)  | -           | -                    | 10                   | μΑ    |       |
| Output Logic 1 Voltage@lout = - 4 mA                                                                                                                                                          | Voн    | 2.4         | -                    | -                    | V     |       |
| Output Logic 0 Voltage@Iout=4 mA                                                                                                                                                              | VOL    | -           | -                    | 0.4                  | V     |       |

### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

| Parameter                                  | Sumbal           | MCM | 4517-10 | MCM | 4517-12 | MCM4 | 1516-15 | MCM4 | 1517-20 | Linit | Notes  |
|--------------------------------------------|------------------|-----|---------|-----|---------|------|---------|------|---------|-------|--------|
| Farameter                                  | Symbol           | Min | Max     | Min | Max     | Min  | Max     | Min  | Max     | Onit  | NOLOS  |
| Random Read or Write Cycle Time            | tRC              | 235 | -       | 270 | -       | 320  | -       | 365  | -       | ns    | 8, 9   |
| Read-Modify-Write Cycle Time               | tRWC             | 285 | -       | 320 | -       | 410  | -       | 440  | -       | ns    | 8, 9   |
| Access Time from Row Address Strobe        | <sup>t</sup> RAC | -   | 100     | -   | 120 .   | -    | 150     | -    | 200     | ns    | 10, 12 |
| Access Time from Column Address Strobe     | <sup>t</sup> CAC | -   | 55      | -   | 65      |      | 80      | -    | 120     | ns    | 11, 12 |
| Output Buffer and Turn-Off Delay           | tOFF             | 0   | 45      | 0   | 50      | 0    | 60      | 0    | 70      | ns    | 18     |
| Row Address Strobe Precharge Time          | t <sub>RP</sub>  | 110 | -       | 120 | -       | 135  | -       | 150  | . —     | ns    |        |
| Row Address Strobe Pulse Width             | <sup>t</sup> RAS | 115 | 10000   | 140 | 10000   | 175  | 10000   | 200  | 10000   | ns    | 19     |
| Column Address Strobe Pulse Width          | <sup>t</sup> CAS | 55  | 10000   | 65  | 10000   | 95   | 10000   | 120  | 10000   | ns    | 19     |
| Row to Column Strobe Lead Time             | tRCD             | 25  | 45      | 25  | 55      | 25   | 70      | 30   | 80      | ns    | 13     |
| Row Address Setup Time                     | tASR             | 0   | -       | 0   | -       | 0    | -       | 0    | -       | ns    |        |
| Row Address Hold Time                      | tRAH             | 15  | -       | 15  | -       | 15   | -       | 25   | -       | ns    |        |
| Column Address Setup Time                  | tASC             | 0   | -       | 0   | -       | 0    | -       | 0    | -       | ns    |        |
| Column Address Hold Time                   | <sup>t</sup> CAH | 15  | -       | 15  | -       | 20   | -       | 20   | -       | ns    |        |
| Column Address Hold Time Referenced to RAS | tAR              | 60  | -       | 70  | _       | 90   | -       | 140  | -       | ns    |        |
| Transition Time (Rise and Fall)            | tT               | 3   | 50      | 3   | 50      | 3    | 50      | 3    | 50      | ns    | 6      |

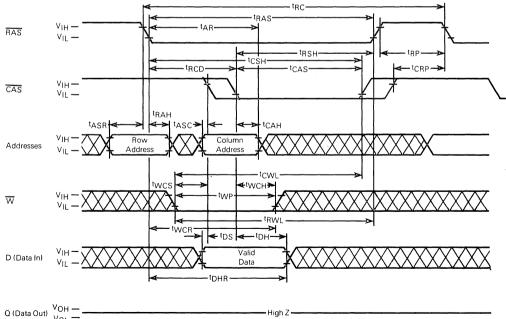
## DRAM

| Parameter                                 | Symbol            | MCM4 | 1517-10 | MCM4 | 517-12 | MCM4 | 517-15 | MCM4 | 517-20 | Linit | Notes  |
|-------------------------------------------|-------------------|------|---------|------|--------|------|--------|------|--------|-------|--------|
| Farameter                                 | Symbol            | Min  | Max     | Min  | Max    | Min  | Max    | Min  | Max    |       | 140182 |
| Read Command Setup Time                   | <sup>t</sup> RCS  | 0    | -       | 0    | -      | 0    | -      | 0    | . –    | ns    |        |
| Read Command Hold Time                    | tRCH              | 0    | 1       | 0    | -      | 0    | -      | 0    | -      | ns    | 14     |
| Read Command Hold Time Referenced to RAS  | tRBH              | 20   | -       | 25   | ŧ      | 35   | -      | 40   |        | ns    | 14     |
| Write Command Hold Time                   | tWCH              | 25   | -       | 30   | -      | 45   | -      | 60   | -      | ns    |        |
| Write Command Hold Time Referenced to RAS | tWCR              | 70   | -       | 85   | 1      | 115  | -      | 140  | -      | ns    |        |
| Write Command Pulse Width                 | tWP               | 25   | -       | 30   | -      | 50   | -      | 50   | -      | ns    |        |
| Write Command to Row Strobe Lead Time     | tRWL              | 60   | -       | 65   | -      | 110  | 1      | 110  | -      | ns    |        |
| Write Command to Column Strobe Lead Time  | tCWL              | 45   | -       | 50   | -      | 100  | -      | 100  | -      | ns    |        |
| Data in Setup Time                        | tDS               | 0    |         | 0    | -      | 0    | -      | 0    | -      | ns    | 15     |
| Data in Hold Time                         | <sup>t</sup> DH   | 25   | 1       | 30   | 1      | 45   | 1      | 60   | -      | ns    | 15     |
| Data in Hold Time Referenced to RAS       | <sup>t</sup> DHR  | 70   | -       | 85   | -      | 115  | I      | 140  | -      | ns    |        |
| Column to Row Strobe Precharge Time       | tCRP              | 0    | -       | 0    | -      | 0    | -      | 0    |        | ns    |        |
| RAS Hold Time                             | tRSH              | 70   | 1       | 85   | ł      | 105  | 1      | 120  | -      | ns    |        |
| Refresh Period                            | <sup>t</sup> RFSH | -    | 2.0     | -    | 2.0    | _    | 2.0    | -    | 2.0    | ms    |        |
| Write Command Setup Time                  | tWCS              | 0    | -       | 0    | -      | 0    | -      | 0    | -      | ns    | 16     |
| CAS to WRITE Delay                        | tCWD              | 55   | -       | 65   | -      | 80   | -      | 100  | -      | ns    | 16     |
| RAS to WRITE Delay                        | tRWD              | 100  | -       | 120  | ł      | 150  | 1      | 160  | -      | ns    | 16     |
| CAS Hold Time                             | tCSH              | 100  | -       | 120  | -      | 165  | -      | 200  | -      | ns    |        |
| CAS Precharge, Non Page Mode              | <sup>t</sup> CPN  | 50   | -       | 55   | -      | 70   | ļ      | 90   | 1      | ns    |        |
| RMW Cycle RAS Pulse Width                 | tRRW              | 135  | 10000   | 160  | 10000  | 195  | 10000  | 220  | 10000  | ns    |        |
| RMW Cycle CAS Pulse Width                 | <sup>t</sup> CRW  | 95   | 10000   | 110  | 10000  | 130  | 10000  | 140  | 10000  | ns    |        |
| Page Mode Cycle Time                      | tPC               | 125  | -       | 145  | -      | 190  | -      | 260  |        | ns    |        |
| Page Mode Cycle Time (Read-Modify-Write)  | <sup>t</sup> PCM  | 175  | -       | 200  | -      | 280  | -      | 360  | -      | ns    |        |
| CAS Precharge Time (Page Mode Cycle Only) | tCP               | 60   | -       | 70   | -      | 85   | -      | 105  | -      | ns    |        |
| RAS Pulse Width (Page Mode Cycle Only)    | tRPM              | 115  | 10000   | 140  | 10000  | 175  | 10000  | 235  | 10000  | ns    |        |

### AC OPERATING CONDITIONS AND CHARACTERISTICS (Continued)


CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25°C, V<sub>CC</sub> = +5 V. Periodically sampled rather than 100% tested.)

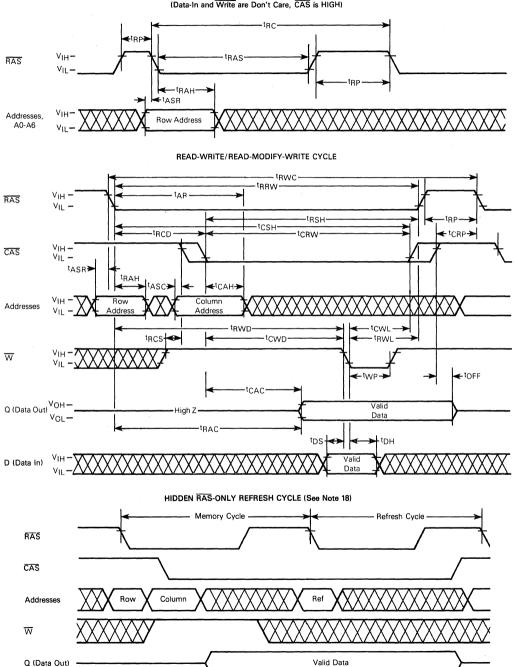
| Parameter                                  | Symbol | Тур | Max | Units | Notes |
|--------------------------------------------|--------|-----|-----|-------|-------|
| Input Capacitance (A0-A6), D <sub>in</sub> | CI1    | 4.0 | 5.0 | р́F   | 7     |
| Input Capacitance RAS, CAS, WRITE          | CI2    | 5.0 | 7.0 | рF    | 7     |


NOTES:

- 1. All voltages referenced to VSS.
- 2. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
- Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
   Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transmit between V<sub>IL</sub> and V<sub>IL</sub> (or between V<sub>IL</sub> and V<sub>IL</sub>) in a monotonic manner.
- 7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I_{\Delta t} / \Delta V$
- The specifications for tRC (min), and tRWC (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤TA≤70°C) is assured.
- 9. AC measurements assume  $t_T = 5.0$  ns.
- 10. Assumes that tRCD≤tRCD (Max)
- 11. Assumes that tRCD≥tRCD (Max)
- 12. Measured with a current load equivalent to 2 TTL loads (+200  $\mu$ A, -4 mA) and 100 pF (V<sub>OH</sub>=2.0 V, V<sub>OL</sub>=0.8 V).
- 13. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if tWCS≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥ tCWD (min) and tRWD≥ tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17. Addresses, data-in and WRITE are don't care. Data-out depends on the state of CAS. If CAS remains low, the previous output will remain valid. CAS is allowed to make an active to inactive transition during the RAS-only refresh cycle. When CAS is brought high, the output will assume a high-impedance state.
- 18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 19. For read and write cycles only.

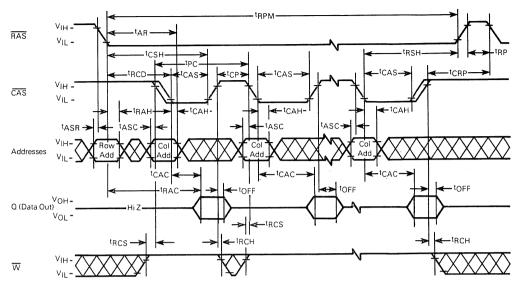
READ CYCLE TIMING




WRITE CYCLE TIMING



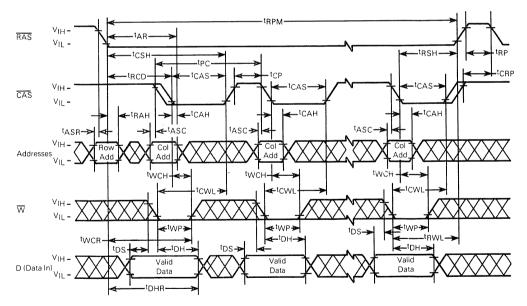
1


1

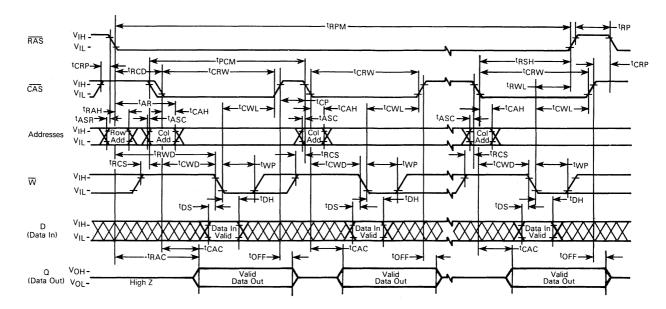


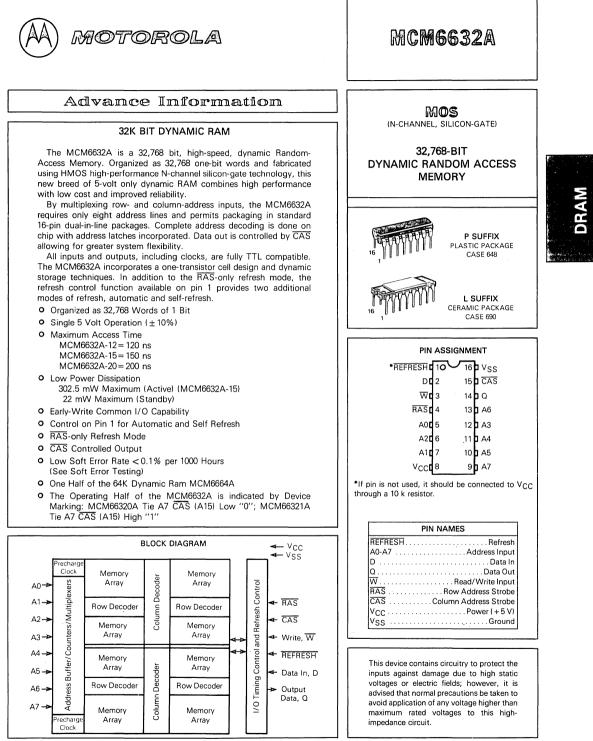


RAS-ONLY REFRESH CYCLE (Data-In and Write are Don't Care, CAS is HIGH)


PAGE MODE READ CYCLE




ī

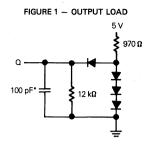

ď

### PAGE MODE WRITE CYCLE



### PAGE MODE READ-MODIFY-WRITE CYCLE






This document contains information on a new product. Specifications and information herein are subject to change without notice.

### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                                      | Symbol                             | Value       | Unit |
|-----------------------------------------------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to V <sub>SS</sub><br>(except V <sub>CC</sub> ) | V <sub>in</sub> , V <sub>out</sub> | -2 to +7    | V    |
| Voltage on V <sub>CC</sub> Supply Relative to V <sub>SS</sub>               | Vcc                                | -1 to +7    | V    |
| Operating Temperature Range                                                 | TA                                 | 0 to +70    | °C   |
| Storage Temperature Range                                                   | T <sub>stg</sub>                   | -65 to +150 | °C   |
| Power Dissipation                                                           | PD                                 | 1.0         | W    |
| Data Out Current (Short Circuit)                                            | lout                               | 50          | mA   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.



\*Includes Jig Capacitance

### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED OPERATING CONDITIONS

|                                        | Symbol | Min                                                             | Тур                                                                                   | Max                                                                                           | Unit                                                                                                                   | Notes                                                                                                                       |
|----------------------------------------|--------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| MCM6632A-12, -15, -20                  | Vcc    | 4.5                                                             | 5.0                                                                                   | 5.5                                                                                           | V                                                                                                                      | 1                                                                                                                           |
|                                        | VSS    | 0                                                               | 0                                                                                     | 0                                                                                             | V .                                                                                                                    | 1                                                                                                                           |
| ······································ | VIH    | 2.4                                                             | -                                                                                     | V <sub>CC</sub> +1                                                                            | V                                                                                                                      | 1                                                                                                                           |
|                                        | VIL    | -1.0                                                            | -                                                                                     | 0.8                                                                                           | V                                                                                                                      | 1, 19                                                                                                                       |
|                                        |        | MCM6632A-12, -15, -20 V <sub>CC</sub><br>V <sub>SS</sub><br>VIH | MCM6632A-12, -15, -20 V <sub>CC</sub> 4.5<br>V <sub>SS</sub> 0<br>V <sub>IH</sub> 2.4 | MCM6632A-12, -15, -20 V <sub>CC</sub> 4.5 5.0<br>V <sub>SS</sub> 0 0<br>V <sub>IH</sub> 2.4 - | MCM6632A-12, -15, -20 V <sub>CC</sub> 4.5 5.0 5.5<br>V <sub>SS</sub> 0 0 0<br>V <sub>IH</sub> 2.4 - V <sub>CC</sub> +1 | MCM6632A-12, -15, -20 V <sub>CC</sub> 4.5 5.0 5.5 V<br>V <sub>SS</sub> 0 0 0 V<br>V <sub>IH</sub> 2.4 - V <sub>CC+1</sub> V |

| Characteristic                                                                         | Symbol          | Min              | Max | Units | Notes |
|----------------------------------------------------------------------------------------|-----------------|------------------|-----|-------|-------|
| V <sub>CC</sub> Power Supply Current (Standby)                                         | ICC2            | -                | 4.0 | mA    | 5     |
| V <sub>CC</sub> Power Supply Current                                                   |                 |                  |     |       |       |
| 6632A-12, t <sub>RC</sub> =250 ns                                                      |                 | -                | 60  |       |       |
| 6632A-15, t <sub>RC</sub> =270 ns                                                      | ICC1            | -                | 55  | mA    | 4     |
| 6632A-20, t <sub>RC</sub> =330 ns                                                      |                 |                  | 50  |       |       |
| V <sub>CC</sub> Power Supply Current During RAS only Refresh Cycles                    |                 |                  |     |       |       |
| 6632A-12, t <sub>RC</sub> =250 ns                                                      |                 | -                | 50  |       |       |
| 6632A-15, $t_{\rm RC}$ = 270 ns                                                        | ICC3            |                  | 45  | mA    | 4     |
| 6632A-20, t <sub>RC</sub> = 330 ns                                                     |                 | -                | 40  |       |       |
| V <sub>CC</sub> Power Supply Current During Page Mode Cycle for $t_{RAS} = 10 \mu sec$ |                 |                  |     |       |       |
| 6632A-12, tpc=tp= 120 ns                                                               |                 |                  | 45  |       |       |
| 6632A-15, tpc= tpp= 145 ns                                                             | ICC4            | -                | 40  | mΑ    | 4     |
| 6632A-20, $t_{PC} = t_{RP} = 200 \text{ ns}$                                           |                 |                  | 35  |       |       |
| Input Leakage Current (VSS < Vin < VCC) (Any Input Except REFRESH)                     | Ч(L)            | -                | 10  | μA    | -     |
| REFRESH Input Current (V <sub>SS</sub> ≤ V <sub>in</sub> ≤ V <sub>CC</sub> )           | l(F)            | -                | 20  | μA    |       |
| Output Leakage Current (CAS at logic 1, VSS < Vout < VCC)                              | lO(L)           | — , <sup>1</sup> | 10  | μA    | -     |
| Output Logic 1 Voltage @ Iout = -4 mA                                                  | V <sub>OH</sub> | 2.4              | -   | V     | -     |
| Output Logic 0 Voltage @ I <sub>out</sub> = 4 mA                                       | VOL             | -                | 0.4 | V     | -     |

CAPACITANCE (f = 1.0 MHz, TA = 25°C, VCC = 5 V Periodically Sampled Rather Than 100% Tested)

| Parameter                                                              | Symbol          | Тур | Max | Unit | Notes |
|------------------------------------------------------------------------|-----------------|-----|-----|------|-------|
| Input Capacitance (A0-A7), D                                           | C <sub>I1</sub> | 3   | 5   | рF   | 7     |
| Input Capacitance RAS, CAS, WRITE, REFRESH                             | C <sub>I2</sub> | 6   | 8   | рF   | 7     |
| Output Capacitance (Q), $\overline{(CAS)} = V_{IH}$ to disable output) | CO              | 5   | 7   | рF   | 7     |

NOTES: 1. All voltages referenced to VSS.

V<sub>IH</sub> min and V<sub>IL</sub> max are reference levels for measuring timing of input signals. Transition times are measured between V<sub>IH</sub> and V<sub>II</sub>.

An initial pause of 100 
 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

5. RAS and CAS are both at a logic 1.

6. The transition time specification applies for all inputs signals. In addition to meeting the transition rate specification, all input signals must transmit between V<sub>IH</sub> and V<sub>IL</sub> (or between V<sub>IL</sub> and V<sub>IH</sub>) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C=IΔt/ΔV

 The specifications for t<sub>RC</sub> (min), and t<sub>RWC</sub> (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T<sub>A</sub>≤70°C) is assured.

9. AC measurements  $t_T = 5.0$  ns.

10. Assumes that  $t_{RCD} \leq t_{RCD}$  (max).

11. Assumes that t<sub>RCD</sub>≥t<sub>RCD</sub> (max)

 Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V<sub>OH</sub>=2.0 V and V<sub>OL</sub>=0.8 V.

| (Full Operating Voltage and Temperature Range Unle  |                   | _        | 2A-12    |       | A-15  |      | 6632A-20 |       | Г            |
|-----------------------------------------------------|-------------------|----------|----------|-------|-------|------|----------|-------|--------------|
| Parameter                                           | Symbol            | 0032     | Max      | Min   | Max   | 0032 | Max      | Linit | Notes        |
| Random Read or Write Cycle Time                     |                   | 250      |          | 270   | IVIAX | 330  | IVIAX    | ns    | 8, 9         |
| Read Write Cycle Time                               | tRC               | 255      |          | 270   |       | 345  |          | ns    | 8,9          |
| Access Time from Row Address Strobe                 | tRWC              | -        | 120      | - 200 | 150   | -    | 200      | ns    | 10, 12       |
| Access Time from Column Address Strobe              | tRAC              | <u> </u> | 60       | -     | 75    | _    | 100      | ns    | 11, 12       |
| Output Buffer and Turn-Off Delay                    | torr              | 0        | 30       | 0     | 30    | 0    | 40       | ns    | 18           |
| Row Address Strobe Precharge Time                   | tOFF              | 100      |          | 100   |       | 120  | -        | ns    | -            |
| Row Address Strobe Pulse Width                      | tRP               | 120      | 10000    | 150   | 10000 | 200  | 10000    | ns    |              |
| Column Address Strobe Pulse Width                   | tRAS              | 60       | 10000    | 75    | 10000 | 100  | 10000    | ns    |              |
| Row to Column Strobe Lead Time                      | tCAS<br>tRCD      | 25       | 60       | 30    | 75    | 35   | 10000    | ns    | 13           |
| Row Address Setup Time                              |                   | 0        |          | 0     | -     | 0    |          | ns    |              |
| Row Address Hold Time                               | tASR              | 15       | _        | 20    |       | 25   | -        | ns    |              |
| Column Address Setup Time                           |                   | 0        |          | 0     |       | 0    |          | ns    |              |
| Column Address Hold Time                            | tASC              | 25       |          | 35    |       | 45   |          | ns    | _            |
| Column Address Hold Time Referenced to RAS          |                   | 85       | <u> </u> | 95    | _     | 120  |          | ns    | 17           |
| Transition Time (Rise and Fall)                     | t <u>AR</u><br>tT | 3        | 50       | 3     | 50    | 3    | · 50     | ns    | 6            |
| Read Command Setup Time                             |                   | 0        |          | 0     |       | 0    | - 50     | ns    | -            |
| Read Command Hold Time                              | tRCS              | 0        |          | 0     |       | 0    |          | ns    | 14           |
| Read Command Hold Time Referenced to RAS            | tRCH              | 0        | <u> </u> | 0     | _     | 0    | _        | ns    | 14           |
| Write Command Hold Time                             | tRRH              | 25       |          | 35    | -     | 45   | _        | ns    |              |
| Write Command Hold Time Referenced to RAS           | tWCH<br>tWCR      | 85       |          | 95    | _     | 120  |          | ns    | 17           |
| Write Command Pulse Width                           | twp               | 25       | -        | 35    |       | 45   |          | ns    | - <u>-</u> - |
| Write Command to Row Strobe Lead Time               |                   | 40       |          | 45    | _     | 55   | _        | ns    |              |
| Write Command to Column Strobe Lead Time            | town              | 40       |          | 45    |       | 55   | _        | ns    |              |
| Data in Setup Time                                  |                   | -40      |          | 0     |       | 0    |          | ns    | 15           |
| Data in Hold Time                                   |                   | 25       | _        | 35    | _     | 45   |          | ns    | 15           |
| Data in Hold Time Referenced to RAS                 |                   | 85       | _        | 95    | _     | 120  | _        | ns    | 17           |
| Column to Row Strobe Precharge Time                 | t <sub>DHR</sub>  | - 10     | _        | - 10  |       | - 10 | -        | ns    | -            |
| RAS Hold Time                                       | tRSH              | 60       | <u> </u> | 75    | _     | 100  |          | ns    | -            |
| Refresh Period                                      | tRFSH             |          | 2.0      | -     | 2.0   |      | 2.0      | ms    |              |
| WRITE Command Setup Time                            | twcs              | - 10     |          | - 10  | -     | - 10 | _        | ns    | 16           |
| CAS to WRITE Delay                                  | tCWD              | 40       | -        | 45    | -     | 55   | -        | ns    | 16           |
| RAS to WRITE Delay                                  | tRWD              | 100      | -        | 120   | _     | 155  | -        | ns    | 16           |
| CAS Hold Time                                       | tCSH              | 120      |          | 150   | _     | 200  | _        | ns    |              |
| CAS Precharge Time (Page Mode Cycle Only)           | tCP               | 50       | _        | 60    | _     | 80   | _        | ns    | _            |
| Page Mode Cycle Time                                | tPC               | 120      | _        | 145   | -     | 200  | -        | ns    | _            |
| RAS to REFRESH Delay                                | tRFD              | - 10     | _        | - 10  | -     | - 10 | _        | ns    | _            |
| REFRESH Period (Battery Backup Mode)                | tFBP              | 2000     | _        | 2000  | -     | 2000 | -        | ns    |              |
| REFRESH to RAS Precharge Time (Battery Backup Mode) | tFBR              | 290      | _        | 320   | _     | 400  |          | ns    | -            |
| REFRESH Cycle Time (Auto Pulse Mode)                | tFC               | 250      | _        | 270   | _     | 330  | _        | ns    | -            |
| REFRESH Pulse Period (Auto Period Mode)             | tFP               | 60       | 2000     | 60    | 2000  | 60   | 2000     | ns    | -            |
| REFRESH to RAS Setup Time (Auto Pulse Mode)         | tFSR              | - 30     | _        | - 30  | _     | -30  | -        | ns    |              |
| REFRESH to RAS Delay Time (Auto Pulse Mode)         | tFRD              | 290      | -        | 320   | -     | 400  | -        | ns    | -            |
| REFRESH Inactive Time                               | tFI               | 60       | _        | 60    | _     | 60   | _        | ns    | _            |
| RAS to REFRESH Lead Time                            | t <sub>FRL</sub>  | 350      |          | 370   | -     | 450  | -        | ns    | -            |
| RAS Inactive Time During REFRESH                    | tFRI              | 350      | _        | 370   |       | 450  |          | ns    | · _          |

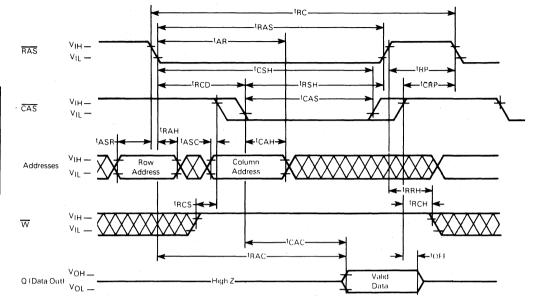
AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles) (Full Operating Voltage and Temperature Range Unless Otherwise Noted, See Notes 2, 3, 6, and Figure 1)

13. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.

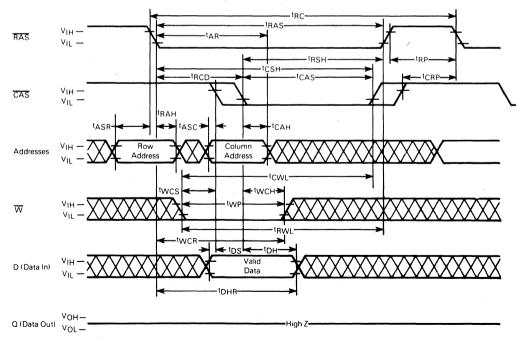
14. Either tRRH or tRCH must be satisfied for a read cycle.

 These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.

16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min) and tRWD≥tRWD (min), the cycle is read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

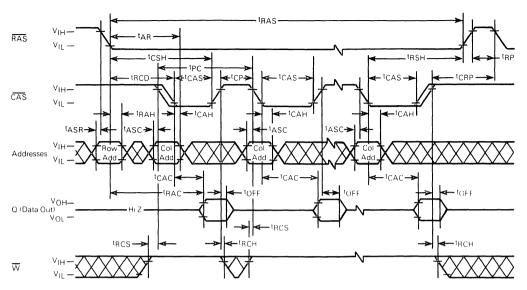

17.  $t_{AR} \min \le t_{AR} = t_{RCD} + t_{CAH}$ ,  $t_{DHR} \min \le t_{DHR} = t_{RCD} + t_{DH}$ ,  $t_{WCR} \min \le t_{WCR} = t_{RCD} + t_{WCH}$ 

18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

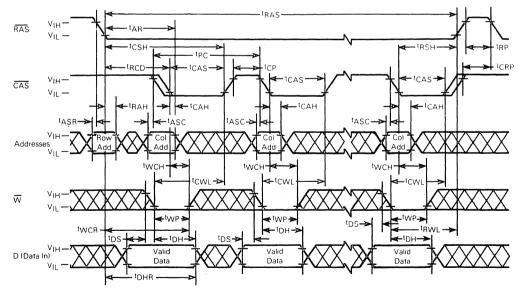

The device will withstand undershoots to the -2 volt level with a maximum pulse width of 20 ns at the - 1.5 volt level. This is
periodically sampled rather than 100% tested.

(





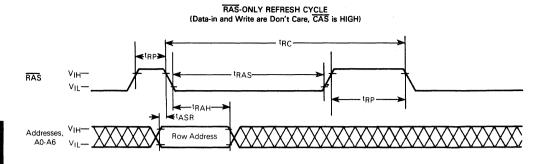

WRITE CYCLE TIMING



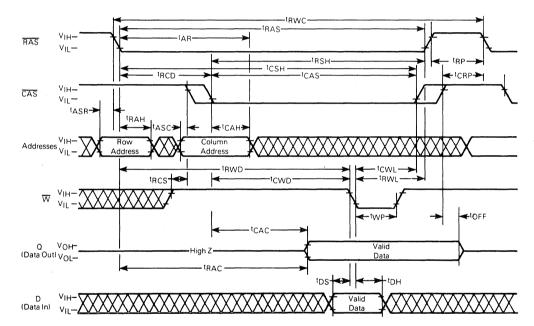

READ CYCLE TIMING

PAGE MODE READ CYCLE




### PAGE MODE WRITE CYCLE



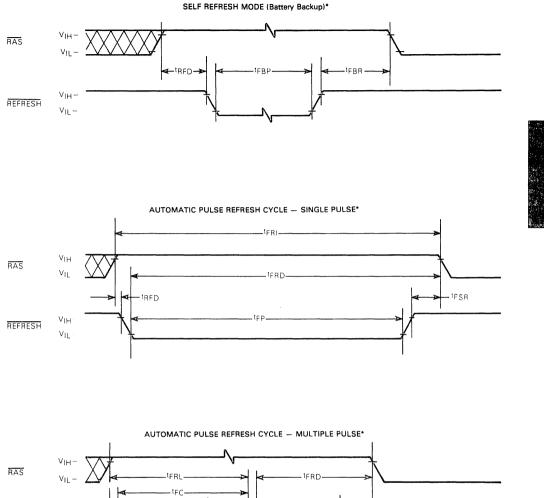

DRAM

ł

2-31



READ-WRITE/READ-MODIFY-WRITE CYCLE




ŀ

} 1

2-32

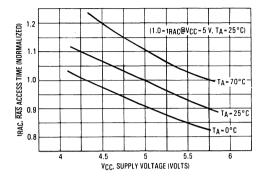
### MCM6632A



- tFSR

1

1


REFRESH VIL-VIH-VIH-

\*Addresses, data-in and WRITE are don't care.

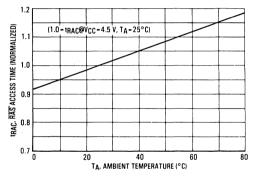
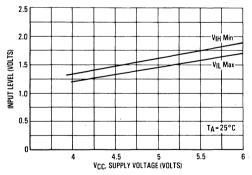
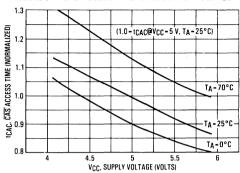
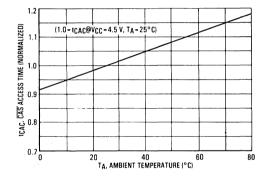

### TYPICAL CHARACTERISTICS

FIGURE 2 - RAS ACCESS TIME versus SUPPLY VOLTAGE


FIGURE 3 - CAS ACCESS TIME versus SUPPLY VOLTAGE





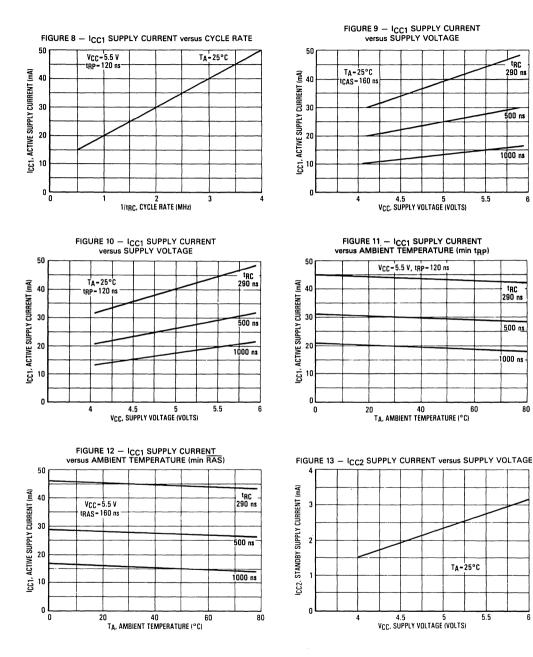




















### **TYPICAL CHARACTERISTICS** (continued)

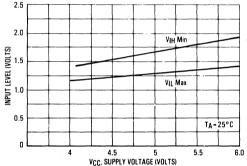


### DRAM

I.

1

1


4

6

6

# Versus AMBIENT TEMPERATURE

FIGURE 14 - ICC2 STANDBY CURRENT



### FIGURE 16 - ADDRESS INPUT LEVEL versus SUPPLY VOLTAGE

### SOFT ERROR TESTING

The storage cell depletion regions as well as the sense amplifier and its associated bit lines are susceptible to charge collection of electrons from an alpha "hit." However, the susceptibility of these vulnerable regions varies. Depleted storage cells are vulnerable at all times, whereas the sense amplifiers and associated bit lines are susceptible only during the small portion of the memory cycle just prior to sensing. Hence, an increase in the frequency of dynamic RAM access will cause a corresponding increase in the soft error rate.

To take this memory access dependency into account, the total soft error rate profile includes a cycle time component. The soft error rate due to bit line hits at the system's memory cycle rate is added to the soft error rate due to storage cell hits which are not frequency dependent. Figure 18 illustrates the impact that frequency of access has on the MCM6664A/MCM6665A overall soft error rate.

Under normal operating conditions, the die will be exposed to radiation levels of less than 0.01 alpha/cm<sup>2</sup>/hr. Accelerated soft error testing data is generated from at least three high-intensity sources having an Alpha Flux Density range of 1 × 10<sup>5</sup> to 6 × 10<sup>5</sup> (alpha/cm<sup>2</sup>hr) placed over un-

FIGURE 15 - ICC3 SUPPLY CURRENT versus CYCLE RATE

TYPICAL CHARACTERISTICS (continued)

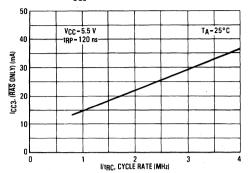
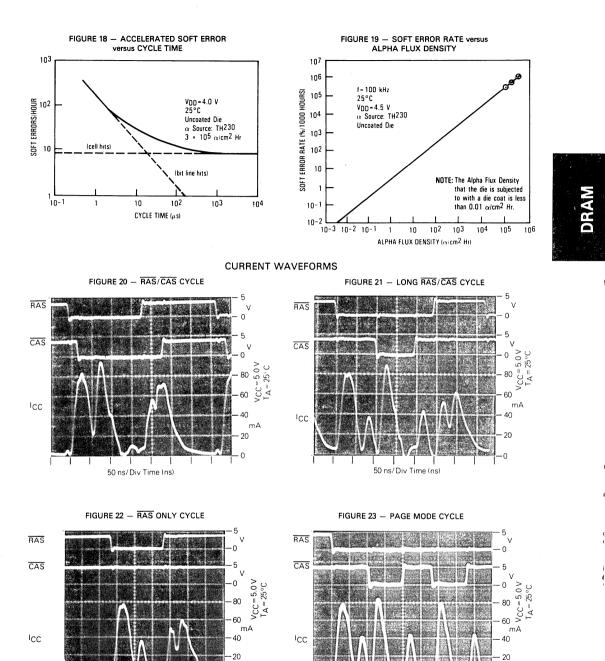



FIGURE 17 - DATA INPUT LEVEL versus SUPPLY VOLTAGE




coated die. Figure 19 shows the soft error rate for a given alpha flux density at a cycle rate of 100 kHz. The accelerated data of Figures 18 and 19 project that the soft error rate for package level radiation will be less than 0.1%/1000 hours.

### SYSTEM LIFE OPERATING TEST CONDITIONS

- 1) Cycle time: 1 microsecond for read, write and refresh cycles
- 2) Refresh Rate: 1 millisecond
- 3) Voltage: 5.0 V
- 4) Temperature:  $30^{\circ}C \pm 2^{\circ}C$  (ambient temperature inside enclosure)
- 5) Elevation: Approximately 620 feet above mean sea level
- 6) Data Patterns: Write the entire memory space sequentially with all "1"s and then perform continuous sequential reads for 6 hours. Next, write the entire memory space with all "0"s sequentially and then perform continuous sequential reads for 6 hours. Next, go back to the all "1"s pattern and repeat the sequences all over again.

### MCM6632A



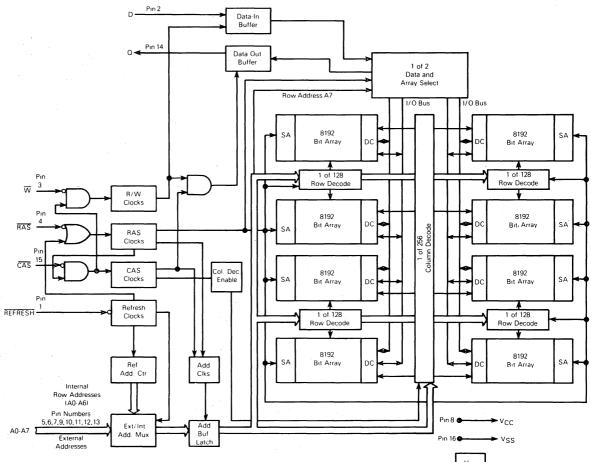
2-37

0

1

50 ns/Div Time (ns)

20


1

50 ns/Div Time (ns)

1



FIGURE 24 - FUNCTIONAL BLOCK DIAGRAM



. . .

-

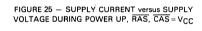
V<sub>BB</sub> Gen ► V<sub>BB</sub>

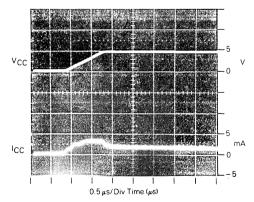
### MCM6632A

### **DEVICE INITIALIZATION**

Since the 32K dynamic RAM is a single supply 5 V only device, the need for power supply sequencing is no longer required as was the case in older generation dynamic RAMs. On power-up an initial pause of 100 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 2 ms with device powered up) the wake up sequence (8 active cycles) will be necessary to assure proper device operation. See Figures 25 and 26 for power on characteristics of the RAM for two conditions (clocks active, clocks inactive).

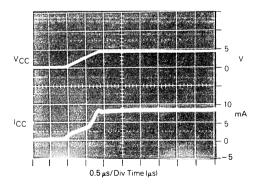
The row address strobe is the primary "clock" that activates the device and maintains the data when the RAM is in the standby mode. This is the main feature that distinguishes it as a dynamic RAM as opposed to a static RAM. A dynamic RAM is placed in a low power standby mode when the device receives a positive-going row address strobe. The variation in the power dissipation of a dynamic RAM from the active to the standby state is an order of magnitude or more for NMOS devices. This feature is used to its fullest advantage with high density mainframe memory systems, where only a very small percentage of the devices are in the active mode at any one time and the rest of the devices are in the assembled that dissipate very low power per bit compared to a system where all devices are active continuously.


### ADDRESSING THE RAM


The eight address pins on the device are time multiplexed with two separate 8-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe and the column address strobe. A total of fifteen address bits will decode one of the 32,768 cell locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tBCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up his external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, two other variations in addressing the 32K RAM, one is called the page mode cycle (described later) where an 8-bit column address field is presented on the input pins and latched by the CAS clock; and the other is the RAS only refresh cycle (described later) where a 7-bit row address field is presented on the input pins and latched by the RAS clock. In the latter case, the most significant bit on Row Address A7 (pin 9) is not required for refresh. See bit address map for the topology of the cells and their address selection.

### NORMAL READ CYCLE

A read cycle is referred to as normal read cycle to differentiate it from a page-mode-read cycle, a read-while-write cycle, and read-modify-write cycle which are covered in a later section.


The memory read cycle begins with the row addresses valid and the  $\overline{RAS}$  clock transitioning from  $V_{IH}$  to the  $V_{IL}$  level. The  $\overline{CAS}$  clock must also make a transition from  $V_{IH}$  to the  $V_{IL}$  level at the specified  $t_{RCD}$  timing limits when the column addresses are latched. Both the  $\overline{RAS}$  and  $\overline{CAS}$  clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the  $\overline{CAS}$  clock must be active before or at





CURRENT WAVEFORMS

FIGURE 26 – SUPPLY CURRENT Versus SUPPLY VOLTAGE DURING POWER UP, RAS, CAS = VSS



the tRCD maximum specification for an access (data valid) from the  $\overline{RAS}$  clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (tCAC) from the  $\overline{CAS}$  clock active transition will determine read access time. The external CAS signal is ignored until an internal  $\overline{RAS}$  signal is available, as noted in the functional block diagram, Figure 24. This gating feature on the  $\overline{CAS}$  clock will allow the external  $\overline{CAS}$  signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the  $\overline{CAS}$  clock.

Once the clocks have become active, they must stay active for the minimum (tRAS) period for the RAS clock and the minimum (tCAS) period for the CAS clock. The RAS clock must stay inactive for the minimum (tRP) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the  $\overline{CAS}$  clock is active; the output will switch to the three-state mode when the  $\overline{CAS}$  clock goes inactive. The  $\overline{CAS}$  clock can remain active for a maximum of 10 ns (t<u>CRP</u>) into the next cycle. To perform a read cycle, the write (W) input must be held at the V<sub>IH</sub> level from the time the  $\overline{CAS}$  clock makes its active transition (t<sub>RCS</sub>) to the time when it transitions into the inactive (t<sub>RCH</sub>) mode.

### WRITE CYCLE

A write cycle is similar to a read cycle except that the Write ( $\overline{W}$ ) clock must go active ( $V|_L$  level) at or before the  $\overline{CAS}$  clock goes active at a minimum tWCS time. If the above condition is met, then the cycle in progress is referred to as a early write cycle. In an early write cycle, the write clock and the data in is referenced to the active transition of the  $\overline{CAS}$  clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t<sub>CWL</sub>) and the row strobe to write lead time (t<sub>CWL</sub>). These define the minimum time that  $\overline{RAS}$  and  $\overline{CAS}$  clocks need to be active after the write operation has started ( $\overline{W}$ ) clock at V|\_L level).

It is also possible to perform a late write <u>cycle</u>. For this cycle the write clock is activated after the  $\overline{CAS}$  goes low which is beyond t<sub>WCS</sub> minimum time. Thus the parameters t<sub>CWL</sub> and t<sub>RWL</sub> must be satisfied before terminating this cycle. The difference between an early write cycle and a late write cycle is that in a late write cycle the write  $(\overline{W})$  clock can occur much later in time with respect to the active transition of the  $\overline{CAS}$  clock. This time could be as long as 10 microseconds –  $[t_{RWL} + t_RP + 2T_t]$ .

At the start of a write cycle, the data out is in a three-state condition and remains inactive throughout the cycle. The data out remains three-state because of the active transition of the write  $(\overline{W})$  clock prevents the  $\overline{CAS}$  clock from enabling the data-out buffers as noted in Functional Block Diagram. The three-state condition (high impedence) of the Data Out Pin during a write cycle can be effectively utilized in a systems that has a common input/output bus. The only stipulation is that the system use only early write mode operations for all write cycles to avoid bus contention.

### READ-MODIFY-WRITE AND READ-WHILE-WRITE CYLES

As the name implies, both a read and a write cycle is accomplished at a selected bit during a single access. The readmodify-write cycle is similar to the late write cycle discussed above.

For the read-modify-write cycle a normal read cycle is initiated with the write  $(\overline{W})$  clock at the  $V_{IH}$  level until the read data occurs at the device access time ( $t_{RAC}$ ). At this time the write ( $\overline{W}$ ) clock is asserted. The data in is setup and held with respect to the active edge of the write clock. The cycle described assumes a zero modify time between read and write.

Another variation of the read-modify-write cycle is the read-while-write cycle. For this cycle, the following parameters (t<sub>RWD</sub>, t<sub>CWD</sub>) play an important role. A read-while-write cycle starts as a normal read cycle with the write ( $\overline{W}$ ) clock being asserted at minimum t<sub>RWD</sub> or minimum t<sub>CWD</sub> time, depending upon the application. This results in starting a write operation to the selected cell even before data out occurs. The minimum specification on t<sub>RWD</sub> and t<sub>CWD</sub> assure that data out does occur. In this case, the data in is set up with respect to write ( $\overline{W}$ ) clock active edge.

### PAGE-MODE CYCLES

Page mode operation allows faster successive data operations at the 128 column locations. Page access (tCAC) is typically half the regular RAS clock access (tRAC) on the Motorola 64K dynamic RAM. Page mode operation consists of holding the RAS clock active while cycling the CAS clock to access the column locations determined by the 8-bit column address field. There are two controlling factors that limit the access to all 128 column locations in one RAS clock active operation. These are the refresh interval of the device (2 ms/128=15.6 microseconds) and the maximum active time specification for the RAS clock (10 microseconds). Since 10 microseconds is the smaller value, the maximum specification of the RAS clock on time is the limiting factor of the number of sequential page accesses possible. Ten microseconds will provide approximately 50 successive page accesses (10 microseconds + page mode cycle time) for each row address selected before the RAS clock is reset.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter CAS cycles (tpc). The CAS cycle time (tpc) consists of the CAS clock active time (tCAS), and CAS clock precharge time (tCP) and two transitions. In addition to read and write cycles, a readmodify-write cycle can also be performed in a page mode operation. For a read-modify-write or read-while-write type cycle, the conditions normal to that mode of operation will apply in the page mode also. The page mode cycle illustrated show a series of sequential reads separated by a series of sequential writes. This is just one mode of operation. In practice, any combination of read, write and read-modify-write cycles can be performed to suit a particular application.

### REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to

degrade with time and temperature. Therefore, to retain the correct information, the bits need to be refreshed at least once every 2 ms. This is accomplished by sequentially cycling through the 128 row address locations every 2 ms, or at least one row every 15.6 microseconds. A normal read or write operation is to RAM will serve to refresh all the bits (256) associated with that particular row decoded.

 $\overline{RAS}$  Only Refresh — When the memory component is in standby the  $\overline{RAS}$  only refresh scheme is employed. This refresh method performs a  $\overline{RAS}$  only cycle on all 128 row addresses every 2 ms. The row addresses are latched in with the  $\overline{RAS}$  clock, and the associated internal row locations are refreshed. As the heading implies, the  $\overline{CAS}$  clock is not required and should be inactive or at a  $V_{IH}$  level to conserve power.

Auto Refresh Mode and Self Refresh Mode (MCM6632A only) – With the MCM6632A, two additional refresh methods are available to the user. These special functions are incorporated on pin 1 of the device and have been approved by JEDEC as an alternative function for that pin on the 32K dynamic memory. The auto refresh mode is accomplished by asserting pin 1 active (VIL level) during the time interval when there are no memory cycles. In the auto refresh mode, the REFRESH active pulse (tFP) must be limited to 2 microseconds or less. The 2 microsecond time is specified to prevent the device from transitioning into the self refresh mode. Auto refresh can be performed in a distributed mode (refresh cycle every 15.6 microseconds) and in a burst mode where all 128 refresh cycles are done one after the other until complete. An onboard address counter generates the internal row address to refresh a particular row and increments itself at the end of each cycle.

Another variation of refresh is the self refresh mode. This mode is similar to the auto refresh method except that the active pulse width (tFgp) must be greater than 2 microseconds or held down active indefinitely. With pin 1 in the self refresh mode, an internal row address is generated by the internal refresh counter approximately every 15.6 microseconds. This mode of refresh is used for systems requiring battery back-up, and saves additional system power by not requiring an external refresh address counter and address buffers. The power dissipation for either REFRESH mode is the same.

ORDERING INFORMATION

| Part Number  | Description   | Speed | Marking*                  |
|--------------|---------------|-------|---------------------------|
| MCM6632AL15  | 32K Dynamic   | 150   | MCM66320AL15/MCM66321AL15 |
| MCM66320AL15 | Random Access | 150   | MCM66320AL15              |
| MCM66321AL15 | Memory        | 150   | MCM66321AL15              |
| MCM6632AL20  | Sidebraze     | 200   | MCM66320AL20/MCM66321AL20 |
| MCM66320AL20 | Package "'L"  | 200   | MCM66320AL20              |
| MCM66321AL20 |               | 200   | MCM66321AL20              |

\*MCM66320A = Tie A7 CAS (A15) Low "0" MCM66321A = Tie A7 CAS (A15) High "1"

)

ŀ

### MCM6664A BIT ADDRESS MAP

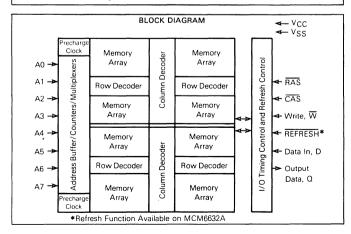
|               |                  | Pin 8<br>Row Address A7 A6 A5 A4 A3 A2 A1 A0<br>Column Address A7 A6 A5 A4 A3 A2 A1 A0 |     |                              |                                              |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
|---------------|------------------|----------------------------------------------------------------------------------------|-----|------------------------------|----------------------------------------------|------------------------------------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------|------------------------------------|--------------------------------------------|
|               |                  | Ro                                                                                     | w   |                              | FE<br>FF<br>FC<br>FD<br>FA<br>F8<br>F8<br>F9 | Dec<br>254<br>255<br>252<br>253<br>250<br>251<br>248<br>249<br>• | A7<br>1<br>1<br>1<br>1<br>1<br>1 | <b>A6</b><br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A3<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A4<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A5<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A2<br>1<br>1<br>1<br>0<br>0<br>0 | <b>A0</b><br>1<br>0<br>1<br>1<br>0 | A1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 |
|               |                  |                                                                                        |     |                              | C0<br>C1<br>BF                               | 192<br>193<br>191                                                | 1<br>1                           | 1                                            | 0                                     | 0                                     | 0                                     | 0<br>0                           | 0<br>0                             | 0 1 1                                      |
|               |                  |                                                                                        |     |                              | BE                                           | 190                                                              | i                                | 0                                            | 1                                     | 1                                     | 1                                     | 1                                | i                                  | 0                                          |
|               | Iresses          |                                                                                        |     |                              | 83<br>82<br>81<br>80                         | 131<br>130<br>129<br>128                                         | 1<br>1<br>1                      | 0<br>0<br>0                                  | 0<br>0<br>0<br>0                      | 0<br>0<br>0                           | 0<br>0<br>0                           | 0<br>0<br>0                      | 1<br>1<br>0                        | 1<br>0<br>1<br>0                           |
|               | Column Addresses |                                                                                        |     |                              | 7E<br>7F<br>7C                               | 126<br>127<br>124                                                | 0<br>0<br>0                      | 1<br>1<br>1                                  | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                      | 1<br>1<br>0                        | 0<br>1<br>0                                |
|               | •                |                                                                                        |     |                              | 42<br>43<br>40<br>41                         | •<br>66<br>67<br>64<br>65                                        | 0<br>0<br>0<br>0                 | 1<br>1<br>1<br>1                             | 0<br>0<br>0                           | 0<br>0<br>0                           | 0<br>0<br>0                           | 0<br>0<br>0                      | 1<br>1<br>0<br>0                   | 0<br>1<br>0<br>1                           |
|               |                  | 440<br>4410                                                                            |     | 0110<br>1110<br>0100<br>0100 | 3F<br>3E<br>3D                               | 63<br>62<br>61<br>•                                              | 0<br>0<br>0                      | 0<br>0<br>0                                  | 1<br>1                                | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                      | 1<br>1<br>0                        | 1<br>0<br>1                                |
|               |                  | 00 8 F F                                                                               |     | 0110<br>0011<br>0000         | 04<br>03<br>02<br>01<br>00                   | 4<br>3<br>2<br>1<br>0                                            | 0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0                             | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0                      | 1<br>0<br>0<br>0                 | 0<br>1<br>1<br>0<br>0              | 0<br>1<br>0<br>1<br>0                      |
|               | Hex              | ж њ                                                                                    | 75  | 3325555588                   |                                              | Ū                                                                |                                  | 5                                            | °.                                    |                                       | 5                                     | Ū                                | Ū                                  | Ū                                          |
| Row Addresses | Dec              | 255                                                                                    | 126 | • 8 6 r 5 4 0 6 -            | 0                                            |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
| , Add         | 8                | 0                                                                                      | 0   | 0000                         | 0                                            |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
| Bow           | R                |                                                                                        |     | 0000                         | 0                                            |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
|               | ۲                |                                                                                        |     | 0000                         | 0                                            |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
|               | A5               |                                                                                        |     | -0000000                     | 0                                            |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
|               | Ą                |                                                                                        |     | 000000000                    |                                              |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
|               | A3               |                                                                                        |     | 000000000                    |                                              |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
| <u>۹</u>      | A6               |                                                                                        |     | 000000000                    |                                              |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |
| Pin 16        | A                | 1                                                                                      | 00  | 000000000                    | 0                                            |                                                                  |                                  |                                              |                                       |                                       |                                       |                                  |                                    |                                            |

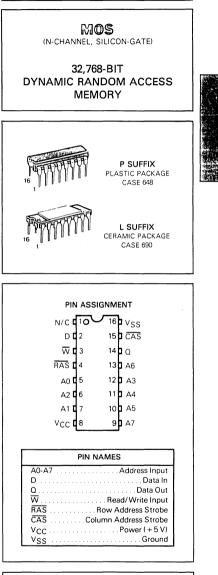
Data Stored = Din @ A0X @ A1Y

| Column<br>Address<br>A1 | Row<br>Address<br>A0 | Data<br>Stored |
|-------------------------|----------------------|----------------|
| 0                       | 0                    | True           |
| 0                       | 1                    | Inverted       |
| 1                       | 0                    | Inverted       |
| 1                       | 1                    | True           |
|                         |                      |                |



### MCM6633A


### 32K BIT DYNAMIC RAM


The MCM6633A is a 32,768 bit, high-speed, dynamic Random-Access Memory. Organized as 32,768 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology. This new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

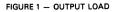
By multiplexing row- and column-address inputs, the MCM6633A requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by  $\overline{CAS}$  allowing for greater system flexibility.

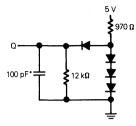
All inputs and outputs, including clocks, are fully TTL compatible. The MCM6633A incorporates a one-transistor cell design and dynamic storage techniques.

- Organized as 32,768 Words of 1 Bit
- Single +5 V Operation (±10%)
- o Full Power Supply Range Capabilities
- Maximum Access Time MCM6633A-12 = 120 ns MCM6633A-15 = 150 ns MCM6633A-20 = 200 ns
- Low Power Dissipation 302.5 mW Maximum (Active) (MCM6633A-15) 22 mW Maximum (Standby)
- Three-State Data Output
- o Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- o 16K Compatible 128-Cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4517)
- Fast Page Mode Cycle Time
- Low Soft Error Rate < 0.1% per 1000 Hours (See Soft Error Testing)
- One Half of the 64K Dynamic RAM MCM6665A
- The Operating Half of the MCM6633A is Indicated By Device Marking: MCM66330A TIE A7 CAS (A15) Low "0"; MCM66331A TIE A7 CAS (A15) High "1"






This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.


### MCM6633A

### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                                      | Symbol                             | Value       | Unit |
|-----------------------------------------------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to V <sub>SS</sub><br>(except V <sub>CC</sub> ) | V <sub>in</sub> , V <sub>out</sub> | -2 to +7    | v    |
| Voltage on V <sub>CC</sub> Supply Relative to V <sub>SS</sub>               | Vcc                                | -1 to +7    | V    |
| Operating Temperature Range                                                 | TA                                 | 0 to +70    | °C   |
| Storage Temperature Range                                                   | T <sub>stg</sub>                   | -65 to +150 | °C   |
| Power Dissipation                                                           | PD                                 | 1.0         | W    |
| Data Out Current                                                            | lout                               | 50          | mA   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.





\*Includes Jig Capacitance

### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED OPERATING CONDITIONS

|                             | Parameter                             | Symbol | Min    | Тур | Max                | Unit | Notes |
|-----------------------------|---------------------------------------|--------|--------|-----|--------------------|------|-------|
| Supply Voltage              | MCM6633A-12, -15, -20                 | Vcc    | 4.5    | 5.0 | 5.5                | , V  | 1     |
|                             |                                       | VSS    | 0      | 0   | . 0                | V    | 1     |
| Logic 1 Voltage, All Inputs |                                       | VIH    | 2.4    | -   | V <sub>CC</sub> +1 | V    | 1     |
| Logic 0 Voltage, All Inputs | · · · · · · · · · · · · · · · · · · · | VIL    | - 1.0° | -   | 0.8                | V    | 1     |

\*The device will withstand undershoots to the -2 volt level with a maximum pulse width of 20 ns at the -1.5 volt level. This is periodically sampled rather than 100% tested.

### DC CHARACTERISTICS

| Characteristic                                                                               | Symbol | Min | Max | Units | Notes |
|----------------------------------------------------------------------------------------------|--------|-----|-----|-------|-------|
| V <sub>CC</sub> Power Supply Current (Standby)                                               | ICC2   | -   | 4.0 | mA    | 5     |
| V <sub>CC</sub> Power Supply Current                                                         |        |     |     |       |       |
| 6633A-12, t <sub>RC</sub> =250 ns                                                            |        | -   | 60  |       |       |
| 6633A-15, t <sub>RC</sub> =270 ns                                                            | ICC1   |     | 55  | mA    | 4     |
| 6633A-20, t <sub>RC</sub> =330 ns                                                            |        | -   | 50  |       |       |
| V <sub>CC</sub> Power Supply Current During RAS only Refresh Cycles                          |        |     |     |       |       |
| 6633A-12, t <sub>RC</sub> = 250 ns                                                           |        | -   | 50  |       |       |
| 6633A-15, t <sub>RC</sub> =270 ns                                                            | ICC3   | -   | 45  | mA    | 4     |
| 6633A-20, t <sub>RC</sub> =330 ns                                                            |        | -   | 40  |       |       |
| V <sub>CC</sub> Power Supply Current During Page Mode Cycle for $t_{RAS} = 10 \mu sec$       |        |     |     |       |       |
| $6633A-12$ , $t_{PC} = t_{RP} = 120$ ns                                                      |        | - 1 | 45  |       |       |
| $6633A-15$ , $t_{PC} = t_{RP} = 145$ ns                                                      | ICC4   | -   | 40  | mA    | 4     |
| 6633A-20, tpc = tpp = 200 ns                                                                 |        | -   | 35  |       |       |
| Input Leakage Current (V <sub>SS</sub> ≤V <sub>in</sub> ≤V <sub>CC</sub> )                   | Ч(L)   | -   | 10  | μA    | -     |
| Output Leakage Current (CAS at logic 1, V <sub>SS</sub> ≤V <sub>out</sub> ≤V <sub>CC</sub> ) | IO(L)  | -   | 10  | μA    | -     |
| Output Logic 1 Voltage @ Iout = -4 mA                                                        | VOH    | 2.4 | -   | V     | -     |
| Output Logic 0 Voltage @ Iout = 4 mA                                                         | VOL    | -   | 0.4 | V     | -     |

CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25°C, V<sub>CC</sub> = 5 V Periodically Sampled Rather Than 100% Tested)

| Parameter                                                              | Symbol          | Тур | Max | Unit | Notes |
|------------------------------------------------------------------------|-----------------|-----|-----|------|-------|
| Input Capacitance (A0-A7), D                                           | C <sub>11</sub> | 3   | 5   | рF   | 7     |
| Input Capacitance RAS, CAS, WRITE                                      | C <sub>12</sub> | 6   | 8   | рF   | 7     |
| Output Capacitance (Q), ( $\overline{CAS} = V_{IH}$ to disable output) | Со              | 5   | 7   | рF   | 7     |

NOTES: 1. All voltages referenced to VSS.

2. V<sub>IH</sub> min and V<sub>IL</sub> max are reference levels for measuring timing of input signals. Transition times are measured between V<sub>IH</sub> and V<sub>IL</sub>.

3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation is guaranteed.

4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

5. RAS and CAS are both at a logic 1.

6. The transition time specification applies for all inputs signals. In addition to meeting the transition rate specification, all input signals must transmit between V<sub>I</sub> and V<sub>IL</sub> (or between V<sub>IL</sub> and V<sub>IL</sub>) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = \frac{|\Delta t|}{\Delta t}$ 

| (Full Operating Voltage and Temperature Range Un | less Utherwise    |          |       |          |       |          |       | ·     |        |
|--------------------------------------------------|-------------------|----------|-------|----------|-------|----------|-------|-------|--------|
| <b>D</b>                                         |                   | 6633A-12 |       | 6633A-15 |       | 6633A-20 |       | ł     |        |
| Parameter                                        | Symbol            | Min      | Max   | Min      | Max   | Min      | Max   | Units | Notes  |
| Random Read or Write Cycle Time                  | <sup>t</sup> RC   | 250      | -     | 270      | -     | 330      |       | ns    | 8, 9   |
| Read Write Cycle Time                            | <sup>t</sup> RWC  | 255      | -     | 280      | -     | 345      | -     | ns    | 8, 9   |
| Access Time from Row Address Strobe              | <sup>t</sup> RAC  | -        | 120   | -        | 150   | -        | 200   | ns    | 10, 12 |
| Access Time from Column Address Strobe           | <sup>t</sup> CAC  | -        | 60    | -        | 75    | -        | 100   | ns    | 11, 12 |
| Output Buffer and Turn-Off Delay                 | tOFF              | 0        | 30    | 0        | 30    | 0        | 40    | ns    | 18     |
| Row Address Strobe Precharge Time                | tRP               | 100      | -     | 100      | -     | 120      | -     | ns    | -      |
| Row Address Strobe Pulse Width                   | <sup>t</sup> RAS  | 120      | 10000 | 150      | 10000 | 200      | 10000 | ns    | I      |
| Column Address Strobe Pulse Width                | <sup>t</sup> CAS  | 60       | 10000 | 75       | 10000 | 100      | 10000 | ns    | -      |
| Row to Column Strobe Lead Time                   | <sup>t</sup> RCD  | 25       | 60    | 30       | 75    | 35       | 100   | ns    | 13     |
| Row Address Setup Time                           | tASR              | 0        | -     | 0        |       | 0        | -     | ns    |        |
| Row Address Hold Time                            | <sup>t</sup> RAH  | 15       | -     | 20       | -     | 25       | -     | ns    | -      |
| Column Address Setup Time                        | <sup>t</sup> ASC  | 0        | -     | 0        | -     | 0        |       | ns    | -      |
| Column Address Hold Time                         | <sup>t</sup> CAH  | 25       | -     | 35       |       | 45       | -     | ns    | -      |
| Column Address Hold Time Referenced to RAS       | tAR               | 85       | -     | 95       | -     | 120      | -     | ns    | 17     |
| Transition Time (Rise and Fall)                  | tŢ                | 3        | 50    | 3        | 50    | 3        | 50    | ns    | 6      |
| Read Command Setup Time                          | tRCS              | 0        | -     | 0        | -     | 0        | -     | ns    | -      |
| Read Command Hold Time                           | <sup>1</sup> RCH  | 0        | -     | 0        | -     | 0        | -     | ns    | 14     |
| Read Command Hold Time Referenced to RAS         | <sup>t</sup> RRH  | 0        | -     | 0        | -     | 0        | -     | ns    | 14     |
| Write Command Hold Time                          | tWCH              | 25       | -     | 35       | -     | 45       | -     | ns    |        |
| Write Command Hold Time Referenced to RAS        | tWCR              | 85       | -     | 95       | -     | 120      | -     | ns    | 17     |
| Write Command Pulse Width                        | twp               | 25       |       | 35       | -     | 45       | -     | ns    | -      |
| Write Command to Row Strobe Lead Time            | tRWL              | 40       | -     | 45       | -     | 55       | -     | ns    | -      |
| Write Command to Column Strobe Lead Time         | tCWL              | 40       | -     | 45       | -     | 55       |       | ns    | -      |
| Data in Setup Time                               | 1DS               | 0        | -     | 0        | -     | 0        | -     | ns    | 15     |
| Data in Hold Time                                | <sup>t</sup> DH   | 25       | -     | 35       | -     | 45       | - 1   | ns    | 15     |
| Data in Hold Time Referenced to RAS              | <sup>t</sup> DHB  | 85       |       | 95       | -     | 120      | ~     | ns    | 17     |
| Column to Row Strobe Precharge Time              | tCRP              | - 10     | -     | - 10     | -     | - 10     | -     | ns    | -      |
| RAS Hold Time                                    | tRSH              | 60       | ~     | 75       | -     | 100      | -     | ns    | _      |
| Refresh Period                                   | <sup>t</sup> RFSH | -        | 2.0   |          | 2.0   |          | 2.0   | ms    |        |
| WRITE Command Setup Time                         | twcs              | - 10     | -     | - 10     | -     | - 10     | -     | ns    | 16     |
| CAS to WRITE Delay                               | tCWD              | 40       | -     | 45       | -     | 55       | -     | ns    | 16     |
| RAS to WRITE Delay                               | t <sub>RWD</sub>  | 100      |       | 120      | -     | 155      | -     | ns    | 16     |
| CAS Hold Time                                    | tCSH              | 120      | -     | 150      |       | 200      | -     | ns    | _      |
| CAS Precharge Time (Page Mode Cycle Only)        | tCP               | 50       | -     | 60,      | -     | 80       |       | ns    | _      |
| Page Mode Cycle Time                             | 1PC               | 120      | -     | 145      |       | 200      | -     | ns    | _      |

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles) (Full Operating Voltage and Temperature Reage Links; Otherwise Noted: See Notes 2, 2, 6, and Figure 1)

 The specifications for t<sub>RC</sub> (min), and t<sub>RWC</sub> (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T<sub>A</sub>≤70°C) is assured.

9. AC measurements  $t_T = 5.0$  ns.

10. Assumes that tRCD≤tRCD (max)

11. Assumes that tRCD≥tRCD (max).

12. Measured with a current load equivalent to 2 TTL (-200  $\mu$ A, +4 mA) loads and 100 pF with the data output trip points set at V<sub>OH</sub> = 2.0 V and V<sub>OL</sub> = 0.8 V.

13. Operation within the t<sub>RCD</sub> (max) limit ensures that t<sub>RAC</sub> (max) can be met. t<sub>RCD</sub> (max) is specified as a reference point only; if t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub>(max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.

14. Either tRRH or tRCH must be satisfied for a read cycle.

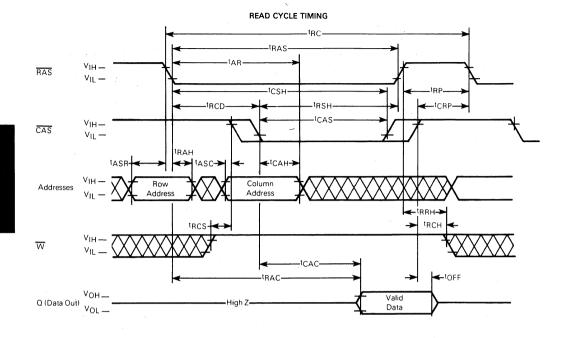
 These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.

16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS ≥ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD ≥ tCWD (min) and tRWD ≥ tRWD (min), the cycle is read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

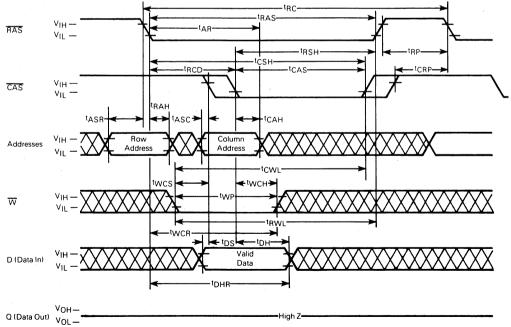
17  $t_{AR} \min \le t_{AR} = t_{RCD} + t_{CAH}$ 

 $t_{DHR} \min \le t_{DHR} = t_{RCD} + t_{DH}$ 

 $t_{WCR} \min \le t_{WCR} = t_{RCD} + t_{WCH}$ 

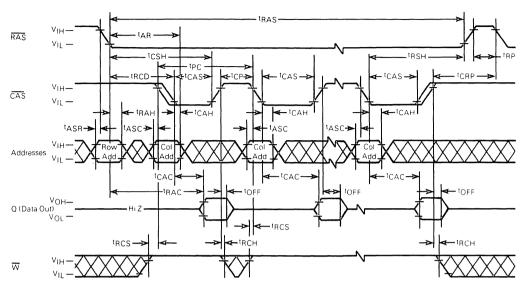

18. t<sub>off</sub> (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

4

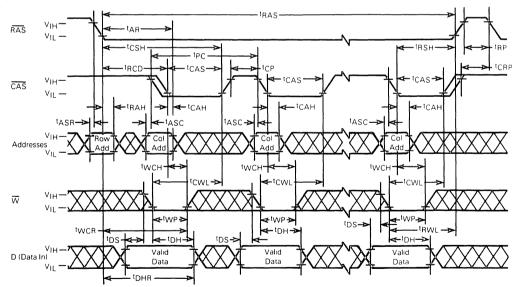

1

4

1




### WRITE CYCLE TIMING




### MCM6633A

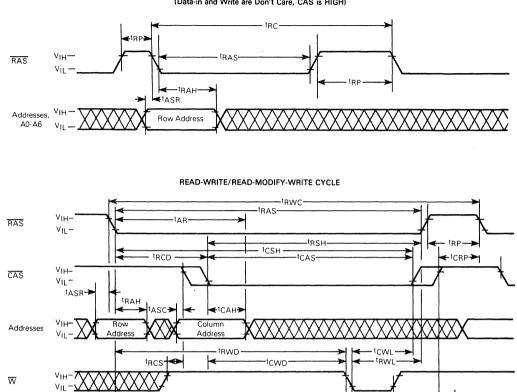
PAGE MODE READ CYCLE



### PAGE MODE WRITE CYCLE



1


Q (Data Out) VOH-VOL-

D (Data In)

Vн

Vii

DRAM



<sup>t</sup>CAC

High Z

**IRAC** 

←<sup>t</sup>OFF

-twp-

Valid

Data

+ <sup>1</sup>DH

IDS

Valid

Data

### RAS-ONLY REFRESH CYCLE (Data-in and Write are Don't Care, CAS is HIGH)

### TYPICAL CHARACTERISTICS

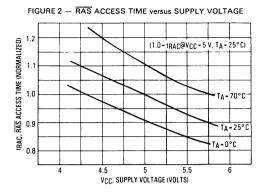
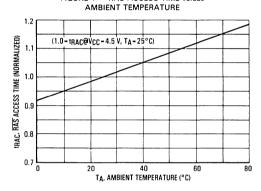




FIGURE 4 - RAS ACCESS TIME versus





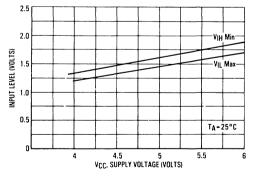
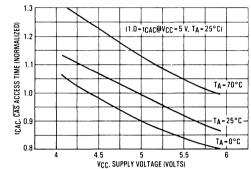
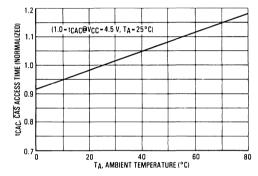



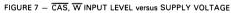

FIGURE 3 - TAS ACCESS TIME versus SUPPLY VOLTAGE

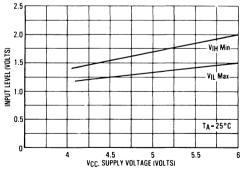


DRAM

1


4


ŧ

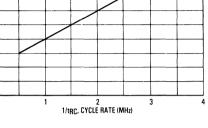

l

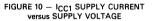
i

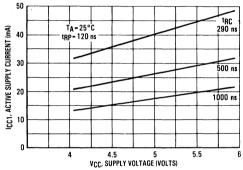










J.


### TYPICAL CHARACTERISTICS (continued)

50 VCC = 5.5 V tRP = 120 ns TA-25°C ICC1. ACTIVE SUPPLY CURRENT (mA) 40 30 20 10 0 L 0 3 1 2

FIGURE 8 - ICC1 SUPPLY CURRENT versus CYCLE RATE







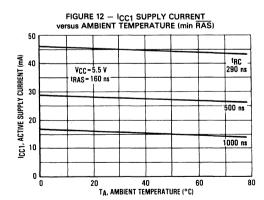



FIGURE 9 - I<sub>CC1</sub> SUPPLY CURRENT versus SUPPLY VOLTAGE

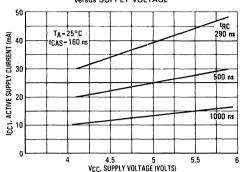
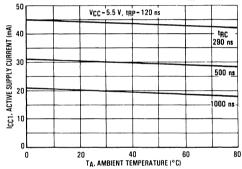
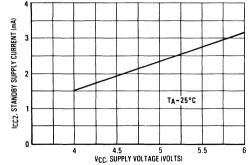





FIGURE 11 - I<sub>CC1</sub> SUPPLY CURRENT versus AMBIENT TEMPERATURE (min t<sub>RP</sub>)







### TYPICAL CHARACTERISTICS (continued)

FIGURE 14 – I<sub>CC2</sub> STANDBY CURRENT versus AMBIENT TEMPERATURE

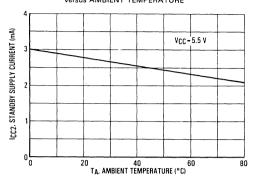
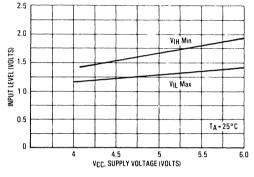




FIGURE 16 - ADDRESS INPUT LEVEL versus SUPPLY VOLTAGE



### SOFT ERROR TESTING

The storage cell depletion regions as well as the sense amplifier and its associated bit lines are susceptible to charge collection of electrons from an alpha "hit." However, the susceptibility of these vulnerable regions varies. Depleted storage cells are vulnerable at all times, whereas the sense amplifiers and associated bit lines are susceptible only during the small portion of the memory cycle just prior to sensing. Hence, an increase in the frequency of dynamic RAM access will cause a corresponding increase in the soft error rate.

To take this memory access dependency into account, the total soft error rate profile includes a cycle time component. The soft error rate due to bit line hits at the system's memory cycle rate is added to the soft error rate due to storage cell hits which are not frequency dependent. Figure 18 illustrates the impact that frequency of access has on the MCM6664A/MCM6665A overall soft error rate.

Under normal operating conditions, the die will be exposed to radiation levels of less than 0.01 alpha/cm<sup>2</sup>/hr. Accelerated soft error testing data is generated from at least three high-intensity sources having an Alpha Flux Density range of 1 x 10<sup>5</sup> to 6 x 10<sup>5</sup> (alpha/cm<sup>2</sup>hr) placed over un-

FIGURE 15 - ICC3 SUPPLY CURRENT versus CYCLE RATE

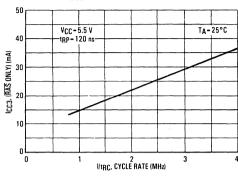
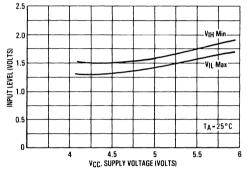






FIGURE 17 - DATA INPUT LEVEL versus SUPPLY VOLTAGE



coated die. Figure 19 shows the soft error rate for a given alpha flux density at a cycle rate of 100 kHz. The accelerated data of Figures 18 and 19 project that the soft error rate for package level radiation will be less than 0.1%/1000 hours.

### SYSTEM LIFE OPERATING TEST CONDITIONS

- 1) Cycle time: 1 microsecond for read, write and refresh cycles
- 2) Refresh Rate: 1 millisecond
- 3) Voltage: 5.0 V
- 4) Temperature: 30 ° C  $\pm$  2 ° C (ambient temperature inside enclosure)
- 5) Elevation: Approximately 620 feet above mean sea level
- 6) Data Patterns: Write the entire memory space sequentially with all "1"s and then perform continuous sequential reads for 6 hours. Next, write the entire memory space with all "0"s sequentially and then perform continuous sequential reads for 6 hours. Next, go back to the all "11"s pattern and repeat the sequences all over again.

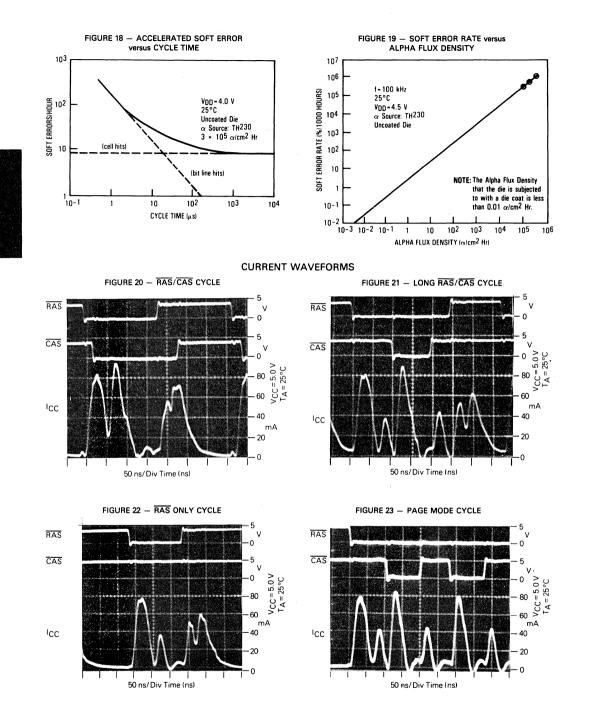
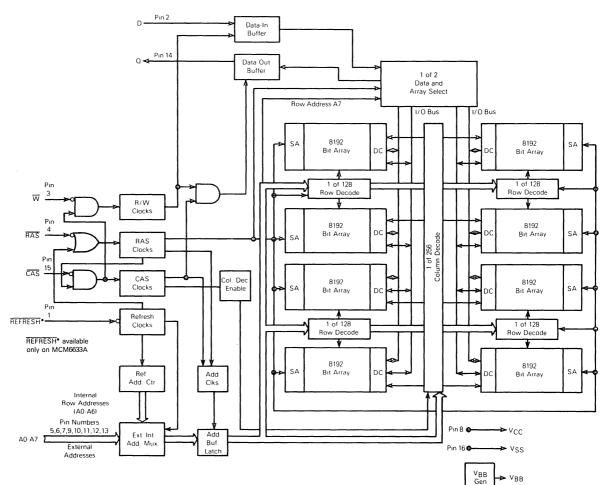




FIGURE 24 - FUNCTIONAL BLOCK DIAGRAM



- -

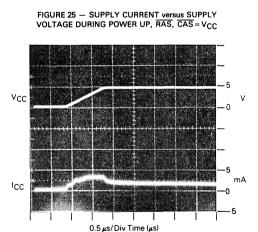
-

DRAM

### **DEVICE INITIALIZATION**

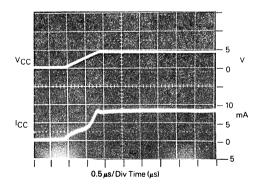
Since the 32K dynamic RAM is a single supply 5 V only device, the need for power supply sequencing is no longer required as was the case in older generation dynamic RAMs. On power-up an initial pause of 100 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 2 ms with device powered up) the wake up sequence (8 active cycles) will be necessary to assure proper device operation. See Figures 25 and 26 for power on characteristics of the RAM for two conditions (clocks active, clocks inactive).

The row address strobe is the primary "clock" that activates the device and maintains the data when the RAM is in the standby mode. This is the main feature that distinquishes it as a dynamic RAM as opposed to a static RAM. A dynamic RAM is placed in a low power standby mode when the device receives a positive-going row address strobe. The variation in the power dissipation of a dynamic RAM from the active to the standby state is an order of magnitude or more for NMOS devices. This feature is used to its fullest advantage with high density mainframe memory systems, where only a very small percentage of the devices are in the active mode at any one time and the rest of the devices are in a system where all devices are active continuously.


### ADDRESSING THE RAM

The eight address pins on the device are time multiplexed with two separate 8-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe and the column address strobe. A total of fifteen address bits will decode one of the 32,768 cell locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up his external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, two other variations in addressing the 32K RAM, one is called the page mode cycle (described later) where an 8-bit column address field is presented on the input pins and latched by the CAS clock; and the other is the RAS only refresh cycle (described later) where a 7-bit row address field is presented on the input pins and latched by the RAS clock. In the latter case, the most significant bit on Row Address A7 (pin 9) is not required for refresh. See bit address map for the topology of the cells and their address selection.

### NORMAL READ CYCLE


A read cycle is referred to as normal read cycle to differentiate it from a page-mode-read cycle, a read-while-write cycle, and read-modify-write cycle which are covered in a later section.

The memory read cycle begins with the row addresses valid and the  $\overline{RAS}$  clock transitioning from VI<sub>H</sub> to the VI<sub>L</sub> level. The  $\overline{CAS}$  clock must also make a transition from VI<sub>H</sub> to the VI<sub>L</sub> level at the specified t<sub>RCD</sub> timing limits when the column addresses are latched. Both the  $\overline{RAS}$  and  $\overline{CAS}$  clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the  $\overline{CAS}$  clock must be active before or at



### CURRENT WAVEFORMS

FIGURE 26 — SUPPLY CURRENT versus SUPPLY VOLTAGE DURING POWER UP, RAS, CAS = V<sub>SS</sub>



the tRCD maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available, as noted in the functional block diagram, Figure 24. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (t<sub>RAS</sub>) period for the RAS clock and the minimum (t<sub>CAS</sub>) period for the CAS clock. The RAS clock must stay inactive for the minimum (t<sub>RP</sub>) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the  $\overline{CAS}$  clock is active; the output will switch to the three-state mode when the  $\overline{CAS}$  clock goes inactive. The  $\overline{CAS}$  clock can remain active for a maximum of 10 ns (t\_{CP}) into the next cycle. To perform a read cycle, the write (W) input must be held at the  $V_{IH}$  level from the time the  $\overline{CAS}$  clock makes its active transition (t\_{RCS}) to the time when it transitions into the inactive (t\_{RCH}) mode.

### WRITE CYCLE

A write cycle is similar to a read cycle except that the Write ( $\overline{W}$ ) clock must go active ( $V|_L$  level) at or before the  $\overline{CAS}$  clock goes active at a minimum tWCS time. If the above condition is met, then the cycle in progress is referred to as a early write cycle. In an early write cycle, the write clock and the data in is referenced to the active transition of the  $\overline{CAS}$  clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t<sub>CWL</sub>) and the row strobe to write lead time (t<sub>CWL</sub>). These define the minimum time that RAS and CAS clocks need to be active after the write operation has started ( $\overline{W}$ ) clock at V|\_L level).

It is also possible to perform a late write cycle. For this cycle the write clock is activated after the  $\overline{CAS}$  goes low which is beyond tWCS minimum time. Thus the parameters tCWL and tRWL must be satisfied before terminating this cycle. The difference between an early write cycle and a late write cycle is that in a late write cycle the write  $(\overline{W})$  clock can occur much later in time with respect to the active transition of the  $\overline{CAS}$  clock. This time could be as long as 10 microseconds –  $[t_{RWL} + t_RP + 2T_l]$ .

At the start of a write cycle, the data out is in a three-state condition and remains inactive throughout the cycle. The data out remains three-state because of the active transition of the write (W) clock prevents the CAS clock from enabling the data-out buffers as noted in Functional Block Diagram. The three-state condition (high impedence) of the Data Out Pin during a write cycle can be effectively utilized in a systems that has a common input/output bus. The only stipulation is that the system use only early write mode operations for all write cycles to avoid bus contention.

### READ-MODIFY-WRITE AND READ-WHILE-WRITE CYLES

As the name implies, both a read and a write cycle is accomplished at a selected bit during a single access. The readmodify-write cycle is similar to the late write cycle discussed above.

For the read-modify-write cycle a normal read cycle is initiated with the write  $(\overline{W})$  clock at the  $V_{IH}$  level until the read data occurs at the device access time ( $t_{RAC}$ ). At this time the write ( $\overline{W}$ ) clock is asserted. The data in is setup and held with respect to the active edge of the write clock. The cycle described assumes a zero modify time between read and write.

Another variation of the read-modify-write cycle is the read-while-write cycle. For this cycle, the following parameters (t<sub>RWD</sub>, t<sub>CWD</sub>) play an important role. A read-while-write cycle starts as a normal read cycle with the write ( $\overline{W}$ ) clock being asserted at minimum t<sub>RWD</sub> or minimum t<sub>CWD</sub> time, depending upon the application. This results in starting a write operation to the selected cell even before data out occurs. The minimum specification on t<sub>RWD</sub> and t<sub>CWD</sub> assure that data out does occur. In this case, the data in is set up with respect to write ( $\overline{W}$ ) clock active edge.



1

4

1

1

t

### PAGE-MODE CYCLES

Page mode operation allows faster successive data operations at the 128 column locations. Page access (trar) is typically half the regular RAS clock access (tRAC) on the Motorola 64K dynamic RAM. Page mode operation consists of holding the RAS clock active while cycling the CAS clock to access the column locations determined by the 8-bit column address field. There are two controlling factors that limit the access to all 128 column locations in one RAS clock active operation. These are the refresh interval of the device (2 ms/128=15.6 microseconds) and the maximum active time specification for the RAS clock (10 microseconds). Since 10 microseconds is the smaller value, the maximum specification of the RAS clock on time is the limiting factor of the number of sequential page accesses possible. Ten microseconds will provide approximately 50 successive page accesses (10 microseconds + page mode cycle time) for each row address selected before the RAS clock is reset.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter CAS cycles (tpc). The CAS cycle time (tpc) consists of the CAS clock active time ( $t_{CAS}$ ), and  $\overline{CAS}$  clock precharge time ( $t_{CP}$ ) and two transitions. In addition to read and write cycles, a readmodify-write cycle can also be performed in a page mode operation. For a read-modify-write or read-while-write type cycle, the conditions normal to that mode of operation will apply in the page mode also. The page mode cycle illustrated show a series of sequential reads separated by a series of sequential writes. This is just one mode of operation. In practice, any combination of read, write and read-modify-write cycles can be performed to suit a particular application.

### **REFRESH CYCLES**

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to

degrade with time and temperature. Therefore, to retain the correct information, the bits need to be refreshed at least once every 2 ms. This is accomplished by sequentially cycling through the 128 row address locations every 2 ms, or at least one row every 15.6 microseconds. A normal read or write operation to the RAM will serve to refresh all the bits (256) associated with that particular row decoded.

 $\overline{RAS}$  Only Refresh — When the memory component is in standby the  $\overline{RAS}$  only refresh scheme is employed. This refresh method performs a  $\overline{RAS}$  only cycle on all 128 row addresses every 2 ms. The row addresses are latched in with the  $\overline{RAS}$  clock, and the associated internal row locations are refreshed. As the heading implies, the  $\overline{CAS}$  clock is not required and should be inactive or at a  $V_{IH}$  level to conserve power.

### PIN ASSIGNMENT COMPARISON

| MCM                                                            | 14116                                                          | MCM4                                                                 | 517                                                              | N                 | 1CM6632A                                                                                                                                                                                 |
|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VBB 1                                                          | 16 V <sub>SS</sub>                                             |                                                                      | 16 <b>0</b> V <sub>SS</sub>                                      | REFRESH           |                                                                                                                                                                                          |
| D 🖸 2                                                          | 15 CAS                                                         | D <b>C</b> 2                                                         | 15 CAS                                                           | D C               | 2 15 CAS                                                                                                                                                                                 |
| w <b>1</b> 3                                                   | 14 <b>þ</b> Q                                                  | <b>₩ E</b> 3                                                         | 14 <b>D</b> Q                                                    | <b>₩ c</b> :      | 3 14 <b>9</b> 0                                                                                                                                                                          |
| RAS C4                                                         | 13 <b>1</b> A6                                                 | RAS C 4                                                              | 13 <b>0</b> A6                                                   | RAS               | 4 13 <b>1</b> A6                                                                                                                                                                         |
| A0 <b>0</b> 5                                                  | 12 <b>1</b> A3                                                 | A0 <b>C</b> 5                                                        | 12 A A3                                                          | AO                | 5 12 <b>9</b> A3                                                                                                                                                                         |
| A2 🛙 6                                                         | 11 0 44                                                        | A2 <b>C</b> 6                                                        | 11 1 A4                                                          | A2 🕻              | 6 11 <b>2</b> A4                                                                                                                                                                         |
| A1 🛙 7                                                         | 10 <b>0</b> A5                                                 | A1 <b>C</b> 7                                                        | 10 <b>1</b> A5                                                   | A1 <b>D</b>       | 7 10 <b>0</b> A5                                                                                                                                                                         |
| VDD <b>E</b> 8                                                 | 9 <b>9</b> v <sub>CC</sub>                                     | ∨cc <b>t</b> _8                                                      | 9 <b>1</b> N/C                                                   | vcc <b>ū</b> ≀    | 8 9 <b>1</b> A7                                                                                                                                                                          |
| мсме                                                           | 2000                                                           | MCM66                                                                | 84.4                                                             |                   | 1CM6665A                                                                                                                                                                                 |
|                                                                | 033A                                                           |                                                                      | 04A                                                              |                   | /ICIVI0003A                                                                                                                                                                              |
| N/C                                                            | 16 VSS                                                         |                                                                      | 16 VSS                                                           | N/CE              |                                                                                                                                                                                          |
|                                                                |                                                                |                                                                      |                                                                  | -                 |                                                                                                                                                                                          |
| N/C                                                            | 16 VSS                                                         | REFRESH                                                              | 16 V <sub>SS</sub>                                               | N/CE              | 16 V <sub>SS</sub><br>2 15 CAS                                                                                                                                                           |
|                                                                | 160 V <sub>SS</sub><br>150 CAS                                 |                                                                      | 16 2 V <sub>SS</sub><br>15 2 CAS                                 |                   | 16 V <sub>SS</sub><br>2 15 CAS<br>3 14 0                                                                                                                                                 |
| N/C <b>c</b> 1 ●<br>D <b>c</b> 2<br>W <b>c</b> 3               | 16 VSS<br>15 CAS<br>14 Q                                       |                                                                      | 160 V <sub>SS</sub><br>150 CAS<br>140 Q                          | איכם<br>סם<br>ססק | 16 V <sub>SS</sub><br>2 15 CAS<br>3 14 C<br>4 13 A6                                                                                                                                      |
| N/C <b>1</b><br>D <b>C</b> 2<br>W <b>C</b> 3<br>RAS <b>C</b> 4 | 16 V <sub>SS</sub><br>15 CAS<br>14 Q<br>13 A6                  | REFRESH <b>C</b> 1<br>D <b>C</b> 2<br>W <b>C</b> 3<br>RAS <b>C</b> 4 | 16 2 V <sub>SS</sub><br>15 2 CAS<br>14 2 Q<br>13 2 A6            |                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                   |
| N/C<br>D<br>C 2<br>W<br>C 3<br>RAS<br>C 4<br>A0<br>C 5         | 16 V <sub>SS</sub><br>15 D CAS<br>14 D Q<br>13 D A6<br>12 D A3 | REFRESH CIO<br>DC2<br>WC3<br>RASC4<br>A0C5                           | 16 2 V <sub>SS</sub><br>15 2 CAS<br>14 2 Q<br>13 3 A6<br>12 2 A3 |                   | 16         VSS           2         15         CAS           3         14         Q           4         13         A6           5         12         A3           5         11         A4 |

### PIN VARIATIONS

| PIN NUMBER | MCM4116                 | MCM4517 | MCM6632A | MCM6663A | MCM6664A | MCM6665A |
|------------|-------------------------|---------|----------|----------|----------|----------|
| 1          | V <sub>BB</sub> (-5 V)  | N/C     | REFRESH  | N/C      | REFRESH  | N/C      |
| 8          | V <sub>DD</sub> (+12 V) | Vcc     | Vcc      | Vcc      | Vcc      | Vcc      |
| 9          | V <sub>CC</sub> (+5 V)  | N/C     | A7       | A7       | A7       | A7       |

| Part Number  | Description   | Speed | Marking*                  |
|--------------|---------------|-------|---------------------------|
| MCM6633AL15  | 32K Dynamic   | 150   | MCM66330A15/MCM66331AL15  |
| MCM66330AL15 | Random Access | 150   | MCM66330AL15              |
| MCM66331AL15 | Memory        | 150   | MCM66331AL15              |
| MCM6633AL20  | Sidebraze     | 200   | MCM66330AL20/MCM66331AL20 |
| MCM66330AL20 | Package "L"   | 200   | MCM66330AL20              |
| MCM66331AL20 |               | 200   | MCM66331AL20              |

### ORDERING INFORMATION

\*MCM6633A = Tie A7 CAS (A15) Low "0"

MCM66331A = Tie A7 CAS (A15) High "1"

2-56

### MCM6665A BIT ADDRESS MAP

|                  | Row Address A7 A6 A5<br>Column Address A7 A6 |        | F                   | Pin 8                                                     | Column Addresses                                            |                                       |                                                 |                                       |                                       |                                       |                                  |                                         |                                       |
|------------------|----------------------------------------------|--------|---------------------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------|-----------------------------------------|---------------------------------------|
|                  | R                                            | ow     |                     | Hex<br>FE<br>FF<br>FC<br>FD<br>FA<br>FB<br>F8<br>F8<br>F9 | Dec<br>254<br>255<br>252<br>253<br>250<br>251<br>248<br>249 | A7<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <b>A6</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A3<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A4<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A5<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A2<br>1<br>1<br>1<br>0<br>0<br>0 | <b>A0</b><br>1<br>0<br>1<br>1<br>0<br>0 | A1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 |
|                  |                                              |        |                     | CO<br>C1<br>BF<br>BE                                      | 192<br>193<br>191<br>190                                    | 1<br>1<br>1                           | 1<br>1<br>0<br>0                                | 0<br>0<br>1<br>1                      | 0<br>0<br>1<br>1                      | 0<br>0<br>1<br>1                      | 0<br>0<br>1<br>1                 | 0<br>0<br>1                             | 0<br>1<br>1<br>0                      |
| Idresses         |                                              |        |                     | 83<br>82<br>81<br>80                                      | 131<br>130<br>129<br>128                                    | 1<br>1<br>1                           | 0<br>0<br>0                                     | 0<br>0<br>0                           | 0<br>0<br>0                           | 0<br>0<br>0                           | 0<br>0<br>0<br>0                 | 1<br>1<br>0<br>0                        | 1<br>0<br>1<br>0                      |
| Column Addresses |                                              |        |                     | 7E<br>7F<br>7C                                            | 126<br>127<br>124<br>•                                      | 0<br>0<br>0                           | 1<br>1<br>1                                     | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                      | 1<br>1<br>0                             | 0<br>1<br>0                           |
|                  |                                              |        |                     | 42<br>43<br>40<br>41                                      | 66<br>67<br>64<br>65                                        | 0<br>0<br>0<br>0                      | 1<br>1<br>1                                     | 0<br>0<br>0                           | 0<br>0<br>0                           | 0<br>0<br>0<br>0                      | 0<br>0<br>0                      | 1<br>1<br>0<br>0                        | 0<br>1<br>0<br>1                      |
|                  | 0155<br>7 7 10<br>10                         |        | 0110                | 3F<br>3E<br>3D                                            | 63<br>62<br>61<br>•                                         | 0<br>0<br>C                           | 0<br>0<br>0                                     | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                           | 1<br>1<br>1                      | 1<br>1<br>0                             | 1<br>0<br>1                           |
|                  | 806 F<br>806 F                               |        | 00100               | 04<br>03<br>02<br>01<br>00                                | 4<br>3<br>2<br>1<br>0                                       | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0                      | 1<br>0<br>0<br>0                 | 0<br>1<br>1<br>0<br>0                   | 0<br>1<br>0<br>1<br>0                 |
|                  | 254 FE<br>255                                | 126 7E | 35522088<br>8002808 |                                                           |                                                             |                                       |                                                 |                                       |                                       |                                       |                                  |                                         |                                       |
| Ę.               | 0 -                                          | o-<br> | 0000-               | 0                                                         |                                                             |                                       |                                                 |                                       |                                       |                                       |                                  |                                         |                                       |
| A5               |                                              |        |                     | 000                                                       |                                                             |                                       |                                                 |                                       |                                       |                                       |                                  |                                         |                                       |
| A6 A3            |                                              |        |                     |                                                           |                                                             |                                       |                                                 |                                       |                                       |                                       |                                  |                                         |                                       |
| Pin 16           |                                              | 00     | 0000000             | 000                                                       |                                                             |                                       |                                                 |                                       |                                       |                                       |                                  |                                         |                                       |

Data Stored = Din @ A0X @ A1Y

| Column<br>Address<br>A1 | Row<br>Address<br>A0 | Data<br>Stored |
|-------------------------|----------------------|----------------|
| 0                       | 0                    | True           |
| 0                       | 1                    | Inverted       |
| 1                       | 0                    | Inverted       |
| 1                       | 1                    | True           |

DRAM

4

1

i.

t

í

1

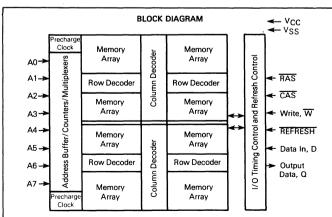
1



# MCM6664A

MOS

### **Advance Information**


### 64K-BIT DYNAMIC RAM

The MCM6664A is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology, this new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6664A requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6664A incorporates a one-transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, the refresh control function available on pin 1 provides two additional modes of refresh, automatic and self refresh.

- Organized as 65,536 Words of 1 Bit
- Single 5 Volt Operation (± 10%)
- Maximum Access Time: MCM6664A-12 = 120 ns
- MCM6664A-15 = 150 ns MCM6664A-20 = 200 ns • Low Power Dissipation
- 302.5 mW Maximum (Active) (MCM6664A-15) 22 mW Maximum (Standby)
- Three-State Data Output
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- · Control on Pin 1 for Automatic or Self Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Fast Page Mode Cycle Time
- Low Soft Error Rate <0.1% per 1000 Hours (See Soft Error Testing)



This document contains information on a new product. Specifications and information herein are subject to change without notice.

|                                          | 65,53<br>IAMIC RAN                                                                   | 6-BIT<br>NDOM ACCESS                                                                                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16<br>1                                  |                                                                                      | <b>P SUFFIX</b><br>PLASTIC PACKAGE<br>CASE 648                                                                                                                |
| 16<br>1                                  |                                                                                      | L SUFFIX<br>CERAMIC PACKAGE<br>CASE 690                                                                                                                       |
|                                          | PIN ASSI                                                                             | GNMENT                                                                                                                                                        |
| * RE                                     |                                                                                      | 16 VSS                                                                                                                                                        |
|                                          | D <b>D</b> 2                                                                         | 15 <b>1</b> CAS                                                                                                                                               |
|                                          | <b>₩</b> ∎ 3                                                                         | 14 <b>D</b> Q                                                                                                                                                 |
|                                          | RAS 24                                                                               | 13 <b>0</b> A6                                                                                                                                                |
|                                          | A0 <b>0</b> 5<br>A2 <b>0</b> 6                                                       | 120 A3<br>110 A4                                                                                                                                              |
|                                          | A2 0 6<br>A1 0 7                                                                     | 10 <b>D</b> A5                                                                                                                                                |
|                                          | V <sub>CC</sub> <b>[</b> 8                                                           | 9 <b>1</b> A7                                                                                                                                                 |
|                                          | n is not used, it i<br>nrough a 10 k r                                               | should be connected to esistor.                                                                                                                               |
|                                          | PIN N                                                                                | AMES                                                                                                                                                          |
| A0-4<br>D<br>Q<br>W<br>RAS<br>CAS<br>VCC | RESH                                                                                 | . Refresh<br>Address Input<br>Data In<br>Data Out<br>. Read/Write Input<br>. Row Address Strobe<br>Jumn Address Strobe<br>Power (+ 5 V)<br>                   |
| tect<br>high<br>howe<br>preca<br>tion    | the inputs aga<br>static voltage<br>ver, it is ac<br>utions be take<br>of any voltag | ns circuitry to pro-<br>inst damage due to<br>s or electric fields;<br>dvised that normal<br>en to avoid applica-<br>e higher than max-<br>iges to this high- |

impedance circuit.

### MCM6664A

### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                                      | Symbol                             | Value       | Unit |
|-----------------------------------------------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to V <sub>SS</sub><br>(except V <sub>CC</sub> ) | V <sub>in</sub> , V <sub>out</sub> | -2 to +7    | v    |
| Voltage on V <sub>CC</sub> Supply Relative to V <sub>SS</sub>               | Vcc                                | -1 to +7    | V    |
| Operating Temperature Range                                                 | TA                                 | 0 to +70    | °C   |
| Storage Temperature Range                                                   | T <sub>stg</sub>                   | -65 to +150 | °C   |
| Power Dissipation                                                           | PD                                 | 1.0         | w    |
| Data Out Current (Short Circuit)                                            | lout                               | 50          | mA   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED OPERATING CONDITIONS

|                       |                       |                        | Тур                                      |                                              |                                                                                                  | Notes                                                                                         |
|-----------------------|-----------------------|------------------------|------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| MCM6664A-12, -15, -20 | Vcc                   | 4.5                    | 5.0                                      | 5.5                                          | V                                                                                                | 1                                                                                             |
|                       | VSS                   | 0                      | 0                                        | 0                                            | V V                                                                                              | 1                                                                                             |
|                       | VIН                   | 2.4                    | -                                        | V <sub>CC</sub> +1                           | V                                                                                                | 1                                                                                             |
|                       | VIL                   | - 1.0                  | -                                        | 0.8                                          | V                                                                                                | 1, 19                                                                                         |
|                       | WCW0004A-12, -13, -20 | V <sub>SS</sub><br>VIH | V <sub>SS</sub> 0<br>V <sub>IH</sub> 2.4 | V <sub>SS</sub> 0 0<br>V <sub>IH</sub> 2.4 – | VSS         0         0         0           VIH         2.4         -         V <sub>CC</sub> +1 | VSS         0         0         V           VIH         2.4         -         VCC+1         V |

| Characteristic                                                                                          | Symbol | Min | Max | Units | Notes |
|---------------------------------------------------------------------------------------------------------|--------|-----|-----|-------|-------|
| V <sub>CC</sub> Power Supply Current (Standby)                                                          | ICC2   |     | 4.0 | mA    | 5     |
| V <sub>CC</sub> Power Supply Current                                                                    |        |     |     |       |       |
| 6664A-12, t <sub>RC</sub> =250 ns                                                                       |        | -   | 60  |       |       |
| 6664A-15, t <sub>RC</sub> =270 ns                                                                       | ICC1   | -   | 55  | mA    | 4     |
| 6664A-20, t <sub>RC</sub> =330 ns                                                                       |        | -   | 45  |       |       |
| V <sub>CC</sub> Power Supply Current During RAS only Refresh Cycles                                     |        |     |     |       |       |
| 6664A-12, $t_{RC} = 250 \text{ ns}$                                                                     |        | -   | 50  |       |       |
| 6664A-15, $t_{RC} = 270$ ns                                                                             | ICC3   | -   | 45  | mA    | 4     |
| 6664A-20, t <sub>RC</sub> =330 ns                                                                       |        | -   | 35  |       |       |
| V <sub>CC</sub> Power Supply Current During Page Mode Cycle for $t_{RAS} = 10 \mu sec$                  |        |     |     |       |       |
| 6664A-12, tpc = tpp = 120 ns                                                                            |        | -   | 45  |       |       |
| 6664A-15, tpc = tpp = 145 ns                                                                            | ICC4   | -   | 40  | mA    | 4     |
| 6664A-20, tpc = tpp = 200 ns                                                                            |        | -   | 35  |       |       |
| Input Leakage Current (V <sub>SS</sub> < V <sub>in</sub> < V <sub>CC</sub> ) (Any Input Except REFRESH) | Ц(L)   | -   | 10  | μA    | -     |
| REFRESH Input Current (V <sub>SS</sub> ≤ V <sub>in</sub> ≤ V <sub>CC</sub> )                            | ١F     | -   | 20  | μA    | -     |
| Output Leakage Current (CAS at logic 1, V <sub>SS</sub> ≤V <sub>out</sub> ≤V <sub>CC</sub> )            | lO(L)  | -   | 10  | μA    | -     |
| Output Logic 1 Voltage @ I <sub>out</sub> = -4 mA                                                       | Voн    | 2.4 | -   | V     | -     |
| Output Logic 0 Voltage @ Iout = 4 mA                                                                    | VOL    | -   | 0.4 | V     | -     |

CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25°C, V<sub>CC</sub> = 5 V Periodically Sampled Rather Than 100% Tested)

| Parameter                                             | Symbol          | Тур | Max | Unit | Notes |
|-------------------------------------------------------|-----------------|-----|-----|------|-------|
| Input Capacitance (A0-A7), D                          | C <sub>I1</sub> | 3   | 5   | рF   | 7     |
| Input Capacitance RAS, CAS, WRITE, REFRESH            | C <sub>12</sub> | 6   | 8   | рF   | 7     |
| Output Capacitance (Q), (CAS = VIH to disable output) | CO              | 5   | 7   | рF   | 7     |

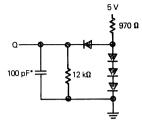
NOTES:

1. All voltages referenced to VSS.

2. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL

3. An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.

4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.


5. Output is disabled (open-circuit) and RAS and CAS are both at a logic 1.

 The transition time specification applies for all inputs signals. In addition to meeting the transition rate specification, all input signals must transmit between V<sub>IH</sub> and V<sub>IL</sub> (or between V<sub>IL</sub> and V<sub>IH</sub>) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I \Delta t \Delta V$ 

- The specifications for t<sub>RC</sub> (min), and t<sub>RWC</sub> (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T<sub>A</sub>≤70°C) is assured.
- 9. AC measurements  $t_T = 5.0$  ns.
- 10. Assumes that  $t_{RCD} \leq t_{RCD}$  (Max).
- 11. Assumes that  $t_{RCD} \ge t_{RCD}$  (Max)
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V<sub>OH</sub>=2.0 V and V<sub>OL</sub>=0.8 V.
- 13. Operation within the t<sub>RCD</sub> (max) limit ensures that t<sub>RAC</sub> (max) can be met. t<sub>RCD</sub> (max) is specified as a reference point only; if t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub>(max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.

FIGURE 1 - OUTPUT LOAD



Includes Jig Capacitance

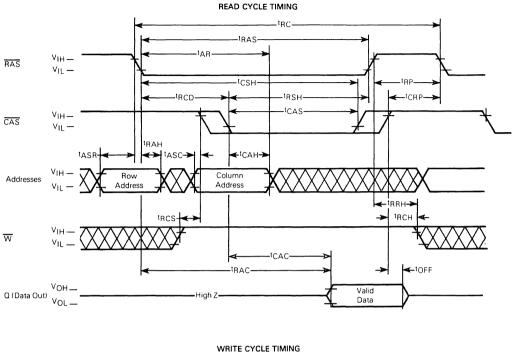
đ

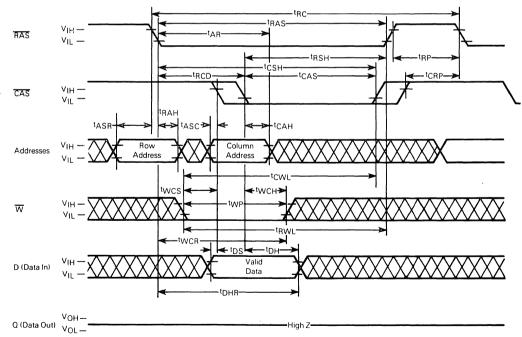
|                                                     |                   | 6664 | A-12     | 6664 | A-15  | 6664 | IA-20 | ]     |          |
|-----------------------------------------------------|-------------------|------|----------|------|-------|------|-------|-------|----------|
| Parameter                                           | Symbol            | Min  | Max      | Min  | Max   | Min  | Max   | Units | Note     |
| Random Read or Write Cycle Time                     | tRC               | 250  | -        | 270  | -     | 330  | -     | ns    | 8, 9     |
| Read Write Cycle Time                               | tRWC              | 255  | -        | 280  | -     | 345  | -     | ns    | 8, 9     |
| Access Time from Row Address Strobe                 | <sup>t</sup> RAC  | _    | 120      | -    | 150   | -    | 200   | ns    | 10,      |
| Access Time from Column Address Strobe              | <sup>t</sup> CAC  | _    | 60       | _    | 75    | _    | 100   | ns    | 11,      |
| Output Buffer and Turn-Off Delay                    | tOFF              | 0    | 30       | 0    | 30    | 0    | 40    | ns    | 18       |
| Row Address Strobe Precharge Time                   | tBP               | 100  | _        | 100  | -     | 120  | _     | ns    | -        |
| Row Address Strobe Pulse Width                      | tRAS              | 120  | 10000    | 150  | 10000 | 200  | 10000 | ns    | -        |
| Column Address Strobe Pulse Width                   | tCAS              | 60   | 10000    | 75   | 10000 | 100  | 10000 | ns    | -        |
| Row to Column Strobe Lead Time                      | tRCD              | 20   | 60       | 25   | 75    | 30   | 100   | ns    | 13       |
| Row Address Setup Time                              | tASR              | 0    | -        | 0    | -     | 0    |       | ns    | - 1      |
| Row Address Hold Time                               | tRAH              | 15   | -        | 20   | -     | 25   | _     | ns    |          |
| Column Address Setup Time                           | tASC              | 0    | _        | 0    | -     | 0    | _     | ns    | - 1      |
| Column Address Hold Time                            | tCAH              | 25   |          | 35   | _     | 45   | -     | ns    | -        |
| Column Address Hold Time Referenced to RAS          | tAR               | 85   | _        | 95   |       | 120  | - 1   | ns    | 17       |
| Transition Time (Rise and Fall)                     |                   | 3    | 50       | 3    | 50    | 3    | 50    | ns    | 6        |
| Read Command Setup Time                             | tRCS              | 0    |          | 0    | -     | 0    | -     | ns    | _        |
| Read Command Hold Time                              | tRCH              | 0    | -        | 0    | _     | 0    | -     | ns    | 14       |
| Read Command Hold Time Referenced to RAS            | tRRH              | 0    | -        | 0.   | -     | 0    | -     | ns    | 14       |
| Write Command Hold Time                             | tWCH              | 25   | -        | 35   | _     | 45   | -     | ns    | -        |
| Write Command Hold Time Referenced to RAS           | tWCR              | 85   | -        | 95   | _     | 120  | _     | ns    | 17       |
| Write Command Pulse Width                           | tWP               | 25   | -        | 35   | -     | 45   | _     | ns    | -        |
| Write Command to Row Strobe Lead Time               | tRWL              | 40   | -        | 45   |       | 55   |       | ns    | - 1      |
| Write Command to Column Strobe Lead Time            | tCWL              | 40   | _        | 45   | -     | 55   | -     | ns    | -        |
| Data in Setup Time                                  | tDS               | 0    | -        | 0    | _     | 0    | _     | ns    | 15       |
| Data in Hold Time                                   | <sup>t</sup> DH   | 25   | -        | 35   | -     | 45   | _     | ns    | 15       |
| Data in Hold Time Referenced to RAS                 | t DHR             | 85   | _        | 95   | _     | 120  | -     | ns    | 17       |
| Column to Row Strobe Precharge Time                 | tCRP              | - 10 | _        | - 10 | _     | - 10 | -     | ns    | -        |
| RAS Hold Time                                       | tRSH              | 60   | -        | 75   | -     | 100  | _     | ns    | -        |
| Refresh Period                                      | <sup>t</sup> RFSH | -    | 2.0      | -    | 2.0   | _    | 2.0   | ms    | -        |
| WRITE Command Setup Time                            | twcs              | - 10 | _        | - 10 | -     | - 10 | _     | ns    | 16       |
| CAS to WRITE Delay                                  | tCWD              | 40   | -        | 45   |       | 55   | -     | ns    | 16       |
| RAS to WRITE Delay                                  | tRWD              | 100  | -        | 120  | -     | 155  | _     | ns    | 16       |
| CAS Hold Time                                       | tCSH              | 120  | -        | 150  | -     | 200  | _     | ns    | -        |
| CAS Precharge Time (Page Mode Cycle Only)           | tCP               | 50   | -        | 60   | -     | 80   | _     | ns    | -        |
| Page Mode Cycle Time                                | <sup>t</sup> PC   | 120  | _        | 145  | _     | 200  | -     | ns    | -        |
| RAS to REFRESH Delay                                | tRFD              | - 10 | -        | - 10 | -     | - 10 | -     | ns    | -        |
| REFRESH Period (Battery Backup Mode)                | tFBP              | 2000 | -        | 2000 | -     | 2000 |       | ns    | -        |
| REFRESH to RAS Precharge Time (Battery Backup Mode) | t <sub>FBR</sub>  | 290  | -        | 320  |       | 400  | -     | ns    | -        |
| REFRESH Cycle Time (Auto Pulse Mode)                | tFC               | 250  | _        | 270  | -     | 330  |       | ns    | <u> </u> |
| REFRESH Pulse Period (Auto Period Mode)             | tFP               | 60   | 2000     | 60   | 2000  | 60   | 2000  | ns    |          |
| REFRESH to RAS Setup Time (Auto Pulse Mode)         | tFSR              | - 30 |          | - 30 | -     | - 30 | -     | ns    | -        |
| REFRESH to RAS Delay Time (Auto Pulse Mode)         | tFRD              | 290  | _        | 320  | -     | 400  | -     | ns    |          |
| REFRESH Inactive Time                               | t <sub>FI</sub>   | 60   | -        | 60   | -     | 60   | -     | ns    | -        |
| RAS to REFRESH Lead Time                            | tFRL              | 350  |          | 370  | _     | 450  | -     | ns    | -        |
| RAS Inactive Time During REFRESH                    | tFRI              | 350  | <u> </u> | 370  |       | 450  |       | ns    | -        |

AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles) (Full Operating Voltage and Temperature Range Unless Otherwise Noted . See Notes 2, 3, 6, and Figure 1)

14. Either tRRH or tRCH must be satisfied for a read cycle.

 These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modifywrite cycles.


16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min) and tRWD≥tRWD (min), the cycle is read-write cycle and the data out yill contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.


17. Addresses, data-in and WRITE are don't care. Data-out depends on the state of CAS. If CAS remains low, the previous output will remain valid. CAS is allowed to make an active to inactive transition during the pin #1 refresh cycle. When CAS is brought high, the output will assume a high-impedance state.

18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

 The device will withstand undershoots to the -2 volt level with a maximum pulse width of 20 ns at the -1.5 volt level. This is periodically sampled rather than 100% tested.

### MCM6664A





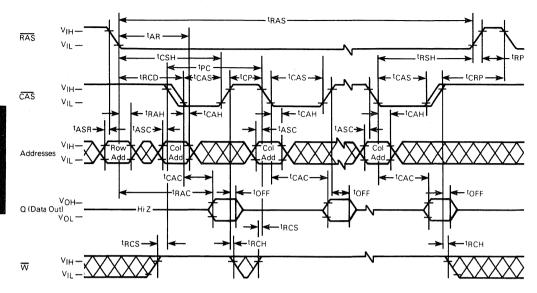
# DRAM

ł

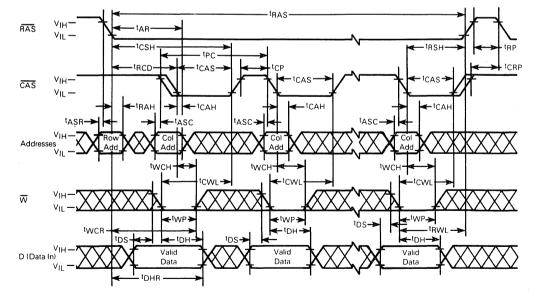
۱

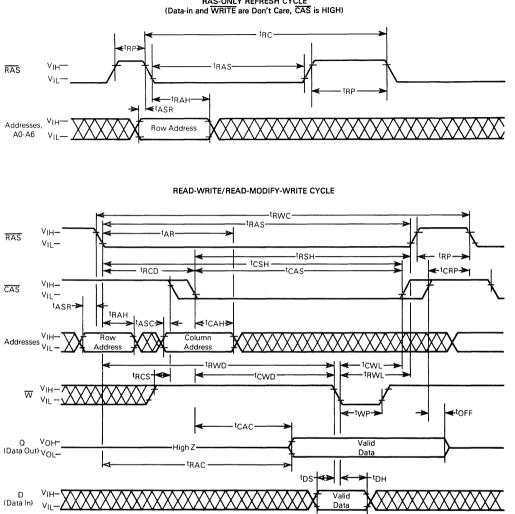
1

(


ļ

t


2-61


DRAM

### PAGE MODE READ CYCLE



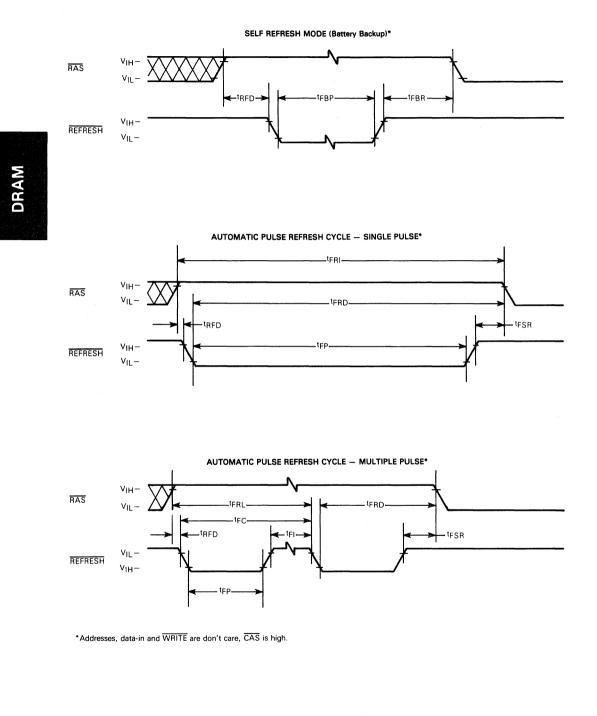
### PAGE MODE WRITE CYCLE



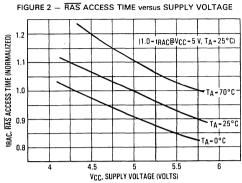


DRAM

đ


1

1


1 ŧ

# RAS-ONLY REFRESH CYCLE (Data-in and WRITE are Don't Care, CAS is HIGH)

### MCM6664A

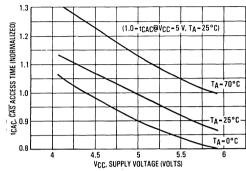
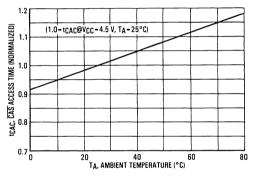
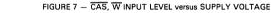
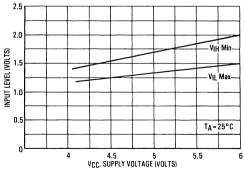


### TYPICAL CHARACTERISTICS

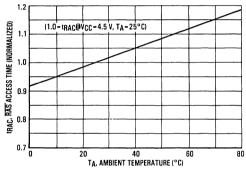




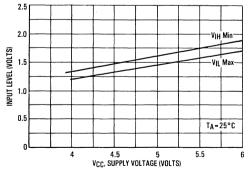

FIGURE 3 - CAS ACCESS TIME versus SUPPLY VOLTAGE





FIGURE 5 - CAS ACCESS TIME versus AMBIENT TEMPERATURE
















DRAM

### **TYPICAL CHARACTERISTICS (continued)**

50 VCC-5.5 V tRP-120 ns ICC1, ACTIVE SUPPLY CURRENT (mA) 40 30 20 10 0 Ō 3 1 2

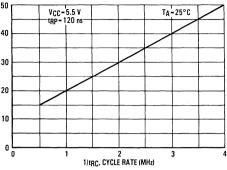
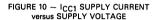
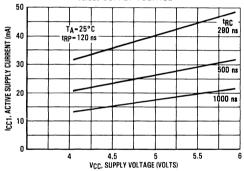
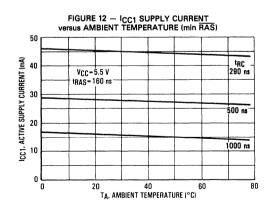






FIGURE 8 - ICC1 SUPPLY CURRENT versus CYCLE RATE







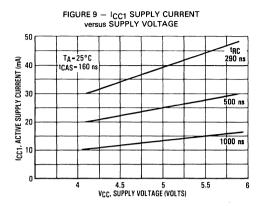
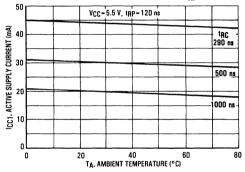
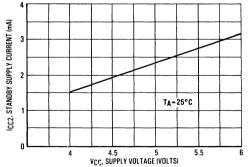





FIGURE 11 - I<sub>CC1</sub> SUPPLY CURRENT versus AMBIENT TEMPERATURE (min t<sub>RP</sub>)







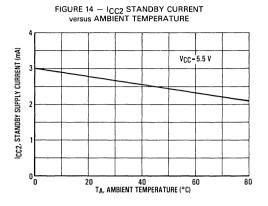
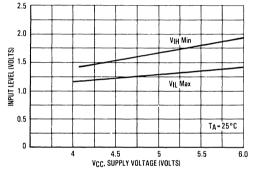
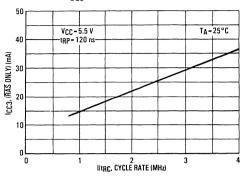




FIGURE 16 - ADDRESS INPUT LEVEL versus SUPPLY VOLTAGE

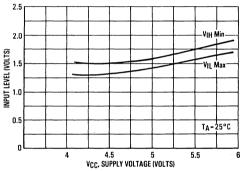


### SOFT ERROR TESTING


The storage cell depletion regions as well as the sense amplifier and its associated bit lines are susceptible to charge collection of electrons from an alpha "hit." However, the susceptibility of these vulnerable regions varies. Depleted storage cells are vulnerable at all times, whereas the sense amplifiers and associated bit lines are susceptible only during the small portion of the memory cycle just prior to sensing. Hence, an increase in the frequency of dynamic RAM access will cause a corresponding increase in the soft error rate.

To take this memory access dependency into account, the total soft error rate profile includes a cycle time component. The soft error rate due to bit line hits at the system's memory cycle rate is added to the soft error rate due to storage cell hits which are not frequency dependent. Figure 18 illustrates the impact that frequency of access has on the MCM6664A/MCM6665A overall soft error rate.

Under normal operating conditions, the die will be exposed to radiation levels of less than 0.01 alpha/cm2/hr. Accelerated soft error testing data is generated from at least three high-intensity sources having an Alpha Flux Density range of  $1 \times 10^5$  to  $6 \times 10^5$  (alpha/cm2/hr) placed over un-

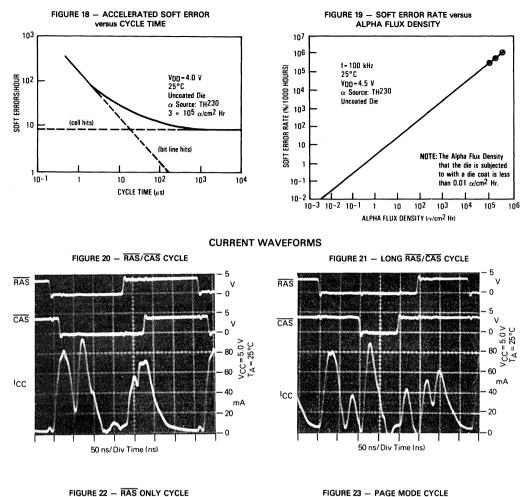

FIGURE 15 - ICC3 SUPPLY CURRENT versus CYCLE RATE

TYPICAL CHARACTERISTICS (continued)



DRAM

FIGURE 17 - DATA INPUT LEVEL versus SUPPLY VOLTAGE




coated die. Figure 19 shows the soft error rate for a given alpha flux density at a cycle rate of 100 kHz. The accelerated data of Figures 18 and 19 project that the soft error rate for package level radiation will be less than 0.1%/1000 hours.

### SYSTEM LIFE OPERATING TEST CONDITIONS

- 1) Cycle time: 1 microsecond for read, write and refresh cycles
- 2) Refresh Rate: 1 millisecond
- 3) Voltage: 5.0 V
- 4) Temperature: 30° C  $\pm$  2° C (ambient temperature inside enclosure)
- 5) Elevation: Approximately 620 feet above mean sea level
- 6) Data Patterns: Write the entire memory space sequentially with all "1"s and then perform continuous sequential reads for 6 hours. Next, write the entire memory space with all "0"s sequentially and then perform continuous sequential reads for 6 hours. Next, go back to the all "1"s pattern and repeat the sequences all over again.

DRAM



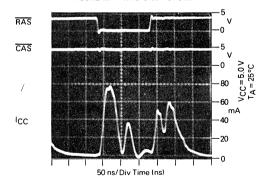
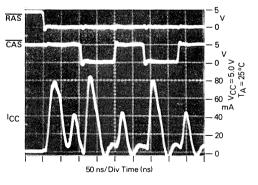
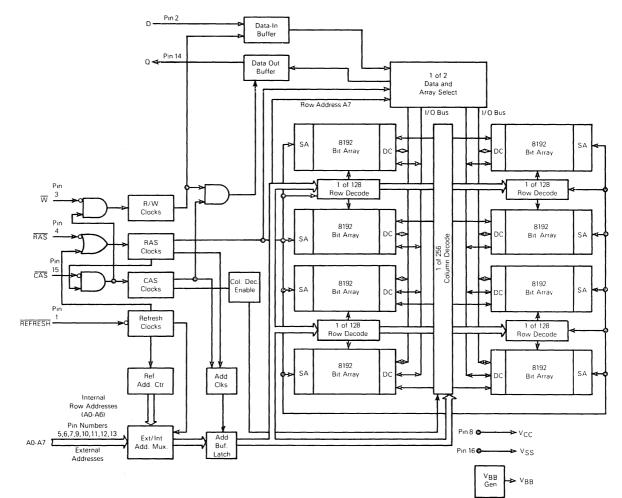





FIGURE 23 - PAGE MODE CYCLE



2-68

FIGURE 24 - FUNCTIONAL BLOCK DIAGRAM





-

MCM6664A

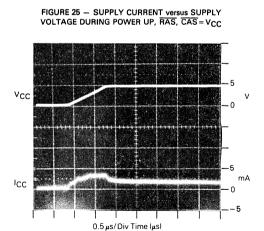
- - - -

\_

### DEVICE INITIALIZATION

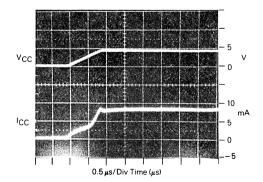
Since the 64K dynamic RAM is a single supply 5 V only device, the need for power supply sequencing is no longer required as was the case in older generation dynamic RAMs. On power-up an initial pause of 100 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 2 ms with device powered up) the wake up sequence (8 active cycles) will be necessary to assure proper device operation. See Figures 25 and 26 for power on characteristics of the RAM for two conditions (clocks active, clocks inactive).

The row address strobe is the primary "clock" that activates the device and maintains the data when the RAM is in the standby mode. This is the main feature that distinquishes it as a dynamic RAM as opposed to a static RAM. A dynamic RAM is placed in a low power standby mode when the device receives a positive-going row address strobe. The variation in the power dissipation of a dynamic RAM from the active to the standby state is an order of magnitude or more for NMOS devices. This feature is used to its fullest advantage with high density mainframe memory systems, where only a very small percentage of the devices are in the active mode at any one time and the rest of the devices are in the standby mode. Thus, large memory systems can be assembled that dissipate very low power per bit compared to a system where all devices are active continuously.


### ADDRESSING THE RAM

The eight address pins on the device are time multiplexed with two separate 8-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe and the column address strobe. A total of sixteen address bits will decode one of the 65,536 cell locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up his external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, two other variations in addressing the 64K RAM, one is called the page mode cycle (described later) where an 8-bit column address field is presented on the input pins and latched by the CAS clock; and the other is the RAS only refresh cycle (described later) where a 7-bit row address field is presented on the input pins and latched by the RAS clock. In the latter case, the most significant bit on Row Address A7 (pin 9) is not required for refresh. See bit address map for the topology of the cells and their address selection.

### NORMAL READ CYCLE


A read cycle is referred to as normal read cycle to differentiate if from a page-mode-read cycle, a read-while-write cycle, and read-modify-write cycle which are covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from V<sub>IH</sub> to the V<sub>IL</sub> level. The CAS clock must also make a transition from V<sub>IH</sub> to the V<sub>IL</sub> level at the specified t<sub>RCD</sub> timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at



### CURRENT WAVEFORMS

FIGURE 26 — SUPPLY CURRENT versus SUPPLY VOLTAGE DURING POWER UP, RAS, CAS = VSS



the tRCD maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tBCD maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available, as noted in the functional block diagram, Figure 24. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (tRAS) period for the RAS clock and the minimum (tCAS) period for the CAS clock. The RAS clock must stay inactive for the minimum (tRP) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cvcle.

Data out is not latched and is valid as long as the CAS clock is active; the output will switch to the three-state mode when the CAS clock goes inactive. The CAS clock can remain active for a maximum of 10 ns (tCRP) into the next cycle. To perform a read cycle, the write (W) input must be held at the VIH level from the time the CAS clock makes its active transition (tRCS) to the time when it transitions into the inactive (tRCH) mode.

### WRITE CYCLE

A write cycle is similar to a read cycle except that the Write (W) clock must go active (VIL level) at or before the CAS clock goes active at a minimum twcs time. If the above condition is met, then the cycle in progress is referred to as a early write cycle. In an early write cycle, the write clock and the data in is referenced to the active transition of the CAS clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (tCWL) and the row strobe to write lead time (tRWL). These define the minimum time that RAS and CAS clocks need to be active after the write operation has started ((W) clock at VIL level).

It is also possible to perform a late write cycle. For this cycle the write clock is activated after the CAS goes low which is beyond tWCS minimum time. Thus the parameters tCWL and tRWL must be satisfied before terminating this cycle. The difference between an early write cycle and a late write cycle is that in a late write cycle the write (W) clock can occur much later in time with respect to the active transition of the CAS clock. This time could be as long as 10 microseconds - [t<sub>RWL</sub> + t<sub>RP</sub> + 2T<sub>t</sub>].

At the start of a write cycle, the data out is in a three-state condition and remains inactive throughout the cycle. The data out remains three-state because of the active transition of the write (W) clock prevents the CAS clock from enabling the data-out buffers as noted in Functional Block Diagram. The three-state condition (high impedence) of the Data Out Pin during a write cycle can be effectively utilized in systems that have a common input/output bus. The only stipulation is that the system use only early write mode operations for all write cycles to avoid bus contention.

### READ-MODIFY-WRITE AND READ-WHILE-WRITE CYLES

As the name implies, both a read and a write cycle is accomplished at a selected bit during a single access. The readmodify-write cycle is similar to the late write cycle discussed above.

For the read-modify-write cycle a normal read cycle is initiated with the write  $(\overline{W})$  clock at the VIH level until the read data occurs at the device access time (tRAC). At this time the write  $(\overline{W})$  clock is asserted. The data in is setup and held with respect to the active edge of the write clock. The cycle described assumes a zero modify time between read and write.

Another variation of the read-modify-write cycle is the read-while-write cycle. For this cycle, the following parameters (tRWD, tCWD) play an important role. A readwhile-write cycle starts as a normal read cycle with the write (W) clock being asserted at minimum tRWD or minimum tCWD time, depending upon the application. This results in starting a write operation to the selected cell even before data out occurs. The minimum specification on tRWD and tCWD assure that data out does occur. In this case, the data in is set up with respect to write (W) clock active edge.

1

1

### PAGE-MODE CYCLES

Page mode operation allows faster successive data operations at the 256 column locations. Page access (tCAC) is typically half the regular RAS clock access (tRAC) on the Motorola 64K dynamic RAM. Page mode operation consists of holding the RAS clock active while cycling the CAS clock to access the column locations determined by the 8-bit column address field. There are two controlling factors that limit the access to all 256 column locations in one RAS clock active operation. These are the refresh interval of the device (2 ms/128=15.6 microseconds) and the maximum active time specification for the RAS clock (10 microseconds). Since 10 microseconds is the smaller value, the maximum specification of the RAS clock on time is the limiting factor of the number of sequential page accesses possible. Ten microseconds will provide approximately 50 successive page accesses (10 microseconds + page mode cycle time) for each row address selected before the RAS clock is reset.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter CAS cycles (tpc). The CAS cycle time (tpc) consists of the CAS clock active time (t<sub>CAS</sub>), and CAS clock precharge time (t<sub>CP</sub>) and two transitions. In addition to read and write cycles, a readmodify-write cycle can also be performed in a page mode operation. For a read-modify-write or read-while-write type cycle, the conditions normal to that mode of operation will apply in the page mode also. The page mode cycle illustrated show a series of sequential reads separated by a series of sequential writes. This is just one mode of operation. In practice, any combination of read, write and read-modify-write cycles can be performed to suit a particular application.

### **REFRESH CYCLES**

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the bits need to be refreshed at least once every 2 ms. This is accomplished by sequentially cycling through the 128 row address locations every 2 ms, or at least one row every 15.6 microseconds. A normal read or write operation to the RAM will serve to refresh all the bits (256) associated with that particular row decoded.

 $\overline{RAS}~Only~Refresh$  — When the memory component is in standby the  $\overline{RAS}~only~refresh$  scheme is employed. This refresh method performs a  $\overline{RAS}~only~cycle$  on all 128 row addresses every 2 ms. The row addresses are latched in with the  $\overline{RAS}~clock$ , and the associated internal row locations are refreshed. As the heading implies, the  $\overline{CAS}~clock$  is not required and should be inactive or at a  $V_{IH}$  level to conserve power.

Auto Refresh Mode and Self Refresh mode (MCM6664A only) – With the MCM6664A, two additional refresh methods are available to the user. These special functions are incorporated on pin 1 of the device and have been approved by JEDEC as an alternative function for that pin on the 64K dynamic memory. The auto refresh mode is accomplished by asserting pin 1 active (VIL level) during the time interval when there are no memory cycles. In the auto refresh mode, the REFRESH active pulse (tFP) must be limited to 2 microseconds or less. The 2 microsecond time is specified to prevent the device from transitioning into the self refresh mode. Auto refresh can be performed in a distributed mode (refresh cycle every 15.6 microseconds) and in a burst mode where all 128 refresh cycles are done one after the other until complete. An onboard address counter generates the internal row address to refresh a particular row and increments itself at the end of each cycle.

Another variation of refresh is the self refresh mode. This mode is similar to the auto refresh method except that the active pulse width (tFBP) must be greater than 2 microseconds or held down active indefinitely. With pin 1 in the self refresh mode, an internal row address is generated by the internal refresh counter approximately every 15.6 microseconds. This mode of refresh is used for systems requiring battery back-up, and saves additional system power by not requiring an external refresh address counter and address buffers. The power dissipation for either  $\overline{\text{REFRESH}}$  mode is the same.

### MCM6664A BIT ADDRESS MAP

|                            | Pi<br>Row Address A7 A6 A5 A4 A3 A2 A1 A0<br>Column Address A7 A6 A5 A4 A3 A2 A1 A0 |     |         |       | Column Addresses |            |        |        |        |        |        |        |        |        |
|----------------------------|-------------------------------------------------------------------------------------|-----|---------|-------|------------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                            | R                                                                                   | ow  |         |       | Hex              | Dec        | A7     | A6     | A3     | A4     | A5     | A2     | A0     | A1     |
|                            |                                                                                     |     |         |       | FE               | 254        | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0      |
|                            |                                                                                     |     |         |       | FF<br>FC         | 255<br>252 | 1      | 1      | 1      | 1      | 1<br>1 | 1<br>1 | 1<br>0 | 1<br>0 |
|                            |                                                                                     |     |         |       | FD               | 253        | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 1      |
|                            |                                                                                     |     |         |       | FA<br>FB         | 250<br>251 | 1      | 1      | 1      | 1      | 1      | 0<br>0 | 1      | 0      |
|                            |                                                                                     |     |         |       | F8               | 248        | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 0      |
|                            |                                                                                     | i i |         |       | F9               | 249        | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 1      |
|                            |                                                                                     |     |         |       | CO               | 192        | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      |
|                            |                                                                                     |     |         |       | C1<br>BF         | 193<br>191 | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 1      |
|                            |                                                                                     |     |         |       | BE               | 190        | i      | ō      | i      | i      | i      | i      | i      | ò      |
|                            |                                                                                     |     |         |       | 83               | 131        | 1      | 0      | 0      | 0      | 0      | 0      | 1      | 1      |
| 8                          |                                                                                     |     |         |       | 82<br>81         | 130        | 1      | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0      | 1<br>0 | 0<br>1 |
| Iress                      |                                                                                     |     |         |       | 80               | 129<br>128 | 1      | 0      | 0      | 0<br>0 | o      | 0<br>0 | 0      | o      |
| Column Addresses           |                                                                                     |     |         |       | 7E               | 126        | 0      | 1      | 1      | 1      | 1      | 1      | 1      | 0      |
| Ē                          |                                                                                     |     |         |       | 7F<br>7C         | 127<br>124 | 0<br>0 | 1      | 1      | 1<br>1 | 1      | 1<br>1 | 1<br>0 | 1<br>0 |
| Colt                       |                                                                                     |     |         |       |                  | •          | -      |        |        |        |        |        | -      | -      |
|                            |                                                                                     |     |         | i     |                  | :          |        |        |        |        |        |        |        |        |
|                            |                                                                                     |     |         |       | 42               | 66         | 0      | 1      | 0      | 0      | 0      | 0      | 1      | 0      |
|                            |                                                                                     | 1   |         |       | 43<br>40         | 67<br>64   | 0<br>0 | 1      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 1<br>0 | 1<br>0 |
|                            |                                                                                     |     |         |       | 41               | 65         | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 1      |
|                            |                                                                                     |     |         |       | 3F<br>3E         | 63         | 0<br>0 | 0<br>0 | 1<br>1 | 1<br>1 | 1<br>1 | 1<br>1 | 1      | 1<br>0 |
|                            |                                                                                     |     | 0.5     |       | 3D               | 62<br>61   | 0      | 0      | ì      | 1      | i      | 1      | o      | 1      |
|                            | 01FF<br>01FF                                                                        |     | 0110    | 010   |                  | :          |        |        |        |        |        |        |        |        |
|                            |                                                                                     |     |         |       |                  | •          |        |        |        |        |        |        |        |        |
|                            |                                                                                     |     | _       |       | 04<br>03         | 4<br>3     | 0<br>0 | 0      | 0      | 0<br>0 | 0      | 1<br>0 | 0      | 0<br>1 |
|                            | 00FF<br>00FF                                                                        |     | 0010    |       | 02               | 2          | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0      |
|                            |                                                                                     |     |         |       | 01<br>00         | 1<br>0     | 0<br>0 | 1<br>0 |
|                            | # #                                                                                 | ポ   | 8866888 | 828   | 3                |            |        |        |        |        |        |        |        |        |
| Row Addresses<br>A2 A0 Dec | 255 255                                                                             | 126 | 80240   | m − c | þ                |            |        |        |        |        |        |        |        |        |
| PPA OA                     | 0 -                                                                                 | 0   | 0000    |       | 5                |            |        |        |        |        |        |        |        |        |
| A2<br>A2                   |                                                                                     |     | 000-    | - 0 0 | >                |            |        |        |        |        |        |        |        |        |
|                            |                                                                                     |     | 00      | 000   | 5                |            |        |        |        |        |        |        |        |        |
| A5                         |                                                                                     |     | -00000  | 000   | >                |            |        |        |        |        |        |        |        |        |
|                            |                                                                                     |     | 000000  | 000   | >                |            |        |        |        |        |        |        |        |        |
|                            |                                                                                     |     | 000000  | 000   | >                |            |        |        |        |        |        |        |        |        |
| ۶<br>Ag                    |                                                                                     |     | 000000  | 000   | >                |            |        |        |        |        |        |        |        |        |
| A7 16                      |                                                                                     | 0 0 | 0000000 | 000   | >                |            |        |        |        |        |        |        |        |        |

Data Stored = Din @ A0X @ A1Y

DRAM

đ

4

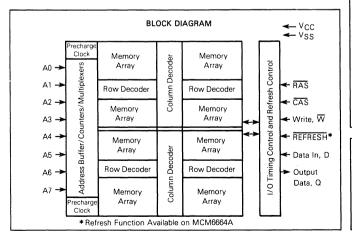
1

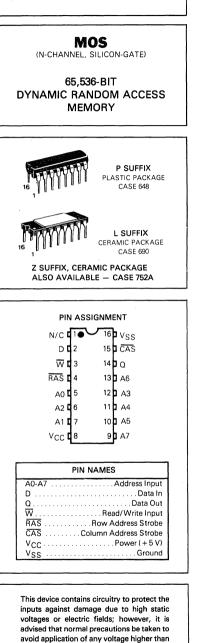
(

| Column<br>Address<br>A1 | Row<br>Address<br>A0 | Data<br>Stored |
|-------------------------|----------------------|----------------|
| 0                       | 0                    | True           |
| 0                       |                      | Inverted       |
| 1                       |                      | Inverted       |
| 1                       | 1                    | True           |



## **MCM6665A**


### 64K BIT DYNAMIC RAM


The MCM6665A is a 65,536 bit, high-speed, dynamic Random-Access Memory. Organized as 65,536 one-bit words and fabricated using HMOS high-performance N-channel silicon-gate technology, this new breed of 5-volt only dynamic RAM combines high performance with low cost and improved reliability.

By multiplexing row- and column-address inputs, the MCM6665A requires only eight address lines and permits packaging in standard 16-pin dual-in-line packages. Complete address decoding is done on chip with address latches incorporated. Data out is controlled by CAS allowing for greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6665A incorporates a one-transistor cell design and dynamic storage techniques.

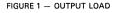
- Organized as 65,536 Words of 1 Bit
- Single + 5 V Operation (± 10%) Full Power Supply Range Capabilities Maximum Access Time
- MCM6665A-12 = 120 ns MCM6665A-15 = 150 ns MCM6665A-20 = 200 ns
- Low Power Dissipation 302.5 mW Maximum (Active) (MCM6665A-15) 22 mW Maximum (Standby)
- Three-State Data Output
- Internal Latches for Address and Data Input
- Early-Write Common I/O Capability
- 16K Compatible 128-Cycle, 2 ms Refresh
- RAS-only Refresh Mode
- CAS Controlled Output
- Fast Page Mode Cycle Time
- Low Soft Error Rate < 0.1% per 1000 Hours (See Soft Error Testing)</p>





maximum rated voltages to this high-

impedance circuit.


- Upward Pin Compatible from the 16K RAM (MCM4116, MCM4517)

### MCM6665A

### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                                      | Symbol                             | Value       | Unit |
|-----------------------------------------------------------------------------|------------------------------------|-------------|------|
| Voltage on Any Pin Relative to V <sub>SS</sub><br>(except V <sub>CC</sub> ) | V <sub>in</sub> , V <sub>out</sub> | -2 to +7    | v    |
| Voltage on V <sub>CC</sub> Supply Relative to V <sub>SS</sub>               | V <sub>CC</sub>                    | -1 to +7    | V    |
| Operating Temperature Range                                                 | TA                                 | 0 to +70    | °C   |
| Storage Temperature Range                                                   | T <sub>stg</sub>                   | -65 to +150 | °C   |
| Power Dissipation                                                           | PD                                 | 1.0         | W    |
| Data Out Current                                                            | lout                               | 50          | mA   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.





Includes Jig Capacitance

### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

### RECOMMENDED OPERATING CONDITIONS

| Parameter                   |                       |     |        | Тур | Max                | Unit | Notes |
|-----------------------------|-----------------------|-----|--------|-----|--------------------|------|-------|
| Supply Voltage              | MCM6665A-12, -15, -20 | Vcc | 4.5    | 5.0 | 5.5                | V    | 1     |
|                             |                       | VSS | 0      | 0   | 0                  | V    | 1     |
| Logic 1 Voltage, All Inputs |                       | VIH | 2.4    | -   | V <sub>CC</sub> +1 | V    | 1     |
| Logic 0 Voltage, All Inputs |                       | VIL | - 1.0* | -   | 0.8                | V    | 1     |

\*The device will withstand undershoots to the -2 volt level with a maximum pulse width of 20 ns at the -1.5 volt level. This is periodically sampled rather than 100% tested.

### DC CHARACTERISTICS

| Characteristic                                                                                                                                                                                                         | Symbol           | Niin    | Max            | Units | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------------|-------|-------|
| V <sub>CC</sub> Power Supply Current (Standby)                                                                                                                                                                         | <sup>1</sup> CC2 | -       | 4.0            | mA    | 5     |
| V <sub>CC</sub> Power Supply Current<br>6665A-12, t <sub>RC</sub> = 250 ns<br>6665A-15, t <sub>RC</sub> = 270 ns<br>6665A-20, t <sub>RC</sub> = 330 ns                                                                 | ICC1             | -       | 60<br>55<br>50 | mA    | 4     |
| V <sub>CC</sub> Power Supply Current During RAS only Refresh Cycles<br>6665A-12, t <sub>RC</sub> = 250 ns<br>6665A-15, t <sub>RC</sub> = 270 ns<br>6665A-20, t <sub>RC</sub> = 330 ns                                  | Іссз             | · 1 1 1 | 50<br>45<br>40 | mA    | 4     |
| V <sub>CC</sub> Power Supply Current During Page Mode Cycle for $t_{RAS} = 10 \ \mu sec$<br>6665A-12, $t_{PC} = t_{RP} = 120 \ ns$<br>6665A-15, $t_{PC} = t_{RP} = 145 \ ns$<br>6665A-20, $t_{PC} = t_{RP} = 200 \ ns$ | I <sub>CC4</sub> | 1 1     | 45<br>40<br>35 | mA    | 4     |
| Input Leakage Current (V <sub>SS</sub> ≤ V <sub>in</sub> ≤ V <sub>CC</sub> )                                                                                                                                           | li(L)            | -       | 10             | μΑ    | -     |
| Output Leakage Current (CAS at logic 1, V <sub>SS</sub> ≤ V <sub>out</sub> ≤ V <sub>CC</sub> )                                                                                                                         | IO(L)            | -       | 10             | μA    | -     |
| Output Logic 1 Voltage @ I <sub>out</sub> = -4 mA                                                                                                                                                                      | ∨он              | 2.4     | -              | ٧     |       |
| Output Logic 0 Voltage @ Iout = 4 mA                                                                                                                                                                                   | VOL              | -       | 0.4            | V     | -     |

CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25°C, V<sub>CC</sub> = 5 V Periodically Sampled Rather Than 100% Tested)

| Parameter                                                             | Symbol          | Тур | Max | Unit | Notes |
|-----------------------------------------------------------------------|-----------------|-----|-----|------|-------|
| Input Capacitance (A0-A7), D                                          | C <sub>I1</sub> | 3   | 5   | рF   | 7     |
| Input Capacitance RAS, CAS, WRITE                                     | C <sub>I2</sub> | 6   | 8   | рF   | 7     |
| Output Capacitance (Q), $(\overline{CAS} = V_{IH}$ to disable output) | CO              | 5   | 7   | рF   | 7     |

NOTES: 1. All voltages referenced to VSS.

 V<sub>IH</sub> min and V<sub>IL</sub> max are reference levels for measuring timing of input signals. Transition times are measured between V<sub>IH</sub> and V<sub>IL</sub>.

An initial pause of 100 μs is required after power-up followed by any 8 RAS cycles before proper device operation is guaranteed.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

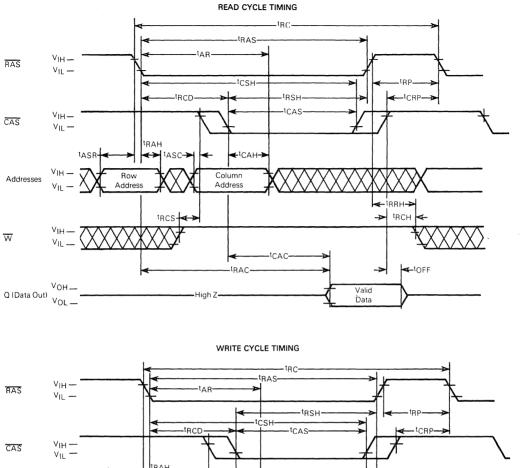
5. RAS and CAS are both at a logic 1.

6. The transition time specification applies for all inputs signals. In addition to meeting the transition rate specification, all input signals must transmit between V<sub>IL</sub> and V<sub>IL</sub> (or between V<sub>IL</sub> and V<sub>IL</sub>) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = \frac{|\Delta t|}{\Delta V}$ 

4

|                                            |                   | 660      | 5A-12 | GGC  | 6665A-15 |      | 6665A-20 |       |        |  |
|--------------------------------------------|-------------------|----------|-------|------|----------|------|----------|-------|--------|--|
| Parameter                                  | Symbol            | Min      | Max   | Min  | Max      | Min  | Max      | Units | Notes  |  |
| Random Read or Write Cycle Time            |                   | 250      | IVIAX | 270  |          | 330  |          | ns    | 8, 9   |  |
| Read Write Cycle Time                      | tRC.              | 255      |       | 270  |          | 345  | -        | ns    | 8,9    |  |
| Access Time from Row Address Strobe        | tRWC              | - 200    | 120   | 200  | 150      |      | 200      | ns    | 10, 12 |  |
| Access Time from Column Address Strobe     | <sup>t</sup> RAC  | <u> </u> | 60    | _    | 75       | _    | 100      | ns    | 11, 12 |  |
| Output Buffer and Turn-Off Delay           | <sup>t</sup> CAC  | -        | 30    | 0    | 30       | -    | 40       |       | 11, 12 |  |
| Row Address Strobe Precharge Time          | tOFF              | 100      |       | 100  |          | 120  | 40       | ns    |        |  |
| Row Address Strobe Pilse Width             | tRP               |          | -     |      | -        |      |          | ns    |        |  |
|                                            | TRAS              | 120      | 10000 | 150  | 10000    | 200  | 10000    | ns    | -      |  |
| Column Address Strobe Pulse Width          | <sup>1</sup> CAS  | 60       | 10000 | 75   | 10000    | 100  | 10000    | ns    | -      |  |
| Row to Column Strobe Lead Time             | <sup>t</sup> RCD  | 25       | 60    | 30   | 75       | 35   | 100      | ns    | 13     |  |
| Row Address Setup Time                     | <sup>t</sup> ASR  | 0        |       | 0    |          | 0    | -        | ns    | -      |  |
| Row Address Hold Time                      | <sup>t</sup> RAH  | 15       | -     | 20   | -        | 25   |          | ns    | -      |  |
| Column Address Setup Time                  | <sup>t</sup> ASC  | 0        | -     | 0    | -        | 0    |          | ns    | -      |  |
| Column Address Hold Time                   | <sup>t</sup> CAH  | 25       | -     | 35   | -        | 45   |          | ns    | _      |  |
| Column Address Hold Time Referenced to RAS | tAR               | 85       | -     | 95   | -        | 120  | -        | ns    | 17     |  |
| Transition Time (Rise and Fall)            | tŢ                | 3        | 50    | 3    | 50       | 3    | 50       | ns    | 6      |  |
| Read Command Setup Time                    | <sup>t</sup> RCS  | 0        | -     | 0    | -        | 0    | -        | ns    |        |  |
| Read Command Hold Time                     | <sup>t</sup> RCH  | 0        | -     | 0    | -        | 0    |          | ns    | 14     |  |
| Read Command Hold Time Referenced to RAS   | tRRH              | 0        |       | 0    | -        | 0    | -        | ns    | 14     |  |
| Write Command Hold Time                    | twch              | 25       | -     | 35   | -        | 45   | -        | ns    | -      |  |
| Write Command Hold Time Referenced to RAS  | tWCR              | 85       | -     | 95   |          | 120  |          | ns    | 17     |  |
| Write Command Pulse Width                  | tWP               | 25       | -     | 35   | -        | 45   |          | ns    | -      |  |
| Write Command to Row Strobe Lead Time      | <sup>t</sup> RWL  | 40       |       | 45   | -        | 55   |          | ns    |        |  |
| Write Command to Column Strobe Lead Time   | tCWL              | 40       |       | 45   | -        | 55   |          | ns    | _      |  |
| Data in Setup Time                         | tDS               | 0        | -     | 0    |          | 0    | -        | ns    | 15     |  |
| Data in Hold Time                          | <sup>t</sup> DH   | 25       | -     | 35   | _        | 45   | -        | ns    | 15     |  |
| Data in Hold Time Referenced to RAS        | <sup>t</sup> DHR  | 85       | -     | 95   | -        | 120  | -        | ns    | 17     |  |
| Column to Row Strobe Precharge Time        | <sup>†</sup> CRP  | - 10     |       | - 10 | -        | - 10 | _        | ns    |        |  |
| RAS Hold Time                              | tRSH              | 60 ·     | -     | 75   | -        | 100  |          | ns    |        |  |
| Refresh Period                             | <sup>t</sup> RFSH | -        | 2.0   | _    | 2.0      |      | 2.0      | ms    | -      |  |
| WRITE Command Setup Time                   | twcs              | - 10     | -     | - 10 | -        | 10   | -        | ns    | 16     |  |
| CAS to WRITE Delay                         | tCWD              | 40       |       | 45   |          | 55   | -        | ns    | 16     |  |
| RAS to WRITE Delay                         | tRWD              | 100      |       | 120  | _        | 155  | -        | ns    | 16     |  |
| CAS Hold Time                              | tCSH              | 120      | -     | 150  | _        | 200  | _        | ris   |        |  |
| CAS Precharge Time (Page Mode Cycle Only)  | t <sub>CP</sub>   | 50       |       | 60   |          | 80   |          | ns    |        |  |
| Page Mode Cycle Time                       |                   | 120      |       | 145  |          | 200  | _        | ns    |        |  |


AC OPERATING CONDITIONS AND CHARACTERISTICS (Read, Write, and Read-Modify-Write Cycles) (Full Operating Voltage and Temperature Range Unless Otherwise Noted; See Notes 2, 3, 6, and Figure 1)

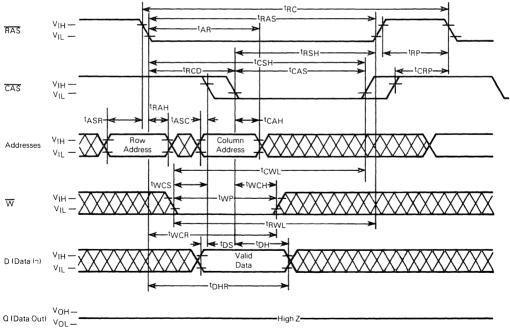
 The specifications for t<sub>RC</sub> (min), and t<sub>RWC</sub> (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T<sub>A</sub>≤70°C) is assured.

9. AC measurements  $t_T = 5.0$  ns.

10. Assumes that  $t_{RCD} \leq t_{RCD}$  (max).

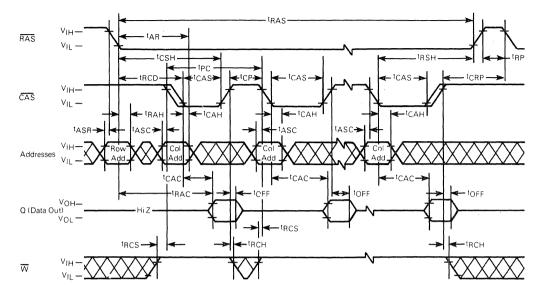
- 11. Assumes that  $t_{RCD} \ge t_{RCD}$  (max).
- 12. Measured with a current load equivalent to 2 TTL (-200  $\mu$ A, +4 mA) loads and 100 pF with the data output trip points set at V<sub>OH</sub>=2.0 V and V<sub>OL</sub>=0.8 V.
- 13. Operation within the t<sub>RCD</sub> (max) limit ensures that t<sub>RAC</sub> (max) can be met. t<sub>RCD</sub> (max) is specified as a reference point only; if t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub>(max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- 16. tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min) and tRWD≥tRWD (min), the cycle is read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 17.  $t_{AR} \min \le t_{AR} = t_{RCD} + t_{CAH}$  $t_{DHR} \min \le t_{DHR} = t_{RCD} + t_{DH}$ 
  - $tWCR \min \le tWCR = tRCD + tWCH$
- 18. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.



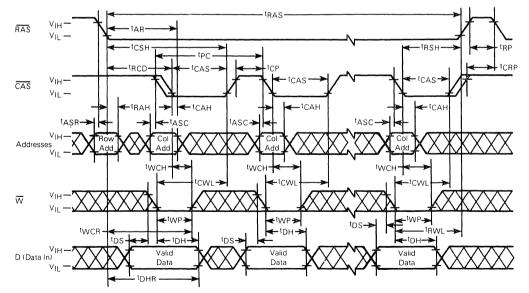

**DRAM** 

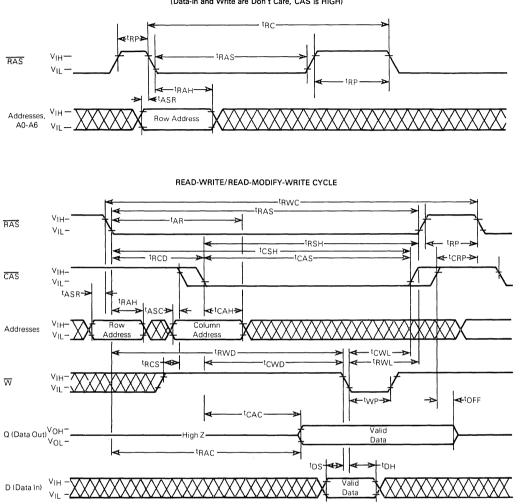
đ

ł


(

1 I




PAGE MODE READ CYCLE



### PAGE MODE WRITE CYCLE





RAM

¢

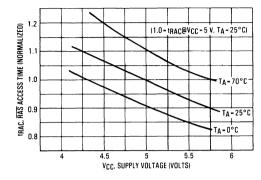
1

١

١

t

1


RAS-ONLY REFRESH CYCLE (Data-in and Write are Don't Care, CAS is HIGH) DRAM

١

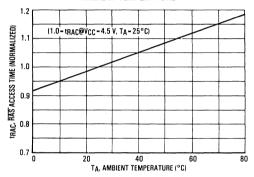
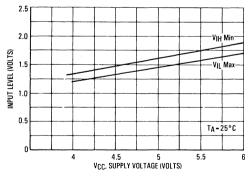
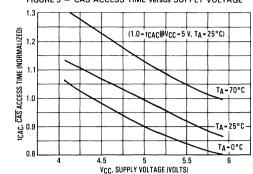
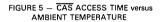
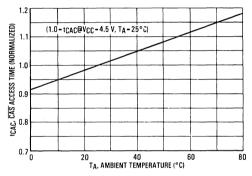

### TYPICAL CHARACTERISTICS

FIGURE 2 - RAS ACCESS TIME versus SUPPLY VOLTAGE



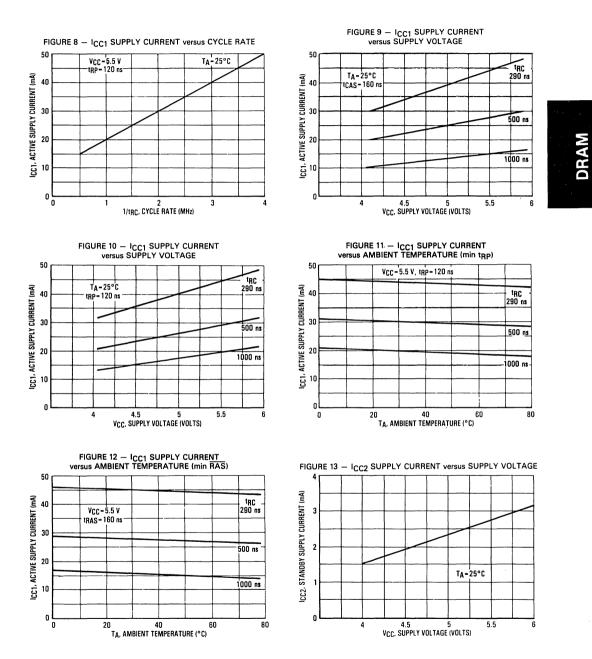




















### **TYPICAL CHARACTERISTICS (continued)**



đ

ŧ

1

2-81

. 2

b

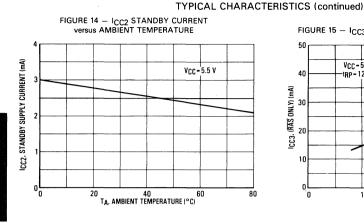
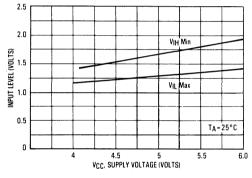




FIGURE 16 - ADDRESS INPUT LEVEL versus SUPPLY VOLTAGE



### SOFT ERROR TESTING

The storage cell depletion regions as well as the sense amplifier and its associated bit lines are susceptible to charge collection of electrons from an alpha "hit." However, the susceptiblity of these vulnerable regions varies. Depleted storage cells are vulnerable at all times, whereas the sense amplifiers and associated bit lines are susceptible only during the small portion of the memory cycle just prior to sensing. Hence, an increase in the frequency of dynamic RAM access will cause a corresponding increase in the soft error rate.

To take this memory access dependency into account, the total soft error rate profile includes a cycle time component. The soft error rate due to bit line hits at the system's memory cycle rate is added to the soft error rate due to storage cell hits which are not frequency dependent. Figure 18 illustrates the impact that frequency of access has on the MCM6664A/MCM6665A overall soft error rate.

Under normal operating conditions, the die will be exposed to radiation levels of less than 0.01 alpha/cm<sup>2</sup>/hr. Accelerated soft error testing data is generated from at least three high-intensity sources having an Alpha Flux Density range of 1 × 10<sup>5</sup> to 6 × 10<sup>5</sup> (alpha/cm<sup>2</sup>nr) placed over un-

FIGURE 15 - ICC3 SUPPLY CURRENT versus CYCLE RATE

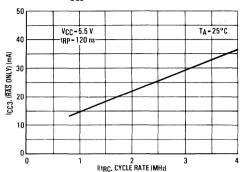
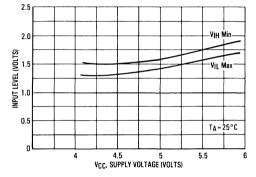




FIGURE 17 -- DATA INPUT LEVEL versus SUPPLY VOLTAGE



coated die. Figure 19 shows the soft error rate for a given alpha flux density at a cycle rate of 100 kHz. The accelerated data of Figures 18 and 19 project that the soft error rate for package level radiation will be less than 0.1%/1000 hours.

### SYSTEM LIFE OPERATING TEST CONDITIONS

- 1) Cycle time: 1 microsecond for read, write and refresh cycles
- 2) Refresh Rate: 1 millisecond
- 3) Voltage: 5.0 V
- Temperature: 30° C ± 2° C (ambient temperature inside enclosure)
- 5) Elevation: Approximately 620 feet above mean sea level
- 6) Data Patterns: Write the entire memory space sequentially with all "1"s and then perform continuous sequential reads for 6 hours. Next, write the entire memory space with all "0"s sequentially and then perform continuous sequential reads for 6 hours. Next, go back to the all "1"s pattern and repeat the sequences all over again.

2-82

### MCM6665A

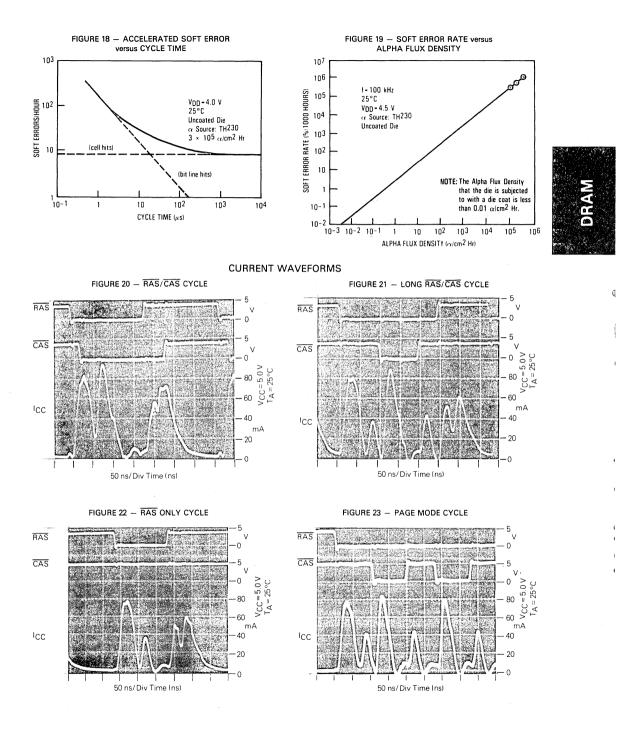
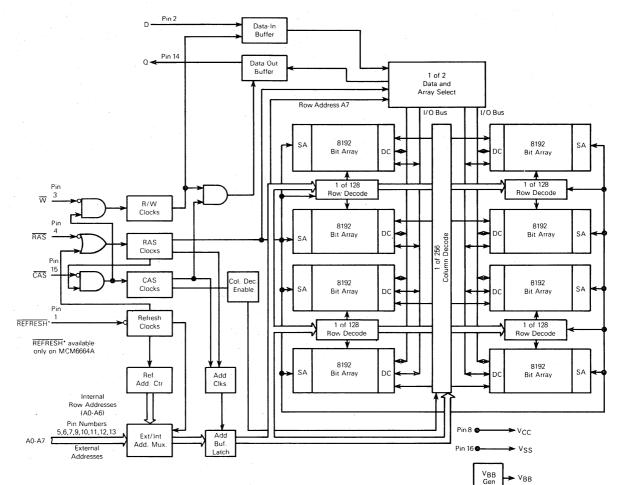






FIGURE 24 - FUNCTIONAL BLOCK DIAGRAM



### MCM6665A

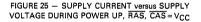
### DEVICE INITIALIZATION

Since the 64K dynamic RAM is a single supply 5 V only device, the need for power supply sequencing is no longer required as was the case in older generation dynamic RAMs. On power-up an initial pause of 100 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 2 ms with device powered up) the wake up sequence (8 active cycles) will be necessary to assure proper device operation. See Figures 25, 26 for power on characteristics of the RAM for two conditions (clocks active, clocks inactive).

The row address strobe is the primary "clock" that activates the device and maintains the data when the RAM is in the standby mode. This is the main feature that distinquishes it as a dynamic RAM as opposed to a static RAM. A dynamic RAM is placed in a low power standby mode when the device receives a positive-going row address strobe. The variation in the power dissipation of a dynamic RAM from the active to the standby state is an order of magnitude or more for NMOS devices. This feature is used to its fullest advantage with high density mainframe memory systems, where only a very small percentage of the devices are in the active mode at any one time and the rest of the devices are in the standby mode. Thus, large memory systems can be assembled that dissipate very low power per bit compared to a system where all devices are active continuously.

### ADDRESSING THE RAM

The eight address pins on the device are time multiplexed with two separate 8-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active necative) called the row address strobe and the column


address strobe. A total of sixteen address bits will decode one of the 65,536 cell locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up his external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, two other variations in addressing the 64K RAM; one is called the page mode cycle (described later) where an 8-bit column address field is presented on the input pins and latched by the CAS clock, and the other is the RAS only refresh cycle (described later) where a 7-bit row address field is presented on the input pins and latched by the RAS clock. In the latter case, the most significant bit on Row Address A7 (pin 9) is not required for refresh. See bit address map for the topology of the cells and their address selection.

### NORMAL READ CYCLE

A read cycle is referred to as normal read cycle to differentiate if from a page-mode-read cycle, a read-while-write cycle, and read-modify-write cycle which are covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VI<sub>H</sub> to the VI<sub>L</sub> level. The CAS clock must also make a transition from VI<sub>H</sub> to the VI<sub>L</sub> level at the specified t<sub>RCD</sub> timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at

### CURRENT WAVEFORMS



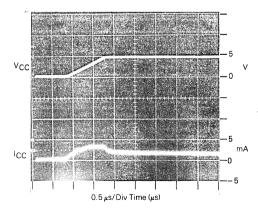
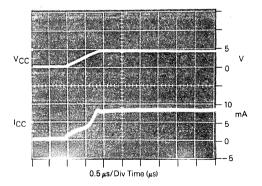




FIGURE 26 — SUPPLY CURRENT versus SUPPLY VOLTAGE DURING POWER UP, RAS, CAS = VSS



the tRCD maximum specification for an access (data valid) from the  $\overline{RAS}$  clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (tCAC) from the  $\overline{CAS}$  clock active transition will determine read access time. The external  $\overline{CAS}$  signal is ignored until an internal  $\overline{RAS}$  signal is available, as noted in the functional block diagram, Figure 24. This gating feature on the  $\overline{CAS}$  clock will allow the external  $\overline{CAS}$  signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the  $\overline{CAS}$  clock.

Once the clocks have become active, they must stay active for the minimum (tRAS) period for the RAS clock and the minimum (tCAS) period for the CAS clock. The RAS clock must stay inactive for the minimum (tRP) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the  $\overline{CAS}$  clock is active; the output will switch to the three-state mode when the  $\overline{CAS}$  clock goes inactive. The  $\overline{CAS}$  clock can remain active for a maximum of 10 ns (t<u>CRP</u>) into the next cycle. To perform a read cycle, the write ( $\overline{W}$ ) input must be held at the V<sub>IH</sub> level from the time the  $\overline{CAS}$  clock makes its active transition (t<sub>RCS</sub>) to the time when it transitions into the inactive (t<sub>RCH</sub>) mode.

### WRITE CYCLE

A write cycle is similar to a read cycle except that the Write  $\langle \overline{W}\rangle$  clock must go active (V)<sub>L</sub> level) at or before the  $\overline{CAS}$  clock goes active at a minimum tWCS time. If the above condition is met, then the cycle in progress is referred to as a early write cycle. In an early write cycle, the write clock and the data in is referenced to the active transition of the  $\overline{CAS}$  clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t\_CWL) and the row strobe to write lead time (t\_CWL) and the row strobe to write lead time (t\_CWL). These define the minimum time that  $\overline{RAS}$  and  $\overline{CAS}$  clocks need to be active after the write operation has started ( $\overline{W}$  clock at V)<sub>L</sub> level).

It is also possible to perform a late write cycle. For this cycle the write clock is activated after the  $\overline{CAS}$  goes low which is beyond tWCS minimum time. Thus the parameters tCWL and tRWL must be satisifed before terminating this cycle. The difference between an early write cycle and a late write cycle is that in a late write cycle the write  $(\overline{W})$  clock can occur much later in time with respect to the active transition of the  $\overline{CAS}$  clock. This time could be as long as 10 microseconds –  $[t_{RWL} + t_{RP} + 2T_f]$ .

At the start of a write cycle, the data out is in a three-state condition and remains inactive throughout the cycle. The data out remains three-state because the active transition of the write  $(\overline{W})$  clock prevents the CAS clock from enabling the data-out buffers as noted in Functional Block Diagram. The three-state condition (high impedance) of the Data Out Pin during a write cycle can be effectively utilized in a system that has a common input/output bus. The only stipulation is that the system use only early write mode operations for all write cycles to avoid bus contention.

### READ-MODIFY-WRITE AND READ-WHILE-WRITE CYLES

As the name implies, both a read and a write cycle is accomplished at a selected bit during a single access. The readmodify-write cycle is similar to the late write cycle discussed above.

For the read-modify-write cycle a normal read cycle is initiated with the write  $\langle \overline{W}\rangle$  clock at the V<sub>IH</sub> level until the read data occurs at the device access time (t<sub>RAC</sub>). At this time the write  $\langle \overline{W}\rangle$  clock is asserted. The data in is setup and held with respect to the active edge of the write clock. The cycle described assumes a zero modify time between read and write.

Another variation of the read-modify-write cycle is the read-while-write cycle. For this cycle, the following parameters (t<sub>RWD</sub>, t<sub>CWD</sub>) play an important role. A read-while-write cycle starts as a normal read cycle with the write ( $\overline{W}$ ) clock being asserted at minimum t<sub>RWD</sub> or minimum t<sub>CWD</sub> time, depending upon the application. This results in starting a write operation to the selected cell even before data out occurs. The minimum specification on t<sub>RWD</sub> and t<sub>CWD</sub> assures that data out does occur. In this case, the data in is set up with respect to write ( $\overline{W}$ ) clock active edge.

### PAGE-MODE CYCLES

Page mode operation allows faster successive data operations at the 256 column locations. Page access (tCAC) is typically half the regular RAS clock access (tRAC) on the Motorola 64K dynamic RAM, Page mode operation consists of holding the RAS clock active while cycling the CAS clock to access the column locations determined by the 8-bit column address field. There are two controlling factors that limit the access to all 256 column locations in one RAS clock active operation. These are the refresh interval of the device (2 ms/128=15.6 microseconds) and the maximum active time specification for the RAS clock (10 microseconds). Since 10 microseconds is the smaller value, the maximum specification of the RAS clock on time is the limiting factor of the number of sequential page accesses possible. Ten microseconds will provide approximately (10 microseconds/page mode cycle time) 50 successive page accesses for every row address selected before the RAS clock is reset.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter CAS cycles (tpc). The CAS cycle time (tpc) consists of the CAS clock active time ( $t_{CAS}$ ), and  $\overline{CAS}$  clock precharge time ( $t_{CP}$ ) and two transitions. In addition to read and write cycles, a readmodify-write cycle can also be performed in a page mode operation. For a read-modify-write or read-while-write type cycle, the conditions normal to that mode of operation will apply in the page mode also. The page mode cycles illustrated show a series of sequential reads separated by a series of sequential writes. This is just one mode of operation. In practice, any combination of read, write and readmodify-write cycles can be performed to suit a particular application.

### **REFRESH CYCLES**

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to

### MCM6665A

degrade with time and temperature. Therefore, to retain the correct information, the bits need to be refreshed at least once every 2 ms. This is accomplished by sequentially cycling through the 128 row address locations every 2 ms, or at least one row every 15.6 microseconds. A normal read or write operation to the RAM will serve to refresh all the bits (256) associated with that particular row decoded.

 $\overline{RAS}$  Only Refresh – When the memory component is in standby the  $\overline{RAS}$  only refresh scheme is employed. This refresh method performs a  $\overline{RAS}$  only cycle on all 128 row addresses every 2 ms. The row addresses are latched in with the  $\overline{RAS}$  clock, and the associated internal row locations are refreshed. As the heading implies, the  $\overline{CAS}$  clock is not required and should be inactive or at a  $V_{IH}$  level to conserve power.

### PIN ASSIGNMENT COMPARISON

| MCM                                                              | 14116                                                            | MCM4                                                                                  | 517                                                    |                                 | MCM6632A                                                                            |                      |
|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|----------------------|
| VBB 1                                                            | 16 V <sub>SS</sub>                                               |                                                                                       | 16 <b>9</b> VSS                                        | REFRESH                         | 1 16                                                                                | <b>Þ</b> ∨ss         |
| D <b>C</b> 2                                                     | 15 CAS                                                           | D <b>C</b> 2                                                                          | 15 CAS                                                 | D <b>C</b>                      | 2 15                                                                                | CAS                  |
| ₩ <b>1</b> 3                                                     | 14 0 0                                                           | v <b>⊽ t</b> 3                                                                        | 14 <b>9</b> Q                                          | ₩ <b>c</b>                      | 3 14                                                                                | þa                   |
| RAS C 4                                                          | 13 <b>0</b> A6                                                   | RAS C 4                                                                               | 13 <b>1</b> A6                                         | RAS                             | 4 13                                                                                | <b>D</b> A6          |
| A0 <b>0</b> 5                                                    | 12 <b>1</b> A3                                                   | A0 <b>D</b> 5                                                                         | 12 <b>1</b> A3                                         | A0 <b>C</b>                     | 5 12                                                                                | <b>D</b> A3          |
| A2 <b>C</b> 6                                                    | 11 <b>1</b> A4                                                   | A2 🕻 6                                                                                | 11 1 44                                                | A2 🕻                            | 6 11                                                                                | <b>D</b> A4          |
| A1 <b>E</b> 7                                                    | 10 <b>0</b> A5                                                   | A1 <b>C</b> 7                                                                         | 10 <b>1</b> A5                                         | A1 <b>E</b>                     | 7 10                                                                                | <b>1</b> A5          |
|                                                                  | 9 <b>9</b> v <sub>CC</sub>                                       | ∨ <sub>CC</sub> <b>⊄</b> 8                                                            | эр м∕с                                                 | V <sub>CC</sub>                 | 89                                                                                  | <b>A</b> 7           |
|                                                                  |                                                                  |                                                                                       |                                                        |                                 |                                                                                     |                      |
| MCM                                                              | 6633A                                                            | MCM66                                                                                 | 64A                                                    |                                 | MCM6665A                                                                            |                      |
|                                                                  | 16 VSS                                                           |                                                                                       | 16 <b>1</b> V <sub>SS</sub>                            | N/C                             |                                                                                     | Vss                  |
|                                                                  |                                                                  |                                                                                       |                                                        |                                 | 1 16                                                                                | VSS<br>CAS           |
| N/C TO                                                           | 16 VSS                                                           | REFRESH                                                                               | 16 V <sub>SS</sub>                                     | N/CE<br>DE                      | 1 <b>1</b> 16<br>2 15                                                               |                      |
|                                                                  | 16 V <sub>SS</sub><br>15 CAS                                     |                                                                                       | 161 V <sub>SS</sub><br>151 CAS                         | N/CE<br>DE                      | 1 16<br>2 15<br>3 14                                                                | CAS                  |
| N/C <b>C</b> 1<br>D <b>C</b> 2<br>W <b>C</b> 3                   | 160 V <sub>SS</sub><br>150 CAS<br>140 Q                          | REFRESH <b>I</b> 1<br>D <b>I</b> 2<br>W <b>I</b> 3                                    | 16 V <sub>SS</sub><br>15 CAS<br>14 Q                   | א/כם<br>ס<br>ס<br>ער            | 1 • 16<br>2 15<br>3 14<br>4 13                                                      |                      |
| N/C <b>C</b> 1<br>D <b>C</b> 2<br>W <b>C</b> 3<br>RAS <b>C</b> 4 | 16 2 V <sub>SS</sub><br>15 2 CAS<br>14 2 Q<br>13 2 A6            | REFRESH <b>C</b> 1<br>D <b>C</b> 2<br>W <b>C</b> 3<br>RAS <b>C</b> 4                  | 16 V <sub>SS</sub><br>15 CAS<br>14 Q<br>13 A6          | N/C<br>D<br>0<br>RAS            | 1     16       2     15       3     14       4     13       5     12                | CAS<br>0<br>A6       |
| N/C C 1 0<br>D C 2<br>W C 3<br>RAS C 4<br>A0 C 5                 | 16 V <sub>SS</sub><br>15 CAS<br>14 CAS<br>14 C<br>13 A6<br>12 A3 | REFRESH <b>C</b> 1<br>D <b>C</b> 2<br>W <b>C</b> 3<br>RAS <b>C</b> 4<br>A0 <b>C</b> 5 | 16 V <sub>SS</sub><br>15 CAS<br>14 Q<br>13 A6<br>12 A3 | N/C<br>D<br>D<br>RAS<br>A0<br>D | 1     16       2     15       3     14       4     13       5     12       6     11 | CAS<br>Q<br>A6<br>A3 |

### PIN VARIATIONS

| PIN NUMBER | MCM4116                 | MCM4517 | MCM6632A    | MCM6663A         | MCM6664A | MCM6665A |
|------------|-------------------------|---------|-------------|------------------|----------|----------|
| 1          | V <sub>BB</sub> (-5 V)  | N/C     | REFRESH N/C |                  | REFRESH  | N/C      |
| 8          | V <sub>DD</sub> (+12 V) | Vçc     | Vcc         | V <sub>C</sub> C | VCC      | Vcc      |
| 9          | V <sub>CC</sub> (+5 V)  | N/C     | A7          | A7               | A7       | A7       |

DRAM

2-87

DRAM

2

### MCM6665A BIT ADDRESS MAP

|              |                  |              |                                              |        |       | Pin 8            |                                              |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
|--------------|------------------|--------------|----------------------------------------------|--------|-------|------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|
|              |                  |              | Row Address A7 A6 A5<br>Column Address A7 A6 |        |       |                  |                                              |                                                             | c                                               | olum                                  | n Ad                                            | dress                                           | es                               |                                       |                                              |                                       |
|              |                  |              | Ro                                           | we     |       |                  | FE<br>FF<br>FC<br>FD<br>FA<br>FB<br>F8<br>F9 | Dec<br>254<br>255<br>252<br>253<br>250<br>251<br>248<br>249 | <b>A7</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A6<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <b>A3</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <b>A4</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A5<br>1<br>1<br>1<br>1<br>1<br>1 | A2<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | <b>A0</b><br>1<br>0<br>0<br>1<br>1<br>0<br>0 | A1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 |
|              |                  |              |                                              |        |       |                  | C0<br>C1<br>BF<br>BE                         | 192<br>193<br>191<br>190                                    | 1<br>1<br>1<br>1                                | 1<br>1<br>0<br>0                      | 0<br>0<br>1<br>1                                | 0<br>0<br>1<br>1                                | 0<br>0<br>1<br>1                 | 0<br>0<br>1<br>1                      | 0<br>0<br>1<br>1                             | 0<br>1<br>1<br>0                      |
|              | ddresses         |              |                                              |        |       |                  | 83<br>82<br>81<br>80                         | 131<br>130<br>129<br>128                                    | 1<br>1<br>1                                     | 0<br>0<br>0                           | 0<br>0<br>0                                     | 0<br>0<br>0                                     | 0<br>0<br>0                      | 00000                                 | 1<br>1<br>0<br>0                             | 1<br>0<br>1<br>0                      |
|              | Column Addresses |              |                                              |        |       |                  | 7E<br>7F<br>7C                               | 126<br>127<br>124                                           | 0<br>0<br>0                                     | 1<br>1<br>1                           | 1<br>1<br>1                                     | 1<br>1<br>1                                     | 1<br>1<br>1                      | 1<br>1<br>1                           | 1<br>1<br>0                                  | 0<br>1<br>0                           |
|              |                  |              |                                              |        |       |                  | 42<br>43<br>40<br>41                         | 66<br>67<br>64<br>65                                        | 0<br>0<br>0                                     | 1 1 1 1                               | 0<br>0<br>0                                     | 0<br>0<br>0                                     | 0<br>0<br>0                      | 0<br>0<br>0                           | 1<br>1<br>0<br>0                             | 0<br>1<br>0<br>1                      |
|              |                  | 01FF<br>01FF |                                              |        | 0110  | 1010             | 3F<br>3E<br>3D                               | 63<br>62<br>61<br>•                                         | 0<br>0<br>0                                     | 0<br>0<br>0                           | 1<br>1<br>1                                     | 1<br>1<br>1                                     | 1<br>1<br>1                      | 1<br>1<br>1                           | 1<br>1<br>0                                  | 0                                     |
|              |                  | 00FF<br>00FF |                                              | -      | 0100  | - 10 00<br>00 00 | 04<br>03<br>02<br>01<br>00                   | 4<br>3<br>2<br>1<br>0                                       | 0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0                      | 0<br>0<br>0                                     | 0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0                 | 1<br>0<br>0<br>0                      | 0<br>1<br>1<br>0<br>0                        | 0<br>1<br>0<br>1<br>0                 |
|              | Нех              | այս.<br>այս  |                                              | ۲<br>۲ | 88688 | 6 8 6            | 8                                            |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
| Row Addresse | 0 Dec            | 1 255        |                                              | 0 126  | 0000  | - 3 5            |                                              |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
| 4            | A2               |              |                                              |        | 000   |                  |                                              |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
| a            | A1 A             |              |                                              |        | 0     |                  |                                              |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
|              |                  |              |                                              |        | -0000 |                  |                                              |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
|              |                  |              |                                              |        | 00000 | 000              | 0                                            |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
|              |                  |              |                                              |        | 00000 |                  | 0                                            |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
|              | A6               |              |                                              |        | 00000 |                  | 0                                            |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |
| Pm 16        | ] 🛛              |              |                                              | 00     | 00000 | 000              | 0                                            |                                                             |                                                 |                                       |                                                 |                                                 |                                  |                                       |                                              |                                       |

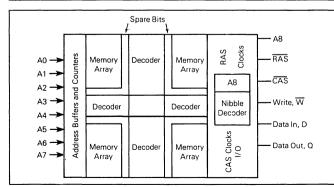
Data Stored = Din & AOX & A1Y

| Column<br>Address<br>A1 | Row<br>Address<br>A0 | Data<br>Stored |
|-------------------------|----------------------|----------------|
| 0                       | 0                    | True           |
| 0                       | 1                    | Inverted       |
| 1                       | 0                    | Inverted       |
| 1                       | 1                    | True           |



# **MCM6256**

### **Product Preview**


### 256K-BIT DYNAMIC RAM

The MCM6256 is a 262,144 bit, high-speed, dynamic Random Access Memory. Organized as 262,144 one-bit words and fabricated using Motorola's high-performance silicon-gate MOS (HMOS) technology, this new single +5 volt supply dynamic RAM combines high performance with low cost and improved reliability. The MCM6256 has the capability of using laser fuse redundancy and is manufactured using advanced direct-step on wafer photolithographic equipment.

By multiplexing row and column address inputs, the MCM6256 requires only nine address lines and permits packaging in standard 16-pin 300 mil wide dual-in-line packages. Complete address decoding is done on-chip with address latches incorporated. Data out (Q) is controlled by CAS allowing greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6256 incorporates a one transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, a  $\overline{CAS}$ before RAS automatic refresh is available. Another special feature of the MCM6256 is nibble mode, allowing the user to serially access 4 bits of data at a high data rate. Nibble mode address is controlled by the addresses on pin 1 (A8 row and A8 column).

- Organized as 262,144 Words of 1 Bit
- Single +5 Volt Operation (±10%)
- Maximum Access Time: MCM6256-10 = 100 ns MCM6256-12 = 120 ns MCM6256-15 = 150 ns
- Low Power Dissipation:
   70 mA maximum (Active) MCM6256-10
   4 mA maximum (Standby)
- Three-State Data Output
- Early-Write Common I/O Capability
- 256 Cycle, 4 ms Refresh
- RAS-Only Refresh Mode
- Automatic (CAS before RAS) Refresh Mode
- Fast Nibble Mode on Read and Write Cycles
- 20 ns Access Time 40 ns Cycle Time



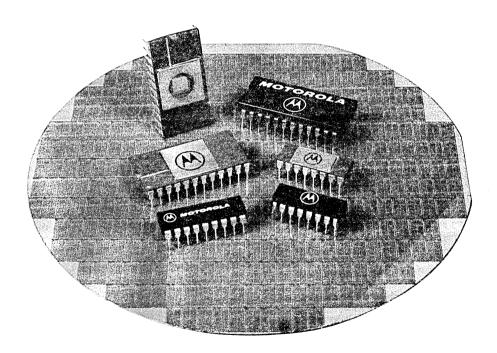
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

| MOS<br>(N-CHANNEL, SILICON-GATE)<br>262,144 BIT<br>DYNAMIC RANDOM ACCESS<br>MEMORY                                                                                                                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IG I<br>L SUFFIX<br>CERAMIC PACKAGE<br>CASE 690                                                                                                                                                                                                                                                                            |  |
| PIN ASSIGNMENT         A8       10       16 $V_{SS}$ D       2       15 $\overline{CAS}$ $\overline{W}$ 3       14       0         RAS       4       13       A6         A0       5       12       A3         A2       6       11       A4         A1       7       10       A5         V <sub>CC</sub> 8       9       A7 |  |
| PIN NAMES           A0-A8.         Address Input           D.         Data In           Q.         Bata Out           W         Read/Write Input           RAS.         Row Address Strobe           CAS.         Column Address Strobe           VCC.         Power (+5 V)           VSS.         Ground                  |  |
| This device contains circuitry to protect<br>the inputs against damage due to high<br>static voltages or electric fields; however,<br>it is advised that normal precautions be<br>taken to avoid application of any voltage                                                                                                |  |

higher than maximum rated voltages to this high-impedance circuit.

DRAM

1


ור



2-90



# **MOS Static RAM**



SRAM 3-2



#### 1024×1 STATIC RAM

The MCM2115A and MCM2125A families are high-speed, 1024 words by one-bit, random-access memories fabricated using HMOS, highperformance N-channel silicon-gate technology. Both open collector (MCM2115A) and three-state output (MCM2125A) are available. The devices use fully static circuitry throughout and require no clocks or timing strobes. Data out has the same polarity as the input data.

Access times are fully compatible with the industry-produced 1K Bipolar RAMs, yet offer up to 50% reduction in power over their Bipolar equivalents.

All inputs and output are directly TTL compatible. The chip select allows easy selection of an individual device when outputs are OR-tied.

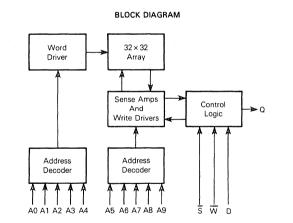
- Organized as 1024 Words of 1 Bit
- Single + 5 V Operation
- Maximum Access Time of 45 ns, 55 ns, and 70 ns available
- Low Operating Power Dissipation
- Pin Compatible to 93415A (2115A) and 93425A (2125A)
- TTL Inputs and Outputs
- Uncommitted Collector (2115A) and Three-State (2125A) Output

# MCM2115A MCM21L15A MCM2125A MCM2125A

#### MOS

(N-CHANNEL, SILICON-GATE)

1024-BIT STATIC RANDOM ACCESS MEMORY




C SUFFIX FRIT-SEAL CERAMIC PACKAGE CASE 620

#### PIN ASSIGNMENT

| ≅∎          | 10 | 16 | Vcc         |
|-------------|----|----|-------------|
| A0 <b>C</b> | 2  | 15 | D           |
| A1 <b>0</b> | 3  | 14 | ⊐wī         |
| A2 🕻        | 4  | 13 | <b>]</b> A9 |
| A3          | 5  | 12 | <b>1</b> A8 |
| A4C         | 6  | 11 | <b>1</b> A7 |
| Q           | 7  | 10 | <b>1</b> A6 |
| Vss∎        | 8  | 9  | <b>1</b> A5 |
|             |    |    |             |

| PIN NAMES                                                                                                                                                                                                                                    |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| A.         Addres           D.         Data Inpu           Q.         Data Outpu           S.         Chip Selec           V <sub>CC</sub> .         + 5 V Suppl           V <sub>SS</sub> .         Groun           W.         Write Enable | t<br>t<br>t |



#### TRUTH TABLE

| . 1 | Inputs | 3 | Output<br>2115A Family | Output<br>2125A Family | Mode         |
|-----|--------|---|------------------------|------------------------|--------------|
| S   | W      | D | ٥                      | Q                      |              |
| н   | Х      | Х | н                      | High Z                 | Not Selected |
| L   | L      | L | н                      | High Z                 | Write "0"    |
| L   | L      | н | н                      | High Z                 | Write"1"     |
| L   | Н      | Х | Data Out               | Data Out               | Read         |

1

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                 | Value        | Unit |
|----------------------------------------|--------------|------|
| Temperature Under Bias                 | - 10 to + 80 | °C   |
| Voltage on Any Pin With Respect to VSS | -0.5 to +7.0 | Vdc  |
| DC Output Current                      | 20           | mA   |
| Power Dissipation                      | 1.0          | Watt |
| Operating Temperature Range            | 0 to +70     | °C   |
| Storage Temperature Range              | -65 to +150  | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOM-MENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                   | Symbol                             | Min       | Тур      | Max       | Unit |
|-----------------------------|------------------------------------|-----------|----------|-----------|------|
| Supply Voltage              | V <sub>CC</sub><br>V <sub>SS</sub> | 4.75<br>0 | 5.0<br>0 | 5.25<br>0 | v    |
| Logic 1 Voltage, All Inputs | VIH                                | 2.1       | -        | 6         | V    |
| Logic 0 Voltage, All Inputs | VIL                                | -0.3      | -        | 0.8       | V    |

#### DC OPERATING CHARACTERISTICS

| Devenue                                                                 | Cumhal          |     | 2115A | MCM2 | 21L15A | MCM | 2125A | MCM2 | 21L25A | 11-14 |
|-------------------------------------------------------------------------|-----------------|-----|-------|------|--------|-----|-------|------|--------|-------|
| Parameter                                                               | Symbol          | Min | Max   | Min  | Max    | Min | Max   | Min  | Max    | Unit  |
| Input Low Current (All Input Pins, Vin=0 to 5.5 V)                      | <sup>I</sup> IL | -   | - 40  | -    | - 40   | -   | - 40  | -    | - 40   | μA    |
| Input High Current                                                      | ЧΗ              | -   | 40    | -    | 40     | -   | 40    | -    | 40     | μA    |
| Output Leakage Current (Vout=0.5/2.4 V)                                 | IOL             | -   | -     | -    | -      | -   | 50    | -    | 50     | μĀ    |
| Output Leakage Current (Vout=4.5 V)                                     | ICEX            | -   | 100   | -    | 100    | -   | -     | '    | -      | μA    |
| Power Supply Current (S = V <sub>IL</sub> , Outputs Open $T_A = 25$ °C) | ICC             | -   | 125   | -    | 75     | -   | 125   | - /  | 75     | mA    |
| Output Low Voltage (IOL = 7.0 mA, 2125A, 16 mA 2115A)                   | VOL             | -   | 0.45  | -    | 0.45   |     | 0.45  | -    | 0.45   | V     |
| Output High Voltage (IOH = -4.0 mA)                                     | ∨он             | -   | -     | -    |        | 2.4 | -     | 2.4  | -      | V     |
| Current Short Circuit to Ground                                         | los             | -   |       |      | -      | -   | - 100 | -    | - 100  | mA    |

#### MCM2115A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$ 

| D                                           | Symbol  | MCM2 | 115A-45 | MCM2 | MCM2115A-55 |     | 115A-70 | Units |
|---------------------------------------------|---------|------|---------|------|-------------|-----|---------|-------|
| Parameter                                   | Symbol  | Min  | Max     | Min  | Max         | Min | Max     | Units |
| Chip Select Low Output Valid                | tSLQV   | 5    | 30      | 5    | 35          | 5   | 40      | ns    |
| Chip Select High to Output Invalid          | t SHQZ  | -    | 30      | - '  | 35          | -   | 40      | ns    |
| Address Valid to Output Valid               | tAVQV   | -    | 45      | -    | 55          | -   | 70      | ns    |
| Address Valid to Output Invalid             | tAVQX   | 10   | - 1     | 10   | -           | 10  | -       | ns    |
| Write Low to Output Disable                 | tWLQZ   | -    | 30      | -    | 35          |     | 40      | ns    |
| Write High to Output Valid                  | tWHQV   | 0    | 30      | 0    | 35          | 0   | 45      | ns    |
| Write Low to Write High (Write Pulse Width) | tWLWH   | 30   | -       | 40   | -           | 50  | -       | ns    |
| Data Valid to Write Low                     | . tDVWL | 5    | -       | 5    |             | 5   | -       | ns    |
| Write High to Data Don't Care (Data Hold)   | tWHDX   | 5    | -       | 5    | -           | 5   | -       | ns    |
| Address Valid to Write Low (Address Setup)  | tAVWL   | 5    | -       | 5    | -           | 15  | -       | ns    |
| Write High to Address Don't Care            | tWHAX   | 5    | -       | 5    | -           | 5   | -       | ns    |
| Chip Select Low to Write Low                | tSLWL   | 5    | -       | 5    | -           | 5   | -       | ns    |
| Write High to Chip Select High              | tWHSH   | 5    | -       | 5    | -           | 5   | -       | ns    |
| Address Valid to Address Don't Care         | tAVAX   | -    | 45      | -    | 55          | -   | 70      | ns    |
| Chip Select Low to Chip Select High         | tSLSH   | -    | 45      |      | 55          | -   | 70      | ns    |

### MCM21L15A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$ 

| Parameter                                   | Symbol            | MCM2 | Units |     |     |    |
|---------------------------------------------|-------------------|------|-------|-----|-----|----|
| Farameter                                   | Symbol            | Min  | Max   | Min | Max |    |
| Chip Select Low to Output Valid             | tSLQV             | 5    | 30    | 5   | 30  | ns |
| Chip Select High to Output Invalid          | <sup>t</sup> SHQZ | -    | 30    | -   | 30  | ns |
| Address Valid to Output Valid               | tAVQV             | -    | 45    | -   | 70  | ns |
| Address Valid to Output Invalid             | tAVQX             | 10   | -     | 10  | -   | ns |
| Write Low to Output Disable                 | tWLQZ             | -    | 25    | -   | 25  | ns |
| Write High to Output Valid                  | tWHQV             | 0    | 25    | 0   | 25  | ns |
| Write Low to Write High (Write Pulse Width) | twlwh             | 30   | -     | 30  | -   | ns |
| Data Valid to Write Low                     | tDVWL             | 0    | -     | 0   | -   | ns |
| Write High to Data Don't Care               | tWHDX             | 5    | -     | 5   | -   | ns |
| Address Valid to Write Low (Address Setup)  | tAVWL             | 5    | -     | 5   | -   | ns |
| Write High to Address Don't Care            | tWHAX             | 5    | -     | 5   | . – | ns |
| Chip Select Low to Write Low                | tSLWL             | 5    | -     | 5   | -   | ns |
| Write High to Chip Select High              | tWHSH             | 5    | -     | 5   | -   | ns |
| Address Valid to Address Don't Care         | tavax             | -    | 45    | -   | 70  | ns |
| Chip Select Low to Chip Select High         | tSLSH             | -    | 45    | -   | 70  | ns |

MCM2125A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES

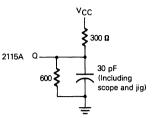
 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 5\%)$ 

| Basamatar                                   | Parameter Symbol  |     | 125A-45 | MCM2 | 125A-55 | MCM2 | Units |       |
|---------------------------------------------|-------------------|-----|---------|------|---------|------|-------|-------|
| Farameter                                   | Symbol            | Min | Max     | Min  | Max     | Min  | Max   | Units |
| Chip Select Low to Output Valid             | <sup>t</sup> SLQV | 5   | 30      | 5    | 35      | 5    | 40    | ns    |
| Chip Select High to Output High Z           | <sup>t</sup> SHQZ | - 1 | 30      | -    | 35      | -    | 40    | ns    |
| Address Valid to Output Valid               | <sup>t</sup> AVQV | -   | 45      | -    | 55      | -    | 70    | ns    |
| Address Valid to Output Invalid             | <sup>t</sup> AVQX | 10  | -       | 10   | -       | 10   | -     | ns    |
| Write Low to Output High Z                  | tWLQZ             |     | 30      | -    | 35      | -    | 40    | ns    |
| Write High to Output Valid                  | tWHQV             | 0   | 30      | 0    | 35      | 0    | 45    | ns    |
| Write Low to Write High (Write Pulse Width) | twlwh             | 30  | _       | 40   | -       | 50   | -     | ns    |
| Data Valid to Write Low                     | <sup>t</sup> DVWL | 5   | -       | 5    | -       | 5    | -     | ns    |
| Write High to Data Don't Care               | tWHDX             | 5   | -       | 5    | -       | 5    | -     | ns    |
| Address Valid to Write Low (Address Setup)  | <sup>t</sup> AVWL | 5   | -       | 5    | -       | 15   | -     | ns    |
| Write High to Address Don't Care            | tWHAX             | 5   | -       | 5    | -       | 5    | -     | ns    |
| Chip Select Low to Write Low                | <sup>t</sup> SLWL | 5   | -       | 5    | -       | 5    | -     | ns    |
| Write High to Chip Select High              | tWHSH             | 5   | -       | 5    | -       | 5    | -     | ns    |
| Address Valid to Address Don't Care         | tavax             | -   | 45      | -    | 55      | -    | 70    | ns    |
| Chip Select Low to Chip Select High         | tSLSH             | -   | 45      | -    | 55      | -    | 70    | ns    |

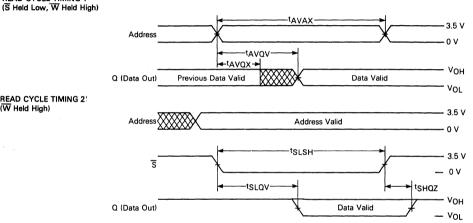
MCM21L25A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES (T\_A=0 to 70°C, V\_CC=5.0 V  $\pm 5\%$ )

| Parameter                                   | Symbol | MCM2 | L25A-45 | MCM21 | L25A-70 | Units |
|---------------------------------------------|--------|------|---------|-------|---------|-------|
| Parameter                                   | Бутво  | Min  | Max     | Min   | Max     | Units |
| Chip Select Low to Output Valid             | tSLQV  | 5    | 30      | 5     | 30      | ns    |
| Chip Select High to Output High Z           | tSHQZ  | -    | 30      | -     | 30      | ns    |
| Address Valid to Output Valid               | tAVQV  | -    | 45      | -     | 70      | ns    |
| Address Valid to Output Invalid             | tAVQX  | 10   | -       | 10    | -       | ns    |
| Write Low to Output High Z                  | twlaz  | -    | 25      | -     | 25      | ns    |
| Write High to Output Valid                  | tWHQV  | 0    | 25      | 0     | 25      | ns    |
| Write Low to Write High (Write Pulse Width) | twlwh  | 30   | -       | 30    | -       | ns    |
| Data Valid to Write Low                     | tDVWL  | 0    | -       | 0     | -       | ns    |
| Write High to Data Don't Care               | twhdx  | 5    | -       | 5     | -       | ns    |
| Address Valid to Write Low (Address Setup)  | tAVWL  | 5    | -       | 5     | -       | ns    |
| Write High to Address Don't Care            | twhax  | 5    | -       | 5     | -       | ns    |
| Chip Select Low to Write Low                | tSLWL  | 5    | -       | 5     | -       | ns    |
| Write High to Chip Select High              | tWHSH  | 5    | -       | 5     | -       | ns    |
| Address Valid to Address Don't Care         | tavax  | -    | 45      | -     | 70      | ns    |
| Chip Select Low to Chip Select High         | tSLSH  | - 1  | 45      | -     | 70      | ns    |

1


ł

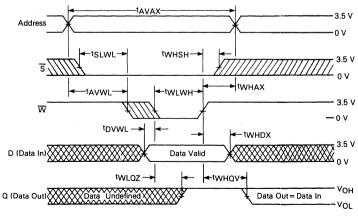
1 1 1


CAPACITANCE (f = 1.0 MHz,  $T_A = 25$  °C, periodically sampled rather than 100% tested.)

| Characteristic                | Symbol | Max | Unit |
|-------------------------------|--------|-----|------|
| Input Capacitance (Vin=0 V)   | Cin    | 5   | pF   |
| Output Capacitance (Vout=0 V) | Cout   | 8   | рF   |

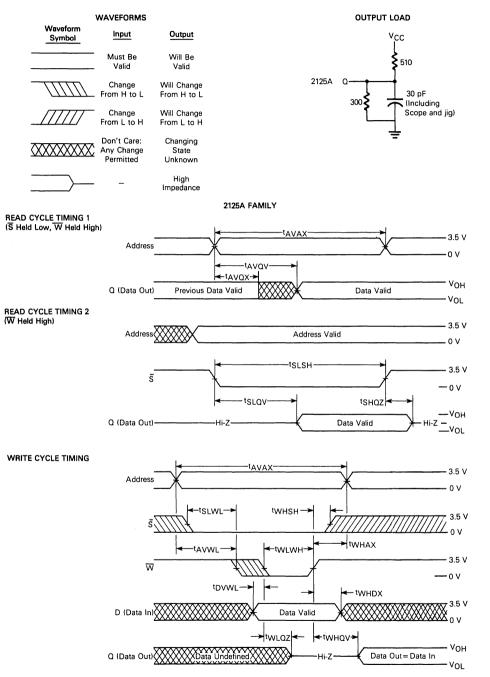
Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t / \Delta V$ .




2115A FAMILY



**READ CYCLE TIMING 2**<sup>1</sup> (W Held High)


**READ CYCLE TIMING 1** 

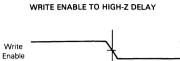


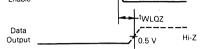


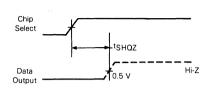
(All Time Measurements Referenced to 1.5 V)

OUTPUT LOAD



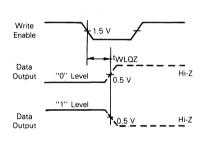

SRAM


1


1

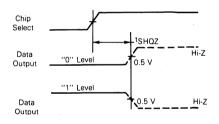
(All time measurements referenced to 1.5 V)











PROPAGATION DELAY FROM CHIP SELECT TO HIGH-Z

2125A FAMILY



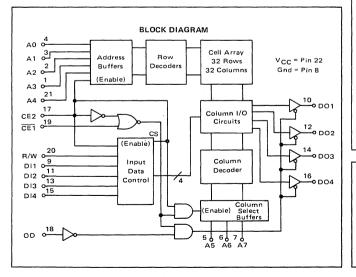
WRITE ENABLE TO HIGH-Z DELAY

PROPAGATION DELAY FROM CHIP SELECT TO HIGH-Z



Þ




#### 256×4 BIT STATIC RAM

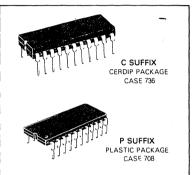
The MCM5101 family of CMOS RAMs offers ultra low power and fully static operation with a single 5-volt supply. The CMOS 1024-bit devices are organized in 256 words by 4 bits. Separate data inputs and data outputs permit maximum flexibility in bus-oriented systems. Data retention at a power supply as low as 2.0 volts over temperature readily allows design into applications using battery backup for nonvolatility. The MCM5101 is fully static and does not require clocking in standby mode.

The MCM5101 is fabricated using the Motorola advanced ionimplanted, silicon-gate technology for high performance and high reliability.

- Low Standby Power
- Fast Access Time
- Single +5.0 Volt Supply
- Fully TTL Compatible All Inputs and Outputs
- Three-State Output
- Fully Static Operation
- Data Retention to 2.0 Volts
- Direct Replacement for: Intel 5101 Series
   AMI S5101 Series
   Hitachi HM435101 Series
- Pin Replacement for Harris HM6501 Series

| Type Number      | Typical Current<br>@2 V (μA) | Typical Current<br>@ 5 V (μA) | Max Access<br>(ns) |
|------------------|------------------------------|-------------------------------|--------------------|
| MCM51L01C45, P45 | 0.14                         | 0.2                           | 450                |
| MCM51L01C65, P65 | 0.14                         | 0.2                           | 650                |
| MCM5101C65, P65  | 0.70                         | 1.0                           | 650                |
| MCM5101C80, P80  | -                            | 10                            | 800                |




# MCM51L01

MCM5101

# CMOS

(COMPLEMENTARY MOS)

1024-BIT STATIC RANDOM ACCESS MEMORY



| P    | N ASSIGNI | MEN | іт                       |
|------|-----------|-----|--------------------------|
| A3   |           | 22  | <b>þ</b> v <sub>cc</sub> |
| A2   | 2         |     | <b>1</b> A4              |
| .A1  | 3         | 20  | R/W                      |
| A0 🕻 | 4         | 19  | DCE1                     |
| A5   | 5         | 18  | рор                      |
| A6 🕻 | 6         | 17  | CE2                      |
| A7 🕻 | 7         | 16  | DO4                      |
| GND  | 8         | 15  | D14                      |
| DI1  | 9         | 14  | DO3                      |
| D01  | 10        | 13  | DI3                      |
| D12  | 11        | 12  | DO2                      |
|      |           |     | •                        |

|     | TRUTH TABLE |    |     |     |        |                 |  |  |  |  |  |  |  |
|-----|-------------|----|-----|-----|--------|-----------------|--|--|--|--|--|--|--|
| CE1 | CE2         | OD | R/W | Din | Output | Mode            |  |  |  |  |  |  |  |
| н   | Х           | Х  | Х   | Х   | High-Z | Not Selected    |  |  |  |  |  |  |  |
| X   | L           | х  | х   | X   | High-Z | Not Selected    |  |  |  |  |  |  |  |
| X   | X           | н  | н   | X   | High-Z | Output Disabled |  |  |  |  |  |  |  |
| L   | н           | н  | L   | X   | High-Z | Write           |  |  |  |  |  |  |  |
| L   | н           | L  | L   | X   | Din    | Write           |  |  |  |  |  |  |  |
| L   | н           | L  | н   | X   | Dout   | Read            |  |  |  |  |  |  |  |

DS9828/9-80

#### MAXIMUM RATINGS (Voltages referenced to VSS Pin 8)

| Rating                      | Symbol           | Value           | Unit |
|-----------------------------|------------------|-----------------|------|
| DC Supply Voltage           | Vcc              | -0.5 to +7.0    | V    |
| Voltage on Any Pin          | Vin              | -0.3 to VCC+0.3 | V    |
| Operating Temperature Range | TA               | 0 to +70        | °C   |
| Storage Temperature Range   | T <sub>stq</sub> | -65 to +150     | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### **RECOMMENDED OPERATING CONDITIONS**

| Parameter                   | Symbol                             | Min       | Тур      | Max                  | Unit |
|-----------------------------|------------------------------------|-----------|----------|----------------------|------|
| Supply Voltage              | V <sub>CC</sub><br>V <sub>SS</sub> | 4.75<br>0 | 5.0<br>0 | · 5.25<br>0          | v    |
| Logic 1 Voltage, All Inputs | VIH                                | 2.2       |          | V <sub>CC</sub> +0.3 | V    |
| Logic 0 Voltage, All Inputs | VIL                                | -0.3      | -        | 0.65                 | V    |

#### DC CHRACTERISTICS

| Characteristic                                                                                | Symbol                             |       |                    | MCM5101-65           |      |                    | M                    | Unit |                    |         |    |
|-----------------------------------------------------------------------------------------------|------------------------------------|-------|--------------------|----------------------|------|--------------------|----------------------|------|--------------------|---------|----|
|                                                                                               |                                    | Min   | Typ <sup>(1)</sup> | Max                  | Min  | Typ <sup>(1)</sup> | Max                  | Min  | Typ <sup>(1)</sup> | Max     |    |
| Input Current                                                                                 | l <sub>in</sub> (2)                | -     | 5.0                | -                    | -    | 5.0                | -                    | -    | 5.0                | -       | nA |
| Input High Voltage                                                                            | VIH                                | 2.2   | -                  | V <sub>CC</sub> +0.3 | 2.2  | -                  | V <sub>CC</sub> +0.3 | 2.2  | -                  | VCC+0.3 | V  |
| Input Low Voltage                                                                             | VIL                                | - 0.3 | -                  | 0.65                 | -0.3 |                    | 0.65                 | -0.3 | -                  | 0.65    | ٧  |
| Output High Voltage (IOH = -1.0 mA)                                                           | Voн                                | 2.4   | -                  | -                    | 2.4  | -                  | -                    | 2.4  | -                  | · _     | ٧  |
| Output Low Voltage (IOL = 2.0 mA)                                                             | VOL                                | -     | -                  | 0.4                  | -    | -                  | 0.4                  | -    | -                  | 0.4     | ٧  |
| Output Leakage Current<br>(CE1=2.2 V, V <sub>OL</sub> =0 V to V <sub>CC</sub> )               | 1LO <sup>(2)</sup>                 | -     | -                  | ± 1.0                | -    | _                  | ± 1.0                | -    | -                  | ± 2.0   | μA |
| Operating Current<br>(V <sub>in</sub> = V <sub>CC</sub> , except CE1≤0.65 V,<br>outputs open) | <sup>I</sup> CC1                   | -     | 9.0                | 22                   | -    | 9.0                | 22                   | -    | 11                 | 25      | mA |
| Operating Current<br>(V <sub>in</sub> = 2.2 V, Except CE1≤0.65 V,<br>outputs open)            | ICC2                               |       | 13                 | 27                   | -    | 13                 | 27                   | -    | 15                 | 30      | mA |
| Standby Current<br>(CE2≤0.2 V, V <sub>in</sub> =0 V or V <sub>CC</sub> )                      | <sup>I</sup> CCL <sup>(2)(4)</sup> | -     | -                  | 10                   | -    | -                  | 200                  | -    | -                  | 500     | μA |

#### CAPACITANCE (f=1.0 MHz, TA=25°C, VCC=5 V periodically sampled rather than 100% tested)

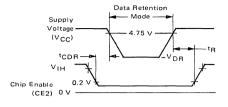
| Characteristic                             | Symbol | Тур | Max  | Unit |
|--------------------------------------------|--------|-----|------|------|
| Input Capacitance (V <sub>in</sub> =0 V)   | Cin    | 4.0 | 8.0  | pF   |
| Output Capacitance (V <sub>out</sub> =0 V) | Cout   | 8.0 | 12.0 | pF   |

#### LOW VCC DATA RETENTION CHARACTERISTICS (Excluding MCM5101-80)

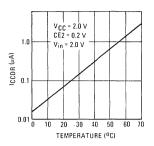
| Parameter                               | Test Conditions |                         | Symbol           | Min                            | Typ <sup>(1)</sup> | Max | Unit |
|-----------------------------------------|-----------------|-------------------------|------------------|--------------------------------|--------------------|-----|------|
| VCC for Data Retention                  |                 |                         | VDR              | 2.0                            | -                  | _   | V    |
| MCM51L01-45, -65 Data Retention Current | CE2≤0.2 V       | VDR = 2.0 V             | ICCDR1           | -                              | 0.14               | 10  | μA   |
| MCM5101-65 Data Retention Current       | 1.              | V <sub>DR</sub> = 2.0 V | ICCDR2           | -                              | 0.70               | 200 | μA   |
| Chip Deselect to Data Retention Time    |                 |                         | <sup>t</sup> CDR | 0                              | -                  | -   | ns   |
| Operation Recover Time                  |                 |                         | tR               | <sup>t</sup> RC <sup>(3)</sup> | -                  | -   | ns   |

Notes:

2. Current through all inputs and outputs included in ICCL measurement


3. tRC = Read Cycle Time

4. Low current state is for CE2=0 only


<sup>1.</sup> Typical values are  $T_A = 25^{\circ}C$  and nominal supply voltage

# MCM5101 • MCM51L01

#### LOW VCC DATA RETENTION WAVEFORM



#### TYPICAL ICCDR vs TEMPERATURE



#### AC OPERATING CONDITIONS AND CHARACTERISTICS

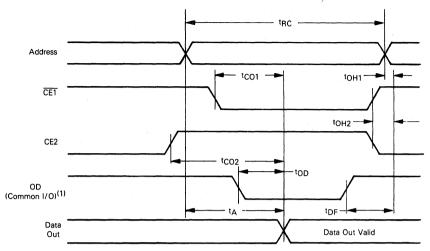
(Full operating voltage and temperature unless otherwise noted)

| Input Pulse Levels+0.65 V to 2.2 V |  |
|------------------------------------|--|
| Input Rise and Fall Times          |  |

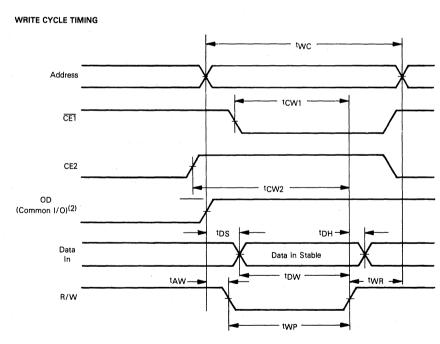
#### READ CYCLE

| Parameter                                               |      | MCM51L01-45 |     | MCM51L01-65<br>MCM5101-65 |     | MCM5101-80 |     | Unit |
|---------------------------------------------------------|------|-------------|-----|---------------------------|-----|------------|-----|------|
|                                                         |      | Min         | Max | Min                       | Max | Min        | Max |      |
| Read Cycle                                              | tRC  | 450         | -   | 650                       |     | 800        | -   | ns   |
| Access Time                                             | tд   | -           | 450 | -                         | 650 | -          | 800 | ns   |
| Chip Enable (CE1) to Output                             | tCO1 | -           | 400 | -                         | 600 | -          | 800 | ns   |
| Chip Enable (CE2) to Output                             | tCO2 | -           | 500 | -                         | 700 | -          | 850 | ns   |
| Output Disable to Output                                | top  | -           | 250 | -                         | 350 | -          | 450 | ns   |
| Data Output to High-Z State                             | tDF  | 0           | 130 | 0                         | 150 | 0          | 200 | ns   |
| Previous Read Data Valid with Respect to Address Change | tOH1 | 0           | -   | 0                         | -   | 0          | -   | ns   |
| Previous Read Data Valid with Respect to Chip Enable    | tOH2 | 0           | -   | 0                         | -   | 0          | -   | ns   |

#### WRITE CYCLE

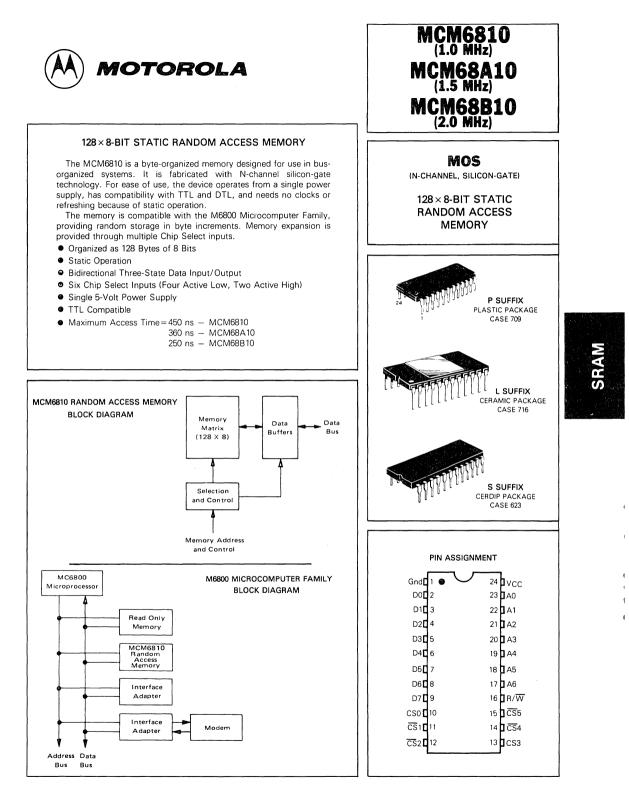

| Parameter                  | Symbol | bol MCM51L01-45 |     | MCM51L01-65<br>MCM5101-65 |     | мсме | Unit |    |
|----------------------------|--------|-----------------|-----|---------------------------|-----|------|------|----|
|                            |        | Min             | Max | Min                       | Max | Min  | Max  | 1  |
| Write Cycle                | tWC    | 450             | -   | 650                       | -   | 800  | -    | ns |
| Write Delay                | tAW    | 130             | -   | 150                       | -   | 200  |      | ns |
| Chip Enable (CE1) to Write | tCW1   | 350             | -   | 550                       | -   | 650  | -    | ns |
| Chip Enable (CE2) to Write | tCW2   | 350             | -   | 550                       | -   | 650  | -    | ns |
| Data Setup                 | tDW    | 250             | -   | 400                       | -   | 450  | -    | ns |
| Data Hold                  | tDH    | 50              | -   | 100                       | -   | 100  | -    | ns |
| Write Pulse                | tWP    | 250             | -   | 400                       | -   | 450  | -    | ns |
| Write Recovery             | tWR    | 50              | -   | 50                        | -   | 100  | -    | ns |
| Output Disable Setup       | tDS    | 130             |     | 150                       | -   | 200  | -    | ns |

t


ŧ

# MCM5101•MCM51L01






SRAM



Notes:

DD may be tied low for separate I/O operation
 During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation



DS-9487R2/6-81

# MCM6810•MCM68A10•MCM68B10

#### MAXIMUM RATINGS

| Rating                                                                            | Symbol           | Value                                                      | Unit |
|-----------------------------------------------------------------------------------|------------------|------------------------------------------------------------|------|
| Supply Voltage                                                                    | Vcc              | -0.3 to +7.0                                               | V    |
| Input Voltage                                                                     | Vin              | -0.3 to +7.0                                               | V    |
| Operating Temperature Range<br>MCM6810, MCM68A10, MCM68B10<br>MCM6810C, MCM68A10C | ТА               | T <sub>L</sub> to T <sub>H</sub><br>0 to +70<br>-40 to +85 | °C   |
| Storage Temperature Range                                                         | T <sub>sta</sub> | -65 to +150                                                | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage (e.g., either VSS or Vcc).

(1)

(2)

(3)

#### THERMAL CHARACTERISTICS

| Characteristics    | Symbol | Value | Unit |
|--------------------|--------|-------|------|
| Thermal Resistance |        |       |      |
| Ceramic            |        | 60    |      |
| Plastic            | θյΑ    | 120   | °C/W |
| Cerdip             | 0/1    | 65    |      |

#### POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:

 $T_J = T_A + (P_D \cdot \theta_{JA})$ 

Where:

 $T_A = Ambient Temperature, °C$ 

 $\theta_{JA} = Package Thermal Resistance, Junction-to-Ambient, °C/W$ 

PD≡PINT+PPORT

PINT≡ICC×VCC, Watts – Chip Internal Power PPORT≡Port Power Dissipation, Watts – User Determined

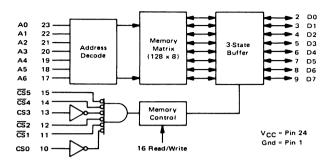
For most applications PPORT <PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between PD and TJ (if PPORT is neglected) is:

 $P_{D} = K \div (T_{J} + 273^{\circ}C)$ 

Solving equations 1 and 2 for K gives:

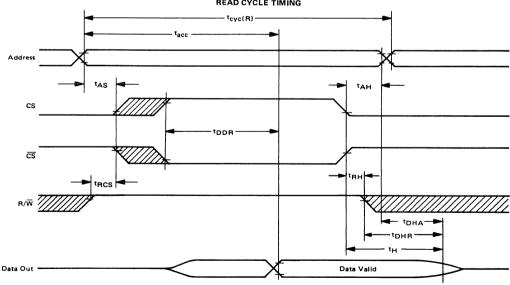
 $K = P_D \bullet (T_A + 273 \circ C) + \theta_{JA} \bullet P_D^2$ 


Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of T<sub>A</sub>.

| DC ELECTRICAL CHARACTERISTICS (V <sub>CC</sub> =5.0 Vdc ±5%, V <sub>SS</sub> =0, | $T_A = T_L$ to | T <sub>H</sub> unless otherwise noted) |
|----------------------------------------------------------------------------------|----------------|----------------------------------------|
|----------------------------------------------------------------------------------|----------------|----------------------------------------|

| Characteristic                                                                                                                                      | 1.1.1                 | Symbol          | Min                  | Max                  | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|----------------------|----------------------|------|
| Input High Voltage                                                                                                                                  |                       | VIН             | V <sub>SS</sub> +2.0 | Vcc                  | V    |
| Input Low Voltage                                                                                                                                   |                       | VIL             | V <sub>SS</sub> -0.3 | V <sub>SS</sub> +0.8 | V    |
| Input Current (A <sub>n</sub> , R/ $\overline{W}$ , $\overline{CS}_n$ ) (V <sub>in</sub> =0 to 5.25 V)                                              |                       | lin             | _                    | 2.5                  | μA   |
| Output High Voltage ( $I_{OH} = -205 \mu A$ )                                                                                                       |                       | Vон             | 2.4                  | -                    | V    |
| Output Low Voltage (IOL = 1.6 mA)                                                                                                                   |                       | VOL             | -                    | 0.4                  | V    |
| Output Leakage Current (Three-State) (CS = 0.8 V or $\overline{CS}$ = 2.0 V, V <sub>out</sub> = 0.4 V to                                            | 2.4 V)                | ITSI            | -                    | 10                   | μA   |
| Supply Current<br>(V <sub>CC</sub> = 5.25 V, All Other Pins Grounded) 1.                                                                            | 1.0 MHz<br>5, 2.0 MHz |                 | _                    | 80<br>100            | mA   |
| Input Capacitance (A <sub>n</sub> , R/ $\overline{W}$ , CS <sub>n</sub> , $\overline{CS}_n$ ) (V <sub>in</sub> =0, T <sub>A</sub> =25°C, f=1.0 MHz) |                       | C <sub>in</sub> |                      | 7.5                  | pF   |
| Output Capacitance (D <sub>n</sub> ) (V <sub>out</sub> =0, T <sub>A</sub> =25°C, f=1.0 MHz, CSO=0)                                                  |                       | Cout            | -                    | 12.5                 | pF   |

# MCM6810•MCM68A10•MCM68B10


BLOCK DIAGRAM



#### AC OPERATING CONDITIONS AND CHARACTERISTICS

READ CYCLE (V<sub>CC</sub> = 5.0 V  $\pm$  5%, V<sub>SS</sub> = 0, T<sub>A</sub> = T<sub>L</sub> to T<sub>H</sub> unless otherwise noted.)

|                            |                      | MCM6810 |     | мсм | 68A10 | MCM |     |      |
|----------------------------|----------------------|---------|-----|-----|-------|-----|-----|------|
| Characteristic             | Symbol               | Min     | Max | Min | Max   | Min | Max | Unit |
| Read Cycle Time            | t <sub>cyc</sub> (R) | 450     | -   | 360 | -     | 250 | -   | ns   |
| Access Time                | t <sub>acc</sub>     |         | 450 | -   | 360   | -   | 250 | ns   |
| Address Setup Time         | tAS                  | 20      | -   | 20  | -     | 20  | -   | ns   |
| Address Hold Time          | t <sub>AH</sub>      | 0       | -   | 0   | -     | 0   | -   | ns   |
| Data Delay Time (Read)     | <sup>t</sup> DDR     | -       | 230 | -   | 220   | -   | 180 | ns   |
| Read to Select Delay Time  | <sup>t</sup> RCS     | 0       | -   | 0   | -     | 0   | -   | ns   |
| Data Hold from Address     | tDHA                 | 10      | -   | 10  | -     | 10  | -   | ns   |
| Output Hold Time           | tн                   | 10      | - 1 | 10  | -     | 10  | -   | ns   |
| Data Hold from Read        | <sup>t</sup> DHR     | 10      | 80  | 10  | 60    | 10  | 60  | ns   |
| Read Hold from Chip Select | t <sub>RH</sub>      | 0       | -   | 0   | -     | 0   | -   | ns   |



#### READ CYCLE TIMING

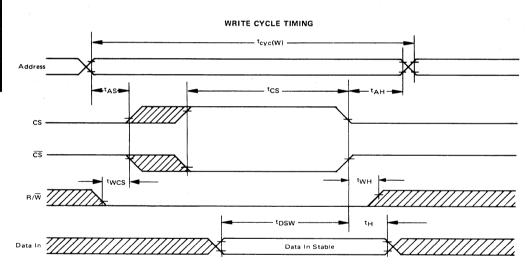
NOTES:

1. Voltage levels shown are V<sub>L</sub> ≤0.4 V, V<sub>H</sub> ≥ 2.4 V, unless otherwise specified. 2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.

3. CS and CS have same timing.



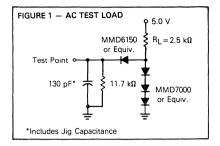
1


4

1

1 1

# WRITE CYCLE (V<sub>CC</sub> = 5.0 V $\pm$ 5%, V<sub>SS</sub> = 0, T<sub>A</sub> = T<sub>L</sub> to T<sub>H</sub> unless otherwise noted.)


| Characteristic                   |                 | MCM6810 |     | MCM68A10 |     | MCM68B10 |     |      |
|----------------------------------|-----------------|---------|-----|----------|-----|----------|-----|------|
|                                  | Symbol          | Min     | Max | Min      | Max | Min      | Max | Unit |
| Write Cycle Time                 | tcyc(W)         | 450     | _   | 360      | -   | 250      | -   | ns   |
| Address Setup Time               | tAS             | 20      | -   | 20       | -   | 20       | -   | ns   |
| Address Hold Time                | <sup>t</sup> AH | 0       | -   | 0        | -   | 0        | _   | ns   |
| Chip Select Pulse Width          | tCS             | 300     | -   | 250      | -   | 210      | _   | ns   |
| Write to Chip Select Delay Time  | twcs            | 0       | -   | 0        |     | 0        |     | ns   |
| Data Setup Time (Write)          | tDSW            | 190     | -   | 80       | -   | 60       | -   | ns   |
| Input Hold Time                  | tH              | 10      | -   | 10       | -   | 10       | -   | ns   |
| Write Hold Time from Chip Select | twh             | . 0     | -   |          |     | -        |     |      |



#### NOTES:

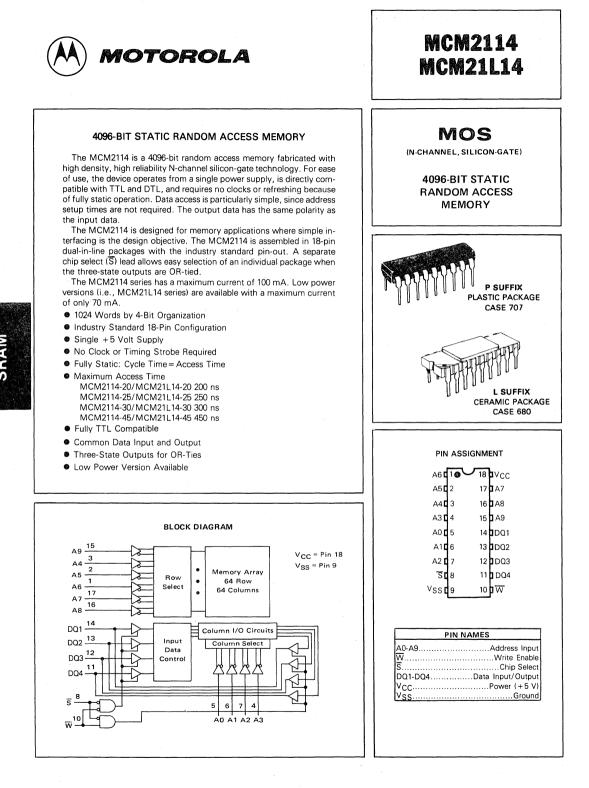
- 1. Voltage levels shown are V<sub>L</sub>  $\leq$  0.4 V, V<sub>H</sub>  $\geq$  2.4 V, unless otherwise specified. 2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified. 3. CS and  $\overline{CS}$  have same timing.

# MCM6810•MCM68A10•MCM68B10



#### ORDERING INFORMATION

| $\begin{tabular}{ c c c c } \hline MCM68A10CP\\ \hline Motorola Integrated Circuit $$$ MCM6800 Family $$$ A = 1.5 MHz $$$ A = 1.5 MHz $$$ Bank = 1.0 MHz $$$ Bank = 0.0 MHz $$$ The period conditions and the period conditions and the period conditions are also as the$ |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| BETTER PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Better program processing is available on all types listed. Add suffix letters to part number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Level 1 add "S" Level 2 add "D" Level 3 add "DS"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |


| Speed   | Device                            | Temperature Range             |
|---------|-----------------------------------|-------------------------------|
| 1.0 MHz | MCM6810P,L,S<br>MCM6810CP,CL,CS   | 0 to + 70°C<br>- 40 to + 85°C |
| 1.5 MHz | MCM68A10P,L,S<br>MCM68A10CP,CL,CS | 0 to +70°C<br>-40 to +85°C    |
| 2.0 MHz | MCM68B10P,L,S                     | 0 to + 70°C                   |



4

Ŧ

4 1 1



# MCM2114°MCM21L14

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                 | Value         | Unit |
|----------------------------------------|---------------|------|
| Temperature Under Bias                 | - 10 to + 80  | °C   |
| Voltage on Any Pin With Respect to VSS | -0.5 to +7.0  | V    |
| DC Output Current                      | 5.0           | mΑ   |
| Power Dissipation                      | 1.0           | Watt |
| Operating Temperature Range            | 0 to + 70     | °C   |
| Storage Temperature Range              | - 65 to + 150 | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                   | Symbol | Min   | Тур | Max  | Unit |
|-----------------------------|--------|-------|-----|------|------|
| Supply Voltage              | Vcc    | 4.75  | 5.0 | 5.25 |      |
|                             | VSS    | 0     | 0   | 0    | 1 °  |
| Logic 1 Voltage, All Inputs | VIH    | 2.0   | 1   | 6.0  | V    |
| Logic 0 Voltage, All Inputs | VIL    | - 0.5 |     | 0.8  | V    |

#### DC CHARACTERISTICS

| Parameter                                                                                                | Cumbal  | MCM2114 |       |       | M   |       |       |      |
|----------------------------------------------------------------------------------------------------------|---------|---------|-------|-------|-----|-------|-------|------|
|                                                                                                          | Symbol  | Min     | Тур   | Max   | Min | Тур   | Max   | Unit |
| Input Load Current (All Input Pins, Vin = 0 to 5.5 V)                                                    | <br>ارا | . –     | -     | 10    | -   |       | 10    | μA   |
| I/O Leakage Current ( $\overline{S} = 2.4 \text{ V}$ , $V_{DQ} = 0.4 \text{ V}$ to $V_{CC}$ )            | 1LO     |         | ~     | 10    |     | -     | 10    | μA   |
| Power Supply Current ( $V_{in} = 5.5 \text{ V}$ , $I_{DQ} = 0 \text{ mA}$ , $T_A = 25^{\circ}\text{C}$ ) | ICC1    | -       | 80    | 95    |     | -     | 65    | mΑ   |
| Power Supply Current (Vin=5.5 V, IDQ=0 mA, TA=0°C)                                                       | ICC2    |         | -     | 100   |     | -     | 70    | mΑ   |
| Output Low Current VOL = 0.4 V                                                                           | IOL     | 2.1     | 6.0   | -     | 2.1 | 6.0   | -     | mΑ   |
| Output High Current V <sub>OH</sub> = 2.4 V                                                              | юн      | -       | - 1.4 | - 1.0 | _   | - 1.4 | - 1.0 | mΑ   |

NOTE: Duration not to exceed 30 seconds.

#### CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested)

| Characteristic                                  | Symbol          | Max | Unit |
|-------------------------------------------------|-----------------|-----|------|
| Input Capacitance (V <sub>in</sub> = 0 V)       | C <sub>in</sub> | 5.0 | рF   |
| Input/Output Capacitance (V <sub>DQ</sub> =0 V) | C1/O            | 5.0 | рF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t/\Delta V$ .

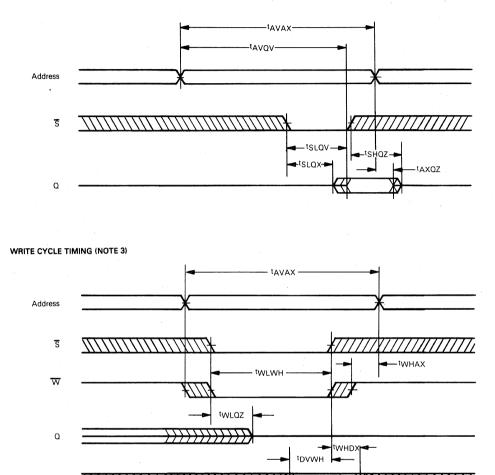
#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

| Input Pulse Levels        | 0.8 Volt to 2.4 Volts |
|---------------------------|-----------------------|
| Input Rise and Fall Times | 10 ns                 |

i.

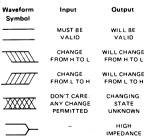
ł


#### READ (NOTE 1), WRITE (NOTE 2) CYCLES

| Parameter                            | Symbol            |     | MCM2114-20<br>MCM21L14-20 |     | MCM2114-25<br>MCM21L14-25 |     | 2114-30<br>1L14-30 | MCM2114-45<br>MCM21L14-45 |     | Unit |
|--------------------------------------|-------------------|-----|---------------------------|-----|---------------------------|-----|--------------------|---------------------------|-----|------|
|                                      | Jymbor            | Min | Max                       | Min | Max                       | Min | Max                | Min                       | Max | 0    |
| Address Valid to Address Don't Care  | t <sub>AVAX</sub> | 200 | -                         | 250 |                           | 300 | -                  | 450                       | -   | ns   |
| Address Valid to Output Valid        | <sup>t</sup> AVQV | -   | 200                       | -   | 250                       |     | 300                |                           | 450 | ns   |
| Chip Select Low to Data Valid        | 1SLQV             | -   | 70                        | -   | 85                        |     | 100                | -                         | 120 | ns   |
| Chip Select Low to Output Don't Care | <sup>t</sup> SLQX | 20  | -                         | 20  | -                         | 20  | -                  | 20                        | -   | ns   |
| Chip Select High to Output High Z    | <sup>t</sup> SHQZ | -   | 60                        |     | 70                        |     | 80                 | -                         | 100 | ns   |
| Address Don't Care to Output High Z  | <sup>t</sup> AXQZ | 50  | · -                       | 50  | -                         | 50  | -                  | 50                        | -   | ns   |
| Write Low to Write High              | <sup>t</sup> WLWH | 120 | -                         | 135 | -                         | 150 | -                  | 200                       | -   | ns   |
| Write High to Address Don't Care     | twhax             | 0   | -                         | 0   | -                         | 0   | -                  | 0                         |     | ns   |
| Write Low to Output High Z           | tWLQZ             | -   | 60                        |     | 70                        | -   | 80                 | -                         | 100 | ns   |
| Data Valid to Write High             | <sup>t</sup> DVWH | 120 | -                         | 135 | -                         | 150 | -                  | 200                       | -   | ns   |
| Write High to Data Don't             | <sup>t</sup> WHDX | 0   | -                         | 0   | -                         | 0   | -                  | 0                         | -   | ns   |

NOTES: 1. A Read occurs during the overlap of a low  $\overline{S}$  and a high  $\overline{W}$ .

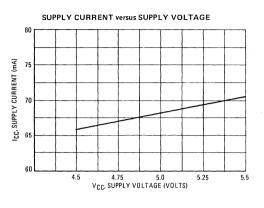
2. A Write occurs during the overlap of a low  $\overline{S}$  and a low  $\overline{W}$ .


READ CYCLE TIMING (W HELD HIGH)

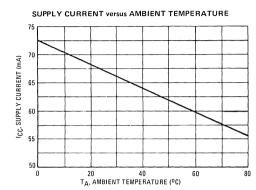


3. If the S low transition occurs simultaneously with the W low transition, the output buffers remain in a high-impedance state.

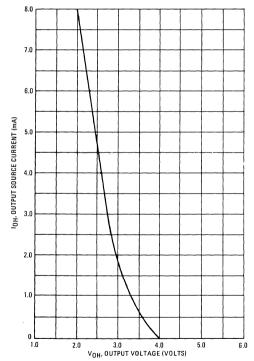
#### WAVEFORMS


₩ХХХХХХХХ

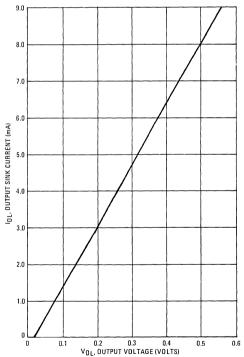



D

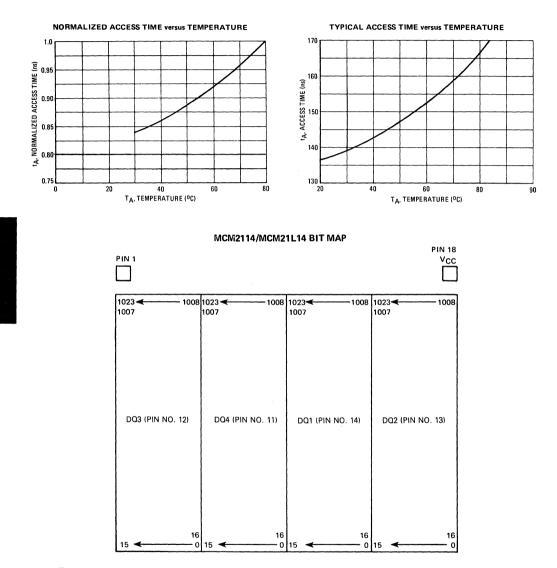
X


SRAM




#### TYPICAL CHARACTERISTICS




OUTPUT SOURCE CURRENT versus OUTPUT VOLTAGE



OUTPUT SINK CURRENT versus OUTPUT VOLTAGE





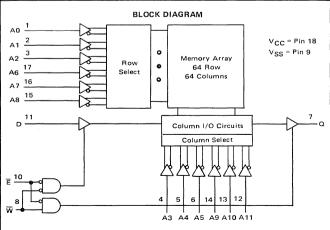


To determine the precise location on the die of a word in memory, reassign address numbers to the address pins as in the table below. The bit locations can then be determined directly from the bit map.

|            | REASSIGNED     |            | REASSIGNED     |
|------------|----------------|------------|----------------|
| PIN NUMBER | ADDRESS NUMBER | PIN NUMBER | ADDRESS NUMBER |
| 1          | A6             | 6          | A1             |
| 2          | A5             | 7          | A2             |
| 3          | A4             | 15         | Ā9             |
| 4          | A3             | 16         | ĀB             |
| 5          | A0             | 17         | Ā7             |



# MCM2147


#### 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2147 is a 4096-bit static random access memory organized as 4096 words by 1-bit using Motorola's N-channel silicongate MOS technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced standby power associated with semi-static and dynamic memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

 $\overline{E}$  controls the power-down feature. It is not a clock but rather a chip select that affects power consumption. In less than a cycle time after  $\overline{E}$  goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as  $\overline{E}$  remains high. This feature results in system power savings as great as 85% in larger systems, where most devices are deselected. The automatic power-down feature causes no performance degradation.

The MCM2147 is in an 18 pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate three-state output provide flexibility and allow easy OR-ties.

- Fully Static Memory No Clock or Timing Strobe Required
- Single +5 V Supply
- High Density 18 Pin Package
- Automatic Power-Down
- Directly TTL Compatible—All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time MCM2147-55 = 55 ns max MCM2147-70 = 70 ns max MCM2147-85 = 85 ns max MCM2147-100 = 100 ns max



| INOS<br>(N-CHANNEL, SILICON-GATE)                                                                                                                             |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4096-BIT STATIC<br>RANDOM ACCESS<br>MEMORY                                                                                                                    |   |
| C SUFFIX<br>FRIT-SEAL<br>CERAMIC PACKAGE<br>also available<br>P SUFFIX<br>PLASTIC PACKAGE<br>CASE 707                                                         |   |
| PIN ASSIGNMENT<br>A0 1 0 18 VCC<br>A10 2 17 A6<br>A2 3 16 A7<br>A3 4 15 A8<br>A4 5 14 A9<br>A5 6 13 A10<br>O 7 12 A11<br>W 8 11 D<br>VSS 9 10 E               |   |
| PIN NAMES           A0- A11         Address Input           W         Write Enable           E         Chip Enable           D         Data Input           Q |   |
| TRUTH TABLE                                                                                                                                                   | 1 |
| E W Mode Output Power                                                                                                                                         | ſ |

|                     | TRUTH TABLE |              |          |         |  |  |  |  |  |
|---------------------|-------------|--------------|----------|---------|--|--|--|--|--|
| E W Mode Output Pow |             |              |          |         |  |  |  |  |  |
| н                   | х           | Not Selected | High Z   | Standby |  |  |  |  |  |
| L                   | L           | Write        | High Z   | Active  |  |  |  |  |  |
| L                   | н           | Read         | Data Out | Active  |  |  |  |  |  |
| _                   |             |              |          |         |  |  |  |  |  |

DS9821/10-80

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                             | Value        | Unit |
|----------------------------------------------------|--------------|------|
| Temperature Under Bias                             | -10 to +85   | °C   |
| Voltage on Any Pin With Respect to V <sub>CC</sub> | -0.5 to +7.0 | Vdc  |
| DC Output Current                                  | 20           | mA   |
| Power Dissipation                                  | 1.0          | Watt |
| Operating Temperature Range                        | 0 to +70     | °C   |
| Storage Temperature Range                          | -65 to +150  | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

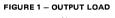
(Full operating voltage and temperature range unless otherwise noted)

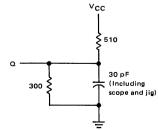
| RECOMMENDED OPERATING CONDITIONS Parameter | <br>Symbol | Min      | Тур      | Max      | Unit |
|--------------------------------------------|------------|----------|----------|----------|------|
| Supply Voltage                             | Vcc<br>Vss | 4.5<br>0 | 5.0<br>0 | 5.5<br>0 | V    |
| Logic 1 Voltage, All Inputs                | VIH        | 2.0      | -        | Vcc      | V    |
| Logic 0 Voltage, All Inputs                | VIL        | - 0.3    | -        | 0.8      | V    |

#### DC CHARACTERISTICS

|                                                                                                  |                 | MCM2147-55 |      | MCM 2147-70 |      | MCM2147-85 |     | MCM2147-100 |      |     |      |      |     |      |
|--------------------------------------------------------------------------------------------------|-----------------|------------|------|-------------|------|------------|-----|-------------|------|-----|------|------|-----|------|
| Parameter                                                                                        | Symbol          | Min        | Тур  | Max         | Min  | Тур        | Max | Min         | Тур  | Max | Min  | Тур  | Max | Unit |
| Input Load Current<br>(All Input Pins, V <sub>in</sub> = 0 to 5.5 V)                             | ι               | -          | 0.01 | 10          | -    | 0.01       | 10  | -           | 0.01 | 10  | -    | 0.01 | 10  | μA   |
| Output Leakage Current<br>(E = 2.0 V, V <sub>out</sub> = 0 to 5.5 V)                             | IOL             | -          | 0.1  | 50          |      | 0.1        | 50  | -           | 0.1  | 50  | -    | 0.1  | 50  | μA   |
| Power Supply Current<br>(Ē = V <sub>IL</sub> , Outputs Open, T <sub>A</sub> = 25 <sup>o</sup> C) | ICC1            | -          | 120  | 170         | -    | 100        | 150 | -           | 95   | 130 | -    | 90   | 110 | mA   |
| Power Supply Current<br>( $\overline{E} = V_{1L}$ , Outputs Open, $T_A = 0^{\circ}C$ )           | ICC2            | -          | -    | 180         | -    | -          | 160 | -           | -    | 140 | -    | -    | 120 | mA   |
| Standby Current<br>(Ē = V <sub>IH</sub> )                                                        | ISB             | -          | 15   | 30          | -    | 10         | 20  | -           | 15   | 25  | -    | 10   | 20  | mA   |
| Input Low Voltage                                                                                | VIL             | -0.3       | -    | 0.8         | -0.3 | -          | 0.8 | -0.3        | -    | 0.8 | -0.3 | -    | 0.8 | V    |
| Input High Voltage                                                                               | ViH             | 2.0        | -    | 6.0         | 2.0  | -          | 6.0 | 2.0         | -    | 6.0 | 2.0  | -    | 6.0 | V    |
| Output Low Voltage<br>(I <sub>OL</sub> = 8.0 mA)                                                 | VOL             | -          | -    | 0.4         | -    | - <u>-</u> | 0.4 | -           | -    | 0.4 | -    | -    | 0.4 | v    |
| Output High Voltage<br>(I <sub>OH</sub> = -4.0 mA)                                               | v <sub>он</sub> | 2.4        | -    | -           | 2.4  | -          | -   | 2.4         | -    | -   | 2.4  | -    | -   | v    |

Typical values are for  $T_A = 25^{\circ}C$  and  $V_{CC} = +5.0 V$ .


#### CAPACITANCE


(f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic                              | Symbol          | Max | Unit |
|---------------------------------------------|-----------------|-----|------|
| Input Capacitance (V <sub>in</sub> = 0 V)   | C <sub>in</sub> | 5.0 | pF   |
| Output Capacitance (V <sub>out</sub> = 0 V) | Cout            | 10  | pF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated

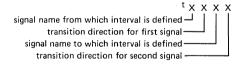
from the equation:  $C = \frac{I\Delta_t}{\Delta V}$ .





#### AC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted)

| Input Pulse Levels        | 0 Volt to 3.5 Volts | Input and Output Timing Levels | 1.5 Volts    |
|---------------------------|---------------------|--------------------------------|--------------|
| Input Rise and Fall Times | 10 ns               | Output Load                    | See Figure 1 |

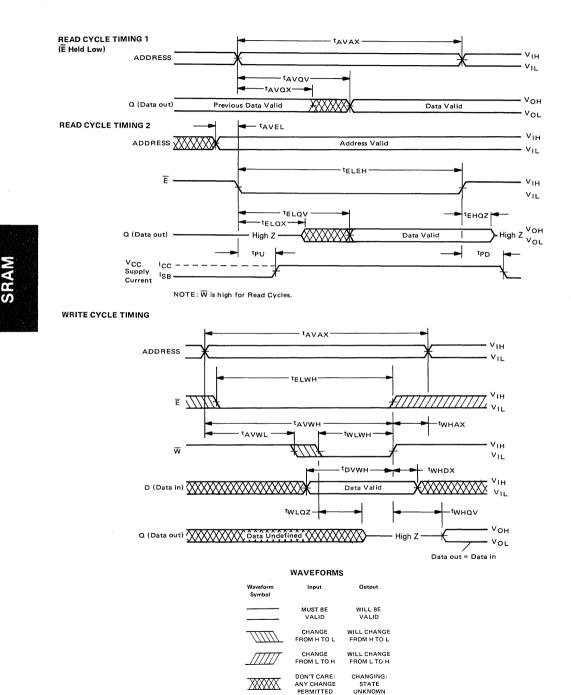

#### READ, WRITE CYCLES

| Parameter                                                                           | Symbol            | MCM2147-55 |     | MCM2147-70 |     | MCM2147-85 |     | MCM2147-100 |     | Unit |
|-------------------------------------------------------------------------------------|-------------------|------------|-----|------------|-----|------------|-----|-------------|-----|------|
|                                                                                     | Symbol            | Min        | Max | Min        | Max | Min        | Max | Min         | Max | Unit |
| Address Valid to Address Don't Care<br>(Cycle Time When Chip Enable is Held Active) | <sup>t</sup> AVAX | 55         | -   | 70         | -   | 85         | _   | 100         | -   | ns   |
| Chip Enable Low to Chip Enable High                                                 | <sup>t</sup> ELEH | 55         | -   | 70         | -   | 85         | -   | 100         | -   | ns   |
| Address Valid to Output Valid (Access)                                              | <b>tAVQV</b>      | -          | 55  | -          | 70  | -          | 85  | -           | 100 | ns   |
| Chip Enable Low to Output Valid (Access)                                            | tELQV1*           | -          | 55  | -          | 70  | -          | 85  | -           | 100 | ns   |
|                                                                                     | tELQV2*           | -          | 65  | -          | 80  | -          | 95  | -           | 110 | ns   |
| Address Valid to Output Invalid                                                     | <b>tAVQX</b>      | 10         | -   | 10         | -   | 10         | -   | 10          | -   | ns   |
| Chip Enable Low to Output Invalid                                                   | <sup>t</sup> ELQX | 10         |     | 10         | -   | 10         | -   | 10          | -   | ns   |
| Chip Enable High to Output High Z                                                   | <sup>t</sup> EHQZ | 0          | 40  | 0          | 40  | 0          | 40  | 0           | 40  | ns   |
| Chip Selection to Power-Up Time                                                     | tPU               | 0          | -   | 0          | -   | 0          | -   | 0           | -   | ns   |
| Chip Deselection to Power-Down Time                                                 | <sup>t</sup> PD   | 0          | 30  | 0          | 30  | 0          | 30  | 0           | 30  | ns   |
| Address Valid to Chip Enable Low<br>(Address Setup)                                 | <sup>t</sup> AVEL | 0          | -   | 0          | -   | 0          | -   | 0           | -   | ns   |
| Chip Enable Low to Write High                                                       | <sup>t</sup> ELWH | 45         | -   | 55         | -   | 70         | -   | 80          |     | ns   |
| Address Valid to Write High                                                         | <sup>t</sup> AVWH | 45         | -   | 55         | -   | 70         | -   | 80          | -   | ns   |
| Address Valid to Write Low (Address Setup)                                          | <sup>t</sup> AVWL | 0          | -   | 0          | -   | 0          | -   | 0           | -   | ns   |
| Write Low to Write High (Write Pulse Width)                                         | <sup>t</sup> WLWH | 35         | -   | 40         | -   | 55         | -   | 65          | -   | ns   |
| Write High to Address Don't Care                                                    | <sup>t</sup> WHAX | 10         | -   | 15         | -   | 15         | -   | 15          | -   | ns   |
| Data Valid to Write High                                                            | <sup>t</sup> DVWH | 25         | -   | 30         | -   | 45         | -   | 55          | -   | ns   |
| Write High to Data Don't Care (Data Hold)                                           | tWHDX             | 10         | -   | 10         | -   | 10         | -   | 10          |     | ns   |
| Write Low to Output High Z                                                          | tWLQZ             | 0          | 30  | 0          | 35  | 0          | 45  | 0           | 50  | ns   |
| Write High to Output Valid                                                          | t WHOV            | 0          | -   | 0          | -   | 0          | -   | 0           | -   | ns   |



\*tELQV1 is access from chip enable when the 2147 is deselected for at least 55 ns prior to this cycle. tELQV2 is access from chip enable for 0 ns < deselect time < 55 ns. If deselect time = 0 ns, then tELQV = tAVQV.

#### TIMING PARAMETER ABBREVIATIONS




The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.



HIGH IMPEDANCE

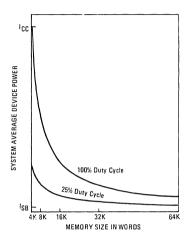
#### **DEVICE DESCRIPTION**

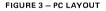
The MCM2147 is produced with a high-performance MOS technology which combines on-chip substrate bias generation with device scaling to achieve high speed. The speed-power product of this process is about four times better than earlier MOS processes.

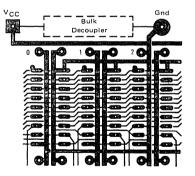
This gives the MCM2147 its high speed, low power and ease-of-use. The low-power standby feature is controlled with the  $\overline{E}$  input.  $\overline{E}$  is not a clock and does not have to be cycled. This allows the user to the  $\overline{E}$  directly to system addresses and use the line as part of the normal decoding logic. Whenever the MCM2147 is deselected, it automatically reduces its power requirements.

#### SYSTEM POWER SAVINGS

The automatic power-down feature adds up to significant system power savings. Unselected devices draw low standby power and only the active devices draw active power. Thus the average power consumed by a device declines as the system size increases, asymptotically approaching the standby power level as shown in Figure 2.


The automatic power-down feature is obtained without any performance degradation, since access time from chip enable is  $\leq$  access time from address valid. Also the fully static design gives access time equal cycle time so multiple read or write operations are possible during a single select period. The resultant data rates are 14.3 MHz and 18 MHz for the MCM2147-70 and MCM2147-55 respectively.


# DECOUPLING AND BOARD LAYOUT CONSIDERATIONS


The power switching characteristic of the MCM2147 requires careful decoupling. It is recommended that a 0.1  $\mu$ F to 0.3  $\mu$ F ceramic capacitor be used on every other device, with a 22  $\mu$ F to 47  $\mu$ F bulk electrolytic decoupler every 16 devices. The actual values to be used will depend on board layout, trace widths and duty cycle.

Power supply gridding is recommended for PC board layout. A very satisfactory grid can be developed on a two-layer board with vertical traces on one side and horizontal traces on the other, as shown in Figure 3. If fast drivers are used, terminations are recommended on input signal lines to the MCM2147 because significant reflections are possible when driving their high impedance inputs. Terminations may be required to match the impedance of the line to the driver.

#### FIGURE 2 – AVERAGE DEVICE DISSIPATION versus MEMORY SIZE



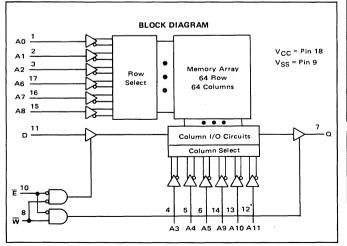






# MCM65147

## **Advance** Information


#### 4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM65147 is a 4096-bit static Random Access Memory organized as 4096 words by 1-bit, fabricated using Motorola's high performance CMOS silicon gate technology (HCMOS). It uses a design approach which provides the simple timing features associated with fully static memories and the reduced power associated with CMOS memories. This means low power without the need for clocks, nor reduced data rates due to cycle times that exceed access times.

Chip enable  $(\overline{E})$  controls the power-down feature. It is not a clock, but rather a chip control that affects power consumption. After  $\overline{E}$  goes high, initiating deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as  $\overline{E}$  remains high.

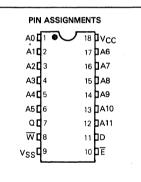
The MCM65147 is in an 18-pin dual in-line package with the industry standard pinout. It is TTL compatible in all respects. The data out has the same polarity as the input data. A data input and a separate threestate output provide flexibility and allow easy OR-ties.

- Single +5 V Supply
- Fully Static Memory No Clock or Timing Strobe Required
- Maximum Access Time MCM65147-55=55 ns MCM65147-70=70 ns
- Automatic Power Down
- Low Power Dissipation
   75 mW Typical (Active)
   125 μW Typical (Standby)
- Low Standby Power Version Available
- Directly TTL Compatible All Inputs and Output
- Separate Data Input and Three-State Output
- Equal Access and Cycle Time
- High Density 18-Pin Package



This document contains information on a new product. Specifications and information herein are subject to change without notice.

## **CMOS**


(COMPLIMENTARY MOS)

4,096 × 1 BIT STATIC RANDOM ACCESS MEMORY





C SUFFIX FRIT-SEAL CERAMIC PACKAGE



| PIN NAMES       |             |  |  |  |
|-----------------|-------------|--|--|--|
| A0-A11          | Address     |  |  |  |
|                 | Chip Enable |  |  |  |
| D               | Data In     |  |  |  |
| Q               | Data Out    |  |  |  |
|                 | Write       |  |  |  |
| Vcc             | Power (+5V) |  |  |  |
| V <sub>SS</sub> | Ground      |  |  |  |

Motorola reserves the right to make changes to any product herein to improve reliability, runction or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

## MCM65147

#### ABSOLUTE MAXIMUM RATINGS(See note)

| Rating                                 | Value        | Unit |
|----------------------------------------|--------------|------|
| Temperature Under Bias                 | - 10 to +85  | °C   |
| Voltage on Any Pin with Respect to VCC | -0.5 to +7.0 | V    |
| Power Dissipation                      | 1.0          | Watt |
| Operating Temperature Range            | 0 to +70     | °C   |
| Storage Temperature Range              | -65 to +150  | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

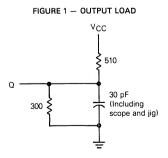
#### RECOMMENDED OPERATING CONDITIONS

| Parameter                    | Symbol     | Min   | Тур      | Max      | Unit |
|------------------------------|------------|-------|----------|----------|------|
| Supply Voltage               | Vcc<br>Vss | 4.5   | 5.0<br>0 | 5.5<br>0 | v    |
| Logic 1 Voltage, All Inputs  | VIH        | 2.0   | -        | 6.0      | V    |
| Logic 0, Voltage, All Inputs | VIL        | - 0.3 | 1        | 0.8      | V    |

#### DC CHARACTERISTICS

| Deservation                                                                                | Cumbel | MCM65L147-55 |      | MCM65147-55 |      | MCM65L147-70 |     |       | MCM65147-70 |     |       | Unit |     |    |
|--------------------------------------------------------------------------------------------|--------|--------------|------|-------------|------|--------------|-----|-------|-------------|-----|-------|------|-----|----|
| Parameter                                                                                  | Symbol | Min          | Typ* | Max         | Min  | Typ*         | Max | Min   | Typ*        | Max | Min   | Тур* | Max |    |
| Input Load Current<br>(All Input Pins, V <sub>in</sub> =0 to 5.5 V)                        | ηĽ     | -            | 0.01 | 1.0         | -    | 0.01         | 1.0 | -     | 0.01        | 1.0 | -     | 0.01 | 1.0 | μΑ |
| Output Leakage Current<br>(E=2.0 V, V <sub>OUt</sub> =0 to 5.5 V)                          | IOL    | -            | 0.1  | 1.0         | -    | 0.1          | 1.0 | -     | 0.1         | 1.0 | -     | 0.1  | 1.0 | μA |
| Power Supply Current<br>(E = VIL, Output Open)                                             | ICC1   | -            | 15   | 35          | -    | 15           | 35  | -     | 15          | 35  | -     | 15   | 35  | mA |
| Standby Current ( $\overline{E} = V_{IH}$ )                                                | ISB1   | -            | 5    | 12          | -    | 5            | 12  | -     | 5           | 12  | -     | 5    | 12  | mA |
| Standby Current ( $\vec{E} = V_{CC} - 0.2 V$ )<br>(0.2 $V \ge V_{in} \ge V_{CC} - 0.2 V$ ) | ISB2   | -            | 25   | 100         | -    | 200          | 800 | -     | 25          | 100 | -     | 200  | 800 | μA |
| Input Low Voltage                                                                          | VIL    | -0.3         | -    | 0.8         | -0.3 | -            | 0.8 | - 0.3 | -           | 0.8 | - 0.3 | -    | 0.8 | V  |
| Input High Voltage                                                                         | ViH    | 2.0          | -    | 6.0         | 2.0  | -            | 6.0 | 2.0   | -           | 6.0 | 2.0   | -    | 6.0 | V  |
| Output Low Voltage<br>(I <sub>OL</sub> = 12.0 mA)                                          | VOL    | -            | -    | 0.4         | -    | -            | 0.4 | -     | -           | 0.4 | -     | -    | 0.4 | v  |
| Output High Voltage**<br>(I <sub>OH</sub> = - 8.0 mA)                                      | ∨он    | 2.4          | -    | -           | 2.4  |              | -   | 2.4   | · _         | -   | 2.4   | -    |     | v  |

\*Typical values are for  $T_A = 25$  °C and  $V_{CC} = +5.0$  V.


\*\*Also, output voltages are compatible with Motorola's new High-Speed CMOS Logic Family, if the same power supply voltage is used.

#### CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested.)

| Characteristic                | Symbol           | Max | Unit |
|-------------------------------|------------------|-----|------|
| Input Capacitance (Vin=0 V)   | 'C <sub>in</sub> | 5.0 | pF   |
| Output Capacitance (Vout=0 V) | Cout             | 7.0 | pF   |

 Output Capacitance (Vout = 0 V)
 Cout
 7.0
 pF

 Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t/\Delta V$ .



#### AC OPERATING CONDITIONS AND CHARACTERISTICS

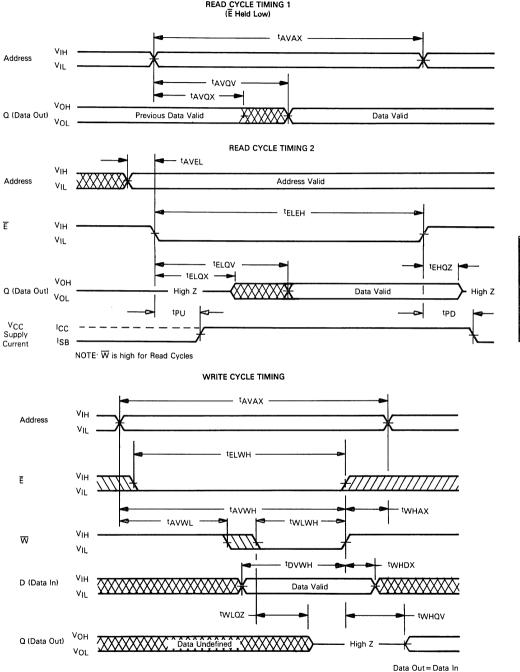
(Full operating voltage and temperature unless otherwise noted)

| Input Pulse Levels        | 0 Volt to 3.5 Volts |
|---------------------------|---------------------|
| Input Rise and Fall Times | 10 ns               |

#### **READ, WRITE CYCLES**

| Parameter                                                                           | Symbol            | MCM6 | 6147-55 | MCM6 | Unit |    |
|-------------------------------------------------------------------------------------|-------------------|------|---------|------|------|----|
| Farameter                                                                           | Зупьог            | Min  | Max     | Min  | Max  |    |
| Address Valid to Address Don't Care<br>(Cycle Time when Chip Enable is Held Active) | <sup>t</sup> AVAX | 55   | -       | 70   | -    | ns |
| Chip Enable Low to Chip Enable High                                                 | teleh             | 55   | -       | 70   | -    | ns |
| Address Valid to Output Valid (Access)                                              | tAVQV             | -    | 55      | -    | 70   | ns |
| Chip Enable Low to Output Valid (Access)                                            | <sup>t</sup> ELQV | -    | 55      | -    | 70   | ns |
| Address Valid to Output Invalid                                                     | tAVQX             | 5    | -       | 5    | -    | ns |
| Chip Enable Low to Output Invalid                                                   | <sup>t</sup> ELQX | 10   |         | 10   | -    | ns |
| Chip Enable High to Output High Z                                                   | <sup>t</sup> EHQZ | 0    | 40      | 0    | 40   | ns |
| Chip Selection to Power-Up Time                                                     | tpu               | 0    | -       | 0    | -    | ns |
| Chip Deselection to Power-Down Time                                                 | tPD               | 0    | 30      | 0    | 30   | ns |
| Address Valid to Chip Enable Low (Address Setup)                                    | tAVEL             | 0    | -       | 0    | -    | ns |
| Chip Enable Low to Write High                                                       | <sup>t</sup> ELWH | 45   | -       | 55   | -    | ns |
| Address Valid to Write High                                                         | tavwh             | 45   | -       | 55   | -    | ns |
| Address Valid to Write Low (Address Setup)                                          | tAVWL             | 0    | -       | 0    | -    | ns |
| Write Low to Write High (Write Pulse Width)                                         | tWLWH             | 35   | -       | 40   | -    | ns |
| Write High to Address Don't Care                                                    | tWHAX             | 10   | -       | 15   | -    | ns |
| Data Valid to Write High                                                            | <sup>t</sup> DVWH | 25   | _       | 30   | -    | ns |
| Write High to Data Don't Care (Data Hold)                                           | tWHDX             | 10   | -       | 10   | -    | ns |
| Write Low to Output High Z                                                          | twloz             | 0    | 30      | 0    | 35   | ns |
| Write High to Output Valid                                                          | tWHQV             | 0    | _       | 0    | -    | ns |

#### TIMING PARAMETER ABBREVIATIONS


t X X X X signal name from which interval is defined \_\_\_\_\_\_\_ transition direction for first signal \_\_\_\_\_\_\_ signal name to which interval is defined \_\_\_\_\_\_\_ transition direction for second signal \_\_\_\_\_\_

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z=transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.



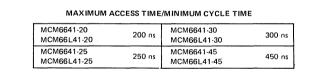
SRAM

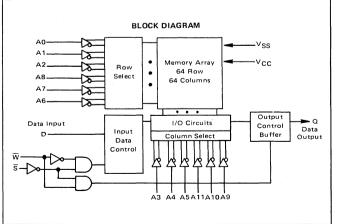
6

4

**READ CYCLE TIMING 1** 




# **Advance** Information

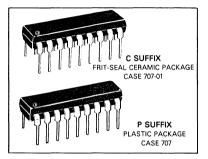

#### 4096-BIT STATIC RANDOM ACCESS MEMORIES

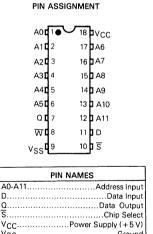
The MCM6641 series  $4096 \times 1$ -bit Random Access Memory is fabricated with high density, high reliability N-channel silicon-gate technology. For ease of use, the device operates from a single 5-volt power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. The fully static operation allows chip selects to be tied low, further simplifying system timing. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the data input.

The MCM6641 is designed for memory applications where simple interfacing is the design objective, and is assembled in 18-pin dual-in-line packages with the industry standard pin-outs.

- Single ± 10% + 5 V Supply
- Fully Static Operation No Clock, Timing Strobe, Pre-Charge, or Refresh Required
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible
- Common Data Input and Output Capability
- Three-State Outputs for OR-Tie Capability
- Power Dissipation MCM6641 Less Than 550 mW (Maximum) MCM66L41 Less Than 385 mW (Maximum)
- Standby Power Dissipation Less Than 125 mW (Typical)
- Plug-In Replacement For TMS4044







MCM6641 MCM66L41

# MOS

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORIES





| • \$ \$ |       | arounu |
|---------|-------|--------|
| W       | Write | Enable |

| TRUTH TABLE |   |   |             |              |  |  |
|-------------|---|---|-------------|--------------|--|--|
| ร           | w | D | ۵           | Mode         |  |  |
| н           | x | × | High Z      | Not Selected |  |  |
| L           | L | L | High Z      | Write "O"    |  |  |
| L           | L | н | High Z      | Write ''1''  |  |  |
| L           | н | × | Output data | Read         |  |  |

This document contains information on a new product. Specifications and information herein are subject to change without notice.

# MCM6641 º MCM66L41

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                 | Value        | Unit |
|----------------------------------------|--------------|------|
| Temperature Under Bias                 | -10 to +80   | °C   |
| Voltage on Any Pin With Respect to VSS | -0.5 to +7.0 | Vdc  |
| DC Output Current                      | 20           | mA   |
| Power Dissipation                      | 1.0          | Watt |
| Operating Temperature Range            | 0 to +70     | °C   |
| Storage Temperature Range              | -65 to +150  | °C   |

inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This device contains circuitry to protect the

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                   | Symbol                             | Min   | Тур      | Max | Unit |
|-----------------------------|------------------------------------|-------|----------|-----|------|
| Supply Voltage              | V <sub>CC</sub><br>V <sub>SS</sub> | 4.5   | 5.0<br>0 | 5.5 | v    |
| Logic 1 Voltage, All Inputs | VIH                                | 2.0   | -        | 6.0 | V    |
| Logic 0 Voltage, All Inputs | VIL                                | - 0.5 | -        | 0.8 | V    |

#### DC CHARACTERISTICS

| Parameter                                                                                  | Symbol | MCM6641 |      |     | MCM66L41 |      |     | Unit |
|--------------------------------------------------------------------------------------------|--------|---------|------|-----|----------|------|-----|------|
|                                                                                            | Symbol | Min     | Тур  | Max | Min      | Тур  | Max |      |
| Input Load Current (All Input Pins, Vin=0 to 5.5 V)                                        | ILI    | -       | -    | 10  |          | -    | 10  | μA   |
| Output Leakage Current (CS = 2.4 V, Vin = 0.4 to VCC)                                      | ILO    | -       | -    | 10  | -        | -    | 10  | μA   |
| Power Supply Current (V <sub>CC</sub> =5.5 V, I <sub>out</sub> =0 mA, T <sub>A</sub> =0°C) | ICC    | -       | 80   | 100 | -        | 55   | 70  | mA   |
| Output Low Voltage, IOL = 2.1 mA                                                           | VOL    | -       | 0.15 | 0.4 | -        | 0.15 | 0.4 | V    |
| Output High Voltage, IOH = 1.0 mA                                                          | Voн    | 2.4     | -    | -   | 2.4      | -    | -   | V    |
| Output Short Circuit Current                                                               | los*   | -       | -    | 40  | -        | -    | 40  | mA   |

\*Duration not to exceed 30 seconds.

#### CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25 °C, V<sub>CC</sub> = 5.0 V, periodically sampled rather than 100% tested)

| Characteristic                             | Symbol | Max | Unit |
|--------------------------------------------|--------|-----|------|
| Input Capacitance (V <sub>in</sub> =0 V)   | Cin    | 5.0 | pF   |
| Output Capacitance (V <sub>out</sub> =0 V) | Cout   | 10  | рF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t / \Delta V$ .

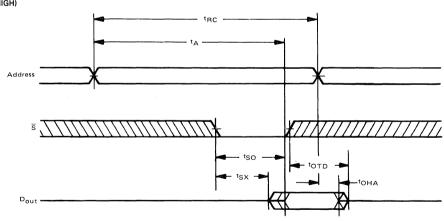
#### STANDBY OPERATION

(Typical Supply Values)

| Device   | Supply          | Operating | Standby | Max Standby Power |
|----------|-----------------|-----------|---------|-------------------|
| MCM6641  | V <sub>CC</sub> | +5 V      | +2.4 V  | 225 mW            |
| MCM66L41 | V <sub>CC</sub> | +5 V      | +2.4 V  | 150 mW            |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

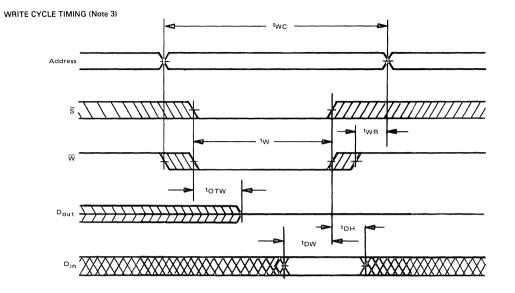

| Input Pulse Levels        | 0.8 Volt to 2.0 Volts |
|---------------------------|-----------------------|
| Input Rise and Fall Times | 10 ns                 |

| 0                              |                   |
|--------------------------------|-------------------|
| Input and Output Timing Levels | 1.5 Volts         |
| Output Load1 TTL Gate and      | $C_{L} = 100  pF$ |

#### READ (NOTE 1), WRITE (NOTE 2) CYCLES

|                                 |                  | MCM66<br>MCM66 |     |     | CM6641-25 MCM6641-30<br>M66L41-25 MCM66L41-30 |     | MCM6641-45<br>MCM66L41-45 |     |     |       |
|---------------------------------|------------------|----------------|-----|-----|-----------------------------------------------|-----|---------------------------|-----|-----|-------|
| Parameter                       | Symbol           | Min            | Max | Min | Max                                           | Min | Max                       | Min | Max | Units |
| Read Cycle Time                 | tRC              | 200            |     | 250 | -                                             | 300 | -                         | 450 | -   | ns    |
| Access Time                     | tA               | -              | 200 | -   | 250                                           | -   | 300                       | -   | 450 | ns    |
| Chip Selection to Output Valid  | tSO              | -              | 70  | -   | 85                                            |     | 100                       |     | 120 | ns    |
| Chip Selection to Output Active | tSX              | 10             | -   | 10  | -                                             | 10  | -                         | 10  | -   | ns    |
| Output 3-State From Deselection | totd             | -              | 40  | -   | 60                                            | -   | 80                        |     | 100 | ns    |
| Output Hold From Address Change | <sup>t</sup> OHA | 50             | -   | 50  | -                                             | 50  | -                         | 50  | -   | ns    |
| Write Cycle Time                | tWC              | 200            | -   | 250 | -                                             | 300 |                           | 450 | -   | ns    |
| Write Time                      | tw               | 100            | -   | 125 | -                                             | 150 | -                         | 200 | -   | ns    |
| Write Release Time              | tWR              | 0              | -   | 0   | -                                             | 0   | -                         | 0   | -   | ns    |
| Output 3-State From Write       | totw             | -              | •40 |     | 60                                            |     | 80                        | -   | 100 | ns    |
| Data to Write Time Overlap      | tDW              | 100            | -   | 125 | -                                             | 150 | -                         | 200 | -   | ns    |
| Data Hold From Write Time       | <sup>t</sup> DH  | 0              | -   | 0   | -                                             | 0   | -                         | 0   | -   | ns    |






NOTES:

1. A Read occurs during the overlap of a low  $\overline{S}$  and a high  $\overline{W}$ . 2. A Write occurs during the overlap of a low  $\overline{S}$  and a low  $\overline{W}$ .

3. If the  $\overline{S}$  low transition occurs simultaneously with the  $\overline{W}$  low transition, the output buffers remain in a high-impedance state.

# MCM6641 • MCM66L41



SRAM

۱

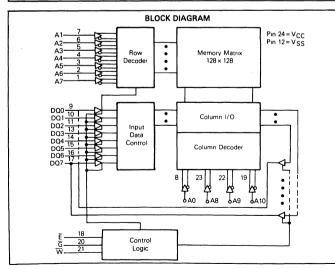
1

1 1 1

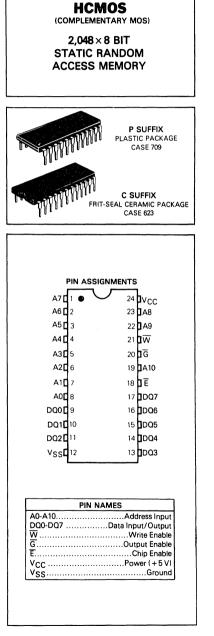


# MCM65116

## **Advance Information**


#### **16K BIT STATIC RANDOM ACCESS MEMORY**

The MCM65116 is a 16,384-bit Static Random Access Memory organized as 2048 words by 8-bits, fabricated using Motorola's Highperformance silicon-gate CMOS (HCMOS) technology. It uses a design approach which provides the simple timing features associated with fully static memories and the reduced power associated with CMOS memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access time.


Chip Enable ( $\overline{E}$ ) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. In less than a cycle time after chip enable ( $\overline{E}$ ) goes high, the part automatically reduces its power requirements and remains in this low-power standby as long as the chip enable ( $\overline{E}$ ) remains high. The automatic power-down feature causes no performance degradation.

The MCM65116 is in a 24-pin dual-in-line package with the industry standard JEDEC approved pinout and is pinout compatible with the industry standard 16K EPROM/ROM.

- Single +5 V Supply
- 2048 Words by 8-Bit Organization
- HCMOS Technology
- Fully Static: No Clock or Timing Strobe Required
  - Maximum Access Time: MCM65116-12 120 ns
    - MCM65116-15 150 ns
    - MCM65116-20 200 ns
- Power Dissipation: 55 mA Maximum (Active) 10 mA Maximum (Standby-TTL Levels) 2 mA Maximum (Standby) 100 µA Maximum (Standby-MCM65L116)
- Low Voltage Data Retention (MCM65L116 only) 100 µW Maximum



This document contains information on a new product. Specifications and information herein are subject to change without notice.



# MCM65116

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                 | Value        | Unit |  |
|----------------------------------------|--------------|------|--|
| Temperature Under Bias                 | - 10 to + 80 | °C   |  |
| Voltage on Any Pin With Respect to VSS | -1.0 to +7.0 | V    |  |
| DC Output Current                      | 20           | mA   |  |
| Power Dissipation                      | 1.2          | Watt |  |
| Operating Temperature Range            | 0 to +70     | °C   |  |
| Storage Temperature Range              | -65 to +150  | °C   |  |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature ranges unless otherwise noted.)

#### RECOMMENDED OPERATING CONDITIONS

| Parameter      | Symbol | Min    | Тур | Max | Unit |
|----------------|--------|--------|-----|-----|------|
| Supply Voltage | Vcc    | 4.5    | 5.0 | 5.5 | V    |
|                | VSS    | 0      | 0   | 0   | V    |
| Input Voltage  | VIH    | 2.2    | 3.5 | 6.0 | V    |
|                | VIL    | - 1.0° | -   | 0.8 | V    |

•The device will withstand undershoots to the -1.0 volt level with a maximum pulse width of 50 ns at the -0.3 volt level. This is periodically sampled rather than 100% tested.

#### RECOMMENDED OPERATING CHARACTERISTICS

| Parameter                                                                                                               | Symbol  | MCM65116 |      |      | MCM65L116 |      |     | Unit |
|-------------------------------------------------------------------------------------------------------------------------|---------|----------|------|------|-----------|------|-----|------|
|                                                                                                                         |         | Min      | Тур* | Max  | Min       | Typ* | Max | Unit |
| Input Leakage Current (V <sub>CC</sub> =5.5 V, V <sub>in</sub> =GND to V <sub>CC</sub> )                                |         | -        | -    | 1    | -         | -    | 1   | μA   |
| Output Leakage Current ( $\vec{E} = V_{IH}$ or $\vec{G} = V_{IH} V_{I/O} = GND$ to $V_{CC}$ )                           | ILO     | -        | -    | 1    | -         | -    | 1   | μA   |
| Operating Power Supply Current ( $\vec{E} = V_{IL}$ , $I_{I/O} = 0$ mA)                                                 | ICC ICC | -        | 35   | 55   | -         | 35   | 55  | mΑ   |
| Average Operating Current Minimum cycle, duty = 100%                                                                    | ICC2    | -        | 35   | 55   | -         | 35   | 55  | mΑ   |
| Standby Power (E = V <sub>IH</sub> )                                                                                    | ISB     | -        | 5    | 10   | -         | 5    | 10  | mΑ   |
| Supply Current $(E \ge V_{CC} - 0.2 \text{ V}, V_{in} \ge V_{CC} - 0.2 \text{ V} \text{ or } V_{in} \le 0.2 \text{ V})$ | ISB1    | -        | 20   | 2000 | -         | 4    | 100 | μA   |
| Output Low Voltage (IOL = 2.1 mA)                                                                                       | VOL     | -        | -    | 0.4  | -         | -    | 0.4 | V    |
| Output High Voltage (I <sub>OH</sub> = - 1.0 mA)**                                                                      | VOH     | 2.4      | -    |      | 2.4       | -    | -   | V    |

•V<sub>CC</sub>=5 V, T<sub>A</sub>=25°C

\*\*Also, output voltages are compatible with Motorola's new high-speed CMOS logic family if the same power supply voltage is used.

#### CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested.)

| Characteristic                                   | Symbol          | Тур | Max | Unit |
|--------------------------------------------------|-----------------|-----|-----|------|
| Input Capacitance except Ē                       | C <sub>in</sub> | 3   | 5   | рF   |
| Input/Output Capacitance and E Input Capacitance | CI/O            | 5   | 7   | pF   |

#### MODE SELECTION

| Mode            | Ē | Ğ | $\mathbf{w}$ | V <sub>CC</sub> Current | DQ     |
|-----------------|---|---|--------------|-------------------------|--------|
| Standby         | н | Х | X            | ISB, ISB1               | High Z |
| Read            | L | L | н            | <sup>I</sup> CC         | Q      |
| Write Cycle (1) | L | н | L            | ICC I                   | D      |
| Write Cycle (2) | L | L | L            | <sup>I</sup> CC         | D      |

SRAW

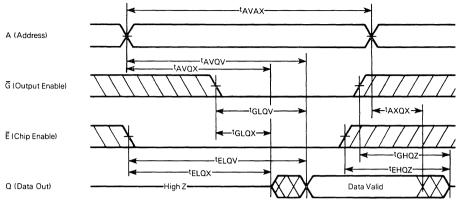
# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.)

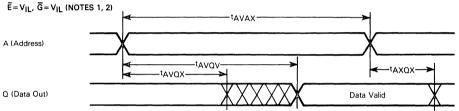
| Input Pulse Levels        | 0.8 Volt to 2.4 Volts |
|---------------------------|-----------------------|
| Input Rise and Fall Times | 10 ns                 |

#### READ CYCLE

| Parameter                                                                           | Symbol            | MCM65 |     | MCM65116-15<br>MCM65L116-15 |     | MCM65116-20<br>MCM65L116-20 |     | Unit |  |
|-------------------------------------------------------------------------------------|-------------------|-------|-----|-----------------------------|-----|-----------------------------|-----|------|--|
|                                                                                     |                   | Min   | Max | Min                         | Max | Min                         | Max |      |  |
| Address Valid to Address Don't Care<br>(Cycle Time when Chip Enable is Held Active) | tAVAX             | 120   | _   | 150                         | -   | 200                         | _   | ns   |  |
| Chip Enable Low to Chip Enable High                                                 | <sup>t</sup> ELEH | 120   | -   | 150                         | -   | 200                         | -   | ns   |  |
| Address Valid to Output Valid (Access)                                              | <b>t</b> AVQV     |       | 120 | -                           | 150 | -                           | 200 | ns   |  |
| Chip Enable Low to Output Valid (Access)                                            | <sup>t</sup> ELQV | - ·   | 120 | -                           | 150 | -                           | 200 | ns   |  |
| Address Valid to Output Invalid                                                     | <sup>t</sup> AVQX | 10    | -   | 15                          | -   | 15                          |     | ns   |  |
| Chip Enable Low to Output Invalid                                                   | <sup>t</sup> ELQX | 10    | -   | 15                          | -   | 15                          |     | ns   |  |
| Chip Enable High to Output High Z                                                   | <sup>t</sup> EHQZ | 0     | 40  | 0                           | 50  | 0                           | 60  | ns   |  |
| Output Enable to Output Valid                                                       | <sup>t</sup> GLQV | -     | 80  | -                           | 100 | -                           | 120 | ns   |  |
| Output Enable to Output Invalid                                                     | <sup>t</sup> GLQX | 10    | -   | 15                          | -   | 15                          | -   | ns   |  |
| Output Enable to Output High Z                                                      | tGLQZ             | 0     | 40  | 0                           | 50  | 0                           | 60  | ns   |  |
| Address Invalid to Output Invalid                                                   | t <sub>AXQX</sub> | 10    | -   | 15                          | -   | 15                          | -   | ns   |  |
| Address Valid to Chip Enable Low (Address Setup)                                    | <b>t</b> AVEL     | 0     | -   | 0                           | -   | 0                           | -   | ns   |  |
| Chip Enable to Power-Up Time                                                        | tPU               | 0     | -   | 0                           | -   | 0                           | -   | ns   |  |
| Chip Disable to Power-Down Time                                                     | tPD               | -     | 30  | -                           | 30  | -                           | 30  | ns   |  |


## WRITE CYCLE

| Parameter                                   | Symbol            | MCM65116-12<br>MCM65L116-12 |     | MCM65116-15<br>MCM65L116-15 |     | MCM65116-20<br>MCM65L116-20 |     | Unit |
|---------------------------------------------|-------------------|-----------------------------|-----|-----------------------------|-----|-----------------------------|-----|------|
|                                             |                   | Min                         | Max | Min                         | Max | Min                         | Max |      |
| Chip Enable Low to Write High               | <sup>t</sup> ELWH | 70                          | -   | 90                          | -   | 120                         |     | ns   |
| Address Valid to Write High                 | <sup>t</sup> AVWH | 105                         | -   | 120                         | -   | 140                         | -   | ns   |
| Address Valid to Write Low (Address Setup)  | <sup>t</sup> AVWL | 20                          | -   | 20                          | -   | 20                          | -   | ns   |
| Write Low to Write High (Write Pulse Width) | tWLWH             | 70                          | -   | 90                          | -   | 120                         | -   | ns   |
| Write High to Address Don't Care            | tWHAX             | 5                           | -   | 10                          | -   | 10                          | -   | ns   |
| Data Valid to Write High                    | <sup>t</sup> DVWH | 35                          | -   | 40                          | -   | 60                          | -   | ns   |
| Write High to Data Don't Care (Data Hold)   | tWHDX             | 5                           | -   | 10                          | -   | 10                          | -   | ns   |
| Write Low to Output High Z                  | tWLQZ             | 0                           | 50  | 0                           | 60  | 0                           | 60  | ns   |
| Write High to Output Valid                  | twhov             | 5                           | -   | 10                          | -   | 10                          | -   | ns   |
| Output Disable to Output High Z             | <sup>t</sup> GHQZ | 0                           | 40  | 0                           | 50  | 0                           | 60  | ns   |

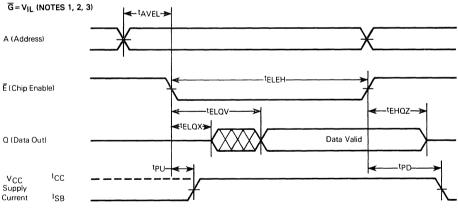

١

ł

# READ CYCLE TIMING 1 (NOTES 1 AND 2)



**READ CYCLE TIMING 2** 

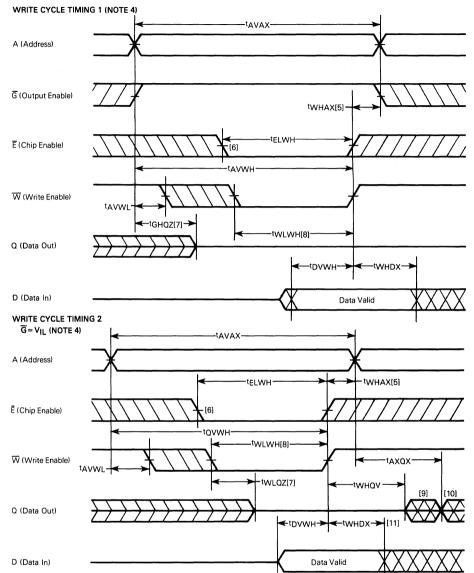



SRAM

Т

t

READ CYCLE TIMING 3




NOTES:

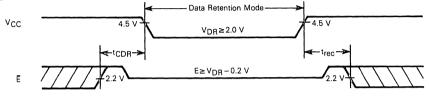
1. Write Enable ( $\overline{W}$ ) is High for Read Cycle.

2. When Chip Enable (Ē) is Low, the address input must not be in the high impedance state.

3. Address Valid prior to or coincident with Chip Enable ( $\overline{E}$ ) transition Low.



#### NOTES:

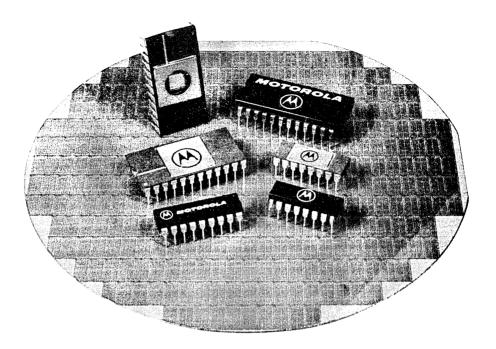

- 4. Write Enable ( $\overline{W}$ ) must be high during all address transitions.
- t<sub>WHAX</sub> is measured from the earlier of Chip Enable (E) or Write Enable (W) going high to the end of write cycle.
   If the Chip Enable (E) low transition occurs simultaneously with the Write Enable (W) low transitions or after the Write Enable (W) transition, the output remains in a high impedance state.
- 7. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 8. A write occurs during the overlap of a low Chip Enable ( $\overline{E}$ ) and a low Write Enable ( $\overline{W}$ ).
- 9. Q (Data Out) is the same phase as write data of this write cycle.
- 10. Q (Data Out) is the read of the next address.
- 11. If Chip Enable (Ē) is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

## LOW VCC DATA RETENTION CHARACTERISTICS (TA=0 to +70°C) (MCM65L116 Only)

| Parameter                           | Conditions                                                                                    | Symbol | Min    | Тур | Max | Unit |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--------|--------|-----|-----|------|
| V <sub>CC</sub> for Data Retention  | Ē≥V <sub>CC</sub> −0.2 V<br>V <sub>in</sub> ≥V <sub>CC</sub> −0.2 V or V <sub>in</sub> ≤0.2 V | VDR    | 2.0    | -   | -   | v    |
| Data Retention Current              | V <sub>CC</sub> =3.0 V, E≥2.8 V<br>V <sub>in</sub> ≥2.8 V or V <sub>in</sub> ≤0.2 V           | ICCDR  | -      | -   | 50  | μA   |
| Chip Disable to Data Retention Time | See Retention Waveform                                                                        | tCDR   | 0      |     | -   | ns   |
| Operation Recovery Time             |                                                                                               | trec   | *tAVAX | -   | -   | ns   |

\*tAVAX = Read Cycle Time.

# LOW VCC DATA RETENTION WAVEFORM






1

•

SRAM 1



# MOS EPROM





#### 1024 X 8 ERASABLE PROM

The MCM2708/27A08 is an 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. Pin-for-pin mask-programmable ROMs are available for large volume production runs of systems initially using the MCM2708/27A08.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Standard Power Supplies of +12 V, +5 V and -5 V
- Maximum Access Time = 300 ns MCM27A08 450 ns - MCM2708
- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs

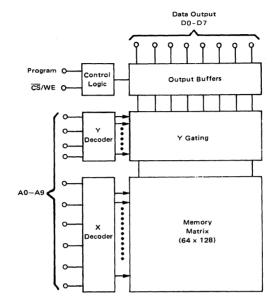
#### PIN CONNECTION DURING READ OR PROGRAM

| Mode    |             | Pin Number      |                 |                 |      |     |     |  |
|---------|-------------|-----------------|-----------------|-----------------|------|-----|-----|--|
| Iviode  | 9-11, 13-17 | 12              | 18              | 19              | 20   | 21  | 24  |  |
| Read    | Dout        | V <sub>SS</sub> | V <sub>SS</sub> | V <sub>DD</sub> | VIL  | VBB | Vcc |  |
| Program | Din         | V <sub>SS</sub> | Pulsed<br>VIHP  | V <sub>DD</sub> | VIHW | VBB | Vcc |  |

| ABSOLUTE MAXI                               | MUM RATINGS (1)                                                                                                                                                                                                                                                                         |                                |       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|
|                                             | Rating                                                                                                                                                                                                                                                                                  | Value                          | Unit  |
| Operating Temperature                       | 3                                                                                                                                                                                                                                                                                       | 0 to +70                       | °C    |
| Storage Temperature                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                   | -65 to +125                    | °C    |
| VDD with Respect to '                       | V <sub>BB</sub>                                                                                                                                                                                                                                                                         | +20 to -0.3                    | Vdc   |
| V <sub>CC</sub> and V <sub>SS</sub> with Re | spect to V <sub>BB</sub>                                                                                                                                                                                                                                                                | +15 to -0.3                    | Vdc   |
| All Input or Output Ve                      | oltages with Respect to V <sub>BB</sub> during Read                                                                                                                                                                                                                                     | +15 to -0.3                    | Vdc   |
| CS/WE Input with Res                        | pect to V <sub>BB</sub> during Programming                                                                                                                                                                                                                                              | +20 to -0.3                    | Vdc   |
| Program Input with Re                       | espect to V <sub>BB</sub>                                                                                                                                                                                                                                                               | +35 to -0.3                    | Vdc   |
| Power Dissipation                           |                                                                                                                                                                                                                                                                                         | 1.8                            | Watts |
|                                             | Note 1:<br>Permanent device damage may occur<br>ABSOLUTE MAXIMUM RATINGS a<br>exceeded. Functional operation shot<br>be restricted to RECOMMENDED C<br>ERATING CONDITIONS. Exposure<br>higher than recommended voltages t<br>extended periods of time could affe<br>device reliability. | are<br>uld<br>)P-<br>to<br>for |       |

# MOS (N-CHANNEL, SILICON-GATE) 1024 X 8-BIT UV ERASABLE PROM C SUFFIX FRIT-SEAL CERAMIC PACKAGE CASE 623A L SUFFIX CERAMIC PACKAGE CASE 716 PIN ASSIGNMENT A7 🖬 1 📾 24 **D** VCC A6 🖸 2 23 🛛 A8 A5 🖸 3 22 D A9 21 **D** VBB A4 🖸 4 A3 5 20 DCS/WE A2[6 19 UVDD A107 18 PROGR. 17 **D** D7 A0118 16 D6 D0**D**9 15 D5 D1010

D2[11


VSS**[**12

MCM2708

**MCM27A08** 

14 D D4

13 03



### BLOCK DIAGRAM

## DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED DC READ OPERATING CONDITIONS

|                                | Parame    | ter                                                      | Symbol            | Min   | Nom  | Max                   | Unit |
|--------------------------------|-----------|----------------------------------------------------------|-------------------|-------|------|-----------------------|------|
| Supply Voltage                 |           |                                                          | Vcc               | 4.75  | 5.0  | 5.25                  | Vdc  |
|                                |           |                                                          | VDD               | 11.4  | 12   | 12.6                  | Vdc  |
|                                |           |                                                          | V <sub>BB</sub>   | -5.25 | -5.0 | -4.75                 | Vdc  |
| Input High Voltage             |           |                                                          | VIH               | 3.0   | -    | V <sub>CC</sub> + 1.0 | Vdc  |
| Input Low Voltage              |           |                                                          | VIL               | VSS   | -    | 0.65                  | Vdc  |
| READ OPERATION I               | DC CHARAC | TERISTICS                                                |                   |       |      |                       |      |
| Characteris                    | tic       | Condition                                                | Symbol            | Min   | Тур  | Max                   | Unit |
| Address and CS Input Sin       | k Current | Vin = 5.25 V or Vin = VIL                                | lin               | -     | 1    | 10                    | μA   |
| Output Leakage Current         |           | V <sub>out</sub> = 5.25 V, CS/WE = 5 V                   | LO                | -     | 1    | 10                    | μA   |
| VDD Supply Current             |           | Worst-Case Supply Currents                               | 1DD               |       | 50   | 65                    | mA   |
| V <sub>CC</sub> Supply Current | (Note 2)  | All Inputs High                                          | Icc               | -     | 6    | 10                    | mA   |
| VBB Supply Current             |           | <u>C</u> S/WE = 5.0 V, T <sub>A</sub> ≈ 0 <sup>0</sup> C | IBB               |       | 30   | 45                    | mA   |
| Output Low Voltage             |           | IOL = 1.6 mA                                             | VOL               | -     |      | 0.45                  | V    |
| Output High Voltage            |           | I <sub>OH</sub> = -100 μA                                | VOH1              | 3.7   | -    |                       | v    |
| Output High Voltage            |           | I <sub>OH</sub> = -1.0 mA                                | V <sub>OH</sub> 2 | 2.4   | -    | -                     | v    |
| Power Dissipation              | (Note 2)  | T <sub>A</sub> = 70 <sup>o</sup> C                       | PD                | -     | -    | 800                   | mW   |

#### Note 2:

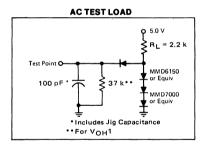
The total power dissipation is specified at 800 mW. It is not calculable by summing the various current  $(I_{DD}, I_{CC}, and I_{BB})$  multiplied by their respective voltages, since current paths exist between the various power supplies and V<sub>SS</sub>. The I<sub>DD</sub>, I<sub>CC</sub>, and I<sub>BB</sub> currents should be used to determine power supply capacity only.

 $V_{BB}$  must be applied prior to  $V_{CC}$  and  $V_{DD}.$   $V_{BB}$  must also be the last power supply switched off.

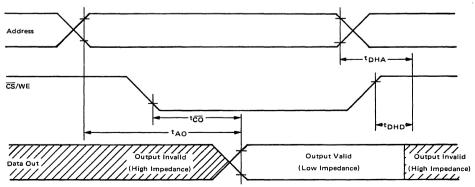
# AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) (All timing with $t_r = t_f = 20$ ns, Load per Note 3)

|                             |                  | MCM27A08 |     |     | MCM2708 |     |     |      |
|-----------------------------|------------------|----------|-----|-----|---------|-----|-----|------|
| Characteristic              | Symbol           | Min      | Тур | Max | Min     | Тур | Max | Unit |
| Address to Output Delay     | tA0              | -        | 220 | 300 | -       | 280 | 450 | ns   |
| Chip Select to Output Delay | tCO              | -        | 60  | 120 | _       | 60  | 120 | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 0        | -   | -   | 0       | -   | -   | ns   |
| Data Hold from Deselection  | tDHD             | 0        | -   | 120 | 0       | -   | 120 | ns   |

# CAPACITANCE (periodically sampled rather than 100% tested.)


| Characteristic                      | Condition                                                  | Symbol           | Тур | Max | Unit |
|-------------------------------------|------------------------------------------------------------|------------------|-----|-----|------|
| Input Capacitance<br>(f = 1.0 MHz)  | V <sub>in</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C  | C <sub>in</sub>  | 4.0 | 6.0 | pF   |
| Output Capacitance<br>(f = 1.0 MHz) | V <sub>out</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C | C <sub>out</sub> | 8.0 | 12  | pF   |

1


EPRON

#### Note 3:

Output Load = 1 TTL Gate and CL = 100 pF (Includes Jig Capacitance) Timing Measurement Reference Levels: Inputs: 0.8 V and 2.8 V Outputs: 0.8 V and 2.4 V



# READ OPERATION TIMING DIAGRAM

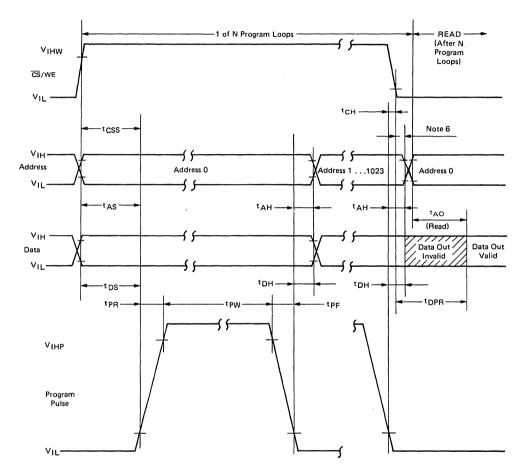


# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

# RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                                     | Symbol          | Min             | Nom  | Max                   | Unit |
|-----------------------------------------------|-----------------|-----------------|------|-----------------------|------|
| Supply Voltage                                | Vcc             | 4.75            | 5.0  | 5.25                  | Vdc  |
|                                               | V <sub>DD</sub> | 11.4            | 12   | 12.6                  | Vdc  |
|                                               | V <sub>BB</sub> | -5.25           | -5.0 | -4.75                 | Vdc  |
| Input High Voltage for All Addresses and Data | VIH             | 3.0             | -    | V <sub>CC</sub> + 1.0 | Vdc  |
| Input Low Voltage (except Program)            | VIL             | VSS             | -    | 0.65                  | Vdc  |
| CS/WE Input High Voltage (Note 4)             | VIHW            | 11.4            | 12   | 12.6                  | Vdc  |
| Program Pulse Input High Voltage (Note 4)     | VIHP            | 25              |      | 27                    | Vdc  |
| Program Pulse Input Low Voltage (Note 5)      | VILP            | V <sub>SS</sub> |      | 1.0                   | Vdc  |

Note 4: Referenced to  $V_{SS}$ . Note 5:  $V_{IHP} - V_{ILP} \approx 25 V min$ .


## PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                       | Condition                                                  | Symbol           | Min | Тур | Max | Unit |
|--------------------------------------|------------------------------------------------------------|------------------|-----|-----|-----|------|
| Address and CS/WE Input Sink Current | V <sub>in</sub> = 5.25 V                                   | ILI              | -   |     | 10  | μAdc |
| Program Pulse Source Current         |                                                            | IIPL             | -   |     | 3.0 | mAdc |
| Program Pulse Sink Current           |                                                            | <sup>I</sup> IPH | -   | _   | 20  | mAdc |
| V <sub>DD</sub> Supply Current       | Worst-Case Supply Currents                                 | IDD              | -   | 50  | 65  | mAdc |
| V <sub>CC</sub> Supply Current       | All Inputs High                                            | Icc              | -   | 6   | 10  | mAdc |
| VBB Supply current                   | <del>CS</del> /WE = 5 V, T <sub>A</sub> = 0 <sup>o</sup> C | IBB              | -   | 30  | 45  | mAdc |

## AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature unless otherwise noted.)

| Characteristic                      | Symbol | Min | Max | Unit |
|-------------------------------------|--------|-----|-----|------|
| Address Setup Time                  | tAS    | 10  | -   | μs   |
| CS/WE Setup Time                    | tCSS   | 10  |     | μs   |
| Data Setup Time                     | tDS    | 10  | _   | μs   |
| Address Hold Time                   | t A H  | 1.0 |     | μs   |
| CS/WE Hold Time                     | t CH   | 0.5 | -   | μs   |
| Data Hold Time                      | t DH   | 1.0 | -   | μs   |
| Chip Deselect to Output Float Delay | tDF    | 0   | 120 | ns   |
| Program to Read Delay               | t DPR  | . — | 10  | μs   |
| Program Pulse Width                 | tPW    | 0.1 | 1.0 | ms   |
| Program Pulse Rise Time             | tPR    | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time             | tPF    | 0.5 | 2.0 | μs   |

4-6



4

EPROM

I

### PROGRAMMING OPERATION TIMING DIAGRAM

Note 6: The CS/WE transition must occur after the Program Pulse transition and before the Address Transition.

# PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the  $\overline{CS}$ /WE input (Pin 20) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (D0 to D7).

Logic levels for the data lines and addresses and the supply voltages (V<sub>CC</sub>, V<sub>DD</sub>, V<sub>BB</sub>) are the same as for the READ operation.

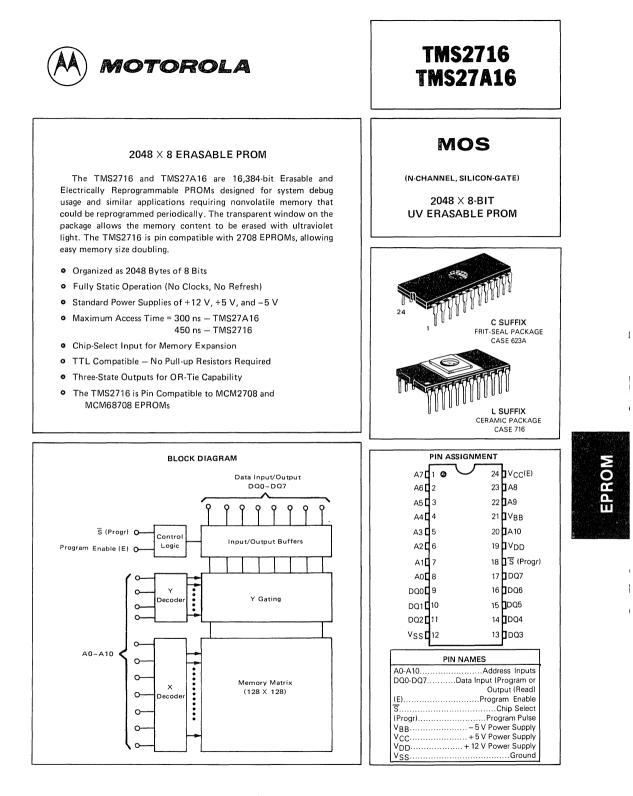
After address and data setup one program pulse per address is applied to the program input (Pin 18). A program loop is a full pass through all addresses. Total programming time, TPtotal = N x tPW ≥ 100 ms. The required number of program loops (N) is a function of the program pulse width (tpW), where: 0.1 ms  $\leq$  tpW  $\leq$ 1.0 ms; correspondingly N is:  $100 \le N \le 1000$ . There must be N successive loops through all 1024 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the  $\overline{CS}/WE$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin (Pin 18) should be pulled down to  $V_{IIP}$  with an active device, because this pin sources a small amount of current (IIPL) when CS/WE is at VIHW (12 V) and the program pulse is at VII p.

#### EXAMPLES FOR PROGRAMMING

Always use the  $T_{Ptotal} = N \times t_{PW} \ge 100$  ms relationship.

1. All 8192 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:


$$N = \frac{I P total}{t P W} = \frac{100 ms}{0.2 ms} = 500 . One program loop$$

consists of words 0 to 1023.

- 2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N =  $\frac{100}{0.5}$  = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s.
- 3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

#### **ERASING INSTRUCTIONS**

The MCM2708/27A08 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity x exposure time) is 12.5 Ws/cm<sup>2</sup>. As an example, using the 'Model 30-000'' UV-Eraser (Turner Designs, Mountain View, CA94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the MCM2708/27A08 should be positioned about one inch away from the UV-tubes.



DS9518 R1/1-79

# TMS2716•TMS27A16

# **ABSOLUTE MAXIMUM RATINGS (1)**

| Rating                                                              | Value       | Unit  |
|---------------------------------------------------------------------|-------------|-------|
| Operating Temperature                                               | 0 to +70    | °C    |
| Storage Temperature                                                 | -65 to +125 | °C    |
| V <sub>DD</sub> with Respect to V <sub>BB</sub>                     | +20 to -0.3 | V     |
| V <sub>CC</sub> and V <sub>SS</sub> with Respect to V <sub>BB</sub> | +15 to -0.3 | V     |
| All Input or Output Voltage with Respect to VBB During Read         | +15 to -0.3 | V     |
| (E) Input with Respect to V <sub>BB</sub> During Programming        | +20 to -0.3 | v     |
| Program Input with Respect to VBB                                   | +35 to -0.3 | V     |
| Power Dissipation                                                   | 1.8         | Watts |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### PIN CONNECTION DURING READ OR PROGRAM

|         | F                | Pin Number                 |      |  |  |  |
|---------|------------------|----------------------------|------|--|--|--|
| Mode    | 9–11,<br>13–17   | 18                         | 24   |  |  |  |
| Read    | D <sub>out</sub> | V <sub>IL</sub> or<br>VIH  | Vcc  |  |  |  |
| Program | D <sub>in</sub>  | Pulsed<br>V <sub>IHP</sub> | ⊻інw |  |  |  |

# DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### **RECOMMENDED DC READ OPERATING CONDITIONS**

| Parameter          |          | Symbol | Min             | Nom  | Max                   | Unit |
|--------------------|----------|--------|-----------------|------|-----------------------|------|
| Supply Voltage     | TMS2716  | Vcc    | 4.75            | 5.0  | 5.25                  | V    |
|                    |          |        | 11.4            | 12   | 12.6                  | v    |
|                    |          | VBB    | -5.25           | -5.0 | -4.75                 | v    |
|                    | TMS27A16 | Vcc    | 4.5             | 5.0  | 5.5                   | v    |
|                    |          | VDD    | 10.8            | 12   | 13.2                  | v    |
|                    |          | VBB    | -5.5            | -5.0 | -4.5                  | v    |
| Input High Voltage |          | VIH    | 2.2             | -    | V <sub>CC</sub> + 1.0 | v    |
| Input Low Voltage  |          | VIL    | V <sub>SS</sub> | -    | 0.65                  | v    |

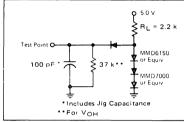
## READ OPERATING DC CHARACTERISTICS

| Characteristic                 | Condition                                                                  | Symbol           | Min | Тур | Max  | Unit |
|--------------------------------|----------------------------------------------------------------------------|------------------|-----|-----|------|------|
| Address Input Sink Current     | V <sub>in</sub> = V <sub>CC</sub> max or V <sub>in</sub> = V <sub>IL</sub> | lin              | -   | 1   | 10   | μA   |
| Output Leakage Current         | $V_{out} = V_{CC} max and \overline{S} = 5 V$                              | <sup>I</sup> LO  | -   | 1   | 10   | μA   |
| VDD Supply Current             | Worst-Case Supply Currents                                                 | <sup>I</sup> DD  | _   | -   | 65   | mA   |
| V <sub>CC</sub> Supply Current | All Inputs High                                                            | <sup>1</sup> CC  | _   | -   | 12   | mA   |
| VBB Supply Current             | (E) = 5.0 V, $T_A = 0^{\circ}C$                                            | I <sub>BB</sub>  | _   | -   | 45   | mA   |
| Output Low Voltage             | I <sub>OL</sub> = 1.6 mA                                                   | VOL              |     | -   | 0.45 | V    |
| Output High Voltage            | I <sub>OH</sub> = -100 μA                                                  | ∨он1             | 3.7 | -   | -    | V    |
| Output High Voltage            | I <sub>OH</sub> ≈ −1.0 mA                                                  | V <sub>OH2</sub> | 2.4 | -   | -    | V    |

VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off.

#### CAPACITANCE (periodically sampled rather than 100% tested)

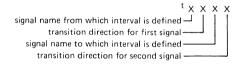
| Characteristic                      | Condition                                                  | Symbol           | Тур | Max | Unit |
|-------------------------------------|------------------------------------------------------------|------------------|-----|-----|------|
| Input Capacitance<br>(f = 1.0 MHz)  | V <sub>in</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C  | C <sub>in</sub>  | 4.0 | 6.0 | pF   |
| Output Capacitance<br>(f = 1.0 MHz) | V <sub>out</sub> = 0 V, T <sub>A</sub> = 25 <sup>o</sup> C | C <sub>out</sub> | 8.0 | 12  | pF   |


# AC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted) (All timing with  $t_r = t_f = 20$  ns, Load per Note 2)

|                             |                   | TMS2716 |     | TMS27A16 |     |      |
|-----------------------------|-------------------|---------|-----|----------|-----|------|
| Characteristic              | Symbol            | Min     | Max | Min      | Max | Unit |
| Address to Output Delay     | tavqv             | -       | 450 | -        | 300 | ns   |
| Chip Select to Output Delay | <sup>t</sup> SLQV |         | 120 | -        | 120 | ns   |
| Data Hold from Address      | tAXQZ             | 10      | -   | 10       |     | ns   |
| Data Hold from Deselection  | tshoz             | 10      | 120 | 10       | 120 | ns   |

NOTE 2: Output Load = 1 TTL Gate and C<sub>L</sub> = 100 pF (Includes Jig Capacitance) Timing Measurement Reference Levels – Inputs: 0.8 V and 2.8 V

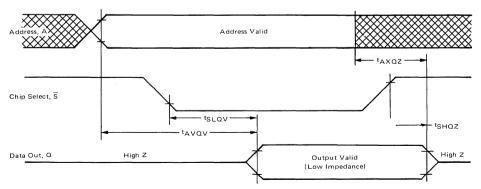





4

EPROM

#### TIMING PARAMETER ABBREVIATIONS




The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

# TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.



#### READ OPERATION TIMING DIAGRAM

Outputs: 0.8 V and 2.8 V

## DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

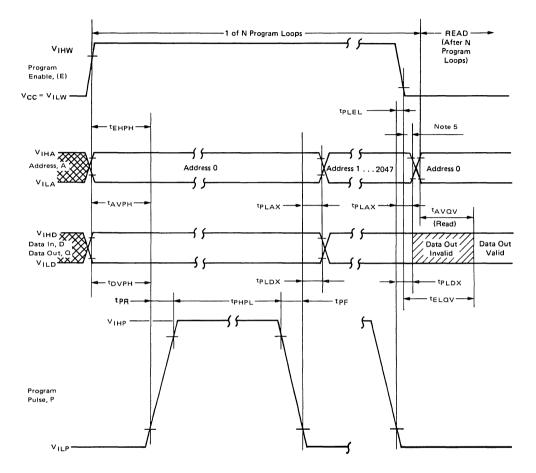
# **RECOMMENDED PROGRAMMING OPERATING CONDITIONS**

| Parameter                                      | Symbol          | Min   | Nom  | Max                 | Unit |
|------------------------------------------------|-----------------|-------|------|---------------------|------|
| Supply Voltage – TMS2716 and TMS27A16          | Vcc             | 4.75  | 5.0  | 5.25                | Vdc  |
|                                                |                 | 11.4  | 12   | 12.6                | Vdc  |
|                                                | V <sub>BB</sub> | -5.25 | -5.0 | -4.75               | Vdc  |
| Input High Voltage for Data                    | VIHD            | 3.8   | -    | V <sub>CC</sub> + 1 | Vdc  |
| Input Low Voltage for Data                     | VILD            | VSS   |      | 0.65                | Vdc  |
| Input High Voltage for Addresses               | VIHA            | 3.8   | -    | V <sub>CC</sub> + 1 | Vdc  |
| Input Low Voltage for Addresses                | VILA            | VSS   | _    | 0.4                 | Vdc  |
| Program Enable (E) Input High Voltage (Note 3) | VIHW            | 11.4  | 12   | 12.6                | Vdc  |
| Program Enable (E) Input Low Voltage (Note 3)  | VILW=VCC        | 4.75  | 5.0  | 5.25                | Vdc  |
| Program Pulse Input High Voltage (Note 3)      | VIHP            | 25    | -    | 27                  | Vdc  |
| Program Pulse Input Low Voltage (Note 4)       | VILP            | VSS   |      | 1.0                 | Vdc  |

NOTE 3: Referenced to V<sub>SS</sub>. NOTE 4:  $V_{1HP} - V_{1LP} = 25 V min$ .

# **PROGRAMMING OPERATION DC CHARACTERISTICS**

| Characteristic                 | Condition                     | Symbol | Min | Тур | Max | Unit |
|--------------------------------|-------------------------------|--------|-----|-----|-----|------|
| Address Input Sink Current     | V <sub>in</sub> = 5.25 V      | ILI    | -   |     | 10  | μAdc |
| Program Pulse Source Current   |                               | IIPL   | -   |     | 3.0 | mAdc |
| Program Pulse Sink Current     |                               | ПЬН    | -   | -   | 20  | mAdc |
| VDD Supply Current             | Worst-Case Supply Currents    | 10D    | -   | -   | 65  | mAdc |
| V <sub>CC</sub> Supply Current | All Inputs High               | Icc    | -   | _   | 15  | mAdc |
| VBB Supply current             | (E) = 5 V, $T_A = 0^{\circ}C$ | IBB    | -   | -   | 45  | mAdc |


ŀ

# AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

| Characteristic          | Symbol            | Min | Max | Unit |
|-------------------------|-------------------|-----|-----|------|
| Address Setup Time      | <sup>t</sup> AVPH | 10  |     | μs   |
| (E) Setup Time          | tehph             | 10  |     | μs   |
| Data Setup Time         | <sup>t</sup> DVPH | 10  |     | μs   |
| Address Hold Time       | <sup>t</sup> PLAX | 1.0 | -   | μs   |
| (E) Hold Time           | <sup>t</sup> PLEL | 0.5 | -   | μs   |
| Data Hold Time          | <sup>t</sup> PLDX | 1.0 | -   | μs   |
| Program to Read Delay   | telov             | -   | 10  | μs   |
| Program Pulse Width     | <sup>t</sup> PHPL | 0.1 | 1.0 | ms   |
| Program Pulse Rise Time | <sup>t</sup> PR   | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time | tpF               | 0.5 | 2.0 | μs   |

# TMS2716•TMS27A16



4

EPROM

#### PROGRAMMING OPERATION TIMING DIAGRAM

NOTE 5: This Program Enable tranistion must occur after the Program Pulse transition and before the Address Transition.

| WAVEFORM DEFINITIONS |                       |                            |                    |                                        |                               |  |  |
|----------------------|-----------------------|----------------------------|--------------------|----------------------------------------|-------------------------------|--|--|
| Waveform<br>Symbol   | Input                 | Output                     | Waveform<br>Symbol | Input                                  | Output                        |  |  |
|                      | MUST BE<br>VALID      | WILL BE<br>VALID           |                    | DON'T CARE:<br>ANY CHANGE<br>PERMITTED | CHANGING:<br>STATE<br>UNKNOWN |  |  |
|                      | CHANGE<br>FROM H TO L | WILL CHANGE<br>FROM H TO L | $\rightarrow$      |                                        | HIGH<br>IMPEDANCE             |  |  |
|                      | CHANGE<br>FROM L TO H | WILL CHANGE<br>FROM L TO H |                    |                                        |                               |  |  |

# TMS2716•TMS27A16

#### **PROGRAMMING INSTRUCTIONS**

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for programming mode, the  $V_{CC}(E)$  input (Pin 24) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (DQ0 to DQ7).

The VDD and VBB supply voltages are the same as for the READ operation.

After address and data setup, one program pulse per address is applied to the program input. A program loop is a full pass through all addresses. Total programming time/ address, Tptotal = N  $\times$  tpHpL  $\ge$  100 ms. The required number of program loops (N) is a function of the program pulse width (tPHPL) where: 0.1 ms  $\leq$  tPHPL  $\leq$  1.0 ms; correspondingly, N is:  $100 \le N \le 1000$ . There must be N successive loops through all 2048 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the Program Enable (E) falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin should be pulled down to VILP with an active device, because this pin sources a small amount of current (IIPI) when (E) is at VIHW (12 V) and the program pulse is at VILP.

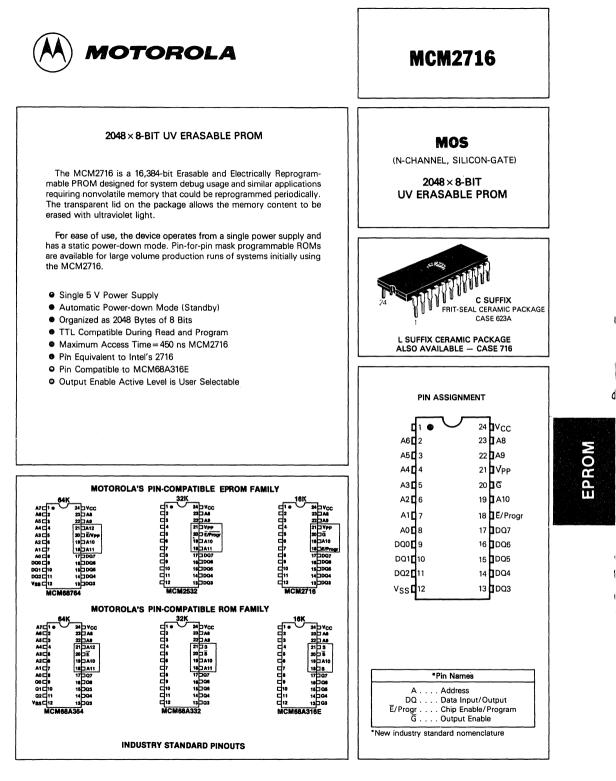
#### EXAMPLE FOR PROGRAMMING

Always use the  $T_{Ptotal} = N \times t_{PHPL} \ge 100 \text{ ms}$  relationship.

1. All 16,384 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{TPtotal}{tPHPL} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500.$$


One program loop consists of words 0 to 2047.

2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N = 100/0.5 = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s.

3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

#### **ERASING INSTRUCTIONS**

The TMS2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity X exposure time) is 12.5 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the TMS2716/27A16 should be positioned about one inch away from the UV-tubes.



DS-9518R1/1-79

#### ABSOLUTE MAXIMUM RATINGS

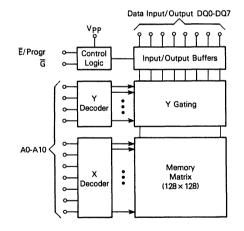
| Rating                                           | Value         | Unit |
|--------------------------------------------------|---------------|------|
| Temperature Under Bias (Vpp=5 V)                 | - 10 to + 80  | °C   |
| Operating Temperature Range                      | 0 to + 70     | °C   |
| Storage Temperature                              | -65 to +125   | °C   |
| All Input or Output Voltages with Respect to VSS | +6 to -0.3    | V    |
| Vpp Supply Voltage with Respect to VSS           | + 28 to - 0.3 | V    |

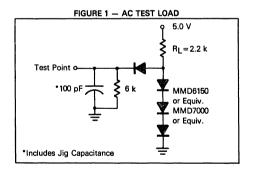
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### MODE SELECTION

ħ


EPROM


|                 |                      | Pin Number |                      |            |           |           |  |  |
|-----------------|----------------------|------------|----------------------|------------|-----------|-----------|--|--|
| Mode            | 9-11,<br>13-17<br>DQ | 12<br>VSS  | 18<br>Ē/Progr        | 20<br>Ğ*   | 21<br>Vpp | 24<br>VCC |  |  |
| Read            | Data Out             | Vss        | VIL                  | VIL        | Vcc*      | Vcc       |  |  |
| Output Disable  | High Z               | VSS        | Don't Care           | VIH        | Vcc*      | Vcc       |  |  |
| Standby         | High Z               | VSS        | ViH                  | Don't Care | Vcc       | Vcc       |  |  |
| Program         | Data In              | VSS        | Pulsed<br>VIL to VIH | VIH        | VPPH      | Vcc       |  |  |
| Program Verify  | Data Out             | VSS        | VIL                  | VIL        | VPPH      | Vcc       |  |  |
| Program Inhibit | High Z               | Vss        | VIL                  | VIH        | VPPH      | Vcc       |  |  |

\*In the Read Mode if  $V_{PP} \ge V_{IH}$ , then  $\overline{G}$  (active low)

Vpp≤VIL, then G (active high)







#### **CAPACITANCE** (f = 1.0 MHz, $T_{\Delta}$ = 25°C, periodically sampled rather than 100% tested)

| Characteristic                | Symbol          | Тур | Max | Unit |
|-------------------------------|-----------------|-----|-----|------|
| Input Capacitance (Vin=0 V)   | C <sub>in</sub> | 4.0 | 6.0 | pF   |
| Output Capacitance (Vout=0 V) | Cout            | 8.0 | 12  | рF   |
|                               |                 |     |     |      |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C =  $\frac{|\Delta_t|}{|\Delta_t|}$ Δ٧٠

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

#### RECOMMENDED DC READ OPERATING CONDITIONS

| Parameter               | Symbol     | Min          | Nom        | Max                  | Unit |
|-------------------------|------------|--------------|------------|----------------------|------|
| Supply Voltage* MCM2716 | VCC<br>VPP | 4.75<br>4.75 | 5.0<br>5.0 | 5.25<br>5.25         | V    |
| Input High Voltage      | VIH        | 2.0          | -          | V <sub>CC</sub> +1.0 | v    |
| Input Low Voltage       | VIL        | -0.1-        | -          | 0.8                  | V    |

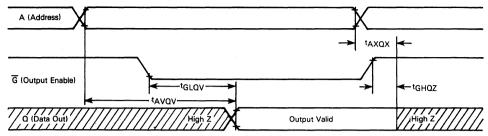
#### **RECOMMENDED DC OPERATING CHARACTERISTICS**

| Ok                                                          | Canditian                                                | Cumbal          | М   | CM27 | 16   | Units |
|-------------------------------------------------------------|----------------------------------------------------------|-----------------|-----|------|------|-------|
| Characteristic                                              | Condition                                                | Symbol          | Min | Тур  | Max  | Units |
| Address, G and E/Progr Input Sink Current                   | V <sub>in</sub> =5.25 V                                  | l <sub>in</sub> | -   | -    | 10   | μA    |
| Output Leakage Current                                      | V <sub>out</sub> =5.25 V                                 | <sup>I</sup> LO | -   | _    | 10   |       |
|                                                             | Ğ=5.0 V                                                  |                 |     |      |      | μA    |
| V <sub>CC</sub> Supply Current (Standby) 2716               | $\overline{E}/Progr = V_{IH}$<br>$\overline{G} = V_{IL}$ | ICC1            | -   | -    | 25   | mA    |
| V <sub>CC</sub> Supply Current (Active) 2716 (Outputs Open) | $\overline{G} = \overline{E} / Progr = V_{1L}$           | ICC2            | -   | -    | 100  | mA    |
| Vpp Supply Current*                                         | Vpp = 5.25 V                                             | IPP1            | -   | -    | 5.0  | mA    |
| Output Low Voltage                                          | l <sub>OL</sub> =2.1 mA                                  | VOL             | -   | -    | 0.45 | V     |
| Output High Voltage                                         | $I_{OH} = -400 \ \mu A$                                  | ∨он             | 2.4 | -    | -    | V     |

\*VCC must be applied simultaneously or prior to Vpp. VCC must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V<sub>CC</sub> during the read operation, the supply current would then be the sum of Ipp1 and I<sub>CC</sub>.

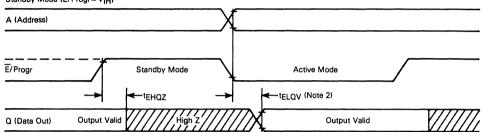
# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)


| Input Pulse Levels        | . 0.8 Volt and 2.2 Volts | Input and Output Timing Levels | 2.0 and 0.8 Volts |
|---------------------------|--------------------------|--------------------------------|-------------------|
| Input Rise and Fall Times |                          | Output Load                    | See Figure 1      |

| Characteristic                  | Condition                          | Symbol            | MCM2716 |     | Units |
|---------------------------------|------------------------------------|-------------------|---------|-----|-------|
| Characteristic                  | Condition                          | Symbol            | Min     | Max | Onits |
| Address Valid to Output Valid   | $\vec{E}/Progr = \vec{G} = V_{IL}$ | t AVQV            | -       | 450 |       |
| Ē/Progr to Output Valid         | (Note 2)                           | <sup>t</sup> ELQV | -       | 450 | ]     |
| Output Enable to Output Valid   | Ē/Progr = V <sub>IL</sub>          | tGLQV             | -       | 150 | ] ns  |
| Ē/Progr to High Z Output        | -                                  | <sup>t</sup> EHQZ | 0       | 100 | 1 115 |
| Output Disable to High Z Output | $\overline{E}/Progr = V_{IL}$      | tGHQZ             | 0       | 100 | ]     |
| Data Hold from Address          | $\vec{E}/Progr = G = V_{IL}$       | tAXDX             | 0       | -   |       |




đ

# READ MODE TIMING DIAGRAMS (E/Progr = VIL)



STANDBY MODE (Output Enable = VIL)

Standby Mode (E/Progr = VIH)



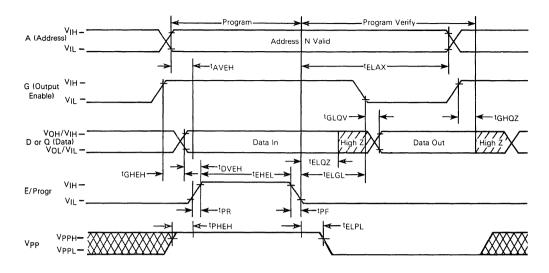
NOTE 2: tELOV is referenced to E/Progr or stable address, whichever occurs last.

# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (T\_A = 25 °C $\pm$ 5 °C)

#### **RECOMMENDED PROGRAMMING OPERATING CONDITIONS**

| Parameter                   | Symbol    | Min  | Nom | Max     | Unit |
|-----------------------------|-----------|------|-----|---------|------|
| Supply Voltage              | VCC, VPPL | 4.75 | 5.0 | 5.25    | V    |
|                             | VPPH      | 24   | 25  | 26      |      |
| Input High Voltage for Data | VIH       | 2.2  | -   | Vcc + 1 | ۷    |
| Input Low Voltage for Data  | VIL       | -0.1 | -   | 0.8     | V    |

### PROGRAMMING OPERATION DC CHARACTERISTICS


| Characteristic                                               | Condition                     | Symbol | Min | Тур | Max | Unit |
|--------------------------------------------------------------|-------------------------------|--------|-----|-----|-----|------|
| Address, G and E/Progr Input Sink Current                    | V <sub>in</sub> =5.25 V/0.45V | lμ     | -   | -   | 10  | μA   |
| Vpp Programming Pulse Supply Current (Vpp = $25 V \pm 1 V$ ) | $\overline{E}/Progr = V_{IH}$ | IPP2   | - 1 | -   | 30  | mA   |
| V <sub>CC</sub> Supply Current (Outputs Open)                | -                             | lcc    | -   | -   | 160 | mA   |

#### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic                              | Symbol            | Min | Max | Unit |
|---------------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                          | <sup>t</sup> AVEH | 2.0 | -   | μs   |
| Output Enable High to Program Pulse         | tGHEH             | 2.0 | -   | μS   |
| Data Setup Time                             | <sup>t</sup> DVEH | 2.0 | -   | μS   |
| Address Hold Time                           | telax             | 2.0 | -   | μS   |
| Output Enable Hold Time                     | telge             | 2.0 | -   | μs   |
| Data Hold Time                              | teloz             | 2.0 | -   | μS   |
| Vpp Setup Time                              | tPHEH             | 0   | -   | ns   |
| Vpp to Enable Low Time                      | telpl             | 0   | -   | ns   |
| Output Disable to High Z Output             | tGHQZ             | 0   | 150 | ns   |
| Output Enable to Valid Data (E/Progr = VIL) | tGLQV             | -   | 150 | ns   |
| Program Pulse Width                         | tEHEL             | 1*  | 55  | ms   |
| Program Pulse Rise Time                     | tPR               | 5   | -   | ns   |
| Program Pulse Fall Time                     | tPF               | 5   | -   | ns   |

• If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified to ensure that good programming levels have been written.

#### PROGRAMMING OPERATION TIMING DIAGRAM



#### **PROGRAMMING INSTRUCTIONS**

Before programming, the memory should be submitted to a full ERASE operation to ensure every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the Vpp input (Pin 21) should be raised to +25 V. The V<sub>CC</sub> supply voltage is the same as for the Read operation and G is at V<sub>IH</sub>. Programming data is entered in 8-bit words through the data out (DQ) terminals. Only "0 s" will be programmed when "0 s" and "1 s" are entered in the 8-bit data word.

After address and data setup, a program pulse (V<sub>IL</sub> to V<sub>IH</sub>) is applied to the  $\overline{E}$ /Progr input. A program pulse is applied to each address location to be programmed. To minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the  $\overline{E}$ /Progr input.

Multiple MCM2716s may be programmed in parallel by connecting together like inputs and applying the program pulse to the E/Progr inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using the PROGRAM INHIBIT mode. Except for the E/Progr pin, all like inputs (including Output Enable) may be common.

The PROGRAM VERIFY mode with Vpp at 25 V is used to determine that all programmed bits were correctly programmed.

#### READ OPERATION

After access time, data is valid at the outputs in the READ mode. With stable system addresses, effectively faster access time can be obtained by gating the data onto the bus with Output Enable.

The Standby mode is available to reduce active power dissipation. The outputs are in the high impedance state when the E/Progr input pin is high (VIH) independent of the Output Enable input.

#### ERASING INSTRUCTIONS

The MCM2716 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2716 should be positioned about one inch away from the UV-tubes.

#### RECOMMENDED OPERATING PROCEDURES

After erasure and reprogramming of the EPROM, it is recommended that the quartz window be covered with an opaque self-adhesive cover. It is important that the self-adhesive cover not leave any residue on the quartz if it is removed to allow another erasure.

1

đ

#### TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

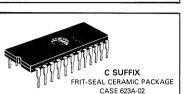
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

|                    | WAVEFORMS                              |                               |
|--------------------|----------------------------------------|-------------------------------|
| Waveform<br>Symbol | Input                                  | Output                        |
|                    | Must Be<br>Valid                       | Will Be<br>Valid              |
| 7111               | Change<br>From H to L                  | Will Change<br>From H to L    |
|                    | Change<br>From L to H                  | Will Change<br>From L to H    |
|                    | Don't Care:<br>Any Change<br>Permitted | Changing:<br>State<br>Unknown |
|                    |                                        | High<br>Impedance             |

XXX

t X

# EPROM



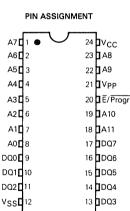

#### 4096 × 8-BIT UV ERASABLE PROM

The MCM2532 is a 32,768-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window in the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems initially using the MCM2532.

- Single +5 V Power Supply
- Organized as 4096 Bytes of 8 Bits
- Automatic Power-Down Mode (Standby)
- Fully Static Operation (No Clocks)
- TTL Compatible During Both Read and Program
- Maximum Access Time = 450 ns MCM2532
- Pin Compatible with MCM68A332 Mask Programmable ROMs
- Power MCM2532
  - Active 150 mA Max Standby - 25 mA Max




**MCM2532** 

MOS

(N-CHANNEL, SILICON-GATE)

4096 × 8-BIT

**UV ERASABLE PROM** 

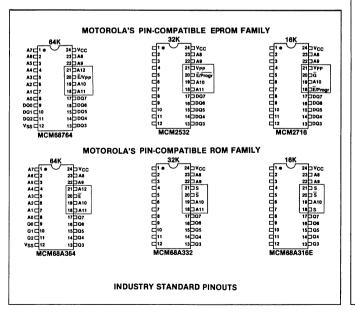


\*PIN NAMES

\*New Industry standard nomenclature

Α....

E/Progr. . .


DO

..... Address

Data Input/Output

..... Dual Function Enable

(Power-Down/Program Pulse)



DS-9816/4-80

1

۵

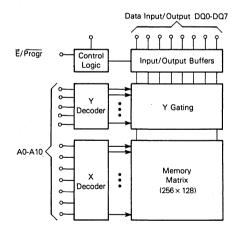
### ABSOLUTE MAXIMUM RATINGS

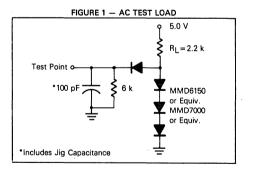
| Rating                                           | Value         | Unit |
|--------------------------------------------------|---------------|------|
| Temperature Under Bias (Vpp=5 V)                 | - 10 to + 80  | °C   |
| Operating Temperature Range                      | 0 to +70      | °C   |
| Storage Temperature                              | -65 to +125   | °C   |
| All Input/Output Voltages with<br>Respect to VSS | +6 to -0.3    | v    |
| Vpp Supply Voltage with Respect to VSS           | + 28 to - 0.3 | V    |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

TFF ouppil, foldige that hospeet to 135

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.


# MODE SELECTION


3

EPROM

|                 |               | Pin Number |                       |                      |           |                       |  |  |  |  |
|-----------------|---------------|------------|-----------------------|----------------------|-----------|-----------------------|--|--|--|--|
| Mode            | 9-<br>13<br>D | .17 L      | 12<br>V <sub>SS</sub> | 20<br>E/Progr        | 21<br>Vpp | 24<br>V <sub>CC</sub> |  |  |  |  |
| Read            | Data          | Out        | Vss                   | VIL                  | 5 V       | Vcc                   |  |  |  |  |
| Output Disable  | Hig           | hΖ         | Vss                   | VIH                  | 5 to 25 V | Vcc                   |  |  |  |  |
| Standby         | Hig           | hΖ         | VSS                   | VIH                  | 5 V       | Vcc                   |  |  |  |  |
| Program         |               |            | V <sub>SS</sub>       | Pulsed<br>VIH to VIL | VPPH      | Vcc                   |  |  |  |  |
| Program Verify  | Data          | Out        | Vss                   | VIL                  | 5 V       | Vcc                   |  |  |  |  |
| Program Inhibit | Hig           | ıh Z       | V <sub>SS</sub>       | VIH                  | VPPH      | Vcc                   |  |  |  |  |

#### BLOCK DIAGRAM





4-22

# CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, periodically sampled rather than 100% tested.)

| Characteristic                           | Symbol            | Тур | Max | Unit |
|------------------------------------------|-------------------|-----|-----|------|
| Input Capacitance (V <sub>in</sub> =0 V) | C <sub>in</sub>   | 4.0 | 6.0 | pF   |
| Output Capacitance (Vout = 0 V)          | _C <sub>out</sub> | 8.0 | 12  | рF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t/\Delta V$ .

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Fully operating voltage and temperature range unless otherwise noted)

# RECOMMENDED DC OPERATING CONDITIONS

| Parameter               | Symbol | Min   | Тур | Max                  | Unit |
|-------------------------|--------|-------|-----|----------------------|------|
| Supply Voltage* MCM2532 | Vcc    | 4.75  | 5.0 | 5.25                 | v    |
|                         | VPP    | 4.75  | 5.0 | 5.25                 | v    |
| Input High Voltage      | VIH    | 2.2   |     | V <sub>CC</sub> +1.0 | V    |
| Input Low Voltage       | VIL    | - 0.1 | -   | 0.65                 | V    |

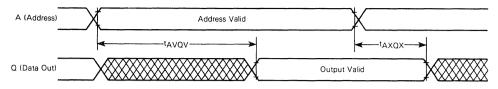
### RECOMMENDED DC OPERATING CHARACTERISTICS

| Characteristic                            |         | Condition                 | Symbol | Min | Max  | Unit |
|-------------------------------------------|---------|---------------------------|--------|-----|------|------|
| Address and E Input Sink Current          |         | V <sub>in</sub> =5.25 V   | lin    | -   | 10   | μA   |
| Output Leakage Current                    |         | V <sub>out</sub> =5.25 V  | ILO .  | -   | 10   | μA   |
| V <sub>CC</sub> Supply Current* (Standby) | MCM2532 | Ē=VIH                     | ICC1   | -   | 25   | mΑ   |
| V <sub>CC</sub> Supply Current* (Active)  | MCM2532 | Ē = VIL                   | ICC2   | 1   | 150  | mΑ   |
| Vpp Supply Current*                       |         | Vpp=5.25 V                | IPP1   | -   | 5.0  | mΑ   |
| Output Low Voltage                        |         | $I_{OL} = 2.1 \text{ mA}$ | VOL    | -   | 0.45 | V    |
| Output High Voltage                       |         | $I_{OH} = -400 \ \mu A$   | Vон    | 2.4 | -    | V    |

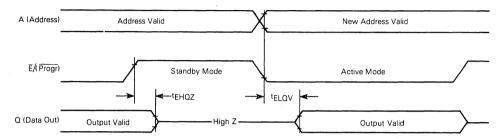
\*V<sub>CC</sub> must be applied simultaneously or prior to VPP. V<sub>CC</sub> must also be switched off simultaneously with or after VPP. With VPP connected directly to V<sub>CC</sub> during the read operation, the supply current would be the sum of IPP1 and I<sub>CC</sub>.

# AC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full Operating Voltage and Temperature Range Unless Otherwise Noted)


| Input Pulse Levels.       | 0.65 Volt and 2.2 Volts |
|---------------------------|-------------------------|
| Input Rise and Fall Times |                         |

| Characteristic                                     | Symbol            | Min | Max | Unit |
|----------------------------------------------------|-------------------|-----|-----|------|
| Address Valid to Output Valid (E/Progr = VIL)      | tAVQV             | 1   | 450 | ns   |
| Ē to Output Valid                                  | <sup>t</sup> ELQV | -   | 450 | ns   |
| E to High Z Output                                 | <sup>t</sup> EHQZ | 0   | 100 | ns   |
| Data Hold from Address ( $\overline{E} = V_{ L}$ ) | t AXQX            | 0   | 1   | ns   |


d

٥

# READ MODE TIMING DIAGRAMS ( $\overline{E} = V_{IL}$ )



#### STANDBY MODE



# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS $(T_A = 25^{\circ}C \pm 5^{\circ}C)$

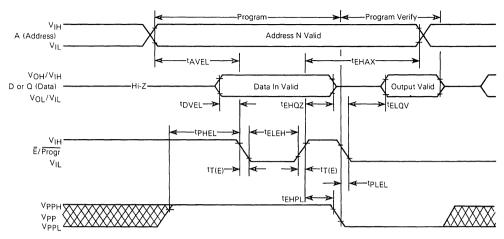
RECOMMENDED PROGRAMMING OPERATION CONDITIONS

| Parameter                   | Symbol                                                 | Min        | Nom       | Max        | Unit |
|-----------------------------|--------------------------------------------------------|------------|-----------|------------|------|
| Supply Voltage              | V <sub>CC</sub> , V <sub>PPL</sub><br>V <sub>PPH</sub> | 4.75<br>24 | 5.0<br>25 | 5.25<br>26 | v    |
| Input High Voltage for Data | VIH                                                    | 2.2        | -         | VCC+1      | V    |
| Input Low Voltage for Data  | VIL                                                    | - 0.1      |           | 0.65       | v    |

\*V<sub>CC</sub> must be applied simultaneously or prior to Vpp. V<sub>CC</sub> must also be switched off simultaneously with or after Vpp. The device must not be inserted into or removed from a board with Vpp at +25 V. Vpp must not exceed the +26 V maximum specifications.

#### PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                                          | Condition                      | Symbol | Min | Тур | Max | Unit |
|---------------------------------------------------------|--------------------------------|--------|-----|-----|-----|------|
| Address and E/Progr Input Sink Current                  | V <sub>in</sub> =5.25 V/0.45 V | ιLI    | -   | -   | 10  | μA   |
| Vpp Programming Pulse Supply Current (Vpp = 25 V ± 1 V) | Ē/ Progr = VIL                 | IPP2   | -   | -   | 30  | mA   |
| V <sub>CC</sub> Supply Current – MCM2532                | -                              | ICC    | -   | -   | 160 | mA   |


#### AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic                         | Symbol            | Min | Max | Unit |
|----------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                     | <sup>t</sup> AVEL | 2.0 | -   | μs   |
| Vpp Setup Time                         | tPHEL             | 0   | -   | ns   |
| Data Setup Time                        | tDVEL             | 2.0 | -   | μs   |
| Address Hold Time                      | <sup>t</sup> EHAX | 2.0 | -   | μs   |
| Vpp to Enable Low Time                 | tPLEL             | 0   | -   | ns   |
| Data Hold Time                         | <sup>t</sup> EHQZ | 2.0 | -   | μs   |
| Vpp Hold Time                          | tehpl             | 0   | -   | ns   |
| Enable (Program) Active Time           | teleh             | 1*  | 55  | ms   |
| Enable (E/Progr) Pulse Transition Time | tT(PE)            | 5   |     | ns   |
| Vpp Rise and Fall Time from 5 to 25 V  | tR, tF            | 0.5 | 2   | μs   |

•If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified. To ensure that good programming levels have been written, see special programming.

ħ

#### PROGRAMMING OPERATION TIMING DIAGRAM



#### **PROGRAMMING INSTRUCTIONS**

Before programming, the memory should be submitted to a full ERASE operation to ensure every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for PROGRAM mode, the VPP input (pin 21) should be raised to +25 V. The V<sub>CC</sub> supply voltage is the same as for the READ operation. Programming data is entered in 8-bit words through the data out (DQ) terminals while  $\vec{E}/Progr$  is high. Only "0's" will be programmed when "0's" and "1's" are entered in the data word.

After address and data setup, a 50 ms program pulse (V<sub>IH</sub> to V<sub>IL</sub>) is applied to the  $\bar{E}/Progr$  input. A program pulse is applied to each address location to be programmed. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the  $\bar{E}/Progr$  input.

Multiple MCM2532s may be programmed in parallel with the same data by connecting together like inputs and applying the program pulse to the  $\overline{E}/\overline{Progr}$  inputs. Different data may be programmed into multiple MCM2532s connected in parallel by using the PROGRAM INHIBIT mode. Except for the  $\overline{E}/\overline{Progr}$  pin, all like inputs may be common.

PROGRAM VERIFY for the MCM2532 is the read operation.

#### SPECIAL PROGRAMMING

The MCM2532 can be programmed with pulses as short as 2 milliseconds to minimize programming time. This can represent considerable cost savings when programming a large number of devices.

To take full advantage of the shorter programming pulses, an iterative algorithm is recommended. Actual programming algorithms can be varied provided the following conditions are met: 1) Program pulses will be applied one to each seq quential location (no multiple pulses at one location); and 2) after the part programs successfully, five additional 2 millisecond pulses should be applied at each location.

Using this iterative method, the programming time per location becomes 12 milliseconds minimum to 50 milliseconds maximum.

#### **READ OPERATION**

After access time, data is valid at the outputs in the READ mode.

#### ERASING INSTRUCTIONS

The MCM2532 can be erased by exposure to high intensity shortwave ultraviolet light, with a wave-length of 2537 angstroms. The recommended integrated does (i.e., UV-intensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2532 should be positioned about one inch away from the UV-tubes.

#### RECOMMENDED OPERATING PROCEDURES

After erasure and reprogramming of the EPROM, it is recommended that the quartz window be covered with an opaque self-adhesive cover. It is important that the self-adhesive cover not leave any residue on the quartz if it is removed to allow another erasure.



ł

ű

## TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

#### TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

#### WAVEFORMS Waveform Input Output Symbol Must Be Will Be Valid Valid Change Will Change From H to L From H to L Change Will Change From L to H From L to H Don't Care: Changing: Any Change State Permitted Unknown High Impedance

# EPROM



MOS (N-CHANNEL, SILICON-GATE)

8192 × 8-BIT

UV ERASABLE

PROGRAMMABLE READ

ONLY MEMORY

L SUFFIX CERAMIC PACKAGE

ALSO AVAILABLE - CASE 716

C SUFFIX

FRIT-SEAL CERAMIC PACKAGE

CASE 623A

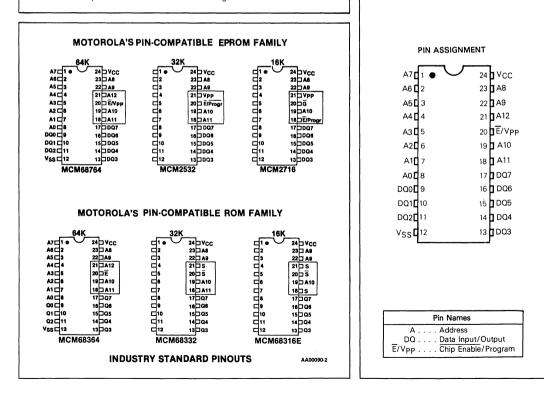
1

1

1

100




The MCM68764 is a 65,536-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 64K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

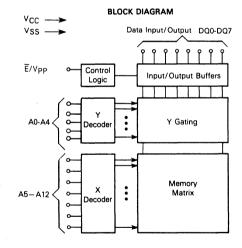
For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin mask programmable ROMs are available for large volume production runs of systems initially using the MCM68764.

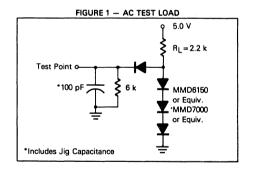
- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 8192 Bytes of 8 Bits

 Power Dissipation 120 mA Active Maximum 25 mA Standby Maximum

- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68764 350 ns MCM68764-35
- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A364 Mask Programmable ROM




## ABSOLUTE MAXIMUM RATINGS (See Note)


| Rating                                           | Value         | Unit |
|--------------------------------------------------|---------------|------|
| Temperature Under Bias                           | - 10 to + 80  | °C   |
| Operating Temperature Range                      | 0 to + 70     | °C   |
| Storage Temperature                              | -65 to +125   | °C   |
| All Input or Output Voltages with Respect to VSS | +6 to -0.3    | V    |
| Vpp Supply Voltage with Respect to VSS           | + 28 to - 0.3 | V    |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

# MODE SELECTION

|                |                       | Pin Number            |                        |           |  |  |  |
|----------------|-----------------------|-----------------------|------------------------|-----------|--|--|--|
| Mode           | 9-11,<br>13-17,<br>DQ | 12<br>V <sub>SS</sub> | 20<br>Ē/Vpp            | 24<br>VCC |  |  |  |
| Read           | Data out              | VSS                   | VIL                    | Vcc       |  |  |  |
| Output Disable | High-Z                | VSS                   | VIН                    | Vcc       |  |  |  |
| Standby        | High-Z                | VSS                   | VIH                    | Vcc       |  |  |  |
| Program        | Data in               | VSS                   | Pulsed<br>VILP to VIHP | Vcc       |  |  |  |





D

EPROM

# DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

### CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V periodically sampled rather than 100% tested)

| Characteristic                             | Symbol | Тур | Max | Unit |
|--------------------------------------------|--------|-----|-----|------|
| Input Capacitance (Vin = 0 V) Except E/Vpp | Cin    | 4.0 | 6.0 | pF   |
| Input Capacitance E/Vpp                    | Cin    | 60  | 100 | pF   |
| Output Capacitance (Vout=0 V)              | Cout   | 8.0 | 12  | pF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t/\Delta V$ .

#### RECOMMENDED DC OPERATING CONDITIONS

|                    | Parameter             | Symbol | Min  | Nom | Max     | Unit |
|--------------------|-----------------------|--------|------|-----|---------|------|
| Supply Voltage     | MCM68764, MCM68764-35 | Vcc    | 4.75 | 5.0 | 5.25    | V    |
| Input High Voltage |                       | VIH    | 2.0  | -   | VCC+1.0 | V    |
| Input Low Voltage  |                       | VIL    | -0.1 | -   | 0.8     | V    |

#### RECOMMENDED DC OPERATING CHARACTERISTICS

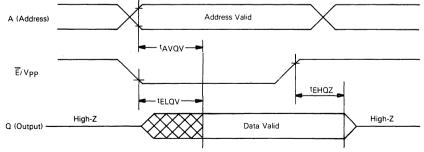
| Characteristic                                                     | Condition                      | Symbol          | M   | CM687 | 64   | Units |
|--------------------------------------------------------------------|--------------------------------|-----------------|-----|-------|------|-------|
| Characteristic                                                     | Condition                      | Symbol          | Min | Тур   | Max  | Units |
| Address Input Sink Current                                         | V <sub>in</sub> = 5.25 V       | lin             | -   | -     | 10   | μA    |
| Output Leakage Current                                             | V <sub>out</sub> = 5.25 V      | LO              | -   | -     | 10   | μΑ    |
| E/Vpp Input Sink Current                                           | $\overline{E}/V_{PP} = 0.4$    | <sup>I</sup> EL |     | -     | 100  | μΑ    |
|                                                                    | $\overline{E}/V_{PP} = 2.4$    | IEH = IPL       | -   | -     | 400  | μA    |
| V <sub>CC</sub> Supply Current (Standby) MCM68764                  | $\overline{E}/V_{PP} = V_{IH}$ | ICC1            | -   | -     | 25   | mΑ    |
| V <sub>CC</sub> Supply Current (Standby) MCM68764-35               | Ē/Vpp=VIH                      | ICC1            | -   | -     | 25   | mΑ    |
| V <sub>CC</sub> Supply Current (Active) MCM68764 (Outputs Open)    | Ē/Vpp=VIL                      | ICC2            | -   | -     | 120  | mΑ    |
| V <sub>CC</sub> Supply Current (Active) MCM68764-35 (Outputs Open) | Ē/Vpp=Vil                      | ICC2            | -   |       | 160  | mA    |
| Output Low Voltage                                                 | I <sub>OL</sub> =2.1 mA        | VOL             | -   | -     | 0.45 | V     |
| Output High Voltage                                                | I <sub>OH</sub> = -400 μA      | Voh             | 2.4 | -     | -    | V     |

# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

| Input Pulse Levels        | 0.8 Volt and 2.2 Volts |
|---------------------------|------------------------|
| Input Rise and Fall Times |                        |
| Input Timing Levels       | 1.0 and 2 Volts        |

 8


٩

(

EPROM

|                               |                         |                   | MCM68764-<br>35 |     | MCM68764 |     |       |
|-------------------------------|-------------------------|-------------------|-----------------|-----|----------|-----|-------|
| Characteristic Condition      | Condition               | Symbol            | Min             | Max | Min      | Max | Units |
| Address Valid to Output Valid | $\overline{E} = V_{IL}$ | <sup>t</sup> AVQV | -               | 350 | _        | 450 | ns    |
| Chip Enable to Output Valid   | - 1                     | <sup>t</sup> ELQV | -               | 350 | - 1      | 450 | ns    |
| Chip Enable to Output High Z  | -                       | <sup>t</sup> EHQZ | 0               | 100 | 0        | 100 | ns    |
| Data Hold from Address        | E = VIL                 | <b>tAXDX</b>      | 0               | -   | 0        | -   | ns    |

# READ MODE TIMING DIAGRAM

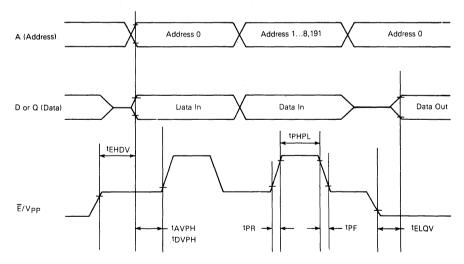


# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS $(T_A = 25 \pm 5^{\circ}C)$

#### **RECOMMENDED PROGRAMMING OPERATING CONDITIONS**

| Parameter                                     | Symbol | Min   | Nom | Max          | Unit |
|-----------------------------------------------|--------|-------|-----|--------------|------|
| Supply Voltage                                | Vcc    | 4.75  | 5.0 | 5.25         | V    |
| Input High Voltage for All Addresses and Data | VIH    | 2.2   | _   | $V_{CC} + 1$ | v    |
| Input Low Voltage for All Addresses and Data  | VIL    | - 0.1 | _   | 0.8          | v    |
| Program Pulse Input High Voltage              | VIHP   | 24    | 25  | 26           | V    |
| Program Pulse Input Low Voltage               | VILP   | 2.0   | Vcc | 6.0          | v    |

# **PROGRAMMING OPERATION DC CHARACTERISTICS**


| Characteristic                                           | Condition                | Symbol    | Min | Тур | Max | Unit |
|----------------------------------------------------------|--------------------------|-----------|-----|-----|-----|------|
| Address Input Sink Current                               | V <sub>in</sub> = 5.25 V | ILI       | -   | -   | 10  | μA   |
| Vpp Program Pulse Supply Current (Vpp = $25 V \pm 1 V$ ) | -                        | IPH       | -   | -   | 30  | mA   |
| Vpp Supply Current (Vpp = 2.4 V)                         | -                        | IPL = IEH | -   | -   | 400 | μA   |
| V <sub>CC</sub> Supply Current (Vpp=5.0 V)               | -                        | ICC       | -   | -   | 160 | mA   |

## AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic                        | Symbol            | Min | Max | Unit |
|---------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                    | . tavph           | 2.0 | -   | μs   |
| Data Setup Time                       | <sup>t</sup> DVPH | 2.0 | -   | μş   |
| Chip Enable to Valid Data             | <sup>t</sup> ELQV | 450 | -   | ns   |
| Chip Disable to Data In               | <sup>t</sup> EHDV | 2.0 | -   | μs   |
| Program Pulse Width                   | tPHPL             | 1.9 | 2.1 | ms   |
| Program Pulse Rise Time               | tPR               | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time               | tPF.              | 0.5 | 2.0 | μs   |
| Cumulative Programming Time Per Word* | tCP               | 12  | 50  | ms   |

Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 8, 192 address locations in sequence. Multiple blocks are used to accumulate programming time (t<sub>C</sub>p). If less than 25 two millisecond pulses are required to verify programming, then 5 additional 2 millisecond pulses are required to ensure proper operating margins (i.e., 2 ms + 5 × 2 ms = 12 ms minimum t<sub>C</sub>p).

#### PROGRAMMING OPERATION TIMING DIAGRAM



ĩ

Þ

)

## **PROGRAMMING INSTRUCTIONS**

Before programming, the memory should be submitted to a full erase operation to ensure that every bit is in the "1" state (represented by Output High). Data is entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet erasure.

To set the memory up for Program Mode, the  $\overline{E}/Vpp$  input (Pin 20) should be between +2.0 and +6.0 V, which will three-state the outputs and allow data to be setup on the DQ terminals. The  $V_{CC}$  voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse  $(V|_H \text{ to } V|_HP)$  is applied to the  $\overline{E}/V_PP$  input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68764s may be programmed in parallel by connecting like inputs and applying the program pulse to the E/Vpp inputs. Different data may be programmed into multiple MCM68764s connected in parallel by selectively applying the programming pulse only to the MCM68764s to be programmed.

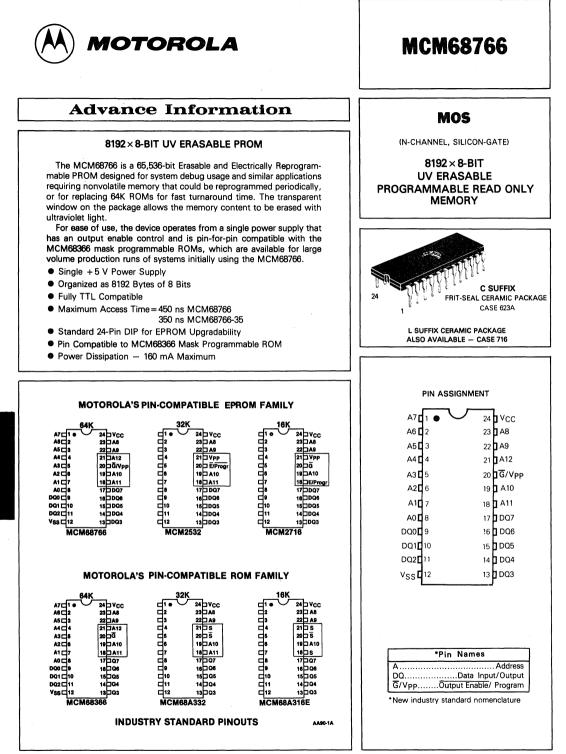
#### **READ OPERATION**

After access time, data is valid at the outputs in the Read mode. A single input  $(\overline{E}/Vpp)$  enables the outputs and puts the chip in active or standby mode. With  $\overline{E}/Vpp = "0"$  the

outputs are enabled and the chip is in active mode; with  $\overline{E}/Vpp = ''1''$  the outputs are three-stated and the chip is in standby mode. During standby mode, the power dissipation is reduced.

Multiple MCM68764s may share a common data bus with like outputs OR-tied together. In this configuration, only one  $\overline{E}/Vpp$  input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

#### ERASING INSRUCTIONS


The MCM68764 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UVintensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68764 should be positioned about one inch away from the UV-tubes.

#### **RECOMMENDED OPERATING PROCEDURES**

After erasure and reprogramming of the EPROM, it is recommended that the quartz window be covered with an opaque self-adhesive cover. It is important that the selfadhesive cover not leave any residue on the quartz if it is removed to allow another erasure.



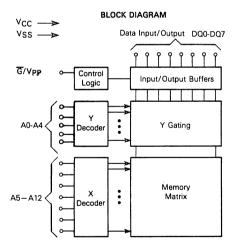
đ

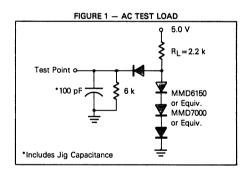


This document contains information on a new product. Specifications and information herein are subject to change without notice.

D

# ABSOLUTE MAXIMUM RATINGS


| Rating                                           | Value        | Unit |
|--------------------------------------------------|--------------|------|
| Temperature Under Bias                           | - 10 to + 80 | °C   |
| Operating Temperature Range                      | 0 to + 70    | °C   |
| Storage Temperature                              | -65 to +125  | °C   |
| All Input or Output Voltages with Respect to VSS | +6 to -0.3   | Vdc  |
| Vpp Supply Voltage with Respect to VSS           | + 28 to -0.3 | Vdc  |


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

# MODE SELECTION

|                | Pin Number            |                 |                         |                       |  |  |  |
|----------------|-----------------------|-----------------|-------------------------|-----------------------|--|--|--|
| Mode           | 9-11,<br>13-17,<br>DQ | 12<br>VSS       | 20<br>G/V <sub>PP</sub> | 24<br>V <sub>CC</sub> |  |  |  |
| Read           | Data Out              | Vss             | VIL                     | Vcc                   |  |  |  |
| Output Disable | High-Z                | VSS             | ViH                     | Vcc.                  |  |  |  |
| Program        | Data In               | V <sub>SS</sub> | Pulsed<br>VILP to VIHP  | Vcc                   |  |  |  |





# EPROM

1

Q

ł

# **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}C$ , $V_{CC} = 5 V$ periodically sampled rather than 100% tested)

| Characteristic                             | Symbol          | Тур | Max | Unit |
|--------------------------------------------|-----------------|-----|-----|------|
| Input Capacitance (Vin = 0 V) Except G/Vpp | C <sub>in</sub> | 4.0 | 6.0 | pF   |
| Input Capacitance (G/Vpp)                  | Cin             | 60  | 100 | pF   |
| Output Capacitance (V <sub>out</sub> =0 V) | Cout            | 8.0 | 12  | pF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t/\Delta V$ .

# DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

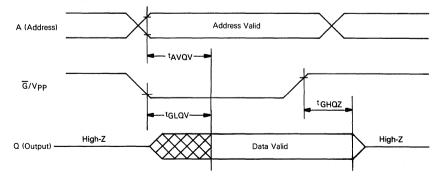
# RECOMMENDED DC OPERATING CONDITIONS

| Parameter                               | Symbol | Min  | Nom | Max                  | Unit |
|-----------------------------------------|--------|------|-----|----------------------|------|
| Supply Voltage MCM68766 and MCM68766-35 | Vcc    | 4.75 | 5.0 | 5.25                 | ٧    |
| Input High Voltage                      | VIH    | 2.0  | -   | V <sub>CC</sub> +1.0 | V    |
| Input Low Voltage                       | VIL    | -0.1 | -   | 0.8                  | ٧    |

# DC OPERATING CHARACTERISTICS

| Characteristic                    | Condition                     | Symbol          | Min | Тур | Max  | Units |
|-----------------------------------|-------------------------------|-----------------|-----|-----|------|-------|
| Address Input Sink Current        | V <sub>in</sub> = 5.25 V      | lin             | -   | -   | 10   | μA    |
| Output Leakage Current            | V <sub>out</sub> =5.25 V      | <sup>1</sup> LO | -   | -   | 10   | μA    |
| G/Vpp Input Sink Current          | G/VPP=0.4 V                   | IGL             | -   | -   | 100  | μA    |
|                                   | $\overline{G}/V_{PP} = 2.4 V$ | IGH = IPL       | 1   | 1   | 400  | μA    |
| VCC Supply Current (Outputs Open) | G/VPP=VIL                     | ICC             | -   | -   | 160  | mΑ    |
| Output Low Voltage                | I <sub>OL</sub> =2.1 mA       | VOL             | 1   | -   | 0.45 | V     |
| Output High Voltage               | I <sub>OH</sub> = -400 μA     | ∨он             | 2.4 | -   | -    | ٧     |

# AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature range unless otherwise noted)

| Input Pulse Levels        | 0.8 Volt and 2.2 Volts |
|---------------------------|------------------------|
| Input Rise and Fall Times |                        |

| Input Timing Levels  | 1.0 Volt and 2 Volts |
|----------------------|----------------------|
| Output Timing Levels | 0.8 Volt and 2 Volts |
| Output Load          |                      |

|                               |                         |                   | MCM68766-<br>35 |     | мсм |     |       |
|-------------------------------|-------------------------|-------------------|-----------------|-----|-----|-----|-------|
| Characteristic                | Condition               | Symbol            | Min             | Max | Min | Max | Units |
| Address Valid to Output Valid | $\overline{G} = V_{IL}$ | tAVQV             | -               | 350 | -   | 450 | ns    |
| G to Output Valid             | -                       | <b>I</b> GLQV     | -               | 150 | -   | 150 | ns    |
| G to Hi-Z Output              | -                       | <sup>t</sup> GHQZ | 0               | 100 | 0   | 100 | ns    |
| Data Hold from Address        | $\overline{G} = V_{IL}$ | <sup>t</sup> AXDX | 0               | -   | 0   | -   | ns    |

# READ MODE TIMING DIAGRAM

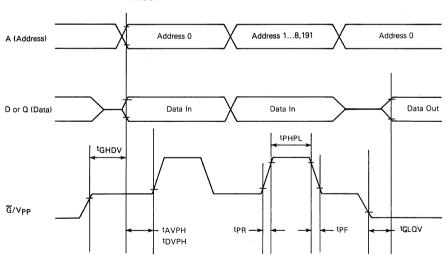


Ð

# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (T\_A=25 $\pm$ 5°C)

# RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                                     | Symbol | Min  | Nom | Max          | Unit |
|-----------------------------------------------|--------|------|-----|--------------|------|
| Supply Voltage                                | Vcc    | 4.75 | 5.0 | 5.25         | V    |
| Input High Voltage for All Addresses and Data | VIH    | 2.2  | -   | $V_{CC} + 1$ | V    |
| Input Low Voltage for All Addresses and Data  | VIL    | -0.1 | -   | 0.8          | V    |
| Program Pulse Input High Voltage              | VIHP   | 24   | 25  | 26           | V    |
| Program Pulse Input Low Voltage               | VILP   | 2.0  | Vcc | 6.0          | V    |


# PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                                           | Condition                | Symbol    | Min | Тур      | Max | Unit |
|----------------------------------------------------------|--------------------------|-----------|-----|----------|-----|------|
| Address Input Sink Current                               | V <sub>in</sub> = 5.25 V | ILI I     | -   | -        | 10  | μA   |
| Vpp Program Pulse Supply Current (Vpp = $25 V \pm 1 V$ ) | -                        | ІРН       | 1   | <u> </u> | 30  | mA   |
| Vpp Supply Current (Vpp=2.4 V)                           | -                        | IPL = IGH | -   | -        | 400 | μΑ   |
| VCC Supply Current (Vpp=5 V)                             | -                        | ICC       | -   | -        | 160 | mA   |

# AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

| Characteristic                        | Symbol            | Min | Max | Unit |
|---------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                    | tavph             | 2.0 |     | μs   |
| Data Setup Time                       | <sup>t</sup> DVPH | 2.0 | -   | μs   |
| Output Enable to Valid Data           | <sup>t</sup> GLQV | 150 | -   | ns   |
| Output Disable to Data In             | <sup>t</sup> GHDV | 2.0 | -   | μs   |
| Program Pulse Width                   | <b>tPHPL</b>      | 1.9 | 2.1 | ms   |
| Program Pulse Rise Time               | tpr               | 0.5 | 2.0 | μs   |
| Program Pulse Fall Time               | tPF               | 0.5 | 2.0 | μs   |
| Cumulative Programming Time Per Word* | tCP               | 12  | 50  | ms   |

\*Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 8, 192 address locations in sequence. Multiple blocks are used to accumulate programming time (t<sub>CP</sub>).



# PROGRAMMING OPERATION TIMING DIAGRAM

2.24

d

# PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

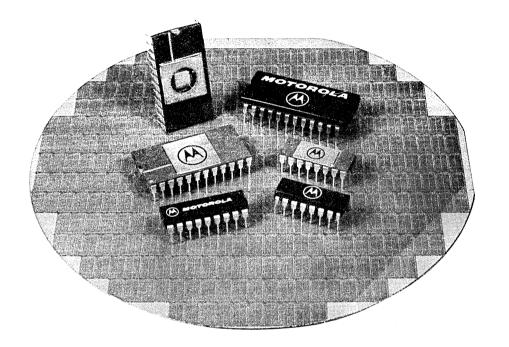
To set the memory up for Program Mode, the  $\overline{G}/Vpp$  input (Pin 20) should be between + 2.0 and + 6.0 V, which will three-state the outputs and allow data to be set up on the DQ terminals. The V<sub>CC</sub> voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse (VI<sub>H</sub> to V<sub>IH</sub>P) is applied to the G/V<sub>PP</sub> input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68766s may be programmed in parallel by connecting like inputs and applying the program pulse to the  $\overline{G}/Vpp$  inputs. Different data may be programmed into multiple MCM68766s connected in parallel by selectively applying the programming pulse only to the MCM68766s to be programmed.

## READ OPERATION

After access time, data is valid at the outputs in the Read mode. With  $\overline{G}/Vpp="0"$  the outputs are enabled; with  $\overline{G}/Vpp="1"$  the outputs are three-stated.

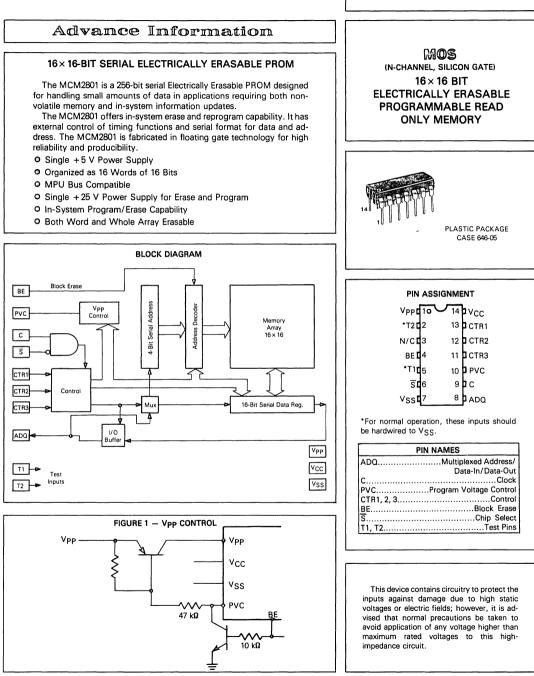

Multiple MCM68766s may share a common data bus with like outputs OR-tied together. In this configuration only one  $\overline{G}/Vpp$  input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

# **ERASING INSRUCTIONS**

The MCM68766 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UVintensity X exposure time) is 15 Ws/cm<sup>2</sup>. As an example, using the "Model 30-000" UV Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68766 should be positioned about one inch away from the UV-tubes.

# **RECOMMENDED OPERATING PROCEDURES**

After erasure and reprogramming of the EPROM, it is recommended that the quartz window be covered with an opaque self-adhesive cover. It is important that the self-adhesive cover not leave any residue on the quartz if it is removed to allow another erasure.






# MOS EEPROM

EEPROM





This document contains information on a new product. Specifications and information herein are subject to change without notice.

# MODE SELECTION

|                   |                                    | Pin Number |          |            |            |            |           |  |  |
|-------------------|------------------------------------|------------|----------|------------|------------|------------|-----------|--|--|
| Mode              | 1<br>VPP                           | 6<br>S     | 7<br>VSS | 11<br>CTR3 | 12<br>CTR2 | 13<br>CTR1 | 14<br>VCC |  |  |
| Standby           | VSS or VCC                         | VIH        | Vss      | VIH        | ViH        | ViH        | Vcc       |  |  |
| Word Erase        | VPP                                | VIL        | VSS      | VIH        | VIL        | VIL        | Vcc       |  |  |
| Write             | VPP                                | VIL        | Vss      | VIL        | VIH        | VIL        | Vcc       |  |  |
| Serial Data Out   | VSS or VCC                         | VIL        | Vss      | VIH        | VIH        | VIL        | Vcc       |  |  |
| Serial Address In | VSS or VCC                         | VIL        | Vss      | VIL.       | VIL        | ∨ін        | Vcc       |  |  |
| Serial Data In    | VSS or VCC                         | VIL        | Vss      | VIH        | VIL        | ViH        | Vcc       |  |  |
| Read              | VSS or VCC                         | VIL        | VSS      | VIL        | VIH        | VIH        | Vcc       |  |  |
| Standby           | V <sub>SS</sub> or V <sub>CC</sub> | VIH.       | VSS      | VIL        | VIL        | VIL        | Vcc       |  |  |

# ABSOLUTE MAXIMUM RATINGS (1)

| Rating                                                        | Value         | Unit |
|---------------------------------------------------------------|---------------|------|
| Temperature Under Bias                                        | - 40 to + 85  | °C   |
| Operating Temperature Range                                   | 0 to +70      | °C   |
| Storage Temperature                                           | - 55 to + 150 | °C   |
| All Input or Output Voltages with Respect to VSS (Except PVC) | +8 to -0.5    | V    |
| Vpp Supply Voltage with Respect to VSS                        | + 28 to -0.5  | V    |
| PVC Voltage with Respect to VSS                               | + 28 to -0.5  | V .  |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

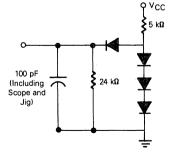
# RECOMMENDED DC OPERATING CONDITIONS(Full operating voltage and temperature range unless otherwise noted.)

| Parameter          | Symbol     | Min         | Nom       | Max                  | Unit |
|--------------------|------------|-------------|-----------|----------------------|------|
| Supply Voltage     | VCC<br>VPP | 4.5<br>24.0 | 5.0<br>25 | 5.5<br>26.0          | v    |
| Input High Voltage | VIH        | 2.4         | -         | V <sub>CC</sub> +1.0 | V    |
| Input Low Voltage  | VIL        | -0.1        | -         | 0.8                  | V    |

# **OPERATING DC CHARACTERISTICS**

| Characteristic                    | Condition                                                                             | Symbol | Min | Тур | Max | Units |
|-----------------------------------|---------------------------------------------------------------------------------------|--------|-----|-----|-----|-------|
| Input Sink Current                | 0 <vin<vcc< td=""><td>lin</td><td>· -</td><td>-</td><td>10</td><td>μA</td></vin<vcc<> | lin    | · - | -   | 10  | μA    |
| V <sub>CC</sub> Supply Current    | V <sub>CC</sub> =5.5 V                                                                | 1CC    | -   | -   | 30  | mA    |
| Vpp Supply Current                | Vpp=26.0 V                                                                            | IPP    | -   | -   | 4.0 | mA    |
| Output Low Voltage                | I <sub>OL</sub> =1.0 mA                                                               | VOL    | -   | -   | 0.5 | V     |
| Output High Voltage               | I <sub>OH</sub> = -0.1 mA                                                             | VOH    | 2.4 | -   | -   | V     |
| PVC Current (Write or Word Erase) | PVCL=1 V                                                                              | PVCON  | 200 | -   | -   | μA    |
| PVC Leakage                       | PVCH = 26 V                                                                           | PVCOFF | -   | - 1 | 5   | μA    |

# FIGURE 2 - OUTPUT LOAD



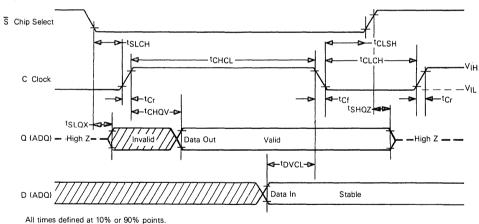

ß

**CAPACITANCE** (f = 1.0 MHz,  $T_A = 25$  °C,  $V_{CC} = +5$  V, periodically sampled rather than 100% tested.)

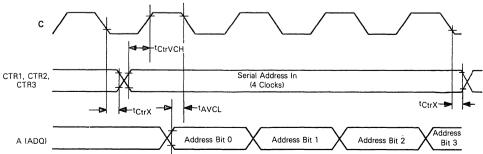
| Characteristic                | Symbol | Тур | Max | Unit |
|-------------------------------|--------|-----|-----|------|
| Input Capacitance (Vin=0 V)   | Cin    | -   | 6.0 | pF   |
| Output Capacitance (Vout=0 V) | Cout   | -   | 12  | рF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I\Delta_t/\Delta V$ .




# AC OPERATING CONDITIONS AND CHARACTERISTICS

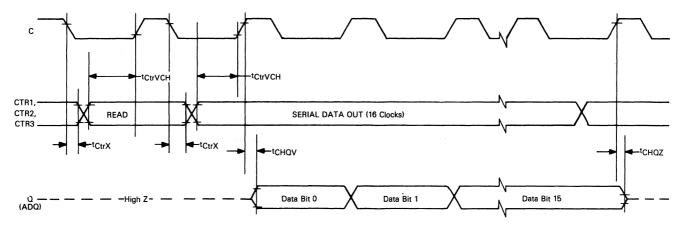
| Input Pulse Levels        | 0.65 Volts and 2.6 Volts |
|---------------------------|--------------------------|
| Input Rise and Fall Times |                          |
| Input Timing Levels       | 1.0 Volt and 3.8 Volts   |


| Characteristic                        | Symbol              | Min | Max  | Unit |
|---------------------------------------|---------------------|-----|------|------|
| Erase Time                            | <sup>t</sup> ERASE  | 100 | -    | ms   |
| Write Time                            | twrite              | 10  | -    | ms   |
| Clock High Level Hold Time            | <sup>t</sup> CHCL   | 4   | 10   | μs   |
| Clock Low Level Hold Time             | <sup>t</sup> CLCH   | 4   | - 1  | μs   |
| Clock Rise Time                       | tCr                 | 5   | 1000 | ns   |
| Clock Fall Time                       | tCf                 | 5   | 1000 | ns   |
| Chip Select Setup                     | <sup>t</sup> SLCH   | 1   | -    | μs   |
| Chip Select Hold                      | <sup>t</sup> CLSH   | 1   |      | μs   |
| Data Out Delay                        | tCHQV               | -   | 1    | μs   |
| Address In Setup                      | <sup>t</sup> AVCL   | 1   | -    | μs   |
| Data In Setup                         | <sup>t</sup> DVCL   | 1   | -    | μs   |
| Control Setup Time                    | <sup>t</sup> CtrVCH | 1   | -    | μs   |
| Control Hold Time                     | tCtrX               | 50  | -    | ns   |
| Data-Off Time (from the Clock)        | <sup>t</sup> CHQZ   | -   | 3.0  | μs   |
| Chip Select Low to Output Active Time | <sup>t</sup> SLQX   |     | 2.0  | μs   |
| Data-Off Time (from Chip Select)      | tSHQZ               | -   | 2.0  | μs   |

Clock Cycle Detail

TIMING DIAGRAMS

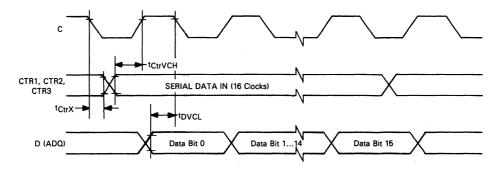



Serial Address In

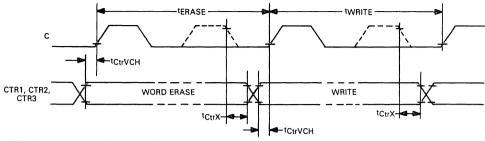


EEPROM




READ AND SERIAL DATA OUT




587

-

SERIAL DATA IN



# ERASE-WRITE SEQUENCE



NOTE: One clock pulse is sufficient to load a new control code.

# FUNCTIONAL DESCRIPTION

The memory stores sixteen words, each of sixteen bits. All functions are selected by a 3-bit parallel control code. The clock line is used to strobe these codes and to serially shift data and addresses.

# Read-Out

- 1. The 4-bit serial address is shifted on the ADQ line while the SERIAL ADDRESS-IN code is applied on the three control pins.
- The READ instruction is strobed with one clock pulse. This reads the word from the new address in the memory array and parallel loads it into the data register.
- While the SERIAL DATA-OUT code is being applied, data is shifted out on the ADQ pin with 16 clock pulses. In this mode, the ADQ pin output buffer is active.

## Writing

- 1. The address is changed, if necessary, in the same manner as in the readout.
- While the SERIAL DATA-IN code is being applied, data is shifted in on the ADQ pin with 16 clock pulses. If the data to be written has already been shifted into the data register, it is not necessary to re-enter the 16 bits, so this step may be omitted.
- The WORD ERASE code is strobed in with one clock pulse. After the specified ERASE time, the addressed word is erased.
- The WRITE code is strobed in with one clock pulse. After the specified WRITE time, a STANDBY code can be strobed in to stop writing. Data will be programmed at the specified address.

It is also possible to change the sequence by erasing a memory location before starting a write sequence.

# Standby

Either of the two STANDBY codes, when strobed in with a clock pulse, puts the memory in a quiescent state. The output is then in the high-impedance state and the absence or presence of the clock will not affect the device.

#### **Pin Description**

The active high clock signal (C) is used for shifting addresses and data into or out of the chip. It is also used for strobing control codes.

The  $\bar{I}/O$  pin (ADQ) is used for entering addresses and data-in. It is in the output state only for shifting output data.

The active low Chip Select pin  $(\overline{S})$  is only used to block the clock and put the ADQ buffer into the high-impedance mode. It has no influence on the operating status of the device and does not force a standby condition.

The programming voltage control pin (PVC) is an opendrain output that is active when a WORD ERASE or WRITE control code is strobed in. As shown in Figure 1, it can be used to control the Vpp supply applied to the circuit. The BLOCK ERASE (BE) pin can be used to clear the whole array. As the PVC output is not active in this state, the programming voltage should be directly applied to the Vpp pin for the specified erase time.

The Test inputs (TEST1 and TEST2) are provided for testing purpose only and should be connected to  $V_{SS}$  in any application.

#### **Data Protection**

When Vpp is turned off, data stored in the array is protected. The programming voltage should not be applied to the Vpp pin if V<sub>CC</sub> is not present. Therefore, use of the PVC control output, which is controlled by the V<sub>CC</sub> supply is recommended. Using this feature, Vpp and V<sub>CC</sub> can be turned on or off in any sequence without disturbing data in the array. However, to avoid spurious control codes being strobed into the device, all inputs should be stable when Vpp is on.

#### **General Comments**

The erased state corresponds to a logical zero at the ADQ output.

WRITE (for any address) must be preceded by an ERASE at the same address.

Vpp is necessary for WRITE, WORD ERASE or BLOCK ERASE. In all other cases, it can be switched to high impedance, V<sub>CC</sub> or V<sub>SS</sub>.





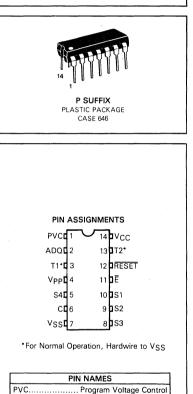
MOS (N-CHANNEL, SILICON GATE)

32 × 32 BIT ELECTRICALLY ERASABLE PROGRAMMABLE

READ ONLY MEMORY

# **Advance Information**

# 1K-BIT SERIAL ELECTRICALLY ERASABLE PROM


The MCM2802 is a 1K-bit serial Electrically Erasable PROM designed for applications requiring both nonvolatile memory and in-system information updates.

The MCM2802 offers in-system erase and reprogram capability. In digital tuning systems, it provides storage for up to 32 channels. It has external control of timing functions and serial format for data and address. The MCM2802 is fabricated in floating gate technology for high reliability and producibility.

- Single +5 V Power Supply in Read Mode
- Organized as 32 Bytes of 32 Bits
- MPU Bus Compatible
- 0-100 kHz Clock Rate

PROM

- + 25 V Power Supply for Erase and Program
- In-system Program/Erase Capability
- Both Word and Array Erasable
- Expandable to 16K-bit Systems



ADQ ......Multiplexed Address/Data-In/

 T1, T2......Test Pins

 S1, S2, S3, S4.....Chip Select

 C.....Clock

 E

 RESET

| BLOCK DIAGRAM                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PVC O<br>Reset<br>+ Vpp<br>Block Erase<br>Control<br>0 32-Bit<br>D 32-Bit<br>D 32-Bit<br>D 32-Bit<br>D 35-Bit                                     |  |
| Pin 14 = V <sub>CC</sub><br>Pin 7 = V <sub>SS</sub><br>This document contains information on a new product. Specifications and information herein |  |

This document contains information on a new product. Specifications and information herein are subject to change without notice.

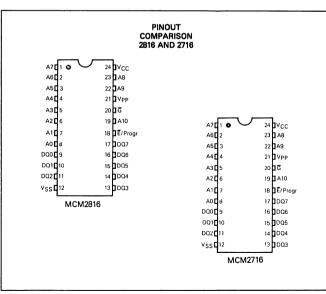
ADI-908/5-82

Data-Out

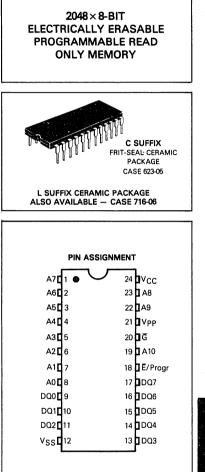


MOS (N-CHANNEL, SILICON GATE)

# Advance Information


# 2048 × 8-BIT ELECTRICALLY ERASABLE PROM

The MCM2816 is a 16,384-bit Electrically Erasable Programmable Read Only Memory designed for handling data in applications requiring both nonvolatile memory and in-system reprogramming. The industry standard pinout in a 24-pin dual-in-line package makes the MCM2816 EEPROM compatible with the popular MCM2716 EPROM.


The MCM2816 saves time and money because of the in-system erase and reprogram capability. While Vpp is at 25 V and  $\overline{G}$  is at VIL, a 100 ms active high TTL erase pulse applied to the  $\overline{E}/Progr$  pin allows the entire memory to be erased to the "1" state. In addition to in-system programmability, this new-generation PROM is programmable on the standard EPROM programmer.

For ease of use, the device operates in the read mode from a single power supply and has a static power-down mode. The MCM2816 is fabricated in floating gate technology for high reliaiblity and producibility.

- Single +5 V Power Supply
- Automatic Power-Down Mode (Standby)
- Single + 25 V Power Supply for Erase and Program
- Organized as 2048 Bytes of 8 Bits
- Maximum Access Time = 450 ns MCM2816
- Pin Compatible to MCM68316E and MCM2716
- In-System Program/Erase Capability
- Chip Erase Time of 10 ms



This document contains information on a new product. Specifications and information herein are subject to change without notice.



|         | *Pin Names                |
|---------|---------------------------|
| A       | Address                   |
| DQ      | Data Input/Output         |
| Ē/Progr | Chip Enable/Program-Erase |
| G       | Output Enable             |

EEPROM

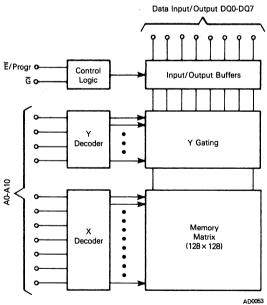
# ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                           | Value         | Unit |
|--------------------------------------------------|---------------|------|
| Temperature Under Bias                           | - 10 to + 80  | °C   |
| Operating Temperature Range                      | 0 to +70      | °C   |
| Storage Temperature                              | -65 to +125   | °C   |
| All Input or Output Voltages with Respect to VSS | +6 to -0.3    | V    |
| Vpp Supply Voltage with Respect to VSS           | + 28 to - 0.3 | V    |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

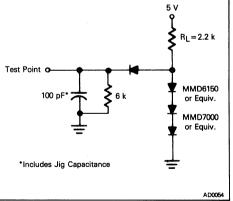
# MODE SELECTION


|                 |                      |                       | Pin Nu               | mber       |           |           |
|-----------------|----------------------|-----------------------|----------------------|------------|-----------|-----------|
| Mode            | 9-11,<br>13-17<br>DQ | 12<br>V <sub>SS</sub> | 18<br>Ē/Progr        | 20<br>G    | 21<br>Vpp | 24<br>VCC |
| Read            | Data Out             | VSS                   | VIL                  | VIL        | Vcc**     | Vcc       |
| Output Disable  | High Z               | VSS                   | Don't Care           | VIH        | Vcc**     | Vcc       |
| Standby         | High Z               | VSS                   | VIH                  | Don't Care | Vcc**     | Vcc       |
| Program         | Data In              | VSS                   | Pulsed<br>VIL to VIH | VIH        | VIHP      | Vcc       |
| Program Verify  | Data Out             | VSS                   | VIL                  | VIL        | VIHP      | Vcc       |
| Program Inhibit | High Z               | VSS                   | VIL                  | VIH        | VIHP      | Vcc       |
| Erase           | High Z*              | V <sub>SS</sub>       | Pulsed<br>VIL to VIH | VIL        | VIHP      | Vcc       |

\*Outputs momentarily active before going to High Z at  $\overline{E} = V_{IH}$ .

\*\*or VSS

ŀ


EEPROM



#### BLOCK DIAGRAM



FIGURE 1 - AC TEST LOAD



# DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

# RECOMMENDED DC OPERATING CONDITIONS

| Parameter                 | Symbol | Min   | Nom | Max                  | Unit |
|---------------------------|--------|-------|-----|----------------------|------|
| Supply Voltage MCM2816-45 | Vcc    | 4.75  | 5.0 | 5.25                 | V    |
|                           | VPP    | Vss   | 5.0 | VCC+0.6              | v    |
| Input High Voltage        | VIH    | 2.0   | -   | V <sub>CC</sub> +1.0 | V    |
| Input Low Voltage         | VIL    | - 0.1 | -   | 0.8                  | V    |

# RECOMMENDED DC OPERATING CHARACTERISTICS

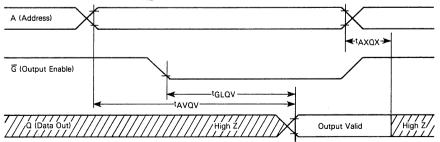
| Characteristic                                          | Condition                                                | Symbol           | Min | Тур | Max  | Units |
|---------------------------------------------------------|----------------------------------------------------------|------------------|-----|-----|------|-------|
| Address, G and E/Progr Input Sink Current               | V <sub>in</sub> =5.25 V                                  | lin              | -   | -   | 10   | μA    |
| Output Leakage Current                                  | V <sub>out</sub> =5.25 V<br>G=5.0 V                      | <sup>I</sup> LO  | -   | -   | 10   | μA    |
| V <sub>CC</sub> Supply Current (Standby) (Outputs Open) | $\overline{E}/Progr = V_{IH}$<br>$\overline{G} = V_{IL}$ | <sup>I</sup> CC1 | -   | -   | 25   | mA    |
| V <sub>CC</sub> Supply Current (Active) (Outputs Open)  | $\overline{G} = \overline{E} / Progr = V_{IL}$           | ICC2             | -   | -   | 100  | mA    |
| Vpp Supply Current*                                     | V <sub>PP</sub> = 5.25 V                                 | IPP1             | -   | 1.0 | 5.0  | mA    |
| Output Low Voltage                                      | I <sub>OL</sub> =2.1 mA                                  | VOL              | -   | -   | 0.45 | V     |
| Output High Voltage                                     | $I_{OH} = -400 \ \mu A$                                  | Voн              | 2.4 | -   | -    | V     |

<sup>•</sup>V<sub>CC</sub> must be applied simultaneously or prior to Vpp. V<sub>CC</sub> must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V<sub>CC</sub> during the read operation, the supply current would then be the sum of Ipp1 and I<sub>CC</sub>. Typical values are for T<sub>A</sub> = 25°C and nominal supply voltages.

# **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}C$ , $V_{CC} = 5$ V, periodically sampled rather than 100% tested)

| Characteristic                | Symbol          | Тур | Max | Unit |
|-------------------------------|-----------------|-----|-----|------|
| Input Capacitance (Vin=0 V)   | C <sub>in</sub> | 4.0 | 6.0 | pF   |
| Output Capacitance (Vout=0 V) | Cout            | 8.0 | 12  | pF   |

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation:  $C = I_{\Delta t} / \Delta V$ .


# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

| Input Pulse Levels        | 0.8 Volt and 2.2 Volts |
|---------------------------|------------------------|
| Input Rise and Fall Times | 20 ns                  |
| Input Timing level        | 1.0 and 2.0 V          |

| Characteristic                  | Characteristic Condition                     |                   | Min | Max | Unit |
|---------------------------------|----------------------------------------------|-------------------|-----|-----|------|
| Address Valid to Output Valid   | $\vec{E}/Progr = \vec{G} = V_{IL}$           | tAVQV             | -   | 450 |      |
| E/Progr to Output Valid         | (Note 2)                                     | <sup>t</sup> ELQV | -   | 450 | 1    |
| Output Enable to Output Valid   | $\overline{E}/Progr = V_{ L}$                | tGLQV             | -   | 120 | ns   |
| E/Progr to High Z Output        |                                              | <sup>t</sup> EHQZ | 0   | 100 | 113  |
| Output Disable to High Z Output | $\overline{E}/Progr = V_{IL}$                | tGHQZ             | 0   | 100 |      |
| Data Hold from Address          | $\overline{E}/Progr = \overline{G} = V_{IL}$ | tAXQX             | 0   | -   |      |

# **READ MODE TIMING DIAGRAMS** ( $\overline{E}$ /Progr = V<sub>IL</sub>)



STANDBY MODE (Output Enable = VIL) Standby Mode (E/Progr = VIH) A (Address) E/Progr Standby Mode Active Mode tEHQZ tELQV (Note 2) Q (Data Out) Output Valid

Note 2:  $t_{ELQV}$  is referenced to  $\overline{E}$ /Progr or stable address, whichever occurs last.

# DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

# RECOMMENDED PROGRAMMING OPERATING CONDITIONS

| Parameter                   | Symbol | Min  | Nom | Max                | Unit |
|-----------------------------|--------|------|-----|--------------------|------|
| Supply Voltage MCM2816-45   | Vcc    | 4.75 | 5.0 | 5.25               | v    |
|                             | VPP    | 24   | 25  | 26                 | , v  |
| Input High Voltage for Data | VIH    | 2.2  | -   | V <sub>CC</sub> +1 | V    |
| Input Low Voltage for Data  | VIL    | -0.1 | -   | 0.8                | V    |

# PROGRAMMING OPERATION DC CHARACTERISTICS

| Characteristic                                               | Condition                       | Symbol | Min | Тур | Max | Unit |
|--------------------------------------------------------------|---------------------------------|--------|-----|-----|-----|------|
| Address, G and E/Progr Input Sink Current                    | V <sub>in</sub> = 5.25 V/0.45 V | IL1    | -   | 1   | 10  | μA   |
| Vpp Supply Current (Vpp = $25 V \pm 1 V$ )                   | $\overline{E}/Progr = V_{IL}$   | IPP1   | -   | 1   | 10  | mA   |
| Vpp Programming Pulse Supply Current (Vpp = $25 V \pm 1 V$ ) | $\overline{E}/Progr = VIH$      | IPP2   | -   | -   | 10  | mA   |
| V <sub>CC</sub> Supply Current                               | -                               | ICC    | -   | -   | 100 | mA   |

# AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

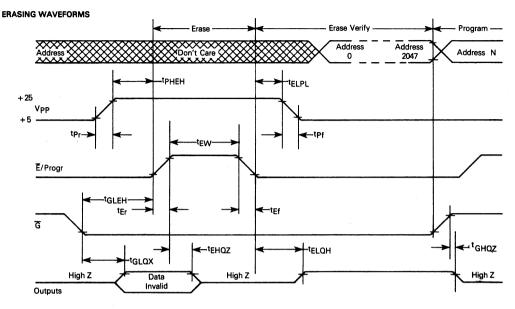
| Characteristic                              | Symbol            | Min | Max | Unit |
|---------------------------------------------|-------------------|-----|-----|------|
| Address Setup Time                          | <sup>t</sup> AVEH | 2.0 | -   | μs   |
| Output Enable High to Program Pulse         | tGHEH             | 2.0 | 1   | μS   |
| Data Setup Time                             | <sup>t</sup> DVEH | 2.0 | -   | μS   |
| Address Hold Time                           | telax             | 2.0 | -   | μs   |
| Output Enable Hold Time                     | telgl             | 2.0 | 1   | μs   |
| Data Hold Time                              | <sup>t</sup> ELDZ | 2.0 | -   | μs   |
| Vpp Setup Time                              | <sup>t</sup> PHEH | 2.0 | -   | μs   |
| Vpp to Enable Low Time                      | <sup>t</sup> ELPL | 2.0 | -   | μs   |
| Output Disable to High Z Output             | tGHQZ             | 0   | 150 | ns   |
| Output Enable to Valid Data (E/Progr = VIL) | tGLQV             | -   | 150 | ns   |
| Progam Pulse Width                          | <sup>t</sup> EHEL | 1   | 10  | ms   |
| Vpp Rise Time                               | tPr               | 50  | -   | ns   |
| Vpp Fall Time                               | tPf               | 50  | -   | ns   |

## Program-Program Verify A (Address) Address N Valid **tELAX** <-tAVEH-> G (Output Enable) <-tGLQV <-tGHQZ D or Q (Data In/Output) Data In Data Out High Z High Z tDVEH+→ teldz-> €-tehel-> telgl tGHEH<sup>\*</sup> Ē/Progr <--tPHEH-->> ←<sup>t</sup>ELPL→ VΡΡ $\infty \infty \infty$ to, Dł

# PROGRAMMING OPERATING TIMING DIAGRAM

# ERASE OPERATION

(Full operating voltage and temperature range unless otherwise noted)


# DC ERASING CHARACTERISTICS

| Parameter                                     | Symbol | Conditions                                         | Min  | Тур | Max                | Unit |
|-----------------------------------------------|--------|----------------------------------------------------|------|-----|--------------------|------|
| Input Current (for any input)                 | ILI    | V <sub>in</sub> =5.5 V                             | -    | -   | 10                 | μA   |
| V <sub>CC</sub> Supply Current (Outputs Open) | Icc    | $V_{PP} = 25 V \pm 1 V$<br>$\overline{E} = V_{IH}$ | -    | -   | 50                 | mA   |
| Vpp Supply Current                            | Ірр    | $\frac{V_{PP} = 25 V \pm 1 V}{E = V_{IH}}$         | -    | 5   | 10                 | mA   |
| Input Low Level                               | VIL    | -                                                  | -0.1 | -   | 0.8                | V    |
| Input High Level                              | VIH    | -                                                  | 2.0  | -   | V <sub>CC</sub> +1 | V    |

# AC ERASING CHARACTERISTICS

| Parameter                                                       | Symbol            | Min | Тур | Max | Unit |
|-----------------------------------------------------------------|-------------------|-----|-----|-----|------|
| G Setup Time                                                    | tGLEH             | 2   |     | -   | μs   |
| E/Progr to Output Delay                                         | teloh             | 2   | -   | -   | μS   |
| Erase Pulse Width                                               | tEW               | 1   | 10  | 100 | ms   |
| Erase Pulse Rise Time                                           | tEr               | 5   | -   |     | ns   |
| Erase Pulse Fall Time                                           | tEf               | 5   | -   | -   | ns   |
| Vpp Rise Time                                                   | tPr               | 50  | -   | -   | ns   |
| Vpp Fall Time                                                   | tPf               | 50  | -   | -   | ns   |
| VPP Setup Time                                                  | tPHEH             | 2   | -   | -   | μs   |
| Vpp to Enable Low Time                                          | <sup>t</sup> ELPL | 2   | -   | -   | μs   |
| Output Enable to Invalid Data ( $\overline{E}/Progr = V_{IH}$ ) | tGLQX             | -   | -   | 150 | ns   |
| Output Disable to High Z Output                                 | tghoz             | 0   | -   | 150 | ns   |
| Data Hold Time                                                  | <sup>t</sup> EHQZ | 2   | -   | -   | μS   |





# FUNCTIONAL DESCRIPTION

All inputs for the operating modes are TTL levels. The power supplies are a +5 V<sub>CC</sub> and a V<sub>PP</sub>. The V<sub>PP</sub> power supply must be at +25 V during Program, Verify, Program Inhibit and Erase, and must be at 0 or +5 V during Read and Deselect.

#### READ MODE

Data is available at the outputs in the read mode 450 ns  $(t_{AVQV})$  from valid addresses with  $\overline{G}$  low or 120 ns  $(t_{GLQV})$  from  $\overline{G}$  with addresses stable.

#### DESELECT MODE

The outputs of two or more EEPROMs may be OR-tied to the same data bus. Only one EEPROM should have its outputs selected ( $\overline{G}$  low) to prevent data bus contention between two devices in this configuration. The outputs of other EEPROMs should be deselected with the  $\overline{G}$  input at a high TTL level.

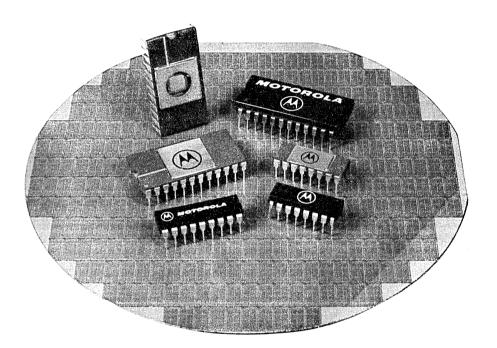
# PROGRAMMING

After each erasure, all bits of the EEPROM are in the "1" state. Data is introduced by selectively programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by electrical erasure.

The EEPROM is in the programming mode when the Vpp power supply is at 25 V and  $\overline{G}$  is at VIH. The data to be programmed is applied 8 bits in parallel to the data output pins.

When the addresses and data are stable, a 10 ms, active high, TTL Program pulse is applied to the E/Progr pin. A program pulse must be applied at each address location to be programmed. The program pulse has a maximum width of 10 ms. The EEPROM must not be programmed with a DC signal applied to the Progr input.

#### **PROGRAM INHIBIT**


Programming of multiple EEPROMs in parallel is easily accomplished. Except for  $\overline{E}/Progr$ , all like inputs of the parallel devices may be common. A low level on the  $\overline{E}/Progr$  input inhibits the EEPROM from being programmed.

#### VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. This is accomplished by performing a read cycle with Vpp at 25 V and  $\overline{E}/Progr$  at  $V_{IL}$ .

#### ERASE

The EEPROM is electrically erased in nearly the same manner as it is programmed. The Vpp is at 25 V and  $\overline{G}$  is at VIL. A 100 ms active high, TTL erase pulse is applied to the  $\overline{E}/Progr$  pin and the entire memory is erased to the "1" state.



MOS ROM

ROM

ROM

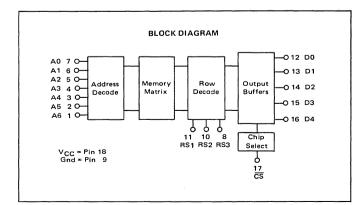
6-2



# MCM6670 MCM6674

# 128c X 7 X 5 CHARACTER GENERATOR

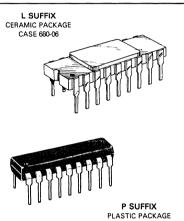
The MCM6670 is a mask-programmable horizontal-scan (row select) character generator containing 128 characters in a 5  $\times$  7 matrix. A 7-bit address code is used to select one of the 128 available characters, and a 3-bit row select code chooses the appropriate row to appear at the outputs. The rows are sequentially displayed, providing a 7-word sequence of 5 parallel bits per word for each character selected by the address inputs.


The MCM6674 is a preprogrammed version of the MCM6670. The complete pattern of this device is contained in this data sheet.

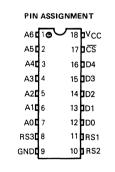
- Fully Static Operation
- TTL Compatibility
- Single ±10% +5 Volt Power Supply
- 18-Pin Package
- Diagonal Corner Power Supply Pins
- Fast Access Time, 350 ns (max)

# ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | V <sub>CC</sub>  | -0.3 to +7.0 | Vdc  |
| Input Voltage               | V <sub>in</sub>  | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |


NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.




# MOS

(N-CHANNEL, SILICON GATE)

# 128c x 7 x 5 HORIZONTAL-SCAN CHARACTER GENERATOR



CASE 707



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

DS9459/12-77

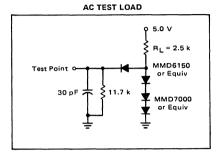
# DC OPERATING CONDITIONS AND CHARACTERISITCS (Full operating voltage and temperature range unless otherwise noted.)

# RECOMMENDED DC OPERATING CONDITIONS

| Parameter          | Symbol | Min  | Nom | Max | Unit |
|--------------------|--------|------|-----|-----|------|
| Supply Voltage     | Vcc    | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage | VIH    | 2.0  |     | 5.5 | Vdc  |
| Input Low Voltage  | VIL    | -0.3 | -   | 0.8 | Vdc  |
| DC CHARACTERISTICS |        |      |     |     |      |
| Characteristic     | Symbol | Min  | Тур | Max | Unit |
|                    |        |      |     |     |      |

| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                       | lin             | -   | - | 2.5 | μAdc |
|-------------------------------------------------------------------------------------------------------|-----------------|-----|---|-----|------|
| Output High Voltage<br>(I <sub>OH</sub> = -205 μA)                                                    | VOH             | 2.4 | - | Vcc | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                      | VOL             | -   | - | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(CS = 2.0 V or CS = 0.8 V, V <sub>out</sub> = 0.4 V to 2.4 V) | <sup>I</sup> LO | -   | - | 10  | μAdc |
| Supply Current<br>( $V_{CC} = 5.5 V, T_A = 0^{\circ}C$ )                                              | lcc             | -   | - | 130 | mAdc |

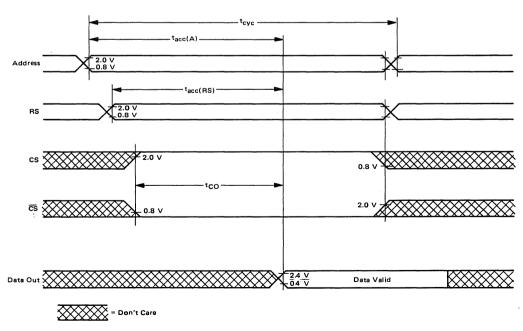
# CAPACITANCE (T<sub>A</sub> = 25<sup>o</sup>C, f = 1.0 MHz)


| Characteristic     | Symbol          | Тур | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 5.0 | pF   |
| Output Capacitance | Cout            | 5.0 | pF   |

# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

# AC TEST CONDITIONS


| Condition                 | Value                     |
|---------------------------|---------------------------|
| Input Pulse Levels        | 0.8 V to 2.0 V            |
| Input Rise and Fall Times | 20 ns                     |
| Output Load               | 1 TTL Gate and CL = 30 pF |



# AC CHARACTERISTICS

| Characteristic              | Symbol   | Min | Max | Unit |
|-----------------------------|----------|-----|-----|------|
| Cycle Time                  | tcyc     | 350 | -   | ns   |
| Address Access Time         | tacc(A)  | -   | 350 | ns   |
| Row Select Access Time      | tacc(RS) | -   | 350 | ns   |
| Chip Select to Output Delay | tco      | -   | 150 | ns   |

# TIMING DIAGRAM



ROM

Ć

t

# CUSTOM PROGRAMMING FOR MCM6670

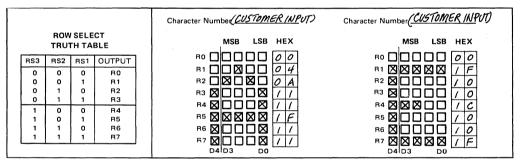
By the programming of a single photomask, the customer may specify the content of the MCM6670. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:

- Hexadecimal coding using IBM Punch Cards (Figures 3 and 4).
- 2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5).

Programming of the MCM6670 can be achieved by using the following sequence:

1. Create the 128 characters in a  $5 \times 7$  font using the format shown in Figure 1. Note that information at output D4 appears in column one, D3 in column two, thru D0 information in column five. The dots filled in and programmed as a logic "1" will appear at the outputs as VOH; the dots left blank will be at VOL. RO is always programmed to be blank (VOL). (Blank formats appear at the end of this data sheet for your convenience; they are not to be submitted to Motorola, however.)


2. Convert the characters to hexadecimal coding treating dots as ones and blanks as zeros, and enter this information in the blocks to the right of the character font format. The information for D4 must be a hex one or zero, and is entered in the left block. The information for D3 thru D0 is entered in the right block, with D3 the most significant bit for the hex coding, and D0 the least significant.

3. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).

4. Transmit this data to Motorola, along with the customer name, customer part number and revision, and an indication that the source device is the MCM6670.

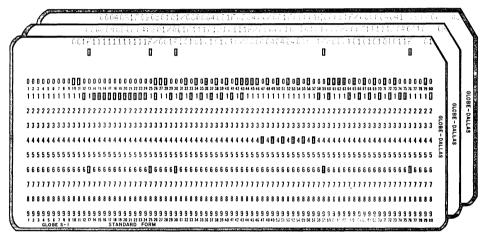
5. Information should be submitted on an organizational data form such as that shown in Figure 2.

# FIGURE 1 - CHARACTER FORMAT



#### FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

| MCN |             |                      |                                                                                                      |                                                                                                                      |
|-----|-------------|----------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|     |             |                      |                                                                                                      |                                                                                                                      |
|     |             | M                    | lotorola Use Only:                                                                                   |                                                                                                                      |
|     |             | Quote:               |                                                                                                      |                                                                                                                      |
|     |             | Part No.:            |                                                                                                      |                                                                                                                      |
|     |             | Specif. No.:         | ••••••••••••••••••••••••••••••••••••••                                                               |                                                                                                                      |
|     | Active High |                      | No-Connect                                                                                           |                                                                                                                      |
| CS  |             |                      |                                                                                                      |                                                                                                                      |
|     | No          | MCM6670 MOS READ ONI | Quote:       Part No.:       Part No.:       Specif. No.:       Active High       Active Low       1 | MCM6670 MOS READ ONLY MEMORY  Motorola Use Only: Quote: Part No.: Specif. No.: Active High Active Low No-Connect 1 0 |


ROM

# FIGURE 3 - CARD PUNCH FORMAT

| Colum | 22                                 |
|-------|------------------------------------|
| Colum | ns                                 |
| 1-9   | Blank                              |
| 10-25 | Hex coding for first character     |
| 26    | Slash (/)                          |
| 27-42 | Hex coding for second character    |
| 43    | Slash (/)                          |
| 44-59 | Hex coding for third character     |
| 60    | Slash (/)                          |
| 61-76 | Hex coding for fourth character    |
| 77-78 | Blank                              |
| 79-80 | Card number (starting 01; thru 32) |
|       |                                    |

Column 10 on the first card contains either a zero or a one to program D4 of row R0 for the first character. Column 11 contains the hex character for D3 thru D0. Columns 12 and 13 contain the information to program R1. The entire first character is coded in columns 10 thru 25. Each card contains the coding for four characters; 32 cards are required to program the entire 128 characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. Figure 3 provides an illustration of the correct format.

# FIGURE 4 – EXAMPLE OF CARD PUNCH FORMAT (First 12 Characters of MCM6670P4)

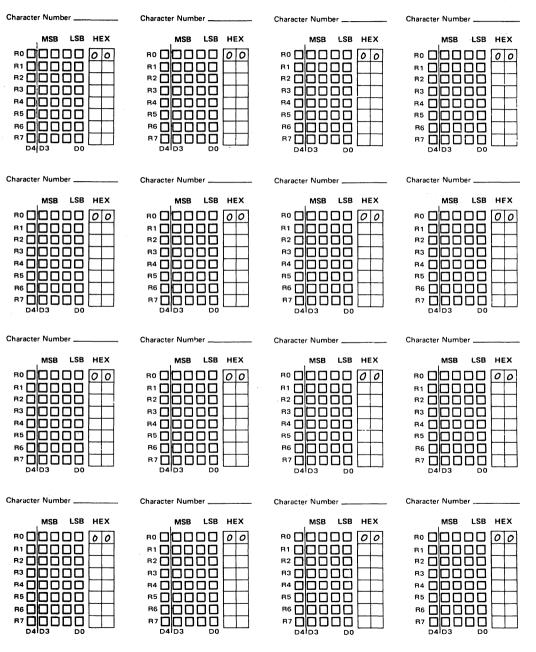


## FIGURE 5 - PAPER TAPE FORMAT

Frames

| Leader<br>1 to M | Blank Tape<br>Allowed for customer use (M ≤64)             |
|------------------|------------------------------------------------------------|
|                  | . ,                                                        |
| M + 1, M + 2     | CR; LF (Carriage Return; Line Feed)                        |
| M + 3 to M + 66  | First line of pattern information                          |
|                  | (64 hex figures per line)                                  |
| M + 67, M + 68   | CR; LF                                                     |
| M + 69 to        | Remaining 31 lines of hex figures,                         |
| M + 2114         | each line followed by a Carriage Re-<br>turn and Line Feed |
| <b>DI I T</b>    |                                                            |

Blank Tape


Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the

start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains a zero or a one to program D4 of row R0 for the first character. Frame M + 4 contains the hex character for D3 thru D0, completing the programming information for R0. Frames M + 5 and M + 6 contain the information to program R1. The entire first character is coded in Frames M + 3 thru M + 18. Four complete characters are programmed with each line. A total of 32 lines program all 128 characters (32 x 4). The character to the last in order to establish proper addressing for the part.

# MCM6670•MCM6674

The formats below are given for your convenience in preparing character information for MCM6670 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.



| A3  | . A0               | 0000  | 0001  | 0010  | 0011  | 0100  | 0101 | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111 |
|-----|--------------------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| A4  |                    | D4 D0 | D4D0 | D4 D0 | D4 0 |
| 000 | R0<br>             |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 001 | R0<br>:            |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 010 | R0<br>:<br>R7      |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 011 | R0<br>:<br>R7      |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 100 | R0<br>:<br>R7      |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 101 | R0<br>:<br>R7      |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 110 | R0<br>:<br>R7      |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |
| 111 | R0<br>:<br>:<br>87 |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |      |

# FIGURE 6 - MCM6674 PATTERN

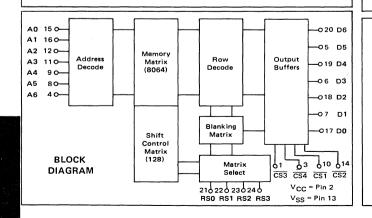


¢

đ

ŧ




## 8192-BIT READ ONLY MEMORIES ROW SELECT CHARACTER GENERATORS

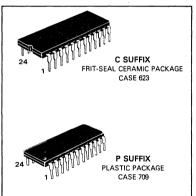
The MCM66700 is a mask-programmable 8192-bit horizontal-scan (row select) character generator. It contains 128 characters in a 7 X 9 matrix, and has the capability of shifting certain characters that normally extend below the baseline such as j, y, g, p, and q. Circuitry is supplied internally to effectively lower the whole matrix for this type of character—a feature previously requiring external circuitry.

A seven-bit address code is used to select one of the 128 available characters. Each character is defined as a specific combination of logic 1s and 0s stored in a 7 X 9 matrix. When a specific four-bit binary row select code is applied, a word of seven parallel bits appears at the output. The rows can be sequentially selected, providing a nine-word sequence of seven parallel bits per word for each character selected by the address inputs. As the row select inputs are sequentially addressed, the devices will automatically place the 7 X 9 character in one of two preprogrammed positions on the 16-row matrix, with the positions defined by the four row select inputs. Rows that are not part of the character are automatically blanked.

The devices listed are preprogrammed versions of the MCM66700. They contain various sets of characters to meet the requirements of diverse applications. The complete patterns of these devices are contained in this data sheet.

- Fully Static Operation
- Fully TTL Compatible with Three-State Outputs
- CMOS and MPU Compatible, Single ± 10% 5 Volt Supply
- Shifted Character Capability (Except MCM66720, MCM66730, and MCM66734)
- Maximum Access Time = 350 ns
- 4 Programmable Chip Selects (0, 1, or X)
- Pin-for-Pin Replacement for the MCM6570, Including All Standard Patterns




MCM66700 MCM66710 MCM66714 MCM66720 MCM66730 MCM66734 MCM66740 MCM66750 MCM66751 MCM66760 MCM66770 MCM66780 MCM66790

# MOS

(N-CHANNEL, SILICON-GATE)

**8K READ ONLY MEMORIES** 

HORIZONTAL-SCAN CHARACTER GENERATORS WITH SHIFTED CHARACTERS



| PIN ASSIGNMENT  |      |              |  |  |  |  |  |  |
|-----------------|------|--------------|--|--|--|--|--|--|
| CS3             | • 24 | IRS3         |  |  |  |  |  |  |
| Vcc <b>C</b> 2  |      | RS2          |  |  |  |  |  |  |
| CS4 <b>C</b> 3  | 22   | IRS1         |  |  |  |  |  |  |
| A6 <b>C</b> 4   | 21   | <b>J</b> RSO |  |  |  |  |  |  |
| D5 <b>C</b> 5   | 20   | D6           |  |  |  |  |  |  |
| D3 <b>C</b> 6   | 19   | D4           |  |  |  |  |  |  |
| D1 <b>D</b> 7   | 18   | D2           |  |  |  |  |  |  |
| A5 <b>C</b> 8   | 17   | DO           |  |  |  |  |  |  |
| A4 <b>C</b> 9   | 16   | <b>1</b> A1  |  |  |  |  |  |  |
| CS1 <b>C</b> 10 | ) 15 | <b>1</b> A0  |  |  |  |  |  |  |
| A3 <b>[</b> 11  | 14   | ICS2         |  |  |  |  |  |  |
| A2 <b>[</b> ]1  | 2 13 | Ivss         |  |  |  |  |  |  |
|                 |      | P*55         |  |  |  |  |  |  |

1

| ABSOLUTE MAXIMUM RATINGS (See Note 1, Volt | tages Referenced to VSS) |
|--------------------------------------------|--------------------------|
|--------------------------------------------|--------------------------|

| Rating                      | Symbol           | Value       | Unit |
|-----------------------------|------------------|-------------|------|
| Supply Voltages             | Vcc              | -0.3 to 7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to 7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70    | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -55 to +125 | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher-than-recommended voltages for extended periods of time could affect device reliability.

# DC OPERATING CONDITIONS AND CHARACTERISTICS

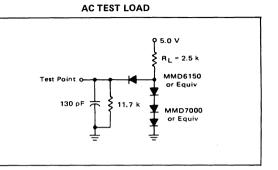
(Full operating voltage and temperature range unless otherwise noted)

# RECOMMENDED DC OPERATING CONDITIONS (Referenced to V<sub>SS</sub>)

| Parameter               | Symbol          | Min  | Nom | Max | Unit |
|-------------------------|-----------------|------|-----|-----|------|
| Supply Voltage          | V <sub>CC</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input Logic "1" Voltage | VIH             | 2.0  | -   | Vcc | Vdc  |
| Input Logic "O" Voltage | VIL             | -0.3 | -   | 0.8 | Vdc  |

# DC CHARACTERISTICS

| Characteristic                                                                  | Symbol | Min | Тур | Max | Unit |
|---------------------------------------------------------------------------------|--------|-----|-----|-----|------|
| Input Leakage Current<br>(V <sub>IH</sub> = 5.5 Vdc, V <sub>CC</sub> = 4.5 Vdc) | Чн     | _   | -   | 2.5 | μAdc |
| Output Low Voltage (Blank)<br>(I <sub>OL</sub> = 1.6 mAdc)                      | VOL    | 0   | -   | 0.4 | Vdc  |
| Output High Voltage (Dot)<br>(I <sub>OH</sub> = -205 μAdc)                      | ∨он    | 2.4 | -   | -   | Vdc  |
| Power Supply Current                                                            | Icc    | _   | -   | 80  | mAdc |
| Power Dissipation                                                               | PD     | -   | 200 | 440 | mW   |

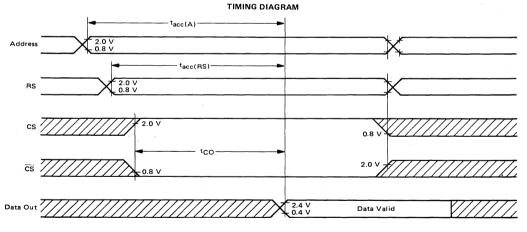

# CAPACITANCE (Periodically sampled rather than 100% tested)

| Input Capacitance<br>(f = 1.0 MHz)  | C <sub>in</sub> | - | 4.0 | 7.0 | pF |
|-------------------------------------|-----------------|---|-----|-----|----|
| Output Capacitance<br>(f = 1.0 MHz) | Cout            | - | 4.0 | 7.0 | pF |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

# AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)




# AC TEST CONDITIONS

| Condition                 | Value                                  |
|---------------------------|----------------------------------------|
| Input Pulse Levels        | 0.8 V to 2.0 V                         |
| Input Rise and Fall Times | 20 ns                                  |
| Output Load               | 1 TTL Gate and C <sub>L</sub> = 130 pF |

# AC CHARACTERISTICS

| Characteristic              | Symbol                | Тур | Max | Unit |
|-----------------------------|-----------------------|-----|-----|------|
| Address Access Time         | t <sub>acc</sub> (A)  | 250 | 350 | ns   |
| Row Select Access Time      | t <sub>acc</sub> (RS) | 250 | 350 | ns   |
| Chip Select to Output Delay | tCO                   | 100 | 150 | ns   |





# **MEMORY OPERATION (Using Positive Logic)**

Most positive level = 1, most negative level = 0.

## Address

To select one of the 128 characters, apply the appropriate binary code to the Address inputs (A0 through A6).

#### **Row Select**

To select one of the rows of the addressed character to appear at the seven output lines, apply the appropriate binary code to the Row Select inputs (RS0 through RS3).

## Shifted Characters

These devices have the capability of displaying characters that descend below the bottom line (such as lowercase letters j, y, g, p, and q). Internal circuitry effectively drops the whole matrix for this type of character. Any character can be programmed to occupy either of the two positions in a 7 X 16 matrix. (Shifted characters are not available on MCM66720, MCM66730, or MCM66734.)

## Output

For these devices, an output dot is defined as a logic 1 level, and an output blank is defined as a logic 0 level.

#### Programmable Chip Select

The MCM66700 has four Chip Select inputs that can be programmed with a 1, 0, or don't care (not connected). A don't care must always be the highest chip select pin or pins. All standard patterns have Don't Care Chip Selectexcept MCM66751.

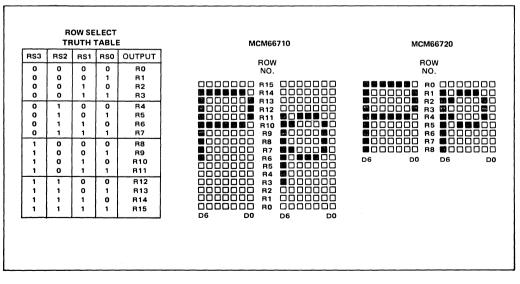

#### **DISPLAY FORMAT**

Figure 1 shows the relationship between the logic levels at the row select inputs and the character row at the outputs. The MCM66700 allows the user to locate the basic 7 X 9 font anywhere in the 7 X 16 array. In addition, a shifted font can be placed anywhere in the same 7 X 16 array. For example, the basic MCM66710 font is established in rows R14 through R6. All other rows are automatically blanked. The shifted font is established in rows R11 through R3, with all other rows blanked. Thus, while any one character is contained in a 7 X 9 array, the MCM66710 requires a 7 X 12 array on the CRT screen to contain both normal and descending characters. Other

uses of the shift option may require as much as the ful! 7 X 16 array, or as little as the basic 7 X 9 array (when no shifting occurs, as in the MCM66720).

The MCM66700 can be programmed to be scanned either from bottom to top or from top to bottom. This is achieved through the option of assigning row numbers in ascending or descending count, as long as both the basic font and the shifted font are the same. For example, an up counter will scan the MCM66710 from bottom to top, whereas an up counter will scan the MCM66714 from top to bottom (see Figures 7 and 8 for row designation).

Ć



## FIGURE 1 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM66710 AND MCM66720

# **CUSTOM PROGRAMMING FOR MCM66700**

By the programming of a single photomask, the customer may specify the content of the MCM66700. Encoding of the photomask is done with the aid of a computer to provide quick, efficient implementation of the custom bit pattern while reducing the cost of implementation.

Information for the custom memory content may be sent to Motorola in the following forms, in order of preference:\*

- 1. Hexadecimal coding using IBM Punch Cards (Figures 3 and 4)
- 2. Hexadecimal coding using ASCII Paper Tape Punch (Figure 5)

Programming of the MCM66700 can be achieved by using the follow sequence:

1. Create the 128 characters in a 7 X 9 font using the format shown in Figure 2. Note that information at output D6 appears in column one, D5 in column two, through D0 information in column seven. The dots filled in and programmed as a logic 1 will appear at the outputs as  $V_{OH}$ ; the dots left blank will be at  $V_{OL}$ . (Blank formats appear at the end of this data sheet for your convenience;

they are not to be submitted to Motorola, however.) 2. Indicate which characters are shifted by filling in the extra square (dot) in the top row, at the left (column S).

3. Convert the characters to hexadecimal coding treating dots as 1s and blanks as 0s, and enter this information in the blocks to the right of the character font format. High order bits are at the left, in columns S and D3. For the bottom eight rows, the bit in Column S must be 0, so these locations have been omitted. For the top row, the bit in Column S will be 0 for an unshifted character, and 1 for a shifted character.

4. Transfer the hexadecimal figures either to punched cards (Figure 3) or to paper tape (Figure 5).

5. Assign row numbers to the unshifted font. These must be nine sequential numbers (values 0 through 15) assigned consecutively to the rows. The shifted font is similarly placed in any position in the 16 rows.

6. Provide, in writing, the information indicated in Figure 6 (a copy of Figure 10 may be used for this purpose). Submit this information to Motorola together with the punched cards or paper tape.

FIGURE 2 – CHARACTER FORMAT

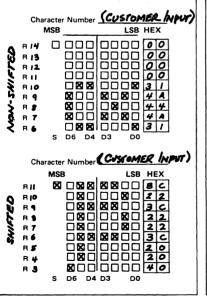
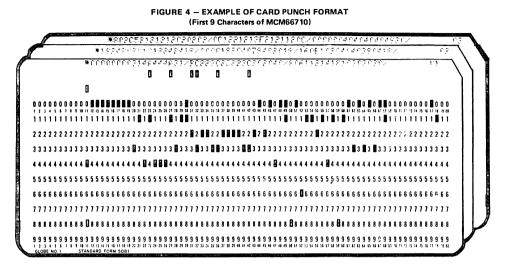




FIGURE 3 – CARD PUNCH FORMAT

| Columns |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 – 10  | Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11      | Asterisk (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 – 29 | Hex coding for first character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30      | Slash (/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31 – 48 | Hex coding for second character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 49      | Slash (/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 — 67 | Hex coding for third character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 68      | Slash (/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 69 — 76 | Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 77 – 78 | Card number (starting 01; through 43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 79 – 80 | Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Column 12 on the first card contains the hexadecimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | $1 - 10 \\ 11 \\ 12 - 29 \\ 30 \\ 31 - 48 \\ 49 \\ 50 - 67 \\ 68 \\ 69 - 76 \\ 77 - 78 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$ |

equivalent of column 12 on the first card contains the hexadecimal equivalent of column S and D6 through D4 for the top row of the first character. Column 13 contains D3 through D0. Columns 14 and 15 contain the information for the next row. The entire first character is coded in columns 12 through 29. Each card contains the coding for three characters. 43 cards are required to program the entire 128 characters, the last card containing only two characters. The characters must be programmed in sequence from the first character to the last in order to establish proper addressing for the part. As an example, the first nine characters of the MCM66710 are correctly coded and punched in Figure 4.

\*NOTE: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorola sales representative.





## Frames

| Leader             | Blank Tape                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------|
| 1 to M             | Allowed for customer use (M $\leq$ 64)                                                         |
| M + 1, M + 2       | CR; LF (Carriage Return; Line<br>Feed)                                                         |
| M + 3 to M + 66    | First line of pattern information (64 hex figures per line)                                    |
| M + 67, M + 68     | CR; LF                                                                                         |
| M + 69 to M + 2378 | Remaining 35 lines of hex figures,<br>each line followed by a Carriage<br>Return and Line Feed |

Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the

start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains the hexadecimal equivalent of column S and D6 thru D4 for the top row of the first character. Frame M + 4 contains D3 thru D0. Frames M + 5 and M + 6 program the second row of the first character. Frames M + 3 to M + 66 comprise the first line of the printout. The line is terminated with a CR and LF.

The remaining 35 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 36 lines of data contain 36 x 64 or 2304 hex figures. Since 18 hex figures are required to program each 7 x 9 character, the full 128 (2304  $\div$  18) characters are programmed.

#### FIGURE 6 - FORMAT FOR ORGANIZATIONAL DATA

| MCM66700 MOS READ                                       | ONLY MEMORY                                   |
|---------------------------------------------------------|-----------------------------------------------|
| Customer                                                | · · · · · · · · · · · · · · · · · · ·         |
| ustomer Part No                                         | Rev                                           |
| Row Number for top row of non-shifted font              |                                               |
| low Number for bottom row of non-shifted font           |                                               |
| Row Number for top row of shifted font                  |                                               |
| Programmable Chip Select information: 1 = Active High ( | 0 = Active Low X = Don't Care (Not Connected) |
| CS1 CS2 CS3 CS4                                         |                                               |

| A3. | . A0 | 0000    | 0001  | 0010  | 0011  | 0100  | 0101  | 0110  | 0111    | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110    | 1111 |
|-----|------|---------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|---------|------|
|     |      | D6 D0   | D6 D0 | D5 D0 | D6 D0 | D6 D0 | D6 D0 | D8 D0 | D6 D0   | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D5D0    | 060  |
| 000 | :    |         |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |
| 001 | :    |         |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |
| 010 |      |         |       |       |       |       |       |       | 8888888 |       |       |       |       |       |       | 8838666 |      |
| 011 | :    |         |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |
| 100 |      |         |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |
| 101 | :    |         |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |
| 110 | 1    |         |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |
| 111 | :    | 8888888 |       |       |       |       |       |       |         |       |       |       |       |       |       |         |      |

# FIGURE 7 - MCM66710 PATTERN

FIGURE 8 - MCM66714 PATTERN

| A3.  | . AU               |       | 0001  | 0010   | 0011  | 0100  | 0101    | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110    | 1111   |
|------|--------------------|-------|-------|--------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|
| . 44 | $\geq$             | D6 D0 | D6 D0 | D6. D0 | D6 D0 | D6 D0 | D6 . D0 | D6 D0   | D6 D   |
| 000  | R0<br>:<br>        |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         |        |
| 001  | R0<br>:<br>        |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         |        |
| 010  | R0<br>:<br>:<br>   |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         |        |
| 011  | R0<br>:<br>:<br>R8 |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         |        |
| 100  | R0<br>:<br>:<br>R8 |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         | 000000 |
| 101  | R0<br>:<br>        |       |       |        |       |       |         |       |       |       |       |       |       |       |       | 0000000 |        |
| 110  | R0<br>:<br>R8      |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         |        |
| 111  | R0<br>:            |       |       |        |       |       |         |       |       |       |       |       |       |       |       |         |        |

ROM

6-16

# FIGURE 9 - MCM66734 PATTERN\*

| ×3.  | . A0   | 0000  | 0001    | 0010  | 0011 | 0100   | 0101  | 0110   | 0111  | 1000  | 1001  | 1010     | 1011  | 1100  | 1101           | 1110     | 1111 |
|------|--------|-------|---------|-------|------|--------|-------|--------|-------|-------|-------|----------|-------|-------|----------------|----------|------|
|      | $\geq$ | D6 D0 | D4 D0   | D6 D0 | D6   | D6. D0 | D6 C7 | D6 D0  | D6 D0 | D6 D0 | D6 D0 | D6 D0    | D6 D0 | D6 D0 | D6 D0          | D6 D0    | D6 C |
| 000  | :      |       |         |       |      |        |       |        |       |       |       | 00000000 |       |       | <b>BOOOCOD</b> |          |      |
| CO 1 | :      |       |         |       |      |        |       |        |       |       |       |          |       |       |                |          |      |
| 010  | :      |       | 0000000 |       |      |        |       |        |       |       |       |          |       |       |                |          |      |
| 011  |        |       |         |       |      |        |       | 000000 |       |       |       |          |       |       |                |          |      |
| 100  | RO     |       |         |       |      |        |       |        |       |       |       |          |       |       |                |          |      |
| 101  | 1 1    |       |         |       |      |        |       |        |       |       |       |          |       |       |                | 00000000 |      |
| 110  |        |       |         |       |      |        |       |        |       |       |       |          |       |       |                |          |      |
| 111  | R0<br> |       |         |       |      |        |       |        |       |       |       |          |       |       |                |          |      |

FIGURE 10 - MCM66720 PATTERN\*\*

| A3   | A0             | 0000  | 0001    | 0010  | 0011  | 0100 | 0101  | 0110  | 0111  | 1000  | 1001     | 1010  | 1011    | 1100 | 1101  | 1110  | 1111    |
|------|----------------|-------|---------|-------|-------|------|-------|-------|-------|-------|----------|-------|---------|------|-------|-------|---------|
| 16A4 |                | D6 D0 | D6 D0   | D6 D0 | D6 D0 | D6D0 | D6 D0 | D6 D0 | D6 D0 | DG DO | D6 D0    | D6 D0 | D6 . D0 | D6D0 | D6 D0 | D6 D0 | D6 D0   |
| 000  | R0<br>         |       |         |       |       |      |       |       |       |       |          |       |         |      |       |       |         |
| 001  | R0<br><br>R8   |       |         |       |       |      |       |       |       |       |          |       |         |      |       |       | 6000000 |
| 010  | RO             |       |         |       |       |      |       |       |       |       |          |       |         |      |       |       |         |
| 011  | R0<br>:<br>R8  |       | 0008000 |       |       |      |       |       |       |       |          |       |         |      |       |       |         |
| 100  | R0<br>:<br>R8  |       |         |       |       |      |       |       |       |       |          |       |         |      |       |       |         |
| 101  | R0<br>:<br>:   |       |         |       |       |      |       |       |       |       |          |       |         |      |       |       |         |
| 110  | 710<br><br>F18 |       |         |       |       |      |       |       |       |       | 00000000 |       |         |      |       |       |         |
|      | ***            |       |         |       |       |      |       |       |       |       |          |       |         |      |       |       |         |

ROM

ł

÷

## FIGURE 11 - MCM66730 PATTERN\*\*

| A3. | . AU          | 0000  | 0001  | 0010 | 0011  | 0100  | 0101  | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111   |
|-----|---------------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|     | $\geq$        | D6 D0 | D6 D0 | D6D0 | DS DO | D6 D0 | D6 D0 | D6 D0 | D5 D0 | D6 D0 | D8 D0 | D6 D0 | D6 D0  |
| 000 | R0<br>:<br>R8 |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |
| 101 | R0<br>:<br>   |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |
| 010 | R0<br>:       |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |
| 011 | RO            |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |
| 100 | R0            |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |
| 101 | R0<br>:<br>   |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       | 000800 |
| 110 | R0<br>:       |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |
| 111 | R0<br>:       |       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |        |

## FIGURE 12 - MCM66740 PATTERN

| A3.         |             | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110    | 1111 |
|-------------|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|
| 000         | R 2         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |      |
| <b>ọ</b> 01 | R0<br>:<br> |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |      |
| 010         | ₩0<br>      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 0000000 |      |
| 011         | R0<br>      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |      |
| 100         | R0<br>      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |      |
| 101         | R0<br>:     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |      |
| 110         | R0<br>:     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |      |
| 111         | R0<br>:<br> |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 6000000 |      |

## FIGURE 13 - MCM66750 PATTERN

| ×3  | ~ [            | 0000  | 0001  | 0010   | 0011 | 0100 | 0101  | 0110   | 0111  | 1000  | 1001  | 1010    | 1011  | 1100     | 1101  | 1110    | 1111     |
|-----|----------------|-------|-------|--------|------|------|-------|--------|-------|-------|-------|---------|-------|----------|-------|---------|----------|
|     | $\leq$         | D6 D0 | D8 D0 | D\$ D0 | D8D0 | D6D0 | D6 D0 | D8 D0  | D6 D0 | D6 D0 | D8 D0 | D8 D0   | D6 D0 | D8 D0    | D6 D0 | D6 D0   | D6 D0    |
| 600 | A0<br>:<br>A8  |       |       |        |      |      |       |        |       |       |       |         |       |          |       |         |          |
| 631 | n0<br>         |       |       |        |      |      |       |        |       |       |       |         |       |          |       |         |          |
| 010 | no<br>::<br>ne |       |       |        |      |      |       |        |       |       |       |         |       |          |       |         |          |
| 011 | R0<br>:        |       |       |        |      |      |       |        |       |       |       | 6860860 |       | 00000000 |       |         |          |
| 100 | R0<br>:<br>R8  |       |       |        |      |      |       |        |       |       |       |         |       |          |       |         | 10800083 |
| 101 | no<br>:<br>ns  |       |       |        |      |      |       | C CCCC |       |       |       |         |       |          |       |         |          |
| 110 | :              |       |       |        |      |      |       |        |       |       |       |         |       |          |       |         |          |
| 111 | R8             |       |       |        |      |      |       |        |       |       |       |         |       |          |       | annennn |          |

MCM66751 - Same as MCM66750 except CS1 = 0, CS2 = 0, CS3 = X, and CS4 = X.

FIGURE 14 - MCM66760 PATTERN

| A3. | AU            | 0000 | 0001 | 0010  | 0011 | 0100  | 0101  | 0110 | 0111  | 1000  | 1001     | 1010  | 1011  | 1100  | 1101  | 1110 | 1111 |
|-----|---------------|------|------|-------|------|-------|-------|------|-------|-------|----------|-------|-------|-------|-------|------|------|
| A4  | $\geq$        | D6D0 | D6D0 | D6 D0 | D6D0 | D6 D0 | D6 D0 | D6D0 | D6 D0 | D6 D0 | D6 D0    | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6D0 | D6D0 |
| 000 | R0<br>:<br>   |      |      |       |      |       |       |      |       |       |          |       |       |       |       |      |      |
| 001 | R8            |      |      |       |      |       |       |      |       |       | 2008000  |       |       |       |       |      |      |
| 010 | R0<br>:<br>88 |      |      |       |      |       |       |      |       |       | 22800000 |       |       |       |       |      |      |
| 011 | R0<br>:<br>:  |      |      |       |      |       |       |      |       |       |          |       |       |       |       |      |      |
| 100 | R0<br>:       |      |      |       |      |       |       |      |       |       |          |       |       |       |       |      |      |
| 101 | R0<br>:       |      |      |       |      |       |       |      |       |       |          |       |       |       |       |      |      |
| 110 | R8            |      |      |       |      |       |       |      |       |       |          |       |       |       |       |      |      |
| 111 | R0            |      |      |       |      |       |       |      |       |       |          |       |       |       |       |      |      |

ROM

4

## FIGURE 15 - MCM66770 PATTERN

| ~3. | . AU          | 0000 | 0001    | 0010    | 0011    | 0100 . | 0101  | 0110   | 0111    | 1000    | 1001  | 1010  | 1011     | 1100    | 1101    | 1110    | 1111   |
|-----|---------------|------|---------|---------|---------|--------|-------|--------|---------|---------|-------|-------|----------|---------|---------|---------|--------|
|     | $\geq$        | D6D0 | D6 D0   | D6 . D0 | D6 D0   | D6 D0  | D6 D0 | D6 D0  | D6 D0   | D6 D0   | D6 D0 | D6 D0 | D6 D0    | D6 D0   | D6 . D0 | D6 D0   | D6 D6  |
| 000 | R0<br>:<br>:  |      |         |         |         |        |       |        |         |         |       |       |          |         |         |         |        |
| 001 | R0<br>:<br>   |      |         |         |         |        |       |        |         |         |       |       |          |         |         |         |        |
| 010 | R0<br>:       |      |         |         |         |        |       |        |         |         |       |       |          |         |         |         |        |
| 011 | R0<br>:<br>   |      |         |         |         |        |       |        |         |         |       |       |          |         | 200000  |         |        |
| 100 | R0<br>:       |      |         |         | 3000000 |        |       |        |         |         |       |       |          | 000000  |         |         |        |
|     | RO            |      | 1000000 |         | 2000002 |        |       | 100000 | 0000000 | 1999993 |       |       | 00000000 | 0800080 | UB20200 |         | 222000 |
| 101 |               |      |         |         |         |        |       |        |         |         |       |       |          |         |         |         |        |
| 110 | R0            |      |         |         |         |        |       |        |         |         |       |       |          |         |         | 0000000 |        |
| ,,, | R0<br>:<br>R8 |      |         |         |         |        |       |        |         |         |       |       |          |         |         |         |        |

FIGURE 16 - MCM66780 PATTERN

| A3. | . A0         | 0000  | 0001  | 0010  | 0011  | 0100  | 0101           | 0110  | 0111  | 1000  | 1001  | 1010  | 1011  | 1100  | 1101  | 1110  | 1111   |
|-----|--------------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| A4  | 1            | D6 D0          | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | D6 D0 | 06 . D |
| 000 | #0<br><br>#8 |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |
| 001 | R0<br><br>R8 |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |
| 010 | R0<br>       |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |
| 011 | R0<br>       |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |
| 100 | R0<br><br>P8 |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |
| 101 | R0<br>:<br>: |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |
| 110 | no<br>       |       |       |       |       |       | <b>BOOCCOO</b> |       |       |       |       |       |       |       |       |       |        |
| 111 | N0<br>       |       |       |       |       |       |                |       |       |       |       |       |       |       |       |       |        |

ROM

)

## FIGURE 17 - MCM66790 PATTERN

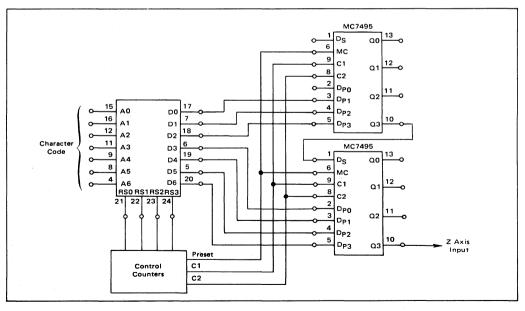
| - EA |               | 0000  | 0001     | 0010     | 0011  | 0100    | 0101   | 0110  | 0111  | 1000    | 1001  | 1010  | 1011    | 1100  | 1101  | 1110  | 1111  |
|------|---------------|-------|----------|----------|-------|---------|--------|-------|-------|---------|-------|-------|---------|-------|-------|-------|-------|
| 5 A4 | $\geq$        | D6 D0 | D8. D0   | D6 . D0  | D6 D0 | D6 D0   | D6. D0 | D6 D0 | D6 D0 | D6 . D0 | D6 D0 | D6 D0 | D6 D0   | D6 D0 | D6 D0 | D6 D0 | 06 00 |
| 000  | 80<br>:<br>:  |       |          |          |       |         |        |       |       |         |       |       |         |       |       |       |       |
| 001  | R0<br>        |       |          |          |       |         |        |       |       |         |       |       |         |       |       |       |       |
| 010  | PIO<br>:<br>: |       |          |          |       |         |        |       |       |         |       |       |         |       |       |       |       |
| 011  | :             |       |          |          |       | 0000000 |        |       |       |         |       |       |         |       |       |       |       |
| 100  | R0<br>:<br>R8 |       |          |          |       |         |        |       |       |         |       |       |         |       |       |       |       |
| 101  | :             |       | 00000000 |          |       |         |        |       |       |         |       |       | 0 20020 |       |       |       |       |
| 110  | :             |       | 2222222  |          |       |         |        |       |       |         |       |       |         |       |       |       |       |
| 111  | :             |       |          | 00000000 |       |         |        |       |       |         |       |       |         |       |       |       |       |

ROM

ł

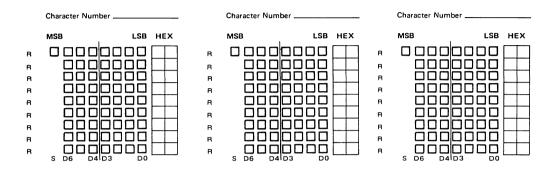
## MCM66700 Series

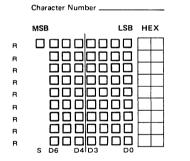
|                |                     |                      |      |     | 00 Series<br>gnment |               | Assign    |         |
|----------------|---------------------|----------------------|------|-----|---------------------|---------------|-----------|---------|
| MCM6570 Series | MCM66700 Equivalent | Description          | 1 🗆  | CS3 | RS3 24              |               | 0<br>88 F | 153 24  |
| MCM6571        | MCM66710            | ASCII, shifted       | 2 🗖  | Vcc | RS2 23              | 2 C V         | CC P      | s2 2 23 |
| MCM6571A       | MCM66714            | ASCII, shifted       | з 🗖  | CS4 | RS1 22              | 3 🗖 V         | DD P      | IS1 22  |
| MCM6572        | MCM66720            | ASCII                | 4 🗖  | A6  | RS0 21              | 4             | 6 F       | 150 21  |
| MCM6573        | MCM66730            | Japanese             | 5 🗖  | D5  | D6 🗖 20             | 5 🗖 D!        | 5         | D6 🗖 20 |
| MCM6573A       | MCM66734            | Japanese             | 6 🗂  | D3  | D4 19               | 6 🗖 D         | 3         | 04 19   |
| MCM6574        | MCM66740            | Math Symbols         | 7 🗖  | D1  | D2 18               | 7 🗖 0         | ,         | 02 18   |
| MCM6575        | MCM66750            | Alphanumeric Control | 8 🗖  | A5  | 00 17               | 8 <b>C</b> A  | 5         | 00 117  |
| MCM6576        | MCM66760            | British, shifted     | 9 🗖  | A4  | A1 16               | 9 🗖 A         | 4         | A1 16   |
| MCM6577        | MCM66770            | German, shifted      | 10 🖂 | CS1 | A0 15               | 10 <u>–</u> N | .c.       | A0 15   |
| MCM6578        | MCM66780            | French, shifted      | 11 🖂 | A3  | CS2 14              | 11 C A        | 3 N       | .c. 14  |
| MCM6579        | MCM66790            | European, shifted    | 12   | A2  | V <sub>SS</sub> 13  | 12 C A        | 2 \       | /SS 13  |

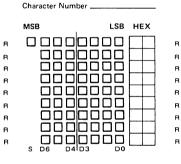

## **APPLICATIONS INFORMATION**

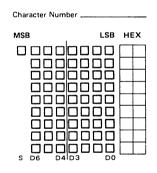
One important application for the MCM66700 series is in CRT display systems (Figure 18). A set of buffer shift registers or random access memories applies a 7-bit character code to the input of the character generator, which then supplies one row of the character according to the count at the four row select inputs. As each row is available, it is put into the TTL MC7495 shift registers. The parallel information in these shift registers is clocked

ROM

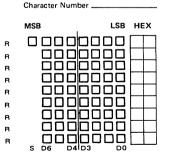

serially out to the Z-axis where it modulates the raster to form the character.

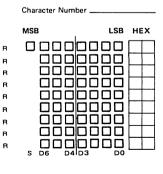

The MCM66700 series require one power supply of +5.0 volts. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit spikes or glitches on their outputs when the ac power is switched on and off.




The formats below are given for your convenience in preparing character information for MCM66700 programming. THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Programming instructions for detailed procedures.








Character Number \_\_\_\_ MSB ISB HEX R R R R R в в R R S D6 04103







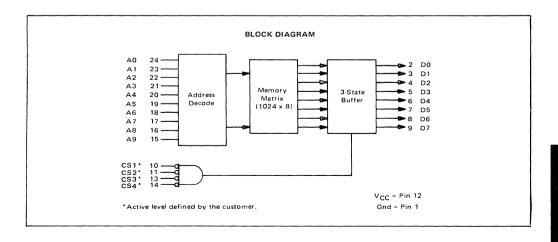
## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED DC OPERATING CONDITIONS

| Parameter          | Symbol          | Min  | Nom | Max | Unit |
|--------------------|-----------------|------|-----|-----|------|
| Supply Voltage     | V <sub>CC</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage | VIH             | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage  | VIL             | -0.3 | -   | 0.8 | Vdc  |

## DC CHARACTERISTICS


| Characteristic                                                                                                            | Symbol          | Min | Тур | Max | Unit |
|---------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----|-----|------|
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                           | l <sub>in</sub> | -   | -   | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205µA)                                                                         | V <sub>OH</sub> | 2.4 | -   | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                          | VOL             | -   | -   | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(CS = 0.8 V or $\overline{\text{CS}}$ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | <sup>1</sup> LO |     | -   | 10  | μAdc |
| Supply Current<br>(V <sub>CC</sub> = 5.5 V, T <sub>A</sub> = 0 <sup>o</sup> C)                                            | <sup>1</sup> cc |     | -   | 130 | mAdc |

# **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 7.5  | pF   |
| Output Capacitance | Cout            | 12.5 | pF   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. 4

ROM



6-25

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted.) (All timing with  $t_f = t_f = 20$  ns, Load of Figure 1)

|                             |                  | MCM68 | A30AL | MCM68 | BB30AL |      |
|-----------------------------|------------------|-------|-------|-------|--------|------|
| Characteristic              | Symbol           | Min   | Max   | Min   | Max    | Unit |
| Cycle Time                  | t <sub>cyc</sub> | 350   | -     | 250   | -      | ns   |
| Access Time                 | t <sub>acc</sub> | -     | 350   |       | 250    | ns   |
| Chip Select to Output Delay | tCO              |       | 150   | -     | 125    | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 10    |       | 10    | -      | ns   |
| Data Hold from Deselection  | tDHD             | 10    | 150   | 10    | 125    | ns   |

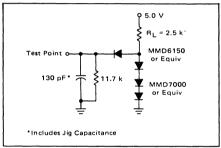
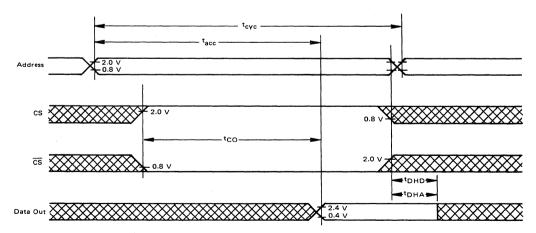




FIGURE 1 - AC TEST LOAD

#### TIMING DIAGRAM



ROM

## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A30A/MCM68B30A, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A30A/MCM68B30A should be submitted on an Organizational Data form such as that shown in Figure 3. ("No Connect" must always be the highest order Chip Select pin(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM (MCM2708, MCM27A08, or MCM68708).
- 4. Hand-punched paper tape (Figure 3).

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

| FIGURE 2 - BINARY TO HEXADECIMAL | CONVERSION |
|----------------------------------|------------|
|                                  |            |

|   | Binary<br>Data |   |   |   |
|---|----------------|---|---|---|
| 0 | 0              | 0 | 0 | 0 |
| 0 | 0              | 0 | 1 | 1 |
| 0 | 0              | 1 | 0 | 2 |
| 0 | 0              | 1 | 1 | 3 |
| 0 | 1              | 0 | 0 | 4 |
| 0 | 1              | 0 | 1 | 5 |
| 0 | 1              | 1 | 0 | 6 |
| 0 | 1              | 1 | 1 | 7 |
| 1 | 0              | 0 | 0 | 8 |
| 1 | 0              | 0 | 1 | 9 |
| 1 | 0              | 1 | 0 | A |
| 1 | 0              | 1 | 1 | в |
| 1 | 1              | 0 | 0 | с |
| 1 | 1              | 0 | 1 | D |
| 1 | 1              | 1 | 0 | E |
| 1 | 1              | 1 | 1 | F |

#### **IBM PUNCH CARDS**

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

| 1 | 12    | Byte "O" Hexadecimal equivalent for outputs D7 thru D4 (D7 = M.S.B.) |
|---|-------|----------------------------------------------------------------------|
| 2 | 13    | Byte "0" Hexadecimal equivalent for outputs D3 thru D0 (D3 = M.S.B.) |
| 3 | 14-75 | Alternate steps 1 and 2 for consecutive bytes.                       |

4 77-80 Card number (starting 0001)



## FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

| Frames             |                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------|
| Leader             | Blank Tape                                                                                     |
| 1 to M             | Allowed for customer use ( $M \leq 64$ )                                                       |
| M + 1, M + 2       | CR; LF (Carriage Return; Line Feed)                                                            |
| M + 3 to M + 66    | First line of pattern information (64 hex figures per line)                                    |
| M + 67, M + 68     | CR: LF                                                                                         |
| M + 69 to M + 2112 | Remaining 31 lines of hex figures,<br>each line followed by a Carriage<br>Return and Line Feed |

### Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

#### Option A (1024 x 8)

Frame M + 3 contains the hexadecimal equivalent of

bits D7 thru D4 of byte 0. Frame M + 4 contains bits D3 thru D0. These two hex figures together program byte 0. Likewise, frames M + 5 and M + 6 program byte 1, while M + 7 and M + 8 program byte 2. Frames M + 3 to M + 66 comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

#### Option B (2048 x 4)

Frame M + 3 contains the hexadecimal equivalent of byte 0, bits D3 thru D0. Frame M + 4 contains byte 1, frame M + 5 byte 2, and so on. Frames M + 3 to M + 66 sequentially program bytes 0 to 31 (the first 32 bytes). The line is terminated with a CR and LF.

#### **Both Options**

The remaining 31 lines of data are punched in sequence using the same format, each line terminated with a CR and LF. The total 32 lines of data contain 32 x 64 or 2048 characters. Since each character programs 4 bits of information, a full 8192 bits are programmed.

As an example, a printout of the punched tape for Figure 13 would read as shown in Figure 10 (a CR and LF is implicit at the end of each line).

|                      |                   | GANIZATIONAL DA<br>B30A MOS READ ( |               |                            |  |
|----------------------|-------------------|------------------------------------|---------------|----------------------------|--|
| Customer :           |                   |                                    | N             | lotorola Use Only:         |  |
| Company              |                   |                                    | Quote:        |                            |  |
| Part No              |                   |                                    | Part No.:     |                            |  |
| Originator           |                   |                                    | Specif. No.:  |                            |  |
| Phone No             |                   |                                    |               |                            |  |
| Chip Select Options: | CS1               | Active<br>High                     | Active<br>Low | No Connect<br>"Don't Care" |  |
|                      | CS2<br>CS3<br>CS4 |                                    |               |                            |  |

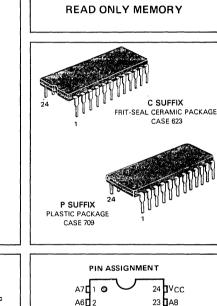
ROM

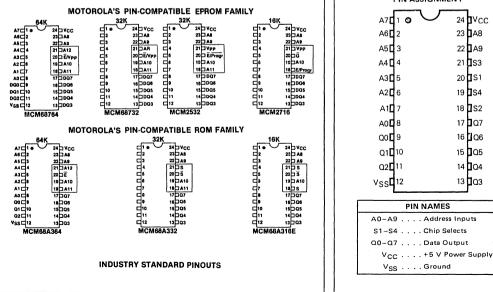


# MCM68A308 MCM68B308

MOS

(N-CHANNEL, SILICON-GATE)


1024 X 8-BIT


## 1024 X 8-BIT READ ONLY MEMORY

The MCM68A308/MCM68B308 is a mask-programmable byteorganized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the customer.

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- O Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns MCM68A308 250 ns - MCM68B308
- 350 mW Typical Power Dissipation





DS9501/6-78

22 DA9

21 **1**S3

20 **1**S1

19 **1**54

18 **D**S2

17 007

16 006

15 005

14 004

13 03

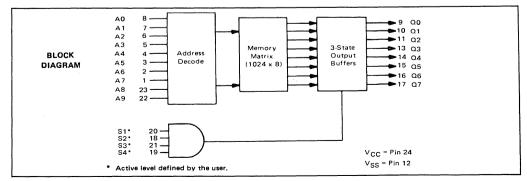
## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter          | Symbol | Min  | Тур | Max | Unit |
|--------------------|--------|------|-----|-----|------|
| Supply Voltage     | Vcc    | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage | VIH    | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage  | VIL    | -0.3 | -   | 0.8 | Vdc  |
| DC CHARACTERISTICS |        |      |     |     |      |


| Characteristic                                                                                                   | Symbol          | Min | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----|------|
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                  | lin             | -   | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 μA)                                                               | V <sub>OH</sub> | 2.4 | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                 | VOL             | -   | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or $\overline{S}$ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | ILO             |     | 10  | μAdc |
| Supply Current<br>( $V_{CC} = 5.5 V, T_A = 0^{\circ}C$ )                                                         | 'cc             |     | 130 | mAdc |


#### ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | V <sub>CC</sub>  | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM



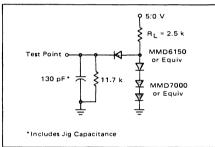


ROM

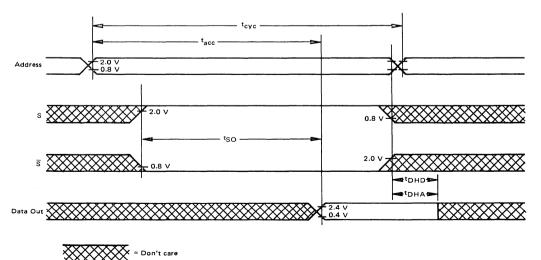
## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with  $t_r$  =  $t_f$  = 20 ns, Load of Figure 1)

|                             |                  | MCM68A308 |     | MCM68B308 |     |      |
|-----------------------------|------------------|-----------|-----|-----------|-----|------|
| Characteristic              | Symbol           | Min       | Max | Min       | Max | Unit |
| Cycle Time                  | t <sub>cyc</sub> | 350       | -   | 250       | -   | ns   |
| Access Time                 | tacc             | -         | 350 | -         | 250 | ns   |
| Chip Select to Output Delay | tso              | -         | 150 | -         | 150 | ns   |
| Data Hold from Address      | t DHA            | 10        | -   | 10        | -   | ns   |
| Data Hold from Deselection  | tDHD             | 10        | 150 | 10        | 150 | ns   |


#### CAPACITANCE

(f = 2.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested)


| Characteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 7.5  | pF   |
| Output Capacitance | Cout            | 12.5 | pF   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

FIGURE 1 - AC TEST LOAD









## MCM68A308•MCM68B308

### CUSTOM PROGRAMMING

## By the programming of a single photomask for the MCM68A308/MCM68B308, the customer may specify the content of the memory and the method of enabling the outputs. (A "no-connect" must always be the highest order chip-select(s).)

Information on the general options of the MCM68A308/MCM68B308 should be submitted on an Organizational Data form such as that shown in Figure 4.

Information for customer memory content may be sent to Motorola in one of four forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM one MCM68A708 or equivalent.
- 4. Hand punched paper tape (Figure 3).

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 1024 bytes.

|   | Binary<br>Data |     |          |   |  |
|---|----------------|-----|----------|---|--|
| 0 | 0              | 0   | 0        | 0 |  |
| 0 | 0              | 0   | 1        | 1 |  |
| 0 | 0              | 1   | 0        | 2 |  |
| 0 | 0              | 1   | 1        | 3 |  |
| 0 | 1              | 0   | 0        | 4 |  |
| 0 | 1              | 0   | 1        | 5 |  |
| 0 | 1              | 1   | 0        | 6 |  |
| 0 | 1              | 1   | <u>1</u> | 7 |  |
| 1 | 0              | 0   | 0        | 8 |  |
| 1 | 0              | 0   | 1        | 9 |  |
| 1 | 0              | 1   | 0        | A |  |
| 1 | 0              | 1   | 1        | в |  |
| 1 | 1              | 0   | 0        | с |  |
| 1 | 1              | 0   | 1        | D |  |
| 1 | 1              | · 1 | 0        | E |  |
| 1 | 1              | 1   | 1        | F |  |

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

#### IBM PUNCH CARDS

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

| 1 | 12    | Byte "0" Hexadecimal equivalent for outputs Q7 thru Q4 (Q7 = M.S.B.)    |
|---|-------|-------------------------------------------------------------------------|
| 2 | 13    | Byte "0" Hexadecimal equivalent for outputs Q3 thru Q0 (Q3 = $M,S,B$ .) |
| 3 | 14-75 | Alternate steps 1 and 2 for consecutive bytes.                          |
| 4 | 77-80 | Card number (starting 0001)                                             |

#### FIGURE 3 - HAND-PUNCHED PAPER TAPE FORMAT

| Frames             |                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------|
| Leader             | Blank Tape                                                                                     |
| 1 to M             | Allowed for customer use (M $\leq$ 64)                                                         |
| M + 1, M + 2       | CR; LF (Carriage Return; Line<br>Feed)                                                         |
| M + 3 to M + 66    | First line of pattern information (64 hex figures per line)                                    |
| M + 67, M + 68     | CR; LF                                                                                         |
| M + 69 to M + 2112 | Remaining 31 lines of hex figures,<br>each line followed by a Carriage<br>Return and Line Feed |

#### Blank Tape

Frames 1 to M are left to the customer for internal identification, where  $M \leq 64$ . Any combination of alphanumerics may be used. This information is terminated with a Carriage Return and Line Feed, delineating the start of data entry. (Note that the tape cannot begin with a CR and/or LF, or the customer identification will be assumed to be programming data.)

Frame M + 3 contains the hexadecimal equivalent of bits Q7 thru Q4 of byte 0. Frame M + 4 contains bits Q3 thru Q0. These two hex figures together program byte 0. Likewise, frames M + 5 and M + 6 program byte 1, while M + 7 and M + 8 program byte 2. Frames M + 3 to M + 66 comprise the first line of the printout and program, in sequence, the first 32 bytes of storage. The line is terminated with a CR and LF.

The remaining 31 lines of data are punched in sequence ame format, each line terminated with a CR ne total 32 lines of data contain 32 x 64 or cters. Since each character programs 4 bits of information, a full 8192 bits are programmed.



|   | using the | S  |
|---|-----------|----|
|   | and LF.   | T٢ |
| • | 2048 char | a  |

|              | МСМе                 | ORGANIZATIONA<br>8308 MOS READ ON |                                           |                    |  |
|--------------|----------------------|-----------------------------------|-------------------------------------------|--------------------|--|
| Part No.     | Phone No             |                                   | _ Quote:<br>_ Part No.:<br>_ Specif. No.: | lotorola Use Only: |  |
| Chip Select: | S1<br>S2<br>S3<br>S4 | Active<br>High                    | Active<br>Low                             | No<br>Connect      |  |

FIGURE 4 – FORMAT FOR PROGRAMMING GENERAL OPTIONS



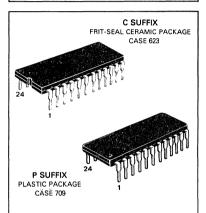
1

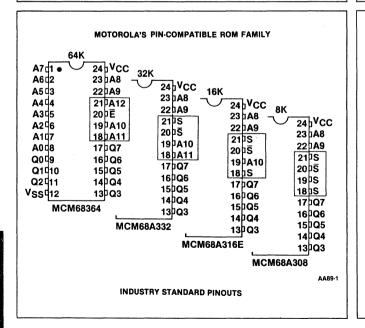


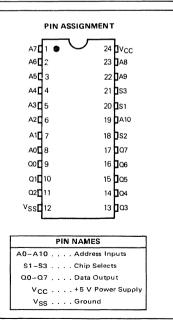
# **MCM68A316E**

## 2048 $\times$ 8 BIT READ ONLY MEMORY

The MCM68A316E is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refeshing because of static operation.


The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.


- Fully Static Operation
- Three-State Data Output
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- TTL Compatible
- Maximum Access Time = 350 ns
- Plug-in Compatible with 2316E
- Pin Compatible with 2708 and TMS2716 EPROMs




(N-CHANNEL, SILICON-GATE)

2048 × 8 BIT READ ONLY MEMORY







## DC OPERATING CONDITIONS AND CHARACTERISTICS

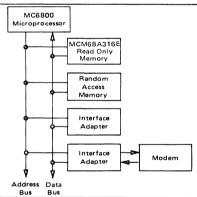
(Full operating voltage and temperature range unless otherwise noted)

## **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter          | Symbol          | Min  | Тур | Max | Unit |
|--------------------|-----------------|------|-----|-----|------|
| Supply Voltage     | V <sub>CC</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage | VIH             | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage  | VIL             | -0.3 | -   | 0.8 | Vdc  |
| DC CHARACTERISTICS |                 |      |     |     |      |

| Characteristic                                                                                                   | Symbol | Min | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|--------|-----|-----|------|
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                  | lin    | -   | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 μA)                                                               | VOH    | 2.4 | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                 | VOL    | -   | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or $\overline{S}$ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | LO     | -   | 10  | μAdc |
| Supply Current<br>( $V_{CC} = 5.5 V, T_A = 0^{\circ}C$ )                                                         | 'cc    | -   | 130 | mAdc |

## ABSOLUTE MAXIMUM RATINGS (See Note 1)


| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

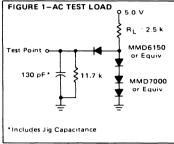
NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### CAPACITANCE

(f = 2.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested)

| Characteristic     | Symbol | Max  | Unit |
|--------------------|--------|------|------|
| Input Capacitance  | Cin    | 7.5  | pF   |
| Output Capacitance | Cout   | 12.5 | pF   |



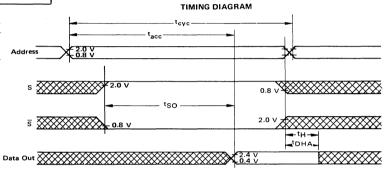

Α0 8 - 9 0.0 A 1 7 **5**10 Q1 A2 6 ►11 Q2 А3 5 3-State Memory **~ 13** Q3 BLOCK A4 4 Address Matrix Output **≫14** Q4 A5 Decode DIAGRAM з Buffers (2048 x 8) ► 15 Q5 A6 2 ►16 Q6 Α7 1 ►17 07 A8 23 Α9 22 A10 19 S1\* S2\* S3\* V<sub>CC</sub> = Pin 24 Gnd = Pin 12 \* Active level defined by the user.

M6800 MICROCOMPUTER FAMILY

BLOCK DIAGRAM



1




This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted. All timing with  $t_r = t_f = 20$  ns, Load of Figure 1)

| Characteristic              | Symbol           | Min | Max | Unit |
|-----------------------------|------------------|-----|-----|------|
| Cycle Time                  | t <sub>cyc</sub> | 350 | -   | ns   |
| Access Time                 | t <sub>acc</sub> | -   | 350 | ns   |
| Chip Select to Output Delay | tso              | -   | 150 | ns   |
| Data Hold from Address      | <sup>t</sup> DHA | 10  | -   | ns   |
| Data Hold from Deselection  | tн               | 10  | 150 | ns   |



## MCM68A316E

## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A316E, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A316E should be submitted on an Organizational Data form such as that shown in Figure 3. ("No-Connect" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of three forms (shown in order of preference):

- 1. Paper tape output of the Motorola M6800 Software.
- 2. Hexadecimal coding using IBM Punch Cards.
- 3. EPROM (TMS2716 or MCM2716).

## PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for control-ling the assembly process. The paper tape must specify the full 2048 bytes.

|   | Binary<br>Data |   |   |     |  |  |
|---|----------------|---|---|-----|--|--|
| 0 | 0              | 0 | 0 | 0   |  |  |
| 0 | 0              | 0 | 1 | 1   |  |  |
| 0 | 0              | 1 | 0 | 2   |  |  |
| 0 | 0              | 1 | 1 | 3   |  |  |
| 0 | 1              | 0 | 0 | 4   |  |  |
| 0 | 1              | 0 | 1 | 5   |  |  |
| 0 | 1              | 1 | 0 | 6   |  |  |
| 0 | 1              | 1 | 1 | 7   |  |  |
| 1 | 0              | 0 | 0 | 8   |  |  |
| 1 | 0              | 0 | 1 | 9   |  |  |
| 1 | 0              | 1 | 0 | A   |  |  |
| 1 | 0              | 1 | 1 | в   |  |  |
| 1 | 1              | 0 | 0 | с   |  |  |
| 1 | 1              | 0 | 1 | D   |  |  |
| 1 | 1              | 1 | 0 | E   |  |  |
| 1 | 1              | 1 | 1 | F · |  |  |

#### **IBM PUNCH CARDS**

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows: Step Column

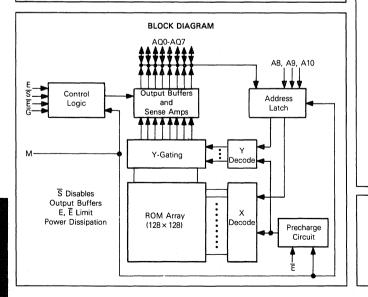
| 1 | 12    | Byte ''0'' Hexadecimal equivalent for   |
|---|-------|-----------------------------------------|
|   |       | outputs Q7 thru Q4 (Q7 = M.S.B.)        |
| 2 | 13    | Byte "0" Hexadecimal equivalent for     |
|   |       | outputs Q3 thru Q0 (Q3 = M.S.B.)        |
| 3 | 14-75 | Alternate steps 1 and 2 for consecutive |
|   |       | by tes.                                 |
| 4 | 77-80 | Card number (starting 0001)             |
|   |       | Total number of cards (64)              |

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

|              |          |    | GANIZATIONAL<br>6E MOS READ O |              |                   |   |
|--------------|----------|----|-------------------------------|--------------|-------------------|---|
| Customer:    |          |    |                               | Г <u> </u>   |                   |   |
| Company      |          |    |                               | N            | otorola Use Only: |   |
| Part No.     |          |    |                               | Quote:       |                   | - |
|              |          |    |                               | Part No.:    | ·····             |   |
| Originator   |          |    |                               | Carali Na    |                   |   |
|              | Phone No |    |                               | Specif. No.: |                   |   |
| Chip Select: |          |    | Active                        | Active       | No                |   |
|              |          |    | High                          | Low          | Connect           |   |
|              |          | S1 |                               |              |                   |   |
|              |          | S2 |                               |              |                   |   |
|              |          | S3 |                               |              |                   |   |
|              |          |    |                               |              |                   |   |

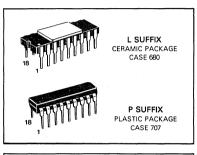
## FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

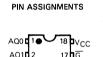



#### 2048 × 8 BIT READ ONLY MEMORY

The MCM65516 is a complementary MOS mask programmable byte organized read only memory (ROM). The MCM65516 is organized as 2048 bytes of 8 bits, designed for use in multiplex bus systems. It is fabricated using Motorola's high performance silicon gate CMOS technology, which offers low-power operation from a single 5.0 volt supply.

The memory is compatible with CMOS microprocessors that share address and data lines. Compatibility is enhanced by pins 13, 14, 16, and 17 which give the user the versatility of selecting the active levels of each. Pin 17 allows the user to choose active high, active low, or a third option of programming which is termed the "MOTEL" mode. If this mode is selected by the user, it provides direct compatibility with either the Motorola MC146805E2 or Intel 8085 type microprocessor series. In the MOTEL operation the ROM can accept either polarity signal on the data strobe input as long as the signal toggles during the cycle. This unique operational feature makes the ROM an extremely versatile device.


- 2K×8 CMOS ROM
- 3 to 6 Volt Supply
- Access Time 430 ns (5 V) MCM65516-43
  - 550 ns (5 V) MCM65516-55
- Low Power Dissipation
   15 mA Maximum (Active)
   30 μA Maximum (Standby)
- Multiplex Bus Directly Compatible With CMOS Microprocessors
- (MC146805E2, NSC800)
- Pins 13, 14, 16, and 17 are Mask Programmable
- MOTEL Mask Option Also Insures Direct Compatibility with NMOS Microprocessors Like MC6803, MC6801, 8085, and 8086
- Standard 18 Pin Package


ROM



## CMOS (COMPLEMENTARY MOS)

2048 × 8 BIT MULTIPLEXED BUS READ ONLY MEMORY





| AQ1          | 2 | 17 | <b>g</b> G   |
|--------------|---|----|--------------|
| AQ2          | 3 | 16 | ΒE           |
| AQ3          | 4 | 15 | м            |
| AQ4          | 5 | 14 | <u>ı</u> s   |
| AQ5 <b>C</b> | 6 | 13 | ΒĒ           |
| AQ6 🛙        | 7 | 12 | <b>1</b> A10 |
| AQ7 <b>[</b> | 8 | 11 | <b>1</b> A9  |
| VSS          | 9 | 10 | A8           |

|         | PIN NAMES                    |
|---------|------------------------------|
| AQ0-AQ7 | Address/Data Output          |
| A8-A10  | Address                      |
| M       | Multiplex Address Strobe     |
| E       | Chip Enable                  |
| S       | Chip Select                  |
| G       | .Data Strobe (Output Enable) |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DS-9861/4-82

## ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0 | V    |
| Input Voltage               | V <sub>in</sub>  | -0.3 to +7.0 | V    |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED OPERATING CONDITIONS

| Parameter                                                                                                        | Symbol | Min                  | Nom | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|--------|----------------------|-----|-----|------|
| Supply Voltage (V <sub>CC</sub> must be applied at least 100 $\mu$ s before proper device operation is achieved) | Vcc    | 4.5                  | 5.0 | 5.5 | v    |
| Input High Voltage                                                                                               | VIH    | V <sub>CC</sub> -2.0 | -   | Vcc | V    |
| Input Low Voltage                                                                                                | VIL    | - 0.3                | -   | 0.8 | V    |

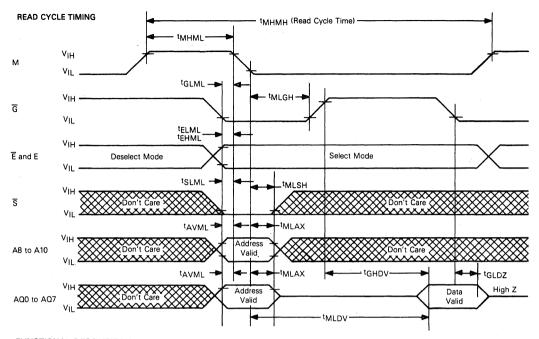
## RECOMMENDED OPERATING CHARACTERISTICS

| Characteristic             | Symbol | MCM65516-43 |      | MCM65516-55 |      | Unit | Test Condition                                                                             |
|----------------------------|--------|-------------|------|-------------|------|------|--------------------------------------------------------------------------------------------|
| Characteristic             | Symbol | Min         | Max  | Min         | Max  | Unit | Test Condition                                                                             |
| Output High Voltage        | VOH    | Vcc-0.4 V   | _    | Vcc-0.4 V   | _    | V    |                                                                                            |
| Source Current - 1.6 mA    | 100    |             |      | 100 0.11    |      | ľ    |                                                                                            |
| Output Low Voltage         | VOL    | _           | 0.4  | _           | 0.4  | v    |                                                                                            |
| Sink Current + 1.6 mA      | .01    |             | 0.1  |             | 0.1  | ·    |                                                                                            |
| Supply Current (Operating) | ICC1   | -           | 15   | -           | 15   | mA   | $C_L = 130 \text{ pF}, V_{in} = V_{IH} \text{ to } V_{IL}$<br>$t_{CYC} = 1.0 \mu \text{s}$ |
| Supply Current (DC Active) | ICC2   | -           | 100  | -           | 100  | μA   | Vin=VCC to GND                                                                             |
| Standby Current            | ISB    | -           | 30   | -           | 50   | μA   | Vin=VCC to GND                                                                             |
| Input Leakage              | lin    | - 10        | + 10 | - 10        | + 10 | μA   |                                                                                            |
| Output Leakage             | 10L    | - 10        | + 10 | - 10        | + 10 | μA   |                                                                                            |

CAPACITANCE (f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 5    | рF   |
| Output Capacitance | Cout            | 12.5 | pF   |

## AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature range unless otherwise noted.)

READ CYCLE CL = 130 pF

## RECOMMENDED OPERATING CONDITIONS

| Parameter                                                                   |                   | MCM65516-43 |     | MCM6     | Unit |    |
|-----------------------------------------------------------------------------|-------------------|-------------|-----|----------|------|----|
|                                                                             | Symbol            | Min         | Max | Min      | Max  |    |
| Address Strobe Access Time                                                  | <sup>t</sup> MLDV | -           | 430 | -        | 550  | ns |
| Read Cycle Time                                                             | tмнмн             |             | 750 | -        | 1000 | ns |
| Multiplex Address Strobe High to Multiplex Address Strobe Low (Pulse Width) | <sup>t</sup> MHML | 150         |     | 175      | -    | ns |
| Data Strobe Low to Multiplex Address Strobe Low                             | tGLML             | 50          | -   | 50       | -    | ns |
| Multiplex Address Strobe Low to Data Strobe High                            | <sup>t</sup> MLGH | 100         | -   | 160      | -    | ns |
| Address Valid to Multiplex Address Strobe Low                               | <sup>t</sup> AVML | 50          | -   | 50       | -    | ns |
| Chip Select Low to Multiplex Address Strobe Low                             | <sup>t</sup> SLML | 50          | -   | 50       | -    | ns |
| Multiplex Address Strobe Low to Chip Select High                            | <sup>t</sup> MLSH | 50          | -   | 80       | -    | ns |
| Chip Enable Low/High to Multiplex Address Strobe Low                        | telml<br>tehmh    | 50<br>50    | -   | 50<br>50 | _    | ns |
| Multiplex Address Strobe Low to Address Don't Care                          | <sup>t</sup> MLAX | 50          | -   | 80       | -    | ns |
| Data Strobe High to Data Valid                                              | tGHDV             | 175         | -   | 200      | -    | ns |
| Data Strobe Low to High Z                                                   | tGLDZ             | -           | 160 | -        | 160  | ns |



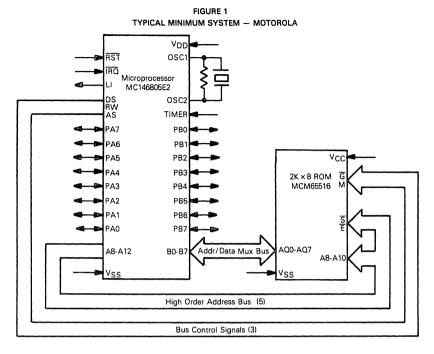


## FUNCTIONAL DESCRIPTION

The 2K × 8 bit CMOS ROM (MCM65516) shares address and data lines and, therefore, is compatible with the majority of CMOS microprocessors in the industry. The package size is reduced from 24 pins for standard NMOS ROMs to 18 pins due to the multiplexed bus approach. The savings in package size and external bus lines adds up to tighter board packing density which is handy for battery powered hand carried CMOS systems. This ROM is designed with the intention of having very low active as well as standby currents. The active power dissipation of 150 mW (at V<sub>CC</sub>=5 V) req=1 MHz) and standby power of 250  $\mu$ W (at V<sub>CC</sub>=5 V) add up to low power for battery operation. The typical access time of the ROM is 280 ns making it acceptable for operation with today's existing CMOS microprocessors.

An example of this operation is shown in Figure 1. Shown is a typical connection with either the Motorola MC148805E2 CMOS microprocessor (M6800 series) or the National NSC800 which is an 8085 or Z80 based system. The main difference between the systems is that the data strobe (DS) on the MC146805E2 and the read bar ( $\overline{RD}$ ) on the 8085 both control the output of data from the ROM but are of opposite polarity. The Motorola 2K × 8 ROM can accept either polarity signal on the data strobe input as long as the signal toggles during the cycle. This is termed the MOTEL mode of operation. This unique operational feature makes the ROM an extremely versatile part. Further operational features are explained in the following section.

#### **Operational Features**

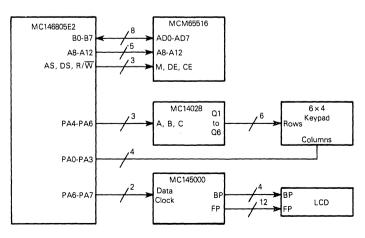

In order to operate in a multiplexed bus sytem the ROM latches, for one cycle, the address and chip select input information on the trailing edge of address strobe (M) so the address signals can be taken off the bus.

Since they are latched, the address and chip select signals have a setup and hold time referenced to the negative edge

of address strobe. Address strobe has a minimum pulse width requirement since the circuit is internally precharged during this time and is setup for the next cycle on the trailing edge of address strobe. Access time is measured from the negative edge of address strobe.

The part is equipped with a data strobe input (G) which controls the output of data onto the bus lines after the addresses are off the bus. The data strobe has three potential modes of operation which are programmable with the ROM array. The first mode is termed the MOTEL mode of operation. In this mode, the circuit can work with either the Motorola or Intel type microprocessor series. The difference between the two series for a ROM peripheral is only the polarity of the data strobe signal. Therefore, in the MOTEL mode the ROM recognizes the state of the data strobe signal at the trailing edge of address strobe (requires a setup and hold time), latches the state into the circuit after address strobe, and turns on the data outputs when an opposite polarity signal appears on the data strobe input. In this manner the data strobe input can work with either polarity signal but that signal must toggle during a cycle to output data on the bus lines. If the data strobe remains at a d.c. level the outputs will remain off. The data strobe input has two other programmable modes of operation and those are the standard static select modes (high or low) where a d.c. input not synchronous with the address strobe will turn the outputs on or off.

The chip enable and chip select inputs are all programmable with the ROM array to either a high or low select. The chip select acts as an additional address and is latched on the address strobe trailing edge. On deselect the chip select merely turns off the output drivers acting as an output disable. It does not power down the chip. The chip enable inputs, however, do put the chip in a power down standby mode but they are not latched with address strobe and must be maintained in a d.c. state for a full cycle.



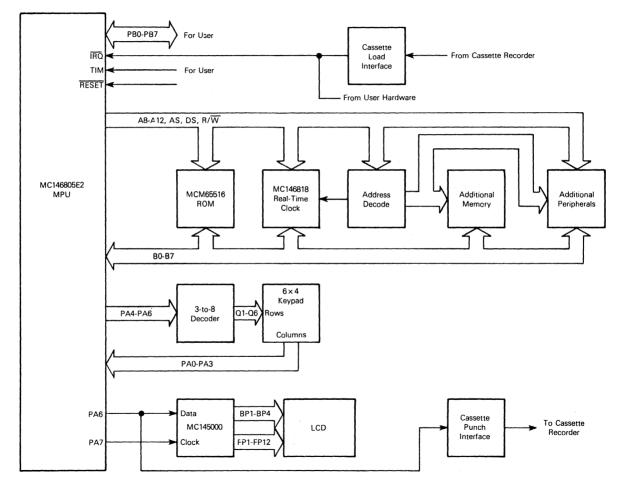

## INTRODUCTION

CBUG05 is a debug monitor program written for the MC146805E2 Microprocessor Unit and contained in the MCM65516 2K × 8 CMOS ROM. CBUG05 allows for rapid development and evaluation of hardware and M6805 Family type software, using memory and register examine/change commands as well as breakpoint and single instruction trace commands. CBUG05 also includes software to set and display time, using an optional MC146818 Real-Time Clock (RTC), and routines to punch and load an optional cassette

interface. Figure 2 shows a minimum system which only requires the MPU, ROM, keypad inputs and display output interfaces. Port A of the MC146805E2 MPU is required for the I/O; however, Port B and all other MC146805E2 MPU features remain available to the user. A possible expanded system is shown in Figure 3. If additional information is required, please refer to Application Note AN-823 – "CBUG05 Debug Monitor Program for MC146805E2 Microprocessor Unit."








-----

-

-

#### FIGURE 3 - EXPANDED CBUG05 SYSTEM



## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM65516 the customer may specify the content of the memory and the method of enabling the outputs, or selection of the "MOTEL" option (Pin 17).

Information on the general options of the MCM65516 should be submitted on an Organizational Data form such as that shown in the below figure.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

1. Magnetic Tape

9 track, 800 bpi, odd parity written in EBCDIC character code. Motorola's R.O.M.S. format.

- 2. EPROMs
- One 16K (MCM2716, or TMS2716).

#### FORMAT FOR PROGRAMMING GENERAL OPTIONS

| Customer:                |               | ORGA    | NIZATIONAL DA | ATA MOS F | READ ONLY ME | MORY              |
|--------------------------|---------------|---------|---------------|-----------|--------------|-------------------|
| Company                  |               | <u></u> |               |           | [            | Motorola Use Only |
| Part No.                 |               |         |               |           | Quote:       |                   |
| Originator               |               |         |               |           | Part No.:    |                   |
|                          |               |         |               |           | Specif. No.  | .:                |
| Programmable Pin Options |               |         |               |           |              |                   |
|                          | Active        | 13      | 14            | 16        | 17           |                   |
|                          | High          |         |               |           |              |                   |
|                          | Active<br>Low |         | ۵             | D         |              |                   |
|                          |               |         |               |           | MOTEL 🗖      |                   |

RON



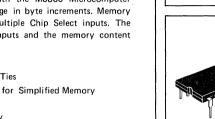
# MCM68A332

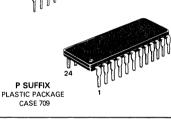
MOS

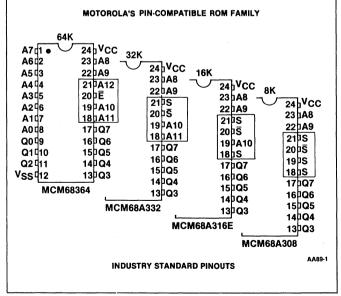
4096 X 8-BIT

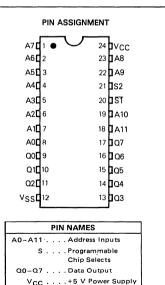
READ ONLY MEMORY

C SUFFIX


FRIT-SEAL CERAMIC PACKAGE CASE 623


## 4096 X 8-BIT READ ONLY MEMORY


The MCM68A332 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

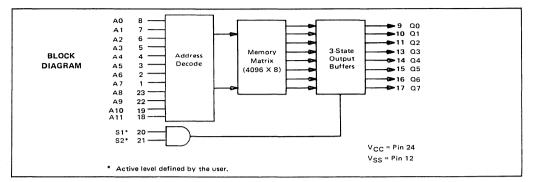

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. Memory expansion is provided through multiple Chip Select inputs. The active level of the Chip Select inputs and the memory content are defined by the user.

- Fully Static Operation
- Three-State Data Output for OR-Ties
- Mask-Programmable Chip Selects for Simplified Memory Expansion
- Single ±10% 5-Volt Power Supply
- Fully TTL Compatible
- Maximum Access Time = 350 ns
- Directly Compatible with 4732
- Pin Compatible with 2708 and 2716 EPROMs
- Preprogrammed MCM68A332-2 Available










VSS . . . Ground

©MOTOROLA INC., 1978

#### DS 9519 (Replaces ADI-469)

DS9519/7-78



### DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                                                                                                    | Symbol          | Min  | Тур | Max | Unit |
|--------------------------------------------------------------------------------------------------------------|-----------------|------|-----|-----|------|
| Supply Voltage (V <sub>CC</sub> must be applied at least 100 µs before proper device operation is achieved.) | V <sub>CC</sub> | 4.5  | 5.0 | 5.5 | Vdc  |
| Input High Voltage                                                                                           | VIH             | 2.0  | -   | 5.5 | Vdc  |
| Input Low Voltage                                                                                            | VIL             | -0.3 | -   | 0.8 | Vdc  |

#### DC CHARACTERISTICS

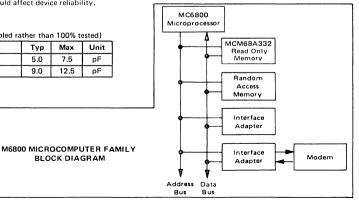
| Characteristic                                                                                                   | Symbol          | Min | Max | Unit |
|------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----|------|
| Input Current<br>(V <sub>in</sub> = 0 to 5.5 V)                                                                  | lin             | -   | 2.5 | μAdc |
| Output High Voltage<br>(I <sub>OH</sub> = -205 µA)                                                               | Voн             | 2.4 | -   | Vdc  |
| Output Low Voltage<br>(I <sub>OL</sub> = 1.6 mA)                                                                 | VOL             | _   | 0.4 | Vdc  |
| Output Leakage Current (Three-State)<br>(S = 0.8 V or $\overline{S}$ = 2.0 V, V <sub>out</sub> = 0.4 V to 2.4 V) | I <sub>LO</sub> | -   | 10  | μAdc |
| Supply Current<br>( $V_{CC}$ = 5.5 V, T <sub>A</sub> = 0 <sup>o</sup> C)                                         | 'cc             |     | 80  | mAdc |

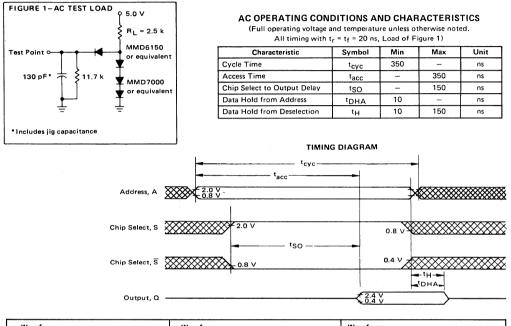
## ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value        | Unit |
|-----------------------------|------------------|--------------|------|
| Supply Voltage              | Vcc              | -0.3 to +7.0 | Vdc  |
| Input Voltage               | Vin              | -0.3 to +7.0 | Vdc  |
| Operating Temperature Range | TA               | 0 to +70     | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150  | °C   |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

1


1


ROW

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

#### CAPACITANCE

| Characteristic     | Symbol          | Тур | Max  | Unit |
|--------------------|-----------------|-----|------|------|
| Input Capacitance  | C <sub>in</sub> | 5.0 | 7.5  | pF   |
| Output Capacitance | Cout            | 9.0 | 12.5 | pF   |





| Waveform<br>Symbol | Input            | Output           | Waveform<br>Symbol | Input                                 | Output                        | Waveform<br>Symbol | Input | Output            |
|--------------------|------------------|------------------|--------------------|---------------------------------------|-------------------------------|--------------------|-------|-------------------|
|                    | MUST BE<br>VALID | WILL BE<br>VALID | *****              | DON'T CARE<br>ANY CHANGE<br>PERMITTED | CHANGING:<br>STATE<br>UNKNOWN |                    | -     | HIGH<br>IMPEDANCE |

### MCM68A332 CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68A332, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68A332 should be submitted on an Organizational Data form such as that shown in Figure 3. (A "No-Connect" or "Don't Care" must always be the highest order Chip Select(s).)

Information for custom memory content may be sent to Motorola in one of four forms (shown in order of preference): 1. IBM Punch Cards:

- A. Hexadecimal Format
- B. Intel Format
- C. Binary Negative-Postive Format
- 2. EPROMs-two 16K (MCM2716 or TMS2716) or four 8K (MCM2708)
- 3. Paper tape output of the Motorola M6800 software
- 4. Hand punched paper tape

#### PAPER TAPE

Included in the software packages developed for the M6800 Microcomputer Family is the ability to produce a paper tape output for computerized mask generation. The assembler directives are used to control allocation of memory, to assign values for stored data, and for controlling the assembly process. The paper tape must specify the full 4096 bytes.

## IBM PUNCH CARDS, HEXADECIMAL FORMAT

The hexadecimal equivalent (from Figure 2) may be placed on 80 column IBM punch cards as follows:

#### Step Column

| 1 | 12      | Byte "0" Hexadecimal equivalent for outputs    |
|---|---------|------------------------------------------------|
|   |         | Q7 through Q4 (Q7 = M.S.B.)                    |
| 2 | 13      | Byte "0" Hexadecimal equivalent for outputs    |
|   |         | Q3 through Q0 (Q3 = M.S.B.)                    |
| 3 | 14-75   | Alternate steps 1 and 2 for consecutive bytes. |
| 4 | 77 - 79 | Card number (starting 001).                    |
| 5 |         | Total number of cards must equal 128.          |

#### FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

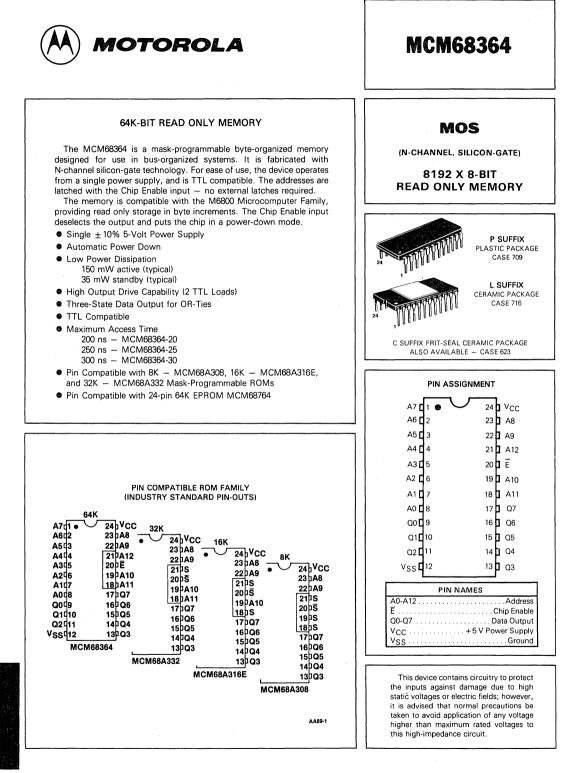
|   | Binary | / Data |   | Hexadecimal<br>Character |
|---|--------|--------|---|--------------------------|
| 0 | C      | 0      | 0 | 0                        |
| 0 | 0      | 0      | 1 | 1                        |
| 0 | 0      | 1      | 0 | 2                        |
| 0 | 0      | 1      | 1 | 3                        |
| 0 | 1      | 0      | 0 | 4                        |
| 0 | 1      | 0      | 1 | 5                        |
| 0 | 1      | 1      | 0 | 6                        |
| 0 | 1      | 1      | 1 | 7                        |
| 1 | 0      | 0      | 0 | 8                        |
| 1 | 0      | 0      | 1 | 9                        |
| 1 | 0      | 1      | 0 | А                        |
| 1 | 0      | 1      | 1 | В                        |
| 1 | 1      | 0      | 0 | с                        |
| 1 | 1      | 0      | 1 | D                        |
| 1 | 1      | 1      | 0 | E                        |
| 1 | 1      | 1      | 1 | F                        |

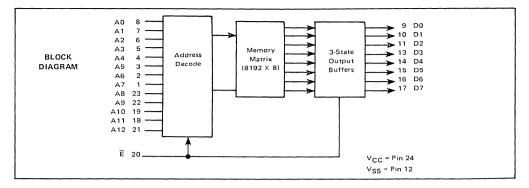
#### PRE-PROGRAMMED MCM68A332P2, MCM68A332C2

The -2 standard ROM pattern contains sine-lookup and arctanlookup tables.

Locations 0000 through 2001 contain the sine values. The sine's first quadrant is divided into 1000 parts with sine values corresponding to these angles stored in the ROM. Sin  $\pi/2$  is included and is rounded to 0.9999.

The arctan values contain angles in radians corresponding to the arc tangents of 0 through 1 in steps of 0.001 and are contained in locations 2048 through 4049.


Locations 2002 through 2047 and 4050 through 4095 are zero filled.


All values are represented in absolute decimal format with four digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the two least significant digits in the upper byte. The decimal point is assumed to be to the left of the most significant digit.

| Example: Sin $(\frac{1}{1000} \frac{\pi}{2}) = 0.0016$ decimal |      |       |  |
|----------------------------------------------------------------|------|-------|--|
| Address                                                        | Con  | tents |  |
| 0002                                                           | 0000 | 0000  |  |
| 0003                                                           | 0001 | 0110  |  |

#### FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

|                      |      | RGANIZATIONA<br>332 MOS READ C                |             |                   |             |
|----------------------|------|-----------------------------------------------|-------------|-------------------|-------------|
| Customer:            |      |                                               | (           | Motorola Use Only | <del></del> |
| Company              |      |                                               |             | wolorola use only |             |
|                      |      |                                               | Quote       |                   |             |
| Part No              | ···· | · <u>· · · · · · · · · · · · · · · · · · </u> | Part No     |                   |             |
| Originator           |      |                                               |             |                   |             |
| Phone No.            |      |                                               | Specif. No. |                   |             |
| Chip Select Options: |      | Active High                                   | Active Low  | No-Connect        |             |
|                      | S1   |                                               |             |                   |             |
|                      | S2   |                                               |             |                   |             |





#### ABSOLUTE MAXIMUM RATINGS (See note)

| Rating                      | Symbol | Value        | Unit |
|-----------------------------|--------|--------------|------|
| Supply Voltage              | Vcc    | -0.5 to +7.0 | Vdc  |
| Input Voltage               | Vin    | -0.5 to +7.0 | Vdc  |
| Operating Temperature Range | ТA     | 0 to +70     | °C   |
| Storage Temperature Range   | Tstg   | -65 to +150  | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

## RECOMMENDED OPERATING CONDITIONS

| Parameter                                                                                                                      | Symbol | Min   | Nom | Max | Unit |
|--------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----|-----|------|
| Supply Voltage (VCC must be applied at least 100 $\mu$ s before proper device operation is achieved, $\overline{E} = V_{IH}$ ) | Vcc    | 4.5   | 5.0 | 5.5 | V    |
| Input High Voltage                                                                                                             | ViH    | 2.0   | -   | Vcc | V    |
| Input Low Voltage                                                                                                              | VIL    | - 0.3 | -   | 0.8 | V    |

#### RECOMMENDED OPERATING CHARACTERISTICS

| Characteristic                                                                                     | Symbol | Min | Тур | Max | Unit |
|----------------------------------------------------------------------------------------------------|--------|-----|-----|-----|------|
| Input Current (V <sub>in</sub> = 0 to 5.5 V)                                                       | lin    | -10 | -   | 10  | μA   |
| Output High Voltage (IOH = -220 µA)                                                                | Voн    | 2.4 |     | -   | V    |
| Output Low Voltage (IOL = 3.2 mA)                                                                  | Vol    | -   | -   | 0.4 | V    |
| Output Leakage Current (Three-State)<br>( $\overline{E}$ = 2.0 V, V <sub>out</sub> = 0 V to 5.5 V) | ILO    | -10 | -   | 10  | μΑ   |
| Supply Current — Active*<br>(Minimum Cycle Rate)                                                   | lcc    | -   | 25  | 40  | mA   |
| Supply Current — Standby<br>(E = VIH)                                                              | ISB    | -   | 7   | 10  | mA   |

\*Current is proportional to cycle rate.

#### CAPACITANCE (f = 1.0 MHz, $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested)

| Characteristic     | Symbol          | Max | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 8   | pF   |
| Output Capacitance | Cout            | 15  | pF   |

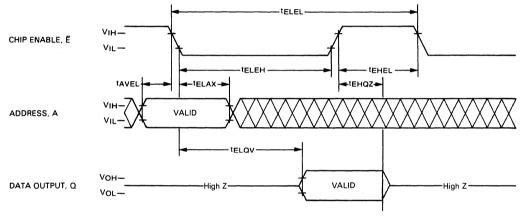


ŋ

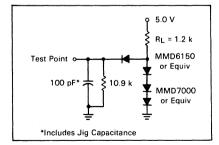
đ

4

t


#### AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

## RECOMMENDED AC OPERATING CONDITIONS


(T<sub>A</sub>=0 to 70°C, V<sub>CC</sub>=5.0 V  $\pm$  10%. All timing with t<sub>r</sub> = t<sub>f</sub> = 20 ns, loads of Figure 1)

| Deservator                                                       | Combal            | MCM68364-20 |     | MCM68364-25 |     | MCM68364-30 |     | Unit |
|------------------------------------------------------------------|-------------------|-------------|-----|-------------|-----|-------------|-----|------|
| Parameter                                                        | Symbol            | Min         | Max | Min         | Max | Min         | Max |      |
| Chip Enable Low to Chip Enable Low of Next Cycle<br>(Cycle Time) | telel             | 300         | -   | 375         | -   | 450         |     | ns   |
| Chip Enable Low to Chip Enable High                              | <sup>t</sup> ELEH | 200         | -   | 250         | -   | 300         | -   | ns   |
| Chip Enable Low to Output Valid (Access)                         | <sup>t</sup> ELQV |             | 200 | -           | 250 | -           | 300 | ns   |
| Chip Enable High to Output High Z (Off Time)                     | <sup>t</sup> EHQZ | 10          | 60  | -           | 60  | -           | 75  | ns   |
| Chip Enable Low to Address Don't Care (Hoid)                     | <sup>t</sup> ELAX | 60          | -   | 60          | -   | 75          |     | ns   |
| Address Valid to Chip Enable Low (Address Setup)                 | <sup>t</sup> AVEL | 0           | -   | 0           | -   | 0           | -   | ns   |
| Chip Enable Precharge Time                                       | <sup>t</sup> ehel | 100         |     | 125         | -   | 150         | -   | ns   |

## TIMING DIAGRAM



#### FIGURE 1 - AC TEST LOAD



| WAVEFORMS          |                                        |                               |  |  |  |
|--------------------|----------------------------------------|-------------------------------|--|--|--|
| Waveform<br>Symbol | Input                                  | Output                        |  |  |  |
|                    | MUST BE<br>VALID                       | WILL BE<br>VALID              |  |  |  |
|                    | CHANGE<br>FROM H TO L                  | WILL CHANGE<br>FROM H TO L    |  |  |  |
|                    | CHANGE<br>FROM L TO H                  | WILL CHANGE .<br>FROM L TO H  |  |  |  |
|                    | DON'T CARE:<br>ANY CHANGE<br>PERMITTED | CHANGING:<br>STATE<br>UNKNOWN |  |  |  |
| $\supset$          |                                        | HIGH<br>IMPEDANCE             |  |  |  |

## PRODUCT DESCRIPTION

This Motorola MOS Read Only Memory (ROM), the MCM68364, is a clocked or edge enabled device. It makes use of virtual ground ROM cells and clocked peripheral circuitry, allowing a better speed-power product.

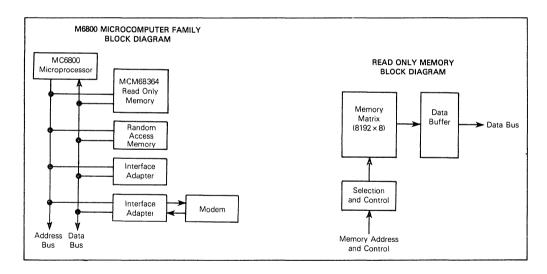
The MCM63364 has a period during which the non-static periphery must undergo a precharge. Therefore, the cycle time is slightly longer than the access time. It is essential that the precharge requirements are met to ensure proper address latching and avoid invalid output data. Once the address hold time has been met, new address information can be supplied in preparation for the next cycle.

#### CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68364, the customer may specify the contents of the memory.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

- EPROMs one 64K (MCM68764), two 32K (MCM2532), four 16K (MCM2716 or TMS2716), or eight 8K (MCM2708).
- Magnetic Tape 9 Track, 800 bpi, odd parity written in EBCDIC character code. Motorola's R.O.M.S. format.


## PRE-PROGRAMMED MCM68364P25-3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from .000 through .999 incrementing in steps of 1/1000. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most significant digit. Locations 3600 through 4095 and 8096 through 8191 are

zero filled. All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

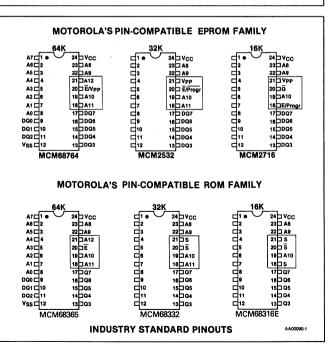


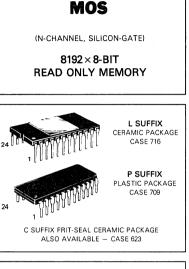
Example: log10 (1.01) = .00432137 decimal

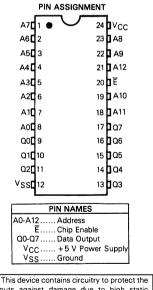
| Address | Con  | tents |
|---------|------|-------|
| 4       | 0000 | 0000  |
| 5       | 0100 | 0011  |
| 6       | 0010 | 0001  |
| 7       | 0011 | 0111  |

ROM

d

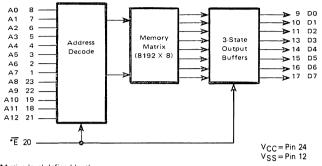




#### 64K BIT READ ONLY MEMORY


The MCM68365 is a mask-programmable byte-organized memory designed for use in bus-organized systems. It is fabricated with N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL, and needs no clocks or refreshing due to its static operation.

The memory is compatible with the M6800 Microcomputer Family, providing read only storage in byte increments. The active level of the Chip Enable input and the memory content are defined by the user. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Fully Static Operation
- Automatic Power Down
- Low Power Dissipation 125 mW Active (Typical) 25 mW Standby (Typical)
- Single ± 10% 5-Volt Power Supply
- High Output Drive Capability (2 TTL Loads)
- Three-State Data Output for OR-Ties
- Mask Programmable Chip Enable
- TTL Compatible
- Maximum Access Time 250 ns MCM68365-25
  - 350 ns MCM68365-35
- Pin Compatible with 8K MCM68308, 16K MCM68316E, and 32K – MCM68332, 64K – MCM68364, MCM68366 Mask-Programmable ROMs








inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

#### BLOCK DIAGRAM



#### \*Active level defined by the user.

## ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                      | Symbol           | Symbol Value   |    |  |
|-----------------------------|------------------|----------------|----|--|
| Supply Voltage              | Vcc              | - 1.0 to + 7.0 | V  |  |
| Input Voltage               | Vin              | - 1.0 to + 7.0 | V  |  |
| Operating Temperature Range | TA               | 0 to + 70      | °C |  |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150    | °C |  |

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability

#### DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted)

#### RECOMMENDED OPERATING CONDITIONS

| Parameter                                                                                                        | Symbol | Min  | Nom | Max | Unit | Notes |
|------------------------------------------------------------------------------------------------------------------|--------|------|-----|-----|------|-------|
| Supply Voltage (V <sub>CC</sub> must be applied at least 100 $\mu$ s before proper device operation is achieved) | Vcc    | 4.5  | 5.0 | 5.5 | v    |       |
| Input High Voltage                                                                                               | VIH    | 2.0  | -   | 5.5 | V    | -     |
| Input Low Voltage                                                                                                | VIL    | -0.5 | -   | 0.8 |      |       |

#### RECOMMENDED OPERATING CHARACTERISTICS

| Characteristic                                                      | Symbol | Min  | Тур | Max | Unit | Notes |
|---------------------------------------------------------------------|--------|------|-----|-----|------|-------|
| Input Current (V <sub>in</sub> =0 to 5.5 V)                         | lin    | - 10 | -   | 10  | μA   | 1     |
| Output High Voltage (I <sub>OH</sub> = - 205 µA)                    | Voн    | 2.4  | -   | -   | V    | -     |
| Output Low Voltage (I <sub>OL</sub> =3.2 mA)                        | VOL    | -    | -   | 0.4 | V    | -     |
| Output Leakage Current (Three-State) (E=2.0 V, Vout=0.4 V to 2.4 V) | ILO    | - 10 | -   | 10  | μA   | 2     |
| Supply Current - Active (V <sub>CC</sub> =5.5 V)                    | Icc    | -    | 20  | 60  | mΑ   | . 3   |
| Supply Current - Standby (V <sub>CC</sub> =5.5 V)                   | ISB    | -    | 4   | 15  | mΑ   | 4     |

#### CAPACITANCE (f = 1.0 MHz, TA = 25°C, periodically sampled rather than 100% tested)

| Characteristic     | Symbol          | Max  | Unit |
|--------------------|-----------------|------|------|
| Input Capacitance  | C <sub>in</sub> | 7.5  | pF   |
| Output Capacitance | Cout            | 12.5 | pF   |

NOTES: 1. Measured a) forcing V<sub>CC</sub> on one input pin at a time while all others are grounded, and

b) maintaining 0.0 V on one pin at a time while all others are at  $V_{CC} = 4.5$  V and 5.5 V.

2. Measured a) with A0-A12=VSS and forcing 0.4 V on one output at a time while all others are held at 2.4 V, and

- b) with A0-A12=VSS and force 2.4 on one output at a time while all others are held at 0.4 V (V<sub>CC</sub>=4.5 V and 5.5 V). 3. Measured with the Chip Enable ( $\vec{E}$ =V<sub>IL</sub>) addresses cycling, and the outputs unloaded. 4. Measured with the Chip Disabled ( $\vec{E}$ =V<sub>IH</sub>) and the outputs unloaded.

đ d

1

## AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

RECOMMENDED OPERATING CONDITIONS (See Notes 5, 6)

(T<sub>A</sub>=0 to 70°C, V<sub>CC</sub>=5.0 V  $\pm$  10%. All timing with t<sub>f</sub> = t<sub>f</sub> = 10 ns, load of Figure 1)

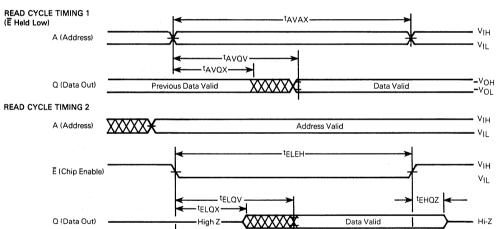
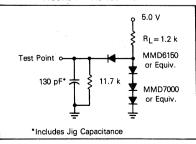
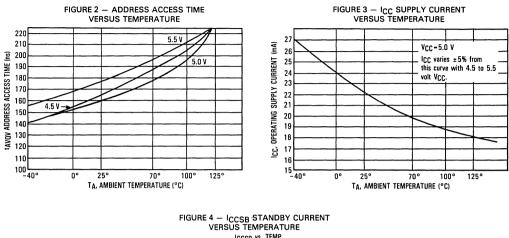
|                                                                                     |                   | MCM6 | 8365-25 | MCM6 | 8365-35 |       |
|-------------------------------------------------------------------------------------|-------------------|------|---------|------|---------|-------|
| Parameter                                                                           | Symbol            | Min  | Max     | Min  | Max     | Units |
| Address Valid to Address Don't Care<br>(Cycle Time when Chip Enable is held Active) | t <sub>AVAX</sub> | 250  | -       | 350  | -       | ns    |
| Chip Enable Low to Chip Enable High                                                 | <b>t</b> ELEH     | 250  |         | 350  | -       | ns    |
| Address Valid to Output Valid (Access)                                              | <sup>t</sup> AVQV |      | 250     | -    | 350     | ns    |
| Chip Enable Low to Output Valid (Access)                                            | <sup>t</sup> ELQV | -    | 250     | -    | 350     | ns    |
| Address Valid to Output Invalid                                                     | <sup>t</sup> AVQX | 20   | -       | 20   | -       | ns    |
| Chip Enable Low to Output Invalid                                                   | t <sub>ELQX</sub> | 10   | -       | 10   | -       | ns    |
| Chip Enable High to Output High-Z                                                   | <sup>t</sup> EHQZ | 10   | 80      | 10   | 80      | ns    |
| Chip Selection to Power Up Time                                                     | tPU               | 0    | -       | 0    | -       | ns    |
| Chip Deselection to Power Down Time                                                 | tPD               | -    | 100     | -    | 120     | ns    |

5. E is represented by active low for illustrative purposes.

6. AC Test Conditions

All times are guaranteed with worst case dc levels. Inputs:  $V_{IH}=2.0 \text{ V or } 5.5 \text{ V}$   $V_{IL}=0.8 \text{ V or } -0.5 \text{ V}$ Measurement Levels: Input 1.5 V Output Low=0.4 V



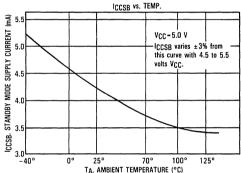




FIGURE 1 - AC TEST LOAD



ROM





## PRE-PROGRAMMED MCM68365P35-3/C35-3, MCM68365P25-3/C25-3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from .000 through .999 incrementing in steps of 1/1000. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit. Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: log10(1.01) = 0.00432137 decimal

| Address | Contents |      |  |  |
|---------|----------|------|--|--|
| 4       | 0000     | 0000 |  |  |
| 5       | 0100     | 0011 |  |  |
| 6       | 0010     | 0001 |  |  |
| 7       | 0011     | 0111 |  |  |

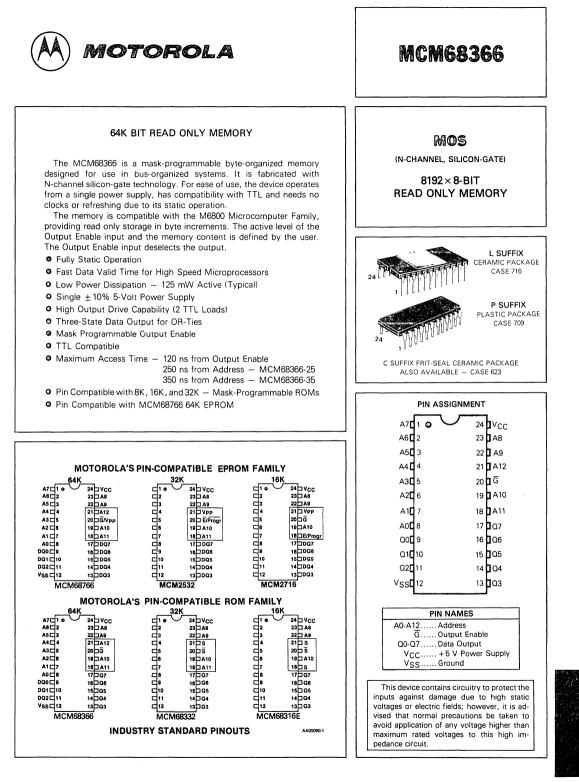
1

d

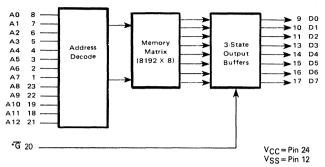
1

## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68365, the customer may specify the content of the memory and the method of enabling the outputs.


Information on the general options of the MCM68365 should be submitted on an Organizational Data form such as that shown in Figure 2.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):


- EPROMs One 64K (MCM68764, MCM68766), two 32K (MCM2532), four 16K (MCM2716 or TMS2716), or eight 8K (MCM2708).
- Magnetic Tape 9 track, 800 bpi, odd parity written in EBCDIC character code. Motorola R.O.M.S. format.

## FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

|                 | ORGANIZATIONAL DATA<br>MCM68365 MOS READ ONLY MEM | IORY               |
|-----------------|---------------------------------------------------|--------------------|
| Customer:       |                                                   |                    |
| Company         |                                                   | Motorola Use Only: |
| Part No         |                                                   | Quote:             |
| Originator      |                                                   | Part No:           |
| Phone No        |                                                   | Specif. No:        |
| Enable Options: |                                                   |                    |
|                 | Active High Active Lo                             | wc                 |



BLOCK DIAGRAM



\*Active Level Defined by the User

## ABSOLUTE MAXIMUM RATINGS (See Note 1)

| Rating                      | Symbol           | Value          | Unit |
|-----------------------------|------------------|----------------|------|
| Supply Voltage              | Vcc              | - 1.0 to + 7.0 | V    |
| Input Voltage               | V <sub>in</sub>  | - 1.0 to + 7.0 | V    |
| Operating Temperature Range | ТА               | 0 to +70       | °C   |
| Storage Temperature Range   | T <sub>stg</sub> | -65 to +150    | °C   |

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

## **RECOMMENDED OPERATING CONDITIONS**

| Parameter                                                                                                        | Symbol | Min   | Nom | Max | Unit | Notes |
|------------------------------------------------------------------------------------------------------------------|--------|-------|-----|-----|------|-------|
| Supply Voltage (V <sub>CC</sub> must be applied at least 100 $\mu$ s before proper device operation is achieved) | Vcc    | 4.5   | 5.0 | 5.5 | v    | 1     |
| Input High Voltage                                                                                               | VIH    | 2.0   |     | 5.5 | V    |       |
| Input Low Voltage                                                                                                | VIL    | - 0.5 |     | 0.8 |      | _     |

#### RECOMMENDED OPERATING CHARACTERISTICS

| Characteristic                                                      | Symbol | Min  | Тур | Max | Unit | Notes |
|---------------------------------------------------------------------|--------|------|-----|-----|------|-------|
| Input Current (V <sub>in</sub> =0 to 5.5 V)                         | lin    | - 10 | -   | 10  | μA   | 1     |
| Output High Voltage ( $I_{OH} = -205 \mu A$ )                       | Vон    | 2.4  | -   | -   | V    | -     |
| Output Low Voltage (IOL=3.2 mA)                                     | VOL    | -    | -   | 0.4 | V    |       |
| Output Leakage Current (Three-State) (G=2.0 V, Vout=0.4 V to 2.4 V) | LO     | - 10 | -   | 10  | μA   | 2     |
| Supply Current (V <sub>CC</sub> =5.5 V)                             | 1cc    |      | 20  | 60  | mΑ   | 3     |

#### CAPACITANCE (f = 1.0 MHz, TA = 25°C, periodically sampled rather than 100% tested)

| Characteristic     | Symbol | Max  | Unit |
|--------------------|--------|------|------|
| Input Capacitance  | Cin    | 7.5  | pF   |
| Output Capacitance | Cout   | 12.5 | рF   |

NOTES: 1. Measured a) forcing  $V_{CC}$  on one input pin at a time, while all others are grounded ( $V_{SS}$ ), and

b) maintaining 0.0 V (V<sub>SS</sub>) on one pin at a time, while all others are at V<sub>CC</sub>=4.5 V and 5.5 V.

2. Measured a) with A0-A12= VSS and forcing 0.4 V on one output at a time while all others are held at 2.4 V, and

b) with A0-A12=  $V_{SS}$  and forcing 2.4 V on one output at a time while all others are held at 0.4 V (V<sub>CC</sub>=4.5 V and 5.5 V). 3. Measured with the Output Enabled ( $\overline{G}$  = V<sub>IL</sub>), addresses cycling and the outputs unloaded.

## AC OPERATING CONDITIONS AND CHARACTERISTICS Read Cycle

## **RECOMMENDED OPERATING CONDITIONS** (See Notes 4, 5)

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5.0 \text{ V} \pm 10\%$ . All timing with  $t_f = t_f = 10 \text{ ns}$ , load of Figure 1)

|                                                                                       |        | MCM6 | 8366-25 | MCM6 | 8366-35 |      |
|---------------------------------------------------------------------------------------|--------|------|---------|------|---------|------|
| Parameter                                                                             | Symbol | Min  | Max     | Min  | Max     | Unit |
| Address Valid to Address Don't Care<br>(Cycle Time when Output Enable is Held Active) | tavax  | 250  |         | 350  | -       | ns   |
| Address Valid to Output Valid (Access)                                                | tAVQV  |      | 250     | -    | 350     | ns   |
| Output Enable Low to Output Valid (Access)                                            | tGLQV  | -    | 120     |      | 120     | ns   |
| Address Valid to Output Invalid                                                       | tAVQX  | 10   |         | 10   | -       | ns   |
| Output Enable Low to Output Invalid                                                   | tGLQX  | 10   |         | 10   |         | ns   |
| Output Enable High to Output High Z                                                   | tGHQZ  | 0    | 80      | 0    | 80      | ns   |
| Address Valid to Output Enable Low (Note 6)                                           | tAVGL  | 130  | -       | 230  | -       | ns   |

4.  $\overline{G}$  represented as active low for illustrative purposes.

5. AC Test Conditions

All times are guaranteed with worst case dc levels.

Inputs: VIH = 2.0 V or 5.5 V

 $V_{II} = 0.8 V \text{ or } -0.5 V$ 

Measurement Levels: Input 1.5 V

Output Low = 0.4 V

High = 2.4 V

6. A faster minimum time is allowed, but the timing must then be referenced to tAVQV and tAVQX.

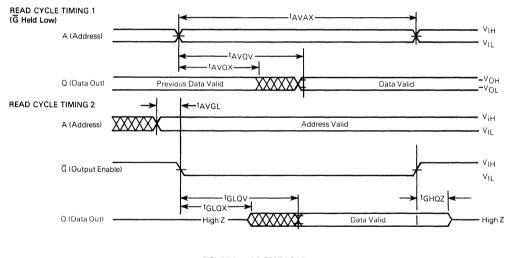
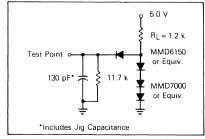




FIGURE 1 - AC TEST LOAD



ROM

1

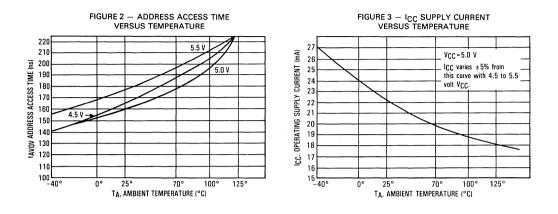



FIGURE 4 - OUTPUT ENABLE ACCESS VERSUS TEMPERATURE tGLQV VS. Temp. tglov, output enable access time (ns) - 10 53 4.5 V 5 5 V 50 25 0 , \_ 40 ° 709 1009 125 0 259 TA, AMBIENT TEMPERATURE (°C)

## PRE-PROGRAMMED MCM68366P35-3/C35-3, MCM68366P25-3/C25-3

The -3 standard ROM pattern contains log (base 10) and antilog (base 10) lookup tables for the 64K ROM.

Locations 0000 through 3599 contain log base 10 values. The arguments for the log table range from 1.00 through 9.99 incrementing in steps of 1/100. Each log value is represented by an eight-digit decimal number with decimal point assumed to be to the left of the most-significant digit.

Antilog (base 10) are stored in locations 4096 through 8095. The arguments range from 0.000 through 0.999 incrementing in steps of 1/1000. Each antilog value is represented by an eight-digit decimal number with decimal point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8096 through 8191 are zero filled.

All values are represented in absolute decimal format with eight digit precision. They are stored in BCD format with the two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.

Example: log10 (1.01) = .00432137 decimal

| Address | Contents |      |  |  |
|---------|----------|------|--|--|
| 4       | 0000     | 0000 |  |  |
| 5       | 0100     | 0011 |  |  |
| 6       | 0010     | 0001 |  |  |
| 7       | 0011     | 0111 |  |  |

## MCM68366

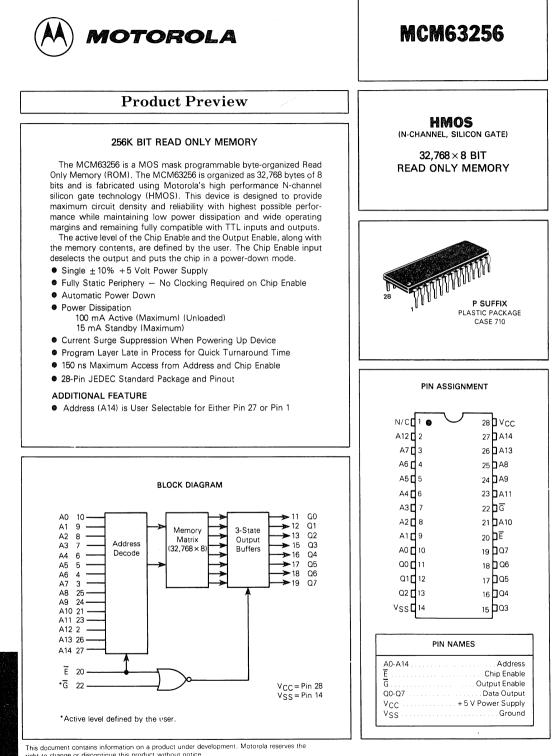
## CUSTOM PROGRAMMING

By the programming of a single photomask for the MCM68366, the customer may specify the content of the memory and the method of enabling the outputs.

Information on the general options of the MCM68366 should be submitted on an Organizational Data form such as that shown in Figure 3.

Information for custom memory content may be sent to Motorola in one of two forms (shown in order of preference):

 EPROMs -- one 64K (MCM68764, MCM68766), two 32K (MCM2532), four 16K (MCM2716, or TMS2716), or eight 8K (MCM2708).


 Magnetic Tape 9 track, 800 bpi, odd parity written in EBCDIC character Code. Motorola's R.O.M.S. format.

#### FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

| ORGANIZATIONAL DATA<br>MCM68366 MOS READ ONLY MEMORY |                    |  |  |  |  |
|------------------------------------------------------|--------------------|--|--|--|--|
| Customer:                                            |                    |  |  |  |  |
| Company                                              | Motorola Use Only: |  |  |  |  |
| Part No                                              | Quote:             |  |  |  |  |
| Originator                                           | Part No:           |  |  |  |  |
| Phone No                                             | Specif. No:        |  |  |  |  |
| Enable Options:                                      |                    |  |  |  |  |
| Active High Active I<br>Output Enable                | Low                |  |  |  |  |

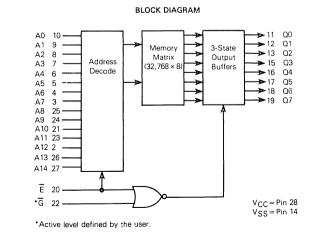


ą

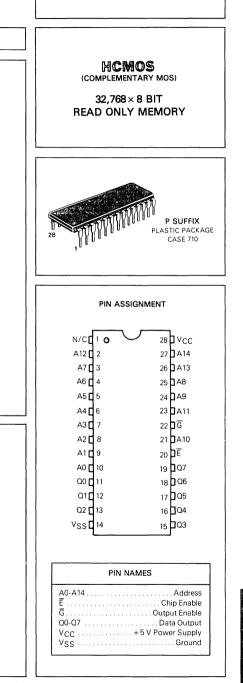


right to change or discontinue this product without notice.




## **Product Preview**

## 256K BIT READ ONLY MEMORY


The MCM65256 is a complementary MOS mask programmable byteorganized Read Only Memory (ROM). The MCM65256 is organized as 32,768 bytes of 8 bits and is fabricated using Motorola's high performance silicon gate CMOS technology (HCMOS). This device is designed to provide maximum circuit density and reliability with highest possible performance while maintaining low power dissipation and wide operating margins. The MCM65256 offers low-power operation from a single + 5 Volt supply and is fully TTL compatible on all inputs and outputs.

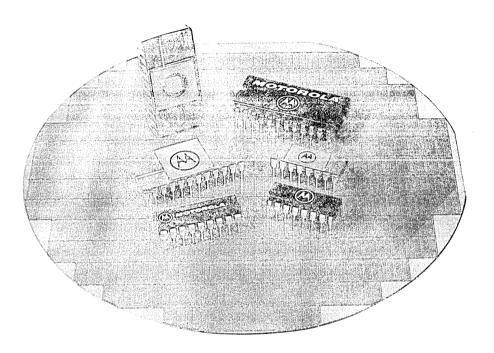
The active level of the Chip Enable and the Output Enable, along with the memory contents, are defined by the user. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Single ± 10% + 5 Volt Power Supply
- Fully Static Periphery No Clocking Required on Chip Enable
- 250 ns Maximum Access from Address and Chip Enable
- Automatic Power Down
- Active Current 50 mA Maximum (Unloaded at a 250 ns Cycle Time) - Decreases with Increasing Cycle Time
- D.C. Active Current 10 mA Maximum
- Standby Current 50 µA Maximum (Full Rail Inputs)
- Standby Current 3.0 mA Maximum (TTL Inputs)
- Mask Programmable Chip Enable and Output Enable
- Program Layer Late in Process for Quick Turnaround Time
- 28-Pin JEDEC Standard Package and Pinout
- Address (A14) is User Selectable for Either Pin 27 or Pin 1



This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.




MCM65256

.

ROM

# TTL RAM

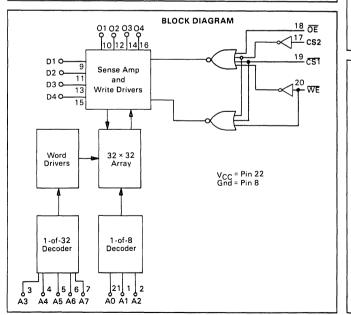
LIL RAM



TTL RAM



## Advance Information


## **1024-BIT RANDOM ACCESS MEMORY**

The MCM93412/422 is a 1024-bit Read/Write RAM, organized 256 words by 4 bits.

The MCM93412/422 is designed for high performance main memory and control storage applications and has a typical address time of 30 ns.

The MCM93412/422 has full decoding on-chip, separate data input and data output lines, an active low-output enable, write enable, and two chip selects, one active high, one active low. The device is fully compatible with standard DTL and TTL logic families. A three-state output is provided on the MCM93422 to drive busorganized systems and/or highly capacitive loads. An uncommitted collector output is provided on the MCM93412 for ease of memory expansion.

- Three-State Output or Uncommitted Collector Output
- TTL inputs and Output
- Non-Inverting Data Output
- Full 16 mA Outputs Drive 30 pF Loads
- High Speed Access Time — 30 ns Typical Chip Select — 15 ns Typical
- Power Dissipation 0.5 mW/Bit Typical
- Standard 22-Pin Package
- Power Dissipation Decreases with Increasing Temperature
- Organized 256 Words × 4 Bits
- Two Chip Select Lines for Memory Expansion



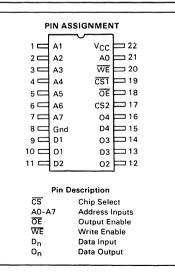
# MCM93412 MCM93422

1

1

TTL 256 × 4-BIT RANDOM ACCESS MEMORY

MCM93412 -- OPEN COLLECTOR MCM93422 -- THREE-STATE




F SUFFIX CERAMIC PACKAGE CASE 652



D SUFFIX CERAMIC PACKAGE CASE 736

Plastic package to be announced.



## FUNCTIONAL DESCRIPTION

The MCM93412 and the MCM93422 are fully decoded 1024-bit Random Access Memories organized 256 words by 4 bits. Word selection is achieved by means of an 8-bit address, AO-A7.

The Chip Select (CS1 and CS2) inputs provide for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active low Write Enable (WE, Pin 20). With WE and CS1 held low and the CS2 held high, the data at D<sub>n</sub> is written into the addressed location. To read, WE and CS2 are held in high and CS1 is held low. Data in the specified location is presented at O<sub>n</sub> and is non-inverted.

The three-state output of the MCM93422 provides drive capability for higher speeds with capacitive load systems. The third state (high impedance) allows bus-organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high-impedance state. Uncommitted collector outputs of the MCM93412 are provided to allow wired-OR applications. In any application an external pull-up resistor of  $R_L$  value must be used to provide a high at the output when it is off. Any  $R_L$  value within the range specified below may be used.

| V <sub>CC</sub> (Min)     | ≤ R; ≤ | VCC(Min) - VOH     |
|---------------------------|--------|--------------------|
| I <sub>OL</sub> - FO(1.6) | ≤ n[ ≤ | n(ICEX) + FO(0.04) |

 $R_L$  is in kΩ n = number of wired-OR outputs tied together

FO = number of TTL Unit Loads (UL) driven

ICEX = Memory Output Leakage Current

V<sub>OH</sub> = Required Output High Level at Output Node I<sub>OL</sub> = Output Low Current.

The minimum R<sub>L</sub> value is limited by output current sinking ability. The minimum R<sub>L</sub> value is determined by the output and input leakage current which must be supplied to hold the output at VO<sub>H</sub>. One Unit Load = 40  $\mu$ A High/1.6 mA Low.

## ABSOLUTE MAXIMUM RATINGS (Note 1)

| Storage Temperature                         |                   |
|---------------------------------------------|-------------------|
| Ceramic Package (D and F Suffix)            | -55°C to +165°C   |
| Plastic Package (P Suffix)                  | -55°C to +125°C   |
| Operating Junction Temperature, TJ          |                   |
| Ceramic Package (D and F Suffix)            | <165°C            |
| Plastic Package (P Suffix)                  | <125°C            |
| V <sub>CC</sub> Pin Potential to Ground Pin | -0.5 V to +7.0 V  |
| Input Voltage (dc)                          | -0.5 V to +5.5 V  |
| Voltage Applied to Outputs (Output High)    | -0.5 V to +5.5 V  |
| Output Current (dc) (Output Low)            | +20 mA            |
| Input Current (dc)                          | -12 mA to +5.0 mA |
|                                             |                   |

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

## GUARANTEED OPERATING RANGES (Note 2)

| Part Number    | Supply | y Voltage | (Vcc)  | Ambient Temperature (T   |  |
|----------------|--------|-----------|--------|--------------------------|--|
|                | Min    | Nom       | Max    | Ambient remperature (TA) |  |
| MCM934XXDC, PC | 4.75 V | 5.0 V     | 5.25 V | 0°C to +75°C             |  |
| MCM934XXFM, DM | 4.50 V | 5.0 V     | 5.50 V | -55°C to +125°C          |  |

## DC OPERATING CONDITONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

| C      | ~                                       | haracteristic       | Lir | nits |       |                                                 | 0                                             |  |
|--------|-----------------------------------------|---------------------|-----|------|-------|-------------------------------------------------|-----------------------------------------------|--|
| Symbol | Characteristic                          |                     | Min | Max  | Units |                                                 | Conditions                                    |  |
| VOL    | Output Low Voltage                      |                     |     | 0.45 | Vdc   | V <sub>CC</sub> = Min                           | , I <sub>OL</sub> = 16 mA                     |  |
| VIH    | Input High Voltage                      |                     | 2.1 |      | Vdc   | Guarantee                                       | d Input High Voltage for all Inputs           |  |
| VIL    | Input Low Voltage                       |                     |     | 0.8  | Vdc   | Guarantee                                       | d Input Low Voltage for all Inputs            |  |
| ηĽ     | Input Low Current                       |                     |     | -400 | μAdc  | V <sub>CC</sub> = Max                           | , V <sub>in</sub> = 0.4 V                     |  |
| Чн     | Input High Current                      |                     |     | 40   | μAdc  | V <sub>CC</sub> = Max                           | , V <sub>in</sub> = 4.5 V                     |  |
|        |                                         |                     |     | 1.0  | mAdc  | V <sub>CC</sub> = Max, V <sub>in</sub> = 5.25 V |                                               |  |
| loff   | Output Current (High Z) (MCM93422 only) |                     |     | 50   | μAdc  | V <sub>CC</sub> = Max, V <sub>out</sub> = 2.4 V |                                               |  |
|        |                                         |                     |     | -50  |       | V <sub>CC</sub> = Max, V <sub>out</sub> = 0.5 V |                                               |  |
| los    | Output Current Short<br>(MCM93422 only) | Circuit to Ground   |     | -100 | mAdc  | V <sub>CC</sub> = Max                           |                                               |  |
| Voн    | Output High Voltage                     | MCM93422DC, PC      | 2.4 |      | Vdc   | IOH = -10.3                                     | 3 mA, V <sub>CC</sub> = 5.0 V ±5%             |  |
|        |                                         | MCM93422FM, DM      | 2.4 |      | Vdc   | IOH = -5.2                                      | mA, V <sub>CC</sub> = 5.0 V ±10%              |  |
| VCD    | Input Diode Clamp Vo                    | oltage              |     | -1.5 | Vdc   | V <sub>CC</sub> = Max, I <sub>in</sub> = -10 mA |                                               |  |
| lcc    | Power Supply Curren                     | t                   |     | 130  | mAdc  | T <sub>A</sub> = Max                            |                                               |  |
|        |                                         |                     |     | 155  | mAdc  | T <sub>A</sub> = 0°C                            | V <sub>CC</sub> = Max,<br>All Inputs Grounded |  |
|        |                                         |                     |     | 170  | mAdc  | T <sub>A</sub> = Min                            |                                               |  |
| ICEX   | Output Leakage Curr                     | ent (MCM93412 only) |     | 100  | μAdc  | V <sub>CC</sub> = Max                           | , V <sub>out</sub> = 4.5 V                    |  |

# MCM93412 • MCM93422

TTL RAM

ł

(

1

(

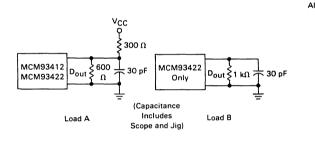
1

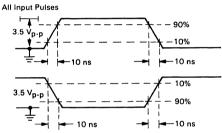
## TRUTH TABLE

|        |         | Inputs  | 1   |    | Output         |                        |
|--------|---------|---------|-----|----|----------------|------------------------|
| ŌĒ     | CS1     | CS2     | WE  | Dn | 0 <sub>n</sub> | Mode                   |
| X      | н       | X       | X   | X  | High Z (H)     | Not Selected           |
| X      | х       | L       | X   | X  | High Z (H)     | Not Selected           |
| X      | L       | н       | L   | L  | High Z (H)     | Write "0"              |
| X      | L       | н       | L   | н  | High Z (H)     | Write "1"              |
| н      | х       | x       | X   | x  | High Z (H)     | Output Disabled        |
| L      | L       | н       | н   | x  | 0 <sub>n</sub> | Read                   |
| H = Hi | gh Volt | tage Le | vel |    | (H) Ou         | tput of Open Collector |

L = Low Voltage Level

X = Don't Care (High or Low)

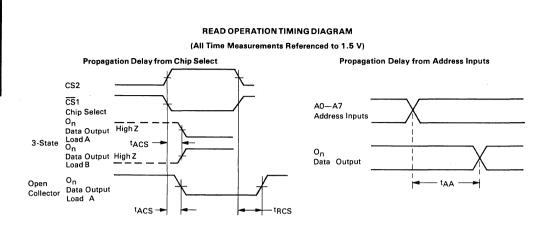

## AC OPERATING CONDITIONS AND CHARACTERISTICS


Device is High.

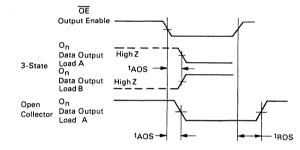
(Full operating voltage and temperature unless otherwise noted) AC TEST LOAD AND WAVEFORMS



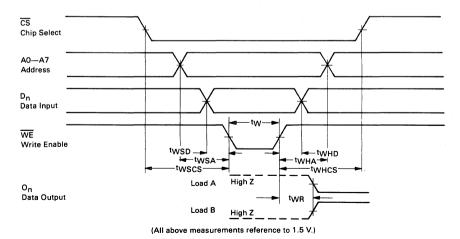
Input Pulses







| Symbol                    | Characteristic (Notes 2, 4)                         |     | 12DC, PC<br>22DC, PC |     | 3412DM<br>22DM, FM | Units | Conditions                        |
|---------------------------|-----------------------------------------------------|-----|----------------------|-----|--------------------|-------|-----------------------------------|
| Symbol                    | Characteristic (Notes 2, 4)                         | Min | Max                  | Min | Max                | Units | Conditions                        |
| READ MODE                 | DELAY TIMES                                         |     |                      |     |                    | ns    |                                   |
| tACS                      | Chip Select Time                                    |     | 30                   |     | 45                 |       | See Test Circuit                  |
| <sup>t</sup> ZRCS, [tRCS] | Chip Select to High Z<br>[Chip Select Disable Time] |     | 30                   |     | 45                 |       | and Waveforms                     |
| tAOS                      | Output Enable Time                                  |     | 30                   |     | 45                 |       |                                   |
| tzROS, [tROS]             | Output Enable to High Z<br>[Output Disable Time]    |     | 30                   |     | 45                 |       |                                   |
| t <sub>AA</sub>           | Address Access Time                                 |     | 45                   |     | 60                 |       |                                   |
| WRITE MODE                | DELAY TIMES                                         |     |                      |     |                    | ns    |                                   |
| tzws, [tws]               | Write Disable to High Z<br>[Write Disable Time]     |     | 35                   |     | 45                 |       | See Test Circuit<br>and Waveforms |
| twr                       | Write Recovery Time                                 |     | 40                   |     | 50                 |       |                                   |
|                           | INPUT TIMING REQUIREMENTS                           |     |                      |     |                    | ns    |                                   |
| tw                        | Write Pulse Width (to guarantee write)              | 30  |                      | 40  |                    |       | See Test Circuit                  |
| tWSD                      | Date Setup Time Prior to Write                      | 5   |                      | 5   |                    |       | and Waveforms                     |
| twhD                      | Data Hold Time After Write                          | 5   |                      | 5   |                    |       |                                   |
| tWSA                      | Address Setup Time (at tW = Min)                    | 10  |                      | 10  |                    |       |                                   |
| <sup>t</sup> WHA          | Address Hold Time                                   | 5   |                      | 10  |                    |       |                                   |
| twscs                     | Chip Select Setup Time                              | 5   |                      | 5   |                    |       |                                   |
| tWHCS                     | Chip Select Hold Time                               | 5   |                      | 5   |                    |       |                                   |

[] Open Collector parameters for MCM93412 only.

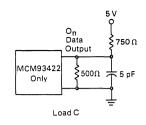

## MCM93412 • MCM93422





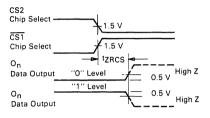


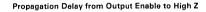


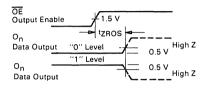








# MCM93412 @ MCM93422


## WRITE ENABLE TO HIGH Z DELAY (MCM93422 only)




WE Write Enable On tZWS 1.5V Data Output <u>"0" Level</u> 0.5V On <u>"1"Level</u> 0.5V Data Output

Propagation Delay from Chip Select to High Z







(All tZXXX parameters are measured at a delta of 0.5 V from the logic level and using Load C.)

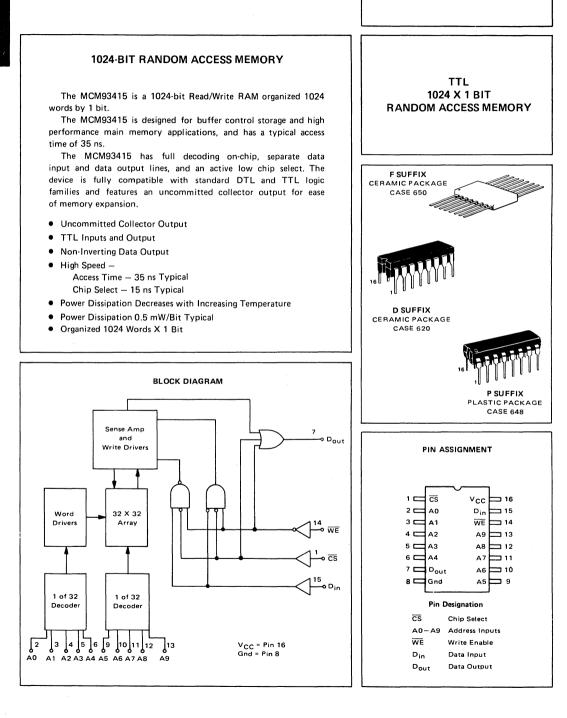
- NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola sales representative if extended temperature or modified operating conditions are desired.
- NOTE 3: Output short circuit conditions must not exceed 1 second duration.
- NOTE 4: The maximum address access time is guaranteed to be the worst-case bit in the memory.

| Package  | θJA (Junction | to Ambient) | θ.IA (Junction to Case) |
|----------|---------------|-------------|-------------------------|
| Fackage  | Blown         | Still       | JA (Junction to Case)   |
| D Suffix | 50°C/W        | 85°C/W      | 15°C/W                  |
| F Suffix | 55°C/W        | 90°C/W      | 15°C/W                  |
| P Suffix | 50°C/W        | 85°C/W      | 15°C/W                  |

### PIN ASSIGNMENT

| 1 2        | A1 VCC<br>A2 A0          | 24             |
|------------|--------------------------|----------------|
| 4 C        | A3 WE<br>A4 CS1<br>A5 OE | 22<br>21<br>20 |
| 6 <b>C</b> | A6 CS2<br>A7 04          | 19<br>19<br>18 |
| 8          | Gnd D4<br>D1 03          | 17             |
|            | 01 D3<br>D2 02<br>NC NC  | 15<br>14<br>13 |




1

1

đ



# MCM93415



## MCM93415

## FUNCTIONAL DESCRIPTION

The MCM93415 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of Chip Select (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active low Write Enable (WE, Pin 14). With WE held low and the chip selected, the data at  $D_{in}$  is written into the addressed location. To read,  $\overline{\text{WE}}$  is held high and the chip selected. Data in the specified location is presented at  $\mathsf{D}_{out}$  and is non-inverted.

Uncommitted collector outputs are provided to allow wired-OR applications. In any application an external pull-up resistor of R<sub>1</sub> value must be used to provide a high at the output when it is off. Any  $\rm R_L$  value within the range specified below may be used.

$$\frac{\mathsf{V}_{\mathsf{CC}}(\mathsf{Min})}{\mathsf{I}_{\mathsf{OL}}-\mathsf{FO}(1.6)} \leq \mathsf{R}_{\mathsf{L}} \leq \frac{\mathsf{V}_{\mathsf{CC}}(\mathsf{Min})-\mathsf{V}_{\mathsf{OH}}}{\mathsf{n}(\mathsf{I}_{\mathsf{CEX}})+\mathsf{FO}(0.04)}$$

 $R_1$  is in  $k\Omega$ 

n = number of wired-OR outputs tied together FO = number of TTL Unit Loads (UL) driven ICEX = Memory Output Leakage Current VOH = Required Output High Level at Output Node IOL = Output Low Current

The minimum  $R_L$  value is limited by output current sinking ability. The maximum RL value is determined by the output and input leakage current which must be supplied to hold the output at VOH. One Unit Load = 40  $\mu$ A High/1.6 mA Low.

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

| Storage Temperature<br>Ceramic Package (D and F Suffix)<br>Plastic Package (P Suffix)                            | -55 <sup>o</sup> C to +165 <sup>o</sup> C<br>-55 <sup>o</sup> C to +125 <sup>o</sup> C |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Operating Junction Temperature, T <sub>J</sub><br>Ceramic Package (D and F Suffix)<br>Plastic Package (P Suffix) | < 165 <sup>0</sup> C<br>< 125 <sup>0</sup> C                                           |
| V <sub>CC</sub> Pin Potential to Ground Pin                                                                      | -0.5 V to +7.0 V                                                                       |
| Input Voltage (dc)                                                                                               | -0.5 V to +5.5 V                                                                       |
| Voltage Applied to Outputs (Output High)                                                                         | -0.5 V to +5.5 V                                                                       |
| Output Current (dc) (Output Low)                                                                                 | +20 mA                                                                                 |
| Input Current (dc)                                                                                               | -12 mA to +5.0 mA                                                                      |

TRUTH TABLE

| Inputs |                   | Output                                               |                                                                                                                      |
|--------|-------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| WE     | Din               | Open<br>Collector                                    | Mode                                                                                                                 |
| x      | X                 | н                                                    | Not Selected                                                                                                         |
| L      | L                 | н                                                    | Write "O"                                                                                                            |
| L      | н                 | н                                                    | Write "1"                                                                                                            |
| н      | х                 | Dout                                                 | Read                                                                                                                 |
|        | WE<br>X<br>L<br>L | WE     Din       X     X       L     L       L     H | WE         Open<br>Collector           X         X           L         L           L         H           L         H |

H = High Voltage Level

L = Low Voltage Level X = Don't Care (High or Low)

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

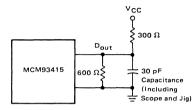
## **GUARANTEED OPERATING RANGES** (Note 2)

|                | Suppl  | y Voltage | (V <sub>CC</sub> ) |                                         |
|----------------|--------|-----------|--------------------|-----------------------------------------|
| Part Number    | Min    | Nom       | Max                | Ambient Temperature (T <sub>A</sub> )   |
| MCM93415DC, PC | 4.75 V | 5.0 V     | 5.25 V             | 0 <sup>o</sup> C to + 75 <sup>o</sup> C |
| MCM93415FM, DM | 4.50 V | 5.0 V     | 5.50 V             | -55°C to +125°C                         |

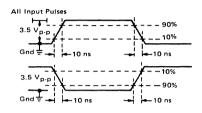
## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

|                 |                           | Lii | nits |      |                                                           |
|-----------------|---------------------------|-----|------|------|-----------------------------------------------------------|
| Symbol          | Characteristic            | Min | Max  | Unit | Conditions                                                |
| VOL             | Output Low Voltage        |     | 0.45 | Vdc  | V <sub>CC</sub> = Min, I <sub>OL</sub> = 16 mA            |
| VIH             | Input High Voltage        | 2.1 |      | Vdc  | Guaranteed Input High Voltage for All Inputs              |
| VIL             | Input Low Voltage         |     | 0.8  | Vdc  | Guaranteed Input Low Voltage for All Inputs               |
| μL              | Input Low Current         |     | -400 | μAdc | V <sub>CC</sub> = Max, V <sub>in</sub> = 0.4 V            |
| Чн              | Input High Current        |     | 40   | μAdc | V <sub>CC</sub> = Max, V <sub>in</sub> = 4.5 V            |
|                 |                           |     | 1.0  | mAdc | V <sub>CC</sub> = Max, V <sub>in</sub> = 5.25 V           |
| CEX             | Output Leakage Current    |     | 100  | μAdc | V <sub>CC</sub> = Max, V <sub>out</sub> = 4.5 V           |
| V <sub>CD</sub> | Input Diode Clamp Voltage |     | -1.5 | Vdc  | V <sub>CC</sub> = Max, I <sub>in</sub> = -10 mA           |
| lcc             | Power Supply Current      |     | 130  | mAdc | T <sub>A</sub> = Max                                      |
|                 |                           |     | 155  | mAdc | $T_A = 0^{\circ}C$ $V_{CC} = Max,$<br>All Inputs Grounded |
|                 |                           |     | 170  | mAdc | T <sub>A</sub> = Min                                      |

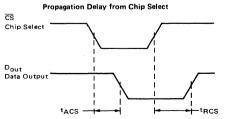

)

## AC OPERATING CONDITIONS AND CHARACTERISTICS


(Full operating voltage and temperature unless otherwise noted)

## AC TEST LOAD AND WAVEFORM

## Loading Condition

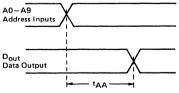




Input Pulses



|                  |                                              | MCM93415DC, PC MCM93415DM, FM |     |     |     |      |                  |
|------------------|----------------------------------------------|-------------------------------|-----|-----|-----|------|------------------|
| Symbol           | Characteristic (Notes 2, 3)                  | Min                           | Max | Min | Max | Unit | Conditions       |
| READ MODE        | DELAY TIMES                                  |                               |     |     |     | ns   |                  |
| <sup>t</sup> ACS | Chip Select Time                             |                               | 35  |     | 45  |      | See Test Circuit |
| TRCS             | Chip Select Recovery Time                    |                               | 35  |     | 50  |      | and Waveforms    |
| <sup>t</sup> AA  | Address Access Time                          |                               | 45  |     | 60  |      |                  |
| WRITE MODE       | DELAY TIMES                                  |                               |     |     |     | ns   |                  |
| tws              | Write Disable Time                           |                               | 35  |     | 45  |      | See Test Circuit |
| twr              | Write Recovery Time                          |                               | 40  |     | 50  |      | and Waveforms    |
|                  | INPUT TIMING REQUIREMENTS                    |                               |     |     |     | ns   |                  |
| tw               | Write Pulse Width (to guarantee write)       | 30                            |     | 40  |     |      | See Test Circuit |
| twsD             | Data Setup Time Prior to Write               | 5                             |     | 5   |     |      | and Waveforms    |
| twhd             | Data Hold Time After Write                   | 5                             |     | 5   |     |      |                  |
| twsa             | Address Setup Time (at t <sub>W</sub> = Min) | 10                            |     | 15  |     |      |                  |
| <sup>t</sup> WHA | Address Hold Time                            | 10                            |     | 10  |     |      |                  |
| twscs            | Chip Select Setup Time                       | 5                             |     | 5   |     |      |                  |
| twhcs            | Chip Select Hold Time                        | 5                             |     | 5   |     |      |                  |


## READ OPERATION TIMING DIAGRAM





(All Time Measurements Referenced to 1.5 V)

## Propagation Delay from Address Inputs



(

4

1

1

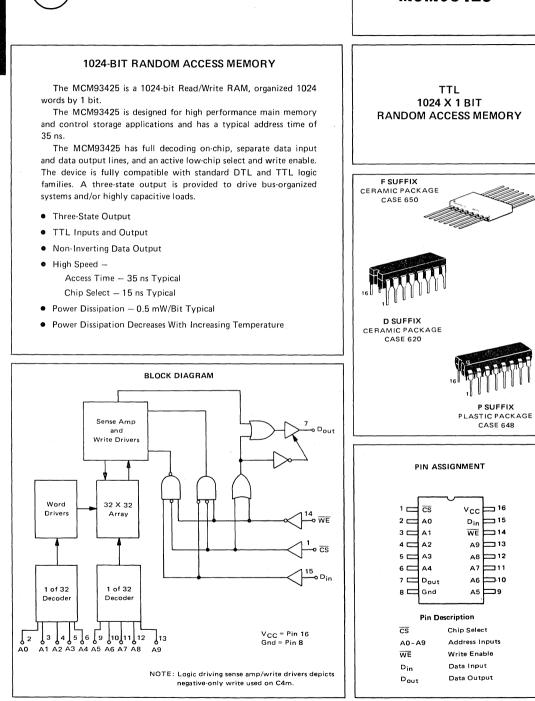
4

٩

#### cs Chip Select A0-A9 ł Address Inputs ī Din Data Input 4 i. tın WE Write Enable +twho! -twha-I'wsD+ WHCS D<sub>out</sub> Data Output H-TWSA twscs tws-+ +-twB \_ (All Time Measurements Referenced to 1.5 V)

## WRITE CYCLE TIMING

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.


|          | θ JA (Junction      | to Ambient)          |                                  |
|----------|---------------------|----------------------|----------------------------------|
| Package  | Blown               | Still                | $\theta_{JC}$ (Junction to Case) |
| D Suffix | 50°C/W              | 85 <sup>0</sup> C/W  | 15 <sup>0</sup> C/W              |
| F Suffix | 55°C/W              | 90°C/W               | 15 <sup>0</sup> C/W              |
| P Suffix | 65 <sup>0</sup> C/W | 100 <sup>0</sup> C/W | 25 <sup>0</sup> C/W              |

NOTE 3: The AC limits are guaranteed to be the worst case bit in the memory.



TL RAM

# MCM93425



## FUNCTIONAL DESCRIPTION

The MCM93425 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Word selection is achieved by means of a 10-bit address, AO-A9.

The Chip Select  $\overline{(CS)}$  input provides for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active low Write Enable ( $\overline{WE}$ , Pin 14). With  $\overline{WE}$  and  $\overline{CS}$  held

## ABSOLUTE MAXIMUM RATINGS (Note 1)

| Storage Temperature                         |                                           |
|---------------------------------------------|-------------------------------------------|
| Ceramic Package (D and F Suffix)            | -55 <sup>0</sup> C to +165 <sup>0</sup> C |
| Plastic Package (P Suffix)                  | -55°C to +125°C                           |
| Operating Junction Temperature, TJ          |                                           |
| Ceramic Package (D and F Suffix)            | <165 <sup>0</sup> C                       |
| Plastic Package (P Suffix)                  | <125 <sup>0</sup> C                       |
| V <sub>CC</sub> Pin Potential to Ground Pin | -0.5 V to +7.0 V                          |
| Input Voltage (dc)                          | -0.5 V to +5.5 V                          |
| Voltage Applied to Outputs (Output High)    | -0.5 V to +5.5 V                          |
| Output Current (dc) (Output Low)            | +20 mA                                    |
| Input Current (dc)                          | -12 mA to +5.0 mA                         |

NOTE 1: Device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

# TTL RAM

low, the data at  $D_{in}$  is written into the addressed location. To read,  $\overline{WE}$  is held high and  $\overline{CS}$  held low. Data in the specified location is presented at  $D_{out}$  and is non-inverted.

The three-state output provides drive capability for higher speeds with capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high-impedance state.

TRUTH TABLE

|               | Inputs |                 | Output |              |
|---------------|--------|-----------------|--------|--------------|
| <del>cs</del> | WE     | D <sub>in</sub> | Dout   | Mode         |
| н             | х      | X               | High Z | Not Selected |
| L             | L      | L               | High Z | Write "O"    |
| L             | L      | н               | High Z | Write "1"    |
| L             | н      | x               | Dout   | Read         |

H = High Voltage Level

L = Low Voltage Level

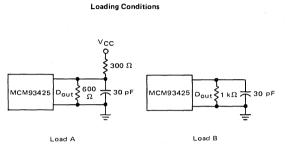
X = Don't Care (High or Low)

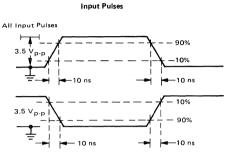
## **GUARANTEED OPERATING RANGES** (Notes 2 and 3)

|                | Suppl  | y Voltage | (Vcc)  |                                           |
|----------------|--------|-----------|--------|-------------------------------------------|
| Part Number    | Min    | Nom       | Max    | Ambient Temperature (T <sub>A</sub> )     |
| MCM93425DC, PC | 4.75 V | 5.0 V     | 5.25 V | 0 <sup>0</sup> C to +75 <sup>0</sup> C    |
| MCM93425FM, DM | 4.50 V | 5.0 V     | 5.50 V | -55 <sup>o</sup> C to +125 <sup>o</sup> C |

## DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

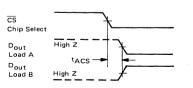

|        |                      |                   | Lim | its   |       |                                                 |                                               |  |
|--------|----------------------|-------------------|-----|-------|-------|-------------------------------------------------|-----------------------------------------------|--|
| Symbol | Charact              | teristic          | Min | Max   | Units | 1                                               | Conditions                                    |  |
| VOL    | Output Low Voltage   |                   |     | 0.45  | Vdc   | V <sub>CC</sub> = Min                           | , I <sub>OL</sub> = 16 mA                     |  |
| VIH    | Input High Voltage   |                   | 2.1 |       | Vdc   | Guaranteed Input High Voltage for all In        |                                               |  |
| VIL    | Input Low Voltage    |                   |     | 0.8   | Vdc   | Guaranteed                                      | I Input Low Voltage for all Inputs            |  |
| կլ     | Input Low Current    |                   |     | -400  | µAdc  | V <sub>CC</sub> = Max, V <sub>in</sub> = 0.4 V  |                                               |  |
| Чн     | Input High Current   |                   |     | 40    | μAdc  | V <sub>CC</sub> = Max, V <sub>in</sub> = 4.5 V  |                                               |  |
|        |                      |                   |     | 1.0   | mAdc  | V <sub>CC</sub> = Max, V <sub>in</sub> = 5.25 V |                                               |  |
| loff   | Output Current (High | Z)                |     | 50    | μAdc  | V <sub>CC</sub> = Max                           | s, V <sub>out</sub> = 2.4 V                   |  |
|        |                      |                   |     | - 50  |       | $V_{CC} = Max, V_{out} = 0.5 V$                 |                                               |  |
| los    | Output Current Short | Circuit to Ground |     | - 100 | mAdc  | V <sub>CC</sub> = Max                           | · · · · · · · · · · · · · · · · · · ·         |  |
| Vон    | Output High Voltage  | MCM93425DC, PC    | 2.4 |       | Vdc   | I <sub>OH</sub> = -10.                          | 3 mA, V <sub>CC</sub> = 5.0 V ± 5%            |  |
|        |                      | MCM93425FM, DM    | 2.4 |       | Vdc   | I <sub>ОН</sub> = -5.2                          | mA                                            |  |
| VCD    | Input Diode Clamp Vo | ltage             |     | -1.5  |       |                                                 | s, I <sub>in</sub> = -10 mA                   |  |
| lcc    | Power Supply Current |                   |     | 130   | mAdc  | T <sub>A</sub> = Max                            | N                                             |  |
|        |                      |                   |     | 155   | mAdc  | T <sub>A</sub> = 0 <sup>o</sup> C               | V <sub>CC</sub> = Max,<br>All Inputs Grounded |  |
|        |                      |                   |     | 170   | mAdc  | T <sub>A</sub> = Min                            | An inputs Grounded                            |  |


۱

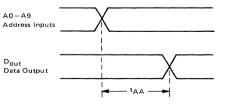
## AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

## AC TEST LOAD AND WAVEFORMS

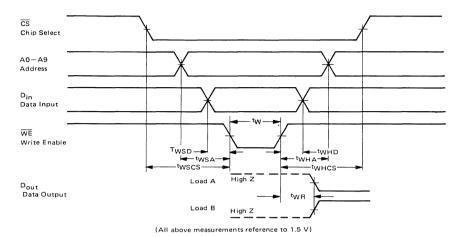




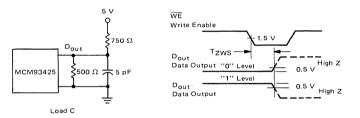


|                   |                                              | MCM934 | 25DC, PC | MCM9342 | 25DM, FM |       |                 |
|-------------------|----------------------------------------------|--------|----------|---------|----------|-------|-----------------|
| Symbol            | Characteristic (Notes 2, 4)                  | Min    | Max      | Min     | Max      | Units | Conditions      |
| READ MODE         | DELAY TIMES                                  |        |          |         |          | ns    |                 |
| <sup>t</sup> ACS  | Chip Select Time                             |        | 35       |         | 45       |       | See Test Circui |
| <sup>t</sup> ZRCS | Chip Select to High Z                        |        | 35       |         | 50       |       | and Waveform    |
| <sup>t</sup> AA   | Address Access Time                          |        | 45       |         | 60       |       |                 |
| WRITE MODE        | DELAY TIMES                                  |        |          |         |          | ns    |                 |
| tzws              | Write Disable to High Z                      |        | 35       |         | 45       |       | See Test Circu  |
| <sup>t</sup> W R  | Write Recovery Time                          |        | 40       |         | 50       |       | and Waveform    |
|                   | INPUT TIMING REQUIREMENTS                    |        |          |         |          | ns    |                 |
| tw                | Write Pulse Width (to guarantee write)       | 30     |          | 40      |          |       | See Test Circu  |
| twsd              | Data Setup Time Prior to Write               | 5      |          | 5       |          |       | and Waveform    |
| twhd              | Data Hold Time After Write                   | 5      |          | 5       |          |       |                 |
| twsa              | Address Setup Time (at t <sub>W</sub> = Min) | 10     |          | 15      | 1 1      |       |                 |
| twha              | Address Hold Time                            | 10     |          | 10      |          |       |                 |
| twscs             | Chip Select Setup Time                       | 5      |          | 5       |          |       |                 |
| twhcs             | Chip Select Hold Time                        | 5      |          | 5       | 1 1      |       |                 |

## READ OPERATION TIMING DIAGRAM

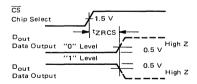





Propagation Delay from Address Inut




(All time measurements referenced to 1.5 V)


## WRITE CYCLE TIMING



## WRITE ENABLE TO HIGH Z DELAY



#### Propagation Delay from Chip Select to High Z



(All  $t_{ZXXX}$  parameters are measured at a delta of 0.5 V from the logic level and using Load C)

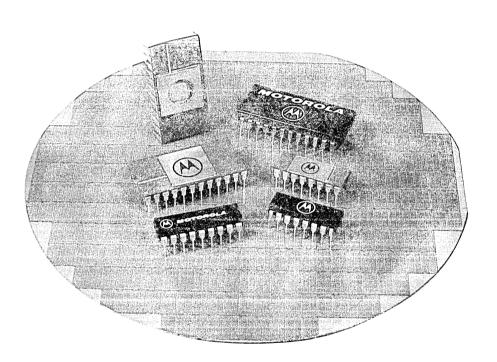
NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown air. Contact your Motorola Sales Representative if extended temperature or modified operating conditions are desired.

|          | $\theta_{JA}$ (Junctio | n to Ambient)        |                                  |
|----------|------------------------|----------------------|----------------------------------|
| Package  | Blown                  | Still                | $\theta_{JC}$ (Junction to Case) |
| D Suffix | 50 <sup>0</sup> C/W    | 85 <sup>0</sup> C/W  | 15 <sup>o</sup> C/W              |
| F Suffix | 55 <sup>0</sup> C/W    | 90 <sup>0</sup> C/W  | 15 <sup>o</sup> C/W              |
| P Suffix | 65 <sup>0</sup> C/W    | 100 <sup>0</sup> C/W | 25 <sup>o</sup> C/W              |

NOTE 3: Output short circuit conditions must not exceed 1 second duration.

NOTE 4: The maximum address access time is guaranteed to be the worst case bit in the memory.

TTL RAM


.

1

1



TTL PROM



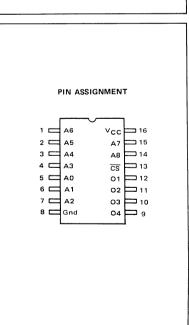


8-2



# MCM7621 MCM7620

# MTTL


## 2048-BIT PROGRAMMABLE READ ONLY MEMORIES

 $\begin{array}{l} \text{MCM7620} - 512 \times 4 - \text{Open-Collector} \\ \text{MCM7621} - 512 \times 4 - \text{Three-State} \end{array}$ 





L SUFFIX CERAMIC PACKAGE CASE 620



## 2048-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7620/MCM7621 have common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available with opencollector or three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

All pinouts are compatible to industry-standard PROMs and ROMs.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 Second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 μA Logic "0", 40 μA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial and Military Temperature and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

## ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                | Symbol           | Value                   | Unit |
|-------------------------------------------------------|------------------|-------------------------|------|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |
| Output Voltage (operating)                            | VOH              | +7.0                    | Vdc  |
| Supply Current                                        | <sup>I</sup> CC  | 650                     | mAdc |
| Input Current                                         | lin              | -20                     | mAdc |
| Output Sink Current                                   | I <sub>o</sub>   | 100                     | mAdc |
| Operating Temperature Range<br>MCM76xxDM<br>MCM76xxDC | TA               | -55 to +125<br>0 to +70 | °C   |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |
| Maximum Junction Temperature                          | τj               | +175                    | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

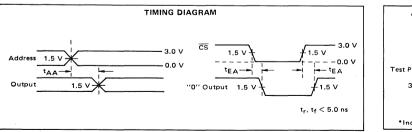
## DC OPERATING CONDITIONS AND CHARACTERISTICS

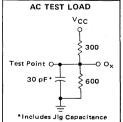
## **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                | Symbol | Min          | Nom        | Max          | Unit |
|------------------------------------------|--------|--------------|------------|--------------|------|
| Supply Voltage<br>MCM76x×DM<br>MCM76x×DC | Vcc    | 4.50<br>4.75 | 5.0<br>5.0 | 5.50<br>5.25 | Vdc  |
| Input High Voltage                       | VIH    | 2.0          | -          | _            | Vdc  |
| Input Low Voltage                        | VIL    | _            |            | 0.8          | Vdc  |

## DC CHARACTERISTICS

|          |                                         |                                                                                                |     | en-Collec<br>Output | tor   | Т   | ]    |       |      |
|----------|-----------------------------------------|------------------------------------------------------------------------------------------------|-----|---------------------|-------|-----|------|-------|------|
| Symbol   | Parameter                               | Test Conditions                                                                                | Min | Тур                 | Max   | Min | Тур  | Max   | Unit |
| IRA, IRE | Address/Enable "1"                      | VIH = VCC Max                                                                                  |     |                     | 40    |     | -    | 40    | μAdc |
| IFA, IFE | Input Current "0"                       | VIL = 0.45 V                                                                                   | -   | -0.1                | -0.25 | -   | -0.1 | -0.25 | mAdc |
| VOH      | Output Voltage "1"                      | IOH = -2.0 mA, VCC = VCC Min                                                                   | N/A | -                   | -     | 2.4 | 3.4  | -     | Vdc  |
| VOL      | "0"                                     | I <sub>OL</sub> = +16 mA, V <sub>CC</sub> = V <sub>CC</sub> Min                                | -   | 0.35                | 0.45  | -   | 0.35 | 0.45  | Vdc  |
| OHE      | Output Disabled "1"                     | V <sub>OH</sub> , V <sub>CC</sub> = V <sub>CC</sub> Max                                        |     | -                   | 100   | -   | -    | 100   | μAdc |
| OLE      | Current "0"                             | $V_{OL} = +0.3 V$ , $V_{CC} = V_{CC} Max$                                                      | -   |                     | N/A   | -   | -    | -100  | μAdc |
| юн       | Output Leakage "1"                      | VOH, VCC = VCC Max                                                                             | -   | -                   | 100   | -   |      | N/A   | μAdc |
| VCL      | Input Clamp Voltage                     | I <sub>in</sub> = -10 mA                                                                       | -   | -                   | -1.5  |     | -    | -1.5  | Vdc  |
| IOS      | Output Short Circuit Current            | V <sub>CC</sub> = V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max | N/A | -                   | N/A   | 15  | -    | 70    | mAdc |
| 'cc      | Power Supply Current<br>MCM7620/MCM7621 | V <sub>CC</sub> = V <sub>CC</sub> Max<br>All Inputs Grounded                                   | -   | 60                  | 100   | -   | 60   | 100   | mAdc |


## CAPACITANCE (f = 1.0 MHz, TA = 25°C, periodically sampled rather than 100% tested.)


| Characteristic     | Symbo!          | Тур | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 8.0 | pF   |
| Output Capacitance | Cout            | 8.0 | pF   |

## AC OPERATING CONDITIONS AND CHARACTERISTICS

## (Full operating voltage and temperature unless otherwise noted)

| Full operating voltage and temperature unless otherwise noted) |                 | 0 to | +70 <sup>0</sup> C | -55 to | +125 <sup>0</sup> C |      |
|----------------------------------------------------------------|-----------------|------|--------------------|--------|---------------------|------|
| Characteristic                                                 | Symbol          | Тур  | Max                | Тур    | Max                 | Unit |
| Address to Output Access Time                                  | tAA             | 45   | 70                 | 45     | 85                  | ns   |
| Chip Enable Access Time                                        | <sup>t</sup> EA |      |                    |        |                     | ns   |
| MCM7620/7621                                                   |                 | 15   | 25                 | 15     | 30                  |      |





## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

- 1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying input highs (V<sub>IH</sub>) to the  $\overline{\text{CS}}$  input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- Disable the programming circuitry by applying an Output Voltage Disable of less than V<sub>OPD</sub> to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise V<sub>CC</sub> to V<sub>PH</sub> with rise time equal to t<sub>r</sub>.
- 5. After a delay equal to or greater than t<sub>d</sub>, apply a pulse with amplitude of V<sub>OPE</sub> and duration of t<sub>p</sub> to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- Other bits in the same word may be programmed while the V<sub>CC</sub> input is raised to V<sub>PH</sub> by applying

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

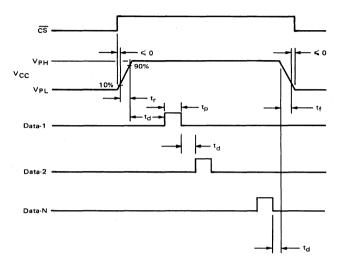
output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_{cl}$ .

 Lower V<sub>CC</sub> to 4.5 Volts following a delay of t<sub>d</sub> from the last programming enable pulse applied to an output. TTL PROM

d

- 8. Enable the PROM for verification by applying a logic "0" (VIL) to the CS input.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- 11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol         | Parameter                         | Min   | Тур  | Max             | Unit |
|----------------|-----------------------------------|-------|------|-----------------|------|
| VIH            | Address Input                     | 2.4   | 5.0  | 5.0             | v    |
| VIL            | Voltage(1)                        | 0.0   | 0.4  | 0.8             | v    |
| VPH            | Programming/Verify                | 11.75 | 12.0 | 12.25           | v    |
| VPL            | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5             | v    |
| ICCP           | Programming Voltage Current Limit | 600   | 600  | 650             | mA   |
|                | Programming (V <sub>CC</sub> )    |       |      |                 |      |
| tr             | Voltage Rise and                  | 1     | 1    | <sup>′</sup> 10 | μs   |
| t <sub>f</sub> | Fall Time                         | 1     | 1    | 10              | μs   |
| td             | Programming Delay                 | 10    | 10   | 100             | μs   |
| tp             | Programming Pulse Width           | 100   | -    | 1000            | μs   |
| DC             | Programming Duty Cycle            |       | 50   | 90              | %    |
|                | Output Voltage                    |       |      |                 |      |
| VOPE           | Enable                            | 10.0  | 10.5 | 1.0             | v    |
| VOPD           | Disable(2)                        | 4.5   | 5.0  | 5.5             | v    |
| OPE            | Output Voltage Enable Current     | 2     | 4    | 10              | mA   |
| Τc             | Case Temperature                  |       | 25   | 75              | °C   |


TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.









## 4096-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7640 through 43 PROMs comprise a completely compatible family having common dc electrical characteristics and identical programming requirements. They are fully-decoded, highspeed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

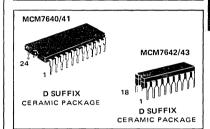
All pinouts are compatible to industry-standard PROMs and ROMs.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (1 Second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 µA Logic "0", 40 µA Logic "1" Full Output Drive – 16 mA Sink, 2,0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial and Military Temperature and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

## ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                | Symbol           | Value                   | Unit |  |
|-------------------------------------------------------|------------------|-------------------------|------|--|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |  |
| Output Voltage (operating)                            | Voн              | +7.0                    | Vdc  |  |
| Supply Current                                        | ICC              | 650                     | mAdc |  |
| Input Current                                         | lin              | -20                     | mAdc |  |
| Output Sink Current                                   | lo               | 100                     | mAdc |  |
| Operating Temperature Range<br>MCM76x×DM<br>MCM76x×DC | TA               | -55 to +125<br>0 to +70 | °C   |  |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |  |
| Maximum Junction Temperature                          | TJ               | +175                    | °C   |  |


NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)


# MCM7640 thru MCM7643

# MTTL

## 4096-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7640 - 512 x 8 - Open-Collector MCM7641 - 512 x 8 - Three-State MCM7642 - 1024 x 4 - Open-Collector MCM7643 - 1024 x 4 - Three-State





## MCM7640 thru MCM7643

## DC OPERATING CONDITIONS AND CHARACTERISTICS

## **RECOMMENDED DC OPERATING CONDITIONS**

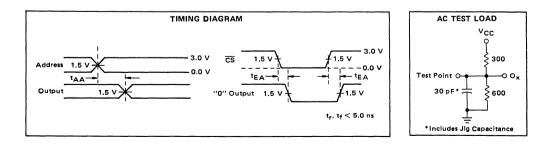
| Parameter                                | Symbol | Min          | Nom        | Max          | Unit |
|------------------------------------------|--------|--------------|------------|--------------|------|
| Supply Voltage<br>MCM76x×DM<br>MCM76x×DC | Vcc    | 4.50<br>4.75 | 5.0<br>5.0 | 5.50<br>5.25 | Vdc  |
| Input High Voltage                       | VIH    | 2.0          | -          | -            | Vdc  |
| Input Low Voltage                        | VIL    | -            | -          | 0.8          | Vdc  |

## DC CHARACTERISTICS

**TTL PROM** 

| ·                                                          |                                                            |                                                                                                                            | Open-Collector<br>Output |            |             | Three-State<br>Output |             |             | ]            |  |
|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-------------|-----------------------|-------------|-------------|--------------|--|
| Symbol                                                     | Parameter                                                  | Test Conditions                                                                                                            | Min                      | Тур        | Max         | Min                   | Тур         | Max         | Unit         |  |
| I <sub>RA</sub> , I <sub>RE</sub><br>I <sub>FA, I</sub> FE | Address/Enable ''1''<br>Input Current ''0''                | V <sub>IH</sub> = V <sub>CC</sub> Max<br>V <sub>IL</sub> = 0.45 V                                                          | -                        | -0.1       | 40<br>-0.25 | -                     | _<br>-0.1   | 40<br>-0.25 | µAdc<br>mAdc |  |
| Voh<br>Vol                                                 | Output Voltage ''1''<br>''0''                              | $I_{OH} = -2.0 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$<br>$I_{OL} = +16 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$          | N/A<br>                  | 0.35       | _<br>0.45   | 2.4<br>—              | 3.4<br>0.35 | <br>0.45    | Vdc<br>Vdc   |  |
| IOHE<br>IOLE                                               | Output Disabled "1"<br>Current "0"                         | V <sub>OH</sub> , V <sub>CC</sub> = V <sub>CC</sub> Max<br>V <sub>OL</sub> = +0.3 V, V <sub>CC</sub> = V <sub>CC</sub> Max | -                        | -          | 100<br>N/A  | -                     | -           | 100<br>-100 | μAdc<br>μAdc |  |
| юн                                                         | Output Leakage "1"                                         | VOH, VCC = VCC Max                                                                                                         | -                        | -          | 100         | -                     | -           | N/A         | μAdc         |  |
| VCL                                                        | Input Clamp Voltage                                        | l <sub>in</sub> = -10 mA                                                                                                   | -                        | -          | -1.5        | -                     |             | -1.5        | Vdc          |  |
| los                                                        | Output Short Circuit Current                               | V <sub>CC</sub> = V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max                             | N/A                      | -          | N/A         | 15                    | -           | 70          | mAdc         |  |
| ICC                                                        | Power Supply Current<br>MCM7640/MCM7641<br>MCM1642/MCM7643 | V <sub>CC</sub> = V <sub>CC</sub> Max<br>All Inputs Grounded                                                               | -                        | 100<br>100 | 140<br>140  | -                     | 100<br>100  | 140<br>140  | mAdc<br>mAdc |  |

## **CAPACITANCE** (f = 1.0 MHz, $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)


| Characteristic     | Symbol          | Тур | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 8.0 | pF   |
| Output Capacitance | Cout            | 8.0 | ρF   |

## AC OPERATING CONDITIONS AND CHARACTERISTICS

| (Full operating voltage and temperature unless otherwise | noted) |
|----------------------------------------------------------|--------|
|----------------------------------------------------------|--------|

| an operating voltage and temperature amess otherwise noted, |                 | 0 to +70°C |     | -55 to +125°C |     |      |  |
|-------------------------------------------------------------|-----------------|------------|-----|---------------|-----|------|--|
| Characteristic                                              | Symbol          | Тур        | Max | Тур           | Max | Unit |  |
| Address to Output Access Time                               | tAA             | 45         | 70  | 45            | 85  | ns   |  |
| Chip Enable Access Time                                     | <sup>t</sup> EA |            |     |               |     | ns   |  |
| MCM7640/7641                                                | 1               | 30         | 40  | 30            | 50  |      |  |
| MCM7642/7643                                                |                 | 15         | 25  | 15            | 30  |      |  |

.....



## PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

## PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying input highs (V<sub>IH</sub>) to the  $\overline{CS}$  input(s). CS inputs (MCM7640/41 only) must remain at V<sub>IH</sub> for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- Disable the programming circuitry by applying an Output Voltage Disable of less than V<sub>OPD</sub> to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise  $V_{CC}$  to  $V_{PH}$  with rise time equal to  $t_r$ .
- 5. After a delay equal to or greater than  $t_d$ , apply a pulse with amplitude of  $V_{OPE}$  and duration of  $t_p$  to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the  $V_{CC}$  input is raised to  $V_{PH}$  by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_{cl}$ .

- Lower V<sub>CC</sub> to 4.5 Volts following a delay of t<sub>d</sub> from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (V<sub>11</sub>) to the  $\overline{CS}$  input(s).
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- 11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol | Parameter                         | Min   | Тур  | Max   | Unit |
|--------|-----------------------------------|-------|------|-------|------|
| VIH    | Address Input                     | 2.4   | 5.0  | 5.0   | V    |
| VIL    | Voltage(1)                        | 0.0   | 0.4  | 0.8   | V    |
| VPH    | Programming/Verify                | 11.75 | 12.0 | 12.25 | V    |
| VPL    | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v    |
| ICCP   | Programming Voltage Current Limit | 600   | 600  | 650   | mA   |
|        | Programming (V <sub>CC</sub> )    |       |      |       |      |
| tr     | Voltage Rise and                  | 1     | 1    | 10    | μs   |
| tf     | Fall Time                         | 1     | 1    | 10    | μs   |
| td     | Programming Delay                 | 10    | 10   | 100   | μs   |
| tp     | Programming Pulse Width           | 100   | -    | 1000  | μs   |
| DC     | Programming Duty Cycle            | -     | 50   | 90    | %    |
|        | Output Voltage                    |       |      |       |      |
| VOPE   | Enable                            | 10.0  | 10.5 | 11.0  | v    |
| VOPD   | Disable(2)                        | 4.5   | 5.0  | 5.5   | v    |
| IOPE   | Output Voltage Enable Current     | 2     | 4    | 10    | mA   |
| тс     | Case Temperature                  |       | 25   | 75    | °C   |

TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

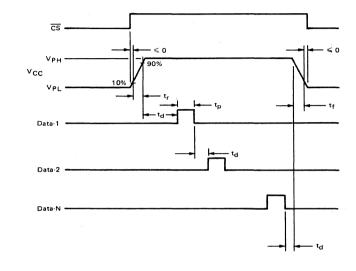



FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS

TTL PROM

١



# MCM7680 MCM7681

#### 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7680/81 together with the MCM7620/21,MCM7640/43 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both open-collector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7680 and 81 are pin compatible replacement for the 512  $\times$  8 with pin 2 connected as A9 on the 1024  $\times$  8.

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible Low Input Current – 250 μA Logic "0", 40 μA Logic "1" Full Output Drive – 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial and Military Temperature Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

| Rating                                                | Symbol           | Value                   | Unit |
|-------------------------------------------------------|------------------|-------------------------|------|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |
| Output Voltage (operating)                            | ∨он              | +7.0                    | Vdc  |
| Supply Current                                        | 'cc              | 650                     | mAdc |
| Input Current                                         | lin              | - 20                    | mAdc |
| Output Sink Current                                   | I <sub>o</sub>   | 100                     | mAdc |
| Operating Temperature Range<br>MCM76x×DM<br>MCM76××DC | TA               | -55 to +125<br>0 to +70 | °C   |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |
| Maximum Junction Temperature                          | Tj               | +175                    | °C   |

#### NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

# MTTL

8192-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7680 - 1024 × 8 - Open-Collector MCM7681 - 1024 × 8 - Three-State



CERAMIC PACKAGE CASE 623



#### PIN ASSIGNMENT

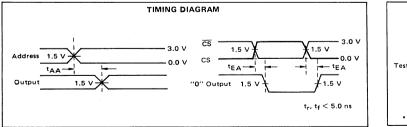
| 1  | 0<br>A7 | Vcc |   | 24 |
|----|---------|-----|---|----|
| 2  | A6      | A8  | ╘ | 23 |
| з  | A5      | A9  |   | 22 |
| 4  | A4      | CS1 | Þ | 21 |
| 5  | A3      | CS2 |   | 20 |
| 6  | A2      | CS3 | Þ | 19 |
| 7  | A1      | CS4 | Þ | 18 |
| 8  | A0      | 08  | Þ | 17 |
| 9  | 01      | 07  |   | 16 |
| 10 | 02      | 06  | Þ | 15 |
| 11 | 03      | 05  | Þ | 14 |
| 12 | Gnd     | 04  | Þ | 13 |
|    | L       |     | 1 |    |

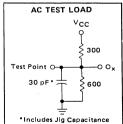
## DC OPERATING CONDITIONS AND CHARACTERISTICS

#### **RECOMMENDED DC OPERATING CONDITIONS**

| Parameter                                | Symbol | Min          | Nom        | Max          | Unit |
|------------------------------------------|--------|--------------|------------|--------------|------|
| Supply Voltage<br>MCM76××DM<br>MCM76××DC | Vcc    | 4.50<br>4.75 | 5.0<br>5.0 | 5.50<br>5.25 | Vdc  |
| Input High Voltage                       | VIH    | 2.0          | -          | _            | Vdc  |
| Input Low Voltage                        | VIL    | -            | -          | 0.8          | Vdc  |

### DC CHARACTERISTICS


|                                    |                                                                |                                                                                                                   |     | Open-Collector<br>Output |                 | Three-State<br>Output |             |             |              |  |
|------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|--------------------------|-----------------|-----------------------|-------------|-------------|--------------|--|
| Symbol                             | Parameter                                                      | Test Conditions                                                                                                   | Min | Тур                      | Max             | Min                   | Тур         | Max         | Unit         |  |
| IRA, IRE                           | Address/Enable ''1''<br>Input Current ''0''                    | VIH <sup>≈</sup> V <sub>CC</sub> Ma×<br>VIL = 0.45 V                                                              | -   | <br>-0.1                 | 40<br>-0.25     | 1                     | <br>-0.1    | 40<br>-0.25 | µAdc<br>mAdc |  |
| V <sub>OH</sub><br>V <sub>OL</sub> | Output Voltage "1"<br>"0"                                      | $I_{OH} = -2.0 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$<br>$I_{OL} = +16 \text{ mA}, V_{CC} = V_{CC} \text{ Min}$ | N/A | -<br>0.35                | <br>0.45        | 2.4<br>—              | 3.4<br>0.35 | _<br>0.45   | Vdc<br>Vdc   |  |
| IOHE<br>IOLE                       | Output Disabled "1"<br>Current "0"                             | $V_{OH}$ , $V_{CC} = V_{CC}$ Max<br>$V_{OL} = +0.3$ V, $V_{CC} = V_{CC}$ Max                                      | -   | -                        | 100<br>N/A      | -                     | -           | 100<br>-100 | μAdc<br>μAdc |  |
| юн                                 | Output Leakage "1"                                             | VOH, VCC = VCC Max                                                                                                | -   | -                        | 100             | -                     | -           | N/A         | μAdc         |  |
| VCL                                | Input Clamp Voltage                                            | l <sub>in</sub> = -10 mA                                                                                          |     | -                        | -1.5            | -                     | -           | -1.5        | Vdc          |  |
| IOS                                | Output Short Circuit Current                                   | V <sub>CC</sub> = V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max                    | N/A | -                        | N/A             | 15                    | -           | 70          | mAdo         |  |
| Icc                                | Power Supply Current<br>MCM7680/MCM7681DC<br>MCM7680/MCM7681DM | V <sub>CC</sub> = V <sub>CC</sub> Max<br>All Inputs Grounded                                                      | _   | 110<br>110               | ,<br>150<br>170 | -                     | 110<br>110  | 150<br>170  | mAdc<br>mAdc |  |


CAPACITANCE (f = 1.0 MHz,  $T_A = 25^{\circ}C$ , periodically sampled rather than 100% tested.)

| Characteristic     | Symbol          | Тур | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 8.0 | рF   |
| Output Capacitance | Cout            | 8.0 | pF   |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

| (Full operating voltage and temperature unless otherwise noted) |                 | 0 to | 0 to +70 <sup>0</sup> C -55 t |     |     |      |
|-----------------------------------------------------------------|-----------------|------|-------------------------------|-----|-----|------|
| Characteristic                                                  | Symbol          | Тур  | Max                           | Тур | Max | Unit |
| Address to Output Access Time                                   | t <sub>AA</sub> | 45   | 70                            | 45  | 85  | ns   |
| Chip Enable Access Time                                         | <sup>t</sup> EA |      |                               |     |     | ns   |
| MCM7680/81                                                      |                 | 30   | 40                            | 30  | 50  |      |





#### PROGRAMMING

The .PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build

#### PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying inputs highs (V<sub>IH</sub>) to the  $\overline{\text{CS}}$  inputs. CS inputs must remain at V<sub>IH</sub> for program and verify. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- 3. Disable the programming circuitry by applying an Output Voltage Disable of less than  $V_{OPD}$  to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise  $V_{CC}$  to  $V_{PH}$  with rise time equal to  $t_r$ .
- 5. After a delay equal to or greater than  $t_d$ , apply a pulse with amplitude of  $V_{OPE}$  and duration of  $t_p$  to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

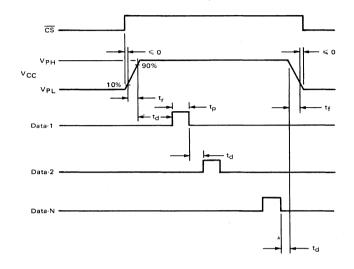
his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the  $V_{CC}$  input is raised to  $V_{PH}$  by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of  $t_d$ .

TL PROM

- 7. Lower  $V_{CC}$  to 4.5 Volts following a delay of  $t_d$  from the last programming enable pulse applied to an output.
- Enable the PROM for verification by applying a logic "0" (VIL) to the CS inputs.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol         | Parameter                         | Min   | Тур  | Max   | Unit |
|----------------|-----------------------------------|-------|------|-------|------|
| VIH            | Address Input                     | 2.4   | 5.0  | 5.0   | v    |
| VIL            | Voltage(1)                        | 0.0   | 0.4  | 0.8   | v    |
| VPH            | Programming/Verify                | 11.75 | 12.0 | 12.25 | V    |
| VPL            | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v V  |
| ICCP           | Programming Voltage Current Limit | 600   | 600  | 650   | mA   |
|                | Programming (V <sub>CC</sub> )    |       |      |       |      |
| t <sub>r</sub> | Voltage Rise and                  | 1     | 1    | 10    | μs   |
| tf             | Fall Time                         | 1     | 1    | 10    | μs   |
| td             | Programming Delay                 | 10    | 10   | 100   | μs   |
| <sup>t</sup> p | Programming Pulse Width           | 100   | -    | 1000  | μs   |
| DC             | Programming Duty Cycle            |       | 50   | 90    | %    |
|                | Output Voltage                    |       |      |       |      |
| VOPE           | Enable                            | 10.0  | 10.5 | 11.0  | v    |
| VOPD           | Disable(2)                        | 4.5   | 5.0  | 5.5   | v    |
| IOPE           | Output Voltage Enable Current     | 2     | 4    | 10    | mA   |
| тс             | Case Temperature                  |       | 25   | 75    | °C   |


TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.

**TTL PROM** 







# **Advance Information**

#### 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7684/85 together with the MCM7620/21/40/41/42/43/ 80/81 comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with both opencollector and three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time, and features temperature and voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7684 and 85 are pin compatible replacement for the  $1024 \times 4$  with pin 8 connected as A10 on the  $2048 \times 4$ .

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (0.1 second per 1024 Bits, Typical)
- Expandable Open-Collector or Three-State Outputs and Chip Enable Input
- Inputs and Outputs TTL-Compatible Low Input Current – 250 μA Logic "0", 40 μA Logic "1" Full Output Drive – 16 mA Sink. 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial and Military
- Percomparature Ranges
   Pin-Compatible with Industry-Standard PROMs and ROMs

#### ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                | Symbol           | Value                   | Unit |
|-------------------------------------------------------|------------------|-------------------------|------|
| Supply Voltage (operating)                            | Vcc              | +7.0                    | Vdc  |
| Input Voltage                                         | Vin              | +5.5                    | Vdc  |
| Output Voltage (operating)                            | ∨он              | +7.0                    | Vdc  |
| Supply Current                                        | 1cc              | 650                     | mAdc |
| Input Current                                         | lin              | -20                     | mAdc |
| Output Sink Current                                   | 1 <sub>0</sub>   | 100                     | mAdc |
| Operating Temperature Range<br>MCM76xxDM<br>MCM76xxDC | ТА               | -55 to +125<br>0 to +70 | °C   |
| Storage Temperature Range                             | T <sub>stg</sub> | -55 to +150             | °C   |
| Maximum Junction Temperature                          | TJ               | +175                    | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. (While programming, follow the programming specifications.)

This is advance information and specifications are subject to change without notice.

# MCM7684 MCM7685

# MTTL

8192-BIT PROGRAMMABLE READ ONLY MEMORIES

 $\begin{array}{l} \text{MCM7684}-\text{2048}\times\text{ 4}-\text{Open-Collector} \\ \text{MCM7685}-\text{2048}\times\text{ 4}-\text{Three-State} \end{array}$ 





CERAMIC PACKAGE CASE 726

#### PIN ASSIGNMENT

|   |          | $\sim$ |     | 1  |
|---|----------|--------|-----|----|
| 1 |          | A6     | Vcc | 18 |
| 2 | <u> </u> | A5     | Α7  | 17 |
| 3 |          | A4     | A8  | 16 |
| 4 |          | A3     | A9  | 15 |
| 5 |          | A0     | 01  | 14 |
| 6 |          | A1     | 02  | 13 |
| 7 |          | A2     | 03  | 12 |
| 8 |          | A10    | 04  |    |
| 9 |          | Gnd    | CS  | 10 |
|   |          | L      |     | J  |
|   |          |        |     |    |
|   |          |        |     |    |

## DC OPERATING CONDITIONS AND CHARACTERISTICS

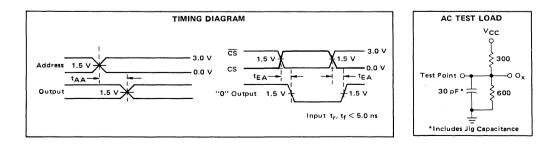
#### RECOMMENDED DC OPERATING CONDITIONS

| Parameter                                | Symbol | Min          | Nom        | Max          | Unit |
|------------------------------------------|--------|--------------|------------|--------------|------|
| Supply Voltage<br>MCM76xxDM<br>MCM76xxDC | Vcc    | 4.50<br>4.75 | 5.0<br>5.0 | 5.50<br>5.25 | Vdc  |
| Input High Voltage                       | VIH    | 2.0          | -          | _            | Vdc  |
| Input Low Voltage                        | VIL    |              | -          | 0.8          | Vdc  |

#### DC CHARACTERISTICS

TL PROM

| (Over Recommended Operating Temperature |                                                                  | ommended Operating Temperature Range)                                                           |          | Open-Collector<br>Output |             | Three-State<br>Output |             |             |              |  |
|-----------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|--------------------------|-------------|-----------------------|-------------|-------------|--------------|--|
| Symbol                                  | Parameter                                                        | Test Conditions                                                                                 | Min      | Тур                      | Max         | Min                   | Тур         | Max         | Unit         |  |
| IRA, IRE                                | Address/Enable ''1''<br>Input Current ''0''                      | V <sub>IH</sub> = V <sub>CC</sub> Max<br>V <sub>IL</sub> = 0.45 V                               | -        | -<br>-0.1                | 40<br>-0.25 | -                     | -<br>-0.1   | 40<br>-0.25 | µAdc<br>mAdc |  |
| V <sub>OH</sub><br>V <sub>OL</sub>      | Output Voltage "1"<br>"0"                                        | I <sub>OH</sub> = -2.0 mA, V <sub>CC</sub> Min<br>I <sub>OL</sub> = +16 mA, V <sub>CC</sub> Min | N/A<br>_ |                          | -<br>0.45   | 2.4<br>_              | 3.4<br>0.35 | <br>0.45    | Vdc<br>Vdc   |  |
| I <sub>OHZ</sub><br>I <sub>OLZ</sub>    | Output Disabled "1"<br>Current "0"                               | V <sub>OH</sub> , V <sub>CC</sub> Max<br>V <sub>OL</sub> = +0.3 V, V <sub>CC</sub> Max          | -        | -                        | 100<br>N/A  | -                     | -           | 100<br>-100 | μAdc<br>μAdc |  |
| юн                                      | Output Leakage "1"                                               | VOH, VCC Max                                                                                    | -        | -                        | 100         | -                     | -           | N/A         | μAdc         |  |
| VIC                                     | Input Clamp Voltage                                              | l <sub>in</sub> = -10 mA                                                                        | -        | -                        | -1.5        | -                     | -           | -1.5        | Vdc          |  |
| IOS                                     | Output Short Circuit Current                                     | V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1 s Max                    | N/A      | -                        | N/A         | 15                    | -           | 70          | mAdc         |  |
| lcc                                     | Power Supply Current<br>MCM7684/MCM7685 DC<br>MCM7684/MCM7685 DM | V <sub>CC</sub> Max<br>All Inputs Grounded                                                      |          | 80<br>80                 | 120<br>140  | -                     | 80<br>80    | 120<br>140  | mAdc<br>mAdc |  |


#### **CAPACITANCE** (f = 1.0 MHz, $T_{\Delta}$ = 25°C, periodically sampled rather than 100% tested.)

| Characteristic     | Symbol          | Тур | Unit |
|--------------------|-----------------|-----|------|
| Input Capacitance  | C <sub>in</sub> | 8.0 | pF   |
| Output Capacitance | Cout            | 8.0 | pF   |

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

| (Full operating | voltage and | temperature unless | otherwise noted) |
|-----------------|-------------|--------------------|------------------|
|                 |             |                    |                  |

| Full operating voltage and temperature unless otherwise noted) | 0 to            | o + 70 <sup>0</sup> C | ~55 to |     |     |      |
|----------------------------------------------------------------|-----------------|-----------------------|--------|-----|-----|------|
| Characteristic                                                 | Symbol          | Тур                   | Max    | Тур | Max | Unit |
| Address to Output Access Time                                  | tAA             | 45                    | 70     | 45  | 85  | ns   |
| Chip Enable Access Time                                        | <sup>t</sup> EA | 15                    | 25     | 15  | 30  | ns   |



#### PROGRAMMING

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "O" (Output Low) by following the simple procedure shown below. One may build

#### PROGRAMMING PROCEDURE

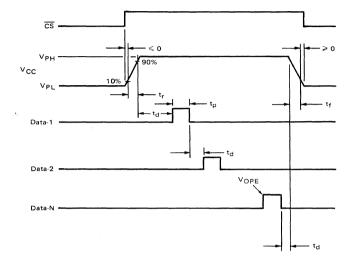
- 1. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- 2. Disable the chip by applying an input high  $(V_{IH})$  to the  $\overline{CS}$  input. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- 3. Disable the programming circuitry by applying an Output Voltage Disable of less than VOPD to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise V<sub>CC</sub> to V<sub>PH</sub> with rise time equal to t<sub>r</sub>.
- 5. After a delay equal to or greater than t<sub>d</sub>, apply a pulse with amplitude of VOPE and duration of tp to the output selected for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- 6. Other bits in the same word may be programmed

his own programmer to satisfy the sepcifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

while the V<sub>CC</sub> input is raised to V<sub>PH</sub> by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of t<sub>d</sub>.

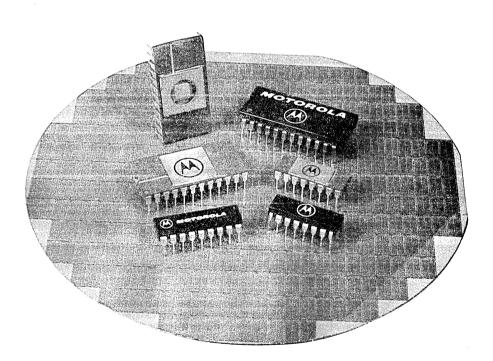
- 7. Lower V<sub>CC</sub> to 4.5 Volts following a delay of t<sub>d</sub> from the last programming enable pulse applied to an output.
- 8. Enable the PROM for verification by applying a logic "0" (VII ) to the  $\overline{CS}$  inputs.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulses of durations shorter than 1.0 ms may be used to enhance programming speed.
- 10. Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- 11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occurred.

| Symbol         | Parameter                         | Min   | Тур  | Max   | Unit |
|----------------|-----------------------------------|-------|------|-------|------|
| VIH            | Address Input                     | 2.4   | 5.0  | 5.0   | V    |
| VIL            | Voltage(1)                        | 0.0   | 0.4  | 0.8   | v    |
| VPH            | Programming/Verify                | 11.75 | 12.0 | 12.25 | v    |
| VPL            | Voltage to V <sub>CC</sub>        | 4.5   | 4.5  | 5.5   | v    |
| ICCP           | Programming Voltage Current Limit | 600   | 600  | 650   | mA   |
|                | Programming (V <sub>CC</sub> )    |       |      |       |      |
| t <sub>r</sub> | Voltage Rise and                  | 1     | 1    | 10    | μs   |
| t <sub>f</sub> | Fall Time                         | 1     | 1    | 10    | μs   |
| td             | Programming Delay                 | 10    | 10   | 100   | μs   |
| tp             | Programming Pulse Width           | 100   | -    | 1000  | μs   |
| DC             | Programming Duty Cycle            |       | 50   | 90    | %    |
|                | Output Voltage                    |       |      |       |      |
| VOPE           | Enable                            | 10.0  | 10.5 | 11.0  | V    |
| VOPD           | Disable(2)                        | 4.5   | 5.0  | 5.5   | v    |
| OPE            | Output Voltage Enable Current     | 2     | 4    | 10    | mA   |
| тс             | Case Temperature                  | -     | 25   | 75    | °c   |


TABLE 1 PROGRAMMING SPECIFICATIONS

(1) Address and chip select should not be left open for VIH.

(2) Disable condition will be met with output open circuit.


L PRON







1



9-1

# **MECL MEMORIES GENERAL INFORMATION**

Complete information is available in the MECL Data Book. Contact your sales representative or authorized distributor for information.

#### TABLE 1 - LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED

| Characteristic                                             | Symbol           | Rating               | Unit |
|------------------------------------------------------------|------------------|----------------------|------|
| Supply Voltage                                             | VEE              | -8.0 to 0            | v    |
| Input Voltage (V <sub>CC</sub> = 0)                        | Vin              | 0 to V <sub>EE</sub> | v    |
| Output Source Current — Continuous<br>Surge                | lout             | 50<br>100            | mA   |
| Junction Temperature – Ceramic Package①<br>Plastic Package | Тյ               | 165<br>150           | °c   |
| Storage Temperature                                        | T <sub>stg</sub> | -55 to +150          | °c   |

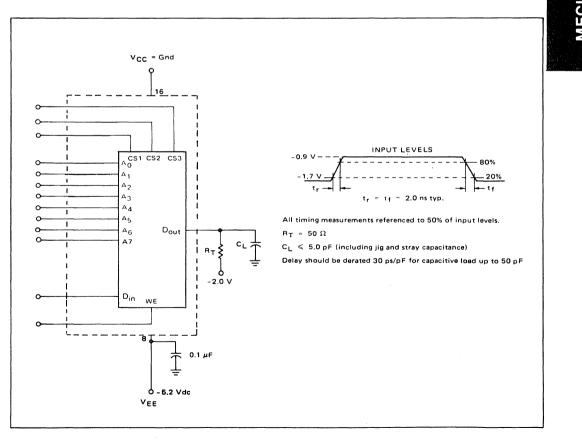
(1) Maximum T<sub>J</sub> may be exceeded ( $\leq 250^{\circ}$ C) for short periods of time ( $\leq 240$  hours) without significant reduction in device life.

| TABLE 2 — LIMITS BEYOND WHICH PERFORMANCE MAY BE | E DEGRADED |
|--------------------------------------------------|------------|
|--------------------------------------------------|------------|

| Characteristic                                                                       | Symbol          | Rating                                              | Unit |
|--------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|------|
| Supply Voltage (V <sub>CC</sub> = 0)                                                 | V <sub>EE</sub> | -4.94 to -5.46                                      | v    |
| Output Drive — MCM10100 Series<br>MCM10400 Series<br>MCM10500 Series                 | _               | 50 Ω to -2.0 V<br>50 Ω to -2.0 V<br>100 Ω to -2.0 V | Ω    |
| Operating Temperature Range<br>MCM10100 Series<br>MCM10400 Series<br>MCM10500 Series | Тд              | 0 to 75<br>-55 to +150<br>-55 to +125               | °C   |

(2) Functionality only. Data sheet limits are specified for –5.19 to –5.21 V. (3) With airflow  $\geq$  500 lfpm.

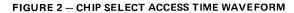
# **MECL MEMORIES (continued)**

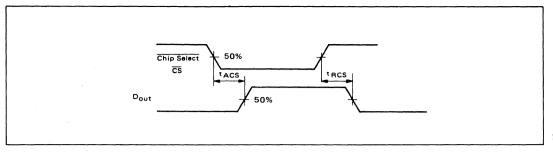

## TABLE 3 - DC TEST PARAMETERS

Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 linear feet per minute is maintained.  $V_{EE} = -5.2 \text{ V} \pm 0.010 \text{ V}$ .

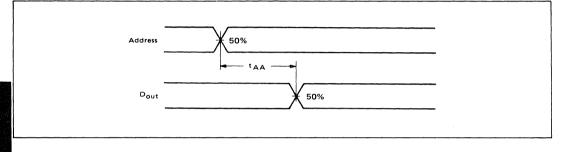
| Forcing              |                      | –55 <sup>0</sup> C | 0°C        | 25 <sup>0</sup> C |           | 75 <sup>0</sup> C | 125 <sup>0</sup> C |
|----------------------|----------------------|--------------------|------------|-------------------|-----------|-------------------|--------------------|
| Function             | Parameter            | MCM10500*          | MCM10100** | MCM10100**        | MCM10500* | MCM10100**        | MCM10500*          |
| V <sub>IHmax</sub> = | V <sub>OHmax</sub>   | -0.880             | -0.840     | -0.810            | -0.780    | -0.720            | -0.630             |
|                      | VOHmin               | -1.080             | -1.000     | -0.960            | -0.930    | -0.900            | -0.825             |
|                      | VOHAmin              | -1.100             | -1.020     | -0.980            | -0.950    | -0.920            | -0.845             |
| VIHAmin              |                      | -1.255             | - 1.145    | -1.105            | -1.105    | 1.045             | -1.000             |
| VILAmin              |                      | -1.510             | - 1.490    | -1.475            | -1.475    | -1.450            | -1.400             |
|                      | VOLAmin              | -1.635             | -1.645     | -1.630            | -1.600    | -1.605            | -1.525             |
|                      | VOLAmax              |                    | -1.665     | -1.650            | -1.620    | -1.625            | -1.545             |
| VILmin 5             | ■ VOLmin             | -1.920             | -1.870     | - 1.850           | -1.850    | -1.830            | -1.820             |
| V <sub>ILmin</sub>   | <sup>I</sup> IN Lmin | 0.5                | 0.5        | 0.5               | 0.5       | 0.3               | 0.3                |

\*Driving 100  $\Omega$  to -2.0 V.

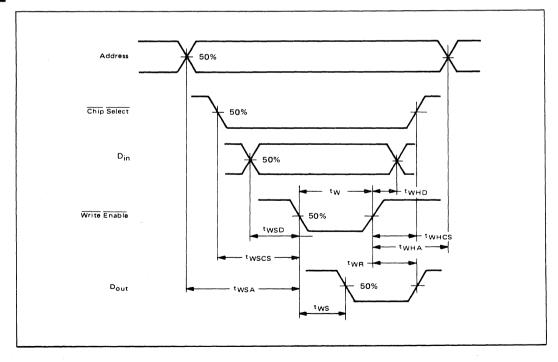

\*\*Driving 50  $\Omega$  to –2.0 V.



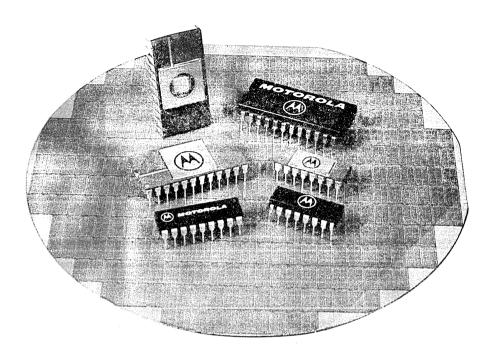

4


FIGURE 1 - SWITCHING TIME TEST CIRCUIT

# **MECL MEMORIES (continued)**








## FIGURE 4 - SETUP AND HOLD WAVEFORMS (WRITE MODE)



MECL



# MECL RAM



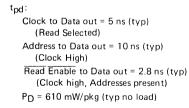
MECL RAM



# MCM10143

# 8 X 2 MULTIPORT REGISTER FILE (RAM)

## 8 x 2 MULTIPORT REGISTER FILE (RAM)


The MCM10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

#### WRITE

The word to be written is selected by addresses  $A_0-A_2$ . Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by  $A_0-A_2$ .

#### READ

When the clock is high any two words may be read out simultaneously, as selected by addresses  $B_0-B_2$  and  $C_0-C_2$ , including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates ( $B_0-B_1$ ), ( $C_0-C_1$ ).



|       | TRUTH TABLE |                               |    |      |   |     |   |   |     |     |     |
|-------|-------------|-------------------------------|----|------|---|-----|---|---|-----|-----|-----|
| •MODE |             |                               | IN | IPUT |   |     |   |   | OUT | PUT |     |
|       | **Clock     | **Clock WE0 WE1 D0 D1 REB REC |    |      |   |     |   |   | QB1 | QC0 | QC1 |
| Write | L→н         | L                             | L  | н    | н | н.  | н | L | L   | L   | L   |
| Read  | н           | ¢                             | ¢  | ¢    | 0 | - L | L | н | н   | н   | н   |
| Read  | H→L         | 0                             | 0  | Ø    | 0 | L   | L | н | н   | н   | н   |
| Read  | L→H→L       | н                             | н  | ¢    | ø | L   | L | н | н   | н   | н   |
| Write | L→н         | L                             | L  | L    | н | н   | н | L | L   | L   | L   |
| Read  | н           | ¢.                            | φ  | ¢    | 0 | L   | L | L | н   | L   | н   |

\*\*Note: Clock occurs sequentially through Truth Table

\*Note: A0-A2, B0-B2, and C0-C2 are all set to same address location

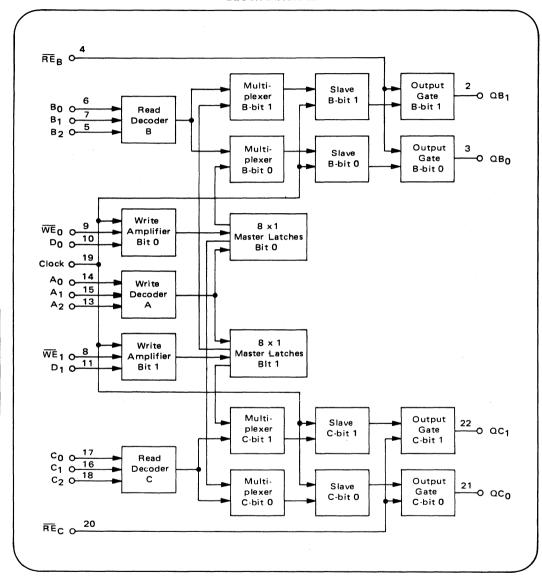
throughout Table.

φ - Don't Care



L SUFFIX CERAMIC PACKAGE CASE 623

#### **PIN ASSIGNMENT**



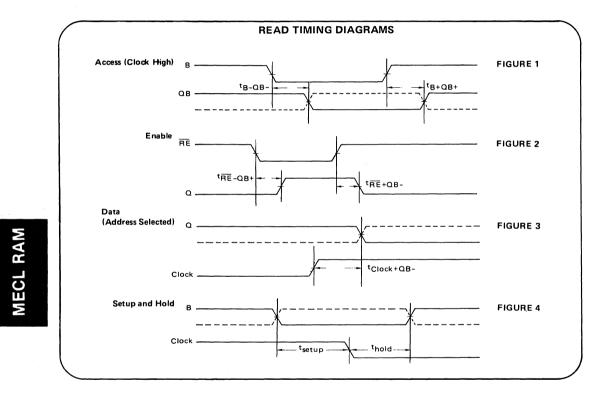

# MCM10143

MECL RAM

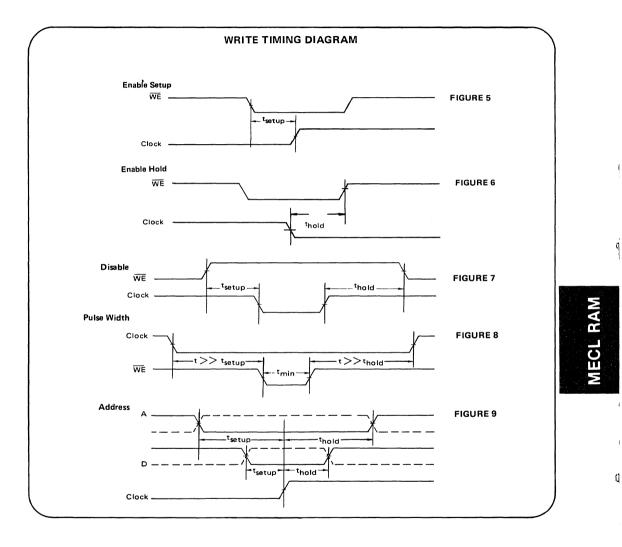
)

Þ




**BLOCK DIAGRAM** 

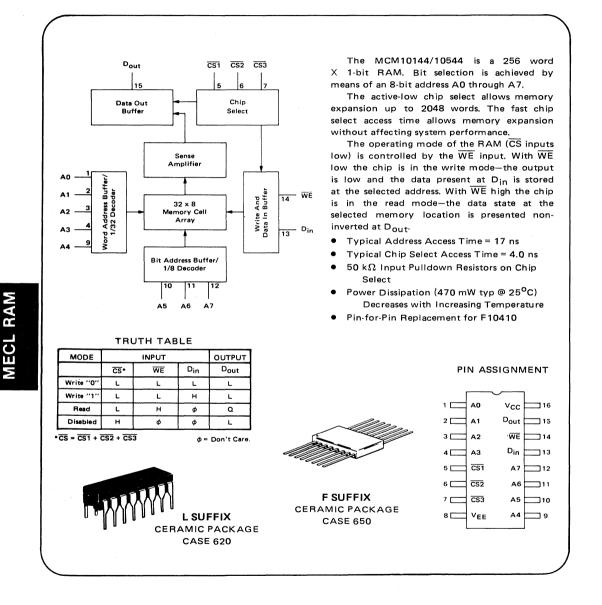
# ELECTRICAL CHARACTERISTICS


|                                      |                                  | 0   | °C   |      | +25 <sup>0</sup> C |      | +7! | 5°C  |      |
|--------------------------------------|----------------------------------|-----|------|------|--------------------|------|-----|------|------|
| Characteristics                      | Symbol                           | Min | Max  | Min  | Тур                | Max  | Min | Max  | Unit |
| Power Supply Drain Current           | ١E                               |     | 150  | _    | 118                | 150  | -   | 150  | mAdc |
| Input Current                        | linH                             |     |      |      |                    |      |     |      | μAdc |
| Pins 10, 11, 19                      |                                  |     | 245  | -    |                    | 245  | -   | 245  |      |
| All other pins                       |                                  |     | 200  | -    | -                  | 200  | -   | 200  |      |
| Switching Times ①                    |                                  |     |      |      |                    |      |     |      | ns   |
| Read Mode                            |                                  |     |      |      |                    |      |     |      |      |
| Address Input                        | <sup>t</sup> B <sup>±</sup> QB ± | 4.0 | 15.3 | 4.5  | 10                 | 14.5 | 4.5 | 15.5 |      |
| Read Enable                          | tRE-QB+                          | 1.1 | 5.3  | 1.2  | 3.5                | 5.0  | 1.2 | 5.5  |      |
| Data                                 | <sup>t</sup> Clock+QB-           | 1.7 | 7.3  | 2.0  | 5.0                | 7.0  | 2.0 | 7.6  |      |
| Setup                                |                                  |     |      |      |                    |      |     |      |      |
| Address                              | <sup>t</sup> setup(B-Clock-)     | —   | -    | 8.5  | 5.5                | —    | -   | -    |      |
| Hold                                 |                                  |     |      |      |                    |      |     |      |      |
| Address                              | <sup>t</sup> hold(Clock – B+)    | -   | -    | -1.5 | -4.5               | _    | -   | -    |      |
| Write Mode                           |                                  |     |      |      |                    |      |     |      |      |
| Setup                                |                                  |     |      |      |                    |      |     |      |      |
| Write Enable                         | tsetup(WE-Clock+)                | -   | -    | 7.0  | 4.0                |      | -   | -    |      |
|                                      | tsetup(WE+Clock-)                | —   | -    | 1.0  | -2.0               |      | -   | -    |      |
| Address                              | <sup>t</sup> setup(A-Clock+)     |     | -    | 8.0  | 5.0                | -    | -   | -    |      |
| Data                                 | tsetup(D-Clock+)                 | —   | -    | 5.0  | 2.0                | _    | -   |      |      |
| Hold                                 |                                  |     |      |      |                    |      |     |      |      |
| Write Enable                         | <sup>t</sup> hold(Clock+WE+)     | —   | -    | 5.5  | 2.5                |      | -   | -    |      |
|                                      | <sup>t</sup> hold(Clock+WE-)     | -   | -    | 1.0  | -2.0               | -    | -   |      |      |
| Address                              | <sup>t</sup> hold(Clock+A+)      | —   | -    | 1.0  | -3.0               |      | -   | -    |      |
| Data                                 | <sup>t</sup> hold(Clock+D+)      | _   | —    | 1.0  | -2.0               | -    | -   | —    |      |
| Write Pulse Width                    | PWWE                             | -   | -    | 8.0  | 5.0                | -    | -   |      |      |
| Rise Time, Fall Time<br>(20% to 80%) | <sup>t</sup> r, <sup>t</sup> f   | 1.1 | 4.2  | 1.1  | 2.5                | 4.0  | 1.1 | 4.5  |      |

MECL RAM

()AC timing figures do not show all the necessary presetting conditions.




þ





# MCM10144/MCM10544

256 X 1-BIT RANDOM ACCESS MEMORY



## ELECTRICAL CHARACTERISTICS

|                            |        | -5  | 5°C | 0   | °c  | +2  | 5°C | + 7! | 5°C | +12 | 5°C |      |
|----------------------------|--------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|
| Characteristic             | Symbol | Min | Max | Min | Max | Min | Max | Min  | Max | Min | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 140 | -   | 135 | -   | 130 | -    | 125 | -   | 125 | mAdc |
| Input Current High         | linH   | _   | 375 | -   | 220 | -   | 220 | -    | 220 | -   | 220 | μAdc |

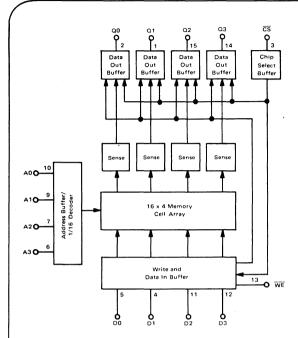
-55<sup>0</sup>C and +125<sup>0</sup>C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                          |                                 | МСМ | 10144                     | мсм                           | 10544                        |      |                                      |
|------------------------------------------|---------------------------------|-----|---------------------------|-------------------------------|------------------------------|------|--------------------------------------|
|                                          |                                 |     | 0 to<br>5 <sup>0</sup> C, |                               | – 55 to<br>5 <sup>0</sup> C, |      |                                      |
|                                          |                                 |     |                           | V <sub>EE</sub> =<br>-5.2 Vdc |                              |      |                                      |
|                                          |                                 |     | 5%                        |                               | 5%                           |      |                                      |
| Characteristics                          | Symbol                          | Min | Max                       | Min                           | Max                          | Unit | Conditions                           |
| Read Mode                                |                                 |     |                           |                               |                              | ns   | Measured from 50% of                 |
| Chip Select Access Time                  | <sup>t</sup> ACS                | 2.0 | 10                        | 2.0                           | 10                           |      | input to 50% of output.              |
| Chip Select Recovery Time                | tRCS                            | 2.0 | 10                        | 2.0                           | 10                           |      | See Note 2.                          |
| Address Access Time                      | t <sub>AA</sub>                 | 7.0 | 26                        | 7.0                           | 26                           |      |                                      |
| Write Mode                               |                                 |     |                           |                               |                              | ns   | t <sub>WSA</sub> = 8.0 ns            |
| Write Pulse Width                        | tw                              | 25  |                           | 25                            | -                            |      | Measured at 50% of                   |
| Data Setup Time Prior to Write           | twsp                            | 2.0 | -                         | 2.0                           |                              |      | input to 50% of output.              |
| Data Hold Time After Write               | twhd                            | 2.0 | -                         | 2.0                           | -                            | 4    | tw = 25 ns.                          |
| Address Setup Time Prior to Write        | twsa                            | 8.0 | -                         | 8.0                           | . —                          |      |                                      |
| Address Hold Time After Write            | tWHA                            | 2.0 | <u> </u>                  | 0.0                           | <u> </u>                     |      |                                      |
| Chip Select Setup Time Prior to<br>Write | twscs                           | 2.0 | _                         | 2.0                           | -                            |      |                                      |
| Chip Select Hold Time After Write        | twhcs                           | 2.0 | _                         | 2.0                           | _                            |      |                                      |
| Write Disable Time                       | tws                             | 2.5 | 10                        | 2.5                           | 10                           |      |                                      |
| Write Recovery Time                      | tWR                             | 2.5 | 10                        | 2.5                           | 10                           |      |                                      |
| Rise and Fall Time                       | t <sub>r</sub> , t <sub>f</sub> |     |                           |                               |                              | ns   | Measured between 20% and 80% points. |
| Address to Output                        |                                 | 1.5 | 7.0                       | 1.5                           | 7.0                          |      |                                      |
| CS or WE to Output                       |                                 | 1.5 | 5.0                       | 1.5                           | 5.0                          |      |                                      |
| Capacitance                              |                                 |     |                           |                               |                              | рF   | Measured with a pulse                |
| Input Capacitance                        | Cin                             | -   | 5.0                       | -                             | 5.0                          |      | technique.                           |
| Output Capacitance                       | Cout                            | -   | 8.0                       | -                             | 8.0                          |      |                                      |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \ \Omega$ , MCM10144; 100  $\Omega$ , MCM10544.  $C_L \le 5.0 \ pF$  (including jig and stray capacitance). Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


đ

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MCM10145/MCM10545



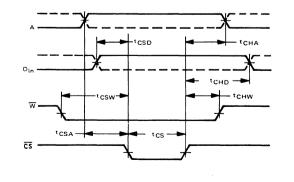
# 16 X 4-BIT REGISTER FILE (RAM)



The MCM10145/10545 is a 16 word X 4-bit RAM. Bit selection is achieved by means of a 4-bit address A0 through A3.

The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM ( $\overline{CS}$  input low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$ low the chip is in the write mode-the output is low and the data present at D<sub>n</sub> is stored at the selected address. With  $\overline{WE}$  high the chip is in the read mode-the data state at the selected memory location is presented noninverted at Q<sub>n</sub>.


- Typical Address Access Time = 10 ns
- Typical Chip Select Access Time = 4.5 ns
- 50 kΩ Pulldown Resistors on All Inputs
- Power Dissipation (470 mW typ @ 25<sup>o</sup>C) Decreases with Increasing Temperature

| PIN ASSIGNMENT |            |     |    |  |  |  |  |
|----------------|------------|-----|----|--|--|--|--|
|                | $\sim$     |     | 1  |  |  |  |  |
| 1              | Q1         | Vcc | 16 |  |  |  |  |
| 2              | <b>Q</b> 0 | Q2  | 15 |  |  |  |  |
| 3 🚞            | CS         | Q3  | 14 |  |  |  |  |
| 4              | D1         | WE  | 13 |  |  |  |  |
| 5              | DO         | D3  | 12 |  |  |  |  |
| 6              | A3         | D2  | 11 |  |  |  |  |
| 7              | A2         | A0  | 10 |  |  |  |  |
| 8              | VEE        | A1  | 9  |  |  |  |  |
|                |            |     |    |  |  |  |  |
|                |            |     |    |  |  |  |  |

#### FIGURE 1 – CHIP ENABLE STROBE MODE


OUTPUT

an



MECL RAM

L SUFFIX CERAMIC PACKAGE CASE 620



F SUFFIX CERAMIC PACKAGE CASE 650

TRUTH TABLE

CS

1

L

L

н

INPUT

WE

LHL

ΗφΩ

0 0 1

Dr

MODE

Write ''O''

Write "1"

Read

Disabled

φ = Don't Care.

# MCM10145/MCM10545

# ELECTRICAL CHARACTERISTICS

|                            |                  | -5  | 5°C | 0   | °c  | +2  | 5°C | +7  | 5°C | + 12 | 5 <sup>0</sup> C |      |
|----------------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------------------|------|
| Characteristic             | Symbol           | Min | Max | Min | Max | Min | Max | Min | Max | Min  | Max              | Unit |
| Power Supply Drain Current | IEE              | -   | 135 |     | 130 |     | 125 | -   | 120 | 1    | 120              | mAdc |
| Input Current High         | l <sub>inH</sub> |     | 375 |     | 220 | -   | 220 | -   | 220 | -    | 220              | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

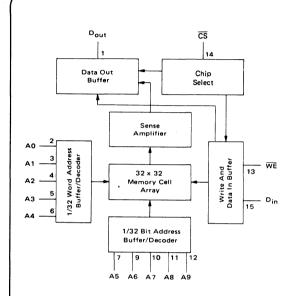
# SWITCHING CHARACTERISTICS (Note 1)

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                  | мсм | 10145 | мсм      | 10545 |      |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|-----|-------|----------|-------|------|-------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                  |     |       |          |       |      |                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                  |     |       |          |       |      |                         |
| $ \begin{array}{ c c c c c c } \hline -5.2 \lor c \\ $ |                                   |                  | 1   |       |          |       |      |                         |
| Image: The set of the set o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                  |     |       |          |       |      |                         |
| Read Mode<br>Chip Select Access Time<br>Chip Select Recovery Time<br>Address Access TimetACS<br>tRCS2.08.02.010nsMeasured from 50% of<br>input to 50% of output.<br>Select Recovery Time<br>take 4.015Write Mode<br>Write Pulse Widtht<br>Wate Pulse Widtht<br>tww8.0-8.0-nstwyst 4.0Write Pulse Width<br>Data Setup Time Prior to Write<br>Hadress Setup Time Prior to Write<br>Writet<br>twyst 4.08.0-8.0-nstwyst 5.0Address Setup Time Prior to<br>Writetwyst 5.0-5.0-twy 8.0-twy 8.0-Address Setup Time Prior to<br>Writetwyst 2.08.02.010twy 8.0-twy 8.0-Chip Select Hold Time After Write<br>Write Disable Time<br>Write Recovery Timetwyst 2.08.02.010-twy 8.0-Chip Select Hold Time After Write<br>Write Enable Strope Mode<br>Data Setup Prior to Chip Select<br>twyste Enable Setup Prior to Chip Select<br>Hold Time After Chip SelecttCSD0Address Setup Prior to Chip Select<br>Write Enable Hold Time After Chip<br>SelecttCSA0Address Setup Prior to Chip Select<br>Chip SelecttCHA4.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                  |     |       |          |       | 1    |                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Characteristics                   | Symbol           | Min | Max   | Min      | Max   | Unit | Conditions              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Read Mode                         |                  |     |       |          |       | ns   | Measured from 50% of    |
| Address Access Timetrade<br>trade<br>table4.0154.018Write Modetw8.0-8.0-nstwSA = 5 ns<br>Measured at 50% of<br>input to 50% of output.Data Setup Time Prior to WritetwBD0.0-0.0-twSA = 5 ns<br>input to 50% of output.Data Hold Time After WritetwHD3.0-4.0-twtwAddress Setup Time Prior to WritetwSA5.0-5.0-twAddress Hold Time After WritetwSA5.0-5.0-twChip Select Setup Time Prior totwSCS0-5.0Write Disable TimetwWR2.08.02.010-Write Recovery TimetwR2.08.02.010-Chip Select Hold Time After WritetcSD0Myrite Recovery TimetwR2.08.02.010-Chip SelecttcSD0Address Setup Prior to Chip SelecttcSN0Address Setup Prior to Chip SelecttcSA0Address Setup Prior to Chip SelecttcCAH2.0Address Setup Prior to Chip SelecttcCAH2.0Address Hold Time After ChipSelectAddress Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chip Select Access Time           | tACS             | 2.0 | 8.0   | 2.0      | 10    |      | input to 50% of output. |
| Write ModetwKAtwKAtwIntwnstwtw $k_{0}$ nstwtw $k_{0}$ nstwtwtw $k_{0}$ nstwtwtw $k_{0}$ nstwtw $k_{0}$ nstwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chip Select Recovery Time         | <sup>t</sup> RCS | 2.0 | 8.0   | 2.0      | 10    |      | See Note 2.             |
| Write Pulse Widthtw<br>Massured at 50% of<br>input to 50% of output.Data Setup Time Prior to WritetwSD0-0-input to 50% of output.Data Hold Time After WritetwHD3.0-4.0-twtwAddress Setup Time Prior to WritetwSA5.0-5.0-twtwAddress Hold Time After WritetwSCS0-5.0twChip Select Setup Time Prior totwSCS0-0WritetwSCS0-0Write Disable TimetwWC2.08.02.010Write Recovery TimetwR2.08.02.010Chip Select ModetcSD0Data Setup Prior to Chip SelecttCSD0Address Fold Time After Chip SelecttCSM0Address Setup Prior to Chip SelecttCSM0Address Hold Time After Chip SelecttCHM0Address Hold Time After ChiptcCHA4.0Address Hold Time After ChiptcCHA4.0Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Address Access Time               | tAA              | 4.0 | 15    | 4.0      | 18    |      |                         |
| Data Setup Time Prior to Write<br>Data Hold Time After Writetwp<br>twp0-0-input to 50% of output.<br>twpAddress Setup Time Prior to Write<br>Address Hold Time After Write<br>Chip Select Setup Time Prior to<br>WritetwsA5.0-5.0-twptwps.0-twptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwptwp </td <td>Write Mode</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ns</td> <td>twsa = 5 ns</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Write Mode                        |                  |     |       |          |       | ns   | twsa = 5 ns             |
| Data Hold Time After WritetwpD $3.0$ $ 4.0$ $-$ twp = 8 ns.Address Setup Time Prior to WritetwsA $5.0$ $ 5.0$ $ -$ twp = 8 ns.Address Hold Time After WritetwsA $5.0$ $ 5.0$ $   -$ Chip Select Setup Time Prior totwsCs $0$ $ 5.0$ $   -$ WriteChip Select Hold Time After WritetwsCs $0$ $ 0$ $  -$ Write Disable Timetww $2.0$ $8.0$ $2.0$ $10$ $  -$ Write Becovery Timetws $2.0$ $8.0$ $2.0$ $10$ $  -$ Chip Enable Strobe Modetws $2.0$ $8.0$ $2.0$ $10$ $    -$ Data Setup Prior to Chip SelecttCSW $0$ $                                                                 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Write Pulse Width                 | tw               | 8.0 | -     | 8.0      |       |      | Measured at 50% of      |
| Address Setup Time Prior to Write<br>Address Hold Time After Write<br>Chip Select Setup Time Prior to<br>WritetWSA<br>tWHA5.0<br>5.0<br>3.0-Chip Select Setup Time Prior to<br>WritetWSCS<br>tWSCS0-5.0Chip Select Hold Time After Write<br>Write Disable Time<br>Write Becovery TimetWHCS<br>tWS0-0-Chip Enable Strobe Mode<br>Data Setup Prior to Chip Select<br>Chip SelecttCSD<br>tCSW0Chip Select<br>Data Setup Prior to Chip Select<br>Chip SelecttCSA<br>tCSW0Address Setup Prior to Chip Select<br>Chip Select<br>Data Hold Time After Chip Select<br>tCHDtCSA<br>tCHD0Address Setup Prior to Chip Select<br>Chip Select<br>Chip SelecttCSA<br>tCHD0Mitte Enable Hold Time After<br>SelecttCHA<br>tCHA4.0<br>tCHARise and Fall Time<br>Address to Output<br>CS to Outputtr. tf<br>tr. tf1.5<br>tS.07.01.5<br>tS.0nsMeasured between 20%<br>and 80% points.Capacitance<br>Input CapacitanceC<br>C<br>LC<br>C<br>LCapacitance<br>Input CapacitanceC<br>LC<br>L6.0Chip Select<br>Chip SelectC<br>LChip Select<br>Chip Selecttr. tf<br>L1.5<br>S.01.5<br>S.0Rise and Fall Time <br< td=""><td>Data Setup Time Prior to Write</td><td>twsd</td><td>0</td><td>-</td><td>0</td><td>_</td><td></td><td>input to 50% of output.</td></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data Setup Time Prior to Write    | twsd             | 0   | -     | 0        | _     |      | input to 50% of output. |
| Address Hold Time After Write<br>Chip Select Setup Time Prior to<br>WritetWHA<br>tWSCS1.0-3.0-Chip Select Setup Time Prior to<br>WritetWSCS0-5.0Chip Select Hold Time After Write<br>Write Disable Time<br>Write Recovery TimetWHCS0-0-Chip Enable Strobe Mode<br>Data Setup Prior to Chip Select<br>Chip SelecttCSD0Chip Select<br>Write Enable Setup Prior to Chip Select<br>Chip SelecttCSM0Address Setup Prior to Chip Select<br>Chip SelecttCSA0Address Setup Prior to Chip Select<br>Chip SelecttCSA0Address Hold Time After Chip Select<br>Chip SelecttCHA4.0Mrite Enable Hold Time After Chip<br>SelecttCHA4.0Mrite Enable Hold Time After Chip<br>SelecttCHA4.0Address Hold Time After Chip<br>SelecttCHA4.0Rise and Fall Time<br>Address to Outputtr, tf1.57.01.57.0and 80% points.Capacitance<br>Input CapacitanceCin6.0CapacitanceCin6.0-6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data Hold Time After Write        | twhD             | 3.0 | -     | 4.0      | _     |      | t <sub>W</sub> = 8 ns.  |
| Address Hold Time After Write<br>Chip Select Setup Time Prior to<br>WritetwhA<br>twSCS1.0<br>0-3.0<br>Chip Select Hold Time After Write<br>Write Disable Time<br>Write Becovery TimetwHCS<br>twS0-0-Write Recovery TimetwW<br>twR2.08.02.01010Chip Select Mold Time After Write<br>Write Becovery TimetcSD<br>twR0Chip Enable Strobe Mode<br>Data Setup Prior to Chip Select<br>Chip SelecttcSD<br>tCSW0Address Setup Prior to Chip Select<br>Chip SelecttCSA<br>tCHD0Address Setup Prior to Chip Select<br>Chip SelecttCSA<br>tCHD0Mrite Enable Hold Time After Chip Select<br>Chip SelecttCAA<br>tCHW0Mrite Enable Hold Time After Chip<br>SelecttCHA<br>tCHW4.0Address Hold Time After Chip<br>SelecttcHA<br>tCHA4.0Rise and Fall Time<br>Address to Output<br>CS to Outputtr, tf<br>t.51.57.01.57.0nsMeasured between 20%<br>and 80% points.Capacitance<br>Input CapacitanceCin6.0CapacitanceCin-6.0-6.0F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Address Setup Time Prior to Write | twsa             | 5.0 | -     | 5.0      | -     |      |                         |
| Write<br>Chip Select Hold Time After Write<br>Write Disable Time<br>Write Becovery Timetwp CS<br>twp 2.00<br>Sole-<br>00<br>ConstructionChip Enable Strobe Mode<br>Data Setup Prior to Chip Select<br>Write Enable Setup Prior to Chip Select<br>Chip Selectt<br>tcSD0<br>Construction-<br>Construction-<br>nosns<br>s<br>duranteed but not<br>tested on standard<br>product. See Figure 1.Address Setup Prior to Chip Select<br>Write Enable Mold Time After Chip Select<br>Chip Select<br>More Enable Hold Time After Chip<br>Selectt<br>tCAH0<br>Construction-<br>-<br>-<br><br>-Address Hold Time After Chip<br>Select<br>Chip Select Minimum Pulse Widtht<br>tcS18<br>tr, tf-<br>-<br><br><br>-<br>-Rise and Fall Time<br>Address to Output<br>CS to Outputtr, tf<br>tr, tf-<br>-<br><br><br>-<br>-ns<br>-<br>-<br>-Measured between 20%<br>and 80% points.Capacitance<br>Input CapacitanceC<br>C<br>input Capacitance-<br>C<br>construction-<br>-<br><br>Capacitance<br>Input CapacitanceC<br>C<br>input Capacitance-<br>-<br><br>Masured between<br>ConstructionC<br><br><br>Capacitance<br>Input Capacitance-<br>-<br><br>Capacitance<br>Input Capacitance-<br><br>Capacitance<br>Input Capacitance-<br>Capacitance-<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Address Hold Time After Write     |                  | 1.0 | -     | 3.0      | _     |      |                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chip Select Setup Time Prior to   | twscs            | 0   |       | 5.0      | -     |      |                         |
| Write Disable TimetWS<br>tWS2.08.02.010Write Recovery TimetWR2.08.02.010Chip Enable Strobe Mode<br>Data Setup Prior to Chip SelecttCSD0 $  -$ Write Enable Setup Prior to Chip SelecttCSW0 $  -$ Write Enable Setup Prior to Chip SelecttCSW0 $  -$ Address Setup Prior to Chip SelecttCSA0 $  -$ Data Hold Time After Chip SelecttCHD2.0 $  -$ Write Enable Hold Time AftertCHW0 $  -$ Chip SelecttCHA4.0 $  -$ Min SelecttCHA18 $  -$ Rise and Fall Timetr, tf1.57.01.57.0Address to Output1.55.01.55.0 $-$ Capacitance $C_{in}$ $   -$ Input Capacitance $C_{in}$ $  6.0$ $ -$ Chip Select $C_{in}$ $ 6.0$ $  -$ Rise and Fall Time $t_r, t_f$ $t_r, t_f$ $t_r, t_f$ $t_r, t_f$ $t_r, t_f$ Capacitance $     -$ Input Capacitance $C_{in}$ $  6.0$ $ 6.0$ $ 6.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Write                             |                  |     |       |          |       |      |                         |
| Write Recovery Timetwo<br>two<br>WR2.08.02.010Chip Enable Strobe Mode<br>Data Setup Prior to Chip Selectt $CSD$ 0nsGuaranteed but not<br>tested on standard<br>product. See Figure 1.Write Enable Setup Prior to<br>Chip Selectt $CSW$ 0rested on standard<br>product. See Figure 1.Address Setup Prior to Chip Select<br>Data Hold Time After Chip Select<br>Chip Selectt $CSA$ 0Write Enable Hold Time After<br>Chip Selectt $CHW$ 0Write Enable Hold Time After<br>Chip Selectt $CHW$ 0Mire Enable Hold Time After<br>Chip Selectt $CHW$ 0Rise and Fall Time<br>Address to Outputt $r, t_f$<br>I.57.01.57.0nsMeasured between 20%<br>and 80% points.Capacitance<br>Input CapacitanceCin-6.0-6.0pFMeasured with a pulse<br>technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chip Select Hold Time After Write | twhcs            | 0   | -     | 0        | -     |      |                         |
| Chip Enable Strobe Mode<br>Data Setup Prior to Chip SelecttCSD0nsGuaranteed but not<br>tested on standard<br>product. See Figure 1.Write Enable Setup Prior to<br>Chip SelecttCSW0tested on standard<br>product. See Figure 1.Address Setup Prior to Chip Select<br>Data Hold Time After Chip Select<br>thip SelecttCSA0Write Enable Hold Time After<br>Chip SelecttCHW0Address Hold Time After Chip<br>SelecttCHA4.0Address Hold Time After Chip<br>SelecttCHA4.0Rise and Fall Time<br>CS to Outputtr, tf<br>1.57.01.57.0and 80% points.Capacitance<br>Input CapacitanceCin-6.0-6.0pFMeasured with a pulse<br>technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Write Disable Time                | tws              | 2.0 | 8.0   | 2.0      | 10    |      |                         |
| Data Setup Prior to Chip Selectt $CSD$ 0tested on standardWrite Enable Setup Prior to<br>Chip Selectt $CSW$ 0rested on standardAddress Setup Prior to Chip Selectt $CSW$ 0Data Hold Time After Chip Selectt $CHD$ 2.0Write Enable Hold Time Aftert $CHW$ 0Chip Selectt $CHW$ 0Address Hold Time After Chip<br>Selectt $CHA$ 4.0Address Hold Time After Chip<br>Selectt $CHA$ 1.57.01.57.0and 80% points.Rise and Fall Time<br>Address to Outputt $r, t_f$<br>1.51.57.01.55.0and 80% points.Capacitance<br>Input CapacitanceCin-6.0-6.0pFMeasured with a pulse<br>technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Write Recovery Time               | twr              | 2.0 | 8.0   | 2.0      | 10    |      |                         |
| Write Enable Setup Prior to<br>Chip SelecttCSW<br>tCSW0product. See Figure 1.Address Setup Prior to Chip SelecttCSA0Data Hold Time After Chip SelecttCHD2.0Write Enable Hold Time AftertCHW0Chip SelecttCHW0Address Hold Time After ChiptCHA4.0SelecttChip Select Minimum Pulse WidthtCS18Rise and Fall Timetr, tf1.57.01.57.0and 80% points.Address to Output-1.55.01.55.0PFMeasured with a pulseCapacitanceCin-6.0-6.0PFMeasured with a pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chip Enable Strobe Mode           |                  |     |       |          |       | ns   | Guaranteed but not      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data Setup Prior to Chip Select   | tCSD             | 0   | -     | -        |       |      | tested on standard      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Write Enable Setup Prior to       | tcsw             | 0   | -     | -        | -     |      | product. See Figure 1.  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chip Select                       |                  |     |       |          |       |      |                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | tCSA             | 0   |       | -        | -     |      |                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data Hold Time After Chip Select  | <sup>t</sup> CHD | 2.0 | -     | -        | -     |      |                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Write Enable Hold Time After      | <sup>t</sup> CHW | 0   | -     | i        | -     |      |                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                 |                  |     |       |          |       |      |                         |
| Rise and Fall Time<br>Address to Output $t_r$ , $t_f$<br>CS to OutputnsMeasured between 20%<br>and 80% points.CS to Output1.55.01.55.0Capacitance<br>Input Capacitance $C_{in}$ -6.0-6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | <sup>t</sup> СНА | 4.0 | -     | -        | -     |      |                         |
| Rise and Fall Time<br>Address to Output<br>$\overline{CS}$ to Output $t_r, t_f$<br>$1.5$ nsNeasured between 20%<br>and 80% points.Address to Output1.57.01.57.01.51.5Capacitance<br>Input Capacitance $C_{in}$ -6.0- $f_{in}$ pFMeasured with a pulse<br>technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chip Select Minimum Pulse Width   | tcs              | 18  | _     | _        | _     |      |                         |
| Address to Output1.57.01.57.01.57.0and 80% points.Cs to Output1.55.01.55.01.55.0PFMeasured with a pulseCapacitanceCin-6.0-6.0technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rise and Fall Time                |                  |     |       |          |       | ns   | Measured between 20%    |
| CS to Output1.55.01.55.0pFMeasured with a pulseCapacitanceCin-6.0-6.0technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Address to Output                 | <sup>47,47</sup> | 1.5 | 7.0   | 1.5      | 7.0   |      |                         |
| Input Capacitance C <sub>in</sub> – 6.0 – 6.0 technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                  |     |       |          |       |      |                         |
| Input Capacitance C <sub>in</sub> – 6.0 – 6.0 technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Capacitance                       |                  |     |       | <u> </u> |       | pF   | Measured with a pulse   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | Cin              | -   | 6.0   | -        | 6.0   | •    | -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output Capacitance                |                  | -   | 8.0   | -        | 8.0   |      |                         |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10145; 100  $\Omega$ , MCM10545.  $C_L \le 5.0 pF$  (including jig and Stray Capacitance). Delay should be derated 30 ps/pF for capacitive loads up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.

10-11


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

ECL RA



# MCM10146/MCM10546

1024 X 1-BIT RANDOM ACCESS MEMORY



**CASE 620** 

MODE

Write ''0'

Write ''1'

Read

Disabled

CS

ι.

L

L

н

The MCM10146/10546 is a 1024 X 1-bit RAM. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM (CS input low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$ low, the chip is in the write mode, the output. Dout, is low and the data state present at Din is stored at the selected address. With WE high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at Dout. (See Truth Table.)

- Pin-for-Pin Compatible with the 10415 .
- Power Dissipation (520 mW typ @ 25°C) Decreases with Increasing Temperature
- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns
- 50 kΩ Pulldown Resistor on Chip Select Input

| TR | UTH TABLE    | E    |        | PIN ASSIGNMENT          |
|----|--------------|------|--------|-------------------------|
|    | INPUT        |      | OUTPUT |                         |
| S  | WE           | Din  | Dout   | 2 A0 D <sub>in</sub> 15 |
| ι. | L            | L    | L      | 3 A1 CS 14              |
| L  | L            | н    | L      | 4 C A2 WE 13            |
| L  | н            | φ    | Q      | 5 C A3 A9 12            |
| н  | φ            | φ    | L      | 6 A4 A8 11              |
|    |              | l    |        |                         |
| φ  | = Don't Care | ı.   |        |                         |
|    |              | Fiv  |        |                         |
| 05 | LSUF         |      | 0.5    | F SUFFIX                |
| CE | RAMIC P      | ACKA | GE     | CERAMIC PACKAGE         |

CASE 650-03

. RAM MECI

# 10-12

# MCM10146/MCM10546

## ELECTRICAL CHARACTERISTICS

|                            |        | - 55   | 5°C    | 04     | 0°C    |        | +25 <sup>0</sup> C |        | 5°C    | +125 <sup>0</sup> C |        |      |
|----------------------------|--------|--------|--------|--------|--------|--------|--------------------|--------|--------|---------------------|--------|------|
| Characteristic             | Symbol | Min    | Max    | Min    | Max    | Min    | Max                | Min    | Max    | Min                 | Max    | Unit |
| Power Supply Drain Current | IEE    | -      | 155    | -      | 150    | -      | 145                | -      | 125    | -                   | 125    | mAdc |
| Input Current High         | linH   |        | 375    | -      | 220    | -      | 220                | -      | 220    |                     | 220    | μAdc |
| Logic "0" Output Voltage   | VOL    | -1.970 | -1.655 | -1.920 | -1.665 | -1.900 | -1.650             | -1.880 | -1.625 | -1.870              | -1.545 | Vdc  |

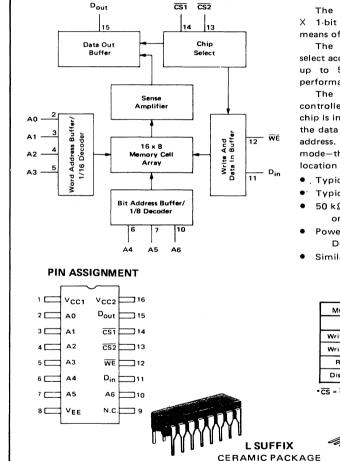
NOTE: -55°C and +125°C test values apply to MCM105XX only.

## SWITCHING CHARACTERISTICS (Note 1)

|                                   |                                 | мсм | 10146                       | мсм | 10546                       |      |                            |
|-----------------------------------|---------------------------------|-----|-----------------------------|-----|-----------------------------|------|----------------------------|
|                                   |                                 |     | = 0 to<br>5 <sup>0</sup> C, |     | –55 to<br>5 <sup>0</sup> C, |      |                            |
|                                   |                                 |     | -5.2 Vdc<br>5%              |     | -5.2 Vdc<br>5%              |      |                            |
| Characteristics                   | Symbol                          | Min | Max                         | Min | Max                         | Unit | Conditions                 |
| Read Mode                         |                                 |     |                             |     |                             | ns   | Measured at 50% of input   |
| Chip Select Access Time           | t <sub>ACS</sub>                | 2.0 | 7.0                         | 2.0 | 8.0                         |      | to 50% of output.          |
| Chip Select Recovery Time         | tRCS                            | 2.0 | 7.0                         | 2.0 | 8.0                         |      | See Note 2.                |
| Address Access Time               | tAA                             | 8.0 | 29                          | 8.0 | 40                          |      |                            |
| Write Mode                        |                                 |     |                             |     |                             | ns   | t <sub>WSA</sub> = 8.0 ns. |
| Write Pulse Width                 | tw                              | 25  | -                           | 25  | -                           |      | Measured at 50% of input   |
| (To guarantee writing)            |                                 |     |                             |     |                             |      | to 50% of output.          |
| Data Setup Time Prior to Write    | twsD                            | 5.0 | -                           | 5.0 | -                           |      | tw = 25 ns                 |
| Data Hold Time After Write        | twhD                            | 5.0 | -                           | 5.0 | - 1                         |      |                            |
| Address Setup Time Prior to Write | tWSA                            | 8.0 | -                           | 10  | -                           |      |                            |
| Address Hold Time After Write     | tWHA                            | 2.0 | -                           | 8.0 | -                           |      |                            |
| Chip Select Setup Time Prior to   | twscs                           | 5.0 | -                           | 5.0 | -                           |      |                            |
| Write                             |                                 |     |                             |     |                             |      |                            |
| Chip Select Hold Time After Write | twhcs                           | 5.0 | -                           | 5.0 | -                           |      |                            |
| Write Disable Time                | tws                             | 2.8 | 7.0                         | 2.8 | 12                          |      |                            |
| Write Recovery Time               | twr                             | 2.8 | 7.0                         | 2.8 | 12                          |      |                            |
| Rise and Fall Time                | t <sub>r</sub> , t <sub>f</sub> |     |                             |     |                             | ns   | Measured between 20% and   |
| CS or WE to Output                |                                 | 1.5 | 4.0                         | 1.5 | 4.0                         |      | 80% points.                |
|                                   |                                 |     |                             |     |                             | 1    |                            |
| Address to Output                 |                                 | 1.5 | 8.0                         | 1.5 | 8.0                         |      |                            |
| Capacitance                       |                                 |     |                             |     |                             | pF   | Measured with a pulse      |
| Input Capacitance                 | Cin                             | -   | 5.0                         | -   | 5.0                         | l    | technique.                 |
| Output Capacitance                | Cout                            | _   | 8.0                         | -   | 8.0                         |      |                            |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \ \Omega$ , MCM10146; 100  $\Omega$ , MCM10546.  $C_L \le 5.0 \ pf$  including jig and stray capacitance. For Capacitance Loading  $\le 50 \ pF$ , delay should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

MECL RAM



# MCM10147/MCM10547

128 X 1-BIT RANDOM ACCESS MEMORY



- RAM

The MCM1047/10547 is a fast 128-word X 1-bit RAM. Bit selection is achieved by means of a 7-bit address, A0 through A6.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system performance.

The operating mode ( $\overline{CS}$  inputs low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$  low the chip is in the write mode-the output is low and the data present at D<sub>in</sub> is stored at the selected address. With  $\overline{WE}$  high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at D<sub>out</sub>.

- . Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (420 mW typ @ 25<sup>o</sup>C)
   Decreases with Increasing Temperature
- Similar to F10405

#### TRUTH TABLE MODE INPUT OUTPUT Din Dout cs. WE Write "O' L L. L. ł. Write "1" ł. L н L Read L н φ a Disabled н ф Φ L CS = CS1 + CS2 φ = Don't Care. F SUFFIX

CERAMIC PACKAGE CASE 650

CASE 620

## ELECTRICAL CHARACTERISTICS

|                            |        | -5  | -55 <sup>0</sup> C |     | 0°C |     | +25 <sup>0</sup> C |     | 5°C | +125 <sup>0</sup> C |     |      |
|----------------------------|--------|-----|--------------------|-----|-----|-----|--------------------|-----|-----|---------------------|-----|------|
| Characteristic             | Symbol | Min | Max                | Min | Max | Min | Max                | Min | Max | Min                 | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 115                | -   | 105 | -   | 100                | -   | 95  | -                   | 95  | mAdc |
| Input Current High         | linH   | -   | 375                | -   | 220 | -   | 220                | -   | 220 | -                   | 220 | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                       |                                 | MCM                   | 10147                 | MCM       | 10547                   |      |                          |
|---------------------------------------|---------------------------------|-----------------------|-----------------------|-----------|-------------------------|------|--------------------------|
|                                       |                                 | T <sub>A</sub> = 0 t  | o +75 <sup>0</sup> C, | TA = -55  | to +125 <sup>0</sup> C, |      |                          |
|                                       |                                 | V <sub>EE</sub> = -5. | 2 Vdc ± 5%            | VEE = -5. | 2 Vdc ± 5%              |      |                          |
| Characteristics                       | Symbol                          | Min                   | Max                   | Min       | Max                     | Unit | Conditions               |
| Read Mode                             |                                 |                       |                       |           |                         | ns   | Measured from 50% of     |
| Chip Select Access Time               | <sup>t</sup> ACS                | 2.0                   | 8.0                   | *         | •                       |      | input to 50% of output.  |
| Chip Select Recovery Time             | tRCS                            | 2.0                   | 8.0                   | •         | *                       |      | See Note 2.              |
| Address Access Time                   | tAA                             | 5.0                   | 15                    | *         | •                       |      |                          |
| Write Mode                            |                                 |                       |                       |           |                         | ns   | twsa = 4.0 ns            |
| Write Pulse Width                     | tw                              | 8.0                   | -                     | *         | _                       |      | Measured at 50% of input |
| Data Setup Time Prior to Write        | twsp                            | 1.0                   | _                     | *         | - 1                     |      | to 50% of output.        |
| Data Hold Time After Write            | twhD                            | 3.0                   | -                     | *         | - 1                     |      | tw = 8.0 ns.             |
| Address Setup Time Prior to Write     | tWSA                            | 4.0                   | -                     | •         | -                       |      |                          |
| Address Hold Time After Write         | tWHA                            | 3.0                   | -                     | •         | -                       |      |                          |
| Chip Select Setup Time Prior to Write | twscs                           | 1.0                   | -                     | *         | -                       |      |                          |
| Chip Select Hold Time After Write     | tWHCS                           | 1.0                   | -                     | *         | -                       |      |                          |
| Write Disable Time                    | tws                             | 2.0                   | 8.0                   | •         | *                       |      |                          |
| Write Recovery Time                   | tWR                             | 2.0                   | 8.0                   | •         | •                       |      |                          |
| Rise and Fall Time                    | t <sub>r</sub> , t <sub>f</sub> | 1.5                   | 5.0                   | *         | *                       | ns   | Measured between 20% and |
|                                       |                                 |                       |                       |           |                         |      | 80% points.              |
| Capacitance                           |                                 |                       |                       |           |                         | pF   | Measured with a pulse    |
| Input Capacitance                     | Cin                             | - 1                   | 5.0                   | -         | •                       |      | technique.               |
| Output Capacitance                    | Cout                            | -                     | 8.0                   | -         | •                       |      |                          |

đ

MECL RAM

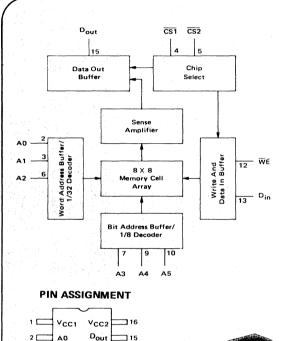
(l

NOTES: 1. Test circuit characteristics: R<sub>T</sub> = 50 Ω, MCM10147; 100 Ω, MCM10547.

 $C_L \leq 5.0 \ pF$  (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.



# MCM10148/MCM10548

## 64 X 1-BIT RANDOM ACCESS MEMORY



N.C.

Din

WE

N.C.

A5

A4 9

114

113

712

711

710

3 🖂 A1

À٢

5 Г

6 ſ

7 r

8 Г

CS1

CS2

A2

Α3

VFF

The MCM10148/10548 is a fast 64-word X 1-bit RAM. Bit selection is achieved by means of a 6-bit address, A0 through A5.

The active-low chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system performance.

The operating mode ( $\overline{CS}$  inputs low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$  low the chip is in the write mode-the output is low and the data present at  $D_{in}$  is stored at the selected address. With  $\overline{WE}$  high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at  $D_{out}$ .

- Typical Address Access Time of 10 ns
- Typical Chip Select Access Time of 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (420 mW typ @ 25<sup>o</sup>C)
   Decreases with Increasing Temperature

|           | TRUTH TABLE |        |     |                  |  |  |  |  |  |  |  |  |  |
|-----------|-------------|--------|-----|------------------|--|--|--|--|--|--|--|--|--|
| MODE      |             | OUTPUT |     |                  |  |  |  |  |  |  |  |  |  |
|           | CS*         | WE     | Din | D <sub>out</sub> |  |  |  |  |  |  |  |  |  |
| Write "O" | L           | L      | L   | L                |  |  |  |  |  |  |  |  |  |
| Write "1" | L           | L      | н   | L                |  |  |  |  |  |  |  |  |  |
| Read      | L           | н      | φ   | ٩                |  |  |  |  |  |  |  |  |  |
| Disabled  | н           | φ      | φ   | L                |  |  |  |  |  |  |  |  |  |

•  $\overline{\text{CS}} = \overline{\text{CS1}} + \overline{\text{CS2}} + \overline{\text{CS3}} \quad \phi = \text{Don't Care.}$ 

F SUFFIX CERAMIC PACKAGE CASE 650

# AECL RAM

D

L SUFFIX

CERAMIC PACKAGE

CASE 620

# ELECTRICAL CHARACTERISTICS

|                            |        | -5  | -55 <sup>0</sup> C |     | 0°C |     | +25°C |     | 5°C | +125 <sup>0</sup> C |     |      |
|----------------------------|--------|-----|--------------------|-----|-----|-----|-------|-----|-----|---------------------|-----|------|
| Characteristic             | Symbol | Min | Max                | Min | Max | Min | Max   | Min | Max | Min                 | Max | Unit |
| Power Supply Drain Current | IEE    |     | 115                | -   | 105 | -   | 100   | -   | 95  |                     | 95  | mAdc |
| Input Current High         | linH   | 1   | 375                | -   | 220 |     | 220   | -   | 220 |                     | 220 | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                       |                                 | MCM10148 |                                    | MCM | 10548                                 |      |                                      |
|---------------------------------------|---------------------------------|----------|------------------------------------|-----|---------------------------------------|------|--------------------------------------|
|                                       |                                 |          | o +75 <sup>0</sup> C,<br>2 Vdc ±5% |     | to + 125 <sup>0</sup> C,<br>2 Vdc ±5% |      |                                      |
| Characteristics                       | Symbol                          | Min      | Max                                | Min | Max                                   | Unit | Conditions                           |
| Read Mode                             |                                 |          |                                    |     |                                       | ns   | Measured from 50% of                 |
| Chip Select Access Time               | <sup>t</sup> ACS                | -        | 7.5                                | -   | •                                     |      | input to 50% of output.              |
| Chip Select Recovery Time             | tRCS                            | -        | 7.5                                | - 1 | •                                     |      | See Note 2.                          |
| Address Access Time                   | tAA                             | -        | 15                                 | -   | •                                     | l    |                                      |
| Write Mode                            |                                 |          |                                    |     |                                       | ns   | twsa = 5.0 ns                        |
| Write Pulse Width                     | tw                              | 8.0      | _                                  | •   | L'                                    | l    | Measured at 50% of input             |
| Data Setup Time Prior to Write        | twsp                            | 3.0      | -                                  | •   | - 1                                   |      | to 50% of output.                    |
| Data Hold Time After Write            | tWHD                            | 2.0      |                                    | •   | I –                                   | 1    | tw = 8.0 ns.                         |
| Address Setup Time Prior to Write     | tWSA                            | 5.0      | -                                  | •   |                                       |      |                                      |
| Address Hold Time After Write         | tWHA                            | 3.0      | -                                  | +   |                                       |      |                                      |
| Chip Select Setup Time Prior to Write | twscs                           | 3.0      | - 1                                | •   | - 1                                   |      |                                      |
| Chip Select Hold Time After Write     | twncs                           | 0        |                                    | •   | - 1                                   |      |                                      |
| Write Disable Time                    | tws                             | 2.0      | 7.5                                | •   | •                                     |      |                                      |
| Write Recovery Time                   | tWR                             | 2.0      | 7.5                                | •   | •                                     | ĺ    |                                      |
| Rise and Fall Time                    | t <sub>r</sub> , t <sub>f</sub> | 1.5      | 5.0                                | *   |                                       | ns   | Measured between 20% and 80% points. |
| Capacitance                           |                                 |          |                                    |     | 1                                     | pF   | Measured with a pulse                |
| Input Capacitance                     | Cin                             | _        | 5.0                                | -   | •                                     |      | technique.                           |
| Output Capacitance                    | Cout                            | - 1      | 8.0                                | -   | · ·                                   |      |                                      |

NOTES: 1. Test circuit characteristics: R<sub>T</sub> = 50 Ω, MCM10148; 100 Ω, MCM10548.

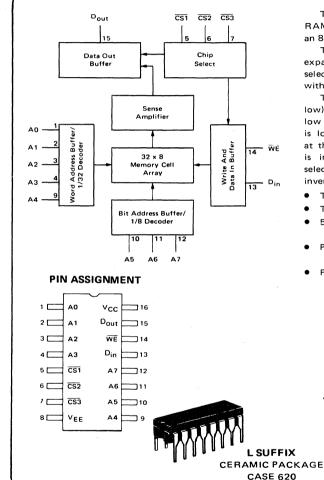
 $C_L \leq 5.0 \text{ pF}$  (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.


۵

MECL RAM



# MCM10152/MCM10552

256 X 1-BIT RANDOM ACCESS MEMORY



RAM

The MCM10152/10552 is a 256-word  $\times$  1-bit RAM. Bit selection is achieved by means of an 8-bit address A0 through A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM ( $\overline{CS}$  inputs low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$ low the chip is in the write mode-the output is low and the data present at D<sub>in</sub> is stored at the selected address. With  $\overline{WE}$  high the chip is in the read mode-the data state at the selected memory location is presented noninverted at D<sub>OUT</sub>.

- Typical Address Access Time = 11 ns
- Typical Chip Select Access Time = 4.0 ns
- 50 kΩ Input Pulldown Resistors on All Inputs
- Power Dissipation (570 mW typ @ 25<sup>0</sup>C)
   Decreases with Increasing Temperature
- Pin-for-Pin Compatible with F10410/10414

| MODE        |     | INPUT |     | OUTPUT |  |  |
|-------------|-----|-------|-----|--------|--|--|
|             | CS• | WE    | Din | Dout   |  |  |
| Write ''0'' | L   | L     | L   | L      |  |  |
| Write ''1'' | L.  | L     | н   | L      |  |  |
| Read        | L   | н     | φ   | ۵      |  |  |
| Disabled    | н   | φ     | φ   | L      |  |  |

F SUFFIX CERAMIC PACKAGE

**CASE 650** 

#### TRUTH TABLE

# **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | -55°C |     | 0°C |     | +25 <sup>0</sup> C |     | +75 <sup>0</sup> C |     | 5°C |      |
|----------------------------|--------|-----|-------|-----|-----|-----|--------------------|-----|--------------------|-----|-----|------|
| Characteristic             | Symbol | Min | Max   | Min | Max | Min | Max                | Min | Max                | Min | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 140   | -   | 135 |     | 130                | -   | 125                | -   | 125 | mAdc |
| Input Current High         | linH   | -   | 375   | -   | 220 | -   | 220                | -   | 220                | -   | 220 | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

# SWITCHING CHARACTERISTICS (Note 1)

|                                       |                                 | MCM                  | 10152                                       | MCM                            | 10552                                        |      |                           |
|---------------------------------------|---------------------------------|----------------------|---------------------------------------------|--------------------------------|----------------------------------------------|------|---------------------------|
|                                       |                                 | T <sub>A</sub> = 0 t | $T_{\Delta} = 0 \text{ to } + 75^{\circ}C,$ |                                | T <sub>A</sub> = ~55 to +125 <sup>o</sup> C, |      |                           |
|                                       |                                 | VEE = -5             | .2 Vdc ±5%                                  | V <sub>EE</sub> = -5.2 Vdc ±5% |                                              |      |                           |
| Characteristics                       | Symbol                          | Min                  | Max                                         | Min                            | Max                                          | Unit | Conditions                |
| Read Mode                             |                                 |                      |                                             |                                |                                              |      | Measured from 50% of      |
| Chip Select Access Time               | <sup>t</sup> ACS                | 2.0                  | 7.5                                         | •                              | •                                            |      | input to 50% of output.   |
| Chip Select Recovery Time             | tRCS                            | 2.0                  | 7.5                                         | +                              | •                                            |      | See Note 2.               |
| Address Access Time                   | <sup>t</sup> AA                 | 7.0                  | 15                                          | •                              | *                                            |      |                           |
| Write Mode                            |                                 |                      |                                             |                                |                                              | ns   | t <sub>WSA</sub> = 5.0 ns |
| Write Pulse Width                     | tw                              | 10                   | -                                           | *                              |                                              |      | Measured at 50% of input  |
| Data Setup Time Prior to Write        | twsp                            | 2.0                  | - 1                                         | •                              | -                                            |      | to 50% of output.         |
| Data Hold Time After Write            | twhD                            | 2.0                  |                                             | *                              | _                                            |      | tw = 10 ns.               |
| Address Setup Time Prior to Write     | tWSA                            | 5.0                  |                                             | *                              | -                                            |      |                           |
| Address Hold Time After Write         | twha                            | 3.0                  | -                                           | •                              | -                                            |      |                           |
| Chip Select Setup Time Prior to Write | twscs                           | 2.0                  | _                                           | - 1                            | -                                            |      |                           |
| Chip Select Hold Time After Write     | tWHCS                           | 2.0                  | -                                           | *                              | _                                            |      |                           |
| Write Disable Time                    | tws'                            | 2.5                  | 7.5                                         | *                              | *                                            |      |                           |
| Write Recovery Time                   | tWR                             | 2.5                  | 7.5                                         | *                              | •                                            |      |                           |
| Rise and Fall Time                    | t <sub>r</sub> , t <sub>f</sub> | 1.5                  | 5.0                                         | *                              | *                                            | ns   | Measured between 20% and  |
|                                       |                                 |                      |                                             |                                |                                              |      | 80% points.               |
| Capacitance                           |                                 |                      |                                             |                                |                                              | рF   | Measured with a pulse     |
| Input Capacitance                     | C <sub>in</sub>                 | -                    | 5.0                                         |                                | *                                            |      | technique.                |
| Output Capacitance                    | Cout                            | -                    | 8.0                                         | -                              | *                                            |      |                           |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10152; 100  $\Omega$ , MCM10552.

 $C_{L} \leqslant 5.0 \mbox{ pF}$  (including jig and stray capacitance).

Delay should be derated 30 ps/pF for capacitive load up to 50 pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.

Û

(]





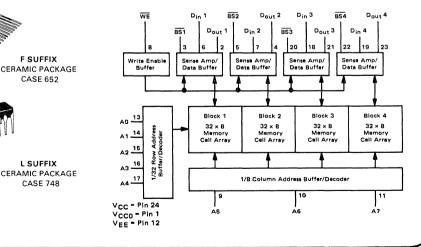
# 256 X 4-BIT **RANDOM ACCESS MEMORY**

#### PIN ASSIGNMENT

| 1 📖  | o<br>∨cco         | Vcc                | 24   |
|------|-------------------|--------------------|------|
| 2 💳  | Dout 1            | D <sub>out</sub> 4 | 23   |
| 3 💳  |                   | BS4                | 22   |
| 4 💳  | Dout 2            | D <sub>out</sub> 3 | 21   |
| 5 💳  | BS2               | BS3                | 20   |
| 6 💳  | D <sub>in</sub> 1 | D <sub>in</sub> 4  | 19   |
| 7 🗖  | Din 2             | D <sub>in</sub> 3  | 18   |
| 8 🗖  | WE                | A4                 | 17   |
| 9 💳  | A5                | A3                 | 16   |
| 10 💳 | A6                | A2                 | 15   |
| 11 💳 | A7                | A1                 | 14   |
| 12   | VEE               | A0                 | L 13 |

#### PIN DESIGNATION

| BS1                | - | BS4                | Block Select Inputs |
|--------------------|---|--------------------|---------------------|
| A0                 | • | A7                 | Address Inputs      |
| D <sub>in</sub> 1  | • | D <sub>in</sub> 4  | Data Inputs         |
| D <sub>out</sub> 1 | • | D <sub>out</sub> 4 | Data Outputs        |
| WE                 | - |                    | Write Enable Input  |


The MCM10422 is a high speed 1024-bit Read/Write Random Access Memory organized 256 words by 4 bits. Four independent active-low Block Selects permit use in 1024 × 1 and 512 × 2 bit applications. The device has full address decoding on chip, separate data inputs, non-inverting data outputs, and an active-low Write Enable.

The MCM10422 is designed for high speed scratch pad, control, cache, and buffer storage applications. The device is available in a space-saving 24-pin CERDIP, or in the standard 24-pin flatpack (12 pins on each side).

- Typical Address Access of 12 ns
- Typical Power Dissipation of 850 mW
- Power Dissipation Decreases with Increasing Temperature
- Fully Compatible with MECL 10,000
- Operating Temperature Range 0°C to 75°C .
- Organized 256 Words by 4 Bits
- Four Independent Block Selects
- Emitter-Follower Outputs Permits Full Wire-OR'ing

TRUTH TABLE

| MODE          | INPUT OUTPUT                                        |    |                   |                    |  |  |  |  |  |
|---------------|-----------------------------------------------------|----|-------------------|--------------------|--|--|--|--|--|
|               | <b>B</b> S <sub>n</sub>                             | WE | D <sub>in</sub> n | D <sub>out</sub> n |  |  |  |  |  |
| Write ''O''   | L                                                   | L  | L                 | L                  |  |  |  |  |  |
| Write ''1''   | L                                                   | L  | н                 | L                  |  |  |  |  |  |
| Read          | L                                                   | н  | φ                 | ٩                  |  |  |  |  |  |
| Block H Ø Ø L |                                                     |    |                   |                    |  |  |  |  |  |
| ¢ Don't Ca    | $\phi$ Don't Care NOTE: Blocks Enable Independently |    |                   |                    |  |  |  |  |  |





L SUFFIX CERAMIC PACKAGE CASE 748

F SUFFIX

CASE 652

#### FUNCTIONAL DESCRIPTION:

This device is a 256 x 4-bit RAM. Word selection is achieved by means of an 8-bit address, A0-A7.

The operating mode of each block  $(\overline{BS}_n \text{ input low})$  is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$  low, the block is in the write mode, the output  $D_{out}$ n is low and the data state present at  $D_{in}$ n is stored at the selected address in block n. With  $\overline{WE}$  high, the block is in the read mode and the data stored at the selected memory location will be presented non-inverted at  $D_{out}$ n.

The independent, active-low Block Selects and the wire-OR capability of the emitter follower outputs permit use as a

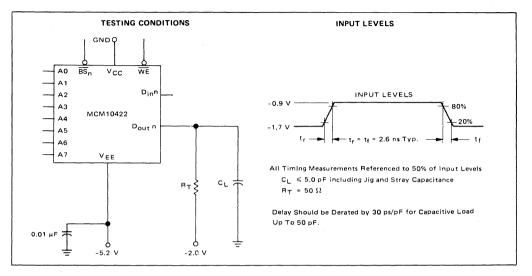
1024 x 1 or 512 x 2-bit RAM. For example, for use as a 1024 x 1-bit RAM tie all  $D_{in}$  inputs together to form a single  $D_{in}$ , wire-OR the  $D_{out}$  lines together to form a single  $D_{out}$  line, and drive the Block Selects with a 1-of-4 low decoder.

|          | $\theta_{\rm JA}$ (Junction | to Ambient) | θJC                |
|----------|-----------------------------|-------------|--------------------|
| Package  | Blown                       | Still       | (Junction to Case) |
| L Suffix | 35°C/W                      | 55°C/W      | 15°C/W             |
| F Suffix | 35°C/W                      | 52°C/W      | 10°C/W             |

#### ABSOLUTE MAXIMUM RATINGS

| Rating                                        | Symbol           | Value         | Unit            |
|-----------------------------------------------|------------------|---------------|-----------------|
| Power Supply Voltage (V <sub>CC</sub> = 0)    | VEE              | -8 to 0       | Vdc             |
| Base Input Voltage (V <sub>CC</sub> = 0)      | Vin              | 0 to VEE      | Vdc             |
| Output Source Current – Continuous<br>– Surge | 10               | < 50<br>< 100 | mAdc            |
| Junction Operating Temperature                | Тј               | < 165         | 0 <sup>0.</sup> |
| Storage Temperature Range                     | T <sub>stg</sub> | -55 to +150   | °C              |

| DC TEST VOLTAGE VALUES<br>(Volts) |                    |        |         |         |       |  |  |  |  |
|-----------------------------------|--------------------|--------|---------|---------|-------|--|--|--|--|
| Test<br>Temperature               | V <sub>IHmax</sub> | VILmin | VIHAmin | VILAmax | VEE   |  |  |  |  |
| 0°C                               | -0.840             | -1.870 | -1.145  | -1,490  | -5.2  |  |  |  |  |
| +25 <sup>0</sup> C                | -0.810             | -1.850 | -1.105  | -1.475  | -5.2  |  |  |  |  |
| +75 <sup>0</sup> C                | -0.720             | -1.830 | -1.045  | -1.450  | - 5.2 |  |  |  |  |


#### ELECTRICAL CHARACTERISTICS

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

|                                      |                   | MCM10422 Test Limits |        |        |        |        |        |      |                                                                                                     |
|--------------------------------------|-------------------|----------------------|--------|--------|--------|--------|--------|------|-----------------------------------------------------------------------------------------------------|
| 1                                    |                   | 04                   | °C     | +2!    | 5°C    | +75    | +75°C  |      |                                                                                                     |
| DC Characteristics                   | Symbol            | Min                  | Max    | Min    | Max    | Min    | Max    | Unit | Conditions                                                                                          |
| Power Supply Drain Current           | IEE               | -                    | 200    | -      | 195    | -      | 185    | mAdc | Typ I <sub>EE</sub> @ 25 <sup>o</sup> C = 160 mA<br>All outputs and inputs open.<br>Measure pin 12. |
| Input Current High                   | l <sub>in</sub> H | -                    | 220    | _      | 220    | -      | 220    | µAdc | Test one input at a time, all<br>other inputs are open.<br>$V_{in} = V_{IH}(max)$                   |
| Input Current Low<br>(Block Selects) | linL              | 0.5                  |        | 0.5    | -      | 0.3    | -      | μAdc | Test one input at a time, all other inputs are open.                                                |
| Input Current Low*                   | linL              | -50                  | -      | 50     | -      | -50    | -      | μAdc |                                                                                                     |
| Logic "1"<br>Output Voltage          | VOH               | -1.000               | -0.840 | -0.960 | -0.810 | -0.900 | -0.720 | Vdc  | Load 50 Ω to -2.0 V                                                                                 |
| Logic ''0''<br>Output Voltage        | VOL               | -1.870               | -1.665 | -1.850 | -1.650 | -1.830 | -1.625 | Vdc  |                                                                                                     |
| Logic ''1''<br>Threshold Voltage     | ∨она              | -1.020               | -      | -0.980 | -      | -0.920 | -      | Vdc  | Threshold testing is performed<br>and guaranteed on one input at                                    |
| Logic ''0''<br>Threshold Voltage     | VOLA              | -                    | -1.645 | -      | -1.630 | -      | -1.605 | Vdc  | a time. V <sub>in</sub> = VIHA or VILA.<br>Load 50 Ω to −2.0 V.                                     |

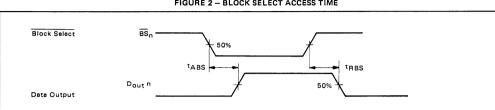
\*Minimum limit equals the maximum negative current the driving circuitry will be required to sink.

Δ



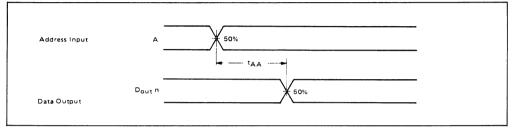
#### FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS

Guaranteed with VEE = -5.2 Vdc  $\pm$  5.0%, T<sub>A</sub> = 0°C to 75°C (see Note 1). Output Load see Figure 1.

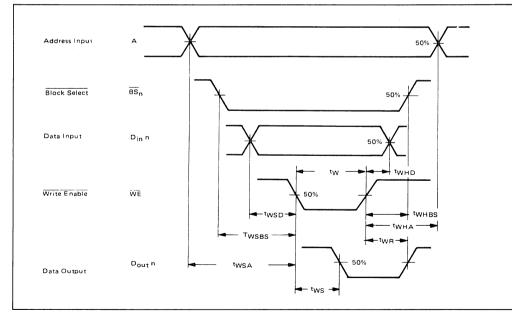

|                                             |                                 | MCM10422 | Test Limits |      | Conditions                                                  |  |
|---------------------------------------------|---------------------------------|----------|-------------|------|-------------------------------------------------------------|--|
| Characteristic                              | Symbol                          | Min      | Max         | Unit |                                                             |  |
| Read Mode                                   |                                 |          |             |      | See Figures 2 and 3.                                        |  |
| Block Select Access Time                    | <sup>t</sup> ABS                |          | 6.5         | ns   | Measured at 50% of input to 50% of output                   |  |
| Block Select Recovery Time                  | tRBS                            | -        | 6.0         | ns   | See Note 1.                                                 |  |
| Address Access Time                         | <sup>t</sup> AA                 | -        | 15.0        | ns   |                                                             |  |
| Write Mode                                  |                                 |          |             |      | See Figure 4.                                               |  |
| Write Pulse Width<br>(To guarantee writing) | tw                              | 15.0     | -           | ns   | tWSA = 2.0 ns.<br>Measured at 50% of input to 50% of output |  |
| Data Setup Time Prior to Write              | twsD                            | 1.0      | - 1         | ns   |                                                             |  |
| Data Hold Time After Write                  | twhD                            | 5.0      | - 1         | ns   | · ·                                                         |  |
| Address Setup Time Prior to Write           | tWSA                            | 2.0      | - 1         | ns   | tw = 15.0 ns                                                |  |
| Address Hold Time After Write               | twha                            | 11.0     | -           | ns   |                                                             |  |
| Block Select Setup Time Prior to Write      | tWSBS                           | 0.0      | -           | ns   |                                                             |  |
| Block Select Hold Time After Write          | tWHBS                           | 0.0      | -           | ns   |                                                             |  |
| Write Disable Time                          | tws                             | -        | 5.0         | ns   |                                                             |  |
| Write Recovery Time                         | twR                             | -        | 11.0        | ns   |                                                             |  |
| Rise and Fall Time                          |                                 |          |             |      | Measured between 20% and 80% points.                        |  |
| Output Rise and Fall Time                   | t <sub>r</sub> , t <sub>f</sub> | 1.5      | 4.0         | ns   |                                                             |  |
| Capacitance                                 |                                 |          |             |      | Measured with a pulse technique.                            |  |
| Input Lead Capacitance                      | Cin                             | -        | 8.0         | pF   |                                                             |  |
| Output Lead Capacitance                     | Cout                            | -        | 8.0         | pF   |                                                             |  |

Notes:

(1) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.


(2) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

ĥ




#### FIGURE 2 - BLOCK SELECT ACCESS TIME

#### FIGURE 3 - ADDRESS ACCESS TIME







đ

ſ



## **MCM10470**

## 4096 X 1-BIT RANDOM ACCESS MEMORY

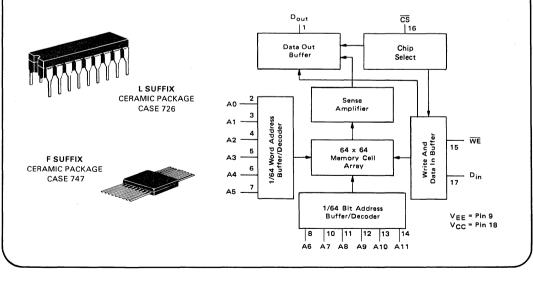
#### PIN ASSIGNMENT

|     |      |     | -           |
|-----|------|-----|-------------|
| 1   | Dout | Vcc | 18          |
| 2   | A0   | Din | L 17        |
| 3 - | A1   | CS  | 16          |
| 4   | A2   | WE  | 15          |
| 5 - | A3   | A11 | <b>⊢</b> 14 |
| 6 - | A4   | A10 | 13          |
| 7 - | A5   | Α9  | 12          |
| 8 🖂 | A6   | A8  | 11          |
| 9 🗖 | VER  | Α7  |             |

#### Pin Description

| Chip Select    |
|----------------|
| Address Inputs |
| Write Enable   |
| Data Input     |
| Data Output    |
|                |

MECL RAM


The MCM10470 is a 4096 bit Read/Write Random Access Memory organized 4096 words by 1 bit. Data is selected or stored by means of a 12-bit address (A0 through A11) decoded on the chip. The chip is designed with a separate data in line, a non-inverting data output, and an active-low chip select.

This device is designed for use in high-speed scratch pad, control, cache and buffer storage applications.

- Fully Compatible with MECL 10,000
- Pin-for-Pin Compatible with the Industry's Standard 10470
- Temperature Range of 0<sup>0</sup> to 75<sup>0</sup>C
- Emitter-Follower Output Permits Full Wire-ORing
- Power Dissipation Decreases with Increasing Temperature
- Typical Address Access of 25 ns
- Typical Chip Select Access of 10 ns

TRUTH TABLE

| MODE        |                 | OUTPUT |     |      |  |  |  |  |  |  |
|-------------|-----------------|--------|-----|------|--|--|--|--|--|--|
|             | CS              | WE     | Din | Dout |  |  |  |  |  |  |
| Write ''O'' | L               | L      | L   | L    |  |  |  |  |  |  |
| Write "1"   | L               | L      | н   | L    |  |  |  |  |  |  |
| Read        | L               | н      | φ   | ٩    |  |  |  |  |  |  |
| Disabled    | н               | φ      | φ   | L    |  |  |  |  |  |  |
|             | φ = Don't Care. |        |     |      |  |  |  |  |  |  |



### FUNCTIONAL DESCRIPTION:

ABSOLUTE MAXIMUM RATINGS

-0.720

+75°C

This device is a 4096 x 1-bit RAM. Bit selection is achieved by means of a 12-bit address, A0 to A11.

The active-low chip select is provided for memory expansion.

The operating mode of the RAM (CS input low) is controlled by the  $\overline{WE}$  input. With  $\overline{WE}$  low, the chip is in the write mode, the output,  $D_{out}$ , is low and the data state present at  $D_{in}$  is stored at the selected address. With  $\overline{WE}$  high, the chip is in the read mode and the data stored at the selected memory location will be presented non-inverted at  $D_{out}$ . (See Truth Table)

| Rating                                        | Symbol           | Value         | Unit |
|-----------------------------------------------|------------------|---------------|------|
| Power Supply Voltage (V <sub>CC</sub> = 0)    | VEE              | -7.0 to 0     | Vdc  |
| Base Input Voltage (V <sub>CC</sub> = 0)      | Vin              | 0 to VEE      | Vdc  |
| Output Source Current – Continuous<br>– Surge | 10               | < 50<br>< 100 | mAdc |
| Junction Operating Temperature                | Тј               | < 165         | °C   |
| Storage Temperature Range                     | T <sub>stg</sub> | -55 to +150   | °C   |

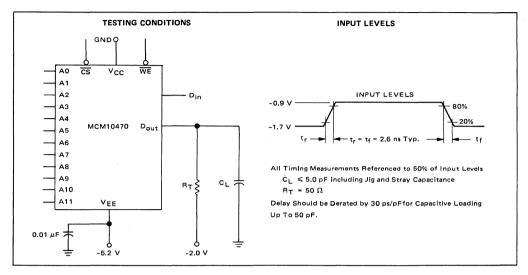
| DC TEST VOLTAGE VALUES<br>(Volts) |        |        |         |         |      |  |  |  |  |  |
|-----------------------------------|--------|--------|---------|---------|------|--|--|--|--|--|
| Test<br>Temperature               | VIHmax | VILmin | VIHAmin | VILAmax | VEE  |  |  |  |  |  |
| 0°C                               | -0.840 | -1.870 | -1.145  | -1,490  | -5.2 |  |  |  |  |  |
| +25°C                             | -0.810 | -1.850 | -1.105  | -1.475  | -5.2 |  |  |  |  |  |

-1.830

-1.045

### ELECTRICAL CHARACTERISTICS

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.


|                                  |                   |        | N      | ICM10470 | Test Limit | s      |        |      |                                                                                          |  |  |  |
|----------------------------------|-------------------|--------|--------|----------|------------|--------|--------|------|------------------------------------------------------------------------------------------|--|--|--|
|                                  |                   | 04     | ,<br>Č | +2       | 5°C        | +75    | i°C    |      |                                                                                          |  |  |  |
| DC Characteristics               | Symbol            | Min    | Max    | Min      | Max        | Min    | Max    | Unit | Conditions                                                                               |  |  |  |
| Power Supply Drain Current       | IEE               |        | 200    |          | 195        | -      | 185    | mAdc | Typ IEE @ 25 <sup>o</sup> C = 160 mA.<br>All outputs and inputs open.<br>Measure pin 9.  |  |  |  |
| Input Current High               | l <sub>in</sub> H | -      | 220    | -        | 220        | -      | 220    | µAdc | Test one input at a time, all<br>other inputs are open.<br>Vin <sup>=</sup> VIH(max).    |  |  |  |
| Input Current Low<br>Chip Select | l <sub>in</sub> L | 0.5    | -      | 0.5      | -          | 0.3    | -      | μAdc | Test one input at a time, all other inputs are open.                                     |  |  |  |
| Input Current Low*               | linL              | -50    | -      | -50      | -          | -50    | -      | μAdc | Vin = VIL(min).                                                                          |  |  |  |
| Logic "1"<br>Output Voltage      | ∨он               | -1.000 | -0.840 | -0.960   | -0.810     | -0.900 | -0.720 | Vdc  | Load 50 Ω to -2.0 V                                                                      |  |  |  |
| Logic ''0''<br>Output Voltage    | VOL               | -1.870 | -1.665 | -1.850   | -1.650     | -1.830 | -1.625 | Vdc  |                                                                                          |  |  |  |
| Logic "1"<br>Threshold Voltage   | Voha              | -1.020 | -      | -0.980   | -          | -0.920 | -      | Vdc  | Threshold testing is performed<br>and guaranteed on one input at                         |  |  |  |
| Logic ''0''<br>Threshold Voltage | VOLA              | -      | -1.645 |          | -1.630     | -      | -1.605 | Vdc  | a time. V <sub>in</sub> = V <sub>IHA</sub> or V <sub>ILA</sub> .<br>Load 50 Ω to −2.0 V. |  |  |  |

-1.450

-5.2

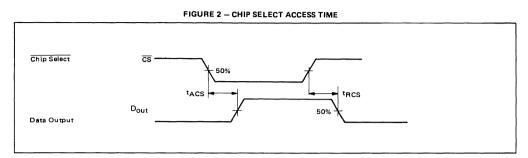
Q

MECL RAM

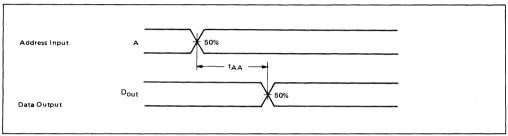


#### FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS

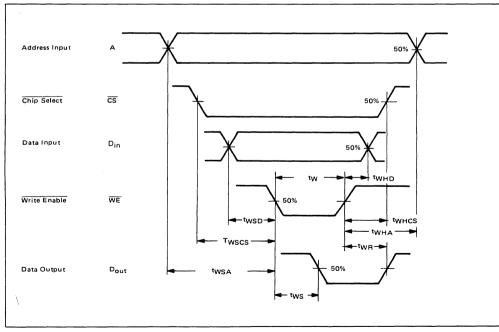
Guaranteed with VEE = -5.2 Vdc  $\pm$  5.0%, T<sub>A</sub> = 0°C to 75°C (see Note 1). Output Load see Figure 1.


|                                             |                                 | MCM10470 | ) Test Limits |      |                                                             |
|---------------------------------------------|---------------------------------|----------|---------------|------|-------------------------------------------------------------|
| Characteristic                              | Symbol                          | Min      | Max           | Unit | Conditions                                                  |
| Read Mode                                   |                                 |          |               |      | See Figures 2 and 3.                                        |
| Chip Select Access Time                     | <sup>t</sup> ACS                | -        | 15            | ns   | Measured at 50% of input to 50% of output                   |
| Chip Select Recovery Time                   | <sup>t</sup> RCS                | -        | 15            | ns   |                                                             |
| Address Access Time                         | <sup>t</sup> AA                 | -        | 35            | ns   |                                                             |
| Write Mode                                  |                                 |          |               |      | See Figure 4.                                               |
| Write Pulse Width<br>(To guarantee writing) | tW                              | 25       | -             | ns   | tWSA = 8.0 ns.<br>Measured at 50% of input to 50% of output |
| Data Setup Time Prior to Write              | twsD                            | 5.0      | -             | ns   |                                                             |
| Data Hold Time After Write                  | twhd                            | 5.0      | -             | ns   |                                                             |
| Address Setup Time Prior to Write           | tWSA                            | 10       | -             | ns   | tw = 25 ns                                                  |
| Address Hold Time After Write               | twha                            | 5.0      |               | ns   |                                                             |
| Chip Select Setup Time Prior to Write       | twscs                           | 5.0      | · · - ·       | ns   |                                                             |
| Chip Select Hold Time After Write           | tWHCS                           | 5.0      | -             | ns   |                                                             |
| Write Disable Time                          | tws                             | -        | 15            | ns   |                                                             |
| Write Recovery Time                         | twR                             | · -      | 20            | ns   |                                                             |
| Rise and Fall Time                          |                                 |          |               |      | Measured between 20% and 80% points.                        |
| Output Rise and Fall Time                   | t <sub>r</sub> , t <sub>f</sub> | -        | 4.0           | ns   |                                                             |
| Capacitance                                 |                                 | 1        | ур            |      | Measured with a pulse technique.                            |
| Input Lead Capacitance                      | Cin                             | 4        | 4.0           | ρF   |                                                             |
| Output Lead Capacitance                     | Cout                            | 1 -      | 7.0           | pF   | 1                                                           |

Notes:


(1) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

(2) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."


D

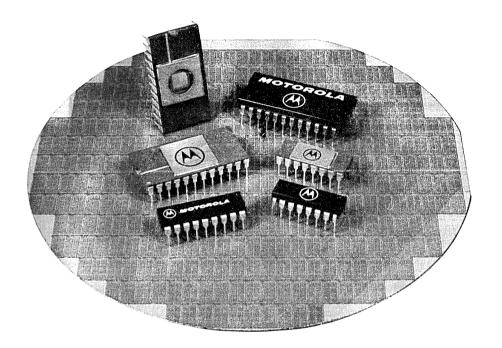


#### FIGURE 3 – ADDRESS ACCESS TIME








MECL RAM

Q

Ģ

10-27

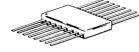
MECL RAM





## MECL PROM

MECL PROM

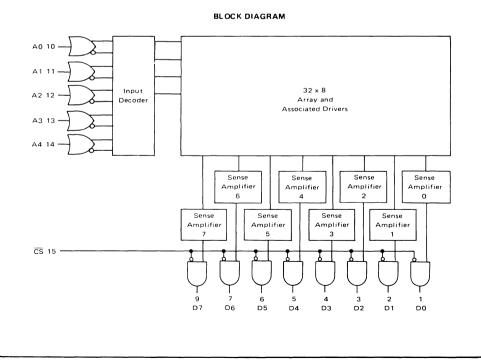



## MCM10139/MCM10539

## 32 x 8-BIT PROGRAMMABLE READ-ONLY MEMORY



L SUFFÌX CERAMIC PACKAGE CASE 620




F SUFFIX CERAMIC PACKAGE CASE 650

| 1 🖂 |     | Vcc | 16  |
|-----|-----|-----|-----|
| 2 🗖 | D1  | CS  | 15  |
| 3 🗖 | D2  | A4  | 14  |
| 4 🖂 | D3  | A3  | 13  |
| 5 🖂 | D4  | A2  | 12  |
| 6 🗔 | D5  | A1  | -11 |
| 7 🖂 | D6  | A0  | 10  |
| 8 🗆 | VEE | D7  | 9   |
|     |     |     | J   |

The MCM10139/10539 is a 256-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 0 (low) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled  $(\overline{CS} = \text{high})$ , all outputs are forced to a logic 0 (low).

- Typical Address Access Time = 15 ns
- Typical Chip Select Access Time = 10 ns
- 50 kΩ Input Pulldown Resistors on all inputs
- Power Dissipation (520 mW typ @ 25<sup>o</sup>C) Decreases with Increasing Temperature

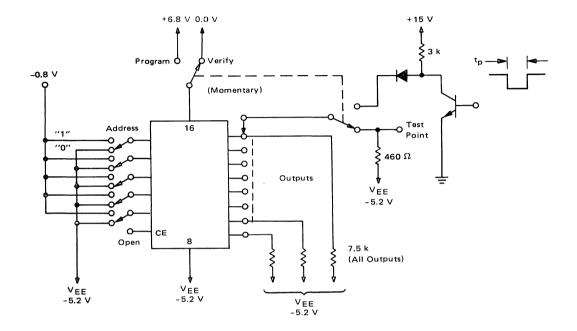




## ELECTRICAL CHARACTERISTICS

|                                                  |        | -55    | 5°C         | -0         | °C         | +25 | 5°C | + 75        | <sup>o</sup> C | + 12        | 5°C         |      |
|--------------------------------------------------|--------|--------|-------------|------------|------------|-----|-----|-------------|----------------|-------------|-------------|------|
| Characteristic                                   | Symbol | Min    | Max         | Min        | Max        | Min | Max | Min         | Max            | Min         | Max         | Unit |
| Power Supply Drain Current                       | IEE.   | -      | 160         | -          | 150        | -   | 145 | -           | 140            | -           | 160         | mAdc |
| Input Current High                               | linH   |        | 450         | -          | 265        | -   | 265 | -           | 265            | -           | 265         | μAdc |
| Logic "0" Output Voltage<br>MCM10139<br>MCM10539 | VOL    | -2.060 | _<br>-1.655 | -2.010<br> | -1.665<br> |     |     | -1.970<br>— | -1.625<br>—    | <br>- 1.960 | <br>- 1.545 | Vdc  |

## SWITCHING CHARACTERISTICS (Note 1)

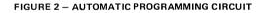

|                                                                             | MCM10139                                                |                                                                                                  | MCM10539                                                                                             |                                                         |
|-----------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Characteristic                                                              | Symbol                                                  | $(V_{EE} = -5.2 \text{ Vdc } \pm 5\%;)$<br>$T_{A'} = 0^{\circ}\text{C to } +75^{\circ}\text{C})$ | $(V_{EE} = -5.2 \text{ Vdc } \pm 5 \%;)$<br>$T_A = -55^{\circ}\text{C to } \pm 125^{\circ}\text{C})$ |                                                         |
| Chip Select Access Time<br>Chip Select Recovery Time<br>Address Access Time | <sup>t</sup> ACS<br><sup>t</sup> RCS<br><sup>t</sup> AA | 15 ns Max<br>15 ns Max<br>20 ns Max                                                              | * * *                                                                                                | Measured from 50% of input to 50% of output. See Note 2 |
| Rise and Fall Time                                                          | t <sub>r</sub> , t <sub>f</sub>                         | 3.0 ns Typ                                                                                       | *                                                                                                    | Measured between 20% and 80% points.                    |
| Input Capacitance<br>Output Capacitance                                     | C <sub>in</sub><br>C <sub>out</sub>                     | 5.0 pF Max<br>8.0 pF Max                                                                         | *                                                                                                    | Measured with a pulse technique.                        |

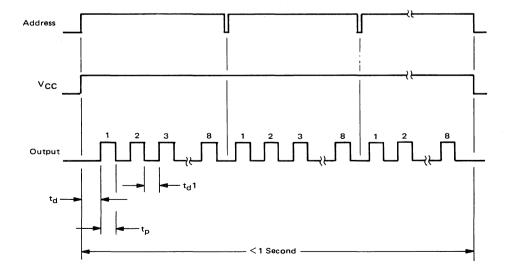
NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10139; 100  $\Omega$ , MCM10539.  $C_L \leq 5.0 pF$  including jig and stray capacitance. For Capacitance Loading  $\leq 50 pF$ , delay should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

\*To be determined; contact your Motorola representative for up-to-date information.





I

1

**NECL PROM** 

### FIGURE 1 - MANUAL PROGRAMMING CIRCUIT





#### **RECOMMENDED PROGRAMMING PROCEDURE\***

The MCM10139 is shipped with all bits at logical "0" (low). To write logical "1s", proceed as follows.

#### MANUAL (See Figure 1)

 Step 1
 Connect V<sub>EE</sub> (Pin 8) to -5.2 V and V<sub>CC</sub> (Pin 16) to 0.0 V. Address the word to be programmed by applying -1.2 to -0.6 volts for 8 logic "1" and -5.2 to -4.2 volts for a logic "0" to the appropriate address inputs.

Step 2 Raise V<sub>CC</sub> (Pin 16) to +6.8 volts.

Step 3 After V<sub>CC</sub> has stabilized at +6.8 volts (including any ringing which may be present on the V<sub>CC</sub> line), apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic "1".

Step 4 Return V<sub>CC</sub> to 0.0 Volts.

#### CAUTION

To prevent excessive chip temperature rise,  $V_{CC}$  should not be allowed to remain at +6.8 volts for more than 1 second.

Step 6 If verification is positive, proceed to the next bit to be programmed,

#### AUTOMATIC (See Figure 2)

Step 1 Connect V<sub>EE</sub> (Pin 8) to -5.2 volts and V<sub>CC</sub> (Pin 16) to 0.0 volts. Apply the proper address data and raise V<sub>CC</sub> (Pin 16) to +6.8 volts.

Step 2After a minimum delay of 100  $\mu$ s and a maximum delay<br/>of 1.0 ms, apply a 2.5 mA current pulse to the first bit to<br/>be programmed (0.1  $\leq$  PW  $\leq$  1 ms).

Step 3 Repeat Step 2 for each bit of the selected word specified as a logic "1". (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms.)

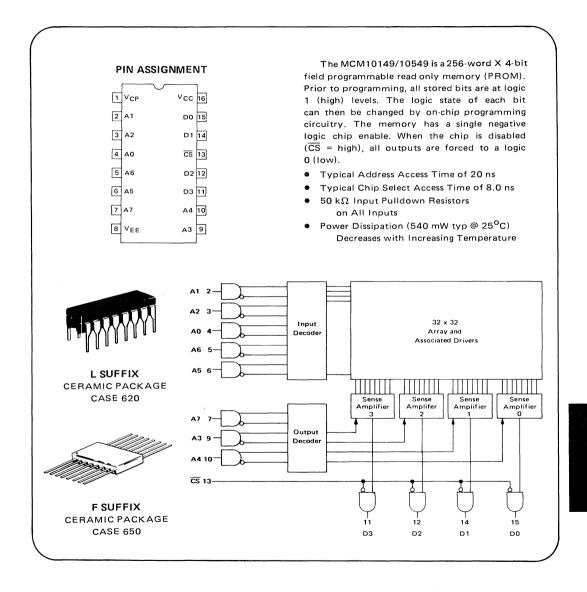
 Step 4
 After all the desired bits of the selected word have been programmed, change address data and repeat

 Steps 2 and 3.
 Steps 2 and 3.

NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for  $V_{CC}$  to remain at +6.8 volts during the entire programming time.

\*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

|                                                    |                  |       | Limits |        |       |                            |
|----------------------------------------------------|------------------|-------|--------|--------|-------|----------------------------|
| Characteristic                                     | Symbol           | Min   | Тур    | Max    | Units | Conditions                 |
| Power Supply Voltage                               | VEE              | -5.46 | -5.2   | -4.94  | Vdc   |                            |
| To Program                                         | VCCP             | +6.04 | +6.8   | + 7.56 | Vdc   |                            |
| To Verify                                          | Vccv             | 0     | 0      | 0      | Vdc   |                            |
| Programming Supply Current                         | ICCP             | -     | 200    | 600    | mA    | V <sub>CC</sub> = +6.8 Vdc |
| Address Voltage                                    | VIH Program      | - 1.2 | -      | -0.6   | Vdc   |                            |
| Logical "1"                                        | VIH Verify       | - 1.0 |        | -0.6   | Vdc   |                            |
| Logical "O"                                        | VIL              | -5.2  | -      | -4.2   | Vdc   |                            |
| Maximum Time at V <sub>CC</sub> = V <sub>CCP</sub> | -                | -     | -      | 1.0    | sec   |                            |
| Output Programming Current                         | ГОР              | 2.0   | 2.5    | 3.0    | mAdc  |                            |
| Output Program Pulse Width                         | tp               | 0.5   | -      | 1.0    | ms    |                            |
| Output Pulse Rise Time                             | -                | -     | -      | 10     | μs    |                            |
| Programming Pulse Delay (1)                        |                  |       |        |        |       |                            |
| Following V <sub>CC</sub> change                   | td               | 0.1   | -      | 1.0    | ms    |                            |
| Between Output Pulses                              | t <sub>d</sub> 1 | 0.01  | -      | 1.0    | ms    |                            |


#### **PROGRAMMING SPECIFICATIONS**

NOTE 1. Maximum is specified to minimize the amount of time V<sub>CC</sub> is at +6.8 volts.



# MCM10149/MCM10549

## 256 X 4-BIT PROGRAMMABLE READ-ONLY MEMORY



## MCM10149/MCM10549

### **ELECTRICAL CHARACTERISTICS**

|                            |        | -5  | –55 <sup>0</sup> C |     | °c  | +2  | 5°C | +75 <sup>0</sup> C |     | +125 <sup>0</sup> C |     |      |
|----------------------------|--------|-----|--------------------|-----|-----|-----|-----|--------------------|-----|---------------------|-----|------|
| Characteristic             | Symbol | Min | Max                | Min | Max | Min | Max | Min                | Max | Min                 | Max | Unit |
| Power Supply Drain Current | IEE    | -   | 140                | -   | 135 | -   | 130 | -                  | 125 |                     | 125 | mAdc |
| Input Current High         | linH   | -   | 450                | -   | 265 |     | 265 | 1                  | 265 | -                   | 265 | μAdc |

-55°C and +125°C test values apply to MC105xx devices only.

#### SWITCHING CHARACTERISTICS (Note 1)

|                           |                                 | MCM | 10149                                | MCM | 10549                                |      |                                      |
|---------------------------|---------------------------------|-----|--------------------------------------|-----|--------------------------------------|------|--------------------------------------|
|                           |                                 |     | to +75 <sup>0</sup> C,<br>.2 Vdc ±5% |     | to +125 <sup>0</sup> C,<br>2 Vdc ±5% |      |                                      |
| Characteristics           | Symbol                          | Min | Max                                  | Min | Max                                  | Unit | Conditions                           |
| Read Mode                 |                                 |     |                                      |     |                                      | ns   | Measured from 50% of                 |
| Chip Select Access Time   | <sup>t</sup> ACS                | 2.0 | 10                                   | *   | •                                    |      | input to 50% of output.              |
| Chip Select Recovery Time | TRCS                            | 2.0 | 10                                   | •   | *                                    | 1.1  | See Note 1.                          |
| Address Access Time       | t <sub>AA</sub>                 | 7.0 | 25                                   | •   | •                                    |      |                                      |
| Rise and Fall Time        | t <sub>r</sub> , t <sub>f</sub> | 1.5 | 7.0                                  | *   | *                                    | ns   | Measured between 20% and 80% points. |
| Capacitance               |                                 |     | -                                    |     |                                      | pF   | Measured with a pulse                |
| Input Capacitance         | Cin                             | -   | 5.0                                  | -   | 5.0                                  |      | technique.                           |
| Output Capacitance        | Cout                            | -   | 8.0                                  | -   | 8.0                                  |      |                                      |

NOTES: 1. Test circuit characteristics:  $R_T = 50 \Omega$ , MCM10149; 100  $\Omega$ , MCM10549.

 $C_L \leqslant 5.0~\text{pF}$  (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.

3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

4.  $V_{CP} = V_{CC} = Gnd$  for normal operation.

\*To be determined; contact your Motorola representative for up-to-date information.

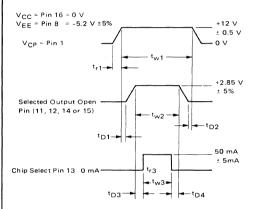
### PROGRAMMING THE MCM10149

During programming of the MCM10149, input pins 7, 9, and 10 are addressed with standard MECL 10K logic levels. However, during programming input pins 2, 3, 4, 5, and 6 are addressed with 0 V  $\leq$  V<sub>IH</sub>  $\leq$  + 0.25 V and V<sub>EE</sub>  $\leq$  V<sub>IL</sub>  $\leq$ -3.0 V. It should be stressed that this deviation from standard input levels is required <u>only</u> during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

With these requirements met, and with  $V_{CP}$  =  $V_{CC} = 0$  V and  $V_{EE} = -5.2$  V  $\pm$  5%, the address is set up. After a minimum of 100 ns delay, V $_{
m CP}$ (pin 1) is ramped up to +12 V ± 0.5 V (total voltage VCP to VEE is now 17.2 V, +12 V -[-5.2 V]). The rise time of this  $V_{CP}$  voltage pulse should be in the 1-10  $\mu$ s range, while its pulse width  $(t_{w,1})$  should be greater than 100  $\mu$ s but less than 1 ms. The VCP supply current at +12 V will be approximately 525 mA while current drain from V<sub>CC</sub> will be approximately 175 mA. A current limit should therefore be set on both of these supplies. The current limit on the VCP supply should be set at 700 mA while the VCC supply should be limited to 250 mA. It should be noted that the VFF supply must be capable of sinking the combined current of the  $V_{\mbox{CC}}$  and V<sub>CP</sub> supplies while maintaining a voltage of -5.2 V ± 5%.

MECL PROM

Coincident with, or at some delay after the V<sub>CP</sub> pulse has reached its 100% level, the desired bit to be fused can be selected. This is done by taking the corresonding output pin to a voltage of  $\pm 2.85 \text{ V} \pm 5\%$ . It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor (100 ohm for MCM10549) to -2.0 V. Current into the selected output is 5 mA maximum.


After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13. The 0% to 100% rise time of this current pulse should be 250 ns max. Its pulse width should be greater than 100  $\mu$ s. Pulse magnitude is 50 mA ± 5.0 mA. The voltage clamp on this current source is to be -6.0 V.

After the fusing current source has returned 0 mA, the bit select pulse is returned to it initial level, i.e., the output is returned through its load to -2.0 V. Thereafter, V<sub>CP</sub> is returned to 0 V. Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V<sub>CP</sub> has returned to 0 V. The remaining bits are programmed in a similar fashion.

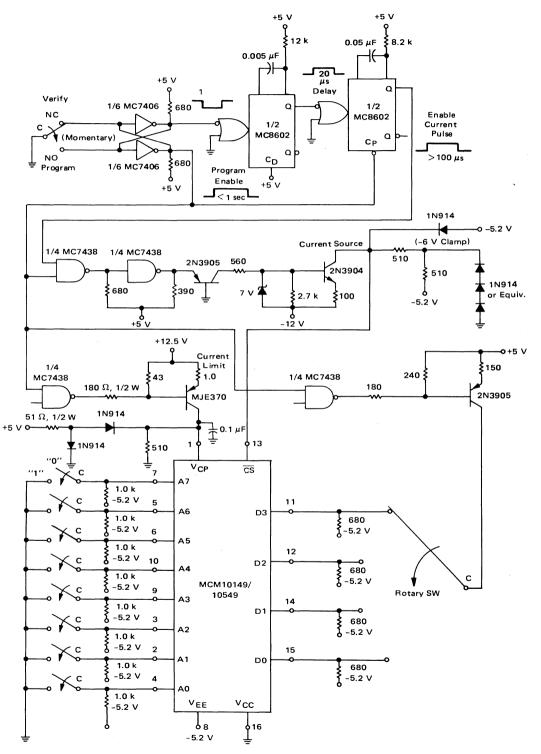
<sup>&</sup>lt;sup>+</sup> NOTE: For devices that program incorrectly, return serialized units with individual truth tables. Non compliance voids warranty.

#### **PROGRAMMING SPECIFICATIONS**

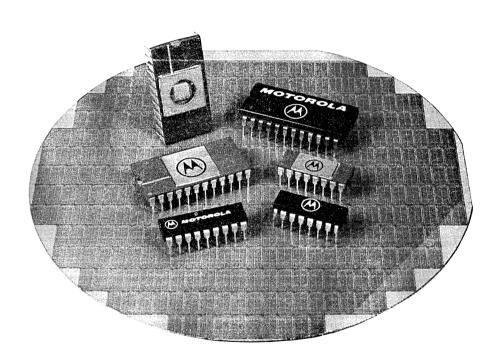
The following timing diagrams and fusing information represent programming specifications for the MCM10149.



The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the V<sub>CP</sub> pulse, i.e., V<sub>CP</sub> = 0 V. Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after V<sub>CP</sub> returns to 0 V.

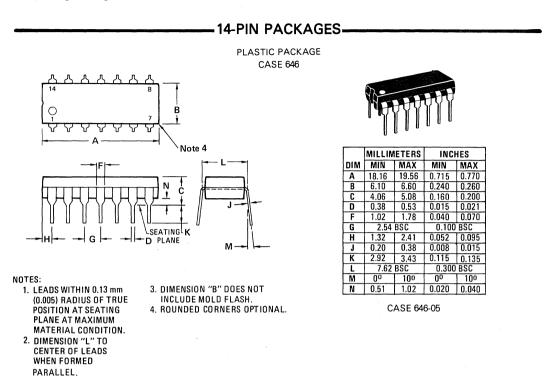

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of  $\leq$  15% is to be observed.

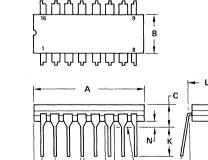
Definitions and values of timing symbols are as follows.


| Symbol          | Definition                                                         | Value           |
|-----------------|--------------------------------------------------------------------|-----------------|
| <sup>t</sup> r1 | Rise Time,<br>Programming Voltage                                  | ≥ 1 μs          |
| <sup>t</sup> w1 | Pulse Width,<br>Programming Voltage                                | ≥ 100 µs < 1 ms |
| <sup>t</sup> D1 | Delay Time,<br>Programming Voltage<br>Pulse to Bit<br>Select Pulse | ≥ 0             |
| <sup>t</sup> w2 | Pulse Width, Bit Select                                            | ≥ 100 μs        |
| <sup>t</sup> D2 | Delay Time, Bit Select<br>Pulse to Programming<br>Voltage Pulse    | ≥ 0             |
| <sup>t</sup> D3 | Delay Time, Bit Select<br>Pulse to Programming<br>Current Pulse    | ≥ 1 μs          |
| <sup>t</sup> r3 | Rise Time, Programming<br>Current Pulse                            | 250 ns max      |
| t <sub>w3</sub> | Pulse Width,<br>Programming<br>Current Pulse                       | ≥ 100 μs        |
| <sup>t</sup> D4 | Delay Time,<br>Programming Current<br>Pulse to Bit<br>Select Pulse | ≥ 1 μs          |



#### MANUAL PROGRAMMING CIRCUIT





MECL PROM



Mechanical Data

The packaging availability for each device is indicated on the individual data sheets. Dimensions for the packages are given in this section.





-D

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. PACKAGE INDEX: NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT.
- 3. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

G

Mechanica

 PLANE
 4. DIM "A" AND "B" DO NOT INCLUDE GLASS RUN-OUT.

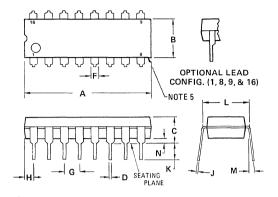
/M

SEATING

5. DIM "F" MAY NARROW TO 0.76 mm (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

|--|--|

|     | MILLIM   | ETERS           | INCHES    |                 |
|-----|----------|-----------------|-----------|-----------------|
| DIM | MIN      | MAX             | MIN       | MAX             |
| Α   | 19.05    | 19.94           | 0.750     | 0.785           |
| В   | 6.10     | 7.49            | 0.240     | 0.295           |
| C   | -        | 5.08            | _         | 0.200           |
| D   | 0.38     | 0.53            | 0.015     | 0.021           |
| F   | 1.40     | 1.78            | 0.055     | 0.070           |
| G   | 2.54     | BSC             | 0.100 BSC |                 |
| Н   | 0.51     | 1.14            | 0.020     | 0.045           |
| J   | 0.20     | 0.30            | 0.008     | 0.012           |
| K   | 3.18     | 4.32            | 0.125     | 0.170           |
| L   | 7.62 BSC |                 | 0.300 BSC |                 |
| M   | -        | 15 <sup>0</sup> | -         | 15 <sup>0</sup> |
| N   | 0.51     | 1.02            | 0.020     | 0.040           |


CASE 620-08

-16-PIN PACKAGES

FRIT-SEAL CERAMIC PACKAGE CASE 620

## -16-PIN PACKAGES (Continued)-

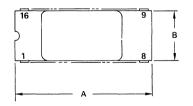
PLASTIC PACKAGE CASE 648

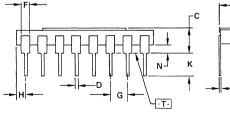


#### NOTES:

1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED

PARALLEL.


- DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
   "F" DIMENSION IS FOR FULL
- LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1, 8, 9, and 16).
- 5. ROUNDED CORNERS OPTIONAL.




|     | MILLIN   | ETERS | INC       | HES   |
|-----|----------|-------|-----------|-------|
| DIM | MIN      | MAX   | MIN       | MAX   |
| Α   | 18.80    | 21.34 | 0.740     | 0.840 |
| В   | 6.10     | 6.60  | 0.240     | 0.260 |
| C   | 4.06     | 5.08  | 0.160     | 0.200 |
| D   | 0.38     | 0.53  | 0.015     | 0.021 |
| F   | 1.02     | 1.78  | 0.040     | 0.070 |
| G   | 2.54     | BSC   | 0.100 BSC |       |
| Н   | 0.38     | 2.41  | 0.015     | 0.095 |
| J   | 0.20     | 0.38  | 0.008     | 0.015 |
| K   | · 2.92   | 3.43  | 0.115     | 0.135 |
| L   | 7.62 BSC |       | 0.300 BSC |       |
| M   | 00       | 100   | 00        | 100   |
| N   | 0.51     | 1.02  | 0.020     | 0.040 |

CASE 648-05





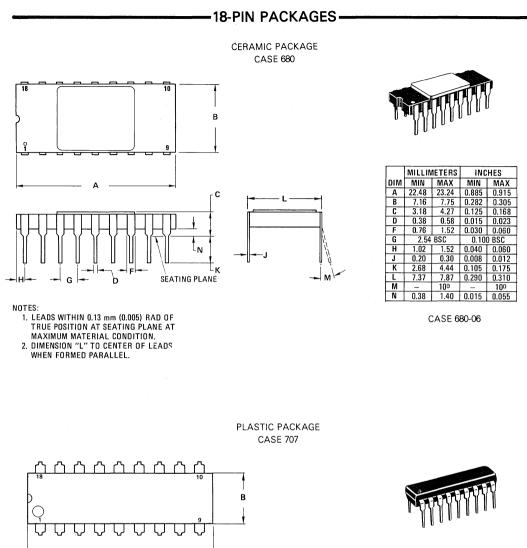


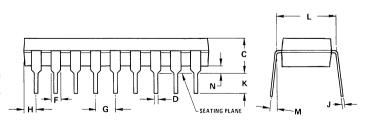


NOTES:

- 1. A. AND B. ARE DATUMS.
- 2. -T- IS SEATING PLANE
- 3. POSITIONAL TOLERANCE FOR LEADS (D).
- 4. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.
- 6. 690-11 AND 690-12 OBSOLETE. NEW STANDARD 690-13.




|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 20.07       | 20.57 | 0.790     | 0.810 |
| В   | 7.11        | 7.62  | 0.280     | 0.300 |
| C   | 2.67        | 4.19  | 0.105     | 0.165 |
| D   | 0.38        | 0.53  | 0.015     | 0.021 |
| F   | 0.76        | 1.52  | 0.030     | 0.060 |
| G   | 2.54 BSC    |       | 0.100 BSC |       |
| Н   | 0.76        | 1.78  | 0.030     | 0.070 |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |
| К   | 3.18        | 5.08  | 0.125     | 0.200 |
| L   | 7.62 BSC    |       | 0.300 BSC |       |
| M   |             | 100   | -         | 100   |
| N   | 0.38        | 1.52  | 0.015     | 0.060 |


#### CASE 690-13

|  | 4. | 3 |
|--|----|---|
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |
|  |    |   |

4

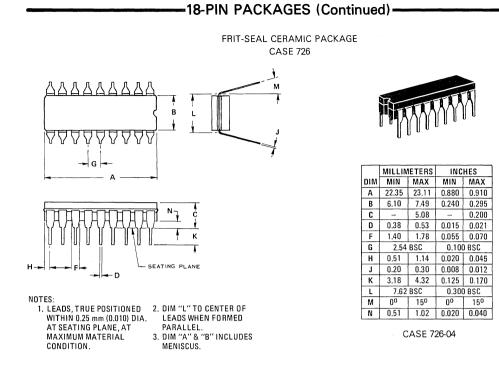
## **MECHANICAL DATA (Continued)**



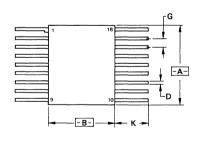


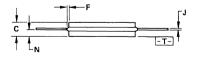
#### MILLIMETERS INCHES DIM MIN MAX MIN MAX 22.22 23.24 0.875 0.915 6.10 6.60 0.240 0.260 Α В 4.57 0.140 0.180 0.56 0.014 0.022 3.56 C D 0.36 1.27 1.78 0.050 0.070 F 2.54 BSC 0.100 BSC G 1.52 0.040 0.060 1.02 н 0.20 0.30 0.008 0.012 3.43 0.115 0.135 .1 2.92 к 7.62 BSC 0º 150 0.300 BSC 00 150 L М 150 150 1.02 0.020 0.040 0.51 Ň

CASE 707-02


### NOTES:

echanical


M


- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
   DIMENSION B DOES NOT INCLUDE
  - 12-4

MOLD FLASH.



CERAMIC PACKAGE CASE 747





NOTES:

- 1. -A-, -B-, AND -T- ARE DATUMS.
- T. IS SEATING PLANE.
   LEADS POSITIONAL TOLERA
- 3. LEADS POSITIONAL TOLERANCE.  $\bigoplus$  0.13 (0.005)  $\bigotimes$  T A  $\bigotimes$  B  $\bigotimes$
- 4. DIMENSIONING AND TOLERANCING
  - PER ANSI Y14.5, 1973.

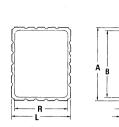


|     | MILLIN | ETERS | INC       | HES   |
|-----|--------|-------|-----------|-------|
| DIM | MIN    | MAX   | MIN       | MAX   |
| Α   | -      | 11.43 | _         | 0.450 |
| В   | 9.14   | 9.91  | 0.360     | 0.390 |
| C   | 1.52   | 2.03  | 0.060     | 0.080 |
| D   | 0.41   | 0.46  | 0.016     | 0.018 |
| F   | -      | 0.25  | _         | 0.010 |
| G   | 1.27   | BSC   | 0.050 BSC |       |
| J   | 0.10   | 0.15  | 0.004     | 0.006 |
| K   | -      | 7.75  | -         | 0.305 |
| N   | -      | 0.89  | -         | 0.035 |

CASE 747-01

9

d


Ą

t

- T -



CERAMIC CHIP CARRIER PACKAGE CASE 752







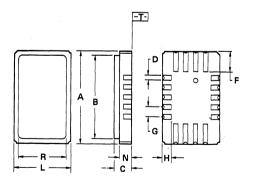
|     | MILLI | METERS | INCHES    |        |  |
|-----|-------|--------|-----------|--------|--|
| DIM | MIN   | MAX    | MIN       | MAX    |  |
| Α   | 8.64  | 9.27   | 0.340     | 0.365  |  |
| В   | 7.62  | 8.89   | 0.300     | 0.350  |  |
| C   | 1.27  | 2.03   | 0.050     | 0.080  |  |
| D   | 0.25  | 0.89   | 0.010     | 0.035  |  |
| F   | 2.41  | 2.67   | 0.095     | 0.105  |  |
| G   | 1.27  | BSC    | 0.050 BSC |        |  |
| Н   | 1.02  | 1.52   | 0.040     | 0.060  |  |
| L   | 6.98  | 7.62   | 0.275     | 0.0300 |  |
| N   | 1.27  | 1.78   | 0.050     | 0.070  |  |
| R   | 6.48  | 7.11   | 0.255     | 0.280  |  |

CASE 752-02

p

k

NOTES:


3. POSITIONAL TOLERANCE FOR TERMINALS (D): 18 PLACES 0.25 (0.010) M T A S L S

2. T- IS GAUGE PLANE.

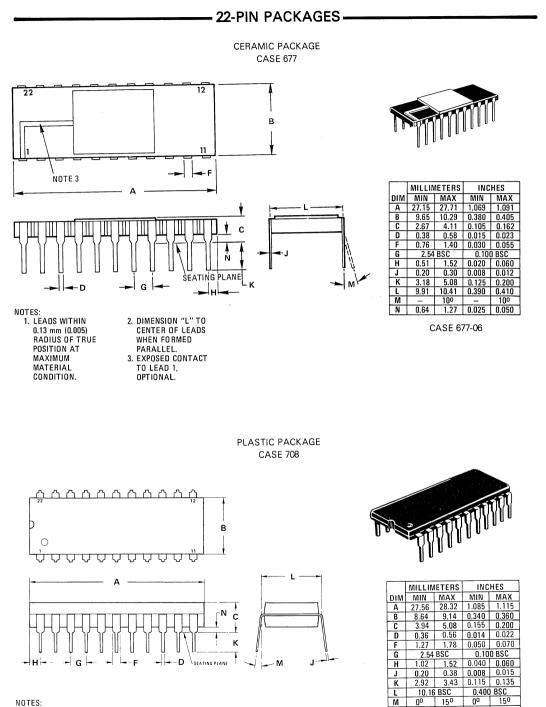
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

1. DIMENSIONS A AND L ARE DATUMS.

CERAMIC CHIP CARRIER PACKAGE CASE 752A






Mechanical

- 1. DIMENSIONS A AND L ARE DATUMS.
- 2. T. IS GUAGE PLANE.
- 3. POSITIONAL TOLERANCE FOR TERMINALS (D): 18 PLACES [ **⊕** [0.25 (0.010) ⊚] T A ⑤ L ⑤ 4. DIMENSIONING AND TOLERANCING
- PER ANSI Y14.5, 1973.



|     | MILLIN | <b>METERS</b> | INCHES    |       |  |
|-----|--------|---------------|-----------|-------|--|
| DIM | MIN    | MAX           | MIN       | MAX   |  |
| Α   | 11.81  | 12.45         | 0.465     | 0.490 |  |
| В   | 11.18  | 11.68         | 0.440     | 0.460 |  |
| C   | 1.27   | 2.03          | 0.050     | 0.080 |  |
| D   | 0.25   | 0.89          | 0.010     | 0.035 |  |
| F   | 2.41   | 3.05          | 0.095     | 0.120 |  |
| G   | 1.27   | BSC           | 0.050 BSC |       |  |
| Н   | 0.89   | 1.52          | 0.035     | 0.060 |  |
| L   | 7.11   | 7.75          | 0.280     | 0.305 |  |
| N   | 1.27   | 1.78          | 0.050     | 0.070 |  |
| R   | 6.35   | 6.86          | 0.250     | 0.270 |  |

#### CASE 752A-01

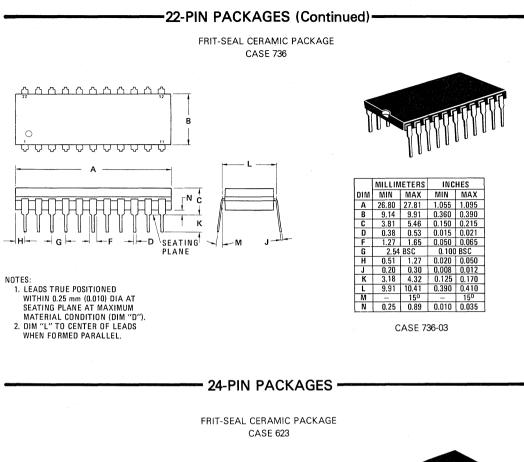


NOTES:

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE
  - MOLD FLASH.

Mechanical

1.02 0.020 0.040


CASE 708-04

N

0.51

þ

## **MECHANICAL DATA (Continued)**

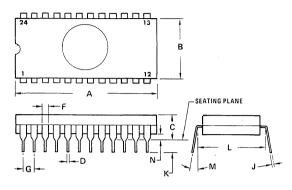




NOTES:

Mechanica

- 1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).




|     | MILLIMETERS |                 | INCHES    |       |
|-----|-------------|-----------------|-----------|-------|
| DIM | MIN         | MAX             | MIN       | MAX   |
| Α   | 31.24       | 32.77           | 1.230     | 1.290 |
| В   | 12.70       | 15.49           | 0.500     | 0.610 |
| C   | 4.06        | 5.59            | 0.160     | 0.220 |
| D   | 0.41        | 0.51            | 0.016     | 0.020 |
| F   | 1.27        | 1.52            | 0.050     | 0.060 |
| G   | 2.54        | BSC             | 0.100 BSC |       |
| J   | 0.20        | 0.30            | 0.008     | 0.012 |
| К   | 3.18        | 4.06            | 0.125     | 0.160 |
| L   | 15.24       | BSC             | 0.600     | ) BSC |
| М   | 00          | 15 <sup>0</sup> | 00        | 150   |
| N   | 0.51        | 1.27            | 0.020     | 0.050 |

CASE 623-05

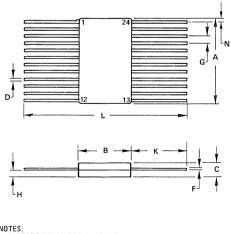
## ·24-PIN PACKAGES (Continued) ·

FRIT-SEAL CERAMIC PACKAGE CASE 623A



NOTES:

1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE

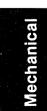

AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED

PARALLEL).

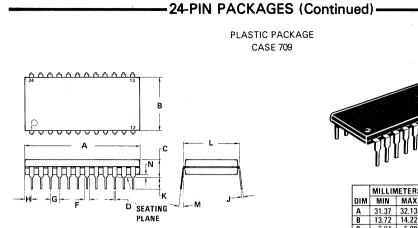
|     | MILLIM    | ETERS           | INCHES    |                 |
|-----|-----------|-----------------|-----------|-----------------|
| DIM | MIN       | MAX             | MIN       | MAX             |
| Α   | 31.24     | 32.77           | 1.230     | 1.290           |
| B   | 12.70     | 15.49           | 0.500     | 0.610           |
| C   | 4.06      | 5.84            | 0.160     | 0.230           |
| D   | 0.41      | 0.51            | 0.016     | 0.020           |
| F   | 1.27      | 1.52            | 0.050     | 0.060           |
| G   | 2.54      | BSC             | 0.100 BSC |                 |
| J   | 0.20      | 0.30            | 0.008     | 0.012           |
| K   | 3.18      | 4.06            | 0.125     | 0.160           |
| L   | 15.24 BSC |                 | 0.60      | ) BSC           |
| M   | 00        | 15 <sup>0</sup> | 00        | 15 <sup>0</sup> |
| N   | 0.51      | 1.27            | 0.020     | 0.050           |

CASE 623A-03

CERAMIC PACKAGE CASE 652




NOTES: 1. LEADS WITHIN 0.25 mm (0.010) TOTAL OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION.




|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 14.99       | 15.49 | 0.590     | 0.610 |
| В   | 9.27        | 9.91  | 0.365     | 0.390 |
| C   | 1.27        | 2.03  | 0.050     | 0.080 |
| D   | 0.38        | 0.48  | 0.015     | 0.019 |
| F   | 0.08        | 0.15  | 0.003     | 0.006 |
| G   | 1.27 BSC    |       | 0.050 BSC |       |
| Н   | 0.69        | 1.02  | 0.027     | 0.040 |
| К   | 6.35        | 9.40  | 0.250     | 0.370 |
| L   | 21.97       | -     | 0.865     | -     |
| N   | 0.25        | 0.63  | 0.010     | 0.025 |

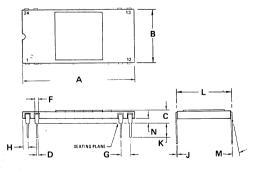
CASE 652-02



## **MECHANICAL DATA (Continued)**

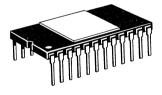


#### NOTES:


- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.



|     | MILLIMETERS |       | INCHES    |                 |
|-----|-------------|-------|-----------|-----------------|
| DIM | MIN         | MAX   | MIN       | MAX             |
| Α   | 31.37       | 32.13 | 1.235     | 1.265           |
| B   | 13.72       | 14.22 | 0.540     | 0.560           |
| C   | 3.94        | 5.08  | 0.155     | 0.200           |
| D   | 0.36        | 0.56  | 0.014     | 0.022           |
| F   | 1.02        | 1.52  | 0.040     | 0.060           |
| G   | 2.54 BSC    |       | 0.100 BSC |                 |
| Н   | 1.78        | 2.03  | 0.070     | 0.080           |
| J   | 0.20        | 0.38  | 0.008     | 0.015           |
| К   | 2.92        | 3.43  | 0.115     | 0.135           |
| L   | 15.24 BSC   |       | 0.600 BSC |                 |
| М   | 00          | 150   | 00        | 15 <sup>0</sup> |
| N   | 0.51        | 1.02  | 0.020     | 0.040           |

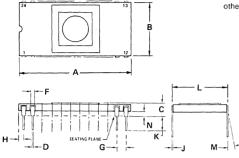

CASE 709-02

CERAMIC PACKAGE **CASE 716** See Case 716-07 for EPROM package.



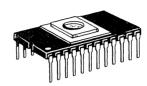
Mechanical

- NOTE: 1. LEADS TRUE POSITIONED WITHIN
  - 0.25mm (0.010) DIA (AT SEATING PLANE) AT MAXIMUM MATERIAL CONDITION.
  - 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.




|     | MILLIMETERS |                 | INCHES    |       |
|-----|-------------|-----------------|-----------|-------|
| DIM | MIN         | MAX             | MIN       | MAX   |
| Α   | 27.64       | 30.99           | 1.088     | 1.220 |
| В   | 14.73       | 15.34           | 0.580     | 0.604 |
| С   | 2.67        | 4.32            | 0.105     | 0.170 |
| D   | 0.38        | 0.53            | 0.015     | 0.021 |
| F   | 0.76        | 1.40            | 0.030     | 0.055 |
| G   | 2.54 BSC    |                 | 0.100 BSC |       |
| Н   | 0.76        | 1.78            | 0.030     | 0.070 |
| J   | 0.20        | 0.30            | 0.008     | 0.012 |
| ĸ   | 2.54        | 4.57            | 0.100     | 0.180 |
| L   | 14.99       | 15.49           | 0.590     | 0.610 |
| Μ   | -           | 10 <sup>0</sup> | -         | 100   |
| N   | 1.02        | 1.52            | 0.040     | 0.060 |

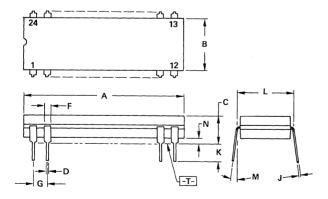
CASE 716-06


## - 24-PIN PACKAGES (Continued)

CERAMIC PACKAGE CASE 716 EPROM package only – See Case 716-06 for other packages.



#### NOTE:


- 1. LEADS TRUE POSITIONED WITHIN 0.25mm (0.010) DIA (AT SEATING PLANE) AT MAXIMUM MATERIAL CONDITION.
- 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.



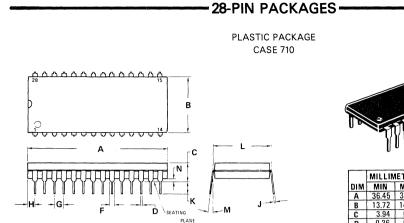
|     | MILLIMETERS |       | INCHES    |       |  |
|-----|-------------|-------|-----------|-------|--|
| DIM | MIN         | MAX   | MIN       | MAX   |  |
| A   | 27.64       | 30.99 | 1.088     | 1.220 |  |
| В   | 14.94       | 15.34 | 0.588     | 0.604 |  |
| C   | 3.18        | 5.08  | 0.125     | 0.200 |  |
| D   | 0.38        | 0.53  | 0.015     | 0.021 |  |
| F   | 0.76        | 1.40  | 0.030     | 0.055 |  |
| G   | 2.54 BSC    |       | 0.100 BSC |       |  |
| Н   | 0.76        | 1.78  | 0.030     | 0.070 |  |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |  |
| К   | 2.54        | 4.19  | 0.100     | 0.165 |  |
| L   | 14.99       | 15.49 | 0.590     | 0.610 |  |
| M   | -           | 100   | -         | 100   |  |
| N   | 1.02        | 1.52  | 0.040     | 0.060 |  |

CASE 716-07

PLASTIC PACKAGE CASE 748



#### NOTES:


- 1. DIMENSIONS -A- AND -B- ARE DATUM.
- 2. POSITIONAL TOLERANCES FOR LEADS:
- Ф Ø 0.25 (0.010) @ Т А @ В @
- 3.  $\overline{\cdot T \cdot}$  IS SEATING PLANE.
- 4. DIMENSIONS A AND B INCLUDE MENISCUS.
- 5. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 6. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.



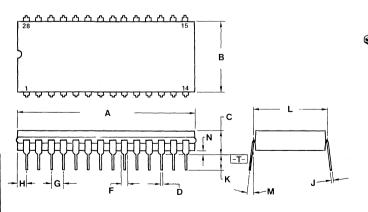
|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Α   | 29.21       | 31.75 | 1.150     | 1.250 |
| В   | 9.40        | 10.16 | 0.370     | 0.400 |
| С   | -           | 5.72  | -         | 0.225 |
| D   | 0.38        | 0.56  | 0.015     | 0.022 |
| F   | 1.27        | 1.65  | 0.050     | 0.065 |
| G   | 2.54 BSC    |       | 0.100 BSC |       |
| J   | 0.20        | 0.30  | 0.008     | 0.012 |
| ĸ   | 2.54        | 4.32  | 0.100     | 0.170 |
| L   | 10.16 BSC   |       | 0.400 BSC |       |
| M   | 0o          | 150   | 00        | 150   |
| N   | 0.51        | 1.27  | 0.020     | 0.050 |

#### CASE 748-01





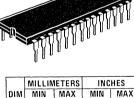
NOTES:


- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.



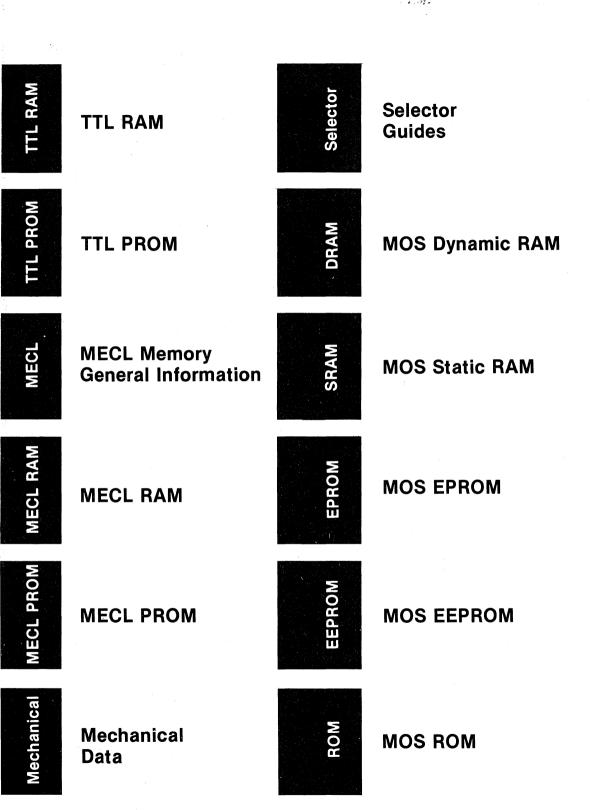
|     | MILLIMETERS |       | INCHES    |       |
|-----|-------------|-------|-----------|-------|
| DIM | MIN         | MAX   | MIN       | MAX   |
| Ā   | 36.45       | 37.21 | 1.435     | 1.465 |
| B   | 13.72       | 14.22 | 0.540     | 0.560 |
| C   | 3.94        | 5.08  | 0.155     | 0.200 |
| D   | 0.36        | 0.56  | 0.014     | 0.022 |
| F   | 1.02        | 1.52  | 0.040     | 0.060 |
| G   | 2.54 BSC    |       | 0.100 BSC |       |
| H   | 1.65        | 2.16  | 0.065     | 0.085 |
| J   | 0.20        | 0.38  | 0.008     | 0.015 |
| K   | 2.92        | 3.43  | 0.115     | 0.135 |
| L   | 15.24       | BSC   | 0.600     | BSC   |
| M   | 00          | 150   | 00        | 150   |
| N   | 0.51        | 1.02  | 0.020     | 0.040 |

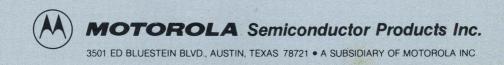
CASE 710-02


FRIT-SEAL CERAMIC PACKAGE CASE 733



NOTES:


Mechanica


- 1. DIM A. IS DATUM. 2. POSITIONAL TOL FOR LEADS:
- \varTheta 🖉 0.25 (0.010) 🖂 T A 🖂
- 3. T. IS SEATING PLANE. 4. DIM A AND B INCLUDES MENISCUS.
- 5. DIM ·L· TO CENTER OF LEADS WHEN FORMED PARALLEL. 6. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.



|     | MILLIMETERS |                 | INCHES    |                 |
|-----|-------------|-----------------|-----------|-----------------|
| DIM | MIN         | MAX             | MIN       | MAX             |
| Α   | 36.45       | 37.85           | 1.435     | 1.490           |
| В   | 12.70       | 15.37           | 0.500     | 0.605           |
| C   | 4.06        | 5.84            | 0.160     | 0.230           |
| D   | 0.38        | 0.56            | 0.015     | 0.022           |
| F   | 1.27        | 1.65            | 0.050     | 0.065           |
| G   | 2.54 BSC    |                 | 0.100 BSC |                 |
| J   | 0.20        | 0.30            | 0.008     | 0.012           |
| К   | 3.18        | 4.06            | 0.125     | 0.160           |
| L   | 15.24 BSC   |                 | 0.600 BSC |                 |
| M   | 50          | 15 <sup>0</sup> | 50        | 15 <sup>0</sup> |
| N   | 0.51        | 1.27            | 0.020     | 0.050           |
|     |             |                 |           |                 |

CASE 733-03



