

MEMORY DATA

1	Selector Guide and Cross Reference
2	CMOS Dynamic RAMs
3	DRAM Modules
4	Video RAMs
5	Pseudo Static RAMs
6	General MOS Static RAMs
7	CMOS Fast Static RAMs
8	CMOS Fast Static RAM Modules
9	Application Specific MOS Static RAMs
10	MOS EEPROM
11	Military Products
12	Reliability Information
13	Applications Information
14	Mechanical Data

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, preproduction, or first production stages. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

BurstRAM, DSPRAM, ParityRAM, and QuickRAM are trademarks of Motorola, Inc. SPARC is a trademark of Sun Microsystems.

MEMORIES

Prepared by Technical Information Center

Motorola has developed a broad range of reliable memories for virtually any digital data processing system application. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, a selector guide is included to simplify the task of choosing the best combination of circuits for optimum system architecture.

New Motorola memories are being introduced continually. For the latest releases, and additional technical information or pricing, contact your nearest authorized Motorola distributor or Motorola sales office.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

DL113/D, Rev 6 ©MOTOROLA INC., 1990 Previous Edition © 1989 "All Rights Reserved"

CONTENTS

		Page
Alphanumeric Index		ix
CHAPTER 1		
Selector Guide		1-3
		1-7
CHAPTER 2 — CMOS D	YNAMIC RAMs	
MCM511000A	1M × 1, 70/80/100 ns, Page Mode	2-3
MCM51L1000A	1M × 1, 70/80/100 ns, Page Mode, Low Power	2-3
MCM511001A	1M × 1, 70/80/100 ns, Nibble Mode	2-18
MCM511002A	1M × 1, 70/80/100 ns, Static Column	2-33
MCM514100	4M × 1, 80/100 ns, Page Mode	2-48
MCM51L4100	4M × 1, 80/100 ns, Page Mode, Low Power	2-48
MCM514256A	256K × 4, 70/80/100 ns, Page Mode	2-64
MCM51L4256A MCM514258A	256K × 4, 70/80/100 ns, Page Mode, Low Power	2-64 2-79
MCM514400	1M × 4, 80/100 ns, Page Mode	2-79
MCM514400 MCM51L4400	1M × 4, 80/100 ns, Page Mode, Low Power	2-94
MONSTERFOO	1W1 × 4, 00/100 113, 1 age Wode, Low 1 owel	2-34
CHAPTER 3 — DRAM M	IODULES	
MCM36100	1M × 36, 80/100 ns	3-3
MCM36L100	1M × 36, 80/100 ns, Low Power	3-3
MCM36200	2M × 36, 80/100 ns	3-15
MCM36L200	2M × 36 80/100 ns, Low Power	3-15
MCM36256	256K × 36, 70/80/100 ns	3-27
MCM36512	512K × 36, 70/80/100 ns	3-39
MCM81000	1M × 8, 70/80/100 ns	3-51
MCM8L1000	1M × 8, 70/80/100 ns, Low Power	3-51
MCM84000	4M × 8, 80/100 ns	3-62
MCM8L4000	4M × 8, 80/100 ns, Low Power	3-62
MCM84256	256K × 8, 70/80/100 ns	3-74
MCM8L4256 MCM91000	256K × 8, 70/80/100 ns, Low Power	3-74 3-85
MCM9L1000	1M × 9, 70/80/100 hs	3-85
MCM94000	4M × 9, 80/100 ns	3-96
MCM9L4000	4M × 9, 80/100 ns, Low Power	3-96
MCM94256	256K × 9, 70/80/100 ns	3-108
	,	
CHAPTER 4 — VIDEO R	IAMs	
MCM524258A	256K × 4, 100/120 ns, Page Mode	4-3
MCM528128A	128K × 8, 100/120 ns, Page Mode	4-5
CHAPTER 5 — PSEUDO		
MCM518128	128K × 8, 100 ns, E1 and E2 Inputs	5-3
MCM51L8128	128K × 8, 80/100 ns, <u>E1</u> and E2 Inputs, Low Power	5-3
MCM51LV8128	128K × 8, 80/100 ns, E1 and E2 Inputs, Low Power,	5-3
MCM518129	Data Retention	5-16
MCM51L8129	128K × 8, 80/100 ns, E and S Inputs, Low Power	5-16
MCM51LV8129	128K × 8, 80/100 ns, E and S Inputs, Low Power,	J-10
	Data Retention	5-16
		0.0

CONTENTS (Continued)

		Page
CHAPTER 6 — GENER		
MCM2018A	2K × 8, 35/45 ns	6-3
MCM60256A	32K × 8, 85/100/120 ns	6-8
MCM60L256A	32K × 8, 85/100/120 ns, Low Power	6-8
MCM60L256A-70	32K × 8, 70 ns, Low Power	6-16
MCM60256A-C	32K × 8, 100 ns, –40 to 85°C	6-24
MCM60L256A-C	32K × 8, 100 ns, –40 to 85°C	6-24
MCM60L256A-V	32K × 8, 100 ns, –40 to 105°C	6-32
CHAPTER 7 — CMOS F	FAST STATIC RAMS	
MCM6164	8K × 8, 45/55 ns	7-3
MCM61L64	8K × 8, 45/55 ns, Low Power	7-3
MCM6164C	8K × 8, 55/70 ns, –40 to 85°C	7-11
MCM6205	32K × 9, 30/35/45 ns	7-19
MCM6205-17,20,25	32K × 9, 17/20/25 ns, See QuickRAM	7-122
MCM6205C-12.15	32K × 9, 12/15 ns, See QuickRAM II	7-142
MCM6206	32K × 8, 30/35/45 ns	7-26
MCM6206-17,20,25	32K × 8, 17/20/25 ns, See QuickRAM	7-122
MCM6206C-12,15	32K × 8, 12/15 ns, See QuickRAM II	7-142
MCM6206C	32K × 8, 25/30/35/45/55 ns, -40 to 85°C	7-32
MCM6207-15,20,25	256K × 1, 15/20/25 ns, See QuickRAM	7-122
MCM6207C-10,12	256K × 1, 10/12 ns, See QuickRAM II	
MCM6208	64K × 4, 35/45 ns	7-40
MCM6208-15,20,25	64K × 4, 15/20/25 ns, See QuickRAM	7-122
MCM6208C-10,12	64K × 4, 10/12 ns, See QuickRAM II	7-142
MCM62080-10,12 MCM6209	64K × 4, 35/45 ns, Output Enable	7-142
MCM6209-15,20,25	64K × 4, 15/20/25 ns, See QuickRAM	7-122
MCM6209C-10.12	64K × 4, 10/12 ns, See QuickRAM II	7-142
MCM6226	128K × 8, 25/30 ns	7-142
MCM6228	256K × 4, 25/30 ns	7- 4 7 7-53
MCM6264-15,20	8K × 8, 15/20 ns, See QuickRAM	7-33 7-122
MCM6264C-10,12	8K × 8, 10/12 ns, See QuickRAM II	7-142
MCM6264C MCM6264D	8K × 8, 20/25 ns, -40 to 85°C	7-60
	8K × 8, 20/25/35/45 ns	7-66
MCM6264D-C	8K × 8, 25/35/45/55 ns, -40 to 85°C	7-72
MCM6265-15,20,25	8K × 9, 15/20/25 ns, See QuickRAM	7-122 7-142
MCM6265C-10,12	8K × 9, 10/12 ns, See QuickRAM II	
MCM6268	4K × 4, 20/25/35/45/55 ns	7-78
MCM6269	4K × 4, 20/25/35 ns, Fast Chip Select	7-78
MCM6270	4K × 4, 20/25/35 ns, Output Enable	7-83
MCM6287	64K × 1, 25/35 ns	7-89
MCM6287-12,15,20	64K × 1, 12/15/20 ns, See QuickRAM	7-122
MCM6287C-8,10	64K × 1, 8/10 ns, See QuickRAM II	7-142
MCM6288	16K × 4, 20/25/30/35 ns	7-98
MCM6288-12,15	16K × 4, 12/15 ns, See QuickRAM	7-122
MCM6288C-8,10	16K × 4, 8/10 ns, See QuickRAM II	7-142
MCM6290	16K × 4, 20/25/30/35 ns, Output Enable	7-98
MCM6290-12,15	16K × 4, 12/15 ns, See QuickRAM	7-122
MCM6290C-8,10	16K × 4, 8/10 ns, See QuickRAM II	7-142
MCM6706	32K × 8, 10/12/15 ns	7-105
MCM6708	64K × 4, 10/12 ns	7-110
MCM6709	$64K \times 4$, 10/12 ns, Output Enable	7-110

CONTENTS (Continued)

		Page
MCM67081	64K × 4, 10/12/15 ns, Separate Input/Output	7-116
MCM67082	64K × 4, 10/12/15 ns, Separate Input/Output	7-116
QuickRAM	Fast Static RAM Family	7-122
QuickRAM II	Fast Static RAM Family	7-142
CHAPTER 8 — CMC	OS FAST STATIC RAM MODULES	
MCM2464	$2 \times 64 \text{K} \times 24$, 22/27 ns	8-3
MCM3264	64K × 32, 20/25/30 ns	8-10
MCM8256	256K × 8, 20/25/30 ns	8-17
CHAPTER 9 — APP	LICATION SPECIFIC MOS STATIC RAMS	
MCM4180	$4K \times 4$, $18/20/22/25$ ns, Cache Tag	9-3
MCM6292	$16K \times 4$, 25/30 ns, Synchronous, Transparent Outputs	9-13
MCM6293	16K × 4, 20/25 ns, Synchronous, Output Registers	9-22
MCM6294	16K × 4, 20/25 ns, Synchronous, Output Registers, Output Enable	9-31
MCM6295	16K × 4, 25/30 ns, Synchronous, Transparent Outputs,	9-31
	Output Enable	9-40
MCM56824	8K × 24, 25/30/35 ns, DSPRAM	9-49
MCM62110	32K × 9, 15/20 ns, Synchronous, Dual I/O, Parity Checker	9-57
MCM62350	4K × 4, 20/22/25 ns, Cache Tag	9-67
MCM62351	4K × 4, 20/22/25 ns, Cache Tag	9-77
MCM62486	32K × 9, 20/25/30 ns, Synchronous BurstRAM	9-87
MCM62820	8K × 20, 23/30 ns, Latched Address	9-96
MCM62940	$32K \times 9$, $14/19/24$ ns, Synchronous, BurstRAM,	
	for 040 Applications	9-102
MCM62950	32K × 9, 20/25 ns, Synchronous, for RISC-CISC Cache	9-110
MCM62960	32K × 9, 17/20/24 ns, Synchronous, for SPARC Applications	9-115
MCM62963	4K × 10, 18/20/25/30 ns, Synchronous, Output Registers	9-120
MCM62964	4K × 10, 20/25/30 ns, Synchronous, Output Registers,	9-125
MCMcoocE	Output Enable	9-125
MCM62965	Output Enable	9-129
MCM62973	4K × 12, 18/20/25/30 ns, Synchronous, Output Registers	9-129
MCM62974	$4K \times 12$, $18/20/25/30$ ns, Synchronous, Output Registers,	9-100
IVICIVIO2974	Output Enable	9-138
MCM62975	4K × 12, 25/30/35 ns, Synchronous, Transparent Outputs,	3-100
WOWOZ373	Output Enable	9-142
MCM62980	64K × 4, 15/20 ns, Synchronous	9-147
MCM62981	$64K \times 4$, 15/20 ns, Synchronous, ParityRAM	9-153
MCM62982	64K × 4, 12/15 ns, Synchronous, Output Registers	9-158
MCM62983	64K × 4, 12/15 ns, Synchronous, ParityRAM, Output Registers	9-163
MCM62990	16K × 16, 17/20/25 ns, Synchronous	9-168
MCM62995	$16K \times 16$, $17/20/25$ ns, Asynchronous, Latched Address	9-174
CHAPTER 10 — MO	OS EEPROM	
MCM2814	256 × 8	10-3
CHAPTER 11 MIL	ITARY PRODUCTS	11-1
	LIABILITY INFORMATION	12-1

CONTENTS (Continued)

(Page
CHAPTER 13 — APPLICATIONS INFORMATION	13-1
DRAMs DRAM Refresh Modes (AN987)	13-2
Page, Nibble, and Static Column Modes: High-Speed, Serial-Access Options	
on 1M-Bit + DRAMs (AN986)	13-4
Pseudo Static RAM Simplfies Interfacing with Microprocessors (AN1059)	13-8
Fast Static RAMs Avoiding Bus Contention in Fast Access RAM Designs (AN971)	13-14
Avoiding Data Errors with Fast Static RAMs (AN973)	13-18
Special Application Static RAMs 25 MHz Logical Cache for an MC68020 (AN984)	13-21
Designing a Cache for a Fast Processor (AR270)	13-21
Enhancing System Performance Using Synchronous SRAMs (AR260)	13-41
High Freqeuency System Operation Using Synchronous SRAMs (AR258)	13-45 13-52
Motorola o Hadioar Orlvini Booigh operas Oystems 40% (At 1250)	10-02
CHAPTER 14 — MECHANICAL DATA	
Package Dimensions	14-2
Tape and Reel Data for Surface Mount Devices	14-21

ALPHANUMERIC INDEX

Device Number	Function	Page Number
MCM2018A	2K × 8, 35/45 ns	6-3
MCM2464	2 × 64K × 24, 22/27 ns	8-3
MCM2814	256 × 8	10-3
MCM3264	64K × 32, 20/25/30 ns	8-10
MCM36100	1M × 36, 80/100 ns	3-3
MCM36200	2M × 36, 80/100 ns	3-15
MCM36256	256K × 36, 70/80/100 ns	3-27
MCM365121	512K × 36, 70/80/100 ns	3-39
MCM36L100	1M × 36, 80/100 ns, Low Power	3-3
MCM36L200	2M × 36, 80/100 ns, Low Power	3-15
MCM4180	4K × 4, 18/20/22/25 ns, Cache Tag	9-3
MCM511000A	1M × 1, 70/80/100 ns, Page Mode	2-3
MCM511001A	1M × 1, 70/80/100 ns, Nibble Mode	2-18
MCM511002A	1M × 1, 70/80/100 ns, Static Column	2-33
MCM514100	4M × 1, 80/100 ns, Page Mode	2-48
MCM514256A	256K × 4, 70/80/100 ns, Page Mode	2-64
MCM514258A	256K × 4, 70/80/100 ns, Static Column	2-79
MCM514400	1M × 4, 80/100 ns, Page Mode	2-94
MCM518128	128K × 8, 100 ns, E1 and E2 Inputs	5-3
MCM518129	128K × 8, 100 ns E and S Inputs	5-16
MCM51L000A	1M × 1, 70/80/100 ns, Page Mode, Low Power	2-3
MCM51L4100	4M × 1, 80/100ns, Page Mode, Low Power	2-48
MCM51L4256A	256K × 4, 70/80/100 ns, Page Mode Low Power	2-64
MCM51L4400	1M × 4, 80/100 ns, Page Mode Low Power	2-94
MCM51L8128	128K × 8, 80/100 ns, E1 and E2 Inputs, Low Power	5-3
MCM51L8129	128K × 8, 80/100 ns, E and S Inputs, Low Power	5-16
MCM51LV8128	$128K \times 8$, 80/100 ns, $\overline{E1}$ and $E2$ Inputs, Low Power,	r 0
MCME1LV0100	Data Retention	5-3
MCM51LV8129	· · · · · · · · · · · · · · · · · · ·	5-16
MCM524258A	Data Retention	4-3
MCM528128A	256K × 4, 100/120 ns, Page Mode	4-3 4-5
MCM56824	8K × 24, 25/30/35 ns, DSPRAM	9-49
MCM60256A	32K × 8, 85/100/120 ns	6-8
MCM60256A-C	32K × 8, 100 ns, –40 to 85°C	6-24
MCM60L256A	32K × 8, 85/100/120 ns, Low Power	6-8
MCM60L256A-70	32K × 8, 70 ns, Low Power	6-16
MCM60L256A-C	32K × 8, 100 ns, –40 to 85°C	6-24
MCM60L256A-V	32K × 8, 100 ns, –40 to 105°C	6-32
MCM6164	8K × 8, 45/55 ns	7-3
MCM6164C	8K × 8, 55/70 ns, -40 to 85°C	7-11
MCM61L64	8K × 8, 45/55, Low Power	7-3
MCM6205	32K × 9, 30/34/45 ns	7-19
MCM6205-17,20,25	32K × 9, 17/20/25 ns, See QuickRAM	7-122
MCM6205C-12.15	32K × 9, 12/15 ns, See QuickRAM II	7-142
MCM6206	32K × 8, 30/34/45 ns	7-26
MCM6206-17,20,25	32K × 8, 17/20/25 ns, See QuickRAM	7-122
MCM6206C	32K × 8, 25/30/35/45/55 ns, -40 to 85°C	7-32
MCM6206C-12,15	32K × 8, 12/15 ns, See QuickRAM II	7-142
MCM6207-15,20,25	256K × 1, 15/20/25 ns, See QuickRAM II	7-122
MCM6207C-10,12	256K × 1, 10/12 ns, See QuickRAM II	7-142

ALPHANUMERIC INDEX (Continued)

Device Number	Function	Number
MCM6208	64K × 4, 35/45 ns	7-40
MCM6208-15,20,25	64K × 4, 15/20/25 ns, See QuickRAM	7-122
MCM6208C-10,12	64K × 4, 10/12 ns, See QuickRAM II	7-142
MCM6209	64K × 4, 35/45 ns, Output Enable	7-40
MCM6209-15,20,25	64K × 4, 15/20/25 ns, See QuickRAM	7-122
MCM6209C-10,12	64K × 4, 10/12 ns, See QuickRAM II	7-142
MCM62110	32K × 9, 15/20 ns, Synchronous, Dual I/O, Parity Checker	9-57
MCM6226	128K × 8, 25/30 ns	7-47
MCM6228	256K × 4, 25/30 ns	7-53
MCM62350	4K × 4, 20/22/25 ns, Cache Tag	9-67
MCM62351	4K × 4, 20/22/25 ns, Cache Tag	9-77
MCM62486	32K × 9, 20/25/30 ns, Synchronous BurstRAM	9-87
MCM6264-15,20	8K × 8, 15/20 ns, See QuickRAM	7-122
MCM6264C	8K × 8, 20/25 ns, -40 to 85°C	7-60
MCM6264C-10,12	8K × 8, 10/12 ns, See QuickRAM II	7-142
MCM6264D	8K × 8, 20/25/35/45 ns	7-66
MCM6264D-C	8K × 8, 25/35/45/55 ns, –40 to 85°C	7-72
MCM6265-15,20,25	8K × 9, 15/20/25 ns, See QuickRAM	7-122
MCM6265C-10,12	8K × 9, 10/12 ns, See QuickRAM II	7-142
MCM6268	4K × 4, 20/25/35/45/55 ns	7-78
MCM6269	4K × 4, 20/25/35 ns, Fast Chip Select	7-78
MCM6270	4K × 4, 20/25/35 ns, Output Enable	7-83
MCM62820	8K × 20, 23/30 ns, Latched Address	9-96
MCM6287	64K × 1, 25/35 ns	7-89
MCM6287-12,15,20	64K × 1, 12/15/20 ns, See QuickRAM	7-122
MCM6287C-8.10	64K × 1, 8/10 ns, See QuickRAM II	7-142
MCM6288	16K × 4, 20/25/30/35 ns	7-98
MCM6288-12,15	16K × 4, 12/15 ns, See QuickRAM	7-122
MCM6288C-8,10	16K × 4, 8/10 ns, See QuickRAM II	7-142
MCM6290	16K × 4, 10/25/30/35 ns, Output Enable	7-98
MCM6290-12,15	16K × 4, 12/15 ns, See QuickRAM	7-122
MCM6290C-8,10	16K × 4, 8/10 ns, See QuickRAM II	7-142
MCM6292	16K × 4, 25/30 ns, Synchronous, Transparent Outputs	9-13
MCM6293	16K × 4, 20/25 ns, Synchronous, Output Registers	9-22
MCM6294	16K × 4, 20/25 ns, Synchronous, Output Registers,	
	Output Enable	9-31
MCM62940	32K × 9, 14/19/24 ns, Synchronous, BurstRAM,	
	for 040 Applications	9-102
MCM6295	16K × 4, 25/30 ns, Synchronous, Transparent Outputs,	
	Output Enable	9-40
MCM62950	32K × 9, 20/25 ns, Synchronous, for RISC-CISC Cache	9-110
MCM62960	32K × 9, 17/20/24 ns, Synchronous, Output Registers	9-115
MCM62963	4K × 10, 18/20/25/30 ns, Synchronous, Output Registers	9-120
MCM62964	4K × 10, 20/25/30 ns, Synchronous, Output Registers,	
	Output Enable	9-125
MCM62965	4K × 10, 25/30/35 ns, Synchronous, Transparent Outputs,	
	Output Enable	9-129
MCM62973	4K × 12, 18/20/25/30 ns, Synchronous, Output Registers	9-133
MCM62974	4K × 12, 18/20/25/30 ns, Synchronous, Output Registers,	
	Output Enable	9-138
MCM62975	4K × 12, 25/30/35 ns, Synchronous, Transparent Outputs,	
-	Output Enable	9-142

ALPHANUMERIC INDEX (Continued)

Device Number	Function	Page Number
MCM62980	64K × 4, 15/20 ns, Synchronous	9-147
MCM62981	64K × 4, 15/20 ns, Synchronous, ParityRAM	9-153
MCM62982	64K × 4, 12/15 ns, Synchronous, Output Registers	9-158
MCM62983	64K × 4, 12/15 ns, Synchronous, ParityRAM, Output Registers	9-163
MCM62990	16K × 16, 17/20/25 ns, Synchronous	9-168
MCM62995	16K × 16, 17/20/25 ns, Asynchronous, Latched Address	9-174
MCM6706	32K × 8, 10/12/15 ns	7-105
MCM6708	64K × 4, 10/12 ns	7-110
MCM67081	64K × 4, 10/12/15 ns, Separate Input/Output	7-116
MCM67082	64K × 4, 10/12/15 ns, Separate Input/Output	7-116
MCM6709	64K × 4, 10/12 ns, Output Enable	7-110
MCM81000	1M × 8, 70/80/100 ns	3-51
MCM8256	256K × 8, 20/25/30 ns	8-17
MCM84000	4M × 8, 80/100 ns	3-62
MCM84256	256K × 8, 70/80/100 ns	3-74
MCM8L1000	1M × 8, 70/80/100 ns, Low Power	3-51
MCM8L4000	4M × 8, 80/100 ns, Low Power	3-62
MCM8L4256	256K × 8, 70/80/100 ns, Low Power	3-74
MCM91000	1M × 9, 70/80/100 ns	3-85
MCM94000	4M × 9, 80/100 ns	3-96
MCM94256	256K × 9, 70/80/100 ns	3-108
MCM9L1000	4M × 9, 70/80/100 ns, Low Power	3-85
MCM9L4000	1M × 9, 80/100 ns	3-96
QuickRAM	Fast Static RAM Family	7-122
QuickRAM II	Fast Static RAM Family	7-142

Selector Guide and Cross Reference

DYNAMIC RAMs (HCMOS)

		Motorola	Address	Operating			
1 1	Organi-	Part	Access Time	Current	Pin	Package	
Density	zation	Number	(ns Max)	(mA Max)	Count	Options	Comments
1M	1 Mx1	MCM511000A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Fast page mode cycle time=40/45/55 ns
		MCM51L1000A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Fast page mode with low power battery backup
		MCM511001A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Nibble mode access time=35/35/40 ns
		MCM511002A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Static column mode cycle time=40/45/55 ns
1 1	256Kx4	MCM514256A	70/80/100	80/70/60	20, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Fast page mode cycle time=40/45/55 ns
1		MCM51L4256A	70/80/100	80/70/60	20, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Fast page mode with low power battery backup
		MCM514258A	70/80/100	80/70/60	20, 20, 20/26	(P)DIP, (Z)IP, SO(J)	Static column mode cycle time=40/45/55 ns
4M	4Mx1	MCM514100	80/100	100/85	20, 20/26	(Z)IP, SO(J)	Fast page mode cycle time=50/60 ns
i i		MCM51L4100	80/100	100/85	20, 20/26	(Z)IP, SO(J)	Fast page mode with low power battery backup
1 1	1 Mx4	MCM514400	80/100	105/90	20, 20/26	(Z)IP, SO(J)	Fast page mode cycle time=50/60 ns
1		MCM51L4400	80/100	105/90	20, 20/26	(Z)IP, SO(J)	Fast page mode with low power battery backup
		MCM514410	80/100	105/90	20, 20/26	(Z)IP, SO(J)	Fast page mode with write per bit

DRAM MODULES (Contact DRAM Marketing for Custom DRAM Modules)

1		Motorola	Address	Operating			
Į.	Organi-	Part	Access Time	Current	Pin	Package	
Density	zation	Number	(ns Max)	(mA Max)	Count	Options	Comments
8M	1Mx8	MCM81000	70/80/100	640/560/480	30	(S)IMM, (L)SIP	Fast page mode cycle time=40/45/55 ns
1		MCM8L1001	70/80/100	640/560/480	30	(S)IMM, (L)SIP	Fast page mode with low power battery backup
l		MCM81001	70/80/100	640/560/480	30	(S)IMM, (L)SIP	Nibble mode access time=35/35/40 ns
		MCM81002	70/80/100	640/560/480	30	(S)IMM, (L)SIP	Static column mode cycle time=40/45/55 ns
8M	1Mx9	MCM91000	70/80/100	720/630/540	30	(S)IMM, (L)SIP, SG (gold)	Fast page mode cycle time=40/45/55 ns
w/Parity		MCM9L1000	70/80/100	720/630/540	30	(S)IMM, (L)SIP, SG (gold)	Fast page mode with low power battery backup
		MCM91001	70/80/100	720/630/540	30	(S)IMM, (L)SIP	Nibble mode access time=35/35/40 ns
		MCM91002	70/80/100	720/630/540	30	(S)IMM, (L)SIP	Static column mode cycle time=40/45/55 ns
2M	256Kx8	MCM84256	70/80/100	160/140/120	30	(S)IMM	Fast page mode cycle time=40/45/55 ns
		MCM8L4256	70/80/100	160/140/120	30	(S)IMM	Fast page mode with low power battery backup
2M	256Kx9	MCM94256	70/80/100	240/210/190	30	(S)IMM	Fast page mode cycle time=40/45/55 ns
w/Parity		MCM9L4256	70/80/100	240/210/190	30	(S)IMM	Fast page mode with low power battery backup
4M	1Mx4	MCM41000	80/100	280/240	26	(Z)IMM	Fast page mode cycle time=40/45/55 ns
	4Mx1_	MCM11400	80/100	90/80	26	(Z)IMM	Fast page mode cycle time=40/45/55 ns
32M	4Mx8	MCM84000	80/100	800/680	30	(S)IMM	Fast page mode cycle time=50/60 ns
		MCM8L4000	80/100	800/680	30	(S)IMM	Fast page mode cycle time=50/60 ns
32M w/Parity	4Mx9	MCM94000	80/100	900/765	30	(S)IMM	Fast page mode cycle time=50/60 ns
		MCM9L4000	80/100	900/765	30	(S)IMM	Fast page mode cycle time=50/60 ns
8M w/Parity	256Kx36	MCM36256	70/80/100	960/840/760	72	(S)IMM, SG (gold)	Fast page mode cycle time=40/45/55 ns
16M w/Parity	512Kx36	MCM36512	70/80/100	1920/1680/1520	72	(S)IMM, SG (gold)	Fast page mode cycle time=40/45/55 ns
32M w/Parity	1 Mx36	MCM36100	80/100	1144/984	72	(S)IMM, SG (gold)	Fast page mode cycle time=40/45/55 ns
64M w/Parity	2Mx36	MCM36200	80/100	1120/960	72	(S)IMM, SG (gold)	Fast page mode cycle time=40/45/55 ns
8M w/Parity	256Kx40	MCM40256*	70/80/100	800/700/600	72	(S)IMM, SG (gold)	Same as MCM36xxx, for error correction applications
16M w/Parity	512Kx40	MCM40512*	70/80/100	820/720/620	72	(S)IMM, SG (gold)	Same as MCM36xxx, for error correction applications
32M w/Parity	1 Mx40	MCM40100°	80/100	1050/900	72	(S)IMM, SG (gold)	Same as MCM36xxx, for error correction applications
64M w/Parity	2Mx40	MCM40200°	80/100	1070/920	72	(S)IMM, SG (gold)	Same as MCM36xxx, for error correction applications

*To be introduced.

Package Information:

P=26 pin, 300 mil, plastic dual-in-line package J=26 pin, 300 mil, plastic small outline "J" lead package Z=20 pin, 300 mil, plastic zig-zag In-line package,

or 26 pin zig-zag in-line memory module

S=30 pad single-in-line memory module, or 72 pad single-in-line memory module L=30 pin single-in-line memory module

SG=30 pad single-in-line memory module with gold pac

DUAL PORT VIDEO RAMs

Γ			Motorola	Address	Operating			· ·
- 1		Organi-	Part	Access Time	Current	Pin	Package	
L	Density	zation	Number	(ns Max)	(mA Max)	Count	Options	Comments
П	1M	256Kx4	MCM524258A	100/120	140/150	28, 28	(Z)IP, SO(J)	Dual port VRAM with 512x4 SAM port, ta=25/35 ns
L		128Kx8	MCM528128A	100/120	140/150	40, 40	(P)DIP, (Z)IP, SO(J)	Dual port VRAM with 256x8 SAM port, ta=25/35 ns

GENERAL STATIC RAMs (HCMOS unless otherwise noted)

Í	Organi-	Motorola Part	Address Access Time	Operating Current	Pin	- ,	
Density	zation	Number	(ns Max)	(mA Max)	Count	Packaging	Comments
16K	2Kx8	MCM2018AN	35/45/55	135	24	300 mil, (P)DIP	NMOS. Replaces TMM2019D, MCM2016HN, MCM2018N.
256K	32Kx8	MCM60256A	85/100/120	70	28	(P)DIP, (F)SOG	100 μA standby current
		MCM60L256A	70/85/100/120	70	28	(P)DIP, (F)SOG	30 μA standby current
		MCM60L256A-C	100	70	28	(P)DIP, (F)SOG	Industrial temperature range (-40° to +85°C), low power
		MCM60L256A-V	100	70	28	(P)DIP, (F)SOG	Extended temperature range (-40° to +105°C), low power
1M	128Kx8	MCM518128	100	60	32	(P)DIP, (F)&(SF)SOG	Built-in refresh, CE1 & CE2
	Pseudo	MCM518129	100	60	32	(F)SOG	Built-in refresh, CE & CS
	SRAM	MCM51L8128	80/100	70/60	32	(P)DIP, (F)&(SF)SOG	200 μA standby current, built-in refresh, CE1 & CE2
		MCM51L8129	80/100	70/60	32	(F)SOG	200 μA standby current, built-in refresh, CE & CS
		MCM51LV8128	80/100	70/60	32	(P)DIP, (F)&(SF)SOG	200 μA standby current, built-in refresh, CE1 & CE2
		MCM51LV8129	80/100	70/60	32	(F)SOG	200 μA standby current, built-in refresh, CE & CS
ckage Info	ormation:	P=28 & 32 pin, 6	600 mil, plastic dual	-in-line packa	ge		SF=32 pin, 330 mil, plastic small outline gullwing package

P=28 & 32 pin, 600 mil, plastic dual-in-line package
F=28 pin, 330 mil, plastic small outline gullwing package or,
32 pin, 450 mil, plastic small outline gullwing package

FAST STATIC RAMs (70 ns or Faster)

		Motorola			Address/	Operating		
1	Organi-	Part	Pin	Packaging	Cycle Time	Current	Tech-	,
Density	zation	Number	Count	(Package Width in mils)	(ns Max)	(mA max)	nology	Comments
16K	2Kx8	MCM2018A	24	300 PDIP	45/55	135	NMOS	Replaces TMM2019D, MCM2016HN, MCM2018N.
1	4Kx4	MCM6268	20	300 PDIP	20/25/35/45/55	110/110/110/80/80	HCMOS	20 ns in warehouse stock.
		MCM6269	20	300 PDIP	20/25/35	110	HOMOS	Fast Chip Select access time=10/12/15 ns.
		MCM6270	24/22	300 SOJ/PDIP	20/25/35	110	HCMOS	Fast Output Enable access time=10/12/15 ns.
64K	8Kx8	MCM6264	28	300/400 SOJ/300 PDIP	35/45/55	100/90/80	HCMOS	Look for DSP and cache memory applications.
1		MCM6264D	28	300/400 SOJ/300 PDIP	20/25	115/110	HCMOS	20 ns fast and 8 bits wide.
1		MCM6264	28	300 PDIP/SOJ	15	140	HOMOS	15 ns fast and 8 bits wide.
		MCM6264C	28	300/400 SOJ/300 PDIP	35/45/55	100/90/80	HCMOS	Industrial temperature range, -40° to 85°C.
		MCM6264D-C	28	300/400 SOJ/300 PDIP	25/30	115/110	HCMOS	Industrial temperature range, -40° to 85°C.
		MCM6264C	28	300 PDIP/SOJ	20	140	HCMOS	Industrial temperature range, -40° to 85°C.
1	8Kx9	MCM6265	28	300 SOJ/PDIP	15/20/25	140/130/120	HCMOS	Ideal for applications requiring parity.
	16Kx4	MCM6288	22	300 PDIP	12/15/20/25/35	150/140/120/120/110	HOMOS	12 ns devices have tDVWH=6 ns max.
		MCM6290	24	300 SOJ/PDIP	12/15/20/25/35	150/140/120/120/110	HOMOS	12 ns devices have Output Enable=6 ns max.
	64Kx1	MCM6287	24/22	300 SOJ/PDIP	12/15/20/25/35	150/140/130/120/110	HCMOS	Mainframe applications, can also be used for parity bit.
256K	32Kx8	MCM6206	28	400 SOJ/600 PDIP	30/35/45	130/125/115	HCMOS	Two chip control functions: Chip Enable and Output Enable.
		MCM6206	28	300 SOJ/PDIP	17/20/25/35	155/150/140/135	HOMOS	17 ns with full 10% power supply.
1 1		MCM6206C	28	300 SOJ/PDIP	25/35/45	140/135/130	HOMOS	Industrial temperature range, -40° to 85°C.
1		MCM6706	28	300 SOJ	10/12/15	180/170/160	BICMOS	New, Motorola BiCMOS.
1 1	32Kx9	MCM6205	32	300 SOJ/PDIP	17/20/25/35	155/150/140/135	HCMOS	Ideal for applications requiring parity.
1		MCM6205C	32	300 SOJ/PDIP	25/35/45	140/135/130	HCMOS	Industrial temperature range, -40° to 85°C.

		Motorola			Address/	Operating		
	Organi-	Part	Pin	Packaging	Cycle Time	Current	Tech-	
Density	zation	Number	Count	(Package Width in mils)	(ns Max)	(mA max)	nology	Comments
256K	64Kx4	MCM6709	28	300 SOJ	10/12/15	180/170/160	BICMOS	New, Motorola BiCMOS.
	256Kx1	MCM6207	24	300 SOJ/PDIP	15/20/25	150/140/130	HCMOS	15 ns 256K with separate I/O.
1M	128Kx8	MCM6226	32	400 SOJ/PDIP	25/30	150/140	HCMOS	1M fast static RAM.
	256Kx4	MCM6228	28	400 SOJ/PDIP	25/30	145/135	HOMOS	1M fast static RAM.

FAST STATIC RAM MODULES

		Motorola			Address/	Operating		
	Organi-	Part	Pin	i	Cycle Time	Current	Tech-	
Density	zation	Number	Count	Packaging	(ns Max)	(mA max)	nology	Comments
2M	64Kx32	MCM3264Z	64	ZIP	20/25/30	1200/1120/1040	HCMOS	Perfect for 32-bit system, JEDEC standard.
	256Kx8	MCM8256Z	60	ZIP	20/25/30	1200/1120/1040	HCMOS	JEDEC standard module, faster speeds possible.
3M	2x64Kx24	MCM2464Z	58	ZIP	22/27	1680/1560	HCMOS	Two banks of x24 memory.

APPLICATION SPECIFIC STATIC RAMS

	Organi-	Motorola Part	Pin		Address/ Cycle Time	Operating Current	Tech-		
Description	zation	Number	Count	Packaging	(ns Max)	(mA max)	nology		
Cache Tag RAM	4Kx4	MCM4180		300 mil SOJ/PDIP		140	HCMOS	Fully compatible with Mostek MK41H80.	
Cache Tag RAM with Status Bit	4Kx4	MCM62350	24	300 mil SOJ/PDIP	18/20/25	140		Housekeeping bits function, active pull-up match output. Flash clearable.	
Registers		MCM62351	24	300 mil SOJ/PDIP	18/20/25	140	HCMOS	Housekeeping bits function, open drain match output. Flash clearable.	
Synchronous	16Kx4	MCM6293	28	300 mil SOJ/PDIP	20/25	140	HCMOS	Registered outputs for fully pipelined applications, separate I/O's.	
Static RAM		MCM6294	28	300 mil SOJ/PDIP	20/25	140	HCMOS	Registered outputs plus output enable, separate I/O's.	
		MCM6295	28	300 mil SOJ/PDIP	25/30	140	HCMOS	Transparent outputs plus output enable, separate I/O's.	
	64Kx4	MCM62980	28	300 mil SOJ	15/20	170	HCMOS	Large cache memory for RISC and CISC systems.	
		MCM62982	28	300 mil SOJ	12/15	170	HCMOS	Registered outputs for two stage pipeline.	
	16Kx16	MCM62990	52	PLCC	17/20	360	HCMOS	Designed for advanced RISC-CISC cache applications.	
	4x64Kx1	MCM62981	32	300 mil SOJ	15/20	170	HCMOS	Cache memory parity RAM.	
		MCM62983	32	300 mil SOJ	12/15	170/130	HCMOS	Registered outputs, cache memory parity RAM.	
	4Kx10	MCM62963	44	PLCC	18/20/25	170	HCMOS	Same functionality as MCM6293.	
	4Kx12	MCM62973	44	PLCC	18/20/25	170	HCMOS	Same functionality as MCM6293.	
		MCM62974	44	PLCC	18/20/25	170	HCMOS	Same functionality as MCM6294.	
		MCM62975	44	PLCC	25/30	170		Same functionality as MCM6295.	
	32Kx9	MCM62940	44	PLCC	19/24	250	HCMOS	Burst mode for 040 applications.	
		MCM62950	44	PLCC	20/25	250	HCMOS	Designed for advanced RISC-CISC cache applications.	
		MCM62960	44	PLCC	17/20/25	180	HCMOS	Designed for SPARC™ applications. Functionally equivalent to CY7C157	
		MCM62486	44	PLCC	19/24	250		Burst mode for 486 applications.	
		MCM62110	52	PLCC	15/20	250		Dual WO's for 88110.	
DSPRAM		MCM56824	52	PLCC	25/30/35	250/210/180		Designed for DSP56001 applications.	
Latched Address		MCM62820	52	PLCC	23/30	240/185		CMOS Designed for MIPS R3000 cache.	
SRAM	16Kx16	MCM62995	52	PLCC	17/20/25	360		DSP96000 memory applications. Can be used like any asynchronous SRAM, samples available now.	

ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY

Г			Motorola	Address	Operating			
		Organi-	Part	Access Time	Current	Pin	j	
	Density	zation	Number	(ns Max)	(mA Max)	Count	Packaging	Comments
Γ	2K	256Kx8	MCM2814P	3.5 μs	10	8	(P)DIP	2 or 4 wire serial access, data protection after reset.

Package Information: P=8 pin, 300 mil

DYNAMIC RAMs

MOTOROLA	FUJITSU	HITACHI	INTEL	MICRON	MITSUBISHI	NEC	OKI	SAMSUNG	TI	TOSHIBA
1M×1	1M×1	1M×1	1 M ×1	1M×1	1M×1	1M×1	1M×1	1M×1	1M×1	1M×1
MCM511000A	MB81C1000	HM511000	P21010	MT4C1024	M5M41000	μPD421000	MSM511000	KM41C1000	TMS4C1024	TC511000A
MCM511001A	MB81C1001	HM511001		MT4C1025	M5M41001	μPD421001	MSM511001	KM41C1001	TMS4C1025	TC511001A
MCM511002A	MB81C1003	HM511002		MT4C1026	M5M41002	μPD421002	MSM511002	KM41C1002	TMS4C1027	TC511002A
MCM514256A	MB81C4256	HM514256	P21014	MT4C4256	M5M44256A	μPD424256	MSM514256	KM44C256	TMS44C256	TC514256A
MCM514258A	MB81C4258	HM514258		MT4C4258	M5M44258A	μPD424258	MSM514258	KM44C258		TC514258A
1M×4	1M×4	1M×4	1M×4	1M×4	1M×4	1M×4	1M×4	1M×4	1M×4	1M×4
MCM514400	MB814400	HM514400		MT4C4001	M5M44400	μPD424400		KM44C1000		TC514400
4M×4	4M×4	4M×4	4M×4	4M×4	4M×4	4M×4	4M×4	4M×4	4M×4	4M×4
MCM514100	MB814100	HM514100	T21040	MT4C1004	M5M44100	μPD424100		KM41C4000		TC514100

DYNAMIC RAM MODULES

MOTOROLA	FUJITSU	HITACHI	INTEL	MICRON	MITSUBISHI	NEC	окі	SAMSUNG	TI	TOSHIBA
256K×8	256K×8	256K×8	256K×8	256K×8	256K×8	256K×8	256K×8	256K×8	256K×8	256K×8
MCM84256 MCM8L4256		HB56D25608		MT8C8256	MH25608B	MC-41256A8	MSC2304_S8		TM4256_8	
256K×9	256K×9	256K×9	256K×9	256K×9	256K×9	256K×9	256K×9	256K×9	256K×9	256K×9
MCM94256 MCM9L4256	MB85240	HB56D25609		MT8C9256	MH25609B	MC-41256A8	MSC2304_S9		TM4256_9	
1M×8	1M×8	1M×8	1M×8	1M×8	1M×8	1M×8	1M×8	1M×8	1M×8	1M×8
MCM81000S MCM8L1000S MCM81001S MCM81002S	MB85230 MB85231	HB56A18	SM2101910	MT8C8024 MT8C8025 MT8C8026	MH1M08B0 MH1M08B1 MH1M08B2	MC-421000A8 MC-421000B8 MC-421000C8	MSC2313_S8	KMM581000	TM024GAD8	THM81000
1M×9	1M×9	1M×9	1M×9	1M×9	1M×9	1M×9	1M×9	1M×9	1M×9	1M×9
MCM91000S MCM9L1000S MCM91001S	MB85235	HB56A19		MT8C9024 MT8C9025	MH1M09B0 MH1M09B1	MC-421000A9 MC-421000B9	MSC2312_S9	KMM591000	TM024EAD9	THM91000
MCM91002S	MB85237			MT8C9026	MH1M09B2	MC-421000D3				
256K×36	256K×36	256K×36	256K×36	256K×36	256K×36	256K×36	256K×36	256K×36	256K×36	256K×36
MCM36256		HB56D25636B		MT8C36256	MH25636BJ					THM362500
512K×36	512K×36	512K×36	512K×36	512K×36	512K×36	512K×36	512K×36	512K×36	512K×36	512K×36
MCM36512		HB56D51236B		MT8C36512	MH51236BJ				· · · · · · · · · · · · · · · · · · ·	THM365120
4M×8	4M×8	4M×8	4M×8	4M×8	4M×8	4M×8	4M×8	4M×8	4M×8	4M×8
MCM84000 MCM8L4000		HB56A48								
4M×9	4M×9	4M×9	4M×9	4M×9	4M×9	4M×9	4M×9	4M×9	4M×9	4M×9
MCM94000 MCM9L4000		HB56A49			MH4M090J		MSC2340_YS9			

FAST STATIC RAMs

MOTOROLA*	IDT	CYPRESS	MICRON	PERFORMANCE	HITACHI	FUJITSU	TOSHIBA	MITSUBISHI	SONY
4K×4	4K×4	4K×4	4K×4	4K×4	4K×4	4K×4	4K×4	4K×4	4K×4
MCM6268P20 MCM6268P25 MCM6269P20 MCM6269P25	IDT6168SA20P IDT6168SA25P	CY7C168A-20PC CY7C168A-25PC CY7C169A-20PC CY7C169A-25PC	MT5C1604-20 MT5C1604-25	P4C168-20PC P4C168-25PC P4C169-20PC P4C169-25PC	HM6268P-25	MB81C68A-25P MB81C69A-25P			
MCM6270J20 MCM6270J25 MCM6270P20 MCM6270P25	IDT61970S20Y IDT61970S25Y IDT61970S20P IDT61970S25P		MT5C1605DJ-20 MT5C1605DJ-25 MT5C1605-20 MT5C1605-25	P4C170-20PC P4C170-25PC					
8K×8	8K×8	8K×8	8K×8	8K×8	8K×8	8K×8	8K×8	8K×8	8K×8
MCM6264NJ15* MCM6264NJ20* MCM6264NJ25*	IDT7164S20Y IDT7164S25Y	CY7C185-15VC CY7C185-20VC CY7C185-25VC	MT5C6408DJ-15 MT5C6408DJ-20 MT5C6408DJ-25	P4C164-20JC P4C164-25JC	-		TC5588J-15 TC5588J-20 TC5588J-25		CXK5863AJ15 CXK5863AJ20 CXK5863J25/AJ25
MCM6264P15* MCM6264P20* MCM6264P25*	IDT7164S20P IDT7164S25P	CY7C185-15PC CY7C185-20PC CY7C185-25PC	MT5C6408-15 MT5C6408-20 MT5C6408-25	P4C164-20PC P4C164-25PC			TC5588P-15 TC5588P-20 TC5588P-25		CXK5863AP15 CXK5863AP20 CXK5863P25/AP25
8K×9	8K×9	8K×9	8K×9	8K×9	8K×9	8K×9	8K×9	8K×9	8K×9
MCM6265J15 MCM6265J20				P4C163-20JC		MB82B79-15PJ MB82B79-20PJ	TC5589J-15 TC5589J-20	M5M179P-35	
MCM6265P15 MCM6265P20				P4C163-20PC			TC5589P-15 TC5589P-20	-	
16K×4	16K×4	16K×4	16K×4	16K×4	16K×4	16K×4	16K×4	16K×4	16K×4
MCM6288P12 MCM6288P15 MCM6288P20 MCM6288P25	IDT7188S15P IDT7188S20P IDT7188S25P	CY7C164-12PC CY7C164-15PC CY7C164-20PC CY7C164-25PC	MT5C6404-12 MT5C6404-15 MT5C6404-20 MT5C6404-25	P4C188-12PC P4C188-15PC P4C188-20PC P4C188-25PC	HM6788HP-12 HM6788HP-15 HM6788HP-20 HM6788P-25	MB81C74-25P	TC55416P-15H TC55416P-20/P-20H TC55416P-25	M5M5188BP-15 M5M5188BP-20 M5M5188AP-25	CXK5464AP15 CXK5464AP20 CXK5464AP25
MCM6290J12 MCM6290J15 MCM6290J20 MCM6290J25	IDT6198S15Y IDT6198S20Y IDT6198S25Y	CY7C166-12VC CY7C166-15VC CY7C166-20VC CY7C166-25VC	MT5C6405DJ-12 MT5C6405DJ-15 MT5C6405DJ-20 MT5C6405DJ-25	P4C198-12JC P4C198-15JC P4C198-20JC P4C198-25JC	HM6789HJP-12 HM6789HJP-15 HM6789HJP-20 HM6789JP-25	MB81C75-25PJ	TC55417J-15H TC55417J-20/J-20H TC55417J-25	M5M5189BJ-15 M5M5189BJ-20 M5M5189AJ-25	CXK5465J15 CXK5465J20 CXK5465J25
MCM6290P12 MCM6290P15 MCM6290P20 MCM6290P25	IDT6198S15P IDT6198S20P IDT6198S25P	CY7C166-12PC CY7C166-15PC CY7C166-20PC CY7C166-25PC	MT5C6405-12 MT5C6405-15 MT5C6405-20 MT5C6405-25	P4C198-12PC P4C198-15PC P4C198-20PC P4C198-25PC	HM6789HP-12 HM6789HP-15 HM6789HP-20 HM6789P-25	MB81C75-25P	TC55417P-15 TC55417P-20/P-20H TC55417P-25	M5M5189BP-15 M5M5189BP-20 M5M5189AP-25	
64K×1	64K×1	64K×1	64K×1	64K×1	64K×1	64K×1	64K×1	64K×1	64K×1
MCM6287J12 MCM6287J15 MCM6287J20 MCM6287J25	IDT7187S15Y IDT7187S20Y IDT7187S25Y	CY7C187-15VC CY7C187-20VC CY7C187-25VC	MT5C6401DJ-12 MT5C6401DJ-15 MT5C6401DJ-20 MT5C6401DJ-25	P4C187-12JC P4C187-15JC P4C187-20JC P4C187-25JC	HM6787HJP-12 HM6787HJP-15 HM6787HJP-20 HM6787JP-25	MB81C71A-25PJ	-	M5M5187BJ-15 M5M5187BJ-20 M5M518JAJ-25	CXK5164J15 CXK5164J20 CXK5164J25
MCM6287P12 MCM6287P15 MCM6287P20 MCM6287P25	IDT7187S15P IDT7187S20P IDT7187S25P	CY7C187-15PC CY7C187-20PC CY7C187-25PC	MT5C6401-12 MT5C6401-15 MT5C6401-20 MT5C6401-25	P4C187-12PC P4C187-15PC P4C187-20PC P4C187-25PC	HM6787HP-12 HM6787HP-15 HM6787HP-20 HM6787HP-25	MB81C71A-25P		M5M5187BP-15 M5M5187BP-20 M5M518JAP-25	CXK5164P20

[◆] P = 300 mil PDIP, J = 300 mil SOJ, unless otherwise noted

^{*}MCM6264: NJ = 300 mil SOJ, J = 400 mil SOJ, P = 300 mil PDIP, WP = 600 mil PDIP

FAST STATIC RAMs (Continued)

MOTOROLA*	IDT	CYPRESS	MICRON	PERFORMANCE	HITACHI	FUJITSU	TOSHIBA	MITSUBISHI	SONY
32K×8	32K×8	32K×8	32K×8	32K×8	32K×8	32K×8	32K×8	32K×8	32K×8
MCM6206NJ20** MCM6206NJ25**	IDT71256S20P IDT71256S25P	CY7C199-20	MT5C2568DJ-20 MT5C2568DJ-25	P4C1256-20JC P4C1256-25JC	HM6787JP-25	MB8289-25	TC55328J-20 TC55328J-25		CXK58255AJ25
MCM6206NP20** MCM6206NP25**	IDT71256S20P IDT71256S25P	CY7C198-20	MT5C2568-25	P4C1256-20PC P4C1256-25PC	HM6787P-25	MB81C71A-25	TC55328P-20 TC55328P-25		CXK58255AP25
MCM6706J12 MCM6706J15	71B256S12Y 71B256S15Y								
MCM6706P12 MCM6706P15	71B256S12P 71B256S15P								
32K×9	32K×9	32K×9	32K×9	32K×9	32K×9	32K×9	32K×9	32K×9	32K×9
MCM6205N20 MCM6205NJ25 MCM6205NP20	IDT71259S25Y						TC55329J-20 TC55329P-20		
MCM6205NP25	IDT71259S25P					MB8289-25	10553291-20		
64K×4	64K×4	64K×4	64K×4	64K×4	64K×4	64K×4	64K×4	64K×4	64K×4
MCM6208J15 MCM6208J20 MCM6208J25	IDT71258S20Y IDT71258S25Y	CY7C194-25VC	MT5C2564DJ-20 MT5C2564DJ-25	P4C1258-20JC P4C1258-25JC	HM6708JP-20 HM6708JP-25		TC55464J-20 TC55464J-25	M5M5258BJ-15 M5M5258BJ-20 M5M5258AJ-25	
MCM6208P15 MCM6208P20 MCM6208P25 MCM6708P10 MCM6708P12	IDT71258S20P IDT71258S25P IDT71B258S12P	CY7C194-25PC	MT5C2564-20 MT5C2564-25	P4C1258-20PC P4C1258-25PC	HM6708P-20 HM6708P-25		TC55464P-20 TC55464P-25	M5M5258BP-15 M5M5258BP-20 M5M5258AP-25	
MCM6708J10 MCM6708J12	IDT71B258S12Y								
MCM6708P10 MCM6708P12	IDT61B928S12P								
MCM6709J10 MCM6709J12 MCM6209J15	IDT61B928S12Y								
MCM6209J20 MCM6209J25	IDT61298S20Y IDT61298S25Y	CY7C196-25VC	MT5C2565DJ-20 MT5C2565DJ-25				TC55465J-20 TC55465J-25		
MCM6209P15 MCM6209P20 MCM6209P25	IDT61298S20P IDT61298S25P	CY7C196-25PC	MT5C2565-20 MT5C2565-25	P4C1298-20PC P4C1298-25PC			TC55465P-20 TC55465P-25		
256K×1	256K×1	256K×1	256K×1	256K×1	256K×1	256K×1	256K×1	256K×1	256K×1
MCM6207J15 MCM6207J20 MCM6207J25	IDT712575S20Y IDT712575S25Y		MT5C2561DJ-20 MT5C2561DJ-25		HM6707JP-20 HM6707JP-25			M5M5260AJ-25	
MCM6207P15 MCM6207P20 MCM6207P25	IDT712575S20P IDT712575S25P	CY7C197-20PC CY7C197-25PC	MT5C2561-20 MT5C2561-25	P4C1257-20PC P4C1257-25PC	HM6707P-20 HM6707P-25			M5M5257BP-15 M5M5257BP-20 M5M5257AP-25	

[♦] P = 300 mil PDIP, J = 300 mil SOJ, unless otherwise noted

^{**}MCM6206: NJ = 300 mil SOJ, J = 400 mil SOJ, NP = 300 mil PDIP, P = 600 mil PDIP

FAST STATIC RAM APPLICATION SPECIFIC MEMORIES

MOTOROLA*	IDT	SGS	SARATOGA
4K×4 CACHE TAG	COMPARATORS		
MCM4180J,P	IDT6178SY,SP	MK41H80N	SSL4180PC
16K×4 SYNCHRO	NOUS		
MCM6293J,P MCM6294J,P MCM6295J,P	IDT61593SY,SP IDT61594SY,SP IDT61595S25Y,P		SSM7193J,P SSM7194J,P SSM7195J,P

[◆] P = 300 mil PDIP, J = 300 mil SOJ

FAST STATIC RAM MODULES

MOTOROLA*	CYPRESS	HITACHI
64K×32		
MCM3264-20		
MCM3264-25	CYM1831-25	
MCM3264-30	CYM1831-30	
256K×8		
MCM8256-20		
MCM8256-25	CYM1441-25	HB66A2568A-25
MCM8256-30		

[◆] P = 300 mil PDIP, J = 300 mil SOJ

CMOS Dynamic RAMs 2

DYNAMIC RAMs (HCMOS)

		(
Density	Organi- zation	Motorola Part Number	Address Access Time (ns Max)	Operating Current (mA Max)	Pin Count	Package Options
1M	1 Mx1	MCM511000A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)
		MCM51L1000A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)
		MCM511001A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)
		MCM511002A	70/80/100	80/70/60	18, 20, 20/26	(P)DIP, (Z)IP, SO(J)
	256Kx4	MCM514256A	70/80/100	80/70/60	20, 20, 20/26	(P)DIP, (Z)IP, SO(J)
		MCM51L4256A	70/80/100	80/70/60	20, 20, 20/26	(P)DIP, (Z)IP, SO(J)
		MCM514258A	70/80/100	80/70/60	20, 20, 20/26	(P)DIP, (Z)IP, SO(J)
4M	4Mx1	MCM514100	80/100	100/85	20, 20/26	(Z)IP, SO(J)
		MCM51L4100	80/100	100/85	20, 20/26	(Z)IP, SO(J)
	1 Mx4	MCM514400	80/100	105/90	20, 20/26	(Z)IP, SO(J)
		MCM51L4400	80/100	105/90	20, 20/26	(Z)IP, SO(J)
		MCM514410	80/100	105/90	20. 20/26	(Z)IP. SO(J)

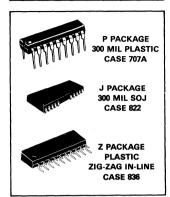
1M×1 CMOS Dynamic RAM Page Mode

The MCM511000A is a 1.0μ CMOS high-speed, dynamic random access memory. It is organized as 1,048,576 one-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost.

The MCM511000A requires only 10 address lines; row and column address inputs are multiplexed. The device is packaged in a standard 300-mil dual-in-line plastic package (DIP), a 300-mil SOJ plastic package, and a 100-mil zig-zag in-line plastic package (ZIP).

- Three-State Data Output
- Common I/O with Early Write
- Fast Page Mode
- Test Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh: MCM511000A = 8 ms MCM51L1000A = 64 ms
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM511000A-70 and MCM51L1000A-70 = 70 ns (Max)
MCM511000A-80 and MCM51L1000A-80 = 80 ns (Max)
MCM511000A-10 and MCM51L1000A-10 = 100 ns (Max)

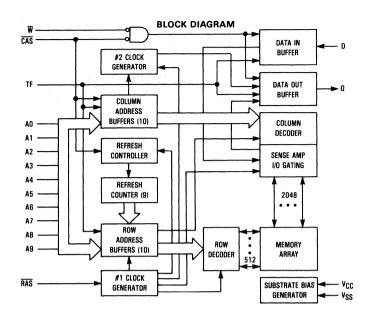

Low Active Power Dissipation:

MCM511000A-70 and MCM51L1000A-70 = 440 mW (Max) MCM511000A-80 and MCM51L1000A-80 = 385 mW (Max) MCM511000A-10 and MCM51L1000A-10 = 330 mW (Max)

Low Standby Power Dissipation:

MCM511000A and MCM51L1000A = 11 mW (Max, TTL Levels)
MCM511000A = 5.5 mW (Max, CMOS Levels)
MCM51L1000A = 1.1 mW (Max, CMOS Levels)

MCM511000A MCM51L1000A



PIN NAMES
A0-A9 Address Input
D Data Input
Q Data Output
W Read/Write Enable
RAS Row Address Strobe
CAS Column Address Strobe
V _{CC} Power (+5 V)
VSS Ground
TF Test Function Enable
NC No Connection

ZIG-ZAG IN-LINE

A9 **SMALL OUTLINE** CAS **DUAL-IN-LINE** DΠ 26 D VSS ₩ d 2 25 **h** a 18 D VSS PIN RAS D 3 24 🕽 CAS RAS 17 Da ASSIGNMENT TF II 4 23 D NC RASI NCT 22 N A9 15 H A9 TF An F 14 T A8 13 T A7 A0 | 9 18 A8 12 A6 A2 [A1 [10 17 A7 11 16 D A6 A2 [10 A4 A3 🛭 12 15 A5 V_{CC} [] 13 14 D A4

2

ABSOLUTE MAXIMUM RATINGS (See Note)

13001012 1111 01111100 1000 1000			
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Test Function Input Voltage	V _{in(TF)}	-1 to +10.5	٧
Data Out Current ·	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{sta}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	VSS	0	0	0		
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	V _{IL}	- 1.0	_	0.8	٧	1
Test Function Input High Voltage	VIH (TF)	V _{CC} +4.5	_	10.5	٧	1
Test Function Input Low Voltage	VIL (TF)	-1.0	_	V _{CC} + 1.0	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current	ICC1			mA	2
MCM511000A-70 and MCM51L1000A-70, t _{RC} = 130 ns		-	80	İ	
MCM511000A-80 and MCM51L1000A-80, t _{RC} = 150 ns		_	70		
MCM511000A-10 and MCM51L1000A-10, t _{RC} = 180 ns		_	60	İ	
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	ICC2	_	2.0	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles (CAS = V _{IH})	ICC3			mA	2
MCM511000A-70 and MCM51L1000A-70, t _{RC} = 130 ns		_	80	ļ	1
MCM511000A-80 and MCM51L1000A-80, t _{RC} = 150 ns		_	70		ŀ
MCM511000A-10 and MCM51L1000A-10, t _{RC} = 180 ns			60		
V _{CC} Power Supply Current During Fast Page Mode Cycle (RAS = V _{IL})	ICC4			mA	2, 3
MCM511000A-70 and MCM51L1000A-70, t _{PC} = 40 ns		_	60	ļ	
MCM511000A-80 and MCM51L1000A-80, t _{PC} = 45 ns		_	50		
MCM511000A-10 and MCM51L1000A-10, t _{PC} = 55 ns			40		
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V) MCM511000A	I _{CC5}	_	1.0	mA	
MCM51L1000A		_	200	μΑ	
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle	ICC6			mA	2
MCM511000A-70 and MCM51L1000A-70, t _{RC} = 130 ns		_	80		
MCM511000A-80 and MCM51L1000A-80, t _{RC} = 150 ns		-	70		1
MCM511000A-10 and MCM51L1000A-10, t _{RC} = 180 ns			60		
V _{CC} Power Supply Current, Battery Backup Mode—MCM51L1000A only	ICC7	_	300	μA	
$(t_{RC} = 125 \mu s; t_{RAS} = 1 \mu s; \overline{CAS} = \overline{CAS} \text{ Before } \overline{RAS} \text{ Cycle or } 0.2 \text{ V; } A0-A9, \overline{W},$					
D=V _{CC} -0.2 V or 0.2 V)					
Input Leakage Current (Except TF) (0 V≤V _{in} ≤6.5 V)	l _{lkg(I)}	- 10	10	μА	
Input Leakage Current (TF) (0 V≤V _{in(TF)} ≤V _{CC} +0.5 V)	l _{lkg(I)}	- 10	10	μА	
Output Leakage Current (CAS = VIH, 0 V ≤ Vout ≤ 5.5 V)	I _{lkg} (O)	- 10	10	μА	
Test Function Input Current (V _{CC} +4.5 V≤V _{in(TF)} ≤10.5 V)	lin(TF)		1	mA	
Output High Voltage (IOH = -5 mA)	Voн	2.4	_	V	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	0.4	V	

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit	Notes
Input Capacitance A0-A9, D	Cin	5	pF	4
RAS, CAS, W, TF		7	pF	4
Output Capacitance (CAS = VIH to Disable Output)	Cout	7	pF	4

NOTES:

- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Measured with one address transition per page mode cycle.
- 4. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C=I∆t/∆V.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, 4, and 5)

Parameter	Syn	nbol	MCM511000A-70 MCM51L1000A-70		1000A-70 MCM511000A- .1000A-70 MCM51L1000A-		80 MCM511000A-10 80 MCM51L1000A-10		Unit	Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	^t RELREL	tRC	130		150	_	180	_	ns	6
Read-Write Cycle Time	tRELREL.	tRWC	155	_	175	-	210	_	ns	6
Page Mode Cycle Time	†CELCEL	tPC	40	_	45	_	55	_	ns	
Page Mode Read-Write Cycle Time	†CELCEL	^t PRWC	65	_	70	_	85	_	ns	
Access Time from RAS	tRELQV	tRAC	_	70	_	80	_	100	ns	7, 8
Access Time from CAS	†CELQV	†CAC	_	20	_	20	_	25	ns	7, 9
Access Time from Column Address	†AVQV	tAA	_	35	_	40	_	50	ns	7, 10
Access Time from Precharge CAS	tCEHQV	[†] CPA	_	35	_	40	_	50	ns	7
CAS to Output in Low-Z	tCELQX	tCLZ	0	_	0	_	0	_	ns	7
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	20	ns	11
Transition Time (Rise and Fall)	ŧŢ	ŧΤ	3	50	3	50	3	50	ns	
RAS Precharge Time	^t REHREL	tRP	50	_	60	_	70	_	ns	
RAS Pulse Width	^t RELREH	†RAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	^t RELREH	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	^t CELREH	tRSH	20	_	20	_	25	_	ns	
CAS Hold Time	†RELCEH	tCSH	70	_	80	_	100	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	50	20	60	25	75	ns	12
RAS to Column Address Delay Time	^t RELAV	tRAD	15	35	15	40	20	50	ns	13
CAS to RAS Precharge Time	^t CEHREL	tCRP	5	_	5	-	5	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	†CEHCEL	tCP	10	_	10	_	10	_	ns	
Row Address Setup Time	†AVREL	t _{ASR}	0	_	0	_	0	_	ns	
Row Address Hold Time	tRELAX	tRAH	10		10	_	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0	_	0		ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	†RELAX	tAR	55	_	60	_	75	_	ns	
Column Address to RAS Lead Time	^t AVREH	tRAL	35	_	40	_	50		ns	

(continued)

NOTES:

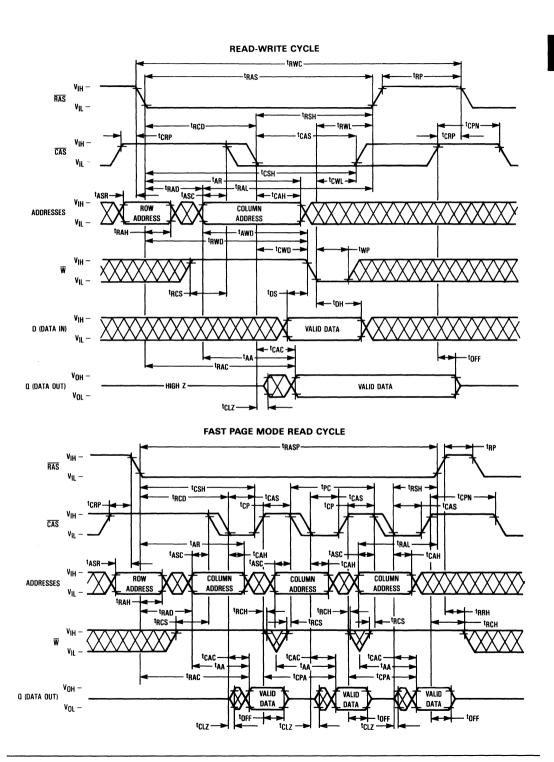
- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- 5. TF pin must be at $V_{\mbox{\scriptsize IL}}$ or open if not used.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤T_A ≤70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at VOH=2.0 V and VOL=0.8 V.
- 8. Assumes that t_{RCD}≤t_{RCD} (max).
- Assumes that t_{RCD}≥t_{RCD} (max).
- 10. Assumes that t_{RAD}≥t_{RAD} (max).
- 11. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 12. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 13. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

MCM511000A • MCM51L1000A

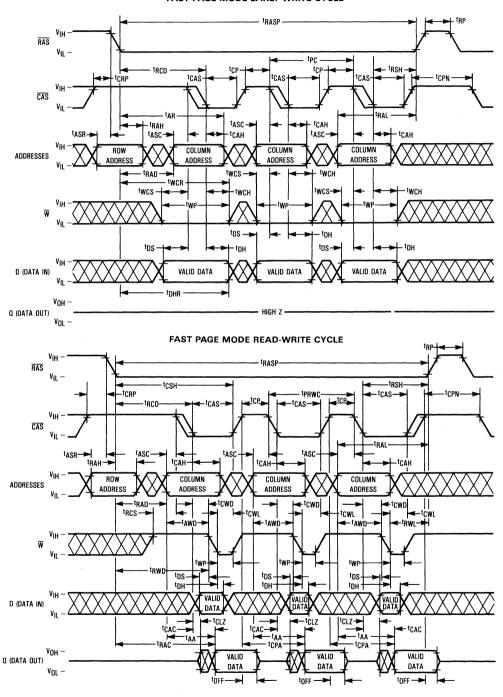
READ, WRITE, AND READ-WRITE CYCLES (Continued)

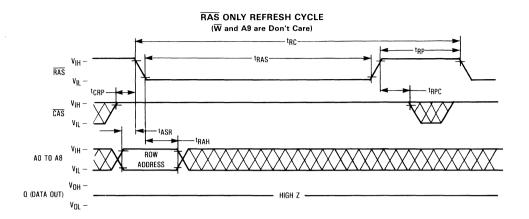
Parameter				1000A-70 .1000A-70					Unit	Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max		
Read Command Setup Time	tWHCEL	tRCS	0	_	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	^t CEHWX	tRCH	0		0		0	_	ns	14
Read Command Hold Time Referenced to RAS	^t REHWX	tRRH	0	_	0	_	0	_	ns	14
Write Command Hold Time Referenced to CAS	^t CELWH	tWCH	15	_	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	^t RELWH	tWCR	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	. 20	_	25	_	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20	_	20	_	25	-	ns	
Data In Setup Time	†DVCEL	tDS	0	_	0	_	0	-	ns	15
Data In Hold Time	tCELDX	tDH	15	_	15	_	20	_	ns	15
Data In Hold Time Referenced to RAS	tRELDX	tDHR	55	_	60	_	75	_	ns	
Refresh Period MCM511000A MCM51L1000A	^t RVRV	tRFSH	_	8 64	_	8 64	_	8 64	ms	
Write Command Setup Time	†WLCEL	twcs	0	_	0	_	0	_	ns	16
CAS to Write Delay	^t CELWL	tCWD	20	_	20	_	25	_	ns	16
RAS to Write Delay	tRELWL	tRWD	70	_	80	_	100	_	ns	16
Column Address to Write Delay Time	tAVWL	tAWD	35	_	40	_	50	_	ns	16
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	tCSR	10	_	10	_	10	-	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	30	_	30	_	30	_	ns	
CAS Precharge to CAS Active Time	^t REHCEL	tRPC	0		0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	^t CEHCEL	tCPT	40	_	40	_	50	_	ns	
CAS Precharge Time	[†] CEHCEL	tCPN	10	_	10	_	15	_	ns	
Test Mode Enable Setup Time Referenced to RAS	^t TEHREL	[†] TES	0	_	0	_	0	_	ns	
Test Mode Enable Hold Time Referenced to RAS	^t REHTEL	[†] TEHR	0	_	0	_	0	_	ns	
Test Mode Enable Hold Time Referenced to CAS	[†] CEHTEL	tTEHC	0	_	0	_	0	-	ns	

NOTES:

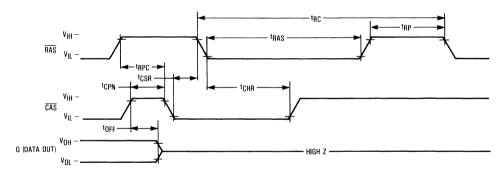

^{14.} Either tRRH or tRCH must be satisfied for a read cycle.

^{15.} These parameters are referenced to CAS leading edge in random write cycles and to W leading edge in delayed write or read-write cycles.

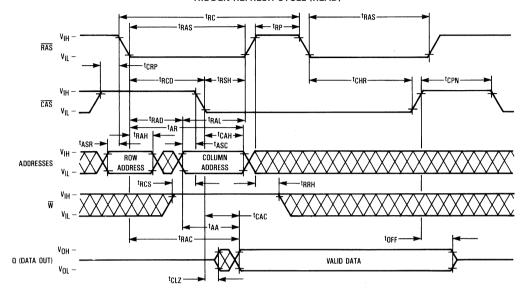

^{16.} tWCS, tRWD, tCWD, and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min), tRWD≥tRWD (min), and tAWD≥tAWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

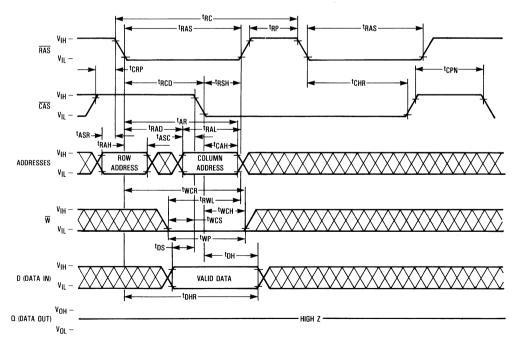

READ CYCLE .tRP RAS tCSH tcpn tcrp. tCRP tRCD · CAS tral . tASCtasr-<-tcah → VIH -COLUMN ADDRESSES ADDRESS ADDRESS - trch trrh toff --trac-Q (DATA OUT) HIGH Z -VALID DATA VOL -

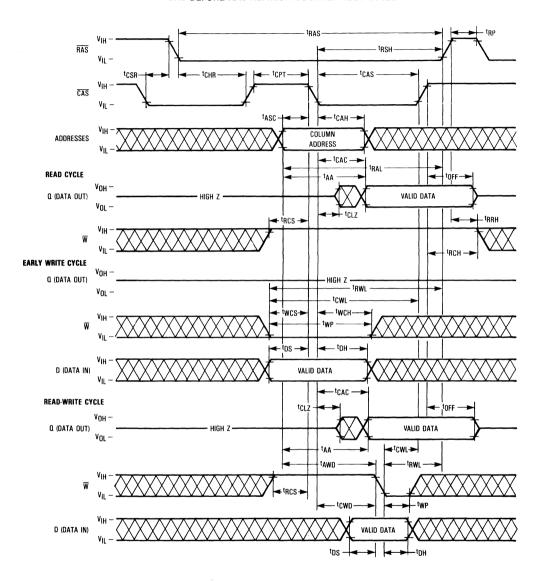
EARLY WRITE CYCLE RAS tRCD tCPN: trsh tCRP tcshtCRP CAS V_{IL} – tasr → tasc tcah → COLUMN ADDRESSES ADDRESS tRAH-- tcwl twcs twcr tDS-D (DATA IN) VALID DATA Q (DATA OUT) - HIGH Z -VOL -



FAST PAGE MODE EARLY WRITE CYCLE




CAS BEFORE RAS REFRESH CYCLE (W and A0 to A9 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE)

CAS BEFORE **RAS** REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 8 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The ten address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe (\overline{RAS}) and column address strobe (\overline{CAS}), into two separate 10-bit address fields. A total of twenty address bits, ten rows and ten columns, will decode one of the 1,048,576 bit locations in the device. \overline{RAS} active transition is followed by \overline{CAS} active transition (active = V_{IL}, t_{RCD} minimum) for all read or write cycles. The delay between \overline{RAS} and \overline{CAS} active transitions, referred to as the **multiplex window**, gives a system designer flexibility in setting up the external addresses into the RAM.

The external \overline{CAS} signal is ignored until an internal \overline{RAS} signal is available. This "gate" feature on the external \overline{CAS} clock enables the internal \overline{CAS} line as soon as the row address hold time (tRAH) specification is met (and defines tRCD minimum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the \overline{CAS} clock.

There are two other variations in addressing the 1M RAM:

RAS only refresh cycle and CAS before RAS refresh cycle. Both are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: "normal" random read cycle, page mode read cycle, read-write cycle, and page mode read-write cycle. The normal read cycle is outlined here, while the other cycles are discussed in separate sections.

The normal read cycle begins as described in ADDRESS-ING THE RAM, with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ active transitions latching the desired bit location. The write (\overline{W}) input level must be high $(V_{|H})$, t_{RCS} (minimum) before the $\overline{\text{CAS}}$ active transition, to enable read mode.

Both the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. However, $\overline{\text{CAS}}$ must be active before or at tRCD maximum to guarantee valid data out (Q) at tRAC (access time from $\overline{\text{RAS}}$ active transition). If the tRCD maximum is exceeded, read access time is determined by the $\overline{\text{CAS}}$ clock active transition (tCAC).

The RAS and CAS clocks must remain active for a minimum time of tRAS and tCAS respectively, to complete the read cycle. W must remain high throughout the cycle, and for time tRRH or tRCH after RAS or CAS inactive transition, respectively, to maintain the data at that bit location. Once RAS transitions to inactive, it must remain inactive for a minimum time of tRP to precharge the internal device circuitry for the

next active cycle. Q is valid, but not latched, as long as the $\overline{\text{CAS}}$ clock is active. When the $\overline{\text{CAS}}$ clock transitions to inactive, the output will switch to High Z.

WRITE CYCLE

The user can write to the DRAM with any of four cycles; early write, late write, page mode early write, and page mode read-write. Early and late write modes are discussed here, while page mode write operations are covered in another section.

A write cycle begins as described in ADDRESSING THE RAM. Write mode is enabled by the transition of \overline{W} to active (V_{IL}). Early and late write modes are distinguished by the active transition of \overline{W} , with respect to \overline{CAS} . Minimum active time tRAS and tCAS, and precharge time tRP apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time t_{WCS} before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for t_{RWL} and t_{CWL} , respectively, after the start of the early write operation to complete the cycle.

 Ω remains High Z throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CAS} active transition, keeping data-out buffers disabled. This feature can be utilized on systems with a common I/O bus, provided all writes are performed with early write cycles, to prevent bus contention.

A late write cycle occurs when \overline{W} active transition is made after \overline{CAS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CAS} active transition, $t_{RCD}+t_{CWD}+t_{RWL}+2t_{T})\leq t_{RAS}$, if other timing minimums t_{RCD} , t_{RWL} , and t_{T}) are maintained. D is referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CAS} active transition but 0 may be indeterminate—see note 16 of AC operating conditions table. \overline{RAS} and \overline{CAS} must remain active for t_{RWL} and t_{CWL} , respectively, after \overline{W} active transition to complete the write cycle.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the **WRITE CYCLE** section, except \overline{W} must remain high for tcwD minimum after the \overline{CAS} active transition, to guarantee valid Q before writing the bit.

PAGE MODE CYCLES

Page mode allows fast successive data operations at all 2048 column locations on a selected row of the 1M dynamic RAM. Read access time in page mode (tCAC) is typically half the regular \overline{RAS} clock access time, tRAC. Page mode operation consists of keeping \overline{RAS} active while toggling \overline{CAS} between VIH and VIL. The row is latched by \overline{RAS} active transition, while each \overline{CAS} active transition allows selection of a new column location on the row.

A page mode cycle is initiated by a normal read, write, or read-write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, CAS transitions to inactive for minimum of tcp, while RAS remains low (VIL). The second CAS active transition while RAS is low initiates the first page mode cycle (tpc or tpRWC). Either a read, write,

or read-write operation can be performed in a page mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive page mode cycles and performed in any order. The maximum number of consecutive page mode cycles is limited by tRASP. Page mode operation is ended when $\overline{\rm RAS}$ transitions to inactive, coincident with or following $\overline{\rm CAS}$ inactive transition.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge degrades with time and temperature, thus each bit must be periodically **refreshed** (recharged) to maintain the correct bit state. Bits in the MCM511000A require refresh every 8 milliseconds, while refresh time for the MCM51L1000A is 64 milliseconds.

Refresh is accomplished by cycling through the 512 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM511000A, and 124.8 microseconds for the MCM51L1000A. Burst refresh, a refresh of all 512 rows consecutively, must be performed every 8 milliseconds on the MCM511000A and 64 milliseconds on the MCM51L1000A.

A normal read, write, or read-write operation to the RAM will refresh all the bits (2048) associated with the particular row decoded. Three other methods of refresh, RAS-only refresh, CAS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

 \overline{RAS} -only refresh consists of \overline{RAS} transition to active, latching the row address to be refreshed, while \overline{CAS} remains high (V_{IH}) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh is enabled by bringing $\overline{\text{CAS}}$ active before $\overline{\text{RAS}}$. This clock order activates an internal refresh

counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CAS} active at the end of a read or write cycle, while \overline{RAS} cycles inactive for tgp and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 512 cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed after a minimum of eight CAS before RAS initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CAS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read the "1"s which were written in step 2 in normal read mode.
- Using the same starting column address as in step 2, read
 "1" out and write "0" into the cell by performing the CAS
 before RAS refresh counter test, read-write cycle.
 Repeat this operation 512 times.
- Read "0"s which were written in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

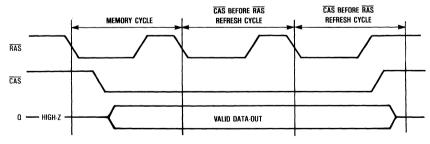


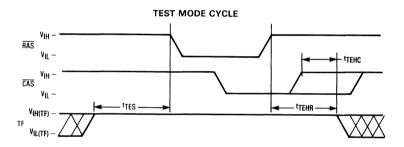
Figure 1. Hidden Refresh Cycle

2

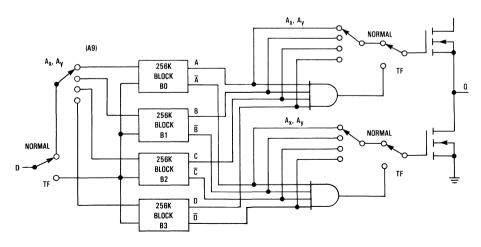
TEST MODE

Internal organization of this device (256K \times 4) allows it to be tested as if it were a 256K \times 1 DRAM. Only nine of the ten addresses (A0-A8) are used in test mode; A9 is internally disabled. A test mode write cycle writes data, D (data in), to a bit in each of the four 256K \times 1 blocks (B0-B3), in parallel. A test mode read cycle reads a bit in each of the four blocks. If data is the same in all four bits, Q (data out) is the same as the data in each bit. If data is not the same in all four bits, Q is high Z. See truth table and block diagram.

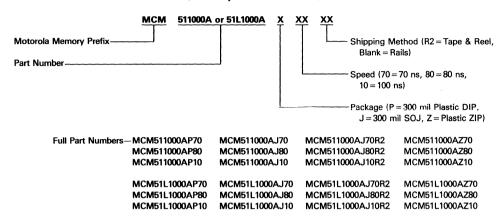
Test mode can be used in any timing cycle, including page mode cycles. The test mode function is enabled by holding the "TF" pin on "super voltage" for the specified period (tTES, tTEHR, tTEHC; see TEST MODE CYCLE).


"Super voltage" = VCC + 4.5 V

where


4.5 V < V_{CC} < 5.5 V and maximum voltage = 10.5 V. A9 is ignored in test mode. In normal operation, the "TF" pin must either be connected to V_{IL}, or left open.

Test Mode Truth Table


D	В0	B1	B2	В3	a
0	0	0	0	0	0
1	1	1	1	1	1
-		Any	Other		High-Z

TEST FUNCTION BLOCK DIAGRAM

ORDERING INFORMATION (Order by Full Part Number)

1M×1 CMOS Dynamic RAM

The MCM511001A is a 1.0μ CMOS high-speed, dynamic random access memory. It is organized as 1,048,576 one-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost. The fast nibble mode feature allows high-speed serial access of up to 4 bits of data.

The MCM511001A requires only 10 address lines; row and column address inputs are multiplexed. The device is packaged in a standard 300-mil dual-in-line plastic package (DIP), a 300-mil SOJ plastic package, and a 100-mil zig-zag in-line plastic package (ZIP).

- Three-State Data Output
- Common I/O with Early Write
- Fast Nibble Mode
- Test Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle, 8 ms Refresh
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC): MCM511001A-70 = 70 ns (Maximum)

MCM511001A-80 = 80 ns (Maximum)

MCM511001A-10 = 100 ns (Maximum)

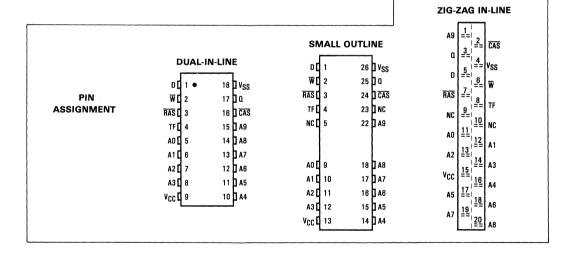
• Low Active Power Dissipation: MCM511001A-70 = 440 mW (Maximum)

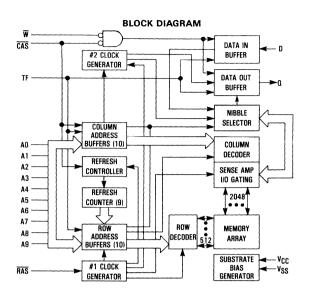
MCM511001A-80 = 385 mW (Maximum) MCM511001A-10 = 330 mW (Maximum)

Low Standby Power Dissipation: 11 mW (Maximum, TTL Levels)
 5.5 mW (Maximum, CMOS Levels)

MCM511001A

P PACKAGE 300 MIL PLASTIC CASE 707A




J PACKAGE 300 MIL SOJ CASE 822

Z PACKAGE
PLASTIC
ZIG-ZAG IN-LINE
CASE 836

PIN NAMES
A0-A9 Address Input
D Data Input
Q Data Output
W Read/Write Enable
RAS Row Address Strobe
CAS Column Address Strobe
V _{CC} Power (+5 V)
V _{SS} Ground
TF Test Function Enable
NC No Connection

ABSOLUTE MAXIMUM RATINGS (See Note)

ABOUTO LE INIAVINIONI NATINGO (266 NOT	\$1		
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Test Function Input Voltage	V _{in(TF)}	-1 to +10.5	٧
Data Out Current	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0	l	
Logic High Voltage, All Inputs	ViH	2.4	-	6.5	V	1
Logic Low Voltage, All Inputs	VIL	-1.0	-	0.8	V	1
Test Function Input High Voltage	VIH (TF)	V _{CC} +4.5	-	10.5	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM511001A-70, t _{RC} = 130 ns MCM511001A-80, t _{RC} = 150 ns MCM511001A-10, t _{RC} = 180 ns	Icc1	_ ·	80 70 60	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	I _{CC2}	_	2.0	mA	
V_{CC} Power Supply Current During \overline{RAS} only Refresh Cycles (\overline{CAS} = V_{IH}) MCM511001A-70, t_{RC} = 130 ns MCM511001A-80, t_{RC} = 150 ns MCM511001A-10, t_{RC} = 180 ns	lcc3	- -	80 70 60	mA	2
V _{CC} Power Supply Current During Nibble Mode Cycle ($\overline{RAS} = V_{ L}$) MCM511001A-70, t _{NC} = 35 ns MCM511001A-80, t _{NC} = 35 ns MCM511001A-10, t _{NC} = 40 ns	ICC4	- - -	60 50 40	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V)	1 _{CC5}	_	1.0	mA	
V_{CC} Power Supply Current During \overline{CAS} Before \overline{RAS} Refresh Cycle MCM511001A-70, t_{RC} = 130 ns MCM511001A-80, t_{RC} = 150 ns MCM511001A-10, t_{RC} = 180 ns	ICC6	- - -	80 70 60	mA	2
Input Leakage Current (Except TF) (0 V≤V _{in} ≤6.5 V)	l _{ikg(i)}	- 10	10	μΑ	
Input Leakage Current (TF) (0 V≤V _{in(TF)} ≤V _{CC} +0.5 V)	likg(i)	- 10	10	μΑ	
Output Leakage Current (CAS = V _{IH} , 0 V ≤ V _{out} ≤ 5.5 V)	lkg(0)	- 10	10	μА	
Test Function Input Current (V _{CC} +4.5 V≤V _{in(TF)} ≤10.5 V)	lin(TF)	_	1	mA	
Output High Voltage (I _{OH} = -5 mA)	VOH	2.4	_	V	
Output Low Voltage (I _{OL} = 4.2 mA)	VoL	_	0.4	V	

$\textbf{CAPACITANCE} \ \, (\text{f} = 1.0 \ \text{MHz}, \ \text{T}_{\mbox{\scriptsize A}} = 25 \ ^{\circ}\mbox{C}, \ \mbox{V}_{\mbox{\scriptsize CC}} = 5 \ \mbox{V}, \ \mbox{Periodically Sampled Rather Than 100\% Tested)}$

Parameter		Symbol	Max	Unit	Notes
Input Capacitance A0-A9, I		Cin	5	pF	3
RAS, CAS, W, TI	= }		7	pF	3
Output Capacitance (CAS = VIH to Disable Output)	1	Cout	7	pF	3

- All voltages referenced to V_{SS}.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_{A} = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

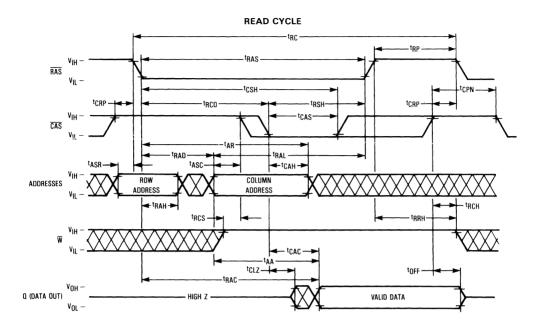
READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, 4, and 5)

	Syn	nbol	MCM511001A-70		MCM511001A-80		MCM511001A-10		11-14	Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	tRELREL	tRC	130	_	150	_	180	_	ns	6
Read-Write Cycle Time	tRELREL	tRWC	155	_	175	_	210	_	ns	6
Nibble Mode Cycle Time	^t CEHCEH	tNC	35	_	35	_	40	_	ns	
Nibble Mode Read-Write Cycle Time	^t CEHCEH	tNRMW	55	_	55	_	65	_	ns	
Access Time from RAS	^t RELQV	tRAC	_	70	_	80		100	ns	7, 8
Access Time from CAS	tCELQV	tCAC	_	20		20	_	25	ns	7, 9
Access Time from Column Address	tAVQV	tAA		35	_	40		50	ns	7, 10
Nibble Mode Access Time	tCELQV	tNCAC		15	_	15	_	20	ns	7
CAS to Output in Low-Z	†CELQX	tCLZ	0	_	0	_	0	_	ns	7
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	20	ns	11
Transition Time (Rise and Fall)	tŢ	tŢ	3	50	3	50	3	50	ns	
RAS Precharge Time	tREHREL	tRP	50	-	60	_	70	_	ns	
RAS Pulse Width	^t RELREH	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS Hold Time	tCELREH	tRSH	20	-	20	_	25	_	ns	
CAS Hold Time	^t RELCEH	tCSH	70	_	80	_	100	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	50	20	60	25	75	ns	12
RAS to Column Address Delay Time	†RELAV	tRAD	15	35	15	40	20	50	ns	13
CAS to RAS Precharge Time	^t CEHREL	tCRP	5	_	5	_	5	_	ns	
CAS Precharge Time	†CEHCEL	tCPN	10	_	10		10	_	ns	
Row Address Setup Time	†AVREL	tASR	0	_	0	_	0	_	ns	
Row Address Hold Time	^t RELAX	tRAH	10	-	10	_	15		ns	
Column Address Setup Time	†AVCEL	tASC	0	-	0	_	0	_	ns	
Column Address Hold Time	†CELAX	tCAH	15	-	15	-	20	_	ns	
Column Address Hold Time Referenced to RAS	^t RELAX	^t AR	55	_	60		75		ns	
Column Address to RAS Lead Time	tAVREH	tRAL	35	_	40	_	50	_	ns	

(continued)

- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- 5. The TF pin must be at V_{IL} or open if not used.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 7. Measured with a current load equivalent to 2 TTL ($-200~\mu\text{A}$, +4~mA) loads and 100 pF with the data output trip points set at $V_{OH} = 2.0~\text{V}$ and $V_{OL} = 0.8~\text{V}$.
- 8. Assumes that t_{RCD}≤t_{RCD} (max).
- Assumes that t_{RCD}≥t_{RCD} (max).
- 10. Assumes that t_{RAD}≥t_{RAD} (max).
- 11. tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 12. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 13. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

READ, WRITE, AND READ-WRITE CYCLES (Continued)

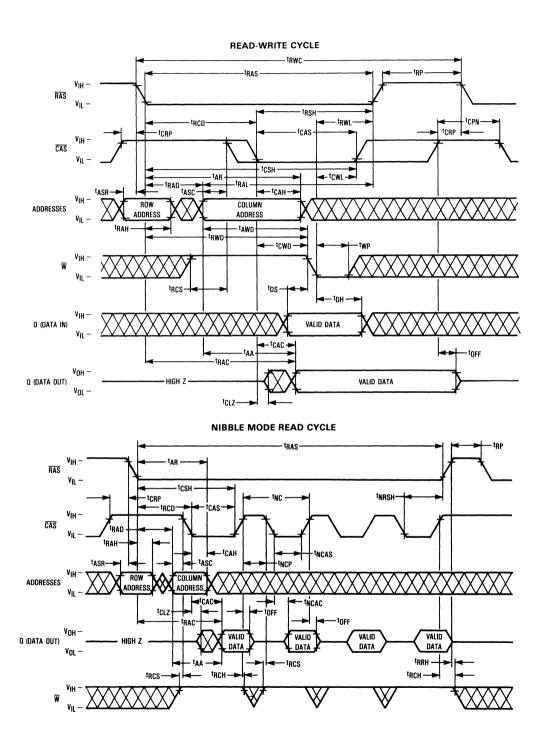

B	Syn	nbol	MCM511001A-70		MCM511001A-80		MCM511001A-10		11-:4	Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Command Setup Time	†WHCEL	tRCS	0	_	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	tRCH	0	_	0	_	0	_	ns	14
Read Command Hold Time Referenced to RAS	tREHWX	tRRH	0	_	0	_	0	_	ns	14
Write Command Hold Time Referenced to CAS	tCELWH	twch	15	_	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	tRELWH	tWCR	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	20	_	25	_	ns	
Write Command to CAS Lead Time	tWLCEH	tCWL	20	_	20	_	25		ns	
Data In Setup Time	†DVCEL	tDS	0	_	0	_	0	-	ns	15
Data In Hold Time	tCELDX	tDH	15	_	15	_	20	_	ns	15
Data In Hold Time Referenced to RAS	tRELDX	tDHR	55	-	60	_	75		ns	
Refresh Period	tRVRV	tRFSH	_	8	_	8	_	8	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	0		ns	16
CAS to Write Delay	tCELWL	tcwd	20	_	20	_	25	_	ns	16
RAS to Write Delay	^t RELWL	tRWD	70		80	_	100	-	ns	16
Column Address to Write Delay Time	tAVWL	tAWD	35	_	40	_	50	_	ns	16
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	tCSR	10	_	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	30	_	30	_	30	-	ns	
RAS Precharge to CAS Active Time	†REHCEL	tRPC	0		0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	^t CEHCEL	^t CPT	40		40	_	50	_	ns	
Nibble Mode Pulse Width	^t CELCEH	tNCAS	15	_	15	_	20	_	ns	
Nibble Mode CAS Precharge Time	†CEHCEL	tNCP	10	_	10	_	10	_	ns	
Nibble Mode RAS Hold Time	tCELREH	tNRSH	15		15	-	20	-	ns	
Nibble Mode CAS to Write Delay Time	tCELWL	tNCWD	15	_	15	_	20		ns	
Nibble Mode Write Command to RAS Lead Time	tWLREH	tNRWL	15	_	15	_	20		ns	
Nibble Mode Write Command to CAS Lead Time	tWLCEH	tNCWL	15	_	15	-	20	_	ns	
Test Mode Enable Setup Time Referenced to RAS	^t TEHREL	^t TES	0	_	0	_	0	_	ns	
Test Mode Enable Hold Time Referenced to RAS	^t REHTEL	tTEHR	0	_	0	_	0	_	ns	
Test Mode Enable Hold Time Referenced to CAS	[†] CEHTEL	^t TEHC	0	_	0	-	0	_	ns	

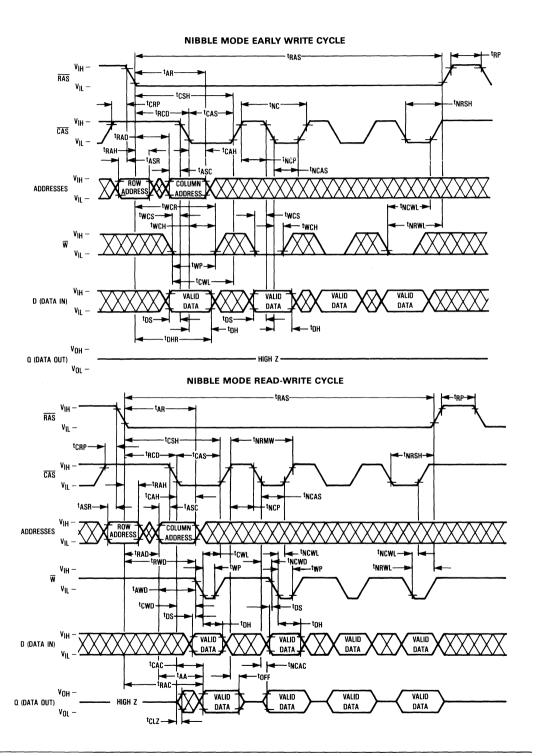
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. These parameters are referenced to CAS leading edge in random write cycles and to W leading edge in delayed write or read-write cycles.
- 16. tWCS, tRWD, tCWD, and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min), tRWD≥tRWD (min), and tAWD≥tAWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

D (DATA IN)

Q (DATA OUT)

VOL -

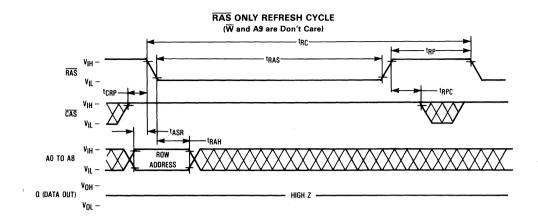



RAS v_{IL} tRCD -trsh tcsh CAS V_{IL} -- tral tRADtasr → tasc -COLUMN ADDRESSES ADDRESS - twch - twcr tDH→

EARLY WRITE CYCLE

VALID DATA

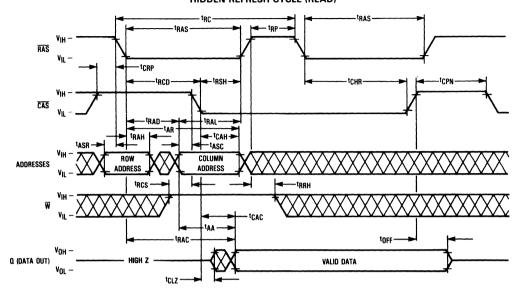
- HIGH Z -

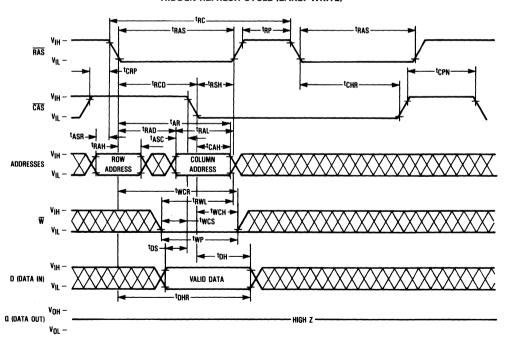

V_{IH} -

VOL -

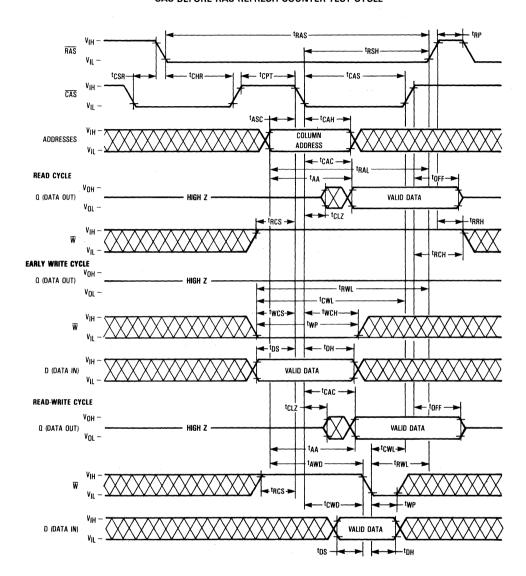
tOFF

CAS


Q (DATA OUT)


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A9 are Don't Care) trace tra

- HIGH Z -


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 8 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The ten address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe (RAS) and column address strobe (CAS), into two separate 10-bit address fields. A total of twenty address bits, ten rows and ten columns, will decode one of the 1,048,576 bit locations in the device. RAS active transition is followed by CAS active transition (active = V_{IL}, t_{RCD} minimum) for all read or write cycles. The delay between RAS and CAS active transitions, referred to as the **multiplex window**, gives a system designer flexibility in setting up the external addresses into the RAM.

The external \overline{CAS} signal is ignored until an internal \overline{RAS} signal is available. This "gate" feature on the external \overline{CAS} clock enables the internal \overline{CAS} line as soon as the row address hold time (tRAH) specification is met (and defines tRCD minimum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the \overline{CAS} clock.

There are two other variations in addressing the 1M RAM: RAS only refresh cycle and CAS before RAS refresh cycle. Both are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: "normal" random read cycle, nibble mode read cycle, read-write cycle, and nibble mode read-write cycle. The normal read cycle is outlined here, while the other cycles are discussed in separate sections.

The normal read cycle begins as described in ADDRESSING THE RAM, with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ active transitions latching the desired bit location. The write (\overline{W}) input level must be high (V_{H}) , t_{RCS} (minimum) before the $\overline{\text{CAS}}$ active transition, to enable read mode.

Both the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. However, $\overline{\text{CAS}}$ must be active before or at tRCD maximum to guarantee valid data out (Q) at tRAC (access time from $\overline{\text{RAS}}$ active transition). If the tRCD maximum is exceeded, read access time is determined by the $\overline{\text{CAS}}$ clock active transition (tCAC).

The RAS and CAS clocks must remain active for a minimum time of tRAS and tCAS respectively, to complete the read cycle. W must remain high throughout the cycle, and for time tRRH or tRCH after RAS or CAS inactive transition, respectively, to maintain the data at that bit location. Once RAS transitions to inactive, it must remain inactive for a minimum

time of tRP to precharge the internal device circuitry for the next active cycle. Q is valid, but not latched, as long as the CAS clock is active. When the CAS clock transitions to inactive, the output will switch to High Z (three-state).

WRITE CYCLE

The user can write to the DRAM with any of four cycles: early write, late write, nibble mode early write, and nibble mode read-write. Early and late write modes are discussed here, while nibble mode write operations are covered in another section.

A write cycle begins as described in **ADDRESSING THE RAM**. Write mode is enabled by the transition of \overline{W} to active $(V_{|L})$. Early and late write modes are distinguished by the active transition of \overline{W} , with respect to \overline{CAS} . Minimum active times t_{RAS} and t_{CAS} , and precharge time t_{RP} apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time twcs before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for trwL and trwL, respectively, after the start of the early write operation to complete the cycle

Q remains in three-state condition throughout an early write cycle because W active transition precedes or coincides with CAS active transition, keeping data-out buffers disabled. This feature can be utilized on systems with a common I/O bus, provided all writes are performed with early write cycles, to prevent bus contention.

A late write cycle occurs when \overline{W} active transition is made after \overline{CAS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CAS} active transition, $(t_{RCD} + t_{CWD} + t_{RWL} + 2t_T) \le t_{RAS}$, if other timing minimums $(t_{RCD}, t_{RWL}$ and $t_T)$ are maintained. D is referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CAS} active transition but 0 may be indeterminate—see note 16 of AC operating conditions table. \overline{RAS} and \overline{CAS} must remain active for t_{RWL} and t_{CWL} , respectively, after \overline{W} active transition to complete the write cycle.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the WRITE CYCLE section, except \overline{W} must remain high for tcwp minimum after the \overline{CAS} active transition, to guarantee valid Q before writing the bit.

NIBBLE MODE CYCLES

Nibble mode allows fast successive serial data operations at two, three, or four bits of the 1M dynamic RAM. Read access time in nibble mode (tNCAC) is considerably faster than the regular \overline{RAS} clock access time tRAC. Nibble mode operation consists of keeping \overline{RAS} active while toggling \overline{CAS} between VIH and VIL. The address of the first nibble bit is latched by \overline{RAS} and \overline{CAS} active transitions. Each subsequent \overline{CAS} active transition increments the row and column addresses internally to access the next bit in binary fashion. After the fourth bit is accessed, the nibble pattern repeats itself: (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1) The A10 address determines the starting point of the 4-bit nibble, with row address A10 the least significant of the (column, row) ordered

pair. External addresses are ignored after the first nibble bit is selected

A nibble mode cycle is initiated by a normal read, write, or read-write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, \overline{CAS} transitions to inactive for minimum of tNCP, while \overline{RAS} remains low (VIL). The second \overline{CAS} active transition while \overline{RAS} is low initiates the first nibble mode cycle (tNC or tNRMW). Either a read, write, or read-write operation can be performed in a nibble mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive nibble mode cycles and performed in any order. The maximum number of consecutive nibble mode cycles is limited by tRAS. Nibble mode operation ends when RAS transitions to inactive, coincident with or following a \overline{CAS} inactive transition.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge degrades with time and temperature, thus each bit must be periodically refreshed (recharged) to maintain the correct bit state. Bits in the MCM511001A require refresh every 8 milliseconds.

Refresh is accomplished by cycling through the 512 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM511001A. Burst refresh, a refresh of all 512 rows consecutively, must be performed every 8 milliseconds.

A normal read, write, or read-write operation to the RAM will refresh all the bits (2048) associated with the particular row decoded. Three other methods of refresh, RAS-only refresh, CAS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

RAS-only refresh consists of RAS transition to active, latching the row address to be refreshed, while CAS remains high (V_{IH}) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

CAS before RAS refresh is enabled by bringing CAS active before RAS. This clock order activates an internal refresh counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CAS} active at the end of a read or write cycle, while \overline{RAS} cycles inactive for tgp and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 512 cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed after a minimum of eight CAS before RAS initialization cycles. Test procedure:

- Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CAS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read the "1"s which were written in step 2 in normal read mode
- Using the same starting column address as in step 2, read
 "1" out and write "0" into the cell by performing the CAS
 before RAS refresh counter test, read-write cycle.
 Repeat this operation 512 times.
- Read "0"s which were written in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

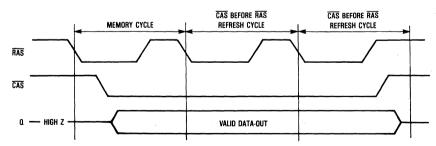
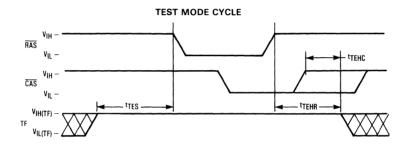
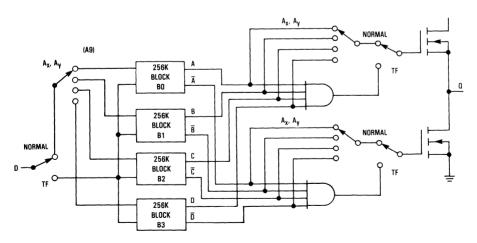


Figure 1. Hidden Refresh Cycle

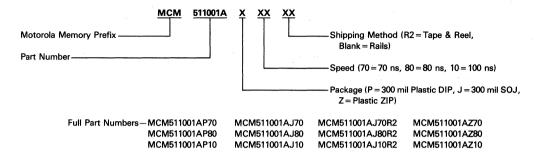
TEST MODE


Internal organization of this device (256K \times 4) allows it to be tested as if it were a 256K \times 1 DRAM. Only nine of the ten addresses (A0-A8) are used in test mode; A9 is internally disabled. A test mode write cycle writes data, D (data in), to a bit in each of the four 256K \times 1 blocks (B0-B3), in parallel. A test mode read cycle reads a bit in each of the four blocks. If data is the same in all four bits, Q (data out) is the same as the data in each bit. If data is not the same in all four bits, Q is high Z. See truth table and block diagram.

Test mode can be used in any timing cycle except nibble mode cycles. The test mode function is enabled by holding the "TF" pin on "super voltage" for the specified period (tTES, tTEHR, tTEHC; see TEST MODE CYCLE). "Super voltage" = V_{CC} + 4.5 V


where

4.5 V < V_{CC} < 5.5 V and maximum voltage = 10.5 V. A9 is ignored in test mode. In normal operation, the "TF" pin must either be connected to V_{IL} , or left open.


	Test Mode Truth Table									
D	В0	B1	B2	В3	a					
0	0	0	0	0	0					
1	1	1	1	1	1					
-	- Any Other				High-Z					

TEST FUNCTION BLOCK DIAGRAM

ORDERING INFORMATION (Order by Full Part Number)

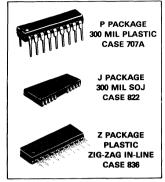
1M×1 CMOS Dynamic RAM Static Column

The MCM511002A is a 1.0μ CMOS high-speed, dynamic random access memory. It is organized as 1,048,576 one-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost. The static column mode feature allows column data to be accessed upon the column address transition when RAS and CS are held low, similar to static RAM operation.

The MCM511002A requires only 10 address lines; row and column address inputs are multiplexed. The device is packaged in a standard 300-mil dual-in-line plastic package (DIP), a 300-mil SOJ plastic package, and a 100-mil zig-zag in-line plastic package (ZIP).

- Three-State Data Output
- Common I/O with Early Write
- Static Column Mode
- Test Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CS Before RAS Refresh
- Hidden Refresh
- 512 Cycle, 8 ms Refresh
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection

■ Low Active Power Dissipation: MCM511002A-70 = 440 mW (Maximum)


MCM511002A-80 = 385 mW (Maximum) MCM511002A-10=330 mW (Maximum)

• Low Standby Power Dissipation: 11 mW (Maximum, TTL Levels)

Fast Access Time (tRAC): MCM511002A-70 = 70 ns (Maximum) MCM511002A-80 = 80 ns (Maximum) MCM511002A-10 = 100 ns (Maximum)

5.5 mW (Maximum, CMOS Levels)

MCM511002A


PIN NAMES
A0-A9 Address Input
D Data Input
Q Data Output
W Read/Write Enable
RAS Row Address Strobe
CS Chip Select
V _{CC} Power (+5 V)
VSS Ground
TF Test Function Enable
NC No Connection

ZIG-ZAG IN-LINE

SMALL OUTLINE **DUAL-IN-LINE** 26 D VSS 25 D Q 24 h cs PIN ₩ 🛮 2 17 ha TF [23 D NC ASSIGNMENT RAS [] 3 16 H CS NC [22 ll A9 TF D 4 15 ll A9 AO 🛚 14 D A8 13 D A7 18 H A8 An Fla 12 A6 A2 🛛 17 lT A7 11 D A5 азП в 10 D A4 15 D A5

A9 RAS NC A2 Vcc A5

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	1 to +7	٧
Test Function Input Voltage	V _{in(TF)}	-1 to +10.5	٧
Data Out Current	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	Vss	0	0	0]	
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	-1.0	_	0.8	V	1
Test Function Input High Voltage	VIH (TF)	V _{CC} +4.5	_	10.5	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current	lcc1			mA	2
MCM511002A-70, t _{RC} = 130 ns		_	80		
MCM511002A-80, t _{RC} = 150 ns	1	-	70	1	
MCM511002A-10, t _{RC} = 180 ns		_	60		}
V _{CC} Power Supply Current (Standby) (RAS = CS = V _{IH})	ICC2	_	2.0	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles (CS = V _{IH})	Іссз			mA	2
MCM511002A-70, t _{RC} = 130 ns		-	80		
MCM511002A-80, t _{RC} = 150 ns	Ī	-	70		l
MCM511002A-10, t _{RC} = 180 ns			60		
V _{CC} Power Supply Current During Static Column Mode Cycle (RAS = CS = V _{IL})	ICC4			mA	2, 3
MCM511002A-70, t _{SC} = 40 ns			60	l	ŧ
MCM511002A-80, t _{SC} = 45 ns		-	50	l	
MCM511002A-10, t _{SC} = 50 ns		_	40		
V _{CC} Power Supply Current (Standby) (RAS = CS = V _{CC} − 0.2 V)	ICC5	_	1.0	mA	
V _{CC} Power Supply Current During CS Before RAS Refresh Cycle	ICC6			mA	2
MCM511002A-70, t _{RC} = 130 ns		_	80	ļ	l
MCM511002A-80, t _{RC} = 150 ns		-	70	1	İ
MCM511002A-10, t _{RC} =180 ns		_	60		
Input Leakage Current (Except TF) (0 V≤V _{in} ≤6.5 V)	llkg(l)	- 10	10	μА	
Input Leakage Current (TF) (0 V≤V _{in(TF)} ≤V _{CC} +0.5 V)	likg(I)	- 10	10	μА	
Output Leakage Current (CS = V _{IH} , 0 V≤V _{out} ≤5.5 V)	l _{lkg} (O)	- 10	10	μА	
Test Function Input Current (V _{CC} +4.5 V≤V _{in(TF)} ≤10.5 V)	l _{in(TF)}	_	1	mA	
Output High Voltage (IOH = -5 mA)	Voн	2.4		V	
Output Low Voltage (I _{OL} =4.2 mA)	VOL	_	0.4	V	

$\textbf{CAPACITANCE} \text{ (f = 1.0 MHz, $T_A = 25^{\circ}$C, $V_{CC} = 5$ V, Periodically Sampled Rather Than 100\% Tested)}$

Parameter	Symbol	Max	Unit	Notes
Input Capacitance A0-A9, D	Cin	5	pF	4
RAS, CS, W, TF		7	pF	4
Output Capacitance (CS = VIH to Disable Output)	Cout	7	pF	4

- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Measured with one address transition per static column mode cycle.
- 4. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

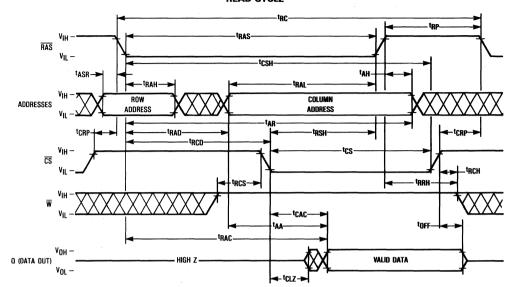
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

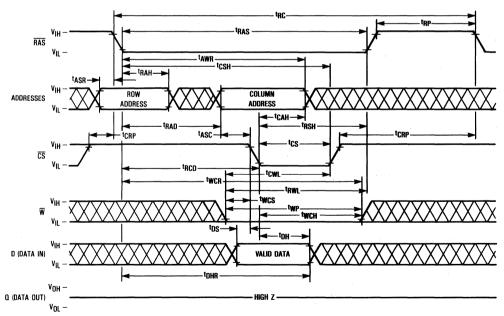
READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, 4, and 5)

B	Symbol		MCM511002A-70		MCM511002A-80		MCM511002A-10			Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Oille	Notes
Random Read or Write Cycle Time	†RELREL	tRC	130	_	150	-	180	_	ns	6
Read-Write Cycle Time	†RELREL	tRWC	155	_	155	-	210	_	ns	6
Static Column Mode Cycle Time	tAVAV	tsc	40	_	45	_	50	_	ns	
Static Column Mode Read-Write Cycle Time	tAVAV	tSRWC	70	_	80		100	_	ns	
Access Time from RAS	†RELQV	tRAC	_	70	_	80	_	100	ns	7, 8
Access Time from CS	tCELQV	tCAC	_	20	_	20	_	25	ns	7, 9
Access Time from Column Address	tAVQV	tAA	_	35	_	40	_	50	ns	7, 10
Access Time from Last Write	tWLQV	tALW	_	65	_	75	_	95	ns	7, 11
CS to Output in Low-Z	tCELQX	tCLZ	0	_	0	_	0		ns	7
Output Buffer and Turn-Off Delay	†CEHQZ	^t OFF	0	20	0	20	0	20	ns	12
Data Out Hold from Address Change	tAXQX	^t AOH	5	_	5	_	5		ns	
Data Out Enable from Write	twhqv	tow	_	20	_	20	_	25	ns	
Data Out Hold from Write	twhox	twoH	0	_	0	_	0	-	ns	
Transition Time (Rise and Fall)	tΤ	ŧŢ	3	50	3	50	3	50	ns	
RAS Precharge Time	tREHREL.	tRP	50	_	60	_	70	_	ns	
RAS Pulse Width	tRELREH	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Static Column Mode)	^t RELREH	tRASC	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	tCELREH	tRSH	20	_	20	-	25	_	ns	
CS Hold Time	†RELCEH	tCSH	70	_	80	_	100	_	ns	
CS Pulse Width	†CELCEH	tcs	20	10,000	20	10,000	25	10,000	ns	
CS Pulse Width (Static Column Mode)	^t CELCEH	tcsc	20	100,000	20	100,000	25	100,000	ns	
RAS to CS Delay Time	tRELCEL.	tRCD	20	50	20	60	25	75	ns	13
RAS to Column Address Delay Time	tRELAV	tRAD	15	35	15	40	20	50	ns	14
CS to RAS Precharge Time	tCEHREL.	tCRP	5		5	_	5	_	ns	
CS Precharge Time (Static Column Mode Cycle Only)	tCEHCEL	tCP	10		10	_	.10	_	ns	
Row Address Setup Time	tAVREL	tASR	0	_	0	_	0	_	ns	
Row Address Hold Time	†RELAX	tRAH	10	_	10	_	15	_	ns	

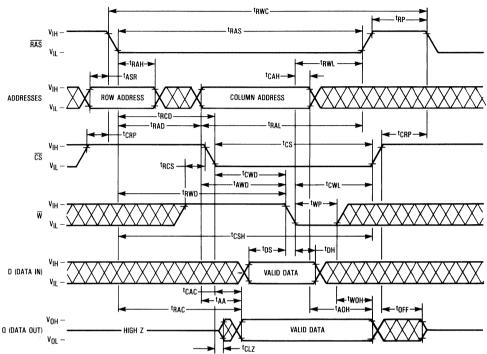
(continued)

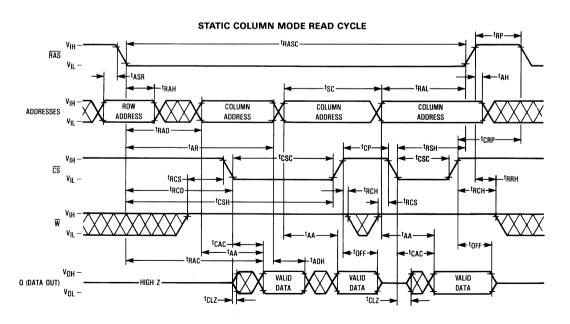

- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IH} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- 5. TF pin must be at VIL or open if not used.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 7. Measured with a current load equivalent to 2 TTL (-200 μ A, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 8. Assumes that t_{RCD}≤t_{RCD} (max).
- Assumes that t_{RCD}≥t_{RCD} (max).
- Assumes that t_{RAD}≥t_{RAD} (max), and/or t_{LWAD}≥t_{LWAD} (max).
- 11. Assumes that tLWAD ≤tLWAD (max).
- 12. topp (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 13. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 14. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

READ, WRITE, AND READ-WRITE CYCLES (Continued)

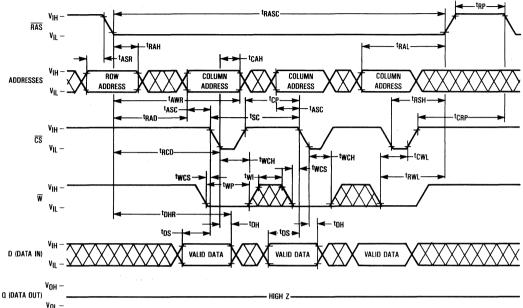

	Symbol		MCM511002A-70		MCM511002A-80		MCM511002A-10			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Column Address Setup Time	tAVCEL	tASC	0	_	0	_	0	_	ns	
Column Address Hold Time	tCELAX	tCAH	15	_	15	_	20	_	ns	
Write Address Hold Time Referenced to RAS	tRELAX	tAWR	55	_	60	<u> </u>	75	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	tAR	80	_	90	_	115	-	ns	
Column Address to RAS Lead Time	†AVREH	t _{RAL}	35	_	40	_	50	_	ns	
Column Address Hold Time Referenced to RAS High	^t REHAX	^t AH	5	_	5	_	10	-	ns	15
Write Command to CS Lead Time	†WLCEH	tCWL	20		20	_	25	_	ns	
Last Write to Column Address Delay Time	tWLAV	tLWAD	20	30	20	35	25	45	ns	16
Last Write to Column Address Hold Time	tWLAX	tAHLW	65	_	-75	_	95	_	ns	
Read Command Setup Time	†WHCEL	tRCS	0	_	0	_	0	_	ns	
Read Command Hold Time	†CEHWX	tRCH	0	_	0	_	0	_	ns	17
Read Command Hold Time Referenced to RAS	trehwx	trrh	0	-	0	-	0	-	ns	17
Write Command Hold Time	tCELWX	tWCH	15	_	15	_	20	_	ns	18
Write Command Hold Time Referenced to RAS	tRELWH	tWCR	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Command Inactive Time	tWHWL	tWI	10	_	10	_	10	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	20	_	25	_	ns	
Data In Setup Time	†DVCEL	tDS	0	_	0	_	0		ns	19
Data In Hold Time	†CELDX	tDH	15	_	15	_	20	_	ns	19
Data In Hold Time Referenced to RAS	tRELDX	tDHR	55	_	60	_	75	_	ns	
Refresh Period	t _{RVRV}	tRFSH	_	8	_	8	_	8	ms	
Write Command Setup Time (Output Data Disable)	†WLCEL	twcs	0	_	0	_	0	-	ns	18
CS to Write Delay	^t CELWL	tCWD	20	_	20	-	25	_	ns	18
RAS to Write Delay	^t RELWL	tRWD	70	_	80	_	100	_	ns	18
Column Address to Write Delay Time	†AVWL	tAWD	35	_	40	-	50	_	ns	18
CS Setup Time for CS Before RAS Refresh	^t RELCEL	tCSR	10		10	_	10	_	ns	
CS Hold Time for CS Before RAS Refresh	^t RELCEH	^t CHR	30	_	30	_	30	_	ns	
CS Precharge to CS Active Time	^t REHCEL	tRPC	0	_	0	_	0	_	ns	
CS Precharge Time for CS Before RAS Counter Test	†CEHCEL	^t CPT	40		40	_	50	_	ns	
CS Precharge Time	†CEHCEL	tCPN	10	_	10	_	15	_	ns	
Test Mode Enable Setup Time Referenced to RAS	[†] TEHREL	†TES	0	-	0	_	0	_	ns	
Test Mode Enable Hold Time Referenced to RAS	^t REHTEL	[†] TEHR	0	-	0	_	0	-	ns	
Test Mode Enable Hold Time Referenced to CAS	[†] CEHTEL	[†] TEHC	0	-	0	_	0	1	ns	

- 15. tAH must be met for a read cycle.
- 16. Operation within the t_{LWAD} limit ensures that t_{ALW} can be met. t_{LWAD} (max) is specified as a reference point only; if t_{LWAD} is greater than the specified t_{LWAD} (max) limit, then access time is controlled exclusively by t_{AA}.
- 17. Either tRRH or tRCH must be satisfied for a read cycle.
- 18. tWCS, tWCH, tRWD, tCWD, and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If tWCS≥tWCS (min) and tWCH≥tWCH (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tRWD≥tRWD (min), tCWD≥tCWD (min), and tAWD≥tAWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 19. These parameters are referenced to CS leading edge in early write cycles and to W leading edge in late write or read-write cycles.

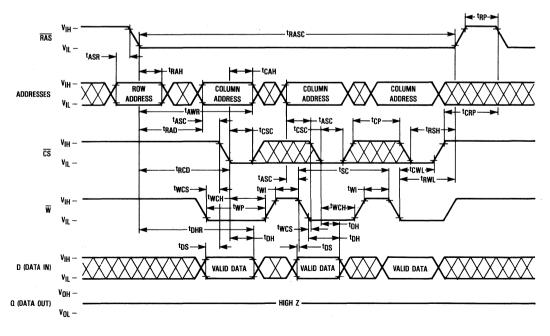

READ CYCLE

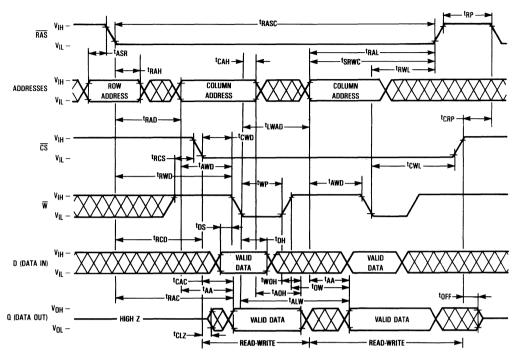


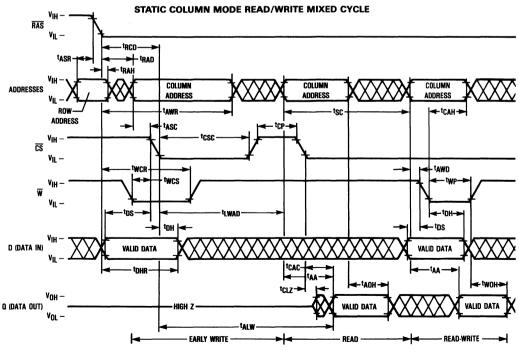
EARLY WRITE CYCLE

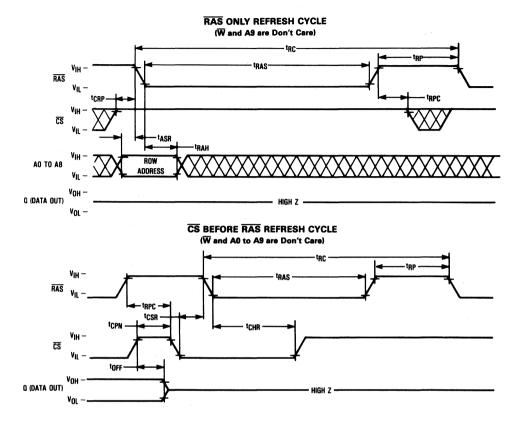


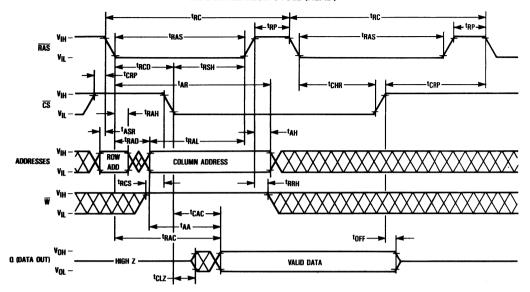
READ-WRITE CYCLE

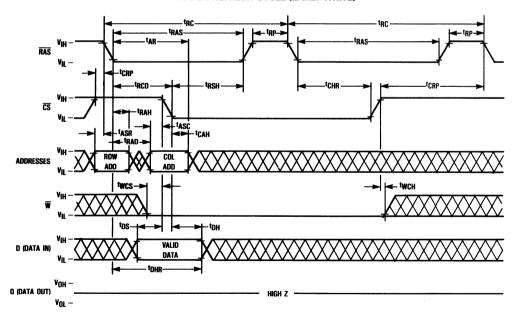


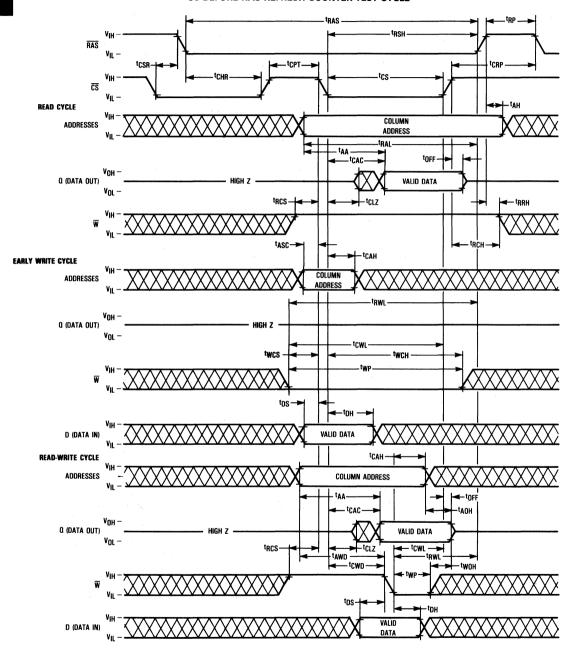

STATIC COLUMN MODE EARLY WRITE CYCLE (A)




STATIC COLUMN MODE EARLY WRITE CYCLE (B)


STATIC COLUMN MODE READ-WRITE CYCLE




HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE)

CS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 8 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The ten address pins on the device are time multiplexed at the beginning of a memory cycle by the row address strobe $(\overline{\text{RAS}})$ clock, into two separate 10-bit address fields. A total of twenty address bits, ten rows and ten columns, will decode one of the 1,048,576 bit locations in the device. $\overline{\text{RAS}}$ active transition latches the row address field. Column addresses are not latched, hence the "static column" designation of this device. Chip select $(\overline{\text{CS}})$ active transition (active = V_{IL}, t_{RCD} minimum) follows $\overline{\text{RAS}}$ on all read, write, or read-write cycles, and is independent of column address. The static column feature allows greater flexibility in setting up the external external column addresses into the RAM.

There are other variations in addressing the 1M RAM: RAS only refresh cycle and CS before RAS refresh cycle. Both are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: random read cycle, read-write cycle, and "static column mode" read, and read-write. The random read cycle is outlined here, while the other cycles are discussed in separate sections.

The random read cycle begins as described in ADDRESS-ING THE RAM, with $\overline{\text{RAS}}$ active transition latching the desired row. The write $\overline{\text{(W)}}$ input level must be high $\overline{\text{(V)H)}}$, $\overline{\text{RCS}}$ (minimum) before the $\overline{\text{CS}}$ active transition, to enable read mode. A valid column address can be provided at any time $\overline{\text{(tran)}}$ minimum), independent of the $\overline{\text{CS}}$ active transition.

Both the $\overline{\text{RAS}}$ and $\overline{\text{CS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. $\overline{\text{CS}}$ must be active and column address must be valid by tRCD and tRAD maximums, respectively, to guarantee valid data out (Q) at tRAC (access time from $\overline{\text{RAS}}$ active transition). If either tRCD or tRAD maximum is exceeded, read access time is determined by the $\overline{\text{CS}}$ clock active transition (tCAC) and/or valid column address (tAA).

The \overline{RAS} and \overline{CS} clocks must remain active for a minimum time of t_{RAS} and t_{CS} , respectively, to complete the read cycle. The column address must remain valid for t_{AH} after \overline{RAS} inactive transition to complete the read cycle. \overline{W} must remain high throughout the cycle, and for time t_{RAH} or t_{RAS} or \overline{CS} inactive transition, respectively, to maintain the data at that bit location. Once \overline{RAS} transitions to inactive, it must remain inactive for a minimum time of t_{RAS} to precharge the internal device circuitry for the next active cycle. C is valid, but not latched, as long as the \overline{CS} clock is active. When the \overline{CS} clock transitions to inactive, the output will switch to High Z.

WRITE CYCLE

The DRAM may be written with any of four cycles: early write, late write and "static column mode" early write, and read-write. Early and late write modes are discussed here, while static column mode write operations are covered in another section.

A write cycle begins as described in ADDRESSING THE RAM. Write mode is enabled by the transition of \overline{W} to active (V|L level). Early and late write modes are distinguished by the active transition of \overline{W} with respect to \overline{CS} leading edge. Minimum active time t_RAS and t_{CS} , and precharge time t_RP apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time twcs before \overline{CS} active transition. Column address set up and hold times (tASC, tCAH), and data in (D) set up and hold times (tpS, tDH) are referenced to \overline{CS} in an early write cycle. \overline{RAS} and \overline{CS} clocks must stay active for tRWL and tcWL, respectively, after the start of the early write operation to complete the cycle.

 Ω remains High Z throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CS} active transition, keeping data-out buffers disabled. This feature can be utilized on systems with a common I/O bus, provided all writes are performed with early write cycles, to prevent bus contention.

A late write cycle occurs when \overline{W} active transition is made after \overline{CS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CS} active transition, $t_{RCD}+t_{CWD}+t_{RWL}+2t_{T})\leq t_{RAS}$, if other timing minimums t_{RCD} , t_{RWL} , and t_{T}) are maintained. Column address and D timing parameters are referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CS} active transition but C may be indeterminate—see note 18 of AC operating conditions table. Parameters t_{RWL} and t_{CWL} also apply to late write cycles.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the WRITE CYCLE section, except \overline{W} must remain high for tCWD and/or tAWD minimum, to guarantee valid Q before writing the bit.

STATIC COLUMN MODE CYCLES

Static column mode refers to multiple successive data operations performed at any or all 1024 column locations on the selected row of the 1M dynamic RAM during one $\overline{\text{RAS}}$ cycle. Read access time of multiple operations (tAA or tCAC) is considerably faster than the regular $\overline{\text{RAS}}$ clock access time $\overline{\text{tRAC}}$. Multiple operations can be performed simply by keeping $\overline{\text{RAS}}$ active. $\overline{\text{CS}}$ may be toggled between active and inactive states at any time within the $\overline{\text{RAS}}$ cycle.

Once the timing requirements for the initial read, write, or read-write cycle are met and \overline{RAS} remains low, the device is ready for the next operation. Operations can be intermixed in any order, at any column address, subject to normal operating conditions previously described. Every write operation must be clocked with either \overline{CS} or \overline{W} , as indicated in static column mode early write cycle timing diagrams A and B. Column address and D timing parameters are referenced to the signal

clocking the write operation. \overline{CS} must be toggled inactive (tcp) to perform a read operation after an early write operation (to turn output on), as indicated in **static column mode read/write mixed cycle** timing diagram. The maximum number of consecutive operations is limited by tRASC. The cycle ends when \overline{RAS} transitions to inactive.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge degrades with time and temperature, thus each bit must be periodically **refreshed** (recharged) to maintain the correct bit state. Bits in the MCM511002A require refresh every 8 milliseconds.

Refresh is accomplished by cycling through the 512 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM511002A. Burst refresh, a refresh of all 512 rows consecutively, must be performed every 8 milliseconds on the MCM511002A.

A normal read, write, or read-write operation to the RAM will refresh all the bits (2048) associated with the particular row decoded. Three other methods of refresh, RAS only refresh, CS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

 \overline{RAS} -only refresh consists of \overline{RAS} transition to active, latching the row address to be refreshed, while \overline{CS} remains high (VIH) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CS Before RAS Refresh

CS before RAS refresh is enabled by bringing CS active before RAS. This clock order activates an internal refresh counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CS} active at the end of a read or write cycle, while \overline{RAS} cycles inactive for t_{RP} and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a $\overline{\text{CS}}$ before $\overline{\text{RAS}}$ refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See $\overline{\text{CS}}$ before $\overline{\text{RAS}}$ refresh counter test cycle timing diagram.

The test can be performed after a minimum of eight $\overline{\text{CS}}$ before $\overline{\text{RAS}}$ initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read the "1"s which were written in step 2 in normal read mode
- Using the same column address as in step 2, read "1" out and write "0" into the cell by performing the CS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read "0"s which were written at in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

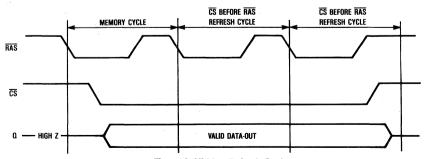
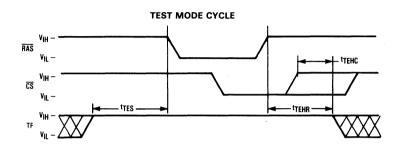
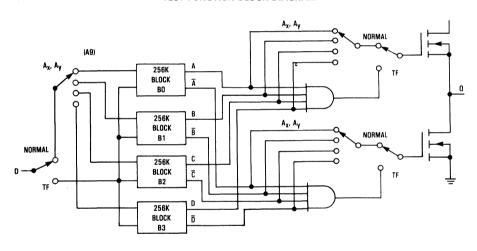
TEST MODE

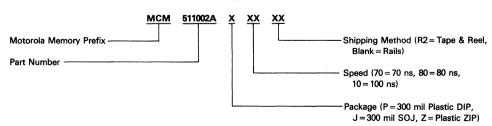
Internal organization of this device (256K × 4) allows it to be tested as if it were a 256K × 1 DRAM. Only nine of the ten addresses (A0-A8) are used in test mode; A9 is internally disabled. A test mode write cycle writes data, D (data in), to a bit in each of the four 256K × 1 blocks (B0-B3), in parallel. A test mode read cycle reads a bit in each of the four blocks. If data is the same in all four bits, Q (data out) is the same as the data in each bit. If data is not the same in all four bits, Q is high Z. See truth table and block diagram.

Test mode can be used in any timing cycle, including page mode cycles. The test mode function is enabled by holding the "TF" pin on "super voltage" for the specified period (tTES, tTFHR, tTFHC; see TEST MODE CYCLE).

where

4.5 V < V_{CC} < 5.5 V and maximum voltage = 10.5 V. A9 is ignored in test mode. In normal operation, the "TF" pin must either be connected to V_{IL}, or left open.


Figure 1. Hidden Refresh Cycle

TEST FUNCTION BLOCK DIAGRAM

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM511002AP70

MCM511002AP80 MCM511002AP10 MCM511002AJ70 MCM511002AJ80 MCM511002AJ10 MCM511002AJ70R2 MCM511002AJ80R2 MCM511002AJ10R2 MCM511002AZ70 MCM511002AZ80 MCM511002AZ10

Advance Information

4M×1 CMOS Dynamic RAM

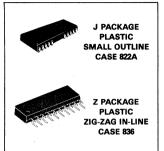
Page Mode

The MCM514100 is a 0.8 µ CMOS high-speed, dynamic random access memory. It is organized as 4,194,304 one-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost.

The MCM514100 requires only 11 address lines; row and column address inputs are multiplexed. The device is packaged in a standard 350-mil-wide J-lead small outline package, and a 100-mil zig-zag in-line package (ZIP).

- Three-State Data Output
- Common I/O with Early Write
- Fast Page Mode
- Test Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 1024 Cycle Refresh: MCM514100 = 16 ms
- MCM51L4100 = 128 ms Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM514100-80 and MCM51L4100-80 = 80 ns (Max) MCM514100-10 and MCM51L4100-10 = 100 ns (Max)


Low Active Power Dissipation:

MCM514100-80 and MCM51L4100-80 = 550 mW (Max) MCM514100-10 and MCM51L4100-10 = 468 mW (Max)

Low Standby Power Dissipation:

MCM514100 and MCM51L4100 = 11 mW (Max, TTL Levels) MCM514100 = 5.5 mW (Max, CMOS Levels) MCM51L4100 = 2.2 mW (Max, CMOS Levels)

MCM514100 MCM51L4100

PIN NAMES									
A0-A10 Address Input									
D Data Input									
Q Data Output									
W Read/Write Enable									
RAS Row Address Strobe									
CAS Column Address Strobe									
V _{CC} Power (+5 V)									
VSS Ground									
NC No Connection									

ZIG-ZAG IN-LINE

CAS RAS A2

SMALL OUTLINE PIN ASSIGNMENT 25 🗖 Q 24 TI CAS RAS [3 NC D 4 23 D NC A10 5 22 D A9 A0 🛛 9 18 🛮 A8 17 DA7 16 🛮 A6

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM CAS DATA IN **BUFFER** #2 CLOCK GENERATOR DATA OUT BUFFER COLUMN ADDRESS BUFFERS (11) COLUMN ΔN DECODER A1 REFRESH CONTROLLER SENSE AMP A3 I/O GATING A4 A5 REFRESH COUNTER (10) 4096 A6 **A**7 **A8** ROW A9 **ADDRESS** ROW A10 MEMORY BUFFERS (11) DECODER 1024 ARRAY #1 CLOCK RAS SUBSTRATE BIAS VCC GENERATOR GENERATOR

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Data Out Current	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	VSS	0	0	0	1	
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	-1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM514100-80 and MCM51L4100-80, t _{RC} = 150 ns MCM514100-10 and MCM51L4100-10, t _{RC} = 180 ns	I _{CC1}	-	100 85	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	ICC2	_	2.0	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles (CAS = V _{IH}) MCM514100-80 and MCM51L4100-80, t _{RC} = 150 ns MCM514100-10 and MCM51L4100-10, t _{RC} = 180 ns	ICC3		100 85	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle (RAS = V _{IL}) MCM514100-80 and MCM51L4100-80, tp _C = 50 ns MCM514100-10 and MCM51L4100-10, tp _C = 60 ns	ICC4	_	60 50	mA	2, 4
$\label{eq:VCC} \mbox{Power Supply Current (Standby) } (\mbox{\overline{RAS}} = \mbox{\overline{CAS}} = \mbox{V_{CC}} - 0.2 \mbox{ V)} & \mbox{MCM514100} \\ \mbox{MCM51L4100} & \mbox{MCM51L4100} \\ \mb$	I _{CC5}	-	1.0 400	mA μA	
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle MCM514100-80 and MCM51L4100-80, t _{RC} = 150 ns MCM514100-10 and MCM51L4100-10, t _{RC} = 180 ns	ICC6	<u> </u>	100 85	mA	2
V _{CC} Power Supply Current, Battery Backup Mode—MCM51L4100 only ($_{RC} = 125 \mu_S$; $_{RAS} = 1 \mu_S$; $_{CAS} = CAS$ Before $_{RAS}$ Cycle or 0.2 V; A0-A10, $_{W}$, D=V _{CC} -0.2 V or 0.2 V)	ICC7	-	500	μА	
Input Leakage Current (0 V≤Vin≤6.5 V)	l _{lkg(I)}	- 10	10	μА	
Output Leakage Current (CAS = V _{IH} , 0 V ≤ V _{out} ≤ 5.5 V)	I _{lkg} (O)	- 10	10	μА	
Output High Voltage (IOH = -5 mA)	VOH	2.4	_	V	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	0.4	V	

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit	Notes
Input Capacitance A0-A10, D	C _{in}	5	pF	3
RAS, CAS, W		7	pF	3
Output Capacitance (CAS = VIH to Disable Output)	Cout	7	pF	3

- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C=IΔt/ΔV.
- 4. Measured with one address transition per page mode cycle.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

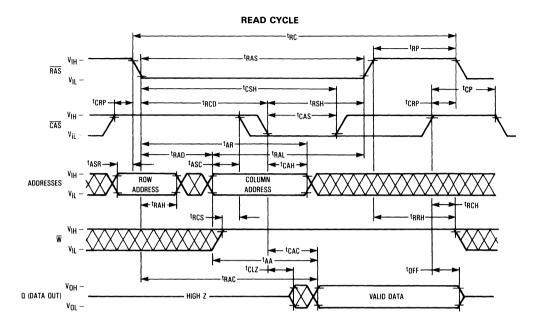
READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, and 4)

Parameter		nbol	MCM5	14100-80 IL4100-80		14100-10 IL4100-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Random Read or Write Cycle Time	tRELREL	tRC	150	_	180	-	ns	5
Read-Write Cycle Time	TRELREL	tRWC	175	_	210	-	ns	5
Page Mode Cycle Time	†CELCEL	tPC	50	T -	60		ns	
Page Mode Read-Write Cycle Time	†CELCEL	tPRWC	75	_	90	_	ns	
Access Time from RAS	tRELQV	tRAC	_	80	_	100	ns	6, 7
Access Time from CAS	tCELQV	tCAC	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	tCEHQV	^t CPA	-	45	_	55	ns	6
CAS to Output in Low-Z	tCELQX	tCLZ	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tτ	ŧτ	3	50	3	50	ns	
RAS Precharge Time	tREHREL	tRP	60	_	70	_	ns	
RAS Pulse Width	tRELREH	tRAS	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	tRELREH	tRASP	80	200,000	100	200,000	ns	
RAS Hold Time	tCELREH	tRSH	20	_	25	_	ns	
CAS Hold Time	^t RELCEH	tCSH	80	_	100	_	ns	
CAS Pulse Width	†CELCEH	tCAS	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	60	25	75	ns	11
RAS to Column Address Delay Time	†RELAV	tRAD	15	40	20	50	ns	12
CAS to RAS Precharge Time	†CEHREL	tCRP	5	_	10	_	ns	
CAS Precharge Time	†CEHCEL	tCP	10	_	10	_	ns	
Row Address Setup Time	†AVREL	tASR	0	T -	0	_	ns	
Row Address Hold Time	†RELAX	t _{RAH}	10	-	15	T -	ns	
Column Address Setup Time	†AVCEL	tASC	0		0	_	ns	
Column Address Hold Time	†CELAX	tCAH	15	-	20	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	tAR	60	_	75	_	ns	
Column Address to RAS Lead Time	tAVREH	^t RAL	40		50		ns	

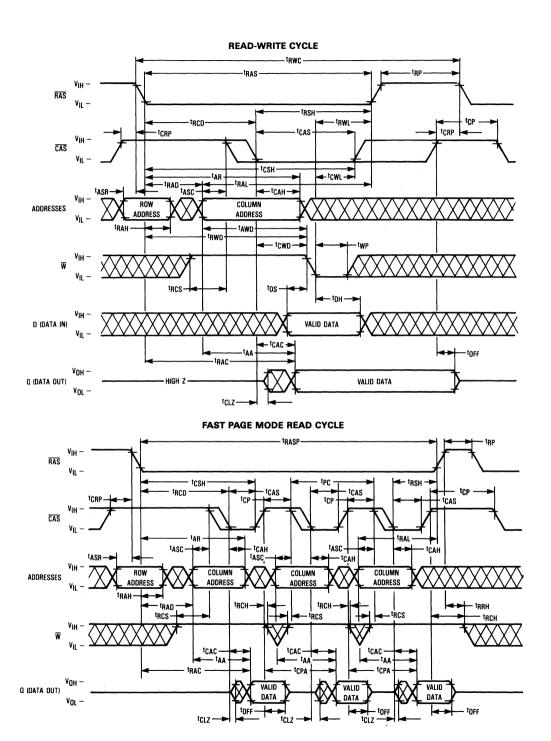
(continued)

- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at VOH=2.0 V and VOL=0.8 V.
- 7. Assumes that t_{RCD} ≤t_{RCD} (max).
- 8. Assumes that t_{RCD}≥t_{RCD} (max).
- Assumes that t_{RAD}≥t_{RAD} (max).
- 10. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

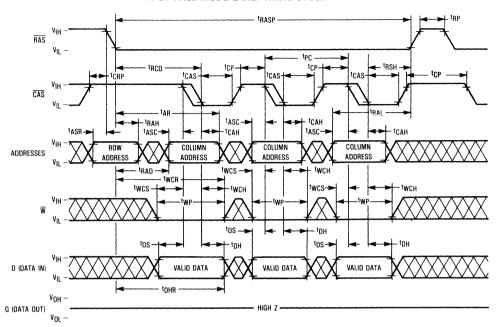
READ, WRITE, AND READ-WRITE CYCLES (Continued)

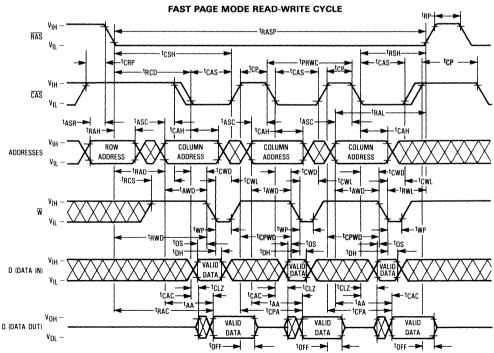

Parameter	Syr	mbol		14100-80 L4100-80		14100-10 L4100-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max]	
Read Command Setup Time	tWHCEL	tRCS	0	_	0		ns	
Read Command Hold Time Referenced to CAS	tCEHWX	tRCH	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	tREHWX	tRRH	0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	tCELWH	twch	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	tRELWH	twcr	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	25	_	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20	_	25	_	ns	
Data in Setup Time	†DVCEL	tDS	0	_	0		ns	14
Data in Hold Time	†CELDX	t _{DH}	15	_	20		ns	14
Data in Hold Time Referenced to RAS	†RELDX	^t DHR	60	_	75		ns	
Refresh Period MCM514100 MCM51L4100	^t RVRV	tRFSH	_	16 128	_	16 128	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0		ns	15
CAS to Write Delay	[†] CELWL	tCWD	20	_	25	_	ns	15
RAS to Write Delay	^t RELWL	tRWD	80	_	100	_	ns	15
Column Address to Write Delay Time	†AVWL	tAWD	. 40	_	50	_	ns	15
CAS Precharge to Write Delay Time (Page Mode)	tCEHWL	tCPWD	45	-	55	_	ns	15
CAS Setup Time for CAS Before RAS Refresh	†RELCEL	tCSR	5	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	15	_	20	-	ns	
RAS Precharge to CAS Active Time	†REHCEL	tRPC	0	_	0		ns	
CAS Precharge Time for CAS Before RAS Counter Test	[‡] CEHCEL	[†] CPT	40	_	50	_	ns	
Write Command Set Up Time (Test Mode)	tWLREL	twrs	10	_	10	_	ns	
Write Command Hold Time (Test Mode)	tRELWH	twth	10	_	10	_	ns	
Write to RAS Precharge Time (CAS Before RAS Refresh)	tWHREL	tWRP	10	_	10	-	ns	
Write to RAS Hold Time (CAS Before RAS Refresh)	^t RELWL	tWRH	10		10	_	ns	

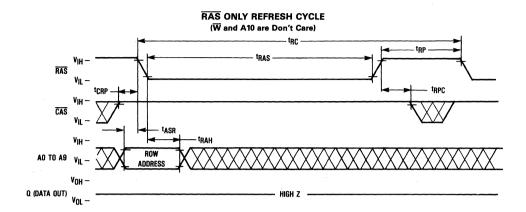
NOTES:

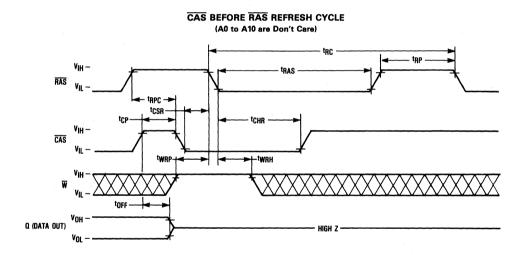

13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.

14. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early write cycles and to $\overline{\text{W}}$ leading edge in read-write cycles.

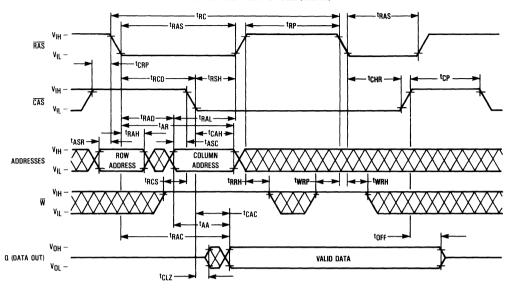

^{15.} tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min), tRWD≥tRWD (min), tAWD≥tAWD (min), and tCPWD≥tCPWD (min) (page mode), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

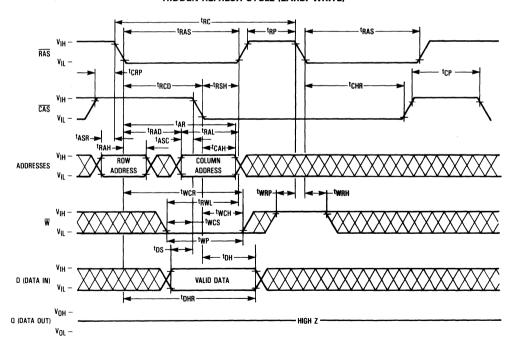


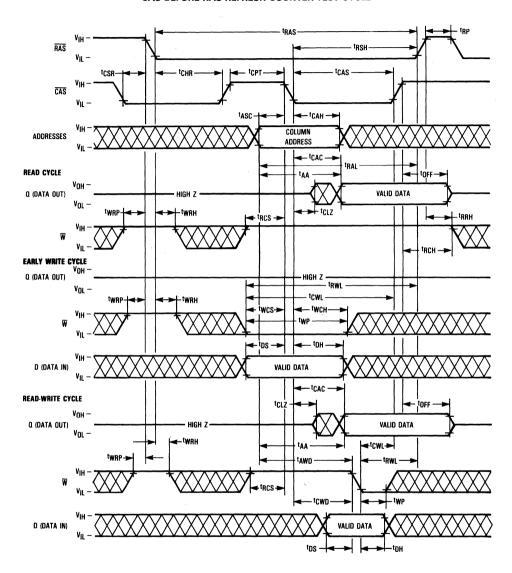

EARLY WRITE CYCLE RAS tRCD tCRP CAS VIL -- tral tasr --tcah → COLUMN ADDRESSES ADDRESS twcs -twch tRWL · twcr · **←**-tDH -> D (DATA IN) tDHR: Q (DATA OUT)



FAST PAGE MODE EARLY WRITE CYCLE






HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 16 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The eleven address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe (\overline{RAS}) and column address strobe (\overline{CAS}), into two separate 11-bit address fields. A total of twenty two address bits, eleven rows and eleven columns, will decode one of the 4,194,304 bit locations in the device. \overline{RAS} active transition is followed by \overline{CAS} active transition (active = V_{IL} , t_{RCD} minimum) for all read or write cycles. The delay between \overline{RAS} and \overline{CAS} active transitions, referred to as the multiplex window, gives a system designer flexibility in setting up the external addresses into the RAM.

The external \overline{CAS} signal is ignored until an internal \overline{RAS} signal is available. This "gate" feature on the external \overline{CAS} clock enables the internal \overline{CAS} line as soon as the row address hold time (tRAH) specification is met (and defines tRCD minimum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the \overline{CAS} clock.

There are three other variations in addressing the 4M RAM: RAS only refresh cycle, CAS before RAS refresh cycle, and page mode. All three are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: "normal" random read cycle, page mode read cycle, read-write cycle, and page mode read-write cycle. The normal read cycle is outlined here, while the other cycles are discussed in separate sections.

The normal read cycle begins as described in ADDRESS-ING THE RAM, with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ active transitions latching the desired bit location. The write (\overline{W}) input level must be high (VIH), tRCS (minimum) before the $\overline{\text{CAS}}$ active transition, to enable read mode.

Both the \overline{RAS} and \overline{CAS} clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. However, \overline{CAS} must be active before or at tRCD maximum to guarantee valid data out (Q) at tRAC (access time from \overline{RAS} active transition). If the tRCD maximum is exceeded, read access time is determined by the \overline{CAS} clock active transition (tCAC).

The RAS and CAS clocks must remain active for a minimum time of trans and transfer respectively, to complete the read cycle. W must remain high throughout the cycle, and for time transfer or transition, respectively, to maintain the data at that bit location. Once RAS transitions to inactive, it must remain inactive for a minimum time of transition to the contractive for a minimum time of transitions to the contractive for

next active cycle. Q is valid, but not latched, as long as the CAS clock is active. When the CAS clock transitions to inactive, the output will switch to High Z (three-state).

WRITE CYCLE

The user can write to the DRAM with any of four cycles; early write, late write, page mode early write, and page mode read-write. Early and late write modes are discussed here, while page mode write operations are covered in another section.

A write cycle begins as described in ADDRESSING THE RAM. Write mode is enabled by the transition of \overline{W} to active $(V_{|L})$. Early and late write modes are distinguished by the active transition of \overline{W} , with respect to \overline{CAS} . Minimum active time tRAS and tCAS, and precharge time tRP apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time twos before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for trwl and tcwl, respectively, after the start of the early write operation to complete the cycle.

Q remains in three-state condition throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CAS} active transition, keeping data-out buffers disabled. This feature can be utilized on systems with a common I/O bus, provided all writes are performed with early write cycles, to prevent bus contention.

A late write cycle occurs when \overline{W} active transition is made after \overline{CAS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CAS} active transition, $t_{RCD} + t_{CWD} + t_{RWL} + 2t_{T}) \le t_{RAS}$, if other timing minimums t_{RCD} , t_{RWL} and t_{T}) are maintained. D is referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CAS} active transition but 0 may be indeterminate—see note 15 of AC operating conditions table. \overline{RAS} and \overline{CAS} must remain active for t_{RWL} and t_{CWL} , respectively, after \overline{W} active transition to complete the write cycle.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the WRITE CYCLE section, except \overline{W} must remain high for tCWD minimum after the \overline{CAS} active transition, to guarantee valid Q before writing the bit.

PAGE MODE CYCLES

Page mode allows fast successive data operations at all 2048 column locations on a selected row of the 4M dynamic RAM. Read access time in page mode (tCAC) is typically half the regular RAS clock access time, tRAC. Page mode operation consists of keeping RAS active while toggling CAS between VIH and VIL. The row is latched by RAS active transition, while each CAS active transition allows selection of a new-column location on the row.

A page mode cycle is initiated by a normal read, write, or read-write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, CAS transitions to inactive for minimum of tcp, while RAS remains low (VIL). The second CAS active transition while RAS is low initiates the first page mode cycle (tpc or tpRWc). Either a read, write,

or read-write operation can be performed in a page mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive page mode cycles and performed in any order. The maximum number of consecutive page mode cycles is limited by tRASP. Page mode operation is ended when \overline{RAS} transitions to inactive, coincident with or following \overline{CAS} inactive transition.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Each bit must be periodically refreshed (recharged) to maintain the correct bit state. Bits in the MCM514100 require refresh every 16 milliseconds, while refresh time for the MCM51L4100 is 128 milliseconds.

This is accomplished by cycling through the 1024 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM514100, and 124.8 microseconds for the MCM514100, and 124.8 microseconds for the MCM514100 and 1024 rows consecutively, must be performed every 16 milliseconds on the MCM514100 and 128 milliseconds on the MCM514100.

A normal read, write, or read-write operation to the RAM will refresh all the bits (4096) associated with the particular row decoded. Three other methods of refresh, RAS-only refresh, CAS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

RAS-only refresh consists of RAS transition to active, latching the row address to be refreshed, while CAS remains high (VIH) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh is enabled by bringing $\overline{\text{CAS}}$ active before $\overline{\text{RAS}}$. This clock order activates an internal refresh counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh

cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh). W must be inactive for time twkp before and time twkp after RAS active transition to prevent switching the device into a test mode cycle.

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CAS} active the end of a read or write cycle, while \overline{RAS} cycles inactive for tpp and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1.) \overline{W} is subject to the same conditions with respect to \overline{RAS} active transition (to prevent test mode cycle) as in \overline{CAS} before \overline{RAS} refresh.

CAS REFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 1024 cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed after a minimum of 8 CAS before RAS initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CAS before RAS refresh counter test, read-write cycle. Repeat this operation 1024 times.
- 3. Read the "1"s which were written in step 2 in normal read
- Using the same starting column address as in step 2, read
 "1" out and write "0" into the cell by performing the CAS
 before RAS refresh counter test, read-write cycle.
 Repeat this operation 1024 times.
- Read "0"s which were written in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

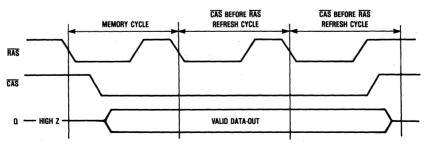


Figure 1. Hidden Refresh Cycle

TEST MODE

The internal organization of this device $(512K \times 8)$ allows it to be tested as if it were a $512K \times 1$ DRAM. Nineteen of the twenty two addresses are used when operating the device in test mode. Row address A10, and column addresses A0 and A10 are ignored by the device in test mode. A test mode cycle reads and/or writes data to a bit in each of the eight 512K blocks (B0-B7) in parallel. External data out is determined by

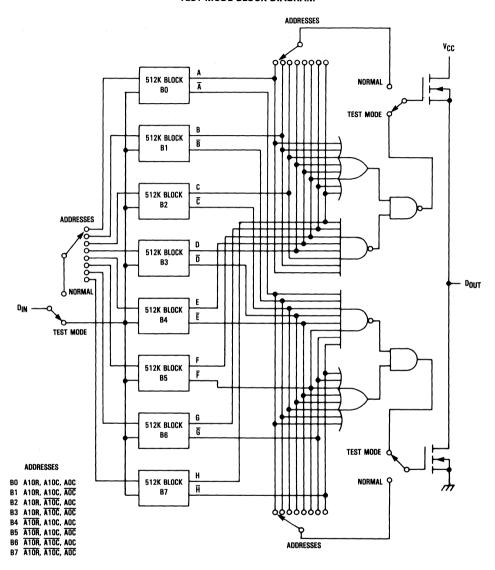
the internal test mode logic of the device. See truth table and test mode block diagram following.

Test mode is enabled by performing a test mode cycle (see test mode timing diagram and parameter specifications table). Test mode is disabled by a RAS only refresh cycle or CAS before RAS refresh cycle. The test mode performs refresh with the internal refresh counter like a CAS before RAS refresh.

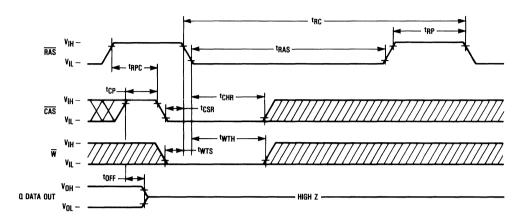
Test Mode Truth Table

D	В0	B1	B2	B3	B4	B5	В6	B7	Q
0	0	0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1	1	1
-				Any	Other				0

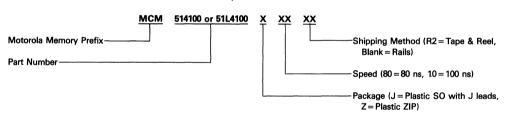
TEST MODE AC OPERATING CONDITIONS AND CHARACTERISTICS


 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_{\Delta} = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, and 4)


Parameter	Syr	nbol		MCM514100-80 MCM51L4100-80		14100-10 L4100-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Random Read or Write Cycle Time	tRELREL	tRC	155	-	185	_	ns	5
Read-Write Cycle Time	tRELREL	tRWC	180	_	215	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	55	_	65	_	ns	
Page Mode Read-Write Cycle Time	†CELCEL	^t PRWC	80	_	95		ns	
Access Time from RAS	tRELQV	tRAC	_	85		105	ns	6, 7
Access Time from CAS	tCELQV	†CAC	_	25	_	30	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	45	_	55	ns	6, 9
Access Time from Precharge CAS	tCEHQV	tCPA	-	50	_	60	ns	6
RAS Pulse Width	^t RELREH	tRAS	85	10,000	105	10,000	ns	
RAS Pulse Width (Fast Page Mode)	†RELREH	tRASP	85	200,000	105	200,000	ns	
RAS Hold Time	†CELREH	tRSH	25	-	30	_	ns	
CAS Hold Time	^t RELCEH	tCSH	85	_	105	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	25	10,000	30	10,000	ns	
Column Address to RAS Lead Time	t _{AVREH}	†RAL	45	_	55	_	ns	
CAS to Write Delay	tCELWL	tCWD	25	_	30	_	ns	10
RAS to Write Delay	tRELWL	tRWD	85	_	105	_	ns	10
Column Address to Write Delay Time	†AVWL	tAWD	45	_	55		ns	10
CAS Precharge to Write Delay Time (Page Mode)	^t CEHWL	tCPWD	50		60	_	ns	10

- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that tRCD≤tRCD (max).
- 8. Assumes that t_{RCD}≥t_{RCD} (max).
- 9. Assumes that tRAD≥tRAD (max).
- 10. tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if twCS≥twCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tcWD≥tcWD (min), tRWD≥tqWD (min), tAWD≥tqWD (min), and tcPWD≥tcPWD (min) (page mode), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.


TEST MODE BLOCK DIAGRAM

TEST MODE CYCLE (D and A0 to A10 are Don't Care)

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM514100J80 MCM514100J10 MCM514100J80R2 MCM514100J10R2 MCM514100Z80 MCM514100Z10

MCM51L4100J80 MCM51L4100J10 MCM51L4100J80R2 MCM51L4100J10R2

MCM51L4100Z80 MCM51L4100Z10

256K×4 CMOS Dynamic RAM Page Mode

The MCM514256A is a 1.0μ CMOS high-speed, dynamic random access memory. It is organized as 262,144 four-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost.

The MCM514256A requires only nine address lines; row and column address inputs are multiplexed. The device is packaged in a standard 300-mil dual-in-line package (DIP), a 300-mil SOJ plastic package, and a 100-mil zig-zag in-line plastic package (ZIP).

- Three-State Data Output
- Fast Page Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh:

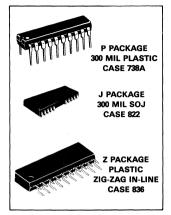
MCM514256A = 8 ms

MCM51L4256A = 64 ms

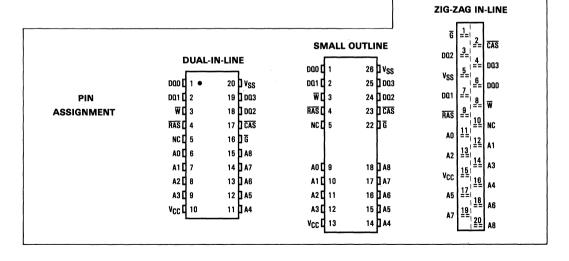
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM514256A-70 and MCM51L4256A-70 = 70 ns (Max) MCM514256A-80 and MCM51L4256A-80 = 80 ns (Max)

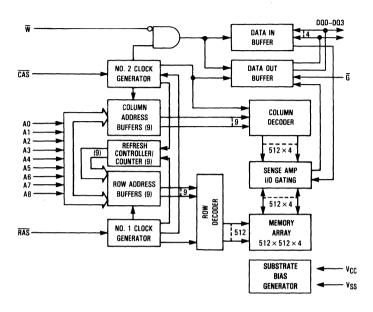
MCM514256A-10 and MCM51L4256A-10 = 100 ns (Max)


Low Active Power Dissipation:

MCM514256A-70 and MCM51L4256A-70 = 440 mW (Max) MCM514256A-80 and MCM51L4256A-80 = 385 mW (Max) MCM514256A-10 and MCM51L4256A-10 = 330 mW (Max)


· Low Standby Power Dissipation:

MCM514256A and MCM51L4256A = 11 mW (Max), TTL Levels MCM514256A = 5.5 mW (Max), CMOS Levels MCM51L4256A = 1.1 mW (Max), CMOS Levels


MCM514256A MCM51L4256A

PIN NAMES
A0-A8 Address Input
DQ0-DQ3 Data Input/Output
G Output Enable
W Read/Write Input
RAS Row Address Strobe
CAS Column Address Strobe
V _{CC} Power (+5 V)
VSS Ground
NC No Connection

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Data Out Current	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	VSS	0	0	0	}	
Logic High Voltage, All Inputs	ViH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	-1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current	ICC1			mA	2
MCM514256A-70 and MCM51L4256A-70, t _{RC} = 130 ns	00.	_	80		
MCM514256A-80 and MCM51L4256A-80, $t_{RC} = 150 \text{ ns}$		_	70		
MCM514256A-10 and MCM51L4256A-10, t _{RC} = 180 ns		_	60		
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	I _{CC2}	-	2.0	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles (CAS = V _{IH})	lCC3			mA	2
MCM514256A-70 and MCM51L4256A-70, t _{RC} = 130 ns		_	80		
MCM514256A-80 and MCM51L4256A-80, t _{RC} = 150 ns		_	70		
MCM514256A-10 and MCM51L4256A-10, t _{RC} = 180 ns		_	60		
V _{CC} Power Supply Current During Fast Page Mode Cycle (RAS = V _{IL})	ICC4			mA	2, 3
MCM514256A-70 and MCM51L4256A-70, t _{PC} = 40 ns		_	60		
MCM514256A-80 and MCM51L4256A-80, tpC = 45 ns		-	50		
MCM514256A-10 and MCM51L4256A-10, tPC = 55 ns		-	40		
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V) MCM514256A	I _{CC5}	_	1.0	mA	
MCM51L4256A		-	200	μΑ	
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle	¹ CC6			mA	2
MCM514256A-70 and MCM51L4256A-70, t _{RC} = 130 ns		_	80		
MCM514256A-80 and MCM51L4256A-80, t _{RC} = 150 ns		_	70		
MCM514256A-10 and MCM51L4256A-10, t _{RC} = 180 ns		_	60		
V _{CC} Power Supply Current, Battery Backup Mode—MCM51L4256A only	ICC7	_	300	μА	
$(t_{RC} = 125 \mu s; t_{RAS} = 1 \mu s; \overline{CAS} = \overline{CAS}$ Before \overline{RAS} Cycle or 0.2 V; A0-A8, \overline{G} , \overline{W} ,				,	
$DQ0-DQ3=V_{CC}-0.2 \text{ V or } 0.2 \text{ V}$					
Input Leakage Current (0 V≤V _{in} ≤6.5 V)	llkg(I)	- 10	10	μΑ	
Output Leakage Current (CAS = V _{IH} , 0 V ≤ V _{Out} ≤ 5.5 V)	l _{lkg} (0)	- 10	10	μА	
Output High Voltage (I _{OH} = -5 mA)	V _{OH}	2.4	_	٧	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	0.4	٧	

CAPACITANCE (f = 1.0 MHz, TA = 25°C, VCC = 5 V, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit	Notes
Input Capacitance A0-A8	C _{in}	5	pF	4
\overline{G} , \overline{RAS} , \overline{CAS} , \overline{W}		7	pF	4
Output Capacitance (CAS = V _{IH} to Disable Output) DQ0-DQ3	Cout	7	pF	4

- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Measured with one address transition per page mode cycle.
- 4. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

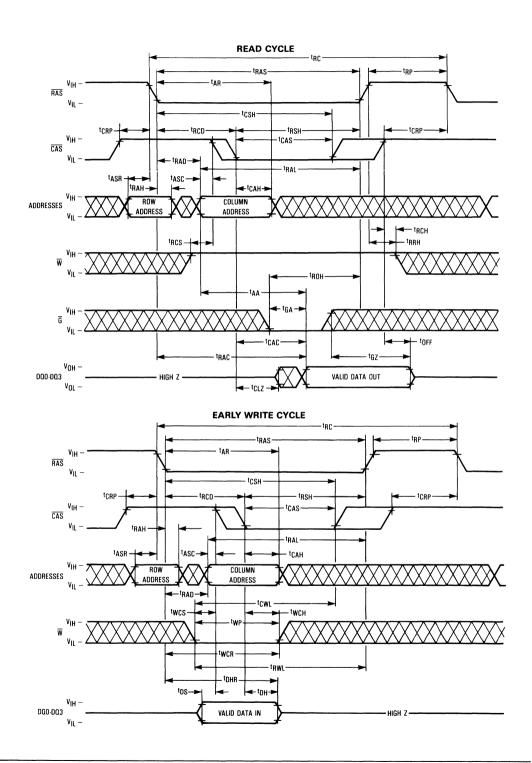
READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, and 4)

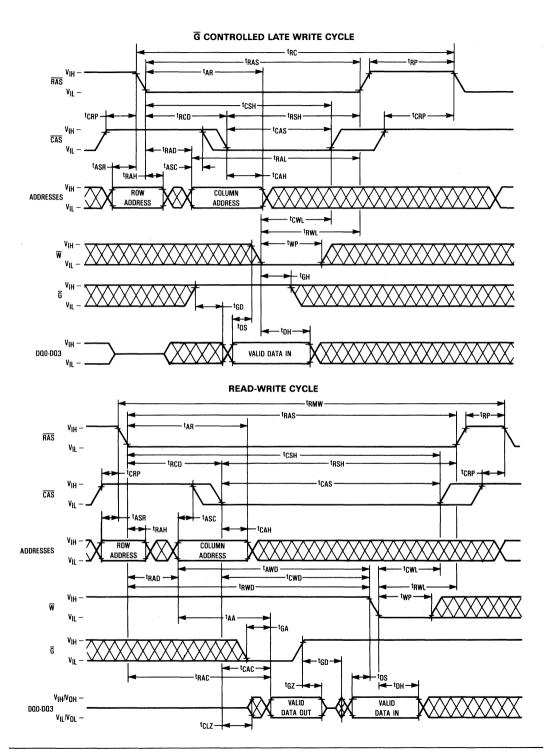
NEAD, WHITE, AND NEAD-WHITE CICLES (See Notes			1, 2, 3, allu 4/							
Parameter	Symbol			4256A-70 .4256A-70		4256A-80 .4256A-80		4256A-10 .4256A-10		Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max		
Random Read or Write Cycle Time	†RELREL	tRC	130	_	150	_	180	_	ns	5
Read-Write Cycle Time	tRELREL	tRMW	185	_	205	_	245	_	ns	5
Fast Page Mode Cycle Time	†CELCEL	tPC	40	_	45	_	55	_	ns	
Fast Page Mode Read-Write Cycle Time	†CELCEL	^t PRMW	95	_	100	_	115	_	ns	
Access Time from RAS	tRELQV	tRAC	_	70	_	80	_	100	ns	6, 7
Access Time from CAS	tCELQV	tCAC	_	20	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	35	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	tCEHQV	^t CPA	-	35	_	40	_	50	ns	6
CAS to Output in Low-Z	†CELQX	tCLZ	0	_	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tŢ	ŧΤ	3	50	3	50	3	50	ns	
RAS Precharge Time	tREHREL	tRP	50	_	60	_	70	_	ns	
RAS Pulse Width	tRELREH	†RAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	tRELREH	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	†CELREH	tRSH	20	_	20	_	25	_	ns	
CAS Hold Time	^t RELCEH	tCSH	70	_	80	_	100		ns	
CAS Pulse Width	†CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	tRELAV	^t RAD	15	35	15	40	20	50	ns	12
CAS to RAS Precharge Time	†CEHREL	tCRP	5	_	5	_	10	_	ns	
CAS Precharge Time	†CEHCEL	tCPN	10	_	10	_	15	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	[†] CEHCEL	tCP	10	_	10	-	10	-	ns	
Row Address Setup Time	tAVREL	tASR	0	_	0	_	0	_	ns	
Row Address Hold Time	tRELAX	tRAH	10	-	10		15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0	_	0	_	ns	
Column Address Hold Time	†CELAX	tCAH	15	-	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	^t AR	55	-	60	-	75	_	ns	
Column Address to RAS Lead Time	†AVREH	^t RAL	35	_	40	_	50	_	ns	

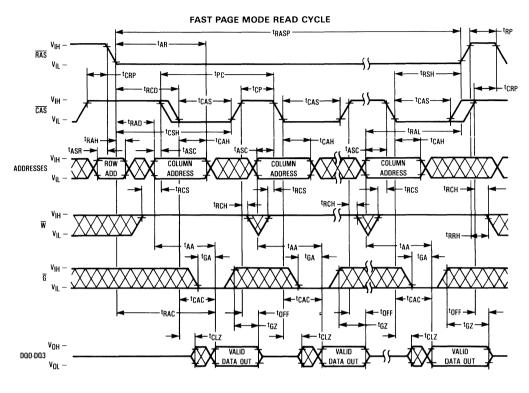
(continued)

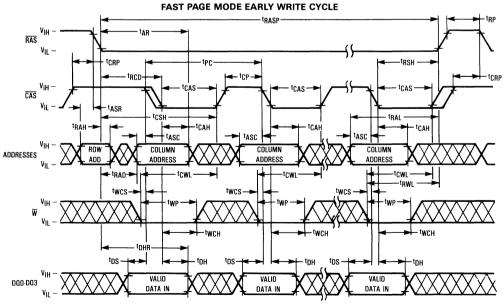
- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements $t_T = 5.0$ ns.
- The specifications for t_{RC} (min) and t_{RMW} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL (-200 μ A, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that tRCD≤tRCD (max).
- 8. Assumes that tRCD≥tRCD (max).
- Assumes that t_{RAD}≥t_{RAD} (max).
- topp (max) and/or tozz (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

READ, WRITE, AND READ-WRITE CYCLES (Continued)

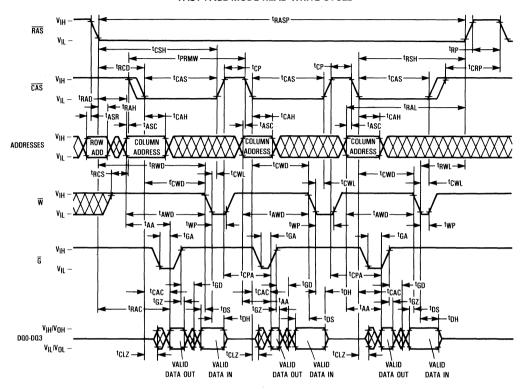

Parameter	Symbol		Symbol MCM514256A-70 MCM514256A-80 MCM51L4256A-80		MCM51 MCM51I	Unit	Notes			
	Standard	Alternate	Min	Max	Min	Max	Min	Max		
Read Command Setup Time	†WHCEL	tRCS	0	_	0		0		ns	
Read Command Hold Time	tCEHWX	tRCH	0	_	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	tRRH	0	_	0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	tCELWH	twcH	15	_	15	-	20	_	ns	
Write Command Hold Time Referenced to RAS	^t RELWH	tWCR	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	-	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	20	_	25	_	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20		20	_	25	_	ns	
Data In Setup Time	†DVCEL.	tDS	0	_	0	_	0	_	ns	14
Data In Hold Time	tCELDX	tDH	15	_	15	_	20	_	ns	14
Data In Hold Time Referenced to RAS	tRELDX	tDHR	55	_	60	_	75	_	ns	
Refresh Period MCM514256A MCM51L4256A	trvrv	tRFSH	_	8 64	-	8 64	_	8 64	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	0	_	ns	15
CAS to Write Delay	tCELWL	tcwD	- 50	_	50	_	60		ns	15
RAS to Write Delay	tRELWL	tRWD	100	_	110	_	135	_	ns	15
Column Address to Write Delay Time	tAVWL	tAWD	65	_	70	-	85	_	ns	15
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	tCSR	10	_	10	-	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	^t CHR	30	_	30	-	30	_	ns	
RAS Precharge to CAS Active Time	^t REHCEL	tRPC	0		0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	^t CPT	40	-	40	_	50	_	ns	
RAS Hold Time Referenced to G	^t GLREH	tROH	10	_	10	_	20	_	ns	
G Access Time	tGLQV	t _{GA}	_	20		20	_	25	ns	
G to Data Delay	tGLHDX	tGD	20	_	20	_	25	_	ns	
Output Buffer Turn-Off Delay Time from G	tGHQZ	tGZ	0	20	0	20	0	25	ns	10
G Command Hold Time	tWLGL	tGH	20	_	20	_	25	-	ns	

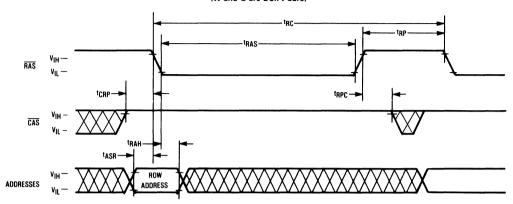

NOTES:

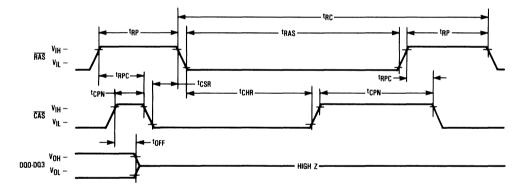

13. Either tRRH or tRCH must be satisfied for a read cycle.

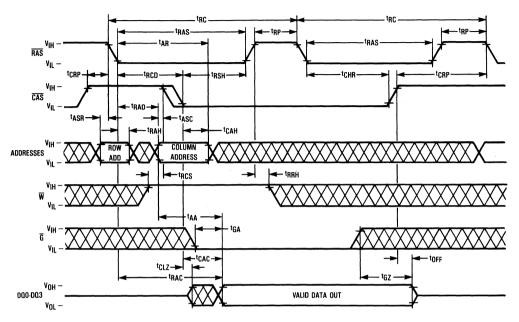

^{14.} These parameters are referenced to CAS leading edge in random write cycles and to W leading edge in delayed write or read-write cycles.

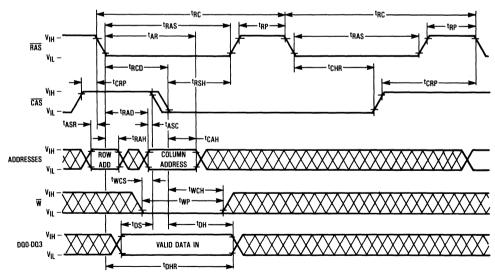
^{15.} tWCS, tRWD, tCWD, and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min), tRWD≥tRWD (min), and tAWD≥tAWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

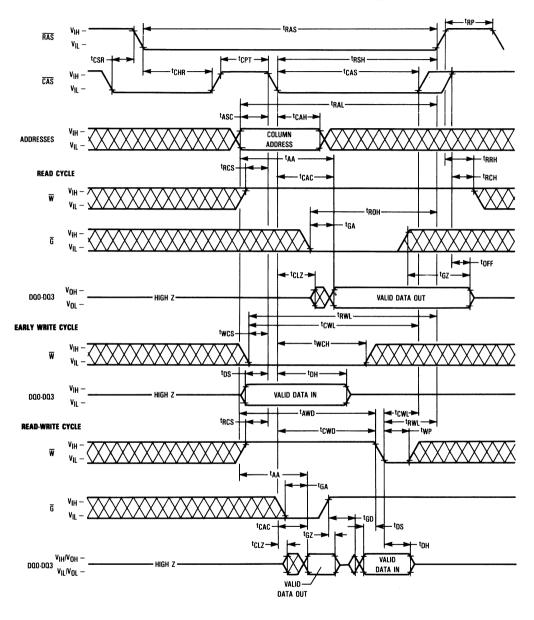





FAST PAGE MODE READ-WRITE CYCLE


RAS ONLY REFRESH CYCLE (W and G are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (W, G, and A0-A8 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE)

CAS BEFORE **RAS** REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (\overline{RAS}) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 8 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The nine address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe (\overline{RAS}) and column address strobe (\overline{CAS}), into two separate 9-bit address fields. A total of eighteen address bits, nine rows and nine columns, will decode one of the 262,144 bit locations in the device. \overline{RAS} active transition is followed by \overline{CAS} active transition (active = V_{IL} , t_{RCD} minimum) for all read or write cycles. The delay between \overline{RAS} and \overline{CAS} active transitions, referred to as the **multiplex window**, gives a system designer flexibility in setting up the external addresses into the RAM.

The external \overline{CAS} signal is ignored until an internal \overline{RAS} signal is available. This gate feature on the external \overline{CAS} clock enables the internal \overline{CAS} line as soon as the row address hold time (track) specification is met (and defines tract minimum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the \overline{CAS} clock.

There are two other variations in addressing the 256K × 4 RAM: RAS only refresh cycle and CAS before RAS refresh cycle. Both are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: normal random read cycle, page mode read cycle, read-write cycle, and page mode read-write cycle. The normal read cycle is outlined here, while the other cycles are discussed in separate sections.

The normal read cycle begins as described in ADDRESS-ING THE RAM, with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ active transitions latching the desired bit location. The write (\overline{W}) input level must be high (V_{H}) , t_{RCS} (minimum) before the $\overline{\text{CAS}}$ active transition, to enable read mode.

Both the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. Both $\overline{\text{CAS}}$ and output enable $(\overline{\text{G}})$ control read access time: $\overline{\text{CAS}}$ must be active before or at tRCD maximum and $\overline{\text{G}}$ must be active tRAC-tGA (both minimum) after $\overline{\text{RAS}}$ active transition to guarantee valid data out (Q) at tRAC (access time from $\overline{\text{RAS}}$ active transition). If the tRCD maximum is exceeded and/or $\overline{\text{G}}$ active transition does not occur in time, read access time is determined by either the $\overline{\text{CAS}}$ or $\overline{\text{G}}$ clock active transition (tCAC or tGA).

The RAS and CAS clocks must remain active for a minimum time of tRAS and tCAS, respectively, to complete the read cycle. W must remain high throughout the cycle, and for time tRRH or tRCH after RAS or CAS inactive transition, respectively, to maintain the data at that bit location. Once RAS

transitions to inactive, it must remain inactive for a minimum time of tRP to precharge the internal device circuitry for the next active cycle. O is valid, but not latched, as long as the \overline{CAS} and \overline{G} clocks are active. When either the \overline{CAS} or \overline{G} clock transitions to inactive, the output will switch to High Z, toff or tG2 after inactive transition.

WRITE CYCLE

The DRAM may be written with any of four cycles: early write, late write, page mode early write, and page mode readwrite. Early and late write modes are discussed here, while page mode write operations are covered in another section.

 \overline{A} write cycle begins as described in ADDRESSING THE RAM. Write mode is enabled by the transition of \overline{W} to active (V_{IL}). Early and late write modes are distinguished by the active transition of \overline{W} , with respect to \overline{CAS} . Minimum active time tRAS and tCAS, and precharge time tRP apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time twos before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for trwl and tcwl, respectively, after the start of the early write operation to complete the cycle.

Q remains High Z throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CAS} active transition, keeping data out buffers disabled, effectively disabling \overline{G} .

A late write cycle (referred to as \overline{G} controlled write) occurs when \overline{W} active transition is made after \overline{CAS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CAS} active transition, $(t_{RCD} + t_{CWD} + t_{RWL} + t_T) \le t_{RAS}$, if timing minimums t_{RCD} , t_{RWL} , and t_T are maintained. D is referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CAS} active transition but Q may be indeterminate—see note 15 of AC operating conditions table. Parameters t_{RWL} and t_{CWL} also apply to late write cycles.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the **WRITE CYCLE** section, except \overline{W} must remain high for tcWD minimum after the \overline{CAS} active transition, to guarantee valid Q before writing the bit.

PAGE MODE CYCLES

Page mode allows fast successive data operations at all 512 column locations on a selected row of the 256K \times 4 dynamic RAM. Read access time in page mode (tCAC) is typically half the regular \overline{RAS} clock access time, tRAC. Page mode operation consists of keeping \overline{RAS} active while toggling \overline{CAS} between VIH and VIL. The row is latched by \overline{RAS} active transition, while each \overline{CAS} active transition allows selection of a new column location on the row.

A page mode cycle is initiated by a normal read, write, or read-write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, CAS transitions to inactive for minimum t_{CP}, while RAS remains low (V_{IL}). The second CAS active transition while RAS is low initiates the first page mode cycle (tp_C or tp_{RWC}). Either a read, write,

or read-write operation can be performed in a page mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive page mode cycles and performed in any order. The maximum number of consecutive page mode cycles is limited by trace. Page mode operation is ended when $\overline{\rm RAS}$ transitions to inactive, coincident with or following $\overline{\rm CAS}$ inactive transition.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge degrades with time and temperature, thus each bit must be periodically refreshed (recharged) to maintain the correct bit state. Bits in the MCM514256A require refresh every 8 milliseconds, while refresh time for the MCM51L4256A is 64 milliseconds.

Refresh is accomplished by cycling through the 512 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM514256A, and 124.8 microseconds for the MCM51L4256A. Burst refresh, a refresh of all 512 rows consecutively, must be performed every 8 milliseconds on the MCM51L4256A and 64 milliseconds on the MCM51L4256A.

A normal read, write, or read-write operation to the RAM will refresh all the bits (2048) associated with the particular row decoded. Three other methods of refresh, RAS only refresh, CAS before RAS refresh, and Hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

RAS-only refresh consists of RAS transition to active, latching the row address to be refreshed, while CAS remains high (VIH) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh is enabled by bringing $\overline{\text{CAS}}$ active before $\overline{\text{RAS}}$. This clock order activates an internal refresh

counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CAS} active at the end of a read or write cycle, while \overline{RAS} cycles inactive for tgp and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 512 cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed after a minimum of eight $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ initialization cycles. Test procedure:

- Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CAS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read the "1"s which were written in step 2 in normal read mode.
- Using the same starting column address as in step 2, read
 "1" out and write "0" into the cell by performing CAS
 before RAS refresh counter test, read-write cycle.
 Repeat this operation 512 times.
- Read "0"s which were written in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

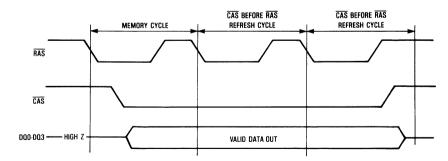
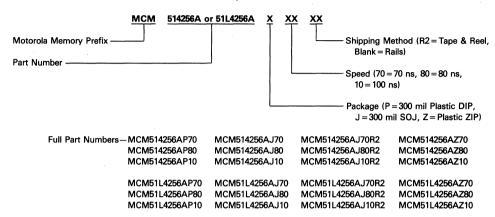



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

256K×4 CMOS Dynamic RAM Static Column

The MCM514258A is a 1.0μ CMOS high-speed, dynamic random access memory. It is organized as 262,144 four-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost.

The MCM514258A requires only nine address lines; row and column address inputs are multiplexed. The device is packaged in a standard 300-mil dual-in-line plastic package (DIP), a 300-mil SOJ plastic package, and a 100-mil zig-zag in-line plastic package (ZIP).

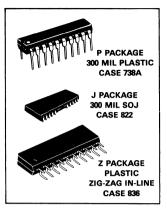
- Three-State Data Output
- Static Column Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CS Before RAS Refresh
- Hidden Refresh
- 512 Cycle, 8 ms Refresh
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM514258A-70=70 ns (Max)

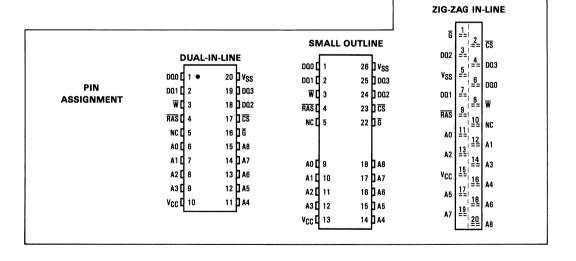
MCM514258A-80 = 80 ns (Max)

MCM514258A-10 = 100 ns (Max)

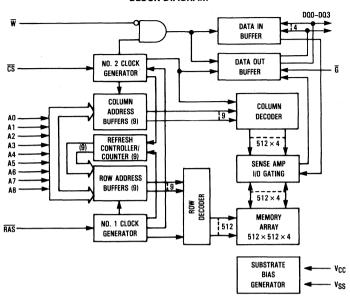
Low Active Power Dissipation:


MCM514258A-70 = 440 mW (Max) MCM514258A-80 = 385 mW (Max)

MCM514258A-10 = 330 mW (Max)


■ Low Standby Power Dissipation:

11 mW (Max), TTL Levels 5.5 mW (Max), CMOS Levels


MCM514258A

PIN NAMES										
A0-A8 Address Input										
DQ0-DQ3 Data Input/Output										
G Output Enable										
W Read/Write Input										
RAS Row Address Strobe										
CS Chip Select										
V _{CC} Power (+5 V)										
VSS Ground										
NC No Connection										

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	V
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Data Out Current	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	VSS	0	0	0		
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	- 1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current	Icc1			mA	2
MCM514258A-70, t _{RC} = 130 ns		-	80	1	1
MCM514258A-80, t _{RC} = 150 ns	1	-	70	1	
MCM514258A-10, t _{RC} = 180 ns			60		
V _{CC} Power Supply Current (Standby) (RAS = CS = V _{IH})	ICC2		2.0	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles (CS = V _{IH})	Іссз			mA	2
MCM514258A-70, t _{RC} = 130 ns		-	80	1	
MCM514258A-80, t _{RC} = 150 ns		-	70	l	1
MCM514258A-10, t _{RC} = 180 ns			60		
V _{CC} Power Supply Current During Static Column Mode Cycle ($\overline{RAS} = \overline{CS} = V_{ L}$)	ICC4			mA	2, 4
MCM514258A-70, t _{SC} =40 ns	1	-	60		
MCM514258A-80, t _{SC} =45 ns		-	50		
MCM514258A-10, t _{SC} = 50 ns			40		
V _{CC} Power Supply Current (Standby) (RAS = CS = V _{CC} − 0.2 V)	ICC5	_	1.0	mA	
V _{CC} Power Supply Current During CS Before RAS Refresh Cycle	ICC6	1		mA	2
MCM514258A-70, t _{RC} = 130 ns		-	80	l	
MCM514258A-80, t _{RC} = 150 ns	l	-	70		
MCM514258A-10, t _{RC} = 180 ns	1		60		
Input Leakage Current (0 V≤V _{in} ≤6.5 V)	llkg(I)	- 10	10	μΑ	
Output Leakage Current (CS=V _{IH} , 0 V≤V _{out} ≤5.5 V)	l _{lkg} (O)	- 10	10	. μΑ	
Output High Voltage (IOH = -5 mA)	Voн	2.4		٧	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	0.4	٧	

CAPACITANCE (f=1.0 MHz, T_A=25°C, V_{CC}=5 V, Periodically Sampled Rather Than 100% Tested)

Parameter		Symbol	Max	Unit	Notes
Input Capacitance	A0-A8	C _{in}	5	рF	3
	, RAS, CS, W		7	рF	3
Output Capacitance (CS = VIH to Disable Output)	DQ0-DQ3	Cout	7	рF	3

- 1. All voltages referenced to $\ensuremath{\text{V}_{\text{SS}}}.$
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.
- 4. Measured with one address transition per static column mode cycle.

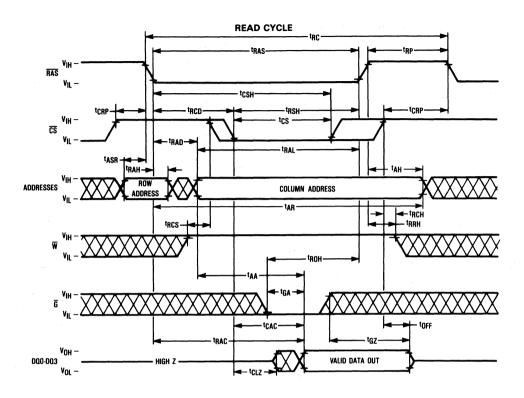
AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V ± 10%, T_A=0 to 70°C, Unless Otherwise Noted)

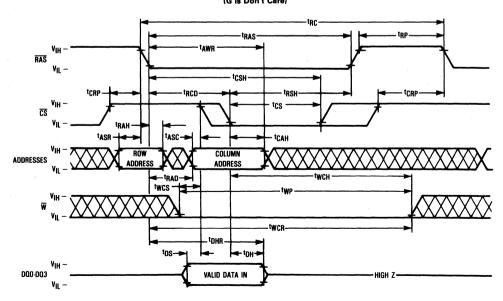
READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, and 4)

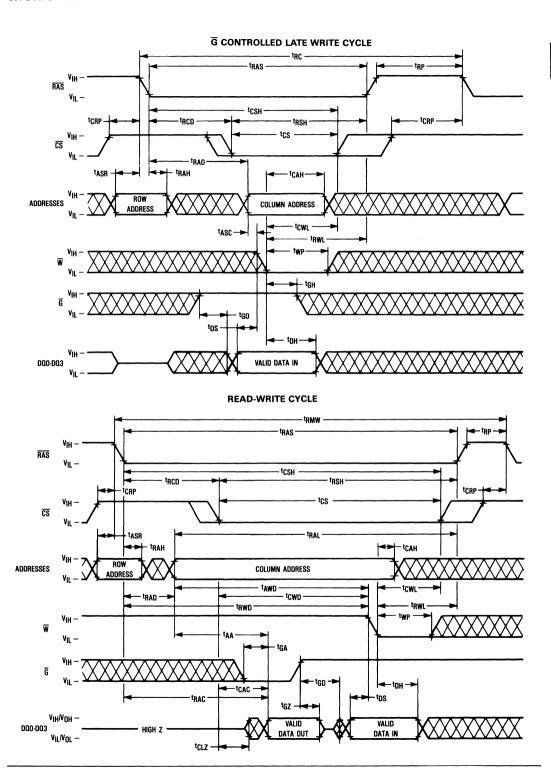
Barranatar	Symbol		MCM514258A-70		MCM514258A-80		MCM51	11-14	Manage -	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	^t RELREL	tRC	130	_	150	_	180	_	ns	5
Read-Write Cycle Time	†RELREL	tRMW	185	_	205	_	245	_	ns	5
Static Column Mode Cycle Time	†AVAV	tsc	40	_	45	_	55	_	ns	
Static Column Mode Read-Write Cycle Time	†AVAV	tSRMW	100	_	110	_	135	_	ns	
Access Time from RAS	†RELQV	†RAC	_	70	_	80	_	100	ns	6, 7
Access Time from CS	tCELQV	†CAC	_	25	_	25	-	30	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	35	_	40	_	50	ns	6, 9
Access Time from Last Write	tWLQV	tALW	_	65	_	75	_	95	ns	6, 10
CS to Output in Low-Z	†CELQX	tCLZ	0	_	0	· -	0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	30	ns	11
Output Data Hold Time from Column Address	tAXQX	tAOH	5	_	5	_	5	_	ns	
Output Data Enable Time from Write	twhav	tow	_	20	_	20	_	30	ns	
Transition Time (Rise and Fall)	ŧτ	ŧΤ	3	50	3	50	3	50	ns	
RAS Precharge Time	†REHREL	tRP	50	_	60	_	70		ns	
RAS Pulse Width	^t RELREH	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Static Column Mode)	^t RELREH	tRASC	70	100,000	80	100,000	100	100,000	ns	
CS to RAS Hold Time	^t CELREH	tRSH	25	_	25	_	30	_	ns	
RAS to CS Hold Time	^t RELCEH	tCSH	70	-	80	_	100	_	ns	
CS Pulse Width	†CELCEH	tcs	25	10,000	25	10,000	30	10,000	ns	
CS Pulse Width (Static Column Mode)	^t CELCEH	tcsc	25	100,000	25	100,000	30	100,000	ns	
RAS to CS Delay Time	†RELCEL	tRCD	20	45	20	55	25	70	ns	12
RAS to Column Address Delay Time	tRELAV	tRAD	15	35	15	40	20	50	ns	13
CS to RAS Precharge Time	†CEHREL	tCRP	5	_	5	_	5	_	ns	
CS Precharge Time	†CEHCEL	tCPN	10	_	10	_	15	_	ns	
CS Precharge Time (Static Column Mode)	^t CEHCEL	tCP	10	_	10	_	10	_	ns	
Row Address Setup Time	†AVREL	tASR	0	_	0	_	0	_	ns	
Row Address Hold Time	tRELAX	tRAH	10	_	10	_	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0	_	0	_	ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	15	_	20	_	ns	
Write Address Hold Time Referenced to RAS	tRELAX	†AWR	55	-	60	_	75	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	tAR	85	_	95	_	115	-	ns	
Column Address to RAS Lead Time	tAVREH	tRAL	35	_	40	_	50	_	ns	

NOTES:

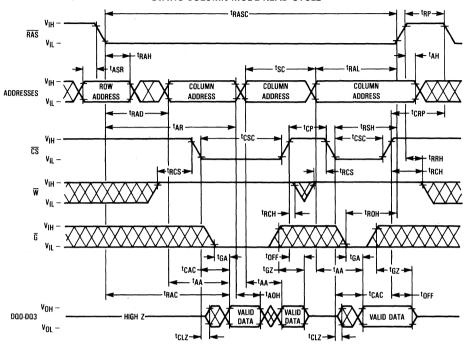

(continued)

- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{|H} and V_{|L} (or between V_{|H} and V_{|H}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RMW} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that tRCD≤tRCD (max).
- Assumes that t_{RCD}≥t_{RCD} (max).
- 9. Assumes that tRAD≥tRAD (max).
- Assumes that t_{LWAD} ≤ t_{LWAD} (max).
- 11. t_{OFF} (max) and/or t_{GZ} define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 12. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 13. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

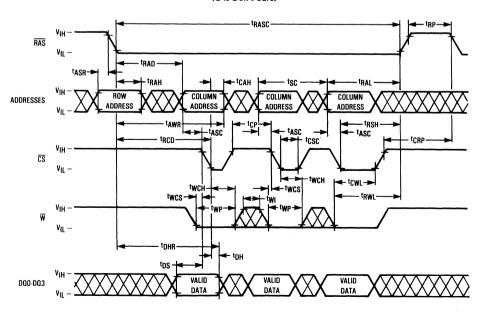

READ, WRITE, AND READ-WRITE CYCLES (Continued)


Parameter	Symbol		MCM514258A-70		MCM51	4258A-80	MCM51	4258A-10		Nan-
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Column Address Hold Time Referenced to RAS	†REHAX	^t AH	10	_	10	-	10	_	ns	14
Last Write to Column Address Delay Time	tWLAV	tLWAD	20	30	20	35	25	45	ns	15
Last Write to Column Address Hold Time	tWLAX	tAHLW	65	_	75	_	95	_	ns	
Read Command Setup Time Referenced to CS	tWHCEL	tRCS	0	_	0	_	0	_	ns	
Read Command Hold Time Referenced to CS	[†] CEHWX	tRCH	0	-	0	_	0		ns	16
Read Command Hold Time Referenced to RAS	tREHWX	tRRH	0	-	0	-	0	_	ns	16
Write Command Hold Time (Output Data Disable)	tCEHWH	tWCH	15	-	15	_	20	_	ns	17
Write Command Hold Time Referenced to RAS	tRELWH	tWCR	55	_	60	-	75	-	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Inactive Time	tWHWL	tWI	10		10	_	10	_	ns	
Write Command to RAS Lead Time	†WLREH	tRWL	20	_	20	_	25	_	ns	
Write Command to CS Lead Time	†WLCEH	tCWL	20	_	20	_	25	_	ns	
Data In Setup Time	†DVCEL	tDS	0	_	0	_	0	_	ns	18
Data In Hold Time	†CELDX	t _{DH}	15	_	15	_	20	_	ns	18
Data In Hold Time Referenced to RAS	†RELDX	tDHR	55		60	_	75	_	ns	
Refresh Period	tRVRV	tRFSH	_	8	_	8	_	8	ms	
Write Command Setup Time (Output Data Disable)	tWLCEL	twcs	0	-	0	_	0	_	ns	17
CS to Write Delay (RW Cycle)	^t CELWL	tCWD	55	_	55	_	65		ns	17
RAS to Write Delay (RW Cycle)	^t RELWL	tRWD	100	_	110	_	135	_	ns	17
Column Address to Write Delay Time	tAVWL	tAWD	65	_	70	_	85	_	ns	17
CS Setup Time for CS Before RAS Refresh	^t CELREL	tCSR	10	-	10	_	10	_	ns	
CS Hold Time for CS Before RAS Refresh	^t RELCEH	^t CHR	30	_	30	_	30	_	ns	
RAS Precharge to CS Active Time	^t REHCEL	tRPC	- 0	_	0	_	0	_	ns	
CS Precharge Time for CS Before RAS Counter Test	[†] CEHCEL	^t CPT	40	-	40	_	50	_	ns	
RAS Hold Time Referenced to G	^t GLREH	tROH	10	-	10	_	20	_	ns	
G Access Time	tGLQV	tGA	_	25	_	25	-	25	ns	
G to Data Delay	tGHDX	tGD	20	_	20	_	25	_	ns	
Output Buffer Turn-off Delay Time from G	tGHQZ	tGZ	0	20	0	20	0	25	ns	11
G Command Hold Time	tWLGL	t _{GH}	20	_	20	_	25	_	ns	

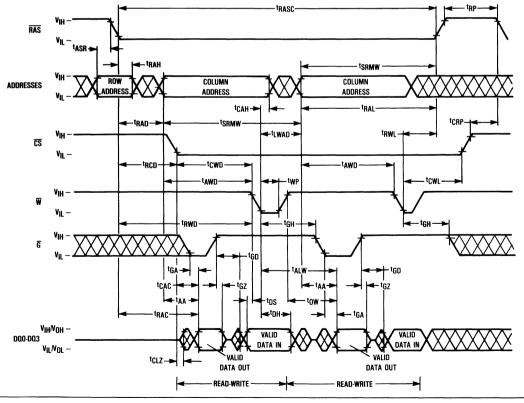
- 14. tAH must be met for a read cycle.
- 15. Operation within the tLWAD (max) limit ensures that tALW (max) can be met. tLWAD (max) is specified as a reference point only; if tLWAD is greater than the specified tLWAD (max) limit, then access time is controlled exclusively by tAA.
- 16. Either tRRH or tRCH must be satisfied for a read cycle.
- 17. tWCH, tWCS, tRWD, tCWD, and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if twCS≥tWCS (min) and twCH≥tWCH (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tcWD≥tCWD (min), tRWD≥tRWD (min), and tAWD≥tAWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 18. These parameters are referenced to CS leading edge in random write cycles and to W leading edge in late write or read-write cycles.

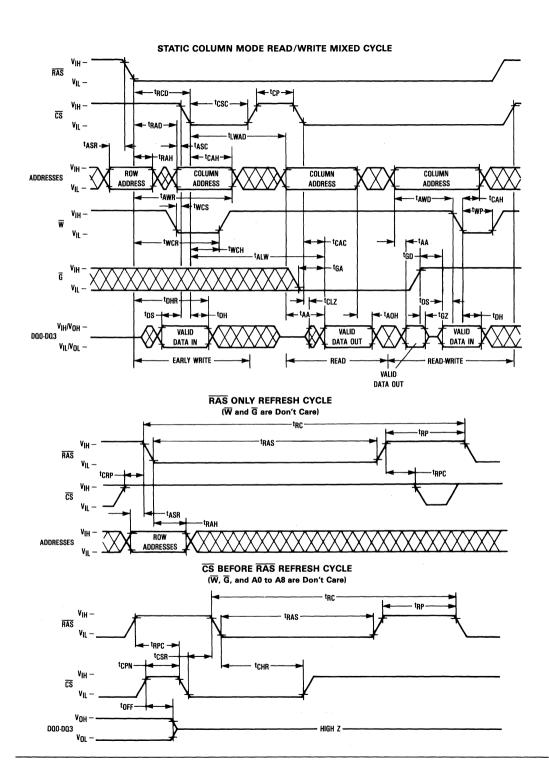


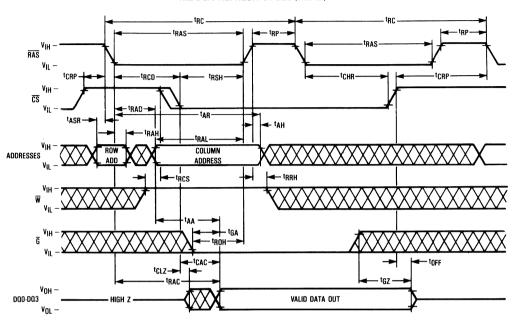
EARLY WRITE CYCLE (G is Don't Care)



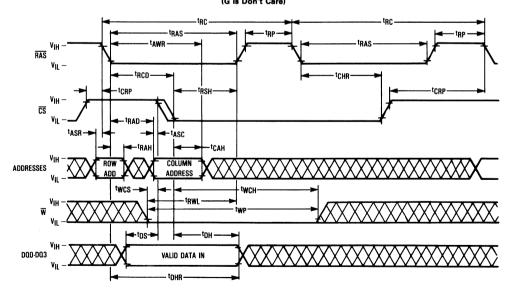
STATIC COLUMN MODE READ CYCLE




STATIC COLUMN MODE EARLY WRITE CYCLE (A) (G is Don't Care)


STATIC COLUMN MODE EARLY WRITE CYCLE (B) (G is Don't Care) VIHtrasc-RAS trah! COLUMN COLUMN COLUMN ADDRESSES ADDRESS ADDRESS ADDRESS ADDRESS - tCRP tASC---- tRSH-CS tRCD **≠**tcwL> tRWL twcs-^tDHR tDH tos → —tDS VIH/VOH DQO-DQ3 VALID DATA VALID DATA VALID DATA

STATIC COLUMN MODE READ-WRITE CYCLE



HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE) (G is Don't Care)

CS BEFORE RAS REFRESH COUNTER TEST CYCLE RAS VIH -READ CYCLE ADDRESSES V_{IL} -COLUMN DGO-DG3 V_{OH} - -VALID DATA OUT EARLY WRITE CYCLE ADDRESSES $V_{IL} -$ Dao-Das $\frac{v_{IH}-}{v_{IL}-}$ VALID DATA IN READ-WRITE CYCLE ADDRESSES $V_{IL} - V_{IL}$ COLUMN + tacs tCAC- $D00-D03 = \frac{V_{IH}/V_{OH} - V_{IL}}{V_{IL}/V_{OL}} = -\frac{1}{2}$ DATA OUT

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 8 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The nine address pins on the device are time multiplexed at the beginning of a memory cycle by the row address strobe (RAS) clock, into two separate 9-bit address fields. A total of eighteen address bits, nine rows and nine columns, will decode one of the 262,144 bit locations in the device. RAS active transition latches the row address field. Column addresses are not latched, hence the "static column" designation of this device. Chip select ($\overline{\text{CS}}$) active transition (active = V_{IL}, t_{RCD} minimum) follows $\overline{\text{RAS}}$ on all read, write, or read-write cycles, and is independent of column address. The static column feature allows greater flexibility in setting up the external external column addresses into the RAM.

There are two other variations in addressing the 256K × 4 RAM: RAS only refresh cycle and CS before RAS refresh cycle. Both are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: random read cycle, read-write cycle, and "static column mode" read, and read-write. The random read cycle is outlined here, while the other cycles are discussed in separate sections.

The random read cycle begins as described in ADDRESS-ING THE RAM, with $\overline{\text{RAS}}$ active transition latching the desired row. The write $\overline{\text{(W)}}$ input level must be high (VIH), RCS (minimum) before the $\overline{\text{CS}}$ active transition, to enable read mode. A valid column address can be provided at any time (tRAD minimum), independent of the $\overline{\text{CS}}$ active transition.

Both the RAS and $\overline{\text{CS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. Both $\overline{\text{CS}}$ and output enable $(\overline{\text{G}})$ control read access time: $\overline{\text{CS}}$ and $\overline{\text{G}}$ must be active (and column address must be valid) by tRCD maximum, and tRAC-tGA minimum, respectively, to guarantee valid data out (Ω) at tRAC (access time from RAS active transition). If either tRCD maximum is exceeded or $\overline{\text{G}}$ active transition does not occur in time, read access time is determined by the $\overline{\text{CS}}$ and/or $\overline{\text{G}}$ clock active transition (tCAC, tGA).

The RAS and CS clocks must remain active for a minimum time of tRAS and tCS, respectively, to complete the read cycle. The column address must remain valid for tAH after RAS inactive transition to complete the read cycle. W must remain high throughout the cycle, and for time tRRH or tRCH after RAS or CS inactive transition, respectively, to maintain the data at that bit location. Once RAS transitions to inactive, it must remain inactive for a minimum time of tRP to precharge the internal device circuitry for the next active cycle. Q is valid, but not latched, as long as the CS and G clocks are active.

When either the \overline{CS} or \overline{G} clock transitions to inactive, the output will switch to High Z, topp or tgz after inactive transition.

WRITE CYCLE

The DRAM may be written with any of four cycles: early write, late write and "static column mode" early write, and read-write. Early and late write modes are discussed here, while static column mode write operations are covered in another section.

A write cycle begins as described in ADDRESSING THE RAM. Write mode is enabled by the transition of \overline{W} to active (VIL level). Early and late write modes are distinguished by the active transition of \overline{W} with respect to \overline{CS} leading edge. Minimum active time t_RAS and t_{CS} , and precharge time t_RP apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time twcs before \overline{CS} active transition. Column address set up and hold times (t_{ASC}, t_{CAH}), and data in (D) set up and hold times (t_{DS}, t_{DH}) are referenced to \overline{CS} in an early write cycle. \overline{RAS} and \overline{CS} clocks must stay active for t_{RWL} and t_{CWL}, respectively, after the start of the early write operation to complete the cycle.

Q remains High Z throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CS} active transition, keeping data-out buffers disabled effectively disabling \overline{C}

A late write cycle (referred to as \overline{G} controlled write) occurs when \overline{W} active transition is made after \overline{CS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CS} active transition, $(t_{RAD}+t_{ASC}+t_{RWL}+2t_{T}\leq t_{RAS})$, if other timing minimums $(t_{ASC},t_{RWL},andt_{T})$ are maintained. Column address and D timing parameters are referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CS} active transition but Q may be indeterminate—see note 17 of AC operating conditions table. Parameters t_{RWL} and t_{CWL} also apply to late write cycles.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the **WRITE CYCLE** section, except \overline{W} must remain high for t_{CWD} and/or t_{AWD} minimum, to quarantee valid Q before writing the bit.

STATIC COLUMN MODE CYCLES

Static column mode refers to multiple successive data operations performed at any or all 512 column locations on the selected row of the 256 × 4 dynamic RAM during one RAS cycle. Read access time of multiple operations (tAA or tCAC) is considerably faster than the regular RAS clock access time tRAC. Multiple operations can be performed simply by keeping RAS active. CS may be toggled between active and inactive states at any time within the RAS cycle.

Once the timing requirements for the initial read, write, or read-write cycle are met and \overline{RAS} remains low, the device is ready for the next operation. Operations can be intermixed in any order, at any column address, subject to normal operating conditions previously described. Every write operation must be clocked with either \overline{CS} or \overline{W} , as indicated in **static column**

mode early write cycle timing diagrams A and B. Column address and D timing parameters are referenced to the signal clocking the write operation. \overline{CS} must be toggled inactive (tCp) to perform a read operation after an early write operation (to turn output on), as indicated in static column mode read/write mixed cycle timing diagram. The maximum number of consecutive operations is limited by tRASC. The cycle ends when \overline{RAS} transitions to inactive.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge degrades with time and temperature, thus each bit must be periodically re-freshed (recharged) to maintain the correct bit state. Bits in the MCM514258A require refresh every 8 milliseconds.

Refresh is accomplished by cycling through the 512 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM514258A. Burst refresh, a refresh of all 512 rows consecutively, must be performed every 8 milliseconds on the MCM514258A.

A normal read, write, or read-write operation to the RAM will refresh all the bits (2048) associated with the particular row decoded. Three other methods of refresh, RAS only refresh, CS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

RAS-only refresh consists of RAS transition to active, latching the row address to be refreshed, while CS remains high (VIH) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CS Before RAS Refresh

CS before RAS refresh is enabled by bringing CS active before RAS. This clock order activates an internal refresh counter

that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CS} active at the end of a read or write cycle, while \overline{RAS} cycles inactive for tap and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a $\overline{\text{CS}}$ before $\overline{\text{RAS}}$ refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See $\overline{\text{CS}}$ before $\overline{\text{RAS}}$ refresh counter test cycle timing diagram.

The test can be performed after a minimum of eight $\overline{\text{CS}}$ before $\overline{\text{RAS}}$ initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read the "1"s which were written in step 2 in normal read mode.
- Using the same column address as in step 2, read "1" out and write "0" into the cell by performing the CS before RAS refresh counter test, read-write cycle. Repeat this operation 512 times.
- Read "0"s which were written at in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

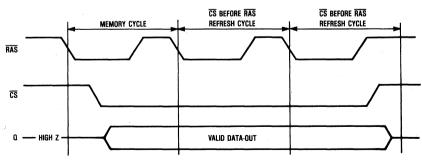
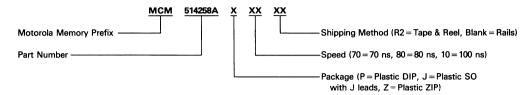



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers -- MCM514258AP70 MCM514257AP80

MCM514258AP10

MCM514258AJ70 MCM514258AJ80 MCM514258AJ10 MCM514258AJ70R2 MCM514258AJ80R2 MCM514258AJ10R2 MCM514258AZ70 MCM514258AZ80 MCM514258AZ10

Advance Information

1M×4 CMOS Dynamic RAM

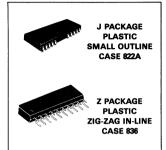
Page Mode

The MCM514400 is a 0.8μ CMOS high-speed, dynamic random access memory. It is organized as 1,048,576 four-bit words and fabricated with CMOS silicon-gate process technology. Advanced circuit design and fine line processing provide high performance, improved reliability, and low cost.

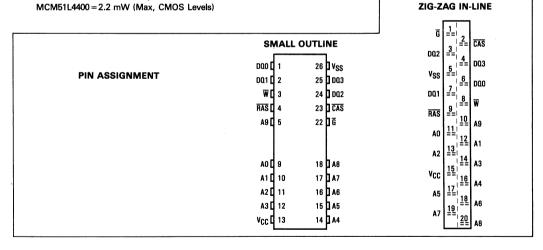
The MCM514400 requires only ten address lines; row and column address inputs are multiplexed. The device is packaged in a standard 350-mil-wide J-lead small outline package, and a 100-mil zig-zag in-line package (ZIP).

- Three-State Data Output
- Fast Page Mode
- Test Mode
- TTL-Compatible Inputs and Output
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 1024 Cycle Refresh: MCM514400 = 16 ms MCM51L4400 = 128 ms
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM514400-80 and MCM51L4400-80 = 80 ns (Max) MCM514400-10 and MCM51L4400-10 = 100 ns (Max)

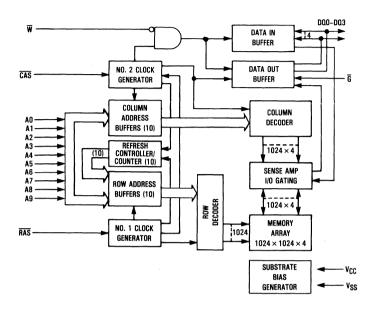

Low Active Power Dissipation:

MCM514400-80 and MCM51L4400-80 = 578 mW (Max) MCM514400-10 and MCM51L4400-10 = 495 mW (Max)


Low Standby Power Dissipation:

MCM514400 and MCM51L4400 = 11 mW (Max, TTL Levels)
MCM514400 = 5.5 mW (Max, CMOS Levels)

MCM514400 MCM51L4400



PIN NAMES
A0-A9 Address Input
DQ0-DQ3 Data Input/Output
G Output Enable
W Read/Write Input
RAS Row Address Strobe
CAS Column Address Strobe
V _{CC} Power (+5 V)
VSS Ground

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Data Out Current	lout	50	mA
Power Dissipation	PD	600	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0		l
Logic High Voltage, All Inputs	ViH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	- 1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM514400-80 and MCM51L4400-80, t _{RC} = 150 ns MCM514400-10 and MCM51L4400-10, t _{RC} = 180 ns	ICC1	_	105 90	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	I _{CC2}	_	2.0	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles (CAS = V _{IH}) MCM514400-80 and MCM51L4400-80, t _{RC} = 150 ns MCM514400-10 and MCM51L4400-10, t _{RC} = 180 ns	Іссз	_	105 90	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle (RAS = V _{IL}) MCM514400-80 and MCM51L4400-80, tp _C = 45 ns MCM514400-10 and MCM51L4400-10, tp _C = 55 ns	ICC4	_	70 60	mA	2, 3
$\label{eq:VCC} V_{CC} \mbox{ Power Supply Current (Standby) } (\overline{\mbox{RAS}} = \overline{\mbox{CAS}} = V_{CC} - 0.2 \mbox{ V}) \\ \mbox{ MCM514400} \\ \mbox{ MCM514400}$	I _{CC5}	_	1.0 400	mA μA	
V _{CC} Power Supply Current During $\overline{\text{CAS}}$ Before $\overline{\text{RAS}}$ Refresh Cycle MCM514400-80 and MCM51L4400-80, t _{RC} = 150 ns MCM514400-10 and MCM51L4400-10, t _{RC} = 180 ns	ICC6	=	105 90	mA	2
V _{CC} Power Supply Current, Battery Backup Mode—MCM51L4400 only $t_{RC} = 125 \ \mu s; \ t_{RAS} = 1 \ \mu s; \ \overline{CAS} = \overline{CAS}$ Before \overline{RAS} Cycle or 0.2 V; A0-A9, \overline{G} , \overline{W} , DQ0-DQ3=V _{CC} -0.2 V or 0.2 V)	ICC7	_	500	μА	
Input Leakage Current (0 V≤V _{in} ≤6.5 V)	l _{lkg(l)}	- 10	10	μΑ	
Output Leakage Current (CAS = VIH, 0 V≤Vout≤5.5 V)	lkg(O)	- 10	10	μΑ	
Output High Voltage (I _{OH} = -5 mA)	VOH	2.4	_	V	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	0.4	V	

$\textbf{CAPACITANCE} \text{ (f=1.0 } \text{MHz, T}_{\mbox{\scriptsize A}} = 25^{\rm o}\text{C, V}_{\mbox{\scriptsize CC}} = 5 \text{ V, Periodically Sampled Rather Than 100\% Tested)}$

Parameter	Symbol	Max	Unit	Notes
Input Capacitance A0-A	C _{in}	5	pF	4
G, RAS, CAS, V	7	7	pF	4
I/O Capacitance (CAS = VIH to Disable Output)	C _{I/O}	7	pF	4

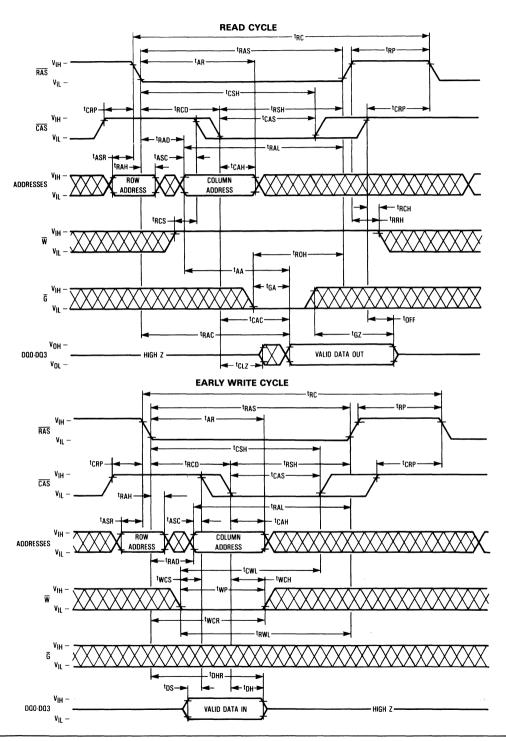
- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Measured with one address transition per page mode cycle.
- 4. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

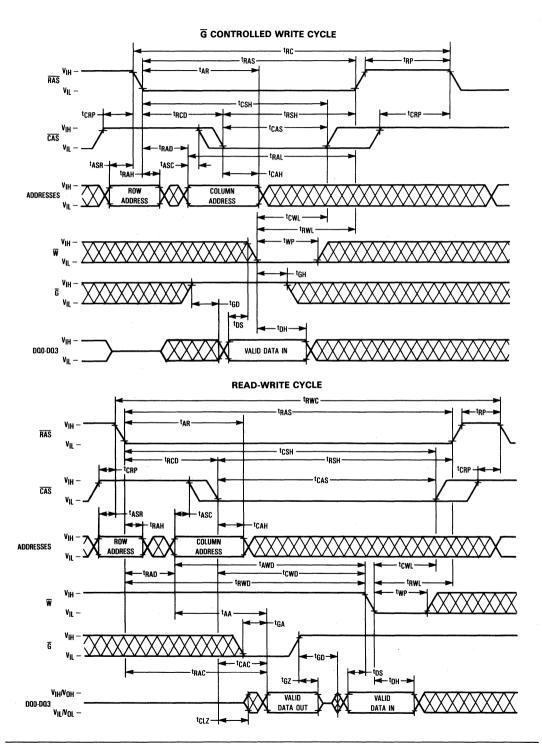
AC OPERATING CONDITIONS AND CHARACTERISTICS

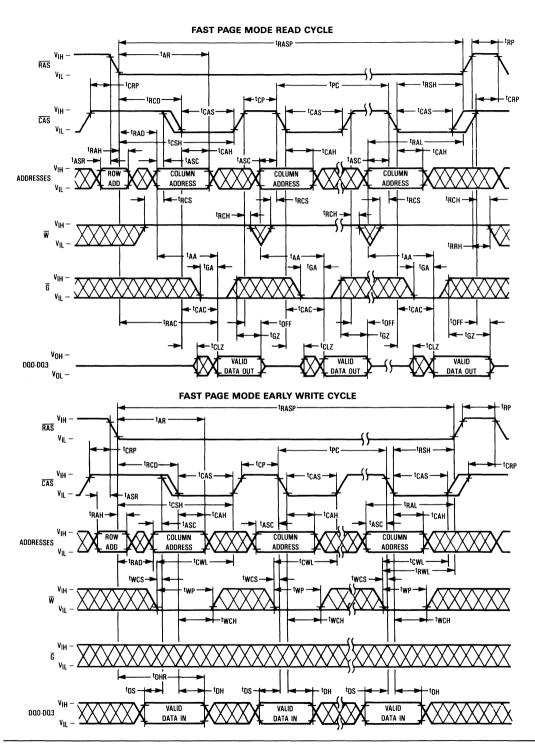
(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, and 4)

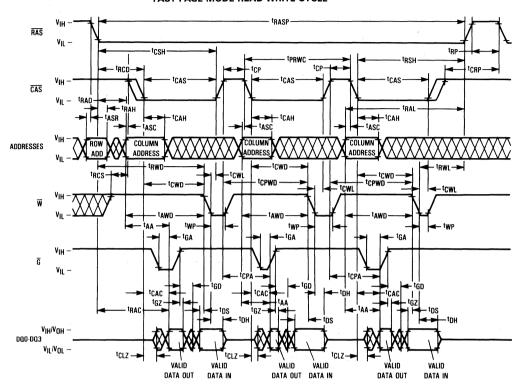
Parameter	Syr	nbol		14400-80 L4400-80		14400-10 L4400-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Random Read or Write Cycle Time	†RELREL	tRC	150	_	180	_	ns	5
Read-Write Cycle Time	†RELREL	tRWC	205	_	245	_	ns	5
Fast Page Mode Cycle Time	†CELCEL	tPC	50	_	60	_	ns	
Fast Page Mode Read-Write Cycle Time	†CELCEL	tPRWC	105	_	125	I -	ns	
Access Time from RAS	†RELQV	tRAC	_	80	_	100	ns	6, 7
Access Time from CAS	tCELQV	†CAC	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA		40	_	50	ns	6, 9
Access Time from Precharge CAS	tCEHQV	^t CPA	_	45	_	55	ns	6
CAS to Output in Low-Z	tCELQX	tCLZ	0	-	0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	^t OFF	0	20	0	20	ns	10
Transition Time (Rise and Fall)	ŧΤ	ŧт	3	50	3	50	ns	
RAS Precharge Time	tREHREL	tRP	60		70	_	ns	
RAS Pulse Width	tRELREH	tRAS	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	tRELREH	tRASP	80	200,000	100	200,000	ns	
RAS Hold Time	tCELREH	tRSH	20	_	25	_	ns	
CAS Hold Time	tRELCEH	tCSH	80	_	100	_	ns	
CAS Pulse Width	tCELCEH	tCAS	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	60	25	75	ns	11
RAS to Column Address Delay Time	†RELAV	tRAD	15	40	20	50	ns	12
CAS to RAS Precharge Time	tCEHREL	tCRP	5	_	10		ns	
CAS Precharge Time	†CEHCEL	tCP	10	_	10	_	ns	
Row Address Setup Time	†AVREL.	†ASR	0	T -	0	_	ns	
Row Address Hold Time	tRELAX	tRAH	10	_	15	_	ns	
Column Address Setup Time	tAVCEL	tASC	0	_	0	_	ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	^t AR	60	_	75	_	ns	
Column Address to RAS Lead Time	tAVREH	^t RAL	40	-	50	_	ns	

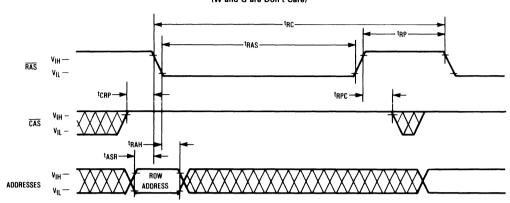

(continued)

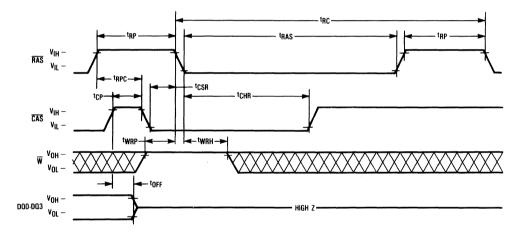

- 1. VIH min and VII max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VII .
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤T_A ≤70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V_{OH}=2.0 V and V_{OI}=0.8 V.
- Assumes that t_{RCD} ≤t_{RCD} (max).
- 8. Assumes that t_{RCD}≥t_{RCD} (max).
- Assumes that t_{RAD}≥t_{RAD} (max).
- toff (max) and/or t_{GZ} (max) define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

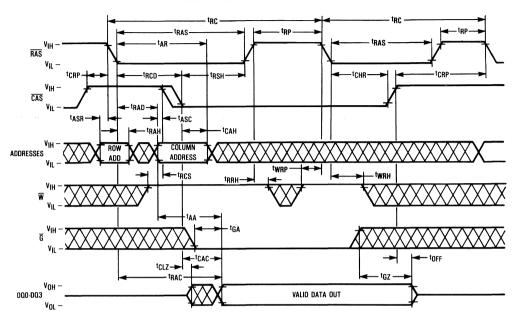

READ, WRITE, AND READ-WRITE CYCLES (Continued)

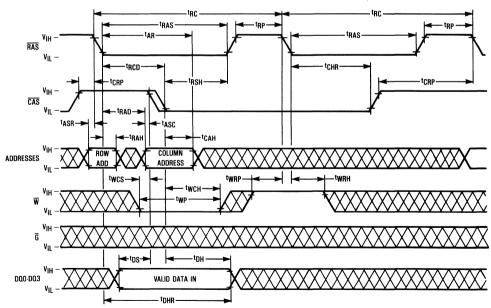
Parameter	Syı	mbol		14400-80 L4400-80		14400-10 L4400-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Read Command Setup Time	tWHCEL	tRCS	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	tRCH	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	tRRH	0	_	0	-	ns	13
Write Command Hold Time Referenced to CAS	†CELWH	tWCH	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	tRELWH	twcr	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	25	_	ns	
Write Command to CAS Lead Time	tWLCEH	tCWL	20	_	25	_	ns	
Data In Setup Time	†DVCEL	tDS	0	_	0	_	ns	14
Data In Hold Time	tCELDX	tDH	15	-	20	_	ns	14
Data In Hold Time Referenced to RAS	tRELDX	tDHR	60	_	75	_	ns	
Refresh Period MCM51440 MCM51L440	- -114114	^t RFSH	_	16 128	_	16 128	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	ns	15
CAS to Write Delay	tCELWL	tCWD	50	_	60	_	ns	15
RAS to Write Delay	tRELWL	tRWD	110	_	135	_	ns	15
Column Address to Write Delay Time	†AVWL	tAWD	70	_	85	_	ns	15
CAS Precharge to Write Delay Time (Page Mode)	[†] CEHWL	tCPWD	75	_	90	_	ns	15
CAS Setup Time for CAS Before RAS Refresh	†RELCEL	^t CSR	5	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	tRELCEH	tCHR	15	_	20	_	ns	
RAS Precharge to CAS Active Time	†REHCEL	tRPC	0	_	0	-	ns	
CAS Precharge Time for CAS Before RAS Counter Test	†CEHCEL	†CPT	40	_	50	_	ns	
RAS Hold Time Referenced to G	tGLREH	tROH	10	_	20	_	ns	
G Access Time	tGLQV	tGA	_	20	_	25	ns	
G to Data Delay	tGLHDX	tGD	20	T -	25	_	ns	
Output Buffer Turn-Off Delay Time from G	tGHQZ	tGZ	0	20	0	20	ns	10
G Command Hold Time	tWLGL	^t GH	20	-	25	_	ns	
Write Command Setup Time (Test Mode)	tWLREL	twrs	10	_	10	I –	ns	
Write Command Hold Time (Test Mode)	tRELWH	tWTH	10	_	10	_	ns	
Write to RAS Precharge Time (CAS Before RAS Refresh)	tWHREL	tWRP	10	_	10	_	ns	
Write to RAS Hold Time (CAS Before RAS Refresh)	tRELWL	twrh	10	I -	10		ns	

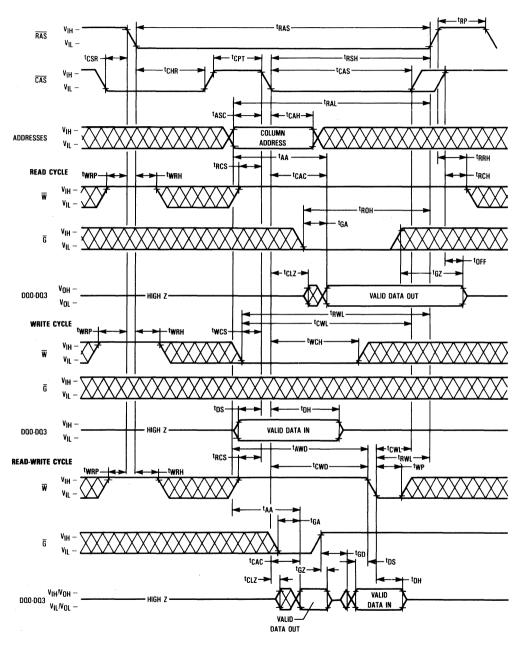

- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 14. These parameters are referenced to CAS leading edge in early write cycles and to W leading edge in late write or read-write cycles.
- 15. tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD≥tCWD (min), tRWD≥tRWD (min), tAWD≥tAWD (min), and tCPWD≥tCPWD (min) (page mode), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.




FAST PAGE MODE READ-WRITE CYCLE


RAS ONLY REFRESH CYCLE (W and G are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (G and A0-A9 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (EARLY WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 16 milliseconds with the device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The ten address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe (\overline{RAS}) and column address strobe (\overline{CAS}), into two separate 10-bit address fields. A total of twenty address bits, ten rows and ten columns, will decode one of the 1,048,576 bit locations in the device. \overline{RAS} active transition is followed by \overline{CAS} active transition (active = V_{IL} , t_{RCD} minimum) for all read or write cycles. The delay between \overline{RAS} and \overline{CAS} active transitions, referred to as the **multiplex window**, gives a system designer flexibility in setting up the external addresses into the RAM.

The external $\overline{\text{CAS}}$ signal is ignored until an internal $\overline{\text{RAS}}$ signal is available. This "gate" feature on the external $\overline{\text{CAS}}$ clock enables the internal $\overline{\text{CAS}}$ line as soon as the row address hold time (trah) specification is met (and defines transmum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the $\overline{\text{CAS}}$ clock.

There are three other variations in addressing the 1M×4 RAM: RAMS only refresh cycle, CAS before RAS refresh cycle, and page mode. All three are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with four different cycles: "normal" random read cycle, page mode read cycle, read-write cycle, and page mode read-write cycle. The normal read cycle is outlined here, while the other cycles are discussed in separate sections.

The normal read cycle begins as described in ADDRESS-ING THE RAM, with RAS and $\overline{\text{CAS}}$ active transitions latching the desired bit location. The write (\overline{W}) input level must be high (VIH), tRCS (minimum) before the $\overline{\text{CAS}}$ active transition, to enable read mode.

Both the \overline{RAS} and \overline{CAS} clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. Both \overline{CAS} and output enable (\overline{G}) control read access time: \overline{CAS} must be active before or at \overline{tRCD} maximum and \overline{G} must be active \overline{tRAC} - \overline{tGA} (both minimum) after \overline{RAS} active transition to guarantee valid data out (Q) at \overline{tRAC} (access time from \overline{RAS} active transition). If the \overline{tRCD} maximum is exceeded and/or \overline{G} active transition does not occur in time, read access time is determined by either the \overline{CAS} or \overline{G} clock active transition (\overline{tCAC} or \overline{tGA}).

The RAS and CAS clocks must remain active for a minimum time of trans and trans respectively, to complete the read cycle. W must remain high throughout the cycle, and for time trans or trans after RAS or CAS inactive transition, respectively, to maintain the data at that bit location. Once RAS

transitions to inactive, it must remain inactive for a minimum time of tRP to precharge the internal device circuitry for the next active cycle. Q is valid, but not latched, as long as the \overline{CAS} and \overline{G} clocks are active. When either the \overline{CAS} or \overline{G} clock transitions to inactive, the output will switch to High Z (three-state) topp or tg2 after the inactive transition.

WRITE CYCLE

The user can write to the DRAM with any of four cycles; early write, late write, page mode early write, and page mode read-write. Early and late write modes are discussed here, while page mode write operations are covered in another section.

 \bar{A} write cycle begins as described in ADDRESSING THE RAM. Write mode is enabled by the transition of \bar{W} to active (VIL). Early and late write modes are distinguished by the active transition of \bar{W} , with respect to $\bar{C}AS$. Minimum active time tRAS and tCAS, and precharge time tRP apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time twos before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for trwl and tcwl, respectively, after the start of the early write operation to complete the cycle.

Q remains in three-state condition throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CAS} active transition, keeping data-out buffers and \overline{G} disabled.

A late write cycle (referred to as \overline{G} -controlled write) occurs when \overline{W} active transition is made after \overline{CAS} active transition. \overline{W} active transition could be delayed for almost 10 microseconds after \overline{CAS} active transition, $(t_{RCD}+t_{CWD}+t_{RWL}+2t_T) \leq t_{RAS}$, if other timing minimums $(t_{RCD},t_{RWL}$ and $t_T)$ are maintained. D is referenced to \overline{W} active transition in a late write cycle. Output buffers are enabled by \overline{CAS} active transition but outputs are switched off by \overline{G} inactive transition, which is required to write to the device. D may be indeterminate—see note 15 of AC operating conditions table. \overline{RAS} and \overline{CAS} must remain active for t_{RWL} and t_{CWL} , respectively, after \overline{W} active transition to complete the write cycle. \overline{G} must remain inactive for t_{GH} after \overline{W} active transition to complete the write cycle.

READ-WRITE CYCLE

A read-write cycle performs a read and then a write at the same address, during the same cycle. This cycle is basically a late write cycle, as discussed in the **WRITE CYCLE** section, except \overline{W} must remain high for tcwp minimum after the \overline{CAS} active transition, to guarantee valid Q before writing the bit.

PAGE MODE CYCLES

Page mode allows fast successive data operations at all 1024 column locations on a selected row of the 1M \times 4 dynamic RAM. Read access time in page mode (tCAC) is typically half the regular \overline{RAS} clock access time, tRAC. Page mode operation consists of keeping \overline{RAS} active while toggling \overline{CAS} between VIH and VIL. The row is latched by \overline{RAS} active transition, while each \overline{CAS} active transition allows selection of a new column location on the row.

A page mode cycle is initiated by a normal read, write, or read-write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, \overline{CAS} transitions to inactive for minimum of tcp, while \overline{RAS} remains low (V_{IL}).

The second $\overline{\text{CAS}}$ active transition while $\overline{\text{RAS}}$ is low initiates the first page mode cycle (tpc or tpRWc). Either a read, write, or read-write operation can be performed in a page mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive page mode cycles and performed in any order. The maximum number of consecutive page mode cycles is limited by tRASP. Page mode operation is ended when $\overline{\text{RAS}}$ transitions to inactive, coincident with or following $\overline{\text{CAS}}$ inactive transition

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Each bit must be periodically refreshed (recharged) to maintain the correct bit state. Bits in the MCM514400 require refresh every 16 milliseconds, while refresh time for the MCM51L4400 is 128 milliseconds.

This is accomplished by cycling through the 1024 row addresses in sequence within the specified refresh time. All the bits on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM514400, and 124.8 microseconds for the MCM514400. Burst refresh, a refresh of all 1024 rows consecutively, must be performed every 16 milliseconds on the MCM514400 and 128 milliseconds on the MCM514400.

A normal read, write, or read-write operation to the RAM will refresh all the bits (4096) associated with the particular row decoded. Three other methods of refresh, RAS-only refresh, CAS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

RAS-only refresh consists of RAS transition to active, latching the row address to be refreshed, while CAS remains high (VIH) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh is enabled by bringing $\overline{\text{CAS}}$ active before $\overline{\text{RAS}}$. This clock order activates an internal refresh counter that generates the row address to be refreshed. Ex-

ternal address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh). \overline{W} must be inactive for time twRP before and time twRH after \overline{RAS} active transition to prevent switching the device into a **test mode cycle**.

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding \overline{CAS} active at the end of a read or write cycle, while \overline{RAS} cycles inactive for tpp and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1). \overline{W} is subject to the same conditions with respect to \overline{RAS} active transition (to prevent test mode cycle) as in \overline{CAS} before \overline{RAS} refresh.

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 1024 cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed after a minimum of eight CAS before RAS initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells with normal write mode.
- Select a column address, read "0" out and write "1" into the cell by performing the CAS before RAS refresh counter test, read-write cycle. Repeat this operation 1024 times.
- Read the "1"s which were written in step 2 in normal read mode.
- Using the same starting column address as in step 2, read
 "1" out and write "0" into the cell by performing the CAS
 before RAS refresh counter test, read-write cycle.
 Repeat this operation 1024 times.
- Read "0"s which were written in step 4 in normal read mode.
- 6. Repeat steps 1 to 5 using complement data.

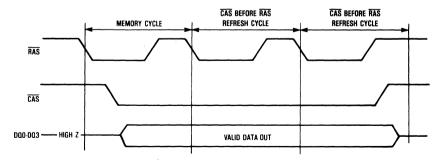


Figure 1. Hidden Refresh Cycle

TEST MODE

The internal organization of this device ($512K \times 8$) allows it to be tested as if it were a $512K \times 1$ DRAM. Nineteen of the twenty addresses are used when operating the device in test mode. Column address A0 is ignored by the device in test mode. A test mode cycle reads and/or writes data to a bit in each of the eight 512K blocks (B0-B7) in parallel. External data out is determined by the internal test mode logic of the device. See truth table and test mode block diagram following.

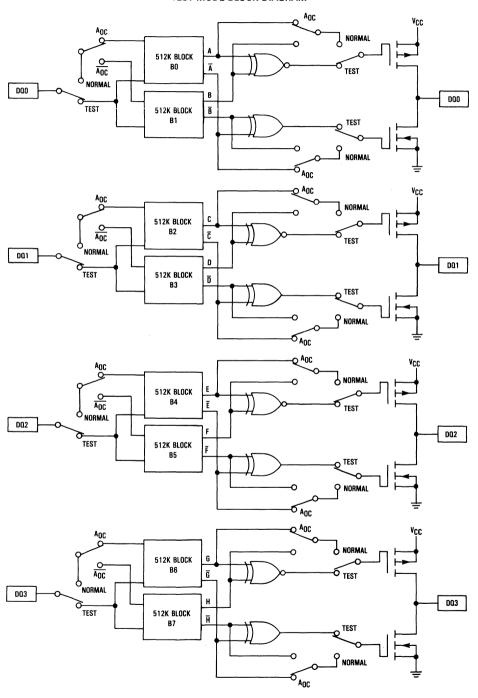
Test mode is enabled by performing a test mode cycle (see test mode timing diagram and parameter specifications

table). Test mode is disabled by a RAS only refresh cycle or CAS before RAS refresh cycle. The test mode performs refresh with the internal refresh counter like a CAS before RAS refresh.

Test Mode Truth Table

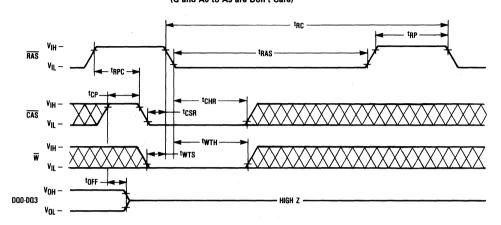
D	B0, B1	B2, B3	B4, B5	B6, B7	Q					
0	0	0	0	0	1					
1	1 1	1 1	1	1						
_		Any Other								

TEST MODE AC OPERATING CONDITIONS AND CHARACTERISTICS

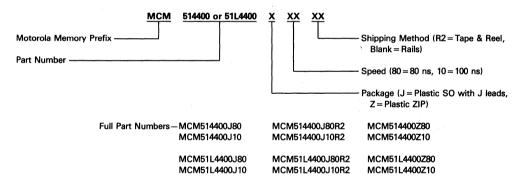

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ, WRITE, AND READ-WRITE CYCLES (See Notes 1, 2, 3, and 4)

Parameter	Syr	Symbol		MCM514400-80 MCM51L4400-80		14400-10 L4400-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Random Read or Write Cycle Time	†RELREL	tRC	155	_	185	_	ns	5
Read-Write Cycle Time	†RELREL	tRWC	210		250	_	ns	5
Fast Page Mode Cycle Time	†CELCEL	tPC	55	_	65	_	ns	
Fast Page Mode Read-Write Cycle Time	†CELCEL	tPRWC	115	_	135	_	ns	
Access Time from RAS	tRELQV	tRAC	_	85	_	105	ns	6, 7
Access Time from CAS	†CELQV	†CAC	_	.25	_	30	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	45	_	55	ns	6, 9
Access Time from Precharge CAS	tCEHQV	^t CPA	_	50	_	60	ns	. 6
RAS Pulse Width	tRELREH	tRAS	85	10,000	105	10,000	ns	
RAS Pulse Width (Fast Page Mode)	tRELREH	tRASP	85	200,000	105	200,000	ns	
RAS Hold Time	tCELREH	tRSH	25	_	30	-	ns	
CAS Hold Time	†RELCEH	tCSH	85	_	105		ns	
CAS Pulse Width	†CELCEH	tCAS	25	10,000	30	10,000	ns	
Column Address to RAS Lead Time	tAVREH	tRAL	45	_	55	_	ns	
CAS to Write Delay	tCELWL	tCWD	55	_	65	_	ns	10
RAS to Write Delay	†RELWL	tRWD	115	_	140	_	ns	10
Column Address to Write Delay Time	tAVWL	tAWD	75	_	90	_	ns	10
CAS Precharge to Write Delay Time (Page Mode)	tCEHWL	tCPWD	85	_	95	_	ns	10
G Access Time	tGLQV	tGA	_	25	_	30	ns	
G Command Hold Time	tWLGL	tGH	25		30	_	ns	


- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{|H} and V_{|L} (or between V_{|H} and V_{|H}) in a monotonic manner.
- AC measurements t_T=5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL ($-200~\mu$ A, +4 mA) loads and 100 pF with the data output trip points set at $V_{OH} = 2.0 \text{ V}$ and $V_{OL} = 0.8 \text{ V}$.
- 7. Assumes that tRCD≤tRCD (max).
- Assumes that t_{RCD}≥t_{RCD} (max).
- 9. Assumes that t_{RAD}≥t_{RAD} (max).
- 10. tWCS, tRWD, tCWD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if twCS ≥ twCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD ≥ tCWD (min), tRWD ≥ tRWD (min), tAWD ≥ tAWD (min), and tCPWD ≥ tCPWD (min) (page mode), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of these sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

TEST MODE BLOCK DIAGRAM



2

TEST MODE CYCLE (G and A0 to A9 are Don't Care)

ORDERING INFORMATION (Order by Full Part Number)

DRAM Modules

DRAM MODULES (Contact DRAM Marketing for Custom DRAM Modules)

		Motorola	Address	Operating		
	Organi-	Part	Access Time	Current	Pin	Package
Density	zation	Number	(ns Max)	(mA Max)	Count	Options
8M	1Mx8	MCM81000	70/80/100	640/560/480	30	(S)IMM, (L)SIP
		MCM8L1001	70/80/100	640/560/480	30	(S)IMM, (L)SIP
	i	MCM81001	70/80/100	640/560/480	30	(S)IMM, (L)SIP
		MCM81002	70/80/100	640/560/480	30	(S)IMM, (L)SIP
8M	1Mx9	MCM91000	70/80/100	720/630/540	30	(S)IMM, (L)SIP, SG (gold)
w/Parity		MCM9L1000	70/80/100	720/630/540	30	(S)IMM, (L)SIP, SG (gold)
		MCM91001	70/80/100	720/630/540	30	(S)IMM, (L)SIP
		MCM91002	70/80/100	720/630/540	30	(S)IMM, (L)SIP
2M	256Kx8	MCM84256	70/80/100	160/140/120	30	(S)IMM
		MCM8L4256	70/80/100	160/140/120	30	(S)IMM
2M	256Kx9	MCM94256	70/80/100	240/210/190	30	(S)IMM
w/Parity		MCM9L4256	70/80/100	240/210/190	30	(S)IMM
4M	1Mx4	MCM41000	80/100	280/240	26	(Z)IMM
	4Mx1	MCM11400	80/100	90/80	26	(Z)IMM
32M	4Mx8	MCM84000	80/100	800/680	30	(S)IMM
		MCM8L4000	80/100	800/680	30	(S)IMM
32M w/Parity	4Mx9	MCM94000	80/100	900/765	30	(S)IMM
		MCM9L4000	80/100	900/765	30	(S)IMM
8M w/Parity	256Kx36	MCM36256	70/80/100	960/840/760	72	(S)IMM, SG (gold)
16M w/Parity	512Kx36	MCM36512	70/80/100	1920/1680/1520	72	(S)IMM, SG (gold)
32M w/Parity	1 Mx36	MCM36100	80/100	1144/984	72	(S)IMM, SG (gold)
64M w/Parity	2Mx36	MCM36200	80/100	1120/960	72	(S)IMM, SG (gold)
8M w/Parity	256Kx40	MCM40256*	70/80/100	800/700/600	72	(S)IMM, SG (gold)
16M w/Parity	512Kx40	MCM40512*	70/80/100	820/720/620	72	(S)IMM, SG (gold)
32M w/Parity	1 Mx40	MCM40100*	80/100	1050/900	72	(S)IMM, SG (gold)
64M w/Parity	2Mx40	MCM40200*	80/100	1070/920	72	(S)IMM, SG (gold)

^{*}To be introduced.

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

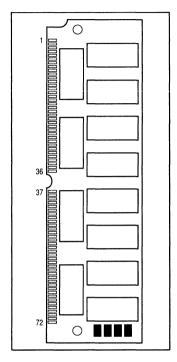
1M × 36 Bit Dynamic Random Access Memory Module

The MCM36100S is a 36M, dynamic random access memory (DRAM) module organized as 1,048,576 \times 36 bits. The module is a 72-lead single-in-line memory module (SIMM) consisting of eight MCM514400 DRAMs housed in standard 350-milwide SOJ packages and four CMOS 1M \times 1 DRAMs housed in 20/26 lead SOJ packages, mounted on a substrate along with a 0.22 μF (min) decoupling capacitor mounted under each DRAM. The MCM514400 is a CMOS high speed, dynamic random access memory organized as 1,048,576 four-bit words and fabricated with CMOS silicon-oate process technology.

- · Three-State Data Output
- · Early-Write Common I/O Capability
- Fast Page Mode Capability
- · TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 1024 Cycle Refresh: MCM36100S = 16 ms (Max) MCM36L100S = 128 ms (Max)
- Consists of Eight 1M \times 4 DRAMs, Four 1M \times 1 DRAMs, and Twelve 0.22 μ F (Min) Decoupling Capacitors
- · Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (t_{RAC}):

MCM36100S-80 = 80 ns (Max) MCM36100S-10 = 100 ns (Max)

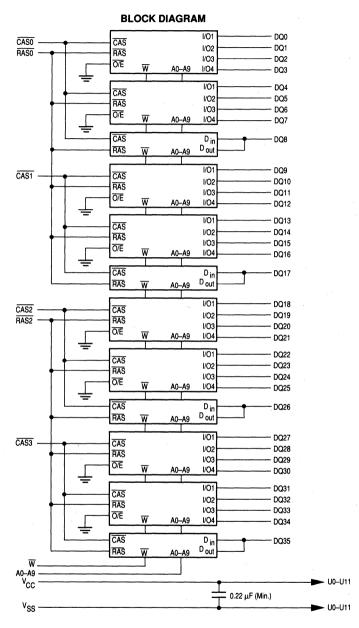
- Low Active Power Dissipation: MCM36100S-80 = 6.16 W (Max)
- MCM36100S-10 = 5.28 W (Max)Low Standby Power Dissipation:


TTL Levels = 132 mW (Max)

CMOS Levels = 66 mW (Max, MCM36100S) CMOS Levels = 22 mW (Max, MCM36L100S)

PIN OUT

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	V _{SS}	13	A1	25	DQ24	37	DQ17	49	DQ9	61	DQ14
2	DQ0	14	A2	- 26	DQ7	38	DQ35	50	DQ27	62	DQ33
3	DQ18	15	А3	27	DQ25	39	V _{SS}	51	DQ10	63	DQ15
4	DQ1	16	A4	28	A 7	40	CAS0	52	DQ28	64	DQ34
5	DQ19	17	A5	29	NC	41	CAS2	53	DQ11	65	DQ16
6	DQ2	18	A6	30	V _{CC}	42	CAS3	54	DQ29	66	NC
7	DQ20	19	NC	31	A8	43	CAS1	55	DQ12	67	PD1
8	DQ3	20	DQ4	32	A9	44	RAS0	56	DQ30	68	PD2
9	DQ21	21	DQ22	33	NC	45	NC	57	DQ13	69	PD3
10	V _{CC}	22	DQ5	34	RAS2	46	NC	58	DQ31	70	PD4
11	NC	23	DQ23	35	DQ26	47	W	59	V _{CC}	71	NC
12	A0	24	DQ6	36	DQ8	48	NC	60	DQ32	72	V _{SS}


MCM36100 MCM36L100

PIN NAMES									
A0-A9 DQ0-DQ35 D35 CAS0-CAS3 COlumn PD1-PD4 F RAS0, RAS2 NC Vcc Vss NC	ata Input/Output Address Strobe Presence Detect Address Strobe Read/Write Input . Power (+ 5 V) Ground								

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

PRESENCE DETECT PIN OUT						
Pin Name	70 ns	80 ns	100 ns			
PD1	V _{SS}	V _{SS}	V _{SS}			
PD2	V _{SS}	V _{SS}	V _{SS}			
PD3	V _{SS}	NC	V _{SS}			
PD4	NC	V _{SS}	V _{SS}			

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{cc}	- 1 to + 7	V
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	– 1 to + 7	٧
Data Output Current per DQ Pin	l _{out}	50	mA
Power Dissipation	P _D	8.4	w
Operating Temperature Range	TA	0 to + 70	∘c
Storage Temperature Range	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to RECOMMENDED OPERATING
CONDITIONS. Exposure to higher than recommended voltages for extended periods of
time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V ± 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	V _{cc}	4.5	5.0	5.5	٧	1
	V _{SS}	0	0	0		
Logic High Voltage, All Inputs	V _{IH}	2.4	_	6.5	٧	1
Logic Low Voltage, All Inputs	V _{IL}	- 1.0	_	0.8	٧	1

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM36100-80, t _{RC} = 150 ns MCM36100-10, t _{RC} = 180 ns	I _{CC1}	=	1120 960	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	I _{CC2}	_	24	mA	
V_{CC} Power Supply Current During RAS only Refresh Cycles MCM36100-80, t_{RC} = 150 ns MCM36100-10, t_{RC} = 180 ns	Іссз	=	1120 960	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle MCM36100-80, t _{RC} = 150 ns MCM36100-10, t _{RC} = 180 ns	I _{CC4}	=	760 640	mA	2
$\label{eq:Vcc} V_{CC} \mbox{ Power Supply Current (Standby) (\overline{RAS} = \overline{CAS} = V_{CC} - 0.2 V)} \mbox{ $MCM36100$ } \mbox{ $MCM36L100$ }$	I _{CC5}	=	12 4	mA	
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle MCM36100-80, t _{RC} = 150 ns MCM36100-10, t _{RC} = 180 ns	I _{CC6}	=	1120 960	mA	2 .
Input Leakage Current (V _{SS} ≤ V _{in} ≤ V _{CC})	l _{ikg(i)}	- 120	120	<i>-</i> μ A	
Output Leakage Current (CAS at Logic 1, V _{SS} ≤ V _{out} ≤ V _{CC})	I _{lkg(O)}	- 20	20	μА	
Output High Voltage (I _{OH} = - 5 mA)	V _{OH}	2.4	_	٧	
Output Low Voltage (I _{OL} = 4.2 mA)	V _{OL}	_	0.4	· V	

- All voltages referenced to V_{SS}.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Min	Max	Unit	Notes
Input Capacitance (A0–A9)	C ₁₁	_	88	pF	1
Input Capacitance (W)	C _{I2}	_	94	pF	1
Input Capacitance (RAS0, RAS2)	C _{I3}	_	52	pF	1
Input Capacitance (CAS0-CAS3)	C ₁₄	_	36	pF	1
I/O Capacitance (DQ0-DQ7, DQ9-DQ16, DQ18-DQ25, DQ27-DQ34)	C _{DQ1}	_	17	pF	1
I/O Capacitance (DQ8, DQ17, DQ26, DQ35)	C _{DQ2}	_	22	pF	1.

NOTE:

1. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C = 1 Δ t / Δ V.

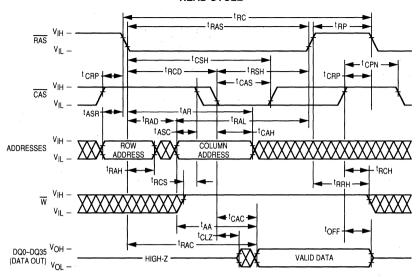
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

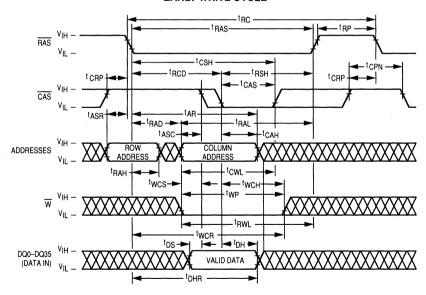
READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

	Syn	nbol	MCM36100-80		MCM36100-10			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	trelrel	tRC	150	_	180	_	ns	5
Page Mode Cycle Time	tCELCEL	t _{PC}	50	_	60		ns	
Access Time from RAS	t _{RELQV}	t _{RAC}	_	80		100	ns	6, 7
Access Time from CAS	t _{CELQV}	t _{CAC}	_	20	_	25	ns	6, 8
Access Time from Column Address	t _{AVQV}	. t _{AA}	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	t _{CEHQV}	t _{CPA}	_	45	_	55	ns	6
CAS to Output in Low-Z	tCELQX	t _{CLZ}	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	t _{CEHQZ}	t _{OFF}	0	20	0	20	ns	10
Transition Time (Rise and Fall)	t _T	tτ	3	50	3	50	ns	
RAS Precharge Time	t _{REHREL}	t _{RP}	60	-	70	_	ns	
RAS Pulse Width	t _{RELREH}	t _{RAS}	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	t _{RELREH}	t _{RASP}	80	100,000	100	100,000	ns	
RAS Hold Time	t _{CELREH}	t _{RSH}	25	_	25	_	ns	
CAS Hold Time	tRELCEH	t _{CSH}	80	_	100	-	ns	
CAS Pulse Width	†CELCEH	t _{CAS}	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	tRELCEL	t _{RCD}	20	60	25	75	ns	11 -
RAS to Column Address Delay Time	t _{RELAV}	t _{RAD}	15	40	20	50	ns	12

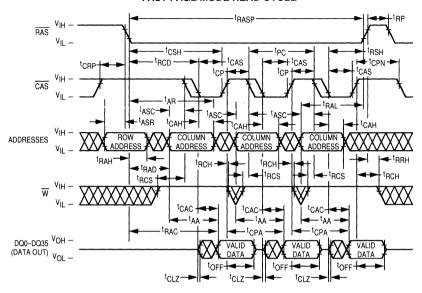
(continued)

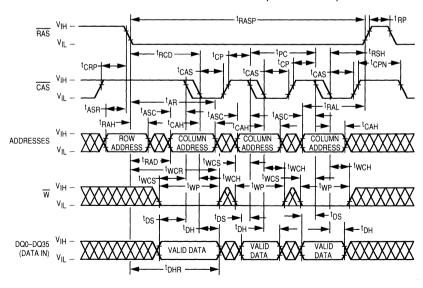

- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 2. An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a current load equivalent to 2 TTL (- 200 μA, + 4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- Assumes that t_{RCD} ≥ t_{RCD} (max).
- Assumes that t_{RAD} ≥ t_{RAD} (max).
- 10. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively to t_{CAC}.
- Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

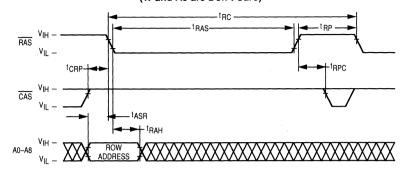
READ AND WRITE CYCLES (Continued)


	Syn	Symbol MCI		36100-80	MCM36100-10			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
CAS to RAS Precharge Time	t _{CEHREL}	t _{CRP}	5	_	10	_	ns	
CAS Precharge Time (Page Mode Cyle Only)	tCEHCEL	t _{CP}	10	_	10	_	ns	
Row Address Setup Time	tavrel	t _{ASR}	0	_	0	_	ns	
Row Address Hold Time	t _{RELAX}	t _{RAH}	10	_	15	_	ns	
Column Address Setup Time	tavcel	tasc	0	_	0	_	ns	
Column Address Hold Time	t _{CELAX}	t _{CAH}	15		20	_	ns	
Column Address Hold Time Referenced to RAS	t _{RELAX}	t _{AR}	60	_	75		ns	
Column Address to RAS Lead Time	t _{AVREH}	t _{RAL}	40	_	50	_	ns	
Read Command Setup Time	twhcel	t _{RCS}	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	t _{CEHWX}	t _{RCH}	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	t _{REHWX}	t _{RRH}	0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	t _{CELWH}	t _{WCH}	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	t _{RELWH}	t _{WCR}	60		75	_	ns	
Write Command Pulse Width	t _{WLWH}	t _{WP}	15		20		ns	
Write Command to RAS Lead Time	twlreh	t _{RWL}	20	_	25	_	ns	
Write Command to CAS Lead Time	twlceh	t _{CWL}	20	_	25	_	ns	
Data in Setup Time	t _{DVCEL}	t _{DS}	0	_	0	_	ns	14, 15
Data in Hold Time	t _{CELDX}	t _{DH}	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	t _{RELDX}	t _{DHR}	60	_	75	_	ns	
Refresh Period MCM36100 MCM36L100	t _{RVRV}	t _{RFSH}	_	16 128	_	16 128	ms	
Write Command Setup Time	twicel	twcs	0	_	0		ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	tRELCEL	tcsn	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	t _{RELCEH}	t _{CHR}	30	_	30	_	ns	
CAS Precharge to CAS Active Time	t _{REHCEL}	t _{RPC}	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	t _{CEHCEL}	t _{CPT}	40	_	50	_	ns	
CAS Precharge Time	t _{CEHCEL}	t _{CPN}	10	_	15	_	ns	

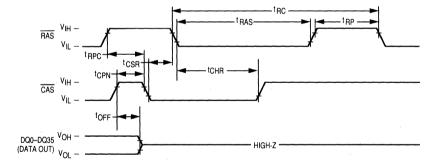
- 13. Either $t_{\mbox{\scriptsize RRH}}$ or $t_{\mbox{\scriptsize RCH}}$ must be satisfied for a read cycle.
- 14. These parameters are referenced to CAS leading edge in random write cycles.
- 15. Early write only (t_{WCS} ≥ t_{WCS} (min)).
 16. t_{WCS} is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisifed, the condition of the data out (at access time) is indeterminate.


READ CYCLE

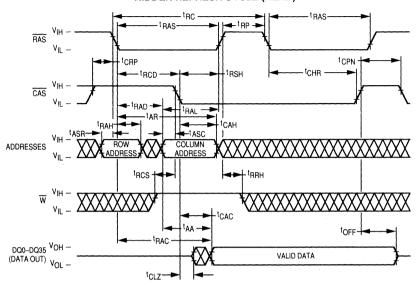

EARLY WRITE CYCLE


FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

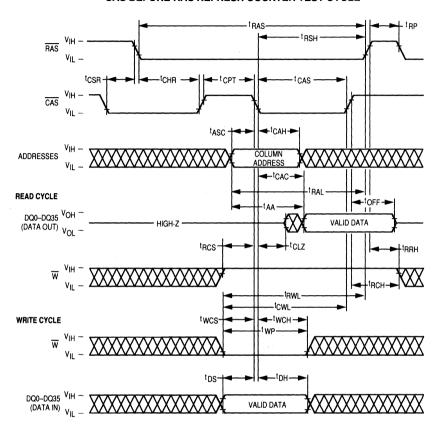


RAS ONLY REFRESH CYCLE (W and A9 are Don't Care)



 $_{
m DQ0-DQ35}$ $_{
m VOH}^{
m VOH}$ $_{
m VOL}^{
m C}$

CAS BEFORE RAS REFRESH CYCLE (W and A0 to A9 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the module. During an extended inactive state of the device (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The ten address bus pins on the device are time multiplexed with two separate 10-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of twenty address bits will decode one of the 524,288 word locations in the device. The column address strobe follows the row address strobe by a specified minimum and maxium time called t_{BCD}, which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up the external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. These are, however, two other variations in addressing the module, one is called the RAS only refresh cycle (described later) where a 9-bit row address field is presented on the input pins and latched by the RAS clock. The most significant bit on Row Address A9 is not required for refresh. The other variation, which is called page mode, allows the user to column access all words within a selected row. (See PAGE-MODE CYCLES section.)

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VIH to the VIL level. The CAS clock must also make a transition from VIH to the VII level at the specified t_{BCD} timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the t_{RCD} maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (t_{RAC}). If the t_{RCD} maximum condition is not met, the access (t_{CAC}) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (t_{RAH}) specification has been met and defines the t_{RCD} minimum specification. The time difference between $t_{\mbox{\scriptsize RCD}}$ minimum and $t_{\mbox{\scriptsize RCD}}$ maximum can be used to absorb skew delays in switching the address bus from the row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (t_{RAS}) period for the RAS clock and the mini-

mum (t_{CAS}) period for the \overline{CAS} clock. The \overline{RAS} clock must stay inactive for the minimum (t_{RP}) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the \overline{CAS} clock is active; the output will switch to the three-state mode when the \overline{CAS} clock goes inactive. To perform a read cycle, the write (W) input must be held at the V_{IH} level from the time the \overline{CAS} clock makes its active transition (t_{RCS}) to the time when it transitions into the inactive (t_{RCH}) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the write (W) clock must go active (V_{IL} level) at or before the CAS clock goes active at a minimum t_{WCS} time. If the above condition is met, then the cycle in progress is referred to as an early write cycle, in an early write cycle, the write clock and the data in are referenced to the active transition of the CAS clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t_{CWL}) and the row strobe to write lead time (t_{RWL}). These define the minimum time that RAS and CAS clocks need to be active after the write operation has started (W clock at V_{II} level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 1024 column locations on a selected row. Page access (t_{CAC}) is typically half the regular RAS clock access (t_{RAC}) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the RAS clock active while cycling the CAS clock to access the column locations determined by the 10-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter CAS cycles (t_{PC}). The CAS cycle time (t_{PC}) consists of the CAS clock active time (t_{CAS}), and CAS clock precharge time (t_{CP}) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 16 milliseconds. This is accomplished by sequentially cycling through the 1024 row address locations every 16 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the words associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a RAS-only cycle on 1024 row addresses every 16 milliseconds. The row addresses are latched in with the RAS clock, and the associated internal row locations are refreshed. As the heading implies, the $\overline{\text{CAS}}$ clock is not required and must be inactive or at a V $_{\text{IH}}$ level.

CAS Before BAS Refresh

This refresh cycle is initiated when RAS falls, after CAS has been low (by t_{CSR}). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by \overline{CAS} in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as \overline{CAS} is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding $\overline{\text{CAS}}$ at V_{IL} and taking $\overline{\text{RAS}}$ high and after a specified precharge period (t_{RP}), executing a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of the device can be tested with a **CAS before RAS refresh counter test**. This refresh counter

test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 1024 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 CAS before RAS initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 1024 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 1024 times.
- Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

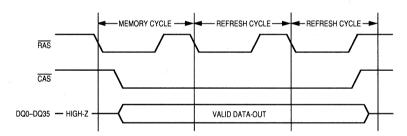


Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION

(Order by Full Part Number) MCM 36100 or 36L100 x xx Speed (80 = 80 ns, 10 = 100 ns) Part Number — MCM36100S80 MCM36100S610 MCM36L100S80 MCM36L100S60 MCM36L100S60 MCM36L100S610

NOTE: Contact your Motorola representative for further information on the Gold Pad SIMM packages.

Product Preview

2M × 36 Bit Dynamic Random **Access Memory Module**

The MCM36200S is a 72M, dynamic random access memory (DRAM) module organized as 2,097,152 \times 36 bits. The module is a double-sided 72-lead single-in-line memory module (SIMM) consisting of eight MCM514400 DRAMs housed in standard 350-mil-wide SOJ packages and four CMOS 1M × 1 DRAMs housed in 20/26 lead SOJ packages, mounted on a substrate along with a 0.22 µF (min) decoupling capacitor mounted under each DRAM. The MCM514400 is a CMOS high speed, dynamic random access memory organized as 1,048,576 four-bit words and fabricated with CMOS silicon-gate process technology.

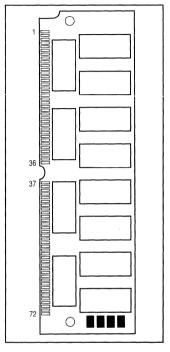
- Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- · Hidden Refresh
- 1024 Cycle Refresh: MCM36200S = 16 ms (Max) MCM36L200S = 128 ms (Max)
- Consists of Sixteen 1M × 4 DRAMs, Eight 1M × 1 DRAMs, and Twenty Four 0.22 µF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection

Fast Access Time (t_{RAC}): MCM36200S-80 = 80 ns (Max) MCM36200S-10 = 100 ns (Max)

• Low Active Power Dissipation: MCM36200S-80 = 6.30 W (Max)

MCM36200S-10 = 5.41 W (Max) · Low Standby Power Dissipation:

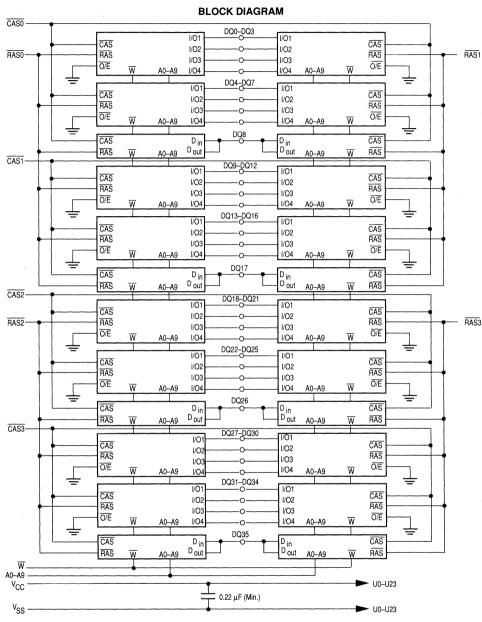
TTL Levels = 264 mW (Max)


CMOS Levels = 132 mW (Max, MCM36200S)

CMOS Levels = 44 mW (Max, MCM36L200S)

PIN OUT

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	V _{SS}	13	A1	25	DQ24	37	DQ17	49	DQ9	61	DQ14
2	DQ0	14	A2	26	DQ7	38	DQ35	50	DQ27	62	DQ33
3	DQ18	15	A3	27	DQ25	39	V _{SS}	51	DQ10	63	DQ15
4	DQ1	16	A4	28	A 7	40	CAS0	52	DQ28	64	DQ34
5	DQ19	17	A5	29	NC	41	CAS2	53	DQ11	65	DQ16
6	DQ2	18	A6	30	VCC	42	CAS3	54	DQ29	66	NC
7	DQ20	19	NC	31	A8	43	CAS1	55	DQ12	67	PD1
8	DQ3	20	DQ4	32	A9	44	RAS0	56	DQ30	68	PD2
9	DQ21	21	DQ22	33	RAS3	45	RAS1	57	DQ13	69	PD3
10	VCC	22	DQ5	34	RAS2	46	NC	58	DQ31	70	PD4
11	NC	23	DQ23	35	DQ26	47	W	59	V _{CC}	71	NC
12	A0	24	DQ6	36	DQ8	48	NC	60	DQ32	72	V _{SS}


MCM36200 MCM36L200

PIN NAMES
A0-A9 Address Inputs DQ0-DQ35 Data Input/Output CAS0-CAS3 Column Address Strobe PD1-PD4 Presence Detect RAS0-RAS3 Row Address Strobe W Read/Write Input VCC Power (+ 5 V)
V _{SS} Ground
NC No Connection

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

	PRESENCE DETECT PIN OUT									
Pin Name	Pin Name 70 ns 80 ns 100 ns									
PD1	NC	NC	NC							
PD2	NC	NC	NC							
PD3	v_{SS}	NC	v_{ss}							
PD4	NC	V _{SS}	V _{SS} V _{SS}							

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 1 to + 7	V
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 1 to + 7	V
Data Output Current per DQ Pin	l _{out}	50	mA
Power Dissipation	PD	8.58	w
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0	}	1
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	V _{IL}	-1.0	_	0.8	V	1

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM36200-80, t _{RC} = 150 ns MCM36200-10, t _{RC} = 180 ns	I _{CC1}	_	1144 984	mA	2
V_{CC} Power Supply Current (Standby) ($\overline{RAS} = \overline{CAS} = V_{IH}$)	ICC2	_	48	mA	
V_{CC} Power Supply Current During \overline{RAS} only Refresh Cycles MCM36200-80, t_{RC} = 150 ns MCM36200-10, t_{RC} = 180 ns	lCC3	_	1144 984	mA	2
V_{CC} Power Supply Current During Fast Page Mode Cycle MCM36200-80, t_{RC} = 150 ns MCM36200-10, t_{RC} = 180 ns	I _{CC4}	_	624 504	mA	2
V_{CC} Power Supply Current (Standby) ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2 \text{ V}$) MCM36200 MCM36L200	I _{CC5}	=	24 4.8	mA	
V_{CC} Power Supply Current During \overline{CAS} Before \overline{RAS} Refresh Cycle MCM36200-80, t _{RC} = 150 ns MCM36200-10, t _{RC} = 180 ns	I _{CC6}	=	1144 984	mA	2
Input Leakage Current ($V_{SS} \le V_{in} \le V_{CC}$)	l _{lkg(l)}	- 240	240	μА	
Output Leakage Current (\overline{CAS} at Logic 1, $V_{SS} \le V_{Out} \le V_{CC}$)	I _{lkg(O)}	- 20	20	μА	
Output High Voltage (I _{OH} = -5 mA)	VOH	2.4		٧	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL		0.4	V	

- All voltages referenced to V_{SS}.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit	Notes
Input Capacitance (A0–A9)	C _{I1}		161	pF	1
Input Capacitance (W)	C _{l2}	_	178	pF	1
Input Capacitance (RAS0-RAS2)	C _{I3}	_	52	pF	1
Input Capacitance (CAS0-CAS3)	C ₁₄	T -	52	pF	1
I/O Capacitance (DQ0-DQ7, DQ9-DQ16, DQ18-DQ25, DQ27-DQ34)	C _{DQ1}	_	29	pF	1
I/O Capacitance (DQ8, DQ17, DQ26, DQ35)	C _{DQ2}	_	39	pF	1

NOTE:

1. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = 1 \Delta t / \Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

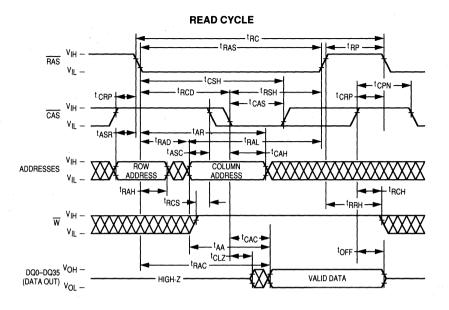
READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

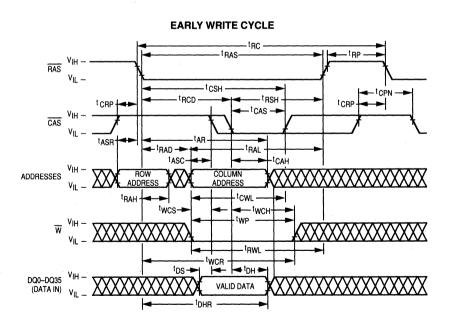
	Syn	nbol	MCM36200-80		MCM36200-10			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	†RELREL	tRC	150	_	180	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	50	_	60	_	ns	
Access Time from RAS	†RELQV	†RAC	_	80	_	100	ns	6, 7
Access Time from CAS	t _{CELQV}	†CAC	_	20	_	25	ns	6, 8
Access Time from Column Address	†AVQV	^t AA	_	40		50	ns	6, 9
Access Time from Precharge CAS	^t CEHQV	tCPA	_	45		55	ns	6
CAS to Output in Low-Z	tCELQX	^t CLZ	0	_	0		ns	6
Output Buffer and Turn-Off Delay	^t CEHQZ	^t OFF	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tŢ	tΤ	. 3	50	3	50	ns	
RAS Precharge Time	^t REHREL	t _{RP}	60	_	70	_	ns	
RAS Pulse Width	tRELREH	^t RAS	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	t _{RELREH}	tRASP	80	100,000	100	100,000	ns	
RAS Hold Time	tCELREH	^t RSH	25	_	25	_	ns	
CAS Hold Time	^t RELCEH	^t CSH	80	_	100	_	ns	
CAS Pulse Width	†CELCEH	tCAS	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	60	25	75	ns	11
RAS to Column Address Delay Time	†RELAV	^t RAD	15	40	20	50	ns	12

(continued)

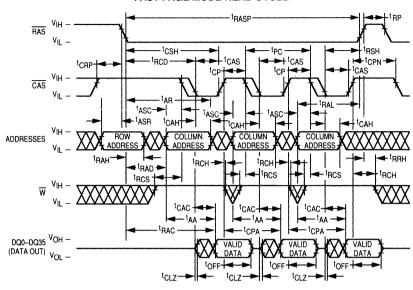
- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- Assumes that t_{RCD} ≥ t_{RCD} (max).
- 9. Assumes that $t_{RAD} \ge t_{RAD}$ (max).
- 10. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively to t_{CAC}.
- Operation within the t_{RAD} (max) limit ensures that t_{RAD} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

READ AND WRITE CYCLES (Continued)

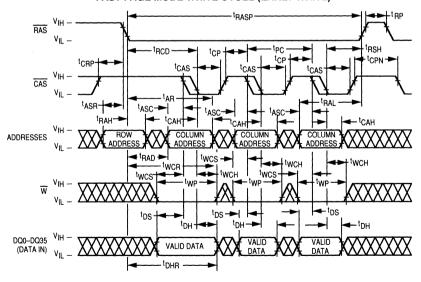

	Syn	nbol	MC	M36200	MCN	136L200		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
CAS to RAS Precharge Time	tCEHREL.	tCRP	5	_	10	_	ns	
CAS Precharge Time (Page Mode Cyle Only)	†CEHCEL	tCP	10	_	10	_	ns	
Row Address Setup Time	tAVREL	tASR	0	_	0	_	ns	
Row Address Hold Time	†RELAX	tRAH	10	_	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0	_	ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	†RELAX	^t AR	60	_	75	_	ns	
Column Address to RAS Lead Time	†AVREH	t _{RAL}	40	_	50	_	ns	
Read Command Setup Time	tWHCEL	tRCS	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	^t RCH	0	_	0		ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	[†] RRH	0	_	0		ns	13
Write Command Hold Time Referenced to CAS	^t CELWH	twcH	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	^t RELWH	twcR	60	_	75	_	ns	
Write Command Pulse Width	twLwH	twp	15	_	20		ns	
Write Command to RAS Lead Time	tWLREH	^t RWL	20	_	25	_	ns	
Write Command to CAS Lead Time	tWLCEH	tCWL	20	_	25	_	ns	
Data in Setup Time	†DVCEL	tDS	0		0	_	ns	14, 15
Data in Hold Time	tCELDX	t _{DH}	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	†RELDX	t _{DHR}	60	_	75	_	ns	
Refresh Period MCM36200 MCM36L200	^t RVRV	^t RFSH	_	16 128	=	16 128	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	†RELCEL	tcsr	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	30	_	30	_	ns	
CAS Precharge to CAS Active Time	^t REHCEL	^t RPC	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	^t CPT	40	_	50	_	ns	
CAS Precharge Time	^t CEHCEL	^t CPN	10	_	15	_	ns	

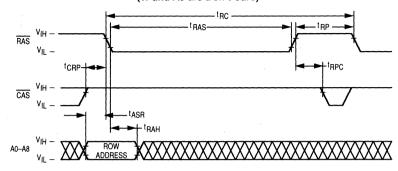

- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 14. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in random write cycles.

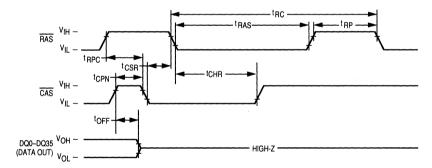
15. Early write only (twcs ≥ twcs (min)).


^{16.} twcs is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twcs≥twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisifed, the condition of the data out (at access time) is indeterminate.

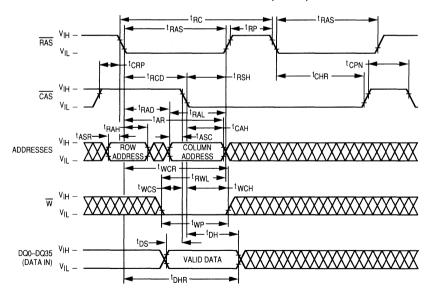
^{17.} To avoid bus contention and potential damage to the module, RASO and RAS1 may not be active low simultaneously. Similarly, RAS2 and RAS3 may not be simultaneously active low.




FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

RAS ONLY REFRESH CYCLE (W and A9 are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A9 are Don't Care)

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the module. During an extended inactive state of the module (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The ten address bus pins on the device are time multiplexed with two separate 10-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of twenty address bits will decode one of the 2,097,152 word locations in the module. The column address strobe follows the row address strobe by a specified minimum and maxium time called tRCD, which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up the external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. These are, however, two other variations in addressing the module, one is called the RAS only refresh cycle (described later) where a 9-bit row address field is presented on the input pins and latched by the RAS clock. The most significant bit on Row Address A9 is not required for refresh. The other variation, which is called page mode, allows the user to column access all words within a selected row. (See PAGE-MODE CYCLES section).

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VIH to the VIL level. The CAS clock must also make a transition from V_{IH} to the V_{IL} level at the specified tRCD timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the t_{RCD} maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (trac). If the trace maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (t_{RAH}) specification has been met and defines the t_{BCD} minimum specification. The time difference between t_{RCD} minimum and t_{RCD} maximum can be used to absorb skew delays in switching the address bus from the row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (t_{RAS}) period for the \overline{RAS} clock and the minimum (t_{RAS})

mum (t_{CAS}) period for the \overline{CAS} clock. The \overline{RAS} clock must stay inactive for the minimum (t_{RP}) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the \overline{CAS} clock is active; the output will switch to the three-state mode when the \overline{CAS} clock goes inactive. To perform a read cycle, the write (\overline{W}) input must be held at the V_{IH} level from the time the \overline{CAS} clock makes its active transition (t_{RCS}) to the time when it transitions into the inactive (t_{RCH}) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the write (\overline{W}) clock must go active (V_{IL} level) at or before the \overline{CAS} clock goes active at a minimum twCS time. If the above condition is met, then the cycle in progress is referred to as an early write cycle. In an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (tCWL) and the row strobe to write lead time (tRWL). These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started (\overline{W} clock at VII level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 1024 column locations on a selected row. Page access (t_{CAC}) is typically half the regular \overline{RAS} clock access (t_{RAC}) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the \overline{RAS} clock active while cycling the \overline{CAS} clock to access the column locations determined by the 10-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and $\overline{\text{CAS}}$ clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter $\overline{\text{CAS}}$ cycles (tpc). The $\overline{\text{CAS}}$ cycle time (tpc) consists of the $\overline{\text{CAS}}$ clock active time (tcAs), and $\overline{\text{CAS}}$ clock precharge time (tcp) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 16 milliseconds. This is accomplished by sequentially cycling through the 1024 row address locations every 16 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the words associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a $\overline{\text{RAS}}$ -only cycle on 1024 row addresses every 16 milliseconds. The row addresses are latched in with the $\overline{\text{RAS}}$ clock, and the associated internal row locations are refreshed. As the heading implies, the $\overline{\text{CAS}}$ clock is not required and must be inactive or at a V_{1H} level.

CAS Before RAS Refresh

This refresh cycle is initiated when $\overline{\text{RAS}}$ falls, after $\overline{\text{CAS}}$ has been low (by t_{CSR}). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by $\overline{\text{CAS}}$ in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as $\overline{\text{CAS}}$ is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period (t_{RP}), executing a \overline{CAS} before \overline{RAS} refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of the device can be tested with a CAS before RAS refresh counter test. This refresh counter

test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 1024 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 1024 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 1024 times.
- 4. Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

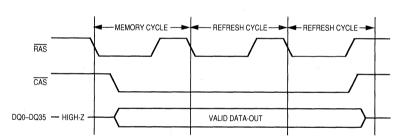


Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number) MCM 36200 or 36L200 Motorola Memory Prefix-Speed (80 = 80 ns, 10 = 100 ns)Part Number Package (S = SIMM, SG = Gold Pad SIMM) Full Part Numbers - MCM36200S70 MCM36200SG70 MCM36200S80 MCM36200SG80 MCM36200S10 MCM36200SG10 MCM36L200SG70 MCM36L200S70 MCM36L200S80 MCM36L200SG80 MCM36L200S10 MCM36L200SG10

NOTE: Contact your Motorola representative for further information on the Gold Pad SIMM packages.

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information

256K × 36 Bit Dynamic Random Access Memory Module

The MCM36256S is a 9M, dynamic random access memory (DRAM) module organized as 262,144 \times 36 bits. The module is a 72-lead single-in-line memory module (SIMM) consisting of eight MCM514256A DRAMs housed in 20/26 J-lead small outline packages (SOJ) and four CMOS 256K \times 1 DRAMs housed in 18-lead PLCC packages, mounted on a substrate along with a 0.22 μF (min) decoupling capacitor mounted under each DRAM. The MCM514256A is a 1.0 μ CMOS high speed, dynamic random access memory organized as 262,144 four-bit words and fabricated with CMOS silicon-gate process technology.

- · Three-State Data Output
- · Early-Write Common I/O Capability
- · Fast Page Mode Capability
- · TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh:
- MCM36256 = 8 ms (Max)
- Consists of Eight 256K × 4 DRAMs, Four 256K × 1 DRAMs, and Twelve 0.22 μF (Min) Decoupling Capacitors
- · Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (t_{RAC}):

MCM36256S-70 = 70 ns (Max) MCM36256S-80 = 80 ns (Max)

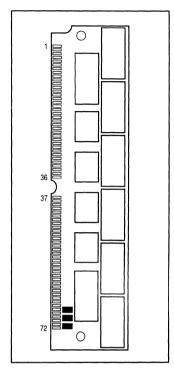
MCM36256S-10 = 100 ns (Max)

Low Active Power Dissipation:
 Active Power Dissipation:

MCM36256S-70 = 5.28 W (Max) MCM36256S-80 = 4.62 W (Max)

MCM36256S-10 = 3.96 W (Max)

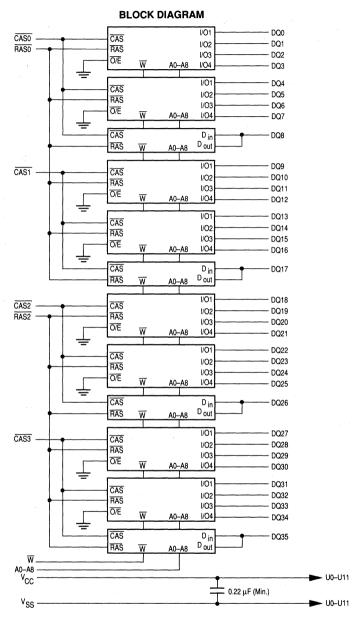
· Low Standby Power Dissipation:


TTL Levels = 132 mW (Max)

CMOS Levels = 66 mW (Max)

PIN OUT

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	V _{SS}	13	A1	25	DQ24	37	DQ17	49	DQ9	61	DQ14
2	DQ0	14	A2	26	DQ7	38	DQ35	50	DQ27	62	DQ33
3	DQ18	15	A3	27	DQ25	39	VSS	51	DQ10	63	DQ15
4	DQ1	16	A4	28	A7	40	CAS0	52	DQ28	64	DQ34
5	DQ19	17	A5	29	NC	41	CAS2	53	DQ11	65	DQ16
6	DQ2	18	A6	30	V _{CC}	42	CAS3	54	DQ29	66	NC
7	DQ20	19	NC	31	A8	43	CAS1	55	DQ12	67	PD1
8	DQ3	20	DQ4	32	NC	44	RAS0	56	DQ30	68	PD2
9	DQ21	21	DQ22	33	NC	45	NC	57	DQ13	69	PD3
10	VCC	22	DQ5	34	RAS2	46	NC	58	DQ31	70	PD4
11	NC	23	DQ23	35	DQ26	47	W	59	VCC	71	NC
12	A0	24	DQ6	36	DQ8	48	NC	60	DQ32	72	VSS


MCM36256

PIN NAME:	s
A0-A8 DQ0-DQ35 CAS0-CAS3 Column PD1-PD4 RAS0, RAS2 ROW W VCC VSS NC	Data Input/Output Address Strobe Presence Detect Address Strobe Read/Write Input Power (+ 5 V)

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

PRESENCE DETECT PIN OUT								
Pin Name 70 ns 80 ns 100 ns								
PD1 PD2 PD3 PD4	V _{SS} NC V _{SS} NC	V _{SS} NC NC V _{SS}	V _{SS} NC V _{SS} V _{SS}					

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 1 to + 7	V
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 1 to + 7	V
Data Output Current per DQ Pin	lout	50	mA
Power Dissipation	PD	7.2	w
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	- 55 to + 125	[∞] C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧	1
	V _{SS}	0	0	0	1	
Logic High Voltage, All Inputs	V _{IH}	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	- 1.0	I –	0.8	v	1

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM36256-70, t _{RC} = 130 ns MCM36256-80, t _{RC} = 150 ns MCM36256-10, t _{RC} = 180 ns	lcc1	=	960 840 720	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	ICC2	_	24	mA	
V_{CC} Power Supply Current During $\overline{\rm RAS}$ only Refresh Cycles MCM36256-70, $t_{\rm RC}$ = 130 ns MCM36256-80, $t_{\rm RC}$ = 150 ns MCM36256-10, $t_{\rm RC}$ = 180 ns	Іссз	-	960 840 720	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle MCM36256-70, t _{RC} = 40 ns MCM36256-80, t _{RC} = 45 ns MCM36256-10, t _{RC} = 55 ns	ICC4		720 600 480	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V)	lcc5	_	12	mA	
V_{CC} Power Supply Current During $\overline{\text{CAS}}$ Before $\overline{\text{RAS}}$ Refresh Cycle MCM36256-70, t_{RC} = 130 ns MCM36256-80, t_{RC} = 150 ns MCM36256-10, t_{RC} = 180 ns	ICC6		960 840 720	mA	2
Input Leakage Current (V _{SS} ≤ V _{in} ≤ V _{CC})	llkg(I)	- 120	120	μА	
Output Leakage Current (CAS at Logic 1, V _{SS} ≤ V _{out} ≤ V _{CC})	lkg(O)	- 10	+ 10	μА	
Output High Voltage (IOH = -5 mA)	V _{OH}	2.4		٧	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	0.4	V	

- All voltages referenced to V_{SS}.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Min	Max	Unit	Notes
Input Capacitance (A0–A8)	C _{I1}	_	88	pF	1
Input Capacitance (W)	C _{I2}	_	94	pF	1
Input Capacitance (RAS0, RAS2)	C _{I3}	_	52	pF	1
Input Capacitance (CASO-CAS3)	C ₁₄	_	36	pF	1
I/O Capacitance (DQ0-DQ7, DQ9-DQ16, DQ18-DQ25, DQ27-DQ34)	C _{DQ1}	_	17	pF	1
I/O Capacitance (DQ8, DQ17, DQ26, DQ35)	C _{DQ2}		22	pF	1

NOTE:

AC OPERATING CONDITIONS AND CHARACTERISTICS

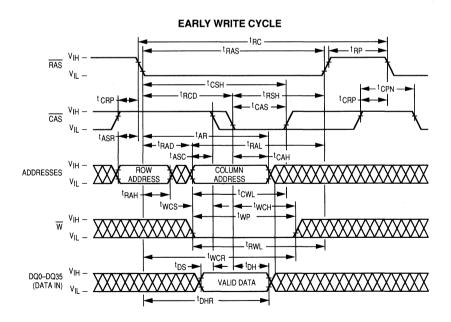
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

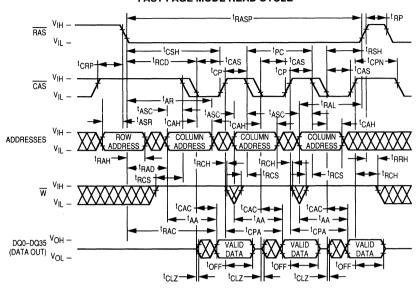
	Syn	nbol	мсм	36256-70	мсм	36256-80	мсма	CM36256-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	^t RELREL	tRC	130		150		180	_	ns	5
Page Mode Cycle Time	^t CELCEL	tPC	40	_	45		55	_	ns	
Access Time from RAS	t _{RELQV}	t _{RAC}	_	70	_	80	_	100	ns	6, 7
Access Time from CAS	^t CELQV	tCAC	_	20	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	35		40	_	.50	ns	6, 9
Access Time from Precharge CAS	^t CEHQV	^t CPA	_	35	_	40	_	50	ns	6
CAS to Output in Low-Z	tCELQX	[†] CLZ	0	_	0	_	. 0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	^t OFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tŢ	t⊤	3	50	3	50	3	50	ns	
RAS Precharge Time	^t REHREL	tRP	50	_	60	_	70	_	ns	
RAS Pulse Width	†RELREH	†RAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	†RELREH	tRASP	70	100,000	80	100,000	100	100,000	ns .	
RAS Hold Time	^t CELREH	^t RSH	20	_	25		25	_	ns	
CAS Hold Time	†RELCEH	t _{CSH}	70	_	80	_	100	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	†RCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	^t RELAV	^t RAD	15	35	15	40	20	50	ns	12

- (continued)
- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL} .
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.

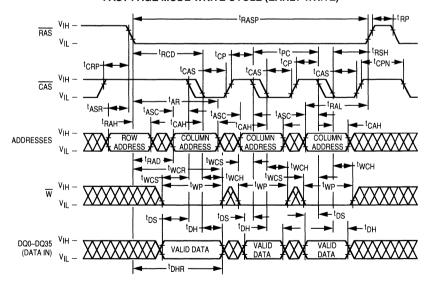
 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must signal to the property of the property o
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, + 4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- 8. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 9. Assumes that $t_{RAD} \ge t_{RAD}$ (max).
- 10. topp (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively to t_{CAC}.
- Operation within the t_{RAD} (max) limit ensures that t_{RAD} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater
 than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

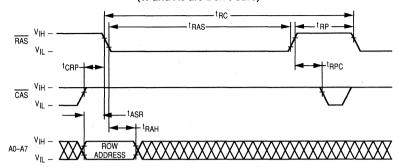

^{1.} Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C = 1 Δ t / Δ V.

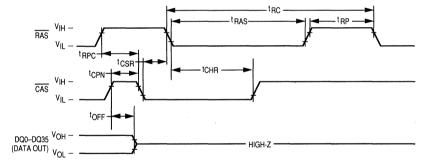
READ AND WRITE CYCLES (Continued)

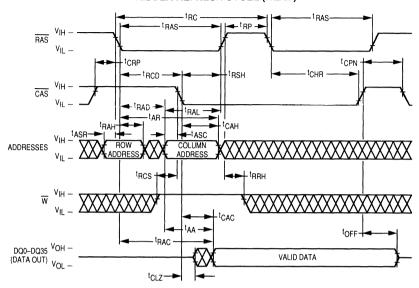

	Syn	lodr	MCM3	86256-70	MCM	MCM36256-80		36256-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS to RAS Precharge Time	^t CEHREL	tCRP	5		5		10	_	ns	
CAS Precharge Time (Page Mode Cyle Only)	^t CEHCEL	tCP	10	_	10	_	10		ns	
Row Address Setup Time	†AVREL	†ASR	0	_	0		0	_	ns	
Row Address Hold Time	†RELAX	tRAH	10		10		15	_	ns	
Column Address Setup Time	†AVCEL	†ASC	0	_	0	_	0		ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	^t RELAX	^t AR	55	_	60		75	_	ns	
Column Address to RAS Lead Time	tAVREH	†RAL	35	_	40	_	50		ns	
Read Command Setup Time	tWHCEL	tRCS	0		0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	^t RCH	0	_	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	^t RRH	0	_	0	_	0		ns	13
Write Command Hold Time Referenced to CAS	tCELWH	tWCH	15	_	15	_	20		ns	
Write Command Hold Time Referenced to RAS	^t RELWH	twcr	55	_	60	_	75		ns	
Write Command Pulse Width	twlwh	twp	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	^t RWL	20		20	_	25	_	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20	_	20	_	25	_	ns	
Data in Setup Time	†DVCEL	tDS	0	_	0		0	_	ns	14, 15
Data in Hold Time	^t CELDX	^t DH	15	_	15		20	_	ns	14, 15
Data in Hold Time Referenced to RAS	^t RELDX	^t DHR	55	_	60	_	75	_	ns	
Refresh Period	tRVRV	^t RFSH	_	8	_	8	_	8	ms	
Write Command Setup Time	tWLCEL	twcs	0		0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	[†] RELCEL	^t CSR	10	_	10	_	10		ns	
CAS Hold Time for CAS Before RAS Refresh	†RELCEH	^t CHR	30	_	30	_	30	_	ns	
CAS Precharge to CAS Active Time	^t REHCEL	^t RPC	0	_	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	^t CPT	40	_	40	_	50	_	ns	
CAS Precharge Time	[†] CEHCEL	t _{CPN}	10	_	10	_	15		ns	

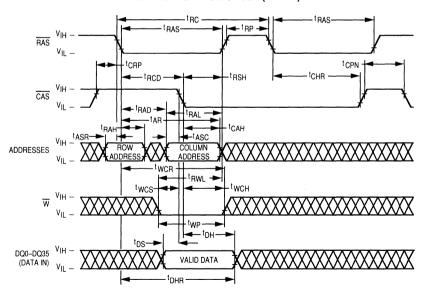
- 13. Either $t_{\mbox{\scriptsize RRH}}$ or $t_{\mbox{\scriptsize RCH}}$ must be satisfied for a read cycle.
- 14. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in random write cycles.
- 15. Early write only $(t_{WCS} \ge t_{WCS} (min))$.
- 16. tWCs is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twcs≥twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisifed, the condition of the data out (at access time) is indeterminate.

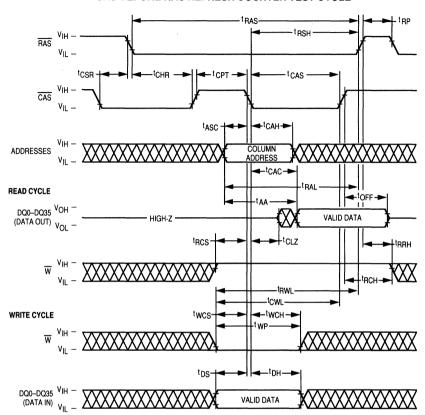

READ CYCLE RAS t CSH ^tCRP t CRP -CAS tASRt_{RAL} t_{CAH} COLUMN ADDRESSES -- t_{RRH} -tOFF tCLZ+ DQ0-DQ35 VOH -(DATA OUT) VOL -VALID DATA - HIGH-Z -


FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS ONLY REFRESH CYCLE (W and A8 are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A8 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the module. During an extended inactive state of the module (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The nine address bus pins on the device are time multiplexed with two separate 9-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of eighteen address bits will decode one of the 262,144 word locations in the device. The column address strobe follows the row address strobe by a specified minimum and maxium time called tRCD, which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up the external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. These are, however, other variations in addressing the module: the refresh modes (RAS only refresh, CAS before RAS refresh, hidden refresh), and another mode called page mode which allows the user to column access all words within a selected row. The refresh mode and page mode operations are described in more detail in later sections.

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VIH to the VIL level. The CAS clock must also make a transition from VIH to the VIL level at the specified t_{RCD} timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the \overline{CAS} clock must be active before or at the t_{RCD} maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (t_{CAC}) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from the row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (t_{RAS}) period for the $\overline{\text{RAS}}$ clock and the minimum (t_{CAS}) period for the $\overline{\text{CAS}}$ clock. The $\overline{\text{RAS}}$ clock must

stay inactive for the minimum (t_{RP}) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the \overline{CAS} clock is active; the output will switch to the three-state mode when the \overline{CAS} clock goes inactive. To perform a read cycle, the write (\overline{W}) input must be held at the V $_{IH}$ level from the time the \overline{CAS} clock makes its active transition (t_{RCS}) to the time when it transitions into the inactive (t_{RCH}) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the write $\langle \overline{W} \rangle$ clock must go active (V_{IL} level) at or before the \overline{CAS} clock goes active at a minimum twCS time. If the above condition is met, then the cycle in progress is referred to as an early write cycle. In an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (tpWL) and the row strobe to write lead time (tpWL). These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started (\overline{W} clock at V_{II} level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 512 column locations on a selected row. Page access (t_{CAC}) is typically half the regular \overline{RAS} clock access (t_{RAC}) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the \overline{RAS} clock active while cycling the \overline{CAS} clock to access the column locations determined by the 10-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the RAS clock, followed by the column address and CAS clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter CAS cycles (tpc). The CAS cycle time (tpc) consists of the CAS clock active time (tcAS), and CAS clock precharge time (tcp) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 8 milliseconds. This is accomplished by sequentially cycling through the 512 row address locations every 8 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the words associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a $\overline{\text{RAS}}$ -only cycle on 512 row addresses every 8 milliseconds. The row addresses are latched in with the $\overline{\text{RAS}}$ clock, and the associated internal row locations are refreshed. As the heading implies, the $\overline{\text{CAS}}$ clock is not required and must be inactive or at a VIH level.

CAS Before RAS Refresh

This refresh cycle is initiated when $\overline{\text{RAS}}$ falls, after $\overline{\text{CAS}}$ has been low (by tcsr). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by $\overline{\text{CAS}}$ in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as $\overline{\text{CAS}}$ is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period (t_{RP}), executing a \overline{CAS} before \overline{RAS} refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of the device can be tested with a CAS before RAS refresh counter test. This refresh counter

test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 CAS before RAS initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 512 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 512 times.
- 4. Read "1"s (normal read mode), which were written at step 3
- Repeat steps 1 to 4 using complement data.

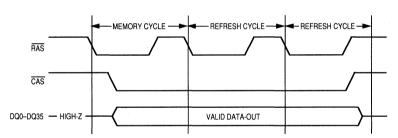
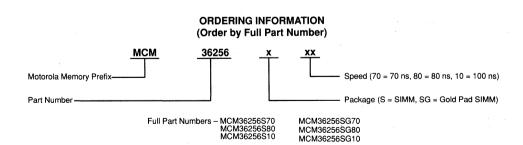



Figure 1. Hidden Refresh Cycle

Advance Information

512K × 36 Bit Dynamic Random **Access Memory Module**

The MCM36512S is an 18M, dynamic random access memory (DRAM) module organized as $524,288 \times 36$ bits. The module is a 72-lead double-sided single-in-line memory module (SIMM) consisting of sixteen MCM514256A DRAMs housed in 20/26 J-lead small outline packages (SOJ) and eight CMOS 256K × 1 DRAMs housed in 18-lead PLCC packages, mounted on a substrate along with a 0.22 µF (min) decoupling capacitor mounted under each DRAM. The MCM514256A is a 1.0 u CMOS high speed, dynamic random access memory organized as 262,144 four-bit words and fabricated with CMOS silicon-gate process technology.

- · Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh: MCM36512 = 8 ms (Max)
- Consists of Sixteen 256K × 4 DRAMs, Eight 256K × 1 DRAMs, and Twenty Four 0.22 µF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (t_{RAC}):

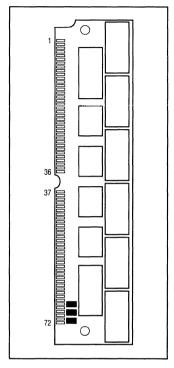
MCM36512S-70 = 70 ns (Max) MCM36512S-80 = 80 ns (Max)

MCM36512S-10 = 100 ns (Max)

Low Active Power Dissipation:

MCM36512S-70 = 5.412 W (Max) MCM36512S-80 = 4.752 W (Max)

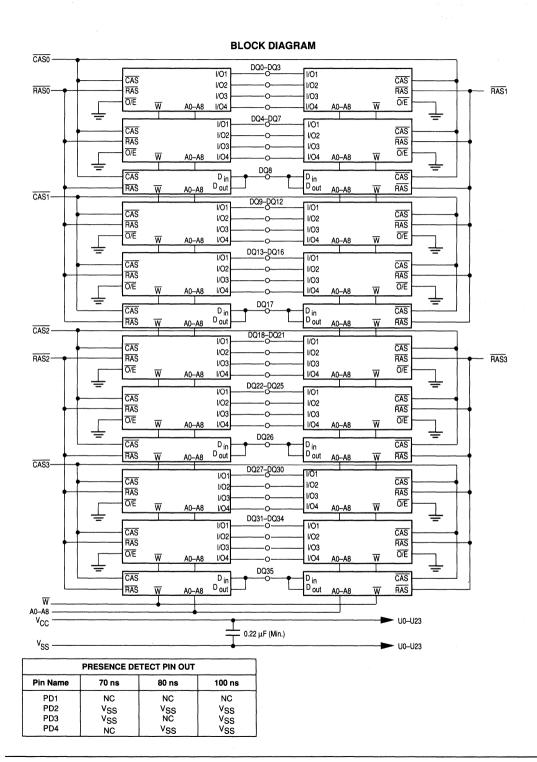
MCM36512S-10 = 4.092 W (Max)


· Low Standby Power Dissipation:

TTL Levels = 264 mW (Max) CMOS Levels = 132 mW (Max)

PIN OUT

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	VSS	13	A1	25	DQ24	37	DQ17	49	DQ9	61	DQ14
2	DQ0	14	A2	26	DQ7	38	DQ35	50	DQ27	62	DQ33
3	DQ18	15	A3	27	DQ25	39	VSS	51	DQ10	63	DQ15
4	DQ1	16	A4	28	A7	40	CAS0	52	DQ28	64	DQ34
5	DQ19	17	A5	29	NC	41	CAS2	53	DQ11	65	DQ16
6	DQ2	18	A6	30	VCC	42	CAS3	54	DQ29	66	NC
7	DQ20	19	NC	31	A8	43	CAS1	55	DQ12	67	PD1
8	DQ3	20	DQ4	32	NC	44	RAS0	56	DQ30	68	PD2
9	DQ21	21	DQ22	33	RAS3	45	RAS1	57	DQ13	69	PD3
10	VCC	22	DQ5	34	RAS2	46	NC	58	DQ31	70	PD4
11	NC	23	DQ23	35	DQ26	47	W	59	VCC	71	NC
12	A0	24	DQ6	36	DQ8	48	NC	60	DQ32	72	VSS


MCM36512

PIN NAMES
A0-A8 Address Inputs DQ0-DQ35 Data Input/Output CAS0-CAS3 Column Address Strobe PD1-PD4 Presence Detect RAS0-RAS3 Row Address Strobe
W Read/Write Input VCC Power (+ 5 V)
VSS Ground NC No Connection

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 1 to + 7	V
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 1 to + 7	V
Data Output Current per DQ Pin	lout	50	mA
Power Dissipation	PD	7.4	W
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stq}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(VCC = 5.0 V \pm 10%, TA = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0		
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	٧	1
Logic Low Voltage, All Inputs	VIL	- 1.0		0.8	v	1

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM36512-70, t _{RC} = 130 ns MCM36512-80, t _{RC} = 150 ns MCM36512-10, t _{RC} = 180 ns	I _{CC1}		984 864 744	mA	2
V _{CC} Power Supply Current (Standby) ($\overline{RAS} = \overline{CAS} = V_{IH}$)	lCC2	_	48	mA	
V_{CC} Power Supply Current During \overline{RAS} only Refresh Cycles MCM36512-70, t_{RC} = 130 ns MCM36512-80, t_{RC} = 150 ns MCM36512-10, t_{RC} = 180 ns	Іссз		984 864 744	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle MCM36512-70, t _{RC} = 40 ns MCM36512-80, t _{RC} = 45 ns MCM36512-10, t _{RC} = 55 ns	ICC4	_	744 624 504	mA	2
V _{CC} Power Supply Current (Standby) ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2 \text{ V}$)	I _{CC5}	_	24	mA	
V_{CC} Power Supply Current During \overline{CAS} Before \overline{RAS} Refresh Cycle MCM36512-70, t_{RC} = 130 ns MCM36512-80, t_{RC} = 150 ns MCM36512-10, t_{RC} = 180 ns	Icc6		984 864 744	mA	2
Input Leakage Current ($V_{SS} \le V_{in} \le V_{CC}$)	llkg(I)	- 240	240	μА	
Output Leakage Current (\overline{CAS} at Logic 1, $V_{SS} \le V_{out} \le V_{CC}$)	lkg(O)	- 20	20	μА	
Output High Voltage (I _{OH} = – 5 mA)	VOH	2.4		V	
Output Low Voltage (I _{OL} = 4.2 mA)	V _{OL}		0.4	٧	

All voltages referenced to V_{SS}.
 Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Min	Max	Unit	Notes
Input Capacitance (A0–A8)	C _{I1}	_	161	pF	1
Input Capacitance (W)	C _{I2}		178	pF	1
Input Capacitance (RAS0-RAS3)	C _{I3}	_	52	pF	1
Input Capacitance (CAS0-CAS3)	C _{I4}	_	52	pF	1
I/O Capacitance (DQ0-DQ7, DQ9-DQ16, DQ18-DQ25, DQ27-DQ34)	C _{DQ1}	_	29	pF	1
I/O Capacitance (DQ8, DQ17, DQ26, DQ35)	C _{DQ2}		39	pF	1

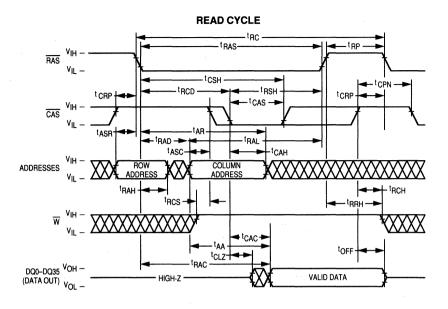
NOTE:

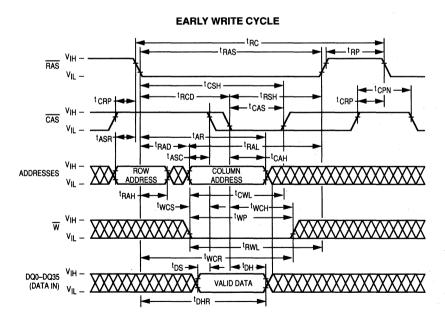
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

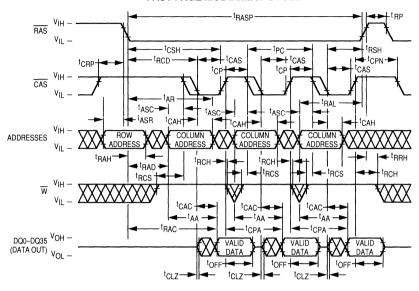
READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

Parameter	Symbol		MCM36512-70		MCM36512-80		MCM36512-10			
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	^t RELREL	tRC	130	_	150	_	180	_	ns	5
Page Mode Cycle Time	^t CELCEL	tPC	40	_	45	_	55	_	ns	
Access Time from RAS	^t RELQV	tRAC	_	70		80	-	100	ns	6, 7
Access Time from CAS	^t CELQV	tCAC	_	20		20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	35	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	^t CEHQV	[†] CPA	_	35	_	40	_	50	ns	6
CAS to Output in Low-Z	†CELQX	tCLZ	0		0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	†CEHQZ	^t OFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tŢ	t _T	3	50	3	50	3	50	ns	
RAS Precharge Time	^t REHREL	t _{RP}	50		60	_	70	_	ns	
RAS Pulse Width	[†] RELREH	†RAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	[†] RELREH	t _{RASP}	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	[†] CELREH	^t RSH	20	_	25	_	25	. –	ns	
CAS Hold Time	†RELCEH	^t CSH	70	_	80	_	100		ns	
CAS Pulse Width	[†] CELCEH	t _{CAS}	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	^t RELCEL	tRCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	^t RELAV	tRAD	15	35	15	40	20	50	ns	12

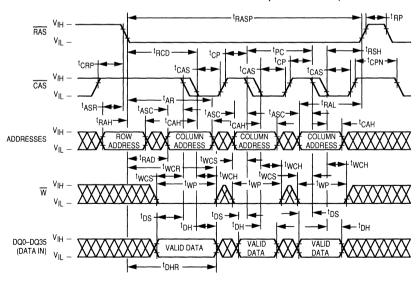

- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 2. An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, + 4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- 8. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 9. Assumes that t_{RAD} ≥ t_{RAD} (max).
- 10. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively to t_{CAC}.
- Operation within the t_{RAD} (max) limit ensures that t_{RAD} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

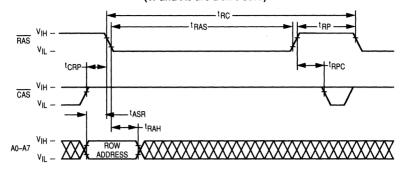

^{1.} Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = 1 \Delta t / \Delta V$.

READ AND WRITE CYCLES (Continued)

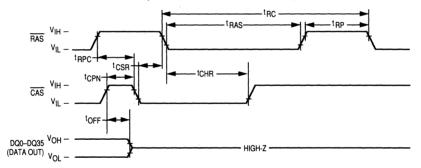

Parameter	Symbol		MCM36512-70		MCM36512-80		MCM36512-10			
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS to RAS Precharge Time	[†] CEHREL	tCRP	5	_	5		10	_	ns	
CAS Precharge Time (Page Mode Cyle Only)	[†] CEHCEL	tCP	10	_	10	_	10	_	ns	
Row Address Setup Time	†AVREL	†ASR	0	_	0	_	0	_	ns	
Row Address Hold Time	†RELAX	tRAH	10	_	10	_	15	_	ns	
Column Address Setup Time	†AVCEL	†ASC	0	_	0	_	0	_	ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	^t RELAX	^t AR	55	_	60		75		ns	
Column Address to RAS Lead Time	^t AVREH	t _{RAL}	35		40	_	50	_	ns	
Read Command Setup Time	tWHCEL	^t RCS	0	_	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	^t RCH	0	_	0	_	0		ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	^t RRH	0	_	0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	[†] CELWH	tWCH	15	_	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	†RELWH	twcr	55		60	_	75		ns	
Write Command Pulse Width	twLwH	tWP	15	_	15	_	20		ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	20		25	_	ns	
Write Command to CAS Lead Time	tWLCEH	tCWL	20	_	20	_	25	_	ns	
Data in Setup Time	†DVCEL	t _{DS}	0	_	0	_	0	_	ns	14, 15
Data in Hold Time	[†] CELDX	t _{DH}	15	_	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	[†] RELDX	^t DHR	55	_	60	_	75	_	ns	
Refresh Period	^t RVRV	^t RFSH	_	8	_	8	_	8	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	^t CSR	10	_	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	[†] RELCEH	^t CHR	30	_	30	_	30	_	ns	
CAS Precharge to CAS Active Time	†REHCEL	^t RPC	0	_	0	_	0		ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	[†] CPT	40	_	40	_	50		ns	
CAS Precharge Time	†CEHCEL	tCPN	10	_	10		15	_	ns	

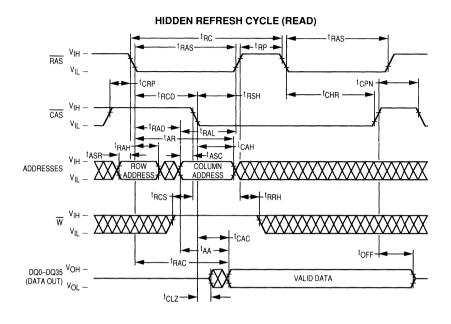
- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 14. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in random write cycles.
- 15. Early write only $(t_{WCS} \ge t_{WCS} \text{ (min)}).$
- 16. twos is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twos ≥ twos (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisifed, the condition of the data out (at access time) is indeterminate.
- 17. To avoid bus contention and potential damage to the module, RAS0 and RAS1 may not be active low simultaneously. Similarly, RAS2 and RAS3 may not be simultaneously active low.

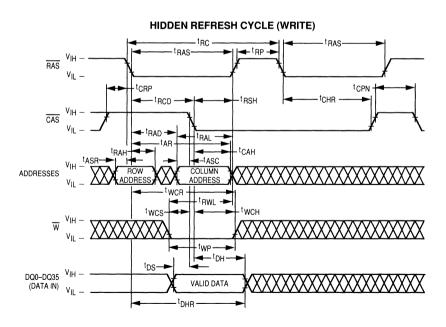



FAST PAGE MODE READ CYCLE

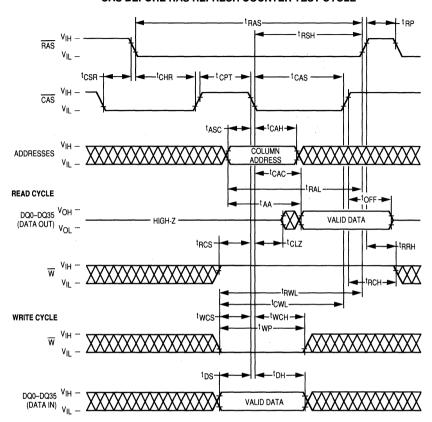
FAST PAGE MODE WRITE CYCLE (EARLY WRITE)




RAS ONLY REFRESH CYCLE (W and A8 are Don't Care)



 $_{\rm DQ0-DQ35}$ $_{\rm VOH}^{\rm -}$ $_{\rm HIGH-Z}$ $_{\rm VOL}^{\rm -}$


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A8 are Don't Care)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the module. During an extended inactive state of the module (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The nine address bus pins on the device are time multiplexed with two separate 9-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of eighteen address bits will decode one of the 262,144 word locations in the device. The column address strobe follows the row address strobe by a specified minimum and maxium time called tRCD, which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up the external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. These are, however, other variations in addressing the module: the refresh modes (RAS only refresh, CAS before RAS refresh, hidden refresh), and another mode called page mode which allows the user to column access all words within a selected row. The refresh mode and page mode operations are described in more detail in later sections.

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VIH to the VII level. The CAS clock must also make a transition from VIH to the VII level at the specified t_{BCD} timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the tRCD maximum specification for an access (data valid) from the RAS clock edge to be guaranteed $(t_{\mbox{RAC}})$. If the $t_{\mbox{RCD}}$ maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the t_{RCD} minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from the row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (t_{RAS}) period for the \overline{RAS} clock and the minimum (t_{CAS}) period for the \overline{CAS} clock. The \overline{RAS} clock must

stay inactive for the minimum (t_{RP}) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the \overline{CAS} clock is active; the output will switch to the three-state mode when the \overline{CAS} clock goes inactive. To perform a read cycle, the write $\overline{(W)}$ input must be held at the V $_{IH}$ level from the time the \overline{CAS} clock makes its active transition (t_{RCS}) to the time when it transitions into the inactive (t_{RCH}) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the write (\overline{W}) clock must go active (V_{IL} level) at or before the \overline{CAS} clock goes active at a minimum twCS time. If the above condition is met, then the cycle in progress is referred to as an early write cycle, in an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (tCWL) and the row strobe to write lead time (tRWL). These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started (\overline{W} clock at VIL level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 512 column locations on a selected row. Page access (t_{CAC}) is typically half the regular \overline{RAS} clock access (t_{RAC}) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the \overline{RAS} clock active while cycling the \overline{CAS} clock to access the column locations determined by the 10-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the $\overline{\text{RAS}}$ clock, followed by the column address and $\overline{\text{CAS}}$ clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter $\overline{\text{CAS}}$ cycles (tpc). The $\overline{\text{CAS}}$ cycle time (tpc) consists of the $\overline{\text{CAS}}$ clock active time (tcAS), and $\overline{\text{CAS}}$ clock precharge time (tcP) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 8 milliseconds. This is accomplished by sequentially cycling through the 512 row address locations every 8 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the words associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a $\overline{\text{RAS}}$ -only cycle on 512 row addresses every 8 milliseconds. The row addresses are latched in with the $\overline{\text{RAS}}$ clock, and the associated internal row locations are refreshed. As the heading implies, the $\overline{\text{CAS}}$ clock is not required and must be inactive or at a VI_{IH} level.

CAS Before RAS Refresh

This refresh cycle is initiated when \overline{RAS} falls, after \overline{CAS} has been low (by t_{CSR}). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by \overline{CAS} in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as \overline{CAS} is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding $\overline{\text{CAS}}$ at V_{IL} and taking $\overline{\text{RAS}}$ high and after a specified precharge period (tpp), executing a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of the device can be tested with a CAS before RAS refresh counter test. This refresh counter

test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 512 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 512 times.
- Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

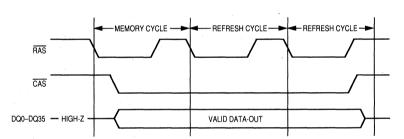
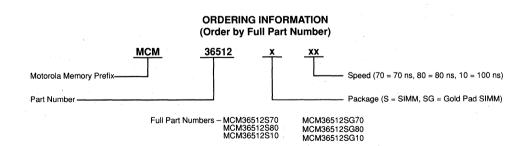



Figure 1. Hidden Refresh Cycle

Advance Information

1M × 8 Bit Dynamic Random Access Memory Module

The MCM81000L and MCM81000S are 8M, dynamic random access memory (DRAM) modules organized as 1,048,576 \times 8 bits. The modules are 30-lead single-in-line memory modules (SIMM) or 30-pin single-in-line packages (SIP) consisting of eight MCM511000A DRAMs housed in a 20/26 J-lead small outline package (SOJ) and mounted on a substrate along with a 0.22 μ F (min) decoupling capacitor mounted under each DRAM. The MCM511000A is a 1.0 μ CMOS high speed, dynamic random access memory organized as 1,048,576 one-bit words and fabricated with CMOS silicon-gate process technology.

- Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh:

MCM81000 = 8 ms (Max) MCM8L1000 = 64 ms (Max)

- Consists of Eight 1M DRAMs and Eight 0.22 μF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM81000-70 = 70 ns (Max) MCM81000-80 = 80 ns (Max)

MCM81000-80 = 80 ns (Max) MCM81000-10 = 100 ns (Max)

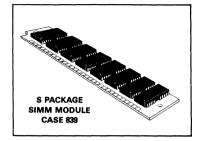
Low Active Power Dissipation:

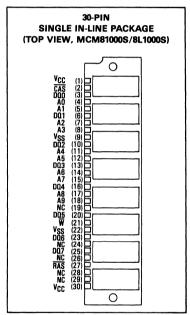
MCM81000-70 = 3.6 W (Max)

MCM81000-80 = 3.1 W (Max)

MCM81000-10 = 2.7 W (Max)

■ Low Standby Power Dissipation:

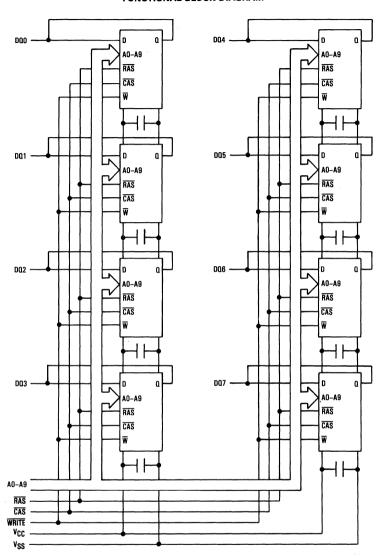

TTL Levels = 88 mW (Max)


CMOS Levels (MCM81000) = 45 mW (Max)

- (MCM8L1000) = 9 mW (Max)
- CAS Control for Eight Common I/O Lines
 Available in Edge Connector (MCM81000S) or Pin Connector (MCM81000L)

MCM81000S OR MCM8L1000S (SIMM)

MCM81000 MCM8L1000



PIN NAMES												
A0-A9 Address Inputs												
DQ0-DQ7 Data Input/Output												
CAS Column Address Strobe												
RAS Row Address Strobe												
W												
V _{CC} Power (+5 V)												
VSS Ground												
NC No Connection												

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	V
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	V
Data Out Current per DQ Pin	lout	50	mA
Power Dissipation	PD	4.8	w
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	VSS	0	0	0	1]
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	- 1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current	Icc1			mA	2
MCM81000-70, t _{RC} = 130 ns		-	640		
MCM81000-80, t _{RC} = 150 ns		_	560	ļ	
MCM81000-10, t _{RC} = 180 ns			480		
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	I _{CC2}	_	16	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles	ICC3			mA	2
MCM81000-70, t _{RC} = 130 ns		-	640		1
MCM81000-80, t _{RC} = 150 ns		-	560		
MCM81000-10, t _{RC} = 180 ns	1	-	480	Ì	
V _{CC} Power Supply Current During Fast Page Mode Cycle	ICC4			mA	2
MCM81000-70, tpc = 40 ns		_	480		
MCM81000-80, tpc = 45 ns	l	_	400		
MCM81000-10, $tpC = 55$ ns		-	320		Ì
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V) MCM81000	1 _{CC5}	_	8	mA	
MCM8L1000		-	1.6		
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle	ICC6			mA	2
MCM81000-70, t _{RC} = 130 ns		_	640		
MCM81000-80, t _{RC} = 150 ns		_	560		
MCM81000-10, $t_{RC} = 180 \text{ ns}$	1	_	480		
Input Leakage Current (V _{SS} ≤V _{in} ≤V _{CC})	likg(i)	-80	80	μΑ	
Output Leakage Current (CAS at Logic 1, V _{SS} ≤V _{out} ≤V _{CC})	lkg(O)	-20	20	μΑ	
Output High Voltage (IOH = -5 mA)	Voн	2.4	_	V	
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	-	0.4	V	

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Parameter		Symbol	Max	Unit	Notes
Input Capacitance	A0-A9, W, CAS, RAS	C _{in}	50	pF	3
Input/Output Capacitance	DQ0-DQ7	C _{I/O}	15	рF	3

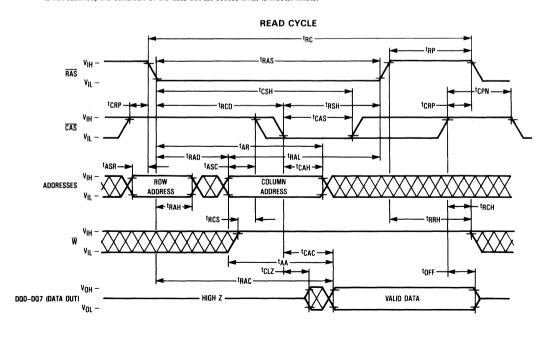
- 1. All voltages referenced to V_{SS} .
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

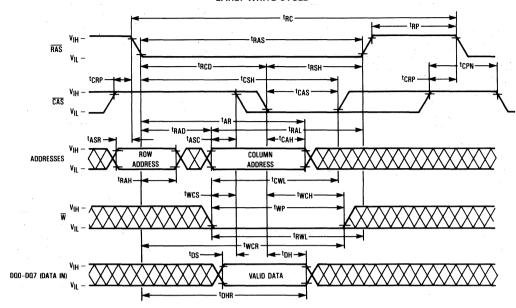
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

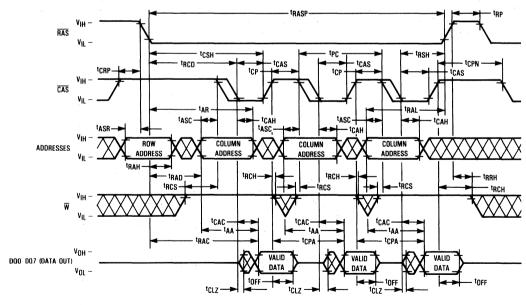
D	Syr	nbol	мсм	1000-70	мсм	1000-80	-80 MCM81000-1		Unit	N-4
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	†RELREL	tRC	130	_	150	_	180	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	40	_	45	_	55	-	ns	
Access Time from RAS	^t RELQV	tRAC	_	70	_	80	-	100	ns	6, 7
Access Time from CAS	†CELQV	. tCAC	_	20	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	35	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	†CEHQV	^t CPA	_	35	_	40	_	50	ns	6
CAS to Output in Low-Z	†CELQX	tCLZ	0	_	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	ŧτ	tΤ	3	50	3	50	3	50	ns	
RAS Precharge Time	^t REHREL	tRP	50	_	60	_	70	-	ns	
RAS Pulse Width	^t RELREH	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	^t RELREH	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	^t CELREH	tRSH	20	_	20	_	25	-	ns	
CAS Hold Time	^t RELCEH	tCSH	70	_	80	_	100	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	^t RELCEL	tRCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	†RELAV	tRAD	15	35	15	40	20	50	ns	12
CAS to RAS Precharge Time	^t CEHREL	tCRP	5	_	5	_	5	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	^t CEHCEL	tCP	10	_	10	_	10	_	ns	
Row Address Setup Time	†AVREL	†ASR	0	_	0		0	_	ns	
Row Address Hold Time	tRELAX	tRAH	10	_	10	_	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0		0	_	ns	
Column Address Hold Time	^t CELAX	^t CAH	15	_	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	t _{AR}	55	_	60	_	75	_	ns	
Column Address to RAS Lead Time	^t AVREH	^t RAL	35	_	40	_	50	_	ns	

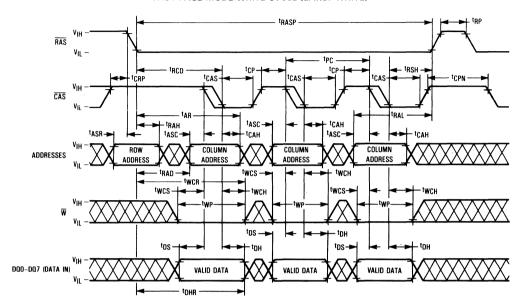

(continued)

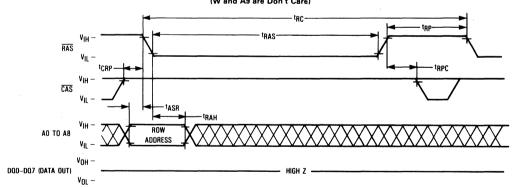
- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL (-200 μ A, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} =2.0 V and V_{OL} =0.8 V.
- 7. Assumes that t_{RCD}≤t_{RCD} (max).
- 8. Assumes that t_{RCD}≥t_{RCD} (max).
- Assumes that t_{RAD}≥t_{RAD} (max).
- 10. tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

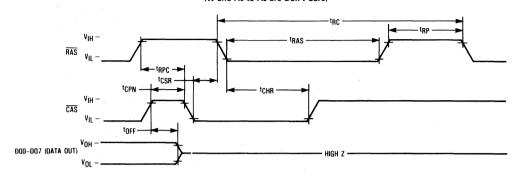

READ AND WRITE CYCLES (Continued)

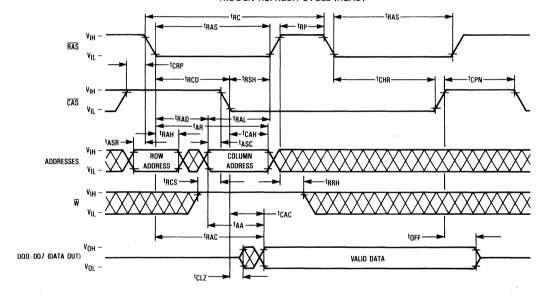
	Syr	nbol	MCM81000-70		мсмв	1000-80	MC81	000-10		Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Command Setup Time	†WHCEL	tRCS	0	_	0	_	0		ns	
Read Command Hold Time Referenced to CAS	^t CEHWX	tRCH	0	_	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	tREHWX	tRRH	0		0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	^t CELWH	tWCH	15	_	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	^t RELWH	twcr	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	†WLREH	tRWL	20	_	20	_	25	_	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20	_	20	_	25	_	ns	
Data in Setup Time	†DVCEL	tDS	0	_	0	_	0	_	ns	14, 15
Data in Hold Time	^t CELDX	^t DH	15	_	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	^t RELDX	tDHR	55	_	60	_	75	_	ns	
Refresh Period MCM81000 MCM8L1000	-nvnv	tRFSH	_	8 64	_	8 64	-	8 64	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	tCSR	10	_	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	30	_	30	_	30	_	ns	
CAS Precharge to CAS Active Time	^t REHCEL	tRPC	0	_	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	^t CPT	40	_	40	-	50	_	ns	
CAS Precharge Time	^t CEHCEL	tCPN	10	_	10	_	15	_	ns	

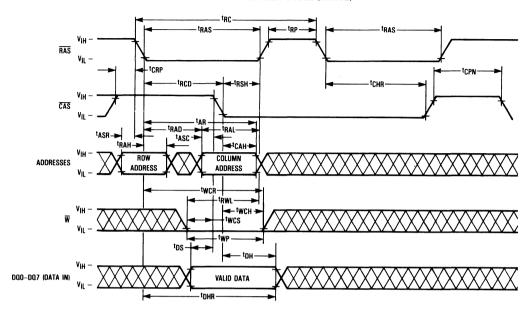

- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 14. These parameters are referenced to CAS leading edge in random write cycles.
- 15. Early write only (twcs≥twcs (min)).
- 16. tWCS is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if tWCS≥tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisfied, the condition of the data out (at access time) is indeterminate.

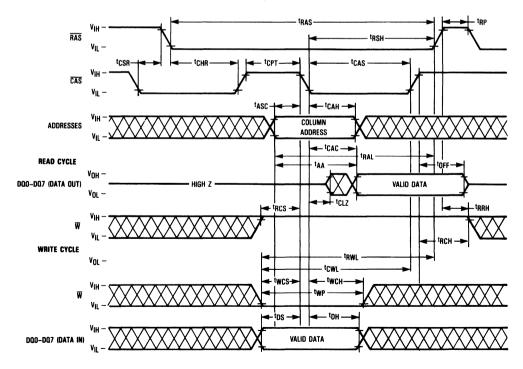

EARLY WRITE CYCLE


FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS ONLY REFRESH CYCLE (W and A9 are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A9 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The ten address bus pins on the device are time multiplexed with two separate 10-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of twenty address bits will decode one of the 1,048,576 byte locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up his external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, two other variations in addressing the 1M RAM module, one is called the RAS only refresh cycle (described later) where a 9-bit row address field is presented on the input pins and latched by the RAS clock. The most significant bit on Row Address A9 is not required for refresh. The other variation, which is called page mode, allows the user to column access all 1024 bytes within a selected row. (See PAGE-MODE CYCLES section.)

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the $\overline{\mbox{RAS}}$ clock transitioning from $\mbox{V}_{\mbox{\scriptsize IH}}$ to the $\mbox{V}_{\mbox{\scriptsize IL}}$ level. The CAS clock must also make a transition from VIH to the VIL level at the specified tRCD timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the tRCD maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (tRAS) period for the RAS clock and the

minimum (tcAs) period for the CAS clock. The RAS clock must stay inactive for the minimum (tpp) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the $\overline{\text{CAS}}$ clock is active; the output will switch to the three-state mode when the $\overline{\text{CAS}}$ clock goes inactive. To perform a read cycle, the write ($\overline{\text{W}}$) input must be held at the V_{IH} level from the time the $\overline{\text{CAS}}$ clock makes its active transition (tRCS) to the time when it transitions into the inactive (tRCH) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the Write $\overline{(W)}$ clock must go active $(V_{|L|}$ level) at or before the \overline{CAS} clock goes active at a minimum twcs time. If the above condition is met, then the cycle in progress is referred to as an early write cycle. In an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t_{CWL}) and the row strobe to write lead time (t_{RWL}) . These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started $(\overline{W}$ clock at $V_{|L|}$ level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 1024 column locations on a selected row. Page access (tCAC) is typically half the regular \overline{RAS} clock access (tRAC) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the \overline{RAS} clock active while cycling the \overline{CAS} clock to access the column locations determined by the 10-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the \overline{RAS} clock, followed by the column address and \overline{CAS} clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter \overline{CAS} cycles (tpc). The \overline{CAS} cycle time (tpc) consists of the \overline{CAS} clock active time (tcAs), and \overline{CAS} clock precharge time (tcp) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 8 milliseconds. This is accomplished by sequentially cycling through the 512 row address locations every 8 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the bytes (2048) associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a \overline{RAS} -only cycle on 512 row addresses every 8 milliseconds. The row addresses are latched in with the \overline{RAS} clock, and the associated internal row locations are refreshed. As the heading implies, the \overline{CAS} clock is not required and must be inactive or at a VIH level.

CAS Before RAS Refresh

This refresh cycle is initiated when \overline{RAS} falls, after \overline{CAS} has been low (by tcsr). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by \overline{CAS} in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as \overline{CAS} is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding $\overline{\text{CAS}}$ at $V|_{\text{L}}$ and taking $\overline{\text{RAS}}$ high and after a specified precharge period (tRp), executing a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. (See Figure 1.)

CAS REFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This refresh

counter test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 CAS before RAS initialization cycles. The test procedure is as follows:

- Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 512 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 512 times.
- Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

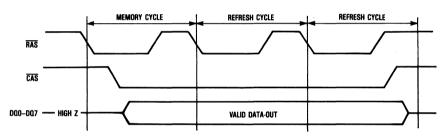
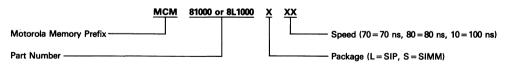



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM81000L70 MCM81000S70 MCM81000L80 MCM81000S80 MCM81000L10 MCM81000S10

MCM8L1000L70 MCM8L1000S70 MCM8L1000S80 MCM8L1000L80 MCM8L1000S10

NOTE: Contact your Motorola representative for further information on the SIP package.

Advance Information

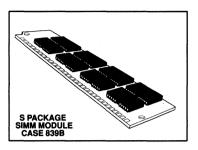
4M × 8 Bit Dynamic Random Access Memory Module

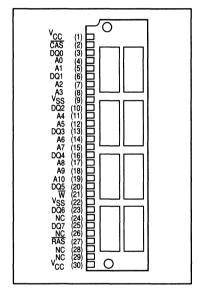
The MCM84000S is a 32M, dynamic random access memory (DRAM) module organized as 4,194,304 x 8 bits. The module is a 30-lead single-in-line memory module (SIMM) consisting of eight MCM514100 DRAMs housed in 20/26 J-lead small outline packages (SOJ) mounted on a substrate along with a 0.22 microfarad (min) decoupling capacitor mounted under each DRAM. The MCM514100 is a CMOS high speed, dynamic random access memory organized as 4,194,304 one-bit words and fabricated with CMOS silicon-gate process technology.

- · Three-State Data Output
- · Early-Write Common I/O Capability
- Fast Page Mode Capability
- · TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 1024 Cycle Refresh:
 MCM84000 = 16 ms
 MCM8L4000 = 128 ms
- Consists of Eight 4M x 1 DRAMs and Eight 0.22 μF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM84000S-80 = 80 ns (Max) MCM84000S-10 = 100 ns (Max)

• Low Active Power Dissipation:


MCM84000S-80 and MCM8L4000S-80 = 4.4 W (Max) MCM84000S-10 and MCM8L4000S-10 = 3.75 W (Max)


· Low Standby Power Dissipation:

TTL Levels = 88 mW (Max)
CMOS Levels (MCM84000) = 45 mW (Max)
(MCM8L4000) = 18 mW (Max)

TAS Control for Eight Common I/O Lines

MCM84000 MCM8L4000

PIN N	IAMES
	Address Inputs
	Data Input/Output
	. Column Address Strobe
	Row Address Strobe
	Read/Write Input
Vcc	Power (+5 V)
V _{SS}	Ground
NC	No Connection

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM A0-A10 RAS RAS CAS CAS w DQ5 A0-A10 RAS RAS CAS CAS w DQ2 -DQ6 -A0-A10 RAS RAS CAS CAS w DQ3 A0-A10 RAS RAS CAS CAS A0-A10 RAS CAS WRITE VCC V_{SS}

ARSOLUTE MAXIMUM RATINGS (See Note)

ADSOLUTE MAXIMUM NATINGS (See Note)			
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	V
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	-1 to +7	V
Data Out Current per DQ Pin	lout	50	mA
Power Dissipation	PD	4.8	w
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°c

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0		
Logic High Voltage, All Inputs	V _{IH}	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	V _{IL}	- 1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic		Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM84000–80, t _{RC} = 150 ns MCM84000–10, t _{RC} = 180 ns		loc1	_	800 680	mA	2
V _{CC} Power Supply Current (Standby) (\$\overline{RAS}\$ = \$\overline{CAS}\$ = \$V_{IH}\$)		lCC2	_	16	mA	
V_{CC} Power Supply Current During $\overline{\rm RAS}$ Only Refresh Cycles MCM84000-80, t_{RC} = 150 ns MCM84000-10, t_{RC} = 180 ns	,	ICC3	_	800 680	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle MCM84000-80, tp _C = 45 ns MCM84000-10, tp _C = 55 ns		I _{CC4}	_	480 400	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} − 0.2 V)	MCM84000 MCM8L4000	ICC5	_	8 3.2	mA	
V_{CC} Power Supply Current During \overline{CAS} Before \overline{RAS} Refresh Cycle MCM84000-80, t_{RC} = 150 ns MCM84000-10, t_{RC} = 180 ns		lCC6	_	800 680	mA	2
Input Leakage Current ($V_{SS} \le V_{in} \le V_{CC}$)		llkg(l)	80	80	μА	
Output Leakage Current (CAS at Logic 1, V _{SS} ≤ V _{in} ≤ V _{CC})	:	llkg(O)	-20	20	μА	
Output High Voltage (I _{OH} = -5 mA)		VOH	2.4		٧	
Output Low Voltage (I _{OL} = 4.2 mA)		VOL		0.4	V	

CAPACITANCE (f = 1.0 MHz, $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, Periodically Sampled Rather Than 100% Tested)

		<u> </u>				
	Parameter		Symbol	Max	Unit	Notes
Input Capacitance		A0-A10, W, CAS, RAS	C _{in}	50	pF	3
Input/Output Capacitance		DQ0-DQ7	C _{I/O}	15	pF	3

- 1. All voltages referenced to V_{SS}.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

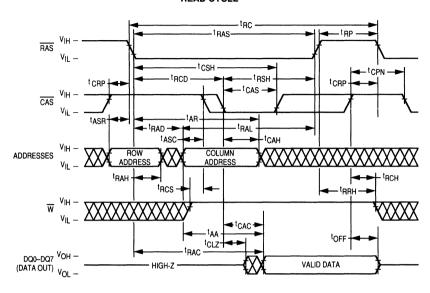
AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted

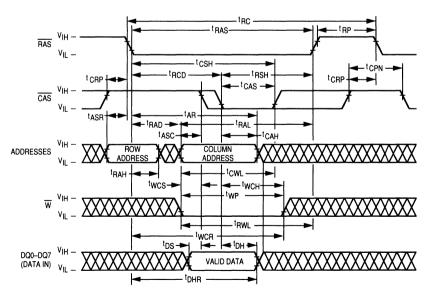
READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

	Syn	nbol	мсма	MCM84000-80		34000-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	^t RELREL	t _{RC}	150	_	180	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	50	_	60		ns	
Access Time from RAS	†RELQV	†RAC	_	80		100	ns	6, 7
Access Time from CAS	†CELQV	tCAC	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	†AA	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	†CEHQV	†CPA		45	_	55	ns	6
CAS to Output in Low-Z	[†] CELQX	†CLZ	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	†CEHQZ	^t OFF	0	20	0	20	ns	10
Transition Time (Rise and Fall)	t _T	tŢ	3	50	3	50	ns	
RAS Precharge Time	†REHREL	tRP	60	_	70	_	ns	
RAS Pulse Width	t _{RELREH}	t _{RAS}	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	^t RELREH	^t RASP	80	200,000	100	200,000	ns	
RAS Hold Time	^t CELREH	^t RSH	20		25	_	ns	
CAS Hold Time	[†] RELCEH	^t CSH	80		100	_	ns	
CAS Pulse Width	[†] CELCEH	tCAS	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	^t RCD	20	60	25	75	ns	11
RAS to Column Address Delay Time	tRELAV	^t RAD	15	40	20	50	ns	12
CAS to RAS Precharge Time	^t CEHREL	tCRP	5	_	10	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	^t CEHCEL	tCP	10		10		ns	
Row Address Setup Time	†AVREL	t _{ASR}	0	_	0	_	ns	
Row Address Hold Time	tRELAX	^t RAH	10		15		ns	
Column Address Setup Time	†AVCEL	t _{ASC}	0	_	0	_	ns	
Column Address Hold Time	tCELAX	^t CAH	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	†RELAX	t _{AR}	60	_	75	_	ns	
Column Address to RAS Lead Time	tAVREH	†RAL	40	_	50	_	ns	

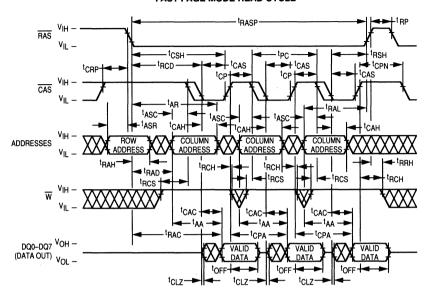
(continued)

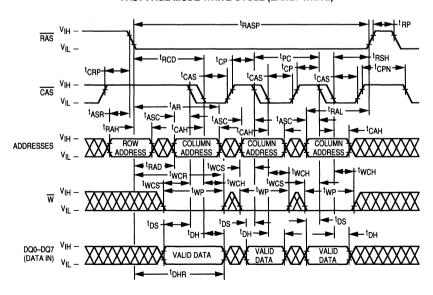

- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{II} .
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL ($-200 \mu A$, +4 mA) loads and 100 pF with the data output trip points set at $V_{OH} = 2.0 \text{ V}$ and $V_{OL} = 0.8 \text{ V}$.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- 8. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- Assumes that t_{RAD} ≥ t_{RAD} (max).
- 10. tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAD} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

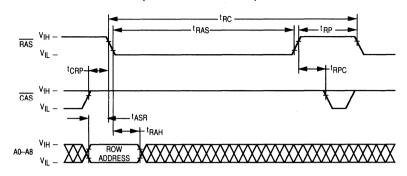
READ AND WRITE CYCLES (Continued)

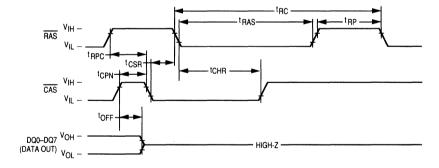

	Syr	nbol	мсма	34000-80	MCM	34000-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Command Setup Time	tWHCEL	tRCS	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	tRCH	0	_	0	l –	ns	13
Read Command Hold Time Referenced to RAS	tREHWX	TRRH	0	_	0	-	ns	13
Write Command Hold Time Referenced to CAS	tCELWH	twch	15	_	20	_	ns	
Write Command Hold Time Reference to RAS	tRELWH	twcr	60	_	75	_	ns	
Write Command Pulse Width	twLwH	twp	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	. 20	_	25		ns	
Write Command to CAS Lead Time	tWLCEH	tCWL	20	_	25	_	ns	
Data in Setup Time	†DVCEL	t _{DS}	0	_	0	_	ns	14, 15
Data in Hold Time	†CELDX	tDH	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	^t RELDX	tDHR	60		75	_	ns	
Refresh Period MCM84000 MCM8L4000	†RVRV	^t RFSH	<u>-</u>	16 128	_	16 128	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	†RELCEL	tCSR	5	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	†RELCEH	tCHR	15	_	20	_	ns	
CAS Precharge to CAS Active Time	†REHCEL	^t RPC	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	†CEHCEL	tCPT	40	_	50	_	ns	
CAS Precharge Time	†CEHCEL	tCPN	10		10	_	ns	

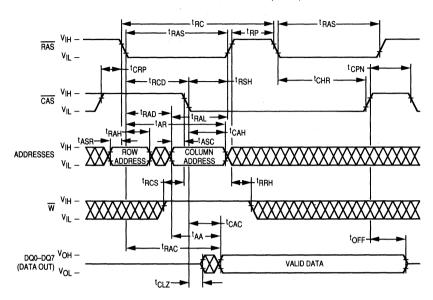
- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 14. These parameters are reference to $\overline{\text{CAS}}$ leading edge in random write cycles.
- 15. Early write only ($t_{WCS} \ge t_{WCS}$ (min)).
- 16. twos is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twos ≥ twos (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisfied, the condition of the data out (at access time) is indeterminate.

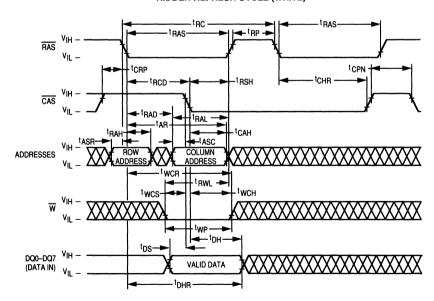

READ CYCLE

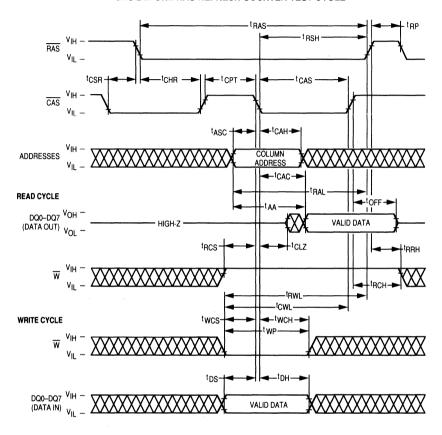

EARLY WRITE CYCLE


FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS ONLY REFRESH CYCLE (W and A10 are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A10 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 16 milliseconds with device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The eleven address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe ($\overline{\text{RAS}}$) and column address strobe ($\overline{\text{CAS}}$), into two separate 11-bit address fields. A total of twenty two address bits, eleven rows and eleven columns, will decode one of the 4,194,304 byte locations in the device. $\overline{\text{RAS}}$ active transition is followed by $\overline{\text{CAS}}$ active transition (active = V_{IL}, t_{RCD} minimum) for all read or write cycles. The delay between $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ active transitions, referred to as the **multiplex window**, gives a system designer flexibility in setting up the external addresses into the RAM.

The external \overline{CAS} signal is ignored until an internal \overline{RAS} signal is available. This "gate" feature on the external \overline{CAS} clock enables the internal \overline{CAS} line as soon as the row address hold time (t_{RAH}) specification is met (and defines t_{RCD} minimum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the \overline{CAS} clock.

There are three other variations in addressing the 4M RAM: RAS only refresh cycle, CAS before RAS refresh cycle, and page mode. All three are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with two different cycles: "normal" random read cycle and page mode read cycle. The normal read cycle is outlined here, while the page mode cycle is discussed in a separate section.

The normal read cycle begins as described in **ADDRESS-ING THE RAM**, with the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ active transitions latching the desired bit location. The write $(\overline{\text{W}})$ input level must be high (V_{IH}) , t_{RCS} (minimum) before the $\overline{\text{CAS}}$ active transition, to enable read mode.

Both the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. However, $\overline{\text{CAS}}$ must be active before or at tRCD maximum to guarantee valid data out (Q) at tRAC (access time from $\overline{\text{RAS}}$ active transition). If the tRCD maximum is exceeded, read access time is determined by the $\overline{\text{CAS}}$ clock active transition (tCAC).

The RAS and CAS clocks must remain active for a minimum time of t_{RAS} and t_{CAS} respectively, to complete the read cycle. W must remain high throughout the cycle, and for time t_{RRH} or t_{RCH} after RAS or CAS inactive transition, respectively, to maintain the data at that bit location. Once RAS

transitions to inactive, it must remain inactive for a minimum time of $t_{\mbox{\footnotesize{HP}}}$ to precharge the internal device circuitry for the next active cycle. Q is valid, but not latched; as long as the $\overline{\mbox{\footnotesize{CAS}}}$ clock is active. When the $\overline{\mbox{\footnotesize{CAS}}}$ clock transitions to inactive, the output will switch to High Z (three-state).

WRITE CYCLE

The user can write to the DRAM with two cycles; early write and page mode early write. Early write mode is discussed here, while the page mode write operation is covered in another section.

A write cycle begins as described in **ADDRESSING THE RAM**. Write mode is enabled by the transition of \overline{W} to active (V_{IL}) . Minimum active time t_{RAS} and t_{CAS} , and precharge time t_{RP} apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time two before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for t_{RWL} and t_{CWL} , respectively, after the start of the early write operation to complete the cycle.

Q remains in three-state condition throughout an early write cycle because \overline{W} active transition precedes or coincides with \overline{CAS} active transition, keeping data-out buffers disabled.

PAGE-MODE CYCLES

Page mode allows fast successive data operations at all 2048 column locations on a selected row of the dynamic RAM. Read access time in page mode (t_{CAC}) is typically half the regular RAS clock access time, t_{RAC} . Page mode operation consists of keeping RAS active while toggling \overline{CAS} between V_{IH} and V_{IL} . The row is latched by \overline{RAS} active transition, while each \overline{CAS} active transition allows selection of a new-column location on the row.

A page mode cycle is initiated by a normal read or write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, \overline{CAS} transitions to inactive for minimum of t_Cp, while \overline{RAS} remains low (V₁L). The second \overline{CAS} active transition while \overline{RAS} is low initiates the first page mode cycle (tp_C or tp_Rw_C). Either a read or write operation can be performed in a page mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive page mode cycles and performed in any order. The maximum number of consecutive page mode cycles is limited by tRASp. Page mode operation is ended when \overline{RAS} transitions to inactive, coincident with or following \overline{CAS} inactive transition.

REFRESH CYCLES

The dymanic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Each byte must be periodically **refreshed** (recharged) to maintain the correct byte state. Bytes in the MCM84000 require refresh every 16 milliseconds, while refresh time for the MCM8L4000 is 128 milliseconds.

This is accomplished by cycling through the 1024 row addresses in sequence within the specified refresh time. All the bytes on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every

A normal read, write, or read-write operation to the RAM will refresh all the bytes (4096) associated with the particular row decoded. Three other methods of refresh, RAS-only refresh, CAS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

 \overline{RAS} -only refresh consists of \overline{RAS} transition to active, latching the row address to be refreshed, while \overline{CAS} remains high (V_{IH}) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

CAS before RAS refresh is enabled by bring CAS active before RAS. This clock order activates an internal refresh counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding $\overline{\text{CAS}}$ active the end of a read or

write cycle, while \overline{RAS} cycles inactive for $t_{\overline{RP}}$ and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 1024 cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed after a minimum of 8 CAS before RAS initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 1024 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 1024 times.
- 4. Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

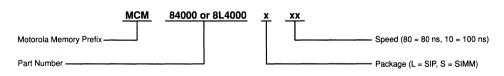



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM84000L80 MCM84000L10

CM84000L80 MCM84000S80 CM84000L10 MCM84000S10

MCM8L4000L80 MCM8L4000L10 MCM8L4000S80 MCM8L4000S10

NOTE: Contact your Motorola Representative for further information on the SIP package.

Advance Information

256K×8 Bit Dynamic Random Access Memory Module

The MCM84256 is a 2M, dynamic random access memory (DRAM) module organized as 262,144 \times 8 bits. The module is a 30-lead single-in-line memory module (SIMM) consisting of two MCM514256A DRAMs housed in 20/26 J-lead small outline packages (SOJ) and mounted on a substrate along with a 0.22 μF (min) decoupling capacitor mounted adjacent to each DRAM. The MCM514256A is a 1.0 μ CMOS high speed, dynamic random access memory organized as 262,144 four-bit words and fabricated with CMOS silicon-gate process technology.

- Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh:

MCM84256 = 8 ms (Max) MCM8L4256 = 64 ms (Max)

- Consists of Two 256K×4 DRAMs and Two 0.22 μF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

MCM84256-70 = 70 ns (Max)

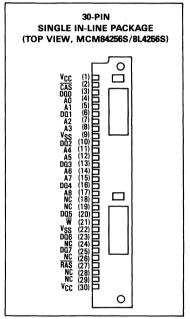
MCM84256-80 = 80 ns (Max)

MCM84256-10 = 100 ns (Max)

 Low Active Power Dissipation: MCM84256-70 = 0.9 W (Max)

MCM84256-80 = 0.8 W (Max) MCM84256-10 = 0.7 W (Max)

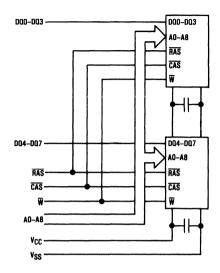
• Low Standby Power Dissipation:


TTL Levels = 22 mW (Max)

CMOS Levels (MCM84256) = 11 mW (Max) (MCM8L4256) = 2.2 mW (Max)

- CAS Control for Eight Common I/O Lines
- Available in Edge Connector

MCM84256 MCM8L4256



PIN NAMES										
A0-A8 Address Inputs										
DQ0-DQ7 Data Input/Output										
CAS Column Address Strobe										
RAS Row Address Strobe										
W										
VCC Power (+5 V)										
V _{SS} Ground										
NC No Connection										

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Data Out Current per DQ Pin	lout	50	mA
Power Dissipation	PD	2	w
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	VSS	0	0	0	1	
Logic High Voltage, All Inputs	V _{IH}	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	- 1.0	_·	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM84256-70, t _{RC} = 130 ns MCM84256-80, t _{RC} = 150 ns MCM84256-10, t _{RC} = 180 ns	Icc1	_ _ _	160 140 120	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	lcc2	_	4	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles MCM84256-70, t _{RC} = 130 ns MCM84256-80, t _{RC} = 150 ns MCM84256-10, t _{RC} = 180 ns	Іссз	_ _ _	160 140 120	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle MCM84256-70, tp _C = 40 ns MCM84256-80, tp _C = 45 ns MCM84256-10, tp _C = 55 ns	Icc4	- - -	120 100 80	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V) MCM8-MCM8L		_	2 400	mA μA	
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle MCM84256-70, t _{RC} = 130 ns MCM84256-80, t _{RC} = 150 ns MCM84256-10, t _{RC} = 180 ns	I _{CC6}	_ _ _	160 140 120	mA	2
Input Leakage Current (V _{SS} ≤V _{in} ≤V _{CC})	likg(i)	-20	20	μА	
Output Leakage Current (CAS at Logic 1, VSS≤Vout≤VCC)	l _{lkg(O)}	- 10	10	μΑ	
Output High Voltage (IOH = -5 mA)	V _{OH}	2.4	_	V	
Output Low Voltage (IOL=4.2 mA)	V _{OL}		0.4	V	

$\textbf{CAPACITANCE} \hspace{0.1cm} \text{(f=1.0 MHz, T}_{\mbox{A}} \hspace{0.1cm} \text{=}\hspace{0.1cm} 25^{o}\text{C, V}_{\mbox{CC}} \hspace{0.1cm} \text{=}\hspace{0.1cm} 5 \hspace{0.1cm} \text{V, Periodically Sampled Rather Than 100\% Tested)}$

Parameter		Symbol	Max	Unit	Notes
Input Capacitance A0-A8,	W, CAS, RAS	C _{in}	20	pF	3
Input/Output Capacitance	DQ0-DQ7	C _{I/O}	15	pF	3

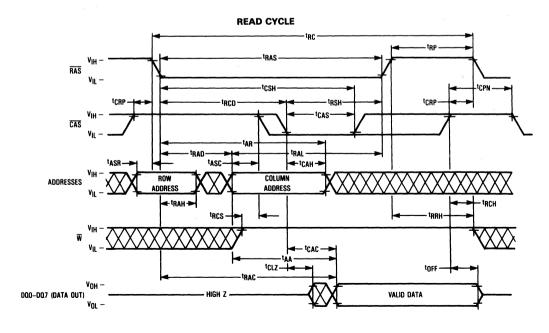
- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

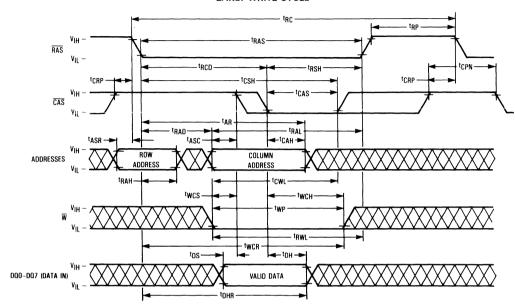
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

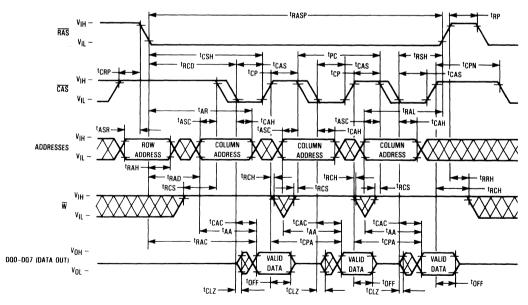
	Syr	nbol	мсма	4256-70	мсма	4256-80	мсма	4256-10	1114	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit Ins Ins Ins Ins Ins Ins Ins Ins Ins In	Notes
Random Read or Write Cycle Time	^t RELREL	tRC	130	_	150	_	180	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	40	_	45	_	55	_	ns	
Access Time from RAS	†RELQV	^t RAC	_	70	_	80	_	100	ns	6, 7
Access Time from CAS	tCELQV	tCAC	_	20	_	20	_	25	ns	6, 8
Access Time from Column Address	tAVQV	^t AA	_	35	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	tCEHQV	tCPA		35	_	40	_	50	ns	6
CAS to Output in Low-Z	tCELQX	tCLZ	0	_	0		0		ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tΤ	tΤ	3	50	3	50	3	50	ns	
RAS Precharge Time	†REHREL	tRP	50	_	60	_	70	_	ns	
RAS Pulse Width	^t RELREH	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	^t RELREH	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	^t CELREH	tRSH	20	_	20	_	25	_	ns	
CAS Hold Time	†RELCEH	tCSH	70	_	80	_	100	_	ns	
CAS Pulse Width	†CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	^t RELAV	tRAD	15	35	15	40	20	50	ns	12
CAS to RAS Precharge Time	^t CEHREL	tCRP	5	_	5	T -	10	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	^t CEHCEL	tCP	10	_	10	_	10	_	ns	
Row Address Setup Time	†AVREL	t _{ASR}	0	T -	0	T -	0	_	ns	
Row Address Hold Time	tRELAX	tRAH	10	_	10	T -	15	_	ns	
Column Address Setup Time	tAVCEL	tASC	0		0	_	0	_	ns	
Column Address Hold Time	†CELAX	^t CAH	15	_	15		20	_	ns	
Column Address Hold Time Referenced to \overline{RAS}	tRELAX	^t AR	55	_	60	l –	75	_	ns	
Column Address to RAS Lead Time	†AVREH	†RAL	35	_	40	_	50	_	ns	

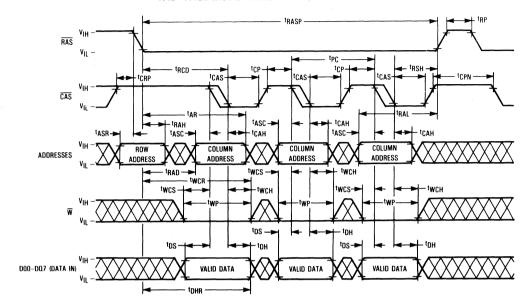

(continued)

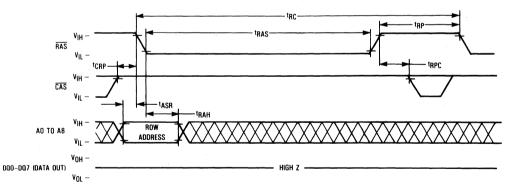
- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 μs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL ($-200~\mu$ A, +4~mA) loads and 100 pF with the data output trip points set at $V_{OH} = 2.0~V$ and $V_{OL} = 0.8~V$.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- 8. Assumes that t_{RCD}≥t_{RCD} (max).
- Assumes that t_{RAD}≥t_{RAD} (max).
- 10. topp (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

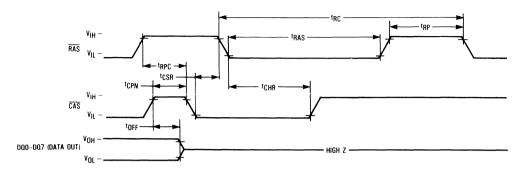

READ AND WRITE CYCLES (Continued)

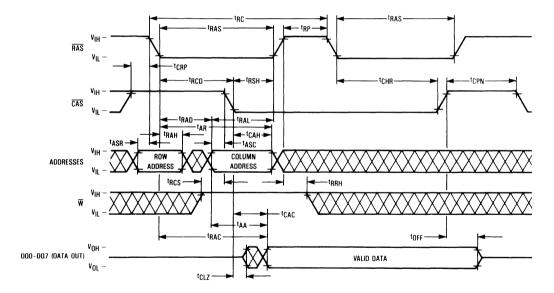
	Syı	mbol	мсмя	4256-70	мсма	4256-80	MC84	256-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit Ins Ins Ins Ins Ins Ins Ins Ins Ins In	Notes
Read Command Setup Time	†WHCEL	tRCS	0	_	0	-	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	tRCH	0	-	0	-	0	_	ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	tRRH	0	_	0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	tCELWH	twch	15	_	15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	^t RELWH	twcr	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	†WLREH	tRWL	20	_	20	-	25	_	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20	_	20	_	25	_	ns	
Data in Setup Time	†DVCEL	tDS	0	_	0	_	0	_	ns	14, 15
Data in Hold Time	^t CELDX	tDH	15	_	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	†RELDX	tDHR	55	_	60	_	75	_	ns	
Refresh Period MCM84256 MCM8L4256		tRFSH	_	8 64	_	8 64	-	8 64	ms	
Write Command Setup Time	†WLCEL	twcs	0	_	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	†RELCEL	tCSR	10	_	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	30	_	30	_	30	_	ns	
CAS Precharge to CAS Active Time	^t REHCEL	tRPC	0	_	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	^t CPT	40	-	40	-	50	-	ns	
CAS Precharge Time	^t CEHCEL	^t CPN	10	_	10	_	15	_	ns	

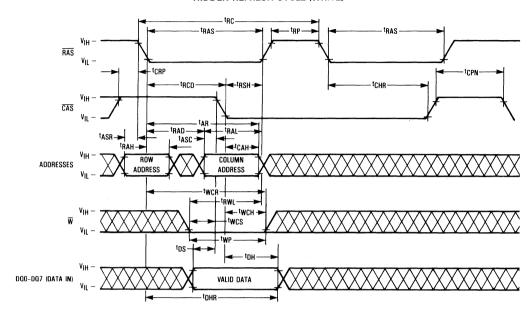

- 13. Either tRRH or tRCH must be satisfied for a read cycle.
- 14. These parameters are referenced to CAS leading edge in random write cycles.
- 15. Early write only (twcs≥twcs (min)).
- 16. twcs is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twcs≥twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisfied, the condition of the data out (at access time) is indeterminate.

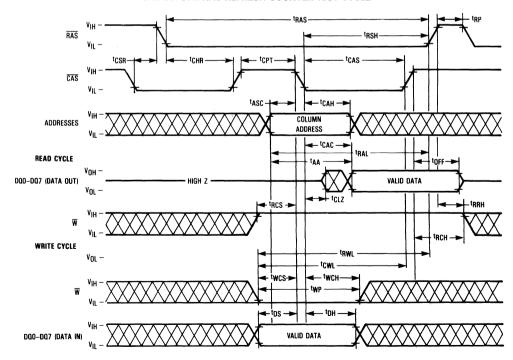

EARLY WRITE CYCLE


FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS ONLY REFRESH CYCLE (W and A8 are Don't Care)


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A8 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The nine address bus pins on the device are time multiplexed with two separate 9-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of eighteen address bits will decode one of the 262, 144 byte locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up the external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, other variations in addressing the module: the refresh modes (RAS only refresh, CAS before RAS refresh, hidden refresh), and another mode called page mode which allows the user to column access the 512 bits within a selected row. The refresh mode and page mode operations are described in more detail in later sections.

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VIH to the VIL level. The CAS clock must also make a transition from VIH to the VIL level at the specified tRCD timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the tRCD maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (trah) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (t_{RAS}) period for the RAS clock and the minimum (t_{CAS}) period for the CAS clock. The RAS clock must stay inactive for the minimum (t_{RP}) time. The former is

for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the $\overline{\text{CAS}}$ clock is active; the output will switch to the three-state mode when the $\overline{\text{CAS}}$ clock goes inactive. To perform a read cycle, the write $\overline{\text{(W)}}$ input must be held at the VIH level from the time the $\overline{\text{CAS}}$ clock makes its active transition (tRCS) to the time when it transitions into the inactive (tRCH) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the Write (\overline{W}) clock must go active (VIL level) at or before the \overline{CAS} clock goes active at a minimum tyyCs time. If the above condition is met, then the cycle in progress is referred to as an early write cycle. In an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (tCWL) and the row strobe to write lead time (tRWL). These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started (\overline{W} clock at VII level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 512 column locations on a selected row. Page access (tCAC) is typically half the regular RAS clock access (tRAC) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the \overline{RAS} clock active while cycling the \overline{CAS} clock to access the column locations determined by the 9-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the $\overline{\text{RAS}}$ clock, followed by the column address and $\overline{\text{CAS}}$ clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter $\overline{\text{CAS}}$ cycles (tpc). The $\overline{\text{CAS}}$ cycle time (tpc) consists of the $\overline{\text{CAS}}$ clock active time (tCAS), and $\overline{\text{CAS}}$ clock precharge time (tpc) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 8 milliseconds. This is accomplished by sequentially cycling through the 512 row address locations every 8 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the bytes associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a \overline{RAS} -only cycle on 512 row addresses every 8 milliseconds. The row addresses are latched in with the \overline{RAS} clock, and the associated internal row locations are refreshed. As the heading implies, the \overline{CAS} clock is not required and must be inactive or at a VIH level.

CAS Before RAS Refresh

This refresh cycle is initiated when \overline{RAS} falls, after \overline{CAS} has been low (by t_{CSR}). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by \overline{CAS} in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as \overline{CAS} is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding $\overline{\text{CAS}}$ at V_{IL} and taking $\overline{\text{RAS}}$ high and after a specified precharge period (tRp), executing a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This refresh

counter test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 CAS before RAS initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 512 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 512 times.
- Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

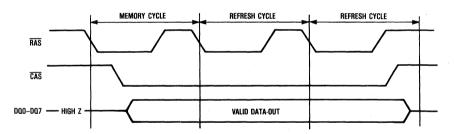
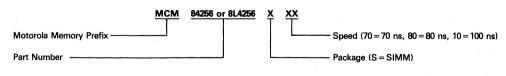



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM84256S70 MCM84256S80 MCM84256S10 MCM8L4256S70 MCM8L4256S80 MCM8L4256S10

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information

1M×9 Bit Dynamic Random Access Memory Module

The MCM91000L and MCM91000S are 9M, dynamic random access memory (DRAM) modules organized as 1,048,576 \times 9 bits. The modules are 30-lead single-in-line memory modules (SIMM) or 30-pin single-in-line packages (SIP) consisting of nine MCM511000A DRAMs housed in a 20/26 J-lead small outline package (SOJ) and mounted on a substrate along with a 0.22 μF (min) decoupling capacitor mounted under each DRAM. The MCM511000A is a 1.0μ CMOS high speed, dynamic random access memory organized as 1,048,576 one-bit words and fabricated with CMOS silicon-gate process technology.

- Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh:

MCM91000 = 8 ms (Max) MCM9L1000 = 64 ms (Max)

- Consists of Nine 1M DRAMs and Nine 0.22 μF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

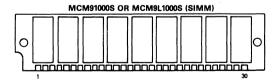
MCM91000-70 = 70 ns (Max)

MCM91000-80 = 80 ns (Max)

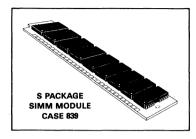
MCM91000-10 = 100 ns (Max)

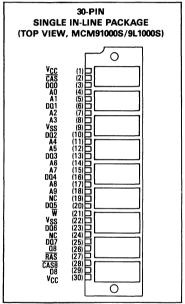
Low Active Power Dissipation:

MCM91000-70 = 4.0 W (Max)


MCM91000-80 = 3.5 W (Max) MCM91000-10 = 3.0 W (Max)

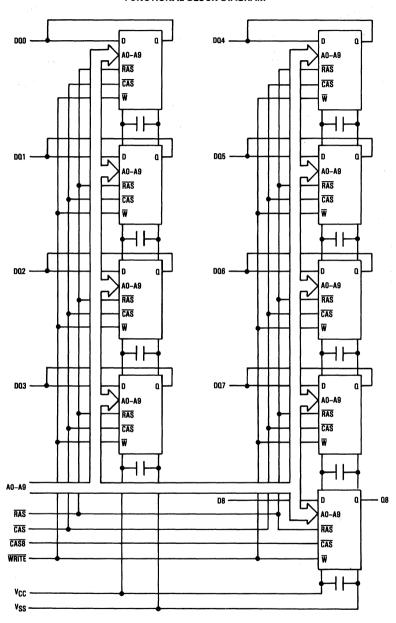
Low Standby Power Dissipation:


TTL Levels = 99 mW (Max)


CMOS Levels (MCM91000) = 50 mW (Max) (MCM9L1000) = 10 mW (Max)

- CAS Control for Eight Common I/O Lines
- CAS Control for Separate I/O Pair
- Available in Edge Connector (MCM91000S) or Pin Connector (MCM91000L)
- Available in Gold Pad Edge Connector (MCM91000SG)

MCM91000 MCM9L1000



PIN NAMES											
A0-A9 Address Inputs											
DQ0-DQ7 Data Input/Output											
D8											
Q8											
CAS Column Address Strobe											
RAS Row Address Strobe											
W											
CAS8 Column Address Strobe											
VCC Power (+5 V)											
VSS Ground											
NC No Connection											

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to +7	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-1 to +7	٧
Data Out Current per DQ Pin	lout	50	mA
Power Dissipation	PD	5.4	W
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{sta}	-55 to +125	°C

Storage Temperature Range Tstg -55 to +125 °C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0		
Logic High Voltage, All Inputs	VIH	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	V _{IL}	- 1.0		0.8	٧	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current	ICC1			mA	2
MCM91000-70, t _{RC} = 130 ns	1	-	720		
MCM91000-80, $t_{RC} = 150 \text{ ns}$		-	630		
MCM91000-10, t _{RC} = 180 ns			540		
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	I _{CC2}	_	18	mA	
V _{CC} Power Supply Current During RAS only Refresh Cycles	I _{CC3}			mA	2
MCM91000-70, t _{RC} = 130 ns		-	720		
MCM91000-80, t _{RC} = 150 ns		-	630		ŀ
MCM91000-10, t _{RC} = 180 ns		_	540		
V _{CC} Power Supply Current During Fast Page Mode Cycle	ICC4			mA	2
MCM91000-70, tpc = 40 ns		-	540		
MCM91000-80, $t_{PC} = 45 \text{ ns}$		-	450		l
MCM91000-10, tpC = 55 ns			360		
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{CC} - 0.2 V) MCM9100	0 I _{CC5}	_	9	mA	
MCM9L100		-	1.8		
V _{CC} Power Supply Current During CAS Before RAS Refresh Cycle	ICC6			mA	2
MCM91000-70, t _{RC} = 130 ns		_	720	l .	!
MCM91000-80, $t_{RC} = 150 \text{ ns}$		-	630		
MCM91000-10, t _{RC} = 180 ns		_	540		
Input Leakage Current (V _{SS} ≤V _{in} ≤V _{CC})	llkg(I)	-90	90	μΑ	
Output Leakage Current (CAS at Logic 1, V _{SS} ≤V _{out} ≤V _{CC})	l _{lkg} (0)	-20	20	μΑ	
Output High Voltage (IOH = -5 mA)	Voн	2.4	_	٧	
Output Low Voltage (I _{OL} =4.2 mA)	VOL	_	0.4	٧	

CAPACITANCE (f = 1.0 MHz, TA = 25°C, VCC = 5 V, Periodically Sampled Rather Than 100% Tested)

Parameter		Symbol	Max	Unit	Notes
Input Capacitance	A0-A9, W, CAS, RAS	C _{in}	60	pF	3
	D8, CAS8		7	pF	3
Input/Output Capacitance	DQ0-DQ7	C _{I/O}	15	pF	3
Output Capacitance (CAS = VIH to Disable Output)	O.8	Cout	10	pF	3

- 1. All voltages referenced to VSS.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

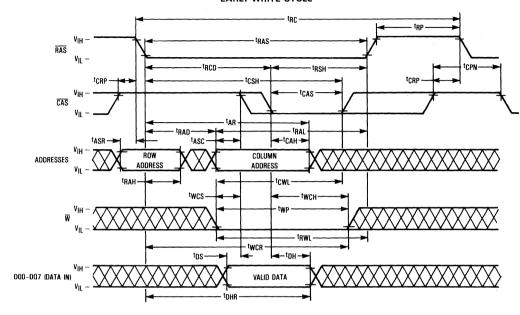
READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

	Syr	nbol	мсмя	1000-70	мсмя	1000-80	MCMS	1000-10	Unit	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	tRELREL	t _{RC}	130	l –	150	_	180	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	40	_	45	-	55	_	ns	
Access Time from RAS	tRELQV	†RAC	_	70	_	80	_	100	ns	6, 7
Access Time from CAS	tCELQV	tCAC		20	_	20	-	25	ns	6, 8
Access Time from Column Address	tAVQV	tAA	_	35	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	†CEHQV	^t CPA	_	35	_	40	_	50	ns	6
CAS to Output in Low-Z	tCELQX	tCLZ	0	_	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	tCEHQZ	tOFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	tŢ	ŧΤ	3	50	3	50	3	50	ns	
RAS Precharge Time	^t REHREL	tRP	50	_	60	_	70	-	ns	
RAS Pulse Width	tRELREH	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	tRELREH	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	^t CELREH	tRSH	20	_	25	_	ns			
CAS Hold Time	^t RELCEH	tCSH	70	-	80	_	100	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	^t RELCEL	tRCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	^t RELAV	tRAD	15	35	15	40	20	50	ns	12
CAS to RAS Precharge Time	^t CEHREL	tCRP	5	_	5	_	5	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	†CEHCEL	tCP	10	_	10	_	10	-	ns	
Row Address Setup Time	tAVREL	t _{ASR}	0	-	0	_	0	_	ns	
Row Address Hold Time	†RELAX	^t RAH	10	_	10	- T	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	T -	0	_	0	_	ns	
Column Address Hold Time	†CELAX	tCAH	15	-	15	_	20	_	ns	
Column Address Hold Time Referenced to RAS	tRELAX	t _{AR}	55	-	60	_	75	_	ns	
Column Address to RAS Lead Time	tAVREH	tRAL	35	_	40	-	50	_	ns	

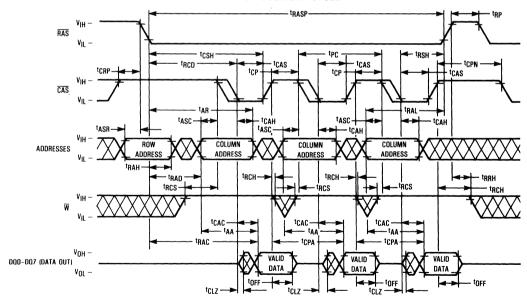
(continued)

- 1. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IH} and V_{IH}) in a monotonic manner.
- 4. AC measurements t_T = 5.0 ns.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C≤T_A≤70°C) is assured.
- 6. Measured with a current load equivalent to 2 TTL ($-200~\mu$ A, +4~mA) loads and 100 pF with the data output trip points set at $V_{OH} = 2.0~V$ and $V_{OL} = 0.8~V$.
- 7. Assumes that t_{RCD}≤t_{RCD} (max).
- 8. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 9. Assumes that t_{RAD}≥t_{RAD} (max).
- 10. tope (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled exclusively by t_{AA}.

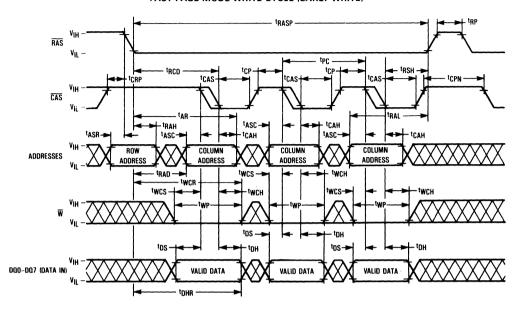
READ AND WRITE CYCLES (Continued)

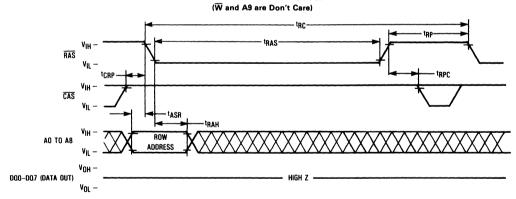

	Syr	nbol	MCM91000-70		мсм9	1000-80	MC91	000-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Command Setup Time	†WHCEL	tRCS	0	-	0	_	0	-	ns	
Read Command Hold Time Referenced to CAS	^t CEHWX	tRCH	0	_	0	_	0	-	ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	tRRH	0	- I	0	_	0	I –	ns	13
Write Command Hold Time Referenced to CAS	^t CELWH	tWCH	15		15	_	20	_	ns	
Write Command Hold Time Referenced to RAS	^t RELWH	tWCR	55	_	60	_	75	_	ns	
Write Command Pulse Width	tWLWH	tWP	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	T -	20	_	25	- T	ns	
Write Command to CAS Lead Time	†WLCEH	tCWL	20	_	20	_	25	_	ns	
Data in Setup Time	†DVCEL	tDS	0	l –	0	_	0	_	ns	14, 15
Data in Hold Time	†CELDX	^t DH	15	_	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	tRELDX	tDHR	55	I -	60	_	75	_	ns	
Refresh Period MCM91000 MCM9L1000		^t RFSH	_	8 64	_	8 64	-	8 64	ms	
Write Command Setup Time	†WLCEL	twcs	0	l –	0	-	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	tCSR	10	_	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	^t RELCEH	tCHR	30	_	30	_	30	_	ns	
CAS Precharge to CAS Active Time	^t REHCEL	tRPC	0	_	0	_	0	_	ns	
CAS Precharge Time for CAS Before RAS Counter Test	[†] CEHCEL	tCPT	40	-	40	-	50	-	ns	
CAS Precharge Time	^t CEHCEL	^t CPN	10		10		15		ns	

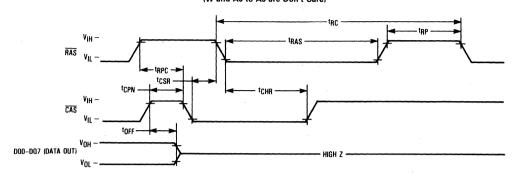
NOTES:

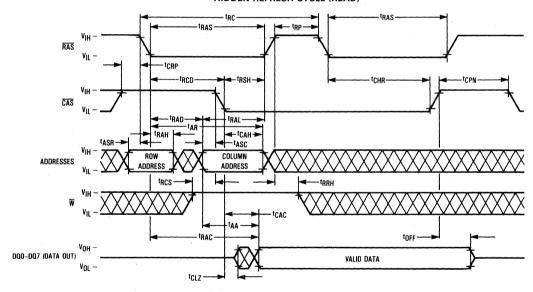

- 13. Either tRRH or tRCH must be satisfied for a read cycle.
- 14. These parameters are referenced to CAS leading edge in random write cycles.
- 15. Early write only (twcs≥twcs (min)).
- 16. twcs is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twcs≥twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisfied, the condition of the data out (at access time) is indeterminate.

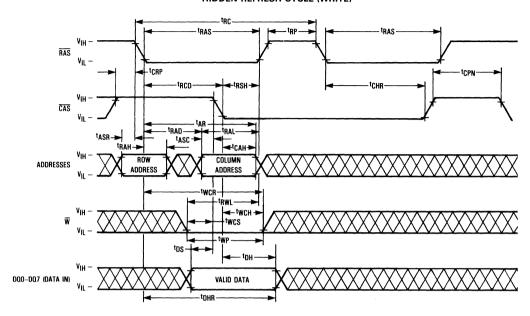
READ CYCLE -trc RAS ν_{IL} tcsh tRCD tCRP CAS tAR **TRAL** tASRtasc-<-tcah → ROW COLUMN ADDRESSES ADDRESS ADDRESS trah → trrh-- tCAC tCLZtoff tRAC-DQO-DQ7 (DATA OUT) HIGH Z -VALID DATA VOL -

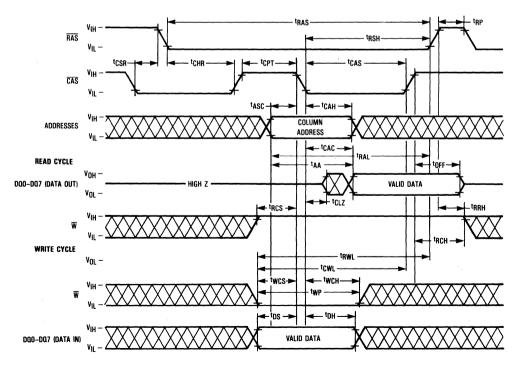

EARLY WRITE CYCLE


FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS ONLY REFRESH CYCLE


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A9 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The ten address bus pins on the device are time multiplexed with two separate 10-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of twenty address bits will decode one of the 1,048,576 byte locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up his external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, two other variations in addressing the 1M RAM module, one is called the RAS only refresh cycle (described later) where a 9-bit row address field is presented on the input pins and latched by the RAS clock. The most significant bit on Row Address A9 is not required for refresh. The other variation, which is called page mode, allows the user to column access all 1024 bytes within a selected row. (See PAGE-MODE CYCLES section.)

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the RAS clock transitioning from VIH to the VIL level. The CAS clock must also make a transition from VIH to the VIL level at the specified tRCD timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the tRCD maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (tCAC) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and tRCD maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the CAS clock.

Once the clocks have become active, they must stay active for the minimum (tRAS) period for the RAS clock and the minimum (tCAS) period for the CAS clock. The RAS clock

must stay inactive for the minimum (tRP) time. The former is for the completion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the \overline{CAS} clock is active; the output will switch to the three-state mode when the \overline{CAS} clock goes inactive. To perform a read cycle, the write (\overline{W}) input must be held at the V_{IH} level from the time the \overline{CAS} clock makes its active transition (tRCS) to the time when it transitions into the inactive (tRCH) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the Write $\langle \overline{W} \rangle$ clock must go active $\langle V_{|L} \rangle$ level) at or before the \overline{CAS} clock goes active at a minimum ty/CS time. If the above condition is met, then the cycle in progress is referred to as an early write cycle. In an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t_CWL) and the row strobe to write lead time (t_RWL). These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started (\overline{W} clock at $V_{|L} \rangle$ level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all 1024 column locations on a selected row. Page access (tCAC) is typically half the regular \overline{RAS} clock access (tRAC) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the \overline{RAS} clock active while cycling the \overline{CAS} clock to access the column locations determined by the 10-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the \overline{RAS} clock, followed by the column address and \overline{CAS} clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter \overline{CAS} cycles (tpc). The \overline{CAS} cycle time (tpc) consists of the \overline{CAS} clock active time (tcAs), and \overline{CAS} clock precharge time (tcp) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 8 milliseconds. This is accomplished by sequentially cycling through the 512 row address locations every 8 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the bytes (2048) associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a \overline{RAS} -only cycle on 512 row addresses every 8 milliseconds. The row addresses are latched in with the \overline{RAS} clock, and the associated internal row locations are refreshed. As the heading implies, the \overline{CAS} clock is not required and must be inactive or at a VIH level.

CAS Before RAS Refresh

This refresh cycle is initiated when RAS falls, after CAS has been low (by tcSR). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by CAS in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as CAS is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding $\overline{\text{CAS}}$ at V_{IL} and taking $\overline{\text{RAS}}$ high and after a specified precharge period (tqp), executing a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This refresh

counter test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 CAS before RAS initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 512 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 512 times.
- Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

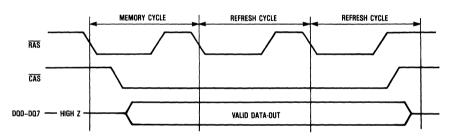
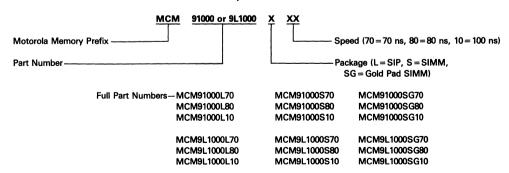



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

NOTE: Contact your Motorola representative for further information on the SIP and Gold Pad SIMM packages.

Advance Information

4M × 9 Bit Dynamic Random **Access Memory Module**

The MCM94000S is a 36M, dynamic random access memory (DRAM) module organized as 4,194,304 x 9 bits. The module is a 30-lead single-in-line memory module (SIMM) consisting of nine MCM514100 DRAMs housed in 20/26 J-lead small outline packages (SOJ) mounted on a substrate along with a 0.22 microfarad (min) decoupling capacitor mounted under each DRAM. The MCM514100 is a CMOS high speed, dynamic random access memory organized as 4,194,304 one-bit words and fabricated with CMOS silicon-gate process technology.

- Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before BAS Befresh
- Hidden Refresh
- 1024 Cycle Refresh:

MCM94000 = 16 ms

MCM9L4000 = 128 ms

- Consists of Nine 4M x 1 DRAMs and Nine 0.22 μF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

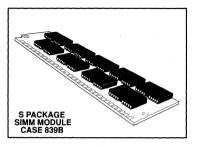
MCM94000S-80 = 80 ns (Max)

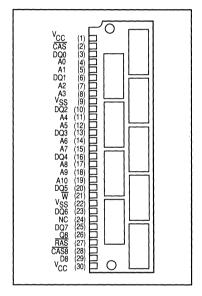
MCM94000S-10 = 100 ns (Max)

Low Active Power Dissipation:

MCM94000S-80 and MCM9L4000S-80 = 4.95 W (Max) MCM94000S-10 and MCM9L4000S-10 = 4.21 W (Max)

· Low Standby Power Dissipation:


TTL Levels = 99 mW (Max)


CMOS Levels (MCM94000) = 50 mW (Max)

(MCM9L4000) = 20 mW (Max)

- CAS Control for Eight Common I/O Lines
- CAS Control for Separate I/O Pair

MCM94000 MCM9L4000

PIN NAMES						
A0-A10 DQ0-DQ7 D8 Q8 CAS CAS W CAS8 CAS8 C VCC VSS NC	Data Input/Output Data Input Data Input Data Output Olumn Address Strobe Read/Write Input Olumn Address Strobe Read/Write Input Olumn Address Strobe Power (+5 V) Ground					

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTIONAL BLOCK DIAGRAM A0-A10 A0-A10 RAS RAS CAS CAS DO5 A0-A10 A0-A10 RAS RAS CAS CAS A0-A10 A0-A10 RAS RAS CAS CAS A0-A10 RAS RAS CAS CAS D8 -A0-A10 A0-A10 RAS CAS RAS CAS8 CAS

ABSOLUTE MAXIMUM RATINGS (See Note)

ADOCEOTE INAXIMON TIATITICO (DEC 11010)			
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-1 to + 7	V
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	-1 to + 7	٧
Data Out Current per DQ Pin	lout	50	mA
Power Dissipation	PD	5.4	w
Operating Temperature Range	TA	0 to + 70	°C
Storage Temperature Range	T _{stg}	- 55 to + 125	°c

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	V	1
	V _{SS}	0	0	.0		
Logic High Voltage, All Inputs	V _{IH}	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	-1.0	_	0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM94000-80, t _{RC} = 150 ns MCM94000-10, t _{RC} = 180 ns	lcc1	=	900 765	mA	2
V _{CC} Power Supply Current (Standby) (RAS = CAS = V _{IH})	ICC2	_	18	mA	
V_{CC} Power Supply Current During \overline{RAS} only Refresh Cycles MCM94000-80, t_{RC} = 150 ns MCM94000-10, t_{RC} = 180 ns	lcc3	_	900 765	mA	2
V _{CC} Power Supply Current During Fast Page Mode Cycle MCM94000-80, tp _C = 45 ns MCM94000-10, tp _C = 55 ns	ICC4	_	540 450	mA	2
V_{CC} Power Supply Current (Standby) ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2 \text{ V}$) MCM9MCM9L	1 000	_	9 3.6	mA	
V_{CC} Power Supply Current During \overline{CAS} Before \overline{RAS} Refresh Cycle MCM94000-80, t _{RC} = 150 ns MCM94000-10, t _{RC} = 180 ns	I _{CC6}	=	900 765	mA	2
Input Leakage Current ($V_{SS} \le V_{in} \le V_{CC}$)	llkg(l)	-90	90	μА	
Output Leakage Current (CAS at Logic 1, VSS ≤ Vin ≤ VCC)	llkg(O)	-20	20	μА	
Output High Voltage (I _{OH} = -5 mA)	Voн	2.4	_	٧	
Output Low Voltage (I _{OL} = 4.2 mA)	V _{OL}	_	0.4	V	

CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, $V_{CC} = 5$ V, Periodically Sampled Rather Than 100% Tested)

Parameter		Symbol	Max	Unit	Notes
Input Capacitance	A0-A10, W, CAS, RAS	C _{in}	60	pF	3
	D8, CAS8		7	pF	3
Input/Output Capacitance	DQ0-DQ7	C _{I/O}	15	pF	3
Output Capacitance (CAS = VIH to Disable Output)	Q8	Cout	10	pF	3

1. All voltages referenced to V_{SS}.

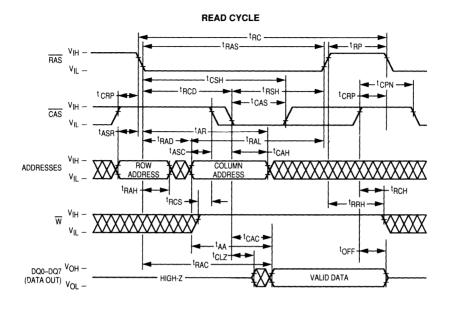
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

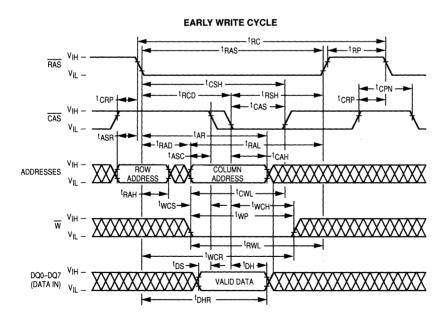
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

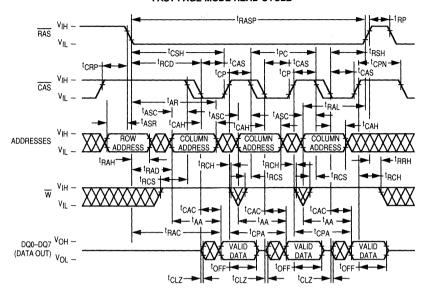
	Syn	nbol	MCM	MCM94000-80		94000-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	^t RELREL	tRC	150	_	180	_	ns	5
Page Mode Cycle Time	^t CELCEL	tPC	50	_	60	_	ns	
Access Time from RAS	†RELQV	†RAC		80		100	ns	6, 7
Access Time from CAS	†CELQV	tCAC	_	20	_	25	ns	6, 8
Access Time from Column Address	†AVQV	t _{AA}	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	†CEHQV	[†] CPA		45	_	55	ns	6
CAS to Output in Low-Z	†CELQX	tCLZ	0	I –	0	_	ns	6
Output Buffer and Turn-Off Delay	†CEHQZ	^t OFF	0	20	0	20	ns	10
Transition Time (Rise and Fall)	t _T	t⊤	3	50	3	50	ns	
RAS Precharge Time	†REHREL	t _{RP}	60	_	70	_	ns	
RAS Pulse Width	†RELREH	†RAS	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	†RELREH	tRASP	80	200,000	100	200,000	ns	
RAS Hold Time	†CELREH	tRSH	20	l –	25	_	ns	
CAS Hold Time	†RELCEH	^t CSH	80		100	_	ns	
CAS Pulse Width	†CELCEH	†CAS	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	^t RELCEL	^t RCD	20	60	25	75	ns	11
RAS to Column Address Delay Time	tRELAV	tRAD	15	40	20	50	ns	12
CAS to RAS Precharge Time	†CEHREL	tCRP	5	_	10	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	†CEHCEL	tCP	10	_	10	_	ns	
Row Address Setup Time	†AVREL	†ASR	0	_	0	_	ns	
Row Address Hold Time	tRELAX	^t RAH	10	_	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0	_	ns	
Column Address Hold Time	†CELAX	^t CAH	15	l –	20	_	ns	
Column Address Hold Time Referenced to RAS	†RELAX	tAR	60	I -	75	_	ns	
Column Address to RAS Lead Time	†AVREH	†RAL	40	_	50	_	ns	

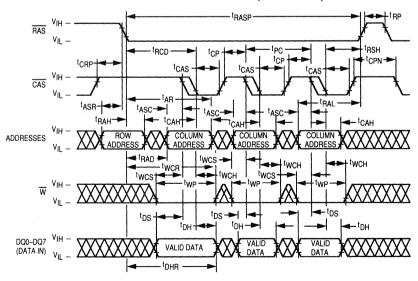

(continued)


- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 2. An initial pause of 200 μ s is required after power-up followed by 8 \overline{RAS} cycles before proper device operation is guaranteed.
- The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 4. AC measurements $t_T = 5.0 \text{ ns}$.
- The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a current load equivalent to 2 TTL (-200 μA, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- Assumes that t_{RCD} ≥ t_{RCD} (max).
- 9. Assumes that $t_{RAD} \ge t_{RAD}$ (max).
- 10. tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- Operation within the t_{RAD} (max) limit ensures that t_{RAD} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max), then access time is controlled by t_{AA}.

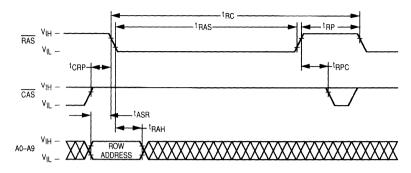
READ AND WRITE CYCLES (Continued)

	Syn	nbol	MCMS	94000-80	MCM94000-10			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Command Setup Time	tWHCEL	tRCS	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	tRCH	0	_	0	_	ns	13
Read Command Hold Time Reference to RAS	tREHWX	^t RRH	0	_	0	_	ns	13
Write Command Hold Time Referenced to CAS	tCELWH	twch	15	_	20	_	ns	
Write Command Hold Time Reference to RAS	tRELWH	twcr	60	_	75	_	ns	
Write Command Pulse Width	twLwH	tWP	15		20	_	ns	
Write Command to RAS Lead Time	tWLREH	tRWL	20	_	25	_	ns	
Write Command to CAS Lead Time	tWLCEH	tcwL	20	_	25	_	ns	
Data in Setup Time	†DVCEL	t _{DS}	0	_	0	_	ns	14, 15
Data in Hold Time	tCELDX	tDH	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	†RELDX	tDHR	60	_	75	_	ns	
Refresh Period MCM94000 MCM9L4000	tRVRV	^t RFSH		16 128	=	16 128	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	†RELCEL	t _{CSR}	5	_	20	_	ns	
CAS Hold Time for CAS Before RAS Refresh	†RELCEH	tCHR	15	_	20		ns	
CAS Precharge to CAS Active Time	†REHCEL	tRPC	0	_	0		ns	
CAS Precharge Time for CAS Before RAS Counter Test	†CEHCEL	tCPT	40	_	50	_	ns	
CAS Precharge Time	†CEHCEL	^t CPN	10	_	10	_	ns	

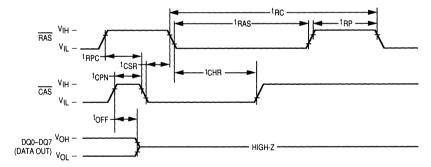

- 13. Either $t_{\mbox{\scriptsize RRH}}$ or $t_{\mbox{\scriptsize RCH}}$ must be satisfied for a read cycle.
- 14. These parameters are reference to \overline{CAS} leading edge in random write cycles.
- 15. Early write only ($t_{WCS} \ge t_{WCS}$ (min)).
- 16. twcs is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twcs ≥ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisfied, the condition of the data out (at access time) is indeterminate.



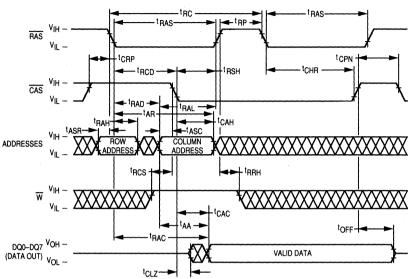
3


FAST PAGE MODE READ CYCLE

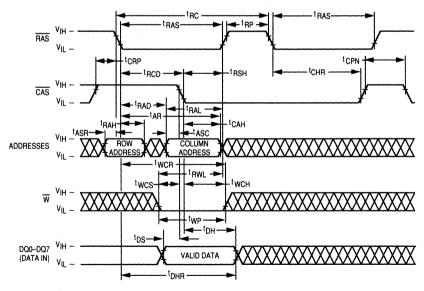
FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

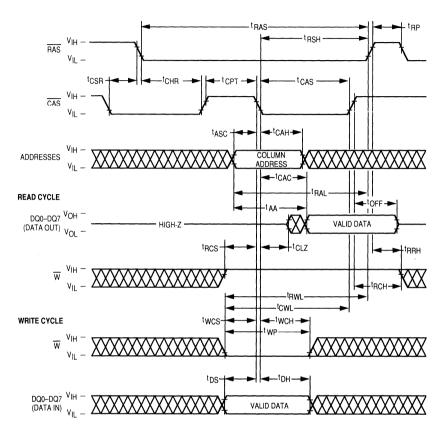


RAS ONLY REFRESH CYCLE (W and A10 are Don't Care)



 $_{
m DQ0-DQ7}$ $_{
m VOH}$ $^ _{
m MIGH-Z}$ $_{
m VOL}$ $^-$


CAS BEFORE RAS REFRESH CYCLE (A0 to A10 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator to establish the correct bias voltage. This must be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize all dynamic nodes within the RAM. During an extended inactive state (greater than 16 milliseconds with device powered up), a wake up sequence of eight active cycles is necessary to assure proper operation.

ADDRESSING THE RAM

The eleven address pins on the device are time multiplexed at the beginning of a memory cycle by two clocks, row address strobe (\overline{RAS}) and column address strobe (\overline{CAS}), into two separate 11-bit address fields. A total of twenty two address bits, eleven rows and eleven columns, will decode one of the 4,194,304 byte locations in the device. \overline{RAS} active transition is followed by \overline{CAS} active transition (active = V_{IL} , t_{RCD} minimum) for all read or write cycles. The delay between \overline{RAS} and \overline{CAS} active transition, referred to as the **multiplex window**, gives a system designer flexibility in setting up the external addresses into the RAM.

The external \overline{CAS} signal is ignored until an internal \overline{RAS} signal is available. This "gate" feature on the external \overline{CAS} clock enables the internal \overline{CAS} line as soon as the row address hold time (t_{RAH}) specification is met (and defines t_{RCD} minimum). The multiplex window can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the \overline{CAS} clock.

There are three other variations in addressing the 4M RAM: RAS only refresh cycle, CAS before RAS refresh cycle, and page mode. All three are discussed in separate sections that follow.

READ CYCLE

The DRAM may be read with two different cycles: "normal" random read cycle, and page mode read cycle. The normal read cycle is outlined here, while the page mode cycle is discussed in a separate section.

The normal read cycle begins as described in **ADDRESS-ING THE RAM**, with the \overline{RAS} and \overline{CAS} active transitions latching the desired bit location. The write (\overline{W}) input level must be high (VI_H), t_{RCS} (minimum) before the \overline{CAS} active transition, to enable read mode.

Both the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks trigger a sequence of events which are controlled by several delayed internal clocks. The internal clocks are linked in such a manner that the read access time of the device is independent of the address multiplex window. However, $\overline{\text{CAS}}$ must be active before or at tRCD maximum to guarantee valid data out (Q) at tRAC (access time from $\overline{\text{RAS}}$ active transition). If the tRCD maximum is exceeded, read access time is determined by the $\overline{\text{CAS}}$ clock active transition (tCAC).

The $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ clocks must remain active for a minimum time of t_{RAS} and t_{CAS} respectively, to complete the read cycle. $\overline{\text{W}}$ must remain high throughout the cycle, and for time t_{RRH} or t_{RCH} after $\overline{\text{RAS}}$ or $\overline{\text{CAS}}$ inactive transition, respectively, to maintain the data at that bit location. Once $\overline{\text{RAS}}$ transitions to

inactive, it must remain inactive for a minimum time of t_{RP} to precharge the internal device circuitry for the next active cycle. Q is valid, but not latched, as long as the \overline{CAS} clock is active. When the \overline{CAS} clock transitions to inactive, the output will switch to High Z (three-state).

WRITE CYCLE

The user can write to the DRAM with two cycles; early write and page mode early write. Early write mode is discussed here, while the page mode write operation is covered in another section.

A write cycle begins as described in **ADDRESSING THE RAM**. Write mode is enabled by the transition of \overline{W} to active $(V_{|L})$. Minimum active time t_{RAS} and t_{CAS} , and precharge time t_{RP} apply to write mode, as in the read mode.

An early write cycle is characterized by \overline{W} active transition at minimum time t_{WCS} before \overline{CAS} active transition. Data in (D) is referenced to \overline{CAS} in an early write cycle. \overline{RAS} and \overline{CAS} clocks must stay active for t_{RWL} and t_{CWL} , respectively, after the start of the early write operation to complete the cycle.

Q remains in three-state condition throughout an early write cycle because \overline{W} active transition precedes or coincides with $\overline{\text{CAS}}$ active transition, keeping data-out buffers disabled.

PAGE-MODE CYCLES

Page mode allows fast successive data operations at all 2048 column locations on a selected row of the dynamic RAM. Read access time in page mode (t_{CAC}) is typically half the regular RAS clock access time, t_{RAC} . Page mode operation consists of keeping RAS active while toggling CAS between V_{IH} and V_{IL} . The row is latched by RAS active transition, while each CAS active transition allows selection of a new-column location on the row

A page mode cycle is initiated by a normal read or write cycle, as described in prior sections. Once the timing requirements for the first cycle are met, $\overline{\text{CAS}}$ transitions to inactive for minimum of t_{CP} , while $\overline{\text{RAS}}$ remains low (V_{IL}). The second $\overline{\text{CAS}}$ active transition while $\overline{\text{RAS}}$ is low initiates the first page mode cycle (tp_C or tp_RW_C). Either a read or write operation can be performed in a page mode cycle, subject to the same conditions as in normal operation (previously described). These operations can be intermixed in consecutive page mode cycles and performed in any order. The maximum number of consecutive page mode cycles is limited by trans. Page mode operation is ended when $\overline{\text{RAS}}$ transitions to inactive, coincident with or following $\overline{\text{CAS}}$ inactive transition.

REFRESH CYCLES

The dymanic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Each byte must be periodically **refreshed** (recharged) to maintain the correct byte state. Bytes in the MCM94000 require refresh every 16 milliseconds, while refresh time for the MCM9L4000 is 128 milliseconds.

This is accomplished by cycling through the 1024 row addresses in sequence within the specified refresh time. All the bytes on a row are refreshed simultaneously when the row is addressed. Distributed refresh implies a row refresh every 15.6 microseconds for the MCM94000, and 124.8 microseconds for

the MCM9L4000. Burst refresh, a refresh of all 1024 rows consecutively, must be performed every 16 milliseconds on the MCM94000 and 128 milliseconds on the MCM9L4000.

A normal read, write, or read-write operation to the RAM will refresh all the bytes (4096) associated with the particular row decoded. Three other methods of refresh, RAS-only refresh, CAS before RAS refresh, and hidden refresh are available on this device for greater system flexibility.

RAS-Only Refresh

 \overline{RAS} -only refresh consists of \overline{RAS} transition to active, latching the row address to be refreshed, while \overline{CAS} remains high (V_{IH}) throughout the cycle. An external counter is employed to ensure all rows are refreshed within the specified limit.

CAS Before RAS Refresh

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh is enabled by bringing $\overline{\text{CAS}}$ active before $\overline{\text{RAS}}$. This clock order activates an internal refresh counter that generates the row address to be refreshed. External address lines are ignored during the automatic refresh cycle. The output buffer remains at the same state it was in during the previous cycle (hidden refresh).

Hidden Refresh

Hidden refresh allows refresh cycles to occur while maintaining valid data at the output pin. Holding CAS active the end

of a read or write cycle, while \overline{RAS} cycles inactive for t_{RP} and back to active, starts the hidden refresh. This is essentially the execution of a \overline{CAS} before \overline{RAS} refresh from a cycle in progress (see Figure 1).

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh counter test. This test is performed with a read-write operation. During the test, the internal refresh counter generates the row address, while the external address supplies the column address. The entire array is refreshed after 1024 cycles, as indicated by the check data written in each row. See $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh counter test cycle timing diagram.

The test can be performed after a minimum of 8 CAS before RAS initialization cycles. Test procedure:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 1024 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 1024 times.
- 4. Read "1"s (normal read mode), which were written at step 3.
- 5. Repeat steps 1 to 4 using complement data.

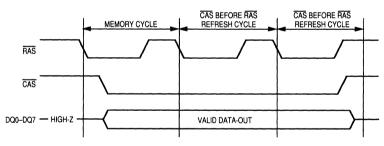
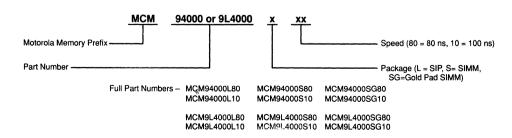



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA MEMORY DATA

3

Product Preview 256K × **9 Bit Dynamic Random Access Memory Module**

The MCM94256S is a 2.25M bit, dynamic random access memory (DRAM) module organized as 262,144 x 9 bits. The module is a 30-lead single-in-line memory module (SIMM) consisting of two MCM514256A DRAMs housed in 20/26 J-lead small outline packages (SOJ) and one CMOS 256K x 1 DRAM housed in an 18-lead PLCC package, mounted on a substrate along with a 0.22 μF (min) decoupling capacitor mounted adjacent to each DRAM. The MCM514256A is a 1.0 μ CMOS high speed, dynamic random access memory organized as 262,144 four-bit words and fabricated with CMOS silicon-gate process technology.

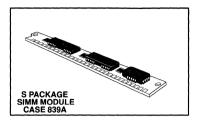
- · Three-State Data Output
- Early-Write Common I/O Capability
- Fast Page Mode Capability
- · TTL-Compatible Inputs and Outputs
- RAS Only Refresh
- CAS Before RAS Refresh
- Hidden Refresh
- 512 Cycle Refresh: MCM94256 = 8 ms (Max)
- Consists of Two 256K x 4 DRAMs, One 256K x 1 DRAM, and Three 0.22 μF (Min) Decoupling Capacitors
- Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection
- Fast Access Time (tRAC):

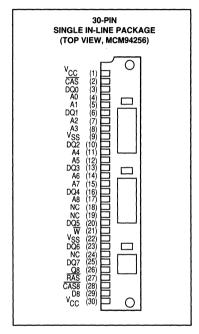
MCM94256S-70 = 70 ns (Max)

MCM94256S-80 = 80 ns (Max)

MCM94256S-10 = 100 ns (Max)

• Low Active Power Dissipation:

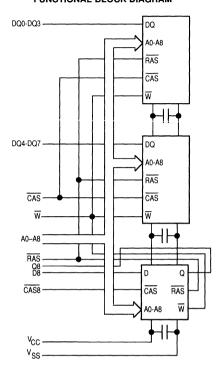

MCM94256S-70 = 1.32 W (Max)MCM94256S-80 = 1.16 W (Max)


MCM94256S-80 = 1.16 W (Max) MCM94256S-10 = 1.05 W (Max)

Low Standby Power Dissipation:
 TTL Levels = 33 mW (Max)
 CMOS Levels = 16.5 mW (Max)

- CAS Control for Eight Common I/O Lines
- CAS Control for Separate I/O Pair

MCM94256



PIN NAMES							
A0-A8 Addre DQ0-DQ7 Data Inp D8 D Q8 Dat CAS Column Addres CASB Column Addres RAS Row Addres W Read/M VCC Pow VSS NC NC No	ut/Output ata Input ta Output ss Strobe ss Strobe frite Input ter (+5 V)						

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	−1 to +7	٧
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	-1 to +7	٧
Data Out Current per DQ Pin	lout	50	mA
Power Dissipation	PD	2.6	W
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V	1
	V _{SS}	0	0	0		
Logic High Voltage, All Inputs	V _{IH}	2.4	_	6.5	V	1
Logic Low Voltage, All Inputs	VIL	-1.0		0.8	V	1

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit	Notes
V _{CC} Power Supply Current MCM94256-70, t _{RC} = 130 ns MCM94256-80, t _{RC} = 150 ns MCM94256-10, t _{RC} = 180 ns	lcc1		240 210 190	mA	2
V_{CC} Power Supply Current (Standby) ($\overline{RAS} = \overline{CAS} = V_{IH}$)	lCC2	_	6	mA	
V_{CC} Power Supply Current During \overline{RAS} only Refresh Cycle MCM94256-70, t_{RC} = 130 ns MCM94256-80, t_{RC} = 150 ns MCM94256-10, t_{RC} = 180 ns	lcc3	=	240 210 190	mA	2
V_{CC} Power Supply Current During Fast Page Mode Cycle MCM94256-70, t_{PC} = 40 ns MCM94256-80, t_{PC} = 45 ns MCM94256-10, t_{PC} = 55 ns	ICC4	_	180 150 130	mA	2
V _{CC} Power Supply Current (Standby) (\$\overline{RAS}\$ = \$\overline{CAS}\$ = V _{CC} - 0.2 V)	I _{CC5}	_	3	mA	
V_{CC} Power Supply Current During $\overline{\text{CAS}}$ Before $\overline{\text{RAS}}$ Refresh Cycle MCM94256-70, t_{RC} = 130 ns MCM94256-80, t_{RC} = 150 ns MCM94256-10, t_{RC} = 180 ns	ICC6	_ _ _	240 210 190	mA	2
Input Leakage Current ($V_{SS} \le V_{in} \le V_{CC}$)	l _{lkg(l)}	-30	30	μΑ	
Output Leakage Current (\overline{CAS} at Logic 1, $V_{SS} \le V_{in} \le V_{CC}$)	l _{lkg(O)}	-10	10	μΑ	
Output High Voltage (I _{OH} = -5 mA)	VOH	2.4		٧	
Output Low Voltage (I _{OL} = 4.2 mA)	V _{OL}		0.4	٧	

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Paramet	er	Symbol	Max	Unit	Notes
Input Capacitance	A0-A8, W, CAS, RAS	C _{in}	20	ρF	3
	D8, CAS8	i.	7	1	
Input/Output Capacitance	DQ0-DQ7	C _{I/O}	15	pF	3
Output Capacitance	Q8	Cout	10	pF	3

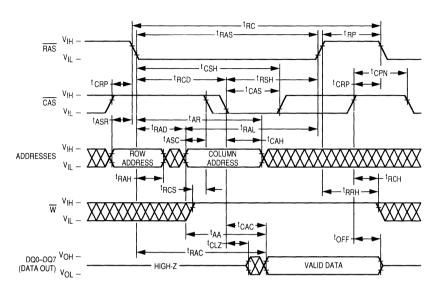
- 1. All voltages referenced to V_{SS}.
- 2. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output open.
- 3. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta t/\Delta V$.

AC OPERATING CONDITIONS AND CHARACTERISTICS

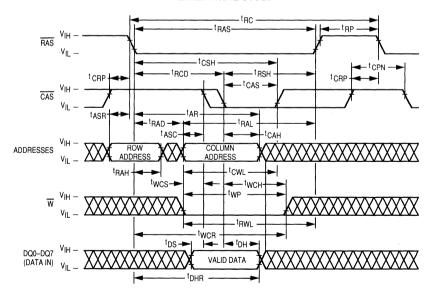
(VCC = 5.0 V \pm 10%, TA = 0 to 70°C, Unless Otherwise Noted

READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)

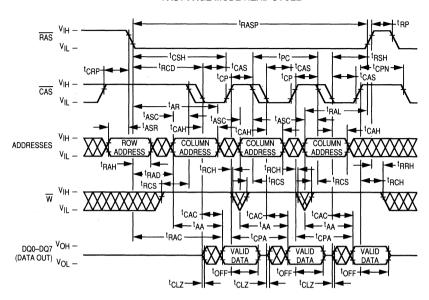
	Syn	Symbol		4256-70	70 MCM94256-80		MCMS	4256–10	İ	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	†RELREL	tRC	130	_	150	_	180	_	ns	5
Page Mode Cycle Time	†CELCEL	tPC	40	_	45	_	55	_	ns	
Access Time from RAS	†RELQV	†RAC	_	70	_	80	_	100	ns	6, 7
Access Time from CAS	^t CELQV	†CAC	_	20	_	20		25	ns	6, 8
Access Time from Column Address	†AVQV	†AA	_	35	_	40	_	50	ns	6, 9
Access Time from Precharge CAS	†CEHQV	^t CPA	_	35		40	_	50	ns	6
CAS to Output in Low-Z	^t CELQX	tCLZ	0	_	0	_	0	_	ns	6
Output Buffer and Turn-Off Delay	^t CEHQZ	^t OFF	0	20	0	20	0	20	ns	10
Transition Time (Rise and Fall)	t _T	tŢ	3	50	3	50	3	50	ns	
RAS Precharge Time	^t REHREL	tRP	50	_	60	_	70	_	ns	
RAS Pulse Width	^t RELREH	t _{RAS}	70	10,000	80	10,000	100	10,000	ns	
RAS Pulse Width (Fast Page Mode)	†RELREH	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS Hold Time	[†] CELREH	tRSH	20	_	20	_	25	_	ns	
CAS Hold Time	^t RELCEH	tcsh	70	_	80	_	100	_	ns	
CAS Pulse Width	^t CELCEH	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS Delay Time	†RELCEL	tRCD	20	50	20	60	25	75	ns	11
RAS to Column Address Delay Time	†RELAV	†RAD	15	35	15	40	20	50	ns	12
CAS to RAS Precharge Time	[†] CEHREL	tCRP	5	_	5	_	10	_	ns	
CAS Precharge Time (Page Mode Cycle Only)	^t CEHCEL	tCP	10	_	10	_	10		ns	
Row Address Setup Time	†AVREL	t _{ASR}	0	T -	0	_	0	_	ns	
Row Address Hold Time	†RELAX	^t RAH	10	_	10	T	15	_	ns	
Column Address Setup Time	†AVCEL	tASC	0	_	0	_	0	_	ns	
Column Address Hold Time	†CELAX	t _{CAH}	15		15	_	20		ns	
Column Address Hold Time Referenced to RAS	[†] RELAX	tAR	55	_	60	_	75	_	ns	
Column Address to RAS Lead Time	t _{AVREH}	†RAL	36	_	40		50	_	ns	

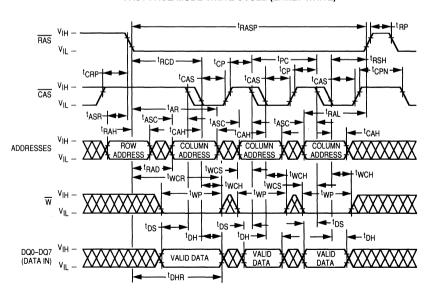

- 1. V_{IH} min and V_{IL} max are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 2. An initial pause of 200 µs is required after power-up followed by 8 RAS cycles before proper device operation is guaranteed.
- 3. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IH} and V_{IL} (or between V_{IL} and $V_{IH})$ in a monotonic manner.
- 4. AC measurements $t_T = 5.0$ ns.
- 5. The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range $(0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C})$ is assured. 6. Measured with a current load equivalent to 2 TTL (-200 μ A, +4 mA) loads and 100 pF with the data output trip points set at V_{OH} = 2.0 V and
- $V_{OL} = 0.8 V.$
- 7. Assumes that $t_{RCD} \le t_{RCD}$ (max).
- 8. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 9. Assumes that $t_{RAD} \ge t_{RAD}$ (max).
- 10. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- $11. \ \ \, Operation \ \, within the \ \, t_{RCD} (max) \ \, limit ensures that \ \, t_{RAC} (max) \ \, can be met. \ \, t_{RCD} (max) \ \, is \ \, specified as a reference point only; if \ \, t_{RCD} \ \, is \ \, greater \ \, t_{RCD} (max) \ \, is \ \, t_{RCD} \ \, is \ \, t_{RCD} \ \, is \ \, t_{RCD} \ \, t_{RC$ than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 12. Operation within the t_{RAD} (max) limit ensures that t_{RAD} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified $t_{\mbox{\scriptsize RAD}}$ (max), then access time is controlled by $t_{\mbox{\scriptsize AA}}$.

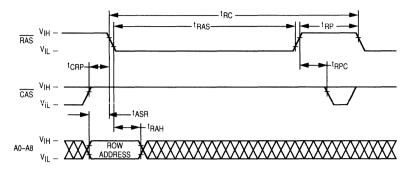
READ AND WRITE CYCLES (Continued)


	Syn	nbol	мсм9	4256-70	мсмя	4256-80	мсм9	4256-10		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Command Setup Time	tWHCEL	tRCS	0	_	0	_	0	_	ns	
Read Command Hold Time Referenced to CAS	tCEHWX	^t RCH	0	_	0	_	0	_	ns	13
Read Command Hold Time Referenced to RAS	^t REHWX	tRRH	0	.	0	_	0		ns	13
Write Command Hold Time Referenced to CAS	tCELWH	tWCH	15		15	_	20		ns	
Write Command Hold Time Reference to RAS	^t RELWH	twcr	55	_	60	_	75		ns	
Write Command Pulse Width	twLwH	twp	15	_	15	_	20	_	ns	
Write Command to RAS Lead Time	twlreh	tRWL	20	_	20	_	25	_	ns	
Write Command to CAS Lead Time	tWLCEH	tCWL	20	_	20	_	25	_	ns	
Data in Setup Time	†DVCEL	t _{DS}	0		0	_	0	_	ns	14, 15
Data in Hold Time	^t CELDX	t _{DH}	15	_	15	_	20	_	ns	14, 15
Data in Hold Time Referenced to RAS	^t RELDX	^t DHR	55	_	60	_	75	_	ns	
Refresh Period	tRVRV	tRFSH	_	4		4	_	4	ms	
Write Command Setup Time	tWLCEL	twcs	0	_	0	_	0	_	ns	15, 16
CAS Setup Time for CAS Before RAS Refresh	^t RELCEL	^t CSR	10	_	10	_	10	_	ns	
CAS Hold Time for CAS Before RAS Refresh	[†] RELCEH	^t CHR	30	_	30	_	30	. —	ns	
CAS Precharge to CAS Active Time	†REHCEL	tRPC	0	_	0	_	0		ns	
CAS Precharge Time for CAS Before RAS Counter Test	†CEHCEL	[†] CPT	40	-	40	_	50	_	ns	
CAS Precharge Time	†CEHCEL	^t CPN	. 10	_	10		15		ns	

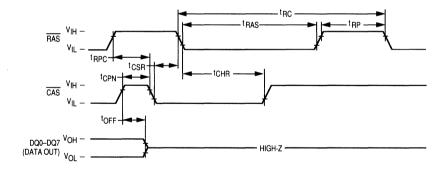
- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 14. These parameters are reference to $\overline{\text{CAS}}$ leading edge in random write cycles.
- 15. Early write only $(t_{WCS} \ge t_{WCS} \text{ (min)}).$
- 16. twcs is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if twcs ≥ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition is not satisfied, the condition of the data out (at access time) is indeterminate.


READ CYCLE

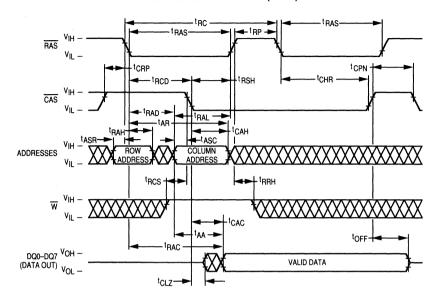

EARLY WRITE CYCLE


FAST PAGE MODE READ CYCLE

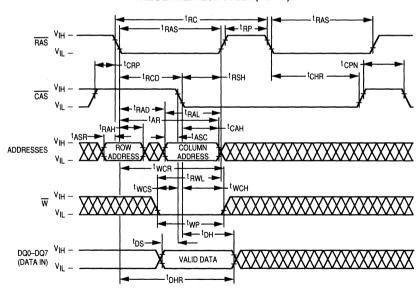
FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

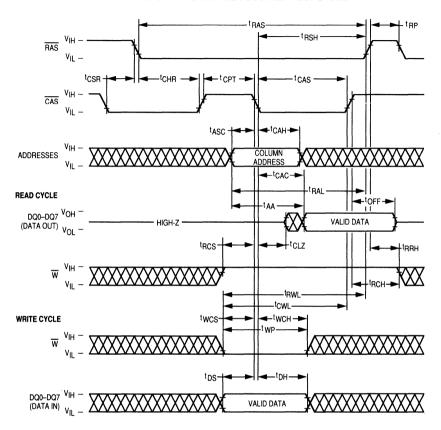


RAS ONLY REFRESH CYCLE (W and A8 are Don't Care)



 $_{\rm DQ0-DQ7}$ $_{\rm VOH}^{-}$ $_{\rm VOL}^{-}$ HIGH-Z $_{\rm VOL}^{-}$


CAS BEFORE RAS REFRESH CYCLE (W and A0 to A8 are Don't Care)


HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

DEVICE INITIALIZATION

On power-up an initial pause of 200 microseconds is required for the internal substrate generator pump to establish the correct bias voltage. This is to be followed by a minimum of eight active cycles of the row address strobe (clock) to initialize the various dynamic nodes internal to the device. During an extended inactive state of the device (greater than 4 milliseconds with device powered up), the wake up sequence (8 active cycles) will be necessary to assure proper device operation.

ADDRESSING THE RAM

The nine address bus pins on the device are time multiplexed with two separate 9-bit address fields that are strobed at the beginning of the memory cycle by two clocks (active negative) called the row address strobe (RAS) and the column address strobe (CAS). A total of eighteen address bits will decode one of the 262,144 byte locations in the device. The column address strobe follows the row address strobe by a specified minimum and maximum time called "tRCD," which is the row to column strobe delay. This time interval is also referred to as the multiplex window which gives flexibility to a system designer to set up the external addresses into the RAM. These conditions have to be met for normal read or write cycles. This initial portion of the cycle accomplishes the normal addressing of the device. There are, however, other variations in addressing the module: the refresh modes (RAS) only refresh, CAS before RAS refresh, hidden refresh), and another mode called page mode, which allows the user to column access the 512 bits within a selected row. The refresh mode and page mode operations are described in more detail in later sections.

READ CYCLE

A read cycle is referred to as a normal read cycle to differentiate it from a page mode read cycle, which is covered in a later section.

The memory read cycle begins with the row addresses valid and the \overline{RAS} clock transitioning from V_{IH} to the V_{IL} level. The CAS clock must also make a transition from VIH to the VII level at the specified tRCD timing limits when the column addresses are latched. Both the RAS and CAS clocks trigger a sequence of events which are controlled by several delayed internal clocks. Also, these clocks are linked in such a manner that the access time of the device is independent of the address multiplex window. The only stipulation is that the CAS clock must be active before or at the $t_{\mbox{\scriptsize RCD}}$ maximum specification for an access (data valid) from the RAS clock edge to be guaranteed (tRAC). If the tRCD maximum condition is not met, the access (t_{CAC}) from the CAS clock active transition will determine read access time. The external CAS signal is ignored until an internal RAS signal is available. This gating feature on the CAS clock will allow the external CAS signal to become active as soon as the row address hold time (tRAH) specification has been met and defines the tRCD minimum specification. The time difference between tRCD minimum and t_{BCD} maximum can be used to absorb skew delays in switching the address bus from row to column addresses and in generating the $\overline{\text{CAS}}$ clock.

Once the clocks have become active, they must stay active for the minimum (t_{RAS}) period for the $\overline{\text{RAS}}$ clock and the minimum (t_{CAS}) period for the $\overline{\text{CAS}}$ clock. The $\overline{\text{RAS}}$ clock must stay inactive for the minimum (t_{RP}) time. The former is for the competion of the cycle in progress, and the latter is for the device internal circuitry to be precharged for the next active cycle.

Data out is not latched and is valid as long as the $\overline{\text{CAS}}$ clock is active; the output will switch to the three-state mode when the $\overline{\text{CAS}}$ clock goes inactive. To perform a read cycle, the write $\overline{\text{CMS}}$ clock must be held at the V_{IH} level from the time the $\overline{\text{CAS}}$ clock makes its active transition (t_{RCS}) to the time when it transitions into the inactive (t_{RCH}) mode.

WRITE CYCLE

A write cycle is similar to a read cycle except that the write (\overline{W}) clock must go active (V $_{IL}$ level) at or before the \overline{CAS} clock goes active at a minimum t_{WCS} time. If the above condition is met, then the cycle in progress is referred to as an early write cycle. In an early write cycle, the write clock and the data in are referenced to the active transition of the \overline{CAS} clock edge. There are two important parameters with respect to the write cycle: the column strobe to write lead time (t_{CWL}) and the row strobe to write lead time (t_{RWL}). These define the minimum time that \overline{RAS} and \overline{CAS} clocks need to be active after the write operation has started (\overline{W} clock at V_{IL} level).

PAGE-MODE CYCLES

Page mode operation allows fast successive data operations at all \$12 column locations on a selected row. Page access (t_{CAC}) is typically half the regular t_{RAC} clock access (t_{RAC}) on the Motorola 1M dynamic RAM. Page mode operation consists of holding the t_{RAS} clock active while cycling the t_{RAS} clock to access the column locations determined by the 9-bit column address field.

The page cycle is always initiated with a row address being provided and latched by the $\overline{\text{RAS}}$ clock, followed by the column address and $\overline{\text{CAS}}$ clock. From the timing illustrated, the initial cycle is a normal read or write cycle, that has been previously described, followed by the shorter $\overline{\text{CAS}}$ cycles (tpc). The $\overline{\text{CAS}}$ cycle time (tpc) consists of the $\overline{\text{CAS}}$ clock active time (tCAS), and $\overline{\text{CAS}}$ clock precharge time (tcp) and two transitions. In practice, any combination of read and write cycles can be performed to suit a particular application.

REFRESH CYCLES

The dynamic RAM design is based on capacitor charge storage for each bit in the array. This charge will tend to degrade with time and temperature. Therefore, to retain the correct information, the module needs to be refreshed at least once every 8 milliseconds. This is accomplished by sequentially cycling through the 512 row address locations every 8 milliseconds (i.e., at least one row every 15.6 microseconds). A normal read or write operation to the module will also refresh all the bytes associated with the particular row(s) decoded.

RAS-Only Refresh

In this refresh method, the system must perform a \overline{RAS} -only cycle on 512 row addresses every 8 milliseconds. The row addresses are latched in with the \overline{RAS} clock, and the associated internal row locations are refreshed. As the heading implies, the \overline{CAS} clock is not required and must be inactive or at a V_{IH} level.

CAS Before RAS Refresh

This refresh cycle is initiated when $\overline{\text{RAS}}$ falls, after $\overline{\text{CAS}}$ has been low (by t_{CSR}). This activates the internal refresh counter which generates the row address to be refreshed. Externally applied addresses are ignored during the automatic refresh cycle. If the output buffer was off before the automatic refresh cycle, the output will stay in the high impedance state. If the output was enabled by $\overline{\text{CAS}}$ in the previous cycle, the data out will be maintained during the automatic refresh cycle as long as $\overline{\text{CAS}}$ is held active (hidden refresh).

Hidden Refresh

The hidden refresh method allows refresh cycles to be performed while maintaining valid data at the output pin. Hidden refresh is performed by holding \overline{CAS} at V_{II} and taking \overline{RAS}

high and after a specified precharge period (t_{RP}), executing a \overline{CAS} before \overline{RAS} refresh cycle. (See Figure 1.)

CAS BEFORE RAS REFRESH COUNTER TEST

The internal refresh counter of this device can be tested with a CAS before RAS refresh counter test. This refresh counter test is performed with read and write operations. During this test, the internal refresh counter generates the row address, while the external address input supplies the column address. The entire array is refreshed after 512 test cycles, as indicated by the check data written in each row. See CAS before RAS refresh counter test cycle timing diagram.

The test can be performed only after a minimum of 8 CAS before RAS initialization cycles. The test procedure is as follows:

- 1. Write "0"s into all memory cells (normal write mode).
- Select a column address, and read "0" out of the cell by performing CAS before RAS refresh counter test, read cycle. Repeat this operation 512 times.
- Select a column address, and write "1" into the cell by performing CAS before RAS refresh counter test, write cycle. Repeat this operation 512 times.
- Read "1"s (normal read mode), which were written at step
- 5. Repeat steps 1 to 4 using complement data.

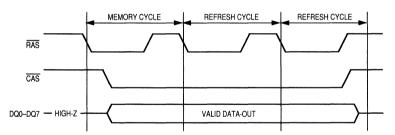
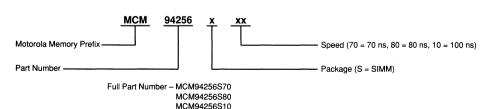



Figure 1. Hidden Refresh Cycle

ORDERING INFORMATION (Order by Full Part Number)

Video RAMs 4

DUAL PORT VIDEO RAMs

Density	Organi- zation	Motorola Part Number	Address Access Time (ns Max)	Operating Current (mA Max)	Pin Count	Package Options
1M	256Kx4	MCM524258A	100/120	140/150	28, 28	(Z)IP, SO(J)
	128Kx8	MCM528128A	100/120	140/150	40, 40	(P)DIP. (Z)IP. SO(J)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview256K × 4 CMOS Multiport Video RAM Page Mode

The MCM524258A is a CMOS multiport video RAM. It is organized as a 262,144 by 4-bit word dynamic random access memory (RAM) port with a 512 by 4-bit word static, serial access, memory (SAM) port. The MCM524258A is flexible, offering: random read and write to the RAM port, high-speed read and write to the SAM port, and bidirectional transfer of data between the RAM and SAM. The RAM and SAM ports can be accessed independently, except during data transfer operations between the RAM and SAM. Special features of the MCM524258A include Page Mode, Flash Write, Block Write, and Write per Bit on the RAM port, and Split Register Data Transfer on the SAM port. The MCM524258A is fabricated with a 1.0 μ CMOS silicon gate process, which provides fast access times, low power dissipation, and wide operating margins.

Organization:

RAM Port 256K × 4 Bits SAM Port 512 × 4 Bits

BAM Port:

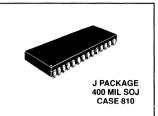
Page Mode, Block Write, Flash Write, Write Per Bit 512 Cycle, 8 Millisecond Refresh RAS Only Refresh CAS Before RAS Refresh Hidden Refresh

Three-State Data Outputs
TTL Compatible Inputs and Outputs

Fast Access Time (t_{RAC}): MCM524258A-10 = 100 ns (Max) MCM524258A-12 = 120 ns (Max)

Low Active Power Dissipation (Max, SAM Standby):

MCM524258A-10 = 110 mA MCM524258A-12 = 100 mA


Low Standby Power Dissipation (Max, SAM Standby):

MCM524258A-10 = 10 mA MCM524258A-12 = 10 mA

PIN NAMES A0-A8 Address Inputs RAS Row Address Strobe CAS Column Address Strobe TRG Data Transfer/Output Enable WB/W Write Per Bit/Write Enable DSF Special Function Control DQ0-DQ3 RAM Write Mask/ RAM Input-Output SC Serial Clock Serial RAM Enable SDQ0-SDQ3 SAM Input-Output QSF Output Split Register V_{CC} Power (+ 5 V) VSS Ground NC No Connect No Connect

All power supply and ground pins must be connected for proper operation of the device.

MCM524258A

Z PACKAGE PLASTIC ZIG-ZAG IN-LINE CASE TRD

PIN ASSIGNMENTS

400 MIL ZIP

SAM Port:

Split Register Data Transfer Static Register, No Refresh Required 512 Tap Locations

Fast Access Time (t_{SCA}): MCM524258A-10 = 25 ns (Max) MCM524258A-12 = 35 ns (Max) Low Serial Cycle Time (t_{SCC}): MCM524258A-10 = 30 ns (Min)

MCM524258A-12 = 40 ns (Min)

• RAM - SAM Bidirectional Transfer:

Read and Write Real Time Read Split Read/Write

				ODQL	
				v_{SS}	-
	400 MIL	SOJ		SDQ0	=
sc [1 🗨	28	v_{SS}	TRG	=
SDQ0 [2	27	SDQ3		
SDQ1	3	26	SDQ2	DQ1	=
TRG [4	25	SE	NC .	=
DQ0 [5	24	DQ3		l
DQ1	6	23	DQ2	A8	=
₩B/₩ [7	22	DSF	A5	=
NC [8	21	CAS		
RAS [9	20	QSF	VCC	=
A8 [10	19	A0	A3 .	=
A6 [11	18	A1		ĺ
A5 [12	17	A2	A1	=
A4 [13	16	A3	QSF	=

15 A7

DSF	='=		
DO1	_3_	<u>-2</u> _	DQ2
DQ3		4=	SE
SDQ2	=5=	 _6_	SDQ3
V_{SS}	<u>-</u> 7_	 	
SDQ0	_9_		SC
TRG	<u>11</u>	_10_	SDQ1
		<u>12</u>	DQ0
DQ1	<u>13</u>	<u>14</u>	WB/W
NC	<u>15</u>	<u>16</u>	RAS
A8	<u>1</u> Z	<u>_18_</u>	
A5	<u> 19</u>		A6
v	<u>_21_</u>	<u>20</u>	A4
VCC	_23_	<u>22</u>	A7
А3		<u>24</u>	A2
A1	2 <u>5</u>	<u>26</u>	A0
QSF	<u>2</u> Z	28	
		==	CAS

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

V_{CC} [] 14

BLOCK DIAGRAM DQ0-DQ3 SDQ0-SDQ3 SERIAL OUTPUT BUFFER SERIAL INPUT BUFFER OUTPUT BUFFER INPUT BUFFER TIMING GENERATOR BLOCK WRITE CONTROL COLOR REGISTER (4 BITS) FLASH WRITE CONTROL WM1 WRITE WRITE-PER REGISTER (4 BITS) TRANSFER CONTROL JPPER SAM 256 X 4 TR. GATE 256 X 4 COLUMN DECODER SENSE AMPLIFIER 512 X 512 X 4 CELL ARRAY 512 X 4 SERIAL SELECTOR TR. GATE 256 X 4 256 X 4 MSB 512 X 4 ROW DECODER SERIAL ADDRESS COUNTER (9 BITS) OSF 9 COLUMN ADDRESS ROW ADDRESS REFRESH **BUFFER (9 BITS) BUFFER (9 BITS)** V_{CC} V_{SS} SUBSTRATE BIAS

GENERATOR

99 × 98

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview 128K × 8 CMOS Multiport Video **RAM Page Mode**

The MCM528128A is a CMOS multiport video RAM. It is organized as a 131,072 by 8-bit word dynamic random access memory (RAM) port with a 256 by 8-bit word static, serial access, memory (SAM) port. The MCM528128A is flexible, offering; random read and write to the RAM port, high-speed read and write to the SAM port, and bidirectional transfer of data between the RAM and SAM. The RAM and SAM ports can be accessed independently, except during data transfer operations between the RAM and SAM. Special features of the MCM528128A include Page Mode, Flash Write, Block Write, and Write per Bit on the RAM port, and Split Register Data Transfer on the SAM port. The MCM528128A is fabricated with a 1.0 μ CMOS silicon gate process, which provides fast access times, low power dissipation, and wide operating margins.

Organization:

RAM Port 128K × 8 Bits SAM Port 256 × 8 Bits

BAM Port:

Page Mode, Block Write, Flash Write, Write Per Bit

512 Cycle, 8 Millisecond Refresh

RAS Only Refresh

CAS Before RAS Refresh

Hidden Refresh

Three-State Data Outputs

TTL Compatible Inputs and Outputs

Fast Access Time (tRAC):

MCM528128A-10 = 100 ns (Max)

MCM528128A-12 = 120 ns (Max)

Low Active Power Dissipation (Max, SAM Standby):

MCM528128A-10 = 110 mA

MCM521288A-12 = 100 mA

Low Standby Power Dissipation (Max, SAM Standby):

MCM528128A-10 = 10 mA

MCM528128A-12 = 10 mA

SAM Port:

Split Register Data Transfer Static Register, No Refresh Required 256 Tap Locations

Fast Access Time (t_{SCA}):

MCM528128A-10 = 25 ns (Max)MCM528128A-12 = 35 ns (Max)

Low Serial Cycle Time (tSCC):

MCM528128A-10 = 30 ns (Min)

MCM521288A-12 = 40 ns (Min)

RAM - SAM Bidirectional Transfer:

Read and Write Real Time Read

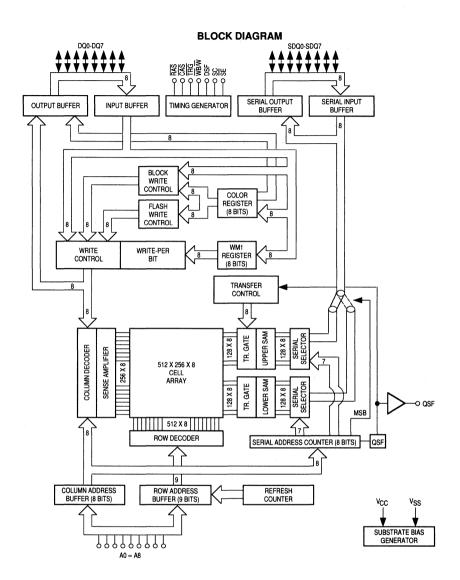
Split Read/Write

PIN NAMES

A0-A8 Address Inputs
RAS Row Address Strobe
CAS Column Address Strobe
TRG Data Transfer/Output Enable
WB/W Write Per Bit/Write Enable
DSF Special Function Control
DQ0-DQ7 RAM Write Mask/
RAM Input-Output
SC Serial Clock
SE Serial RAM Enable
SDQ0-SDQ7 SAM Input-Output
QSF Output Split Register
V _{CC1} , V _{CC2} Power (+ 5 V)
V _{SS1} , V _{SS2} Ground
NC No Connect

All power supply and ground pins must be connected for proper operation of the device.

..... No Connect


MCM528128A

P PACKAGE **600 MIL PLASTIC** CASE TBD

> J PACKAGE 400 MIL SOJ CASE TBD

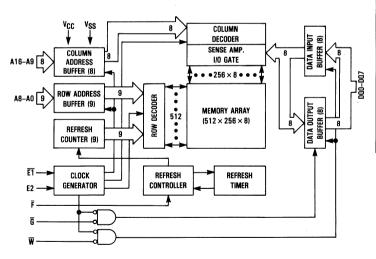
F	PIN ASSIGN	MENT	
sc	1	40	V _{SS1}
SDQ0	2	39	SDQ7
SDQ1	3	38	SDQ6
SDQ2	4	37	SDQ5
SDQ3	5	36	SDQ4
TRG	6	35	SE
DQ0	7	34	DQ7
DQ1	8	33	DQ6
DQ2	9	32	DQ5
DQ3	10	31	DQ4
v _{CC1}	11	30	V _{SS2}
WB/W	12	29	DSF
NC	13	28	NC
RAS	14	27	CAS
NC	15	26	QSF
A8	16	25	A0
A6	17	24	A1
A5	18	23	A2
A4 [19	22	A3
V _{CC2}	20	21	A7

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

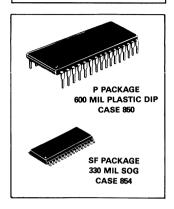
Pseudo Static RAMs 5

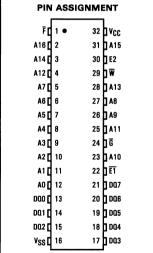
PSEUDO STATIC RAMs (HCMOS unless otherwise noted)

Density	Organi- zation	Motorola Part Number	Address Access Time (ns Max)	Operating Current (mA Max)	Pin Count	Packaging
1M	128Kx8	MCM518128	100	60	32	(P)DIP, (F)&(SF)SOG
	Pseudo	MCM518129	100	60	32	(F)SOG
	SRAM	MCM51L8128	80/100	70/60	32	(P)DIP, (F)&(SF)SOG
		MCM51L8129	80/100	70/60	32	(F)SOG
		MCM51LV8128	80/100	70/60	32	(P)DIP, (F)&(SF)SOG
		MCM51LV8129	80/100	70/60	32	(F)SOG


128K × 8 Bit CMOS Pseudo Static Random Access Memory

The MCM518128 is a 1,048,576 bit low-power pseudo-static random access memory organized as 131,072 words of 8 bits, fabricated using 1.0 μm silicon-gate advanced CMOS process technology. The MCM518128 family products utilize one-transistor dynamic storage cells and direct static addresses to achieve high density and fast access time. The advanced CMOS circuit design reduces power consumption and provides greater reliability. The data retention mode allows for very low power with battery backup in lap-top applications.


The refresh input (F) allows two types of refresh application—auto refresh and self refresh. The MCM518128 is pin compatible with the 128K × 8 SRAM JEDEC pinout and offers a low cost alternative to 1M SRAMs and a simpler design for DRAM memory applications.


The MCM518128 is available in a 600 mil, 32 pin plastic dual-in-line package and in a narrow 32 lead plastic small outline package.

- Single 5 V Supply ± 10%
- 128K × 8 Bit Memory Organization
- Low Power Dissipation 385 mW (Maximum Active)
- TTL Compatible Inputs and Outputs
- Battery Backup Capability from 4.5 V to 5.5 V (3.0 V to 5.5 V with MCM51LV8128)
- Low Standby Current 200 μA (Maximum) with MCM51L8128 and MCM51LV8128
- Auto Refresh Power Down Function
- 512 Refresh Cycles/8 ms
- Auto Refresh is Executed by Internal Counter
- · Self Refresh is Executed by Internal Timer
- Pin Compatible with 1M SRAM JEDEC Pinout
- Three State Outputs
- Fast Access Times: MCM51L8128-80/MCM51LV8128-80 = 80 ns (Max)
 MCM518128-10/MCM51L8128-10/MCM51LV8128-10 = 100 ns (Max)

MCM518128 MCM51L8128 MCM51LV8128

PIN NAMES								
A0-A16								.Address Input
\overline{w}								. Write Enable
								Chip Enable
₫								Output Enable
F								. Refresh Input
DQ0-DQ7.						D	a	ta Input/Output
V _{CC}								. Power Supply
V _{SS}								Ground

TRUTH TABLE

E1	E2	G	W	F	Mode	Supply Current	I/O Pin
L	Н	L	H	H/L	Read*	ICCA	D _{out}
L	Н	х	L	H/L	Write*	ICCA	D _{in}
L	Н	Н*	Н*	H/L	CE Only Refresh	ICCA	High Z
Н	Х	х	х	JUL	Auto Refresh	ICCF3	High Z
X	L	х	х	JUL	Auto Refresh	ICCF3	High Z
Н	Х	х	х	L	Self Refresh	ICCF**	High Z
X	L	X	х	L	Self Refresh	ICCF**	High Z
Н	х	х	X	Н	Standby	ISB***	High Z
X	L	х	х	Н	Standby	ISB***	High Z

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 1.0 to 7.0	V
Voltage to Any Pin with Respect to VSS	V _{in} , V _{out}	- 1.0 to 7.0	V
Power Dissipation	PD	600	mW
Soldering Temperature • Time	T _{solder}	260+10	°C•s
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +150	°C
Short Circuit Output Current	lout	50	mA

NOTE:

Permanent device damage may occur if AB-SOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.4	_	6.5	V
Input Low Voltage	VIL	-1.0		0.8	V

NOTE: All voltages are referenced to GND.

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{lkg(I)}	- 10.0	_	10.0	μΑ
Output Leakage Current ($\overline{E1} = V_{IH}$ or $E2 = V_{IL}$, $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	likg(O)	- 10.0	_	10.0	μА
Operating Current ($\overline{E1}$ = V _{IL} and E2 = V _{IH} , Address t_{RC} = 130 ns Cycling, t_{RC} = 160 ns	ICCA*	_	50 40	70 60	mA
Standby Current ($\overline{E1} = V_{IH}$ or $E2 = V_{IL}$, $\overline{F} = V_{IH}$) MCM518128 MCM51L8128/MCM51LV8128	ISB1	-	_	2 1	mA
Standby Current ($\overline{E1} \ge V_{CC} - 0.2 \text{ V or } E2 \le 0.2 \text{ V}$, MCM518128 $\overline{F} \ge V_{CC} - 0.2 \text{ V}$) MCM51L8128/MCM51LV8128	ISB2**	_	100	1 200	mΑ μΑ
Self Refresh Current ($\overline{E1} = V_{ H}$ or $E2 = V_{ L}$, $\overline{F} = V_{ L}$) MCM518128 (Average Current) MCM51L8128/MCM51LV8128	ICCF1	_	_	2 1	mA
Self Refresh Current ($\overline{\text{E1}} \ge V_{CC} - 0.2 \text{ V or } \text{E2} \le 0.2 \text{ V}$, MCM518128 $\overline{\text{F}} \le 0.2 \text{ V}$) (Average Current) MCM51L8128/MCM51LV8128	ICCF2**	_	100	1 200	mA μA
Auto Refresh Current (Average Current) (F Toggling, tFC=tFC min)	ICCF3	_	_	2	mA
Output Low Voltage (I _{OL} = 4.2 mA)	VOL	_	_	0.4	V
Output High Voltage (IOH = -5.0 mA)	Voн	2.4	_		٧

^{*}ICCA depends on cycle rate and output loading. Specified values are obtained with the output open.

⁻⁼VIL H=VIH X=don't care -101 = Toggle H/L=VIH or VIL, but must not toggle

^{*}The Read and Write operations effectively perform a CE Only Refresh of the row being addressed.

^{**}ICCF1 or ICCF2 depending on input voltage levels (see DC Characteristics).

^{***}ISB1 or ISB2 depending on input voltage levels (see DC Characteristics).

^{**}In the standby and self refresh modes with E1≥V_{CC} − 0.2 V, these limits are guaranteed when E2≥V_{CC} − 0.2 V or E2≤0.2 V. Conversely, if the device is disabled with E2≤0.2 V, these limits are guaranteed when E1≥V_{CC} − 0.2 V or E1≤0.2 V.

(Continued)

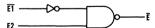
MCM518128 • MCM51L8128 • MCM51LV8128

CAPACITANCE (f = 1 MHz, T_A = 25°C, V_{CC} = 5 V, Periodically Sampled Rather Than 100% Tested)

Characteristic	,	Symbol	Min	Max	Unit
Input Capacitance	A0-A16	C _{in}	_	5	pF
	Ē1, €2, Ğ, Ѿ, F		_	7	1
Output Capacitance	DQ0-DQ7	Cout	_	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_{\Delta} = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$


READ, WRITE, AND READ-MODIFY-WRITE CYCLES

(An initial pause of 100 µs with high E1 or low E2 is required after power-up, before proper device operation is achieved.)

Parameter	Sym	bol	MCM51L8128-80 MCM51LV8128-80		MCM518128-10 MCM51L8128-10 MCM51LV8128-10		Unit	Notes
	Standard	Alternate	Min	Max	Min	Max	1	
Random Read, Write Cycle Time	tEVEV(R)	tRC	130		160	_	ns	1
Read Modify Write Cycle Time	tEVEV(RW)	tRMW	195	_	235	_	ns	1
Chip Enable Pulse Width	^t ELEH	^t CE	80	10,000	100	10,000	ns	1, 2
Chip Enable Precharge Time	t _{EHEL}	tp	40	_	50	_	ns	1
Chip Enable Access Time	tELQV	tCEA	-	80	_	100	ns	1
Output Enable Access Time	tGLQV	^t OEA	_	35	_	40	ns	
Chip Enable to Output in Low-Z	t _{ELQX}	tCLZ	30	_	30	_	ns	1
Output Enable to Output in Low-Z	tGLQX	tOLZ	0	_	0	_	ns	
Output Active from End of Write	twhax	tWLZ	0	_	0	-	ns	
Chip Disable to Output in High-Z	tEHQZ	tCHZ	0	25	0	30	ns	1, 3
G Disable to Output in High-Z	tGHQZ	tOHZ	0	25	0	30	ns	3
Write Enable to Output in High-Z	tWLQZ	twnz	0	25	0	30	ns	3
G Output Disable Set-Up Time	^t GHEL	tons	0	_	0	_	ns	1
G Output Disable Hold Time	†EHGL	tODH	10	_	10		ns	1
Read Command Set-Up Time	tWHEL	tRCS	0	_	0	_	ns	1
Read Command Hold Time	tEHWL	tRCH	0	_	0		ns	1
Write Pulse Width	tWLWH	tWP	60	_	70		ns	
Write Command Hold Time	tELWH	twch	60	10,000	70	10,000	ns	1
Write Command to CE Lead Time	tWLEH	tCWL	60	10,000	70	10,000	ns	

NOTES:

1. Chip is Enabled only when E1 is set low and E2 is set high.

The start of a memory cycle is determined by the latter of E1 going low or E2 going high (E going low), and the end of the memory cycle is determined by the earlier of E1 going high or E2 going low (E going high). The PSRAM is a synchronous RAM, and therefore a memory access cycle will always be started at the falling edge of E. The PSRAM will go into the standby mode when E is held high.

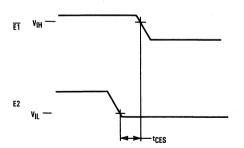
2. The timings, t_{CE} (min) and t_{CE} (max), must be kept for proper device operation as follows.

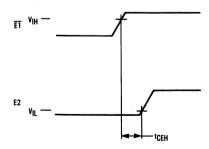
3. tCHZ, tOHZ, tWHZ define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

READ, WRITE, AND READ-MODIFY-WRITE CYCLES

(An initial pause of 100 µs with high E1 or low E2 is required after power-up, before proper device operation is achieved.)

Parameter	Sym	ibol		L8128-80 LV8128-80	MCM51	18128-10 L8128-10 LV8128-10	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Data Set-Up Time from W	tDVWH	tDSW	30	_	35	-	ns	4
Data Set-Up Time from CE	^t DVEH	tDSC	30	_	35	_	ns	1, 4
Data Hold Time from W	tWHDX	tDHW	0	-	0	_	ns	4
Data Hold Time from CE	tEHDX	^t DHC	0	_	0	-	ns	1, 4
Address Set-Up Time	tAVEL	tASC	0	_	0	-	ns	1, 5
Address Hold Time	tELAX	tAHC	20	_	25	_	ns	5
Auto Refresh Cycle Time	tFVFV	tFC	130	_	160	_	ns	
F Delay Time from CE	t _{EHFL}	tRFD	40	_	50	_	ns	1
F Pulse Width (Auto Refresh)	tFLFH	tFAP	30	8,000	30	8,000	ns	6
F Precharge Time	tFHFL	tFP	30	_	30	. –	ns	6
F Command Hold Time	tELFL	tRHC	15		15	_	ns	1
F Pulse Width (Self Refresh)	tFLFH	tFAS	8,000	_	8,000	_	ns	6
CE Delay Time from F (Self Refresh)	tFHEL	tFRS	160		190	_	ns	1, 6
Refresh Period (512 Cycle A0 to A8)	tRF	tREF	_	8	_	8	ms	
E2 Low Set-Up Time	tE2LE1L	tCES	5	_	5	_	ns	1, 7
E2 Low Hold Time	tE1HE2H	^t CEH	5	_	5	-	ns	1, 7
Transition Time (Rise and Fall)	tŢ · .	ŧΤ	3	50	3	50	ns	

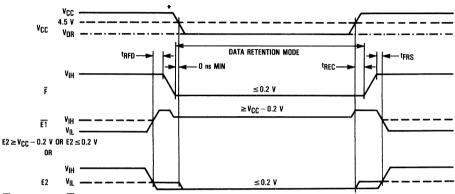

NOTES:


- 4. In write cycle, the input data is latched at the earlier of W or E1 rising edge and E2 falling edge. Therefore the input data must be valid during set-up time (tDSW) or tDSC) and hold time (tDHW) or tDHC).
- All address inputs are latched at the falling edge of E1 and the rising edge of E2. Therefore all the address inputs must be valid during tasc and tahc.
- Two refresh operations—auto refresh and self refresh are defined by the F pulse width under the condition of E1=V_{IH} or E2=V_{IL}:
 Auto refresh: F pulse width ≤t_{FAP} (max).

Self refresh: F pulse width≥tFAS (min).

The timing parameter (tFRS) must be kept for proper device operation in the following conditions:

- a. After self refresh.
- b. In case F = V_{IL} after power-up.
- 7. When switching disable controls, the timings t_{CES} and t_{CEH} must be kept for proper device operation as follows:



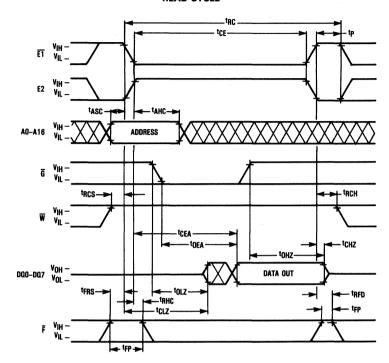
MCM518128 • MCM51L8128 • MCM51LV8128

DATA RETENTION CHARACTERISTICS (TA = 0~70°C) (MCM51LV8128 Only)

Symbol	Parameter	Min	Тур	Max	Unit	
VDR	Data Retention Supply Voltage		3.0	_	5.5	V
ICCF2	Self Refresh Current V _D	OR = 3.0 V	_	40	100	μΑ
	(Average Current) V _E	OR = 5.5 V	_	100	200	
trec	Recovery Time		5	_	_	ms

^{*}The falling slope of VCC must be more than 50 ms in order to operate the device safely. (20 ms/V)

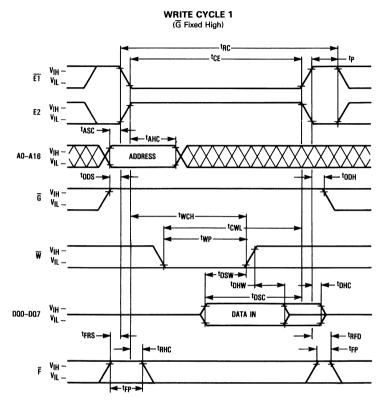
E1 ≥ VCC - 0.2 V OR E1 ≤ 0.2 V


NOTES:

- 1. G, W, A0-A16 = Don't Care.
- 2. ICCF1 is applied in $\overline{F} = V_{IL} \text{ max}$, $\overline{E1} = V_{IH} \text{ min}$, $E2 = V_{IL} \text{ max}$.
- Data Retention is a special case of the Self Refresh mode. All modes other than the Self Refresh mode require Auto Refresh or CE Only Refresh with 512 cycles/8 ms.
- 4. Enter the Self Refresh mode before dropping V_{CC} below 4.5 V for Data Retention mode.

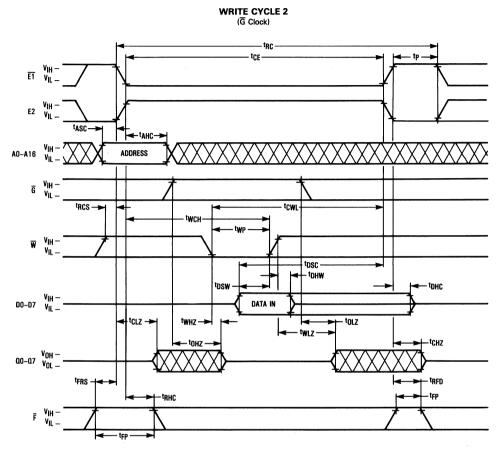
The Motorola MCM51LV8128 pseudo static RAM has data retention capability at a V_{CC} level as low as three volts. This is particularly useful with battery backup applications. While in the data retention mode the pseudo static RAM will draw no more than 100 microamps of current at 3 V V_{CC} in the temperature range from 0°C to 70°C. The data retention mode of the pseudo static RAM is basically a self refresh mode where each row in the memory array is automatically refreshed at

periodic intervals by on-chip refresh control circuitry. The pseudo static RAM will enter self refresh mode eight microseconds after the refresh pin makes a transition from high to low while the device is in standby mode. Under these conditions the device will remain in self refresh mode until either brought out of standby mode or until the refresh pin is clocked high.

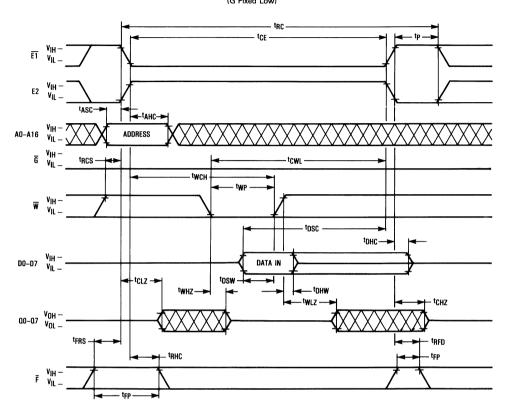

READ CYCLE

NOTE: The device can be operated with clocking "E1" (or E2) pin only provided that "E2" (or E1) is connected to VIH (or VIL) invel.

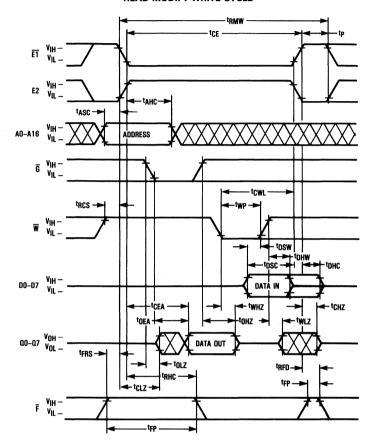
A read cycle is initiated by \overline{E} and \overline{G} going low during the same cycle while the \overline{W} signal is held high. Valid data will be output after a delay of tCEA from the falling edge of \overline{E} and a delay of tOEA from the falling edge of \overline{G} . The data will remain valid on the outputs for the time tOHZ from the rising edge


of \overline{G} and t_{CHZ} from the rising edge of \overline{E} . All address inputs are latched at the falling edge of \overline{E} , therefore, all the address inputs must be valid during address setup and address hold times tasc and tahc.

NOTE: The device can be operated with clocking "E1" (or E2) pin only provided that "E2" (or E1) is connected to VIH (or VIL) level.


A write cycle is initiated when both \overline{E} and \overline{W} go low during the same cycle. The write operation is terminated with the input data being latched at the rising edge of either \overline{E} or \overline{W} ,

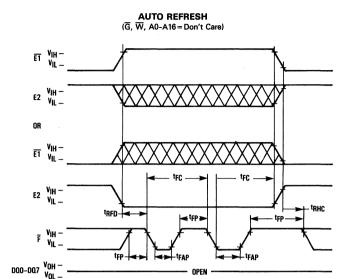
whichever occurs first. Therefore, the input data must be valid during data setup and data hold times t_{DSW}/t_{DSC} and t_{DHW}/t_{DHC} .


NOTE: The device can be operated with clocking "E1" (or E2) pin only provided that "E2" (or E1) is connected to VIH (or VIL) level.

WRITE CYCLE 3

NOTE: The device can be operated with clocking "E1" (or E2) pin only provided that "E2" (or E1) is connected to VIH (or VIL) level.

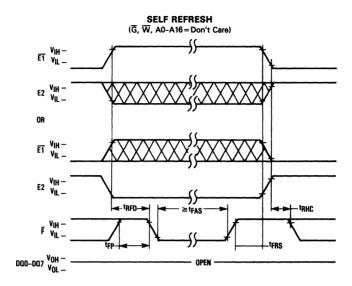
READ MODIFY WRITE CYCLE


NOTE: The device can be operated with clocking "E1" (or E2) pin only provided that "E2" (or E1) is connected to VIH (or VIL) level.

CHIP ENABLE ONLY REFRESH (A9-A16 = Don't Care) TRC TRC TRC VIH E2 VIH VIH VIL ADDRESS ADDRESS TODOS TRCS TRCH VIL TRCH VIL DQQ-DQ7 VOH DQQ-DQ7 VOH TFRS TRFD

NOTE: The device can be operated with clocking " $\overline{E1}$ " (or E2) pin only provided that "E2" (or $\overline{E1}$) is connected to V_{IH} (or V_{IL}) level.

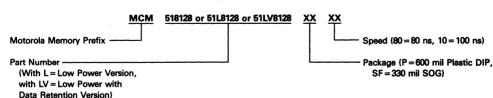
The chip enable only refresh is similar to the \overline{RAS} -only refresh of a DRAM. This type of refresh is accomplished by


performing a memory cycle at each of the 512 rows (defined by A0-A8) within the specified refresh period.

NOTE: During an auto refresh, an internal row address counter is incremented at the falling edge of \overline{F} , and a new row is refreshed. This diagram shows \overline{F} toggling twice, thus refreshing 2 rows.

The auto refresh is similar to the $\overline{\text{CAS}}$ -before-RAS refresh of a DRAM. When the $\overline{\text{F}}$ signal is clocked while $\overline{\text{E}}$ is high, the internal refresh counter and on-chip refresh circuitry are enabled and an internal refresh operation takes place. Each time the $\overline{\text{F}}$ signal is clocked (as specified and with $\overline{\text{E}}$ high), a

subsequent row is refreshed and the internal refresh address counter is automatically incremented in preparation for the next auto refresh cycle. Note that the auto refresh \overline{F} pulse width (tFAP) must be more than 30 ns and less than 8 μs for this type of refresh operation to properly take place.



NOTE: In the self refresh mode, after \overline{F} has been held low for t_{FAS}, an internal timer will refresh a new row approximately every 150 μ s. Due to the long period of this method of refresh, it is recommended that self refresh only be used for extremely long standby periods, such as a battery backup operation.

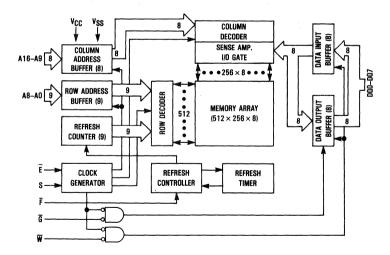
The self refresh is similar to the auto refresh and is recommended for use during the periods when the PSRAM is in the standby mode for an extended amount of time. For this type of refresh the \overline{F} signal is held low for as long as the device is deselected. When the self refresh \overline{F} pulse width (tFAS) exceeds 8 μ s, a timer activates an internal refresh operation

at consecutive internal refresh address counter locations. Note that upon completion of the self refresh cycle the timing parameter t $_{FRS}$ (chip enable delay time from \overline{F} self refresh) must be followed for proper device operation during the following cycle.

ORDERING INFORMATION (Order by Full Part Number)

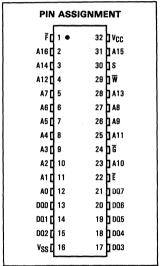
Full Part Numbers—MCM518128P10 MCM51L8128P80 MCM51L8128P10 MCM51LV8128P80 MCM518128SF10 MCM51L8128SF80 MCM51L8128SF10 MCM51LV8128SF80 MCM51LV8128SF10

MCM51LV8128P10


128K×8 Bit CMOS Pseudo Static Random Access Memory

The MCM518129 is a 1,048,576 bit low-power pseudo-static random access memory organized as 131,072 words of 8 bits, fabricated using 1.0 μ m silicon-gate advanced CMOS process technology. The MCM518129 family products utilize one-transistor dynamic storage cells and direct static addresses to achieve high density and fast access time. The advanced CMOS circuit design reduces power consumption and provides greater reliability. The data retention mode allows for very low power with battery backup in lap-top applications.

The refresh input (F) allows two types of refresh application—auto refresh and self refresh. The MCM518129 is pin compatible with the 128K×8 SRAM JEDEC pinout and offers a low cost alternative to 1M SRAMs and a simpler design for DRAM memory applications.


The MCM518129 is available in a wide 32 lead plastic small outline package.

- Single 5 V Supply ± 10%
- 128K×8 Bit Memory Organization
- Low Power Dissipation 385 mW (Maximum Active)
- TTL Compatible Inputs and Outputs
- Battery Backup Capability from 4.5 V to 5.5 V (3.0 V to 5.5 V with MCM51LV8129)
- Chip Select Standby Mode
- Low Standby Current 200 μA (Maximum) with MCM51L8129 and MCM51LV8129
- Auto Refresh Power Down Function
- 512 Refresh Cycles/8 ms
- Auto Refresh is Executed by Internal Counter
- Self Refresh is Executed by Internal Timer
- Pin Compatible with 1M SRAM JEDEC Pinout
- Three State Outputs
- Fast Access Times: MCM51L8129-80/MCM51LV8129-80 = 80 ns (Max)
 MCM518129-10/MCM51L8129-10/MCM51LV8129-10 = 100 ns (Max)

MCM518129 MCM51L8129 MCM51LV8129

		P	11	N	N	A	N	16	S	3
A0-A16 .										Address Input
₩										Write Enable
Ē										. Chip Enable
										. Chip Select
										Output Enable
										Refresh Input
										Input/Output
										Power Supply
V _{SS}					•		•		•	Ground

MCM518129 • MCM51L8129 • MCM51LV8129

TRUTH TABLE

Ē	S at E Going Low	G	w	Ē	Mode	I/O Pin
L	н	L	Н	H/L	Read*	D _{out}
L	н	Х	L	H/L	Write*	D _{in}
L	Н	Н*	Н*	H/L	CE Only Refresh	High Z
Н	Х	×	Х	-մՈւ-	Auto Refresh	High Z
Н	Х	Х	X	L	Self Refresh	High Z
L	L	Х	Х	H/L	Chip Select Standby	High Z
Н	х	Х	Х	Н	Standby	High Z

L=V_{IL} H=V_{IH} X=don't care -TIML=Toggle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	– 1.0 to 7.0	V
Voltage to Any Pin with Respect to VSS	V _{in} , V _{out}	-1.0 to 7.0	V
Power Dissipation	PD	600	mW
Soldering Temperature • Time	T _{solder}	260•10	°C•s
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +150	°C
Short Circuit Output Current	lout	50	mA

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE:

Permanent device damage may occur if AB-SOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.4	_	6.5	V
Input Low Voltage	VIL	-1.0	-	0.8	V

NOTE: All voltages are referenced to GND.

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	llkg(I)	- 10.0	_	10.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$, $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	llkg(O)	- 10.0	_	10.0	μΑ
Operating Current (\overline{E} =V _L , Address Cycling, t_{RC} = t_{RC} min) t_{RC} =130 ns t_{RC} =160 ns	ICCA*	- 1	50 40	70 60	mA
Standby Current (\overline{E} =V _{IH} , \overline{F} =V _{IH}) MCM518129 MCM51L8129/MCM51LV8129	ISB1	- -	- -	2 1	mA
Standby Current (Ē≥V _{CC} −0.2 V, F≥V _{CC} −0.2 V) MCM518129 MCM51L8129/MCM51LV8129	ISB2**	- -	- 100	1 200	mA μA
Self Refresh Current (E=V _{IH} , F=V _{IL}) MCM518129 (Average Current) MCM51L8129/MCM51LV8129	ICCF1	-	_ _	2 1	mA
Self Refresh Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$, $\overline{F} \le 0.2 \text{ V}$) MCM518129 (Average Current) MCM51L8129/MCM51LV8129	ICCF2**	- -	- 100	1 200	mΑ μΑ
Auto Refresh Current (Average Current) (F Toggling, tFC = tFC min)	ICCF3	_	_	2	mA
Output Low Voltage (I _{OL} =4.2 mA)	VOL	_	_	0.4	٧
Output High Voltage (IOH = -5.0 mA)	VoH	2.4	_	_	٧

^{*}ICCA depends on cycle rate and output loading. Specified values are obtained with the output open.

H/L=V_{IH} or V_{IL}, but must not toggle.

^{*}The Read and Write operations effectively perform a CE Only Refresh of the row being addressed.

^{**}In the Standby mode with E≥V_{CC}-0.2 V, these limits are guaranteed when F≥V_{CC}-0.2 V. In the Self Refresh mode with E≥V_{CC}-0.2 V, these limits are guaranteed when E≤0.2 V. In the Chip Select Standby mode, these limits are guaranteed when E≤0.2 V, S≤0.2 V (when E goes low), and F≥V_{CC}-0.2 V or F≤0.2 V.

5

CAPACITANCE (f=1 MHz, TA=25°C, VCC=5 V, Periodically Sampled Rather Than 100% Tested)

Characteristic		Symbol	Min	Max	Unit
Input Capacitance	A0-A16	C _{in}	-	5	pF
	Ē, S, G, ₩, F		_	7	
Output Capacitance	DQ0-DQ7	C _{out}	_	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

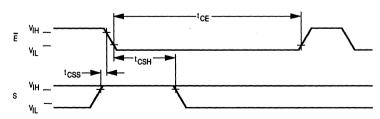
 Input Pulse Levels
 0.6 V, 2.6 V

 Input Rise/Fall Time
 5 ns

 Input Timing Measurement Reference Levels
 0.8 and 2.4 V

Output Timing Measurement Reference Levels 0.8 and 2.2 V Output Load 2 TTL Loads and 100 pF

READ, WRITE, AND READ-MODIFY-WRITE CYCLES


(An initial pause of 100 μs with high E is required after power-up, before proper device operation is achieved.)

Parameter	Sym	Symbol		MCM51L8129-80 MCM51LV8129-80		MCM518129-10 MCM51L8129-10 MCM51LV8129-10		Notes
	Standard	Alternate	Min	Max	Min	Max		
Random Read, Write Cycle Time	tEVEV(R)	tRC	130	_	160	_	ns	1
Read Modify Write Cycle Time	tevev(RW)	tRMW	195	_	235	_	ns	1
Chip Enable Pulse Width	tELEH	^t CE	80	10,000	100	10,000	ns	1
Chip Enable Precharge Time	tEHEL	tp	40	_	50		ns	1
Chip Enable Access Time	tELQV	tCEA	_	80	_	100	ns	1
Output Enable Access Time	tGLQV	[†] OEA	_	35	_	40	ns	
Chip Enable to Output in Low-Z	tELQX	tCLZ	30	_	30	_	ns	1
Output Enable to Output in Low-Z	tGLOX	tOLZ	0	_	0	_	ns	
Output Active from End of Write	twhox	†WLZ	0	_	0		ns	
Chip Disable to Output in High-Z	tEHQZ	tCHZ	0	25	0	30	ns	2
G Disable to Output in High-Z	tGHQZ	tOHZ	0	25	0	30	ns	2
Write Enable to Output in High-Z	tWLQZ	twHZ	0	25	0	30	ns	2
G Output Disable Set-Up Time	†GHEL	tops	0		0		ns	1
G Output Disable Hold Time	†EHGL	tODH	10	_	10		ns	1
Read Command Set-Up Time	tWHEL	tRCS	0	_	0	_	ns	1
Read Command Hold Time	tEHWL	tRCH	0	_	0	_	ns	1
Chip Select Set-Up Time	†SHEL.	tcss	0		0	_	ns	1
Chip Select Hold Time	tELSL	tCSH	20	_	25	_	ns	1
Write Pulse Width	twLWH	tWP	60	_	70	_	ns	
Write Command Hold Time	tELWH	twch	60	10,000	70	10,000	ns	1
Write Command to CE Lead Time	tWLEH	tcwL	60	10,000	70	10,000	ns	

(Continued)

NOTES:

1. The timings, t_{CE} (min) and t_{CE} (max), must be kept for proper device operation as follows:

The start of a memory cycle is determined by \overline{E} going low while S is high, and the end of the memory cycle is determined by \overline{E} going high. The PSRAM will go into the standby mode when \overline{E} is held high.

2. t_{CHZ}, t_{OHZ}, t_{WHZ} define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

MCM518129 • MCM51L8129 • MCM51LV8129

READ, WRITE, AND READ-MODIFY-WRITE CYCLES

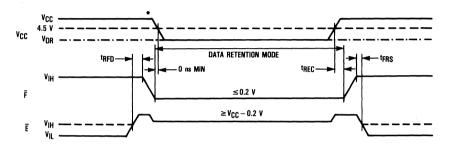
(An initial pause of 100 μs with high E is required after power-up, before proper device operation is achieved.)

Parameter	Symbol		MCM51L8129-80 MCM51LV8129-80		MCM518129-10 MCM51L8129-10 MCM51LV8129-10		Unit	Notes
	Standard	Alternate	Min	Max	Min	Max		
Data Set-Up Time from W	^t DVWH	tDSW	30	_	35	-	ns	3
Data Set-Up Time from CE	^t DVEH	tDSC	30	_	35	-	ns	3
Data Hold Time from W	tWHDX	tDHW	0	_	0	_	ns	3
Data Hold Time from CE	tEHDX	tDHC	0	-	0	-	ns	3
Address Set-Up Time	tAVEL	tASC	0	_	0	_	ns	4
Address Hold Time	tELAX	tAHC	20		25	-	ns	4
Auto Refresh Cycle Time	tFVFV	tFC	130	_	160	-	ns	
F Delay Time from CE	tEHFL	tRFD	40	_	50	-	ns	1
F Pulse Width (Auto Refresh)	tFLFH	tFAP	30	8,000	30	8,000	ns	5
F Precharge Time	tFHFL	tFP	30	_	30	_	ns	5
F Command Hold Time	tELFL	tRHC	15	_	15	_	ns	1
F Pulse Width (Self Refresh)	tFLFH	tFAS	8,000	_	8,000	-	ns	5
CE Delay Time from F (Self Refresh)	tFHEL	tFRS	160		190	_	ns	1, 5
Refresh Period (512 Cycle A0 to A8)	tRF	tREF	_	8	-	8	ms	
Transition Time (Rise and Fall)	ŧΤ	tΤ	3	50	3	50	ns	

NOTES:

- In write cycle, the input data is latched at the earlier of W or E rising edge. Therefore the input data must be valid during set-up time (tpsw or tpsc) and hold time (tphw or tphc).
- 4. All address inputs are latched at the falling edge of \overline{E} . Therefore all the address inputs must be valid during tasc and tahc.
- Two refresh operations—auto refresh and self refresh are defined by the F pulse width under the condition of E=V_{IH}:
 Auto refresh: F pulse width≤t_{FAP} (max).

Self refresh: F pulse width≥tFAS (min).

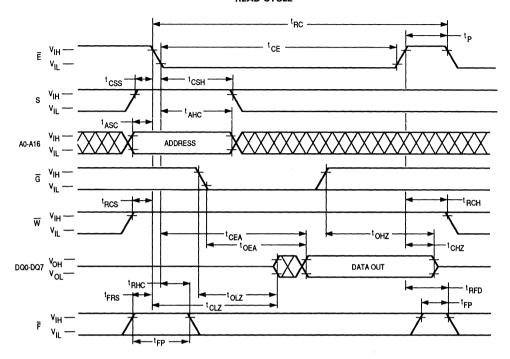

The timing parameter (t_{FRS}) must be kept for proper device operation in the following conditions:

- a. After self refresh.
- b. In case $\overline{F} = V_{IL}$ after power-up.

DATA RETENTION CHARACTERISTICS (TA = 0~70°C) (MCM51LV8129 Only)

Symbol	Parameter	Min	Тур	Max	Unit
V _{DR}	Data Retention Supply Voltage	3.0	_	5.5	V
ICCF2	Self Refresh Current V _{DR} = 3.0 V		40	100	μА
	(Average Current) V _{DR} = 5.5 V	_	100	200	
t _{rec}	Recovery Time	5	_	_	ms

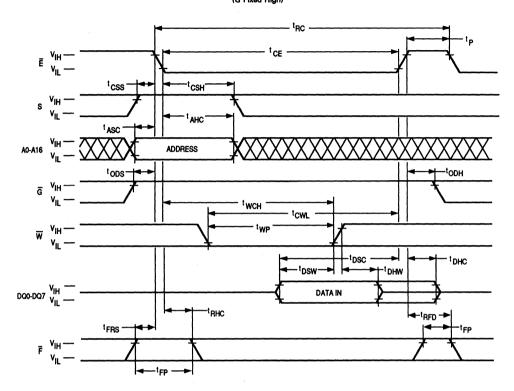
^{*}The falling slope of V_{CC} must be more than 50 ms in order to operate the device safely. (20 ms/V)


NOTES:

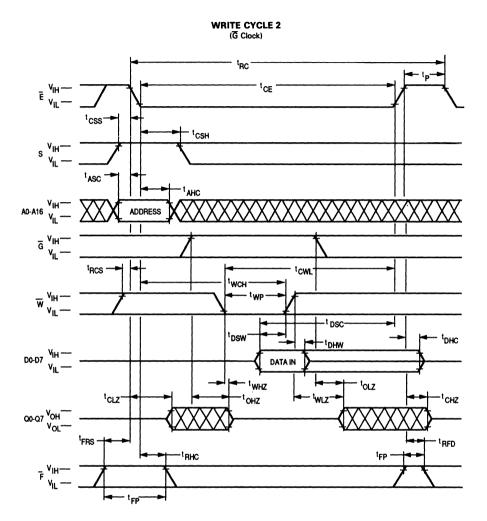
- *The falling slope of VCC must be more than 50 ms in order to operate the device safely. (20 ms/V)
- 1. S. G. W. A0-A16 = Don't Care.
- 2. ICCF1 is applied in F=VIL max, E=VIH min.
- Data Retention is a special case of the Self Refresh mode. All modes other than the Self Refresh mode require Auto Refresh or CE Only Refresh with 512 cycles/8 ms.
- 4. Enter the Self Refresh mode before dropping V_{CC} below 4.5 V for Data Retention mode.

The Motorola MCM51LV8129 pseudo static RAM has data retention capability at a V_{CC} level as low as three volts. This is particularly useful with battery backup applications. While in the data retention mode the pseudo static RAM will draw no more than 100 microamps of current at 3 V V_{CC} in the temperature range from 0°C to 70°C. The data retention mode of the pseudo static RAM is basically a self refresh mode where each row in the memory array is automatically refreshed at

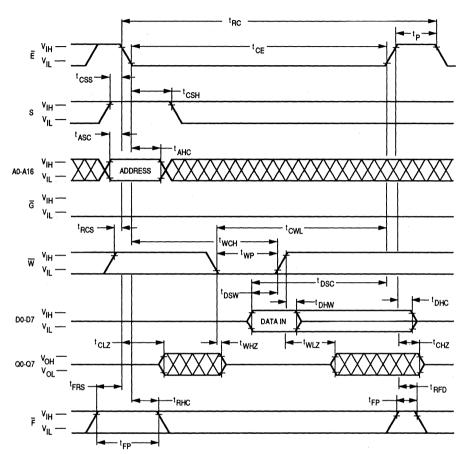
periodic intervals by on-chip refresh control circuitry. The pseudo static RAM will enter self refresh mode eight microseconds after the refresh pin makes a transition from high to low while the device is in standby mode. Under these conditions the device will remain in self refresh mode until either brought out of standby mode or until the refresh pin is clocked high.


READ CYCLE

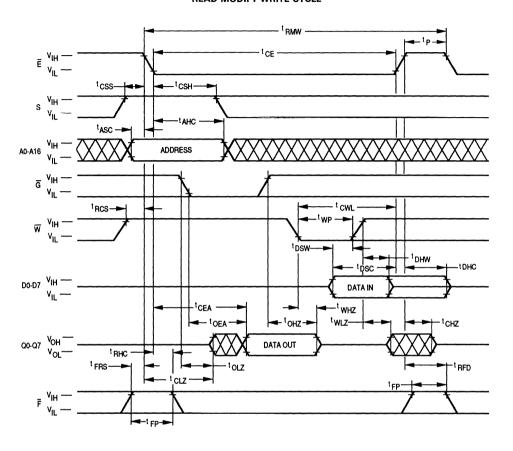
A read cycle is initiated by \overline{E} and \overline{G} going low during the same cycle while the \overline{W} signal is held high. Valid data will be output after a delay of t_{CEA} from the falling edge of \overline{E} and a delay of t_{OEA} from the falling edge of \overline{G} . The data will remain valid on the outputs for the time t_{OHZ} from the rising edge

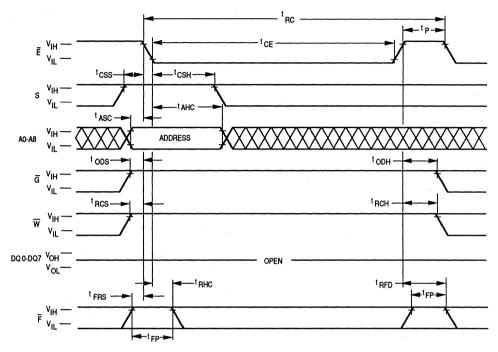

of \overline{G} and t_{CHZ} from the rising edge of \overline{E} . All address inputs are latched at the falling edge of \overline{E} , therefore, all the address inputs must be valid during address setup and address hold times t_{ASC} and t_{AHC} .

WRITE CYCLE 1



A write cycle is initiated when both \overline{E} and \overline{W} go low during the same cycle. The write operation is terminated with the input data being latched at the rising edge of either \overline{E} or \overline{W} ,


whichever occurs first. Therefore, the input data must be valid during data setup and data hold times t_{DSW}/t_{DSC} and t_{DHW}/t_{DHC} .

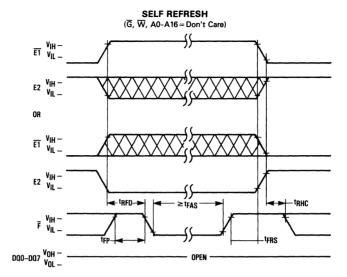


READ MODIFY WRITE CYCLE


CHIP ENABLE ONLY REFRESH

NOTE: A9-A16 = Don't Care.

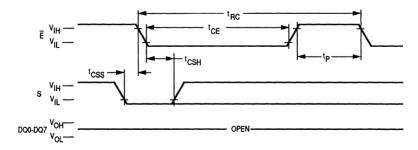
The chip enable only refresh is similar to the \overline{RAS} -only refresh of a DRAM. This type of refresh is accomplished by


performing a memory cycle at each of the 512 rows (defined by A0-A8) within the specified refresh period.

NOTE: During an auto refresh, an internal row address counter is incremented at the falling edge of $\overline{\mathsf{F}}$, and a new row is refreshed. This diagram shows $\overline{\mathsf{F}}$ toggling twice, thus refreshing 2 rows.

The auto refresh is similar to the \overline{CAS} -before- \overline{RAS} refresh of a DRAM. When the \overline{F} signal is clocked while \overline{E} is high, the internal refresh counter and on-chip refresh circuitry are enabled and an internal refresh operation takes place. Each time the \overline{F} signal is clocked (as specified and with \overline{E} high), a

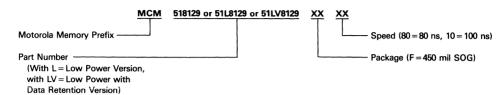
subsequent row is refreshed and the internal refresh address counter is automatically incremented in preparation for the next auto refresh cycle. Note that the auto refresh \overline{F} pulse width (tFAP) must be more than 30 ns and less than 8 μs for this type of refresh operation to properly take place.



NOTE: In the self refresh mode, after \overline{F} has been held low for tFAS, an internal timer will refresh a new row approximately every 150 µs. Due to the long period of this method of refresh, it is recommended that self refresh only be used for extremely long standby periods, such as a battery backup operation.

The self refresh is similar to the auto refresh and is recommended for use during the period when the PSRAM is in the standby mode for extended periods of time. For this type of refresh the \overline{F} signal is held low for as long as the device is deselected. When the self refresh \overline{F} pulse width (t_{FA} s) exceeds

8 μ s, a timer activates an internal refresh operation at consecutive internal refresh address counter locations. Note that upon completion of the self refresh cycle the timing parameter track (chip enable delay time from \overline{F} self refresh) must be followed for proper device operation during the following cycle.


CHIP SELECT STANDBY MODE

NOTE: G, W, A0-A16 = Don't Care.

MCM518129 • MCM51L8129 • MCM51LV8129

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM518129F10 MCM51L8129F80 MCM51L8129F10 MCM51LV8129F80 MCM51LV8129F10

5

5

١			
ľ	•	٠,	
ı	4	١.	
L	•	٠.	

General MOS Static RAMs

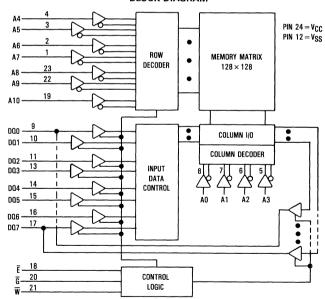
GENERAL STATIC RAMs (HCMOS unless otherwise noted)

Density	Organi- zation	Motorola Part Number	Address Access Time (ns Max)	Operating Current (mA Max)	Pin Count	Packaging
16K	2Kx8	MCM2018AN	35/45/55	135	24	300 mil, (P)DIP
256K	32Kx8	MCM60256A	85/100/120	70	28	(P)DIP, (F)SOG
	}	MCM60L256A	70/85/100/120	70	28	(P)DIP, (F)SOG
		MCM60L256A-C	100	70	28	(P)DIP, (F)SOG
		MCM60L256A-V	100	70	28	(P)DIP, (F)SOG

Fast 16K Bit Static RAM

The MCM2018A is a 16,384 bit static random access memory organized as 2048 words by 8 bits, fabricated using Motorola's high-performance silicon-gate MOS (HMOS) technology. It uses an innovative design approach which combines the ease-of-use features of fully static operation (no external clocks or timing strobes required) with the reduced standby power dissipation associated with clocked memories. To the user this means low standby power dissipation without the need for address setup and hold times, nor reduced data rates due to cycle times that are longer than access times. Perfect for cache and sub-100 ns buffer memory systems, this high speed static RAM is intended for applications that demand superior performance and reliability.

Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. In less than a cycle time after \overline{E} goes high, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high. This feature provides significant system-level power savings.


The MCM2018A is in a 24-pin dual-in-line 300 mil wide package with the industry standard JEDEC approved pinout.

- Single +5 V Operation, +10%
- Fully Static: No Clock or Timing Strobe Required
- Fast Access Time: MCM2018A-35 = 35 ns (Maximum)


MCM2018A-45 = 45 ns (Maximum)

- Power Supply Current: 135 mA Maximum (Active)
 20 mA Maximum (Standby)
- Three-State Output

BLOCK DIAGRAM

MCM2018A

PIN NAMES
A0-A10Address Input
DQ0-DQ7 Data Input/Output
\overline{W} Write Enable
$\overline{\underline{G}}$ Output Enable
E Chip Enable
$V_{\mbox{\footnotesize{CC}}}$ +5 V Power Supply
V_{SS} Ground

MODE SELECTION

Mode	Ē	Ğ	w	V _{CC} Current	DQ
Standby	Н	х	х	ISB	High Z
Read	L	L	Н	lcc	Ω
Write Cycle	L	х	L	Icc	D

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage on Any Pin With Respect to VSS	V _{in} , V _{out}	-0.5 to +7.0	٧
DC Output Current	lout	± 20	mA
Power Dissipation	PD	1.1	Watt
Temperature Under Bias	T _{bias}	-10 to +80	°C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input Voltage	ViH	2.0	3.0	6.0	V
	V _{IL}	-0.5*	0	0.8	٧

^{*}The device will withstand undershoots to the -2.5 volt level with a maximum pulse width of 50 ns. This is periodically sampled rather than 100% tested.

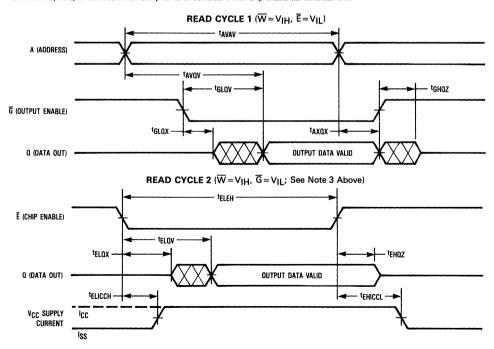
DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (V _{CC} = 5.5 V, V _{in} = GND to V _{CC})	l _{lkg(l)}	- 1.0	1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$, $V_{I/O} = GND$ to V_{CC})	likg(O)	- 1.0	1.0	μΑ
Operating Power Supply Current ($\overline{E} = V_{IL}$, $I_{I/O} = 0$ mA)	lcc	-	135	mA
Standby Power Supply Current ($\overline{E} = V_{IH}$)	ISB	_	20	mA
Output Low Voltage (I _{OL} = 8.0 mA)	V _{OL}	_	0.4	V
Output High Voltage (I _{OH} = -4.0 mA)	Voн	2.4	_	٧

$\textbf{CAPACITANCE} \text{ (f = 1.0 MHz, } T_{\mbox{\scriptsize A}} = 25^{o}\mbox{\scriptsize C}, \text{ Periodically Sampled Rather Than 100\% Tested)}$

Characteristic	Symbol	Тур	Max	Unit	
Input Capacitance	All Inputs Except \overline{E} and DQ \overline{E}	C _{in}	3 5	5 7	pF
I/O Capacitance	DQ	C _{I/O}	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS


(V_{CC}=5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

READ CYCLE (See Note 1)

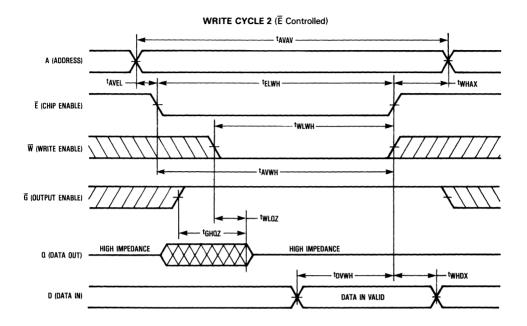
	Syn	nbol			bol MCM2018A-35 MCM2018			
Parameter	Standard	Alternate	Min	Max	Min	Max	Units	Notes
Address Valid to Address Valid (Read Cycle Time)	†AVAV	tRC	35	_	45	_	ns	
Address Valid to Output Valid (Address Access Time)	†AVQV	†AC	_	35	-	45	ns	
Chip Enable Low to Chip Enable High (Read Cycle Time)	^t ELEH	tRC	35	_	45	_	ns	
Chip Enable Low to Output Valid (Chip Enable Access Time)	tELQV	tACS	_	35	_	45	ns	
Output Enable Low to Output Valid (Output Enable Access Time)	tGLQV	^t OE	_	20	-	20	ns	
Chip Enable Low to Output Invalid (Chip Enable to Output Active)	tELQX	tCLZ	5	_	5	_	ns	2
Chip Enable High to Output High Z (Chip Disable to Output Disable)	^t EHQZ	[†] CHZ	0	20	0	20	ns	2
Output Enable Low to Output Invalid (Output Enable to Output Active)	tGLQX	tOLZ	0	-	0	_	ns	2
Output Enable High to Output High Z (Output Disable to Output Disable)	tGHQZ	tOHZ	0	20	0	20	ns	2
Address Invalid to Output Invalid (Output Hold Time)	tAXQX	tОН	5	-	5	_	ns	
Chip Enable Low to Power Up	†ELICCH	tpU	0	_	0	_	ns	
Chip Enable High to Power Down	†EHICCL	tPD	_	20	_	20	ns	

NOTES:

- 1. Transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transition between V_{IL} and V_{IH} (or between V_{IH} and V_{IL}) in a monotonic manner.
- 2. Transition is measured ± 200 mV from the steady state output voltage with the output loading specified in Figure 1.
- 3. In read cycle 2, all addresses are valid prior to or coincident with chip enable (E) transition low.

MOTOROLA MEMORY DATA


WRITE CYCLE (See Notes 1 and 2)


Parameter		nbol	MCM2018A-35		MCM2018A-45			Natas
rarameter	Standard	Alternate	Min	Max	Min	Max	Units	Notes
Address Valid to Address Valid (Write Cycle Time)	t _{AVAV}	tWC	35	-	45	_	ns	
Chip Enable Low to Write High (Chip Enable to End of Write)	^t ELWH	^t EW	30	-	40	-	ns	
Address Valid to Chip Enable Low (Address Setup to Chip Enable)	^t AVEL	tAS	0	-	0	-	ns	
Address Valid to Write Low (Address Setup to Write)	†AVWL	tAS	0	_	0	_	ns	
Address Valid to Write High	^t AVWH	t _{AW}	30	-	40	_	ns	3
Write Low to Write High (Write Pulse Width)	twlwh	tWP	30	-	35	-	ns	
Write High to Address Don't Care (Address Hold After End of Write)	tWHAX	tWR	0	-	0	_	ns	4
Write High to Output Don't Care (Output Active After End of Write)	tWHQX	tWLZ	0	_	0	_	ns	5
Write Low to Output High Z (Write Enable to Output Disable)	tWLQZ	twHZ	0	20	0	20	ns	5
Data Valid to Write High (Data Setup to End of Write)	tDVWH	tps	15	_	20	-	ns	3
Write High to Data Don't Care (Data Hold After End of Write)	tWHDX	^t DH	0	_	0	_	ns	3, 5
Output Enable High to Output High Z	tGHQZ	tonz	0	20	0	20	ns	

NOTES

- 1. Write enable $(\overline{\mbox{W}})$ must be high during all address transitions.
- 2. If the chip enable (E) low transition occurs simultaneously with the write enable (W) transition, the output remains in a high impedance state.
- 3. Both chip enable (E) and write enable (W) must be active (low) to write data into the memory. Either signal can terminate the write cycle by going high. Data in setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 4. tWHAX is measured from the earlier of, chip enable (E) or write enable (W) going high to the end of write cycle.
- 5. Output enable (G) can be either low or high during a write cycle. If chip enable (E) and G are both low during this period then the data input/output (DQ) pins are in the output state. Under these conditions input signals of opposite phase to the outputs must not be applied.

WRITE CYCLE 1 (W Controlled)

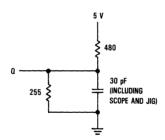
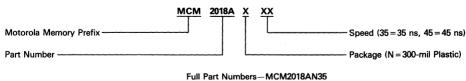
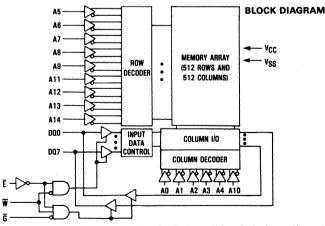



Figure 1. Output Load

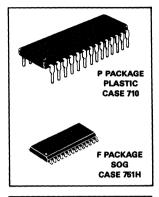
ORDERING INFORMATION (Order by Full Part Number)

MCM2018AN45

Advance Information


32K×8 Bit CMOS Static Random Access Memory

The MCM60256A is a 262,144 bit low-power static random access memory organized as 32,768 words of 8 bits, fabricated using silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. The operating current is 5 mA/MHz (typ) and the minimum cycle time is 85 ns. For long cycle times (> 100 ns), the automatic power down (APD) circuitry will temporarily shut down various power consuming circuits, thereby reducing the active power consumption.


Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. When \overline{E} is a logic high, the part is placed in low power standby mode. The maximum standby current for MCM60L256A is 2 μ A $(T_A=25^{\circ}C)$. Chip enable also controls the data retention mode. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 45 ns (MCM60256A-85). Thus the MCM60256A is suitable for use in various microprocessor application systems where high speed, low power, and battery backup are required.

The MCM60256A is offered in a 600 mil, 28 pin plastic dual-in-line package as well as the 330 mil, 28 pin plastic small outline gullwing package.

- Single 5 V Supply, ±10%
- 32K×8 Organization
- Fully Static No Clock or Timing Strobes Necessary
- Low Power Dissipation 27.5 mW/MHz (Typical Active)
- Output Enable and Chip Enable Inputs for More System Design Flexibility and Low Power Standby Mode
- Battery Backup Capability (MCM60L256A)
- Data Retention Supply Voltage = 2.0 V to 5.5 V
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: MCM60256A-85 and MCM60L256A-85 = 85 ns (Max)
 MCM60256A-10 and MCM60L256A-10 = 100 ns (Max)
 MCM60256A-12 and MCM60L256A-12 = 120 ns (Max)

MCM60256A MCM60L256A

PIN	ASSIG	MENT
A14 [1 •	28 J V _{CC}
A12 [2	27 DW
A7 [3	26 A13
A6 [4	25 🛘 A8
A5 [5	24 🕽 A9
A4 [6	23 A11
A3 [7	22 🛮 🛱
A2 [8	21 A10
A1 [9	20 🗓 Ē
A0 [10	19 007
000	11	18 006
DQ1 C	12	17 005
DQ2 [13	16 004
v _{SS} C	14	15 003
,		

PÍN NAMES
A0-A14 Address
W Write Enable
Ē Chip Enable
G Output Enable
DQ0-DQ7 Data input/Output
VCC +5 V Power Supply
V _{SS} Ground

This document contains information on a new product. Specifications and information herein are subject to charge without notice.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-

impedance circuit.

TRUTH TABLE

Ē	G	W	Mode	Supply Current	I/O Pin
Н	х	X	Not Selected	ISB	High Z
L	Н	Н	Output Disabled	Icc	High Z
L	L	Н	Read	lcc	Dout
L	Х	L	Write	Icc	Din

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

ABSOLUTE MAXIMUM NATI	1400 100	0 140107			
Rating	Rating				
Power Supply Voltage		Vcc	-0.3 to +7.0	٧	
Voltage to Any Pin with Respect to	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>		
Power Dissipation (T _A = 25°C)	PDIP SOG	PD	1.0 0.6	w	
Operating Temperature		TA	0 to +70	°C	
Storage Temperature		T _{stg}	-55 to +150	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	-	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.3*	_	0.8	V

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width \leq 50 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	lkg(I)	_	< 0.01	±1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	łikg(O)	-	<0.01	±1.0	μΑ
Operating Current (Read Cycle) (E=V _{IL} , W=V _{IH} , Other Input=V _{IH} /V _{IL} , I _{out} =0 mA)	ICCA1				mA
MCM60L256A: $t_{AVAV} = 1 \mu s$		_	10	15	
MCM60256A, MCM60L256A-85: $t_{AVAV} = 85 \text{ ns}$		_	1 -	70	1
MCM60256A, MCM60L256A-10: t _{AVAV} = 100 ns	1	-	-	70	}
MCM60256A, MCM60L256A-12: t _{AVAV} = 120 ns				70	
$(\overline{E} = 0.2 \text{ V}, \overline{W} = V_{CC} - 0.2 \text{ V}, \text{ Other Input} = V_{CC} - 0.2 \text{ V}/0.2 \text{ V},$	ICCA2				
$l_{out} = 0 \text{ mA}$) MCM60L256A: $t_{AVAV} = 1 \mu s$			5	8	ţ
MCM60256A, MCM60L256A-85: $t_{AVAV} = 85 \text{ ns}$		_	-	60	
MCM60256A, MCM60L256A-10: $t_{AVAV} = 100 \text{ ns}$		_	-	60	ł
MCM60256A, MCM60L256A-12: $t_{AVAV} = 120 \text{ ns}$		-	-	60	
Standby Current (E=V _{IH})	ISB1	_	_	3.0	mA
Standby Current (Ē≥V _{CC} − 0.2 V, V _{CC} = 2.0 to 5.5 V) MCM60256A	ISB2	_	2	100	μΑ
MCM60L256A			-	30	
MCM60L256A (T _A =25°C)		_	_	2	
Output Low Voltage (I _{OL} = 4.0 mA)	VoL	_	-	0.4	V
Output High Voltage (I _{OH} = -1.0 mA)	Voн	2.4	_	_	٧

Typical values are referenced to TA = 25°C and VCC = 5.0 V

CAPACITANCE (f = 1 MHz, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Min	Max	Unit	
Input Capacitance (Vin=0 V)	All Inputs Except DQ	C _{in}	_	10	pF
I/O Capacitance (V _{I/O} =0 V)	DQ	C _{I/O}	-	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Pulse Levels	Output Timing Measurement Reference Levels 0.8 and 2.2 V
Input Rise/Fall Time	Output Load See Figure 1
Input Timing Measurement Reference Levels 1.5 V	

READ CYCLE (See Note 1)

Parameter	Symbol	Alt		256A-85 L256A-85		256A-10 L256A-10		256A-12 L256A-12	Unit	Notes
		Symbol	Min	Max	Min	Max	Min	Max		
Read Cycle Time	tAVAV	tRC	85	-	100	_	120	-	ns	_
Address Access Time	tAVQV	tAA	_	85	- T	100	_	120	ns	_
E Access Time	tELQV	†AC	_	85	l –	100	_	120	ns	_
G Access Time	tGLQV	^t OE	_	45	_	50	_	60	ns	T -
Output Hold from Address Change	tAXQX	tОН	10	_	10	_	10	_	ns	_
Chip Enable to Output Low-Z	tELQX	tCLZ	10	_	10	_	10	_	ns	2, 3
Output Enable to Output Low-Z	tGLQX	tOLZ	-5	_	5	_	5	_	ns	2, 3
Chip Enable to Output High-Z	tEHQZ	tCHZ	0	30	0	35	0	40	ns	2, 3
Output Enable to Output High-Z	tGHQZ	tOHZ	0	30	0	35	0	40	ns	2, 3

NOTES:

- 1. W is high at all times for read cycles.
- 2. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 100 mV transition from the previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.

READ CYCLE

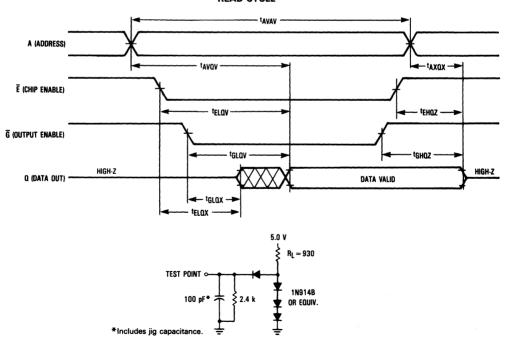
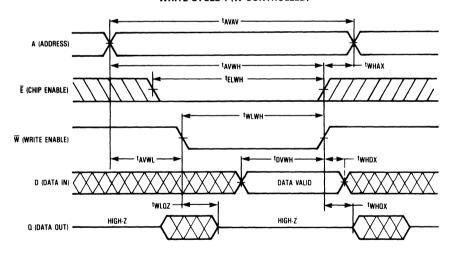
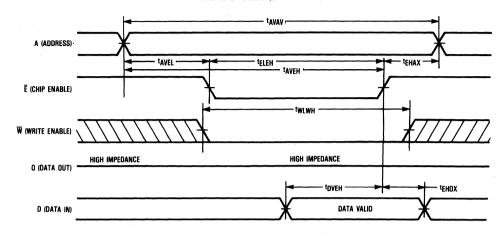


Figure 1. AC Test Load


WRITE CYCLE 1 AND 2 (See Note 1)

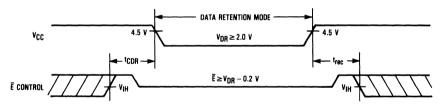
Parameter	Symbol	Alt)256A-85 L256A-85)256A-10 L256A-10	MCM60	256A-12 L256A-12	Unit	Notes
		Symbol	Min	Max	Min	Max	Min	Max		
Write Cycle Time	tAVAV	twc	85	_	100	_	120	_	ns	_
Address Setup Time	tAVWL/tAVEL	tAS	0	_	0	T -	0	_	ns	_
Address Valid to End of Write	tavwh/taveh	tAW	75	_	80	_	85	_	ns	-
Write Pulse Width	tWLWH	tWP	60	_	60	l –	70	_	ns	2
Data Valid to End of Write	tDVWH/tDVEH	tDW	35	_	35	l –	40	_	ns	_
Data Hold Time	tWHDX/tEHDX	tDH	0	_	0	_	0	_	ns	_
Write Low to Output in High-Z	tWLQZ	twnz	0	25	0	25	0	30	ns	3, 4
Write High to Output Low-Z	twhax	tWLZ	10	_	10	_	10	_	ns	3, 4
Write Recovery Time	tWHAX/tEHAX	twn	5	_	0	_	0	_	ns	5
Chip Enable to End of Write	tELWH/tELEH	tcw	65	_	80	_	85	_	ns	_


NOTES:

- Outputs are in high impedance state if G is high during Write Cycle.
- 2. A write occurs during the overlap (twp) of a low \overline{E} and a low \overline{W} . If \overline{W} goes low prior to \overline{E} low then outputs will remain in a high impedance state.
- 3. All high-Z and low-Z parameters are considered in a high or low impedance state when the outputs have made a 100 mV transition from the previous steady state voltage.
- 4. These parameters are periodically sampled and not 100% tested.
- 5. two is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.

WRITE CYCLE 1 (W CONTROLLED)

WRITE CYCLE 2 (E Controlled)



DATA RETENTION CHARACTERISTICS (TA = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	
V _{CC} for Data Retention (Ē≥V _{CC} -0.2 V)		V _{DR}	2.0	_	5.5	٧
Data Retention Current (Ē≥V _{CC} -0.2 V)	MCM60256A : V _{CC} =3.0 V V _{CC} =5.5 V	ICCDR	_	_	50 100	μΑ
	MCM60L256A: V _{CC} = 3.0 V V _{CC} = 5.5 V		-	-	10** 30	
Chip Disable to Data Retention Time		tCDR	0	_	_	ns
Operation Recovery Time		t _{rec}	tAVAV*	_	_	ns

^{*}tAVAV = Read Cycle Time

DATA RETENTION MODE

NOTE: If the V_{IH} of \overline{E} is 2.4 V in operation, I_{SB1} current flows during the period that the V_{CC} voltage is decreasing from 4.5 V to 2.4 V.

^{**}This characteristic is guaranteed to meet 3 μ A max at $T_A = 0$ to $+40^{\circ}$ C.

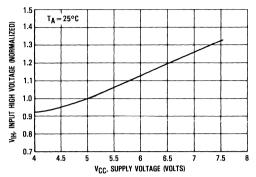


Figure 1. Input High Voltage versus Supply Voltage

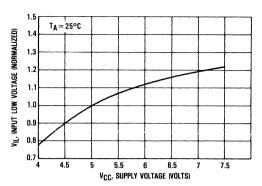


Figure 2. Input Low Voltage versus Supply Voltage

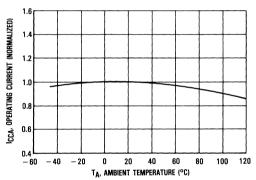


Figure 3. Operating Current versus Ambient Temperature

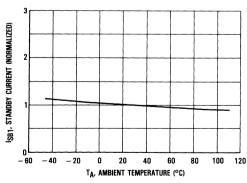


Figure 4. ISB1 Standby Current versus Ambient Temperature

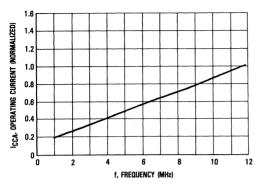



Figure 5. ISB2 Standby Current versus Ambient Temperature

1.6 1.2 1.2 1.2 0.8 0.8 0.4 0.4 0.2 0 2 4 6 8 10 12 f, FREQUENCY (MHz)

Figure 6. Low Power Operating Current versus Frequency (Read)

Figure 7. Operating Current versus Frequency (Write)

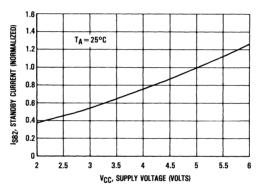


Figure 8. Low Power ISB2 Standby Current versus Supply Voltage

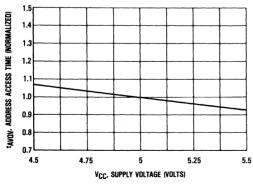


Figure 9. Access Time versus Supply Voltage

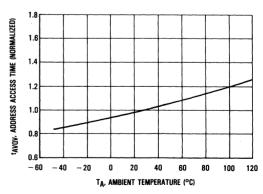
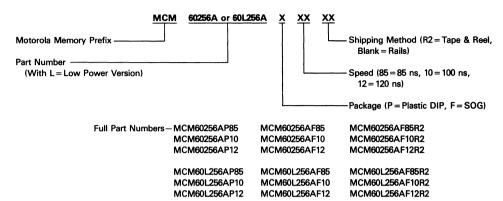
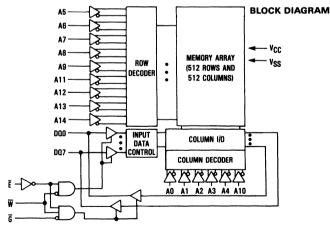



Figure 10. Access Time versus Ambient Temperature

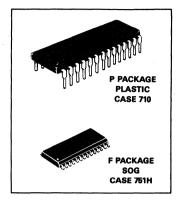
ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information


32K×8 Bit CMOS Static Random Access Memory

The MCM60L256A-70 is a 262,144 bit low-power static random access memory organized as 32,768 words of 8 bits, fabricated using silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. The operating current is 5 mA/MHz (typ) and the minimum cycle time is 70 ns. For long cycle times (>100 ns), the automatic power down (APD) circuitry will temporarily shut down various power consuming circuits, thereby reducing the active power consumption.


Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. When \overline{E} is a logic high, the part is placed in low power standby mode. The maximum standby current for MCM60L256A-70 is 2 μ A ($T_A = 25^{\circ}$ C). Chip enable also controls the data retention mode. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 40 ns (MCM60L256A-70). Thus the MCM60L256A-70 is suitable for use in various microprocessor application systems where high speed, low power, and battery backup are required.

The MCM60L256A-70 is offered in a 600 mil, 28 pin plastic dual-in-line package (PDIP) as well as the 330 mil, 28 pin plastic small outline gullwing package (SOG).

- Single 5 V Supply, ±10%
- 32K×8 Organization
- Fully Static No Clock or Timing Strobes Necessary
- Low Power Dissipation—27.5 mW/MHz (Typical Active)
- Output Enable and Chip Enable Inputs for More System Design Flexibility and Low Power Standby Mode
- Battery Backup Capability
- Data Retention Supply Voltage = 2.0 V to 5.5 V
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 70 ns (Max)

MCM60L256A-70

PIN	PIN ASSIGNMENT									
A14 [1 •	28	Dv _{CC}							
A12 [2	27	þw							
A7 [3	26]A13							
A6 [4	25] A8							
A5 [5	24	1 A9							
A4 [6	23]A11							
A3 [7	22	1 6							
A2 [8	21] A10							
A1 [9	20	þē							
A0 [10	19	007							
D@0 [11	18	D 006							
DQ1 [12	17] DQ5							
DQ2 [13	16] DQ4							
v _{ss} [14	15	D03							
	<u></u>		ı							

PIN NAMES											
A0-A14 .											Address
₩											. Write Enable
Ē											Chip Enable
Ğ											Output Enable
DQ0-DQ7									D	at	ta Input/Output
Vcc								+	- 5	١	/ Power Supply
Vss											Ground

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE

Ē	G	W	Mode	Supply Current	I/O Pin
Н	X	Х	Not Selected	ISB	High Z
L	Н	Н	Output Disabled	Icc	High Z
L	L	Н	Read	Icc	Dout
Ĺ	X	L	Write	Icc	D _{in}

X = don't care

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating		Symbol	Value	Unit
Power Supply Voltage		Vcc	-0.3 to +7.0	٧
Voltage to Any Pin with Respect to VSS		V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Power Dissipation (T _A = 25°C)	PDIP SOG	PD	1.0 0.6	w
Operating Temperature		TA	0 to +70	°C
Storage Temperature		T _{stg}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.3*	_	0.8	٧

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 50 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{lkg(I)}	_	< 0.01	±1.0	μА
Output Leakage Current (E=V _{IH} or G=V _{IH} or W=V _{IL} , V _{out} =0 to V _{CC})		_	< 0.01	± 1.0	μΑ
Operating Current (Read Cycle) (E=V _{IL} , W=V _{IH} , Other Input=V _{IH} /V _{IL} , I _{Out} =0 mA)	ICCA1				mA
MCM60L256A-70: t _{AVAV} = 1 µs MCM60L256A-70: t _{AVAV} = 70 ns		- -	10 —	15 70	
$(\overline{E} = 0.2 \text{ V}, \overline{W} = \text{V}_{CC} - 0.2 \text{ V}, \text{ Other Input} = \text{V}_{CC} - 0.2 \text{ V}/0.2 \text{ V}, \\ \text{I}_{Out} = 0 \text{ mA}) \\ \text{MCM60L256A-70: } \text{t}_{AVAV} = 1 \mu\text{s} \\ \text{MCM60L256A-70: } \text{t}_{AVAV} = 70 \text{ ns} \\$	ICCA2	<u>-</u> -	5 	8 60	
Standby Current (E=V _{IH})	ISB1	_	_	3.0	mA
Standby Current (Ē≥V _{CC} − 0.2 V, V _{CC} = 2.0 to 5.5 V) MCM60L256A-70 (T _A = 25°C)	ISB2	-	_	30 2	μΑ
Output Low Voltage (I _{OL} = 4.0 mA)	V _{OL}	_		0.4	V
Output High Voltage (IOH = -1.0 mA)	VoH	2.4		_	٧

Typical values are referenced to TA = 25°C and VCC = 5.0 V

CAPACITANCE (f = 1 MHz, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic		l Min	Max	Unit
Input Capacitance (Vin = 0 V) All Inputs Except D	a c _{in}	_	10	pF
I/O Capacitance (V _{I/O} =0 V)	a C _{1/O}	_	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

Input Pulse Levels	Output Timing Measurement Reference Levels 0.8 and 2.2 V
Input Rise/Fall Time	Output Load
Input Timing Measurement Reference Levels 1.5 V	

READ CYCLE (See Note 1)

Parameter	Combal	Alt	MCM60L256A-70		Unit	Notes
rarameter	Symbol	Symbol	Min	Max	Unit	NOTES
Read Cycle Time	tAVAV	tRC	70	_	ns	_
Address Access Time	tAVQV	tAA	_	70	ns	_
E Access Time	†ELQV	†AC	_	70	ns	_
G Access Time	tGLQV	^t OE	_	40	ns	_
Output Hold from Address Change	tAXQX	tОН	10	-	ns	_
Chip Enable to Output Low-Z	†ELQX	tCLZ	10	_	ns	2, 3
Output Enable to Output Low-Z	tGLQX	tOLZ	5	_	ns	2, 3
Chip Enable to Output High-Z	tEHQZ	tCHZ	0	25	ns	2, 3
Output Enable to Output High-Z	tGHOZ	tOHZ	0	25	ns	2, 3

NOTES:

- 1. W is high at all times for read cycles.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 100 mV transition from the previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.

READ CYCLE

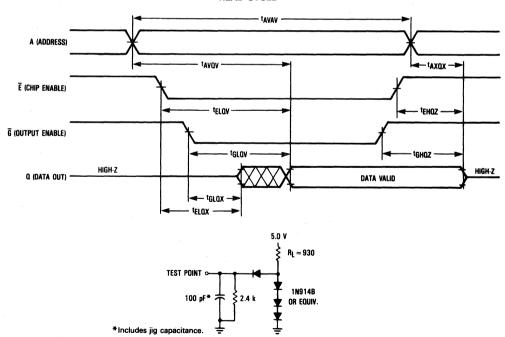
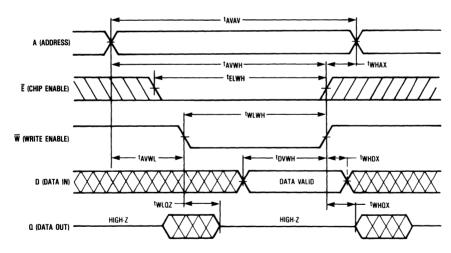
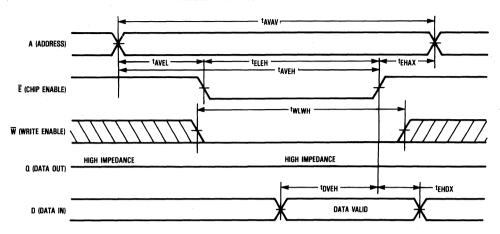


Figure 1. AC Test Load


WRITE CYCLE 1 AND 2 (See Note 1)

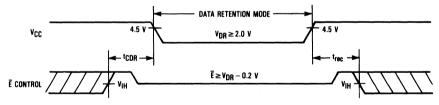
	0	Alt	MCM60L256A-70			
Parameter	Symbol	Symbol	Min	Max	Unit	Notes
Write Cycle Time	† _{AVAV}	twc	70		ns	_
Address Setup Time	tAVWL/tAVEL	tAS	0	_	ns	_
Address Valid to End of Write	tavwh/taveh	tAW	60	_	ns	_
Write Pulse Width	twlwh	tWP	50	_	ns	2
Data Valid to End of Write	tDVWH/tDVEH	tDW	25	-	ns	_
Data Hold Time	tWHDX/tEHDX	tDH	0	_	ns	_
Write Low to Output in High-Z	twloz	twHZ	0	25	ns	3, 4
Write High to Output Low-Z	twhox	tWLZ	5	-	ns	3, 4
Write Recovery Time	twhax/tehax	twR	0	_	ns	5
Chip Enable to End of Write	telwh/teleh	tcw	50	-	ns	T -


NOTES:

- 1. Outputs are in high impedance state if $\overline{\mathbf{G}}$ is high during Write Cycle.
- 2. A write occurs during the overlap (twp) of a low \$\overline{E}\$ and a low \$\overline{W}\$. If \$\overline{W}\$ goes low prior to \$\overline{E}\$ low then outputs will remain in a high impedance state.
- 3. All high-Z and low-Z parameters are considered in a high or low impedance state when the outputs have made a 100 mV transition from the previous steady state voltage.
- 4. These parameters are periodically sampled and not 100% tested.
- 5. two is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.

WRITE CYCLE 1 (W CONTROLLED)

WRITE CYCLE 2 (E CONTROLLED)



DATA RETENTION CHARACTERISTICS ($T_{\Delta} = 0$ to $+70^{\circ}$ C)

Parameter		Symbol	Min	Тур	Max	Unit
V _{CC} for Data Retention (Ē≥V _{CC} -0.2 V)		VDR	2.0	_	5.5	V
Data Retention Current (E≥V _{CC} -0.2 V)	MCM60L256A-70: V _{CC} = 3.0 V V _{CC} = 5.5 V	ICCDR	_	_	10** 30	μΑ
Chip Disable to Data Retention Time		tCDR	0	_		ns
Operation Recovery Time		t _{rec}	tAVAV*	_	_	ns

^{*}t_{AVAV} = Read Cycle Time

DATA RETENTION MODE

NOTE: If the V_{IH} of \bar{E} is 2.4 V in operation, I_{SB1} current flows during the period that the V_{CC} voltage is decreasing from 4.5 V to 2.4 V.

^{**}This characteristic is guaranteed to meet 3 μ A max at $T_A = 0$ to $+40^{\circ}$ C.

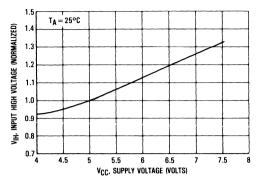


Figure 1. Input High Voltage versus Supply Voltage

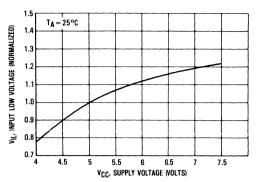


Figure 2. Input Low Voltage versus Supply Voltage

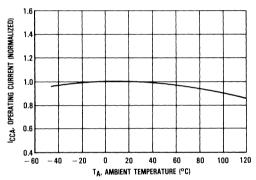


Figure 3. Operating Current versus Ambient Temperature

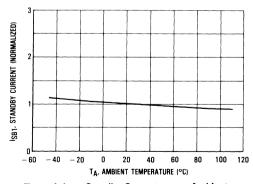


Figure 4. I_{SB1} Standby Current versus Ambient Temperature

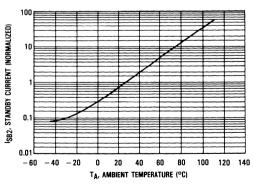
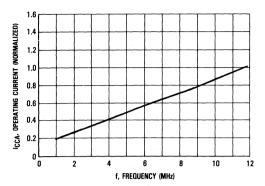



Figure 5. I_{SB2} Standby Current versus Ambient Temperature

1.6 ICCA, OPERAȚING CURRENT (NORMALIZED) 1.2 1.0 0.8 0.6 0.4 0.2 0 o 2 4 6 8 10 12 f, FREQUENCY (MHz)

Figure 6. Low Power Operating Current versus Frequency (Read)

Figure 7. Operating Current versus Frequency (Write)

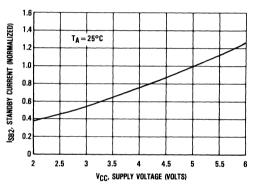


Figure 8. Low Power ISB2 Standby Current versus Supply Voltage

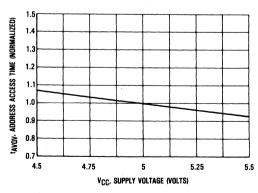


Figure 9. Access Time versus Supply Voltage

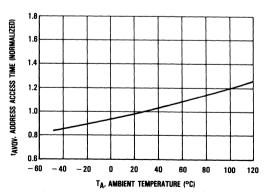
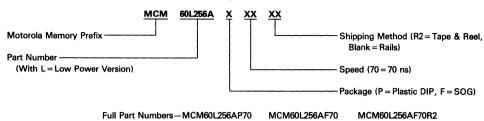
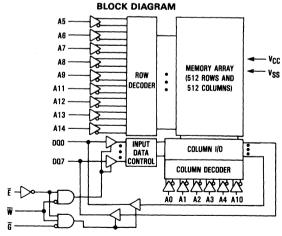



Figure 10. Access Time versus Ambient Temperature

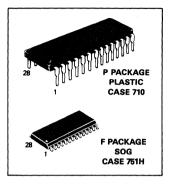
ORDERING INFORMATION (Order by Full Part Number)

Advance Information

32K×8 Bit CMOS Static Random Access Memory


Industrial Temperature Range: - 40 to 85°C

The MCM60256A-C is a 262,144 bit low-power static random access memory organized as 32,768 words of 8 bits, fabricated using silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. The operating current is 5 mA/MHz (typ) and the cycle time is 100 ns. For long cycle times (>100 ns), the automatic power down (APD) circuitry will temporarily shut down various power consuming circuits, thereby reducing the active power consumption.


Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. When \overline{E} is a logic high, the part is placed in low power standby mode. The maximum standby current is $2~\mu A$ ($T_A = 25^{\circ}C$). Chip enable also controls the data retention mode. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 50 ns. Thus the MCM60256A-C is suitable for use in various microprocessor application systems where high speed, low power, and battery backup are required.

The MCM60256A-C is offered in a 28 pin, 600 mil plastic dual-in-line package and a 330 mil gull-wing SO package.

- Single 5 V Supply, ±10%
- 32K × 8 Organization
- Fully Static No Clock or Timing Strobes Necessary
- Low Power Dissipation 27.5 mW/MHz (Typical Active)
- Output Enable and Chip Enable Inputs for More System Design Flexibility and Low Power Standby Mode
- Battery Backup Capability (Maximum Standby Current = 2 μA @ 25°C)
- Data Retention Supply Voltage = 2.0 V to 5.5 V
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Time: MCM60256A-C10 and MCM60L256A-C10 = 100 ns (Max)

MCM60256A-C MCM60L256A-C

PIN ASSIGNMENT						
A14 [1 •	28 I V _{CC}				
A12 [2	27 DW				
A7 [3	26 A13				
A6 [4	25 A8				
A5 [5	24] A9				
A4 [6	23 DA11				
A3 [7	22 j G				
A2 [8	21 [] A10				
A1 [9	20 j i Ē				
A0 [10	19 🕽 007				
DQ0 [11	18 🕽 006				
DQ1 [12	17 005				
DQ2 [13	16 004				
v _{ss} [14	15 003				
·						

PIN NAMES
A0-A14 Address
W Write Enable
E Chip Enable
G Output Enable
DQ0-DQ7 Data Input/Output
V _{CC} +5 V Power Supply
V _S S Ground

This document contains information on a new product. Specifications and information herein are subject to charge without notice.

TRUTH TABLE

Ē	G	W	Mode	Mode Supply Current	
Н	X	Х	Not Selected	ISB	High Z
L	н	Н	Output Disabled	Icc	High Z
L	L	Н	Read	Icc	Dout
L	X	L	Write	Icc	D _{in}

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating		Symbol	Value	Unit
Power Supply Voltage		Vcc	-0.3 to +7.0	٧
Voltage to Any Pin with Respect to	Vss	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Power Dissipation (T _A = 25°C)	PDIP SOG	PD	1.0 0.6	w
Operating Temperature		TA	-40 to +85	°C
Storage Temperature		T _{stq}	-55 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high state voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	>
Input High Voltage	VIH	2.2	-	V _{CC} +0.3	>
Input Low Voltage	VIL	-0.3*	_	0.8	٧

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 50 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{lkg(l)}	-	< 0.01	± 1.0	μА
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (O)	1	< 0.01	±1.0	μА
Operating Current (Read Cycle) ($\overline{E} = V_{IL}$, $\overline{W} = V_{IH}$, Other Input = V_{IH}/V_{IL} , $I_{Out} = 0$ mA) $t_{AVQV} = 1$ μ s $t_{AVQV} = 100$ ns	ICCA1	-	10 —	15 70	mA
(\$\overline{E}=0.2\$ V, \$\overline{W}=V_{CC}-0.2\$ V, Other Input = \$V_{CC}-0.2\$ V/0.2 V, \$\$t_{AVQV}=1\$ \$\mu s\$ \$\$t_{AVQV}=100\$ ns	ICCA2	<u>-</u>	5 —	8 60	
Standby Current (E=V _{IH})	ISB1	_	_	3.0	mA
Standby Current (Ē≥V _{CC} − 0.2 V, V _{CC} = 2.0 to 5.5 V) (T _A = 25°C)	I _{SB2}	-	2 –	100 2	μΑ
Output Low Voltage (I _{OL} =4.0 mA)	VOL	_	_	0.4	V
Output High Voltage (IOH = -1.0 mA)	Voн	2.4			V

Typical values are referenced to TA = 25°C and VCC = 5.0 V

CAPACITANCE (f = 1 MHz, $T_A = 25$ °C, Periodically Sampled Rather Than 100% Tested)

Characterist	ic	Symbol	Min	Max	Unit
Input Capacitance (Vin=0 V)	All Inputs Except DQ	C _{in}	_	10	pF
I/O Capacitance (V _{I/O} = 0 V)	DQ	C _{I/O}	_	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A = -40 to 85°C, Unless Otherwise Noted)

Input Pulse Levels	Output Timing Measurement Reference Levels 0.8 and 2.2 V
Input Rise/Fall Time	Output Load
Input Timing Measurement Reference Levels 1.5 V	

READ CYCLE (See Note 1)

Parameter	Symbol	Alt Symbol	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	100	_	ns	_
Address Access Time	tAVQV	tAA	-	100	ns	-
E Access Time	tELQV	tAC	_	100	ns	_
G Access Time	tGLQV	tOE	-	50	ns	_
Output Hold from Address Change	tAXQX	tOH	10	_	ns	_
Chip Enable to Output Low-Z	tELQX	tCLZ	10	_	ns	2, 3
Output Enable to Output Low-Z	tGLQX	toLZ	5	_	ns	2, 3
Chip Enable to Output High-Z	tEHQZ	tCHZ	0	35	ns	2, 3
Output Enable to Output High-Z	tGHQZ	tonz	0	35	ns	2, 3

NOTES:

- W is high at all times for read cycles.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 100 mV transition from the previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.

READ CYCLE

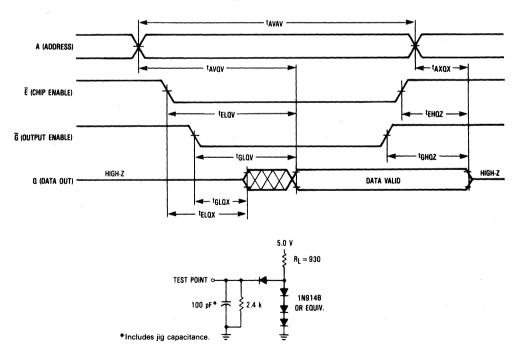
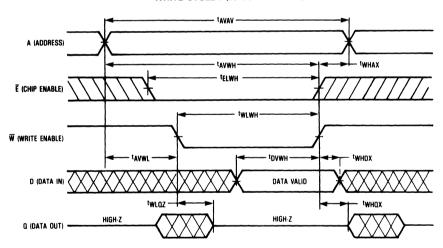
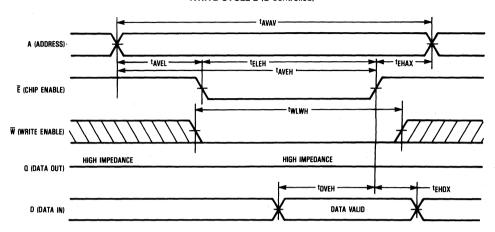


Figure 1. AC Test Load


WRITE CYCLE 1 AND 2 (See Note 1)

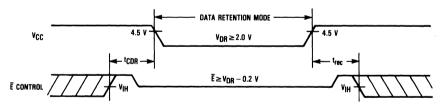
Parameter	Symbol	Alt Symbol	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	tWC	100	_	ns	-
Address Setup Time	tAVWL/tAVEL	tAS	0	_	ns	_
Address Valid to End of Write	tavwh/taveh	tAW	80	_	ns	_
Write Pulse Width	tWLWH	tWP	60	_	ns	2
Data Valid to End of Write	tDVWH/tDVEH	tDW	35	_	ns	_
Data Hold Time	tWHDX/tEHDX	^t DH	0	_	ns	_
Write Low to Output in High-Z	tWLQZ	tWHZ	0	25	ns	3, 4
Write High to Output Low-Z	twhax	tWLZ	10	_	ns	3, 4
Write Recovery Time	tWHAX/tEHAX	twr	0	_	ns	5
Chip Enable to End of Write	telWH/teleH	tcw	80	_	ns	_


NOTES:

- 1. Outputs are in high impedance state if $\overline{\mathbf{G}}$ is high during Write Cycle.
- 2. A write occurs during the overlap (twp) of a low \overline{E} and a low \overline{W} . If \overline{W} goes low prior to \overline{E} low then outputs will remain in a high impedance state.
- 3. All high-Z and low-Z parameters are considered in a high or low impedance state when the outputs have made a 100 mV transition from the previous steady state voltage.
- 4. These parameters are periodically sampled and not 100% tested.
- 5. two is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.

WRITE CYCLE 1 (W CONTROLLED)

WRITE CYCLE 2 (E Controlled)



DATA RETENTION CHARACTERISTICS ($T_{\Delta} = -40 \text{ to } 85^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
V _{CC} for Data Retention (Ē≥V _{CC} -0.2 V)	V _{DR}	2.0	_	5.5	V
Data Retention Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$) $V_{CC} = 3.0 \text{ V}_{CC} = 5.5 \text{ V}$		_	_	50 100	μА
Chip Disable to Data Retention Time	tCDR	0	_		ns
Operation Recovery Time	t _{rec}	tAVAV*	_		ns

^{*}tAVAV = Read Cycle Time

DATA RETENTION MODE

NOTE: If the V_{IH} of \overline{E} is 2.4 V in operation, I_{SB1} current flows during the period that the V_{CC} voltage is decreasing from 4.5 V to 2.4 V.

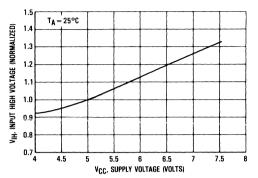


Figure 1. Input High Voltage versus Supply Voltage

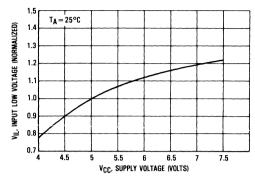


Figure 2. Input Low Voltage versus Supply Voltage

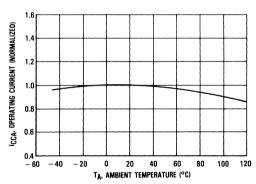


Figure 3. Operating Current versus Ambient Temperature

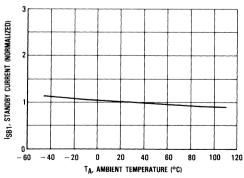


Figure 4. I_{SB1} Standby Current versus Ambient Temperature

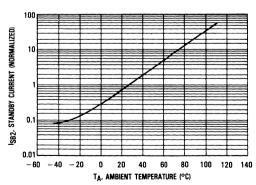


Figure 5. ISB2 Standby Current versus Ambient Temperature

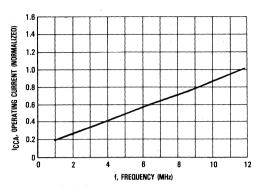


Figure 6. Low Power Operating Current versus Frequency (Read)

Figure 7. Operating Current versus Frequency (Write)

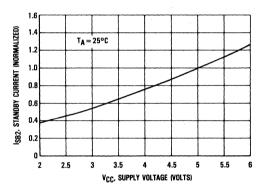


Figure 8. Low Power ISB2 Standby Current versus Supply Voltage

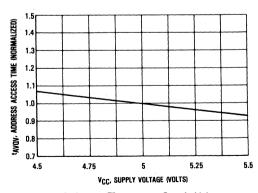


Figure 9. Access Time versus Supply Voltage

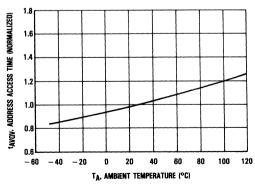
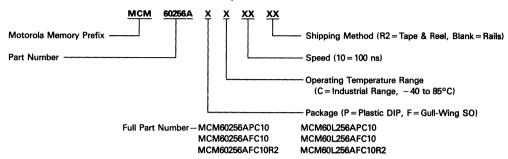
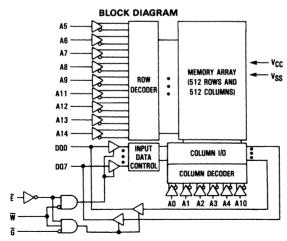



Figure 10. Access Time versus Ambient Temperature

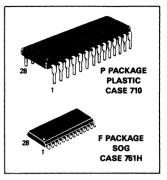
ORDERING INFORMATION (Order by Full Part Number)

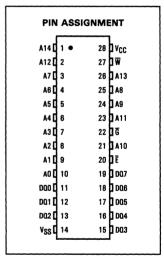
Advance Information

32K×8 Bit CMOS Static Random Access Memory


Extended Temperature Range: -40 to 105°C

The MCM60L256A-V is a 262,144 bit low-power static random access memory organized as 32,768 words of 8 bits, fabricated using silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. The operating current is 5 mA/MHz (typ) and the cycle time is 100 ns. For long cycle times (>100 ns), the automatic power down (APD) circuitry will temporarily shut down various power consuming circuits, thereby reducing the active power consumption.


Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. When \overline{E} is a logic high, the part is placed in low power standby mode. The maximum standby current is $2~\mu\Lambda$ ($T_A=25^{\circ}C$). Chip enable also controls the data retention mode. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 50 ns. Thus the MCM60L256A-V is suitable for use in various microprocessor application systems where high speed, low power, and battery backup are required.


The MCM60L256A-V is offered in a 28 pin, 600 mil plastic dual-in-line package and a 330 mil gull-wing SO package.

- Single 5 V Supply, ±10%
- 32K×8 Organization
- Fully Static No Clock or Timing Strobes Necessary
- Low Power Dissipation-27.5 mW/MHz (Typical Active)
- Output Enable and Chip Enable Inputs for More System Design Flexibility and Low Power Standby Mode
- Battery Backup Capability (Maximum Standby Current = 2 μA @ 25°C)
- Data Retention Supply Voltage = 2.0 V to 5.5 V
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Time: MCM60L256A-V10 = 100 ns (Max)

MCM60L256A-V

PIN NAMES
A0-A14 Address
W Write Enable
Ē Chip Enable
G Output Enable
DQ0-DQ7 Data input/Output
V _{CC} +5 V Power Supply
V _{SS} Ground

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE

Ē	G W Mode		Supply Current	I/O Pin	
н	×	×	Not Selected	ISB	High Z
L	Н	Н	Output Disabled	Icc	High Z
L	L	Н	Read	lcc	Dout
L	X	L	Write	Icc	D _{in}

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

ADOCEOTE MAXIMOM NATINGS (See Note)								
Rating		Symbol	Value	Unit				
Power Supply Voltage		Vcc	-0.3 to +7.0	٧				
Voltage to Any Pin with Respect to VSS		V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧				
Power Dissipation (T _A = 25°C)	PDIP SOG	PD	1.0 0.6	W				
Operating Temperature		TA	-40 to +105	°C				
Storage Temperature		T _{stg}	-55 to +150	°C				

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = -40 to 105°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.3*	-	0.8	V

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 50 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{lkg(l)}	-	< 0.01	±1.0	μА
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	likg(O)	_	< 0.01	±1.0	μΑ
Operating Current (Read Cycle) $(\overline{E} = V_{ L}, \ \overline{W} = V_{ H}, \ \text{Other Input} = V_{ H}/V_{ L}, \ I_{\text{Out}} = 0 \ \text{mA}) \\ t_{\text{AVQV}} = 100 \ \text{ns}$	ICCA1	-	10 —	15 70	mA
(\$\overline{E}=0.2 \text{ V, } \overline{W}=V_{CC}-0.2 \text{ V, Other Input}=V_{CC}-0.2 \text{ V/0.2 V,} \ t_{AVQV}=1 \ \mu s t_{AVQV}=100 \ ns	ICCA2	-	5 -	8 60	
Standby Current (E=V _{IH})	ISB1	_	_	3.0	mA
Standby Current ($\bar{E} \ge V_{CC} - 0.2$ V, $V_{CC} = 2.0$ to 5.5 V) $(T_A = 25^{\circ}C)$	ISB2	_	2 –	100 2	μΑ
Output Low Voltage (I _{OL} =4.0 mA)	VOL	_	_	0.4	V
Output High Voltage (I _{OH} = -1.0 mA)	Voн	2.4	_	_	V

Typical values are referenced to $T_A = 25^{\circ}C$ and $V_{CC} = 5.0 \text{ V}$

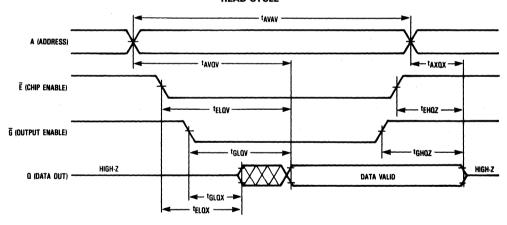
CAPACITANCE (f = 1 MHz, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic		Symbol	Min	Max	Unit
Input Capacitance (Vin=0 V)	All Inputs Except DQ	C _{in}	_	10	pF
I/O Capacitance (V _{I/O} =0 V)	DQ	C _{I/O}	_	10	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=-40 to 105°C, Unless Otherwise Noted)

Input Pulse Levels	Output Timing Measurement Reference Levels 0.8 and 2.2 V
Input Rise/Fall Time	Output Load
Input Timing Measurement Reference Levels 1.5 V	


READ CYCLE (See Note 1)

Parameter	Symbol	Alt Symbol	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	100	-	ns	-
Address Access Time	tAVQV	tAA	-	100	ns	-
Ē Access Time	tELQV	†AC	_	100	ns	_
G Access Time	tGLQV	^t OE	-	50	ns	-
Output Hold from Address Change	tAXQX	tон	10	_	ns	_
Chip Enable to Output Low-Z	tELQX	tCLZ	10	_	ns	2, 3
Output Enable to Output Low-Z	tGLQX	toLZ	5	_	ns	2, 3
Chip Enable to Output High-Z	tEHOZ	tCHZ	0.	35	ns	2, 3
Output Enable to Output High-Z	tGHQZ	tonz	0	35	ns	2, 3

NOTES:

- W is high at all times for read cycles.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 100 mV transition from the previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.

READ CYCLE

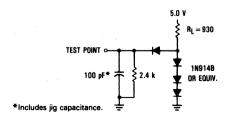
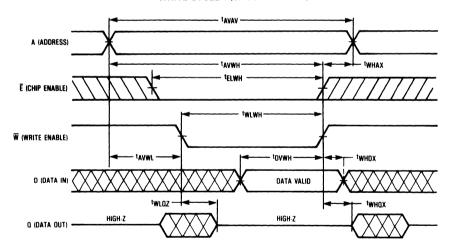
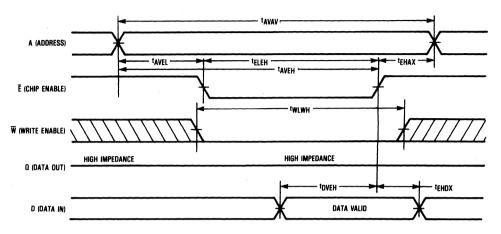


Figure 1. AC Test Load


WRITE CYCLE 1 AND 2 (See Note 1)

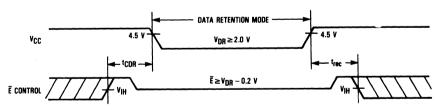
Parameter	Symbol	Alt Symbol	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	tWC	100	_	ns	
Address Setup Time	tAVWL/tAVEL	tAS	0	_	ns	-
Address Valid to End of Write	tavwh/taveh	tAW	80	_	ns	_
Write Pulse Width	tWLWH	tWP	60	_	ns	2
Data Valid to End of Write	tDVWH/tDVEH	tDW	35	_	ns	-
Data Hold Time	tWHDX/tEHDX	^t DH	0	_	ns	_
Write Low to Output in High-Z	tWLOZ	tWHZ	0	30	ns	3, 4
Write High to Output Low-Z	twhax	tWLZ	10	_	ns	3, 4
Write Recovery Time	tWHAX/tEHAX	twR	0	_	ns	5
Chip Enable to End of Write	telwh/teleh	tcw	80	_	ns	_


NOTES:

- 1. Outputs are in high impedance state if G is high during Write Cycle.
- 2. A write occurs during the overlap (twp) of a low E and a low W. If W goes low prior to E low then outputs will remain in a high impedance state.
- 3. All high-Z and low-Z parameters are considered in a high or low impedance state when the outputs have made a 100 mV transition from the previous steady state voltage.
- 4. These parameters are periodically sampled and not 100% tested.
- 5. t_{WR} is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.

WRITE CYCLE 1 (W CONTROLLED)

WRITE CYCLE 2 (E Controlled)



DATA RETENTION CHARACTERISTICS (T_A = -40 to 105°C)

Parameter	Symbol	Min	Тур	Max	Unit
V _{CC} for Data Retention (Ē≥V _{CC} −0.2 V)	VDR	2.0	_	5.5	V
Data Retention Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$) $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	ICCDR	_	_	50 100	μА
Chip Disable to Data Retention Time	tCDR	0	_	_	ns
Operation Recovery Time	t _{rec}	tAVAV*	_	_	ns

^{*}t_{AVAV} = Read Cycle Time

DATA RETENTION MODE

NOTE: If the V_{IH} of \bar{E} is 2.4 V in operation, I_{SB1} current flows during the period that the V_{CC} voltage is decreasing from 4.5 V to 2.4 V.

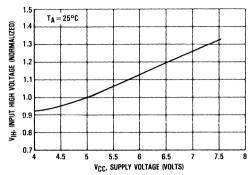


Figure 1. Input High Voltage versus Supply Voltage

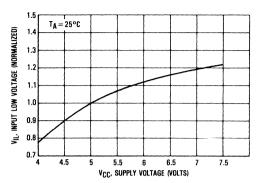


Figure 2. Input Low Voltage versus Supply Voltage

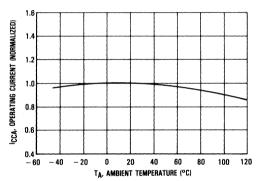


Figure 3. Operating Current versus Ambient Temperature

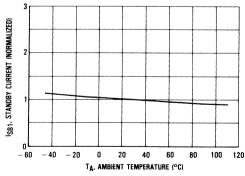


Figure 4. I_{SB1} Standby Current versus Ambient Temperature

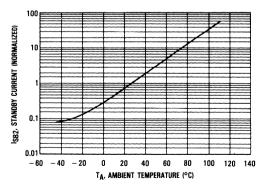


Figure 5. ISB2 Standby Current versus Ambient Temperature

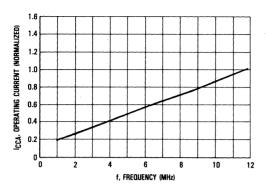


Figure 6. Low Power Operating Current versus Frequency (Read)

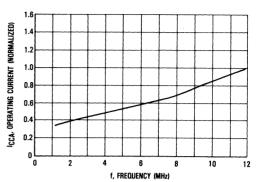


Figure 7. Operating Current versus Frequency (Write)

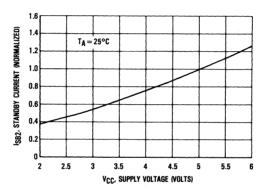


Figure 8. Low Power ISB2 Standby Current versus Supply Voltage

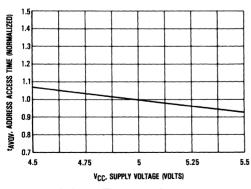


Figure 9. Access Time versus Supply Voltage

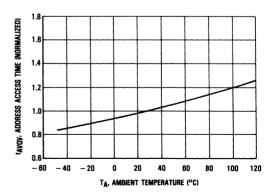
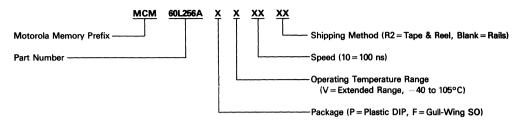



Figure 10. Access Time versus Ambient Temperature

ORDERING INFORMATION (Order by Full Part Number)

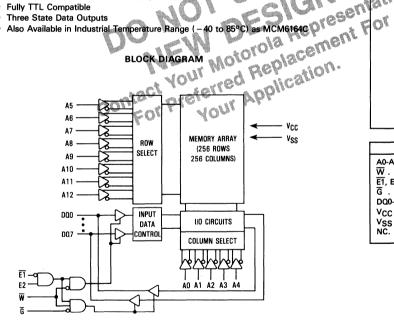
Full Part Number — MCM60L256APV10 MCM60L256AFV10 MCM60L256AFV10R2 6

CMOS Fast Static RAMs 7

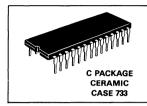
FAST STATIC RAMs (70 ns or Faster)

		Motorola			Address/	Operating	
i	Organi-	Part	Pin	Packaging	Cycle Time	Current	Tech-
Density	zation	Number	Count	(Package Width in mils)	(ns Max)	(mA max)	nology
16K	2Kx8	MCM2018A	24	300 PDIP	45/55	135	NMOS
	4Kx4	MCM6268	20	300 PDIP	20/25/35/45/55	110/110/110/80/80	HCMOS
j		MCM6269	20	300 PDIP	20/25/35	110	HCMOS
		MCM6270	24/22	300 SOJ/PDIP	20/25/35	110	HCMOS
64K	8Kx8	MCM6264	28	300/400 SOJ/300 PDIP	35/45/55	100/90/80	HCMOS
- 1		MCM6264D	28	300/400 SOJ/300 PDIP	20/25	115/110	HCMOS
}		MCM6264	28	300 PDIP/SOJ	15	140	HCMOS
1		MCM6264C	28	300/400 SOJ/300 PDIP	35/45/55	100/90/80	HCMOS
l		MCM6264D-C	28	300/400 SOJ/300 PDIP	25/30	115/110	HCMOS
L		MCM6264C	28	300 PDIP/SOJ	20	140	HCMOS
	8Kx9	MCM6265	28	300 SOJ/PDIP	15/20/25	140/130/120	HCMOS
[16Kx4	MCM6288	22	300 PDIP	12/15/20/25/35	150/140/120/120/110	HCMOS
l		MCM6290	24	300 SOJ/PDIP	12/15/20/25/35	150/140/120/120/110	HCMOS
	64Kx1	MCM6287	24/22	300 SOJ/PDIP	12/15/20/25/35	150/140/130/120/110	HCMOS
256K	32Kx8	MCM6206	28	400 SOJ/600 PDIP	30/35/45	130/125/115	HCMOS
		MCM6206	28	300 SOJ/PDIP	17/20/25/35	155/150/140/135	HCMOS
1		MCM6206C	28	300 SOJ/PDIP	25/35/45	140/135/130	HCMOS
		MCM6706	28	300 SOJ	10/12/15	180/170/160	BICMOS
1	32Kx9	MCM6205	32	300 SOJ/PDIP	17/20/25/35	155/150/140/135	HCMOS
		MCM6205C	32	300 SOJ/PDIP	25/35/45	140/135/130	HCMOS
	64Kx4	MCM6208	24	300 SOJ/PDIP	15/20/25/35	155/145/135/125	HCMOS
- (MCM6708	24	300 SOJ	10/12/15	180/170/160	BICMOS
- 1		MCM6209	28	300 SOJ/PDIP	15/20/25/35	155/145/135/125	HCMOS
L		MCM6709	28	300 SOJ	10/12/15	180/170/160	BICMOS
	256Kx1	MCM6207	24	300 SOJ/PDIP	15/20/25	150/140/130	HCMOS
1M	128Kx8	MCM6226	32	400 SOJ/PDIP	25/30	150/140	HCMOS
ſ	256Kx4	MCM6228	28	400 SOJ/PDIP	25/30	145/135	HCMOS

8K × 8 Bit Fast Static Random **Access Memory**


The MCM6164/MCM61L64 is a 65.536 bit static random access memory organized as 8192 words of 8 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability.

The chip enable pins (E1 and E2) are not clocks. Either pin, when asserted false, causes the part to enter a low power standby mode. The part will remain in standby mode until both pins are asserted true again. The availability of active high and active low chip enable pins provides more system design flexibility than single chip enable devices.


The MCM6164/MCM61L64 is available in a 600 mil, 28 pin ceramic dual-in-line package, with JEDEC standard pinout.

- Single 5 V Supply, ±10%
- 8K × 8 Organization
- Fully Static No Clock or Timing Strobes Necessary
- Fast Access Time 45, 55 ns (Maximum)
- Low Power Dissipation 495, 440 mW (Maximum, Active)
- Low Power/Data Retention Version (MCM61L64)

-ee State Data Outputs Also Available in Industrial Temperature Range (–40 to 85°C) as MCM6164C

MCM6164 MCM61L64

PIN NAMES
A0-A12 Address
W Write Enable
E1, E2 Chip Enable
G Output Enable
DQ0-DQ7 Data Input/Output
V _{CC} +5 V Power Supply
V _{SS} Ground
NC No Connection

TRUTH TABLE

E1	E2	G	w	Mode	Supply Current	I/O Pin
н	х	×	X	Not Selected	ISB	High Z
X.	L	×	х	Not Selected	ISB	High Z
L	Н	Н	Н	Output Disabled	lcc	High Z
L	Н	L	Н	Read	Icc	D _{out}
L	Н	X	L	Write	Icc	Din

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	l _{out}	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.3*	_	0.8	٧

 V_{IL} (min) = -0.3 V dc, V_{IL} (min) = -3.0 V (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Characteristic			Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})				< 0.01	±1.0	μΑ
Output Leakage Current (E1=V _{IH} , E2=V _{IL} , or G=V _{IH} , V _{out} =0 to V _{CC})			_	< 0.01	±1.0	μΑ
Power Supply Current (E1 = V _{IL} , E2 = V _{IH} , I _{out} = 0)	t _{AVAV} = 45 ns t _{AVAV} = 55 ns	ıcc	_	50 40	90 80	mA
Standby Current (E1 = V _{IH} or E2 = V _{IL})		ISB1	_	1.3	3.0	mA
Standby Current (E1≥V _{CC} −0.2 V or E2≤0.2 V)	MCM6164 MCM61L64	ISB2	_	_ 5	1.0 50	mA μA
Output Low Voltage (I _{OL} =8.0 mA)		VOL	_	0.15	0.4	V
Output High Voltage (IOH = -4.0 mA)		∨он	2.4	3.0	_	V

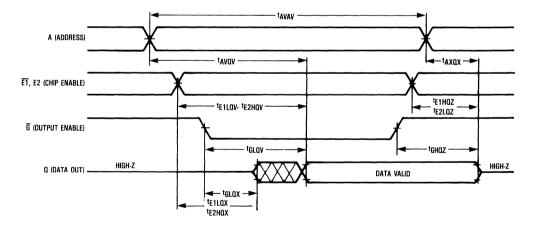
Typical values are referenced to $T_A = 25^{\circ}C$ and $V_{CC} = 5.0 \text{ V}$

$\textbf{CAPACITANCE} \text{ (f = 1.0 MHz, } T_{\mbox{\scriptsize A}} = 25^{\rm o}\text{C, Periodically Sampled Rather Than 100\% Tested)}$

Characteristic			Max	Unit
Input Capacitance	All Inputs Except DQ	C _{in}	6	pF
Input/Output Capacitance	DQ	CI/O	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)


Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 0.8 V and 2.0 V
Input Pulse Levels	Output Load
Input Rise/Fall Time	

READ CYCLE (See Note 1)

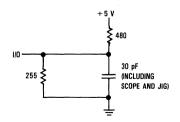
Characteristic	Symbol	Alt	MCM6164-45 MCM61L64-45		MCM6164-55 MCM61L64-55		Unit	Notes
		Symbol	Min	Max	Min	Max		
Read Cycle Time	†AVAV	tRC	45		55	_	ns	_
Address Cycle Time	^t AVQV	tAA	_	45	_	55	ns	_
E1 Access Time	t _{E1LQV}	tAC1	_	45	_	55	ns	_
E2 Access Time	tE2HQV	tAC2	_	45	_	55	ns	_
G Access Time	tGLQV	^t OE	_	20	_	25	ns	_
Output Hold from Address Change	tAXQX	tОН	5		5	_	ns	_
Chip Enable to Output Low-Z	tE1LQX, tE2HQX	tCLZ	5	_	5	_	ns	2, 3
Output Enable to Output Low-Z	tGLQX	tOLZ	0	_	0	_	ns	2, 3
Chip Enable to Output High-Z	te1HOZ, te2LOZ	tCHZ	0	20	0	20	ns	2, 3
Output Enable to Output High-Z	tGHQZ	tOHZ	0	20	0	20	ns	2, 3

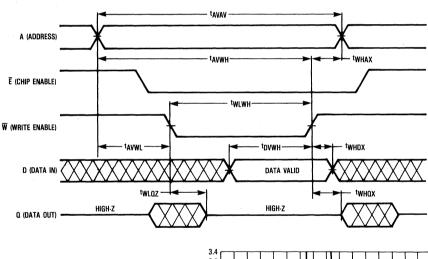
NOTES:

- 1. W is high at all times for read cycles.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 3. Periodically sampled rather than 100% tested.

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.




Figure 1. Test Load

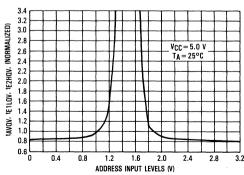
WRITE CYCLE 1 (W CONTROLLED) (See Note 1)

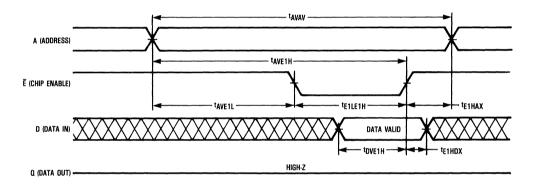
Characteristic	Symbol Alt Symb	mbol Alt		WICIVIOILO4-40			6164-55 1L64-55	Unit	Notes
		Symbol	Min	Max	Min	Max			
Write Cycle Time	tAVAV	twc	45	_	55	_	ns	_	
Address Setup Time	†AVWL	tAS	0	_	0	_	ns	_	
Address Valid to End of Write	^t AVWH	tAW	40	_	50	_	ns	_	
Write Pulse Width	twLWH	tWP	25	_	30	-	ns	2	
Data Valid to End of Write	tDVWH	tDW	20	_	25	_	ns	_	
Data Hold Time	twhox	tDH	0	_	0	_	ns	3	
Write Low to Output in High-Z	tWLQZ	tWHZ	0	20	0	20	ns	4, 5	
Write High to Output Low-Z	twhax	tow	5	_	5	_	ns	4, 5	
Write Recovery Time	tWHAX	twr	0		0	_	ns	_	

NOTES:

- 1. A write cycle starts at the latest transition of a low E1, low W or high E2. A write cycle ends at the earliest transition of a high E1, high W or low E2.
- 2. If \overline{W} goes low coincident with or prior to $\overline{E1}$ low or E2 high then the outputs will remain in a high impedance state.
- 3. During this time the output pins may be in the output state. Signals of opposite phase to the outputs must not be applied at this time.
- 4. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 5. Periodically sampled rather than 100% tested.

TYPICAL CHARACTERISTICS

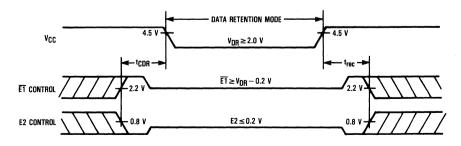



Figure 2. Access Time Versus Address Input Levels

WRITE CYCLE 2 (ENABLE CONTROLLED) (See Notes 1 and 2)

Characteristic	Symbol	Alt		MCM6164-45 MCM61L64-45		MCM6164-55 MCM61L64-55		Notes
		Symbol	Min	Max	Min	Max		
Write Cycle Time	tAVAV	twc	45		55	_	ns	
Address Setup Time	tAVE1L	tAS	0		0	_	ns	_
Address Valid to End of Write	t _{AVE1H}	tAW	40	_	50	_	ns	_
Chip Enable to End of Write	te1LE1H	tcw	40		50	_	ns	3
Data Valid to End of Write	^t DVE1H	t _{DW}	20	_	25	_	ns	_
Data Hold Time	tE1HDX	[†] DH	0	T	0	_	ns	4
Write Recovery Time	tE1HAX	twr	0		0		ns	

NOTES:


- 1. A write cycle starts at the latest transition of a low $\overline{E1}$, low \overline{W} or high E2. A write cycle ends at the earliest transition of a high $\overline{E1}$, high \overline{W} or low E2.
- 2. E1 and E2 timings are identical when E2 signals are inverted.
- 3. If \overline{W} goes low coincident with or prior to $\overline{E1}$ low or E2 high then the outputs will remain in a high impedance state.
- 4. During this time the output pins may be in the output state. Signals of opposite phase to the outputs must not be applied at this time.

LOW VCC DATA RETENTION CHARACTERISTICS (TA = 0 to +70°C) (MCM61L64 Only)

Characteristic	Symbol	Min	Тур	Max	Unit
V_{CC} for Data Retention (E1≥ V_{CC} -0.2 V or E2≤0.2 V, V_{in} ≥ V_{CC} -0.2 V or V_{in} ≤0.2 V)	V _{DR}	2.0	1.0	7.0	٧
Data Retention Current (V _{CC} =3.0 V, E1≥2.8 V or E2≤0.2 V, V _{in} ≥2.8 V or V _{in} ≤0.2 V)	ICCDR	_	10	30	μА
Chip Disable to Data Retention Time (see waveform below)	tCDR	0	_		ns
Operation Recovery Time (see waveform below)	t _{rec}	tAVAV*	-	_	ns

^{*}t_{AVAV} = Read Cycle Time

TYPICAL CHARACTERISTICS (Continued)

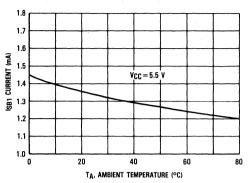


Figure 3. Standby Current Versus Temperature

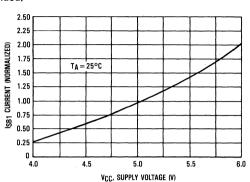


Figure 4. Standby Current Versus Supply Voltage

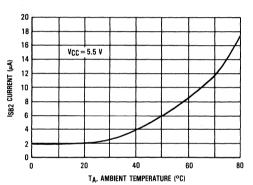


Figure 5. Standby Current Versus Temperature

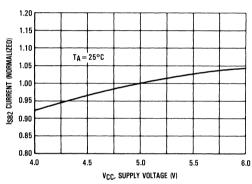


Figure 6. Standby Current Versus Supply Voltage

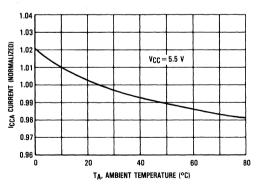


Figure 7. Supply Current Versus Temperature

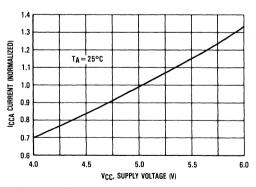
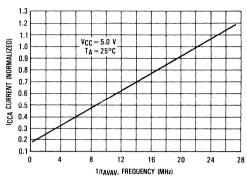
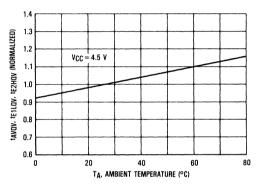



Figure 8. Supply Current Versus Supply Voltage


TYPICAL CHARACTERISTICS (Continued)

1.3
1.2
1.1
1.0
1.0
0.9
0.7
0.6
0.5
40
55
70
tayay, Cycle Time (ns)

Figure 9. Supply Current Versus Frequency

Figure 10. Supply Current Versus Cycle Time

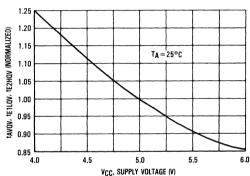
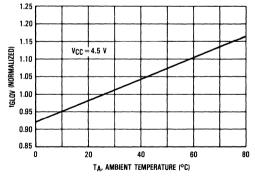



Figure 11. Access Time Versus Temperature

Figure 12. Access Time Versus Supply Voltage

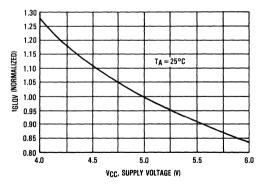
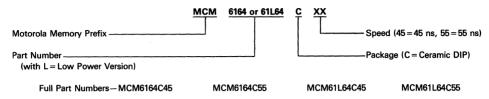



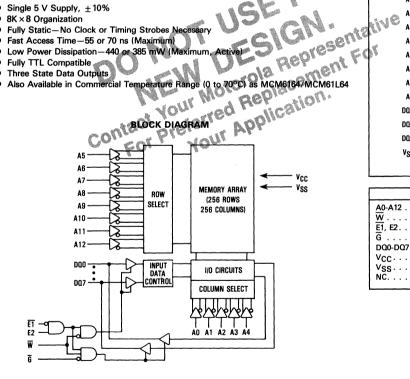
Figure 13. Access Time Versus Temperature

Figure 14. Access Time Versus Supply Voltage

ORDERING INFORMATION (Order by Full Part Number)

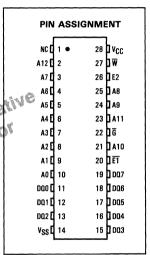
Advance Information

8K x 8 Bit Fast Static Random **Access Memory**


Industrial Temperature Range: - 40 to 85°C

The MCM6164C is a 65,536 bit static random access memory organized as 8192 words of 8 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. With its operating temperature range of -40°C to +85°C and hermetic package, the MCM6164C is ideally suited for harsh industrial type environments.

The chip enable pins ($\overline{E1}$ and E2) are not clocks. Either pin, when asserted false, causes the part to enter a low power standby mode. The part will remain in standby mode until both pins are asserted true again. The availability of active high and active low chip enable pins provides more system design flexibility than single chip enable devices.


The MCM6164C is available in a 600 mil, 28 pin ceramic dual-in-line package with the JEDEC standard pinout.

- Single 5 V Supply, ±10%
- 8K × 8 Organization
- Fully Static—No Clock or Timing Strobes Necessary
- Fast Access Time −55 or 70 ns (Maximum)
- Low Power Dissipation—440 or 385 mW (Maximum, Active)
- Fully TTL Compatible...

MCM6164C

PIN NAMES
A0-A12 Address
W Write Enable
E1, E2 Chip Enable
G Output Enable
DQ0-DQ7 Data Input/Output
V _{CC} +5 V Power Supply
V _S S Ground
NC No Connection

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE

E1	E2	G	w	Mode	Supply Current	I/O Pin
н	×	×	×	Not Selected	ISB	High Z
Х	L	×	×	Not Selected	ISB	High Z
L	Н	н	н	Output Disabled	Icc	High Z
L	Н	L	н	Read	Icc	D _{out}
L	Н	×	L	Write	Icc	D _{in}

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	-40 to +85	°C
Storage Temperature	T _{stg}	-65 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

($V_{CC} = 5.0 \text{ V } \pm 10\%$, $T_A = -40 \text{ to } 85^{\circ}\text{C}$, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	ViH	2.2	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.3*		0.8	٧

 V_{IL} (min) = -0.3 V dc, V_{IL} (min) = -3.0 V (pulse width \leq 20 ns)

DC CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to VCC)	likg(I)	_	<0.01	±2.0	μΑ
Output Leakage Current (E1 = VIH, E2 = VIL, or G = VIH, Vout = 0 to VCC)		_	< 0.01	±2.0	μА
Power Supply Current t _{AVAV} = 5		_	40	80	mA
$(\overline{E1} = V_{IL}, E2 = V_{IH}, I_{out} = 0)$ $t_{AVAV} = 7$	0 ns		35	70	
Standby Current (E1 = V _{IH} or E2 = V _{IL})	ISB1		1.3	3.0	mA
Standby Current (E1≥V _{CC} −0.2 V or E2≤0.2 V)	ISB2	_	0.005	1.0	mA
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	_	0.15	0.4	V
Output High Voltage (IOH = -4.0 mA)	VoH	2.4	3.0	_	V

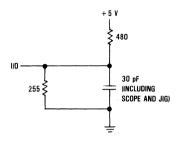
Typical values are referenced to $T_A = 25^{\circ}C$ and $V_{CC} = 5.0 \text{ V}$

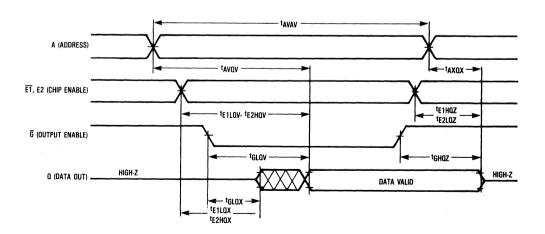
CAPACITANCE (f = 1.0 MHz, $T_A = 25$ °C, Periodically Sampled Rather Than 100% Tested)

Characteristic		Symbol	Max	Unit
Input Capacitance	All Inputs Except DQ	C _{in}	6	pF
Input/Output Capacitance	DQ	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5 V \pm 10%, T_A = -40 to +85°C, Unless Otherwise Noted)




Figure 1. Test Load

READ CYCLE (See Note 1)

		Alt	MCM6164CC55		MCM6164CC70		
Parameter	Symbol	Symbol	Min	Max	Min	Max	Notes
Read Cycle Time	† _{AVAV}	tRC	55	_	70	_	_
Address Cycle Time	tAVQV	tAA		55	_	70	_
E1 Access Time	^t E1LQV	tAC1	_	55	_	70	
E2 Access Time	tE2HQV	tAC2	_	55	_	70	_
G Access Time	tGLQV	^t OE	_	25	_	30	_
Output Hold from Address Change	tAXQX	tOH	5	_	5	_	_
Chip Enable to Output Low-Z	te1lox, te2hox	tCLZ	5	_	5	_	2, 3
Output Enable to Output Low-Z	tGLQX	tOLZ	0	_	0	_	2, 3
Chip Enable to Output High-Z	te1HQZ, te2LQZ	tCHZ	0	20	0	20	2, 3
Output Enable to Output High-Z	tGHQZ	tOHZ	0	20	0	20	2, 3

NOTES:

- 1. \overline{W} is high at all times for read cycles.
- 2. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 3. Periodically sampled rather than 100% tested.

WRITE CYCLE 1 (W CONTROLLED) (See Note 1)

	Sumbal Alt		MCM6	164CC55	MCM61	164CC70	
Parameter	Symbol	Symbol	Min	Max	Min	Max	Notes
Write Cycle Time	tAVAV	twc	55	_	70	_	_
Address Setup Time	†AVWL	tAS	0		0		_
Address Valid to End of Write	^t AVWH	tAW	50	_	60	_	_
Write Pulse Width	tWLWH	tWP	30	_	40	_	2
Data Valid to End of Write	^t DVWH	tDW	25	_	30	_	_
Data Hold Time	twhox	tDH	0	_	0	_	3
Write Low to Output in High-Z	tWLQZ	twHZ	0	20	0	20	4, 5
Write High to Output Low-Z	twhox	tow	5	_	5	_	4, 5
Write Recovery Time	tWHAX	twr	0	_	0		_

NOTES:

- 1. A write cycle starts at the latest transition of a low E1, low W or high E2. A write cycle ends at the earliest transition of a high E1, high W or low E2.
- 2. If W goes low coincident with or prior to E1 low or E2 high then the outputs will remain in a high impedance state.
- 3. During this time the output pins may be in the output state. Signals of opposite phase to the outputs must not be applied at this time.
- 4. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 5. Periodically sampled rather than 100% tested.

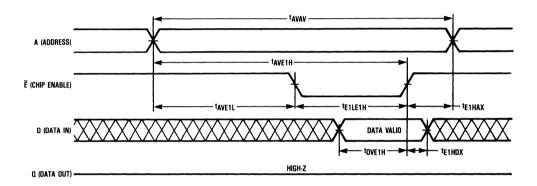
TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WRITE CYCLE 2 (ENABLE CONTROLLED) (See Notes 1 and 2)

Parameter	0	Alt	MCM6164CC55		MCM6164CC70		.
	Symbol	Symbol	Min	Max	Min	Max	Notes
Write Cycle Time	^t AVAV	twc	55	_	70	_	_
Address Setup Time	t _{AVE1L}	†AS	0	_	0	l –	_
Address Valid to End of Write	^t AVE1H	tAW	50	_	60	_	_
Chip Enable to End of Write	tE1LE1H	tcw	50	_	60	_	3
Data Valid to End of Write	tDVE1H	tDW	25	T -	30	- T	_
Data Hold Time	tE1HDX	tDH	0	_	0	_	4
Write Recovery Time	te1HAX	twr	0	i –	0		

NOTES:

- 1. A write cycle starts at the latest transition of a low E1, low W or high E2. A write cycle ends at the earliest transition of a high E1, high W or low E2.
- 2. E1 and E2 timings are identical when E2 signals are inverted.
- 3. If W goes low coincident with or prior to E1 low or E2 high then the outputs will remain in a high impedance state.
- 4. During this time the output pins may be in the output state. Signals of opposite phase to the outputs must not be applied at this time.

Z

TYPICAL CHARACTERISTICS

2.50 2.25

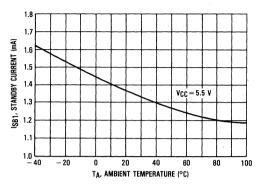
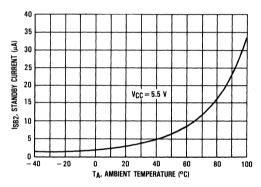



Figure 2. Standby Current Versus Temperature

Figure 3. Standby Current Versus Supply Voltage

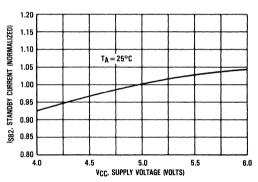
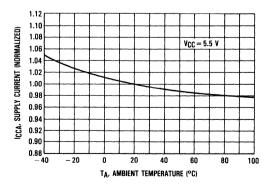



Figure 4. Standby Current Versus Temperature

Figure 5. Standby Current Versus Supply Voltage

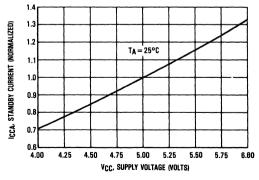


Figure 6. Supply Current Versus Temperature

Figure 7. Supply Current Versus Supply Voltage

TYPICAL CHARACTERISTICS (Continued)

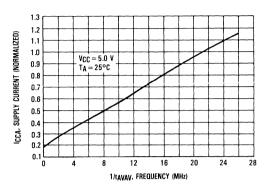


Figure 8. Supply Current Versus Frequency

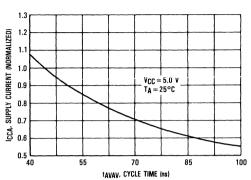


Figure 9. Supply Current Versus Cycle Time

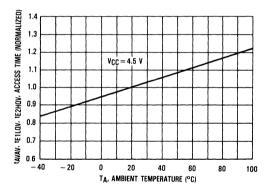


Figure 10. Access Time Versus Temperature

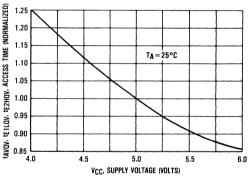


Figure 11. Access Time Versus Supply Voltage

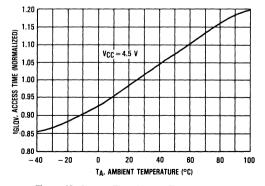


Figure 12. Access Time Versus Temperature

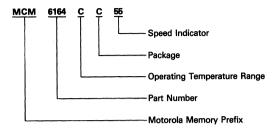



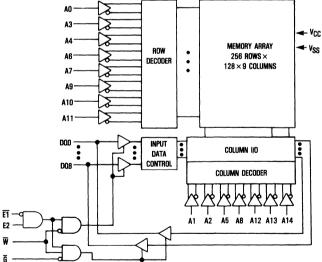
Figure 13. Access Time Versus Supply Voltage

ORDERING INFORMATION (Order by Full Part Number)

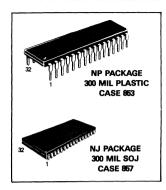
Full Part Number - MCM6164CC55 or MCM6164CC70

Advance Information

32K×9 Bit Fast Static Random Access Memory


The MCM6205 is a 294,912 bit static random access memory organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The chip enable pins (E1 and E2) are not clocks. Either pin, when asserted false, causes the part to enter a low power standby mode. This feature provides significant system-level power savings. The part will remain in standby mode until both pins are asserted true again. Another control feature, output enable (G), allows access to the memory contents as fast as 12.5 ns (MCM6205-30).


The MCM6205 is packaged in a 300 mil, 32 pin plastic dual-in-line package or a 32 lead, 300 mil plastic SOJ package with the JEDEC standard pinout.

- Single 5 V Supply, ±10%
- Fast Access Time −30, 35, and 45 ns (Maximum)
- Chip Controls: Chip Enable (E1, E2) for Reduced-Power Standby Mode Output Enable (G) for Fast Access to Data
- Three State Outputs
- Fully TTL Compatible
- High Board Density SOJ Package Available

BLOCK DIAGRAM

MCM6205

PIN ASSIGNMENT					
NC [1 •	32 1 V _{CC}				
NC 2	31 A14				
A8 🖸 3	30] E2				
A7 🛮 4	29] ₩				
A6 🛮 5	28 🛮 A13				
A5 🛮 6	27] A9				
A4 🖸 7	26] A10				
A3 🛮 8	25] A11				
A2 🗖 9	24] 🖟				
A1 [10	23] A12				
A0 [11	22] Ēī				
DQ0 🖸 12	21 008				
DQ1 C 13	20 7 007				
DQ2 🗖 14	19 🕽 006				
DQ3 🚺 15	18 🕽 005				
V _{SS} [16	17 1 004				

	PIN NAMES	
A0-A14	Addre	SS
\overline{w}	Write Enab	le
Ē1, E2	Chip Enab	le
G	Output Enab	le
DQ0-DQ8	Data Input/Outp	ut
V _{CC}	+5 V Power Supp	Ìу
V _{SS}		nd
NC	No Connection	on

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE

E1	E2	G	W	Mode	Supply Current	I/O Pin	Cycle
Н	X	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
Х	L	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Н	Output Disabled	lcc	High-Z	-
L	Н	L	Н	Read	lcc	Dout	Read Cycle
L	Н	х	L	Write	lcc	Din	Write Cycle

X = don't care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	w
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature - Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit is in a test socket or mounted on a printed circuit between the circuit is marked and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	
Input Leakage Current (All Inputs, Vin=0 to VCC)		likg(I)	_	±1.0	μА
Output Leakage Current ($\overline{E} = V_{IH}$, or $\overline{G} = V_{IH}$, $V_{out} = 0$ to 5.5 V)		lkg(O)	_	±1.0	μА
Power Supply Current $(\overline{E} = V_{ L}, I_{Out} = 0, V_{CC} = Max)$	$(t_{AVAV} = 30 \text{ ns})$ $(t_{AVAV} = 35 \text{ ns})$ $(t_{AVAV} = 45 \text{ ns})$	ICCA	<u>-</u> -	150 140 135	mA
Standby Current (E=V _{IH}) (TTL Levels)		ISB1		40	mA
Standby Current (Ē ≥ V _{CC} -0.2 V) (CMOS Levels)		I _{SB2}	_	20	mA
Output Low Voltage (I _{OL} = 8.0 mA)		VOL	_	0.4	V
Output High Voltage (IOH = -4.0 mA)		Voн	2.4	_	V

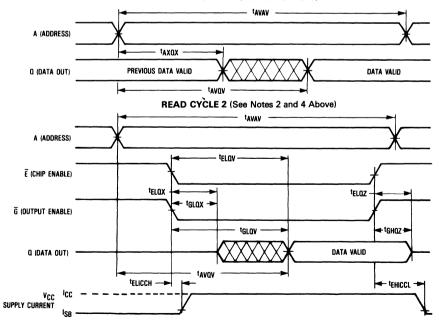
CAPACITANCE (f = 1.0 MHz, T_A = 25°C, periodically sampled and not 100% tested.)

Characteristic	Symbol	Max	Unit
Input Capacitance All Inputs Except $\overline{\overline{W}}$ $\overline{\overline{W}}$	C _{in}	6 8	pF
I/O Capacitance	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5 V \pm 10%, T_A=0 to \pm 70°C, Unless Otherwise Noted)

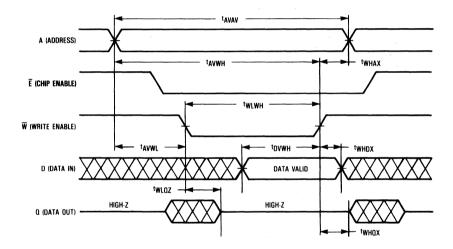
Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	


READ CYCLE (See Notes 1 and 2)

B	Syn	Symbol			MCM6205-35		MCM6205-45			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Units	Notes
Read Cycle Time	†AVAV	tRC	30	_	35	_	45	_	ns	3
Address Access Time	tAVQV	†AA	_	30	_	35	_	45	ns	
Chip Enable Access Time	†ELQV	tAC	_	30	_	35	_	45	ns	4
Chip Enable Low to High	†ELEH	tcW	30	_	35	_	45	_	ns	
Output Hold from Address Change	tAXQX	tон	5	_	5	_	5		ns	
Output Enable Access Time	tGLQV	^t OE	_	12.5	_	15	_	20	ns	
Output Enable Low to Output Active	tGLQX	toLZ	0		0	_	0	_	ns	5,6,7
Output Enable High to Output High-Z	tGHQZ	tOHZ	0	17	0	17	0	17	ns	5,6,7
Chip Enable Low to Output Active	†ELQX	tCLZ	5	_	5	_	5	_	ns	5,6,7
Chip Enable High to Output High-Z	tELQZ	tCHZ	0	20	0	20	0	20	ns	5,6,7
Power Up Time	tELICCH	tpU	0	_	0	_	0	_	ns	
Power Down Time	†EHICCL	tPD	_	30	_	35	_	45	ns	

NOTES: 1. W is high for read cycle.

- 2. $\overline{E1}$ and $\overline{E2}$ are represented by \overline{E} in this data sheet. $\overline{E2}$ is of opposite polarity to $\overline{E1}$.
- 3. All read cycle timing is referenced from the last valid address to the first transitioning address.
 - 4. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.
- At any given voltage and temperature, t_{EHOZ} max < t_{ELOX} min, and t_{GHOZ} max < t_{ELOX} min, both for a given device and from device to device.
- 6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.
- 7. This parameter is sampled and not 100% tested.
- 8. Device is continuously selected (E≤V_{II} and G≤V_{II}).


READ CYCLE 1 (See Note 8 Above)

WRITE CYCLE 1 (W Controlled) (See Notes 1, 2, and 3)

Paramatan	Syr	Symbol			MCM6205-35		MCM6205-45		Units	Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Units	Notes
Write Cycle Time	†AVAV	twc	30	_	35	_	45	_	ns	4
Address Setup Time	†AVWL	tAS	0	_	0	_	0	_	ns	
Address Valid to End of Write	tAVWH	tAW	25	_	25	_	30	I –	ns	
Write Pulse Width	tWLWH	tWP	25		25	_	30	_	ns	5
Data Valid to End of Write	tDVWH	tDW	15		15	_	20	_	ns	
Data Hold Time	twhox	tDH	0	l –	0	_	0	l –	ns	
Write Low to Output High-Z	twLoz	twz	0	20	0	20	0	20	ns	6,7,8
Write High to Output Active	twhox	tow	5	_	5	_	5	I –	ns	6,7,8
Write Recovery Time	twhax	twr	0	_	0	_	0	l –	ns	

- NOTES: 1. A write cycle occurs during the overlap of \overline{E} low and \overline{W} low. A write cycle ends at the earliest transition of \overline{E} high or \overline{W} high.
 - 2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.
 - 3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.
 - All timings are referenced from the last valid address to the first transitioning address.
 If G≥V_{IH}, the output will remain in a high impedance state.
 - 6. At any given voltage and temperature, tWLOZ max<tWHOX min, both for a given device and from device to device.
 - 7. Transition is measured ±500 mV from steady-state voltage with load in Figure 1B.
 - 8. These parameters are periodically sampled and not 100% tested.

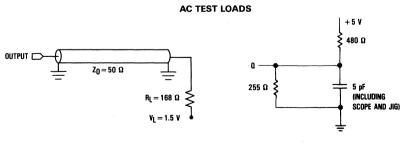
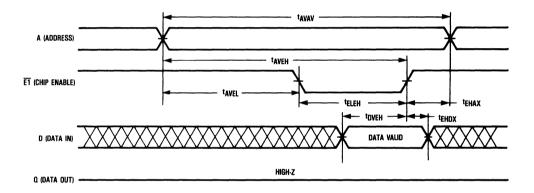
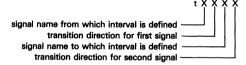


Figure 1A


Figure 1B

WRITE CYCLE 2 (E Controlled) (See Notes 1, 2, and 3)


	Syn	Symbol			MCM6205-35		MCM6205-45		11-10-	
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Units	Notes
Write Cycle Time	†AVAV	twc	30	_	35	_	45	_	ns	
Address Setup Time	†AVEL	tAS	0	_	0	_	0	_	ns	
Address Valid to End of Write	tAVEH	tAW	25	_	25	_	35	_	ns	
Chip Enable to End of Write	†ELEH	tcw	20	_	25	_	35	T -	ns	4,5
Data Valid to End of Write	^t DVEH	tDW	15	l –	15	_	20	l –	ns	
Data Hold Time	t _{EHDX}	tDH	0		0	-	0	-	ns	
Write Recovery Time	tEHAX	twr	0	_	0	_	0	_	ns	

- NOTES: 1. A write cycle occurs during the overlap of \overline{E} low and \overline{W} low. A write cycle ends at the earliest transition of \overline{E} high or \overline{W} high.
 - 2. E1 and E2 are represented by E in this data sheet. E2 is of opposite polarity to E1.
 - 3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

 - If E goes low coincident with or after W goes low, the output will remain in a high impedance state.
 If E goes high coincident with or before W goes high, the output will remain in a high impedance state.

TIMING PARAMETER ABBREVIATIONS

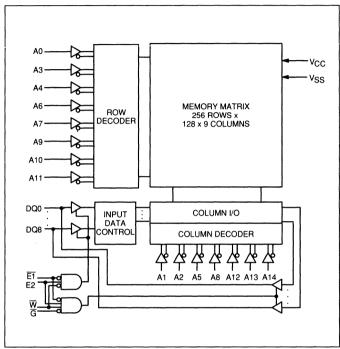
The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z=transition to off (high impedance)

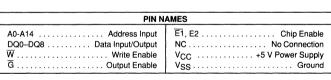
TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

ORDERING INFORMATION (Order by Full Part Number)


MCM	6205	XX	XX	XX
Motorola Memory Prefix ————————————————————————————————————		T		Shipping Method (R2 = Tape and Reel, Blank = Rails)
Part Number			L	Speed (30 = 30 ns, 35 = 35 ns, 45 = 45 ns)
		L_		Package (NP = 300 mil Plastic DIP, NJ = 300 mil SOJ)

MOTOROLA MEMORY DATA


32K x 9 Bit Fast Static RAM

MCM6205-17, -20, -25 See QuickRAM, Page 7-122

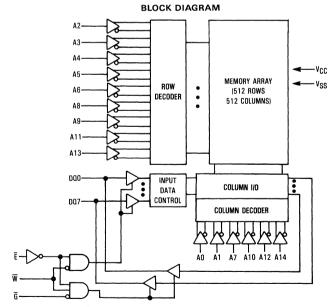
MCM6205C-12, -15 See QuickRAM II, Page 7-142

NP PACKAGE 300 MIL PLASTIC CASE 853	
NJ PACKAGE 300 MIL SOJ CASE 857	

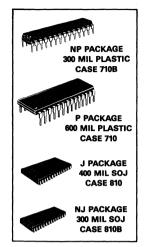
MCM6205 TRUTH TABLE (X = don't care)

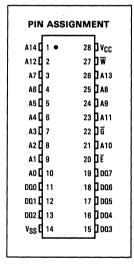
E1	E2	G	w	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
X	L	Х	×	Not Selected	ISB1, ISB2	High-Z	
L	Н	н	Н	Output Disabled	ICCA	High-Z	
L	Н	L	Н	Read	ICCA	Dout	Read Cycle
L	н	×	L	Write	ICCA	High-Z	Write Cycle

PIN ASSIGNMENT							
NC [1 ●	32	v _{cc}				
NC [2	31	A14				
A8 [3	30] E2				
A7 [4	29) w [
A6 [5	28	A13				
A5 [6	27] A9				
A4 [7	26	A10				
АЗ [8	25	A11				
A2 [9	24] <u>G</u>				
A1 [10	23	A12				
A0 [11	22] <u>E</u> 1				
DQ0 [12	21	DQ8				
DQ1	13	20	DQ7				
DQ2	14	19	DQ6				
DQ3 [15	18	DQ5				
V _{SS} [16	17	DQ4				
			'				


32K×8 Bit Fast Static Random Access Memory

The MCM6206 is a 262,144 bit static random access memory organized as 32,768 words of 8 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.


Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. In less than a cycle time after \overline{E} goes high, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high. This feature provides significant system-level power savings. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 12.5 ns (MCM6206-30).


The MCM6206 is packaged in a 300 or 600 mil, 28 pin plastic dual-in-line package or a 28 lead 300 or 400 mil plastic SOJ package with the JEDEC standard pinout.

- Single 5 V Supply, ±10%
- Fully Static—No Clock or Timing Strobes Necessary
- Fast Access Time—30, 35, or 45 ns (Maximum)
- Low Power Dissipation
- Three State Outputs
- Fully TTL Compatible

MCM6206

PIN	NAMES
A0-A14	Address
	Write Enable
	Chip Enable
Ğ	Output Enable
DQ0-DQ7	Data Input/Output
	-5 V Power Supply
V _{SS}	Ground

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TARLE

Ē	G	w	Mode	Supply Current	I/O Pin
Н	Х	x	Not Selected	ISB	High Z
L	Н	Н	Output Disabled	lcc	High Z
L	L	Н	Read	¹ cc	D _{out}
L	х	L	Write	Icc	Din

X-Don't Care

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature - Plastic	T _{sta}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}= $5.0 \pm 10\%$, T_A=0 to 70° C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3	٧
Input Low Voltage	VIL	-0.3*	_	0.8	٧

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)		l _{lkg(l)}	_	± 1.0	μА
Output Leakage Current ($\overline{E}=V_{IH}$, or $\overline{G}=V_{IH}$, $V_{out}=0$ to 5.5 V)		likg(O)	_	± 1.0	μА
Power Supply Current (E = V _{IL} , I _{out} = 0)	$(t_{AVAV} = 30 \text{ ns})$ $(t_{AVAV} = 35 \text{ ns})$ $(t_{AVAV} = 45 \text{ ns})$	lcc	=	140 135 130	mA
Standby Current (E=V _{IH}) (TTL Levels)		ISB1	-	40	mA
Standby Current (Ē ≥ V _{CC} -0.2 V) (CMOS Levels)		ISB2	_	20	mA
Output Low Voltage (IOL=8.0 mA)		V _{OL}	_	0.4	V
Output High Voltage (IOH = -4.0 mA)		VoH	2.4		V

CAPACITANCE (f = 1.0 MHz, TA = 25°C, periodically sampled and not 100% tested.)

Chara	Symbol	Max	Unit	
Input Capacitance	All Inputs Except ₩ ₩	C _{in}	6 8	pF
I/O Capacitance		CI/O	8	pF

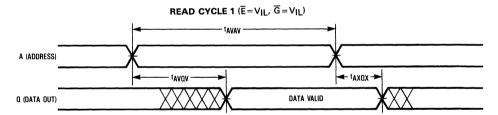
AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

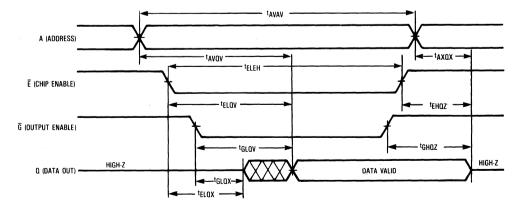
 Input Pulse Levels
 .0 to 3.0 V

 Input Rise/Fall Time
 .5 ns

 Input Timing Measurement Reference Levels
 1.5 V


Output Timing Measurement Reference Levels 1.5 V Output Load See Figure 1

READ CYCLE 1 & 2 (See Note 1)


		Alt	MCM6206-30		MCM6206-35		MCM6206-45		1	l
Parameter	Symbol	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	30	- I	35		45	_	ns	-
Address Access Time	tAVQV	tAA	-	30	_	35	l –	45	ns	_
E Access Time	tELQV	tAC	_	30	_	35	_	45	ns	_
G Access Time	tGLQV	^t OE	_	12.5	_	15	l –	20	ns	_
Enable Low to Enable High	tELEH	tcw	30	_	35	_	45	-	ns	_
Output Hold from Address Change	tAXQX	tон	5	_	5	_	5	_	ns	2
Chip Enable to Output Low-Z	tELQX	tCLZ	5	_	5	_	5	_	ns	2, 3
Output Enable to Output Low-Z	tGLQX	toLZ	0	_	0	_	0	_	ns	2, 3
Chip Enable to Output High-Z	tEHQZ	tCHZ	0	20	0	20	0	20	ns	2, 3
Output Enable to Output High-Z	tGHQZ	tonz	0	17	0	17	0	17	ns	2, 3

NOTES:

- 1. W is high at all times for read cycles.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.

READ CYCLE 2

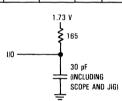
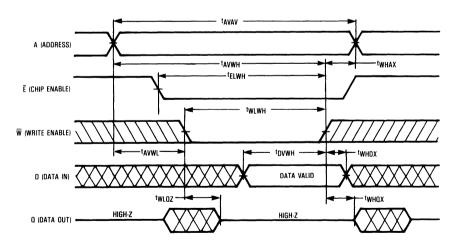
WRITE CYCLE 1 & 2 (See Note 1)

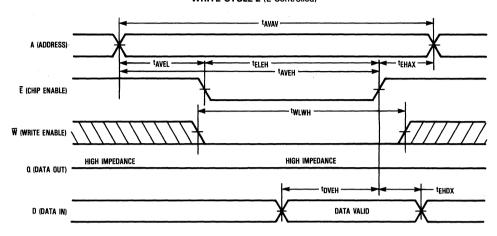
B	0	Alt MCM6206-30		MCM6206-35		MCM6206-45		l		
Parameter	Symbol	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	twc	30	_	35	_	45	_	ns	_
Address Setup to Write Low Address Setup to Enable Low	^t AVWL ^t AVEL	^t AS	0	-	0	-	0	-	ns	2
Address Valid to Write High Address Valid to Enable High	^t AVWH ^t AVEH	^t AW	25	-	25	-	35	_	ns	_
Data Valid to Write High Data Valid to Enable High	t _{DVWH}	tDW	15	-	15	_	20	_	ns	_
Data Hold From Write High Data Hold From Enable High	tWHDX tEHDX	^t DH	0	-	0	_	0	_	ns	_
Write Recovery Time Enable Recovery Time	tWHAX tEHAX	twr	0	_	0	_	0	_	ns	2
Chip Enable to End of Write Enable Low to Enable High	tELWH tELEH	tcw	20	_	25	_	35	_	ns	1
Write Pulse Width	twlwh	tWP	25	_	25		30	_	ns	3
Write Low to Output High-Z	†WLQZ	twHZ	0	20	0	20	0	20	ns	4, 5
Write High to Output Low-Z	twhax	tWLZ	5	_	5	_	5	_	ns	4, 5

NOTES:

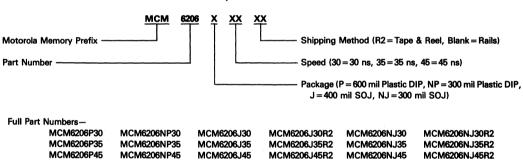
- 1. A write cycle starts at the latest transition of a low \overline{E} or low \overline{W} . A write cycle ends at the earliest transition of a high \overline{E} or high \overline{W} .
- 2. W must be high during all address transitions whenever E is low.

 3. If G is enabled, allow an additional 15 ns twLwH to avoid bus contention.
- 4. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 5. These parameters are periodically sampled and not 100% tested.

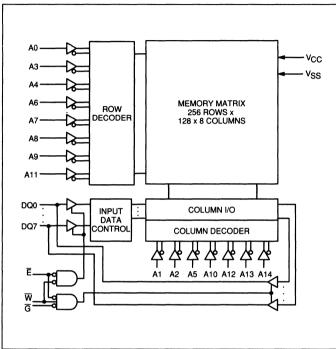

Figure 1. Test Load

WRITE CYCLE 1 (W Controlled)

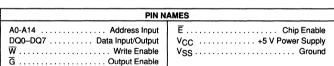


7

WRITE CYCLE 2 (E Controlled)

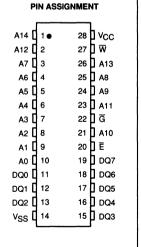


ORDERING INFORMATION (Order by Full Part Number)



32K x 8 Bit Fast Static RAM

MCM6206-17, -20, -25 See QuickRAM, Page 7-122 MCM6206C-12, -15 See QuickRAM II, Page 7-142


300 MIL	CKAGE PLASTIC E 710B
300 M	CKAGE IL SOJ E 810B

ble pply und

MCM6206 TRUTH TABLE (X = don't care)

Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	X	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н	н	Output Disabled	ICCA	High-Z	_ ·
L	L	Н	Read	ICCA	Dout	Read Cycle
L	X	L	Write	ICCA	High-Z	Write Cycle

7

Advance Information

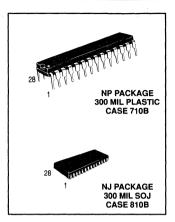
32K × 8 Bit Static RAM

Industrial Temperature Range: -40 to 85°C

The MCM6206C is a 262,144 bit static random access memory organized as 32,768 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

Chip enable (\overline{E}) controls the power-down feature. It is not a clock but rather a chip control that affects power consumption. In less than a cycle time after \overline{E} goes high, the part automatically reduces its power requirements and remains in this low-power standby mode as long as \overline{E} remains high. This feature provides significant system-level power savings. Another control feature, output enable (\overline{G}) allows access to the memory contents as fast as 12 ns (MCM6206C-25).

The MCM6206C is available in a 300 mil, 28 lead plastic dual-in-line package or a 300 mil, 28 lead plastic SOJ package with the JEDEC standard pinout.


- Single 5 V ± 10% Power Supply
- Fast Access Time: 25, 30, 35, 45, 55 ns
- Chip Controls

Chip Enable (\overline{E}) for Reduced-Power Standby Mode Output Enable (\overline{G}) for Fast Access to Data

- Three-State Outputs
- Fully TTL Compatible
- Power Operation: 150 mA Maximum, Active AC (MCM6206C-25)
- · High Board Density SOJ Package Available

BLOCK DIAGRAM v_{cc} v_{ss} MEMORY MATRIX AA ROW 256 ROWS X 128 DECODER A7 X 8 COLUMNS A8 Α9 A11 DOO COLUMN I/O COLUMN DECODER DO1 DATA CONTROL DO6 DO7 A5 A10 A12 A13 A14

MCM6206C

P	IN ASSIGN	MENT	•
A14 [1 •	28	V _{CC}
A12 [2	27	\overline{W}
A7 [3	26	A13
A6 [4	25	A8
A5 [5	24	A9
A4 [6	23	A11
A3 [7	22	G
A2 [8	21	A10
A1 [9	20	Ē
A0 [10	19	DQ7
DQ0 [11	18	DQ6
DQ1	12	17	DQ5
DQ2	13	16	DQ4
V _{SS} [14	15	DQ3
}			

PIN NAMES	
A0-A14	. Write Enable Output Enable . Chip Enable a Input/Output Power Supply

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRUTH TABLE

Ē	G	w	Mode	V _{CC} Current	Output	Cycle
Н	Х	х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Read	ICCA	High-Z	_
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to Vos = 0 V)

Rating	Symbol	Value	Unit
nating	Symbol	value	Unit
Power Supply Voltage	V _{CC}	- 0.5 to 7.0	V
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	– 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	l _{out}	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.5	W
Temperature Under Bias	T _{bias}	- 50 to + 95	°C
Operating Temperature	TA	- 40 to + 85	°C
Storage Temperature — Plastic	T _{sta}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLÜTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = -40 \text{ to} + 85^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3	٧
Input Low Voltage	VIL	- 0.5*	_	0.8	V

^{*} V_{IL} (min) = -2.0 V ac (pulse width \leq 20 ns); V_{IL} (min) = -0.5 V dc)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		l _{lkg(l)}	_	± 1	μА
Output Leakage Current ($\overline{E} = V_{IL}$, $V_{out} = 0$ to V_{CC})		l _{lkg(O)}	_	± 1	μА
AC Supply Current (I _{out} = 0 mA, V _{CC} = Max)	$t_{AVAV} = 25 \text{ ns}$ $t_{AVAV} = 30 \text{ ns}$ $t_{AVAV} = 35 \text{ ns}$ $t_{AVAV} = 45 \text{ ns}$ $t_{AVAV} = 55 \text{ ns}$	ICCA	_ _ _ _	150 150 150 140 140	mA
TTL Standby Current ($\overline{E} = V_{IH}$, No Restrictions on Other Inputs)		ISB1	_	40	mA
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$, No Restrictions on Other Inputs)		I _{SB2}	-	20	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		V _{OL}	_	0.4	V
Output High Voltage (I _{OH} = – 4.0 mA)		VOH	2.4		V

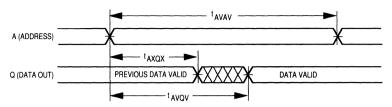
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Max	Unit
Input Capacitance (All Inputs Except $\overline{\mathbb{W}}$ and DQ) $\overline{\mathbb{W}}$	C _{in}	6 8	pF
Input/Output Capacitance	C _{I/O}	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS (VCC = 5.0 V \pm 10%, TA = - 40 to + 85°C, Unless Otherwise Noted)

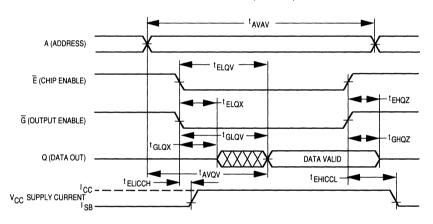
Input Timing Measurement Reference Level 1.5 V Input Pulse Levels 0 to 3.0 V Input Rise/Fall Time 5 ns

Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A Unless Otherwise Noted

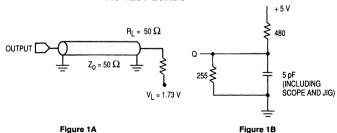

READ CYCLE TIMING (See Note 1)

	Symbol		MCM6206C-25 MCM6206C-30			MCM6206C-35 MCM6206C-			06C-45	MCM62	06C-55			
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	^t RC	25	_	30	_	35	_	45	_	55		ns	2
Address Access Time	^t AVQV	†AA	_	25	_	30	_	35	_	45		55	ns	
Enable Access Time	^t ELQV	tACS	_	25	_	30		35	-	45		55	ns	
Output Enable Access Time	^t GLQV	^t OE	-	12	_	12.5		15		20	_	25	ns	
Output Hold from Address Change	†AXQX	[‡] ОН	4	_	4	_	4	_	4	_	4	_	ns	
Enable Low to Output Active	t _{ELQX}	†CLZ	4	_	4	-	4	_	4	_	4	_	ns	3, 4, 5
Output Enable to Output Active	[†] GLQX	^t OLZ	0	_	0	_	0	_	0	_	0	_	ns	3, 4, 5
Enable High to Output High-Z	^t EHQZ	tCHZ	0	10	0	10	0	10	0	10	0	10	ns	3, 4, 5
Output Enable High to Output High-Z	^t GHQZ	^t OHZ	0	10	0	10	0	10	0	10	0	10	ns	3, 4, 5
Power Up Time	[†] ELICCH	tPU	0	_	0	_	0	_	0	_	0		ns	
Power Down Time	^t EHICCL	tPD	_	25	_	30	_	35	_	45	_	55	ns	

NOTES:


- 1. \overline{W} is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- $3. \ \, \text{At any given voltage} \ \, \text{and temperature}, \\ \text{t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device and the second$ from device to device.
- 4. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.

READ CYCLE 1 (See Note)

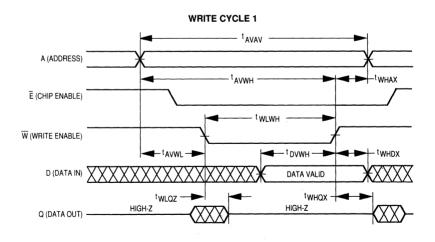

NOTE: Device is continuously selected ($\overline{E} = V_{|L}$, $\overline{G} = V_{|L}$)

READ CYCLE 2 (See Note)

NOTE: Addresses valid prior to or coincident with \overline{E} going low.

AC TEST LOADS

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

WRITE CYCLE 1 (W Controlled, See Note 1)

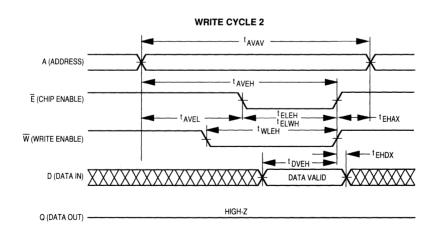
	Symb	ol	мсм62	06C-25	MCM62	06C-30	MCM62	06C-35	MCM62	06C-45	MCM6206C-55			
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	[†] AVAV	twc	25	_	30	_	35	-	45	_	55	_	ns	2
Address Setup Time	^t AVWL	†AS	0	_	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	tavwh	tAW	20	_	25		25	_	35	_	45	_	ns	
Write Pulse Width	tWLWH	tWP	20	_	20	_	25	_	30	_	35	_	ns	
Data Valid to End of Write	^t DVWH	tDW	10	_	15	_	15	_	20	_	25	-	ns	
Data Hold Time	twHDX	^t DH	0	_	0		. 0	-	0	_	0	_	ns	
Write Low to Data High-Z	^t WLQZ	twz	0	10	0	10	0	10	0	10	0	10	ns	3, 4, 5
Write High to Output Active	^t WHQX	tow	4	_	4	_	4	_	4	_	4	_	ns	3, 4, 5
Write Recovery Time	tWHAX	twR	0	_	0	_	0	_	0	_	0	_	ns	

NOTES:

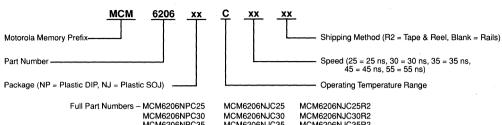
- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 4. This parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, twLQZ max is less than twHQX min both for a given device and from device to device.

WRITE CYCLE 2 (E Controlled, See Note 1)

	Symbol		MCM62	06C-25	мсм62	MCM6206C-30		MCM6206C-35		MCM6206C-45		MCM6206C-55		
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	25	-	30	-	35	_	45	_	55	_	ns	2
Address Setup Time	^t AVEL	tAS	0	_	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	^t AVEH	^t AW	20		25	-	25	_	35	_	45	_	ns	
Enable to End of Write	^t ELEH	tcw	15	_	20	_	25	_	35	_	40	_	ns	3, 4
Enable to End of Write	tELWH	tCW	15	_	20	_	25	_	35	_	40	_	ns	
Write Pulse Width	^t WLEH	twp	20	_	20	_	25	_	30	_	35	_	ns	
Data Valid to End of Write	^t DVEH	^t DW	10	_	10	_	15	_	20	_	25	_	ns	
Data Hold Time	^t EHDX	^t DH	0	_	0	_	0	_	0	_	0	_	ns	
Write Recovery Time	[†] EHAX	twR	0	_	0	_	0	_	0		0	_	ns	


NOTES:

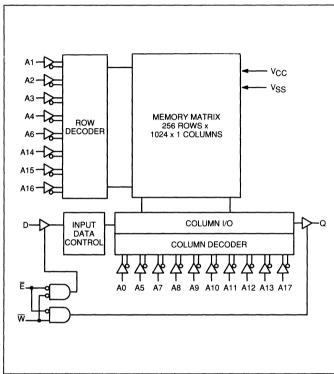
- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.


- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.

 3. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.

 4. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.

ORDERING INFORMATION (Order by Full Part Number)

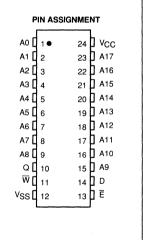


MCM6206NPC35 MCM6206NPC45 MCM6206NPC55 MCM6206NJC35 MCM6206NJC45 MCM6206NJC55 MCM6206NJC35R2 MCM6206NJC45R2 MCM6206NJC55R2

256K x 1 Bit Fast Static RAM

MCM6207-15, -20, -25 See QuickRAM, Page 7-122

MCM6207C-10, -12 See QuickRAM II, Page 7-142



P PACKAGE 300 MIL PLASTIC CASE 724A
24 J PACKAGE 1 300 MIL SOJ CASE 810A
PIN ASSIGNMENT

PIN NAMES							
A0-A17 Address Input Ē Chip Enable ₩ Write Enable D Data Input	Q Data Output VCC +5 V Power Supply VSS Ground						

PIN NAMES							
Ē Chip Enable	Q Data Output VCC +5 V Power Supply VSS Ground						

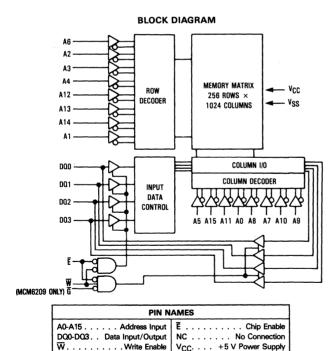
Ē	W	Mode	V _{CC} Current	Output	Cycle
H L L	X H L	Not Selected Read Write	ISB1, ISB2 ICCA ICCA	High-Z D _{out} High-Z	Read Cycle Write Cycle

64K×4 Bit Static RAMs

The MCM6208 and MCM6209 are 262,144 bit static random access memories organized as 65,536 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption for greater reliability.

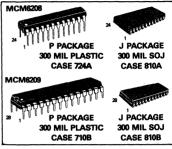
The MCM6209 has both chip enable (E) and output enable (G) inputs, allowing greater system flexibility. Either input, when high, will force the outputs to high impedance.

Single 5 V ± 10% Power Supply


● Fast Access Time (Maximum): MCM6209

(xx = 08 or 09) Address Chip Enable

MCM62xx-35 35 ns 35 ns 15 ns


MCM62xx-45 45 ns 45 ns 17 ns

- Equal Address and Chip Enable Access Time
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems (MCM6209)
- Fully TTL Compatible—Three-State Data Output

 $\overline{\mathbf{G}}$ (MCM6209) . . Output Enable

MCM6208-35, -45 MCM6209-35, -45

PIN	ASSIGNM MCM6208	ENT
A0 [1 1 V _{CC}
A2 [3 2	2 A14
A3 [] A4 [5 20	1 0 A13 0 0 A12
A5 [A6 [9 DA11 B DA10
A7 [A8 [7 🕽 000 8 G 001
A9[]		5 002 4 003
v _{ss} c		₽Þ₩
	MCM6209	<u></u>
NC [1 ● 2	8 🗖 V _{CC}
A0 [2 2	7 A15
A1 [ļ	6 A14
A2 [_	5 A13
A3 [4 DA12
A4 [A5 [3
A5 L		2 HATO 1 DNC
A7 [O D NC
A8 [9 0 000
A9 [l .	8 [] DQ1
Ē	12 1	7 002
GC	13 1	6) DQ3
V _{SS} C	14 1	5] ₩

VSS. Ground

MCM6208 TRUTH TABLE

Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

MCM6209 TRUTH TABLE

Ē	Ğ	w	Mode	V _{CC} Current	I/O Pin	Cycle
н	х	х	Not Selected	ISB	High-Z	_
L	н	Н	Read	ICCA	High-Z	
į L	L	Н	Read	ICCA	Dout	Read Cycle
L	X	L	Write	ICCA	Din	Write Cycle

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	>
Input High Voltage	VIH	2.2		V _{CC} +0.3	>
Input Low Voltage	VIL	-0.5*		0.8	٧

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})		_	-	±1.0	μА
Output Leakage Current (E=V _{IH} , V _{out} =0 to V _{CC})	l _{lkg} (O)	_	_	±1.0	μА
AC Supply Current (I _{out} = 0 mA) t _{AVAV} = 35 ns	ICCA	-	_	130	mA
$t_{AVAV} = 45 \text{ ns}$		_	-	130	
AC Standby Current (E=V _{IH} , No Restrictions on Other Inputs)	ISB1	-	_	35	mA
CMOS Standby Current (Ē≥V _{CC} -0.2 V, No Restrictions on Other Inputs)	ISB2	_	-	10	mA
Output Low Voltage (I _{OL} = 8.0 mA)	VOL	-	_	0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	Voн	2.4	_	_	V

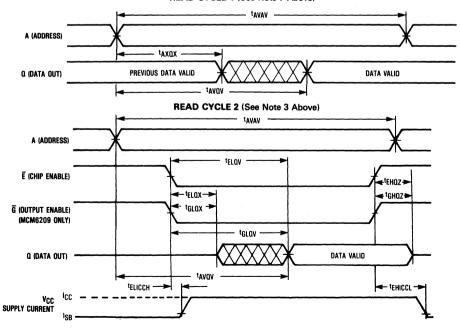
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	ρF
I/O Capacitance	CI/O	5	7	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC}=5 \text{ V} \pm 10\%, T_A=0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

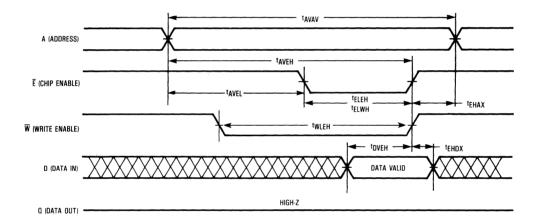
 Output Timing Measurement Reference Level 1.5 V Output Load Figure 1A Unless Otherwise Noted

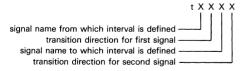

READ CYCLE (See Note 1)

Parameter		Syn	nbol		MCM6208-35 MCM6209-35		MCM6208-45 MCM6209-45		Notes
		Standard	Alternate	Min	Max	Min	Max	1	
Read Cycle Time		†AVAV	tRC	35	_	45	_	ns	2
Address Access Time		tAVQV	tAA	_	35	_	45	ns	
Enable Access Time		tELQV	tACS	_	35	_	45	ns	3
Output Hold from Address Change		†AXQX	tон	4	_	4	_	ns	
Output Enable Access Time	MCM6209	tGLQV -	tQE	_	15	_	17	ns	
Output Enable Low to Output Active	MCM6209	tGLQX	tLZ	0	<u> </u>	0	_	ns	4,5,6
Output Enable High to Output High-Z	MCM6209	tGHQZ	tHZ	0	10	0	10	ns	4,5,6
Enable Low to Output Active		tELQX	tLZ	4	T -	4	_	ns	4,5,6
Enable High to Output High-Z		tEHQZ .	tHZ	0	10	0	10	ns	4,5,6
Power Up Time		†ELICCH	tPU	0	- T	0	_	ns	
Power Down Time		tEHICCL	tPD	_	35	_	45	ns	

NOTES: 1. W is high for read cycle.

- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Addresses valid prior to or coincident with E going low.
- 4. At any given voltage and temperature, tehoz max is less than telox min, and tehoz max is less than telox min, both for a given device and from device to device.
- 5. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{E} = V_{II}$) and $\overline{G} = V_{II}$ (MCM6209 only).


READ CYCLE 1 (See Note 7 Above)


WRITE CYCLE 2 (E Controlled, See Notes 1 and 5)

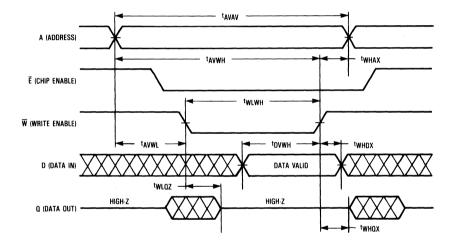
Parameter	Syr	nbol	MCM6208-35 MCM6209-36		MCM6208-48 MCM6209-48		Units	Notes
	Standard	Alternate	Min	Max	Min	Max	1	
Write Cycle Time	tAVAV	twc	35	_	45	_	ns	2
Address Setup Time	tAVEL	tAS	0	_	0	_	ns	
Address Valid to End of Write	tAVEH	tAW	20	_	20	_	ns	
Enable to End of Write	tELEH	tcw	15		15	_	ns	3,4
Enable to End of Write	tELWH	tcw	15	_	15	_	ns	3,4
Write Pulse Width	tWLEH	tWP	20	_	20	_	ns	
Data Valid to End of Write	tDVEH	tDW	10	_	10	_	ns	
Data Hold Time	tEHDX	tDH	0	_	0	_	ns	
Write Recovery Time	tEHAX	twr	0	_	0	_	ns	

- NOTES: 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
 - 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
 - 3. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
 - 4. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.
 - 5. MCM6209. If G goes low coincident with or after W goes low, the output will remain in a high impedance state.

TIMING PARAMETER ABBREVIATIONS

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 6)

Parameter		nbol		5208-35 5209-35		5208-45 5209-45	Units	Notes
	Standard	Alternate	Min	Max	Min	Max	1	
Write Cycle Time	tAVAV	twc	35	_	45	_	ns	2
Address Setup Time	†AVWL	tAS	0	_	0	_	ns	
Address Valid to End of Write	tAVWH	tAW	20	-	20	_	ns	
Write Pulse Width	tWLWH	tWP	20	-	20	-	ns	
Data Valid to End of Write	tDVWH	t _{DW}	10		10	l –	ns	
Data Hold Time	tWHDX	t _{DH}	0	_	0	_	ns	
Write Low to Output High-Z	tWLQZ	twz	0	10	0	10	ns	3,4,5
Write High to Output Active	twhox	tow	4	_	4	_	ns	3,4,5
Write Recovery Time	tWHAX	twr	0	_	0	_	ns	

- NOTES: 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
 - 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
 - 3. Transition is measured ± 500 mV from steady-state voltage with load in Figure 1B.
 - 4. Parameter is sampled and not 100% tested.
 - 5. At any given voltage and temperature, tWLOZ max is less than tWHOX min both for a given device and from device to device.
 - 6. MCM6209, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.

AC TEST LOADS

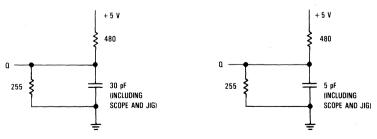
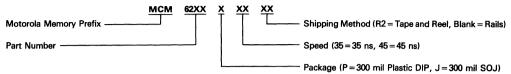



Figure 1A

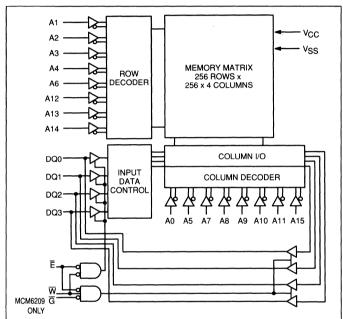
Figure 1B

ORDERING INFORMATION (Order by Full Part Number)

Fuli Part Numbers — MCM6208P35 MCM6208P45 MCM6208J35 MCM6208J45 MCM6208J35R2 MCM6208J45R2

MCM6209P35

MCM6209J35

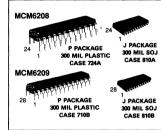

MCM6209J35R2

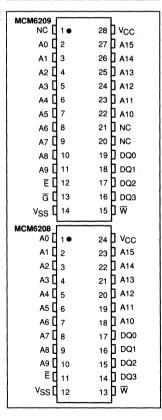
MCM6209P45 MCM6209J45 MCM6209J45R2

64K x 4 Bit Fast Static RAMs

MCM6208-15, -20, -25 MCM6209-15, -20, -25 See QuickRAM, Page 7-122

MCM6208C-10, -12 MCM6209C-10, -12 See QuickRAM II, Page 7-142




PIN NAMES					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	E Chip Enable NC No Connection VCC +5 V Power Supply VSS Ground				

MCM6208 TRUTH TABLE (X = don't care)

Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

- 5		200	J	DEE (X - don't our	<u>'</u>		
	Ē	G	W	Mode	V _{CC} Current	Output	Cycle
	Н	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
	L	н	Н	Output Disabled	ICCA	High-Z	_
	L	L	Н	Read	ICCA	Dout	Read Cycle
	L	Х	L	Write	ICCA	High-Z	Write Cycle

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

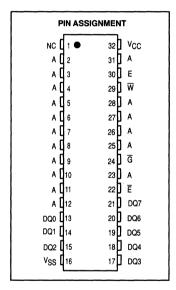
Product Preview

128K × 8 Bit Static Random Access Memory

The MCM6226 is a 1,048,576 bit static random-access memory organized as 131,072 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM6226 is equipped with both chip enable $(\overline{\mathbf{E}})$ and output enable $(\overline{\mathbf{G}})$ inputs, allowing for greater system flexibility. Either input, when high, will force the outputs to high impedance.

The MCM6226 is available in a 400 mil, 32 lead plastic dual-in-line package or a 400 mil, 32 lead plastic SOJ package with the JEDEC standard pinout.


- Single 5 V ± 10% Power Supply
- · Fast Access Time: 25, 30 ns
- · Equal Address and Chip Enable Access Time
- · Three-State Outputs
- Fully TTL Compatible
- Power Operation: 160 mA Maximum, Active AC (MCM6226-25)
- · High Board Density SOJ Package Available

MCM6226

WJ PACKAGE 400 MIL SOJ CASE TBD

DIP PACKAGE TBD

PIN NAMES					
A0-A16 Address Inputs W Write Enable G Output Enable E, E Chip Enable DQ0-DQ7 Data Input/Output VCC + 5 V Power Supply VSS Ground					

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a product under development, Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē, E	Ğ	w	Mode	V _{CC} Current	Output	Cycle
Н	X	х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Read	ICCA	High-Z	_
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	- 0.5 to 7.0	٧
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.1	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{sta}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0 V$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3	٧
Input Low Voltage	۷ _{IL}	0.5*		0.8	٧

 $^{^{\}star}V_{IL}$ (min) = -2.0 Vac (pulse width ≤ 20 ns); V_{IL} (min) = -0.5 Vdc)

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		l _{lkg(l)}	_	± 1	μА
Output Leakage Current (E = V _{IL} , V _{OUt} = 0 to V _{CC})		lkg(O)		± 1	μА
AC Supply Current (I _{Out} = 0 mA, V _{CC} = Max)	MCM6226-25: $t_{AVAV} = 25 \text{ ns}$ MCM6226-30: $t_{AVAV} = 30 \text{ ns}$	ICCA	_	160 150	mA
TTL Standby Current ($\overline{E} = V_{IH}$, No Restrictions on Other In	puts)	I _{SB1}	40	50	mA
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$, No Restrictions	on Other Inputs)	ISB2	20	30	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)		VOH	2.4	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	:	Symbol	Max	Unit
Input Capacitance	(All Inputs Except \overline{E} , E, and DQ) \overline{E} , E	C _{in}	6 7	pF
Input/Output Capacitance	DQ	C _{I/O}	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

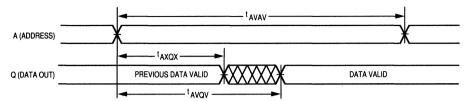
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time 5 ns	

READ CYCLE TIMING (See Note 1)

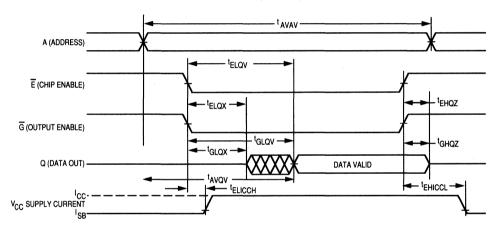
	Syn	nbol	мсм6	MCM6226-25		226-30	į	
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	†RC	_	25	_	30	ns	2
Address Access Time	tAVQV	†AA	_	25		30	ns	
Enable Access Time	t _{ELQV}	tACS	_	25	_	30	ns	
Output Enable Access Time	tGLQV	^t OE	_	12		15	ns	
Output Hold from Address Change	tAXQX	tон	5	_	5	_	ns	
Enable Low to Output Active	t _{ELQX}	t _{CLZ}	4	_	4	_	ns	3, 4, 5
Output Enable to Output Active	tGLQX	tOLZ	0	_	0	_	ns	3, 4, 5
Enable High to Output High-Z	t _{EHQZ}	tCHZ	0	10	0	12	ns	3, 4, 5
Output Enable High to Output High-Z	†GHQZ	tonz	0	10	0	12	ns	3, 4, 5
Power Up Time	†ELICCH	tPU	0	_	0	_	ns	
Power Down Time	†EHICCL	tPD	_	25	_	30	ns	

NOTES:


- 1. $\overline{\mathbf{W}}$ is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device and from device to device.
- 4. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).
- 7. Addresses valid prior to or coincident with E going low.

AC TEST LOADS $P_{L} = 50 \Omega$ OUTPUT $Z_{0} = 50 \Omega$ $V_{L} = 1.73 \text{ V}$ $Z_{0} = 50 \Omega$ $V_{L} = 1.73 \text{ V}$ $Z_{0} = 50 \Omega$ Z

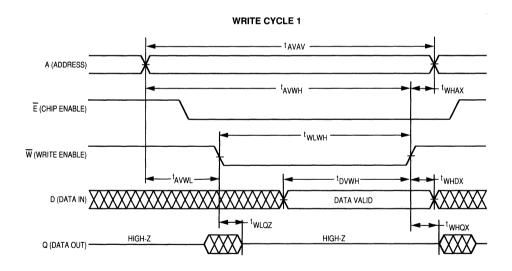
TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected $(\overline{E} = V_{|L}, \overline{G} = V_{|L})$.

READ CYCLE 2 (See Note)

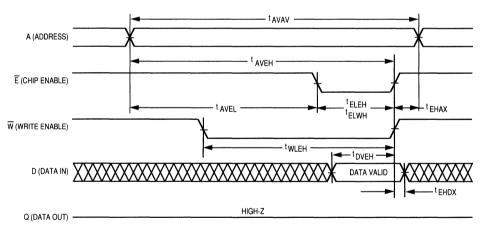

NOTE: Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

WRITE CYCLE 1 (W Controlled, See Note 1)

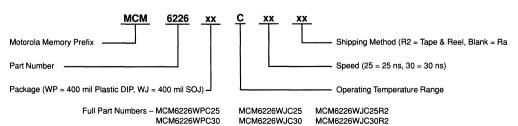
	Syn	nbol	мсм6	226-25	MCM6226-30			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	† _{AVAV}	twc	25	_	30	_	ns	2
Address Setup Time	t _{AVWL}	†AS	0	_	0	-	ns	
Address Valid to End of Write	tavwh	tAW	20	_	25	_	ns	
Write Pulse Width	twlwh	twp	20	_	25	_	ns	
Data Valid to End of Write	t _{DVWH}	tDW	10	_	15	_	ns	
Data Hold Time	twhox	t _{DH}	0	_	0	_	ns	
Write Low to Data High-Z	twlqz	twz	0	10	0	12	ns	3, 4, 5
Wirte High to Output Active	twhqx	tow	4	_	4	_	ns	3, 4, 5
Write Recovery Time	tWHAX	twR	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 4. This parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, t_{WLQZ} max is less than t_{WHQX} min both for a given device and from device to device.


WRITE CYCLE 2 (E Controlled, See Note 1)

	Syn	nbol	мсме	226-25	мсм6	2226-30		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	25	_	30	_	ns	2
Address Setup Time	†AVEL	tAS	0	_	0	_	ns	
Address Valid to End of Write	t _{AVEH}	t _{AW}	20	_	25	_	ns	
Enable to End of Write	†ELEH	tcw	. 20	_	25	_	ns	3, 4
Enable to End of Write	t _{ELWH}	tcw	20	_	25	_	ns	
Write Pulse Width	tWLEH	tWP	20	_	25	_	ns	
Data Valid to End of Write	^t DVEH	t _{DW}	10	_	12	-	ns	
Data Hold Time	tEHDX	t _{DH}	0	_	0	_	ns	
Write Recovery Time	tEHAX	twR	0	_	0	_	ns	


NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
- 4. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

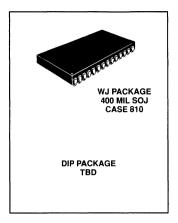
WRITE CYCLE 2

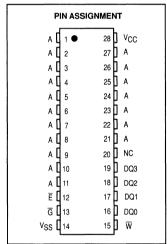
ORDERING INFORMATION (Order by Full Part Number)

Product Preview

256K × 4 Bit Static Random Access Memory

The MCM6228 is a 1,048,576 bit static random-access memory organized as 262,144 words of 4 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.


The MCM6228 is equipped with both chip enable $(\overline{\mathbf{E}})$ and output enable $(\overline{\mathbf{G}})$ inputs, allowing for greater system flexibility. Either input, when high, will force the outputs to high impedance.


The MCM6228 is available in a 400 mil, 28 lead plastic dual-in-line package or a 400 mil, 28 lead plastic SOJ package with the JEDEC standard pinout.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 25, 30 ns
- · Equal Address and Chip Enable Access Time
- Three-State Outputs
- Fully TTL Compatible
- Power Operation: 160 mA Maximum, Active AC (MCM6228-25)
- High Board Density SOJ Package Available

BLOCK DIAGRAM A A A A A BEOMER MEMORY MATRIX 512 ROWS X 2048 COLUMN I/O COLUMN DECODER CONTROL CONTROL COLUMN DECODER CONTROL COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER

MCM6228

PIN NAMES
A0-A17 Address Inputs W Write Enable G Output Enable E Chip Enable DQ0-DQ3 Data Input/Output VCC + 5 V Power Supply VSS Ground

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	G	w	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Read	ICCA	High-Z	_
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	٧
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	l _{out}	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.1	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2		V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}	- 0.5*	_	0.8	٧

 $^{^{\}star}V_{IL}$ (min) = - 2.0 Vac (pulse width \leq 20 ns); V_{IL} (min) = - 0.5 Vdc)

DC CHARACTERISTICS

Parameter	Parameter				Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		l _{lkg(l)}	_	± 1	μА
Output Leakage Current (E = V _{IL} , V _{out} = 0 to V _{CC})		lkg(O)	_	± 1	μА
AC Supply Current (I _{out} = 0 mA, V _{CC} = Max)	MCM6228-25: $t_{AVAV} = 25 \text{ ns}$ MCM6228-30: $t_{AVAV} = 30 \text{ ns}$	ICCA	_	160 150	mA
TTL Standby Current ($\overline{E} = V_{IH}$, No Restrictions on Other	Inputs)	I _{SB1}	40	50	mA
CMOS Standby Current ($\overline{E} \ge V_{CC} - 0.2 \text{ V}$, No Restrictio	ns on Other Inputs)	I _{SB2}	20	30	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		V _{OL}	_	0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)		Vон	2.4	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Char	acteristic	Symbol	Max	Unit
Input Capacitance	(All Inputs Except \overline{E} and DQ) \overline{E}	C _{in}	6 7	pF
Input/Output Capacitance	DQ	C _{I/O}	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V
Input Rise/Fall Time 5 ns

Output Timing Measurement Reference Level 1.5 V
Output Load See Figure 1A Unless Otherwise Noted

READ CYCLE TIMING (See Note 1)

	Syn	nbol	мсм6	228-25	MCM6	MCM6228-30		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	† tRC	_	25	_	30	ns	2
Address Access Time	tavqv	t _{AA}	_	25	_	30	ns	
Enable Access Time	t _{ELQV}	tACS		25	_	30	ns	
Output Enable Access Time	†GLQV	†OE	_	12	T -	15	ns	
Output Hold from Address Change	†AXQX	tон	5	_	5	_	ns	
Enable Low to Output Active	t _{ELQX}	tCLZ	4	_	4	_	ns	3, 4, 5
Output Enable to Output Active	†GLQX	tOLZ	0	_	0	_	ns	3, 4, 5
Enable High to Output High-Z	†EHQZ	tcHZ	0	10	0	12	ns	3, 4, 5
Output Enable High to Output High-Z	tGHQZ	t _{OHZ}	0	10	0	12	ns	3, 4, 5
Power Up Time	tELICCH	tpU	0	_	0	_	ns	
Power Down Time	†EHICCL	tPD		25	_	30	ns	

NOTES:

- 1. $\overline{\mathbf{W}}$ is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. At any given voltage and temperature, t_{EHQZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device and from device to device.
- 4. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. Device is continuously selected ($\overline{E} = V_{II}$, $\overline{G} = V_{II}$).
- 7. Addresses valid prior to or coincident with E going low.

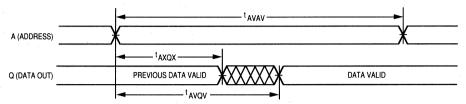
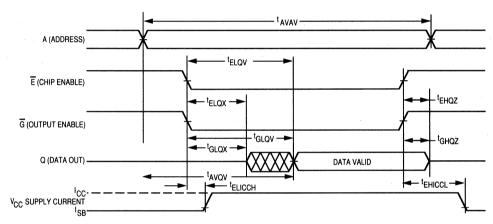

Figure 1A

Figure 1B

TIMING LIMITS

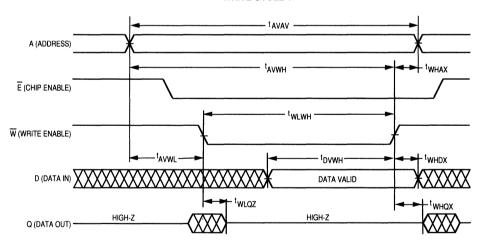

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{|L}$, $\overline{G} = V_{|L}$).

READ CYCLE 2 (See Note)

NOTE: Addresses valid prior to or coincident with \overline{E} going low.


WRITE CYCLE 1 (W Controlled, See Note 1)

	Syn	nbol	мсм6	228-25	MCM6228-30			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	25	_	30	_	ns	2
Address Setup Time	†AVWL	tAS	0	-	0	I –	ns	
Address Valid to End of Write	tavwh	tAW	20	_	25	_	ns	
Write Pulse Width	twlwh	twp	20	_	25	_	ns	
Data Valid to End of Write	t _{DVWH}	tDW	10	_	15	_	ns	
Data Hold Time	twhox	t _{DH}	0	_	0	_	ns	
Write Low to Data High-Z	twLQZ	twz	0	10	0	12	ns	3, 4, 5
Wirte High to Output Active	twhqx	tow	4	_	4	_	ns	3, 4, 5
Write Recovery Time	twhax	twr	0	_	0	_	ns	

NOTES:

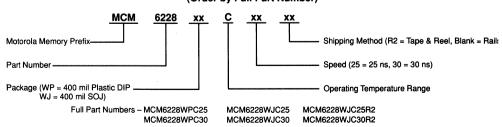
- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 4. This parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, twLQZ max is less than twHQX min both for a given device and from device to device.

WRITE CYCLE 1

WRITE CYCLE 2 (E Controlled, See Note 1)

	Syr	nbol	мсме	228-25	мсм6	2228-30		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	twc	25	_	30	_	ns	2
Address Setup Time	†AVEL	†AS	0	_	0	_	ns	
Address Valid to End of Write	^t AVEH	tAW	20	. —	25	_	ns	
Enable to End of Write	tELEH	tcw	20	_	25	_	ns	3, 4
Enable to End of Write	t _{ELWH}	tcw	20	_	25	_	ns	
Write Pulse Width	tWLEH	tWP	20	_	25	_	ns	
Data Valid to End of Write	†DVEH	t _{DW}	10	_	12	_	ns	
Data Hold Time	†EHDX	^t DH	0	_	0	_	ns	
Write Recovery Time	t _{EHAX}	twR	0	_	0	_	ns	

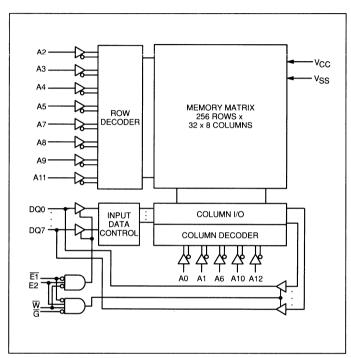
NOTES:

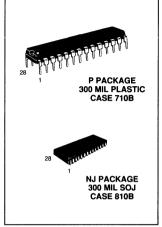

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.

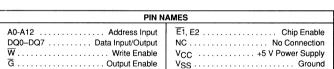
 4. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

ORDERING INFORMATION (Order by Full Part Number)

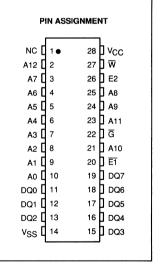



MOTOROLA SEMICONDUCTOR TECHNICAL DATA


8K x 8 Bit Fast Static RAM

MCM6264-15, -20 See QuickRAM, Page 7-122

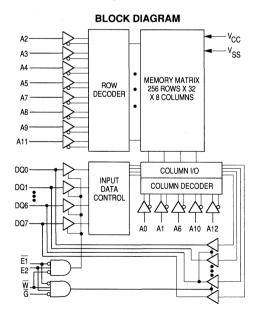
MCM6264C-10, -12 See QuickRAM II, Page 7-142



MCM6264 TRUTH TABLE (X = don't care)

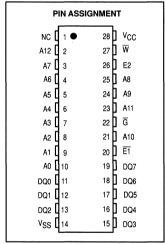
III OIII	0204 1		IADEL	(X = doirt care)			
E1	E2	G	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
Х	L	Х	X	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Н	Output Disabled	ICCA	High-Z	_
L	Н	L	Н	Read	ICCA	Dout	Read Cycle
L	Н	Х	L	Write	ICCA	High-Z	Write Cycle

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


8K × 8 Bit Fast Static RAM Industrial Temperature Range: –40 to 85°C

The MCM6264C is a 64,536 bit static random access memory organized as 8,192 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

Chip enables ($\overline{\text{E1}}$ and E2) control the power-down feature. They are not clocks but rather chip controls that affect power consumption. In less than a cycle time after $\overline{\text{E1}}$ goes high (and E2 goes low), the part automatically reduces it power requirements and remains in this low-power standby mode as long as $\overline{\text{E1}}$ remains high and (E2 remains low). This feature provides significant system-level power savings. Another control feature, output enable ($\overline{\text{G}}$) allows access to the memory contents as fast as 10 ns (MCM6264C-20).


The MCM6264C is available in a 300 mil, 28 lead plastic dual-in-line package or a 300 mil, 28 lead plastic SOJ package with the JEDEC standard pinout.

- Single 5 V ± 10% Power Supply
- · Fast Access Time: 20, 25 ns
- Fast Access Time: 20, 25 ns
 Chip Controls:
 - Chip Enables ($\overline{\text{E1}}$ and E2) for Reduced-Power Standby Mode Output Enable ($\overline{\text{O}}$) for Fast Access to Data
- Three-State Outputs
- Fully TTL Compatible
- Power Operation: 140 mA Maximum, Active AC (MCM6264C-20)
- High Board Density SOJ Package Available

MCM6264C

PIN NAMES							
A0-A12 Address Input W Write Enabl G Output Enabl E1, E2 Chip Enabl DQ0-DQ7 Data Input/Output VCC + 5 V Power Supp VSS Groun NC No Connection	e e e ut						

All power supply and ground pins must be connected for proper operation of the device.

TRUTH TABLE

E1	E2	G	w	Mode	V _{CC} Current	Output	Cycle
Н	х	X	Х	Not Selected	ISB1, ISB2	High-Z	_
Х	L	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Н	Read	ICCA	High-Z	
L	Н	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Н	Х	L	Write	ICCA	D _{in}	Write Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	- 0.5 to 7.0	V
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	- 50 to + 95	°C
Operating Temperature	TA	- 40 to + 85	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

This CMOS memory circuit has been designed to meet the do and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = - 40 to + 85°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	v _{cc}	4.5	5.0	5.5	V
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3	V
Input Low Voltage	V _{IL}	- 0.5*	_	0.8	V

 $^{^{\}star}$ V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns); V_{IL} (min) = -0.5 V dc)

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		l _{lkg(l)}	_	± 1	μА
Output Leakage Current ($\overline{E1} = V_{IL}$, E2 = V_{IH} , $V_{out} = 0$ to V_{CC})		likg(O)	_	± 1	μА
AC Supply Current (I _{out} = 0 mA, V _{CC} = Max)	$t_{AVAV} = 20 \text{ ns}$ $t_{AVAV} = 25 \text{ ns}$	ICCA	_	140 130	mA
TTL Standby Current ($\overline{\text{E1}}$ = V _{IH} , E2 = V _{IL} , No Restrictions on Other Inputs)	$t_{AVAV} = 20 \text{ ns}$ $t_{AVAV} = 25 \text{ ns}$	I _{SB1}	_	40 35	mA
CMOS Standby Current ($\overline{E1} \ge V_{CC} - 0.2 \text{ V}$, E2 \le 0.2 V, No Restrictions on Other Inputs)			_	20	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	0.4	٧
Output High Voltage (I _{OH} = – 4.0 mA)		VOH	2.4	_	٧

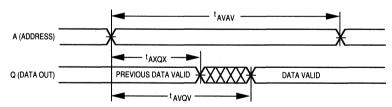
$\textbf{CAPACITANCE} \text{ (f = 1.0 MHz, dV = 3.0 V, T}_{\textbf{A}} = 25^{\circ}\text{C}, \text{ Periodically Sampled Rather Than 100\% Tested)}$

Characteristic	Symbol	Max	Unit
Input Capacitance (All Inputs Except DQ)	C _{in}	6	pF
Input/Output Capacitance	C _{I/O}	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS (VCC = 5.0 V \pm 10%, TA = - 40 to + 85°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V Input Pulse Levels 0 to 3.0 V Input Rise/Fall Time 5 ns

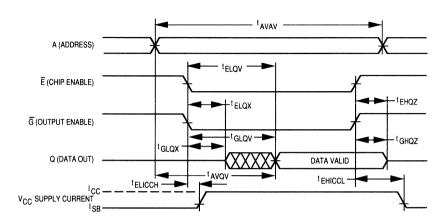
Output Timing Measurement Reference Level 1.5 V Output Load See Figure 1A Unless Otherwise Noted


READ CYCLE TIMING (See Notes 1 and 6)

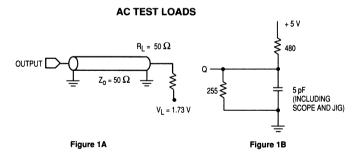
	Symbol		MCM6264C-20		MCM6264C-25			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	t _{RC}	20	_	25		ns	2
Address Access Time	tAVQV	t _{AA}	_	20	-	25	ns	
Enable Access Time	tELQV	tACS	_	20	_	25	ns	
Output Enable Access Time	tGLQV	^t OE	_	10	_	12	ns	
Output Hold from Address Change	t _{AXQX}	^t OH	4		4		ns	
Enable Low to Output Active	tELQX	[†] CLZ	4	_	4	_	ns	3, 4, 5
Output Enable to Output Active	tGLQX	tOLZ	0	_	0		ns	3, 4, 5
Enable High to Output High-Z	t _{EHQZ}	t _{CHZ}	0	8	0	10	ns	3, 4, 5
Output Enable High to Output High-Z	tGHQZ	tOHZ	0	8	0	10	ns	3, 4, 5
Power Up Time	^t ELICCH	t _{PU}	0	_	0	_	ns	
Power Down Time	^t EHICCL	t _{PD}		20	_	25	ns	

NOTES:

- 1. W is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. At any given voltage and temperature, tehoz max is less than telox min, and tehoz max is less than tehoz min, both for a given device and from device to device.
- 4. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. $\overline{E1}$ and E2 are both represented by \overline{E} in this data sheet. E2 is opposite polarity to $\overline{E1}$.


READ CYCLE 1 (See Notes)

NOTES:

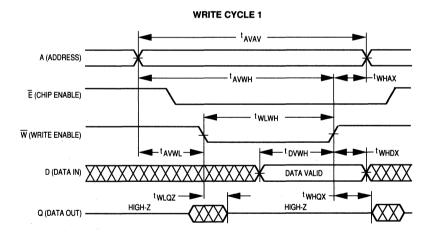

- 1. Device is continuously selected ($\overline{E1} = V_{|L|}$, $E2 = V_{|H|}$, $G = V_{|L|}$). 2. Addresses valid prior to or coincident with $\overline{E1}$ going low (and E2 going high).

READ CYCLE 2 (See Notes)

NOTES:

- Addresses valid prior to or coincident with E1 going low (and E2 going high).
 E1 and E2 are both represented by E in this data sheet. E2 is of opposite polarity to E1.

TIMING LIMITS

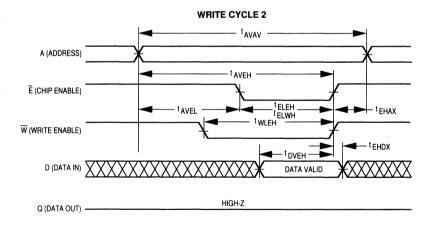

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 6)

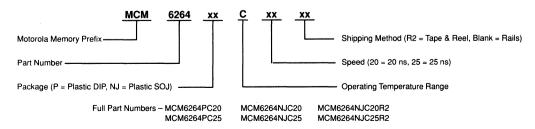
	Symbol		MCM6264C-20 MC		MCM62	MCM6264C-25		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	20	_	25	_	ns	2
Address Setup Time	tAVWL	t _{AS}	0	_	0	_	ns	
Address Valid to End of Write	tAVWH	taw	15	_	20	_	ns	
Write Pulse Width	twLwH	tWP	15	_	20	_	ns	
Data Valid to End of Write	^t DVWH	t _{DW}	8	_	10	_	ns	
Data Hold Time	twhox	t _{DH}	0	_	0	_	ns	
Write Low to Data High-Z	twLQZ	twz	. 0	8	0	10	ns	3, 4, 5
Write High to Output Active	twhqx	tow	4	_	4		ns	3, 4, 5
Write Recovery Time	twhax	twR	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of $\overline{E1}$ low (and E2 high) and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 4. This parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, twLoz max is less than twHOX min both for a given device and from device to device.
 6. E1 and E2 are both represented by E in this data sheet. E2 is of opposite polarity to E1.



WRITE CYCLE 2 (E Controlled, See Notes 1 and 5)


	Syn	Symbol		MCM6264C-20		MCM6264C-25		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	20	_	25	_	ns	2
Address Setup Time	†AVEL	t _{AS}	0	_	0	_	ns	
Address Valid to End of Write	tAVEH	taw	15		20	_	ns	
Enable to End of Write	†ELEH	tcw	12	-	15	_	ns	3,4
Enable to End of Write	tELWH	tcw	12	-	15	_	ns	
Write Pulse Width	tWLEH	tWP	12	T	15	_	ns	
Data Valid to End of Write	^t DVEH	t _{DW}	8	_	10	_	ns	
Data Hold Time	tEHDX	^t DH	0	_	0	_	ns	
Write Receovery Time	†EHAX	twR	0	_	0	_	ns	

NOTES:

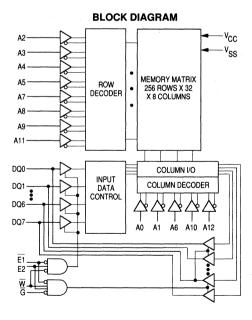
- 1. A write occurs during the overlap of $\overline{E1}$ low (and E2 high) and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. If E1 goes low (and E2 goes high) coincident with or after W goes low, the output will remain in a high impedance condition.
- 4. If E1 goes high (and E2 goes low) coincident with or before W goes high, the output will remain in a high impedance condition.
- 5. $\overline{E1}$ and E2 are both represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$.

ORDERING INFORMATION (Order by Full Part Number)

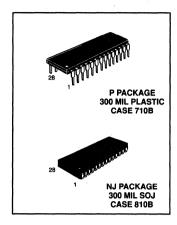
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

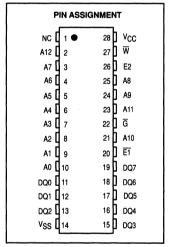
8K × 8 Bit Fast Static RAM

The MCM6264D is a 65,536 bit static random access memory organized as 8,192 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.


Chip enables (E1 and E2) control the power-down feature. They are not clocks but rather chip controls that affect power consumption. In less than a cycle time after E1 goes high (and E2 goes low), the part automatically reduces it power requirements and remains in this low-power standby mode as long as E1 remains high and (E2 remains low). This feature provides significant system-level power savings.

The MCM6264D is available in a 300 mil, 28 lead plastic dual-in-line package or a 300 mil, 28 lead plastic SOJ package with the JEDEC standard pinout.


- Single 5 V ± 10% Power Supply
- Fast Access Time: 20, 25, 35, 45 ns
- Chip Controls:


Chip Enables (E1 and E2) for Reduced-Power Standby Mode
Output Enable (G) Feature for Increased System Flexibility and to
Eliminate Bus Contention Problems

- Three-State Outputs
- · Fully TTL Compatible
- Power Operation: 120, 100, 90, 80 mA (Maximum)
- High Board Density SOJ Package Available
- Also Available in Industrial Temperature Range as MCM6264D-C

MCM6264D

PIN NAI	MES
A0-A12 W. G. E1, E2 DQ0-DQ7 VCC VSS NC	Write Enable Output Enable Chip Enable Data Input/Output + 5 V Power Supply

All power supply and ground pins must be connected for proper operation of the device.

MCM6264D

TRUTH TABLE

E1	E2	G	w	Mode	V _{CC} Current	Output	Cycle
Н	х	х	х	Not Selected	ISB1, ISB2	High-Z	_
Х	L	х	х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Н	Read	ICCA	High-Z	_
L	Н	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Н	Х	L	Write	ICCA	D _{in}	Write Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	– 0.5 to 7.0	٧
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to RECOMMENDED OPERATING
CONDITIONS. Exposure to higher than recommended voltages for extended periods of
time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedence circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

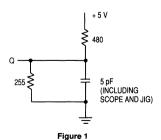
DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}	-0.3*	_	0.8	٧

 V_{IL} (min) = -0.3 V dc; V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)


DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		l _{lkg(l)}	_	± 1	μА
Output Leakage Current ($\overline{E1} = V_{IL}$, $E2 = V_{IH}$, $V_{out} = 0$ to V_{CC})		lkg(O)	_	± 1	μА
AC Supply Current (I _{out} = 0 mA, V _{CC} = Max)	$t_{AVAV} = 20 \text{ ns}$ $t_{AVAV} = 25 \text{ ns}$ $t_{AVAV} = 35 \text{ ns}$ $t_{AVAV} = 45 \text{ ns}$	ICCA		120 100 90 80	mA
TTL Standby Current ($\overline{E1} = V_{IH}$, E2 = V_{IL} , No Restrictions on Other In	puts)	I _{SB1}		10	mA
CMOS Standby Current ($\overline{E1} \ge V_{CC} - 0.2 \text{ V}$, E2 $\le 0.2 \text{ V}$, No Restriction	s on Other Inputs)	I _{SB2}	_	5	mA
OS Standby Current ($\overline{E1} \ge V_{CC} - 0.2 \text{ V}$, E2 $\le 0.2 \text{ V}$, No Restrictions on Other Inputs) at Low Voltage ($I_{OL} = + 8.0 \text{ mA}$)		V _{OL}	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)		V _{OH}	2.4		٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Max	Unit
Input Capacitance (All Inputs Except DQ)	C _{in}	6	pF
Input/Output Capacitance	C _{I/O}	8	pF

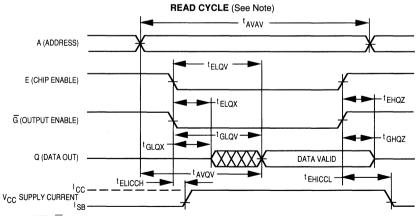
AC TEST LOAD

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

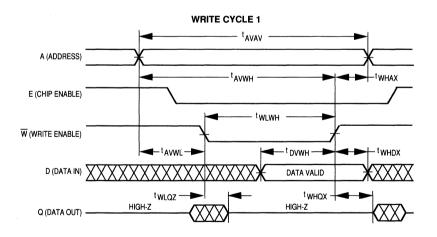

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement
Input Pulse Levels 0 to 3.0 V	Reference Level 0.8 and 2.0 V
Input Rise/Fall Time 5 ns	Output Load See Figure 1 Unless Otherwise Noted

READ CYCLE TIMING (See Note 1)

	Symb	ol	MCM62	64D-20	MCM62	64D-25	МСМ62	64D-35	MCM62	264D-45		ł
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	20		25	_	35	_	45	_	ns	
Address Access Time	tavqv	tAA	_	20	_	25		35	_	45	ns	
Enable Access Time	†ELQV	tACS		20	_	25	_	35		45	ns	4
Output Enable Access Time	^t GLQV	t _{OE}	_	10	_	10	_	15	_	20	ns	
Output Hold from Address Change	tAXQX	tОН	4	_	4	_	5		5	_	ns	
Enable Low to Output Active	†ELQX	^t CLZ	4	_	4	_	5	_	5	_	ns	2, 3, 4
Output Enable to Output Active	^t GLQX	†OLZ	2		2	_	0		0	_	ns	2, 3
Enable High to Output High-Z	^t EHQZ	tCHZ	0	15	0	15	0	15	0	15	ns	2, 3, 4
Output Enable High to Output High-Z	^t GHQZ	tonz	0	15	0	15	0	15	0	15	ns	2, 3
Power Up Time	^t ELICCH	t _{PU}	0	_	0	_	0	_	0	_	ns	2, 3, 4
Power Down Time	†EHICCL	tpD	_	20	_	25	0	35	0	45	ns	2, 3, 4

NOTES:

- 1. \overline{W} is high for read cycle.
- 2. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.
 4. E1 and E2 are both represented by E in this data sheet. E2 is opposite polarity to E1.

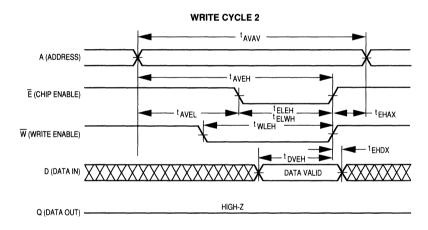

NOTE: $\overline{\mathbf{W}}$ is high for read cycle.

WRITE CYCLE 1 (W Controlled, See Note 1)

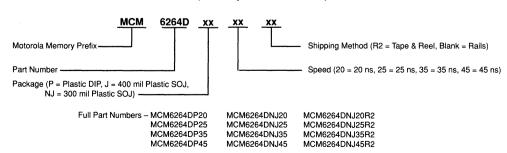
	Symb	ol	MCM62	64D-20	мсм62	64D-25	MCM62	64D-35	MCM62	64D-45		
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	20	_	25	_	35	_	45	_	ns	
Address Setup Time	†AVWL	tAS	0	_	0		0		0	_	ns	
Address Valid to End of Write	^t AVWH	tAW	15		20		25	_	35	_	ns	
Write Pulse Width	tWLWH	tWP	15		15	_	20	_	25		ns	3
Data Valid to End of Write	tDVWH	tDW	10	_	10	_	15	_	20		ns	
Data Hold Time	twhox	tDH	0	_	0	_	0	_	0	_	ns	3
Write Low to Data High-Z	†WLQZ	twz	0	10	0	15	0	15	0	15	ns	4, 5
Write High to Output Active	tWHQX	tow	4		4	_	5		5	_	ns	4, 5
Write Recovery Time	twhax	twR	0	_	0	_	0	_	0	_	ns	

NOTES:

- 1. A write cycle starts at the latest transition of a low $\overline{E1}$, low \overline{W} , or high E2. A write cycle ends at the earliest transition of a high $\overline{E1}$, high \overline{W} , or low E2.
- 2. If \overline{W} goes low coincident with or prior to $\overline{E1}$ low or E2 high then the outputs will remain in a high impedance state.
- 3. During this time the output pins may be in the output stage. Signals of opposite phase to the outputs must not be applied at this time.
- All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the
 previous steady state voltage.
- 5. These parameters are sampled and not 100% tested.



WRITE CYCLE 2 (E Controlled, See Note 1)


	Γ				r							T
	Symb	ol	MCM62	64D-20	MCM62	64D-25	MCM62	64D-35	MCM62	64D-45]	
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	twc	20	_	25	_	35	_	45	_	ns	
Address Setup Time	tAVEL	†AS	0	_	0	_	0	_	0	-	ns	2, 5
Address Valid to End of Write	^t AVEH	tAW	15	_	20	_	25	_	35	_	ns	2, 5
Enable to End of Write	tELEH	tcw	15	_	20	_	25	_	35		ns	2, 3, 5
Data Valid to End of Write	tDVEH	tDW	10	_	10	_	15	_	20	-	ns	2, 5
Data Hold Time	tEHDX	tDH	0	_	0	_	0	_	0	_	ns	2, 4, 5
Write Recovery Time	^t EHAX	twR	0		0	_	0	_	0	_	ns	2, 5

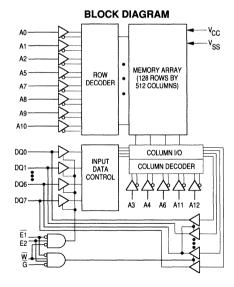
NOTES:

- 1. A write cycle starts at the latest transition of a low $\overline{E1}$, low \overline{W} , or low $\overline{E2}$. A write cycle ends at the earliest transition of a high $\overline{E1}$, high \overline{W} , or low $\overline{E2}$.
- 2. E1 and E2 timings are identical when E2 signals are inverted.
- 3. If W goes low coincident with or prior to $\overline{E1}$ low or E2 high then the outputs will remain in a high impedance state.
- 4. During this time the output pins may be in the output stage. Signals of opposite phase to the outputs must not be applied at this time. 5. E1 and E2 are both represented by E in this data sheet. E2 is of opposite polarity to E1.

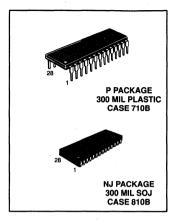
ORDERING INFORMATION (Order by Full Part Number)

8K × 8 Bit Fast Static RAM Industrial Temperature Range: –40 to 85°C

The MCM6264D-C is a 64,536 bit static random access memory organized as 8,192 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.


Chip enables (E1 and E2) control the power-down feature. They are not clocks but rather chip controls that affect power consumption. In less than a cycle time after E1 goes high (and E2 goes low), the part automatically reduces it power requirements and remains in this low-power standby mode as long as E1 remains high and (E2 remains low). This feature provides significant system-level power savings.

The MCM6264D-C is available in a 300 mil, 28 lead plastic dual-in-line package or a 300, 28 lead plastic SOJ package with the JEDEC standard pinout.


- Single 5 V ± 10% Power Supply
- Fast Access Time: 25, 35, 45, 55 ns
- Chip Controls:

Chip Enables (E1 and E2) for Reduced-Power Standby Mode
Output Enable (G) Feature for Increased System Flexibility and to Eliminate
Bus Contention Problems

- · Three-State Outputs
- Fully TTL Compatible
- Low Power Operation: 115, 100, 90, 80 mA (Maximum)
- · High Board Density SOJ Package Available
- Also Available in Commercial Temperature Range as MCM6264D

MCM6264D-C

P	PIN ASSIGNMENT										
NC [1 •	28	vcc								
A12 [2	27	w								
A7 [3	26	E2								
A6 [4	25	A8								
A5 [5	24	A9								
A4 [6	23	A11								
A3 [7	22	G								
A2 [8	21	A10								
A1 [9	20	E1								
A0 [10	19	DQ7								
DQ0 [11	18	DQ6								
DQ1	12	17	DQ5								
DQ2	13	16	DQ4								
v _{ss} [14	15	DQ3								
<u> </u>											

PIN NAMES								
A0-A12 Address Inputs W Write Enable G Output Enable E1, E2 Chip Enable DQ0-DQ7 Data Input/Output VCC + 5 V Power Supply VSS Ground NC No Connection								

All power supply and ground pins must be connected for proper operation of the device.

TRUTH TABLE

Ē1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	х	Not Selected	I _{ISB1} , I _{SB2}	High-Z	_
Х	L	Х	х	Not Selected	I _{ISB1} , I _{SB2}	High-Z	_
L	Н	Н	Н	Read	ICCA	High-Z	
L	Н	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Н	Х	L	Write	ICCA	D _{in}	Write Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0 V)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	- 0.5 to 7.0	٧	
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧	
Output Current (per I/O)	lout	± 20	mA	
Power Dissipation (T _A = 25°C)	PD	1.0	w	
Temperature Under Bias	T _{bias}	- 50 to + 95	°C	
Operating Temperature	TA	- 40 to + 85	°C	
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	∘C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedence circuit.

This CMOS memory circuit has been designed to meet the do and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A + -40 \text{ to} + 85^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to Voc = 0 V)

TECOMMETADES OF EFFATIVE CONSTITUTION (VOILEGES FEFET ICEG TO VSS = 0 V)									
Parameter	Symbol	Min	Тур	Max	Unit				
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧				
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3	٧				
Input Low Voltage	V _{IL}	- 0.3*	_	0.8	٧				

^{*} V_{IL} (min) = -0.3 Vdc; V_{IL} (min) = -3.0 Vac (pulse width \leq 20 ns); V_{IL} (min) = -0.5 Vdc)

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		l _{ikg(I)}	_	± 1	μА
Output Leakage Current (E1 = V _{IL} , E2 = V _{IH} , V _{out} = 0 to V _{CC})		likg(O)	_	± 1	μА
AC Supply Current (I _{out} = 0 mA, V _{CC} = Max)	t _{AVAV} = 25 ns t _{AVAV} = 35 ns t _{AVAV} = 45 ns t _{AVAV} = 55 ns	ICCA		115 100 90 80	mA
TTL Standby Current ($\overline{E1}$ = V_{IH} , E2 = V_{IL} , No Restrictions on Other Inc.	outs)	I _{SB1}	_	10	mA
CMOS Standby Current ($\overline{E1} \ge V_{CC} - 0.2 \text{ V}$, E2 $\le 0.2 \text{ V}$, No Restrictions	on Other Inputs)	I _{SB2}	_	5	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)		VOH	2.4		٧

CAPACITANCE (f = 1.0 Mhz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Max	Unit
Input Capacitance (All Inputs Except DQ)	C _{in}	6	pF
Input/Output Capacitance	C _{I/O}	8	pF

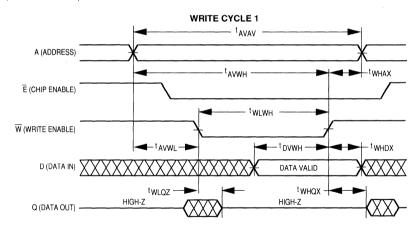
AC OPERATING CONDITIONS AND CHARACTERISTICS (V $_{CC}$ = 5.0 V ± 10%, T $_{A}$ = 0 to + 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement
Input Pulse Levels 0 to 3.0 V	Reference Level 0.8 and 2.0 V
Input Rise/Fall Time 5 ns	Output Load See Figure 1

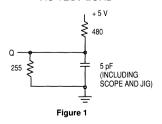
READ CYCLE TIMING (See Note 1)

	Symb	ol	MCM62	64DC-25	MCM626	64DC-35	MCM62	64DC-45	MCM62	64DC-55	
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Notes
Read Cycle Time	tavav	tRC	25	_	35	_	45		55	_	
Address Access Time	tAVQV	tAA	_	25		35	_	45	_	55	
Enable Access Time	†ELQV	tACS	_	25	_	35	_	45	_	55	4
Output Enable Access Time	^t GLQV	[†] OE	_	10	_	15	_	20		25	
Output Hold from Address Change	†AXQX	tОН	4	_	5		5	_	5	_	
Enable Low to Output Active	†ELQX	tCLZ	4	_	5	_	5	_	5	_	2, 3, 4
Output Enable to Output Active	[†] GLQX	tOLZ	2	_	2	_	2	_	2	_	2, 3
Enable High to Output High-Z	[†] EHQZ	tCHZ	0	15	0	15	0	15	0	15	2, 3, 4
Output Enable High to Output High-Z	^t GHQZ	tOHZ	0	15	0	15	0	15	0	15	2, 3
Power Up Time	tELICCH	t _{PU}	0	_	0	_	0	—	0	T -	2, 3, 4
Power Down Time	†EHICCL	tPD	_	25		35	0	45	0	55	2, 3, 4

- W is high for read cycle.
- 2. All high-Z and low -Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from previous steady state voltage.
- 3. These parameters are periodically sampled and not 100% tested.
- 4. $\overline{E1}$ and E2 are both represented by \overline{E} in this data sheet. E2 is opposite polarity to $\overline{E1}$.


NOTE: \overline{W} is high for read cycle.

WRITE CYCLE 1 (W Controlled, See Note 1)


	Symb	ol	MCM626	64DC-25	MCM626	64DC-35	MCM626	64DC-45	MCM626	64DC-55		
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	25	_	35	_	45	-	55	_	ns	
Address Setup Time	tAVWL	†AS	0	_	0	_	0		0	_	ns	
Address Valid to End of Write	tavwh	tAW	20	_	25	_	35	_	45	_	ns	
Write Pulse Width	twLwH	twp	15	_	20	_	25	_	30	_	ns	3
Data Valid to End of Write	t _{DVWH}	tDW	10	_	15	_	20	_	25	_	ns	
Data Hold Time	twhox	tDH	0		0	_	0	_	0	_	ns	3
Write Low to Data High-Z	twLQZ	twz	0	15	0	15	0	15	0	15	ns	4, 5
Wirte High to Output Active	twhqx	tow	4		5	_	5	_	5	_	ns	4, 5
Write Recover Time	twhax	twR	0	-	0	_	0	_	0	_	ns	

NOTES:

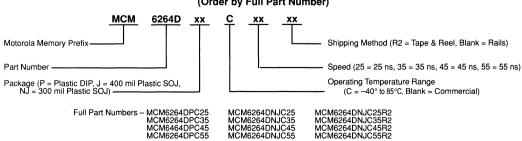
- 1. A write cycle starts at the latest transition of a low $\overline{E1}$, low \overline{W} , or high E2. A write cycle ends at the earliest transition of a high $\overline{E1}$, high \overline{W} , or low E2.
- 2. If W goes low coincident with or prior to E1 low or E2 high then the outputs will remain in a high impedance state.
- 3. During this time the output pins may be in the output stage. Signals of opposite phase to the outputs must not be applied at this time.
- 4. All high-Z and low-Z parameters are considered in a high or low impedance state when the output has made a 500 mV transition from the previous steady state voltage.
- 5. These parameters are sampled and not 100% tested.

AC TEST LOAD

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

WRITE CYCLE 2 (E Controlled, See Note 1)

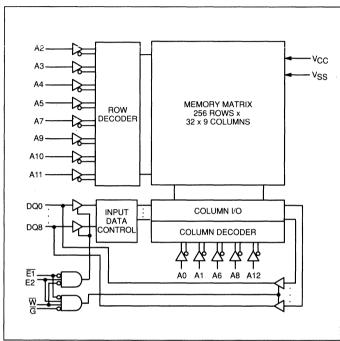

	Symb	ol	MCM626	64DC-25	MCM6264DC-35		MCM6264DC-35		MCM6264DC-45		MCM6264DC-55			
Parameter	Std.	Alt.	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes		
Write Cycle Time	tAVAV	twc	25	-	35	_	45	_	55	_	ns			
Address Setup Time	^t AVEL	†AS	0	_	0		0	_	0	_	ns	2, 5		
Address Valid to End of Write	^t AVEH	t _{AW}	20	_	25		35		45	_	ns	2, 5		
Enable to End of Write	tELEH	tcw	20	_	25	_	35	_	45		ns	2, 3, 5		
Data Valid to End of Write	^t DVEH	tDW	10	_	15		20		25	_	ns	2, 5		
Data Hold Time	tEHDX	tDH	0	_	0	_	0		0	_	ns	2, 4, 5		
Write Recover Time	^t EHAX	twR	0	_	0	_	0	_	0	_	ns	2, 5		

NOTES:

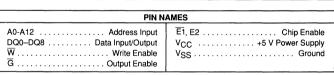
- 1. A write cycle starts at the latest transition of a low $\overline{E1}$, low \overline{W} , or low $\overline{E2}$. A write cycle ends at the earliest transition of a high $\overline{E1}$, high \overline{W} , or low $\overline{E2}$.
- 2. E1 and E2 timings are identical when E2 signals are inverted.
- 3. If \overline{W} goes low coincident with or prior to $\overline{E1}$ low or E2 high then the outputs will remain in a high impedance state.
- 4. During this time the output pins maybe in the output stage. Signals of opposite phase to the outputs must not be applied at this time.
- 5. $\overline{E1}$ and E2 are both represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$.

WRITE CYCLE 2 t AVAV A (ADDRESS) ^t AVEH E (CHIP ENABLE) ^tELEH ^t AVEL - ^tEHAX t ELWH ^tWLEH W (WRITE ENABLE) - tehdx ^t DVEH DATA VALID HIGH-Z Q (DATA OUT) ·

ORDERING INFORMATION (Order by Full Part Number)



MOTOROLA SEMICONDUCTOR TECHNICAL DATA


8K x 9 Bit Fast Static RAM

MCM6265-15, -20, -25 See QuickRAM, Page 7-122

MCM6265C-10, -12 See QuickRAM II, Page 7-142

28	P PACKAGE 300 MIL PLASTIC CASE 710B
28 1	NJ PACKAGE 300 MIL SOJ CASE 810B

PI	N ASSIGN	IMEN	NT
A8 [1 •	28	v _{cc}
A7 [2	27	_
A6 [3	26	E2
A5 [4	25	A9
A4 [5	24	A10
аз [6	23	A11
A2 [7	22] ਫ
A1 [8	21	A12
A0 [9	20] E1
DQ0 [10	19	DQ8
DQ1	11	18	DQ7
DQ2	12	17	DQ6
раз [13	16	DQ5
v _{ss} [14	15	DQ4
•			•

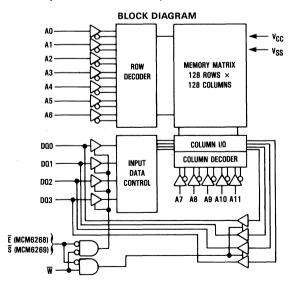
MCM6265 TRUTH TABLE (X = don't care)

				(
E1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	х	х	Not Selected	ISB1, ISB2	High-Z	_
X	L	Х	X	Not Selected	ISB1, ISB2	High-Z	_
L	H	Н	н	Output Disabled	ICCA	High-Z	_
L ,	H	L	Н	Read	ICCA	Dout	Read Cycle
L	Н	Х	L	Write	ICCA	High-Z	Write Cycle

4K × 4 Bit Static Random Access Memory

The MCM6268 and MCM6269 are 16,384-bit static random access memories organized as 4096 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides greater reliability. Fast access time makes this device suitable for cache and other sub-50 ns applications.

The MCM6268 uses a chip enable (Ē) function which is not a clock. In less than a cycle time after Ē goes high, the part enters a low-power standby mode, remaining in that state until Ē goes low again. This device also incorporates internal power down circuitry that will reduce active current for less than 100% duty cycle applications. These features provide reduced system power requirements without degrading access time performance.


Similar in design to the Motorola MCM6268, the MCM6269 features an enhanced chip select circuit allowing access to data in as little as 10 ns.

Both devices are available in a 20 lead plastic dual-in-line package and feature the standard JEDEC pinout.

- Single 5 V Supply, ±10%
- 4K×4 Bit Organization
- Fully Static—No Clock or Timing Strobes Necessary
- Three State Output
- Fully TTL Compatible
- Fast Access Time (Maximum) (xx = 68 or 69):

		MCM6268	MCM6269
	Address	Chip Enable	Chip Select
MCM62xxP20	20 ns	20 ns	10 ns
MCM62xxP25	25 ns	25 ns	12 ns
MCM62xxP35	35 ns	35 ns	15 ns
MCM6268P45	45 ns	45 ns	
MCM6268P55	55 ns	55 ns	

Low Power Operation: 110 mA Maximum, Active AC

MCM6268 MCM6269

PIN	ASSI	GNME	NT
A4 [1 •	20] v _{cc}
A5 [2	19] A3
A6 🖸	3	18] A2
A7 [4	17] A1
A8 [5	- 16] AO
A9 [6	15] DQO
A10 🖸	7	14] DQ1
A11 🖸	8	13] DQ2
S or EC	9	12] DQ3
v _{ss} [10	11	J₩
'			

A0-A11Address Input
W Write Enable
E (MCM6268) Chip Enable
S (MCM6269) Chip Select
DQ0-DQ3 Data Input/Output
VCC +5 V Power Supply
VSS · · · · · Ground

TRUTH TABLE

Ē/S	w	Mode	V _{CC} Current (MCM6268)		I/O Pin	Cycle
Н	Х	Not Selected	ISB1, ISB2	Icc	High-Z	_
L	Н	Read	l cc	Icc	Dout	Read Cycle
L	L	Write	Icc	Icc	Din	Write Cycle

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	±20	mΑ
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{sta}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.0	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})	l _{lkg(l)}	_	±1.0	μА
Output Leakage Current (\overline{E} or $\overline{S} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (0)	_	±1.0	μА
AC Supply Current (I _{Out} = 0 mA) MCM6268/69-20, 25, 35	Icc	_	110	mA
MCM6268-45, 55			80	
TTL Standby Current (E=V _{IH} , No Restrictions on Other Inputs) (MCM6268)	ISB1	_	20	mA
CMOS Standby Current (Ē≥V _{CC} − 0.2 V, No Restrictions on Other Inputs) MCM6268-20, 25, 35	ISB2	_	15	mA
MCM6268-45, 55		_	2	
$(\overline{S} \ge V_{CC} - 0.2 \text{ V}, V_{in} \le 0.2 \text{ V}, \text{ or } \ge V_{CC} - 0.2 \text{ V}) \text{ (MCM6269)}$	ISB	_	15	
Output Low Voltage (I _{OL} =8.0 mA)	VOL	_	0.4	٧
Output High Voltage (IOH = -4.0 mA)	VOH	2.4	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

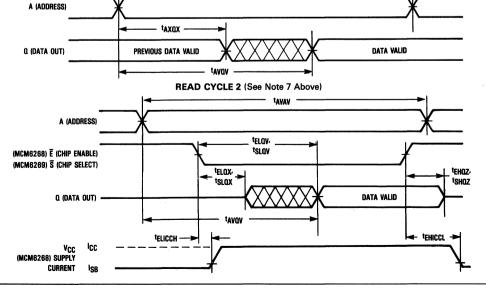
Characteristic	Symbol	Min	Тур	Max	Unit	
Input Capacitance	All inputs Except E, S E, S	C _{in}	_	4 5	6 7	pF
I/O Capacitance		C _{I/O}	_	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Reference Level	Output Reference Level
Input Pulse Levels	Output Load Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE (See Note 1)

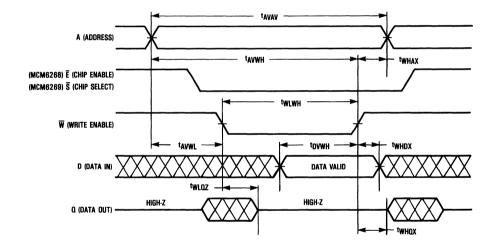

Parameter			MCM6268P20 MCM6269P20						мсме	268P45	мсме	268P55	Unit	Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Read Cycle Time	tAVAV	tRC	20	-	25	_	35	_	40	_	55	-	ns	2
Address Access Time	tAVQV	tAA	_	20	_	25	-	35	_	40	-	50	ns	
Enable Access Time (MCM6268)	tELQV	tACS	_	20	-	25	-	35	_	45	-	55	ns	
Select Access Time (MCM6269)	tSLQV	tACS	-	10	-	12	-	15					ns	
Output Hold from Address Change	tAXQX	tон	5	-	5	-	5	-	5	-	5	-	ns	
Enable Low to Output Active	tELQX	tLZ	5	_	5	_	5	_	10	_	10	_	ns	3,4,5
Select Low to Output Active (MCM6269)	tslax	tLZ	5	-	5	-	5	-					ns	3,4,5
Enable High to Output High-Z	t _{EHOZ}	tHZ	0	8	0	10	0	. 15	0	15	0	20	ns	3,4,5
Select High to Output High-Z (MCM6269)	tshoz	tHZ	0	8	0	10	0	15					ns	3,4,5
Power Up Time (MCM6268)	†ELICCH	tPU	0	_	0	_	0	-	0		0	_	ns	
Power Down Time (MCM6268)	^t EHICCL	tPD	-	20	-	20	_	30	_	45	_	55	ns	

NOTES:

- 1. \overline{W} is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. At any given voltage and temperature, tehoz (or tshoz) max, is less than tehox (or tshox) min, both for a given device and from device to device.
- 4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. Device is continuously selected (Ē or Š = V|L).
 7. Addresses valid prior to or coincident with Ē or ℥ going low.

READ CYCLE 1 (See Note 6 Above)

^tAVAV



WRITE CYCLE 1 (W Controlled, See Note 1)

Parameter					MCM6268P25 MCM6269P25				MCM6268P45		MCM6268P55		Unit	Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Write Cycle Time	tAVAV	twc	20	_	25	_	35	_	40	_	50	_	ns	2
Address Setup Time	†AVWL	tAS	0	_	0	_	0	_	0	-	0	_	ns	
Address Valid to End of Write	^t AVWH	tAW	15	_	20	_	30	-	35	_	45	_	ns	
Write Pulse Width	tWLWH	tWP	15	_	20	_	25	_	35	_	45	-	ns	
Data Valid to End of Write	tDVWH	tDW	10	_	10	_	15	-	15	_	20	_	ns	
Data Hold Time	tWHDX	tDH	0	_	0	_	0	_	0	_	0	-	กร	
Write Low to Output High-Z	twLoz	twz	0	8	0	10	0	15	0	20	0	25	ns	3,4,5
Write High to Output Active	twhax	tow	5	_	5	_	5	_	5	_	5	_	ns	3,4,5
Write Recovery Time	twhax	tWR	0	_	0	_	0	_	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} or \overline{S} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured ±500 mV from steady-state voltage with load in Figure 1B.
- 4. Parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, tWLOZ max, is less than tWHOX min, both for a given device and from device to device.

AC TEST LOADS

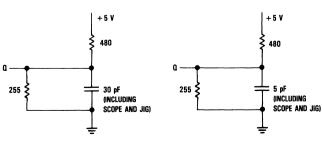
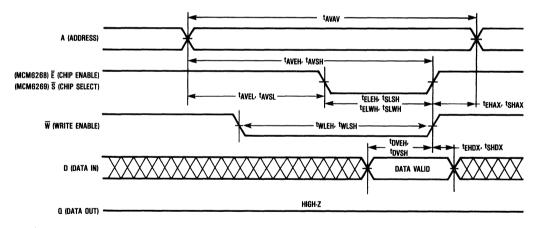


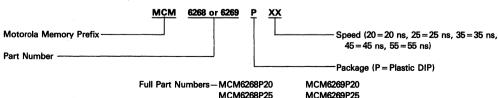
Figure 1A

Figure 1B

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WRITE CYCLE 2 (E, S Controlled; See Note 1)


Parameter					MCM6268P25 MCM6269P25						MCM6268P55		Unit	Notes
	Standard	d Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Write Cycle Time	tAVAV	twc	20	_	25	_	35	_	40	_	50	_	ns	2
Address Setup Time	tAVEL, tAVSL	tAS	0	_	0	-	0	_	0	-	0	_	ns	
Address Valid to End of Write	tAVEH, tAVSH	t _{AW}	15	_	20	-	30	_	35	_	45	-	ns	
Enable to End of Write (MCM6268)	tELEH	tcw	15	_	20	-	30	-	35	-	45	_	ns	3,4
Select to End of Write (MCM6269)	tSLSH	tcw	15	-	20	-	30	_					ns	3,4
Enable to End of Write (MCM6268)	tELWH	tcw	15		20	_	30	_	30	_	30	_	ns	
Select to End of Write (MCM6269)	tSLWH	tcw	15	_	20	-	30	-					ns	
Write Pulse Width	tWLEH, tWLSH	tWP	15	_	20	-	25	_	30	-	30	_	ns	
Data Valid to End of Write	tDVEH, tDVSH	tDW	10	_	10	-	15	_	15	-	20	-	ns	
Data Hold Time	tehdx, tshdx	^t DH	0	_	0		0	-	0	_	0	-	ns	
Write Recovery Time	tehax, tshax	tWR	0	-	0	-	0	_	0	-	0	-	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} or \overline{S} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- If E or S goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E or S goes high coincident with or before W goes high, the output will remain in a high impedance condition.

ORDERING INFORMATION (Order by Full Part Number)

MCM6268P25 MCM6268P35 MCM6268P45 MCM6269P25 MCM6269P35

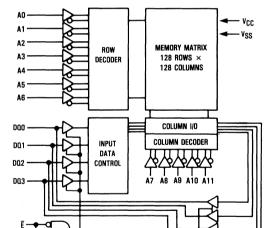
MOTOROLA MEMORY DATA

MCM6268P55

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

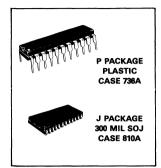
4K×4 Bit Static RAM

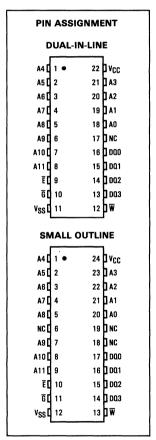
The MCM6270 is a 16,384-bit static random access memory organized as 4096 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption for greater reliability.


The MCM6270 is equipped with both chip enable $(\overline{\mathbf{E}})$ and output enable $(\overline{\mathbf{G}})$ inputs, allowing for greater system flexibility. Either input, when high, will force the outputs to high impedance.

- Single 5 V Supply, ±10%
- Fully Static—No Clock or Timing Strobes Necessary
- Three-State Outputs
- Fully TTL Compatible
- Fast Access Time (Maximum):

	Address	Chip Enable	Output Enable
MCM6270-20	20 ns	20 ns	10 ns
MCM6270-25	25 ns	25 ns	12 ns
MCM6270-35	35 ns	35 ns	14 ns


- Low Power Operation: 110 mA Maximum, Active AC
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems


BLOCK DIAGRAM

PIN NAMES										
A0-A11Address Input DQ0-DQ3 . Data Input/Output WWrite Enable GOutput Enable	V _{CC} +5 V Power Supply V _{SS} Ground									

MCM6270

7

TRUTH TABLE

Ē	G	w	Mode	V _{CC} Current	I/O Pin	Cycle
н	х	х	Not Selected	ISB	High-Z	_
L	Н	Н	Read	ICCA	High-Z	_
L	L	н	Read	ICCA	Dout	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage (V _{CC})	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	±20	mA
Power Dissipation (+25°C)	PD	1.0	w
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = $5.0 \text{ V} \pm 10\%$, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.0	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	٧

^{*} V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	likg(i)		± 1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$ or $\overline{G} = V_{IH}$ or $\overline{W} = V_{IL}$, $V_{out} = 0$ to V_{CC})	l _{lkg} (O)	_	±1.0	μΑ
AC Supply Current (I _{out} = 0 mA)	ICCA	_	110	mA
TTL Standby Current (Ē≃VIH, No Restrictions on Other Inputs)	I _{SB1}		20	mA
CMOS Standby Current (Ē≥V _{CC} – 0.2 V, No Restrictions on Other Inputs)	I _{SB2}	_	15	mA
Output Low Voltage (I _{OL} =8.0 mA)	V _{OL}	_	0.4	V
Output High Voltage (IOH = -4.0 mA)	VoH	2.4		V

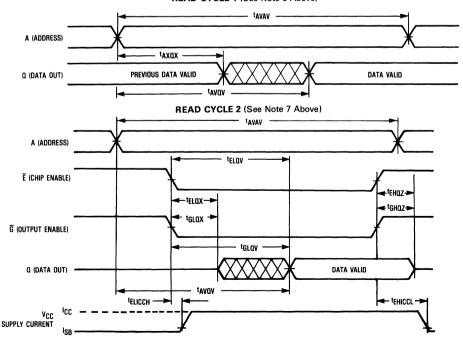
$\textbf{CAPACITANCE} \ \, (\text{f=1.0 MHz}, \ \text{dV=3.0 V}, \ \text{T}_{\text{A}} = 25^{\circ}\text{C}, \ \text{Periodically Sampled Rather Than 100\% Tested})$

Characteristic	Symbol	Тур	Max	Unit	
Input Capacitance	All Inputs Except E	Cin	4 5	6 7	pF
I/O Capacitance	DQ	C _{I/O}	- 5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

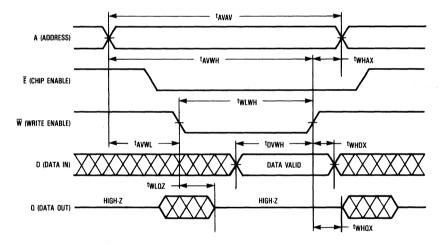

READ CYCLE (See Note 1)

D	Syn	lodn	мсме	5270-20	MCM6270-25		MCM6270-35			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	20	_	25	_	35	_	ns	2
Address Access Time	tAVQV	tAA	_	20	_	25	_	35	ns	
Chip Enable Access Time	tELQV	tACS	_	20	_	25	_	35	ns	
Output Enable Access Time	tGLQV	^t OE	_	10	_	12	_	14	ns	
Output Hold from Address Change	tAXQX	tOH	5	_	5	_	5	_	ns	
Chip Enable Low to Output Active	t _{ELOX}	tLZ	5	_	5	_	5	_	ns	3,4,5
Chip Enable High to Output High-Z	tEHQZ	tHZ	0	8	0	10	0	15	ns	3,4,5
Output Enable Low to Output Active	tGLQX	tLZ	0	_	0	_	0	_	ns	3,4,5
Output Enable High to Output High-Z	tGHQZ	tHZ	0	8	0	10	0	15	ns	3,4,5
Power Up Time	†ELICCH	tPU	0	_	0	_	0	_	ns	
Power Down Time	†EHICCL	tPD	_	20	-	20	_	30	ns	

NOTES: 1. W is high for read cycle.

- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. At any given voltage and temperature, tehoz max is less than telox min, and tehoz max is less than telox min, both for a given device and from device to device.
- 4. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. Device is continuously selected ($\overline{E} = V_{\parallel L}$, $\overline{G} = V_{\parallel L}$).
- 7. Addresses valid prior to or coincident with E going low.

READ CYCLE 1 (See Note 6 Above)



WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

Parameter	Syn	nbol	мсм	5270-20	MCM6270-25		MCM6270-35		Unit	Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	_	25	_	35		ns	3
Address Setup Time	tAVWL	tAS	0	_	0	_	0	-	ns	
Address Valid to End of Write	tAVWH	tAW	15	_	20	_	30	_	ns	
Write Pulse Width	tWLWH	tWP	15	_	20	_	25	_	ns	
Data Valid to End of Write	tDVWH	tDW	10	-	10	_	15	_	ns	
Data Hold Time	twhox	tDH	0	_	0	_	0	_	ns	
Write Low to Output High-Z	tWLQZ	twz	0	8	0	10	0	15	ns	4,5,6
Write High to Output Active	twhax	tow	5	_	5		5	_	ns	4,5,6
Write Recovery Time	tWHAX	twr	0	_	0	_	0		ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. Transition is measured ± 500 mV from steady-state voltage with load in Figure 1B.
- 5. Parameter is sampled and not 100% tested.
- 6. At any given voltage and temperature, twLoz max, is less than twHox min, both for a given device and from device to device.

AC TEST LOADS

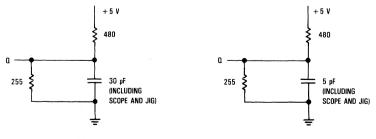
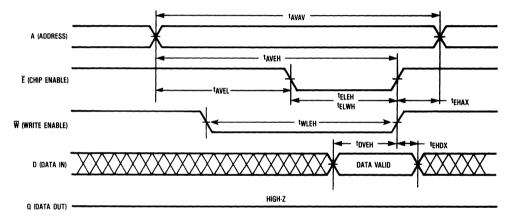


Figure 1A


Figure 1B

WRITE CYCLE 2 (E Controlled: See Notes 1 and 2)

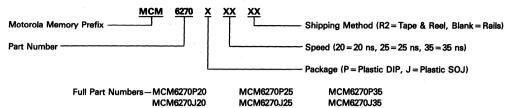
Danama atau	Syn	nbol	MCM6270-20		MCM6270-25		MCM6270-35			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20	_	25	_	35	_	ns	3
Address Setup Time	tAVEL	tAS	0	_	0	_	0		ns	
Address Valid to End of Write	tAVEH	tAW	15	_	20	_	30	-	ns	
Chip Enable to End of Write	teleh	tcw	15	-	20	-	30	-	ns	4,5
Chip Enable to End of Write	tELWH	tcw	15	_	20	_	30	_	ns	4,5
Write Pulse Width	tWLEH	tWP	15	-	20	_	25	_	ns	
Data Valid to End of Write	†DVEH	tDW	10	- T	10	_	15	_	ns	
Data Hold Time	tEHDX	^t DH	0	_	0	_	0	_	ns	
Write Recovery Time	tEHAX	twr	0	_	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
- 5. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal


The transition definitions used in this data sheet are:

- H = transition to high
- L=transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

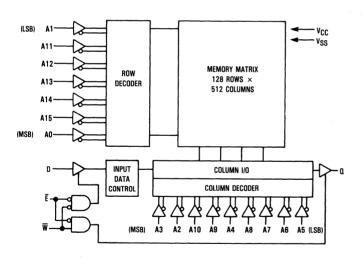
ORDERING INFORMATION (Order by Full Part Number)

MCM6270J25R2

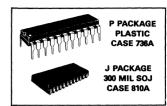
MCM6270J35R2

MCM6270J20R2

64K×1 Bit Static Random Access Memory


The MCM6287 is a 65,536 bit static random access memory organized as 65,536 words of 1 bit, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption for greater reliability.

The chip enable (Ē) pin is not a clock. In less than a cycle time after Ē goes high, the part enters a low-power standby mode, remaining in that state until Ē goes low again. This device also incorporates internal power down circuitry that will reduce active current for less than 100% duty cycle applications. These features provide reduced system power requirements without degrading access time performance.


The MCM6287 is available in a 300 mil, 22 lead plastic DIP and a 24 lead, 300 mil, surface-mount SOJ package. Both feature JEDEC standard pinout.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 25/35 ns
- Equal Address and Chip Enable Access Time
- Low Power Operation: 120/110 mA Maximum. Active AC
- High Board Density SOJ Available
- Three State Data Output
- Fully TTL Compatible

BLOCK DIAGRAM

MCM6287

	ASSIGN	
•	JUAL-IIV-	LINE
A0 [1 •	22 DV _{CC}
A1 [2	21 A15
A2 [3	20 A14
A3 [4	19 🛘 A13
A4 E	5	18 A12
A5 [6	17 A11
A6 E	7	16 A10
A7 [8	15 DA9
a [9	14 DA8
w [10	13 D
v _{ss} E	11	12] Ē
SN	ALL OU	TLINE
AO E	1 •	24 VCC
A1 [2	23 A15
A2 [3	22 DA14
A3 [4	21 A13
A4 E	5	20 A12
A5 [6	19 DNC
NC E	7	18 🛘 A11
A6 E	8	17 A10
A7 E	9	16 🕽 A9
a (10	15 A8
wc	11	14 🗓 D
v _{ss} E	12	13 DĒ

PIN NAMES											
A0-A15.											. Address Input
											. Write Enable
Ē		•									Chip Enable
											Data Input
											Data Output
											Power (+5 V)
											Ground
NC				•			•				No Connection

TRUTH TABLE

Ē	w	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature – Plastic Ceramic	T _{stg}	-55 to +125 -65 to +150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.0	_	V _C C + 0.3	V
Input Low Voltage	V _{IL}	-0.5*	_	0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)		likg(i)	_	±1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})		l _{lkg(O)}	_	±1.0	μΑ
AC Supply Current (I _{out} = 0 mA)	MCM6287-25: t _{AVAV} =25 ns	ICCA	_	120	mA
_	MCM6287-35: t _{AVAV} = 35 ns	ICCA	-	110	ļ
TTL Standby Current (E=V _{IH} , No Restrictions on Other	er Inputs)	ISB1	_	20	mA
CMOS Standby Current (Ē≥V _{CC} −0.2 V, No Restrictions on Other Inputs)		ISB2	_	15	mA
Output Low Voltage (I _{OL} =8.0 mA)		V _{OL}	_	0.4	V
Output High Voltage (IOH = -4.0 mA)		Voн	2.4	_	V

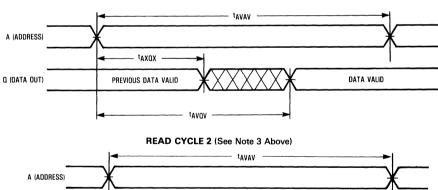
$\textbf{CAPACITANCE} \text{ (f = 1.0 MHz, dV = 3.0 V, } \textbf{T}_{\c A} = 25^{\circ}\text{C, Periodically Sampled Rather Than 100\% Tested)}$

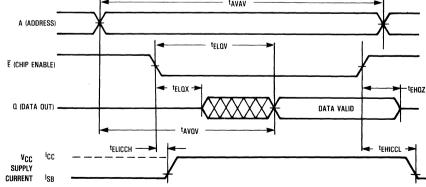
Characteristic		Symbol	Тур	Max	Unit
Input Capacitance	All Inputs Except E	C _{in}	4 5	6 7	рF
Output Capacitance		Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

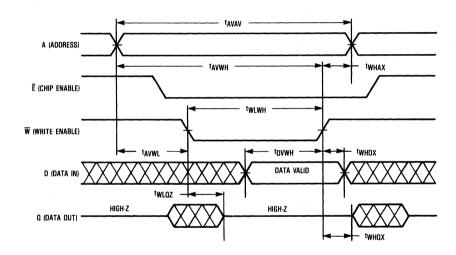

READ CYCLE (See Note 1)


B	Syr	Symbol N		MCM6287-25		MCM6287-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	25	_	35	_	ns	2
Address Access Time	tAVQV	tAA	_	25	_	35	ns*	
Enable Access Time	tELQV	tACS	_	25	_	35	ns	3
Output Hold from Address Change	tAXQX	tон	5	_	5	_	ns	
Enable Low to Output Active	tELQX	tLZ	5	_	5	_	ns	4,5,6
Enable High to Output High-Z	tEHOZ	tHZ	0	15	0	15	ns	4,5,6
Power Up Time	tELICCH	tpU	0	_	0	_	ns	
Power Down Time	tEHICCL	tPD	_	25	_	30	ns	

NOTES:

- W is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.
- At any given voltage and temperature, t_{EHOZ} max, is less than t_{ELOX} min, both for a given device and from device to device.
 Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{E} = V_{IL}$).

READ CYCLE 1 (See Note 7 Above)



WRITE CYCLE 1 (W Controlled, See Note 1)

Parameter	Syr	Symbol MC		MCM6287-25		MCM6287-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	25	_	35	_	ns	2
Address Setup Time	†AVWL	tAS	0	_	0	_	ns	
Address Valid to End of Write	tAVWH	tAW	20	_	25	_	ns	
Write Pulse Width	tWLWH	tWP	20	_	20	_	ns	
Data Valid to End of Write	tDVWH	tDW	15	_	15	_	ns	
Data Hold Time	tWHDX	tDH	0	_	0	_	ns	
Write Low to Output High-Z	tWLQZ	twz	0	15	0	15	ns	3,4
Write High to Output Active	twhox	tow	5	_	5		ns	3,4
Write Recovery Time	twhax	twr	0		0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured ± 500 mV from steady-state voltage with load in Figure 1B.
- 4. Parameter is sampled and not 100% tested.

AC TEST LOADS

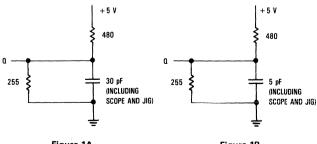
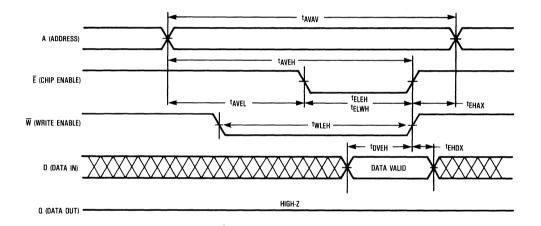


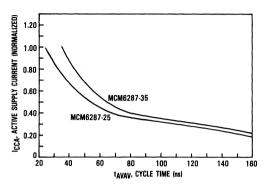
Figure 1A

Figure 1B

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WRITE CYCLE 2 (E Controlled, See Note 1)

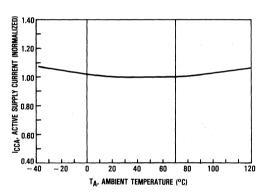

	Syr	Symbol		MCM6287-25		MCM6287-35		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	tWC	25	_	35		ns	2
Address Setup Time	t _{AVEL}	t _{AS}	0	_	0	_	ns	
Address Valid to End of Write	t _{AVEH}	t _{AW}	20	_	25	_	ns	
Enable to End of Write	tELEH	tcw	20		25	_	ns	3,4
Enable to End of Write	tELWH	tcw	20	-	25	_	ns	
Write Pulse Width	tWLEH	tWP	20	_	20	_	ns	
Data Valid to End of Write	^t DVEH	tDW	15	_	15		ns	
Data Hold Time	tEHDX	^t DH	0	_	0	_	ns	
Write Recovery Time	tEHAX	tWR	0		0	_	ns	

NOTES:

- A write occurs during the overlap of \$\overline{E}\$ low and \$\overline{W}\$ low.
 All write cycle timing is referenced from the last valid address to the first transitioning address.
 If \$\overline{E}\$ goes low coincident with or after \$\overline{W}\$ goes low, the output will remain in a high impedance condition.
 If \$\overline{E}\$ goes high coincident with or before \$\overline{W}\$ goes high, the output will remain in a high impedance condition.

TYPICAL CHARACTERISTICS

CYCLE RATE = 100%


CYCLE RATE = 100%

CYCLE RATE = 100%

CYCLE RATE = 100%

Figure 2. Relative Power versus Cycle Time

Figure 3. Active Supply Current versus Chip Enable Input Voltage

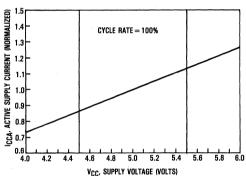
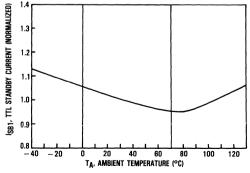



Figure 4. Active Supply Current versus Temperature

Figure 5. Active Supply Current versus Supply Voltage

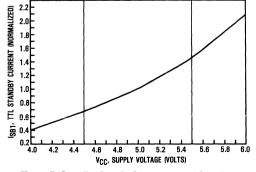


Figure 6. Standby Supply Current versus Temperature

Figure 7. Standby Supply Current versus Supply Voltage

TYPICAL CHARACTERISTICS (Continued)

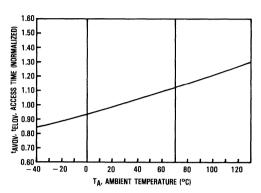


Figure 8. Address and Enable Access Times versus
Temperature

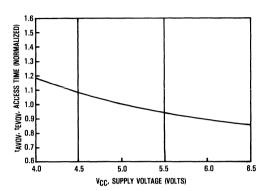


Figure 9. Address and Enable Access Times versus Supply Voltage

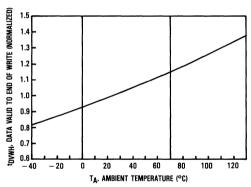


Figure 10. Data Setup Time versus Temperature

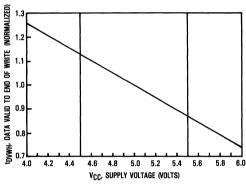


Figure 11. Data Setup Time versus Supply Voltage

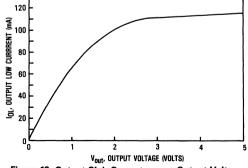


Figure 12. Output Sink Current versus Output Voltage

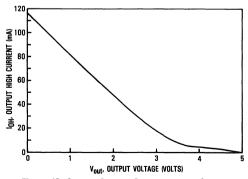
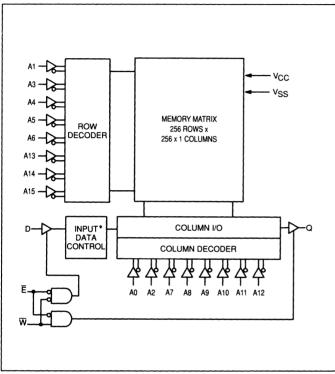
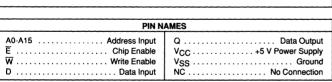


Figure 13. Output Source Current versus Output Voltage

ORDERING INFORMATION (Order by Full Part Number)


MCM6287J25 MCM6287J25R2 MCM6287J35 MCM6287J35R2

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


64K x 1 Bit Fast Static RAM

MCM6287-12, -15, -20 See QuickRAM, Page 7-122

MCM6287C-8, -10 See QuickRAM II, Page 7-142

P PACKAGE 1 300 MIL PLASTIC CASE 736A		
J PACKAGE 300 MIL SOJ CASE 810A		
DUAL-IN-LINE		

DUAL-IN-LINE				
A0 [1 •	22] v _{cc}	
A1 [2	21	A15	
A2 [A14	
АЗ [A13	
A4 [5	18	A12	
A5 [6	17	A11	
A6 [7	16	A10	
A7 [15] A9	
a [9	14] A8	
₩[10	13	DО	
v _{ss} [11	12	₽Ē	
	SOJ		•	
A0 [1 ●	24] v _{cc}	
A1 [2	23	A15	
A2 [3		A14	
АЗ [4	21	A13	
A4 [5	20] A12	
A5 [6	19] NC	
NC [7	18	A11	
A6 [8	17] A10	
-		16] A9	
<u> </u>	10		8A [
₩₫	11	14] D	
∨ss [12	13] E	

MCM6287 TRUTH TABLE (X = don't care)

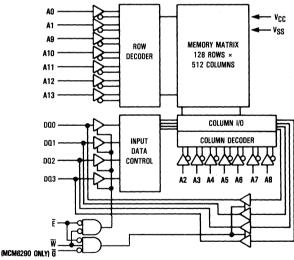
Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

16K×4 Bit Static RAMs

The MCM6288 and MCM6290 are 65,536 bit static random access memories organized as 16,384 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption for greater reliability.

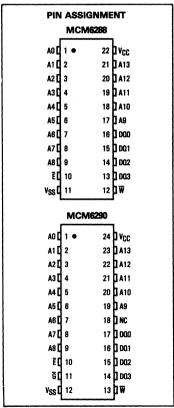
The chip enable (Ē) pin is not a clock. In less than a cycle time after Ē goes high, the part enters a low-power standby mode, remaining in that state until Ē goes low again. These devices also incorporate internal power down circuitry that will reduce active current for less than 100% duty cycle applications. These features reduce system power requirements without degrading access time performance.


The MCM6290 has both chip enable $(\overline{\mathbf{E}})$ and output enable $(\overline{\mathbf{G}})$ inputs, allowing greater system flexibility. Either input, when high, will force the outputs to high impedance.

- Single 5 V ±10% Power Supply
- Fast Access Time (Maximum):

cess Time (Maximum):			MCM6290
(xx=88 or 90)	Address	Chip Enable	Output Enable
MCM62xx-20	20 ns	20 ns	10 ns
MCM62xx-25	25 ns	25 ns	12 ns
MCM62xx-30	30 ns	30 ns	15 ns
MCM62xx-35	35 ns	35 ns	15 ns

- Equal Address and Chip Enable Access Time
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems (MCM6290)
- Low Power Operation: 120-110 mA Maximum, Active AC
- Fully TTL Compatible -- Three-State Data Output



PIN NAMES					
	E				

MCM6288 MCM6290

MCM6288 TRUTH TABLE

Ē	w	Mode	V _{CC} Current	Output	Cycle
Н	х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

MCM6290 TRUTH TABLE

Ē	IG	W	Mode	V _{CC} Current	I/O Pin	Cycle
н	Х	х	Not Selected	ISB	High-Z	_
L	н	н	Read	ICCA	High-Z	_
L	L	н	Read	ICCA	Dout	Read Cycle
L	X	L	Write	ICCA	Din	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedence circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = $5.0 \text{ V} \pm 10\%$, T_A = $0 \text{ to } 70^{\circ}\text{C}$, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.0	_	V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}	-0.5*	_	0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Parameter					
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})		likg(I)	_	±1.0	μА	
Output Leakage Current (E=VIH, Vout=0 to VCC)		l _{lkg} (O)	_	±1.0	μА	
AC Supply Current (I _{out} =0 mA)	t _{AVAV} = 20 ns	ICCA	_	120	mA	
	t _{AVAV} = 25 ns		_	120		
	t _{AVAV} = 30 ns		_	120		
	t _{AVAV} = 35 ns		_	110		
TTL Standby Current (E=V _{IH} , No Restrictions on Other Inputs)		ISB1	_	20	mA	
CMOS Standby Current (Ē≥V _{CC} -0.2 V, No Restrictions on Other In	nputs)	ISB2	_	15	mA	
Output Low Voltage (I _{OL} = 8.0 mA)		VOL	_	0.4	V	
Output High Voltage (I _{OH} = -4.0 mA)		Voн	2.4	_	V	

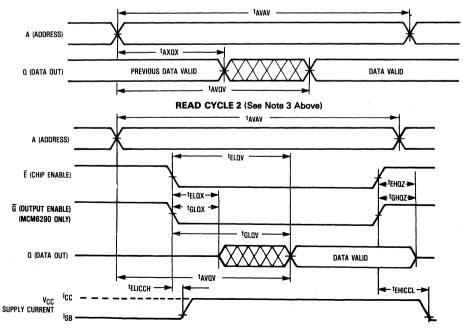
$\textbf{CAPACITANCE} \text{ (f=1.0 MHz, dV=3.0 V, T}_{\c A} = 25^{\circ}\text{C, Periodically Sampled Rather Than 100\% Tested)}$

	· · · · · · · · · · · · · · · · · · ·				
Char	Symbol	Тур	Max	Unit	
Input Capacitance	All Inputs Except E	C _{in}	4 5	6 7	pF
I/O Capacitance		C _{I/O}	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

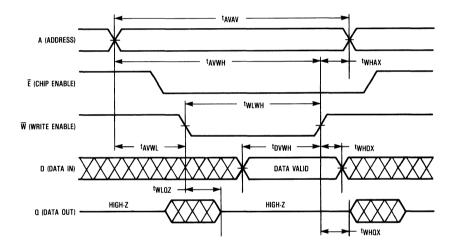

READ CYCLE (See Note 1)

Parameter		Symbol									MCM6288-35 MCM6290-35		Notes
		Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max		
Read Cycle Time		t _{AVAV}	tRC	20	_	25	_	30	_	35	_	ns	2
Address Access Time		^t AVQV	tAA		20	_	25	_	30	_	35	ns	
Enable Access Time		tELQV	tACS	_	20	_	25	_	30	_	35	ns	3
Output Hold from Address Chan	ge	tAXQX	tОН	5	_	5	_	5	_	5	_	ns	
Output Enable Access Time	MCM6290	tGLQV	^t QE	_	10	_	12	_	15	-	15	ns	
Output Enable Low to Output Active	MCM6290	^t GLQX	^t LZ	0	-	0	_	0	-	0	-	ns	4,5,6
Output Enable High to Output High-Z	MCM6290	tGHOZ	tHZ	0	8	0	10	0	12	0	15	ns	4,5,6
Enable Low to Output Active		tELQX	tLZ	5	-	5	_	5	_	5	_	ns	4,5,6
Enable High to Output High-Z		tEHQZ	tHZ	0	8	0	10	0	12	0	15	ns	4,5,6
Power Up Time		^t ELICCH	tPU	0	-	0	_	0	_	0	_	ns	
Power Down Time		^t EHICCL	tPD	_	20		25	_	30	_	30	ns	

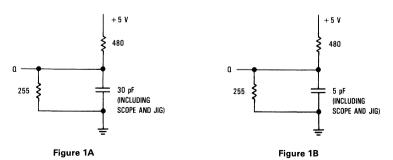
NOTES: 1. W is high for read cycle.

- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Addresses valid prior to or coincident with $\overline{\mathbf{E}}$ going low.
- At any given voltage and temperature, t_{EHOZ} max is less than t_{ELOX} min, and t_{GHOZ} max is less than t_{GLOX} min, both for a
 given device and from device to device.
- 5. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{E} = V_{|L}$) and $\overline{G} = V_{|L}$ (MCM6290 only).

READ CYCLE 1 (See Note 7 Above)



WRITE CYCLE 1 (W Controlled, See Notes 1 and 6)

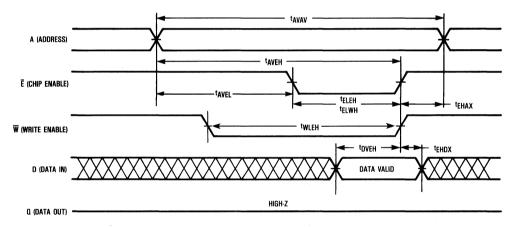

Parameter	Syr	Symbol				MCM6288-25 MCM6290-25						Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max		
Write Cycle Time	†AVAV	tWC	20	_	25	_	30	_	35	_	ns	2
Address Setup Time	†AVWL	tAS	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	tAVWH	tAW	15	-	20	_	25	_	30	_	ns	
Write Pulse Width	tWLWH	tWP	15	_	20	_	25	_	30	_	ns	
Data Valid to End of Write	tDVWH	tDW	10	_	10	_	12	_	15		ns	
Data Hold Time	tWHDX	tDH	0		0	_	0	_	0	_	ns	
Write Low to Output High-Z	twloz	twz	0	8	0	10	0	12	0	15	ns	3,4,5,6
Write High to Output Active	twhax	tow	5	_	5	_	5	_	5	_	ns	3,4,5
Write Recovery Time	tWHAX	twr	0	_	0	_	0	_	0	_	ns	

NOTES: 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured ± 500 mV from steady-state voltage with load in Figure 1B.
- 4. Parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, tWLOZ max is less than tWHOX min both for a given device and from device to device.
- 6. MCM6290, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.

AC TEST LOADS

WRITE CYCLE 2 (E Controlled, See Notes 1 and 5)


Parameter					MCM6288-25 MCM6290-25							Notes
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max		
Write Cycle Time	tavav	twc	20	_	25	_	30	_	35	_	ns	2
Address Setup Time	†AVEL	tAS	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	tAVEH	tAW	15	_	20	_	25	_	30	_	ns	
Enable to End of Write	tELEH	tcw	15		20	_	25	_	30	_	ns	3,4
Enable to End of Write	tELWH	tcw	15	_	20	_	25	_	30	_	ns	3,4
Write Pulse Width	tWLEH	tWP	- 15	-"	20	_	25	_	30	_	ns	
Data Valid to End of Write	^t DVEH	tDW	10	_	10	_	12	-	15	_	ns	
Data Hold Time	tEHDX	^t DH	0	_	0	_	0	_	0	_	ns	
Write Recovery Time	tEHAX	twn	0	_	0	_	0	_	0	_	ns	

NOTES: 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.

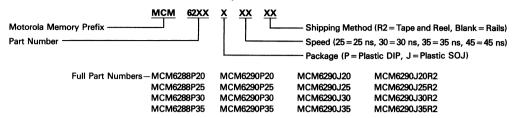
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.

tXXXX

- 4. If E goes high coincident with or before W goes high, the output will remain in a high impedance condition.
- 5. MCM6290, if G goes low coincident with or after W goes low, the output will remain in a high impedance state.

TIMING PARAMETER ABBREVIATIONS

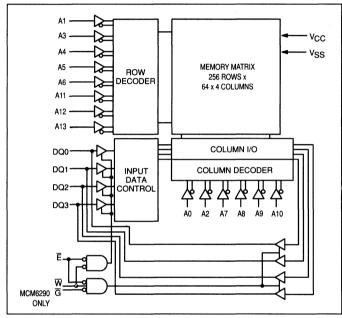
signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal


The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

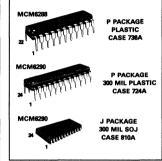
The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

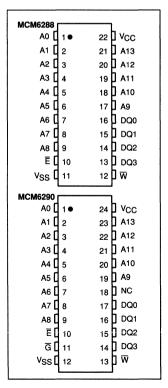

ORDERING INFORMATION (Order by Full Part Number)

16K x 4 Bit Fast Static RAMs

MCM6288-12, -15 MCM6290-12, -15 See QuickRAM, Page 7-122

MCM6288C-8, -10 MCM6290C-8, -10 See QuickRAM II, Page 7-142


PIN NAMES								
DQ0-DQ3 Data Input/Output	E							
₩	VCC +5 V Power Supply VSS Ground							


MCM6288 TRUTH TABLE (X = don't care)

Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	
L	Н	Read	ICCA	D _{out}	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

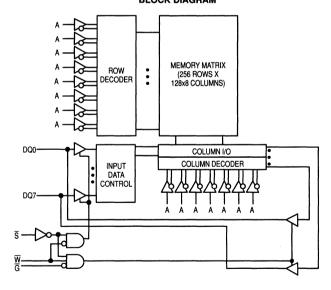
MCM6290 TRUTH TABLE (X = don't care)

	0200		ADEL (X = don't car	0,		
Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н	Н	Output Disabled	ICCA	High-Z	
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle

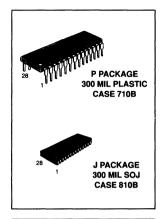
MOTOROLA SEMICONDUCTOR | TECHNICAL DATA

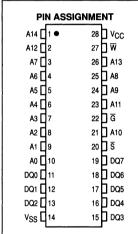
Product Preview

32K x 8 Bit Static Random Access Memory


The MCM6706 is a 262,144 bit static random access memory organized as 32,768 words of 8 bits, fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.


The MCM6706 is available in a 300 mil, 28 lead surface-mount SOJ package and a 300 mil, 28 pin plastic dual-in-line package.


- Single 5.0 V ±10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Access Times: MCM6706 10 ns MCM6706 — 12 ns MCM6706 — 15 ns

BLOCK DIAGRAM

MCM6706

PIN NAMES									
A0-A14 Address Inputs W Write Enable S Chip Select G Output Enable DQ0-DQ7 Data Input/Output VCC +5.0 V Power Supply VS Ground									

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

S	G	W	Mode	I/O Pin	Cycle
Н	Х	Х	Not Selected	High-Z	_
L	н	н	Read	High-Z	
L	L	н	Read	Dout	Read Cycle
L	X	L	Write	D _{in}	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to V _{SS} for Any Pin Except V _{CC}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current	lout	±30	mA
Power Dissipation	PD	2.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature — Plastic	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	VCC	4.5	5.0	5.5	V
Input High Voltage	V _{IH}	2.2	_	V _{CC} +0.3*	٧
Input Low Voltage	VIL	-0.5**	_	0.8	٧

^{*} V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2.0 V ac (pulse width \leq 2.0 ns) for I \leq 20 mA.

DC CHARACTERISTICS

Para	meter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, \	likg(I)	_	_	±1.0	μА	
Output Leakage Current (S = VIH,	llkg(O)	-	_	±1.0	μА	
AC Supply Current (I _{out} = 0 mA)	MCM6706 -10: t _{AVAV} = 10 ns MCM6706 -12: t _{AVAV} = 12 ns MCM6706 -15: t _{AVAV} = 15 ns	ICCA		150 140 130	200 195 190	mA
Output Low Voltage (I _{OL} = 8.0 mA)		V _{OL}	_	_	0.4	V
Output High Voltage (IOH = -4.0 m	VoH	2.4			٧	

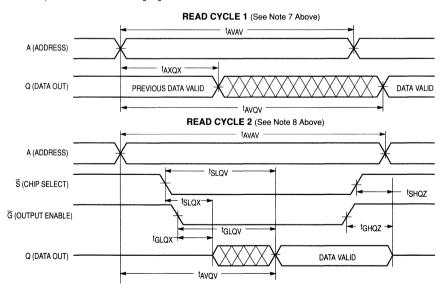
$\textbf{CAPACITANCE} \; (\text{f} = 1.0 \; \text{MHz}, \, \text{dV} = 3.0 \; \text{V}, \, \text{T}_{\mbox{A}} = 25 ^{\circ} \mbox{C}, \, \text{Periodically Sampled Rather Than 100\% Tested)}$

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4.0	6.0	pF
I/O Capacitance	C _{I/O}	5.0	7.0	pF

^{**} V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 2.0 ns) for $I \leq$ 20 mA.

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

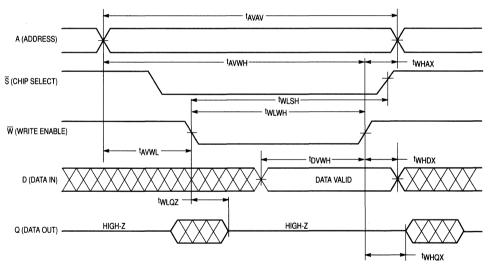

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1
Input Rise/Fall Time	

READ CYCLE (See Notes 1 and 2)

	Symbol		MCM6706-10 MCM6706-12		MCM6706-15					
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	10	_	12	_	15		ns	3
Address Access Time	†AVQV	t _{AA}	_	10	_	12		15	ns	
Chip Select Access Time	tSLQV	tACS	_	5	_	6		8	ns	
Output Enable Access time	tGLQV	tOE	_	5	_	6	_	8	ns	
Output Hold from Address Change	tAXQX	tOH	4	_	4	_	4		ns	
Chip Select Low to Output Active	tSLQX	t _{LZ}	1	_	1		1	-	ns	4,5,6
Chip Select High to Output High-Z	tSHQZ	tHZ	0	5	0	6	0	6	ns	4,5,6
Output Enable Low to Output Active	tGLQX	tLZ	1	_	1	_	1	_	ns	4,5,6
Output Enable High to Output High-Z	tGHQZ	tHZ	0	5	0	6	0	6	ns	4,5,6

NOTES:

- 1. W is high for read cycle.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 4. At any given voltage and temperature, tsHQZ max < tsLQX min, and tGHQZ max < tgHQX min, both for a given device and from device to device.
- 5. Transition is measured 100 mV from steady-state voltage with load of Figure 1.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{S} = V_{|L}$, $\overline{G} = V_{|L}$).
- 8. Addresses valid prior to or coincident with \overline{S} going low.



WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syr	Symbol		MCM6706-10 MCM6706-12			MCM6706-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	10	_	12	_	15	_	ns	3
Address Setup Time	tAVWL	†AS	2	_	2	_	2	_	ns	
Address Valid to End of Write	tavwh	tAW	9	_	10	-	12	_	ns	
Write Pulse Width	tWLWH, tWLSH	tWP	6		7	_	8	_	ns	
Data Valid to End of Write	tDVWH	tDW	5	_	6	_	7	_	ns	
Data Hold Time	twhox	tDH	0	_	0	_	0	_	ns	
Write Low to Data High-Z	twLQZ	twz	0	5	0	6	0	6	ns	4,5,6
Write High to Output Active	twhqx	tow	2	_	2	_	2	_	ns	4,5,6
Write Recovery Time	twhax	twR	0	_	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 4. Transition is measured 100 mV from steady-state voltage with load of Figure 1.
- 5. Parameter is sampled and not 100% tested.
- 6. At any given voltage and temperature, twLQZ max is < twHQX min both for a given device and from device to device.

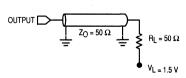
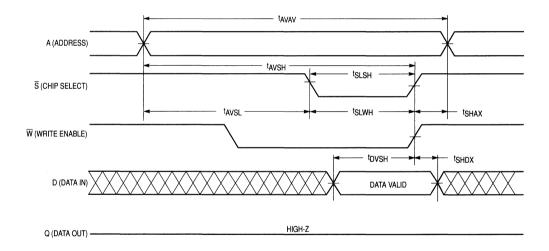
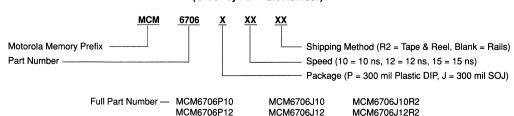


Figure 1. AC Test Load

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)


	Syn	Symbol		MCM6706-10 MCM6706-12 MCM6706-15		MCM6706-15				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	10	_	12	_	15	_	ns	3
Address Setup Time	†AVSL	t _{AS}	2	_	2		2		ns	
Address Valid to End of Write	tavsh	taw	9	_	10	_	12	_	ns	
Chip Select to End of Write	tSLWH, tSLSH	tCW	6	_	7		8	_	ns	4,5
Data Valid to End of Write	^t DVSH	tDW	5	_	6	_	7	_	ns	
Data Hold Time	tSHDX	tDH	0	_	0	_	0	_	ns	
Write Recovery Time	tSHAX	twR	0		0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. If \overline{S} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
- 5. If \overline{S} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.

ORDERING INFORMATION (Order by Full Part Number)

MCM6706P15

MCM6706J15

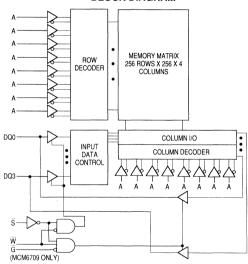
MCM6706J15R2

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

64K × 4 Bit Static RAM

The MCM6708 and the MCM6709 are 262,144 bit static random access memories organized as 65,536 words of 4 bits, fabricated using high-performance silicon-gate BICMOS technology. Static design eliminates the need for external clocks or timing strobes.

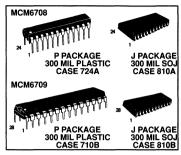

Output enable, (\overline{G}) , a special control feature of the MCM6709, provides increased system flexibility and eliminates bus contention problems.

The MCM6708 is available in a 300 mil, 24 lead plastic surface-mount SOJ package and a 300 mil, 24 lead PDIP. The MCM6709 is available in a 300 mil, 28 lead plastic surface-mount SOJ package and a 300 mil, 28 lead PDIP.

- Single 5 V \pm 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Access Times:

MCM6708 — 10 ns MCM6709 — 10 ns MCM6708 — 12 ns MCM6709 — 12 ns

BLOCK DIAGRAM



PIN	NAMES
A0-A15 Address Inputs G Output Enable DQ0-DQ3 Data Input/Output VSS Ground	W Write Enable \$\overline{S}\$ Chip Select VCC +5 V Power Supply NC No Connect

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM6708 MCM6709

PIN ASSIGNMENT								
١,	MCM6708							
A0 [1 ●	24 VCC						
A1 [2	23 A15						
A2 [3	22 A14						
A3 [4	21 A13						
A4 [5	20 A12						
A5 [6	19 A11						
A6 [7	18 A10						
A7 [8	17 DQ0						
A8 [9	16 DQ1						
A9 [10	15 DQ2						
<u> </u>	11	14 DQ3						
V _{SS} [12	13 🛛 👿						
	MCM670	9						
NC [1 •	28 VCC						
A0 [2	27 A15						
A1 [3	26 A14						
A2 [4	25 A13						
A3 [5	24 A12						
A4 [6	23 A11						
A5 [7	22 A10						
A6 [8	21 NC						
A7 [9	20 NC						
A8 [10	19 DQ0						
A9 [11	18 DQ1						
<u>s</u> [12	17 DQ2						
<u></u>	13	16 DQ3						
Vss [14	_15] ₩						

TRUTH TABLE

S	G	w	Mode	I/O Pin	Cycle
Н	×	х	Not Selected	High-Z	
L	Н	Н	Read	High-Z	_
L	L	Н	Read	D _{out}	Read Cycle
L	Х	L	Write	D _{in}	Read Cycle

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	٧
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	2.0	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TА	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedence circuit.

This BICMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3*	٧
Input Low Voltage	V _{IL}	- 0.5**	_	0.8	V

^{*} V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 2 ns) for I \leq 20 mA.

DC CHARACTERISTICS

Parameter		Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin	Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		_	_	± 1	μА
Output Leakage Current (\$\overline{S}\$ = V _{IH} , V _O	Output Leakage Current ($\overline{S} = V_{IH}, V_{out} = 0$ to V_{CC})		_	_	± 1	μА
AC Supply Current (I _{out} = 0 mA)	MCM6708-10/MCM609-10: $t_{AVAV} = 10 \text{ ns}$ MCM6708-12/MCM609-12: $t_{AVAV} = 12 \text{ ns}$	lcc	_	150 140	200 195	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	-	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)		VOH	2.4		_	٧

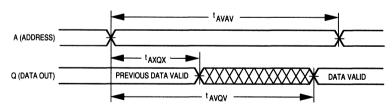
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Inputs Except DQ)	C _{in}	4	6	pF
Input/Output Capacitance	C _{I/O}	5	7	pF

^{**} V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2 V ac (pulse width ≤ 2 ns) for $I \le 20$ mA.

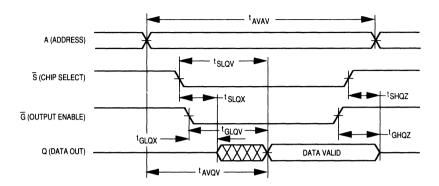
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$


READ CYCLE TIMING (See Notes 1 and 2)

	Syn	Symbol				MCM6708-12 MCM6709-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	^t RC	10	_	12	_	ns	3
Address Access Time	†AVQV	t _{AA}	_	10	_	12	ns	
Select Access Time	tslqv	tACS	_	5	_	6	ns	
Output Enable Access Time	t _{GLQV}	^t OE	_	5	_	6	ns	
Output Hold from Address Change	t _{AXQX}	tон	4	_	4	_	ns	
Select Low to Output Active	tSLQX	tLZ	1	I –	1	_	ns	4, 5, 6
Output Enable Low to Output Active	tGLQX	tLZ	1	l –	1	_	ns	4, 5, 6
Select High to Output High-Z	^t SHQZ	tHZ	0	5	0	6	ns	4, 5, 6
Output Enable High to Output High-Z	^t GHQZ	t _{HZ}	0	5	0	6	ns	4, 5, 6

NOTES:


- 1. W is high for read cycle.
- Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 4. At any given voltage and temperature, t_{SHQZ} max is less than t_{SLQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device and from device to device.
- 5. Transition is measured 100 mV from steady-state voltage with load of Figure 1.
- 6. This parameter is sampled and not 100% tested.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{S} = V_{IL}$, $\overline{G} = V_{IL}$).

READ CYCLE 2 (See Note)

NOTE: Addresses valid prior to or coincident with \overline{S} going low.

AC TEST LOADS

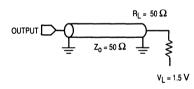
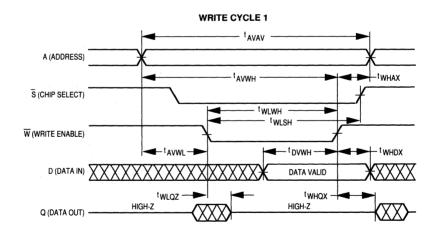


Figure 1

TIMING LIMITS

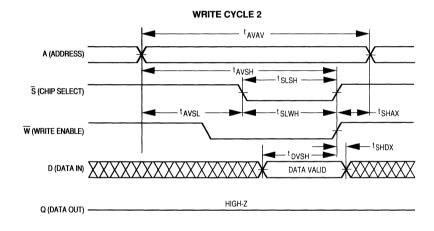

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

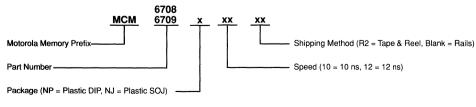
	Syn	Symbol		MCM6708-10 MCM6709-10		MCM6708-12 MCM6709-12		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	10		12	_	ns	3
Address Setup Time	†AVWL	t _{AS}	2	_	2	_	ns	
Address Valid to End of Write	tAVWH	tAW	9	_	10	_	ns	
Write Pulse Width	twLwH twLsH	tWP	6	_	7		ns	
Data Valid to End of Write	tDVWH	tDW	5	Ι –	6	_	ns	
Data Hold Time	twhdx	^t DH	0	I -	0	_	ns	
Write Low to Data High-Z	twLQZ	twz	0	5	0	6	ns	4, 5, 6
Write High to Output Active	twhqx	tow	2	-	2	_	ns	4, 5, 6
Write Recovery Time	twhax	twR	0	_	0		ns	

NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. Transition is measured 100 mV from steady-state voltage with load of Figure 1.
- 5. This parameter is sampled and not 100% tested.
- 6. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.


WRITE CYCLE 2 (S Controlled, See Notes 1 and 2)

	Symbol		MCM6708-10 MCM6709-10		MCM6708-12 MCM6709-12			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	twc	10		12	_	ns	3
Address Setup Time	†AVSL	t _{AS}	2	_	2		ns	
Address Valid to End of Write	t _{AVSH}	t _{AW}	9	_	10	_	ns	
Select to End of Write	tslsh tslwh	tcw	6	_	7	_	ns	4,5
Data Valid to End of Write	tDVSH	t _{DW}	5	_	6	_	ns	
Data Hold Time	tshdx	^t DH	0	_	0	_	ns	
Write Recovery Time	tSHAX	twn	0	_	0	_	ns	


NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. If \overline{S} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.

 5. If \overline{S} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.

ORDERING INFORMATION (Order by Full Part Number)

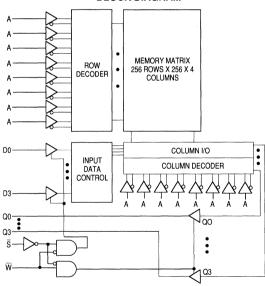
Full Part Numbers - MCM6708P10 MCM6708P12 MCM6708J10 MCM6708J12 MCM6708J10R2 MCM6708J12R2

MCM6709P10 MCM6709P12 MCM6709J10 MCM6709J12

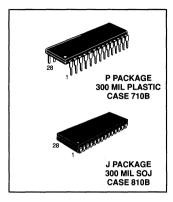
MCM6709J10R2 MCM6709J12R2

Product Preview

64K × 4 Bit Static RAM with Separate Input/Output


The MCM67081 and the MCM67082 are 262,144 bit static random-access memories organized as 65.536 words of 4 bits, fabricated using high-performance silicon-gate BICMOS technology. Static design eliminates the need for external clocks or timing strobes, while BICMOS circuitry reduces power consumption and provides for greater reliability.

Both the MCM67081 and MCM67082 are available in 300 mil, 28 lead surface-mount SOJ packages and 300 mil, 28 lead plastic DIP.


- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- · All Inputs and Outputs are TTL Compatible
- · Separate Data Inputs and Three-State Outputs
- Fast Access Times: MCM67081 - 10, 12, 15 ns

MCM67082 - 10, 12, 15 ns

BLOCK DIAGRAM

MCM67081 MCM67082

PIN ASSIGNMENT									
A0 [1 •	28	v _{CC}						
A1 [2	27	A15						
A2 [3	26	A14						
A3 [4	25	A13						
A4 [5	24	A12						
A5 [6	23	A11						
A6 [7	22	A10						
A7 [8	21	D3						
A8 [9	20	D2						
A9 [10	19	Q3						
D0 [11	18	Q2						
D1 [12	17	Q1						
₹ [13	16	Q0						
V _{SS} [14 -	15	\overline{W}						

PIN N	AMES
₩ S D0-D3 Q0-Q3 VCC	Address Inputs Write Enable Chip Select Data Input Data Output + 5 V Power Supply Ground
55	

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM67081 TRUTH TABLE

s	w	D	Mode	V _{CC} Current	Q	Cycle
Н	Н	X	Not Selected	ISB	High-Z	_
Н	L	Х	Not Selected	ISB	High-Z	_
L	Н	X	Read	ICCA	Read	Read Cycle
L	L	Н	Write	ICCA	н	Write Cycle
L	L	L	Write	ICCA	L	Write Cycle

X = Don't Care

MCM67082 TRUTH TABLE

Ŝ	W	D	Mode	V _{CC} Current	Q	Cycle
Н	Н	Х	Not Selected	ISB	High-Z	_
Н	L	Х	Not Selected	ISB	High-Z	_
L	Н	Х	Read	ICCA	Read	Read Cycle
L	L	Н	Write	ICCA	High-Z	Write Cycle
L	L	L	Write	ICCA	High-Z	Write Cycle

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

This BICMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	- 0.5 to 7.0	٧
Voltage Relative to V _{SS} (For Any Pin Except V _{CC})	V _{in} , V _{out}	– 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 30	mA
Power Dissipation	PD	2.0	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	v _{cc}	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	_	V _{CC} + 0.3*	٧
Input Low Voltage	V _{IL}	- 0.5**		0.8	٧

DC CHARACTERISTICS

	Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vir	$\eta = 0 \text{ to V}_{CC}$	l _{lkg(l)}		_	± 1	μА
Output Leakage Current (S = VIH, Vo	l _{lkg(O)}		_	±1	μА	
AC Supply Current (I _{OU1} '= 0 mA) MCM67081/MCM67082-10: t _{AVAV} = 10 ns		ICCA	_	150	200	mA
		_	140	195		
	MCM67081/MCM67082-15: $t_{AVAV} = 15 \text{ ns}$			130	190	1
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA	VOH	2.4	_	_	V	

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	6	рF
Input/Output Capacitance	C _{I/O}	5	7	pF

AC TEST LOADS

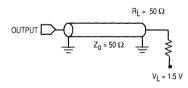


Figure 1

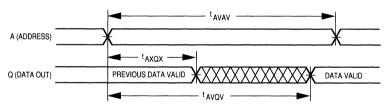
TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

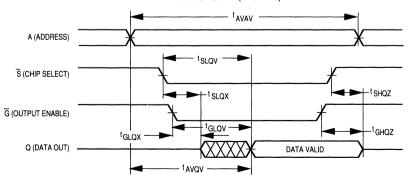
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1
Input Rise/Fall Time	


READ CYCLE TIMING (See Note 1)

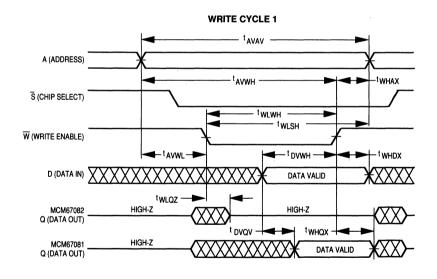
	Syn	MCM67081-10 MCM67082-10			7081-12 7082-12		7081-15 7082-15			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	10	_	12	_	15	_	ns	2
Address Access Time	†AVQV	†AA	_	10	_	12		15	ns	
Select Access Time	tslav	tACS	_	5		6	_	8	ns	
Output Hold from Address Change	tAXQX	tон	4		4	_	4	_	ns	
Select Low to Output Active	tSLQX	tLZ	1	_	1	_	1	_	ns	3, 4, 5
Select High to Output High-Z	tSHQZ	tHZ	0	5	0	6	0	6	ns	3, 4, 5


NOTES:

- W is high for read cycle.
- 2. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 3. At any given voltage and temperature, tSHQZ max is less than tSLQX min, both for a given device and from device to device.
- 4. Transition is measured 100 mV from steady-state voltage with load of Figure 1.
- 5. This parameter is sampled and not 100% tested.
 6. Device is continuously selected (\$\overline{S} = V_{|L|}\$).
- 7. Addresses valid prior to or coincident with \overline{S} going low.

READ CYCLE 1 (See Note)

READ CYCLE 2 (See Note)

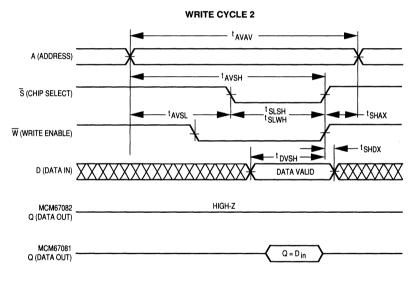


WRITE CYCLE 1 (W Controlled, See Note 1)

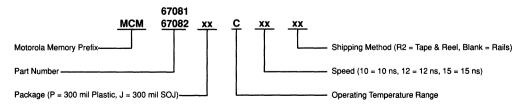
	Syn	nbol		7081-10 7082-10		7081-12 7082-12		7081-15 7082-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	10	_	12	_	15	-	ns	2
Address Setup Time	tAVWL	t _{AS}	2	_	2	_	2	_	ns	
Address Valid to End of Write	tavwh	taw	9	_	10	_	12	_	ns	
Write Pulse Width	twLwH	tWP	6	_	7	_	8		ns	
Write Pulse Width	twlsh	twp	6	_	7	_	8	_	ns	
Data Valid to End of Write	tDVWH	tDW	5	_	6		7	_	ns	
Data Hold Time	twhox	t _{DH}	0	_	0	_	0	_	ns	
Write Low to Data High-Z	twLQZ	twz	0	5	0	6	0	6	ns	3, 4, 5
Write High to Output Active	twhqx	tow	2	_	2	_	2	_	ns	3, 4, 5
Write Recovery Time	twhax	twR	0	_	0	_	0	_	ns	
Data Valid to Output Valid	tDVQV	tADV	7.	_	8	_	10	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 3. Transition is measured 100 mV from steady-state voltage with load of Figure 1.
- 4. This parameter is sampled and not 100% tested.
- 5. At any given voltage and temperature, twLQZ max is less than twHQX min both for a given device and from device to device.



WRITE CYCLE 2 (S Controlled, See Notes 1, 2, 3, 4, and 5)


	Syn	Symbol		MCM67081-10 MCM67082-10		7081-12 7082-12		7081-15 7082-15		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	10	_	12	_	15	_	ns	2
Address Setup Time	†AVSL	†AS	2	_	2	_	2	_	ns	
Address Valid to End of Write	†AVSH	t _{AW}	9	_	10	_	12	_	ns	
Select to End of Write	†SLSH	tCW	6	_	7	_	8	_	ns	3, 4
Enable to End of Write	^t SLWH	tcw	6	_	7	_	8	_	ns	
Data Valid to End of Write	tDVSH	tDW	5	_	6	_	7	_	ns	
Data Hold Time	tSHDX	t _{DH}	0	_	0	_	0		ns	
Write Recovery Time	t _{SHAX}	twR	0	_	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 3. If \overline{S} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
- 4. If \overline{S} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM67081P10 MCM67081P12

MCM67081J10 MCM67081J12 MCM67082P10 MCM67082J10 MCM67082P12 MCM67082J12 MCM67082J15

MCM67081P15 MCM67081J15 MCM67082P15

Advance Information QuickRAM™

Fast Static RAM Family

The QuickRAM Family of fast static RAMs is fabricated using Motorola's highperformance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The product family includes devices with four different densities: 294,912 bits, 262,144 bits, 73,728 bits, and 65,536 bits.

These devices meet JEDEC standards for functionality and pinout, and are available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ±10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- Fast Access Times: 12, 15, 17, 20, and 25 ns
- Equal Address and Chip Enable Access Times
- Output Enable (G) Feature for Increased System Flexibility and to Eliminate Bus Contention Problems — on MCM6205/06, MCM6209, MCM6264/65, and MCM6290
- Low Power Operation: 120–160 mA Maximum AC
- Fully TTL Compatible Three State Output
- Separate Data Input and Output on MCM6207 and MCM6287

CONTENTS

											-6	ıge
Family Maximum Ratings and DC Characteristics												2
Family AC Characteristics	 											4
Device Data (See Numerical Index)	 											8
Package Dimensions	 				5	Se	е	C	na	ıp1	ter	14
Output Load Conditions	 											16

DEVICE NUMERICAL INDEX

Part Number	Access Times (ns)	Organization	Page
MCM6205-17, -20, -25	17, 20, 25	32K x 9	14
MCM6206-17, -20, -25	17, 20, 25	32K x 8	12
MCM6207-15, -20, -25	15, 20, 25	256K x 1	8
MCM6208-15, -20, -25	15, 20, 25	64K x 4	10
MCM6209-15, -20, -25	15, 20, 25	64K x 4 OE	10
MCM6264-15, -20	15, 20	8K x 8	13
MCM6265-15, -20, -25	15, 20, 25	8K x 9	15
MCM6287-12, -15, -20	12, 15, 20	64K x 1	9
MCM6288-12, -15	12, 15	16K x 4	11
MCM6290-12, -15	12, 15	16K x 4 OE	11

256K

256K x 1 MCM6207-15, -20, -25

64K x 4 MCM6208-15, -20, -25

64K x 4 with OE MCM6209-15, -20, -25

32K x 8 MCM6206-17, -20, -25

32K x 9 MCM6205-17, -20, -25

64K

64K x 1 MCM6287-12, -15, -20

16K x 4 MCM6288-12, -15

16K x 4 with OE MCM6290-12, -15

8K x 8 MCM6264-15, -20

8K x 9 MCM6265-15, -20, -25

QuickRAM is a trademark of Motorola, Inc.

This document contains information on new products. Specifications and information herein are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	VCC	- 0.5 to +7	٧
Voltage on Any Pin, Except V _{CC} , Relative to V _{SS}	V _{in} ,V _{out}	- 0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	l _{out}	±30	mA
Power Dissipation	PD	1	W
Temperature Under Bias	T _{bias}	- 10 to +85	ç
Operating Temperature	TA	0 to +70	ô
Storage Temperature-Plastic	T _{stg}	- 55 to +125	ů

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the OPERATING CONDITIONS. Exposure to voltages higher than the operating voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS ($V_{CC} = 5 \text{ V} \pm 10\%$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$, Unless Otherwise Noted)

Parameter	Conditions	Symbol	Min	Max	Unit
Supply Voltage	Operating Voltage Range	Vcc	4.5	5.5	٧
Input High Voltage		VIH	2.2	V _{CC} +0.3*	٧
Input Low Voltage		V _{IL}	-0.5**	0.8	٧
Input Leakage Current	0 V ≤ V _{in} ≤ V _{CC}	lkg(l)	_	±1	μА
Output Leakage Current	Output(s) Disabled, 0 V ≤ V _{OUt} ≤ V _{CC}	likg(O)	_	±1	μА
Output High Voltage	I _{OH} = -4 mA	VOH	2.4	_	٧
Output Low Voltage	I _{OL} = 8 mA	V _{OL}		0.4	٧

 $^{^*}V_{IH}$ (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns)

^{**} V_{IL} (min) = -0.5 V dc, V_{IL} (min) = -2 V ac (pulse width \leq 20 ns)

POWER SUPPLY CURRENTS (AC Operating Conditions Unless Otherwise Noted)

Density	Config.	Device	Parameter	Symbol	-12	-15	-17	-20	-25	Unit
	16K x 4	MCM6288/90	AC Active Supply Current	ICCA	150	140			_	mA
	64K x 1	MCM6287	$(I_{out} = 0 \text{ mA}, V_{CC} = Max, f = f_{max})$		150	140	_	130	_	
	8K x 8	MCM6264				140	<u> </u>	130	_	(
	8K x 9	MCM6265			_	140	_	130	120	
64K	All	All	AC Standby Current (E = V _{IH} , V _{CC} = Max, f = f _{max})	lSB1	45	40	_	35	30	mA
	All	All	CMOS Standby Current (V_{CC} = Max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2 \text{ V}$ * $V_{in} \le V_{SS} + 0.2 \text{ V}$, or $\ge V_{CC} - 0.2 \text{ V}$)	I _{SB2}	20	20	_	20	20	mA
	64K x 4	MCM6208/09	AC Active Supply Current	ICCA	_	155	_	145	135	mA
	256K x 1	MCM6207	$(I_{out} = 0 \text{ mA}, V_{CC} = Max, f = f_{max})$			150	_	140	130	
	32K x 8	MCM6206					155	150	140	
	32K x 9	MCM6205			_	_	160	155	145	
256K	All	All	AC Standby Current (E = V _{IH} , V _{CC} = Max, f = f _{max})	lSB1	_	50	45	45	40	mA
	All	All	CMOS Standby Current (VCC = Max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2 \text{ V}^*$ $V_{in} \le V_{SS} + 0.2 \text{ V}$, or $\ge V_{CC} - 0.2 \text{ V}$)	ISB2		20	20	20	20	mA

^{*}For devices with multiple chip enables of opposite polarity, $\overline{E1} \ge V_{CC} - 0.2 \text{ V}$ or $E2 \le V_{SS} + 0.2 \text{ V}$

CAPACITANCE (f = 1 MHz, dV = 3 V, TA = 25°C, Periodically sampled rather than 100% tested)

Characteristic	Symbol	Max	Unit
Address and Data Input Capacitance MCM6287 (64K x 1), MCM6288/90 (16K x 4) MCM6264 (8K x 8), MCM6265 (8K x 9) MCM6207 (256K x 1), MCM6208/09 (64K x 4) MCM6205 (32K x 9), MCM6206 (32K x 8)	C _{in}	6 6 6	pF
Control Pin Input Capacitance (Ē, *G, ₩) MCM6287 (64K x 1), MCM6288/90 (16K x 4) MCM6264 (8K x 8), MCM6265 (8K x 9) MCM6207 (256K x 1), MCM6206/90 (64K x 4) MCM6205 (32K x 9), MCM6206 (32K x 8)	C _{in}	6 6 6 8	pF
Output Capacitance MCM6287 (64K x 1), MCM6288/90 (16K x 4) MCM6264 (8K x 8), MCM6265 (8K x 9) MCM6207 (256K x 1), MCM6208/09 (64K x 4) MCM6205 (32K x 9), MCM6206 (32K x 8)	C _{out}	7 7 8 8	pF

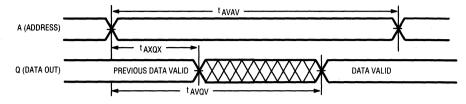
^{*}For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .

AC OPERATING CONDITIONS AND CHARACTERISTICS

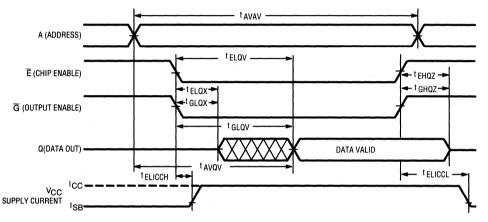
(V_{CC} = 5 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 5 V Input Pulse Levels 0 to 3 V Input Rise/Fall Time 5 ns

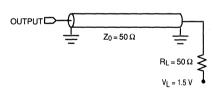
READ CYCLE (See Notes 1 and 2)


Product Family	Configuration	-12	-15	-17	-20	-25	Density
MCM6288 and MCM6290	16K x 4	V	V		EXISTI	AG MOTOROLA	
MCM6287	64K x 1	1	V	_	V	PRODUCTS	64K
MCM6264	8K x 8		7		1		
MCM6265	8K x 9		V	_	1	V	
MCM6208 and MCM6209	64K x 4		V	_	1	√	
MCM6207	256K x 1	FUTURE	1	_	1	√	256K
MCM6206	32K x 8	MOTOROLA PRODUCTS		1	1	1	
MCM6205	32K x 9			1		\ \ \	

	Symt	ool		12	-	15	-	17	-2	20	-2	25		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	12	_	15	_	17	_	20		25	_	ns	3
Address Access Time	tavqv	tAA	_	12	_	15	-	17	_	20	_	25	ns	
Enable Access Time	†ELQV	tACS	_	12	_	15	_	17	_	20	_	25	ns	4
Output Enable Access Time	· tGLQV	^t OE	_	6	_	8	_	9	_	10	_	12	ns	
Output Hold from Address Change	†AXQX	tон	4		4	_	4	_	4	_	4	_	ns	
Enable Low to Output Active	†ELQX	tCLZ	4		4	_	4	_	4	_	4		ns	5,6,7
Output Enable Low to Output Active	†GLQX	tOLZ	0	_	0	_	0	_	0	_	0	_	ns	5,6,7
Enable High to Output High-Z	†EHQZ	tCHZ	0	6	0	8	0	8	0	9	0	10	ns	5,6,7
Output Enable High to Output High-Z	†GHQZ	tonz	0	6	0	7	0	8	0	8	0	10	ns	5,6,7
Power Up Time	†ELICCH	tpu	0	_	0	_	0	_	0		0	_	ns	
Power Down Time	†EHICCL	tPD	_	12	_	15	_	17	_	20	_	25	ns	


NOTES:

- 1. Wis high for read cycle.
- 2. For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .
- 3. All timings are referenced from the last valid address to the first transitioning address.
- 4. Addresses valid prior to or coincident with E going low.
- 5. At any given voltage and temperature, tehoz max < telox min, and tehoz max < telox min, both for a given device and from device to device.
- 6. Transition is measured 500 mV from steady-state voltage with load of Figure 1B.
- 7. This parameter is sampled and not 100% tested.
- 8. Device is continuously selected. $\overline{E} \le V_{IL}$ and $\overline{G} \le V_{IL}$.


READ CYCLE 1 (See Note 8)

READ CYCLE 2 (See Notes 2 and 4)

AC TEST LOADS

See Output Load Conditions, page 18.

Figure 1A

Q 480 Ω 255 Ω Figure 1B 480 Ω 5 pF (INCLUDING SCOPE AND JIG)

+5 V

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device output will be valid no later than that time.

WRITE CYCLES

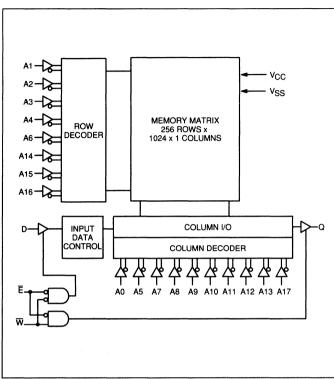
Product Family	Configuration	-12	-15	-17	-20	-25	Density
MCM6288 and MCM6290	16K x 4	7	√		EXISTIN	IG MOTOROLA	
MCM6287	64K x 1	√	√		√	PRODUCTS	64K
MCM6264	8K x 8		V	-	1		
MCM6265	8K x 9		√	-	1	√	
MCM6208 and MCM6209	64K x 4		V		√	√	
MCM6207	256K x 1	FUTURE MOTOROLA	√		1	√	256K
MCM6206	32K x 8	PRODUCTS		1	√	√	
MCM6205	32K x 9			1	1	√	

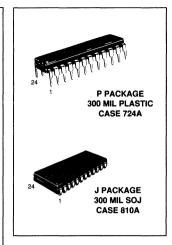
WRITE CYCLE 1 (WControlled) (See Notes 1, 2, and 3)

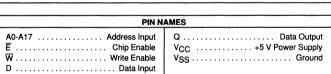

	Sym	ıbol	-1	12	-1	5	-	17	-2	20	-2	25		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	12	_	15	_	17	_	20	_	25	_	ns	4
Address Setup Time	tAVWL	†AS	0	_	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	tavwh	tAW	10	_	12	_	14	_	15	_	20		ns	
Write Pulse Width	tWLWH, tWLEH	tWP	10	_	12	_	14	_	15	_	20	_	ns	
Write Pulse Width, G High (Output Enable devices)	tWLWH, tWLEH	tWP	8	_	10	_	11	_	12	_	15		ns	5
Data Valid to End of Write	tDVWH	tDW	6	_	7	_	8		8	_	10	_	ns	
Data Hold Time	twhdx	tDH	0	_	0	_	0	_	0	_	0		ns	
Write Low to Output High-Z	twLQZ	twz	0	6	0	7	0	8	0	8	0	10	ns	6,7,8
Write High to Output Active	twHQX	tow	4	_	4	_	4	—	4		4	_	ns	6,7,8
Write Recovery Time	twhax	twR	0	_	0	_	0	_	0	_	0	_	ns	

WRITE CYCLE 2 (E Controlled) (See Notes 1, 2, and 3)

	Sym	bol	-1	12	-1	5	-	17	-2	20	-2	25		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	12	_	15	_	17		20	_	25	_	ns	4
Address Setup Time	†AVEL	^t AS	0	_	0	_	0	_	.0	-	0	_	ns	
Address Valid to End of Write	†AVEH	tAW	10	_	12	_	14	_	15	_	20	_	ns	
Enable to End of Write	teleh, telwh	tCM	8	-	10	_	11	_	12	_	15	_	ns	9,10
Data Valid to End of Write	†DVEH	tDW	6	_	7	_	8	_	8	_	10		ns	
Data Hold Time	†EHDX	^t DH	0	_	0	_	0	_	0	_	0	_	ns	
Write Recovery Time	†EHAX	twr	0	<u> </u>	0	_	0	_	0	_	0	_	ns	

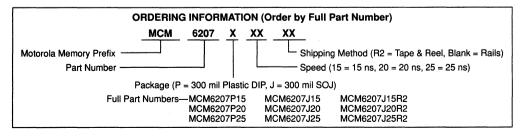

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .
- 3. For Output Enable devices, if \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.
- 4. All timings are referenced from the last valid address to the first transitioning address.
- 5. For Output Enable devices, if $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.
- 6. At any given voltage and temperature, tWLQG max < tWHQX min, both for a given device and from device to device.
- 7. Transition is measured 500 mV from steady-state voltage with load of Figure 1B.
- 8. This parameter is sampled and not 100% tested.
- 9. If E goes low coincident with or after Wgoes low, the output will remain in a high impedance state.
 10. If E goes high coincident with or before Wgoes high, the output will remain in a high impedance state.


WRITE CYCLE 1 (See Note 2) t AVAV t AVWH t WILWH t WILEH t AVWL D (DATA IN) Q (DATA OUT) WRITE CYCLE 1 (See Note 2) t AVAV t AVAV t WILWH t WILEH HIGH Z HIGH Z

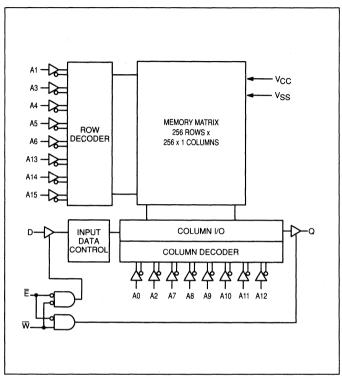


256K x 1 Bit Fast Static RAM

MCM6207



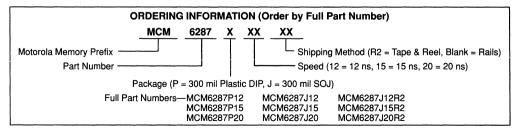
A0 [1.0	24	v _{cc}
A1 [2	23	A17
A2 [3	22	A16
АЗ [4	21	A15
A4 [5	20] A14
A5 [6	19] A13
A6 [7	18	A12
A7 [8	17	A11
A8 [9	16	A10
0[10	15	A9
₩₫	11	14] D
∨ss [12	13	ĪĒ
,			


MCM6207 TRUTH TABLE (X = don't care)

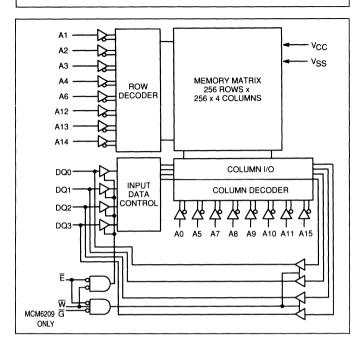
Ē	W	Mode	V _{CC} Current	Output	Cycle
H L	X H	Not Selected Read Write	ISB1, ISB2 ICCA ICCA	High-Z D _{out} High-Z	 Read Cycle Write Cycle

64K x 1 Bit Fast Static RAM

MCM6287


22	P PACKAGE 300 MIL PLASTIC CASE 736A
24	J PACKAGE 300 MIL SOJ CASE 810A

DUAL-IN-LINE							
A0 [1 ●	22] v _{cc}				
A1 [2	21	A15				
A2 [3	20] A14				
АЗ [4	19	A13				
A4 [5	18	A12				
A5 [6	17] A11				
A6 [7	16	A10				
A7 [8	15] A9				
a٤	9	14] A8				
₩ [10	13] D				
v _{ss} [11	12] Ē				
	SOJ						
A0 [1.0	24] v _{cc}				
A1 []	^	23	A15				
7	2	L.					
A2 [22] A14				
A3 []		21	A13				
A4 🛛	5	[A12				
A5 🛛	6	19] NC				
NC [7	18	A11				
A6 [8	17] A10				
A7 [9	16	-				
Q[10	15	A8				
₩₫	11] D				
vss[12		Ē				


PIN NAMES						
A0-A15 Address Input E Chip Enable W Write Enable D Data Input	Q Data Output VCC +5 V Power Supply VSS Ground NC No Connection					

MCM6287 TRUTH TABLE (X = don't care)

Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	_
l L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

64K x 4 Bit Fast Static RAMs

PIN NAMES						
$\begin{array}{cccc} \text{A0-A15} & \text{Address Input} \\ \text{DQ0-DQ3} & \text{Data Input/Output} \\ \overline{W} & \text{Write Enable} \\ \overline{G} \text{ (MCM6209)} & \text{Output Enable} \\ \end{array}$	E Chip Enable NC No Connection VCC +5 V Power Supply VSS Ground					

MCM6208 TRUTH TABLE (X = don't care)

E		моде	VCC Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	<u> </u>
L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle
			·		

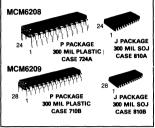
MCM6209 TRUTH TABLE (X = don't care)

	Ē	G	W	Mode	V _{CC} Current	Output	Cycle
	Н	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
Ì	L	н	н	Output Disabled	ICCA	High-Z	
	L	L	Н	Read	ICCA	D _{out}	Read Cycle
	L	X	L	Write	ICCA	High-Z	Write Cycle

ORDERING INFORMATION (Order by Full Part Number)

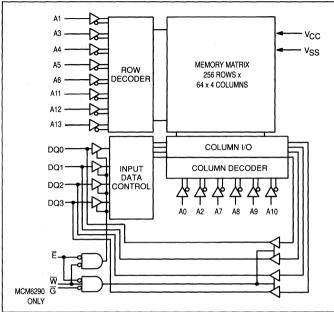
MCM 62XX X XX XX

Motorola Memory Prefix
Part Number
Speed (15 = 15 ns, 20 = 20 ns, 25 = 25 ns)


Package (P = 300 mil Plastic DIP, J = 300 mil SOJ)

Full Part Numbers—MCM6208P15 MCM6208J15 MCM6208J15R2 MCM6209P15 MCM6209J15R2 MCM6208P20 MCM6208J20R2 MCM6208J20R2 MCM6209P20 MCM6209J20R2 MCM6209J25R2 MCM6209J25R2 MCM6209J25R2

QuickRAM, Page 10


MCM6209

MCM6208



MCM6209			1
NC [1 ●	28	□ v _{cc}
A0 [2	27	A15
A1 [3	26] A14
A2 [4	25	A13
АЗ 🛚	5	24	A12
A4 [6	23	A11
A5 [7	22	A10
A6 [8	21	D NC
A7 [9	20	D NC
A8 [10	19	DQ0
A9 [11	18	DQ1
E [12	17	DQ2
<u></u>	13	16	роз
v _{SS} [14	15	þ₩
MCM6208			i
A0 [1 ●	24	□ v _{cc}
A1 [2	23	A15
A2 [3	22	A14
A3 [4	21	A13
A4 [5	20	A12
A5 [6	19	A11
A6 [7	18	A10
A7 [8	17	DQ0
A8 [9	16	DQ1
A9 [10	15	DQ2
Ē	11	14	роз
v _{ss} [12	13	þ₩
- 33 L			

16K x 4 Bit Fast Static RAMs

MCM6288 MCM6290

22 D VCC 21 A13

20 A12

19 🛮 A11

18 A10

17 🛮 A9

16 DQ0

15 DQ1

14 DQ2

13 DQ3 12 🛭 W

24 D VCC 23 A13

22 A12 21 A11

20 A10

19 🛮 A9

18] NC

17 16 DQ1

15

14 13 🛭 W

DQ0

DQ2

DQ3

MCM6288 A0 [

> A1 [2 A2 [

> АЗ П А4 Г 5

> Α5 6

A6 🛛 A7 [

3

8

0 9 8A ЕΠ 10

V_{SS} 🛭 11 MCM6290

АО П

АЗ []

A4 []

A5 []

A7 [8

A8 🛚 9

ĒΠ

Ġ []

VSS 12

11

A6 🛮 7

A1 🛛 2 A2 [3

PIN N	AMES
DQ0-DQ3 Data Input/Output	E Chip Enable NC No Connection
\overline{W} Write Enable	V _{CC} +5 V Power Supply
G (MCM6200) Output Enable	Voc Ground

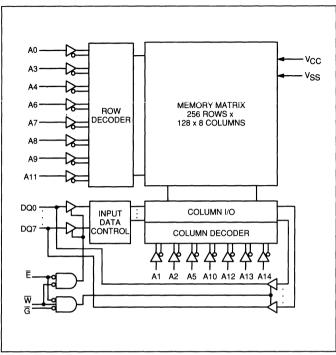
MCM6288 TRUTH TABLE (X = don't care)

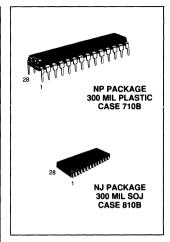
Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н ।	Read	ICCA	Dout	Read Cycle
L	L	Write	. ICCA	High-Z	Write Cycle

MCM6290 TRUTH TABLE (X = don't care)

Ē	G	W	Mode	V _{CC} Current	Output	Cycle
Н	X	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	н	Output Disabled	ICCA	High-Z	_
L.	L.	н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle

ORDERING INFORMATION (Order by Full Part Number)							
		62XX			_XX_		


Shipping Method (R2 = Tape & Reel, Blank = Rails) Motorola Memory Prefix Speed (12 = 12 ns, 15 = 15 ns) Part Number


Package (P = 300 mil Plastic DIP, J = 300 mil SOJ)

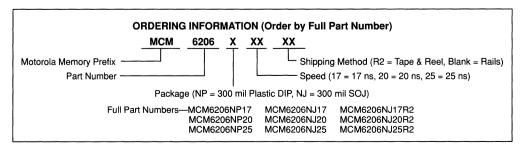
Full Part Numbers—MCM6288P12 MCM6290P12 MCM6290J12 MCM6290J12R2 MCM6288P15 MCM6290P15 MCM6290J15 MCM6290J15R2

32K x 8 Bit Fast Static RAM

MCM6206

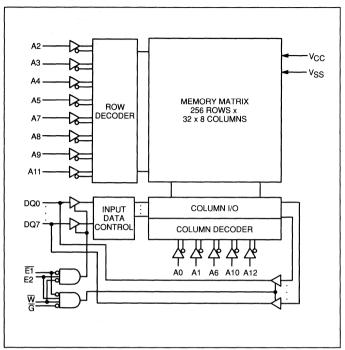
PIN N	AMES
A0-A14 Address Input DQ0-DQ7 Data Input/Output W Write Enable G Output Enable	E Chip Enable VCC +5 V Power Supply VSS Ground

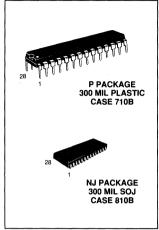
A14 🛮 28 D VCC 27 🛭 W A12 🛚 2 26 A13 A7 🛮 3 4 25 A8 A6 [] 5 24 🛮 A9 Α5 23 A11 A4 [] 22 🕽 🖫 АЗ 7 A2 🛮 8 21 A10 A1 🛮 9 20 D E A0 1 10 19 DQ7 18 DQ6 DQ0 [17 DQ5 DQ1 12 16 🛮 DQ4 DQ2 13


vss [

15 DQ3

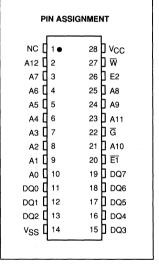
PIN ASSIGNMENT

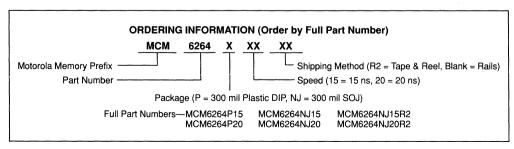

MCM6206 TRUTH TABLE (X = don't care)


Ē	G	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н	Н	Output Disabled	ICCA	High-Z	_
L	L	н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle

8K x 8 Bit Fast Static RAM

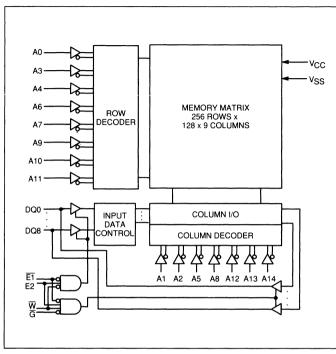
MCM6264

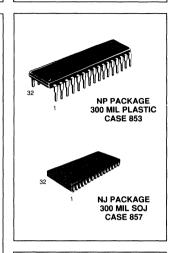


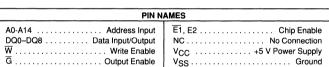


* PIN N	AMES
A0-A12 Address Input DQ0-DQ7 Data Input/Output	E1, E2 Chip Enable NC No Connection
$\overline{\overline{G}}$ Write Enable $\overline{\overline{G}}$ Output Enable	VCC+5 V Power Supply VSS Ground

MCM6264 TRUTH TABLE (X = don't care)

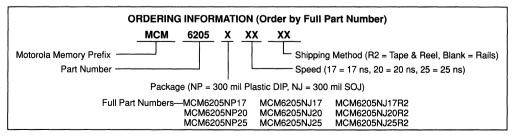

MONOZOT THOTH TABLE (X = doi! (daic)							
E1	E2	G	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
Х	L	X	Х	Not Selected	ISB1, ISB2	High-Z	_
L	l H	Н	Н	Output Disabled	ICCA	High-Z	_
L	Н	L	Н	Read	ICCA	Dout	Read Cycle
L	H	X	L	Write	ICCA	High-Z	Write Cycle



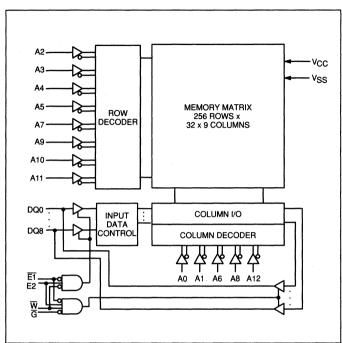


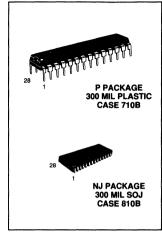
32K x 9 Bit Fast Static RAM

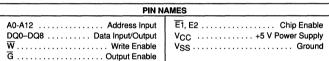
MCM6205



PIN ASSIGNMENT 32 D VCC NC [ис Г 2 31 T A14 8A 30 E2 29 ħ ₩ A7 [] A6 [] 28 A13 27 🛮 A9 A5 [A4 [] 26 D A10 аз 🛮 25 A11 24 🕽 👨 A2 [] 9 A1 🛮 10 23 A12 A0 🛮 11 22 N E1 DQ0 12 21 DQ8 DQ1 II 13 20 DQ7 19 DQ6 DQ2 🛘 14 18 DQ5 DQ3 15 17 DQ4 V_{SS} [] 16

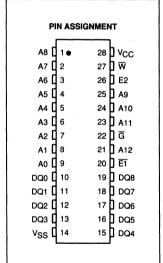

MCM6205 TRUTH TABLE (X = don't care)

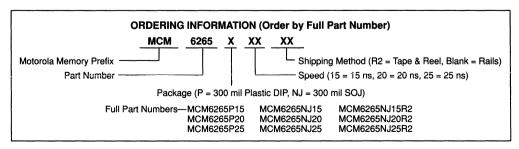

E1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	X	Not Selected	ISB1, ISB2	High-Z	
L	Н	н	Н	Output Disabled	ICCA	High-Z	
L	Н	L	Н	Read	ICCA	Dout	Read Cycle
L	Н	Х	L	Write	ICCA	High-Z	Write Cycle



8K x 9 Bit Fast Static RAM

MCM6265





MCM6265 TRUTH TABLE (X = don't care)

E1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	х	х	х	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	X	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Н	Output Disabled	ICCA	High-Z	_
L	Н	L	Н	Read	ICCA	Dout	Read Cycle
L	Н	Х	L	Write	ICCA	High-Z	Write Cycle

OUTPUT LOAD CONDITIONS

INTRODUCTION

This review describes the ac loading used for testing this family of parts. Component test engineers should pay careful attention to the test conditions and derating curves for deviations from the specified load. This information is also applicable for system engineers calculating required device speed for a given environment. This information will help the user make the appropriate choice of device performance for their needs.

As device access times decrease, so do output transition times. With faster rise and fall times come additional problems associated with output and signal path impedances. In any system running at frequencies where the propagation delay of a signal path (tpd) is greater than 1/2 of the total signal transition time, transmission line effects will be seen on the signal. This results in overshoot and undershoot at the load end of a conductor, which can cause problems in testing, or in actual use of the device. This discussion gives a brief overview of the factors contributing to these effects, and the measures that can be used to predict or eliminate them. For a detailed discussion of both PC board layout considerations and applicable transmission line theory, consult the MECL System Design Handbook, publication HB205R1. Motorola. Inc., 1983.

DEFINITION OF TERMS

DE: IIII	ON OF TERMIS
^t pd	Propagation delay in seconds
L ₀	Inductance in henries/meter
C ₀	Capacitance in farads/meter
R_{L}	Load resistance in ohms
RDS(on)	Resistance from drain to source of a FET device when on $% \left\{ \mathbf{r}^{\prime}\right\} =\mathbf{r}^{\prime}$

RO Output resistance in ohms. For CMOS devices, this is the RDS(on) resistance of the output devices.

ROH Output resistance for a high, or "1", signal from the device

ROL Output resistance for a low, or "0", signal from the

ρL Reflection coefficient of the load end of a signal

ρS Reflection coefficient of the source end of a signal, the device output

V_L Termination voltage of the load resistor in a transmission line termination network

TRANSMISSION LINE OVERVIEW

What is a transmission line and how does it affect output waveforms? In simple terms, a transmission line is a signal path that exhibits a characteristic impedance. The type of lines discussed in this paper are primarily microstrip (Figure 2A) and stripline signal paths (Figure 2B) found in most PC boards today. The inductance and capacitance of these lines are a function of the line thickness and width in combination with the dielectric properties of the PC board material and the distance of the line from the ground plane. The impedance of the line is determined by these characteristics and the additional distributed capacitance from other devices on the line.

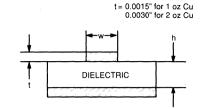


Figure 2A. Microstrip Signal Path

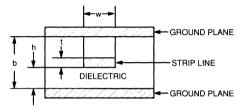


Figure 2B. Stripline Signal Path

The characteristic impedance of a microstrip or stripline path is given by the formula $Z_0=\sqrt{-L_0/C_0}$. The propagation delay of the path, t_{pd} , is $t_{pd}=\sqrt{-L_0/C_0}\times length=Z_0C_0\times length$. For example, the propagation delay of a microstrip line on G10 epoxy/glass material is approximately 1.76 ns/ft, while the delay for a stripline is about 2.27 ns/ft

The effect of a transmission line on a device output depends on the electrical length of the line. In all cases, a signal traveling down the line will be affected at the end of the line if it is not terminated with a resistor of the characteristic impedance of the line. The amount of effect is determined by the reflection coefficient of the load, $\rho_{\rm I}$, where:

$$\rho_L = \left(\frac{R_L - Z_0}{R_L + Z_0}\right) \tag{1}$$

This reflection occurs at a time t_{pd} after a change at the source of the signal. A similar reflection occurs at $2t_{pd}$ after this new signal has returned from the load to the source, and is determined by the source reflection coefficient, ρ_S , where:

$$\rho_{S} = \left(\frac{\mathsf{R}_{O} - \mathsf{Z}_{0}}{\mathsf{R}_{O} + \mathsf{Z}_{0}}\right) \tag{2}$$

 R_O is the output resistance of the device. In the case of an electrical line length with tpd less than 1/2 of the rise/fall time of the output signal, the transmission line effects are seen as a delay of the signal transition times. This is caused by the load reflection returning to the source during the actual signal transition and being included in the duration of the signal. For the case of an electrical length with t_{pd} greater than 1/2 of the rise/fall time of the output signal, the reflection effects may be seen

directly. In severe cases, signal overshoot or undershoot can cause an invalid level to be seen at the load end at $3t_{nd}$.

The formulas for determining reflection coefficients require knowledge of the output impedance of the device, the characteristic impedance of the signal path, and the termination resistance. The goal of termination is to guarantee that the output signal at the receiving end (load) has enough margin to keep reflection effects from causing a false level to be detected. In an ideal case, the termination resistance is equal to the characteristic impedance of the line, and therefore, no reflection is generated at the load. In that one case, the impedance mismatch at the source is of importance only for signal rise time, VOH and VOI considerations.

The effect of additional distributed capacitance on a transmission line is a reduction in impedance resulting in little change to tpd. This additional capacitance does, however, change the signal transition times resulting in a longer rise and fall time.

OUTPUT BUFFERS

The schematic drawing for a typical CMOS TTL output buffer is shown in Figure 3A. Figure 3B shows the equivalent circuit as actually implemented in many devices. The actual values for R_{OH} and R_{OL} vary from design to design but the range of values is similar.

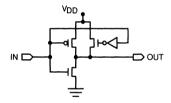


Figure 3A. Typical Output Buffer

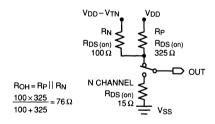


Figure 3B. Effective Circuit

As can be seen from Figure 3, the output impedance of a TTL output buffer is different for high and low output signals. This relation, along with the choice of Vpp level, termination resistance, and voltage determine the output high and low levels the part will produce in the system. In a dc condition with $R_L = 50 \Omega = \text{and VI} = 1.5 \text{ V}$, the output voltages would be:

$$V_{OL} = V_{SS} + (V_L - V_{SS}) \left(\frac{R_{OL}}{R_{OL} + R_L} \right)$$

$$V_{OL} = 0 \text{ V} + (1.5 \text{ V} - 0 \text{ V}) \left(\frac{15 \Omega}{15 \Omega + 50 \Omega} \right)$$

$$V_{OL} = 0.35 \text{ V}$$

$$(3)$$

$$V_{OH} = V_L + \left(V_{DD} - V_L - V_{TN} \frac{R_P}{R_P + R_N} \right) - \left(\frac{R_L}{R_L + R_{OH}} \right)$$

$$V_{OH} = 1.5 \text{ V} + \left(4.4 \text{ V} - 1.5 \text{ V} - 1.2 \text{ V} - \frac{325 \Omega}{100 \Omega + 325 \Omega} \right)$$

$$\left(\frac{50 \Omega}{50 \Omega + 76 \Omega} \right)$$

$$V_{OH} = 2.33 \text{ V}$$

$$(4.4)$$

TRADITIONAL TTL OUTPUT LOAD SPECIFICATIONS

The output loading typically specified in the industry until now is shown in Figure 4A. The load consists of a resistor network and capacitance. The values for the network were chosen to present a cload of 8 mA during an output low condition (VOL \leq 0.4 V) and $^{-4}$ mA for an output high (VOH \geq 2.4 V). A 5 V supply was chosen as the termination supply and a divider network was calculated to provide the specified currents. In addition, a lumped capacitive load of 30 pF was added to the output to represent input loading from other devices. In actual practice during testing, the load used is a Thevenin equivalent as shown in Figure 4B, with capacitance being provided by the 50 Ω transmission line connection to the test head and the test fixture capacitance.

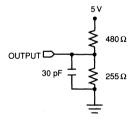


Figure 4A. Typical TTL Load

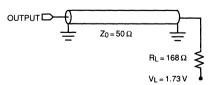


Figure 4B. Thevenin Equivalent Test Load

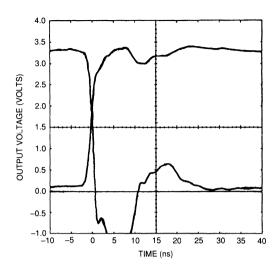


Figure 5. Output Waveforms with Thevenin Equivalent Test Load

The calculated performance of this setup would be that of a transmission line with a Z_0 of $50\,\Omega$ terminated to an R_L of $168\,\Omega$ at a V_L of 1.73 V. This would be $\rho_L=(168\,\Omega-50\,\Omega)$ / $(168\,\Omega+50\,\Omega)=0.54.$ This means that the ΔV at the load would be 154% of the source $\Delta V.$ Using the example output buffer with $V_{DD}=5.0$ V, the dc V_{OL} would be 0.14 V and the incident V_{OH} , using the $50\,\Omega$ from Z_0 in place of R_L , would be 2.67 V, giving a ΔV of 2.53 V. This means that for a low to high going signal at the source, at time t_{pd} later, the load would go to $V_{OL}+\Delta V+(\Delta V\times0.54),$ or 4.01 V.

Figure 5 shows the actual measured waveform at the load end of a test fixture as described in Figure 4B. The t_{pd} of the signal path is measured using a TDR (time domain reflectometer) to be approximately 4 ns. Notice the reflection effects at each multiple of t_{pd} on both waveforms. The actual measured waveforms differ from predicted results due to inductance in the ground and V_{DD} path of the device being tested.

In a testing environment, the t_{pd} is subtracted from the time measured to give the actual output delay of the device (access time). Because of this, the distortions at the device output are of no concern. The ringing at the load end, however, can cause

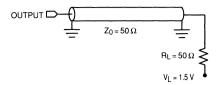


Figure 6. New High Frequency AC Test Load

severe problems when trying to accurately test the speed of the parts. In the past, the access time has been measured from some mid-level voltage which is centered between the high and low output swing. This has the effect of giving the most noise margin to ringing output signals. However, this maximum noise margin does not guarantee that problems will not arise.

NEW HIGH FREQUENCY AC TEST LOAD

In order to properly test and guarantee the ac performance of these new fast static RAMs, it is necessary to change the conditions for ac loading to a load that will allow accurate evaluation of the device parameters. Because of this, the specified ac load is now a transmission line terminated with a resistor of the characteristic impedance of the line to a load voltage (see Figure 6).

The calculated performance of this load in a normal test environment would be $\rho_L=(50~\Omega-50~\Omega)~/~(50~\Omega+50~\Omega)=0.0.$ This means that the ΔV at the load would be the same as the source ΔV with no signal reflection.

As seen in Figure 7, using a transmission line terminated to a load supply through a resistor equal to the characteristic impedance of the line produces a load waveform which matches the source signal. Additionally, under ideal conditions, no reflection effects are produced with this load. This results in the maximum possible noise margin for both test and system environments. In this test setup, power supply inductance causes some output noise which is seen at the load.

Figures 8 and 9 are derating curves for calculating the effects of varying C_O and R_L . These curves are based on typical device performance and are not intended to be absolute worst case specifications.

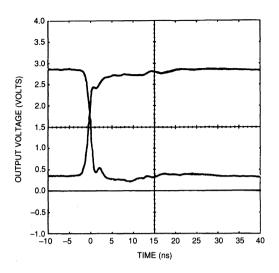


Figure 7. Output Waveforms with High Frequency AC Test Load

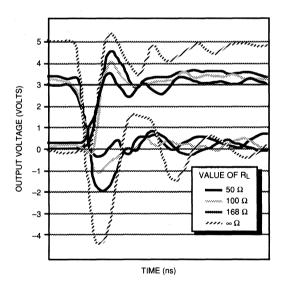


Figure 8. Output Voltage as a Function of RL

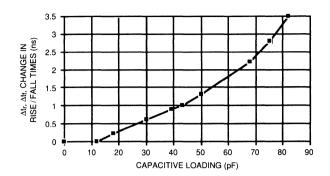


Figure 9. Change in Output Rise and Fall Times for Lumped Capacitive Loads

7

Product Preview QuickRAM™ II Fast Static RAM Family

The QuickRAM Family of fast static RAMs is fabricated using Motorola's highperformance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The product family includes devices with four different densities: 294,912 bits, 262,144 bits, 73,728 bits, and 65,536 bits.

These devices meet JEDEC standards for functionality and pinout, and are available in plastic dual-in-line and plastic small-outline J-leaded packages.

- Single 5 V ±10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- Fast Access Times: 8, 10, 12, and 15 ns
- Equal Address and Chip Enable Access Times
- Output Enable (\$\overline{\overli
- Low Power Operation: 150–180 mA Maximum AC
- Fully TTL Compatible Three State Output
- Separate Data Input and Output on MCM6207 and MCM6287

CONTENTS

	rage
Family Maximum Ratings and DC Characteristics	2
Family AC Characteristics	4
Device Data (See Numerical Index)	8
Package Dimensions	ter 14
Output Load Conditions	16

DEVICE NUMERICAL INDEX (See Note)

	(
Part Number	Access Times (ns)	Organization	Page
MCM6205C-12, -15	12, 15	32K x 9	14
MCM6206C-12, -15	12, 15	32K x 8	12
MCM6207C-10, -12	10, 12	256K x 1	8
MCM6208C-10, -12	10, 12	64K x 4	10
MCM6209C-10, -12	10, 12	64K x 4 OE	10
MCM6264C-10, -12	10, 12	8K x 8	13
MCM6265C-10, -12	10, 12	8K x 9	15
MCM6287C-8, -10	8, 10	64K x 1	9
MCM6288C-8, -10	8, 10	16K x 4	11
MCM6290C-8, -10	8, 10	16K x 4 OE	11

NOTE: Device Specifications for the faster access times are included to assist future system designs. Contact a Motorola Sales Representative for scheduled availability.

256K

256K x 1 MCM6207C-10, -12

64K x 4 MCM6208C-10, -12

64K x 4 with OE MCM6209C-10, -12

32K x 8 MCM6206C-12, -15

32K x 9 MCM6205C-12, -15

64K

64K x 1 MCM6287C-8, -10

16K x 4 MCM6288C-8, -10

16K x 4 with OE MCM6290C-8, -10

8K x 8 MCM6264C-10, -12

8K x 9 MCM6265C-10, -12

QuickRAM is a trademark of Motorola, Inc.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage Relative to VSS	Vcc	– 0.5 to +7	٧
Voltage on Any Pin, Except V _{CC} , Relative to V _{SS}	V _{in} ,V _{out}	- 0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	l _{out}	±30	mA
Power Dissipation	PD	1	w
Temperature Under Bias	T _{bias}	- 10 to +85	ô
Operating Temperature	TA	0 to +70	°C
Storage Temperature-Plastic	T _{stg}	- 55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the OPERATING CONDITIONS. Exposure to voltages higher than the operating voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5 V ±10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Parameter	Conditions	Symbol	Min	Max	Unit
Supply Voltage	Operating Voltage Range	Vcc	4.5	5.5	٧
Input High Voltage		ViH	2.2	V _{CC} +0.3*	٧
Input Low Voltage		VIL	-0.5**	0.8	٧
Input Leakage Current	0 V ≤ V _{in} ≤ V _{CC}	likg(l)	_	±1	μА
Output Leakage Current	Output(s) Disabled, 0 V ≤ V _{out} ≤ V _{CC}	lkg(O)	_	±1	μА
Output High Voltage	I _{OH} = -4 mA	Voн	2.4		٧
Output Low Voltage	I _{OL} = 8 mA	VOL	_	0.4	٧

^{**} V_{IL} (min) = -0.5 V dc, V_{IL} (min) = -2 V ac (pulse width \leq 20 ns)

 $^{^*}V_{IH}$ (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = V_{CC} + 2 V ac (pulse width \leq 20 ns)

POWER SUPPLY CURRENTS (AC Operating Conditions Unless Otherwise Noted)

Density	Config.	Device	Parameter	Symbol	-8	-10	-12	-15	Unit
	16K x 4	MCM6288C/90C	AC Active Supply Current	ICCA	180	170	-	_	mA
	64K x 1	MCM6287C	(I _{out} = 0 mA, V _{CC} = Max, f = f _{max})		170	160	_		
	8K x 8	MCM6264C			_	170	150	_	
1	8K x 9	MCM6265C			_	170	150	_	
64K	All	All	AC Standby Current (E = V _{IH} , V _{CC} = Max, f = f _{max})	ISB1	55	50	45	40	mA
	All	All	CMOS Standby Current (V_{CC} = Max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2 \text{ V}$ * $V_{in} \le V_{SS} + 0.2 \text{ V}$, or $\ge V_{CC} - 0.2 \text{ V}$)	I _{SB2}	20	20	20	20	mA
	64K x 4	MCM6208C/09C	AC Active Supply Current	ICCA	_	175	165	_	mA
	256K x 1	MCM6207C	(I _{out} = 0 mA, V _{CC} = Max, f = f _{max})			170	160	_	
	32K x 8	MCM6206C			_		175	165	
	32K x 9	MCM6205C			_		180	170	
256K	All	All	AC Standby Current (E = V _{IH} , V _{CC} = Max, f = f _{max})	ISB1	_	60	55	50	mA
	All	All	CMOS Standby Current (V_{CC} = Max, f = 0 MHz, $E \ge V_{CC} - 0.2 \text{ V}^*$ $V_{in} \le V_{SS} + 0.2 \text{ V}$, or $\ge V_{CC} - 0.2 \text{ V}$)	I _{SB2}	_	20	20	20	mA

^{*}For devices with multiple chip enables of opposite polarity, $\overline{E1} \ge V_{CC} - 0.2 \text{ V}$ or $E2 \le V_{SS} + 0.2 \text{ V}$

$\textbf{CAPACITANCE} \text{ (f = 1 MHz, dV = 3 V, T}_{A} = 25^{\circ}\text{C, Periodically sampled rather than 100\% tested)}$

Characteristic	Symbol	Max	Unit
Address and Data Input Capacitance MCM6287C (64K x 1), MCM6288C/90C (16K x 4) MCM6264C (8K x 8), MCM6265C (8K x 9) MCM6207C (256K x 1), MCM6208C/09C (64K x 4) MCM6205C (32K x 9), MCM6206C (32K x 8)	C _{in}	9999	pF
Control Pin Input Capacitance (Ē,* G, W) MCM6287C (64K x 1), MCM6288C/90C (16K x 4) MCM6264C (8K x 8), MCM6265C (8K x 9) MCM6207C (256K x 1), MCM6208C/09C (64K x 4) MCM6205C (32K x 9), MCM6206C (32K x 8)	C _{in}	6 6 6 8	pF
Output Capacitance MCM6287C (64K x 1), MCM6288C/90C (16K x 4) MCM6264C (8K x 8), MCM6265C (8K x 9) MCM6207C (256K x 1), MCM6208C/09C (64K x 4) MCM6205C (32K x 9), MCM6206C (32K x 8)	C _{out}	7 7 8 8	pF

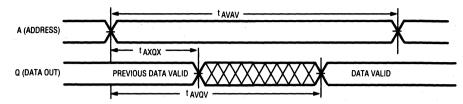
^{*}For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .

AC OPERATING CONDITIONS AND CHARACTERISTICS

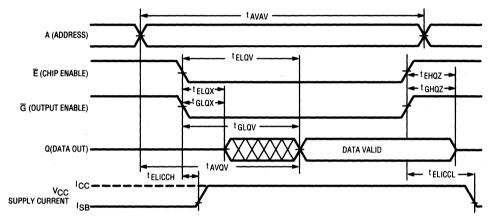
 $(V_{CC} = 5 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels 0 to 3 V	Output Load Figure 1A Unless Otherwise Noted
Input Rise/Fall Time 5 ns	

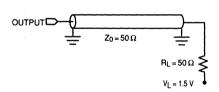
READ CYCLE (See Notes 1 and 2)


Product Family	Configuration	-8	-10	-12	-15	Density
MCM6288C and MCM6290C	16K x 4	٧	V	E)	EXISTING MOTOROLA	
MCM6287C	64K x 1	V	V		PRODUCTS	64K
MCM6264C	8K x 8		1		7	
MCM6265C	8K x 9		1		7	
MCM6208C and MCM6209C	64K x 4		٧.			
MCM6207C	256K x 1	FUTURE	1		7	256K
MCM6206C	32K x 8	PRODUCTS		V	V	
MCM6205C	32K x 9			1	1	

	Symbol			-8		-10		-12		-15		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	8	_	10	_	12	_	15	_	ns	3
Address Access Time	tavqv	tAA		8	_	10		12	_	15	ns	
Enable Access Time	†ELQV	tACS	_	8	_	10	_	12	_	15	ns	4
Output Enable Access Time	†GLQV	^t OE	_	4	_	5	_	6		8	ns	
Output Hold from Address Change	†AXQX	tон	4	_	4		4	_	- 4	_	ns	
Enable Low to Output Active	†ELQX	tCLZ	4	_	4	_	4		4	_	ns	5,6,7
Output Enable Low to Output Active	†GLQX	tOLZ	0	_	0	_	0	_	0		ns	5,6,7
Enable High to Output High-Z	†EHQZ	tCHZ	0	4	0	5	0	6	0	8	ns	5,6,7
Output Enable High to Output High-Z	^t GHQZ	tonz	0	4	0	5	0	6	0	7	ns	5,6,7
Power Up Time	†ELICCH	tpU	0	_	0	_	0	_	0	_	ns	
Power Down Time	†EHICCL	tpD	_	8		.10	_	12		15	ns	


NOTES:

- W is high for read cycle.
- 2. For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .
- 3. All timings are referenced from the last valid address to the first transitioning address.
- 4. Addresses valid prior to or coincident with \overline{E} going low.
- 5. At any given voltage and temperature, tehoz max < telox min, and tehoz max < telox min, both for a given device and from device to device.
- 6. Transition is measured 500 mV from steady-state voltage with load of Figure 1B.
- 7. This parameter is sampled and not 100% tested.
- 8. Device is continuously selected. $\overline{E} \leq V_{IL}$ and $\overline{G} \, \leq V_{IL}.$


READ CYCLE 1 (See Note 8)

READ CYCLE 2 (See Notes 2 and 4)

AC TEST LOADS

See Output Load Conditions, page 18.

Figure 1A

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal amen to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

Q 255 Ω Figure 1B 480 Ω 5 pF (INCLUDING SCOPE AND JIG)

+5 V

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device output will be valid no later than that time.

QuickRAM II

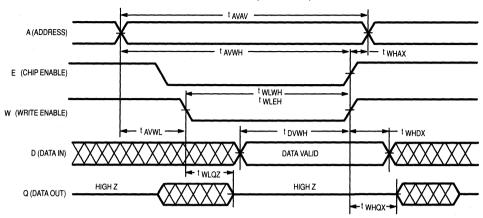
WRITE CYCLES

Product Family	Configuration	-8	-10	-12	-15	Density
MCM6288C and MCM6290C	16K x 4	√	V	EXISTING MOTOROLA		
MCM6287C	64K x 1	√	٧		PRODUCTS	64K
MCM6264C	8K x 8		√	1		
MCM6265C	8K x 9		V	1		
MCM6208C and MCM6209C	64K x 4	1 [٧	1	7 [
MCM6207C	256K x 1	FUTURE MOTOROLA	1	1	1	256K
MCM6206C	32K x 8	PRODUCTS		V	V	
MCM6205C	32K x 9			1	V	

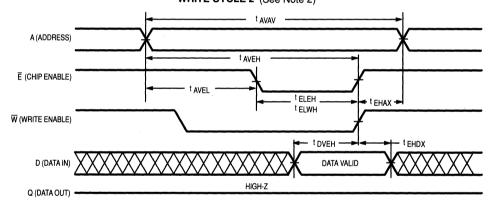
WRITE CYCLE 1 (W Controlled) (See Notes 1, 2, and 3)

	Sym	Symbol		8	-1	0	-	12	-15			
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	twc	8		10	_	12		15	_	ns	4
Address Setup Time	tavwl	tAS	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	tavwh	t _{AW}	8	_	9	_	10	_	12	_	ns	
Write Pulse Width	tWLWH, tWLEH	twp	8	_	9	_	10		12		ns	
Write Pulse Width, G High (Output Enable devices)	tWLWH,	twp	6		7	_	8	_	10	_	ns	5
Data Valid to End of Write	tDVWH	tDW	4	_	5	-	6	_	7	_	ns	
Data Hold Time	twhox	t _{DH}	0	_	0	_	0		0	_	ns	
Write Low to Output High-Z	tWLQZ	twz	0	4	0	5	0	6	0	7	ns	6,7,8
Write High to Output Active	tWHQX	tow	4	_	4	_	4	_	4	_	ns	6,7,8
Write Recovery Time	tWHAX	twR	0	_	0	_	0	_	0	_	ns	

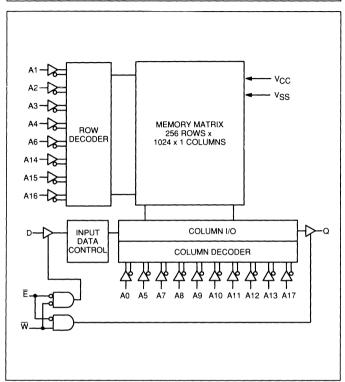
WRITE CYCLE 2 (E Controlled) (See Notes 1, 2, and 3)

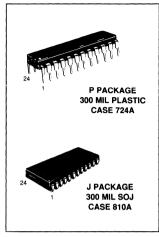

	Sym	ibol	-	-8		-10		-12		-15		
Parameter	Std	Alt	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	8	_	10	_	12	_	15	_	ns	4
Address Setup Time	†AVEL	t _{AS}	0	_	0	_	0	_	0	_	ns	
Address Valid to End of Write	†AVEH	tAW	8	_	9	_	10	-	12	_	ns	
Enable to End of Write	tELEH, tELWH	tCW	6	_	7		8		10	_	ns	9,10
Data Valid to End of Write	tDVEH	tDW	4	_	5		6	_	7	_	ns	
Data Hold Time	tEHDX	^t DH	0	_	0		0	_	0	_	ns	
Write Recovery Time	[†] EHAX	twr	0	_	0		0	_	Ö		ns	

NOTES:


- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. For devices with multiple chip enables, $\overline{E1}$ and E2 are represented by \overline{E} in this data sheet. E2 is of opposite polarity to \overline{E} .
- 3. For Output Enable devices, if \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.
- 4. All timings are referenced from the last valid address to the first transitioning address.
- 5. For Output Enable devices, if $\overline{G} \ge V_{IH}$, the output will remain in a high impedance state.
- 6. At any given voltage and temperature, tWLQG max < tWHQX min, both for a given device and from device to device.
- 7. Transition is measured 500 mV from steady-state voltage with load of Figure 1B.
- 8. This parameter is sampled and not 100% tested.
- 9. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance state.

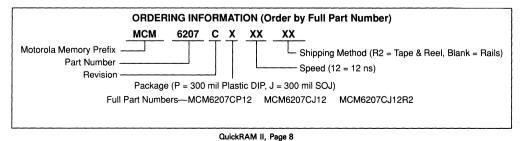
 10. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance state.




WRITE CYCLE 2 (See Note 2)

256K x 1 Bit Fast Static RAM

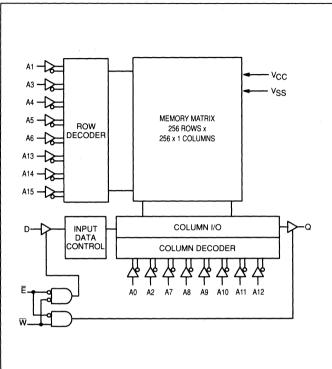
MCM6207C



PIN N	AMES
A0-A17 Address Input Ē Chip Enable ₩ Write Enable D Data Input	Q Data Output VCC +5 V Power Supply VSS Ground

PIN ASSIGNMENT 24 0 VCC 23 A17 A1 [] 22 A16 A2 [] АЗ [] 21 A15 20 A14 19 A13 A5 [] 18 A12 A6 🛛 7 17 A11 А7 П 16 A10 A8 [] 15 A9 Q [] 10 ₩ [] 11 14 D 13 🛭 Ē VSS 12

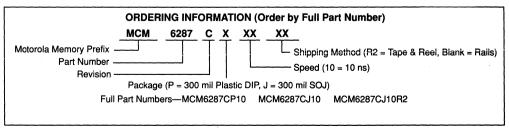
MCM6207C TRUTH TABLE (X = don't care)


L	Ē	W	Mode	V _{CC} Current	Output	Cycle
	H	X	Not Selected	ISB1, ISB2	High-Z	—
	L	H	Read	ICCA	D _{out}	Read Cycle
	L	L	Write	ICCA	High-Z	Write Cycle

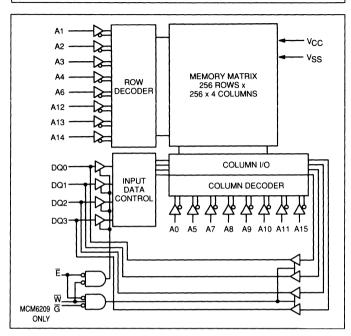
MOTOROLA MEMORY DATA

64K x 1 Bit Fast Static RAM

MCM6287C



22	P PACKAGE 300 MIL PLASTIC CASE 736A
24	J PACKAGE 300 MIL SOJ CASE 810A

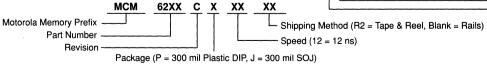

PIN N	AMES
A0-A15 Address Input E Chip Enable W Write Enable D Data Input	Q Data Output VCC +5 V Power Supply VSS Ground NC No Connection
#CM6287C TRUTH TABLE (X = don't care)	

DUAL-IN-LINE			
A0 [1●	22] v _{cc}
A1 [2	21	A15
A2 [3	20	A14
АЗ [4	19	A13
A4 [5	18	A12
A5 [6		A11
A6 [16	A10
A7 [A9
۵ [14] A8
₩ [10	13	Dο
v _{ss} [11	12	₽⋷
,	SOJ		-
A0 [1 •	24] v _{cc}
A1 [2	23	A15
A2 [3	22	A14
АЗ [4	21	A13
A4 [20	A12
A5 [6	19) NC
NC [18	A11
A6 [8		A10
A7 [9		A9
۵۵	10		A8
₩₫	11	14	D
Vss [12	13) E

Ē	W	Mode	V _{CC} Current	Output	Cycle
H L	X H	Not Selected Read	ISB1, ISB2 ICCA	High-Z D _{out}	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

64K x 4 Bit Fast Static RAMs

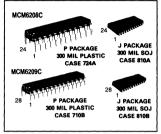
_					
	PIN NAMES				
	A0-A15 Address Input DQ0−DQ3 Data Input/Output W Write Enable G(MCM6209C) Output Enable	E Chip Enable NC No Connection VCC +5 V Power Supply VSS Ground			


MCM6208C TRUTH TABLE (X = don't care)

Ē	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	
L	Н	Read	ICCA	Dout	Read Cycle
L	L	Write	ICCA	High-Z	Write Cycle

MCM6209C TRUTH TABLE (X = don't care)

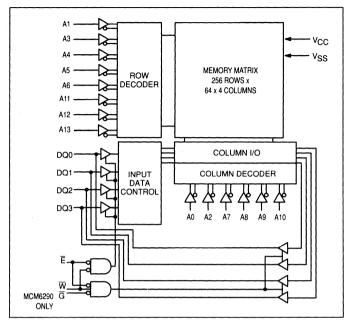
Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	Χ	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н	н	Output Disabled	ICCA	High-Z	_
L	L	н	Read	^I CCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle


ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM6208CP12 MCM6209CP12 MCM6208CJ12 MCM6209CJ12 MCM6208CJ12R2 MCM6209CJ12R2

QuickRAM II, Page 10

MCM6208C MCM6209C



28 🛛 V_{CC}

NC 11

A0 [2	27	A15
A1 [3	26	A14
A2 [4	25	A13
АЗ [5	24	A12
A4 [6	23	A11
A5 [7	22	A10
A6 [8	21	NC
A7 [9	20	NC
A8 [10	19 🛚	DQ0
A9 [11	18	DQ1
ĒQ	12	17 🗓	DQ2
ਰ 🕻	13	16	DQ3
v _{ss} [14	15	\overline{w}
MCM6208C 1		=	
MCM6208C A0	1 •	24	VCC
	1 • 2	24 23	
A0 [A15
A0 [A1 [3	23] 22] 21]	A15 A14 A13
A0 [A1 [A2 [3 4	23] 22] 21] 20]	A15 A14 A13 A12
A0 [A1 [A2 [A3 [A4 [3 4	23] 22] 21] 20] 19]	A15 A14 A13 A12 A11
A0 [A1 [] A2 [] A3 [] A4 []	3 4 5	23] 22] 21] 20]	A15 A14 A13 A12 A11
A0 [A1 [A2 [A3 [A4 [A5 [3 4 5 6	23] 22] 21] 20] 19] 18]	A15 A14 A13 A12 A11
A0 [A1 [A2 [A3 [A4 [A5 [A6 [3 4 5 6 7	23] 22] 21] 20] 19] 18] 17]	A15 A14 A13 A12 A11 A10 DQ0 DQ1
A0 [A1 [A2 [A3 [A5 [A6 [A7 [A8 [A9 [3 4 5 6 7 8	23] 22] 21] 20] 19] 18] 17]	A15 A14 A13 A12 A11 A10 DQ0 DQ1 DQ2
A0 [A1 [A2 [A3 [A4 [A5 [A6 [A8 [3 4 5 6 7 8	23] 22] 21] 20] 19] 18] 17]	A15 A14 A13 A12 A11 A10 DQ0 DQ1 DQ2 DQ3
A0 [A1 [A2 [A3 [A5 [A6 [A7 [A8 [A9 [3 4 5 6 7 8 9	23] 22] 21] 20] 19] 18] 17] 16] 15]	A15 A14 A13 A12 A11 A10 DQ0 DQ1 DQ2

16K x 4 Bit Fast Static RAMs

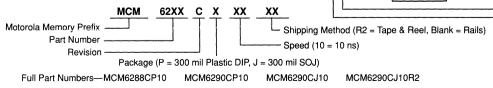
MCM6288C MCM6290C

MCM6288C

A0 [1 ●	22 🕽 VCC
A1 [2	21 A13
A2 🛚 3	20 🕽 A12
A3 🛚 4	19 🕽 A11
A4 🛚 5	18 🕽 A10
A5 🛚 6	17 🕽 A9
A6 [7	16 DQ0
A7 🕻 8	15 DQ1
A8 🛭 9	14 DQ2
Ē [10	13 DQ3
V _{SS} [11	12 🕽 👿
MCM6290C	
MCM0290C	
A0 [1 ●	24 VCC
	24 VCC 23 A13
A0 [1 ●	L_
A0 [1 ● A1 [2	23 A13
A0 [1 • A1 [2 A2 [3	23 A13 22 A12
A0 [1 • A1 [2 A2 [3 A3 [4	23] A13 22] A12 21] A11
A0 [1 • A1 [2 A2 [3 A3 [4 A4 [5	23] A13 22] A12 21] A11 20] A10
A0 [1 • A1 [2 A2 [3 A3 [4 A4 [5 A5 [6	23] A13 22] A12 21] A11 20] A10 19] A9
A0 [1 • A1 [2 A2 [3 A3 [4 A4 [5 A5 [6 A6 [7	23] A13 22] A12 21] A11 20] A10 19] A9 18] NC
A0 [1 • A1 [2 A2 [3 A3 [4 A4 [5 A5 [6 A6 [7 A7 [8	23] A13 22] A12 21] A11 20] A10 19] A9 18] NC 17] DQ0
A0 [1 • A1 [2 A2 [3 A3 [4 A4 [5 A5 [6 A6 [7 A7 [8 A8 [9]	23] A13 22] A12 21] A11 20] A10 19] A9 18] NC 17] DQ0 16] DQ1

PIN NAMES

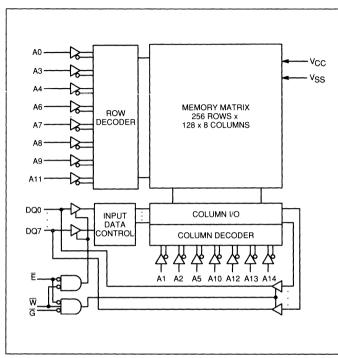
E Chip Enable NC No Connection VCC +5 V Power Supply
VSS Ground


MCM6288C TRUTH TABLE (X = don't care)

	Ε	w	Mode	V _{CC} Current	Output	Cycle
I	Н	Х	Not Selected	ISB1, ISB2	High-Z	_
	L	Н	Read	ICCA	D _{out}	Read Cycle
	L	L	Write	ICCA	High-Z	Write Cycle

MCM6290C TRUTH TABLE (X = don't care)

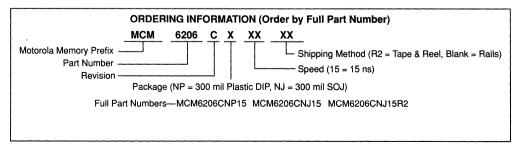
E	G	W	Mode	V _{CC} Current	Output	Cycle
H	X	Х	Not Selected	ISB1, ISB2	High-Z	_
L	н	Н	Output Disabled	ICCA	High-Z	_
L	L	н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle


ORDERING INFORMATION (Order by Full Part Number)

Ī

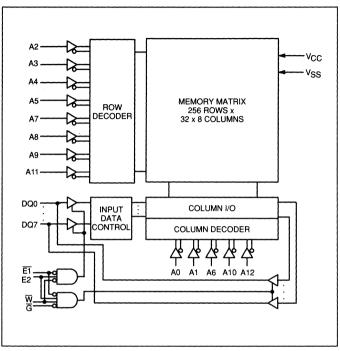
32K x 8 Bit Fast Static RAM

MCM6206C


28 1	NP PACKAGE 300 MIL PLASTIC CASE 710B
28 mi	NJ PACKAGE 300 MIL SOJ CASE 810B

PIN NAMES						
A0-A14 Address Input DQ0-DQ7 Data Input/Output W Write Enable G Output Enable	E Chip Enable VCC +5 V Power Supply VSS Ground					

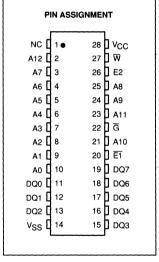
PIN ASSIGNMENT						
A14 [A12 [1 • 2	28 V _{CC}				
A7 [26 A13				
A5 [5	24 A9 23 A11				
A3 [A2 [7	22 G 21 A10				
A1 [9	20 E				
A0 [10 11	19 DQ7 18 DQ6				
DQ1 L DQ2 [V _{SS} [12 13	17 DQ5 16 DQ4				
v _{SS} [14	15 DQ3				

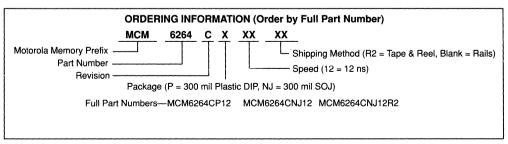

MCM6206C TRUTH TABLE (X = don't care)

Ē	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Output Disabled	ICCA	High-Z	_
L	L	Н	Read	ICCA	Dout	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle

8K x 8 Bit Fast Static RAM

MCM6264C

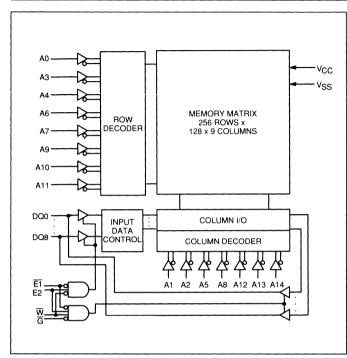



28	P PACKAGE 300 MIL PLASTIC CASE 710B
28	NJ PACKAGE 300 MIL SOJ CASE 810B

PIN NAMES							
A0-A12 Address Input	E1, E2 Chip Enable						
DQ0-DQ7 Data Input/Output	NC No Connection						
W Write Enable	V _{CC} +5 V Power Supply						
G Output Enable	Vss Ground						

MCM6264C TRUTH TABLE (X = don't care)

E1	E2	G	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
X	L	X	X	Not Selected	ISB1, ISB2	High-Z	
L	Н	н	Н	Output Disabled	ICCA	High-Z	-
L	Н	TL.	Н	Read	ICCA	Dout	Read Cycle
L	Н	Х	L	Write	ICCA	High-Z	Write Cycle

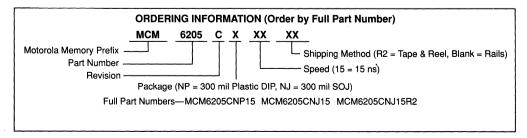


7

32K x 9 Bit Fast Static RAM

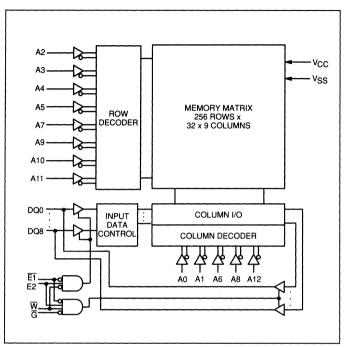
MCM6205C

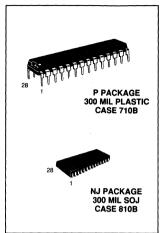
NP PACKAGE 300 MIL PLASTIC CASE 853	
NJ PACKAGE 300 MIL SOJ CASE 857	


DIN ACCIONMENT

PIN NAMES							
	E1, E2 Chip Enable						
W Write Enable	VCC+5 V Power Supply						

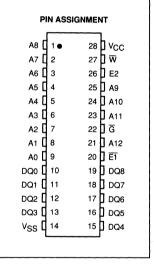
PIN ASSIGNMENT						
NC	1.	32] v _{cc}			
NC	2	31	A14			
A8	3	30] E2			
A7	4	29] ₩			
A6	5	28	A13			
A5	6	27] A9			
A4	7	26] A10			
A3	8	25] A11			
A2	9	24] <u>G</u>			
A1	10	23	A12			
A0	11	22] E1			
DQ0	12	21	DQ8			
DQ1	13	20	DQ7			
DQ2	14	19	DQ6			
DQ3	15	18	DQ5			
v _{ss} l	16	17	DQ4			

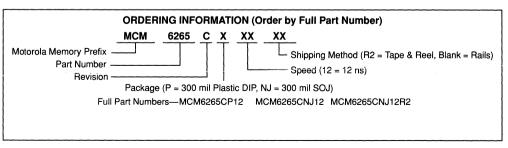

MCM6205C TRUTH TABLE (X = don't care)


			-					
	E1	E2	G	w	Mode	V _{CC} Current	Output	Cycle
Γ	Н	Х	Х	Х	Not Selected	ISB1, ISB2	High-Z	_
ł	Х	L	X	Х	Not Selected	ISB1, ISB2	High-Z	_
1	L	Н	Н	Н	Output Disabled	ICCA	High-Z	
1	L	Н	L	Н	Read	ICCA	Dout	Read Cycle
1	L	Н	X	L	Write	ICCA	High-Z	Write Cycle

8K x 9 Bit Fast Static RAM

MCM6265C





PIN NAMES								
$\begin{array}{cccc} \text{A0-A12} & \text{Address Input} \\ \text{DQ0-DQ8} & \text{Data Input/Output} \\ \overline{W} & \text{Write Enable} \\ \overline{G} & \text{Output Enable} \end{array}$	E1, E2 Chip Enable VCC +5 V Power Supply VSS Ground							

MCM6265C TRUTH TABLE (X = don't care)

				- (
E1	E2	Ğ	W	Mode	V _{CC} Current	Output	Cycle
Н	х	х	Х	Not Selected	ISB1, ISB2	High-Z	
X	L	X	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Н	Н	Output Disabled	ICCA	High-Z	
L	Н	L	Н	Read	ICCA	Dout	Read Cycle
L	Н	X	L	Write	ICCA	High-Z	Write Cycle

Z

OUTPUT LOAD CONDITIONS

INTRODUCTION

This review describes the ac loading used for testing this family of parts. Component test engineers should pay careful attention to the test conditions and derating curves for deviations from the specified load. This information is also applicable for system engineers calculating required device speed for a given environment. This information will help the user make the appropriate choice of device performance for their needs.

As device access times decrease, so do output transition times. With faster rise and fall times come additional problems associated with output and signal path impedances. In any system running at frequencies where the propagation delay of a signal path (tpd) is greater than 1/2 of the total signal transition time, transmission line effects will be seen on the signal. This results in overshoot and undershoot at the load end of a conductor, which can cause problems in testing, or in actual use of the device. This discussion gives a brief overview of the factors contributing to these effects, and the measures that can be used to predict or eliminate them. For a detailed discussion of both PC board layout considerations and applicable transmission line theory, consult the MECL System Design Handbook, publication HB205R1, Motorola, Inc., 1983.

DEFINITION OF TERMS

DEFINITI	ON OF TERMS
^t pd	Propagation delay in seconds
L ₀	Inductance in henries/meter
C ₀	Capacitance in farads/meter
RL	Load resistance in ohms
R _{DS(on)}	Resistance from drain to source of a FET device when on
Ro	Output resistance in ohms. For CMOS devices, this

Output resistance in ohms. For CMOS devices, this is the RDS(on) resistance of the output devices.

ROH Output resistance for a high, or "1", signal from the device

ROL Output resistance for a low, or "0", signal from the device

ρL Reflection coefficient of the load end of a signal

ρS Reflection coefficient of the source end of a signal, the device output

V_L Termination voltage of the load resistor in a transmission line termination network

TRANSMISSION LINE OVERVIEW

What is a transmission line and how does it affect output waveforms? In simple terms, a transmission line is a signal path that exhibits a characteristic impedance. The type of lines discussed in this paper are primarily microstrip (Figure 2A) and stripline signal paths (Figure 2B) found in most PC boards today. The inductance and capacitance of these lines are a function of the line thickness and width in combination with the dielectric properties of the PC board material and the distance of the line from the ground plane. The impedance of the line is determined by these characteristics and the additional distributed capacitance from other devices on the line.

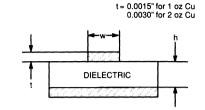


Figure 2A. Microstrip Signal Path

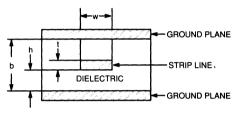


Figure 2B. Stripline Signal Path

The characteristic impedance of a microstrip or stripline path is given by the formula $Z_0 = \sqrt{\frac{L_0}{C_0}}$. The propagation delay of the path, t_{pd} , is $t_{pd} = \sqrt{\frac{L_0}{C_0}} \times \text{length} = Z_0 C_0 \times \text{length}$. For example, the propagation delay of a microstrip line on G10 epoxy/glass material is approximately 1.76 ns/ft, while the delay for a stripline is about 2.27 ns/ft

The effect of a transmission line on a device output depends on the electrical length of the line. In all cases, a signal traveling down the line will be affected at the end of the line if it is not terminated with a resistor of the characteristic impedance of the line. The amount of effect is determined by the reflection coefficient of the load, ρ_L , where:

$$\rho_L = \left(\frac{R_L - Z_0}{R_L + Z_0}\right) \tag{1}$$

This reflection occurs at a time t_{pd} after a change at the source of the signal. A similar reflection occurs at $2t_{pd}$ after this new signal has returned from the load to the source, and is determined by the source reflection coefficient, ρ_S , where:

$$\rho_S = \left(\frac{R_O - Z_0}{R_O + Z_0}\right) \tag{2}$$

 R_{O} is the output resistance of the device. In the case of an electrical line length with tpd less than 1/2 of the rise/fall time of the output signal, the transmission line effects are seen as a delay of the signal transition times. This is caused by the load reflection returning to the source during the actual signal transition and being included in the duration of the signal. For the case of an electrical length with t_{PO} greater than 1/2 of the rise/fall time of the output signal, the reflection effects may be seen

directly. In severe cases, signal overshoot or undershoot can cause an invalid level to be seen at the load end at 31ml.

The formulas for determining reflection coefficients require knowledge of the output impedance of the device, the characteristic impedance of the signal path, and the termination resistance. The goal of termination is to guarantee that the output signal at the receiving end (load) has enough margin to keep reflection effects from causing a false level to be detected. In an ideal case, the termination resistance is equal to the characteristic impedance of the line, and therefore, no reflection is generated at the load. In that one case, the impedance mismatch at the source is of importance only for signal rise time, VOH and VOI considerations.

The effect of additional distributed capacitance on a transmission line is a reduction in impedance resulting in little change to tpd. This additional capacitance does, however, change the signal transition times resulting in a longer rise and fall time.

OUTPUT BUFFERS

The schematic drawing for a typical CMOS TTL output buffer is shown in Figure 3A. Figure 3B shows the equivalent circuit as actually implemented in many devices. The actual values for R_{OH} and R_{OL} vary from design to design but the range of values is similar.

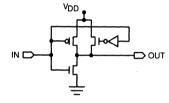


Figure 3A. Typical Output Buffer

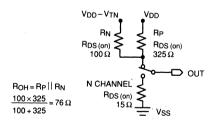


Figure 3B. Effective Circuit

As can be seen from Figure 3, the output impedance of a TTL output buffer is different for high and low output signals. This relation, along with the choice of V_{DD} level, termination resistance, and voltage determine the output high and low levels the part will produce in the system. In a dc condition with $R_L = 50 \ \Omega = \text{and } V_L = 1.5 \ V$, the output voltages would be:

$$V_{OL} = V_{SS} + (V_L - V_{SS}) \left(\frac{R_{OL}}{R_{OL} + R_L} \right)$$

$$V_{OL} = 0 \text{ V} + (1.5 \text{ V} - 0 \text{ V}) \left(\frac{15 \Omega}{15 \Omega + 50 \Omega} \right)$$

$$V_{OL} = 0.35 \text{ V}$$

$$(3)$$

$$V_{OH} = V_L + \left(V_{DD} - V_L - V_{TN} \frac{R_P}{R_P + R_N} \right) \left(\frac{R_L}{R_L + R_{OH}} \right)$$

$$V_{OH} = 1.5 \text{ V} + \left(4.4 \text{ V} - 1.5 \text{ V} - 1.2 \text{ V} \frac{325 \Omega}{100 \Omega + 325 \Omega} \right)$$

$$\left(\frac{50 \Omega}{50 \Omega + 76 \Omega} \right)$$

$$V_{OH} = 2.33 \text{ V}$$

TRADITIONAL TTL OUTPUT LOAD SPECIFICATIONS

The output loading typically specified in the industry until now is shown in Figure 4A. The load consists of a resistor network and capacitance. The values for the network were chosen to present a dc load of 8 mA during an output low condition (VOL \leq 0.4 V) and $^{-4}$ mA for an output high (VOH \geq 2.4 V). A 5 V supply was chosen as the termination supply and a divider network was calculated to provide the specified currents. In addition, a lumped capacitive load of 30 pF was added to the output to represent input loading from other devices. In actual practice during testing, the load used is a Thevenin equivalent as shown in Figure 4B, with capacitance being provided by the 50 Ω transmission line connection to the test head and the test fixture capacitance.

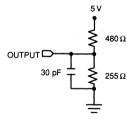


Figure 4A. Typical TTL Load

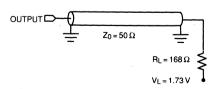


Figure 4B. Thevenin Equivalent Test Load

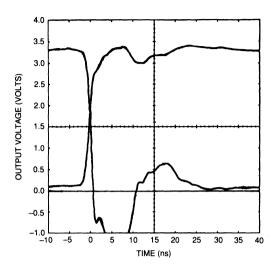


Figure 5. Output Waveforms with Thevenin Equivalent Test Load

The calculated performance of this setup would be that of a transmission line with a Z_0 of $50\,\Omega$ terminated to an R_L of $168\,\Omega$ at a V_L of 1.73 V. This would be $\rho_L=(168\,\Omega-50\,\Omega)$ / (168 $\Omega+50\,\Omega)=0.54$. This means that the ΔV at the load would be 154% of the source ΔV . Using the example output buffer with $V_{DD}=5.0$ V, the dc V_{OL} would be 0.14 V and the incident V_{OH} , using the $50\,\Omega$ from Z_0 in place of R_L , would be 2.67 V, giving a ΔV of 2.53 V. This means that for a low to high going signal at the source, at time t_{pd} later, the load would go to $V_{OL}+\Delta V+(\Delta V\times0.54)$, or 4.01 V.

Figure 5 shows the actual measured waveform at the load end of a test fixture as described in Figure 4B. The t_{pd} of the signal path is measured using a TDR (time domain reflectometer) to be approximately 4 ns. Notice the reflection effects at each multiple of t_{pd} on both waveforms. The actual measured waveforms differ from predicted results due to inductance in the ground and V_{DD} path of the device being tested.

In a testing environment, the t_{pd} is subtracted from the time measured to give the actual output delay of the device (access time). Because of this, the distortions at the device output are of no concern. The ringing at the load end, however, can cause

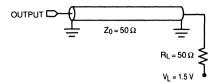


Figure 6. New High Frequency AC Test Load

severe problems when trying to accurately test the speed of the parts. In the past, the access time has been measured from some mid-level voltage which is centered between the high and low output swing. This has the effect of giving the most noise margin to ringing output signals. However, this maximum noise margin does not guarantee that problems will not arise

NEW HIGH FREQUENCY AC TEST LOAD

In order to properly test and guarantee the ac performance of these new fast static RAMs, it is necessary to change the conditions for ac loading to a load that will allow accurate evaluation of the device parameters. Because of this, the specified ac load is now a transmission line terminated with a resistor of the characteristic impedance of the line to a load voltage (see Figure 6).

The calculated performance of this load in a normal test environment would be $\rho_L=(50~\Omega-50~\Omega)~/~(50~\Omega+50~\Omega)=0.0.$ This means that the ΔV at the load would be the same as the source ΔV with no signal reflection.

As seen in Figure 7, using a transmission line terminated to a load supply through a resistor equal to the characteristic impedance of the line produces a load waveform which matches the source signal. Additionally, under ideal conditions, no reflection effects are produced with this load. This results in the maximum possible noise margin for both test and system environments. In this test setup, power supply inductance causes some output noise which is seen at the load.

Figures 8 and 9 are derating curves for calculating the effects of varying C_0 and R_L . These curves are based on typical device performance and are not intended to be absolute worst case specifications.

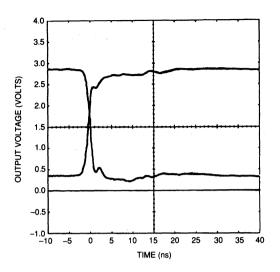


Figure 7. Output Waveforms with High Frequency AC Test Load

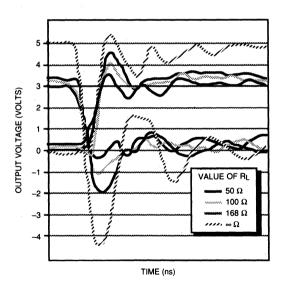


Figure 8. Output Voltage as a Function of RL

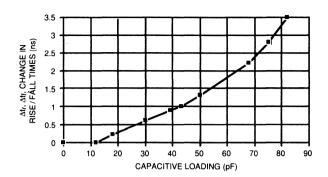


Figure 9. Change in Output Rise and Fall Times for Lumped Capacitive Loads

/

CMOS Fast Static RAM Modules

FAST STATIC RAM MODULES

Density	Organi- zation	Motorola Part Number	Pin Count	Packaging	Address/ Cycle Time (ns Max)	Operating Current (mA max)	Tech- nology
2M	64Kx32	MCM3264Z	64	ZIP	20/25/30	1200/1120/1040	HCMOS
	256Kx8	MCM8256Z	60	ZIP	20/25/30	1200/1120/1040	HCMOS
3M	2x64Kx24	MCM2464Z	58	ZIP	22/27	1680/1560	HCMOS

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MCM2464

Product Preview

2 × 64K × 24 Bit Static Random Access Memory Module

The MCM2464 is a 3M bit static random access memory module organized as two banks of 65,536 words each with 24 bits. The module is a 58 lead zig-zag in-line module consisting of twelve MCM6208 fast static RAMs packaged in 24 J-lead small outline package (SOJ) and mounted on a board along with twelve decoupling capacitors.

The MCM6208 is a high-performance CMOS fast static RAM organized as 65,536 words of 4 bits, fabricated using high performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

The MCM2464 is equipped with separate write enable ($\overline{\text{W1}}$ and $\overline{\text{W2}}$) and chip enable ($\overline{\text{E1}}$ and $\overline{\text{E2}}$) control inputs for each bank, allowing for greater system flexibility. The $\overline{\text{Ex}}$ input, when high, will force the outputs of bank \times to high impedance.

- Single 5 V ± 8% Power Supply
- Fast Access Time: 22/27 ns
- Equal Address and Chip Enable Access Time
- · Three-State Outputs
- Fully TTL Compatible
- Power Operation: 1680/1560 mA Maximum, Active AC
- High Board Density ZIP Module
- Bank Operation: Two 64K x 24 Bit Banks with Separate Chip Enables and Write Enables
- High Quality Multi-Layer FR4 PWB with Separate Internal Power and Ground Planes
- · Custom Marking Available
- Incorporates Motorola's State-of-the-Art QuickRAM Fast Statics

PIN ASSIGNMENT 58 LEAD ZIG-ZAG IN-LINE MODULE TOP VIEW 1 🛮 V_{CC} vss [з П W2 $\overline{W1}$ $\prod 4$ V_{SS} 5 N V_{SS} [] 6 7 N Ē2 Ei [9 VSS V_{SS} [] 10 11 🛭 A0 12 Δ1 13 A2 A3 15 A4 Α5 17 A6 Α7 19 🛮 Vcc V_{SS} 120 21 **A8** Α9 122 23 A10 A11 25 A12 26 A13 27 A14 A15 1128 29 VCC 30 VSS 31 DQ0 DQ1 33 📗 DQ2 DQ3 II 34 35 DQ4 DQ5 **1**36 37 N DO6 DQ7 38 39 🛮 DQ8 DQ9 40 41 🛮 Vss Vss 43 DQ10 DQ11 45 N DQ12 DQ13 46 47 🛮 DQ14 DQ15 48 49 🛮 DQ16 DQ17 DQ18 DQ19 52 53 DQ20 DQ21 DQ22 55 L DQ23 56 57 VCC V_{SS} **[**] 58

PIN NAMES									
A0-A15 W1-W2 E1-E2 DQ0-DQ24 VCC VSS	Bank Write Enable Bank Enables Data Input/Output + 5 V Power Supply								

All power supply and ground pins must be connected for proper operation of the device.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

FUNCTIONAL BLOCK DIAGRAM DQ0-DQ3 -DQ0-DQ3 DQ0-DQ3 A0-A15 A0-A15 \overline{w} \overline{w} DQ4-DQ7 -DQ0-DQ3 DQ0-DQ3 A0-A15 A0-A15 \overline{w} $\overline{\mathsf{w}}$ DQ8-DQ11 -DQ0-DQ3 DQ0-DQ3 A0-A15 A0-A15 $\overline{\mathsf{w}}$ $\overline{\mathsf{w}}$ DQ12-DQ15 -DQ0-DQ3 DQ0-DQ3 A0-A15 A0-A15 $\overline{\mathsf{w}}$ $\overline{\mathsf{w}}$ DQ16-DQ19 -DQ0-DQ3 DQ0-DQ3 A0-A15 A0-A15 $\overline{\mathsf{w}}$ W DQ20-DQ23 -DQ0-DQ3 DQ0-DQ3 A0-A15 A0-A15 $\overline{\mathsf{w}}$ W W1 -Ē1 -<u>E2</u> v_{CC} VSS A0-A15

TRUTH TABLE

Ex*	Wx	Mode	V _{CC} Current	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	_
L	Н	Read Bank x	ICCA	D _{out}	Read Cycle
L	L	Write	ICCA	D _{in}	Write Cycle

^{*}Ex = H implies E1 = E2 = H, Ex = L implies E1 = L and E2 = H, or E1 = H and E2 = L. In other words only one bank may be enabled at any time. Enabling both banks simultaneously during a read will cause bus contention on the output pins.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	v _{cc}	- 0.5 to 7.0	٧
Output Power Supply Voltage	VCCQ	– 0.5 to V _{CC}	V
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 70° C, V _{CC} = 5 V, t_{KHKH} = 20 ns)	PD	13.2	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	့
Storage Temperatrue	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

These CMOS memory circuits have been designed to meet the do and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 8\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.6	5.0	5.4	٧
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}	- 0.5*	_	0.8	٧

^{*}V_{IL} (min) = -3.0 Vac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

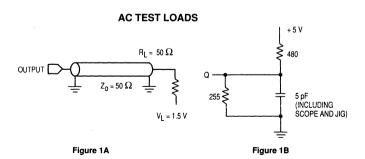
Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{ikg(l)}	_	-	±8	μА
Output Leakage Current (G, Ex = V _{IH} , V _{out} = 0 to V _{CCQ})	l _{lkg(O)}	_	_	±8	μА
AC Supply Current $(\overline{G}, \overline{Ex} = V_{ L}, I_{Out} = 0 \text{ mA}, All Inputs = V_{ L} = 0.0 \text{ V} and V_{ H} \ge 3.0)$ $MCM2464-22: \ t_{AVAV} \ge 22 \text{ ns}$ $MCM2464-27: \ t_{AVAV} \ge 27 \text{ ns}$	ICCA	_	840 780	1680 1560	mA
Standby Current (Ex = V _{IH} , All Inputs = V _{IL} and V _{IH})	ISB1	_	360	480	mA
CMOS Standby Current (Ex ≥ V _{CC} – 0.2 V, All Inputs ≥ V _{CC} – 0.2 V or ≤ 0.2 V)	ISB2	_	240	360	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)	VOH	2.4	_	_	٧

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic			Тур	Max	Unit
Input Capacitance	E1,-E2, W1-W2	C _{in}	80 40	_	pF
Input/Output Capacitance (DQ0-DQ24)		C _{I/O}	20	_	pF

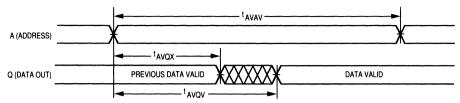
AC OPERATING CONDITIONS AND CHARACTERISTICS


 $(V_{CC} = 5.0 \text{ V} \pm 8\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

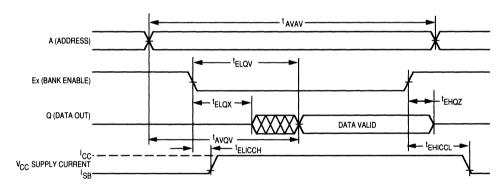
READ CYCLE TIMING (See Notes 1 and 8)

	Symbol		MCM2464-22		MCM2464-27			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	22	_	27		ns	2
Address Access Time	tAVQV	†AA	_	22	_	27	ns	
Enable Access Time	t _{ELQV}	tACS	_	22	_	27	ns	
Output Hold from Address Change	tAXQX	^t OH	5	_	6	_	ns	
Enable Low to Output Active	†ELQX	[†] CLZ	5	_	6	_	ns	3, 4, 5
Enable High to Output High-Z	†EHQZ	tCHZ	0	9	0	11	ns	3, 4, 5
Power Up Time	tELICCH	tpU	0	_	0	_	ns	
Power Down Time	tEHICCL	tPD	_	22	_	27	ns	

NOTES:


- W is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. At any given voltage and temperature, tehoz max is less than tel ox min, both for a given device and from device to device.
- 4. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. Device is continuously selected $\overline{E} = V_{IL}$.
- 7. Addresses valid prior to or coincident with \overline{E} going low.
- 8. $\overline{E1}$ - $\overline{E2}$ are represented by \overline{E} in these timing specifications, only one of the \overline{Ex} s may be asserted.

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{\parallel L}$).

READ CYCLE 2 (See Note)

NOTE: Addresses valid prior to or coincident with $\overline{\mathbf{E}}$ going low.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 6).

	Syr	nbol	MCM2464-22		мсм2	MCM2464-27		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	22	_	27	_	ns	2
Address Setup Time	tAVWL	tAS	2	_	2	_	ns	
Address Valid to End of Write	tavwh	taw	17		21	_	ns	
Write Pulse Width	twLwH	twp	17	_	21	_	ns	
Data Valid to End of Write	tDVWH	tDW	9	_	11	T	ns	
Data Hold Time	twhox	t _{DH}	0		0	_	ns	
Write Low to Data High-Z	twlqz	twz	0	8	0	11	ns	4, 5, 6
Write High to Output Active	twhqx	tow	6	_	6	_	ns	4, 5, 6
Write Recovery Time	twhax	twR	0	_	0	I -	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 3. Transition is measured + 500 mV from steady-state voltage with load of Figure 1B.
- 4. This parameter is sampled and not 100% tested.
- This parallels is safigure and temperature, two sets each.
 At any given voltage and temperature, two Z max is less than twHQX min both for a given device and from device to device.
 E1−E2 are presented by E in these timing specifications, only one of the Exs may be asserted at any time.

WRITE CYCLE 1 · t AVAV A (ADDRESS) ^tAVWH Ex (BANK ENABLE) ^twLwH Wx (WRITE ENABLE) ^tavwl ^tDVWH DATA VALID ^tWLQZ HIGH-Z HIGH-Z Q (DATA OUT) -

WRITE CYCLE 2 (E Controlled, See Notes 1 and 5)

	Syn	nbol	MCM2464-22		2464-22 MCM2			
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	22	_	27	_	ns	2
Address Setup Time	tAVEL	tAS	2	_	2	_	ns	
Address Valid to End of Write	t _{AVEH}	tAW	17		21	_	ns	
Enable to End of Write	^t ELEH	tcw	13		17	_	ns	3, 4
Enable to End of Write	t _{ELWH}	tcw	13		17	_	ns	
Write Pulse Width	tWLEH	twp	13		17	-	ns	
Data Valid to End of Write	^t DVEH	tDW	9	_	11	l —	ns	
Data Hold Time	t _{EHDX}	^t DH	0	_	0	_	ns	
Write Recovery Time	tEHAX	twR	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. All write cycle timing is referenced from the last valid address to the first transitioning address.

- If E goes low coincident with or after W goes low, the output will remain in a high impedance condition.
 If E goes low coincident with or after W goes high, the output will remain in a high impedance condition.
 E1-E2 are represented by E in these timing specifications, only one of the Exs may be asserted at any time.

WRITE CYCLE 2 ^t AVAV A (ADDRESS) - t aveh : Ex (BANK ENABLE) ^tELEH - t EHAX ^tELWH Wx (WRITE ENABLE) ^tWLEH - t DVEH Q (DATA IN) HIGH-Z Q (DATA OUT) -

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

64K × 32 Bit Static Random Access Memory Module

The MCM3264 is a 2M bit static random access memory module organized as 65,536 words of 32 bits. The module is a 64 lead zig-zag in-line module consisting of eight MCM6209 fast static RAMs packaged in 28 J-lead small outline package (SOJ) and mounted on a printed circuit board along with a decoupling capacitor for each FSRAM.

The MCM6209 is a high performance CMOS fast static RAM organized as 65,536 words of 4 bits, fabricated using high performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

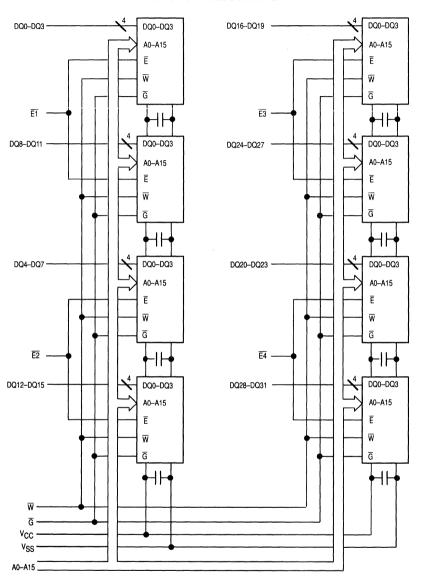
The MCM3264 is equipped with output enable (\overline{G}) and four separate byte enable $(\overline{E1}-\overline{E4})$ inputs, allowing for greater system flexibility. The \overline{G} input, when high, will force the outputs to high impedance. \overline{Ex} high will do the same for byte x.

PD0 and PD1 are reserved for density expansion. PD0 is open and PD1 is connected to ground. These pins can be used to identify the density of the memory module.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 20/25/30 ns
- Equal Address and Chip Enable Access Time
- Three State Outputs
- Full TTL Compatible
- JEDEC Standard Pin Out
- Power Operation: 1240/1160/1080 mA Maximum, Active AC
- · High Board Density ZIP Module
- Byte Operation: Four Separate Chip Enables, One for Each Byte (Eight Bits)
- High Quality Four Layer FR4 PWB with Separate Internal Power and Ground Plane
- Incorporates Motorola's State-of-the-Art QuickRAM Fast Statics

PIN NAMES								
A0-A15	Address Inputs							
	Write Enable							
G	Output Enable							
E1–E4	Byte Enables							
DQ0-DQ31	Data Input/Output							
Vcc	+ 5 V Power Supply							
V _{SS}								
PD0-PD1	Package Density							
NC	No Connection							

All power supply and ground pins must be connected for proper operation of the device.


QuickRAM is a trademark of Motorola, Inc.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM3264

PIN ASSIGNMENT 64-LEAD ZIG-ZAG IN-LINE MODULE TOP VIEW						
PD0 [DQ0 [DQ1 [DQ2 [DQ3 [VGC [A1 [4 3 PD1 6 5 DQ4 8 7 DQ5 10 9 DQ6 12 11 DQ7 14 13 A0					
A3 [A5 [DQ8 [DQ9 [DQ10 [DQ11 [W [A7 [ET [18 17 A4 20 19 DQ12 22 21 DQ13 24 23 DQ14 26 25 DQ15 28 27 VSS 30 29 A6					
E3 [NC [Vss [DQ16 [DQ17 [DQ18 [DQ19 [A11 [A13 [A14 [DQ24 [DQ25 [DQ26 [DQ27 [Vss [36 35 NC 38 37 G 40 39 DQ20 42 41 DQ21 44 43 DQ22 46 45 DQ23 48 47 A8 50 49 A10 52 51 A12 54 53 VCC 56 55 A15 58 57 DQ28 60 59 DQ29 62 61 DQ30					

FUNCTIONAL BLOCK DIAGRAM

MCM3264 TRUTH TABLE

Ex	G	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Not Selected	I _{ISB1} , I _{SB2}	High-Z	
L	Н	Н	Read	ICCA	High-Z	_
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	D _{in}	Write Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	- 0.5 to 7.0	٧
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	l _{out}	± 20	mA
Power Dissipation (T _A = 70°C, V _{CC} = 5 V, t _{AVAV} = 20 ns)	PD	1.5	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to RECOMMENDED OPERATING
CONDITIONS. Exposure to higher than recommended voltages for extended periods of
time could affect device reliability.

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	VIL	- 0.5*	0.0	8.0	>

^{*} V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, Vin = 0 to V	CC)	l _{lkg(l)}	_	_	±8	μΑ
Output Leakage Current (\overline{G} , $\overline{Ex} = V_{IH}$, $V_{out} = 0$) to V _{CCQ})	llkg(O)	_	_	±8	μА
AC Supply Current $(\overline{O}, \overline{Ex} = V_{ H},$ All Inputs = $V_{ L} = 0.0 \text{ V}$ and $V_{ H} \ge 3.0,$ $I_{Out} = 0 \text{ mA}$, Cycle Times $\ge t_{AVAV}$ min)	MCM3264-20: t _{AVAV} = 20 ns MCM3264-25: t _{AVAV} = 25 ns MCM3264-30: t _{AVAV} = 30 ns	ICCA	_	960 880 800	1240 1160 1080	mA
Standby Current (Ex = V _{IH} , All Inputs = V _{IL} and V _{IH})	MCM3264-20: t _{AVAV} = 20 ns MCM3264-25: t _{AVAV} = 25 ns MCM3264-30: t _{AVAV} = 30 ns	I _{SB1}	_	240 240 240	400 360 320	mA
CMOS Standby Current ($\overline{S1} \ge V_{CC} - 0.2 \text{ V}$, So All Inputs $\ge V_{CC} - 0.2 \text{ V}$ or $\le 0.2 \text{ V}$)) ≤ 0.2 V,	I _{SB2}		160	240	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		VOL	_	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)		VIH	2.4		_	٧

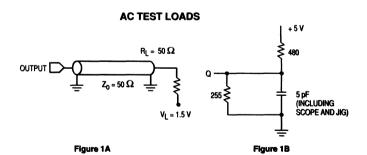
NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Charact	Symbol	Тур	Max	Unit	
Input Capacitance	All Pins Expect DQ0-DQ31 and $\overline{E1}$ - $\overline{E4}$	C _{in}	32 10	48 14	pF
Input/Output Capacitance (DQ0-DQ31)		CI/O	8	9	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

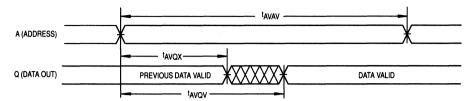
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$


Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

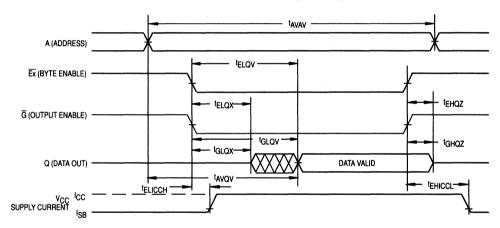
READ CYCLE TIMING (See Notes 1 and 2)

	Syn	nbol	MCM3264-20 MCM3264-2		264-25	264-25 MCM3264-30				
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	t _{RC}	20	_	25	_	30	_	ns	3
Address Access Time	tAVQV	†AA	_	20	_	25	l –	30	ns	
Enable Access Time	tELQV	tACS	_	20	_	25	l –	30	ns	
Output Enable Access Time	tGLQV	[†] OE	_	10		12	_	14	ns	
Output Hold from Address Change	tAXQX	tон	4		4	_	4	_	ns	
Enable Low to Output Active	†ELQX	†CLZ	4	T	4	_	4	l –	ns	4, 5, 6
Output Enable to Output Active	†GLQX	toLZ	0		0	I –	0	_	ns	4, 5, 6
Enable High to Output High-Z	tEHQZ	tCHZ	0	8	0	10	0	12	ns	4, 5, 6
Output Enable High to Output High-Z	^t GHQZ	^t OHZ	0	8	0	10	0	12	ns	4, 5, 6
Power Up Time	tELICCH	tpU	0	_	0		0		ns	
Power Down Time	tEHICCL	tPD	_	20	_	25	_	30	ns	

NOTES:


- 1. $\overline{\mathbf{W}}$ is high for read cycle.
- 2. $\overline{E1}$ - $\overline{E4}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Ex} s may be asserted.
- 3. All read cycle timing is referenced from the last valid address to the first transitioning address.
- At any given voltage and temperature, t_{EHOZ} max is less than t_{ELQX} min, and t_{GHQZ} max is less than t_{GHQX} min, both for a given device
 and from device to device.
- 5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{E} = V_{IL}$, $G = V_{IL}$).
- 8. Addresses valid prior to or coincident with $\overline{\mathbf{E}}$ going low.

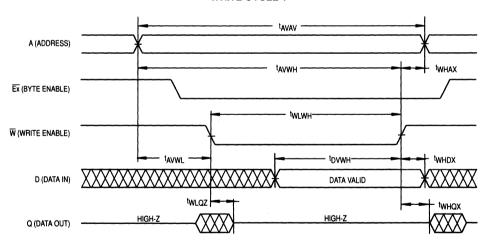
TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{\parallel}L$, $G = V_{\parallel}L$).

READ CYCLE 2 (See Note)

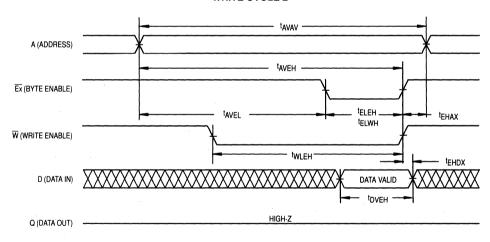

NOTE: Addresses valid prior to or coincident with $\overline{\mathbf{E}}$ going low.

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

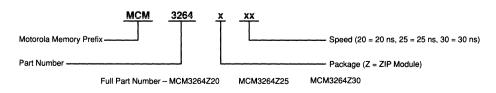
	Syn	Symbol		MCM3264-20		MCM3264-25		MCM3264-30		
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	twc	20		25		30	_	ns	3
Address Setup Time	†AVWL	tAS	2	T -	2		2	_	ns	
Address Valid to End of Write	tavwh	taw	15		20	_	25	_	ns	
Write Pulse Width	tWLWH	tWP	15	T -	20	_	25	l –	ns	
Write Pulse Width, G High	tWLWH	tWP	12		15	I -	20	l –	ns	
Data Valid to End of Write	†DVWH	tDW	8	Ι –	10		12	_	ns	
Data Hold Time	twHDX	t _{DH}	0	T -	0	_	0	I -	ns	
Write Low to Data High-Z	twLQZ	twz	0	8	0	10	0	12	ns	4, 5, 6
Write High to Output Active	twhqx	tow	4	I -	4	_	4		ns	4, 5, 6
Write Recovery Time	twhax	twn	0	_	0		0	_	ns	

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. $\overline{E1}$ - $\overline{E4}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Ex} s may be asserted. \overline{G} is a don't care when \overline{W} is low.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. At any given time voltage and temperature, twLQZ max is less than twHQX min both for a given device and from device to device.

WRITE CYCLE 1



WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)


	Syn	nbol	MCM3264-20 MCM3264-25		MCM3264-30					
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20	_	25	_	30	_	ns	3
Address Setup Time	tAVEL	tAS	2	_	2	_	2	_	ns	
Address Valid to End of Write	†AVEH	taw	15	_	20	_	25	_	ns	
Enable to End of Write	tELEH	tcw	12	_	15	_	20	_	ns	4, 5
Enable to End of Write	tELWH	tcw	12	_	15	_	20	_	ns	
Write Pulse Width	tWLEH	tWP	15	_	20	_	25	_	ns	
Data Valid to End of Write	tDVEH	tDW	8	_	10	_	12	_	ns	
Data Hold Time	tEHDX	tDH	0	_	0		0	_	ns	
Write Recovery Time	t _{EHAX}	twR	0	_	0	_	0		ns	

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. $\overline{E1}-\overline{E4}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Ex} s may be asserted. \overline{G} is a don't care when \overline{W} is low.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedence condition.
- 5. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedence condition.

WRITE CYCLE 2

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

256K × 8 Bit Static Random Access Memory Module

The MCM8256 is a 2M bit static random access memory module organized as 262,144 words of 8 bits. The module is a 64-lead zig-zag in-line package (ZIP) consisting of eight MCM6207 fast static RAMs packaged in 24 J-lead small outline package (SOJ) and mounted on a printed circuit board along with a decoupling capacitor for each FSRAM.

The MCM6207 is a high performance CMOS fast static RAM organized as 262,144 words of 1 bit, fabricated using high performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.

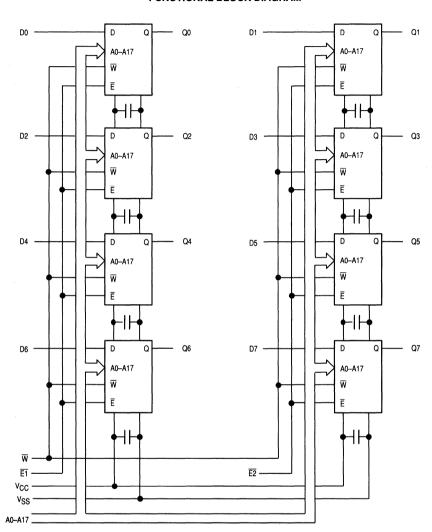
The MCM8256 is equipped with separate chip enable $(\overline{E1}-\overline{E2})$ control inputs for each nibble, allowing for greater system flexibility. The \overline{Ex} input, when high, will force the outputs of nibble x to high impedance.

PD0 and PD1 are reserved for density expansion. PD0 is open and PD1 is connected to ground. These pins can be used to identify the density of the memory module.

- Single 5 V ± 10% Power Supply
- Fast Access Time: 20/25/30 ns
- · Equal Address and Chip Enable Access Time
- Three State Outputs
- Full TTL Compatible
- JEDEC Standard Pin Out
- Power Operation: 1200/1120/1040 mA Maximum, Active AC
- High Board Density ZIP Module
- Nibble Operation: Two Separate Chip Enables, One for Each Four Bits
- High Quality Multi-Layer FR4 PWB with Separate Internal Power and Ground Planes
- Custom Marking Available
- Incorporates Motorola's State-of-the-Art QuickRAM Fast Statics

PIN NAMES								
A0–A17	Address Inputs							
W1	Write Enable							
E1–E2	Byte Enables							
DQ0-DQ7	Data Input/Output							
V _{CC}	+ 5 V Power Supply							
V _{SS}	Ground							
PD0-PD1	Package Density							
NC	No Connection							

All power supply and ground pins must be connected for proper operation of the device.


QuickRAM is a trademark of Motorola, Inc.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MCM8256

PII 60-LEAD ZI	N ASSIGN G-ZAG IN- TOP VIE	LINE	MODULE
PD0 [NC [] VCC C C C C C C C C	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	1	VSS PD1 NC D1 Q1 NC A1 A3 A5 A7 D3 Q3 VCC A8 NC
NC [NC C] VCC [Q4 [A10 [A12 [NC C] NC C] VSS [32 34 36 38 40 42 44 46 48 50 52 54 56 58 60	31] 33] 35] 37] 39] 41] 43] 45] 49] 51] 53] 55] 57]	E2 NC NC D5 Q5 VSS A11 A13 A15 A17 D7 Q7 VCC NC

FUNCTIONAL BLOCK DIAGRAM

MCM8256 TRUTH TABLE

Ex	w	Mode	V _{CC} Current	Input	Output	Cycle
Н	Х	Not Selected	ISB1, ISB2	High-Z	High-Z	_
L	Н	Read	ICCA	High-Z	D _{out}	Read Cycle
L	L	Write	ICCA	D _{in}	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Rating	Symbol	Value	Unit			
Power Supply Voltage	v _{CC}	- 0.5 to 7.0	V			
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧			
Output Current (per I/O)	lout	± 20	mA			
Power Dissipation (T _A = 70°C, V _{CC} = 5 V, t _{AVAV} = 20 ns)	PD	1.5	w			
Temperature Under Bias	T _{bias}	- 10 to + 85	°C			
Operating Temperature	TA	0 to + 70	°C			
Storage Temperature	T _{stg}	- 55 to + 125	°C			

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high impedence circuits.

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

` ` ` ` ` ` `					
Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	VII	- 0.5*	0.0	0.8	٧

^{*} V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	llkg(l)		_	± 8	μΑ
Output Leakage Current (E1 and E2 = V _{IH} , V _{out} = 0 to V _{CC})	llkg(O)	_	_	±8	μА
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		_ _ _	960 880 800	1200 1120 1040	mA
Standby Current ($\overline{E1}$ and $\overline{E2}$ = V _{IH} , All Inputs = V _{IL} and V _{IH})	I _{SB1}	_	240	320	mA
CMOS Standby Current ($V_{CC} = Max, f = 0 \text{ MHz},$ $\vec{E} \ge V_{CC} - 0.2 \text{ V}, V_{in} \le V_{SS} + 0.2 \text{ V} \text{ or } \ge V_{CC} - 0.2 \text{ V})$		-	160	240	mA
Output Low Voltage (I _{OL} = + 8.0 mA)		_	_	0.4	V
Output High Voltage (I _{OH} = - 4.0 mA)	V _{IH}	2.4		_	٧

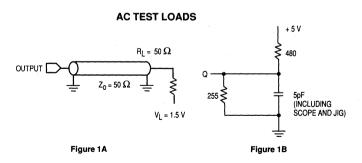
NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteris	tic	Symbol	Тур	Max	Unit
Input Capacitance	W and Address E1–E2	C _{in}	45 25	54 30	pF
	D0-D7		6	7	
Input/Output Capacitance	Q0-Q7	CI/O	8	9	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$


Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

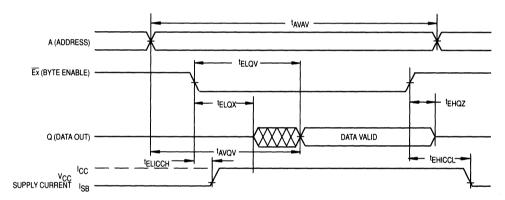
READ CYCLE TIMING (See Notes 1 and 2)

	Syn	nbol	мсм8	256-20	MCM8256-25		MCM8256-30			
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	20	_	25	_	30	_	ns	3
Address Access Time	tAVQV	†AA	_	20	_	25	_	30	ns	
Enable Access Time	tELQV	†ACS	_	20	_	25	_	30	ns	
Output Hold from Address Change	†AXQX	t _{OH}	4		4	_	4		ns	
Enable Low to Output Active	†ELQX	tCLZ	4	_	4	_	4	_	ns	4, 5, 6
Enable High to Output High-Z	t _{EHQZ}	^t CHZ	0.	8	0	10	0	12	ns	4, 5, 6
Power Up Time	†ELICCH	tpU	0	_	0	_	0		ns	
Power Down Time	tEHICCL	tPD		20		25	_	30	ns	

NOTES:


- 1. W is high for read cycle.
- 2. $\overline{E1} \overline{E2}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Ex} s may be asserted.
- 3. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 4. At any given voltage and temperature, tehoz max is less than telox min both for a given device and from device to device.
- 5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{E} = V_{II}$).
- 8. Addresses valid prior to or coincident with \overline{E} going low.

TIMING LIMITS


The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the module point of view. Thus, the access time is shown as a maximum since the module never provides data later than that time.

READ CYCLE 1 (See Note)

NOTE: Device is continuously selected ($\overline{E} = V_{IL}$).

READ CYCLE 2 (See Note)

NOTE: Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

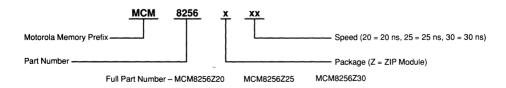
WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

	Syn	Symbol		MCM8256-20		MCM8256-25		MCM8256-30		İ
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	20		25	_	30	_	ns	3
Address Setup Time	tAVWL	†AS	2	_	2	_	2		ns	
Address Valid to End of Write	tavwh	taw	15	Γ-	20	_	25	_	ns	
Write Pulse Width	tWLWH	tWP	12	_	15	_	20	_	ns	
Data Valid to End of Write	tDVWH	tDW	8	T -	10		12	_	ns	
Data Hold Time	twhDX	t _{DH}	0	T	0	_	0		ns	
Write Low to Data High-Z	twLQZ	twz	0	8	0	10	0	12	ns	4, 5, 6
Write High to Output Active	twhqx	tow	4		4	_	4	_	ns	4, 5, 6
Write Recovery Time	twhax	twr	0		0		0	_	ns	

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. $\overline{E1}$ - $\overline{E2}$ are represented by \overline{E} in these timing specifications, any combination of \overline{Ex} s may be asserted.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. At any given time voltage and temperature, twLQZ max is less than twHQX min both for a given device and from device to device.

WRITE CYCLE 1

WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)


	Syr	nbol	мсм8	256-20	MCM8	256-25	MCM8256-30			}
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	†AVAV	twc	20	_	25		30	_	ns	3
Address Setup Time	†AVEL	†AS	2		2	_	2	_	ns	
Address Valid to End of Write	tAVEH	tAW	15	_	20	_	25	_	ns	
Enable to End of Write	tELEH	tcw	12	_	15	_	20	_	ns	4, 5
Enable to End of Write	t _{ELWH}	tcw	12	_	15	_	20	_	ns	
Write Pulse Width	twleh	tWP	15	_	20	_	25		ns	
Data Valid to End of Write	†DVEH	tDW	8	_	10	_	12	_	ns	
Data Hold Time	tEHDX	t _{DH}	0	_	0	_	0	_	ns	
Write Recovery Time	tEHAX	twR	0	_	0	_	0	_	ns	

- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. E1-E2 are represented by E in these timing specifications, any combination of Exs may be asserted.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedence condition.
- 5. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedence condition.

WRITE CYCLE 2

ORDERING INFORMATION (Order by Full Part Number)

8

Application Specific MOS Static RAMs

9

APPLICATION SPECIFIC STATIC RAMs

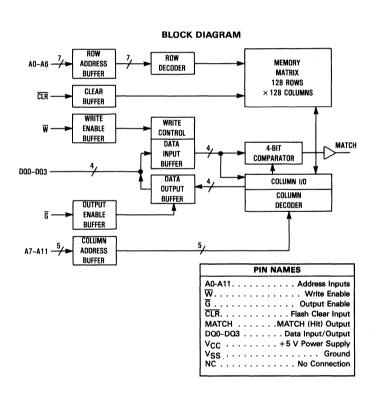
		Motorola			Address/	Operating	
	Organi-	Part	Pin	1	Cycle Time	Current	Tech-
Description	zation	Number	Count	Packaging	(ns Max)	(mA max)	nology
Cache Tag RAM	4Kx4	MCM4180	24/22	300 mil SOJ/PDIP	18/20/25	140	HCMOS
Cache Tag RAM	4Kx4	MCM62350	24	300 mil SOJ/PDIP	18/20/25	140	HCMOS
with Status Bit			l				
Registers		MCM62351	24	300 mil SOJ/PDIP	18/20/25	140	HCMOS
Synchronous	16Kx4	MCM6293	28	300 mil SOJ/PDIP	20/25	140	HCMOS
Static RAM		MCM6294	28	300 mil SOJ/PDIP	20/25	140	HCMOS
		MCM6295	28	300 mil SOJ/PDIP	25/30	140	HCMOS
	64Kx4	MCM62980	28	300 mil SOJ	15/20	170	HCMOS
		MCM62982	28	300 mil SOJ	12/15	170	HCMOS
	16Kx16	MCM62990	52	PLCC	17/20	360	HCMOS
	4x64Kx1	MCM62981	32	300 mil SOJ	15/20	170	HCMOS
		MCM62983	32	300 mil SOJ	12/15	170/130	HCMOS
	4Kx10	MCM62963	44	PLCC	18/20/25	170	HCMOS
	4Kx12	MCM62973	44	PLCC	18/20/25	170	HCMOS
		MCM62974	44	PLCC	18/20/25	170	HCMOS
		MCM62975	44	PLCC	25/30	170	HCMOS
	32Kx9	MCM62940	44	PLCC	19/24	250	HCMOS
		MCM62950	44	PLCC	20/25	250	HCMOS
		MCM62960	44	PLCC	17/20/25	180	HCMOS
		MCM62486	44	PLCC	19/24	250	HCMOS
		MCM62110	52	PLCC	15/20	250	HCMOS
DSPRAM	8Kx24	MCM56824	52	PLCC	25/30/35	250/210/180	HCMOS
Latched Address	8Kx20	MCM62820	52	PLCC	23/30	240/185	HCMOS
SRAM	16Kx16	MCM62995	52	PLCC	17/20/25	360	HCMOS

4K × 4 Bit Cache Address Tag Comparator

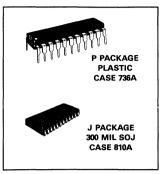
The MCM4180 is a 16,384 bit cache address tag comparator organized as 4096 tags of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 4K × 4 SRAM core with an on-board comparator for efficient implementation of a cache memory.

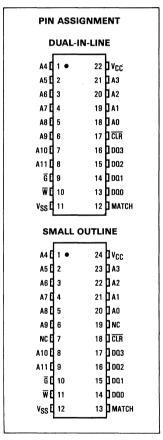
The device has a $\overline{\text{CLR}}$ pin for flash clear of the RAM, useful for system initialization.

The MCM4180 compares RAM contents with current input data. The result is either an active high MATCH level for a cache hit, or an active low level for a cache miss.


The MCM4180 is available in 22 lead plastic DIP and 24 lead SOJ packages.

Single 5 V ± 10% Power Supply


Fast Address to MATCH Time: 18/20/22/25 ns max
 Fast Data to MATCH Time: 10/10/10/12 ns max
 Fast Read of Tag RAM Contents: 20/22/25/30 ns max


Flash Clear of the Tag RAM (CLR Pin)

Pin and Function Compatible with MK41H80

MCM4180

۲

TRUTH TABLE

W	Ğ	CLR	DQ0-DQ3	MATCH	Mode
Н	Н	Н	Compare Din	Valid	Compare
L	' X	н	Din	Assert	Write
Н	L	н	Dout	Assert	Read
X	X	L	High-Z	Assert	Clear

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} /V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current MATCH Output I/O Pins, Per I/O	lout	± 40 ± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C
Temperature Under Bias	T _{bias}	- 10 to +85	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Referenced to VSS = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	vcc	4.5	5.0	5.5	V
Input High Voltage	ViH	2.2	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} min = -0.5 V dc; V_{IL} min = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs V _{in} =0 to V _{CC})	l _{lkg(l)}		±1.0	μА
Output Leakage Current, Except MATCH Output (G=V _{IH} , V _{out} =0 to V _{CC})	likg(O)	_	±1.0	μА
AC Supply Current (I _{out} =0 mA, All Inputs=V _{IL} or V _{IH} , Cycle Time ≥t _{AVAV} min)	ICCA	_	140*	mA
Output Low Voltage (I/O Pins: I _{OL} = 8.0 mA, MATCH Output: I _{OL} = 12.0 mA)	VOL	_	0.4	V
Output High Voltage (I/O Pins: I _{OH} = -4.0 mA, MATCH Output: I _{OH} = -10.0 mA)	Voн	2.4	_	V

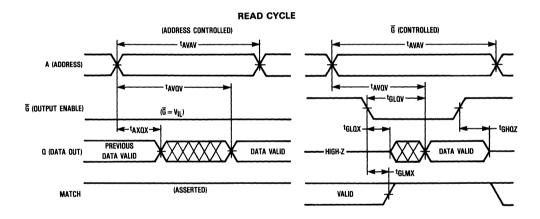
^{*}I_{CC} active current for the clear cycle exceeds this specification. However, this is a transient phenomenon and will not affect the power dissipation of the device. Good decoupling of the local power supply should always be used.

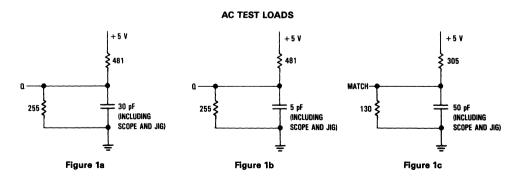
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	5	pF
I/O Capacitance	C _{out}	5	7	pF
MATCH Output Capacitance	C _{match}	6	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)


Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load (I/O Pins) See Figure 1a
Input Rise/Fall Time	Output Load (MATCH Output) See Figure 1c


READ CYCLE (See Note 1)

Characterist.	Syr	Symbol		MCM4180-18		MCM4180-20		MCM4180-22		4180-25		
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	tRC	20	_	22	-	25	_	30	-	ns	
Address Access Time	tAVQV	tAA	-	20	_	22	-	25	-	30	ns	
G Access Time	tGLQV	[‡] OEA	- T	11	Ī -	12	l –	12	_	12	ns	
Output Hold from Address Change	tAXQX	tон	0	_	0	_	0	l -	0	_	ns	
G Low to Output Active	tGLQX	tOEL	3		3	-	5	l –	5	_	ns	2
G High to Output High-Z	tGHQZ	tOEZ	_	7	Ī -	8	-	8	_	10	ns	2
G Low to MATCH Assert	tGLMX	^t CH	0	8	0	10	0	10	0	12	ns	

- NOTES:

 1. CLR = V_{IH}, W = V_{IH} continuously during read cycles.
 - 2. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

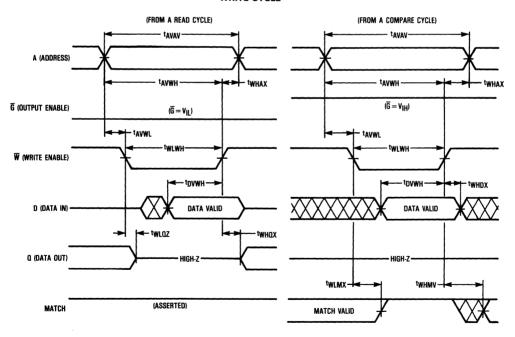
•
•

01	Syn	Symbol		MCM4180-18 M		MCM4180-20		MCM4180-22		MCM4180-25		Notes
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	MOTES
Compare Cycle Time	tAVAV	tC	20	I -	22	_	25	_	30	-	ns	
Address Valid to MATCH Valid	tAVMV	†ACA	_	18	_	20	_	22	_	25	ns	1
G High to MATCH Valid	tGHMV	tGCA	_	15	-	15	-	15	_	18	ns	
Data Valid to MATCH Valid	tDVMV	†DCA	_	10	_	10	_	10	-	12	ns	
MATCH Hold from G Low	tGLMX	t _{CH}	0	10	0	10	0	10	0	12	ns	
MATCH Hold from Address Change	tAXMX	tACH	5	_	5	-	5	_	5	-	ns	
MATCH Hold from Data Invalid	tDXMX	†DCH	3	-	3	_	3	-	3	_	ns	
G Low to Output Active	tGLQX	tLZ	3	T -	3	. –	5	_	5	_	ns	2
G High to Output High-Z	tGHQZ	tHZ	_	8	_	8	_	8	_	10	ns	2

- 1. A compare cycle is performed when $\overline{\text{CLR}}$, $\overline{\text{W}}$, and $\overline{\text{G}}$ are all high.
- 2. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

COMPARE CYCLE

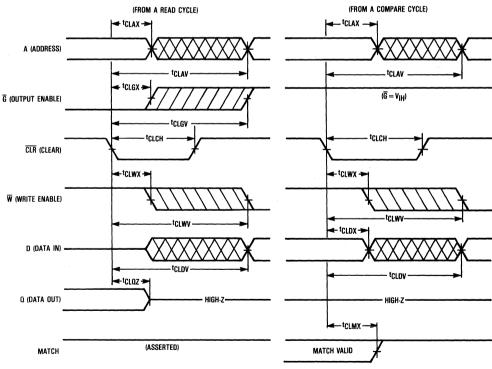
(ADDRESS CONTROLLED) (G CONTROLLED) tavav A (ADDRESS) **tavmv** taxmx G (OUTPUT ENABLE) - $(\overline{G} = V_{IH})$ tDXMX †DVMV DATA VALID DATA VALID tGHQZ → tGLQX Q (DATA OUT) -HIGH-Z HIGH-Z – tGLMX MATCH VALID


WRITE CYCLE (See Note 1)

Characteristic	Syn	nbol	мсм	1180-18	MCM	1180-20	мсм	180-22	MCM4180-25		11-14	Notes
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	MOLOS
Write Cycle Time	t _{AVAV}	twc	20	_	22	-	25	-	30	-	ns	
Write Pulse Width	twLWH	tWEW	12	_	14	1	18	1	20	_	ns	
Address Setup to Beginning of Write	tAVWL	tAS	0	_	0	1	0	1	0	-	ns	
Address Valid to End of Write	tAVWH	t _{AW}	16	-	16	-	18	1	20	-	ns	
Data Valid to End of Write	tDVWH	tDS	10	_	10	1	10	-	12	_	ns	
Data Hold from Write End	tWHDX	tDH	0	_	0	-	0	-	0	-	ns	
Write Low to Output High-Z	tWLQZ	tHZ	0	8	0	8	0	9	0	10	ns	2
Address Hold from Write End	twhax	twa+	0	_	0	_	0	_	0	_	ns	
Write Low to MATCH Assert	tWLMX	†WCH	0	12	0	15	0	15	0	15	ns	
Write High to MATCH Valid	twhwv	†WCA	-	20	-	20	_	22	_	25	ns	
Write High to Output Active	twhox	tLZ	3	_	3	_	5	-	5	_	ns	2

NOTES:

- 1. A write occurs during the overlap of W low and CLR high.
- 2. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.


WRITE CYCLE

	Syn	nbol	MCM4180-18 MCM4180-20		MCM4180-22		MCM4180-25		11	Notes		
	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Motes
ਹ≪⊠ਲ	[†] CLAV [†] CLGV [†] CLWV [†] CLDV	tCR tCR tCR tCR	-	70	_	70	_	70	-	70	ns	2
	tCLCH	^t CLP	20		22		25	_	30	-	ns	2
A G D ⊠	[†] CLAX [†] CLGX [†] CLDX [†] CLWX	tcx tcx tcx tcx	0	_	0	_	0	-	0	-	ns	
	tCLMX	tMH	0	15	0	15	0	. 15	0	18	ns	
	[†] CLOZ	tcz	_	15		15		15		18	ns	3
	_ a⊠ o	Standard	A 1CLAV 1CR G 1CLGV 1CR W 1CLWV 1CR D 1CLDV 1CR	Standard Alternate Min	Standard Alternate Min Max	Standard Alternate Min Max Min	Standard Alternate Min Max Min Max	Standard Alternate Min Max Min Max Min	Standard Alternate Min Max Min Max Min Max A	Standard Alternate Min Max Min Max Min Max Min	Standard Alternate Min Max Min Min Max Min Min Min Max Min Min Min Min Min Min Min Min Min Min	Standard Alternate Min Max Min Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min Min Max Min Min Max Min

- 1. The address, data, \overline{W} , and \overline{G} inputs are a don't care during a clear cycle.
- 2. The clear cycle is initiated at the falling edge of CLR.
- 3. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

CLEAR CYCLE

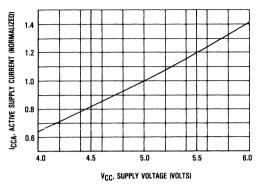


Figure 2. Active Supply Current versus Supply Voltage

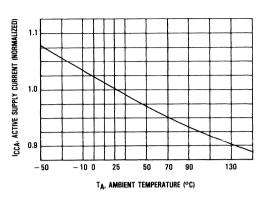


Figure 3. Active Supply Current versus Temperature

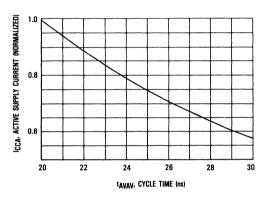


Figure 4. Active Supply Current versus Cycle Time

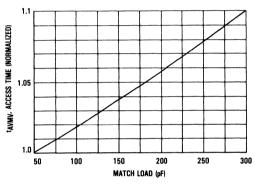


Figure 5. Address to MATCH Access Time versus MATCH AC Test Load Capacitance of Figure 1c

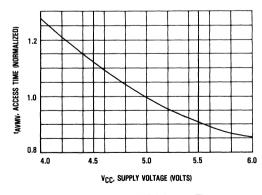


Figure 6. Address to MATCH Access Time versus Supply Voltage

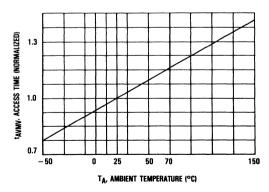


Figure 7. Address to MATCH Access Time versus Temperature

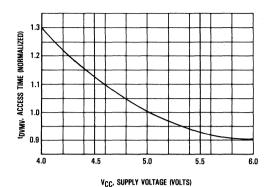


Figure 8. Data to MATCH Access Time versus Supply Voltage

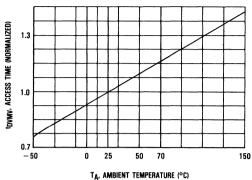


Figure 9. Data to MATCH Access Time versus Temperature

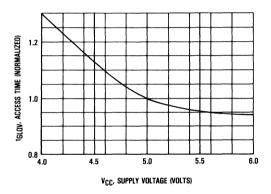


Figure 10. Output Enable to MATCH Access Time versus Supply Voltage

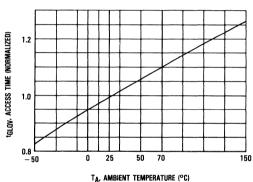


Figure 11. Output Enable to MATCH Access Time versus Temperature

Figure 12. Write Pulse Width versus Supply Voltage



Figure 13. Write Pulse Width versus Temperature

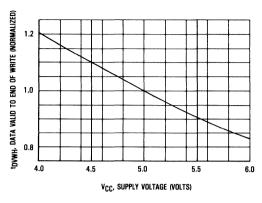


Figure 14. Data Setup Time versus Supply Voltage

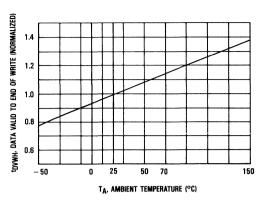


Figure 15. Data Setup Time versus Temperature

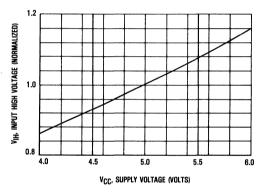


Figure 16. Input High Voltage versus Supply Voltage

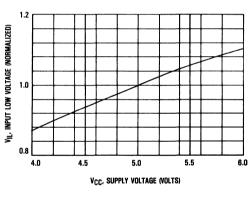


Figure 17. Input Low Voltage versus Supply Voltage

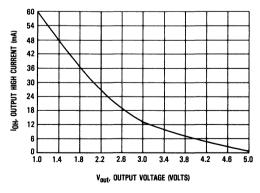


Figure 18. Output Source Current versus Output Voltage

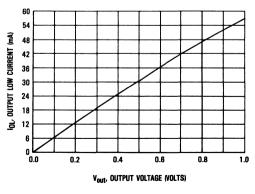
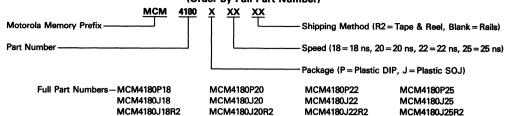



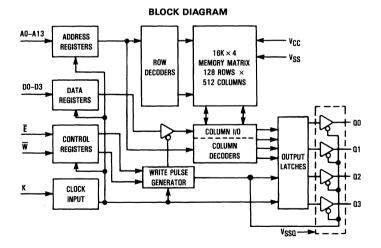
Figure 19. Output Sink Current versus Output Voltage

ORDERING INFORMATION (Order by Full Part Number)

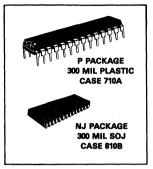
16K×4 Bit Synchronous Static RAM with Transparent Outputs

The MCM6292 is a 65,536 bit synchronous static random access memory organized as 16,384 words of 4 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output latching onto a single monolithic circuit for reduced parts count implementation of cache data RAM and writeable control store applications. The MCM6292 is well suited for applications involving the MC68030, MC68040, and AMD29K microprocessors. It is ideal for burst mode or pipelined bus applications.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.


The address (A0-A13), data (D0-D3), write (\overline{W}) , and chip enable (\overline{E}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The MCM6292 provides transparent output operation when K is low for access of RAM data within the same cycle (output data is latched when K is high).


Write operations are internally self-timed and initiated by the rising edge of the K input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

The MCM6292 is available in a 300-mil, 28-pin plastic DIP as well as a 300-mil, 28-pin plastic SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Access and Cycle Times: 25/30 ns Max
- Address, Data Input, E, and W Registers On-Chip
- Transparent Output Latch for Access Within the Same Cycle
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins
- High Board Density SOJ Package Available
- Typical Applications: General-Purpose Buffer Storage, Writeable Control Store, Data Cache, or Cache Tag

MCM6292

PIN ASSIGNMENT					
A5 [1 •	28	vcc		
A6 [2	27	D A4		
A7 [3	26] A3		
A8 [4	25	A2		
A9 [5	24] A1		
A10[6	23] A0		
A11[7	22	1 03		
A12[8	21	02		
A13 [9	20] Q3		
000	10	19	02		
D1 [11	18] 01		
ĒĆ	12	17] ao		
κ¢	13	16	D₩		
v _{ss} [14	15	v _{ssa} *		

*For proper operation of the device, both VSS and VSSQ must be connected to ground.

PIN NAMES						
A0-A13 Address Inputs						
W Write Enable						
ĒChip Enable						
D0-D3 Data Inputs						
Q0-Q3 Data Outputs						
K Clock Input						
V _{CC} +5 V Power Supply						
VSS Ground						
VSSQ Output Buffer Ground						

g

TRUTH TABLE

Ē	w	Operation	Q0-Q3
L	L	Write	High Z
L	Н	Read	D _{out}
Н	X	Not Selected	High Z

NOTE: The values of \overline{E} and \overline{W} are valid inputs for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = VSSO = 0 V)

. Rating	Symbol	Value	Unit		
Power Supply Voltage	Vcc	-0.5 to +7.0	٧		
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>		
Output Current (per I/O)	lout	±20	mA		
Power Dissipation (T _A = 25°C)	PD	1.0	W		
Temperature Under Bias	T _{bias}	-10 to +85	°C		
Operating Temperature	TA	0 to +70	°C		
Storage Temperature	T _{stg}	-55 to +125	°C		

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS=VSSQ=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	>
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	٧

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{lkg(l)}	_	± 1.0	μА
Output Leakage Current (E=VIH, Vout=0 to VCC, Outputs must be high-Z)	llkg(O)	_	±1.0	μА
AC Supply Current (Ē=V _{IL} , I _{out} =0 mA, All Inputs=V _{IL} or V _{IH} , Cycle Time≥t _{KHKH} min)	ICCA	_	140	mA
Standby Current ($\overline{E}=V_{IH}$; Other Inputs = $V_{IH} \ge 3.0$ V or $V_{IL} \le 0.4$ V; $I_{out} = 0$ mA, Cycle Time $\ge t_{KHKH}$ min)	ISB1	-	55	mA
Output Low Voltage (I _{OL} = 12.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = -10.0 mA)	Voн	2.4	-	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	7	10	pF

9

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output LoadSee Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

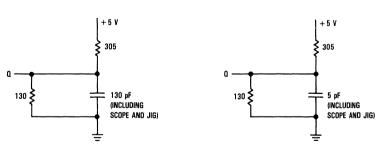
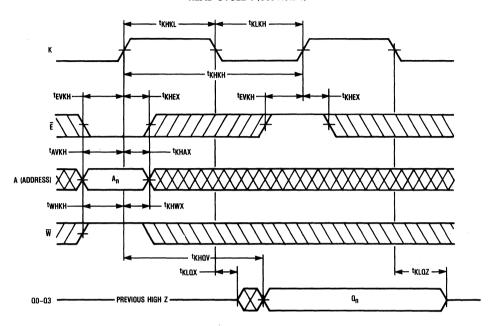
READ CYCLE (See Note 1)

D	C	мсм		MCM6292-30			T
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tKHKH	25	_	30	-	ns	2
Clock Access Time	tKHQV	Γ-	25	_	30	ns	4, 6
Data Valid from Clock Low	tKLQV	T -	10	-	13	ns	5, 6
Output Hold from Clock Low	tKLQX	0	_	0	_	ns	3, 6
Clock Low to Q High Z (E=VIH)	tKLQZ	_	10	_	13	ns	3, 6
Clock Low Pulse Width	tKLKH	5	_	5	_	ns	
Clock High Pulse Width	[†] KHKL	5	_	5	-	ns	
Setup Times for:	tevkh tavkh twhkh	5	-	5	-	ns	7
Hold Times for: $$\overline{\rm E}$$ A $$\overline{\rm W}$$	tKHEX tKHAX tKHWX	3	_	3	-	ns	7

NOTES:

- 1. A read is defined by \overline{W} high and \overline{E} low for the setup and hold times.
- 2. All read cycle timing is referenced from K.
- 3. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested.
- 4. For Read Cycle 1 timing, clock high pulse width <(tKHQV-tKLQV).
- 5. For Read Cycle 2 timing, clock high pulse width ≥(tKHQV-tKLQV).
- 6. K must be at a low level for outputs to transition.
- This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC TEST LOADS

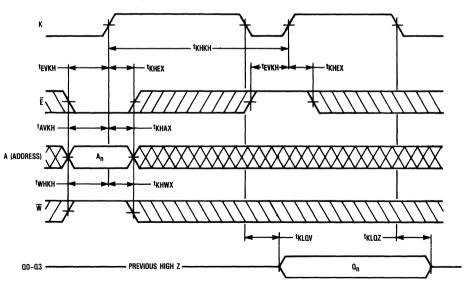
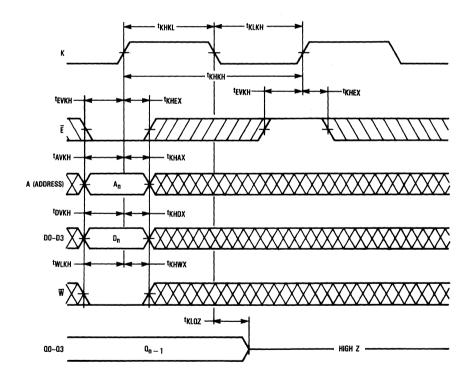

Figure 1A

Figure 1B

READ CYCLE 1 (See Note 1)

READ CYCLE 2 (See Note 2)


- 1. For Read Cycle 1 timing, clock high pulse width <(t_{KHQV}-t_{KLQV}). 2. For Read Cycle 2 timing, clock high pulse width \ge (t_{KHQV}-t_{KLQV}).

WRITE CYCLE (W Controlled, See Note 1)

Danier et a			MCM6292-25		MCM6292-30			
Parameter		Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time		tKHKH	25	_	30	_	ns	2
Clock Low to Output High Z		tKLQZ	_	10	_	13	ns	3
Setup Times for:	E A W D	tevkh tavkh twlkh tdvkh	5	_	5	_	ns	4
Hold Times for:	Ē A W D	tKHEX tKHAX tKHWX tKHDX	3	_	3	_	ns	4

NOTES:

- 1. A write is performed when W and E are both low for the specified setup and hold times.
- 2. All write cycle timing is referenced from K.
- 3. K must be at a low level for outputs to transition.
- 4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

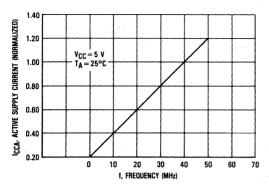


Figure 2. Active Supply Current versus Frequency

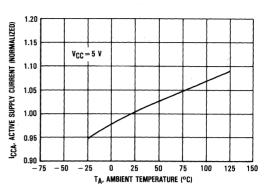


Figure 3. Active Supply Current versus Temperature

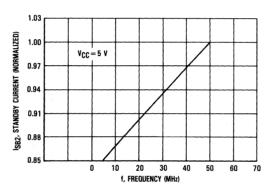


Figure 4. Standby Current versus Frequency

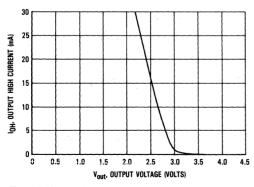


Figure 5. Output Source Current versus Output Voltage

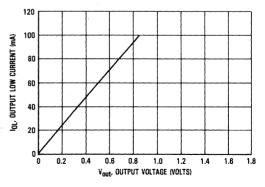


Figure 6. Output Sink Current versus Output Voltage

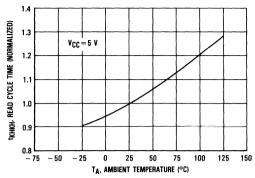


Figure 7. Read Cycle Time versus Temperature

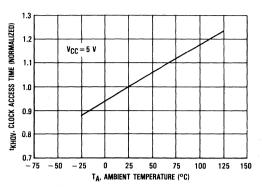
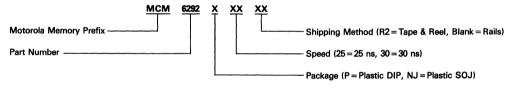
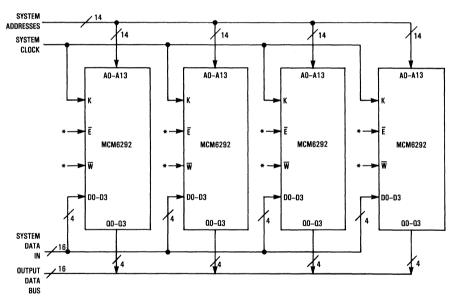



Figure 8. Clock Access Time versus Temperature

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM6292P25 MCM6292P30 MCM6292NJ25 MCM6292NJ30 MCM6292NJ25R2 MCM6292NJ30R2

APPLICATIONS INFORMATION


The Motorola family of synchronous SRAMs is designed to provide a performance and parts count advantage in applications such as writeable control stores, memory mapping, and cache memory. The on-board input registers eliminate the need for external latch chips in systems where addresses and data are not on the bus long enough to satisfy standard SRAM setup and hold times. Latches on the output port provide extended hold times independent of address or other device input changes to better meet system access requirements. The clock (K) input controls the operation of the input registers and output latches, and provides a direct means of synchronizing the SRAM to a system clock.

The MCM6292 offers transparent output operation, which allows output data access within the same tKHKH cycle. This feature lends itself well to applications requiring RAM data to

be set up on the system bus prior to the next rising clock edge. On the rising edge of the clock (K) signal, the output data for the previous cycle is latched until the next falling clock edge. When the clock (K) signal is low, the output is allowed to transition relative to the most recent rising clock (K) edge.

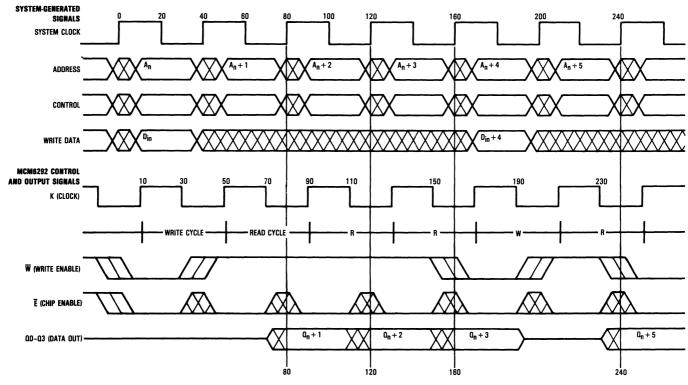

Figure 9 shows a typical system configuration using four MCM6292 chips. The system addresses are tied to the MCM6292s in parallel, while system data is distributed among the four input data ports of 4 bits each. Output data is tied to a separate output data bus to exploit the separate I/O configuration of the MCM6292. The clock (K) signal is a logical derivation of the system clock.

Figure 10 shows typical bus timing for the configuration of Figure 9. The system bus supplies address, data, and control signals, while accepting data from the memory on rising clock edges. In some applications, the clock (K) signal may need to be a delayed system clock to allow adequate address and data setuo times.

^{*}From read/write controller.

Figure 9. Typical Configuration for a 16-Bit Bus

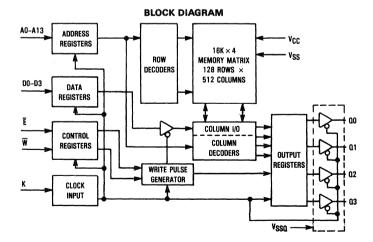
- 1. The system supplies address, data, and control information and accepts data from memory on the rising edge of the system clock.
- 2. The memory clock is delayed 10 ns (for this example) to allow input information to propagate to the memory chips.

Figure 10. Nonpipeline System Timing

16K × 4 Bit Synchronous Static RAM with Output Registers

The MCM6293 is a 65,536 bit synchronous static random access memory organized as 16,384 words of 4 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit for reduced parts count implementation of cache data RAM and writeable control store applications. It is well suited for telecommunications switches and test equipment.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.


The address (A0-A13), data (D0-D3), write (\overline{W}) , and chip enable (\overline{E}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The MCM6293 provides output register operation. At the rising edge of K, the RAM data from the previous K high cycle is presented. This function is well suited to fully pipelined applications.

Write operations are internally self-timed and initiated by the rising edge of the K input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

The MCM6293 is available in a 300-mil, 28-pin plastic DIP as well as a 300-mil, 28-pin plastic SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 20/25 ns Max
- Fast Clock (K) Access Times: 10 ns Max
- Address, Data Input, E, and W Registers On-Chip
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins
- High Board Density SOJ Package Available
- Typical Applications: General-Purpose Buffer Storage, Writeable Control Store, Data Cache, or Cache Tag

MCM6293

PIN ASSIGNMENT					
A5 [1 •	28] V _{CC}			
A6 [2	27 A4			
A7 [3	26] A3			
A8 [4	25 A2			
A9 [5	24 🕽 A1			
A10 [6	23] AO			
A11 [7	22 03			
A12 [8	21 02			
A13	9	20 🛮 03			
00	10	19 02			
D1 [11	18 1 01			
Ē	12	17 00			
κC	13	16 🕽 ₩			
v _{SS} [14	15 V _{SSQ} *			
*For proper operation of the device, both Vss and Vssq					

PIN NAMES								
A0-A13 Address Inputs W Write Enable E Chip Enable D0-D3 Data Inputs Q0-Q3 Data Outputs K Clock Input								
VCC +5 V Power Supply VSS Ground VSSQ Output Buffer Ground								

must be conected to ground.

9

TRUTH TABLE

Ē	E W Operation		
L	L	Write	High Z
L	н	Read	D _{out}
Н	X	Not Selected	High Z

NOTE: The values of \overline{E} and \overline{W} are valid inputs for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to Vss = Vssn = 0 V)

		00 000		
Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	-0.5 to +7.0	٧	
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧	
Output Current (per I/O)	lout	± 20	mA	
Power Dissipation (T _A = 25°C)	PD	1.0	W	
Temperature Under Bias	T _{bias}	- 10 to +85	°C	
Operating Temperature	TA	0 to +70	°C	
Storage Temperature	T _{stg}	-55 to +125	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at $V_{\parallel L}$ or $V_{\parallel H}$ during power up to prevent spurious read cycles from occurring.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = VSSO = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	llkg(I)	_	±1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC} , Outputs must be high-Z)	l _{lkg} (0)	_	± 1.0	μΑ
AC Supply Current (Ē=V _{IL} , I _{out} =0 mA, All Inputs=V _{IH} or V _{IL} , Cycle Time≥t _{KHKH} min)	ICCA		140	mA
Standby Current (\overline{E} =V _{IH} ; Other Inputs=V _{IH} \ge 3.0 V or V _{IL} \le 0.4 V; I _{out} =0 mA, Cycle Time \ge t _{KHKH} min)	ISB1		55	mA
Output Low Voltage (I _{OL} = 12.0 mA)	V _{OL}	_	0.4	V
Output High Voltage (I _{OH} = -10.0 mA)	Voн	2.4	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, $T_A = 25$ °C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	6	pF
Output Capacitance	C _{out}	7	10	pF

_

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE (See Note 1)

		MCM6293-20		5293-20	MCM6293-25			
Parameter		Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time		tKHKH	20	_	25	_	ns	2
Clock Access Time		tKHQV	_	10	_	10	ns	3
Output Active from Clock High		tKHQX	0	_	0	_	ns	4
Clock High to Q High Z (E=V _{IH})		†KHQZ	_	10	_	10	ns	4
Clock Low Pulse Width		tKLKH	5	_	5	_	ns	
Clock High Pulse Width		tKHKL	5	_	5	_	ns	
Setup Times for:	Ē A W	^t EVKH ^t AVKH ^t WHKH	5	_	5	_	ns	5
Hold Times for:	E A W	tKHEX tKHAX tKHWX	3	_	3	-	ns	5

NOTES

- 1. A read is defined by $\overline{\mathbf{W}}$ high and $\overline{\mathbf{E}}$ low for the setup and hold times.
- 2. All read cycle timing is referenced from K.
- 3. Valid data from K high will be the data stored at the address of the last valid read cycle.
- 4. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.
- This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC TEST LOADS

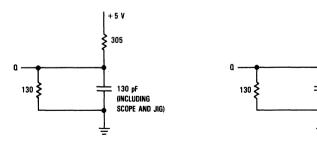
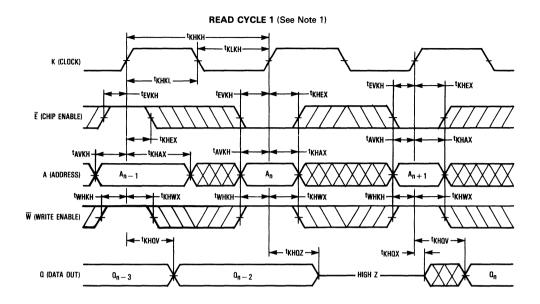
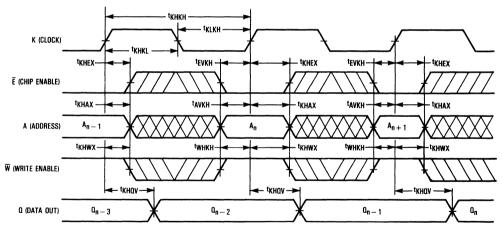


Figure 1A

Figure 1B


+ 5 V

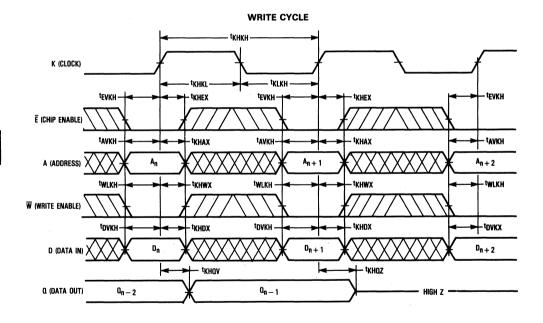
305


5 pF

(INCLUDING

SCOPE AND JIG)

READ CYCLE 2 (See Note 1)


NOTE:

1. The outputs Q_{n-3} and Q_{n-2} are derived from two previous read cycles where $\overline{W} = V_{IH}$ and $\overline{E} = V_{IL}$ for those cycles.

WRITE CYCLE (W Controlled, See Note 1)

D	Symbol	MCM6293-20		MCM6293-25		Unit	Nana
Parameter		Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tKHKH	20	_	25	_	ns	2
Clock High to Output High Z (W=VIL)	tKHQZ	-	10	_	10	ns	3
Setup Times for: Ē A W D D	tEVKH tAVKH tWLKH tDVKH	5	_	5	_	ns	4
Hold Times for: Ē A ₩ D D	tKHEX tKHAX tKHWX tKHDX	3	_	3	-	ns	4

- 1. A write is performed when \overline{W} and \overline{E} are both low for the specified setup and hold times.
- 2. All write cycle timing is referenced from K.
- Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any
 given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.
- 4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

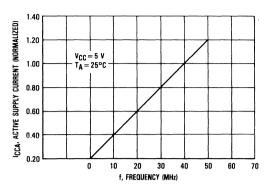


Figure 2. Active Supply Current versus Frequency

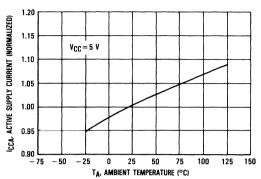


Figure 3. Active Supply Current versus Temperature

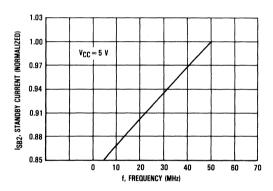


Figure 4. Standby Current versus Frequency

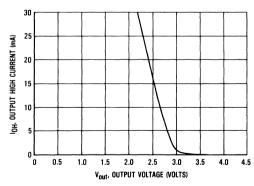


Figure 5. Output Source Current versus Output Voltage

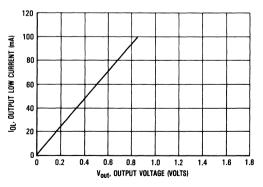


Figure 6. Output Sink Current versus Output Voltage

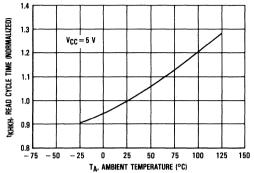


Figure 7. Read Cycle Time versus Temperature

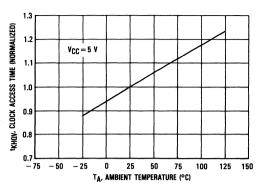
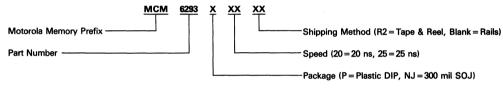
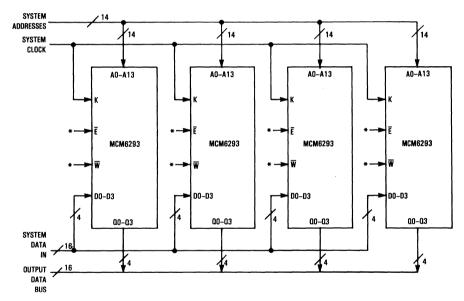



Figure 8. Clock Access Time versus Temperature

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM6293P20 MCM6293P25 MCM6293NJ20 MCM6293NJ25 MCM6293NJ20R2 MCM6293NJ25R2

APPLICATIONS INFORMATION


The Motorola family of synchronous SRAMs is designed to provide a performance and parts count advantage in applications such as writeable control stores, memory mapping, and cache memory. The on-board input registers eliminate the need for external latch chips in systems where addresses and data are not on the bus long enough to satisfy standard SRAM setup and hold times. Registers on the output port provide extended hold times independent of address or other device input changes to better meet system access requirements. The clock (K) input controls the operation of the input registers and output registers, and provides a direct means of synchronizing the SRAM to a system clock.

The MCM6293 offers registered output operation. On the

rising edge of the clock (K) signal, the output data for the previous cycle is latched until the next rising clock edge.

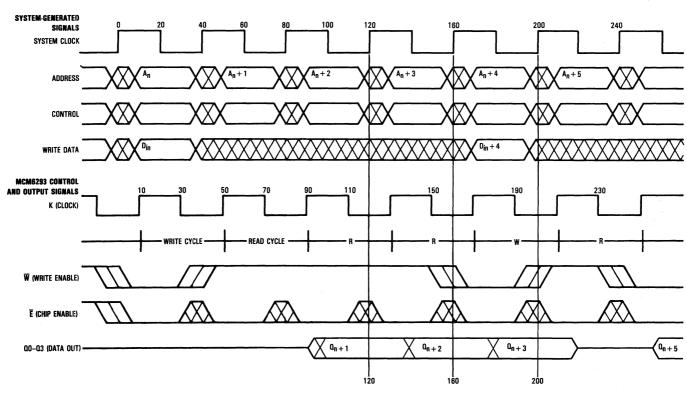

Figure 9 shows a typical system configuration using four MCM6293 chips. The system addresses are tied to the MCM6293s in parallel, while system data is distributed among the four input data ports of 4 bits each. Output data is tied to a separate output data bus to exploit the separate I/O configuration of the MCM6293. The clock (K) signal is a logical derivation of the system clock.

Figure 10 shows typical bus timing for the configuration of Figure 9. The system bus supplies address, data, and control signals, while accepting data from the memory on rising clock edges. In some applications, the clock (K) signal may need to be a delayed system clock to allow adequate address and data setup times.

*From read/write controller.

Figure 9. Typical Configuration for a 16-Bit Bus

- 1. The system supplies address, data, and control information and accepts data from memory on the rising edge of the system clock.
- 2. The memory clock is delayed 10 ns (for this example) to allow input information to propagate to the memory chips.

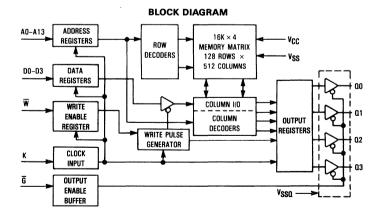
Figure 10. Pipeline System Timing

MOTOROLA **SEMICONDUCTOR** TECHNICAL DATA

16K×4 Bit Synchronous Static RAM with Output Registers and Output Enable

The MCM6294 is a 65,536 bit synchronous static random access memory organized as 16.384 words of 4 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit for reduced parts count implementation of cache data RAM and writeable control store applications. Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability. It is well suited for telecommunications switches and test equipment.

The address (A0-A13), data (D0-D3), and write (W) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.


The MCM6294 provides output register operation. At the rising edge of K, the RAM data from the previous K high cycle is presented. This function is well suited to fully pipelined applications.

The output enable (G) provides asynchronous bus control for common I/O or bank switch applications.

Write operations are internally self-timed and initiated by the rising edge of the K input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

The MCM6294 is available in a 300-mil, 28-pin plastic DIP as well as a 300-mil, 28-pin plastic SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 20/25 ns Max
- Fast Clock (K) Access Times: 10 ns Max
- Address, Data Input, and W Registers On-Chip
- Output Enable for Asynchronous Bus Control
- **Output Registers for Fully Pipelined Applications**
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins
- High Board Density SOJ Package Available
- Typical Applications: General-Purpose Buffer Storage, Writeable Control Store, Data Cache, or Cache Tag

MCM6294

PIN ASSIGNMENT

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
A5 [1 •	28	vcc
A6 [2	27] A4
A7 [3	26	1 A3
A8 [4	25	A2
A9 [5	24	D A 1
A10 [6	23	AO DA
A11 [7	22	D 03
A12 [8	21	02
A13 [9	20	1 03
00 🛚	10	19	Q2
D1 [11	18] 01
Ē₫	12	17] 00
KΩ	13	16	w
v _{SS} C	14	15	v _{ssa} *

PIN NAMES											
				P	IV	1	N	<u>A</u>	N	IES	
A0-A13	١.									Address Inputs	
										. Write Enable	
G										Output Enable	
D0-D3										Data Inputs	
Q0-Q3										. Data Outputs	
Κ										Clock Input	

*For proper operation of the

device, both VSS and VSSQ must be connected to ground.

VCC +5 V Power Supply VSS Ground VSSQ Output Buffer Ground

9

TRUTH TABLE

G ₩		Operation	Q0-Q3		
X L		Write	High Z		
L / H		Read	D _{out}		
Н	Н	Output Disable	High Z		

NOTE: The value \overline{W} is a valid input for the setup and hold times relative to the K rising edge. The value \overline{G} is an asynchronous input.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=VSSO=0 V)

		00 004	
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS=VSSQ=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	>
Input High Voltage	VIH	2.2	-	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	· V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	likg(i)	_	± 1.0	μΑ
Output Leakage Current (G=V _{IH} , V _{out} =0 to V _{CC} , Outputs must be high-Z)	llkg(O)	_	± 1.0	μΑ
AC Supply Current (G=V _{IL} , I _{out} =0 mA, Cycle Time=tKHKH min)	ICCA	_	140	mA
Output Low Voltage (I _{OL} = 12.0 mA)	V _{OL}	_	0.4	٧
Output High Voltage (IOH = -10.0 mA)	Voн	2.4	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	7	10	pF

9

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE (See Note 1)

Parameter		Symbol	MCM6294-20		MCM6294-25		 .	
			Min	Max	Min	Max	Unit	Notes
Read Cycle Time		tKHKH	20	_	25	_	ns	2
Clock Access Time		tKHQV	_	10	_	10	ns	3
Output Active from Clock High		tKHQX	0	I –	0	-	ns	4
Clock Low Pulse Width		tKLKH	5	T -	5	-	ns	
Clock High Pulse Width		^t KHKL	5	T -	5	_	ns	
Setup Times for:	A W	tavkh twhkh	5	_	5	-	ns	5
Hold Times for:	A W	tKHAX tKHWX	3	_	3	-	ns	5
G High to Q High Z		tGHQZ	_	10	_	10	ns	4, 6
G Low to Q Active		tGLQX	0	_	0		ns	4, 6
G Low to Q Valid		†GLQV	_	10	_	10	ns	

NOTES:

- 1. A read is defined by \overline{W} high for the setup and hold times.
- 2. All read cycle timing is referenced from K or from G.
- 3. Valid data from K high will be the data stored at the address of the last valid read cycle.
- 4. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested.
- 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.
- 6. At any given voltage and temperature, $t_{\mbox{GHOZ}}$ max is less than $t_{\mbox{GLQX}}$ min for a given device.

AC TEST LOADS

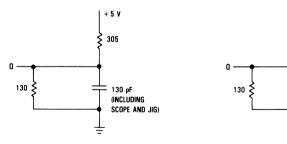
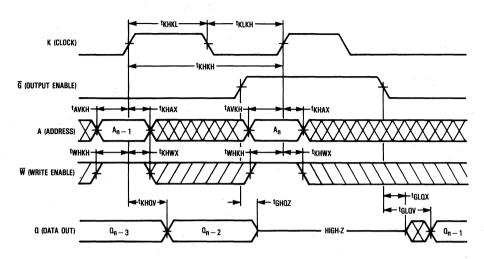
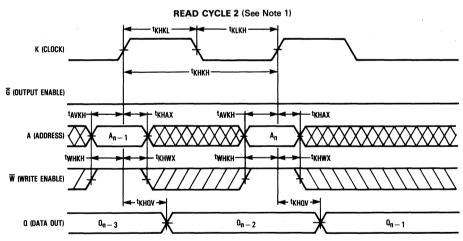


Figure 1A

Figure 1B


+ 5 V


305

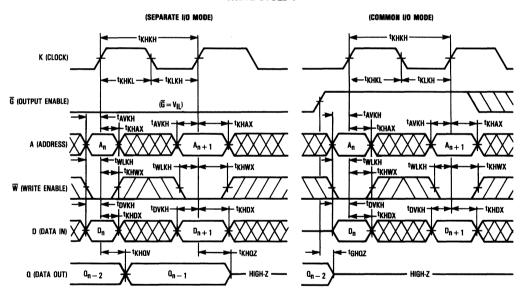
5 pF

(INCLUDING SCOPE AND JIG)

READ CYCLE 1 (See Note 1)

NOTE:

1. The outputs Q_{n-3} and Q_{n-2} are derived from two previous read cycles, where $\overline{W} = V_{IH}$ for those cycles.


WRITE CYCLE (W Controlled, See Note 1)

Parameter			MCM6294-20		MCM6294-25			
		Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time		tKHKH	20	_	25	_	ns	2
Clock High to Output High Z ($\overline{W} = V_{IL}$)		tKHQZ	_	10	_	10	ns	3
G High to Q High Z		tGHQZ	_	- 10	_	10	ns	4
Setup Times for:	A W D	^t AVKH ^t WLKH ^t DVKH	5	_	5	_	ns	5
Hold Times for:	A W D	tKHAX tKHWX tKHDX	3	_	3	_	ns	5

NOTES:

- 1. A write is performed when $\overline{\mathbf{W}}$ is low for the specified setup and hold times.
- 2. All write cycle timing is referenced from K or from G.
- 3. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.
- 4. G becomes a don't care signal for successive writes after the first write cycle.
- This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

WRITE CYCLE 1

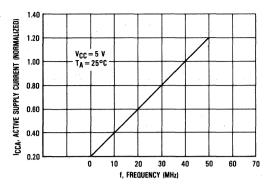


Figure 2. Active Supply Current versus Frequency

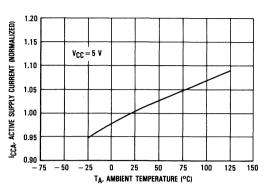


Figure 3. Active Supply Current versus Temperature

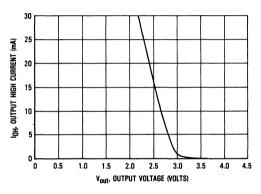


Figure 4. Output Source Current versus Output Voltage

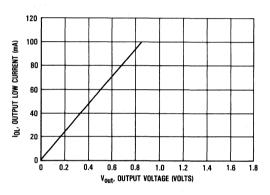


Figure 5. Output Sink Current versus Output Voltage

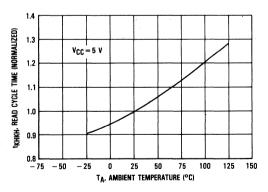


Figure 6. Read Cycle Time versus Temperature

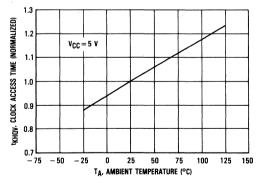


Figure 7. Clock Access Time versus Temperature

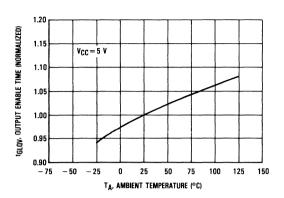
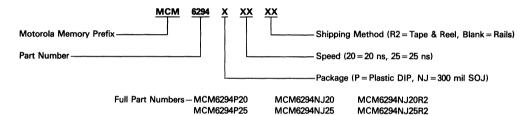
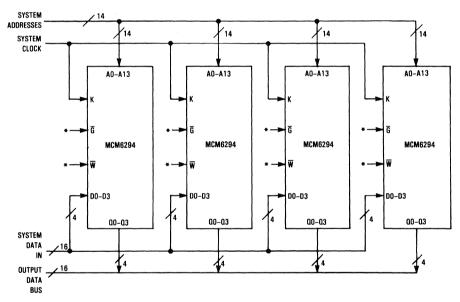



Figure 8. Output Enable Time versus Temperature

ORDERING INFORMATION (Order by Full Part Number)

APPLICATIONS INFORMATION


The Motorola family of synchronous SRAMs is designed to provide a performance and parts count advantage in applications such as writeable control stores, memory mapping, and cache memory. The on-board input registers eliminate the need for external latch chips in systems where addresses and data are not on the bus long enough to satisfy standard SRAM setup and hold times. Registers on the output port provide extended hold times independent of address or other device input changes to better meet system access requirements. The clock (K) input controls the operation of the input registers and output registers, and provides a direct means of synchronizing the SRAM to a system clock.

The MCM6294 offers registered output operation. On the

rising edge of the clock (K) signal, the output data for the previous cycle is latched until the next rising clock edge.

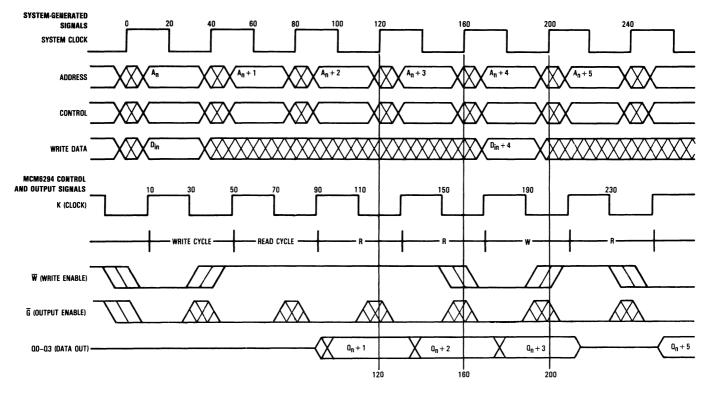

Figure 9 shows a typical system configuration using four MCM6294 chips. The system addresses are tied to the MCM6294s in parallel, while system data is distributed among the four input data ports of 4 bits each. Output data is tied to a separate output data bus to exploit the separate I/O configuration of the MCM6294. The clock (K) signal is a logical derivation of the system clock.

Figure 10 shows typical bus timing for the configuration of Figure 9. The system bus supplies address, data, and control signals, while accepting data from the memory on rising clock edges. In some applications, the clock (K) signal may need to be a delayed system clock to allow adequate address and data setup times.

*From read/write controller.

Figure 9. Typical Configuration for a 16-Bit Bus

- 1. The system supplies address, data, and control information and accepts data from memory on the rising edge of the system clock.
- 2. The memory clock is delayed 10 ns (for this example) to allow input information to propagate to the memory chips.

Figure 10. Pipeline System Timing

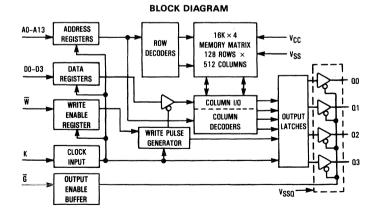
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

16K × 4 Bit Synchronous Static RAM with Transparent Outputs and Output Enable

The MCM6295 is a 65,536 bit synchronous static random access memory organized as 16,384 words of 4 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output latching onto a single monolithic circuit for reduced parts count implementation of cache data RAM and writeable control store applications. The MCM6295 is well suited for applications involving the MC68030, MC68040, and AMD29K microprocessors. It is ideal for burst mode or pipelined bus applications.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

The address (A0-A13), data (D0-D3), and write (\overline{W}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.


The MCM6295 provides transparent output operation when K is low for access of RAM data within the same cycle (output data is latched when K is high).

The output enable $(\overline{\mathbf{G}})$ provides asynchronous bus control for common I/O or bank switch applications.

Write operations are internally self-timed and initiated by the rising edge of the K input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

The MCM6295 is available in a 300-mil, 28-pin plastic DIP as well as a 300-mil, 28-pin plastic SOJ package.

- Single 5 V ± 10% Power Supply
- Fast Access and Cycle Times: 25/30 ns Max
- Address, Data Input, and W Registers On-Chip
- Transparent Output Latch for Access Within the Same Cycle
- Output Enable for Asynchronous Bus Control
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins
- High Board Density SOJ Package Available
- Typical Applications: General-Purpose Buffer Storage, Writeable Control Store, Data Cache, or Cache Tag

MCM6295

PIN ASSIGNMENT										
A5 E	1 •	28] v _{cc}							
A6 E	2	27	D A4							
A7 🛭	3	26	1 A3							
A8 E	4	25] A2							
A9 [5	24] A1							
A10 🛭	6	23	D AO							
A11 🛭	7	22	1 03							
A12 [8	21	D D2							
A13 🛭	9	20	1 03							
DO [10	19	1 02							
D1 [11	18] a1							
<u>ត</u> ្រ	12	17	þω							
K[13	16	ÞW							
v _{ss} E	14	15	v _{ssa} *							

*For proper operation of the device, both VSS and VSSQ must be connected to ground.

PIN NAMES
A0-A13 Address Inputs
W Write Enable
G Output Enable
D0-D3 Data Inputs
Q0-Q3 Data Outputs
K Clock Input
VCC +5 V Power Supply
VSS Ground
VSSQ Output Buffer Ground

TRUTH TABLE

G	w	Operation	Q0-Q3
х	L	Write	High Z
L	Н	Read	D _{out}
Н	Н	Output Disabled	High Z

NOTE: The value \overline{W} is a valid input for the setup and hold times relative to the K rising edge. The value \overline{G} is an asynchronous input.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=VSSQ=0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	V
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS=VSSO=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Input High Voltage	V _{IH}	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{lkg(l)}	_	±1.0	μΑ
Output Leakage Current (\$\overline{S}\$ = V _{IH} , V _{out} = 0 to V _{CC} , Outputs must be in high-Z)	llkg(O)	-	± 1.0	μΑ
AC Supply Current (G=V _{IL} , I _{out} =0 mA, Cycle Time≥t _{KHKH} min)	ICCA		140	mA
Output Low Voltage (I _{OL} = 12.0 mA)	VOL	_	0.4	V
Output High Voltage (IOH = -10.0 mA)	Voн	2.4	_	V

$\textbf{CAPACITANCE} \ \, (\text{f} = 1.0 \ \text{MHz}, \ \text{dV} = 3.0 \ \text{V}, \ T_{\mbox{\scriptsize A}} = 25^{\circ} \mbox{\scriptsize C}, \ \text{Periodically Sampled Rather Than 100\% Tested)}$

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	7	10	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output LoadSee Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE (See Note 1)

<u> </u>		Symbol	MCM6295-25		MCM6295-30		I	Ι
Parameter			Min	Max	Min	Max	Unit	Notes
Read Cycle Time		tKHKH	25	_	30	_	ns	2
Clock Access Time		tKHQV	-	25	_	30	ns	4, 6
Data Valid from Clock Low		tKLQV	_	10	_	13	ns	5, 6
Output Hold from Clock Low		tKLQX	0	_	0	-	ns	3, 6
Clock Low Pulse Width		^t KLKH	5	l –	5	_	ns	
Clock High Pulse Width		^t KHKL	5	_	5	_	ns	
Setup Times for:	A W	^t AVKH ^t WHKH	5	_	5	_	ns	7
Hold Times for:	A W	tKHAX tKHWX	3	_	3	_	ns	7
G High to Q High Z		tGHQZ	_	10	I -	13	ns	8
G Low to Q Active		tGLQX	0	_	0	_	ns	8
G Low to Q Valid		tGLQV	_	10	_	13	ns	

NOTES:

- 1. A read is defined by W high for the setup and hold times.
- 2. All read cycle timing is referenced from K or from \overline{G} .
- 3. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested.
- 4. For Read Cycle 1 timing, clock high pulse width <(tKHQV-tKLQV).
- 5. For Read Cycle 2 timing, clock high pulse width ≥(t_{KHQV}-t_{KLQV}).
- 6. K must be at a low level for outputs to transition.
- This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.
- 8. At any given voltage and temperature, t_{GHOZ} max is less than t_{GLOX} min, both for a given device and from device to device.

AC TEST LOADS

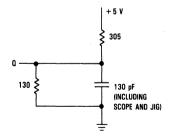


Figure 1A

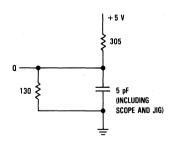
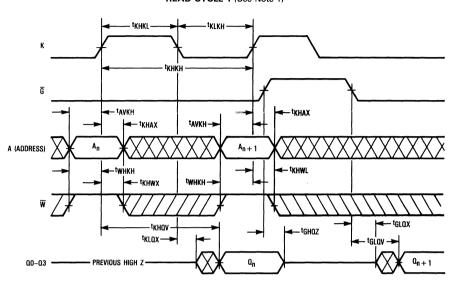
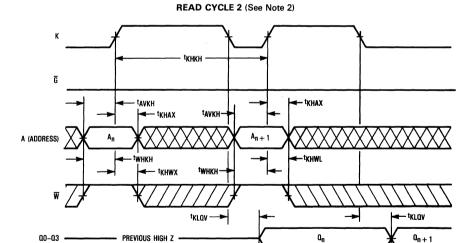
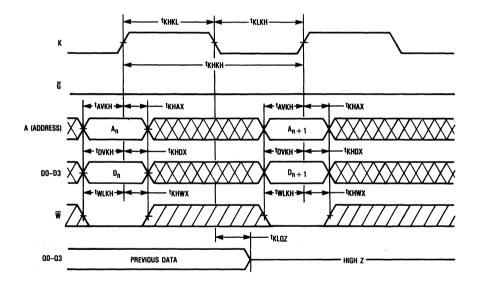




Figure 1B

READ CYCLE 1 (See Note 1)



- 1. For Read Cycle 1 timing, clock high pulse width < (t_{KHQV}-t_{KLQV}).
- 2. For Read Cycle 2 timing, clock high pulse width ≥(tKHQV-tKLQV).

WRITE CYCLE (W Controlled, See Note 1)

Parameter		0	MCM6295-25		MCM6295-30		Unit	
		Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time		tKHKH	25	_	30	_	ns	2
Clock Low to Output High Z ($\overline{W} = V_{ L}$)		tKLQZ	_	10	-	13	ns	3
G High to Q High Z		tGHQZ	_	10	_	13	ns	4
Setup Times for:	A W D	tavkh twlkh tdvkh	5	_	5	_	ns	5
Hold Times for:	A W D	^t KHAX ^t KHWX ^t KHDX	3	_	3	_	ns	5

- 1. A write is performed when $\overline{\mathbf{W}}$ is low for the specified setup and hold times.
- 2. All write cycle timing is referenced from K.
- 3. K must be at a low level for outputs to transition.
- 4. G becomes a don't care signal for successive writes after the first write cycle.
- 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

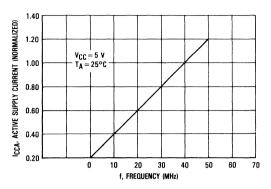


Figure 2. Active Supply Current versus Frequency

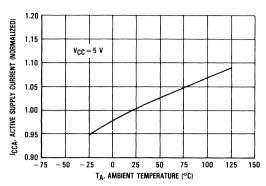


Figure 3. Active Supply Current versus Temperature

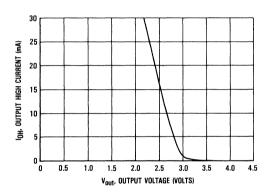


Figure 4. Output Source Current versus Output Voltage

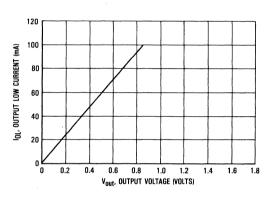


Figure 5. Output Sink Current versus Output Voltage

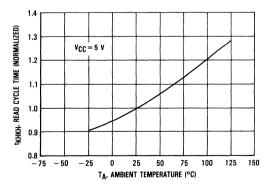


Figure 6. Read Cycle Time versus Temperature

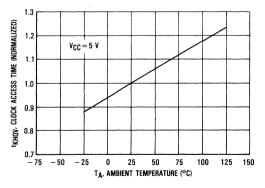


Figure 7. Clock Access Time versus Temperature

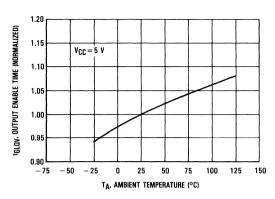
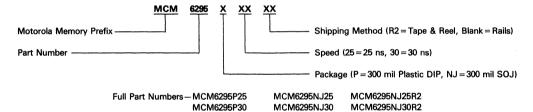
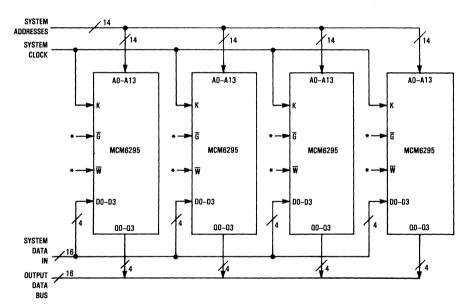



Figure 8. Output Enable Time versus Temperature

ORDERING INFORMATION (Order by Full Part Number)

9

APPLICATIONS INFORMATION


The Motorola family of synchronous SRAMs is designed to provide a performance and parts count advantage in applications such as writeable control stores, memory mapping, and cache memory. The on-board input registers eliminate the need for external latch chips in systems where addresses and data are not on the bus long enough to satisfy standard SRAM setup and hold times. Latches on the output port provide extended hold times independent of address or other device input changes to better meet system access requirements. The clock (K) input controls the operation of the input registers and output latches, and provides a direct means of synchronizing the SRAM to a system clock.

The MCM6295 offers transparent output operation, which allows output data access within the same tKHKH cycle. This feature lends itself well to applications requiring RAM data to

be set up on the system bus prior to the next rising clock edge. On the rising edge of the clock (K) signal, the output data for the previous cycle is latched until the next falling clock edge. When the clock (K) signal is low, the output is allowed to transition relative to the most recent rising clock (K) edge.

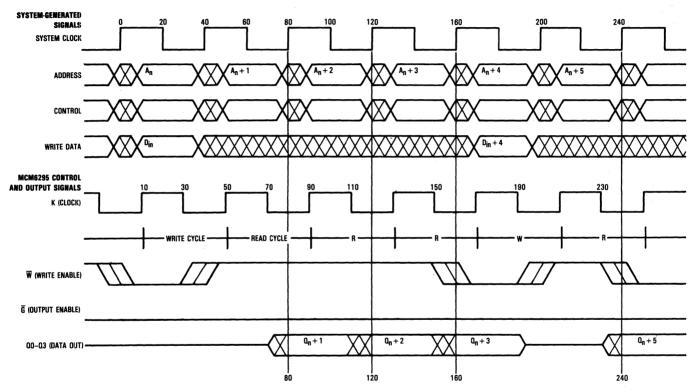

Figure 9 shows a typical system configuration using four MCM6295 chips. The system addresses are tied to the MCM6295s in parallel, while system data is distributed among the four input data ports of 4 bits each. Output data is tied to a separate output data bus to exploit the separate I/O configuration of the MCM6295. The clock (K) signal is a logical derivation of the system clock.

Figure 10 shows typical bus timing for the configuration of Figure 9. The system bus supplies address, data, and control signals, while accepting data from the memory on rising clock edges. In some applications, the clock (K) signal may need to be a delayed system clock to allow adequate address and data setup times.

^{*}From read/write controller.

Figure 9. Typical Configuration for a 16-Bit Bus

- 1. The system supplies address, data, and control information and accepts data from memory on the rising edge of the system clock.
- 2. The memory clock is delayed 10 ns (for this example) to allow input information to propagate to the memory chips.

Figure 10. Nonpipeline System Timing

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

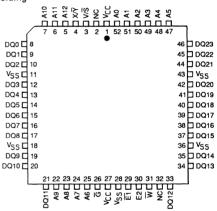
Product Preview DSPRAM™

8K×24 Bit Fast Static RAM

The MCM56824 is a 196,608 bit static random access memory organized as 8,192 words of 24 bits, fabricated using Motorola's high-performance silicongate CMOS technology. The device integrates an $8K \times 24$ SRAM core with multiple chip enable inputs, output enable, and an externally controlled single address pin multiplexer. These functions allow for direct connection to the Motorola DSP56001 Digital Signal Processor and provide a very efficient means for implementation of a reduced parts count system requiring no additional interface logic. This device can also be used as three $8K \times 8$ SRAMs by holding V/\overline{S} low.


The availability of multiple chip enable ($\overline{\text{E1}}$ and E2) and output enable ($\overline{\text{G}}$) inputs provides for greater system flexibility when multiple devices are used. With either chip enable input unasserted, the device will enter standby mode, which is useful in low-power applications. A single on-chip multiplexer selects A12 or X/\overline{Y} as the highest order address input depending upon the state of the V/\overline{S} control input. This feature allows one physical static RAM component to efficiently store program and vector or scalar operands. By connecting DSP56001 program memory select ($\overline{\text{PS}}$) to the VECTOR/SCALAR (V/\overline{S}) MUX control pin, such partitioning can occur with no additional components. This allows efficient utilization of the RAM resource regardless of operand type. Refer to the application diagrams at the end of this document for additional information.

Multiple power and ground pins have been utilized to minimize effects induced by output noise.


- Single 5 V ± 10% Power Supply
- Fast Access and Cycle Times: 25/30/35 ns Max
- Fully Static Read and Write Operations
- Equal Address and Chip Enable Access Times
- On-Chip Single Address Multiplexer
- Active High and Active Low Chip Enable Inputs
- Output Enable Controlled Three-State Outputs
- High Board Density PLCC Package
- Low-Power Standby Mode
- Fully TTL Compatible

DSPRAM is a trademark of Motorola, Inc.

MCM56824

PIN ASSIGNMENT

A0

Α1

V/S

-A11	Address Inputs
2,X/Y	Multiplexed Address
SA	ddress Multiplexer Control

PIN NAMES

 $\begin{array}{cccc} \overline{W} & & & & \text{Write Enable} \\ \overline{E1}, E2 & & & \text{Chip Enable} \\ \overline{G} & & & \text{Output Enable} \\ DQ0-DQ23 & & \text{Data Input/Output} \\ VCC & & +5 \text{ V Power Supply} \\ VSS & & & \text{Ground} \\ NC & & & \text{No Connection} \\ \end{array}$

For proper operation of the device, all VSS pins must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM V/S χ⁄ү . A12 VCC 2 TO 1 MUX **MEMORY ARRAY** A0 VSS ROW DECODER 512 ROWS X 384 COLUMNS **A5** A10 A11 . . . DQ0 DATA COLUMN I/O CONTRO DQ23 Ēī E2 COLUMN DECODER (LSB) (MSB)

TRUTH TABLE

E1	E2	Ğ	W	V/S	Mode	Supply Current	I/O Status
Н	Х	Х	Х	Х	Not Selected	ISB	High-Z
Х	L	Х	Х	Х	Not Selected	ISB	High-Z
L	Н	Н	Н	Х	Output Disable	Icc	High-Z
L	Н	L	Н	Н	Read Using X/\overline{Y}	Icc	Data Out
L	Н	L	Н	L	Read Using A12	lcc	Data Out
L	Н	Х	L	Н	Write Using X/Y	lcc	Data In
L	Н	Х	L	L	Write Using A12	lcc	Data In

NOTE: X = don't care.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0 V)

ABSOLUTE MAXIMUM RATIN			
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to 7.0 V	V
Voltage Relative to VSS	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation ($T_A = 70^{\circ}C$, $V_{CC} = 5 \text{ V}$, $t_{AVAV} = 50 \text{ ns}$)	PD	1.25	w
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOM-MENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is assumed to be in a test socket or mounted on a printed circuit board with at least 300 LFPM of transverse air flow being maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0$ V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	v _{cc}	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	3.0	V _{CC} + 0.3	V
Input Low Voltage	VIL	− 0.5 *	0.0	0.8	V

 V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	llkg(l)	_	± 1.0	μΑ
Output Leakage Current ($\overline{G} = V_{IH}$, $\overline{E1} = V_{IH}$, $E2 = V_{IL}$, $V_{out} = 0$ to V_{CC})	ICCA m			
AC Supply Current $(\overline{G}=V_{ H }, \overline{E1}=V_{ L }, E2=V_{ H }, I_{out}=0 \text{ mA},$ All Other Inputs = $V_{ L }=0.0 \text{ V or } V_{ H }=3.0 \text{ V})$ MCM56824-25: Cycle Time \geqslant 25 ns MCM56824-35: Cycle Time \geqslant 30 ns MCM56824-35: Cycle Time \geqslant 35 ns	ICCA	kg(O) — ±1.0 μA CCA		
Standby Current (E1 = V _{IH} , E2 = V _{IL} , All Inputs = V _{IL} or V _{IH})	ISB1		15	mA
CMOS Standby Current ($\overline{E1}$ \geqslant V _{CC} $-$ 0.2 V, E2 \leqslant 0.2 V, All Inputs \geqslant V _{CC} $-$ 0.2 V or \leqslant 0.2 V)	I _{SB2}	_	10	mA
Output Low Voltage (I _{OL} = +8.0 mA)	VOL		0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	V _{OH}	2.4	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Typical	Max	Unit	
Input Capacitance	All Pins Except DQ0-DQ23	C _{in}	4	6	pF
Input/Output Capacitance	DQ0-DQ23	C _{I/O}	6	8	pF

AC TEST LOADS

MOTOROLA MEMORY DATA

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

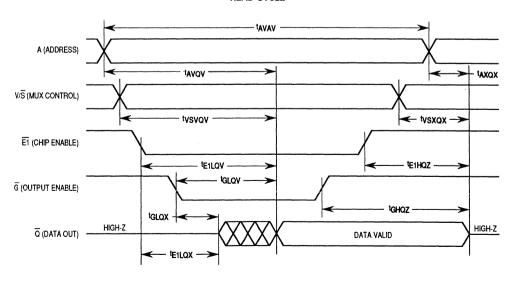
Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE TIMING (See Notes 1, 2, 3)

D	Symbol		MCM56824-25		MCM56824-30		MCM56824-35		Unit	Notes
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	25		30	_	35		ns	
Address Access Time	tAVQV	tAA	_	25	_	30	_	35	ns	
MUX Control Valid to Output Valid	tvsvqv	tAA	_	25	_	30	_	35	ns	
Chip Enable to Output Valid	tE1LQV tE2HQV	tAC1 tAC2	_	25	_	30	_	35	ns	4
Output Enable to Output Valid	tGLQV	[†] OE		12		15		15	ns	
Output Active from Chip Enable	tE1LQX tE2HQX	tCLZ	2	_	2	_	2	_	ns	4, 5
Output Active from Output Enable	tGLQX	tOLZ	2		2	_	2	_	ns	5
Output Hold from Address Change	tAXQX	tОН	5	_	5	_	5	_	ns	
Output Hold from MUX Control Change	tvsxqx	tvsoh	5	_	5	_	5	_	ns	
Chip Enable to Output High Z	^t E1HQZ ^t E2LQZ	tCHZ	0	12	0	15	0	15	ns	4, 5
Output Enable High to Output High Z	tGHQZ	tOHZ	0	12	0	15	0	15	ns	5

NOTES:

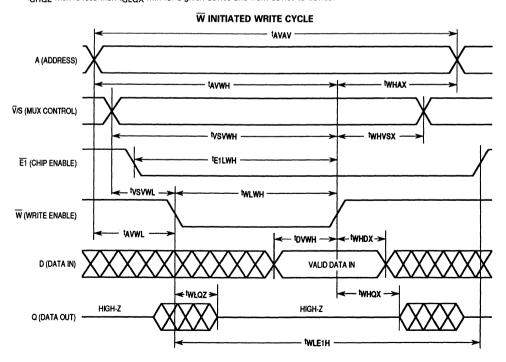
1. A read cycle is defined by \overline{W} high.


2. All read cycle timings are referenced from the last <u>valid</u> address or V/\overline{S} transition to the first address or V/\overline{S} transition.

3. Addresses and V/\overline{S} valid prior to or coincident with $\overline{E1}$ going low or $\overline{E2}$ going high.

4. $\overline{E1}$ in the timing diagrams represents both $\overline{E1}$ and $\overline{E2}$ with $\overline{E1}$ asserted low and $\overline{E2}$ asserted high.

5. Transition is measured \pm 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% to the first address of $\overline{E1}$ and $\overline{E2}$ as $\overline{E1}$ and $\overline{E2}$ as $\overline{E2}$. tested. At any given voltage and temperature, tE1HQZ max is less than tE1LQX min, tE2LQZ max is less than tE1HQX min, and tGHQZ max is less than tGLQX min for a given device and from device to device.

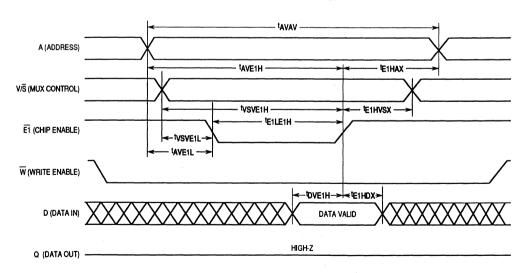

READ CYCLE

WRITE CYCLE TIMING, WRITE ENABLE INITIATED (See Note 1)

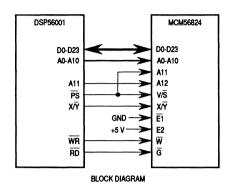
D	Syn	nbol	MCM56824-25		MCM56824-30		MCM56824-35		Unit	Notes
Parameter	Standard Alternate		Min	Max	Min Max		Min Max		Unit	
Write Cycle Time	tAVAV	twc	25		30	_	35	_	ns	
Address Setup Time	tAVWL	tAS	0	_	0	_	0	_	ns	2
MUX Control Setup Time	tvsvwl	tvss	0	_	0	_	0	_	ns	
Address Valid to End of Write	tAVWH	tAW	20	_	25	_	30	_	ns	
MUX Control Valid to End of Write	tvsvwh	tvsw	20	_	25	_	30	_	ns	
Write Pulse Width	tWLWH	tWP	15	_	18	_	20	_	ns	3
Write Enable to Chip Enable Disable	tWLE1H tWLE2L	tCW	15	_	18	_	20	_	ns	3, 4
Chip Enable to End of Write	tE1LWH tE2HWH	tCW	15	_	18	_	20	-	ns	3, 4
Data Valid to End of Write	tDVWH	tDW	10	_	12		15	_	ns	
Data Hold Time	tWHDX	tDH	0	_	0	_	0		ns	5
Write Recovery Time	tWHAX	twr	0		0	_	0		ns	2
MUX Control Recovery Time	twhvsx	tvsr	0	_	0		0	_	ns	
Write High to Output Low Z	tWHQX	tow	2	_	2	_	2		ns	6
Write Low to Output High Z	tWLQZ	tWHZ	0	12	0	15	0	15	ns	6

- A write cycle starts at the latest transition of \$\overline{E1}\$ low, \$\overline{W}\$ low, or \$E2\$ high. A write cycle ends at the earliest transition of \$\overline{E1}\$ high, \$\overline{W}\$ high, or \$\overline{E2}\$ low.
- Write must be high for all address and V/S transitions.
 If W goes low coincident with or prior to E1 low or E2 high the outputs will remain in a high-impedance state.
 E1 in the timing diagrams represents both E1 and E2 with E1 asserted low and E2 asserted high.
- 5. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.
- 6. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This prameter is sampled and not 100% tested. At any given voltage and temperature, te1HQZ max is less than te1LQX min, te2LQZ max is less than te2HQX min, and tGHQZ max is less than tGLQX min for a given device and from device to device.

WRITE CYCLE TIMING, CHIP ENABLE INITIATED (See Note 1)

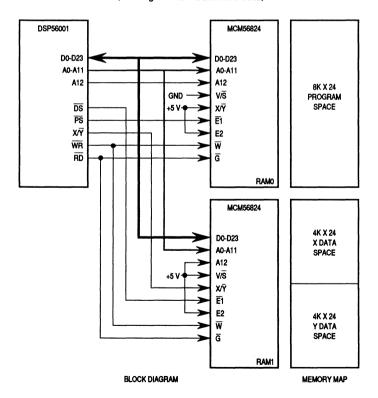

D	Syn	Symbol		MCM56824-25		MCM56824-30		6824-35	Unit	Notes
Parameter	Symbol Alternate		Min	Min Max		Min Max		Max	Unit	
Write Cycle Time	tAVAV	tWC	25	_	30	_	35	_	ns	
Address Setup Time	^t AVE1L ^t AVE2H	^t AS	0	_	0	_	0	_	ns	2
MUX Control Setup Time	tVSVE1L tVSVE2H	tvss	0	. —	0		0	_	ns	2
Address Valid to End of Write	tAVE1H tAVE2L	tsw	20	_	25	_	30		ns	2
MUX Control Valid to End of Write	tVSVE1H tVSVE2L	tvsw	20		25	_	30	_	ns	2
Chip Enable to End of Write	tE1LE1H tE2HE2L	tCW	15	_	18		20	_	ns	2, 3
Data Valid to End of Write	^t DVE1H ^t DVE2L	tDW	10	_	12	_	15	_	ns	2
Data Hold Time	tE1HDX tE2LDX	[†] DH	0	_	0	_	0		ns	2, 4
Write Recovery Time	tE1HAX tE2LAX	tWR	0	_	0	_	0	_	ns	2
MUX Control Recovery Time	tE1HVSX tE2LVSX	tvsr	0	_	0		0	_	ns	2

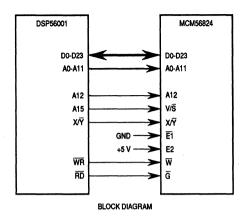
NOTES:

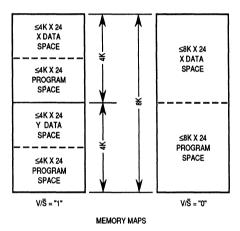

- IOIES:
 A write cycle starts at the latest transition of E1 low, W low, or E2 high. A write cycle ends at the earliest transition of E1 high, W high, or E2 low.
 E1 in the timing diagrams represents both E1 and E2 with E1 asserted low and E2 asserted high.
 If W goes low coincident with or prior to E1 low or E2 high the outputs will remain in a high-impedance state.
 During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at the control of the output state.

- this time.

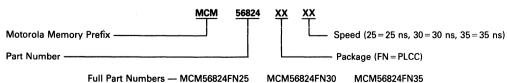
E1 OR E2 INITIATED WRITE CYCLE


DSP56001/MCM56824 One-Chip Memory Solution (4K Program/2K X-Data/2K Y-Data)


2K X 24 X DATA	
SPACE	_
2K X 24	
PROGRAM SPACE	
2K X 24	-
Y DATA	
SPACE	
2K X 24 PROGRAM	
SPACE	
	-


MEMORY MAP

DSP56001/MCM56824 Two-Chip Memory Solution (8K Program/4K X-Data/4K Y-Data)


NOTE: E2 may be connected to a DSP56001 high-order address bit to eliminate internal/external memory overlap.

The DSPRAM may be dynamically repartitioned by connecting DSP56001 address A15 to V/\overline{S} . This allows for software control of the relative sizes of the program and X and/or Y data spaces.

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

32K × 9 Bit Synchronous Dual I/O Fast Static RAM with Parity Checker

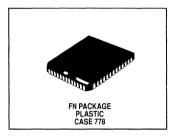
The MCM62110 is a 294,912 bit synchronous static random access memory organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 32K x 9 SRAM core with advanced peripheral circuitry consisting of address registers, two sets of input data registers, two sets of output latches, active high and active low chip enables, and a parity checker. The RAM checks odd parity during RAM read cycles. The data parity error $(\overline{\rm DPE})$ output is an open drain type output which indicates the result of this check. This device has increased output drive capability supported by multiple power pins. In addition, the output levels can be either 3.3 V or 5 V TTL compatible by choice of the appropriate output bus power supply.

The device has both asynchronous and synchronous inputs. Asynchronous inputs include the processor output enable ($\overline{\text{POE}}$), system output enable ($\overline{\text{SOE}}$),

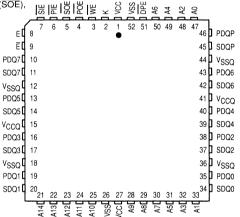
and the clock (K).

The address (A0–A14) and chip enable ($\overline{E1}$ and E2) inputs are synchronous and are registered on the falling edge of K. Write enable (\overline{W}), processor input enable ($\overline{P1E}$) and system input enable ($\overline{S1E}$) are registered on the rising edge of K. Writes to the RAM are self-timed.

All data inputs/outputs, PDQ0–PDQ7, SDQ0–SDQ7, PDQP, and SDQP have input data registers triggered by the rising edge of the clock. These pins also have three-state output latches which are transparent during the high level of the clock and latched during the low level of the clock.


This device has a special feature which allows data to be passed through the RAM between the system and processor ports in either direction. This streaming is accomplished by latching in data from one port and asynchronously output enabling the other port. It is also possible to write to the RAM while streaming.

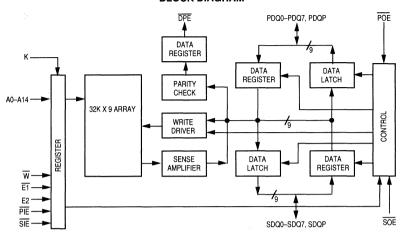
Additional power supply pins have been utilized for maximum performance. The output buffer power (V_{CCQ}) and ground pins (V_{SSQ}) are electrically isolated from V_{SS} and V_{CC} , and supply power and ground only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state thereby allowing simplified transmission line terminations.


The MCM62110 will be available in a 52 pin plastic leaded chip carrier (PLCC). This device is ideally suited for pipelined systems and systems with multiple data buses and multiprocessing systems, where a local processor has a bus isolated from a common system bus.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V \pm 10% Power Supplies for Output Level Compatibility
- Fast Access and Cycle Times: 15/20 ns Max
- · Self-Timed Write Cycles
- · Clock Controlled Output Latches
- · Address, Chip Enable, and Data Input Registers
- · Common Data Inputs and Data Outputs
- Dual I/O for Separate Processor and Memory Buses
- Separate Output Enable Controlled Three-State Outputs
- Odd Parity Checker during Reads
- Open Drain Output on Data Parity Error (DPE) Allowing Wire-ORing of Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- · High Board Density 52 Lead PLCC Package
- Active High and Low Chip Enables for Easy Memory Depth Expansion

MCM62110

PIN ASSIGNMENT


PIN NAMES

A0-A14 Address Inputs
K Clock Input
W Write Enable
E1 Active Low Chip Enable
E2 Active High Chip Enable
PIE Processor Input Enable
SIE System Input Enable
POE Processor Output Enable
SOE System Output Enable
DPE Data Parity Error
PDQ0-DPQ7 Processor Data I/O
PDQP Processor Data Parity
SDQ0-SDQ7 System Data I/O
SDQP System Data Parity
V _{CC} + 5 V Power Supply
VCCQ Output Buffer Power Supply
VSSQ Output Buffer Ground
V _{SS} Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

FUNCTIONAL TRUTH TABLE (See Notes 1 and 8)

w	PIE	SIE	POE	SOE	Mode	Memory Subsystem Cycle	PDQ0-PDQ7, PDQP Output	SDQ0-SDQ7, SDQP Output	DPE	Notes
1	1	1	0	1	Read	Processor Read	Data Out	High-Z	Parity Out	2, 3
1	1	1	1	0	Read	Copy Back	High-Z	Data Out	Parity Out	2, 3
1	1	1	0	0	Read	Dual Bus Read	Data Out	Data Out	Parity Out	2,3
1	0	0	Х	х	N/A	NOP	High-Z	High-Z	1 .	4
1	Х	Х	1	1 .	Read	NOP	High-Z	High-Z	1	
0	0	0	Х	×	N/A	NOP	High-Z	High-Z	1	4
0	0	1	1	1	Write	Processor Write Hit	Data In	High-Z	1	5
0	1	0	1	1	Write	Allocate	High-Z	Data In	1	
0	0	1	1	0	Write	Write Through	Data In	Stream Data	1	6
0	1	0	0	1	Write	Allocate With Stream	Stream Data	Data In	1	6
1	0	1	1	0	N/A	Cache Inhibit Write	Data In	Stream Data	1	.6
1	1	0	0	1	N/A	Cache Inhibit Read	Stream Data	Data In	1	6
0	1	. 1	Х	×	N/A	NOP	High-Z	High-Z	1	4
Х	0	1	0	0	N/A	Invalid	Data In	Stream	1	7
х	0	1	0	1	N/A	Invalid	Data In	High-Z	1	7
Х	1	0	0	0	N/A	Invalid	Stream	Data In	1	7
Х	1	0	1	0	N/A	Invalid	High-Z	Data In	1	7

- 1. A '0' represents an input voltage ≤ V_{IL} and a '1' represents an input voltage ≥ V_{IH}. All inputs must satisfy the specified setup and hold times for the falling or rising edge of K. Some entries in this truth table represent latched values. This table assumes that the chip is selected (i.e., E1 = 0 and E2 = 1) and V_{CC} current is equal to I_{CCA}. If this is not true, the chip will be in standby mode, the V_{CC} current will equal I_{SB1} or I_{SB2} DPE will default to 1 and all RAM outputs will be in High-Z. Other possible combinations of control inputs not covered by this note or the table above are not supported and the RAMs behavior is not specified.
- 2. A read cycle is defined as a cycle where data is driven on the internal data bus by the RAM.
- 3. DPE is registered on the rising edge of K at the beginning of the following clock cycle
- 4. No RAM cycle is performed.
- A write cycle is defined as a cycle where data is driven onto the internal data bus through one of the data I/O ports (PDQ0-PDQ7 and PDQP or SDQ0-SDQ7 and SPDQ), and written into the RAM.
- 6. Data is driven on the internal data bus by one I/O port through its data input register and latched into the data output latch of the other I/O port.
- 7. Data contention will occur.
- 8. If either IE signal is sampled low on the rising edge of clock, the corresponding OE is a don't care, and the corresponding outputs are High-Z.

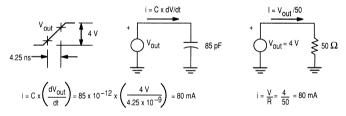
PARITY CHECKER

Parity Scheme	DPE
E1 = VIH and/or E2 = VIL	1
RAMP = RAM0 ⊕ RAM1 ⊕ ⊕ RAM7	1
RAMP ≠ RAM0 ⊕ RAM1 ⊕ ⊕ RAM7	0

NOTE: RAMP, RAMO, RAMO..., refer to the data that is present on the RAMs internal bus, not necessarily data that resides in the RAM array. DPE is always delayed one clock, and is registered on the rising edge of K at the beginning of the following clock cycle (see AC CHARACTERISTICS).

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = V_{SSQ} = 0 \text{ V}$)

Rating	Symbol	Value	Unit					
Power Supply	Vcc	- 0.5 to 7.0	V					
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	-0.5 to $V_{CC} + 0.5$	V					
Output Current (per I/O)	lout	± 20	mA					
Power Dissipation (T _A = 70°C)	PD	1.2	w					
Temperature Under Bias	T _{bias}	- 10 to + 85	°C					
Operating Temperature	TA	0 to + 70	°C					
Storage Temperature	T _{stg}	- 55 to + 125	°C					


NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

CAPACITIVE LOAD EQUIVALENT RESISTANCE

85 pF load is equivalent to a 50 Ω termination

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = V_{SSQ} = 0 \text{ V}$)

Parameter	Symbo	l Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	V _{CC}	4.5	5.0	5.5	V
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0	5.5 3.6	V
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	VIL	-0.5*	0.0	0.8	٧

^{*} V_{IL} (min) = 3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	_	± 1.0	μА
Output Current (G = V _{IH})	l _{lkg(O)}		_	± 1.0	μА
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ICCA	_	220 200	250 250	mA
TTL Standby Current (V _{CC} = Max, $\overline{E1}$ = V _{IH} or E2 = V _{IL})	I _{SB1}	_		40	mA
CMOS Standby Current (V_{CC} = Max, f = 0 MHz, $\overline{E1}$ = V_{IH} or E2 = V_{IL} , $V_{in} \le V_{SS} + 0.2 \text{ V or } \ge V_{CC} - 0.2 \text{ V}$)			_	30	mA
Output Low Voltage (I _{OL} = + 8.0 mA, $\overline{\text{DPE}}$: I _{OL} = +32.0 mA)	V _{OL}	_	_	0.4	٧
Output High Voltage (I _{OH} = - 4.0 mA)	V _{OH}	2.4		_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, $T_A = 25$ °C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (all Pins Expect I/Os)	C _{in}	4	6	pF
Input/Output Capacitance (PDQ0-PDQ7, SDQ0-SDQ7, PDQP, SDQP)	C _{I/O}	8	10	pF
Data Parity Error Output Capacitance (DPE)	C _{out(DPE)}	6	7	pF

AC TEST LOADS

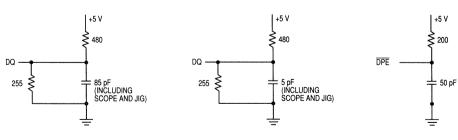


Figure 1A Figure 1B Figure 1C

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted)}$

 Input Timing Measurement Reference Level
 1.5 V

 Input Pulse Levels
 0 to 3.0 V

 Input Rise/Fall Time
 3 ns

Output Measurement Timing Level

Output Load

See Figure 1A Unless Otherwise Noted

Output Load

Output Load

See Figure 1A Unless Otherwise Noted

Output Load

Output Load

Output Load

Output Load

Output Load

See Figure 1A Unless Otherwise Noted

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

Output Load

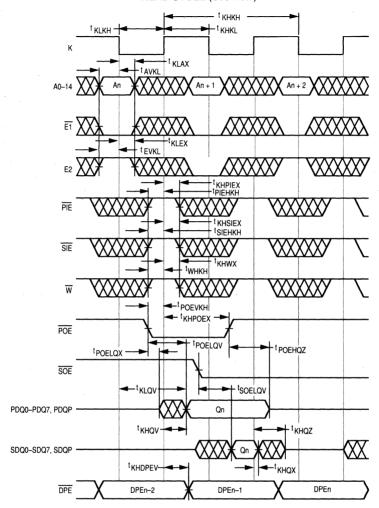
Output Load

Output Load

Output Load

Output Load

Output Load

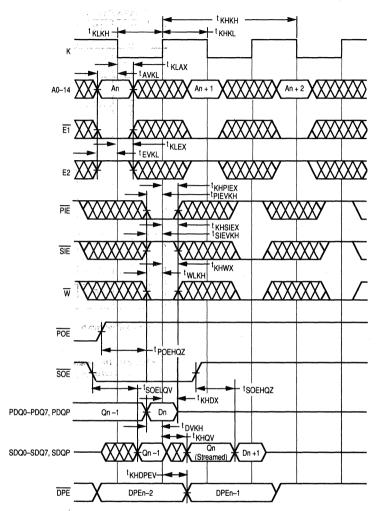

Output Load

Read Cycle (See Note 1)

			MCM62110-15		MCM62110-20			
Parameter		Symbol Mir	Min	Max	Min	Max	Unit	Notes
Read Cycle Time Clock High to Clock High		^t KHKH	15	_	20	_	ns	2
Clock Low Pulse Width		†KLKH	5	_	5		ns	
Clock High Pulse Width		†KHKL	7		7	l –	ns	
Clock Access Time Clock Low to Output Valid		†KLQV	T -	15	_	20	ns	3, 4
Clock High to DPE Valid		tKHDPEV	_	8	T -	10	ns	5
Clock High to Output Valid		^t KHQV	T	8	T -	10	ns	4, 6
Output Hold from Clock High		^t KHQX	2	_	2	_	ns	4, 7
Clock High to Q High-Z (E1 or E2 = False)		tKHQZ	T -	8		10	ns	7
Setup Times:	A W E1, E2 PIE SIE POE SOE	tavkl twhkh tevkl tpiehkh tsiehkh tpoevkh tsoevkh	3	_	3	_	ns	8 8
Hold Times:	A W E1, E2 PIE SIE POE SOE	†KLAX †KHWX †KLEX †KHPIEX †KHSIEZ †KHPOEX †KHSOEX	2		2		ns	8 8
Output Enable High to Q High-Z		[†] POEHQZ [†] SOEHQZ	0	8	0	9	ns	7
Output Enable Low to Q Active		[†] POELQX [†] SOELQX	0	_	0	_	ns	7
Output Enable Low to Output Valid		[†] POELQV [†] SOELQV	_	6	_	8	ns	

- 1. A read is defined by \overline{W} high for the setup and hold times.
- 2. All read cycle timing is referenced from K, SOE, or POE.
- 3. For Read Cycle 1 timing, clock low pulse width $< (t_{KLQV} t_{KHQV})$.
- 4. K must be at a high level for outputs to transition.
- 5. DPE is valid exactly one clock cycle after the output data is valid.
- 6. For Read Cycle 2 timing, clock low pulse width \geq (t_{KLQV} t_{KHQV}).
- 7. Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} is less than t_{KHQX}, t_{POEHQZ} is less than t_{POELQX} for a given device, and t_{SOEHQZ} is less than t_{SOELQX} for a given device.
- 8. These read cycle timings guarantee proper parity operation.

READ CYCLE (See Note)

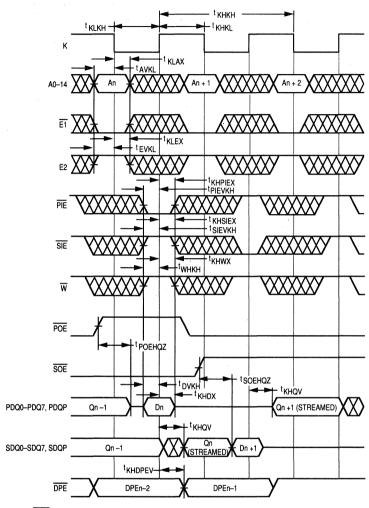

NOTE: DPE is valid exactly one clock cycle after the output data is valid.

WRITE CYCLE (See Note 1)

		MCM6	2110-15	MCM62	2110-20		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	^t KHKH	15	_	20	_	ns	2
Clock Low Pulse Width	^t KLKH	5	_	5	_	ns	
Clock High Pulse Width	tKHKL.	_	7	_	7	ns	
Clock High to DPE Valid	^t KHDPEV	_	8	_	10	ns	3
Clock High to Output High-Z ($\overline{W} = V_{IL}$ and $\overline{SIE} = \overline{PIE} = V_{IH}$)	^t KHQZ		8	_	10	ns	4, 5
Setup Times: $ \frac{A}{W} $ $ E1, E2, \\ E2, E3, \\ E3, E4, E4, E5, E6, E7, E7, E7, E7, E7, E7, E7, E7, E7, E7$	[†] AVKL [†] WLKH [†] EVKL [†] PIEVKH [†] SIEVKH [†] DVKH	3	_	3	_	ns	
Hold Times: $ \frac{A}{W} $ $\overline{\text{E1}}, \text{E2} $ $\overline{\text{PIE}} $ $\overline{\text{SIE}} $ $\text{SDQ0-SDQ7}, \text{SDQP}, \text{PDQ0-PDQ7}, \text{PDQP} $	[†] KLAX [†] KHWX [†] KLEX [†] KHPIEX [†] KHSIEX [†] KHDX	2	_	2	_	ns	
Write with Streaming (PIE = SOE = V _{IL} or SIE = POE = V _{IL}) Clock High to Output Valid	^t KHQV	_	8	_	8	ns	6

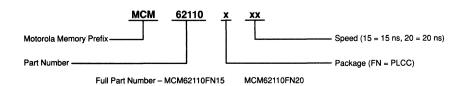
- 1. A write is performed with $\overline{W} = V_{|L}$, $\overline{E1} = V_{|L}$, $\overline{E2} = V_{|H}$ for the specified setup and hold times and either $\overline{PIE} = V_{|L}$ or $\overline{SIE} = V_{|L}$. If both $\overline{PIE} = V_{|L}$ and $\overline{SIE} = V_{|L}$ or $\overline{PIE} = V_{|H}$ and $\overline{SIE} = V_{|H}$, then this is treated like a NOP and no write is performed.
- 2. All write cycle timings are referenced from K.
- 3. DPE is valid exactly one clock cycle after the data is written.
- 4. K must be at a high level for the outputs to transition.
- Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHQZ} is less than t_{KHQX} for a given device.
- 6. A write with streaming is defined as a write cycle which writes data from one data bus to the array and outputs the same data onto the other data

WRITE CYCLE (See Note)


NOTE: $\overline{\text{DPE}}$ is valid exactly one clock cycle after the output data is written.

STREAM CYCLE (See Note 1)

		мсм6	2110-15	MCM6	2110-20		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Stream Cycle Time	tKHKH	15	_	20	_	ns	2
Clock Low Pulse Width	tKLKH	5	_	5	_	ns	
Clock High Pulse Width	tKHKL	7	_	7		ns	
Stream Access Time	tKHQV	_	8	_	8	ns	
Clock High to DPE Valid	tKHDPEV	_	8	_	10	ns	3
Setup Times: A W E1, E2 PIE PIE SIE SDQ0-SDQ7, SDQP, PDQ0-PDQ7, PDQP	tavkl twhkh tevkl tpievkh tsievkh tdvkh	3	_	3		ns	
Hold Times: A W E1, E2 PIE SIE SDQ0-SDQ7, SDQP, PDQ0-PDQ7, PDQP	[†] KLAX [†] KHWX [†] KLEX [†] KHPIEX [†] KHSIEX [†] KHDX	2	_	2	_	ns	
Output Enable High to Q High-Z	[†] POEHQZ [†] SOEHQZ	0	8	0	9	ns	4
Output Enable Low to Q Active	†POELQX †SOELQX	0	_	0	_	ns	4
Output Enable Low to Output Valid	[†] POELQV [†] SOELQV	_	6	_	8	ns	


- 1. A stream cycle is defined as a cycle where data is passed from one data bus to the other data bus.
- 2. All stream cycle timing is referenced from ${\sf K}.$
- 3. $\overline{\text{DPE}}$ is valid exactly one clock cycle after the data outputs are valid.
- 4. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, tpoehqz is less than tpoehqz is less than tsoehqz is less than tkhqz is less than tkhqz for a given device.

STREAM CYCLE (See Note)

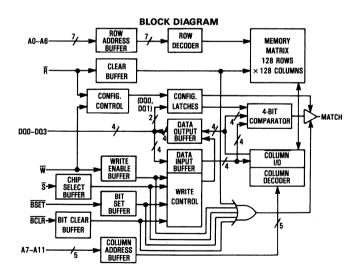
NOTE: DPE is valid exactly one clock cycle after the output data is valid.

ORDERING INFORMATION (Order by Full Part Number)

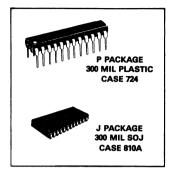
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

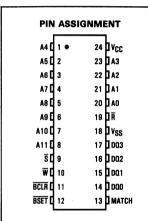
4K × 4 Bit Cache Address Tag Comparator

with System Status Bit Functions


The MCM62350 is a 16,384 bit cache address tag comparator organized as 4096 tags of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 4K×4 SRAM core, an on-board comparator, and special pin functions for tag valid and system status bit applications. These functions allow easy interface to the MC68020 and MC68030 microprocessors, or any other environment where efficient implementation of external cache memory is required. The MCM62350 is available in 24 lead plastic DIP and SOJ packages.

The device has a reset (\overline{R}) pin for flash clear of the RAM within two minimum cycles. This function is useful for system initialization. Individual bits within a tag field can be set or cleared via the BSET and BCLR control input pins for valid bit updates.


The MCM62350 has two configurable comparator modes. The comparator can be configured as standard XNOR (exclusive NOR) for address tag comparison, or AOI (AND-OR-Invert) for determining whether specific bits in the 4-bit word are set (for system status bit applications). In addition, the MATCH output can be programmed as true high or true low for potential logic delay savings. The configuration of these modes is accomplished by performing a write cycle with the \overline{R} pin held low.


- Single 5 V ± 10% Power Supply
- Fast Address to MATCH Time;
- Fast Data to MATCH Time:
- 20/22/25 ns max 10/10/12 ns max
- Fast Read of Tag RAM Contents: 22/25/30 ns max
- Flash Clear of the Tag RAM
- Programmable Active Output Level of MATCH
- Bit Manipulation of Tags via BSET and BCLR Writes
- Configurable Comparator Modes:

XNOR Mode for Address Tag Comparison AOI Mode for System Valid Bit Comparison

MCM62350

PIN NAMES					
A0-A11 Address Inputs					
W Write Enable					
S Select					
BCLRBit Clear Control Input					
BSET Bit Set Control Input					
R Reset (Flash Clear) Input					
MATCH MATCH (Hit) Output					
DQ0-DQ3 Data Input/Output					
VCC +5 V Power Supply					
VSS Ground					

9

SIGNAL DESCRIPTIONS

A0-A11-ADDRESS INPUTS

The address lines are used for indexing into the tag RAM portion of the chip.

DQ0-DQ3-DATA INPUT/OUTPUT

The data lines are used as input for compare, write, and configuration cycles, and as output for read cycles.

BSET-BIT SET CONTROL INPUT

This control signal is used for ORing data into the tag RAM during BSET write cycles. Independent bits within the tag can be set using the appropriate mask, as indicated in the bit set truth table. The BSET input can also be used to initiate a read cycle.

BCLR-BIT CLEAR CONTROL INPUT

This control signal is used for ANDing the complement of data into the tag RAM during BCLR write cycles. Independent bits within the tag can be cleared using the appropriate mask,

as indicated in the bit clear truth table. The \overline{BCLR} input can also be used to initiate a read cycle (note that at least one of the $\overline{BSET/BCLR}$ signals must be asserted to trigger a read cycle).

R-RESET (FLASH CLEAR) INPUT

The reset control signal is used to initiate a clear cycle or a configuration cycle.

S-CHIP SELECT

This control signal is used to chip select the device.

W-WRITE ENABLE

The write enable signal is used to initiate write cycles.

MATCH-MATCH (HIT) OUTPUT

This output signal is used to indicate a match of DQ0-DQ3 inputs with the contents of the tag RAM addressed by A0—A11.

FUNCTIONAL TRUTH TABLE

Ē	W	BCLR	BSET	R	DQ0-DQ3	MATCH	Cycle
L	Н	Н	Н	Н	Compare Din	Valid	Compare
L	н	L	Х	н	Read Dout	Assert	Read
L	Н	Х	L	н	Read Dout	Assert	Read
L	L	н	н	н	Write Din	Assert	Write
L	L	L	н	н	Bit Clear Mask	Assert	BCLR Write
L	L.	н	L	н	Bit Set Mask	Assert	BSET Write
X	н	Х	Х	L	High-Z	Assert	Clear (Reset)
L	L	х	Х	L	Config Din*	Assert	Configuration
, H	X	X	Х	н	High-Z	Assert	Deselect

^{*}DQ2 and DQ3 are don't cares during a configuration cycle.

COMPARATOR BEHAVIORAL TABLE

Туре	DQ0	DQ1	DQ2	DQ3	RAMQ0	RAMQ1	RAMQ2	RAMQ3	MATCH
XNOR	0.0	Q1	02	03	0.0	Q1	02	0.3	1
XNOR	<u>00</u> 0	Q1	02	03	Ω0	Q1	02	03	0
AOI	0.00	Q1	02	0.3	0.0	Q1	02	03	1
AOI	L	Q1	02	0.3	х	Q1	02	03	1
AOI	Н	Q1	02	03	L	Q1	02	0.3	0

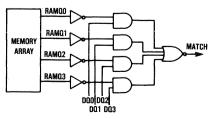
L = Low H = High 0 = False 1 = True X = Don't Care

BIT CLEAR TRUTH TABLE (See Note)

Data In	Initial Stored Data	Final Stored Data	
0	0	0	Bit
0	1	1	Unchanged
1	0	0	Bit Cleared
1	1	0	to "Zero"

NOTE: These tables reflect the behavior of single bit positions.

The four bits in the tag can all be set or cleared in tandem,
or bits within the tag can be independently set or cleared
with the appropriate mask.


CONFIGURATION TABLE

DQ0	DQ1	Comparator Type	Match True Level
L	L	XNOR	Low
L	н	XNOR	High
н	L	AOI	Low
н	н	AOI	High

BIT SET TRUTH TABLE (See Note)

DIT OLI TITOTTI I PADELL (CCC TICLE)								
Data In	Initial Stored Data	Final Stored Data						
0	0	0	Bit					
0	1	1	Unchanged					
1	0	1	Bit Set					
1	1	1 -	to "One"					

AOI COMPARATOR LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=0 V)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	-0.5 to +7.0	٧	
Voltage Relative to VSS for Any Pin Except VCC	V _{in} /V _{out}	-0.5 to V _{CC} +0.5	٧	
Output Current MATCH Output I/O Pins, Per I/O	lout	± 40 ± 20	mA	
Power Dissipation (T _A = 25°C)	PD	1.0	W	
Operating Temperature	TA	0 to +70	°C	
Storage Temperature	T _{stg}	-55 to +125	°C	
Temperature Under Bias	T _{bias}	- 10 to +85	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

The power supply (V_{CC}) should be stable for at least 100 µs before operating the device. During this inverval, the part will internally configure itself for XNOR compares, with the MATCH output active high. In addition, the memory array of RAM bits will be cleared.

DC OPERATING CONDITIONS AND CHARACTERISTICS

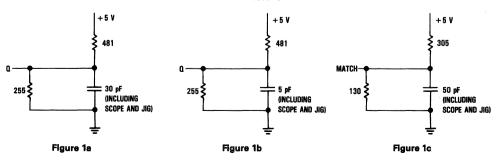
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Referenced to VSS = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	>
Input High Voltage	VIH	2.2		V _{CC} +0.3	>
Input Low Voltage	V _{IL}	-0.5*	_	0.8	٧

 V_{IL} min = -0.5 V dc; V_{IL} min = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS


Characteristic	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs V _{in} =0 to V _{CC})	l _{lkg(l)}	_	±1.0	μA
Output Leakage Current, Except MATCH Output (\$\overline{S} = V_{IH}, V_{out} = 0 to V_{CC})	lkg(O)	_	± 1.0	μА
AC Supply Current (All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle Time≥t _{AVAV} min)	ICCA	_	140*	mA
Output Low Voltage (I/O Pins: IOL = 8.0 mA, MATCH Output: IOL = 12.0 mA)	VOL	_	0.4	V
Output High Voltage (I/O Pins: $I_{OH} = -4.0$ mA, MATCH Output: $I_{OH} = -10.0$ mA)	VOH	2.4		V

^{*}I_{CC} active current for the clear cycle exceeds this specification. However, this is a transient phenomenon and will not affect the power dissipation of the device. Good decoupling of the local power supply should always be used.

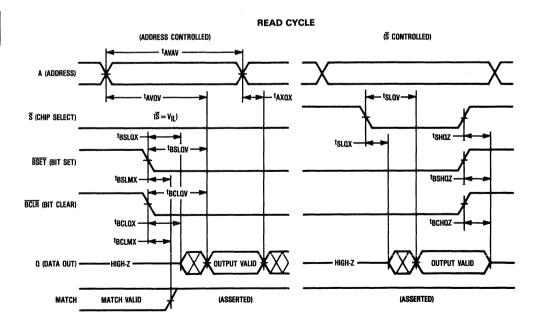
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	5	pF
I/O Capacitance	Cout	5	7	pF
MATCH Output Capacitance	C _{match}	6	7	pF

AC TEST LOADS

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

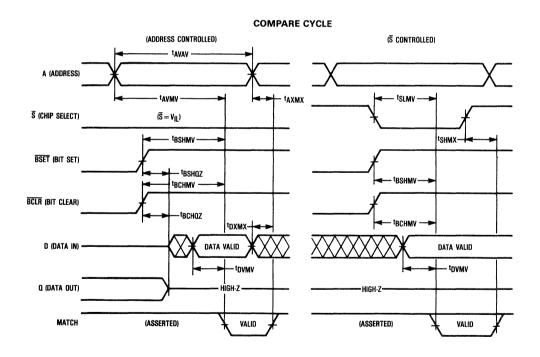

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load (I/O Pins) See Figure 1a
Input Rise/Fall Time	Output Load (MATCH Output) See Figure 1c

READ CYCLE (See Notes 1 and 2)

Ob annual state	Symbol		мсме	2350-20	мсме	2350-22	мсме	2350-25	11-14	Natas
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	t _{AVAV}	tRC	22	_	25	-	30	-	ns	
Address Access Time	^t AVQV	tAA	_	22	_	25	-	30	ns	
Select Access Time	tSLQV	tACS		11	_	12	_	15	ns	
BCLR Access Time	†BCLQV	†ABC	_	22	_	25	_	30	ns	3
BSET Access Time	tBSLQV	†ABS	-	22	ı	25	_	30	ns	3
Output Hold from Address Change	tAXQX	^t OH	0		0	_	0	-	ns	
Select Low to Output Active	tSLOX	tCSL	5		5	-	5	_	ns	4
BSET/BCLR Low to Output Active	tBSLQX/tBCLQX	tLZ	7	_	10	-	10	_	ns	4
উ High to Output High-Z	tSHQZ	tCSZ	_	8	_	9	-	10	ns	4
BSET/BCLR High to Output High-Z	tBSHQZ/tBCHQZ	tHZ	_	8		9	_	10	ns	4
BSET/BCLR Low to MATCH Assert	tBSLMX/tBCLMX	^t CH	0	15	0	15	0	18	ns	

NOTES:

- 1. R=V_{IH}, W=V_{IH} continuously during read cycles. One of either BSET or BCLR pins must be asserted low to activate the outputs. The MATCH output becomes asserted when either the BSET or BCLR pin transitions low.
- 2. MATCH assertion is always shown high for distinction between asserted and valid.
- 3. For brevity in signal names, BC is used to represent BCLR transitions, while BS is used to represent BSET transitions.
- 4. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

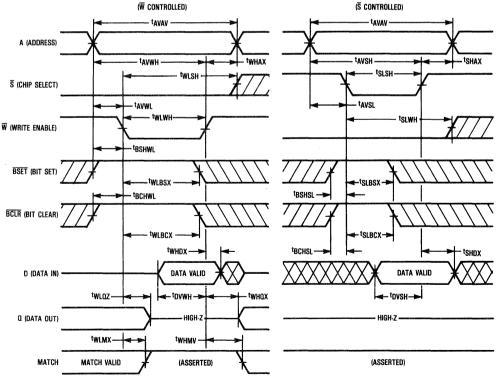


ŀ.

COMPARE CYCLE (See Notes 1 and 2)

Observation	Symb	ol	MCM	2350-20	мсме	2350-22	мсме	2350-25		
Characteristic	Standard Alternate		Min	Max	Min	Max	Min	Max	Unit	Notes
Compare Cycle Time	†AVAV	tC	22	_	25	_	30	_	ns	
Address Valid to MATCH Valid	tAVMV	tACA	_	20	_	22	_	25	ns	
BCLR High to MATCH Valid	†BCHMV	†BCCA	_	15	l –	15	_	18	ns	3
BSET High to MATCH Valid	t _{BSHMV}	tBSCA	_	15	Ī -	15	_	18	ns	3
Data Valid to MATCH Valid	tDVMV	tDCA	_	10	_	10	_	12	ns	
S Low to MATCH Valid	tSLMV	tCSCA	_	12		15	_	18	ns	
MATCH Hold from Address Change	tAXMX	†ACH	5	I -	5	_	5	_	ns	
MATCH Hold from Data Change	tDXMX	†DCH	3	_	3	_	3	_	ns	
S High to MATCH Assert	tSHMX	tCH	0	10	0	10	0	12	ns	
BCLR High to Output High-Z	^t BCHQZ	tBCZ	_	8	_	9	_	10	ns	4
BSET High to Output High-Z	tBSHQZ	tBSZ	_	8	_	9	_	10	ns	4

- 1. $\overline{R} = V_{IH}$, $\overline{W} = V_{IH}$ continuously during compare cycles.
- 2. MATCH assertion is always shown high for distinction between asserted and valid.
- 3. For brevity in signal names, BC is used to represent BCLR transitions, while BS is used to represent BSET transitions.
- 4. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

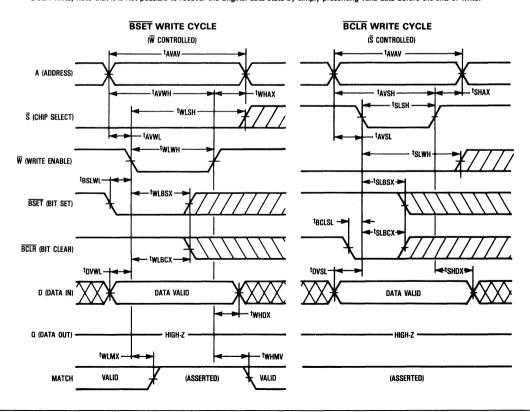


	Symbol		мсм6	2350-20	мсм6	2350-22	мсм6	2350-25	1114	Mada
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	twc	22	_	25	_	30	_	ns	
Write Pulse Width	twlwh/tslsh twlsh/tslwh	t _{WP}	14	-	18	-	20	1	ns	
Address Setup to Beginning of Write	tAVWL/tAVSL	tAS	0	_	0	_	0	_	ns	
Address Valid to End of Write	tavwh/tavsh	tAW	16	_	18	_	20	-	ns	
Data Valid to End of Write	tDVWH/tDVSH	tDW	10	_	10	_	12	-	ns	
Data Hold from Write End	twhdx/tshdx	^t DH	0	_	0	-	0	_	ns	
Write Low to Output High-Z	tWLQZ	twz	_	8	_	9	-	10	ns	3, 4
Address Hold from Write End	twhax/tshax	twr	0	_	0	_	0	_	ns	
Write Low to MATCH Assert	tWLMX	tWCH	0	15	0	15	0	15	ns	4
BSET/BCLR Setup to Beginning of Write	tBSHWL/tBSHSL tBCHWL/tBCHSL	tBSS tBCS	-1	-	-1	-	-1	-	ns	
BSET/BCLR Hold Time from Write Start	tWLBSX/tSLBSX tWLBCX/tSLBCX	^t BSH ^t BCH	10	-	10	_	10	-	ns	
Write High to MATCH Valid	twhmv	†WCA	_	20	_	22	_	25	ns	4
Write High to Output Active	tWHQX	tow	3	_	5	-	5	_	ns	3, 4

NOTES:

- 1. A standard write occurs during the overlap of W and S low and BSET and BCLR high. The R pin is high continuously during a write cycle.
- 2. MATCH assertion is always shown high for distinction between asserted and valid.
- 3. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.
- Both the MATCH output and Q0-Q3 are shown as valid in the W controlled cycle below to convey their timing relative to W. In reality, only one of either MATCH or Q0-Q3 can be valid at one time, as determined by BSETand BCLR inputs.

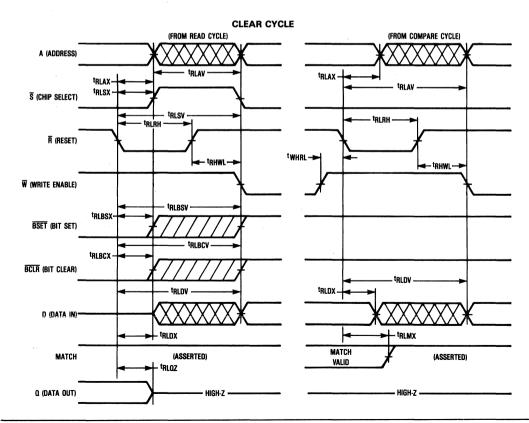
STANDARD WRITE CYCLE



E

BSET/BCLR WRITE CYCLE (See Notes 1 and 2)

Observation	Symbol		мсме	2350-20	мсме	2350-22	мсме	2350-25		
Characteristic	Standard	Alternate	Min	Max	Min	Min Max	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	twc	22	_	25	_	30	_	ns	
Write Pulse Width	twlwh/tslsh twlsh/tslwh	t _{WP}	14	_	18	-	20	_	ns	
Address Setup to Beginning of Write	tavwl/tavsl	tAS	0		0	_	0	_	ns	
Address Valid to End of Write	tavwh/tavsh	tAW	14	_	18	_	20	_	ns	
Data Setup to Beginning of Write	tDVWL/tDVSL	tDS	0	_	-1	_	-1		ns	3
Data Hold from Write End	twhdx/tshdx	^t DH	0	-	0	_	0		ns	
Address Hold from Write End	twhax/tshax	tWR	0	_	0	_	0	_	ns	
W Low to MATCH Assert	twlmx	tWCH	0	15	0	15	0	15	ns	
BSET/BCLR Setup to Beginning of Write	tBSLWL/tBSLSL tBCLWL/tBCLSL	tBSS tBCS	-1	-	-1	_	-1		ns	3
BSET/BCLR Hold Time from Write Start	tWLBSX/tSLBSX tWLBCX/tSLBCX	^t BSH ^t BCH	10	-	10	_	10		ns	
Write High to MATCH Valid	[‡] WHMV	tWCA	_	20	_	22	_	25	ns	

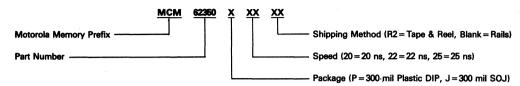

- 1. A BSET/BCLR write occurs during the overlap of W and S low and BSET or BCLR low. The R pin is high continuously during a write cycle. BSET and BCLR write cycles can be W controlled or S controlled. Only two of four possible cycles are shown here for brevity.
- 2. MATCH assertion is always shown high for distinction between asserted and valid.
- 3. Data output buffer must be in high-Z prior to start of either BSET or BCLR write cycles. Note that for W controlled cycles, the user must avoid excessive setup time of BSET/BCLR to avoid bus contention. Data must be set up for tpywt/tpyst time to ensure the data integrity of non-modified bits during BSET/BCLR write cycles. In the event that invalid data is presented for non-modified bits during the BSET/BCLR write, note that it is not possible to recover the original data state by simply presenting valid data before the end of write.

CLEAR CYCLE (See Notes 1 and 2)

01		Symb	ol	MCM62350-20		MCM6	2350-22	мсме	2350-25		Notes
Unaracteristic	Characteristic		Alternate	Min	Max	Min	Max	Min	Max	Unit	NOTES
R Low to Inputs Recognized (Clear Cycle Time)	A S BSET BCLR D	[†] RLAV [†] RLSV [†] RLBSV [†] RLBCV [†] RLDV	tCR tCR tCR tCR tCR	_	70	_	70	_	70	ns	
R Pulse Width		^t RLRH	tCLP	22	_	25	-	30	_	ns	
Read Setup to R Low		twhrl.	tRS	5	_	5	_	5	_	ns	3
Write Hold from R High		^t RHWL	twH	0	_	0	_	0	-	ns	3
R Low to Inputs Don't Care	A S BSET BCLR D	TRLAX TRLSX TRLBSX TRLBCX TRLDX	tcx tcx tcx tcx tcx	0	_	0	_	0		ns	4
R Low to MATCH Assert		^t RLMX	tMH	0	15	0	15	0	18	ns	
R Low to Output High-Z		^t RLOZ	tCZ	_	15	- ,	15	_	18	ns	5

- 1. The address, BSET, and BCLR inputs are don't cares during a clear cycle.
- 2. MATCH assertion is always shown high for distinction between asserted and valid.
- 3. The clear cycle is initiated at the falling edge of \overline{R} . The t_{WHRL} and t_{RHWL} parameters must be satisfied to prevent an undesired configuration cycle.
- 4. "Inputs" for this parameter refers to all inputs except $\overline{\boldsymbol{W}}.$
- 5. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

CONFIGURATION CYCLE (See Notes 1 and 2)


Ob a second add a		Symbo	ı	мсме	2350-20	мсме	2350-22	MCM6	2350-25		N-4
Characteristic	Characteristic		Alternate		Max	Min	Max	Min	Max	Unit	Notes
Configuration Control Pulse Width	S	^t SLSH ^t RLRH	t _{SP}	20	-	22	-	25	_	ns	3
Data Setup to End of Configuration Cycle	S R W	^t DVSH ^t DVRH ^t DVWH	t _{DS} t _{DS} t _{DS}	10	-	10	-	12	-	ns	
Data Hold from End of Configuration Cycle	S R W	^t SHDX ^t RHDX ^t WHDX	tDH tDH tDH	0	-	0	-	0	-	ns	
R High Pulse Width		^t RHRL	tCP	5	_	5	_	5	_	ns	
Write Setup to R Low		tWLRL	tws	5	_	5	-	5	_	ns	
S Setup to End of Configuration		^t SLWH ^t SLRH	tsws tscs	20	-	20	_	25	-	ns	4
R Setup to End of Configuration		tRLWH	^t SR	20	_	20		25	_	ns	
R Setup to S Low		†RLSL	tcss	5		5	_	5	_	ns	3
S Setup to Beginning of Write		tSHWL	twss	0	_	0	_	0	_	ns	
S High to Output High-Z		tSHQZ	tHZ	_	9	_	9	_	10	ns	5
W Low to Output High-Z		tWLOZ	tHZ	_	9	_	9	_	10	ns	5

NOTES:

- 1. A configuration cycle is performed during the overlap of W low, R low, and S low. Address, DQ2, DQ3, BSET, and BCLR inputs are don't cares during configuration cycles.
- 2. To ensure proper configuration of the device during power up, chip select must be equal to or greater than VIH.
- 3. A valid configuration can be performed with \overline{S} asserted prior to \overline{R} and \overline{W} low transitions. Be aware, however, that array data may be altered under this condition.
- 4. Note that terminating the cycle with \overline{R} while leaving \overline{W} and \overline{S} asserted may cause array data to be altered.
- 5. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

CONFIGURATION CYCLE (ARRAY PROTECTED) (ARRAY UNPROTECTED) S (CHIP SELECT) $(\overline{S} = V_{|L})$ **trlsl** ◆ tdvsh · tSHDX ^trlrh trhrl ^tSLRH R (RESET) **€**†WLRL tDVRH**tRHDX** ⊢twlrl-^tDVRH tSHWL trhdx. tslwh ^tRLWH W (WRITE ENABLE) **tw**HDX **tWHDX** tDVWH **←** tDVWΗ D (DATA IN DATA VALID DATA VALID ₩LQZ → tSHQZ Q (DATA OUT) HIGH-Z -HIGH-Z

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers-MCM62350P20

MCM62350J20 MCM62350J20R2 MCM62350P22 MCM62350J22

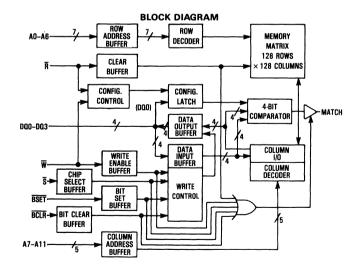
MCM62350P25 MCM62350J25 MCM62350J22R2 MCM62350J25R2

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

4K × 4 Bit Cache Address Tag Comparator

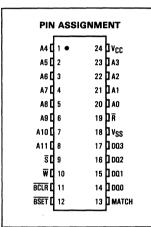
with System Status Bit Functions

The MCM62351 is a 16,384 bit cache address tag comparator organized as 4096 tags of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 4K × 4 SRAM core, an on-board comparator, and special pin functions for tag valid and system status bit applications. These functions allow easy interface to the MC68020 and MC68030 microprocessors, or any other environment where efficient implementation of external cache memory is required.


The device has a reset (R) pin for flash clear of the RAM, which is useful for system initialization. Individual bits within a tag can be set or cleared via the BSET and BCLR control input pins for valid bit updates.

The MCM62351 has two configurable comparator modes. The comparator can be configured as standard XNOR (exclusive NOR) for address tag comparison, or AOI (AND-OR-Invert) for determining whether specific bits in the 4-bit word are set (for system status applications). The configuration of the comparator is accomplished by performing a write cycle with the $\bar{\mathbb{R}}$ pin held low. The MATCH output is open drain, allowing efficient combination of multiple MATCH outputs using a wired-OR connection.

- Single 5 V ± 10% Power Supply
- Fast Address to MATCH Time;
- 20/22/25 ns max
- Fast Data to MATCH Time;
- 10/10/12 ns max
- Fast Read of Tag RAM Contents;
- 22/25/30 ns max
- Flash Clear of the Tag RAM
 - /IAI
- Open Drain MATCH Output
- Bit Manipulation of Tags via BSET and BCLR Writes
- Configurable Comparator Modes:


XNOR Mode for Address Tag Comparison
AOI Mode for System Valid Bit Comparison

High Board Density SOJ Package Available

MCM62351

PIN NAMES
A0-A11 Address Inputs
W Write Enable
🕏 Chip Select
BCLRBit Clear Control Input
BSET Bit Set Control Input
R Reset (Flash Clear) Input
MATCH MATCH (Hit) Output
DQ0-DQ3 Data Input/Output
V _{CC} +5 V Power Supply
V _{SS} Ground

٤

SIGNAL DESCRIPTIONS

A0-A11-ADDRESS INPUTS

The address lines are used for indexing into the tag RAM portion of the chip.

DQ0-DQ3-DATA INPUT/OUTPUT

The data lines are used as input for compare, write, and configuration cycles, and as output for read cycles.

BSET-BIT SET CONTROL INPUT

This control signal is used for ORing data into the tag RAM during BSET write cycles. Independent bits within the tag can be set using the appropriate mask, as indicated in the bit set truth table. The BSET input can also be used to initiate a read cycle.

BCLR-BIT CLEAR CONTROL INPUT

This control signal is used for ANDing the complement of data into the tag RAM during BCLR write cycles. Independent bits within the tag can be cleared using the appropriate mask,

as indicated in the bit clear truth table. The \overline{BCLR} input can also be used to initiate a read cycle (note that at least one of the $\overline{BSET}/\overline{BCLR}$ signals must be asserted to trigger a read cycle).

R-RESET (FLASH CLEAR) INPUT

The reset control signal is used to initiate a clear cycle or a configuration cycle.

S-CHIP SELECT

This control signal is used to chip select the device.

W-WRITE ENABLE

The write enable signal is used to initiate write cycles.

MATCH-MATCH (HIT) OUTPUT

This output signal is used to indicate a match of DQ0-DQ3 inputs with the contents of the tag RAM addressed by A0—

FUNCTIONAL TRUTH TABLE

s	w	BCLR	BSET	R	DQ0-DQ3	матсн	Cycle
L	н	Н	Н	Н	Compare Din	Valid	Compare
L	н	L	х	н	Read Dout	Assert	Read
L	н	х	L	н	Read Dout	Assert	Read
L	L	н	н	н	Write Din	Assert	Write
L	L	L	н	н	Bit Clear Mask	Assert	BCLR Write
L	L	н	L	н	Bit Set Mask	Assert	BSET Write
X	н	Х	х	L	High-Z	Assert	Clear (Reset)
L	L	X	х	L	Config Din*	Assert	Configuration
н	х	Х	Х	н	High-Z	Assert	Deselect

^{*}DQ1, DQ2, and DQ3 are don't cares during a configuration cycle.

COMPARATOR TRUTH TABLE

Туре	DQ0	DQ1	DO2	DQ3	RAMQ0	RAMQ1	RAMQ2	RAMQ3	MATCH
XNOR	00	Q1	02	03	0.0	Q1	02	0.3	1
XNOR	000	Q1	02	03	0.0	Q1	02	0.3	0
AOI	0.0	Q1	02	C3	Q0	Q1	02	03	1
AOI	L	Q1	02	03	x	Q1	02	0.3	1
AOI	н	Q1	02	03	L	Q1	02	03	0

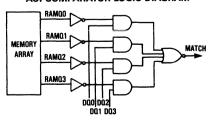
L = Low H = High 0 = False 1 = True X = Don't Care

BIT CLEAR TRUTH TABLE (See Note)

BII CL	AN INUIN I	MDLE (See Note	;)
Data In	Initial Stored Data	Final Stored Data	
0	0	0	Bit
0	1	1	Unchanged
1	0	0	Bit Cleared
1	1	0	to "Zero"

NOTE: These tables reflect the behavior of single bit positions.

The four bits in the tag can all be set or cleared in tandem,
or bits within the tag can be independently set or cleared
with the appropriate mask.


CONFIGURATION TABLE

DQ0	Comparator Type
L	XNOR
н	AOI

BIT SET TRUTH TABLE (See Note)

Data	Initial	Final	
In	Stored Data	Stored Data	
0	0	0 1	Bit Unchanged
1 1	0	1	Bit Set
	1	1	to "One"

AOI COMPARATOR LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to Vss=0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS for Any Pin Except VCC	V _{in} /V _{out}	-0.5 to V _{CC} +0.5	V
Output Current MATCH Output I/O Pins, Per I/O	lout	± 40 ± 20	mA
Power Dissipation (T _A = 25°C)	P_{D}	1.0	W
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C
Temperature Under Bias	T _{bias}	- 10 to +85	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

The power supply (V_{CC}) should be stable for at least 100 µs before operating the device. During this interval, the part will internally configure itself for XNOR compares. In addition, the memory array of RAM bits will be cleared.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Referenced to V_{SS}=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} min = -0.5 V dc; V_{IL} min = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs Vin=0 to VCC)	l _{lkg(I)}	_	±1.0	μΑ
Output Leakage Current (S=V _{IH} , V _{out} =0 to V _{CC})	llkg(O)	_	± 1.0	μΑ
MATCH Output Leakage Current (MATCH Asserted)	lkg(M)		± 2.0	μΑ
AC Supply Current (All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle Time≥t _{AVAV} min)	ICCA	-	140*	mA
Output Low Voltage (I/O Pins: IOL = 8.0 mA, MATCH Output: IOL = 25.0 mA)	VOL	_	0.4	٧
Output High Voltage (I/O Pins: IOH = 4.0 mA)	Voн	2.4		V

^{*}ICC active current for the clear cycle exceeds this specification. However, this is a transient phenomenon and will not affect the power dissipation of the device. Good decoupling of the local power supply should always be used.

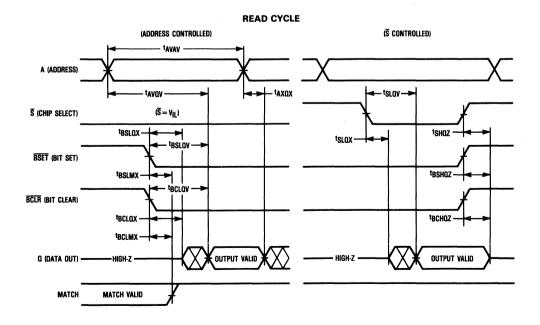
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	5	pF
I/O Capacitance	C _{out}	5	7	pF
MATCH Output Capacitance	C _{match}	6	7	pF

AC TEST LOADS + 5 V 481 481 MATCH-30 pF 255 € 50 pF 255 (INCLUDING (INCLUDING (INCLUDING SCOPE AND JIG) SCOPE AND JIG) SCOPE AND JIG) Figure 1a Figure 1b Figure 1c

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)


Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load (I/O Pins) See Figure 1a
Input Rise/Fall Time	Output Load (MATCH Output) See Figure 1c

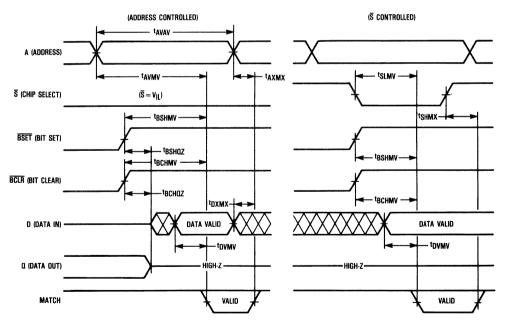
READ CYCLE (See Note 1)

Ohana atautata	Symbol		мсме	2351-20	мсме	2351-22	мсме	2351-25	Unit	
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tAVAV	tRC	22	_	25	_	30	_	ns	
Address Access Time	t _{AVQV}	tAA	_	22	_	25	_	30	ns	
Select Access Time	tSLQV	tACS	_	10	_	12	_	15	ns	
BCLR Access Time	†BCLQV	tABC	_	22	_	25	_	30	ns	2
BSET Access Time	t _{BSLQV}	tABS	_	22	_	25	_	30	ns	2
Output Hold from Address Change	tAXQX	tОН	0	_	0	_	0	_	ns	
Select Low to Output Active	tslax	tCSL	5		5	_	5	_	ns	3
BSET/BCLR Low to Output Active	tBSLQX/tBCLQX	tLZ	7	-	10	_	10	-	ns	3
S High to Output High-Z	tSHQZ	tCSZ	_	8.	_	9	_	10	ns	3
BSET/BCLR High to Output High-Z	tBSHQZ/tBCHQZ	tHZ	_	8	_	9	_	10	ns	3
BSET/BCLR Low to MATCH Assert	tBSLMX/tBCLMX	^t CH	0	. 15	0	15	0	18	ns	

NOTES:

- 1. R=V_{IH}, W=V_{IH} continuously during read cycles. One of either BSET or BCLR pins must be asserted low to activate the outputs. The MATCH output becomes asserted when either the BSET or BCLR pin transitions low.
- 2. For brevity in signal names, BC is used to represent BCLR transitions, while BS is used to represent BSET transitions.
- 3. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

C


COMPARE CYCLE (See Note 1)

Obdesiration	Symbo	ol	MCM62351-20		мсме	2351-22	мсме	2351-25		
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Compare Cycle Time	^t AVAV	tC	22	_	25	_	30	_	ns	
Address Valid to MATCH Valid	^t AVMV	tACA	_	20	_	22	_	25	ns	
BCLR High to MATCH Valid	^t BCHMV	†BCCA	_	15	_	15	_	18	ns	2
BSET High to MATCH Valid	^t BSHMV	tBSCA	_	15	_	15	_	18	ns	2
Data Valid to MATCH Valid	^t DVMV	†DCA	_	10	_	10	T -	12	ns	
S Low to MATCH Valid	¹SLMV	†CSCA	_	12	_	15	_	18	ns	
MATCH Hold from Address Change	^t AXMX	tACH	5	_	5	l –	5	_	ns	
MATCH Hold from Data Change	^t DXMX	†DCH	3	_	3	_	3	_	ns	
S High to MATCH Assert	^t SHMX	^t CH	0	10	0	10	0	12	ns	
BCLR High to Output High-Z	tBCHQZ	†BCZ	_	8	_	9	_	10	ns	3
BSET High to Output High-Z	^t BSHQZ	tBSZ	_	8	_	9		10	ns	3

NOTES:

- R=V_{|H}, W=V_{|H} continuously during compare cycles.
 For brevity in signal names, BC is used to represent BCLR transitions, while BS is used to represent BSET transitions.
- 3. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

COMPARE CYCLE

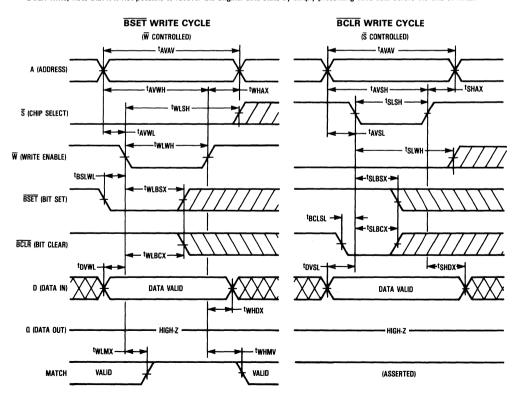
STANDARD WRITE CYCLE (See Note 1)

	Symbol		мсме	2351-20	мсм6	2351-22	мсме	2351-25	Ī	
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	twc	22		25	_	30	_	ns	
Write Pulse Width	tWLWH/tSLSH tWLSH/tSLWH	t _{WP}	14	-	18	_	20	-	ns	
Address Setup to Beginning of Write	tavwl/tavsl	^t AS	0	-	0	-	0	-	ns	
Address Valid to End of Write	tavwh/tavsh	tAW	16	l –	18	_	20	_	ns	
Data Valid to End of Write	tDVWH/tDVSH	tDW	10	_	10	_	12	_	ns	
Data Hold from Write End	twhdx/tshdx	tDH	0	_	0	_	0	_	ns	
Write Low to Output High-Z	twLoz	twz	_	8	_	9	_	10	ns	2, 3
Address Hold from Write End	twhax/tshax	twr	0	_	0	_	0	_	ns	
Write Low to MATCH Assert	tWLMX	tWCH	0	15	0	15	0	15	ns	3
BSET/BCLR Setup to Beginning of Write	tBSHWL/tBSHSL tBCHWL/tBCHSL	tBSS tBCS	-1		-1	-	-1	-	ns	
BSET/BCLR Hold Time from Write Start	tWLBSX/tSLBSX tWLBCX/tSLBCX	^t BSH ^t BCH	10	_	10	_	10	_	ns	
Write High to MATCH Valid	twhmv	†WCA	_	20	_	22	_	25	ns	3
Write High to Output Active	twhax	tow	3	_	5	_	5	_	ns	2, 3

NOTES:

- 1. A standard write occurs during the overlap of \overline{W} and \overline{S} low and \overline{BSET} and \overline{BCLR} high. The \overline{R} pin is high continuously during a write cycle.
- 2. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

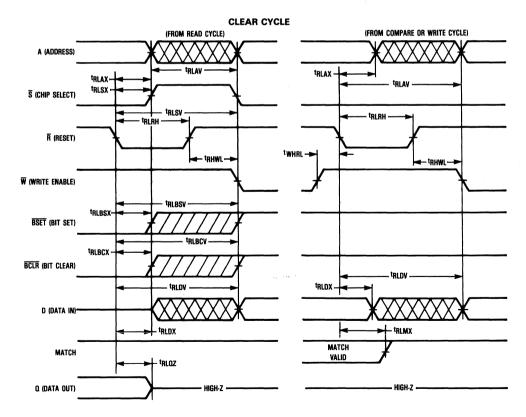
STANDARD WRITE CYCLE


3. Both the MATCH output and Q0-Q3 are shown as valid in the W controlled cycle below to convey their timing relative to W. In reality, only one of either MATCH or Q0-Q3 can be valid at one time, as determined by BSETand BCLR inputs.

(W CONTROLLED) (S CONTROLLED) ^tAVAV tavav -A (ADDRESS) **tavw**H **TWHAX** tAVSH - tSHAX - tSLSH**tWLSH** S (CHIP SELECT) TAVSL · tavwl **tWLWH** tSLWH W (WRITE ENABLE) tBSHWL BSET (BIT SET) ·twlbsx tSLBSX ^tBSHSL **tBCHWL** BCLR (BIT CLEAR) twlBCX tWHDX-^tRCHSI D (DATA IN) -DATA VALID DATA VALID twLQZ-<-- tDVSH--> - tovwh -twhax Q (DATA OUT) HIGH-Z HIGH-Z tWLMXtwhmv -MATCH MATCH VALID (ASSERTED)

BSET/BCLR WRITE CYCLE (See Note 1)

01 - 1 - 1 - 1	Symbol		MCM6	2351-20	мсме	2351-22	мсме	2351-25	Unit	Notes
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	NOTES
Write Cycle Time	tAVAV	twc	22	_	25	_	30	_	ns	
Write Pulse Width	tWLWH/tSLSH tWLSH/tSLWH	t _{WP}	14	-	18	-	20	-	ns	
Address Setup to Beginning of Write	tavwl/tavsl	^t AS	0	_	0	-	0	_	ns	
Address Valid to End of Write	tAVWH/tAVSH	tAW	14	_	18	_	20	_	ns	
Data Setup to Beginning of Write	tDVWL/tDVSL	tDS	0	_	- 1	_	-1	_	ns	2
Data Hold from Write End	twhdx/tshdx	tDH	0	_	0	_	0		ns	
Address Hold from Write End	twhax/tshax	twr	0	_	0	_	0	_	ns	
W Low to MATCH Assert	tWLMX	twch	0	15	0	15	0	15	ns	
BSET/BCLR Setup to Beginning of Write	tBSLWL/tBSLSL tBCLWL/tBCLSL	t _{BSS}	-1	-	-1	-	-1	-	ns	2
BSET/BCLR Hold Time from Write Start	tWLBSX/tSLBSX tWLBCX/tSLBCX	^t BSH ^t BCH	10	-	10	_	10	_	ns	
Write High to MATCH Valid	twhmv	tWCA	_	20	_	22	_	25	ns	

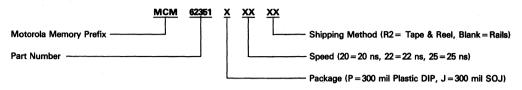

- A BSET/BCLR write occurs during the overlap of W and S low and BSET or BCLR low. The R pin is high continuously during a write cycle. BSET and BCLR write cycles can be W controlled or S controlled. Only two of four possible cycles are shown here for brevity.
- 2. Data output buffer must be in high-Z prior to start of either BSET or BCLR write cycles. Note that for W controlled cycles, the user must avoid excessive setup time of BSET/BCLR to avoid bus contention. Data must be set up for tpvwu/tpvsl time to ensure the data integrity of non-modified bits during BSET/BCLR write cycles. In the event that invalid data is presented for non-modified bits during the BSET/BCLR write, note that it is not possible to recover the original data state by simply presenting valid data before the end of write.

CLEAR CYCLE (See Note 1)

01	l	Symbo	ol	MCM6	2351-20	мсме	2351-22	мсме	2351-25	l	
Characteristic	Г	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
R Low to Inputs Recognized (Clear Cycle Time)	A S BSET BCLR D	TRLAV TRLSV TRLBSV TRLBCV TRLDV	tCR tCR tCR tCR tCR	_	70	_	70	_	70	ns	
R Pulse Width		^t RLRH	tCLP	22	_	25	_	30	_	ns	
Read Setup to R Low		tWHRL	tRS	5	_	- 5	_	5	_	ns	2
Write Hold from R High		^t RHWL	tWH	0	_	0	_	0	_	ns	2
R Low to Inputs Don't Care	A S BSET BCLR D	[†] RLAX [†] RLSX [†] RLBSX [†] RLBCX [†] RLDX	tcx tcx tcx tcx	0	_	0	_	0	_	ns	3
R Low to MATCH Assert		[†] RLMX	tMH	0	15	0	15	0	18	ns	
R Low to Output High-Z		tRLQZ	tcz	_	15	_	15	_	18	ns	4

- 1. The address, $\overline{\text{BSET}}$, and $\overline{\text{BCLR}}$ inputs are don't cares during a clear cycle.
- The clear cycle is initiated at the falling edge of R. The twhrl and trhwl parameters must be satisfied to prevent an undesired configuration cycle.
- 3. "Inputs" for this parameter refers to all inputs except \overline{W} .
- 4. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

CONFIGURATION CYCLE (See Notes 1 and 2)


Observation is		Symbo	ı	MCM	2351-20	MCM	2351-22	MCM	2351-25		
Characteristic		Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Configuration Control Pulse Width	S	^t SLSH ^t RLRH	tsp tsp	20	-	20	-	25	_	ns	3
Data Setup to End of Configuration Cycle	<u>≅</u> ≅	^t DVSH ^t DVRH ^t DVWH	tDS tDS tDS	10	-	10	_	12	-	ns	
Data Hold from End of Configuration Cycle	§ ₩	tSHDX tRHDX tWHDX	tDH tDH tDH	0	-	0	-	0	_	ns	
R High Pulse Width		tRHRL.	tCP	5	l –	5	_	5	_	ns	
Write Setup to R Low		twlrl	tws	5	- T	5	T -	5	T -	ns	
Setup to End of Configuration		tSLWH tSLRH	tsws tscs	20	-	20	-	25	_	ns	4
R Setup to End of Configuration		^t RLWH	tSR	20	_	20	_	25	_	ns	
R Setup to S Low		tRLSL	tcss	5	_	5	_	5	_	ns	3
S Setup to Beginning of Write		^t SHWL	twss	0		0	_	0	l –	ns	
S High to Output High-Z		tshoz	tHZ	_	9	_	9	_	10	ns	5
W Low to Output High-Z		twloz	tHZ	_	9	_	9	_	10	ns	5

NOTES:

- 1. A configuration cycle is performed during the overlap of W low, R low, and S low. Address, DQ1, DQ2, DQ3, BSET, and BCLR inputs are don't cares during configuration cycles.
- 2. To ensure proper configuration of the device during power up, chip select must be equal to or greater than VIH.
- 3. A valid configuration can be performed with \overline{S} asserted prior to \overline{R} and \overline{W} low transitions. Be aware, however, that array data may be altered under this condition.
- 4. Note that terminating the cycle with \overline{R} while leaving \overline{W} and \overline{S} asserted may cause array data to be altered.
- 5. Transition is measured ±500 mV from steady state voltage with load of Figure 1b. This parameter is sampled and not 100% tested.

CONFIGURATION CYCLE (ARRAY PROTECTED) (ARRAY UNPROTECTED) S (CHIP SELECT) $(\overline{S} = V_{IL})$ · trhrl ^tRLRH ⊢ tovsh **tSHDX** tSLRH-R (RESET) +tWLRL> **tRHDX** - tovrH-۠WLRL→ ^tDVRH **tRHDX** tSHWL trı wı tslwh W (WRITE ENABLE) twHDX tWHDX tDVWH - tovwn DATA VALID D (DATA IN DATA VALID + twlaz → tshoz HIGH-Z -Q (DATA OUT) HIGH-Z

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers—MCM62351P20 MCM62351J20

MCM62351J20R2

MCM62351P22 MCM62351J22 MCM62351J22R2 MCM62351P25 MCM62351J25 MCM62351J25R2

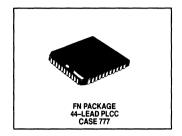
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

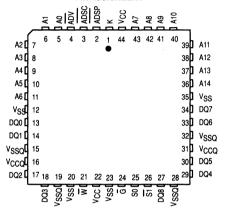
32K × 9 Bit BurstRAM™ Synchronous Static RAM With Burst Counter and Self-Timed Write

The MCM62486 is a 294,912 bit synchronous static random access memory designed to provide a burstable, high performance, secondary cache for the i486 microprocessor. It is organized as 32,768 words of 9 bits, fabricated with Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0–A14), data inputs (D0–D8), and all control signals except output enable $(\overline{\mathbf{G}})$ are clock (K) controlled through positive-edge-triggered noninverting registers.


Bursts can be initiated with either address status processor (ADSP) or address status cache controller (ADSC) input pins. Subsequent burst addresses can be generated internally by the MCM62486 (burst sequence imitates that of the i486) and controlled by the burst address advance (ADV) input pin. The following pages provide more detailed information on burst controls.

Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming singles.


The MCM62486 will be available in a 44 pin plastic leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0–DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

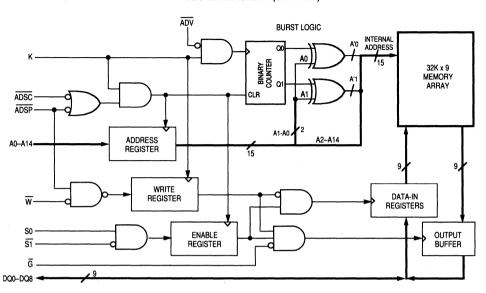
- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 14/19/24 ns Max and Cycle Times: 20/25/30 ns Min
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- ADSP, ADSC, and ADV Burst Control Pins
- Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL Compatible
- Active High and Low Chip Select Inputs for Easy Depth Expansion

MCM62486

PIN ASSIGNMENT

PIN NAMES
A0-A14 Address Inputs
K Clock
W Write Enable
G Output Enable
S0,S1 Chip Selects
ADV Burst Address Advance
ADSP, ADSC Address Status
DQ0DQ8 Data Input/Output
V _{CC} + 5 V Power Supply
VCCO Output Buffer Power Supply
Voc Ground

DIN NAMES


All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

VSSQ Output Buffer Ground

BurstRAM is a trademark of Motorola, Inc. i486 is a trademark of Intel Corp.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The \overline{ADSC} or \overline{ADSP} signals control the duration of the burst and the start of the next burst. When \overline{ADSP} is sampled low, any ongoing burst is interrupted and a read (independent of \overline{W} and \overline{ADSC}) is performed using the new external address. When \overline{ADSC} is sampled low (and \overline{ADSP} is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the new external address. Chip selects (S0, $\overline{S1}$) are sampled only when a new base address is loaded. After the first cycle of the burst, \overline{ADV} controls subsequent burst cycles. When \overline{ADV} is sampled low, the internal address is advanced prior to the operation. When \overline{ADV} is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See **BURST SEQUENCE TABLE**.

BURST SEQUENCE TABLE (See Note)

		00 . 1010,	
External Address	A14-A2	A1	A0
1st Burst Address	A14-A2	A 1	ĀŌ
2nd Burst Address	A14-A2	Ā1	A0
3rd Burst Address	A14-A2	Ā1	ĀŌ

NOTE: The burst wraps around to its initial state upon completion.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

S	ADSP	ADSC	ADV	W	К	Address Used	Operation
F	L	Х	X	Х	L-H	N/A	Deselected
F	Х	L	X	Х	L-H	N/A	Deselected
Т	L	х	×	х	L-H	External Address	Read Cycle, Begin Burst
Т	Н	L	х	L	L-H	External Address	Write Cycle, Begin Burst
Т	Н	L	х	Н	L-H	External Address	Read Cycle, Begin Burst
Х	Н	Н	L	L	L-H	Next Address	Write Cycle, Continue Burst
Х	Н	Н	L	Н	L-H	Next Address	Read Cycle, Continue Burst
Х	Н	Н	н	L	L-H	Current Address Write Cycle, Suspend	
Х	н	Н	Н	Н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

- 1. X means Don't Care
- 2. All inputs except \overline{G} must meet setup and hold times for the low-to-high transition of clock (K).
- 3. S represents S0 and $\overline{S1}$. T implies $\overline{S1}$ = L and S0 = H; F implies $\overline{S1}$ = H or S0 = L.
- 4. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	G	I/O Status
Read	L	Data Out (DQ0-DQ8)
Read	Н	High-Z
Write	Х	High-Z — Data In (DQ0-DQ8)
Deselected	Х	High-Z

NOTES:

- 1. X means Don't Care
- 2. For a write operation following a read operation, \overline{G} must be high before the input data required setup time and held high through the input data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	V
Output Power Supply Voltage	Vccq	– 0.5 to V _{CC}	V
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 70°C, V _{CC} = 5 V, t _{KHKH} = 20 ns)	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to RECOMMENDED OPERATING
CONDITIONS. Exposure to higher than recommended voltages for extended periods of
time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

, , , , , , , , , , , , , , , , , , , ,								
Parameter	Symbo	l Min	Тур	Max	Unit			
Supply Voltage (Operating Voltage Range	V _{CC}	4.5	5.0	5.5	٧			
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	V			
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	V			
Input Low Voltage	V _{IL}	- 0.5 *	0.0	0.8	V			

^{*} V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	± 1.0	μА
Output Leakage Current $\overline{(G, \overline{S1} = V_{IH}, S0 = V_{IL}, V_{Out} = 0 \text{ to } V_{CCQ})}$	l _{lkg(O)}	_	± 1.0	μА
AC Supply Current $(\overline{G}, \overline{S1}, = V_{IH}, S0 = V_{IL},$ All Inputs = $V_{IL} = 0.0 \text{ V}$ and $V_{IH} \ge 3.0 \text{ V}$, $I_{out} = 0 \text{ mA}$, Cycle Time $\ge t_{KHKH}$ min)	ICCA	_	185	mA
Standby Current (S1 = V _{IH} , S0 = V _{IL} , All Inputs = V _{IL} and V _{IH} , Cycle Time ≥ t _{KHKH} min)	I _{SB1}		40	mA
CMOS Standby Current ($\overline{S1} \ge V_{CC} - 0.2$ V, S0 \le 0.2 V, All Inputs $\ge V_{CC} - 0.2$ V or \le 0.2 V, Cycle Time \ge t _{KHKH} min)	I _{SB2}	_	30	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	V _{OL}	_	0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	V _{OH}	2.4	_	٧

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 bus cycles.

$\textbf{CAPACITANCE} \ (f = 1.0 \ \text{MHz}, \ \text{dV} = 3.0 \ \text{V}, \ \text{T}_{\mbox{\scriptsize A}} = 25^{\circ} \mbox{\scriptsize C}, \ \mbox{Periodically Sampled Rather Than 100% Tested)}$

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0–DQ8)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0-DQ8)	Ciro	8	10	ρF

9

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCO} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted)}$

Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Syn	lodi	MCM6	2486-14	MCM62	2486-19	MCM62	2486-24		
Parameter	Standard	Alternate	Min	Max	. Min	Max	Min	Max	Unit	Notes
Cycle Time	tkHKH	tcyc	20	_	25	_	30	I –	ns	
Clock Access Time	tKHQV	tCD	_	14	_	19	_	24	ns	4
Output Enable to Output Valid	t _{GLQV}	^t OE	_	7	_	8	_	9	ns	
Clock High to Output Active	[†] KHQX1	^t DC1	3	_	3	_	3	_	ns	
Clock High to Output Change	tKHQX2	t _{DC2}	3		3		3		ns	
Output Enable to Output Active	tGLQX	^t OLZ	0	_	0	_	0	_	ns	
Output Disable to Q High-Z	tghqz	tonz	_	7	_	8	_	9	ns	5
Clock High to Q High-Z	tKHQZ	tCZ	_	10	T —	12	_	15	ns	
Clock High Pulse Width	tKHKL	t _{CH}	8	_	9.5	_	11	_	ns	
Clock Low Pulse Width	^t KLKH	[†] CL	8	_	9.5	_	11		ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	tavkh tadsvkh tdvkh twvkh twvkh tadvvkh tsovkh	tas tss tds tws	3		3		3	_	ns	6
Hold Times: Address Status Data In Write Address Advance Chip Select	tkhax tkhadsx tkhdx tkhwx tkhwx tkhadvx tkhsox tkhsox	tah tsh tDH tWH	2		2	_	2		ns	6

- 1. A read cycle is defined by \overline{W} high or \overline{ADSP} low for the setup and hold times. A write cycle is defined by \overline{W} low and \overline{ADSP} high for the setup and hold times.
- 2. All read and write cycle timings are referenced from K or \overline{G} .
- 3. \overline{G} is a don't care when \overline{W} is sampled low.
- d is a don't care when this sampled low.
 Maximum access times are guaranteed for all possible i486 external bys cycles.
- Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any
 given voltage and temperature, t_{GHQZ} max is less than t_{GLQX} min for a given device and from device to device.
- 6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever ADSP and ADSC is low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip select must be true (S1 low and S0 high) at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled. Timings for S1 and S0 are similar.

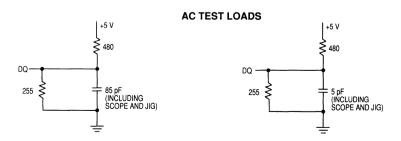
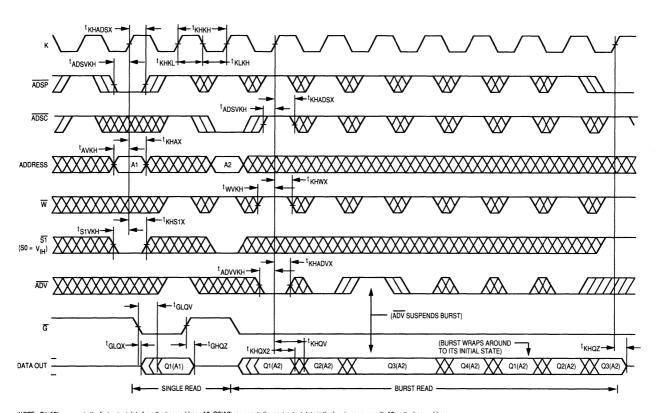
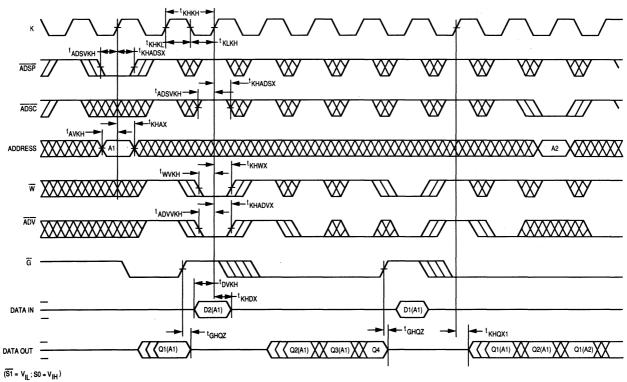



Figure 1A

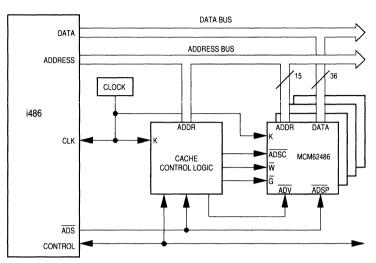
Figure 1B

READ CYCLES

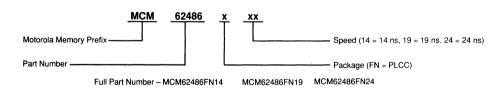


NOTE: Q1(A2) represents the first output data from the base address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

9-93


WRITE CYCLES ADSP 7 ADSC EXTENDS BURST tADSVKH \overline{W} IS IGNORED FOR FIRST CYCLE WHEN $\overline{\text{ADSP}}$ INITIATES BURST → t KHWX twvkh · → tkhadvx tadvvkh —→ $\times\!\!\times\!\!\times\!\!\times\!\!\times$ ADV SUSPENDS BURST r KHDX ^tDVKH | D2(A2) D4(A2) D1(A3) XX D3(A3) D2(A2) D3(A2) DATA IN tGHQZ ── DATA OUT - BURST WRITE -SINGLE WRITE EXTENDED BURST WRITE ---

COMBINATION READ/WRITE CYCLES


NOTE: This diagram does not show typical processor cycles, but is intended to show the functionality of the SRAM.

APPLICATION EXAMPLE

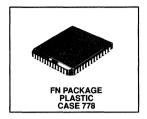
128K BYTE BURSTABLE, SECONDARY CACHE USING 4 MCM62486FN24s WITH A 33 MHz i486

ORDERING INFORMATION (Order by Full Part Number)

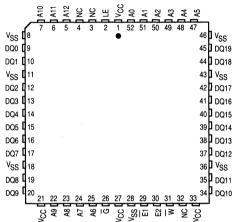
Product Preview

8K × 20 Bit Fast Static RAM

The MCM62820 is a 163,840 bit static random-access memory organized as 8,192 words of 20 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates an 8Kx20 SRAM core with address and chip enable input latches, multiple chip enable inputs, and an output enable input.

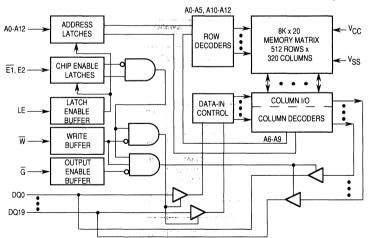

The availability of output enable (G) and multiple chip enable (E1 and E2) inputs provide for greater system flexibility when multiple devices are used. With either chip enable input negated, the device will enter standby mode, useful in low power applications. All address

(A0–A12) and chip enable (E1, E2) inputs propagate through level-sensitive on-chip latching controlled by LE. This feature alleviates the need for external address and chip enable latching. This device was designed specifically to operate as cache memory with the R3000 RISC Microprocessor (see Figure 2), but it will also be very adaptable wherever wide and fass SRAMs are needed.


The MCM62820 will be available in a 52 pin plastic leaded chip-carrier. Multiple power and ground pins have been utilized to minimize effects induced by output noise.

- Single 5 V ±10% Power
- Fast Access and Cycle Times: 23/30 ns Max
- Fully Static Read and Write Operations
- Equal Address and Chip Enable Access Times
- On Chip Address and Chip Enable Latches
- Active High and Active Low Chip Enable Inputs
- Output Enable Controlled Three State Outputs
- High Board Density PLCC Package
- Low Power Standby Mode
- Fully TTL Compatible

MCM62820


PIN ASSIGNMENT

A0-

LE .

BLOCK DIAGRAM

A12 A	ddress Inputs
	Latch Enable
	Write Enable
E2	. Chip Enable

PIN NAMES

 E1, E2
 Chip Enable

 G
 Output Enable

 DQ0-DQ19
 Data Input/Output

 VCC
 +5 V Power Supply

 VSS
 Ground

 NC
 No Connection

For proper operation of the device, all V_{SS} pins must be connected to ground.

This document contains information on a project under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

E1	E2	G	W	LE	Mode	Supply Current	I/O Status
Н	Х	Х	Х	Х	Not Selected	l _{SB}	High-Z
Х	L	Х	Х	Х	Not Selected	^I SB	High-Z
L	Н	Н	Н	Х	Output Disabled	lcc	High-Z
L	Н	L	Н	Н	Read with Transparent Inputs	lcc	Data Out
L	Н	L	Н	L	Read with Latched Inputs	lcc	Data Out
L	Н	Х	L	Н	Write with Transparent Inputs	lcc	Data In
L	Н	Х	L	L	Write with Latched Inputs	lcc	Data In

NOTE: X means don't care. Inputs A0-A12, E1, E2 are latched or transparent depending upon the state of latch enable (LE).

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is assumed to be in a test socket or mounted on a printed circuit board with at least 300 LFPM of transverse air flow being maintained.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=0 V)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	-0.5 to +7.0	V	
Voltage Relative to V _{SS}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧	
Output Current (per I/O)	lout	±20	mA	
Power Dissipation (T _A =70°C, V _{CC} =5 V, t _{AVAV} =23 ns)	PD	2.5	W	
Temperature Under Bias	T _{bias}	-10 to +85	°C	
Operating Temperature	TA	0 to +70	°C	
Storage Temperature	T _{stg}	-55 to +125	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}= 5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS}=0$ V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	0.0	0.8	٧

^{*}V_{IL} (min)=-3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})	llkg(l)	_	±1.0	μА
Output Leakage Current (G=V _{IH} , E1=V _{IH} , E2=V _{IL} , V _{Out} =0 to V _{CC})	l _{lkg(O)}	_	±1.0	μΑ
AC Supply Current (G=V _{IH} , E1=V _{IL} , E2=V _{IH} , All Inputs=V _{IL} =0.0 V and V _{IH} ≥3.0, I _{out} =0 mA) Cycle Time≥23 ns Cycle Time≥30 ns	ICCA	=	240 185	mA
Standby Current (E1=V _{IH} , E2=V _{IL} , All Inputs=V _{IL} or V _{IH})	ISB1	_	15.0	mA
CMOS Standby Current (E1≥V _{CC} -0.2 V, E2≤0.2 V, All Inputs ≥V _{CC} -0.2 V or ≤0.2 V)	ISB2	-	10.0	mA
Output Low Voltage (I _{OL} =+8.0 mA)	VOL	_	0.4	٧
Output High Voltage (I _{OH} =-4.0 mA)	VOH	2.4	_	٧

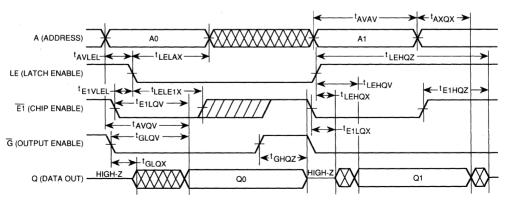
CAPACITANCE (f=1.0 MHz, dV=3.0 V, TA=25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic		Symbol	Тур	Max	Unit
Input Capacitance	All Pins Except DQ0-DQ19	C _{in}	4	6	pF
Input/Output Capacitance	DQ0-DQ19	C _{I/O}	6	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V ±10%, T_A=0 to 70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V Input Pulse Levels 0 to 3.0 V Input Pulse Levels . Input Rise/Fall Time

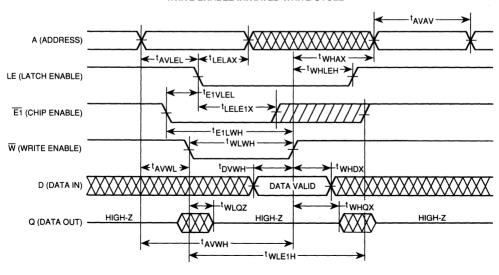

READ CYCLE TIMING (See Notes 1, 2, 3)

	Syn	nbol	MCM62	2820-23	MCM62	820-30		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	23	_	30	_	ns	
Address Access Time	tAVQV	†AA	_	23	_	30	ns	
Chip Enable to Output Valid	tE1LQV tE2HQV	t _{AC1}	_	23	_	30	ns	4
Latch Enable High to Output Valid	tLEHQV		25	_	30	_	ns	
Output Enable to Output Valid	tGLQV	^t OE	-	10	_	12	ns	
Output Active from Chip Enable	tE1LQX tE2HQX	tCLZ	. 2	_	2	_	ns	4, 5
Output Active from Output Enable	tGLQX	tOLZ	2	_	2	_	ns	5
Output Active from Latch Enable High	tLEHQX		2	_	2	_	ns	5
Output Hold from Address Change	tAXQX	tон	3	I -	3	_	ns	
Setup Times For: AE1 E2	tAVLEL tE1VLEL tE2VLEL	tAS tCS tCS	4	_	4	_	ns	4, 6
Hold Times for: AE1 E2	tLELAX tLELE1X tLELE2X	tAH tCH tCH	3	_	3	_	ns	4, 6
Chip Enable High to Output High Z	^t E1HQZ ^t E2LQZ	tCHZ	0	9.	0	10	ns	4, 5
Latch Enable High to Output High Z	tLEHQZ	tCHZ	0	9	0	10	ns	5
Output Enable to Output High Z	t _{GHQZ}	tOHZ	0	8	0	10	ns	5

NOTES:

- 1. A read cycle is defined by W high.
- 2. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 3. Addresses must be valid prior to or coincident with $\overline{E1}$ going low or E2 going high.
- 4. $\overline{E1}$ in the timing diagrams represents both $\overline{E1}$ and E2 with $\overline{E1}$ asserted low and E2 asserted high.
- Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, te1HQZ max is less than te1LQX min, te2LQZ max is less than te2HQX min and teHQZ max is less than te1LQX min for a given device and from device to device.
 These inputs are latched and must meet the required setup and hold times for ALL latch enable (LE) low transitions.

READ CYCLE


WRITE CYCLE TIMING, Write Enable Initiated (See Note 1)

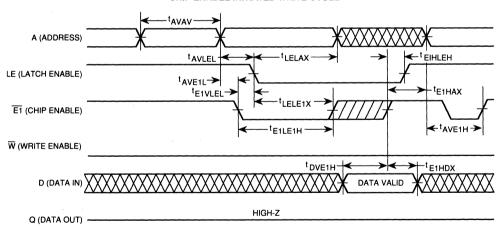
		Syn	lodn	MCM62	820-23	MCM62820-30			
Parameter		Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time		tAVAV	twc	23	_	30	_	ns	
Address Setup Time		tAVWL	tAS	0	_	0		ns	2
Address Valid to End of Write		tavwh	taw	20	_	25	_	ns	
Write Pulse Width		twLwH	tWP	15	_	18	_	ns	3
Write Enable to Chip Enable Disable		tWLE1H	tCW	15	_	18	_	ns	4
Chip Enable to End of Write		tE1LWH tE2HWH	tcw	15	_	18	_	ns	3, 4, 5
Data Valid to End of Write		tDVWH	t _{DW}	7	_	10	_	ns	
Data Hold Time		twHDX	t _{DH}	0	_	0	_	ns	6
Write Recovery Time		twhax	twR	0		0	_	ns	2
Setup Times for:	<u>A</u> E1 E2	tAVLEL tE1VLEL tE2VLEL	tas tcs tcs	4	_	4	_	ns	4, 5
LE Hold to End of Write		tWHLEH	t _{LEH}	-2	_	-2	- I	ns	
Hold Times for:	A E1 E2	†LELAX †LELE1X †LELE2X	tah tch tch	3	_	3	_	ns	4, 5
Write Low to Output High Z		twLQZ	twHZ	0	9	0	10	ns	7
Write High to Output Low Z		twHQX	twLZ	2	_	2	_	ns	7

NOTES:

- 1. A write cycle starts at the latest transition of E1 low, W low, or E2 high. A write cycle ends at the earliest transition of a E1 high W high, or E2 low.
- 2. Write must be high for all address transitions.
- 3. If \overline{W} goes low coincident with or prior to $\overline{E1}$ low or E2 high the outputs will remain in a high impedance state.
- 4. E1 in the timing diagrams represents both E1 and E2 with E1 asserted low and E2 asserted high.
- 5. These inputs are latched and must meet the required setup and hold times for ALL latch enable (LE) low transitions.
- 6. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.
- 7. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{E1HQZ} max is less than t_{E1LQX} min, t_{E2LQZ} max is less than t_{E2HQX} min and t_{GHQX} max is less than t_{GLQX} min for a given device and from device to device.

WRITE ENABLE INITIATED WRITE CYCLE

· ·		Sym	bol	MCM62	820-23	MCM62	820-30		
Parameter		Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time		^t AVAV	twc	23		30	_	ns	
Address Setup Time		^t AVE1L ^t AVE2H	t _{AS}	0	_	0	_	ns	
Address Valid to End of Write		^t AVE1H ^t AVE2L	t _{AW}	20	_	25	_	ns	
Data Valid to End of Write		[†] DVE1H [†] DVE2L	tDW	. 7	_	10	_	ns	
Chip Enable to End of Write		tE1LE1H tE2HE2L	tcw	15	_	18	_	ns	3
Data Hold Time		tE1HDX tE2LDX	tDH	0	_	0	_	ns	4
Write Recovery Time		tE1HAX tE2LAX	^t WR	0	_	0	_	ns	
LE Hold to End of Write		tE1HLEH tE2LLEH	^t E1HLEH ^t E2LLEH	-2	_	-2	_	ns	
Setup Times for:	A E1 E2	†AVLEL †E1VLEL †E2VLEL	tAS tCS tCS	4	_	4	_	ns	5
Hold Times for:	A E1 E2	tLELAX tLELE1X tLELE2X	tAH tCH tCH	3	_	3	_	ns	5


NOTES:

- 1. Awrite cycle starts at the latest transition of \$\overline{E1}\$ low, \$\overline{W}\$ low, or \$\overline{E2}\$ ligh. A write cycle ends at the earliest transition of a \$\overline{E1}\$ high, \$\overline{W}\$ high, or \$\overline{E2}\$ low.

 2. \$\overline{E1}\$ in the timing diagrams represents both \$\overline{E1}\$ and \$\overline{E2}\$ with \$\overline{E1}\$ asserted low and \$\overline{E2}\$ asserted high.

 3. If \$\overline{W}\$ goes low coincident with or prior to \$\overline{E1}\$ low or \$\overline{E2}\$ high the outputs will remain in a high impedance state.
- 4. During this time the output pins may be in the output state. Signals of opposite phase must not be applied to the outputs at this time.
- 5. These inputs are latched and must meet the required setup and hold times for ALL latch enable (LE) low transitions.

CHIP ENABLE INITIATED WRITE CYCLE

AC TEST LOADS

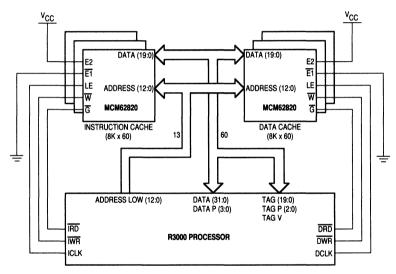
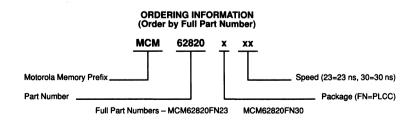



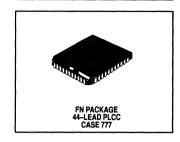
Figure 2. R3000 Application Example with 64K Byte Segregated Instruction/Data Cache Using Six Motorola MCM62820 Latched SRAMs

Product Preview

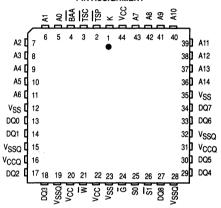
32K × 9 Bit BurstRAM™ Synchronous Static RAM With Burst Counter and Self-Timed Write

The MCM62940 is a 294,912 bit synchronous static random access memory designed to provide a burstable, high performance, secondary cache for the MC68040 microprocessor. It is organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, a 2-bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Addresses (A0–A14), data inputs (D0–D8), and all control signals, except output enable (\overline{G}) , are clock (K) controlled through positive-edge-triggered noninverting registers.


Bursts can be initiated with either transfer start processor (TSP) or transfer start cache controller (TSC) input pins. Subsequent burst addresses are generated internally by the MCM62940 (burst sequence imitates that of the MC68040) and controlled by the burst address advance (BĀĀ) input pin. The following pages provide more detailed information on burst controls.

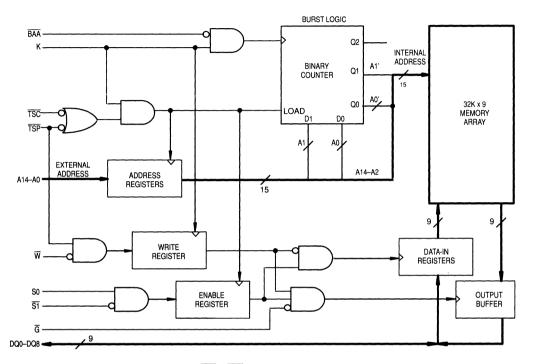
Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.


The MCM62940 is packaged in a 44 pin plastic leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0–DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 14/19/24 ns Max and Cycle Times: 20/25/30 ns Min
- Internal Input Registers (Address, Data, Control)
- Internally Self-Timed Write Cycle
- TSP, TSC, and BAA Burst Control Pins
- · Asynchronous Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL Compatible
- Active High and Low Chip Select Inputs for Easy Depth Expansion

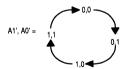
MCM62940

PIN ASSIGNMENT


P	PIN NAMES
K	Address Inputs Clock Write Enable Output Enable Chip Selects Burst Address Advance Transfer Start Data Input/Output + 5 V Power Supply Output Buffer Power Ground Output Buffer Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

BurstRAM is a trademark of Motorola, Inc.


This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM (See Note)

NOTE: All registers are positive-edge triggered. The \overline{TSC} or \overline{TSP} signals control the duration of the burst and the start of the next burst. When \overline{TSP} is sampled low, any ongoing burst is interrupted and a read (independent of \overline{W} and \overline{TSC}) is performed using the new external address. When \overline{TSC} is sampled low (and \overline{TSP} is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the next external address. Chip selects (S0, $\overline{S1}$) are sampled only when a new base address is loaded. After the first cycle of the burst, \overline{BAA} controls subsequent burst cycles. When \overline{BAA} is sampled low, the internal address is advanced prior to the operation. When \overline{BAA} is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See **BURST SEQUENCE GRAPH**.

BURST SEQUENCE GRAPH (See Note)

NOTE: The external two values for A1 and A0 provide the starting point for the burst sequence graph. The burst logic advances A1 and A0 as shown above.

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

S	TSP	TSC	BAA	W	K	Address	Operation
F	L	х	х	Х	L-H	N/A	Deselected
F	X	L	х	Х	L-H	N/A	Deselected
Т	L	х	х	Х	L-H	External Address	Read Cycle, Begin Burst
· T	н	L	х	L	L-H	External Address	Write Cycle, Begin Burst
Т	Н	L	х	Н	L-H	External Address	Read Cycle, Begin Burst
Х	Н	Н	L	L	L-H	Next Address	Write Cycle, Continue Burst
Х	Н	. н	L	Н	L-H	Next Address	Read Cycle, Continue Burst
X	Н	Н	Н	L	L-H	Current Address	Write Cycle, Suspend Burst
Х	Н	н	Н	Н	L-H	Current Address	Read Cycle, Suspend Burst

NOTES:

- 1. X means Don't Care
- 2. All inputs except \overline{G} must meet setup and hold times for the low-to-high transition of clock (K).
- 3. S represents S0 and $\overline{S1}$. T implies S0 = H and $\overline{S1}$ = L; F implies S0 = L or $\overline{S1}$ = H.
- 4. Wait states are inserted by suspending burst.

ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2)

Operation	Ğ	I/O Status
Read	L	Data Out (DQ0-DQ8)
Read	Н	High-Z
Write	х	High-Z — Data In (DQ0-DQ8)
Deselected	Х	High-Z

NOTES:

- 1. X means Don't Care
- For a write operation following a read operation, G must be high before the input data required setup time and held high throughout the input data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	V
Output Power Supply Voltage	Vccq	- 0.5 to V _{CC}	V
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 70°C, V _{CC} = 5 V, t _{KHKH} = 20 ns)	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	٧
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	VIL	- 0.5 *	0.0	0.8	٧

^{*} V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}		±1.0	μА	
Output Leakage Current $(\overline{G}, \overline{S1} = V_{IH}, S0 = V_{IL}, V_{out} = 0 \text{ to})$	11 = V _{IH} , S0 = V _{IL} , V _{out} = 0 to V _{CCQ})			±1.0	μА
AC Supply Current $(\overline{G}, \overline{S1} = V_{IH}, S0 = V_{IL},$ All Inputs = $V_{IL} = 0.0 \text{ V}$ and $V_{IH} \ge 3.0 \text{ V}$, $I_{out} = 0 \text{ mA}$, Cycle Time $\ge t_{KHKH}$ min)	MCM62940-14: t _{KHKH} = 20 ns MCM62940-24: t _{KHKH} = 25 ns MCM62940-19: t _{KHKH} = 30 ns	ICCA	=	185 175 165	
Standby Current ($\overline{S1} = V_{IH}$, S0 = V_{IL} , All Inputs = V_{IL} and V_{IH}	/ _{IH} , Cycle Time ≥ t _{KHKH} min)	ISB1	_	40	mA
CMOS Standby Current ($\overline{S1} \ge V_{CC} - 0.2$ V, S0 \le 0.2 V, All I Cycle Time \ge t _{KHKH} min)	nputs \geq V _{CC} – 0.2 V or \leq 0.2 V,	I _{SB2}			mA
Output Low Voltage (I _{OL} = + 8.0 mA)	Output Low Voltage (I _{OL} = + 8.0 mA)				٧
Output High Voltage (I _{OH} = - 4.0 mA)		Voн	2.4	_	٧

NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible MC68040 bus cycles.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0-DQ8)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0-DQ8)	C _{I/O}	8	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCO} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

	Syn	lodr	MCM6	2940-14	MCM62	2940-19	MCM62	2940-24		}
Parameter	Standard	Alternate	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Time	tkhkh	tcyc	20	_	25	_	30	_	ns	
Clock Access Time	tKHQV	tCD	_	14	_	19	_	24	ns	4
Output Enable to Output Valid	tGLQV	tOE	_	7	-	8	_	9	ns	
Clock High to Output Active	tKHQX1	t _{DC1}	3	_	3	_	3	_	ns	
Clock High to Output Change	tKHQX2	t _{DC2}	5	_	5		5	l –	ns	
Output Enable to Output Active	tGLQX	tOLZ	0	_	0	_	0	_	ns	
Output Disable to Q High-Z	tGHQZ	tOHZ	_	7	_	8	_	9	ns	5
Clock High to Q High-Z	tKHQZ	tcz	_	10	_	11	_	12	ns	
Clock High Pulse Width	tKHKL	t _{CH}	8	I –	9.5	-	11	I -	ns	
Clock Low Pulse Width	tKLKH	^t CL	8	_	9.5	_	11	_	ns	
Setup Times: Address Address Status Data In Write Address Advance Chip Select	tavkh ttsvkh tdvkh twvkh tbavkh tsovkh tsivkh	tas tss tds tws	3	_	3		3		ns	6
Hold Times: Address Address Status Data In Write Address Advance Chip Select	tkhax tkhtsx tkhdx tkhwx tkhbax tkhsox tkhsox	tah tsh tdh twh	2		2	<u></u>	2	_	ns	6

NOTES:

- A read cycle is defined by W high or TSP low for the setup and hold times. A write cycle is defined by W low and TSP high for the setup and hold times.
- 2. All read and write cycle timings are referenced from K or \overline{G} .
- 3. \overline{G} is a don't care when \overline{W} is sampled low.
- Maximum access times are guaranteed for all possible MC68040 external bus cycles.
- 5. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{GHOZ} max is less than t_{GLOX} min for a given device and from device to device.
- 6. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of clock (K) whenever TSP or TSC are low and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is selected. Chip select must be true (S1 low and S0 high) at each rising edge of clock for the device (when TSP or TSC is low) to remain enabled. Timings for S1 and S0 are similar.

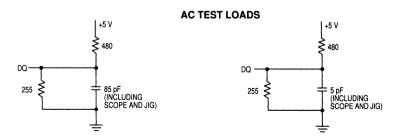
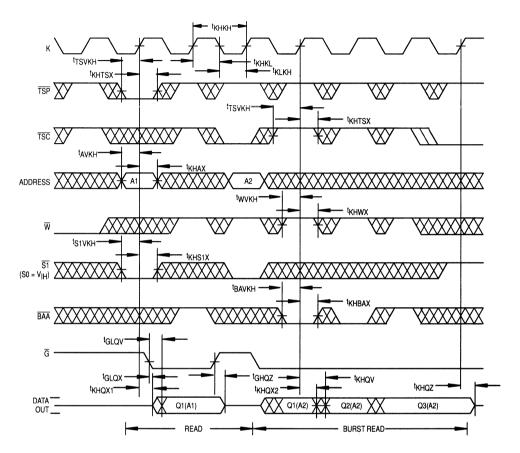
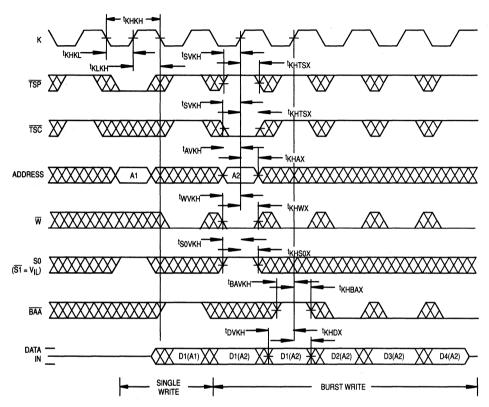
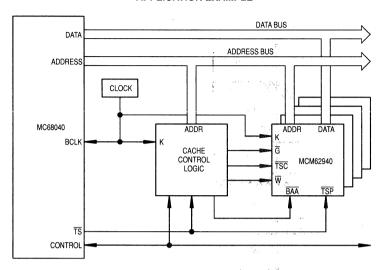



Figure 1A


Figure 1B

READ CYCLE


NOTE: Q1(A2) represents the first output from the external address A2; Q2(A2) represents the next output data in the burst sequence with A2 as the base address.

WRITE CYCLE

NOTE: $\overline{G} = V_{IH}$

APPLICATION EXAMPLE

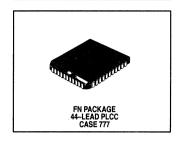
128K BYTE BURSTABLE, SECONDARY CACHE USING FOUR MCM62940FN24'S WITH A 33 MHz MC68040

ORDERING INFORMATION (Order by Full Part Number)

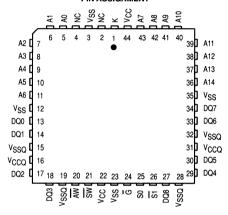
Product Preview

32K × 9 Bit Synchronous Static RAM

The MCM62950 is a 294,912 bit synchronous static random access memory organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, high-speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). Asynchronous controls consist of asynchronous write enable $\langle \overline{AW} \rangle$ and output enable $\langle \overline{G} \rangle$. CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.


Addresses (A0–A14) and control signals, except output enable (\overline{G}) and asynchronous write enable (\overline{AW}) , are sampled through positive-edge-triggered noninverting registers. Data outputs are asynchronously controlled by \overline{G} .

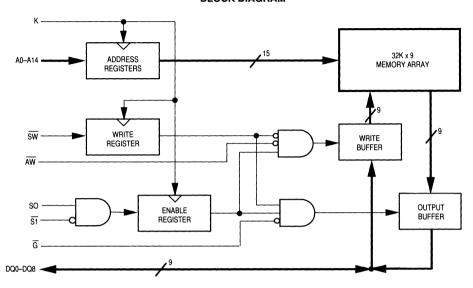
Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of K. Write cycles are completed only if \overline{AW} is asserted within the specified setup time to the following rising edge of K. Write cycles may be aborted by negating the \overline{AW} signal prior to the low going edge of K. Data for the write may be delayed until the latter half of the write cycle.


The MCM62950 is packaged in a 44-pin plastic leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0–DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 20/25 ns Max and Cycle Times: 20/25 ns Min
- Internal Input Registers (Address, Control)
- Late Write Abort Feature
- Output Enable Controlled Three-State Outputs
- Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL Compatible
- Active High and Low Chip Select Inputs for Easy Depth Expansion

MCM62950

PIN ASSIGNMENT


PIN NAMES
A0-A14 Address Inputs
K Clock
SW Synchronous Write
AW Asynchronous Write
G Output Enable
S0, S1 Chip Selects
DQ0-DQ8 Data Input/Output
V _{CC} · · · · · · · +5 V Power Supply
VCCO Output Buffer Power Supply
Vee

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

VSSQ Output Buffer Ground

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

BLOCK DIAGRAM

SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, 3, and 4)

s	SW	ĀW	G	К	Operation	I/O Status
F	X	Х	Х	L-H	Deselected	High-Z
Т	L	Х	X	L-H	Write	High-Z
(T)	(L)	L	X	L	Write	Data-In
(T)	(L)	н	Х	L	Aborted Write (No Action)	High-Z
T	н	Х	_	L-H	Read Initiated	_
(T)	(H)	Х	Н	Х	Read	High-Z
(T)	(H)	Х	L	X	Read	Data Out

NOTES:

- 1. X means Don't Care
- 2. S0, $\overline{S1}$, and \overline{W} must meet setup and hold times for the low-to-high transition of clock (K).
- 3. S represents $\overline{S0}$ and S1. T implies $\overline{S1}$ = L and S0 = H; F implies $\overline{S1}$ = H or S0 = L.
- 4. $\overline{W} = (L)$ implies $\overline{W} = L$ for the last clock transition from low to high. Similarly for S = (T).

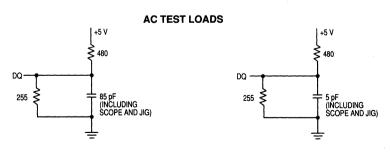


Figure 1A

Figure 1B

MOTOROLA MEMORY DATA

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	٧
Output Power Supply Voltage	Vccq	– 0.5 to V _{CC}	V
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧ .
Output Current (per I/O)	lout	± 20	mA
Power Dissipation ($T_A = 70^{\circ}C$, $V_{CC} = 5 V$, $t_{KHKH} = 20 \text{ ns}$)	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS (VCC = VCCQ = 5.0 V \pm 10%, TA = 0 to + 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible	Vccq	4.5 3.0	5.0 3.3	5.5 3.6	٧
Input High Voltage	VIH	2.2	3.0	V _{CC} + 0.3	V
Input Low Voltage	V _{IL}	- 0.5*	0.0	0.8	V

^{*} V_{IL} (min) = -3.0 Vac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	± 1.0	μА
Output Leakage Current (\overline{G} , $\overline{S1} = V_{IH}$, $S0 = V_{IL}$, $V_{Out} = 0$ to V_{CCQ})	I _{lkg(O)}	_	± 1.0	μА
AC Supply Current $(\overline{G}, S0 = V_{IH}, \overline{S1} = V_{IL},$ MCM62950-20: $t_{KHKH} = 20 \text{ ns}$ All Inputs = $V_{IL} = 0.0 \text{ V}$ and $V_{IH} \ge 3.0 \text{ V}$, $t_{Out} = 0 \text{ mA}$, MCM62950-25: $t_{KHKH} = 25 \text{ ns}$ Cycle Time $\ge t_{KHKH} \text{ min}$)	ICCA	_	185 175	mA
Standby Current ($\overline{S1}$ = V _{IH} , S0 = V _{IL} , All Inputs = V _{IL} and V _{IH})	I _{SB1}		40	mA
CMOS Standby Current ($\overline{S1}$ \geq V $_{CC}$ $-$ 0.2 V, S0 \leq 0.2 V, All Inputs \geq V $_{CC}$ $-$ 0.2 V or \leq 0.2 V, Cycle TIme \geq t _{KHKH} min)	I _{SB2}		30	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	0.1	0.4	V
Output High Voltage (I _{OH} = -4.0 mA)	VOH	2.4	_	٧

NOTE: Good decoupling of the local power supply should always be used.

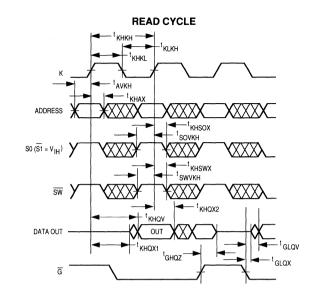
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0–DQ8)	C _{in}	4	5	pF
Input/Output Capacitance (DQ0–DQ8)	C _{I/O}	8	10	ρF

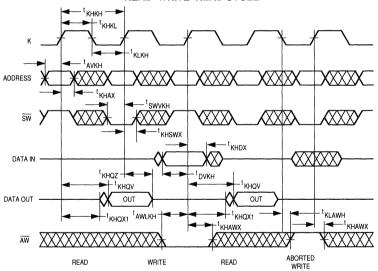
9

AC OPERATING CONDITIONS AND CHARACTERISTICS

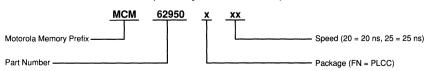
 $(V_{CC} = V_{CCO} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$


Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)


			MCM62950-20		2950-25		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Clock Control: Cycle Time Clock High Pulse Width Clock Low Pulse Width	[†] KHKH [†] KHKL [†] KLKH	20 8 8	_	25 11 11		ns	
Read Access Times: Clock Access Time Output Enable to Output Valid	^t KHQV ^t GLQV	=	20 8	_	25 9	ns	
Aborted Write Cycles: Clock Low to Asynchronous Write High Clock High to Asynchronous Write Invalid	^t KLAWH ^t KHAWX		0 —	_ 2	0 —	ns	
Write Cycles: Asynchronous Write Low to Clock High Clock High to Asynchronous Write Invalid Data-In Valid to Clock High (Transparent Data) Clock High to Data Invalid (Transparent Data)	[†] AWLKH [†] KHAWX [†] DVKH [†] KHDX	6 2 6 2	_ _ _ _	6 2 6 2	_ _ _ _	ns	
Output Buffer Control: Clock High to Output Low-Z after Write Clock High to Output Change Output Enable to Output Active Output Disable to Q High-Z Clock High to Q High-Z	tkhqx1 tkhqx2 tglqx tghqz tkhqz	8 5 0 —	— — 8 10	8 5 0 —	 9 10	ns	4 4
Registe Setup Times for: Address Synchronous Write Chip Select	tavkh twvkh tsovkh tsovkh	3	_	3	_	ns	5
Register Hold Times for: Address Synchronous Write Chip Select	tKHAX tKHWX tKHS0X tKHS1X	2		2		ns	5

NOTES:


- 1. A read cycle is defined by \overline{SW} high for the setup and hold times. A write cycle is defined by \overline{SW} low for the setup and hold times.
- 2. All read and write cycle \underline{tim} ings are referenced from K or \overline{G} .
- 3. \overline{G} is a don't care when \overline{SW} is sampled low.
- 4. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{GHOZ} max is less than t_{GLOX} min for a given device and from device to device.
- 5. This is a synchronous device. All address inputs must meet the specified setup and hold times with stable logic levels for **ALL** rising edges of clock (K) when the device is selected. All synchronous inputs must meet the specified setup and hold times with stable logic levels for **ALL** rising edges of clock (K) when the device is selected. Timings for \$\overline{51}\$ and \$\overline{50}\$ are similar.

READ-WRITE-READ CYCLE

ORDERING INFORMATION (Order by Full Part Number)

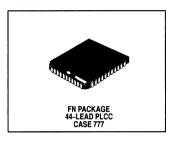
Full Part Number - MCM62950FN20 MCM62950FN25

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

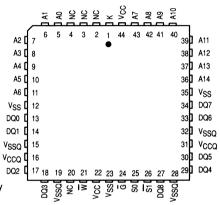
Product Preview 32K × 9 Bit Synch

32K × 9 Bit Synchronous Static RAM

The MCM62960 is a 294,912 bit synchronous static random access memory designed to provide a high-performance, cache for the SPARC™ Family of microprocessors. It is organized as 32,768 words of 9 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates input registers, high-speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications.


Synchronous design allows precise cycle control with the use of an external clock (K). CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

Output enable (\overline{G}) is an asynchronous control input. Addresses (A0–A14) and chip select inputs $(S0,\overline{S1})$ are sampled through positive-edge-triggered, noninverting registers on the rising edge of the clock input (K). Write enable (\overline{W}) and data-in are sampled on the following edge of K through negative-edge-triggered, noninverting registers.


The MCM62960 is packaged in a 44-pin plastic leaded chip carrier (PLCC). Multiple power and ground pins have been utilized to minimize effects induced by output noise. Separate power and ground pins have been employed for DQ0–DQ8 to allow user-controlled output levels of 5 volts or 3.3 volts.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V \pm 10% Power Supplies for Output Level Compatibility
- Fast Access Times: 17/20/24 ns Max and Cycle Times: 20/25/30 ns Min
- Internal Input Registers (Address, Control, Data)
- · Internally Self-Timed Write Cycle
- Output Enable Controlled Three-State Outputs
- · Common Data Inputs and Data Outputs
- High Output Drive Capability: 85 pF per I/O
- High Board Density PLCC Package
- Fully TTL Compatible
- Active High and Low Chip Select Inputs for Easy Depth Expansion

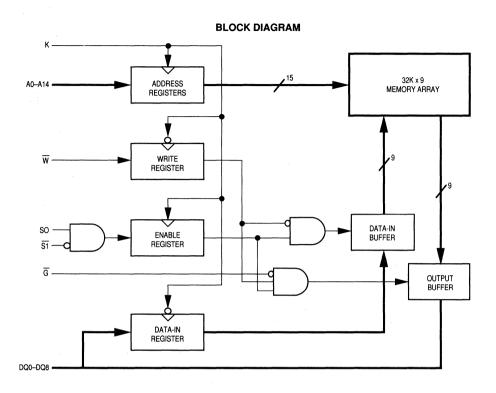
MCM62960

PIN ASSIGNMENT

A0−A14 Address Inputs K Clock W Write Enable G Output Enable S0, S1 Chip Selects DQ0−DQ8 Data Input/Output VCC +5 V Power Supply VCCQ Output Buffer Power Supply

 VSS
 Ground

 VSSQ
 Output Ground


 NC
 No Connection

PIN NAMES

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

SPARC is a trademark of Sun Corp.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE (See Notes 1, 2, 3, and 4)

	(000	,	-,	
S	W	G	input/Output	Operation
F	х	Х	High-Z	Deselected
Т	Н	L	Data Out	Read Cycle
Т	Н	Н	High-Z	Read Cycle
T	L	Н	Write Data In	WriteCycle

NOTES:

- 1. X means Don't Care
- 2. All address and chip select inputs must meet setup and hold times for *ALL* low-to-high transitions of clock (K). \overline{W} input must meet setup and hold times for *ALL* high-to-low transitions of clock (K).
- 3. S represents S0 and $\overline{S1}$. T implies $\overline{S1}$ = L and S0 = H; F implies $\overline{S1}$ = H or S0 = L.
- 4. During a write cycle, \overline{G} must be high before the input data required setup time and held high throughout the data hold time.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to Vos = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to 7.0	٧
Output Power Supply Voltage	Vccq	– 0.5 to V _{CC}	٧
Voltage Relative to V _{SS}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 70°C, V _{CC} = 5 V, t _{KHKH} = 20 ns)	PD	1.2	w
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = V_{CCQ} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = 0 V)

Parameter	Symbo	ol Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccc	4.5	5.0 3.3	5.5 3.6	٧
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}	- 0.5*	0.0	0.8	٧

^{*} V_{IL} (min) = -3.0 Vac (pulse width ≤ 20 ns)

DC CHARACTERISTICS

Parameter		Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	likg(I)	_	± 1.0	μΑ
Output Leakage Current $(\overline{G}, \overline{S1} = V_{IH}, S0 = V_{IL}, V_{out} = 0 \text{ to } V_{CCQ})$	l _{lkg(O)}	_	± 1.0	μΑ
AC Supply Current $(\overline{G}, S0 = V_{IH}, \overline{S1} = V_{IL})$. MCM62960-20: $t_{KHKH} = 25 \text{ ns}$ All Inputs = $V_{IL} = 0.0 \text{ V}$ and $V_{IH} \ge 3.0 \text{ V}$, $t_{Out} = 0 \text{ mA}$, MCM62960-24: $t_{KHKH} = 30 \text{ ns}$ Cycle Time $\ge t_{KHKH}$ min)	ICCA	_	175 165	mA
Standby Current (\$\overline{S1}\$ = V _{IH} , \$0 = V _{IL} , All Inputs = V _{IL} and V _{IH} , Cycle Time ≥ t _{KHKH} min)	I _{SB1}	_	40	mA
CMOS Standby Current ($\overline{S1} \ge V_{CC} - 0.2$ V, S0 \le 0.2 V, All Inputs $\ge V_{CC} - 0.2$ V or \le 0.2 V, Cycle Time \ge t _{KHKH} min)		_	30	mA
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	VOН	2.4	_	٧

NOTE: Good decoupling of the local power supply should always be used.

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0–DQ8)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0-DQ8)	C _{I/O}	8	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = V_{CCO} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time 3 ns	

READ/WRITE CYCLE TIMING (See Notes 1, 2, and 3)

		MCM6	2960-17	MCM6	2960-20	MCM62	2960-24		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Clock Control: Cycle Time Clock High Pulse Width Clock Low Pulse Width	tkhkh tkhkl tklkh	20 8 8	=	25 10 10	=	30 12 12	=	ns	
Read Cycles: Clock Access Time Output Enable to Output Valid	tkhQV tGLQV	=	17 7	=	20 8	_	24 9	ns	
Output Buffer Control: Clock High to Output Low-Z Clock High to Output Change Clock High to Q High-Z Output Enable to Output Active Output Disable to Q High-Z	tkhqx1 tkhqx2 tkhqz tglqx tghqz	3 5 10 0	_ _ _ _ 7	3 5 11 0	 8	3 5 12 0	 9	ns	3
Register/Latch Setup Times: Addre Da Write Enab Chip Sele	ta t _{DVKL}	2 3 2 2 2	_ _ _ _	2 3 2 2 2	_ _ _ _	2 3 2 2 2	- - - -	ns	4
Register/Latch Hold Times: Addre Da Write Enab Chip Sele	ta t _{KLDX}	3 2 3 3	_ _ _ _	3 2 3 3 3	_ _ _ _	3 2 3 3 3	_ _ _ _	ns	4

NOTES:

- 1. A read cycle is defined by \overline{W} high for the setup and hold times. A write cycle is defined by \overline{W} low for the setup and hold times.
- 2. All read and write cycle timings are referenced from K or \overline{G} .
- Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any
 given voltage and temperature, t_{GHQZ} max is less than t_{GLQX} min for a given device and from device to device.
- 4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising (or falling in the case of W and Data In) edges of clock (K) when the device is selected. To select or deselect the device, both chip selects must be valid at the rising edge of K. Timings for S1 and S0 are similar.

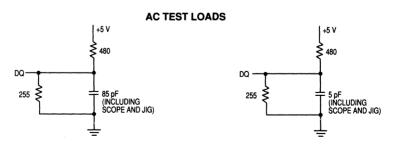
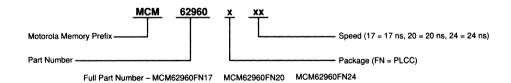



Figure 1A

Figure 1B

READ - WRITE CYCLE ^{- t} KHKH ^tAVKH ^tKHAX ■— ^tKLKH ^{- t}KLWX ts1VKH KHS1X S1 (S0 = V_{IH}) tglav -- ^tGHQZ tGLQX t KHQZ ^t KHQV .t KHQX2 t KHQX1 DATA OUT - t_{KLDX} · ^tDVKL D(E) WRITE READ

ORDERING INFORMATION (Order by Full Part Number)

MCM62963

Product Preview

4K×10 Bit Synchronous Static RAM with Output Registers

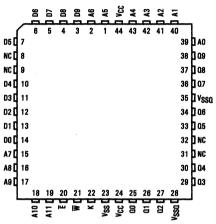
The MCM62963 is a 40.960 bit synchronous static random access memory organized as 4096 words of 10 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit. This allows reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

Synchronous design allows precise cycle control with the use of an external clock (K). while CMOS circuitry reduces the overall power consumption of the integrated functions

The address (A0-A11), data (D0-D9), write (W), and chip enable (E) inputs are all clock (K) controlled, positive-edge-triggered, noninverting

The chip enable (E) input is a synchronous input clock that places the device in a low power mode when high at the rising edge of the clock (K).

The MCM62963 provides output register operation. At the rising edge of clock (K), the RAM data from the previous clock (K) high cycle is presented.


Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

BLOCK DIAGRAM

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 18/20/25/30 ns Max
- Fast Clock (K) Access Times: 10/10/10/13 ns Max
- Address, Data Input, E, and W Registers On-Chip
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

FN PACKAGE 44-LEAD PLCC **CASE 777**

PIN ASSIGNMENT

ADDRESS REGISTERS	4K×10 VSS
DO-D9 DATA	DECODERS MEMORY MATRIX VSS 128 ROWS × 320 COLUMNS VSSD
REGISTERS	COLUMN 100
W CONTROL REGISTERS	COLUMN DECODERS OUTPUT
K CLOCK INPUT	WRITE PULSE GENERATOR 09
	ROW A5, A4, A3, A2, A1, A0, A6 COL A7, A11, A10, A9, A8 MSB LSB

PIN NAMES
A0-A11 Address inputs
W Write Enable
臣 Chip Enable
D0-D9 Data Inputs
Q0-Q9 Data Outputs
K Clock Input
V _{CC} +5 V Power Supply
VSS Ground
VSSQ Output Buffer Ground
NC No Connection

For proper operation of the device VSS and both VSSQ leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	W	Operation	Q0-Q9	Current
L	L	Write	High Z	Icc
L	Н	Read	D _{out}	Icc
н	х	Not Selected	High Z	ISB

NOTE: The values of \overline{E} and \overline{W} are valid inputs for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=VSSO=0 V)

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	-0.5 to +7.0	٧	
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧	
Output Current (per I/O)	l _{out}	±20	mA	
Power Dissipation (T _A = 25°C)	PD	1.5	w	
Temperature Under Bias	T _{bias}	-10 to +85	°C	
Operating Temperature	TA	0 to +70	°C	
Storage Temperature	T _{stg}	-55 to +125	°C	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) _/hile the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at $V_{\parallel}L$ or $V_{\parallel}H$ during power up to prevent spurious read cycles from occurring.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS=VSSQ=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	V

 V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})	llkg(I)	_	±1.0	μΑ
Output Leakage Current (E=V _{IH} , V _{out} =0 to V _{CC} , Outputs must be high-Z)	l[kg(O)	_	± 1.0	μΑ
AC Supply Current (Ē=V _{IL} , All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle Time≥t _{KHKH} min) MCM62963-18: t _{KHKH} =18 ns MCM62963-20: t _{KHKH} =20 ns MCM62963-25: t _{KHKH} =25 ns MCM62963-30: t _{KHKH} =30 ns	ICCA	- - -	180 170 170 150	mA
Standby Current (\overline{E} =V _{IH} , V _{IH} \geq 3.0 V, V _{IL} \leq 0.4 V, I _{OUt} =0 mA, Cycle Time \geq = t _{KHKH} min)	ISB	_	30	mA
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	V
Output High Voltage (IOH = -1.8 mA)	Voн	2.8	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	рF
Output Capacitance	Cout	5	7	pF

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output LoadSee Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE (See Note 1)

	0	MCM62963-18		MCM62963-20		MCM62963-25		MCM62963-30			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tKHKH	18	_	20	_	25	_	30	_	ns	2
Clock Access Time	tKHQV	_	10	_	10	_	10	_	13	ns	3
Output Active from Clock High	tKHQX	3	_	3	_	3	-	3	_	ns	4
Clock High to Q High Z (E=VIH)	tKHQZ	_	10	_	10	_	10	-	13	ns	4
Clock Low Pulse Width	tKLKH	5	_	5	_	5	_	5	_	ns	
Clock High Pulse Width	tKHKL	5	_	5	_	5	_	5	_	ns	
Setup Times for: E A W	tevkh tavkh twhkh	5	_	5	-	5	-	5	_	ns	5
Hold Times for: $\overline{\mathbb{E}}$ A $\overline{\mathbb{W}}$	tKHEX tKHAX tKHWX	3	_	3	_	3	-	3	_	ns	5

NOTES:

- 1. A read is defined by \overline{W} high and \overline{E} low for the setup and hold times.
- 2. All read cycle timing is referenced from K.
- 3. Valid data from K high will be the data stored at the address of the last valid read cycle.
- Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any
 given voltage and temperature, t_{KHOX} max is less than t_{KHOX} min for a given device.
- This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC TEST LOADS

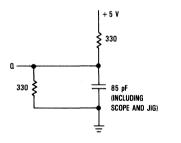


Figure 1A

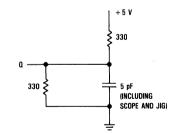
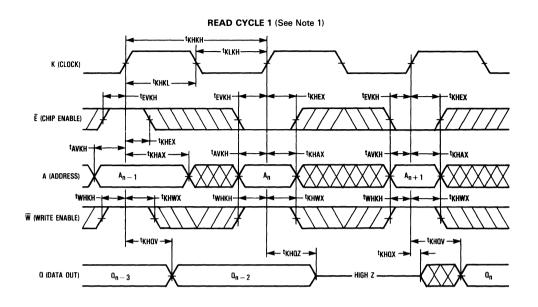
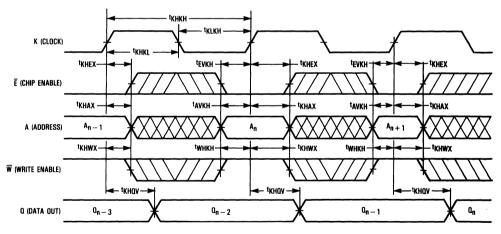
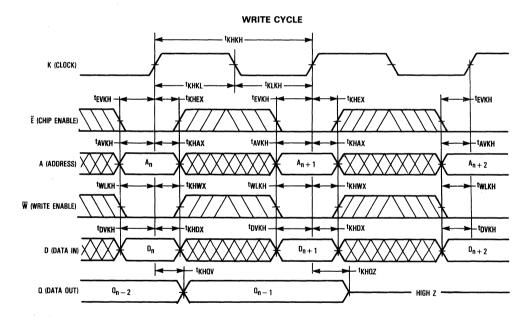




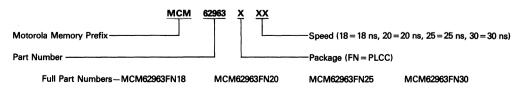
Figure 1B

READ CYCLE 2 (See Note 1)

NOTE:


1. The outputs Q_{n-3} and Q_{n-2} are derived from two previous read cycles where $\overline{W} = V_{IH}$ and $\overline{E} = V_{IL}$ for those cycles.

WRITE CYCLE (W Controlled, See Note 1)


D	0	мсме	2963-18	MCM62963-20 MC		MCM62963-25		MCM62963-30		11-14	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit No	Notes
Write Cycle Time	tKHKH	18	_	20	_	25	_	30	_	ns	2
Clock High to Q High Z (W=VIL)	tKHQZ	I –	10	_	10	_	10	_	13	ns	3
7	tevkh tavkh twlkh tovkh	5	_	5	_	5	_	5	_	ns	4
7	tKHEX tKHAX tKHWX tKHWX	3	-	3	_	3	_	3		ns	4

NOTES:

- 1. A write is performed when \overline{W} and \overline{E} are both low for the specified setup and hold times.
- 2. All write cycle timing is referenced from K.
- 3. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.
- 4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

4K×10 Bit Synchronous Static RAM with Output Registers and Output Enable

The MCM62964 is a 40,960 bit synchronous static random access memory organized as 4096 words of 10 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit for reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

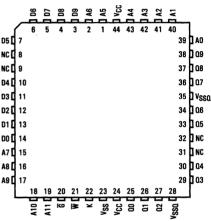
Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

The address (A0-A11), data (D0-D9), and write (\overline{W}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The MCM62964 provides output register operation. At the rising edge of clock (K), the RAM data from the previous clock (K) high cycle is presented.

The output enable (G) provides asynchronous bus control for common I/O or bank switch applications.

Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.


DI COK DIACDAM

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 20/25/30 ns Max
- Fast Clock (K) Access Times: 10/10/13 ns Max
- Address, Data Input, and W Registers On-Chip
- Output Enable for Asynchronous Bus Control
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

MCM62964

PIN ASSIGNMENT

BLOCK DIAGRAM							
ROW • MEMO	X × 10 RY MATRIX ROWS × VCC VSS VSSQ						
1 1 1 1 1	COLUMNS						
W PERBLE CO	JMN I/O OUTPUT REGISTERS						
K CLOCK INPUT	09						
G	2, A1, A0, A6 1, A10, A9, A8 LSB						

PIN NAMES							
A0-A11 Address Inputs							
W Write Enable							
G Output Enable							
D0-D9 Data Inputs							
Q0-Q9 Data Outputs							
K Clock Input							
V _{CC} +5 V Power Supply							
VSS Ground							
VSSQ Output Buffer Ground							
NC No Connection							

For proper operation of the device V_{SS} and both V_{SSQ} leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

W	Operation	Q0-Q9	Current
L	Write	High Z	ICCA
Н	Read	D _{out}	ICCA

NOTE: The value $\overline{\mathbf{W}}$ is a valid input for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=VSSQ=0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.5	W
Temperature Under Bias	T _{bias}	- 10 to +85	ŝ
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at $V_{\parallel L}$ or $V_{\parallel H}$ during power up to prevent spurious read cycles from occurring.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = VSSO = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	v
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	٧

^{*}V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	likg(I)		±1.0	μΑ
Output Leakage Current (G=VIH, Vout=0 to VCC, Outputs must be high-Z)	llkg(O)	_	±1.0	μА
AC Supply Current (\$\overline{G}\$ = V L, All Inputs = V L or V H, Iout = 0 mA, Cycle Time ≥ tKHKH min) MCM62964-20: tKHKH = 20 ns MCM62964-25: tKHKH = 25 ns MCM62964-30: tKHKH = 30 ns	ICCA	1 - 1	170 170 150	mA
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = -1.8 mA)	VOH	2.8	_	٧

$\textbf{CAPACITANCE} \; (\text{f} = 1.0 \; \text{MHz}, \; \text{dV} = 3.0 \; \text{V}, \; \text{T}_{\mbox{A}} = 25^{\circ} \mbox{C}, \; \text{Periodically Sampled Rather Than 100% Tested)}$

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	5	7	pF

9

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output LoadSee Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE

									T	
Parameter		Symbol	MCM	MCM62964-20		MCM62964-25		MCM62964-30		Notes
rarameter		Зуппьог	Min	Max	Min	Max	Min	Max	Unit	HOUSE
Read Cycle Time		tKHKH	20	_	25	_	30		ns	1, 3
Write Cycle Time		tKHKH	20	_	25	_	30	_	ns	2, 3
Clock High Access Time		tKHQV	_	10	_	10	_	13	ns	3, 4
G Low to Output Valid		tGLQV	_	10	_	10	_	13	ns	3
Output Active from Clock High		tKHQX	0	_	0	_	0	l –	ns	
Output Active from G Low		tGLQX	0	_	0	_	0		ns	
Clock Low Pulse Width		tKLKH	5	_	5	-	5	_	ns	
Clock High Pulse Width		tKHKL	5	-	5	-	5	_	ns	
Setup Times for:	¶o ⊳	tavkh tdvkh twvkh	5	_	5	_	5	_	ns	1, 2, 5
Hold Times for:	A D ₩	tKHAX tKHDX tKHWX	3	-	3	_	3	_	ns	1, 2, 5
Clock High to Output High Z (W=V _{IL})		tKHQZ	0	10	0	10	0	13	ns	3, 6
G High to Output High Z		tGHOZ	0	10	0	10	0	13	ns	3, 6, 7

NOTES:

- 1. A read is defined by W high for the specified setup and hold times.
- 2. A write is defined by W low for the specified setup and hold times.
- 3. All read and write cycle timing is referenced from K or from G.
- 4. Valid data from K high will be the data stored at the address of the last valid read cycle.
- 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.
- 6. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min and t_{GHOZ} max is less than t_{GLOX} min for a given device. 7. \overline{G} becomes a don't care signal for successive writes after the first write cycle.

AC TEST LOADS

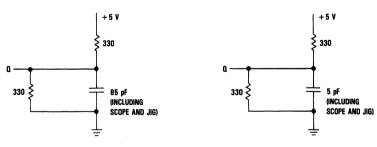
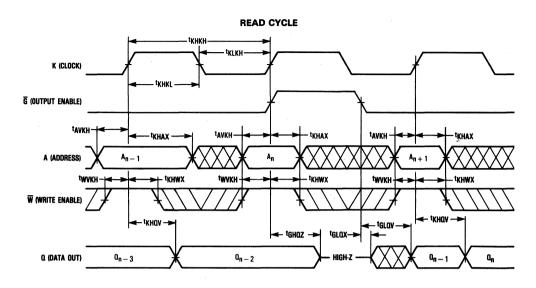
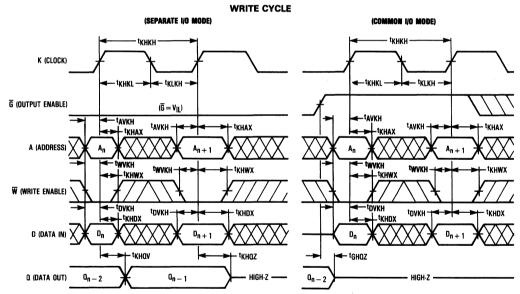





Figure 1A

Figure 1B

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR | TECHNICAL DATA

MCM62965

Product Preview

4K × 10 Bit Synchronous Static RAM with Transparent Outputs and Output Enable

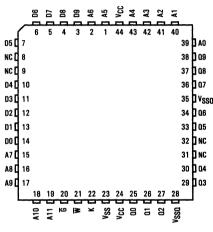
The MCM62965 is a 40,960 bit synchronous static random access memory organized as 4096 words of 10 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output latching onto a single monolithic circuit for reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

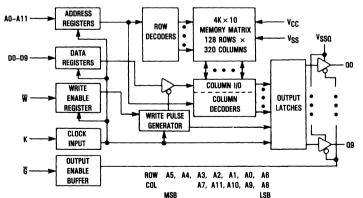
The address (A0-A11), data (D0-D9), and write (\overline{W}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The MCM62965 provides transparent output operation when clock (K) is low for access of RAM data within the same cycle (output data is latched when clock (K) is high).

The output enable (\overline{G}) provides asynchronous bus control for common I/O or bank switch applications.


Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 25/30/35 ns Max
- Fast Clock (K) Access Times: 10/13/15 ns Max
- Address, Data Input, and W Registers On-Chip
- Transparent Output Latch for Access Within the Same Cycle
- Output Enable for Asynchronous Bus Control
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins


William Millian

FN PACKAGE 44-LEAD PLCC CASE 777

PIN ASSIGNMENT

BLOCK DIAGRAM

PIN NAMES							
A0-A11 Address Inputs							
W Write Enable							
G Output Enable							
D0-D9 Data Inputs							
Q0-Q9 Data Outputs							
K Clock Input							
VCC +5 V Power Supply							
VSS Ground							
VSSQ Output Buffer Ground							
NC No Connection							

For proper operation of the device VSS and both VSSQ leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

9

TRUTH TABLE

W	Operation	O0-O9	Current
L	Write	High Z	ICCA
Н	Read	D _{out}	ICCA

NOTE: The value \overline{W} is a valid input for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = VSSQ = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.5	w
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS=VSSQ=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	-	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	٧

^{*}V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})	lkg(I)	_	±1.0	μА
Output Leakage Current ($\overline{G} = V_{IH}$, $V_{out} = 0$ to V_{CC} , Outputs must be high-Z)	l _{lkg} (O)	_	± 1.0	μА
AC Supply Current (G=V _{IL} , All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle	ICCA			mA
Time ≥ t _{KHKH} min) MCM62965-25: t _{KHKH} = 25 ns		i –	170	Ì
MCM62965-30: t _{KHKH} = 30 ns		_	170	ŀ
MCM62965-35: t _{KHKH} = 35 ns		_	150	<u> </u>
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	V
Output High Voltage (IOH = -1.8 mA)		2.8	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	C _{in}	4	6	pF
Output Capacitance	Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC}=5.0 V \pm 10%, T_A=0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE

B 4-			MCM	2965-25	965-25 MCM62965-		MCM62965-35		T	
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit N	Notes
Read Cycle Time		tkhkh	25	_	30	_	35	_	ns	1, 3
Write Cycle Time		tKHKH	25		30	_	35	_	ns	2, 3
Clock High Access Time		tKHQV	_	25	_	30	_	35	ns	3, 4, 5
Clock Low to Output Valid		tKLQV	_	10	_	13	_	15	ns	3, 4, 5
G Low to Output Valid		tGLQV	_	10	_	13	_	15	ns	3
Output Active from Clock Low		tKLQX	0	-	0	_	0	_	ns	
Output Active from G Low		tGLQX	0	_	0	_	0	_	ns	
Clock Low Pulse Width		tKLKH	5	T -	5	_	, 5	_	ns	
Clock High Pulse Width		tKHKL	5		5	_	5		ns	
Setup Times for:	A D ₩	tavkh tdvkh twhkh	5	_	5	_	5	_	ns	1, 2, 6
Hold Times for:	A D ₩	tKHAX tKHDX tKHWX	3	_	3	_	3	_	ns	1, 2, 6
Clock Low to Output High Z ($\overline{W} = V_{ L}$)		tKLQZ	0	10	0	13	0	15	ns	5, 7
G High to Output High Z		tGHQZ	0	10	0	13	0	15	ns	3, 7, 8

NOTES:

- 1. A read is defined by $\overline{\mathbf{W}}$ high for the specified setup and hold times.
- 2. A write is defined by \overline{W} low for the specified setup and hold times.
- 3. All read and write cycle timing is referenced from K or from $\overline{\textbf{G}}.$
- Access time is controlled by tKLQV if the clock high pulse width ≥(tKHQV tKLQV); otherwise it is controlled by tKHQV.
- 5. K must be low for the outputs to transition.
- 6. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.
- 7. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min and t_{GHOZ} max is less than t_{GLOX} min for a given device.

 8. G becomes a don't care signal for successive writes after the first write cycle.

AC TEST LOADS

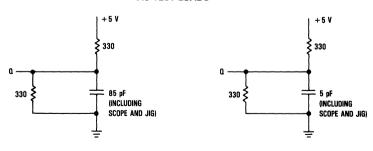
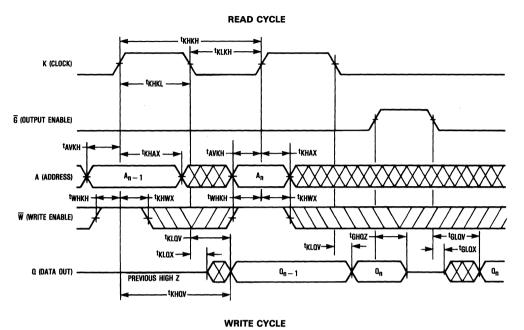
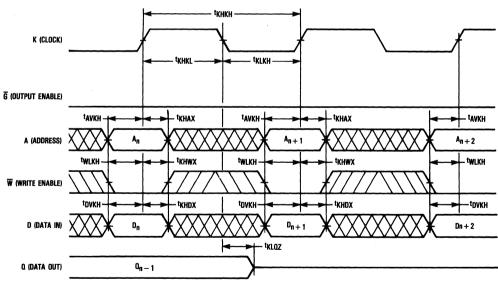
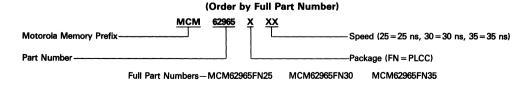





Figure 1A

Figure 1B

ORDERING INFORMATION

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

4K×12 Bit Synchronous Static RAM with Output Registers

The MCM62973 is a 49,152 bit synchronous static random access memory organized as 4096 words of 12 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit for reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

The address (A0-A11), data (D0-D11), write (\overline{W}) , and chip enable (\overline{E}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The chip enable (Ē) input is a synchronous input clock that places the device in a low power mode when high at the rising edge of the clock (K).

The MCM62973 provides output register operation. At the rising edge of clock (K), the RAM data from the previous clock (K) high cycle is presented.

Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 18/20/25/30 ns Max
- Fast Clock (K) Access Times: 10/10/10/13 ns Max
- Address, Data Input, E, and W Registers On-Chip
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

BLOCK DIAGRAM A0-A11 ADDRESS REGISTERS MEMORY MATRIX ROW DECODERS 128 ROWS × 384 COLUMNS DO-D11 DATA REGISTERS COLUMN 1/0 CONTROL COLUMN REGISTERS DECODERS OUTPUT REGISTERS WRITE PULSE GENERATOR CLOCK INPUT A4, A3, A2, A1, A0, A6 ROW COL A7, A11, A10, A9, A8

MCM62973

PIN ASSIGNMENT

PIN NAMES
A0-A11 Address inputs
W Write Enable
E Chip Enable
D0-D11 Data Inputs
Q0-Q11 Data Outputs
K Clock Input
V _{CC} +5 V Power Supply
VSS Ground
VSSQ Output Buffer Ground

For proper operation of the device VSS and both VSSQ leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

Ē	W	Operation	Q0-Q11	Current
L	L	Write	High Z	lcc
L	. Н	Read	D _{out}	Icc
Н	Χ.	Not Selected	High Z	ISB

NOTE: The values of E and W are valid inputs for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS=VSSQ=0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	>
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.5	W
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of the clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = VSSO = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5*	_	0.8	٧

^{*}V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})	likg(I)	_	±1.0	μА
Output Leakage Current ($\overline{E}=V_{IH}$, $V_{out}=0$ to V_{CC} , Outputs must be in High Z)	likg(O)	-	±1.0	μА
AC Supply Current (E=V _{IL} , All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle Time≥t _{KHKH} min) MCM62973-18: t _{KHKH} =18 ns MCM62973-20: t _{KHKH} =20 ns MCM62973-25: t _{KHKH} =25 ns MCM62973-30: t _{KHKH} =30 ns	ICCA	1 1 1 1	180 170 170 170	mA
Standby Current (\bar{E} =V _{IH} , V _{IH} \geq 3.0 V, V _{IL} \leq 0.4 V, I _{out} =0 mA, Cycle Time \geq =t _{KHKH} min)	ISB	-	30	mA
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	٧
Output High Voltage (I _{OH} = -1.8 mA)	Voн	2.8		V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ CYCLE (See Note 1)

Parameter		O			MCM62973-20		MCM62973-25		MCM62973-30		l	
		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time		tKHKH	18	_	20	_	25	_	30	_	ns	2
Clock Access Time		tKHQV	- I	10	_	10	_	10	_	13	ns	3
Output Active from Clock High		tKHQX	3	l –	3	l –	3	_	3	_	ns	4
Clock High to Q High Z (E=VIH)		tKHQZ	_	10	_	10	T -	10	-	13	ns	4
Clock Low Pulse Width		tKLKH	5	_	5	_	5	_	5	_	ns	
Clock High Pulse Width		tKHKL	5	l –	5	_	5	_	5	_	ns	
Setup Times for:	Ē A W	^t EVKH ^t AVKH ^t WHKH	5	-	5	-	5	-	5	-	ns	5
Hold Times for:	Ē A W	[†] KHEX [†] KHAX [‡] KHWX	3	_	3	_	3	_	3	_	ns	5

NOTES:

- 1. A read is defined by W high and E low for the setup and hold times.
- 2. All read cycle timing is referenced from K.
- 3. Valid data from K high will be the data stored at the address of the last valid read cycle.
- 4. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any given voltage and temperature, tKHOZ max is less than tKHOX min for a given device.
- 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

AC TEST LOADS

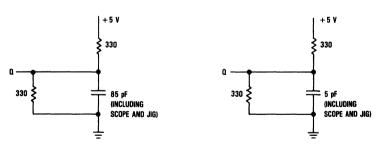
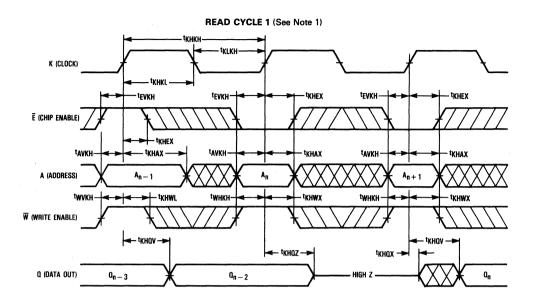
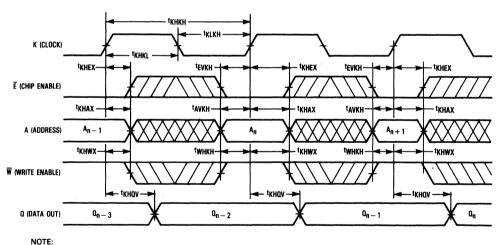
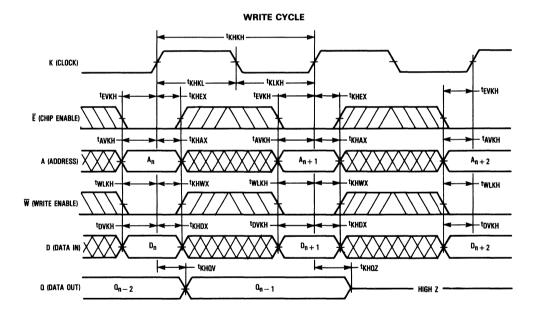




Figure 1A

Figure 1B

READ CYCLE 2 (See Note 1)


1. The outputs Q_{n-3} and Q_{n-2} are derived from two previous read cycles where $\overline{W} = V_{IH}$ and $\overline{E} = V_{IL}$ for those cycles.

WRITE CYCLE (W Controlled, See Note 1)

D	0	MCM62973-18		MCM62973-20		MCM62973-25		MCM62973-30			T.,
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tKHKH	18	_	20	_	25	_	30	_	ns	2
Clock High to Output High Z ($\overline{W} = V_{IL}$)	tKHQZ	-	10	_	10	_	10	_	13	ns	3
√ V	tevkh tavkh twkh tovkh	5	_	5	_	5	_	5		ns	4
		3	_	3	_	3	_	3	_	ns	4

NOTES:

- 1. A write is performed when \overline{W} and \overline{E} are both low for the specified setup and hold times.
- 2. All write cycle timing is referenced from K.
- Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled not 100% tested. At any
 given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min for a given device.
- 4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA MEMORY DATA

MCM62974

Product Preview

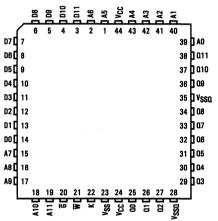
4K × 12 Bit Synchronous Static RAM with Output Registers and Output Enable

The MCM62974 is a 49,152 bit synchronous static random access memory organized as 4096 words of 12 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output registers onto a single monolithic circuit for reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

The address (A0-A11), data (D0-D11), and write (\overline{W}) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

The MCM62974 provides output register operation. At the rising edge of clock (K), the RAM data from the previous clock (K) high cycle is presented.


The output enable (G) provides asynchronous bus control for common I/O or bank switch applications.

Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.

- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 18/20/25/30 ns Max
- Fast Clock (K) Access Times: 10/10/10/13 ns Max
- Address, Data Input, and W Registers On-Chip
- Output Enable for Asynchronous Bus Control
- Output Registers for Fully Pipelined Applications
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

PIN ASSIGNMENT

	BLOCK DIAGRAM
A0-A11 ADDRESS REGISTERS	#K × 12 VCC MEMORY MATRIX 128 ROWS × VSS VSS VSS VSS VSS VSS VSS V
DO-D11 DATA REGISTERS	384 COLUMNS 00
WRITE ENABLE REGISTER	COLUMN I/O COLUMN OUTPUT DECODERS GENERATOR GENERATOR
K CLOCK INPUT	Q11
G	ROW A5, A4, A3, A2, A1, A0, A6 COL A7, A11, A10, A9, A8 MSB LSB

PIN NAMES				
A0-A11 Address Inputs				
W Write Enable				
G Output Enable				
D0-D11 Data Inputs				
Q0-Q11 Data Outputs				
K Clock Input				
V _{CC} +5 V Power Supply				
VSS Ground				
VSSQ Output Buffer Ground				
l				

For proper operation of the device VSS and both VSSQ leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TARLE

W	Operation	O0-O9	Current
L	Write	High Z	ICCA
Н	Read	D _{out}	ICCA

NOTE: The value \overline{W} is a valid input for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = VSSO = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	٧
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.5	W
Temperature Under Bias	T _{bias}	- 10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stq}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, T_A = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS=VSSQ=0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2	_	V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	٧

 V_{IL} (min) = -3.0 V ac (pulse width ≤20 ns)

DC CHARACTERISTICS

Parameter		Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} =0 to V _{CC})	likg(I)	_	±1.0	μА
Output Leakage Current (G=VIH, Vout=0 to VCC, Outputs must be high-Z)	llkg(O)	-	± 1.0	μА
AC Supply Current (G=V _{IL} , All Inputs=V _{IL} or V _{IH} , I _{out} =0 mA, Cycle	ICCA			mA
Time ≥ t _{KHKH} min) MCM62974-18: t _{KHKH} = 18 ns		_	180	i :
MCM62974-20: t _{KHKH} = 20 ns		_	170	İ '
MCM62974-25: t _{KHKH} = 25 ns			170	
MCM62974-30: t _{KHKH} =30 ns		-	150	
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	٧
Output High Voltage (IOH = -1.8 mA)	Voн	2.8	_	V

CAPACITANCE (f=1.0 MHz, dV=3.0 V, TA=25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_{\Delta} = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output LoadSee Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE

		мсм6	2974-18	MCM62974-20		мсм6	2974-25	MCM62974-30			
Parameter	Parameter Symbol		Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tKHKH	18	_	20	_	25	_	30	_	ns	1, 3
Write Cycle Time	tKHKH	18	_	20	_	25	_	30	_	ns	2, 3
Clock High Access Time	tKHQV	_	10	_	10	_	10	_	13	ns	3, 4
G Low to Output Valid	tGLQV	_	10	_	10	_	10	_	13	ns	3
Output Active from Clock High	tKHQX	0	_	0	_	0	_	0	_	ns	
Output Active from G Low	tGLQX	0	_	0	_	0	_	0	_	ns	
Clock Low Pulse Width	tKLKH	5	_	5	_	5	_	5	_	ns	
Clock High Pulse Width	^t KHKL	5	_	5	_	5		5	_	ns	
Setup Times for: A D W	tavkh tdvkh twvkh	5	_	5	_	5	-	5	_	ns	1, 2, 5
Hold Times for: A D \overline{W}	tKHAX tKHDX tKHWX	3	_	3	-	3	_	3	-	ns	1, 2, 5
Clock High to Output High Z ($\overline{W} = V_{ L}$)	tKHQZ	0	10	0	10	0	10	0	13	ns	3, 6
G High to Output High Z	tGHQZ	0	10	0	10	0	10	0	13	ns	3, 6, 7

NOTES:

- 1. A read is defined by $\overline{\mathbf{W}}$ high for the specified setup and hold times.
- 2. A write is defined by W low for the specified setup and hold times.
- 3. All read and write cycle timing is referenced from K or from G.
- 4. Valid data from K high will be the data stored at the address of the last valid read cycle.
- 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.
- 6. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOZ} min and t_{GHOZ} max is less than t_{GLOX} min for a given device. 7. \overline{G} becomes a don't care signal for successive writes after the first write cycle.

AC TEST LOADS

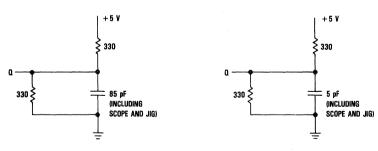
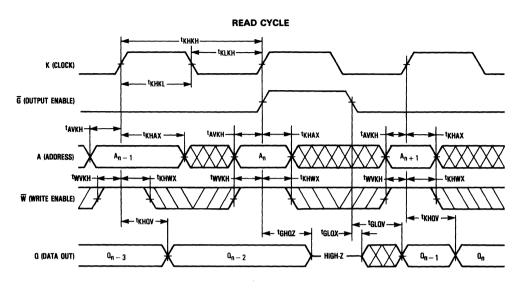
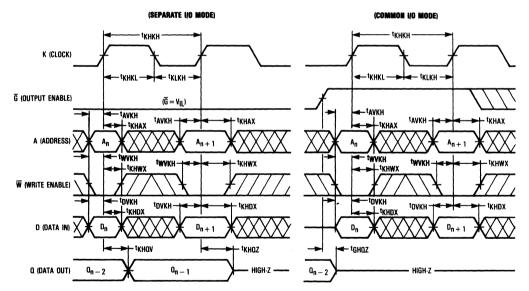
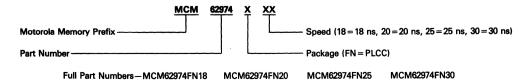




Figure 1A


Figure 1B

WRITE CYCLE

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

4K×12 Bit Synchronous Static RAM with Transparent Outputs and Output Enable

The MCM62975 is a 49,152 bit synchronous static random access memory organized as 4096 words of 12 bits, fabricated using Motorola's second-generation high-performance silicon-gate CMOS (HCMOS III) technology. The device integrates input registers, high speed SRAM, and high-drive capability output latching onto a single monolithic circuit for reduced parts count implementation of cache data RAM, writeable control store applications, and other applications that utilize long words.

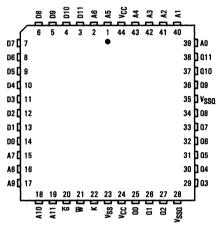
Synchronous design allows precise cycle control with the use of an external clock (K), while CMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability.

The address (A0-A11), data (D0-D11), and write (W) inputs are all clock (K) controlled, positive-edge-triggered, noninverting registers.

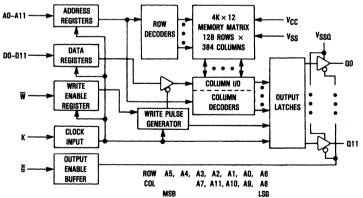
The MCM62975 provides transparent output operation when clock (K) is low for access of RAM data within the same cycle (output data is latched when clock (K) is high).

The output enable (G) provides asynchronous bus control for common I/O or bank switch applications.

Write operations are internally self-timed and initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals.


- Single 5 V ± 10% Power Supply
- Fast Cycle Times: 25/30/35 ns Max
- Fast Clock (K) Access Times: 10/13/15 ns Max
- Address, Data Input, and W Registers On-Chip
- Transparent Output Latch for Access Within the Same Cycle
- Output Enable for Asynchronous Bus Control
- High Output Drive Capability
- Internally Self-Timed Write Pulse Generation
- Separate Data Input and Data Output Pins

MCM62975



FN PACKAGE 44-LEAD PLCC **CASE 777**

PIN ASSIGNMENT

BLOCK DIAGRAM

PIN NAMES
A0-A11 Address Inputs
W Write Enable
G Output Enable
D0-D11 Data Inputs
Q0-Q11 Data Outputs
K Clock input
VCC +5 V Power Supply
VSS Ground
VSSQ Output Buffer Ground

For proper operation of the device VSS and both VSSQ leads must be connected to ground.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

TRUTH TABLE

w	Operation	Q0-Q11	Current
L	Write	High Z	ICCA
Н	Read	D _{out}	ICCA

NOTE: The value $\overline{\mathbf{W}}$ is a valid input for the setup and hold times relative to the K rising edge.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to VSS = VSSQ = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	>
Voltage Relative to VSS/VSSQ for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	>
Output Current (per I/O)	lout	±20	mA
Power Dissipation (T _A = 25°C)	PD	1.5	8
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	ပ္
Storage Temperature	T _{stg}	- 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.

This device contains circuitry that will ensure the output devices are in High Z at power up. Care should be taken by the user to ensure that all clocks are at V_{IL} or V_{IH} during power up to prevent spurious read cycles from occurring.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = VSSQ = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Input High Voltage	VIH	2.2		V _{CC} +0.3	٧
Input Low Voltage	VIL	-0.5*	_	0.8	٧

 V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

DC CHARACTERISTICS

Parameter		Min	Max	Unit
Input Leakage Current (All Inputs, Vin=0 to VCC)	l _{ikg(i)}	-	± 1.0	μΑ
Output Leakage Current (G=V _{IH} , V _{out} =0 to V _{CC} , Outputs must be high-Z)	likg(O)	_	± 1.0	μА
AC Supply Current (\$\overline{G}\$ = V _L , All Inputs = V _L or V _H , I _{out} = 0 mA, Cycle Time ≥ t _{KHKH} min) MCM62975-25: t _{KHKH} = 25 ns MCM62975-30: t _{KHKH} = 30 ns MCM62975-35: t _{KHKH} = 35 ns	ICCA	_ _ _	170 170 150	mA
Output Low Voltage (I _{OL} = 12.7 mA)	VOL	_	0.4	٧
Output High Voltage (IOH = -1.8 mA)	Voн	2.8	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance	Cin	4	6	pF
Output Capacitance	Cout	5	7	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC}=5.0 \text{ V} \pm 10\%, T_{\Delta}=0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ/WRITE CYCLE

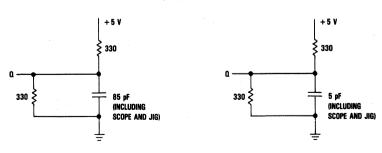
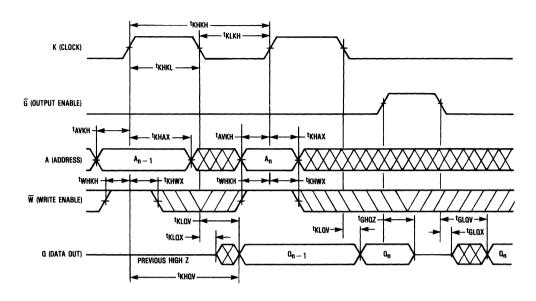
B	0	мсме	2975-25	MCM62975-30		MCM62975-35		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tKHKH	25	_	30	_	35	_	ns	1, 3
Write Cycle Time	tKHKH	25	_	30	_	35	_	ns	2, 3
Clock High Access Time	tKHQV	_	25	_	30	_	35	ns	3, 4, 5
Clock Low to Output Valid	tKLQV	_	10	_	13	_	15	ns	3, 4, 5
G Low to Output Valid	tGLQV	_	10	_	13	_	15	ns	3
Output Active from Clock Low	tKLQX	0		0	_	0	_	ns	
Output Active from G Low	tGLQX	0	-	0	_	0	_	ns	
Clock Low Pulse Width	tKLKH	5	_	5	_	5	_	ns	
Clock High Pulse Width	tKHKL	5	_	5	_	5	_	ns	
Setup Times for: A D W	^t AVKH ^t DVKH ^t WHKH	5	_	5	-	5	_	ns	1, 2, 6
Hold Times for: A D W	^t KHAX ^t KHDX ^t KHWX	3	_	3	_	3	_	ns	1, 2, 6
Clock Low to Output High Z $(\overline{W} = V_{ L})$	tKLQZ	0	10	0	13	0	15	ns	5, 7
G High to Output High Z	tGHQZ	0	10	0	13	0	15	ns	3, 7, 8

NOTES:

- 1. A read is defined by $\overline{\boldsymbol{W}}$ high for the specified setup and hold times.
- 2. A write is defined by \overline{W} low for the specified setup and hold times.
- 3. All read and write cycle timing is referenced from K or from G.
- 4. Access time is controlled by tKLQV if the clock high pulse width ≥(tKHQV-tKLQV); otherwise it is controlled by tKHQV.
- 5. K must be low for the outputs to transition.
- 6. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K) while the device is selected.
- 7. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHOZ} max is less than t_{KHOX} min and t_{GHOZ} max is less than t_{GLOX} min for a given device.

 8. G becomes a don't care signal for successive writes after the first write cycle.

AC TEST LOADS

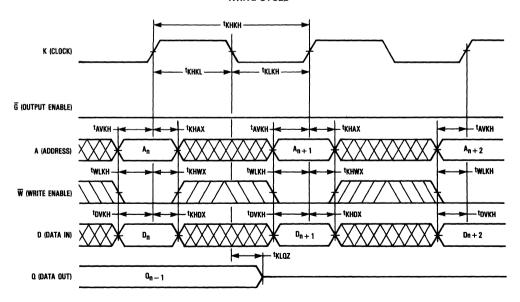
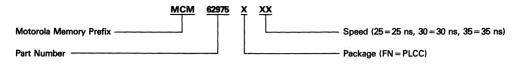

Figure 1A

Figure 1B

READ CYCLE



WRITE CYCLE

9

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers - MCM62975FN25

MCM62975FN30

MCM62975FN35

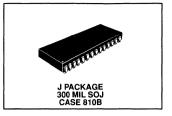
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

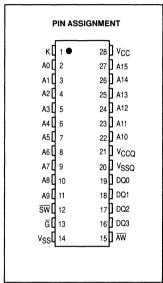
Advance Information

64K × 4 Bit Fast Synchronous Static RAM

The MCM62980 is a 262,144 bit synchronous static random access memory organized as 65,536 words of 4 bits, fabricated using Motorola's high–performance silicon–gate CMOS technology. The device integrates a 64K x 4 SRAM core with advanced peripheral circuitry consisting of positive edge triggered registers on address and synchronous write enable inputs. Asynchronous controls consist of asynchronous write strobe and output enable ($\overline{\mathbf{G}}$). This device has increased output drive capability supported by multiple power pins.

Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of clock (K). Write cycles are completed only if asynchronous write strobe (\overline{AW}) is asserted within the specified setup time of the following rising edge of clock (K). Write cycles may be aborted by negating the \overline{AW} signal prior to the low transition of the clock.

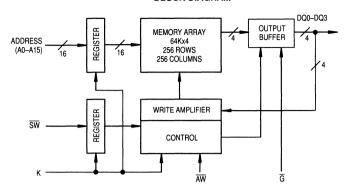

Additional power supply pins have been utilized and placed on the package for maximum performance. In addition one set of power pins is electrically isolated from the other set and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.


The MCM62980 will be available in a 28 pin 300 mil plastic SOJ.

Applications for this device include cache data and tag RAMs. See Figure 2 for applications information.

- Single 5 V ±10% Power Supply
- Choice of 5.0 V or 3.3 V ±10% Power Supplies for Output Buffers
- Fast Access and Cycle Times: 15/20 ns Max
- · Fully Synchronous Operation, Single Clock Control
- Clock Timed Writes with Asynchronous Late Write Abort
- Registered Address Inputs
- · Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 300 mil PSOJ Package

MCM62980



	PIN NAMES
AW SW K G DQ0-DQ3 VCC VCC	Address Inputs Asynchronous Write Strobe Synchronous Write Enable Clock Output Enable Data Input/Output +5 V Power Supply Output Buffer Power Supply
	Output Buffer Ground Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM

TRUTH TABLE (See Note)

sw	ĀW	G	Mode	Supply Current	I/O Status
Н	Х	L	Read Cycle	Icc	Data Out
Н	Х	Н	Read Cycle	Icc	High-Z
L	L	Х	Write Cycle	Icc	High-Z
L	Н	Х	Aborted Write Cycle	lcc	High-Z

NOTE: \overline{SW} and \overline{AW} satisfy the specified setup and hold times for the rising edge of clock (K).

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = V_{SSO} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	-0.5 to 7.0	٧
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High Z at power up.

AC TEST LOADS

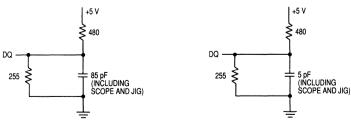


Figure 1A

Figure 1B

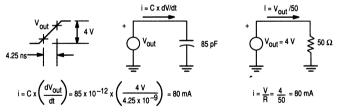
DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = V_{SSQ} = 0 \text{ V}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vcca*	4.5 3.0	5.0 3.3	5.5 3.6	٧
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	۷۱۲	-0.5**	0.0	0.8	٧

^{*}V_{CCQ} must be ≤ V_{CC} at all times, including power up.


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	-	± 1.0	μА
Output Leakage Current (G = V _{IH})	l _{lkg(O)}	_		± 1.0	μА
AC Supply Current $(\overline{G}=V_{IH},$ All Inputs = $V_{IL}=0.0$ V and $V_{IH}\geq_{3.0}$ V, $I_{out}=0$ mA, Cycle Times \geq t_{KHKH} min)	ICCA	_	130	170	mA
Output Low Voltage (I _{OL} = +8.0 mA)	V _{OL}	_	_	0.4	V
Output High Voltage (I _{OH} = -4.0 mA)	V _{OH}	2.4	_	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0-DQ3)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0-DQ3)	C _{I/O}	8	10	pF

CAPACITIVE LOAD EQUIVALENT RESISTANCE

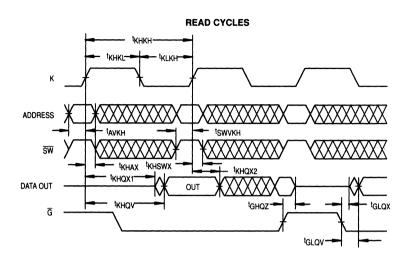
85 pF load is equivalent to a 50 Ω termination

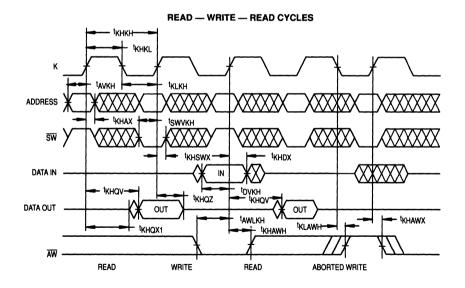
^{**} V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

9

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } + 70^{\circ}\text{C}, \text{Unless Otherwise Noted})$


Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	


READ AND WRITE CYCLE TIMING (See Note 1)

		MCM62	M62980-15 MCM62980-2				
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Times: Clock High to Clock High	tkhkh	15	_	20	_	ns	
Access Times: Clock High to Output Valid Output Enable Low Output Valid	tKHQV tGLQV	=	15 6	_	20 8	ns	2 2
Aborted Write Cycles: Clock Low to Asynchronous Write Strobe High Clock High to Asynchronous Write Strobe Invalid	tKLAWH tKHAWX		0		0 —	ns	
Output Buffer Control: Output Enable High to Output High-Z Output Enable Low to Output Low-Z Reads:	†GHQZ †GLQX	2 2	6	2 2	8 —	ns	3
Clock High to Output Low-Z after Write Clock High to Output Invalid Writes:	tKHQX1 tKHQX2	8 5	_	. 8 5	_		3
Clock High to Output High-Z after Read	tkHQZ	3	10	3	10		3
Clock: Clock High Time Clock Low Time	tKHKL tKLKH	4 8	=	4 10	=	ns	
Setup Times: Address Valid to Clock High Synchronous Write Enable Valid to Clock High Writes:	tavkh tswvkh	2 2	_	2 2	_	ns	
Data In Valid to Clock High Asynchronous Write Strobe Low to Clock High	^t DVKH ^t AWLKH	6 6	_	6 6	_		
Hold Times: Clock High to Address Invalid Clock High to Synchronous Write Enable Invalid Writes:	^t KHAX ^t KHSWX	2 2	_	2 2	-	ns	
Clock High to Data In Invalid Clock High to Asynchronous Write Strobe High	^t KHDX ^t KHAWH	0 2	_	0 2	_		

NOTES:

- 1. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising
- 2. Into rated load of 85 pF equivalent resistive load (see Figure 1).
- Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHOZ} is less than t_{KHOX} alore to load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHOZ} is less than t_{KHOX} alore 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHOZ} is less than t_{KHOX} alore 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHOZ} is less than t_{KHOX} is less than

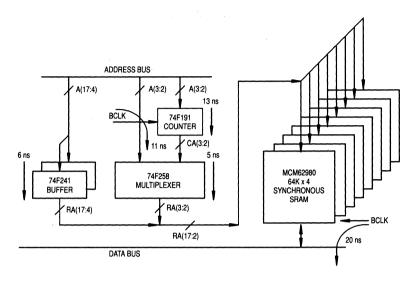
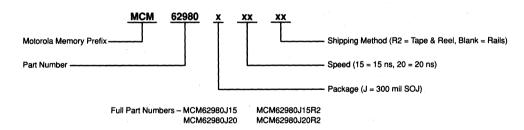



Figure 2. Burstable 64K x 32 Memory Array

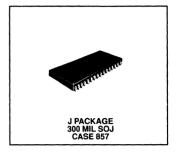
ORDERING INFORMATION (Order by Full Part Number)

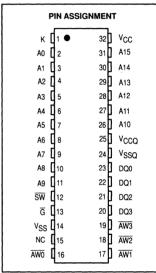
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information

64K × 4 Bit Fast Synchronous ParityRam™

The MCM62981 is a 262,144 bit synchronous static random access memory organized as 65,536 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 64K x 4 SRAM core with advanced peripheral circuitry consisting of positive edge triggered registers on address and synchronous write enable inputs. Asynchronous controls include asynchronous write strobes and output enable (\$\overline{G}\$). This device has increased output drive capability supported by multiple power pins. Four asynchronous write strobes (\$\overline{AWO} - \overline{AW3}\$) are provided to allow each bit position to be written individually, thereby simplifying the task of supporting byte parity. This x4 organized SRAM is ideally suited for parity on 32 bit words. The device is functionally similar to the MCM62980 and MCM62990 with the only difference being the individual bit write capability.


Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of clock (K). Write cycles are completed only if the appropriate asynchronous write strobe (\overline{AWx}) is asserted within the specified setup time of the following rising edge of clock (K). Write cycles may be aborted by ensuring each \overline{AWx} is negated by the time the clock transitions to the low state


Additional power supply pins have been utilized and placed on the package for maximum performance. In addition one set of power pins is electrically isolated from the other set and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62981 will be available in a 32 pin 300 mil plastic SOJ. Applications for this device include parity RAMs for fast data caches.

- Single 5 V ±10% Power Supply
- Choice of 5.0 V or 3.3 V ±10% Power Supplies for Output Buffers
- Fast Access and Cycle Times: 15/20 ns Max
- · Fully Synchronous Operation, Single Clock Control
- · Clock Timed Writes with Asynchronous Late Write Abort
- · Each Bit Position Individually Writeable for Simple Parity Support
- Registered Address Inputs
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time

MCM62981

PIN NAMES
A0-A15 Address Inputs AW0-AW3 Asynchronous Write Strobes SW Synchronous Write Enable K Clock G Output Enable DQ0-DQ3 Data Input/Output VCC +5 V Power Supply VCCQ Output Buffer Power Supply VSQ Output Buffer Ground VSS Ground No Connect

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

ParityRAM is a trademark of Motorola Inc.

This document contains information on a new porduct. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM

TRUTH TABLE (See Note)

sw	ĀWx	G	Mode	Supply Current	I/O Status
Н	Х	L	Read Cycle	lcc	Data Out
Н	Х	Н	Read Cycle	lcc	High-Z
L	L	Х	Write Cycle	lcc	High-Z
L	Н	Х	Aborted Write Cycle	lcc	High-Z

NOTE: SW and AWx satisfy the specified setup and hold times for the rising edge of clock (K).

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = V_{SSO} = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	-0.5 to 7.0	V
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	V
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High Z at power up.

AC TEST LOADS

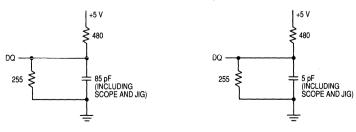


Figure 1A

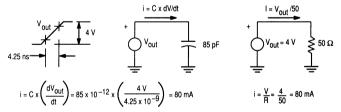
DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSO} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vcca	4.5 3.0	5.0 3.3	5.5 3.6	٧
Input High Voltage	VIH	2.2	3.0	V _{CC} +0.3	V
Input Low Voltage	V _{IL}	-0.5*	0.0	0.8	V

^{*}V_{IL} (min) = -3.0 V ac (pulse width ≤ 20 ns)


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}		_	± 1.0	μΑ
Output Leakage Current (G = V _{IH})	llkg(O)	_	_	± 1.0	μА
AC Supply Current $(\overline{G}=V_{IH},$ All Inputs = $V_{IL}=0.0$ V and $V_{IH}\geq_{3.0}$ V, $I_{out}=0$ mA, Cycle Times \geq t_{KHKH} min)	ICCA	_	130	170	mA
Output Low Voltage (I _{OL} = +8.0 mA)	VOL	T -	_	0.4	V
Output High Voltage (I _{OH} = -4.0 mA)	VOH	2.4	I –	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0–DQ3)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0-DQ3)	C _{I/O}	8	10	pF

CAPACITIVE LOAD EQUIVALENT RESISTANCE

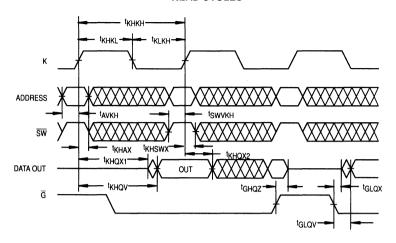
85 pF load is equivalent to a 50 Ω termination

9

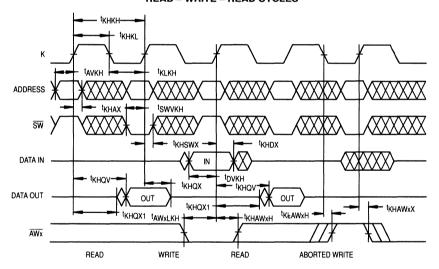
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCO} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

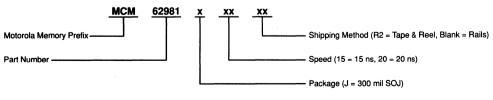
Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	


READ AND WRITE CYCLE TIMING (See Note 1)

		MCM62	981-15	MCM62	981–20		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Times: Clock High to Clock High	†KHKH	15	_	20	_	ns	
Access Times: Clock High to Output Valid Output Enable Low Output Valid	^t KHQV ^t GLQV	_	15 6	_	20 8	ns	2 2
Aborted Write Cycles: Clock Low to Asynchronous Write Strobe High Clock High to Asynchronous Write Strobe Invalid	^t KLAWxH ^t KHAWxX	2	0		o	ns	
Output Buffer Control: Output Enable High to Output High-Z Output Enable Low to Output Low-Z Reads:	[†] GHQZ [†] GLQX	2 2	6 —	2 2	8 —	ns	3 3
Clock High to Output Low-Z after Write Clock High to Output Invalid Writes:	tKHQX1 tKHQX2	8 5	_	8 5	_		3
Clock High to Output High-Z after Read	t _K HQZ	3	10	3	10		3
Clock: Clock High Time Clock Low Time	tKHKL tKLKH	4 8	_	4 10	=	ns	
Setup Times: Address Valid to Clock High Synchronous Write Enable Valid to Clock High Writes:	^t AVKH ^t SWVKH	2 2	_	2 2		ns	
Data In Valid to Clock High Asynchronous Write Strobe Low to Clock High	[†] DVKH [†] AWxLKH	6 6	_	6 6	_		
Hold Times: Clock High to Address Invalid Clock High to Synchronous Write Enable Invalid Writes:	^t KHAX ^t KHSWX	2 2		2 2	_	ns	
Clock High to Data In Invalid Clock High to Asynchronous Write Strobe High	[†] KHDX [†] KHAWxH	0 2	_	0 2	=		


NOTES:

- 1. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for **ALL** rising edges of clock (K).
- 2. Into rated load of 85 pF equivalent resistive load (see Figure 1).
- Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHQZ} is less than t_{KHQX1} and t_{GHQZ} is less than t_{GLQX} for a given device.


READ CYCLES

READ - WRITE - READ CYCLES

ORDERING INFORMATION (Order by Full Part Number)

Full Part Number - MCM62981J15 MCM62981J20 MCM62981J15R2 MCM62981J20R2

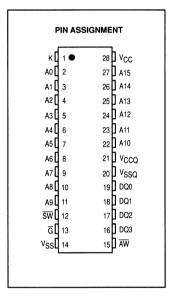
Advance Information

64K × 4 Bit Fast Synchronous Static RAM with Output Registers

The MCM62982 is a 262,144 bit synchronous static random access memory organized as 65,536 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 64K x 4 SRAM core with advanced peripheral circuitry consisting of positive edge triggered registers on address and synchronous write enable inputs and output registers. Asynchronous controls consist of asynchronous write strobe and output enable (\$\overline{G}\$). This device has increased output drive capability supported by multiple power pins.

Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of clock (K). Write cycles are completed only if asynchronous write strobe (\overline{AW}) is asserted within the specified setup time of the following rising edge of clock (K). Write cycles may be aborted by negating the \overline{AW} signal prior to the low transition of the clock.

Read cycle output register operation occurs on the rising edge of clock (K) and provides data from the previous clock (K) high in a two cycle pipeline operation.


Additional power supply pins have been utilized and placed on the package for maximum performance. In addition one set of power pins is electrically isolated from the other set and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62982 will be available in a 28-pin 300-mil plastic SOJ.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Buffers
- Fast Access and Cycle Times: 12/15 ns Max
- Fully Synchronous Operation, Single Clock Control
- Clock Timed Writes with Asynchronous Late Write Abort
- · Registered Address Inputs
- · Output Registers for Fully Pipelined Applications
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density PSOJ Package

MCM62982

PIN NAMES
A0-A15 Address Inputs
AW Asynchronous Write Strobe
SW Synchronous Write Enable
<u>K</u> Clock
G Output Enable
DQ0-DQ3 Data Input/Output
V _{CC} · · · · · · · +5 V Power Supply
VCCO Output Buffer Power Supply
VSSQ Output Buffer Ground
VSS Ground

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

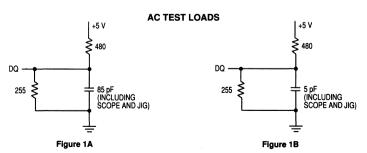
BLOCK DIAGRAM DQ0-DQ3 REGISTERS MEMORY ARRAY ADDRESS 64Kx4 OUTPUT (A0-A15) BUFFER 256 ROWS 16 256 COLUMNS WRITE AMPLIFIER REGISTERS SW CONTROL Ġ

TRUTH TABLE (See Note)

sw	ĀW	G	Mode	Supply Current	I/O Status
Н	Х	L	Read Cycle	lcc	Data Out
Н	Х	Н	Read Cycle	lcc	High-Z
L	L	Х	Write Cycle	lcc	High-Z
L	Н	Х	Aborted Write Cycle	Icc	High-Z

NOTE: \overline{SW} and \overline{AW} satisfy the specified setup and hold times for the rising edge of clock (K).

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V, See Note)


Symbol	Value	Unit
Vcc	-0.5 to 7.0	V
V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
l _{out}	± 20	mA
PD	1.0	w
T _{bias}	-10 to +85	°C
TA	0 to +70	°C
T _{stg}	-55 to +125	°C
	V _{CC} V _{in} , V _{out} lout P _D T _{bias} T _A	V _{CC} -0.5 to 7.0 V _{in} , V _{out} -0.5 to V _{CC} +0.5 I _{out} ± 20 P _D 1.0 T _{bias} -10 to +85 T _A 0 to +70

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

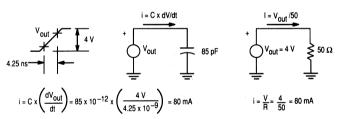
This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = VSSQ = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vcca*	4.5 3.0	5.0 3.3	5.5° 3.6	٧
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} +0.3	٧
Input Low Voltage	V _{IL}	-0.5**	0.0	0.8	٧

^{*} V_{CCQ} must be \leq V_{CC} at all times, including power up.
* V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}		_	±1.0	μА
Output Leakage Current (G = V _{IH})	l _{lkg(O)}	_	_	±1.0	μА
AC Supply Current $(\overline{G}=V_{IH},$ All Inputs = $V_{IL}=0.0$ V and $V_{IH}\geq 3.0$ V, $I_{out}=0$ mA, Cycle Times $\geq t_{KHKH}$ min)	ICCA	_	150	170	mA
Output Low Voltage (I _{OL} = +8.0 mA)	VOL	_		0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	V _{OH}	2.4	_	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0-DQ3)	Cin	4	6	pF
Input/Output Capacitance (DQ0-DQ3)	C _{I/O}	8	10	pF

CAPACITIVE LOAD EQUIVALENT RESISTANCE

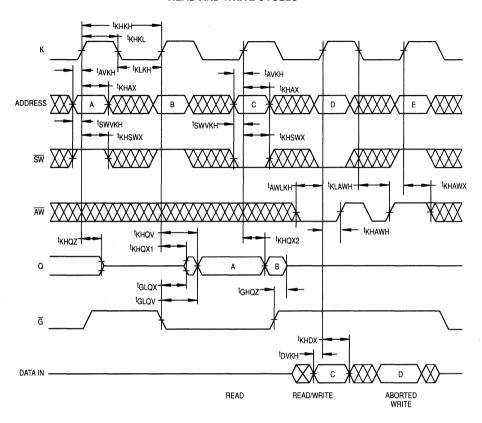
85 pF load is equivalent to a 50 Ω termination

Q

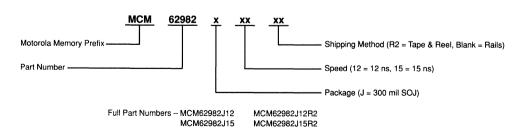
AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{Unless Otherwise Noted})$

Input Timing Measurement Reference Level	Output Timing Reference Level
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Note
Input Rise/Fall Time	


READ AND WRITE CYCLE TIMING (See Note 1)

		MCM62	MCM62982-12		982-15		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Times: Clock High to Clock High	tkhkh	12	_	15	_	ns	
Access Times: Clock High to Output Valid Output Enable Low Output Valid	[†] KHQV [†] GLQV	_	8	_	10 6	ns	2 2
Aborted Write Cycles: Clock Low to Asynchronous Write Strobe High Clock High to Asynchronous Write Strobe Invalid	tKLAWH tKHAWX		0_	_	0	ns	
Output Buffer Control: Output Enable High to Output High-Z Output Enable Low to Output Low-Z Reads:	[†] GHQZ [†] GLQX	0	6 _	2 2	6 —	ns	3 3
Clock High to Output Low-Z after Write Clock High to Output Invalid Writes:	tKHQX1 tKHQX2	4 5	=	4 5	_		3
Clock High to Output High-Z after Read	tKHQZ	3	8	3	10		3
Clock: Clock High Time Clock Low Time	tKHKL tKLKH	3 8	=	4 8	_	ns	
Setup Times: Address Valid to Clock High Synchronous Write Enable Valid to Clock High Writes:	^t AVKH ^t SWVKH	2 2	=	2 2	_	ns	
Data In Valid to Clock High Asynchronous Write Strobe Low to Clock High	^t DVKH ^t AWLKH	5 5	_	6 6	_		
Hold Times: Clock High to Address Invalid Clock High to Synchronous Write Enable Invalid Writes:	[†] KHAX [†] KHSWX	2 2	_	2 2	_	ns	
Clock High to Data In Invalid Clock High to Asynchronous Write Strobe High	^t KHDX ^t KHAWH	0 2	=	0 2	_		


NOTES:

- 1. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for ALL rising edges of clock (K).
- 2. Into rated load of 85 pF equivalent resistive load (see Figure 1).
- Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{KHQZ} is less than t_{KHQX1} and t_{GHQZ} is less than t_{GLQX} for a given device.

READ AND WRITE CYCLES

ORDERING INFORMATION (Order by Full Part Number)

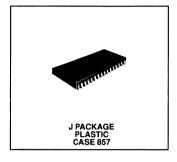
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information

64K × 4 Bit Fast Synchronous ParityRAM™ with Output Registers

The MCM62983 is a 262,144 bit synchronous static random access memory organized as 65,536 words of 4 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 64K x 4 SRAM core with advanced peripheral circuitry consisting of positive edge triggered registers on address and synchronous write enable inputs. Asynchronous controls include asynchronous write strobes and output enable (\$\overline{G}\$). This device has increased output drive capability supported by multiple power pins. Four asynchronous write strobes (\$\overline{AWO} - \overline{AW3}\$) are provided to allow each bit position to be written individually, thereby simplifying the task of supporting byte parity. This x4 organized SRAM is ideally suited for parity on 32 bit words. The device is functionally similar to the MCM62982 with the only difference being the individual bit write capability.

Write cycles are differentiated from read cycles by the state of the synchronous write enable pin (\overline{SW}) at the rising edge of clock (K). Write cycles are completed only if the appropriate asynchronous write strobe (\overline{AWx}) is asserted within the specified setup time of the following rising edge of clock (K). Write cycles may be aborted by ensuring each \overline{AWx} is negated by the time the clock transitions to the low state.

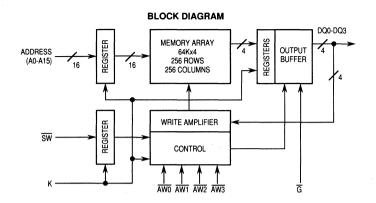

Read cycle output register operation occurs on the rising edge of clock (K) and provides data from the previous clock (K) high in a two cycle pipeline operation.

Additional power supply pins have been utilized and placed on the package for maximum performance. In addition one set of power pins is electrically isolated from the other set and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62983 will be available initially in a 32-pin 300-mil plastic SOJ followed by a 300-mil 32-pin plastic DIP.

- Single 5 V ± 10% Power Supply
- $\bullet~$ Choice of 5 V or 3.3 V \pm 10% Power Supplies for Output Level Buffers
- Fast Access and Cycle Times: 12/15 ns Max
- Fully Synchronous Operation, Single Clock Control
- · Clock Timed Writes with Asynchronous Late Write Abort
- Each Bit Position Individually Writeable for Simple Parity Support
- Registered Address Inputs
- Output Registers for Fully Pipelined Applications
- · Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- · High Board Density PSOJ Package

MCM62983


PIN ASSIGNMENT								
к[1 •	32	V _{CC}					
A0 [2	31	A15					
A1 [3	30	A14					
A2 [4	29	A13					
A3 [5	28	A12					
A4 [6	27	A11					
A5 [7	26	A10					
A6 [8	25	VCCQ					
A7 [9	24	V_{SSQ}					
A8 [10	23	DQ0					
А9 [11	22	DQ1					
≅₩ [12	21	DQ2					
<u></u>	13	20	DQ3					
v _{SS} [14	19	AW3					
NC [15	18	AW2					
AWO [16	17	AW1					

PIN NAMES
A0-A15 Address Inputs AW0-AW3 Asynchronous Write Strobes SW Synchronous Write Enable K Clock G Output Enable DQ0-DQ3 Data Input/Output VCC +5 V Power Supply VCCQ Output Buffer Power Supply VSSQ Output Buffer Ground
VSS Ground NC No Connect

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

ParityRAM is a trademark of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

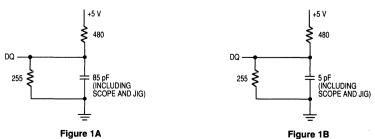
TRUTH TABLE (See Note)

sw	AWx	G	Mode	Supply Current	I/O Status
Н	Х	L	Read Cycle	lcc	Data Out
Н	Х	Н	Read Cycle	lcc	High-Z
L	L	Х	Write Cycle	lcc	High-Z
L	Н	Х	Aborted Write Cycle	lcc	High-Z

NOTE: \overline{SW} and \overline{AWx} satisfy the specified setup and hold times for the rising edge of clock (K).

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to $V_{SS} = V_{SSQ} = 0$ V, See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	-0.5 to 7.0	V
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A =25°C)	PD	1.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C


NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

AC TEST LOADS

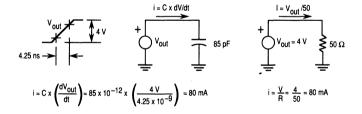
DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCQ} = 5.0 \text{ V or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSO} = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	٧
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vcca*	4.5 3.0	5.0 3.3	5.5 3.6	٧
Input High Voltage	VIH	2.2	3.0	V _{CC} +0.3	٧
Input Low Voltage	V _{IL}	-0.5**	0.0	0.8	٧

^{*} V_{CCQ} must be $\leq V_{CC}$ at all times, including power up.


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	llkg(l)	_	_	±1.0	μΑ
Output Leakage Current (G = V _{IH})	l _{lkg(O)}	_	_	±1.0	μΑ
AC Supply Current (\overline{G} = V_{IH} , All Inputs = V_{IL} = 0.0 V and $V_{IH} \ge$ 3.0 V, I_{Out} = 0 mA, Cycle Times \ge t _{KHKH} min)	ICCA		150	170	mA
Output Low Voltage (I _{OL} = +8.0 mA)	V _{OL}	_		0.4	V
Output High Voltage (IOH = -4.0 mA)	Voн	2.4	_	_	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, $T_A = 25^{\circ}C$, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0-DQ3)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0-DQ3)	CI/O	8	10	pF

CAPACITIVE LOAD EQUIVALENT RESISTANCE

85 pF load is equivalent to a 50 Ω termination

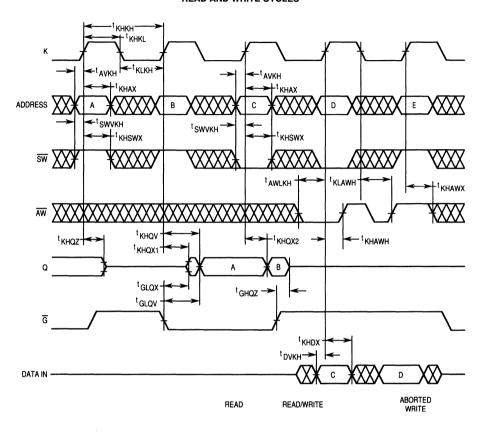
^{**} V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

9

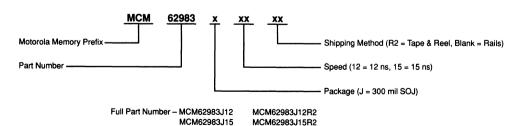
AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	


READ AND WRITE CYCLE TIMING (See Note 1)

		MCM62983-12		MCM62	298315		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Cycle Times: Clock High to Clock High	tkHKH	12	_	15		ns	
Access Times: Clock High to Output Valid Output Enable Low Output Valid	tKHQV tGLQV	_	8 6	_	10 6	ns	2 2
Aborted Write Cycles: Clock Low to Asynchronous Write Strobe High Clock High to Asynchronous Write Strobe Invalid	^t KLAWxH ^t KHAWxX	2	0		0	ns	
Output Buffer Control: Output Enable High to Output High-Z Output Enable Low to Output Low-Z Reads:	[‡] GHQZ [‡] GLQX	0	6 —	2 2	6	ns	3
Clock High to Output Low-Z after Write Clock High to Output Invalid Writes:	tKHQX1 tKHQX2	4 5	=	4 5	_		3
Clock High to Output High-Z after Read	tKHQZ	3	8	3	10		3
Clock: Clock High Time Clock Low Time	tKHKL tKLKH	3 8	=	4 8	-	ns	
Setup Times: Address Valid to Clock High Synchronous Write Enable Valid to Clock High Writes:	tavkh tswvkh	2 2	=	2 2	_	ns	
Data In Valid to Clock High Asynchronous Write Strobe Low to Clock High	^t DVKH ^t AWxLKH	5 5	_	6 6	=		
Hold Times: Clock High to Address Invalid Clock High to Synchronous Write Enable Invalid Writes:	[†] KHAX [†] KHSWX	2 2	=	2 2	_	ns	
Clock High to Data In Invalid Clock High to Asynchronous Write Strobe High	[†] KHDX [†] KHAW×H	0 2	_	0 2	_		


NOTES:

- 1. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for **ALL** rising edges of clock (K).
- 2. Into rated load of 85 pF equivalent resistive load (see Figure 1).
- 3. Transition is measured \pm 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHOZ} is less than t_{KHOX1} and t_{GHOZ} is less than t_{GLOX} for a given device.

READ AND WRITE CYCLES

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information

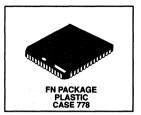
16K × 16 Bit Fast Synchronous Static RAM

The MCM62990 is a 262,144 bit synchronous static random access memory organized as 16,384 words of 16 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 16Kx16 SRAM core with advanced peripheral circuitry. Inputs to the device fall into two categories: synchronous and asynchronous. All synchronous inputs pass through positive-edge- triggered registers controlled by a single clock input (K). The synchronous inputs include all addresses, the two chip enables (SE and \overline{SE}), and the synchronous write enable (\overline{SW}).

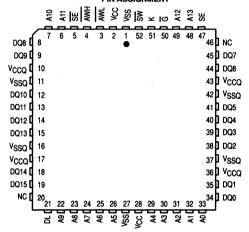
Asynchronous inputs include the asynchronous byte write strobes $(\overline{AWL} \text{ and } \overline{AWH})$, output enable (\overline{G}) , data (DQ0-DQ15), data latch enable (DL), and the clock (K). Input data can be asynchronously latched by DL to provide simplified data-in timings during write cycles.

Address and write control are registered on-chip which greatly simplifies write cycles. Dual write strobes (AWL and AWH) are provided to allow individually writeable bytes. AWL controls DQ0-DQ7, the lower bits while AWH controls DQ8-DQ15, the upper bits. In addition, the AWs allow late write cycles to be aborted if they are "false" during the low period of the clock. Dual chip enables (SE and SE) are provided allowing address decoding to be accomplished on-chip when the device is used in a dual bank mode.

An input data latch is provided. When data latch enable (DL) is high the data latches are in the transparent state. When DL is low the data latches are in the latched state. This data input latch simplifies write cycles by guaranteeing data hold time in a simple fashion.

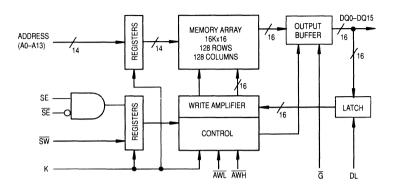

Additional power supply pins have been utilized and placed on the package for maximum performance. In addition one set of power pins is electrically isolated from the other two and supplies power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state which allows simple yet effective transmission line terminations to be achieved.

The MCM62990 will be available in a 52 pin plastic leaded chip carrier (PLCC).


Typical applications for this device are cache memory and tag RAMs, memory in systems which are pipelined and systems which require wide data bus widths and reduced parts count.

- Single 5 V ± 10% Power Supply
- · Choice of 5 V or 3.3 V Power Supplies for Output Buffers
- Fast Access and Cycle Times: 17/20/25 ns Max
- Byte Writeable via Dual Write Strobes with Abort Write Capability
- Separate Data Input Latch for Simplified Write Cycles
- · Clock Controlled Registered Address, Write Control, and Dual Chip Enables
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 52 Lead PLCC Package

MCM62990


PIN ASSIGNMENT

All power supply and ground pins must be connected for proper operation of the device. V_{CC} ≥ V_{CCO} at all times including power up.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM

TRUTH TABLE (See Notes)

SEs	SW	AWL	AWH	DL	G	Mode	Supply Current	I/O Status
F	Х	Х	Х	Х	Х	Deselected Cycle	ISB	High-Z
Т	Н	Х	Х	Х	Н	Read Cycle	lcc	High-Z
Т	Н	Х	Х	Х	L	Read Cycle	lcc	Data Out
Т	L	L	L	Н	Х	Write Cycle All Bits Transparent Data In	lcc	High-Z
Т	L	Н	Н	Х	Х	Aborted Write Cycle	lcc	High-Z
Т	L	L	Н	Н	Х	Write Cycle Lower 8 Bits Transparent Data In	lcc	High-Z
Т	L	Н	L	L	Х	Write Cycle Upper 8 Bits Latched Data In	lcc	High-Z

NOTES:

- OTES:

 1. X means don't care. True (T) is SE = 1 and SE = 0.

 2. Registered inputs (addresses, SW, SE, and SE) satisfy the specified setup and hold times about the rising edge of clock (K). Data-in satisfies the specified setup and hold times for DL.
- 3. A transparent write cycle is defined by DL high during the write cycle.
- 4. A latched write cycle is defined by DL transitioning low during the write cycle and satisfying the specified setup and hold times.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High Z at power up.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to Voc = Voco = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to 7.0 V	٧
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	-0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	l _{out}	± 20	mA
Power Dissipation (T _A = 70°C)	PD	2.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

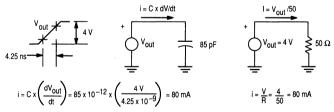
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS (VCC = 5.0 V \pm 10%, VCCQ = 5.0 V or 3.3 V \pm 10%, Ta = 0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $V_{SS} = V_{SSQ} = 0 \text{ V}$)

Parameter	Symbol	Min	Тур	Max	Unit V
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	Vccq∗	4.5 3.0	5.0 3.3	5.5 3.6	V
Input High Voltage	V _{IH}	2.2	3.0	V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}	-0.5**	0.0	0.8	V

 $^{^{\}star}V_{CCQ}$ must be $\leq V_{CC}$ at all times, including power up.


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	_	±1.0	μΑ
Output Leakage Current ($\overline{G} = V_{IH}$)	l _{lkg(O)}	_	_	±1.0	μΑ
AC Supply Current (\overline{G} = V $_{IH}$, All Inputs = V $_{IL}$ or V $_{IH}$, MCM62990–17: t_{KHKH} = 17 ns V $_{IL}$ = 0.0 V and V $_{IH}$ \geq 3.0 V, I $_{out}$ = 0 mA, MCM62990–20: t_{KHKH} = 20 ns Cycle Time \geq t_{KHKH} min) MCM62990–25: t_{KHKH} = 25 ns	ICCA		280 290 310	360 360 360	mA
Standby Current (\overline{E} = V _{IH} , E = V _{IL} . All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, I _{out} = 0 mA, Cycle Time \geq t _{KHKH} min)	ISB	_	50	80	mA
Output Low Voltage (I _{OL} = +8.0 mA)	V _{OL}	_		0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	VOH	2.4	_	_	٧

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, TA = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0-DQ15)	C _{in}	4	6	рF
Input/Output Capacitance (DQ0-DQ15)	C _{I/O}	8	10	pF

CAPACITIVE LOAD EQUIVALENT RESISTANCE

85 pF load is equivalent to a 50 Ω termination

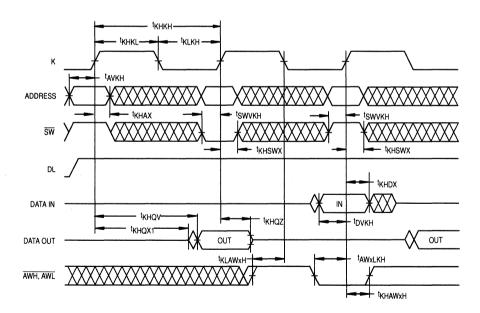
^{**} V_{IL} (min) = -3.0 V ac (pulse width \leq 20 ns)

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

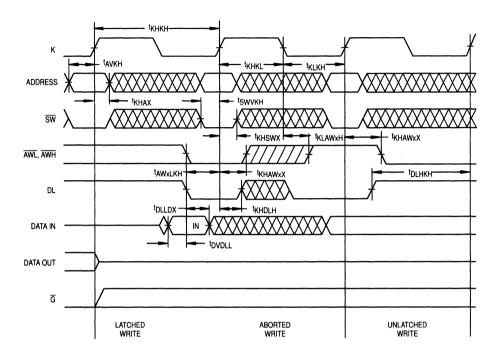
Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time	

READ AND WRITE CYCLE TIMING (See Notes 1 and 2)


		MCM62990-17 MCM62990-			2990-20	MCM6	2990-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Cycle Times Clock High to Clock High	¹ KHKH	17	_	20	-	25	_	ns	
Access Times Clock High to Output Valid Output Enable Low to Output Valid	tKHQV tGLQV	=	17 6	_	20 8	=	25 10	ns	3 3
Aborted Write Cycles Clock Low to Asynchronous Write Strobes (AWL, AWH) High Clock High to AWx Invalid	†KLAWxH	_	0	- 2	0	_ 2	0	ns	
Output Buffer Control Asynchronous Output Enable (G) High to Output High Z	t _{KHAWxX}	2	6	2	8	2	10	ns	4
G Low to Output Low Z Reads: Clock (K) High to Output Low Z After	t _{GLQX}	2 8	-	2 8	_	2 8	_		4
Deselect or Write Data Out Hold After Clock High	tKHQX1	5	_	5	_	5	_		
Writes: K High to Output High Z After Read	tKHQZ	3	10	3	10	3	12		4
Clock Clock High Time Clock Low Time	tKHKL tKLKH	4 8	_	4 10	_	4 10	_	ns	
Setup Time Address Valid to Clock High Synchronous Write (SW) Valid to Clock High Synchronous Enables (SE, SE) Valid to Clock High	tavkh tswvkh tsevkh	3 3 3		3 3 3	=	3 3 3	_ _ _	ns	5 5 5
Writes: Data-In Valid to CLock High AWL, AWH Low to Clock High Data Latch:	^t DVKH ^t AWxLKH	6 6	=	6 6	=	7 7	_		1, 5 5
Data-In Valid to DL Low	^t DVDLL	1	_	1		1	-		2, 5 ⁻
Hold Times Clock High to Address Invalid Clock High to SW Invalid Clock High to SE, SE Invalid	tKHAX tKHSWX tKHSEX	2 2 2	_	2 2 2	=	2 2 2	_ _ _	ns	5 5 5
Writes: Clock High to Data-In Invalid Clock High to AWL, AWH High Clock High to DL High Data Latch:	tKHDX tKHAWxH tKHDLH	2 2 2	_ _ _	2 2 2	=	2 2 2	_ _ _		1, 5 5 2, 5
DL Low to Data-In Invalid DL High to Clock High	[†] DLLDX [†] DLHKH	3 6	_	3 6	=	3 7	_		2, 5 2, 5

NOTES:

- 1. A transparent write cycle is defined by DL high during the write cycle.
- 2. A latched write cycle is defined by DL transitioning low during the write cycle and satisfying the specified hold time for the rising edge of clock (K).
- 3. Into rated load of 85 pF equivalent resistive load (see Figure 1A).
- 4. Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{KHQZ} is less than t_{KHQX} and t_{GHQZ} is less than t_{GLQX} for a given device.
- 5. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for **ALL** rising edges of clock (K) or falling edges of data latch enable (DL).


– ^tкнкн-

READ — UNLATCHED WRITE — READ CYCLES

Ľ

WRITE CYCLES

AC TEST LOADS

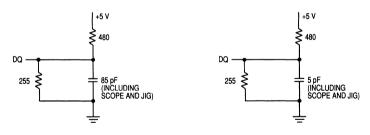
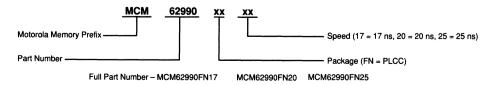



Figure 1A

Figure 1B

ORDERING INFORMATION (Order by Full Part Number)

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Advance Information

16K × 16 Bit Asynchronous/Latched Address Fast Static RAM

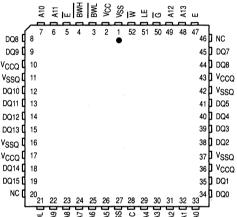
The MCM62995 is a 262,144 bit latched address static random access memory organized as 16,384 words of 16 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a 16Kx16 SRAM core with advanced peripheral circuitry consisting of address and data input latches, active high and active low chip enables, separate upper and lower byte write strobes, and a fast output enable. This device has increased output drive capability supported by multiple power pins. In addition, the output levels can be either 3.3 V or 5 V TTL compatible by choice of the appropriate output bus power supply.

Address, data in, and chip enable latches are provided. When latch enable (LE for address and chip enables and DL for data in) is high the address, data in, and chip enable latches are in the transparent state. If latch enable (LE, DL) is tied high the device can be used as a asynchronous SRAM. When latch enable (LE, DL) is low the address, data in, and chip enable latches are in the latched state. This input latch simplifies read and write cycles by guaranteeing address and data-in hold time in a simple fashion.

Dual write strobes (\overline{BWL} and \overline{BWH}) are provided to allow individually writeable bytes. \overline{BWL} controls DQ0–DQ7, the lower bits. While \overline{BWH} controls DQ8–DQ15, the upper bits.


Additional power supply pins have been utilized and placed on the package for maximum performance. In addition, the output buffer power pins are electrically isolated from the other two and supply power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state thereby allowing simplified transmission line terminations.

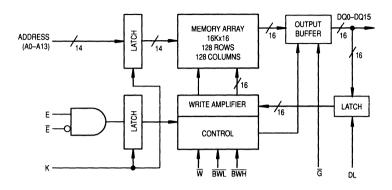
The MCM62995 will be available in a 52 pin plastic leaded chip carrier (PLCC).


This device is ideally suited for systems which require wide data bus widths, cache memory, and tag RAMs. See Figure 2 for applications information.

- Single 5 V ± 10% Power Supply
- Choice of 5 V or 3.3 V ± 10% Power Supplies for Output Buffers
- Fast Access and Cycle Times: 17/20/25 ns Max
- Byte Writeable via Dual Write Strobes with Abort Write Capability
- Separate Data Input Latch for Simplified Write Cycles
- · Address and Chip Enable Input Latches
- · Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: 85 pF/Output at Rated Access Time
- High Board Density 52 Lead PLCC Package

MCM62995

PIN ASSIGNMENT



PIN NAMES
A0-A13 Address Inputs LE Latch Enable DL Data Latch Enable W Write Enable BWL Byte Write Strobe Low BWH Byte Write Strobe High E Active High Chip Enable E Active Low Chip Enable G Output Enable DQ0-DQ15 Data Input/Output VCC +5 V Power Supply VCCQ Output Buffer Power Supply VSSQ Otuput Buffer Ground VSS Ground NC No Connect

All power supply and ground pins must be connected for proper operation of the device. $V_{CC} \ge V_{CCQ}$ at all times including power up.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM

TRUTH TABLE (See Note)

			,	,					
Es	w	BWL	BWH	LE	DL	G	Mode	Supply Current	I/O Status
F	X	Х	X	Х	Х	Х	Deselected Cycle	ISB	High-Z
Т	Н	Х	Х	Н	Х	Н	Read Cycle	lcc	High-Z
Т	Н	х	Х	Н	Х	L	Read Cycle	lcc	Data Out
T	Н	Х	Х	L	Х	L	Latched Read Cycle	Icc	Data Out
Т	L	L	L	Н	Н	Х	Write Cycle All Bits	lcc	High-Z
Т	L	Н	Н	Х	Х	Х	Aborted Write Cycle	lcc	High-Z
Т	L	L	Н	Н	Н	Х	Write Cycle Lower 8 Bits	Icc	High-Z
Т	L	Н	L	Н	L	Х	Write Cycle Upper 8 Bits Latched Data In	lcc	High-Z
Т	L	L	L	L	L	х	Latched Write Cycle Latched Data In	lcc	High-Z

NOTE: True (T) is E=1 and $\overline{E}=0$. E,\overline{E} , and addresses satisfy the specified setup and hold times for the falling edge of LE. Data in satisfies the specified setup and hold time for falling edge of DL.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions to taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established.

This device contains circuitry that will ensure the output devices are in High-Z at power up.

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to Vos = Voso = 0 V)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to 7.0	٧
Voltage Relative to V _{SS} /V _{SSQ} for Any Pin Except V _{CC} and V _{CCQ}	V _{in} , V _{out}	–0.5 to V _{CC} +0.5	٧
Output Current (per I/O)	lout	± 20	mA
Power Dissipation (T _A = 70°C)	PD	2.0	W
Temperature Under Bias	T _{bias}	-10 to +85	°C
Operating Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

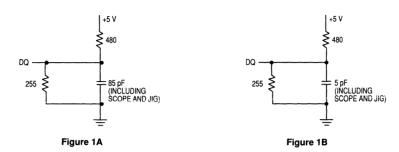
DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = 5.0 V \pm 10%, V_{CCQ} = 5.0 V or 3.3 V \pm 10%, T_A = 0 to +70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} = V_{SSQ} = 0 V)

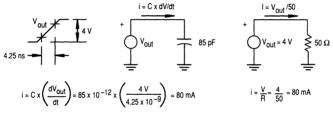
Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V
Output Buffer Supply Voltage (5.0 V TTL Compatible) (3.3 V 50 Ω Compatible)	VccQ*	4.5 3.0	5.0 3.3	5.5 3.6	٧
Input High Voltage	VIH	2.2	3.0	V _{CC} +0.3	V
Input Low Voltage	VIL	-0.5**	0.0	0.8	V

^{*} V_{CCQ} must be $\leq V_{CC}$ at all times, including power up.

DC CHARACTERISTICS


Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	-	_	± 1.0	μΑ
Output Leakage Current ($\overline{G} = V_{IH}$)	lkg(O)	_	_	± 1.0	μА
$\begin{array}{lll} AC \ Supply \ Current \ (\overline{G} = V_{ L}, \ All \ Inputs = V_{ L} \ or \ V_{ H}, \\ V_{ L} = 0.0 \ V \ and \ V_{ H} \geq 3.0 \ V, \ I_{out} = 0 \ mA, \\ Cycle \ Time \geq t_{AVAV} \ min) \end{array} \qquad \begin{array}{lll} MCM62995-17: \ t_{AVAV} = 17 \ ns \\ MCM62995-20: \ t_{AVAV} = 20 \ ns \\ MCM62995-25: \ t_{AVAV} = 25 \ ns \end{array}$	ICCA	=	310 290 280	360 360 360	mA
Standby Current (\overline{E} = V _{IH} , E = V _{IL} , A ll Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, I _{OUt} = 0 mA, Cycle Time \geq t _{AVAV} min)	ISB		50	80	mA
Output Low Voltage (I _{OL} = +8.0 mA)	VOL	_	_	0.4	٧
Output High Voltage (I _{OH} = -4.0 mA)	VOH	2.4		L –	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, $T_A = 25$ °C, Periodically Sampled Rather Than 100% Tested)


Parameter	Symbol	Тур	Max	Unit
Input Capacitance (All Pins Except DQ0-DQ15)	C _{in}	4	6	pF
Input/Output Capacitance (DQ0-DQ15)	C _{I/O}	8	10	pF

^{**} V_{JL} (min) = -3.0 V ac (pulse width \leq 20 ns)

TEST LOADS

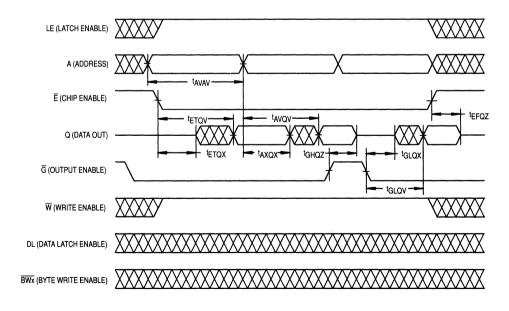
CAPACITIVE LOAD EQUIVALENT RESISTANCE

85 pF load is equivalent to a 50 Ω termination

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{CCO} = 5.0 \text{ V} \text{ or } 3.3 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level
Input Pulse Levels	Output Load See Figure 1A Unless Otherwise Noted
Input Rise/Fall Time 3 ns	

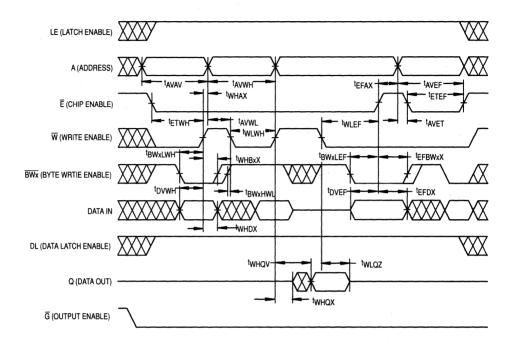

ASYNCHRONOUS READ CYCLE TIMING (See Notes 1, 2, 3, and 4)

		MCM62995-17 N		MCM62995-20		MCM62	299525		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	^t AVAV	17		20	_	25	_	ns	5
Access Times: Address Valid to Output Valid E, Ë "True" to Output Valid Output Enable Low to Output Valid	tavqv tetqv tglqv	=	17 17 6	_	20 20 8	_	25 25 10	ns	6
Output Hold from Address Change	tAXQX	4	_	4	_	4		ns	
Output Buffer Control: E, Ē "True" to Output Active G Low to Output Active E, Ē "False" to Output High-Z G High to Output High-Z	tETQX tGLQX tEFQZ tGHQZ	2 2 2 2	_ _ 9 6	2 2 2 2	 9	2 2 2 2	_ _ 10 10	ns	7 7 7 7
Power Up Time	†ETICCH	0	_	0	_	0	-	ns	

NOTES:

- 1. LE and DL are equal to V_{IH} for all asynchronous cycles.
- 2. Write enable is equal to $V_{\mbox{\scriptsize IH}}$ for all read cycles.
- 3. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.
- 4. EF is defined by \overline{E} going high or E going low.
- 5. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 6. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low or E going high.
- 7. Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, teroz is less than terox and temperature, teroz is less than terox and temperature.

ASYNCHRONOUS READ CYCLE

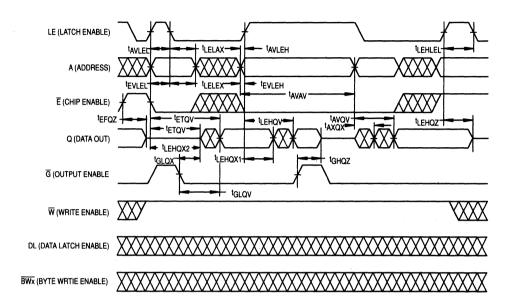

ASYNCHRONOUS WRITE CYCLE TIMING (See Notes 1, 2, 3, 4, and 5)

		MCM62	995-17	MCM62	995–20	MCM62	995–25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times	^t AVAV	17		20	_	25	_	ns	6
Setup Times: Address Valid to End of Write Address Valid to End of Write Address Valid to W Low Address Valid to E, E "True" Data Valid to W, High Data Valid to E or E "False" Byte Write Low to W High Byte Write Low to E, E "False" Byte Write Low to W Low (Abort)	tavwh tavef tavwl tavet tovef tbwxlwh tbwxlef tbwxhwl	13 13 0 0 6 6 6		15 15 0 0 8 8 8 8		20 20 0 0 10 10 10		ns	2
Hold Times: W High to Address Invalid E.E. "False" to Address Invalid W High to Data Invalid E. E. "False" to Data Invalid W High to Byte Write Invalid E. E. "False" to Byte Write Invalid	tWHAX tEFAX tWHDX tEFDX tWHBWxX tEFBWxX	0 1 0 0 2 2	= = = = = = = = = = = = = = = = = = = =	0 1 0 0 2 2	=	0 1 0 0 2 2		ns	
Write Pulse Width: Write Pulse Width Write Pulse Width Enable to End of Write Enable to End of Write	twlwh twlef tetwh tetef	13 13 13 13		15 15 15 15	=	20 20 20 20		ns	7 8 7,8
Output Buffer Control: W High to Output Valid W High to Output Active W Low to Output High-Z	twhqv twhqx twlqz	18 5 0	<u>—</u> 9	20 5 0	_ 9	25 5 0	_ _ 10	ns	9 9, 10

NOTES:

- 1. LE and DL are equal to VIH for all asynchronous cycles.
- 2. A write occurs during the overlap of ET, W low, and BWx low. An aborted write occurs when BWx remains at V_{IH} while W is low and satisfies the required setup and hold times..
- 3. Write must be equal to VIH for all address transitions.
- 4. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.
- 5. EF is defined by E going high or E going low.
- 6. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 7. If E or \overline{E} goes false coincident with or before \overline{W} goes high, the output will remain in a high-impedance state.
- 8. If E and \overline{E} goes true coincident with or after \overline{W} goes low, the output will remain in a high-impedance state.
- Transition is measured ±500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, twLQZ is less than twHQX for a given device.
- 10. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will reamin in a high-impedance state.

ASYNCHRONOUS WRITE CYCLE


LATCHED READ CYCLE TIMING (See Notes 1, 2, 3, and 4)

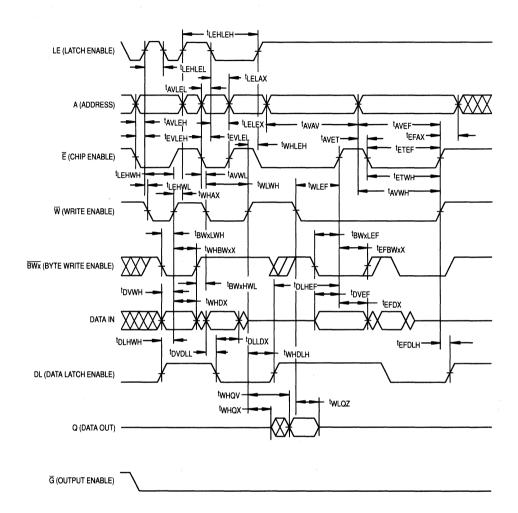
		MCM62	995–17	MCM62	99520	MCM62	995–25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Cycle Times	tavav	17	_	20		25	_	ns	5
Access Times: Address Valid to Output Valid E, E "True" to Output Valid LE High to Output Valid Output Enable Low to Output Valid	tavqv tetqv tlehqv tglqv	_ _ _	17 17 17 6	_ _ _ _	20 20 20 20 8		25 25 25 10	ns	5
Setup Times: Address Valid to LE Low E, Ē "Valid" to LE Low Address Valid to LE High E, Ē "Valid" to LE High	†AVLEL †EVLEL †AVLEH †EVLEH	2 2 0 0		2 2 0 0		2 2 0 0		ns	6
Hold Times: LE Low to Address Invalid LE Low to E, Ē "Invalid"	†LELAX †LELEX	3 3	_	3 3	=	3 3	=	ns	6 6
Output Hold: Address Invalid to Output Invalid LE High to Output Invalid	[†] AXQX [†] LEHQX1	4 4	=	4 4	=	4 4	_	ns	
Latch Enable High Pulse Width	t _{LEHLEL}	5		5		5	_	ns	
Output Buffer Control: E, E "True" to Output Active G Low to Output Active LE High to Output Active E, E "False" to Output High-Z LE High to Output High-Z G High to Output High-Z	tetax tglax tlehax2 tefaz tlehaz tghaz	2 2 2 2 2 2	996	2 2 2 2 2 2	 - 9 8	2 2 2 2 2 2	 10 10 10	ns	7 7 7 7 7

NOTES:

- 1. Write enable is equal to VIH for all read cycles.
- 2. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 3. ET is defined by \overline{E} going low coincident with or after E goes high, or E going high coincident with or after \overline{E} goes low.
- 4. EF is defined by \overline{E} going high or E going low.
- 5. Addresses valid prior to or coincident with E going low and E going high.
- 6. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of latch enable (LE) and data latch enable (DL).
- Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At
 any given voltage and temperature, t_{EFQZ} is less than t_{ETQX} and t_{LEHQZ} is less than t_{LEHQZ} and t_{GHQZ} is less than t_{GLQX} for a given
 device.

LATCHED READ CYCLES

LATCHED WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)


		MCM62	995–17	MCM62	995-20	MCM62	99525		l
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write Cycle Times:								ns	
Address Valid to Address Valid	t _{AVAV}	17	_	20	_	25	-		5
LE High to LE High	*LEHLEH	17	-	20	-	25	-		5
Setup Times:								ns	
Address Valid to End of Write	tavwh	13	l —	15	-	20			
Address Valid to End of Write	tAVEF	13	l —	15	_	20	-		
E, E "Valid" to LE Low	tEVLEL	2	-	2	_	2	-		
Address Valid to LE Low	tAVLEL	2	-	2	-	2	-		1
E, Ē "Valid" to LE High	tevleh	0		0	-	0	-		
Address Valid to LE High	tAVLEH	0	-	0	-	0			
LE High to W Low_	tLEHWL.	0	-	0	—	0	l — I		l
Address Valid to W Low	tAVWL	0	 -	0	-	0	-		ì
Address Valid to E, E "True"	†AVET	0	-	0	-	0	-		
Data Valid to DL Low	^t DVDLL	1	-	1	l –	1			İ
Data Valid to W High	t _{DVWH}	6	-	8		10	-		
Data Valid to E or E "False"	†DVEF	6	_	8	-	10	-		ļ
DL High to W High	[†] DLHWH	6	-	8	l —	10	-		l
DL High to E, E "False"	†DLHEF	6	—	8	_	10	-		l
Byte Write Low to W High	^t BWxLWH	6	_	8	_	10	-		
Byte Write Low to E, E "False"	^t BWxLEF	6	_	8	-	10	-		١.
Byte Write High to W Low (Abort)	^t BWxHWL	0		0	_	0	_		1
Hold Times:					1			ns	
LE Low to E, E "Invalid"	tLELEX **	3	-	3	—	3	- 1		5
LE Low to Address Invalid	tLELAX	3	-	3	_	3	- 1		5
DL Low to Data Invalid	†DLLDX	3	_	3	-	3	- 1		1
W High to Address Invalid	TWHAX	0	-	0	_	0	-		
E, E "False" to Address Invalid	[†] EFAX	1	-	1	_	1	- 1		İ
W High to Data Invalid	tWHDX	0	_	0	_	0			l
E, E "False" to Data Invalid	, tefdx	0	_	0		0	-		
W High to DL High	twhdlh	0		0	-	0	- 1		
E, E "False" to DL High	, tefdlh	0	_	0	_	0 2	_		
W High to Byte Write Invalid E, E "False" to Byte Write Invalid	twHBWxX	2 2	_	2	=	2			
W High to LE High	tEFBWxX tWHLEH	6	_	0	=	6			
Write Pulse Width:	WILLE	<u> </u>						ns	
LE High to W High	t	13		15	l	20	_	113	6
Write Pulse Width	[†] LEHWH	13	_	15	_	20	_		۱ ،
Write Pulse Width	twlwH	13	_	15	_	20	_		7
Enable to End of Write	twler tetwh	13	_	15	_	20	_		á
Enable to End of Write	tETEF	13	_	15	_	20			7, 8
Latch Enable High Pulse Width	†LEHLEL	5	_	5		5	_	ns	
Output Buffer Control:							1	ns	
W High to Output Valid	twhqv	17	_	20	_	25	_		
W High to Output Active	twhox	5	_	5		5	_		9
W Low to Output High-Z	twicz	Ŏ	9	ō	9	ō	10		9, 10

NOTES:

- 1. A write occurs during the overlap of ET, W low and BWx low. An aborted write occurs when BWx remains at VIH while W is low and meets the required setup and hold times.
- 2. Write must be equal to VIH for all address transitions.
- 3. ET is defined by E going low coincident with or after E goes high, or E going high coincident with or after E goes low.
- 4. EF is defined by E going high or E going low.
- 5. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 6. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of latch enable (LE) and data latch enable (DL).
- 7. If E or E goes false coincident with or before W goes high, the output will remain in a high-impedance state.
- 8. If E and E goes true coincident with or after W goes low, the output will remain in a high-impedance state.
- 9. Transition is measured ± 500 mV from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, t_{WLQZ} is less than t_{WHQX} for a given device.

 10. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will reamin in a high-impedance state.

LATCHED WRITE CYCLES

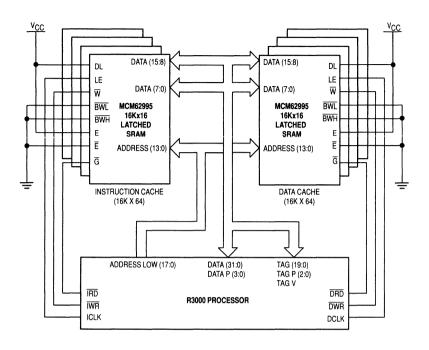
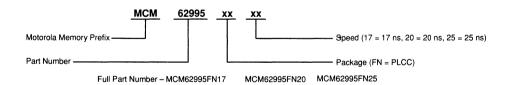



Figure 2. R3000 Application Example with 128K Byte Segregated Instruction/Data Cache Using Eight Motorola MCM62995 Latched SRAMs

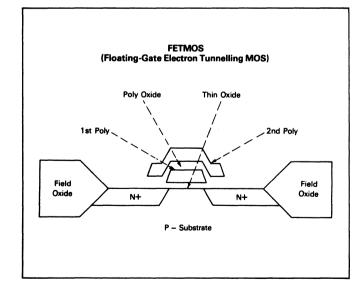
ORDERING INFORMATION (Order by Full Part Number)

MOS EEPROM 10

ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY

		Motorola	Address	Operating		
1	Organi-	Part	Access Time	Current	Pin	
Density	zation	Number	(ns Max)	(mA Max)	Count	Packaging
2K	256Kx8	MCM2814P	3.5 µs	10	8	(P)DIP

MOTOROLA SEMICONDUCTOR TECHNICAL DATA


256x8 BIT SERIAL EEPROM

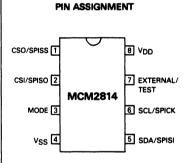
The MCM2814 is a 2048-bit serial electrically erasable PROM. Designed for handling data in applications requiring both non-volatile memory and in-system information updates.

The MCM2814 is fabricated in an 8-pin DIL package using floatinggate HCMOS EEPROM technology.

Features:

- · 2048 bits organised as 256 bytes.
- · Byte programmable.
- 3 6V supply during read operations.
- · On-chip Programming Voltage Generator.
- Two programming modes: two-wire serial access, M-bus/four-wire serial access SPI.
- Data protection of 1/4, 1/2, or 3/4 array with EEPROM bits.
- · Simultaneous programming of 1 to 4 bytes.
- · Automatic byte address increment in Read mode.
- · Chip selection with separate pin.
- · Single 4.5V to 6V supply during programming.
- · Digital filtering on Clock and Data inputs.
- · Bit program operation: no byte erase necessary.
- · Data protection after Reset.
- · Write/Erase endurance:10000 cycles over 0 to 70 DEG C.
- · Typically 100,000 W/E cycles at ambient temperatures.
- Data retention: 10 years

MCM2814


HCMOS

(FLOATING-GATE TECHNOLOGY)

256 x 8 BIT ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORY

P SUFFIX PLASTIC PACKAGE CASE 626-04

PIN DESCRIPTION

V _{DD} :	Power Supply
VSS:	Ground (Ref)
External/ Test	Connected to on-chip
	Voltage Multiplier output
Mode =	0 M-bus
CS0	Chip Select (Hardwired)
CS1	Chip Select (Hardwired)
SDA	Serial Date I/O
SCL	Serial Clock Input
Mode =	1 SPI
SPISS	Slave Select Input
SPISO	Serial Data Output
SPISI	Serial Data Input
SPICK	Serial Clock Input

SECTION 1. PIN DESCRIPTION

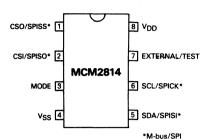


Figure 1 Pinout

1.1 VSS/VDD (Pins 4/8)

VDD and VSS are used to power the circuit. In read mode this supply voltage must be comprised in the VDDR range. (See **5.2 Electrical Characteristics**). In program mode this supply range is limited to VDDP.

1.2 External/Test (Pin 7)

This pin is used for testing the on-chip voltage multiplier that generates the programming voltage required for a program operation, and should be left open for 5 Volt only operation.

An external capacitor (Low leakage) on this pin might have a positive impact on the programming endurance, as the Vpp rise time will be increased.

Recommendations will be issued after the characterisation. As this on-chip generator has a high impedance, an external supply can be connected to this pin. This also allows to block any inadvertant programming by maintaining this pin at VDD.

1.3 Mode (Pin 3)

This pin is used to select one of two modes of operation:
M-bus mode at the low logic level or SPI mode at high
level

This pin is usually hardwired to VSS or VDD. It should only be changed if the circuit is internally in a standby state.

This pin is high impedance when VDD is at VSS level.

1.4 CS1 / SPISO (Pin 2)

In M-bus mode, this pin is used for selecting multiple identical chips on the same serial bus. The chip address is formed by 5 bits predefined for this chip, followed by 2 additional chip select bits. These last two bits must

correspond to the CS1 / CS0 code for proper chip selection. Up to four MCM 2814 can be connected on the same SCL and SDA lines. (See **Figure 4**).

In SPI mode this pin is a push-pull slave data output (SPISO). It will shift-out byte addresses and data as described in Section 4.

This pin is usually connected to the data input pin of a SPI master (MISO).

This pin can not be pulled higher than 0.5 V above V_{DD}, even if V_{DD} is at V_{SS} level.

1.5 CSO / SPISS (Pin 1)

In M-bus mode this pin is used in conjunction with CS1 for chip selection. (See **above**).

In SPI mode this pin is a Slave Select input. In this mode the serial access is deselected when the SPISS input is high, and the SPISO data output pin is forced high impedance. Multiple chips using the same SPICK, SPISI and SPISO lines, can be selected via this pin as described in Figure 10.

After powering up the device, a falling edge of the SPISS line is required to start the SPI serial access.

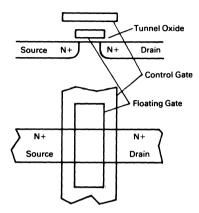
This pin is high impedance when VDD is at VSS level.

1.6 SCL / SPICK (Pin 6)

The serial clock is supplied on pin SCL / SPICK. This pin is an input only, therefore the chip can only operate as a slave under the control of a serial bus master.

The clock input rising edge is used to shift in data present on the SDA/SPISI pin, and the falling edge is used to shift out data on the SDA or SPISO pin.

This pin is high impedance when VDD is at VSS level.


1.7 SDA / SPISI (Pin 5)

In M-bus mode, SDA pin is used to transmit data serially in the memory (Receiver) or from the memory (Transmitter). Data transmitted via this pin includes chip addresses, byte addresses, byte data, Read/Write and acknowledge bits. When SDA is in output, it operates as a pull-down only device (Open-drain). The protocol of this transmission is described in Figures 5 and 6.

In SPI mode, this pin is a Slave data Input (SPISI) only and is used to receive opcodes, byte addresses and byte data. It is usually connected to the data output pin of a SPI master. (MOSI).

This pin is high impedance when VDD is at VSS level.

SECTION 2. EEPROM

CG	D	S
0V	VDD	0V
0V	VPP	OPEN
VPP	OV	0V
	OV OV VPP	CG D 0V VDD 0V VPP VPP 0V

Figure 2 EEPROM Transistor

256 Bytes of EEPROM memory are implemented in a floating gate double poly-silicon process. A Byte Address register is used to select one of the bytes. Three basic state of operation can be distinguished:

- Standby state.
- Read state
- Program state

2.1 EEPROM Operation

2.1.1 Standby State

In this state, neither a programming, nor a serial transmission occurs, and the power consumption is minimum. (See 3.4.1 and 4.5).

2.1.2 Read State

In read state the data of the selected byte is transferred from the memory array to the data shift register used for the serial transmission. This state is active during a serial transmission.

2.1.3 Program State

In this state, a programming voltage higher than V_{DD} is necessary. This voltage is generated by the on-chip voltage multiplier or can be supplied externally. During programming V_{DD} must be within the V_{DDP} range. (See 5.2).

In M-bus mode, the programming starts at the end of a write command, when a STOP or a new START condition occurs. The programming is enabled at this time, as well

as the on-chip voltage multiplier. If there is a capacitive load on the Vpp pin, the Vpp rise time should be added to the minimum program time tpROG.

In SPI mode, programming could start when a write serial transmission is ended with an SPISS rising edge. Actual programming will only happen if enabled by a Vpp enable serial command. This command can be transmitted before or after the write sequence.

2.2 EEPROM Data Protection

Some circuitry has been included to prevent unwanted modification of EEPROM data, and is described below. However, a noisy serial link is very often the cause of bad data or data written to the wrong address. Besides measures to reduce this noise on the board, the serial clock and data inputs (SCL/SDA) have Schmitt triggers and digital filters to reject some of the noise.

2.2.1 Power Up Reset

Immediately after power is applied, programming is inhibited to prevent EEPROM data loss during the system power up.

In both modes this condition is removed when a READ is performed.

In M-bus mode, this condition is removed by reading the data in any byte address using the normal read sequence.

In SPI mode, it is sufficient to send the READ opcode before a new Vpp enable command and the write sequence.

At Reset the following circuitry is initialised:

- . The circuit is in standby state.
- In M-bus mode, it is waiting for a start condition.
- In SPI mode, it is waiting for a high to low SPISS transition
- The data outputs are high impedance (SDA, SPISO).
- The programming is disabled.
- The on-chip Vpp generator is off.

2.2.2 Programming Voltage Enable

In SPI mode only, an internal programming voltage enable flip-flop can be set or cleared with two separate opcodes, thus reducing the risk of unwanted EEPROM programming.

2.2.3 Array Write Protect

In both modes, byte address 255 (\$FF) contains EEPROM bits with a special function. When one or two bits of this address are programmed at once, the programming of EEPROM sections is inhibited according to the following table:

	a at R \$FF	Protected Addresses	No. of Bytes Protected
XXXX	00XX	No Write Prot.	-
XXXX	01XX	\$C0 - \$FB	60
XXXX	10XX	\$80 - \$FB	124
XXXX	11XX	\$40 - \$FB	188

X = Don't care

Table 1 EEPROM Write Protect

This protection is reversible as address 255 (\$FF) can be modified at any time.

2.3 EEPROM Properties

NO ERASE: Unlike most EEPROM's it is not necessary to erase a byte before writing new data to it. The program operation takes tpROG and must be

externally timed.

CUMULATIVE: As the programming operation is under external control, it can be done at once or at various time frames as long as the total programming time exceeds the specified minimum tprog value.

tPROG is defined with Vpp at its programming level.

SELF LIMITING: Excess pogramming has no positive effect, as programmed EEPROM thresholds will asymptotically reach their nominal values. Programming durations above the recommended tpROG have negative impacts on the EEPROM programming endurance.

2.4 EEPROM Reliability

Reliability figures are statistical in nature. Therefore no minimum or maximum specifications can be applied. The result of reliability tests will be published instead. These tests are conducted on a regular basis during the production life of a circuit and reports are available upon request.

2.4.1 Data Retention

Typical data retention should exceed 10 years for the specified operating temperature range. Data retention is usually tested with the device under bias, but without accessing the EEPROM array.

2.4.2 Read Stress

Unlike some non-volatile memories, there should be no disturbance of the stored data under continuous read of EEPROM bytes. The life limit under continuous read condition should therefore be similar to the normal operating life of the device.

2.4.3 Program Endurance

As for all EEPROM'S, there is a wearout mechanism associated with the programming mechanism on the non volatile memory. More than 10,000 programming cycles should be possible per memory bit, additionally 100,000 cycles is typical for the specified temperature range. A programming cycle is defined as a 0 to 1 to 0 programming. Unlike most EEPROM'S where the whole byte is erased before being re-programmed, if just one bit is modified in a byte, only this bit will see the programming stress.

Some endurance experiments have shown that the number of programming cycles can be increased if the Vpp rise time is increased. This can be achieved with an external capacitor on Vpp when the on-chip Vpp generator is used. In SPI mode, the Vpp should be enabled after the write command has been transmitted. If an external Vpp is provided, it should be ramped up only after the write command is transmitted. In this case, a Vpp above the maximum value also has a negative impact on the endurance.

2.5 Vpp Voltage Multiplier

In M-bus mode, the on-chip Vpp generator is turned on or off automatically during a program sequence.

In SPI mode, it is switched on only after a serial Vpp enable command has been issued, independently of write or read commands.

SECTION 3. M-BUS OPERATING MODE

The MODE pin can be hardwired to V_{DD} or V_{SS} to select two different modes of operation. Differences are at the serial transmission level and in the EEPROM operation. They are called M-bus mode and SPI mode.

3.1 M-bus Mode

Only two wires are needed to control the device operation. The serial transmission of this mode is similar to the IIC (*) serial communication standard. It features:

- Up to 4 identical chips on the same 2 wire bus.
- CS1 / CS0 pins for chip selection.
- SCL clock line, input only.
- SDA line used as Input and Output.
- Data acknowledge bit generated.
- Auto programming after reception of new data.
- Programming time under external control.
- Write inhibit after reset.

*IIC is a trademark of Philips

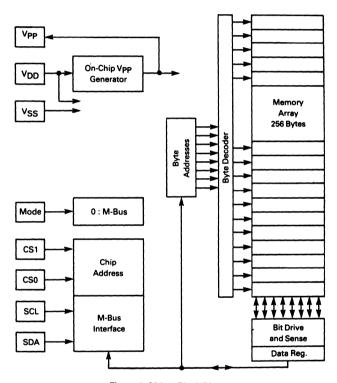


Figure 3 M-bus Block Diagram

3.2 Lexicon

This lexicon will describe some terms used in this serial interface description.

MASTER: The device that initiates the serial transmission is designated as master. In general, it is the device generating the clock. This memory can never function as a master.

SLAVE: This memory always operates as a slave.

TRANSMITTER: The device with its SDA pin in output is a data transmitter. In the case of multiple devices in output, the device sending a low level will win due to the Open-Drain connection.

RECEIVER: A device that has been properly selected by a chip address followed by a write bit is a receiver, and will

shift data present on the SDA pin in internal registers.

MSB: The Most Significant Bit is the first bit transmitted and received.

START CONDITION: The start condition is defined as a 1 to 0 transition of SDA when SCL is high. The first byte of data following a start condition includes the chip address followed by the R/W bit. All devices connected on the same bus receive this data to check if they are addressed.

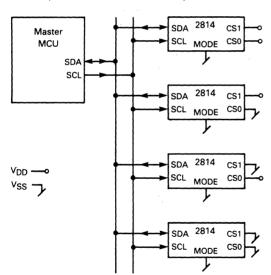
STOP CONDITION: The stop condition is defined as a 0 to 1 transition of SDA when SCL is high. In this circuit, the stop condition is never mandatory. An EEPROM programming can be initiated by the STOP or also by any following START condition.

A STOP after a serial read sequence will put the device in standby state.

CHIP ADDRESS: The first byte transmitted after a START contains the chip address followed by the Read/Write bit. The 7 bit chip address is formed of 5 fixed bits followed by 2 chip select bits.

Fixed bits are 1010X for this device (X is a don't care bit).

The 2 chip select bits must correspond to the 2 chip select inputs for proper chip selection. By this means, up to 4 identical chips can be connected on the same SDA / SCL lines, in order to form a memory bank of up to 8 KBits.


READ/WRITE BIT: The 8th bit transmitted by the master after the 7 bit chip address will indicate the direction of transfer for the next bytes. (Until a new start or stop). If low, the following bytes are transmitted by the master. If high, the following bytes are transmitted by the MCM 2814.

BYTE ADDRESS: The first byte of data received by the memory after the chip address, will be latched in the byte address register and is used to select one of the 256 EEPROM bytes.

ACKNOWLEDGE BIT: This bit is sent by the selected receiver on the data line after a byte reception. Due to the open drain structure, a valid acknowledge bit corresponds to a low level. While operating as a transmitter, sending a sequence of data bits, this device will check the acknowledge bit generated by the master. The absence of this bit will stop the transmission of data.

3.3 Chip Selection

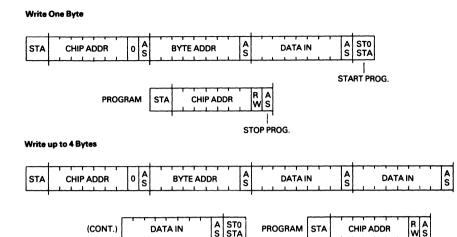
The 2 chip select bits transmitted in the chip address must match the status of CS1 and CS0 inputs.

- 1	Pin Statu	Chip Address	
Mode	CS1	CS0	Transmitted
0	1	1	1010 X11
0	1	0	1010 X10
0	0	1	1010 X01
0	0	0	1010 X00

X = Don't care

Figure 4 M-bus Chip Selection

3.4 Protocol


At the protocol level, the transmission of data is defined in the form of sequences of Start (STA), Stop (STO) conditions, and bytes followed by acknowledge bits.

3.4.1 Standby State

When no serial transmission and no programming are

made, the circuit is in standby. A STOP condition following a read sequence or a write byte address sequence (without data write), will put the circuit in standby. A new START condition will wake up the device, to get the chip address. If the chip address is not valid, the device will return in standby.

The power consumption is minimum in standby.

STA: Start Condition R/W BIT: 1 = Read/0 = Write AS: Slave Acknowledge (2814)
STO: Stop Condition INC: Increment Byte Address AM: Master Acknowledge

START PROG.

Figure 5 M-bus Write Protocol

3.4.2 Write Sequence

The serial write to the memory includes a serial transmission of the byte address and the data to be written. When this is completed by a stop or a new start condition, the programming sequence is initiated.

Programming is under control of the master. It is initiated by the write sequence just described, and stopped by any new valid selection of the chip.

Therefore, the tpROG time is defined as the time between these two operations, and is defined by the master.

Bad chip addresses or chip addresses for other chips on the same bus do not suspend the programming.

The on-chip Vpp generator is automatically turned on or off when needed. If an external Vpp is applied, the programming voltage is only allowed into the array during the above defined tpROG time.

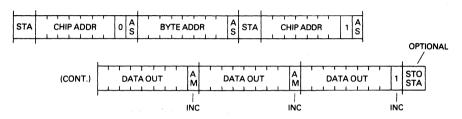
It is possible to program simultaneously up to 4 bytes, provided the 6 most significant bits of their addresses are identical. The byte address is incremented after each new data byte shifted in.

STOP PROG.

3.4.3 Read Sequence


Reading data from the memory is made in two steps. First the byte address must be loaded in the byte address register. Then data can be read out of the memory. The first step is only required to define the byte address. If this address was predefined from a previous read this step can be skipped.

The byte address is automatically incremented after each data byte transmitted.


This is also valid after the last byte of a transmission. Therefore, the next read sequence without any byte address specified, will transmit data of the next byte. A read sequence will transmit data bytes of successive addresses until the absence of the acknowledge bit from the master. In this case the SDA output driver will switch off and the circuit will go to standby.

Read One More Byte. (Byte Address Defined)

Read Many Bytes

STA: Start Condition STO: Stop Condition

INC: Increment Byte Address

R/W BIT: 1 = Read/0 = Write AS: Slave Acknowledge (2814) AM: Master Acknowledge

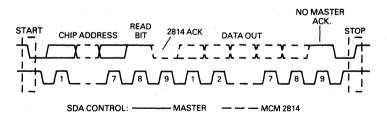


Figure 7 M-bus Read Detail

3.4.4 Signal Levels

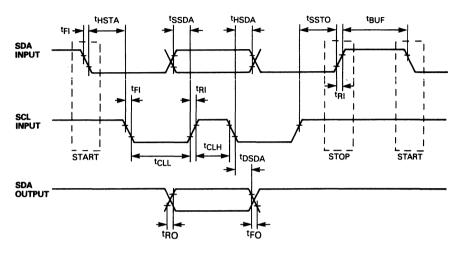


Figure 8 M-bus Timings

Electrical and switching characteristics are described in Section 5.

During a transmission, SDA line transitions must occur when SCL is low. A negative transition of SDA with SCL high is recognised as a START condition, the positive transition as a STOP condition.

The acknowledge bit is provided by the device receiving data. Therefore, during this time the data transmitter must leave the SDA line at high impedance.

As this memory has an open drain SDA output, an external pull-up resistor to V_{DD} should be included on SDA line.

SECTION 4. SPI OPERATING MODE

The serial transmission of this mode requires 4 wires to control the device operation. It features:

- Multiple chips on same 3 wire bus with separate chip select lines.
- · SPISS chip selection.
- SPICK clock line, Input only.
- . SPISI line used as Input only.
- SPISO line used as Output only.
- No acknowledge bit.

- Programming under control of the master via serial opcodes.
- Programming time under external control.
- · Write inhibit after reset.
- Write enable/disable via serial opcodes.
- Byte address output for transparency.

This SPI mode can be used with the SPI of Motorola Microprocessor MC6805S2/S3, MC6805K2/L3/L8, MC68HC05C4 and MC68HC11.

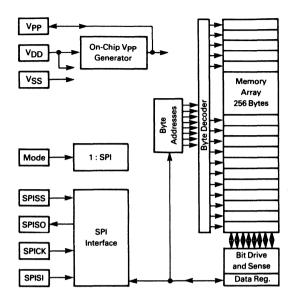


Figure 9 SPI Block Diagram

4.1 SPI Serial Interface

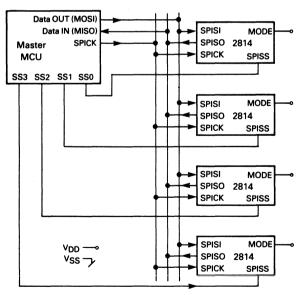


Figure 10 SPI Chip Selection

The serial interface via pins SPICL, SPISI and SPISO is compatible with the SPI standard when the MODE pin is high.

4.2 Lexicon

This lexicon will describe some terms used in this serial interface description.

MASTER: The device that generates the serial clock on SPICK is designated as master. This memory can never function as a master.

SLAVE: This memory always operate as a slave as the SPICK pin is always an input.

TRANSMITTER / RECEIVER: This device has separate pins for data transmission (SPISO) and reception (SPISI). Simultaneous data input and output can therefore occur when the chip is selected with SPISS and is clocked (SPICK).

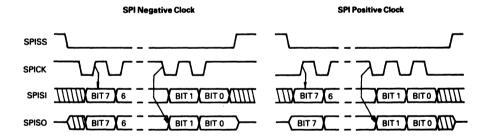
MSB: The Most Significant Bit is the first bit transmitted and received.

CHIP SELECT: The chip is selected when pin SPISS is low. When the chip is not selected, no data will be input from pin SPISI, and output pin SPISO is high impedance.

4.3 Serial Op-Code

The first byte transmitted after the chip is selected with SPISS going low, contains the opcode that defines the operation to be performed.

Data Transmitted	Operation
1010 0111	Read byte address followed by data.
1010 0110	Program enable. Vpp generator ON.
1010 0100	Program disable. Vpp generator OFF.
1010 0010	Write (Program) data.


Table 2 SPI Opcodes

All other codes are invalid. After an invalid code is received, no data is shifted in the MCM 2814 and the SPISO data output is high impedance until a new SPISS falling edge re-initialises the serial communication.

4.4 Protocol

The MCM2814 SPI interface accepts both a negative or positive clock.

The SPI protocol for this device defines the bytes transmitted on the SPISI and SPISO data lines for proper chip operation.

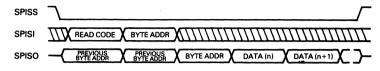
Positive Clock Edge: Shift IN Negative Clock Edge: Data OUT

Figure 11 SPI Clock Phase and Polarity

4.5 Standby State

The circuit is in standby when no serial transmission takes place, when no write is waiting for the Vpp enable command and when the Vpp generator is off.

When SPISS is high, standby state will follow:


A power up reset.

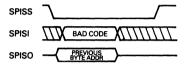
- A Vpp disable command.
- A Read, providing no Vpp enable command has been issued previously.

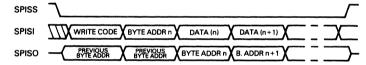
The power consumption is minimum in standby.

4.6 Read Sequence

Read One or More Bytes

Invalid Opcodes




Figure 12 SPI Read

Reading the memory via the serial SPI link requires the following sequence. The SPISS line is pulled low to select the device. The read opcode is transmitted on the SPISI line followed by the byte address. When this is done, data on the SPISI line has no more influence on the memory. At the beginning of an SPI transaction, the SPISO buffer is turned on and will shift out the current byte address. This

can be used for a relative addressing of the byte address. The new byte address is then transmitted followed by corresponding data. If just one byte is read, SPISS can be pulled back to the high level. It is possible to continue the read sequence, as the byte address is automatically incremented. The byte address is shifted out only once, in the beginning of a transmission.

4.7 Program Sequence

Write One to Four Bytes

Vpp Enable/Disable

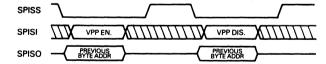


Figure 13 SPI Program

To program a byte, two separate conditions must be simultaneously present. The program must be enabled via the Vpp enable command, and a serial write must be done. The Vpp enable will also turn on the on-chip Vpp generator. At this time, the chip is obviously not in standby, even if SPISS is high. The program disable command will stop the on-chip Vpp supply and protect the

EEPROM data against unwanted modifications. An external Vpp supply will also be internally enabled or disabled by this mechanism.

A write serial sequence includes an SPISS high to low transition, followed by the write code on the SPISI line. The byte address followed by the corresponding data to be written are then shifted through the SPISI pin. At the

beginning of an SPI transaction, the SPISO buffer is turned on and will shift out the current byte address. This can be used for a relative addressing of the byte to be programmed. The new byte address is also echoed for possible checking by the master. If Vpp is enabled, the programming will start after the SPISS line goes back to a high level. It is also possible to issue the Vpp enable command after the write sequence.

If the Vpp enable command is issued after the serial write, no Read or invalid code should be transmitted in between as this would clear the programming latch containing the

data to be programmed.

The programming is suspended when a new chip selection with SPISS low occurs. It is then possible to send a new write command to program new data. A Vpp enable or a Read command will stop the programming.

It is possible to program simultaneously up to 4 bytes, provided the 6 most significant bits of their addresses are identical. The byte address is incremented after each new data byte shifted in.

4.8 Signal Levels

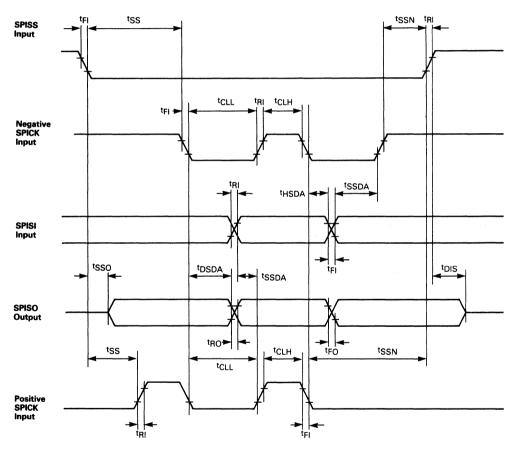


Figure 14 SPI Timings

Electrical and switching characteristics are described in Section 5.

SECTION 5. CHARACTERISTICS

Vss = 0 V

5.1 Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.3 to +7.0	Vdc
Input voltage pins 1, 3, 5, 6	V _{in}	-0.3 to +7.0	Vdc
Input voltage pin 2	V _{in}	-0.3 to V _{DD} +0.3	Vdc
Current on any Input	lin	0.1	mA
Sink current SDA	ISDAL	10	mA
Sink current SPISO	ISOL	10	mA
Source current SPISO	ISOH	10	mA
Operating temperature	TA	0 to 70	°C
Storage temperature	TS	- 55 to 125**	°C
Junction Temperature	Tj	150**	°C
Thermal resistance	Thja	200	°C/W

Stresses above those listed under 'Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum operating conditions for extended periods may affect reliability.

5.2 Electrical Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Supply voltage STANDBY	V _{DDS}	-	-	6.0	Vdc
Supply current STANDBY*	IDDS	-	0.5	1.0	μΑ
Supply voltage READ **	VDDR	3.0	-	6.0	Vdc
Supply current READ*	IDDR	-	0.3	1.5	mA
Supply voltage PROG * *	VDDP	4.5	-	6.0	Vdc
Supply current PROG*	IDDP	-	0.5	3.0	mA

^{**}In particular, continuous high temperature application may cause leakage of stored charge in EEPROM, resulting in data loss.

^{*}Inputs at VSS or VDD. **A separate data sheet will be available for 3.3 V $\pm 10\%$ operation.

5.3 Electrical Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
SCL, SDA, SPISS, SPISI Inputs					
Input low voltage	VIL	-0.3	-	0.3*V _{DD}	Vdc
Input high voltage	VIH	0.7*V _{DD}	-	V _{DD} +0.3	Vdc
Input leakage	IN	-	-	±10	μА
SDA/SPISO Pull down Outputs					
Output low IOL <10μΑ	VOL	-	-	0.1	Vdc
Output high leakage	ЮН	-	-	±10	μА
Output low IOL = 3 mA	VOL	-	-	0.4	Vdc
V _{DD} = 5 V					
Output low IOL = 1 mA	VOL	-	-	0.4	Vdc
V _{DD} = 3 V					
SPISO Pull up Output					
Output high IOH = 1.6 mA	Voн	V _{DD} – 0.8	-	-	Vdc
V _{DD} = 5 V					
Output high IOH = 0.4 mA	∨он	V _{DD} = 0.3	-	-	Vdc
V _{DD} = 3 V					
MODE, CS1, CS0 Inputs					
Input low voltage	VIIV	-0.3	-	0.3*VDD	Vdc
Input high voltage	VIH	0.7*V _{DD}	-	V _{DD} + 0.3	Vdc
Input leakage	IN	-	-	±10	μА
Input capacitance	CIN	-	10	-	pF

5.4 SWITCHING PARAMETERS

5.4.1 General Characteristics

Parameter	Parameter	Min	Тур	Max	Min
Programming time 1 byte	^t PROG	10	-	_	mS
Programming time 4 bytes	t PROG	20	-	-	mS
Write/Erase at 0 to 70 DEG C	cy _{W/E}	-	-	10,000	cycles
Write/Erase at ambient temperature	cyW/E	_	100,000	-	cycles

5.4.2 Serial Bus Input

Characteristic	Symbol	Min	Тур	Max	Unit
SDA/SPISI, SCL/SPICK, SPISS Inputs					
Clock frequency	FSCL	0.0	-	125	kHz
Clock High time	tCLH	4.0	-	-	μS
Clock Low time	tCLL	4.0	-	-	μS
Stop to Start delay	tBUF	4.0	-	-	μS
Start hold time	tHSTA	4.0	-	-	μS
Data hold time	tHSDA	0.0	-	-	μS
Data set-up time	tSSDA	250	-	-	nS
Input Rise time	tRI	-	-	1.0	μS
Input Fall time	tFI	-	-	300	nS
Stop set-up time	tSSTO	4.0	-	-	μS
SPISS Lead time	tss	4.0	-	-	μS
SPISS Lag time	tSSN	4.0	-	-	μS

All values refer to VIH and VIL levels.

5.4.3 Serial Bus Output

 $V_{DD} = 5 \text{ Vdc} \pm 10\%$. $T_A = 0 \text{ to } 70^{\circ}\text{C}$. $C_L = 200 \text{ pF}$.

Characteristic	Symbol	Min	Тур	Max	Unit
SDA/SPISO Outputs					
Data delay	tDSDA	-	1.5	3.5	μS
Rise time SDA	tRO	-	-	*	nS
Rise time SPISO	tRO	<u>-</u>		100	nS
Fall time	tFO	-	-	100	nS
SPI select time	tsso	-	-	1.2	μS
Disable time	tpis	-	1.5	3.5	μS

 $V_{DD} = 3.3 \, Vdc \pm 10\%$. $T_A = 0 \text{ to } 70^{\circ}\text{C}$. $C_L = 200 \, pF$.

Characteristic	Symbol	Min	Тур	Max	Unit
SDA/SPISO Outputs					
Data delay	tDSDA	-	2.0	3.5	μS
Rise time SDA	tRO	•	-	*	nS
Rise time SPISO	tRO	-	-	200	nS
Fall time	tFO	-	-	200	nS
SPI select time	tsso	-		1.5	μS
Disable time	tDIS	-	2.0	3.5	μS

All values referred to V_{IH} and V_{IL} levels. *Depends on external pull-up resistor value.

Military Products 11

MEMORIES

MIL-STD-883C

Bipolar Mem	nories			883C Package Type and Lead Finish				
Device	883C	Description	Pins	DIL	FP	CAN	LCCC	
10539	/B	32 x 8-Bit ECL PROM, 17 ns	16	EA	FA		2A	
10545	/B	64-Bit ECL Register File, RAM, 18 ns	16	EA	FA	i	2A	
10549	/B	256 x 4-Bit ECL PROM, 30 ns	16	EA	FA	ł	2A	
10552	/B	256 x 1-Bit ECL RAM, 15 ns	16	EA	FA	1	2A	
93415	/B	1024 x 1-Bit RAM, Open-Collector	16	EA	FA	}		
93422	/B	256 x 4-Bit RAM, 3-State Output, 60 ns	22	WA				
93422A	/B	256 x 4-Bit RAM, 3-State Output, 45 ns	22	WA				
93L422	/B	256 x 4-Bit RAM, 3-State Output, 75 ns, Low Power	22	WA				
93425	/B	1024 x 1-Bit RAM, 3-State Output	16	EA	FA			

High Speed	CMOS III Ca	che Tag Memories		883C Package Type and Lead Finish				
Device	883C	Description	Pins	SB DIL	FP	CAN	LCCC	
4180-30	/B	4K x 4 Cache Tag RAM Comparators, 30 ns	22	3Q90				
4180-35	/B	4K x 4 Cache Tag RAM Comparators, 35 ns	22	3Q90				
4180-40	/B	4K x 4 Cache Tag RAM Comparators, 40 ns	22	3Q90		}	1	
62300-30	/B	4K x 4 Cache Tag RAM Comparators, 30 ns	24	Planned		1		
62350-35	/B	4K x 4 Cache Tag RAM Comparators, 35 ns	24	Planned				
62350-40	/B	4K x 4 Cache Tag RAM Comparators, 40 ns	24	Planned				
62351-30	/B	4K x 4 Cache Tag RAM Comparators, 30 ns	24	Planned			l	
62351-35	/B	4K x 4 Cache Tag RAM Comparators, 35 ns	24	Planned			1	
62351-40	/B	4K x 4 Cache Tag RAM Comparators, 40 ns	24	Planned			1	

CMOS DRAM	IOS DRAMs			883C Package Type and Lead Finish				
Device	883C	Description	Pins	SB DIL	FP	CAN	LCCC	
511000-80	/B	1M x 1 High Speed DRAM, Fast Page Mode, 80 ns	18	3Q90				
511000-80	/B	1M x 1 High Speed DRAM, Fast Page Mode, 80 ns	20				3Q90	
511000-90	/B	1M x 1 High Speed DRAM, Fast Page Mode, 90 ns	18	3Q90		1	I	
511000-90	/B	1M x 1 High Speed DRAM, Fast Page Mode, 90 ns	20	1 1		1	3Q90	
511000-110	/B	1M x 1 High Speed DRAM, Fast Page Mode, 110 ns	18	3Q90			ŀ	
511000-110	/B	1M x 1 High Speed DRAM, Fast Page Mode, 110 ns	20			1	3Q90	
	. –	The state of the s				1	1	

Slow SRAMs			883C Package Type and Lead Finish				
Device	883C	Description	Pins	SB DIL	FP	CAN	LCCC
60256-100	/B	32K x 8 Slow Static RAM, 100 ns	28	4Q90			
60256-110	/B	32K x 8 Slow Static RAM, 110 ns	28	4Q90			
60256-130	/B	32K x 8 Slow Static RAM, 130 ns	28	4Q90			

DSP RAMs					883C Package Type and Lead Finish			
Device	883C	Description	Pins	DIL	FP	CAN	CLCC	
56824-35	/B	8K x 24 DSP RAM, 35 ns	52				Planned	
56824-40	/B	8K x 24 DSP RAM, 40 ns	52	}			Planned	
56824-45	/B	8K x 24 DSP RAM, 45ns	52	}		1	Planned	

MEMORIES

MIL-STD-883C

High Speed	CMOS III St	atic Memories		883C Pa	ckage Typ	e and Lea	d Finish
Device	883C	Description	Pins	DIL	FP	CAN	LCCC
6164-55	/B	8K x 8 Fast Static RAM, 55 ns	28	XA			
6164-55	/B	8K x 8 Fast Static RAM, 55 ns	32		1		UA
6164-70	/B	8K x 8 Fast Static RAM, 70 ns	28	XA			
6164-70	/B	8K x 8 Fast Static RAM, 70 ns	32				UA
6168-55	/B	4K x 4 Fast Static RAM, 55 ns	20	RA			UA
6168-70	/B	4K x 4 Fast Static RAM, 70 ns	20	RA			UA
6206-35	/B	32K x 8 Fast Static RAM, 35 ns	28	3Q90	ŀ		1
6206-35	/B	32K x 8 Fast Static RAM, 35 ns	32				3Q90
6206-45	/B	32K x 8 Fast Static RAM, 45 ns	28	3Q90			
6206-45	/B	32K x 8 Fast Static RAM, 45 ns	32		}		3Q90
6206-55	/B	32K x 8 Fast Static RAM, 55 ns	28	3Q90			
6206-55	/B	32K x 8 Fast Static RAM, 55 ns	32				3Q90
6206-70	/B	32K x 8 Fast Static RAM, 70 ns	28	3Q90			
6206-70	/B	32K x 8 Fast Static RAM, 70 ns	32				3Q90
6206-100	/B	32K x 8 Fast Static RAM, 100 ns	28	3Q90			
6206-100	/B	32K x 8 Fast Static RAM, 100 ns	32				3Q90
6264-35	/B	8K x 8 Fast Static RAM, 35 ns	28	XA			
6264-35	/B	8K x 8 Fast Static RAM, 35 ns	32				3Q90
6264-45	/B	8K x 8 Fast Static RAM, 45 ns	28	XA			5000
6264-45	/B	8K x 8 Fast Static RAM, 45 ns	32	,,,,			3Q90
62L64-35	/B	8K x 8 Fast Static RAM, 35 ns, Low Power	28	XA			
62L64-35	/B	8K x 8 Fast Static RAM, 35 ns, Low Power	32				3Q90
62L64-45	/B	8K x 8 Fast Static RAM, 45 ns, Low Power	28	XA			
62L64-45	/B	8K x 8 Fast Static RAM, 45 ns, Low Power	32				3Q90
6268-35	/B	4K x 4 Fast Static RAM, 35 ns	20	RA	2Q90		UA
6268-45	/B	4K x 4 Fast Static RAM, 45 ns	20	RA	2Q90		UA
6287-35	/B	64K x 1 Fast Static RAM, 35 ns, Low Power	22	XA			UA
6287-45	/B	64K x 1 Fast Static RAM, 45 ns, Low Power	22	XA			UA
62L87-35	/B	64K x 1 Fast Static RAM, 35 ns, Low Power	22	XA			UA
62L87-45	/B	64K x 1 Fast Static RAM, 45 ns, Low Power	22	XA			UA
6288-35	/B	16K x 4 Fast Static RAM, 35 ns	22	XA			UA
6288-45	/B	16K x 4 Fast Static RAM, 45 ns	22	XA			UA
62L88-35	/B	16K x 4 Fast Static RAM, 35 ns, Low Power	22	XA			UA
62L88-45	/B	16K x 4 Fast Static RAM, 45 ns, Low Power	22	XA			UA
6290-35	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 35 ns	24	LA			
6290-35	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 35 ns	28				3Q90
6290-45	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 45 ns	24	LA	1		
6290-45	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 45 ns	28				3Q90
62L90-35	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 35 Low Power	24	LA			
62L90-35	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 35 ns, Low Power	28				3Q9

11

MEMORIES

MIL-STD-883C

High Speed	CMOS III	Static Memories		883C Pa	ckage Ty	pe and Lea	d Finish
Device	883C	Description	Pins	DIL	FP	CAN	LCCC
62L90-45	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 45 ns, Low Power	24	:LA			
62L90-45	/B	16K x 4 FSRAM, Chip Enable/Out Enable, 45 ns, Low Power	28				3Q90
6292-30	/B	16K x 4 Synch SRAM, Transparent Output 30 ns	28	4Q90			l
6292-30	/B	16K x 4 Synch SRAM, Transparent Output 30 ns	32]		j	4Q90
6292-35	/B	16K x 4 Synch SRAM, Transparent Output 35 ns	28	4Q90			
6292-35	/B	16K x 4 Synch SRAM, Transparent Output 35 ns	32			1	4Q90
6292-40	/B	16K x 4 Synch SRAM, Transparent Output 40 ns	28	4Q90		j	l
6292-40	/B	16K x 4 Synch SRAM, Transparent Output 40 ns	32				4Q90
6293-30	/B	16K x 4 Synch SRAM, Synch Output, 30 ns	28	4Q90		1	1
6293-30	/B	16K x 4 Synch SRAM, Synch Output, 30 ns	32				4Q90
6293-35	/B	16K x 4 Synch SRAM, Synch Output, 35 ns	28	4Q90			
6293-35	/B	16K x 4 Synch SRAM, Synch Output, 35 ns	32			1	4Q90
6293-40	/B	16K x 4 Synch SRAM, Synch Output, 40 ns	28	4Q90		i	l
6293-40	/B	16K x 4 Synch SRAM, Synch Output, 40 ns	32			l	4Q90
6294-30	/B	16K x 4 Synch SRAM, Out Reg/Out Enable, 30 ns	28	2Q90			
6294-30	/B	16K x 4 Synch SRAM, Out Reg/Out Enable, 30 ns	32			ļ	2Q90
6294-35	/B	16K x 4 Synch SRAM, Out Reg/Out Enable, 35 ns	28	2Q90			
6294-35	/B	16K x 4 Synch SRAM, Out Reg/Out Enable, 35 ns	32]	2Q90
6294-40	/B	16K x 4 Synch SRAM, Out Reg/Out Enable, 40 ns	28	2Q90		i	
6294-40	/B	16K x 4 Synch SRAM, Out Reg/Out Enable, 40 ns	32				2Q90
6295-30	/B	16K x 4 Synch SRAM, Transparent Output, Out Enable, 30 ns	28	4Q90			
6295-30	/B	16K x 4 Synch SRAM, Transparent Output, Out Enable, 30 ns	32			1	4Q90
6295-35	/B	16K x 4 Synch SRAM, Transparent Output, Out Enable, 35 ns	28	4Q90		1	
6295-35	/B	16K x 4 Synch SRAM, Transparent Output, Out Enable, 35 ns	32	(4Q90
6295-40	/B	16K x 4 Synch SRAM, Transparent Output, Out Enable, 40 ns	28	4Q90		1	1
6295-40	/B	16K x 4 Synch SRAM, Transparent Output, Out Enable, 40 ns	32]	4Q90

MEMORIES

Standard Military Drawings (SMD)

Bipolar RAM				SMD Package Type and Lead Finish			
Device	Device SMD Description Pins				FP	CAN	LCCC
10545	5962-8856001	64-Bit Register File (RAM)	16	EA	FA		ZA

HCMOS III S	Static RAMs			SMD Pa	ckage Typ	e and Lea	d Finish
Device	SMD	Description	Pins	DIL	FP	CAN	LCCC
6164-55	5962-8552505	8K x 8 Fast Static RAM, 55 ns	28	XA			
6164-55	5962-8552505	8K x 8 Fast Static RAM, 55 ns	32		1	l	YA
6164-70	5962-8552504	8K x 8 Fast Static RAM, 70 ns	28	XA			
6164-70	5962-8552504	8K x 8 Fast Static RAM, 70 ns	32	1		1	YA
6168-55	5962-8670507	4K x 4 Fast Static RAM, 55 ns	20	RA			XA
6168-70	5962-8670509	4K x 4 Fast Static RAM, 70 ns	20	RA			XA
6206-45	5962-8866204	32K x 8 Fast Static RAM, 45 ns	28	3Q90			i
6206-45	5962-8866204	32K x 8 Fast Static RAM, 45 ns	32	[1	3Q90
6206-55	5962-8866203	32K x 8 Fast Static RAM, 55 ns	28	3Q90	Į	[
6206-55	5962-8866203	32K x 8 Fast Static RAM, 55 ns	32	l			3Q90
6206-70	5962-8866202	32K x 8 Fast Static RAM, 70 ns	28	3Q90			
6206-70	5962-8866202	32K x 8 Fast Static RAM, 70 ns	32				3Q90
6206-100	5962-8866201	32K x 8 Fast Static RAM, 100 ns	28	3Q90	}		l
6206-100	5962-8866201	32K x 8 Fast Static RAM, 100 ns	32		ļ	1	3Q90
6264-35	5962-8552507	8K x 8 Fast Static RAM, 35 ns	28	XA			
6264-45	5962-8552506	8K x 8 Fast Static RAM, 45 ns	28	XA			
62L64-35	5962-8552508	8K x 8 Fast Static RAM, 35 ns, Low Power	28	XA	l		l
62L64-45	5962-8552509	8K x 8 Fast Static RAM, 45 ns, Low Power	28	XA			1
6268-35	5962-8670503	4K x 4 Fast Static RAM, 35 ns	20	RA	2Q90		XA
6268-45	5962-8670505	4K x 4 Fast Static RAM, 45 ns	20	RA	2Q90		XA
6287-35	5962-8601501	64K x 1 Fast Static RAM, 35 ns	22	XA		l	ZA
6287-45	5962-8601503	64K x 1 Fast Static RAM, 45 ns	22	XA			ZA
62L87-35	5962-8601502	64K x 1 Fast Static RAM, 35 ns, Low Power	22	XA			ZA
62L87-45	5962-8601504	64K x 1 Fast Static RAM, 45 ns, Low Power	22	XA)		ZA
6288-35	5962-8685924	16K x 4 Fast Static RAM, 35 ns	22	TA			ZA
6288-45	5962-8685922	16K x 4 Fast Static RAM, 45 ns	22	TA			ZA
62L88-35	5962-8685923	16K x 4 Fast Static RAM, 35 ns, Low Power	22	TA			ZA
62L88-45	5962-8685921	16K x 4 Fast Static RAM, 45 ns, Low Power	22	TA			ZA
6290-35	5962-8685918	16K x 4 FSRAM w/Chip Output Enable, 35 ns	24	LA		l	
6290-35	5962-8685918	16K x 4 FSRAM w/Chip Output Enable, 35 ns	28				3Q90
6290-45	5962-8685916	16K x 4 FSRAM w/Chip Output Enable, 45 ns	24	LA			
6290-45	5962-8685916	16K x 4 FSRAM w/Chip Output Enable, 45 ns	28	İ	İ		3Q90
62L90-35	5962-8685917	16K x 4 FSRAM w/Chip Output Enable, 35 ns, Low Power	24	LA			
62L90-35	5962-8685917	16K x 4 FSRAM w/Chip Output Enable, 35 ns, Low Power	28				3Q90
62L90-45	5962-8685915	16K x 4 FSRAM w/Chip Output Enable, 45 ns, Low Power	24	LA			
62L90-45	5962-8685915	16K x 4 FSRAM w/Chip Output Enable, 45 ns, Low Power	28				3Q90

11

MEMORIES

MIL-M-38510

Bipolar Memories			JAN Package Type and Lead Finish				
Device	JM38510/	Description	Pins	DIL	FP	CAN	LCCC
93L422 93L422	23112 23110	256 x 4 Bit RAM, 3-State Output, 75 ns 256 x 4 Bit RAM, 3-State Output, 60 ns	22 22	WA 2Q90			

Reliability Information 12

MOTOROLA CORPORATE QUALITY GOAL

IMPROVE PRODUCT AND SERVICES QUALITY TEN TIMES BY 1989 AND AT LEAST ONE HUNDRED FOLD BY 1991.

ACHIEVE SIX SIGMA CAPABILITY BY 1992.

With a deep sense of urgency, spread dedication to quality to every facet of the corporation and achieve a culture of continual improvement to ASSURE TOTAL CUSTOMER SATISFACTION. There is only one ultimate goal: zero defects in everything we do.

signed:

BOB GALVIN Chairman BILL WEISZ Vice Chairman JOHN MITCHELL President

GEORGE FISHER Deputy to Chief Executive Office

GARY TOOKER Chief to Corporate Staff Officer JACK GERMAIN Motorola Director of Quality

JIM LINCICOME
Government Electronics
Group

CARL LINDHOLM International Operations LEVY KATZIR New Enterprises

JIM NORLING Semiconductor Products Sector STEVE LEVY
Japanese Operations

DON JONES Chief Financial Officer

JIM DONNELLY Personnel

RAY FARMER Communications Sector ED STAIANO General Systems Group

GERHARD SCHULMEYER Automotive & Industrial Electronics Group

DIVISION QUALITY STATEMENT MOTOROLA MOS MEMORY PRODUCTS DIVISION

COMMITMENT TO SIX SIGMA WORLD CLASS

The Memory Products Division staff are pleased to announce our commitment to be a World Class MOS Memory supplier. This means more bullet proof designs which can tolerate handling, processes at the limit and beyond, and outstanding control of the manufacturing processes such that the integration of the design process will result in six sigma products.

We will accomplish this through our dedication to a continuous quality improvement culture. This will ensure our success in reaching the Motorola Corporate goal of total customer satisfaction.

Through our quality improvement process using SIX SIGMA methodology we can and will accomplish being the best memory supplier through WORLD CLASS product margins and services in their truest sense.

ENDORSEMENTS:

Jim George

Bud Broeker

Bill Bower

Jim Eachus

Mike Parks

Roger Kung

Bill Pfaff

OUR SIX SIGMA CHALLENGE

WHAT IS SIX SIGMA?

Six Sigma is the required capability level to approach the Standard. The Standard is Zero Defects. Our goal is to be best-in-class in Product, Sales, and Service.

WHY SIX SIGMA?

The performance of a product is determined by how much margin exists between the process characteristics required by the design, and the actual value of those characteristics. These characteristics are produced by processes in the factory, and at the suppliers.

Each process attempts to reproduce its characteristics identically from unit to unit, but within each process some variation does occur. For some processes, such as those which use real-time feedback to control the outcome, the variation is quite small, and for others it may be quite large.

Variation of the process is measured in Standard Deviations (Sigma) from the Mean. The normal variation, defined as process width, is ± 3 Sigma about the mean.

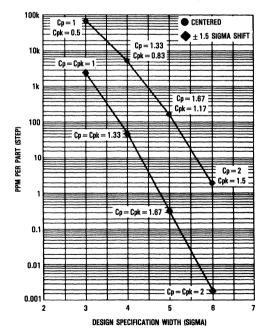


Figure 1. Standard Deviations from Mean

Approximately 2,700 parts per million parts/steps will fall outside the normal variation of ± 3 Sigma, see Figure 1. This, by itself, does not appear disconcerting. However, when we build a product containing 1,200 parts/steps, we can expect 3.24 defects per unit (1200 \times 0.0027), on an average. This would result in a rolled yield of less than 4%, which means fewer than 4 units out of every hundred would go through the entire manufacturing process without a defect, see Table 1.

Thus, we can see that for a product to be built virtually defect-free, it must be designed to accept characteristics that are significantly more than ± 3 Sigma away from the Mean.

It can be shown that a design that can accept twice the normal variation of the process, or ± 6 Sigma, can be expected to have no more than 3.4 parts per million defective for each characteristic, even if the process mean were to shift by as much as ± 1.5 Sigma, see Figure 1. To quantify this, Capability Index (Cp) is used, where:

Cp = design specification width process width

Table 1. Rolled Yield

TOTAL DEFECTS PER UNIT	ROLLED THROUGHPU' YIELD (%)
5.3	 0.5
4.6	 1.0
3.9	 2.0
3.5	 3.0
3.2	 4.0
3.0	 5.0
2.3	 10
1.9	 15
1.6	 20
1.4	 25
1.2	 30
1.0	 37
0.9	 40
0.8	 45
0.7	 - 50
0.6	 - 55
0.51	 - 60
0.43	 65
0.36	 - 70
0.29	 75
0.22	 - 80
0.16	 85
0.10	 90
0.05	 95
0.00	 100

ROLLED THROUGHPUT YIELD (%) = 100 e - d/u

A design specification width of ± 6 Sigma and a process width of ± 3 Sigma yields a Cp of 12/6=2. However, as shown in Figure 2, the process mean can shift. When the process mean is shifted with respect to the design target mean, the Capability Index is adjusted with a factor k, and becomes Cpk. Cpk = Cp(1 - k), where:

$k = \frac{process \ shift}{design \ specification \ width/2}$

The k factor for ± 6 Sigma design with a 1.5 Sigma process shift = 1.5/(12/2) = 0.25, and the Cpk = 2(1 - 0.25) = 1.5.

In the same case of a product containing 1,200 parts/steps, we would now expect only 0.0041 defects per unit (1200×0.000034). This would mean that 996 units out of 1,000 would go through the entire manufacturing process without a defect (see Table 2).

It is our five year goal to achieve ± 6 Sigma capability in Product, Sales, and Service.

Table 2. Overall Yield vs Sigma (Distribution Shifted $\pm 1.5 \sigma$)

NUMBER OF PARTS (STEPS)	±3 σ (%)	±4 σ (%)	±5 σ (%)	±6σ (%)
1	93.32	99.379	99.9767	99.99966
7	61.63	95.733	99.839	99.9976
10	50.08	93.96	99.768	99.9966
20	25.08	88.29	99.536	99.9932
40	6.29	77.94	99.074	99.9864
60	1.58	68.81	98.614	99.9796
80	0.40	60.75	98.156	99.9728
100	0.10	53.64	97.70	99.966
150	-	39.38	96.61	99.949
200		28.77	95.45	99.932
300	_	15.43	93.26	99.898
400	-	8.28	91.11	99.864
500	-	4.44	89.02	99.830
600	-	2.38	86.97	99.796
700	-	1.28	84.97	99.762
800	_	0.69	83.02	99.729
900	-	0.37	81.11	99.695
1000	_	0.20	79.24	99.661
1200	_	0.06	75.88	99.593
3000	-	_	50.15	98.985
17000	_	_	0.02	94.384
38000	-	_	-	87.880
70000	-	_	_	78.820
150000	-	_	_	60.000

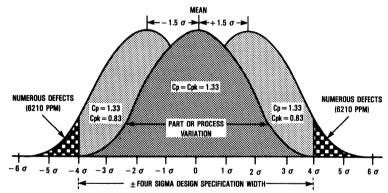
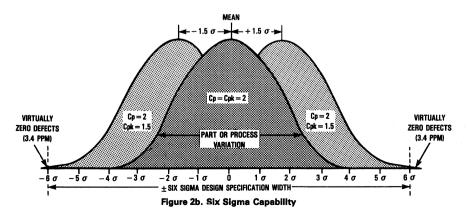



Figure 2a. Four Sigma Capability

QUALITY MONITORING

Average Outgoing Quality (AOQ) refers to the number of devices per million that are outside specification limits at the time of shipment. Motorola has continually improved its outgoing quality, and has established a goal of zero defects. This level of quality will lead to vendor certification programs with many of our customers. The program ensures a certain level of quality, thus allowing a customer to either reduce or eliminate the need for incoming inspections.

By paying strict attention to quality at an early stage, the possibility of failures occurring further down the line is greatly minimized. Motorola's electrical parametric testing eliminates devices that do not conform to electrical specification. Additional parametric testing on a sample basis provides data for continued improvement.

AVERAGE OUTGOING QUALITY (AOQ) CALCULATION

AOQ in PPM = (Process Average)
•(Lot Acceptance Rate)•(106)

Process Average = Total Projected Reject Devices *
Total Number of Devices

 $\label{eq:projected_relation} \text{Projected Reject Devices} = \frac{\text{Defects in Sample}}{\text{Sample Size}}$

Lot Size

Total Number of Devices = Sum of all the units in each

Lot Acceptance Rate = 1 - Number of Lots Rejected Number of Lots Tested

106 = Conversion to parts per million (PPM)

MARKING PERMANENCY, HERMETICITY, AND SOLDERABILITY MONITORS

Marking permanency testing is performed per Motorola specification. The procedure involves soaking the device in various solvents, brushing the markings, and then inspecting the markings for legibility.

Hermeticity monitoring includes tests for both fine and gross leaks in the hermetic package seal.

Solderability testing is used to ensure that device leads can be soldered without voids, discoloration, flaking, dewetting, or bridging. Typically, the test specifies steam preconditioning followed by a 235° to 260°C solder dip and microscope inspection of the leads.

RELIABILITY MONITORING

Motorola recognizes the need to monitor established MOS Memory products to maintain the level of quality and reliability demonstrated through the internal and joint qualification processes. Motorola maintains a system of monitor programs that provide monthly feedback on the extensive marrix of Motorola fabrication, assembly, and testing technologies that produce our products. As with qualification activity, great care is taken to assure the accuracy and quality of the data generated.

RELIABILITY STRESS TESTS

The following summary gives brief descriptions of the various reliability tests included in both reliability qualification and monitor programs. Not all of the tests listed are performed by each program and other tests can be performed when appropriate. Refer to Table 3.

Table 3. Stresses and Typical Stress Conditions

Stress	Typical Stress Condition
High Temperature Operating Life, Dynamic or Static	125°C, 6.0 V
Temperature Cycle	-65°C to +150°C Air to Air
Thermal Shock	-65°C to +150°C Liquid to Liquid
Temperature Humidity Bias	85°C, 85% RH, 5.0 V
Autoclave	121°C, 100% RH, 15 psig
Pressure Temperature Humidity Bias	148°C, 90% RH, 44 psig, 5.0 V
Low Temperature Operating Life	0°C/25°C, 6.0 V

HIGH TEMPERATURE OPERATING LIFE

High temperature operating life (HTOL or HTRB) testing is performed to accelerate failure mechanisms that are thermally activated through the application of extreme temperatures and the use of biased operating conditions. The temperature and voltage conditions used in the stress will vary with the product being stressed. However, the typical stress ambient is 125°C with the bias applied equal to or greater than the data sheet nominal value. All devices used in the HTOL test are sampled directly after final electrical test with no prior burn-in or other prescreening unless called out in the normal production flow. Testing can either be performed with dynamic signals applied to the device or in a static bias configuration.

TEMPERATURE CYCLE

Temperature cycle testing accelerates the effects of thermal expansion mismatch among the different components within a specific die and packaging system. This test is typically performed per MIL-STD-883 or MIL-STD-750 with the minimum and maximum temperatures being -65°C and +150°C. During temperature cycle testing, devices are inserted into a cycling system and held at the cold dwell temperature for at least ten minutes. Following this cold dwell, the devices are heated to the hot dwell where they remain for another ten minute minimum time period. The system employs a circulating air environment to assure rapid stabilization at the specified temperature. The dwell at each extreme, plus the two transition times of five minutes each (one up to the hot dwell temperature, another down to the cold dwell temperature), constitute one cycle. Test duration for this test will vary with device and packaging system employed.

THERMAL SHOCK

The objective of thermal shock testing is the same as that for temperature cycle testing—to emphasize differences in expansion coefficients for components of the packaging system. However, thermal shock provides additional stress in that

^{*}All rejects: visual, mechanical, and electrical (dc, ac, and high/low temperature).

the device is exposed to a sudden change in temperature due to the transfer time of ten seconds maximum as well as the increased thermal conductivity of a liquid ambient. This test is typically performed per MIL-STD-883 or MIL-STD-750 with the minimum and maximum temperatures being -65° C and $+150^{\circ}$ C. Devices are placed in a fluorocarbon bath and cooled to minimum specified temperature. After being held in the cold chamber for five minutes minimum, the devices are transferred to an adjacent chamber filled with fluorocarbon at the maximum specified temperature for an equivalent time. Two fiveminute dwells plus two ten-second transitions constitute one cycle.

TEMPERATURE HUMIDITY BIAS

Temperature humidity bias (THB or H³TRB) is an environmental test performed at a temperature of 85°C and a relative humidity of 85%. The test is designed to measure the moisture resistance of plastic encapsulated circuits. A nominal static bias is applied to the device to create the electrolytic cells necessary to accelerate corrosion of the metallization.

AUTOCLAVE

Autoclave is an environmental test which measures device resistance to moisture penetration and the resultant effects of galvanic corrosion. Conditions employed during the test include 121°C, 100% relative humidity, and 15 psig. Corrosion of the die is the expected failure mechanism. Autoclave is a highly accelerated and destructive test.

PTHB (PRESSURE-TEMPERATURE-HUMIDITY-BIAS)

This test is performed to accelerate the effects of moisture penetration with the dominant effect being corrosion. The test detects similar failure mechanisms as THB but at a greatly accelerated rate. Conditions usually employed during the test are a temperature of 148°C, pressure of 44 psig or greater, a relative humidity of 90%, and a bias level which is the nominal rating of the device.

LOW TEMPERATURE OPERATING LIFE

This test is performed primarily to accelerate hot carrier injection effects in semiconductor devices by exposing them to room ambient or colder temperatures with the use of biased operating conditions. Threshold shifts or other parametric changes are typically the basis for failure. The length of this test will vary with temperature and bias conditions employed.

SYSTEM SOFT ERROR

System soft error is designed to detect errors caused by impact ionization of silicon by high energy particles. This stress is performed on a system level basis. The system is operated for millions of device hours to obtain an accurate measure of actual system soft error performance.

MECHANICAL SHOCK

This test is typically performed per MIL-STD-883 or MIL-STD-750 and is used to examine the ability of the device to withstand a sudden change in mechanical stress typically due to abrupt changes in motion as seen in handling, transportation, or actual use. The typical test condition would be as follows: acceleration = 1500 g, orientation = Y1 plane, t = 0.5 ms, and number of pulses = 5.

VARIABLE FREQUENCY VIBRATION

This test is typically performed per MIL-STD-883 or MIL-STD-750 and is used to examine the ability of the device to withstand deterioration due to mechanical resonance. The typical test condition is: peak acceleration=20 g, frequency range=20 Hz to 20 kHz, and t=48 minutes.

CONSTANT ACCELERATION

This test is typically performed per MIL-STD-883 or MIL-STD-750 and is used to indicate structural or mechanical weaknesses in a device/packaging system by applying a severe mechanical stress. A typical test condition used is as follows: stress level = 30 kg, orientation = Y1 plane, and t = 1 minute.

QUALITY SYSTEMS

A Global Quality System is key to achieving our goal of "Best In Class". Quality systems are implemented in wafer fabrication, assembly, final test, and distribution world wide. Figure 3 depicts Quality Assurance involvement and the techniques applied in the general flow of product and Figure 4 shows Memory Manufacturing locations world wide.

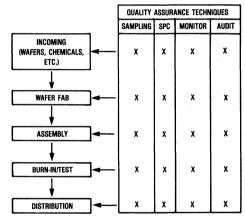


Figure 3. General Product Flow

Direct Customer interaction ensures the receipt of product that meets all of their requirements 100% of the time. In fact, the MOS Memories Reliability and Quality Assurance department has devised a customer advocate list that assigns key Reliability and Quality Assurance personnel to specific customers in order to facilitate any inquiry regarding quality, reliability, or any other issue they may want to discuss.

All processes and procedures that relate to the manufacturing of MOS Memories are fully documented, and regular audits are performed to ensure continuous adherence to proper procedures. We are always striving to produce and reproduce the highest quality product available throughout the world.

MOS Memory Products Division promotes the concept of statistical process controls throughout the entire manufacturing process. This is exemplified by our commitment to in-depth statistical process control training programs for everyone—from the line operator to upper management. Favorable results have already been realized from the initial phases of implementation, with much more to follow.

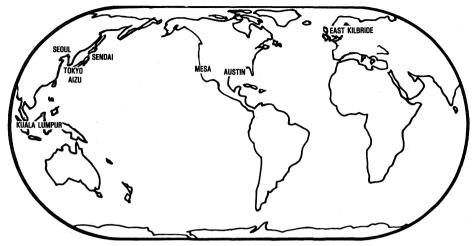


Figure 4. Wafer Fab/Assembly/Final Test Locations

The MOS Memory Products Division maintains a World Wide Quality Assurance system that is second to none. Daily status reports are received from remote locations, and any problems that arise are tackled on a timely basis. The MOS Memory Products Division is also a leader in accurate and efficient methods of quality data collection and reporting.

Every unit that the MOS Memory Products Division produces is coded so that complete traceability is maintained, including visibility to the wafer and assembly lot level. The Quality System ensures that we can provide any specific processing information to our customers on request.

INTERNAL QUALIFICATION DISCIPLINE

Motorola recognizes the need to establish that all MOS Memory devices, both new products as well as existing ones, reach and maintain a level of quality and reliability that is unsurpassed in the electronics marketplace. To ensure this, internal qualification requirements, procedures, and methods as well as vendor qualification specifications have been developed. These activities are intended to provide a consistent, comprehensive, and methodical approach to device qualification and to improve our customer's understanding of Motorola's qualification results and their subsequent application implications.

For qualification results to be valid and acceptable, the collected data must be proven accurate to the highest possible confidence level. Therefore, a complete device history and data log is kept with any lost or missing data potentially leading to test results that are unusable for qualification purposes. Testing conditions and pass/fail criteria are established before stressing begins. Strict adherence to these criteria and the use of control devices insure that the test results are valid and meaningful.

New MOS Memory devices which are under development or in the prototype stage are subject to requirements defined for the three levels of the development cycle. These levels are the alpha, beta, and introductory phases of device development. Each phase contains guidelines and controls concerning

issues such as device labeling, number of customers, sample quantities, pricing and stocking levels, and open-order-entry timing. Decisions regarding these items are made jointly by marketing, design, product, and reliability personnel.

JOINT QUALIFICATION

As a result of the rigorous discipline used for internal qualification of Motorola MOS Memory products, our customers can benefit from joint qualification activities. Motorola's clearly defined qualification procedures improve the customer's ability to comprehend the qualification results in an effective manner which aides in their qualification decision making process. Through parallel qualification activities between Motorola and its customers, this procedure can cut qualification costs by reducing duplication of effort, improving resource utilization, and shortening introduction cycle time. This helps to ensure competitive edge advantages for our customers.

Joint Qualification activities result in a partnership type of interaction between Motorola and its customers on an engineering level. This assists our customers in two critical areas. First, it allows them to understand more clearly the strengths and weaknesses of Motorola's products. Secondly, our customers can make clear decisions concerning which stresses they need to concentrate on during their internal qualification activities.

HISTORICAL PERFORMANCE

Over the course of the last five years, significant achievements have been made on quality and delivery performance. The Six Sigma methodology will assist the MOS Memory Products Division in pursuit of our standard of zero defects and 100% on time delivery.

Figure 5 indicates the product Average Outgoing Quality performance as measured in parts per million.

As of October 1988 our average outgoing quality was below 50 parts per million. We are striving to reach Six Sigma.

1988 MALCOLM BALDRIGE NATIONAL QUALITY AWARD

Motorola won the first Malcolm Baldrige National Quality Award. The award recognizes the achievements of U.S. manufacturing and service companies. The award was established in 1987 to promote quality awareness, recognize the achievements of U.S. companies, and publicize successful quality strategies. Our quality process was examined for corporate

quality leadership, information and analysis, planning, human resource utilization, quality assurance, quality improvement results, and Customer Satisfaction. Our fundamental objective—Everyone's overriding responsibility is Total Customer Satisfaction. Six Sigma Quality is a key initiative for the achievement of our fundamental objective.

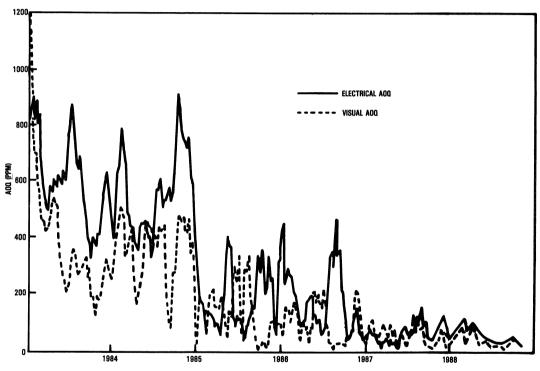


Figure 5. Motorola MOS Memory Products Division Average Outgoing Quality—4 Week Average World Memory

DRAMS	
DRAM Refresh Modes (AN987)	13-2
Page, Nibble, and Static Column Modes: High-Speed, Serial-Access Options on 1M-Bit + DRAMs (AN986)	13-4
Pseudo Static RAMs	
Pseudo Static RAM Simplifies Interfacing with Microprocessors (AN1059)	13-8
Fast Static RAMs	
Avoiding Bus Contention in Fast Access RAM Designs (AN971)	13-1
Avoiding Data Errors with Fast Static RAMs (AN973)	13-1
Special Application Static RAMs	
25 MHz Logical Cache for an MC68020 (AN984)	13-2
Designing a Cache for a Fast Processor (AR270)	13-3
Enhancing System Performance Using Synchronous SRAMs (AR260)	13-4
High Frequency System Operation Using Synchronous SRAMs (AR258)	13-4
Motorola's Radical SRAM Design Speeds Systems 40% (AR256)	12.5

Applications Information 13

AN987

DRAM Refresh Modes

DRAMs offer the lowest cost per bit of any memory, and for that reason are enormously popular in a wide range of applications. This low cost per bit is achieved with a very simple bit cell design, among other things, but rooted in this simplicity are some inherent drawbacks. One major limitation is the need to refresh each memory bit at regular intervals. This note discusses what refresh is, the reasons refresh is required for DRAM operation, and the various types of refresh available on the Motorola 1M×1 and 256K×4, DRAMs. Specific comments refer to the 1M×185-ns DRAM. Refer to specific device data sheets for analogous information on other devices.

The heart of any memory device is the bit cell. A 1M DRAM has 1,048,576 of these cells in the memory array. Each cell holds a single bit of information in the form of a high or low voltage, where high voltage = a binary "1" and low voltage = a binary "0". The DRAM bit cell consists of one transistor and one capacitor. The transistor acts as a switch, regulating when the capacitor will charge and discharge, while the capacitor stores a high or low voltage charge.

All capacitors leak over time, slowly losing the charge stored in them, regardless of how carefully they are constructed. Junction and dielectric leakage are two capacitor discharge paths that are characteristic of the DRAM bit cell, and both are affected by temperature. The capacitor in the bit cell can hold a small charge, on the order of 35–125 fF (fF = 1 \times 10 $^-$ 15 farads). As this charge dissipates through leakage paths, the small difference between a "1" and a "0" diminishes. If nothing is done to restore the charge on the capacitor to its initial value, the sensing circuitry on the DRAM will eventually be unable to detect a charge difference and will read the cell as a "0".

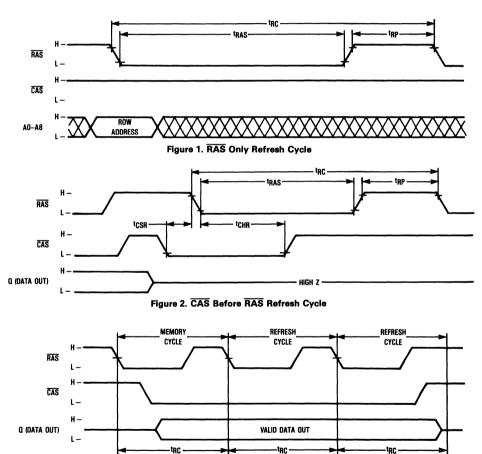
Thus, all the capacitors in the memory array must be periodically recharged, or refreshed. Refresh is accomplished by accessing each row in the array, one row at a time. When a row is accessed, it is turned on, and voltage is applied to the row, recharging each capacitor on the row to its initial value. Specified refresh time on the 1M×1 DRAM is 8 milliseconds; every row must be recharged every 8 milliseconds. This is a vast improvement over refresh times required for earlier generations of DRAMs. The 16K×1 DRAM required refresh every 2 milliseconds, the 256K×1 DRAM requires a refresh every 4 milliseconds. Longer refresh times mean more time available for access to memory, and less time required to refresh the device.

Design and operation of the DRAM allow only one row to be refreshed at a time; 512 refresh cycles are required to refresh the entire $1M \times 1$ memory array. The array is actually 1024 rows by 1024 columns, but it operates electrically like two half arrays of 512 rows by 1024 columns. During refresh, every row is treated as if it runs through both halves of the array, refreshing 2048 column locations (bit cells) per row. This design results in fewer refresh cycles required to recharge the entire array, since only 512 rows need to be accessed, rather than 1024.

Refresh can be performed in either a single **burst** of 512 consecutive refresh cycles (one cycle per row) every 8 milliseconds, or **distributed** over time, one refresh cycle every 15 microseconds (8 milliseconds per 512 rows = 15.6 microseconds per row) on average, or some combination of these two extremes. As long as every row is refreshed within 8 milliseconds, the actual method used is best determined by system use of the DRAM. The burst takes 84 microseconds to complete (165 nanoseconds per row × 512 rows for 85 nanoseconds per device). During this burst refresh time, no memory operations can be performed on the device. Distributed refresh disables memory access for 165 nanoseconds every 15 microseconds.

The 1M×1 DRAM can be refreshed in three ways: RAS only refresh, CAS before RAS refresh, and hidden refresh. In addition, any normal read or write refreshes all 2048 bit cells on the row accessed. Regardless of the refresh method used, the time required to refresh one row is the random read or write (RAS) cycle time (tRC). When operating the device in page, nibble, or static column mode, only the row being accessed is refreshed. The device must be in normal random mode to utilize any of these specific refresh methods.

RAS only refresh requires external row counters, to ensure all rows are refreshed within the specified time, and externally-supplied row addresses. CAS before RAS relies on internal row counters and internally generates the address of the next row to be refreshed. Hidden refresh is a variation on CAS before RAS refresh that holds valid data at the output while refresh is occurring. Whenever the device is in a refresh cycle, neither a read nor a write operation can be performed. Hidden refresh allows the device to be read ahead of refresh, then holds the valid data at the output while refresh cycles are in progress. It appears that the refresh is hidden among data cycles because valid data is maintained at the output.


RAS only refresh is performed by supplying row addresses A0-A8 and completing a RAS cycle (tRC); switching RAS from inactive (high) to active (low), holding RAS low (tRAS), then switching back to high, and holding RAS high (tRP). A9 is ignored during RAS only refresh, since this address normally determines which half of the array is to be accessed. CAS must be held high through this RAS cycle, hence the name RAS only refresh. An external row counter is required for this refresh method. See Figure 1.

CAS before RAS refresh is performed by switching CAS from high to low while RAS is high, then switching RAS low (t_{CSR}). This reversal of the usual clock order activates an internal row counter that generates addresses to be refreshed; external addresses are ignored in this cycle. CAS must be held low (t_{CHR}) after RAS transitions to low. After that time it can either be held low or switched to high. See Figure 2. The CAS before RAS refresh counter test, specified on all DRAM data sheets that offer this type of refresh, is used to check for proper operation of the internal row counters and correct address generation.

Hidden refresh is a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh that has been initiated during a read or write operation. At the end of a typical read cycle, $\overline{\text{CAS}}$ would be switched to high before $\overline{\text{RAS}}$, turning off the output. In a hidden refresh cycle, $\overline{\text{RAS}}$ is switched to high, concluding the $\overline{\text{RAS}}$ cycle (t_{RC}), while $\overline{\text{CAS}}$ is held low. $\overline{\text{RAS}}$ is held high (t_{RP}), then switched low, beginning another $\overline{\text{RAS}}$ cycle. As long as $\overline{\text{CAS}}$ is held low, data is valid at the output, resulting in a long read cycle. Since data can be read while the device is being refreshed, the refresh operation(s) appears to be hidden by the read cycle. The same refresh can be performed after a write cycle is initiated. This

method of refresh allows refresh cycles to be mixed within read and write cycles. During the refresh cycle, a write operation cannot be performed. See Figure 3.

Refresh is an integral and necessary part of DRAM operation. Substantial improvement has been made in increasing the time between refresh cycles, but as long as the bit cell design utilizes a capacitor, periodic recharging will be required. Three methods of refresh are available on the 1M \times 1 DRAM: \overline{RAS} only, \overline{CAS} before \overline{RAS} , and hidden refresh. The Motorola 1M \times 1 and 256K \times 4 will work in virtually all systems as a result of flexibility provided by this assortment of refresh methods.

13

Figure 3. Hidden Refresh Cycle

AN986

Page, Nibble, and Static Column Modes: High-Speed, Serial-Access Options on 1M-Bit + DRAMs

The 1M-bit and higher density DRAMs offered by Motorola, in addition to operating in a standard mode at advertised access times, have special operating modes that will significantly decrease access time. These are page, nibble, and static column modes. All three modes are available in the $1M\times 1$ configuration; page and static column modes are also available on the $256K\times 4$ configuration. Read, write, and read-write operations can be mixed and performed in any order while these devices are operating in either random or special mode.

The comments that follow refer specifically to successive read operations for page, nibble, and static column modes on the $1M \times 1$ device. The read operation is chosen for sake of simplicity in illustrating these special operating modes. However, decreased access times will occur for all operations, performed in any order, when the device is operated in any of these modes. General operating comments apply to the $256K \times 4$ device as well.

All of these special operating modes are useful in applications that require high-speed serial access. Typical examples include video bit map graphics monitors or RAM disks. Page mode is the standard, available since the days of the $16K \times 1$ DRAM. Static column is the latest mode to be made available on DRAMs, and nibble mode first appeared somewhere in between. Page and static column offer the same column location access, but operate somewhat differently. Nibble is unlike either of the other modes, but faster than both in its niche. All modes are initiated after a standard read or write is performed.

Page and static column modes allow access to any of 1024 column locations on a specific row, while nibble allows access to a maximum of four bits. The location of the first bit in nibble mode determines the other bits to be accessed. Nibble mode allows the fastest access of the three devices (t_{NCAC}), all other parameters held equal, at about 1/4 the standard (t_{RAC}) rate. Page and static column access times (t_{CAC} , t_{AA}) are, respectively, about 1/3 and 1/2 the standard rate.

Cycle time is a better indicator of relative speed improvement, since it measures the minimum time between any two successive reads. Cycle time is approximately 1/4 for nibble and 1/3 for page and static column modes, with respect to a

** CS on Static Column.

Table 1. Operating Characteristic Comparison

Table 1. Operating Characteristic Companison								
Parameter		Page	Nibble	Static Column	Random			
Access Time (ns)*	t _{CAC}	25	_	_	-			
	^t NCAC	-	20	-	_			
	^t AA	-	-	45	-			
	^t RAC				85			
Cycle Time (ns)*	tPC	50	_	_	_			
	tNC	-	40	_	_			
	tsc	-	-	50	_			
	^t RC	_			165			
Accessible Bits		1024	4	1024	All			
Order of Accessible Bits		Random	Fixed	Random	Random			
Conditions	RAS	Active	Active	Active	Cycle			
	CAS or CS**	Cycle	Cycle	Active	Cycle			
	Addresses	Cycle	N/A	Cycle	Cycle			
	Outputs	Cycle	Cycle	Active	Cycle			
Time to Read 4 Bits (ns)*		235	205	235	660			
Time to Read 1024 Unique Bits (ns)*		51,235	70,400	51,235	168,960			

^{*}Values for a 1M × 1 85-ns device.

Page:

4 bit read = tRAC+3tpC

1024 bit read = tRAC + 1023tpC

Nihhle:

4 bit read = tRAC + 3tNC

1024 bit read = 256 • (tRAC + 3tNC + tRP)

Static Column:

4 bit read = t_{RAC} + 3t_{SC} 1024 bit read = t_{RAC} + 1023t_{SC}

Random:

4 bit read = 4t_{RC} 1024 bit read = 1024t_{RC}

random cycle time of 165 nanoseconds. When operated in these high-speed modes, users will typically access most or all of the bits available to that mode, once the mode has been initiated. Thus the best measure of speed for nibble mode is the rate at which four bits are read, while the rate at which 1024 bits are read is the best measure of page or static column mode. When the actual operating conditions are considered, as described elsewhere, the difference between tCAC, tNCAC, and tAA measurements hold relatively little significance.

Page mode is slightly more difficult to interface in a system than static column mode due to extra $\overline{\text{CAS}}$ pulses that are required in page mode. Static column generates less noise than page mode, because output buffers and $\overline{\text{CS}}$ are always active in this mode. Noise transients, generated every time $\overline{\text{CAS}}$ is cycled from inactive to active, are thus eliminated in the static column mode.

PAGE MODE

Page mode allows faster access to any of the 1024 column locations on a given row, typically at one third the standard (tRAC) rate for randomly-performed operations. Page mode consists of cycling the CAS clock from active (low) to inactive (high) and back, and providing a column address, while holding the RAS clock active (low). A new column location can be accessed with each CAS cycle (tpC).

Page mode is initiated with a standard read or write operation. Row address is latched by the \overline{RAS} clock transition to active, followed by column address and \overline{CAS} clock active. Performing a \overline{CAS} cycle (tpc) and supplying a column address while \overline{RAS} clock remains active constitutes the first page mode cycle. Subsequent page mode cycles can be performed as long as \overline{RAS} clock is active. The first access (data valid) occurs at the standard rate (tpAc). All of the read operations in page mode following the initial operation are measured at the faster rate (tcAc), provided all other timing minimums are maintained (see Figure 1a). Page mode cycle time determines how fast successive bits are read (see Figure 1b).

NIBBLE MODE

Nibble mode allows serial access to two, three, or four bits of data at a much higher rate than random operations (t_{RAC}). Nibble mode consists of cycling the \overline{CAS} clock while holding the \overline{RAS} clock active, like page mode. Internal row and column

address counters increment at each $\overline{\text{CAS}}$ cycle, thus no external column addresses are required (unlike page or static column modes). After cycling $\overline{\text{CAS}}$ three times in nibble mode, the address sequence repeats and the same four bits are accessed again, in serial order, upon subsequent cycles of $\overline{\text{CAS}}$:

Nibble mode operation is initiated with a standard read or write cycle. Row address is latched by \overline{RAS} clock transition to active, followed by column addresses and \overline{CAS} clock. Performing a \overline{CAS} cycle (t_{NC}) while \overline{RAS} clock remains active constitutes the first nibble mode cycle. Subsequent nibble mode cycles can be performed as long as the \overline{RAS} clock is held active. The first access (data out) occurs at the standard rate (t_{RAC}). All of the read operations in nibble mode following the initial operation are measured at the faster rate (t_{NCAC}), provided all other timing minimums are maintained (see Figure 2a). Nibble mode cycle time determines how fast successive bits are read (see Figure 2b).

STATIC COLUMN MODE

This mode is useful in applications that require less noise than page mode. Output buffers are always on when the device is in this mode and \overline{CS} clock is not cycled, resulting in fewer transients and simpler operation. It allows faster access to any of the 1024 column addresses on a given row, typically at half the standard (tRAC) rate for randomly performed operations. Static column consists of changing column addresses while holding the RAS and \overline{CS} clocks active. A new column location can be accessed with each static column cycle (tSC).

Static column mode operation is initiated with a standard read or write cycle. Row address is latched by RAS clock transition to active, followed by column addresses and CS clock. Performing an address cycle (tSC) while RAS and CS clocks remain active constitutes the first static column cycle. Subsequent static column cycles can be performed as long as the RAS and CS clocks are held active. The first access (data out) occurs at the standard (tRAC) rate. All of the read operations in static column following the initial operation are measured at the faster rate (tAA), provided all other timing minimums are maintained (see Figure 3a). Static column cycle time determines how fast successive bits are read (see Figure 3b).

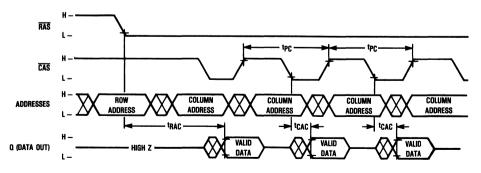


Figure 1a. Page Mode Read Cycle

PAGE, NIBBLE, AND STATIC COLUMN MODES . . . (AN986)

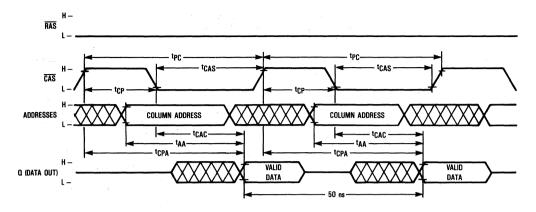


Figure 1b. Page Mode Cycle Minimum Timing

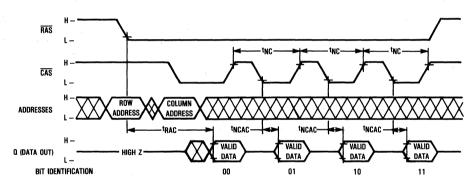


Figure 2a. Nibble Mode Read Cycle

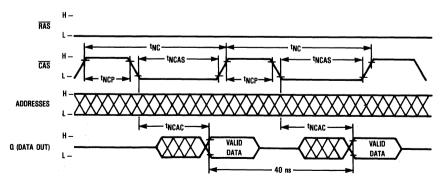


Figure 2b. Nibble Mode Cycle Minimum Timing

Figure 3a. Static Column Mode Read Cycle

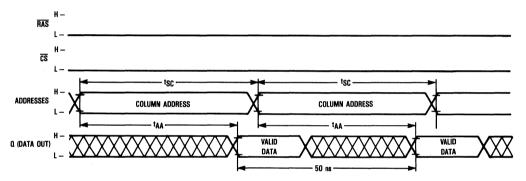


Figure 3b. Static Column Mode Cycle Minimum Timing

AN1059/D

Pseudo Static RAM Simplifies Interfacing With Microprocessors

INTRODUCTION

This application note describes Motorola's 128Kx8 pseudo static RAM (PSRAM), the MCM518128, and its implementation in an MC68000 microprocessor system. PSRAMs provide the low cost, high density memory of a dynamic RAM (DRAM), while also having the byte wide I/O and non-multiplexed addressing of a static RAM (SRAM). Since the PSRAM uses the same bit cell structure as a DRAM, the normal memory operation must be periodically interrupted so that the memory array can be refreshed.

PSRAM OPERATION

Refresh Modes

For the MCM518128, refreshing is accomplished by accessing each one of the 512 rows of the array, one row at a time. Each row must be accessed every 8 milliseconds to ensure data integrity. Motorola's MCM518128 PSRAM features three different refresh modes: chip enable only refresh, auto refresh, and self refresh.

The **chip enable only refresh** occurs any time a valid row address (A0–A8) is present and the device switches from standby to active for a period of one chip enable pulse width (tCE), see Figure 1. Therefore, any time a read or write occurs, a row is refreshed when the chip enable transition latches in the address. This makes chip enable refresh useful for a distributed refresh operation. By accessing a different row every 15.6 microseconds (8 milliseconds per 512 rows), the entire array is refreshed.

The auto refresh occurs when the part is disabled by either E1 going high or E2 going low and then toggling the refresh pin F (see Figure 2). Each time the refresh pin toggles, an internal row address counter is incremented, and a new row is refreshed. This makes the auto refresh mode suitable for a burst refresh operation, wherein the entire array is refreshed at one time by clocking F 512 times. The auto refresh mode of the PSRAM is most versatile in that a distributed refresh can also be performed. If every 15.6 microseconds the device is placed in standby and F is clocked once, the refresh requirements of the PSRAM can be met. The advantage of auto refresh over chip enable only refresh is that no addresses need be supplied, addresses are kept track of by the internal counter. All timing parameters associated with the auto refresh mode must be kept for proper device operation. A burst refresh of the entire array would be accomplished in 66.7 microseconds (tRFD+512 rowsxtFC+tRHC). A distributed refresh of a single row is accomplished in 185 nanoseconds (tRFD+tFC+tRHC).

The **self refresh** occurs if the device is in the standby mode for more than 8 microseconds (t_{FAS}), and the F̄ pin is clocked low a time t_{RFD} after the device is initially disabled (see Figure 3). The device will not change from standby to self refresh unless this F̄ transition occurs. After t_{FAS}, an internal clock starts and a refresh cycle is performed approximately every 150 microseconds. This makes the self refresh ideal for long standby periods, as would occur during a battery backup. To refresh the entire array during a self refresh takes 76.8 milliseconds (t_{RFD}+t_{FAS}+512 rowsx150 microseconds+t_{FRS}+t_{RHC}).

Read and Write Operations

During read and write operations, the chip enables of the PSRAM must latch in the valid address. This differentiates the pseudo static RAM from a fully static RAM. The E1 and E2 chip enable pins of the PSRAM are therefore analogous to RAS and CAS of a DRAM. But unlike a DRAM, the PSRAM has separate row and column address pins, so the address is latched in with a single chip enable transition. For this reason, the read operation of the PSRAM is comparable to the page mode operation of the DRAM (see Figure 4). During the write operation of the PSRAM, the chip enables operate in the same manner as they did for the read operation (see Figure 5).

PSRAM SYSTEM CONFIGURATION

Figure 6 shows the conceptualized system interface between an MC68000 microprocessor and four banks of MCM518128 PSRAMs that provide a one megabyte deep system architecture. This system is interfaced much as if it were using DRAMs for the memory, except that the costly DRAM controller is not necessary. The logic necessary for the timing controller and refresh timer is also simpler in a PSRAM system than in a DRAM system. Since the state machines used in this logic will vary greatly depending on the specific system application, it is left to the users to design according to their own needs.

Bank Select

In the system illustrated, addresses A17 and A18 generate the chip enable signals going to the E2 pin of each bank. Chip enable $\overline{E1}$ is tied active low in the system shown, with E2 controlling the memories. The upper and lower data strobes \overline{UDS} and \overline{LDS} are used in generating the \overline{W} signals for writing data to the upper and lower byte. The output enable signal \overline{G} , in combination with the chip enable signals, selects the bank being read.

PSEUDO STATIC RAM SIMPLIFIES INTERFACING . . . (AN1059)

The bank select and timing controller can be made using programmable logic sequencers and arrays for system flexibility. Figure 6 is drawn to illustrate that the same PAL could be used for both the bank select and timing controller, but the number of actual devices used to construct the logic will vary depending on the depth of the memory and the complexity of the state machines.

Refresh Timer

The refresh timer signals the timing controller whenever it is time to execute a refresh cycle by means of the refresh request signal REFREQ. The PSRAM must have each of its 512 rows refreshed every 8 milliseconds which implies that a row must be accessed every 15.6 microseconds for a distributed refresh, or a minimum of 66.7 microseconds for a burst refresh. Therefore, during a distributed refresh, using a 12.5 MHz system clock, the refresh timer requires a division factor of 195 to minimize the time the processor is in a wait state.

During a distributed refresh, the REFREQ signal is generated every 195 clock cycles and remains active low until the refresh complete signal RFC is returned by the timing controller. The division factor will have to be adjusted accordingly if different clock rates or memory sizes are used. The logic can be simplified if the refresh is done more frequently, but on a 2ⁿ clock cycle, such as 128. It is important that the refresh timer not stop, so that the 8-millisecond PSRAM refresh requirement is maintained.

The refresh timer is most easily realized using an inexpensive 8-bit counter, but programmable logic may also be utilized depending on the system requirements.

Timing Controller

The timing controller arbitrates between the memory refresh cycles and the microprocessor access cycles. In the illustrated system, it also toggles the refresh pin $\overline{\mathsf{F}}$ for use of the auto refresh mode, although this could also be accomplished by means of a separate timer/counter. The timing controller also transmits the chip enable signals from the bank select. During a refresh cycle, the timing controller will manipulate the chip

enables in a manner appropriate to the refresh mode being employed.

For memory/MPU arbitration, the timing controller is a state machine, achievable through the use of a programmable sequencer. When the REFREQ signal is received from the refresh timer, the timing controller will perform a refresh immediately, if the MPU is not in the middle of an access cycle. If the MPU is performing an access cycle, the refresh is delayed until the access cycle is complete. If the MPU attempts an access during the refresh cycle, an internal register in the timing controller is set, and the access is made as soon as the refresh cycle is complete.

The address strobe signal \overline{AS} from the MPU tells the timing controller that an access has been requested. An unused high order address could also be used to inform the timing controller whether the access cycle is a memory access or an I/O access. During read or write cycles, the timing controller sends \overline{DTACK} low, telling the MPU that the data transfer is completed.

When a refresh cycle is ready to begin, the MPU is sent into a wait state by the timing controller's forcing DTACK high. The timing controller then continues its refresh sequence, sending the chip enable and refresh signals to the memory array, according to the refresh mode being used. For example, the memories are placed in standby and \overline{F} is toggled if an auto refresh is being performed.

After the refresh is complete, the RFC signal tells the refresh timer to send \overline{REFREQ} high, and normal MPU access may resume.

SUMMARY

The pseudo static RAM (PSRAM) offers system designers an affordable and easily implemented solution to their memory requirements. The PSRAM combines the low cost, high density array of the DRAM with the direct addressing and byte wide data transfer of the SRAM. This results in simplified control logic, less board space, reduced design time, and a significant overall cost savings.

Figure 1. Timing diagram for the chip enable only refresh mode of the MCM518128 PSRAM. The illustration shows the chip enables latching in two row addresses, thus refreshing two rows of the array. Note that the refresh pin \overline{F} need not clock in this refresh mode. The device can be operated by cycling $\overline{E1}$ (or E2) only, provided that E2 (or $\overline{E1}$) is tied active high (or low). This is true for all modes of operation, including read and write.

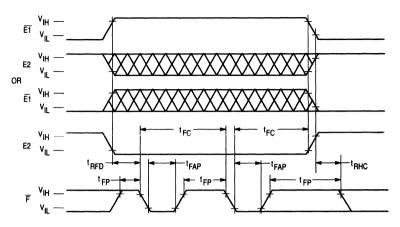


Figure 2. Timing diagram for the auto refresh mode of the MCM518128 PSRAM. In the illustration, F is clocked twice in order to refresh two rows of the array

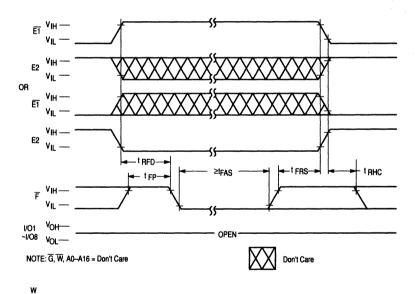


Figure 3. Timing diagram for the self refresh mode of the MCM518128 PSRAM. The recommended operating conditions for the device must be maintained for proper operation in a battery backup application.

G

PSEUDO STATIC RAM SIMPLIFIES INTERFACING . . . (AN1059)

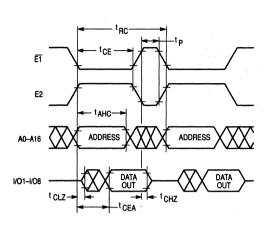


Figure 4. Minimum read cycle timing for reading data from two addresses of the MCM518128 PSRAM. In this example, \overline{G} is held at $V_{|L}$ and \overline{W} is held at $V_{|H}$. The refresh pin \overline{F} is a don't care during time t_{CE} , but must not clock during time t_{P} . Regardless of the mode of operation, address inputs are latched by $\overline{E1}$ going low, or E2 going high.

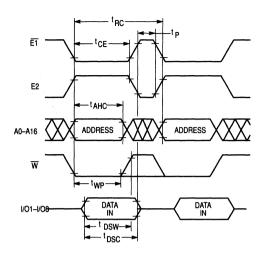


Figure 5. Minimum write cycle timing for writing data to two addresses of the MCM518128 PSRAM. In this example, \overline{G} is held at V_{IH} . The refresh pin \overline{F} is a don't care during time t_{CE}, but must not clock during time tp. In write cycles, the input data is latched at the earlier of \overline{W} going high, $\overline{E1}$ going high, or E2 going low.

Figure 6. Block diagram shows the necessary components to Interface an MC68000 microprocessor to an array of MCM518128 128Kx8 PSRAMs giving a total of one megabyte of RAM.

AN971

Avoiding Bus Contention in Fast Access RAM Designs

INTRODUCTION

When designing a bus oriented system, the possibility of bus contention must be taken into consideration. Bus contention occurs when two or more devices try to output opposite logic levels on the same common bus line.

This application note points out common causes of bus contention when designing with fast static random access memories and describes ways to eliminate or reduce contention.

WHAT CAUSES BUS CONTENTION?

The most common form of bus contention occurs when one device has not completely turned off (output in a high-impedance state) before another device is turned on (output active). Basically, contention is a timing overlap problem that results in large, transient current spikes. These large current spikes not only generate system noise, but can also affect the long term reliability of the devices on the bus (see Figure 1).

BUS CONTENTION AND FAST STATIC RAMS

Since memory devices are primarily used in bus oriented systems, care must be taken to avoid bus contention in memory designs. Fast static RAMs with common I/O data lines (or any high frequency device with common I/O pins) are the most likely candidates to encounter bus contention. This is due to the tight timing requirements that are needed to achieve high-speed operation. If timing control is not well maintained, bus contention will occur. The most common form of bus contention for memories occurs when switching from a read mode to a write mode or vice versa.

SWITCHING FROM A READ TO WRITE MODE

With \overline{E} low (device selected), on the falling edge of \overline{W} (write asserted) the RAM output driver begins to turn off (high-impedance state). Depending on the input and output logic levels, if sufficient time is not allowed for the output to fully turn off before an input driver turns on, bus contention will occur (see Figure 2a).

Figure 2a shows an example of a RAM trying to drive a bus line low while an input driver is trying to drive the line high. If the situation were reversed (RAM output high and the input driver low), bus contention would still exist.

Of course the obvious way to avoid this type of bus contention is to make sure that the input buffer is not enabled until the write low to output high-impedance (t_{WLQZ}) time is satisfied (see Figure 2b). This specification is usually given on most manufacturers' data sheets.

Another method to eliminate bus contention would be to use $\overline{\mathbb{E}}$ to deselect the RAM before asserting \overline{W} (low). This allows the RAM output extra time to go into high-impedance state before the input driver is enabled. $\overline{\mathbb{E}}$ and \overline{W} are later asserted low to begin a write cycle (see Figure 2c).

SWITCHING FROM A WRITE TO A READ MODE

With \overline{E} set low (device selected), on the rising edge of \overline{W} (write terminated) the address or data-in changes before the device has had a chance to terminate the write mode. If this should occur, and depending on the input and output logic levels, a bus contention situation could exist (see Figure 3). To avoid address changing type bus contention requires that the address not change till the write recovery specification (t_{WHAX}) is satisfied. To avoid bus contention caused by data changing requires that the data-in remains stable for the duration of the data hold specification (t_{WHDX}). Most of

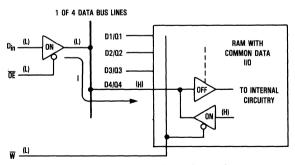


Figure 1. Common I/O Bus Contention

Figure 2a. Input Driver Enabled Prior to Disabling RAM Output

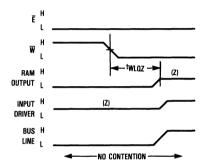


Figure 2b. Input Driver Disabled Prior to Enabling RAM Output

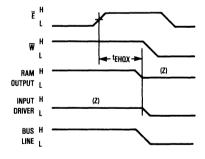


Figure 2c. Using E to Avoid Bus Contention

Motorola's fast static RAMs specify write recovery and data hold times of 0 ns. However, it is always a good practice to allow some margin to take care of possible race conditions.

Both of these types of contention could also be avoided by taking $\overline{\mathbb{E}}$ high prior to taking \overline{W} high. This will give the RAM output driver time to go to a high-impedance state before \overline{W} goes high. In this case $\overline{\mathbb{E}}$ is used to terminate the write cycle instead of \overline{W} (see Figure 3c).

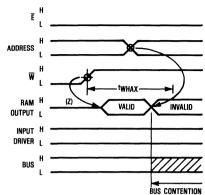


Figure 3a. Data Setup Time Violation

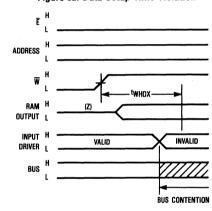


Figure 3b. Data Hold Time Violation

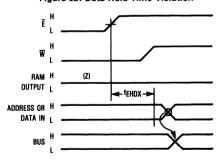
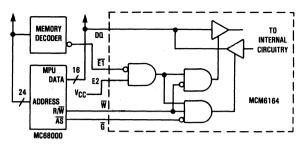



Figure 3c. Using $\overline{\mathbf{E}}$ to Avoid Bus Contention

OTHER WAYS TO ELIMINATE BUS CONTENTION

If the RAM has an output enable pin (\overline{G}) , synchronizing schemes can be incorporated to help eliminate bus contention. Taking \overline{G} high will ensure that even when the RAM is in a read mode the output will be in a high-impedance state. This will allow the input driver to be enabled longer.

ADDRESS ZI WRITE MODE

Figure 4a. Using G to Avoid Bus Contention

Figure 4b. Timing Diagram of the MC68000

Most advanced microprocessors, such as the MC68000 and MC68020, have asynchronous bus control signals that take advantage of fast memory devices with output enable pins. Figure 4 shows one way to avoid bus contention using a Motorola MC68000 interfaced to a Motorola 45-ns MCM6164.

A more obvious way to eliminate bus contention is to use slow memory devices. Slow memories have loose timing requirements that allow devices to fully turn off before another device turns on. Of course this defeats the whole purpose of fast static memory devices.

Another obvious way to eliminate bus contention is to use memory devices that have separate data I/O pins. In this way the $R|\overline{W}$ signal from the microprocessor can control a buffer device to eliminate bus contention (see Figure 5). However, the industry is demanding RAM with common I/O because these devices cost less and save system real estate.

Common I/O devices reduce package size since fewer pins are needed. Smaller packages result in less PCB space requirement. Common I/O devices also eliminate the need for

an extra buffer with its associated expense and space requirement. In general fast static RAMs configured greater than a X1 will have common data I/O pins.

Another popular way to reduce bus contention is to put a current limiting series resistor on each bus line (see Figure 6). The series resistor does not eliminate bus contention, but it helps reduce the large transient currents associated with bus contention. However, series resistors increase access time as well as increasing component count. The added access time depends on the total bus capacitance (including the capacitance of the devices on the bus) and the total bus resistance. The added delay should be added on to the point at which bus contention ceases. The following formulas can be used to determine the added access delay.

$$\begin{split} t_{HL} &= R_L \bullet C_L \bullet ln \ \, \frac{V_{in}(\text{Initial}) - V_{in}(\text{final})}{V_{IL}(\text{max}) - V_{in}(\text{final})} \\ t_{LH} &= R_L \bullet C_L \bullet ln \ \, \frac{V_{in}(\text{final}) - V_{in}(\text{Initial})}{V_{in}(\text{final}) - V_{IH}(\text{min})} \end{split}$$

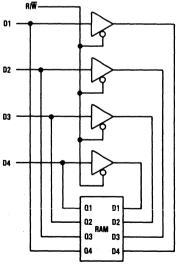


Figure 5. Separate I/O Buffer

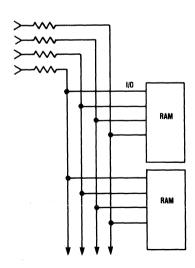


Figure 6. Using Series Terminating Resistors

Generally the value of the resistor should be around 100 ohms. The larger the resistor the less the transient current generated, but the greater the delay. Using a 150-ohm resistor will limit the current flow to less than 20 milliamperes while adding approximately 3 nanoseconds extra access time. However, note that even with series resistors bus contention duty cycle must be minimized to reduce EMI and bus ringing.

Although it is very important to reduce bus contention, CMOS memories can tolerate more bus noise generated by bus contention than can bipolar memories, due to the excellent noise immunity advantage of CMOS over bipolar technology. However, even when using CMOS memories, large destructive transient currents generated by bus contention can still occur.

CONCLUSION

Bus contention must be taken into consideration in most bus-oriented system design. The occurrence of bus contention generates large transient currents that produce system noise and could also affect the system's long term reliability.

Fast random access memories with common data I/O pins are very susceptible to bus contention due to tight timing requirements. Although it is almost impossible to totally eliminate bus contention, it must be the goal of the system designer to minimize bus contention.

AN973

Avoiding Data Errors with Fast Static RAMs

Microprocessors are now capable of 20-25 MHz. This places a great demand on SRAMs to supply super-fast access times. Today's sub-100-nanosecond SRAMs in production are rapidly moving to sub-50 nanoseconds as vesterday's prototypes ramp into production, and sub-25 nanoseconds is just on the horizon. This need for high-speed SRAMs is amplified by the fact that setup, hold times, and cycle edge accuracies do not usually improve at the same rate as the clock frequency. There is help on the way in terms of application specific SRAMs that put on chip some of the "glue" features that eliminate gate delays caused by decoders, drivers, or clock signals; but for now, the main burden will fall upon SRAM designers to make up for the "lost time" in the shorter cycles. Some of the tools of the SRAM designer are improved processes, tighter design rules, and improved circuit techniques such as address transition detection. When you combine all of these features into a high performance SRAM, you no longer have the bistable flip-flop of yesterday but a highly tuned circuit that is more closely related to a DRAM. This is where the system designer can help. Although SRAM designers are doing everything possible to make the devices stable and noise immune, there is no substitute for a good solid system layout and design. The following discussion gives system designers some insight into potential trouble areas from a component engineering viewpoint.

CHARACTERISTICS OF HIGH-SPEED BUSES

When data is transmitted over long distances, the line on which the data travels has to be considered a transmission line. A long distance is relative to the rate at which data is being toggled. Address and data buses associated with high-throughput microprocessors (e.g., M68000 family) must also be thought of as transmission lines, since it is not uncommon for these processors to run bus cycles of 40-nanosecond periods or less.

Other features of high-end microprocessor buses are that they tend to operate in harsh, noisy-type environments, and most of these buses are unterminated. A high-impedance. unterminated bus line acts just like an antenna. It not only radiates EMI, it can also receive EMI: This can result in bus ringing, crosstalk, and various other noise associated problems. The more transmission lines a bus has, the more antennas to pick up and radiate noise. Of course, the best way to reduce this EMI is to ensure that the bus is properly terminated into a low-impedance load. This low-impedance load could be in the form of a pull-up or pull-down resistor tied to each bus line. Ideally, the termination resistor should be equal to the characteristic impedance of the bus line. A transmission line terminated into its own characteristic impedance has the best incident wave switching as well as the least amount of reflection.

Since an unterminated bus looks almost entirely like a capacitive load, the larger the resistor value the slower the rate at which data can be presented to the receiving device. This is due to the time it takes to charge and discharge this capacitive line through the termination resistor. If a small value resistor is used, the charging/discharging time delay can be minimized (t=RC). However, the smaller the resistor the greater the power consumption through the resistor. Also, if the resistor value is too small, its value will approach that of the source resistance of the transmitting device, which could lead to a degradation of noise margin to the receiving devices. A resistor value between 1 kilohm and 10 kilohms is usually adequate. The actual value should be optimized through experimentation (see Figure 1).

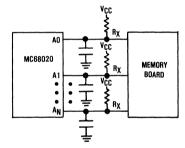


Figure 1. Microprocessor Address Bus with Pull-Up
Resistors

HIGH SPEED SRAM DESIGN TECHNIQUES

In order to speed up access times of high-speed RAMs, many new design techniques have surfaced. One of the most innovative techniques to emerge is known as address transition detection (ATD) circuitry. Since row address access times are typically slower than column address access times, this circuitry originally used the row addresses to trigger a clocking sequence that restored bit lines, shorted data lines, equalized sense amplifiers, and threestated the output as the output buffers were equalized. This meant that many of the internal transistions could be completed by the time that the signals were decoded and propagated through the device seeking the proper cell and outputting data. This then made row and column access times much more equal and eliminated one of the speed bottlenecks. This scheme also has the added advantage of reducing power consumption because the static bit line loads can be reduced in size by utilizing a parallel equalization that is also generated at the ATD initiation and used to pull up the bit line 0 before selection of the new word line. Since

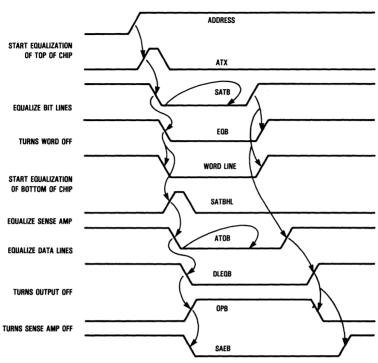


Figure 2, Address Transition Detection Timing Chain

its inception, ATD has been expanded and is now activated by all addresses and chip select pins instead of just row addresses. A typical timing chain, as shown in Figure 2, applies to Motorola's MCM6164 $8\mathrm{K}\times8$ SRAM and exemplifies the clock sequence dependency.

ATD has been shown to be very effective as a performance enhancer and will remain a valuable tool for designers, but it can be seen that we now essentially have a clock-activated part. What happens if addresses are floated or oscillate at a frequency greater than the ATD response? What happens if addresses are skewed, thereby getting successive ATD initiations? There is also the case of signals being gated from numerous sources, in which the address may start in one direction and then reverse several times before it finally seeks a valid high or low level. Circuit designers believe that these potential problems have been resolved over the last few years as testing techniques and circuit simulations have wrung out the infinite number of application variations. However, there is a simple, foolproof way that system designers can eliminate any potential for this type of a problem. Deselect the device during address transitions (see Figure 3).

Since new design techniques have made chip select access times equal to address access times, system designers can take advantage of this and improve reliabilty of their system by increasing overall immunity to a noisy environment. This can cover a host of potential board-induced problems from oscillating multiplexer or driver units, to spurious address glitches put out by MPUs.

Another design improvement is related to rise and fall times on the output levels, known by circuit designers as di/dt. This is the inductance associated with the changing current as loads are charging and discharging. This inductance is coupled back to the device, and through connections and bus resistance can cause the power supply or ground to change drastically. This is pushed to the limits as output drivers become more powerful, and is especially aggravated by multiple I/O devices like byte-wide SRAMs which may have all eight data lines switch from all 0s to all 1s or vice versa. These spurious noise spikes on the power lines can affect the data contents of the device, as well as any other device sharing the same power and ground buses (see Figure 4). Circuit designers have developed circuitry that has a feedback loop that controls the rise and fall time just enough to minimize overshoot, undershoot, and ringing. This di/dt is the inherent reason why bytewide SRAMs are typically 4-5 nanoseconds slower than single output devices.

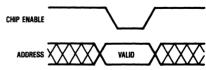


Figure 3. Deselection of Device During Address
Transition

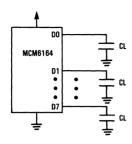


Figure 4a. MCM6164C Data Bus

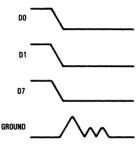


Figure 4b. Ground Bounce When Data Switches from All 1s to All 0s

PCB POWER FEED CONSIDERATIONS

Another source of noise can be inadequate power feeds and power supply decouping. Large ground planes should be used to reduce both inductances and resistances. The resistances of the power supply lines should be less than 0.1 ohm. If the inductances or resistances of the power supply lines become significant, VCC or ground bounce can occur. Since all inputs are referenced to ground, gate input thresholds could be exceeded, causing data errors to be generated. An excellent PCB design is one that incorporates a multilayer board. One layer should be entirely devoted to a ground plane.

The use of good-quality decoupling capacitors can help to keep noise off the power lines. A value between 0.01 microfarad and 0.1 microfarad (use 0.1 microfarad for $\times 8$ organizations) should be used for each RAM. This capacitor should be located as close to the RAM power pins as possible. When

using IC sockets, it is recommended that sockets with goldplated copper contacts and built-in decouping capacitors be used.

A large value capacitor (≥ 1 microfarad) should be used on each V_{CC} line. The purpose of this capacitor is to provide for sudden current demand (current surges) from the power supply.

Figure 5 illustrates a typical memory board design.

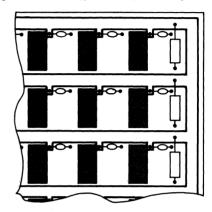


Figure 5. Typical Memory Board

SUMMARY

Digital transmission line theory must be taken into account when designing high-frequency buses. A high-impedance, unterminated bus behaves much like an antenna, receiving as well as transmitting EMI. The use of termination resistors on these buses can reduce EMI. Many innovative designs have evolved to speed up access times of fast static RAMs. One of the more innovative designs is that of address transition detection circuitry. Most high-speed RAMs today use this technique to decrease access time. Good PCB power feed design, as well as the judicious use of decoupling capacitors, is essential for optimum performance from fast static RAMs.

Much of the time, the problems caused by a marginal device, system layout, or pushing for the last nanosecond is an intermittent random type of problem that could result in either destroyed data or access time push-out. If you are having a problem, call Motorola MOS Memories in Austin, Texas, (512) 928-SRAM (928-7726). We are on your design team!

AN984

25 MHz Logical Cache for an MC68020

Prepared by:

Motorola - East Kilbride, Scotland

INTRODUCTION

As the speed of the MC68020 processor increases it becomes more difficult and more expensive to provide large amounts of no-wait states memory. The addition of a logical cache in a memory management based system then becomes a more viable alternative to the problem. For a typical 25 MHz MC68020 system the incorporation of a no-wait states cache is one of the most economical ways in which the true performance attainable from this particular processor can be achieved.

CACHE DESCRIPTION

The cache described in this application note is a 32K byte (8K long words) direct mapped logical cache. The cache is organized such that both supervisor and user, program and data accesses are stored. The entries are tagged appropriately with the function code lines. To avoid any stale data problems that may occur with the data the cache update logic includes a 'write through' mechanism that forces any data writes to update both the memory and the cache. The cache operates with no wait states with a 25 MHz MC68020.

BLOCK DIAGRAM DESCRIPTION

The cache can be broken down into several functional parts as follows:

- tag RAMs
- data RAMs
- control logic
- entry update mechanism

The cache is organized as 8K long word entries (see Figure 1) which are referenced by a 22 bit TAG field. This TAG is made up of the upper address lines (TA15-TA31), the function codes (TFC0-2) and the size pins (TSIZE0-1). By incorporating the size pins into the TAG field means that the data entry can be validated even if it were referenced as a misaligned data transfer. The function codes allow the entries to be referenced separately with respect to user/supervisor and program and data entries.

The cache mechanism will begin operation as soon as an address becomes valid on the logical address bus. This address accesses the TAG RAM within the cache and the corresponding entry is compared with the relevant section of the logical address bus (LA15-LA31) and the control bus (FCO-2, SIZEO-1).

If this comparison is valid then this gives an indication to the comparator logic that a valid entry may be present within the cache data RAMs.

To determine whether this data entry is indeed valid a simultaneous access is made to the VALID bit RAM with the lower section of the logical address bus (LA2-LA14). If the entry in this VALID RAM is a logic 0 then this indicates that the corresponding data entry at that cache address (LA2-LA14) is a valid entry.

Access to that data item can then be made on the condition of several control signals (e.g. R/W*, CACHE-E*, etc.) and the data buffers to the system data bus will be enabled. This is termed as a CACHE HIT.

Conversely, if the entry in the VALID bit RAM was a logic 1 then this would indicate that the corresponding data item was not a valid cache entry and so the isolation data buffers would not be enabled to the system bus. This is termed as a CACHE MISS.

When the cache detects a HIT then the bus cycle is completed from the data RAMs and the system operates with no wait states.

If on the other hand the cache detects a MISS then the processor has to fetch its data from external memory which by its nature will be slower and will incur wait states.

To facilitate the data fetch from external memory the cache mechanism forces the processor to do a RETRY of the MISSed bus cycle. This retried bus cycle will then go out to external memory and fetches the relevant data item which will be latched by the processor and also used to update the cache. Subsequent accesses to this address will then find the data resident in the cache.

To preserve data integrity a CACHE MISS is also generated by a data write cycle. On writing to an address the cache forces a MISS such that the data item will be written to the cache in addition to the external memory. Subsequent data reads at this location will find that the data item is resident and is the most recent version.

Forced CACHE MISSes are also generated when the logical

address is detected as being a peripheral access (e.g. serial I/O device) or when the processor is executing a CPU space cycle (e.g. interrupt acknowledge).

CACHE CONTROL MECHANISM

The cache hit signal (CHIT*) is generated as a result of the comparison of the TAG data, the VALID bit and various control signals. When the logical address from the processor becomes valid the cache TAG RAMs are enabled and the TAG data is produced for comparison.

These TAG RAMs are addressed as an 8K long word bank and so logical address lines LA2 to LA14 are used.

The TAG RAM itself contains information relating to the bus status of the cached item. This bus status consists of a section of the logical address bus (LA15-LA31) and some control signals (FCO-2, SIZEO-1). When these TAG RAMs are accessed this previous bus status is compared with the existing bus to detect if there is a match.

Comparators U215, U216 and U217 (see Figure 4) are used to compare this information and if there is a match the outputs Oa=b (pin 19) will be asserted.

The assertion of these three comparator outputs is then conditioned by various other factors to determine whether a cache hit signal should be generated.

While the TAG RAMs are being accessed by logical address lines LA2-LA14 a VALID bit RAM is also accessed. The information contained in this VALID bit determines whether or not the cache data is valid. When the cache is enabled all the entries in the VALID RAM are set to logic 1 to indicate that there are no valid entries in the cache.

Subsequent memory accesses then cause a cache miss which results in a cache entry being made. When this cache entry is made the status of the bus (LA15-31, FCO-2, SIZEO-1) is saved in the TAG RAM at the location pointed to by the cache index (LA2-14). The information on the data bus is then saved in the data RAMs at address with cache index LA2-14 and the corresponding VALID bit entry is also set (i.e. the cache entry is marked as being valid).

Subsequent accesses to that address will then cause the TAG address comparators to assert their outputs and the VALID bit to be set. The assertion of the cache hit signal (CHIT*) is then dependent upon the status of several other control signals such as cache enable (CACHE-E*), CPU space and peripheral access (IOEN*). Accesses to CPU space are not cached because of the problems that might arise when servicing interrupts or accessing coprocessors. In addition access to peripheral devices (indicated by the signal IOEN*) are not cached because of the read write nature of some peripheral device registers.

When these signals are taken into account the resultant assertion of the cache hit signal (CHIT*) will then cause the processor to complete the bus cycle with no wait states.

Control of the cache is facilitated by three hardware primitives: Cache Enable, Cache Disable and Cache Clear. These primitives are initiated by accessing a specific address within CPU space which is not used for any other CPU space functions.

On requesting a cache enable function the mechanism causes the VALID bit RAM to be set to logic 1's, indicating no valid cache entries, and then assert the CACHE-E* signal to the rest of the system.

The cache disable function simply negates this CACHE-E* signal.

The cache clear function is included to allow the support of multi-tasking software. On initiation of the cache clear function all entries in the VALID bit RAM are cleared so emptying the cache. This is useful where the software has to perform a context switch.

CACHE CONTROL LOGIC

The Cache control logic allows the software programmer to enable the cache, disable the cache and to clear the cache contents. Accesses to the control logic can only be done under CPU space. This prevents accidentally writing to the control logic during normal operation (the SFC and DFC registers are programmed for CPU space with the MOVEC instruction, and the MOVES is used in writing to the control logic). Hence only the supervisor mode of operation can control the cache.

The address lines LA24-LA26 are used to decode the cache control functions, these being inputs fed to an 74LS138 U241 (see Figure 3). In addition to these addresses in CPU space, the programmer should also select an area of memory that will not cause contention with the normal MC68020 CPU functions.

An example decode could be \$1070000 (\$ is used to represent a hexadecimal number) for clear cache, \$2070000 for disable cache and \$4070000 for enable cache.

Cache Enable

The cache is enabled by accessing to a CPU address similar to the one given above, the data being irrelevant. On enabling the cache all entries are made invalid. This ensures that no stale data problems are created from accesses when the cache was previously enabled.

The output from U118D (see Figure 3) is used to enable a sequencer consisting of three 4-bit binary counters: U246, U247 and U248. These counters are used to increment the address bus to set the valid bits to all 1's (entry is invalid). The addresses are presented to the valid RAM U259 via the latches U249 and U250, the outputs from these being enabled at the same time as a write to enable the cache. Also during this sequence the logical address bus to this RAM is tri-stated from the RAM's address bus by U243 and U244.

Under normal operation the latches U243 and U244 are enabled and U249, U250 are disabled allowing the valid RAM to be addressed from the logical address bus. The 12-bit sequence clears 4 K entries in the cache (each entry is a long word).

The sequence is repeated twice to clear the whole 8 K entry cache. The two D-type flip flops U2518 and U251A are used to write first to the upper 4 K then the lower 4 K entries.

At the end of the cache clear sequence the cache is enabled via the S-R flip flop U257D and U118C. The CACHE.E* is then used in the comparator logic to indicate that the cache is enabled. In addition the DSACKO* and DSACK1* is returned to the MC68020.

As far as the processor is concerned the cache clear mechanism can be thought of as a long instruction. The valid

RAM latches data with respect to the sequencer clock (40 MHz for 25 ns SRAM's) and a logic 1 is latched on each falling edge of this clock.

A logic 1 is written into the valid RAM when: the sequencer is enabled; it is the falling edge of the 40 MHz clock and the WRITEN* signal from the entry update mechanism is high (U258C, U263A and U219D). This logic is also used to write a logic 0 into the valid RAM during normal operation.

To prevent external bus contention when the cache is being written to, a signal ADDBUFDIS* is generated which can be used to disable external address buffers. The CMISS signal should be used to disable the external address buffers during a cache hit.

Cache Clear

The cache clear mechanism is used to allow the operating system to perform a context switch. A cache clear command will produce the same output as the enable cache command.

Using the 40 MHz clock gives a context switch time of approximately $0.025 \times 1024 \times 8 = 205$ us. If this is unacceptable the mechanism can be speeded up by using several valid bit RAMs of lower density in parallel, or using a RAM with a clear feature.

Cache Disable

This command produces an input into U240B to set the S-R flip flop to cache disable (CACHE.E* set to a logic 1). The reset signal is also fed into U240B to ensure that the cache is always disabled at reset.

ENTRY UPDATE MECHANISM

This section of logic (see Figure 2) is used to control the cache mechanism for updating entries in the cache. In addition, the logic will produce control signals used to latch data into the Tag and Data RAMs and control the isolation data buffers for the cache (U236 – U239 in Figure 5).

The mechanism used to update the entries in the cache is only enabled on a read cycle (R/W* signal into U261D) and when the cache is enabled (CACHE.E* signal into U261C).

The control logic is required to perform three distinct operations:

- On a write cycle the WRITEN* signal should be asserted to latch data into the RAMs to perform a write through operation. When the address is next accessed it will reside in the cache.
- On a read cycle that does not generate a cache hit, the logic needs to initiate a retry operation to enable the cache to latch the data which is being read by the MC68020.
- Thirdly, on a read cycle, which causes a cache hit, the bus cycle needs to be terminated to allow zero wait state operation at 25 MHz from the cache.

Write Cycles

Assuming the cache is enabled then on a write cycle the

output from U240D produces logic 0 (the output from U261C will be logic 0). This output produces a signal INHIBIT* which prevents the cache returning DSACKO*, DSACK1*, HALT* and BERR* (U256A, B, C, D), used for read cycles (see Figure 2).

A signal FORCEW* is also generated via U258B and U219C to control the output enable of the cache isolation buffers to allow data to be routed to the cache data RAMs (see Figure 5).

The WRITEN* signal is finally generated from U258A to produce the W* enable for the TAG and DATA RAMs. WRITEN* is also used to enable the buffers: U212 - U214, to route the current logical address, function codes and size lines into the TAG RAMs (see Figure 4).

Two banks of RAMs are used to obtain an 8 K entry long word cache; the lower bank of RAMs are enabled with LA14* from U255C and the upper bank is enabled by LA14. This is needed to allow 25 MHz operation (25 ns SRAM – MCM6268-25 – are used as shown in Figure 4).

On the assertion of DSACKO*, DSACK1* from the external physical memory the two D-type flip-flops U235A and U253B (see Figure 2) are used to negate the WRITEN* just after the falling edge of the processor clock S4 (just after the MC68020 latches data). On the negation of WRITEN*, tag data is written into the tag field.

The information on the data bus is latched into the cache data RAM and the tag buffers and data isolation buffers isolate the cache from the system busses. This section together with the whole entry update mechanism must operate logically very quickly hence FAST logic is used throughout.

Read Cycle with a Cache Miss

Timing diagram 1 shows the cache sequence when a cache miss occurs. From this diagram it can be seen that the addresses on the address bus do not become stable until 5 ns into S1 worst case. At this point it will take 25 ns to obtain information from the TAG data RAMs (the RAMs are permanently enabled).

In addition to this there is a delay through two levels of comparator (U215 - U218). This gives an absolute maximum propagation delay time of 46 ns after the address bus is stable before a valid CHIT* signal is generated. With the above conditions a valid cache hit signal (CHIT*) should be asserted in the middle of S3 for a TAG match. The entry update mechanism uses this information to determine if there is going to be a cache miss or a cache hit.

In the case of a cache miss the following sequence of events are executed: DSACKO* and DSACK1* are asserted by the assertion of the MC68020 AS* (U255B) by U256A and U256B as shown in Figure 2. The INHIBIT is set to a logic 1 by U261C, U261D and U262A. U252A is then used to bring U252B out of RESET on the falling edge of S2. This D-type is then used to sample the CHIT* signal in the middle of S3. In the case of a cache miss the D input will still remain high, forcing the cache miss signal CMISS to go high. This is used to enable external data buffers for the MC68020. This causes the BERR* and HALT* signal to be asserted simultaneously to request a retry cycle (via U261B, U256C and U256D). This takes advantage of the MC68020's ability to recognize a late retry if spec 27A is satisfied. (Note that

68020 inserts an additional 3 clock cycles after S5 of this cycle).

On the termination of this bus cycle all signals are negated as shown in the timing diagram, with the exception of the INHIBIT. This is because on the rising edge of LAS* the output from Q* of U269A is fed back to the input to produce a low INHIBIT signal for the following retry cycle This low INHIBIT signal prevents the DSACKO*, DSACK1*, BERR* and HALT* lines from being asserted by the cache during the retry cycle.

Timing diagram 2 shows the retry cycle. The length of this cycle is determined by the actual physical device being read so it is shown as an unknown number of wait states. The same cycle is repeated as above, however, during this cycle INHIBIT has been asserted causing FORCEW* (force a write to the RAMs) and WRITEN* to be asserted. This has the effect of updating the cache on the read cycle by forcing the cache to latch the addresses, function code and size signals to the TAG RAM and the DATA bus contents into the data RAMs.

The buffers U236 – U239 are enabled by (CHIT*) ANDed with (FORCEW*) and the direction is controlled by CHIT*. In this case CHIT* is a logic 1 causing data to be written into the RAMs. The buffers U212 – U214 are enabled by the WRITEN* signal.

On return of the DSACKO*, DSACK1* from the physical system, the WRITEN* signal is negated (via U257A, U255C, U253A, U253B, U219B and U258A) to latch data into the RAMs just after the falling edge of S4.

In addition to this all the signals are negated at the end of the cycle and the INHIBIT signal returns to a logic 1 level on the negation of LAS* (U262A and U240D).

Read Cycle with a Cache Hit

When a read cycle occurs at an address which has a corresponding input in the cache, a cache hit will occur. This cycle

is similar to the one above except the CHIT* signal from the comparators U215 - U218 is asserted by the middle of S3, setting CMISS inactive (output from Q of U252B is set to a logic low) and forcing the external data buffers to be disabled preventing data bus contention. The BERR* and HALT* are also prevented from being asserted by U261B so no late retry cycle is signalled to the MC68020.

Finally, the cache data RAM isolation buffers U236 – U239 are enabled and the direction is selected to be output from the RAMs to the data bus. As there is no bus activity which stops the recognition of DSACKO* and DSACK1*, this read cycle by the MC68020 from the cache is performed in zero wait states at 25 MHz.

At the end of the cycle all the signals are negated for the next bus cycle.

CONCLUSION

The design of a 25 MHz logical data cache to interface between the processor and an MMU involves the use of very fast logic and static RAMs for zero wait state operation. The RAM access speed required in this application is 25 nS to allow no wait states operation.

The control logic has been designed discretely with FAST Schottky TTL since the use of PLAs would have a serious effect on gate propagation delay times.

The MC68020 supports a late retry cycle recognition and this is used in the design to take corrective action in the case of a cache miss.

As greater performance is required from the MC68020 the move towards high frequency zero-wait state operation becomes a more important requirement. If an MMU is placed between the processor and memory this will have an effect on zero-wait operation at the higher frequencies.

If the logical data cache can be made large enough, so that a high hit rate can be achieved, then slower physical memory could be tolerated in the system.

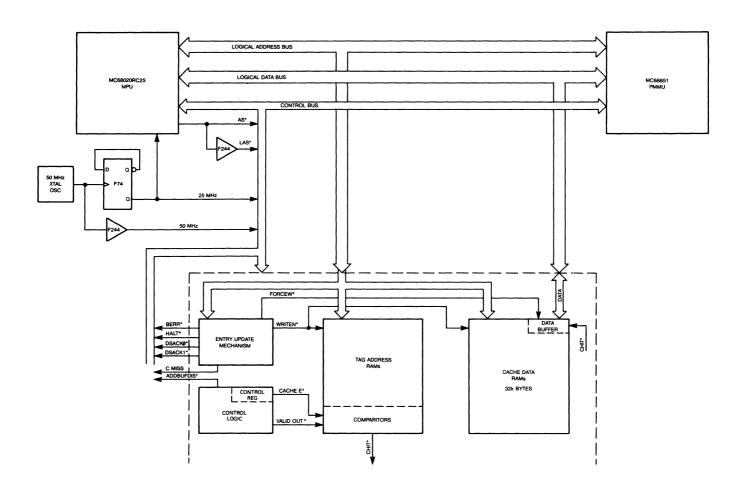


Figure 1: Block Diagram

MOTOROLA MEMORY DATA

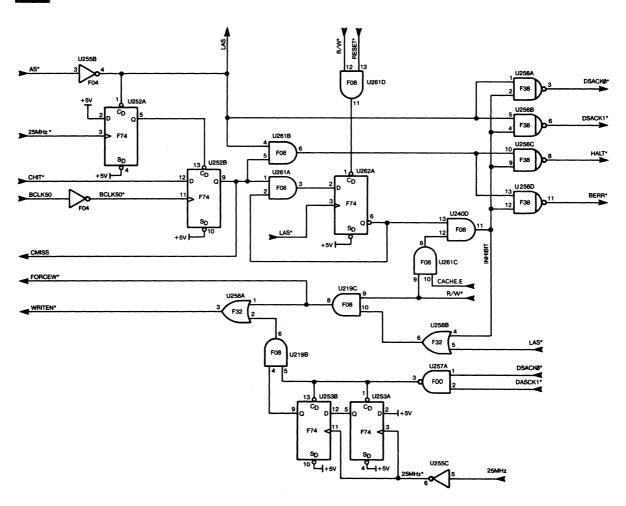


Figure 2: Entry Update Mechanism

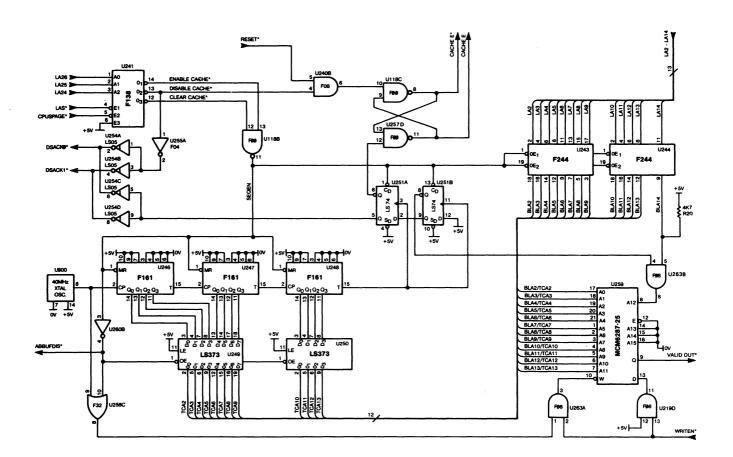


Figure 3: Control Logic

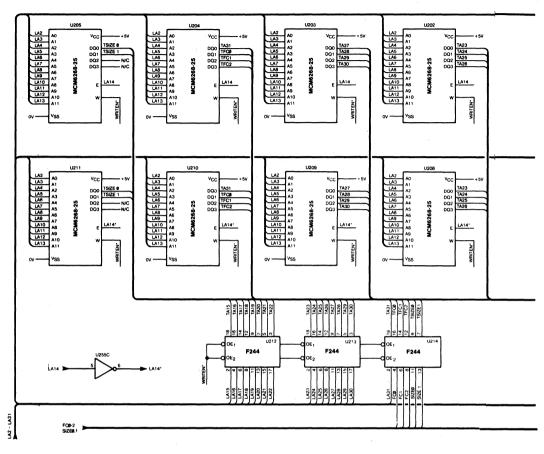
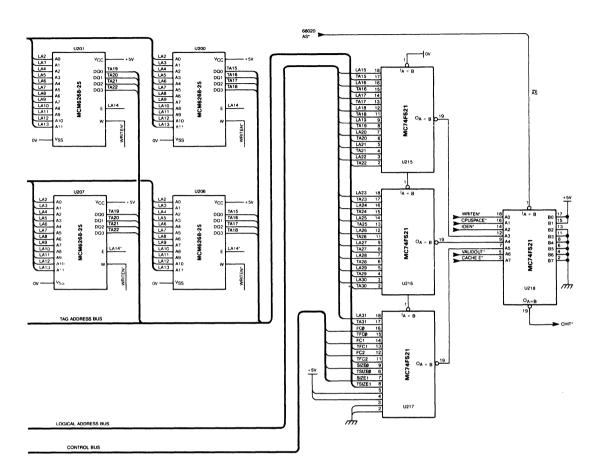
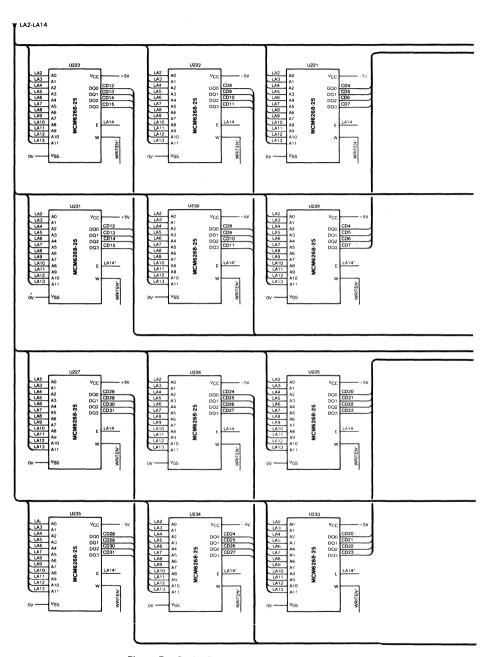



Figure 4: TAG Address RAMs



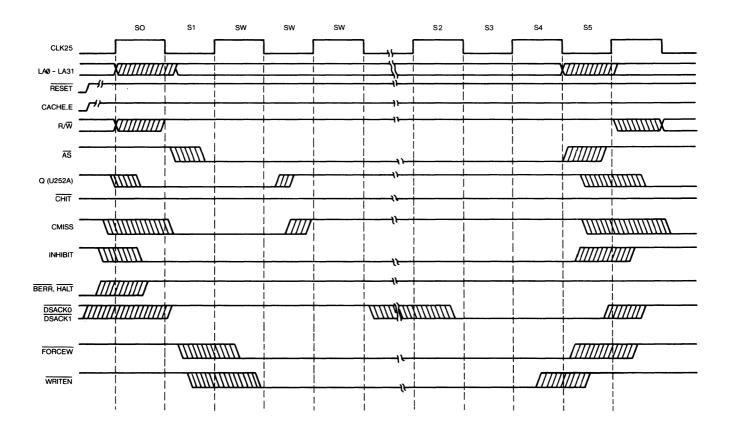
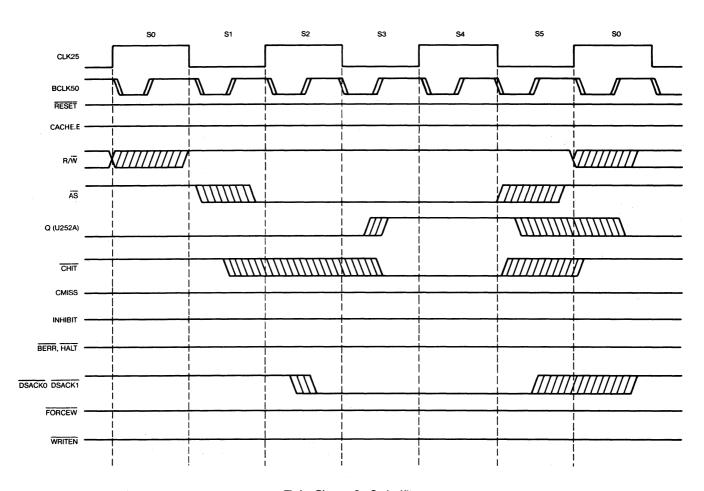


Figure 5: Cache Data RAMS



SO 06 Next Cycle.

Timing Diagram 1 - Cache Miss

Timing Diagram 2 - Retry of the Cache Miss Cycle

Timing Diagram 3 - Cache Hit

DESIGN APPLICATIONS

DESIGNING A CACHE FOR A FAST PROCESSOR

COMPARATOR CHIPS HELP CREATE A HIGH-SPEED CACHE FOR THE MC68030

o wring the best performance from the new breed of superfast microprocessors, system designers frequently turn to external caches. Direct mapped and set-associative caches offer advantages, compared with fully associative caches. In designing an address-tag-and-comparator system for a direct-mapped or set-associative cache, engineers must consider issues such as the speed of the hit, the address-bus loading, and the datablock size (see "What's the Cache?").

Issues relating to the specific high-speed microprocessor also crop up. For instance, a system built around the MC68030 microprocessor must support two-cycle reads and writes related to the address-tag-comparator timing. Designers must also resolve questions of whether or not and how to support a burst mode. To support this mode, they must decide on address-tag and cache-data-RAM requirements unique to the mode, such as automatically incrementing addresses for the address tags and the cache-data RAM. They must also consider the data setup and hold timing requirements at the processor.

CACHE TAG RAMS

Matching the speed of the MC68030 microprocessor, the cache-tag comparators in the MCM4180, MCM62350, and MCM62351, organized to handle 4 kwords by 4 bits, compare data in the cache RAM with an external 4-bit-wide data field. The comparison results appear on the devices' Match pins. Each of the cache-tag devices is bulk clearable and has read and write functions. Of all the cache-system configurations possible with this MCM family of RAMS, for a 32-bit-by-16-kword system, a block of four MCM4180s as tag valid-bits comparators and four MCM62350s provide the fastest hardware arrangement, least bus loading, and lowest cost (Fig. 1).

The MCM4180 includes an Exclusive-Nor (XNOR) comparator, which matches each bit position with the stored data for a true result. This type of comparator requires that every bit position match the stored data for the result to be true.

The MCM62350 and MCM62351 supply a user-configurable comparator offering the conventional XNOR mode and an And-Or-Invert (AOI) mode. Unlike the XNOR mode, the AOI comparator treats zeros in any bit position as don't-care bits during the compare operation. The AOI option is extremely useful for comparing status bits often stored with each address tag. The status bits can represent validating entry bits, which allow storing multiple data entries with each address-tag entry (block size = n), as well as individual so-called dirty bits needed for copy-back caching schemes.

The MCM62350 and MCM62351 RAMs also feature bitset and bit-clear write cycles, which allow individual bits to be unconditionally set or cleared through a mask. Thus, any combination of the four bits in any particular location can be set or cleared without having to read the RAM, modify the data, and write it back as in a conventional SRAM. This feature is useful with the AOI com-

RICHARD CRISP, BRIAN BRANSON, AND RON HANSON Motorola MOS Memory Products Div., 3501 Ed Bluestein Blvd., Austin, TX 78762, (512) 928-6141.

Reprinted with permission from Electronic Design © 1988 VNU Business Publications Inc. (Vol. 36 No. 23) October 13, 1988.

DESIGN APPLICATIONS CACHE SYSTEMS

parator for storing status bits. Also, both the MCM62350 and the MCM62351 have ground pins positioned to achieve minimum self-inductance in both DIP and small-outline J-type packages.

The MCM62350 differs from the MCM62351 in that it offers a user-configurable Match-output active level. The MCM62351 has an active high open-drain Match output. Wire-ORed connections of separate Match pins allow the comparison width to expand efficiently.

The design of external caches for the MC68030 involves two major timing problem areas—in the addresstag-comparator and in the data cache. Since the synchronous bus protocol makes it possible to use short bus cycles and supports burstmode accessing, the prudent designer will also choose to use it for external cache interfacing to the MC68030 (see "A Synchronous Bus Protocol").

The primary challenge with timing the address-tag comparator is to avoid wait states when the processor runs at a high frequency. Generally, only a hit in any given bus cycle should assert the Synchronous Termination Handshake (/STERM) signal. The first order of business, then,

is how to generate /STERM.

To avoid a wait state, the MC68030 asserts the worst-case Address Strobe (/AS) signal at the same time that the /STERM signal is activated. As a result, cache designs for this processor cannot generally use the /AS to signal the cache that a bus cycle is starting.

Nevertheless, the address-tag comparison must be qualified based on valid addresses that /AS announces. Fortunately, a signal called External Cycle Start (/ECS) is valid slightly earlier than the addresses. Whenever the processor needs an instruction or data, it therefore asserts

WHAT'S THE CACHE?

ith a cache, when a processor executes a new task, it fetches from the system's main dynamic memory the first instruction and corresponding data, plus the instructions and data for several subsequent operations at adjacent memory addresses.

The cache's SRAM memory fetches the instructions and data from the adjacent main-memory addresses because they have a high probability of being used in the operations that follow. Most programs contain loops, and if the cache is large enough, the needed information will be present in the fast cache, shortening the average memory-access time.

That's a cache hit. If the cache doesn't contain the information, a miss occurs. In this case, the main memory again responds, and the cache receives updated instructions and data.

A cache controller circuit sequences the necessary functional steps. For normal program operation, the system doesn't directly address the cache. The cache subsystem stores both the information and its corresponding mainmemory address. The controller compares the stored address in the cache, called the address tag,

with the address the processor provides to determine whether the cache contains the requested data.

Cache types are usually delineated by their placement policy, or mapping algorithm, which determines where new information is stored in the cache. Most caches are either associatively content addressable or directly mapped, random-accessible types.

Whereas in a straight RAM, the processor directly accesses the information, in a content-addressable memory a match with a stored address of the information's original main-memory location causes the contents-addressable portion of the cache to respond with a pointer (see the figure, opposite, left). The pointer, or address, then specifies the data's location in a random-accessmemory portion of the cache system. This fully associative memory cache copies the information in any main-memory location into any location in the cache.

A directly mapped cache, on the other hand, uses random-access memories to store both an address tag and the information's image (see the figure, opposite, right). The low-order bits of the address from the processor provide an index into the address-tag-store

portion of the cache system, which stores the high-order address bits. To determine whether the requested information resides in the cache, the system compares the high-order address bits from the processor's bus with the contents of the address-tag-store RAM. If they're the same, the cache contains the requested information. Unlike in a fully associative cache, in a directly mapped cache, a memory-address location has its information copied into only one unique location.

The fully associative contentaddressable memory cache can have a higher hit rate than any other cache type of the same size m. But it's very expensive, compared with a directly mapped random-access cache memory of comparable size.

When n directly mapped caches operate in parallel, the cache is designated as an n-way set-associative type. Nevertheless, system designers may consider both directly mapped and fully associative types as set-associative caches. A directly mapped cache is simply a one-way set-associative type, and a fully associative tone is an m-way set-associative type.

A four-way set-associative cache yields about the same hit

DESIGN APPLICATIONS CACHE SYSTEMS

/ECS during the clock's high phase when the new addresses appear. Should the processor find what it needs in its internal caches, it would not assert /AS and an external bus cycle would not run. If /STERM activates when no bus cycle runs, the processor ignores it.

The timing diagram of the synchronous bus shows that after addresses are valid, /STERM must be activated within just a half clock period minus the clock-rise time to avoid wait states. Operating at 25 MHz, that leaves only 15 ns to check for a cache hit and assert /STERM if wait states are to be avoided.

The circuit must furnish an extra gate for the results of the tag comparator to be ANDed with a qualifier—a latched /ECS signal. A 74F64 AOI gate can AND the Match signals from the tag comparators to this qualifier. Unfortunately, this gate adds a 5.5-ns delay to the circuit. Consequently, the tag comparators must perform their comparison in 9.5 ns.

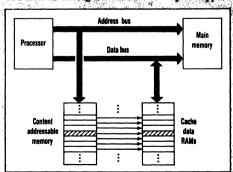
Since TTL-compatible tag comparators aren't that fast, this technique isn't feasible. Two options remain: Always assert /STERM after /ECS, and if the cache misses assert /BERR and /HALIT retry, or insert a wait state. With retries, at 25 MHz,

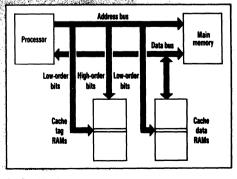
the tag comparator has 35 ns to perform its function and generate /STERM. At 33 MHz, it has just 28 ns. For the wait-state option, 34.5 ns is available to generate /STERM after the addresses are valid.

Retries, however, can run into trouble. After requesting a retry, the processor must disable the cache to prevent a system deadlock condition when the bus cycle reruns. Also, before the bus cycle can rerun, a two-clock-cycle delay occurs. As a result, the penalty incurred when the external cache misses might be greater than it would be if the processor asserted /STERM only on a cache hit.

rate as a fully associative one-way cache of the same size. In an n-way set-associative cache, any particular address location maps data in n locations in the cache.

Consider the issues involved in designing the address-tag store and comparator of a directly mapped cache. For maximum performance, the time taken to bus load the addresses should be minimum. Thus, one component should both store and compare the address tags to minimize delays resulting from off-chip signal propagation. For a 16-kword by 32-bit cache operating on a 32-bit address bus, the part must store a 16-bit wide address-tag field, plus a 17th bit to indicate that the address tag is a valid ex-


try. Consequently, the storage of only one cache data item for each address-tag entry—a block size equal to one—requires an address-tag storage capability of 16 kwords by 17 bits.


When storing a data items with each address tag entry; the block size equals a. Keeping the cache size constant reduces the depth of the address tag store by a factor of a.

Having only one validating bit for each address tag, however, requires either as n by 32 bit main memory data-but width or sunning a 32 bit bus cycles to 10 the cache line in the event of a miss. Another event could also transfer the n by 32 bits. A less restrictive way to support n entries per ad-

dress tag is to have n validating bits stored along with the address tag. Then when the system records a miss, the controller updates the address tag and sends only the validating bit corresponding to the transferred data item. This procedure requires only a 32-bit data bus and one main-memory cycle to allocate a new cache line.

An increased block size would mean that designers need fewer memory components to build the address-tag store and comparator. A large block size with fewer estaponents not only saves board space, and shrinks cost, but also reduces address-bus loading, which then, of course, will result in faster performance.

CACHE SYSTEMS

Therefore a no-wait-state cache with a low hit rate can perform worse than a cache with a wait state.

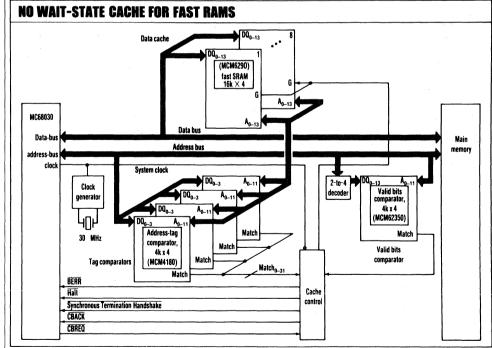
A secondary difficulty with tag comparators in MC68030 cache designs is supporting burst-mode accesses. The address-tag-comparator timing is clearly a limiting factor in the design of external caches for the MC68030. Because the burst-mode cycles furnish only a first address for the four desired long words, the circuit must provide autoincrementing addressing to the address-tag comparator and the cache-data RAMs. This requirement, coupled with the fact that burst transfers can occur in single clock cycles, implies that incrementing the addresses into the address-tag comparator will not be fast enough to support one-cycle bursting.

Organizing the cache with a block size of four is a viable one-cycle

bursting solution. Storing a valid bit for each long word per tag, then, requires only checking the valid bit on the fly during the bursting portion of the burst-mode transfer.

This approach can exploit the fast timing of the compare port in an MCM62350 or MCM62351 to store the valid bits. It also allows the AOI comparator option for the valid-bit comparisons to operate effectively (Fig. 2).

A PAL POINTER


The open-drain Match pins of the MCM62351s permit wire-ORing of the four address-tag outputs to the matching circuit and thereby the elimination of a fan-in gate. A PAL device makes possible a simple, fast input to this circuit by providing a pointer for checking only the relevant long word while bursting. The address tag still needs comparison,

but only on the initial access.

The PAL should contain a decoder to decode addresses A2 and A3 from the processor. The resulting one-of-four outputs then enter a shift register, also built into the PAL. In this way, the four outputs from the PAL provide the compare port of the status-bit comparator with a rotating pointer. In the AOI comparator, a single valid bit compares when only one of the four compare inputs is at a logic-one level. The other three valid bits become don't cares.

A block size of four not only allows single-cycle bursting to work, but it also saves components. Furthermore, because address-line loading is reduced, the processor can drive its address bus more quickly. The result is fast hardware.

The main data-RAM issues relate to burst mode. They include address autoincrementing and data setup

1. A CACHE SYSTEM with four XNOR-configured comparators and one AOI configured comparator—each with a depth of 4-kword entries, a 16-kword-by-32-bit cache, and a block size of four—has the lowest cost, reduced bus loading, and fast hardware.

DESIGN APPLICATIONS

CACHE SYSTEMS

A SYNCHRONOUS BUS PROTOCOL

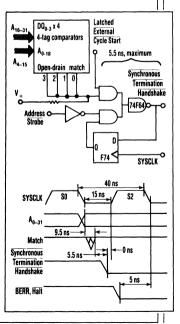
he MC68030 adds a new bus protocol—the synchronous bus cycle—to the MC68XXX family of processors. Like its predecessors, the MC68030 supports the standard asynchronous bus protocol. Unlike the asynchronous bus on the MC68020, the 60830's synchronous bus doesn't support dynamic bus sizing. As a result, all synchronous bus cycles issue from a 32-bit port.

The minimum length of the MC68030's synchronous bus cycle is two clock periods, whereas the MC68020 has a minimum bus cvcle of three clock periods. Also, the MC68030 has on-chip memorymanagement functions; the MC68020 does not. Since an MC68851 memory-management unit requires a clock cycle to translate logical addresses to physical addresses, the minimum physical bus-cycle length of an MC68020-MC68851 combination requires four clock periods. The MC68030 bus can therefore operate twice as fast as an equivalent MC68020-MC68851 system at any given clock frequency.

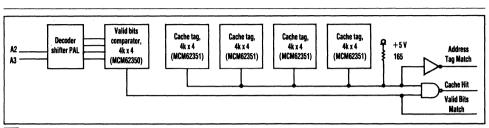
Another feature added to the MC68030 bus, the burst-mode protocol runs only in synchronous mode. The MC68030 has two internal caches—an instruction cache and a data cache. Both have 16 lines with a block size of four (four 32-bit words per address tag). When either internal cache of the MC68030 records a line miss from a cachable area of main memory, the system attempts to burst four long 32-bit words to fill the new line.

The processor places the address of the first long word on the bus and expects the return of the corresponding data, plus three additional long words, in as little as three clock cycles. The processor doesn't change the address on the bus during these subsequent transfers. Rather, it assumes that

the external memory increments address lines A2 and A3 in a modulo-four fashion, as if the the bus were operating in nibble mode. Thus, with no wait states, the MC68030 receives as many as four long words in just five clock cycles by using the burst-mode prococl. Because the application's characteristics affect the type of code the system runs, the decision of whether or not to use the burst mode is very important. System designers would do well to study the matter in depth.


A knowledge of the timing requirements of no-wait-state operation is crucial to understanding how the MC68030's synchronous bus operates (see the figure). When a new bus cycle starts, the processor delivers memory addresses during a system-clock high time, but the addresses are guaranteed valid only at the end of the clock high time.

To avoid wait states, the Synchronous Termination Handshake signal, /STERM, must assert 0 ns before the rising edge of the next system-clock pulse. If this condition is met, the processor latches the data on the next falling edge of the clock. The processor needs a 5-ns setup time for the data with respect to the falling edge of the clock.


If the processor requires wait states, /STERM can be delayed relative to the clock rising edge to allow the use of slow memories in the synchronous mode. This feature applies also to burst-mode cycles. But when the processor recognizes /STERM on a clock rising edge, data latches on the next falling edge, subject, of course, to adequate setup and hold times.

When the processor runs a burst cycle, it can accept new data with the same setup time to the clock on the clock's next three falling edges. The processor also needs an 8-ns data hold time after the clock falls when operating at 25 MHz. Accordingly, if the processor runs burst cycles at 25 MHz, the data must be valid during the bursting portion of the cycle for 13 ns of the 40-ns clock period to meet the processor's setup and hold time requirements.

Like its predecessors, the MC68030 microprocessor supports bus retries and reruns. If the bus-termination handshake STERM/, or DSACKx/, is asserted with proper setup time relative to a rising clock edge, activating BERR/ and HALT/ with a 5-ns setup relative to the next falling edge of the clock aborts and reruns the current bus cycle. But this action results in two dead clocks on the bus before the bus cycle restarts. Nevertheless, no wait-state caches designed for the MC68030 use this technique to prevent the processor from latching bad data when an external cache records a miss.

CACHE SYSTEMS

2. ORGANIZING THE CACHE with a block size of four is a viable single-cycle burst-mode solution. This approach can exploit the fast timing of the compare port in an MCM62350 or MCM62351 to store the valid bits and make it possible to effectively apply the AOI comparator option for the valid-bit comparisons. The open-drain Match pins of the MCM62351 permit the wire-ORing of the four address-tag outputs to the matching circuit, thereby eliminating a fan-in gate.

and hold timing to the processor. At issue is whether burst mode supports two-cycle write timing.

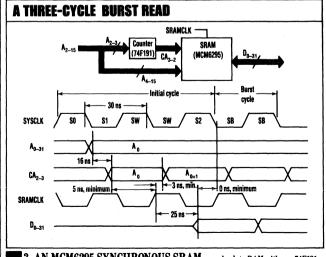
If a synchronous bus cycle is run, the data must set up at the processor without delay (in 5 ns), before the first falling edge of the clock after the processor recognizes the STERM signal. If the cycle is two clock periods, then the time available to access the cache-data RAM equals a clock period. For a 25-MHz clock, the time available would be 35-ns. A 33-MHz clock would yield a 25-ns interval.

For single-clock burst cycles, also, 35 ns is available for RAM accesses at 25 MHz. But the data hold time af-

ter a clock low at 25 MHz is merely 15 ns. That short time interval calls for very fast output-enable SRAMs, such as the MCM6290.

To support the burst mode, a 74F191 counter, inserted in series with A2 and A3 address pins, gives two incremental addresses to the cache-data run for autoincrement addressing. Unfortunately, the processor's data-hold-time requirements prevent this scheme from working. Besides, the counter's latency in a parallel-load mode requires a RAM faster than 35 ns.

A MCM6295 synchronous SRAM as the cache-data RAM, with one 74F191 counter, readily supports sin-


gle-cycle bursting (Fig. 3). Latching the data outputs when the synchronous SRAM clock is low resolves the issue of data-hold time. Furthermore, once the synchronous SRAM clock drives high, the addresses into the device are registered and can be changed for the next access in the burst sequence.

When the MC68030 performs a two-clock write cycle, the data and address sent to the RAMs are simultaneously valid for only a half clock period. For clock frequencies over 25 MHz, this time isn't adequate to complete a write cycle in typical fast static RAMs. In that case, it's necessary to insert a wait state. □

Richard Crisp led the design team for the Motorola cache-tag comparators. He has helped design several microprocessors, including the MC69000, MC658020, and the Intel P7CP. Crisp, who holds a BS from Texas A&M University, has four U.S. patents.

Brian Branson received a BS from Colorado State University. At Motorola, he designs application-specific static and dynamic RAMs. He has one patent pending.

Ron Hanson holds a BS from Rose-Hulman Institute of Technology and an MBA from Indiana University, in Bloomington. Hanson is a product marketing engineer for fast static RAMs at Motorola.

3. AN MCM6295 SYNCHRONOUS SRAM, a cache-data RAM with one 74F191 counter, readily supports single-cycle bursts.

AR260/D

ENHANCING SYSTEM PERFORMANCE USING SYNCHRONOUS SRAMs

Curt Wyman Robert King Motorola Inc. 3501 Ed Bluestein Blvd. Austin, TX 78721

INTRODUCTION TO SYNCHRONOUS SRAM ARCHITECTURE

Fast static RAMs (FSRAMs) are commanding a lot of attention from today's high performance system designers who frequently find that the speed of their system is limited by the performance of FSRAMs on the market. As 32-bit microprocessor-based systems become faster and more prevalent, the demand for sub 25 ns FSRAMs will grow even more.

FSRAMs are the driving force behind semiconductor technology today: they have the smallest circuit features - as low as 0.8 micron from some manufacturers—and use special processes like double-level metal and BIMOS. The Fast SRAM has come a long way from its slower ancestors like the 1K × 4 Model 2114. The ease of use and dependable performance that resulted from the asynchronous performance of SRAMs have been replaced by the raw speed which is pacing today's demand; however, FSRAMs are still expected to meet the basic SRAM specifications for pure asynchronous performance. This dichotomy has caused problems as chip designers come up with more innovative ways to speed up their circuits. Address transition-detection circuitry, for example, caused a number of problems when first introduced in 2K × 8 FSRAMs under certain system conditions. With such advanced technology being used and the cost of manufacturing these chips so high, Motorola has developed an alternative to a high-tech 15 ns access SRAM that uses conventional technology.

Motorola's newest SRAMs are the first to fully embrace the primary purpose of Fast SRAMs. They totally abandon the previous definition of asynchronous SRAMs. They have the requirement of a clock signal, and are, therefore, Synchronous SRAMs. They have separate pins for input and output data, and do not specify standby power.

Motorola offers four different 65,536-bit Synchronous SRAM family members organized as 16K × 4: Models MCM6292, MCM6293, MCM6294, and MCM6295. The technology used for their implementation is the fast, low power-consuming, and noise-immune HCMOS III, which uses a silicon gate for its fabrication. One of the main advantages to using these devices is that they can be designed into system cache-memory or writeable control-store applications with fewer interfacing glue-type parts than the standard SRAM memory. Among the reasons for this are the integrated input and output latches that are capable of driving loads up to 130 pF. Due to the increased operating speed of the device and the additional output-buffer loads, an extra ground pin has been placed on the chip.

Four different devices have been specified so that all combinations of the output-latching and output-enable features are in the offering. The MCM6292 comes equipped with latches that are edge triggered on the inputs but transparent on the outputs. To support systems with pipelined data, the MCM6293 is offered with edge-triggered latches on both the

Reprinted with permission from ECN, Chilton Company, October 1987.

inputs and outputs. The MCM6295 and MCM6294 are output-enable versions of the two basic parts. All of the Synchronous SRAMs come with separate data-in and data-out pins; however, some systems specify a more conventional common I/O mode, and the asynchronous output-enable control $\overline{(G)}$ which replaced the \overline{S} signal on these parts can be helpful in such a case.

In many designs using SRAMs, there is actually extra time during the cycle that is being wasted. In more critical applications, the Synchronous SRAM offers an alternative to the conventional SRAM. An external clock input (K) can be used to precisely control the cycle by directing the operation of the on-chip latches.

The designer of small personal computer systems can use the Synchronous SRAM in a number of storage areas. One of the primary applications, cache memory, is high-speed memory that resides between the central processing unit (CPU) and the main memory of the system. Accesses to this fast cache typically require 60 ns versus the 200 ns needed to perform an access to main memory. One way the cache is used is to store data or instructions from main memory that are frequently called for by an application. As an example of this, higher-level languages often use repetitive loops: by storing the data necessary for these repeated operations and instructions in the cache, accesses to the main memory can be avoided.

A typical system is illustrated in Figure 1. It is configured as a cache memory residing between the CPU and the system bus. The system bus links the main memory and I/O devices to the CPU by way of the cache.

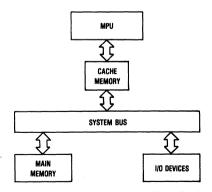


Figure 1. A primary synchronous SRAM application is high-speed cache memory residing between the CPU and the main memory of a personal computer system. Accesses to the cache typically require 50 ns, whereas main memory takes 200 ns.

In operation, there is one set of locations in which data is stored and another set of locations containing a cache tag for each word in the cache. The cache tag identifies the main memory location with which the data is associated. A comparison is made between the cache tags, which are located in the cache memory, and the address, which is generated by the microprocessor at the beginning of a cycle. If a cache tag and the address match, there is no access made to main memory, but instead the read or write cycle is executed on the corresponding byte of data stored in the cache. When the address does not find a match, a miss occurs, and new locations must be read into the cache from main memory.

A cache miss is the result of a mismatch between the cache tag and the desired address to be accessed by the CPU. When this occurs, the system logic is allowed to perform a retry of the previous access. The appropriate address is accessed from main memory. Following an update of the cache, the data is then available for processing.

The cache hit rate is the actual percentage of accesses made to the cache in which the requested address is resident. In order to keep the hit rate as high as possible, a variety of software routines are used. The function of these routines is to keep the cache as full as possible with the most frequently used data. In so doing, the cache hit rate for both the data and instruction caches will be maximized, increasing overall information throughput.

The Harvard architecture, an efficient method used in many current day applications, is characteristic of a configuration which supports parallelism throughout a system. Synchronous SRAMs can be organized as relatively small external caches connected to the data buses and instruction paths located between the CPU and main memory. This will allow simultaneous instruction execution and data prefetches. The external cache demonstrates another system speed enhancement capability of these devices.

ADDRESSING CONSIDERATIONS FOR READ/WRITE CYCLES

To better understand the Synchronous SRAM's addressing capabilities in regard to read and write cycles, refer to Figure

2. In this illustration, there are four MCM6292 synchronous SRAM devices configured to operate on a 16-bit data bus. Each memory has four data inputs and four data outputs to allow the transfer to data. The address bus consists of 14 address bits, A0-A13. These 14 bits are required to decode and access the 65,536 memory locations of each device. The memory matrix is configured as 128 rows by 512 columns. The system clock is connected to the (K) input of each memory and used to latch all inputs, outputs, write enable, and chip select.

In Figure 3, there are two different read-cycle timings being represented for the MCM6292 (transparent output latches). Both are examples of systems that use the rising edge of (K) to latch all inputs to the memory device. The states of the outputs are then held until the clock makes its transition to the low state. With this Synchronous SRAM, however, it is possible to have different memory access times, depending upon the condition of the clock (K). If the clock pulse is high for less than the 25 ns access time of the memory device, the total access time is rated at tKHQV or 25 ns (Read Cycle 1). On the other hand, if the high portion of the clock cycle lasts longer than 25 ns, the total access time becomes tKLQV (10 ns maximum) plus the length of the clock high (Read Cycle 2).

Figure 4 has been included to show the timing of a write cycle. The timing of a write operation is similar to that of the previously discussed read cycle. One point to consider is that to generate a write pulse, there is no requirement for complex external interfacing chips. This is accomplished through the self-timing mechanism which samples both the write enable and input data when (K) rises. A high-impedance state is entered when the clock returns low.

MPU AND MEMORY SPEED CONSIDERATIONS AT A SYSTEM LEVEL

One consideration worth mentioning is that many memories are not able to keep up with very high-speed MPU control devices. This has been a problem with DRAM technology for a number of years. MPUs operating at clock speeds of over 20 MHz are common in both business and engineering systems

Figure 2. An array of synchronous SRAMs is configured for a 16-bit data bus. Each MCM6232 has four data inputs, four data outputs, and fourteen address lines.

READ CYCLE 1 (See Note 1) tki kh tsvkh tsvkh **tKHSX tKHSX tKHAX TAVKH** A (ADDRESS) twhKHtKHQV tKLQX - ¹KLQZ -PREVIOUS HIGH Z Q_n Q0-Q3 · READ CYCLE 2 (See Note 2) tKHKH ^tSVKH +tsvkH-≢ **tKHSX** A (ADDRESS) **tWHKH** ^tKHWX tKLQZ tKLQV

NOTES:

00-03 -

- 1. For Read Cycle 1 timing, clock high pulse width <(tKHQV-tKLQV).
- 2. For Read Cycle 2 timing, clock high pulse width ≥(tKHQV-tKLQV).

- PREVIOUS HIGH Z -

Figure 3. If the system's clock high, tKHKL, is shorter than the MCM6292's 25 ns access time, then the total access time will be 25 ns. However, if tKHKL is longer than 25 ns, total access time is increased.

Q,

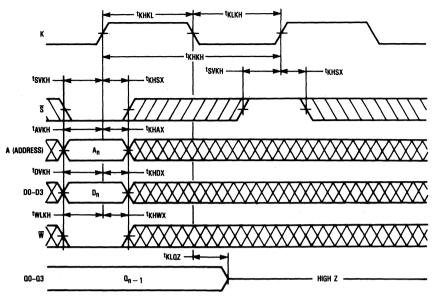


Figure 4. In a write cycle, the self-timing mechanism of the MCM6292 samples both the write enable and the input data when the clock signal, K, rises.

WHAT'S TO COME FROM SYNCHRONOUS SRAMS

in use today; therefore, 25 ns Synchronous SRAMs are ideal to operate with zero wait states.

Wait states are implemented with slower SRAMs and most DRAMs to freeze the state of the microprocessor address and data bus for a clock cycle. As long as the signal controlling wait states is asserted, more wait-state periods will be generated. The microprocessor resumes operation when the wait-state signal is negated.

The alternative to implementing a wait state to halt the microprocessor for a slow memory device is to use the much faster Synchronous SRAM. Its timing parameters can be more exactly controlled, making the system operate more efficiently. Faster data throughput plus an improvement in overall system performance make the Synchronous SRAM cache a very cost-effective solution in a microprocessor-based system.

When performing read and write operations in a personal computer system, the timing relationship between a high-speed microprocessor's system clock and a typical Synchronous SRAM's cycle time constraints is very critical. These operations could be as simple as inputting console information for CRT display outputs or as complex as supporting multitasking environments or concurrent execution of operations.

High-performance microprocessor systems with operating frequencies of 20-25 MHz are a realistic timing example being offered today. For microprocessors capable of operating at these speeds, a 25 ns Synchronous SRAM is ideally suited. These devices not only provide precise clocked timing control, but also will support applications requiring system clocks running at over 30 MHz. This can be accomplished without incurring any degradation of the processor by inserting wait states.

Very high cache hit rates can be attained from a relatively small cache store. The high-rate efficiency is primarily due to the fact that the cache is located external to the CPU rather than actually being an on-chip cache, as is the case with some high-performance microprocessors.

In addition to the popular high-speed cache-memory applications, Synchronous SRAMs are also ideal for writeable control store environments. Data can be downloaded into a Synchronous SRAM array, and the information can be accessed at very high speeds—much faster than from a DRAM array.

Memories are taking on new roles. Because of this, they are being used in a wide variety of application areas and operating to support functions previously not possible. Future Synchronous SRAM devices will be even more complex and some will very likely contain higher degrees of intelligence. Many will be designed with special system functions in mind. Higher-speed operation working from lower voltage sources is just one example. There will be enhancements allowing the designer more flexibility and enabling him to reach supercomputer performance.

Current-day static memories support numerous applications. The synchronous SRAMs discussed above will be offered in 300-mil, 28-lead CERDIP and 400-mil, 28-lead plastic SOJ packages. These configurations satisfy the requirements of most systems presently. As chip integration and sophistication continue to advance, the packaging technology will also need to advance to promote future innovations within the industry.

For more information on MCM6292-series synchronous SRAMs, contact Memory Marketing at Motorola, Inc., MOS Memory Products Div., P.O. Box 6000, Austin, TX 78762. (512) 928-6700.

AR258

HIGH FREQUENCY SYSTEM OPERATION USING SYNCHRONOUS SRAMS

Frank Miller
Scott Remington
Richard Crisp
Senior Memory Designers
Motorola Inc.
3501 Ed Bluestein Blvd.
Austin, TX 78721

INTRODUCTION

The market for semiconductor memory products suitable for today's high speed cache applications is changing dramatically as the demand for higher performance super mini, ASIC, and microprocessor based computers rapidly increases. This development has put heavy pressure on MOS memory suppliers for faster and faster static RAMs to support shorter and shorter processor cycle times. To utilize their full system performance, fast SRAMs require precise system control, long address hold times, and have tight write pulse requirements. They provide short data valid time, cause common I/O data contention, and offer low drive capability. Todays high performance processors themselves have similar I/O requirements. Therefore system designers have many concerns when designing a fast memory subsystem. They must use additional logic (latches, drivers, pulse generators, etc.) to allow the memory subsystem to interact efficiently with the processor at the fastest system cycle times.

A solution to get the memory and the processor to work well together at fast cycle and access times lies not only in faster components, but in minimizing the need for external glue logic and its associated delays. The Synchronous Static RAM is defined as having on chip latches for all its inputs and outputs, added drive capability, and a self timed write cycle all under the control of the system clock. This eliminates the need for most external logic chips and allows the memory to run at higher system speeds than standard SRAMs with comparable access times.

This paper outlines the basic architecture of a Synchronous SRAM that Motorola plans to introduce in the first half of 1988. We will highlight its advantages over standard SRAMs in high frequency computer system operation. This is followed by an application example for a MC68030 cache subsystem.

ARCHITECTURE AND OPERATION

ARCHITECTURE

A block diagram of the $16K \times 4$ Synchronous SRAM is shown in Figure 1. This diagram shows all inputs, outputs, and control signals $(\overline{W}, \overline{S},$ and K) to the part; addresses (A0–A13), data in (D0–D3), data out (Q0–Q3), clock (K), chip select (\overline{S}) , and write enable (\overline{W}) . All inputs, outputs, write enable, and chip select are latched by the clock.

The latches are one of two types, either positive edge triggered or transparent. The positive edge triggered latches are latched by the rising edge of clock (K). The transparent latches are frozen when the clock is in the high state and open when it is in the low state. Our parts feature two of the possible combinations of input and output latches. The first part, the MCM6292, features edge triggered latches on the inputs and transparent latches on the outputs. Our second part, the MCM6293, has edge triggered latches on both inputs and outputs, to aid in pipelining data.

The output buffers on all of our parts are capable of driving 130 pF loads. The output buffers were designed to drive this load because in some systems the latches that they replace would be required to drive a comparable size load. Due to the size of load that the output buffers must drive, and the speed at which the part operates, we have added an extra ground pin (VSSQ). This pin is the ground connection for all of our output drivers, and allows us to drive our outputs harder and also gives us noise immunity on the ground bus.

For systems that require a common I/O configuration we expect to offer the MCM6295 and the MCM6294, which are the MCM6292 and the MCM6293 with an asynchronous output enable (\overline{G}) option. These parts, the MCM6294 and the MCM6295, replace the chip select (\overline{G}) buffer with an asynchronous output enable (\overline{G}) buffer.

OPERATION

The operation of these parts is much the same as a standard $16K \times 4$ SRAM except for the fact that the inputs and outputs are latched and the cycle begins with the low to high transition of the clock. The following examples will concentrate on a read and write cycle for both the MCM6292 and the MCM6293. The MCM6294 and MCM6295 read and write cycles are the same as the MCM6292 and the MCM6293 except that the outputs can be put into a high impedance state at any time by using output enable (\overline{G}) .

During a read, see Figure 2, all inputs are latched into the part at the rising edge of the clock (K) in both the MCM6292 and the MCM6293. For the MCM6292, when clock goes high, the outputs become latched and are held in that state until the clock falls low. Since the output latches are transparent, during clock low time, there are two possible access times, tKHQV and tKLQV. These access times are dependent upon the high pulse width of the clock. If the high pulse width is less than the access time of the memory array the longer tKHQV spec is the clock access time. However if the clock high pulse is longer than the memory array access time, the clock access time becomes tKLQV. For the MCM6293 the

Copyright © Electronic Conventions, Inc. Reprinted with permission, from MIDCON 1987, Professional Program Papers, Session #22/4.

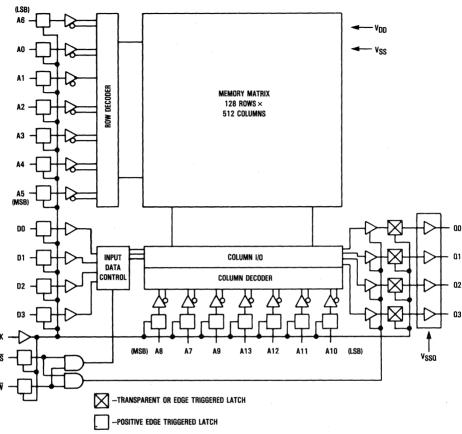


Figure 1. Synchronous SRAM Block Diagram

outputs transition only when the clock switches from low to high. The output data that is latched during the low to high transition of the clock is the data from the previous read cycle.

For the write cycle, see Figure 3, all inputs are handled in the same manner as in the read. Since both write enable and the input data are sampled on the rising edge of the clock the write becomes self timed. This eliminates the need for complex off chip write pulse generating circuitry. The outputs are put in a high impedance state t_{KLOZ} after the clock falls low for the MCM6292. In the MCM6293 the output buffers will not go into a high impedance state until the low to high transition of the clock at the beginning of the next cycle. The MCM6294 and the MCM6295 allow the user to put the output buffers into a high impedance state asynchronously by using the output enable input. This allows the user to put the output buffers into a high impedance state earlier in the cycle, which eases the data contention problem when the part is used in a common I/O system configuration.

SYSTEM ADVANTAGES (SRAM vs SSRAM)

SYSTEM DESCRIPTION AND TIMING

Figure 7 shows two examples of a $16K \times 32$ bit memory using standard parts. The systems shown require eighteen parts each, ten latches and eight $16K \times 4$ SRAMs, to implement the same function as eight synchronous SRAMs and no glue logic.

The functional equivalent of a MCM6292 is the standard 16K × 4 SRAM with edge triggered latches on the inputs and transparent latches on the outputs, as shown at the top of Figure 7. The parts used in this example are six 'F374 octal D-type flip flops, four 'F373 octal transparent latches, and eight 6288 16K × 4 SRAMs. The predicted timing diagram for the system is shown in Figure 4. This timing diagram compares the predicted system access with that of the MCM6292. In the timing diagrams an approximate skew of 5 ns was added to the address timing to allow for some propagation delay from the MPU or CPU. For the purpose of comparison, three timing

Figure 2. Read Cycle Comparison

Figure 3. Write Cycle Comparison

$(t_{AVQV} = 50 \text{ ns}, t_{CYC} = 25 \text{ ns})$ SKEW -HOLD SETUP (a + 1)(X TAIC) (a + 2)(a + 1) la · (a) -5 ns--ı Q (a) $\Omega (a-1)$ 00-03 25 ns (Tb) 2 ns K2 OT(0-3) QL (a - 2) QL (a - 1) QL (a)

STANDARD SRAM WITH EDGE TRIGGERED LATCHES ON INPUTS AND TRANSPARENT LATCHES ON OUTPUTS

NOTE: AT-Address generation and transition time.

Figure 4. Standard SRAM vs MCM6292 Timing Diagram

parameters were calculated, t_{CYC} (cycle time), t_{AVQV} (address valid to data out valid time), and t_{KQV} (address clock valid to data out valid time). The equations used to calculate each of the timing parameters for the standard SRAMs are as follows:

$$t_{\mbox{CYC}} = \mbox{Ta} + \mbox{Tb} - \mbox{Tc}$$

$$t_{\mbox{KQV}} = \mbox{Ta} + \mbox{Tb} + \mbox{Td}$$

$$t_{\mbox{AVQV}} = \mbox{skew} + \mbox{setup} + \mbox{Ta} + \mbox{Tb} + \mbox{Td} \ .$$

The equivalent timing parameters for the MCM6292 can be determined as follows:

$$t_{CYC} = Tb$$
 $t_{KQV} = Tb$
 $t_{AVQV} = skew + setup + Tb$.

The equivalent circuit for the MCM6293, as shown at the bottom of Figure 7, is a $16K \times 4$ SRAM with positive edge triggered latches on both inputs and outputs. For this example the parts used are, eight 6288 $16K \times 4$ SRAMs and ten 'F374 octal D-type flip flops. The timing diagrams for this example are shown in Figure 5. The equations for calculating the timing parameters are as follows:

Standard SRAMs:

$$t_{CYC} = Ta + Tb - Tc$$
 $t_{KQV} = Ta + Tb + Td + Te$
 $t_{AVQV} = skew + setup + Ta + Tb + Td + Te$

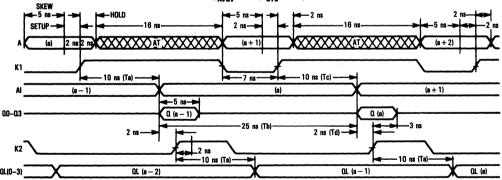
MCM6293:

$$t_{CYC} = Tb$$

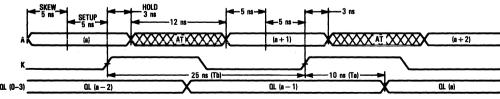
$$t_{KQV} = Tb + Te$$

$$t_{AVQV} = skew + setup + Tb + Te$$

SYSTEM COMPARISONS


The timing parameters for the 25 ns 16K × 4 synchronous SRAMs and the equivalent circuits using 25 ns SRAMs are in Table 1. Also in Table 1 are timing parameters for other systems using progressively faster and more expensive SRAMs. From this table it can be determined that if either tAVQV or tKQV were the most important timing constraints a much faster SRAM would be needed to match the performance of the synchronous SRAM. For the performance of the system built with standard parts to match the performance of the 25 ns MCM6292, it would be necessary to use a 10 ns SRAM. Similarly, if the system used 25 ns MCM6293s the equivalent system made from standard parts would require 15 ns SRAMs.

Another important advantage of the synchronous parts over standard parts is the board level chip count; 18 parts are necessary when using standard SRAMs while only 8 parts are needed for the synchronous SRAM implementation. This is critical when board space is an important factor. Also, the fact that data and write enable are sampled on the rising edge of the clock, eliminates the need for complex write pulse generating circuitry. Finally, in order to get the high speed performance out of standard SRAMs, it requires precise timing and phase control of two clock signals (K1 and K2), while in the synchronous part only one clock (K) is needed.


APPLICATION: MC68030 CACHE SUBSYSTEM

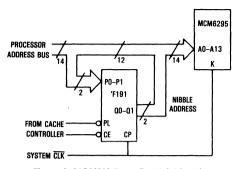
The Synchronous SRAM combined with the Motorola MC68030 microprocessor illustrates the potential of this advanced memory architecture. The high frequency performance of microprocessors like the MC68030 can be impaired by having

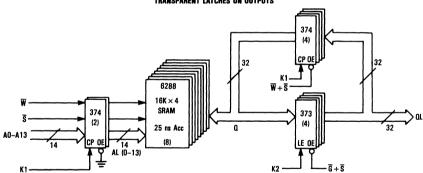
STANDARD SRAM WITH EDGE TRIGGERED LATCHES ON INPUTS AND OUTPUTS $(t_{AVQV}=54~\text{ns},~t_{CYC}=25~\text{ns})$

MCM6293 SYNCHRONOUS SRAM (tayoy = 45 ns. tayo = 25 ns)

NOTE: AT-Address generation and transition time.

Figure 5. Standard SRAM vs MCM6293 Timing Diagram




Figure 6. MC68030 Burst Read Addressing

to wait for slow memory to respond. For this example we will use a 16K by 32-bit cache system running at frequencies of up to 33-1/3 MHz. This does not mean that you can purchase MC68030 processors today at this speed, only that our 25 ns SSRAM will support this processor up to that speed. The MC68030 timings used for this example are extrapolated from the current 16.67 and 20 MHz specifications that exist today and are not intended to be the official specifications.

We will exploit the processor's burst read cycle which supports burst filling of its on-chip instruction and data caches, adding to the overall system performance. The on-chip caches are organized with a block size of four long words, so that there is only one tag for the four long words in a block. Since locality of reference is present to some degree in most programs, filling of all four entries when a single entry misses can be advantageous, especially if the time spent filling the additional entries is minimal. When the caches are burst-filled, data can be latched by the processor in as little as one clock for each 32 bits. ¹

The timing diagram shown in Figure 8 shows a burst read cycle (four 32-bit words read) in a 3-1-1-1 clock cycle configuration. The first word is read in 3 clock cycles and the remaining three words are read in one clock cycle each. The burst read cycle begins with a cache burst request (CBREQ) from the processor followed by a cache burst acknowledge (CBACK) from the memory controller. This means the processor is requesting a burst cycle and the accessed memory can comply. During the burst cycle the processor supplies the starting address in the normal synchronous fashion and holds it valid until all four long words are read. It does not provide the next three addresses required to complete the burst fill, so they must be generated off chip. For this example we used a 'F191 counter whose control signals, PL and CE, are generated in a cache controller. The clock input, CP (CLK), is the opposite phase of the system clock. The SSRAM operates with the same inverted system clock (CLK) and receives its addresses from two sources; A2-A13 are supplied from the processor's address bus, and A0-A1 are supplied from the 'F191 counter to allow nibble counting as shown in Figure 6.

STANDARD SRAM WITH EDGE TRIGGERED LATCHES ON INPUTS AND TRANSPARENT LATCHES ON OUTPUTS

STANDARD SRAM WITH EDGE TRIGGERED LATCHES ON INPUTS AND OUTPUTS

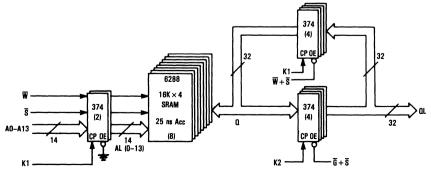


Figure 7. Standard SRAM Implementations

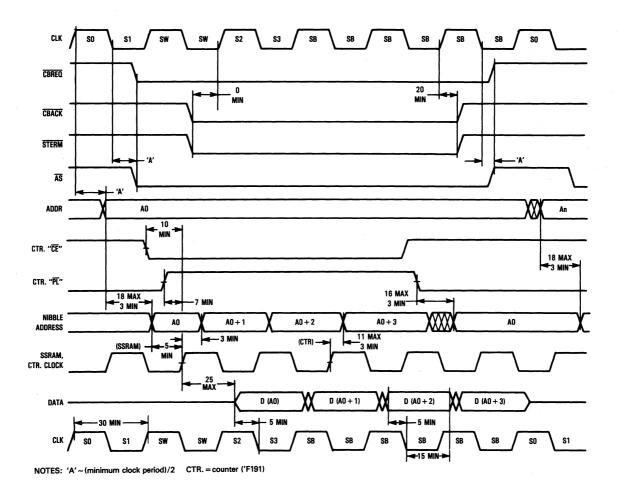


Figure 8. MC68030 Burst Fill Timing

Table 1. Timing Comparisons Between SSRAMs and SRAMs

Timings	25 ns SSRAM		_	25 ns SRAM		20 ns SRAM		15 ns SRAM		10 ns SRAM	
	Trans. Output	Edge Trig. Output	Trans. Output	Edge Trig. Output	Trans. Output	Edge Trig. Output	Trans. Output	Edge Trig. Output	Trans. Output	Edge Trig. Output	
tCYC	25 ns	25 ns	25 ns	25 ns	20 ns	20 ns	15 ns	15 ns	10 ns	10 ns	
tAVQV	35 ns	45 ns	50 ns	54 ns	45 ns	49 ns	40 ns	44 ns	35 ns	39 ns	
tKQV	25 ns	35 ns	43 ns	43 ns	38 ns	38 ns	33 ns	33 ns	28 ns	28 ns	

The timing begins with the request, the acknowledgment and the generation of the first address. This address is used to access one of the four long words. Two low order address signals from this address must also be loaded into the counter. At the beginning of the cycle the parallel load signal for the counter is enabled, the address is then loaded in and the PL signal can be disabled. The counter will provide the memory this first address a propagation delay later and then increment it on successive clock edges to supply the memory with the remaining three needed addresses. After receiving all four 32-bit words the processor is free to continue.

A similar system built using standard MCM6288 (16K×4) type SRAMs would require the use of off-chip input and output latches ('F373 or 'F374 type) in addition to the counter. It would require four chips to perform the latching function for 32-bit data in, and four chips to latch the 32-bit data out, for a total of eight additional 20 pin packages added to the memory PC board. This standard SRAM cache system would also require additional logic in the cache controller to support the write pulse, associated write enable and data in timing for write cycles, and the generation of a second clock (LE or CP) to separately control the input and output latches. To attain the cache system speed of 33-1/3 MHz would require a SRAM access time of approximately one bin faster than the SSRAM. In addition the external glue logic would have to be faster than what is currently offered in the 74F series logic.

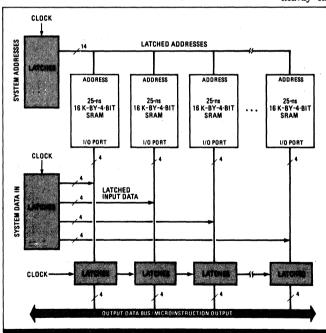
SUMMARY

There are many applications for high-speed Synchronous Static RAMs. The integration of latches, self timed writes, bus drive capability, and clock control greatly simplifies system level implementation and ease of use. These features will allow SSRAMs to continue to support higher frequency system operation. Depending on the application, Synchronous Static RAMs can provide up to a 10 to 15 ns improvement in system access time over SRAMs that spec the same chip speeds. They save precious board space by reducing the chip count, and simplify controller design for latch control and write cycles.

ACKNOWLEDGMENTS

The authors would like to thank Brian Branson and Bill Martino for their inputs and comments that helped complete this paper. And special thanks to Richard Crisp for his MC68030 cache system timing analysis.

REFERENCES


- Motorola Semiconductor Technical Data: "Technical Summary: Second Generation 32-Bit Enhanced Microprocessor", 1986.
- Motorola Semiconductor Technical Data: "Fast and LS TTL Data", 1986.

Motorola Inc. can provide the usual promotional and technical literature associated with the Synchronous Static RAM family.

MOTOROLA'S RADICAL SRAM DESIGN SPEEDS SYSTEMS 40%

Key to higher throughput is a synchronous clocked architecture and on-chip I/O latches; the combination cuts interconnection delay by up to 20 ns

by Bernard C. Cole

1. ASYNCHRONOUS. Using asynchronous SRAMs, designers of high-performance synchronous systems must incorporate latches on the inputs and outputs, adding 15 to 20 ns of delay.

ngineers at Motorola Inc.'s MOS Memory Products Division are taking a radically different approach from the current asynchronous architecture for static random-access memories. They are developing a synchronous architecture the company claims will improve system throughput by as much as 40% and will reduce system component count by as much as 50%.

The keys to the Austin, Texas, division's new architecture are: replacing the traditional self-clocked address-transition-detection circuitry, found in conventional asynchronous SRAMs, with a synchronous clocked architecture, and adding critical input and output latches on-chip. The combination of these features eliminates as much as 8 to 10 ns of interconnection delay on input and on output, says William Martino, the division's design manager for specialized memories. It also eliminates circuitry often required to make asynchronous devices appear synchronous in high-performance cache-memory systems, which depend heavily on the synchronization of critical timing

parameters. Also incorporated on the chip are drive transistors capable of driving buses with capacitive loads of up to 130 pF without additional external circuitry. Motorola designers also enlarged the geometries to increase the inherent drive capability of the devices.

The new architecture has been incorporated into four initial products that are members of a new family of 16-Kbit-by-4-bit SRAMs with cycle times ranging from 25 to 35 ns and access times in the 10 to 35 ns range. This equals that of comparably sized asynchronous SRAMs fabricated with the same 1.5-um double-metal CMOS process [Electronics, Aug. 7, 1986, p. 81], says Frank Miller, synchronous SRAM project leader at the division. But Miller emphasizes that the elimination of as much as 20 ns of interconnection delay can almost double system-level performance.

Motorola expects to offer samples of the four clocked synchronous SRAM parts within about a month and plans to be in volume production by the end of the fourth quarter. Two of the devices, the MCM6292 and 6295, incorporate level-sensitive transparent latches,

13

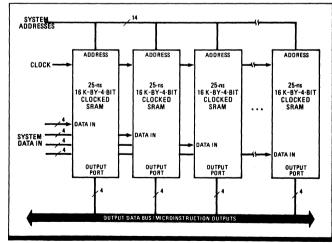
Reprinted from Electronics, July 23, 1987, issue. Copyright ©1987, McGraw-Hill, Inc. All rights reserved.

whereas the MCM6293 and 6294 use positive-edge-triggered latches. Also the 6294 and 6295 each have an output enable pin that allows the user asynchronous control of the output buffers, allowing the parts to be used in common I/O at the board level. All the devices feature an active ac power dissipation of 600 mW and an active dc power of only 100 mW.

The advantages of Motorola's new family of synchronous SRAMs outweigh the advantages of asynchronous devices, Martino says. In asynchronous devices, great reliance is placed on address-transition detection, a self-clocking scheme that uses the address-signal transition, or edge, as a reference to synchronizing all operations on the chip to that signal. Martino says that asynchronous SRAMs are widely used because they allow and recognize address changes at any time. As a result, no external global clock is necessary to access data, making them easy to use. Also, compared with dynamic RAMs, asynchronous SRAMs take much less external circuitry, says Miller. Because they are free-running, the addresses can be changed whenever needed. and they are very easy to control.

Although they are easy to use, asynchronous SRAMS must be surrounded by considerable external logic (see fig. 1) in many applications in high-performance processor systems such as writable control stores, data caches, and cachetag memories [Electronics, June 11, 1987, p. 78] that require synchronous operation. The extra circuitry imposes a considerable performance penalty, and that can be a problem in cache applications in particular, says Martino, where the speed of memory typically must be at least an order of magnitude faster than main memory. Also, for a cache to work properly, critical tim-

ing relationships must be preserved so that a variety of simultaneous operations can be coordinated, such as searching the tag store, getting data out of cache, and replacing proper entries in the cache. The added delay of the external logic can make it difficult to preserve these relationships.


When system speeds were in the 200-ns range, Miller says, the additional 10-to-20-ns penalty of this external logic could be tolerated. "But with processor speeds improving so dramatically, now pushing below 100 ns toward 50 ns, this is a penalty that is critical, especially since the speed of the external logic has not kept pace with the improvements in speed at the chip level."

Depending on the type of register involved and the process used, the delay time, even with high-performance logic families, can be reduced to no more than 7 to 10 ns.

says Martino. As a result, most speed improvements have come by pushing the speed of the memory chips themselves. But, as processors speed up, memories with sufficiently low access times are getting harder and harder to produce inexpensively, Martino says. Current 25-to-35-ns asynchronous SRAMs are barely adequate, he says. And newer processors will require a system throughput of no more than 35 to 40 ns. For such throughputs, SRAMs must be pushed to below 10 ns, only achievable now with bipolar and bicmos circuits, but at much higher power. "However, even if parts are pushed down to 1 ns and under, there is still that 10 ns on the input and another 10 ns on the output to deal with," says Martino.

The most important element in Motorola's new SRAM architecture (see fig. 2) is the incorporation of the external input and output latches necessary for synchronous operation on board. This design considerably simplifies system design and reduces interconnection delay. "By pulling all of that glue logic on board, it is no longer necessary to drive a large bus to TTL levels," says Martino. "It is now done on-chip, reducing the 10-ns delay down to picosecond levels. This allows the use of a 25-ns part for a 25-to-30-ns bus, rather than using more expensive, power-hungry 10- and 15-ns parts for the same chore."

The Motorola architecture uses address-input latches to hold the addresses so that the processor does not have to hold the addresses valid for the entire cycle. A similar function is served by the data latches on the input. The latches on the output, however, serve a dual function. First, they provide a longer setup and hold time over which the data is valid on the bus, necessary in most processing systems. With a

2. SYNCHRONOUS. By incorporating latches and drivers on-chip, Motorola's synchronous SRAM reduces chip count by more than 50% and reduces interconnection delay.

standard SRAM at minimum cycle time, that time is about 5 ns without any external latching. This is not enough time for most systems, which require the data to be on the bus for at least 15 to 20 ns, for the processor to receive the valid data. The other function of the latches is to provide the extra drive needed to drive the buses with capacitive loads of up to 130 pf.

The designers of the new SRAMs have eliminated the address-detection-transition circuitry; now they use on-chip clock input for a synchronous clocking scheme

Also incorporated on-chip to support the synchronous operation of the latches is a clock input that controls when the latches are transparent and when they are brought into play. Usually this clock input is a derivative of the system clock; that is, the latches are controlled by the edge of the system clock.

The Motorola designers have eliminated the address-detection-transition circuitry in the new SRAMS. Instead, they use the on-chip clock input to incorporate a synchronous clocking scheme in which the necessary address, data, chip-select, and write-enable information previously brought on board the chip by the address-detection-transition circuitry is now accessed at the beginning of the cycle in reference to the external clock, rather than to the address edge as in the asynchronous scheme. The technique, says Martino, is similar to how a DRAM brings in its addresses

with setup and hold times in relation to a readaccess or column-access signal input. "Since this device employs a clock with a high-going edge at the beginning of each cycle, it is no longer necessary to detect address-transitions," he says. "The system will tell the chip when to supply the necessary information by providing the clock at the appropriate time."

To eliminate the external drive circuitry, the inherent drive capability of the devices was increased fourfold, says Miller. So Motorola designers enlarged the geometries used to fabricate the pull-up and pull-down transistors, typically on the order of 1,500 μm wide, compared with 400- to 600-µm widths on the standard 30-pF devices, and as small as 6 µm in the memory array and 80 μm in the peripheral circuitry. Moreover, to achieve higher speed in spite of the higher drive currents, n-channel devices, which are only output devices, were used rather than the slower p-channel devices. Furthermore, these output devices were speeded up by incorporating a separate ground-supply pin for the output drivers. "This allowed us to burn more current in the output drivers without corrupting the operation of the rest of the circuit," Miller says.

Although this required a substantial increase in the area devoted to the drive circuitry, the chip size, 146 by 404 mils, is not substantially larger than comparable 64-Kbit asynchronous SRAMS. The extra area required for the larger drivers and for the internal clocking circuitry is offset by the area eliminated by removal of the address-transition-detection circuitry required on asynchronous parts, Martino says.

INGENIOUS SRAM DESIGN WAS DONE IN REMARKABLY SHORT TIME

For a memory device of such complexity and ingenious design, Motorola's new clocked synchronous static random-access-memory design was completed in a remarkably short time—only 12 months. Moreover, most of the work was done by a four-person design team: William Martino, design manager for specialized memories; Frank Miller, synchronous SRAM project leader; chip designer Scott Remington; and layout engineer Richard Southerland.

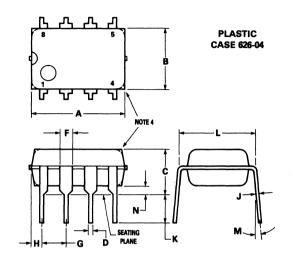
One reason for the fast turnaround was that the array and much of the peripheral circuitry is identical to what was used in the company's family of asynchronous 64-Kbit SRAMs, says Miller. "All we had to do was strip off those portions of the circuit relating to the asynchronous operation and replace them with new synchronous elements."

The team drew from two sources for the features incorporated into the synchronous design—including their cumulative design experience. Miller has seven years' experience in memory design. Remington, an eight-year Motorola veteran, worked on the company's 64-Kbit and 1-Mbit DRAMs. Southerland, a five-year Texas Instruments veteran, worked on

EXPERTS. Miller, Southerland, and Remington, from left, are old hands at memory design.

most of Motorola's asynchronous SRAMs in his two years with the company.

The other source was extensive input from Motorola's customers. "We spent several months defining a variety of special-application memory devices, from dual-port SRAMs and video DRAMs to content-addressable memories," says Miller. "But when we started taking these designs around to customers for input, we found they were most concerned with ways to make standard parts work better. For designers of high-performance systems using cache architectures, one of the largest common denominators was complaints that they had to surround the asynchronous parts with a variety of glue logic to operate appropriately in a synchronous environment.


"The key is listening to the customers, finding out what their specific complaints are, and coming up with parts that satisfy those needs."

Package	Dimensions			 	14-2
Tape and	d Reel Data for	Surface Mount De	evices	 	14-21

Mechanical Data 14

Package availability and ordering information are given on the individual data sheets.

8-LEAD PACKAGE -

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
A	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
C	3.94	4.45	0.155	0.175	
۵	0.38	0.51	0.015	0.020	
F	1.02	1.52	0.040	0.060	
G	2.54	BSC	0.100 BSC		
H	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62	BSC	0.300 BSC		
M		10°	_	10°	
N	0.51	0.76	0.020	0.030	

NOTES:

- 1. LEAD POSITIONAL TOLERANCE:
 - **Φ** φ 0.13 (0.005) **M** T A **M** B **M**
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 4. DIMENSIONS A AND B ARE DATUMS.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

MAX

22.35

7.49

4.57

0.55

1.77

0.30

3.42

15°

1.01

INCHES

0.100 BSC

0.008 0.012

0.115 0.135 0.300 BSC

0.020 0.040

MAX

0.880

0.295

0.180

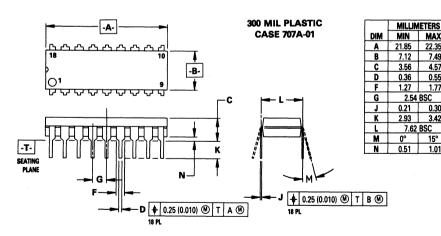
0.022

0.070

15°

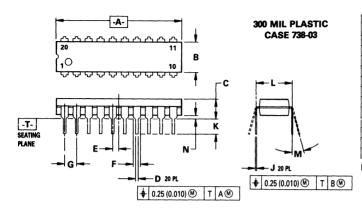
MIN

0.860


0.280

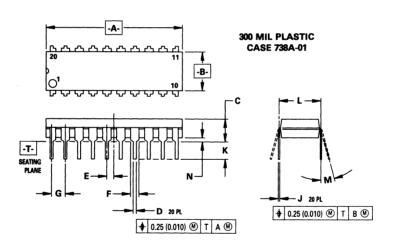
0.140

0.014


0.050

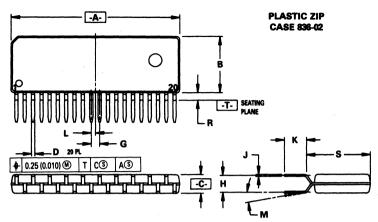
18-LEAD PACKAGE -

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION "L" TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.

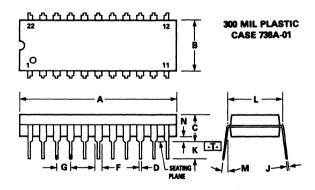
	MILLIN	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	25.66	27.17	1.010	1.070	
В	6.10	6.60	0.240	0.260	
C	3.81	4.57	0.150	0.180	
D	0.39	0.55	0.015	0.022	
E	1.27	BSC	0.050 BSC		
F	1.27	1.77	0.050	0.070	
G	2.54	BSC	0.100 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.55	0.110	0.140	
L	7.62	BSC	0.300 BSC		
M	0°	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION "L" TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.

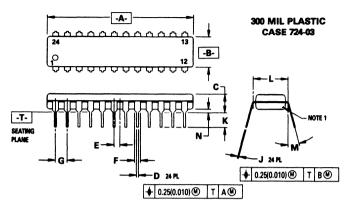
1	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	24.39	24.89	0.960	0.980	
В	7.12	7.49	0.280	0.295	
C	3.69	4.44	0.145	0.175	
D	0.39	0.55	0.015	0.022	
E	E 1.27 BSC		0.050 BSC		
F	1.27	1.77	0.050	0.070	
G	2.54 BSC		0.100 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.55	0.110	0.140	
L	7.62 BSC		0.300 BSC		
M	0° .	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

NOTES:

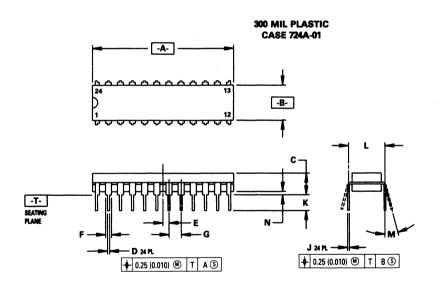

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION "L" TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
A	25.53	25.90	1.005	1.020
В	8.59	8.89	0.338	0.350
C	2.75	2.94	0.108	0.116
O	0.45	0.55	0.018	0.022
G	1.27	BSC	0.050 BSC	
H	2.44	2.64	0.097	0.103
_	0.23	0.33	0.009	0.013
K	3.18	3.55	0.125	0.140
٦	0.64	BSC	0.025	BSC
M	0°	4°	0°	4°
R	0.89	1.39	0.035	0.055
S	9.66	10.16	0.380	0.400

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION "H" TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSIONS "A", "B", AND "S" DO NOT INCLUDE MOLD PROTRUSION.
- MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010).


22-LEAD PACKAGE -

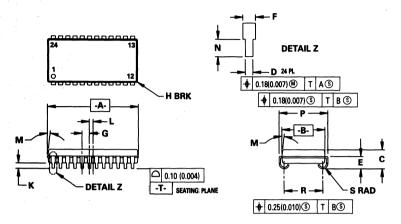
	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	25.65	27.17	1.010	1.070
В	6.10	6.60	0.240	0.260
C	3.74	4.57	0.155	0.180
D	0.38	0.55	0.015	0.022
F	1.27	1.77	0.050	0.070
G	2.54	BSC	0.100 BSC	
J	0.20	0.38	0.008	0.015
K	2.79	3.55	0.110	0.140
L	7.62 BSC		0.300	BSC
M	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040


NOTES:

- DIMENSION A IS A DATUM. T IS BOTH A DATUM AND A SEATING PLANE.
- POSITIONAL TOLERANCE FOR D DIMENSION; 22 PL:
 - ♦ 0.25 (0.010) M -T- A M
- 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSIONING AND TOLERANCING PER Y14.5 M, 1982.
- 5. CONTROLLING DIMENSION: INCH.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
A	31.25	32.13	1.230	1.265	
В	6.35	6.85	0.250	0.270	
C	3.69	4.44	0.145	0.175	
D	0.38	0.51	0.015	0.020	
E	1.27	1.27 BSC		0.050 BSC	
F	1.02	1.52	0.040	0.060	
G	2.54	BSC	0.100 BSC		
7	0.18	0.30	0.007	0.012	
K	2.80	3.55	0.110	0.140	
L	7.62	7.62 BSC		BSC	
M	0°	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

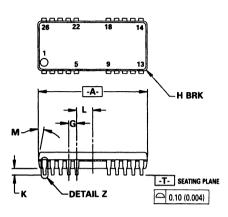
- 1. CHAMFERRED CONTOUR OPTIONAL.
 2. DIM "L" TO CENTER OF LEADS WHEN FORMED
- PARALLEL.
 3. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.
- 4. CONTROLLING DIMENSION: INCH.

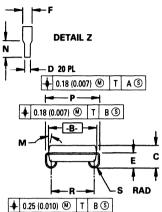


	MILLIM	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
A	29.47	29.71	1.160	1.170
В	7.12	7.62	0.280	0.300
C	3.81	4.57	0.150	0.180
D	0.39	0.53	0.015	0.021
E	1.27	BSC	0.050 BSC	
F	1.15	1.39	0.045	0.055
G	2.54	BSC	0.100 BSC	
J	0.21	0.30	0.008	0.012
K	3.18	3.42	0.125	0.135
L	7.62	BSC	0.300	BSC
M	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION A AND B DOES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

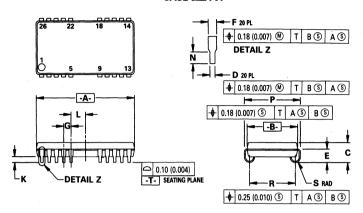

300 MIL SOJ CASE 810A-01



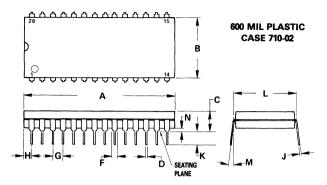
	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	15.75	16.00	0.620	0.630
В	7.50	7.74	0.295	0.305
C	3.26	3.75	0.128	0.148
D	0.39	0.50	0.015	0.020
E	2.24	2.48	0.088	0.098
F	0.67	0.81	0.026	0.032
G	1.27	BSC	0.050 BSC	
Н	_	0.50	-	0.020
K	0.89	1.14	0.035	0.045
L	0.64	BSC	0.025 BSC	
M	0°	5°	0°	5°
N	0.89	1.14	0.035	0.045
P	8.51	8.76	0.335	0.345
R	6.61	7.11	0.260	0.280
S	0.77	1.01	0.030	0.040

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- DIMENSION "A" AND "B" DO NOT INCLUDE
 MOLD PROTRUSION. MOLD PROTRUSION SHALL
 NOT EXCEED 0.15 (0.006) PER SIDE.
- 3. CONTROLLING DIMENSION: INCH.
- 4. DIM "R" TO BE DETERMINED AT DATUM -T-.

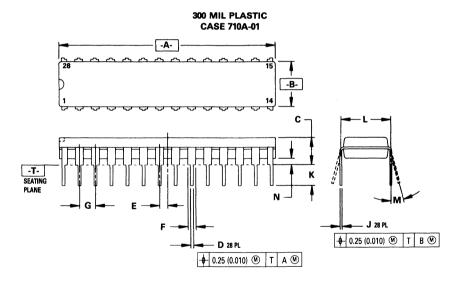
300 MIL SOJ CASE 822-03



	MILLIM	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	17.02	17.27	0.670	0.680
В	7.50	7.74	0.295	0.305
С	3.26	3.75	0.128	0.148
D	0.39	0.50	0.015	0.020
E	2.24	2.48	0.088	0.098
F	0.67	0.81	0.026	0.032
G	1.27	BSC	0.050 BSC	
H	_	0.50	_	0.020
K	0.89	1.14	0.035	0.045
L	2.54	BSC	0.100 BSC	
M	0°	10°	0°	10°
N	0.89	1.14	0.035	0.045
P	8.39	8.63	0.330	0.340
R	6.61	6.98	0.260	0.275
S	0.77	1.01	0.030	0.040

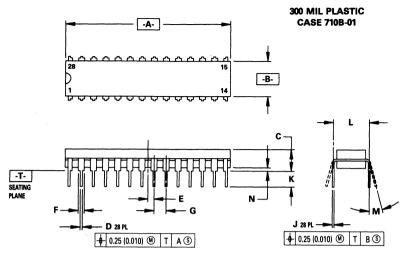

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION A & B DO NOT INCLUDE MOLD PROTRUSION. MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 4. DIM R TO BE DETERMINED AT DATUM -T-.
- 5. FOR LEAD IDENTIFICATION PURPOSES, PIN POSITIONS 6, 7, 8, 19, 20, & 21 ARE NOT USED.

350 MIL SOJ CASE 822A-01

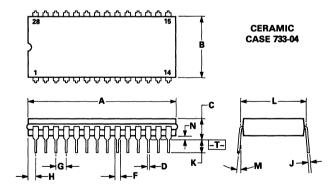

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	17.02	17.27	0.670	0.680
В	8.77	9.01	0.345	0.355
С	3.26	3.75	0.128	0.148
D	0.41	0.50	0.016	0.020
E	2.24	2.48	0.088	0.098
F	0.67	0.81	0.026	0.032
G	1.27	BSC	0.050 BSC	
K	0.64	_	0.025	_
L	2.54	BSC	0.100 BSC	
N	0.89	1.14	0.035	0.045
P	9.66	9.90	0.380	0.390
R	7.88	8.25	0.310	0.325
S	0.77	1.01	0.030	0.040

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION A & B DO NOT INCLUDE MOLD PROTRUSION. MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 4. DIMENSION A & B INCLUDE MOLD MISMATCH AND ARE DETERMINED AT THE PARTING LINE.
- 5. DIM R TO BE DETERMINED AT DATUM -T-.
- 6. FOR LEAD IDENTIFICATION PURPOSES, PIN POSITIONS 6, 7, 8, 19, 20, & 21 ARE NOT USED.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	36.45	37.21	1.435	1.465
В	13.72	14.22	0.540	0.560
C	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100	BSC
Н	1.65	2.16	0.065	0.085
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	15.24 BSC		0.600	BSC
М	0°	15°	_0°	15°
N	0.51	1.02	0.020	0.040

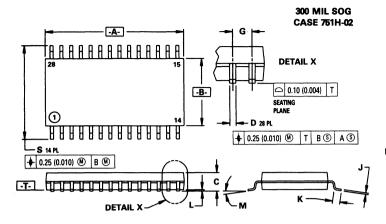

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	34.17	34.29	1.345	1.350
В	6.86	7.36	0.270	0.290
C	_	4.31	_	0.170
D	0.41	0.50	0.016	0.020
E	1.27	BSC	0.050 BSC	
F	1.15	1.39	0.045	0.055
G	2.54	BSC	0.100 BSC	
J	0.21	0.30	0.008	0.012
K	3.18	3.42	0.125	0.135
L	7.62 BSC		0.300	BSC
M	0°	15°	0°	15°
N	0.39	_	0.015	_

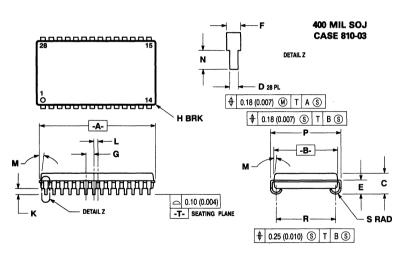

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

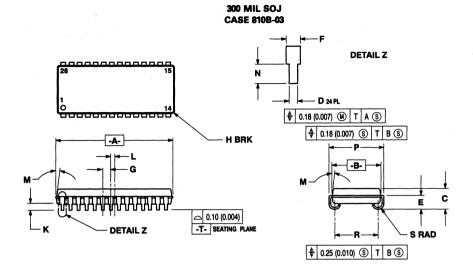
	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	34.55	34.79	1.360	1.370
В	7.12	7.62	0.280	0.300
C	3.81	4.57	0.150	0.180
D	0.39	0.53	0.015	0.021
E	1.27	BSC	0.050 BSC	
F	1.15	1.39	0.045	0.055
G	2.54	BSC	0.100 BSC	
J	0.21	0.30	0.008	0.012
K	3.18	3.42	0.125	0.135
L	7.62	BSC	0.300	BSC
M	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION A AND B DOES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

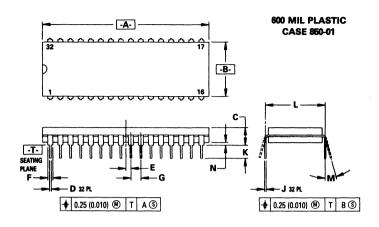
	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
A	36.45	37.84	1.435	1.490
В	12.70	15.36	0.500	0.605
С	4.06	5.84	0.160	0.230
D	0.38	0.55	0.015	0.022
F	1.27	1.65	0.050	0.065
G	2.54	BSC	0.100 BSC	
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	15.24 BSC		0.600	BSC
M	0°	15°	0°	15°
N	0.51	1.27	0.020	0.050


NOTES:

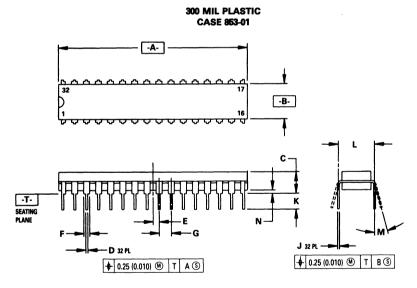
- 1. DIM -A- IS DATUM.
- 2. POSITIONAL TOL FOR LEADS:
- | φ 0.25 (0.010) | T A | M
- 3. T- IS SEATING PLANE.
- 4. DIM A AND B INCLUDES MENISCUS.
- 5. DIM -L- TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 6. DIMENSIONING & TOLERANCING PER Y14.5, 1982.
- 7. CONTROLLING DIM: INCH.


	MILLIMETERS		INCHES	HES
DIM	MIN	MAX	MIN	MAX
Α	17.70	18.50	0.697	0.728
В	8.23	8.90	0.324	0.350
C	2.04	2.50	0.080	0.098
D	0.35	0.50	0.014	0.020
G	1.27	BSC	0.050 BSC	
J	0.14	0.25	0.0060	0.0098
K	0.40	1.27	0.016	0.050
L	0.05	0.20	0.002	0.008
M	0°	8°	0°	8°
S	11.50	12.10	0.453	0.476

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIM: MILLIMETER.
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

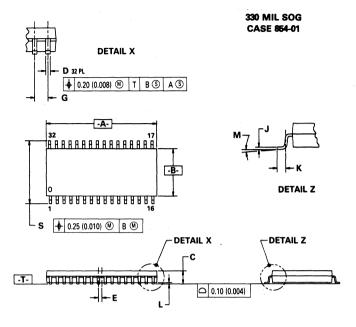

	MILLIM	ETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	18.29	18.54	0.720	0.730
В	10.04	10.28	0.395	0.405
С	3.26	3.75	0.128	0.148
D	0.39	0.50	0.015	0.020
E	2.24	2.48	0.088	0.098
F	0.67	0.81	0.026	0.032
G	1.27	BSC	0.050 BSC	
Н	_	0.50	_	0.020
K	0.89	1.14	0.035	0.045
L	0.64	BSC	0.025 BSC	
M	0°	5°	0°	5°
N	0.76	1.14	0.030	0.045
Р	11.05	11.30	0.435	0.445
R	9.15	9.65	0.360	0.380
S	0.77	1.01	0.030	0.040

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- DIMENSION A & B DO NOT INCLUDE MOLD
 PROTRUSION. MOLD PROTRUSION SHALL NOT
 EXCEED 0.15 (0.006) PER SIDE.
- 3. CONTROLLING DIMENSION: INCH.
- 4. DIM R TO BE DETERMINED AT DATUM -T-.

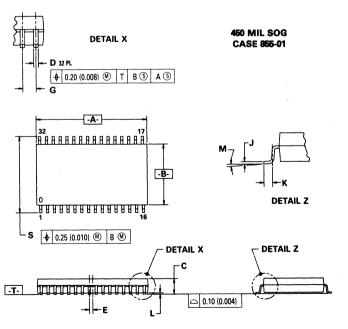

	MILLIM	ETERS	INCI	HES
DIM	MIN	MAX	MIN	MAX
Α	18.29	18.54	0.720	0.730
В	7.50	7.74	0.295	0.305
С	3.26	3.75	0.128	0.148
D	0.39	0.50	0.015	0.020
E	2.24	2.48	0.088	0.098
F	0.67	0.81	0.026	0.032
G	1.27	BSC	0.050 BSC	
Н	_	0.50	_	0.020
K	0.89	1.14	0.035	0.045
L	0.64	BSC	0.025 BSC	
M	0°	10°	0°	10°
N	0.76	1.14	0.030	0.045
P	8.38	8.64	0.330	0.340
R	6.60	6.86	0.260	0.270
S	0.77	1.01	0.030	0.040

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. DIMENSION A & B DO NOT INCLUDE MOLD PROTRUSION, MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 3. CONTROLLING DIMENSION: INCH.
- 4. DIM R TO BE DETERMINED AT DATUM -T-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	41.53	42.24	1.635	1.665
В	13.47	13.97	0.530	0.550
C	3.94	5.08	0.155	0.200
D	0.36	0.55	0.014	0.022
E	1.27	BSC	0.050 BSC	
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100 BSC	
J	0.21	0.38	0.008	0.015
K	2.93	3.42	0.115	0.135
L	15.24 BSC		0.600	BSC
М	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION A AND B DOES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

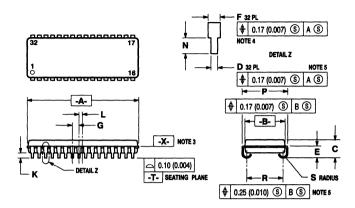
ſ	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	39.62	39.88	1.560	1.570
В	7.11	7.62	0.280	0.300
С	3.81	4.57	0.150	0.180
D	0.38	0.53	0.015	0.021
E	1.27	BSC	0.050 BSC	
F	1.14	1.40	0.045	0.055
G	2.54	BSC	0.100 BSC	
J	0.20	0.30	0.008	0.012
K	3.18	3.43	0.125	0.135
L	7.62 BSC		0.300	BSC
M	0°	15°	0°	15°
N	0.51	1.02	0.020	0.040


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION A AND B DOES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.40	20.70	0.803	0.815
В	8.70	8.90	0.342	0.350
С	2.30	2.60	0.090	0.102
D	0.36	0.51	0.014	0.020
E	0.64	BSC	0.025 BSC	
G	1.27	BSC	0.050 BSC	
J	0.15	0.32	0.006	0.012
K	0.61	1.00	0.024	0.039
L	0.10	0.30	0.004	0.012
M	0°	8°	0°	.8°
S	11.91	12.52	0.469	0.493

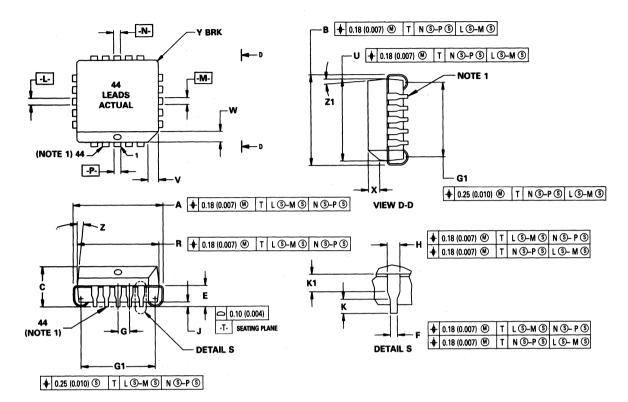
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.



	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	20.40	20.70	0.803	0.815
В	11.10	11.30	0.437	0.445
C	2.75	3.04	0.108	0.120
D	0.35	0.50	0.014	0.020
E	0.64	BSC	0.025 BSC	
G	1.27	BSC	0.050 BSC	
J	0.14	0.32	0.006	0.012
K	0.60	1.00	0.024	0.039
L	0.10	0.35	0.004	0.014
M	0°	8°	0°	8°
S	13.80	14.40	0.543	0.567

NOTES:

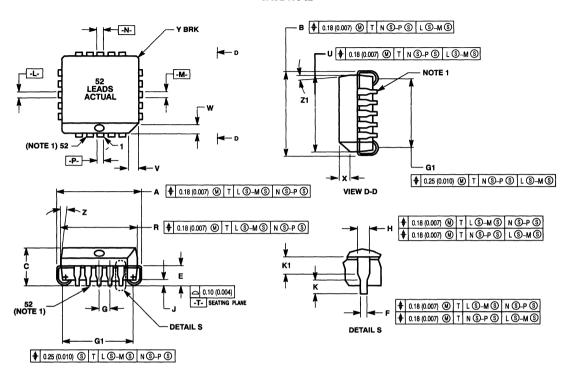
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER


300 MIL SOJ CASE 857-02

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.83	21.08	0.820	0.830
В	7.50	7.74	0.295	0.305
С	3.26	3.75	0.128	0.148
D	0.41	0.50	0.016	0.020
E	2.24	2.48	0.088	0.098
F	0.67	0.81	0.026	0.032
G	1.27	BSC	0.050 BSC	
K	0.89	1.14	0.035	0.045
L	0.64	BSC	0.025 BSC	
N	0.76	1.14	0.030	0.045
P	8.38	8.64	0.330	0.340
R	6.60	6.86	0.260	0.270
S	0.77	1.01	0.030	0.040

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DATUM PLANE -X- LOCATED AT TOP OF MOLD PARTING LINE AND COINCIDENT WITH TOP OF LEAD, WHERE LEAD EXITS BODY.
- 4. TO BE DETERMINED AT PLANE -X-.
- 5. TO BE DETERMINED AT PLANE -T-.
- 6. DIMENSION A & B DO NOT INCLUDE MOLD PROTRUSION. MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

PLASTIC CHIP CARRIER CASE 777-02

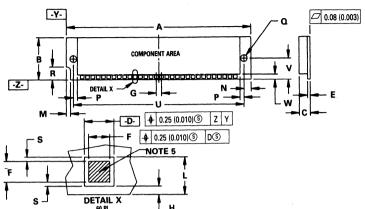

1	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	17.40	17.65	0.685	0.695
В	17.40	17.65	0.685	0.695
С	4.20	4.57	0.165	0.180
E	2.29	2.79	0.090	0.110
F	0.33	0.48	0.013	0.019
G	1.27	BSC	0.050	BSC
Н	0.66	0.81	0.026	0.032
J	0.51	-	0.020	_
K	0.64	_	0.025	_
R	16.51	16.66	0.650	0.656
U	16.51	16.66	0.650	0.656
٧	1.07	1.21	0.042	0.048
W	1.07	1.21	0.042	0.048
X	1.07	1.42	0.042	0.056
Υ	-	0.50	-	0.020
Z	2°	10°	2°	10°
G1	15.50	16.00	0.610	0.630
K1	1.02	-	0.040	
Z1	2°	10°	2°	10°

101110

NOTES:

- 1. DUE TO SPACE LIMITATION, CASE 777-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN SHOWING ALL 44 LEADS.
- DATUMS -L-, -M-, -N-, AND -P- DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING LINE.
- DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
- 4. DIM R AND U DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.25 (0.010) PER SIDE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 6. CONTROLLING DIMENSION: INCH.

PLASTIC CHIP CARRIER CASE 778-02



	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	19.94	20.19	0.785	0.795
В	19.94	20.19	0.785	0.795
С	4.20	4.57	0.165	0.180
E	2.29	2.79	0.090	0.110
F	0.33	0.48	0.013	0.019
G	1.27	BSC	0.05	0 BSC
Н	0.66	0.81	0.026	0.032
J	0.51	_	0.020	_
K	0.64		0.025	_
R	19.05	19.20	0.750	0.756
U	19.05	19.20	0.750	0.756
V	1.07	1.21	0.042	0.048
W	1.07	1.21	0.042	0.048
X	1.07	1.42	0.042	0.056
Y	_	0.50	_	0.020
Z	2°	10°	2°	10°
G1	18.04	18.54	0.710	0.730
K1	1.02	_	0.040	_
Z 1	2°	10°	2°	10°

NOTES:

- DUE TO SPACE LIMITATION, CASE 778-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN SHOWING ALL 52 LEADS.
- DATUMS -L-, -M-, -N-, AND -P- DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING LINE.
- DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
- 4. DIM R AND U DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE MOLD PROTRUSION IS 0.25 (0.010) PER SIDE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 6. CONTROLLING DIMENSION: INCH.

CASE 839-01

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	88.78	89.02	3.495	3.505
В	20.20	20.44	0.795	0.805
С		5.28	_	0.208
D	1.66	1.90	0.065	0.075
E	1.20	1.34	0.047	0.053
F	1.15	1.39	0.045	0.055
G	2.54	BSC	0.100 BSC	
H		0.25	_	0.010
L	2.04	_	0.080	_
M	1.91	2.15	0.075	0.085
N	3.26	3.50	0.128	0.138
P	1.15	_	0.045	_
Q	3.13	3.22	0.123	0.127
R	6.23	6.47	0.245	0.255
S	0.13	0.38	0.005	0.015
U	82.02	82.27	3.229	3.239
٧	10.04	10.28	0.395	0.405
·W	2.54		0.100	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

6.23

0.13

82.02

10.04

2.54

6.47

0.38

82.27

10.28

0.245

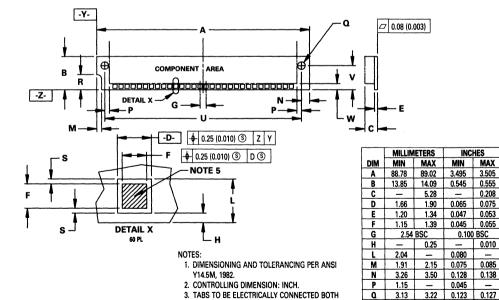
0.005

3.229

0.395

0.100

0.255


0.015

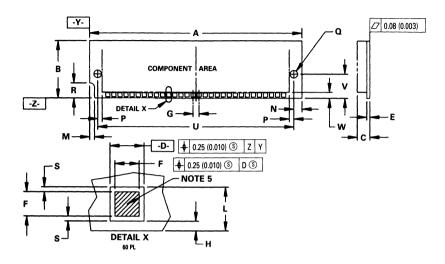
3.239

0.405

- 3. TABS TO BE ELECTRICALLY CONNECTED BOTH SIDES OF CARD.
- DIMENSION E INCLUDES PLATING AND/OR METALIZATION.
- 5. CONTACT ZONE MUST BE FREE OF HOLES.

CASE 839A-01

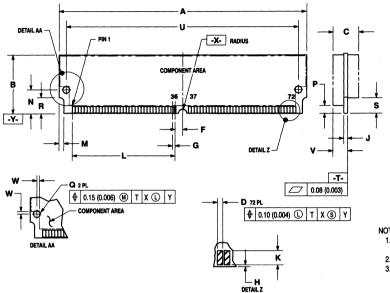
14


4. DIMENSION E INCLUDES PLATING AND/OR

5. CONTACT ZONE MUST BE FREE OF HOLES.

SIDES OF CARD.

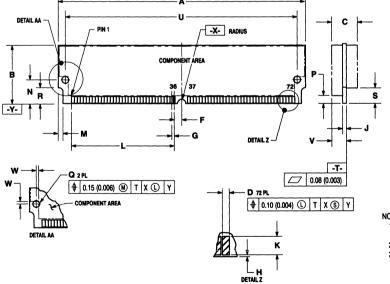
METALLIZATION.


CASE 839B-01

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MiN	MAX
Α	88.78	89.02	3.495	3.505
В	23.88	24.13	0.940	0.950
C		5.28	_	0.208
D	1.66	1.90	0.065	0.075
E	1.20	1.34	0.047	0.053
F	1.15	1.39	0.045	0.055
G	2.54 BSC		0.100	BSC
Н	_	0.25	_	0.010
Ŀ	2.04	_	0.080	_
M	1.91	2.15	0.075	0.085
N	3.26	3.50	0.128	0.138
P	1.15	_	0.045	_
a	3.13	3.22	0.123	0.127
R	6.23	6.47	0.245	0.255
S	0.13	0.38	0.005	0.015
U	82.02	82.27	3.229	3.239
V	10.04	10.28	0.395	0.405
W	2.54	_	0.100	_

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. TABS TO BE ELECTRICALLY CONNECTED BOTH SIDES OF CARD.
- 4. DIMENSION E INCLUDES PLATING AND/OR METALIZATION.
- 5. CONTACT ZONE MUST BE FREE OF HOLES.

CASE 866-01



	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	107.82	108.08	4.245	4.255
В	25.27	25.53	0.995	1.005
С	_	9.14	_	0.360
D	1.02	1.07	0.040	0.042
F	3.18	BSC	0.125	BSC
G	1.27	BSC	0.050	BSC
Н	_	0.25	_	0.010
J	1.19	1.37	0.047	0.054
K	0.25		0.100	_
L	44.45	REF	1.750 REF	
М	1.90	2.16	0.075	0.085
N	10.16	BSC	0.400 BSC	
P	3.18	-	0.125	_
Q	3.12	3.22	0.123	0.127
R	6.22	6.48	0.245	0.255
S	5.72	_	0.225	_
U	101.19	BSC	3.984	BSC
٧	_	5.28	_	0.208
W	1.12	_	0.044	_
X	1.52	1.63	0.060	0.064
_				

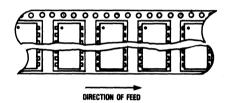
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- 3. CARD THICKNESS APPLIES ACROSS TABS AND INCLUDES PLATING AND/OR METALIZATION.

CASE 866A-01

	MILLIM	ETERS	INC	INCHES		
DIM	MIN	MAX	MIN	MAX		
A	107.82	108.08	4.245	4.255		
В	30.48	33.02	1.200	1.300		
С	_	9.14	-	0.360		
D	1.02	1.07	0.040	0.042		
F	3.18 BSC		0.125 BSC			
G	1.27	BSC	0.050	0.050 BSC		
Н		0.25		0.010		
J	1.19	1.37	0.047	0.054		
K	0.25	_	0.100	-		
L	44.45	REF	1.750 REF			
М	1.90	2.16	0.075	0.085		
N	10.16 BSC		0.400 BSC			
P	3.18	_	0.125	_		
Q	3.12	3.22	0.123	0.127		
R	6.22	6.48	0.245	0.255		
S	5.72	-	0.225	_		
U	101.1	9 BSC	3.984	BSC		
٧	_	5.28	_	0.208		
W	1.12	-	0.044	_		
X	1.52	1.63	0.060	0.064		

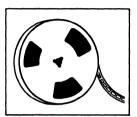
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH. 3. CARD THICKNESS APPLIES ACROSS TABS AND INCLUDES PLATING AND/OR METALIZATION.


Embossed Tape and Reel

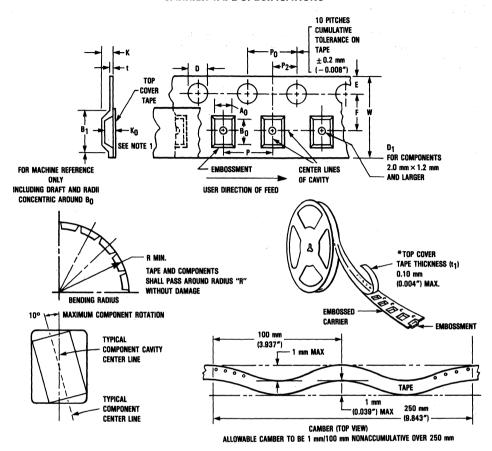
Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with the "poel-back" cover tape.

- 13-Inch Ree
- Used For Automatic Pick and Place Feed Systems
- Minimizes Product Handling
- EIA-481
- SOJ-24, SOJ-28, SOJ-20/26

Ordering Information


Use the standard device title and add the required suffix R2. Note that the individual reels have 1000 devices per reel. Also note the minimum lot size is one full reel for each line item, and orders are required to be in increments of the single reel quantity.

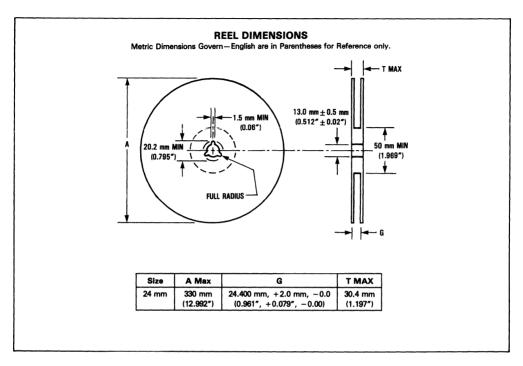
Tape and Reel Data for MOS Memory Surface Mount Devices

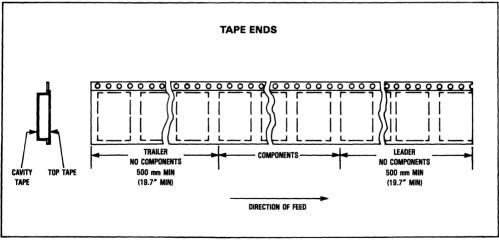

PACKAGES

SOJ-24 SOJ-28 SOJ-20/26

Package	Tape Width (mm)	Device per Reel	Reel Size (inch)	Tape & Reel Lot Size (Min)	Device Suffix
SOJ-24	24	1,000	13	1,000	R2
SOJ-28	24	1,000	13	1,000	R2
SOJ-20/26	24	1,000	13	1,000	R2

CARRIER TAPE SPECIFICATIONS




DIMENSIONS

Tape Size	B ₁ Max	D	D ₁	E	F	к	Р	P ₀	P ₂	R Min	T Max	w
24 mm	19.4 mm (0.764")	1.5+0.1 mm -0.0					12.0±0.10 mm (0.472±0.004")				0.400 mm (0.016")	24±0.2 mm (0.945±0.008")
		(0.059+0.004" -0.0)										

Metric Dimensions Govern-English are in parentheses for reference only.

NOTE 1: A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity.

1	Selector Guide and Cross Reference
2	CMOS Dynamic RAMs
3	DRAM Modules
4	Video RAMs
5	Pseudo Static RAMs
6	General MOS Static RAMs
7	CMOS Fast Static RAMs
8	CMOS Fast Static RAM Modules
9	Application Specific MOS Static RAMs
10	MOS EEPROM
11	Military Products
12	Reliability Information
13	Applications Information
14	Mechanical Data

1	Selector Guide and Cross Reference
2	CMOS Dynamic RAMs
3	DRAM Modules
4	Video RAMs
5	Pseudo Static RAMs
6	General MOS Static RAMs
7	CMOS Fast Static RAMs
8	CMOS Fast Static RAM Modules
9	Application Specific MOS Static RAMs
10	MOS EEPROM
11	Military Products
12	Reliability Information
13	Applications Information
14	Mechanical Data

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.